python_code
stringlengths
0
1.8M
repo_name
stringclasses
7 values
file_path
stringlengths
5
99
// SPDX-License-Identifier: GPL-2.0-or-later /* * ideapad-laptop.c - Lenovo IdeaPad ACPI Extras * * Copyright © 2010 Intel Corporation * Copyright © 2010 David Woodhouse <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/acpi.h> #include <linux/backlight.h> #include <linux/bitfield.h> #include <linux/bitops.h> #include <linux/bug.h> #include <linux/debugfs.h> #include <linux/device.h> #include <linux/dmi.h> #include <linux/fb.h> #include <linux/i8042.h> #include <linux/init.h> #include <linux/input.h> #include <linux/input/sparse-keymap.h> #include <linux/kernel.h> #include <linux/leds.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/platform_profile.h> #include <linux/rfkill.h> #include <linux/seq_file.h> #include <linux/sysfs.h> #include <linux/types.h> #include <linux/wmi.h> #include "ideapad-laptop.h" #include <acpi/video.h> #include <dt-bindings/leds/common.h> #define IDEAPAD_RFKILL_DEV_NUM 3 enum { CFG_CAP_BT_BIT = 16, CFG_CAP_3G_BIT = 17, CFG_CAP_WIFI_BIT = 18, CFG_CAP_CAM_BIT = 19, /* * These are OnScreenDisplay support bits that can be useful to determine * whether a hotkey exists/should show OSD. But they aren't particularly * meaningful since they were introduced later, i.e. 2010 IdeaPads * don't have these, but they still have had OSD for hotkeys. */ CFG_OSD_NUMLK_BIT = 27, CFG_OSD_CAPSLK_BIT = 28, CFG_OSD_MICMUTE_BIT = 29, CFG_OSD_TOUCHPAD_BIT = 30, CFG_OSD_CAM_BIT = 31, }; enum { GBMD_CONSERVATION_STATE_BIT = 5, }; enum { SBMC_CONSERVATION_ON = 3, SBMC_CONSERVATION_OFF = 5, }; enum { HALS_KBD_BL_SUPPORT_BIT = 4, HALS_KBD_BL_STATE_BIT = 5, HALS_USB_CHARGING_SUPPORT_BIT = 6, HALS_USB_CHARGING_STATE_BIT = 7, HALS_FNLOCK_SUPPORT_BIT = 9, HALS_FNLOCK_STATE_BIT = 10, HALS_HOTKEYS_PRIMARY_BIT = 11, }; enum { SALS_KBD_BL_ON = 0x8, SALS_KBD_BL_OFF = 0x9, SALS_USB_CHARGING_ON = 0xa, SALS_USB_CHARGING_OFF = 0xb, SALS_FNLOCK_ON = 0xe, SALS_FNLOCK_OFF = 0xf, }; /* * These correspond to the number of supported states - 1 * Future keyboard types may need a new system, if there's a collision * KBD_BL_TRISTATE_AUTO has no way to report or set the auto state * so it effectively has 3 states, but needs to handle 4 */ enum { KBD_BL_STANDARD = 1, KBD_BL_TRISTATE = 2, KBD_BL_TRISTATE_AUTO = 3, }; #define KBD_BL_QUERY_TYPE 0x1 #define KBD_BL_TRISTATE_TYPE 0x5 #define KBD_BL_TRISTATE_AUTO_TYPE 0x7 #define KBD_BL_COMMAND_GET 0x2 #define KBD_BL_COMMAND_SET 0x3 #define KBD_BL_COMMAND_TYPE GENMASK(7, 4) #define KBD_BL_GET_BRIGHTNESS GENMASK(15, 1) #define KBD_BL_SET_BRIGHTNESS GENMASK(19, 16) #define KBD_BL_KBLC_CHANGED_EVENT 12 struct ideapad_dytc_priv { enum platform_profile_option current_profile; struct platform_profile_handler pprof; struct mutex mutex; /* protects the DYTC interface */ struct ideapad_private *priv; }; struct ideapad_rfk_priv { int dev; struct ideapad_private *priv; }; struct ideapad_private { struct acpi_device *adev; struct rfkill *rfk[IDEAPAD_RFKILL_DEV_NUM]; struct ideapad_rfk_priv rfk_priv[IDEAPAD_RFKILL_DEV_NUM]; struct platform_device *platform_device; struct input_dev *inputdev; struct backlight_device *blightdev; struct ideapad_dytc_priv *dytc; struct dentry *debug; unsigned long cfg; unsigned long r_touchpad_val; struct { bool conservation_mode : 1; bool dytc : 1; bool fan_mode : 1; bool fn_lock : 1; bool set_fn_lock_led : 1; bool hw_rfkill_switch : 1; bool kbd_bl : 1; bool touchpad_ctrl_via_ec : 1; bool ctrl_ps2_aux_port : 1; bool usb_charging : 1; } features; struct { bool initialized; int type; struct led_classdev led; unsigned int last_brightness; } kbd_bl; }; static bool no_bt_rfkill; module_param(no_bt_rfkill, bool, 0444); MODULE_PARM_DESC(no_bt_rfkill, "No rfkill for bluetooth."); static bool allow_v4_dytc; module_param(allow_v4_dytc, bool, 0444); MODULE_PARM_DESC(allow_v4_dytc, "Enable DYTC version 4 platform-profile support. " "If you need this please report this to: [email protected]"); static bool hw_rfkill_switch; module_param(hw_rfkill_switch, bool, 0444); MODULE_PARM_DESC(hw_rfkill_switch, "Enable rfkill support for laptops with a hw on/off wifi switch/slider. " "If you need this please report this to: [email protected]"); static bool set_fn_lock_led; module_param(set_fn_lock_led, bool, 0444); MODULE_PARM_DESC(set_fn_lock_led, "Enable driver based updates of the fn-lock LED on fn-lock changes. " "If you need this please report this to: [email protected]"); static bool ctrl_ps2_aux_port; module_param(ctrl_ps2_aux_port, bool, 0444); MODULE_PARM_DESC(ctrl_ps2_aux_port, "Enable driver based PS/2 aux port en-/dis-abling on touchpad on/off toggle. " "If you need this please report this to: [email protected]"); static bool touchpad_ctrl_via_ec; module_param(touchpad_ctrl_via_ec, bool, 0444); MODULE_PARM_DESC(touchpad_ctrl_via_ec, "Enable registering a 'touchpad' sysfs-attribute which can be used to manually " "tell the EC to enable/disable the touchpad. This may not work on all models."); /* * shared data */ static struct ideapad_private *ideapad_shared; static DEFINE_MUTEX(ideapad_shared_mutex); static int ideapad_shared_init(struct ideapad_private *priv) { int ret; mutex_lock(&ideapad_shared_mutex); if (!ideapad_shared) { ideapad_shared = priv; ret = 0; } else { dev_warn(&priv->adev->dev, "found multiple platform devices\n"); ret = -EINVAL; } mutex_unlock(&ideapad_shared_mutex); return ret; } static void ideapad_shared_exit(struct ideapad_private *priv) { mutex_lock(&ideapad_shared_mutex); if (ideapad_shared == priv) ideapad_shared = NULL; mutex_unlock(&ideapad_shared_mutex); } /* * ACPI Helpers */ static int eval_int(acpi_handle handle, const char *name, unsigned long *res) { unsigned long long result; acpi_status status; status = acpi_evaluate_integer(handle, (char *)name, NULL, &result); if (ACPI_FAILURE(status)) return -EIO; *res = result; return 0; } static int exec_simple_method(acpi_handle handle, const char *name, unsigned long arg) { acpi_status status = acpi_execute_simple_method(handle, (char *)name, arg); return ACPI_FAILURE(status) ? -EIO : 0; } static int eval_gbmd(acpi_handle handle, unsigned long *res) { return eval_int(handle, "GBMD", res); } static int exec_sbmc(acpi_handle handle, unsigned long arg) { return exec_simple_method(handle, "SBMC", arg); } static int eval_hals(acpi_handle handle, unsigned long *res) { return eval_int(handle, "HALS", res); } static int exec_sals(acpi_handle handle, unsigned long arg) { return exec_simple_method(handle, "SALS", arg); } static int exec_kblc(acpi_handle handle, unsigned long arg) { return exec_simple_method(handle, "KBLC", arg); } static int eval_kblc(acpi_handle handle, unsigned long cmd, unsigned long *res) { return eval_int_with_arg(handle, "KBLC", cmd, res); } static int eval_dytc(acpi_handle handle, unsigned long cmd, unsigned long *res) { return eval_int_with_arg(handle, "DYTC", cmd, res); } /* * debugfs */ static int debugfs_status_show(struct seq_file *s, void *data) { struct ideapad_private *priv = s->private; unsigned long value; if (!read_ec_data(priv->adev->handle, VPCCMD_R_BL_MAX, &value)) seq_printf(s, "Backlight max: %lu\n", value); if (!read_ec_data(priv->adev->handle, VPCCMD_R_BL, &value)) seq_printf(s, "Backlight now: %lu\n", value); if (!read_ec_data(priv->adev->handle, VPCCMD_R_BL_POWER, &value)) seq_printf(s, "BL power value: %s (%lu)\n", value ? "on" : "off", value); seq_puts(s, "=====================\n"); if (!read_ec_data(priv->adev->handle, VPCCMD_R_RF, &value)) seq_printf(s, "Radio status: %s (%lu)\n", value ? "on" : "off", value); if (!read_ec_data(priv->adev->handle, VPCCMD_R_WIFI, &value)) seq_printf(s, "Wifi status: %s (%lu)\n", value ? "on" : "off", value); if (!read_ec_data(priv->adev->handle, VPCCMD_R_BT, &value)) seq_printf(s, "BT status: %s (%lu)\n", value ? "on" : "off", value); if (!read_ec_data(priv->adev->handle, VPCCMD_R_3G, &value)) seq_printf(s, "3G status: %s (%lu)\n", value ? "on" : "off", value); seq_puts(s, "=====================\n"); if (!read_ec_data(priv->adev->handle, VPCCMD_R_TOUCHPAD, &value)) seq_printf(s, "Touchpad status: %s (%lu)\n", value ? "on" : "off", value); if (!read_ec_data(priv->adev->handle, VPCCMD_R_CAMERA, &value)) seq_printf(s, "Camera status: %s (%lu)\n", value ? "on" : "off", value); seq_puts(s, "=====================\n"); if (!eval_gbmd(priv->adev->handle, &value)) seq_printf(s, "GBMD: %#010lx\n", value); if (!eval_hals(priv->adev->handle, &value)) seq_printf(s, "HALS: %#010lx\n", value); return 0; } DEFINE_SHOW_ATTRIBUTE(debugfs_status); static int debugfs_cfg_show(struct seq_file *s, void *data) { struct ideapad_private *priv = s->private; seq_printf(s, "_CFG: %#010lx\n\n", priv->cfg); seq_puts(s, "Capabilities:"); if (test_bit(CFG_CAP_BT_BIT, &priv->cfg)) seq_puts(s, " bluetooth"); if (test_bit(CFG_CAP_3G_BIT, &priv->cfg)) seq_puts(s, " 3G"); if (test_bit(CFG_CAP_WIFI_BIT, &priv->cfg)) seq_puts(s, " wifi"); if (test_bit(CFG_CAP_CAM_BIT, &priv->cfg)) seq_puts(s, " camera"); seq_puts(s, "\n"); seq_puts(s, "OSD support:"); if (test_bit(CFG_OSD_NUMLK_BIT, &priv->cfg)) seq_puts(s, " num-lock"); if (test_bit(CFG_OSD_CAPSLK_BIT, &priv->cfg)) seq_puts(s, " caps-lock"); if (test_bit(CFG_OSD_MICMUTE_BIT, &priv->cfg)) seq_puts(s, " mic-mute"); if (test_bit(CFG_OSD_TOUCHPAD_BIT, &priv->cfg)) seq_puts(s, " touchpad"); if (test_bit(CFG_OSD_CAM_BIT, &priv->cfg)) seq_puts(s, " camera"); seq_puts(s, "\n"); seq_puts(s, "Graphics: "); switch (priv->cfg & 0x700) { case 0x100: seq_puts(s, "Intel"); break; case 0x200: seq_puts(s, "ATI"); break; case 0x300: seq_puts(s, "Nvidia"); break; case 0x400: seq_puts(s, "Intel and ATI"); break; case 0x500: seq_puts(s, "Intel and Nvidia"); break; } seq_puts(s, "\n"); return 0; } DEFINE_SHOW_ATTRIBUTE(debugfs_cfg); static void ideapad_debugfs_init(struct ideapad_private *priv) { struct dentry *dir; dir = debugfs_create_dir("ideapad", NULL); priv->debug = dir; debugfs_create_file("cfg", 0444, dir, priv, &debugfs_cfg_fops); debugfs_create_file("status", 0444, dir, priv, &debugfs_status_fops); } static void ideapad_debugfs_exit(struct ideapad_private *priv) { debugfs_remove_recursive(priv->debug); priv->debug = NULL; } /* * sysfs */ static ssize_t camera_power_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ideapad_private *priv = dev_get_drvdata(dev); unsigned long result; int err; err = read_ec_data(priv->adev->handle, VPCCMD_R_CAMERA, &result); if (err) return err; return sysfs_emit(buf, "%d\n", !!result); } static ssize_t camera_power_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ideapad_private *priv = dev_get_drvdata(dev); bool state; int err; err = kstrtobool(buf, &state); if (err) return err; err = write_ec_cmd(priv->adev->handle, VPCCMD_W_CAMERA, state); if (err) return err; return count; } static DEVICE_ATTR_RW(camera_power); static ssize_t conservation_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ideapad_private *priv = dev_get_drvdata(dev); unsigned long result; int err; err = eval_gbmd(priv->adev->handle, &result); if (err) return err; return sysfs_emit(buf, "%d\n", !!test_bit(GBMD_CONSERVATION_STATE_BIT, &result)); } static ssize_t conservation_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ideapad_private *priv = dev_get_drvdata(dev); bool state; int err; err = kstrtobool(buf, &state); if (err) return err; err = exec_sbmc(priv->adev->handle, state ? SBMC_CONSERVATION_ON : SBMC_CONSERVATION_OFF); if (err) return err; return count; } static DEVICE_ATTR_RW(conservation_mode); static ssize_t fan_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ideapad_private *priv = dev_get_drvdata(dev); unsigned long result; int err; err = read_ec_data(priv->adev->handle, VPCCMD_R_FAN, &result); if (err) return err; return sysfs_emit(buf, "%lu\n", result); } static ssize_t fan_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ideapad_private *priv = dev_get_drvdata(dev); unsigned int state; int err; err = kstrtouint(buf, 0, &state); if (err) return err; if (state > 4 || state == 3) return -EINVAL; err = write_ec_cmd(priv->adev->handle, VPCCMD_W_FAN, state); if (err) return err; return count; } static DEVICE_ATTR_RW(fan_mode); static ssize_t fn_lock_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ideapad_private *priv = dev_get_drvdata(dev); unsigned long hals; int err; err = eval_hals(priv->adev->handle, &hals); if (err) return err; return sysfs_emit(buf, "%d\n", !!test_bit(HALS_FNLOCK_STATE_BIT, &hals)); } static ssize_t fn_lock_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ideapad_private *priv = dev_get_drvdata(dev); bool state; int err; err = kstrtobool(buf, &state); if (err) return err; err = exec_sals(priv->adev->handle, state ? SALS_FNLOCK_ON : SALS_FNLOCK_OFF); if (err) return err; return count; } static DEVICE_ATTR_RW(fn_lock); static ssize_t touchpad_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ideapad_private *priv = dev_get_drvdata(dev); unsigned long result; int err; err = read_ec_data(priv->adev->handle, VPCCMD_R_TOUCHPAD, &result); if (err) return err; priv->r_touchpad_val = result; return sysfs_emit(buf, "%d\n", !!result); } static ssize_t touchpad_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ideapad_private *priv = dev_get_drvdata(dev); bool state; int err; err = kstrtobool(buf, &state); if (err) return err; err = write_ec_cmd(priv->adev->handle, VPCCMD_W_TOUCHPAD, state); if (err) return err; priv->r_touchpad_val = state; return count; } static DEVICE_ATTR_RW(touchpad); static ssize_t usb_charging_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ideapad_private *priv = dev_get_drvdata(dev); unsigned long hals; int err; err = eval_hals(priv->adev->handle, &hals); if (err) return err; return sysfs_emit(buf, "%d\n", !!test_bit(HALS_USB_CHARGING_STATE_BIT, &hals)); } static ssize_t usb_charging_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ideapad_private *priv = dev_get_drvdata(dev); bool state; int err; err = kstrtobool(buf, &state); if (err) return err; err = exec_sals(priv->adev->handle, state ? SALS_USB_CHARGING_ON : SALS_USB_CHARGING_OFF); if (err) return err; return count; } static DEVICE_ATTR_RW(usb_charging); static struct attribute *ideapad_attributes[] = { &dev_attr_camera_power.attr, &dev_attr_conservation_mode.attr, &dev_attr_fan_mode.attr, &dev_attr_fn_lock.attr, &dev_attr_touchpad.attr, &dev_attr_usb_charging.attr, NULL }; static umode_t ideapad_is_visible(struct kobject *kobj, struct attribute *attr, int idx) { struct device *dev = kobj_to_dev(kobj); struct ideapad_private *priv = dev_get_drvdata(dev); bool supported = true; if (attr == &dev_attr_camera_power.attr) supported = test_bit(CFG_CAP_CAM_BIT, &priv->cfg); else if (attr == &dev_attr_conservation_mode.attr) supported = priv->features.conservation_mode; else if (attr == &dev_attr_fan_mode.attr) supported = priv->features.fan_mode; else if (attr == &dev_attr_fn_lock.attr) supported = priv->features.fn_lock; else if (attr == &dev_attr_touchpad.attr) supported = priv->features.touchpad_ctrl_via_ec; else if (attr == &dev_attr_usb_charging.attr) supported = priv->features.usb_charging; return supported ? attr->mode : 0; } static const struct attribute_group ideapad_attribute_group = { .is_visible = ideapad_is_visible, .attrs = ideapad_attributes }; /* * DYTC Platform profile */ #define DYTC_CMD_QUERY 0 /* To get DYTC status - enable/revision */ #define DYTC_CMD_SET 1 /* To enable/disable IC function mode */ #define DYTC_CMD_GET 2 /* To get current IC function and mode */ #define DYTC_CMD_RESET 0x1ff /* To reset back to default */ #define DYTC_QUERY_ENABLE_BIT 8 /* Bit 8 - 0 = disabled, 1 = enabled */ #define DYTC_QUERY_SUBREV_BIT 16 /* Bits 16 - 27 - sub revision */ #define DYTC_QUERY_REV_BIT 28 /* Bits 28 - 31 - revision */ #define DYTC_GET_FUNCTION_BIT 8 /* Bits 8-11 - function setting */ #define DYTC_GET_MODE_BIT 12 /* Bits 12-15 - mode setting */ #define DYTC_SET_FUNCTION_BIT 12 /* Bits 12-15 - function setting */ #define DYTC_SET_MODE_BIT 16 /* Bits 16-19 - mode setting */ #define DYTC_SET_VALID_BIT 20 /* Bit 20 - 1 = on, 0 = off */ #define DYTC_FUNCTION_STD 0 /* Function = 0, standard mode */ #define DYTC_FUNCTION_CQL 1 /* Function = 1, lap mode */ #define DYTC_FUNCTION_MMC 11 /* Function = 11, desk mode */ #define DYTC_MODE_PERFORM 2 /* High power mode aka performance */ #define DYTC_MODE_LOW_POWER 3 /* Low power mode aka quiet */ #define DYTC_MODE_BALANCE 0xF /* Default mode aka balanced */ #define DYTC_SET_COMMAND(function, mode, on) \ (DYTC_CMD_SET | (function) << DYTC_SET_FUNCTION_BIT | \ (mode) << DYTC_SET_MODE_BIT | \ (on) << DYTC_SET_VALID_BIT) #define DYTC_DISABLE_CQL DYTC_SET_COMMAND(DYTC_FUNCTION_CQL, DYTC_MODE_BALANCE, 0) #define DYTC_ENABLE_CQL DYTC_SET_COMMAND(DYTC_FUNCTION_CQL, DYTC_MODE_BALANCE, 1) static int convert_dytc_to_profile(int dytcmode, enum platform_profile_option *profile) { switch (dytcmode) { case DYTC_MODE_LOW_POWER: *profile = PLATFORM_PROFILE_LOW_POWER; break; case DYTC_MODE_BALANCE: *profile = PLATFORM_PROFILE_BALANCED; break; case DYTC_MODE_PERFORM: *profile = PLATFORM_PROFILE_PERFORMANCE; break; default: /* Unknown mode */ return -EINVAL; } return 0; } static int convert_profile_to_dytc(enum platform_profile_option profile, int *perfmode) { switch (profile) { case PLATFORM_PROFILE_LOW_POWER: *perfmode = DYTC_MODE_LOW_POWER; break; case PLATFORM_PROFILE_BALANCED: *perfmode = DYTC_MODE_BALANCE; break; case PLATFORM_PROFILE_PERFORMANCE: *perfmode = DYTC_MODE_PERFORM; break; default: /* Unknown profile */ return -EOPNOTSUPP; } return 0; } /* * dytc_profile_get: Function to register with platform_profile * handler. Returns current platform profile. */ static int dytc_profile_get(struct platform_profile_handler *pprof, enum platform_profile_option *profile) { struct ideapad_dytc_priv *dytc = container_of(pprof, struct ideapad_dytc_priv, pprof); *profile = dytc->current_profile; return 0; } /* * Helper function - check if we are in CQL mode and if we are * - disable CQL, * - run the command * - enable CQL * If not in CQL mode, just run the command */ static int dytc_cql_command(struct ideapad_private *priv, unsigned long cmd, unsigned long *output) { int err, cmd_err, cur_funcmode; /* Determine if we are in CQL mode. This alters the commands we do */ err = eval_dytc(priv->adev->handle, DYTC_CMD_GET, output); if (err) return err; cur_funcmode = (*output >> DYTC_GET_FUNCTION_BIT) & 0xF; /* Check if we're OK to return immediately */ if (cmd == DYTC_CMD_GET && cur_funcmode != DYTC_FUNCTION_CQL) return 0; if (cur_funcmode == DYTC_FUNCTION_CQL) { err = eval_dytc(priv->adev->handle, DYTC_DISABLE_CQL, NULL); if (err) return err; } cmd_err = eval_dytc(priv->adev->handle, cmd, output); /* Check return condition after we've restored CQL state */ if (cur_funcmode == DYTC_FUNCTION_CQL) { err = eval_dytc(priv->adev->handle, DYTC_ENABLE_CQL, NULL); if (err) return err; } return cmd_err; } /* * dytc_profile_set: Function to register with platform_profile * handler. Sets current platform profile. */ static int dytc_profile_set(struct platform_profile_handler *pprof, enum platform_profile_option profile) { struct ideapad_dytc_priv *dytc = container_of(pprof, struct ideapad_dytc_priv, pprof); struct ideapad_private *priv = dytc->priv; unsigned long output; int err; err = mutex_lock_interruptible(&dytc->mutex); if (err) return err; if (profile == PLATFORM_PROFILE_BALANCED) { /* To get back to balanced mode we just issue a reset command */ err = eval_dytc(priv->adev->handle, DYTC_CMD_RESET, NULL); if (err) goto unlock; } else { int perfmode; err = convert_profile_to_dytc(profile, &perfmode); if (err) goto unlock; /* Determine if we are in CQL mode. This alters the commands we do */ err = dytc_cql_command(priv, DYTC_SET_COMMAND(DYTC_FUNCTION_MMC, perfmode, 1), &output); if (err) goto unlock; } /* Success - update current profile */ dytc->current_profile = profile; unlock: mutex_unlock(&dytc->mutex); return err; } static void dytc_profile_refresh(struct ideapad_private *priv) { enum platform_profile_option profile; unsigned long output; int err, perfmode; mutex_lock(&priv->dytc->mutex); err = dytc_cql_command(priv, DYTC_CMD_GET, &output); mutex_unlock(&priv->dytc->mutex); if (err) return; perfmode = (output >> DYTC_GET_MODE_BIT) & 0xF; if (convert_dytc_to_profile(perfmode, &profile)) return; if (profile != priv->dytc->current_profile) { priv->dytc->current_profile = profile; platform_profile_notify(); } } static const struct dmi_system_id ideapad_dytc_v4_allow_table[] = { { /* Ideapad 5 Pro 16ACH6 */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_PRODUCT_NAME, "82L5") } }, { /* Ideapad 5 15ITL05 */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_PRODUCT_VERSION, "IdeaPad 5 15ITL05") } }, {} }; static int ideapad_dytc_profile_init(struct ideapad_private *priv) { int err, dytc_version; unsigned long output; if (!priv->features.dytc) return -ENODEV; err = eval_dytc(priv->adev->handle, DYTC_CMD_QUERY, &output); /* For all other errors we can flag the failure */ if (err) return err; /* Check DYTC is enabled and supports mode setting */ if (!test_bit(DYTC_QUERY_ENABLE_BIT, &output)) { dev_info(&priv->platform_device->dev, "DYTC_QUERY_ENABLE_BIT returned false\n"); return -ENODEV; } dytc_version = (output >> DYTC_QUERY_REV_BIT) & 0xF; if (dytc_version < 4) { dev_info(&priv->platform_device->dev, "DYTC_VERSION < 4 is not supported\n"); return -ENODEV; } if (dytc_version < 5 && !(allow_v4_dytc || dmi_check_system(ideapad_dytc_v4_allow_table))) { dev_info(&priv->platform_device->dev, "DYTC_VERSION 4 support may not work. Pass ideapad_laptop.allow_v4_dytc=Y on the kernel commandline to enable\n"); return -ENODEV; } priv->dytc = kzalloc(sizeof(*priv->dytc), GFP_KERNEL); if (!priv->dytc) return -ENOMEM; mutex_init(&priv->dytc->mutex); priv->dytc->priv = priv; priv->dytc->pprof.profile_get = dytc_profile_get; priv->dytc->pprof.profile_set = dytc_profile_set; /* Setup supported modes */ set_bit(PLATFORM_PROFILE_LOW_POWER, priv->dytc->pprof.choices); set_bit(PLATFORM_PROFILE_BALANCED, priv->dytc->pprof.choices); set_bit(PLATFORM_PROFILE_PERFORMANCE, priv->dytc->pprof.choices); /* Create platform_profile structure and register */ err = platform_profile_register(&priv->dytc->pprof); if (err) goto pp_reg_failed; /* Ensure initial values are correct */ dytc_profile_refresh(priv); return 0; pp_reg_failed: mutex_destroy(&priv->dytc->mutex); kfree(priv->dytc); priv->dytc = NULL; return err; } static void ideapad_dytc_profile_exit(struct ideapad_private *priv) { if (!priv->dytc) return; platform_profile_remove(); mutex_destroy(&priv->dytc->mutex); kfree(priv->dytc); priv->dytc = NULL; } /* * Rfkill */ struct ideapad_rfk_data { char *name; int cfgbit; int opcode; int type; }; static const struct ideapad_rfk_data ideapad_rfk_data[] = { { "ideapad_wlan", CFG_CAP_WIFI_BIT, VPCCMD_W_WIFI, RFKILL_TYPE_WLAN }, { "ideapad_bluetooth", CFG_CAP_BT_BIT, VPCCMD_W_BT, RFKILL_TYPE_BLUETOOTH }, { "ideapad_3g", CFG_CAP_3G_BIT, VPCCMD_W_3G, RFKILL_TYPE_WWAN }, }; static int ideapad_rfk_set(void *data, bool blocked) { struct ideapad_rfk_priv *priv = data; int opcode = ideapad_rfk_data[priv->dev].opcode; return write_ec_cmd(priv->priv->adev->handle, opcode, !blocked); } static const struct rfkill_ops ideapad_rfk_ops = { .set_block = ideapad_rfk_set, }; static void ideapad_sync_rfk_state(struct ideapad_private *priv) { unsigned long hw_blocked = 0; int i; if (priv->features.hw_rfkill_switch) { if (read_ec_data(priv->adev->handle, VPCCMD_R_RF, &hw_blocked)) return; hw_blocked = !hw_blocked; } for (i = 0; i < IDEAPAD_RFKILL_DEV_NUM; i++) if (priv->rfk[i]) rfkill_set_hw_state(priv->rfk[i], hw_blocked); } static int ideapad_register_rfkill(struct ideapad_private *priv, int dev) { unsigned long rf_enabled; int err; if (no_bt_rfkill && ideapad_rfk_data[dev].type == RFKILL_TYPE_BLUETOOTH) { /* Force to enable bluetooth when no_bt_rfkill=1 */ write_ec_cmd(priv->adev->handle, ideapad_rfk_data[dev].opcode, 1); return 0; } priv->rfk_priv[dev].dev = dev; priv->rfk_priv[dev].priv = priv; priv->rfk[dev] = rfkill_alloc(ideapad_rfk_data[dev].name, &priv->platform_device->dev, ideapad_rfk_data[dev].type, &ideapad_rfk_ops, &priv->rfk_priv[dev]); if (!priv->rfk[dev]) return -ENOMEM; err = read_ec_data(priv->adev->handle, ideapad_rfk_data[dev].opcode - 1, &rf_enabled); if (err) rf_enabled = 1; rfkill_init_sw_state(priv->rfk[dev], !rf_enabled); err = rfkill_register(priv->rfk[dev]); if (err) rfkill_destroy(priv->rfk[dev]); return err; } static void ideapad_unregister_rfkill(struct ideapad_private *priv, int dev) { if (!priv->rfk[dev]) return; rfkill_unregister(priv->rfk[dev]); rfkill_destroy(priv->rfk[dev]); } /* * Platform device */ static int ideapad_sysfs_init(struct ideapad_private *priv) { return device_add_group(&priv->platform_device->dev, &ideapad_attribute_group); } static void ideapad_sysfs_exit(struct ideapad_private *priv) { device_remove_group(&priv->platform_device->dev, &ideapad_attribute_group); } /* * input device */ #define IDEAPAD_WMI_KEY 0x100 static const struct key_entry ideapad_keymap[] = { { KE_KEY, 6, { KEY_SWITCHVIDEOMODE } }, { KE_KEY, 7, { KEY_CAMERA } }, { KE_KEY, 8, { KEY_MICMUTE } }, { KE_KEY, 11, { KEY_F16 } }, { KE_KEY, 13, { KEY_WLAN } }, { KE_KEY, 16, { KEY_PROG1 } }, { KE_KEY, 17, { KEY_PROG2 } }, { KE_KEY, 64, { KEY_PROG3 } }, { KE_KEY, 65, { KEY_PROG4 } }, { KE_KEY, 66, { KEY_TOUCHPAD_OFF } }, { KE_KEY, 67, { KEY_TOUCHPAD_ON } }, { KE_KEY, 128, { KEY_ESC } }, /* * WMI keys */ /* FnLock (handled by the firmware) */ { KE_IGNORE, 0x02 | IDEAPAD_WMI_KEY }, /* Esc (handled by the firmware) */ { KE_IGNORE, 0x03 | IDEAPAD_WMI_KEY }, /* Customizable Lenovo Hotkey ("star" with 'S' inside) */ { KE_KEY, 0x01 | IDEAPAD_WMI_KEY, { KEY_FAVORITES } }, { KE_KEY, 0x04 | IDEAPAD_WMI_KEY, { KEY_SELECTIVE_SCREENSHOT } }, /* Lenovo Support */ { KE_KEY, 0x07 | IDEAPAD_WMI_KEY, { KEY_HELP } }, { KE_KEY, 0x0e | IDEAPAD_WMI_KEY, { KEY_PICKUP_PHONE } }, { KE_KEY, 0x0f | IDEAPAD_WMI_KEY, { KEY_HANGUP_PHONE } }, /* Dark mode toggle */ { KE_KEY, 0x13 | IDEAPAD_WMI_KEY, { KEY_PROG1 } }, /* Sound profile switch */ { KE_KEY, 0x12 | IDEAPAD_WMI_KEY, { KEY_PROG2 } }, /* Lenovo Virtual Background application */ { KE_KEY, 0x28 | IDEAPAD_WMI_KEY, { KEY_PROG3 } }, /* Lenovo Support */ { KE_KEY, 0x27 | IDEAPAD_WMI_KEY, { KEY_HELP } }, /* Refresh Rate Toggle */ { KE_KEY, 0x0a | IDEAPAD_WMI_KEY, { KEY_DISPLAYTOGGLE } }, { KE_END }, }; static int ideapad_input_init(struct ideapad_private *priv) { struct input_dev *inputdev; int err; inputdev = input_allocate_device(); if (!inputdev) return -ENOMEM; inputdev->name = "Ideapad extra buttons"; inputdev->phys = "ideapad/input0"; inputdev->id.bustype = BUS_HOST; inputdev->dev.parent = &priv->platform_device->dev; err = sparse_keymap_setup(inputdev, ideapad_keymap, NULL); if (err) { dev_err(&priv->platform_device->dev, "Could not set up input device keymap: %d\n", err); goto err_free_dev; } err = input_register_device(inputdev); if (err) { dev_err(&priv->platform_device->dev, "Could not register input device: %d\n", err); goto err_free_dev; } priv->inputdev = inputdev; return 0; err_free_dev: input_free_device(inputdev); return err; } static void ideapad_input_exit(struct ideapad_private *priv) { input_unregister_device(priv->inputdev); priv->inputdev = NULL; } static void ideapad_input_report(struct ideapad_private *priv, unsigned long scancode) { sparse_keymap_report_event(priv->inputdev, scancode, 1, true); } static void ideapad_input_novokey(struct ideapad_private *priv) { unsigned long long_pressed; if (read_ec_data(priv->adev->handle, VPCCMD_R_NOVO, &long_pressed)) return; if (long_pressed) ideapad_input_report(priv, 17); else ideapad_input_report(priv, 16); } static void ideapad_check_special_buttons(struct ideapad_private *priv) { unsigned long bit, value; if (read_ec_data(priv->adev->handle, VPCCMD_R_SPECIAL_BUTTONS, &value)) return; for_each_set_bit (bit, &value, 16) { switch (bit) { case 6: /* Z570 */ case 0: /* Z580 */ /* Thermal Management button */ ideapad_input_report(priv, 65); break; case 1: /* OneKey Theater button */ ideapad_input_report(priv, 64); break; default: dev_info(&priv->platform_device->dev, "Unknown special button: %lu\n", bit); break; } } } /* * backlight */ static int ideapad_backlight_get_brightness(struct backlight_device *blightdev) { struct ideapad_private *priv = bl_get_data(blightdev); unsigned long now; int err; err = read_ec_data(priv->adev->handle, VPCCMD_R_BL, &now); if (err) return err; return now; } static int ideapad_backlight_update_status(struct backlight_device *blightdev) { struct ideapad_private *priv = bl_get_data(blightdev); int err; err = write_ec_cmd(priv->adev->handle, VPCCMD_W_BL, blightdev->props.brightness); if (err) return err; err = write_ec_cmd(priv->adev->handle, VPCCMD_W_BL_POWER, blightdev->props.power != FB_BLANK_POWERDOWN); if (err) return err; return 0; } static const struct backlight_ops ideapad_backlight_ops = { .get_brightness = ideapad_backlight_get_brightness, .update_status = ideapad_backlight_update_status, }; static int ideapad_backlight_init(struct ideapad_private *priv) { struct backlight_device *blightdev; struct backlight_properties props; unsigned long max, now, power; int err; err = read_ec_data(priv->adev->handle, VPCCMD_R_BL_MAX, &max); if (err) return err; err = read_ec_data(priv->adev->handle, VPCCMD_R_BL, &now); if (err) return err; err = read_ec_data(priv->adev->handle, VPCCMD_R_BL_POWER, &power); if (err) return err; memset(&props, 0, sizeof(props)); props.max_brightness = max; props.type = BACKLIGHT_PLATFORM; blightdev = backlight_device_register("ideapad", &priv->platform_device->dev, priv, &ideapad_backlight_ops, &props); if (IS_ERR(blightdev)) { err = PTR_ERR(blightdev); dev_err(&priv->platform_device->dev, "Could not register backlight device: %d\n", err); return err; } priv->blightdev = blightdev; blightdev->props.brightness = now; blightdev->props.power = power ? FB_BLANK_UNBLANK : FB_BLANK_POWERDOWN; backlight_update_status(blightdev); return 0; } static void ideapad_backlight_exit(struct ideapad_private *priv) { backlight_device_unregister(priv->blightdev); priv->blightdev = NULL; } static void ideapad_backlight_notify_power(struct ideapad_private *priv) { struct backlight_device *blightdev = priv->blightdev; unsigned long power; if (!blightdev) return; if (read_ec_data(priv->adev->handle, VPCCMD_R_BL_POWER, &power)) return; blightdev->props.power = power ? FB_BLANK_UNBLANK : FB_BLANK_POWERDOWN; } static void ideapad_backlight_notify_brightness(struct ideapad_private *priv) { unsigned long now; /* if we control brightness via acpi video driver */ if (!priv->blightdev) read_ec_data(priv->adev->handle, VPCCMD_R_BL, &now); else backlight_force_update(priv->blightdev, BACKLIGHT_UPDATE_HOTKEY); } /* * keyboard backlight */ static int ideapad_kbd_bl_check_tristate(int type) { return (type == KBD_BL_TRISTATE) || (type == KBD_BL_TRISTATE_AUTO); } static int ideapad_kbd_bl_brightness_get(struct ideapad_private *priv) { unsigned long value; int err; if (ideapad_kbd_bl_check_tristate(priv->kbd_bl.type)) { err = eval_kblc(priv->adev->handle, FIELD_PREP(KBD_BL_COMMAND_TYPE, priv->kbd_bl.type) | KBD_BL_COMMAND_GET, &value); if (err) return err; /* Convert returned value to brightness level */ value = FIELD_GET(KBD_BL_GET_BRIGHTNESS, value); /* Off, low or high */ if (value <= priv->kbd_bl.led.max_brightness) return value; /* Auto, report as off */ if (value == priv->kbd_bl.led.max_brightness + 1) return 0; /* Unknown value */ dev_warn(&priv->platform_device->dev, "Unknown keyboard backlight value: %lu", value); return -EINVAL; } err = eval_hals(priv->adev->handle, &value); if (err) return err; return !!test_bit(HALS_KBD_BL_STATE_BIT, &value); } static enum led_brightness ideapad_kbd_bl_led_cdev_brightness_get(struct led_classdev *led_cdev) { struct ideapad_private *priv = container_of(led_cdev, struct ideapad_private, kbd_bl.led); return ideapad_kbd_bl_brightness_get(priv); } static int ideapad_kbd_bl_brightness_set(struct ideapad_private *priv, unsigned int brightness) { int err; unsigned long value; int type = priv->kbd_bl.type; if (ideapad_kbd_bl_check_tristate(type)) { if (brightness > priv->kbd_bl.led.max_brightness) return -EINVAL; value = FIELD_PREP(KBD_BL_SET_BRIGHTNESS, brightness) | FIELD_PREP(KBD_BL_COMMAND_TYPE, type) | KBD_BL_COMMAND_SET; err = exec_kblc(priv->adev->handle, value); } else { err = exec_sals(priv->adev->handle, brightness ? SALS_KBD_BL_ON : SALS_KBD_BL_OFF); } if (err) return err; priv->kbd_bl.last_brightness = brightness; return 0; } static int ideapad_kbd_bl_led_cdev_brightness_set(struct led_classdev *led_cdev, enum led_brightness brightness) { struct ideapad_private *priv = container_of(led_cdev, struct ideapad_private, kbd_bl.led); return ideapad_kbd_bl_brightness_set(priv, brightness); } static void ideapad_kbd_bl_notify(struct ideapad_private *priv) { int brightness; if (!priv->kbd_bl.initialized) return; brightness = ideapad_kbd_bl_brightness_get(priv); if (brightness < 0) return; if (brightness == priv->kbd_bl.last_brightness) return; priv->kbd_bl.last_brightness = brightness; led_classdev_notify_brightness_hw_changed(&priv->kbd_bl.led, brightness); } static int ideapad_kbd_bl_init(struct ideapad_private *priv) { int brightness, err; if (!priv->features.kbd_bl) return -ENODEV; if (WARN_ON(priv->kbd_bl.initialized)) return -EEXIST; brightness = ideapad_kbd_bl_brightness_get(priv); if (brightness < 0) return brightness; priv->kbd_bl.last_brightness = brightness; if (ideapad_kbd_bl_check_tristate(priv->kbd_bl.type)) { priv->kbd_bl.led.max_brightness = 2; } else { priv->kbd_bl.led.max_brightness = 1; } priv->kbd_bl.led.name = "platform::" LED_FUNCTION_KBD_BACKLIGHT; priv->kbd_bl.led.brightness_get = ideapad_kbd_bl_led_cdev_brightness_get; priv->kbd_bl.led.brightness_set_blocking = ideapad_kbd_bl_led_cdev_brightness_set; priv->kbd_bl.led.flags = LED_BRIGHT_HW_CHANGED; err = led_classdev_register(&priv->platform_device->dev, &priv->kbd_bl.led); if (err) return err; priv->kbd_bl.initialized = true; return 0; } static void ideapad_kbd_bl_exit(struct ideapad_private *priv) { if (!priv->kbd_bl.initialized) return; priv->kbd_bl.initialized = false; led_classdev_unregister(&priv->kbd_bl.led); } /* * module init/exit */ static void ideapad_sync_touchpad_state(struct ideapad_private *priv, bool send_events) { unsigned long value; unsigned char param; int ret; /* Without reading from EC touchpad LED doesn't switch state */ ret = read_ec_data(priv->adev->handle, VPCCMD_R_TOUCHPAD, &value); if (ret) return; /* * Some IdeaPads don't really turn off touchpad - they only * switch the LED state. We (de)activate KBC AUX port to turn * touchpad off and on. We send KEY_TOUCHPAD_OFF and * KEY_TOUCHPAD_ON to not to get out of sync with LED */ if (priv->features.ctrl_ps2_aux_port) i8042_command(&param, value ? I8042_CMD_AUX_ENABLE : I8042_CMD_AUX_DISABLE); /* * On older models the EC controls the touchpad and toggles it on/off * itself, in this case we report KEY_TOUCHPAD_ON/_OFF. Some models do * an acpi-notify with VPC bit 5 set on resume, so this function get * called with send_events=true on every resume. Therefor if the EC did * not toggle, do nothing to avoid sending spurious KEY_TOUCHPAD_TOGGLE. */ if (send_events && value != priv->r_touchpad_val) { ideapad_input_report(priv, value ? 67 : 66); sysfs_notify(&priv->platform_device->dev.kobj, NULL, "touchpad"); } priv->r_touchpad_val = value; } static void ideapad_acpi_notify(acpi_handle handle, u32 event, void *data) { struct ideapad_private *priv = data; unsigned long vpc1, vpc2, bit; if (read_ec_data(handle, VPCCMD_R_VPC1, &vpc1)) return; if (read_ec_data(handle, VPCCMD_R_VPC2, &vpc2)) return; vpc1 = (vpc2 << 8) | vpc1; for_each_set_bit (bit, &vpc1, 16) { switch (bit) { case 13: case 11: case 8: case 7: case 6: ideapad_input_report(priv, bit); break; case 10: /* * This event gets send on a Yoga 300-11IBR when the EC * believes that the device has changed between laptop/ * tent/stand/tablet mode. The EC relies on getting * angle info from 2 accelerometers through a special * windows service calling a DSM on the DUAL250E ACPI- * device. Linux does not do this, making the laptop/ * tent/stand/tablet mode info unreliable, so we simply * ignore these events. */ break; case 9: ideapad_sync_rfk_state(priv); break; case 5: ideapad_sync_touchpad_state(priv, true); break; case 4: ideapad_backlight_notify_brightness(priv); break; case 3: ideapad_input_novokey(priv); break; case 2: ideapad_backlight_notify_power(priv); break; case KBD_BL_KBLC_CHANGED_EVENT: case 1: /* * Some IdeaPads report event 1 every ~20 * seconds while on battery power; some * report this when changing to/from tablet * mode; some report this when the keyboard * backlight has changed. */ ideapad_kbd_bl_notify(priv); break; case 0: ideapad_check_special_buttons(priv); break; default: dev_info(&priv->platform_device->dev, "Unknown event: %lu\n", bit); } } } /* On some models we need to call exec_sals(SALS_FNLOCK_ON/OFF) to set the LED */ static const struct dmi_system_id set_fn_lock_led_list[] = { { /* https://bugzilla.kernel.org/show_bug.cgi?id=212671 */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_PRODUCT_VERSION, "Lenovo Legion R7000P2020H"), } }, { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_PRODUCT_VERSION, "Lenovo Legion 5 15ARH05"), } }, {} }; /* * Some ideapads have a hardware rfkill switch, but most do not have one. * Reading VPCCMD_R_RF always results in 0 on models without a hardware rfkill, * switch causing ideapad_laptop to wrongly report all radios as hw-blocked. * There used to be a long list of DMI ids for models without a hw rfkill * switch here, but that resulted in playing whack a mole. * More importantly wrongly reporting the wifi radio as hw-blocked, results in * non working wifi. Whereas not reporting it hw-blocked, when it actually is * hw-blocked results in an empty SSID list, which is a much more benign * failure mode. * So the default now is the much safer option of assuming there is no * hardware rfkill switch. This default also actually matches most hardware, * since having a hw rfkill switch is quite rare on modern hardware, so this * also leads to a much shorter list. */ static const struct dmi_system_id hw_rfkill_list[] = { {} }; /* * On some models the EC toggles the touchpad muted LED on touchpad toggle * hotkey presses, but the EC does not actually disable the touchpad itself. * On these models the driver needs to explicitly enable/disable the i8042 * (PS/2) aux port. */ static const struct dmi_system_id ctrl_ps2_aux_port_list[] = { { /* Lenovo Ideapad Z570 */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_PRODUCT_VERSION, "Ideapad Z570"), }, }, {} }; static void ideapad_check_features(struct ideapad_private *priv) { acpi_handle handle = priv->adev->handle; unsigned long val; priv->features.set_fn_lock_led = set_fn_lock_led || dmi_check_system(set_fn_lock_led_list); priv->features.hw_rfkill_switch = hw_rfkill_switch || dmi_check_system(hw_rfkill_list); priv->features.ctrl_ps2_aux_port = ctrl_ps2_aux_port || dmi_check_system(ctrl_ps2_aux_port_list); priv->features.touchpad_ctrl_via_ec = touchpad_ctrl_via_ec; if (!read_ec_data(handle, VPCCMD_R_FAN, &val)) priv->features.fan_mode = true; if (acpi_has_method(handle, "GBMD") && acpi_has_method(handle, "SBMC")) priv->features.conservation_mode = true; if (acpi_has_method(handle, "DYTC")) priv->features.dytc = true; if (acpi_has_method(handle, "HALS") && acpi_has_method(handle, "SALS")) { if (!eval_hals(handle, &val)) { if (test_bit(HALS_FNLOCK_SUPPORT_BIT, &val)) priv->features.fn_lock = true; if (test_bit(HALS_KBD_BL_SUPPORT_BIT, &val)) { priv->features.kbd_bl = true; priv->kbd_bl.type = KBD_BL_STANDARD; } if (test_bit(HALS_USB_CHARGING_SUPPORT_BIT, &val)) priv->features.usb_charging = true; } } if (acpi_has_method(handle, "KBLC")) { if (!eval_kblc(priv->adev->handle, KBD_BL_QUERY_TYPE, &val)) { if (val == KBD_BL_TRISTATE_TYPE) { priv->features.kbd_bl = true; priv->kbd_bl.type = KBD_BL_TRISTATE; } else if (val == KBD_BL_TRISTATE_AUTO_TYPE) { priv->features.kbd_bl = true; priv->kbd_bl.type = KBD_BL_TRISTATE_AUTO; } else { dev_warn(&priv->platform_device->dev, "Unknown keyboard type: %lu", val); } } } } #if IS_ENABLED(CONFIG_ACPI_WMI) /* * WMI driver */ enum ideapad_wmi_event_type { IDEAPAD_WMI_EVENT_ESC, IDEAPAD_WMI_EVENT_FN_KEYS, }; struct ideapad_wmi_private { enum ideapad_wmi_event_type event; }; static int ideapad_wmi_probe(struct wmi_device *wdev, const void *context) { struct ideapad_wmi_private *wpriv; wpriv = devm_kzalloc(&wdev->dev, sizeof(*wpriv), GFP_KERNEL); if (!wpriv) return -ENOMEM; *wpriv = *(const struct ideapad_wmi_private *)context; dev_set_drvdata(&wdev->dev, wpriv); return 0; } static void ideapad_wmi_notify(struct wmi_device *wdev, union acpi_object *data) { struct ideapad_wmi_private *wpriv = dev_get_drvdata(&wdev->dev); struct ideapad_private *priv; unsigned long result; mutex_lock(&ideapad_shared_mutex); priv = ideapad_shared; if (!priv) goto unlock; switch (wpriv->event) { case IDEAPAD_WMI_EVENT_ESC: ideapad_input_report(priv, 128); break; case IDEAPAD_WMI_EVENT_FN_KEYS: if (priv->features.set_fn_lock_led && !eval_hals(priv->adev->handle, &result)) { bool state = test_bit(HALS_FNLOCK_STATE_BIT, &result); exec_sals(priv->adev->handle, state ? SALS_FNLOCK_ON : SALS_FNLOCK_OFF); } if (data->type != ACPI_TYPE_INTEGER) { dev_warn(&wdev->dev, "WMI event data is not an integer\n"); break; } dev_dbg(&wdev->dev, "WMI fn-key event: 0x%llx\n", data->integer.value); ideapad_input_report(priv, data->integer.value | IDEAPAD_WMI_KEY); break; } unlock: mutex_unlock(&ideapad_shared_mutex); } static const struct ideapad_wmi_private ideapad_wmi_context_esc = { .event = IDEAPAD_WMI_EVENT_ESC }; static const struct ideapad_wmi_private ideapad_wmi_context_fn_keys = { .event = IDEAPAD_WMI_EVENT_FN_KEYS }; static const struct wmi_device_id ideapad_wmi_ids[] = { { "26CAB2E5-5CF1-46AE-AAC3-4A12B6BA50E6", &ideapad_wmi_context_esc }, /* Yoga 3 */ { "56322276-8493-4CE8-A783-98C991274F5E", &ideapad_wmi_context_esc }, /* Yoga 700 */ { "8FC0DE0C-B4E4-43FD-B0F3-8871711C1294", &ideapad_wmi_context_fn_keys }, /* Legion 5 */ {}, }; MODULE_DEVICE_TABLE(wmi, ideapad_wmi_ids); static struct wmi_driver ideapad_wmi_driver = { .driver = { .name = "ideapad_wmi", }, .id_table = ideapad_wmi_ids, .probe = ideapad_wmi_probe, .notify = ideapad_wmi_notify, }; static int ideapad_wmi_driver_register(void) { return wmi_driver_register(&ideapad_wmi_driver); } static void ideapad_wmi_driver_unregister(void) { return wmi_driver_unregister(&ideapad_wmi_driver); } #else static inline int ideapad_wmi_driver_register(void) { return 0; } static inline void ideapad_wmi_driver_unregister(void) { } #endif /* * ACPI driver */ static int ideapad_acpi_add(struct platform_device *pdev) { struct acpi_device *adev = ACPI_COMPANION(&pdev->dev); struct ideapad_private *priv; acpi_status status; unsigned long cfg; int err, i; if (!adev || eval_int(adev->handle, "_CFG", &cfg)) return -ENODEV; priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; dev_set_drvdata(&pdev->dev, priv); priv->cfg = cfg; priv->adev = adev; priv->platform_device = pdev; ideapad_check_features(priv); err = ideapad_sysfs_init(priv); if (err) return err; ideapad_debugfs_init(priv); err = ideapad_input_init(priv); if (err) goto input_failed; err = ideapad_kbd_bl_init(priv); if (err) { if (err != -ENODEV) dev_warn(&pdev->dev, "Could not set up keyboard backlight LED: %d\n", err); else dev_info(&pdev->dev, "Keyboard backlight control not available\n"); } /* * On some models without a hw-switch (the yoga 2 13 at least) * VPCCMD_W_RF must be explicitly set to 1 for the wifi to work. */ if (!priv->features.hw_rfkill_switch) write_ec_cmd(priv->adev->handle, VPCCMD_W_RF, 1); for (i = 0; i < IDEAPAD_RFKILL_DEV_NUM; i++) if (test_bit(ideapad_rfk_data[i].cfgbit, &priv->cfg)) ideapad_register_rfkill(priv, i); ideapad_sync_rfk_state(priv); ideapad_sync_touchpad_state(priv, false); err = ideapad_dytc_profile_init(priv); if (err) { if (err != -ENODEV) dev_warn(&pdev->dev, "Could not set up DYTC interface: %d\n", err); else dev_info(&pdev->dev, "DYTC interface is not available\n"); } if (acpi_video_get_backlight_type() == acpi_backlight_vendor) { err = ideapad_backlight_init(priv); if (err && err != -ENODEV) goto backlight_failed; } status = acpi_install_notify_handler(adev->handle, ACPI_DEVICE_NOTIFY, ideapad_acpi_notify, priv); if (ACPI_FAILURE(status)) { err = -EIO; goto notification_failed; } err = ideapad_shared_init(priv); if (err) goto shared_init_failed; return 0; shared_init_failed: acpi_remove_notify_handler(priv->adev->handle, ACPI_DEVICE_NOTIFY, ideapad_acpi_notify); notification_failed: ideapad_backlight_exit(priv); backlight_failed: ideapad_dytc_profile_exit(priv); for (i = 0; i < IDEAPAD_RFKILL_DEV_NUM; i++) ideapad_unregister_rfkill(priv, i); ideapad_kbd_bl_exit(priv); ideapad_input_exit(priv); input_failed: ideapad_debugfs_exit(priv); ideapad_sysfs_exit(priv); return err; } static void ideapad_acpi_remove(struct platform_device *pdev) { struct ideapad_private *priv = dev_get_drvdata(&pdev->dev); int i; ideapad_shared_exit(priv); acpi_remove_notify_handler(priv->adev->handle, ACPI_DEVICE_NOTIFY, ideapad_acpi_notify); ideapad_backlight_exit(priv); ideapad_dytc_profile_exit(priv); for (i = 0; i < IDEAPAD_RFKILL_DEV_NUM; i++) ideapad_unregister_rfkill(priv, i); ideapad_kbd_bl_exit(priv); ideapad_input_exit(priv); ideapad_debugfs_exit(priv); ideapad_sysfs_exit(priv); } #ifdef CONFIG_PM_SLEEP static int ideapad_acpi_resume(struct device *dev) { struct ideapad_private *priv = dev_get_drvdata(dev); ideapad_sync_rfk_state(priv); ideapad_sync_touchpad_state(priv, false); if (priv->dytc) dytc_profile_refresh(priv); return 0; } #endif static SIMPLE_DEV_PM_OPS(ideapad_pm, NULL, ideapad_acpi_resume); static const struct acpi_device_id ideapad_device_ids[] = { {"VPC2004", 0}, {"", 0}, }; MODULE_DEVICE_TABLE(acpi, ideapad_device_ids); static struct platform_driver ideapad_acpi_driver = { .probe = ideapad_acpi_add, .remove_new = ideapad_acpi_remove, .driver = { .name = "ideapad_acpi", .pm = &ideapad_pm, .acpi_match_table = ACPI_PTR(ideapad_device_ids), }, }; static int __init ideapad_laptop_init(void) { int err; err = ideapad_wmi_driver_register(); if (err) return err; err = platform_driver_register(&ideapad_acpi_driver); if (err) { ideapad_wmi_driver_unregister(); return err; } return 0; } module_init(ideapad_laptop_init) static void __exit ideapad_laptop_exit(void) { ideapad_wmi_driver_unregister(); platform_driver_unregister(&ideapad_acpi_driver); } module_exit(ideapad_laptop_exit) MODULE_AUTHOR("David Woodhouse <[email protected]>"); MODULE_DESCRIPTION("IdeaPad ACPI Extras"); MODULE_LICENSE("GPL");
linux-master
drivers/platform/x86/ideapad-laptop.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * IBM Real-Time Linux driver * * Copyright (C) IBM Corporation, 2010 * * Author: Keith Mannthey <[email protected]> * Vernon Mauery <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/io.h> #include <linux/dmi.h> #include <linux/efi.h> #include <linux/mutex.h> #include <asm/bios_ebda.h> #include <linux/io-64-nonatomic-lo-hi.h> static bool force; module_param(force, bool, 0); MODULE_PARM_DESC(force, "Force driver load, ignore DMI data"); static bool debug; module_param(debug, bool, 0644); MODULE_PARM_DESC(debug, "Show debug output"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Keith Mannthey <[email protected]>"); MODULE_AUTHOR("Vernon Mauery <[email protected]>"); #define RTL_ADDR_TYPE_IO 1 #define RTL_ADDR_TYPE_MMIO 2 #define RTL_CMD_ENTER_PRTM 1 #define RTL_CMD_EXIT_PRTM 2 /* The RTL table as presented by the EBDA: */ struct ibm_rtl_table { char signature[5]; /* signature should be "_RTL_" */ u8 version; u8 rt_status; u8 command; u8 command_status; u8 cmd_address_type; u8 cmd_granularity; u8 cmd_offset; u16 reserve1; u32 cmd_port_address; /* platform dependent address */ u32 cmd_port_value; /* platform dependent value */ } __attribute__((packed)); /* to locate "_RTL_" signature do a masked 5-byte integer compare */ #define RTL_SIGNATURE 0x0000005f4c54525fULL #define RTL_MASK 0x000000ffffffffffULL #define RTL_DEBUG(fmt, ...) \ do { \ if (debug) \ pr_info(fmt, ##__VA_ARGS__); \ } while (0) static DEFINE_MUTEX(rtl_lock); static struct ibm_rtl_table __iomem *rtl_table; static void __iomem *ebda_map; static void __iomem *rtl_cmd_addr; static u8 rtl_cmd_type; static u8 rtl_cmd_width; static void __iomem *rtl_port_map(phys_addr_t addr, unsigned long len) { if (rtl_cmd_type == RTL_ADDR_TYPE_MMIO) return ioremap(addr, len); return ioport_map(addr, len); } static void rtl_port_unmap(void __iomem *addr) { if (addr && rtl_cmd_type == RTL_ADDR_TYPE_MMIO) iounmap(addr); else ioport_unmap(addr); } static int ibm_rtl_write(u8 value) { int ret = 0, count = 0; u32 cmd_port_val; RTL_DEBUG("%s(%d)\n", __func__, value); value = value == 1 ? RTL_CMD_ENTER_PRTM : RTL_CMD_EXIT_PRTM; mutex_lock(&rtl_lock); if (ioread8(&rtl_table->rt_status) != value) { iowrite8(value, &rtl_table->command); switch (rtl_cmd_width) { case 8: cmd_port_val = ioread8(&rtl_table->cmd_port_value); RTL_DEBUG("cmd_port_val = %u\n", cmd_port_val); iowrite8((u8)cmd_port_val, rtl_cmd_addr); break; case 16: cmd_port_val = ioread16(&rtl_table->cmd_port_value); RTL_DEBUG("cmd_port_val = %u\n", cmd_port_val); iowrite16((u16)cmd_port_val, rtl_cmd_addr); break; case 32: cmd_port_val = ioread32(&rtl_table->cmd_port_value); RTL_DEBUG("cmd_port_val = %u\n", cmd_port_val); iowrite32(cmd_port_val, rtl_cmd_addr); break; } while (ioread8(&rtl_table->command)) { msleep(10); if (count++ > 500) { pr_err("Hardware not responding to " "mode switch request\n"); ret = -EIO; break; } } if (ioread8(&rtl_table->command_status)) { RTL_DEBUG("command_status reports failed command\n"); ret = -EIO; } } mutex_unlock(&rtl_lock); return ret; } static ssize_t rtl_show_version(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", (int)ioread8(&rtl_table->version)); } static ssize_t rtl_show_state(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", ioread8(&rtl_table->rt_status)); } static ssize_t rtl_set_state(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { ssize_t ret; if (count < 1 || count > 2) return -EINVAL; switch (buf[0]) { case '0': ret = ibm_rtl_write(0); break; case '1': ret = ibm_rtl_write(1); break; default: ret = -EINVAL; } if (ret >= 0) ret = count; return ret; } static struct bus_type rtl_subsys = { .name = "ibm_rtl", .dev_name = "ibm_rtl", }; static DEVICE_ATTR(version, S_IRUGO, rtl_show_version, NULL); static DEVICE_ATTR(state, 0600, rtl_show_state, rtl_set_state); static struct device_attribute *rtl_attributes[] = { &dev_attr_version, &dev_attr_state, NULL }; static int rtl_setup_sysfs(void) { int ret, i; ret = subsys_system_register(&rtl_subsys, NULL); if (!ret) { struct device *dev_root = bus_get_dev_root(&rtl_subsys); if (dev_root) { for (i = 0; rtl_attributes[i]; i ++) device_create_file(dev_root, rtl_attributes[i]); put_device(dev_root); } } return ret; } static void rtl_teardown_sysfs(void) { struct device *dev_root = bus_get_dev_root(&rtl_subsys); int i; if (dev_root) { for (i = 0; rtl_attributes[i]; i ++) device_remove_file(dev_root, rtl_attributes[i]); put_device(dev_root); } bus_unregister(&rtl_subsys); } static const struct dmi_system_id ibm_rtl_dmi_table[] __initconst = { { \ .matches = { \ DMI_MATCH(DMI_SYS_VENDOR, "IBM"), \ }, \ }, { } }; static int __init ibm_rtl_init(void) { unsigned long ebda_addr, ebda_size; unsigned int ebda_kb; int ret = -ENODEV, i; if (force) pr_warn("module loaded by force\n"); /* first ensure that we are running on IBM HW */ else if (efi_enabled(EFI_BOOT) || !dmi_check_system(ibm_rtl_dmi_table)) return -ENODEV; /* Get the address for the Extended BIOS Data Area */ ebda_addr = get_bios_ebda(); if (!ebda_addr) { RTL_DEBUG("no BIOS EBDA found\n"); return -ENODEV; } ebda_map = ioremap(ebda_addr, 4); if (!ebda_map) return -ENOMEM; /* First word in the EDBA is the Size in KB */ ebda_kb = ioread16(ebda_map); RTL_DEBUG("EBDA is %d kB\n", ebda_kb); if (ebda_kb == 0) goto out; iounmap(ebda_map); ebda_size = ebda_kb*1024; /* Remap the whole table */ ebda_map = ioremap(ebda_addr, ebda_size); if (!ebda_map) return -ENOMEM; /* search for the _RTL_ signature at the start of the table */ for (i = 0 ; i < ebda_size/sizeof(unsigned int); i++) { struct ibm_rtl_table __iomem * tmp; tmp = (struct ibm_rtl_table __iomem *) (ebda_map+i); if ((readq(&tmp->signature) & RTL_MASK) == RTL_SIGNATURE) { phys_addr_t addr; unsigned int plen; RTL_DEBUG("found RTL_SIGNATURE at %p\n", tmp); rtl_table = tmp; /* The address, value, width and offset are platform * dependent and found in the ibm_rtl_table */ rtl_cmd_width = ioread8(&rtl_table->cmd_granularity); rtl_cmd_type = ioread8(&rtl_table->cmd_address_type); RTL_DEBUG("rtl_cmd_width = %u, rtl_cmd_type = %u\n", rtl_cmd_width, rtl_cmd_type); addr = ioread32(&rtl_table->cmd_port_address); RTL_DEBUG("addr = %#llx\n", (unsigned long long)addr); plen = rtl_cmd_width/sizeof(char); rtl_cmd_addr = rtl_port_map(addr, plen); RTL_DEBUG("rtl_cmd_addr = %p\n", rtl_cmd_addr); if (!rtl_cmd_addr) { ret = -ENOMEM; break; } ret = rtl_setup_sysfs(); break; } } out: if (ret) { iounmap(ebda_map); rtl_port_unmap(rtl_cmd_addr); } return ret; } static void __exit ibm_rtl_exit(void) { if (rtl_table) { RTL_DEBUG("cleaning up"); /* do not leave the machine in SMI-free mode */ ibm_rtl_write(0); /* unmap, unlink and remove all traces */ rtl_teardown_sysfs(); iounmap(ebda_map); rtl_port_unmap(rtl_cmd_addr); } } module_init(ibm_rtl_init); module_exit(ibm_rtl_exit);
linux-master
drivers/platform/x86/ibm_rtl.c
// SPDX-License-Identifier: GPL-2.0 // // Driver for the Winmate FM07 front-panel keys // // Author: Daniel Beer <[email protected]> #include <linux/init.h> #include <linux/module.h> #include <linux/input.h> #include <linux/ioport.h> #include <linux/platform_device.h> #include <linux/dmi.h> #include <linux/io.h> #define DRV_NAME "winmate-fm07keys" #define PORT_CMD 0x6c #define PORT_DATA 0x68 #define EC_ADDR_KEYS 0x3b #define EC_CMD_READ 0x80 #define BASE_KEY KEY_F13 #define NUM_KEYS 5 /* Typically we're done in fewer than 10 iterations */ #define LOOP_TIMEOUT 1000 static void fm07keys_poll(struct input_dev *input) { uint8_t k; int i; /* Flush output buffer */ i = 0; while (inb(PORT_CMD) & 0x01) { if (++i >= LOOP_TIMEOUT) goto timeout; inb(PORT_DATA); } /* Send request and wait for write completion */ outb(EC_CMD_READ, PORT_CMD); i = 0; while (inb(PORT_CMD) & 0x02) if (++i >= LOOP_TIMEOUT) goto timeout; outb(EC_ADDR_KEYS, PORT_DATA); i = 0; while (inb(PORT_CMD) & 0x02) if (++i >= LOOP_TIMEOUT) goto timeout; /* Wait for data ready */ i = 0; while (!(inb(PORT_CMD) & 0x01)) if (++i >= LOOP_TIMEOUT) goto timeout; k = inb(PORT_DATA); /* Notify of new key states */ for (i = 0; i < NUM_KEYS; i++) { input_report_key(input, BASE_KEY + i, (~k) & 1); k >>= 1; } input_sync(input); return; timeout: dev_warn_ratelimited(&input->dev, "timeout polling IO memory\n"); } static int fm07keys_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct input_dev *input; int ret; int i; input = devm_input_allocate_device(dev); if (!input) { dev_err(dev, "no memory for input device\n"); return -ENOMEM; } if (!devm_request_region(dev, PORT_CMD, 1, "Winmate FM07 EC")) return -EBUSY; if (!devm_request_region(dev, PORT_DATA, 1, "Winmate FM07 EC")) return -EBUSY; input->name = "Winmate FM07 front-panel keys"; input->phys = DRV_NAME "/input0"; input->id.bustype = BUS_HOST; input->id.vendor = 0x0001; input->id.product = 0x0001; input->id.version = 0x0100; __set_bit(EV_KEY, input->evbit); for (i = 0; i < NUM_KEYS; i++) __set_bit(BASE_KEY + i, input->keybit); ret = input_setup_polling(input, fm07keys_poll); if (ret) { dev_err(dev, "unable to set up polling, err=%d\n", ret); return ret; } /* These are silicone buttons. They can't be pressed in rapid * succession too quickly, and 50 Hz seems to be an adequate * sampling rate without missing any events when tested. */ input_set_poll_interval(input, 20); ret = input_register_device(input); if (ret) { dev_err(dev, "unable to register polled device, err=%d\n", ret); return ret; } input_sync(input); return 0; } static struct platform_driver fm07keys_driver = { .probe = fm07keys_probe, .driver = { .name = DRV_NAME }, }; static struct platform_device *dev; static const struct dmi_system_id fm07keys_dmi_table[] __initconst = { { /* FM07 and FM07P */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Winmate Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "IP30"), }, }, { } }; MODULE_DEVICE_TABLE(dmi, fm07keys_dmi_table); static int __init fm07keys_init(void) { int ret; if (!dmi_check_system(fm07keys_dmi_table)) return -ENODEV; ret = platform_driver_register(&fm07keys_driver); if (ret) { pr_err("fm07keys: failed to register driver, err=%d\n", ret); return ret; } dev = platform_device_register_simple(DRV_NAME, PLATFORM_DEVID_NONE, NULL, 0); if (IS_ERR(dev)) { ret = PTR_ERR(dev); pr_err("fm07keys: failed to allocate device, err = %d\n", ret); goto fail_register; } return 0; fail_register: platform_driver_unregister(&fm07keys_driver); return ret; } static void __exit fm07keys_exit(void) { platform_driver_unregister(&fm07keys_driver); platform_device_unregister(dev); } module_init(fm07keys_init); module_exit(fm07keys_exit); MODULE_AUTHOR("Daniel Beer <[email protected]>"); MODULE_DESCRIPTION("Winmate FM07 front-panel keys driver"); MODULE_LICENSE("GPL");
linux-master
drivers/platform/x86/winmate-fm07-keys.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Asus Notebooks WMI hotkey driver * * Copyright(C) 2010 Corentin Chary <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/input.h> #include <linux/input/sparse-keymap.h> #include <linux/fb.h> #include <linux/dmi.h> #include <linux/i8042.h> #include "asus-wmi.h" #define ASUS_NB_WMI_FILE "asus-nb-wmi" MODULE_AUTHOR("Corentin Chary <[email protected]>"); MODULE_DESCRIPTION("Asus Notebooks WMI Hotkey Driver"); MODULE_LICENSE("GPL"); #define ASUS_NB_WMI_EVENT_GUID "0B3CBB35-E3C2-45ED-91C2-4C5A6D195D1C" MODULE_ALIAS("wmi:"ASUS_NB_WMI_EVENT_GUID); /* * WAPF defines the behavior of the Fn+Fx wlan key * The significance of values is yet to be found, but * most of the time: * Bit | Bluetooth | WLAN * 0 | Hardware | Hardware * 1 | Hardware | Software * 4 | Software | Software */ static int wapf = -1; module_param(wapf, uint, 0444); MODULE_PARM_DESC(wapf, "WAPF value"); static int tablet_mode_sw = -1; module_param(tablet_mode_sw, uint, 0444); MODULE_PARM_DESC(tablet_mode_sw, "Tablet mode detect: -1:auto 0:disable 1:kbd-dock 2:lid-flip 3:lid-flip-rog"); static struct quirk_entry *quirks; static bool asus_q500a_i8042_filter(unsigned char data, unsigned char str, struct serio *port) { static bool extended; bool ret = false; if (str & I8042_STR_AUXDATA) return false; if (unlikely(data == 0xe1)) { extended = true; ret = true; } else if (unlikely(extended)) { extended = false; ret = true; } return ret; } static struct quirk_entry quirk_asus_unknown = { .wapf = 0, .wmi_backlight_set_devstate = true, }; static struct quirk_entry quirk_asus_q500a = { .i8042_filter = asus_q500a_i8042_filter, .wmi_backlight_set_devstate = true, }; /* * For those machines that need software to control bt/wifi status * and have duplicate events(ACPI and WMI) for display toggle */ static struct quirk_entry quirk_asus_x55u = { .wapf = 4, .wmi_backlight_set_devstate = true, .no_display_toggle = true, }; static struct quirk_entry quirk_asus_wapf4 = { .wapf = 4, .wmi_backlight_set_devstate = true, }; static struct quirk_entry quirk_asus_x200ca = { .wapf = 2, .wmi_backlight_set_devstate = true, }; static struct quirk_entry quirk_asus_x550lb = { .wmi_backlight_set_devstate = true, .xusb2pr = 0x01D9, }; static struct quirk_entry quirk_asus_forceals = { .wmi_backlight_set_devstate = true, .wmi_force_als_set = true, }; static struct quirk_entry quirk_asus_use_kbd_dock_devid = { .tablet_switch_mode = asus_wmi_kbd_dock_devid, }; static struct quirk_entry quirk_asus_use_lid_flip_devid = { .wmi_backlight_set_devstate = true, .tablet_switch_mode = asus_wmi_lid_flip_devid, }; static struct quirk_entry quirk_asus_tablet_mode = { .wmi_backlight_set_devstate = true, .tablet_switch_mode = asus_wmi_lid_flip_rog_devid, }; static struct quirk_entry quirk_asus_ignore_fan = { .wmi_ignore_fan = true, }; static int dmi_matched(const struct dmi_system_id *dmi) { pr_info("Identified laptop model '%s'\n", dmi->ident); quirks = dmi->driver_data; return 1; } static const struct dmi_system_id asus_quirks[] = { { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. Q500A", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "Q500A"), }, .driver_data = &quirk_asus_q500a, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. U32U", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "U32U"), }, .driver_data = &quirk_asus_wapf4, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. X302UA", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "X302UA"), }, .driver_data = &quirk_asus_wapf4, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. X401U", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "X401U"), }, .driver_data = &quirk_asus_x55u, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. X401A", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "X401A"), }, .driver_data = &quirk_asus_wapf4, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. X401A1", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "X401A1"), }, .driver_data = &quirk_asus_wapf4, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. X45U", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "X45U"), }, .driver_data = &quirk_asus_wapf4, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. X456UA", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "X456UA"), }, .driver_data = &quirk_asus_wapf4, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. X456UF", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "X456UF"), }, .driver_data = &quirk_asus_wapf4, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. X501U", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "X501U"), }, .driver_data = &quirk_asus_x55u, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. X501A", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "X501A"), }, .driver_data = &quirk_asus_wapf4, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. X501A1", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "X501A1"), }, .driver_data = &quirk_asus_wapf4, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. X550CA", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "X550CA"), }, .driver_data = &quirk_asus_wapf4, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. X550CC", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "X550CC"), }, .driver_data = &quirk_asus_wapf4, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. X550CL", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "X550CL"), }, .driver_data = &quirk_asus_wapf4, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. X550VB", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "X550VB"), }, .driver_data = &quirk_asus_wapf4, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. X551CA", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "X551CA"), }, .driver_data = &quirk_asus_wapf4, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. X55A", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "X55A"), }, .driver_data = &quirk_asus_wapf4, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. X55C", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "X55C"), }, .driver_data = &quirk_asus_wapf4, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. X55U", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "X55U"), }, .driver_data = &quirk_asus_x55u, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. X55VD", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "X55VD"), }, .driver_data = &quirk_asus_wapf4, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. X75A", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "X75A"), }, .driver_data = &quirk_asus_wapf4, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. X75VBP", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "X75VBP"), }, .driver_data = &quirk_asus_wapf4, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. X75VD", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "X75VD"), }, .driver_data = &quirk_asus_wapf4, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. 1015E", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "1015E"), }, .driver_data = &quirk_asus_wapf4, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. 1015U", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "1015U"), }, .driver_data = &quirk_asus_wapf4, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. X200CA", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "X200CA"), }, .driver_data = &quirk_asus_x200ca, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. UX330UAK", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "UX330UAK"), }, .driver_data = &quirk_asus_forceals, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. X550LB", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "X550LB"), }, .driver_data = &quirk_asus_x550lb, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. UX430UQ", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "UX430UQ"), }, .driver_data = &quirk_asus_forceals, }, { .callback = dmi_matched, .ident = "ASUSTeK COMPUTER INC. UX430UNR", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "UX430UNR"), }, .driver_data = &quirk_asus_forceals, }, { .callback = dmi_matched, .ident = "Asus Transformer T100TA / T100HA / T100CHI", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), /* Match *T100* */ DMI_MATCH(DMI_PRODUCT_NAME, "T100"), }, .driver_data = &quirk_asus_use_kbd_dock_devid, }, { .callback = dmi_matched, .ident = "Asus Transformer T101HA", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "T101HA"), }, .driver_data = &quirk_asus_use_kbd_dock_devid, }, { .callback = dmi_matched, .ident = "Asus Transformer T200TA", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"), }, .driver_data = &quirk_asus_use_kbd_dock_devid, }, { .callback = dmi_matched, .ident = "ASUS ZenBook Flip UX360", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), /* Match UX360* */ DMI_MATCH(DMI_PRODUCT_NAME, "UX360"), }, .driver_data = &quirk_asus_use_lid_flip_devid, }, { .callback = dmi_matched, .ident = "ASUS TP200s / E205SA", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "E205SA"), }, .driver_data = &quirk_asus_use_lid_flip_devid, }, { .callback = dmi_matched, .ident = "ASUS ROG FLOW X13", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), /* Match GV301** */ DMI_MATCH(DMI_PRODUCT_NAME, "GV301"), }, .driver_data = &quirk_asus_tablet_mode, }, { .callback = dmi_matched, .ident = "ASUS ROG FLOW X16", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "GV601R"), }, .driver_data = &quirk_asus_tablet_mode, }, { .callback = dmi_matched, .ident = "ASUS ROG FLOW X16", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "GV601V"), }, .driver_data = &quirk_asus_tablet_mode, }, { .callback = dmi_matched, .ident = "ASUS VivoBook E410MA", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "E410MA"), }, .driver_data = &quirk_asus_ignore_fan, }, {}, }; static void asus_nb_wmi_quirks(struct asus_wmi_driver *driver) { int ret; quirks = &quirk_asus_unknown; dmi_check_system(asus_quirks); driver->quirks = quirks; driver->panel_power = FB_BLANK_UNBLANK; /* overwrite the wapf setting if the wapf paramater is specified */ if (wapf != -1) quirks->wapf = wapf; else wapf = quirks->wapf; if (tablet_mode_sw != -1) quirks->tablet_switch_mode = tablet_mode_sw; if (quirks->i8042_filter) { ret = i8042_install_filter(quirks->i8042_filter); if (ret) { pr_warn("Unable to install key filter\n"); return; } pr_info("Using i8042 filter function for receiving events\n"); } } static const struct key_entry asus_nb_wmi_keymap[] = { { KE_KEY, ASUS_WMI_BRN_DOWN, { KEY_BRIGHTNESSDOWN } }, { KE_KEY, ASUS_WMI_BRN_UP, { KEY_BRIGHTNESSUP } }, { KE_KEY, 0x30, { KEY_VOLUMEUP } }, { KE_KEY, 0x31, { KEY_VOLUMEDOWN } }, { KE_KEY, 0x32, { KEY_MUTE } }, { KE_KEY, 0x33, { KEY_SCREENLOCK } }, { KE_KEY, 0x35, { KEY_SCREENLOCK } }, { KE_KEY, 0x38, { KEY_PROG3 } }, /* Armoury Crate */ { KE_KEY, 0x40, { KEY_PREVIOUSSONG } }, { KE_KEY, 0x41, { KEY_NEXTSONG } }, { KE_KEY, 0x43, { KEY_STOPCD } }, /* Stop/Eject */ { KE_KEY, 0x45, { KEY_PLAYPAUSE } }, { KE_KEY, 0x4c, { KEY_MEDIA } }, /* WMP Key */ { KE_KEY, 0x50, { KEY_EMAIL } }, { KE_KEY, 0x51, { KEY_WWW } }, { KE_KEY, 0x55, { KEY_CALC } }, { KE_IGNORE, 0x57, }, /* Battery mode */ { KE_IGNORE, 0x58, }, /* AC mode */ { KE_KEY, 0x5C, { KEY_F15 } }, /* Power Gear key */ { KE_KEY, 0x5D, { KEY_WLAN } }, /* Wireless console Toggle */ { KE_KEY, 0x5E, { KEY_WLAN } }, /* Wireless console Enable */ { KE_KEY, 0x5F, { KEY_WLAN } }, /* Wireless console Disable */ { KE_KEY, 0x60, { KEY_TOUCHPAD_ON } }, { KE_KEY, 0x61, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD only */ { KE_KEY, 0x62, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT only */ { KE_KEY, 0x63, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT */ { KE_KEY, 0x64, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV */ { KE_KEY, 0x65, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV */ { KE_KEY, 0x66, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV */ { KE_KEY, 0x67, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV */ { KE_KEY, 0x6B, { KEY_TOUCHPAD_TOGGLE } }, { KE_IGNORE, 0x6E, }, /* Low Battery notification */ { KE_KEY, 0x71, { KEY_F13 } }, /* General-purpose button */ { KE_IGNORE, 0x79, }, /* Charger type dectection notification */ { KE_KEY, 0x7a, { KEY_ALS_TOGGLE } }, /* Ambient Light Sensor Toggle */ { KE_IGNORE, 0x7B, }, /* Charger connect/disconnect notification */ { KE_KEY, 0x7c, { KEY_MICMUTE } }, { KE_KEY, 0x7D, { KEY_BLUETOOTH } }, /* Bluetooth Enable */ { KE_KEY, 0x7E, { KEY_BLUETOOTH } }, /* Bluetooth Disable */ { KE_KEY, 0x82, { KEY_CAMERA } }, { KE_KEY, 0x85, { KEY_CAMERA } }, { KE_KEY, 0x86, { KEY_PROG1 } }, /* MyASUS Key */ { KE_KEY, 0x88, { KEY_RFKILL } }, /* Radio Toggle Key */ { KE_KEY, 0x8A, { KEY_PROG1 } }, /* Color enhancement mode */ { KE_KEY, 0x8C, { KEY_SWITCHVIDEOMODE } }, /* SDSP DVI only */ { KE_KEY, 0x8D, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + DVI */ { KE_KEY, 0x8E, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + DVI */ { KE_KEY, 0x8F, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + DVI */ { KE_KEY, 0x90, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + DVI */ { KE_KEY, 0x91, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + DVI */ { KE_KEY, 0x92, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + DVI */ { KE_KEY, 0x93, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + DVI */ { KE_KEY, 0x95, { KEY_MEDIA } }, { KE_KEY, 0x99, { KEY_PHONE } }, /* Conflicts with fan mode switch */ { KE_KEY, 0xA0, { KEY_SWITCHVIDEOMODE } }, /* SDSP HDMI only */ { KE_KEY, 0xA1, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + HDMI */ { KE_KEY, 0xA2, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + HDMI */ { KE_KEY, 0xA3, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + HDMI */ { KE_KEY, 0xA4, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + HDMI */ { KE_KEY, 0xA5, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + HDMI */ { KE_KEY, 0xA6, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + HDMI */ { KE_KEY, 0xA7, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + HDMI */ { KE_KEY, 0xAE, { KEY_FN_F5 } }, /* Fn+F5 fan mode on 2020+ */ { KE_KEY, 0xB3, { KEY_PROG4 } }, /* AURA */ { KE_KEY, 0xB5, { KEY_CALC } }, { KE_IGNORE, 0xC0, }, /* External display connect/disconnect notification */ { KE_KEY, 0xC4, { KEY_KBDILLUMUP } }, { KE_KEY, 0xC5, { KEY_KBDILLUMDOWN } }, { KE_IGNORE, 0xC6, }, /* Ambient Light Sensor notification */ { KE_KEY, 0xFA, { KEY_PROG2 } }, /* Lid flip action */ { KE_KEY, 0xBD, { KEY_PROG2 } }, /* Lid flip action on ROG xflow laptops */ { KE_END, 0}, }; static struct asus_wmi_driver asus_nb_wmi_driver = { .name = ASUS_NB_WMI_FILE, .owner = THIS_MODULE, .event_guid = ASUS_NB_WMI_EVENT_GUID, .keymap = asus_nb_wmi_keymap, .input_name = "Asus WMI hotkeys", .input_phys = ASUS_NB_WMI_FILE "/input0", .detect_quirks = asus_nb_wmi_quirks, }; static int __init asus_nb_wmi_init(void) { return asus_wmi_register_driver(&asus_nb_wmi_driver); } static void __exit asus_nb_wmi_exit(void) { asus_wmi_unregister_driver(&asus_nb_wmi_driver); } module_init(asus_nb_wmi_init); module_exit(asus_nb_wmi_exit);
linux-master
drivers/platform/x86/asus-nb-wmi.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2006-2012 Robert Gerlach <[email protected]> * Copyright (C) 2005-2006 Jan Rychter <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/bitops.h> #include <linux/io.h> #include <linux/ioport.h> #include <linux/acpi.h> #include <linux/device.h> #include <linux/interrupt.h> #include <linux/input.h> #include <linux/delay.h> #include <linux/dmi.h> #define MODULENAME "fujitsu-tablet" #define ACPI_FUJITSU_CLASS "fujitsu" #define INVERT_TABLET_MODE_BIT 0x01 #define INVERT_DOCK_STATE_BIT 0x02 #define FORCE_TABLET_MODE_IF_UNDOCK 0x04 #define KEYMAP_LEN 16 static const struct acpi_device_id fujitsu_ids[] = { { .id = "FUJ02BD" }, { .id = "FUJ02BF" }, { .id = "" } }; struct fujitsu_config { unsigned short keymap[KEYMAP_LEN]; unsigned int quirks; }; static unsigned short keymap_Lifebook_Tseries[KEYMAP_LEN] __initdata = { KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_SCROLLDOWN, KEY_SCROLLUP, KEY_ROTATE_DISPLAY, KEY_LEFTCTRL, KEY_BRIGHTNESSUP, KEY_BRIGHTNESSDOWN, KEY_BRIGHTNESS_ZERO, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_LEFTALT }; static unsigned short keymap_Lifebook_T901[KEYMAP_LEN] __initdata = { KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_SCROLLDOWN, KEY_SCROLLUP, KEY_CYCLEWINDOWS, KEY_LEFTCTRL, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_LEFTMETA }; static unsigned short keymap_Lifebook_T902[KEYMAP_LEN] __initdata = { KEY_RESERVED, KEY_VOLUMEDOWN, KEY_VOLUMEUP, KEY_CYCLEWINDOWS, KEY_PROG1, KEY_PROG2, KEY_LEFTMETA, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, }; static unsigned short keymap_Lifebook_U810[KEYMAP_LEN] __initdata = { KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_PROG1, KEY_PROG2, KEY_ROTATE_DISPLAY, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_UP, KEY_DOWN, KEY_RESERVED, KEY_RESERVED, KEY_LEFTCTRL, KEY_LEFTALT }; static unsigned short keymap_Stylistic_Tseries[KEYMAP_LEN] __initdata = { KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_PRINT, KEY_BACKSPACE, KEY_SPACE, KEY_ENTER, KEY_BRIGHTNESSUP, KEY_BRIGHTNESSDOWN, KEY_DOWN, KEY_UP, KEY_SCROLLUP, KEY_SCROLLDOWN, KEY_LEFTCTRL, KEY_LEFTALT }; static unsigned short keymap_Stylistic_ST5xxx[KEYMAP_LEN] __initdata = { KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_MAIL, KEY_ROTATE_DISPLAY, KEY_ESC, KEY_ENTER, KEY_BRIGHTNESSUP, KEY_BRIGHTNESSDOWN, KEY_DOWN, KEY_UP, KEY_SCROLLUP, KEY_SCROLLDOWN, KEY_LEFTCTRL, KEY_LEFTALT }; static struct { struct input_dev *idev; struct fujitsu_config config; unsigned long prev_keymask; char phys[21]; int irq; int io_base; int io_length; } fujitsu; static u8 fujitsu_ack(void) { return inb(fujitsu.io_base + 2); } static u8 fujitsu_status(void) { return inb(fujitsu.io_base + 6); } static u8 fujitsu_read_register(const u8 addr) { outb(addr, fujitsu.io_base); return inb(fujitsu.io_base + 4); } static void fujitsu_send_state(void) { int state; int dock, tablet_mode; state = fujitsu_read_register(0xdd); dock = state & 0x02; if (fujitsu.config.quirks & INVERT_DOCK_STATE_BIT) dock = !dock; if ((fujitsu.config.quirks & FORCE_TABLET_MODE_IF_UNDOCK) && (!dock)) { tablet_mode = 1; } else{ tablet_mode = state & 0x01; if (fujitsu.config.quirks & INVERT_TABLET_MODE_BIT) tablet_mode = !tablet_mode; } input_report_switch(fujitsu.idev, SW_DOCK, dock); input_report_switch(fujitsu.idev, SW_TABLET_MODE, tablet_mode); input_sync(fujitsu.idev); } static void fujitsu_reset(void) { int timeout = 50; fujitsu_ack(); while ((fujitsu_status() & 0x02) && (--timeout)) msleep(20); fujitsu_send_state(); } static int input_fujitsu_setup(struct device *parent, const char *name, const char *phys) { struct input_dev *idev; int error; int i; idev = input_allocate_device(); if (!idev) return -ENOMEM; idev->dev.parent = parent; idev->phys = phys; idev->name = name; idev->id.bustype = BUS_HOST; idev->id.vendor = 0x1734; /* Fujitsu Siemens Computer GmbH */ idev->id.product = 0x0001; idev->id.version = 0x0101; idev->keycode = fujitsu.config.keymap; idev->keycodesize = sizeof(fujitsu.config.keymap[0]); idev->keycodemax = ARRAY_SIZE(fujitsu.config.keymap); __set_bit(EV_REP, idev->evbit); for (i = 0; i < ARRAY_SIZE(fujitsu.config.keymap); i++) if (fujitsu.config.keymap[i]) input_set_capability(idev, EV_KEY, fujitsu.config.keymap[i]); input_set_capability(idev, EV_MSC, MSC_SCAN); input_set_capability(idev, EV_SW, SW_DOCK); input_set_capability(idev, EV_SW, SW_TABLET_MODE); error = input_register_device(idev); if (error) { input_free_device(idev); return error; } fujitsu.idev = idev; return 0; } static void input_fujitsu_remove(void) { input_unregister_device(fujitsu.idev); } static irqreturn_t fujitsu_interrupt(int irq, void *dev_id) { unsigned long keymask, changed; unsigned int keycode; int pressed; int i; if (unlikely(!(fujitsu_status() & 0x01))) return IRQ_NONE; fujitsu_send_state(); keymask = fujitsu_read_register(0xde); keymask |= fujitsu_read_register(0xdf) << 8; keymask ^= 0xffff; changed = keymask ^ fujitsu.prev_keymask; if (changed) { fujitsu.prev_keymask = keymask; for_each_set_bit(i, &changed, KEYMAP_LEN) { keycode = fujitsu.config.keymap[i]; pressed = keymask & changed & BIT(i); if (pressed) input_event(fujitsu.idev, EV_MSC, MSC_SCAN, i); input_report_key(fujitsu.idev, keycode, pressed); input_sync(fujitsu.idev); } } fujitsu_ack(); return IRQ_HANDLED; } static void __init fujitsu_dmi_common(const struct dmi_system_id *dmi) { pr_info("%s\n", dmi->ident); memcpy(fujitsu.config.keymap, dmi->driver_data, sizeof(fujitsu.config.keymap)); } static int __init fujitsu_dmi_lifebook(const struct dmi_system_id *dmi) { fujitsu_dmi_common(dmi); fujitsu.config.quirks |= INVERT_TABLET_MODE_BIT; return 1; } static int __init fujitsu_dmi_stylistic(const struct dmi_system_id *dmi) { fujitsu_dmi_common(dmi); fujitsu.config.quirks |= FORCE_TABLET_MODE_IF_UNDOCK; fujitsu.config.quirks |= INVERT_DOCK_STATE_BIT; return 1; } static const struct dmi_system_id dmi_ids[] __initconst = { { .callback = fujitsu_dmi_lifebook, .ident = "Fujitsu Lifebook T901", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"), DMI_MATCH(DMI_PRODUCT_NAME, "LifeBook T901") }, .driver_data = keymap_Lifebook_T901 }, { .callback = fujitsu_dmi_lifebook, .ident = "Fujitsu Lifebook T901", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"), DMI_MATCH(DMI_PRODUCT_NAME, "LIFEBOOK T901") }, .driver_data = keymap_Lifebook_T901 }, { .callback = fujitsu_dmi_lifebook, .ident = "Fujitsu Lifebook T902", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"), DMI_MATCH(DMI_PRODUCT_NAME, "LIFEBOOK T902") }, .driver_data = keymap_Lifebook_T902 }, { .callback = fujitsu_dmi_lifebook, .ident = "Fujitsu Siemens P/T Series", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"), DMI_MATCH(DMI_PRODUCT_NAME, "LIFEBOOK") }, .driver_data = keymap_Lifebook_Tseries }, { .callback = fujitsu_dmi_lifebook, .ident = "Fujitsu Lifebook T Series", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"), DMI_MATCH(DMI_PRODUCT_NAME, "LifeBook T") }, .driver_data = keymap_Lifebook_Tseries }, { .callback = fujitsu_dmi_stylistic, .ident = "Fujitsu Siemens Stylistic T Series", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"), DMI_MATCH(DMI_PRODUCT_NAME, "Stylistic T") }, .driver_data = keymap_Stylistic_Tseries }, { .callback = fujitsu_dmi_lifebook, .ident = "Fujitsu LifeBook U810", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"), DMI_MATCH(DMI_PRODUCT_NAME, "LifeBook U810") }, .driver_data = keymap_Lifebook_U810 }, { .callback = fujitsu_dmi_stylistic, .ident = "Fujitsu Siemens Stylistic ST5xxx Series", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"), DMI_MATCH(DMI_PRODUCT_NAME, "STYLISTIC ST5") }, .driver_data = keymap_Stylistic_ST5xxx }, { .callback = fujitsu_dmi_stylistic, .ident = "Fujitsu Siemens Stylistic ST5xxx Series", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU"), DMI_MATCH(DMI_PRODUCT_NAME, "Stylistic ST5") }, .driver_data = keymap_Stylistic_ST5xxx }, { .callback = fujitsu_dmi_lifebook, .ident = "Unknown (using defaults)", .matches = { DMI_MATCH(DMI_SYS_VENDOR, ""), DMI_MATCH(DMI_PRODUCT_NAME, "") }, .driver_data = keymap_Lifebook_Tseries }, { NULL } }; static acpi_status fujitsu_walk_resources(struct acpi_resource *res, void *data) { switch (res->type) { case ACPI_RESOURCE_TYPE_IRQ: fujitsu.irq = res->data.irq.interrupts[0]; return AE_OK; case ACPI_RESOURCE_TYPE_IO: fujitsu.io_base = res->data.io.minimum; fujitsu.io_length = res->data.io.address_length; return AE_OK; case ACPI_RESOURCE_TYPE_END_TAG: if (fujitsu.irq && fujitsu.io_base) return AE_OK; else return AE_NOT_FOUND; default: return AE_ERROR; } } static int acpi_fujitsu_add(struct acpi_device *adev) { acpi_status status; int error; if (!adev) return -EINVAL; status = acpi_walk_resources(adev->handle, METHOD_NAME__CRS, fujitsu_walk_resources, NULL); if (ACPI_FAILURE(status) || !fujitsu.irq || !fujitsu.io_base) return -ENODEV; sprintf(acpi_device_name(adev), "Fujitsu %s", acpi_device_hid(adev)); sprintf(acpi_device_class(adev), "%s", ACPI_FUJITSU_CLASS); snprintf(fujitsu.phys, sizeof(fujitsu.phys), "%s/input0", acpi_device_hid(adev)); error = input_fujitsu_setup(&adev->dev, acpi_device_name(adev), fujitsu.phys); if (error) return error; if (!request_region(fujitsu.io_base, fujitsu.io_length, MODULENAME)) { input_fujitsu_remove(); return -EBUSY; } fujitsu_reset(); error = request_irq(fujitsu.irq, fujitsu_interrupt, IRQF_SHARED, MODULENAME, fujitsu_interrupt); if (error) { release_region(fujitsu.io_base, fujitsu.io_length); input_fujitsu_remove(); return error; } return 0; } static void acpi_fujitsu_remove(struct acpi_device *adev) { free_irq(fujitsu.irq, fujitsu_interrupt); release_region(fujitsu.io_base, fujitsu.io_length); input_fujitsu_remove(); } #ifdef CONFIG_PM_SLEEP static int acpi_fujitsu_resume(struct device *dev) { fujitsu_reset(); return 0; } #endif static SIMPLE_DEV_PM_OPS(acpi_fujitsu_pm, NULL, acpi_fujitsu_resume); static struct acpi_driver acpi_fujitsu_driver = { .name = MODULENAME, .class = "hotkey", .ids = fujitsu_ids, .ops = { .add = acpi_fujitsu_add, .remove = acpi_fujitsu_remove, }, .drv.pm = &acpi_fujitsu_pm, }; static int __init fujitsu_module_init(void) { int error; dmi_check_system(dmi_ids); error = acpi_bus_register_driver(&acpi_fujitsu_driver); if (error) return error; return 0; } static void __exit fujitsu_module_exit(void) { acpi_bus_unregister_driver(&acpi_fujitsu_driver); } module_init(fujitsu_module_init); module_exit(fujitsu_module_exit); MODULE_AUTHOR("Robert Gerlach <[email protected]>"); MODULE_DESCRIPTION("Fujitsu tablet pc extras driver"); MODULE_LICENSE("GPL"); MODULE_VERSION("2.5"); MODULE_DEVICE_TABLE(acpi, fujitsu_ids);
linux-master
drivers/platform/x86/fujitsu-tablet.c
// SPDX-License-Identifier: GPL-2.0+ /* * This is a driver for the keyboard, touchpad and USB port of the * keyboard dock for the Asus TF103C 2-in-1 tablet. * * This keyboard dock has its own I2C attached embedded controller * and the keyboard and touchpad are also connected over I2C, * instead of using the usual USB connection. This means that the * keyboard dock requires this special driver to function. * * Copyright (C) 2021 Hans de Goede <[email protected]> */ #include <linux/acpi.h> #include <linux/delay.h> #include <linux/dmi.h> #include <linux/gpio/consumer.h> #include <linux/gpio/machine.h> #include <linux/hid.h> #include <linux/i2c.h> #include <linux/input.h> #include <linux/irq.h> #include <linux/irqdomain.h> #include <linux/mod_devicetable.h> #include <linux/moduleparam.h> #include <linux/module.h> #include <linux/pm.h> #include <linux/workqueue.h> #include <asm/unaligned.h> static bool fnlock; module_param(fnlock, bool, 0644); MODULE_PARM_DESC(fnlock, "By default the kbd toprow sends multimedia key presses. AltGr " "can be pressed to change this to F1-F12. Set this to 1 to " "change the default. Press AltGr + Esc to toggle at runtime."); #define TF103C_DOCK_DEV_NAME "NPCE69A:00" #define TF103C_DOCK_HPD_DEBOUNCE msecs_to_jiffies(20) /*** Touchpad I2C device defines ***/ #define TF103C_DOCK_TP_ADDR 0x15 /*** Keyboard I2C device defines **A*/ #define TF103C_DOCK_KBD_ADDR 0x16 #define TF103C_DOCK_KBD_DATA_REG 0x73 #define TF103C_DOCK_KBD_DATA_MIN_LENGTH 4 #define TF103C_DOCK_KBD_DATA_MAX_LENGTH 11 #define TF103C_DOCK_KBD_DATA_MODIFIERS 3 #define TF103C_DOCK_KBD_DATA_KEYS 5 #define TF103C_DOCK_KBD_CMD_REG 0x75 #define TF103C_DOCK_KBD_CMD_ENABLE 0x0800 /*** EC innterrupt data I2C device defines ***/ #define TF103C_DOCK_INTR_ADDR 0x19 #define TF103C_DOCK_INTR_DATA_REG 0x6a #define TF103C_DOCK_INTR_DATA1_OBF_MASK 0x01 #define TF103C_DOCK_INTR_DATA1_KEY_MASK 0x04 #define TF103C_DOCK_INTR_DATA1_KBC_MASK 0x08 #define TF103C_DOCK_INTR_DATA1_AUX_MASK 0x20 #define TF103C_DOCK_INTR_DATA1_SCI_MASK 0x40 #define TF103C_DOCK_INTR_DATA1_SMI_MASK 0x80 /* Special values for the OOB data on kbd_client / tp_client */ #define TF103C_DOCK_INTR_DATA1_OOB_VALUE 0xc1 #define TF103C_DOCK_INTR_DATA2_OOB_VALUE 0x04 #define TF103C_DOCK_SMI_AC_EVENT 0x31 #define TF103C_DOCK_SMI_HANDSHAKING 0x50 #define TF103C_DOCK_SMI_EC_WAKEUP 0x53 #define TF103C_DOCK_SMI_BOOTBLOCK_RESET 0x5e #define TF103C_DOCK_SMI_WATCHDOG_RESET 0x5f #define TF103C_DOCK_SMI_ADAPTER_CHANGE 0x60 #define TF103C_DOCK_SMI_DOCK_INSERT 0x61 #define TF103C_DOCK_SMI_DOCK_REMOVE 0x62 #define TF103C_DOCK_SMI_PAD_BL_CHANGE 0x63 #define TF103C_DOCK_SMI_HID_STATUS_CHANGED 0x64 #define TF103C_DOCK_SMI_HID_WAKEUP 0x65 #define TF103C_DOCK_SMI_S3 0x83 #define TF103C_DOCK_SMI_S5 0x85 #define TF103C_DOCK_SMI_NOTIFY_SHUTDOWN 0x90 #define TF103C_DOCK_SMI_RESUME 0x91 /*** EC (dockram) I2C device defines ***/ #define TF103C_DOCK_EC_ADDR 0x1b #define TF103C_DOCK_EC_CMD_REG 0x0a #define TF103C_DOCK_EC_CMD_LEN 9 enum { TF103C_DOCK_FLAG_HID_OPEN, }; struct tf103c_dock_data { struct delayed_work hpd_work; struct irq_chip tp_irqchip; struct irq_domain *tp_irq_domain; struct i2c_client *ec_client; struct i2c_client *intr_client; struct i2c_client *kbd_client; struct i2c_client *tp_client; struct gpio_desc *pwr_en; struct gpio_desc *irq_gpio; struct gpio_desc *hpd_gpio; struct input_dev *input; struct hid_device *hid; unsigned long flags; int board_rev; int irq; int hpd_irq; int tp_irq; int last_press_0x13; int last_press_0x14; bool enabled; bool tp_enabled; bool altgr_pressed; bool esc_pressed; bool filter_esc; u8 kbd_buf[TF103C_DOCK_KBD_DATA_MAX_LENGTH]; }; static struct gpiod_lookup_table tf103c_dock_gpios = { .dev_id = "i2c-" TF103C_DOCK_DEV_NAME, .table = { GPIO_LOOKUP("INT33FC:00", 55, "dock_pwr_en", GPIO_ACTIVE_HIGH), GPIO_LOOKUP("INT33FC:02", 1, "dock_irq", GPIO_ACTIVE_HIGH), GPIO_LOOKUP("INT33FC:02", 29, "dock_hpd", GPIO_ACTIVE_HIGH), GPIO_LOOKUP("gpio_crystalcove", 2, "board_rev", GPIO_ACTIVE_HIGH), {} }, }; /* Byte 0 is the length of the rest of the packet */ static const u8 tf103c_dock_enable_cmd[9] = { 8, 0x20, 0, 0, 0, 0, 0x20, 0, 0 }; static const u8 tf103c_dock_usb_enable_cmd[9] = { 8, 0, 0, 0, 0, 0, 0, 0x40, 0 }; static const u8 tf103c_dock_suspend_cmd[9] = { 8, 0, 0x20, 0, 0, 0x22, 0, 0, 0 }; /*** keyboard related code ***/ static u8 tf103c_dock_kbd_hid_desc[] = { 0x05, 0x01, /* Usage Page (Desktop), */ 0x09, 0x06, /* Usage (Keyboard), */ 0xA1, 0x01, /* Collection (Application), */ 0x85, 0x11, /* Report ID (17), */ 0x95, 0x08, /* Report Count (8), */ 0x75, 0x01, /* Report Size (1), */ 0x15, 0x00, /* Logical Minimum (0), */ 0x25, 0x01, /* Logical Maximum (1), */ 0x05, 0x07, /* Usage Page (Keyboard), */ 0x19, 0xE0, /* Usage Minimum (KB Leftcontrol), */ 0x29, 0xE7, /* Usage Maximum (KB Right GUI), */ 0x81, 0x02, /* Input (Variable), */ 0x95, 0x01, /* Report Count (1), */ 0x75, 0x08, /* Report Size (8), */ 0x81, 0x01, /* Input (Constant), */ 0x95, 0x06, /* Report Count (6), */ 0x75, 0x08, /* Report Size (8), */ 0x15, 0x00, /* Logical Minimum (0), */ 0x26, 0xFF, 0x00, /* Logical Maximum (255), */ 0x05, 0x07, /* Usage Page (Keyboard), */ 0x19, 0x00, /* Usage Minimum (None), */ 0x2A, 0xFF, 0x00, /* Usage Maximum (FFh), */ 0x81, 0x00, /* Input, */ 0xC0 /* End Collection */ }; static int tf103c_dock_kbd_read(struct tf103c_dock_data *dock) { struct i2c_client *client = dock->kbd_client; struct device *dev = &dock->ec_client->dev; struct i2c_msg msgs[2]; u8 reg[2]; int ret; reg[0] = TF103C_DOCK_KBD_DATA_REG & 0xff; reg[1] = TF103C_DOCK_KBD_DATA_REG >> 8; msgs[0].addr = client->addr; msgs[0].flags = 0; msgs[0].len = sizeof(reg); msgs[0].buf = reg; msgs[1].addr = client->addr; msgs[1].flags = I2C_M_RD; msgs[1].len = TF103C_DOCK_KBD_DATA_MAX_LENGTH; msgs[1].buf = dock->kbd_buf; ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs)); if (ret != ARRAY_SIZE(msgs)) { dev_err(dev, "error %d reading kbd data\n", ret); return -EIO; } return 0; } static void tf103c_dock_kbd_write(struct tf103c_dock_data *dock, u16 cmd) { struct device *dev = &dock->ec_client->dev; u8 buf[4]; int ret; put_unaligned_le16(TF103C_DOCK_KBD_CMD_REG, &buf[0]); put_unaligned_le16(cmd, &buf[2]); ret = i2c_master_send(dock->kbd_client, buf, sizeof(buf)); if (ret != sizeof(buf)) dev_err(dev, "error %d writing kbd cmd\n", ret); } /* HID ll_driver functions for forwarding input-reports from the kbd_client */ static int tf103c_dock_hid_parse(struct hid_device *hid) { return hid_parse_report(hid, tf103c_dock_kbd_hid_desc, sizeof(tf103c_dock_kbd_hid_desc)); } static int tf103c_dock_hid_start(struct hid_device *hid) { return 0; } static void tf103c_dock_hid_stop(struct hid_device *hid) { hid->claimed = 0; } static int tf103c_dock_hid_open(struct hid_device *hid) { struct tf103c_dock_data *dock = hid->driver_data; set_bit(TF103C_DOCK_FLAG_HID_OPEN, &dock->flags); return 0; } static void tf103c_dock_hid_close(struct hid_device *hid) { struct tf103c_dock_data *dock = hid->driver_data; clear_bit(TF103C_DOCK_FLAG_HID_OPEN, &dock->flags); } /* Mandatory, but not used */ static int tf103c_dock_hid_raw_request(struct hid_device *hid, u8 reportnum, u8 *buf, size_t len, u8 rtype, int reqtype) { return 0; } static const struct hid_ll_driver tf103c_dock_hid_ll_driver = { .parse = tf103c_dock_hid_parse, .start = tf103c_dock_hid_start, .stop = tf103c_dock_hid_stop, .open = tf103c_dock_hid_open, .close = tf103c_dock_hid_close, .raw_request = tf103c_dock_hid_raw_request, }; static const int tf103c_dock_toprow_codes[13][2] = { /* Normal, AltGr pressed */ { KEY_POWER, KEY_F1 }, { KEY_RFKILL, KEY_F2 }, { KEY_F21, KEY_F3 }, /* Touchpad toggle, userspace expects F21 */ { KEY_BRIGHTNESSDOWN, KEY_F4 }, { KEY_BRIGHTNESSUP, KEY_F5 }, { KEY_CAMERA, KEY_F6 }, { KEY_CONFIG, KEY_F7 }, { KEY_PREVIOUSSONG, KEY_F8 }, { KEY_PLAYPAUSE, KEY_F9 }, { KEY_NEXTSONG, KEY_F10 }, { KEY_MUTE, KEY_F11 }, { KEY_VOLUMEDOWN, KEY_F12 }, { KEY_VOLUMEUP, KEY_SYSRQ }, }; static void tf103c_dock_report_toprow_kbd_hook(struct tf103c_dock_data *dock) { u8 *esc, *buf = dock->kbd_buf; int size; /* * Stop AltGr reports from getting reported on the "Asus TF103C Dock * Keyboard" input_dev, since this gets used as "Fn" key for the toprow * keys. Instead we report this on the "Asus TF103C Dock Top Row Keys" * input_dev, when not used to modify the toprow keys. */ dock->altgr_pressed = buf[TF103C_DOCK_KBD_DATA_MODIFIERS] & 0x40; buf[TF103C_DOCK_KBD_DATA_MODIFIERS] &= ~0x40; input_report_key(dock->input, KEY_RIGHTALT, dock->altgr_pressed); input_sync(dock->input); /* Toggle fnlock on AltGr + Esc press */ buf = buf + TF103C_DOCK_KBD_DATA_KEYS; size = TF103C_DOCK_KBD_DATA_MAX_LENGTH - TF103C_DOCK_KBD_DATA_KEYS; esc = memchr(buf, 0x29, size); if (!dock->esc_pressed && esc) { if (dock->altgr_pressed) { fnlock = !fnlock; dock->filter_esc = true; } } if (esc && dock->filter_esc) *esc = 0; else dock->filter_esc = false; dock->esc_pressed = esc != NULL; } static void tf103c_dock_toprow_press(struct tf103c_dock_data *dock, int key_code) { /* * Release AltGr before reporting the toprow key, so that userspace * sees e.g. just KEY_SUSPEND and not AltGr + KEY_SUSPEND. */ if (dock->altgr_pressed) { input_report_key(dock->input, KEY_RIGHTALT, false); input_sync(dock->input); } input_report_key(dock->input, key_code, true); input_sync(dock->input); } static void tf103c_dock_toprow_release(struct tf103c_dock_data *dock, int key_code) { input_report_key(dock->input, key_code, false); input_sync(dock->input); if (dock->altgr_pressed) { input_report_key(dock->input, KEY_RIGHTALT, true); input_sync(dock->input); } } static void tf103c_dock_toprow_event(struct tf103c_dock_data *dock, int toprow_index, int *last_press) { int key_code, fn = dock->altgr_pressed ^ fnlock; if (last_press && *last_press) { tf103c_dock_toprow_release(dock, *last_press); *last_press = 0; } if (toprow_index < 0) return; key_code = tf103c_dock_toprow_codes[toprow_index][fn]; tf103c_dock_toprow_press(dock, key_code); if (last_press) *last_press = key_code; else tf103c_dock_toprow_release(dock, key_code); } /* * The keyboard sends what appears to be standard I2C-HID input-reports, * except that a 16 bit register address of where the I2C-HID format * input-reports are stored must be send before reading it in a single * (I2C repeated-start) I2C transaction. * * Its unknown how to get the HID descriptors but they are easy to reconstruct: * * Input report id 0x11 is 8 bytes long and contain standard USB HID intf-class, * Boot Interface Subclass reports. * Input report id 0x13 is 2 bytes long and sends Consumer Control events * Input report id 0x14 is 1 byte long and sends System Control events * * However the top row keys (where a normal keyboard has F1-F12 + Print-Screen) * are a mess, using a mix of the 0x13 and 0x14 input reports as well as EC SCI * events; and these need special handling to allow actually sending F1-F12, * since the Fn key on the keyboard only works on the cursor keys and the top * row keys always send their special "Multimedia hotkey" codes. * * So only forward the 0x11 reports to HID and handle the top-row keys here. */ static void tf103c_dock_kbd_interrupt(struct tf103c_dock_data *dock) { struct device *dev = &dock->ec_client->dev; u8 *buf = dock->kbd_buf; int size; if (tf103c_dock_kbd_read(dock)) return; size = buf[0] | buf[1] << 8; if (size < TF103C_DOCK_KBD_DATA_MIN_LENGTH || size > TF103C_DOCK_KBD_DATA_MAX_LENGTH) { dev_err(dev, "error reported kbd pkt size %d is out of range %d-%d\n", size, TF103C_DOCK_KBD_DATA_MIN_LENGTH, TF103C_DOCK_KBD_DATA_MAX_LENGTH); return; } switch (buf[2]) { case 0x11: if (size != 11) break; tf103c_dock_report_toprow_kbd_hook(dock); if (test_bit(TF103C_DOCK_FLAG_HID_OPEN, &dock->flags)) hid_input_report(dock->hid, HID_INPUT_REPORT, buf + 2, size - 2, 1); return; case 0x13: if (size != 5) break; switch (buf[3] | buf[4] << 8) { case 0: tf103c_dock_toprow_event(dock, -1, &dock->last_press_0x13); return; case 0x70: tf103c_dock_toprow_event(dock, 3, &dock->last_press_0x13); return; case 0x6f: tf103c_dock_toprow_event(dock, 4, &dock->last_press_0x13); return; case 0xb6: tf103c_dock_toprow_event(dock, 7, &dock->last_press_0x13); return; case 0xcd: tf103c_dock_toprow_event(dock, 8, &dock->last_press_0x13); return; case 0xb5: tf103c_dock_toprow_event(dock, 9, &dock->last_press_0x13); return; case 0xe2: tf103c_dock_toprow_event(dock, 10, &dock->last_press_0x13); return; case 0xea: tf103c_dock_toprow_event(dock, 11, &dock->last_press_0x13); return; case 0xe9: tf103c_dock_toprow_event(dock, 12, &dock->last_press_0x13); return; } break; case 0x14: if (size != 4) break; switch (buf[3]) { case 0: tf103c_dock_toprow_event(dock, -1, &dock->last_press_0x14); return; case 1: tf103c_dock_toprow_event(dock, 0, &dock->last_press_0x14); return; } break; } dev_warn(dev, "warning unknown kbd data: %*ph\n", size, buf); } /*** touchpad related code ***/ static const struct property_entry tf103c_dock_touchpad_props[] = { PROPERTY_ENTRY_BOOL("elan,clickpad"), { } }; static const struct software_node tf103c_dock_touchpad_sw_node = { .properties = tf103c_dock_touchpad_props, }; /* * tf103c_enable_touchpad() is only called from the threaded interrupt handler * and tf103c_disable_touchpad() is only called after the irq is disabled, * so no locking is necessary. */ static void tf103c_dock_enable_touchpad(struct tf103c_dock_data *dock) { struct i2c_board_info board_info = { }; struct device *dev = &dock->ec_client->dev; int ret; if (dock->tp_enabled) { /* Happens after resume, the tp needs to be reinitialized */ ret = device_reprobe(&dock->tp_client->dev); if (ret) dev_err_probe(dev, ret, "reprobing tp-client\n"); return; } strscpy(board_info.type, "elan_i2c", I2C_NAME_SIZE); board_info.addr = TF103C_DOCK_TP_ADDR; board_info.dev_name = TF103C_DOCK_DEV_NAME "-tp"; board_info.irq = dock->tp_irq; board_info.swnode = &tf103c_dock_touchpad_sw_node; dock->tp_client = i2c_new_client_device(dock->ec_client->adapter, &board_info); if (IS_ERR(dock->tp_client)) { dev_err(dev, "error %ld creating tp client\n", PTR_ERR(dock->tp_client)); return; } dock->tp_enabled = true; } static void tf103c_dock_disable_touchpad(struct tf103c_dock_data *dock) { if (!dock->tp_enabled) return; i2c_unregister_device(dock->tp_client); dock->tp_enabled = false; } /*** interrupt handling code ***/ static void tf103c_dock_ec_cmd(struct tf103c_dock_data *dock, const u8 *cmd) { struct device *dev = &dock->ec_client->dev; int ret; ret = i2c_smbus_write_i2c_block_data(dock->ec_client, TF103C_DOCK_EC_CMD_REG, TF103C_DOCK_EC_CMD_LEN, cmd); if (ret) dev_err(dev, "error %d sending %*ph cmd\n", ret, TF103C_DOCK_EC_CMD_LEN, cmd); } static void tf103c_dock_sci(struct tf103c_dock_data *dock, u8 val) { struct device *dev = &dock->ec_client->dev; switch (val) { case 2: tf103c_dock_toprow_event(dock, 1, NULL); return; case 4: tf103c_dock_toprow_event(dock, 2, NULL); return; case 8: tf103c_dock_toprow_event(dock, 5, NULL); return; case 17: tf103c_dock_toprow_event(dock, 6, NULL); return; } dev_warn(dev, "warning unknown SCI value: 0x%02x\n", val); } static void tf103c_dock_smi(struct tf103c_dock_data *dock, u8 val) { struct device *dev = &dock->ec_client->dev; switch (val) { case TF103C_DOCK_SMI_EC_WAKEUP: tf103c_dock_ec_cmd(dock, tf103c_dock_enable_cmd); tf103c_dock_ec_cmd(dock, tf103c_dock_usb_enable_cmd); tf103c_dock_kbd_write(dock, TF103C_DOCK_KBD_CMD_ENABLE); break; case TF103C_DOCK_SMI_PAD_BL_CHANGE: /* There is no backlight, but the EC still sends this */ break; case TF103C_DOCK_SMI_HID_STATUS_CHANGED: tf103c_dock_enable_touchpad(dock); break; default: dev_warn(dev, "warning unknown SMI value: 0x%02x\n", val); break; } } static irqreturn_t tf103c_dock_irq(int irq, void *data) { struct tf103c_dock_data *dock = data; struct device *dev = &dock->ec_client->dev; u8 intr_data[8]; int ret; ret = i2c_smbus_read_i2c_block_data(dock->intr_client, TF103C_DOCK_INTR_DATA_REG, sizeof(intr_data), intr_data); if (ret != sizeof(intr_data)) { dev_err(dev, "error %d reading intr data\n", ret); return IRQ_NONE; } if (!(intr_data[1] & TF103C_DOCK_INTR_DATA1_OBF_MASK)) return IRQ_NONE; /* intr_data[0] is the length of the rest of the packet */ if (intr_data[0] == 3 && intr_data[1] == TF103C_DOCK_INTR_DATA1_OOB_VALUE && intr_data[2] == TF103C_DOCK_INTR_DATA2_OOB_VALUE) { /* intr_data[3] seems to contain a HID input report id */ switch (intr_data[3]) { case 0x01: handle_nested_irq(dock->tp_irq); break; case 0x11: case 0x13: case 0x14: tf103c_dock_kbd_interrupt(dock); break; default: dev_warn(dev, "warning unknown intr_data[3]: 0x%02x\n", intr_data[3]); break; } return IRQ_HANDLED; } if (intr_data[1] & TF103C_DOCK_INTR_DATA1_SCI_MASK) { tf103c_dock_sci(dock, intr_data[2]); return IRQ_HANDLED; } if (intr_data[1] & TF103C_DOCK_INTR_DATA1_SMI_MASK) { tf103c_dock_smi(dock, intr_data[2]); return IRQ_HANDLED; } dev_warn(dev, "warning unknown intr data: %*ph\n", 8, intr_data); return IRQ_NONE; } /* * tf103c_dock_[dis|en]able only run from hpd_work or at times when * hpd_work cannot run (hpd_irq disabled), so no locking is necessary. */ static void tf103c_dock_enable(struct tf103c_dock_data *dock) { if (dock->enabled) return; if (dock->board_rev != 2) gpiod_set_value(dock->pwr_en, 1); msleep(500); enable_irq(dock->irq); dock->enabled = true; } static void tf103c_dock_disable(struct tf103c_dock_data *dock) { if (!dock->enabled) return; disable_irq(dock->irq); tf103c_dock_disable_touchpad(dock); if (dock->board_rev != 2) gpiod_set_value(dock->pwr_en, 0); dock->enabled = false; } static void tf103c_dock_hpd_work(struct work_struct *work) { struct tf103c_dock_data *dock = container_of(work, struct tf103c_dock_data, hpd_work.work); if (gpiod_get_value(dock->hpd_gpio)) tf103c_dock_enable(dock); else tf103c_dock_disable(dock); } static irqreturn_t tf103c_dock_hpd_irq(int irq, void *data) { struct tf103c_dock_data *dock = data; mod_delayed_work(system_long_wq, &dock->hpd_work, TF103C_DOCK_HPD_DEBOUNCE); return IRQ_HANDLED; } static void tf103c_dock_start_hpd(struct tf103c_dock_data *dock) { enable_irq(dock->hpd_irq); /* Sync current HPD status */ queue_delayed_work(system_long_wq, &dock->hpd_work, TF103C_DOCK_HPD_DEBOUNCE); } static void tf103c_dock_stop_hpd(struct tf103c_dock_data *dock) { disable_irq(dock->hpd_irq); cancel_delayed_work_sync(&dock->hpd_work); } /*** probe ***/ static const struct dmi_system_id tf103c_dock_dmi_ids[] = { { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "TF103C"), }, }, { } }; static void tf103c_dock_non_devm_cleanup(void *data) { struct tf103c_dock_data *dock = data; if (dock->tp_irq_domain) irq_domain_remove(dock->tp_irq_domain); if (!IS_ERR_OR_NULL(dock->hid)) hid_destroy_device(dock->hid); i2c_unregister_device(dock->kbd_client); i2c_unregister_device(dock->intr_client); gpiod_remove_lookup_table(&tf103c_dock_gpios); } static int tf103c_dock_probe(struct i2c_client *client) { struct i2c_board_info board_info = { }; struct device *dev = &client->dev; struct gpio_desc *board_rev_gpio; struct tf103c_dock_data *dock; enum gpiod_flags flags; int i, ret; /* GPIOs are hardcoded for the Asus TF103C, don't bind on other devs */ if (!dmi_check_system(tf103c_dock_dmi_ids)) return -ENODEV; dock = devm_kzalloc(dev, sizeof(*dock), GFP_KERNEL); if (!dock) return -ENOMEM; INIT_DELAYED_WORK(&dock->hpd_work, tf103c_dock_hpd_work); /* 1. Get GPIOs and their IRQs */ gpiod_add_lookup_table(&tf103c_dock_gpios); ret = devm_add_action_or_reset(dev, tf103c_dock_non_devm_cleanup, dock); if (ret) return ret; /* * The pin is configured as input by default, use ASIS because otherwise * the gpio-crystalcove.c switches off the internal pull-down replacing * it with a pull-up. */ board_rev_gpio = gpiod_get(dev, "board_rev", GPIOD_ASIS); if (IS_ERR(board_rev_gpio)) return dev_err_probe(dev, PTR_ERR(board_rev_gpio), "requesting board_rev GPIO\n"); dock->board_rev = gpiod_get_value_cansleep(board_rev_gpio) + 1; gpiod_put(board_rev_gpio); /* * The Android driver drives the dock-pwr-en pin high at probe for * revision 2 boards and then never touches it again? * This code has only been tested on a revision 1 board, so for now * just mimick what Android does on revision 2 boards. */ flags = (dock->board_rev == 2) ? GPIOD_OUT_HIGH : GPIOD_OUT_LOW; dock->pwr_en = devm_gpiod_get(dev, "dock_pwr_en", flags); if (IS_ERR(dock->pwr_en)) return dev_err_probe(dev, PTR_ERR(dock->pwr_en), "requesting pwr_en GPIO\n"); dock->irq_gpio = devm_gpiod_get(dev, "dock_irq", GPIOD_IN); if (IS_ERR(dock->irq_gpio)) return dev_err_probe(dev, PTR_ERR(dock->irq_gpio), "requesting IRQ GPIO\n"); dock->irq = gpiod_to_irq(dock->irq_gpio); if (dock->irq < 0) return dev_err_probe(dev, dock->irq, "getting dock IRQ"); ret = devm_request_threaded_irq(dev, dock->irq, NULL, tf103c_dock_irq, IRQF_TRIGGER_LOW | IRQF_ONESHOT | IRQF_NO_AUTOEN, "dock_irq", dock); if (ret) return dev_err_probe(dev, ret, "requesting dock IRQ"); dock->hpd_gpio = devm_gpiod_get(dev, "dock_hpd", GPIOD_IN); if (IS_ERR(dock->hpd_gpio)) return dev_err_probe(dev, PTR_ERR(dock->hpd_gpio), "requesting HPD GPIO\n"); dock->hpd_irq = gpiod_to_irq(dock->hpd_gpio); if (dock->hpd_irq < 0) return dev_err_probe(dev, dock->hpd_irq, "getting HPD IRQ"); ret = devm_request_irq(dev, dock->hpd_irq, tf103c_dock_hpd_irq, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_NO_AUTOEN, "dock_hpd", dock); if (ret) return ret; /* * 2. Create I2C clients. The dock uses 4 different i2c addresses, * the ACPI NPCE69A node being probed points to the EC address. */ dock->ec_client = client; strscpy(board_info.type, "tf103c-dock-intr", I2C_NAME_SIZE); board_info.addr = TF103C_DOCK_INTR_ADDR; board_info.dev_name = TF103C_DOCK_DEV_NAME "-intr"; dock->intr_client = i2c_new_client_device(client->adapter, &board_info); if (IS_ERR(dock->intr_client)) return dev_err_probe(dev, PTR_ERR(dock->intr_client), "creating intr client\n"); strscpy(board_info.type, "tf103c-dock-kbd", I2C_NAME_SIZE); board_info.addr = TF103C_DOCK_KBD_ADDR; board_info.dev_name = TF103C_DOCK_DEV_NAME "-kbd"; dock->kbd_client = i2c_new_client_device(client->adapter, &board_info); if (IS_ERR(dock->kbd_client)) return dev_err_probe(dev, PTR_ERR(dock->kbd_client), "creating kbd client\n"); /* 3. Create input_dev for the top row of the keyboard */ dock->input = devm_input_allocate_device(dev); if (!dock->input) return -ENOMEM; dock->input->name = "Asus TF103C Dock Top Row Keys"; dock->input->phys = dev_name(dev); dock->input->dev.parent = dev; dock->input->id.bustype = BUS_I2C; dock->input->id.vendor = /* USB_VENDOR_ID_ASUSTEK */ dock->input->id.product = /* From TF-103-C */ dock->input->id.version = 0x0100; /* 1.0 */ for (i = 0; i < ARRAY_SIZE(tf103c_dock_toprow_codes); i++) { input_set_capability(dock->input, EV_KEY, tf103c_dock_toprow_codes[i][0]); input_set_capability(dock->input, EV_KEY, tf103c_dock_toprow_codes[i][1]); } input_set_capability(dock->input, EV_KEY, KEY_RIGHTALT); ret = input_register_device(dock->input); if (ret) return ret; /* 4. Create HID device for the keyboard */ dock->hid = hid_allocate_device(); if (IS_ERR(dock->hid)) return dev_err_probe(dev, PTR_ERR(dock->hid), "allocating hid dev\n"); dock->hid->driver_data = dock; dock->hid->ll_driver = &tf103c_dock_hid_ll_driver; dock->hid->dev.parent = &client->dev; dock->hid->bus = BUS_I2C; dock->hid->vendor = 0x0b05; /* USB_VENDOR_ID_ASUSTEK */ dock->hid->product = 0x0103; /* From TF-103-C */ dock->hid->version = 0x0100; /* 1.0 */ strscpy(dock->hid->name, "Asus TF103C Dock Keyboard", sizeof(dock->hid->name)); strscpy(dock->hid->phys, dev_name(dev), sizeof(dock->hid->phys)); ret = hid_add_device(dock->hid); if (ret) return dev_err_probe(dev, ret, "adding hid dev\n"); /* 5. Setup irqchip for touchpad IRQ pass-through */ dock->tp_irqchip.name = KBUILD_MODNAME; dock->tp_irq_domain = irq_domain_add_linear(NULL, 1, &irq_domain_simple_ops, NULL); if (!dock->tp_irq_domain) return -ENOMEM; dock->tp_irq = irq_create_mapping(dock->tp_irq_domain, 0); if (!dock->tp_irq) return -ENOMEM; irq_set_chip_data(dock->tp_irq, dock); irq_set_chip_and_handler(dock->tp_irq, &dock->tp_irqchip, handle_simple_irq); irq_set_nested_thread(dock->tp_irq, true); irq_set_noprobe(dock->tp_irq); dev_info(dev, "Asus TF103C board-revision: %d\n", dock->board_rev); tf103c_dock_start_hpd(dock); device_init_wakeup(dev, true); i2c_set_clientdata(client, dock); return 0; } static void tf103c_dock_remove(struct i2c_client *client) { struct tf103c_dock_data *dock = i2c_get_clientdata(client); tf103c_dock_stop_hpd(dock); tf103c_dock_disable(dock); } static int __maybe_unused tf103c_dock_suspend(struct device *dev) { struct tf103c_dock_data *dock = dev_get_drvdata(dev); tf103c_dock_stop_hpd(dock); if (dock->enabled) { tf103c_dock_ec_cmd(dock, tf103c_dock_suspend_cmd); if (device_may_wakeup(dev)) enable_irq_wake(dock->irq); } return 0; } static int __maybe_unused tf103c_dock_resume(struct device *dev) { struct tf103c_dock_data *dock = dev_get_drvdata(dev); if (dock->enabled) { if (device_may_wakeup(dev)) disable_irq_wake(dock->irq); /* Don't try to resume if the dock was unplugged during suspend */ if (gpiod_get_value(dock->hpd_gpio)) tf103c_dock_ec_cmd(dock, tf103c_dock_enable_cmd); } tf103c_dock_start_hpd(dock); return 0; } static SIMPLE_DEV_PM_OPS(tf103c_dock_pm_ops, tf103c_dock_suspend, tf103c_dock_resume); static const struct acpi_device_id tf103c_dock_acpi_match[] = { {"NPCE69A"}, { } }; MODULE_DEVICE_TABLE(acpi, tf103c_dock_acpi_match); static struct i2c_driver tf103c_dock_driver = { .driver = { .name = "asus-tf103c-dock", .pm = &tf103c_dock_pm_ops, .acpi_match_table = tf103c_dock_acpi_match, }, .probe = tf103c_dock_probe, .remove = tf103c_dock_remove, }; module_i2c_driver(tf103c_dock_driver); MODULE_AUTHOR("Hans de Goede <[email protected]"); MODULE_DESCRIPTION("X86 Android tablets DSDT fixups driver"); MODULE_LICENSE("GPL");
linux-master
drivers/platform/x86/asus-tf103c-dock.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * asus-laptop.c - Asus Laptop Support * * Copyright (C) 2002-2005 Julien Lerouge, 2003-2006 Karol Kozimor * Copyright (C) 2006-2007 Corentin Chary * Copyright (C) 2011 Wind River Systems * * The development page for this driver is located at * http://sourceforge.net/projects/acpi4asus/ * * Credits: * Pontus Fuchs - Helper functions, cleanup * Johann Wiesner - Small compile fixes * John Belmonte - ACPI code for Toshiba laptop was a good starting point. * Eric Burghard - LED display support for W1N * Josh Green - Light Sens support * Thomas Tuttle - His first patch for led support was very helpful * Sam Lin - GPS support */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/types.h> #include <linux/err.h> #include <linux/proc_fs.h> #include <linux/backlight.h> #include <linux/fb.h> #include <linux/leds.h> #include <linux/platform_device.h> #include <linux/uaccess.h> #include <linux/input.h> #include <linux/input/sparse-keymap.h> #include <linux/rfkill.h> #include <linux/slab.h> #include <linux/dmi.h> #include <linux/acpi.h> #include <acpi/video.h> #define ASUS_LAPTOP_VERSION "0.42" #define ASUS_LAPTOP_NAME "Asus Laptop Support" #define ASUS_LAPTOP_CLASS "hotkey" #define ASUS_LAPTOP_DEVICE_NAME "Hotkey" #define ASUS_LAPTOP_FILE KBUILD_MODNAME #define ASUS_LAPTOP_PREFIX "\\_SB.ATKD." MODULE_AUTHOR("Julien Lerouge, Karol Kozimor, Corentin Chary"); MODULE_DESCRIPTION(ASUS_LAPTOP_NAME); MODULE_LICENSE("GPL"); /* * WAPF defines the behavior of the Fn+Fx wlan key * The significance of values is yet to be found, but * most of the time: * Bit | Bluetooth | WLAN * 0 | Hardware | Hardware * 1 | Hardware | Software * 4 | Software | Software */ static uint wapf = 1; module_param(wapf, uint, 0444); MODULE_PARM_DESC(wapf, "WAPF value"); static char *wled_type = "unknown"; static char *bled_type = "unknown"; module_param(wled_type, charp, 0444); MODULE_PARM_DESC(wled_type, "Set the wled type on boot " "(unknown, led or rfkill). " "default is unknown"); module_param(bled_type, charp, 0444); MODULE_PARM_DESC(bled_type, "Set the bled type on boot " "(unknown, led or rfkill). " "default is unknown"); static int wlan_status = 1; static int bluetooth_status = 1; static int wimax_status = -1; static int wwan_status = -1; static int als_status; module_param(wlan_status, int, 0444); MODULE_PARM_DESC(wlan_status, "Set the wireless status on boot " "(0 = disabled, 1 = enabled, -1 = don't do anything). " "default is -1"); module_param(bluetooth_status, int, 0444); MODULE_PARM_DESC(bluetooth_status, "Set the wireless status on boot " "(0 = disabled, 1 = enabled, -1 = don't do anything). " "default is -1"); module_param(wimax_status, int, 0444); MODULE_PARM_DESC(wimax_status, "Set the wireless status on boot " "(0 = disabled, 1 = enabled, -1 = don't do anything). " "default is -1"); module_param(wwan_status, int, 0444); MODULE_PARM_DESC(wwan_status, "Set the wireless status on boot " "(0 = disabled, 1 = enabled, -1 = don't do anything). " "default is -1"); module_param(als_status, int, 0444); MODULE_PARM_DESC(als_status, "Set the ALS status on boot " "(0 = disabled, 1 = enabled). " "default is 0"); /* * Some events we use, same for all Asus */ #define ATKD_BRNUP_MIN 0x10 #define ATKD_BRNUP_MAX 0x1f #define ATKD_BRNDOWN_MIN 0x20 #define ATKD_BRNDOWN_MAX 0x2f #define ATKD_BRNDOWN 0x20 #define ATKD_BRNUP 0x2f #define ATKD_LCD_ON 0x33 #define ATKD_LCD_OFF 0x34 /* * Known bits returned by \_SB.ATKD.HWRS */ #define WL_HWRS 0x80 #define BT_HWRS 0x100 /* * Flags for hotk status * WL_ON and BT_ON are also used for wireless_status() */ #define WL_RSTS 0x01 /* internal Wifi */ #define BT_RSTS 0x02 /* internal Bluetooth */ #define WM_RSTS 0x08 /* internal wimax */ #define WW_RSTS 0x20 /* internal wwan */ /* WLED and BLED type */ #define TYPE_UNKNOWN 0 #define TYPE_LED 1 #define TYPE_RFKILL 2 /* LED */ #define METHOD_MLED "MLED" #define METHOD_TLED "TLED" #define METHOD_RLED "RLED" /* W1JC */ #define METHOD_PLED "PLED" /* A7J */ #define METHOD_GLED "GLED" /* G1, G2 (probably) */ /* LEDD */ #define METHOD_LEDD "SLCM" /* * Bluetooth and WLAN * WLED and BLED are not handled like other XLED, because in some dsdt * they also control the WLAN/Bluetooth device. */ #define METHOD_WLAN "WLED" #define METHOD_BLUETOOTH "BLED" /* WWAN and WIMAX */ #define METHOD_WWAN "GSMC" #define METHOD_WIMAX "WMXC" #define METHOD_WL_STATUS "RSTS" /* Brightness */ #define METHOD_BRIGHTNESS_SET "SPLV" #define METHOD_BRIGHTNESS_GET "GPLV" /* Display */ #define METHOD_SWITCH_DISPLAY "SDSP" #define METHOD_ALS_CONTROL "ALSC" /* Z71A Z71V */ #define METHOD_ALS_LEVEL "ALSL" /* Z71A Z71V */ /* GPS */ /* R2H use different handle for GPS on/off */ #define METHOD_GPS_ON "SDON" #define METHOD_GPS_OFF "SDOF" #define METHOD_GPS_STATUS "GPST" /* Keyboard light */ #define METHOD_KBD_LIGHT_SET "SLKB" #define METHOD_KBD_LIGHT_GET "GLKB" /* For Pegatron Lucid tablet */ #define DEVICE_NAME_PEGA "Lucid" #define METHOD_PEGA_ENABLE "ENPR" #define METHOD_PEGA_DISABLE "DAPR" #define PEGA_WLAN 0x00 #define PEGA_BLUETOOTH 0x01 #define PEGA_WWAN 0x02 #define PEGA_ALS 0x04 #define PEGA_ALS_POWER 0x05 #define METHOD_PEGA_READ "RDLN" #define PEGA_READ_ALS_H 0x02 #define PEGA_READ_ALS_L 0x03 #define PEGA_ACCEL_NAME "pega_accel" #define PEGA_ACCEL_DESC "Pegatron Lucid Tablet Accelerometer" #define METHOD_XLRX "XLRX" #define METHOD_XLRY "XLRY" #define METHOD_XLRZ "XLRZ" #define PEGA_ACC_CLAMP 512 /* 1G accel is reported as ~256, so clamp to 2G */ #define PEGA_ACC_RETRIES 3 /* * Define a specific led structure to keep the main structure clean */ struct asus_led { int wk; struct work_struct work; struct led_classdev led; struct asus_laptop *asus; const char *method; }; /* * Same thing for rfkill */ struct asus_rfkill { /* type of control. Maps to PEGA_* values or *_RSTS */ int control_id; struct rfkill *rfkill; struct asus_laptop *asus; }; /* * This is the main structure, we can use it to store anything interesting * about the hotk device */ struct asus_laptop { char *name; /* laptop name */ struct acpi_table_header *dsdt_info; struct platform_device *platform_device; struct acpi_device *device; /* the device we are in */ struct backlight_device *backlight_device; struct input_dev *inputdev; struct key_entry *keymap; struct input_dev *pega_accel_poll; struct asus_led wled; struct asus_led bled; struct asus_led mled; struct asus_led tled; struct asus_led rled; struct asus_led pled; struct asus_led gled; struct asus_led kled; struct workqueue_struct *led_workqueue; int wled_type; int bled_type; int wireless_status; bool have_rsts; bool is_pega_lucid; bool pega_acc_live; int pega_acc_x; int pega_acc_y; int pega_acc_z; struct asus_rfkill wlan; struct asus_rfkill bluetooth; struct asus_rfkill wwan; struct asus_rfkill wimax; struct asus_rfkill gps; acpi_handle handle; /* the handle of the hotk device */ u32 ledd_status; /* status of the LED display */ u8 light_level; /* light sensor level */ u8 light_switch; /* light sensor switch value */ u16 event_count[128]; /* count for each event TODO make this better */ }; static const struct key_entry asus_keymap[] = { /* Lenovo SL Specific keycodes */ {KE_KEY, 0x02, { KEY_SCREENLOCK } }, {KE_KEY, 0x05, { KEY_WLAN } }, {KE_KEY, 0x08, { KEY_F13 } }, {KE_KEY, 0x09, { KEY_PROG2 } }, /* Dock */ {KE_KEY, 0x17, { KEY_ZOOM } }, {KE_KEY, 0x1f, { KEY_BATTERY } }, /* End of Lenovo SL Specific keycodes */ {KE_KEY, ATKD_BRNDOWN, { KEY_BRIGHTNESSDOWN } }, {KE_KEY, ATKD_BRNUP, { KEY_BRIGHTNESSUP } }, {KE_KEY, 0x30, { KEY_VOLUMEUP } }, {KE_KEY, 0x31, { KEY_VOLUMEDOWN } }, {KE_KEY, 0x32, { KEY_MUTE } }, {KE_KEY, 0x33, { KEY_DISPLAYTOGGLE } }, /* LCD on */ {KE_KEY, 0x34, { KEY_DISPLAY_OFF } }, /* LCD off */ {KE_KEY, 0x40, { KEY_PREVIOUSSONG } }, {KE_KEY, 0x41, { KEY_NEXTSONG } }, {KE_KEY, 0x43, { KEY_STOPCD } }, /* Stop/Eject */ {KE_KEY, 0x45, { KEY_PLAYPAUSE } }, {KE_KEY, 0x4c, { KEY_MEDIA } }, /* WMP Key */ {KE_KEY, 0x50, { KEY_EMAIL } }, {KE_KEY, 0x51, { KEY_WWW } }, {KE_KEY, 0x55, { KEY_CALC } }, {KE_IGNORE, 0x57, }, /* Battery mode */ {KE_IGNORE, 0x58, }, /* AC mode */ {KE_KEY, 0x5C, { KEY_SCREENLOCK } }, /* Screenlock */ {KE_KEY, 0x5D, { KEY_WLAN } }, /* WLAN Toggle */ {KE_KEY, 0x5E, { KEY_WLAN } }, /* WLAN Enable */ {KE_KEY, 0x5F, { KEY_WLAN } }, /* WLAN Disable */ {KE_KEY, 0x60, { KEY_TOUCHPAD_ON } }, {KE_KEY, 0x61, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD only */ {KE_KEY, 0x62, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT only */ {KE_KEY, 0x63, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT */ {KE_KEY, 0x64, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV */ {KE_KEY, 0x65, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV */ {KE_KEY, 0x66, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV */ {KE_KEY, 0x67, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV */ {KE_KEY, 0x6A, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad Fn + F9 */ {KE_KEY, 0x6B, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad */ {KE_KEY, 0x6C, { KEY_SLEEP } }, /* Suspend */ {KE_KEY, 0x6D, { KEY_SLEEP } }, /* Hibernate */ {KE_IGNORE, 0x6E, }, /* Low Battery notification */ {KE_KEY, 0x7D, { KEY_BLUETOOTH } }, /* Bluetooth Enable */ {KE_KEY, 0x7E, { KEY_BLUETOOTH } }, /* Bluetooth Disable */ {KE_KEY, 0x82, { KEY_CAMERA } }, {KE_KEY, 0x88, { KEY_RFKILL } }, /* Radio Toggle Key */ {KE_KEY, 0x8A, { KEY_PROG1 } }, /* Color enhancement mode */ {KE_KEY, 0x8C, { KEY_SWITCHVIDEOMODE } }, /* SDSP DVI only */ {KE_KEY, 0x8D, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + DVI */ {KE_KEY, 0x8E, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + DVI */ {KE_KEY, 0x8F, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + DVI */ {KE_KEY, 0x90, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + DVI */ {KE_KEY, 0x91, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + DVI */ {KE_KEY, 0x92, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + DVI */ {KE_KEY, 0x93, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + DVI */ {KE_KEY, 0x95, { KEY_MEDIA } }, {KE_KEY, 0x99, { KEY_PHONE } }, {KE_KEY, 0xA0, { KEY_SWITCHVIDEOMODE } }, /* SDSP HDMI only */ {KE_KEY, 0xA1, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + HDMI */ {KE_KEY, 0xA2, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + HDMI */ {KE_KEY, 0xA3, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + HDMI */ {KE_KEY, 0xA4, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + HDMI */ {KE_KEY, 0xA5, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + HDMI */ {KE_KEY, 0xA6, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + HDMI */ {KE_KEY, 0xA7, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + HDMI */ {KE_KEY, 0xB5, { KEY_CALC } }, {KE_KEY, 0xC4, { KEY_KBDILLUMUP } }, {KE_KEY, 0xC5, { KEY_KBDILLUMDOWN } }, {KE_END, 0}, }; /* * This function evaluates an ACPI method, given an int as parameter, the * method is searched within the scope of the handle, can be NULL. The output * of the method is written is output, which can also be NULL * * returns 0 if write is successful, -1 else. */ static int write_acpi_int_ret(acpi_handle handle, const char *method, int val, struct acpi_buffer *output) { struct acpi_object_list params; /* list of input parameters (an int) */ union acpi_object in_obj; /* the only param we use */ acpi_status status; if (!handle) return -1; params.count = 1; params.pointer = &in_obj; in_obj.type = ACPI_TYPE_INTEGER; in_obj.integer.value = val; status = acpi_evaluate_object(handle, (char *)method, &params, output); if (status == AE_OK) return 0; else return -1; } static int write_acpi_int(acpi_handle handle, const char *method, int val) { return write_acpi_int_ret(handle, method, val, NULL); } static int acpi_check_handle(acpi_handle handle, const char *method, acpi_handle *ret) { acpi_status status; if (method == NULL) return -ENODEV; if (ret) status = acpi_get_handle(handle, (char *)method, ret); else { acpi_handle dummy; status = acpi_get_handle(handle, (char *)method, &dummy); } if (status != AE_OK) { if (ret) pr_warn("Error finding %s\n", method); return -ENODEV; } return 0; } static bool asus_check_pega_lucid(struct asus_laptop *asus) { return !strcmp(asus->name, DEVICE_NAME_PEGA) && !acpi_check_handle(asus->handle, METHOD_PEGA_ENABLE, NULL) && !acpi_check_handle(asus->handle, METHOD_PEGA_DISABLE, NULL) && !acpi_check_handle(asus->handle, METHOD_PEGA_READ, NULL); } static int asus_pega_lucid_set(struct asus_laptop *asus, int unit, bool enable) { char *method = enable ? METHOD_PEGA_ENABLE : METHOD_PEGA_DISABLE; return write_acpi_int(asus->handle, method, unit); } static int pega_acc_axis(struct asus_laptop *asus, int curr, char *method) { int i, delta; unsigned long long val; for (i = 0; i < PEGA_ACC_RETRIES; i++) { acpi_evaluate_integer(asus->handle, method, NULL, &val); /* The output is noisy. From reading the ASL * dissassembly, timeout errors are returned with 1's * in the high word, and the lack of locking around * thei hi/lo byte reads means that a transition * between (for example) -1 and 0 could be read as * 0xff00 or 0x00ff. */ delta = abs(curr - (short)val); if (delta < 128 && !(val & ~0xffff)) break; } return clamp_val((short)val, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP); } static void pega_accel_poll(struct input_dev *input) { struct device *parent = input->dev.parent; struct asus_laptop *asus = dev_get_drvdata(parent); /* In some cases, the very first call to poll causes a * recursive fault under the polldev worker. This is * apparently related to very early userspace access to the * device, and perhaps a firmware bug. Fake the first report. */ if (!asus->pega_acc_live) { asus->pega_acc_live = true; input_report_abs(input, ABS_X, 0); input_report_abs(input, ABS_Y, 0); input_report_abs(input, ABS_Z, 0); input_sync(input); return; } asus->pega_acc_x = pega_acc_axis(asus, asus->pega_acc_x, METHOD_XLRX); asus->pega_acc_y = pega_acc_axis(asus, asus->pega_acc_y, METHOD_XLRY); asus->pega_acc_z = pega_acc_axis(asus, asus->pega_acc_z, METHOD_XLRZ); /* Note transform, convert to "right/up/out" in the native * landscape orientation (i.e. the vector is the direction of * "real up" in the device's cartiesian coordinates). */ input_report_abs(input, ABS_X, -asus->pega_acc_x); input_report_abs(input, ABS_Y, -asus->pega_acc_y); input_report_abs(input, ABS_Z, asus->pega_acc_z); input_sync(input); } static void pega_accel_exit(struct asus_laptop *asus) { if (asus->pega_accel_poll) { input_unregister_device(asus->pega_accel_poll); asus->pega_accel_poll = NULL; } } static int pega_accel_init(struct asus_laptop *asus) { int err; struct input_dev *input; if (!asus->is_pega_lucid) return -ENODEV; if (acpi_check_handle(asus->handle, METHOD_XLRX, NULL) || acpi_check_handle(asus->handle, METHOD_XLRY, NULL) || acpi_check_handle(asus->handle, METHOD_XLRZ, NULL)) return -ENODEV; input = input_allocate_device(); if (!input) return -ENOMEM; input->name = PEGA_ACCEL_DESC; input->phys = PEGA_ACCEL_NAME "/input0"; input->dev.parent = &asus->platform_device->dev; input->id.bustype = BUS_HOST; input_set_abs_params(input, ABS_X, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0); input_set_abs_params(input, ABS_Y, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0); input_set_abs_params(input, ABS_Z, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0); err = input_setup_polling(input, pega_accel_poll); if (err) goto exit; input_set_poll_interval(input, 125); input_set_min_poll_interval(input, 50); input_set_max_poll_interval(input, 2000); err = input_register_device(input); if (err) goto exit; asus->pega_accel_poll = input; return 0; exit: input_free_device(input); return err; } /* Generic LED function */ static int asus_led_set(struct asus_laptop *asus, const char *method, int value) { if (!strcmp(method, METHOD_MLED)) value = !value; else if (!strcmp(method, METHOD_GLED)) value = !value + 1; else value = !!value; return write_acpi_int(asus->handle, method, value); } /* * LEDs */ /* /sys/class/led handlers */ static void asus_led_cdev_set(struct led_classdev *led_cdev, enum led_brightness value) { struct asus_led *led = container_of(led_cdev, struct asus_led, led); struct asus_laptop *asus = led->asus; led->wk = !!value; queue_work(asus->led_workqueue, &led->work); } static void asus_led_cdev_update(struct work_struct *work) { struct asus_led *led = container_of(work, struct asus_led, work); struct asus_laptop *asus = led->asus; asus_led_set(asus, led->method, led->wk); } static enum led_brightness asus_led_cdev_get(struct led_classdev *led_cdev) { return led_cdev->brightness; } /* * Keyboard backlight (also a LED) */ static int asus_kled_lvl(struct asus_laptop *asus) { unsigned long long kblv; struct acpi_object_list params; union acpi_object in_obj; acpi_status rv; params.count = 1; params.pointer = &in_obj; in_obj.type = ACPI_TYPE_INTEGER; in_obj.integer.value = 2; rv = acpi_evaluate_integer(asus->handle, METHOD_KBD_LIGHT_GET, &params, &kblv); if (ACPI_FAILURE(rv)) { pr_warn("Error reading kled level\n"); return -ENODEV; } return kblv; } static int asus_kled_set(struct asus_laptop *asus, int kblv) { if (kblv > 0) kblv = (1 << 7) | (kblv & 0x7F); else kblv = 0; if (write_acpi_int(asus->handle, METHOD_KBD_LIGHT_SET, kblv)) { pr_warn("Keyboard LED display write failed\n"); return -EINVAL; } return 0; } static void asus_kled_cdev_set(struct led_classdev *led_cdev, enum led_brightness value) { struct asus_led *led = container_of(led_cdev, struct asus_led, led); struct asus_laptop *asus = led->asus; led->wk = value; queue_work(asus->led_workqueue, &led->work); } static void asus_kled_cdev_update(struct work_struct *work) { struct asus_led *led = container_of(work, struct asus_led, work); struct asus_laptop *asus = led->asus; asus_kled_set(asus, led->wk); } static enum led_brightness asus_kled_cdev_get(struct led_classdev *led_cdev) { struct asus_led *led = container_of(led_cdev, struct asus_led, led); struct asus_laptop *asus = led->asus; return asus_kled_lvl(asus); } static void asus_led_exit(struct asus_laptop *asus) { led_classdev_unregister(&asus->wled.led); led_classdev_unregister(&asus->bled.led); led_classdev_unregister(&asus->mled.led); led_classdev_unregister(&asus->tled.led); led_classdev_unregister(&asus->pled.led); led_classdev_unregister(&asus->rled.led); led_classdev_unregister(&asus->gled.led); led_classdev_unregister(&asus->kled.led); if (asus->led_workqueue) { destroy_workqueue(asus->led_workqueue); asus->led_workqueue = NULL; } } /* Ugly macro, need to fix that later */ static int asus_led_register(struct asus_laptop *asus, struct asus_led *led, const char *name, const char *method) { struct led_classdev *led_cdev = &led->led; if (!method || acpi_check_handle(asus->handle, method, NULL)) return 0; /* Led not present */ led->asus = asus; led->method = method; INIT_WORK(&led->work, asus_led_cdev_update); led_cdev->name = name; led_cdev->brightness_set = asus_led_cdev_set; led_cdev->brightness_get = asus_led_cdev_get; led_cdev->max_brightness = 1; return led_classdev_register(&asus->platform_device->dev, led_cdev); } static int asus_led_init(struct asus_laptop *asus) { int r = 0; /* * The Pegatron Lucid has no physical leds, but all methods are * available in the DSDT... */ if (asus->is_pega_lucid) return 0; /* * Functions that actually update the LED's are called from a * workqueue. By doing this as separate work rather than when the LED * subsystem asks, we avoid messing with the Asus ACPI stuff during a * potentially bad time, such as a timer interrupt. */ asus->led_workqueue = create_singlethread_workqueue("led_workqueue"); if (!asus->led_workqueue) return -ENOMEM; if (asus->wled_type == TYPE_LED) r = asus_led_register(asus, &asus->wled, "asus::wlan", METHOD_WLAN); if (r) goto error; if (asus->bled_type == TYPE_LED) r = asus_led_register(asus, &asus->bled, "asus::bluetooth", METHOD_BLUETOOTH); if (r) goto error; r = asus_led_register(asus, &asus->mled, "asus::mail", METHOD_MLED); if (r) goto error; r = asus_led_register(asus, &asus->tled, "asus::touchpad", METHOD_TLED); if (r) goto error; r = asus_led_register(asus, &asus->rled, "asus::record", METHOD_RLED); if (r) goto error; r = asus_led_register(asus, &asus->pled, "asus::phone", METHOD_PLED); if (r) goto error; r = asus_led_register(asus, &asus->gled, "asus::gaming", METHOD_GLED); if (r) goto error; if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL) && !acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_GET, NULL)) { struct asus_led *led = &asus->kled; struct led_classdev *cdev = &led->led; led->asus = asus; INIT_WORK(&led->work, asus_kled_cdev_update); cdev->name = "asus::kbd_backlight"; cdev->brightness_set = asus_kled_cdev_set; cdev->brightness_get = asus_kled_cdev_get; cdev->max_brightness = 3; r = led_classdev_register(&asus->platform_device->dev, cdev); } error: if (r) asus_led_exit(asus); return r; } /* * Backlight device */ static int asus_read_brightness(struct backlight_device *bd) { struct asus_laptop *asus = bl_get_data(bd); unsigned long long value; acpi_status rv; rv = acpi_evaluate_integer(asus->handle, METHOD_BRIGHTNESS_GET, NULL, &value); if (ACPI_FAILURE(rv)) { pr_warn("Error reading brightness\n"); return 0; } return value; } static int asus_set_brightness(struct backlight_device *bd, int value) { struct asus_laptop *asus = bl_get_data(bd); if (write_acpi_int(asus->handle, METHOD_BRIGHTNESS_SET, value)) { pr_warn("Error changing brightness\n"); return -EIO; } return 0; } static int update_bl_status(struct backlight_device *bd) { int value = bd->props.brightness; return asus_set_brightness(bd, value); } static const struct backlight_ops asusbl_ops = { .get_brightness = asus_read_brightness, .update_status = update_bl_status, }; static int asus_backlight_notify(struct asus_laptop *asus) { struct backlight_device *bd = asus->backlight_device; int old = bd->props.brightness; backlight_force_update(bd, BACKLIGHT_UPDATE_HOTKEY); return old; } static int asus_backlight_init(struct asus_laptop *asus) { struct backlight_device *bd; struct backlight_properties props; if (acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_GET, NULL) || acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_SET, NULL)) return 0; memset(&props, 0, sizeof(struct backlight_properties)); props.max_brightness = 15; props.type = BACKLIGHT_PLATFORM; bd = backlight_device_register(ASUS_LAPTOP_FILE, &asus->platform_device->dev, asus, &asusbl_ops, &props); if (IS_ERR(bd)) { pr_err("Could not register asus backlight device\n"); asus->backlight_device = NULL; return PTR_ERR(bd); } asus->backlight_device = bd; bd->props.brightness = asus_read_brightness(bd); bd->props.power = FB_BLANK_UNBLANK; backlight_update_status(bd); return 0; } static void asus_backlight_exit(struct asus_laptop *asus) { backlight_device_unregister(asus->backlight_device); asus->backlight_device = NULL; } /* * Platform device handlers */ /* * We write our info in page, we begin at offset off and cannot write more * than count bytes. We set eof to 1 if we handle those 2 values. We return the * number of bytes written in page */ static ssize_t infos_show(struct device *dev, struct device_attribute *attr, char *page) { struct asus_laptop *asus = dev_get_drvdata(dev); int len = 0; unsigned long long temp; char buf[16]; /* enough for all info */ acpi_status rv; /* * We use the easy way, we don't care of off and count, * so we don't set eof to 1 */ len += sprintf(page, ASUS_LAPTOP_NAME " " ASUS_LAPTOP_VERSION "\n"); len += sprintf(page + len, "Model reference : %s\n", asus->name); /* * The SFUN method probably allows the original driver to get the list * of features supported by a given model. For now, 0x0100 or 0x0800 * bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card. * The significance of others is yet to be found. */ rv = acpi_evaluate_integer(asus->handle, "SFUN", NULL, &temp); if (ACPI_SUCCESS(rv)) len += sprintf(page + len, "SFUN value : %#x\n", (uint) temp); /* * The HWRS method return informations about the hardware. * 0x80 bit is for WLAN, 0x100 for Bluetooth. * 0x40 for WWAN, 0x10 for WIMAX. * The significance of others is yet to be found. * We don't currently use this for device detection, and it * takes several seconds to run on some systems. */ rv = acpi_evaluate_integer(asus->handle, "HWRS", NULL, &temp); if (ACPI_SUCCESS(rv)) len += sprintf(page + len, "HWRS value : %#x\n", (uint) temp); /* * Another value for userspace: the ASYM method returns 0x02 for * battery low and 0x04 for battery critical, its readings tend to be * more accurate than those provided by _BST. * Note: since not all the laptops provide this method, errors are * silently ignored. */ rv = acpi_evaluate_integer(asus->handle, "ASYM", NULL, &temp); if (ACPI_SUCCESS(rv)) len += sprintf(page + len, "ASYM value : %#x\n", (uint) temp); if (asus->dsdt_info) { snprintf(buf, 16, "%d", asus->dsdt_info->length); len += sprintf(page + len, "DSDT length : %s\n", buf); snprintf(buf, 16, "%d", asus->dsdt_info->checksum); len += sprintf(page + len, "DSDT checksum : %s\n", buf); snprintf(buf, 16, "%d", asus->dsdt_info->revision); len += sprintf(page + len, "DSDT revision : %s\n", buf); snprintf(buf, 7, "%s", asus->dsdt_info->oem_id); len += sprintf(page + len, "OEM id : %s\n", buf); snprintf(buf, 9, "%s", asus->dsdt_info->oem_table_id); len += sprintf(page + len, "OEM table id : %s\n", buf); snprintf(buf, 16, "%x", asus->dsdt_info->oem_revision); len += sprintf(page + len, "OEM revision : 0x%s\n", buf); snprintf(buf, 5, "%s", asus->dsdt_info->asl_compiler_id); len += sprintf(page + len, "ASL comp vendor id : %s\n", buf); snprintf(buf, 16, "%x", asus->dsdt_info->asl_compiler_revision); len += sprintf(page + len, "ASL comp revision : 0x%s\n", buf); } return len; } static DEVICE_ATTR_RO(infos); static ssize_t sysfs_acpi_set(struct asus_laptop *asus, const char *buf, size_t count, const char *method) { int rv, value; rv = kstrtoint(buf, 0, &value); if (rv < 0) return rv; if (write_acpi_int(asus->handle, method, value)) return -ENODEV; return count; } /* * LEDD display */ static ssize_t ledd_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_laptop *asus = dev_get_drvdata(dev); return sprintf(buf, "0x%08x\n", asus->ledd_status); } static ssize_t ledd_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_laptop *asus = dev_get_drvdata(dev); int rv, value; rv = kstrtoint(buf, 0, &value); if (rv < 0) return rv; if (write_acpi_int(asus->handle, METHOD_LEDD, value)) { pr_warn("LED display write failed\n"); return -ENODEV; } asus->ledd_status = (u32) value; return count; } static DEVICE_ATTR_RW(ledd); /* * Wireless */ static int asus_wireless_status(struct asus_laptop *asus, int mask) { unsigned long long status; acpi_status rv = AE_OK; if (!asus->have_rsts) return (asus->wireless_status & mask) ? 1 : 0; rv = acpi_evaluate_integer(asus->handle, METHOD_WL_STATUS, NULL, &status); if (ACPI_FAILURE(rv)) { pr_warn("Error reading Wireless status\n"); return -EINVAL; } return !!(status & mask); } /* * WLAN */ static int asus_wlan_set(struct asus_laptop *asus, int status) { if (write_acpi_int(asus->handle, METHOD_WLAN, !!status)) { pr_warn("Error setting wlan status to %d\n", status); return -EIO; } return 0; } static ssize_t wlan_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_laptop *asus = dev_get_drvdata(dev); return sprintf(buf, "%d\n", asus_wireless_status(asus, WL_RSTS)); } static ssize_t wlan_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_laptop *asus = dev_get_drvdata(dev); return sysfs_acpi_set(asus, buf, count, METHOD_WLAN); } static DEVICE_ATTR_RW(wlan); /*e * Bluetooth */ static int asus_bluetooth_set(struct asus_laptop *asus, int status) { if (write_acpi_int(asus->handle, METHOD_BLUETOOTH, !!status)) { pr_warn("Error setting bluetooth status to %d\n", status); return -EIO; } return 0; } static ssize_t bluetooth_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_laptop *asus = dev_get_drvdata(dev); return sprintf(buf, "%d\n", asus_wireless_status(asus, BT_RSTS)); } static ssize_t bluetooth_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_laptop *asus = dev_get_drvdata(dev); return sysfs_acpi_set(asus, buf, count, METHOD_BLUETOOTH); } static DEVICE_ATTR_RW(bluetooth); /* * Wimax */ static int asus_wimax_set(struct asus_laptop *asus, int status) { if (write_acpi_int(asus->handle, METHOD_WIMAX, !!status)) { pr_warn("Error setting wimax status to %d\n", status); return -EIO; } return 0; } static ssize_t wimax_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_laptop *asus = dev_get_drvdata(dev); return sprintf(buf, "%d\n", asus_wireless_status(asus, WM_RSTS)); } static ssize_t wimax_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_laptop *asus = dev_get_drvdata(dev); return sysfs_acpi_set(asus, buf, count, METHOD_WIMAX); } static DEVICE_ATTR_RW(wimax); /* * Wwan */ static int asus_wwan_set(struct asus_laptop *asus, int status) { if (write_acpi_int(asus->handle, METHOD_WWAN, !!status)) { pr_warn("Error setting wwan status to %d\n", status); return -EIO; } return 0; } static ssize_t wwan_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_laptop *asus = dev_get_drvdata(dev); return sprintf(buf, "%d\n", asus_wireless_status(asus, WW_RSTS)); } static ssize_t wwan_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_laptop *asus = dev_get_drvdata(dev); return sysfs_acpi_set(asus, buf, count, METHOD_WWAN); } static DEVICE_ATTR_RW(wwan); /* * Display */ static void asus_set_display(struct asus_laptop *asus, int value) { /* no sanity check needed for now */ if (write_acpi_int(asus->handle, METHOD_SWITCH_DISPLAY, value)) pr_warn("Error setting display\n"); return; } /* * Experimental support for display switching. As of now: 1 should activate * the LCD output, 2 should do for CRT, 4 for TV-Out and 8 for DVI. * Any combination (bitwise) of these will suffice. I never actually tested 4 * displays hooked up simultaneously, so be warned. See the acpi4asus README * for more info. */ static ssize_t display_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_laptop *asus = dev_get_drvdata(dev); int rv, value; rv = kstrtoint(buf, 0, &value); if (rv < 0) return rv; asus_set_display(asus, value); return count; } static DEVICE_ATTR_WO(display); /* * Light Sens */ static void asus_als_switch(struct asus_laptop *asus, int value) { int ret; if (asus->is_pega_lucid) { ret = asus_pega_lucid_set(asus, PEGA_ALS, value); if (!ret) ret = asus_pega_lucid_set(asus, PEGA_ALS_POWER, value); } else { ret = write_acpi_int(asus->handle, METHOD_ALS_CONTROL, value); } if (ret) pr_warn("Error setting light sensor switch\n"); asus->light_switch = value; } static ssize_t ls_switch_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_laptop *asus = dev_get_drvdata(dev); return sprintf(buf, "%d\n", asus->light_switch); } static ssize_t ls_switch_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_laptop *asus = dev_get_drvdata(dev); int rv, value; rv = kstrtoint(buf, 0, &value); if (rv < 0) return rv; asus_als_switch(asus, value ? 1 : 0); return count; } static DEVICE_ATTR_RW(ls_switch); static void asus_als_level(struct asus_laptop *asus, int value) { if (write_acpi_int(asus->handle, METHOD_ALS_LEVEL, value)) pr_warn("Error setting light sensor level\n"); asus->light_level = value; } static ssize_t ls_level_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_laptop *asus = dev_get_drvdata(dev); return sprintf(buf, "%d\n", asus->light_level); } static ssize_t ls_level_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_laptop *asus = dev_get_drvdata(dev); int rv, value; rv = kstrtoint(buf, 0, &value); if (rv < 0) return rv; value = (0 < value) ? ((15 < value) ? 15 : value) : 0; /* 0 <= value <= 15 */ asus_als_level(asus, value); return count; } static DEVICE_ATTR_RW(ls_level); static int pega_int_read(struct asus_laptop *asus, int arg, int *result) { struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; int err = write_acpi_int_ret(asus->handle, METHOD_PEGA_READ, arg, &buffer); if (!err) { union acpi_object *obj = buffer.pointer; if (obj && obj->type == ACPI_TYPE_INTEGER) *result = obj->integer.value; else err = -EIO; } return err; } static ssize_t ls_value_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_laptop *asus = dev_get_drvdata(dev); int err, hi, lo; err = pega_int_read(asus, PEGA_READ_ALS_H, &hi); if (!err) err = pega_int_read(asus, PEGA_READ_ALS_L, &lo); if (!err) return sprintf(buf, "%d\n", 10 * hi + lo); return err; } static DEVICE_ATTR_RO(ls_value); /* * GPS */ static int asus_gps_status(struct asus_laptop *asus) { unsigned long long status; acpi_status rv; rv = acpi_evaluate_integer(asus->handle, METHOD_GPS_STATUS, NULL, &status); if (ACPI_FAILURE(rv)) { pr_warn("Error reading GPS status\n"); return -ENODEV; } return !!status; } static int asus_gps_switch(struct asus_laptop *asus, int status) { const char *meth = status ? METHOD_GPS_ON : METHOD_GPS_OFF; if (write_acpi_int(asus->handle, meth, 0x02)) return -ENODEV; return 0; } static ssize_t gps_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_laptop *asus = dev_get_drvdata(dev); return sprintf(buf, "%d\n", asus_gps_status(asus)); } static ssize_t gps_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_laptop *asus = dev_get_drvdata(dev); int rv, value; int ret; rv = kstrtoint(buf, 0, &value); if (rv < 0) return rv; ret = asus_gps_switch(asus, !!value); if (ret) return ret; rfkill_set_sw_state(asus->gps.rfkill, !value); return count; } static DEVICE_ATTR_RW(gps); /* * rfkill */ static int asus_gps_rfkill_set(void *data, bool blocked) { struct asus_laptop *asus = data; return asus_gps_switch(asus, !blocked); } static const struct rfkill_ops asus_gps_rfkill_ops = { .set_block = asus_gps_rfkill_set, }; static int asus_rfkill_set(void *data, bool blocked) { struct asus_rfkill *rfk = data; struct asus_laptop *asus = rfk->asus; if (rfk->control_id == WL_RSTS) return asus_wlan_set(asus, !blocked); else if (rfk->control_id == BT_RSTS) return asus_bluetooth_set(asus, !blocked); else if (rfk->control_id == WM_RSTS) return asus_wimax_set(asus, !blocked); else if (rfk->control_id == WW_RSTS) return asus_wwan_set(asus, !blocked); return -EINVAL; } static const struct rfkill_ops asus_rfkill_ops = { .set_block = asus_rfkill_set, }; static void asus_rfkill_terminate(struct asus_rfkill *rfk) { if (!rfk->rfkill) return ; rfkill_unregister(rfk->rfkill); rfkill_destroy(rfk->rfkill); rfk->rfkill = NULL; } static void asus_rfkill_exit(struct asus_laptop *asus) { asus_rfkill_terminate(&asus->wwan); asus_rfkill_terminate(&asus->bluetooth); asus_rfkill_terminate(&asus->wlan); asus_rfkill_terminate(&asus->gps); } static int asus_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk, const char *name, int control_id, int type, const struct rfkill_ops *ops) { int result; rfk->control_id = control_id; rfk->asus = asus; rfk->rfkill = rfkill_alloc(name, &asus->platform_device->dev, type, ops, rfk); if (!rfk->rfkill) return -EINVAL; result = rfkill_register(rfk->rfkill); if (result) { rfkill_destroy(rfk->rfkill); rfk->rfkill = NULL; } return result; } static int asus_rfkill_init(struct asus_laptop *asus) { int result = 0; if (asus->is_pega_lucid) return -ENODEV; if (!acpi_check_handle(asus->handle, METHOD_GPS_ON, NULL) && !acpi_check_handle(asus->handle, METHOD_GPS_OFF, NULL) && !acpi_check_handle(asus->handle, METHOD_GPS_STATUS, NULL)) result = asus_rfkill_setup(asus, &asus->gps, "asus-gps", -1, RFKILL_TYPE_GPS, &asus_gps_rfkill_ops); if (result) goto exit; if (!acpi_check_handle(asus->handle, METHOD_WLAN, NULL) && asus->wled_type == TYPE_RFKILL) result = asus_rfkill_setup(asus, &asus->wlan, "asus-wlan", WL_RSTS, RFKILL_TYPE_WLAN, &asus_rfkill_ops); if (result) goto exit; if (!acpi_check_handle(asus->handle, METHOD_BLUETOOTH, NULL) && asus->bled_type == TYPE_RFKILL) result = asus_rfkill_setup(asus, &asus->bluetooth, "asus-bluetooth", BT_RSTS, RFKILL_TYPE_BLUETOOTH, &asus_rfkill_ops); if (result) goto exit; if (!acpi_check_handle(asus->handle, METHOD_WWAN, NULL)) result = asus_rfkill_setup(asus, &asus->wwan, "asus-wwan", WW_RSTS, RFKILL_TYPE_WWAN, &asus_rfkill_ops); if (result) goto exit; if (!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL)) result = asus_rfkill_setup(asus, &asus->wimax, "asus-wimax", WM_RSTS, RFKILL_TYPE_WIMAX, &asus_rfkill_ops); if (result) goto exit; exit: if (result) asus_rfkill_exit(asus); return result; } static int pega_rfkill_set(void *data, bool blocked) { struct asus_rfkill *rfk = data; int ret = asus_pega_lucid_set(rfk->asus, rfk->control_id, !blocked); return ret; } static const struct rfkill_ops pega_rfkill_ops = { .set_block = pega_rfkill_set, }; static int pega_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk, const char *name, int controlid, int rfkill_type) { return asus_rfkill_setup(asus, rfk, name, controlid, rfkill_type, &pega_rfkill_ops); } static int pega_rfkill_init(struct asus_laptop *asus) { int ret = 0; if(!asus->is_pega_lucid) return -ENODEV; ret = pega_rfkill_setup(asus, &asus->wlan, "pega-wlan", PEGA_WLAN, RFKILL_TYPE_WLAN); if(ret) goto exit; ret = pega_rfkill_setup(asus, &asus->bluetooth, "pega-bt", PEGA_BLUETOOTH, RFKILL_TYPE_BLUETOOTH); if(ret) goto exit; ret = pega_rfkill_setup(asus, &asus->wwan, "pega-wwan", PEGA_WWAN, RFKILL_TYPE_WWAN); exit: if (ret) asus_rfkill_exit(asus); return ret; } /* * Input device (i.e. hotkeys) */ static void asus_input_notify(struct asus_laptop *asus, int event) { if (!asus->inputdev) return ; if (!sparse_keymap_report_event(asus->inputdev, event, 1, true)) pr_info("Unknown key %x pressed\n", event); } static int asus_input_init(struct asus_laptop *asus) { struct input_dev *input; int error; input = input_allocate_device(); if (!input) return -ENOMEM; input->name = "Asus Laptop extra buttons"; input->phys = ASUS_LAPTOP_FILE "/input0"; input->id.bustype = BUS_HOST; input->dev.parent = &asus->platform_device->dev; error = sparse_keymap_setup(input, asus_keymap, NULL); if (error) { pr_err("Unable to setup input device keymap\n"); goto err_free_dev; } error = input_register_device(input); if (error) { pr_warn("Unable to register input device\n"); goto err_free_dev; } asus->inputdev = input; return 0; err_free_dev: input_free_device(input); return error; } static void asus_input_exit(struct asus_laptop *asus) { if (asus->inputdev) input_unregister_device(asus->inputdev); asus->inputdev = NULL; } /* * ACPI driver */ static void asus_acpi_notify(struct acpi_device *device, u32 event) { struct asus_laptop *asus = acpi_driver_data(device); u16 count; /* TODO Find a better way to handle events count. */ count = asus->event_count[event % 128]++; acpi_bus_generate_netlink_event(asus->device->pnp.device_class, dev_name(&asus->device->dev), event, count); if (event >= ATKD_BRNUP_MIN && event <= ATKD_BRNUP_MAX) event = ATKD_BRNUP; else if (event >= ATKD_BRNDOWN_MIN && event <= ATKD_BRNDOWN_MAX) event = ATKD_BRNDOWN; /* Brightness events are special */ if (event == ATKD_BRNDOWN || event == ATKD_BRNUP) { if (asus->backlight_device != NULL) { /* Update the backlight device. */ asus_backlight_notify(asus); return ; } } /* Accelerometer "coarse orientation change" event */ if (asus->pega_accel_poll && event == 0xEA) { kobject_uevent(&asus->pega_accel_poll->dev.kobj, KOBJ_CHANGE); return ; } asus_input_notify(asus, event); } static struct attribute *asus_attributes[] = { &dev_attr_infos.attr, &dev_attr_wlan.attr, &dev_attr_bluetooth.attr, &dev_attr_wimax.attr, &dev_attr_wwan.attr, &dev_attr_display.attr, &dev_attr_ledd.attr, &dev_attr_ls_value.attr, &dev_attr_ls_level.attr, &dev_attr_ls_switch.attr, &dev_attr_gps.attr, NULL }; static umode_t asus_sysfs_is_visible(struct kobject *kobj, struct attribute *attr, int idx) { struct device *dev = kobj_to_dev(kobj); struct asus_laptop *asus = dev_get_drvdata(dev); acpi_handle handle = asus->handle; bool supported; if (asus->is_pega_lucid) { /* no ls_level interface on the Lucid */ if (attr == &dev_attr_ls_switch.attr) supported = true; else if (attr == &dev_attr_ls_level.attr) supported = false; else goto normal; return supported ? attr->mode : 0; } normal: if (attr == &dev_attr_wlan.attr) { supported = !acpi_check_handle(handle, METHOD_WLAN, NULL); } else if (attr == &dev_attr_bluetooth.attr) { supported = !acpi_check_handle(handle, METHOD_BLUETOOTH, NULL); } else if (attr == &dev_attr_display.attr) { supported = !acpi_check_handle(handle, METHOD_SWITCH_DISPLAY, NULL); } else if (attr == &dev_attr_wimax.attr) { supported = !acpi_check_handle(asus->handle, METHOD_WIMAX, NULL); } else if (attr == &dev_attr_wwan.attr) { supported = !acpi_check_handle(asus->handle, METHOD_WWAN, NULL); } else if (attr == &dev_attr_ledd.attr) { supported = !acpi_check_handle(handle, METHOD_LEDD, NULL); } else if (attr == &dev_attr_ls_switch.attr || attr == &dev_attr_ls_level.attr) { supported = !acpi_check_handle(handle, METHOD_ALS_CONTROL, NULL) && !acpi_check_handle(handle, METHOD_ALS_LEVEL, NULL); } else if (attr == &dev_attr_ls_value.attr) { supported = asus->is_pega_lucid; } else if (attr == &dev_attr_gps.attr) { supported = !acpi_check_handle(handle, METHOD_GPS_ON, NULL) && !acpi_check_handle(handle, METHOD_GPS_OFF, NULL) && !acpi_check_handle(handle, METHOD_GPS_STATUS, NULL); } else { supported = true; } return supported ? attr->mode : 0; } static const struct attribute_group asus_attr_group = { .is_visible = asus_sysfs_is_visible, .attrs = asus_attributes, }; static int asus_platform_init(struct asus_laptop *asus) { int result; asus->platform_device = platform_device_alloc(ASUS_LAPTOP_FILE, PLATFORM_DEVID_NONE); if (!asus->platform_device) return -ENOMEM; platform_set_drvdata(asus->platform_device, asus); result = platform_device_add(asus->platform_device); if (result) goto fail_platform_device; result = sysfs_create_group(&asus->platform_device->dev.kobj, &asus_attr_group); if (result) goto fail_sysfs; return 0; fail_sysfs: platform_device_del(asus->platform_device); fail_platform_device: platform_device_put(asus->platform_device); return result; } static void asus_platform_exit(struct asus_laptop *asus) { sysfs_remove_group(&asus->platform_device->dev.kobj, &asus_attr_group); platform_device_unregister(asus->platform_device); } static struct platform_driver platform_driver = { .driver = { .name = ASUS_LAPTOP_FILE, }, }; /* * This function is used to initialize the context with right values. In this * method, we can make all the detection we want, and modify the asus_laptop * struct */ static int asus_laptop_get_info(struct asus_laptop *asus) { struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *model = NULL; unsigned long long bsts_result; char *string = NULL; acpi_status status; /* * Get DSDT headers early enough to allow for differentiating between * models, but late enough to allow acpi_bus_register_driver() to fail * before doing anything ACPI-specific. Should we encounter a machine, * which needs special handling (i.e. its hotkey device has a different * HID), this bit will be moved. */ status = acpi_get_table(ACPI_SIG_DSDT, 1, &asus->dsdt_info); if (ACPI_FAILURE(status)) pr_warn("Couldn't get the DSDT table header\n"); /* We have to write 0 on init this far for all ASUS models */ if (write_acpi_int_ret(asus->handle, "INIT", 0, &buffer)) { pr_err("Hotkey initialization failed\n"); return -ENODEV; } /* This needs to be called for some laptops to init properly */ status = acpi_evaluate_integer(asus->handle, "BSTS", NULL, &bsts_result); if (ACPI_FAILURE(status)) pr_warn("Error calling BSTS\n"); else if (bsts_result) pr_notice("BSTS called, 0x%02x returned\n", (uint) bsts_result); /* This too ... */ if (write_acpi_int(asus->handle, "CWAP", wapf)) pr_err("Error calling CWAP(%d)\n", wapf); /* * Try to match the object returned by INIT to the specific model. * Handle every possible object (or the lack of thereof) the DSDT * writers might throw at us. When in trouble, we pass NULL to * asus_model_match() and try something completely different. */ if (buffer.pointer) { model = buffer.pointer; switch (model->type) { case ACPI_TYPE_STRING: string = model->string.pointer; break; case ACPI_TYPE_BUFFER: string = model->buffer.pointer; break; default: string = ""; break; } } asus->name = kstrdup(string, GFP_KERNEL); if (!asus->name) { kfree(buffer.pointer); return -ENOMEM; } if (string) pr_notice(" %s model detected\n", string); if (!acpi_check_handle(asus->handle, METHOD_WL_STATUS, NULL)) asus->have_rsts = true; kfree(model); return AE_OK; } static int asus_acpi_init(struct asus_laptop *asus) { int result = 0; result = acpi_bus_get_status(asus->device); if (result) return result; if (!asus->device->status.present) { pr_err("Hotkey device not present, aborting\n"); return -ENODEV; } result = asus_laptop_get_info(asus); if (result) return result; if (!strcmp(bled_type, "led")) asus->bled_type = TYPE_LED; else if (!strcmp(bled_type, "rfkill")) asus->bled_type = TYPE_RFKILL; if (!strcmp(wled_type, "led")) asus->wled_type = TYPE_LED; else if (!strcmp(wled_type, "rfkill")) asus->wled_type = TYPE_RFKILL; if (bluetooth_status >= 0) asus_bluetooth_set(asus, !!bluetooth_status); if (wlan_status >= 0) asus_wlan_set(asus, !!wlan_status); if (wimax_status >= 0) asus_wimax_set(asus, !!wimax_status); if (wwan_status >= 0) asus_wwan_set(asus, !!wwan_status); /* Keyboard Backlight is on by default */ if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL)) asus_kled_set(asus, 1); /* LED display is off by default */ asus->ledd_status = 0xFFF; /* Set initial values of light sensor and level */ asus->light_switch = !!als_status; asus->light_level = 5; /* level 5 for sensor sensitivity */ if (asus->is_pega_lucid) { asus_als_switch(asus, asus->light_switch); } else if (!acpi_check_handle(asus->handle, METHOD_ALS_CONTROL, NULL) && !acpi_check_handle(asus->handle, METHOD_ALS_LEVEL, NULL)) { asus_als_switch(asus, asus->light_switch); asus_als_level(asus, asus->light_level); } return result; } static void asus_dmi_check(void) { const char *model; model = dmi_get_system_info(DMI_PRODUCT_NAME); if (!model) return; /* On L1400B WLED control the sound card, don't mess with it ... */ if (strncmp(model, "L1400B", 6) == 0) { wlan_status = -1; } } static bool asus_device_present; static int asus_acpi_add(struct acpi_device *device) { struct asus_laptop *asus; int result; pr_notice("Asus Laptop Support version %s\n", ASUS_LAPTOP_VERSION); asus = kzalloc(sizeof(struct asus_laptop), GFP_KERNEL); if (!asus) return -ENOMEM; asus->handle = device->handle; strcpy(acpi_device_name(device), ASUS_LAPTOP_DEVICE_NAME); strcpy(acpi_device_class(device), ASUS_LAPTOP_CLASS); device->driver_data = asus; asus->device = device; asus_dmi_check(); result = asus_acpi_init(asus); if (result) goto fail_platform; /* * Need platform type detection first, then the platform * device. It is used as a parent for the sub-devices below. */ asus->is_pega_lucid = asus_check_pega_lucid(asus); result = asus_platform_init(asus); if (result) goto fail_platform; if (acpi_video_get_backlight_type() == acpi_backlight_vendor) { result = asus_backlight_init(asus); if (result) goto fail_backlight; } result = asus_input_init(asus); if (result) goto fail_input; result = asus_led_init(asus); if (result) goto fail_led; result = asus_rfkill_init(asus); if (result && result != -ENODEV) goto fail_rfkill; result = pega_accel_init(asus); if (result && result != -ENODEV) goto fail_pega_accel; result = pega_rfkill_init(asus); if (result && result != -ENODEV) goto fail_pega_rfkill; asus_device_present = true; return 0; fail_pega_rfkill: pega_accel_exit(asus); fail_pega_accel: asus_rfkill_exit(asus); fail_rfkill: asus_led_exit(asus); fail_led: asus_input_exit(asus); fail_input: asus_backlight_exit(asus); fail_backlight: asus_platform_exit(asus); fail_platform: kfree(asus); return result; } static void asus_acpi_remove(struct acpi_device *device) { struct asus_laptop *asus = acpi_driver_data(device); asus_backlight_exit(asus); asus_rfkill_exit(asus); asus_led_exit(asus); asus_input_exit(asus); pega_accel_exit(asus); asus_platform_exit(asus); kfree(asus->name); kfree(asus); } static const struct acpi_device_id asus_device_ids[] = { {"ATK0100", 0}, {"ATK0101", 0}, {"", 0}, }; MODULE_DEVICE_TABLE(acpi, asus_device_ids); static struct acpi_driver asus_acpi_driver = { .name = ASUS_LAPTOP_NAME, .class = ASUS_LAPTOP_CLASS, .owner = THIS_MODULE, .ids = asus_device_ids, .flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS, .ops = { .add = asus_acpi_add, .remove = asus_acpi_remove, .notify = asus_acpi_notify, }, }; static int __init asus_laptop_init(void) { int result; result = platform_driver_register(&platform_driver); if (result < 0) return result; result = acpi_bus_register_driver(&asus_acpi_driver); if (result < 0) goto fail_acpi_driver; if (!asus_device_present) { result = -ENODEV; goto fail_no_device; } return 0; fail_no_device: acpi_bus_unregister_driver(&asus_acpi_driver); fail_acpi_driver: platform_driver_unregister(&platform_driver); return result; } static void __exit asus_laptop_exit(void) { acpi_bus_unregister_driver(&asus_acpi_driver); platform_driver_unregister(&platform_driver); } module_init(asus_laptop_init); module_exit(asus_laptop_exit);
linux-master
drivers/platform/x86/asus-laptop.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2009 Thadeu Lima de Souza Cascardo <[email protected]> */ #include <linux/init.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/workqueue.h> #include <linux/acpi.h> #include <linux/backlight.h> #include <linux/input.h> #include <linux/rfkill.h> MODULE_LICENSE("GPL"); struct cmpc_accel { int sensitivity; int g_select; int inputdev_state; }; #define CMPC_ACCEL_DEV_STATE_CLOSED 0 #define CMPC_ACCEL_DEV_STATE_OPEN 1 #define CMPC_ACCEL_SENSITIVITY_DEFAULT 5 #define CMPC_ACCEL_G_SELECT_DEFAULT 0 #define CMPC_ACCEL_HID "ACCE0000" #define CMPC_ACCEL_HID_V4 "ACCE0001" #define CMPC_TABLET_HID "TBLT0000" #define CMPC_IPML_HID "IPML200" #define CMPC_KEYS_HID "FNBT0000" /* * Generic input device code. */ typedef void (*input_device_init)(struct input_dev *dev); static int cmpc_add_acpi_notify_device(struct acpi_device *acpi, char *name, input_device_init idev_init) { struct input_dev *inputdev; int error; inputdev = input_allocate_device(); if (!inputdev) return -ENOMEM; inputdev->name = name; inputdev->dev.parent = &acpi->dev; idev_init(inputdev); error = input_register_device(inputdev); if (error) { input_free_device(inputdev); return error; } dev_set_drvdata(&acpi->dev, inputdev); return 0; } static int cmpc_remove_acpi_notify_device(struct acpi_device *acpi) { struct input_dev *inputdev = dev_get_drvdata(&acpi->dev); input_unregister_device(inputdev); return 0; } /* * Accelerometer code for Classmate V4 */ static acpi_status cmpc_start_accel_v4(acpi_handle handle) { union acpi_object param[4]; struct acpi_object_list input; acpi_status status; param[0].type = ACPI_TYPE_INTEGER; param[0].integer.value = 0x3; param[1].type = ACPI_TYPE_INTEGER; param[1].integer.value = 0; param[2].type = ACPI_TYPE_INTEGER; param[2].integer.value = 0; param[3].type = ACPI_TYPE_INTEGER; param[3].integer.value = 0; input.count = 4; input.pointer = param; status = acpi_evaluate_object(handle, "ACMD", &input, NULL); return status; } static acpi_status cmpc_stop_accel_v4(acpi_handle handle) { union acpi_object param[4]; struct acpi_object_list input; acpi_status status; param[0].type = ACPI_TYPE_INTEGER; param[0].integer.value = 0x4; param[1].type = ACPI_TYPE_INTEGER; param[1].integer.value = 0; param[2].type = ACPI_TYPE_INTEGER; param[2].integer.value = 0; param[3].type = ACPI_TYPE_INTEGER; param[3].integer.value = 0; input.count = 4; input.pointer = param; status = acpi_evaluate_object(handle, "ACMD", &input, NULL); return status; } static acpi_status cmpc_accel_set_sensitivity_v4(acpi_handle handle, int val) { union acpi_object param[4]; struct acpi_object_list input; param[0].type = ACPI_TYPE_INTEGER; param[0].integer.value = 0x02; param[1].type = ACPI_TYPE_INTEGER; param[1].integer.value = val; param[2].type = ACPI_TYPE_INTEGER; param[2].integer.value = 0; param[3].type = ACPI_TYPE_INTEGER; param[3].integer.value = 0; input.count = 4; input.pointer = param; return acpi_evaluate_object(handle, "ACMD", &input, NULL); } static acpi_status cmpc_accel_set_g_select_v4(acpi_handle handle, int val) { union acpi_object param[4]; struct acpi_object_list input; param[0].type = ACPI_TYPE_INTEGER; param[0].integer.value = 0x05; param[1].type = ACPI_TYPE_INTEGER; param[1].integer.value = val; param[2].type = ACPI_TYPE_INTEGER; param[2].integer.value = 0; param[3].type = ACPI_TYPE_INTEGER; param[3].integer.value = 0; input.count = 4; input.pointer = param; return acpi_evaluate_object(handle, "ACMD", &input, NULL); } static acpi_status cmpc_get_accel_v4(acpi_handle handle, int16_t *x, int16_t *y, int16_t *z) { union acpi_object param[4]; struct acpi_object_list input; struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL }; int16_t *locs; acpi_status status; param[0].type = ACPI_TYPE_INTEGER; param[0].integer.value = 0x01; param[1].type = ACPI_TYPE_INTEGER; param[1].integer.value = 0; param[2].type = ACPI_TYPE_INTEGER; param[2].integer.value = 0; param[3].type = ACPI_TYPE_INTEGER; param[3].integer.value = 0; input.count = 4; input.pointer = param; status = acpi_evaluate_object(handle, "ACMD", &input, &output); if (ACPI_SUCCESS(status)) { union acpi_object *obj; obj = output.pointer; locs = (int16_t *) obj->buffer.pointer; *x = locs[0]; *y = locs[1]; *z = locs[2]; kfree(output.pointer); } return status; } static void cmpc_accel_handler_v4(struct acpi_device *dev, u32 event) { if (event == 0x81) { int16_t x, y, z; acpi_status status; status = cmpc_get_accel_v4(dev->handle, &x, &y, &z); if (ACPI_SUCCESS(status)) { struct input_dev *inputdev = dev_get_drvdata(&dev->dev); input_report_abs(inputdev, ABS_X, x); input_report_abs(inputdev, ABS_Y, y); input_report_abs(inputdev, ABS_Z, z); input_sync(inputdev); } } } static ssize_t cmpc_accel_sensitivity_show_v4(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_device *acpi; struct input_dev *inputdev; struct cmpc_accel *accel; acpi = to_acpi_device(dev); inputdev = dev_get_drvdata(&acpi->dev); accel = dev_get_drvdata(&inputdev->dev); return sprintf(buf, "%d\n", accel->sensitivity); } static ssize_t cmpc_accel_sensitivity_store_v4(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct acpi_device *acpi; struct input_dev *inputdev; struct cmpc_accel *accel; unsigned long sensitivity; int r; acpi = to_acpi_device(dev); inputdev = dev_get_drvdata(&acpi->dev); accel = dev_get_drvdata(&inputdev->dev); r = kstrtoul(buf, 0, &sensitivity); if (r) return r; /* sensitivity must be between 1 and 127 */ if (sensitivity < 1 || sensitivity > 127) return -EINVAL; accel->sensitivity = sensitivity; cmpc_accel_set_sensitivity_v4(acpi->handle, sensitivity); return strnlen(buf, count); } static struct device_attribute cmpc_accel_sensitivity_attr_v4 = { .attr = { .name = "sensitivity", .mode = 0660 }, .show = cmpc_accel_sensitivity_show_v4, .store = cmpc_accel_sensitivity_store_v4 }; static ssize_t cmpc_accel_g_select_show_v4(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_device *acpi; struct input_dev *inputdev; struct cmpc_accel *accel; acpi = to_acpi_device(dev); inputdev = dev_get_drvdata(&acpi->dev); accel = dev_get_drvdata(&inputdev->dev); return sprintf(buf, "%d\n", accel->g_select); } static ssize_t cmpc_accel_g_select_store_v4(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct acpi_device *acpi; struct input_dev *inputdev; struct cmpc_accel *accel; unsigned long g_select; int r; acpi = to_acpi_device(dev); inputdev = dev_get_drvdata(&acpi->dev); accel = dev_get_drvdata(&inputdev->dev); r = kstrtoul(buf, 0, &g_select); if (r) return r; /* 0 means 1.5g, 1 means 6g, everything else is wrong */ if (g_select != 0 && g_select != 1) return -EINVAL; accel->g_select = g_select; cmpc_accel_set_g_select_v4(acpi->handle, g_select); return strnlen(buf, count); } static struct device_attribute cmpc_accel_g_select_attr_v4 = { .attr = { .name = "g_select", .mode = 0660 }, .show = cmpc_accel_g_select_show_v4, .store = cmpc_accel_g_select_store_v4 }; static int cmpc_accel_open_v4(struct input_dev *input) { struct acpi_device *acpi; struct cmpc_accel *accel; acpi = to_acpi_device(input->dev.parent); accel = dev_get_drvdata(&input->dev); cmpc_accel_set_sensitivity_v4(acpi->handle, accel->sensitivity); cmpc_accel_set_g_select_v4(acpi->handle, accel->g_select); if (ACPI_SUCCESS(cmpc_start_accel_v4(acpi->handle))) { accel->inputdev_state = CMPC_ACCEL_DEV_STATE_OPEN; return 0; } return -EIO; } static void cmpc_accel_close_v4(struct input_dev *input) { struct acpi_device *acpi; struct cmpc_accel *accel; acpi = to_acpi_device(input->dev.parent); accel = dev_get_drvdata(&input->dev); cmpc_stop_accel_v4(acpi->handle); accel->inputdev_state = CMPC_ACCEL_DEV_STATE_CLOSED; } static void cmpc_accel_idev_init_v4(struct input_dev *inputdev) { set_bit(EV_ABS, inputdev->evbit); input_set_abs_params(inputdev, ABS_X, -255, 255, 16, 0); input_set_abs_params(inputdev, ABS_Y, -255, 255, 16, 0); input_set_abs_params(inputdev, ABS_Z, -255, 255, 16, 0); inputdev->open = cmpc_accel_open_v4; inputdev->close = cmpc_accel_close_v4; } #ifdef CONFIG_PM_SLEEP static int cmpc_accel_suspend_v4(struct device *dev) { struct input_dev *inputdev; struct cmpc_accel *accel; inputdev = dev_get_drvdata(dev); accel = dev_get_drvdata(&inputdev->dev); if (accel->inputdev_state == CMPC_ACCEL_DEV_STATE_OPEN) return cmpc_stop_accel_v4(to_acpi_device(dev)->handle); return 0; } static int cmpc_accel_resume_v4(struct device *dev) { struct input_dev *inputdev; struct cmpc_accel *accel; inputdev = dev_get_drvdata(dev); accel = dev_get_drvdata(&inputdev->dev); if (accel->inputdev_state == CMPC_ACCEL_DEV_STATE_OPEN) { cmpc_accel_set_sensitivity_v4(to_acpi_device(dev)->handle, accel->sensitivity); cmpc_accel_set_g_select_v4(to_acpi_device(dev)->handle, accel->g_select); if (ACPI_FAILURE(cmpc_start_accel_v4(to_acpi_device(dev)->handle))) return -EIO; } return 0; } #endif static int cmpc_accel_add_v4(struct acpi_device *acpi) { int error; struct input_dev *inputdev; struct cmpc_accel *accel; accel = kmalloc(sizeof(*accel), GFP_KERNEL); if (!accel) return -ENOMEM; accel->inputdev_state = CMPC_ACCEL_DEV_STATE_CLOSED; accel->sensitivity = CMPC_ACCEL_SENSITIVITY_DEFAULT; cmpc_accel_set_sensitivity_v4(acpi->handle, accel->sensitivity); error = device_create_file(&acpi->dev, &cmpc_accel_sensitivity_attr_v4); if (error) goto failed_sensitivity; accel->g_select = CMPC_ACCEL_G_SELECT_DEFAULT; cmpc_accel_set_g_select_v4(acpi->handle, accel->g_select); error = device_create_file(&acpi->dev, &cmpc_accel_g_select_attr_v4); if (error) goto failed_g_select; error = cmpc_add_acpi_notify_device(acpi, "cmpc_accel_v4", cmpc_accel_idev_init_v4); if (error) goto failed_input; inputdev = dev_get_drvdata(&acpi->dev); dev_set_drvdata(&inputdev->dev, accel); return 0; failed_input: device_remove_file(&acpi->dev, &cmpc_accel_g_select_attr_v4); failed_g_select: device_remove_file(&acpi->dev, &cmpc_accel_sensitivity_attr_v4); failed_sensitivity: kfree(accel); return error; } static void cmpc_accel_remove_v4(struct acpi_device *acpi) { device_remove_file(&acpi->dev, &cmpc_accel_sensitivity_attr_v4); device_remove_file(&acpi->dev, &cmpc_accel_g_select_attr_v4); cmpc_remove_acpi_notify_device(acpi); } static SIMPLE_DEV_PM_OPS(cmpc_accel_pm, cmpc_accel_suspend_v4, cmpc_accel_resume_v4); static const struct acpi_device_id cmpc_accel_device_ids_v4[] = { {CMPC_ACCEL_HID_V4, 0}, {"", 0} }; static struct acpi_driver cmpc_accel_acpi_driver_v4 = { .owner = THIS_MODULE, .name = "cmpc_accel_v4", .class = "cmpc_accel_v4", .ids = cmpc_accel_device_ids_v4, .ops = { .add = cmpc_accel_add_v4, .remove = cmpc_accel_remove_v4, .notify = cmpc_accel_handler_v4, }, .drv.pm = &cmpc_accel_pm, }; /* * Accelerometer code for Classmate versions prior to V4 */ static acpi_status cmpc_start_accel(acpi_handle handle) { union acpi_object param[2]; struct acpi_object_list input; acpi_status status; param[0].type = ACPI_TYPE_INTEGER; param[0].integer.value = 0x3; param[1].type = ACPI_TYPE_INTEGER; input.count = 2; input.pointer = param; status = acpi_evaluate_object(handle, "ACMD", &input, NULL); return status; } static acpi_status cmpc_stop_accel(acpi_handle handle) { union acpi_object param[2]; struct acpi_object_list input; acpi_status status; param[0].type = ACPI_TYPE_INTEGER; param[0].integer.value = 0x4; param[1].type = ACPI_TYPE_INTEGER; input.count = 2; input.pointer = param; status = acpi_evaluate_object(handle, "ACMD", &input, NULL); return status; } static acpi_status cmpc_accel_set_sensitivity(acpi_handle handle, int val) { union acpi_object param[2]; struct acpi_object_list input; param[0].type = ACPI_TYPE_INTEGER; param[0].integer.value = 0x02; param[1].type = ACPI_TYPE_INTEGER; param[1].integer.value = val; input.count = 2; input.pointer = param; return acpi_evaluate_object(handle, "ACMD", &input, NULL); } static acpi_status cmpc_get_accel(acpi_handle handle, unsigned char *x, unsigned char *y, unsigned char *z) { union acpi_object param[2]; struct acpi_object_list input; struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL }; unsigned char *locs; acpi_status status; param[0].type = ACPI_TYPE_INTEGER; param[0].integer.value = 0x01; param[1].type = ACPI_TYPE_INTEGER; input.count = 2; input.pointer = param; status = acpi_evaluate_object(handle, "ACMD", &input, &output); if (ACPI_SUCCESS(status)) { union acpi_object *obj; obj = output.pointer; locs = obj->buffer.pointer; *x = locs[0]; *y = locs[1]; *z = locs[2]; kfree(output.pointer); } return status; } static void cmpc_accel_handler(struct acpi_device *dev, u32 event) { if (event == 0x81) { unsigned char x, y, z; acpi_status status; status = cmpc_get_accel(dev->handle, &x, &y, &z); if (ACPI_SUCCESS(status)) { struct input_dev *inputdev = dev_get_drvdata(&dev->dev); input_report_abs(inputdev, ABS_X, x); input_report_abs(inputdev, ABS_Y, y); input_report_abs(inputdev, ABS_Z, z); input_sync(inputdev); } } } static ssize_t cmpc_accel_sensitivity_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_device *acpi; struct input_dev *inputdev; struct cmpc_accel *accel; acpi = to_acpi_device(dev); inputdev = dev_get_drvdata(&acpi->dev); accel = dev_get_drvdata(&inputdev->dev); return sprintf(buf, "%d\n", accel->sensitivity); } static ssize_t cmpc_accel_sensitivity_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct acpi_device *acpi; struct input_dev *inputdev; struct cmpc_accel *accel; unsigned long sensitivity; int r; acpi = to_acpi_device(dev); inputdev = dev_get_drvdata(&acpi->dev); accel = dev_get_drvdata(&inputdev->dev); r = kstrtoul(buf, 0, &sensitivity); if (r) return r; accel->sensitivity = sensitivity; cmpc_accel_set_sensitivity(acpi->handle, sensitivity); return strnlen(buf, count); } static struct device_attribute cmpc_accel_sensitivity_attr = { .attr = { .name = "sensitivity", .mode = 0660 }, .show = cmpc_accel_sensitivity_show, .store = cmpc_accel_sensitivity_store }; static int cmpc_accel_open(struct input_dev *input) { struct acpi_device *acpi; acpi = to_acpi_device(input->dev.parent); if (ACPI_SUCCESS(cmpc_start_accel(acpi->handle))) return 0; return -EIO; } static void cmpc_accel_close(struct input_dev *input) { struct acpi_device *acpi; acpi = to_acpi_device(input->dev.parent); cmpc_stop_accel(acpi->handle); } static void cmpc_accel_idev_init(struct input_dev *inputdev) { set_bit(EV_ABS, inputdev->evbit); input_set_abs_params(inputdev, ABS_X, 0, 255, 8, 0); input_set_abs_params(inputdev, ABS_Y, 0, 255, 8, 0); input_set_abs_params(inputdev, ABS_Z, 0, 255, 8, 0); inputdev->open = cmpc_accel_open; inputdev->close = cmpc_accel_close; } static int cmpc_accel_add(struct acpi_device *acpi) { int error; struct input_dev *inputdev; struct cmpc_accel *accel; accel = kmalloc(sizeof(*accel), GFP_KERNEL); if (!accel) return -ENOMEM; accel->sensitivity = CMPC_ACCEL_SENSITIVITY_DEFAULT; cmpc_accel_set_sensitivity(acpi->handle, accel->sensitivity); error = device_create_file(&acpi->dev, &cmpc_accel_sensitivity_attr); if (error) goto failed_file; error = cmpc_add_acpi_notify_device(acpi, "cmpc_accel", cmpc_accel_idev_init); if (error) goto failed_input; inputdev = dev_get_drvdata(&acpi->dev); dev_set_drvdata(&inputdev->dev, accel); return 0; failed_input: device_remove_file(&acpi->dev, &cmpc_accel_sensitivity_attr); failed_file: kfree(accel); return error; } static void cmpc_accel_remove(struct acpi_device *acpi) { device_remove_file(&acpi->dev, &cmpc_accel_sensitivity_attr); cmpc_remove_acpi_notify_device(acpi); } static const struct acpi_device_id cmpc_accel_device_ids[] = { {CMPC_ACCEL_HID, 0}, {"", 0} }; static struct acpi_driver cmpc_accel_acpi_driver = { .owner = THIS_MODULE, .name = "cmpc_accel", .class = "cmpc_accel", .ids = cmpc_accel_device_ids, .ops = { .add = cmpc_accel_add, .remove = cmpc_accel_remove, .notify = cmpc_accel_handler, } }; /* * Tablet mode code. */ static acpi_status cmpc_get_tablet(acpi_handle handle, unsigned long long *value) { union acpi_object param; struct acpi_object_list input; unsigned long long output; acpi_status status; param.type = ACPI_TYPE_INTEGER; param.integer.value = 0x01; input.count = 1; input.pointer = &param; status = acpi_evaluate_integer(handle, "TCMD", &input, &output); if (ACPI_SUCCESS(status)) *value = output; return status; } static void cmpc_tablet_handler(struct acpi_device *dev, u32 event) { unsigned long long val = 0; struct input_dev *inputdev = dev_get_drvdata(&dev->dev); if (event == 0x81) { if (ACPI_SUCCESS(cmpc_get_tablet(dev->handle, &val))) { input_report_switch(inputdev, SW_TABLET_MODE, !val); input_sync(inputdev); } } } static void cmpc_tablet_idev_init(struct input_dev *inputdev) { unsigned long long val = 0; struct acpi_device *acpi; set_bit(EV_SW, inputdev->evbit); set_bit(SW_TABLET_MODE, inputdev->swbit); acpi = to_acpi_device(inputdev->dev.parent); if (ACPI_SUCCESS(cmpc_get_tablet(acpi->handle, &val))) { input_report_switch(inputdev, SW_TABLET_MODE, !val); input_sync(inputdev); } } static int cmpc_tablet_add(struct acpi_device *acpi) { return cmpc_add_acpi_notify_device(acpi, "cmpc_tablet", cmpc_tablet_idev_init); } static void cmpc_tablet_remove(struct acpi_device *acpi) { cmpc_remove_acpi_notify_device(acpi); } #ifdef CONFIG_PM_SLEEP static int cmpc_tablet_resume(struct device *dev) { struct input_dev *inputdev = dev_get_drvdata(dev); unsigned long long val = 0; if (ACPI_SUCCESS(cmpc_get_tablet(to_acpi_device(dev)->handle, &val))) { input_report_switch(inputdev, SW_TABLET_MODE, !val); input_sync(inputdev); } return 0; } #endif static SIMPLE_DEV_PM_OPS(cmpc_tablet_pm, NULL, cmpc_tablet_resume); static const struct acpi_device_id cmpc_tablet_device_ids[] = { {CMPC_TABLET_HID, 0}, {"", 0} }; static struct acpi_driver cmpc_tablet_acpi_driver = { .owner = THIS_MODULE, .name = "cmpc_tablet", .class = "cmpc_tablet", .ids = cmpc_tablet_device_ids, .ops = { .add = cmpc_tablet_add, .remove = cmpc_tablet_remove, .notify = cmpc_tablet_handler, }, .drv.pm = &cmpc_tablet_pm, }; /* * Backlight code. */ static acpi_status cmpc_get_brightness(acpi_handle handle, unsigned long long *value) { union acpi_object param; struct acpi_object_list input; unsigned long long output; acpi_status status; param.type = ACPI_TYPE_INTEGER; param.integer.value = 0xC0; input.count = 1; input.pointer = &param; status = acpi_evaluate_integer(handle, "GRDI", &input, &output); if (ACPI_SUCCESS(status)) *value = output; return status; } static acpi_status cmpc_set_brightness(acpi_handle handle, unsigned long long value) { union acpi_object param[2]; struct acpi_object_list input; acpi_status status; unsigned long long output; param[0].type = ACPI_TYPE_INTEGER; param[0].integer.value = 0xC0; param[1].type = ACPI_TYPE_INTEGER; param[1].integer.value = value; input.count = 2; input.pointer = param; status = acpi_evaluate_integer(handle, "GWRI", &input, &output); return status; } static int cmpc_bl_get_brightness(struct backlight_device *bd) { acpi_status status; acpi_handle handle; unsigned long long brightness; handle = bl_get_data(bd); status = cmpc_get_brightness(handle, &brightness); if (ACPI_SUCCESS(status)) return brightness; else return -1; } static int cmpc_bl_update_status(struct backlight_device *bd) { acpi_status status; acpi_handle handle; handle = bl_get_data(bd); status = cmpc_set_brightness(handle, bd->props.brightness); if (ACPI_SUCCESS(status)) return 0; else return -1; } static const struct backlight_ops cmpc_bl_ops = { .get_brightness = cmpc_bl_get_brightness, .update_status = cmpc_bl_update_status }; /* * RFKILL code. */ static acpi_status cmpc_get_rfkill_wlan(acpi_handle handle, unsigned long long *value) { union acpi_object param; struct acpi_object_list input; unsigned long long output; acpi_status status; param.type = ACPI_TYPE_INTEGER; param.integer.value = 0xC1; input.count = 1; input.pointer = &param; status = acpi_evaluate_integer(handle, "GRDI", &input, &output); if (ACPI_SUCCESS(status)) *value = output; return status; } static acpi_status cmpc_set_rfkill_wlan(acpi_handle handle, unsigned long long value) { union acpi_object param[2]; struct acpi_object_list input; acpi_status status; unsigned long long output; param[0].type = ACPI_TYPE_INTEGER; param[0].integer.value = 0xC1; param[1].type = ACPI_TYPE_INTEGER; param[1].integer.value = value; input.count = 2; input.pointer = param; status = acpi_evaluate_integer(handle, "GWRI", &input, &output); return status; } static void cmpc_rfkill_query(struct rfkill *rfkill, void *data) { acpi_status status; acpi_handle handle; unsigned long long state; bool blocked; handle = data; status = cmpc_get_rfkill_wlan(handle, &state); if (ACPI_SUCCESS(status)) { blocked = state & 1 ? false : true; rfkill_set_sw_state(rfkill, blocked); } } static int cmpc_rfkill_block(void *data, bool blocked) { acpi_status status; acpi_handle handle; unsigned long long state; bool is_blocked; handle = data; status = cmpc_get_rfkill_wlan(handle, &state); if (ACPI_FAILURE(status)) return -ENODEV; /* Check if we really need to call cmpc_set_rfkill_wlan */ is_blocked = state & 1 ? false : true; if (is_blocked != blocked) { state = blocked ? 0 : 1; status = cmpc_set_rfkill_wlan(handle, state); if (ACPI_FAILURE(status)) return -ENODEV; } return 0; } static const struct rfkill_ops cmpc_rfkill_ops = { .query = cmpc_rfkill_query, .set_block = cmpc_rfkill_block, }; /* * Common backlight and rfkill code. */ struct ipml200_dev { struct backlight_device *bd; struct rfkill *rf; }; static int cmpc_ipml_add(struct acpi_device *acpi) { int retval; struct ipml200_dev *ipml; struct backlight_properties props; ipml = kmalloc(sizeof(*ipml), GFP_KERNEL); if (ipml == NULL) return -ENOMEM; memset(&props, 0, sizeof(struct backlight_properties)); props.type = BACKLIGHT_PLATFORM; props.max_brightness = 7; ipml->bd = backlight_device_register("cmpc_bl", &acpi->dev, acpi->handle, &cmpc_bl_ops, &props); if (IS_ERR(ipml->bd)) { retval = PTR_ERR(ipml->bd); goto out_bd; } ipml->rf = rfkill_alloc("cmpc_rfkill", &acpi->dev, RFKILL_TYPE_WLAN, &cmpc_rfkill_ops, acpi->handle); /* * If RFKILL is disabled, rfkill_alloc will return ERR_PTR(-ENODEV). * This is OK, however, since all other uses of the device will not * dereference it. */ if (ipml->rf) { retval = rfkill_register(ipml->rf); if (retval) { rfkill_destroy(ipml->rf); ipml->rf = NULL; } } dev_set_drvdata(&acpi->dev, ipml); return 0; out_bd: kfree(ipml); return retval; } static void cmpc_ipml_remove(struct acpi_device *acpi) { struct ipml200_dev *ipml; ipml = dev_get_drvdata(&acpi->dev); backlight_device_unregister(ipml->bd); if (ipml->rf) { rfkill_unregister(ipml->rf); rfkill_destroy(ipml->rf); } kfree(ipml); } static const struct acpi_device_id cmpc_ipml_device_ids[] = { {CMPC_IPML_HID, 0}, {"", 0} }; static struct acpi_driver cmpc_ipml_acpi_driver = { .owner = THIS_MODULE, .name = "cmpc", .class = "cmpc", .ids = cmpc_ipml_device_ids, .ops = { .add = cmpc_ipml_add, .remove = cmpc_ipml_remove } }; /* * Extra keys code. */ static int cmpc_keys_codes[] = { KEY_UNKNOWN, KEY_WLAN, KEY_SWITCHVIDEOMODE, KEY_BRIGHTNESSDOWN, KEY_BRIGHTNESSUP, KEY_VENDOR, KEY_UNKNOWN, KEY_CAMERA, KEY_BACK, KEY_FORWARD, KEY_UNKNOWN, KEY_WLAN, /* NL3: 0x8b (press), 0x9b (release) */ KEY_MAX }; static void cmpc_keys_handler(struct acpi_device *dev, u32 event) { struct input_dev *inputdev; int code = KEY_MAX; if ((event & 0x0F) < ARRAY_SIZE(cmpc_keys_codes)) code = cmpc_keys_codes[event & 0x0F]; inputdev = dev_get_drvdata(&dev->dev); input_report_key(inputdev, code, !(event & 0x10)); input_sync(inputdev); } static void cmpc_keys_idev_init(struct input_dev *inputdev) { int i; set_bit(EV_KEY, inputdev->evbit); for (i = 0; cmpc_keys_codes[i] != KEY_MAX; i++) set_bit(cmpc_keys_codes[i], inputdev->keybit); } static int cmpc_keys_add(struct acpi_device *acpi) { return cmpc_add_acpi_notify_device(acpi, "cmpc_keys", cmpc_keys_idev_init); } static void cmpc_keys_remove(struct acpi_device *acpi) { cmpc_remove_acpi_notify_device(acpi); } static const struct acpi_device_id cmpc_keys_device_ids[] = { {CMPC_KEYS_HID, 0}, {"", 0} }; static struct acpi_driver cmpc_keys_acpi_driver = { .owner = THIS_MODULE, .name = "cmpc_keys", .class = "cmpc_keys", .ids = cmpc_keys_device_ids, .ops = { .add = cmpc_keys_add, .remove = cmpc_keys_remove, .notify = cmpc_keys_handler, } }; /* * General init/exit code. */ static int cmpc_init(void) { int r; r = acpi_bus_register_driver(&cmpc_keys_acpi_driver); if (r) goto failed_keys; r = acpi_bus_register_driver(&cmpc_ipml_acpi_driver); if (r) goto failed_bl; r = acpi_bus_register_driver(&cmpc_tablet_acpi_driver); if (r) goto failed_tablet; r = acpi_bus_register_driver(&cmpc_accel_acpi_driver); if (r) goto failed_accel; r = acpi_bus_register_driver(&cmpc_accel_acpi_driver_v4); if (r) goto failed_accel_v4; return r; failed_accel_v4: acpi_bus_unregister_driver(&cmpc_accel_acpi_driver); failed_accel: acpi_bus_unregister_driver(&cmpc_tablet_acpi_driver); failed_tablet: acpi_bus_unregister_driver(&cmpc_ipml_acpi_driver); failed_bl: acpi_bus_unregister_driver(&cmpc_keys_acpi_driver); failed_keys: return r; } static void cmpc_exit(void) { acpi_bus_unregister_driver(&cmpc_accel_acpi_driver_v4); acpi_bus_unregister_driver(&cmpc_accel_acpi_driver); acpi_bus_unregister_driver(&cmpc_tablet_acpi_driver); acpi_bus_unregister_driver(&cmpc_ipml_acpi_driver); acpi_bus_unregister_driver(&cmpc_keys_acpi_driver); } module_init(cmpc_init); module_exit(cmpc_exit); static const struct acpi_device_id cmpc_device_ids[] __maybe_unused = { {CMPC_ACCEL_HID, 0}, {CMPC_ACCEL_HID_V4, 0}, {CMPC_TABLET_HID, 0}, {CMPC_IPML_HID, 0}, {CMPC_KEYS_HID, 0}, {"", 0} }; MODULE_DEVICE_TABLE(acpi, cmpc_device_ids);
linux-master
drivers/platform/x86/classmate-laptop.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Airplane mode button for AMD, HP & Xiaomi laptops * * Copyright (C) 2014-2017 Alex Hung <[email protected]> * Copyright (C) 2021 Advanced Micro Devices */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/input.h> #include <linux/platform_device.h> #include <linux/acpi.h> #include <acpi/acpi_bus.h> MODULE_LICENSE("GPL"); MODULE_AUTHOR("Alex Hung"); MODULE_ALIAS("acpi*:HPQ6001:*"); MODULE_ALIAS("acpi*:WSTADEF:*"); MODULE_ALIAS("acpi*:AMDI0051:*"); struct wl_button { struct input_dev *input_dev; char phys[32]; }; static const struct acpi_device_id wl_ids[] = { {"HPQ6001", 0}, {"WSTADEF", 0}, {"AMDI0051", 0}, {"", 0}, }; static int wireless_input_setup(struct acpi_device *device) { struct wl_button *button = acpi_driver_data(device); int err; button->input_dev = input_allocate_device(); if (!button->input_dev) return -ENOMEM; snprintf(button->phys, sizeof(button->phys), "%s/input0", acpi_device_hid(device)); button->input_dev->name = "Wireless hotkeys"; button->input_dev->phys = button->phys; button->input_dev->id.bustype = BUS_HOST; button->input_dev->evbit[0] = BIT(EV_KEY); set_bit(KEY_RFKILL, button->input_dev->keybit); err = input_register_device(button->input_dev); if (err) goto err_free_dev; return 0; err_free_dev: input_free_device(button->input_dev); return err; } static void wireless_input_destroy(struct acpi_device *device) { struct wl_button *button = acpi_driver_data(device); input_unregister_device(button->input_dev); kfree(button); } static void wl_notify(struct acpi_device *acpi_dev, u32 event) { struct wl_button *button = acpi_driver_data(acpi_dev); if (event != 0x80) { pr_info("Received unknown event (0x%x)\n", event); return; } input_report_key(button->input_dev, KEY_RFKILL, 1); input_sync(button->input_dev); input_report_key(button->input_dev, KEY_RFKILL, 0); input_sync(button->input_dev); } static int wl_add(struct acpi_device *device) { struct wl_button *button; int err; button = kzalloc(sizeof(struct wl_button), GFP_KERNEL); if (!button) return -ENOMEM; device->driver_data = button; err = wireless_input_setup(device); if (err) { pr_err("Failed to setup wireless hotkeys\n"); kfree(button); } return err; } static void wl_remove(struct acpi_device *device) { wireless_input_destroy(device); } static struct acpi_driver wl_driver = { .name = "wireless-hotkey", .owner = THIS_MODULE, .ids = wl_ids, .ops = { .add = wl_add, .remove = wl_remove, .notify = wl_notify, }, }; module_acpi_driver(wl_driver);
linux-master
drivers/platform/x86/wireless-hotkey.c
// SPDX-License-Identifier: GPL-2.0-only /* * Panasonic HotKey and LCD brightness control driver * (C) 2004 Hiroshi Miura <[email protected]> * (C) 2004 NTT DATA Intellilink Co. http://www.intellilink.co.jp/ * (C) YOKOTA Hiroshi <yokota (at) netlab. is. tsukuba. ac. jp> * (C) 2004 David Bronaugh <dbronaugh> * (C) 2006-2008 Harald Welte <[email protected]> * * derived from toshiba_acpi.c, Copyright (C) 2002-2004 John Belmonte * *--------------------------------------------------------------------------- * * ChangeLog: * Aug.18, 2020 Kenneth Chan <[email protected]> * -v0.98 add platform devices for firmware brightness registers * add support for battery charging threshold (eco mode) * resolve hotkey double trigger * add write support to mute * fix sticky_key init bug * fix naming of platform files for consistency with other * modules * split MODULE_AUTHOR() by one author per macro call * replace ACPI prints with pr_*() macros * -v0.97 add support for cdpower hardware switch * -v0.96 merge Lucina's enhancement * Jan.13, 2009 Martin Lucina <[email protected]> * - add support for optical driver power in * Y and W series * * Sep.23, 2008 Harald Welte <[email protected]> * -v0.95 rename driver from drivers/acpi/pcc_acpi.c to * drivers/misc/panasonic-laptop.c * * Jul.04, 2008 Harald Welte <[email protected]> * -v0.94 replace /proc interface with device attributes * support {set,get}keycode on th input device * * Jun.27, 2008 Harald Welte <[email protected]> * -v0.92 merge with 2.6.26-rc6 input API changes * remove broken <= 2.6.15 kernel support * resolve all compiler warnings * various coding style fixes (checkpatch.pl) * add support for backlight api * major code restructuring * * Dac.28, 2007 Harald Welte <[email protected]> * -v0.91 merge with 2.6.24-rc6 ACPI changes * * Nov.04, 2006 Hiroshi Miura <[email protected]> * -v0.9 remove warning about section reference. * remove acpi_os_free * add /proc/acpi/pcc/brightness interface for HAL access * merge dbronaugh's enhancement * Aug.17, 2004 David Bronaugh (dbronaugh) * - Added screen brightness setting interface * Thanks to FreeBSD crew (acpi_panasonic.c) * for the ideas I needed to accomplish it * * May.29, 2006 Hiroshi Miura <[email protected]> * -v0.8.4 follow to change keyinput structure * thanks Fabian Yamaguchi <[email protected]>, * Jacob Bower <[email protected]> and * Hiroshi Yokota for providing solutions. * * Oct.02, 2004 Hiroshi Miura <[email protected]> * -v0.8.2 merge code of YOKOTA Hiroshi * <[email protected]>. * Add sticky key mode interface. * Refactoring acpi_pcc_generate_keyinput(). * * Sep.15, 2004 Hiroshi Miura <[email protected]> * -v0.8 Generate key input event on input subsystem. * This is based on yet another driver written by * Ryuta Nakanishi. * * Sep.10, 2004 Hiroshi Miura <[email protected]> * -v0.7 Change proc interface functions using seq_file * facility as same as other ACPI drivers. * * Aug.28, 2004 Hiroshi Miura <[email protected]> * -v0.6.4 Fix a silly error with status checking * * Aug.25, 2004 Hiroshi Miura <[email protected]> * -v0.6.3 replace read_acpi_int by standard function * acpi_evaluate_integer * some clean up and make smart copyright notice. * fix return value of pcc_acpi_get_key() * fix checking return value of acpi_bus_register_driver() * * Aug.22, 2004 David Bronaugh <[email protected]> * -v0.6.2 Add check on ACPI data (num_sifr) * Coding style cleanups, better error messages/handling * Fixed an off-by-one error in memory allocation * * Aug.21, 2004 David Bronaugh <[email protected]> * -v0.6.1 Fix a silly error with status checking * * Aug.20, 2004 David Bronaugh <[email protected]> * - v0.6 Correct brightness controls to reflect reality * based on information gleaned by Hiroshi Miura * and discussions with Hiroshi Miura * * Aug.10, 2004 Hiroshi Miura <[email protected]> * - v0.5 support LCD brightness control * based on the disclosed information by MEI. * * Jul.25, 2004 Hiroshi Miura <[email protected]> * - v0.4 first post version * add function to retrive SIFR * * Jul.24, 2004 Hiroshi Miura <[email protected]> * - v0.3 get proper status of hotkey * * Jul.22, 2004 Hiroshi Miura <[email protected]> * - v0.2 add HotKey handler * * Jul.17, 2004 Hiroshi Miura <[email protected]> * - v0.1 start from toshiba_acpi driver written by John Belmonte */ #include <linux/acpi.h> #include <linux/backlight.h> #include <linux/ctype.h> #include <linux/i8042.h> #include <linux/init.h> #include <linux/input.h> #include <linux/input/sparse-keymap.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/seq_file.h> #include <linux/serio.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/uaccess.h> #include <acpi/video.h> MODULE_AUTHOR("Hiroshi Miura <[email protected]>"); MODULE_AUTHOR("David Bronaugh <[email protected]>"); MODULE_AUTHOR("Harald Welte <[email protected]>"); MODULE_AUTHOR("Martin Lucina <[email protected]>"); MODULE_AUTHOR("Kenneth Chan <[email protected]>"); MODULE_DESCRIPTION("ACPI HotKey driver for Panasonic Let's Note laptops"); MODULE_LICENSE("GPL"); #define LOGPREFIX "pcc_acpi: " /* Define ACPI PATHs */ /* Lets note hotkeys */ #define METHOD_HKEY_QUERY "HINF" #define METHOD_HKEY_SQTY "SQTY" #define METHOD_HKEY_SINF "SINF" #define METHOD_HKEY_SSET "SSET" #define METHOD_ECWR "\\_SB.ECWR" #define HKEY_NOTIFY 0x80 #define ECO_MODE_OFF 0x00 #define ECO_MODE_ON 0x80 #define ACPI_PCC_DRIVER_NAME "Panasonic Laptop Support" #define ACPI_PCC_DEVICE_NAME "Hotkey" #define ACPI_PCC_CLASS "pcc" #define ACPI_PCC_INPUT_PHYS "panasonic/hkey0" /* LCD_TYPEs: 0 = Normal, 1 = Semi-transparent ECO_MODEs: 0x03 = off, 0x83 = on */ enum SINF_BITS { SINF_NUM_BATTERIES = 0, SINF_LCD_TYPE, SINF_AC_MAX_BRIGHT, SINF_AC_MIN_BRIGHT, SINF_AC_CUR_BRIGHT, SINF_DC_MAX_BRIGHT, SINF_DC_MIN_BRIGHT, SINF_DC_CUR_BRIGHT, SINF_MUTE, SINF_RESERVED, SINF_ECO_MODE = 0x0A, SINF_CUR_BRIGHT = 0x0D, SINF_STICKY_KEY = 0x80, }; /* R1 handles SINF_AC_CUR_BRIGHT as SINF_CUR_BRIGHT, doesn't know AC state */ static int acpi_pcc_hotkey_add(struct acpi_device *device); static void acpi_pcc_hotkey_remove(struct acpi_device *device); static void acpi_pcc_hotkey_notify(struct acpi_device *device, u32 event); static const struct acpi_device_id pcc_device_ids[] = { { "MAT0012", 0}, { "MAT0013", 0}, { "MAT0018", 0}, { "MAT0019", 0}, { "", 0}, }; MODULE_DEVICE_TABLE(acpi, pcc_device_ids); #ifdef CONFIG_PM_SLEEP static int acpi_pcc_hotkey_resume(struct device *dev); #endif static SIMPLE_DEV_PM_OPS(acpi_pcc_hotkey_pm, NULL, acpi_pcc_hotkey_resume); static struct acpi_driver acpi_pcc_driver = { .name = ACPI_PCC_DRIVER_NAME, .class = ACPI_PCC_CLASS, .ids = pcc_device_ids, .ops = { .add = acpi_pcc_hotkey_add, .remove = acpi_pcc_hotkey_remove, .notify = acpi_pcc_hotkey_notify, }, .drv.pm = &acpi_pcc_hotkey_pm, }; static const struct key_entry panasonic_keymap[] = { { KE_KEY, 0, { KEY_RESERVED } }, { KE_KEY, 1, { KEY_BRIGHTNESSDOWN } }, { KE_KEY, 2, { KEY_BRIGHTNESSUP } }, { KE_KEY, 3, { KEY_DISPLAYTOGGLE } }, { KE_KEY, 4, { KEY_MUTE } }, { KE_KEY, 5, { KEY_VOLUMEDOWN } }, { KE_KEY, 6, { KEY_VOLUMEUP } }, { KE_KEY, 7, { KEY_SLEEP } }, { KE_KEY, 8, { KEY_PROG1 } }, /* Change CPU boost */ { KE_KEY, 9, { KEY_BATTERY } }, { KE_KEY, 10, { KEY_SUSPEND } }, { KE_END, 0 } }; struct pcc_acpi { acpi_handle handle; unsigned long num_sifr; int sticky_key; int eco_mode; int mute; int ac_brightness; int dc_brightness; int current_brightness; u32 *sinf; struct acpi_device *device; struct input_dev *input_dev; struct backlight_device *backlight; struct platform_device *platform; }; /* * On some Panasonic models the volume up / down / mute keys send duplicate * keypress events over the PS/2 kbd interface, filter these out. */ static bool panasonic_i8042_filter(unsigned char data, unsigned char str, struct serio *port) { static bool extended; if (str & I8042_STR_AUXDATA) return false; if (data == 0xe0) { extended = true; return true; } else if (extended) { extended = false; switch (data & 0x7f) { case 0x20: /* e0 20 / e0 a0, Volume Mute press / release */ case 0x2e: /* e0 2e / e0 ae, Volume Down press / release */ case 0x30: /* e0 30 / e0 b0, Volume Up press / release */ return true; default: /* * Report the previously filtered e0 before continuing * with the next non-filtered byte. */ serio_interrupt(port, 0xe0, 0); return false; } } return false; } /* method access functions */ static int acpi_pcc_write_sset(struct pcc_acpi *pcc, int func, int val) { union acpi_object in_objs[] = { { .integer.type = ACPI_TYPE_INTEGER, .integer.value = func, }, { .integer.type = ACPI_TYPE_INTEGER, .integer.value = val, }, }; struct acpi_object_list params = { .count = ARRAY_SIZE(in_objs), .pointer = in_objs, }; acpi_status status = AE_OK; status = acpi_evaluate_object(pcc->handle, METHOD_HKEY_SSET, &params, NULL); return (status == AE_OK) ? 0 : -EIO; } static inline int acpi_pcc_get_sqty(struct acpi_device *device) { unsigned long long s; acpi_status status; status = acpi_evaluate_integer(device->handle, METHOD_HKEY_SQTY, NULL, &s); if (ACPI_SUCCESS(status)) return s; else { pr_err("evaluation error HKEY.SQTY\n"); return -EINVAL; } } static int acpi_pcc_retrieve_biosdata(struct pcc_acpi *pcc) { acpi_status status; struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; union acpi_object *hkey = NULL; int i; status = acpi_evaluate_object(pcc->handle, METHOD_HKEY_SINF, NULL, &buffer); if (ACPI_FAILURE(status)) { pr_err("evaluation error HKEY.SINF\n"); return 0; } hkey = buffer.pointer; if (!hkey || (hkey->type != ACPI_TYPE_PACKAGE)) { pr_err("Invalid HKEY.SINF\n"); status = AE_ERROR; goto end; } if (pcc->num_sifr < hkey->package.count) { pr_err("SQTY reports bad SINF length\n"); status = AE_ERROR; goto end; } for (i = 0; i < hkey->package.count; i++) { union acpi_object *element = &(hkey->package.elements[i]); if (likely(element->type == ACPI_TYPE_INTEGER)) { pcc->sinf[i] = element->integer.value; } else pr_err("Invalid HKEY.SINF data\n"); } pcc->sinf[hkey->package.count] = -1; end: kfree(buffer.pointer); return status == AE_OK; } /* backlight API interface functions */ /* This driver currently treats AC and DC brightness identical, * since we don't need to invent an interface to the core ACPI * logic to receive events in case a power supply is plugged in * or removed */ static int bl_get(struct backlight_device *bd) { struct pcc_acpi *pcc = bl_get_data(bd); if (!acpi_pcc_retrieve_biosdata(pcc)) return -EIO; return pcc->sinf[SINF_AC_CUR_BRIGHT]; } static int bl_set_status(struct backlight_device *bd) { struct pcc_acpi *pcc = bl_get_data(bd); int bright = bd->props.brightness; int rc; if (!acpi_pcc_retrieve_biosdata(pcc)) return -EIO; if (bright < pcc->sinf[SINF_AC_MIN_BRIGHT]) bright = pcc->sinf[SINF_AC_MIN_BRIGHT]; if (bright < pcc->sinf[SINF_DC_MIN_BRIGHT]) bright = pcc->sinf[SINF_DC_MIN_BRIGHT]; if (bright < pcc->sinf[SINF_AC_MIN_BRIGHT] || bright > pcc->sinf[SINF_AC_MAX_BRIGHT]) return -EINVAL; rc = acpi_pcc_write_sset(pcc, SINF_AC_CUR_BRIGHT, bright); if (rc < 0) return rc; return acpi_pcc_write_sset(pcc, SINF_DC_CUR_BRIGHT, bright); } static const struct backlight_ops pcc_backlight_ops = { .get_brightness = bl_get, .update_status = bl_set_status, }; /* returns ACPI_SUCCESS if methods to control optical drive are present */ static acpi_status check_optd_present(void) { acpi_status status = AE_OK; acpi_handle handle; status = acpi_get_handle(NULL, "\\_SB.STAT", &handle); if (ACPI_FAILURE(status)) goto out; status = acpi_get_handle(NULL, "\\_SB.FBAY", &handle); if (ACPI_FAILURE(status)) goto out; status = acpi_get_handle(NULL, "\\_SB.CDDI", &handle); if (ACPI_FAILURE(status)) goto out; out: return status; } /* get optical driver power state */ static int get_optd_power_state(void) { acpi_status status; unsigned long long state; int result; status = acpi_evaluate_integer(NULL, "\\_SB.STAT", NULL, &state); if (ACPI_FAILURE(status)) { pr_err("evaluation error _SB.STAT\n"); result = -EIO; goto out; } switch (state) { case 0: /* power off */ result = 0; break; case 0x0f: /* power on */ result = 1; break; default: result = -EIO; break; } out: return result; } /* set optical drive power state */ static int set_optd_power_state(int new_state) { int result; acpi_status status; result = get_optd_power_state(); if (result < 0) goto out; if (new_state == result) goto out; switch (new_state) { case 0: /* power off */ /* Call CDDR instead, since they both call the same method * while CDDI takes 1 arg and we are not quite sure what it is. */ status = acpi_evaluate_object(NULL, "\\_SB.CDDR", NULL, NULL); if (ACPI_FAILURE(status)) { pr_err("evaluation error _SB.CDDR\n"); result = -EIO; } break; case 1: /* power on */ status = acpi_evaluate_object(NULL, "\\_SB.FBAY", NULL, NULL); if (ACPI_FAILURE(status)) { pr_err("evaluation error _SB.FBAY\n"); result = -EIO; } break; default: result = -EINVAL; break; } out: return result; } /* sysfs user interface functions */ static ssize_t numbatt_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_device *acpi = to_acpi_device(dev); struct pcc_acpi *pcc = acpi_driver_data(acpi); if (!acpi_pcc_retrieve_biosdata(pcc)) return -EIO; return sysfs_emit(buf, "%u\n", pcc->sinf[SINF_NUM_BATTERIES]); } static ssize_t lcdtype_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_device *acpi = to_acpi_device(dev); struct pcc_acpi *pcc = acpi_driver_data(acpi); if (!acpi_pcc_retrieve_biosdata(pcc)) return -EIO; return sysfs_emit(buf, "%u\n", pcc->sinf[SINF_LCD_TYPE]); } static ssize_t mute_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_device *acpi = to_acpi_device(dev); struct pcc_acpi *pcc = acpi_driver_data(acpi); if (!acpi_pcc_retrieve_biosdata(pcc)) return -EIO; return sysfs_emit(buf, "%u\n", pcc->sinf[SINF_MUTE]); } static ssize_t mute_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct acpi_device *acpi = to_acpi_device(dev); struct pcc_acpi *pcc = acpi_driver_data(acpi); int err, val; err = kstrtoint(buf, 0, &val); if (err) return err; if (val == 0 || val == 1) { acpi_pcc_write_sset(pcc, SINF_MUTE, val); pcc->mute = val; } return count; } static ssize_t sticky_key_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_device *acpi = to_acpi_device(dev); struct pcc_acpi *pcc = acpi_driver_data(acpi); if (!acpi_pcc_retrieve_biosdata(pcc)) return -EIO; return sysfs_emit(buf, "%u\n", pcc->sticky_key); } static ssize_t sticky_key_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct acpi_device *acpi = to_acpi_device(dev); struct pcc_acpi *pcc = acpi_driver_data(acpi); int err, val; err = kstrtoint(buf, 0, &val); if (err) return err; if (val == 0 || val == 1) { acpi_pcc_write_sset(pcc, SINF_STICKY_KEY, val); pcc->sticky_key = val; } return count; } static ssize_t eco_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_device *acpi = to_acpi_device(dev); struct pcc_acpi *pcc = acpi_driver_data(acpi); int result; if (!acpi_pcc_retrieve_biosdata(pcc)) return -EIO; switch (pcc->sinf[SINF_ECO_MODE]) { case (ECO_MODE_OFF + 3): result = 0; break; case (ECO_MODE_ON + 3): result = 1; break; default: result = -EIO; break; } return sysfs_emit(buf, "%u\n", result); } static ssize_t eco_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct acpi_device *acpi = to_acpi_device(dev); struct pcc_acpi *pcc = acpi_driver_data(acpi); int err, state; union acpi_object param[2]; struct acpi_object_list input; acpi_status status; param[0].type = ACPI_TYPE_INTEGER; param[0].integer.value = 0x15; param[1].type = ACPI_TYPE_INTEGER; input.count = 2; input.pointer = param; err = kstrtoint(buf, 0, &state); if (err) return err; switch (state) { case 0: param[1].integer.value = ECO_MODE_OFF; pcc->sinf[SINF_ECO_MODE] = 0; pcc->eco_mode = 0; break; case 1: param[1].integer.value = ECO_MODE_ON; pcc->sinf[SINF_ECO_MODE] = 1; pcc->eco_mode = 1; break; default: /* nothing to do */ return count; } status = acpi_evaluate_object(NULL, METHOD_ECWR, &input, NULL); if (ACPI_FAILURE(status)) { pr_err("%s evaluation failed\n", METHOD_ECWR); return -EINVAL; } return count; } static ssize_t ac_brightness_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_device *acpi = to_acpi_device(dev); struct pcc_acpi *pcc = acpi_driver_data(acpi); if (!acpi_pcc_retrieve_biosdata(pcc)) return -EIO; return sysfs_emit(buf, "%u\n", pcc->sinf[SINF_AC_CUR_BRIGHT]); } static ssize_t ac_brightness_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct acpi_device *acpi = to_acpi_device(dev); struct pcc_acpi *pcc = acpi_driver_data(acpi); int err, val; err = kstrtoint(buf, 0, &val); if (err) return err; if (val >= 0 && val <= 255) { acpi_pcc_write_sset(pcc, SINF_AC_CUR_BRIGHT, val); pcc->ac_brightness = val; } return count; } static ssize_t dc_brightness_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_device *acpi = to_acpi_device(dev); struct pcc_acpi *pcc = acpi_driver_data(acpi); if (!acpi_pcc_retrieve_biosdata(pcc)) return -EIO; return sysfs_emit(buf, "%u\n", pcc->sinf[SINF_DC_CUR_BRIGHT]); } static ssize_t dc_brightness_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct acpi_device *acpi = to_acpi_device(dev); struct pcc_acpi *pcc = acpi_driver_data(acpi); int err, val; err = kstrtoint(buf, 0, &val); if (err) return err; if (val >= 0 && val <= 255) { acpi_pcc_write_sset(pcc, SINF_DC_CUR_BRIGHT, val); pcc->dc_brightness = val; } return count; } static ssize_t current_brightness_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_device *acpi = to_acpi_device(dev); struct pcc_acpi *pcc = acpi_driver_data(acpi); if (!acpi_pcc_retrieve_biosdata(pcc)) return -EIO; return sysfs_emit(buf, "%u\n", pcc->sinf[SINF_CUR_BRIGHT]); } static ssize_t current_brightness_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct acpi_device *acpi = to_acpi_device(dev); struct pcc_acpi *pcc = acpi_driver_data(acpi); int err, val; err = kstrtoint(buf, 0, &val); if (err) return err; if (val >= 0 && val <= 255) { err = acpi_pcc_write_sset(pcc, SINF_CUR_BRIGHT, val); pcc->current_brightness = val; } return count; } static ssize_t cdpower_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%d\n", get_optd_power_state()); } static ssize_t cdpower_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int err, val; err = kstrtoint(buf, 10, &val); if (err) return err; set_optd_power_state(val); return count; } static DEVICE_ATTR_RO(numbatt); static DEVICE_ATTR_RO(lcdtype); static DEVICE_ATTR_RW(mute); static DEVICE_ATTR_RW(sticky_key); static DEVICE_ATTR_RW(eco_mode); static DEVICE_ATTR_RW(ac_brightness); static DEVICE_ATTR_RW(dc_brightness); static DEVICE_ATTR_RW(current_brightness); static DEVICE_ATTR_RW(cdpower); static struct attribute *pcc_sysfs_entries[] = { &dev_attr_numbatt.attr, &dev_attr_lcdtype.attr, &dev_attr_mute.attr, &dev_attr_sticky_key.attr, &dev_attr_eco_mode.attr, &dev_attr_ac_brightness.attr, &dev_attr_dc_brightness.attr, &dev_attr_current_brightness.attr, &dev_attr_cdpower.attr, NULL, }; static const struct attribute_group pcc_attr_group = { .name = NULL, /* put in device directory */ .attrs = pcc_sysfs_entries, }; /* hotkey input device driver */ static int sleep_keydown_seen; static void acpi_pcc_generate_keyinput(struct pcc_acpi *pcc) { struct input_dev *hotk_input_dev = pcc->input_dev; int rc; unsigned long long result; unsigned int key; unsigned int updown; rc = acpi_evaluate_integer(pcc->handle, METHOD_HKEY_QUERY, NULL, &result); if (ACPI_FAILURE(rc)) { pr_err("error getting hotkey status\n"); return; } key = result & 0xf; updown = result & 0x80; /* 0x80 == key down; 0x00 = key up */ /* hack: some firmware sends no key down for sleep / hibernate */ if (key == 7 || key == 10) { if (updown) sleep_keydown_seen = 1; if (!sleep_keydown_seen) sparse_keymap_report_event(hotk_input_dev, key, 0x80, false); } /* * Don't report brightness key-presses if they are also reported * by the ACPI video bus. */ if ((key == 1 || key == 2) && acpi_video_handles_brightness_key_presses()) return; if (!sparse_keymap_report_event(hotk_input_dev, key, updown, false)) pr_err("Unknown hotkey event: 0x%04llx\n", result); } static void acpi_pcc_hotkey_notify(struct acpi_device *device, u32 event) { struct pcc_acpi *pcc = acpi_driver_data(device); switch (event) { case HKEY_NOTIFY: acpi_pcc_generate_keyinput(pcc); break; default: /* nothing to do */ break; } } static void pcc_optd_notify(acpi_handle handle, u32 event, void *data) { if (event != ACPI_NOTIFY_EJECT_REQUEST) return; set_optd_power_state(0); } static int pcc_register_optd_notifier(struct pcc_acpi *pcc, char *node) { acpi_status status; acpi_handle handle; status = acpi_get_handle(NULL, node, &handle); if (ACPI_SUCCESS(status)) { status = acpi_install_notify_handler(handle, ACPI_SYSTEM_NOTIFY, pcc_optd_notify, pcc); if (ACPI_FAILURE(status)) pr_err("Failed to register notify on %s\n", node); } else return -ENODEV; return 0; } static void pcc_unregister_optd_notifier(struct pcc_acpi *pcc, char *node) { acpi_status status = AE_OK; acpi_handle handle; status = acpi_get_handle(NULL, node, &handle); if (ACPI_SUCCESS(status)) { status = acpi_remove_notify_handler(handle, ACPI_SYSTEM_NOTIFY, pcc_optd_notify); if (ACPI_FAILURE(status)) pr_err("Error removing optd notify handler %s\n", node); } } static int acpi_pcc_init_input(struct pcc_acpi *pcc) { struct input_dev *input_dev; int error; input_dev = input_allocate_device(); if (!input_dev) return -ENOMEM; input_dev->name = ACPI_PCC_DRIVER_NAME; input_dev->phys = ACPI_PCC_INPUT_PHYS; input_dev->id.bustype = BUS_HOST; input_dev->id.vendor = 0x0001; input_dev->id.product = 0x0001; input_dev->id.version = 0x0100; error = sparse_keymap_setup(input_dev, panasonic_keymap, NULL); if (error) { pr_err("Unable to setup input device keymap\n"); goto err_free_dev; } error = input_register_device(input_dev); if (error) { pr_err("Unable to register input device\n"); goto err_free_dev; } pcc->input_dev = input_dev; return 0; err_free_dev: input_free_device(input_dev); return error; } /* kernel module interface */ #ifdef CONFIG_PM_SLEEP static int acpi_pcc_hotkey_resume(struct device *dev) { struct pcc_acpi *pcc; if (!dev) return -EINVAL; pcc = acpi_driver_data(to_acpi_device(dev)); if (!pcc) return -EINVAL; acpi_pcc_write_sset(pcc, SINF_MUTE, pcc->mute); acpi_pcc_write_sset(pcc, SINF_ECO_MODE, pcc->eco_mode); acpi_pcc_write_sset(pcc, SINF_STICKY_KEY, pcc->sticky_key); acpi_pcc_write_sset(pcc, SINF_AC_CUR_BRIGHT, pcc->ac_brightness); acpi_pcc_write_sset(pcc, SINF_DC_CUR_BRIGHT, pcc->dc_brightness); acpi_pcc_write_sset(pcc, SINF_CUR_BRIGHT, pcc->current_brightness); return 0; } #endif static int acpi_pcc_hotkey_add(struct acpi_device *device) { struct backlight_properties props; struct pcc_acpi *pcc; int num_sifr, result; if (!device) return -EINVAL; num_sifr = acpi_pcc_get_sqty(device); if (num_sifr < 0 || num_sifr > 255) { pr_err("num_sifr out of range"); return -ENODEV; } pcc = kzalloc(sizeof(struct pcc_acpi), GFP_KERNEL); if (!pcc) { pr_err("Couldn't allocate mem for pcc"); return -ENOMEM; } pcc->sinf = kcalloc(num_sifr + 1, sizeof(u32), GFP_KERNEL); if (!pcc->sinf) { result = -ENOMEM; goto out_hotkey; } pcc->device = device; pcc->handle = device->handle; pcc->num_sifr = num_sifr; device->driver_data = pcc; strcpy(acpi_device_name(device), ACPI_PCC_DEVICE_NAME); strcpy(acpi_device_class(device), ACPI_PCC_CLASS); result = acpi_pcc_init_input(pcc); if (result) { pr_err("Error installing keyinput handler\n"); goto out_sinf; } if (!acpi_pcc_retrieve_biosdata(pcc)) { result = -EIO; pr_err("Couldn't retrieve BIOS data\n"); goto out_input; } if (acpi_video_get_backlight_type() == acpi_backlight_vendor) { /* initialize backlight */ memset(&props, 0, sizeof(struct backlight_properties)); props.type = BACKLIGHT_PLATFORM; props.max_brightness = pcc->sinf[SINF_AC_MAX_BRIGHT]; pcc->backlight = backlight_device_register("panasonic", NULL, pcc, &pcc_backlight_ops, &props); if (IS_ERR(pcc->backlight)) { result = PTR_ERR(pcc->backlight); goto out_input; } /* read the initial brightness setting from the hardware */ pcc->backlight->props.brightness = pcc->sinf[SINF_AC_CUR_BRIGHT]; } /* Reset initial sticky key mode since the hardware register state is not consistent */ acpi_pcc_write_sset(pcc, SINF_STICKY_KEY, 0); pcc->sticky_key = 0; pcc->eco_mode = pcc->sinf[SINF_ECO_MODE]; pcc->mute = pcc->sinf[SINF_MUTE]; pcc->ac_brightness = pcc->sinf[SINF_AC_CUR_BRIGHT]; pcc->dc_brightness = pcc->sinf[SINF_DC_CUR_BRIGHT]; pcc->current_brightness = pcc->sinf[SINF_CUR_BRIGHT]; /* add sysfs attributes */ result = sysfs_create_group(&device->dev.kobj, &pcc_attr_group); if (result) goto out_backlight; /* optical drive initialization */ if (ACPI_SUCCESS(check_optd_present())) { pcc->platform = platform_device_register_simple("panasonic", PLATFORM_DEVID_NONE, NULL, 0); if (IS_ERR(pcc->platform)) { result = PTR_ERR(pcc->platform); goto out_backlight; } result = device_create_file(&pcc->platform->dev, &dev_attr_cdpower); pcc_register_optd_notifier(pcc, "\\_SB.PCI0.EHCI.ERHB.OPTD"); if (result) goto out_platform; } else { pcc->platform = NULL; } i8042_install_filter(panasonic_i8042_filter); return 0; out_platform: platform_device_unregister(pcc->platform); out_backlight: backlight_device_unregister(pcc->backlight); out_input: input_unregister_device(pcc->input_dev); out_sinf: kfree(pcc->sinf); out_hotkey: kfree(pcc); return result; } static void acpi_pcc_hotkey_remove(struct acpi_device *device) { struct pcc_acpi *pcc = acpi_driver_data(device); if (!device || !pcc) return; i8042_remove_filter(panasonic_i8042_filter); if (pcc->platform) { device_remove_file(&pcc->platform->dev, &dev_attr_cdpower); platform_device_unregister(pcc->platform); } pcc_unregister_optd_notifier(pcc, "\\_SB.PCI0.EHCI.ERHB.OPTD"); sysfs_remove_group(&device->dev.kobj, &pcc_attr_group); backlight_device_unregister(pcc->backlight); input_unregister_device(pcc->input_dev); kfree(pcc->sinf); kfree(pcc); } module_acpi_driver(acpi_pcc_driver);
linux-master
drivers/platform/x86/panasonic-laptop.c
// SPDX-License-Identifier: GPL-2.0+ /* * Support for EC-connected GPIOs for identify * LED/button on Barco P50 board * * Copyright (C) 2021 Barco NV * Author: Santosh Kumar Yadav <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/delay.h> #include <linux/dmi.h> #include <linux/err.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/leds.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/gpio_keys.h> #include <linux/gpio/driver.h> #include <linux/gpio/machine.h> #include <linux/input.h> #define DRIVER_NAME "barco-p50-gpio" /* GPIO lines */ #define P50_GPIO_LINE_LED 0 #define P50_GPIO_LINE_BTN 1 /* GPIO IO Ports */ #define P50_GPIO_IO_PORT_BASE 0x299 #define P50_PORT_DATA 0x00 #define P50_PORT_CMD 0x01 #define P50_STATUS_OBF 0x01 /* EC output buffer full */ #define P50_STATUS_IBF 0x02 /* EC input buffer full */ #define P50_CMD_READ 0xa0 #define P50_CMD_WRITE 0x50 /* EC mailbox registers */ #define P50_MBOX_REG_CMD 0x00 #define P50_MBOX_REG_STATUS 0x01 #define P50_MBOX_REG_PARAM 0x02 #define P50_MBOX_REG_DATA 0x03 #define P50_MBOX_CMD_READ_GPIO 0x11 #define P50_MBOX_CMD_WRITE_GPIO 0x12 #define P50_MBOX_CMD_CLEAR 0xff #define P50_MBOX_STATUS_SUCCESS 0x01 #define P50_MBOX_PARAM_LED 0x12 #define P50_MBOX_PARAM_BTN 0x13 struct p50_gpio { struct gpio_chip gc; struct mutex lock; unsigned long base; struct platform_device *leds_pdev; struct platform_device *keys_pdev; }; static struct platform_device *gpio_pdev; static int gpio_params[] = { [P50_GPIO_LINE_LED] = P50_MBOX_PARAM_LED, [P50_GPIO_LINE_BTN] = P50_MBOX_PARAM_BTN, }; static const char * const gpio_names[] = { [P50_GPIO_LINE_LED] = "identify-led", [P50_GPIO_LINE_BTN] = "identify-button", }; static struct gpiod_lookup_table p50_gpio_led_table = { .dev_id = "leds-gpio", .table = { GPIO_LOOKUP_IDX(DRIVER_NAME, P50_GPIO_LINE_LED, NULL, 0, GPIO_ACTIVE_HIGH), {} } }; /* GPIO LEDs */ static struct gpio_led leds[] = { { .name = "identify" } }; static struct gpio_led_platform_data leds_pdata = { .num_leds = ARRAY_SIZE(leds), .leds = leds, }; /* GPIO keyboard */ static struct gpio_keys_button buttons[] = { { .code = KEY_VENDOR, .gpio = P50_GPIO_LINE_BTN, .active_low = 1, .type = EV_KEY, .value = 1, }, }; static struct gpio_keys_platform_data keys_pdata = { .buttons = buttons, .nbuttons = ARRAY_SIZE(buttons), .poll_interval = 100, .rep = 0, .name = "identify", }; /* low level access routines */ static int p50_wait_ec(struct p50_gpio *p50, int mask, int expected) { int i, val; for (i = 0; i < 100; i++) { val = inb(p50->base + P50_PORT_CMD) & mask; if (val == expected) return 0; usleep_range(500, 2000); } dev_err(p50->gc.parent, "Timed out waiting for EC (0x%x)\n", val); return -ETIMEDOUT; } static int p50_read_mbox_reg(struct p50_gpio *p50, int reg) { int ret; ret = p50_wait_ec(p50, P50_STATUS_IBF, 0); if (ret) return ret; /* clear output buffer flag, prevent unfinished commands */ inb(p50->base + P50_PORT_DATA); /* cmd/address */ outb(P50_CMD_READ | reg, p50->base + P50_PORT_CMD); ret = p50_wait_ec(p50, P50_STATUS_OBF, P50_STATUS_OBF); if (ret) return ret; return inb(p50->base + P50_PORT_DATA); } static int p50_write_mbox_reg(struct p50_gpio *p50, int reg, int val) { int ret; ret = p50_wait_ec(p50, P50_STATUS_IBF, 0); if (ret) return ret; /* cmd/address */ outb(P50_CMD_WRITE | reg, p50->base + P50_PORT_CMD); ret = p50_wait_ec(p50, P50_STATUS_IBF, 0); if (ret) return ret; /* data */ outb(val, p50->base + P50_PORT_DATA); return 0; } /* mbox routines */ static int p50_wait_mbox_idle(struct p50_gpio *p50) { int i, val; for (i = 0; i < 1000; i++) { val = p50_read_mbox_reg(p50, P50_MBOX_REG_CMD); /* cmd is 0 when idle */ if (val <= 0) return val; usleep_range(500, 2000); } dev_err(p50->gc.parent, "Timed out waiting for EC mbox idle (CMD: 0x%x)\n", val); return -ETIMEDOUT; } static int p50_send_mbox_cmd(struct p50_gpio *p50, int cmd, int param, int data) { int ret; ret = p50_wait_mbox_idle(p50); if (ret) return ret; ret = p50_write_mbox_reg(p50, P50_MBOX_REG_DATA, data); if (ret) return ret; ret = p50_write_mbox_reg(p50, P50_MBOX_REG_PARAM, param); if (ret) return ret; ret = p50_write_mbox_reg(p50, P50_MBOX_REG_CMD, cmd); if (ret) return ret; ret = p50_wait_mbox_idle(p50); if (ret) return ret; ret = p50_read_mbox_reg(p50, P50_MBOX_REG_STATUS); if (ret < 0) return ret; if (ret == P50_MBOX_STATUS_SUCCESS) return 0; dev_err(p50->gc.parent, "Mbox command failed (CMD=0x%x STAT=0x%x PARAM=0x%x DATA=0x%x)\n", cmd, ret, param, data); return -EIO; } /* gpio routines */ static int p50_gpio_get_direction(struct gpio_chip *gc, unsigned int offset) { switch (offset) { case P50_GPIO_LINE_BTN: return GPIO_LINE_DIRECTION_IN; case P50_GPIO_LINE_LED: return GPIO_LINE_DIRECTION_OUT; default: return -EINVAL; } } static int p50_gpio_get(struct gpio_chip *gc, unsigned int offset) { struct p50_gpio *p50 = gpiochip_get_data(gc); int ret; mutex_lock(&p50->lock); ret = p50_send_mbox_cmd(p50, P50_MBOX_CMD_READ_GPIO, gpio_params[offset], 0); if (ret == 0) ret = p50_read_mbox_reg(p50, P50_MBOX_REG_DATA); mutex_unlock(&p50->lock); return ret; } static void p50_gpio_set(struct gpio_chip *gc, unsigned int offset, int value) { struct p50_gpio *p50 = gpiochip_get_data(gc); mutex_lock(&p50->lock); p50_send_mbox_cmd(p50, P50_MBOX_CMD_WRITE_GPIO, gpio_params[offset], value); mutex_unlock(&p50->lock); } static int p50_gpio_probe(struct platform_device *pdev) { struct p50_gpio *p50; struct resource *res; int ret; res = platform_get_resource(pdev, IORESOURCE_IO, 0); if (!res) { dev_err(&pdev->dev, "Cannot get I/O ports\n"); return -ENODEV; } if (!devm_request_region(&pdev->dev, res->start, resource_size(res), pdev->name)) { dev_err(&pdev->dev, "Unable to reserve I/O region\n"); return -EBUSY; } p50 = devm_kzalloc(&pdev->dev, sizeof(*p50), GFP_KERNEL); if (!p50) return -ENOMEM; platform_set_drvdata(pdev, p50); mutex_init(&p50->lock); p50->base = res->start; p50->gc.owner = THIS_MODULE; p50->gc.parent = &pdev->dev; p50->gc.label = dev_name(&pdev->dev); p50->gc.ngpio = ARRAY_SIZE(gpio_names); p50->gc.names = gpio_names; p50->gc.can_sleep = true; p50->gc.base = -1; p50->gc.get_direction = p50_gpio_get_direction; p50->gc.get = p50_gpio_get; p50->gc.set = p50_gpio_set; /* reset mbox */ ret = p50_wait_mbox_idle(p50); if (ret) return ret; ret = p50_write_mbox_reg(p50, P50_MBOX_REG_CMD, P50_MBOX_CMD_CLEAR); if (ret) return ret; ret = p50_wait_mbox_idle(p50); if (ret) return ret; ret = devm_gpiochip_add_data(&pdev->dev, &p50->gc, p50); if (ret < 0) { dev_err(&pdev->dev, "Could not register gpiochip: %d\n", ret); return ret; } gpiod_add_lookup_table(&p50_gpio_led_table); p50->leds_pdev = platform_device_register_data(&pdev->dev, "leds-gpio", PLATFORM_DEVID_NONE, &leds_pdata, sizeof(leds_pdata)); if (IS_ERR(p50->leds_pdev)) { ret = PTR_ERR(p50->leds_pdev); dev_err(&pdev->dev, "Could not register leds-gpio: %d\n", ret); goto err_leds; } /* gpio-keys-polled uses old-style gpio interface, pass the right identifier */ buttons[0].gpio += p50->gc.base; p50->keys_pdev = platform_device_register_data(&pdev->dev, "gpio-keys-polled", PLATFORM_DEVID_NONE, &keys_pdata, sizeof(keys_pdata)); if (IS_ERR(p50->keys_pdev)) { ret = PTR_ERR(p50->keys_pdev); dev_err(&pdev->dev, "Could not register gpio-keys-polled: %d\n", ret); goto err_keys; } return 0; err_keys: platform_device_unregister(p50->leds_pdev); err_leds: gpiod_remove_lookup_table(&p50_gpio_led_table); return ret; } static void p50_gpio_remove(struct platform_device *pdev) { struct p50_gpio *p50 = platform_get_drvdata(pdev); platform_device_unregister(p50->keys_pdev); platform_device_unregister(p50->leds_pdev); gpiod_remove_lookup_table(&p50_gpio_led_table); } static struct platform_driver p50_gpio_driver = { .driver = { .name = DRIVER_NAME, }, .probe = p50_gpio_probe, .remove_new = p50_gpio_remove, }; /* Board setup */ static const struct dmi_system_id dmi_ids[] __initconst = { { .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Barco"), DMI_EXACT_MATCH(DMI_PRODUCT_FAMILY, "P50") }, }, {} }; MODULE_DEVICE_TABLE(dmi, dmi_ids); static int __init p50_module_init(void) { struct resource res = DEFINE_RES_IO(P50_GPIO_IO_PORT_BASE, P50_PORT_CMD + 1); int ret; if (!dmi_first_match(dmi_ids)) return -ENODEV; ret = platform_driver_register(&p50_gpio_driver); if (ret) return ret; gpio_pdev = platform_device_register_simple(DRIVER_NAME, PLATFORM_DEVID_NONE, &res, 1); if (IS_ERR(gpio_pdev)) { pr_err("failed registering %s: %ld\n", DRIVER_NAME, PTR_ERR(gpio_pdev)); platform_driver_unregister(&p50_gpio_driver); return PTR_ERR(gpio_pdev); } return 0; } static void __exit p50_module_exit(void) { platform_device_unregister(gpio_pdev); platform_driver_unregister(&p50_gpio_driver); } module_init(p50_module_init); module_exit(p50_module_exit); MODULE_AUTHOR("Santosh Kumar Yadav, Barco NV <[email protected]>"); MODULE_DESCRIPTION("Barco P50 identify GPIOs driver"); MODULE_LICENSE("GPL");
linux-master
drivers/platform/x86/barco-p50-gpio.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * ACPI Sony Notebook Control Driver (SNC and SPIC) * * Copyright (C) 2004-2005 Stelian Pop <[email protected]> * Copyright (C) 2007-2009 Mattia Dongili <[email protected]> * * Parts of this driver inspired from asus_acpi.c and ibm_acpi.c * which are copyrighted by their respective authors. * * The SNY6001 driver part is based on the sonypi driver which includes * material from: * * Copyright (C) 2001-2005 Stelian Pop <[email protected]> * * Copyright (C) 2005 Narayanan R S <[email protected]> * * Copyright (C) 2001-2002 Alcôve <www.alcove.com> * * Copyright (C) 2001 Michael Ashley <[email protected]> * * Copyright (C) 2001 Junichi Morita <[email protected]> * * Copyright (C) 2000 Takaya Kinjo <[email protected]> * * Copyright (C) 2000 Andrew Tridgell <[email protected]> * * Earlier work by Werner Almesberger, Paul `Rusty' Russell and Paul Mackerras. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/types.h> #include <linux/backlight.h> #include <linux/platform_device.h> #include <linux/err.h> #include <linux/dmi.h> #include <linux/pci.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/input.h> #include <linux/kfifo.h> #include <linux/workqueue.h> #include <linux/acpi.h> #include <linux/slab.h> #include <linux/sonypi.h> #include <linux/sony-laptop.h> #include <linux/rfkill.h> #ifdef CONFIG_SONYPI_COMPAT #include <linux/poll.h> #include <linux/miscdevice.h> #endif #include <linux/uaccess.h> #include <acpi/video.h> #define dprintk(fmt, ...) \ do { \ if (debug) \ pr_warn(fmt, ##__VA_ARGS__); \ } while (0) #define SONY_NC_CLASS "sony-nc" #define SONY_NC_HID "SNY5001" #define SONY_NC_DRIVER_NAME "Sony Notebook Control Driver" #define SONY_PIC_CLASS "sony-pic" #define SONY_PIC_HID "SNY6001" #define SONY_PIC_DRIVER_NAME "Sony Programmable IO Control Driver" MODULE_AUTHOR("Stelian Pop, Mattia Dongili"); MODULE_DESCRIPTION("Sony laptop extras driver (SPIC and SNC ACPI device)"); MODULE_LICENSE("GPL"); static int debug; module_param(debug, int, 0); MODULE_PARM_DESC(debug, "set this to 1 (and RTFM) if you want to help " "the development of this driver"); static int no_spic; /* = 0 */ module_param(no_spic, int, 0444); MODULE_PARM_DESC(no_spic, "set this if you don't want to enable the SPIC device"); static int compat; /* = 0 */ module_param(compat, int, 0444); MODULE_PARM_DESC(compat, "set this if you want to enable backward compatibility mode"); static unsigned long mask = 0xffffffff; module_param(mask, ulong, 0644); MODULE_PARM_DESC(mask, "set this to the mask of event you want to enable (see doc)"); static int camera; /* = 0 */ module_param(camera, int, 0444); MODULE_PARM_DESC(camera, "set this to 1 to enable Motion Eye camera controls " "(only use it if you have a C1VE or C1VN model)"); #ifdef CONFIG_SONYPI_COMPAT static int minor = -1; module_param(minor, int, 0); MODULE_PARM_DESC(minor, "minor number of the misc device for the SPIC compatibility code, " "default is -1 (automatic)"); #endif static int kbd_backlight = -1; module_param(kbd_backlight, int, 0444); MODULE_PARM_DESC(kbd_backlight, "set this to 0 to disable keyboard backlight, " "1 to enable it with automatic control and 2 to have it always " "on (default: no change from current value)"); static int kbd_backlight_timeout = -1; module_param(kbd_backlight_timeout, int, 0444); MODULE_PARM_DESC(kbd_backlight_timeout, "meaningful values vary from 0 to 3 and their meaning depends " "on the model (default: no change from current value)"); #ifdef CONFIG_PM_SLEEP static void sony_nc_thermal_resume(void); #endif static int sony_nc_kbd_backlight_setup(struct platform_device *pd, unsigned int handle); static void sony_nc_kbd_backlight_cleanup(struct platform_device *pd, unsigned int handle); static int sony_nc_battery_care_setup(struct platform_device *pd, unsigned int handle); static void sony_nc_battery_care_cleanup(struct platform_device *pd); static int sony_nc_thermal_setup(struct platform_device *pd); static void sony_nc_thermal_cleanup(struct platform_device *pd); static int sony_nc_lid_resume_setup(struct platform_device *pd, unsigned int handle); static void sony_nc_lid_resume_cleanup(struct platform_device *pd); static int sony_nc_gfx_switch_setup(struct platform_device *pd, unsigned int handle); static void sony_nc_gfx_switch_cleanup(struct platform_device *pd); static int __sony_nc_gfx_switch_status_get(void); static int sony_nc_highspeed_charging_setup(struct platform_device *pd); static void sony_nc_highspeed_charging_cleanup(struct platform_device *pd); static int sony_nc_lowbatt_setup(struct platform_device *pd); static void sony_nc_lowbatt_cleanup(struct platform_device *pd); static int sony_nc_fanspeed_setup(struct platform_device *pd); static void sony_nc_fanspeed_cleanup(struct platform_device *pd); static int sony_nc_usb_charge_setup(struct platform_device *pd); static void sony_nc_usb_charge_cleanup(struct platform_device *pd); static int sony_nc_panelid_setup(struct platform_device *pd); static void sony_nc_panelid_cleanup(struct platform_device *pd); static int sony_nc_smart_conn_setup(struct platform_device *pd); static void sony_nc_smart_conn_cleanup(struct platform_device *pd); static int sony_nc_touchpad_setup(struct platform_device *pd, unsigned int handle); static void sony_nc_touchpad_cleanup(struct platform_device *pd); enum sony_nc_rfkill { SONY_WIFI, SONY_BLUETOOTH, SONY_WWAN, SONY_WIMAX, N_SONY_RFKILL, }; static int sony_rfkill_handle; static struct rfkill *sony_rfkill_devices[N_SONY_RFKILL]; static int sony_rfkill_address[N_SONY_RFKILL] = {0x300, 0x500, 0x700, 0x900}; static int sony_nc_rfkill_setup(struct acpi_device *device, unsigned int handle); static void sony_nc_rfkill_cleanup(void); static void sony_nc_rfkill_update(void); /*********** Input Devices ***********/ #define SONY_LAPTOP_BUF_SIZE 128 struct sony_laptop_input_s { atomic_t users; struct input_dev *jog_dev; struct input_dev *key_dev; struct kfifo fifo; spinlock_t fifo_lock; struct timer_list release_key_timer; }; static struct sony_laptop_input_s sony_laptop_input = { .users = ATOMIC_INIT(0), }; struct sony_laptop_keypress { struct input_dev *dev; int key; }; /* Correspondance table between sonypi events * and input layer indexes in the keymap */ static const int sony_laptop_input_index[] = { -1, /* 0 no event */ -1, /* 1 SONYPI_EVENT_JOGDIAL_DOWN */ -1, /* 2 SONYPI_EVENT_JOGDIAL_UP */ -1, /* 3 SONYPI_EVENT_JOGDIAL_DOWN_PRESSED */ -1, /* 4 SONYPI_EVENT_JOGDIAL_UP_PRESSED */ -1, /* 5 SONYPI_EVENT_JOGDIAL_PRESSED */ -1, /* 6 SONYPI_EVENT_JOGDIAL_RELEASED */ 0, /* 7 SONYPI_EVENT_CAPTURE_PRESSED */ 1, /* 8 SONYPI_EVENT_CAPTURE_RELEASED */ 2, /* 9 SONYPI_EVENT_CAPTURE_PARTIALPRESSED */ 3, /* 10 SONYPI_EVENT_CAPTURE_PARTIALRELEASED */ 4, /* 11 SONYPI_EVENT_FNKEY_ESC */ 5, /* 12 SONYPI_EVENT_FNKEY_F1 */ 6, /* 13 SONYPI_EVENT_FNKEY_F2 */ 7, /* 14 SONYPI_EVENT_FNKEY_F3 */ 8, /* 15 SONYPI_EVENT_FNKEY_F4 */ 9, /* 16 SONYPI_EVENT_FNKEY_F5 */ 10, /* 17 SONYPI_EVENT_FNKEY_F6 */ 11, /* 18 SONYPI_EVENT_FNKEY_F7 */ 12, /* 19 SONYPI_EVENT_FNKEY_F8 */ 13, /* 20 SONYPI_EVENT_FNKEY_F9 */ 14, /* 21 SONYPI_EVENT_FNKEY_F10 */ 15, /* 22 SONYPI_EVENT_FNKEY_F11 */ 16, /* 23 SONYPI_EVENT_FNKEY_F12 */ 17, /* 24 SONYPI_EVENT_FNKEY_1 */ 18, /* 25 SONYPI_EVENT_FNKEY_2 */ 19, /* 26 SONYPI_EVENT_FNKEY_D */ 20, /* 27 SONYPI_EVENT_FNKEY_E */ 21, /* 28 SONYPI_EVENT_FNKEY_F */ 22, /* 29 SONYPI_EVENT_FNKEY_S */ 23, /* 30 SONYPI_EVENT_FNKEY_B */ 24, /* 31 SONYPI_EVENT_BLUETOOTH_PRESSED */ 25, /* 32 SONYPI_EVENT_PKEY_P1 */ 26, /* 33 SONYPI_EVENT_PKEY_P2 */ 27, /* 34 SONYPI_EVENT_PKEY_P3 */ 28, /* 35 SONYPI_EVENT_BACK_PRESSED */ -1, /* 36 SONYPI_EVENT_LID_CLOSED */ -1, /* 37 SONYPI_EVENT_LID_OPENED */ 29, /* 38 SONYPI_EVENT_BLUETOOTH_ON */ 30, /* 39 SONYPI_EVENT_BLUETOOTH_OFF */ 31, /* 40 SONYPI_EVENT_HELP_PRESSED */ 32, /* 41 SONYPI_EVENT_FNKEY_ONLY */ 33, /* 42 SONYPI_EVENT_JOGDIAL_FAST_DOWN */ 34, /* 43 SONYPI_EVENT_JOGDIAL_FAST_UP */ 35, /* 44 SONYPI_EVENT_JOGDIAL_FAST_DOWN_PRESSED */ 36, /* 45 SONYPI_EVENT_JOGDIAL_FAST_UP_PRESSED */ 37, /* 46 SONYPI_EVENT_JOGDIAL_VFAST_DOWN */ 38, /* 47 SONYPI_EVENT_JOGDIAL_VFAST_UP */ 39, /* 48 SONYPI_EVENT_JOGDIAL_VFAST_DOWN_PRESSED */ 40, /* 49 SONYPI_EVENT_JOGDIAL_VFAST_UP_PRESSED */ 41, /* 50 SONYPI_EVENT_ZOOM_PRESSED */ 42, /* 51 SONYPI_EVENT_THUMBPHRASE_PRESSED */ 43, /* 52 SONYPI_EVENT_MEYE_FACE */ 44, /* 53 SONYPI_EVENT_MEYE_OPPOSITE */ 45, /* 54 SONYPI_EVENT_MEMORYSTICK_INSERT */ 46, /* 55 SONYPI_EVENT_MEMORYSTICK_EJECT */ -1, /* 56 SONYPI_EVENT_ANYBUTTON_RELEASED */ -1, /* 57 SONYPI_EVENT_BATTERY_INSERT */ -1, /* 58 SONYPI_EVENT_BATTERY_REMOVE */ -1, /* 59 SONYPI_EVENT_FNKEY_RELEASED */ 47, /* 60 SONYPI_EVENT_WIRELESS_ON */ 48, /* 61 SONYPI_EVENT_WIRELESS_OFF */ 49, /* 62 SONYPI_EVENT_ZOOM_IN_PRESSED */ 50, /* 63 SONYPI_EVENT_ZOOM_OUT_PRESSED */ 51, /* 64 SONYPI_EVENT_CD_EJECT_PRESSED */ 52, /* 65 SONYPI_EVENT_MODEKEY_PRESSED */ 53, /* 66 SONYPI_EVENT_PKEY_P4 */ 54, /* 67 SONYPI_EVENT_PKEY_P5 */ 55, /* 68 SONYPI_EVENT_SETTINGKEY_PRESSED */ 56, /* 69 SONYPI_EVENT_VOLUME_INC_PRESSED */ 57, /* 70 SONYPI_EVENT_VOLUME_DEC_PRESSED */ -1, /* 71 SONYPI_EVENT_BRIGHTNESS_PRESSED */ 58, /* 72 SONYPI_EVENT_MEDIA_PRESSED */ 59, /* 72 SONYPI_EVENT_VENDOR_PRESSED */ }; static int sony_laptop_input_keycode_map[] = { KEY_CAMERA, /* 0 SONYPI_EVENT_CAPTURE_PRESSED */ KEY_RESERVED, /* 1 SONYPI_EVENT_CAPTURE_RELEASED */ KEY_RESERVED, /* 2 SONYPI_EVENT_CAPTURE_PARTIALPRESSED */ KEY_RESERVED, /* 3 SONYPI_EVENT_CAPTURE_PARTIALRELEASED */ KEY_FN_ESC, /* 4 SONYPI_EVENT_FNKEY_ESC */ KEY_FN_F1, /* 5 SONYPI_EVENT_FNKEY_F1 */ KEY_FN_F2, /* 6 SONYPI_EVENT_FNKEY_F2 */ KEY_FN_F3, /* 7 SONYPI_EVENT_FNKEY_F3 */ KEY_FN_F4, /* 8 SONYPI_EVENT_FNKEY_F4 */ KEY_FN_F5, /* 9 SONYPI_EVENT_FNKEY_F5 */ KEY_FN_F6, /* 10 SONYPI_EVENT_FNKEY_F6 */ KEY_FN_F7, /* 11 SONYPI_EVENT_FNKEY_F7 */ KEY_FN_F8, /* 12 SONYPI_EVENT_FNKEY_F8 */ KEY_FN_F9, /* 13 SONYPI_EVENT_FNKEY_F9 */ KEY_FN_F10, /* 14 SONYPI_EVENT_FNKEY_F10 */ KEY_FN_F11, /* 15 SONYPI_EVENT_FNKEY_F11 */ KEY_FN_F12, /* 16 SONYPI_EVENT_FNKEY_F12 */ KEY_FN_1, /* 17 SONYPI_EVENT_FNKEY_1 */ KEY_FN_2, /* 18 SONYPI_EVENT_FNKEY_2 */ KEY_FN_D, /* 19 SONYPI_EVENT_FNKEY_D */ KEY_FN_E, /* 20 SONYPI_EVENT_FNKEY_E */ KEY_FN_F, /* 21 SONYPI_EVENT_FNKEY_F */ KEY_FN_S, /* 22 SONYPI_EVENT_FNKEY_S */ KEY_FN_B, /* 23 SONYPI_EVENT_FNKEY_B */ KEY_BLUETOOTH, /* 24 SONYPI_EVENT_BLUETOOTH_PRESSED */ KEY_PROG1, /* 25 SONYPI_EVENT_PKEY_P1 */ KEY_PROG2, /* 26 SONYPI_EVENT_PKEY_P2 */ KEY_PROG3, /* 27 SONYPI_EVENT_PKEY_P3 */ KEY_BACK, /* 28 SONYPI_EVENT_BACK_PRESSED */ KEY_BLUETOOTH, /* 29 SONYPI_EVENT_BLUETOOTH_ON */ KEY_BLUETOOTH, /* 30 SONYPI_EVENT_BLUETOOTH_OFF */ KEY_HELP, /* 31 SONYPI_EVENT_HELP_PRESSED */ KEY_FN, /* 32 SONYPI_EVENT_FNKEY_ONLY */ KEY_RESERVED, /* 33 SONYPI_EVENT_JOGDIAL_FAST_DOWN */ KEY_RESERVED, /* 34 SONYPI_EVENT_JOGDIAL_FAST_UP */ KEY_RESERVED, /* 35 SONYPI_EVENT_JOGDIAL_FAST_DOWN_PRESSED */ KEY_RESERVED, /* 36 SONYPI_EVENT_JOGDIAL_FAST_UP_PRESSED */ KEY_RESERVED, /* 37 SONYPI_EVENT_JOGDIAL_VFAST_DOWN */ KEY_RESERVED, /* 38 SONYPI_EVENT_JOGDIAL_VFAST_UP */ KEY_RESERVED, /* 39 SONYPI_EVENT_JOGDIAL_VFAST_DOWN_PRESSED */ KEY_RESERVED, /* 40 SONYPI_EVENT_JOGDIAL_VFAST_UP_PRESSED */ KEY_ZOOM, /* 41 SONYPI_EVENT_ZOOM_PRESSED */ BTN_THUMB, /* 42 SONYPI_EVENT_THUMBPHRASE_PRESSED */ KEY_RESERVED, /* 43 SONYPI_EVENT_MEYE_FACE */ KEY_RESERVED, /* 44 SONYPI_EVENT_MEYE_OPPOSITE */ KEY_RESERVED, /* 45 SONYPI_EVENT_MEMORYSTICK_INSERT */ KEY_RESERVED, /* 46 SONYPI_EVENT_MEMORYSTICK_EJECT */ KEY_WLAN, /* 47 SONYPI_EVENT_WIRELESS_ON */ KEY_WLAN, /* 48 SONYPI_EVENT_WIRELESS_OFF */ KEY_ZOOMIN, /* 49 SONYPI_EVENT_ZOOM_IN_PRESSED */ KEY_ZOOMOUT, /* 50 SONYPI_EVENT_ZOOM_OUT_PRESSED */ KEY_EJECTCD, /* 51 SONYPI_EVENT_CD_EJECT_PRESSED */ KEY_F13, /* 52 SONYPI_EVENT_MODEKEY_PRESSED */ KEY_PROG4, /* 53 SONYPI_EVENT_PKEY_P4 */ KEY_F14, /* 54 SONYPI_EVENT_PKEY_P5 */ KEY_F15, /* 55 SONYPI_EVENT_SETTINGKEY_PRESSED */ KEY_VOLUMEUP, /* 56 SONYPI_EVENT_VOLUME_INC_PRESSED */ KEY_VOLUMEDOWN, /* 57 SONYPI_EVENT_VOLUME_DEC_PRESSED */ KEY_MEDIA, /* 58 SONYPI_EVENT_MEDIA_PRESSED */ KEY_VENDOR, /* 59 SONYPI_EVENT_VENDOR_PRESSED */ }; /* release buttons after a short delay if pressed */ static void do_sony_laptop_release_key(struct timer_list *unused) { struct sony_laptop_keypress kp; unsigned long flags; spin_lock_irqsave(&sony_laptop_input.fifo_lock, flags); if (kfifo_out(&sony_laptop_input.fifo, (unsigned char *)&kp, sizeof(kp)) == sizeof(kp)) { input_report_key(kp.dev, kp.key, 0); input_sync(kp.dev); } /* If there is something in the fifo schedule next release. */ if (kfifo_len(&sony_laptop_input.fifo) != 0) mod_timer(&sony_laptop_input.release_key_timer, jiffies + msecs_to_jiffies(10)); spin_unlock_irqrestore(&sony_laptop_input.fifo_lock, flags); } /* forward event to the input subsystem */ static void sony_laptop_report_input_event(u8 event) { struct input_dev *jog_dev = sony_laptop_input.jog_dev; struct input_dev *key_dev = sony_laptop_input.key_dev; struct sony_laptop_keypress kp = { NULL }; int scancode = -1; if (event == SONYPI_EVENT_FNKEY_RELEASED || event == SONYPI_EVENT_ANYBUTTON_RELEASED) { /* Nothing, not all VAIOs generate this event */ return; } /* report events */ switch (event) { /* jog_dev events */ case SONYPI_EVENT_JOGDIAL_UP: case SONYPI_EVENT_JOGDIAL_UP_PRESSED: input_report_rel(jog_dev, REL_WHEEL, 1); input_sync(jog_dev); return; case SONYPI_EVENT_JOGDIAL_DOWN: case SONYPI_EVENT_JOGDIAL_DOWN_PRESSED: input_report_rel(jog_dev, REL_WHEEL, -1); input_sync(jog_dev); return; /* key_dev events */ case SONYPI_EVENT_JOGDIAL_PRESSED: kp.key = BTN_MIDDLE; kp.dev = jog_dev; break; default: if (event >= ARRAY_SIZE(sony_laptop_input_index)) { dprintk("sony_laptop_report_input_event, event not known: %d\n", event); break; } if ((scancode = sony_laptop_input_index[event]) != -1) { kp.key = sony_laptop_input_keycode_map[scancode]; if (kp.key != KEY_UNKNOWN) kp.dev = key_dev; } break; } if (kp.dev) { /* if we have a scancode we emit it so we can always remap the key */ if (scancode != -1) input_event(kp.dev, EV_MSC, MSC_SCAN, scancode); input_report_key(kp.dev, kp.key, 1); input_sync(kp.dev); /* schedule key release */ kfifo_in_locked(&sony_laptop_input.fifo, (unsigned char *)&kp, sizeof(kp), &sony_laptop_input.fifo_lock); mod_timer(&sony_laptop_input.release_key_timer, jiffies + msecs_to_jiffies(10)); } else dprintk("unknown input event %.2x\n", event); } static int sony_laptop_setup_input(struct acpi_device *acpi_device) { struct input_dev *jog_dev; struct input_dev *key_dev; int i; int error; /* don't run again if already initialized */ if (atomic_add_return(1, &sony_laptop_input.users) > 1) return 0; /* kfifo */ spin_lock_init(&sony_laptop_input.fifo_lock); error = kfifo_alloc(&sony_laptop_input.fifo, SONY_LAPTOP_BUF_SIZE, GFP_KERNEL); if (error) { pr_err("kfifo_alloc failed\n"); goto err_dec_users; } timer_setup(&sony_laptop_input.release_key_timer, do_sony_laptop_release_key, 0); /* input keys */ key_dev = input_allocate_device(); if (!key_dev) { error = -ENOMEM; goto err_free_kfifo; } key_dev->name = "Sony Vaio Keys"; key_dev->id.bustype = BUS_ISA; key_dev->id.vendor = PCI_VENDOR_ID_SONY; key_dev->dev.parent = &acpi_device->dev; /* Initialize the Input Drivers: special keys */ input_set_capability(key_dev, EV_MSC, MSC_SCAN); __set_bit(EV_KEY, key_dev->evbit); key_dev->keycodesize = sizeof(sony_laptop_input_keycode_map[0]); key_dev->keycodemax = ARRAY_SIZE(sony_laptop_input_keycode_map); key_dev->keycode = &sony_laptop_input_keycode_map; for (i = 0; i < ARRAY_SIZE(sony_laptop_input_keycode_map); i++) __set_bit(sony_laptop_input_keycode_map[i], key_dev->keybit); __clear_bit(KEY_RESERVED, key_dev->keybit); error = input_register_device(key_dev); if (error) goto err_free_keydev; sony_laptop_input.key_dev = key_dev; /* jogdial */ jog_dev = input_allocate_device(); if (!jog_dev) { error = -ENOMEM; goto err_unregister_keydev; } jog_dev->name = "Sony Vaio Jogdial"; jog_dev->id.bustype = BUS_ISA; jog_dev->id.vendor = PCI_VENDOR_ID_SONY; jog_dev->dev.parent = &acpi_device->dev; input_set_capability(jog_dev, EV_KEY, BTN_MIDDLE); input_set_capability(jog_dev, EV_REL, REL_WHEEL); error = input_register_device(jog_dev); if (error) goto err_free_jogdev; sony_laptop_input.jog_dev = jog_dev; return 0; err_free_jogdev: input_free_device(jog_dev); err_unregister_keydev: input_unregister_device(key_dev); /* to avoid kref underflow below at input_free_device */ key_dev = NULL; err_free_keydev: input_free_device(key_dev); err_free_kfifo: kfifo_free(&sony_laptop_input.fifo); err_dec_users: atomic_dec(&sony_laptop_input.users); return error; } static void sony_laptop_remove_input(void) { struct sony_laptop_keypress kp = { NULL }; /* Cleanup only after the last user has gone */ if (!atomic_dec_and_test(&sony_laptop_input.users)) return; del_timer_sync(&sony_laptop_input.release_key_timer); /* * Generate key-up events for remaining keys. Note that we don't * need locking since nobody is adding new events to the kfifo. */ while (kfifo_out(&sony_laptop_input.fifo, (unsigned char *)&kp, sizeof(kp)) == sizeof(kp)) { input_report_key(kp.dev, kp.key, 0); input_sync(kp.dev); } /* destroy input devs */ input_unregister_device(sony_laptop_input.key_dev); sony_laptop_input.key_dev = NULL; if (sony_laptop_input.jog_dev) { input_unregister_device(sony_laptop_input.jog_dev); sony_laptop_input.jog_dev = NULL; } kfifo_free(&sony_laptop_input.fifo); } /*********** Platform Device ***********/ static atomic_t sony_pf_users = ATOMIC_INIT(0); static struct platform_driver sony_pf_driver = { .driver = { .name = "sony-laptop", } }; static struct platform_device *sony_pf_device; static int sony_pf_add(void) { int ret = 0; /* don't run again if already initialized */ if (atomic_add_return(1, &sony_pf_users) > 1) return 0; ret = platform_driver_register(&sony_pf_driver); if (ret) goto out; sony_pf_device = platform_device_alloc("sony-laptop", PLATFORM_DEVID_NONE); if (!sony_pf_device) { ret = -ENOMEM; goto out_platform_registered; } ret = platform_device_add(sony_pf_device); if (ret) goto out_platform_alloced; return 0; out_platform_alloced: platform_device_put(sony_pf_device); sony_pf_device = NULL; out_platform_registered: platform_driver_unregister(&sony_pf_driver); out: atomic_dec(&sony_pf_users); return ret; } static void sony_pf_remove(void) { /* deregister only after the last user has gone */ if (!atomic_dec_and_test(&sony_pf_users)) return; platform_device_unregister(sony_pf_device); platform_driver_unregister(&sony_pf_driver); } /*********** SNC (SNY5001) Device ***********/ /* the device uses 1-based values, while the backlight subsystem uses 0-based values */ #define SONY_MAX_BRIGHTNESS 8 #define SNC_VALIDATE_IN 0 #define SNC_VALIDATE_OUT 1 static ssize_t sony_nc_sysfs_show(struct device *, struct device_attribute *, char *); static ssize_t sony_nc_sysfs_store(struct device *, struct device_attribute *, const char *, size_t); static int boolean_validate(const int, const int); static int brightness_default_validate(const int, const int); struct sony_nc_value { char *name; /* name of the entry */ char **acpiget; /* names of the ACPI get function */ char **acpiset; /* names of the ACPI set function */ int (*validate)(const int, const int); /* input/output validation */ int value; /* current setting */ int valid; /* Has ever been set */ int debug; /* active only in debug mode ? */ struct device_attribute devattr; /* sysfs attribute */ }; #define SNC_HANDLE_NAMES(_name, _values...) \ static char *snc_##_name[] = { _values, NULL } #define SNC_HANDLE(_name, _getters, _setters, _validate, _debug) \ { \ .name = __stringify(_name), \ .acpiget = _getters, \ .acpiset = _setters, \ .validate = _validate, \ .debug = _debug, \ .devattr = __ATTR(_name, 0, sony_nc_sysfs_show, sony_nc_sysfs_store), \ } #define SNC_HANDLE_NULL { .name = NULL } SNC_HANDLE_NAMES(fnkey_get, "GHKE"); SNC_HANDLE_NAMES(brightness_def_get, "GPBR"); SNC_HANDLE_NAMES(brightness_def_set, "SPBR"); SNC_HANDLE_NAMES(cdpower_get, "GCDP"); SNC_HANDLE_NAMES(cdpower_set, "SCDP", "CDPW"); SNC_HANDLE_NAMES(audiopower_get, "GAZP"); SNC_HANDLE_NAMES(audiopower_set, "AZPW"); SNC_HANDLE_NAMES(lanpower_get, "GLNP"); SNC_HANDLE_NAMES(lanpower_set, "LNPW"); SNC_HANDLE_NAMES(lidstate_get, "GLID"); SNC_HANDLE_NAMES(indicatorlamp_get, "GILS"); SNC_HANDLE_NAMES(indicatorlamp_set, "SILS"); SNC_HANDLE_NAMES(gainbass_get, "GMGB"); SNC_HANDLE_NAMES(gainbass_set, "CMGB"); SNC_HANDLE_NAMES(PID_get, "GPID"); SNC_HANDLE_NAMES(CTR_get, "GCTR"); SNC_HANDLE_NAMES(CTR_set, "SCTR"); SNC_HANDLE_NAMES(PCR_get, "GPCR"); SNC_HANDLE_NAMES(PCR_set, "SPCR"); SNC_HANDLE_NAMES(CMI_get, "GCMI"); SNC_HANDLE_NAMES(CMI_set, "SCMI"); static struct sony_nc_value sony_nc_values[] = { SNC_HANDLE(brightness_default, snc_brightness_def_get, snc_brightness_def_set, brightness_default_validate, 0), SNC_HANDLE(fnkey, snc_fnkey_get, NULL, NULL, 0), SNC_HANDLE(cdpower, snc_cdpower_get, snc_cdpower_set, boolean_validate, 0), SNC_HANDLE(audiopower, snc_audiopower_get, snc_audiopower_set, boolean_validate, 0), SNC_HANDLE(lanpower, snc_lanpower_get, snc_lanpower_set, boolean_validate, 1), SNC_HANDLE(lidstate, snc_lidstate_get, NULL, boolean_validate, 0), SNC_HANDLE(indicatorlamp, snc_indicatorlamp_get, snc_indicatorlamp_set, boolean_validate, 0), SNC_HANDLE(gainbass, snc_gainbass_get, snc_gainbass_set, boolean_validate, 0), /* unknown methods */ SNC_HANDLE(PID, snc_PID_get, NULL, NULL, 1), SNC_HANDLE(CTR, snc_CTR_get, snc_CTR_set, NULL, 1), SNC_HANDLE(PCR, snc_PCR_get, snc_PCR_set, NULL, 1), SNC_HANDLE(CMI, snc_CMI_get, snc_CMI_set, NULL, 1), SNC_HANDLE_NULL }; static acpi_handle sony_nc_acpi_handle; static struct acpi_device *sony_nc_acpi_device = NULL; /* * acpi_evaluate_object wrappers * all useful calls into SNC methods take one or zero parameters and return * integers or arrays. */ static union acpi_object *__call_snc_method(acpi_handle handle, char *method, u64 *value) { union acpi_object *result = NULL; struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL }; acpi_status status; if (value) { struct acpi_object_list params; union acpi_object in; in.type = ACPI_TYPE_INTEGER; in.integer.value = *value; params.count = 1; params.pointer = &in; status = acpi_evaluate_object(handle, method, &params, &output); dprintk("__call_snc_method: [%s:0x%.8x%.8x]\n", method, (unsigned int)(*value >> 32), (unsigned int)*value & 0xffffffff); } else { status = acpi_evaluate_object(handle, method, NULL, &output); dprintk("__call_snc_method: [%s]\n", method); } if (ACPI_FAILURE(status)) { pr_err("Failed to evaluate [%s]\n", method); return NULL; } result = (union acpi_object *) output.pointer; if (!result) dprintk("No return object [%s]\n", method); return result; } #define MIN(a, b) (a > b ? b : a) static int sony_nc_buffer_call(acpi_handle handle, char *name, u64 *value, void *buffer, size_t buflen) { int ret = 0; size_t len; union acpi_object *object = __call_snc_method(handle, name, value); if (!object) return -EINVAL; if (!buffer) { /* do nothing */ } else if (object->type == ACPI_TYPE_BUFFER) { len = MIN(buflen, object->buffer.length); memset(buffer, 0, buflen); memcpy(buffer, object->buffer.pointer, len); } else if (object->type == ACPI_TYPE_INTEGER) { len = MIN(buflen, sizeof(object->integer.value)); memset(buffer, 0, buflen); memcpy(buffer, &object->integer.value, len); } else { pr_warn("Unexpected acpi_object: 0x%x\n", object->type); ret = -EINVAL; } kfree(object); return ret; } static int sony_nc_int_call(acpi_handle handle, char *name, int *value, int *result) { int ret; if (value) { u64 v = *value; ret = sony_nc_buffer_call(handle, name, &v, result, sizeof(*result)); } else { ret = sony_nc_buffer_call(handle, name, NULL, result, sizeof(*result)); } return ret; } struct sony_nc_handles { u16 cap[0x10]; struct device_attribute devattr; }; static struct sony_nc_handles *handles; static ssize_t sony_nc_handles_show(struct device *dev, struct device_attribute *attr, char *buffer) { ssize_t len = 0; int i; for (i = 0; i < ARRAY_SIZE(handles->cap); i++) { len += sysfs_emit_at(buffer, len, "0x%.4x ", handles->cap[i]); } len += sysfs_emit_at(buffer, len, "\n"); return len; } static int sony_nc_handles_setup(struct platform_device *pd) { int i, r, result, arg; handles = kzalloc(sizeof(*handles), GFP_KERNEL); if (!handles) return -ENOMEM; for (i = 0; i < ARRAY_SIZE(handles->cap); i++) { arg = i + 0x20; r = sony_nc_int_call(sony_nc_acpi_handle, "SN00", &arg, &result); if (!r) { dprintk("caching handle 0x%.4x (offset: 0x%.2x)\n", result, i); handles->cap[i] = result; } } if (debug) { sysfs_attr_init(&handles->devattr.attr); handles->devattr.attr.name = "handles"; handles->devattr.attr.mode = S_IRUGO; handles->devattr.show = sony_nc_handles_show; /* allow reading capabilities via sysfs */ if (device_create_file(&pd->dev, &handles->devattr)) { kfree(handles); handles = NULL; return -1; } } return 0; } static int sony_nc_handles_cleanup(struct platform_device *pd) { if (handles) { if (debug) device_remove_file(&pd->dev, &handles->devattr); kfree(handles); handles = NULL; } return 0; } static int sony_find_snc_handle(int handle) { int i; /* not initialized yet, return early */ if (!handles || !handle) return -EINVAL; for (i = 0; i < 0x10; i++) { if (handles->cap[i] == handle) { dprintk("found handle 0x%.4x (offset: 0x%.2x)\n", handle, i); return i; } } dprintk("handle 0x%.4x not found\n", handle); return -EINVAL; } static int sony_call_snc_handle(int handle, int argument, int *result) { int arg, ret = 0; int offset = sony_find_snc_handle(handle); if (offset < 0) return offset; arg = offset | argument; ret = sony_nc_int_call(sony_nc_acpi_handle, "SN07", &arg, result); dprintk("called SN07 with 0x%.4x (result: 0x%.4x)\n", arg, *result); return ret; } /* * sony_nc_values input/output validate functions */ /* brightness_default_validate: * * manipulate input output values to keep consistency with the * backlight framework for which brightness values are 0-based. */ static int brightness_default_validate(const int direction, const int value) { switch (direction) { case SNC_VALIDATE_OUT: return value - 1; case SNC_VALIDATE_IN: if (value >= 0 && value < SONY_MAX_BRIGHTNESS) return value + 1; } return -EINVAL; } /* boolean_validate: * * on input validate boolean values 0/1, on output just pass the * received value. */ static int boolean_validate(const int direction, const int value) { if (direction == SNC_VALIDATE_IN) { if (value != 0 && value != 1) return -EINVAL; } return value; } /* * Sysfs show/store common to all sony_nc_values */ static ssize_t sony_nc_sysfs_show(struct device *dev, struct device_attribute *attr, char *buffer) { int value, ret = 0; struct sony_nc_value *item = container_of(attr, struct sony_nc_value, devattr); if (!*item->acpiget) return -EIO; ret = sony_nc_int_call(sony_nc_acpi_handle, *item->acpiget, NULL, &value); if (ret < 0) return -EIO; if (item->validate) value = item->validate(SNC_VALIDATE_OUT, value); return sysfs_emit(buffer, "%d\n", value); } static ssize_t sony_nc_sysfs_store(struct device *dev, struct device_attribute *attr, const char *buffer, size_t count) { int value; int ret = 0; struct sony_nc_value *item = container_of(attr, struct sony_nc_value, devattr); if (!item->acpiset) return -EIO; if (count > 31) return -EINVAL; if (kstrtoint(buffer, 10, &value)) return -EINVAL; if (item->validate) value = item->validate(SNC_VALIDATE_IN, value); if (value < 0) return value; ret = sony_nc_int_call(sony_nc_acpi_handle, *item->acpiset, &value, NULL); if (ret < 0) return -EIO; item->value = value; item->valid = 1; return count; } /* * Backlight device */ struct sony_backlight_props { struct backlight_device *dev; int handle; int cmd_base; u8 offset; u8 maxlvl; }; static struct sony_backlight_props sony_bl_props; static int sony_backlight_update_status(struct backlight_device *bd) { int arg = bd->props.brightness + 1; return sony_nc_int_call(sony_nc_acpi_handle, "SBRT", &arg, NULL); } static int sony_backlight_get_brightness(struct backlight_device *bd) { int value; if (sony_nc_int_call(sony_nc_acpi_handle, "GBRT", NULL, &value)) return 0; /* brightness levels are 1-based, while backlight ones are 0-based */ return value - 1; } static int sony_nc_get_brightness_ng(struct backlight_device *bd) { int result; struct sony_backlight_props *sdev = (struct sony_backlight_props *)bl_get_data(bd); sony_call_snc_handle(sdev->handle, sdev->cmd_base + 0x100, &result); return (result & 0xff) - sdev->offset; } static int sony_nc_update_status_ng(struct backlight_device *bd) { int value, result; struct sony_backlight_props *sdev = (struct sony_backlight_props *)bl_get_data(bd); value = bd->props.brightness + sdev->offset; if (sony_call_snc_handle(sdev->handle, sdev->cmd_base | (value << 0x10), &result)) return -EIO; return value; } static const struct backlight_ops sony_backlight_ops = { .options = BL_CORE_SUSPENDRESUME, .update_status = sony_backlight_update_status, .get_brightness = sony_backlight_get_brightness, }; static const struct backlight_ops sony_backlight_ng_ops = { .options = BL_CORE_SUSPENDRESUME, .update_status = sony_nc_update_status_ng, .get_brightness = sony_nc_get_brightness_ng, }; /* * New SNC-only Vaios event mapping to driver known keys */ struct sony_nc_event { u8 data; u8 event; }; static struct sony_nc_event sony_100_events[] = { { 0x90, SONYPI_EVENT_PKEY_P1 }, { 0x10, SONYPI_EVENT_ANYBUTTON_RELEASED }, { 0x91, SONYPI_EVENT_PKEY_P2 }, { 0x11, SONYPI_EVENT_ANYBUTTON_RELEASED }, { 0x81, SONYPI_EVENT_FNKEY_F1 }, { 0x01, SONYPI_EVENT_FNKEY_RELEASED }, { 0x82, SONYPI_EVENT_FNKEY_F2 }, { 0x02, SONYPI_EVENT_FNKEY_RELEASED }, { 0x83, SONYPI_EVENT_FNKEY_F3 }, { 0x03, SONYPI_EVENT_FNKEY_RELEASED }, { 0x84, SONYPI_EVENT_FNKEY_F4 }, { 0x04, SONYPI_EVENT_FNKEY_RELEASED }, { 0x85, SONYPI_EVENT_FNKEY_F5 }, { 0x05, SONYPI_EVENT_FNKEY_RELEASED }, { 0x86, SONYPI_EVENT_FNKEY_F6 }, { 0x06, SONYPI_EVENT_FNKEY_RELEASED }, { 0x87, SONYPI_EVENT_FNKEY_F7 }, { 0x07, SONYPI_EVENT_FNKEY_RELEASED }, { 0x88, SONYPI_EVENT_FNKEY_F8 }, { 0x08, SONYPI_EVENT_FNKEY_RELEASED }, { 0x89, SONYPI_EVENT_FNKEY_F9 }, { 0x09, SONYPI_EVENT_FNKEY_RELEASED }, { 0x8A, SONYPI_EVENT_FNKEY_F10 }, { 0x0A, SONYPI_EVENT_FNKEY_RELEASED }, { 0x8B, SONYPI_EVENT_FNKEY_F11 }, { 0x0B, SONYPI_EVENT_FNKEY_RELEASED }, { 0x8C, SONYPI_EVENT_FNKEY_F12 }, { 0x0C, SONYPI_EVENT_FNKEY_RELEASED }, { 0x9d, SONYPI_EVENT_ZOOM_PRESSED }, { 0x1d, SONYPI_EVENT_ANYBUTTON_RELEASED }, { 0x9f, SONYPI_EVENT_CD_EJECT_PRESSED }, { 0x1f, SONYPI_EVENT_ANYBUTTON_RELEASED }, { 0xa1, SONYPI_EVENT_MEDIA_PRESSED }, { 0x21, SONYPI_EVENT_ANYBUTTON_RELEASED }, { 0xa4, SONYPI_EVENT_CD_EJECT_PRESSED }, { 0x24, SONYPI_EVENT_ANYBUTTON_RELEASED }, { 0xa5, SONYPI_EVENT_VENDOR_PRESSED }, { 0x25, SONYPI_EVENT_ANYBUTTON_RELEASED }, { 0xa6, SONYPI_EVENT_HELP_PRESSED }, { 0x26, SONYPI_EVENT_ANYBUTTON_RELEASED }, { 0xa8, SONYPI_EVENT_FNKEY_1 }, { 0x28, SONYPI_EVENT_ANYBUTTON_RELEASED }, { 0, 0 }, }; static struct sony_nc_event sony_127_events[] = { { 0x81, SONYPI_EVENT_MODEKEY_PRESSED }, { 0x01, SONYPI_EVENT_ANYBUTTON_RELEASED }, { 0x82, SONYPI_EVENT_PKEY_P1 }, { 0x02, SONYPI_EVENT_ANYBUTTON_RELEASED }, { 0x83, SONYPI_EVENT_PKEY_P2 }, { 0x03, SONYPI_EVENT_ANYBUTTON_RELEASED }, { 0x84, SONYPI_EVENT_PKEY_P3 }, { 0x04, SONYPI_EVENT_ANYBUTTON_RELEASED }, { 0x85, SONYPI_EVENT_PKEY_P4 }, { 0x05, SONYPI_EVENT_ANYBUTTON_RELEASED }, { 0x86, SONYPI_EVENT_PKEY_P5 }, { 0x06, SONYPI_EVENT_ANYBUTTON_RELEASED }, { 0x87, SONYPI_EVENT_SETTINGKEY_PRESSED }, { 0x07, SONYPI_EVENT_ANYBUTTON_RELEASED }, { 0, 0 }, }; static int sony_nc_hotkeys_decode(u32 event, unsigned int handle) { int ret = -EINVAL; unsigned int result = 0; struct sony_nc_event *key_event; if (sony_call_snc_handle(handle, 0x200, &result)) { dprintk("Unable to decode event 0x%.2x 0x%.2x\n", handle, event); return -EINVAL; } result &= 0xFF; if (handle == 0x0100) key_event = sony_100_events; else key_event = sony_127_events; for (; key_event->data; key_event++) { if (key_event->data == result) { ret = key_event->event; break; } } if (!key_event->data) pr_info("Unknown hotkey 0x%.2x/0x%.2x (handle 0x%.2x)\n", event, result, handle); return ret; } /* * ACPI callbacks */ enum event_types { HOTKEY = 1, KILLSWITCH, GFX_SWITCH }; static void sony_nc_notify(struct acpi_device *device, u32 event) { u32 real_ev = event; u8 ev_type = 0; int ret; dprintk("sony_nc_notify, event: 0x%.2x\n", event); if (event >= 0x90) { unsigned int result = 0; unsigned int arg = 0; unsigned int handle = 0; unsigned int offset = event - 0x90; if (offset >= ARRAY_SIZE(handles->cap)) { pr_err("Event 0x%x outside of capabilities list\n", event); return; } handle = handles->cap[offset]; /* list of handles known for generating events */ switch (handle) { /* hotkey event */ case 0x0100: case 0x0127: ev_type = HOTKEY; ret = sony_nc_hotkeys_decode(event, handle); if (ret > 0) { sony_laptop_report_input_event(ret); real_ev = ret; } break; /* wlan switch */ case 0x0124: case 0x0135: /* events on this handle are reported when the * switch changes position or for battery * events. We'll notify both of them but only * update the rfkill device status when the * switch is moved. */ ev_type = KILLSWITCH; sony_call_snc_handle(handle, 0x0100, &result); real_ev = result & 0x03; /* hw switch event */ if (real_ev == 1) sony_nc_rfkill_update(); break; case 0x0128: case 0x0146: /* Hybrid GFX switching */ sony_call_snc_handle(handle, 0x0000, &result); dprintk("GFX switch event received (reason: %s)\n", (result == 0x1) ? "switch change" : (result == 0x2) ? "output switch" : (result == 0x3) ? "output switch" : ""); ev_type = GFX_SWITCH; real_ev = __sony_nc_gfx_switch_status_get(); break; case 0x015B: /* Hybrid GFX switching SVS151290S */ ev_type = GFX_SWITCH; real_ev = __sony_nc_gfx_switch_status_get(); break; default: dprintk("Unknown event 0x%x for handle 0x%x\n", event, handle); break; } /* clear the event (and the event reason when present) */ arg = 1 << offset; sony_nc_int_call(sony_nc_acpi_handle, "SN05", &arg, &result); } else { /* old style event */ ev_type = HOTKEY; sony_laptop_report_input_event(real_ev); } acpi_bus_generate_netlink_event(sony_nc_acpi_device->pnp.device_class, dev_name(&sony_nc_acpi_device->dev), ev_type, real_ev); } static acpi_status sony_walk_callback(acpi_handle handle, u32 level, void *context, void **return_value) { struct acpi_device_info *info; if (ACPI_SUCCESS(acpi_get_object_info(handle, &info))) { pr_warn("method: name: %4.4s, args %X\n", (char *)&info->name, info->param_count); kfree(info); } return AE_OK; } /* * ACPI device */ static void sony_nc_function_setup(struct acpi_device *device, struct platform_device *pf_device) { unsigned int i, result, bitmask, arg; if (!handles) return; /* setup found handles here */ for (i = 0; i < ARRAY_SIZE(handles->cap); i++) { unsigned int handle = handles->cap[i]; if (!handle) continue; dprintk("setting up handle 0x%.4x\n", handle); switch (handle) { case 0x0100: case 0x0101: case 0x0127: /* setup hotkeys */ sony_call_snc_handle(handle, 0, &result); break; case 0x0102: /* setup hotkeys */ sony_call_snc_handle(handle, 0x100, &result); break; case 0x0105: case 0x0148: /* touchpad enable/disable */ result = sony_nc_touchpad_setup(pf_device, handle); if (result) pr_err("couldn't set up touchpad control function (%d)\n", result); break; case 0x0115: case 0x0136: case 0x013f: result = sony_nc_battery_care_setup(pf_device, handle); if (result) pr_err("couldn't set up battery care function (%d)\n", result); break; case 0x0119: case 0x015D: result = sony_nc_lid_resume_setup(pf_device, handle); if (result) pr_err("couldn't set up lid resume function (%d)\n", result); break; case 0x0122: result = sony_nc_thermal_setup(pf_device); if (result) pr_err("couldn't set up thermal profile function (%d)\n", result); break; case 0x0128: case 0x0146: case 0x015B: result = sony_nc_gfx_switch_setup(pf_device, handle); if (result) pr_err("couldn't set up GFX Switch status (%d)\n", result); break; case 0x0131: result = sony_nc_highspeed_charging_setup(pf_device); if (result) pr_err("couldn't set up high speed charging function (%d)\n", result); break; case 0x0124: case 0x0135: result = sony_nc_rfkill_setup(device, handle); if (result) pr_err("couldn't set up rfkill support (%d)\n", result); break; case 0x0137: case 0x0143: case 0x014b: case 0x014c: case 0x0153: case 0x0163: result = sony_nc_kbd_backlight_setup(pf_device, handle); if (result) pr_err("couldn't set up keyboard backlight function (%d)\n", result); break; case 0x0121: result = sony_nc_lowbatt_setup(pf_device); if (result) pr_err("couldn't set up low battery function (%d)\n", result); break; case 0x0149: result = sony_nc_fanspeed_setup(pf_device); if (result) pr_err("couldn't set up fan speed function (%d)\n", result); break; case 0x0155: result = sony_nc_usb_charge_setup(pf_device); if (result) pr_err("couldn't set up USB charge support (%d)\n", result); break; case 0x011D: result = sony_nc_panelid_setup(pf_device); if (result) pr_err("couldn't set up panel ID function (%d)\n", result); break; case 0x0168: result = sony_nc_smart_conn_setup(pf_device); if (result) pr_err("couldn't set up smart connect support (%d)\n", result); break; default: continue; } } /* Enable all events */ arg = 0x10; if (!sony_nc_int_call(sony_nc_acpi_handle, "SN00", &arg, &bitmask)) sony_nc_int_call(sony_nc_acpi_handle, "SN02", &bitmask, &result); } static void sony_nc_function_cleanup(struct platform_device *pd) { unsigned int i, result, bitmask, handle; if (!handles) return; /* get enabled events and disable them */ sony_nc_int_call(sony_nc_acpi_handle, "SN01", NULL, &bitmask); sony_nc_int_call(sony_nc_acpi_handle, "SN03", &bitmask, &result); /* cleanup handles here */ for (i = 0; i < ARRAY_SIZE(handles->cap); i++) { handle = handles->cap[i]; if (!handle) continue; switch (handle) { case 0x0105: case 0x0148: sony_nc_touchpad_cleanup(pd); break; case 0x0115: case 0x0136: case 0x013f: sony_nc_battery_care_cleanup(pd); break; case 0x0119: case 0x015D: sony_nc_lid_resume_cleanup(pd); break; case 0x0122: sony_nc_thermal_cleanup(pd); break; case 0x0128: case 0x0146: case 0x015B: sony_nc_gfx_switch_cleanup(pd); break; case 0x0131: sony_nc_highspeed_charging_cleanup(pd); break; case 0x0124: case 0x0135: sony_nc_rfkill_cleanup(); break; case 0x0137: case 0x0143: case 0x014b: case 0x014c: case 0x0153: case 0x0163: sony_nc_kbd_backlight_cleanup(pd, handle); break; case 0x0121: sony_nc_lowbatt_cleanup(pd); break; case 0x0149: sony_nc_fanspeed_cleanup(pd); break; case 0x0155: sony_nc_usb_charge_cleanup(pd); break; case 0x011D: sony_nc_panelid_cleanup(pd); break; case 0x0168: sony_nc_smart_conn_cleanup(pd); break; default: continue; } } /* finally cleanup the handles list */ sony_nc_handles_cleanup(pd); } #ifdef CONFIG_PM_SLEEP static void sony_nc_function_resume(void) { unsigned int i, result, bitmask, arg; dprintk("Resuming SNC device\n"); for (i = 0; i < ARRAY_SIZE(handles->cap); i++) { unsigned int handle = handles->cap[i]; if (!handle) continue; switch (handle) { case 0x0100: case 0x0101: case 0x0127: /* re-enable hotkeys */ sony_call_snc_handle(handle, 0, &result); break; case 0x0102: /* re-enable hotkeys */ sony_call_snc_handle(handle, 0x100, &result); break; case 0x0122: sony_nc_thermal_resume(); break; case 0x0124: case 0x0135: sony_nc_rfkill_update(); break; default: continue; } } /* Enable all events */ arg = 0x10; if (!sony_nc_int_call(sony_nc_acpi_handle, "SN00", &arg, &bitmask)) sony_nc_int_call(sony_nc_acpi_handle, "SN02", &bitmask, &result); } static int sony_nc_resume(struct device *dev) { struct sony_nc_value *item; for (item = sony_nc_values; item->name; item++) { int ret; if (!item->valid) continue; ret = sony_nc_int_call(sony_nc_acpi_handle, *item->acpiset, &item->value, NULL); if (ret < 0) { pr_err("%s: %d\n", __func__, ret); break; } } if (acpi_has_method(sony_nc_acpi_handle, "ECON")) { int arg = 1; if (sony_nc_int_call(sony_nc_acpi_handle, "ECON", &arg, NULL)) dprintk("ECON Method failed\n"); } if (acpi_has_method(sony_nc_acpi_handle, "SN00")) sony_nc_function_resume(); return 0; } #endif static SIMPLE_DEV_PM_OPS(sony_nc_pm, NULL, sony_nc_resume); static void sony_nc_rfkill_cleanup(void) { int i; for (i = 0; i < N_SONY_RFKILL; i++) { if (sony_rfkill_devices[i]) { rfkill_unregister(sony_rfkill_devices[i]); rfkill_destroy(sony_rfkill_devices[i]); } } } static int sony_nc_rfkill_set(void *data, bool blocked) { int result; int argument = sony_rfkill_address[(long) data] + 0x100; if (!blocked) argument |= 0x070000; return sony_call_snc_handle(sony_rfkill_handle, argument, &result); } static const struct rfkill_ops sony_rfkill_ops = { .set_block = sony_nc_rfkill_set, }; static int sony_nc_setup_rfkill(struct acpi_device *device, enum sony_nc_rfkill nc_type) { int err; struct rfkill *rfk; enum rfkill_type type; const char *name; int result; bool hwblock, swblock; switch (nc_type) { case SONY_WIFI: type = RFKILL_TYPE_WLAN; name = "sony-wifi"; break; case SONY_BLUETOOTH: type = RFKILL_TYPE_BLUETOOTH; name = "sony-bluetooth"; break; case SONY_WWAN: type = RFKILL_TYPE_WWAN; name = "sony-wwan"; break; case SONY_WIMAX: type = RFKILL_TYPE_WIMAX; name = "sony-wimax"; break; default: return -EINVAL; } rfk = rfkill_alloc(name, &device->dev, type, &sony_rfkill_ops, (void *)nc_type); if (!rfk) return -ENOMEM; err = sony_call_snc_handle(sony_rfkill_handle, 0x200, &result); if (err < 0) { rfkill_destroy(rfk); return err; } hwblock = !(result & 0x1); err = sony_call_snc_handle(sony_rfkill_handle, sony_rfkill_address[nc_type], &result); if (err < 0) { rfkill_destroy(rfk); return err; } swblock = !(result & 0x2); rfkill_init_sw_state(rfk, swblock); rfkill_set_hw_state(rfk, hwblock); err = rfkill_register(rfk); if (err) { rfkill_destroy(rfk); return err; } sony_rfkill_devices[nc_type] = rfk; return err; } static void sony_nc_rfkill_update(void) { enum sony_nc_rfkill i; int result; bool hwblock; sony_call_snc_handle(sony_rfkill_handle, 0x200, &result); hwblock = !(result & 0x1); for (i = 0; i < N_SONY_RFKILL; i++) { int argument = sony_rfkill_address[i]; if (!sony_rfkill_devices[i]) continue; if (hwblock) { if (rfkill_set_hw_state(sony_rfkill_devices[i], true)) { /* we already know we're blocked */ } continue; } sony_call_snc_handle(sony_rfkill_handle, argument, &result); rfkill_set_states(sony_rfkill_devices[i], !(result & 0x2), false); } } static int sony_nc_rfkill_setup(struct acpi_device *device, unsigned int handle) { u64 offset; int i; unsigned char buffer[32] = { 0 }; offset = sony_find_snc_handle(handle); sony_rfkill_handle = handle; i = sony_nc_buffer_call(sony_nc_acpi_handle, "SN06", &offset, buffer, 32); if (i < 0) return i; /* The buffer is filled with magic numbers describing the devices * available, 0xff terminates the enumeration. * Known codes: * 0x00 WLAN * 0x10 BLUETOOTH * 0x20 WWAN GPRS-EDGE * 0x21 WWAN HSDPA * 0x22 WWAN EV-DO * 0x23 WWAN GPS * 0x25 Gobi WWAN no GPS * 0x26 Gobi WWAN + GPS * 0x28 Gobi WWAN no GPS * 0x29 Gobi WWAN + GPS * 0x30 WIMAX * 0x50 Gobi WWAN no GPS * 0x51 Gobi WWAN + GPS * 0x70 no SIM card slot * 0x71 SIM card slot */ for (i = 0; i < ARRAY_SIZE(buffer); i++) { if (buffer[i] == 0xff) break; dprintk("Radio devices, found 0x%.2x\n", buffer[i]); if (buffer[i] == 0 && !sony_rfkill_devices[SONY_WIFI]) sony_nc_setup_rfkill(device, SONY_WIFI); if (buffer[i] == 0x10 && !sony_rfkill_devices[SONY_BLUETOOTH]) sony_nc_setup_rfkill(device, SONY_BLUETOOTH); if (((0xf0 & buffer[i]) == 0x20 || (0xf0 & buffer[i]) == 0x50) && !sony_rfkill_devices[SONY_WWAN]) sony_nc_setup_rfkill(device, SONY_WWAN); if (buffer[i] == 0x30 && !sony_rfkill_devices[SONY_WIMAX]) sony_nc_setup_rfkill(device, SONY_WIMAX); } return 0; } /* Keyboard backlight feature */ struct kbd_backlight { unsigned int handle; unsigned int base; unsigned int mode; unsigned int timeout; unsigned int has_timeout; struct device_attribute mode_attr; struct device_attribute timeout_attr; }; static struct kbd_backlight *kbdbl_ctl; static ssize_t __sony_nc_kbd_backlight_mode_set(u8 value) { int result; if (value > 2) return -EINVAL; if (sony_call_snc_handle(kbdbl_ctl->handle, (value << 0x10) | (kbdbl_ctl->base), &result)) return -EIO; /* Try to turn the light on/off immediately */ if (value != 1) sony_call_snc_handle(kbdbl_ctl->handle, (value << 0x0f) | (kbdbl_ctl->base + 0x100), &result); kbdbl_ctl->mode = value; return 0; } static ssize_t sony_nc_kbd_backlight_mode_store(struct device *dev, struct device_attribute *attr, const char *buffer, size_t count) { int ret = 0; unsigned long value; if (count > 31) return -EINVAL; if (kstrtoul(buffer, 10, &value)) return -EINVAL; ret = __sony_nc_kbd_backlight_mode_set(value); if (ret < 0) return ret; return count; } static ssize_t sony_nc_kbd_backlight_mode_show(struct device *dev, struct device_attribute *attr, char *buffer) { return sysfs_emit(buffer, "%d\n", kbdbl_ctl->mode); } static int __sony_nc_kbd_backlight_timeout_set(u8 value) { int result; if (value > 3) return -EINVAL; if (sony_call_snc_handle(kbdbl_ctl->handle, (value << 0x10) | (kbdbl_ctl->base + 0x200), &result)) return -EIO; kbdbl_ctl->timeout = value; return 0; } static ssize_t sony_nc_kbd_backlight_timeout_store(struct device *dev, struct device_attribute *attr, const char *buffer, size_t count) { int ret = 0; unsigned long value; if (count > 31) return -EINVAL; if (kstrtoul(buffer, 10, &value)) return -EINVAL; ret = __sony_nc_kbd_backlight_timeout_set(value); if (ret < 0) return ret; return count; } static ssize_t sony_nc_kbd_backlight_timeout_show(struct device *dev, struct device_attribute *attr, char *buffer) { return sysfs_emit(buffer, "%d\n", kbdbl_ctl->timeout); } static int sony_nc_kbd_backlight_setup(struct platform_device *pd, unsigned int handle) { int result; int probe_base = 0; int ctl_base = 0; int ret = 0; if (kbdbl_ctl) { pr_warn("handle 0x%.4x: keyboard backlight setup already done for 0x%.4x\n", handle, kbdbl_ctl->handle); return -EBUSY; } /* verify the kbd backlight presence, some of these handles are not used * for keyboard backlight only */ switch (handle) { case 0x0153: probe_base = 0x0; ctl_base = 0x0; break; case 0x0137: probe_base = 0x0B00; ctl_base = 0x0C00; break; default: probe_base = 0x0100; ctl_base = 0x4000; break; } /* * Only probe if there is a separate probe_base, otherwise the probe call * is equivalent to __sony_nc_kbd_backlight_mode_set(0), resulting in * the keyboard backlight being turned off. */ if (probe_base) { ret = sony_call_snc_handle(handle, probe_base, &result); if (ret) return ret; if ((handle == 0x0137 && !(result & 0x02)) || !(result & 0x01)) { dprintk("no backlight keyboard found\n"); return 0; } } kbdbl_ctl = kzalloc(sizeof(*kbdbl_ctl), GFP_KERNEL); if (!kbdbl_ctl) return -ENOMEM; kbdbl_ctl->mode = kbd_backlight; kbdbl_ctl->timeout = kbd_backlight_timeout; kbdbl_ctl->handle = handle; kbdbl_ctl->base = ctl_base; /* Some models do not allow timeout control */ kbdbl_ctl->has_timeout = handle != 0x0153; sysfs_attr_init(&kbdbl_ctl->mode_attr.attr); kbdbl_ctl->mode_attr.attr.name = "kbd_backlight"; kbdbl_ctl->mode_attr.attr.mode = S_IRUGO | S_IWUSR; kbdbl_ctl->mode_attr.show = sony_nc_kbd_backlight_mode_show; kbdbl_ctl->mode_attr.store = sony_nc_kbd_backlight_mode_store; ret = device_create_file(&pd->dev, &kbdbl_ctl->mode_attr); if (ret) goto outkzalloc; __sony_nc_kbd_backlight_mode_set(kbdbl_ctl->mode); if (kbdbl_ctl->has_timeout) { sysfs_attr_init(&kbdbl_ctl->timeout_attr.attr); kbdbl_ctl->timeout_attr.attr.name = "kbd_backlight_timeout"; kbdbl_ctl->timeout_attr.attr.mode = S_IRUGO | S_IWUSR; kbdbl_ctl->timeout_attr.show = sony_nc_kbd_backlight_timeout_show; kbdbl_ctl->timeout_attr.store = sony_nc_kbd_backlight_timeout_store; ret = device_create_file(&pd->dev, &kbdbl_ctl->timeout_attr); if (ret) goto outmode; __sony_nc_kbd_backlight_timeout_set(kbdbl_ctl->timeout); } return 0; outmode: device_remove_file(&pd->dev, &kbdbl_ctl->mode_attr); outkzalloc: kfree(kbdbl_ctl); kbdbl_ctl = NULL; return ret; } static void sony_nc_kbd_backlight_cleanup(struct platform_device *pd, unsigned int handle) { if (kbdbl_ctl && handle == kbdbl_ctl->handle) { device_remove_file(&pd->dev, &kbdbl_ctl->mode_attr); if (kbdbl_ctl->has_timeout) device_remove_file(&pd->dev, &kbdbl_ctl->timeout_attr); kfree(kbdbl_ctl); kbdbl_ctl = NULL; } } struct battery_care_control { struct device_attribute attrs[2]; unsigned int handle; }; static struct battery_care_control *bcare_ctl; static ssize_t sony_nc_battery_care_limit_store(struct device *dev, struct device_attribute *attr, const char *buffer, size_t count) { unsigned int result, cmd; unsigned long value; if (count > 31) return -EINVAL; if (kstrtoul(buffer, 10, &value)) return -EINVAL; /* limit values (2 bits): * 00 - none * 01 - 80% * 10 - 50% * 11 - 100% * * bit 0: 0 disable BCL, 1 enable BCL * bit 1: 1 tell to store the battery limit (see bits 6,7) too * bits 2,3: reserved * bits 4,5: store the limit into the EC * bits 6,7: store the limit into the battery */ cmd = 0; if (value > 0) { if (value <= 50) cmd = 0x20; else if (value <= 80) cmd = 0x10; else if (value <= 100) cmd = 0x30; else return -EINVAL; /* * handle 0x0115 should allow storing on battery too; * handle 0x0136 same as 0x0115 + health status; * handle 0x013f, same as 0x0136 but no storing on the battery */ if (bcare_ctl->handle != 0x013f) cmd = cmd | (cmd << 2); cmd = (cmd | 0x1) << 0x10; } if (sony_call_snc_handle(bcare_ctl->handle, cmd | 0x0100, &result)) return -EIO; return count; } static ssize_t sony_nc_battery_care_limit_show(struct device *dev, struct device_attribute *attr, char *buffer) { unsigned int result, status; if (sony_call_snc_handle(bcare_ctl->handle, 0x0000, &result)) return -EIO; status = (result & 0x01) ? ((result & 0x30) >> 0x04) : 0; switch (status) { case 1: status = 80; break; case 2: status = 50; break; case 3: status = 100; break; default: status = 0; break; } return sysfs_emit(buffer, "%d\n", status); } static ssize_t sony_nc_battery_care_health_show(struct device *dev, struct device_attribute *attr, char *buffer) { unsigned int health; if (sony_call_snc_handle(bcare_ctl->handle, 0x0200, &health)) return -EIO; return sysfs_emit(buffer, "%d\n", health & 0xff); } static int sony_nc_battery_care_setup(struct platform_device *pd, unsigned int handle) { int ret = 0; bcare_ctl = kzalloc(sizeof(struct battery_care_control), GFP_KERNEL); if (!bcare_ctl) return -ENOMEM; bcare_ctl->handle = handle; sysfs_attr_init(&bcare_ctl->attrs[0].attr); bcare_ctl->attrs[0].attr.name = "battery_care_limiter"; bcare_ctl->attrs[0].attr.mode = S_IRUGO | S_IWUSR; bcare_ctl->attrs[0].show = sony_nc_battery_care_limit_show; bcare_ctl->attrs[0].store = sony_nc_battery_care_limit_store; ret = device_create_file(&pd->dev, &bcare_ctl->attrs[0]); if (ret) goto outkzalloc; /* 0x0115 is for models with no health reporting capability */ if (handle == 0x0115) return 0; sysfs_attr_init(&bcare_ctl->attrs[1].attr); bcare_ctl->attrs[1].attr.name = "battery_care_health"; bcare_ctl->attrs[1].attr.mode = S_IRUGO; bcare_ctl->attrs[1].show = sony_nc_battery_care_health_show; ret = device_create_file(&pd->dev, &bcare_ctl->attrs[1]); if (ret) goto outlimiter; return 0; outlimiter: device_remove_file(&pd->dev, &bcare_ctl->attrs[0]); outkzalloc: kfree(bcare_ctl); bcare_ctl = NULL; return ret; } static void sony_nc_battery_care_cleanup(struct platform_device *pd) { if (bcare_ctl) { device_remove_file(&pd->dev, &bcare_ctl->attrs[0]); if (bcare_ctl->handle != 0x0115) device_remove_file(&pd->dev, &bcare_ctl->attrs[1]); kfree(bcare_ctl); bcare_ctl = NULL; } } struct snc_thermal_ctrl { unsigned int mode; unsigned int profiles; struct device_attribute mode_attr; struct device_attribute profiles_attr; }; static struct snc_thermal_ctrl *th_handle; #define THM_PROFILE_MAX 3 static const char * const snc_thermal_profiles[] = { "balanced", "silent", "performance" }; static int sony_nc_thermal_mode_set(unsigned short mode) { unsigned int result; /* the thermal profile seems to be a two bit bitmask: * lsb -> silent * msb -> performance * no bit set is the normal operation and is always valid * Some vaio models only have "balanced" and "performance" */ if ((mode && !(th_handle->profiles & mode)) || mode >= THM_PROFILE_MAX) return -EINVAL; if (sony_call_snc_handle(0x0122, mode << 0x10 | 0x0200, &result)) return -EIO; th_handle->mode = mode; return 0; } static int sony_nc_thermal_mode_get(void) { unsigned int result; if (sony_call_snc_handle(0x0122, 0x0100, &result)) return -EIO; return result & 0xff; } static ssize_t sony_nc_thermal_profiles_show(struct device *dev, struct device_attribute *attr, char *buffer) { short cnt; size_t idx = 0; for (cnt = 0; cnt < THM_PROFILE_MAX; cnt++) { if (!cnt || (th_handle->profiles & cnt)) idx += sysfs_emit_at(buffer, idx, "%s ", snc_thermal_profiles[cnt]); } idx += sysfs_emit_at(buffer, idx, "\n"); return idx; } static ssize_t sony_nc_thermal_mode_store(struct device *dev, struct device_attribute *attr, const char *buffer, size_t count) { unsigned short cmd; size_t len = count; if (count == 0) return -EINVAL; /* skip the newline if present */ if (buffer[len - 1] == '\n') len--; for (cmd = 0; cmd < THM_PROFILE_MAX; cmd++) if (strncmp(buffer, snc_thermal_profiles[cmd], len) == 0) break; if (sony_nc_thermal_mode_set(cmd)) return -EIO; return count; } static ssize_t sony_nc_thermal_mode_show(struct device *dev, struct device_attribute *attr, char *buffer) { int mode = sony_nc_thermal_mode_get(); if (mode < 0) return mode; return sysfs_emit(buffer, "%s\n", snc_thermal_profiles[mode]); } static int sony_nc_thermal_setup(struct platform_device *pd) { int ret = 0; th_handle = kzalloc(sizeof(struct snc_thermal_ctrl), GFP_KERNEL); if (!th_handle) return -ENOMEM; ret = sony_call_snc_handle(0x0122, 0x0000, &th_handle->profiles); if (ret) { pr_warn("couldn't to read the thermal profiles\n"); goto outkzalloc; } ret = sony_nc_thermal_mode_get(); if (ret < 0) { pr_warn("couldn't to read the current thermal profile"); goto outkzalloc; } th_handle->mode = ret; sysfs_attr_init(&th_handle->profiles_attr.attr); th_handle->profiles_attr.attr.name = "thermal_profiles"; th_handle->profiles_attr.attr.mode = S_IRUGO; th_handle->profiles_attr.show = sony_nc_thermal_profiles_show; sysfs_attr_init(&th_handle->mode_attr.attr); th_handle->mode_attr.attr.name = "thermal_control"; th_handle->mode_attr.attr.mode = S_IRUGO | S_IWUSR; th_handle->mode_attr.show = sony_nc_thermal_mode_show; th_handle->mode_attr.store = sony_nc_thermal_mode_store; ret = device_create_file(&pd->dev, &th_handle->profiles_attr); if (ret) goto outkzalloc; ret = device_create_file(&pd->dev, &th_handle->mode_attr); if (ret) goto outprofiles; return 0; outprofiles: device_remove_file(&pd->dev, &th_handle->profiles_attr); outkzalloc: kfree(th_handle); th_handle = NULL; return ret; } static void sony_nc_thermal_cleanup(struct platform_device *pd) { if (th_handle) { device_remove_file(&pd->dev, &th_handle->profiles_attr); device_remove_file(&pd->dev, &th_handle->mode_attr); kfree(th_handle); th_handle = NULL; } } #ifdef CONFIG_PM_SLEEP static void sony_nc_thermal_resume(void) { int status; if (!th_handle) return; status = sony_nc_thermal_mode_get(); if (status != th_handle->mode) sony_nc_thermal_mode_set(th_handle->mode); } #endif /* resume on LID open */ #define LID_RESUME_S5 0 #define LID_RESUME_S4 1 #define LID_RESUME_S3 2 #define LID_RESUME_MAX 3 struct snc_lid_resume_control { struct device_attribute attrs[LID_RESUME_MAX]; unsigned int status; int handle; }; static struct snc_lid_resume_control *lid_ctl; static ssize_t sony_nc_lid_resume_store(struct device *dev, struct device_attribute *attr, const char *buffer, size_t count) { unsigned int result; unsigned long value; unsigned int pos = LID_RESUME_S5; if (count > 31) return -EINVAL; if (kstrtoul(buffer, 10, &value) || value > 1) return -EINVAL; /* the value we have to write to SNC is a bitmask: * +--------------+ * | S3 | S4 | S5 | * +--------------+ * 2 1 0 */ while (pos < LID_RESUME_MAX) { if (&lid_ctl->attrs[pos].attr == &attr->attr) break; pos++; } if (pos == LID_RESUME_MAX) return -EINVAL; if (value) value = lid_ctl->status | (1 << pos); else value = lid_ctl->status & ~(1 << pos); if (sony_call_snc_handle(lid_ctl->handle, value << 0x10 | 0x0100, &result)) return -EIO; lid_ctl->status = value; return count; } static ssize_t sony_nc_lid_resume_show(struct device *dev, struct device_attribute *attr, char *buffer) { unsigned int pos = LID_RESUME_S5; while (pos < LID_RESUME_MAX) { if (&lid_ctl->attrs[pos].attr == &attr->attr) return sysfs_emit(buffer, "%d\n", (lid_ctl->status >> pos) & 0x01); pos++; } return -EINVAL; } static int sony_nc_lid_resume_setup(struct platform_device *pd, unsigned int handle) { unsigned int result; int i; if (sony_call_snc_handle(handle, 0x0000, &result)) return -EIO; lid_ctl = kzalloc(sizeof(struct snc_lid_resume_control), GFP_KERNEL); if (!lid_ctl) return -ENOMEM; lid_ctl->status = result & 0x7; lid_ctl->handle = handle; sysfs_attr_init(&lid_ctl->attrs[0].attr); lid_ctl->attrs[LID_RESUME_S5].attr.name = "lid_resume_S5"; lid_ctl->attrs[LID_RESUME_S5].attr.mode = S_IRUGO | S_IWUSR; lid_ctl->attrs[LID_RESUME_S5].show = sony_nc_lid_resume_show; lid_ctl->attrs[LID_RESUME_S5].store = sony_nc_lid_resume_store; if (handle == 0x0119) { sysfs_attr_init(&lid_ctl->attrs[1].attr); lid_ctl->attrs[LID_RESUME_S4].attr.name = "lid_resume_S4"; lid_ctl->attrs[LID_RESUME_S4].attr.mode = S_IRUGO | S_IWUSR; lid_ctl->attrs[LID_RESUME_S4].show = sony_nc_lid_resume_show; lid_ctl->attrs[LID_RESUME_S4].store = sony_nc_lid_resume_store; sysfs_attr_init(&lid_ctl->attrs[2].attr); lid_ctl->attrs[LID_RESUME_S3].attr.name = "lid_resume_S3"; lid_ctl->attrs[LID_RESUME_S3].attr.mode = S_IRUGO | S_IWUSR; lid_ctl->attrs[LID_RESUME_S3].show = sony_nc_lid_resume_show; lid_ctl->attrs[LID_RESUME_S3].store = sony_nc_lid_resume_store; } for (i = 0; i < LID_RESUME_MAX && lid_ctl->attrs[i].attr.name; i++) { result = device_create_file(&pd->dev, &lid_ctl->attrs[i]); if (result) goto liderror; } return 0; liderror: for (i--; i >= 0; i--) device_remove_file(&pd->dev, &lid_ctl->attrs[i]); kfree(lid_ctl); lid_ctl = NULL; return result; } static void sony_nc_lid_resume_cleanup(struct platform_device *pd) { int i; if (lid_ctl) { for (i = 0; i < LID_RESUME_MAX; i++) { if (!lid_ctl->attrs[i].attr.name) break; device_remove_file(&pd->dev, &lid_ctl->attrs[i]); } kfree(lid_ctl); lid_ctl = NULL; } } /* GFX Switch position */ enum gfx_switch { SPEED, STAMINA, AUTO }; struct snc_gfx_switch_control { struct device_attribute attr; unsigned int handle; }; static struct snc_gfx_switch_control *gfxs_ctl; /* returns 0 for speed, 1 for stamina */ static int __sony_nc_gfx_switch_status_get(void) { unsigned int result; if (sony_call_snc_handle(gfxs_ctl->handle, gfxs_ctl->handle == 0x015B ? 0x0000 : 0x0100, &result)) return -EIO; switch (gfxs_ctl->handle) { case 0x0146: /* 1: discrete GFX (speed) * 0: integrated GFX (stamina) */ return result & 0x1 ? SPEED : STAMINA; case 0x015B: /* 0: discrete GFX (speed) * 1: integrated GFX (stamina) */ return result & 0x1 ? STAMINA : SPEED; case 0x0128: /* it's a more elaborated bitmask, for now: * 2: integrated GFX (stamina) * 0: discrete GFX (speed) */ dprintk("GFX Status: 0x%x\n", result); return result & 0x80 ? AUTO : result & 0x02 ? STAMINA : SPEED; } return -EINVAL; } static ssize_t sony_nc_gfx_switch_status_show(struct device *dev, struct device_attribute *attr, char *buffer) { int pos = __sony_nc_gfx_switch_status_get(); if (pos < 0) return pos; return sysfs_emit(buffer, "%s\n", pos == SPEED ? "speed" : pos == STAMINA ? "stamina" : pos == AUTO ? "auto" : "unknown"); } static int sony_nc_gfx_switch_setup(struct platform_device *pd, unsigned int handle) { unsigned int result; gfxs_ctl = kzalloc(sizeof(struct snc_gfx_switch_control), GFP_KERNEL); if (!gfxs_ctl) return -ENOMEM; gfxs_ctl->handle = handle; sysfs_attr_init(&gfxs_ctl->attr.attr); gfxs_ctl->attr.attr.name = "gfx_switch_status"; gfxs_ctl->attr.attr.mode = S_IRUGO; gfxs_ctl->attr.show = sony_nc_gfx_switch_status_show; result = device_create_file(&pd->dev, &gfxs_ctl->attr); if (result) goto gfxerror; return 0; gfxerror: kfree(gfxs_ctl); gfxs_ctl = NULL; return result; } static void sony_nc_gfx_switch_cleanup(struct platform_device *pd) { if (gfxs_ctl) { device_remove_file(&pd->dev, &gfxs_ctl->attr); kfree(gfxs_ctl); gfxs_ctl = NULL; } } /* High speed charging function */ static struct device_attribute *hsc_handle; static ssize_t sony_nc_highspeed_charging_store(struct device *dev, struct device_attribute *attr, const char *buffer, size_t count) { unsigned int result; unsigned long value; if (count > 31) return -EINVAL; if (kstrtoul(buffer, 10, &value) || value > 1) return -EINVAL; if (sony_call_snc_handle(0x0131, value << 0x10 | 0x0200, &result)) return -EIO; return count; } static ssize_t sony_nc_highspeed_charging_show(struct device *dev, struct device_attribute *attr, char *buffer) { unsigned int result; if (sony_call_snc_handle(0x0131, 0x0100, &result)) return -EIO; return sysfs_emit(buffer, "%d\n", result & 0x01); } static int sony_nc_highspeed_charging_setup(struct platform_device *pd) { unsigned int result; if (sony_call_snc_handle(0x0131, 0x0000, &result) || !(result & 0x01)) { /* some models advertise the handle but have no implementation * for it */ pr_info("No High Speed Charging capability found\n"); return 0; } hsc_handle = kzalloc(sizeof(struct device_attribute), GFP_KERNEL); if (!hsc_handle) return -ENOMEM; sysfs_attr_init(&hsc_handle->attr); hsc_handle->attr.name = "battery_highspeed_charging"; hsc_handle->attr.mode = S_IRUGO | S_IWUSR; hsc_handle->show = sony_nc_highspeed_charging_show; hsc_handle->store = sony_nc_highspeed_charging_store; result = device_create_file(&pd->dev, hsc_handle); if (result) { kfree(hsc_handle); hsc_handle = NULL; return result; } return 0; } static void sony_nc_highspeed_charging_cleanup(struct platform_device *pd) { if (hsc_handle) { device_remove_file(&pd->dev, hsc_handle); kfree(hsc_handle); hsc_handle = NULL; } } /* low battery function */ static struct device_attribute *lowbatt_handle; static ssize_t sony_nc_lowbatt_store(struct device *dev, struct device_attribute *attr, const char *buffer, size_t count) { unsigned int result; unsigned long value; if (count > 31) return -EINVAL; if (kstrtoul(buffer, 10, &value) || value > 1) return -EINVAL; if (sony_call_snc_handle(0x0121, value << 8, &result)) return -EIO; return count; } static ssize_t sony_nc_lowbatt_show(struct device *dev, struct device_attribute *attr, char *buffer) { unsigned int result; if (sony_call_snc_handle(0x0121, 0x0200, &result)) return -EIO; return sysfs_emit(buffer, "%d\n", result & 1); } static int sony_nc_lowbatt_setup(struct platform_device *pd) { unsigned int result; lowbatt_handle = kzalloc(sizeof(struct device_attribute), GFP_KERNEL); if (!lowbatt_handle) return -ENOMEM; sysfs_attr_init(&lowbatt_handle->attr); lowbatt_handle->attr.name = "lowbatt_hibernate"; lowbatt_handle->attr.mode = S_IRUGO | S_IWUSR; lowbatt_handle->show = sony_nc_lowbatt_show; lowbatt_handle->store = sony_nc_lowbatt_store; result = device_create_file(&pd->dev, lowbatt_handle); if (result) { kfree(lowbatt_handle); lowbatt_handle = NULL; return result; } return 0; } static void sony_nc_lowbatt_cleanup(struct platform_device *pd) { if (lowbatt_handle) { device_remove_file(&pd->dev, lowbatt_handle); kfree(lowbatt_handle); lowbatt_handle = NULL; } } /* fan speed function */ static struct device_attribute *fan_handle, *hsf_handle; static ssize_t sony_nc_hsfan_store(struct device *dev, struct device_attribute *attr, const char *buffer, size_t count) { unsigned int result; unsigned long value; if (count > 31) return -EINVAL; if (kstrtoul(buffer, 10, &value) || value > 1) return -EINVAL; if (sony_call_snc_handle(0x0149, value << 0x10 | 0x0200, &result)) return -EIO; return count; } static ssize_t sony_nc_hsfan_show(struct device *dev, struct device_attribute *attr, char *buffer) { unsigned int result; if (sony_call_snc_handle(0x0149, 0x0100, &result)) return -EIO; return sysfs_emit(buffer, "%d\n", result & 0x01); } static ssize_t sony_nc_fanspeed_show(struct device *dev, struct device_attribute *attr, char *buffer) { unsigned int result; if (sony_call_snc_handle(0x0149, 0x0300, &result)) return -EIO; return sysfs_emit(buffer, "%d\n", result & 0xff); } static int sony_nc_fanspeed_setup(struct platform_device *pd) { unsigned int result; fan_handle = kzalloc(sizeof(struct device_attribute), GFP_KERNEL); if (!fan_handle) return -ENOMEM; hsf_handle = kzalloc(sizeof(struct device_attribute), GFP_KERNEL); if (!hsf_handle) { result = -ENOMEM; goto out_hsf_handle_alloc; } sysfs_attr_init(&fan_handle->attr); fan_handle->attr.name = "fanspeed"; fan_handle->attr.mode = S_IRUGO; fan_handle->show = sony_nc_fanspeed_show; fan_handle->store = NULL; sysfs_attr_init(&hsf_handle->attr); hsf_handle->attr.name = "fan_forced"; hsf_handle->attr.mode = S_IRUGO | S_IWUSR; hsf_handle->show = sony_nc_hsfan_show; hsf_handle->store = sony_nc_hsfan_store; result = device_create_file(&pd->dev, fan_handle); if (result) goto out_fan_handle; result = device_create_file(&pd->dev, hsf_handle); if (result) goto out_hsf_handle; return 0; out_hsf_handle: device_remove_file(&pd->dev, fan_handle); out_fan_handle: kfree(hsf_handle); hsf_handle = NULL; out_hsf_handle_alloc: kfree(fan_handle); fan_handle = NULL; return result; } static void sony_nc_fanspeed_cleanup(struct platform_device *pd) { if (fan_handle) { device_remove_file(&pd->dev, fan_handle); kfree(fan_handle); fan_handle = NULL; } if (hsf_handle) { device_remove_file(&pd->dev, hsf_handle); kfree(hsf_handle); hsf_handle = NULL; } } /* USB charge function */ static struct device_attribute *uc_handle; static ssize_t sony_nc_usb_charge_store(struct device *dev, struct device_attribute *attr, const char *buffer, size_t count) { unsigned int result; unsigned long value; if (count > 31) return -EINVAL; if (kstrtoul(buffer, 10, &value) || value > 1) return -EINVAL; if (sony_call_snc_handle(0x0155, value << 0x10 | 0x0100, &result)) return -EIO; return count; } static ssize_t sony_nc_usb_charge_show(struct device *dev, struct device_attribute *attr, char *buffer) { unsigned int result; if (sony_call_snc_handle(0x0155, 0x0000, &result)) return -EIO; return sysfs_emit(buffer, "%d\n", result & 0x01); } static int sony_nc_usb_charge_setup(struct platform_device *pd) { unsigned int result; if (sony_call_snc_handle(0x0155, 0x0000, &result) || !(result & 0x01)) { /* some models advertise the handle but have no implementation * for it */ pr_info("No USB Charge capability found\n"); return 0; } uc_handle = kzalloc(sizeof(struct device_attribute), GFP_KERNEL); if (!uc_handle) return -ENOMEM; sysfs_attr_init(&uc_handle->attr); uc_handle->attr.name = "usb_charge"; uc_handle->attr.mode = S_IRUGO | S_IWUSR; uc_handle->show = sony_nc_usb_charge_show; uc_handle->store = sony_nc_usb_charge_store; result = device_create_file(&pd->dev, uc_handle); if (result) { kfree(uc_handle); uc_handle = NULL; return result; } return 0; } static void sony_nc_usb_charge_cleanup(struct platform_device *pd) { if (uc_handle) { device_remove_file(&pd->dev, uc_handle); kfree(uc_handle); uc_handle = NULL; } } /* Panel ID function */ static struct device_attribute *panel_handle; static ssize_t sony_nc_panelid_show(struct device *dev, struct device_attribute *attr, char *buffer) { unsigned int result; if (sony_call_snc_handle(0x011D, 0x0000, &result)) return -EIO; return sysfs_emit(buffer, "%d\n", result); } static int sony_nc_panelid_setup(struct platform_device *pd) { unsigned int result; panel_handle = kzalloc(sizeof(struct device_attribute), GFP_KERNEL); if (!panel_handle) return -ENOMEM; sysfs_attr_init(&panel_handle->attr); panel_handle->attr.name = "panel_id"; panel_handle->attr.mode = S_IRUGO; panel_handle->show = sony_nc_panelid_show; panel_handle->store = NULL; result = device_create_file(&pd->dev, panel_handle); if (result) { kfree(panel_handle); panel_handle = NULL; return result; } return 0; } static void sony_nc_panelid_cleanup(struct platform_device *pd) { if (panel_handle) { device_remove_file(&pd->dev, panel_handle); kfree(panel_handle); panel_handle = NULL; } } /* smart connect function */ static struct device_attribute *sc_handle; static ssize_t sony_nc_smart_conn_store(struct device *dev, struct device_attribute *attr, const char *buffer, size_t count) { unsigned int result; unsigned long value; if (count > 31) return -EINVAL; if (kstrtoul(buffer, 10, &value) || value > 1) return -EINVAL; if (sony_call_snc_handle(0x0168, value << 0x10, &result)) return -EIO; return count; } static int sony_nc_smart_conn_setup(struct platform_device *pd) { unsigned int result; sc_handle = kzalloc(sizeof(struct device_attribute), GFP_KERNEL); if (!sc_handle) return -ENOMEM; sysfs_attr_init(&sc_handle->attr); sc_handle->attr.name = "smart_connect"; sc_handle->attr.mode = S_IWUSR; sc_handle->show = NULL; sc_handle->store = sony_nc_smart_conn_store; result = device_create_file(&pd->dev, sc_handle); if (result) { kfree(sc_handle); sc_handle = NULL; return result; } return 0; } static void sony_nc_smart_conn_cleanup(struct platform_device *pd) { if (sc_handle) { device_remove_file(&pd->dev, sc_handle); kfree(sc_handle); sc_handle = NULL; } } /* Touchpad enable/disable */ struct touchpad_control { struct device_attribute attr; int handle; }; static struct touchpad_control *tp_ctl; static ssize_t sony_nc_touchpad_store(struct device *dev, struct device_attribute *attr, const char *buffer, size_t count) { unsigned int result; unsigned long value; if (count > 31) return -EINVAL; if (kstrtoul(buffer, 10, &value) || value > 1) return -EINVAL; /* sysfs: 0 disabled, 1 enabled * EC: 0 enabled, 1 disabled */ if (sony_call_snc_handle(tp_ctl->handle, (!value << 0x10) | 0x100, &result)) return -EIO; return count; } static ssize_t sony_nc_touchpad_show(struct device *dev, struct device_attribute *attr, char *buffer) { unsigned int result; if (sony_call_snc_handle(tp_ctl->handle, 0x000, &result)) return -EINVAL; return sysfs_emit(buffer, "%d\n", !(result & 0x01)); } static int sony_nc_touchpad_setup(struct platform_device *pd, unsigned int handle) { int ret = 0; tp_ctl = kzalloc(sizeof(struct touchpad_control), GFP_KERNEL); if (!tp_ctl) return -ENOMEM; tp_ctl->handle = handle; sysfs_attr_init(&tp_ctl->attr.attr); tp_ctl->attr.attr.name = "touchpad"; tp_ctl->attr.attr.mode = S_IRUGO | S_IWUSR; tp_ctl->attr.show = sony_nc_touchpad_show; tp_ctl->attr.store = sony_nc_touchpad_store; ret = device_create_file(&pd->dev, &tp_ctl->attr); if (ret) { kfree(tp_ctl); tp_ctl = NULL; } return ret; } static void sony_nc_touchpad_cleanup(struct platform_device *pd) { if (tp_ctl) { device_remove_file(&pd->dev, &tp_ctl->attr); kfree(tp_ctl); tp_ctl = NULL; } } static void sony_nc_backlight_ng_read_limits(int handle, struct sony_backlight_props *props) { u64 offset; int i; int lvl_table_len = 0; u8 min = 0xff, max = 0x00; unsigned char buffer[32] = { 0 }; props->handle = handle; props->offset = 0; props->maxlvl = 0xff; offset = sony_find_snc_handle(handle); /* try to read the boundaries from ACPI tables, if we fail the above * defaults should be reasonable */ i = sony_nc_buffer_call(sony_nc_acpi_handle, "SN06", &offset, buffer, 32); if (i < 0) return; switch (handle) { case 0x012f: case 0x0137: lvl_table_len = 9; break; case 0x143: case 0x14b: case 0x14c: lvl_table_len = 16; break; } /* the buffer lists brightness levels available, brightness levels are * from position 0 to 8 in the array, other values are used by ALS * control. */ for (i = 0; i < lvl_table_len && i < ARRAY_SIZE(buffer); i++) { dprintk("Brightness level: %d\n", buffer[i]); if (!buffer[i]) break; if (buffer[i] > max) max = buffer[i]; if (buffer[i] < min) min = buffer[i]; } props->offset = min; props->maxlvl = max; dprintk("Brightness levels: min=%d max=%d\n", props->offset, props->maxlvl); } static void sony_nc_backlight_setup(void) { int max_brightness = 0; const struct backlight_ops *ops = NULL; struct backlight_properties props; if (sony_find_snc_handle(0x12f) >= 0) { ops = &sony_backlight_ng_ops; sony_bl_props.cmd_base = 0x0100; sony_nc_backlight_ng_read_limits(0x12f, &sony_bl_props); max_brightness = sony_bl_props.maxlvl - sony_bl_props.offset; } else if (sony_find_snc_handle(0x137) >= 0) { ops = &sony_backlight_ng_ops; sony_bl_props.cmd_base = 0x0100; sony_nc_backlight_ng_read_limits(0x137, &sony_bl_props); max_brightness = sony_bl_props.maxlvl - sony_bl_props.offset; } else if (sony_find_snc_handle(0x143) >= 0) { ops = &sony_backlight_ng_ops; sony_bl_props.cmd_base = 0x3000; sony_nc_backlight_ng_read_limits(0x143, &sony_bl_props); max_brightness = sony_bl_props.maxlvl - sony_bl_props.offset; } else if (sony_find_snc_handle(0x14b) >= 0) { ops = &sony_backlight_ng_ops; sony_bl_props.cmd_base = 0x3000; sony_nc_backlight_ng_read_limits(0x14b, &sony_bl_props); max_brightness = sony_bl_props.maxlvl - sony_bl_props.offset; } else if (sony_find_snc_handle(0x14c) >= 0) { ops = &sony_backlight_ng_ops; sony_bl_props.cmd_base = 0x3000; sony_nc_backlight_ng_read_limits(0x14c, &sony_bl_props); max_brightness = sony_bl_props.maxlvl - sony_bl_props.offset; } else if (acpi_has_method(sony_nc_acpi_handle, "GBRT")) { ops = &sony_backlight_ops; max_brightness = SONY_MAX_BRIGHTNESS - 1; } else return; memset(&props, 0, sizeof(struct backlight_properties)); props.type = BACKLIGHT_PLATFORM; props.max_brightness = max_brightness; sony_bl_props.dev = backlight_device_register("sony", NULL, &sony_bl_props, ops, &props); if (IS_ERR(sony_bl_props.dev)) { pr_warn("unable to register backlight device\n"); sony_bl_props.dev = NULL; } else sony_bl_props.dev->props.brightness = ops->get_brightness(sony_bl_props.dev); } static void sony_nc_backlight_cleanup(void) { backlight_device_unregister(sony_bl_props.dev); } static int sony_nc_add(struct acpi_device *device) { acpi_status status; int result = 0; struct sony_nc_value *item; sony_nc_acpi_device = device; strcpy(acpi_device_class(device), "sony/hotkey"); sony_nc_acpi_handle = device->handle; /* read device status */ result = acpi_bus_get_status(device); /* bail IFF the above call was successful and the device is not present */ if (!result && !device->status.present) { dprintk("Device not present\n"); result = -ENODEV; goto outwalk; } result = sony_pf_add(); if (result) goto outpresent; if (debug) { status = acpi_walk_namespace(ACPI_TYPE_METHOD, sony_nc_acpi_handle, 1, sony_walk_callback, NULL, NULL, NULL); if (ACPI_FAILURE(status)) { pr_warn("unable to walk acpi resources\n"); result = -ENODEV; goto outpresent; } } result = sony_laptop_setup_input(device); if (result) { pr_err("Unable to create input devices\n"); goto outplatform; } if (acpi_has_method(sony_nc_acpi_handle, "ECON")) { int arg = 1; if (sony_nc_int_call(sony_nc_acpi_handle, "ECON", &arg, NULL)) dprintk("ECON Method failed\n"); } if (acpi_has_method(sony_nc_acpi_handle, "SN00")) { dprintk("Doing SNC setup\n"); /* retrieve the available handles */ result = sony_nc_handles_setup(sony_pf_device); if (!result) sony_nc_function_setup(device, sony_pf_device); } if (acpi_video_get_backlight_type() == acpi_backlight_vendor) sony_nc_backlight_setup(); /* create sony_pf sysfs attributes related to the SNC device */ for (item = sony_nc_values; item->name; ++item) { if (!debug && item->debug) continue; /* find the available acpiget as described in the DSDT */ for (; item->acpiget && *item->acpiget; ++item->acpiget) { if (acpi_has_method(sony_nc_acpi_handle, *item->acpiget)) { dprintk("Found %s getter: %s\n", item->name, *item->acpiget); item->devattr.attr.mode |= S_IRUGO; break; } } /* find the available acpiset as described in the DSDT */ for (; item->acpiset && *item->acpiset; ++item->acpiset) { if (acpi_has_method(sony_nc_acpi_handle, *item->acpiset)) { dprintk("Found %s setter: %s\n", item->name, *item->acpiset); item->devattr.attr.mode |= S_IWUSR; break; } } if (item->devattr.attr.mode != 0) { result = device_create_file(&sony_pf_device->dev, &item->devattr); if (result) goto out_sysfs; } } pr_info("SNC setup done.\n"); return 0; out_sysfs: for (item = sony_nc_values; item->name; ++item) { device_remove_file(&sony_pf_device->dev, &item->devattr); } sony_nc_backlight_cleanup(); sony_nc_function_cleanup(sony_pf_device); sony_nc_handles_cleanup(sony_pf_device); outplatform: sony_laptop_remove_input(); outpresent: sony_pf_remove(); outwalk: sony_nc_rfkill_cleanup(); return result; } static void sony_nc_remove(struct acpi_device *device) { struct sony_nc_value *item; sony_nc_backlight_cleanup(); sony_nc_acpi_device = NULL; for (item = sony_nc_values; item->name; ++item) { device_remove_file(&sony_pf_device->dev, &item->devattr); } sony_nc_function_cleanup(sony_pf_device); sony_nc_handles_cleanup(sony_pf_device); sony_pf_remove(); sony_laptop_remove_input(); dprintk(SONY_NC_DRIVER_NAME " removed.\n"); } static const struct acpi_device_id sony_device_ids[] __maybe_unused = { {SONY_NC_HID, 0}, {SONY_PIC_HID, 0}, {"", 0}, }; MODULE_DEVICE_TABLE(acpi, sony_device_ids); static const struct acpi_device_id sony_nc_device_ids[] = { {SONY_NC_HID, 0}, {"", 0}, }; static struct acpi_driver sony_nc_driver = { .name = SONY_NC_DRIVER_NAME, .class = SONY_NC_CLASS, .ids = sony_nc_device_ids, .owner = THIS_MODULE, .ops = { .add = sony_nc_add, .remove = sony_nc_remove, .notify = sony_nc_notify, }, .drv.pm = &sony_nc_pm, }; /*********** SPIC (SNY6001) Device ***********/ #define SONYPI_DEVICE_TYPE1 0x00000001 #define SONYPI_DEVICE_TYPE2 0x00000002 #define SONYPI_DEVICE_TYPE3 0x00000004 #define SONYPI_TYPE1_OFFSET 0x04 #define SONYPI_TYPE2_OFFSET 0x12 #define SONYPI_TYPE3_OFFSET 0x12 struct sony_pic_ioport { struct acpi_resource_io io1; struct acpi_resource_io io2; struct list_head list; }; struct sony_pic_irq { struct acpi_resource_irq irq; struct list_head list; }; struct sonypi_eventtypes { u8 data; unsigned long mask; struct sonypi_event *events; }; struct sony_pic_dev { struct acpi_device *acpi_dev; struct sony_pic_irq *cur_irq; struct sony_pic_ioport *cur_ioport; struct list_head interrupts; struct list_head ioports; struct mutex lock; struct sonypi_eventtypes *event_types; int (*handle_irq)(const u8, const u8); int model; u16 evport_offset; u8 camera_power; u8 bluetooth_power; u8 wwan_power; }; static struct sony_pic_dev spic_dev = { .interrupts = LIST_HEAD_INIT(spic_dev.interrupts), .ioports = LIST_HEAD_INIT(spic_dev.ioports), }; static int spic_drv_registered; /* Event masks */ #define SONYPI_JOGGER_MASK 0x00000001 #define SONYPI_CAPTURE_MASK 0x00000002 #define SONYPI_FNKEY_MASK 0x00000004 #define SONYPI_BLUETOOTH_MASK 0x00000008 #define SONYPI_PKEY_MASK 0x00000010 #define SONYPI_BACK_MASK 0x00000020 #define SONYPI_HELP_MASK 0x00000040 #define SONYPI_LID_MASK 0x00000080 #define SONYPI_ZOOM_MASK 0x00000100 #define SONYPI_THUMBPHRASE_MASK 0x00000200 #define SONYPI_MEYE_MASK 0x00000400 #define SONYPI_MEMORYSTICK_MASK 0x00000800 #define SONYPI_BATTERY_MASK 0x00001000 #define SONYPI_WIRELESS_MASK 0x00002000 struct sonypi_event { u8 data; u8 event; }; /* The set of possible button release events */ static struct sonypi_event sonypi_releaseev[] = { { 0x00, SONYPI_EVENT_ANYBUTTON_RELEASED }, { 0, 0 } }; /* The set of possible jogger events */ static struct sonypi_event sonypi_joggerev[] = { { 0x1f, SONYPI_EVENT_JOGDIAL_UP }, { 0x01, SONYPI_EVENT_JOGDIAL_DOWN }, { 0x5f, SONYPI_EVENT_JOGDIAL_UP_PRESSED }, { 0x41, SONYPI_EVENT_JOGDIAL_DOWN_PRESSED }, { 0x1e, SONYPI_EVENT_JOGDIAL_FAST_UP }, { 0x02, SONYPI_EVENT_JOGDIAL_FAST_DOWN }, { 0x5e, SONYPI_EVENT_JOGDIAL_FAST_UP_PRESSED }, { 0x42, SONYPI_EVENT_JOGDIAL_FAST_DOWN_PRESSED }, { 0x1d, SONYPI_EVENT_JOGDIAL_VFAST_UP }, { 0x03, SONYPI_EVENT_JOGDIAL_VFAST_DOWN }, { 0x5d, SONYPI_EVENT_JOGDIAL_VFAST_UP_PRESSED }, { 0x43, SONYPI_EVENT_JOGDIAL_VFAST_DOWN_PRESSED }, { 0x40, SONYPI_EVENT_JOGDIAL_PRESSED }, { 0, 0 } }; /* The set of possible capture button events */ static struct sonypi_event sonypi_captureev[] = { { 0x05, SONYPI_EVENT_CAPTURE_PARTIALPRESSED }, { 0x07, SONYPI_EVENT_CAPTURE_PRESSED }, { 0x40, SONYPI_EVENT_CAPTURE_PRESSED }, { 0x01, SONYPI_EVENT_CAPTURE_PARTIALRELEASED }, { 0, 0 } }; /* The set of possible fnkeys events */ static struct sonypi_event sonypi_fnkeyev[] = { { 0x10, SONYPI_EVENT_FNKEY_ESC }, { 0x11, SONYPI_EVENT_FNKEY_F1 }, { 0x12, SONYPI_EVENT_FNKEY_F2 }, { 0x13, SONYPI_EVENT_FNKEY_F3 }, { 0x14, SONYPI_EVENT_FNKEY_F4 }, { 0x15, SONYPI_EVENT_FNKEY_F5 }, { 0x16, SONYPI_EVENT_FNKEY_F6 }, { 0x17, SONYPI_EVENT_FNKEY_F7 }, { 0x18, SONYPI_EVENT_FNKEY_F8 }, { 0x19, SONYPI_EVENT_FNKEY_F9 }, { 0x1a, SONYPI_EVENT_FNKEY_F10 }, { 0x1b, SONYPI_EVENT_FNKEY_F11 }, { 0x1c, SONYPI_EVENT_FNKEY_F12 }, { 0x1f, SONYPI_EVENT_FNKEY_RELEASED }, { 0x21, SONYPI_EVENT_FNKEY_1 }, { 0x22, SONYPI_EVENT_FNKEY_2 }, { 0x31, SONYPI_EVENT_FNKEY_D }, { 0x32, SONYPI_EVENT_FNKEY_E }, { 0x33, SONYPI_EVENT_FNKEY_F }, { 0x34, SONYPI_EVENT_FNKEY_S }, { 0x35, SONYPI_EVENT_FNKEY_B }, { 0x36, SONYPI_EVENT_FNKEY_ONLY }, { 0, 0 } }; /* The set of possible program key events */ static struct sonypi_event sonypi_pkeyev[] = { { 0x01, SONYPI_EVENT_PKEY_P1 }, { 0x02, SONYPI_EVENT_PKEY_P2 }, { 0x04, SONYPI_EVENT_PKEY_P3 }, { 0x20, SONYPI_EVENT_PKEY_P1 }, { 0, 0 } }; /* The set of possible bluetooth events */ static struct sonypi_event sonypi_blueev[] = { { 0x55, SONYPI_EVENT_BLUETOOTH_PRESSED }, { 0x59, SONYPI_EVENT_BLUETOOTH_ON }, { 0x5a, SONYPI_EVENT_BLUETOOTH_OFF }, { 0, 0 } }; /* The set of possible wireless events */ static struct sonypi_event sonypi_wlessev[] = { { 0x59, SONYPI_EVENT_IGNORE }, { 0x5a, SONYPI_EVENT_IGNORE }, { 0, 0 } }; /* The set of possible back button events */ static struct sonypi_event sonypi_backev[] = { { 0x20, SONYPI_EVENT_BACK_PRESSED }, { 0, 0 } }; /* The set of possible help button events */ static struct sonypi_event sonypi_helpev[] = { { 0x3b, SONYPI_EVENT_HELP_PRESSED }, { 0, 0 } }; /* The set of possible lid events */ static struct sonypi_event sonypi_lidev[] = { { 0x51, SONYPI_EVENT_LID_CLOSED }, { 0x50, SONYPI_EVENT_LID_OPENED }, { 0, 0 } }; /* The set of possible zoom events */ static struct sonypi_event sonypi_zoomev[] = { { 0x39, SONYPI_EVENT_ZOOM_PRESSED }, { 0x10, SONYPI_EVENT_ZOOM_IN_PRESSED }, { 0x20, SONYPI_EVENT_ZOOM_OUT_PRESSED }, { 0x04, SONYPI_EVENT_ZOOM_PRESSED }, { 0, 0 } }; /* The set of possible thumbphrase events */ static struct sonypi_event sonypi_thumbphraseev[] = { { 0x3a, SONYPI_EVENT_THUMBPHRASE_PRESSED }, { 0, 0 } }; /* The set of possible motioneye camera events */ static struct sonypi_event sonypi_meyeev[] = { { 0x00, SONYPI_EVENT_MEYE_FACE }, { 0x01, SONYPI_EVENT_MEYE_OPPOSITE }, { 0, 0 } }; /* The set of possible memorystick events */ static struct sonypi_event sonypi_memorystickev[] = { { 0x53, SONYPI_EVENT_MEMORYSTICK_INSERT }, { 0x54, SONYPI_EVENT_MEMORYSTICK_EJECT }, { 0, 0 } }; /* The set of possible battery events */ static struct sonypi_event sonypi_batteryev[] = { { 0x20, SONYPI_EVENT_BATTERY_INSERT }, { 0x30, SONYPI_EVENT_BATTERY_REMOVE }, { 0, 0 } }; /* The set of possible volume events */ static struct sonypi_event sonypi_volumeev[] = { { 0x01, SONYPI_EVENT_VOLUME_INC_PRESSED }, { 0x02, SONYPI_EVENT_VOLUME_DEC_PRESSED }, { 0, 0 } }; /* The set of possible brightness events */ static struct sonypi_event sonypi_brightnessev[] = { { 0x80, SONYPI_EVENT_BRIGHTNESS_PRESSED }, { 0, 0 } }; static struct sonypi_eventtypes type1_events[] = { { 0, 0xffffffff, sonypi_releaseev }, { 0x70, SONYPI_MEYE_MASK, sonypi_meyeev }, { 0x30, SONYPI_LID_MASK, sonypi_lidev }, { 0x60, SONYPI_CAPTURE_MASK, sonypi_captureev }, { 0x10, SONYPI_JOGGER_MASK, sonypi_joggerev }, { 0x20, SONYPI_FNKEY_MASK, sonypi_fnkeyev }, { 0x30, SONYPI_BLUETOOTH_MASK, sonypi_blueev }, { 0x40, SONYPI_PKEY_MASK, sonypi_pkeyev }, { 0x30, SONYPI_MEMORYSTICK_MASK, sonypi_memorystickev }, { 0x40, SONYPI_BATTERY_MASK, sonypi_batteryev }, { 0 }, }; static struct sonypi_eventtypes type2_events[] = { { 0, 0xffffffff, sonypi_releaseev }, { 0x38, SONYPI_LID_MASK, sonypi_lidev }, { 0x11, SONYPI_JOGGER_MASK, sonypi_joggerev }, { 0x61, SONYPI_CAPTURE_MASK, sonypi_captureev }, { 0x21, SONYPI_FNKEY_MASK, sonypi_fnkeyev }, { 0x31, SONYPI_BLUETOOTH_MASK, sonypi_blueev }, { 0x08, SONYPI_PKEY_MASK, sonypi_pkeyev }, { 0x11, SONYPI_BACK_MASK, sonypi_backev }, { 0x21, SONYPI_HELP_MASK, sonypi_helpev }, { 0x21, SONYPI_ZOOM_MASK, sonypi_zoomev }, { 0x20, SONYPI_THUMBPHRASE_MASK, sonypi_thumbphraseev }, { 0x31, SONYPI_MEMORYSTICK_MASK, sonypi_memorystickev }, { 0x41, SONYPI_BATTERY_MASK, sonypi_batteryev }, { 0x31, SONYPI_PKEY_MASK, sonypi_pkeyev }, { 0 }, }; static struct sonypi_eventtypes type3_events[] = { { 0, 0xffffffff, sonypi_releaseev }, { 0x21, SONYPI_FNKEY_MASK, sonypi_fnkeyev }, { 0x31, SONYPI_WIRELESS_MASK, sonypi_wlessev }, { 0x31, SONYPI_MEMORYSTICK_MASK, sonypi_memorystickev }, { 0x41, SONYPI_BATTERY_MASK, sonypi_batteryev }, { 0x31, SONYPI_PKEY_MASK, sonypi_pkeyev }, { 0x05, SONYPI_PKEY_MASK, sonypi_pkeyev }, { 0x05, SONYPI_ZOOM_MASK, sonypi_zoomev }, { 0x05, SONYPI_CAPTURE_MASK, sonypi_captureev }, { 0x05, SONYPI_PKEY_MASK, sonypi_volumeev }, { 0x05, SONYPI_PKEY_MASK, sonypi_brightnessev }, { 0 }, }; /* low level spic calls */ #define ITERATIONS_LONG 10000 #define ITERATIONS_SHORT 10 #define wait_on_command(command, iterations) { \ unsigned int n = iterations; \ while (--n && (command)) \ udelay(1); \ if (!n) \ dprintk("command failed at %s : %s (line %d)\n", \ __FILE__, __func__, __LINE__); \ } static u8 sony_pic_call1(u8 dev) { u8 v1, v2; wait_on_command(inb_p(spic_dev.cur_ioport->io1.minimum + 4) & 2, ITERATIONS_LONG); outb(dev, spic_dev.cur_ioport->io1.minimum + 4); v1 = inb_p(spic_dev.cur_ioport->io1.minimum + 4); v2 = inb_p(spic_dev.cur_ioport->io1.minimum); dprintk("sony_pic_call1(0x%.2x): 0x%.4x\n", dev, (v2 << 8) | v1); return v2; } static u8 sony_pic_call2(u8 dev, u8 fn) { u8 v1; wait_on_command(inb_p(spic_dev.cur_ioport->io1.minimum + 4) & 2, ITERATIONS_LONG); outb(dev, spic_dev.cur_ioport->io1.minimum + 4); wait_on_command(inb_p(spic_dev.cur_ioport->io1.minimum + 4) & 2, ITERATIONS_LONG); outb(fn, spic_dev.cur_ioport->io1.minimum); v1 = inb_p(spic_dev.cur_ioport->io1.minimum); dprintk("sony_pic_call2(0x%.2x - 0x%.2x): 0x%.4x\n", dev, fn, v1); return v1; } static u8 sony_pic_call3(u8 dev, u8 fn, u8 v) { u8 v1; wait_on_command(inb_p(spic_dev.cur_ioport->io1.minimum + 4) & 2, ITERATIONS_LONG); outb(dev, spic_dev.cur_ioport->io1.minimum + 4); wait_on_command(inb_p(spic_dev.cur_ioport->io1.minimum + 4) & 2, ITERATIONS_LONG); outb(fn, spic_dev.cur_ioport->io1.minimum); wait_on_command(inb_p(spic_dev.cur_ioport->io1.minimum + 4) & 2, ITERATIONS_LONG); outb(v, spic_dev.cur_ioport->io1.minimum); v1 = inb_p(spic_dev.cur_ioport->io1.minimum); dprintk("sony_pic_call3(0x%.2x - 0x%.2x - 0x%.2x): 0x%.4x\n", dev, fn, v, v1); return v1; } /* * minidrivers for SPIC models */ static int type3_handle_irq(const u8 data_mask, const u8 ev) { /* * 0x31 could mean we have to take some extra action and wait for * the next irq for some Type3 models, it will generate a new * irq and we can read new data from the device: * - 0x5c and 0x5f requires 0xA0 * - 0x61 requires 0xB3 */ if (data_mask == 0x31) { if (ev == 0x5c || ev == 0x5f) sony_pic_call1(0xA0); else if (ev == 0x61) sony_pic_call1(0xB3); return 0; } return 1; } static void sony_pic_detect_device_type(struct sony_pic_dev *dev) { struct pci_dev *pcidev; pcidev = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82371AB_3, NULL); if (pcidev) { dev->model = SONYPI_DEVICE_TYPE1; dev->evport_offset = SONYPI_TYPE1_OFFSET; dev->event_types = type1_events; goto out; } pcidev = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH6_1, NULL); if (pcidev) { dev->model = SONYPI_DEVICE_TYPE2; dev->evport_offset = SONYPI_TYPE2_OFFSET; dev->event_types = type2_events; goto out; } pcidev = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH7_1, NULL); if (pcidev) { dev->model = SONYPI_DEVICE_TYPE3; dev->handle_irq = type3_handle_irq; dev->evport_offset = SONYPI_TYPE3_OFFSET; dev->event_types = type3_events; goto out; } pcidev = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH8_4, NULL); if (pcidev) { dev->model = SONYPI_DEVICE_TYPE3; dev->handle_irq = type3_handle_irq; dev->evport_offset = SONYPI_TYPE3_OFFSET; dev->event_types = type3_events; goto out; } pcidev = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH9_1, NULL); if (pcidev) { dev->model = SONYPI_DEVICE_TYPE3; dev->handle_irq = type3_handle_irq; dev->evport_offset = SONYPI_TYPE3_OFFSET; dev->event_types = type3_events; goto out; } /* default */ dev->model = SONYPI_DEVICE_TYPE2; dev->evport_offset = SONYPI_TYPE2_OFFSET; dev->event_types = type2_events; out: pci_dev_put(pcidev); pr_info("detected Type%d model\n", dev->model == SONYPI_DEVICE_TYPE1 ? 1 : dev->model == SONYPI_DEVICE_TYPE2 ? 2 : 3); } /* camera tests and poweron/poweroff */ #define SONYPI_CAMERA_PICTURE 5 #define SONYPI_CAMERA_CONTROL 0x10 #define SONYPI_CAMERA_BRIGHTNESS 0 #define SONYPI_CAMERA_CONTRAST 1 #define SONYPI_CAMERA_HUE 2 #define SONYPI_CAMERA_COLOR 3 #define SONYPI_CAMERA_SHARPNESS 4 #define SONYPI_CAMERA_EXPOSURE_MASK 0xC #define SONYPI_CAMERA_WHITE_BALANCE_MASK 0x3 #define SONYPI_CAMERA_PICTURE_MODE_MASK 0x30 #define SONYPI_CAMERA_MUTE_MASK 0x40 /* the rest don't need a loop until not 0xff */ #define SONYPI_CAMERA_AGC 6 #define SONYPI_CAMERA_AGC_MASK 0x30 #define SONYPI_CAMERA_SHUTTER_MASK 0x7 #define SONYPI_CAMERA_SHUTDOWN_REQUEST 7 #define SONYPI_CAMERA_CONTROL 0x10 #define SONYPI_CAMERA_STATUS 7 #define SONYPI_CAMERA_STATUS_READY 0x2 #define SONYPI_CAMERA_STATUS_POSITION 0x4 #define SONYPI_DIRECTION_BACKWARDS 0x4 #define SONYPI_CAMERA_REVISION 8 #define SONYPI_CAMERA_ROMVERSION 9 static int __sony_pic_camera_ready(void) { u8 v; v = sony_pic_call2(0x8f, SONYPI_CAMERA_STATUS); return (v != 0xff && (v & SONYPI_CAMERA_STATUS_READY)); } static int __sony_pic_camera_off(void) { if (!camera) { pr_warn("camera control not enabled\n"); return -ENODEV; } wait_on_command(sony_pic_call3(0x90, SONYPI_CAMERA_PICTURE, SONYPI_CAMERA_MUTE_MASK), ITERATIONS_SHORT); if (spic_dev.camera_power) { sony_pic_call2(0x91, 0); spic_dev.camera_power = 0; } return 0; } static int __sony_pic_camera_on(void) { int i, j, x; if (!camera) { pr_warn("camera control not enabled\n"); return -ENODEV; } if (spic_dev.camera_power) return 0; for (j = 5; j > 0; j--) { for (x = 0; x < 100 && sony_pic_call2(0x91, 0x1); x++) msleep(10); sony_pic_call1(0x93); for (i = 400; i > 0; i--) { if (__sony_pic_camera_ready()) break; msleep(10); } if (i) break; } if (j == 0) { pr_warn("failed to power on camera\n"); return -ENODEV; } wait_on_command(sony_pic_call3(0x90, SONYPI_CAMERA_CONTROL, 0x5a), ITERATIONS_SHORT); spic_dev.camera_power = 1; return 0; } /* External camera command (exported to the motion eye v4l driver) */ int sony_pic_camera_command(int command, u8 value) { if (!camera) return -EIO; mutex_lock(&spic_dev.lock); switch (command) { case SONY_PIC_COMMAND_SETCAMERA: if (value) __sony_pic_camera_on(); else __sony_pic_camera_off(); break; case SONY_PIC_COMMAND_SETCAMERABRIGHTNESS: wait_on_command(sony_pic_call3(0x90, SONYPI_CAMERA_BRIGHTNESS, value), ITERATIONS_SHORT); break; case SONY_PIC_COMMAND_SETCAMERACONTRAST: wait_on_command(sony_pic_call3(0x90, SONYPI_CAMERA_CONTRAST, value), ITERATIONS_SHORT); break; case SONY_PIC_COMMAND_SETCAMERAHUE: wait_on_command(sony_pic_call3(0x90, SONYPI_CAMERA_HUE, value), ITERATIONS_SHORT); break; case SONY_PIC_COMMAND_SETCAMERACOLOR: wait_on_command(sony_pic_call3(0x90, SONYPI_CAMERA_COLOR, value), ITERATIONS_SHORT); break; case SONY_PIC_COMMAND_SETCAMERASHARPNESS: wait_on_command(sony_pic_call3(0x90, SONYPI_CAMERA_SHARPNESS, value), ITERATIONS_SHORT); break; case SONY_PIC_COMMAND_SETCAMERAPICTURE: wait_on_command(sony_pic_call3(0x90, SONYPI_CAMERA_PICTURE, value), ITERATIONS_SHORT); break; case SONY_PIC_COMMAND_SETCAMERAAGC: wait_on_command(sony_pic_call3(0x90, SONYPI_CAMERA_AGC, value), ITERATIONS_SHORT); break; default: pr_err("sony_pic_camera_command invalid: %d\n", command); break; } mutex_unlock(&spic_dev.lock); return 0; } EXPORT_SYMBOL(sony_pic_camera_command); /* gprs/edge modem (SZ460N and SZ210P), thanks to Joshua Wise */ static void __sony_pic_set_wwanpower(u8 state) { state = !!state; if (spic_dev.wwan_power == state) return; sony_pic_call2(0xB0, state); sony_pic_call1(0x82); spic_dev.wwan_power = state; } static ssize_t sony_pic_wwanpower_store(struct device *dev, struct device_attribute *attr, const char *buffer, size_t count) { unsigned long value; if (count > 31) return -EINVAL; if (kstrtoul(buffer, 10, &value)) return -EINVAL; mutex_lock(&spic_dev.lock); __sony_pic_set_wwanpower(value); mutex_unlock(&spic_dev.lock); return count; } static ssize_t sony_pic_wwanpower_show(struct device *dev, struct device_attribute *attr, char *buffer) { ssize_t count; mutex_lock(&spic_dev.lock); count = sysfs_emit(buffer, "%d\n", spic_dev.wwan_power); mutex_unlock(&spic_dev.lock); return count; } /* bluetooth subsystem power state */ static void __sony_pic_set_bluetoothpower(u8 state) { state = !!state; if (spic_dev.bluetooth_power == state) return; sony_pic_call2(0x96, state); sony_pic_call1(0x82); spic_dev.bluetooth_power = state; } static ssize_t sony_pic_bluetoothpower_store(struct device *dev, struct device_attribute *attr, const char *buffer, size_t count) { unsigned long value; if (count > 31) return -EINVAL; if (kstrtoul(buffer, 10, &value)) return -EINVAL; mutex_lock(&spic_dev.lock); __sony_pic_set_bluetoothpower(value); mutex_unlock(&spic_dev.lock); return count; } static ssize_t sony_pic_bluetoothpower_show(struct device *dev, struct device_attribute *attr, char *buffer) { ssize_t count = 0; mutex_lock(&spic_dev.lock); count = sysfs_emit(buffer, "%d\n", spic_dev.bluetooth_power); mutex_unlock(&spic_dev.lock); return count; } /* fan speed */ /* FAN0 information (reverse engineered from ACPI tables) */ #define SONY_PIC_FAN0_STATUS 0x93 static int sony_pic_set_fanspeed(unsigned long value) { return ec_write(SONY_PIC_FAN0_STATUS, value); } static int sony_pic_get_fanspeed(u8 *value) { return ec_read(SONY_PIC_FAN0_STATUS, value); } static ssize_t sony_pic_fanspeed_store(struct device *dev, struct device_attribute *attr, const char *buffer, size_t count) { unsigned long value; if (count > 31) return -EINVAL; if (kstrtoul(buffer, 10, &value)) return -EINVAL; if (sony_pic_set_fanspeed(value)) return -EIO; return count; } static ssize_t sony_pic_fanspeed_show(struct device *dev, struct device_attribute *attr, char *buffer) { u8 value = 0; if (sony_pic_get_fanspeed(&value)) return -EIO; return sysfs_emit(buffer, "%d\n", value); } #define SPIC_ATTR(_name, _mode) \ struct device_attribute spic_attr_##_name = __ATTR(_name, \ _mode, sony_pic_## _name ##_show, \ sony_pic_## _name ##_store) static SPIC_ATTR(bluetoothpower, 0644); static SPIC_ATTR(wwanpower, 0644); static SPIC_ATTR(fanspeed, 0644); static struct attribute *spic_attributes[] = { &spic_attr_bluetoothpower.attr, &spic_attr_wwanpower.attr, &spic_attr_fanspeed.attr, NULL }; static const struct attribute_group spic_attribute_group = { .attrs = spic_attributes }; /******** SONYPI compatibility **********/ #ifdef CONFIG_SONYPI_COMPAT /* battery / brightness / temperature addresses */ #define SONYPI_BAT_FLAGS 0x81 #define SONYPI_LCD_LIGHT 0x96 #define SONYPI_BAT1_PCTRM 0xa0 #define SONYPI_BAT1_LEFT 0xa2 #define SONYPI_BAT1_MAXRT 0xa4 #define SONYPI_BAT2_PCTRM 0xa8 #define SONYPI_BAT2_LEFT 0xaa #define SONYPI_BAT2_MAXRT 0xac #define SONYPI_BAT1_MAXTK 0xb0 #define SONYPI_BAT1_FULL 0xb2 #define SONYPI_BAT2_MAXTK 0xb8 #define SONYPI_BAT2_FULL 0xba #define SONYPI_TEMP_STATUS 0xC1 struct sonypi_compat_s { struct fasync_struct *fifo_async; struct kfifo fifo; spinlock_t fifo_lock; wait_queue_head_t fifo_proc_list; atomic_t open_count; }; static struct sonypi_compat_s sonypi_compat = { .open_count = ATOMIC_INIT(0), }; static int sonypi_misc_fasync(int fd, struct file *filp, int on) { return fasync_helper(fd, filp, on, &sonypi_compat.fifo_async); } static int sonypi_misc_release(struct inode *inode, struct file *file) { atomic_dec(&sonypi_compat.open_count); return 0; } static int sonypi_misc_open(struct inode *inode, struct file *file) { /* Flush input queue on first open */ unsigned long flags; spin_lock_irqsave(&sonypi_compat.fifo_lock, flags); if (atomic_inc_return(&sonypi_compat.open_count) == 1) kfifo_reset(&sonypi_compat.fifo); spin_unlock_irqrestore(&sonypi_compat.fifo_lock, flags); return 0; } static ssize_t sonypi_misc_read(struct file *file, char __user *buf, size_t count, loff_t *pos) { ssize_t ret; unsigned char c; if ((kfifo_len(&sonypi_compat.fifo) == 0) && (file->f_flags & O_NONBLOCK)) return -EAGAIN; ret = wait_event_interruptible(sonypi_compat.fifo_proc_list, kfifo_len(&sonypi_compat.fifo) != 0); if (ret) return ret; while (ret < count && (kfifo_out_locked(&sonypi_compat.fifo, &c, sizeof(c), &sonypi_compat.fifo_lock) == sizeof(c))) { if (put_user(c, buf++)) return -EFAULT; ret++; } if (ret > 0) { struct inode *inode = file_inode(file); inode->i_atime = current_time(inode); } return ret; } static __poll_t sonypi_misc_poll(struct file *file, poll_table *wait) { poll_wait(file, &sonypi_compat.fifo_proc_list, wait); if (kfifo_len(&sonypi_compat.fifo)) return EPOLLIN | EPOLLRDNORM; return 0; } static int ec_read16(u8 addr, u16 *value) { u8 val_lb, val_hb; if (ec_read(addr, &val_lb)) return -1; if (ec_read(addr + 1, &val_hb)) return -1; *value = val_lb | (val_hb << 8); return 0; } static long sonypi_misc_ioctl(struct file *fp, unsigned int cmd, unsigned long arg) { int ret = 0; void __user *argp = (void __user *)arg; u8 val8; u16 val16; int value; mutex_lock(&spic_dev.lock); switch (cmd) { case SONYPI_IOCGBRT: if (sony_bl_props.dev == NULL) { ret = -EIO; break; } if (sony_nc_int_call(sony_nc_acpi_handle, "GBRT", NULL, &value)) { ret = -EIO; break; } val8 = ((value & 0xff) - 1) << 5; if (copy_to_user(argp, &val8, sizeof(val8))) ret = -EFAULT; break; case SONYPI_IOCSBRT: if (sony_bl_props.dev == NULL) { ret = -EIO; break; } if (copy_from_user(&val8, argp, sizeof(val8))) { ret = -EFAULT; break; } value = (val8 >> 5) + 1; if (sony_nc_int_call(sony_nc_acpi_handle, "SBRT", &value, NULL)) { ret = -EIO; break; } /* sync the backlight device status */ sony_bl_props.dev->props.brightness = sony_backlight_get_brightness(sony_bl_props.dev); break; case SONYPI_IOCGBAT1CAP: if (ec_read16(SONYPI_BAT1_FULL, &val16)) { ret = -EIO; break; } if (copy_to_user(argp, &val16, sizeof(val16))) ret = -EFAULT; break; case SONYPI_IOCGBAT1REM: if (ec_read16(SONYPI_BAT1_LEFT, &val16)) { ret = -EIO; break; } if (copy_to_user(argp, &val16, sizeof(val16))) ret = -EFAULT; break; case SONYPI_IOCGBAT2CAP: if (ec_read16(SONYPI_BAT2_FULL, &val16)) { ret = -EIO; break; } if (copy_to_user(argp, &val16, sizeof(val16))) ret = -EFAULT; break; case SONYPI_IOCGBAT2REM: if (ec_read16(SONYPI_BAT2_LEFT, &val16)) { ret = -EIO; break; } if (copy_to_user(argp, &val16, sizeof(val16))) ret = -EFAULT; break; case SONYPI_IOCGBATFLAGS: if (ec_read(SONYPI_BAT_FLAGS, &val8)) { ret = -EIO; break; } val8 &= 0x07; if (copy_to_user(argp, &val8, sizeof(val8))) ret = -EFAULT; break; case SONYPI_IOCGBLUE: val8 = spic_dev.bluetooth_power; if (copy_to_user(argp, &val8, sizeof(val8))) ret = -EFAULT; break; case SONYPI_IOCSBLUE: if (copy_from_user(&val8, argp, sizeof(val8))) { ret = -EFAULT; break; } __sony_pic_set_bluetoothpower(val8); break; /* FAN Controls */ case SONYPI_IOCGFAN: if (sony_pic_get_fanspeed(&val8)) { ret = -EIO; break; } if (copy_to_user(argp, &val8, sizeof(val8))) ret = -EFAULT; break; case SONYPI_IOCSFAN: if (copy_from_user(&val8, argp, sizeof(val8))) { ret = -EFAULT; break; } if (sony_pic_set_fanspeed(val8)) ret = -EIO; break; /* GET Temperature (useful under APM) */ case SONYPI_IOCGTEMP: if (ec_read(SONYPI_TEMP_STATUS, &val8)) { ret = -EIO; break; } if (copy_to_user(argp, &val8, sizeof(val8))) ret = -EFAULT; break; default: ret = -EINVAL; } mutex_unlock(&spic_dev.lock); return ret; } static const struct file_operations sonypi_misc_fops = { .owner = THIS_MODULE, .read = sonypi_misc_read, .poll = sonypi_misc_poll, .open = sonypi_misc_open, .release = sonypi_misc_release, .fasync = sonypi_misc_fasync, .unlocked_ioctl = sonypi_misc_ioctl, .llseek = noop_llseek, }; static struct miscdevice sonypi_misc_device = { .minor = MISC_DYNAMIC_MINOR, .name = "sonypi", .fops = &sonypi_misc_fops, }; static void sonypi_compat_report_event(u8 event) { kfifo_in_locked(&sonypi_compat.fifo, (unsigned char *)&event, sizeof(event), &sonypi_compat.fifo_lock); kill_fasync(&sonypi_compat.fifo_async, SIGIO, POLL_IN); wake_up_interruptible(&sonypi_compat.fifo_proc_list); } static int sonypi_compat_init(void) { int error; spin_lock_init(&sonypi_compat.fifo_lock); error = kfifo_alloc(&sonypi_compat.fifo, SONY_LAPTOP_BUF_SIZE, GFP_KERNEL); if (error) { pr_err("kfifo_alloc failed\n"); return error; } init_waitqueue_head(&sonypi_compat.fifo_proc_list); if (minor != -1) sonypi_misc_device.minor = minor; error = misc_register(&sonypi_misc_device); if (error) { pr_err("misc_register failed\n"); goto err_free_kfifo; } if (minor == -1) pr_info("device allocated minor is %d\n", sonypi_misc_device.minor); return 0; err_free_kfifo: kfifo_free(&sonypi_compat.fifo); return error; } static void sonypi_compat_exit(void) { misc_deregister(&sonypi_misc_device); kfifo_free(&sonypi_compat.fifo); } #else static int sonypi_compat_init(void) { return 0; } static void sonypi_compat_exit(void) { } static void sonypi_compat_report_event(u8 event) { } #endif /* CONFIG_SONYPI_COMPAT */ /* * ACPI callbacks */ static acpi_status sony_pic_read_possible_resource(struct acpi_resource *resource, void *context) { u32 i; struct sony_pic_dev *dev = (struct sony_pic_dev *)context; switch (resource->type) { case ACPI_RESOURCE_TYPE_START_DEPENDENT: { /* start IO enumeration */ struct sony_pic_ioport *ioport = kzalloc(sizeof(*ioport), GFP_KERNEL); if (!ioport) return AE_ERROR; list_add(&ioport->list, &dev->ioports); return AE_OK; } case ACPI_RESOURCE_TYPE_END_DEPENDENT: /* end IO enumeration */ return AE_OK; case ACPI_RESOURCE_TYPE_IRQ: { struct acpi_resource_irq *p = &resource->data.irq; struct sony_pic_irq *interrupt = NULL; if (!p->interrupt_count) { /* * IRQ descriptors may have no IRQ# bits set, * particularly those those w/ _STA disabled */ dprintk("Blank IRQ resource\n"); return AE_OK; } for (i = 0; i < p->interrupt_count; i++) { if (!p->interrupts[i]) { pr_warn("Invalid IRQ %d\n", p->interrupts[i]); continue; } interrupt = kzalloc(sizeof(*interrupt), GFP_KERNEL); if (!interrupt) return AE_ERROR; list_add(&interrupt->list, &dev->interrupts); interrupt->irq.triggering = p->triggering; interrupt->irq.polarity = p->polarity; interrupt->irq.shareable = p->shareable; interrupt->irq.interrupt_count = 1; interrupt->irq.interrupts[0] = p->interrupts[i]; } return AE_OK; } case ACPI_RESOURCE_TYPE_IO: { struct acpi_resource_io *io = &resource->data.io; struct sony_pic_ioport *ioport = list_first_entry(&dev->ioports, struct sony_pic_ioport, list); if (!ioport->io1.minimum) { memcpy(&ioport->io1, io, sizeof(*io)); dprintk("IO1 at 0x%.4x (0x%.2x)\n", ioport->io1.minimum, ioport->io1.address_length); } else if (!ioport->io2.minimum) { memcpy(&ioport->io2, io, sizeof(*io)); dprintk("IO2 at 0x%.4x (0x%.2x)\n", ioport->io2.minimum, ioport->io2.address_length); } else { pr_err("Unknown SPIC Type, more than 2 IO Ports\n"); return AE_ERROR; } return AE_OK; } case ACPI_RESOURCE_TYPE_END_TAG: return AE_OK; default: dprintk("Resource %d isn't an IRQ nor an IO port\n", resource->type); return AE_CTRL_TERMINATE; } } static int sony_pic_possible_resources(struct acpi_device *device) { int result = 0; acpi_status status = AE_OK; if (!device) return -EINVAL; /* get device status */ /* see acpi_pci_link_get_current acpi_pci_link_get_possible */ dprintk("Evaluating _STA\n"); result = acpi_bus_get_status(device); if (result) { pr_warn("Unable to read status\n"); goto end; } if (!device->status.enabled) dprintk("Device disabled\n"); else dprintk("Device enabled\n"); /* * Query and parse 'method' */ dprintk("Evaluating %s\n", METHOD_NAME__PRS); status = acpi_walk_resources(device->handle, METHOD_NAME__PRS, sony_pic_read_possible_resource, &spic_dev); if (ACPI_FAILURE(status)) { pr_warn("Failure evaluating %s\n", METHOD_NAME__PRS); result = -ENODEV; } end: return result; } /* * Disable the spic device by calling its _DIS method */ static int sony_pic_disable(struct acpi_device *device) { acpi_status ret = acpi_evaluate_object(device->handle, "_DIS", NULL, NULL); if (ACPI_FAILURE(ret) && ret != AE_NOT_FOUND) return -ENXIO; dprintk("Device disabled\n"); return 0; } /* * Based on drivers/acpi/pci_link.c:acpi_pci_link_set * * Call _SRS to set current resources */ static int sony_pic_enable(struct acpi_device *device, struct sony_pic_ioport *ioport, struct sony_pic_irq *irq) { acpi_status status; int result = 0; /* Type 1 resource layout is: * IO * IO * IRQNoFlags * End * * Type 2 and 3 resource layout is: * IO * IRQNoFlags * End */ struct { struct acpi_resource res1; struct acpi_resource res2; struct acpi_resource res3; struct acpi_resource res4; } *resource; struct acpi_buffer buffer = { 0, NULL }; if (!ioport || !irq) return -EINVAL; /* init acpi_buffer */ resource = kzalloc(sizeof(*resource) + 1, GFP_KERNEL); if (!resource) return -ENOMEM; buffer.length = sizeof(*resource) + 1; buffer.pointer = resource; /* setup Type 1 resources */ if (spic_dev.model == SONYPI_DEVICE_TYPE1) { /* setup io resources */ resource->res1.type = ACPI_RESOURCE_TYPE_IO; resource->res1.length = sizeof(struct acpi_resource); memcpy(&resource->res1.data.io, &ioport->io1, sizeof(struct acpi_resource_io)); resource->res2.type = ACPI_RESOURCE_TYPE_IO; resource->res2.length = sizeof(struct acpi_resource); memcpy(&resource->res2.data.io, &ioport->io2, sizeof(struct acpi_resource_io)); /* setup irq resource */ resource->res3.type = ACPI_RESOURCE_TYPE_IRQ; resource->res3.length = sizeof(struct acpi_resource); memcpy(&resource->res3.data.irq, &irq->irq, sizeof(struct acpi_resource_irq)); /* we requested a shared irq */ resource->res3.data.irq.shareable = ACPI_SHARED; resource->res4.type = ACPI_RESOURCE_TYPE_END_TAG; resource->res4.length = sizeof(struct acpi_resource); } /* setup Type 2/3 resources */ else { /* setup io resource */ resource->res1.type = ACPI_RESOURCE_TYPE_IO; resource->res1.length = sizeof(struct acpi_resource); memcpy(&resource->res1.data.io, &ioport->io1, sizeof(struct acpi_resource_io)); /* setup irq resource */ resource->res2.type = ACPI_RESOURCE_TYPE_IRQ; resource->res2.length = sizeof(struct acpi_resource); memcpy(&resource->res2.data.irq, &irq->irq, sizeof(struct acpi_resource_irq)); /* we requested a shared irq */ resource->res2.data.irq.shareable = ACPI_SHARED; resource->res3.type = ACPI_RESOURCE_TYPE_END_TAG; resource->res3.length = sizeof(struct acpi_resource); } /* Attempt to set the resource */ dprintk("Evaluating _SRS\n"); status = acpi_set_current_resources(device->handle, &buffer); /* check for total failure */ if (ACPI_FAILURE(status)) { pr_err("Error evaluating _SRS\n"); result = -ENODEV; goto end; } /* Necessary device initializations calls (from sonypi) */ sony_pic_call1(0x82); sony_pic_call2(0x81, 0xff); sony_pic_call1(compat ? 0x92 : 0x82); end: kfree(resource); return result; } /***************** * * ISR: some event is available * *****************/ static irqreturn_t sony_pic_irq(int irq, void *dev_id) { int i, j; u8 ev = 0; u8 data_mask = 0; u8 device_event = 0; struct sony_pic_dev *dev = (struct sony_pic_dev *) dev_id; ev = inb_p(dev->cur_ioport->io1.minimum); if (dev->cur_ioport->io2.minimum) data_mask = inb_p(dev->cur_ioport->io2.minimum); else data_mask = inb_p(dev->cur_ioport->io1.minimum + dev->evport_offset); dprintk("event ([%.2x] [%.2x]) at port 0x%.4x(+0x%.2x)\n", ev, data_mask, dev->cur_ioport->io1.minimum, dev->evport_offset); if (ev == 0x00 || ev == 0xff) return IRQ_HANDLED; for (i = 0; dev->event_types[i].mask; i++) { if ((data_mask & dev->event_types[i].data) != dev->event_types[i].data) continue; if (!(mask & dev->event_types[i].mask)) continue; for (j = 0; dev->event_types[i].events[j].event; j++) { if (ev == dev->event_types[i].events[j].data) { device_event = dev->event_types[i].events[j].event; /* some events may require ignoring */ if (!device_event) return IRQ_HANDLED; goto found; } } } /* Still not able to decode the event try to pass * it over to the minidriver */ if (dev->handle_irq && dev->handle_irq(data_mask, ev) == 0) return IRQ_HANDLED; dprintk("unknown event ([%.2x] [%.2x]) at port 0x%.4x(+0x%.2x)\n", ev, data_mask, dev->cur_ioport->io1.minimum, dev->evport_offset); return IRQ_HANDLED; found: sony_laptop_report_input_event(device_event); sonypi_compat_report_event(device_event); return IRQ_HANDLED; } /***************** * * ACPI driver * *****************/ static void sony_pic_remove(struct acpi_device *device) { struct sony_pic_ioport *io, *tmp_io; struct sony_pic_irq *irq, *tmp_irq; if (sony_pic_disable(device)) { pr_err("Couldn't disable device\n"); return; } free_irq(spic_dev.cur_irq->irq.interrupts[0], &spic_dev); release_region(spic_dev.cur_ioport->io1.minimum, spic_dev.cur_ioport->io1.address_length); if (spic_dev.cur_ioport->io2.minimum) release_region(spic_dev.cur_ioport->io2.minimum, spic_dev.cur_ioport->io2.address_length); sonypi_compat_exit(); sony_laptop_remove_input(); /* pf attrs */ sysfs_remove_group(&sony_pf_device->dev.kobj, &spic_attribute_group); sony_pf_remove(); list_for_each_entry_safe(io, tmp_io, &spic_dev.ioports, list) { list_del(&io->list); kfree(io); } list_for_each_entry_safe(irq, tmp_irq, &spic_dev.interrupts, list) { list_del(&irq->list); kfree(irq); } spic_dev.cur_ioport = NULL; spic_dev.cur_irq = NULL; dprintk(SONY_PIC_DRIVER_NAME " removed.\n"); } static int sony_pic_add(struct acpi_device *device) { int result; struct sony_pic_ioport *io, *tmp_io; struct sony_pic_irq *irq, *tmp_irq; spic_dev.acpi_dev = device; strcpy(acpi_device_class(device), "sony/hotkey"); sony_pic_detect_device_type(&spic_dev); mutex_init(&spic_dev.lock); /* read _PRS resources */ result = sony_pic_possible_resources(device); if (result) { pr_err("Unable to read possible resources\n"); goto err_free_resources; } /* setup input devices and helper fifo */ result = sony_laptop_setup_input(device); if (result) { pr_err("Unable to create input devices\n"); goto err_free_resources; } result = sonypi_compat_init(); if (result) goto err_remove_input; /* request io port */ list_for_each_entry_reverse(io, &spic_dev.ioports, list) { if (request_region(io->io1.minimum, io->io1.address_length, "Sony Programmable I/O Device")) { dprintk("I/O port1: 0x%.4x (0x%.4x) + 0x%.2x\n", io->io1.minimum, io->io1.maximum, io->io1.address_length); /* Type 1 have 2 ioports */ if (io->io2.minimum) { if (request_region(io->io2.minimum, io->io2.address_length, "Sony Programmable I/O Device")) { dprintk("I/O port2: 0x%.4x (0x%.4x) + 0x%.2x\n", io->io2.minimum, io->io2.maximum, io->io2.address_length); spic_dev.cur_ioport = io; break; } else { dprintk("Unable to get I/O port2: " "0x%.4x (0x%.4x) + 0x%.2x\n", io->io2.minimum, io->io2.maximum, io->io2.address_length); release_region(io->io1.minimum, io->io1.address_length); } } else { spic_dev.cur_ioport = io; break; } } } if (!spic_dev.cur_ioport) { pr_err("Failed to request_region\n"); result = -ENODEV; goto err_remove_compat; } /* request IRQ */ list_for_each_entry_reverse(irq, &spic_dev.interrupts, list) { if (!request_irq(irq->irq.interrupts[0], sony_pic_irq, 0, "sony-laptop", &spic_dev)) { dprintk("IRQ: %d - triggering: %d - " "polarity: %d - shr: %d\n", irq->irq.interrupts[0], irq->irq.triggering, irq->irq.polarity, irq->irq.shareable); spic_dev.cur_irq = irq; break; } } if (!spic_dev.cur_irq) { pr_err("Failed to request_irq\n"); result = -ENODEV; goto err_release_region; } /* set resource status _SRS */ result = sony_pic_enable(device, spic_dev.cur_ioport, spic_dev.cur_irq); if (result) { pr_err("Couldn't enable device\n"); goto err_free_irq; } spic_dev.bluetooth_power = -1; /* create device attributes */ result = sony_pf_add(); if (result) goto err_disable_device; result = sysfs_create_group(&sony_pf_device->dev.kobj, &spic_attribute_group); if (result) goto err_remove_pf; pr_info("SPIC setup done.\n"); return 0; err_remove_pf: sony_pf_remove(); err_disable_device: sony_pic_disable(device); err_free_irq: free_irq(spic_dev.cur_irq->irq.interrupts[0], &spic_dev); err_release_region: release_region(spic_dev.cur_ioport->io1.minimum, spic_dev.cur_ioport->io1.address_length); if (spic_dev.cur_ioport->io2.minimum) release_region(spic_dev.cur_ioport->io2.minimum, spic_dev.cur_ioport->io2.address_length); err_remove_compat: sonypi_compat_exit(); err_remove_input: sony_laptop_remove_input(); err_free_resources: list_for_each_entry_safe(io, tmp_io, &spic_dev.ioports, list) { list_del(&io->list); kfree(io); } list_for_each_entry_safe(irq, tmp_irq, &spic_dev.interrupts, list) { list_del(&irq->list); kfree(irq); } spic_dev.cur_ioport = NULL; spic_dev.cur_irq = NULL; return result; } #ifdef CONFIG_PM_SLEEP static int sony_pic_suspend(struct device *dev) { if (sony_pic_disable(to_acpi_device(dev))) return -ENXIO; return 0; } static int sony_pic_resume(struct device *dev) { sony_pic_enable(to_acpi_device(dev), spic_dev.cur_ioport, spic_dev.cur_irq); return 0; } #endif static SIMPLE_DEV_PM_OPS(sony_pic_pm, sony_pic_suspend, sony_pic_resume); static const struct acpi_device_id sony_pic_device_ids[] = { {SONY_PIC_HID, 0}, {"", 0}, }; static struct acpi_driver sony_pic_driver = { .name = SONY_PIC_DRIVER_NAME, .class = SONY_PIC_CLASS, .ids = sony_pic_device_ids, .owner = THIS_MODULE, .ops = { .add = sony_pic_add, .remove = sony_pic_remove, }, .drv.pm = &sony_pic_pm, }; static const struct dmi_system_id sonypi_dmi_table[] __initconst = { { .ident = "Sony Vaio", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, "PCG-"), }, }, { .ident = "Sony Vaio", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, "VGN-"), }, }, { } }; static int __init sony_laptop_init(void) { int result; if (!no_spic && dmi_check_system(sonypi_dmi_table)) { result = acpi_bus_register_driver(&sony_pic_driver); if (result) { pr_err("Unable to register SPIC driver\n"); goto out; } spic_drv_registered = 1; } result = acpi_bus_register_driver(&sony_nc_driver); if (result) { pr_err("Unable to register SNC driver\n"); goto out_unregister_pic; } return 0; out_unregister_pic: if (spic_drv_registered) acpi_bus_unregister_driver(&sony_pic_driver); out: return result; } static void __exit sony_laptop_exit(void) { acpi_bus_unregister_driver(&sony_nc_driver); if (spic_drv_registered) acpi_bus_unregister_driver(&sony_pic_driver); } module_init(sony_laptop_init); module_exit(sony_laptop_exit);
linux-master
drivers/platform/x86/sony-laptop.c
// SPDX-License-Identifier: GPL-2.0-only /* * Toshiba Bluetooth Enable Driver * * Copyright (C) 2009 Jes Sorensen <[email protected]> * Copyright (C) 2015 Azael Avalos <[email protected]> * * Thanks to Matthew Garrett for background info on ACPI innards which * normal people aren't meant to understand :-) */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/types.h> #include <linux/acpi.h> #include <linux/rfkill.h> #define BT_KILLSWITCH_MASK 0x01 #define BT_PLUGGED_MASK 0x40 #define BT_POWER_MASK 0x80 MODULE_AUTHOR("Jes Sorensen <[email protected]>"); MODULE_DESCRIPTION("Toshiba Laptop ACPI Bluetooth Enable Driver"); MODULE_LICENSE("GPL"); struct toshiba_bluetooth_dev { struct acpi_device *acpi_dev; struct rfkill *rfk; bool killswitch; bool plugged; bool powered; }; static int toshiba_bt_rfkill_add(struct acpi_device *device); static void toshiba_bt_rfkill_remove(struct acpi_device *device); static void toshiba_bt_rfkill_notify(struct acpi_device *device, u32 event); static const struct acpi_device_id bt_device_ids[] = { { "TOS6205", 0}, { "", 0}, }; MODULE_DEVICE_TABLE(acpi, bt_device_ids); #ifdef CONFIG_PM_SLEEP static int toshiba_bt_resume(struct device *dev); #endif static SIMPLE_DEV_PM_OPS(toshiba_bt_pm, NULL, toshiba_bt_resume); static struct acpi_driver toshiba_bt_rfkill_driver = { .name = "Toshiba BT", .class = "Toshiba", .ids = bt_device_ids, .ops = { .add = toshiba_bt_rfkill_add, .remove = toshiba_bt_rfkill_remove, .notify = toshiba_bt_rfkill_notify, }, .owner = THIS_MODULE, .drv.pm = &toshiba_bt_pm, }; static int toshiba_bluetooth_present(acpi_handle handle) { acpi_status result; u64 bt_present; /* * Some Toshiba laptops may have a fake TOS6205 device in * their ACPI BIOS, so query the _STA method to see if there * is really anything there. */ result = acpi_evaluate_integer(handle, "_STA", NULL, &bt_present); if (ACPI_FAILURE(result)) { pr_err("ACPI call to query Bluetooth presence failed\n"); return -ENXIO; } if (!bt_present) { pr_info("Bluetooth device not present\n"); return -ENODEV; } return 0; } static int toshiba_bluetooth_status(acpi_handle handle) { acpi_status result; u64 status; result = acpi_evaluate_integer(handle, "BTST", NULL, &status); if (ACPI_FAILURE(result)) { pr_err("Could not get Bluetooth device status\n"); return -ENXIO; } return status; } static int toshiba_bluetooth_enable(acpi_handle handle) { acpi_status result; result = acpi_evaluate_object(handle, "AUSB", NULL, NULL); if (ACPI_FAILURE(result)) { pr_err("Could not attach USB Bluetooth device\n"); return -ENXIO; } result = acpi_evaluate_object(handle, "BTPO", NULL, NULL); if (ACPI_FAILURE(result)) { pr_err("Could not power ON Bluetooth device\n"); return -ENXIO; } return 0; } static int toshiba_bluetooth_disable(acpi_handle handle) { acpi_status result; result = acpi_evaluate_object(handle, "BTPF", NULL, NULL); if (ACPI_FAILURE(result)) { pr_err("Could not power OFF Bluetooth device\n"); return -ENXIO; } result = acpi_evaluate_object(handle, "DUSB", NULL, NULL); if (ACPI_FAILURE(result)) { pr_err("Could not detach USB Bluetooth device\n"); return -ENXIO; } return 0; } /* Helper function */ static int toshiba_bluetooth_sync_status(struct toshiba_bluetooth_dev *bt_dev) { int status; status = toshiba_bluetooth_status(bt_dev->acpi_dev->handle); if (status < 0) { pr_err("Could not sync bluetooth device status\n"); return status; } bt_dev->killswitch = (status & BT_KILLSWITCH_MASK) ? true : false; bt_dev->plugged = (status & BT_PLUGGED_MASK) ? true : false; bt_dev->powered = (status & BT_POWER_MASK) ? true : false; pr_debug("Bluetooth status %d killswitch %d plugged %d powered %d\n", status, bt_dev->killswitch, bt_dev->plugged, bt_dev->powered); return 0; } /* RFKill handlers */ static int bt_rfkill_set_block(void *data, bool blocked) { struct toshiba_bluetooth_dev *bt_dev = data; int ret; ret = toshiba_bluetooth_sync_status(bt_dev); if (ret) return ret; if (!bt_dev->killswitch) return 0; if (blocked) ret = toshiba_bluetooth_disable(bt_dev->acpi_dev->handle); else ret = toshiba_bluetooth_enable(bt_dev->acpi_dev->handle); return ret; } static void bt_rfkill_poll(struct rfkill *rfkill, void *data) { struct toshiba_bluetooth_dev *bt_dev = data; if (toshiba_bluetooth_sync_status(bt_dev)) return; /* * Note the Toshiba Bluetooth RFKill switch seems to be a strange * fish. It only provides a BT event when the switch is flipped to * the 'on' position. When flipping it to 'off', the USB device is * simply pulled away underneath us, without any BT event being * delivered. */ rfkill_set_hw_state(bt_dev->rfk, !bt_dev->killswitch); } static const struct rfkill_ops rfk_ops = { .set_block = bt_rfkill_set_block, .poll = bt_rfkill_poll, }; /* ACPI driver functions */ static void toshiba_bt_rfkill_notify(struct acpi_device *device, u32 event) { struct toshiba_bluetooth_dev *bt_dev = acpi_driver_data(device); if (toshiba_bluetooth_sync_status(bt_dev)) return; rfkill_set_hw_state(bt_dev->rfk, !bt_dev->killswitch); } #ifdef CONFIG_PM_SLEEP static int toshiba_bt_resume(struct device *dev) { struct toshiba_bluetooth_dev *bt_dev; int ret; bt_dev = acpi_driver_data(to_acpi_device(dev)); ret = toshiba_bluetooth_sync_status(bt_dev); if (ret) return ret; rfkill_set_hw_state(bt_dev->rfk, !bt_dev->killswitch); return 0; } #endif static int toshiba_bt_rfkill_add(struct acpi_device *device) { struct toshiba_bluetooth_dev *bt_dev; int result; result = toshiba_bluetooth_present(device->handle); if (result) return result; pr_info("Toshiba ACPI Bluetooth device driver\n"); bt_dev = kzalloc(sizeof(*bt_dev), GFP_KERNEL); if (!bt_dev) return -ENOMEM; bt_dev->acpi_dev = device; device->driver_data = bt_dev; dev_set_drvdata(&device->dev, bt_dev); result = toshiba_bluetooth_sync_status(bt_dev); if (result) { kfree(bt_dev); return result; } bt_dev->rfk = rfkill_alloc("Toshiba Bluetooth", &device->dev, RFKILL_TYPE_BLUETOOTH, &rfk_ops, bt_dev); if (!bt_dev->rfk) { pr_err("Unable to allocate rfkill device\n"); kfree(bt_dev); return -ENOMEM; } rfkill_set_hw_state(bt_dev->rfk, !bt_dev->killswitch); result = rfkill_register(bt_dev->rfk); if (result) { pr_err("Unable to register rfkill device\n"); rfkill_destroy(bt_dev->rfk); kfree(bt_dev); } return result; } static void toshiba_bt_rfkill_remove(struct acpi_device *device) { struct toshiba_bluetooth_dev *bt_dev = acpi_driver_data(device); /* clean up */ if (bt_dev->rfk) { rfkill_unregister(bt_dev->rfk); rfkill_destroy(bt_dev->rfk); } kfree(bt_dev); toshiba_bluetooth_disable(device->handle); } module_acpi_driver(toshiba_bt_rfkill_driver);
linux-master
drivers/platform/x86/toshiba_bluetooth.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2021 Thomas Weißschuh <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/acpi.h> #include <linux/hwmon.h> #include <linux/module.h> #include <linux/wmi.h> #define GIGABYTE_WMI_GUID "DEADBEEF-2001-0000-00A0-C90629100000" #define NUM_TEMPERATURE_SENSORS 6 static u8 usable_sensors_mask; enum gigabyte_wmi_commandtype { GIGABYTE_WMI_BUILD_DATE_QUERY = 0x1, GIGABYTE_WMI_MAINBOARD_TYPE_QUERY = 0x2, GIGABYTE_WMI_FIRMWARE_VERSION_QUERY = 0x4, GIGABYTE_WMI_MAINBOARD_NAME_QUERY = 0x5, GIGABYTE_WMI_TEMPERATURE_QUERY = 0x125, }; struct gigabyte_wmi_args { u32 arg1; }; static int gigabyte_wmi_perform_query(struct wmi_device *wdev, enum gigabyte_wmi_commandtype command, struct gigabyte_wmi_args *args, struct acpi_buffer *out) { const struct acpi_buffer in = { .length = sizeof(*args), .pointer = args, }; acpi_status ret = wmidev_evaluate_method(wdev, 0x0, command, &in, out); if (ACPI_FAILURE(ret)) return -EIO; return 0; } static int gigabyte_wmi_query_integer(struct wmi_device *wdev, enum gigabyte_wmi_commandtype command, struct gigabyte_wmi_args *args, u64 *res) { union acpi_object *obj; struct acpi_buffer result = { ACPI_ALLOCATE_BUFFER, NULL }; int ret; ret = gigabyte_wmi_perform_query(wdev, command, args, &result); if (ret) return ret; obj = result.pointer; if (obj && obj->type == ACPI_TYPE_INTEGER) *res = obj->integer.value; else ret = -EIO; kfree(result.pointer); return ret; } static int gigabyte_wmi_temperature(struct wmi_device *wdev, u8 sensor, long *res) { struct gigabyte_wmi_args args = { .arg1 = sensor, }; u64 temp; acpi_status ret; ret = gigabyte_wmi_query_integer(wdev, GIGABYTE_WMI_TEMPERATURE_QUERY, &args, &temp); if (ret == 0) { if (temp == 0) return -ENODEV; *res = (s8)temp * 1000; // value is a signed 8-bit integer } return ret; } static int gigabyte_wmi_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { struct wmi_device *wdev = dev_get_drvdata(dev); return gigabyte_wmi_temperature(wdev, channel, val); } static umode_t gigabyte_wmi_hwmon_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel) { return usable_sensors_mask & BIT(channel) ? 0444 : 0; } static const struct hwmon_channel_info * const gigabyte_wmi_hwmon_info[] = { HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT, HWMON_T_INPUT, HWMON_T_INPUT, HWMON_T_INPUT, HWMON_T_INPUT, HWMON_T_INPUT), NULL }; static const struct hwmon_ops gigabyte_wmi_hwmon_ops = { .read = gigabyte_wmi_hwmon_read, .is_visible = gigabyte_wmi_hwmon_is_visible, }; static const struct hwmon_chip_info gigabyte_wmi_hwmon_chip_info = { .ops = &gigabyte_wmi_hwmon_ops, .info = gigabyte_wmi_hwmon_info, }; static u8 gigabyte_wmi_detect_sensor_usability(struct wmi_device *wdev) { int i; long temp; u8 r = 0; for (i = 0; i < NUM_TEMPERATURE_SENSORS; i++) { if (!gigabyte_wmi_temperature(wdev, i, &temp)) r |= BIT(i); } return r; } static int gigabyte_wmi_probe(struct wmi_device *wdev, const void *context) { struct device *hwmon_dev; usable_sensors_mask = gigabyte_wmi_detect_sensor_usability(wdev); if (!usable_sensors_mask) { dev_info(&wdev->dev, "No temperature sensors usable"); return -ENODEV; } hwmon_dev = devm_hwmon_device_register_with_info(&wdev->dev, "gigabyte_wmi", wdev, &gigabyte_wmi_hwmon_chip_info, NULL); return PTR_ERR_OR_ZERO(hwmon_dev); } static const struct wmi_device_id gigabyte_wmi_id_table[] = { { GIGABYTE_WMI_GUID, NULL }, { } }; static struct wmi_driver gigabyte_wmi_driver = { .driver = { .name = "gigabyte-wmi", }, .id_table = gigabyte_wmi_id_table, .probe = gigabyte_wmi_probe, }; module_wmi_driver(gigabyte_wmi_driver); MODULE_DEVICE_TABLE(wmi, gigabyte_wmi_id_table); MODULE_AUTHOR("Thomas Weißschuh <[email protected]>"); MODULE_DESCRIPTION("Gigabyte WMI temperature driver"); MODULE_LICENSE("GPL");
linux-master
drivers/platform/x86/gigabyte-wmi.c
// SPDX-License-Identifier: GPL-2.0-only /* * Gmux driver for Apple laptops * * Copyright (C) Canonical Ltd. <[email protected]> * Copyright (C) 2010-2012 Andreas Heider <[email protected]> * Copyright (C) 2015 Lukas Wunner <[email protected]> * Copyright (C) 2023 Orlando Chamberlain <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/backlight.h> #include <linux/acpi.h> #include <linux/pnp.h> #include <linux/apple-gmux.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/pci.h> #include <linux/vga_switcheroo.h> #include <linux/debugfs.h> #include <acpi/video.h> #include <asm/io.h> /** * DOC: Overview * * gmux is a microcontroller built into the MacBook Pro to support dual GPUs: * A `Lattice XP2`_ on pre-retinas, a `Renesas R4F2113`_ on pre-T2 retinas. * * On T2 Macbooks, the gmux is part of the T2 Coprocessor's SMC. The SMC has * an I2C connection to a `NXP PCAL6524` GPIO expander, which enables/disables * the voltage regulators of the discrete GPU, drives the display panel power, * and has a GPIO to switch the eDP mux. The Intel CPU can interact with * gmux through MMIO, similar to how the main SMC interface is controlled. * * (The MacPro6,1 2013 also has a gmux, however it is unclear why since it has * dual GPUs but no built-in display.) * * gmux is connected to the LPC bus of the southbridge. Its I/O ports are * accessed differently depending on the microcontroller: Driver functions * to access a pre-retina gmux are infixed ``_pio_``, those for a pre-T2 * retina gmux are infixed ``_index_``, and those on T2 Macs are infixed * with ``_mmio_``. * * .. _Lattice XP2: * http://www.latticesemi.com/en/Products/FPGAandCPLD/LatticeXP2.aspx * .. _Renesas R4F2113: * http://www.renesas.com/products/mpumcu/h8s/h8s2100/h8s2113/index.jsp * .. _NXP PCAL6524: * https://www.nxp.com/docs/en/data-sheet/PCAL6524.pdf */ struct apple_gmux_config; struct apple_gmux_data { u8 __iomem *iomem_base; unsigned long iostart; unsigned long iolen; const struct apple_gmux_config *config; struct mutex index_lock; struct backlight_device *bdev; /* switcheroo data */ acpi_handle dhandle; int gpe; bool external_switchable; enum vga_switcheroo_client_id switch_state_display; enum vga_switcheroo_client_id switch_state_ddc; enum vga_switcheroo_client_id switch_state_external; enum vga_switcheroo_state power_state; struct completion powerchange_done; /* debugfs data */ u8 selected_port; struct dentry *debug_dentry; }; static struct apple_gmux_data *apple_gmux_data; struct apple_gmux_config { u8 (*read8)(struct apple_gmux_data *gmux_data, int port); void (*write8)(struct apple_gmux_data *gmux_data, int port, u8 val); u32 (*read32)(struct apple_gmux_data *gmux_data, int port); void (*write32)(struct apple_gmux_data *gmux_data, int port, u32 val); const struct vga_switcheroo_handler *gmux_handler; enum vga_switcheroo_handler_flags_t handler_flags; unsigned long resource_type; bool read_version_as_u32; char *name; }; #define GMUX_INTERRUPT_ENABLE 0xff #define GMUX_INTERRUPT_DISABLE 0x00 #define GMUX_INTERRUPT_STATUS_ACTIVE 0 #define GMUX_INTERRUPT_STATUS_DISPLAY (1 << 0) #define GMUX_INTERRUPT_STATUS_POWER (1 << 2) #define GMUX_INTERRUPT_STATUS_HOTPLUG (1 << 3) #define GMUX_BRIGHTNESS_MASK 0x00ffffff #define GMUX_MAX_BRIGHTNESS GMUX_BRIGHTNESS_MASK static u8 gmux_pio_read8(struct apple_gmux_data *gmux_data, int port) { return inb(gmux_data->iostart + port); } static void gmux_pio_write8(struct apple_gmux_data *gmux_data, int port, u8 val) { outb(val, gmux_data->iostart + port); } static u32 gmux_pio_read32(struct apple_gmux_data *gmux_data, int port) { return inl(gmux_data->iostart + port); } static void gmux_pio_write32(struct apple_gmux_data *gmux_data, int port, u32 val) { int i; u8 tmpval; for (i = 0; i < 4; i++) { tmpval = (val >> (i * 8)) & 0xff; outb(tmpval, gmux_data->iostart + port + i); } } static int gmux_index_wait_ready(struct apple_gmux_data *gmux_data) { int i = 200; u8 gwr = inb(gmux_data->iostart + GMUX_PORT_WRITE); while (i && (gwr & 0x01)) { inb(gmux_data->iostart + GMUX_PORT_READ); gwr = inb(gmux_data->iostart + GMUX_PORT_WRITE); udelay(100); i--; } return !!i; } static int gmux_index_wait_complete(struct apple_gmux_data *gmux_data) { int i = 200; u8 gwr = inb(gmux_data->iostart + GMUX_PORT_WRITE); while (i && !(gwr & 0x01)) { gwr = inb(gmux_data->iostart + GMUX_PORT_WRITE); udelay(100); i--; } if (gwr & 0x01) inb(gmux_data->iostart + GMUX_PORT_READ); return !!i; } static u8 gmux_index_read8(struct apple_gmux_data *gmux_data, int port) { u8 val; mutex_lock(&gmux_data->index_lock); gmux_index_wait_ready(gmux_data); outb((port & 0xff), gmux_data->iostart + GMUX_PORT_READ); gmux_index_wait_complete(gmux_data); val = inb(gmux_data->iostart + GMUX_PORT_VALUE); mutex_unlock(&gmux_data->index_lock); return val; } static void gmux_index_write8(struct apple_gmux_data *gmux_data, int port, u8 val) { mutex_lock(&gmux_data->index_lock); outb(val, gmux_data->iostart + GMUX_PORT_VALUE); gmux_index_wait_ready(gmux_data); outb(port & 0xff, gmux_data->iostart + GMUX_PORT_WRITE); gmux_index_wait_complete(gmux_data); mutex_unlock(&gmux_data->index_lock); } static u32 gmux_index_read32(struct apple_gmux_data *gmux_data, int port) { u32 val; mutex_lock(&gmux_data->index_lock); gmux_index_wait_ready(gmux_data); outb((port & 0xff), gmux_data->iostart + GMUX_PORT_READ); gmux_index_wait_complete(gmux_data); val = inl(gmux_data->iostart + GMUX_PORT_VALUE); mutex_unlock(&gmux_data->index_lock); return val; } static void gmux_index_write32(struct apple_gmux_data *gmux_data, int port, u32 val) { int i; u8 tmpval; mutex_lock(&gmux_data->index_lock); for (i = 0; i < 4; i++) { tmpval = (val >> (i * 8)) & 0xff; outb(tmpval, gmux_data->iostart + GMUX_PORT_VALUE + i); } gmux_index_wait_ready(gmux_data); outb(port & 0xff, gmux_data->iostart + GMUX_PORT_WRITE); gmux_index_wait_complete(gmux_data); mutex_unlock(&gmux_data->index_lock); } static int gmux_mmio_wait(struct apple_gmux_data *gmux_data) { int i = 200; u8 gwr = ioread8(gmux_data->iomem_base + GMUX_MMIO_COMMAND_SEND); while (i && gwr) { gwr = ioread8(gmux_data->iomem_base + GMUX_MMIO_COMMAND_SEND); udelay(100); i--; } return !!i; } static u8 gmux_mmio_read8(struct apple_gmux_data *gmux_data, int port) { u8 val; mutex_lock(&gmux_data->index_lock); gmux_mmio_wait(gmux_data); iowrite8((port & 0xff), gmux_data->iomem_base + GMUX_MMIO_PORT_SELECT); iowrite8(GMUX_MMIO_READ | sizeof(val), gmux_data->iomem_base + GMUX_MMIO_COMMAND_SEND); gmux_mmio_wait(gmux_data); val = ioread8(gmux_data->iomem_base); mutex_unlock(&gmux_data->index_lock); return val; } static void gmux_mmio_write8(struct apple_gmux_data *gmux_data, int port, u8 val) { mutex_lock(&gmux_data->index_lock); gmux_mmio_wait(gmux_data); iowrite8(val, gmux_data->iomem_base); iowrite8(port & 0xff, gmux_data->iomem_base + GMUX_MMIO_PORT_SELECT); iowrite8(GMUX_MMIO_WRITE | sizeof(val), gmux_data->iomem_base + GMUX_MMIO_COMMAND_SEND); gmux_mmio_wait(gmux_data); mutex_unlock(&gmux_data->index_lock); } static u32 gmux_mmio_read32(struct apple_gmux_data *gmux_data, int port) { u32 val; mutex_lock(&gmux_data->index_lock); gmux_mmio_wait(gmux_data); iowrite8((port & 0xff), gmux_data->iomem_base + GMUX_MMIO_PORT_SELECT); iowrite8(GMUX_MMIO_READ | sizeof(val), gmux_data->iomem_base + GMUX_MMIO_COMMAND_SEND); gmux_mmio_wait(gmux_data); val = ioread32be(gmux_data->iomem_base); mutex_unlock(&gmux_data->index_lock); return val; } static void gmux_mmio_write32(struct apple_gmux_data *gmux_data, int port, u32 val) { mutex_lock(&gmux_data->index_lock); iowrite32be(val, gmux_data->iomem_base); iowrite8(port & 0xff, gmux_data->iomem_base + GMUX_MMIO_PORT_SELECT); iowrite8(GMUX_MMIO_WRITE | sizeof(val), gmux_data->iomem_base + GMUX_MMIO_COMMAND_SEND); gmux_mmio_wait(gmux_data); mutex_unlock(&gmux_data->index_lock); } static u8 gmux_read8(struct apple_gmux_data *gmux_data, int port) { return gmux_data->config->read8(gmux_data, port); } static void gmux_write8(struct apple_gmux_data *gmux_data, int port, u8 val) { return gmux_data->config->write8(gmux_data, port, val); } static u32 gmux_read32(struct apple_gmux_data *gmux_data, int port) { return gmux_data->config->read32(gmux_data, port); } static void gmux_write32(struct apple_gmux_data *gmux_data, int port, u32 val) { return gmux_data->config->write32(gmux_data, port, val); } /** * DOC: Backlight control * * On single GPU MacBooks, the PWM signal for the backlight is generated by * the GPU. On dual GPU MacBook Pros by contrast, either GPU may be suspended * to conserve energy. Hence the PWM signal needs to be generated by a separate * backlight driver which is controlled by gmux. The earliest generation * MBP5 2008/09 uses a `TI LP8543`_ backlight driver. Newer models * use a `TI LP8545`_ or a TI LP8548. * * .. _TI LP8543: https://www.ti.com/lit/ds/symlink/lp8543.pdf * .. _TI LP8545: https://www.ti.com/lit/ds/symlink/lp8545.pdf */ static int gmux_get_brightness(struct backlight_device *bd) { struct apple_gmux_data *gmux_data = bl_get_data(bd); return gmux_read32(gmux_data, GMUX_PORT_BRIGHTNESS) & GMUX_BRIGHTNESS_MASK; } static int gmux_update_status(struct backlight_device *bd) { struct apple_gmux_data *gmux_data = bl_get_data(bd); u32 brightness = backlight_get_brightness(bd); gmux_write32(gmux_data, GMUX_PORT_BRIGHTNESS, brightness); return 0; } static const struct backlight_ops gmux_bl_ops = { .options = BL_CORE_SUSPENDRESUME, .get_brightness = gmux_get_brightness, .update_status = gmux_update_status, }; /** * DOC: Graphics mux * * On pre-retinas, the LVDS outputs of both GPUs feed into gmux which muxes * either of them to the panel. One of the tricks gmux has up its sleeve is * to lengthen the blanking interval of its output during a switch to * synchronize it with the GPU switched to. This allows for a flicker-free * switch that is imperceptible by the user (`US 8,687,007 B2`_). * * On retinas, muxing is no longer done by gmux itself, but by a separate * chip which is controlled by gmux. The chip is triple sourced, it is * either an `NXP CBTL06142`_, `TI HD3SS212`_ or `Pericom PI3VDP12412`_. * The panel is driven with eDP instead of LVDS since the pixel clock * required for retina resolution exceeds LVDS' limits. * * Pre-retinas are able to switch the panel's DDC pins separately. * This is handled by a `TI SN74LV4066A`_ which is controlled by gmux. * The inactive GPU can thus probe the panel's EDID without switching over * the entire panel. Retinas lack this functionality as the chips used for * eDP muxing are incapable of switching the AUX channel separately (see * the linked data sheets, Pericom would be capable but this is unused). * However the retina panel has the NO_AUX_HANDSHAKE_LINK_TRAINING bit set * in its DPCD, allowing the inactive GPU to skip the AUX handshake and * set up the output with link parameters pre-calibrated by the active GPU. * * The external DP port is only fully switchable on the first two unibody * MacBook Pro generations, MBP5 2008/09 and MBP6 2010. This is done by an * `NXP CBTL06141`_ which is controlled by gmux. It's the predecessor of the * eDP mux on retinas, the difference being support for 2.7 versus 5.4 Gbit/s. * * The following MacBook Pro generations replaced the external DP port with a * combined DP/Thunderbolt port and lost the ability to switch it between GPUs, * connecting it either to the discrete GPU or the Thunderbolt controller. * Oddly enough, while the full port is no longer switchable, AUX and HPD * are still switchable by way of an `NXP CBTL03062`_ (on pre-retinas * MBP8 2011 and MBP9 2012) or two `TI TS3DS10224`_ (on pre-t2 retinas) under * the control of gmux. Since the integrated GPU is missing the main link, * external displays appear to it as phantoms which fail to link-train. * * gmux receives the HPD signal of all display connectors and sends an * interrupt on hotplug. On generations which cannot switch external ports, * the discrete GPU can then be woken to drive the newly connected display. * The ability to switch AUX on these generations could be used to improve * reliability of hotplug detection by having the integrated GPU poll the * ports while the discrete GPU is asleep, but currently we do not make use * of this feature. * * Our switching policy for the external port is that on those generations * which are able to switch it fully, the port is switched together with the * panel when IGD / DIS commands are issued to vga_switcheroo. It is thus * possible to drive e.g. a beamer on battery power with the integrated GPU. * The user may manually switch to the discrete GPU if more performance is * needed. * * On all newer generations, the external port can only be driven by the * discrete GPU. If a display is plugged in while the panel is switched to * the integrated GPU, *both* GPUs will be in use for maximum performance. * To decrease power consumption, the user may manually switch to the * discrete GPU, thereby suspending the integrated GPU. * * gmux' initial switch state on bootup is user configurable via the EFI * variable ``gpu-power-prefs-fa4ce28d-b62f-4c99-9cc3-6815686e30f9`` (5th byte, * 1 = IGD, 0 = DIS). Based on this setting, the EFI firmware tells gmux to * switch the panel and the external DP connector and allocates a framebuffer * for the selected GPU. * * .. _US 8,687,007 B2: https://pimg-fpiw.uspto.gov/fdd/07/870/086/0.pdf * .. _NXP CBTL06141: https://www.nxp.com/documents/data_sheet/CBTL06141.pdf * .. _NXP CBTL06142: https://www.nxp.com/documents/data_sheet/CBTL06141.pdf * .. _TI HD3SS212: https://www.ti.com/lit/ds/symlink/hd3ss212.pdf * .. _Pericom PI3VDP12412: https://www.pericom.com/assets/Datasheets/PI3VDP12412.pdf * .. _TI SN74LV4066A: https://www.ti.com/lit/ds/symlink/sn74lv4066a.pdf * .. _NXP CBTL03062: http://pdf.datasheetarchive.com/indexerfiles/Datasheets-SW16/DSASW00308511.pdf * .. _TI TS3DS10224: https://www.ti.com/lit/ds/symlink/ts3ds10224.pdf */ static void gmux_read_switch_state(struct apple_gmux_data *gmux_data) { if (gmux_read8(gmux_data, GMUX_PORT_SWITCH_DDC) == 1) gmux_data->switch_state_ddc = VGA_SWITCHEROO_IGD; else gmux_data->switch_state_ddc = VGA_SWITCHEROO_DIS; if (gmux_read8(gmux_data, GMUX_PORT_SWITCH_DISPLAY) & 1) gmux_data->switch_state_display = VGA_SWITCHEROO_DIS; else gmux_data->switch_state_display = VGA_SWITCHEROO_IGD; if (gmux_read8(gmux_data, GMUX_PORT_SWITCH_EXTERNAL) == 2) gmux_data->switch_state_external = VGA_SWITCHEROO_IGD; else gmux_data->switch_state_external = VGA_SWITCHEROO_DIS; } static void gmux_write_switch_state(struct apple_gmux_data *gmux_data) { if (gmux_data->switch_state_ddc == VGA_SWITCHEROO_IGD) gmux_write8(gmux_data, GMUX_PORT_SWITCH_DDC, 1); else gmux_write8(gmux_data, GMUX_PORT_SWITCH_DDC, 2); if (gmux_data->switch_state_display == VGA_SWITCHEROO_IGD) gmux_write8(gmux_data, GMUX_PORT_SWITCH_DISPLAY, 2); else gmux_write8(gmux_data, GMUX_PORT_SWITCH_DISPLAY, 3); if (gmux_data->switch_state_external == VGA_SWITCHEROO_IGD) gmux_write8(gmux_data, GMUX_PORT_SWITCH_EXTERNAL, 2); else gmux_write8(gmux_data, GMUX_PORT_SWITCH_EXTERNAL, 3); } static int gmux_switchto(enum vga_switcheroo_client_id id) { apple_gmux_data->switch_state_ddc = id; apple_gmux_data->switch_state_display = id; if (apple_gmux_data->external_switchable) apple_gmux_data->switch_state_external = id; gmux_write_switch_state(apple_gmux_data); return 0; } static int gmux_switch_ddc(enum vga_switcheroo_client_id id) { enum vga_switcheroo_client_id old_ddc_owner = apple_gmux_data->switch_state_ddc; if (id == old_ddc_owner) return id; pr_debug("Switching DDC from %d to %d\n", old_ddc_owner, id); apple_gmux_data->switch_state_ddc = id; if (id == VGA_SWITCHEROO_IGD) gmux_write8(apple_gmux_data, GMUX_PORT_SWITCH_DDC, 1); else gmux_write8(apple_gmux_data, GMUX_PORT_SWITCH_DDC, 2); return old_ddc_owner; } /** * DOC: Power control * * gmux is able to cut power to the discrete GPU. It automatically takes care * of the correct sequence to tear down and bring up the power rails for * core voltage, VRAM and PCIe. */ static int gmux_set_discrete_state(struct apple_gmux_data *gmux_data, enum vga_switcheroo_state state) { reinit_completion(&gmux_data->powerchange_done); if (state == VGA_SWITCHEROO_ON) { gmux_write8(gmux_data, GMUX_PORT_DISCRETE_POWER, 1); gmux_write8(gmux_data, GMUX_PORT_DISCRETE_POWER, 3); pr_debug("Discrete card powered up\n"); } else { gmux_write8(gmux_data, GMUX_PORT_DISCRETE_POWER, 1); gmux_write8(gmux_data, GMUX_PORT_DISCRETE_POWER, 0); pr_debug("Discrete card powered down\n"); } gmux_data->power_state = state; if (gmux_data->gpe >= 0 && !wait_for_completion_interruptible_timeout(&gmux_data->powerchange_done, msecs_to_jiffies(200))) pr_warn("Timeout waiting for gmux switch to complete\n"); return 0; } static int gmux_set_power_state(enum vga_switcheroo_client_id id, enum vga_switcheroo_state state) { if (id == VGA_SWITCHEROO_IGD) return 0; return gmux_set_discrete_state(apple_gmux_data, state); } static enum vga_switcheroo_client_id gmux_get_client_id(struct pci_dev *pdev) { /* * Early Macbook Pros with switchable graphics use nvidia * integrated graphics. Hardcode that the 9400M is integrated. */ if (pdev->vendor == PCI_VENDOR_ID_INTEL) return VGA_SWITCHEROO_IGD; else if (pdev->vendor == PCI_VENDOR_ID_NVIDIA && pdev->device == 0x0863) return VGA_SWITCHEROO_IGD; else return VGA_SWITCHEROO_DIS; } static const struct vga_switcheroo_handler gmux_handler_no_ddc = { .switchto = gmux_switchto, .power_state = gmux_set_power_state, .get_client_id = gmux_get_client_id, }; static const struct vga_switcheroo_handler gmux_handler_ddc = { .switchto = gmux_switchto, .switch_ddc = gmux_switch_ddc, .power_state = gmux_set_power_state, .get_client_id = gmux_get_client_id, }; static const struct apple_gmux_config apple_gmux_pio = { .read8 = &gmux_pio_read8, .write8 = &gmux_pio_write8, .read32 = &gmux_pio_read32, .write32 = &gmux_pio_write32, .gmux_handler = &gmux_handler_ddc, .handler_flags = VGA_SWITCHEROO_CAN_SWITCH_DDC, .resource_type = IORESOURCE_IO, .read_version_as_u32 = false, .name = "classic" }; static const struct apple_gmux_config apple_gmux_index = { .read8 = &gmux_index_read8, .write8 = &gmux_index_write8, .read32 = &gmux_index_read32, .write32 = &gmux_index_write32, .gmux_handler = &gmux_handler_no_ddc, .handler_flags = VGA_SWITCHEROO_NEEDS_EDP_CONFIG, .resource_type = IORESOURCE_IO, .read_version_as_u32 = true, .name = "indexed" }; static const struct apple_gmux_config apple_gmux_mmio = { .read8 = &gmux_mmio_read8, .write8 = &gmux_mmio_write8, .read32 = &gmux_mmio_read32, .write32 = &gmux_mmio_write32, .gmux_handler = &gmux_handler_no_ddc, .handler_flags = VGA_SWITCHEROO_NEEDS_EDP_CONFIG, .resource_type = IORESOURCE_MEM, .read_version_as_u32 = true, .name = "T2" }; /** * DOC: Interrupt * * gmux is also connected to a GPIO pin of the southbridge and thereby is able * to trigger an ACPI GPE. ACPI name GMGP holds this GPIO pin's number. On the * MBP5 2008/09 it's GPIO pin 22 of the Nvidia MCP79, on following generations * it's GPIO pin 6 of the Intel PCH, on MMIO gmux's it's pin 21. * * The GPE merely signals that an interrupt occurred, the actual type of event * is identified by reading a gmux register. * * In addition to the GMGP name, gmux's ACPI device also has two methods GMSP * and GMLV. GMLV likely means "GMUX Level", and reads the value of the GPIO, * while GMSP likely means "GMUX Set Polarity", and seems to write to the GPIO's * value. On newer Macbooks (This was introduced with or sometime before the * MacBookPro14,3), the ACPI GPE method differentiates between the OS type: On * Darwin, only a notification is signaled, whereas on other OSes, the GPIO's * value is read and then inverted. * * Because Linux masquerades as Darwin, it ends up in the notification-only code * path. On MMIO gmux's, this seems to lead to us being unable to clear interrupts, * unless we call GMSP(0). Without this, there is a flood of status=0 interrupts * that can't be cleared. This issue seems to be unique to MMIO gmux's. */ static inline void gmux_disable_interrupts(struct apple_gmux_data *gmux_data) { gmux_write8(gmux_data, GMUX_PORT_INTERRUPT_ENABLE, GMUX_INTERRUPT_DISABLE); } static inline void gmux_enable_interrupts(struct apple_gmux_data *gmux_data) { gmux_write8(gmux_data, GMUX_PORT_INTERRUPT_ENABLE, GMUX_INTERRUPT_ENABLE); } static inline u8 gmux_interrupt_get_status(struct apple_gmux_data *gmux_data) { return gmux_read8(gmux_data, GMUX_PORT_INTERRUPT_STATUS); } static void gmux_clear_interrupts(struct apple_gmux_data *gmux_data) { u8 status; /* to clear interrupts write back current status */ status = gmux_interrupt_get_status(gmux_data); gmux_write8(gmux_data, GMUX_PORT_INTERRUPT_STATUS, status); /* Prevent flood of status=0 interrupts */ if (gmux_data->config == &apple_gmux_mmio) acpi_execute_simple_method(gmux_data->dhandle, "GMSP", 0); } static void gmux_notify_handler(acpi_handle device, u32 value, void *context) { u8 status; struct pnp_dev *pnp = (struct pnp_dev *)context; struct apple_gmux_data *gmux_data = pnp_get_drvdata(pnp); status = gmux_interrupt_get_status(gmux_data); gmux_disable_interrupts(gmux_data); pr_debug("Notify handler called: status %d\n", status); gmux_clear_interrupts(gmux_data); gmux_enable_interrupts(gmux_data); if (status & GMUX_INTERRUPT_STATUS_POWER) complete(&gmux_data->powerchange_done); } /** * DOC: Debugfs Interface * * gmux ports can be accessed from userspace as a debugfs interface. For example: * * # echo 4 > /sys/kernel/debug/apple_gmux/selected_port * # cat /sys/kernel/debug/apple_gmux/selected_port_data | xxd -p * 00000005 * * Reads 4 bytes from port 4 (GMUX_PORT_VERSION_MAJOR). * * 1 and 4 byte writes are also allowed. */ static ssize_t gmux_selected_port_data_write(struct file *file, const char __user *userbuf, size_t count, loff_t *ppos) { struct apple_gmux_data *gmux_data = file->private_data; if (*ppos) return -EINVAL; if (count == 1) { u8 data; if (copy_from_user(&data, userbuf, 1)) return -EFAULT; gmux_write8(gmux_data, gmux_data->selected_port, data); } else if (count == 4) { u32 data; if (copy_from_user(&data, userbuf, 4)) return -EFAULT; gmux_write32(gmux_data, gmux_data->selected_port, data); } else return -EINVAL; return count; } static ssize_t gmux_selected_port_data_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct apple_gmux_data *gmux_data = file->private_data; u32 data; data = gmux_read32(gmux_data, gmux_data->selected_port); return simple_read_from_buffer(userbuf, count, ppos, &data, sizeof(data)); } static const struct file_operations gmux_port_data_ops = { .open = simple_open, .write = gmux_selected_port_data_write, .read = gmux_selected_port_data_read }; static void gmux_init_debugfs(struct apple_gmux_data *gmux_data) { gmux_data->debug_dentry = debugfs_create_dir(KBUILD_MODNAME, NULL); debugfs_create_u8("selected_port", 0644, gmux_data->debug_dentry, &gmux_data->selected_port); debugfs_create_file("selected_port_data", 0644, gmux_data->debug_dentry, gmux_data, &gmux_port_data_ops); } static void gmux_fini_debugfs(struct apple_gmux_data *gmux_data) { debugfs_remove_recursive(gmux_data->debug_dentry); } static int gmux_suspend(struct device *dev) { struct pnp_dev *pnp = to_pnp_dev(dev); struct apple_gmux_data *gmux_data = pnp_get_drvdata(pnp); gmux_disable_interrupts(gmux_data); return 0; } static int gmux_resume(struct device *dev) { struct pnp_dev *pnp = to_pnp_dev(dev); struct apple_gmux_data *gmux_data = pnp_get_drvdata(pnp); gmux_enable_interrupts(gmux_data); gmux_write_switch_state(gmux_data); if (gmux_data->power_state == VGA_SWITCHEROO_OFF) gmux_set_discrete_state(gmux_data, gmux_data->power_state); return 0; } static int is_thunderbolt(struct device *dev, void *data) { return to_pci_dev(dev)->is_thunderbolt; } static int gmux_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) { struct apple_gmux_data *gmux_data; struct resource *res; struct backlight_properties props; struct backlight_device *bdev = NULL; u8 ver_major, ver_minor, ver_release; bool register_bdev = true; int ret = -ENXIO; acpi_status status; unsigned long long gpe; enum apple_gmux_type type; u32 version; if (apple_gmux_data) return -EBUSY; if (!apple_gmux_detect(pnp, &type)) { pr_info("gmux device not present\n"); return -ENODEV; } gmux_data = kzalloc(sizeof(*gmux_data), GFP_KERNEL); if (!gmux_data) return -ENOMEM; pnp_set_drvdata(pnp, gmux_data); switch (type) { case APPLE_GMUX_TYPE_MMIO: gmux_data->config = &apple_gmux_mmio; mutex_init(&gmux_data->index_lock); res = pnp_get_resource(pnp, IORESOURCE_MEM, 0); gmux_data->iostart = res->start; /* Although the ACPI table only allocates 8 bytes, we need 16. */ gmux_data->iolen = 16; if (!request_mem_region(gmux_data->iostart, gmux_data->iolen, "Apple gmux")) { pr_err("gmux I/O already in use\n"); goto err_free; } gmux_data->iomem_base = ioremap(gmux_data->iostart, gmux_data->iolen); if (!gmux_data->iomem_base) { pr_err("couldn't remap gmux mmio region"); goto err_release; } goto get_version; case APPLE_GMUX_TYPE_INDEXED: gmux_data->config = &apple_gmux_index; mutex_init(&gmux_data->index_lock); break; case APPLE_GMUX_TYPE_PIO: gmux_data->config = &apple_gmux_pio; break; } res = pnp_get_resource(pnp, IORESOURCE_IO, 0); gmux_data->iostart = res->start; gmux_data->iolen = resource_size(res); if (!request_region(gmux_data->iostart, gmux_data->iolen, "Apple gmux")) { pr_err("gmux I/O already in use\n"); goto err_free; } get_version: if (gmux_data->config->read_version_as_u32) { version = gmux_read32(gmux_data, GMUX_PORT_VERSION_MAJOR); ver_major = (version >> 24) & 0xff; ver_minor = (version >> 16) & 0xff; ver_release = (version >> 8) & 0xff; } else { ver_major = gmux_read8(gmux_data, GMUX_PORT_VERSION_MAJOR); ver_minor = gmux_read8(gmux_data, GMUX_PORT_VERSION_MINOR); ver_release = gmux_read8(gmux_data, GMUX_PORT_VERSION_RELEASE); } pr_info("Found gmux version %d.%d.%d [%s]\n", ver_major, ver_minor, ver_release, gmux_data->config->name); memset(&props, 0, sizeof(props)); props.type = BACKLIGHT_PLATFORM; props.max_brightness = gmux_read32(gmux_data, GMUX_PORT_MAX_BRIGHTNESS); #if IS_REACHABLE(CONFIG_ACPI_VIDEO) register_bdev = acpi_video_get_backlight_type() == acpi_backlight_apple_gmux; #endif if (register_bdev) { /* * Currently it's assumed that the maximum brightness is less than * 2^24 for compatibility with old gmux versions. Cap the max * brightness at this value, but print a warning if the hardware * reports something higher so that it can be fixed. */ if (WARN_ON(props.max_brightness > GMUX_MAX_BRIGHTNESS)) props.max_brightness = GMUX_MAX_BRIGHTNESS; bdev = backlight_device_register("gmux_backlight", &pnp->dev, gmux_data, &gmux_bl_ops, &props); if (IS_ERR(bdev)) { ret = PTR_ERR(bdev); goto err_unmap; } gmux_data->bdev = bdev; bdev->props.brightness = gmux_get_brightness(bdev); backlight_update_status(bdev); } gmux_data->power_state = VGA_SWITCHEROO_ON; gmux_data->dhandle = ACPI_HANDLE(&pnp->dev); if (!gmux_data->dhandle) { pr_err("Cannot find acpi handle for pnp device %s\n", dev_name(&pnp->dev)); ret = -ENODEV; goto err_notify; } status = acpi_evaluate_integer(gmux_data->dhandle, "GMGP", NULL, &gpe); if (ACPI_SUCCESS(status)) { gmux_data->gpe = (int)gpe; status = acpi_install_notify_handler(gmux_data->dhandle, ACPI_DEVICE_NOTIFY, &gmux_notify_handler, pnp); if (ACPI_FAILURE(status)) { pr_err("Install notify handler failed: %s\n", acpi_format_exception(status)); ret = -ENODEV; goto err_notify; } status = acpi_enable_gpe(NULL, gmux_data->gpe); if (ACPI_FAILURE(status)) { pr_err("Cannot enable gpe: %s\n", acpi_format_exception(status)); goto err_enable_gpe; } } else { pr_warn("No GPE found for gmux\n"); gmux_data->gpe = -1; } /* * If Thunderbolt is present, the external DP port is not fully * switchable. Force its AUX channel to the discrete GPU. */ gmux_data->external_switchable = !bus_for_each_dev(&pci_bus_type, NULL, NULL, is_thunderbolt); if (!gmux_data->external_switchable) gmux_write8(gmux_data, GMUX_PORT_SWITCH_EXTERNAL, 3); apple_gmux_data = gmux_data; init_completion(&gmux_data->powerchange_done); gmux_enable_interrupts(gmux_data); gmux_read_switch_state(gmux_data); /* * Retina MacBook Pros cannot switch the panel's AUX separately * and need eDP pre-calibration. They are distinguishable from * pre-retinas by having an "indexed" or "T2" gmux. * * Pre-retina MacBook Pros can switch the panel's DDC separately. */ ret = vga_switcheroo_register_handler(gmux_data->config->gmux_handler, gmux_data->config->handler_flags); if (ret) { pr_err("Failed to register vga_switcheroo handler\n"); goto err_register_handler; } gmux_init_debugfs(gmux_data); return 0; err_register_handler: gmux_disable_interrupts(gmux_data); apple_gmux_data = NULL; if (gmux_data->gpe >= 0) acpi_disable_gpe(NULL, gmux_data->gpe); err_enable_gpe: if (gmux_data->gpe >= 0) acpi_remove_notify_handler(gmux_data->dhandle, ACPI_DEVICE_NOTIFY, &gmux_notify_handler); err_notify: backlight_device_unregister(bdev); err_unmap: if (gmux_data->iomem_base) iounmap(gmux_data->iomem_base); err_release: if (gmux_data->config->resource_type == IORESOURCE_MEM) release_mem_region(gmux_data->iostart, gmux_data->iolen); else release_region(gmux_data->iostart, gmux_data->iolen); err_free: kfree(gmux_data); return ret; } static void gmux_remove(struct pnp_dev *pnp) { struct apple_gmux_data *gmux_data = pnp_get_drvdata(pnp); gmux_fini_debugfs(gmux_data); vga_switcheroo_unregister_handler(); gmux_disable_interrupts(gmux_data); if (gmux_data->gpe >= 0) { acpi_disable_gpe(NULL, gmux_data->gpe); acpi_remove_notify_handler(gmux_data->dhandle, ACPI_DEVICE_NOTIFY, &gmux_notify_handler); } backlight_device_unregister(gmux_data->bdev); if (gmux_data->iomem_base) { iounmap(gmux_data->iomem_base); release_mem_region(gmux_data->iostart, gmux_data->iolen); } else release_region(gmux_data->iostart, gmux_data->iolen); apple_gmux_data = NULL; kfree(gmux_data); } static const struct pnp_device_id gmux_device_ids[] = { {GMUX_ACPI_HID, 0}, {"", 0} }; static const struct dev_pm_ops gmux_dev_pm_ops = { .suspend = gmux_suspend, .resume = gmux_resume, }; static struct pnp_driver gmux_pnp_driver = { .name = "apple-gmux", .probe = gmux_probe, .remove = gmux_remove, .id_table = gmux_device_ids, .driver = { .pm = &gmux_dev_pm_ops, }, }; module_pnp_driver(gmux_pnp_driver); MODULE_AUTHOR("Seth Forshee <[email protected]>"); MODULE_DESCRIPTION("Apple Gmux Driver"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(pnp, gmux_device_ids);
linux-master
drivers/platform/x86/apple-gmux.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * acerhdf - A driver which monitors the temperature * of the aspire one netbook, turns on/off the fan * as soon as the upper/lower threshold is reached. * * (C) 2009 - Peter Kaestle peter (a) piie.net * https://piie.net * 2009 Borislav Petkov bp (a) alien8.de * * Inspired by and many thanks to: * o acerfand - Rachel Greenham * o acer_ec.pl - Michael Kurz michi.kurz (at) googlemail.com * - Petr Tomasek tomasek (#) etf,cuni,cz * - Carlos Corbacho cathectic (at) gmail.com * o lkml - Matthew Garrett * - Borislav Petkov * - Andreas Mohr */ #define pr_fmt(fmt) "acerhdf: " fmt #include <linux/kernel.h> #include <linux/module.h> #include <linux/dmi.h> #include <linux/acpi.h> #include <linux/thermal.h> #include <linux/platform_device.h> /* * The driver is started with "kernel mode off" by default. That means, the BIOS * is still in control of the fan. In this mode the driver allows to read the * temperature of the cpu and a userspace tool may take over control of the fan. * If the driver is switched to "kernel mode" (e.g. via module parameter) the * driver is in full control of the fan. If you want the module to be started in * kernel mode by default, define the following: */ #undef START_IN_KERNEL_MODE #define DRV_VER "0.7.0" /* * According to the Atom N270 datasheet, * (http://download.intel.com/design/processor/datashts/320032.pdf) the * CPU's optimal operating limits denoted in junction temperature as * measured by the on-die thermal monitor are within 0 <= Tj <= 90. So, * assume 89°C is critical temperature. */ #define ACERHDF_DEFAULT_TEMP_FANON 60000 #define ACERHDF_DEFAULT_TEMP_FANOFF 53000 #define ACERHDF_TEMP_CRIT 89000 #define ACERHDF_FAN_OFF 0 #define ACERHDF_FAN_AUTO 1 /* * No matter what value the user puts into the fanon variable, turn on the fan * at 80 degree Celsius to prevent hardware damage */ #define ACERHDF_MAX_FANON 80000 /* * Maximum interval between two temperature checks is 15 seconds, as the die * can get hot really fast under heavy load (plus we shouldn't forget about * possible impact of _external_ aggressive sources such as heaters, sun etc.) */ #define ACERHDF_MAX_INTERVAL 15 #ifdef START_IN_KERNEL_MODE static int kernelmode = 1; #else static int kernelmode; #endif static unsigned int interval = 10; static unsigned int fanon = ACERHDF_DEFAULT_TEMP_FANON; static unsigned int fanoff = ACERHDF_DEFAULT_TEMP_FANOFF; static unsigned int verbose; static unsigned int list_supported; static unsigned int fanstate = ACERHDF_FAN_AUTO; static char force_bios[16]; static char force_product[16]; static struct thermal_zone_device *thz_dev; static struct thermal_cooling_device *cl_dev; static struct platform_device *acerhdf_dev; module_param(kernelmode, uint, 0); MODULE_PARM_DESC(kernelmode, "Kernel mode fan control on / off"); module_param(fanon, uint, 0600); MODULE_PARM_DESC(fanon, "Turn the fan on above this temperature"); module_param(fanoff, uint, 0600); MODULE_PARM_DESC(fanoff, "Turn the fan off below this temperature"); module_param(verbose, uint, 0600); MODULE_PARM_DESC(verbose, "Enable verbose dmesg output"); module_param(list_supported, uint, 0600); MODULE_PARM_DESC(list_supported, "List supported models and BIOS versions"); module_param_string(force_bios, force_bios, 16, 0); MODULE_PARM_DESC(force_bios, "Pretend system has this known supported BIOS version"); module_param_string(force_product, force_product, 16, 0); MODULE_PARM_DESC(force_product, "Pretend system is this known supported model"); /* * cmd_off: to switch the fan completely off and check if the fan is off * cmd_auto: to set the BIOS in control of the fan. The BIOS regulates then * the fan speed depending on the temperature */ struct fancmd { u8 cmd_off; u8 cmd_auto; }; struct manualcmd { u8 mreg; u8 moff; }; /* default register and command to disable fan in manual mode */ static const struct manualcmd mcmd = { .mreg = 0x94, .moff = 0xff, }; /* BIOS settings - only used during probe */ struct bios_settings { const char *vendor; const char *product; const char *version; u8 fanreg; u8 tempreg; struct fancmd cmd; int mcmd_enable; }; /* This could be a daughter struct in the above, but not worth the redirect */ struct ctrl_settings { u8 fanreg; u8 tempreg; struct fancmd cmd; int mcmd_enable; }; static struct thermal_trip trips[] = { [0] = { .temperature = ACERHDF_DEFAULT_TEMP_FANON, .hysteresis = ACERHDF_DEFAULT_TEMP_FANON - ACERHDF_DEFAULT_TEMP_FANOFF, .type = THERMAL_TRIP_ACTIVE }, [1] = { .temperature = ACERHDF_TEMP_CRIT, .type = THERMAL_TRIP_CRITICAL } }; static struct ctrl_settings ctrl_cfg __read_mostly; /* Register addresses and values for different BIOS versions */ static const struct bios_settings bios_tbl[] __initconst = { /* AOA110 */ {"Acer", "AOA110", "v0.3109", 0x55, 0x58, {0x1f, 0x00}, 0}, {"Acer", "AOA110", "v0.3114", 0x55, 0x58, {0x1f, 0x00}, 0}, {"Acer", "AOA110", "v0.3301", 0x55, 0x58, {0xaf, 0x00}, 0}, {"Acer", "AOA110", "v0.3304", 0x55, 0x58, {0xaf, 0x00}, 0}, {"Acer", "AOA110", "v0.3305", 0x55, 0x58, {0xaf, 0x00}, 0}, {"Acer", "AOA110", "v0.3307", 0x55, 0x58, {0xaf, 0x00}, 0}, {"Acer", "AOA110", "v0.3308", 0x55, 0x58, {0x21, 0x00}, 0}, {"Acer", "AOA110", "v0.3309", 0x55, 0x58, {0x21, 0x00}, 0}, {"Acer", "AOA110", "v0.3310", 0x55, 0x58, {0x21, 0x00}, 0}, /* AOA150 */ {"Acer", "AOA150", "v0.3114", 0x55, 0x58, {0x1f, 0x00}, 0}, {"Acer", "AOA150", "v0.3301", 0x55, 0x58, {0x20, 0x00}, 0}, {"Acer", "AOA150", "v0.3304", 0x55, 0x58, {0x20, 0x00}, 0}, {"Acer", "AOA150", "v0.3305", 0x55, 0x58, {0x20, 0x00}, 0}, {"Acer", "AOA150", "v0.3307", 0x55, 0x58, {0x20, 0x00}, 0}, {"Acer", "AOA150", "v0.3308", 0x55, 0x58, {0x20, 0x00}, 0}, {"Acer", "AOA150", "v0.3309", 0x55, 0x58, {0x20, 0x00}, 0}, {"Acer", "AOA150", "v0.3310", 0x55, 0x58, {0x20, 0x00}, 0}, /* LT1005u */ {"Acer", "LT-10Q", "v0.3310", 0x55, 0x58, {0x20, 0x00}, 0}, /* Acer 1410 */ {"Acer", "Aspire 1410", "v0.3108", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1410", "v0.3113", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1410", "v0.3115", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1410", "v0.3117", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1410", "v0.3119", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1410", "v0.3120", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1410", "v1.3204", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1410", "v1.3303", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1410", "v1.3308", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1410", "v1.3310", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1410", "v1.3314", 0x55, 0x58, {0x9e, 0x00}, 0}, /* Acer 1810xx */ {"Acer", "Aspire 1810TZ", "v0.3108", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1810T", "v0.3108", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1810TZ", "v0.3113", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1810T", "v0.3113", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1810TZ", "v0.3115", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1810T", "v0.3115", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1810TZ", "v0.3117", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1810T", "v0.3117", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1810TZ", "v0.3119", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1810T", "v0.3119", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1810TZ", "v0.3120", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1810T", "v0.3120", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1810TZ", "v1.3204", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1810T", "v1.3204", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1810TZ", "v1.3303", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1810T", "v1.3303", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1810TZ", "v1.3308", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1810T", "v1.3308", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1810TZ", "v1.3310", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1810T", "v1.3310", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1810TZ", "v1.3314", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1810T", "v1.3314", 0x55, 0x58, {0x9e, 0x00}, 0}, /* Acer 5755G */ {"Acer", "Aspire 5755G", "V1.20", 0xab, 0xb4, {0x00, 0x08}, 0}, {"Acer", "Aspire 5755G", "V1.21", 0xab, 0xb3, {0x00, 0x08}, 0}, /* Acer 521 */ {"Acer", "AO521", "V1.11", 0x55, 0x58, {0x1f, 0x00}, 0}, /* Acer 531 */ {"Acer", "AO531h", "v0.3104", 0x55, 0x58, {0x20, 0x00}, 0}, {"Acer", "AO531h", "v0.3201", 0x55, 0x58, {0x20, 0x00}, 0}, {"Acer", "AO531h", "v0.3304", 0x55, 0x58, {0x20, 0x00}, 0}, /* Acer 751 */ {"Acer", "AO751h", "V0.3206", 0x55, 0x58, {0x21, 0x00}, 0}, {"Acer", "AO751h", "V0.3212", 0x55, 0x58, {0x21, 0x00}, 0}, /* Acer 753 */ {"Acer", "Aspire One 753", "V1.24", 0x93, 0xac, {0x14, 0x04}, 1}, /* Acer 1825 */ {"Acer", "Aspire 1825PTZ", "V1.3118", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Acer", "Aspire 1825PTZ", "V1.3127", 0x55, 0x58, {0x9e, 0x00}, 0}, /* Acer Extensa 5420 */ {"Acer", "Extensa 5420", "V1.17", 0x93, 0xac, {0x14, 0x04}, 1}, /* Acer Aspire 5315 */ {"Acer", "Aspire 5315", "V1.19", 0x93, 0xac, {0x14, 0x04}, 1}, /* Acer Aspire 5739 */ {"Acer", "Aspire 5739G", "V1.3311", 0x55, 0x58, {0x20, 0x00}, 0}, /* Acer TravelMate 7730 */ {"Acer", "TravelMate 7730G", "v0.3509", 0x55, 0x58, {0xaf, 0x00}, 0}, /* Acer Aspire 7551 */ {"Acer", "Aspire 7551", "V1.18", 0x93, 0xa8, {0x14, 0x04}, 1}, /* Acer TravelMate TM8573T */ {"Acer", "TM8573T", "V1.13", 0x93, 0xa8, {0x14, 0x04}, 1}, /* Gateway */ {"Gateway", "AOA110", "v0.3103", 0x55, 0x58, {0x21, 0x00}, 0}, {"Gateway", "AOA150", "v0.3103", 0x55, 0x58, {0x20, 0x00}, 0}, {"Gateway", "LT31", "v1.3103", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Gateway", "LT31", "v1.3201", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Gateway", "LT31", "v1.3302", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Gateway", "LT31", "v1.3303t", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Gateway", "LT31", "v1.3307", 0x55, 0x58, {0x9e, 0x00}, 0}, /* Packard Bell */ {"Packard Bell", "DOA150", "v0.3104", 0x55, 0x58, {0x21, 0x00}, 0}, {"Packard Bell", "DOA150", "v0.3105", 0x55, 0x58, {0x20, 0x00}, 0}, {"Packard Bell", "AOA110", "v0.3105", 0x55, 0x58, {0x21, 0x00}, 0}, {"Packard Bell", "AOA150", "v0.3105", 0x55, 0x58, {0x20, 0x00}, 0}, {"Packard Bell", "ENBFT", "V1.3118", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Packard Bell", "ENBFT", "V1.3127", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Packard Bell", "DOTMU", "v1.3303", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Packard Bell", "DOTMU", "v0.3120", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Packard Bell", "DOTMU", "v0.3108", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Packard Bell", "DOTMU", "v0.3113", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Packard Bell", "DOTMU", "v0.3115", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Packard Bell", "DOTMU", "v0.3117", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Packard Bell", "DOTMU", "v0.3119", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Packard Bell", "DOTMU", "v1.3204", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Packard Bell", "DOTMA", "v1.3201", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Packard Bell", "DOTMA", "v1.3302", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Packard Bell", "DOTMA", "v1.3303t", 0x55, 0x58, {0x9e, 0x00}, 0}, {"Packard Bell", "DOTVR46", "v1.3308", 0x55, 0x58, {0x9e, 0x00}, 0}, /* pewpew-terminator */ {"", "", "", 0, 0, {0, 0}, 0} }; /* * this struct is used to instruct thermal layer to use bang_bang instead of * default governor for acerhdf */ static struct thermal_zone_params acerhdf_zone_params = { .governor_name = "bang_bang", }; static int acerhdf_get_temp(int *temp) { u8 read_temp; if (ec_read(ctrl_cfg.tempreg, &read_temp)) return -EINVAL; *temp = read_temp * 1000; return 0; } static int acerhdf_get_fanstate(int *state) { u8 fan; if (ec_read(ctrl_cfg.fanreg, &fan)) return -EINVAL; if (fan != ctrl_cfg.cmd.cmd_off) *state = ACERHDF_FAN_AUTO; else *state = ACERHDF_FAN_OFF; return 0; } static void acerhdf_change_fanstate(int state) { unsigned char cmd; if (verbose) pr_notice("fan %s\n", state == ACERHDF_FAN_OFF ? "OFF" : "ON"); if ((state != ACERHDF_FAN_OFF) && (state != ACERHDF_FAN_AUTO)) { pr_err("invalid fan state %d requested, setting to auto!\n", state); state = ACERHDF_FAN_AUTO; } cmd = (state == ACERHDF_FAN_OFF) ? ctrl_cfg.cmd.cmd_off : ctrl_cfg.cmd.cmd_auto; fanstate = state; ec_write(ctrl_cfg.fanreg, cmd); if (ctrl_cfg.mcmd_enable && state == ACERHDF_FAN_OFF) { if (verbose) pr_notice("turning off fan manually\n"); ec_write(mcmd.mreg, mcmd.moff); } } static void acerhdf_check_param(struct thermal_zone_device *thermal) { if (fanon > ACERHDF_MAX_FANON) { pr_err("fanon temperature too high, set to %d\n", ACERHDF_MAX_FANON); fanon = ACERHDF_MAX_FANON; } if (fanon < fanoff) { pr_err("fanoff temperature (%d) is above fanon temperature (%d), clamping to %d\n", fanoff, fanon, fanon); fanoff = fanon; } trips[0].temperature = fanon; trips[0].hysteresis = fanon - fanoff; if (kernelmode) { if (interval > ACERHDF_MAX_INTERVAL) { pr_err("interval too high, set to %d\n", ACERHDF_MAX_INTERVAL); interval = ACERHDF_MAX_INTERVAL; } if (verbose) pr_notice("interval changed to: %d\n", interval); } } /* * This is the thermal zone callback which does the delayed polling of the fan * state. We do check /sysfs-originating settings here in acerhdf_check_param() * as late as the polling interval is since we can't do that in the respective * accessors of the module parameters. */ static int acerhdf_get_ec_temp(struct thermal_zone_device *thermal, int *t) { int temp, err = 0; err = acerhdf_get_temp(&temp); if (err) return err; if (verbose) pr_notice("temp %d\n", temp); *t = temp; return 0; } static int acerhdf_bind(struct thermal_zone_device *thermal, struct thermal_cooling_device *cdev) { /* if the cooling device is the one from acerhdf bind it */ if (cdev != cl_dev) return 0; if (thermal_zone_bind_cooling_device(thermal, 0, cdev, THERMAL_NO_LIMIT, THERMAL_NO_LIMIT, THERMAL_WEIGHT_DEFAULT)) { pr_err("error binding cooling dev\n"); return -EINVAL; } return 0; } static int acerhdf_unbind(struct thermal_zone_device *thermal, struct thermal_cooling_device *cdev) { if (cdev != cl_dev) return 0; if (thermal_zone_unbind_cooling_device(thermal, 0, cdev)) { pr_err("error unbinding cooling dev\n"); return -EINVAL; } return 0; } static inline void acerhdf_revert_to_bios_mode(void) { acerhdf_change_fanstate(ACERHDF_FAN_AUTO); kernelmode = 0; pr_notice("kernel mode fan control OFF\n"); } static inline void acerhdf_enable_kernelmode(void) { kernelmode = 1; pr_notice("kernel mode fan control ON\n"); } /* * set operation mode; * enabled: the thermal layer of the kernel takes care about * the temperature and the fan. * disabled: the BIOS takes control of the fan. */ static int acerhdf_change_mode(struct thermal_zone_device *thermal, enum thermal_device_mode mode) { if (mode == THERMAL_DEVICE_DISABLED && kernelmode) acerhdf_revert_to_bios_mode(); else if (mode == THERMAL_DEVICE_ENABLED && !kernelmode) acerhdf_enable_kernelmode(); return 0; } static int acerhdf_get_crit_temp(struct thermal_zone_device *thermal, int *temperature) { *temperature = ACERHDF_TEMP_CRIT; return 0; } /* bind callback functions to thermalzone */ static struct thermal_zone_device_ops acerhdf_dev_ops = { .bind = acerhdf_bind, .unbind = acerhdf_unbind, .get_temp = acerhdf_get_ec_temp, .change_mode = acerhdf_change_mode, .get_crit_temp = acerhdf_get_crit_temp, }; /* * cooling device callback functions * get maximal fan cooling state */ static int acerhdf_get_max_state(struct thermal_cooling_device *cdev, unsigned long *state) { *state = 1; return 0; } static int acerhdf_get_cur_state(struct thermal_cooling_device *cdev, unsigned long *state) { int err = 0, tmp; err = acerhdf_get_fanstate(&tmp); if (err) return err; *state = (tmp == ACERHDF_FAN_AUTO) ? 1 : 0; return 0; } /* change current fan state - is overwritten when running in kernel mode */ static int acerhdf_set_cur_state(struct thermal_cooling_device *cdev, unsigned long state) { int cur_temp, cur_state, err = 0; if (!kernelmode) return 0; err = acerhdf_get_temp(&cur_temp); if (err) { pr_err("error reading temperature, hand off control to BIOS\n"); goto err_out; } err = acerhdf_get_fanstate(&cur_state); if (err) { pr_err("error reading fan state, hand off control to BIOS\n"); goto err_out; } if (state == 0) { if (cur_state == ACERHDF_FAN_AUTO) acerhdf_change_fanstate(ACERHDF_FAN_OFF); } else { if (cur_state == ACERHDF_FAN_OFF) acerhdf_change_fanstate(ACERHDF_FAN_AUTO); } return 0; err_out: acerhdf_revert_to_bios_mode(); return -EINVAL; } /* bind fan callbacks to fan device */ static const struct thermal_cooling_device_ops acerhdf_cooling_ops = { .get_max_state = acerhdf_get_max_state, .get_cur_state = acerhdf_get_cur_state, .set_cur_state = acerhdf_set_cur_state, }; /* suspend / resume functionality */ static int acerhdf_suspend(struct device *dev) { if (kernelmode) acerhdf_change_fanstate(ACERHDF_FAN_AUTO); if (verbose) pr_notice("going suspend\n"); return 0; } static int acerhdf_probe(struct platform_device *device) { return 0; } static const struct dev_pm_ops acerhdf_pm_ops = { .suspend = acerhdf_suspend, .freeze = acerhdf_suspend, }; static struct platform_driver acerhdf_driver = { .driver = { .name = "acerhdf", .pm = &acerhdf_pm_ops, }, .probe = acerhdf_probe, }; /* check hardware */ static int __init acerhdf_check_hardware(void) { char const *vendor, *version, *product; const struct bios_settings *bt = NULL; int found = 0; /* get BIOS data */ vendor = dmi_get_system_info(DMI_SYS_VENDOR); version = dmi_get_system_info(DMI_BIOS_VERSION); product = dmi_get_system_info(DMI_PRODUCT_NAME); if (!vendor || !version || !product) { pr_err("error getting hardware information\n"); return -EINVAL; } pr_info("Acer Aspire One Fan driver, v.%s\n", DRV_VER); if (list_supported) { pr_info("List of supported Manufacturer/Model/BIOS:\n"); pr_info("---------------------------------------------------\n"); for (bt = bios_tbl; bt->vendor[0]; bt++) { pr_info("%-13s | %-17s | %-10s\n", bt->vendor, bt->product, bt->version); } pr_info("---------------------------------------------------\n"); return -ECANCELED; } if (force_bios[0]) { version = force_bios; pr_info("forcing BIOS version: %s\n", version); kernelmode = 0; } if (force_product[0]) { product = force_product; pr_info("forcing BIOS product: %s\n", product); kernelmode = 0; } if (verbose) pr_info("BIOS info: %s %s, product: %s\n", vendor, version, product); /* search BIOS version and vendor in BIOS settings table */ for (bt = bios_tbl; bt->vendor[0]; bt++) { /* * check if actual hardware BIOS vendor, product and version * IDs start with the strings of BIOS table entry */ if (strstarts(vendor, bt->vendor) && strstarts(product, bt->product) && strstarts(version, bt->version)) { found = 1; break; } } if (!found) { pr_err("unknown (unsupported) BIOS version %s/%s/%s, please report, aborting!\n", vendor, product, version); return -EINVAL; } /* Copy control settings from BIOS table before we free it. */ ctrl_cfg.fanreg = bt->fanreg; ctrl_cfg.tempreg = bt->tempreg; memcpy(&ctrl_cfg.cmd, &bt->cmd, sizeof(struct fancmd)); ctrl_cfg.mcmd_enable = bt->mcmd_enable; /* * if started with kernel mode off, prevent the kernel from switching * off the fan */ if (!kernelmode) { pr_notice("Fan control off, to enable do:\n"); pr_notice("echo -n \"enabled\" > /sys/class/thermal/thermal_zoneN/mode # N=0,1,2...\n"); } return 0; } static int __init acerhdf_register_platform(void) { int err = 0; err = platform_driver_register(&acerhdf_driver); if (err) return err; acerhdf_dev = platform_device_alloc("acerhdf", PLATFORM_DEVID_NONE); if (!acerhdf_dev) { err = -ENOMEM; goto err_device_alloc; } err = platform_device_add(acerhdf_dev); if (err) goto err_device_add; return 0; err_device_add: platform_device_put(acerhdf_dev); err_device_alloc: platform_driver_unregister(&acerhdf_driver); return err; } static void acerhdf_unregister_platform(void) { platform_device_unregister(acerhdf_dev); platform_driver_unregister(&acerhdf_driver); } static int __init acerhdf_register_thermal(void) { int ret; cl_dev = thermal_cooling_device_register("acerhdf-fan", NULL, &acerhdf_cooling_ops); if (IS_ERR(cl_dev)) return -EINVAL; thz_dev = thermal_zone_device_register_with_trips("acerhdf", trips, ARRAY_SIZE(trips), 0, NULL, &acerhdf_dev_ops, &acerhdf_zone_params, 0, (kernelmode) ? interval*1000 : 0); if (IS_ERR(thz_dev)) return -EINVAL; if (kernelmode) ret = thermal_zone_device_enable(thz_dev); else ret = thermal_zone_device_disable(thz_dev); if (ret) return ret; return 0; } static void acerhdf_unregister_thermal(void) { if (cl_dev) { thermal_cooling_device_unregister(cl_dev); cl_dev = NULL; } if (thz_dev) { thermal_zone_device_unregister(thz_dev); thz_dev = NULL; } } static int __init acerhdf_init(void) { int err = 0; err = acerhdf_check_hardware(); if (err) goto out_err; err = acerhdf_register_platform(); if (err) goto out_err; err = acerhdf_register_thermal(); if (err) goto err_unreg; return 0; err_unreg: acerhdf_unregister_thermal(); acerhdf_unregister_platform(); out_err: return err; } static void __exit acerhdf_exit(void) { acerhdf_change_fanstate(ACERHDF_FAN_AUTO); acerhdf_unregister_thermal(); acerhdf_unregister_platform(); } MODULE_LICENSE("GPL"); MODULE_AUTHOR("Peter Kaestle"); MODULE_DESCRIPTION("Aspire One temperature and fan driver"); MODULE_ALIAS("dmi:*:*Acer*:pnAOA*:"); MODULE_ALIAS("dmi:*:*Acer*:pnAO751h*:"); MODULE_ALIAS("dmi:*:*Acer*:pnAspire*1410*:"); MODULE_ALIAS("dmi:*:*Acer*:pnAspire*1810*:"); MODULE_ALIAS("dmi:*:*Acer*:pnAspire*5755G:"); MODULE_ALIAS("dmi:*:*Acer*:pnAspire*1825PTZ:"); MODULE_ALIAS("dmi:*:*Acer*:pnAO521*:"); MODULE_ALIAS("dmi:*:*Acer*:pnAO531*:"); MODULE_ALIAS("dmi:*:*Acer*:pnAspire*5739G:"); MODULE_ALIAS("dmi:*:*Acer*:pnAspire*One*753:"); MODULE_ALIAS("dmi:*:*Acer*:pnAspire*5315:"); MODULE_ALIAS("dmi:*:*Acer*:TravelMate*7730G:"); MODULE_ALIAS("dmi:*:*Acer*:pnAspire*7551:"); MODULE_ALIAS("dmi:*:*Acer*:TM8573T:"); MODULE_ALIAS("dmi:*:*Gateway*:pnAOA*:"); MODULE_ALIAS("dmi:*:*Gateway*:pnLT31*:"); MODULE_ALIAS("dmi:*:*Packard*Bell*:pnAOA*:"); MODULE_ALIAS("dmi:*:*Packard*Bell*:pnDOA*:"); MODULE_ALIAS("dmi:*:*Packard*Bell*:pnDOTMU*:"); MODULE_ALIAS("dmi:*:*Packard*Bell*:pnENBFT*:"); MODULE_ALIAS("dmi:*:*Packard*Bell*:pnDOTMA*:"); MODULE_ALIAS("dmi:*:*Packard*Bell*:pnDOTVR46*:"); MODULE_ALIAS("dmi:*:*Acer*:pnExtensa*5420*:"); module_init(acerhdf_init); module_exit(acerhdf_exit); static int interval_set_uint(const char *val, const struct kernel_param *kp) { int ret; ret = param_set_uint(val, kp); if (ret) return ret; acerhdf_check_param(thz_dev); return 0; } static const struct kernel_param_ops interval_ops = { .set = interval_set_uint, .get = param_get_uint, }; module_param_cb(interval, &interval_ops, &interval, 0000); MODULE_PARM_DESC(interval, "Polling interval of temperature check");
linux-master
drivers/platform/x86/acerhdf.c
// SPDX-License-Identifier: GPL-2.0+ /* * Cisco Meraki MX100 (Tinkerbell) board platform driver * * Based off of arch/x86/platform/meraki/tink.c from the * Meraki GPL release meraki-firmware-sources-r23-20150601 * * Format inspired by platform/x86/pcengines-apuv2.c * * Copyright (C) 2021 Chris Blake <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/dmi.h> #include <linux/err.h> #include <linux/gpio_keys.h> #include <linux/gpio/machine.h> #include <linux/input.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/leds.h> #include <linux/module.h> #include <linux/platform_device.h> #define TINK_GPIO_DRIVER_NAME "gpio_ich" /* LEDs */ static const struct gpio_led tink_leds[] = { { .name = "mx100:green:internet", .default_trigger = "default-on", }, { .name = "mx100:green:lan2", }, { .name = "mx100:green:lan3", }, { .name = "mx100:green:lan4", }, { .name = "mx100:green:lan5", }, { .name = "mx100:green:lan6", }, { .name = "mx100:green:lan7", }, { .name = "mx100:green:lan8", }, { .name = "mx100:green:lan9", }, { .name = "mx100:green:lan10", }, { .name = "mx100:green:lan11", }, { .name = "mx100:green:ha", }, { .name = "mx100:orange:ha", }, { .name = "mx100:green:usb", }, { .name = "mx100:orange:usb", }, }; static const struct gpio_led_platform_data tink_leds_pdata = { .num_leds = ARRAY_SIZE(tink_leds), .leds = tink_leds, }; static struct gpiod_lookup_table tink_leds_table = { .dev_id = "leds-gpio", .table = { GPIO_LOOKUP_IDX(TINK_GPIO_DRIVER_NAME, 11, NULL, 0, GPIO_ACTIVE_LOW), GPIO_LOOKUP_IDX(TINK_GPIO_DRIVER_NAME, 18, NULL, 1, GPIO_ACTIVE_HIGH), GPIO_LOOKUP_IDX(TINK_GPIO_DRIVER_NAME, 20, NULL, 2, GPIO_ACTIVE_HIGH), GPIO_LOOKUP_IDX(TINK_GPIO_DRIVER_NAME, 22, NULL, 3, GPIO_ACTIVE_HIGH), GPIO_LOOKUP_IDX(TINK_GPIO_DRIVER_NAME, 23, NULL, 4, GPIO_ACTIVE_HIGH), GPIO_LOOKUP_IDX(TINK_GPIO_DRIVER_NAME, 32, NULL, 5, GPIO_ACTIVE_HIGH), GPIO_LOOKUP_IDX(TINK_GPIO_DRIVER_NAME, 34, NULL, 6, GPIO_ACTIVE_HIGH), GPIO_LOOKUP_IDX(TINK_GPIO_DRIVER_NAME, 35, NULL, 7, GPIO_ACTIVE_HIGH), GPIO_LOOKUP_IDX(TINK_GPIO_DRIVER_NAME, 36, NULL, 8, GPIO_ACTIVE_HIGH), GPIO_LOOKUP_IDX(TINK_GPIO_DRIVER_NAME, 37, NULL, 9, GPIO_ACTIVE_HIGH), GPIO_LOOKUP_IDX(TINK_GPIO_DRIVER_NAME, 48, NULL, 10, GPIO_ACTIVE_HIGH), GPIO_LOOKUP_IDX(TINK_GPIO_DRIVER_NAME, 16, NULL, 11, GPIO_ACTIVE_LOW), GPIO_LOOKUP_IDX(TINK_GPIO_DRIVER_NAME, 7, NULL, 12, GPIO_ACTIVE_LOW), GPIO_LOOKUP_IDX(TINK_GPIO_DRIVER_NAME, 21, NULL, 13, GPIO_ACTIVE_LOW), GPIO_LOOKUP_IDX(TINK_GPIO_DRIVER_NAME, 19, NULL, 14, GPIO_ACTIVE_LOW), {} /* Terminating entry */ } }; /* Reset Button */ static struct gpio_keys_button tink_buttons[] = { { .desc = "Reset", .type = EV_KEY, .code = KEY_RESTART, .active_low = 1, .debounce_interval = 100, }, }; static const struct gpio_keys_platform_data tink_buttons_pdata = { .buttons = tink_buttons, .nbuttons = ARRAY_SIZE(tink_buttons), .poll_interval = 20, .rep = 0, .name = "mx100-keys", }; static struct gpiod_lookup_table tink_keys_table = { .dev_id = "gpio-keys-polled", .table = { GPIO_LOOKUP_IDX(TINK_GPIO_DRIVER_NAME, 60, NULL, 0, GPIO_ACTIVE_LOW), {} /* Terminating entry */ } }; /* Board setup */ static const struct dmi_system_id tink_systems[] __initconst = { { .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Cisco"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "MX100-HW"), }, }, {} /* Terminating entry */ }; MODULE_DEVICE_TABLE(dmi, tink_systems); static struct platform_device *tink_leds_pdev; static struct platform_device *tink_keys_pdev; static struct platform_device * __init tink_create_dev( const char *name, const void *pdata, size_t sz) { struct platform_device *pdev; pdev = platform_device_register_data(NULL, name, PLATFORM_DEVID_NONE, pdata, sz); if (IS_ERR(pdev)) pr_err("failed registering %s: %ld\n", name, PTR_ERR(pdev)); return pdev; } static int __init tink_board_init(void) { int ret; if (!dmi_first_match(tink_systems)) return -ENODEV; /* * We need to make sure that GPIO60 isn't set to native mode as is default since it's our * Reset Button. To do this, write to GPIO_USE_SEL2 to have GPIO60 set to GPIO mode. * This is documented on page 1609 of the PCH datasheet, order number 327879-005US */ outl(inl(0x530) | BIT(28), 0x530); gpiod_add_lookup_table(&tink_leds_table); gpiod_add_lookup_table(&tink_keys_table); tink_leds_pdev = tink_create_dev("leds-gpio", &tink_leds_pdata, sizeof(tink_leds_pdata)); if (IS_ERR(tink_leds_pdev)) { ret = PTR_ERR(tink_leds_pdev); goto err; } tink_keys_pdev = tink_create_dev("gpio-keys-polled", &tink_buttons_pdata, sizeof(tink_buttons_pdata)); if (IS_ERR(tink_keys_pdev)) { ret = PTR_ERR(tink_keys_pdev); platform_device_unregister(tink_leds_pdev); goto err; } return 0; err: gpiod_remove_lookup_table(&tink_keys_table); gpiod_remove_lookup_table(&tink_leds_table); return ret; } module_init(tink_board_init); static void __exit tink_board_exit(void) { platform_device_unregister(tink_keys_pdev); platform_device_unregister(tink_leds_pdev); gpiod_remove_lookup_table(&tink_keys_table); gpiod_remove_lookup_table(&tink_leds_table); } module_exit(tink_board_exit); MODULE_AUTHOR("Chris Blake <[email protected]>"); MODULE_DESCRIPTION("Cisco Meraki MX100 Platform Driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:meraki-mx100");
linux-master
drivers/platform/x86/meraki-mx100.c
// SPDX-License-Identifier: GPL-2.0 /* * Huawei WMI laptop extras driver * * Copyright (C) 2018 Ayman Bagabas <[email protected]> */ #include <linux/acpi.h> #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/dmi.h> #include <linux/input.h> #include <linux/input/sparse-keymap.h> #include <linux/leds.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/sysfs.h> #include <linux/wmi.h> #include <acpi/battery.h> /* * Huawei WMI GUIDs */ #define HWMI_METHOD_GUID "ABBC0F5B-8EA1-11D1-A000-C90629100000" #define HWMI_EVENT_GUID "ABBC0F5C-8EA1-11D1-A000-C90629100000" /* Legacy GUIDs */ #define WMI0_EXPENSIVE_GUID "39142400-C6A3-40fa-BADB-8A2652834100" #define WMI0_EVENT_GUID "59142400-C6A3-40fa-BADB-8A2652834100" /* HWMI commands */ enum { BATTERY_THRESH_GET = 0x00001103, /* \GBTT */ BATTERY_THRESH_SET = 0x00001003, /* \SBTT */ FN_LOCK_GET = 0x00000604, /* \GFRS */ FN_LOCK_SET = 0x00000704, /* \SFRS */ MICMUTE_LED_SET = 0x00000b04, /* \SMLS */ }; union hwmi_arg { u64 cmd; u8 args[8]; }; struct quirk_entry { bool battery_reset; bool ec_micmute; bool report_brightness; }; static struct quirk_entry *quirks; struct huawei_wmi_debug { struct dentry *root; u64 arg; }; struct huawei_wmi { bool battery_available; bool fn_lock_available; struct huawei_wmi_debug debug; struct led_classdev cdev; struct device *dev; struct mutex wmi_lock; }; static struct huawei_wmi *huawei_wmi; static const struct key_entry huawei_wmi_keymap[] = { { KE_KEY, 0x281, { KEY_BRIGHTNESSDOWN } }, { KE_KEY, 0x282, { KEY_BRIGHTNESSUP } }, { KE_KEY, 0x284, { KEY_MUTE } }, { KE_KEY, 0x285, { KEY_VOLUMEDOWN } }, { KE_KEY, 0x286, { KEY_VOLUMEUP } }, { KE_KEY, 0x287, { KEY_MICMUTE } }, { KE_KEY, 0x289, { KEY_WLAN } }, // Huawei |M| key { KE_KEY, 0x28a, { KEY_CONFIG } }, // Keyboard backlit { KE_IGNORE, 0x293, { KEY_KBDILLUMTOGGLE } }, { KE_IGNORE, 0x294, { KEY_KBDILLUMUP } }, { KE_IGNORE, 0x295, { KEY_KBDILLUMUP } }, // Ignore Ambient Light Sensoring { KE_KEY, 0x2c1, { KEY_RESERVED } }, { KE_END, 0 } }; static int battery_reset = -1; static int report_brightness = -1; module_param(battery_reset, bint, 0444); MODULE_PARM_DESC(battery_reset, "Reset battery charge values to (0-0) before disabling it using (0-100)"); module_param(report_brightness, bint, 0444); MODULE_PARM_DESC(report_brightness, "Report brightness keys."); /* Quirks */ static int __init dmi_matched(const struct dmi_system_id *dmi) { quirks = dmi->driver_data; return 1; } static struct quirk_entry quirk_unknown = { }; static struct quirk_entry quirk_battery_reset = { .battery_reset = true, }; static struct quirk_entry quirk_matebook_x = { .ec_micmute = true, .report_brightness = true, }; static const struct dmi_system_id huawei_quirks[] = { { .callback = dmi_matched, .ident = "Huawei MACH-WX9", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HUAWEI"), DMI_MATCH(DMI_PRODUCT_NAME, "MACH-WX9"), }, .driver_data = &quirk_battery_reset }, { .callback = dmi_matched, .ident = "Huawei MateBook X", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HUAWEI"), DMI_MATCH(DMI_PRODUCT_NAME, "HUAWEI MateBook X") }, .driver_data = &quirk_matebook_x }, { } }; /* Utils */ static int huawei_wmi_call(struct huawei_wmi *huawei, struct acpi_buffer *in, struct acpi_buffer *out) { acpi_status status; mutex_lock(&huawei->wmi_lock); status = wmi_evaluate_method(HWMI_METHOD_GUID, 0, 1, in, out); mutex_unlock(&huawei->wmi_lock); if (ACPI_FAILURE(status)) { dev_err(huawei->dev, "Failed to evaluate wmi method\n"); return -ENODEV; } return 0; } /* HWMI takes a 64 bit input and returns either a package with 2 buffers, one of * 4 bytes and the other of 256 bytes, or one buffer of size 0x104 (260) bytes. * The first 4 bytes are ignored, we ignore the first 4 bytes buffer if we got a * package, or skip the first 4 if a buffer of 0x104 is used. The first byte of * the remaining 0x100 sized buffer has the return status of every call. In case * the return status is non-zero, we return -ENODEV but still copy the returned * buffer to the given buffer parameter (buf). */ static int huawei_wmi_cmd(u64 arg, u8 *buf, size_t buflen) { struct huawei_wmi *huawei = huawei_wmi; struct acpi_buffer out = { ACPI_ALLOCATE_BUFFER, NULL }; struct acpi_buffer in; union acpi_object *obj; size_t len; int err, i; in.length = sizeof(arg); in.pointer = &arg; /* Some models require calling HWMI twice to execute a command. We evaluate * HWMI and if we get a non-zero return status we evaluate it again. */ for (i = 0; i < 2; i++) { err = huawei_wmi_call(huawei, &in, &out); if (err) goto fail_cmd; obj = out.pointer; if (!obj) { err = -EIO; goto fail_cmd; } switch (obj->type) { /* Models that implement both "legacy" and HWMI tend to return a 0x104 * sized buffer instead of a package of 0x4 and 0x100 buffers. */ case ACPI_TYPE_BUFFER: if (obj->buffer.length == 0x104) { // Skip the first 4 bytes. obj->buffer.pointer += 4; len = 0x100; } else { dev_err(huawei->dev, "Bad buffer length, got %d\n", obj->buffer.length); err = -EIO; goto fail_cmd; } break; /* HWMI returns a package with 2 buffer elements, one of 4 bytes and the * other is 256 bytes. */ case ACPI_TYPE_PACKAGE: if (obj->package.count != 2) { dev_err(huawei->dev, "Bad package count, got %d\n", obj->package.count); err = -EIO; goto fail_cmd; } obj = &obj->package.elements[1]; if (obj->type != ACPI_TYPE_BUFFER) { dev_err(huawei->dev, "Bad package element type, got %d\n", obj->type); err = -EIO; goto fail_cmd; } len = obj->buffer.length; break; /* Shouldn't get here! */ default: dev_err(huawei->dev, "Unexpected obj type, got: %d\n", obj->type); err = -EIO; goto fail_cmd; } if (!*obj->buffer.pointer) break; } err = (*obj->buffer.pointer) ? -ENODEV : 0; if (buf) { len = min(buflen, len); memcpy(buf, obj->buffer.pointer, len); } fail_cmd: kfree(out.pointer); return err; } /* LEDs */ static int huawei_wmi_micmute_led_set(struct led_classdev *led_cdev, enum led_brightness brightness) { /* This is a workaround until the "legacy" interface is implemented. */ if (quirks && quirks->ec_micmute) { char *acpi_method; acpi_handle handle; acpi_status status; union acpi_object args[3]; struct acpi_object_list arg_list = { .pointer = args, .count = ARRAY_SIZE(args), }; handle = ec_get_handle(); if (!handle) return -ENODEV; args[0].type = args[1].type = args[2].type = ACPI_TYPE_INTEGER; args[1].integer.value = 0x04; if (acpi_has_method(handle, "SPIN")) { acpi_method = "SPIN"; args[0].integer.value = 0; args[2].integer.value = brightness ? 1 : 0; } else if (acpi_has_method(handle, "WPIN")) { acpi_method = "WPIN"; args[0].integer.value = 1; args[2].integer.value = brightness ? 0 : 1; } else { return -ENODEV; } status = acpi_evaluate_object(handle, acpi_method, &arg_list, NULL); if (ACPI_FAILURE(status)) return -ENODEV; return 0; } else { union hwmi_arg arg; arg.cmd = MICMUTE_LED_SET; arg.args[2] = brightness; return huawei_wmi_cmd(arg.cmd, NULL, 0); } } static void huawei_wmi_leds_setup(struct device *dev) { struct huawei_wmi *huawei = dev_get_drvdata(dev); huawei->cdev.name = "platform::micmute"; huawei->cdev.max_brightness = 1; huawei->cdev.brightness_set_blocking = &huawei_wmi_micmute_led_set; huawei->cdev.default_trigger = "audio-micmute"; huawei->cdev.brightness = ledtrig_audio_get(LED_AUDIO_MICMUTE); huawei->cdev.dev = dev; huawei->cdev.flags = LED_CORE_SUSPENDRESUME; devm_led_classdev_register(dev, &huawei->cdev); } /* Battery protection */ static int huawei_wmi_battery_get(int *start, int *end) { u8 ret[0x100]; int err, i; err = huawei_wmi_cmd(BATTERY_THRESH_GET, ret, sizeof(ret)); if (err) return err; /* Find the last two non-zero values. Return status is ignored. */ i = ARRAY_SIZE(ret) - 1; do { if (start) *start = ret[i-1]; if (end) *end = ret[i]; } while (i > 2 && !ret[i--]); return 0; } static int huawei_wmi_battery_set(int start, int end) { union hwmi_arg arg; int err; if (start < 0 || end < 0 || start > 100 || end > 100) return -EINVAL; arg.cmd = BATTERY_THRESH_SET; arg.args[2] = start; arg.args[3] = end; /* This is an edge case were some models turn battery protection * off without changing their thresholds values. We clear the * values before turning off protection. Sometimes we need a sleep delay to * make sure these values make their way to EC memory. */ if (quirks && quirks->battery_reset && start == 0 && end == 100) { err = huawei_wmi_battery_set(0, 0); if (err) return err; msleep(1000); } err = huawei_wmi_cmd(arg.cmd, NULL, 0); return err; } static ssize_t charge_control_start_threshold_show(struct device *dev, struct device_attribute *attr, char *buf) { int err, start; err = huawei_wmi_battery_get(&start, NULL); if (err) return err; return sprintf(buf, "%d\n", start); } static ssize_t charge_control_end_threshold_show(struct device *dev, struct device_attribute *attr, char *buf) { int err, end; err = huawei_wmi_battery_get(NULL, &end); if (err) return err; return sprintf(buf, "%d\n", end); } static ssize_t charge_control_thresholds_show(struct device *dev, struct device_attribute *attr, char *buf) { int err, start, end; err = huawei_wmi_battery_get(&start, &end); if (err) return err; return sprintf(buf, "%d %d\n", start, end); } static ssize_t charge_control_start_threshold_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int err, start, end; err = huawei_wmi_battery_get(NULL, &end); if (err) return err; if (sscanf(buf, "%d", &start) != 1) return -EINVAL; err = huawei_wmi_battery_set(start, end); if (err) return err; return size; } static ssize_t charge_control_end_threshold_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int err, start, end; err = huawei_wmi_battery_get(&start, NULL); if (err) return err; if (sscanf(buf, "%d", &end) != 1) return -EINVAL; err = huawei_wmi_battery_set(start, end); if (err) return err; return size; } static ssize_t charge_control_thresholds_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int err, start, end; if (sscanf(buf, "%d %d", &start, &end) != 2) return -EINVAL; err = huawei_wmi_battery_set(start, end); if (err) return err; return size; } static DEVICE_ATTR_RW(charge_control_start_threshold); static DEVICE_ATTR_RW(charge_control_end_threshold); static DEVICE_ATTR_RW(charge_control_thresholds); static int huawei_wmi_battery_add(struct power_supply *battery, struct acpi_battery_hook *hook) { int err = 0; err = device_create_file(&battery->dev, &dev_attr_charge_control_start_threshold); if (err) return err; err = device_create_file(&battery->dev, &dev_attr_charge_control_end_threshold); if (err) device_remove_file(&battery->dev, &dev_attr_charge_control_start_threshold); return err; } static int huawei_wmi_battery_remove(struct power_supply *battery, struct acpi_battery_hook *hook) { device_remove_file(&battery->dev, &dev_attr_charge_control_start_threshold); device_remove_file(&battery->dev, &dev_attr_charge_control_end_threshold); return 0; } static struct acpi_battery_hook huawei_wmi_battery_hook = { .add_battery = huawei_wmi_battery_add, .remove_battery = huawei_wmi_battery_remove, .name = "Huawei Battery Extension" }; static void huawei_wmi_battery_setup(struct device *dev) { struct huawei_wmi *huawei = dev_get_drvdata(dev); huawei->battery_available = true; if (huawei_wmi_battery_get(NULL, NULL)) { huawei->battery_available = false; return; } battery_hook_register(&huawei_wmi_battery_hook); device_create_file(dev, &dev_attr_charge_control_thresholds); } static void huawei_wmi_battery_exit(struct device *dev) { struct huawei_wmi *huawei = dev_get_drvdata(dev); if (huawei->battery_available) { battery_hook_unregister(&huawei_wmi_battery_hook); device_remove_file(dev, &dev_attr_charge_control_thresholds); } } /* Fn lock */ static int huawei_wmi_fn_lock_get(int *on) { u8 ret[0x100] = { 0 }; int err, i; err = huawei_wmi_cmd(FN_LOCK_GET, ret, 0x100); if (err) return err; /* Find the first non-zero value. Return status is ignored. */ i = 1; do { if (on) *on = ret[i] - 1; // -1 undefined, 0 off, 1 on. } while (i < 0xff && !ret[i++]); return 0; } static int huawei_wmi_fn_lock_set(int on) { union hwmi_arg arg; arg.cmd = FN_LOCK_SET; arg.args[2] = on + 1; // 0 undefined, 1 off, 2 on. return huawei_wmi_cmd(arg.cmd, NULL, 0); } static ssize_t fn_lock_state_show(struct device *dev, struct device_attribute *attr, char *buf) { int err, on; err = huawei_wmi_fn_lock_get(&on); if (err) return err; return sprintf(buf, "%d\n", on); } static ssize_t fn_lock_state_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int on, err; if (kstrtoint(buf, 10, &on) || on < 0 || on > 1) return -EINVAL; err = huawei_wmi_fn_lock_set(on); if (err) return err; return size; } static DEVICE_ATTR_RW(fn_lock_state); static void huawei_wmi_fn_lock_setup(struct device *dev) { struct huawei_wmi *huawei = dev_get_drvdata(dev); huawei->fn_lock_available = true; if (huawei_wmi_fn_lock_get(NULL)) { huawei->fn_lock_available = false; return; } device_create_file(dev, &dev_attr_fn_lock_state); } static void huawei_wmi_fn_lock_exit(struct device *dev) { struct huawei_wmi *huawei = dev_get_drvdata(dev); if (huawei->fn_lock_available) device_remove_file(dev, &dev_attr_fn_lock_state); } /* debugfs */ static void huawei_wmi_debugfs_call_dump(struct seq_file *m, void *data, union acpi_object *obj) { struct huawei_wmi *huawei = m->private; int i; switch (obj->type) { case ACPI_TYPE_INTEGER: seq_printf(m, "0x%llx", obj->integer.value); break; case ACPI_TYPE_STRING: seq_printf(m, "\"%.*s\"", obj->string.length, obj->string.pointer); break; case ACPI_TYPE_BUFFER: seq_puts(m, "{"); for (i = 0; i < obj->buffer.length; i++) { seq_printf(m, "0x%02x", obj->buffer.pointer[i]); if (i < obj->buffer.length - 1) seq_puts(m, ","); } seq_puts(m, "}"); break; case ACPI_TYPE_PACKAGE: seq_puts(m, "["); for (i = 0; i < obj->package.count; i++) { huawei_wmi_debugfs_call_dump(m, huawei, &obj->package.elements[i]); if (i < obj->package.count - 1) seq_puts(m, ","); } seq_puts(m, "]"); break; default: dev_err(huawei->dev, "Unexpected obj type, got %d\n", obj->type); return; } } static int huawei_wmi_debugfs_call_show(struct seq_file *m, void *data) { struct huawei_wmi *huawei = m->private; struct acpi_buffer out = { ACPI_ALLOCATE_BUFFER, NULL }; struct acpi_buffer in; union acpi_object *obj; int err; in.length = sizeof(u64); in.pointer = &huawei->debug.arg; err = huawei_wmi_call(huawei, &in, &out); if (err) return err; obj = out.pointer; if (!obj) { err = -EIO; goto fail_debugfs_call; } huawei_wmi_debugfs_call_dump(m, huawei, obj); fail_debugfs_call: kfree(out.pointer); return err; } DEFINE_SHOW_ATTRIBUTE(huawei_wmi_debugfs_call); static void huawei_wmi_debugfs_setup(struct device *dev) { struct huawei_wmi *huawei = dev_get_drvdata(dev); huawei->debug.root = debugfs_create_dir("huawei-wmi", NULL); debugfs_create_x64("arg", 0644, huawei->debug.root, &huawei->debug.arg); debugfs_create_file("call", 0400, huawei->debug.root, huawei, &huawei_wmi_debugfs_call_fops); } static void huawei_wmi_debugfs_exit(struct device *dev) { struct huawei_wmi *huawei = dev_get_drvdata(dev); debugfs_remove_recursive(huawei->debug.root); } /* Input */ static void huawei_wmi_process_key(struct input_dev *idev, int code) { const struct key_entry *key; /* * WMI0 uses code 0x80 to indicate a hotkey event. * The actual key is fetched from the method WQ00 * using WMI0_EXPENSIVE_GUID. */ if (code == 0x80) { struct acpi_buffer response = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *obj; acpi_status status; status = wmi_query_block(WMI0_EXPENSIVE_GUID, 0, &response); if (ACPI_FAILURE(status)) return; obj = (union acpi_object *)response.pointer; if (obj && obj->type == ACPI_TYPE_INTEGER) code = obj->integer.value; kfree(response.pointer); } key = sparse_keymap_entry_from_scancode(idev, code); if (!key) { dev_info(&idev->dev, "Unknown key pressed, code: 0x%04x\n", code); return; } if (quirks && !quirks->report_brightness && (key->sw.code == KEY_BRIGHTNESSDOWN || key->sw.code == KEY_BRIGHTNESSUP)) return; sparse_keymap_report_entry(idev, key, 1, true); } static void huawei_wmi_input_notify(u32 value, void *context) { struct input_dev *idev = (struct input_dev *)context; struct acpi_buffer response = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *obj; acpi_status status; status = wmi_get_event_data(value, &response); if (ACPI_FAILURE(status)) { dev_err(&idev->dev, "Unable to get event data\n"); return; } obj = (union acpi_object *)response.pointer; if (obj && obj->type == ACPI_TYPE_INTEGER) huawei_wmi_process_key(idev, obj->integer.value); else dev_err(&idev->dev, "Bad response type\n"); kfree(response.pointer); } static int huawei_wmi_input_setup(struct device *dev, const char *guid) { struct input_dev *idev; acpi_status status; int err; idev = devm_input_allocate_device(dev); if (!idev) return -ENOMEM; idev->name = "Huawei WMI hotkeys"; idev->phys = "wmi/input0"; idev->id.bustype = BUS_HOST; idev->dev.parent = dev; err = sparse_keymap_setup(idev, huawei_wmi_keymap, NULL); if (err) return err; err = input_register_device(idev); if (err) return err; status = wmi_install_notify_handler(guid, huawei_wmi_input_notify, idev); if (ACPI_FAILURE(status)) return -EIO; return 0; } static void huawei_wmi_input_exit(struct device *dev, const char *guid) { wmi_remove_notify_handler(guid); } /* Huawei driver */ static const struct wmi_device_id huawei_wmi_events_id_table[] = { { .guid_string = WMI0_EVENT_GUID }, { .guid_string = HWMI_EVENT_GUID }, { } }; static int huawei_wmi_probe(struct platform_device *pdev) { const struct wmi_device_id *guid = huawei_wmi_events_id_table; int err; platform_set_drvdata(pdev, huawei_wmi); huawei_wmi->dev = &pdev->dev; while (*guid->guid_string) { if (wmi_has_guid(guid->guid_string)) { err = huawei_wmi_input_setup(&pdev->dev, guid->guid_string); if (err) { dev_err(&pdev->dev, "Failed to setup input on %s\n", guid->guid_string); return err; } } guid++; } if (wmi_has_guid(HWMI_METHOD_GUID)) { mutex_init(&huawei_wmi->wmi_lock); huawei_wmi_leds_setup(&pdev->dev); huawei_wmi_fn_lock_setup(&pdev->dev); huawei_wmi_battery_setup(&pdev->dev); huawei_wmi_debugfs_setup(&pdev->dev); } return 0; } static void huawei_wmi_remove(struct platform_device *pdev) { const struct wmi_device_id *guid = huawei_wmi_events_id_table; while (*guid->guid_string) { if (wmi_has_guid(guid->guid_string)) huawei_wmi_input_exit(&pdev->dev, guid->guid_string); guid++; } if (wmi_has_guid(HWMI_METHOD_GUID)) { huawei_wmi_debugfs_exit(&pdev->dev); huawei_wmi_battery_exit(&pdev->dev); huawei_wmi_fn_lock_exit(&pdev->dev); } } static struct platform_driver huawei_wmi_driver = { .driver = { .name = "huawei-wmi", }, .probe = huawei_wmi_probe, .remove_new = huawei_wmi_remove, }; static __init int huawei_wmi_init(void) { struct platform_device *pdev; int err; huawei_wmi = kzalloc(sizeof(struct huawei_wmi), GFP_KERNEL); if (!huawei_wmi) return -ENOMEM; quirks = &quirk_unknown; dmi_check_system(huawei_quirks); if (battery_reset != -1) quirks->battery_reset = battery_reset; if (report_brightness != -1) quirks->report_brightness = report_brightness; err = platform_driver_register(&huawei_wmi_driver); if (err) goto pdrv_err; pdev = platform_device_register_simple("huawei-wmi", PLATFORM_DEVID_NONE, NULL, 0); if (IS_ERR(pdev)) { err = PTR_ERR(pdev); goto pdev_err; } return 0; pdev_err: platform_driver_unregister(&huawei_wmi_driver); pdrv_err: kfree(huawei_wmi); return err; } static __exit void huawei_wmi_exit(void) { struct platform_device *pdev = to_platform_device(huawei_wmi->dev); platform_device_unregister(pdev); platform_driver_unregister(&huawei_wmi_driver); kfree(huawei_wmi); } module_init(huawei_wmi_init); module_exit(huawei_wmi_exit); MODULE_ALIAS("wmi:"HWMI_METHOD_GUID); MODULE_DEVICE_TABLE(wmi, huawei_wmi_events_id_table); MODULE_AUTHOR("Ayman Bagabas <[email protected]>"); MODULE_DESCRIPTION("Huawei WMI laptop extras driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/platform/x86/huawei-wmi.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Eee PC WMI hotkey driver * * Copyright(C) 2010 Intel Corporation. * Copyright(C) 2010-2011 Corentin Chary <[email protected]> * * Portions based on wistron_btns.c: * Copyright (C) 2005 Miloslav Trmac <[email protected]> * Copyright (C) 2005 Bernhard Rosenkraenzer <[email protected]> * Copyright (C) 2005 Dmitry Torokhov <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/input.h> #include <linux/input/sparse-keymap.h> #include <linux/dmi.h> #include <linux/fb.h> #include <linux/acpi.h> #include "asus-wmi.h" #define EEEPC_WMI_FILE "eeepc-wmi" MODULE_AUTHOR("Corentin Chary <[email protected]>"); MODULE_DESCRIPTION("Eee PC WMI Hotkey Driver"); MODULE_LICENSE("GPL"); #define EEEPC_ACPI_HID "ASUS010" /* old _HID used in eeepc-laptop */ #define EEEPC_WMI_EVENT_GUID "ABBC0F72-8EA1-11D1-00A0-C90629100000" MODULE_ALIAS("wmi:"EEEPC_WMI_EVENT_GUID); static bool hotplug_wireless; module_param(hotplug_wireless, bool, 0444); MODULE_PARM_DESC(hotplug_wireless, "Enable hotplug for wireless device. " "If your laptop needs that, please report to " "[email protected]."); /* Values for T101MT "Home" key */ #define HOME_PRESS 0xe4 #define HOME_HOLD 0xea #define HOME_RELEASE 0xe5 static const struct key_entry eeepc_wmi_keymap[] = { { KE_KEY, ASUS_WMI_BRN_DOWN, { KEY_BRIGHTNESSDOWN } }, { KE_KEY, ASUS_WMI_BRN_UP, { KEY_BRIGHTNESSUP } }, /* Sleep already handled via generic ACPI code */ { KE_KEY, 0x30, { KEY_VOLUMEUP } }, { KE_KEY, 0x31, { KEY_VOLUMEDOWN } }, { KE_KEY, 0x32, { KEY_MUTE } }, { KE_KEY, 0x5c, { KEY_F15 } }, /* Power Gear key */ { KE_KEY, 0x5d, { KEY_WLAN } }, { KE_KEY, 0x6b, { KEY_TOUCHPAD_TOGGLE } }, /* Toggle Touchpad */ { KE_KEY, 0x82, { KEY_CAMERA } }, { KE_KEY, 0x83, { KEY_CAMERA_ZOOMIN } }, { KE_KEY, 0x88, { KEY_WLAN } }, { KE_KEY, 0xbd, { KEY_CAMERA } }, { KE_KEY, 0xcc, { KEY_SWITCHVIDEOMODE } }, { KE_KEY, 0xe0, { KEY_PROG1 } }, /* Task Manager */ { KE_KEY, 0xe1, { KEY_F14 } }, /* Change Resolution */ { KE_KEY, HOME_PRESS, { KEY_CONFIG } }, /* Home/Express gate key */ { KE_KEY, 0xe8, { KEY_SCREENLOCK } }, { KE_KEY, 0xe9, { KEY_DISPLAYTOGGLE } }, { KE_KEY, 0xeb, { KEY_CAMERA_ZOOMOUT } }, { KE_KEY, 0xec, { KEY_CAMERA_UP } }, { KE_KEY, 0xed, { KEY_CAMERA_DOWN } }, { KE_KEY, 0xee, { KEY_CAMERA_LEFT } }, { KE_KEY, 0xef, { KEY_CAMERA_RIGHT } }, { KE_KEY, 0xf3, { KEY_MENU } }, { KE_KEY, 0xf5, { KEY_HOMEPAGE } }, { KE_KEY, 0xf6, { KEY_ESC } }, { KE_END, 0}, }; static struct quirk_entry quirk_asus_unknown = { }; static struct quirk_entry quirk_asus_1000h = { .hotplug_wireless = true, }; static struct quirk_entry quirk_asus_et2012_type1 = { .store_backlight_power = true, }; static struct quirk_entry quirk_asus_et2012_type3 = { .scalar_panel_brightness = true, .store_backlight_power = true, }; static struct quirk_entry *quirks; static void et2012_quirks(void) { const struct dmi_device *dev = NULL; char oemstring[30]; while ((dev = dmi_find_device(DMI_DEV_TYPE_OEM_STRING, NULL, dev))) { if (sscanf(dev->name, "AEMS%24c", oemstring) == 1) { if (oemstring[18] == '1') quirks = &quirk_asus_et2012_type1; else if (oemstring[18] == '3') quirks = &quirk_asus_et2012_type3; break; } } } static int dmi_matched(const struct dmi_system_id *dmi) { char *model; quirks = dmi->driver_data; model = (char *)dmi->matches[1].substr; if (unlikely(strncmp(model, "ET2012", 6) == 0)) et2012_quirks(); return 1; } static const struct dmi_system_id asus_quirks[] = { { .callback = dmi_matched, .ident = "ASUSTeK Computer INC. 1000H", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer INC."), DMI_MATCH(DMI_PRODUCT_NAME, "1000H"), }, .driver_data = &quirk_asus_1000h, }, { .callback = dmi_matched, .ident = "ASUSTeK Computer INC. ET2012E/I", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer INC."), DMI_MATCH(DMI_PRODUCT_NAME, "ET2012"), }, .driver_data = &quirk_asus_unknown, }, {} }; static void eeepc_wmi_key_filter(struct asus_wmi_driver *asus_wmi, int *code, unsigned int *value, bool *autorelease) { switch (*code) { case HOME_PRESS: *value = 1; *autorelease = 0; break; case HOME_HOLD: *code = ASUS_WMI_KEY_IGNORE; break; case HOME_RELEASE: *code = HOME_PRESS; *value = 0; *autorelease = 0; break; } } static int eeepc_wmi_probe(struct platform_device *pdev) { if (acpi_dev_found(EEEPC_ACPI_HID)) { pr_warn("Found legacy ATKD device (%s)\n", EEEPC_ACPI_HID); pr_warn("WMI device present, but legacy ATKD device is also " "present and enabled\n"); pr_warn("You probably booted with acpi_osi=\"Linux\" or " "acpi_osi=\"!Windows 2009\"\n"); pr_warn("Can't load eeepc-wmi, use default acpi_osi " "(preferred) or eeepc-laptop\n"); return -EBUSY; } return 0; } static void eeepc_wmi_quirks(struct asus_wmi_driver *driver) { quirks = &quirk_asus_unknown; quirks->hotplug_wireless = hotplug_wireless; dmi_check_system(asus_quirks); driver->quirks = quirks; driver->quirks->wapf = -1; driver->panel_power = FB_BLANK_UNBLANK; } static struct asus_wmi_driver asus_wmi_driver = { .name = EEEPC_WMI_FILE, .owner = THIS_MODULE, .event_guid = EEEPC_WMI_EVENT_GUID, .keymap = eeepc_wmi_keymap, .input_name = "Eee PC WMI hotkeys", .input_phys = EEEPC_WMI_FILE "/input0", .key_filter = eeepc_wmi_key_filter, .probe = eeepc_wmi_probe, .detect_quirks = eeepc_wmi_quirks, }; static int __init eeepc_wmi_init(void) { return asus_wmi_register_driver(&asus_wmi_driver); } static void __exit eeepc_wmi_exit(void) { asus_wmi_unregister_driver(&asus_wmi_driver); } module_init(eeepc_wmi_init); module_exit(eeepc_wmi_exit);
linux-master
drivers/platform/x86/eeepc-wmi.c
// SPDX-License-Identifier: GPL-2.0-or-later /*-*-linux-c-*-*/ /* Copyright (C) 2008 Cezary Jackiewicz <cezary.jackiewicz (at) gmail.com> based on MSI driver Copyright (C) 2006 Lennart Poettering <mzxreary (at) 0pointer (dot) de> */ /* * compal-laptop.c - Compal laptop support. * * This driver exports a few files in /sys/devices/platform/compal-laptop/: * wake_up_XXX Whether or not we listen to such wake up events (rw) * * In addition to these platform device attributes the driver * registers itself in the Linux backlight control, power_supply, rfkill * and hwmon subsystem and is available to userspace under: * * /sys/class/backlight/compal-laptop/ * /sys/class/power_supply/compal-laptop/ * /sys/class/rfkill/rfkillX/ * /sys/class/hwmon/hwmonX/ * * Notes on the power_supply battery interface: * - the "minimum" design voltage is *the* design voltage * - the ambient temperature is the average battery temperature * and the value is an educated guess (see commented code below) * * * This driver might work on other laptops produced by Compal. If you * want to try it you can pass force=1 as argument to the module which * will force it to load even when the DMI data doesn't identify the * laptop as compatible. * * Lots of data available at: * http://service1.marasst.com/Compal/JHL90_91/Service%20Manual/ * JHL90%20service%20manual-Final-0725.pdf * * * * Support for the Compal JHL90 added by Roald Frederickx * ([email protected]): * Driver got large revision. Added functionalities: backlight * power, wake_on_XXX, a hwmon and power_supply interface. * * In case this gets merged into the kernel source: I want to dedicate this * to Kasper Meerts, the awesome guy who showed me Linux and C! */ /* NOTE: currently the wake_on_XXX, hwmon and power_supply interfaces are * only enabled on a JHL90 board until it is verified that they work on the * other boards too. See the extra_features variable. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/acpi.h> #include <linux/dmi.h> #include <linux/backlight.h> #include <linux/platform_device.h> #include <linux/rfkill.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/power_supply.h> #include <linux/fb.h> #include <acpi/video.h> /* ======= */ /* Defines */ /* ======= */ #define DRIVER_NAME "compal-laptop" #define DRIVER_VERSION "0.2.7" #define BACKLIGHT_LEVEL_ADDR 0xB9 #define BACKLIGHT_LEVEL_MAX 7 #define BACKLIGHT_STATE_ADDR 0x59 #define BACKLIGHT_STATE_ON_DATA 0xE1 #define BACKLIGHT_STATE_OFF_DATA 0xE2 #define WAKE_UP_ADDR 0xA4 #define WAKE_UP_PME (1 << 0) #define WAKE_UP_MODEM (1 << 1) #define WAKE_UP_LAN (1 << 2) #define WAKE_UP_WLAN (1 << 4) #define WAKE_UP_KEY (1 << 6) #define WAKE_UP_MOUSE (1 << 7) #define WIRELESS_ADDR 0xBB #define WIRELESS_WLAN (1 << 0) #define WIRELESS_BT (1 << 1) #define WIRELESS_WLAN_EXISTS (1 << 2) #define WIRELESS_BT_EXISTS (1 << 3) #define WIRELESS_KILLSWITCH (1 << 4) #define PWM_ADDRESS 0x46 #define PWM_DISABLE_ADDR 0x59 #define PWM_DISABLE_DATA 0xA5 #define PWM_ENABLE_ADDR 0x59 #define PWM_ENABLE_DATA 0xA8 #define FAN_ADDRESS 0x46 #define FAN_DATA 0x81 #define FAN_FULL_ON_CMD 0x59 /* Doesn't seem to work. Just */ #define FAN_FULL_ON_ENABLE 0x76 /* force the pwm signal to its */ #define FAN_FULL_ON_DISABLE 0x77 /* maximum value instead */ #define TEMP_CPU 0xB0 #define TEMP_CPU_LOCAL 0xB1 #define TEMP_CPU_DTS 0xB5 #define TEMP_NORTHBRIDGE 0xB6 #define TEMP_VGA 0xB4 #define TEMP_SKIN 0xB2 #define BAT_MANUFACTURER_NAME_ADDR 0x10 #define BAT_MANUFACTURER_NAME_LEN 9 #define BAT_MODEL_NAME_ADDR 0x19 #define BAT_MODEL_NAME_LEN 6 #define BAT_SERIAL_NUMBER_ADDR 0xC4 #define BAT_SERIAL_NUMBER_LEN 5 #define BAT_CHARGE_NOW 0xC2 #define BAT_CHARGE_DESIGN 0xCA #define BAT_VOLTAGE_NOW 0xC6 #define BAT_VOLTAGE_DESIGN 0xC8 #define BAT_CURRENT_NOW 0xD0 #define BAT_CURRENT_AVG 0xD2 #define BAT_POWER 0xD4 #define BAT_CAPACITY 0xCE #define BAT_TEMP 0xD6 #define BAT_TEMP_AVG 0xD7 #define BAT_STATUS0 0xC1 #define BAT_STATUS1 0xF0 #define BAT_STATUS2 0xF1 #define BAT_STOP_CHARGE1 0xF2 #define BAT_STOP_CHARGE2 0xF3 #define BAT_CHARGE_LIMIT 0x03 #define BAT_CHARGE_LIMIT_MAX 100 #define BAT_S0_DISCHARGE (1 << 0) #define BAT_S0_DISCHRG_CRITICAL (1 << 2) #define BAT_S0_LOW (1 << 3) #define BAT_S0_CHARGING (1 << 1) #define BAT_S0_AC (1 << 7) #define BAT_S1_EXISTS (1 << 0) #define BAT_S1_FULL (1 << 1) #define BAT_S1_EMPTY (1 << 2) #define BAT_S1_LiION_OR_NiMH (1 << 7) #define BAT_S2_LOW_LOW (1 << 0) #define BAT_STOP_CHRG1_BAD_CELL (1 << 1) #define BAT_STOP_CHRG1_COMM_FAIL (1 << 2) #define BAT_STOP_CHRG1_OVERVOLTAGE (1 << 6) #define BAT_STOP_CHRG1_OVERTEMPERATURE (1 << 7) /* ======= */ /* Structs */ /* ======= */ struct compal_data{ /* Fan control */ int pwm_enable; /* 0:full on, 1:set by pwm1, 2:control by motherboard */ unsigned char curr_pwm; /* Power supply */ struct power_supply *psy; struct power_supply_info psy_info; char bat_model_name[BAT_MODEL_NAME_LEN + 1]; char bat_manufacturer_name[BAT_MANUFACTURER_NAME_LEN + 1]; char bat_serial_number[BAT_SERIAL_NUMBER_LEN + 1]; }; /* =============== */ /* General globals */ /* =============== */ static bool force; module_param(force, bool, 0); MODULE_PARM_DESC(force, "Force driver load, ignore DMI data"); /* Support for the wake_on_XXX, hwmon and power_supply interface. Currently * only gets enabled on a JHL90 board. Might work with the others too */ static bool extra_features; /* Nasty stuff. For some reason the fan control is very un-linear. I've * come up with these values by looping through the possible inputs and * watching the output of address 0x4F (do an ec_transaction writing 0x33 * into 0x4F and read a few bytes from the output, like so: * u8 writeData = 0x33; * ec_transaction(0x4F, &writeData, 1, buffer, 32); * That address is labeled "fan1 table information" in the service manual. * It should be clear which value in 'buffer' changes). This seems to be * related to fan speed. It isn't a proper 'realtime' fan speed value * though, because physically stopping or speeding up the fan doesn't * change it. It might be the average voltage or current of the pwm output. * Nevertheless, it is more fine-grained than the actual RPM reading */ static const unsigned char pwm_lookup_table[256] = { 0, 0, 0, 1, 1, 1, 2, 253, 254, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 86, 86, 9, 9, 9, 10, 10, 10, 11, 92, 92, 12, 12, 95, 13, 66, 66, 14, 14, 98, 15, 15, 15, 16, 16, 67, 17, 17, 72, 18, 70, 75, 19, 90, 90, 73, 73, 73, 21, 21, 91, 91, 91, 96, 23, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 141, 141, 238, 223, 192, 139, 139, 139, 139, 139, 142, 142, 142, 142, 142, 78, 78, 78, 78, 78, 76, 76, 76, 76, 76, 79, 79, 79, 79, 79, 79, 79, 20, 20, 20, 20, 20, 22, 22, 22, 22, 22, 24, 24, 24, 24, 24, 24, 219, 219, 219, 219, 219, 219, 219, 219, 27, 27, 188, 188, 28, 28, 28, 29, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 31, 31, 31, 31, 31, 32, 32, 32, 41, 33, 33, 33, 33, 33, 252, 252, 34, 34, 34, 43, 35, 35, 35, 36, 36, 38, 206, 206, 206, 206, 206, 206, 206, 206, 206, 37, 37, 37, 46, 46, 47, 47, 232, 232, 232, 232, 232, 232, 232, 232, 232, 232, 48, 48, 48, 48, 48, 40, 40, 40, 49, 42, 42, 42, 42, 42, 42, 42, 42, 44, 189, 189, 189, 189, 54, 54, 45, 45, 45, 45, 45, 45, 45, 45, 251, 191, 199, 199, 199, 199, 199, 215, 215, 215, 215, 187, 187, 187, 187, 187, 193, 50 }; /* ========================= */ /* Hardware access functions */ /* ========================= */ /* General access */ static u8 ec_read_u8(u8 addr) { u8 value = 0; ec_read(addr, &value); return value; } static s8 ec_read_s8(u8 addr) { return (s8)ec_read_u8(addr); } static u16 ec_read_u16(u8 addr) { int hi, lo; lo = ec_read_u8(addr); hi = ec_read_u8(addr + 1); return (hi << 8) + lo; } static s16 ec_read_s16(u8 addr) { return (s16) ec_read_u16(addr); } static void ec_read_sequence(u8 addr, u8 *buf, int len) { int i; for (i = 0; i < len; i++) ec_read(addr + i, buf + i); } /* Backlight access */ static int set_backlight_level(int level) { if (level < 0 || level > BACKLIGHT_LEVEL_MAX) return -EINVAL; ec_write(BACKLIGHT_LEVEL_ADDR, level); return 0; } static int get_backlight_level(void) { return (int) ec_read_u8(BACKLIGHT_LEVEL_ADDR); } static void set_backlight_state(bool on) { u8 data = on ? BACKLIGHT_STATE_ON_DATA : BACKLIGHT_STATE_OFF_DATA; ec_transaction(BACKLIGHT_STATE_ADDR, &data, 1, NULL, 0); } /* Fan control access */ static void pwm_enable_control(void) { unsigned char writeData = PWM_ENABLE_DATA; ec_transaction(PWM_ENABLE_ADDR, &writeData, 1, NULL, 0); } static void pwm_disable_control(void) { unsigned char writeData = PWM_DISABLE_DATA; ec_transaction(PWM_DISABLE_ADDR, &writeData, 1, NULL, 0); } static void set_pwm(int pwm) { ec_transaction(PWM_ADDRESS, &pwm_lookup_table[pwm], 1, NULL, 0); } static int get_fan_rpm(void) { u8 value, data = FAN_DATA; ec_transaction(FAN_ADDRESS, &data, 1, &value, 1); return 100 * (int)value; } /* =================== */ /* Interface functions */ /* =================== */ /* Backlight interface */ static int bl_get_brightness(struct backlight_device *b) { return get_backlight_level(); } static int bl_update_status(struct backlight_device *b) { int ret = set_backlight_level(b->props.brightness); if (ret) return ret; set_backlight_state(!backlight_is_blank(b)); return 0; } static const struct backlight_ops compalbl_ops = { .get_brightness = bl_get_brightness, .update_status = bl_update_status, }; /* Wireless interface */ static int compal_rfkill_set(void *data, bool blocked) { unsigned long radio = (unsigned long) data; u8 result = ec_read_u8(WIRELESS_ADDR); u8 value; if (!blocked) value = (u8) (result | radio); else value = (u8) (result & ~radio); ec_write(WIRELESS_ADDR, value); return 0; } static void compal_rfkill_poll(struct rfkill *rfkill, void *data) { u8 result = ec_read_u8(WIRELESS_ADDR); bool hw_blocked = !(result & WIRELESS_KILLSWITCH); rfkill_set_hw_state(rfkill, hw_blocked); } static const struct rfkill_ops compal_rfkill_ops = { .poll = compal_rfkill_poll, .set_block = compal_rfkill_set, }; /* Wake_up interface */ #define SIMPLE_MASKED_STORE_SHOW(NAME, ADDR, MASK) \ static ssize_t NAME##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ return sprintf(buf, "%d\n", ((ec_read_u8(ADDR) & MASK) != 0)); \ } \ static ssize_t NAME##_store(struct device *dev, \ struct device_attribute *attr, const char *buf, size_t count) \ { \ int state; \ u8 old_val = ec_read_u8(ADDR); \ if (sscanf(buf, "%d", &state) != 1 || (state < 0 || state > 1)) \ return -EINVAL; \ ec_write(ADDR, state ? (old_val | MASK) : (old_val & ~MASK)); \ return count; \ } SIMPLE_MASKED_STORE_SHOW(wake_up_pme, WAKE_UP_ADDR, WAKE_UP_PME) SIMPLE_MASKED_STORE_SHOW(wake_up_modem, WAKE_UP_ADDR, WAKE_UP_MODEM) SIMPLE_MASKED_STORE_SHOW(wake_up_lan, WAKE_UP_ADDR, WAKE_UP_LAN) SIMPLE_MASKED_STORE_SHOW(wake_up_wlan, WAKE_UP_ADDR, WAKE_UP_WLAN) SIMPLE_MASKED_STORE_SHOW(wake_up_key, WAKE_UP_ADDR, WAKE_UP_KEY) SIMPLE_MASKED_STORE_SHOW(wake_up_mouse, WAKE_UP_ADDR, WAKE_UP_MOUSE) /* Fan control interface */ static ssize_t pwm_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct compal_data *data = dev_get_drvdata(dev); return sprintf(buf, "%d\n", data->pwm_enable); } static ssize_t pwm_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct compal_data *data = dev_get_drvdata(dev); long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; if (val < 0) return -EINVAL; data->pwm_enable = val; switch (val) { case 0: /* Full speed */ pwm_enable_control(); set_pwm(255); break; case 1: /* As set by pwm1 */ pwm_enable_control(); set_pwm(data->curr_pwm); break; default: /* Control by motherboard */ pwm_disable_control(); break; } return count; } static ssize_t pwm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct compal_data *data = dev_get_drvdata(dev); return sprintf(buf, "%hhu\n", data->curr_pwm); } static ssize_t pwm_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct compal_data *data = dev_get_drvdata(dev); long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; if (val < 0 || val > 255) return -EINVAL; data->curr_pwm = val; if (data->pwm_enable != 1) return count; set_pwm(val); return count; } static ssize_t fan_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", get_fan_rpm()); } /* Temperature interface */ #define TEMPERATURE_SHOW_TEMP_AND_LABEL(POSTFIX, ADDRESS, LABEL) \ static ssize_t temp_##POSTFIX(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ return sprintf(buf, "%d\n", 1000 * (int)ec_read_s8(ADDRESS)); \ } \ static ssize_t label_##POSTFIX(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ return sprintf(buf, "%s\n", LABEL); \ } /* Labels as in service guide */ TEMPERATURE_SHOW_TEMP_AND_LABEL(cpu, TEMP_CPU, "CPU_TEMP"); TEMPERATURE_SHOW_TEMP_AND_LABEL(cpu_local, TEMP_CPU_LOCAL, "CPU_TEMP_LOCAL"); TEMPERATURE_SHOW_TEMP_AND_LABEL(cpu_DTS, TEMP_CPU_DTS, "CPU_DTS"); TEMPERATURE_SHOW_TEMP_AND_LABEL(northbridge,TEMP_NORTHBRIDGE,"NorthBridge"); TEMPERATURE_SHOW_TEMP_AND_LABEL(vga, TEMP_VGA, "VGA_TEMP"); TEMPERATURE_SHOW_TEMP_AND_LABEL(SKIN, TEMP_SKIN, "SKIN_TEMP90"); /* Power supply interface */ static int bat_status(void) { u8 status0 = ec_read_u8(BAT_STATUS0); u8 status1 = ec_read_u8(BAT_STATUS1); if (status0 & BAT_S0_CHARGING) return POWER_SUPPLY_STATUS_CHARGING; if (status0 & BAT_S0_DISCHARGE) return POWER_SUPPLY_STATUS_DISCHARGING; if (status1 & BAT_S1_FULL) return POWER_SUPPLY_STATUS_FULL; return POWER_SUPPLY_STATUS_NOT_CHARGING; } static int bat_health(void) { u8 status = ec_read_u8(BAT_STOP_CHARGE1); if (status & BAT_STOP_CHRG1_OVERTEMPERATURE) return POWER_SUPPLY_HEALTH_OVERHEAT; if (status & BAT_STOP_CHRG1_OVERVOLTAGE) return POWER_SUPPLY_HEALTH_OVERVOLTAGE; if (status & BAT_STOP_CHRG1_BAD_CELL) return POWER_SUPPLY_HEALTH_DEAD; if (status & BAT_STOP_CHRG1_COMM_FAIL) return POWER_SUPPLY_HEALTH_UNKNOWN; return POWER_SUPPLY_HEALTH_GOOD; } static int bat_is_present(void) { u8 status = ec_read_u8(BAT_STATUS2); return ((status & BAT_S1_EXISTS) != 0); } static int bat_technology(void) { u8 status = ec_read_u8(BAT_STATUS1); if (status & BAT_S1_LiION_OR_NiMH) return POWER_SUPPLY_TECHNOLOGY_LION; return POWER_SUPPLY_TECHNOLOGY_NiMH; } static int bat_capacity_level(void) { u8 status0 = ec_read_u8(BAT_STATUS0); u8 status1 = ec_read_u8(BAT_STATUS1); u8 status2 = ec_read_u8(BAT_STATUS2); if (status0 & BAT_S0_DISCHRG_CRITICAL || status1 & BAT_S1_EMPTY || status2 & BAT_S2_LOW_LOW) return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; if (status0 & BAT_S0_LOW) return POWER_SUPPLY_CAPACITY_LEVEL_LOW; if (status1 & BAT_S1_FULL) return POWER_SUPPLY_CAPACITY_LEVEL_FULL; return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; } static int bat_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct compal_data *data = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_STATUS: val->intval = bat_status(); break; case POWER_SUPPLY_PROP_HEALTH: val->intval = bat_health(); break; case POWER_SUPPLY_PROP_PRESENT: val->intval = bat_is_present(); break; case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = bat_technology(); break; case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: /* THE design voltage... */ val->intval = ec_read_u16(BAT_VOLTAGE_DESIGN) * 1000; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: val->intval = ec_read_u16(BAT_VOLTAGE_NOW) * 1000; break; case POWER_SUPPLY_PROP_CURRENT_NOW: val->intval = ec_read_s16(BAT_CURRENT_NOW) * 1000; break; case POWER_SUPPLY_PROP_CURRENT_AVG: val->intval = ec_read_s16(BAT_CURRENT_AVG) * 1000; break; case POWER_SUPPLY_PROP_POWER_NOW: val->intval = ec_read_u8(BAT_POWER) * 1000000; break; case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: val->intval = ec_read_u16(BAT_CHARGE_DESIGN) * 1000; break; case POWER_SUPPLY_PROP_CHARGE_NOW: val->intval = ec_read_u16(BAT_CHARGE_NOW) * 1000; break; case POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT: val->intval = ec_read_u8(BAT_CHARGE_LIMIT); break; case POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX: val->intval = BAT_CHARGE_LIMIT_MAX; break; case POWER_SUPPLY_PROP_CAPACITY: val->intval = ec_read_u8(BAT_CAPACITY); break; case POWER_SUPPLY_PROP_CAPACITY_LEVEL: val->intval = bat_capacity_level(); break; /* It smees that BAT_TEMP_AVG is a (2's complement?) value showing * the number of degrees, whereas BAT_TEMP is somewhat more * complicated. It looks like this is a negative nember with a * 100/256 divider and an offset of 222. Both were determined * experimentally by comparing BAT_TEMP and BAT_TEMP_AVG. */ case POWER_SUPPLY_PROP_TEMP: val->intval = ((222 - (int)ec_read_u8(BAT_TEMP)) * 1000) >> 8; break; case POWER_SUPPLY_PROP_TEMP_AMBIENT: /* Ambient, Avg, ... same thing */ val->intval = ec_read_s8(BAT_TEMP_AVG) * 10; break; /* Neither the model name nor manufacturer name work for me. */ case POWER_SUPPLY_PROP_MODEL_NAME: val->strval = data->bat_model_name; break; case POWER_SUPPLY_PROP_MANUFACTURER: val->strval = data->bat_manufacturer_name; break; case POWER_SUPPLY_PROP_SERIAL_NUMBER: val->strval = data->bat_serial_number; break; default: break; } return 0; } static int bat_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { int level; switch (psp) { case POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT: level = val->intval; if (level < 0 || level > BAT_CHARGE_LIMIT_MAX) return -EINVAL; if (ec_write(BAT_CHARGE_LIMIT, level) < 0) return -EIO; break; default: break; } return 0; } static int bat_writeable_property(struct power_supply *psy, enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT: return 1; default: return 0; } } /* ============== */ /* Driver Globals */ /* ============== */ static DEVICE_ATTR_RW(wake_up_pme); static DEVICE_ATTR_RW(wake_up_modem); static DEVICE_ATTR_RW(wake_up_lan); static DEVICE_ATTR_RW(wake_up_wlan); static DEVICE_ATTR_RW(wake_up_key); static DEVICE_ATTR_RW(wake_up_mouse); static DEVICE_ATTR(fan1_input, S_IRUGO, fan_show, NULL); static DEVICE_ATTR(temp1_input, S_IRUGO, temp_cpu, NULL); static DEVICE_ATTR(temp2_input, S_IRUGO, temp_cpu_local, NULL); static DEVICE_ATTR(temp3_input, S_IRUGO, temp_cpu_DTS, NULL); static DEVICE_ATTR(temp4_input, S_IRUGO, temp_northbridge, NULL); static DEVICE_ATTR(temp5_input, S_IRUGO, temp_vga, NULL); static DEVICE_ATTR(temp6_input, S_IRUGO, temp_SKIN, NULL); static DEVICE_ATTR(temp1_label, S_IRUGO, label_cpu, NULL); static DEVICE_ATTR(temp2_label, S_IRUGO, label_cpu_local, NULL); static DEVICE_ATTR(temp3_label, S_IRUGO, label_cpu_DTS, NULL); static DEVICE_ATTR(temp4_label, S_IRUGO, label_northbridge, NULL); static DEVICE_ATTR(temp5_label, S_IRUGO, label_vga, NULL); static DEVICE_ATTR(temp6_label, S_IRUGO, label_SKIN, NULL); static DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, pwm_show, pwm_store); static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, pwm_enable_show, pwm_enable_store); static struct attribute *compal_platform_attrs[] = { &dev_attr_wake_up_pme.attr, &dev_attr_wake_up_modem.attr, &dev_attr_wake_up_lan.attr, &dev_attr_wake_up_wlan.attr, &dev_attr_wake_up_key.attr, &dev_attr_wake_up_mouse.attr, NULL }; static const struct attribute_group compal_platform_attr_group = { .attrs = compal_platform_attrs }; static struct attribute *compal_hwmon_attrs[] = { &dev_attr_pwm1_enable.attr, &dev_attr_pwm1.attr, &dev_attr_fan1_input.attr, &dev_attr_temp1_input.attr, &dev_attr_temp2_input.attr, &dev_attr_temp3_input.attr, &dev_attr_temp4_input.attr, &dev_attr_temp5_input.attr, &dev_attr_temp6_input.attr, &dev_attr_temp1_label.attr, &dev_attr_temp2_label.attr, &dev_attr_temp3_label.attr, &dev_attr_temp4_label.attr, &dev_attr_temp5_label.attr, &dev_attr_temp6_label.attr, NULL }; ATTRIBUTE_GROUPS(compal_hwmon); static enum power_supply_property compal_bat_properties[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CURRENT_AVG, POWER_SUPPLY_PROP_POWER_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TEMP_AMBIENT, POWER_SUPPLY_PROP_MODEL_NAME, POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_SERIAL_NUMBER, }; static struct backlight_device *compalbl_device; static struct platform_device *compal_device; static struct rfkill *wifi_rfkill; static struct rfkill *bt_rfkill; /* =================================== */ /* Initialization & clean-up functions */ /* =================================== */ static int dmi_check_cb(const struct dmi_system_id *id) { pr_info("Identified laptop model '%s'\n", id->ident); extra_features = false; return 1; } static int dmi_check_cb_extra(const struct dmi_system_id *id) { pr_info("Identified laptop model '%s', enabling extra features\n", id->ident); extra_features = true; return 1; } static const struct dmi_system_id compal_dmi_table[] __initconst = { { .ident = "FL90/IFL90", .matches = { DMI_MATCH(DMI_BOARD_NAME, "IFL90"), DMI_MATCH(DMI_BOARD_VERSION, "IFT00"), }, .callback = dmi_check_cb }, { .ident = "FL90/IFL90", .matches = { DMI_MATCH(DMI_BOARD_NAME, "IFL90"), DMI_MATCH(DMI_BOARD_VERSION, "REFERENCE"), }, .callback = dmi_check_cb }, { .ident = "FL91/IFL91", .matches = { DMI_MATCH(DMI_BOARD_NAME, "IFL91"), DMI_MATCH(DMI_BOARD_VERSION, "IFT00"), }, .callback = dmi_check_cb }, { .ident = "FL92/JFL92", .matches = { DMI_MATCH(DMI_BOARD_NAME, "JFL92"), DMI_MATCH(DMI_BOARD_VERSION, "IFT00"), }, .callback = dmi_check_cb }, { .ident = "FT00/IFT00", .matches = { DMI_MATCH(DMI_BOARD_NAME, "IFT00"), DMI_MATCH(DMI_BOARD_VERSION, "IFT00"), }, .callback = dmi_check_cb }, { .ident = "Dell Mini 9", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Inspiron 910"), }, .callback = dmi_check_cb }, { .ident = "Dell Mini 10", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Inspiron 1010"), }, .callback = dmi_check_cb }, { .ident = "Dell Mini 10v", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Inspiron 1011"), }, .callback = dmi_check_cb }, { .ident = "Dell Mini 1012", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Inspiron 1012"), }, .callback = dmi_check_cb }, { .ident = "Dell Inspiron 11z", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Inspiron 1110"), }, .callback = dmi_check_cb }, { .ident = "Dell Mini 12", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Inspiron 1210"), }, .callback = dmi_check_cb }, { .ident = "JHL90", .matches = { DMI_MATCH(DMI_BOARD_NAME, "JHL90"), DMI_MATCH(DMI_BOARD_VERSION, "REFERENCE"), }, .callback = dmi_check_cb_extra }, { .ident = "KHLB2", .matches = { DMI_MATCH(DMI_BOARD_NAME, "KHLB2"), DMI_MATCH(DMI_BOARD_VERSION, "REFERENCE"), }, .callback = dmi_check_cb_extra }, { } }; MODULE_DEVICE_TABLE(dmi, compal_dmi_table); static const struct power_supply_desc psy_bat_desc = { .name = DRIVER_NAME, .type = POWER_SUPPLY_TYPE_BATTERY, .properties = compal_bat_properties, .num_properties = ARRAY_SIZE(compal_bat_properties), .get_property = bat_get_property, .set_property = bat_set_property, .property_is_writeable = bat_writeable_property, }; static void initialize_power_supply_data(struct compal_data *data) { ec_read_sequence(BAT_MANUFACTURER_NAME_ADDR, data->bat_manufacturer_name, BAT_MANUFACTURER_NAME_LEN); data->bat_manufacturer_name[BAT_MANUFACTURER_NAME_LEN] = 0; ec_read_sequence(BAT_MODEL_NAME_ADDR, data->bat_model_name, BAT_MODEL_NAME_LEN); data->bat_model_name[BAT_MODEL_NAME_LEN] = 0; scnprintf(data->bat_serial_number, BAT_SERIAL_NUMBER_LEN + 1, "%d", ec_read_u16(BAT_SERIAL_NUMBER_ADDR)); } static void initialize_fan_control_data(struct compal_data *data) { data->pwm_enable = 2; /* Keep motherboard in control for now */ data->curr_pwm = 255; /* Try not to cause a CPU_on_fire exception if we take over... */ } static int setup_rfkill(void) { int ret; wifi_rfkill = rfkill_alloc("compal-wifi", &compal_device->dev, RFKILL_TYPE_WLAN, &compal_rfkill_ops, (void *) WIRELESS_WLAN); if (!wifi_rfkill) return -ENOMEM; ret = rfkill_register(wifi_rfkill); if (ret) goto err_wifi; bt_rfkill = rfkill_alloc("compal-bluetooth", &compal_device->dev, RFKILL_TYPE_BLUETOOTH, &compal_rfkill_ops, (void *) WIRELESS_BT); if (!bt_rfkill) { ret = -ENOMEM; goto err_allocate_bt; } ret = rfkill_register(bt_rfkill); if (ret) goto err_register_bt; return 0; err_register_bt: rfkill_destroy(bt_rfkill); err_allocate_bt: rfkill_unregister(wifi_rfkill); err_wifi: rfkill_destroy(wifi_rfkill); return ret; } static int compal_probe(struct platform_device *pdev) { int err; struct compal_data *data; struct device *hwmon_dev; struct power_supply_config psy_cfg = {}; if (!extra_features) return 0; /* Fan control */ data = devm_kzalloc(&pdev->dev, sizeof(struct compal_data), GFP_KERNEL); if (!data) return -ENOMEM; initialize_fan_control_data(data); err = sysfs_create_group(&pdev->dev.kobj, &compal_platform_attr_group); if (err) return err; hwmon_dev = devm_hwmon_device_register_with_groups(&pdev->dev, "compal", data, compal_hwmon_groups); if (IS_ERR(hwmon_dev)) { err = PTR_ERR(hwmon_dev); goto remove; } /* Power supply */ initialize_power_supply_data(data); psy_cfg.drv_data = data; data->psy = power_supply_register(&compal_device->dev, &psy_bat_desc, &psy_cfg); if (IS_ERR(data->psy)) { err = PTR_ERR(data->psy); goto remove; } platform_set_drvdata(pdev, data); return 0; remove: sysfs_remove_group(&pdev->dev.kobj, &compal_platform_attr_group); return err; } static void compal_remove(struct platform_device *pdev) { struct compal_data *data; if (!extra_features) return; pr_info("Unloading: resetting fan control to motherboard\n"); pwm_disable_control(); data = platform_get_drvdata(pdev); power_supply_unregister(data->psy); sysfs_remove_group(&pdev->dev.kobj, &compal_platform_attr_group); } static struct platform_driver compal_driver = { .driver = { .name = DRIVER_NAME, }, .probe = compal_probe, .remove_new = compal_remove, }; static int __init compal_init(void) { int ret; if (acpi_disabled) { pr_err("ACPI needs to be enabled for this driver to work!\n"); return -ENODEV; } if (!force && !dmi_check_system(compal_dmi_table)) { pr_err("Motherboard not recognized (You could try the module's force-parameter)\n"); return -ENODEV; } if (acpi_video_get_backlight_type() == acpi_backlight_vendor) { struct backlight_properties props; memset(&props, 0, sizeof(struct backlight_properties)); props.type = BACKLIGHT_PLATFORM; props.max_brightness = BACKLIGHT_LEVEL_MAX; compalbl_device = backlight_device_register(DRIVER_NAME, NULL, NULL, &compalbl_ops, &props); if (IS_ERR(compalbl_device)) return PTR_ERR(compalbl_device); } ret = platform_driver_register(&compal_driver); if (ret) goto err_backlight; compal_device = platform_device_alloc(DRIVER_NAME, PLATFORM_DEVID_NONE); if (!compal_device) { ret = -ENOMEM; goto err_platform_driver; } ret = platform_device_add(compal_device); /* This calls compal_probe */ if (ret) goto err_platform_device; ret = setup_rfkill(); if (ret) goto err_rfkill; pr_info("Driver " DRIVER_VERSION " successfully loaded\n"); return 0; err_rfkill: platform_device_del(compal_device); err_platform_device: platform_device_put(compal_device); err_platform_driver: platform_driver_unregister(&compal_driver); err_backlight: backlight_device_unregister(compalbl_device); return ret; } static void __exit compal_cleanup(void) { platform_device_unregister(compal_device); platform_driver_unregister(&compal_driver); backlight_device_unregister(compalbl_device); rfkill_unregister(wifi_rfkill); rfkill_unregister(bt_rfkill); rfkill_destroy(wifi_rfkill); rfkill_destroy(bt_rfkill); pr_info("Driver unloaded\n"); } module_init(compal_init); module_exit(compal_cleanup); MODULE_AUTHOR("Cezary Jackiewicz"); MODULE_AUTHOR("Roald Frederickx ([email protected])"); MODULE_DESCRIPTION("Compal Laptop Support"); MODULE_VERSION(DRIVER_VERSION); MODULE_LICENSE("GPL");
linux-master
drivers/platform/x86/compal-laptop.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * OLPC XO-1.5 ebook switch driver * (based on generic ACPI button driver) * * Copyright (C) 2009 Paul Fox <[email protected]> * Copyright (C) 2010 One Laptop per Child */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/types.h> #include <linux/input.h> #include <linux/acpi.h> #define MODULE_NAME "xo15-ebook" #define XO15_EBOOK_CLASS MODULE_NAME #define XO15_EBOOK_TYPE_UNKNOWN 0x00 #define XO15_EBOOK_NOTIFY_STATUS 0x80 #define XO15_EBOOK_SUBCLASS "ebook" #define XO15_EBOOK_HID "XO15EBK" #define XO15_EBOOK_DEVICE_NAME "EBook Switch" MODULE_DESCRIPTION("OLPC XO-1.5 ebook switch driver"); MODULE_LICENSE("GPL"); static const struct acpi_device_id ebook_device_ids[] = { { XO15_EBOOK_HID, 0 }, { "", 0 }, }; MODULE_DEVICE_TABLE(acpi, ebook_device_ids); struct ebook_switch { struct input_dev *input; char phys[32]; /* for input device */ }; static int ebook_send_state(struct acpi_device *device) { struct ebook_switch *button = acpi_driver_data(device); unsigned long long state; acpi_status status; status = acpi_evaluate_integer(device->handle, "EBK", NULL, &state); if (ACPI_FAILURE(status)) return -EIO; /* input layer checks if event is redundant */ input_report_switch(button->input, SW_TABLET_MODE, !state); input_sync(button->input); return 0; } static void ebook_switch_notify(struct acpi_device *device, u32 event) { switch (event) { case ACPI_FIXED_HARDWARE_EVENT: case XO15_EBOOK_NOTIFY_STATUS: ebook_send_state(device); break; default: acpi_handle_debug(device->handle, "Unsupported event [0x%x]\n", event); break; } } #ifdef CONFIG_PM_SLEEP static int ebook_switch_resume(struct device *dev) { return ebook_send_state(to_acpi_device(dev)); } #endif static SIMPLE_DEV_PM_OPS(ebook_switch_pm, NULL, ebook_switch_resume); static int ebook_switch_add(struct acpi_device *device) { struct ebook_switch *button; struct input_dev *input; const char *hid = acpi_device_hid(device); char *name, *class; int error; button = kzalloc(sizeof(struct ebook_switch), GFP_KERNEL); if (!button) return -ENOMEM; device->driver_data = button; button->input = input = input_allocate_device(); if (!input) { error = -ENOMEM; goto err_free_button; } name = acpi_device_name(device); class = acpi_device_class(device); if (strcmp(hid, XO15_EBOOK_HID)) { pr_err("Unsupported hid [%s]\n", hid); error = -ENODEV; goto err_free_input; } strcpy(name, XO15_EBOOK_DEVICE_NAME); sprintf(class, "%s/%s", XO15_EBOOK_CLASS, XO15_EBOOK_SUBCLASS); snprintf(button->phys, sizeof(button->phys), "%s/button/input0", hid); input->name = name; input->phys = button->phys; input->id.bustype = BUS_HOST; input->dev.parent = &device->dev; input->evbit[0] = BIT_MASK(EV_SW); set_bit(SW_TABLET_MODE, input->swbit); error = input_register_device(input); if (error) goto err_free_input; ebook_send_state(device); if (device->wakeup.flags.valid) { /* Button's GPE is run-wake GPE */ acpi_enable_gpe(device->wakeup.gpe_device, device->wakeup.gpe_number); device_set_wakeup_enable(&device->dev, true); } return 0; err_free_input: input_free_device(input); err_free_button: kfree(button); return error; } static void ebook_switch_remove(struct acpi_device *device) { struct ebook_switch *button = acpi_driver_data(device); input_unregister_device(button->input); kfree(button); } static struct acpi_driver xo15_ebook_driver = { .name = MODULE_NAME, .class = XO15_EBOOK_CLASS, .ids = ebook_device_ids, .ops = { .add = ebook_switch_add, .remove = ebook_switch_remove, .notify = ebook_switch_notify, }, .drv.pm = &ebook_switch_pm, }; module_acpi_driver(xo15_ebook_driver);
linux-master
drivers/platform/x86/xo15-ebook.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Toshiba HDD Active Protection Sensor (HAPS) driver * * Copyright (C) 2014 Azael Avalos <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/types.h> #include <linux/acpi.h> MODULE_AUTHOR("Azael Avalos <[email protected]>"); MODULE_DESCRIPTION("Toshiba HDD Active Protection Sensor"); MODULE_LICENSE("GPL"); struct toshiba_haps_dev { struct acpi_device *acpi_dev; int protection_level; }; static struct toshiba_haps_dev *toshiba_haps; /* HAPS functions */ static int toshiba_haps_reset_protection(acpi_handle handle) { acpi_status status; status = acpi_evaluate_object(handle, "RSSS", NULL, NULL); if (ACPI_FAILURE(status)) { pr_err("Unable to reset the HDD protection\n"); return -EIO; } return 0; } static int toshiba_haps_protection_level(acpi_handle handle, int level) { acpi_status status; status = acpi_execute_simple_method(handle, "PTLV", level); if (ACPI_FAILURE(status)) { pr_err("Error while setting the protection level\n"); return -EIO; } pr_debug("HDD protection level set to: %d\n", level); return 0; } /* sysfs files */ static ssize_t protection_level_show(struct device *dev, struct device_attribute *attr, char *buf) { struct toshiba_haps_dev *haps = dev_get_drvdata(dev); return sprintf(buf, "%i\n", haps->protection_level); } static ssize_t protection_level_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct toshiba_haps_dev *haps = dev_get_drvdata(dev); int level; int ret; ret = kstrtoint(buf, 0, &level); if (ret) return ret; /* * Check for supported levels, which can be: * 0 - Disabled | 1 - Low | 2 - Medium | 3 - High */ if (level < 0 || level > 3) return -EINVAL; /* Set the sensor level */ ret = toshiba_haps_protection_level(haps->acpi_dev->handle, level); if (ret != 0) return ret; haps->protection_level = level; return count; } static DEVICE_ATTR_RW(protection_level); static ssize_t reset_protection_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct toshiba_haps_dev *haps = dev_get_drvdata(dev); int reset; int ret; ret = kstrtoint(buf, 0, &reset); if (ret) return ret; /* The only accepted value is 1 */ if (reset != 1) return -EINVAL; /* Reset the protection interface */ ret = toshiba_haps_reset_protection(haps->acpi_dev->handle); if (ret != 0) return ret; return count; } static DEVICE_ATTR_WO(reset_protection); static struct attribute *haps_attributes[] = { &dev_attr_protection_level.attr, &dev_attr_reset_protection.attr, NULL, }; static const struct attribute_group haps_attr_group = { .attrs = haps_attributes, }; /* * ACPI stuff */ static void toshiba_haps_notify(struct acpi_device *device, u32 event) { pr_debug("Received event: 0x%x\n", event); acpi_bus_generate_netlink_event(device->pnp.device_class, dev_name(&device->dev), event, 0); } static void toshiba_haps_remove(struct acpi_device *device) { sysfs_remove_group(&device->dev.kobj, &haps_attr_group); if (toshiba_haps) toshiba_haps = NULL; } /* Helper function */ static int toshiba_haps_available(acpi_handle handle) { acpi_status status; u64 hdd_present; /* * A non existent device as well as having (only) * Solid State Drives can cause the call to fail. */ status = acpi_evaluate_integer(handle, "_STA", NULL, &hdd_present); if (ACPI_FAILURE(status)) { pr_err("ACPI call to query HDD protection failed\n"); return 0; } if (!hdd_present) { pr_info("HDD protection not available or using SSD\n"); return 0; } return 1; } static int toshiba_haps_add(struct acpi_device *acpi_dev) { struct toshiba_haps_dev *haps; int ret; if (toshiba_haps) return -EBUSY; if (!toshiba_haps_available(acpi_dev->handle)) return -ENODEV; pr_info("Toshiba HDD Active Protection Sensor device\n"); haps = kzalloc(sizeof(struct toshiba_haps_dev), GFP_KERNEL); if (!haps) return -ENOMEM; haps->acpi_dev = acpi_dev; haps->protection_level = 2; acpi_dev->driver_data = haps; dev_set_drvdata(&acpi_dev->dev, haps); /* Set the protection level, currently at level 2 (Medium) */ ret = toshiba_haps_protection_level(acpi_dev->handle, 2); if (ret != 0) return ret; ret = sysfs_create_group(&acpi_dev->dev.kobj, &haps_attr_group); if (ret) return ret; toshiba_haps = haps; return 0; } #ifdef CONFIG_PM_SLEEP static int toshiba_haps_suspend(struct device *device) { struct toshiba_haps_dev *haps; int ret; haps = acpi_driver_data(to_acpi_device(device)); /* Deactivate the protection on suspend */ ret = toshiba_haps_protection_level(haps->acpi_dev->handle, 0); return ret; } static int toshiba_haps_resume(struct device *device) { struct toshiba_haps_dev *haps; int ret; haps = acpi_driver_data(to_acpi_device(device)); /* Set the stored protection level */ ret = toshiba_haps_protection_level(haps->acpi_dev->handle, haps->protection_level); /* Reset the protection on resume */ ret = toshiba_haps_reset_protection(haps->acpi_dev->handle); if (ret != 0) return ret; return ret; } #endif static SIMPLE_DEV_PM_OPS(toshiba_haps_pm, toshiba_haps_suspend, toshiba_haps_resume); static const struct acpi_device_id haps_device_ids[] = { {"TOS620A", 0}, {"", 0}, }; MODULE_DEVICE_TABLE(acpi, haps_device_ids); static struct acpi_driver toshiba_haps_driver = { .name = "Toshiba HAPS", .owner = THIS_MODULE, .ids = haps_device_ids, .flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS, .ops = { .add = toshiba_haps_add, .remove = toshiba_haps_remove, .notify = toshiba_haps_notify, }, .drv.pm = &toshiba_haps_pm, }; module_acpi_driver(toshiba_haps_driver);
linux-master
drivers/platform/x86/toshiba_haps.c
// SPDX-License-Identifier: GPL-2.0 /* * Topstar Laptop ACPI Extras driver * * Copyright (c) 2009 Herton Ronaldo Krzesinski <[email protected]> * Copyright (c) 2018 Guillaume Douézan-Grard * * Implementation inspired by existing x86 platform drivers, in special * asus/eepc/fujitsu-laptop, thanks to their authors. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/acpi.h> #include <linux/dmi.h> #include <linux/input.h> #include <linux/input/sparse-keymap.h> #include <linux/leds.h> #include <linux/platform_device.h> #define TOPSTAR_LAPTOP_CLASS "topstar" struct topstar_laptop { struct acpi_device *device; struct platform_device *platform; struct input_dev *input; struct led_classdev led; }; /* * LED */ static enum led_brightness topstar_led_get(struct led_classdev *led) { return led->brightness; } static int topstar_led_set(struct led_classdev *led, enum led_brightness state) { struct topstar_laptop *topstar = container_of(led, struct topstar_laptop, led); struct acpi_object_list params; union acpi_object in_obj; unsigned long long int ret; acpi_status status; params.count = 1; params.pointer = &in_obj; in_obj.type = ACPI_TYPE_INTEGER; in_obj.integer.value = 0x83; /* * Topstar ACPI returns 0x30001 when the LED is ON and 0x30000 when it * is OFF. */ status = acpi_evaluate_integer(topstar->device->handle, "GETX", &params, &ret); if (ACPI_FAILURE(status)) return -1; /* * FNCX(0x83) toggles the LED (more precisely, it is supposed to * act as an hardware switch and disconnect the WLAN adapter but * it seems to be faulty on some models like the Topstar U931 * Notebook). */ if ((ret == 0x30001 && state == LED_OFF) || (ret == 0x30000 && state != LED_OFF)) { status = acpi_execute_simple_method(topstar->device->handle, "FNCX", 0x83); if (ACPI_FAILURE(status)) return -1; } return 0; } static int topstar_led_init(struct topstar_laptop *topstar) { topstar->led = (struct led_classdev) { .default_trigger = "rfkill0", .brightness_get = topstar_led_get, .brightness_set_blocking = topstar_led_set, .name = TOPSTAR_LAPTOP_CLASS "::wlan", }; return led_classdev_register(&topstar->platform->dev, &topstar->led); } static void topstar_led_exit(struct topstar_laptop *topstar) { led_classdev_unregister(&topstar->led); } /* * Input */ static const struct key_entry topstar_keymap[] = { { KE_KEY, 0x80, { KEY_BRIGHTNESSUP } }, { KE_KEY, 0x81, { KEY_BRIGHTNESSDOWN } }, { KE_KEY, 0x83, { KEY_VOLUMEUP } }, { KE_KEY, 0x84, { KEY_VOLUMEDOWN } }, { KE_KEY, 0x85, { KEY_MUTE } }, { KE_KEY, 0x86, { KEY_SWITCHVIDEOMODE } }, { KE_KEY, 0x87, { KEY_F13 } }, /* touchpad enable/disable key */ { KE_KEY, 0x88, { KEY_WLAN } }, { KE_KEY, 0x8a, { KEY_WWW } }, { KE_KEY, 0x8b, { KEY_MAIL } }, { KE_KEY, 0x8c, { KEY_MEDIA } }, /* Known non hotkey events don't handled or that we don't care yet */ { KE_IGNORE, 0x82, }, /* backlight event */ { KE_IGNORE, 0x8e, }, { KE_IGNORE, 0x8f, }, { KE_IGNORE, 0x90, }, /* * 'G key' generate two event codes, convert to only * one event/key code for now, consider replacing by * a switch (3G switch - SW_3G?) */ { KE_KEY, 0x96, { KEY_F14 } }, { KE_KEY, 0x97, { KEY_F14 } }, { KE_END, 0 } }; static void topstar_input_notify(struct topstar_laptop *topstar, int event) { if (!sparse_keymap_report_event(topstar->input, event, 1, true)) pr_info("unknown event = 0x%02x\n", event); } static int topstar_input_init(struct topstar_laptop *topstar) { struct input_dev *input; int err; input = input_allocate_device(); if (!input) return -ENOMEM; input->name = "Topstar Laptop extra buttons"; input->phys = TOPSTAR_LAPTOP_CLASS "/input0"; input->id.bustype = BUS_HOST; input->dev.parent = &topstar->platform->dev; err = sparse_keymap_setup(input, topstar_keymap, NULL); if (err) { pr_err("Unable to setup input device keymap\n"); goto err_free_dev; } err = input_register_device(input); if (err) { pr_err("Unable to register input device\n"); goto err_free_dev; } topstar->input = input; return 0; err_free_dev: input_free_device(input); return err; } static void topstar_input_exit(struct topstar_laptop *topstar) { input_unregister_device(topstar->input); } /* * Platform */ static struct platform_driver topstar_platform_driver = { .driver = { .name = TOPSTAR_LAPTOP_CLASS, }, }; static int topstar_platform_init(struct topstar_laptop *topstar) { int err; topstar->platform = platform_device_alloc(TOPSTAR_LAPTOP_CLASS, PLATFORM_DEVID_NONE); if (!topstar->platform) return -ENOMEM; platform_set_drvdata(topstar->platform, topstar); err = platform_device_add(topstar->platform); if (err) goto err_device_put; return 0; err_device_put: platform_device_put(topstar->platform); return err; } static void topstar_platform_exit(struct topstar_laptop *topstar) { platform_device_unregister(topstar->platform); } /* * ACPI */ static int topstar_acpi_fncx_switch(struct acpi_device *device, bool state) { acpi_status status; u64 arg = state ? 0x86 : 0x87; status = acpi_execute_simple_method(device->handle, "FNCX", arg); if (ACPI_FAILURE(status)) { pr_err("Unable to switch FNCX notifications\n"); return -ENODEV; } return 0; } static void topstar_acpi_notify(struct acpi_device *device, u32 event) { struct topstar_laptop *topstar = acpi_driver_data(device); static bool dup_evnt[2]; bool *dup; /* 0x83 and 0x84 key events comes duplicated... */ if (event == 0x83 || event == 0x84) { dup = &dup_evnt[event - 0x83]; if (*dup) { *dup = false; return; } *dup = true; } topstar_input_notify(topstar, event); } static int topstar_acpi_init(struct topstar_laptop *topstar) { return topstar_acpi_fncx_switch(topstar->device, true); } static void topstar_acpi_exit(struct topstar_laptop *topstar) { topstar_acpi_fncx_switch(topstar->device, false); } /* * Enable software-based WLAN LED control on systems with defective * hardware switch. */ static bool led_workaround; static int dmi_led_workaround(const struct dmi_system_id *id) { led_workaround = true; return 0; } static const struct dmi_system_id topstar_dmi_ids[] = { { .callback = dmi_led_workaround, .ident = "Topstar U931/RVP7", .matches = { DMI_MATCH(DMI_BOARD_NAME, "U931"), DMI_MATCH(DMI_BOARD_VERSION, "RVP7"), }, }, {} }; static int topstar_acpi_add(struct acpi_device *device) { struct topstar_laptop *topstar; int err; dmi_check_system(topstar_dmi_ids); topstar = kzalloc(sizeof(struct topstar_laptop), GFP_KERNEL); if (!topstar) return -ENOMEM; strcpy(acpi_device_name(device), "Topstar TPSACPI"); strcpy(acpi_device_class(device), TOPSTAR_LAPTOP_CLASS); device->driver_data = topstar; topstar->device = device; err = topstar_acpi_init(topstar); if (err) goto err_free; err = topstar_platform_init(topstar); if (err) goto err_acpi_exit; err = topstar_input_init(topstar); if (err) goto err_platform_exit; if (led_workaround) { err = topstar_led_init(topstar); if (err) goto err_input_exit; } return 0; err_input_exit: topstar_input_exit(topstar); err_platform_exit: topstar_platform_exit(topstar); err_acpi_exit: topstar_acpi_exit(topstar); err_free: kfree(topstar); return err; } static void topstar_acpi_remove(struct acpi_device *device) { struct topstar_laptop *topstar = acpi_driver_data(device); if (led_workaround) topstar_led_exit(topstar); topstar_input_exit(topstar); topstar_platform_exit(topstar); topstar_acpi_exit(topstar); kfree(topstar); } static const struct acpi_device_id topstar_device_ids[] = { { "TPS0001", 0 }, { "TPSACPI01", 0 }, { "", 0 }, }; MODULE_DEVICE_TABLE(acpi, topstar_device_ids); static struct acpi_driver topstar_acpi_driver = { .name = "Topstar laptop ACPI driver", .class = TOPSTAR_LAPTOP_CLASS, .ids = topstar_device_ids, .ops = { .add = topstar_acpi_add, .remove = topstar_acpi_remove, .notify = topstar_acpi_notify, }, }; static int __init topstar_laptop_init(void) { int ret; ret = platform_driver_register(&topstar_platform_driver); if (ret < 0) return ret; ret = acpi_bus_register_driver(&topstar_acpi_driver); if (ret < 0) goto err_driver_unreg; pr_info("ACPI extras driver loaded\n"); return 0; err_driver_unreg: platform_driver_unregister(&topstar_platform_driver); return ret; } static void __exit topstar_laptop_exit(void) { acpi_bus_unregister_driver(&topstar_acpi_driver); platform_driver_unregister(&topstar_platform_driver); } module_init(topstar_laptop_init); module_exit(topstar_laptop_exit); MODULE_AUTHOR("Herton Ronaldo Krzesinski"); MODULE_AUTHOR("Guillaume Douézan-Grard"); MODULE_DESCRIPTION("Topstar Laptop ACPI Extras driver"); MODULE_LICENSE("GPL");
linux-master
drivers/platform/x86/topstar-laptop.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * toshiba_acpi.c - Toshiba Laptop ACPI Extras * * Copyright (C) 2002-2004 John Belmonte * Copyright (C) 2008 Philip Langdale * Copyright (C) 2010 Pierre Ducroquet * Copyright (C) 2014-2016 Azael Avalos * * The devolpment page for this driver is located at * http://memebeam.org/toys/ToshibaAcpiDriver. * * Credits: * Jonathan A. Buzzard - Toshiba HCI info, and critical tips on reverse * engineering the Windows drivers * Yasushi Nagato - changes for linux kernel 2.4 -> 2.5 * Rob Miller - TV out and hotkeys help */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #define TOSHIBA_ACPI_VERSION "0.24" #define PROC_INTERFACE_VERSION 1 #include <linux/compiler.h> #include <linux/dmi.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/types.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/backlight.h> #include <linux/input.h> #include <linux/input/sparse-keymap.h> #include <linux/leds.h> #include <linux/slab.h> #include <linux/workqueue.h> #include <linux/i8042.h> #include <linux/acpi.h> #include <linux/uaccess.h> #include <linux/miscdevice.h> #include <linux/rfkill.h> #include <linux/hwmon.h> #include <linux/iio/iio.h> #include <linux/toshiba.h> #include <acpi/battery.h> #include <acpi/video.h> MODULE_AUTHOR("John Belmonte"); MODULE_DESCRIPTION("Toshiba Laptop ACPI Extras Driver"); MODULE_LICENSE("GPL"); static int turn_on_panel_on_resume = -1; module_param(turn_on_panel_on_resume, int, 0644); MODULE_PARM_DESC(turn_on_panel_on_resume, "Call HCI_PANEL_POWER_ON on resume (-1 = auto, 0 = no, 1 = yes"); #define TOSHIBA_WMI_EVENT_GUID "59142400-C6A3-40FA-BADB-8A2652834100" /* Scan code for Fn key on TOS1900 models */ #define TOS1900_FN_SCAN 0x6e /* Toshiba ACPI method paths */ #define METHOD_VIDEO_OUT "\\_SB_.VALX.DSSX" /* * The Toshiba configuration interface is composed of the HCI and the SCI, * which are defined as follows: * * HCI is Toshiba's "Hardware Control Interface" which is supposed to * be uniform across all their models. Ideally we would just call * dedicated ACPI methods instead of using this primitive interface. * However the ACPI methods seem to be incomplete in some areas (for * example they allow setting, but not reading, the LCD brightness value), * so this is still useful. * * SCI stands for "System Configuration Interface" which aim is to * conceal differences in hardware between different models. */ #define TCI_WORDS 6 /* Operations */ #define HCI_SET 0xff00 #define HCI_GET 0xfe00 #define SCI_OPEN 0xf100 #define SCI_CLOSE 0xf200 #define SCI_GET 0xf300 #define SCI_SET 0xf400 /* Return codes */ #define TOS_SUCCESS 0x0000 #define TOS_SUCCESS2 0x0001 #define TOS_OPEN_CLOSE_OK 0x0044 #define TOS_FAILURE 0x1000 #define TOS_NOT_SUPPORTED 0x8000 #define TOS_ALREADY_OPEN 0x8100 #define TOS_NOT_OPENED 0x8200 #define TOS_INPUT_DATA_ERROR 0x8300 #define TOS_WRITE_PROTECTED 0x8400 #define TOS_NOT_PRESENT 0x8600 #define TOS_FIFO_EMPTY 0x8c00 #define TOS_DATA_NOT_AVAILABLE 0x8d20 #define TOS_NOT_INITIALIZED 0x8d50 #define TOS_NOT_INSTALLED 0x8e00 /* Registers */ #define HCI_PANEL_POWER_ON 0x0002 #define HCI_FAN 0x0004 #define HCI_TR_BACKLIGHT 0x0005 #define HCI_SYSTEM_EVENT 0x0016 #define HCI_VIDEO_OUT 0x001c #define HCI_HOTKEY_EVENT 0x001e #define HCI_LCD_BRIGHTNESS 0x002a #define HCI_FAN_RPM 0x0045 #define HCI_WIRELESS 0x0056 #define HCI_ACCELEROMETER 0x006d #define HCI_COOLING_METHOD 0x007f #define HCI_KBD_ILLUMINATION 0x0095 #define HCI_ECO_MODE 0x0097 #define HCI_ACCELEROMETER2 0x00a6 #define HCI_BATTERY_CHARGE_MODE 0x00ba #define HCI_SYSTEM_INFO 0xc000 #define SCI_PANEL_POWER_ON 0x010d #define SCI_ILLUMINATION 0x014e #define SCI_USB_SLEEP_CHARGE 0x0150 #define SCI_KBD_ILLUM_STATUS 0x015c #define SCI_USB_SLEEP_MUSIC 0x015e #define SCI_USB_THREE 0x0169 #define SCI_TOUCHPAD 0x050e #define SCI_KBD_FUNCTION_KEYS 0x0522 /* Field definitions */ #define HCI_ACCEL_MASK 0x7fff #define HCI_ACCEL_DIRECTION_MASK 0x8000 #define HCI_HOTKEY_DISABLE 0x0b #define HCI_HOTKEY_ENABLE 0x09 #define HCI_HOTKEY_SPECIAL_FUNCTIONS 0x10 #define HCI_LCD_BRIGHTNESS_BITS 3 #define HCI_LCD_BRIGHTNESS_SHIFT (16-HCI_LCD_BRIGHTNESS_BITS) #define HCI_LCD_BRIGHTNESS_LEVELS (1 << HCI_LCD_BRIGHTNESS_BITS) #define HCI_MISC_SHIFT 0x10 #define HCI_SYSTEM_TYPE1 0x10 #define HCI_SYSTEM_TYPE2 0x11 #define HCI_VIDEO_OUT_LCD 0x1 #define HCI_VIDEO_OUT_CRT 0x2 #define HCI_VIDEO_OUT_TV 0x4 #define SCI_KBD_MODE_MASK 0x1f #define SCI_KBD_MODE_FNZ 0x1 #define SCI_KBD_MODE_AUTO 0x2 #define SCI_KBD_MODE_ON 0x8 #define SCI_KBD_MODE_OFF 0x10 #define SCI_KBD_TIME_MAX 0x3c001a #define HCI_WIRELESS_STATUS 0x1 #define HCI_WIRELESS_WWAN 0x3 #define HCI_WIRELESS_WWAN_STATUS 0x2000 #define HCI_WIRELESS_WWAN_POWER 0x4000 #define SCI_USB_CHARGE_MODE_MASK 0xff #define SCI_USB_CHARGE_DISABLED 0x00 #define SCI_USB_CHARGE_ALTERNATE 0x09 #define SCI_USB_CHARGE_TYPICAL 0x11 #define SCI_USB_CHARGE_AUTO 0x21 #define SCI_USB_CHARGE_BAT_MASK 0x7 #define SCI_USB_CHARGE_BAT_LVL_OFF 0x1 #define SCI_USB_CHARGE_BAT_LVL_ON 0x4 #define SCI_USB_CHARGE_BAT_LVL 0x0200 #define SCI_USB_CHARGE_RAPID_DSP 0x0300 struct toshiba_acpi_dev { struct acpi_device *acpi_dev; const char *method_hci; struct input_dev *hotkey_dev; struct work_struct hotkey_work; struct backlight_device *backlight_dev; struct led_classdev led_dev; struct led_classdev kbd_led; struct led_classdev eco_led; struct miscdevice miscdev; struct rfkill *wwan_rfk; struct iio_dev *indio_dev; #if IS_ENABLED(CONFIG_HWMON) struct device *hwmon_device; #endif int force_fan; int last_key_event; int key_event_valid; int kbd_type; int kbd_mode; int kbd_time; int usbsc_bat_level; int usbsc_mode_base; int hotkey_event_type; int max_cooling_method; unsigned int illumination_supported:1; unsigned int video_supported:1; unsigned int fan_supported:1; unsigned int fan_rpm_supported:1; unsigned int system_event_supported:1; unsigned int ntfy_supported:1; unsigned int info_supported:1; unsigned int tr_backlight_supported:1; unsigned int kbd_illum_supported:1; unsigned int touchpad_supported:1; unsigned int eco_supported:1; unsigned int accelerometer_supported:1; unsigned int usb_sleep_charge_supported:1; unsigned int usb_rapid_charge_supported:1; unsigned int usb_sleep_music_supported:1; unsigned int kbd_function_keys_supported:1; unsigned int panel_power_on_supported:1; unsigned int usb_three_supported:1; unsigned int wwan_supported:1; unsigned int cooling_method_supported:1; unsigned int battery_charge_mode_supported:1; unsigned int sysfs_created:1; unsigned int special_functions; bool kbd_event_generated; bool killswitch; }; static struct toshiba_acpi_dev *toshiba_acpi; static bool disable_hotkeys; module_param(disable_hotkeys, bool, 0444); MODULE_PARM_DESC(disable_hotkeys, "Disables the hotkeys activation"); static const struct acpi_device_id toshiba_device_ids[] = { {"TOS6200", 0}, {"TOS6207", 0}, {"TOS6208", 0}, {"TOS1900", 0}, {"", 0}, }; MODULE_DEVICE_TABLE(acpi, toshiba_device_ids); static const struct key_entry toshiba_acpi_keymap[] = { { KE_KEY, 0x9e, { KEY_RFKILL } }, { KE_KEY, 0x101, { KEY_MUTE } }, { KE_KEY, 0x102, { KEY_ZOOMOUT } }, { KE_KEY, 0x103, { KEY_ZOOMIN } }, { KE_KEY, 0x10f, { KEY_TAB } }, { KE_KEY, 0x12c, { KEY_KBDILLUMTOGGLE } }, { KE_KEY, 0x139, { KEY_ZOOMRESET } }, { KE_KEY, 0x13b, { KEY_COFFEE } }, { KE_KEY, 0x13c, { KEY_BATTERY } }, { KE_KEY, 0x13d, { KEY_SLEEP } }, { KE_KEY, 0x13e, { KEY_SUSPEND } }, { KE_KEY, 0x13f, { KEY_SWITCHVIDEOMODE } }, { KE_KEY, 0x140, { KEY_BRIGHTNESSDOWN } }, { KE_KEY, 0x141, { KEY_BRIGHTNESSUP } }, { KE_KEY, 0x142, { KEY_WLAN } }, { KE_KEY, 0x143, { KEY_TOUCHPAD_TOGGLE } }, { KE_KEY, 0x17f, { KEY_FN } }, { KE_KEY, 0xb05, { KEY_PROG2 } }, { KE_KEY, 0xb06, { KEY_WWW } }, { KE_KEY, 0xb07, { KEY_MAIL } }, { KE_KEY, 0xb30, { KEY_STOP } }, { KE_KEY, 0xb31, { KEY_PREVIOUSSONG } }, { KE_KEY, 0xb32, { KEY_NEXTSONG } }, { KE_KEY, 0xb33, { KEY_PLAYPAUSE } }, { KE_KEY, 0xb5a, { KEY_MEDIA } }, { KE_IGNORE, 0x1430, { KEY_RESERVED } }, /* Wake from sleep */ { KE_IGNORE, 0x1501, { KEY_RESERVED } }, /* Output changed */ { KE_IGNORE, 0x1502, { KEY_RESERVED } }, /* HDMI plugged/unplugged */ { KE_IGNORE, 0x1ABE, { KEY_RESERVED } }, /* Protection level set */ { KE_IGNORE, 0x1ABF, { KEY_RESERVED } }, /* Protection level off */ { KE_END, 0 }, }; static const struct key_entry toshiba_acpi_alt_keymap[] = { { KE_KEY, 0x102, { KEY_ZOOMOUT } }, { KE_KEY, 0x103, { KEY_ZOOMIN } }, { KE_KEY, 0x12c, { KEY_KBDILLUMTOGGLE } }, { KE_KEY, 0x139, { KEY_ZOOMRESET } }, { KE_KEY, 0x13c, { KEY_BRIGHTNESSDOWN } }, { KE_KEY, 0x13d, { KEY_BRIGHTNESSUP } }, { KE_KEY, 0x13e, { KEY_SWITCHVIDEOMODE } }, { KE_KEY, 0x13f, { KEY_TOUCHPAD_TOGGLE } }, { KE_KEY, 0x157, { KEY_MUTE } }, { KE_KEY, 0x158, { KEY_WLAN } }, { KE_END, 0 }, }; /* * Utility */ static inline void _set_bit(u32 *word, u32 mask, int value) { *word = (*word & ~mask) | (mask * value); } /* * ACPI interface wrappers */ static int write_acpi_int(const char *methodName, int val) { acpi_status status; status = acpi_execute_simple_method(NULL, (char *)methodName, val); return (status == AE_OK) ? 0 : -EIO; } /* * Perform a raw configuration call. Here we don't care about input or output * buffer format. */ static acpi_status tci_raw(struct toshiba_acpi_dev *dev, const u32 in[TCI_WORDS], u32 out[TCI_WORDS]) { union acpi_object in_objs[TCI_WORDS], out_objs[TCI_WORDS + 1]; struct acpi_object_list params; struct acpi_buffer results; acpi_status status; int i; params.count = TCI_WORDS; params.pointer = in_objs; for (i = 0; i < TCI_WORDS; ++i) { in_objs[i].type = ACPI_TYPE_INTEGER; in_objs[i].integer.value = in[i]; } results.length = sizeof(out_objs); results.pointer = out_objs; status = acpi_evaluate_object(dev->acpi_dev->handle, (char *)dev->method_hci, &params, &results); if ((status == AE_OK) && (out_objs->package.count <= TCI_WORDS)) { for (i = 0; i < out_objs->package.count; ++i) out[i] = out_objs->package.elements[i].integer.value; } return status; } /* * Common hci tasks * * In addition to the ACPI status, the HCI system returns a result which * may be useful (such as "not supported"). */ static u32 hci_write(struct toshiba_acpi_dev *dev, u32 reg, u32 in1) { u32 in[TCI_WORDS] = { HCI_SET, reg, in1, 0, 0, 0 }; u32 out[TCI_WORDS]; acpi_status status = tci_raw(dev, in, out); return ACPI_SUCCESS(status) ? out[0] : TOS_FAILURE; } static u32 hci_read(struct toshiba_acpi_dev *dev, u32 reg, u32 *out1) { u32 in[TCI_WORDS] = { HCI_GET, reg, 0, 0, 0, 0 }; u32 out[TCI_WORDS]; acpi_status status = tci_raw(dev, in, out); if (ACPI_FAILURE(status)) return TOS_FAILURE; *out1 = out[2]; return out[0]; } /* * Common sci tasks */ static int sci_open(struct toshiba_acpi_dev *dev) { u32 in[TCI_WORDS] = { SCI_OPEN, 0, 0, 0, 0, 0 }; u32 out[TCI_WORDS]; acpi_status status = tci_raw(dev, in, out); if (ACPI_FAILURE(status)) { pr_err("ACPI call to open SCI failed\n"); return 0; } if (out[0] == TOS_OPEN_CLOSE_OK) { return 1; } else if (out[0] == TOS_ALREADY_OPEN) { pr_info("Toshiba SCI already opened\n"); return 1; } else if (out[0] == TOS_NOT_SUPPORTED) { /* * Some BIOSes do not have the SCI open/close functions * implemented and return 0x8000 (Not Supported), failing to * register some supported features. * * Simply return 1 if we hit those affected laptops to make the * supported features work. * * In the case that some laptops really do not support the SCI, * all the SCI dependent functions check for TOS_NOT_SUPPORTED, * and thus, not registering support for the queried feature. */ return 1; } else if (out[0] == TOS_NOT_PRESENT) { pr_info("Toshiba SCI is not present\n"); } return 0; } static void sci_close(struct toshiba_acpi_dev *dev) { u32 in[TCI_WORDS] = { SCI_CLOSE, 0, 0, 0, 0, 0 }; u32 out[TCI_WORDS]; acpi_status status = tci_raw(dev, in, out); if (ACPI_FAILURE(status)) { pr_err("ACPI call to close SCI failed\n"); return; } if (out[0] == TOS_OPEN_CLOSE_OK) return; else if (out[0] == TOS_NOT_OPENED) pr_info("Toshiba SCI not opened\n"); else if (out[0] == TOS_NOT_PRESENT) pr_info("Toshiba SCI is not present\n"); } static u32 sci_read(struct toshiba_acpi_dev *dev, u32 reg, u32 *out1) { u32 in[TCI_WORDS] = { SCI_GET, reg, 0, 0, 0, 0 }; u32 out[TCI_WORDS]; acpi_status status = tci_raw(dev, in, out); if (ACPI_FAILURE(status)) return TOS_FAILURE; *out1 = out[2]; return out[0]; } static u32 sci_write(struct toshiba_acpi_dev *dev, u32 reg, u32 in1) { u32 in[TCI_WORDS] = { SCI_SET, reg, in1, 0, 0, 0 }; u32 out[TCI_WORDS]; acpi_status status = tci_raw(dev, in, out); return ACPI_SUCCESS(status) ? out[0] : TOS_FAILURE; } /* Illumination support */ static void toshiba_illumination_available(struct toshiba_acpi_dev *dev) { u32 in[TCI_WORDS] = { SCI_GET, SCI_ILLUMINATION, 0, 0, 0, 0 }; u32 out[TCI_WORDS]; acpi_status status; dev->illumination_supported = 0; if (!sci_open(dev)) return; status = tci_raw(dev, in, out); sci_close(dev); if (ACPI_FAILURE(status)) { pr_err("ACPI call to query Illumination support failed\n"); return; } if (out[0] != TOS_SUCCESS) return; dev->illumination_supported = 1; } static void toshiba_illumination_set(struct led_classdev *cdev, enum led_brightness brightness) { struct toshiba_acpi_dev *dev = container_of(cdev, struct toshiba_acpi_dev, led_dev); u32 result; u32 state; /* First request : initialize communication. */ if (!sci_open(dev)) return; /* Switch the illumination on/off */ state = brightness ? 1 : 0; result = sci_write(dev, SCI_ILLUMINATION, state); sci_close(dev); if (result == TOS_FAILURE) pr_err("ACPI call for illumination failed\n"); } static enum led_brightness toshiba_illumination_get(struct led_classdev *cdev) { struct toshiba_acpi_dev *dev = container_of(cdev, struct toshiba_acpi_dev, led_dev); u32 result; u32 state; /* First request : initialize communication. */ if (!sci_open(dev)) return LED_OFF; /* Check the illumination */ result = sci_read(dev, SCI_ILLUMINATION, &state); sci_close(dev); if (result == TOS_FAILURE) { pr_err("ACPI call for illumination failed\n"); return LED_OFF; } else if (result != TOS_SUCCESS) { return LED_OFF; } return state ? LED_FULL : LED_OFF; } /* KBD Illumination */ static void toshiba_kbd_illum_available(struct toshiba_acpi_dev *dev) { u32 in[TCI_WORDS] = { SCI_GET, SCI_KBD_ILLUM_STATUS, 0, 0, 0, 0 }; u32 out[TCI_WORDS]; acpi_status status; dev->kbd_illum_supported = 0; dev->kbd_event_generated = false; if (!sci_open(dev)) return; status = tci_raw(dev, in, out); sci_close(dev); if (ACPI_FAILURE(status)) { pr_err("ACPI call to query kbd illumination support failed\n"); return; } if (out[0] != TOS_SUCCESS) return; /* * Check for keyboard backlight timeout max value, * previous kbd backlight implementation set this to * 0x3c0003, and now the new implementation set this * to 0x3c001a, use this to distinguish between them. */ if (out[3] == SCI_KBD_TIME_MAX) dev->kbd_type = 2; else dev->kbd_type = 1; /* Get the current keyboard backlight mode */ dev->kbd_mode = out[2] & SCI_KBD_MODE_MASK; /* Get the current time (1-60 seconds) */ dev->kbd_time = out[2] >> HCI_MISC_SHIFT; /* Flag as supported */ dev->kbd_illum_supported = 1; } static int toshiba_kbd_illum_status_set(struct toshiba_acpi_dev *dev, u32 time) { u32 result; if (!sci_open(dev)) return -EIO; result = sci_write(dev, SCI_KBD_ILLUM_STATUS, time); sci_close(dev); if (result == TOS_FAILURE) pr_err("ACPI call to set KBD backlight status failed\n"); else if (result == TOS_NOT_SUPPORTED) return -ENODEV; return result == TOS_SUCCESS ? 0 : -EIO; } static int toshiba_kbd_illum_status_get(struct toshiba_acpi_dev *dev, u32 *time) { u32 result; if (!sci_open(dev)) return -EIO; result = sci_read(dev, SCI_KBD_ILLUM_STATUS, time); sci_close(dev); if (result == TOS_FAILURE) pr_err("ACPI call to get KBD backlight status failed\n"); else if (result == TOS_NOT_SUPPORTED) return -ENODEV; return result == TOS_SUCCESS ? 0 : -EIO; } static enum led_brightness toshiba_kbd_backlight_get(struct led_classdev *cdev) { struct toshiba_acpi_dev *dev = container_of(cdev, struct toshiba_acpi_dev, kbd_led); u32 result; u32 state; /* Check the keyboard backlight state */ result = hci_read(dev, HCI_KBD_ILLUMINATION, &state); if (result == TOS_FAILURE) { pr_err("ACPI call to get the keyboard backlight failed\n"); return LED_OFF; } else if (result != TOS_SUCCESS) { return LED_OFF; } return state ? LED_FULL : LED_OFF; } static void toshiba_kbd_backlight_set(struct led_classdev *cdev, enum led_brightness brightness) { struct toshiba_acpi_dev *dev = container_of(cdev, struct toshiba_acpi_dev, kbd_led); u32 result; u32 state; /* Set the keyboard backlight state */ state = brightness ? 1 : 0; result = hci_write(dev, HCI_KBD_ILLUMINATION, state); if (result == TOS_FAILURE) pr_err("ACPI call to set KBD Illumination mode failed\n"); } /* TouchPad support */ static int toshiba_touchpad_set(struct toshiba_acpi_dev *dev, u32 state) { u32 result; if (!sci_open(dev)) return -EIO; result = sci_write(dev, SCI_TOUCHPAD, state); sci_close(dev); if (result == TOS_FAILURE) pr_err("ACPI call to set the touchpad failed\n"); else if (result == TOS_NOT_SUPPORTED) return -ENODEV; return result == TOS_SUCCESS ? 0 : -EIO; } static int toshiba_touchpad_get(struct toshiba_acpi_dev *dev, u32 *state) { u32 result; if (!sci_open(dev)) return -EIO; result = sci_read(dev, SCI_TOUCHPAD, state); sci_close(dev); if (result == TOS_FAILURE) pr_err("ACPI call to query the touchpad failed\n"); else if (result == TOS_NOT_SUPPORTED) return -ENODEV; return result == TOS_SUCCESS ? 0 : -EIO; } /* Eco Mode support */ static void toshiba_eco_mode_available(struct toshiba_acpi_dev *dev) { u32 in[TCI_WORDS] = { HCI_GET, HCI_ECO_MODE, 0, 0, 0, 0 }; u32 out[TCI_WORDS]; acpi_status status; dev->eco_supported = 0; status = tci_raw(dev, in, out); if (ACPI_FAILURE(status)) { pr_err("ACPI call to get ECO led failed\n"); return; } if (out[0] == TOS_INPUT_DATA_ERROR || out[0] == TOS_NOT_SUPPORTED) { /* * If we receive 0x8300 (Input Data Error), it means that the * LED device is present, but that we just screwed the input * parameters. * * On some laptops 0x8000 (Not supported) is also returned in * this case, so we need to allow for that as well. * * Let's query the status of the LED to see if we really have a * success response, indicating the actual presense of the LED, * bail out otherwise. */ in[3] = 1; status = tci_raw(dev, in, out); if (ACPI_FAILURE(status)) { pr_err("ACPI call to get ECO led failed\n"); return; } if (out[0] != TOS_SUCCESS) return; dev->eco_supported = 1; } } static enum led_brightness toshiba_eco_mode_get_status(struct led_classdev *cdev) { struct toshiba_acpi_dev *dev = container_of(cdev, struct toshiba_acpi_dev, eco_led); u32 in[TCI_WORDS] = { HCI_GET, HCI_ECO_MODE, 0, 1, 0, 0 }; u32 out[TCI_WORDS]; acpi_status status; status = tci_raw(dev, in, out); if (ACPI_FAILURE(status)) { pr_err("ACPI call to get ECO led failed\n"); return LED_OFF; } if (out[0] != TOS_SUCCESS) return LED_OFF; return out[2] ? LED_FULL : LED_OFF; } static void toshiba_eco_mode_set_status(struct led_classdev *cdev, enum led_brightness brightness) { struct toshiba_acpi_dev *dev = container_of(cdev, struct toshiba_acpi_dev, eco_led); u32 in[TCI_WORDS] = { HCI_SET, HCI_ECO_MODE, 0, 1, 0, 0 }; u32 out[TCI_WORDS]; acpi_status status; /* Switch the Eco Mode led on/off */ in[2] = (brightness) ? 1 : 0; status = tci_raw(dev, in, out); if (ACPI_FAILURE(status)) pr_err("ACPI call to set ECO led failed\n"); } /* Accelerometer support */ static void toshiba_accelerometer_available(struct toshiba_acpi_dev *dev) { u32 in[TCI_WORDS] = { HCI_GET, HCI_ACCELEROMETER2, 0, 0, 0, 0 }; u32 out[TCI_WORDS]; acpi_status status; dev->accelerometer_supported = 0; /* * Check if the accelerometer call exists, * this call also serves as initialization */ status = tci_raw(dev, in, out); if (ACPI_FAILURE(status)) { pr_err("ACPI call to query the accelerometer failed\n"); return; } if (out[0] != TOS_SUCCESS) return; dev->accelerometer_supported = 1; } static int toshiba_accelerometer_get(struct toshiba_acpi_dev *dev, u32 *xy, u32 *z) { u32 in[TCI_WORDS] = { HCI_GET, HCI_ACCELEROMETER, 0, 1, 0, 0 }; u32 out[TCI_WORDS]; acpi_status status; /* Check the Accelerometer status */ status = tci_raw(dev, in, out); if (ACPI_FAILURE(status)) { pr_err("ACPI call to query the accelerometer failed\n"); return -EIO; } if (out[0] == TOS_NOT_SUPPORTED) return -ENODEV; if (out[0] != TOS_SUCCESS) return -EIO; *xy = out[2]; *z = out[4]; return 0; } /* Sleep (Charge and Music) utilities support */ static void toshiba_usb_sleep_charge_available(struct toshiba_acpi_dev *dev) { u32 in[TCI_WORDS] = { SCI_GET, SCI_USB_SLEEP_CHARGE, 0, 0, 0, 0 }; u32 out[TCI_WORDS]; acpi_status status; dev->usb_sleep_charge_supported = 0; if (!sci_open(dev)) return; status = tci_raw(dev, in, out); if (ACPI_FAILURE(status)) { pr_err("ACPI call to get USB Sleep and Charge mode failed\n"); sci_close(dev); return; } if (out[0] != TOS_SUCCESS) { sci_close(dev); return; } dev->usbsc_mode_base = out[4]; in[5] = SCI_USB_CHARGE_BAT_LVL; status = tci_raw(dev, in, out); sci_close(dev); if (ACPI_FAILURE(status)) { pr_err("ACPI call to get USB Sleep and Charge mode failed\n"); return; } if (out[0] != TOS_SUCCESS) return; dev->usbsc_bat_level = out[2]; /* Flag as supported */ dev->usb_sleep_charge_supported = 1; } static int toshiba_usb_sleep_charge_get(struct toshiba_acpi_dev *dev, u32 *mode) { u32 result; if (!sci_open(dev)) return -EIO; result = sci_read(dev, SCI_USB_SLEEP_CHARGE, mode); sci_close(dev); if (result == TOS_FAILURE) pr_err("ACPI call to set USB S&C mode failed\n"); else if (result == TOS_NOT_SUPPORTED) return -ENODEV; return result == TOS_SUCCESS ? 0 : -EIO; } static int toshiba_usb_sleep_charge_set(struct toshiba_acpi_dev *dev, u32 mode) { u32 result; if (!sci_open(dev)) return -EIO; result = sci_write(dev, SCI_USB_SLEEP_CHARGE, mode); sci_close(dev); if (result == TOS_FAILURE) pr_err("ACPI call to set USB S&C mode failed\n"); else if (result == TOS_NOT_SUPPORTED) return -ENODEV; return result == TOS_SUCCESS ? 0 : -EIO; } static int toshiba_sleep_functions_status_get(struct toshiba_acpi_dev *dev, u32 *mode) { u32 in[TCI_WORDS] = { SCI_GET, SCI_USB_SLEEP_CHARGE, 0, 0, 0, 0 }; u32 out[TCI_WORDS]; acpi_status status; if (!sci_open(dev)) return -EIO; in[5] = SCI_USB_CHARGE_BAT_LVL; status = tci_raw(dev, in, out); sci_close(dev); if (ACPI_FAILURE(status)) { pr_err("ACPI call to get USB S&C battery level failed\n"); return -EIO; } if (out[0] == TOS_NOT_SUPPORTED) return -ENODEV; if (out[0] != TOS_SUCCESS) return -EIO; *mode = out[2]; return 0; } static int toshiba_sleep_functions_status_set(struct toshiba_acpi_dev *dev, u32 mode) { u32 in[TCI_WORDS] = { SCI_SET, SCI_USB_SLEEP_CHARGE, 0, 0, 0, 0 }; u32 out[TCI_WORDS]; acpi_status status; if (!sci_open(dev)) return -EIO; in[2] = mode; in[5] = SCI_USB_CHARGE_BAT_LVL; status = tci_raw(dev, in, out); sci_close(dev); if (ACPI_FAILURE(status)) { pr_err("ACPI call to set USB S&C battery level failed\n"); return -EIO; } if (out[0] == TOS_NOT_SUPPORTED) return -ENODEV; return out[0] == TOS_SUCCESS ? 0 : -EIO; } static int toshiba_usb_rapid_charge_get(struct toshiba_acpi_dev *dev, u32 *state) { u32 in[TCI_WORDS] = { SCI_GET, SCI_USB_SLEEP_CHARGE, 0, 0, 0, 0 }; u32 out[TCI_WORDS]; acpi_status status; if (!sci_open(dev)) return -EIO; in[5] = SCI_USB_CHARGE_RAPID_DSP; status = tci_raw(dev, in, out); sci_close(dev); if (ACPI_FAILURE(status)) { pr_err("ACPI call to get USB Rapid Charge failed\n"); return -EIO; } if (out[0] == TOS_NOT_SUPPORTED) return -ENODEV; if (out[0] != TOS_SUCCESS && out[0] != TOS_SUCCESS2) return -EIO; *state = out[2]; return 0; } static int toshiba_usb_rapid_charge_set(struct toshiba_acpi_dev *dev, u32 state) { u32 in[TCI_WORDS] = { SCI_SET, SCI_USB_SLEEP_CHARGE, 0, 0, 0, 0 }; u32 out[TCI_WORDS]; acpi_status status; if (!sci_open(dev)) return -EIO; in[2] = state; in[5] = SCI_USB_CHARGE_RAPID_DSP; status = tci_raw(dev, in, out); sci_close(dev); if (ACPI_FAILURE(status)) { pr_err("ACPI call to set USB Rapid Charge failed\n"); return -EIO; } if (out[0] == TOS_NOT_SUPPORTED) return -ENODEV; return (out[0] == TOS_SUCCESS || out[0] == TOS_SUCCESS2) ? 0 : -EIO; } static int toshiba_usb_sleep_music_get(struct toshiba_acpi_dev *dev, u32 *state) { u32 result; if (!sci_open(dev)) return -EIO; result = sci_read(dev, SCI_USB_SLEEP_MUSIC, state); sci_close(dev); if (result == TOS_FAILURE) pr_err("ACPI call to get Sleep and Music failed\n"); else if (result == TOS_NOT_SUPPORTED) return -ENODEV; return result == TOS_SUCCESS ? 0 : -EIO; } static int toshiba_usb_sleep_music_set(struct toshiba_acpi_dev *dev, u32 state) { u32 result; if (!sci_open(dev)) return -EIO; result = sci_write(dev, SCI_USB_SLEEP_MUSIC, state); sci_close(dev); if (result == TOS_FAILURE) pr_err("ACPI call to set Sleep and Music failed\n"); else if (result == TOS_NOT_SUPPORTED) return -ENODEV; return result == TOS_SUCCESS ? 0 : -EIO; } /* Keyboard function keys */ static int toshiba_function_keys_get(struct toshiba_acpi_dev *dev, u32 *mode) { u32 result; if (!sci_open(dev)) return -EIO; result = sci_read(dev, SCI_KBD_FUNCTION_KEYS, mode); sci_close(dev); if (result == TOS_FAILURE) pr_err("ACPI call to get KBD function keys failed\n"); else if (result == TOS_NOT_SUPPORTED) return -ENODEV; return (result == TOS_SUCCESS || result == TOS_SUCCESS2) ? 0 : -EIO; } static int toshiba_function_keys_set(struct toshiba_acpi_dev *dev, u32 mode) { u32 result; if (!sci_open(dev)) return -EIO; result = sci_write(dev, SCI_KBD_FUNCTION_KEYS, mode); sci_close(dev); if (result == TOS_FAILURE) pr_err("ACPI call to set KBD function keys failed\n"); else if (result == TOS_NOT_SUPPORTED) return -ENODEV; return (result == TOS_SUCCESS || result == TOS_SUCCESS2) ? 0 : -EIO; } /* Panel Power ON */ static int toshiba_panel_power_on_get(struct toshiba_acpi_dev *dev, u32 *state) { u32 result; if (!sci_open(dev)) return -EIO; result = sci_read(dev, SCI_PANEL_POWER_ON, state); sci_close(dev); if (result == TOS_FAILURE) pr_err("ACPI call to get Panel Power ON failed\n"); else if (result == TOS_NOT_SUPPORTED) return -ENODEV; return result == TOS_SUCCESS ? 0 : -EIO; } static int toshiba_panel_power_on_set(struct toshiba_acpi_dev *dev, u32 state) { u32 result; if (!sci_open(dev)) return -EIO; result = sci_write(dev, SCI_PANEL_POWER_ON, state); sci_close(dev); if (result == TOS_FAILURE) pr_err("ACPI call to set Panel Power ON failed\n"); else if (result == TOS_NOT_SUPPORTED) return -ENODEV; return result == TOS_SUCCESS ? 0 : -EIO; } /* USB Three */ static int toshiba_usb_three_get(struct toshiba_acpi_dev *dev, u32 *state) { u32 result; if (!sci_open(dev)) return -EIO; result = sci_read(dev, SCI_USB_THREE, state); sci_close(dev); if (result == TOS_FAILURE) pr_err("ACPI call to get USB 3 failed\n"); else if (result == TOS_NOT_SUPPORTED) return -ENODEV; return (result == TOS_SUCCESS || result == TOS_SUCCESS2) ? 0 : -EIO; } static int toshiba_usb_three_set(struct toshiba_acpi_dev *dev, u32 state) { u32 result; if (!sci_open(dev)) return -EIO; result = sci_write(dev, SCI_USB_THREE, state); sci_close(dev); if (result == TOS_FAILURE) pr_err("ACPI call to set USB 3 failed\n"); else if (result == TOS_NOT_SUPPORTED) return -ENODEV; return (result == TOS_SUCCESS || result == TOS_SUCCESS2) ? 0 : -EIO; } /* Hotkey Event type */ static int toshiba_hotkey_event_type_get(struct toshiba_acpi_dev *dev, u32 *type) { u32 in[TCI_WORDS] = { HCI_GET, HCI_SYSTEM_INFO, 0x03, 0, 0, 0 }; u32 out[TCI_WORDS]; acpi_status status; status = tci_raw(dev, in, out); if (ACPI_FAILURE(status)) { pr_err("ACPI call to get System type failed\n"); return -EIO; } if (out[0] == TOS_NOT_SUPPORTED) return -ENODEV; if (out[0] != TOS_SUCCESS) return -EIO; *type = out[3]; return 0; } /* Wireless status (RFKill, WLAN, BT, WWAN) */ static int toshiba_wireless_status(struct toshiba_acpi_dev *dev) { u32 in[TCI_WORDS] = { HCI_GET, HCI_WIRELESS, 0, 0, 0, 0 }; u32 out[TCI_WORDS]; acpi_status status; in[3] = HCI_WIRELESS_STATUS; status = tci_raw(dev, in, out); if (ACPI_FAILURE(status)) { pr_err("ACPI call to get Wireless status failed\n"); return -EIO; } if (out[0] == TOS_NOT_SUPPORTED) return -ENODEV; if (out[0] != TOS_SUCCESS) return -EIO; dev->killswitch = !!(out[2] & HCI_WIRELESS_STATUS); return 0; } /* WWAN */ static void toshiba_wwan_available(struct toshiba_acpi_dev *dev) { u32 in[TCI_WORDS] = { HCI_GET, HCI_WIRELESS, 0, 0, 0, 0 }; u32 out[TCI_WORDS]; acpi_status status; dev->wwan_supported = 0; /* * WWAN support can be queried by setting the in[3] value to * HCI_WIRELESS_WWAN (0x03). * * If supported, out[0] contains TOS_SUCCESS and out[2] contains * HCI_WIRELESS_WWAN_STATUS (0x2000). * * If not supported, out[0] contains TOS_INPUT_DATA_ERROR (0x8300) * or TOS_NOT_SUPPORTED (0x8000). */ in[3] = HCI_WIRELESS_WWAN; status = tci_raw(dev, in, out); if (ACPI_FAILURE(status)) { pr_err("ACPI call to get WWAN status failed\n"); return; } if (out[0] != TOS_SUCCESS) return; dev->wwan_supported = (out[2] == HCI_WIRELESS_WWAN_STATUS); } static int toshiba_wwan_set(struct toshiba_acpi_dev *dev, u32 state) { u32 in[TCI_WORDS] = { HCI_SET, HCI_WIRELESS, state, 0, 0, 0 }; u32 out[TCI_WORDS]; acpi_status status; in[3] = HCI_WIRELESS_WWAN_STATUS; status = tci_raw(dev, in, out); if (ACPI_FAILURE(status)) { pr_err("ACPI call to set WWAN status failed\n"); return -EIO; } if (out[0] == TOS_NOT_SUPPORTED) return -ENODEV; if (out[0] != TOS_SUCCESS) return -EIO; /* * Some devices only need to call HCI_WIRELESS_WWAN_STATUS to * (de)activate the device, but some others need the * HCI_WIRELESS_WWAN_POWER call as well. */ in[3] = HCI_WIRELESS_WWAN_POWER; status = tci_raw(dev, in, out); if (ACPI_FAILURE(status)) { pr_err("ACPI call to set WWAN power failed\n"); return -EIO; } if (out[0] == TOS_NOT_SUPPORTED) return -ENODEV; return out[0] == TOS_SUCCESS ? 0 : -EIO; } /* Cooling Method */ static void toshiba_cooling_method_available(struct toshiba_acpi_dev *dev) { u32 in[TCI_WORDS] = { HCI_GET, HCI_COOLING_METHOD, 0, 0, 0, 0 }; u32 out[TCI_WORDS]; acpi_status status; dev->cooling_method_supported = 0; dev->max_cooling_method = 0; status = tci_raw(dev, in, out); if (ACPI_FAILURE(status)) { pr_err("ACPI call to get Cooling Method failed\n"); return; } if (out[0] != TOS_SUCCESS && out[0] != TOS_SUCCESS2) return; dev->cooling_method_supported = 1; dev->max_cooling_method = out[3]; } static int toshiba_cooling_method_get(struct toshiba_acpi_dev *dev, u32 *state) { u32 result = hci_read(dev, HCI_COOLING_METHOD, state); if (result == TOS_FAILURE) pr_err("ACPI call to get Cooling Method failed\n"); if (result == TOS_NOT_SUPPORTED) return -ENODEV; return (result == TOS_SUCCESS || result == TOS_SUCCESS2) ? 0 : -EIO; } static int toshiba_cooling_method_set(struct toshiba_acpi_dev *dev, u32 state) { u32 result = hci_write(dev, HCI_COOLING_METHOD, state); if (result == TOS_FAILURE) pr_err("ACPI call to set Cooling Method failed\n"); if (result == TOS_NOT_SUPPORTED) return -ENODEV; return (result == TOS_SUCCESS || result == TOS_SUCCESS2) ? 0 : -EIO; } /* Battery charge control */ static void toshiba_battery_charge_mode_available(struct toshiba_acpi_dev *dev) { u32 in[TCI_WORDS] = { HCI_GET, HCI_BATTERY_CHARGE_MODE, 0, 0, 0, 0 }; u32 out[TCI_WORDS]; acpi_status status; dev->battery_charge_mode_supported = 0; status = tci_raw(dev, in, out); if (ACPI_FAILURE(status)) { pr_err("ACPI call to get Battery Charge Mode failed\n"); return; } if (out[0] != TOS_SUCCESS && out[0] != TOS_SUCCESS2) return; dev->battery_charge_mode_supported = 1; } static int toshiba_battery_charge_mode_get(struct toshiba_acpi_dev *dev, u32 *state) { u32 in[TCI_WORDS] = { HCI_GET, HCI_BATTERY_CHARGE_MODE, 0, 0, 0, 0x1 }; u32 out[TCI_WORDS]; int retries = 3; do { acpi_status status = tci_raw(dev, in, out); if (ACPI_FAILURE(status)) pr_err("ACPI call to get Battery Charge Mode failed\n"); switch (out[0]) { case TOS_SUCCESS: case TOS_SUCCESS2: *state = out[2]; return 0; case TOS_NOT_SUPPORTED: return -ENODEV; case TOS_DATA_NOT_AVAILABLE: retries--; break; default: return -EIO; } } while (retries); return -EIO; } static int toshiba_battery_charge_mode_set(struct toshiba_acpi_dev *dev, u32 state) { u32 result = hci_write(dev, HCI_BATTERY_CHARGE_MODE, state); if (result == TOS_FAILURE) pr_err("ACPI call to set Battery Charge Mode failed\n"); if (result == TOS_NOT_SUPPORTED) return -ENODEV; return (result == TOS_SUCCESS || result == TOS_SUCCESS2) ? 0 : -EIO; } /* Transflective Backlight */ static int get_tr_backlight_status(struct toshiba_acpi_dev *dev, u32 *status) { u32 result = hci_read(dev, HCI_TR_BACKLIGHT, status); if (result == TOS_FAILURE) pr_err("ACPI call to get Transflective Backlight failed\n"); else if (result == TOS_NOT_SUPPORTED) return -ENODEV; return result == TOS_SUCCESS ? 0 : -EIO; } static int set_tr_backlight_status(struct toshiba_acpi_dev *dev, u32 status) { u32 result = hci_write(dev, HCI_TR_BACKLIGHT, !status); if (result == TOS_FAILURE) pr_err("ACPI call to set Transflective Backlight failed\n"); else if (result == TOS_NOT_SUPPORTED) return -ENODEV; return result == TOS_SUCCESS ? 0 : -EIO; } static struct proc_dir_entry *toshiba_proc_dir; /* LCD Brightness */ static int __get_lcd_brightness(struct toshiba_acpi_dev *dev) { int brightness = 0; u32 result; u32 value; if (dev->tr_backlight_supported) { int ret = get_tr_backlight_status(dev, &value); if (ret) return ret; if (value) return 0; brightness++; } result = hci_read(dev, HCI_LCD_BRIGHTNESS, &value); if (result == TOS_FAILURE) pr_err("ACPI call to get LCD Brightness failed\n"); else if (result == TOS_NOT_SUPPORTED) return -ENODEV; return result == TOS_SUCCESS ? brightness + (value >> HCI_LCD_BRIGHTNESS_SHIFT) : -EIO; } static int get_lcd_brightness(struct backlight_device *bd) { struct toshiba_acpi_dev *dev = bl_get_data(bd); return __get_lcd_brightness(dev); } static int lcd_proc_show(struct seq_file *m, void *v) { struct toshiba_acpi_dev *dev = m->private; int levels; int value; if (!dev->backlight_dev) return -ENODEV; levels = dev->backlight_dev->props.max_brightness + 1; value = get_lcd_brightness(dev->backlight_dev); if (value < 0) { pr_err("Error reading LCD brightness\n"); return value; } seq_printf(m, "brightness: %d\n", value); seq_printf(m, "brightness_levels: %d\n", levels); return 0; } static int lcd_proc_open(struct inode *inode, struct file *file) { return single_open(file, lcd_proc_show, pde_data(inode)); } static int set_lcd_brightness(struct toshiba_acpi_dev *dev, int value) { u32 result; if (dev->tr_backlight_supported) { int ret = set_tr_backlight_status(dev, !value); if (ret) return ret; if (value) value--; } value = value << HCI_LCD_BRIGHTNESS_SHIFT; result = hci_write(dev, HCI_LCD_BRIGHTNESS, value); if (result == TOS_FAILURE) pr_err("ACPI call to set LCD Brightness failed\n"); else if (result == TOS_NOT_SUPPORTED) return -ENODEV; return result == TOS_SUCCESS ? 0 : -EIO; } static int set_lcd_status(struct backlight_device *bd) { struct toshiba_acpi_dev *dev = bl_get_data(bd); return set_lcd_brightness(dev, bd->props.brightness); } static ssize_t lcd_proc_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { struct toshiba_acpi_dev *dev = pde_data(file_inode(file)); char cmd[42]; size_t len; int levels; int value; len = min(count, sizeof(cmd) - 1); if (copy_from_user(cmd, buf, len)) return -EFAULT; cmd[len] = '\0'; levels = dev->backlight_dev->props.max_brightness + 1; if (sscanf(cmd, " brightness : %i", &value) != 1 && value < 0 && value > levels) return -EINVAL; if (set_lcd_brightness(dev, value)) return -EIO; return count; } static const struct proc_ops lcd_proc_ops = { .proc_open = lcd_proc_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_release = single_release, .proc_write = lcd_proc_write, }; /* Video-Out */ static int get_video_status(struct toshiba_acpi_dev *dev, u32 *status) { u32 result = hci_read(dev, HCI_VIDEO_OUT, status); if (result == TOS_FAILURE) pr_err("ACPI call to get Video-Out failed\n"); else if (result == TOS_NOT_SUPPORTED) return -ENODEV; return result == TOS_SUCCESS ? 0 : -EIO; } static int video_proc_show(struct seq_file *m, void *v) { struct toshiba_acpi_dev *dev = m->private; int is_lcd, is_crt, is_tv; u32 value; if (get_video_status(dev, &value)) return -EIO; is_lcd = (value & HCI_VIDEO_OUT_LCD) ? 1 : 0; is_crt = (value & HCI_VIDEO_OUT_CRT) ? 1 : 0; is_tv = (value & HCI_VIDEO_OUT_TV) ? 1 : 0; seq_printf(m, "lcd_out: %d\n", is_lcd); seq_printf(m, "crt_out: %d\n", is_crt); seq_printf(m, "tv_out: %d\n", is_tv); return 0; } static int video_proc_open(struct inode *inode, struct file *file) { return single_open(file, video_proc_show, pde_data(inode)); } static ssize_t video_proc_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { struct toshiba_acpi_dev *dev = pde_data(file_inode(file)); char *buffer; char *cmd; int lcd_out = -1, crt_out = -1, tv_out = -1; int remain = count; int value; int ret; u32 video_out; cmd = memdup_user_nul(buf, count); if (IS_ERR(cmd)) return PTR_ERR(cmd); buffer = cmd; /* * Scan expression. Multiple expressions may be delimited with ; * NOTE: To keep scanning simple, invalid fields are ignored. */ while (remain) { if (sscanf(buffer, " lcd_out : %i", &value) == 1) lcd_out = value & 1; else if (sscanf(buffer, " crt_out : %i", &value) == 1) crt_out = value & 1; else if (sscanf(buffer, " tv_out : %i", &value) == 1) tv_out = value & 1; /* Advance to one character past the next ; */ do { ++buffer; --remain; } while (remain && *(buffer - 1) != ';'); } kfree(cmd); ret = get_video_status(dev, &video_out); if (!ret) { unsigned int new_video_out = video_out; if (lcd_out != -1) _set_bit(&new_video_out, HCI_VIDEO_OUT_LCD, lcd_out); if (crt_out != -1) _set_bit(&new_video_out, HCI_VIDEO_OUT_CRT, crt_out); if (tv_out != -1) _set_bit(&new_video_out, HCI_VIDEO_OUT_TV, tv_out); /* * To avoid unnecessary video disruption, only write the new * video setting if something changed. */ if (new_video_out != video_out) ret = write_acpi_int(METHOD_VIDEO_OUT, new_video_out); } return ret ? -EIO : count; } static const struct proc_ops video_proc_ops = { .proc_open = video_proc_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_release = single_release, .proc_write = video_proc_write, }; /* Fan status */ static int get_fan_status(struct toshiba_acpi_dev *dev, u32 *status) { u32 result = hci_read(dev, HCI_FAN, status); if (result == TOS_FAILURE) pr_err("ACPI call to get Fan status failed\n"); else if (result == TOS_NOT_SUPPORTED) return -ENODEV; return result == TOS_SUCCESS ? 0 : -EIO; } static int set_fan_status(struct toshiba_acpi_dev *dev, u32 status) { u32 result = hci_write(dev, HCI_FAN, status); if (result == TOS_FAILURE) pr_err("ACPI call to set Fan status failed\n"); else if (result == TOS_NOT_SUPPORTED) return -ENODEV; return result == TOS_SUCCESS ? 0 : -EIO; } static int fan_proc_show(struct seq_file *m, void *v) { struct toshiba_acpi_dev *dev = m->private; u32 value; if (get_fan_status(dev, &value)) return -EIO; seq_printf(m, "running: %d\n", (value > 0)); seq_printf(m, "force_on: %d\n", dev->force_fan); return 0; } static int fan_proc_open(struct inode *inode, struct file *file) { return single_open(file, fan_proc_show, pde_data(inode)); } static ssize_t fan_proc_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { struct toshiba_acpi_dev *dev = pde_data(file_inode(file)); char cmd[42]; size_t len; int value; len = min(count, sizeof(cmd) - 1); if (copy_from_user(cmd, buf, len)) return -EFAULT; cmd[len] = '\0'; if (sscanf(cmd, " force_on : %i", &value) != 1 && value != 0 && value != 1) return -EINVAL; if (set_fan_status(dev, value)) return -EIO; dev->force_fan = value; return count; } static const struct proc_ops fan_proc_ops = { .proc_open = fan_proc_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_release = single_release, .proc_write = fan_proc_write, }; /* Fan RPM */ static int get_fan_rpm(struct toshiba_acpi_dev *dev, u32 *rpm) { u32 in[TCI_WORDS] = { HCI_GET, HCI_FAN_RPM, 0, 1, 0, 0 }; u32 out[TCI_WORDS]; acpi_status status = tci_raw(dev, in, out); if (ACPI_FAILURE(status)) { pr_err("ACPI call to get Fan speed failed\n"); return -EIO; } if (out[0] == TOS_NOT_SUPPORTED) return -ENODEV; if (out[0] == TOS_SUCCESS) { *rpm = out[2]; return 0; } return -EIO; } static int keys_proc_show(struct seq_file *m, void *v) { struct toshiba_acpi_dev *dev = m->private; seq_printf(m, "hotkey_ready: %d\n", dev->key_event_valid); seq_printf(m, "hotkey: 0x%04x\n", dev->last_key_event); return 0; } static int keys_proc_open(struct inode *inode, struct file *file) { return single_open(file, keys_proc_show, pde_data(inode)); } static ssize_t keys_proc_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { struct toshiba_acpi_dev *dev = pde_data(file_inode(file)); char cmd[42]; size_t len; int value; len = min(count, sizeof(cmd) - 1); if (copy_from_user(cmd, buf, len)) return -EFAULT; cmd[len] = '\0'; if (sscanf(cmd, " hotkey_ready : %i", &value) == 1 && value == 0) dev->key_event_valid = 0; else return -EINVAL; return count; } static const struct proc_ops keys_proc_ops = { .proc_open = keys_proc_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_release = single_release, .proc_write = keys_proc_write, }; static int __maybe_unused version_proc_show(struct seq_file *m, void *v) { seq_printf(m, "driver: %s\n", TOSHIBA_ACPI_VERSION); seq_printf(m, "proc_interface: %d\n", PROC_INTERFACE_VERSION); return 0; } /* * Proc and module init */ #define PROC_TOSHIBA "toshiba" static void create_toshiba_proc_entries(struct toshiba_acpi_dev *dev) { if (dev->backlight_dev) proc_create_data("lcd", S_IRUGO | S_IWUSR, toshiba_proc_dir, &lcd_proc_ops, dev); if (dev->video_supported) proc_create_data("video", S_IRUGO | S_IWUSR, toshiba_proc_dir, &video_proc_ops, dev); if (dev->fan_supported) proc_create_data("fan", S_IRUGO | S_IWUSR, toshiba_proc_dir, &fan_proc_ops, dev); if (dev->hotkey_dev) proc_create_data("keys", S_IRUGO | S_IWUSR, toshiba_proc_dir, &keys_proc_ops, dev); proc_create_single_data("version", S_IRUGO, toshiba_proc_dir, version_proc_show, dev); } static void remove_toshiba_proc_entries(struct toshiba_acpi_dev *dev) { if (dev->backlight_dev) remove_proc_entry("lcd", toshiba_proc_dir); if (dev->video_supported) remove_proc_entry("video", toshiba_proc_dir); if (dev->fan_supported) remove_proc_entry("fan", toshiba_proc_dir); if (dev->hotkey_dev) remove_proc_entry("keys", toshiba_proc_dir); remove_proc_entry("version", toshiba_proc_dir); } static const struct backlight_ops toshiba_backlight_data = { .options = BL_CORE_SUSPENDRESUME, .get_brightness = get_lcd_brightness, .update_status = set_lcd_status, }; /* Keyboard backlight work */ static void toshiba_acpi_kbd_bl_work(struct work_struct *work); static DECLARE_WORK(kbd_bl_work, toshiba_acpi_kbd_bl_work); /* * Sysfs files */ static ssize_t version_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%s\n", TOSHIBA_ACPI_VERSION); } static DEVICE_ATTR_RO(version); static ssize_t fan_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); int state; int ret; ret = kstrtoint(buf, 0, &state); if (ret) return ret; if (state != 0 && state != 1) return -EINVAL; ret = set_fan_status(toshiba, state); if (ret) return ret; return count; } static ssize_t fan_show(struct device *dev, struct device_attribute *attr, char *buf) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); u32 value; int ret; ret = get_fan_status(toshiba, &value); if (ret) return ret; return sprintf(buf, "%d\n", value); } static DEVICE_ATTR_RW(fan); static ssize_t kbd_backlight_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); int mode; int ret; ret = kstrtoint(buf, 0, &mode); if (ret) return ret; /* Check for supported modes depending on keyboard backlight type */ if (toshiba->kbd_type == 1) { /* Type 1 supports SCI_KBD_MODE_FNZ and SCI_KBD_MODE_AUTO */ if (mode != SCI_KBD_MODE_FNZ && mode != SCI_KBD_MODE_AUTO) return -EINVAL; } else if (toshiba->kbd_type == 2) { /* Type 2 doesn't support SCI_KBD_MODE_FNZ */ if (mode != SCI_KBD_MODE_AUTO && mode != SCI_KBD_MODE_ON && mode != SCI_KBD_MODE_OFF) return -EINVAL; } /* * Set the Keyboard Backlight Mode where: * Auto - KBD backlight turns off automatically in given time * FN-Z - KBD backlight "toggles" when hotkey pressed * ON - KBD backlight is always on * OFF - KBD backlight is always off */ /* Only make a change if the actual mode has changed */ if (toshiba->kbd_mode != mode) { /* Shift the time to "base time" (0x3c0000 == 60 seconds) */ int time = toshiba->kbd_time << HCI_MISC_SHIFT; /* OR the "base time" to the actual method format */ if (toshiba->kbd_type == 1) { /* Type 1 requires the current mode */ time |= toshiba->kbd_mode; } else if (toshiba->kbd_type == 2) { /* Type 2 requires the desired mode */ time |= mode; } ret = toshiba_kbd_illum_status_set(toshiba, time); if (ret) return ret; toshiba->kbd_mode = mode; toshiba_acpi->kbd_mode = mode; /* * Some laptop models with the second generation backlit * keyboard (type 2) do not generate the keyboard backlight * changed event (0x92), and thus, the driver will never update * the sysfs entries. * * The event is generated right when changing the keyboard * backlight mode and the *notify function will set the * kbd_event_generated to true. * * In case the event is not generated, schedule the keyboard * backlight work to update the sysfs entries and emulate the * event via genetlink. */ if (toshiba->kbd_type == 2 && !toshiba->kbd_event_generated) schedule_work(&kbd_bl_work); } return count; } static ssize_t kbd_backlight_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); u32 time; if (toshiba_kbd_illum_status_get(toshiba, &time) < 0) return -EIO; return sprintf(buf, "%i\n", time & SCI_KBD_MODE_MASK); } static DEVICE_ATTR_RW(kbd_backlight_mode); static ssize_t kbd_type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); return sprintf(buf, "%d\n", toshiba->kbd_type); } static DEVICE_ATTR_RO(kbd_type); static ssize_t available_kbd_modes_show(struct device *dev, struct device_attribute *attr, char *buf) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); if (toshiba->kbd_type == 1) return sprintf(buf, "0x%x 0x%x\n", SCI_KBD_MODE_FNZ, SCI_KBD_MODE_AUTO); return sprintf(buf, "0x%x 0x%x 0x%x\n", SCI_KBD_MODE_AUTO, SCI_KBD_MODE_ON, SCI_KBD_MODE_OFF); } static DEVICE_ATTR_RO(available_kbd_modes); static ssize_t kbd_backlight_timeout_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); int time; int ret; ret = kstrtoint(buf, 0, &time); if (ret) return ret; /* Check for supported values depending on kbd_type */ if (toshiba->kbd_type == 1) { if (time < 0 || time > 60) return -EINVAL; } else if (toshiba->kbd_type == 2) { if (time < 1 || time > 60) return -EINVAL; } /* Set the Keyboard Backlight Timeout */ /* Only make a change if the actual timeout has changed */ if (toshiba->kbd_time != time) { /* Shift the time to "base time" (0x3c0000 == 60 seconds) */ time = time << HCI_MISC_SHIFT; /* OR the "base time" to the actual method format */ if (toshiba->kbd_type == 1) time |= SCI_KBD_MODE_FNZ; else if (toshiba->kbd_type == 2) time |= SCI_KBD_MODE_AUTO; ret = toshiba_kbd_illum_status_set(toshiba, time); if (ret) return ret; toshiba->kbd_time = time >> HCI_MISC_SHIFT; } return count; } static ssize_t kbd_backlight_timeout_show(struct device *dev, struct device_attribute *attr, char *buf) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); u32 time; if (toshiba_kbd_illum_status_get(toshiba, &time) < 0) return -EIO; return sprintf(buf, "%i\n", time >> HCI_MISC_SHIFT); } static DEVICE_ATTR_RW(kbd_backlight_timeout); static ssize_t touchpad_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); int state; int ret; /* Set the TouchPad on/off, 0 - Disable | 1 - Enable */ ret = kstrtoint(buf, 0, &state); if (ret) return ret; if (state != 0 && state != 1) return -EINVAL; ret = toshiba_touchpad_set(toshiba, state); if (ret) return ret; return count; } static ssize_t touchpad_show(struct device *dev, struct device_attribute *attr, char *buf) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); u32 state; int ret; ret = toshiba_touchpad_get(toshiba, &state); if (ret < 0) return ret; return sprintf(buf, "%i\n", state); } static DEVICE_ATTR_RW(touchpad); static ssize_t usb_sleep_charge_show(struct device *dev, struct device_attribute *attr, char *buf) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); u32 mode; int ret; ret = toshiba_usb_sleep_charge_get(toshiba, &mode); if (ret < 0) return ret; return sprintf(buf, "%x\n", mode & SCI_USB_CHARGE_MODE_MASK); } static ssize_t usb_sleep_charge_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); int state; u32 mode; int ret; ret = kstrtoint(buf, 0, &state); if (ret) return ret; /* * Check for supported values, where: * 0 - Disabled * 1 - Alternate (Non USB conformant devices that require more power) * 2 - Auto (USB conformant devices) * 3 - Typical */ if (state != 0 && state != 1 && state != 2 && state != 3) return -EINVAL; /* Set the USB charging mode to internal value */ mode = toshiba->usbsc_mode_base; if (state == 0) mode |= SCI_USB_CHARGE_DISABLED; else if (state == 1) mode |= SCI_USB_CHARGE_ALTERNATE; else if (state == 2) mode |= SCI_USB_CHARGE_AUTO; else if (state == 3) mode |= SCI_USB_CHARGE_TYPICAL; ret = toshiba_usb_sleep_charge_set(toshiba, mode); if (ret) return ret; return count; } static DEVICE_ATTR_RW(usb_sleep_charge); static ssize_t sleep_functions_on_battery_show(struct device *dev, struct device_attribute *attr, char *buf) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); int bat_lvl, status; u32 state; int ret; int tmp; ret = toshiba_sleep_functions_status_get(toshiba, &state); if (ret < 0) return ret; /* Determine the status: 0x4 - Enabled | 0x1 - Disabled */ tmp = state & SCI_USB_CHARGE_BAT_MASK; status = (tmp == 0x4) ? 1 : 0; /* Determine the battery level set */ bat_lvl = state >> HCI_MISC_SHIFT; return sprintf(buf, "%d %d\n", status, bat_lvl); } static ssize_t sleep_functions_on_battery_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); u32 status; int value; int ret; int tmp; ret = kstrtoint(buf, 0, &value); if (ret) return ret; /* * Set the status of the function: * 0 - Disabled * 1-100 - Enabled */ if (value < 0 || value > 100) return -EINVAL; if (value == 0) { tmp = toshiba->usbsc_bat_level << HCI_MISC_SHIFT; status = tmp | SCI_USB_CHARGE_BAT_LVL_OFF; } else { tmp = value << HCI_MISC_SHIFT; status = tmp | SCI_USB_CHARGE_BAT_LVL_ON; } ret = toshiba_sleep_functions_status_set(toshiba, status); if (ret < 0) return ret; toshiba->usbsc_bat_level = status >> HCI_MISC_SHIFT; return count; } static DEVICE_ATTR_RW(sleep_functions_on_battery); static ssize_t usb_rapid_charge_show(struct device *dev, struct device_attribute *attr, char *buf) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); u32 state; int ret; ret = toshiba_usb_rapid_charge_get(toshiba, &state); if (ret < 0) return ret; return sprintf(buf, "%d\n", state); } static ssize_t usb_rapid_charge_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); int state; int ret; ret = kstrtoint(buf, 0, &state); if (ret) return ret; if (state != 0 && state != 1) return -EINVAL; ret = toshiba_usb_rapid_charge_set(toshiba, state); if (ret) return ret; return count; } static DEVICE_ATTR_RW(usb_rapid_charge); static ssize_t usb_sleep_music_show(struct device *dev, struct device_attribute *attr, char *buf) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); u32 state; int ret; ret = toshiba_usb_sleep_music_get(toshiba, &state); if (ret < 0) return ret; return sprintf(buf, "%d\n", state); } static ssize_t usb_sleep_music_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); int state; int ret; ret = kstrtoint(buf, 0, &state); if (ret) return ret; if (state != 0 && state != 1) return -EINVAL; ret = toshiba_usb_sleep_music_set(toshiba, state); if (ret) return ret; return count; } static DEVICE_ATTR_RW(usb_sleep_music); static ssize_t kbd_function_keys_show(struct device *dev, struct device_attribute *attr, char *buf) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); int mode; int ret; ret = toshiba_function_keys_get(toshiba, &mode); if (ret < 0) return ret; return sprintf(buf, "%d\n", mode); } static ssize_t kbd_function_keys_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); int mode; int ret; ret = kstrtoint(buf, 0, &mode); if (ret) return ret; /* * Check for the function keys mode where: * 0 - Normal operation (F{1-12} as usual and hotkeys via FN-F{1-12}) * 1 - Special functions (Opposite of the above setting) */ if (mode != 0 && mode != 1) return -EINVAL; ret = toshiba_function_keys_set(toshiba, mode); if (ret) return ret; pr_info("Reboot for changes to KBD Function Keys to take effect"); return count; } static DEVICE_ATTR_RW(kbd_function_keys); static ssize_t panel_power_on_show(struct device *dev, struct device_attribute *attr, char *buf) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); u32 state; int ret; ret = toshiba_panel_power_on_get(toshiba, &state); if (ret < 0) return ret; return sprintf(buf, "%d\n", state); } static ssize_t panel_power_on_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); int state; int ret; ret = kstrtoint(buf, 0, &state); if (ret) return ret; if (state != 0 && state != 1) return -EINVAL; ret = toshiba_panel_power_on_set(toshiba, state); if (ret) return ret; pr_info("Reboot for changes to Panel Power ON to take effect"); return count; } static DEVICE_ATTR_RW(panel_power_on); static ssize_t usb_three_show(struct device *dev, struct device_attribute *attr, char *buf) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); u32 state; int ret; ret = toshiba_usb_three_get(toshiba, &state); if (ret < 0) return ret; return sprintf(buf, "%d\n", state); } static ssize_t usb_three_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); int state; int ret; ret = kstrtoint(buf, 0, &state); if (ret) return ret; /* * Check for USB 3 mode where: * 0 - Disabled (Acts like a USB 2 port, saving power) * 1 - Enabled */ if (state != 0 && state != 1) return -EINVAL; ret = toshiba_usb_three_set(toshiba, state); if (ret) return ret; pr_info("Reboot for changes to USB 3 to take effect"); return count; } static DEVICE_ATTR_RW(usb_three); static ssize_t cooling_method_show(struct device *dev, struct device_attribute *attr, char *buf) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); int state; int ret; ret = toshiba_cooling_method_get(toshiba, &state); if (ret < 0) return ret; return sprintf(buf, "%d %d\n", state, toshiba->max_cooling_method); } static ssize_t cooling_method_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct toshiba_acpi_dev *toshiba = dev_get_drvdata(dev); int state; int ret; ret = kstrtoint(buf, 0, &state); if (ret) return ret; /* * Check for supported values * Depending on the laptop model, some only support these two: * 0 - Maximum Performance * 1 - Battery Optimized * * While some others support all three methods: * 0 - Maximum Performance * 1 - Performance * 2 - Battery Optimized */ if (state < 0 || state > toshiba->max_cooling_method) return -EINVAL; ret = toshiba_cooling_method_set(toshiba, state); if (ret) return ret; return count; } static DEVICE_ATTR_RW(cooling_method); static struct attribute *toshiba_attributes[] = { &dev_attr_version.attr, &dev_attr_fan.attr, &dev_attr_kbd_backlight_mode.attr, &dev_attr_kbd_type.attr, &dev_attr_available_kbd_modes.attr, &dev_attr_kbd_backlight_timeout.attr, &dev_attr_touchpad.attr, &dev_attr_usb_sleep_charge.attr, &dev_attr_sleep_functions_on_battery.attr, &dev_attr_usb_rapid_charge.attr, &dev_attr_usb_sleep_music.attr, &dev_attr_kbd_function_keys.attr, &dev_attr_panel_power_on.attr, &dev_attr_usb_three.attr, &dev_attr_cooling_method.attr, NULL, }; static umode_t toshiba_sysfs_is_visible(struct kobject *kobj, struct attribute *attr, int idx) { struct device *dev = kobj_to_dev(kobj); struct toshiba_acpi_dev *drv = dev_get_drvdata(dev); bool exists = true; if (attr == &dev_attr_fan.attr) exists = (drv->fan_supported) ? true : false; else if (attr == &dev_attr_kbd_backlight_mode.attr) exists = (drv->kbd_illum_supported) ? true : false; else if (attr == &dev_attr_kbd_backlight_timeout.attr) exists = (drv->kbd_mode == SCI_KBD_MODE_AUTO) ? true : false; else if (attr == &dev_attr_touchpad.attr) exists = (drv->touchpad_supported) ? true : false; else if (attr == &dev_attr_usb_sleep_charge.attr) exists = (drv->usb_sleep_charge_supported) ? true : false; else if (attr == &dev_attr_sleep_functions_on_battery.attr) exists = (drv->usb_sleep_charge_supported) ? true : false; else if (attr == &dev_attr_usb_rapid_charge.attr) exists = (drv->usb_rapid_charge_supported) ? true : false; else if (attr == &dev_attr_usb_sleep_music.attr) exists = (drv->usb_sleep_music_supported) ? true : false; else if (attr == &dev_attr_kbd_function_keys.attr) exists = (drv->kbd_function_keys_supported) ? true : false; else if (attr == &dev_attr_panel_power_on.attr) exists = (drv->panel_power_on_supported) ? true : false; else if (attr == &dev_attr_usb_three.attr) exists = (drv->usb_three_supported) ? true : false; else if (attr == &dev_attr_cooling_method.attr) exists = (drv->cooling_method_supported) ? true : false; return exists ? attr->mode : 0; } static const struct attribute_group toshiba_attr_group = { .is_visible = toshiba_sysfs_is_visible, .attrs = toshiba_attributes, }; static void toshiba_acpi_kbd_bl_work(struct work_struct *work) { /* Update the sysfs entries */ if (sysfs_update_group(&toshiba_acpi->acpi_dev->dev.kobj, &toshiba_attr_group)) pr_err("Unable to update sysfs entries\n"); /* Notify LED subsystem about keyboard backlight change */ if (toshiba_acpi->kbd_type == 2 && toshiba_acpi->kbd_mode != SCI_KBD_MODE_AUTO) led_classdev_notify_brightness_hw_changed(&toshiba_acpi->kbd_led, (toshiba_acpi->kbd_mode == SCI_KBD_MODE_ON) ? LED_FULL : LED_OFF); /* Emulate the keyboard backlight event */ acpi_bus_generate_netlink_event(toshiba_acpi->acpi_dev->pnp.device_class, dev_name(&toshiba_acpi->acpi_dev->dev), 0x92, 0); } /* * IIO device */ enum toshiba_iio_accel_chan { AXIS_X, AXIS_Y, AXIS_Z }; static int toshiba_iio_accel_get_axis(enum toshiba_iio_accel_chan chan) { u32 xyval, zval; int ret; ret = toshiba_accelerometer_get(toshiba_acpi, &xyval, &zval); if (ret < 0) return ret; switch (chan) { case AXIS_X: return xyval & HCI_ACCEL_DIRECTION_MASK ? -(xyval & HCI_ACCEL_MASK) : xyval & HCI_ACCEL_MASK; case AXIS_Y: return (xyval >> HCI_MISC_SHIFT) & HCI_ACCEL_DIRECTION_MASK ? -((xyval >> HCI_MISC_SHIFT) & HCI_ACCEL_MASK) : (xyval >> HCI_MISC_SHIFT) & HCI_ACCEL_MASK; case AXIS_Z: return zval & HCI_ACCEL_DIRECTION_MASK ? -(zval & HCI_ACCEL_MASK) : zval & HCI_ACCEL_MASK; } return ret; } static int toshiba_iio_accel_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { int ret; switch (mask) { case IIO_CHAN_INFO_RAW: ret = toshiba_iio_accel_get_axis(chan->channel); if (ret == -EIO || ret == -ENODEV) return ret; *val = ret; return IIO_VAL_INT; } return -EINVAL; } #define TOSHIBA_IIO_ACCEL_CHANNEL(axis, chan) { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel = chan, \ .channel2 = IIO_MOD_##axis, \ .output = 1, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ } static const struct iio_chan_spec toshiba_iio_accel_channels[] = { TOSHIBA_IIO_ACCEL_CHANNEL(X, AXIS_X), TOSHIBA_IIO_ACCEL_CHANNEL(Y, AXIS_Y), TOSHIBA_IIO_ACCEL_CHANNEL(Z, AXIS_Z), }; static const struct iio_info toshiba_iio_accel_info = { .read_raw = &toshiba_iio_accel_read_raw, }; /* * Misc device */ static int toshiba_acpi_smm_bridge(SMMRegisters *regs) { u32 in[TCI_WORDS] = { regs->eax, regs->ebx, regs->ecx, regs->edx, regs->esi, regs->edi }; u32 out[TCI_WORDS]; acpi_status status; status = tci_raw(toshiba_acpi, in, out); if (ACPI_FAILURE(status)) { pr_err("ACPI call to query SMM registers failed\n"); return -EIO; } /* Fillout the SMM struct with the TCI call results */ regs->eax = out[0]; regs->ebx = out[1]; regs->ecx = out[2]; regs->edx = out[3]; regs->esi = out[4]; regs->edi = out[5]; return 0; } static long toshiba_acpi_ioctl(struct file *fp, unsigned int cmd, unsigned long arg) { SMMRegisters __user *argp = (SMMRegisters __user *)arg; SMMRegisters regs; int ret; if (!argp) return -EINVAL; switch (cmd) { case TOSH_SMM: if (copy_from_user(&regs, argp, sizeof(SMMRegisters))) return -EFAULT; ret = toshiba_acpi_smm_bridge(&regs); if (ret) return ret; if (copy_to_user(argp, &regs, sizeof(SMMRegisters))) return -EFAULT; break; case TOSHIBA_ACPI_SCI: if (copy_from_user(&regs, argp, sizeof(SMMRegisters))) return -EFAULT; /* Ensure we are being called with a SCI_{GET, SET} register */ if (regs.eax != SCI_GET && regs.eax != SCI_SET) return -EINVAL; if (!sci_open(toshiba_acpi)) return -EIO; ret = toshiba_acpi_smm_bridge(&regs); sci_close(toshiba_acpi); if (ret) return ret; if (copy_to_user(argp, &regs, sizeof(SMMRegisters))) return -EFAULT; break; default: return -EINVAL; } return 0; } static const struct file_operations toshiba_acpi_fops = { .owner = THIS_MODULE, .unlocked_ioctl = toshiba_acpi_ioctl, .llseek = noop_llseek, }; /* * WWAN RFKill handlers */ static int toshiba_acpi_wwan_set_block(void *data, bool blocked) { struct toshiba_acpi_dev *dev = data; int ret; ret = toshiba_wireless_status(dev); if (ret) return ret; if (!dev->killswitch) return 0; return toshiba_wwan_set(dev, !blocked); } static void toshiba_acpi_wwan_poll(struct rfkill *rfkill, void *data) { struct toshiba_acpi_dev *dev = data; if (toshiba_wireless_status(dev)) return; rfkill_set_hw_state(dev->wwan_rfk, !dev->killswitch); } static const struct rfkill_ops wwan_rfk_ops = { .set_block = toshiba_acpi_wwan_set_block, .poll = toshiba_acpi_wwan_poll, }; static int toshiba_acpi_setup_wwan_rfkill(struct toshiba_acpi_dev *dev) { int ret = toshiba_wireless_status(dev); if (ret) return ret; dev->wwan_rfk = rfkill_alloc("Toshiba WWAN", &dev->acpi_dev->dev, RFKILL_TYPE_WWAN, &wwan_rfk_ops, dev); if (!dev->wwan_rfk) { pr_err("Unable to allocate WWAN rfkill device\n"); return -ENOMEM; } rfkill_set_hw_state(dev->wwan_rfk, !dev->killswitch); ret = rfkill_register(dev->wwan_rfk); if (ret) { pr_err("Unable to register WWAN rfkill device\n"); rfkill_destroy(dev->wwan_rfk); } return ret; } /* * Hotkeys */ static int toshiba_acpi_enable_hotkeys(struct toshiba_acpi_dev *dev) { acpi_status status; u32 result; status = acpi_evaluate_object(dev->acpi_dev->handle, "ENAB", NULL, NULL); if (ACPI_FAILURE(status)) return -ENODEV; /* * Enable the "Special Functions" mode only if they are * supported and if they are activated. */ if (dev->kbd_function_keys_supported && dev->special_functions) result = hci_write(dev, HCI_HOTKEY_EVENT, HCI_HOTKEY_SPECIAL_FUNCTIONS); else result = hci_write(dev, HCI_HOTKEY_EVENT, HCI_HOTKEY_ENABLE); if (result == TOS_FAILURE) return -EIO; else if (result == TOS_NOT_SUPPORTED) return -ENODEV; return 0; } static bool toshiba_acpi_i8042_filter(unsigned char data, unsigned char str, struct serio *port) { if (str & I8042_STR_AUXDATA) return false; if (unlikely(data == 0xe0)) return false; if ((data & 0x7f) == TOS1900_FN_SCAN) { schedule_work(&toshiba_acpi->hotkey_work); return true; } return false; } static void toshiba_acpi_hotkey_work(struct work_struct *work) { acpi_handle ec_handle = ec_get_handle(); acpi_status status; if (!ec_handle) return; status = acpi_evaluate_object(ec_handle, "NTFY", NULL, NULL); if (ACPI_FAILURE(status)) pr_err("ACPI NTFY method execution failed\n"); } /* * Returns hotkey scancode, or < 0 on failure. */ static int toshiba_acpi_query_hotkey(struct toshiba_acpi_dev *dev) { unsigned long long value; acpi_status status; status = acpi_evaluate_integer(dev->acpi_dev->handle, "INFO", NULL, &value); if (ACPI_FAILURE(status)) { pr_err("ACPI INFO method execution failed\n"); return -EIO; } return value; } static void toshiba_acpi_report_hotkey(struct toshiba_acpi_dev *dev, int scancode) { if (scancode == 0x100) return; /* Act on key press; ignore key release */ if (scancode & 0x80) return; if (!sparse_keymap_report_event(dev->hotkey_dev, scancode, 1, true)) pr_info("Unknown key %x\n", scancode); } static void toshiba_acpi_process_hotkeys(struct toshiba_acpi_dev *dev) { if (dev->info_supported) { int scancode = toshiba_acpi_query_hotkey(dev); if (scancode < 0) { pr_err("Failed to query hotkey event\n"); } else if (scancode != 0) { toshiba_acpi_report_hotkey(dev, scancode); dev->key_event_valid = 1; dev->last_key_event = scancode; } } else if (dev->system_event_supported) { u32 result; u32 value; int retries = 3; do { result = hci_read(dev, HCI_SYSTEM_EVENT, &value); switch (result) { case TOS_SUCCESS: toshiba_acpi_report_hotkey(dev, (int)value); dev->key_event_valid = 1; dev->last_key_event = value; break; case TOS_NOT_SUPPORTED: /* * This is a workaround for an unresolved * issue on some machines where system events * sporadically become disabled. */ result = hci_write(dev, HCI_SYSTEM_EVENT, 1); if (result == TOS_SUCCESS) pr_notice("Re-enabled hotkeys\n"); fallthrough; default: retries--; break; } } while (retries && result != TOS_FIFO_EMPTY); } } static int toshiba_acpi_setup_keyboard(struct toshiba_acpi_dev *dev) { const struct key_entry *keymap = toshiba_acpi_keymap; acpi_handle ec_handle; int error; if (disable_hotkeys) { pr_info("Hotkeys disabled by module parameter\n"); return 0; } if (wmi_has_guid(TOSHIBA_WMI_EVENT_GUID)) { pr_info("WMI event detected, hotkeys will not be monitored\n"); return 0; } error = toshiba_acpi_enable_hotkeys(dev); if (error) return error; if (toshiba_hotkey_event_type_get(dev, &dev->hotkey_event_type)) pr_notice("Unable to query Hotkey Event Type\n"); dev->hotkey_dev = input_allocate_device(); if (!dev->hotkey_dev) return -ENOMEM; dev->hotkey_dev->name = "Toshiba input device"; dev->hotkey_dev->phys = "toshiba_acpi/input0"; dev->hotkey_dev->id.bustype = BUS_HOST; dev->hotkey_dev->dev.parent = &dev->acpi_dev->dev; if (dev->hotkey_event_type == HCI_SYSTEM_TYPE1 || !dev->kbd_function_keys_supported) keymap = toshiba_acpi_keymap; else if (dev->hotkey_event_type == HCI_SYSTEM_TYPE2 || dev->kbd_function_keys_supported) keymap = toshiba_acpi_alt_keymap; else pr_info("Unknown event type received %x\n", dev->hotkey_event_type); error = sparse_keymap_setup(dev->hotkey_dev, keymap, NULL); if (error) goto err_free_dev; /* * For some machines the SCI responsible for providing hotkey * notification doesn't fire. We can trigger the notification * whenever the Fn key is pressed using the NTFY method, if * supported, so if it's present set up an i8042 key filter * for this purpose. */ ec_handle = ec_get_handle(); if (ec_handle && acpi_has_method(ec_handle, "NTFY")) { INIT_WORK(&dev->hotkey_work, toshiba_acpi_hotkey_work); error = i8042_install_filter(toshiba_acpi_i8042_filter); if (error) { pr_err("Error installing key filter\n"); goto err_free_dev; } dev->ntfy_supported = 1; } /* * Determine hotkey query interface. Prefer using the INFO * method when it is available. */ if (acpi_has_method(dev->acpi_dev->handle, "INFO")) dev->info_supported = 1; else if (hci_write(dev, HCI_SYSTEM_EVENT, 1) == TOS_SUCCESS) dev->system_event_supported = 1; if (!dev->info_supported && !dev->system_event_supported) { pr_warn("No hotkey query interface found\n"); error = -EINVAL; goto err_remove_filter; } error = input_register_device(dev->hotkey_dev); if (error) { pr_info("Unable to register input device\n"); goto err_remove_filter; } return 0; err_remove_filter: if (dev->ntfy_supported) i8042_remove_filter(toshiba_acpi_i8042_filter); err_free_dev: input_free_device(dev->hotkey_dev); dev->hotkey_dev = NULL; return error; } static int toshiba_acpi_setup_backlight(struct toshiba_acpi_dev *dev) { struct backlight_properties props; int brightness; int ret; /* * Some machines don't support the backlight methods at all, and * others support it read-only. Either of these is pretty useless, * so only register the backlight device if the backlight method * supports both reads and writes. */ brightness = __get_lcd_brightness(dev); if (brightness < 0) return 0; /* * If transflective backlight is supported and the brightness is zero * (lowest brightness level), the set_lcd_brightness function will * activate the transflective backlight, making the LCD appear to be * turned off, simply increment the brightness level to avoid that. */ if (dev->tr_backlight_supported && brightness == 0) brightness++; ret = set_lcd_brightness(dev, brightness); if (ret) { pr_debug("Backlight method is read-only, disabling backlight support\n"); return 0; } if (acpi_video_get_backlight_type() != acpi_backlight_vendor) return 0; memset(&props, 0, sizeof(props)); props.type = BACKLIGHT_PLATFORM; props.max_brightness = HCI_LCD_BRIGHTNESS_LEVELS - 1; /* Adding an extra level and having 0 change to transflective mode */ if (dev->tr_backlight_supported) props.max_brightness++; dev->backlight_dev = backlight_device_register("toshiba", &dev->acpi_dev->dev, dev, &toshiba_backlight_data, &props); if (IS_ERR(dev->backlight_dev)) { ret = PTR_ERR(dev->backlight_dev); pr_err("Could not register toshiba backlight device\n"); dev->backlight_dev = NULL; return ret; } dev->backlight_dev->props.brightness = brightness; return 0; } /* HWMON support for fan */ #if IS_ENABLED(CONFIG_HWMON) static umode_t toshiba_acpi_hwmon_is_visible(const void *drvdata, enum hwmon_sensor_types type, u32 attr, int channel) { return 0444; } static int toshiba_acpi_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { /* * There is only a single channel and single attribute (for the * fan) at this point. * This can be replaced with more advanced logic in the future, * should the need arise. */ if (type == hwmon_fan && channel == 0 && attr == hwmon_fan_input) { u32 value; int ret; ret = get_fan_rpm(toshiba_acpi, &value); if (ret) return ret; *val = value; return 0; } return -EOPNOTSUPP; } static const struct hwmon_channel_info * const toshiba_acpi_hwmon_info[] = { HWMON_CHANNEL_INFO(fan, HWMON_F_INPUT), NULL }; static const struct hwmon_ops toshiba_acpi_hwmon_ops = { .is_visible = toshiba_acpi_hwmon_is_visible, .read = toshiba_acpi_hwmon_read, }; static const struct hwmon_chip_info toshiba_acpi_hwmon_chip_info = { .ops = &toshiba_acpi_hwmon_ops, .info = toshiba_acpi_hwmon_info, }; #endif /* ACPI battery hooking */ static ssize_t charge_control_end_threshold_show(struct device *device, struct device_attribute *attr, char *buf) { u32 state; int status; if (toshiba_acpi == NULL) { pr_err("Toshiba ACPI object invalid\n"); return -ENODEV; } status = toshiba_battery_charge_mode_get(toshiba_acpi, &state); if (status != 0) return status; if (state == 1) return sprintf(buf, "80\n"); else return sprintf(buf, "100\n"); } static ssize_t charge_control_end_threshold_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { u32 value; int rval; if (toshiba_acpi == NULL) { pr_err("Toshiba ACPI object invalid\n"); return -ENODEV; } rval = kstrtou32(buf, 10, &value); if (rval) return rval; if (value < 1 || value > 100) return -EINVAL; rval = toshiba_battery_charge_mode_set(toshiba_acpi, (value < 90) ? 1 : 0); if (rval < 0) return rval; else return count; } static DEVICE_ATTR_RW(charge_control_end_threshold); static struct attribute *toshiba_acpi_battery_attrs[] = { &dev_attr_charge_control_end_threshold.attr, NULL, }; ATTRIBUTE_GROUPS(toshiba_acpi_battery); static int toshiba_acpi_battery_add(struct power_supply *battery, struct acpi_battery_hook *hook) { if (toshiba_acpi == NULL) { pr_err("Init order issue\n"); return -ENODEV; } if (!toshiba_acpi->battery_charge_mode_supported) return -ENODEV; if (device_add_groups(&battery->dev, toshiba_acpi_battery_groups)) return -ENODEV; return 0; } static int toshiba_acpi_battery_remove(struct power_supply *battery, struct acpi_battery_hook *hook) { device_remove_groups(&battery->dev, toshiba_acpi_battery_groups); return 0; } static struct acpi_battery_hook battery_hook = { .add_battery = toshiba_acpi_battery_add, .remove_battery = toshiba_acpi_battery_remove, .name = "Toshiba Battery Extension", }; static void print_supported_features(struct toshiba_acpi_dev *dev) { pr_info("Supported laptop features:"); if (dev->hotkey_dev) pr_cont(" hotkeys"); if (dev->backlight_dev) pr_cont(" backlight"); if (dev->video_supported) pr_cont(" video-out"); if (dev->fan_supported) pr_cont(" fan"); if (dev->fan_rpm_supported) pr_cont(" fan-rpm"); if (dev->tr_backlight_supported) pr_cont(" transflective-backlight"); if (dev->illumination_supported) pr_cont(" illumination"); if (dev->kbd_illum_supported) pr_cont(" keyboard-backlight"); if (dev->touchpad_supported) pr_cont(" touchpad"); if (dev->eco_supported) pr_cont(" eco-led"); if (dev->accelerometer_supported) pr_cont(" accelerometer-axes"); if (dev->usb_sleep_charge_supported) pr_cont(" usb-sleep-charge"); if (dev->usb_rapid_charge_supported) pr_cont(" usb-rapid-charge"); if (dev->usb_sleep_music_supported) pr_cont(" usb-sleep-music"); if (dev->kbd_function_keys_supported) pr_cont(" special-function-keys"); if (dev->panel_power_on_supported) pr_cont(" panel-power-on"); if (dev->usb_three_supported) pr_cont(" usb3"); if (dev->wwan_supported) pr_cont(" wwan"); if (dev->cooling_method_supported) pr_cont(" cooling-method"); if (dev->battery_charge_mode_supported) pr_cont(" battery-charge-mode"); pr_cont("\n"); } static void toshiba_acpi_remove(struct acpi_device *acpi_dev) { struct toshiba_acpi_dev *dev = acpi_driver_data(acpi_dev); misc_deregister(&dev->miscdev); remove_toshiba_proc_entries(dev); #if IS_ENABLED(CONFIG_HWMON) if (dev->hwmon_device) hwmon_device_unregister(dev->hwmon_device); #endif if (dev->accelerometer_supported && dev->indio_dev) { iio_device_unregister(dev->indio_dev); iio_device_free(dev->indio_dev); } if (dev->sysfs_created) sysfs_remove_group(&dev->acpi_dev->dev.kobj, &toshiba_attr_group); if (dev->ntfy_supported) { i8042_remove_filter(toshiba_acpi_i8042_filter); cancel_work_sync(&dev->hotkey_work); } if (dev->hotkey_dev) input_unregister_device(dev->hotkey_dev); backlight_device_unregister(dev->backlight_dev); led_classdev_unregister(&dev->led_dev); led_classdev_unregister(&dev->kbd_led); led_classdev_unregister(&dev->eco_led); if (dev->wwan_rfk) { rfkill_unregister(dev->wwan_rfk); rfkill_destroy(dev->wwan_rfk); } if (dev->battery_charge_mode_supported) battery_hook_unregister(&battery_hook); if (toshiba_acpi) toshiba_acpi = NULL; kfree(dev); } static const char *find_hci_method(acpi_handle handle) { if (acpi_has_method(handle, "GHCI")) return "GHCI"; if (acpi_has_method(handle, "SPFC")) return "SPFC"; return NULL; } /* * Some Toshibas have a broken acpi-video interface for brightness control, * these are quirked in drivers/acpi/video_detect.c to use the GPU native * (/sys/class/backlight/intel_backlight) instead. * But these need a HCI_SET call to actually turn the panel back on at resume, * without this call the screen stays black at resume. * Either HCI_LCD_BRIGHTNESS (used by acpi_video's _BCM) or HCI_PANEL_POWER_ON * works. toshiba_acpi_resume() uses HCI_PANEL_POWER_ON to avoid changing * the configured brightness level. */ static const struct dmi_system_id turn_on_panel_on_resume_dmi_ids[] = { { /* Toshiba Portégé R700 */ /* https://bugzilla.kernel.org/show_bug.cgi?id=21012 */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"), DMI_MATCH(DMI_PRODUCT_NAME, "PORTEGE R700"), }, }, { /* Toshiba Satellite/Portégé R830 */ /* Portégé: https://bugs.freedesktop.org/show_bug.cgi?id=82634 */ /* Satellite: https://bugzilla.kernel.org/show_bug.cgi?id=21012 */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"), DMI_MATCH(DMI_PRODUCT_NAME, "R830"), }, }, { /* Toshiba Satellite/Portégé Z830 */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"), DMI_MATCH(DMI_PRODUCT_NAME, "Z830"), }, }, }; static int toshiba_acpi_add(struct acpi_device *acpi_dev) { struct toshiba_acpi_dev *dev; const char *hci_method; u32 dummy; int ret = 0; if (toshiba_acpi) return -EBUSY; pr_info("Toshiba Laptop ACPI Extras version %s\n", TOSHIBA_ACPI_VERSION); hci_method = find_hci_method(acpi_dev->handle); if (!hci_method) { pr_err("HCI interface not found\n"); return -ENODEV; } dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; dev->acpi_dev = acpi_dev; dev->method_hci = hci_method; dev->miscdev.minor = MISC_DYNAMIC_MINOR; dev->miscdev.name = "toshiba_acpi"; dev->miscdev.fops = &toshiba_acpi_fops; ret = misc_register(&dev->miscdev); if (ret) { pr_err("Failed to register miscdevice\n"); kfree(dev); return ret; } acpi_dev->driver_data = dev; dev_set_drvdata(&acpi_dev->dev, dev); /* Query the BIOS for supported features */ /* * The "Special Functions" are always supported by the laptops * with the new keyboard layout, query for its presence to help * determine the keymap layout to use. */ ret = toshiba_function_keys_get(dev, &dev->special_functions); dev->kbd_function_keys_supported = !ret; dev->hotkey_event_type = 0; if (toshiba_acpi_setup_keyboard(dev)) pr_info("Unable to activate hotkeys\n"); /* Determine whether or not BIOS supports transflective backlight */ ret = get_tr_backlight_status(dev, &dummy); dev->tr_backlight_supported = !ret; ret = toshiba_acpi_setup_backlight(dev); if (ret) goto error; toshiba_illumination_available(dev); if (dev->illumination_supported) { dev->led_dev.name = "toshiba::illumination"; dev->led_dev.max_brightness = 1; dev->led_dev.brightness_set = toshiba_illumination_set; dev->led_dev.brightness_get = toshiba_illumination_get; led_classdev_register(&acpi_dev->dev, &dev->led_dev); } toshiba_eco_mode_available(dev); if (dev->eco_supported) { dev->eco_led.name = "toshiba::eco_mode"; dev->eco_led.max_brightness = 1; dev->eco_led.brightness_set = toshiba_eco_mode_set_status; dev->eco_led.brightness_get = toshiba_eco_mode_get_status; led_classdev_register(&dev->acpi_dev->dev, &dev->eco_led); } toshiba_kbd_illum_available(dev); /* * Only register the LED if KBD illumination is supported * and the keyboard backlight operation mode is set to FN-Z * or we detect a second gen keyboard backlight */ if (dev->kbd_illum_supported && (dev->kbd_mode == SCI_KBD_MODE_FNZ || dev->kbd_type == 2)) { dev->kbd_led.name = "toshiba::kbd_backlight"; dev->kbd_led.flags = LED_BRIGHT_HW_CHANGED; dev->kbd_led.max_brightness = 1; dev->kbd_led.brightness_set = toshiba_kbd_backlight_set; dev->kbd_led.brightness_get = toshiba_kbd_backlight_get; led_classdev_register(&dev->acpi_dev->dev, &dev->kbd_led); } ret = toshiba_touchpad_get(dev, &dummy); dev->touchpad_supported = !ret; toshiba_accelerometer_available(dev); if (dev->accelerometer_supported) { dev->indio_dev = iio_device_alloc(&acpi_dev->dev, sizeof(*dev)); if (!dev->indio_dev) { pr_err("Unable to allocate iio device\n"); goto iio_error; } pr_info("Registering Toshiba accelerometer iio device\n"); dev->indio_dev->info = &toshiba_iio_accel_info; dev->indio_dev->name = "Toshiba accelerometer"; dev->indio_dev->modes = INDIO_DIRECT_MODE; dev->indio_dev->channels = toshiba_iio_accel_channels; dev->indio_dev->num_channels = ARRAY_SIZE(toshiba_iio_accel_channels); ret = iio_device_register(dev->indio_dev); if (ret < 0) { pr_err("Unable to register iio device\n"); iio_device_free(dev->indio_dev); } } iio_error: toshiba_usb_sleep_charge_available(dev); ret = toshiba_usb_rapid_charge_get(dev, &dummy); dev->usb_rapid_charge_supported = !ret; ret = toshiba_usb_sleep_music_get(dev, &dummy); dev->usb_sleep_music_supported = !ret; ret = toshiba_panel_power_on_get(dev, &dummy); dev->panel_power_on_supported = !ret; ret = toshiba_usb_three_get(dev, &dummy); dev->usb_three_supported = !ret; ret = get_video_status(dev, &dummy); dev->video_supported = !ret; ret = get_fan_status(dev, &dummy); dev->fan_supported = !ret; ret = get_fan_rpm(dev, &dummy); dev->fan_rpm_supported = !ret; #if IS_ENABLED(CONFIG_HWMON) if (dev->fan_rpm_supported) { dev->hwmon_device = hwmon_device_register_with_info( &dev->acpi_dev->dev, "toshiba_acpi_sensors", NULL, &toshiba_acpi_hwmon_chip_info, NULL); if (IS_ERR(dev->hwmon_device)) { dev->hwmon_device = NULL; pr_warn("unable to register hwmon device, skipping\n"); } } #endif if (turn_on_panel_on_resume == -1) turn_on_panel_on_resume = dmi_check_system(turn_on_panel_on_resume_dmi_ids); toshiba_wwan_available(dev); if (dev->wwan_supported) toshiba_acpi_setup_wwan_rfkill(dev); toshiba_cooling_method_available(dev); toshiba_battery_charge_mode_available(dev); print_supported_features(dev); ret = sysfs_create_group(&dev->acpi_dev->dev.kobj, &toshiba_attr_group); if (ret) { dev->sysfs_created = 0; goto error; } dev->sysfs_created = !ret; create_toshiba_proc_entries(dev); toshiba_acpi = dev; /* * As the battery hook relies on the static variable toshiba_acpi being * set, this must be done after toshiba_acpi is assigned. */ if (dev->battery_charge_mode_supported) battery_hook_register(&battery_hook); return 0; error: toshiba_acpi_remove(acpi_dev); return ret; } static void toshiba_acpi_notify(struct acpi_device *acpi_dev, u32 event) { struct toshiba_acpi_dev *dev = acpi_driver_data(acpi_dev); switch (event) { case 0x80: /* Hotkeys and some system events */ /* * Machines with this WMI GUID aren't supported due to bugs in * their AML. * * Return silently to avoid triggering a netlink event. */ if (wmi_has_guid(TOSHIBA_WMI_EVENT_GUID)) return; toshiba_acpi_process_hotkeys(dev); break; case 0x81: /* Dock events */ case 0x82: case 0x83: pr_info("Dock event received %x\n", event); break; case 0x88: /* Thermal events */ pr_info("Thermal event received\n"); break; case 0x8f: /* LID closed */ case 0x90: /* LID is closed and Dock has been ejected */ break; case 0x8c: /* SATA power events */ case 0x8b: pr_info("SATA power event received %x\n", event); break; case 0x92: /* Keyboard backlight mode changed */ dev->kbd_event_generated = true; /* Update sysfs entries */ if (sysfs_update_group(&acpi_dev->dev.kobj, &toshiba_attr_group)) pr_err("Unable to update sysfs entries\n"); /* Notify LED subsystem about keyboard backlight change */ if (dev->kbd_type == 2 && dev->kbd_mode != SCI_KBD_MODE_AUTO) led_classdev_notify_brightness_hw_changed(&dev->kbd_led, (dev->kbd_mode == SCI_KBD_MODE_ON) ? LED_FULL : LED_OFF); break; case 0x85: /* Unknown */ case 0x8d: /* Unknown */ case 0x8e: /* Unknown */ case 0x94: /* Unknown */ case 0x95: /* Unknown */ default: pr_info("Unknown event received %x\n", event); break; } acpi_bus_generate_netlink_event(acpi_dev->pnp.device_class, dev_name(&acpi_dev->dev), event, (event == 0x80) ? dev->last_key_event : 0); } #ifdef CONFIG_PM_SLEEP static int toshiba_acpi_suspend(struct device *device) { struct toshiba_acpi_dev *dev = acpi_driver_data(to_acpi_device(device)); if (dev->hotkey_dev) { u32 result; result = hci_write(dev, HCI_HOTKEY_EVENT, HCI_HOTKEY_DISABLE); if (result != TOS_SUCCESS) pr_info("Unable to disable hotkeys\n"); } return 0; } static int toshiba_acpi_resume(struct device *device) { struct toshiba_acpi_dev *dev = acpi_driver_data(to_acpi_device(device)); if (dev->hotkey_dev) { if (toshiba_acpi_enable_hotkeys(dev)) pr_info("Unable to re-enable hotkeys\n"); } if (dev->wwan_rfk) { if (!toshiba_wireless_status(dev)) rfkill_set_hw_state(dev->wwan_rfk, !dev->killswitch); } if (turn_on_panel_on_resume) hci_write(dev, HCI_PANEL_POWER_ON, 1); return 0; } #endif static SIMPLE_DEV_PM_OPS(toshiba_acpi_pm, toshiba_acpi_suspend, toshiba_acpi_resume); static struct acpi_driver toshiba_acpi_driver = { .name = "Toshiba ACPI driver", .owner = THIS_MODULE, .ids = toshiba_device_ids, .flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS, .ops = { .add = toshiba_acpi_add, .remove = toshiba_acpi_remove, .notify = toshiba_acpi_notify, }, .drv.pm = &toshiba_acpi_pm, }; static int __init toshiba_acpi_init(void) { int ret; toshiba_proc_dir = proc_mkdir(PROC_TOSHIBA, acpi_root_dir); if (!toshiba_proc_dir) { pr_err("Unable to create proc dir " PROC_TOSHIBA "\n"); return -ENODEV; } ret = acpi_bus_register_driver(&toshiba_acpi_driver); if (ret) { pr_err("Failed to register ACPI driver: %d\n", ret); remove_proc_entry(PROC_TOSHIBA, acpi_root_dir); } return ret; } static void __exit toshiba_acpi_exit(void) { acpi_bus_unregister_driver(&toshiba_acpi_driver); if (toshiba_proc_dir) remove_proc_entry(PROC_TOSHIBA, acpi_root_dir); } module_init(toshiba_acpi_init); module_exit(toshiba_acpi_exit);
linux-master
drivers/platform/x86/toshiba_acpi.c
// SPDX-License-Identifier: GPL-2.0-only OR BSD-3-Clause /* * Copyright 2023 Schweitzer Engineering Laboratories, Inc. * 2350 NE Hopkins Court, Pullman, WA 99163 USA * * Platform support for the b2093 mainboard used in SEL-3350 computers. * Consumes GPIO from the SoC to provide standard LED and power supply * devices. */ #include <linux/acpi.h> #include <linux/gpio/consumer.h> #include <linux/gpio/machine.h> #include <linux/leds.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/power_supply.h> /* Broxton communities */ #define BXT_NW "INT3452:01" #define BXT_W "INT3452:02" #define BXT_SW "INT3452:03" #define B2093_GPIO_ACPI_ID "SEL0003" #define SEL_PS_A "sel_ps_a" #define SEL_PS_A_DETECT "sel_ps_a_detect" #define SEL_PS_A_GOOD "sel_ps_a_good" #define SEL_PS_B "sel_ps_b" #define SEL_PS_B_DETECT "sel_ps_b_detect" #define SEL_PS_B_GOOD "sel_ps_b_good" /* LEDs */ static const struct gpio_led sel3350_leds[] = { { .name = "sel:green:aux1" }, { .name = "sel:green:aux2" }, { .name = "sel:green:aux3" }, { .name = "sel:green:aux4" }, { .name = "sel:red:alarm" }, { .name = "sel:green:enabled", .default_state = LEDS_GPIO_DEFSTATE_ON }, { .name = "sel:red:aux1" }, { .name = "sel:red:aux2" }, { .name = "sel:red:aux3" }, { .name = "sel:red:aux4" }, }; static const struct gpio_led_platform_data sel3350_leds_pdata = { .num_leds = ARRAY_SIZE(sel3350_leds), .leds = sel3350_leds, }; /* Map GPIOs to LEDs */ static struct gpiod_lookup_table sel3350_leds_table = { .dev_id = "leds-gpio", .table = { GPIO_LOOKUP_IDX(BXT_NW, 49, NULL, 0, GPIO_ACTIVE_HIGH), GPIO_LOOKUP_IDX(BXT_NW, 50, NULL, 1, GPIO_ACTIVE_HIGH), GPIO_LOOKUP_IDX(BXT_NW, 51, NULL, 2, GPIO_ACTIVE_HIGH), GPIO_LOOKUP_IDX(BXT_NW, 52, NULL, 3, GPIO_ACTIVE_HIGH), GPIO_LOOKUP_IDX(BXT_W, 20, NULL, 4, GPIO_ACTIVE_HIGH), GPIO_LOOKUP_IDX(BXT_W, 21, NULL, 5, GPIO_ACTIVE_HIGH), GPIO_LOOKUP_IDX(BXT_SW, 37, NULL, 6, GPIO_ACTIVE_HIGH), GPIO_LOOKUP_IDX(BXT_SW, 38, NULL, 7, GPIO_ACTIVE_HIGH), GPIO_LOOKUP_IDX(BXT_SW, 39, NULL, 8, GPIO_ACTIVE_HIGH), GPIO_LOOKUP_IDX(BXT_SW, 40, NULL, 9, GPIO_ACTIVE_HIGH), {}, } }; /* Map GPIOs to power supplies */ static struct gpiod_lookup_table sel3350_gpios_table = { .dev_id = B2093_GPIO_ACPI_ID ":00", .table = { GPIO_LOOKUP(BXT_NW, 44, SEL_PS_A_DETECT, GPIO_ACTIVE_LOW), GPIO_LOOKUP(BXT_NW, 45, SEL_PS_A_GOOD, GPIO_ACTIVE_LOW), GPIO_LOOKUP(BXT_NW, 46, SEL_PS_B_DETECT, GPIO_ACTIVE_LOW), GPIO_LOOKUP(BXT_NW, 47, SEL_PS_B_GOOD, GPIO_ACTIVE_LOW), {}, } }; /* Power Supplies */ struct sel3350_power_cfg_data { struct gpio_desc *ps_detect; struct gpio_desc *ps_good; }; static int sel3350_power_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct sel3350_power_cfg_data *data = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_HEALTH: if (gpiod_get_value(data->ps_detect)) { if (gpiod_get_value(data->ps_good)) val->intval = POWER_SUPPLY_HEALTH_GOOD; else val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE; } else { val->intval = POWER_SUPPLY_HEALTH_UNKNOWN; } break; case POWER_SUPPLY_PROP_PRESENT: val->intval = gpiod_get_value(data->ps_detect); break; case POWER_SUPPLY_PROP_ONLINE: val->intval = gpiod_get_value(data->ps_good); break; default: return -EINVAL; } return 0; } static const enum power_supply_property sel3350_power_properties[] = { POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_ONLINE, }; static const struct power_supply_desc sel3350_ps_a_desc = { .name = SEL_PS_A, .type = POWER_SUPPLY_TYPE_MAINS, .properties = sel3350_power_properties, .num_properties = ARRAY_SIZE(sel3350_power_properties), .get_property = sel3350_power_get_property, }; static const struct power_supply_desc sel3350_ps_b_desc = { .name = SEL_PS_B, .type = POWER_SUPPLY_TYPE_MAINS, .properties = sel3350_power_properties, .num_properties = ARRAY_SIZE(sel3350_power_properties), .get_property = sel3350_power_get_property, }; struct sel3350_data { struct platform_device *leds_pdev; struct power_supply *ps_a; struct power_supply *ps_b; struct sel3350_power_cfg_data ps_a_cfg_data; struct sel3350_power_cfg_data ps_b_cfg_data; }; static int sel3350_probe(struct platform_device *pdev) { int rs; struct sel3350_data *sel3350; struct power_supply_config ps_cfg = {}; sel3350 = devm_kzalloc(&pdev->dev, sizeof(struct sel3350_data), GFP_KERNEL); if (!sel3350) return -ENOMEM; platform_set_drvdata(pdev, sel3350); gpiod_add_lookup_table(&sel3350_leds_table); gpiod_add_lookup_table(&sel3350_gpios_table); sel3350->leds_pdev = platform_device_register_data( NULL, "leds-gpio", PLATFORM_DEVID_NONE, &sel3350_leds_pdata, sizeof(sel3350_leds_pdata)); if (IS_ERR(sel3350->leds_pdev)) { rs = PTR_ERR(sel3350->leds_pdev); dev_err(&pdev->dev, "Failed registering platform device: %d\n", rs); goto err_platform; } /* Power Supply A */ sel3350->ps_a_cfg_data.ps_detect = devm_gpiod_get(&pdev->dev, SEL_PS_A_DETECT, GPIOD_IN); sel3350->ps_a_cfg_data.ps_good = devm_gpiod_get(&pdev->dev, SEL_PS_A_GOOD, GPIOD_IN); ps_cfg.drv_data = &sel3350->ps_a_cfg_data; sel3350->ps_a = devm_power_supply_register(&pdev->dev, &sel3350_ps_a_desc, &ps_cfg); if (IS_ERR(sel3350->ps_a)) { rs = PTR_ERR(sel3350->ps_a); dev_err(&pdev->dev, "Failed registering power supply A: %d\n", rs); goto err_ps; } /* Power Supply B */ sel3350->ps_b_cfg_data.ps_detect = devm_gpiod_get(&pdev->dev, SEL_PS_B_DETECT, GPIOD_IN); sel3350->ps_b_cfg_data.ps_good = devm_gpiod_get(&pdev->dev, SEL_PS_B_GOOD, GPIOD_IN); ps_cfg.drv_data = &sel3350->ps_b_cfg_data; sel3350->ps_b = devm_power_supply_register(&pdev->dev, &sel3350_ps_b_desc, &ps_cfg); if (IS_ERR(sel3350->ps_b)) { rs = PTR_ERR(sel3350->ps_b); dev_err(&pdev->dev, "Failed registering power supply B: %d\n", rs); goto err_ps; } return 0; err_ps: platform_device_unregister(sel3350->leds_pdev); err_platform: gpiod_remove_lookup_table(&sel3350_gpios_table); gpiod_remove_lookup_table(&sel3350_leds_table); return rs; } static int sel3350_remove(struct platform_device *pdev) { struct sel3350_data *sel3350 = platform_get_drvdata(pdev); platform_device_unregister(sel3350->leds_pdev); gpiod_remove_lookup_table(&sel3350_gpios_table); gpiod_remove_lookup_table(&sel3350_leds_table); return 0; } static const struct acpi_device_id sel3350_device_ids[] = { { B2093_GPIO_ACPI_ID, 0 }, { "", 0 }, }; MODULE_DEVICE_TABLE(acpi, sel3350_device_ids); static struct platform_driver sel3350_platform_driver = { .probe = sel3350_probe, .remove = sel3350_remove, .driver = { .name = "sel3350-platform", .acpi_match_table = sel3350_device_ids, }, }; module_platform_driver(sel3350_platform_driver); MODULE_AUTHOR("Schweitzer Engineering Laboratories"); MODULE_DESCRIPTION("SEL-3350 platform driver"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_SOFTDEP("pre: pinctrl_broxton leds-gpio");
linux-master
drivers/platform/x86/sel3350-platform.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * msi-ec: MSI laptops' embedded controller driver. * * This driver allows various MSI laptops' functionalities to be * controlled from userspace. * * It contains EC memory configurations for different firmware versions * and exports battery charge thresholds to userspace. * * Copyright (C) 2023 Jose Angel Pastrana <[email protected]> * Copyright (C) 2023 Aakash Singh <[email protected]> * Copyright (C) 2023 Nikita Kravets <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include "msi-ec.h" #include <acpi/battery.h> #include <linux/acpi.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/seq_file.h> #include <linux/string.h> #define SM_ECO_NAME "eco" #define SM_COMFORT_NAME "comfort" #define SM_SPORT_NAME "sport" #define SM_TURBO_NAME "turbo" #define FM_AUTO_NAME "auto" #define FM_SILENT_NAME "silent" #define FM_BASIC_NAME "basic" #define FM_ADVANCED_NAME "advanced" static const char * const ALLOWED_FW_0[] __initconst = { "14C1EMS1.012", "14C1EMS1.101", "14C1EMS1.102", NULL }; static struct msi_ec_conf CONF0 __initdata = { .allowed_fw = ALLOWED_FW_0, .charge_control = { .address = 0xef, .offset_start = 0x8a, .offset_end = 0x80, .range_min = 0x8a, .range_max = 0xe4, }, .webcam = { .address = 0x2e, .block_address = 0x2f, .bit = 1, }, .fn_super_swap = { .address = 0xbf, .bit = 4, }, .cooler_boost = { .address = 0x98, .bit = 7, }, .shift_mode = { .address = 0xf2, .modes = { { SM_ECO_NAME, 0xc2 }, { SM_COMFORT_NAME, 0xc1 }, { SM_SPORT_NAME, 0xc0 }, MSI_EC_MODE_NULL }, }, .super_battery = { .address = MSI_EC_ADDR_UNKNOWN, // 0xd5 needs testing }, .fan_mode = { .address = 0xf4, .modes = { { FM_AUTO_NAME, 0x0d }, { FM_SILENT_NAME, 0x1d }, { FM_BASIC_NAME, 0x4d }, { FM_ADVANCED_NAME, 0x8d }, MSI_EC_MODE_NULL }, }, .cpu = { .rt_temp_address = 0x68, .rt_fan_speed_address = 0x71, .rt_fan_speed_base_min = 0x19, .rt_fan_speed_base_max = 0x37, .bs_fan_speed_address = 0x89, .bs_fan_speed_base_min = 0x00, .bs_fan_speed_base_max = 0x0f, }, .gpu = { .rt_temp_address = 0x80, .rt_fan_speed_address = 0x89, }, .leds = { .micmute_led_address = 0x2b, .mute_led_address = 0x2c, .bit = 2, }, .kbd_bl = { .bl_mode_address = 0x2c, // ? .bl_modes = { 0x00, 0x08 }, // ? .max_mode = 1, // ? .bl_state_address = 0xf3, .state_base_value = 0x80, .max_state = 3, }, }; static const char * const ALLOWED_FW_1[] __initconst = { "17F2EMS1.103", "17F2EMS1.104", "17F2EMS1.106", "17F2EMS1.107", NULL }; static struct msi_ec_conf CONF1 __initdata = { .allowed_fw = ALLOWED_FW_1, .charge_control = { .address = 0xef, .offset_start = 0x8a, .offset_end = 0x80, .range_min = 0x8a, .range_max = 0xe4, }, .webcam = { .address = 0x2e, .block_address = 0x2f, .bit = 1, }, .fn_super_swap = { .address = 0xbf, .bit = 4, }, .cooler_boost = { .address = 0x98, .bit = 7, }, .shift_mode = { .address = 0xf2, .modes = { { SM_ECO_NAME, 0xc2 }, { SM_COMFORT_NAME, 0xc1 }, { SM_SPORT_NAME, 0xc0 }, { SM_TURBO_NAME, 0xc4 }, MSI_EC_MODE_NULL }, }, .super_battery = { .address = MSI_EC_ADDR_UNKNOWN, }, .fan_mode = { .address = 0xf4, .modes = { { FM_AUTO_NAME, 0x0d }, { FM_BASIC_NAME, 0x4d }, { FM_ADVANCED_NAME, 0x8d }, MSI_EC_MODE_NULL }, }, .cpu = { .rt_temp_address = 0x68, .rt_fan_speed_address = 0x71, .rt_fan_speed_base_min = 0x19, .rt_fan_speed_base_max = 0x37, .bs_fan_speed_address = 0x89, .bs_fan_speed_base_min = 0x00, .bs_fan_speed_base_max = 0x0f, }, .gpu = { .rt_temp_address = 0x80, .rt_fan_speed_address = 0x89, }, .leds = { .micmute_led_address = 0x2b, .mute_led_address = 0x2c, .bit = 2, }, .kbd_bl = { .bl_mode_address = 0x2c, // ? .bl_modes = { 0x00, 0x08 }, // ? .max_mode = 1, // ? .bl_state_address = 0xf3, .state_base_value = 0x80, .max_state = 3, }, }; static const char * const ALLOWED_FW_2[] __initconst = { "1552EMS1.118", NULL }; static struct msi_ec_conf CONF2 __initdata = { .allowed_fw = ALLOWED_FW_2, .charge_control = { .address = 0xd7, .offset_start = 0x8a, .offset_end = 0x80, .range_min = 0x8a, .range_max = 0xe4, }, .webcam = { .address = 0x2e, .block_address = 0x2f, .bit = 1, }, .fn_super_swap = { .address = 0xe8, .bit = 4, }, .cooler_boost = { .address = 0x98, .bit = 7, }, .shift_mode = { .address = 0xf2, .modes = { { SM_ECO_NAME, 0xc2 }, { SM_COMFORT_NAME, 0xc1 }, { SM_SPORT_NAME, 0xc0 }, MSI_EC_MODE_NULL }, }, .super_battery = { .address = 0xeb, .mask = 0x0f, }, .fan_mode = { .address = 0xd4, .modes = { { FM_AUTO_NAME, 0x0d }, { FM_SILENT_NAME, 0x1d }, { FM_BASIC_NAME, 0x4d }, { FM_ADVANCED_NAME, 0x8d }, MSI_EC_MODE_NULL }, }, .cpu = { .rt_temp_address = 0x68, .rt_fan_speed_address = 0x71, .rt_fan_speed_base_min = 0x19, .rt_fan_speed_base_max = 0x37, .bs_fan_speed_address = 0x89, .bs_fan_speed_base_min = 0x00, .bs_fan_speed_base_max = 0x0f, }, .gpu = { .rt_temp_address = 0x80, .rt_fan_speed_address = 0x89, }, .leds = { .micmute_led_address = 0x2c, .mute_led_address = 0x2d, .bit = 1, }, .kbd_bl = { .bl_mode_address = 0x2c, // ? .bl_modes = { 0x00, 0x08 }, // ? .max_mode = 1, // ? .bl_state_address = 0xd3, .state_base_value = 0x80, .max_state = 3, }, }; static const char * const ALLOWED_FW_3[] __initconst = { "1592EMS1.111", "E1592IMS.10C", NULL }; static struct msi_ec_conf CONF3 __initdata = { .allowed_fw = ALLOWED_FW_3, .charge_control = { .address = 0xef, .offset_start = 0x8a, .offset_end = 0x80, .range_min = 0x8a, .range_max = 0xe4, }, .webcam = { .address = 0x2e, .block_address = 0x2f, .bit = 1, }, .fn_super_swap = { .address = 0xe8, .bit = 4, }, .cooler_boost = { .address = 0x98, .bit = 7, }, .shift_mode = { .address = 0xd2, .modes = { { SM_ECO_NAME, 0xc2 }, { SM_COMFORT_NAME, 0xc1 }, { SM_SPORT_NAME, 0xc0 }, MSI_EC_MODE_NULL }, }, .super_battery = { .address = 0xeb, .mask = 0x0f, }, .fan_mode = { .address = 0xd4, .modes = { { FM_AUTO_NAME, 0x0d }, { FM_SILENT_NAME, 0x1d }, { FM_BASIC_NAME, 0x4d }, { FM_ADVANCED_NAME, 0x8d }, MSI_EC_MODE_NULL }, }, .cpu = { .rt_temp_address = 0x68, .rt_fan_speed_address = 0xc9, .rt_fan_speed_base_min = 0x19, .rt_fan_speed_base_max = 0x37, .bs_fan_speed_address = 0x89, // ? .bs_fan_speed_base_min = 0x00, .bs_fan_speed_base_max = 0x0f, }, .gpu = { .rt_temp_address = 0x80, .rt_fan_speed_address = 0x89, }, .leds = { .micmute_led_address = 0x2b, .mute_led_address = 0x2c, .bit = 1, }, .kbd_bl = { .bl_mode_address = 0x2c, // ? .bl_modes = { 0x00, 0x08 }, // ? .max_mode = 1, // ? .bl_state_address = 0xd3, .state_base_value = 0x80, .max_state = 3, }, }; static const char * const ALLOWED_FW_4[] __initconst = { "16V4EMS1.114", NULL }; static struct msi_ec_conf CONF4 __initdata = { .allowed_fw = ALLOWED_FW_4, .charge_control = { .address = 0xd7, .offset_start = 0x8a, .offset_end = 0x80, .range_min = 0x8a, .range_max = 0xe4, }, .webcam = { .address = 0x2e, .block_address = 0x2f, .bit = 1, }, .fn_super_swap = { .address = MSI_EC_ADDR_UNKNOWN, // supported, but unknown .bit = 4, }, .cooler_boost = { .address = 0x98, .bit = 7, }, .shift_mode = { .address = 0xd2, .modes = { { SM_ECO_NAME, 0xc2 }, { SM_COMFORT_NAME, 0xc1 }, { SM_SPORT_NAME, 0xc0 }, MSI_EC_MODE_NULL }, }, .super_battery = { // may be supported, but address is unknown .address = MSI_EC_ADDR_UNKNOWN, .mask = 0x0f, }, .fan_mode = { .address = 0xd4, .modes = { { FM_AUTO_NAME, 0x0d }, { FM_SILENT_NAME, 0x1d }, { FM_ADVANCED_NAME, 0x8d }, MSI_EC_MODE_NULL }, }, .cpu = { .rt_temp_address = 0x68, // needs testing .rt_fan_speed_address = 0x71, // needs testing .rt_fan_speed_base_min = 0x19, .rt_fan_speed_base_max = 0x37, .bs_fan_speed_address = MSI_EC_ADDR_UNKNOWN, .bs_fan_speed_base_min = 0x00, .bs_fan_speed_base_max = 0x0f, }, .gpu = { .rt_temp_address = 0x80, .rt_fan_speed_address = MSI_EC_ADDR_UNKNOWN, }, .leds = { .micmute_led_address = MSI_EC_ADDR_UNKNOWN, .mute_led_address = MSI_EC_ADDR_UNKNOWN, .bit = 1, }, .kbd_bl = { .bl_mode_address = MSI_EC_ADDR_UNKNOWN, // ? .bl_modes = { 0x00, 0x08 }, // ? .max_mode = 1, // ? .bl_state_address = MSI_EC_ADDR_UNSUPP, // 0xd3, not functional .state_base_value = 0x80, .max_state = 3, }, }; static const char * const ALLOWED_FW_5[] __initconst = { "158LEMS1.103", "158LEMS1.105", "158LEMS1.106", NULL }; static struct msi_ec_conf CONF5 __initdata = { .allowed_fw = ALLOWED_FW_5, .charge_control = { .address = 0xef, .offset_start = 0x8a, .offset_end = 0x80, .range_min = 0x8a, .range_max = 0xe4, }, .webcam = { .address = 0x2e, .block_address = 0x2f, .bit = 1, }, .fn_super_swap = { // todo: reverse .address = 0xbf, .bit = 4, }, .cooler_boost = { .address = 0x98, .bit = 7, }, .shift_mode = { .address = 0xf2, .modes = { { SM_ECO_NAME, 0xc2 }, { SM_COMFORT_NAME, 0xc1 }, { SM_TURBO_NAME, 0xc4 }, MSI_EC_MODE_NULL }, }, .super_battery = { // unsupported? .address = MSI_EC_ADDR_UNKNOWN, .mask = 0x0f, }, .fan_mode = { .address = 0xf4, .modes = { { FM_AUTO_NAME, 0x0d }, { FM_SILENT_NAME, 0x1d }, { FM_ADVANCED_NAME, 0x8d }, MSI_EC_MODE_NULL }, }, .cpu = { .rt_temp_address = 0x68, // needs testing .rt_fan_speed_address = 0x71, // needs testing .rt_fan_speed_base_min = 0x19, .rt_fan_speed_base_max = 0x37, .bs_fan_speed_address = MSI_EC_ADDR_UNSUPP, .bs_fan_speed_base_min = 0x00, .bs_fan_speed_base_max = 0x0f, }, .gpu = { .rt_temp_address = MSI_EC_ADDR_UNKNOWN, .rt_fan_speed_address = MSI_EC_ADDR_UNKNOWN, }, .leds = { .micmute_led_address = 0x2b, .mute_led_address = 0x2c, .bit = 2, }, .kbd_bl = { .bl_mode_address = MSI_EC_ADDR_UNKNOWN, // ? .bl_modes = { 0x00, 0x08 }, // ? .max_mode = 1, // ? .bl_state_address = MSI_EC_ADDR_UNSUPP, // 0xf3, not functional .state_base_value = 0x80, .max_state = 3, }, }; static const char * const ALLOWED_FW_6[] __initconst = { "1542EMS1.102", "1542EMS1.104", NULL }; static struct msi_ec_conf CONF6 __initdata = { .allowed_fw = ALLOWED_FW_6, .charge_control = { .address = 0xef, .offset_start = 0x8a, .offset_end = 0x80, .range_min = 0x8a, .range_max = 0xe4, }, .webcam = { .address = 0x2e, .block_address = MSI_EC_ADDR_UNSUPP, .bit = 1, }, .fn_super_swap = { .address = 0xbf, // todo: reverse .bit = 4, }, .cooler_boost = { .address = 0x98, .bit = 7, }, .shift_mode = { .address = 0xf2, .modes = { { SM_ECO_NAME, 0xc2 }, { SM_COMFORT_NAME, 0xc1 }, { SM_SPORT_NAME, 0xc0 }, { SM_TURBO_NAME, 0xc4 }, MSI_EC_MODE_NULL }, }, .super_battery = { .address = 0xd5, .mask = 0x0f, }, .fan_mode = { .address = 0xf4, .modes = { { FM_AUTO_NAME, 0x0d }, { FM_SILENT_NAME, 0x1d }, { FM_ADVANCED_NAME, 0x8d }, MSI_EC_MODE_NULL }, }, .cpu = { .rt_temp_address = 0x68, .rt_fan_speed_address = 0xc9, .rt_fan_speed_base_min = 0x19, .rt_fan_speed_base_max = 0x37, .bs_fan_speed_address = MSI_EC_ADDR_UNSUPP, .bs_fan_speed_base_min = 0x00, .bs_fan_speed_base_max = 0x0f, }, .gpu = { .rt_temp_address = 0x80, .rt_fan_speed_address = MSI_EC_ADDR_UNKNOWN, }, .leds = { .micmute_led_address = MSI_EC_ADDR_UNSUPP, .mute_led_address = MSI_EC_ADDR_UNSUPP, .bit = 2, }, .kbd_bl = { .bl_mode_address = MSI_EC_ADDR_UNKNOWN, // ? .bl_modes = { 0x00, 0x08 }, // ? .max_mode = 1, // ? .bl_state_address = MSI_EC_ADDR_UNSUPP, // 0xf3, not functional .state_base_value = 0x80, .max_state = 3, }, }; static const char * const ALLOWED_FW_7[] __initconst = { "17FKEMS1.108", "17FKEMS1.109", "17FKEMS1.10A", NULL }; static struct msi_ec_conf CONF7 __initdata = { .allowed_fw = ALLOWED_FW_7, .charge_control = { .address = 0xef, .offset_start = 0x8a, .offset_end = 0x80, .range_min = 0x8a, .range_max = 0xe4, }, .webcam = { .address = 0x2e, .block_address = MSI_EC_ADDR_UNSUPP, .bit = 1, }, .fn_super_swap = { .address = 0xbf, // needs testing .bit = 4, }, .cooler_boost = { .address = 0x98, .bit = 7, }, .shift_mode = { .address = 0xf2, .modes = { { SM_ECO_NAME, 0xc2 }, { SM_COMFORT_NAME, 0xc1 }, { SM_SPORT_NAME, 0xc0 }, { SM_TURBO_NAME, 0xc4 }, MSI_EC_MODE_NULL }, }, .super_battery = { .address = MSI_EC_ADDR_UNKNOWN, // 0xd5 but has its own wet of modes .mask = 0x0f, }, .fan_mode = { .address = 0xf4, .modes = { { FM_AUTO_NAME, 0x0d }, // d may not be relevant { FM_SILENT_NAME, 0x1d }, { FM_ADVANCED_NAME, 0x8d }, MSI_EC_MODE_NULL }, }, .cpu = { .rt_temp_address = 0x68, .rt_fan_speed_address = 0xc9, // needs testing .rt_fan_speed_base_min = 0x19, .rt_fan_speed_base_max = 0x37, .bs_fan_speed_address = MSI_EC_ADDR_UNSUPP, .bs_fan_speed_base_min = 0x00, .bs_fan_speed_base_max = 0x0f, }, .gpu = { .rt_temp_address = MSI_EC_ADDR_UNKNOWN, .rt_fan_speed_address = MSI_EC_ADDR_UNKNOWN, }, .leds = { .micmute_led_address = MSI_EC_ADDR_UNSUPP, .mute_led_address = 0x2c, .bit = 2, }, .kbd_bl = { .bl_mode_address = MSI_EC_ADDR_UNKNOWN, // ? .bl_modes = { 0x00, 0x08 }, // ? .max_mode = 1, // ? .bl_state_address = 0xf3, .state_base_value = 0x80, .max_state = 3, }, }; static struct msi_ec_conf *CONFIGS[] __initdata = { &CONF0, &CONF1, &CONF2, &CONF3, &CONF4, &CONF5, &CONF6, &CONF7, NULL }; static struct msi_ec_conf conf; // current configuration /* * Helper functions */ static int ec_read_seq(u8 addr, u8 *buf, u8 len) { int result; for (u8 i = 0; i < len; i++) { result = ec_read(addr + i, buf + i); if (result < 0) return result; } return 0; } static int ec_get_firmware_version(u8 buf[MSI_EC_FW_VERSION_LENGTH + 1]) { int result; memset(buf, 0, MSI_EC_FW_VERSION_LENGTH + 1); result = ec_read_seq(MSI_EC_FW_VERSION_ADDRESS, buf, MSI_EC_FW_VERSION_LENGTH); if (result < 0) return result; return MSI_EC_FW_VERSION_LENGTH + 1; } /* * Sysfs power_supply subsystem */ static ssize_t charge_control_threshold_show(u8 offset, struct device *device, struct device_attribute *attr, char *buf) { u8 rdata; int result; result = ec_read(conf.charge_control.address, &rdata); if (result < 0) return result; return sysfs_emit(buf, "%i\n", rdata - offset); } static ssize_t charge_control_threshold_store(u8 offset, struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { u8 wdata; int result; result = kstrtou8(buf, 10, &wdata); if (result < 0) return result; wdata += offset; if (wdata < conf.charge_control.range_min || wdata > conf.charge_control.range_max) return -EINVAL; result = ec_write(conf.charge_control.address, wdata); if (result < 0) return result; return count; } static ssize_t charge_control_start_threshold_show(struct device *device, struct device_attribute *attr, char *buf) { return charge_control_threshold_show(conf.charge_control.offset_start, device, attr, buf); } static ssize_t charge_control_start_threshold_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return charge_control_threshold_store(conf.charge_control.offset_start, dev, attr, buf, count); } static ssize_t charge_control_end_threshold_show(struct device *device, struct device_attribute *attr, char *buf) { return charge_control_threshold_show(conf.charge_control.offset_end, device, attr, buf); } static ssize_t charge_control_end_threshold_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return charge_control_threshold_store(conf.charge_control.offset_end, dev, attr, buf, count); } static DEVICE_ATTR_RW(charge_control_start_threshold); static DEVICE_ATTR_RW(charge_control_end_threshold); static struct attribute *msi_battery_attrs[] = { &dev_attr_charge_control_start_threshold.attr, &dev_attr_charge_control_end_threshold.attr, NULL }; ATTRIBUTE_GROUPS(msi_battery); static int msi_battery_add(struct power_supply *battery, struct acpi_battery_hook *hook) { return device_add_groups(&battery->dev, msi_battery_groups); } static int msi_battery_remove(struct power_supply *battery, struct acpi_battery_hook *hook) { device_remove_groups(&battery->dev, msi_battery_groups); return 0; } static struct acpi_battery_hook battery_hook = { .add_battery = msi_battery_add, .remove_battery = msi_battery_remove, .name = MSI_EC_DRIVER_NAME, }; /* * Module load/unload */ static const struct dmi_system_id msi_dmi_table[] __initconst __maybe_unused = { { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "MICRO-STAR INT"), }, }, { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Micro-Star International"), }, }, {} }; MODULE_DEVICE_TABLE(dmi, msi_dmi_table); static int __init load_configuration(void) { int result; u8 fw_version[MSI_EC_FW_VERSION_LENGTH + 1]; /* get firmware version */ result = ec_get_firmware_version(fw_version); if (result < 0) return result; /* load the suitable configuration, if exists */ for (int i = 0; CONFIGS[i]; i++) { if (match_string(CONFIGS[i]->allowed_fw, -1, fw_version) != -EINVAL) { conf = *CONFIGS[i]; conf.allowed_fw = NULL; return 0; } } /* config not found */ for (int i = 0; i < MSI_EC_FW_VERSION_LENGTH; i++) { if (!isgraph(fw_version[i])) { pr_warn("Unable to find a valid firmware version!\n"); return -EOPNOTSUPP; } } pr_warn("Firmware version is not supported: '%s'\n", fw_version); return -EOPNOTSUPP; } static int __init msi_ec_init(void) { int result; result = load_configuration(); if (result < 0) return result; battery_hook_register(&battery_hook); return 0; } static void __exit msi_ec_exit(void) { battery_hook_unregister(&battery_hook); } MODULE_LICENSE("GPL"); MODULE_AUTHOR("Jose Angel Pastrana <[email protected]>"); MODULE_AUTHOR("Aakash Singh <[email protected]>"); MODULE_AUTHOR("Nikita Kravets <[email protected]>"); MODULE_DESCRIPTION("MSI Embedded Controller"); module_init(msi_ec_init); module_exit(msi_ec_exit);
linux-master
drivers/platform/x86/msi-ec.c
// SPDX-License-Identifier: GPL-2.0-only /* * hdaps.c - driver for IBM's Hard Drive Active Protection System * * Copyright (C) 2005 Robert Love <[email protected]> * Copyright (C) 2005 Jesper Juhl <[email protected]> * * The HardDisk Active Protection System (hdaps) is present in IBM ThinkPads * starting with the R40, T41, and X40. It provides a basic two-axis * accelerometer and other data, such as the device's temperature. * * This driver is based on the document by Mark A. Smith available at * http://www.almaden.ibm.com/cs/people/marksmith/tpaps.html and a lot of trial * and error. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/delay.h> #include <linux/platform_device.h> #include <linux/input.h> #include <linux/kernel.h> #include <linux/mutex.h> #include <linux/module.h> #include <linux/timer.h> #include <linux/dmi.h> #include <linux/jiffies.h> #include <linux/io.h> #define HDAPS_LOW_PORT 0x1600 /* first port used by hdaps */ #define HDAPS_NR_PORTS 0x30 /* number of ports: 0x1600 - 0x162f */ #define HDAPS_PORT_STATE 0x1611 /* device state */ #define HDAPS_PORT_YPOS 0x1612 /* y-axis position */ #define HDAPS_PORT_XPOS 0x1614 /* x-axis position */ #define HDAPS_PORT_TEMP1 0x1616 /* device temperature, in Celsius */ #define HDAPS_PORT_YVAR 0x1617 /* y-axis variance (what is this?) */ #define HDAPS_PORT_XVAR 0x1619 /* x-axis variance (what is this?) */ #define HDAPS_PORT_TEMP2 0x161b /* device temperature (again?) */ #define HDAPS_PORT_UNKNOWN 0x161c /* what is this? */ #define HDAPS_PORT_KMACT 0x161d /* keyboard or mouse activity */ #define STATE_FRESH 0x50 /* accelerometer data is fresh */ #define KEYBD_MASK 0x20 /* set if keyboard activity */ #define MOUSE_MASK 0x40 /* set if mouse activity */ #define KEYBD_ISSET(n) (!! (n & KEYBD_MASK)) /* keyboard used? */ #define MOUSE_ISSET(n) (!! (n & MOUSE_MASK)) /* mouse used? */ #define INIT_TIMEOUT_MSECS 4000 /* wait up to 4s for device init ... */ #define INIT_WAIT_MSECS 200 /* ... in 200ms increments */ #define HDAPS_POLL_INTERVAL 50 /* poll for input every 1/20s (50 ms)*/ #define HDAPS_INPUT_FUZZ 4 /* input event threshold */ #define HDAPS_INPUT_FLAT 4 #define HDAPS_X_AXIS (1 << 0) #define HDAPS_Y_AXIS (1 << 1) #define HDAPS_BOTH_AXES (HDAPS_X_AXIS | HDAPS_Y_AXIS) static struct platform_device *pdev; static struct input_dev *hdaps_idev; static unsigned int hdaps_invert; static u8 km_activity; static int rest_x; static int rest_y; static DEFINE_MUTEX(hdaps_mtx); /* * __get_latch - Get the value from a given port. Callers must hold hdaps_mtx. */ static inline u8 __get_latch(u16 port) { return inb(port) & 0xff; } /* * __check_latch - Check a port latch for a given value. Returns zero if the * port contains the given value. Callers must hold hdaps_mtx. */ static inline int __check_latch(u16 port, u8 val) { if (__get_latch(port) == val) return 0; return -EINVAL; } /* * __wait_latch - Wait up to 100us for a port latch to get a certain value, * returning zero if the value is obtained. Callers must hold hdaps_mtx. */ static int __wait_latch(u16 port, u8 val) { unsigned int i; for (i = 0; i < 20; i++) { if (!__check_latch(port, val)) return 0; udelay(5); } return -EIO; } /* * __device_refresh - request a refresh from the accelerometer. Does not wait * for refresh to complete. Callers must hold hdaps_mtx. */ static void __device_refresh(void) { udelay(200); if (inb(0x1604) != STATE_FRESH) { outb(0x11, 0x1610); outb(0x01, 0x161f); } } /* * __device_refresh_sync - request a synchronous refresh from the * accelerometer. We wait for the refresh to complete. Returns zero if * successful and nonzero on error. Callers must hold hdaps_mtx. */ static int __device_refresh_sync(void) { __device_refresh(); return __wait_latch(0x1604, STATE_FRESH); } /* * __device_complete - indicate to the accelerometer that we are done reading * data, and then initiate an async refresh. Callers must hold hdaps_mtx. */ static inline void __device_complete(void) { inb(0x161f); inb(0x1604); __device_refresh(); } /* * hdaps_readb_one - reads a byte from a single I/O port, placing the value in * the given pointer. Returns zero on success or a negative error on failure. * Can sleep. */ static int hdaps_readb_one(unsigned int port, u8 *val) { int ret; mutex_lock(&hdaps_mtx); /* do a sync refresh -- we need to be sure that we read fresh data */ ret = __device_refresh_sync(); if (ret) goto out; *val = inb(port); __device_complete(); out: mutex_unlock(&hdaps_mtx); return ret; } /* __hdaps_read_pair - internal lockless helper for hdaps_read_pair(). */ static int __hdaps_read_pair(unsigned int port1, unsigned int port2, int *x, int *y) { /* do a sync refresh -- we need to be sure that we read fresh data */ if (__device_refresh_sync()) return -EIO; *y = inw(port2); *x = inw(port1); km_activity = inb(HDAPS_PORT_KMACT); __device_complete(); /* hdaps_invert is a bitvector to negate the axes */ if (hdaps_invert & HDAPS_X_AXIS) *x = -*x; if (hdaps_invert & HDAPS_Y_AXIS) *y = -*y; return 0; } /* * hdaps_read_pair - reads the values from a pair of ports, placing the values * in the given pointers. Returns zero on success. Can sleep. */ static int hdaps_read_pair(unsigned int port1, unsigned int port2, int *val1, int *val2) { int ret; mutex_lock(&hdaps_mtx); ret = __hdaps_read_pair(port1, port2, val1, val2); mutex_unlock(&hdaps_mtx); return ret; } /* * hdaps_device_init - initialize the accelerometer. Returns zero on success * and negative error code on failure. Can sleep. */ static int hdaps_device_init(void) { int total, ret = -ENXIO; mutex_lock(&hdaps_mtx); outb(0x13, 0x1610); outb(0x01, 0x161f); if (__wait_latch(0x161f, 0x00)) goto out; /* * Most ThinkPads return 0x01. * * Others--namely the R50p, T41p, and T42p--return 0x03. These laptops * have "inverted" axises. * * The 0x02 value occurs when the chip has been previously initialized. */ if (__check_latch(0x1611, 0x03) && __check_latch(0x1611, 0x02) && __check_latch(0x1611, 0x01)) goto out; printk(KERN_DEBUG "hdaps: initial latch check good (0x%02x)\n", __get_latch(0x1611)); outb(0x17, 0x1610); outb(0x81, 0x1611); outb(0x01, 0x161f); if (__wait_latch(0x161f, 0x00)) goto out; if (__wait_latch(0x1611, 0x00)) goto out; if (__wait_latch(0x1612, 0x60)) goto out; if (__wait_latch(0x1613, 0x00)) goto out; outb(0x14, 0x1610); outb(0x01, 0x1611); outb(0x01, 0x161f); if (__wait_latch(0x161f, 0x00)) goto out; outb(0x10, 0x1610); outb(0xc8, 0x1611); outb(0x00, 0x1612); outb(0x02, 0x1613); outb(0x01, 0x161f); if (__wait_latch(0x161f, 0x00)) goto out; if (__device_refresh_sync()) goto out; if (__wait_latch(0x1611, 0x00)) goto out; /* we have done our dance, now let's wait for the applause */ for (total = INIT_TIMEOUT_MSECS; total > 0; total -= INIT_WAIT_MSECS) { int x, y; /* a read of the device helps push it into action */ __hdaps_read_pair(HDAPS_PORT_XPOS, HDAPS_PORT_YPOS, &x, &y); if (!__wait_latch(0x1611, 0x02)) { ret = 0; break; } msleep(INIT_WAIT_MSECS); } out: mutex_unlock(&hdaps_mtx); return ret; } /* Device model stuff */ static int hdaps_probe(struct platform_device *dev) { int ret; ret = hdaps_device_init(); if (ret) return ret; pr_info("device successfully initialized\n"); return 0; } #ifdef CONFIG_PM_SLEEP static int hdaps_resume(struct device *dev) { return hdaps_device_init(); } #endif static SIMPLE_DEV_PM_OPS(hdaps_pm, NULL, hdaps_resume); static struct platform_driver hdaps_driver = { .probe = hdaps_probe, .driver = { .name = "hdaps", .pm = &hdaps_pm, }, }; /* * hdaps_calibrate - Set our "resting" values. Callers must hold hdaps_mtx. */ static void hdaps_calibrate(void) { __hdaps_read_pair(HDAPS_PORT_XPOS, HDAPS_PORT_YPOS, &rest_x, &rest_y); } static void hdaps_mousedev_poll(struct input_dev *input_dev) { int x, y; mutex_lock(&hdaps_mtx); if (__hdaps_read_pair(HDAPS_PORT_XPOS, HDAPS_PORT_YPOS, &x, &y)) goto out; input_report_abs(input_dev, ABS_X, x - rest_x); input_report_abs(input_dev, ABS_Y, y - rest_y); input_sync(input_dev); out: mutex_unlock(&hdaps_mtx); } /* Sysfs Files */ static ssize_t hdaps_position_show(struct device *dev, struct device_attribute *attr, char *buf) { int ret, x, y; ret = hdaps_read_pair(HDAPS_PORT_XPOS, HDAPS_PORT_YPOS, &x, &y); if (ret) return ret; return sprintf(buf, "(%d,%d)\n", x, y); } static ssize_t hdaps_variance_show(struct device *dev, struct device_attribute *attr, char *buf) { int ret, x, y; ret = hdaps_read_pair(HDAPS_PORT_XVAR, HDAPS_PORT_YVAR, &x, &y); if (ret) return ret; return sprintf(buf, "(%d,%d)\n", x, y); } static ssize_t hdaps_temp1_show(struct device *dev, struct device_attribute *attr, char *buf) { u8 temp; int ret; ret = hdaps_readb_one(HDAPS_PORT_TEMP1, &temp); if (ret) return ret; return sprintf(buf, "%u\n", temp); } static ssize_t hdaps_temp2_show(struct device *dev, struct device_attribute *attr, char *buf) { u8 temp; int ret; ret = hdaps_readb_one(HDAPS_PORT_TEMP2, &temp); if (ret) return ret; return sprintf(buf, "%u\n", temp); } static ssize_t hdaps_keyboard_activity_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%u\n", KEYBD_ISSET(km_activity)); } static ssize_t hdaps_mouse_activity_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%u\n", MOUSE_ISSET(km_activity)); } static ssize_t hdaps_calibrate_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "(%d,%d)\n", rest_x, rest_y); } static ssize_t hdaps_calibrate_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { mutex_lock(&hdaps_mtx); hdaps_calibrate(); mutex_unlock(&hdaps_mtx); return count; } static ssize_t hdaps_invert_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%u\n", hdaps_invert); } static ssize_t hdaps_invert_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int invert; if (sscanf(buf, "%d", &invert) != 1 || invert < 0 || invert > HDAPS_BOTH_AXES) return -EINVAL; hdaps_invert = invert; hdaps_calibrate(); return count; } static DEVICE_ATTR(position, 0444, hdaps_position_show, NULL); static DEVICE_ATTR(variance, 0444, hdaps_variance_show, NULL); static DEVICE_ATTR(temp1, 0444, hdaps_temp1_show, NULL); static DEVICE_ATTR(temp2, 0444, hdaps_temp2_show, NULL); static DEVICE_ATTR(keyboard_activity, 0444, hdaps_keyboard_activity_show, NULL); static DEVICE_ATTR(mouse_activity, 0444, hdaps_mouse_activity_show, NULL); static DEVICE_ATTR(calibrate, 0644, hdaps_calibrate_show,hdaps_calibrate_store); static DEVICE_ATTR(invert, 0644, hdaps_invert_show, hdaps_invert_store); static struct attribute *hdaps_attributes[] = { &dev_attr_position.attr, &dev_attr_variance.attr, &dev_attr_temp1.attr, &dev_attr_temp2.attr, &dev_attr_keyboard_activity.attr, &dev_attr_mouse_activity.attr, &dev_attr_calibrate.attr, &dev_attr_invert.attr, NULL, }; static const struct attribute_group hdaps_attribute_group = { .attrs = hdaps_attributes, }; /* Module stuff */ /* hdaps_dmi_match - found a match. return one, short-circuiting the hunt. */ static int __init hdaps_dmi_match(const struct dmi_system_id *id) { pr_info("%s detected\n", id->ident); return 1; } /* hdaps_dmi_match_invert - found an inverted match. */ static int __init hdaps_dmi_match_invert(const struct dmi_system_id *id) { hdaps_invert = (unsigned long)id->driver_data; pr_info("inverting axis (%u) readings\n", hdaps_invert); return hdaps_dmi_match(id); } #define HDAPS_DMI_MATCH_INVERT(vendor, model, axes) { \ .ident = vendor " " model, \ .callback = hdaps_dmi_match_invert, \ .driver_data = (void *)axes, \ .matches = { \ DMI_MATCH(DMI_BOARD_VENDOR, vendor), \ DMI_MATCH(DMI_PRODUCT_VERSION, model) \ } \ } #define HDAPS_DMI_MATCH_NORMAL(vendor, model) \ HDAPS_DMI_MATCH_INVERT(vendor, model, 0) /* Note that HDAPS_DMI_MATCH_NORMAL("ThinkPad T42") would match "ThinkPad T42p", so the order of the entries matters. If your ThinkPad is not recognized, please update to latest BIOS. This is especially the case for some R52 ThinkPads. */ static const struct dmi_system_id hdaps_whitelist[] __initconst = { HDAPS_DMI_MATCH_INVERT("IBM", "ThinkPad R50p", HDAPS_BOTH_AXES), HDAPS_DMI_MATCH_NORMAL("IBM", "ThinkPad R50"), HDAPS_DMI_MATCH_NORMAL("IBM", "ThinkPad R51"), HDAPS_DMI_MATCH_NORMAL("IBM", "ThinkPad R52"), HDAPS_DMI_MATCH_INVERT("LENOVO", "ThinkPad R61i", HDAPS_BOTH_AXES), HDAPS_DMI_MATCH_INVERT("LENOVO", "ThinkPad R61", HDAPS_BOTH_AXES), HDAPS_DMI_MATCH_INVERT("IBM", "ThinkPad T41p", HDAPS_BOTH_AXES), HDAPS_DMI_MATCH_NORMAL("IBM", "ThinkPad T41"), HDAPS_DMI_MATCH_INVERT("IBM", "ThinkPad T42p", HDAPS_BOTH_AXES), HDAPS_DMI_MATCH_NORMAL("IBM", "ThinkPad T42"), HDAPS_DMI_MATCH_NORMAL("IBM", "ThinkPad T43"), HDAPS_DMI_MATCH_INVERT("LENOVO", "ThinkPad T400", HDAPS_BOTH_AXES), HDAPS_DMI_MATCH_INVERT("LENOVO", "ThinkPad T60", HDAPS_BOTH_AXES), HDAPS_DMI_MATCH_INVERT("LENOVO", "ThinkPad T61p", HDAPS_BOTH_AXES), HDAPS_DMI_MATCH_INVERT("LENOVO", "ThinkPad T61", HDAPS_BOTH_AXES), HDAPS_DMI_MATCH_NORMAL("IBM", "ThinkPad X40"), HDAPS_DMI_MATCH_INVERT("IBM", "ThinkPad X41", HDAPS_Y_AXIS), HDAPS_DMI_MATCH_INVERT("LENOVO", "ThinkPad X60", HDAPS_BOTH_AXES), HDAPS_DMI_MATCH_INVERT("LENOVO", "ThinkPad X61s", HDAPS_BOTH_AXES), HDAPS_DMI_MATCH_INVERT("LENOVO", "ThinkPad X61", HDAPS_BOTH_AXES), HDAPS_DMI_MATCH_NORMAL("IBM", "ThinkPad Z60m"), HDAPS_DMI_MATCH_INVERT("LENOVO", "ThinkPad Z61m", HDAPS_BOTH_AXES), HDAPS_DMI_MATCH_INVERT("LENOVO", "ThinkPad Z61p", HDAPS_BOTH_AXES), { .ident = NULL } }; static int __init hdaps_init(void) { int ret; if (!dmi_check_system(hdaps_whitelist)) { pr_warn("supported laptop not found!\n"); ret = -ENODEV; goto out; } if (!request_region(HDAPS_LOW_PORT, HDAPS_NR_PORTS, "hdaps")) { ret = -ENXIO; goto out; } ret = platform_driver_register(&hdaps_driver); if (ret) goto out_region; pdev = platform_device_register_simple("hdaps", PLATFORM_DEVID_NONE, NULL, 0); if (IS_ERR(pdev)) { ret = PTR_ERR(pdev); goto out_driver; } ret = sysfs_create_group(&pdev->dev.kobj, &hdaps_attribute_group); if (ret) goto out_device; hdaps_idev = input_allocate_device(); if (!hdaps_idev) { ret = -ENOMEM; goto out_group; } /* initial calibrate for the input device */ hdaps_calibrate(); /* initialize the input class */ hdaps_idev->name = "hdaps"; hdaps_idev->phys = "isa1600/input0"; hdaps_idev->id.bustype = BUS_ISA; hdaps_idev->dev.parent = &pdev->dev; input_set_abs_params(hdaps_idev, ABS_X, -256, 256, HDAPS_INPUT_FUZZ, HDAPS_INPUT_FLAT); input_set_abs_params(hdaps_idev, ABS_Y, -256, 256, HDAPS_INPUT_FUZZ, HDAPS_INPUT_FLAT); ret = input_setup_polling(hdaps_idev, hdaps_mousedev_poll); if (ret) goto out_idev; input_set_poll_interval(hdaps_idev, HDAPS_POLL_INTERVAL); ret = input_register_device(hdaps_idev); if (ret) goto out_idev; pr_info("driver successfully loaded\n"); return 0; out_idev: input_free_device(hdaps_idev); out_group: sysfs_remove_group(&pdev->dev.kobj, &hdaps_attribute_group); out_device: platform_device_unregister(pdev); out_driver: platform_driver_unregister(&hdaps_driver); out_region: release_region(HDAPS_LOW_PORT, HDAPS_NR_PORTS); out: pr_warn("driver init failed (ret=%d)!\n", ret); return ret; } static void __exit hdaps_exit(void) { input_unregister_device(hdaps_idev); sysfs_remove_group(&pdev->dev.kobj, &hdaps_attribute_group); platform_device_unregister(pdev); platform_driver_unregister(&hdaps_driver); release_region(HDAPS_LOW_PORT, HDAPS_NR_PORTS); pr_info("driver unloaded\n"); } module_init(hdaps_init); module_exit(hdaps_exit); module_param_named(invert, hdaps_invert, int, 0); MODULE_PARM_DESC(invert, "invert data along each axis. 1 invert x-axis, " "2 invert y-axis, 3 invert both axes."); MODULE_AUTHOR("Robert Love"); MODULE_DESCRIPTION("IBM Hard Drive Active Protection System (HDAPS) driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/platform/x86/hdaps.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Acer WMI Laptop Extras * * Copyright (C) 2007-2009 Carlos Corbacho <[email protected]> * * Based on acer_acpi: * Copyright (C) 2005-2007 E.M. Smith * Copyright (C) 2007-2008 Carlos Corbacho <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/types.h> #include <linux/dmi.h> #include <linux/fb.h> #include <linux/backlight.h> #include <linux/leds.h> #include <linux/platform_device.h> #include <linux/acpi.h> #include <linux/i8042.h> #include <linux/rfkill.h> #include <linux/workqueue.h> #include <linux/debugfs.h> #include <linux/slab.h> #include <linux/input.h> #include <linux/input/sparse-keymap.h> #include <acpi/video.h> MODULE_AUTHOR("Carlos Corbacho"); MODULE_DESCRIPTION("Acer Laptop WMI Extras Driver"); MODULE_LICENSE("GPL"); /* * Magic Number * Meaning is unknown - this number is required for writing to ACPI for AMW0 * (it's also used in acerhk when directly accessing the BIOS) */ #define ACER_AMW0_WRITE 0x9610 /* * Bit masks for the AMW0 interface */ #define ACER_AMW0_WIRELESS_MASK 0x35 #define ACER_AMW0_BLUETOOTH_MASK 0x34 #define ACER_AMW0_MAILLED_MASK 0x31 /* * Method IDs for WMID interface */ #define ACER_WMID_GET_WIRELESS_METHODID 1 #define ACER_WMID_GET_BLUETOOTH_METHODID 2 #define ACER_WMID_GET_BRIGHTNESS_METHODID 3 #define ACER_WMID_SET_WIRELESS_METHODID 4 #define ACER_WMID_SET_BLUETOOTH_METHODID 5 #define ACER_WMID_SET_BRIGHTNESS_METHODID 6 #define ACER_WMID_GET_THREEG_METHODID 10 #define ACER_WMID_SET_THREEG_METHODID 11 #define ACER_WMID_SET_GAMING_LED_METHODID 2 #define ACER_WMID_GET_GAMING_LED_METHODID 4 #define ACER_WMID_SET_GAMING_FAN_BEHAVIOR 14 #define ACER_WMID_SET_GAMING_MISC_SETTING_METHODID 22 /* * Acer ACPI method GUIDs */ #define AMW0_GUID1 "67C3371D-95A3-4C37-BB61-DD47B491DAAB" #define AMW0_GUID2 "431F16ED-0C2B-444C-B267-27DEB140CF9C" #define WMID_GUID1 "6AF4F258-B401-42FD-BE91-3D4AC2D7C0D3" #define WMID_GUID2 "95764E09-FB56-4E83-B31A-37761F60994A" #define WMID_GUID3 "61EF69EA-865C-4BC3-A502-A0DEBA0CB531" #define WMID_GUID4 "7A4DDFE7-5B5D-40B4-8595-4408E0CC7F56" /* * Acer ACPI event GUIDs */ #define ACERWMID_EVENT_GUID "676AA15E-6A47-4D9F-A2CC-1E6D18D14026" MODULE_ALIAS("wmi:67C3371D-95A3-4C37-BB61-DD47B491DAAB"); MODULE_ALIAS("wmi:6AF4F258-B401-42FD-BE91-3D4AC2D7C0D3"); MODULE_ALIAS("wmi:676AA15E-6A47-4D9F-A2CC-1E6D18D14026"); enum acer_wmi_event_ids { WMID_HOTKEY_EVENT = 0x1, WMID_ACCEL_OR_KBD_DOCK_EVENT = 0x5, WMID_GAMING_TURBO_KEY_EVENT = 0x7, }; static const struct key_entry acer_wmi_keymap[] __initconst = { {KE_KEY, 0x01, {KEY_WLAN} }, /* WiFi */ {KE_KEY, 0x03, {KEY_WLAN} }, /* WiFi */ {KE_KEY, 0x04, {KEY_WLAN} }, /* WiFi */ {KE_KEY, 0x12, {KEY_BLUETOOTH} }, /* BT */ {KE_KEY, 0x21, {KEY_PROG1} }, /* Backup */ {KE_KEY, 0x22, {KEY_PROG2} }, /* Arcade */ {KE_KEY, 0x23, {KEY_PROG3} }, /* P_Key */ {KE_KEY, 0x24, {KEY_PROG4} }, /* Social networking_Key */ {KE_KEY, 0x27, {KEY_HELP} }, {KE_KEY, 0x29, {KEY_PROG3} }, /* P_Key for TM8372 */ {KE_IGNORE, 0x41, {KEY_MUTE} }, {KE_IGNORE, 0x42, {KEY_PREVIOUSSONG} }, {KE_IGNORE, 0x4d, {KEY_PREVIOUSSONG} }, {KE_IGNORE, 0x43, {KEY_NEXTSONG} }, {KE_IGNORE, 0x4e, {KEY_NEXTSONG} }, {KE_IGNORE, 0x44, {KEY_PLAYPAUSE} }, {KE_IGNORE, 0x4f, {KEY_PLAYPAUSE} }, {KE_IGNORE, 0x45, {KEY_STOP} }, {KE_IGNORE, 0x50, {KEY_STOP} }, {KE_IGNORE, 0x48, {KEY_VOLUMEUP} }, {KE_IGNORE, 0x49, {KEY_VOLUMEDOWN} }, {KE_IGNORE, 0x4a, {KEY_VOLUMEDOWN} }, /* * 0x61 is KEY_SWITCHVIDEOMODE. Usually this is a duplicate input event * with the "Video Bus" input device events. But sometimes it is not * a dup. Map it to KEY_UNKNOWN instead of using KE_IGNORE so that * udev/hwdb can override it on systems where it is not a dup. */ {KE_KEY, 0x61, {KEY_UNKNOWN} }, {KE_IGNORE, 0x62, {KEY_BRIGHTNESSUP} }, {KE_IGNORE, 0x63, {KEY_BRIGHTNESSDOWN} }, {KE_KEY, 0x64, {KEY_SWITCHVIDEOMODE} }, /* Display Switch */ {KE_IGNORE, 0x81, {KEY_SLEEP} }, {KE_KEY, 0x82, {KEY_TOUCHPAD_TOGGLE} }, /* Touch Pad Toggle */ {KE_IGNORE, 0x84, {KEY_KBDILLUMTOGGLE} }, /* Automatic Keyboard background light toggle */ {KE_KEY, KEY_TOUCHPAD_ON, {KEY_TOUCHPAD_ON} }, {KE_KEY, KEY_TOUCHPAD_OFF, {KEY_TOUCHPAD_OFF} }, {KE_IGNORE, 0x83, {KEY_TOUCHPAD_TOGGLE} }, {KE_KEY, 0x85, {KEY_TOUCHPAD_TOGGLE} }, {KE_KEY, 0x86, {KEY_WLAN} }, {KE_KEY, 0x87, {KEY_POWER} }, {KE_END, 0} }; static struct input_dev *acer_wmi_input_dev; static struct input_dev *acer_wmi_accel_dev; struct event_return_value { u8 function; u8 key_num; u16 device_state; u16 reserved1; u8 kbd_dock_state; u8 reserved2; } __packed; /* * GUID3 Get Device Status device flags */ #define ACER_WMID3_GDS_WIRELESS (1<<0) /* WiFi */ #define ACER_WMID3_GDS_THREEG (1<<6) /* 3G */ #define ACER_WMID3_GDS_WIMAX (1<<7) /* WiMAX */ #define ACER_WMID3_GDS_BLUETOOTH (1<<11) /* BT */ #define ACER_WMID3_GDS_RFBTN (1<<14) /* RF Button */ #define ACER_WMID3_GDS_TOUCHPAD (1<<1) /* Touchpad */ /* Hotkey Customized Setting and Acer Application Status. * Set Device Default Value and Report Acer Application Status. * When Acer Application starts, it will run this method to inform * BIOS/EC that Acer Application is on. * App Status * Bit[0]: Launch Manager Status * Bit[1]: ePM Status * Bit[2]: Device Control Status * Bit[3]: Acer Power Button Utility Status * Bit[4]: RF Button Status * Bit[5]: ODD PM Status * Bit[6]: Device Default Value Control * Bit[7]: Hall Sensor Application Status */ struct func_input_params { u8 function_num; /* Function Number */ u16 commun_devices; /* Communication type devices default status */ u16 devices; /* Other type devices default status */ u8 app_status; /* Acer Device Status. LM, ePM, RF Button... */ u8 app_mask; /* Bit mask to app_status */ u8 reserved; } __packed; struct func_return_value { u8 error_code; /* Error Code */ u8 ec_return_value; /* EC Return Value */ u16 reserved; } __packed; struct wmid3_gds_set_input_param { /* Set Device Status input parameter */ u8 function_num; /* Function Number */ u8 hotkey_number; /* Hotkey Number */ u16 devices; /* Set Device */ u8 volume_value; /* Volume Value */ } __packed; struct wmid3_gds_get_input_param { /* Get Device Status input parameter */ u8 function_num; /* Function Number */ u8 hotkey_number; /* Hotkey Number */ u16 devices; /* Get Device */ } __packed; struct wmid3_gds_return_value { /* Get Device Status return value*/ u8 error_code; /* Error Code */ u8 ec_return_value; /* EC Return Value */ u16 devices; /* Current Device Status */ u32 reserved; } __packed; struct hotkey_function_type_aa { u8 type; u8 length; u16 handle; u16 commun_func_bitmap; u16 application_func_bitmap; u16 media_func_bitmap; u16 display_func_bitmap; u16 others_func_bitmap; u8 commun_fn_key_number; } __packed; /* * Interface capability flags */ #define ACER_CAP_MAILLED BIT(0) #define ACER_CAP_WIRELESS BIT(1) #define ACER_CAP_BLUETOOTH BIT(2) #define ACER_CAP_BRIGHTNESS BIT(3) #define ACER_CAP_THREEG BIT(4) #define ACER_CAP_SET_FUNCTION_MODE BIT(5) #define ACER_CAP_KBD_DOCK BIT(6) #define ACER_CAP_TURBO_OC BIT(7) #define ACER_CAP_TURBO_LED BIT(8) #define ACER_CAP_TURBO_FAN BIT(9) /* * Interface type flags */ enum interface_flags { ACER_AMW0, ACER_AMW0_V2, ACER_WMID, ACER_WMID_v2, }; #define ACER_DEFAULT_WIRELESS 0 #define ACER_DEFAULT_BLUETOOTH 0 #define ACER_DEFAULT_MAILLED 0 #define ACER_DEFAULT_THREEG 0 static int max_brightness = 0xF; static int mailled = -1; static int brightness = -1; static int threeg = -1; static int force_series; static int force_caps = -1; static bool ec_raw_mode; static bool has_type_aa; static u16 commun_func_bitmap; static u8 commun_fn_key_number; module_param(mailled, int, 0444); module_param(brightness, int, 0444); module_param(threeg, int, 0444); module_param(force_series, int, 0444); module_param(force_caps, int, 0444); module_param(ec_raw_mode, bool, 0444); MODULE_PARM_DESC(mailled, "Set initial state of Mail LED"); MODULE_PARM_DESC(brightness, "Set initial LCD backlight brightness"); MODULE_PARM_DESC(threeg, "Set initial state of 3G hardware"); MODULE_PARM_DESC(force_series, "Force a different laptop series"); MODULE_PARM_DESC(force_caps, "Force the capability bitmask to this value"); MODULE_PARM_DESC(ec_raw_mode, "Enable EC raw mode"); struct acer_data { int mailled; int threeg; int brightness; }; struct acer_debug { struct dentry *root; u32 wmid_devices; }; static struct rfkill *wireless_rfkill; static struct rfkill *bluetooth_rfkill; static struct rfkill *threeg_rfkill; static bool rfkill_inited; /* Each low-level interface must define at least some of the following */ struct wmi_interface { /* The WMI device type */ u32 type; /* The capabilities this interface provides */ u32 capability; /* Private data for the current interface */ struct acer_data data; /* debugfs entries associated with this interface */ struct acer_debug debug; }; /* The static interface pointer, points to the currently detected interface */ static struct wmi_interface *interface; /* * Embedded Controller quirks * Some laptops require us to directly access the EC to either enable or query * features that are not available through WMI. */ struct quirk_entry { u8 wireless; u8 mailled; s8 brightness; u8 bluetooth; u8 turbo; u8 cpu_fans; u8 gpu_fans; }; static struct quirk_entry *quirks; static void __init set_quirks(void) { if (quirks->mailled) interface->capability |= ACER_CAP_MAILLED; if (quirks->brightness) interface->capability |= ACER_CAP_BRIGHTNESS; if (quirks->turbo) interface->capability |= ACER_CAP_TURBO_OC | ACER_CAP_TURBO_LED | ACER_CAP_TURBO_FAN; } static int __init dmi_matched(const struct dmi_system_id *dmi) { quirks = dmi->driver_data; return 1; } static int __init set_force_caps(const struct dmi_system_id *dmi) { if (force_caps == -1) { force_caps = (uintptr_t)dmi->driver_data; pr_info("Found %s, set force_caps to 0x%x\n", dmi->ident, force_caps); } return 1; } static struct quirk_entry quirk_unknown = { }; static struct quirk_entry quirk_acer_aspire_1520 = { .brightness = -1, }; static struct quirk_entry quirk_acer_travelmate_2490 = { .mailled = 1, }; static struct quirk_entry quirk_acer_predator_ph315_53 = { .turbo = 1, .cpu_fans = 1, .gpu_fans = 1, }; /* This AMW0 laptop has no bluetooth */ static struct quirk_entry quirk_medion_md_98300 = { .wireless = 1, }; static struct quirk_entry quirk_fujitsu_amilo_li_1718 = { .wireless = 2, }; static struct quirk_entry quirk_lenovo_ideapad_s205 = { .wireless = 3, }; /* The Aspire One has a dummy ACPI-WMI interface - disable it */ static const struct dmi_system_id acer_blacklist[] __initconst = { { .ident = "Acer Aspire One (SSD)", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "AOA110"), }, }, { .ident = "Acer Aspire One (HDD)", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "AOA150"), }, }, {} }; static const struct dmi_system_id amw0_whitelist[] __initconst = { { .ident = "Acer", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), }, }, { .ident = "Gateway", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Gateway"), }, }, { .ident = "Packard Bell", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Packard Bell"), }, }, {} }; /* * This quirk table is only for Acer/Gateway/Packard Bell family * that those machines are supported by acer-wmi driver. */ static const struct dmi_system_id acer_quirks[] __initconst = { { .callback = dmi_matched, .ident = "Acer Aspire 1360", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 1360"), }, .driver_data = &quirk_acer_aspire_1520, }, { .callback = dmi_matched, .ident = "Acer Aspire 1520", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 1520"), }, .driver_data = &quirk_acer_aspire_1520, }, { .callback = dmi_matched, .ident = "Acer Aspire 3100", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 3100"), }, .driver_data = &quirk_acer_travelmate_2490, }, { .callback = dmi_matched, .ident = "Acer Aspire 3610", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 3610"), }, .driver_data = &quirk_acer_travelmate_2490, }, { .callback = dmi_matched, .ident = "Acer Aspire 5100", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 5100"), }, .driver_data = &quirk_acer_travelmate_2490, }, { .callback = dmi_matched, .ident = "Acer Aspire 5610", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 5610"), }, .driver_data = &quirk_acer_travelmate_2490, }, { .callback = dmi_matched, .ident = "Acer Aspire 5630", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 5630"), }, .driver_data = &quirk_acer_travelmate_2490, }, { .callback = dmi_matched, .ident = "Acer Aspire 5650", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 5650"), }, .driver_data = &quirk_acer_travelmate_2490, }, { .callback = dmi_matched, .ident = "Acer Aspire 5680", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 5680"), }, .driver_data = &quirk_acer_travelmate_2490, }, { .callback = dmi_matched, .ident = "Acer Aspire 9110", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "Aspire 9110"), }, .driver_data = &quirk_acer_travelmate_2490, }, { .callback = dmi_matched, .ident = "Acer TravelMate 2490", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate 2490"), }, .driver_data = &quirk_acer_travelmate_2490, }, { .callback = dmi_matched, .ident = "Acer TravelMate 4200", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate 4200"), }, .driver_data = &quirk_acer_travelmate_2490, }, { .callback = dmi_matched, .ident = "Acer Predator PH315-53", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "Predator PH315-53"), }, .driver_data = &quirk_acer_predator_ph315_53, }, { .callback = set_force_caps, .ident = "Acer Aspire Switch 10E SW3-016", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "Aspire SW3-016"), }, .driver_data = (void *)ACER_CAP_KBD_DOCK, }, { .callback = set_force_caps, .ident = "Acer Aspire Switch 10 SW5-012", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "Aspire SW5-012"), }, .driver_data = (void *)ACER_CAP_KBD_DOCK, }, { .callback = set_force_caps, .ident = "Acer Aspire Switch V 10 SW5-017", .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "SW5-017"), }, .driver_data = (void *)ACER_CAP_KBD_DOCK, }, { .callback = set_force_caps, .ident = "Acer One 10 (S1003)", .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "One S1003"), }, .driver_data = (void *)ACER_CAP_KBD_DOCK, }, {} }; /* * This quirk list is for those non-acer machines that have AMW0_GUID1 * but supported by acer-wmi in past days. Keeping this quirk list here * is only for backward compatible. Please do not add new machine to * here anymore. Those non-acer machines should be supported by * appropriate wmi drivers. */ static const struct dmi_system_id non_acer_quirks[] __initconst = { { .callback = dmi_matched, .ident = "Fujitsu Siemens Amilo Li 1718", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU SIEMENS"), DMI_MATCH(DMI_PRODUCT_NAME, "AMILO Li 1718"), }, .driver_data = &quirk_fujitsu_amilo_li_1718, }, { .callback = dmi_matched, .ident = "Medion MD 98300", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "MEDION"), DMI_MATCH(DMI_PRODUCT_NAME, "WAM2030"), }, .driver_data = &quirk_medion_md_98300, }, { .callback = dmi_matched, .ident = "Lenovo Ideapad S205", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_PRODUCT_NAME, "10382LG"), }, .driver_data = &quirk_lenovo_ideapad_s205, }, { .callback = dmi_matched, .ident = "Lenovo Ideapad S205 (Brazos)", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_PRODUCT_NAME, "Brazos"), }, .driver_data = &quirk_lenovo_ideapad_s205, }, { .callback = dmi_matched, .ident = "Lenovo 3000 N200", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_PRODUCT_NAME, "0687A31"), }, .driver_data = &quirk_fujitsu_amilo_li_1718, }, { .callback = dmi_matched, .ident = "Lenovo Ideapad S205-10382JG", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_PRODUCT_NAME, "10382JG"), }, .driver_data = &quirk_lenovo_ideapad_s205, }, { .callback = dmi_matched, .ident = "Lenovo Ideapad S205-1038DPG", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_PRODUCT_NAME, "1038DPG"), }, .driver_data = &quirk_lenovo_ideapad_s205, }, {} }; /* Find which quirks are needed for a particular vendor/ model pair */ static void __init find_quirks(void) { if (!force_series) { dmi_check_system(acer_quirks); dmi_check_system(non_acer_quirks); } else if (force_series == 2490) { quirks = &quirk_acer_travelmate_2490; } if (quirks == NULL) quirks = &quirk_unknown; } /* * General interface convenience methods */ static bool has_cap(u32 cap) { return interface->capability & cap; } /* * AMW0 (V1) interface */ struct wmab_args { u32 eax; u32 ebx; u32 ecx; u32 edx; }; struct wmab_ret { u32 eax; u32 ebx; u32 ecx; u32 edx; u32 eex; }; static acpi_status wmab_execute(struct wmab_args *regbuf, struct acpi_buffer *result) { struct acpi_buffer input; acpi_status status; input.length = sizeof(struct wmab_args); input.pointer = (u8 *)regbuf; status = wmi_evaluate_method(AMW0_GUID1, 0, 1, &input, result); return status; } static acpi_status AMW0_get_u32(u32 *value, u32 cap) { int err; u8 result; switch (cap) { case ACER_CAP_MAILLED: switch (quirks->mailled) { default: err = ec_read(0xA, &result); if (err) return AE_ERROR; *value = (result >> 7) & 0x1; return AE_OK; } break; case ACER_CAP_WIRELESS: switch (quirks->wireless) { case 1: err = ec_read(0x7B, &result); if (err) return AE_ERROR; *value = result & 0x1; return AE_OK; case 2: err = ec_read(0x71, &result); if (err) return AE_ERROR; *value = result & 0x1; return AE_OK; case 3: err = ec_read(0x78, &result); if (err) return AE_ERROR; *value = result & 0x1; return AE_OK; default: err = ec_read(0xA, &result); if (err) return AE_ERROR; *value = (result >> 2) & 0x1; return AE_OK; } break; case ACER_CAP_BLUETOOTH: switch (quirks->bluetooth) { default: err = ec_read(0xA, &result); if (err) return AE_ERROR; *value = (result >> 4) & 0x1; return AE_OK; } break; case ACER_CAP_BRIGHTNESS: switch (quirks->brightness) { default: err = ec_read(0x83, &result); if (err) return AE_ERROR; *value = result; return AE_OK; } break; default: return AE_ERROR; } return AE_OK; } static acpi_status AMW0_set_u32(u32 value, u32 cap) { struct wmab_args args; args.eax = ACER_AMW0_WRITE; args.ebx = value ? (1<<8) : 0; args.ecx = args.edx = 0; switch (cap) { case ACER_CAP_MAILLED: if (value > 1) return AE_BAD_PARAMETER; args.ebx |= ACER_AMW0_MAILLED_MASK; break; case ACER_CAP_WIRELESS: if (value > 1) return AE_BAD_PARAMETER; args.ebx |= ACER_AMW0_WIRELESS_MASK; break; case ACER_CAP_BLUETOOTH: if (value > 1) return AE_BAD_PARAMETER; args.ebx |= ACER_AMW0_BLUETOOTH_MASK; break; case ACER_CAP_BRIGHTNESS: if (value > max_brightness) return AE_BAD_PARAMETER; switch (quirks->brightness) { default: return ec_write(0x83, value); } default: return AE_ERROR; } /* Actually do the set */ return wmab_execute(&args, NULL); } static acpi_status __init AMW0_find_mailled(void) { struct wmab_args args; struct wmab_ret ret; acpi_status status = AE_OK; struct acpi_buffer out = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *obj; args.eax = 0x86; args.ebx = args.ecx = args.edx = 0; status = wmab_execute(&args, &out); if (ACPI_FAILURE(status)) return status; obj = (union acpi_object *) out.pointer; if (obj && obj->type == ACPI_TYPE_BUFFER && obj->buffer.length == sizeof(struct wmab_ret)) { ret = *((struct wmab_ret *) obj->buffer.pointer); } else { kfree(out.pointer); return AE_ERROR; } if (ret.eex & 0x1) interface->capability |= ACER_CAP_MAILLED; kfree(out.pointer); return AE_OK; } static const struct acpi_device_id norfkill_ids[] __initconst = { { "VPC2004", 0}, { "IBM0068", 0}, { "LEN0068", 0}, { "SNY5001", 0}, /* sony-laptop in charge */ { "HPQ6601", 0}, { "", 0}, }; static int __init AMW0_set_cap_acpi_check_device(void) { const struct acpi_device_id *id; for (id = norfkill_ids; id->id[0]; id++) if (acpi_dev_found(id->id)) return true; return false; } static acpi_status __init AMW0_set_capabilities(void) { struct wmab_args args; struct wmab_ret ret; acpi_status status; struct acpi_buffer out = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *obj; /* * On laptops with this strange GUID (non Acer), normal probing doesn't * work. */ if (wmi_has_guid(AMW0_GUID2)) { if ((quirks != &quirk_unknown) || !AMW0_set_cap_acpi_check_device()) interface->capability |= ACER_CAP_WIRELESS; return AE_OK; } args.eax = ACER_AMW0_WRITE; args.ecx = args.edx = 0; args.ebx = 0xa2 << 8; args.ebx |= ACER_AMW0_WIRELESS_MASK; status = wmab_execute(&args, &out); if (ACPI_FAILURE(status)) return status; obj = out.pointer; if (obj && obj->type == ACPI_TYPE_BUFFER && obj->buffer.length == sizeof(struct wmab_ret)) { ret = *((struct wmab_ret *) obj->buffer.pointer); } else { status = AE_ERROR; goto out; } if (ret.eax & 0x1) interface->capability |= ACER_CAP_WIRELESS; args.ebx = 2 << 8; args.ebx |= ACER_AMW0_BLUETOOTH_MASK; /* * It's ok to use existing buffer for next wmab_execute call. * But we need to kfree(out.pointer) if next wmab_execute fail. */ status = wmab_execute(&args, &out); if (ACPI_FAILURE(status)) goto out; obj = (union acpi_object *) out.pointer; if (obj && obj->type == ACPI_TYPE_BUFFER && obj->buffer.length == sizeof(struct wmab_ret)) { ret = *((struct wmab_ret *) obj->buffer.pointer); } else { status = AE_ERROR; goto out; } if (ret.eax & 0x1) interface->capability |= ACER_CAP_BLUETOOTH; /* * This appears to be safe to enable, since all Wistron based laptops * appear to use the same EC register for brightness, even if they * differ for wireless, etc */ if (quirks->brightness >= 0) interface->capability |= ACER_CAP_BRIGHTNESS; status = AE_OK; out: kfree(out.pointer); return status; } static struct wmi_interface AMW0_interface = { .type = ACER_AMW0, }; static struct wmi_interface AMW0_V2_interface = { .type = ACER_AMW0_V2, }; /* * New interface (The WMID interface) */ static acpi_status WMI_execute_u32(u32 method_id, u32 in, u32 *out) { struct acpi_buffer input = { (acpi_size) sizeof(u32), (void *)(&in) }; struct acpi_buffer result = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *obj; u32 tmp = 0; acpi_status status; status = wmi_evaluate_method(WMID_GUID1, 0, method_id, &input, &result); if (ACPI_FAILURE(status)) return status; obj = (union acpi_object *) result.pointer; if (obj) { if (obj->type == ACPI_TYPE_BUFFER && (obj->buffer.length == sizeof(u32) || obj->buffer.length == sizeof(u64))) { tmp = *((u32 *) obj->buffer.pointer); } else if (obj->type == ACPI_TYPE_INTEGER) { tmp = (u32) obj->integer.value; } } if (out) *out = tmp; kfree(result.pointer); return status; } static acpi_status WMID_get_u32(u32 *value, u32 cap) { acpi_status status; u8 tmp; u32 result, method_id = 0; switch (cap) { case ACER_CAP_WIRELESS: method_id = ACER_WMID_GET_WIRELESS_METHODID; break; case ACER_CAP_BLUETOOTH: method_id = ACER_WMID_GET_BLUETOOTH_METHODID; break; case ACER_CAP_BRIGHTNESS: method_id = ACER_WMID_GET_BRIGHTNESS_METHODID; break; case ACER_CAP_THREEG: method_id = ACER_WMID_GET_THREEG_METHODID; break; case ACER_CAP_MAILLED: if (quirks->mailled == 1) { ec_read(0x9f, &tmp); *value = tmp & 0x1; return 0; } fallthrough; default: return AE_ERROR; } status = WMI_execute_u32(method_id, 0, &result); if (ACPI_SUCCESS(status)) *value = (u8)result; return status; } static acpi_status WMID_set_u32(u32 value, u32 cap) { u32 method_id = 0; char param; switch (cap) { case ACER_CAP_BRIGHTNESS: if (value > max_brightness) return AE_BAD_PARAMETER; method_id = ACER_WMID_SET_BRIGHTNESS_METHODID; break; case ACER_CAP_WIRELESS: if (value > 1) return AE_BAD_PARAMETER; method_id = ACER_WMID_SET_WIRELESS_METHODID; break; case ACER_CAP_BLUETOOTH: if (value > 1) return AE_BAD_PARAMETER; method_id = ACER_WMID_SET_BLUETOOTH_METHODID; break; case ACER_CAP_THREEG: if (value > 1) return AE_BAD_PARAMETER; method_id = ACER_WMID_SET_THREEG_METHODID; break; case ACER_CAP_MAILLED: if (value > 1) return AE_BAD_PARAMETER; if (quirks->mailled == 1) { param = value ? 0x92 : 0x93; i8042_lock_chip(); i8042_command(&param, 0x1059); i8042_unlock_chip(); return 0; } break; default: return AE_ERROR; } return WMI_execute_u32(method_id, (u32)value, NULL); } static acpi_status wmid3_get_device_status(u32 *value, u16 device) { struct wmid3_gds_return_value return_value; acpi_status status; union acpi_object *obj; struct wmid3_gds_get_input_param params = { .function_num = 0x1, .hotkey_number = commun_fn_key_number, .devices = device, }; struct acpi_buffer input = { sizeof(struct wmid3_gds_get_input_param), &params }; struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL }; status = wmi_evaluate_method(WMID_GUID3, 0, 0x2, &input, &output); if (ACPI_FAILURE(status)) return status; obj = output.pointer; if (!obj) return AE_ERROR; else if (obj->type != ACPI_TYPE_BUFFER) { kfree(obj); return AE_ERROR; } if (obj->buffer.length != 8) { pr_warn("Unknown buffer length %d\n", obj->buffer.length); kfree(obj); return AE_ERROR; } return_value = *((struct wmid3_gds_return_value *)obj->buffer.pointer); kfree(obj); if (return_value.error_code || return_value.ec_return_value) pr_warn("Get 0x%x Device Status failed: 0x%x - 0x%x\n", device, return_value.error_code, return_value.ec_return_value); else *value = !!(return_value.devices & device); return status; } static acpi_status wmid_v2_get_u32(u32 *value, u32 cap) { u16 device; switch (cap) { case ACER_CAP_WIRELESS: device = ACER_WMID3_GDS_WIRELESS; break; case ACER_CAP_BLUETOOTH: device = ACER_WMID3_GDS_BLUETOOTH; break; case ACER_CAP_THREEG: device = ACER_WMID3_GDS_THREEG; break; default: return AE_ERROR; } return wmid3_get_device_status(value, device); } static acpi_status wmid3_set_device_status(u32 value, u16 device) { struct wmid3_gds_return_value return_value; acpi_status status; union acpi_object *obj; u16 devices; struct wmid3_gds_get_input_param get_params = { .function_num = 0x1, .hotkey_number = commun_fn_key_number, .devices = commun_func_bitmap, }; struct acpi_buffer get_input = { sizeof(struct wmid3_gds_get_input_param), &get_params }; struct wmid3_gds_set_input_param set_params = { .function_num = 0x2, .hotkey_number = commun_fn_key_number, .devices = commun_func_bitmap, }; struct acpi_buffer set_input = { sizeof(struct wmid3_gds_set_input_param), &set_params }; struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL }; struct acpi_buffer output2 = { ACPI_ALLOCATE_BUFFER, NULL }; status = wmi_evaluate_method(WMID_GUID3, 0, 0x2, &get_input, &output); if (ACPI_FAILURE(status)) return status; obj = output.pointer; if (!obj) return AE_ERROR; else if (obj->type != ACPI_TYPE_BUFFER) { kfree(obj); return AE_ERROR; } if (obj->buffer.length != 8) { pr_warn("Unknown buffer length %d\n", obj->buffer.length); kfree(obj); return AE_ERROR; } return_value = *((struct wmid3_gds_return_value *)obj->buffer.pointer); kfree(obj); if (return_value.error_code || return_value.ec_return_value) { pr_warn("Get Current Device Status failed: 0x%x - 0x%x\n", return_value.error_code, return_value.ec_return_value); return status; } devices = return_value.devices; set_params.devices = (value) ? (devices | device) : (devices & ~device); status = wmi_evaluate_method(WMID_GUID3, 0, 0x1, &set_input, &output2); if (ACPI_FAILURE(status)) return status; obj = output2.pointer; if (!obj) return AE_ERROR; else if (obj->type != ACPI_TYPE_BUFFER) { kfree(obj); return AE_ERROR; } if (obj->buffer.length != 4) { pr_warn("Unknown buffer length %d\n", obj->buffer.length); kfree(obj); return AE_ERROR; } return_value = *((struct wmid3_gds_return_value *)obj->buffer.pointer); kfree(obj); if (return_value.error_code || return_value.ec_return_value) pr_warn("Set Device Status failed: 0x%x - 0x%x\n", return_value.error_code, return_value.ec_return_value); return status; } static acpi_status wmid_v2_set_u32(u32 value, u32 cap) { u16 device; switch (cap) { case ACER_CAP_WIRELESS: device = ACER_WMID3_GDS_WIRELESS; break; case ACER_CAP_BLUETOOTH: device = ACER_WMID3_GDS_BLUETOOTH; break; case ACER_CAP_THREEG: device = ACER_WMID3_GDS_THREEG; break; default: return AE_ERROR; } return wmid3_set_device_status(value, device); } static void __init type_aa_dmi_decode(const struct dmi_header *header, void *d) { struct hotkey_function_type_aa *type_aa; /* We are looking for OEM-specific Type AAh */ if (header->type != 0xAA) return; has_type_aa = true; type_aa = (struct hotkey_function_type_aa *) header; pr_info("Function bitmap for Communication Button: 0x%x\n", type_aa->commun_func_bitmap); commun_func_bitmap = type_aa->commun_func_bitmap; if (type_aa->commun_func_bitmap & ACER_WMID3_GDS_WIRELESS) interface->capability |= ACER_CAP_WIRELESS; if (type_aa->commun_func_bitmap & ACER_WMID3_GDS_THREEG) interface->capability |= ACER_CAP_THREEG; if (type_aa->commun_func_bitmap & ACER_WMID3_GDS_BLUETOOTH) interface->capability |= ACER_CAP_BLUETOOTH; if (type_aa->commun_func_bitmap & ACER_WMID3_GDS_RFBTN) commun_func_bitmap &= ~ACER_WMID3_GDS_RFBTN; commun_fn_key_number = type_aa->commun_fn_key_number; } static acpi_status __init WMID_set_capabilities(void) { struct acpi_buffer out = {ACPI_ALLOCATE_BUFFER, NULL}; union acpi_object *obj; acpi_status status; u32 devices; status = wmi_query_block(WMID_GUID2, 0, &out); if (ACPI_FAILURE(status)) return status; obj = (union acpi_object *) out.pointer; if (obj) { if (obj->type == ACPI_TYPE_BUFFER && (obj->buffer.length == sizeof(u32) || obj->buffer.length == sizeof(u64))) { devices = *((u32 *) obj->buffer.pointer); } else if (obj->type == ACPI_TYPE_INTEGER) { devices = (u32) obj->integer.value; } else { kfree(out.pointer); return AE_ERROR; } } else { kfree(out.pointer); return AE_ERROR; } pr_info("Function bitmap for Communication Device: 0x%x\n", devices); if (devices & 0x07) interface->capability |= ACER_CAP_WIRELESS; if (devices & 0x40) interface->capability |= ACER_CAP_THREEG; if (devices & 0x10) interface->capability |= ACER_CAP_BLUETOOTH; if (!(devices & 0x20)) max_brightness = 0x9; kfree(out.pointer); return status; } static struct wmi_interface wmid_interface = { .type = ACER_WMID, }; static struct wmi_interface wmid_v2_interface = { .type = ACER_WMID_v2, }; /* * WMID Gaming interface */ static acpi_status WMI_gaming_execute_u64(u32 method_id, u64 in, u64 *out) { struct acpi_buffer input = { (acpi_size) sizeof(u64), (void *)(&in) }; struct acpi_buffer result = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *obj; u32 tmp = 0; acpi_status status; status = wmi_evaluate_method(WMID_GUID4, 0, method_id, &input, &result); if (ACPI_FAILURE(status)) return status; obj = (union acpi_object *) result.pointer; if (obj) { if (obj->type == ACPI_TYPE_BUFFER) { if (obj->buffer.length == sizeof(u32)) tmp = *((u32 *) obj->buffer.pointer); else if (obj->buffer.length == sizeof(u64)) tmp = *((u64 *) obj->buffer.pointer); } else if (obj->type == ACPI_TYPE_INTEGER) { tmp = (u64) obj->integer.value; } } if (out) *out = tmp; kfree(result.pointer); return status; } static acpi_status WMID_gaming_set_u64(u64 value, u32 cap) { u32 method_id = 0; if (!(interface->capability & cap)) return AE_BAD_PARAMETER; switch (cap) { case ACER_CAP_TURBO_LED: method_id = ACER_WMID_SET_GAMING_LED_METHODID; break; case ACER_CAP_TURBO_FAN: method_id = ACER_WMID_SET_GAMING_FAN_BEHAVIOR; break; case ACER_CAP_TURBO_OC: method_id = ACER_WMID_SET_GAMING_MISC_SETTING_METHODID; break; default: return AE_BAD_PARAMETER; } return WMI_gaming_execute_u64(method_id, value, NULL); } static acpi_status WMID_gaming_get_u64(u64 *value, u32 cap) { acpi_status status; u64 result; u64 input; u32 method_id; if (!(interface->capability & cap)) return AE_BAD_PARAMETER; switch (cap) { case ACER_CAP_TURBO_LED: method_id = ACER_WMID_GET_GAMING_LED_METHODID; input = 0x1; break; default: return AE_BAD_PARAMETER; } status = WMI_gaming_execute_u64(method_id, input, &result); if (ACPI_SUCCESS(status)) *value = (u64) result; return status; } static void WMID_gaming_set_fan_mode(u8 fan_mode) { /* fan_mode = 1 is used for auto, fan_mode = 2 used for turbo*/ u64 gpu_fan_config1 = 0, gpu_fan_config2 = 0; int i; if (quirks->cpu_fans > 0) gpu_fan_config2 |= 1; for (i = 0; i < (quirks->cpu_fans + quirks->gpu_fans); ++i) gpu_fan_config2 |= 1 << (i + 1); for (i = 0; i < quirks->gpu_fans; ++i) gpu_fan_config2 |= 1 << (i + 3); if (quirks->cpu_fans > 0) gpu_fan_config1 |= fan_mode; for (i = 0; i < (quirks->cpu_fans + quirks->gpu_fans); ++i) gpu_fan_config1 |= fan_mode << (2 * i + 2); for (i = 0; i < quirks->gpu_fans; ++i) gpu_fan_config1 |= fan_mode << (2 * i + 6); WMID_gaming_set_u64(gpu_fan_config2 | gpu_fan_config1 << 16, ACER_CAP_TURBO_FAN); } /* * Generic Device (interface-independent) */ static acpi_status get_u32(u32 *value, u32 cap) { acpi_status status = AE_ERROR; switch (interface->type) { case ACER_AMW0: status = AMW0_get_u32(value, cap); break; case ACER_AMW0_V2: if (cap == ACER_CAP_MAILLED) { status = AMW0_get_u32(value, cap); break; } fallthrough; case ACER_WMID: status = WMID_get_u32(value, cap); break; case ACER_WMID_v2: if (cap & (ACER_CAP_WIRELESS | ACER_CAP_BLUETOOTH | ACER_CAP_THREEG)) status = wmid_v2_get_u32(value, cap); else if (wmi_has_guid(WMID_GUID2)) status = WMID_get_u32(value, cap); break; } return status; } static acpi_status set_u32(u32 value, u32 cap) { acpi_status status; if (interface->capability & cap) { switch (interface->type) { case ACER_AMW0: return AMW0_set_u32(value, cap); case ACER_AMW0_V2: if (cap == ACER_CAP_MAILLED) return AMW0_set_u32(value, cap); /* * On some models, some WMID methods don't toggle * properly. For those cases, we want to run the AMW0 * method afterwards to be certain we've really toggled * the device state. */ if (cap == ACER_CAP_WIRELESS || cap == ACER_CAP_BLUETOOTH) { status = WMID_set_u32(value, cap); if (ACPI_FAILURE(status)) return status; return AMW0_set_u32(value, cap); } fallthrough; case ACER_WMID: return WMID_set_u32(value, cap); case ACER_WMID_v2: if (cap & (ACER_CAP_WIRELESS | ACER_CAP_BLUETOOTH | ACER_CAP_THREEG)) return wmid_v2_set_u32(value, cap); else if (wmi_has_guid(WMID_GUID2)) return WMID_set_u32(value, cap); fallthrough; default: return AE_BAD_PARAMETER; } } return AE_BAD_PARAMETER; } static void __init acer_commandline_init(void) { /* * These will all fail silently if the value given is invalid, or the * capability isn't available on the given interface */ if (mailled >= 0) set_u32(mailled, ACER_CAP_MAILLED); if (!has_type_aa && threeg >= 0) set_u32(threeg, ACER_CAP_THREEG); if (brightness >= 0) set_u32(brightness, ACER_CAP_BRIGHTNESS); } /* * LED device (Mail LED only, no other LEDs known yet) */ static void mail_led_set(struct led_classdev *led_cdev, enum led_brightness value) { set_u32(value, ACER_CAP_MAILLED); } static struct led_classdev mail_led = { .name = "acer-wmi::mail", .brightness_set = mail_led_set, }; static int acer_led_init(struct device *dev) { return led_classdev_register(dev, &mail_led); } static void acer_led_exit(void) { set_u32(LED_OFF, ACER_CAP_MAILLED); led_classdev_unregister(&mail_led); } /* * Backlight device */ static struct backlight_device *acer_backlight_device; static int read_brightness(struct backlight_device *bd) { u32 value; get_u32(&value, ACER_CAP_BRIGHTNESS); return value; } static int update_bl_status(struct backlight_device *bd) { int intensity = backlight_get_brightness(bd); set_u32(intensity, ACER_CAP_BRIGHTNESS); return 0; } static const struct backlight_ops acer_bl_ops = { .get_brightness = read_brightness, .update_status = update_bl_status, }; static int acer_backlight_init(struct device *dev) { struct backlight_properties props; struct backlight_device *bd; memset(&props, 0, sizeof(struct backlight_properties)); props.type = BACKLIGHT_PLATFORM; props.max_brightness = max_brightness; bd = backlight_device_register("acer-wmi", dev, NULL, &acer_bl_ops, &props); if (IS_ERR(bd)) { pr_err("Could not register Acer backlight device\n"); acer_backlight_device = NULL; return PTR_ERR(bd); } acer_backlight_device = bd; bd->props.power = FB_BLANK_UNBLANK; bd->props.brightness = read_brightness(bd); backlight_update_status(bd); return 0; } static void acer_backlight_exit(void) { backlight_device_unregister(acer_backlight_device); } /* * Accelerometer device */ static acpi_handle gsensor_handle; static int acer_gsensor_init(void) { acpi_status status; struct acpi_buffer output; union acpi_object out_obj; output.length = sizeof(out_obj); output.pointer = &out_obj; status = acpi_evaluate_object(gsensor_handle, "_INI", NULL, &output); if (ACPI_FAILURE(status)) return -1; return 0; } static int acer_gsensor_open(struct input_dev *input) { return acer_gsensor_init(); } static int acer_gsensor_event(void) { acpi_status status; struct acpi_buffer output; union acpi_object out_obj[5]; if (!acer_wmi_accel_dev) return -1; output.length = sizeof(out_obj); output.pointer = out_obj; status = acpi_evaluate_object(gsensor_handle, "RDVL", NULL, &output); if (ACPI_FAILURE(status)) return -1; if (out_obj->package.count != 4) return -1; input_report_abs(acer_wmi_accel_dev, ABS_X, (s16)out_obj->package.elements[0].integer.value); input_report_abs(acer_wmi_accel_dev, ABS_Y, (s16)out_obj->package.elements[1].integer.value); input_report_abs(acer_wmi_accel_dev, ABS_Z, (s16)out_obj->package.elements[2].integer.value); input_sync(acer_wmi_accel_dev); return 0; } /* * Predator series turbo button */ static int acer_toggle_turbo(void) { u64 turbo_led_state; /* Get current state from turbo button */ if (ACPI_FAILURE(WMID_gaming_get_u64(&turbo_led_state, ACER_CAP_TURBO_LED))) return -1; if (turbo_led_state) { /* Turn off turbo led */ WMID_gaming_set_u64(0x1, ACER_CAP_TURBO_LED); /* Set FAN mode to auto */ WMID_gaming_set_fan_mode(0x1); /* Set OC to normal */ WMID_gaming_set_u64(0x5, ACER_CAP_TURBO_OC); WMID_gaming_set_u64(0x7, ACER_CAP_TURBO_OC); } else { /* Turn on turbo led */ WMID_gaming_set_u64(0x10001, ACER_CAP_TURBO_LED); /* Set FAN mode to turbo */ WMID_gaming_set_fan_mode(0x2); /* Set OC to turbo mode */ WMID_gaming_set_u64(0x205, ACER_CAP_TURBO_OC); WMID_gaming_set_u64(0x207, ACER_CAP_TURBO_OC); } return turbo_led_state; } /* * Switch series keyboard dock status */ static int acer_kbd_dock_state_to_sw_tablet_mode(u8 kbd_dock_state) { switch (kbd_dock_state) { case 0x01: /* Docked, traditional clamshell laptop mode */ return 0; case 0x04: /* Stand-alone tablet */ case 0x40: /* Docked, tent mode, keyboard not usable */ return 1; default: pr_warn("Unknown kbd_dock_state 0x%02x\n", kbd_dock_state); } return 0; } static void acer_kbd_dock_get_initial_state(void) { u8 *output, input[8] = { 0x05, 0x00, }; struct acpi_buffer input_buf = { sizeof(input), input }; struct acpi_buffer output_buf = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *obj; acpi_status status; int sw_tablet_mode; status = wmi_evaluate_method(WMID_GUID3, 0, 0x2, &input_buf, &output_buf); if (ACPI_FAILURE(status)) { pr_err("Error getting keyboard-dock initial status: %s\n", acpi_format_exception(status)); return; } obj = output_buf.pointer; if (!obj || obj->type != ACPI_TYPE_BUFFER || obj->buffer.length != 8) { pr_err("Unexpected output format getting keyboard-dock initial status\n"); goto out_free_obj; } output = obj->buffer.pointer; if (output[0] != 0x00 || (output[3] != 0x05 && output[3] != 0x45)) { pr_err("Unexpected output [0]=0x%02x [3]=0x%02x getting keyboard-dock initial status\n", output[0], output[3]); goto out_free_obj; } sw_tablet_mode = acer_kbd_dock_state_to_sw_tablet_mode(output[4]); input_report_switch(acer_wmi_input_dev, SW_TABLET_MODE, sw_tablet_mode); out_free_obj: kfree(obj); } static void acer_kbd_dock_event(const struct event_return_value *event) { int sw_tablet_mode; if (!has_cap(ACER_CAP_KBD_DOCK)) return; sw_tablet_mode = acer_kbd_dock_state_to_sw_tablet_mode(event->kbd_dock_state); input_report_switch(acer_wmi_input_dev, SW_TABLET_MODE, sw_tablet_mode); input_sync(acer_wmi_input_dev); } /* * Rfkill devices */ static void acer_rfkill_update(struct work_struct *ignored); static DECLARE_DELAYED_WORK(acer_rfkill_work, acer_rfkill_update); static void acer_rfkill_update(struct work_struct *ignored) { u32 state; acpi_status status; if (has_cap(ACER_CAP_WIRELESS)) { status = get_u32(&state, ACER_CAP_WIRELESS); if (ACPI_SUCCESS(status)) { if (quirks->wireless == 3) rfkill_set_hw_state(wireless_rfkill, !state); else rfkill_set_sw_state(wireless_rfkill, !state); } } if (has_cap(ACER_CAP_BLUETOOTH)) { status = get_u32(&state, ACER_CAP_BLUETOOTH); if (ACPI_SUCCESS(status)) rfkill_set_sw_state(bluetooth_rfkill, !state); } if (has_cap(ACER_CAP_THREEG) && wmi_has_guid(WMID_GUID3)) { status = get_u32(&state, ACER_WMID3_GDS_THREEG); if (ACPI_SUCCESS(status)) rfkill_set_sw_state(threeg_rfkill, !state); } schedule_delayed_work(&acer_rfkill_work, round_jiffies_relative(HZ)); } static int acer_rfkill_set(void *data, bool blocked) { acpi_status status; u32 cap = (unsigned long)data; if (rfkill_inited) { status = set_u32(!blocked, cap); if (ACPI_FAILURE(status)) return -ENODEV; } return 0; } static const struct rfkill_ops acer_rfkill_ops = { .set_block = acer_rfkill_set, }; static struct rfkill *acer_rfkill_register(struct device *dev, enum rfkill_type type, char *name, u32 cap) { int err; struct rfkill *rfkill_dev; u32 state; acpi_status status; rfkill_dev = rfkill_alloc(name, dev, type, &acer_rfkill_ops, (void *)(unsigned long)cap); if (!rfkill_dev) return ERR_PTR(-ENOMEM); status = get_u32(&state, cap); err = rfkill_register(rfkill_dev); if (err) { rfkill_destroy(rfkill_dev); return ERR_PTR(err); } if (ACPI_SUCCESS(status)) rfkill_set_sw_state(rfkill_dev, !state); return rfkill_dev; } static int acer_rfkill_init(struct device *dev) { int err; if (has_cap(ACER_CAP_WIRELESS)) { wireless_rfkill = acer_rfkill_register(dev, RFKILL_TYPE_WLAN, "acer-wireless", ACER_CAP_WIRELESS); if (IS_ERR(wireless_rfkill)) { err = PTR_ERR(wireless_rfkill); goto error_wireless; } } if (has_cap(ACER_CAP_BLUETOOTH)) { bluetooth_rfkill = acer_rfkill_register(dev, RFKILL_TYPE_BLUETOOTH, "acer-bluetooth", ACER_CAP_BLUETOOTH); if (IS_ERR(bluetooth_rfkill)) { err = PTR_ERR(bluetooth_rfkill); goto error_bluetooth; } } if (has_cap(ACER_CAP_THREEG)) { threeg_rfkill = acer_rfkill_register(dev, RFKILL_TYPE_WWAN, "acer-threeg", ACER_CAP_THREEG); if (IS_ERR(threeg_rfkill)) { err = PTR_ERR(threeg_rfkill); goto error_threeg; } } rfkill_inited = true; if ((ec_raw_mode || !wmi_has_guid(ACERWMID_EVENT_GUID)) && has_cap(ACER_CAP_WIRELESS | ACER_CAP_BLUETOOTH | ACER_CAP_THREEG)) schedule_delayed_work(&acer_rfkill_work, round_jiffies_relative(HZ)); return 0; error_threeg: if (has_cap(ACER_CAP_BLUETOOTH)) { rfkill_unregister(bluetooth_rfkill); rfkill_destroy(bluetooth_rfkill); } error_bluetooth: if (has_cap(ACER_CAP_WIRELESS)) { rfkill_unregister(wireless_rfkill); rfkill_destroy(wireless_rfkill); } error_wireless: return err; } static void acer_rfkill_exit(void) { if ((ec_raw_mode || !wmi_has_guid(ACERWMID_EVENT_GUID)) && has_cap(ACER_CAP_WIRELESS | ACER_CAP_BLUETOOTH | ACER_CAP_THREEG)) cancel_delayed_work_sync(&acer_rfkill_work); if (has_cap(ACER_CAP_WIRELESS)) { rfkill_unregister(wireless_rfkill); rfkill_destroy(wireless_rfkill); } if (has_cap(ACER_CAP_BLUETOOTH)) { rfkill_unregister(bluetooth_rfkill); rfkill_destroy(bluetooth_rfkill); } if (has_cap(ACER_CAP_THREEG)) { rfkill_unregister(threeg_rfkill); rfkill_destroy(threeg_rfkill); } return; } static void acer_wmi_notify(u32 value, void *context) { struct acpi_buffer response = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *obj; struct event_return_value return_value; acpi_status status; u16 device_state; const struct key_entry *key; u32 scancode; status = wmi_get_event_data(value, &response); if (status != AE_OK) { pr_warn("bad event status 0x%x\n", status); return; } obj = (union acpi_object *)response.pointer; if (!obj) return; if (obj->type != ACPI_TYPE_BUFFER) { pr_warn("Unknown response received %d\n", obj->type); kfree(obj); return; } if (obj->buffer.length != 8) { pr_warn("Unknown buffer length %d\n", obj->buffer.length); kfree(obj); return; } return_value = *((struct event_return_value *)obj->buffer.pointer); kfree(obj); switch (return_value.function) { case WMID_HOTKEY_EVENT: device_state = return_value.device_state; pr_debug("device state: 0x%x\n", device_state); key = sparse_keymap_entry_from_scancode(acer_wmi_input_dev, return_value.key_num); if (!key) { pr_warn("Unknown key number - 0x%x\n", return_value.key_num); } else { scancode = return_value.key_num; switch (key->keycode) { case KEY_WLAN: case KEY_BLUETOOTH: if (has_cap(ACER_CAP_WIRELESS)) rfkill_set_sw_state(wireless_rfkill, !(device_state & ACER_WMID3_GDS_WIRELESS)); if (has_cap(ACER_CAP_THREEG)) rfkill_set_sw_state(threeg_rfkill, !(device_state & ACER_WMID3_GDS_THREEG)); if (has_cap(ACER_CAP_BLUETOOTH)) rfkill_set_sw_state(bluetooth_rfkill, !(device_state & ACER_WMID3_GDS_BLUETOOTH)); break; case KEY_TOUCHPAD_TOGGLE: scancode = (device_state & ACER_WMID3_GDS_TOUCHPAD) ? KEY_TOUCHPAD_ON : KEY_TOUCHPAD_OFF; } sparse_keymap_report_event(acer_wmi_input_dev, scancode, 1, true); } break; case WMID_ACCEL_OR_KBD_DOCK_EVENT: acer_gsensor_event(); acer_kbd_dock_event(&return_value); break; case WMID_GAMING_TURBO_KEY_EVENT: if (return_value.key_num == 0x4) acer_toggle_turbo(); break; default: pr_warn("Unknown function number - %d - %d\n", return_value.function, return_value.key_num); break; } } static acpi_status __init wmid3_set_function_mode(struct func_input_params *params, struct func_return_value *return_value) { acpi_status status; union acpi_object *obj; struct acpi_buffer input = { sizeof(struct func_input_params), params }; struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL }; status = wmi_evaluate_method(WMID_GUID3, 0, 0x1, &input, &output); if (ACPI_FAILURE(status)) return status; obj = output.pointer; if (!obj) return AE_ERROR; else if (obj->type != ACPI_TYPE_BUFFER) { kfree(obj); return AE_ERROR; } if (obj->buffer.length != 4) { pr_warn("Unknown buffer length %d\n", obj->buffer.length); kfree(obj); return AE_ERROR; } *return_value = *((struct func_return_value *)obj->buffer.pointer); kfree(obj); return status; } static int __init acer_wmi_enable_ec_raw(void) { struct func_return_value return_value; acpi_status status; struct func_input_params params = { .function_num = 0x1, .commun_devices = 0xFFFF, .devices = 0xFFFF, .app_status = 0x00, /* Launch Manager Deactive */ .app_mask = 0x01, }; status = wmid3_set_function_mode(&params, &return_value); if (return_value.error_code || return_value.ec_return_value) pr_warn("Enabling EC raw mode failed: 0x%x - 0x%x\n", return_value.error_code, return_value.ec_return_value); else pr_info("Enabled EC raw mode\n"); return status; } static int __init acer_wmi_enable_lm(void) { struct func_return_value return_value; acpi_status status; struct func_input_params params = { .function_num = 0x1, .commun_devices = 0xFFFF, .devices = 0xFFFF, .app_status = 0x01, /* Launch Manager Active */ .app_mask = 0x01, }; status = wmid3_set_function_mode(&params, &return_value); if (return_value.error_code || return_value.ec_return_value) pr_warn("Enabling Launch Manager failed: 0x%x - 0x%x\n", return_value.error_code, return_value.ec_return_value); return status; } static int __init acer_wmi_enable_rf_button(void) { struct func_return_value return_value; acpi_status status; struct func_input_params params = { .function_num = 0x1, .commun_devices = 0xFFFF, .devices = 0xFFFF, .app_status = 0x10, /* RF Button Active */ .app_mask = 0x10, }; status = wmid3_set_function_mode(&params, &return_value); if (return_value.error_code || return_value.ec_return_value) pr_warn("Enabling RF Button failed: 0x%x - 0x%x\n", return_value.error_code, return_value.ec_return_value); return status; } static int __init acer_wmi_accel_setup(void) { struct acpi_device *adev; int err; adev = acpi_dev_get_first_match_dev("BST0001", NULL, -1); if (!adev) return -ENODEV; gsensor_handle = acpi_device_handle(adev); acpi_dev_put(adev); acer_wmi_accel_dev = input_allocate_device(); if (!acer_wmi_accel_dev) return -ENOMEM; acer_wmi_accel_dev->open = acer_gsensor_open; acer_wmi_accel_dev->name = "Acer BMA150 accelerometer"; acer_wmi_accel_dev->phys = "wmi/input1"; acer_wmi_accel_dev->id.bustype = BUS_HOST; acer_wmi_accel_dev->evbit[0] = BIT_MASK(EV_ABS); input_set_abs_params(acer_wmi_accel_dev, ABS_X, -16384, 16384, 0, 0); input_set_abs_params(acer_wmi_accel_dev, ABS_Y, -16384, 16384, 0, 0); input_set_abs_params(acer_wmi_accel_dev, ABS_Z, -16384, 16384, 0, 0); err = input_register_device(acer_wmi_accel_dev); if (err) goto err_free_dev; return 0; err_free_dev: input_free_device(acer_wmi_accel_dev); return err; } static int __init acer_wmi_input_setup(void) { acpi_status status; int err; acer_wmi_input_dev = input_allocate_device(); if (!acer_wmi_input_dev) return -ENOMEM; acer_wmi_input_dev->name = "Acer WMI hotkeys"; acer_wmi_input_dev->phys = "wmi/input0"; acer_wmi_input_dev->id.bustype = BUS_HOST; err = sparse_keymap_setup(acer_wmi_input_dev, acer_wmi_keymap, NULL); if (err) goto err_free_dev; if (has_cap(ACER_CAP_KBD_DOCK)) input_set_capability(acer_wmi_input_dev, EV_SW, SW_TABLET_MODE); status = wmi_install_notify_handler(ACERWMID_EVENT_GUID, acer_wmi_notify, NULL); if (ACPI_FAILURE(status)) { err = -EIO; goto err_free_dev; } if (has_cap(ACER_CAP_KBD_DOCK)) acer_kbd_dock_get_initial_state(); err = input_register_device(acer_wmi_input_dev); if (err) goto err_uninstall_notifier; return 0; err_uninstall_notifier: wmi_remove_notify_handler(ACERWMID_EVENT_GUID); err_free_dev: input_free_device(acer_wmi_input_dev); return err; } static void acer_wmi_input_destroy(void) { wmi_remove_notify_handler(ACERWMID_EVENT_GUID); input_unregister_device(acer_wmi_input_dev); } /* * debugfs functions */ static u32 get_wmid_devices(void) { struct acpi_buffer out = {ACPI_ALLOCATE_BUFFER, NULL}; union acpi_object *obj; acpi_status status; u32 devices = 0; status = wmi_query_block(WMID_GUID2, 0, &out); if (ACPI_FAILURE(status)) return 0; obj = (union acpi_object *) out.pointer; if (obj) { if (obj->type == ACPI_TYPE_BUFFER && (obj->buffer.length == sizeof(u32) || obj->buffer.length == sizeof(u64))) { devices = *((u32 *) obj->buffer.pointer); } else if (obj->type == ACPI_TYPE_INTEGER) { devices = (u32) obj->integer.value; } } kfree(out.pointer); return devices; } /* * Platform device */ static int acer_platform_probe(struct platform_device *device) { int err; if (has_cap(ACER_CAP_MAILLED)) { err = acer_led_init(&device->dev); if (err) goto error_mailled; } if (has_cap(ACER_CAP_BRIGHTNESS)) { err = acer_backlight_init(&device->dev); if (err) goto error_brightness; } err = acer_rfkill_init(&device->dev); if (err) goto error_rfkill; return err; error_rfkill: if (has_cap(ACER_CAP_BRIGHTNESS)) acer_backlight_exit(); error_brightness: if (has_cap(ACER_CAP_MAILLED)) acer_led_exit(); error_mailled: return err; } static void acer_platform_remove(struct platform_device *device) { if (has_cap(ACER_CAP_MAILLED)) acer_led_exit(); if (has_cap(ACER_CAP_BRIGHTNESS)) acer_backlight_exit(); acer_rfkill_exit(); } #ifdef CONFIG_PM_SLEEP static int acer_suspend(struct device *dev) { u32 value; struct acer_data *data = &interface->data; if (!data) return -ENOMEM; if (has_cap(ACER_CAP_MAILLED)) { get_u32(&value, ACER_CAP_MAILLED); set_u32(LED_OFF, ACER_CAP_MAILLED); data->mailled = value; } if (has_cap(ACER_CAP_BRIGHTNESS)) { get_u32(&value, ACER_CAP_BRIGHTNESS); data->brightness = value; } return 0; } static int acer_resume(struct device *dev) { struct acer_data *data = &interface->data; if (!data) return -ENOMEM; if (has_cap(ACER_CAP_MAILLED)) set_u32(data->mailled, ACER_CAP_MAILLED); if (has_cap(ACER_CAP_BRIGHTNESS)) set_u32(data->brightness, ACER_CAP_BRIGHTNESS); if (acer_wmi_accel_dev) acer_gsensor_init(); return 0; } #else #define acer_suspend NULL #define acer_resume NULL #endif static SIMPLE_DEV_PM_OPS(acer_pm, acer_suspend, acer_resume); static void acer_platform_shutdown(struct platform_device *device) { struct acer_data *data = &interface->data; if (!data) return; if (has_cap(ACER_CAP_MAILLED)) set_u32(LED_OFF, ACER_CAP_MAILLED); } static struct platform_driver acer_platform_driver = { .driver = { .name = "acer-wmi", .pm = &acer_pm, }, .probe = acer_platform_probe, .remove_new = acer_platform_remove, .shutdown = acer_platform_shutdown, }; static struct platform_device *acer_platform_device; static void remove_debugfs(void) { debugfs_remove_recursive(interface->debug.root); } static void __init create_debugfs(void) { interface->debug.root = debugfs_create_dir("acer-wmi", NULL); debugfs_create_u32("devices", S_IRUGO, interface->debug.root, &interface->debug.wmid_devices); } static int __init acer_wmi_init(void) { int err; pr_info("Acer Laptop ACPI-WMI Extras\n"); if (dmi_check_system(acer_blacklist)) { pr_info("Blacklisted hardware detected - not loading\n"); return -ENODEV; } find_quirks(); /* * The AMW0_GUID1 wmi is not only found on Acer family but also other * machines like Lenovo, Fujitsu and Medion. In the past days, * acer-wmi driver handled those non-Acer machines by quirks list. * But actually acer-wmi driver was loaded on any machines that have * AMW0_GUID1. This behavior is strange because those machines should * be supported by appropriate wmi drivers. e.g. fujitsu-laptop, * ideapad-laptop. So, here checks the machine that has AMW0_GUID1 * should be in Acer/Gateway/Packard Bell white list, or it's already * in the past quirk list. */ if (wmi_has_guid(AMW0_GUID1) && !dmi_check_system(amw0_whitelist) && quirks == &quirk_unknown) { pr_debug("Unsupported machine has AMW0_GUID1, unable to load\n"); return -ENODEV; } /* * Detect which ACPI-WMI interface we're using. */ if (wmi_has_guid(AMW0_GUID1) && wmi_has_guid(WMID_GUID1)) interface = &AMW0_V2_interface; if (!wmi_has_guid(AMW0_GUID1) && wmi_has_guid(WMID_GUID1)) interface = &wmid_interface; if (wmi_has_guid(WMID_GUID3)) interface = &wmid_v2_interface; if (interface) dmi_walk(type_aa_dmi_decode, NULL); if (wmi_has_guid(WMID_GUID2) && interface) { if (!has_type_aa && ACPI_FAILURE(WMID_set_capabilities())) { pr_err("Unable to detect available WMID devices\n"); return -ENODEV; } /* WMID always provides brightness methods */ interface->capability |= ACER_CAP_BRIGHTNESS; } else if (!wmi_has_guid(WMID_GUID2) && interface && !has_type_aa && force_caps == -1) { pr_err("No WMID device detection method found\n"); return -ENODEV; } if (wmi_has_guid(AMW0_GUID1) && !wmi_has_guid(WMID_GUID1)) { interface = &AMW0_interface; if (ACPI_FAILURE(AMW0_set_capabilities())) { pr_err("Unable to detect available AMW0 devices\n"); return -ENODEV; } } if (wmi_has_guid(AMW0_GUID1)) AMW0_find_mailled(); if (!interface) { pr_err("No or unsupported WMI interface, unable to load\n"); return -ENODEV; } set_quirks(); if (acpi_video_get_backlight_type() != acpi_backlight_vendor) interface->capability &= ~ACER_CAP_BRIGHTNESS; if (wmi_has_guid(WMID_GUID3)) interface->capability |= ACER_CAP_SET_FUNCTION_MODE; if (force_caps != -1) interface->capability = force_caps; if (wmi_has_guid(WMID_GUID3) && (interface->capability & ACER_CAP_SET_FUNCTION_MODE)) { if (ACPI_FAILURE(acer_wmi_enable_rf_button())) pr_warn("Cannot enable RF Button Driver\n"); if (ec_raw_mode) { if (ACPI_FAILURE(acer_wmi_enable_ec_raw())) { pr_err("Cannot enable EC raw mode\n"); return -ENODEV; } } else if (ACPI_FAILURE(acer_wmi_enable_lm())) { pr_err("Cannot enable Launch Manager mode\n"); return -ENODEV; } } else if (ec_raw_mode) { pr_info("No WMID EC raw mode enable method\n"); } if (wmi_has_guid(ACERWMID_EVENT_GUID)) { err = acer_wmi_input_setup(); if (err) return err; err = acer_wmi_accel_setup(); if (err && err != -ENODEV) pr_warn("Cannot enable accelerometer\n"); } err = platform_driver_register(&acer_platform_driver); if (err) { pr_err("Unable to register platform driver\n"); goto error_platform_register; } acer_platform_device = platform_device_alloc("acer-wmi", PLATFORM_DEVID_NONE); if (!acer_platform_device) { err = -ENOMEM; goto error_device_alloc; } err = platform_device_add(acer_platform_device); if (err) goto error_device_add; if (wmi_has_guid(WMID_GUID2)) { interface->debug.wmid_devices = get_wmid_devices(); create_debugfs(); } /* Override any initial settings with values from the commandline */ acer_commandline_init(); return 0; error_device_add: platform_device_put(acer_platform_device); error_device_alloc: platform_driver_unregister(&acer_platform_driver); error_platform_register: if (wmi_has_guid(ACERWMID_EVENT_GUID)) acer_wmi_input_destroy(); if (acer_wmi_accel_dev) input_unregister_device(acer_wmi_accel_dev); return err; } static void __exit acer_wmi_exit(void) { if (wmi_has_guid(ACERWMID_EVENT_GUID)) acer_wmi_input_destroy(); if (acer_wmi_accel_dev) input_unregister_device(acer_wmi_accel_dev); remove_debugfs(); platform_device_unregister(acer_platform_device); platform_driver_unregister(&acer_platform_driver); pr_info("Acer Laptop WMI Extras unloaded\n"); return; } module_init(acer_wmi_init); module_exit(acer_wmi_exit);
linux-master
drivers/platform/x86/acer-wmi.c
// SPDX-License-Identifier: GPL-2.0-only /* * Driver for Samsung Q10 and related laptops: controls the backlight * * Copyright (c) 2011 Frederick van der Wyck <[email protected]> */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/platform_device.h> #include <linux/backlight.h> #include <linux/dmi.h> #include <linux/acpi.h> #define SAMSUNGQ10_BL_MAX_INTENSITY 7 static acpi_handle ec_handle; static bool force; module_param(force, bool, 0); MODULE_PARM_DESC(force, "Disable the DMI check and force the driver to be loaded"); static int samsungq10_bl_set_intensity(struct backlight_device *bd) { acpi_status status; int i; for (i = 0; i < SAMSUNGQ10_BL_MAX_INTENSITY; i++) { status = acpi_evaluate_object(ec_handle, "_Q63", NULL, NULL); if (ACPI_FAILURE(status)) return -EIO; } for (i = 0; i < bd->props.brightness; i++) { status = acpi_evaluate_object(ec_handle, "_Q64", NULL, NULL); if (ACPI_FAILURE(status)) return -EIO; } return 0; } static const struct backlight_ops samsungq10_bl_ops = { .update_status = samsungq10_bl_set_intensity, }; static int samsungq10_probe(struct platform_device *pdev) { struct backlight_properties props; struct backlight_device *bd; memset(&props, 0, sizeof(struct backlight_properties)); props.type = BACKLIGHT_PLATFORM; props.max_brightness = SAMSUNGQ10_BL_MAX_INTENSITY; bd = backlight_device_register("samsung", &pdev->dev, NULL, &samsungq10_bl_ops, &props); if (IS_ERR(bd)) return PTR_ERR(bd); platform_set_drvdata(pdev, bd); return 0; } static void samsungq10_remove(struct platform_device *pdev) { struct backlight_device *bd = platform_get_drvdata(pdev); backlight_device_unregister(bd); } static struct platform_driver samsungq10_driver = { .driver = { .name = KBUILD_MODNAME, }, .probe = samsungq10_probe, .remove_new = samsungq10_remove, }; static struct platform_device *samsungq10_device; static int __init dmi_check_callback(const struct dmi_system_id *id) { printk(KERN_INFO KBUILD_MODNAME ": found model '%s'\n", id->ident); return 1; } static const struct dmi_system_id samsungq10_dmi_table[] __initconst = { { .ident = "Samsung Q10", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Samsung"), DMI_MATCH(DMI_PRODUCT_NAME, "SQ10"), }, .callback = dmi_check_callback, }, { .ident = "Samsung Q20", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG Electronics"), DMI_MATCH(DMI_PRODUCT_NAME, "SENS Q20"), }, .callback = dmi_check_callback, }, { .ident = "Samsung Q25", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG Electronics"), DMI_MATCH(DMI_PRODUCT_NAME, "NQ25"), }, .callback = dmi_check_callback, }, { .ident = "Dell Latitude X200", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Computer Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, "X200"), }, .callback = dmi_check_callback, }, { }, }; MODULE_DEVICE_TABLE(dmi, samsungq10_dmi_table); static int __init samsungq10_init(void) { if (!force && !dmi_check_system(samsungq10_dmi_table)) return -ENODEV; ec_handle = ec_get_handle(); if (!ec_handle) return -ENODEV; samsungq10_device = platform_create_bundle(&samsungq10_driver, samsungq10_probe, NULL, 0, NULL, 0); return PTR_ERR_OR_ZERO(samsungq10_device); } static void __exit samsungq10_exit(void) { platform_device_unregister(samsungq10_device); platform_driver_unregister(&samsungq10_driver); } module_init(samsungq10_init); module_exit(samsungq10_exit); MODULE_AUTHOR("Frederick van der Wyck <[email protected]>"); MODULE_DESCRIPTION("Samsung Q10 Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/platform/x86/samsung-q10.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * lenovo-ymc.c - Lenovo Yoga Mode Control driver * * Copyright © 2022 Gergo Koteles <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/acpi.h> #include <linux/dmi.h> #include <linux/input.h> #include <linux/input/sparse-keymap.h> #include <linux/wmi.h> #include "ideapad-laptop.h" #define LENOVO_YMC_EVENT_GUID "06129D99-6083-4164-81AD-F092F9D773A6" #define LENOVO_YMC_QUERY_GUID "09B0EE6E-C3FD-4243-8DA1-7911FF80BB8C" #define LENOVO_YMC_QUERY_INSTANCE 0 #define LENOVO_YMC_QUERY_METHOD 0x01 static bool ec_trigger __read_mostly; module_param(ec_trigger, bool, 0444); MODULE_PARM_DESC(ec_trigger, "Enable EC triggering work-around to force emitting tablet mode events"); static bool force; module_param(force, bool, 0444); MODULE_PARM_DESC(force, "Force loading on boards without a convertible DMI chassis-type"); static const struct dmi_system_id ec_trigger_quirk_dmi_table[] = { { /* Lenovo Yoga 7 14ARB7 */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_PRODUCT_NAME, "82QF"), }, }, { /* Lenovo Yoga 7 14ACN6 */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_PRODUCT_NAME, "82N7"), }, }, { } }; static const struct dmi_system_id allowed_chasis_types_dmi_table[] = { { .matches = { DMI_EXACT_MATCH(DMI_CHASSIS_TYPE, "31" /* Convertible */), }, }, { .matches = { DMI_EXACT_MATCH(DMI_CHASSIS_TYPE, "32" /* Detachable */), }, }, { } }; struct lenovo_ymc_private { struct input_dev *input_dev; struct acpi_device *ec_acpi_dev; }; static void lenovo_ymc_trigger_ec(struct wmi_device *wdev, struct lenovo_ymc_private *priv) { int err; if (!priv->ec_acpi_dev) return; err = write_ec_cmd(priv->ec_acpi_dev->handle, VPCCMD_W_YMC, 1); if (err) dev_warn(&wdev->dev, "Could not write YMC: %d\n", err); } static const struct key_entry lenovo_ymc_keymap[] = { /* Laptop */ { KE_SW, 0x01, { .sw = { SW_TABLET_MODE, 0 } } }, /* Tablet */ { KE_SW, 0x02, { .sw = { SW_TABLET_MODE, 1 } } }, /* Drawing Board */ { KE_SW, 0x03, { .sw = { SW_TABLET_MODE, 1 } } }, /* Tent */ { KE_SW, 0x04, { .sw = { SW_TABLET_MODE, 1 } } }, { KE_END }, }; static void lenovo_ymc_notify(struct wmi_device *wdev, union acpi_object *data) { struct lenovo_ymc_private *priv = dev_get_drvdata(&wdev->dev); u32 input_val = 0; struct acpi_buffer input = { sizeof(input_val), &input_val }; struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *obj; acpi_status status; int code; status = wmi_evaluate_method(LENOVO_YMC_QUERY_GUID, LENOVO_YMC_QUERY_INSTANCE, LENOVO_YMC_QUERY_METHOD, &input, &output); if (ACPI_FAILURE(status)) { dev_warn(&wdev->dev, "Failed to evaluate query method: %s\n", acpi_format_exception(status)); return; } obj = output.pointer; if (obj->type != ACPI_TYPE_INTEGER) { dev_warn(&wdev->dev, "WMI event data is not an integer\n"); goto free_obj; } code = obj->integer.value; if (!sparse_keymap_report_event(priv->input_dev, code, 1, true)) dev_warn(&wdev->dev, "Unknown key %d pressed\n", code); free_obj: kfree(obj); lenovo_ymc_trigger_ec(wdev, priv); } static void acpi_dev_put_helper(void *p) { acpi_dev_put(p); } static int lenovo_ymc_probe(struct wmi_device *wdev, const void *ctx) { struct lenovo_ymc_private *priv; struct input_dev *input_dev; int err; if (!dmi_check_system(allowed_chasis_types_dmi_table)) { if (force) dev_info(&wdev->dev, "Force loading Lenovo YMC support\n"); else return -ENODEV; } ec_trigger |= dmi_check_system(ec_trigger_quirk_dmi_table); priv = devm_kzalloc(&wdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; if (ec_trigger) { pr_debug("Lenovo YMC enable EC triggering.\n"); priv->ec_acpi_dev = acpi_dev_get_first_match_dev("VPC2004", NULL, -1); if (!priv->ec_acpi_dev) { dev_err(&wdev->dev, "Could not find EC ACPI device.\n"); return -ENODEV; } err = devm_add_action_or_reset(&wdev->dev, acpi_dev_put_helper, priv->ec_acpi_dev); if (err) { dev_err(&wdev->dev, "Could not clean up EC ACPI device: %d\n", err); return err; } } input_dev = devm_input_allocate_device(&wdev->dev); if (!input_dev) return -ENOMEM; input_dev->name = "Lenovo Yoga Tablet Mode Control switch"; input_dev->phys = LENOVO_YMC_EVENT_GUID "/input0"; input_dev->id.bustype = BUS_HOST; input_dev->dev.parent = &wdev->dev; err = sparse_keymap_setup(input_dev, lenovo_ymc_keymap, NULL); if (err) { dev_err(&wdev->dev, "Could not set up input device keymap: %d\n", err); return err; } err = input_register_device(input_dev); if (err) { dev_err(&wdev->dev, "Could not register input device: %d\n", err); return err; } priv->input_dev = input_dev; dev_set_drvdata(&wdev->dev, priv); /* Report the state for the first time on probe */ lenovo_ymc_trigger_ec(wdev, priv); lenovo_ymc_notify(wdev, NULL); return 0; } static const struct wmi_device_id lenovo_ymc_wmi_id_table[] = { { .guid_string = LENOVO_YMC_EVENT_GUID }, { } }; MODULE_DEVICE_TABLE(wmi, lenovo_ymc_wmi_id_table); static struct wmi_driver lenovo_ymc_driver = { .driver = { .name = "lenovo-ymc", }, .id_table = lenovo_ymc_wmi_id_table, .probe = lenovo_ymc_probe, .notify = lenovo_ymc_notify, }; module_wmi_driver(lenovo_ymc_driver); MODULE_AUTHOR("Gergo Koteles <[email protected]>"); MODULE_DESCRIPTION("Lenovo Yoga Mode Control driver"); MODULE_LICENSE("GPL");
linux-master
drivers/platform/x86/lenovo-ymc.c
// SPDX-License-Identifier: GPL-2.0+ /* * PC-Engines APUv2/APUv3 board platform driver * for GPIO buttons and LEDs * * Copyright (C) 2018 metux IT consult * Author: Enrico Weigelt <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/dmi.h> #include <linux/err.h> #include <linux/kernel.h> #include <linux/leds.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/gpio_keys.h> #include <linux/gpio/machine.h> #include <linux/input.h> #include <linux/platform_data/gpio/gpio-amd-fch.h> /* * NOTE: this driver only supports APUv2/3 - not APUv1, as this one * has completely different register layouts. */ /* Register mappings */ #define APU2_GPIO_REG_LED1 AMD_FCH_GPIO_REG_GPIO57 #define APU2_GPIO_REG_LED2 AMD_FCH_GPIO_REG_GPIO58 #define APU2_GPIO_REG_LED3 AMD_FCH_GPIO_REG_GPIO59_DEVSLP1 #define APU2_GPIO_REG_MODESW AMD_FCH_GPIO_REG_GPIO32_GE1 #define APU2_GPIO_REG_SIMSWAP AMD_FCH_GPIO_REG_GPIO33_GE2 #define APU2_GPIO_REG_MPCIE2 AMD_FCH_GPIO_REG_GPIO55_DEVSLP0 #define APU2_GPIO_REG_MPCIE3 AMD_FCH_GPIO_REG_GPIO51 /* Order in which the GPIO lines are defined in the register list */ #define APU2_GPIO_LINE_LED1 0 #define APU2_GPIO_LINE_LED2 1 #define APU2_GPIO_LINE_LED3 2 #define APU2_GPIO_LINE_MODESW 3 #define APU2_GPIO_LINE_SIMSWAP 4 #define APU2_GPIO_LINE_MPCIE2 5 #define APU2_GPIO_LINE_MPCIE3 6 /* GPIO device */ static int apu2_gpio_regs[] = { [APU2_GPIO_LINE_LED1] = APU2_GPIO_REG_LED1, [APU2_GPIO_LINE_LED2] = APU2_GPIO_REG_LED2, [APU2_GPIO_LINE_LED3] = APU2_GPIO_REG_LED3, [APU2_GPIO_LINE_MODESW] = APU2_GPIO_REG_MODESW, [APU2_GPIO_LINE_SIMSWAP] = APU2_GPIO_REG_SIMSWAP, [APU2_GPIO_LINE_MPCIE2] = APU2_GPIO_REG_MPCIE2, [APU2_GPIO_LINE_MPCIE3] = APU2_GPIO_REG_MPCIE3, }; static const char * const apu2_gpio_names[] = { [APU2_GPIO_LINE_LED1] = "front-led1", [APU2_GPIO_LINE_LED2] = "front-led2", [APU2_GPIO_LINE_LED3] = "front-led3", [APU2_GPIO_LINE_MODESW] = "front-button", [APU2_GPIO_LINE_SIMSWAP] = "simswap", [APU2_GPIO_LINE_MPCIE2] = "mpcie2_reset", [APU2_GPIO_LINE_MPCIE3] = "mpcie3_reset", }; static const struct amd_fch_gpio_pdata board_apu2 = { .gpio_num = ARRAY_SIZE(apu2_gpio_regs), .gpio_reg = apu2_gpio_regs, .gpio_names = apu2_gpio_names, }; /* GPIO LEDs device */ static const struct gpio_led apu2_leds[] = { { .name = "apu:green:1" }, { .name = "apu:green:2" }, { .name = "apu:green:3" }, }; static const struct gpio_led_platform_data apu2_leds_pdata = { .num_leds = ARRAY_SIZE(apu2_leds), .leds = apu2_leds, }; static struct gpiod_lookup_table gpios_led_table = { .dev_id = "leds-gpio", .table = { GPIO_LOOKUP_IDX(AMD_FCH_GPIO_DRIVER_NAME, APU2_GPIO_LINE_LED1, NULL, 0, GPIO_ACTIVE_LOW), GPIO_LOOKUP_IDX(AMD_FCH_GPIO_DRIVER_NAME, APU2_GPIO_LINE_LED2, NULL, 1, GPIO_ACTIVE_LOW), GPIO_LOOKUP_IDX(AMD_FCH_GPIO_DRIVER_NAME, APU2_GPIO_LINE_LED3, NULL, 2, GPIO_ACTIVE_LOW), {} /* Terminating entry */ } }; /* GPIO keyboard device */ static struct gpio_keys_button apu2_keys_buttons[] = { { .code = KEY_RESTART, .active_low = 1, .desc = "front button", .type = EV_KEY, .debounce_interval = 10, .value = 1, }, }; static const struct gpio_keys_platform_data apu2_keys_pdata = { .buttons = apu2_keys_buttons, .nbuttons = ARRAY_SIZE(apu2_keys_buttons), .poll_interval = 100, .rep = 0, .name = "apu2-keys", }; static struct gpiod_lookup_table gpios_key_table = { .dev_id = "gpio-keys-polled", .table = { GPIO_LOOKUP_IDX(AMD_FCH_GPIO_DRIVER_NAME, APU2_GPIO_LINE_MODESW, NULL, 0, GPIO_ACTIVE_LOW), {} /* Terminating entry */ } }; /* Board setup */ /* Note: matching works on string prefix, so "apu2" must come before "apu" */ static const struct dmi_system_id apu_gpio_dmi_table[] __initconst = { /* APU2 w/ legacy BIOS < 4.0.8 */ { .ident = "apu2", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "PC Engines"), DMI_MATCH(DMI_BOARD_NAME, "APU2") }, .driver_data = (void *)&board_apu2, }, /* APU2 w/ legacy BIOS >= 4.0.8 */ { .ident = "apu2", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "PC Engines"), DMI_MATCH(DMI_BOARD_NAME, "apu2") }, .driver_data = (void *)&board_apu2, }, /* APU2 w/ mainline BIOS */ { .ident = "apu2", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "PC Engines"), DMI_MATCH(DMI_BOARD_NAME, "PC Engines apu2") }, .driver_data = (void *)&board_apu2, }, /* APU3 w/ legacy BIOS < 4.0.8 */ { .ident = "apu3", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "PC Engines"), DMI_MATCH(DMI_BOARD_NAME, "APU3") }, .driver_data = (void *)&board_apu2, }, /* APU3 w/ legacy BIOS >= 4.0.8 */ { .ident = "apu3", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "PC Engines"), DMI_MATCH(DMI_BOARD_NAME, "apu3") }, .driver_data = (void *)&board_apu2, }, /* APU3 w/ mainline BIOS */ { .ident = "apu3", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "PC Engines"), DMI_MATCH(DMI_BOARD_NAME, "PC Engines apu3") }, .driver_data = (void *)&board_apu2, }, /* APU4 w/ legacy BIOS < 4.0.8 */ { .ident = "apu4", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "PC Engines"), DMI_MATCH(DMI_BOARD_NAME, "APU4") }, .driver_data = (void *)&board_apu2, }, /* APU4 w/ legacy BIOS >= 4.0.8 */ { .ident = "apu4", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "PC Engines"), DMI_MATCH(DMI_BOARD_NAME, "apu4") }, .driver_data = (void *)&board_apu2, }, /* APU4 w/ mainline BIOS */ { .ident = "apu4", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "PC Engines"), DMI_MATCH(DMI_BOARD_NAME, "PC Engines apu4") }, .driver_data = (void *)&board_apu2, }, {} }; static struct platform_device *apu_gpio_pdev; static struct platform_device *apu_leds_pdev; static struct platform_device *apu_keys_pdev; static struct platform_device * __init apu_create_pdev( const char *name, const void *pdata, size_t sz) { struct platform_device *pdev; pdev = platform_device_register_resndata(NULL, name, PLATFORM_DEVID_NONE, NULL, 0, pdata, sz); if (IS_ERR(pdev)) pr_err("failed registering %s: %ld\n", name, PTR_ERR(pdev)); return pdev; } static int __init apu_board_init(void) { const struct dmi_system_id *id; id = dmi_first_match(apu_gpio_dmi_table); if (!id) { pr_err("failed to detect APU board via DMI\n"); return -ENODEV; } gpiod_add_lookup_table(&gpios_led_table); gpiod_add_lookup_table(&gpios_key_table); apu_gpio_pdev = apu_create_pdev( AMD_FCH_GPIO_DRIVER_NAME, id->driver_data, sizeof(struct amd_fch_gpio_pdata)); apu_leds_pdev = apu_create_pdev( "leds-gpio", &apu2_leds_pdata, sizeof(apu2_leds_pdata)); apu_keys_pdev = apu_create_pdev( "gpio-keys-polled", &apu2_keys_pdata, sizeof(apu2_keys_pdata)); return 0; } static void __exit apu_board_exit(void) { gpiod_remove_lookup_table(&gpios_led_table); gpiod_remove_lookup_table(&gpios_key_table); platform_device_unregister(apu_keys_pdev); platform_device_unregister(apu_leds_pdev); platform_device_unregister(apu_gpio_pdev); } module_init(apu_board_init); module_exit(apu_board_exit); MODULE_AUTHOR("Enrico Weigelt, metux IT consult <[email protected]>"); MODULE_DESCRIPTION("PC Engines APUv2/APUv3 board GPIO/LEDs/keys driver"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(dmi, apu_gpio_dmi_table); MODULE_SOFTDEP("pre: platform:" AMD_FCH_GPIO_DRIVER_NAME " platform:leds-gpio platform:gpio_keys_polled");
linux-master
drivers/platform/x86/pcengines-apuv2.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * This file supports the /sys/firmware/sgi_uv topology tree on HPE UV. * * Copyright (c) 2020 Hewlett Packard Enterprise. All Rights Reserved. * Copyright (c) Justin Ernst */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/device.h> #include <linux/slab.h> #include <linux/kobject.h> #include <asm/uv/bios.h> #include <asm/uv/uv.h> #include <asm/uv/uv_hub.h> #include <asm/uv/uv_geo.h> #define INVALID_CNODE -1 struct kobject *sgi_uv_kobj; static struct kset *uv_pcibus_kset; static struct kset *uv_hubs_kset; static struct uv_bios_hub_info *hub_buf; static struct uv_bios_port_info **port_buf; static struct uv_hub **uv_hubs; static struct uv_pci_top_obj **uv_pci_objs; static int num_pci_lines; static int num_cnodes; static int *prev_obj_to_cnode; static int uv_bios_obj_cnt; static signed short uv_master_nasid = -1; static void *uv_biosheap; static const char *uv_type_string(void) { if (is_uv5_hub()) return "9.0"; else if (is_uv4a_hub()) return "7.1"; else if (is_uv4_hub()) return "7.0"; else if (is_uv3_hub()) return "5.0"; else if (is_uv2_hub()) return "3.0"; else if (uv_get_hubless_system()) return "0.1"; else return "unknown"; } static int ordinal_to_nasid(int ordinal) { if (ordinal < num_cnodes && ordinal >= 0) return UV_PNODE_TO_NASID(uv_blade_to_pnode(ordinal)); else return -1; } static union geoid_u cnode_to_geoid(int cnode) { union geoid_u geoid; uv_bios_get_geoinfo(ordinal_to_nasid(cnode), (u64)sizeof(union geoid_u), (u64 *)&geoid); return geoid; } static int location_to_bpos(char *location, int *rack, int *slot, int *blade) { char type, r, b, h; int idb, idh; if (sscanf(location, "%c%03d%c%02d%c%2d%c%d", &r, rack, &type, slot, &b, &idb, &h, &idh) != 8) return -1; *blade = idb * 2 + idh; return 0; } static int cache_obj_to_cnode(struct uv_bios_hub_info *obj) { int cnode; union geoid_u geoid; int obj_rack, obj_slot, obj_blade; int rack, slot, blade; if (!obj->f.fields.this_part && !obj->f.fields.is_shared) return 0; if (location_to_bpos(obj->location, &obj_rack, &obj_slot, &obj_blade)) return -1; for (cnode = 0; cnode < num_cnodes; cnode++) { geoid = cnode_to_geoid(cnode); rack = geo_rack(geoid); slot = geo_slot(geoid); blade = geo_blade(geoid); if (obj_rack == rack && obj_slot == slot && obj_blade == blade) prev_obj_to_cnode[obj->id] = cnode; } return 0; } static int get_obj_to_cnode(int obj_id) { return prev_obj_to_cnode[obj_id]; } struct uv_hub { struct kobject kobj; struct uv_bios_hub_info *hub_info; struct uv_port **ports; }; #define to_uv_hub(kobj_ptr) container_of(kobj_ptr, struct uv_hub, kobj) static ssize_t hub_name_show(struct uv_bios_hub_info *hub_info, char *buf) { return sysfs_emit(buf, "%s\n", hub_info->name); } static ssize_t hub_location_show(struct uv_bios_hub_info *hub_info, char *buf) { return sysfs_emit(buf, "%s\n", hub_info->location); } static ssize_t hub_partition_show(struct uv_bios_hub_info *hub_info, char *buf) { return sprintf(buf, "%d\n", hub_info->f.fields.this_part); } static ssize_t hub_shared_show(struct uv_bios_hub_info *hub_info, char *buf) { return sprintf(buf, "%d\n", hub_info->f.fields.is_shared); } static ssize_t hub_nasid_show(struct uv_bios_hub_info *hub_info, char *buf) { int cnode = get_obj_to_cnode(hub_info->id); return sprintf(buf, "%d\n", ordinal_to_nasid(cnode)); } static ssize_t hub_cnode_show(struct uv_bios_hub_info *hub_info, char *buf) { return sprintf(buf, "%d\n", get_obj_to_cnode(hub_info->id)); } struct hub_sysfs_entry { struct attribute attr; ssize_t (*show)(struct uv_bios_hub_info *hub_info, char *buf); ssize_t (*store)(struct uv_bios_hub_info *hub_info, const char *buf, size_t sz); }; static struct hub_sysfs_entry name_attribute = __ATTR(name, 0444, hub_name_show, NULL); static struct hub_sysfs_entry location_attribute = __ATTR(location, 0444, hub_location_show, NULL); static struct hub_sysfs_entry partition_attribute = __ATTR(this_partition, 0444, hub_partition_show, NULL); static struct hub_sysfs_entry shared_attribute = __ATTR(shared, 0444, hub_shared_show, NULL); static struct hub_sysfs_entry nasid_attribute = __ATTR(nasid, 0444, hub_nasid_show, NULL); static struct hub_sysfs_entry cnode_attribute = __ATTR(cnode, 0444, hub_cnode_show, NULL); static struct attribute *uv_hub_attrs[] = { &name_attribute.attr, &location_attribute.attr, &partition_attribute.attr, &shared_attribute.attr, &nasid_attribute.attr, &cnode_attribute.attr, NULL, }; ATTRIBUTE_GROUPS(uv_hub); static void hub_release(struct kobject *kobj) { struct uv_hub *hub = to_uv_hub(kobj); kfree(hub); } static ssize_t hub_type_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct uv_hub *hub = to_uv_hub(kobj); struct uv_bios_hub_info *bios_hub_info = hub->hub_info; struct hub_sysfs_entry *entry; entry = container_of(attr, struct hub_sysfs_entry, attr); if (!entry->show) return -EIO; return entry->show(bios_hub_info, buf); } static const struct sysfs_ops hub_sysfs_ops = { .show = hub_type_show, }; static const struct kobj_type hub_attr_type = { .release = hub_release, .sysfs_ops = &hub_sysfs_ops, .default_groups = uv_hub_groups, }; static int uv_hubs_init(void) { s64 biosr; u64 sz; int i, ret; prev_obj_to_cnode = kmalloc_array(uv_bios_obj_cnt, sizeof(*prev_obj_to_cnode), GFP_KERNEL); if (!prev_obj_to_cnode) return -ENOMEM; for (i = 0; i < uv_bios_obj_cnt; i++) prev_obj_to_cnode[i] = INVALID_CNODE; uv_hubs_kset = kset_create_and_add("hubs", NULL, sgi_uv_kobj); if (!uv_hubs_kset) { ret = -ENOMEM; goto err_hubs_kset; } sz = uv_bios_obj_cnt * sizeof(*hub_buf); hub_buf = kzalloc(sz, GFP_KERNEL); if (!hub_buf) { ret = -ENOMEM; goto err_hub_buf; } biosr = uv_bios_enum_objs((u64)uv_master_nasid, sz, (u64 *)hub_buf); if (biosr) { ret = -EINVAL; goto err_enum_objs; } uv_hubs = kcalloc(uv_bios_obj_cnt, sizeof(*uv_hubs), GFP_KERNEL); if (!uv_hubs) { ret = -ENOMEM; goto err_enum_objs; } for (i = 0; i < uv_bios_obj_cnt; i++) { uv_hubs[i] = kzalloc(sizeof(*uv_hubs[i]), GFP_KERNEL); if (!uv_hubs[i]) { i--; ret = -ENOMEM; goto err_hubs; } uv_hubs[i]->hub_info = &hub_buf[i]; cache_obj_to_cnode(uv_hubs[i]->hub_info); uv_hubs[i]->kobj.kset = uv_hubs_kset; ret = kobject_init_and_add(&uv_hubs[i]->kobj, &hub_attr_type, NULL, "hub_%u", hub_buf[i].id); if (ret) goto err_hubs; kobject_uevent(&uv_hubs[i]->kobj, KOBJ_ADD); } return 0; err_hubs: for (; i >= 0; i--) kobject_put(&uv_hubs[i]->kobj); kfree(uv_hubs); err_enum_objs: kfree(hub_buf); err_hub_buf: kset_unregister(uv_hubs_kset); err_hubs_kset: kfree(prev_obj_to_cnode); return ret; } static void uv_hubs_exit(void) { int i; for (i = 0; i < uv_bios_obj_cnt; i++) kobject_put(&uv_hubs[i]->kobj); kfree(uv_hubs); kfree(hub_buf); kset_unregister(uv_hubs_kset); kfree(prev_obj_to_cnode); } struct uv_port { struct kobject kobj; struct uv_bios_port_info *port_info; }; #define to_uv_port(kobj_ptr) container_of(kobj_ptr, struct uv_port, kobj) static ssize_t uv_port_conn_hub_show(struct uv_bios_port_info *port, char *buf) { return sprintf(buf, "%d\n", port->conn_id); } static ssize_t uv_port_conn_port_show(struct uv_bios_port_info *port, char *buf) { return sprintf(buf, "%d\n", port->conn_port); } struct uv_port_sysfs_entry { struct attribute attr; ssize_t (*show)(struct uv_bios_port_info *port_info, char *buf); ssize_t (*store)(struct uv_bios_port_info *port_info, const char *buf, size_t size); }; static struct uv_port_sysfs_entry uv_port_conn_hub_attribute = __ATTR(conn_hub, 0444, uv_port_conn_hub_show, NULL); static struct uv_port_sysfs_entry uv_port_conn_port_attribute = __ATTR(conn_port, 0444, uv_port_conn_port_show, NULL); static struct attribute *uv_port_attrs[] = { &uv_port_conn_hub_attribute.attr, &uv_port_conn_port_attribute.attr, NULL, }; ATTRIBUTE_GROUPS(uv_port); static void uv_port_release(struct kobject *kobj) { struct uv_port *port = to_uv_port(kobj); kfree(port); } static ssize_t uv_port_type_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct uv_port *port = to_uv_port(kobj); struct uv_bios_port_info *port_info = port->port_info; struct uv_port_sysfs_entry *entry; entry = container_of(attr, struct uv_port_sysfs_entry, attr); if (!entry->show) return -EIO; return entry->show(port_info, buf); } static const struct sysfs_ops uv_port_sysfs_ops = { .show = uv_port_type_show, }; static const struct kobj_type uv_port_attr_type = { .release = uv_port_release, .sysfs_ops = &uv_port_sysfs_ops, .default_groups = uv_port_groups, }; static int uv_ports_init(void) { s64 biosr; int j = 0, k = 0, ret, sz; port_buf = kcalloc(uv_bios_obj_cnt, sizeof(*port_buf), GFP_KERNEL); if (!port_buf) return -ENOMEM; for (j = 0; j < uv_bios_obj_cnt; j++) { sz = hub_buf[j].ports * sizeof(*port_buf[j]); port_buf[j] = kzalloc(sz, GFP_KERNEL); if (!port_buf[j]) { ret = -ENOMEM; j--; goto err_port_info; } biosr = uv_bios_enum_ports((u64)uv_master_nasid, (u64)hub_buf[j].id, sz, (u64 *)port_buf[j]); if (biosr) { ret = -EINVAL; goto err_port_info; } } for (j = 0; j < uv_bios_obj_cnt; j++) { uv_hubs[j]->ports = kcalloc(hub_buf[j].ports, sizeof(*uv_hubs[j]->ports), GFP_KERNEL); if (!uv_hubs[j]->ports) { ret = -ENOMEM; j--; goto err_ports; } } for (j = 0; j < uv_bios_obj_cnt; j++) { for (k = 0; k < hub_buf[j].ports; k++) { uv_hubs[j]->ports[k] = kzalloc(sizeof(*uv_hubs[j]->ports[k]), GFP_KERNEL); if (!uv_hubs[j]->ports[k]) { ret = -ENOMEM; k--; goto err_kobj_ports; } uv_hubs[j]->ports[k]->port_info = &port_buf[j][k]; ret = kobject_init_and_add(&uv_hubs[j]->ports[k]->kobj, &uv_port_attr_type, &uv_hubs[j]->kobj, "port_%d", port_buf[j][k].port); if (ret) goto err_kobj_ports; kobject_uevent(&uv_hubs[j]->ports[k]->kobj, KOBJ_ADD); } } return 0; err_kobj_ports: for (; j >= 0; j--) { for (; k >= 0; k--) kobject_put(&uv_hubs[j]->ports[k]->kobj); if (j > 0) k = hub_buf[j-1].ports - 1; } j = uv_bios_obj_cnt - 1; err_ports: for (; j >= 0; j--) kfree(uv_hubs[j]->ports); j = uv_bios_obj_cnt - 1; err_port_info: for (; j >= 0; j--) kfree(port_buf[j]); kfree(port_buf); return ret; } static void uv_ports_exit(void) { int j, k; for (j = 0; j < uv_bios_obj_cnt; j++) { for (k = hub_buf[j].ports - 1; k >= 0; k--) kobject_put(&uv_hubs[j]->ports[k]->kobj); } for (j = 0; j < uv_bios_obj_cnt; j++) { kfree(uv_hubs[j]->ports); kfree(port_buf[j]); } kfree(port_buf); } struct uv_pci_top_obj { struct kobject kobj; char *type; char *location; int iio_stack; char *ppb_addr; int slot; }; #define to_uv_pci_top_obj(kobj_ptr) container_of(kobj_ptr, struct uv_pci_top_obj, kobj) static ssize_t uv_pci_type_show(struct uv_pci_top_obj *top_obj, char *buf) { return sysfs_emit(buf, "%s\n", top_obj->type); } static ssize_t uv_pci_location_show(struct uv_pci_top_obj *top_obj, char *buf) { return sysfs_emit(buf, "%s\n", top_obj->location); } static ssize_t uv_pci_iio_stack_show(struct uv_pci_top_obj *top_obj, char *buf) { return sprintf(buf, "%d\n", top_obj->iio_stack); } static ssize_t uv_pci_ppb_addr_show(struct uv_pci_top_obj *top_obj, char *buf) { return sysfs_emit(buf, "%s\n", top_obj->ppb_addr); } static ssize_t uv_pci_slot_show(struct uv_pci_top_obj *top_obj, char *buf) { return sprintf(buf, "%d\n", top_obj->slot); } struct uv_pci_top_sysfs_entry { struct attribute attr; ssize_t (*show)(struct uv_pci_top_obj *top_obj, char *buf); ssize_t (*store)(struct uv_pci_top_obj *top_obj, const char *buf, size_t size); }; static struct uv_pci_top_sysfs_entry uv_pci_type_attribute = __ATTR(type, 0444, uv_pci_type_show, NULL); static struct uv_pci_top_sysfs_entry uv_pci_location_attribute = __ATTR(location, 0444, uv_pci_location_show, NULL); static struct uv_pci_top_sysfs_entry uv_pci_iio_stack_attribute = __ATTR(iio_stack, 0444, uv_pci_iio_stack_show, NULL); static struct uv_pci_top_sysfs_entry uv_pci_ppb_addr_attribute = __ATTR(ppb_addr, 0444, uv_pci_ppb_addr_show, NULL); static struct uv_pci_top_sysfs_entry uv_pci_slot_attribute = __ATTR(slot, 0444, uv_pci_slot_show, NULL); static void uv_pci_top_release(struct kobject *kobj) { struct uv_pci_top_obj *top_obj = to_uv_pci_top_obj(kobj); kfree(top_obj->type); kfree(top_obj->location); kfree(top_obj->ppb_addr); kfree(top_obj); } static ssize_t pci_top_type_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct uv_pci_top_obj *top_obj = to_uv_pci_top_obj(kobj); struct uv_pci_top_sysfs_entry *entry; entry = container_of(attr, struct uv_pci_top_sysfs_entry, attr); if (!entry->show) return -EIO; return entry->show(top_obj, buf); } static const struct sysfs_ops uv_pci_top_sysfs_ops = { .show = pci_top_type_show, }; static const struct kobj_type uv_pci_top_attr_type = { .release = uv_pci_top_release, .sysfs_ops = &uv_pci_top_sysfs_ops, }; static int init_pci_top_obj(struct uv_pci_top_obj *top_obj, char *line) { char *start; char type[11], location[14], ppb_addr[15]; int str_cnt, ret; unsigned int tmp_match[2]; // Minimum line length if (strlen(line) < 36) return -EINVAL; //Line must match format "pcibus %4x:%2x" to be valid str_cnt = sscanf(line, "pcibus %4x:%2x", &tmp_match[0], &tmp_match[1]); if (str_cnt < 2) return -EINVAL; /* Connect pcibus to segment:bus number with '_' * to concatenate name tokens. * pcibus 0000:00 ... -> pcibus_0000:00 ... */ line[6] = '_'; /* Null terminate after the concatencated name tokens * to produce kobj name string. */ line[14] = '\0'; // Use start to index after name tokens string for remainder of line info. start = &line[15]; top_obj->iio_stack = -1; top_obj->slot = -1; /* r001i01b00h0 BASE IO (IIO Stack 0) * r001i01b00h1 PCIe IO (IIO Stack 1) * r001i01b03h1 PCIe SLOT * r001i01b00h0 NODE IO * r001i01b00h0 Riser * (IIO Stack #) may not be present. */ if (start[0] == 'r') { str_cnt = sscanf(start, "%13s %10[^(] %*s %*s %d)", location, type, &top_obj->iio_stack); if (str_cnt < 2) return -EINVAL; top_obj->type = kstrdup(type, GFP_KERNEL); if (!top_obj->type) return -ENOMEM; top_obj->location = kstrdup(location, GFP_KERNEL); if (!top_obj->location) { kfree(top_obj->type); return -ENOMEM; } } /* PPB at 0000:80:00.00 (slot 3) * (slot #) may not be present. */ else if (start[0] == 'P') { str_cnt = sscanf(start, "%10s %*s %14s %*s %d)", type, ppb_addr, &top_obj->slot); if (str_cnt < 2) return -EINVAL; top_obj->type = kstrdup(type, GFP_KERNEL); if (!top_obj->type) return -ENOMEM; top_obj->ppb_addr = kstrdup(ppb_addr, GFP_KERNEL); if (!top_obj->ppb_addr) { kfree(top_obj->type); return -ENOMEM; } } else return -EINVAL; top_obj->kobj.kset = uv_pcibus_kset; ret = kobject_init_and_add(&top_obj->kobj, &uv_pci_top_attr_type, NULL, "%s", line); if (ret) goto err_add_sysfs; if (top_obj->type) { ret = sysfs_create_file(&top_obj->kobj, &uv_pci_type_attribute.attr); if (ret) goto err_add_sysfs; } if (top_obj->location) { ret = sysfs_create_file(&top_obj->kobj, &uv_pci_location_attribute.attr); if (ret) goto err_add_sysfs; } if (top_obj->iio_stack >= 0) { ret = sysfs_create_file(&top_obj->kobj, &uv_pci_iio_stack_attribute.attr); if (ret) goto err_add_sysfs; } if (top_obj->ppb_addr) { ret = sysfs_create_file(&top_obj->kobj, &uv_pci_ppb_addr_attribute.attr); if (ret) goto err_add_sysfs; } if (top_obj->slot >= 0) { ret = sysfs_create_file(&top_obj->kobj, &uv_pci_slot_attribute.attr); if (ret) goto err_add_sysfs; } kobject_uevent(&top_obj->kobj, KOBJ_ADD); return 0; err_add_sysfs: kobject_put(&top_obj->kobj); return ret; } static int pci_topology_init(void) { char *pci_top_str, *start, *found, *count; size_t sz; s64 biosr; int l = 0, k = 0; int len, ret; uv_pcibus_kset = kset_create_and_add("pcibuses", NULL, sgi_uv_kobj); if (!uv_pcibus_kset) return -ENOMEM; for (sz = PAGE_SIZE; sz < 16 * PAGE_SIZE; sz += PAGE_SIZE) { pci_top_str = kmalloc(sz, GFP_KERNEL); if (!pci_top_str) { ret = -ENOMEM; goto err_pci_top_str; } biosr = uv_bios_get_pci_topology((u64)sz, (u64 *)pci_top_str); if (biosr == BIOS_STATUS_SUCCESS) { len = strnlen(pci_top_str, sz); for (count = pci_top_str; count < pci_top_str + len; count++) { if (*count == '\n') l++; } num_pci_lines = l; uv_pci_objs = kcalloc(num_pci_lines, sizeof(*uv_pci_objs), GFP_KERNEL); if (!uv_pci_objs) { kfree(pci_top_str); ret = -ENOMEM; goto err_pci_top_str; } start = pci_top_str; while ((found = strsep(&start, "\n")) != NULL) { uv_pci_objs[k] = kzalloc(sizeof(*uv_pci_objs[k]), GFP_KERNEL); if (!uv_pci_objs[k]) { ret = -ENOMEM; goto err_pci_obj; } ret = init_pci_top_obj(uv_pci_objs[k], found); if (ret) goto err_pci_obj; k++; if (k == num_pci_lines) break; } } kfree(pci_top_str); if (biosr == BIOS_STATUS_SUCCESS || biosr == BIOS_STATUS_UNIMPLEMENTED) break; } return 0; err_pci_obj: k--; for (; k >= 0; k--) kobject_put(&uv_pci_objs[k]->kobj); kfree(uv_pci_objs); kfree(pci_top_str); err_pci_top_str: kset_unregister(uv_pcibus_kset); return ret; } static void pci_topology_exit(void) { int k; for (k = 0; k < num_pci_lines; k++) kobject_put(&uv_pci_objs[k]->kobj); kset_unregister(uv_pcibus_kset); kfree(uv_pci_objs); } static ssize_t partition_id_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%ld\n", sn_partition_id); } static ssize_t coherence_id_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%ld\n", sn_coherency_id); } static ssize_t uv_type_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%s\n", uv_type_string()); } static ssize_t uv_archtype_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return uv_get_archtype(buf, PAGE_SIZE); } static ssize_t uv_hub_type_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "0x%x\n", uv_hub_type()); } static ssize_t uv_hubless_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "0x%x\n", uv_get_hubless_system()); } static struct kobj_attribute partition_id_attr = __ATTR(partition_id, 0444, partition_id_show, NULL); static struct kobj_attribute coherence_id_attr = __ATTR(coherence_id, 0444, coherence_id_show, NULL); static struct kobj_attribute uv_type_attr = __ATTR(uv_type, 0444, uv_type_show, NULL); static struct kobj_attribute uv_archtype_attr = __ATTR(archtype, 0444, uv_archtype_show, NULL); static struct kobj_attribute uv_hub_type_attr = __ATTR(hub_type, 0444, uv_hub_type_show, NULL); static struct kobj_attribute uv_hubless_attr = __ATTR(hubless, 0444, uv_hubless_show, NULL); static struct attribute *base_attrs[] = { &partition_id_attr.attr, &coherence_id_attr.attr, &uv_type_attr.attr, &uv_archtype_attr.attr, &uv_hub_type_attr.attr, NULL, }; static const struct attribute_group base_attr_group = { .attrs = base_attrs }; static int initial_bios_setup(void) { u64 v; s64 biosr; biosr = uv_bios_get_master_nasid((u64)sizeof(uv_master_nasid), (u64 *)&uv_master_nasid); if (biosr) return -EINVAL; biosr = uv_bios_get_heapsize((u64)uv_master_nasid, (u64)sizeof(u64), &v); if (biosr) return -EINVAL; uv_biosheap = vmalloc(v); if (!uv_biosheap) return -ENOMEM; biosr = uv_bios_install_heap((u64)uv_master_nasid, v, (u64 *)uv_biosheap); if (biosr) { vfree(uv_biosheap); return -EINVAL; } biosr = uv_bios_obj_count((u64)uv_master_nasid, sizeof(u64), &v); if (biosr) { vfree(uv_biosheap); return -EINVAL; } uv_bios_obj_cnt = (int)v; return 0; } static struct attribute *hubless_base_attrs[] = { &partition_id_attr.attr, &uv_type_attr.attr, &uv_archtype_attr.attr, &uv_hubless_attr.attr, NULL, }; static const struct attribute_group hubless_base_attr_group = { .attrs = hubless_base_attrs }; static int __init uv_sysfs_hubless_init(void) { int ret; ret = sysfs_create_group(sgi_uv_kobj, &hubless_base_attr_group); if (ret) { pr_warn("sysfs_create_group hubless_base_attr_group failed\n"); kobject_put(sgi_uv_kobj); } return ret; } static int __init uv_sysfs_init(void) { int ret = 0; if (!is_uv_system() && !uv_get_hubless_system()) return -ENODEV; num_cnodes = uv_num_possible_blades(); if (!sgi_uv_kobj) sgi_uv_kobj = kobject_create_and_add("sgi_uv", firmware_kobj); if (!sgi_uv_kobj) { pr_warn("kobject_create_and_add sgi_uv failed\n"); return -EINVAL; } if (uv_get_hubless_system()) return uv_sysfs_hubless_init(); ret = sysfs_create_group(sgi_uv_kobj, &base_attr_group); if (ret) { pr_warn("sysfs_create_group base_attr_group failed\n"); goto err_create_group; } ret = initial_bios_setup(); if (ret) goto err_bios_setup; ret = uv_hubs_init(); if (ret) goto err_hubs_init; ret = uv_ports_init(); if (ret) goto err_ports_init; ret = pci_topology_init(); if (ret) goto err_pci_init; return 0; err_pci_init: uv_ports_exit(); err_ports_init: uv_hubs_exit(); err_hubs_init: vfree(uv_biosheap); err_bios_setup: sysfs_remove_group(sgi_uv_kobj, &base_attr_group); err_create_group: kobject_put(sgi_uv_kobj); return ret; } static void __exit uv_sysfs_hubless_exit(void) { sysfs_remove_group(sgi_uv_kobj, &hubless_base_attr_group); kobject_put(sgi_uv_kobj); } static void __exit uv_sysfs_exit(void) { if (!is_uv_system()) { if (uv_get_hubless_system()) uv_sysfs_hubless_exit(); return; } pci_topology_exit(); uv_ports_exit(); uv_hubs_exit(); vfree(uv_biosheap); sysfs_remove_group(sgi_uv_kobj, &base_attr_group); kobject_put(sgi_uv_kobj); } #ifndef MODULE device_initcall(uv_sysfs_init); #else module_init(uv_sysfs_init); #endif module_exit(uv_sysfs_exit); MODULE_AUTHOR("Hewlett Packard Enterprise"); MODULE_LICENSE("GPL");
linux-master
drivers/platform/x86/uv_sysfs.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Support for rfkill on some Fujitsu-Siemens Amilo laptops. * Copyright 2011 Ben Hutchings. * * Based in part on the fsam7440 driver, which is: * Copyright 2005 Alejandro Vidal Mata & Javier Vidal Mata. * and on the fsaa1655g driver, which is: * Copyright 2006 Martin Večeřa. */ #include <linux/module.h> #include <linux/dmi.h> #include <linux/i8042.h> #include <linux/io.h> #include <linux/moduleparam.h> #include <linux/platform_device.h> #include <linux/rfkill.h> /* * These values were obtained from disassembling and debugging the * PM.exe program installed in the Fujitsu-Siemens AMILO A1655G */ #define A1655_WIFI_COMMAND 0x10C5 #define A1655_WIFI_ON 0x25 #define A1655_WIFI_OFF 0x45 static int amilo_a1655_rfkill_set_block(void *data, bool blocked) { u8 param = blocked ? A1655_WIFI_OFF : A1655_WIFI_ON; int rc; i8042_lock_chip(); rc = i8042_command(&param, A1655_WIFI_COMMAND); i8042_unlock_chip(); return rc; } static const struct rfkill_ops amilo_a1655_rfkill_ops = { .set_block = amilo_a1655_rfkill_set_block }; /* * These values were obtained from disassembling the PM.exe program * installed in the Fujitsu-Siemens AMILO M 7440 */ #define M7440_PORT1 0x118f #define M7440_PORT2 0x118e #define M7440_RADIO_ON1 0x12 #define M7440_RADIO_ON2 0x80 #define M7440_RADIO_OFF1 0x10 #define M7440_RADIO_OFF2 0x00 static int amilo_m7440_rfkill_set_block(void *data, bool blocked) { u8 val1 = blocked ? M7440_RADIO_OFF1 : M7440_RADIO_ON1; u8 val2 = blocked ? M7440_RADIO_OFF2 : M7440_RADIO_ON2; outb(val1, M7440_PORT1); outb(val2, M7440_PORT2); /* Check whether the state has changed correctly */ if (inb(M7440_PORT1) != val1 || inb(M7440_PORT2) != val2) return -EIO; return 0; } static const struct rfkill_ops amilo_m7440_rfkill_ops = { .set_block = amilo_m7440_rfkill_set_block }; static const struct dmi_system_id amilo_rfkill_id_table[] = { { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU SIEMENS"), DMI_MATCH(DMI_BOARD_NAME, "AMILO A1655"), }, .driver_data = (void *)&amilo_a1655_rfkill_ops }, { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU SIEMENS"), DMI_MATCH(DMI_BOARD_NAME, "AMILO L1310"), }, .driver_data = (void *)&amilo_a1655_rfkill_ops }, { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU SIEMENS"), DMI_MATCH(DMI_BOARD_NAME, "AMILO M7440"), }, .driver_data = (void *)&amilo_m7440_rfkill_ops }, {} }; static struct platform_device *amilo_rfkill_pdev; static struct rfkill *amilo_rfkill_dev; static int amilo_rfkill_probe(struct platform_device *device) { int rc; const struct dmi_system_id *system_id = dmi_first_match(amilo_rfkill_id_table); if (!system_id) return -ENXIO; amilo_rfkill_dev = rfkill_alloc(KBUILD_MODNAME, &device->dev, RFKILL_TYPE_WLAN, system_id->driver_data, NULL); if (!amilo_rfkill_dev) return -ENOMEM; rc = rfkill_register(amilo_rfkill_dev); if (rc) goto fail; return 0; fail: rfkill_destroy(amilo_rfkill_dev); return rc; } static void amilo_rfkill_remove(struct platform_device *device) { rfkill_unregister(amilo_rfkill_dev); rfkill_destroy(amilo_rfkill_dev); } static struct platform_driver amilo_rfkill_driver = { .driver = { .name = KBUILD_MODNAME, }, .probe = amilo_rfkill_probe, .remove_new = amilo_rfkill_remove, }; static int __init amilo_rfkill_init(void) { int rc; if (dmi_first_match(amilo_rfkill_id_table) == NULL) return -ENODEV; rc = platform_driver_register(&amilo_rfkill_driver); if (rc) return rc; amilo_rfkill_pdev = platform_device_register_simple(KBUILD_MODNAME, PLATFORM_DEVID_NONE, NULL, 0); if (IS_ERR(amilo_rfkill_pdev)) { rc = PTR_ERR(amilo_rfkill_pdev); goto fail; } return 0; fail: platform_driver_unregister(&amilo_rfkill_driver); return rc; } static void __exit amilo_rfkill_exit(void) { platform_device_unregister(amilo_rfkill_pdev); platform_driver_unregister(&amilo_rfkill_driver); } MODULE_AUTHOR("Ben Hutchings <[email protected]>"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(dmi, amilo_rfkill_id_table); module_init(amilo_rfkill_init); module_exit(amilo_rfkill_exit);
linux-master
drivers/platform/x86/amilo-rfkill.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * MSI WMI hotkeys * * Copyright (C) 2009 Novell <[email protected]> * * Most stuff taken over from hp-wmi */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/input.h> #include <linux/input/sparse-keymap.h> #include <linux/acpi.h> #include <linux/backlight.h> #include <linux/slab.h> #include <linux/module.h> #include <acpi/video.h> MODULE_AUTHOR("Thomas Renninger <[email protected]>"); MODULE_DESCRIPTION("MSI laptop WMI hotkeys driver"); MODULE_LICENSE("GPL"); #define DRV_NAME "msi-wmi" #define MSIWMI_BIOS_GUID "551A1F84-FBDD-4125-91DB-3EA8F44F1D45" #define MSIWMI_MSI_EVENT_GUID "B6F3EEF2-3D2F-49DC-9DE3-85BCE18C62F2" #define MSIWMI_WIND_EVENT_GUID "5B3CC38A-40D9-7245-8AE6-1145B751BE3F" MODULE_ALIAS("wmi:" MSIWMI_BIOS_GUID); MODULE_ALIAS("wmi:" MSIWMI_MSI_EVENT_GUID); MODULE_ALIAS("wmi:" MSIWMI_WIND_EVENT_GUID); enum msi_scancodes { /* Generic MSI keys (not present on MSI Wind) */ MSI_KEY_BRIGHTNESSUP = 0xD0, MSI_KEY_BRIGHTNESSDOWN, MSI_KEY_VOLUMEUP, MSI_KEY_VOLUMEDOWN, MSI_KEY_MUTE, /* MSI Wind keys */ WIND_KEY_TOUCHPAD = 0x08, /* Fn+F3 touchpad toggle */ WIND_KEY_BLUETOOTH = 0x56, /* Fn+F11 Bluetooth toggle */ WIND_KEY_CAMERA, /* Fn+F6 webcam toggle */ WIND_KEY_WLAN = 0x5f, /* Fn+F11 Wi-Fi toggle */ WIND_KEY_TURBO, /* Fn+F10 turbo mode toggle */ WIND_KEY_ECO = 0x69, /* Fn+F10 ECO mode toggle */ }; static struct key_entry msi_wmi_keymap[] = { { KE_KEY, MSI_KEY_BRIGHTNESSUP, {KEY_BRIGHTNESSUP} }, { KE_KEY, MSI_KEY_BRIGHTNESSDOWN, {KEY_BRIGHTNESSDOWN} }, { KE_KEY, MSI_KEY_VOLUMEUP, {KEY_VOLUMEUP} }, { KE_KEY, MSI_KEY_VOLUMEDOWN, {KEY_VOLUMEDOWN} }, { KE_KEY, MSI_KEY_MUTE, {KEY_MUTE} }, /* These keys work without WMI. Ignore them to avoid double keycodes */ { KE_IGNORE, WIND_KEY_TOUCHPAD, {KEY_TOUCHPAD_TOGGLE} }, { KE_IGNORE, WIND_KEY_BLUETOOTH, {KEY_BLUETOOTH} }, { KE_IGNORE, WIND_KEY_CAMERA, {KEY_CAMERA} }, { KE_IGNORE, WIND_KEY_WLAN, {KEY_WLAN} }, /* These are unknown WMI events found on MSI Wind */ { KE_IGNORE, 0x00 }, { KE_IGNORE, 0x62 }, { KE_IGNORE, 0x63 }, /* These are MSI Wind keys that should be handled via WMI */ { KE_KEY, WIND_KEY_TURBO, {KEY_PROG1} }, { KE_KEY, WIND_KEY_ECO, {KEY_PROG2} }, { KE_END, 0 } }; static ktime_t last_pressed; static const struct { const char *guid; bool quirk_last_pressed; } *event_wmi, event_wmis[] = { { MSIWMI_MSI_EVENT_GUID, true }, { MSIWMI_WIND_EVENT_GUID, false }, }; static struct backlight_device *backlight; static int backlight_map[] = { 0x00, 0x33, 0x66, 0x99, 0xCC, 0xFF }; static struct input_dev *msi_wmi_input_dev; static int msi_wmi_query_block(int instance, int *ret) { acpi_status status; union acpi_object *obj; struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL }; status = wmi_query_block(MSIWMI_BIOS_GUID, instance, &output); if (ACPI_FAILURE(status)) return -EIO; obj = output.pointer; if (!obj || obj->type != ACPI_TYPE_INTEGER) { if (obj) { pr_err("query block returned object " "type: %d - buffer length:%d\n", obj->type, obj->type == ACPI_TYPE_BUFFER ? obj->buffer.length : 0); } kfree(obj); return -EINVAL; } *ret = obj->integer.value; kfree(obj); return 0; } static int msi_wmi_set_block(int instance, int value) { acpi_status status; struct acpi_buffer input = { sizeof(int), &value }; pr_debug("Going to set block of instance: %d - value: %d\n", instance, value); status = wmi_set_block(MSIWMI_BIOS_GUID, instance, &input); return ACPI_SUCCESS(status) ? 0 : 1; } static int bl_get(struct backlight_device *bd) { int level, err, ret; /* Instance 1 is "get backlight", cmp with DSDT */ err = msi_wmi_query_block(1, &ret); if (err) { pr_err("Could not query backlight: %d\n", err); return -EINVAL; } pr_debug("Get: Query block returned: %d\n", ret); for (level = 0; level < ARRAY_SIZE(backlight_map); level++) { if (backlight_map[level] == ret) { pr_debug("Current backlight level: 0x%X - index: %d\n", backlight_map[level], level); break; } } if (level == ARRAY_SIZE(backlight_map)) { pr_err("get: Invalid brightness value: 0x%X\n", ret); return -EINVAL; } return level; } static int bl_set_status(struct backlight_device *bd) { int bright = bd->props.brightness; if (bright >= ARRAY_SIZE(backlight_map) || bright < 0) return -EINVAL; /* Instance 0 is "set backlight" */ return msi_wmi_set_block(0, backlight_map[bright]); } static const struct backlight_ops msi_backlight_ops = { .get_brightness = bl_get, .update_status = bl_set_status, }; static void msi_wmi_notify(u32 value, void *context) { struct acpi_buffer response = { ACPI_ALLOCATE_BUFFER, NULL }; struct key_entry *key; union acpi_object *obj; acpi_status status; status = wmi_get_event_data(value, &response); if (status != AE_OK) { pr_info("bad event status 0x%x\n", status); return; } obj = (union acpi_object *)response.pointer; if (obj && obj->type == ACPI_TYPE_INTEGER) { int eventcode = obj->integer.value; pr_debug("Eventcode: 0x%x\n", eventcode); key = sparse_keymap_entry_from_scancode(msi_wmi_input_dev, eventcode); if (!key) { pr_info("Unknown key pressed - %x\n", eventcode); goto msi_wmi_notify_exit; } if (event_wmi->quirk_last_pressed) { ktime_t cur = ktime_get_real(); ktime_t diff = ktime_sub(cur, last_pressed); /* Ignore event if any event happened in a 50 ms timeframe -> Key press may result in 10-20 GPEs */ if (ktime_to_us(diff) < 1000 * 50) { pr_debug("Suppressed key event 0x%X - " "Last press was %lld us ago\n", key->code, ktime_to_us(diff)); goto msi_wmi_notify_exit; } last_pressed = cur; } if (key->type == KE_KEY && /* Brightness is served via acpi video driver */ (backlight || (key->code != MSI_KEY_BRIGHTNESSUP && key->code != MSI_KEY_BRIGHTNESSDOWN))) { pr_debug("Send key: 0x%X - Input layer keycode: %d\n", key->code, key->keycode); sparse_keymap_report_entry(msi_wmi_input_dev, key, 1, true); } } else pr_info("Unknown event received\n"); msi_wmi_notify_exit: kfree(response.pointer); } static int __init msi_wmi_backlight_setup(void) { int err; struct backlight_properties props; memset(&props, 0, sizeof(struct backlight_properties)); props.type = BACKLIGHT_PLATFORM; props.max_brightness = ARRAY_SIZE(backlight_map) - 1; backlight = backlight_device_register(DRV_NAME, NULL, NULL, &msi_backlight_ops, &props); if (IS_ERR(backlight)) return PTR_ERR(backlight); err = bl_get(NULL); if (err < 0) { backlight_device_unregister(backlight); return err; } backlight->props.brightness = err; return 0; } static int __init msi_wmi_input_setup(void) { int err; msi_wmi_input_dev = input_allocate_device(); if (!msi_wmi_input_dev) return -ENOMEM; msi_wmi_input_dev->name = "MSI WMI hotkeys"; msi_wmi_input_dev->phys = "wmi/input0"; msi_wmi_input_dev->id.bustype = BUS_HOST; err = sparse_keymap_setup(msi_wmi_input_dev, msi_wmi_keymap, NULL); if (err) goto err_free_dev; err = input_register_device(msi_wmi_input_dev); if (err) goto err_free_dev; last_pressed = 0; return 0; err_free_dev: input_free_device(msi_wmi_input_dev); return err; } static int __init msi_wmi_init(void) { int err; int i; for (i = 0; i < ARRAY_SIZE(event_wmis); i++) { if (!wmi_has_guid(event_wmis[i].guid)) continue; err = msi_wmi_input_setup(); if (err) { pr_err("Unable to setup input device\n"); return err; } err = wmi_install_notify_handler(event_wmis[i].guid, msi_wmi_notify, NULL); if (ACPI_FAILURE(err)) { pr_err("Unable to setup WMI notify handler\n"); goto err_free_input; } pr_debug("Event handler installed\n"); event_wmi = &event_wmis[i]; break; } if (wmi_has_guid(MSIWMI_BIOS_GUID) && acpi_video_get_backlight_type() == acpi_backlight_vendor) { err = msi_wmi_backlight_setup(); if (err) { pr_err("Unable to setup backlight device\n"); goto err_uninstall_handler; } pr_debug("Backlight device created\n"); } if (!event_wmi && !backlight) { pr_err("This machine doesn't have neither MSI-hotkeys nor backlight through WMI\n"); return -ENODEV; } return 0; err_uninstall_handler: if (event_wmi) wmi_remove_notify_handler(event_wmi->guid); err_free_input: if (event_wmi) input_unregister_device(msi_wmi_input_dev); return err; } static void __exit msi_wmi_exit(void) { if (event_wmi) { wmi_remove_notify_handler(event_wmi->guid); input_unregister_device(msi_wmi_input_dev); } backlight_device_unregister(backlight); } module_init(msi_wmi_init); module_exit(msi_wmi_exit);
linux-master
drivers/platform/x86/msi-wmi.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Think LMI BIOS configuration driver * * Copyright(C) 2019-2021 Lenovo * * Original code from Thinkpad-wmi project https://github.com/iksaif/thinkpad-wmi * Copyright(C) 2017 Corentin Chary <[email protected]> * Distributed under the GPL-2.0 license */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/acpi.h> #include <linux/errno.h> #include <linux/fs.h> #include <linux/mutex.h> #include <linux/string.h> #include <linux/types.h> #include <linux/dmi.h> #include <linux/wmi.h> #include "firmware_attributes_class.h" #include "think-lmi.h" static bool debug_support; module_param(debug_support, bool, 0444); MODULE_PARM_DESC(debug_support, "Enable debug command support"); /* * Name: BiosSetting * Description: Get item name and settings for current LMI instance. * Type: Query * Returns: "Item,Value" * Example: "WakeOnLAN,Enable" */ #define LENOVO_BIOS_SETTING_GUID "51F5230E-9677-46CD-A1CF-C0B23EE34DB7" /* * Name: SetBiosSetting * Description: Change the BIOS setting to the desired value using the SetBiosSetting * class. To save the settings, use the SaveBiosSetting class. * BIOS settings and values are case sensitive. * After making changes to the BIOS settings, you must reboot the computer * before the changes will take effect. * Type: Method * Arguments: "Item,Value,Password,Encoding,KbdLang;" * Example: "WakeOnLAN,Disable,pa55w0rd,ascii,us;" */ #define LENOVO_SET_BIOS_SETTINGS_GUID "98479A64-33F5-4E33-A707-8E251EBBC3A1" /* * Name: SaveBiosSettings * Description: Save any pending changes in settings. * Type: Method * Arguments: "Password,Encoding,KbdLang;" * Example: "pa55w0rd,ascii,us;" */ #define LENOVO_SAVE_BIOS_SETTINGS_GUID "6A4B54EF-A5ED-4D33-9455-B0D9B48DF4B3" /* * Name: BiosPasswordSettings * Description: Return BIOS Password settings * Type: Query * Returns: PasswordMode, PasswordState, MinLength, MaxLength, * SupportedEncoding, SupportedKeyboard */ #define LENOVO_BIOS_PASSWORD_SETTINGS_GUID "8ADB159E-1E32-455C-BC93-308A7ED98246" /* * Name: SetBiosPassword * Description: Change a specific password. * - BIOS settings cannot be changed at the same boot as power-on * passwords (POP) and hard disk passwords (HDP). If you want to change * BIOS settings and POP or HDP, you must reboot the system after changing * one of them. * - A password cannot be set using this method when one does not already * exist. Passwords can only be updated or cleared. * Type: Method * Arguments: "PasswordType,CurrentPassword,NewPassword,Encoding,KbdLang;" * Example: "pop,pa55w0rd,newpa55w0rd,ascii,us;” */ #define LENOVO_SET_BIOS_PASSWORD_GUID "2651D9FD-911C-4B69-B94E-D0DED5963BD7" /* * Name: GetBiosSelections * Description: Return a list of valid settings for a given item. * Type: Method * Arguments: "Item" * Returns: "Value1,Value2,Value3,..." * Example: * -> "FlashOverLAN" * <- "Enabled,Disabled" */ #define LENOVO_GET_BIOS_SELECTIONS_GUID "7364651A-132F-4FE7-ADAA-40C6C7EE2E3B" /* * Name: DebugCmd * Description: Debug entry method for entering debug commands to the BIOS */ #define LENOVO_DEBUG_CMD_GUID "7FF47003-3B6C-4E5E-A227-E979824A85D1" /* * Name: OpcodeIF * Description: Opcode interface which provides the ability to set multiple * parameters and then trigger an action with a final command. * This is particularly useful for simplifying setting passwords. * With this support comes the ability to set System, HDD and NVMe * passwords. * This is currently available on ThinkCenter and ThinkStations platforms */ #define LENOVO_OPCODE_IF_GUID "DFDDEF2C-57D4-48ce-B196-0FB787D90836" /* * Name: SetBiosCert * Description: Install BIOS certificate. * Type: Method * Arguments: "Certificate,Password" * You must reboot the computer before the changes will take effect. */ #define LENOVO_SET_BIOS_CERT_GUID "26861C9F-47E9-44C4-BD8B-DFE7FA2610FE" /* * Name: UpdateBiosCert * Description: Update BIOS certificate. * Type: Method * Format: "Certificate,Signature" * You must reboot the computer before the changes will take effect. */ #define LENOVO_UPDATE_BIOS_CERT_GUID "9AA3180A-9750-41F7-B9F7-D5D3B1BAC3CE" /* * Name: ClearBiosCert * Description: Uninstall BIOS certificate. * Type: Method * Format: "Serial,Signature" * You must reboot the computer before the changes will take effect. */ #define LENOVO_CLEAR_BIOS_CERT_GUID "B2BC39A7-78DD-4D71-B059-A510DEC44890" /* * Name: CertToPassword * Description: Switch from certificate to password authentication. * Type: Method * Format: "Password,Signature" * You must reboot the computer before the changes will take effect. */ #define LENOVO_CERT_TO_PASSWORD_GUID "0DE8590D-5510-4044-9621-77C227F5A70D" /* * Name: SetBiosSettingCert * Description: Set attribute using certificate authentication. * Type: Method * Format: "Item,Value,Signature" */ #define LENOVO_SET_BIOS_SETTING_CERT_GUID "34A008CC-D205-4B62-9E67-31DFA8B90003" /* * Name: SaveBiosSettingCert * Description: Save any pending changes in settings. * Type: Method * Format: "Signature" */ #define LENOVO_SAVE_BIOS_SETTING_CERT_GUID "C050FB9D-DF5F-4606-B066-9EFC401B2551" /* * Name: CertThumbprint * Description: Display Certificate thumbprints * Type: Query * Returns: MD5, SHA1 & SHA256 thumbprints */ #define LENOVO_CERT_THUMBPRINT_GUID "C59119ED-1C0D-4806-A8E9-59AA318176C4" #define TLMI_POP_PWD BIT(0) /* Supervisor */ #define TLMI_PAP_PWD BIT(1) /* Power-on */ #define TLMI_HDD_PWD BIT(2) /* HDD/NVME */ #define TLMI_SMP_PWD BIT(6) /* System Management */ #define TLMI_CERT BIT(7) /* Certificate Based */ #define to_tlmi_pwd_setting(kobj) container_of(kobj, struct tlmi_pwd_setting, kobj) #define to_tlmi_attr_setting(kobj) container_of(kobj, struct tlmi_attr_setting, kobj) static const struct tlmi_err_codes tlmi_errs[] = { {"Success", 0}, {"Not Supported", -EOPNOTSUPP}, {"Invalid Parameter", -EINVAL}, {"Access Denied", -EACCES}, {"System Busy", -EBUSY}, }; static const char * const encoding_options[] = { [TLMI_ENCODING_ASCII] = "ascii", [TLMI_ENCODING_SCANCODE] = "scancode", }; static const char * const level_options[] = { [TLMI_LEVEL_USER] = "user", [TLMI_LEVEL_MASTER] = "master", }; static struct think_lmi tlmi_priv; static struct class *fw_attr_class; static DEFINE_MUTEX(tlmi_mutex); /* ------ Utility functions ------------*/ /* Strip out CR if one is present */ static void strip_cr(char *str) { char *p = strchrnul(str, '\n'); *p = '\0'; } /* Convert BIOS WMI error string to suitable error code */ static int tlmi_errstr_to_err(const char *errstr) { int i; for (i = 0; i < sizeof(tlmi_errs)/sizeof(struct tlmi_err_codes); i++) { if (!strcmp(tlmi_errs[i].err_str, errstr)) return tlmi_errs[i].err_code; } return -EPERM; } /* Extract error string from WMI return buffer */ static int tlmi_extract_error(const struct acpi_buffer *output) { const union acpi_object *obj; obj = output->pointer; if (!obj) return -ENOMEM; if (obj->type != ACPI_TYPE_STRING || !obj->string.pointer) return -EIO; return tlmi_errstr_to_err(obj->string.pointer); } /* Utility function to execute WMI call to BIOS */ static int tlmi_simple_call(const char *guid, const char *arg) { const struct acpi_buffer input = { strlen(arg), (char *)arg }; struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL }; acpi_status status; int i, err; /* * Duplicated call required to match BIOS workaround for behavior * seen when WMI accessed via scripting on other OS. */ for (i = 0; i < 2; i++) { /* (re)initialize output buffer to default state */ output.length = ACPI_ALLOCATE_BUFFER; output.pointer = NULL; status = wmi_evaluate_method(guid, 0, 0, &input, &output); if (ACPI_FAILURE(status)) { kfree(output.pointer); return -EIO; } err = tlmi_extract_error(&output); kfree(output.pointer); if (err) return err; } return 0; } /* Extract output string from WMI return buffer */ static int tlmi_extract_output_string(const struct acpi_buffer *output, char **string) { const union acpi_object *obj; char *s; obj = output->pointer; if (!obj) return -ENOMEM; if (obj->type != ACPI_TYPE_STRING || !obj->string.pointer) return -EIO; s = kstrdup(obj->string.pointer, GFP_KERNEL); if (!s) return -ENOMEM; *string = s; return 0; } /* ------ Core interface functions ------------*/ /* Get password settings from BIOS */ static int tlmi_get_pwd_settings(struct tlmi_pwdcfg *pwdcfg) { struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL }; const union acpi_object *obj; acpi_status status; int copy_size; if (!tlmi_priv.can_get_password_settings) return -EOPNOTSUPP; status = wmi_query_block(LENOVO_BIOS_PASSWORD_SETTINGS_GUID, 0, &output); if (ACPI_FAILURE(status)) return -EIO; obj = output.pointer; if (!obj) return -ENOMEM; if (obj->type != ACPI_TYPE_BUFFER || !obj->buffer.pointer) { kfree(obj); return -EIO; } /* * The size of thinkpad_wmi_pcfg on ThinkStation is larger than ThinkPad. * To make the driver compatible on different brands, we permit it to get * the data in below case. * Settings must have at minimum the core fields available */ if (obj->buffer.length < sizeof(struct tlmi_pwdcfg_core)) { pr_warn("Unknown pwdcfg buffer length %d\n", obj->buffer.length); kfree(obj); return -EIO; } copy_size = min_t(size_t, obj->buffer.length, sizeof(struct tlmi_pwdcfg)); memcpy(pwdcfg, obj->buffer.pointer, copy_size); kfree(obj); if (WARN_ON(pwdcfg->core.max_length >= TLMI_PWD_BUFSIZE)) pwdcfg->core.max_length = TLMI_PWD_BUFSIZE - 1; return 0; } static int tlmi_save_bios_settings(const char *password) { return tlmi_simple_call(LENOVO_SAVE_BIOS_SETTINGS_GUID, password); } static int tlmi_opcode_setting(char *setting, const char *value) { char *opcode_str; int ret; opcode_str = kasprintf(GFP_KERNEL, "%s:%s;", setting, value); if (!opcode_str) return -ENOMEM; ret = tlmi_simple_call(LENOVO_OPCODE_IF_GUID, opcode_str); kfree(opcode_str); return ret; } static int tlmi_setting(int item, char **value, const char *guid_string) { struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL }; acpi_status status; int ret; status = wmi_query_block(guid_string, item, &output); if (ACPI_FAILURE(status)) { kfree(output.pointer); return -EIO; } ret = tlmi_extract_output_string(&output, value); kfree(output.pointer); return ret; } static int tlmi_get_bios_selections(const char *item, char **value) { const struct acpi_buffer input = { strlen(item), (char *)item }; struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL }; acpi_status status; int ret; status = wmi_evaluate_method(LENOVO_GET_BIOS_SELECTIONS_GUID, 0, 0, &input, &output); if (ACPI_FAILURE(status)) { kfree(output.pointer); return -EIO; } ret = tlmi_extract_output_string(&output, value); kfree(output.pointer); return ret; } /* ---- Authentication sysfs --------------------------------------------------------- */ static ssize_t is_enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct tlmi_pwd_setting *setting = to_tlmi_pwd_setting(kobj); return sysfs_emit(buf, "%d\n", setting->valid); } static struct kobj_attribute auth_is_pass_set = __ATTR_RO(is_enabled); static ssize_t current_password_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct tlmi_pwd_setting *setting = to_tlmi_pwd_setting(kobj); size_t pwdlen; pwdlen = strlen(buf); /* pwdlen == 0 is allowed to clear the password */ if (pwdlen && ((pwdlen < setting->minlen) || (pwdlen > setting->maxlen))) return -EINVAL; strscpy(setting->password, buf, setting->maxlen); /* Strip out CR if one is present, setting password won't work if it is present */ strip_cr(setting->password); return count; } static struct kobj_attribute auth_current_password = __ATTR_WO(current_password); static ssize_t new_password_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct tlmi_pwd_setting *setting = to_tlmi_pwd_setting(kobj); char *auth_str, *new_pwd; size_t pwdlen; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (!tlmi_priv.can_set_bios_password) return -EOPNOTSUPP; new_pwd = kstrdup(buf, GFP_KERNEL); if (!new_pwd) return -ENOMEM; /* Strip out CR if one is present, setting password won't work if it is present */ strip_cr(new_pwd); /* Use lock in case multiple WMI operations needed */ mutex_lock(&tlmi_mutex); pwdlen = strlen(new_pwd); /* pwdlen == 0 is allowed to clear the password */ if (pwdlen && ((pwdlen < setting->minlen) || (pwdlen > setting->maxlen))) { ret = -EINVAL; goto out; } /* If opcode support is present use that interface */ if (tlmi_priv.opcode_support) { char pwd_type[8]; /* Special handling required for HDD and NVMe passwords */ if (setting == tlmi_priv.pwd_hdd) { if (setting->level == TLMI_LEVEL_USER) sprintf(pwd_type, "uhdp%d", setting->index); else sprintf(pwd_type, "mhdp%d", setting->index); } else if (setting == tlmi_priv.pwd_nvme) { if (setting->level == TLMI_LEVEL_USER) sprintf(pwd_type, "udrp%d", setting->index); else sprintf(pwd_type, "adrp%d", setting->index); } else { sprintf(pwd_type, "%s", setting->pwd_type); } ret = tlmi_opcode_setting("WmiOpcodePasswordType", pwd_type); if (ret) goto out; if (tlmi_priv.pwd_admin->valid) { ret = tlmi_opcode_setting("WmiOpcodePasswordAdmin", tlmi_priv.pwd_admin->password); if (ret) goto out; } ret = tlmi_opcode_setting("WmiOpcodePasswordCurrent01", setting->password); if (ret) goto out; ret = tlmi_opcode_setting("WmiOpcodePasswordNew01", new_pwd); if (ret) goto out; ret = tlmi_simple_call(LENOVO_OPCODE_IF_GUID, "WmiOpcodePasswordSetUpdate;"); } else { /* Format: 'PasswordType,CurrentPw,NewPw,Encoding,KbdLang;' */ auth_str = kasprintf(GFP_KERNEL, "%s,%s,%s,%s,%s;", setting->pwd_type, setting->password, new_pwd, encoding_options[setting->encoding], setting->kbdlang); if (!auth_str) { ret = -ENOMEM; goto out; } ret = tlmi_simple_call(LENOVO_SET_BIOS_PASSWORD_GUID, auth_str); kfree(auth_str); } out: mutex_unlock(&tlmi_mutex); kfree(new_pwd); return ret ?: count; } static struct kobj_attribute auth_new_password = __ATTR_WO(new_password); static ssize_t min_password_length_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct tlmi_pwd_setting *setting = to_tlmi_pwd_setting(kobj); return sysfs_emit(buf, "%d\n", setting->minlen); } static struct kobj_attribute auth_min_pass_length = __ATTR_RO(min_password_length); static ssize_t max_password_length_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct tlmi_pwd_setting *setting = to_tlmi_pwd_setting(kobj); return sysfs_emit(buf, "%d\n", setting->maxlen); } static struct kobj_attribute auth_max_pass_length = __ATTR_RO(max_password_length); static ssize_t mechanism_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "password\n"); } static struct kobj_attribute auth_mechanism = __ATTR_RO(mechanism); static ssize_t encoding_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct tlmi_pwd_setting *setting = to_tlmi_pwd_setting(kobj); return sysfs_emit(buf, "%s\n", encoding_options[setting->encoding]); } static ssize_t encoding_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct tlmi_pwd_setting *setting = to_tlmi_pwd_setting(kobj); int i; /* Scan for a matching profile */ i = sysfs_match_string(encoding_options, buf); if (i < 0) return -EINVAL; setting->encoding = i; return count; } static struct kobj_attribute auth_encoding = __ATTR_RW(encoding); static ssize_t kbdlang_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct tlmi_pwd_setting *setting = to_tlmi_pwd_setting(kobj); return sysfs_emit(buf, "%s\n", setting->kbdlang); } static ssize_t kbdlang_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct tlmi_pwd_setting *setting = to_tlmi_pwd_setting(kobj); int length; /* Calculate length till '\n' or terminating 0 */ length = strchrnul(buf, '\n') - buf; if (!length || length >= TLMI_LANG_MAXLEN) return -EINVAL; memcpy(setting->kbdlang, buf, length); setting->kbdlang[length] = '\0'; return count; } static struct kobj_attribute auth_kbdlang = __ATTR_RW(kbdlang); static ssize_t role_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct tlmi_pwd_setting *setting = to_tlmi_pwd_setting(kobj); return sysfs_emit(buf, "%s\n", setting->role); } static struct kobj_attribute auth_role = __ATTR_RO(role); static ssize_t index_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct tlmi_pwd_setting *setting = to_tlmi_pwd_setting(kobj); return sysfs_emit(buf, "%d\n", setting->index); } static ssize_t index_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct tlmi_pwd_setting *setting = to_tlmi_pwd_setting(kobj); int err, val; err = kstrtoint(buf, 10, &val); if (err < 0) return err; if (val < 0 || val > TLMI_INDEX_MAX) return -EINVAL; setting->index = val; return count; } static struct kobj_attribute auth_index = __ATTR_RW(index); static ssize_t level_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct tlmi_pwd_setting *setting = to_tlmi_pwd_setting(kobj); return sysfs_emit(buf, "%s\n", level_options[setting->level]); } static ssize_t level_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct tlmi_pwd_setting *setting = to_tlmi_pwd_setting(kobj); int i; /* Scan for a matching profile */ i = sysfs_match_string(level_options, buf); if (i < 0) return -EINVAL; setting->level = i; return count; } static struct kobj_attribute auth_level = __ATTR_RW(level); static ssize_t cert_thumbprint(char *buf, const char *arg, int count) { const struct acpi_buffer input = { strlen(arg), (char *)arg }; struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL }; const union acpi_object *obj; acpi_status status; status = wmi_evaluate_method(LENOVO_CERT_THUMBPRINT_GUID, 0, 0, &input, &output); if (ACPI_FAILURE(status)) { kfree(output.pointer); return -EIO; } obj = output.pointer; if (!obj) return -ENOMEM; if (obj->type != ACPI_TYPE_STRING || !obj->string.pointer) { kfree(output.pointer); return -EIO; } count += sysfs_emit_at(buf, count, "%s : %s\n", arg, (char *)obj->string.pointer); kfree(output.pointer); return count; } static ssize_t certificate_thumbprint_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct tlmi_pwd_setting *setting = to_tlmi_pwd_setting(kobj); int count = 0; if (!tlmi_priv.certificate_support || !setting->cert_installed) return -EOPNOTSUPP; count += cert_thumbprint(buf, "Md5", count); count += cert_thumbprint(buf, "Sha1", count); count += cert_thumbprint(buf, "Sha256", count); return count; } static struct kobj_attribute auth_cert_thumb = __ATTR_RO(certificate_thumbprint); static ssize_t cert_to_password_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct tlmi_pwd_setting *setting = to_tlmi_pwd_setting(kobj); char *auth_str, *passwd; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (!tlmi_priv.certificate_support) return -EOPNOTSUPP; if (!setting->cert_installed) return -EINVAL; if (!setting->signature || !setting->signature[0]) return -EACCES; passwd = kstrdup(buf, GFP_KERNEL); if (!passwd) return -ENOMEM; /* Strip out CR if one is present */ strip_cr(passwd); /* Format: 'Password,Signature' */ auth_str = kasprintf(GFP_KERNEL, "%s,%s", passwd, setting->signature); if (!auth_str) { kfree_sensitive(passwd); return -ENOMEM; } ret = tlmi_simple_call(LENOVO_CERT_TO_PASSWORD_GUID, auth_str); kfree(auth_str); kfree_sensitive(passwd); return ret ?: count; } static struct kobj_attribute auth_cert_to_password = __ATTR_WO(cert_to_password); static ssize_t certificate_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct tlmi_pwd_setting *setting = to_tlmi_pwd_setting(kobj); char *auth_str, *new_cert; char *guid; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (!tlmi_priv.certificate_support) return -EOPNOTSUPP; /* If empty then clear installed certificate */ if ((buf[0] == '\0') || (buf[0] == '\n')) { /* Clear installed certificate */ /* Check that signature is set */ if (!setting->signature || !setting->signature[0]) return -EACCES; /* Format: 'serial#, signature' */ auth_str = kasprintf(GFP_KERNEL, "%s,%s", dmi_get_system_info(DMI_PRODUCT_SERIAL), setting->signature); if (!auth_str) return -ENOMEM; ret = tlmi_simple_call(LENOVO_CLEAR_BIOS_CERT_GUID, auth_str); kfree(auth_str); return ret ?: count; } new_cert = kstrdup(buf, GFP_KERNEL); if (!new_cert) return -ENOMEM; /* Strip out CR if one is present */ strip_cr(new_cert); if (setting->cert_installed) { /* Certificate is installed so this is an update */ if (!setting->signature || !setting->signature[0]) { kfree(new_cert); return -EACCES; } guid = LENOVO_UPDATE_BIOS_CERT_GUID; /* Format: 'Certificate,Signature' */ auth_str = kasprintf(GFP_KERNEL, "%s,%s", new_cert, setting->signature); } else { /* This is a fresh install */ if (!setting->valid || !setting->password[0]) { kfree(new_cert); return -EACCES; } guid = LENOVO_SET_BIOS_CERT_GUID; /* Format: 'Certificate,Admin-password' */ auth_str = kasprintf(GFP_KERNEL, "%s,%s", new_cert, setting->password); } kfree(new_cert); if (!auth_str) return -ENOMEM; ret = tlmi_simple_call(guid, auth_str); kfree(auth_str); return ret ?: count; } static struct kobj_attribute auth_certificate = __ATTR_WO(certificate); static ssize_t signature_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct tlmi_pwd_setting *setting = to_tlmi_pwd_setting(kobj); char *new_signature; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (!tlmi_priv.certificate_support) return -EOPNOTSUPP; new_signature = kstrdup(buf, GFP_KERNEL); if (!new_signature) return -ENOMEM; /* Strip out CR if one is present */ strip_cr(new_signature); /* Free any previous signature */ kfree(setting->signature); setting->signature = new_signature; return count; } static struct kobj_attribute auth_signature = __ATTR_WO(signature); static ssize_t save_signature_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct tlmi_pwd_setting *setting = to_tlmi_pwd_setting(kobj); char *new_signature; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (!tlmi_priv.certificate_support) return -EOPNOTSUPP; new_signature = kstrdup(buf, GFP_KERNEL); if (!new_signature) return -ENOMEM; /* Strip out CR if one is present */ strip_cr(new_signature); /* Free any previous signature */ kfree(setting->save_signature); setting->save_signature = new_signature; return count; } static struct kobj_attribute auth_save_signature = __ATTR_WO(save_signature); static umode_t auth_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n) { struct tlmi_pwd_setting *setting = to_tlmi_pwd_setting(kobj); /* We only want to display level and index settings on HDD/NVMe */ if (attr == &auth_index.attr || attr == &auth_level.attr) { if ((setting == tlmi_priv.pwd_hdd) || (setting == tlmi_priv.pwd_nvme)) return attr->mode; return 0; } /* We only display certificates on Admin account, if supported */ if (attr == &auth_certificate.attr || attr == &auth_signature.attr || attr == &auth_save_signature.attr || attr == &auth_cert_thumb.attr || attr == &auth_cert_to_password.attr) { if ((setting == tlmi_priv.pwd_admin) && tlmi_priv.certificate_support) return attr->mode; return 0; } /* Don't display un-needed settings if opcode available */ if ((attr == &auth_encoding.attr || attr == &auth_kbdlang.attr) && tlmi_priv.opcode_support) return 0; return attr->mode; } static struct attribute *auth_attrs[] = { &auth_is_pass_set.attr, &auth_min_pass_length.attr, &auth_max_pass_length.attr, &auth_current_password.attr, &auth_new_password.attr, &auth_role.attr, &auth_mechanism.attr, &auth_encoding.attr, &auth_kbdlang.attr, &auth_index.attr, &auth_level.attr, &auth_certificate.attr, &auth_signature.attr, &auth_save_signature.attr, &auth_cert_thumb.attr, &auth_cert_to_password.attr, NULL }; static const struct attribute_group auth_attr_group = { .is_visible = auth_attr_is_visible, .attrs = auth_attrs, }; /* ---- Attributes sysfs --------------------------------------------------------- */ static ssize_t display_name_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct tlmi_attr_setting *setting = to_tlmi_attr_setting(kobj); return sysfs_emit(buf, "%s\n", setting->display_name); } static ssize_t current_value_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct tlmi_attr_setting *setting = to_tlmi_attr_setting(kobj); char *item, *value, *p; int ret; ret = tlmi_setting(setting->index, &item, LENOVO_BIOS_SETTING_GUID); if (ret) return ret; /* validate and split from `item,value` -> `value` */ value = strpbrk(item, ","); if (!value || value == item || !strlen(value + 1)) ret = -EINVAL; else { /* On Workstations remove the Options part after the value */ p = strchrnul(value, ';'); *p = '\0'; ret = sysfs_emit(buf, "%s\n", value + 1); } kfree(item); return ret; } static ssize_t possible_values_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct tlmi_attr_setting *setting = to_tlmi_attr_setting(kobj); return sysfs_emit(buf, "%s\n", setting->possible_values); } static ssize_t type_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct tlmi_attr_setting *setting = to_tlmi_attr_setting(kobj); if (setting->possible_values) { /* Figure out what setting type is as BIOS does not return this */ if (strchr(setting->possible_values, ';')) return sysfs_emit(buf, "enumeration\n"); } /* Anything else is going to be a string */ return sysfs_emit(buf, "string\n"); } static ssize_t current_value_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct tlmi_attr_setting *setting = to_tlmi_attr_setting(kobj); char *set_str = NULL, *new_setting = NULL; char *auth_str = NULL; int ret; if (!tlmi_priv.can_set_bios_settings) return -EOPNOTSUPP; new_setting = kstrdup(buf, GFP_KERNEL); if (!new_setting) return -ENOMEM; /* Strip out CR if one is present */ strip_cr(new_setting); /* Use lock in case multiple WMI operations needed */ mutex_lock(&tlmi_mutex); /* Check if certificate authentication is enabled and active */ if (tlmi_priv.certificate_support && tlmi_priv.pwd_admin->cert_installed) { if (!tlmi_priv.pwd_admin->signature || !tlmi_priv.pwd_admin->save_signature) { ret = -EINVAL; goto out; } set_str = kasprintf(GFP_KERNEL, "%s,%s,%s", setting->display_name, new_setting, tlmi_priv.pwd_admin->signature); if (!set_str) { ret = -ENOMEM; goto out; } ret = tlmi_simple_call(LENOVO_SET_BIOS_SETTING_CERT_GUID, set_str); if (ret) goto out; ret = tlmi_simple_call(LENOVO_SAVE_BIOS_SETTING_CERT_GUID, tlmi_priv.pwd_admin->save_signature); if (ret) goto out; } else if (tlmi_priv.opcode_support) { /* * If opcode support is present use that interface. * Note - this sets the variable and then the password as separate * WMI calls. Function tlmi_save_bios_settings will error if the * password is incorrect. */ set_str = kasprintf(GFP_KERNEL, "%s,%s;", setting->display_name, new_setting); if (!set_str) { ret = -ENOMEM; goto out; } ret = tlmi_simple_call(LENOVO_SET_BIOS_SETTINGS_GUID, set_str); if (ret) goto out; if (tlmi_priv.pwd_admin->valid && tlmi_priv.pwd_admin->password[0]) { ret = tlmi_opcode_setting("WmiOpcodePasswordAdmin", tlmi_priv.pwd_admin->password); if (ret) goto out; } ret = tlmi_save_bios_settings(""); } else { /* old non-opcode based authentication method (deprecated) */ if (tlmi_priv.pwd_admin->valid && tlmi_priv.pwd_admin->password[0]) { auth_str = kasprintf(GFP_KERNEL, "%s,%s,%s;", tlmi_priv.pwd_admin->password, encoding_options[tlmi_priv.pwd_admin->encoding], tlmi_priv.pwd_admin->kbdlang); if (!auth_str) { ret = -ENOMEM; goto out; } } if (auth_str) set_str = kasprintf(GFP_KERNEL, "%s,%s,%s", setting->display_name, new_setting, auth_str); else set_str = kasprintf(GFP_KERNEL, "%s,%s;", setting->display_name, new_setting); if (!set_str) { ret = -ENOMEM; goto out; } ret = tlmi_simple_call(LENOVO_SET_BIOS_SETTINGS_GUID, set_str); if (ret) goto out; if (auth_str) ret = tlmi_save_bios_settings(auth_str); else ret = tlmi_save_bios_settings(""); } if (!ret && !tlmi_priv.pending_changes) { tlmi_priv.pending_changes = true; /* let userland know it may need to check reboot pending again */ kobject_uevent(&tlmi_priv.class_dev->kobj, KOBJ_CHANGE); } out: mutex_unlock(&tlmi_mutex); kfree(auth_str); kfree(set_str); kfree(new_setting); return ret ?: count; } static struct kobj_attribute attr_displ_name = __ATTR_RO(display_name); static struct kobj_attribute attr_possible_values = __ATTR_RO(possible_values); static struct kobj_attribute attr_current_val = __ATTR_RW_MODE(current_value, 0600); static struct kobj_attribute attr_type = __ATTR_RO(type); static umode_t attr_is_visible(struct kobject *kobj, struct attribute *attr, int n) { struct tlmi_attr_setting *setting = to_tlmi_attr_setting(kobj); /* We don't want to display possible_values attributes if not available */ if ((attr == &attr_possible_values.attr) && (!setting->possible_values)) return 0; return attr->mode; } static struct attribute *tlmi_attrs[] = { &attr_displ_name.attr, &attr_current_val.attr, &attr_possible_values.attr, &attr_type.attr, NULL }; static const struct attribute_group tlmi_attr_group = { .is_visible = attr_is_visible, .attrs = tlmi_attrs, }; static void tlmi_attr_setting_release(struct kobject *kobj) { struct tlmi_attr_setting *setting = to_tlmi_attr_setting(kobj); kfree(setting->possible_values); kfree(setting); } static void tlmi_pwd_setting_release(struct kobject *kobj) { struct tlmi_pwd_setting *setting = to_tlmi_pwd_setting(kobj); kfree(setting); } static const struct kobj_type tlmi_attr_setting_ktype = { .release = &tlmi_attr_setting_release, .sysfs_ops = &kobj_sysfs_ops, }; static const struct kobj_type tlmi_pwd_setting_ktype = { .release = &tlmi_pwd_setting_release, .sysfs_ops = &kobj_sysfs_ops, }; static ssize_t pending_reboot_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%d\n", tlmi_priv.pending_changes); } static struct kobj_attribute pending_reboot = __ATTR_RO(pending_reboot); /* ---- Debug interface--------------------------------------------------------- */ static ssize_t debug_cmd_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { char *set_str = NULL, *new_setting = NULL; char *auth_str = NULL; int ret; if (!tlmi_priv.can_debug_cmd) return -EOPNOTSUPP; new_setting = kstrdup(buf, GFP_KERNEL); if (!new_setting) return -ENOMEM; /* Strip out CR if one is present */ strip_cr(new_setting); if (tlmi_priv.pwd_admin->valid && tlmi_priv.pwd_admin->password[0]) { auth_str = kasprintf(GFP_KERNEL, "%s,%s,%s;", tlmi_priv.pwd_admin->password, encoding_options[tlmi_priv.pwd_admin->encoding], tlmi_priv.pwd_admin->kbdlang); if (!auth_str) { ret = -ENOMEM; goto out; } } if (auth_str) set_str = kasprintf(GFP_KERNEL, "%s,%s", new_setting, auth_str); else set_str = kasprintf(GFP_KERNEL, "%s;", new_setting); if (!set_str) { ret = -ENOMEM; goto out; } ret = tlmi_simple_call(LENOVO_DEBUG_CMD_GUID, set_str); if (ret) goto out; if (!ret && !tlmi_priv.pending_changes) { tlmi_priv.pending_changes = true; /* let userland know it may need to check reboot pending again */ kobject_uevent(&tlmi_priv.class_dev->kobj, KOBJ_CHANGE); } out: kfree(auth_str); kfree(set_str); kfree(new_setting); return ret ?: count; } static struct kobj_attribute debug_cmd = __ATTR_WO(debug_cmd); /* ---- Initialisation --------------------------------------------------------- */ static void tlmi_release_attr(void) { int i; /* Attribute structures */ for (i = 0; i < TLMI_SETTINGS_COUNT; i++) { if (tlmi_priv.setting[i]) { sysfs_remove_group(&tlmi_priv.setting[i]->kobj, &tlmi_attr_group); kobject_put(&tlmi_priv.setting[i]->kobj); } } sysfs_remove_file(&tlmi_priv.attribute_kset->kobj, &pending_reboot.attr); if (tlmi_priv.can_debug_cmd && debug_support) sysfs_remove_file(&tlmi_priv.attribute_kset->kobj, &debug_cmd.attr); kset_unregister(tlmi_priv.attribute_kset); /* Free up any saved signatures */ kfree(tlmi_priv.pwd_admin->signature); kfree(tlmi_priv.pwd_admin->save_signature); /* Authentication structures */ sysfs_remove_group(&tlmi_priv.pwd_admin->kobj, &auth_attr_group); kobject_put(&tlmi_priv.pwd_admin->kobj); sysfs_remove_group(&tlmi_priv.pwd_power->kobj, &auth_attr_group); kobject_put(&tlmi_priv.pwd_power->kobj); if (tlmi_priv.opcode_support) { sysfs_remove_group(&tlmi_priv.pwd_system->kobj, &auth_attr_group); kobject_put(&tlmi_priv.pwd_system->kobj); sysfs_remove_group(&tlmi_priv.pwd_hdd->kobj, &auth_attr_group); kobject_put(&tlmi_priv.pwd_hdd->kobj); sysfs_remove_group(&tlmi_priv.pwd_nvme->kobj, &auth_attr_group); kobject_put(&tlmi_priv.pwd_nvme->kobj); } kset_unregister(tlmi_priv.authentication_kset); } static int tlmi_sysfs_init(void) { int i, ret; ret = fw_attributes_class_get(&fw_attr_class); if (ret) return ret; tlmi_priv.class_dev = device_create(fw_attr_class, NULL, MKDEV(0, 0), NULL, "%s", "thinklmi"); if (IS_ERR(tlmi_priv.class_dev)) { ret = PTR_ERR(tlmi_priv.class_dev); goto fail_class_created; } tlmi_priv.attribute_kset = kset_create_and_add("attributes", NULL, &tlmi_priv.class_dev->kobj); if (!tlmi_priv.attribute_kset) { ret = -ENOMEM; goto fail_device_created; } for (i = 0; i < TLMI_SETTINGS_COUNT; i++) { /* Check if index is a valid setting - skip if it isn't */ if (!tlmi_priv.setting[i]) continue; /* check for duplicate or reserved values */ if (kset_find_obj(tlmi_priv.attribute_kset, tlmi_priv.setting[i]->display_name) || !strcmp(tlmi_priv.setting[i]->display_name, "Reserved")) { pr_debug("duplicate or reserved attribute name found - %s\n", tlmi_priv.setting[i]->display_name); kfree(tlmi_priv.setting[i]->possible_values); kfree(tlmi_priv.setting[i]); tlmi_priv.setting[i] = NULL; continue; } /* Build attribute */ tlmi_priv.setting[i]->kobj.kset = tlmi_priv.attribute_kset; ret = kobject_add(&tlmi_priv.setting[i]->kobj, NULL, "%s", tlmi_priv.setting[i]->display_name); if (ret) goto fail_create_attr; ret = sysfs_create_group(&tlmi_priv.setting[i]->kobj, &tlmi_attr_group); if (ret) goto fail_create_attr; } ret = sysfs_create_file(&tlmi_priv.attribute_kset->kobj, &pending_reboot.attr); if (ret) goto fail_create_attr; if (tlmi_priv.can_debug_cmd && debug_support) { ret = sysfs_create_file(&tlmi_priv.attribute_kset->kobj, &debug_cmd.attr); if (ret) goto fail_create_attr; } /* Create authentication entries */ tlmi_priv.authentication_kset = kset_create_and_add("authentication", NULL, &tlmi_priv.class_dev->kobj); if (!tlmi_priv.authentication_kset) { ret = -ENOMEM; goto fail_create_attr; } tlmi_priv.pwd_admin->kobj.kset = tlmi_priv.authentication_kset; ret = kobject_add(&tlmi_priv.pwd_admin->kobj, NULL, "%s", "Admin"); if (ret) goto fail_create_attr; ret = sysfs_create_group(&tlmi_priv.pwd_admin->kobj, &auth_attr_group); if (ret) goto fail_create_attr; tlmi_priv.pwd_power->kobj.kset = tlmi_priv.authentication_kset; ret = kobject_add(&tlmi_priv.pwd_power->kobj, NULL, "%s", "Power-on"); if (ret) goto fail_create_attr; ret = sysfs_create_group(&tlmi_priv.pwd_power->kobj, &auth_attr_group); if (ret) goto fail_create_attr; if (tlmi_priv.opcode_support) { tlmi_priv.pwd_system->kobj.kset = tlmi_priv.authentication_kset; ret = kobject_add(&tlmi_priv.pwd_system->kobj, NULL, "%s", "System"); if (ret) goto fail_create_attr; ret = sysfs_create_group(&tlmi_priv.pwd_system->kobj, &auth_attr_group); if (ret) goto fail_create_attr; tlmi_priv.pwd_hdd->kobj.kset = tlmi_priv.authentication_kset; ret = kobject_add(&tlmi_priv.pwd_hdd->kobj, NULL, "%s", "HDD"); if (ret) goto fail_create_attr; ret = sysfs_create_group(&tlmi_priv.pwd_hdd->kobj, &auth_attr_group); if (ret) goto fail_create_attr; tlmi_priv.pwd_nvme->kobj.kset = tlmi_priv.authentication_kset; ret = kobject_add(&tlmi_priv.pwd_nvme->kobj, NULL, "%s", "NVMe"); if (ret) goto fail_create_attr; ret = sysfs_create_group(&tlmi_priv.pwd_nvme->kobj, &auth_attr_group); if (ret) goto fail_create_attr; } return ret; fail_create_attr: tlmi_release_attr(); fail_device_created: device_destroy(fw_attr_class, MKDEV(0, 0)); fail_class_created: fw_attributes_class_put(); return ret; } /* ---- Base Driver -------------------------------------------------------- */ static struct tlmi_pwd_setting *tlmi_create_auth(const char *pwd_type, const char *pwd_role) { struct tlmi_pwd_setting *new_pwd; new_pwd = kzalloc(sizeof(struct tlmi_pwd_setting), GFP_KERNEL); if (!new_pwd) return NULL; strscpy(new_pwd->kbdlang, "us", TLMI_LANG_MAXLEN); new_pwd->encoding = TLMI_ENCODING_ASCII; new_pwd->pwd_type = pwd_type; new_pwd->role = pwd_role; new_pwd->minlen = tlmi_priv.pwdcfg.core.min_length; new_pwd->maxlen = tlmi_priv.pwdcfg.core.max_length; new_pwd->index = 0; kobject_init(&new_pwd->kobj, &tlmi_pwd_setting_ktype); return new_pwd; } static int tlmi_analyze(void) { int i, ret; if (wmi_has_guid(LENOVO_SET_BIOS_SETTINGS_GUID) && wmi_has_guid(LENOVO_SAVE_BIOS_SETTINGS_GUID)) tlmi_priv.can_set_bios_settings = true; if (wmi_has_guid(LENOVO_GET_BIOS_SELECTIONS_GUID)) tlmi_priv.can_get_bios_selections = true; if (wmi_has_guid(LENOVO_SET_BIOS_PASSWORD_GUID)) tlmi_priv.can_set_bios_password = true; if (wmi_has_guid(LENOVO_BIOS_PASSWORD_SETTINGS_GUID)) tlmi_priv.can_get_password_settings = true; if (wmi_has_guid(LENOVO_DEBUG_CMD_GUID)) tlmi_priv.can_debug_cmd = true; if (wmi_has_guid(LENOVO_OPCODE_IF_GUID)) tlmi_priv.opcode_support = true; if (wmi_has_guid(LENOVO_SET_BIOS_CERT_GUID) && wmi_has_guid(LENOVO_SET_BIOS_SETTING_CERT_GUID) && wmi_has_guid(LENOVO_SAVE_BIOS_SETTING_CERT_GUID)) tlmi_priv.certificate_support = true; /* * Try to find the number of valid settings of this machine * and use it to create sysfs attributes. */ for (i = 0; i < TLMI_SETTINGS_COUNT; ++i) { struct tlmi_attr_setting *setting; char *item = NULL; char *p; tlmi_priv.setting[i] = NULL; ret = tlmi_setting(i, &item, LENOVO_BIOS_SETTING_GUID); if (ret) break; if (!item) break; if (!*item) { kfree(item); continue; } /* It is not allowed to have '/' for file name. Convert it into '\'. */ strreplace(item, '/', '\\'); /* Remove the value part */ p = strchrnul(item, ','); *p = '\0'; /* Create a setting entry */ setting = kzalloc(sizeof(*setting), GFP_KERNEL); if (!setting) { ret = -ENOMEM; kfree(item); goto fail_clear_attr; } setting->index = i; strscpy(setting->display_name, item, TLMI_SETTINGS_MAXLEN); /* If BIOS selections supported, load those */ if (tlmi_priv.can_get_bios_selections) { ret = tlmi_get_bios_selections(setting->display_name, &setting->possible_values); if (ret || !setting->possible_values) pr_info("Error retrieving possible values for %d : %s\n", i, setting->display_name); } else { /* * Older Thinkstations don't support the bios_selections API. * Instead they store this as a [Optional:Option1,Option2] section of the * name string. * Try and pull that out if it's available. */ char *optitem, *optstart, *optend; if (!tlmi_setting(setting->index, &optitem, LENOVO_BIOS_SETTING_GUID)) { optstart = strstr(optitem, "[Optional:"); if (optstart) { optstart += strlen("[Optional:"); optend = strstr(optstart, "]"); if (optend) setting->possible_values = kstrndup(optstart, optend - optstart, GFP_KERNEL); } kfree(optitem); } } /* * firmware-attributes requires that possible_values are separated by ';' but * Lenovo FW uses ','. Replace appropriately. */ if (setting->possible_values) strreplace(setting->possible_values, ',', ';'); kobject_init(&setting->kobj, &tlmi_attr_setting_ktype); tlmi_priv.setting[i] = setting; kfree(item); } /* Create password setting structure */ ret = tlmi_get_pwd_settings(&tlmi_priv.pwdcfg); if (ret) goto fail_clear_attr; /* All failures below boil down to kmalloc failures */ ret = -ENOMEM; tlmi_priv.pwd_admin = tlmi_create_auth("pap", "bios-admin"); if (!tlmi_priv.pwd_admin) goto fail_clear_attr; if (tlmi_priv.pwdcfg.core.password_state & TLMI_PAP_PWD) tlmi_priv.pwd_admin->valid = true; tlmi_priv.pwd_power = tlmi_create_auth("pop", "power-on"); if (!tlmi_priv.pwd_power) goto fail_clear_attr; if (tlmi_priv.pwdcfg.core.password_state & TLMI_POP_PWD) tlmi_priv.pwd_power->valid = true; if (tlmi_priv.opcode_support) { tlmi_priv.pwd_system = tlmi_create_auth("smp", "system"); if (!tlmi_priv.pwd_system) goto fail_clear_attr; if (tlmi_priv.pwdcfg.core.password_state & TLMI_SMP_PWD) tlmi_priv.pwd_system->valid = true; tlmi_priv.pwd_hdd = tlmi_create_auth("hdd", "hdd"); if (!tlmi_priv.pwd_hdd) goto fail_clear_attr; tlmi_priv.pwd_nvme = tlmi_create_auth("nvm", "nvme"); if (!tlmi_priv.pwd_nvme) goto fail_clear_attr; /* Set default hdd/nvme index to 1 as there is no device 0 */ tlmi_priv.pwd_hdd->index = 1; tlmi_priv.pwd_nvme->index = 1; if (tlmi_priv.pwdcfg.core.password_state & TLMI_HDD_PWD) { /* Check if PWD is configured and set index to first drive found */ if (tlmi_priv.pwdcfg.ext.hdd_user_password || tlmi_priv.pwdcfg.ext.hdd_master_password) { tlmi_priv.pwd_hdd->valid = true; if (tlmi_priv.pwdcfg.ext.hdd_master_password) tlmi_priv.pwd_hdd->index = ffs(tlmi_priv.pwdcfg.ext.hdd_master_password) - 1; else tlmi_priv.pwd_hdd->index = ffs(tlmi_priv.pwdcfg.ext.hdd_user_password) - 1; } if (tlmi_priv.pwdcfg.ext.nvme_user_password || tlmi_priv.pwdcfg.ext.nvme_master_password) { tlmi_priv.pwd_nvme->valid = true; if (tlmi_priv.pwdcfg.ext.nvme_master_password) tlmi_priv.pwd_nvme->index = ffs(tlmi_priv.pwdcfg.ext.nvme_master_password) - 1; else tlmi_priv.pwd_nvme->index = ffs(tlmi_priv.pwdcfg.ext.nvme_user_password) - 1; } } } if (tlmi_priv.certificate_support && (tlmi_priv.pwdcfg.core.password_state & TLMI_CERT)) tlmi_priv.pwd_admin->cert_installed = true; return 0; fail_clear_attr: for (i = 0; i < TLMI_SETTINGS_COUNT; ++i) { if (tlmi_priv.setting[i]) { kfree(tlmi_priv.setting[i]->possible_values); kfree(tlmi_priv.setting[i]); } } kfree(tlmi_priv.pwd_admin); kfree(tlmi_priv.pwd_power); kfree(tlmi_priv.pwd_system); kfree(tlmi_priv.pwd_hdd); kfree(tlmi_priv.pwd_nvme); return ret; } static void tlmi_remove(struct wmi_device *wdev) { tlmi_release_attr(); device_destroy(fw_attr_class, MKDEV(0, 0)); fw_attributes_class_put(); } static int tlmi_probe(struct wmi_device *wdev, const void *context) { int ret; ret = tlmi_analyze(); if (ret) return ret; return tlmi_sysfs_init(); } static const struct wmi_device_id tlmi_id_table[] = { { .guid_string = LENOVO_BIOS_SETTING_GUID }, { } }; MODULE_DEVICE_TABLE(wmi, tlmi_id_table); static struct wmi_driver tlmi_driver = { .driver = { .name = "think-lmi", }, .id_table = tlmi_id_table, .probe = tlmi_probe, .remove = tlmi_remove, }; MODULE_AUTHOR("Sugumaran L <[email protected]>"); MODULE_AUTHOR("Mark Pearson <[email protected]>"); MODULE_AUTHOR("Corentin Chary <[email protected]>"); MODULE_DESCRIPTION("ThinkLMI Driver"); MODULE_LICENSE("GPL"); module_wmi_driver(tlmi_driver);
linux-master
drivers/platform/x86/think-lmi.c
// SPDX-License-Identifier: GPL-2.0-only /* * Intel Merrifield watchdog platform device library file * * (C) Copyright 2014 Intel Corporation * Author: David Cohen <[email protected]> */ #include <linux/init.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/platform_data/intel-mid_wdt.h> #include <asm/cpu_device_id.h> #include <asm/intel-family.h> #include <asm/intel-mid.h> #include <asm/io_apic.h> #include <asm/hw_irq.h> #define TANGIER_EXT_TIMER0_MSI 12 static struct platform_device wdt_dev = { .name = "intel_mid_wdt", .id = -1, }; static int tangier_probe(struct platform_device *pdev) { struct irq_alloc_info info; struct intel_mid_wdt_pdata *pdata = pdev->dev.platform_data; int gsi = TANGIER_EXT_TIMER0_MSI; int irq; if (!pdata) return -EINVAL; /* IOAPIC builds identity mapping between GSI and IRQ on MID */ ioapic_set_alloc_attr(&info, cpu_to_node(0), 1, 0); irq = mp_map_gsi_to_irq(gsi, IOAPIC_MAP_ALLOC, &info); if (irq < 0) { dev_warn(&pdev->dev, "cannot find interrupt %d in ioapic\n", gsi); return irq; } pdata->irq = irq; return 0; } static struct intel_mid_wdt_pdata tangier_pdata = { .probe = tangier_probe, }; static const struct x86_cpu_id intel_mid_cpu_ids[] = { X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID, &tangier_pdata), {} }; static int __init register_mid_wdt(void) { const struct x86_cpu_id *id; id = x86_match_cpu(intel_mid_cpu_ids); if (!id) return -ENODEV; wdt_dev.dev.platform_data = (struct intel_mid_wdt_pdata *)id->driver_data; return platform_device_register(&wdt_dev); } arch_initcall(register_mid_wdt); static void __exit unregister_mid_wdt(void) { platform_device_unregister(&wdt_dev); } __exitcall(unregister_mid_wdt);
linux-master
drivers/platform/x86/intel_scu_wdt.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Support for rfkill through the OLPC XO-1 laptop embedded controller * * Copyright (C) 2010 One Laptop per Child */ #include <linux/module.h> #include <linux/platform_device.h> #include <linux/rfkill.h> #include <linux/olpc-ec.h> static bool card_blocked; static int rfkill_set_block(void *data, bool blocked) { unsigned char cmd; int r; if (blocked == card_blocked) return 0; if (blocked) cmd = EC_WLAN_ENTER_RESET; else cmd = EC_WLAN_LEAVE_RESET; r = olpc_ec_cmd(cmd, NULL, 0, NULL, 0); if (r == 0) card_blocked = blocked; return r; } static const struct rfkill_ops rfkill_ops = { .set_block = rfkill_set_block, }; static int xo1_rfkill_probe(struct platform_device *pdev) { struct rfkill *rfk; int r; rfk = rfkill_alloc(pdev->name, &pdev->dev, RFKILL_TYPE_WLAN, &rfkill_ops, NULL); if (!rfk) return -ENOMEM; r = rfkill_register(rfk); if (r) { rfkill_destroy(rfk); return r; } platform_set_drvdata(pdev, rfk); return 0; } static void xo1_rfkill_remove(struct platform_device *pdev) { struct rfkill *rfk = platform_get_drvdata(pdev); rfkill_unregister(rfk); rfkill_destroy(rfk); } static struct platform_driver xo1_rfkill_driver = { .driver = { .name = "xo1-rfkill", }, .probe = xo1_rfkill_probe, .remove_new = xo1_rfkill_remove, }; module_platform_driver(xo1_rfkill_driver); MODULE_AUTHOR("Daniel Drake <[email protected]>"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:xo1-rfkill");
linux-master
drivers/platform/x86/xo1-rfkill.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * thinkpad_acpi.c - ThinkPad ACPI Extras * * Copyright (C) 2004-2005 Borislav Deianov <[email protected]> * Copyright (C) 2006-2009 Henrique de Moraes Holschuh <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #define TPACPI_VERSION "0.26" #define TPACPI_SYSFS_VERSION 0x030000 /* * Changelog: * 2007-10-20 changelog trimmed down * * 2007-03-27 0.14 renamed to thinkpad_acpi and moved to * drivers/misc. * * 2006-11-22 0.13 new maintainer * changelog now lives in git commit history, and will * not be updated further in-file. * * 2005-03-17 0.11 support for 600e, 770x * thanks to Jamie Lentin <[email protected]> * * 2005-01-16 0.9 use MODULE_VERSION * thanks to Henrik Brix Andersen <[email protected]> * fix parameter passing on module loading * thanks to Rusty Russell <[email protected]> * thanks to Jim Radford <[email protected]> * 2004-11-08 0.8 fix init error case, don't return from a macro * thanks to Chris Wright <[email protected]> */ #include <linux/acpi.h> #include <linux/backlight.h> #include <linux/bitops.h> #include <linux/delay.h> #include <linux/dmi.h> #include <linux/fb.h> #include <linux/freezer.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/init.h> #include <linux/input.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/kthread.h> #include <linux/leds.h> #include <linux/list.h> #include <linux/lockdep.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/nvram.h> #include <linux/pci.h> #include <linux/platform_device.h> #include <linux/platform_profile.h> #include <linux/power_supply.h> #include <linux/proc_fs.h> #include <linux/rfkill.h> #include <linux/sched.h> #include <linux/sched/signal.h> #include <linux/seq_file.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/string_helpers.h> #include <linux/sysfs.h> #include <linux/types.h> #include <linux/uaccess.h> #include <linux/workqueue.h> #include <acpi/battery.h> #include <acpi/video.h> #include <drm/drm_privacy_screen_driver.h> #include <sound/control.h> #include <sound/core.h> #include <sound/initval.h> #include "dual_accel_detect.h" /* ThinkPad CMOS commands */ #define TP_CMOS_VOLUME_DOWN 0 #define TP_CMOS_VOLUME_UP 1 #define TP_CMOS_VOLUME_MUTE 2 #define TP_CMOS_BRIGHTNESS_UP 4 #define TP_CMOS_BRIGHTNESS_DOWN 5 #define TP_CMOS_THINKLIGHT_ON 12 #define TP_CMOS_THINKLIGHT_OFF 13 /* NVRAM Addresses */ enum tp_nvram_addr { TP_NVRAM_ADDR_HK2 = 0x57, TP_NVRAM_ADDR_THINKLIGHT = 0x58, TP_NVRAM_ADDR_VIDEO = 0x59, TP_NVRAM_ADDR_BRIGHTNESS = 0x5e, TP_NVRAM_ADDR_MIXER = 0x60, }; /* NVRAM bit masks */ enum { TP_NVRAM_MASK_HKT_THINKPAD = 0x08, TP_NVRAM_MASK_HKT_ZOOM = 0x20, TP_NVRAM_MASK_HKT_DISPLAY = 0x40, TP_NVRAM_MASK_HKT_HIBERNATE = 0x80, TP_NVRAM_MASK_THINKLIGHT = 0x10, TP_NVRAM_MASK_HKT_DISPEXPND = 0x30, TP_NVRAM_MASK_HKT_BRIGHTNESS = 0x20, TP_NVRAM_MASK_LEVEL_BRIGHTNESS = 0x0f, TP_NVRAM_POS_LEVEL_BRIGHTNESS = 0, TP_NVRAM_MASK_MUTE = 0x40, TP_NVRAM_MASK_HKT_VOLUME = 0x80, TP_NVRAM_MASK_LEVEL_VOLUME = 0x0f, TP_NVRAM_POS_LEVEL_VOLUME = 0, }; /* Misc NVRAM-related */ enum { TP_NVRAM_LEVEL_VOLUME_MAX = 14, }; /* ACPI HIDs */ #define TPACPI_ACPI_IBM_HKEY_HID "IBM0068" #define TPACPI_ACPI_LENOVO_HKEY_HID "LEN0068" #define TPACPI_ACPI_LENOVO_HKEY_V2_HID "LEN0268" #define TPACPI_ACPI_EC_HID "PNP0C09" /* Input IDs */ #define TPACPI_HKEY_INPUT_PRODUCT 0x5054 /* "TP" */ #define TPACPI_HKEY_INPUT_VERSION 0x4101 /* ACPI \WGSV commands */ enum { TP_ACPI_WGSV_GET_STATE = 0x01, /* Get state information */ TP_ACPI_WGSV_PWR_ON_ON_RESUME = 0x02, /* Resume WWAN powered on */ TP_ACPI_WGSV_PWR_OFF_ON_RESUME = 0x03, /* Resume WWAN powered off */ TP_ACPI_WGSV_SAVE_STATE = 0x04, /* Save state for S4/S5 */ }; /* TP_ACPI_WGSV_GET_STATE bits */ enum { TP_ACPI_WGSV_STATE_WWANEXIST = 0x0001, /* WWAN hw available */ TP_ACPI_WGSV_STATE_WWANPWR = 0x0002, /* WWAN radio enabled */ TP_ACPI_WGSV_STATE_WWANPWRRES = 0x0004, /* WWAN state at resume */ TP_ACPI_WGSV_STATE_WWANBIOSOFF = 0x0008, /* WWAN disabled in BIOS */ TP_ACPI_WGSV_STATE_BLTHEXIST = 0x0001, /* BLTH hw available */ TP_ACPI_WGSV_STATE_BLTHPWR = 0x0002, /* BLTH radio enabled */ TP_ACPI_WGSV_STATE_BLTHPWRRES = 0x0004, /* BLTH state at resume */ TP_ACPI_WGSV_STATE_BLTHBIOSOFF = 0x0008, /* BLTH disabled in BIOS */ TP_ACPI_WGSV_STATE_UWBEXIST = 0x0010, /* UWB hw available */ TP_ACPI_WGSV_STATE_UWBPWR = 0x0020, /* UWB radio enabled */ }; /* HKEY events */ enum tpacpi_hkey_event_t { /* Hotkey-related */ TP_HKEY_EV_HOTKEY_BASE = 0x1001, /* first hotkey (FN+F1) */ TP_HKEY_EV_BRGHT_UP = 0x1010, /* Brightness up */ TP_HKEY_EV_BRGHT_DOWN = 0x1011, /* Brightness down */ TP_HKEY_EV_KBD_LIGHT = 0x1012, /* Thinklight/kbd backlight */ TP_HKEY_EV_VOL_UP = 0x1015, /* Volume up or unmute */ TP_HKEY_EV_VOL_DOWN = 0x1016, /* Volume down or unmute */ TP_HKEY_EV_VOL_MUTE = 0x1017, /* Mixer output mute */ TP_HKEY_EV_PRIVACYGUARD_TOGGLE = 0x130f, /* Toggle priv.guard on/off */ TP_HKEY_EV_AMT_TOGGLE = 0x131a, /* Toggle AMT on/off */ /* Reasons for waking up from S3/S4 */ TP_HKEY_EV_WKUP_S3_UNDOCK = 0x2304, /* undock requested, S3 */ TP_HKEY_EV_WKUP_S4_UNDOCK = 0x2404, /* undock requested, S4 */ TP_HKEY_EV_WKUP_S3_BAYEJ = 0x2305, /* bay ejection req, S3 */ TP_HKEY_EV_WKUP_S4_BAYEJ = 0x2405, /* bay ejection req, S4 */ TP_HKEY_EV_WKUP_S3_BATLOW = 0x2313, /* battery empty, S3 */ TP_HKEY_EV_WKUP_S4_BATLOW = 0x2413, /* battery empty, S4 */ /* Auto-sleep after eject request */ TP_HKEY_EV_BAYEJ_ACK = 0x3003, /* bay ejection complete */ TP_HKEY_EV_UNDOCK_ACK = 0x4003, /* undock complete */ /* Misc bay events */ TP_HKEY_EV_OPTDRV_EJ = 0x3006, /* opt. drive tray ejected */ TP_HKEY_EV_HOTPLUG_DOCK = 0x4010, /* docked into hotplug dock or port replicator */ TP_HKEY_EV_HOTPLUG_UNDOCK = 0x4011, /* undocked from hotplug dock or port replicator */ /* * Thinkpad X1 Tablet series devices emit 0x4012 and 0x4013 * when keyboard cover is attached, detached or folded onto the back */ TP_HKEY_EV_KBD_COVER_ATTACH = 0x4012, /* keyboard cover attached */ TP_HKEY_EV_KBD_COVER_DETACH = 0x4013, /* keyboard cover detached or folded back */ /* User-interface events */ TP_HKEY_EV_LID_CLOSE = 0x5001, /* laptop lid closed */ TP_HKEY_EV_LID_OPEN = 0x5002, /* laptop lid opened */ TP_HKEY_EV_TABLET_TABLET = 0x5009, /* tablet swivel up */ TP_HKEY_EV_TABLET_NOTEBOOK = 0x500a, /* tablet swivel down */ TP_HKEY_EV_TABLET_CHANGED = 0x60c0, /* X1 Yoga (2016): * enter/leave tablet mode */ TP_HKEY_EV_PEN_INSERTED = 0x500b, /* tablet pen inserted */ TP_HKEY_EV_PEN_REMOVED = 0x500c, /* tablet pen removed */ TP_HKEY_EV_BRGHT_CHANGED = 0x5010, /* backlight control event */ /* Key-related user-interface events */ TP_HKEY_EV_KEY_NUMLOCK = 0x6000, /* NumLock key pressed */ TP_HKEY_EV_KEY_FN = 0x6005, /* Fn key pressed? E420 */ TP_HKEY_EV_KEY_FN_ESC = 0x6060, /* Fn+Esc key pressed X240 */ /* Thermal events */ TP_HKEY_EV_ALARM_BAT_HOT = 0x6011, /* battery too hot */ TP_HKEY_EV_ALARM_BAT_XHOT = 0x6012, /* battery critically hot */ TP_HKEY_EV_ALARM_SENSOR_HOT = 0x6021, /* sensor too hot */ TP_HKEY_EV_ALARM_SENSOR_XHOT = 0x6022, /* sensor critically hot */ TP_HKEY_EV_THM_TABLE_CHANGED = 0x6030, /* windows; thermal table changed */ TP_HKEY_EV_THM_CSM_COMPLETED = 0x6032, /* windows; thermal control set * command completed. Related to * AML DYTC */ TP_HKEY_EV_THM_TRANSFM_CHANGED = 0x60F0, /* windows; thermal transformation * changed. Related to AML GMTS */ /* AC-related events */ TP_HKEY_EV_AC_CHANGED = 0x6040, /* AC status changed */ /* Further user-interface events */ TP_HKEY_EV_PALM_DETECTED = 0x60b0, /* palm hoveres keyboard */ TP_HKEY_EV_PALM_UNDETECTED = 0x60b1, /* palm removed */ /* Misc */ TP_HKEY_EV_RFKILL_CHANGED = 0x7000, /* rfkill switch changed */ }; /**************************************************************************** * Main driver */ #define TPACPI_NAME "thinkpad" #define TPACPI_DESC "ThinkPad ACPI Extras" #define TPACPI_FILE TPACPI_NAME "_acpi" #define TPACPI_URL "http://ibm-acpi.sf.net/" #define TPACPI_MAIL "[email protected]" #define TPACPI_PROC_DIR "ibm" #define TPACPI_ACPI_EVENT_PREFIX "ibm" #define TPACPI_DRVR_NAME TPACPI_FILE #define TPACPI_DRVR_SHORTNAME "tpacpi" #define TPACPI_HWMON_DRVR_NAME TPACPI_NAME "_hwmon" #define TPACPI_NVRAM_KTHREAD_NAME "ktpacpi_nvramd" #define TPACPI_WORKQUEUE_NAME "ktpacpid" #define TPACPI_MAX_ACPI_ARGS 3 /* Debugging printk groups */ #define TPACPI_DBG_ALL 0xffff #define TPACPI_DBG_DISCLOSETASK 0x8000 #define TPACPI_DBG_INIT 0x0001 #define TPACPI_DBG_EXIT 0x0002 #define TPACPI_DBG_RFKILL 0x0004 #define TPACPI_DBG_HKEY 0x0008 #define TPACPI_DBG_FAN 0x0010 #define TPACPI_DBG_BRGHT 0x0020 #define TPACPI_DBG_MIXER 0x0040 #define FAN_NOT_PRESENT 65535 /**************************************************************************** * Driver-wide structs and misc. variables */ struct ibm_struct; struct tp_acpi_drv_struct { const struct acpi_device_id *hid; struct acpi_driver *driver; void (*notify) (struct ibm_struct *, u32); acpi_handle *handle; u32 type; struct acpi_device *device; }; struct ibm_struct { char *name; int (*read) (struct seq_file *); int (*write) (char *); void (*exit) (void); void (*resume) (void); void (*suspend) (void); void (*shutdown) (void); struct list_head all_drivers; struct tp_acpi_drv_struct *acpi; struct { u8 acpi_driver_registered:1; u8 acpi_notify_installed:1; u8 proc_created:1; u8 init_called:1; u8 experimental:1; } flags; }; struct ibm_init_struct { char param[32]; int (*init) (struct ibm_init_struct *); umode_t base_procfs_mode; struct ibm_struct *data; }; /* DMI Quirks */ struct quirk_entry { bool btusb_bug; }; static struct quirk_entry quirk_btusb_bug = { .btusb_bug = true, }; static struct { u32 bluetooth:1; u32 hotkey:1; u32 hotkey_mask:1; u32 hotkey_wlsw:1; enum { TP_HOTKEY_TABLET_NONE = 0, TP_HOTKEY_TABLET_USES_MHKG, TP_HOTKEY_TABLET_USES_GMMS, } hotkey_tablet; u32 kbdlight:1; u32 light:1; u32 light_status:1; u32 bright_acpimode:1; u32 bright_unkfw:1; u32 wan:1; u32 uwb:1; u32 fan_ctrl_status_undef:1; u32 second_fan:1; u32 second_fan_ctl:1; u32 beep_needs_two_args:1; u32 mixer_no_level_control:1; u32 battery_force_primary:1; u32 input_device_registered:1; u32 platform_drv_registered:1; u32 sensors_pdrv_registered:1; u32 hotkey_poll_active:1; u32 has_adaptive_kbd:1; u32 kbd_lang:1; struct quirk_entry *quirks; } tp_features; static struct { u16 hotkey_mask_ff:1; u16 volume_ctrl_forbidden:1; } tp_warned; struct thinkpad_id_data { unsigned int vendor; /* ThinkPad vendor: * PCI_VENDOR_ID_IBM/PCI_VENDOR_ID_LENOVO */ char *bios_version_str; /* Something like 1ZET51WW (1.03z) */ char *ec_version_str; /* Something like 1ZHT51WW-1.04a */ u32 bios_model; /* 1Y = 0x3159, 0 = unknown */ u32 ec_model; u16 bios_release; /* 1ZETK1WW = 0x4b31, 0 = unknown */ u16 ec_release; char *model_str; /* ThinkPad T43 */ char *nummodel_str; /* 9384A9C for a 9384-A9C model */ }; static struct thinkpad_id_data thinkpad_id; static enum { TPACPI_LIFE_INIT = 0, TPACPI_LIFE_RUNNING, TPACPI_LIFE_EXITING, } tpacpi_lifecycle; static int experimental; static u32 dbg_level; static struct workqueue_struct *tpacpi_wq; enum led_status_t { TPACPI_LED_OFF = 0, TPACPI_LED_ON, TPACPI_LED_BLINK, }; /* tpacpi LED class */ struct tpacpi_led_classdev { struct led_classdev led_classdev; int led; }; /* brightness level capabilities */ static unsigned int bright_maxlvl; /* 0 = unknown */ #ifdef CONFIG_THINKPAD_ACPI_DEBUGFACILITIES static int dbg_wlswemul; static bool tpacpi_wlsw_emulstate; static int dbg_bluetoothemul; static bool tpacpi_bluetooth_emulstate; static int dbg_wwanemul; static bool tpacpi_wwan_emulstate; static int dbg_uwbemul; static bool tpacpi_uwb_emulstate; #endif /************************************************************************* * Debugging helpers */ #define dbg_printk(a_dbg_level, format, arg...) \ do { \ if (dbg_level & (a_dbg_level)) \ printk(KERN_DEBUG pr_fmt("%s: " format), \ __func__, ##arg); \ } while (0) #ifdef CONFIG_THINKPAD_ACPI_DEBUG #define vdbg_printk dbg_printk static const char *str_supported(int is_supported); #else static inline const char *str_supported(int is_supported) { return ""; } #define vdbg_printk(a_dbg_level, format, arg...) \ do { if (0) no_printk(format, ##arg); } while (0) #endif static void tpacpi_log_usertask(const char * const what) { printk(KERN_DEBUG pr_fmt("%s: access by process with PID %d\n"), what, task_tgid_vnr(current)); } #define tpacpi_disclose_usertask(what, format, arg...) \ do { \ if (unlikely((dbg_level & TPACPI_DBG_DISCLOSETASK) && \ (tpacpi_lifecycle == TPACPI_LIFE_RUNNING))) { \ printk(KERN_DEBUG pr_fmt("%s: PID %d: " format), \ what, task_tgid_vnr(current), ## arg); \ } \ } while (0) /* * Quirk handling helpers * * ThinkPad IDs and versions seen in the field so far are * two or three characters from the set [0-9A-Z], i.e. base 36. * * We use values well outside that range as specials. */ #define TPACPI_MATCH_ANY 0xffffffffU #define TPACPI_MATCH_ANY_VERSION 0xffffU #define TPACPI_MATCH_UNKNOWN 0U /* TPID('1', 'Y') == 0x3159 */ #define TPID(__c1, __c2) (((__c1) << 8) | (__c2)) #define TPID3(__c1, __c2, __c3) (((__c1) << 16) | ((__c2) << 8) | (__c3)) #define TPVER TPID #define TPACPI_Q_IBM(__id1, __id2, __quirk) \ { .vendor = PCI_VENDOR_ID_IBM, \ .bios = TPID(__id1, __id2), \ .ec = TPACPI_MATCH_ANY, \ .quirks = (__quirk) } #define TPACPI_Q_LNV(__id1, __id2, __quirk) \ { .vendor = PCI_VENDOR_ID_LENOVO, \ .bios = TPID(__id1, __id2), \ .ec = TPACPI_MATCH_ANY, \ .quirks = (__quirk) } #define TPACPI_Q_LNV3(__id1, __id2, __id3, __quirk) \ { .vendor = PCI_VENDOR_ID_LENOVO, \ .bios = TPID3(__id1, __id2, __id3), \ .ec = TPACPI_MATCH_ANY, \ .quirks = (__quirk) } #define TPACPI_QEC_IBM(__id1, __id2, __quirk) \ { .vendor = PCI_VENDOR_ID_IBM, \ .bios = TPACPI_MATCH_ANY, \ .ec = TPID(__id1, __id2), \ .quirks = (__quirk) } #define TPACPI_QEC_LNV(__id1, __id2, __quirk) \ { .vendor = PCI_VENDOR_ID_LENOVO, \ .bios = TPACPI_MATCH_ANY, \ .ec = TPID(__id1, __id2), \ .quirks = (__quirk) } struct tpacpi_quirk { unsigned int vendor; u32 bios; u32 ec; unsigned long quirks; }; /** * tpacpi_check_quirks() - search BIOS/EC version on a list * @qlist: array of &struct tpacpi_quirk * @qlist_size: number of elements in @qlist * * Iterates over a quirks list until one is found that matches the * ThinkPad's vendor, BIOS and EC model. * * Returns 0 if nothing matches, otherwise returns the quirks field of * the matching &struct tpacpi_quirk entry. * * The match criteria is: vendor, ec and bios much match. */ static unsigned long __init tpacpi_check_quirks( const struct tpacpi_quirk *qlist, unsigned int qlist_size) { while (qlist_size) { if ((qlist->vendor == thinkpad_id.vendor || qlist->vendor == TPACPI_MATCH_ANY) && (qlist->bios == thinkpad_id.bios_model || qlist->bios == TPACPI_MATCH_ANY) && (qlist->ec == thinkpad_id.ec_model || qlist->ec == TPACPI_MATCH_ANY)) return qlist->quirks; qlist_size--; qlist++; } return 0; } static inline bool __pure __init tpacpi_is_lenovo(void) { return thinkpad_id.vendor == PCI_VENDOR_ID_LENOVO; } static inline bool __pure __init tpacpi_is_ibm(void) { return thinkpad_id.vendor == PCI_VENDOR_ID_IBM; } /**************************************************************************** **************************************************************************** * * ACPI Helpers and device model * **************************************************************************** ****************************************************************************/ /************************************************************************* * ACPI basic handles */ static acpi_handle root_handle; static acpi_handle ec_handle; #define TPACPI_HANDLE(object, parent, paths...) \ static acpi_handle object##_handle; \ static const acpi_handle * const object##_parent __initconst = \ &parent##_handle; \ static char *object##_paths[] __initdata = { paths } TPACPI_HANDLE(ecrd, ec, "ECRD"); /* 570 */ TPACPI_HANDLE(ecwr, ec, "ECWR"); /* 570 */ TPACPI_HANDLE(cmos, root, "\\UCMS", /* R50, R50e, R50p, R51, */ /* T4x, X31, X40 */ "\\CMOS", /* A3x, G4x, R32, T23, T30, X22-24, X30 */ "\\CMS", /* R40, R40e */ ); /* all others */ TPACPI_HANDLE(hkey, ec, "\\_SB.HKEY", /* 600e/x, 770e, 770x */ "^HKEY", /* R30, R31 */ "HKEY", /* all others */ ); /* 570 */ /************************************************************************* * ACPI helpers */ static int acpi_evalf(acpi_handle handle, int *res, char *method, char *fmt, ...) { char *fmt0 = fmt; struct acpi_object_list params; union acpi_object in_objs[TPACPI_MAX_ACPI_ARGS]; struct acpi_buffer result, *resultp; union acpi_object out_obj; acpi_status status; va_list ap; char res_type; int success; int quiet; if (!*fmt) { pr_err("acpi_evalf() called with empty format\n"); return 0; } if (*fmt == 'q') { quiet = 1; fmt++; } else quiet = 0; res_type = *(fmt++); params.count = 0; params.pointer = &in_objs[0]; va_start(ap, fmt); while (*fmt) { char c = *(fmt++); switch (c) { case 'd': /* int */ in_objs[params.count].integer.value = va_arg(ap, int); in_objs[params.count++].type = ACPI_TYPE_INTEGER; break; /* add more types as needed */ default: pr_err("acpi_evalf() called with invalid format character '%c'\n", c); va_end(ap); return 0; } } va_end(ap); if (res_type != 'v') { result.length = sizeof(out_obj); result.pointer = &out_obj; resultp = &result; } else resultp = NULL; status = acpi_evaluate_object(handle, method, &params, resultp); switch (res_type) { case 'd': /* int */ success = (status == AE_OK && out_obj.type == ACPI_TYPE_INTEGER); if (success && res) *res = out_obj.integer.value; break; case 'v': /* void */ success = status == AE_OK; break; /* add more types as needed */ default: pr_err("acpi_evalf() called with invalid format character '%c'\n", res_type); return 0; } if (!success && !quiet) pr_err("acpi_evalf(%s, %s, ...) failed: %s\n", method, fmt0, acpi_format_exception(status)); return success; } static int acpi_ec_read(int i, u8 *p) { int v; if (ecrd_handle) { if (!acpi_evalf(ecrd_handle, &v, NULL, "dd", i)) return 0; *p = v; } else { if (ec_read(i, p) < 0) return 0; } return 1; } static int acpi_ec_write(int i, u8 v) { if (ecwr_handle) { if (!acpi_evalf(ecwr_handle, NULL, NULL, "vdd", i, v)) return 0; } else { if (ec_write(i, v) < 0) return 0; } return 1; } static int issue_thinkpad_cmos_command(int cmos_cmd) { if (!cmos_handle) return -ENXIO; if (!acpi_evalf(cmos_handle, NULL, NULL, "vd", cmos_cmd)) return -EIO; return 0; } /************************************************************************* * ACPI device model */ #define TPACPI_ACPIHANDLE_INIT(object) \ drv_acpi_handle_init(#object, &object##_handle, *object##_parent, \ object##_paths, ARRAY_SIZE(object##_paths)) static void __init drv_acpi_handle_init(const char *name, acpi_handle *handle, const acpi_handle parent, char **paths, const int num_paths) { int i; acpi_status status; vdbg_printk(TPACPI_DBG_INIT, "trying to locate ACPI handle for %s\n", name); for (i = 0; i < num_paths; i++) { status = acpi_get_handle(parent, paths[i], handle); if (ACPI_SUCCESS(status)) { dbg_printk(TPACPI_DBG_INIT, "Found ACPI handle %s for %s\n", paths[i], name); return; } } vdbg_printk(TPACPI_DBG_INIT, "ACPI handle for %s not found\n", name); *handle = NULL; } static acpi_status __init tpacpi_acpi_handle_locate_callback(acpi_handle handle, u32 level, void *context, void **return_value) { if (!strcmp(context, "video")) { struct acpi_device *dev = acpi_fetch_acpi_dev(handle); if (!dev || strcmp(ACPI_VIDEO_HID, acpi_device_hid(dev))) return AE_OK; } *(acpi_handle *)return_value = handle; return AE_CTRL_TERMINATE; } static void __init tpacpi_acpi_handle_locate(const char *name, const char *hid, acpi_handle *handle) { acpi_status status; acpi_handle device_found; BUG_ON(!name || !handle); vdbg_printk(TPACPI_DBG_INIT, "trying to locate ACPI handle for %s, using HID %s\n", name, hid ? hid : "NULL"); memset(&device_found, 0, sizeof(device_found)); status = acpi_get_devices(hid, tpacpi_acpi_handle_locate_callback, (void *)name, &device_found); *handle = NULL; if (ACPI_SUCCESS(status)) { *handle = device_found; dbg_printk(TPACPI_DBG_INIT, "Found ACPI handle for %s\n", name); } else { vdbg_printk(TPACPI_DBG_INIT, "Could not locate an ACPI handle for %s: %s\n", name, acpi_format_exception(status)); } } static void dispatch_acpi_notify(acpi_handle handle, u32 event, void *data) { struct ibm_struct *ibm = data; if (tpacpi_lifecycle != TPACPI_LIFE_RUNNING) return; if (!ibm || !ibm->acpi || !ibm->acpi->notify) return; ibm->acpi->notify(ibm, event); } static int __init setup_acpi_notify(struct ibm_struct *ibm) { acpi_status status; BUG_ON(!ibm->acpi); if (!*ibm->acpi->handle) return 0; vdbg_printk(TPACPI_DBG_INIT, "setting up ACPI notify for %s\n", ibm->name); ibm->acpi->device = acpi_fetch_acpi_dev(*ibm->acpi->handle); if (!ibm->acpi->device) { pr_err("acpi_fetch_acpi_dev(%s) failed\n", ibm->name); return -ENODEV; } ibm->acpi->device->driver_data = ibm; sprintf(acpi_device_class(ibm->acpi->device), "%s/%s", TPACPI_ACPI_EVENT_PREFIX, ibm->name); status = acpi_install_notify_handler(*ibm->acpi->handle, ibm->acpi->type, dispatch_acpi_notify, ibm); if (ACPI_FAILURE(status)) { if (status == AE_ALREADY_EXISTS) { pr_notice("another device driver is already handling %s events\n", ibm->name); } else { pr_err("acpi_install_notify_handler(%s) failed: %s\n", ibm->name, acpi_format_exception(status)); } return -ENODEV; } ibm->flags.acpi_notify_installed = 1; return 0; } static int __init tpacpi_device_add(struct acpi_device *device) { return 0; } static int __init register_tpacpi_subdriver(struct ibm_struct *ibm) { int rc; dbg_printk(TPACPI_DBG_INIT, "registering %s as an ACPI driver\n", ibm->name); BUG_ON(!ibm->acpi); ibm->acpi->driver = kzalloc(sizeof(struct acpi_driver), GFP_KERNEL); if (!ibm->acpi->driver) { pr_err("failed to allocate memory for ibm->acpi->driver\n"); return -ENOMEM; } sprintf(ibm->acpi->driver->name, "%s_%s", TPACPI_NAME, ibm->name); ibm->acpi->driver->ids = ibm->acpi->hid; ibm->acpi->driver->ops.add = &tpacpi_device_add; rc = acpi_bus_register_driver(ibm->acpi->driver); if (rc < 0) { pr_err("acpi_bus_register_driver(%s) failed: %d\n", ibm->name, rc); kfree(ibm->acpi->driver); ibm->acpi->driver = NULL; } else if (!rc) ibm->flags.acpi_driver_registered = 1; return rc; } /**************************************************************************** **************************************************************************** * * Procfs Helpers * **************************************************************************** ****************************************************************************/ static int dispatch_proc_show(struct seq_file *m, void *v) { struct ibm_struct *ibm = m->private; if (!ibm || !ibm->read) return -EINVAL; return ibm->read(m); } static int dispatch_proc_open(struct inode *inode, struct file *file) { return single_open(file, dispatch_proc_show, pde_data(inode)); } static ssize_t dispatch_proc_write(struct file *file, const char __user *userbuf, size_t count, loff_t *pos) { struct ibm_struct *ibm = pde_data(file_inode(file)); char *kernbuf; int ret; if (!ibm || !ibm->write) return -EINVAL; if (count > PAGE_SIZE - 1) return -EINVAL; kernbuf = memdup_user_nul(userbuf, count); if (IS_ERR(kernbuf)) return PTR_ERR(kernbuf); ret = ibm->write(kernbuf); if (ret == 0) ret = count; kfree(kernbuf); return ret; } static const struct proc_ops dispatch_proc_ops = { .proc_open = dispatch_proc_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_release = single_release, .proc_write = dispatch_proc_write, }; /**************************************************************************** **************************************************************************** * * Device model: input, hwmon and platform * **************************************************************************** ****************************************************************************/ static struct platform_device *tpacpi_pdev; static struct platform_device *tpacpi_sensors_pdev; static struct device *tpacpi_hwmon; static struct input_dev *tpacpi_inputdev; static struct mutex tpacpi_inputdev_send_mutex; static LIST_HEAD(tpacpi_all_drivers); #ifdef CONFIG_PM_SLEEP static int tpacpi_suspend_handler(struct device *dev) { struct ibm_struct *ibm, *itmp; list_for_each_entry_safe(ibm, itmp, &tpacpi_all_drivers, all_drivers) { if (ibm->suspend) (ibm->suspend)(); } return 0; } static int tpacpi_resume_handler(struct device *dev) { struct ibm_struct *ibm, *itmp; list_for_each_entry_safe(ibm, itmp, &tpacpi_all_drivers, all_drivers) { if (ibm->resume) (ibm->resume)(); } return 0; } #endif static SIMPLE_DEV_PM_OPS(tpacpi_pm, tpacpi_suspend_handler, tpacpi_resume_handler); static void tpacpi_shutdown_handler(struct platform_device *pdev) { struct ibm_struct *ibm, *itmp; list_for_each_entry_safe(ibm, itmp, &tpacpi_all_drivers, all_drivers) { if (ibm->shutdown) (ibm->shutdown)(); } } /************************************************************************* * sysfs support helpers */ static int parse_strtoul(const char *buf, unsigned long max, unsigned long *value) { char *endp; *value = simple_strtoul(skip_spaces(buf), &endp, 0); endp = skip_spaces(endp); if (*endp || *value > max) return -EINVAL; return 0; } static void tpacpi_disable_brightness_delay(void) { if (acpi_evalf(hkey_handle, NULL, "PWMS", "qvd", 0)) pr_notice("ACPI backlight control delay disabled\n"); } static void printk_deprecated_attribute(const char * const what, const char * const details) { tpacpi_log_usertask("deprecated sysfs attribute"); pr_warn("WARNING: sysfs attribute %s is deprecated and will be removed. %s\n", what, details); } /************************************************************************* * rfkill and radio control support helpers */ /* * ThinkPad-ACPI firmware handling model: * * WLSW (master wireless switch) is event-driven, and is common to all * firmware-controlled radios. It cannot be controlled, just monitored, * as expected. It overrides all radio state in firmware * * The kernel, a masked-off hotkey, and WLSW can change the radio state * (TODO: verify how WLSW interacts with the returned radio state). * * The only time there are shadow radio state changes, is when * masked-off hotkeys are used. */ /* * Internal driver API for radio state: * * int: < 0 = error, otherwise enum tpacpi_rfkill_state * bool: true means radio blocked (off) */ enum tpacpi_rfkill_state { TPACPI_RFK_RADIO_OFF = 0, TPACPI_RFK_RADIO_ON }; /* rfkill switches */ enum tpacpi_rfk_id { TPACPI_RFK_BLUETOOTH_SW_ID = 0, TPACPI_RFK_WWAN_SW_ID, TPACPI_RFK_UWB_SW_ID, TPACPI_RFK_SW_MAX }; static const char *tpacpi_rfkill_names[] = { [TPACPI_RFK_BLUETOOTH_SW_ID] = "bluetooth", [TPACPI_RFK_WWAN_SW_ID] = "wwan", [TPACPI_RFK_UWB_SW_ID] = "uwb", [TPACPI_RFK_SW_MAX] = NULL }; /* ThinkPad-ACPI rfkill subdriver */ struct tpacpi_rfk { struct rfkill *rfkill; enum tpacpi_rfk_id id; const struct tpacpi_rfk_ops *ops; }; struct tpacpi_rfk_ops { /* firmware interface */ int (*get_status)(void); int (*set_status)(const enum tpacpi_rfkill_state); }; static struct tpacpi_rfk *tpacpi_rfkill_switches[TPACPI_RFK_SW_MAX]; /* Query FW and update rfkill sw state for a given rfkill switch */ static int tpacpi_rfk_update_swstate(const struct tpacpi_rfk *tp_rfk) { int status; if (!tp_rfk) return -ENODEV; status = (tp_rfk->ops->get_status)(); if (status < 0) return status; rfkill_set_sw_state(tp_rfk->rfkill, (status == TPACPI_RFK_RADIO_OFF)); return status; } /* * Sync the HW-blocking state of all rfkill switches, * do notice it causes the rfkill core to schedule uevents */ static void tpacpi_rfk_update_hwblock_state(bool blocked) { unsigned int i; struct tpacpi_rfk *tp_rfk; for (i = 0; i < TPACPI_RFK_SW_MAX; i++) { tp_rfk = tpacpi_rfkill_switches[i]; if (tp_rfk) { if (rfkill_set_hw_state(tp_rfk->rfkill, blocked)) { /* ignore -- we track sw block */ } } } } /* Call to get the WLSW state from the firmware */ static int hotkey_get_wlsw(void); /* Call to query WLSW state and update all rfkill switches */ static bool tpacpi_rfk_check_hwblock_state(void) { int res = hotkey_get_wlsw(); int hw_blocked; /* When unknown or unsupported, we have to assume it is unblocked */ if (res < 0) return false; hw_blocked = (res == TPACPI_RFK_RADIO_OFF); tpacpi_rfk_update_hwblock_state(hw_blocked); return hw_blocked; } static int tpacpi_rfk_hook_set_block(void *data, bool blocked) { struct tpacpi_rfk *tp_rfk = data; int res; dbg_printk(TPACPI_DBG_RFKILL, "request to change radio state to %s\n", blocked ? "blocked" : "unblocked"); /* try to set radio state */ res = (tp_rfk->ops->set_status)(blocked ? TPACPI_RFK_RADIO_OFF : TPACPI_RFK_RADIO_ON); /* and update the rfkill core with whatever the FW really did */ tpacpi_rfk_update_swstate(tp_rfk); return (res < 0) ? res : 0; } static const struct rfkill_ops tpacpi_rfk_rfkill_ops = { .set_block = tpacpi_rfk_hook_set_block, }; static int __init tpacpi_new_rfkill(const enum tpacpi_rfk_id id, const struct tpacpi_rfk_ops *tp_rfkops, const enum rfkill_type rfktype, const char *name, const bool set_default) { struct tpacpi_rfk *atp_rfk; int res; bool sw_state = false; bool hw_state; int sw_status; BUG_ON(id >= TPACPI_RFK_SW_MAX || tpacpi_rfkill_switches[id]); atp_rfk = kzalloc(sizeof(struct tpacpi_rfk), GFP_KERNEL); if (atp_rfk) atp_rfk->rfkill = rfkill_alloc(name, &tpacpi_pdev->dev, rfktype, &tpacpi_rfk_rfkill_ops, atp_rfk); if (!atp_rfk || !atp_rfk->rfkill) { pr_err("failed to allocate memory for rfkill class\n"); kfree(atp_rfk); return -ENOMEM; } atp_rfk->id = id; atp_rfk->ops = tp_rfkops; sw_status = (tp_rfkops->get_status)(); if (sw_status < 0) { pr_err("failed to read initial state for %s, error %d\n", name, sw_status); } else { sw_state = (sw_status == TPACPI_RFK_RADIO_OFF); if (set_default) { /* try to keep the initial state, since we ask the * firmware to preserve it across S5 in NVRAM */ rfkill_init_sw_state(atp_rfk->rfkill, sw_state); } } hw_state = tpacpi_rfk_check_hwblock_state(); rfkill_set_hw_state(atp_rfk->rfkill, hw_state); res = rfkill_register(atp_rfk->rfkill); if (res < 0) { pr_err("failed to register %s rfkill switch: %d\n", name, res); rfkill_destroy(atp_rfk->rfkill); kfree(atp_rfk); return res; } tpacpi_rfkill_switches[id] = atp_rfk; pr_info("rfkill switch %s: radio is %sblocked\n", name, (sw_state || hw_state) ? "" : "un"); return 0; } static void tpacpi_destroy_rfkill(const enum tpacpi_rfk_id id) { struct tpacpi_rfk *tp_rfk; BUG_ON(id >= TPACPI_RFK_SW_MAX); tp_rfk = tpacpi_rfkill_switches[id]; if (tp_rfk) { rfkill_unregister(tp_rfk->rfkill); rfkill_destroy(tp_rfk->rfkill); tpacpi_rfkill_switches[id] = NULL; kfree(tp_rfk); } } static void printk_deprecated_rfkill_attribute(const char * const what) { printk_deprecated_attribute(what, "Please switch to generic rfkill before year 2010"); } /* sysfs <radio> enable ------------------------------------------------ */ static ssize_t tpacpi_rfk_sysfs_enable_show(const enum tpacpi_rfk_id id, struct device_attribute *attr, char *buf) { int status; printk_deprecated_rfkill_attribute(attr->attr.name); /* This is in the ABI... */ if (tpacpi_rfk_check_hwblock_state()) { status = TPACPI_RFK_RADIO_OFF; } else { status = tpacpi_rfk_update_swstate(tpacpi_rfkill_switches[id]); if (status < 0) return status; } return sysfs_emit(buf, "%d\n", (status == TPACPI_RFK_RADIO_ON) ? 1 : 0); } static ssize_t tpacpi_rfk_sysfs_enable_store(const enum tpacpi_rfk_id id, struct device_attribute *attr, const char *buf, size_t count) { unsigned long t; int res; printk_deprecated_rfkill_attribute(attr->attr.name); if (parse_strtoul(buf, 1, &t)) return -EINVAL; tpacpi_disclose_usertask(attr->attr.name, "set to %ld\n", t); /* This is in the ABI... */ if (tpacpi_rfk_check_hwblock_state() && !!t) return -EPERM; res = tpacpi_rfkill_switches[id]->ops->set_status((!!t) ? TPACPI_RFK_RADIO_ON : TPACPI_RFK_RADIO_OFF); tpacpi_rfk_update_swstate(tpacpi_rfkill_switches[id]); return (res < 0) ? res : count; } /* procfs -------------------------------------------------------------- */ static int tpacpi_rfk_procfs_read(const enum tpacpi_rfk_id id, struct seq_file *m) { if (id >= TPACPI_RFK_SW_MAX) seq_printf(m, "status:\t\tnot supported\n"); else { int status; /* This is in the ABI... */ if (tpacpi_rfk_check_hwblock_state()) { status = TPACPI_RFK_RADIO_OFF; } else { status = tpacpi_rfk_update_swstate( tpacpi_rfkill_switches[id]); if (status < 0) return status; } seq_printf(m, "status:\t\t%s\n", str_enabled_disabled(status == TPACPI_RFK_RADIO_ON)); seq_printf(m, "commands:\tenable, disable\n"); } return 0; } static int tpacpi_rfk_procfs_write(const enum tpacpi_rfk_id id, char *buf) { char *cmd; int status = -1; int res = 0; if (id >= TPACPI_RFK_SW_MAX) return -ENODEV; while ((cmd = strsep(&buf, ","))) { if (strstarts(cmd, "enable")) status = TPACPI_RFK_RADIO_ON; else if (strstarts(cmd, "disable")) status = TPACPI_RFK_RADIO_OFF; else return -EINVAL; } if (status != -1) { tpacpi_disclose_usertask("procfs", "attempt to %s %s\n", str_enable_disable(status == TPACPI_RFK_RADIO_ON), tpacpi_rfkill_names[id]); res = (tpacpi_rfkill_switches[id]->ops->set_status)(status); tpacpi_rfk_update_swstate(tpacpi_rfkill_switches[id]); } return res; } /************************************************************************* * thinkpad-acpi driver attributes */ /* interface_version --------------------------------------------------- */ static ssize_t interface_version_show(struct device_driver *drv, char *buf) { return sysfs_emit(buf, "0x%08x\n", TPACPI_SYSFS_VERSION); } static DRIVER_ATTR_RO(interface_version); /* debug_level --------------------------------------------------------- */ static ssize_t debug_level_show(struct device_driver *drv, char *buf) { return sysfs_emit(buf, "0x%04x\n", dbg_level); } static ssize_t debug_level_store(struct device_driver *drv, const char *buf, size_t count) { unsigned long t; if (parse_strtoul(buf, 0xffff, &t)) return -EINVAL; dbg_level = t; return count; } static DRIVER_ATTR_RW(debug_level); /* version ------------------------------------------------------------- */ static ssize_t version_show(struct device_driver *drv, char *buf) { return sysfs_emit(buf, "%s v%s\n", TPACPI_DESC, TPACPI_VERSION); } static DRIVER_ATTR_RO(version); /* --------------------------------------------------------------------- */ #ifdef CONFIG_THINKPAD_ACPI_DEBUGFACILITIES /* wlsw_emulstate ------------------------------------------------------ */ static ssize_t wlsw_emulstate_show(struct device_driver *drv, char *buf) { return sysfs_emit(buf, "%d\n", !!tpacpi_wlsw_emulstate); } static ssize_t wlsw_emulstate_store(struct device_driver *drv, const char *buf, size_t count) { unsigned long t; if (parse_strtoul(buf, 1, &t)) return -EINVAL; if (tpacpi_wlsw_emulstate != !!t) { tpacpi_wlsw_emulstate = !!t; tpacpi_rfk_update_hwblock_state(!t); /* negative logic */ } return count; } static DRIVER_ATTR_RW(wlsw_emulstate); /* bluetooth_emulstate ------------------------------------------------- */ static ssize_t bluetooth_emulstate_show(struct device_driver *drv, char *buf) { return sysfs_emit(buf, "%d\n", !!tpacpi_bluetooth_emulstate); } static ssize_t bluetooth_emulstate_store(struct device_driver *drv, const char *buf, size_t count) { unsigned long t; if (parse_strtoul(buf, 1, &t)) return -EINVAL; tpacpi_bluetooth_emulstate = !!t; return count; } static DRIVER_ATTR_RW(bluetooth_emulstate); /* wwan_emulstate ------------------------------------------------- */ static ssize_t wwan_emulstate_show(struct device_driver *drv, char *buf) { return sysfs_emit(buf, "%d\n", !!tpacpi_wwan_emulstate); } static ssize_t wwan_emulstate_store(struct device_driver *drv, const char *buf, size_t count) { unsigned long t; if (parse_strtoul(buf, 1, &t)) return -EINVAL; tpacpi_wwan_emulstate = !!t; return count; } static DRIVER_ATTR_RW(wwan_emulstate); /* uwb_emulstate ------------------------------------------------- */ static ssize_t uwb_emulstate_show(struct device_driver *drv, char *buf) { return sysfs_emit(buf, "%d\n", !!tpacpi_uwb_emulstate); } static ssize_t uwb_emulstate_store(struct device_driver *drv, const char *buf, size_t count) { unsigned long t; if (parse_strtoul(buf, 1, &t)) return -EINVAL; tpacpi_uwb_emulstate = !!t; return count; } static DRIVER_ATTR_RW(uwb_emulstate); #endif /************************************************************************* * Firmware Data */ /* * Table of recommended minimum BIOS versions * * Reasons for listing: * 1. Stable BIOS, listed because the unknown amount of * bugs and bad ACPI behaviour on older versions * * 2. BIOS or EC fw with known bugs that trigger on Linux * * 3. BIOS with known reduced functionality in older versions * * We recommend the latest BIOS and EC version. * We only support the latest BIOS and EC fw version as a rule. * * Sources: IBM ThinkPad Public Web Documents (update changelogs), * Information from users in ThinkWiki * * WARNING: we use this table also to detect that the machine is * a ThinkPad in some cases, so don't remove entries lightly. */ #define TPV_Q(__v, __id1, __id2, __bv1, __bv2) \ { .vendor = (__v), \ .bios = TPID(__id1, __id2), \ .ec = TPACPI_MATCH_ANY, \ .quirks = TPACPI_MATCH_ANY_VERSION << 16 \ | TPVER(__bv1, __bv2) } #define TPV_Q_X(__v, __bid1, __bid2, __bv1, __bv2, \ __eid, __ev1, __ev2) \ { .vendor = (__v), \ .bios = TPID(__bid1, __bid2), \ .ec = __eid, \ .quirks = TPVER(__ev1, __ev2) << 16 \ | TPVER(__bv1, __bv2) } #define TPV_QI0(__id1, __id2, __bv1, __bv2) \ TPV_Q(PCI_VENDOR_ID_IBM, __id1, __id2, __bv1, __bv2) /* Outdated IBM BIOSes often lack the EC id string */ #define TPV_QI1(__id1, __id2, __bv1, __bv2, __ev1, __ev2) \ TPV_Q_X(PCI_VENDOR_ID_IBM, __id1, __id2, \ __bv1, __bv2, TPID(__id1, __id2), \ __ev1, __ev2), \ TPV_Q_X(PCI_VENDOR_ID_IBM, __id1, __id2, \ __bv1, __bv2, TPACPI_MATCH_UNKNOWN, \ __ev1, __ev2) /* Outdated IBM BIOSes often lack the EC id string */ #define TPV_QI2(__bid1, __bid2, __bv1, __bv2, \ __eid1, __eid2, __ev1, __ev2) \ TPV_Q_X(PCI_VENDOR_ID_IBM, __bid1, __bid2, \ __bv1, __bv2, TPID(__eid1, __eid2), \ __ev1, __ev2), \ TPV_Q_X(PCI_VENDOR_ID_IBM, __bid1, __bid2, \ __bv1, __bv2, TPACPI_MATCH_UNKNOWN, \ __ev1, __ev2) #define TPV_QL0(__id1, __id2, __bv1, __bv2) \ TPV_Q(PCI_VENDOR_ID_LENOVO, __id1, __id2, __bv1, __bv2) #define TPV_QL1(__id1, __id2, __bv1, __bv2, __ev1, __ev2) \ TPV_Q_X(PCI_VENDOR_ID_LENOVO, __id1, __id2, \ __bv1, __bv2, TPID(__id1, __id2), \ __ev1, __ev2) #define TPV_QL2(__bid1, __bid2, __bv1, __bv2, \ __eid1, __eid2, __ev1, __ev2) \ TPV_Q_X(PCI_VENDOR_ID_LENOVO, __bid1, __bid2, \ __bv1, __bv2, TPID(__eid1, __eid2), \ __ev1, __ev2) static const struct tpacpi_quirk tpacpi_bios_version_qtable[] __initconst = { /* Numeric models ------------------ */ /* FW MODEL BIOS VERS */ TPV_QI0('I', 'M', '6', '5'), /* 570 */ TPV_QI0('I', 'U', '2', '6'), /* 570E */ TPV_QI0('I', 'B', '5', '4'), /* 600 */ TPV_QI0('I', 'H', '4', '7'), /* 600E */ TPV_QI0('I', 'N', '3', '6'), /* 600E */ TPV_QI0('I', 'T', '5', '5'), /* 600X */ TPV_QI0('I', 'D', '4', '8'), /* 770, 770E, 770ED */ TPV_QI0('I', 'I', '4', '2'), /* 770X */ TPV_QI0('I', 'O', '2', '3'), /* 770Z */ /* A-series ------------------------- */ /* FW MODEL BIOS VERS EC VERS */ TPV_QI0('I', 'W', '5', '9'), /* A20m */ TPV_QI0('I', 'V', '6', '9'), /* A20p */ TPV_QI0('1', '0', '2', '6'), /* A21e, A22e */ TPV_QI0('K', 'U', '3', '6'), /* A21e */ TPV_QI0('K', 'X', '3', '6'), /* A21m, A22m */ TPV_QI0('K', 'Y', '3', '8'), /* A21p, A22p */ TPV_QI0('1', 'B', '1', '7'), /* A22e */ TPV_QI0('1', '3', '2', '0'), /* A22m */ TPV_QI0('1', 'E', '7', '3'), /* A30/p (0) */ TPV_QI1('1', 'G', '4', '1', '1', '7'), /* A31/p (0) */ TPV_QI1('1', 'N', '1', '6', '0', '7'), /* A31/p (0) */ /* G-series ------------------------- */ /* FW MODEL BIOS VERS */ TPV_QI0('1', 'T', 'A', '6'), /* G40 */ TPV_QI0('1', 'X', '5', '7'), /* G41 */ /* R-series, T-series --------------- */ /* FW MODEL BIOS VERS EC VERS */ TPV_QI0('1', 'C', 'F', '0'), /* R30 */ TPV_QI0('1', 'F', 'F', '1'), /* R31 */ TPV_QI0('1', 'M', '9', '7'), /* R32 */ TPV_QI0('1', 'O', '6', '1'), /* R40 */ TPV_QI0('1', 'P', '6', '5'), /* R40 */ TPV_QI0('1', 'S', '7', '0'), /* R40e */ TPV_QI1('1', 'R', 'D', 'R', '7', '1'), /* R50/p, R51, T40/p, T41/p, T42/p (1) */ TPV_QI1('1', 'V', '7', '1', '2', '8'), /* R50e, R51 (1) */ TPV_QI1('7', '8', '7', '1', '0', '6'), /* R51e (1) */ TPV_QI1('7', '6', '6', '9', '1', '6'), /* R52 (1) */ TPV_QI1('7', '0', '6', '9', '2', '8'), /* R52, T43 (1) */ TPV_QI0('I', 'Y', '6', '1'), /* T20 */ TPV_QI0('K', 'Z', '3', '4'), /* T21 */ TPV_QI0('1', '6', '3', '2'), /* T22 */ TPV_QI1('1', 'A', '6', '4', '2', '3'), /* T23 (0) */ TPV_QI1('1', 'I', '7', '1', '2', '0'), /* T30 (0) */ TPV_QI1('1', 'Y', '6', '5', '2', '9'), /* T43/p (1) */ TPV_QL1('7', '9', 'E', '3', '5', '0'), /* T60/p */ TPV_QL1('7', 'C', 'D', '2', '2', '2'), /* R60, R60i */ TPV_QL1('7', 'E', 'D', '0', '1', '5'), /* R60e, R60i */ /* BIOS FW BIOS VERS EC FW EC VERS */ TPV_QI2('1', 'W', '9', '0', '1', 'V', '2', '8'), /* R50e (1) */ TPV_QL2('7', 'I', '3', '4', '7', '9', '5', '0'), /* T60/p wide */ /* X-series ------------------------- */ /* FW MODEL BIOS VERS EC VERS */ TPV_QI0('I', 'Z', '9', 'D'), /* X20, X21 */ TPV_QI0('1', 'D', '7', '0'), /* X22, X23, X24 */ TPV_QI1('1', 'K', '4', '8', '1', '8'), /* X30 (0) */ TPV_QI1('1', 'Q', '9', '7', '2', '3'), /* X31, X32 (0) */ TPV_QI1('1', 'U', 'D', '3', 'B', '2'), /* X40 (0) */ TPV_QI1('7', '4', '6', '4', '2', '7'), /* X41 (0) */ TPV_QI1('7', '5', '6', '0', '2', '0'), /* X41t (0) */ TPV_QL1('7', 'B', 'D', '7', '4', '0'), /* X60/s */ TPV_QL1('7', 'J', '3', '0', '1', '3'), /* X60t */ /* (0) - older versions lack DMI EC fw string and functionality */ /* (1) - older versions known to lack functionality */ }; #undef TPV_QL1 #undef TPV_QL0 #undef TPV_QI2 #undef TPV_QI1 #undef TPV_QI0 #undef TPV_Q_X #undef TPV_Q static void __init tpacpi_check_outdated_fw(void) { unsigned long fwvers; u16 ec_version, bios_version; fwvers = tpacpi_check_quirks(tpacpi_bios_version_qtable, ARRAY_SIZE(tpacpi_bios_version_qtable)); if (!fwvers) return; bios_version = fwvers & 0xffffU; ec_version = (fwvers >> 16) & 0xffffU; /* note that unknown versions are set to 0x0000 and we use that */ if ((bios_version > thinkpad_id.bios_release) || (ec_version > thinkpad_id.ec_release && ec_version != TPACPI_MATCH_ANY_VERSION)) { /* * The changelogs would let us track down the exact * reason, but it is just too much of a pain to track * it. We only list BIOSes that are either really * broken, or really stable to begin with, so it is * best if the user upgrades the firmware anyway. */ pr_warn("WARNING: Outdated ThinkPad BIOS/EC firmware\n"); pr_warn("WARNING: This firmware may be missing critical bug fixes and/or important features\n"); } } static bool __init tpacpi_is_fw_known(void) { return tpacpi_check_quirks(tpacpi_bios_version_qtable, ARRAY_SIZE(tpacpi_bios_version_qtable)) != 0; } /**************************************************************************** **************************************************************************** * * Subdrivers * **************************************************************************** ****************************************************************************/ /************************************************************************* * thinkpad-acpi metadata subdriver */ static int thinkpad_acpi_driver_read(struct seq_file *m) { seq_printf(m, "driver:\t\t%s\n", TPACPI_DESC); seq_printf(m, "version:\t%s\n", TPACPI_VERSION); return 0; } static struct ibm_struct thinkpad_acpi_driver_data = { .name = "driver", .read = thinkpad_acpi_driver_read, }; /************************************************************************* * Hotkey subdriver */ /* * ThinkPad firmware event model * * The ThinkPad firmware has two main event interfaces: normal ACPI * notifications (which follow the ACPI standard), and a private event * interface. * * The private event interface also issues events for the hotkeys. As * the driver gained features, the event handling code ended up being * built around the hotkey subdriver. This will need to be refactored * to a more formal event API eventually. * * Some "hotkeys" are actually supposed to be used as event reports, * such as "brightness has changed", "volume has changed", depending on * the ThinkPad model and how the firmware is operating. * * Unlike other classes, hotkey-class events have mask/unmask control on * non-ancient firmware. However, how it behaves changes a lot with the * firmware model and version. */ enum { /* hot key scan codes (derived from ACPI DSDT) */ TP_ACPI_HOTKEYSCAN_FNF1 = 0, TP_ACPI_HOTKEYSCAN_FNF2, TP_ACPI_HOTKEYSCAN_FNF3, TP_ACPI_HOTKEYSCAN_FNF4, TP_ACPI_HOTKEYSCAN_FNF5, TP_ACPI_HOTKEYSCAN_FNF6, TP_ACPI_HOTKEYSCAN_FNF7, TP_ACPI_HOTKEYSCAN_FNF8, TP_ACPI_HOTKEYSCAN_FNF9, TP_ACPI_HOTKEYSCAN_FNF10, TP_ACPI_HOTKEYSCAN_FNF11, TP_ACPI_HOTKEYSCAN_FNF12, TP_ACPI_HOTKEYSCAN_FNBACKSPACE, TP_ACPI_HOTKEYSCAN_FNINSERT, TP_ACPI_HOTKEYSCAN_FNDELETE, TP_ACPI_HOTKEYSCAN_FNHOME, TP_ACPI_HOTKEYSCAN_FNEND, TP_ACPI_HOTKEYSCAN_FNPAGEUP, TP_ACPI_HOTKEYSCAN_FNPAGEDOWN, TP_ACPI_HOTKEYSCAN_FNSPACE, TP_ACPI_HOTKEYSCAN_VOLUMEUP, TP_ACPI_HOTKEYSCAN_VOLUMEDOWN, TP_ACPI_HOTKEYSCAN_MUTE, TP_ACPI_HOTKEYSCAN_THINKPAD, TP_ACPI_HOTKEYSCAN_UNK1, TP_ACPI_HOTKEYSCAN_UNK2, TP_ACPI_HOTKEYSCAN_UNK3, TP_ACPI_HOTKEYSCAN_UNK4, TP_ACPI_HOTKEYSCAN_UNK5, TP_ACPI_HOTKEYSCAN_UNK6, TP_ACPI_HOTKEYSCAN_UNK7, TP_ACPI_HOTKEYSCAN_UNK8, /* Adaptive keyboard keycodes */ TP_ACPI_HOTKEYSCAN_ADAPTIVE_START, TP_ACPI_HOTKEYSCAN_MUTE2 = TP_ACPI_HOTKEYSCAN_ADAPTIVE_START, TP_ACPI_HOTKEYSCAN_BRIGHTNESS_ZERO, TP_ACPI_HOTKEYSCAN_CLIPPING_TOOL, TP_ACPI_HOTKEYSCAN_CLOUD, TP_ACPI_HOTKEYSCAN_UNK9, TP_ACPI_HOTKEYSCAN_VOICE, TP_ACPI_HOTKEYSCAN_UNK10, TP_ACPI_HOTKEYSCAN_GESTURES, TP_ACPI_HOTKEYSCAN_UNK11, TP_ACPI_HOTKEYSCAN_UNK12, TP_ACPI_HOTKEYSCAN_UNK13, TP_ACPI_HOTKEYSCAN_CONFIG, TP_ACPI_HOTKEYSCAN_NEW_TAB, TP_ACPI_HOTKEYSCAN_RELOAD, TP_ACPI_HOTKEYSCAN_BACK, TP_ACPI_HOTKEYSCAN_MIC_DOWN, TP_ACPI_HOTKEYSCAN_MIC_UP, TP_ACPI_HOTKEYSCAN_MIC_CANCELLATION, TP_ACPI_HOTKEYSCAN_CAMERA_MODE, TP_ACPI_HOTKEYSCAN_ROTATE_DISPLAY, /* Lenovo extended keymap, starting at 0x1300 */ TP_ACPI_HOTKEYSCAN_EXTENDED_START, /* first new observed key (star, favorites) is 0x1311 */ TP_ACPI_HOTKEYSCAN_STAR = 69, TP_ACPI_HOTKEYSCAN_CLIPPING_TOOL2, TP_ACPI_HOTKEYSCAN_CALCULATOR, TP_ACPI_HOTKEYSCAN_BLUETOOTH, TP_ACPI_HOTKEYSCAN_KEYBOARD, TP_ACPI_HOTKEYSCAN_FN_RIGHT_SHIFT, /* Used by "Lenovo Quick Clean" */ TP_ACPI_HOTKEYSCAN_NOTIFICATION_CENTER, TP_ACPI_HOTKEYSCAN_PICKUP_PHONE, TP_ACPI_HOTKEYSCAN_HANGUP_PHONE, /* Hotkey keymap size */ TPACPI_HOTKEY_MAP_LEN }; enum { /* Keys/events available through NVRAM polling */ TPACPI_HKEY_NVRAM_KNOWN_MASK = 0x00fb88c0U, TPACPI_HKEY_NVRAM_GOOD_MASK = 0x00fb8000U, }; enum { /* Positions of some of the keys in hotkey masks */ TP_ACPI_HKEY_DISPSWTCH_MASK = 1 << TP_ACPI_HOTKEYSCAN_FNF7, TP_ACPI_HKEY_DISPXPAND_MASK = 1 << TP_ACPI_HOTKEYSCAN_FNF8, TP_ACPI_HKEY_HIBERNATE_MASK = 1 << TP_ACPI_HOTKEYSCAN_FNF12, TP_ACPI_HKEY_BRGHTUP_MASK = 1 << TP_ACPI_HOTKEYSCAN_FNHOME, TP_ACPI_HKEY_BRGHTDWN_MASK = 1 << TP_ACPI_HOTKEYSCAN_FNEND, TP_ACPI_HKEY_KBD_LIGHT_MASK = 1 << TP_ACPI_HOTKEYSCAN_FNPAGEUP, TP_ACPI_HKEY_ZOOM_MASK = 1 << TP_ACPI_HOTKEYSCAN_FNSPACE, TP_ACPI_HKEY_VOLUP_MASK = 1 << TP_ACPI_HOTKEYSCAN_VOLUMEUP, TP_ACPI_HKEY_VOLDWN_MASK = 1 << TP_ACPI_HOTKEYSCAN_VOLUMEDOWN, TP_ACPI_HKEY_MUTE_MASK = 1 << TP_ACPI_HOTKEYSCAN_MUTE, TP_ACPI_HKEY_THINKPAD_MASK = 1 << TP_ACPI_HOTKEYSCAN_THINKPAD, }; enum { /* NVRAM to ACPI HKEY group map */ TP_NVRAM_HKEY_GROUP_HK2 = TP_ACPI_HKEY_THINKPAD_MASK | TP_ACPI_HKEY_ZOOM_MASK | TP_ACPI_HKEY_DISPSWTCH_MASK | TP_ACPI_HKEY_HIBERNATE_MASK, TP_NVRAM_HKEY_GROUP_BRIGHTNESS = TP_ACPI_HKEY_BRGHTUP_MASK | TP_ACPI_HKEY_BRGHTDWN_MASK, TP_NVRAM_HKEY_GROUP_VOLUME = TP_ACPI_HKEY_VOLUP_MASK | TP_ACPI_HKEY_VOLDWN_MASK | TP_ACPI_HKEY_MUTE_MASK, }; #ifdef CONFIG_THINKPAD_ACPI_HOTKEY_POLL struct tp_nvram_state { u16 thinkpad_toggle:1; u16 zoom_toggle:1; u16 display_toggle:1; u16 thinklight_toggle:1; u16 hibernate_toggle:1; u16 displayexp_toggle:1; u16 display_state:1; u16 brightness_toggle:1; u16 volume_toggle:1; u16 mute:1; u8 brightness_level; u8 volume_level; }; /* kthread for the hotkey poller */ static struct task_struct *tpacpi_hotkey_task; /* * Acquire mutex to write poller control variables as an * atomic block. * * Increment hotkey_config_change when changing them if you * want the kthread to forget old state. * * See HOTKEY_CONFIG_CRITICAL_START/HOTKEY_CONFIG_CRITICAL_END */ static struct mutex hotkey_thread_data_mutex; static unsigned int hotkey_config_change; /* * hotkey poller control variables * * Must be atomic or readers will also need to acquire mutex * * HOTKEY_CONFIG_CRITICAL_START/HOTKEY_CONFIG_CRITICAL_END * should be used only when the changes need to be taken as * a block, OR when one needs to force the kthread to forget * old state. */ static u32 hotkey_source_mask; /* bit mask 0=ACPI,1=NVRAM */ static unsigned int hotkey_poll_freq = 10; /* Hz */ #define HOTKEY_CONFIG_CRITICAL_START \ do { \ mutex_lock(&hotkey_thread_data_mutex); \ hotkey_config_change++; \ } while (0); #define HOTKEY_CONFIG_CRITICAL_END \ mutex_unlock(&hotkey_thread_data_mutex); #else /* CONFIG_THINKPAD_ACPI_HOTKEY_POLL */ #define hotkey_source_mask 0U #define HOTKEY_CONFIG_CRITICAL_START #define HOTKEY_CONFIG_CRITICAL_END #endif /* CONFIG_THINKPAD_ACPI_HOTKEY_POLL */ static struct mutex hotkey_mutex; static enum { /* Reasons for waking up */ TP_ACPI_WAKEUP_NONE = 0, /* None or unknown */ TP_ACPI_WAKEUP_BAYEJ, /* Bay ejection request */ TP_ACPI_WAKEUP_UNDOCK, /* Undock request */ } hotkey_wakeup_reason; static int hotkey_autosleep_ack; static u32 hotkey_orig_mask; /* events the BIOS had enabled */ static u32 hotkey_all_mask; /* all events supported in fw */ static u32 hotkey_adaptive_all_mask; /* all adaptive events supported in fw */ static u32 hotkey_reserved_mask; /* events better left disabled */ static u32 hotkey_driver_mask; /* events needed by the driver */ static u32 hotkey_user_mask; /* events visible to userspace */ static u32 hotkey_acpi_mask; /* events enabled in firmware */ static u16 *hotkey_keycode_map; static void tpacpi_driver_event(const unsigned int hkey_event); static void hotkey_driver_event(const unsigned int scancode); static void hotkey_poll_setup(const bool may_warn); /* HKEY.MHKG() return bits */ #define TP_HOTKEY_TABLET_MASK (1 << 3) enum { TP_ACPI_MULTI_MODE_INVALID = 0, TP_ACPI_MULTI_MODE_UNKNOWN = 1 << 0, TP_ACPI_MULTI_MODE_LAPTOP = 1 << 1, TP_ACPI_MULTI_MODE_TABLET = 1 << 2, TP_ACPI_MULTI_MODE_FLAT = 1 << 3, TP_ACPI_MULTI_MODE_STAND = 1 << 4, TP_ACPI_MULTI_MODE_TENT = 1 << 5, TP_ACPI_MULTI_MODE_STAND_TENT = 1 << 6, }; enum { /* The following modes are considered tablet mode for the purpose of * reporting the status to userspace. i.e. in all these modes it makes * sense to disable the laptop input devices such as touchpad and * keyboard. */ TP_ACPI_MULTI_MODE_TABLET_LIKE = TP_ACPI_MULTI_MODE_TABLET | TP_ACPI_MULTI_MODE_STAND | TP_ACPI_MULTI_MODE_TENT | TP_ACPI_MULTI_MODE_STAND_TENT, }; static int hotkey_get_wlsw(void) { int status; if (!tp_features.hotkey_wlsw) return -ENODEV; #ifdef CONFIG_THINKPAD_ACPI_DEBUGFACILITIES if (dbg_wlswemul) return (tpacpi_wlsw_emulstate) ? TPACPI_RFK_RADIO_ON : TPACPI_RFK_RADIO_OFF; #endif if (!acpi_evalf(hkey_handle, &status, "WLSW", "d")) return -EIO; return (status) ? TPACPI_RFK_RADIO_ON : TPACPI_RFK_RADIO_OFF; } static int hotkey_gmms_get_tablet_mode(int s, int *has_tablet_mode) { int type = (s >> 16) & 0xffff; int value = s & 0xffff; int mode = TP_ACPI_MULTI_MODE_INVALID; int valid_modes = 0; if (has_tablet_mode) *has_tablet_mode = 0; switch (type) { case 1: valid_modes = TP_ACPI_MULTI_MODE_LAPTOP | TP_ACPI_MULTI_MODE_TABLET | TP_ACPI_MULTI_MODE_STAND_TENT; break; case 2: valid_modes = TP_ACPI_MULTI_MODE_LAPTOP | TP_ACPI_MULTI_MODE_FLAT | TP_ACPI_MULTI_MODE_TABLET | TP_ACPI_MULTI_MODE_STAND | TP_ACPI_MULTI_MODE_TENT; break; case 3: valid_modes = TP_ACPI_MULTI_MODE_LAPTOP | TP_ACPI_MULTI_MODE_FLAT; break; case 4: case 5: /* In mode 4, FLAT is not specified as a valid mode. However, * it can be seen at least on the X1 Yoga 2nd Generation. */ valid_modes = TP_ACPI_MULTI_MODE_LAPTOP | TP_ACPI_MULTI_MODE_FLAT | TP_ACPI_MULTI_MODE_TABLET | TP_ACPI_MULTI_MODE_STAND | TP_ACPI_MULTI_MODE_TENT; break; default: pr_err("Unknown multi mode status type %d with value 0x%04X, please report this to %s\n", type, value, TPACPI_MAIL); return 0; } if (has_tablet_mode && (valid_modes & TP_ACPI_MULTI_MODE_TABLET_LIKE)) *has_tablet_mode = 1; switch (value) { case 1: mode = TP_ACPI_MULTI_MODE_LAPTOP; break; case 2: mode = TP_ACPI_MULTI_MODE_FLAT; break; case 3: mode = TP_ACPI_MULTI_MODE_TABLET; break; case 4: if (type == 1) mode = TP_ACPI_MULTI_MODE_STAND_TENT; else mode = TP_ACPI_MULTI_MODE_STAND; break; case 5: mode = TP_ACPI_MULTI_MODE_TENT; break; default: if (type == 5 && value == 0xffff) { pr_warn("Multi mode status is undetected, assuming laptop\n"); return 0; } } if (!(mode & valid_modes)) { pr_err("Unknown/reserved multi mode value 0x%04X for type %d, please report this to %s\n", value, type, TPACPI_MAIL); return 0; } return !!(mode & TP_ACPI_MULTI_MODE_TABLET_LIKE); } static int hotkey_get_tablet_mode(int *status) { int s; switch (tp_features.hotkey_tablet) { case TP_HOTKEY_TABLET_USES_MHKG: if (!acpi_evalf(hkey_handle, &s, "MHKG", "d")) return -EIO; *status = ((s & TP_HOTKEY_TABLET_MASK) != 0); break; case TP_HOTKEY_TABLET_USES_GMMS: if (!acpi_evalf(hkey_handle, &s, "GMMS", "dd", 0)) return -EIO; *status = hotkey_gmms_get_tablet_mode(s, NULL); break; default: break; } return 0; } /* * Reads current event mask from firmware, and updates * hotkey_acpi_mask accordingly. Also resets any bits * from hotkey_user_mask that are unavailable to be * delivered (shadow requirement of the userspace ABI). */ static int hotkey_mask_get(void) { lockdep_assert_held(&hotkey_mutex); if (tp_features.hotkey_mask) { u32 m = 0; if (!acpi_evalf(hkey_handle, &m, "DHKN", "d")) return -EIO; hotkey_acpi_mask = m; } else { /* no mask support doesn't mean no event support... */ hotkey_acpi_mask = hotkey_all_mask; } /* sync userspace-visible mask */ hotkey_user_mask &= (hotkey_acpi_mask | hotkey_source_mask); return 0; } static void hotkey_mask_warn_incomplete_mask(void) { /* log only what the user can fix... */ const u32 wantedmask = hotkey_driver_mask & ~(hotkey_acpi_mask | hotkey_source_mask) & (hotkey_all_mask | TPACPI_HKEY_NVRAM_KNOWN_MASK); if (wantedmask) pr_notice("required events 0x%08x not enabled!\n", wantedmask); } /* * Set the firmware mask when supported * * Also calls hotkey_mask_get to update hotkey_acpi_mask. * * NOTE: does not set bits in hotkey_user_mask, but may reset them. */ static int hotkey_mask_set(u32 mask) { int i; int rc = 0; const u32 fwmask = mask & ~hotkey_source_mask; lockdep_assert_held(&hotkey_mutex); if (tp_features.hotkey_mask) { for (i = 0; i < 32; i++) { if (!acpi_evalf(hkey_handle, NULL, "MHKM", "vdd", i + 1, !!(mask & (1 << i)))) { rc = -EIO; break; } } } /* * We *must* make an inconditional call to hotkey_mask_get to * refresh hotkey_acpi_mask and update hotkey_user_mask * * Take the opportunity to also log when we cannot _enable_ * a given event. */ if (!hotkey_mask_get() && !rc && (fwmask & ~hotkey_acpi_mask)) { pr_notice("asked for hotkey mask 0x%08x, but firmware forced it to 0x%08x\n", fwmask, hotkey_acpi_mask); } if (tpacpi_lifecycle != TPACPI_LIFE_EXITING) hotkey_mask_warn_incomplete_mask(); return rc; } /* * Sets hotkey_user_mask and tries to set the firmware mask */ static int hotkey_user_mask_set(const u32 mask) { int rc; lockdep_assert_held(&hotkey_mutex); /* Give people a chance to notice they are doing something that * is bound to go boom on their users sooner or later */ if (!tp_warned.hotkey_mask_ff && (mask == 0xffff || mask == 0xffffff || mask == 0xffffffff)) { tp_warned.hotkey_mask_ff = 1; pr_notice("setting the hotkey mask to 0x%08x is likely not the best way to go about it\n", mask); pr_notice("please consider using the driver defaults, and refer to up-to-date thinkpad-acpi documentation\n"); } /* Try to enable what the user asked for, plus whatever we need. * this syncs everything but won't enable bits in hotkey_user_mask */ rc = hotkey_mask_set((mask | hotkey_driver_mask) & ~hotkey_source_mask); /* Enable the available bits in hotkey_user_mask */ hotkey_user_mask = mask & (hotkey_acpi_mask | hotkey_source_mask); return rc; } /* * Sets the driver hotkey mask. * * Can be called even if the hotkey subdriver is inactive */ static int tpacpi_hotkey_driver_mask_set(const u32 mask) { int rc; /* Do the right thing if hotkey_init has not been called yet */ if (!tp_features.hotkey) { hotkey_driver_mask = mask; return 0; } mutex_lock(&hotkey_mutex); HOTKEY_CONFIG_CRITICAL_START hotkey_driver_mask = mask; #ifdef CONFIG_THINKPAD_ACPI_HOTKEY_POLL hotkey_source_mask |= (mask & ~hotkey_all_mask); #endif HOTKEY_CONFIG_CRITICAL_END rc = hotkey_mask_set((hotkey_acpi_mask | hotkey_driver_mask) & ~hotkey_source_mask); hotkey_poll_setup(true); mutex_unlock(&hotkey_mutex); return rc; } static int hotkey_status_get(int *status) { if (!acpi_evalf(hkey_handle, status, "DHKC", "d")) return -EIO; return 0; } static int hotkey_status_set(bool enable) { if (!acpi_evalf(hkey_handle, NULL, "MHKC", "vd", enable ? 1 : 0)) return -EIO; return 0; } static void tpacpi_input_send_tabletsw(void) { int state; if (tp_features.hotkey_tablet && !hotkey_get_tablet_mode(&state)) { mutex_lock(&tpacpi_inputdev_send_mutex); input_report_switch(tpacpi_inputdev, SW_TABLET_MODE, !!state); input_sync(tpacpi_inputdev); mutex_unlock(&tpacpi_inputdev_send_mutex); } } /* Do NOT call without validating scancode first */ static void tpacpi_input_send_key(const unsigned int scancode) { const unsigned int keycode = hotkey_keycode_map[scancode]; if (keycode != KEY_RESERVED) { mutex_lock(&tpacpi_inputdev_send_mutex); input_event(tpacpi_inputdev, EV_MSC, MSC_SCAN, scancode); input_report_key(tpacpi_inputdev, keycode, 1); input_sync(tpacpi_inputdev); input_event(tpacpi_inputdev, EV_MSC, MSC_SCAN, scancode); input_report_key(tpacpi_inputdev, keycode, 0); input_sync(tpacpi_inputdev); mutex_unlock(&tpacpi_inputdev_send_mutex); } } /* Do NOT call without validating scancode first */ static void tpacpi_input_send_key_masked(const unsigned int scancode) { hotkey_driver_event(scancode); if (hotkey_user_mask & (1 << scancode)) tpacpi_input_send_key(scancode); } #ifdef CONFIG_THINKPAD_ACPI_HOTKEY_POLL static struct tp_acpi_drv_struct ibm_hotkey_acpidriver; /* Do NOT call without validating scancode first */ static void tpacpi_hotkey_send_key(unsigned int scancode) { tpacpi_input_send_key_masked(scancode); } static void hotkey_read_nvram(struct tp_nvram_state *n, const u32 m) { u8 d; if (m & TP_NVRAM_HKEY_GROUP_HK2) { d = nvram_read_byte(TP_NVRAM_ADDR_HK2); n->thinkpad_toggle = !!(d & TP_NVRAM_MASK_HKT_THINKPAD); n->zoom_toggle = !!(d & TP_NVRAM_MASK_HKT_ZOOM); n->display_toggle = !!(d & TP_NVRAM_MASK_HKT_DISPLAY); n->hibernate_toggle = !!(d & TP_NVRAM_MASK_HKT_HIBERNATE); } if (m & TP_ACPI_HKEY_KBD_LIGHT_MASK) { d = nvram_read_byte(TP_NVRAM_ADDR_THINKLIGHT); n->thinklight_toggle = !!(d & TP_NVRAM_MASK_THINKLIGHT); } if (m & TP_ACPI_HKEY_DISPXPAND_MASK) { d = nvram_read_byte(TP_NVRAM_ADDR_VIDEO); n->displayexp_toggle = !!(d & TP_NVRAM_MASK_HKT_DISPEXPND); } if (m & TP_NVRAM_HKEY_GROUP_BRIGHTNESS) { d = nvram_read_byte(TP_NVRAM_ADDR_BRIGHTNESS); n->brightness_level = (d & TP_NVRAM_MASK_LEVEL_BRIGHTNESS) >> TP_NVRAM_POS_LEVEL_BRIGHTNESS; n->brightness_toggle = !!(d & TP_NVRAM_MASK_HKT_BRIGHTNESS); } if (m & TP_NVRAM_HKEY_GROUP_VOLUME) { d = nvram_read_byte(TP_NVRAM_ADDR_MIXER); n->volume_level = (d & TP_NVRAM_MASK_LEVEL_VOLUME) >> TP_NVRAM_POS_LEVEL_VOLUME; n->mute = !!(d & TP_NVRAM_MASK_MUTE); n->volume_toggle = !!(d & TP_NVRAM_MASK_HKT_VOLUME); } } #define TPACPI_COMPARE_KEY(__scancode, __member) \ do { \ if ((event_mask & (1 << __scancode)) && \ oldn->__member != newn->__member) \ tpacpi_hotkey_send_key(__scancode); \ } while (0) #define TPACPI_MAY_SEND_KEY(__scancode) \ do { \ if (event_mask & (1 << __scancode)) \ tpacpi_hotkey_send_key(__scancode); \ } while (0) static void issue_volchange(const unsigned int oldvol, const unsigned int newvol, const u32 event_mask) { unsigned int i = oldvol; while (i > newvol) { TPACPI_MAY_SEND_KEY(TP_ACPI_HOTKEYSCAN_VOLUMEDOWN); i--; } while (i < newvol) { TPACPI_MAY_SEND_KEY(TP_ACPI_HOTKEYSCAN_VOLUMEUP); i++; } } static void issue_brightnesschange(const unsigned int oldbrt, const unsigned int newbrt, const u32 event_mask) { unsigned int i = oldbrt; while (i > newbrt) { TPACPI_MAY_SEND_KEY(TP_ACPI_HOTKEYSCAN_FNEND); i--; } while (i < newbrt) { TPACPI_MAY_SEND_KEY(TP_ACPI_HOTKEYSCAN_FNHOME); i++; } } static void hotkey_compare_and_issue_event(struct tp_nvram_state *oldn, struct tp_nvram_state *newn, const u32 event_mask) { TPACPI_COMPARE_KEY(TP_ACPI_HOTKEYSCAN_THINKPAD, thinkpad_toggle); TPACPI_COMPARE_KEY(TP_ACPI_HOTKEYSCAN_FNSPACE, zoom_toggle); TPACPI_COMPARE_KEY(TP_ACPI_HOTKEYSCAN_FNF7, display_toggle); TPACPI_COMPARE_KEY(TP_ACPI_HOTKEYSCAN_FNF12, hibernate_toggle); TPACPI_COMPARE_KEY(TP_ACPI_HOTKEYSCAN_FNPAGEUP, thinklight_toggle); TPACPI_COMPARE_KEY(TP_ACPI_HOTKEYSCAN_FNF8, displayexp_toggle); /* * Handle volume * * This code is supposed to duplicate the IBM firmware behaviour: * - Pressing MUTE issues mute hotkey message, even when already mute * - Pressing Volume up/down issues volume up/down hotkey messages, * even when already at maximum or minimum volume * - The act of unmuting issues volume up/down notification, * depending which key was used to unmute * * We are constrained to what the NVRAM can tell us, which is not much * and certainly not enough if more than one volume hotkey was pressed * since the last poll cycle. * * Just to make our life interesting, some newer Lenovo ThinkPads have * bugs in the BIOS and may fail to update volume_toggle properly. */ if (newn->mute) { /* muted */ if (!oldn->mute || oldn->volume_toggle != newn->volume_toggle || oldn->volume_level != newn->volume_level) { /* recently muted, or repeated mute keypress, or * multiple presses ending in mute */ issue_volchange(oldn->volume_level, newn->volume_level, event_mask); TPACPI_MAY_SEND_KEY(TP_ACPI_HOTKEYSCAN_MUTE); } } else { /* unmute */ if (oldn->mute) { /* recently unmuted, issue 'unmute' keypress */ TPACPI_MAY_SEND_KEY(TP_ACPI_HOTKEYSCAN_VOLUMEUP); } if (oldn->volume_level != newn->volume_level) { issue_volchange(oldn->volume_level, newn->volume_level, event_mask); } else if (oldn->volume_toggle != newn->volume_toggle) { /* repeated vol up/down keypress at end of scale ? */ if (newn->volume_level == 0) TPACPI_MAY_SEND_KEY(TP_ACPI_HOTKEYSCAN_VOLUMEDOWN); else if (newn->volume_level >= TP_NVRAM_LEVEL_VOLUME_MAX) TPACPI_MAY_SEND_KEY(TP_ACPI_HOTKEYSCAN_VOLUMEUP); } } /* handle brightness */ if (oldn->brightness_level != newn->brightness_level) { issue_brightnesschange(oldn->brightness_level, newn->brightness_level, event_mask); } else if (oldn->brightness_toggle != newn->brightness_toggle) { /* repeated key presses that didn't change state */ if (newn->brightness_level == 0) TPACPI_MAY_SEND_KEY(TP_ACPI_HOTKEYSCAN_FNEND); else if (newn->brightness_level >= bright_maxlvl && !tp_features.bright_unkfw) TPACPI_MAY_SEND_KEY(TP_ACPI_HOTKEYSCAN_FNHOME); } #undef TPACPI_COMPARE_KEY #undef TPACPI_MAY_SEND_KEY } /* * Polling driver * * We track all events in hotkey_source_mask all the time, since * most of them are edge-based. We only issue those requested by * hotkey_user_mask or hotkey_driver_mask, though. */ static int hotkey_kthread(void *data) { struct tp_nvram_state s[2] = { 0 }; u32 poll_mask, event_mask; unsigned int si, so; unsigned long t; unsigned int change_detector; unsigned int poll_freq; bool was_frozen; if (tpacpi_lifecycle == TPACPI_LIFE_EXITING) goto exit; set_freezable(); so = 0; si = 1; t = 0; /* Initial state for compares */ mutex_lock(&hotkey_thread_data_mutex); change_detector = hotkey_config_change; poll_mask = hotkey_source_mask; event_mask = hotkey_source_mask & (hotkey_driver_mask | hotkey_user_mask); poll_freq = hotkey_poll_freq; mutex_unlock(&hotkey_thread_data_mutex); hotkey_read_nvram(&s[so], poll_mask); while (!kthread_should_stop()) { if (t == 0) { if (likely(poll_freq)) t = 1000/poll_freq; else t = 100; /* should never happen... */ } t = msleep_interruptible(t); if (unlikely(kthread_freezable_should_stop(&was_frozen))) break; if (t > 0 && !was_frozen) continue; mutex_lock(&hotkey_thread_data_mutex); if (was_frozen || hotkey_config_change != change_detector) { /* forget old state on thaw or config change */ si = so; t = 0; change_detector = hotkey_config_change; } poll_mask = hotkey_source_mask; event_mask = hotkey_source_mask & (hotkey_driver_mask | hotkey_user_mask); poll_freq = hotkey_poll_freq; mutex_unlock(&hotkey_thread_data_mutex); if (likely(poll_mask)) { hotkey_read_nvram(&s[si], poll_mask); if (likely(si != so)) { hotkey_compare_and_issue_event(&s[so], &s[si], event_mask); } } so = si; si ^= 1; } exit: return 0; } static void hotkey_poll_stop_sync(void) { lockdep_assert_held(&hotkey_mutex); if (tpacpi_hotkey_task) { kthread_stop(tpacpi_hotkey_task); tpacpi_hotkey_task = NULL; } } static void hotkey_poll_setup(const bool may_warn) { const u32 poll_driver_mask = hotkey_driver_mask & hotkey_source_mask; const u32 poll_user_mask = hotkey_user_mask & hotkey_source_mask; lockdep_assert_held(&hotkey_mutex); if (hotkey_poll_freq > 0 && (poll_driver_mask || (poll_user_mask && tpacpi_inputdev->users > 0))) { if (!tpacpi_hotkey_task) { tpacpi_hotkey_task = kthread_run(hotkey_kthread, NULL, TPACPI_NVRAM_KTHREAD_NAME); if (IS_ERR(tpacpi_hotkey_task)) { tpacpi_hotkey_task = NULL; pr_err("could not create kernel thread for hotkey polling\n"); } } } else { hotkey_poll_stop_sync(); if (may_warn && (poll_driver_mask || poll_user_mask) && hotkey_poll_freq == 0) { pr_notice("hot keys 0x%08x and/or events 0x%08x require polling, which is currently disabled\n", poll_user_mask, poll_driver_mask); } } } static void hotkey_poll_setup_safe(const bool may_warn) { mutex_lock(&hotkey_mutex); hotkey_poll_setup(may_warn); mutex_unlock(&hotkey_mutex); } static void hotkey_poll_set_freq(unsigned int freq) { lockdep_assert_held(&hotkey_mutex); if (!freq) hotkey_poll_stop_sync(); hotkey_poll_freq = freq; } #else /* CONFIG_THINKPAD_ACPI_HOTKEY_POLL */ static void hotkey_poll_setup(const bool __unused) { } static void hotkey_poll_setup_safe(const bool __unused) { } #endif /* CONFIG_THINKPAD_ACPI_HOTKEY_POLL */ static int hotkey_inputdev_open(struct input_dev *dev) { switch (tpacpi_lifecycle) { case TPACPI_LIFE_INIT: case TPACPI_LIFE_RUNNING: hotkey_poll_setup_safe(false); return 0; case TPACPI_LIFE_EXITING: return -EBUSY; } /* Should only happen if tpacpi_lifecycle is corrupt */ BUG(); return -EBUSY; } static void hotkey_inputdev_close(struct input_dev *dev) { /* disable hotkey polling when possible */ if (tpacpi_lifecycle != TPACPI_LIFE_EXITING && !(hotkey_source_mask & hotkey_driver_mask)) hotkey_poll_setup_safe(false); } /* sysfs hotkey enable ------------------------------------------------- */ static ssize_t hotkey_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { int res, status; printk_deprecated_attribute("hotkey_enable", "Hotkey reporting is always enabled"); res = hotkey_status_get(&status); if (res) return res; return sysfs_emit(buf, "%d\n", status); } static ssize_t hotkey_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long t; printk_deprecated_attribute("hotkey_enable", "Hotkeys can be disabled through hotkey_mask"); if (parse_strtoul(buf, 1, &t)) return -EINVAL; if (t == 0) return -EPERM; return count; } static DEVICE_ATTR_RW(hotkey_enable); /* sysfs hotkey mask --------------------------------------------------- */ static ssize_t hotkey_mask_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "0x%08x\n", hotkey_user_mask); } static ssize_t hotkey_mask_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long t; int res; if (parse_strtoul(buf, 0xffffffffUL, &t)) return -EINVAL; if (mutex_lock_killable(&hotkey_mutex)) return -ERESTARTSYS; res = hotkey_user_mask_set(t); #ifdef CONFIG_THINKPAD_ACPI_HOTKEY_POLL hotkey_poll_setup(true); #endif mutex_unlock(&hotkey_mutex); tpacpi_disclose_usertask("hotkey_mask", "set to 0x%08lx\n", t); return (res) ? res : count; } static DEVICE_ATTR_RW(hotkey_mask); /* sysfs hotkey bios_enabled ------------------------------------------- */ static ssize_t hotkey_bios_enabled_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "0\n"); } static DEVICE_ATTR_RO(hotkey_bios_enabled); /* sysfs hotkey bios_mask ---------------------------------------------- */ static ssize_t hotkey_bios_mask_show(struct device *dev, struct device_attribute *attr, char *buf) { printk_deprecated_attribute("hotkey_bios_mask", "This attribute is useless."); return sysfs_emit(buf, "0x%08x\n", hotkey_orig_mask); } static DEVICE_ATTR_RO(hotkey_bios_mask); /* sysfs hotkey all_mask ----------------------------------------------- */ static ssize_t hotkey_all_mask_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "0x%08x\n", hotkey_all_mask | hotkey_source_mask); } static DEVICE_ATTR_RO(hotkey_all_mask); /* sysfs hotkey all_mask ----------------------------------------------- */ static ssize_t hotkey_adaptive_all_mask_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "0x%08x\n", hotkey_adaptive_all_mask | hotkey_source_mask); } static DEVICE_ATTR_RO(hotkey_adaptive_all_mask); /* sysfs hotkey recommended_mask --------------------------------------- */ static ssize_t hotkey_recommended_mask_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "0x%08x\n", (hotkey_all_mask | hotkey_source_mask) & ~hotkey_reserved_mask); } static DEVICE_ATTR_RO(hotkey_recommended_mask); #ifdef CONFIG_THINKPAD_ACPI_HOTKEY_POLL /* sysfs hotkey hotkey_source_mask ------------------------------------- */ static ssize_t hotkey_source_mask_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "0x%08x\n", hotkey_source_mask); } static ssize_t hotkey_source_mask_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long t; u32 r_ev; int rc; if (parse_strtoul(buf, 0xffffffffUL, &t) || ((t & ~TPACPI_HKEY_NVRAM_KNOWN_MASK) != 0)) return -EINVAL; if (mutex_lock_killable(&hotkey_mutex)) return -ERESTARTSYS; HOTKEY_CONFIG_CRITICAL_START hotkey_source_mask = t; HOTKEY_CONFIG_CRITICAL_END rc = hotkey_mask_set((hotkey_user_mask | hotkey_driver_mask) & ~hotkey_source_mask); hotkey_poll_setup(true); /* check if events needed by the driver got disabled */ r_ev = hotkey_driver_mask & ~(hotkey_acpi_mask & hotkey_all_mask) & ~hotkey_source_mask & TPACPI_HKEY_NVRAM_KNOWN_MASK; mutex_unlock(&hotkey_mutex); if (rc < 0) pr_err("hotkey_source_mask: failed to update the firmware event mask!\n"); if (r_ev) pr_notice("hotkey_source_mask: some important events were disabled: 0x%04x\n", r_ev); tpacpi_disclose_usertask("hotkey_source_mask", "set to 0x%08lx\n", t); return (rc < 0) ? rc : count; } static DEVICE_ATTR_RW(hotkey_source_mask); /* sysfs hotkey hotkey_poll_freq --------------------------------------- */ static ssize_t hotkey_poll_freq_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%d\n", hotkey_poll_freq); } static ssize_t hotkey_poll_freq_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long t; if (parse_strtoul(buf, 25, &t)) return -EINVAL; if (mutex_lock_killable(&hotkey_mutex)) return -ERESTARTSYS; hotkey_poll_set_freq(t); hotkey_poll_setup(true); mutex_unlock(&hotkey_mutex); tpacpi_disclose_usertask("hotkey_poll_freq", "set to %lu\n", t); return count; } static DEVICE_ATTR_RW(hotkey_poll_freq); #endif /* CONFIG_THINKPAD_ACPI_HOTKEY_POLL */ /* sysfs hotkey radio_sw (pollable) ------------------------------------ */ static ssize_t hotkey_radio_sw_show(struct device *dev, struct device_attribute *attr, char *buf) { int res; res = hotkey_get_wlsw(); if (res < 0) return res; /* Opportunistic update */ tpacpi_rfk_update_hwblock_state((res == TPACPI_RFK_RADIO_OFF)); return sysfs_emit(buf, "%d\n", (res == TPACPI_RFK_RADIO_OFF) ? 0 : 1); } static DEVICE_ATTR_RO(hotkey_radio_sw); static void hotkey_radio_sw_notify_change(void) { if (tp_features.hotkey_wlsw) sysfs_notify(&tpacpi_pdev->dev.kobj, NULL, "hotkey_radio_sw"); } /* sysfs hotkey tablet mode (pollable) --------------------------------- */ static ssize_t hotkey_tablet_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { int res, s; res = hotkey_get_tablet_mode(&s); if (res < 0) return res; return sysfs_emit(buf, "%d\n", !!s); } static DEVICE_ATTR_RO(hotkey_tablet_mode); static void hotkey_tablet_mode_notify_change(void) { if (tp_features.hotkey_tablet) sysfs_notify(&tpacpi_pdev->dev.kobj, NULL, "hotkey_tablet_mode"); } /* sysfs wakeup reason (pollable) -------------------------------------- */ static ssize_t hotkey_wakeup_reason_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%d\n", hotkey_wakeup_reason); } static DEVICE_ATTR(wakeup_reason, S_IRUGO, hotkey_wakeup_reason_show, NULL); static void hotkey_wakeup_reason_notify_change(void) { sysfs_notify(&tpacpi_pdev->dev.kobj, NULL, "wakeup_reason"); } /* sysfs wakeup hotunplug_complete (pollable) -------------------------- */ static ssize_t hotkey_wakeup_hotunplug_complete_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%d\n", hotkey_autosleep_ack); } static DEVICE_ATTR(wakeup_hotunplug_complete, S_IRUGO, hotkey_wakeup_hotunplug_complete_show, NULL); static void hotkey_wakeup_hotunplug_complete_notify_change(void) { sysfs_notify(&tpacpi_pdev->dev.kobj, NULL, "wakeup_hotunplug_complete"); } /* sysfs adaptive kbd mode --------------------------------------------- */ static int adaptive_keyboard_get_mode(void); static int adaptive_keyboard_set_mode(int new_mode); enum ADAPTIVE_KEY_MODE { HOME_MODE, WEB_BROWSER_MODE, WEB_CONFERENCE_MODE, FUNCTION_MODE, LAYFLAT_MODE }; static ssize_t adaptive_kbd_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { int current_mode; current_mode = adaptive_keyboard_get_mode(); if (current_mode < 0) return current_mode; return sysfs_emit(buf, "%d\n", current_mode); } static ssize_t adaptive_kbd_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long t; int res; if (parse_strtoul(buf, LAYFLAT_MODE, &t)) return -EINVAL; res = adaptive_keyboard_set_mode(t); return (res < 0) ? res : count; } static DEVICE_ATTR_RW(adaptive_kbd_mode); static struct attribute *adaptive_kbd_attributes[] = { &dev_attr_adaptive_kbd_mode.attr, NULL }; static umode_t hadaptive_kbd_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n) { return tp_features.has_adaptive_kbd ? attr->mode : 0; } static const struct attribute_group adaptive_kbd_attr_group = { .is_visible = hadaptive_kbd_attr_is_visible, .attrs = adaptive_kbd_attributes, }; /* --------------------------------------------------------------------- */ static struct attribute *hotkey_attributes[] = { &dev_attr_hotkey_enable.attr, &dev_attr_hotkey_bios_enabled.attr, &dev_attr_hotkey_bios_mask.attr, &dev_attr_wakeup_reason.attr, &dev_attr_wakeup_hotunplug_complete.attr, &dev_attr_hotkey_mask.attr, &dev_attr_hotkey_all_mask.attr, &dev_attr_hotkey_adaptive_all_mask.attr, &dev_attr_hotkey_recommended_mask.attr, &dev_attr_hotkey_tablet_mode.attr, &dev_attr_hotkey_radio_sw.attr, #ifdef CONFIG_THINKPAD_ACPI_HOTKEY_POLL &dev_attr_hotkey_source_mask.attr, &dev_attr_hotkey_poll_freq.attr, #endif NULL }; static umode_t hotkey_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n) { if (attr == &dev_attr_hotkey_tablet_mode.attr) { if (!tp_features.hotkey_tablet) return 0; } else if (attr == &dev_attr_hotkey_radio_sw.attr) { if (!tp_features.hotkey_wlsw) return 0; } return attr->mode; } static const struct attribute_group hotkey_attr_group = { .is_visible = hotkey_attr_is_visible, .attrs = hotkey_attributes, }; /* * Sync both the hw and sw blocking state of all switches */ static void tpacpi_send_radiosw_update(void) { int wlsw; /* * We must sync all rfkill controllers *before* issuing any * rfkill input events, or we will race the rfkill core input * handler. * * tpacpi_inputdev_send_mutex works as a synchronization point * for the above. * * We optimize to avoid numerous calls to hotkey_get_wlsw. */ wlsw = hotkey_get_wlsw(); /* Sync hw blocking state first if it is hw-blocked */ if (wlsw == TPACPI_RFK_RADIO_OFF) tpacpi_rfk_update_hwblock_state(true); /* Sync hw blocking state last if it is hw-unblocked */ if (wlsw == TPACPI_RFK_RADIO_ON) tpacpi_rfk_update_hwblock_state(false); /* Issue rfkill input event for WLSW switch */ if (!(wlsw < 0)) { mutex_lock(&tpacpi_inputdev_send_mutex); input_report_switch(tpacpi_inputdev, SW_RFKILL_ALL, (wlsw > 0)); input_sync(tpacpi_inputdev); mutex_unlock(&tpacpi_inputdev_send_mutex); } /* * this can be unconditional, as we will poll state again * if userspace uses the notify to read data */ hotkey_radio_sw_notify_change(); } static void hotkey_exit(void) { #ifdef CONFIG_THINKPAD_ACPI_HOTKEY_POLL mutex_lock(&hotkey_mutex); hotkey_poll_stop_sync(); mutex_unlock(&hotkey_mutex); #endif dbg_printk(TPACPI_DBG_EXIT | TPACPI_DBG_HKEY, "restoring original HKEY status and mask\n"); /* yes, there is a bitwise or below, we want the * functions to be called even if one of them fail */ if (((tp_features.hotkey_mask && hotkey_mask_set(hotkey_orig_mask)) | hotkey_status_set(false)) != 0) pr_err("failed to restore hot key mask to BIOS defaults\n"); } static void __init hotkey_unmap(const unsigned int scancode) { if (hotkey_keycode_map[scancode] != KEY_RESERVED) { clear_bit(hotkey_keycode_map[scancode], tpacpi_inputdev->keybit); hotkey_keycode_map[scancode] = KEY_RESERVED; } } /* * HKEY quirks: * TPACPI_HK_Q_INIMASK: Supports FN+F3,FN+F4,FN+F12 */ #define TPACPI_HK_Q_INIMASK 0x0001 static const struct tpacpi_quirk tpacpi_hotkey_qtable[] __initconst = { TPACPI_Q_IBM('I', 'H', TPACPI_HK_Q_INIMASK), /* 600E */ TPACPI_Q_IBM('I', 'N', TPACPI_HK_Q_INIMASK), /* 600E */ TPACPI_Q_IBM('I', 'D', TPACPI_HK_Q_INIMASK), /* 770, 770E, 770ED */ TPACPI_Q_IBM('I', 'W', TPACPI_HK_Q_INIMASK), /* A20m */ TPACPI_Q_IBM('I', 'V', TPACPI_HK_Q_INIMASK), /* A20p */ TPACPI_Q_IBM('1', '0', TPACPI_HK_Q_INIMASK), /* A21e, A22e */ TPACPI_Q_IBM('K', 'U', TPACPI_HK_Q_INIMASK), /* A21e */ TPACPI_Q_IBM('K', 'X', TPACPI_HK_Q_INIMASK), /* A21m, A22m */ TPACPI_Q_IBM('K', 'Y', TPACPI_HK_Q_INIMASK), /* A21p, A22p */ TPACPI_Q_IBM('1', 'B', TPACPI_HK_Q_INIMASK), /* A22e */ TPACPI_Q_IBM('1', '3', TPACPI_HK_Q_INIMASK), /* A22m */ TPACPI_Q_IBM('1', 'E', TPACPI_HK_Q_INIMASK), /* A30/p (0) */ TPACPI_Q_IBM('1', 'C', TPACPI_HK_Q_INIMASK), /* R30 */ TPACPI_Q_IBM('1', 'F', TPACPI_HK_Q_INIMASK), /* R31 */ TPACPI_Q_IBM('I', 'Y', TPACPI_HK_Q_INIMASK), /* T20 */ TPACPI_Q_IBM('K', 'Z', TPACPI_HK_Q_INIMASK), /* T21 */ TPACPI_Q_IBM('1', '6', TPACPI_HK_Q_INIMASK), /* T22 */ TPACPI_Q_IBM('I', 'Z', TPACPI_HK_Q_INIMASK), /* X20, X21 */ TPACPI_Q_IBM('1', 'D', TPACPI_HK_Q_INIMASK), /* X22, X23, X24 */ }; typedef u16 tpacpi_keymap_entry_t; typedef tpacpi_keymap_entry_t tpacpi_keymap_t[TPACPI_HOTKEY_MAP_LEN]; static int hotkey_init_tablet_mode(void) { int in_tablet_mode = 0, res; char *type = NULL; if (acpi_evalf(hkey_handle, &res, "GMMS", "qdd", 0)) { int has_tablet_mode; in_tablet_mode = hotkey_gmms_get_tablet_mode(res, &has_tablet_mode); /* * The Yoga 11e series has 2 accelerometers described by a * BOSC0200 ACPI node. This setup relies on a Windows service * which calls special ACPI methods on this node to report * the laptop/tent/tablet mode to the EC. The bmc150 iio driver * does not support this, so skip the hotkey on these models. */ if (has_tablet_mode && !dual_accel_detect()) tp_features.hotkey_tablet = TP_HOTKEY_TABLET_USES_GMMS; type = "GMMS"; } else if (acpi_evalf(hkey_handle, &res, "MHKG", "qd")) { /* For X41t, X60t, X61t Tablets... */ tp_features.hotkey_tablet = TP_HOTKEY_TABLET_USES_MHKG; in_tablet_mode = !!(res & TP_HOTKEY_TABLET_MASK); type = "MHKG"; } if (!tp_features.hotkey_tablet) return 0; pr_info("Tablet mode switch found (type: %s), currently in %s mode\n", type, in_tablet_mode ? "tablet" : "laptop"); return in_tablet_mode; } static int __init hotkey_init(struct ibm_init_struct *iibm) { /* Requirements for changing the default keymaps: * * 1. Many of the keys are mapped to KEY_RESERVED for very * good reasons. Do not change them unless you have deep * knowledge on the IBM and Lenovo ThinkPad firmware for * the various ThinkPad models. The driver behaves * differently for KEY_RESERVED: such keys have their * hot key mask *unset* in mask_recommended, and also * in the initial hot key mask programmed into the * firmware at driver load time, which means the firm- * ware may react very differently if you change them to * something else; * * 2. You must be subscribed to the linux-thinkpad and * ibm-acpi-devel mailing lists, and you should read the * list archives since 2007 if you want to change the * keymaps. This requirement exists so that you will * know the past history of problems with the thinkpad- * acpi driver keymaps, and also that you will be * listening to any bug reports; * * 3. Do not send thinkpad-acpi specific patches directly to * for merging, *ever*. Send them to the linux-acpi * mailinglist for comments. Merging is to be done only * through acpi-test and the ACPI maintainer. * * If the above is too much to ask, don't change the keymap. * Ask the thinkpad-acpi maintainer to do it, instead. */ enum keymap_index { TPACPI_KEYMAP_IBM_GENERIC = 0, TPACPI_KEYMAP_LENOVO_GENERIC, }; static const tpacpi_keymap_t tpacpi_keymaps[] __initconst = { /* Generic keymap for IBM ThinkPads */ [TPACPI_KEYMAP_IBM_GENERIC] = { /* Scan Codes 0x00 to 0x0B: ACPI HKEY FN+F1..F12 */ KEY_FN_F1, KEY_BATTERY, KEY_COFFEE, KEY_SLEEP, KEY_WLAN, KEY_FN_F6, KEY_SWITCHVIDEOMODE, KEY_FN_F8, KEY_FN_F9, KEY_FN_F10, KEY_FN_F11, KEY_SUSPEND, /* Scan codes 0x0C to 0x1F: Other ACPI HKEY hot keys */ KEY_UNKNOWN, /* 0x0C: FN+BACKSPACE */ KEY_UNKNOWN, /* 0x0D: FN+INSERT */ KEY_UNKNOWN, /* 0x0E: FN+DELETE */ /* brightness: firmware always reacts to them */ KEY_RESERVED, /* 0x0F: FN+HOME (brightness up) */ KEY_RESERVED, /* 0x10: FN+END (brightness down) */ /* Thinklight: firmware always react to it */ KEY_RESERVED, /* 0x11: FN+PGUP (thinklight toggle) */ KEY_UNKNOWN, /* 0x12: FN+PGDOWN */ KEY_ZOOM, /* 0x13: FN+SPACE (zoom) */ /* Volume: firmware always react to it and reprograms * the built-in *extra* mixer. Never map it to control * another mixer by default. */ KEY_RESERVED, /* 0x14: VOLUME UP */ KEY_RESERVED, /* 0x15: VOLUME DOWN */ KEY_RESERVED, /* 0x16: MUTE */ KEY_VENDOR, /* 0x17: Thinkpad/AccessIBM/Lenovo */ /* (assignments unknown, please report if found) */ KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, /* No assignments, only used for Adaptive keyboards. */ KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, /* No assignment, used for newer Lenovo models */ KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN }, /* Generic keymap for Lenovo ThinkPads */ [TPACPI_KEYMAP_LENOVO_GENERIC] = { /* Scan Codes 0x00 to 0x0B: ACPI HKEY FN+F1..F12 */ KEY_FN_F1, KEY_COFFEE, KEY_BATTERY, KEY_SLEEP, KEY_WLAN, KEY_CAMERA, KEY_SWITCHVIDEOMODE, KEY_FN_F8, KEY_FN_F9, KEY_FN_F10, KEY_FN_F11, KEY_SUSPEND, /* Scan codes 0x0C to 0x1F: Other ACPI HKEY hot keys */ KEY_UNKNOWN, /* 0x0C: FN+BACKSPACE */ KEY_UNKNOWN, /* 0x0D: FN+INSERT */ KEY_UNKNOWN, /* 0x0E: FN+DELETE */ /* These should be enabled --only-- when ACPI video * is disabled (i.e. in "vendor" mode), and are handled * in a special way by the init code */ KEY_BRIGHTNESSUP, /* 0x0F: FN+HOME (brightness up) */ KEY_BRIGHTNESSDOWN, /* 0x10: FN+END (brightness down) */ KEY_RESERVED, /* 0x11: FN+PGUP (thinklight toggle) */ KEY_UNKNOWN, /* 0x12: FN+PGDOWN */ KEY_ZOOM, /* 0x13: FN+SPACE (zoom) */ /* Volume: z60/z61, T60 (BIOS version?): firmware always * react to it and reprograms the built-in *extra* mixer. * Never map it to control another mixer by default. * * T60?, T61, R60?, R61: firmware and EC tries to send * these over the regular keyboard, so these are no-ops, * but there are still weird bugs re. MUTE, so do not * change unless you get test reports from all Lenovo * models. May cause the BIOS to interfere with the * HDA mixer. */ KEY_RESERVED, /* 0x14: VOLUME UP */ KEY_RESERVED, /* 0x15: VOLUME DOWN */ KEY_RESERVED, /* 0x16: MUTE */ KEY_VENDOR, /* 0x17: Thinkpad/AccessIBM/Lenovo */ /* (assignments unknown, please report if found) */ KEY_UNKNOWN, KEY_UNKNOWN, /* * The mic mute button only sends 0x1a. It does not * automatically mute the mic or change the mute light. */ KEY_MICMUTE, /* 0x1a: Mic mute (since ?400 or so) */ /* (assignments unknown, please report if found) */ KEY_UNKNOWN, /* Extra keys in use since the X240 / T440 / T540 */ KEY_CONFIG, KEY_SEARCH, KEY_SCALE, KEY_FILE, /* * These are the adaptive keyboard keycodes for Carbon X1 2014. * The first item in this list is the Mute button which is * emitted with 0x103 through * adaptive_keyboard_hotkey_notify_hotkey() when the sound * symbol is held. * We'll need to offset those by 0x20. */ KEY_RESERVED, /* Mute held, 0x103 */ KEY_BRIGHTNESS_MIN, /* Backlight off */ KEY_RESERVED, /* Clipping tool */ KEY_RESERVED, /* Cloud */ KEY_RESERVED, KEY_VOICECOMMAND, /* Voice */ KEY_RESERVED, KEY_RESERVED, /* Gestures */ KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_CONFIG, /* Settings */ KEY_RESERVED, /* New tab */ KEY_REFRESH, /* Reload */ KEY_BACK, /* Back */ KEY_RESERVED, /* Microphone down */ KEY_RESERVED, /* Microphone up */ KEY_RESERVED, /* Microphone cancellation */ KEY_RESERVED, /* Camera mode */ KEY_RESERVED, /* Rotate display, 0x116 */ /* * These are found in 2017 models (e.g. T470s, X270). * The lowest known value is 0x311, which according to * the manual should launch a user defined favorite * application. * * The offset for these is TP_ACPI_HOTKEYSCAN_EXTENDED_START, * corresponding to 0x34. */ /* (assignments unknown, please report if found) */ KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_UNKNOWN, KEY_BOOKMARKS, /* Favorite app, 0x311 */ KEY_SELECTIVE_SCREENSHOT, /* Clipping tool */ KEY_CALC, /* Calculator (above numpad, P52) */ KEY_BLUETOOTH, /* Bluetooth */ KEY_KEYBOARD, /* Keyboard, 0x315 */ KEY_FN_RIGHT_SHIFT, /* Fn + right Shift */ KEY_NOTIFICATION_CENTER, /* Notification Center */ KEY_PICKUP_PHONE, /* Answer incoming call */ KEY_HANGUP_PHONE, /* Decline incoming call */ }, }; static const struct tpacpi_quirk tpacpi_keymap_qtable[] __initconst = { /* Generic maps (fallback) */ { .vendor = PCI_VENDOR_ID_IBM, .bios = TPACPI_MATCH_ANY, .ec = TPACPI_MATCH_ANY, .quirks = TPACPI_KEYMAP_IBM_GENERIC, }, { .vendor = PCI_VENDOR_ID_LENOVO, .bios = TPACPI_MATCH_ANY, .ec = TPACPI_MATCH_ANY, .quirks = TPACPI_KEYMAP_LENOVO_GENERIC, }, }; #define TPACPI_HOTKEY_MAP_SIZE sizeof(tpacpi_keymap_t) #define TPACPI_HOTKEY_MAP_TYPESIZE sizeof(tpacpi_keymap_entry_t) int res, i; int status; int hkeyv; bool radiosw_state = false; bool tabletsw_state = false; unsigned long quirks; unsigned long keymap_id; vdbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_HKEY, "initializing hotkey subdriver\n"); BUG_ON(!tpacpi_inputdev); BUG_ON(tpacpi_inputdev->open != NULL || tpacpi_inputdev->close != NULL); TPACPI_ACPIHANDLE_INIT(hkey); mutex_init(&hotkey_mutex); #ifdef CONFIG_THINKPAD_ACPI_HOTKEY_POLL mutex_init(&hotkey_thread_data_mutex); #endif /* hotkey not supported on 570 */ tp_features.hotkey = hkey_handle != NULL; vdbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_HKEY, "hotkeys are %s\n", str_supported(tp_features.hotkey)); if (!tp_features.hotkey) return -ENODEV; quirks = tpacpi_check_quirks(tpacpi_hotkey_qtable, ARRAY_SIZE(tpacpi_hotkey_qtable)); tpacpi_disable_brightness_delay(); /* mask not supported on 600e/x, 770e, 770x, A21e, A2xm/p, A30, R30, R31, T20-22, X20-21, X22-24. Detected by checking for HKEY interface version 0x100 */ if (acpi_evalf(hkey_handle, &hkeyv, "MHKV", "qd")) { vdbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_HKEY, "firmware HKEY interface version: 0x%x\n", hkeyv); switch (hkeyv >> 8) { case 1: /* * MHKV 0x100 in A31, R40, R40e, * T4x, X31, and later */ /* Paranoia check AND init hotkey_all_mask */ if (!acpi_evalf(hkey_handle, &hotkey_all_mask, "MHKA", "qd")) { pr_err("missing MHKA handler, please report this to %s\n", TPACPI_MAIL); /* Fallback: pre-init for FN+F3,F4,F12 */ hotkey_all_mask = 0x080cU; } else { tp_features.hotkey_mask = 1; } break; case 2: /* * MHKV 0x200 in X1, T460s, X260, T560, X1 Tablet (2016) */ /* Paranoia check AND init hotkey_all_mask */ if (!acpi_evalf(hkey_handle, &hotkey_all_mask, "MHKA", "dd", 1)) { pr_err("missing MHKA handler, please report this to %s\n", TPACPI_MAIL); /* Fallback: pre-init for FN+F3,F4,F12 */ hotkey_all_mask = 0x080cU; } else { tp_features.hotkey_mask = 1; } /* * Check if we have an adaptive keyboard, like on the * Lenovo Carbon X1 2014 (2nd Gen). */ if (acpi_evalf(hkey_handle, &hotkey_adaptive_all_mask, "MHKA", "dd", 2)) { if (hotkey_adaptive_all_mask != 0) tp_features.has_adaptive_kbd = true; } else { tp_features.has_adaptive_kbd = false; hotkey_adaptive_all_mask = 0x0U; } break; default: pr_err("unknown version of the HKEY interface: 0x%x\n", hkeyv); pr_err("please report this to %s\n", TPACPI_MAIL); break; } } vdbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_HKEY, "hotkey masks are %s\n", str_supported(tp_features.hotkey_mask)); /* Init hotkey_all_mask if not initialized yet */ if (!tp_features.hotkey_mask && !hotkey_all_mask && (quirks & TPACPI_HK_Q_INIMASK)) hotkey_all_mask = 0x080cU; /* FN+F12, FN+F4, FN+F3 */ /* Init hotkey_acpi_mask and hotkey_orig_mask */ if (tp_features.hotkey_mask) { /* hotkey_source_mask *must* be zero for * the first hotkey_mask_get to return hotkey_orig_mask */ mutex_lock(&hotkey_mutex); res = hotkey_mask_get(); mutex_unlock(&hotkey_mutex); if (res) return res; hotkey_orig_mask = hotkey_acpi_mask; } else { hotkey_orig_mask = hotkey_all_mask; hotkey_acpi_mask = hotkey_all_mask; } #ifdef CONFIG_THINKPAD_ACPI_DEBUGFACILITIES if (dbg_wlswemul) { tp_features.hotkey_wlsw = 1; radiosw_state = !!tpacpi_wlsw_emulstate; pr_info("radio switch emulation enabled\n"); } else #endif /* Not all thinkpads have a hardware radio switch */ if (acpi_evalf(hkey_handle, &status, "WLSW", "qd")) { tp_features.hotkey_wlsw = 1; radiosw_state = !!status; pr_info("radio switch found; radios are %s\n", str_enabled_disabled(status & BIT(0))); } tabletsw_state = hotkey_init_tablet_mode(); /* Set up key map */ keymap_id = tpacpi_check_quirks(tpacpi_keymap_qtable, ARRAY_SIZE(tpacpi_keymap_qtable)); BUG_ON(keymap_id >= ARRAY_SIZE(tpacpi_keymaps)); dbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_HKEY, "using keymap number %lu\n", keymap_id); hotkey_keycode_map = kmemdup(&tpacpi_keymaps[keymap_id], TPACPI_HOTKEY_MAP_SIZE, GFP_KERNEL); if (!hotkey_keycode_map) { pr_err("failed to allocate memory for key map\n"); return -ENOMEM; } input_set_capability(tpacpi_inputdev, EV_MSC, MSC_SCAN); tpacpi_inputdev->keycodesize = TPACPI_HOTKEY_MAP_TYPESIZE; tpacpi_inputdev->keycodemax = TPACPI_HOTKEY_MAP_LEN; tpacpi_inputdev->keycode = hotkey_keycode_map; for (i = 0; i < TPACPI_HOTKEY_MAP_LEN; i++) { if (hotkey_keycode_map[i] != KEY_RESERVED) { input_set_capability(tpacpi_inputdev, EV_KEY, hotkey_keycode_map[i]); } else { if (i < sizeof(hotkey_reserved_mask)*8) hotkey_reserved_mask |= 1 << i; } } if (tp_features.hotkey_wlsw) { input_set_capability(tpacpi_inputdev, EV_SW, SW_RFKILL_ALL); input_report_switch(tpacpi_inputdev, SW_RFKILL_ALL, radiosw_state); } if (tp_features.hotkey_tablet) { input_set_capability(tpacpi_inputdev, EV_SW, SW_TABLET_MODE); input_report_switch(tpacpi_inputdev, SW_TABLET_MODE, tabletsw_state); } /* Do not issue duplicate brightness change events to * userspace. tpacpi_detect_brightness_capabilities() must have * been called before this point */ if (acpi_video_get_backlight_type() != acpi_backlight_vendor) { pr_info("This ThinkPad has standard ACPI backlight brightness control, supported by the ACPI video driver\n"); pr_notice("Disabling thinkpad-acpi brightness events by default...\n"); /* Disable brightness up/down on Lenovo thinkpads when * ACPI is handling them, otherwise it is plain impossible * for userspace to do something even remotely sane */ hotkey_reserved_mask |= (1 << TP_ACPI_HOTKEYSCAN_FNHOME) | (1 << TP_ACPI_HOTKEYSCAN_FNEND); hotkey_unmap(TP_ACPI_HOTKEYSCAN_FNHOME); hotkey_unmap(TP_ACPI_HOTKEYSCAN_FNEND); } #ifdef CONFIG_THINKPAD_ACPI_HOTKEY_POLL hotkey_source_mask = TPACPI_HKEY_NVRAM_GOOD_MASK & ~hotkey_all_mask & ~hotkey_reserved_mask; vdbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_HKEY, "hotkey source mask 0x%08x, polling freq %u\n", hotkey_source_mask, hotkey_poll_freq); #endif dbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_HKEY, "enabling firmware HKEY event interface...\n"); res = hotkey_status_set(true); if (res) { hotkey_exit(); return res; } mutex_lock(&hotkey_mutex); res = hotkey_mask_set(((hotkey_all_mask & ~hotkey_reserved_mask) | hotkey_driver_mask) & ~hotkey_source_mask); mutex_unlock(&hotkey_mutex); if (res < 0 && res != -ENXIO) { hotkey_exit(); return res; } hotkey_user_mask = (hotkey_acpi_mask | hotkey_source_mask) & ~hotkey_reserved_mask; vdbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_HKEY, "initial masks: user=0x%08x, fw=0x%08x, poll=0x%08x\n", hotkey_user_mask, hotkey_acpi_mask, hotkey_source_mask); tpacpi_inputdev->open = &hotkey_inputdev_open; tpacpi_inputdev->close = &hotkey_inputdev_close; hotkey_poll_setup_safe(true); return 0; } /* Thinkpad X1 Carbon support 5 modes including Home mode, Web browser * mode, Web conference mode, Function mode and Lay-flat mode. * We support Home mode and Function mode currently. * * Will consider support rest of modes in future. * */ static const int adaptive_keyboard_modes[] = { HOME_MODE, /* WEB_BROWSER_MODE = 2, WEB_CONFERENCE_MODE = 3, */ FUNCTION_MODE }; #define DFR_CHANGE_ROW 0x101 #define DFR_SHOW_QUICKVIEW_ROW 0x102 #define FIRST_ADAPTIVE_KEY 0x103 /* press Fn key a while second, it will switch to Function Mode. Then * release Fn key, previous mode be restored. */ static bool adaptive_keyboard_mode_is_saved; static int adaptive_keyboard_prev_mode; static int adaptive_keyboard_get_mode(void) { int mode = 0; if (!acpi_evalf(hkey_handle, &mode, "GTRW", "dd", 0)) { pr_err("Cannot read adaptive keyboard mode\n"); return -EIO; } return mode; } static int adaptive_keyboard_set_mode(int new_mode) { if (new_mode < 0 || new_mode > LAYFLAT_MODE) return -EINVAL; if (!acpi_evalf(hkey_handle, NULL, "STRW", "vd", new_mode)) { pr_err("Cannot set adaptive keyboard mode\n"); return -EIO; } return 0; } static int adaptive_keyboard_get_next_mode(int mode) { size_t i; size_t max_mode = ARRAY_SIZE(adaptive_keyboard_modes) - 1; for (i = 0; i <= max_mode; i++) { if (adaptive_keyboard_modes[i] == mode) break; } if (i >= max_mode) i = 0; else i++; return adaptive_keyboard_modes[i]; } static bool adaptive_keyboard_hotkey_notify_hotkey(unsigned int scancode) { int current_mode = 0; int new_mode = 0; int keycode; switch (scancode) { case DFR_CHANGE_ROW: if (adaptive_keyboard_mode_is_saved) { new_mode = adaptive_keyboard_prev_mode; adaptive_keyboard_mode_is_saved = false; } else { current_mode = adaptive_keyboard_get_mode(); if (current_mode < 0) return false; new_mode = adaptive_keyboard_get_next_mode( current_mode); } if (adaptive_keyboard_set_mode(new_mode) < 0) return false; return true; case DFR_SHOW_QUICKVIEW_ROW: current_mode = adaptive_keyboard_get_mode(); if (current_mode < 0) return false; adaptive_keyboard_prev_mode = current_mode; adaptive_keyboard_mode_is_saved = true; if (adaptive_keyboard_set_mode (FUNCTION_MODE) < 0) return false; return true; default: if (scancode < FIRST_ADAPTIVE_KEY || scancode >= FIRST_ADAPTIVE_KEY + TP_ACPI_HOTKEYSCAN_EXTENDED_START - TP_ACPI_HOTKEYSCAN_ADAPTIVE_START) { pr_info("Unhandled adaptive keyboard key: 0x%x\n", scancode); return false; } keycode = hotkey_keycode_map[scancode - FIRST_ADAPTIVE_KEY + TP_ACPI_HOTKEYSCAN_ADAPTIVE_START]; if (keycode != KEY_RESERVED) { mutex_lock(&tpacpi_inputdev_send_mutex); input_report_key(tpacpi_inputdev, keycode, 1); input_sync(tpacpi_inputdev); input_report_key(tpacpi_inputdev, keycode, 0); input_sync(tpacpi_inputdev); mutex_unlock(&tpacpi_inputdev_send_mutex); } return true; } } static bool hotkey_notify_extended_hotkey(const u32 hkey) { unsigned int scancode; switch (hkey) { case TP_HKEY_EV_PRIVACYGUARD_TOGGLE: case TP_HKEY_EV_AMT_TOGGLE: tpacpi_driver_event(hkey); return true; } /* Extended keycodes start at 0x300 and our offset into the map * TP_ACPI_HOTKEYSCAN_EXTENDED_START. The calculated scancode * will be positive, but might not be in the correct range. */ scancode = (hkey & 0xfff) - (0x300 - TP_ACPI_HOTKEYSCAN_EXTENDED_START); if (scancode >= TP_ACPI_HOTKEYSCAN_EXTENDED_START && scancode < TPACPI_HOTKEY_MAP_LEN) { tpacpi_input_send_key(scancode); return true; } return false; } static bool hotkey_notify_hotkey(const u32 hkey, bool *send_acpi_ev, bool *ignore_acpi_ev) { /* 0x1000-0x1FFF: key presses */ unsigned int scancode = hkey & 0xfff; *send_acpi_ev = true; *ignore_acpi_ev = false; /* * Original events are in the 0x10XX range, the adaptive keyboard * found in 2014 X1 Carbon emits events are of 0x11XX. In 2017 * models, additional keys are emitted through 0x13XX. */ switch ((hkey >> 8) & 0xf) { case 0: if (scancode > 0 && scancode <= TP_ACPI_HOTKEYSCAN_ADAPTIVE_START) { /* HKEY event 0x1001 is scancode 0x00 */ scancode--; if (!(hotkey_source_mask & (1 << scancode))) { tpacpi_input_send_key_masked(scancode); *send_acpi_ev = false; } else { *ignore_acpi_ev = true; } return true; } break; case 1: return adaptive_keyboard_hotkey_notify_hotkey(scancode); case 3: return hotkey_notify_extended_hotkey(hkey); } return false; } static bool hotkey_notify_wakeup(const u32 hkey, bool *send_acpi_ev, bool *ignore_acpi_ev) { /* 0x2000-0x2FFF: Wakeup reason */ *send_acpi_ev = true; *ignore_acpi_ev = false; switch (hkey) { case TP_HKEY_EV_WKUP_S3_UNDOCK: /* suspend, undock */ case TP_HKEY_EV_WKUP_S4_UNDOCK: /* hibernation, undock */ hotkey_wakeup_reason = TP_ACPI_WAKEUP_UNDOCK; *ignore_acpi_ev = true; break; case TP_HKEY_EV_WKUP_S3_BAYEJ: /* suspend, bay eject */ case TP_HKEY_EV_WKUP_S4_BAYEJ: /* hibernation, bay eject */ hotkey_wakeup_reason = TP_ACPI_WAKEUP_BAYEJ; *ignore_acpi_ev = true; break; case TP_HKEY_EV_WKUP_S3_BATLOW: /* Battery on critical low level/S3 */ case TP_HKEY_EV_WKUP_S4_BATLOW: /* Battery on critical low level/S4 */ pr_alert("EMERGENCY WAKEUP: battery almost empty\n"); /* how to auto-heal: */ /* 2313: woke up from S3, go to S4/S5 */ /* 2413: woke up from S4, go to S5 */ break; default: return false; } if (hotkey_wakeup_reason != TP_ACPI_WAKEUP_NONE) { pr_info("woke up due to a hot-unplug request...\n"); hotkey_wakeup_reason_notify_change(); } return true; } static bool hotkey_notify_dockevent(const u32 hkey, bool *send_acpi_ev, bool *ignore_acpi_ev) { /* 0x4000-0x4FFF: dock-related events */ *send_acpi_ev = true; *ignore_acpi_ev = false; switch (hkey) { case TP_HKEY_EV_UNDOCK_ACK: /* ACPI undock operation completed after wakeup */ hotkey_autosleep_ack = 1; pr_info("undocked\n"); hotkey_wakeup_hotunplug_complete_notify_change(); return true; case TP_HKEY_EV_HOTPLUG_DOCK: /* docked to port replicator */ pr_info("docked into hotplug port replicator\n"); return true; case TP_HKEY_EV_HOTPLUG_UNDOCK: /* undocked from port replicator */ pr_info("undocked from hotplug port replicator\n"); return true; /* * Deliberately ignore attaching and detaching the keybord cover to avoid * duplicates from intel-vbtn, which already emits SW_TABLET_MODE events * to userspace. * * Please refer to the following thread for more information and a preliminary * implementation using the GTOP ("Get Tablet OPtions") interface that could be * extended to other attachment options of the ThinkPad X1 Tablet series, such as * the Pico cartridge dock module: * https://lore.kernel.org/platform-driver-x86/[email protected]/ */ case TP_HKEY_EV_KBD_COVER_ATTACH: case TP_HKEY_EV_KBD_COVER_DETACH: *send_acpi_ev = false; *ignore_acpi_ev = true; return true; default: return false; } } static bool hotkey_notify_usrevent(const u32 hkey, bool *send_acpi_ev, bool *ignore_acpi_ev) { /* 0x5000-0x5FFF: human interface helpers */ *send_acpi_ev = true; *ignore_acpi_ev = false; switch (hkey) { case TP_HKEY_EV_PEN_INSERTED: /* X61t: tablet pen inserted into bay */ case TP_HKEY_EV_PEN_REMOVED: /* X61t: tablet pen removed from bay */ return true; case TP_HKEY_EV_TABLET_TABLET: /* X41t-X61t: tablet mode */ case TP_HKEY_EV_TABLET_NOTEBOOK: /* X41t-X61t: normal mode */ tpacpi_input_send_tabletsw(); hotkey_tablet_mode_notify_change(); *send_acpi_ev = false; return true; case TP_HKEY_EV_LID_CLOSE: /* Lid closed */ case TP_HKEY_EV_LID_OPEN: /* Lid opened */ case TP_HKEY_EV_BRGHT_CHANGED: /* brightness changed */ /* do not propagate these events */ *ignore_acpi_ev = true; return true; default: return false; } } static void thermal_dump_all_sensors(void); static void palmsensor_refresh(void); static bool hotkey_notify_6xxx(const u32 hkey, bool *send_acpi_ev, bool *ignore_acpi_ev) { /* 0x6000-0x6FFF: thermal alarms/notices and keyboard events */ *send_acpi_ev = true; *ignore_acpi_ev = false; switch (hkey) { case TP_HKEY_EV_THM_TABLE_CHANGED: pr_debug("EC reports: Thermal Table has changed\n"); /* recommended action: do nothing, we don't have * Lenovo ATM information */ return true; case TP_HKEY_EV_THM_CSM_COMPLETED: pr_debug("EC reports: Thermal Control Command set completed (DYTC)\n"); /* Thermal event - pass on to event handler */ tpacpi_driver_event(hkey); return true; case TP_HKEY_EV_THM_TRANSFM_CHANGED: pr_debug("EC reports: Thermal Transformation changed (GMTS)\n"); /* recommended action: do nothing, we don't have * Lenovo ATM information */ return true; case TP_HKEY_EV_ALARM_BAT_HOT: pr_crit("THERMAL ALARM: battery is too hot!\n"); /* recommended action: warn user through gui */ break; case TP_HKEY_EV_ALARM_BAT_XHOT: pr_alert("THERMAL EMERGENCY: battery is extremely hot!\n"); /* recommended action: immediate sleep/hibernate */ break; case TP_HKEY_EV_ALARM_SENSOR_HOT: pr_crit("THERMAL ALARM: a sensor reports something is too hot!\n"); /* recommended action: warn user through gui, that */ /* some internal component is too hot */ break; case TP_HKEY_EV_ALARM_SENSOR_XHOT: pr_alert("THERMAL EMERGENCY: a sensor reports something is extremely hot!\n"); /* recommended action: immediate sleep/hibernate */ break; case TP_HKEY_EV_AC_CHANGED: /* X120e, X121e, X220, X220i, X220t, X230, T420, T420s, W520: * AC status changed; can be triggered by plugging or * unplugging AC adapter, docking or undocking. */ fallthrough; case TP_HKEY_EV_KEY_NUMLOCK: case TP_HKEY_EV_KEY_FN: /* key press events, we just ignore them as long as the EC * is still reporting them in the normal keyboard stream */ *send_acpi_ev = false; *ignore_acpi_ev = true; return true; case TP_HKEY_EV_KEY_FN_ESC: /* Get the media key status to force the status LED to update */ acpi_evalf(hkey_handle, NULL, "GMKS", "v"); *send_acpi_ev = false; *ignore_acpi_ev = true; return true; case TP_HKEY_EV_TABLET_CHANGED: tpacpi_input_send_tabletsw(); hotkey_tablet_mode_notify_change(); *send_acpi_ev = false; return true; case TP_HKEY_EV_PALM_DETECTED: case TP_HKEY_EV_PALM_UNDETECTED: /* palm detected - pass on to event handler */ palmsensor_refresh(); return true; default: /* report simply as unknown, no sensor dump */ return false; } thermal_dump_all_sensors(); return true; } static void hotkey_notify(struct ibm_struct *ibm, u32 event) { u32 hkey; bool send_acpi_ev; bool ignore_acpi_ev; bool known_ev; if (event != 0x80) { pr_err("unknown HKEY notification event %d\n", event); /* forward it to userspace, maybe it knows how to handle it */ acpi_bus_generate_netlink_event( ibm->acpi->device->pnp.device_class, dev_name(&ibm->acpi->device->dev), event, 0); return; } while (1) { if (!acpi_evalf(hkey_handle, &hkey, "MHKP", "d")) { pr_err("failed to retrieve HKEY event\n"); return; } if (hkey == 0) { /* queue empty */ return; } send_acpi_ev = true; ignore_acpi_ev = false; switch (hkey >> 12) { case 1: /* 0x1000-0x1FFF: key presses */ known_ev = hotkey_notify_hotkey(hkey, &send_acpi_ev, &ignore_acpi_ev); break; case 2: /* 0x2000-0x2FFF: Wakeup reason */ known_ev = hotkey_notify_wakeup(hkey, &send_acpi_ev, &ignore_acpi_ev); break; case 3: /* 0x3000-0x3FFF: bay-related wakeups */ switch (hkey) { case TP_HKEY_EV_BAYEJ_ACK: hotkey_autosleep_ack = 1; pr_info("bay ejected\n"); hotkey_wakeup_hotunplug_complete_notify_change(); known_ev = true; break; case TP_HKEY_EV_OPTDRV_EJ: /* FIXME: kick libata if SATA link offline */ known_ev = true; break; default: known_ev = false; } break; case 4: /* 0x4000-0x4FFF: dock-related events */ known_ev = hotkey_notify_dockevent(hkey, &send_acpi_ev, &ignore_acpi_ev); break; case 5: /* 0x5000-0x5FFF: human interface helpers */ known_ev = hotkey_notify_usrevent(hkey, &send_acpi_ev, &ignore_acpi_ev); break; case 6: /* 0x6000-0x6FFF: thermal alarms/notices and * keyboard events */ known_ev = hotkey_notify_6xxx(hkey, &send_acpi_ev, &ignore_acpi_ev); break; case 7: /* 0x7000-0x7FFF: misc */ if (tp_features.hotkey_wlsw && hkey == TP_HKEY_EV_RFKILL_CHANGED) { tpacpi_send_radiosw_update(); send_acpi_ev = 0; known_ev = true; break; } fallthrough; /* to default */ default: known_ev = false; } if (!known_ev) { pr_notice("unhandled HKEY event 0x%04x\n", hkey); pr_notice("please report the conditions when this event happened to %s\n", TPACPI_MAIL); } /* netlink events */ if (!ignore_acpi_ev && send_acpi_ev) { acpi_bus_generate_netlink_event( ibm->acpi->device->pnp.device_class, dev_name(&ibm->acpi->device->dev), event, hkey); } } } static void hotkey_suspend(void) { /* Do these on suspend, we get the events on early resume! */ hotkey_wakeup_reason = TP_ACPI_WAKEUP_NONE; hotkey_autosleep_ack = 0; /* save previous mode of adaptive keyboard of X1 Carbon */ if (tp_features.has_adaptive_kbd) { if (!acpi_evalf(hkey_handle, &adaptive_keyboard_prev_mode, "GTRW", "dd", 0)) { pr_err("Cannot read adaptive keyboard mode.\n"); } } } static void hotkey_resume(void) { tpacpi_disable_brightness_delay(); mutex_lock(&hotkey_mutex); if (hotkey_status_set(true) < 0 || hotkey_mask_set(hotkey_acpi_mask) < 0) pr_err("error while attempting to reset the event firmware interface\n"); mutex_unlock(&hotkey_mutex); tpacpi_send_radiosw_update(); tpacpi_input_send_tabletsw(); hotkey_tablet_mode_notify_change(); hotkey_wakeup_reason_notify_change(); hotkey_wakeup_hotunplug_complete_notify_change(); hotkey_poll_setup_safe(false); /* restore previous mode of adapive keyboard of X1 Carbon */ if (tp_features.has_adaptive_kbd) { if (!acpi_evalf(hkey_handle, NULL, "STRW", "vd", adaptive_keyboard_prev_mode)) { pr_err("Cannot set adaptive keyboard mode.\n"); } } } /* procfs -------------------------------------------------------------- */ static int hotkey_read(struct seq_file *m) { int res, status; if (!tp_features.hotkey) { seq_printf(m, "status:\t\tnot supported\n"); return 0; } if (mutex_lock_killable(&hotkey_mutex)) return -ERESTARTSYS; res = hotkey_status_get(&status); if (!res) res = hotkey_mask_get(); mutex_unlock(&hotkey_mutex); if (res) return res; seq_printf(m, "status:\t\t%s\n", str_enabled_disabled(status & BIT(0))); if (hotkey_all_mask) { seq_printf(m, "mask:\t\t0x%08x\n", hotkey_user_mask); seq_printf(m, "commands:\tenable, disable, reset, <mask>\n"); } else { seq_printf(m, "mask:\t\tnot supported\n"); seq_printf(m, "commands:\tenable, disable, reset\n"); } return 0; } static void hotkey_enabledisable_warn(bool enable) { tpacpi_log_usertask("procfs hotkey enable/disable"); if (!WARN((tpacpi_lifecycle == TPACPI_LIFE_RUNNING || !enable), pr_fmt("hotkey enable/disable functionality has been removed from the driver. Hotkeys are always enabled.\n"))) pr_err("Please remove the hotkey=enable module parameter, it is deprecated. Hotkeys are always enabled.\n"); } static int hotkey_write(char *buf) { int res; u32 mask; char *cmd; if (!tp_features.hotkey) return -ENODEV; if (mutex_lock_killable(&hotkey_mutex)) return -ERESTARTSYS; mask = hotkey_user_mask; res = 0; while ((cmd = strsep(&buf, ","))) { if (strstarts(cmd, "enable")) { hotkey_enabledisable_warn(1); } else if (strstarts(cmd, "disable")) { hotkey_enabledisable_warn(0); res = -EPERM; } else if (strstarts(cmd, "reset")) { mask = (hotkey_all_mask | hotkey_source_mask) & ~hotkey_reserved_mask; } else if (sscanf(cmd, "0x%x", &mask) == 1) { /* mask set */ } else if (sscanf(cmd, "%x", &mask) == 1) { /* mask set */ } else { res = -EINVAL; goto errexit; } } if (!res) { tpacpi_disclose_usertask("procfs hotkey", "set mask to 0x%08x\n", mask); res = hotkey_user_mask_set(mask); } errexit: mutex_unlock(&hotkey_mutex); return res; } static const struct acpi_device_id ibm_htk_device_ids[] = { {TPACPI_ACPI_IBM_HKEY_HID, 0}, {TPACPI_ACPI_LENOVO_HKEY_HID, 0}, {TPACPI_ACPI_LENOVO_HKEY_V2_HID, 0}, {"", 0}, }; static struct tp_acpi_drv_struct ibm_hotkey_acpidriver = { .hid = ibm_htk_device_ids, .notify = hotkey_notify, .handle = &hkey_handle, .type = ACPI_DEVICE_NOTIFY, }; static struct ibm_struct hotkey_driver_data = { .name = "hotkey", .read = hotkey_read, .write = hotkey_write, .exit = hotkey_exit, .resume = hotkey_resume, .suspend = hotkey_suspend, .acpi = &ibm_hotkey_acpidriver, }; /************************************************************************* * Bluetooth subdriver */ enum { /* ACPI GBDC/SBDC bits */ TP_ACPI_BLUETOOTH_HWPRESENT = 0x01, /* Bluetooth hw available */ TP_ACPI_BLUETOOTH_RADIOSSW = 0x02, /* Bluetooth radio enabled */ TP_ACPI_BLUETOOTH_RESUMECTRL = 0x04, /* Bluetooth state at resume: 0 = disable, 1 = enable */ }; enum { /* ACPI \BLTH commands */ TP_ACPI_BLTH_GET_ULTRAPORT_ID = 0x00, /* Get Ultraport BT ID */ TP_ACPI_BLTH_GET_PWR_ON_RESUME = 0x01, /* Get power-on-resume state */ TP_ACPI_BLTH_PWR_ON_ON_RESUME = 0x02, /* Resume powered on */ TP_ACPI_BLTH_PWR_OFF_ON_RESUME = 0x03, /* Resume powered off */ TP_ACPI_BLTH_SAVE_STATE = 0x05, /* Save state for S4/S5 */ }; #define TPACPI_RFK_BLUETOOTH_SW_NAME "tpacpi_bluetooth_sw" static int bluetooth_get_status(void) { int status; #ifdef CONFIG_THINKPAD_ACPI_DEBUGFACILITIES if (dbg_bluetoothemul) return (tpacpi_bluetooth_emulstate) ? TPACPI_RFK_RADIO_ON : TPACPI_RFK_RADIO_OFF; #endif if (!acpi_evalf(hkey_handle, &status, "GBDC", "d")) return -EIO; return ((status & TP_ACPI_BLUETOOTH_RADIOSSW) != 0) ? TPACPI_RFK_RADIO_ON : TPACPI_RFK_RADIO_OFF; } static int bluetooth_set_status(enum tpacpi_rfkill_state state) { int status; vdbg_printk(TPACPI_DBG_RFKILL, "will attempt to %s bluetooth\n", str_enable_disable(state == TPACPI_RFK_RADIO_ON)); #ifdef CONFIG_THINKPAD_ACPI_DEBUGFACILITIES if (dbg_bluetoothemul) { tpacpi_bluetooth_emulstate = (state == TPACPI_RFK_RADIO_ON); return 0; } #endif if (state == TPACPI_RFK_RADIO_ON) status = TP_ACPI_BLUETOOTH_RADIOSSW | TP_ACPI_BLUETOOTH_RESUMECTRL; else status = 0; if (!acpi_evalf(hkey_handle, NULL, "SBDC", "vd", status)) return -EIO; return 0; } /* sysfs bluetooth enable ---------------------------------------------- */ static ssize_t bluetooth_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { return tpacpi_rfk_sysfs_enable_show(TPACPI_RFK_BLUETOOTH_SW_ID, attr, buf); } static ssize_t bluetooth_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return tpacpi_rfk_sysfs_enable_store(TPACPI_RFK_BLUETOOTH_SW_ID, attr, buf, count); } static DEVICE_ATTR_RW(bluetooth_enable); /* --------------------------------------------------------------------- */ static struct attribute *bluetooth_attributes[] = { &dev_attr_bluetooth_enable.attr, NULL }; static umode_t bluetooth_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n) { return tp_features.bluetooth ? attr->mode : 0; } static const struct attribute_group bluetooth_attr_group = { .is_visible = bluetooth_attr_is_visible, .attrs = bluetooth_attributes, }; static const struct tpacpi_rfk_ops bluetooth_tprfk_ops = { .get_status = bluetooth_get_status, .set_status = bluetooth_set_status, }; static void bluetooth_shutdown(void) { /* Order firmware to save current state to NVRAM */ if (!acpi_evalf(NULL, NULL, "\\BLTH", "vd", TP_ACPI_BLTH_SAVE_STATE)) pr_notice("failed to save bluetooth state to NVRAM\n"); else vdbg_printk(TPACPI_DBG_RFKILL, "bluetooth state saved to NVRAM\n"); } static void bluetooth_exit(void) { tpacpi_destroy_rfkill(TPACPI_RFK_BLUETOOTH_SW_ID); bluetooth_shutdown(); } static const struct dmi_system_id fwbug_list[] __initconst = { { .ident = "ThinkPad E485", .driver_data = &quirk_btusb_bug, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_BOARD_NAME, "20KU"), }, }, { .ident = "ThinkPad E585", .driver_data = &quirk_btusb_bug, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_BOARD_NAME, "20KV"), }, }, { .ident = "ThinkPad A285 - 20MW", .driver_data = &quirk_btusb_bug, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_BOARD_NAME, "20MW"), }, }, { .ident = "ThinkPad A285 - 20MX", .driver_data = &quirk_btusb_bug, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_BOARD_NAME, "20MX"), }, }, { .ident = "ThinkPad A485 - 20MU", .driver_data = &quirk_btusb_bug, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_BOARD_NAME, "20MU"), }, }, { .ident = "ThinkPad A485 - 20MV", .driver_data = &quirk_btusb_bug, .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_BOARD_NAME, "20MV"), }, }, {} }; static const struct pci_device_id fwbug_cards_ids[] __initconst = { { PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x24F3) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x24FD) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x2526) }, {} }; static int __init have_bt_fwbug(void) { /* * Some AMD based ThinkPads have a firmware bug that calling * "GBDC" will cause bluetooth on Intel wireless cards blocked */ if (tp_features.quirks && tp_features.quirks->btusb_bug && pci_dev_present(fwbug_cards_ids)) { vdbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_RFKILL, FW_BUG "disable bluetooth subdriver for Intel cards\n"); return 1; } else return 0; } static int __init bluetooth_init(struct ibm_init_struct *iibm) { int res; int status = 0; vdbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_RFKILL, "initializing bluetooth subdriver\n"); TPACPI_ACPIHANDLE_INIT(hkey); /* bluetooth not supported on 570, 600e/x, 770e, 770x, A21e, A2xm/p, G4x, R30, R31, R40e, R50e, T20-22, X20-21 */ tp_features.bluetooth = !have_bt_fwbug() && hkey_handle && acpi_evalf(hkey_handle, &status, "GBDC", "qd"); vdbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_RFKILL, "bluetooth is %s, status 0x%02x\n", str_supported(tp_features.bluetooth), status); #ifdef CONFIG_THINKPAD_ACPI_DEBUGFACILITIES if (dbg_bluetoothemul) { tp_features.bluetooth = 1; pr_info("bluetooth switch emulation enabled\n"); } else #endif if (tp_features.bluetooth && !(status & TP_ACPI_BLUETOOTH_HWPRESENT)) { /* no bluetooth hardware present in system */ tp_features.bluetooth = 0; dbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_RFKILL, "bluetooth hardware not installed\n"); } if (!tp_features.bluetooth) return -ENODEV; res = tpacpi_new_rfkill(TPACPI_RFK_BLUETOOTH_SW_ID, &bluetooth_tprfk_ops, RFKILL_TYPE_BLUETOOTH, TPACPI_RFK_BLUETOOTH_SW_NAME, true); return res; } /* procfs -------------------------------------------------------------- */ static int bluetooth_read(struct seq_file *m) { return tpacpi_rfk_procfs_read(TPACPI_RFK_BLUETOOTH_SW_ID, m); } static int bluetooth_write(char *buf) { return tpacpi_rfk_procfs_write(TPACPI_RFK_BLUETOOTH_SW_ID, buf); } static struct ibm_struct bluetooth_driver_data = { .name = "bluetooth", .read = bluetooth_read, .write = bluetooth_write, .exit = bluetooth_exit, .shutdown = bluetooth_shutdown, }; /************************************************************************* * Wan subdriver */ enum { /* ACPI GWAN/SWAN bits */ TP_ACPI_WANCARD_HWPRESENT = 0x01, /* Wan hw available */ TP_ACPI_WANCARD_RADIOSSW = 0x02, /* Wan radio enabled */ TP_ACPI_WANCARD_RESUMECTRL = 0x04, /* Wan state at resume: 0 = disable, 1 = enable */ }; #define TPACPI_RFK_WWAN_SW_NAME "tpacpi_wwan_sw" static int wan_get_status(void) { int status; #ifdef CONFIG_THINKPAD_ACPI_DEBUGFACILITIES if (dbg_wwanemul) return (tpacpi_wwan_emulstate) ? TPACPI_RFK_RADIO_ON : TPACPI_RFK_RADIO_OFF; #endif if (!acpi_evalf(hkey_handle, &status, "GWAN", "d")) return -EIO; return ((status & TP_ACPI_WANCARD_RADIOSSW) != 0) ? TPACPI_RFK_RADIO_ON : TPACPI_RFK_RADIO_OFF; } static int wan_set_status(enum tpacpi_rfkill_state state) { int status; vdbg_printk(TPACPI_DBG_RFKILL, "will attempt to %s wwan\n", str_enable_disable(state == TPACPI_RFK_RADIO_ON)); #ifdef CONFIG_THINKPAD_ACPI_DEBUGFACILITIES if (dbg_wwanemul) { tpacpi_wwan_emulstate = (state == TPACPI_RFK_RADIO_ON); return 0; } #endif if (state == TPACPI_RFK_RADIO_ON) status = TP_ACPI_WANCARD_RADIOSSW | TP_ACPI_WANCARD_RESUMECTRL; else status = 0; if (!acpi_evalf(hkey_handle, NULL, "SWAN", "vd", status)) return -EIO; return 0; } /* sysfs wan enable ---------------------------------------------------- */ static ssize_t wan_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { return tpacpi_rfk_sysfs_enable_show(TPACPI_RFK_WWAN_SW_ID, attr, buf); } static ssize_t wan_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return tpacpi_rfk_sysfs_enable_store(TPACPI_RFK_WWAN_SW_ID, attr, buf, count); } static DEVICE_ATTR(wwan_enable, S_IWUSR | S_IRUGO, wan_enable_show, wan_enable_store); /* --------------------------------------------------------------------- */ static struct attribute *wan_attributes[] = { &dev_attr_wwan_enable.attr, NULL }; static umode_t wan_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n) { return tp_features.wan ? attr->mode : 0; } static const struct attribute_group wan_attr_group = { .is_visible = wan_attr_is_visible, .attrs = wan_attributes, }; static const struct tpacpi_rfk_ops wan_tprfk_ops = { .get_status = wan_get_status, .set_status = wan_set_status, }; static void wan_shutdown(void) { /* Order firmware to save current state to NVRAM */ if (!acpi_evalf(NULL, NULL, "\\WGSV", "vd", TP_ACPI_WGSV_SAVE_STATE)) pr_notice("failed to save WWAN state to NVRAM\n"); else vdbg_printk(TPACPI_DBG_RFKILL, "WWAN state saved to NVRAM\n"); } static void wan_exit(void) { tpacpi_destroy_rfkill(TPACPI_RFK_WWAN_SW_ID); wan_shutdown(); } static int __init wan_init(struct ibm_init_struct *iibm) { int res; int status = 0; vdbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_RFKILL, "initializing wan subdriver\n"); TPACPI_ACPIHANDLE_INIT(hkey); tp_features.wan = hkey_handle && acpi_evalf(hkey_handle, &status, "GWAN", "qd"); vdbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_RFKILL, "wan is %s, status 0x%02x\n", str_supported(tp_features.wan), status); #ifdef CONFIG_THINKPAD_ACPI_DEBUGFACILITIES if (dbg_wwanemul) { tp_features.wan = 1; pr_info("wwan switch emulation enabled\n"); } else #endif if (tp_features.wan && !(status & TP_ACPI_WANCARD_HWPRESENT)) { /* no wan hardware present in system */ tp_features.wan = 0; dbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_RFKILL, "wan hardware not installed\n"); } if (!tp_features.wan) return -ENODEV; res = tpacpi_new_rfkill(TPACPI_RFK_WWAN_SW_ID, &wan_tprfk_ops, RFKILL_TYPE_WWAN, TPACPI_RFK_WWAN_SW_NAME, true); return res; } /* procfs -------------------------------------------------------------- */ static int wan_read(struct seq_file *m) { return tpacpi_rfk_procfs_read(TPACPI_RFK_WWAN_SW_ID, m); } static int wan_write(char *buf) { return tpacpi_rfk_procfs_write(TPACPI_RFK_WWAN_SW_ID, buf); } static struct ibm_struct wan_driver_data = { .name = "wan", .read = wan_read, .write = wan_write, .exit = wan_exit, .shutdown = wan_shutdown, }; /************************************************************************* * UWB subdriver */ enum { /* ACPI GUWB/SUWB bits */ TP_ACPI_UWB_HWPRESENT = 0x01, /* UWB hw available */ TP_ACPI_UWB_RADIOSSW = 0x02, /* UWB radio enabled */ }; #define TPACPI_RFK_UWB_SW_NAME "tpacpi_uwb_sw" static int uwb_get_status(void) { int status; #ifdef CONFIG_THINKPAD_ACPI_DEBUGFACILITIES if (dbg_uwbemul) return (tpacpi_uwb_emulstate) ? TPACPI_RFK_RADIO_ON : TPACPI_RFK_RADIO_OFF; #endif if (!acpi_evalf(hkey_handle, &status, "GUWB", "d")) return -EIO; return ((status & TP_ACPI_UWB_RADIOSSW) != 0) ? TPACPI_RFK_RADIO_ON : TPACPI_RFK_RADIO_OFF; } static int uwb_set_status(enum tpacpi_rfkill_state state) { int status; vdbg_printk(TPACPI_DBG_RFKILL, "will attempt to %s UWB\n", str_enable_disable(state == TPACPI_RFK_RADIO_ON)); #ifdef CONFIG_THINKPAD_ACPI_DEBUGFACILITIES if (dbg_uwbemul) { tpacpi_uwb_emulstate = (state == TPACPI_RFK_RADIO_ON); return 0; } #endif if (state == TPACPI_RFK_RADIO_ON) status = TP_ACPI_UWB_RADIOSSW; else status = 0; if (!acpi_evalf(hkey_handle, NULL, "SUWB", "vd", status)) return -EIO; return 0; } /* --------------------------------------------------------------------- */ static const struct tpacpi_rfk_ops uwb_tprfk_ops = { .get_status = uwb_get_status, .set_status = uwb_set_status, }; static void uwb_exit(void) { tpacpi_destroy_rfkill(TPACPI_RFK_UWB_SW_ID); } static int __init uwb_init(struct ibm_init_struct *iibm) { int res; int status = 0; vdbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_RFKILL, "initializing uwb subdriver\n"); TPACPI_ACPIHANDLE_INIT(hkey); tp_features.uwb = hkey_handle && acpi_evalf(hkey_handle, &status, "GUWB", "qd"); vdbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_RFKILL, "uwb is %s, status 0x%02x\n", str_supported(tp_features.uwb), status); #ifdef CONFIG_THINKPAD_ACPI_DEBUGFACILITIES if (dbg_uwbemul) { tp_features.uwb = 1; pr_info("uwb switch emulation enabled\n"); } else #endif if (tp_features.uwb && !(status & TP_ACPI_UWB_HWPRESENT)) { /* no uwb hardware present in system */ tp_features.uwb = 0; dbg_printk(TPACPI_DBG_INIT, "uwb hardware not installed\n"); } if (!tp_features.uwb) return -ENODEV; res = tpacpi_new_rfkill(TPACPI_RFK_UWB_SW_ID, &uwb_tprfk_ops, RFKILL_TYPE_UWB, TPACPI_RFK_UWB_SW_NAME, false); return res; } static struct ibm_struct uwb_driver_data = { .name = "uwb", .exit = uwb_exit, .flags.experimental = 1, }; /************************************************************************* * Video subdriver */ #ifdef CONFIG_THINKPAD_ACPI_VIDEO enum video_access_mode { TPACPI_VIDEO_NONE = 0, TPACPI_VIDEO_570, /* 570 */ TPACPI_VIDEO_770, /* 600e/x, 770e, 770x */ TPACPI_VIDEO_NEW, /* all others */ }; enum { /* video status flags, based on VIDEO_570 */ TP_ACPI_VIDEO_S_LCD = 0x01, /* LCD output enabled */ TP_ACPI_VIDEO_S_CRT = 0x02, /* CRT output enabled */ TP_ACPI_VIDEO_S_DVI = 0x08, /* DVI output enabled */ }; enum { /* TPACPI_VIDEO_570 constants */ TP_ACPI_VIDEO_570_PHSCMD = 0x87, /* unknown magic constant :( */ TP_ACPI_VIDEO_570_PHSMASK = 0x03, /* PHS bits that map to * video_status_flags */ TP_ACPI_VIDEO_570_PHS2CMD = 0x8b, /* unknown magic constant :( */ TP_ACPI_VIDEO_570_PHS2SET = 0x80, /* unknown magic constant :( */ }; static enum video_access_mode video_supported; static int video_orig_autosw; static int video_autosw_get(void); static int video_autosw_set(int enable); TPACPI_HANDLE(vid, root, "\\_SB.PCI.AGP.VGA", /* 570 */ "\\_SB.PCI0.AGP0.VID0", /* 600e/x, 770x */ "\\_SB.PCI0.VID0", /* 770e */ "\\_SB.PCI0.VID", /* A21e, G4x, R50e, X30, X40 */ "\\_SB.PCI0.AGP.VGA", /* X100e and a few others */ "\\_SB.PCI0.AGP.VID", /* all others */ ); /* R30, R31 */ TPACPI_HANDLE(vid2, root, "\\_SB.PCI0.AGPB.VID"); /* G41 */ static int __init video_init(struct ibm_init_struct *iibm) { int ivga; vdbg_printk(TPACPI_DBG_INIT, "initializing video subdriver\n"); TPACPI_ACPIHANDLE_INIT(vid); if (tpacpi_is_ibm()) TPACPI_ACPIHANDLE_INIT(vid2); if (vid2_handle && acpi_evalf(NULL, &ivga, "\\IVGA", "d") && ivga) /* G41, assume IVGA doesn't change */ vid_handle = vid2_handle; if (!vid_handle) /* video switching not supported on R30, R31 */ video_supported = TPACPI_VIDEO_NONE; else if (tpacpi_is_ibm() && acpi_evalf(vid_handle, &video_orig_autosw, "SWIT", "qd")) /* 570 */ video_supported = TPACPI_VIDEO_570; else if (tpacpi_is_ibm() && acpi_evalf(vid_handle, &video_orig_autosw, "^VADL", "qd")) /* 600e/x, 770e, 770x */ video_supported = TPACPI_VIDEO_770; else /* all others */ video_supported = TPACPI_VIDEO_NEW; vdbg_printk(TPACPI_DBG_INIT, "video is %s, mode %d\n", str_supported(video_supported != TPACPI_VIDEO_NONE), video_supported); return (video_supported != TPACPI_VIDEO_NONE) ? 0 : -ENODEV; } static void video_exit(void) { dbg_printk(TPACPI_DBG_EXIT, "restoring original video autoswitch mode\n"); if (video_autosw_set(video_orig_autosw)) pr_err("error while trying to restore original video autoswitch mode\n"); } static int video_outputsw_get(void) { int status = 0; int i; switch (video_supported) { case TPACPI_VIDEO_570: if (!acpi_evalf(NULL, &i, "\\_SB.PHS", "dd", TP_ACPI_VIDEO_570_PHSCMD)) return -EIO; status = i & TP_ACPI_VIDEO_570_PHSMASK; break; case TPACPI_VIDEO_770: if (!acpi_evalf(NULL, &i, "\\VCDL", "d")) return -EIO; if (i) status |= TP_ACPI_VIDEO_S_LCD; if (!acpi_evalf(NULL, &i, "\\VCDC", "d")) return -EIO; if (i) status |= TP_ACPI_VIDEO_S_CRT; break; case TPACPI_VIDEO_NEW: if (!acpi_evalf(NULL, NULL, "\\VUPS", "vd", 1) || !acpi_evalf(NULL, &i, "\\VCDC", "d")) return -EIO; if (i) status |= TP_ACPI_VIDEO_S_CRT; if (!acpi_evalf(NULL, NULL, "\\VUPS", "vd", 0) || !acpi_evalf(NULL, &i, "\\VCDL", "d")) return -EIO; if (i) status |= TP_ACPI_VIDEO_S_LCD; if (!acpi_evalf(NULL, &i, "\\VCDD", "d")) return -EIO; if (i) status |= TP_ACPI_VIDEO_S_DVI; break; default: return -ENOSYS; } return status; } static int video_outputsw_set(int status) { int autosw; int res = 0; switch (video_supported) { case TPACPI_VIDEO_570: res = acpi_evalf(NULL, NULL, "\\_SB.PHS2", "vdd", TP_ACPI_VIDEO_570_PHS2CMD, status | TP_ACPI_VIDEO_570_PHS2SET); break; case TPACPI_VIDEO_770: autosw = video_autosw_get(); if (autosw < 0) return autosw; res = video_autosw_set(1); if (res) return res; res = acpi_evalf(vid_handle, NULL, "ASWT", "vdd", status * 0x100, 0); if (!autosw && video_autosw_set(autosw)) { pr_err("video auto-switch left enabled due to error\n"); return -EIO; } break; case TPACPI_VIDEO_NEW: res = acpi_evalf(NULL, NULL, "\\VUPS", "vd", 0x80) && acpi_evalf(NULL, NULL, "\\VSDS", "vdd", status, 1); break; default: return -ENOSYS; } return (res) ? 0 : -EIO; } static int video_autosw_get(void) { int autosw = 0; switch (video_supported) { case TPACPI_VIDEO_570: if (!acpi_evalf(vid_handle, &autosw, "SWIT", "d")) return -EIO; break; case TPACPI_VIDEO_770: case TPACPI_VIDEO_NEW: if (!acpi_evalf(vid_handle, &autosw, "^VDEE", "d")) return -EIO; break; default: return -ENOSYS; } return autosw & 1; } static int video_autosw_set(int enable) { if (!acpi_evalf(vid_handle, NULL, "_DOS", "vd", (enable) ? 1 : 0)) return -EIO; return 0; } static int video_outputsw_cycle(void) { int autosw = video_autosw_get(); int res; if (autosw < 0) return autosw; switch (video_supported) { case TPACPI_VIDEO_570: res = video_autosw_set(1); if (res) return res; res = acpi_evalf(ec_handle, NULL, "_Q16", "v"); break; case TPACPI_VIDEO_770: case TPACPI_VIDEO_NEW: res = video_autosw_set(1); if (res) return res; res = acpi_evalf(vid_handle, NULL, "VSWT", "v"); break; default: return -ENOSYS; } if (!autosw && video_autosw_set(autosw)) { pr_err("video auto-switch left enabled due to error\n"); return -EIO; } return (res) ? 0 : -EIO; } static int video_expand_toggle(void) { switch (video_supported) { case TPACPI_VIDEO_570: return acpi_evalf(ec_handle, NULL, "_Q17", "v") ? 0 : -EIO; case TPACPI_VIDEO_770: return acpi_evalf(vid_handle, NULL, "VEXP", "v") ? 0 : -EIO; case TPACPI_VIDEO_NEW: return acpi_evalf(NULL, NULL, "\\VEXP", "v") ? 0 : -EIO; default: return -ENOSYS; } /* not reached */ } static int video_read(struct seq_file *m) { int status, autosw; if (video_supported == TPACPI_VIDEO_NONE) { seq_printf(m, "status:\t\tnot supported\n"); return 0; } /* Even reads can crash X.org, so... */ if (!capable(CAP_SYS_ADMIN)) return -EPERM; status = video_outputsw_get(); if (status < 0) return status; autosw = video_autosw_get(); if (autosw < 0) return autosw; seq_printf(m, "status:\t\tsupported\n"); seq_printf(m, "lcd:\t\t%s\n", str_enabled_disabled(status & BIT(0))); seq_printf(m, "crt:\t\t%s\n", str_enabled_disabled(status & BIT(1))); if (video_supported == TPACPI_VIDEO_NEW) seq_printf(m, "dvi:\t\t%s\n", str_enabled_disabled(status & BIT(3))); seq_printf(m, "auto:\t\t%s\n", str_enabled_disabled(autosw & BIT(0))); seq_printf(m, "commands:\tlcd_enable, lcd_disable\n"); seq_printf(m, "commands:\tcrt_enable, crt_disable\n"); if (video_supported == TPACPI_VIDEO_NEW) seq_printf(m, "commands:\tdvi_enable, dvi_disable\n"); seq_printf(m, "commands:\tauto_enable, auto_disable\n"); seq_printf(m, "commands:\tvideo_switch, expand_toggle\n"); return 0; } static int video_write(char *buf) { char *cmd; int enable, disable, status; int res; if (video_supported == TPACPI_VIDEO_NONE) return -ENODEV; /* Even reads can crash X.org, let alone writes... */ if (!capable(CAP_SYS_ADMIN)) return -EPERM; enable = 0; disable = 0; while ((cmd = strsep(&buf, ","))) { if (strstarts(cmd, "lcd_enable")) { enable |= TP_ACPI_VIDEO_S_LCD; } else if (strstarts(cmd, "lcd_disable")) { disable |= TP_ACPI_VIDEO_S_LCD; } else if (strstarts(cmd, "crt_enable")) { enable |= TP_ACPI_VIDEO_S_CRT; } else if (strstarts(cmd, "crt_disable")) { disable |= TP_ACPI_VIDEO_S_CRT; } else if (video_supported == TPACPI_VIDEO_NEW && strstarts(cmd, "dvi_enable")) { enable |= TP_ACPI_VIDEO_S_DVI; } else if (video_supported == TPACPI_VIDEO_NEW && strstarts(cmd, "dvi_disable")) { disable |= TP_ACPI_VIDEO_S_DVI; } else if (strstarts(cmd, "auto_enable")) { res = video_autosw_set(1); if (res) return res; } else if (strstarts(cmd, "auto_disable")) { res = video_autosw_set(0); if (res) return res; } else if (strstarts(cmd, "video_switch")) { res = video_outputsw_cycle(); if (res) return res; } else if (strstarts(cmd, "expand_toggle")) { res = video_expand_toggle(); if (res) return res; } else return -EINVAL; } if (enable || disable) { status = video_outputsw_get(); if (status < 0) return status; res = video_outputsw_set((status & ~disable) | enable); if (res) return res; } return 0; } static struct ibm_struct video_driver_data = { .name = "video", .read = video_read, .write = video_write, .exit = video_exit, }; #endif /* CONFIG_THINKPAD_ACPI_VIDEO */ /************************************************************************* * Keyboard backlight subdriver */ static enum led_brightness kbdlight_brightness; static DEFINE_MUTEX(kbdlight_mutex); static int kbdlight_set_level(int level) { int ret = 0; if (!hkey_handle) return -ENXIO; mutex_lock(&kbdlight_mutex); if (!acpi_evalf(hkey_handle, NULL, "MLCS", "dd", level)) ret = -EIO; else kbdlight_brightness = level; mutex_unlock(&kbdlight_mutex); return ret; } static int kbdlight_get_level(void) { int status = 0; if (!hkey_handle) return -ENXIO; if (!acpi_evalf(hkey_handle, &status, "MLCG", "dd", 0)) return -EIO; if (status < 0) return status; return status & 0x3; } static bool kbdlight_is_supported(void) { int status = 0; if (!hkey_handle) return false; if (!acpi_has_method(hkey_handle, "MLCG")) { vdbg_printk(TPACPI_DBG_INIT, "kbdlight MLCG is unavailable\n"); return false; } if (!acpi_evalf(hkey_handle, &status, "MLCG", "qdd", 0)) { vdbg_printk(TPACPI_DBG_INIT, "kbdlight MLCG failed\n"); return false; } if (status < 0) { vdbg_printk(TPACPI_DBG_INIT, "kbdlight MLCG err: %d\n", status); return false; } vdbg_printk(TPACPI_DBG_INIT, "kbdlight MLCG returned 0x%x\n", status); /* * Guessed test for keyboard backlight: * * Machines with backlight keyboard return: * b010100000010000000XX - ThinkPad X1 Carbon 3rd * b110100010010000000XX - ThinkPad x230 * b010100000010000000XX - ThinkPad x240 * b010100000010000000XX - ThinkPad W541 * (XX is current backlight level) * * Machines without backlight keyboard return: * b10100001000000000000 - ThinkPad x230 * b10110001000000000000 - ThinkPad E430 * b00000000000000000000 - ThinkPad E450 * * Candidate BITs for detection test (XOR): * b01000000001000000000 * ^ */ return status & BIT(9); } static int kbdlight_sysfs_set(struct led_classdev *led_cdev, enum led_brightness brightness) { return kbdlight_set_level(brightness); } static enum led_brightness kbdlight_sysfs_get(struct led_classdev *led_cdev) { int level; level = kbdlight_get_level(); if (level < 0) return 0; return level; } static struct tpacpi_led_classdev tpacpi_led_kbdlight = { .led_classdev = { .name = "tpacpi::kbd_backlight", .max_brightness = 2, .flags = LED_BRIGHT_HW_CHANGED, .brightness_set_blocking = &kbdlight_sysfs_set, .brightness_get = &kbdlight_sysfs_get, } }; static int __init kbdlight_init(struct ibm_init_struct *iibm) { int rc; vdbg_printk(TPACPI_DBG_INIT, "initializing kbdlight subdriver\n"); TPACPI_ACPIHANDLE_INIT(hkey); if (!kbdlight_is_supported()) { tp_features.kbdlight = 0; vdbg_printk(TPACPI_DBG_INIT, "kbdlight is unsupported\n"); return -ENODEV; } kbdlight_brightness = kbdlight_sysfs_get(NULL); tp_features.kbdlight = 1; rc = led_classdev_register(&tpacpi_pdev->dev, &tpacpi_led_kbdlight.led_classdev); if (rc < 0) { tp_features.kbdlight = 0; return rc; } tpacpi_hotkey_driver_mask_set(hotkey_driver_mask | TP_ACPI_HKEY_KBD_LIGHT_MASK); return 0; } static void kbdlight_exit(void) { led_classdev_unregister(&tpacpi_led_kbdlight.led_classdev); } static int kbdlight_set_level_and_update(int level) { int ret; struct led_classdev *led_cdev; ret = kbdlight_set_level(level); led_cdev = &tpacpi_led_kbdlight.led_classdev; if (ret == 0 && !(led_cdev->flags & LED_SUSPENDED)) led_cdev->brightness = level; return ret; } static int kbdlight_read(struct seq_file *m) { int level; if (!tp_features.kbdlight) { seq_printf(m, "status:\t\tnot supported\n"); } else { level = kbdlight_get_level(); if (level < 0) seq_printf(m, "status:\t\terror %d\n", level); else seq_printf(m, "status:\t\t%d\n", level); seq_printf(m, "commands:\t0, 1, 2\n"); } return 0; } static int kbdlight_write(char *buf) { char *cmd; int res, level = -EINVAL; if (!tp_features.kbdlight) return -ENODEV; while ((cmd = strsep(&buf, ","))) { res = kstrtoint(cmd, 10, &level); if (res < 0) return res; } if (level >= 3 || level < 0) return -EINVAL; return kbdlight_set_level_and_update(level); } static void kbdlight_suspend(void) { struct led_classdev *led_cdev; if (!tp_features.kbdlight) return; led_cdev = &tpacpi_led_kbdlight.led_classdev; led_update_brightness(led_cdev); led_classdev_suspend(led_cdev); } static void kbdlight_resume(void) { if (!tp_features.kbdlight) return; led_classdev_resume(&tpacpi_led_kbdlight.led_classdev); } static struct ibm_struct kbdlight_driver_data = { .name = "kbdlight", .read = kbdlight_read, .write = kbdlight_write, .suspend = kbdlight_suspend, .resume = kbdlight_resume, .exit = kbdlight_exit, }; /************************************************************************* * Light (thinklight) subdriver */ TPACPI_HANDLE(lght, root, "\\LGHT"); /* A21e, A2xm/p, T20-22, X20-21 */ TPACPI_HANDLE(ledb, ec, "LEDB"); /* G4x */ static int light_get_status(void) { int status = 0; if (tp_features.light_status) { if (!acpi_evalf(ec_handle, &status, "KBLT", "d")) return -EIO; return (!!status); } return -ENXIO; } static int light_set_status(int status) { int rc; if (tp_features.light) { if (cmos_handle) { rc = acpi_evalf(cmos_handle, NULL, NULL, "vd", (status) ? TP_CMOS_THINKLIGHT_ON : TP_CMOS_THINKLIGHT_OFF); } else { rc = acpi_evalf(lght_handle, NULL, NULL, "vd", (status) ? 1 : 0); } return (rc) ? 0 : -EIO; } return -ENXIO; } static int light_sysfs_set(struct led_classdev *led_cdev, enum led_brightness brightness) { return light_set_status((brightness != LED_OFF) ? TPACPI_LED_ON : TPACPI_LED_OFF); } static enum led_brightness light_sysfs_get(struct led_classdev *led_cdev) { return (light_get_status() == 1) ? LED_ON : LED_OFF; } static struct tpacpi_led_classdev tpacpi_led_thinklight = { .led_classdev = { .name = "tpacpi::thinklight", .max_brightness = 1, .brightness_set_blocking = &light_sysfs_set, .brightness_get = &light_sysfs_get, } }; static int __init light_init(struct ibm_init_struct *iibm) { int rc; vdbg_printk(TPACPI_DBG_INIT, "initializing light subdriver\n"); if (tpacpi_is_ibm()) { TPACPI_ACPIHANDLE_INIT(ledb); TPACPI_ACPIHANDLE_INIT(lght); } TPACPI_ACPIHANDLE_INIT(cmos); /* light not supported on 570, 600e/x, 770e, 770x, G4x, R30, R31 */ tp_features.light = (cmos_handle || lght_handle) && !ledb_handle; if (tp_features.light) /* light status not supported on 570, 600e/x, 770e, 770x, G4x, R30, R31, R32, X20 */ tp_features.light_status = acpi_evalf(ec_handle, NULL, "KBLT", "qv"); vdbg_printk(TPACPI_DBG_INIT, "light is %s, light status is %s\n", str_supported(tp_features.light), str_supported(tp_features.light_status)); if (!tp_features.light) return -ENODEV; rc = led_classdev_register(&tpacpi_pdev->dev, &tpacpi_led_thinklight.led_classdev); if (rc < 0) { tp_features.light = 0; tp_features.light_status = 0; } else { rc = 0; } return rc; } static void light_exit(void) { led_classdev_unregister(&tpacpi_led_thinklight.led_classdev); } static int light_read(struct seq_file *m) { int status; if (!tp_features.light) { seq_printf(m, "status:\t\tnot supported\n"); } else if (!tp_features.light_status) { seq_printf(m, "status:\t\tunknown\n"); seq_printf(m, "commands:\ton, off\n"); } else { status = light_get_status(); if (status < 0) return status; seq_printf(m, "status:\t\t%s\n", str_on_off(status & BIT(0))); seq_printf(m, "commands:\ton, off\n"); } return 0; } static int light_write(char *buf) { char *cmd; int newstatus = 0; if (!tp_features.light) return -ENODEV; while ((cmd = strsep(&buf, ","))) { if (strstarts(cmd, "on")) { newstatus = 1; } else if (strstarts(cmd, "off")) { newstatus = 0; } else return -EINVAL; } return light_set_status(newstatus); } static struct ibm_struct light_driver_data = { .name = "light", .read = light_read, .write = light_write, .exit = light_exit, }; /************************************************************************* * CMOS subdriver */ /* sysfs cmos_command -------------------------------------------------- */ static ssize_t cmos_command_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long cmos_cmd; int res; if (parse_strtoul(buf, 21, &cmos_cmd)) return -EINVAL; res = issue_thinkpad_cmos_command(cmos_cmd); return (res) ? res : count; } static DEVICE_ATTR_WO(cmos_command); static struct attribute *cmos_attributes[] = { &dev_attr_cmos_command.attr, NULL }; static umode_t cmos_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n) { return cmos_handle ? attr->mode : 0; } static const struct attribute_group cmos_attr_group = { .is_visible = cmos_attr_is_visible, .attrs = cmos_attributes, }; /* --------------------------------------------------------------------- */ static int __init cmos_init(struct ibm_init_struct *iibm) { vdbg_printk(TPACPI_DBG_INIT, "initializing cmos commands subdriver\n"); TPACPI_ACPIHANDLE_INIT(cmos); vdbg_printk(TPACPI_DBG_INIT, "cmos commands are %s\n", str_supported(cmos_handle != NULL)); return cmos_handle ? 0 : -ENODEV; } static int cmos_read(struct seq_file *m) { /* cmos not supported on 570, 600e/x, 770e, 770x, A21e, A2xm/p, R30, R31, T20-22, X20-21 */ if (!cmos_handle) seq_printf(m, "status:\t\tnot supported\n"); else { seq_printf(m, "status:\t\tsupported\n"); seq_printf(m, "commands:\t<cmd> (<cmd> is 0-21)\n"); } return 0; } static int cmos_write(char *buf) { char *cmd; int cmos_cmd, res; while ((cmd = strsep(&buf, ","))) { if (sscanf(cmd, "%u", &cmos_cmd) == 1 && cmos_cmd >= 0 && cmos_cmd <= 21) { /* cmos_cmd set */ } else return -EINVAL; res = issue_thinkpad_cmos_command(cmos_cmd); if (res) return res; } return 0; } static struct ibm_struct cmos_driver_data = { .name = "cmos", .read = cmos_read, .write = cmos_write, }; /************************************************************************* * LED subdriver */ enum led_access_mode { TPACPI_LED_NONE = 0, TPACPI_LED_570, /* 570 */ TPACPI_LED_OLD, /* 600e/x, 770e, 770x, A21e, A2xm/p, T20-22, X20-21 */ TPACPI_LED_NEW, /* all others */ }; enum { /* For TPACPI_LED_OLD */ TPACPI_LED_EC_HLCL = 0x0c, /* EC reg to get led to power on */ TPACPI_LED_EC_HLBL = 0x0d, /* EC reg to blink a lit led */ TPACPI_LED_EC_HLMS = 0x0e, /* EC reg to select led to command */ }; static enum led_access_mode led_supported; static acpi_handle led_handle; #define TPACPI_LED_NUMLEDS 16 static struct tpacpi_led_classdev *tpacpi_leds; static enum led_status_t tpacpi_led_state_cache[TPACPI_LED_NUMLEDS]; static const char * const tpacpi_led_names[TPACPI_LED_NUMLEDS] = { /* there's a limit of 19 chars + NULL before 2.6.26 */ "tpacpi::power", "tpacpi:orange:batt", "tpacpi:green:batt", "tpacpi::dock_active", "tpacpi::bay_active", "tpacpi::dock_batt", "tpacpi::unknown_led", "tpacpi::standby", "tpacpi::dock_status1", "tpacpi::dock_status2", "tpacpi::lid_logo_dot", "tpacpi::unknown_led3", "tpacpi::thinkvantage", }; #define TPACPI_SAFE_LEDS 0x1481U static inline bool tpacpi_is_led_restricted(const unsigned int led) { #ifdef CONFIG_THINKPAD_ACPI_UNSAFE_LEDS return false; #else return (1U & (TPACPI_SAFE_LEDS >> led)) == 0; #endif } static int led_get_status(const unsigned int led) { int status; enum led_status_t led_s; switch (led_supported) { case TPACPI_LED_570: if (!acpi_evalf(ec_handle, &status, "GLED", "dd", 1 << led)) return -EIO; led_s = (status == 0) ? TPACPI_LED_OFF : ((status == 1) ? TPACPI_LED_ON : TPACPI_LED_BLINK); tpacpi_led_state_cache[led] = led_s; return led_s; default: return -ENXIO; } /* not reached */ } static int led_set_status(const unsigned int led, const enum led_status_t ledstatus) { /* off, on, blink. Index is led_status_t */ static const unsigned int led_sled_arg1[] = { 0, 1, 3 }; static const unsigned int led_led_arg1[] = { 0, 0x80, 0xc0 }; int rc = 0; switch (led_supported) { case TPACPI_LED_570: /* 570 */ if (unlikely(led > 7)) return -EINVAL; if (unlikely(tpacpi_is_led_restricted(led))) return -EPERM; if (!acpi_evalf(led_handle, NULL, NULL, "vdd", (1 << led), led_sled_arg1[ledstatus])) return -EIO; break; case TPACPI_LED_OLD: /* 600e/x, 770e, 770x, A21e, A2xm/p, T20-22, X20 */ if (unlikely(led > 7)) return -EINVAL; if (unlikely(tpacpi_is_led_restricted(led))) return -EPERM; rc = ec_write(TPACPI_LED_EC_HLMS, (1 << led)); if (rc >= 0) rc = ec_write(TPACPI_LED_EC_HLBL, (ledstatus == TPACPI_LED_BLINK) << led); if (rc >= 0) rc = ec_write(TPACPI_LED_EC_HLCL, (ledstatus != TPACPI_LED_OFF) << led); break; case TPACPI_LED_NEW: /* all others */ if (unlikely(led >= TPACPI_LED_NUMLEDS)) return -EINVAL; if (unlikely(tpacpi_is_led_restricted(led))) return -EPERM; if (!acpi_evalf(led_handle, NULL, NULL, "vdd", led, led_led_arg1[ledstatus])) return -EIO; break; default: return -ENXIO; } if (!rc) tpacpi_led_state_cache[led] = ledstatus; return rc; } static int led_sysfs_set(struct led_classdev *led_cdev, enum led_brightness brightness) { struct tpacpi_led_classdev *data = container_of(led_cdev, struct tpacpi_led_classdev, led_classdev); enum led_status_t new_state; if (brightness == LED_OFF) new_state = TPACPI_LED_OFF; else if (tpacpi_led_state_cache[data->led] != TPACPI_LED_BLINK) new_state = TPACPI_LED_ON; else new_state = TPACPI_LED_BLINK; return led_set_status(data->led, new_state); } static int led_sysfs_blink_set(struct led_classdev *led_cdev, unsigned long *delay_on, unsigned long *delay_off) { struct tpacpi_led_classdev *data = container_of(led_cdev, struct tpacpi_led_classdev, led_classdev); /* Can we choose the flash rate? */ if (*delay_on == 0 && *delay_off == 0) { /* yes. set them to the hardware blink rate (1 Hz) */ *delay_on = 500; /* ms */ *delay_off = 500; /* ms */ } else if ((*delay_on != 500) || (*delay_off != 500)) return -EINVAL; return led_set_status(data->led, TPACPI_LED_BLINK); } static enum led_brightness led_sysfs_get(struct led_classdev *led_cdev) { int rc; struct tpacpi_led_classdev *data = container_of(led_cdev, struct tpacpi_led_classdev, led_classdev); rc = led_get_status(data->led); if (rc == TPACPI_LED_OFF || rc < 0) rc = LED_OFF; /* no error handling in led class :( */ else rc = LED_FULL; return rc; } static void led_exit(void) { unsigned int i; for (i = 0; i < TPACPI_LED_NUMLEDS; i++) led_classdev_unregister(&tpacpi_leds[i].led_classdev); kfree(tpacpi_leds); } static int __init tpacpi_init_led(unsigned int led) { /* LEDs with no name don't get registered */ if (!tpacpi_led_names[led]) return 0; tpacpi_leds[led].led_classdev.brightness_set_blocking = &led_sysfs_set; tpacpi_leds[led].led_classdev.blink_set = &led_sysfs_blink_set; if (led_supported == TPACPI_LED_570) tpacpi_leds[led].led_classdev.brightness_get = &led_sysfs_get; tpacpi_leds[led].led_classdev.name = tpacpi_led_names[led]; tpacpi_leds[led].led_classdev.flags = LED_RETAIN_AT_SHUTDOWN; tpacpi_leds[led].led = led; return led_classdev_register(&tpacpi_pdev->dev, &tpacpi_leds[led].led_classdev); } static const struct tpacpi_quirk led_useful_qtable[] __initconst = { TPACPI_Q_IBM('1', 'E', 0x009f), /* A30 */ TPACPI_Q_IBM('1', 'N', 0x009f), /* A31 */ TPACPI_Q_IBM('1', 'G', 0x009f), /* A31 */ TPACPI_Q_IBM('1', 'I', 0x0097), /* T30 */ TPACPI_Q_IBM('1', 'R', 0x0097), /* T40, T41, T42, R50, R51 */ TPACPI_Q_IBM('7', '0', 0x0097), /* T43, R52 */ TPACPI_Q_IBM('1', 'Y', 0x0097), /* T43 */ TPACPI_Q_IBM('1', 'W', 0x0097), /* R50e */ TPACPI_Q_IBM('1', 'V', 0x0097), /* R51 */ TPACPI_Q_IBM('7', '8', 0x0097), /* R51e */ TPACPI_Q_IBM('7', '6', 0x0097), /* R52 */ TPACPI_Q_IBM('1', 'K', 0x00bf), /* X30 */ TPACPI_Q_IBM('1', 'Q', 0x00bf), /* X31, X32 */ TPACPI_Q_IBM('1', 'U', 0x00bf), /* X40 */ TPACPI_Q_IBM('7', '4', 0x00bf), /* X41 */ TPACPI_Q_IBM('7', '5', 0x00bf), /* X41t */ TPACPI_Q_IBM('7', '9', 0x1f97), /* T60 (1) */ TPACPI_Q_IBM('7', '7', 0x1f97), /* Z60* (1) */ TPACPI_Q_IBM('7', 'F', 0x1f97), /* Z61* (1) */ TPACPI_Q_IBM('7', 'B', 0x1fb7), /* X60 (1) */ /* (1) - may have excess leds enabled on MSB */ /* Defaults (order matters, keep last, don't reorder!) */ { /* Lenovo */ .vendor = PCI_VENDOR_ID_LENOVO, .bios = TPACPI_MATCH_ANY, .ec = TPACPI_MATCH_ANY, .quirks = 0x1fffU, }, { /* IBM ThinkPads with no EC version string */ .vendor = PCI_VENDOR_ID_IBM, .bios = TPACPI_MATCH_ANY, .ec = TPACPI_MATCH_UNKNOWN, .quirks = 0x00ffU, }, { /* IBM ThinkPads with EC version string */ .vendor = PCI_VENDOR_ID_IBM, .bios = TPACPI_MATCH_ANY, .ec = TPACPI_MATCH_ANY, .quirks = 0x00bfU, }, }; static enum led_access_mode __init led_init_detect_mode(void) { acpi_status status; if (tpacpi_is_ibm()) { /* 570 */ status = acpi_get_handle(ec_handle, "SLED", &led_handle); if (ACPI_SUCCESS(status)) return TPACPI_LED_570; /* 600e/x, 770e, 770x, A21e, A2xm/p, T20-22, X20-21 */ status = acpi_get_handle(ec_handle, "SYSL", &led_handle); if (ACPI_SUCCESS(status)) return TPACPI_LED_OLD; } /* most others */ status = acpi_get_handle(ec_handle, "LED", &led_handle); if (ACPI_SUCCESS(status)) return TPACPI_LED_NEW; /* R30, R31, and unknown firmwares */ led_handle = NULL; return TPACPI_LED_NONE; } static int __init led_init(struct ibm_init_struct *iibm) { unsigned int i; int rc; unsigned long useful_leds; vdbg_printk(TPACPI_DBG_INIT, "initializing LED subdriver\n"); led_supported = led_init_detect_mode(); if (led_supported != TPACPI_LED_NONE) { useful_leds = tpacpi_check_quirks(led_useful_qtable, ARRAY_SIZE(led_useful_qtable)); if (!useful_leds) { led_handle = NULL; led_supported = TPACPI_LED_NONE; } } vdbg_printk(TPACPI_DBG_INIT, "LED commands are %s, mode %d\n", str_supported(led_supported), led_supported); if (led_supported == TPACPI_LED_NONE) return -ENODEV; tpacpi_leds = kcalloc(TPACPI_LED_NUMLEDS, sizeof(*tpacpi_leds), GFP_KERNEL); if (!tpacpi_leds) { pr_err("Out of memory for LED data\n"); return -ENOMEM; } for (i = 0; i < TPACPI_LED_NUMLEDS; i++) { tpacpi_leds[i].led = -1; if (!tpacpi_is_led_restricted(i) && test_bit(i, &useful_leds)) { rc = tpacpi_init_led(i); if (rc < 0) { led_exit(); return rc; } } } #ifdef CONFIG_THINKPAD_ACPI_UNSAFE_LEDS pr_notice("warning: userspace override of important firmware LEDs is enabled\n"); #endif return 0; } #define str_led_status(s) ((s) >= TPACPI_LED_BLINK ? "blinking" : str_on_off(s)) static int led_read(struct seq_file *m) { if (!led_supported) { seq_printf(m, "status:\t\tnot supported\n"); return 0; } seq_printf(m, "status:\t\tsupported\n"); if (led_supported == TPACPI_LED_570) { /* 570 */ int i, status; for (i = 0; i < 8; i++) { status = led_get_status(i); if (status < 0) return -EIO; seq_printf(m, "%d:\t\t%s\n", i, str_led_status(status)); } } seq_printf(m, "commands:\t<led> on, <led> off, <led> blink (<led> is 0-15)\n"); return 0; } static int led_write(char *buf) { char *cmd; int led, rc; enum led_status_t s; if (!led_supported) return -ENODEV; while ((cmd = strsep(&buf, ","))) { if (sscanf(cmd, "%d", &led) != 1) return -EINVAL; if (led < 0 || led > (TPACPI_LED_NUMLEDS - 1)) return -ENODEV; if (tpacpi_leds[led].led < 0) return -ENODEV; if (strstr(cmd, "off")) { s = TPACPI_LED_OFF; } else if (strstr(cmd, "on")) { s = TPACPI_LED_ON; } else if (strstr(cmd, "blink")) { s = TPACPI_LED_BLINK; } else { return -EINVAL; } rc = led_set_status(led, s); if (rc < 0) return rc; } return 0; } static struct ibm_struct led_driver_data = { .name = "led", .read = led_read, .write = led_write, .exit = led_exit, }; /************************************************************************* * Beep subdriver */ TPACPI_HANDLE(beep, ec, "BEEP"); /* all except R30, R31 */ #define TPACPI_BEEP_Q1 0x0001 static const struct tpacpi_quirk beep_quirk_table[] __initconst = { TPACPI_Q_IBM('I', 'M', TPACPI_BEEP_Q1), /* 570 */ TPACPI_Q_IBM('I', 'U', TPACPI_BEEP_Q1), /* 570E - unverified */ }; static int __init beep_init(struct ibm_init_struct *iibm) { unsigned long quirks; vdbg_printk(TPACPI_DBG_INIT, "initializing beep subdriver\n"); TPACPI_ACPIHANDLE_INIT(beep); vdbg_printk(TPACPI_DBG_INIT, "beep is %s\n", str_supported(beep_handle != NULL)); quirks = tpacpi_check_quirks(beep_quirk_table, ARRAY_SIZE(beep_quirk_table)); tp_features.beep_needs_two_args = !!(quirks & TPACPI_BEEP_Q1); return (beep_handle) ? 0 : -ENODEV; } static int beep_read(struct seq_file *m) { if (!beep_handle) seq_printf(m, "status:\t\tnot supported\n"); else { seq_printf(m, "status:\t\tsupported\n"); seq_printf(m, "commands:\t<cmd> (<cmd> is 0-17)\n"); } return 0; } static int beep_write(char *buf) { char *cmd; int beep_cmd; if (!beep_handle) return -ENODEV; while ((cmd = strsep(&buf, ","))) { if (sscanf(cmd, "%u", &beep_cmd) == 1 && beep_cmd >= 0 && beep_cmd <= 17) { /* beep_cmd set */ } else return -EINVAL; if (tp_features.beep_needs_two_args) { if (!acpi_evalf(beep_handle, NULL, NULL, "vdd", beep_cmd, 0)) return -EIO; } else { if (!acpi_evalf(beep_handle, NULL, NULL, "vd", beep_cmd)) return -EIO; } } return 0; } static struct ibm_struct beep_driver_data = { .name = "beep", .read = beep_read, .write = beep_write, }; /************************************************************************* * Thermal subdriver */ enum thermal_access_mode { TPACPI_THERMAL_NONE = 0, /* No thermal support */ TPACPI_THERMAL_ACPI_TMP07, /* Use ACPI TMP0-7 */ TPACPI_THERMAL_ACPI_UPDT, /* Use ACPI TMP0-7 with UPDT */ TPACPI_THERMAL_TPEC_8, /* Use ACPI EC regs, 8 sensors */ TPACPI_THERMAL_TPEC_16, /* Use ACPI EC regs, 16 sensors */ }; enum { /* TPACPI_THERMAL_TPEC_* */ TP_EC_THERMAL_TMP0 = 0x78, /* ACPI EC regs TMP 0..7 */ TP_EC_THERMAL_TMP8 = 0xC0, /* ACPI EC regs TMP 8..15 */ TP_EC_FUNCREV = 0xEF, /* ACPI EC Functional revision */ TP_EC_THERMAL_TMP_NA = -128, /* ACPI EC sensor not available */ TPACPI_THERMAL_SENSOR_NA = -128000, /* Sensor not available */ }; #define TPACPI_MAX_THERMAL_SENSORS 16 /* Max thermal sensors supported */ struct ibm_thermal_sensors_struct { s32 temp[TPACPI_MAX_THERMAL_SENSORS]; }; static enum thermal_access_mode thermal_read_mode; static bool thermal_use_labels; /* idx is zero-based */ static int thermal_get_sensor(int idx, s32 *value) { int t; s8 tmp; char tmpi[5]; t = TP_EC_THERMAL_TMP0; switch (thermal_read_mode) { #if TPACPI_MAX_THERMAL_SENSORS >= 16 case TPACPI_THERMAL_TPEC_16: if (idx >= 8 && idx <= 15) { t = TP_EC_THERMAL_TMP8; idx -= 8; } #endif fallthrough; case TPACPI_THERMAL_TPEC_8: if (idx <= 7) { if (!acpi_ec_read(t + idx, &tmp)) return -EIO; *value = tmp * 1000; return 0; } break; case TPACPI_THERMAL_ACPI_UPDT: if (idx <= 7) { snprintf(tmpi, sizeof(tmpi), "TMP%c", '0' + idx); if (!acpi_evalf(ec_handle, NULL, "UPDT", "v")) return -EIO; if (!acpi_evalf(ec_handle, &t, tmpi, "d")) return -EIO; *value = (t - 2732) * 100; return 0; } break; case TPACPI_THERMAL_ACPI_TMP07: if (idx <= 7) { snprintf(tmpi, sizeof(tmpi), "TMP%c", '0' + idx); if (!acpi_evalf(ec_handle, &t, tmpi, "d")) return -EIO; if (t > 127 || t < -127) t = TP_EC_THERMAL_TMP_NA; *value = t * 1000; return 0; } break; case TPACPI_THERMAL_NONE: default: return -ENOSYS; } return -EINVAL; } static int thermal_get_sensors(struct ibm_thermal_sensors_struct *s) { int res, i; int n; n = 8; i = 0; if (!s) return -EINVAL; if (thermal_read_mode == TPACPI_THERMAL_TPEC_16) n = 16; for (i = 0 ; i < n; i++) { res = thermal_get_sensor(i, &s->temp[i]); if (res) return res; } return n; } static void thermal_dump_all_sensors(void) { int n, i; struct ibm_thermal_sensors_struct t; n = thermal_get_sensors(&t); if (n <= 0) return; pr_notice("temperatures (Celsius):"); for (i = 0; i < n; i++) { if (t.temp[i] != TPACPI_THERMAL_SENSOR_NA) pr_cont(" %d", (int)(t.temp[i] / 1000)); else pr_cont(" N/A"); } pr_cont("\n"); } /* sysfs temp##_input -------------------------------------------------- */ static ssize_t thermal_temp_input_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int idx = sensor_attr->index; s32 value; int res; res = thermal_get_sensor(idx, &value); if (res) return res; if (value == TPACPI_THERMAL_SENSOR_NA) return -ENXIO; return sysfs_emit(buf, "%d\n", value); } #define THERMAL_SENSOR_ATTR_TEMP(_idxA, _idxB) \ SENSOR_ATTR(temp##_idxA##_input, S_IRUGO, \ thermal_temp_input_show, NULL, _idxB) static struct sensor_device_attribute sensor_dev_attr_thermal_temp_input[] = { THERMAL_SENSOR_ATTR_TEMP(1, 0), THERMAL_SENSOR_ATTR_TEMP(2, 1), THERMAL_SENSOR_ATTR_TEMP(3, 2), THERMAL_SENSOR_ATTR_TEMP(4, 3), THERMAL_SENSOR_ATTR_TEMP(5, 4), THERMAL_SENSOR_ATTR_TEMP(6, 5), THERMAL_SENSOR_ATTR_TEMP(7, 6), THERMAL_SENSOR_ATTR_TEMP(8, 7), THERMAL_SENSOR_ATTR_TEMP(9, 8), THERMAL_SENSOR_ATTR_TEMP(10, 9), THERMAL_SENSOR_ATTR_TEMP(11, 10), THERMAL_SENSOR_ATTR_TEMP(12, 11), THERMAL_SENSOR_ATTR_TEMP(13, 12), THERMAL_SENSOR_ATTR_TEMP(14, 13), THERMAL_SENSOR_ATTR_TEMP(15, 14), THERMAL_SENSOR_ATTR_TEMP(16, 15), }; #define THERMAL_ATTRS(X) \ &sensor_dev_attr_thermal_temp_input[X].dev_attr.attr static struct attribute *thermal_temp_input_attr[] = { THERMAL_ATTRS(0), THERMAL_ATTRS(1), THERMAL_ATTRS(2), THERMAL_ATTRS(3), THERMAL_ATTRS(4), THERMAL_ATTRS(5), THERMAL_ATTRS(6), THERMAL_ATTRS(7), THERMAL_ATTRS(8), THERMAL_ATTRS(9), THERMAL_ATTRS(10), THERMAL_ATTRS(11), THERMAL_ATTRS(12), THERMAL_ATTRS(13), THERMAL_ATTRS(14), THERMAL_ATTRS(15), NULL }; static umode_t thermal_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n) { if (thermal_read_mode == TPACPI_THERMAL_NONE) return 0; if (attr == THERMAL_ATTRS(8) || attr == THERMAL_ATTRS(9) || attr == THERMAL_ATTRS(10) || attr == THERMAL_ATTRS(11) || attr == THERMAL_ATTRS(12) || attr == THERMAL_ATTRS(13) || attr == THERMAL_ATTRS(14) || attr == THERMAL_ATTRS(15)) { if (thermal_read_mode != TPACPI_THERMAL_TPEC_16) return 0; } return attr->mode; } static const struct attribute_group thermal_attr_group = { .is_visible = thermal_attr_is_visible, .attrs = thermal_temp_input_attr, }; #undef THERMAL_SENSOR_ATTR_TEMP #undef THERMAL_ATTRS static ssize_t temp1_label_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "CPU\n"); } static DEVICE_ATTR_RO(temp1_label); static ssize_t temp2_label_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "GPU\n"); } static DEVICE_ATTR_RO(temp2_label); static struct attribute *temp_label_attributes[] = { &dev_attr_temp1_label.attr, &dev_attr_temp2_label.attr, NULL }; static umode_t temp_label_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n) { return thermal_use_labels ? attr->mode : 0; } static const struct attribute_group temp_label_attr_group = { .is_visible = temp_label_attr_is_visible, .attrs = temp_label_attributes, }; /* --------------------------------------------------------------------- */ static int __init thermal_init(struct ibm_init_struct *iibm) { u8 t, ta1, ta2, ver = 0; int i; int acpi_tmp7; vdbg_printk(TPACPI_DBG_INIT, "initializing thermal subdriver\n"); acpi_tmp7 = acpi_evalf(ec_handle, NULL, "TMP7", "qv"); if (thinkpad_id.ec_model) { /* * Direct EC access mode: sensors at registers * 0x78-0x7F, 0xC0-0xC7. Registers return 0x00 for * non-implemented, thermal sensors return 0x80 when * not available * The above rule is unfortunately flawed. This has been seen with * 0xC2 (power supply ID) causing thermal control problems. * The EC version can be determined by offset 0xEF and at least for * version 3 the Lenovo firmware team confirmed that registers 0xC0-0xC7 * are not thermal registers. */ if (!acpi_ec_read(TP_EC_FUNCREV, &ver)) pr_warn("Thinkpad ACPI EC unable to access EC version\n"); ta1 = ta2 = 0; for (i = 0; i < 8; i++) { if (acpi_ec_read(TP_EC_THERMAL_TMP0 + i, &t)) { ta1 |= t; } else { ta1 = 0; break; } if (ver < 3) { if (acpi_ec_read(TP_EC_THERMAL_TMP8 + i, &t)) { ta2 |= t; } else { ta1 = 0; break; } } } if (ta1 == 0) { /* This is sheer paranoia, but we handle it anyway */ if (acpi_tmp7) { pr_err("ThinkPad ACPI EC access misbehaving, falling back to ACPI TMPx access mode\n"); thermal_read_mode = TPACPI_THERMAL_ACPI_TMP07; } else { pr_err("ThinkPad ACPI EC access misbehaving, disabling thermal sensors access\n"); thermal_read_mode = TPACPI_THERMAL_NONE; } } else { if (ver >= 3) { thermal_read_mode = TPACPI_THERMAL_TPEC_8; thermal_use_labels = true; } else { thermal_read_mode = (ta2 != 0) ? TPACPI_THERMAL_TPEC_16 : TPACPI_THERMAL_TPEC_8; } } } else if (acpi_tmp7) { if (tpacpi_is_ibm() && acpi_evalf(ec_handle, NULL, "UPDT", "qv")) { /* 600e/x, 770e, 770x */ thermal_read_mode = TPACPI_THERMAL_ACPI_UPDT; } else { /* IBM/LENOVO DSDT EC.TMPx access, max 8 sensors */ thermal_read_mode = TPACPI_THERMAL_ACPI_TMP07; } } else { /* temperatures not supported on 570, G4x, R30, R31, R32 */ thermal_read_mode = TPACPI_THERMAL_NONE; } vdbg_printk(TPACPI_DBG_INIT, "thermal is %s, mode %d\n", str_supported(thermal_read_mode != TPACPI_THERMAL_NONE), thermal_read_mode); return thermal_read_mode != TPACPI_THERMAL_NONE ? 0 : -ENODEV; } static int thermal_read(struct seq_file *m) { int n, i; struct ibm_thermal_sensors_struct t; n = thermal_get_sensors(&t); if (unlikely(n < 0)) return n; seq_printf(m, "temperatures:\t"); if (n > 0) { for (i = 0; i < (n - 1); i++) seq_printf(m, "%d ", t.temp[i] / 1000); seq_printf(m, "%d\n", t.temp[i] / 1000); } else seq_printf(m, "not supported\n"); return 0; } static struct ibm_struct thermal_driver_data = { .name = "thermal", .read = thermal_read, }; /************************************************************************* * Backlight/brightness subdriver */ #define TPACPI_BACKLIGHT_DEV_NAME "thinkpad_screen" /* * ThinkPads can read brightness from two places: EC HBRV (0x31), or * CMOS NVRAM byte 0x5E, bits 0-3. * * EC HBRV (0x31) has the following layout * Bit 7: unknown function * Bit 6: unknown function * Bit 5: Z: honour scale changes, NZ: ignore scale changes * Bit 4: must be set to zero to avoid problems * Bit 3-0: backlight brightness level * * brightness_get_raw returns status data in the HBRV layout * * WARNING: The X61 has been verified to use HBRV for something else, so * this should be used _only_ on IBM ThinkPads, and maybe with some careful * testing on the very early *60 Lenovo models... */ enum { TP_EC_BACKLIGHT = 0x31, /* TP_EC_BACKLIGHT bitmasks */ TP_EC_BACKLIGHT_LVLMSK = 0x1F, TP_EC_BACKLIGHT_CMDMSK = 0xE0, TP_EC_BACKLIGHT_MAPSW = 0x20, }; enum tpacpi_brightness_access_mode { TPACPI_BRGHT_MODE_AUTO = 0, /* Not implemented yet */ TPACPI_BRGHT_MODE_EC, /* EC control */ TPACPI_BRGHT_MODE_UCMS_STEP, /* UCMS step-based control */ TPACPI_BRGHT_MODE_ECNVRAM, /* EC control w/ NVRAM store */ TPACPI_BRGHT_MODE_MAX }; static struct backlight_device *ibm_backlight_device; static enum tpacpi_brightness_access_mode brightness_mode = TPACPI_BRGHT_MODE_MAX; static unsigned int brightness_enable = 2; /* 2 = auto, 0 = no, 1 = yes */ static struct mutex brightness_mutex; /* NVRAM brightness access */ static unsigned int tpacpi_brightness_nvram_get(void) { u8 lnvram; lockdep_assert_held(&brightness_mutex); lnvram = (nvram_read_byte(TP_NVRAM_ADDR_BRIGHTNESS) & TP_NVRAM_MASK_LEVEL_BRIGHTNESS) >> TP_NVRAM_POS_LEVEL_BRIGHTNESS; lnvram &= bright_maxlvl; return lnvram; } static void tpacpi_brightness_checkpoint_nvram(void) { u8 lec = 0; u8 b_nvram; if (brightness_mode != TPACPI_BRGHT_MODE_ECNVRAM) return; vdbg_printk(TPACPI_DBG_BRGHT, "trying to checkpoint backlight level to NVRAM...\n"); if (mutex_lock_killable(&brightness_mutex) < 0) return; if (unlikely(!acpi_ec_read(TP_EC_BACKLIGHT, &lec))) goto unlock; lec &= TP_EC_BACKLIGHT_LVLMSK; b_nvram = nvram_read_byte(TP_NVRAM_ADDR_BRIGHTNESS); if (lec != ((b_nvram & TP_NVRAM_MASK_LEVEL_BRIGHTNESS) >> TP_NVRAM_POS_LEVEL_BRIGHTNESS)) { /* NVRAM needs update */ b_nvram &= ~(TP_NVRAM_MASK_LEVEL_BRIGHTNESS << TP_NVRAM_POS_LEVEL_BRIGHTNESS); b_nvram |= lec; nvram_write_byte(b_nvram, TP_NVRAM_ADDR_BRIGHTNESS); dbg_printk(TPACPI_DBG_BRGHT, "updated NVRAM backlight level to %u (0x%02x)\n", (unsigned int) lec, (unsigned int) b_nvram); } else vdbg_printk(TPACPI_DBG_BRGHT, "NVRAM backlight level already is %u (0x%02x)\n", (unsigned int) lec, (unsigned int) b_nvram); unlock: mutex_unlock(&brightness_mutex); } static int tpacpi_brightness_get_raw(int *status) { u8 lec = 0; lockdep_assert_held(&brightness_mutex); switch (brightness_mode) { case TPACPI_BRGHT_MODE_UCMS_STEP: *status = tpacpi_brightness_nvram_get(); return 0; case TPACPI_BRGHT_MODE_EC: case TPACPI_BRGHT_MODE_ECNVRAM: if (unlikely(!acpi_ec_read(TP_EC_BACKLIGHT, &lec))) return -EIO; *status = lec; return 0; default: return -ENXIO; } } /* do NOT call with illegal backlight level value */ static int tpacpi_brightness_set_ec(unsigned int value) { u8 lec = 0; lockdep_assert_held(&brightness_mutex); if (unlikely(!acpi_ec_read(TP_EC_BACKLIGHT, &lec))) return -EIO; if (unlikely(!acpi_ec_write(TP_EC_BACKLIGHT, (lec & TP_EC_BACKLIGHT_CMDMSK) | (value & TP_EC_BACKLIGHT_LVLMSK)))) return -EIO; return 0; } static int tpacpi_brightness_set_ucmsstep(unsigned int value) { int cmos_cmd, inc; unsigned int current_value, i; lockdep_assert_held(&brightness_mutex); current_value = tpacpi_brightness_nvram_get(); if (value == current_value) return 0; cmos_cmd = (value > current_value) ? TP_CMOS_BRIGHTNESS_UP : TP_CMOS_BRIGHTNESS_DOWN; inc = (value > current_value) ? 1 : -1; for (i = current_value; i != value; i += inc) if (issue_thinkpad_cmos_command(cmos_cmd)) return -EIO; return 0; } /* May return EINTR which can always be mapped to ERESTARTSYS */ static int brightness_set(unsigned int value) { int res; if (value > bright_maxlvl) return -EINVAL; vdbg_printk(TPACPI_DBG_BRGHT, "set backlight level to %d\n", value); res = mutex_lock_killable(&brightness_mutex); if (res < 0) return res; switch (brightness_mode) { case TPACPI_BRGHT_MODE_EC: case TPACPI_BRGHT_MODE_ECNVRAM: res = tpacpi_brightness_set_ec(value); break; case TPACPI_BRGHT_MODE_UCMS_STEP: res = tpacpi_brightness_set_ucmsstep(value); break; default: res = -ENXIO; } mutex_unlock(&brightness_mutex); return res; } /* sysfs backlight class ----------------------------------------------- */ static int brightness_update_status(struct backlight_device *bd) { int level = backlight_get_brightness(bd); dbg_printk(TPACPI_DBG_BRGHT, "backlight: attempt to set level to %d\n", level); /* it is the backlight class's job (caller) to handle * EINTR and other errors properly */ return brightness_set(level); } static int brightness_get(struct backlight_device *bd) { int status, res; res = mutex_lock_killable(&brightness_mutex); if (res < 0) return 0; res = tpacpi_brightness_get_raw(&status); mutex_unlock(&brightness_mutex); if (res < 0) return 0; return status & TP_EC_BACKLIGHT_LVLMSK; } static void tpacpi_brightness_notify_change(void) { backlight_force_update(ibm_backlight_device, BACKLIGHT_UPDATE_HOTKEY); } static const struct backlight_ops ibm_backlight_data = { .get_brightness = brightness_get, .update_status = brightness_update_status, }; /* --------------------------------------------------------------------- */ static int __init tpacpi_evaluate_bcl(struct acpi_device *adev, void *not_used) { struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *obj; acpi_status status; int rc; status = acpi_evaluate_object(adev->handle, "_BCL", NULL, &buffer); if (ACPI_FAILURE(status)) return 0; obj = buffer.pointer; if (!obj || obj->type != ACPI_TYPE_PACKAGE) { acpi_handle_info(adev->handle, "Unknown _BCL data, please report this to %s\n", TPACPI_MAIL); rc = 0; } else { rc = obj->package.count; } kfree(obj); return rc; } /* * Call _BCL method of video device. On some ThinkPads this will * switch the firmware to the ACPI brightness control mode. */ static int __init tpacpi_query_bcl_levels(acpi_handle handle) { struct acpi_device *device; device = acpi_fetch_acpi_dev(handle); if (!device) return 0; return acpi_dev_for_each_child(device, tpacpi_evaluate_bcl, NULL); } /* * Returns 0 (no ACPI _BCL or _BCL invalid), or size of brightness map */ static unsigned int __init tpacpi_check_std_acpi_brightness_support(void) { acpi_handle video_device; int bcl_levels = 0; tpacpi_acpi_handle_locate("video", NULL, &video_device); if (video_device) bcl_levels = tpacpi_query_bcl_levels(video_device); tp_features.bright_acpimode = (bcl_levels > 0); return (bcl_levels > 2) ? (bcl_levels - 2) : 0; } /* * These are only useful for models that have only one possibility * of GPU. If the BIOS model handles both ATI and Intel, don't use * these quirks. */ #define TPACPI_BRGHT_Q_NOEC 0x0001 /* Must NOT use EC HBRV */ #define TPACPI_BRGHT_Q_EC 0x0002 /* Should or must use EC HBRV */ #define TPACPI_BRGHT_Q_ASK 0x8000 /* Ask for user report */ static const struct tpacpi_quirk brightness_quirk_table[] __initconst = { /* Models with ATI GPUs known to require ECNVRAM mode */ TPACPI_Q_IBM('1', 'Y', TPACPI_BRGHT_Q_EC), /* T43/p ATI */ /* Models with ATI GPUs that can use ECNVRAM */ TPACPI_Q_IBM('1', 'R', TPACPI_BRGHT_Q_EC), /* R50,51 T40-42 */ TPACPI_Q_IBM('1', 'Q', TPACPI_BRGHT_Q_ASK|TPACPI_BRGHT_Q_EC), TPACPI_Q_IBM('7', '6', TPACPI_BRGHT_Q_EC), /* R52 */ TPACPI_Q_IBM('7', '8', TPACPI_BRGHT_Q_ASK|TPACPI_BRGHT_Q_EC), /* Models with Intel Extreme Graphics 2 */ TPACPI_Q_IBM('1', 'U', TPACPI_BRGHT_Q_NOEC), /* X40 */ TPACPI_Q_IBM('1', 'V', TPACPI_BRGHT_Q_ASK|TPACPI_BRGHT_Q_EC), TPACPI_Q_IBM('1', 'W', TPACPI_BRGHT_Q_ASK|TPACPI_BRGHT_Q_EC), /* Models with Intel GMA900 */ TPACPI_Q_IBM('7', '0', TPACPI_BRGHT_Q_NOEC), /* T43, R52 */ TPACPI_Q_IBM('7', '4', TPACPI_BRGHT_Q_NOEC), /* X41 */ TPACPI_Q_IBM('7', '5', TPACPI_BRGHT_Q_NOEC), /* X41 Tablet */ }; /* * Returns < 0 for error, otherwise sets tp_features.bright_* * and bright_maxlvl. */ static void __init tpacpi_detect_brightness_capabilities(void) { unsigned int b; vdbg_printk(TPACPI_DBG_INIT, "detecting firmware brightness interface capabilities\n"); /* we could run a quirks check here (same table used by * brightness_init) if needed */ /* * We always attempt to detect acpi support, so as to switch * Lenovo Vista BIOS to ACPI brightness mode even if we are not * going to publish a backlight interface */ b = tpacpi_check_std_acpi_brightness_support(); switch (b) { case 16: bright_maxlvl = 15; break; case 8: case 0: bright_maxlvl = 7; break; default: tp_features.bright_unkfw = 1; bright_maxlvl = b - 1; } pr_debug("detected %u brightness levels\n", bright_maxlvl + 1); } static int __init brightness_init(struct ibm_init_struct *iibm) { struct backlight_properties props; int b; unsigned long quirks; vdbg_printk(TPACPI_DBG_INIT, "initializing brightness subdriver\n"); mutex_init(&brightness_mutex); quirks = tpacpi_check_quirks(brightness_quirk_table, ARRAY_SIZE(brightness_quirk_table)); /* tpacpi_detect_brightness_capabilities() must have run already */ /* if it is unknown, we don't handle it: it wouldn't be safe */ if (tp_features.bright_unkfw) return -ENODEV; if (!brightness_enable) { dbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_BRGHT, "brightness support disabled by module parameter\n"); return -ENODEV; } if (acpi_video_get_backlight_type() != acpi_backlight_vendor) { if (brightness_enable > 1) { pr_info("Standard ACPI backlight interface available, not loading native one\n"); return -ENODEV; } else if (brightness_enable == 1) { pr_warn("Cannot enable backlight brightness support, ACPI is already handling it. Refer to the acpi_backlight kernel parameter.\n"); return -ENODEV; } } else if (!tp_features.bright_acpimode) { pr_notice("ACPI backlight interface not available\n"); return -ENODEV; } pr_notice("ACPI native brightness control enabled\n"); /* * Check for module parameter bogosity, note that we * init brightness_mode to TPACPI_BRGHT_MODE_MAX in order to be * able to detect "unspecified" */ if (brightness_mode > TPACPI_BRGHT_MODE_MAX) return -EINVAL; /* TPACPI_BRGHT_MODE_AUTO not implemented yet, just use default */ if (brightness_mode == TPACPI_BRGHT_MODE_AUTO || brightness_mode == TPACPI_BRGHT_MODE_MAX) { if (quirks & TPACPI_BRGHT_Q_EC) brightness_mode = TPACPI_BRGHT_MODE_ECNVRAM; else brightness_mode = TPACPI_BRGHT_MODE_UCMS_STEP; dbg_printk(TPACPI_DBG_BRGHT, "driver auto-selected brightness_mode=%d\n", brightness_mode); } /* Safety */ if (!tpacpi_is_ibm() && (brightness_mode == TPACPI_BRGHT_MODE_ECNVRAM || brightness_mode == TPACPI_BRGHT_MODE_EC)) return -EINVAL; if (tpacpi_brightness_get_raw(&b) < 0) return -ENODEV; memset(&props, 0, sizeof(struct backlight_properties)); props.type = BACKLIGHT_PLATFORM; props.max_brightness = bright_maxlvl; props.brightness = b & TP_EC_BACKLIGHT_LVLMSK; ibm_backlight_device = backlight_device_register(TPACPI_BACKLIGHT_DEV_NAME, NULL, NULL, &ibm_backlight_data, &props); if (IS_ERR(ibm_backlight_device)) { int rc = PTR_ERR(ibm_backlight_device); ibm_backlight_device = NULL; pr_err("Could not register backlight device\n"); return rc; } vdbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_BRGHT, "brightness is supported\n"); if (quirks & TPACPI_BRGHT_Q_ASK) { pr_notice("brightness: will use unverified default: brightness_mode=%d\n", brightness_mode); pr_notice("brightness: please report to %s whether it works well or not on your ThinkPad\n", TPACPI_MAIL); } /* Added by mistake in early 2007. Probably useless, but it could * be working around some unknown firmware problem where the value * read at startup doesn't match the real hardware state... so leave * it in place just in case */ backlight_update_status(ibm_backlight_device); vdbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_BRGHT, "brightness: registering brightness hotkeys as change notification\n"); tpacpi_hotkey_driver_mask_set(hotkey_driver_mask | TP_ACPI_HKEY_BRGHTUP_MASK | TP_ACPI_HKEY_BRGHTDWN_MASK); return 0; } static void brightness_suspend(void) { tpacpi_brightness_checkpoint_nvram(); } static void brightness_shutdown(void) { tpacpi_brightness_checkpoint_nvram(); } static void brightness_exit(void) { if (ibm_backlight_device) { vdbg_printk(TPACPI_DBG_EXIT | TPACPI_DBG_BRGHT, "calling backlight_device_unregister()\n"); backlight_device_unregister(ibm_backlight_device); } tpacpi_brightness_checkpoint_nvram(); } static int brightness_read(struct seq_file *m) { int level; level = brightness_get(NULL); if (level < 0) { seq_printf(m, "level:\t\tunreadable\n"); } else { seq_printf(m, "level:\t\t%d\n", level); seq_printf(m, "commands:\tup, down\n"); seq_printf(m, "commands:\tlevel <level> (<level> is 0-%d)\n", bright_maxlvl); } return 0; } static int brightness_write(char *buf) { int level; int rc; char *cmd; level = brightness_get(NULL); if (level < 0) return level; while ((cmd = strsep(&buf, ","))) { if (strstarts(cmd, "up")) { if (level < bright_maxlvl) level++; } else if (strstarts(cmd, "down")) { if (level > 0) level--; } else if (sscanf(cmd, "level %d", &level) == 1 && level >= 0 && level <= bright_maxlvl) { /* new level set */ } else return -EINVAL; } tpacpi_disclose_usertask("procfs brightness", "set level to %d\n", level); /* * Now we know what the final level should be, so we try to set it. * Doing it this way makes the syscall restartable in case of EINTR */ rc = brightness_set(level); if (!rc && ibm_backlight_device) backlight_force_update(ibm_backlight_device, BACKLIGHT_UPDATE_SYSFS); return (rc == -EINTR) ? -ERESTARTSYS : rc; } static struct ibm_struct brightness_driver_data = { .name = "brightness", .read = brightness_read, .write = brightness_write, .exit = brightness_exit, .suspend = brightness_suspend, .shutdown = brightness_shutdown, }; /************************************************************************* * Volume subdriver */ /* * IBM ThinkPads have a simple volume controller with MUTE gating. * Very early Lenovo ThinkPads follow the IBM ThinkPad spec. * * Since the *61 series (and probably also the later *60 series), Lenovo * ThinkPads only implement the MUTE gate. * * EC register 0x30 * Bit 6: MUTE (1 mutes sound) * Bit 3-0: Volume * Other bits should be zero as far as we know. * * This is also stored in CMOS NVRAM, byte 0x60, bit 6 (MUTE), and * bits 3-0 (volume). Other bits in NVRAM may have other functions, * such as bit 7 which is used to detect repeated presses of MUTE, * and we leave them unchanged. * * On newer Lenovo ThinkPads, the EC can automatically change the volume * in response to user input. Unfortunately, this rarely works well. * The laptop changes the state of its internal MUTE gate and, on some * models, sends KEY_MUTE, causing any user code that responds to the * mute button to get confused. The hardware MUTE gate is also * unnecessary, since user code can handle the mute button without * kernel or EC help. * * To avoid confusing userspace, we simply disable all EC-based mute * and volume controls when possible. */ #ifdef CONFIG_THINKPAD_ACPI_ALSA_SUPPORT #define TPACPI_ALSA_DRVNAME "ThinkPad EC" #define TPACPI_ALSA_SHRTNAME "ThinkPad Console Audio Control" #define TPACPI_ALSA_MIXERNAME TPACPI_ALSA_SHRTNAME #if SNDRV_CARDS <= 32 #define DEFAULT_ALSA_IDX ~((1 << (SNDRV_CARDS - 3)) - 1) #else #define DEFAULT_ALSA_IDX ~((1 << (32 - 3)) - 1) #endif static int alsa_index = DEFAULT_ALSA_IDX; /* last three slots */ static char *alsa_id = "ThinkPadEC"; static bool alsa_enable = SNDRV_DEFAULT_ENABLE1; struct tpacpi_alsa_data { struct snd_card *card; struct snd_ctl_elem_id *ctl_mute_id; struct snd_ctl_elem_id *ctl_vol_id; }; static struct snd_card *alsa_card; enum { TP_EC_AUDIO = 0x30, /* TP_EC_AUDIO bits */ TP_EC_AUDIO_MUTESW = 6, /* TP_EC_AUDIO bitmasks */ TP_EC_AUDIO_LVL_MSK = 0x0F, TP_EC_AUDIO_MUTESW_MSK = (1 << TP_EC_AUDIO_MUTESW), /* Maximum volume */ TP_EC_VOLUME_MAX = 14, }; enum tpacpi_volume_access_mode { TPACPI_VOL_MODE_AUTO = 0, /* Not implemented yet */ TPACPI_VOL_MODE_EC, /* Pure EC control */ TPACPI_VOL_MODE_UCMS_STEP, /* UCMS step-based control: N/A */ TPACPI_VOL_MODE_ECNVRAM, /* EC control w/ NVRAM store */ TPACPI_VOL_MODE_MAX }; enum tpacpi_volume_capabilities { TPACPI_VOL_CAP_AUTO = 0, /* Use white/blacklist */ TPACPI_VOL_CAP_VOLMUTE, /* Output vol and mute */ TPACPI_VOL_CAP_MUTEONLY, /* Output mute only */ TPACPI_VOL_CAP_MAX }; enum tpacpi_mute_btn_mode { TP_EC_MUTE_BTN_LATCH = 0, /* Mute mutes; up/down unmutes */ /* We don't know what mode 1 is. */ TP_EC_MUTE_BTN_NONE = 2, /* Mute and up/down are just keys */ TP_EC_MUTE_BTN_TOGGLE = 3, /* Mute toggles; up/down unmutes */ }; static enum tpacpi_volume_access_mode volume_mode = TPACPI_VOL_MODE_MAX; static enum tpacpi_volume_capabilities volume_capabilities; static bool volume_control_allowed; static bool software_mute_requested = true; static bool software_mute_active; static int software_mute_orig_mode; /* * Used to syncronize writers to TP_EC_AUDIO and * TP_NVRAM_ADDR_MIXER, as we need to do read-modify-write */ static struct mutex volume_mutex; static void tpacpi_volume_checkpoint_nvram(void) { u8 lec = 0; u8 b_nvram; u8 ec_mask; if (volume_mode != TPACPI_VOL_MODE_ECNVRAM) return; if (!volume_control_allowed) return; if (software_mute_active) return; vdbg_printk(TPACPI_DBG_MIXER, "trying to checkpoint mixer state to NVRAM...\n"); if (tp_features.mixer_no_level_control) ec_mask = TP_EC_AUDIO_MUTESW_MSK; else ec_mask = TP_EC_AUDIO_MUTESW_MSK | TP_EC_AUDIO_LVL_MSK; if (mutex_lock_killable(&volume_mutex) < 0) return; if (unlikely(!acpi_ec_read(TP_EC_AUDIO, &lec))) goto unlock; lec &= ec_mask; b_nvram = nvram_read_byte(TP_NVRAM_ADDR_MIXER); if (lec != (b_nvram & ec_mask)) { /* NVRAM needs update */ b_nvram &= ~ec_mask; b_nvram |= lec; nvram_write_byte(b_nvram, TP_NVRAM_ADDR_MIXER); dbg_printk(TPACPI_DBG_MIXER, "updated NVRAM mixer status to 0x%02x (0x%02x)\n", (unsigned int) lec, (unsigned int) b_nvram); } else { vdbg_printk(TPACPI_DBG_MIXER, "NVRAM mixer status already is 0x%02x (0x%02x)\n", (unsigned int) lec, (unsigned int) b_nvram); } unlock: mutex_unlock(&volume_mutex); } static int volume_get_status_ec(u8 *status) { u8 s; if (!acpi_ec_read(TP_EC_AUDIO, &s)) return -EIO; *status = s; dbg_printk(TPACPI_DBG_MIXER, "status 0x%02x\n", s); return 0; } static int volume_get_status(u8 *status) { return volume_get_status_ec(status); } static int volume_set_status_ec(const u8 status) { if (!acpi_ec_write(TP_EC_AUDIO, status)) return -EIO; dbg_printk(TPACPI_DBG_MIXER, "set EC mixer to 0x%02x\n", status); /* * On X200s, and possibly on others, it can take a while for * reads to become correct. */ msleep(1); return 0; } static int volume_set_status(const u8 status) { return volume_set_status_ec(status); } /* returns < 0 on error, 0 on no change, 1 on change */ static int __volume_set_mute_ec(const bool mute) { int rc; u8 s, n; if (mutex_lock_killable(&volume_mutex) < 0) return -EINTR; rc = volume_get_status_ec(&s); if (rc) goto unlock; n = (mute) ? s | TP_EC_AUDIO_MUTESW_MSK : s & ~TP_EC_AUDIO_MUTESW_MSK; if (n != s) { rc = volume_set_status_ec(n); if (!rc) rc = 1; } unlock: mutex_unlock(&volume_mutex); return rc; } static int volume_alsa_set_mute(const bool mute) { dbg_printk(TPACPI_DBG_MIXER, "ALSA: trying to %smute\n", (mute) ? "" : "un"); return __volume_set_mute_ec(mute); } static int volume_set_mute(const bool mute) { int rc; dbg_printk(TPACPI_DBG_MIXER, "trying to %smute\n", (mute) ? "" : "un"); rc = __volume_set_mute_ec(mute); return (rc < 0) ? rc : 0; } /* returns < 0 on error, 0 on no change, 1 on change */ static int __volume_set_volume_ec(const u8 vol) { int rc; u8 s, n; if (vol > TP_EC_VOLUME_MAX) return -EINVAL; if (mutex_lock_killable(&volume_mutex) < 0) return -EINTR; rc = volume_get_status_ec(&s); if (rc) goto unlock; n = (s & ~TP_EC_AUDIO_LVL_MSK) | vol; if (n != s) { rc = volume_set_status_ec(n); if (!rc) rc = 1; } unlock: mutex_unlock(&volume_mutex); return rc; } static int volume_set_software_mute(bool startup) { int result; if (!tpacpi_is_lenovo()) return -ENODEV; if (startup) { if (!acpi_evalf(ec_handle, &software_mute_orig_mode, "HAUM", "qd")) return -EIO; dbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_MIXER, "Initial HAUM setting was %d\n", software_mute_orig_mode); } if (!acpi_evalf(ec_handle, &result, "SAUM", "qdd", (int)TP_EC_MUTE_BTN_NONE)) return -EIO; if (result != TP_EC_MUTE_BTN_NONE) pr_warn("Unexpected SAUM result %d\n", result); /* * In software mute mode, the standard codec controls take * precendence, so we unmute the ThinkPad HW switch at * startup. Just on case there are SAUM-capable ThinkPads * with level controls, set max HW volume as well. */ if (tp_features.mixer_no_level_control) result = volume_set_mute(false); else result = volume_set_status(TP_EC_VOLUME_MAX); if (result != 0) pr_warn("Failed to unmute the HW mute switch\n"); return 0; } static void volume_exit_software_mute(void) { int r; if (!acpi_evalf(ec_handle, &r, "SAUM", "qdd", software_mute_orig_mode) || r != software_mute_orig_mode) pr_warn("Failed to restore mute mode\n"); } static int volume_alsa_set_volume(const u8 vol) { dbg_printk(TPACPI_DBG_MIXER, "ALSA: trying to set volume level to %hu\n", vol); return __volume_set_volume_ec(vol); } static void volume_alsa_notify_change(void) { struct tpacpi_alsa_data *d; if (alsa_card && alsa_card->private_data) { d = alsa_card->private_data; if (d->ctl_mute_id) snd_ctl_notify(alsa_card, SNDRV_CTL_EVENT_MASK_VALUE, d->ctl_mute_id); if (d->ctl_vol_id) snd_ctl_notify(alsa_card, SNDRV_CTL_EVENT_MASK_VALUE, d->ctl_vol_id); } } static int volume_alsa_vol_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = TP_EC_VOLUME_MAX; return 0; } static int volume_alsa_vol_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { u8 s; int rc; rc = volume_get_status(&s); if (rc < 0) return rc; ucontrol->value.integer.value[0] = s & TP_EC_AUDIO_LVL_MSK; return 0; } static int volume_alsa_vol_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { tpacpi_disclose_usertask("ALSA", "set volume to %ld\n", ucontrol->value.integer.value[0]); return volume_alsa_set_volume(ucontrol->value.integer.value[0]); } #define volume_alsa_mute_info snd_ctl_boolean_mono_info static int volume_alsa_mute_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { u8 s; int rc; rc = volume_get_status(&s); if (rc < 0) return rc; ucontrol->value.integer.value[0] = (s & TP_EC_AUDIO_MUTESW_MSK) ? 0 : 1; return 0; } static int volume_alsa_mute_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { tpacpi_disclose_usertask("ALSA", "%smute\n", ucontrol->value.integer.value[0] ? "un" : ""); return volume_alsa_set_mute(!ucontrol->value.integer.value[0]); } static struct snd_kcontrol_new volume_alsa_control_vol __initdata = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Console Playback Volume", .index = 0, .access = SNDRV_CTL_ELEM_ACCESS_READ, .info = volume_alsa_vol_info, .get = volume_alsa_vol_get, }; static struct snd_kcontrol_new volume_alsa_control_mute __initdata = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Console Playback Switch", .index = 0, .access = SNDRV_CTL_ELEM_ACCESS_READ, .info = volume_alsa_mute_info, .get = volume_alsa_mute_get, }; static void volume_suspend(void) { tpacpi_volume_checkpoint_nvram(); } static void volume_resume(void) { if (software_mute_active) { if (volume_set_software_mute(false) < 0) pr_warn("Failed to restore software mute\n"); } else { volume_alsa_notify_change(); } } static void volume_shutdown(void) { tpacpi_volume_checkpoint_nvram(); } static void volume_exit(void) { if (alsa_card) { snd_card_free(alsa_card); alsa_card = NULL; } tpacpi_volume_checkpoint_nvram(); if (software_mute_active) volume_exit_software_mute(); } static int __init volume_create_alsa_mixer(void) { struct snd_card *card; struct tpacpi_alsa_data *data; struct snd_kcontrol *ctl_vol; struct snd_kcontrol *ctl_mute; int rc; rc = snd_card_new(&tpacpi_pdev->dev, alsa_index, alsa_id, THIS_MODULE, sizeof(struct tpacpi_alsa_data), &card); if (rc < 0 || !card) { pr_err("Failed to create ALSA card structures: %d\n", rc); return -ENODEV; } BUG_ON(!card->private_data); data = card->private_data; data->card = card; strscpy(card->driver, TPACPI_ALSA_DRVNAME, sizeof(card->driver)); strscpy(card->shortname, TPACPI_ALSA_SHRTNAME, sizeof(card->shortname)); snprintf(card->mixername, sizeof(card->mixername), "ThinkPad EC %s", (thinkpad_id.ec_version_str) ? thinkpad_id.ec_version_str : "(unknown)"); snprintf(card->longname, sizeof(card->longname), "%s at EC reg 0x%02x, fw %s", card->shortname, TP_EC_AUDIO, (thinkpad_id.ec_version_str) ? thinkpad_id.ec_version_str : "unknown"); if (volume_control_allowed) { volume_alsa_control_vol.put = volume_alsa_vol_put; volume_alsa_control_vol.access = SNDRV_CTL_ELEM_ACCESS_READWRITE; volume_alsa_control_mute.put = volume_alsa_mute_put; volume_alsa_control_mute.access = SNDRV_CTL_ELEM_ACCESS_READWRITE; } if (!tp_features.mixer_no_level_control) { ctl_vol = snd_ctl_new1(&volume_alsa_control_vol, NULL); rc = snd_ctl_add(card, ctl_vol); if (rc < 0) { pr_err("Failed to create ALSA volume control: %d\n", rc); goto err_exit; } data->ctl_vol_id = &ctl_vol->id; } ctl_mute = snd_ctl_new1(&volume_alsa_control_mute, NULL); rc = snd_ctl_add(card, ctl_mute); if (rc < 0) { pr_err("Failed to create ALSA mute control: %d\n", rc); goto err_exit; } data->ctl_mute_id = &ctl_mute->id; rc = snd_card_register(card); if (rc < 0) { pr_err("Failed to register ALSA card: %d\n", rc); goto err_exit; } alsa_card = card; return 0; err_exit: snd_card_free(card); return -ENODEV; } #define TPACPI_VOL_Q_MUTEONLY 0x0001 /* Mute-only control available */ #define TPACPI_VOL_Q_LEVEL 0x0002 /* Volume control available */ static const struct tpacpi_quirk volume_quirk_table[] __initconst = { /* Whitelist volume level on all IBM by default */ { .vendor = PCI_VENDOR_ID_IBM, .bios = TPACPI_MATCH_ANY, .ec = TPACPI_MATCH_ANY, .quirks = TPACPI_VOL_Q_LEVEL }, /* Lenovo models with volume control (needs confirmation) */ TPACPI_QEC_LNV('7', 'C', TPACPI_VOL_Q_LEVEL), /* R60/i */ TPACPI_QEC_LNV('7', 'E', TPACPI_VOL_Q_LEVEL), /* R60e/i */ TPACPI_QEC_LNV('7', '9', TPACPI_VOL_Q_LEVEL), /* T60/p */ TPACPI_QEC_LNV('7', 'B', TPACPI_VOL_Q_LEVEL), /* X60/s */ TPACPI_QEC_LNV('7', 'J', TPACPI_VOL_Q_LEVEL), /* X60t */ TPACPI_QEC_LNV('7', '7', TPACPI_VOL_Q_LEVEL), /* Z60 */ TPACPI_QEC_LNV('7', 'F', TPACPI_VOL_Q_LEVEL), /* Z61 */ /* Whitelist mute-only on all Lenovo by default */ { .vendor = PCI_VENDOR_ID_LENOVO, .bios = TPACPI_MATCH_ANY, .ec = TPACPI_MATCH_ANY, .quirks = TPACPI_VOL_Q_MUTEONLY } }; static int __init volume_init(struct ibm_init_struct *iibm) { unsigned long quirks; int rc; vdbg_printk(TPACPI_DBG_INIT, "initializing volume subdriver\n"); mutex_init(&volume_mutex); /* * Check for module parameter bogosity, note that we * init volume_mode to TPACPI_VOL_MODE_MAX in order to be * able to detect "unspecified" */ if (volume_mode > TPACPI_VOL_MODE_MAX) return -EINVAL; if (volume_mode == TPACPI_VOL_MODE_UCMS_STEP) { pr_err("UCMS step volume mode not implemented, please contact %s\n", TPACPI_MAIL); return -ENODEV; } if (volume_capabilities >= TPACPI_VOL_CAP_MAX) return -EINVAL; /* * The ALSA mixer is our primary interface. * When disabled, don't install the subdriver at all */ if (!alsa_enable) { vdbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_MIXER, "ALSA mixer disabled by parameter, not loading volume subdriver...\n"); return -ENODEV; } quirks = tpacpi_check_quirks(volume_quirk_table, ARRAY_SIZE(volume_quirk_table)); switch (volume_capabilities) { case TPACPI_VOL_CAP_AUTO: if (quirks & TPACPI_VOL_Q_MUTEONLY) tp_features.mixer_no_level_control = 1; else if (quirks & TPACPI_VOL_Q_LEVEL) tp_features.mixer_no_level_control = 0; else return -ENODEV; /* no mixer */ break; case TPACPI_VOL_CAP_VOLMUTE: tp_features.mixer_no_level_control = 0; break; case TPACPI_VOL_CAP_MUTEONLY: tp_features.mixer_no_level_control = 1; break; default: return -ENODEV; } if (volume_capabilities != TPACPI_VOL_CAP_AUTO) dbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_MIXER, "using user-supplied volume_capabilities=%d\n", volume_capabilities); if (volume_mode == TPACPI_VOL_MODE_AUTO || volume_mode == TPACPI_VOL_MODE_MAX) { volume_mode = TPACPI_VOL_MODE_ECNVRAM; dbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_MIXER, "driver auto-selected volume_mode=%d\n", volume_mode); } else { dbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_MIXER, "using user-supplied volume_mode=%d\n", volume_mode); } vdbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_MIXER, "mute is supported, volume control is %s\n", str_supported(!tp_features.mixer_no_level_control)); if (software_mute_requested && volume_set_software_mute(true) == 0) { software_mute_active = true; } else { rc = volume_create_alsa_mixer(); if (rc) { pr_err("Could not create the ALSA mixer interface\n"); return rc; } pr_info("Console audio control enabled, mode: %s\n", (volume_control_allowed) ? "override (read/write)" : "monitor (read only)"); } vdbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_MIXER, "registering volume hotkeys as change notification\n"); tpacpi_hotkey_driver_mask_set(hotkey_driver_mask | TP_ACPI_HKEY_VOLUP_MASK | TP_ACPI_HKEY_VOLDWN_MASK | TP_ACPI_HKEY_MUTE_MASK); return 0; } static int volume_read(struct seq_file *m) { u8 status; if (volume_get_status(&status) < 0) { seq_printf(m, "level:\t\tunreadable\n"); } else { if (tp_features.mixer_no_level_control) seq_printf(m, "level:\t\tunsupported\n"); else seq_printf(m, "level:\t\t%d\n", status & TP_EC_AUDIO_LVL_MSK); seq_printf(m, "mute:\t\t%s\n", str_on_off(status & BIT(TP_EC_AUDIO_MUTESW))); if (volume_control_allowed) { seq_printf(m, "commands:\tunmute, mute\n"); if (!tp_features.mixer_no_level_control) { seq_printf(m, "commands:\tup, down\n"); seq_printf(m, "commands:\tlevel <level> (<level> is 0-%d)\n", TP_EC_VOLUME_MAX); } } } return 0; } static int volume_write(char *buf) { u8 s; u8 new_level, new_mute; int l; char *cmd; int rc; /* * We do allow volume control at driver startup, so that the * user can set initial state through the volume=... parameter hack. */ if (!volume_control_allowed && tpacpi_lifecycle != TPACPI_LIFE_INIT) { if (unlikely(!tp_warned.volume_ctrl_forbidden)) { tp_warned.volume_ctrl_forbidden = 1; pr_notice("Console audio control in monitor mode, changes are not allowed\n"); pr_notice("Use the volume_control=1 module parameter to enable volume control\n"); } return -EPERM; } rc = volume_get_status(&s); if (rc < 0) return rc; new_level = s & TP_EC_AUDIO_LVL_MSK; new_mute = s & TP_EC_AUDIO_MUTESW_MSK; while ((cmd = strsep(&buf, ","))) { if (!tp_features.mixer_no_level_control) { if (strstarts(cmd, "up")) { if (new_mute) new_mute = 0; else if (new_level < TP_EC_VOLUME_MAX) new_level++; continue; } else if (strstarts(cmd, "down")) { if (new_mute) new_mute = 0; else if (new_level > 0) new_level--; continue; } else if (sscanf(cmd, "level %u", &l) == 1 && l >= 0 && l <= TP_EC_VOLUME_MAX) { new_level = l; continue; } } if (strstarts(cmd, "mute")) new_mute = TP_EC_AUDIO_MUTESW_MSK; else if (strstarts(cmd, "unmute")) new_mute = 0; else return -EINVAL; } if (tp_features.mixer_no_level_control) { tpacpi_disclose_usertask("procfs volume", "%smute\n", new_mute ? "" : "un"); rc = volume_set_mute(!!new_mute); } else { tpacpi_disclose_usertask("procfs volume", "%smute and set level to %d\n", new_mute ? "" : "un", new_level); rc = volume_set_status(new_mute | new_level); } volume_alsa_notify_change(); return (rc == -EINTR) ? -ERESTARTSYS : rc; } static struct ibm_struct volume_driver_data = { .name = "volume", .read = volume_read, .write = volume_write, .exit = volume_exit, .suspend = volume_suspend, .resume = volume_resume, .shutdown = volume_shutdown, }; #else /* !CONFIG_THINKPAD_ACPI_ALSA_SUPPORT */ #define alsa_card NULL static inline void volume_alsa_notify_change(void) { } static int __init volume_init(struct ibm_init_struct *iibm) { pr_info("volume: disabled as there is no ALSA support in this kernel\n"); return -ENODEV; } static struct ibm_struct volume_driver_data = { .name = "volume", }; #endif /* CONFIG_THINKPAD_ACPI_ALSA_SUPPORT */ /************************************************************************* * Fan subdriver */ /* * FAN ACCESS MODES * * TPACPI_FAN_RD_ACPI_GFAN: * ACPI GFAN method: returns fan level * * see TPACPI_FAN_WR_ACPI_SFAN * EC 0x2f (HFSP) not available if GFAN exists * * TPACPI_FAN_WR_ACPI_SFAN: * ACPI SFAN method: sets fan level, 0 (stop) to 7 (max) * * EC 0x2f (HFSP) might be available *for reading*, but do not use * it for writing. * * TPACPI_FAN_WR_TPEC: * ThinkPad EC register 0x2f (HFSP): fan control loop mode * Supported on almost all ThinkPads * * Fan speed changes of any sort (including those caused by the * disengaged mode) are usually done slowly by the firmware as the * maximum amount of fan duty cycle change per second seems to be * limited. * * Reading is not available if GFAN exists. * Writing is not available if SFAN exists. * * Bits * 7 automatic mode engaged; * (default operation mode of the ThinkPad) * fan level is ignored in this mode. * 6 full speed mode (takes precedence over bit 7); * not available on all thinkpads. May disable * the tachometer while the fan controller ramps up * the speed (which can take up to a few *minutes*). * Speeds up fan to 100% duty-cycle, which is far above * the standard RPM levels. It is not impossible that * it could cause hardware damage. * 5-3 unused in some models. Extra bits for fan level * in others, but still useless as all values above * 7 map to the same speed as level 7 in these models. * 2-0 fan level (0..7 usually) * 0x00 = stop * 0x07 = max (set when temperatures critical) * Some ThinkPads may have other levels, see * TPACPI_FAN_WR_ACPI_FANS (X31/X40/X41) * * FIRMWARE BUG: on some models, EC 0x2f might not be initialized at * boot. Apparently the EC does not initialize it, so unless ACPI DSDT * does so, its initial value is meaningless (0x07). * * For firmware bugs, refer to: * https://thinkwiki.org/wiki/Embedded_Controller_Firmware#Firmware_Issues * * ---- * * ThinkPad EC register 0x84 (LSB), 0x85 (MSB): * Main fan tachometer reading (in RPM) * * This register is present on all ThinkPads with a new-style EC, and * it is known not to be present on the A21m/e, and T22, as there is * something else in offset 0x84 according to the ACPI DSDT. Other * ThinkPads from this same time period (and earlier) probably lack the * tachometer as well. * * Unfortunately a lot of ThinkPads with new-style ECs but whose firmware * was never fixed by IBM to report the EC firmware version string * probably support the tachometer (like the early X models), so * detecting it is quite hard. We need more data to know for sure. * * FIRMWARE BUG: always read 0x84 first, otherwise incorrect readings * might result. * * FIRMWARE BUG: may go stale while the EC is switching to full speed * mode. * * For firmware bugs, refer to: * https://thinkwiki.org/wiki/Embedded_Controller_Firmware#Firmware_Issues * * ---- * * ThinkPad EC register 0x31 bit 0 (only on select models) * * When bit 0 of EC register 0x31 is zero, the tachometer registers * show the speed of the main fan. When bit 0 of EC register 0x31 * is one, the tachometer registers show the speed of the auxiliary * fan. * * Fan control seems to affect both fans, regardless of the state * of this bit. * * So far, only the firmware for the X60/X61 non-tablet versions * seem to support this (firmware TP-7M). * * TPACPI_FAN_WR_ACPI_FANS: * ThinkPad X31, X40, X41. Not available in the X60. * * FANS ACPI handle: takes three arguments: low speed, medium speed, * high speed. ACPI DSDT seems to map these three speeds to levels * as follows: STOP LOW LOW MED MED HIGH HIGH HIGH HIGH * (this map is stored on FAN0..FAN8 as "0,1,1,2,2,3,3,3,3") * * The speeds are stored on handles * (FANA:FAN9), (FANC:FANB), (FANE:FAND). * * There are three default speed sets, accessible as handles: * FS1L,FS1M,FS1H; FS2L,FS2M,FS2H; FS3L,FS3M,FS3H * * ACPI DSDT switches which set is in use depending on various * factors. * * TPACPI_FAN_WR_TPEC is also available and should be used to * command the fan. The X31/X40/X41 seems to have 8 fan levels, * but the ACPI tables just mention level 7. */ enum { /* Fan control constants */ fan_status_offset = 0x2f, /* EC register 0x2f */ fan_rpm_offset = 0x84, /* EC register 0x84: LSB, 0x85 MSB (RPM) * 0x84 must be read before 0x85 */ fan_select_offset = 0x31, /* EC register 0x31 (Firmware 7M) bit 0 selects which fan is active */ TP_EC_FAN_FULLSPEED = 0x40, /* EC fan mode: full speed */ TP_EC_FAN_AUTO = 0x80, /* EC fan mode: auto fan control */ TPACPI_FAN_LAST_LEVEL = 0x100, /* Use cached last-seen fan level */ }; enum fan_status_access_mode { TPACPI_FAN_NONE = 0, /* No fan status or control */ TPACPI_FAN_RD_ACPI_GFAN, /* Use ACPI GFAN */ TPACPI_FAN_RD_TPEC, /* Use ACPI EC regs 0x2f, 0x84-0x85 */ }; enum fan_control_access_mode { TPACPI_FAN_WR_NONE = 0, /* No fan control */ TPACPI_FAN_WR_ACPI_SFAN, /* Use ACPI SFAN */ TPACPI_FAN_WR_TPEC, /* Use ACPI EC reg 0x2f */ TPACPI_FAN_WR_ACPI_FANS, /* Use ACPI FANS and EC reg 0x2f */ }; enum fan_control_commands { TPACPI_FAN_CMD_SPEED = 0x0001, /* speed command */ TPACPI_FAN_CMD_LEVEL = 0x0002, /* level command */ TPACPI_FAN_CMD_ENABLE = 0x0004, /* enable/disable cmd, * and also watchdog cmd */ }; static bool fan_control_allowed; static enum fan_status_access_mode fan_status_access_mode; static enum fan_control_access_mode fan_control_access_mode; static enum fan_control_commands fan_control_commands; static u8 fan_control_initial_status; static u8 fan_control_desired_level; static u8 fan_control_resume_level; static int fan_watchdog_maxinterval; static struct mutex fan_mutex; static void fan_watchdog_fire(struct work_struct *ignored); static DECLARE_DELAYED_WORK(fan_watchdog_task, fan_watchdog_fire); TPACPI_HANDLE(fans, ec, "FANS"); /* X31, X40, X41 */ TPACPI_HANDLE(gfan, ec, "GFAN", /* 570 */ "\\FSPD", /* 600e/x, 770e, 770x */ ); /* all others */ TPACPI_HANDLE(sfan, ec, "SFAN", /* 570 */ "JFNS", /* 770x-JL */ ); /* all others */ /* * Unitialized HFSP quirk: ACPI DSDT and EC fail to initialize the * HFSP register at boot, so it contains 0x07 but the Thinkpad could * be in auto mode (0x80). * * This is corrected by any write to HFSP either by the driver, or * by the firmware. * * We assume 0x07 really means auto mode while this quirk is active, * as this is far more likely than the ThinkPad being in level 7, * which is only used by the firmware during thermal emergencies. * * Enable for TP-1Y (T43), TP-78 (R51e), TP-76 (R52), * TP-70 (T43, R52), which are known to be buggy. */ static void fan_quirk1_setup(void) { if (fan_control_initial_status == 0x07) { pr_notice("fan_init: initial fan status is unknown, assuming it is in auto mode\n"); tp_features.fan_ctrl_status_undef = 1; } } static void fan_quirk1_handle(u8 *fan_status) { if (unlikely(tp_features.fan_ctrl_status_undef)) { if (*fan_status != fan_control_initial_status) { /* something changed the HFSP regisnter since * driver init time, so it is not undefined * anymore */ tp_features.fan_ctrl_status_undef = 0; } else { /* Return most likely status. In fact, it * might be the only possible status */ *fan_status = TP_EC_FAN_AUTO; } } } /* Select main fan on X60/X61, NOOP on others */ static bool fan_select_fan1(void) { if (tp_features.second_fan) { u8 val; if (ec_read(fan_select_offset, &val) < 0) return false; val &= 0xFEU; if (ec_write(fan_select_offset, val) < 0) return false; } return true; } /* Select secondary fan on X60/X61 */ static bool fan_select_fan2(void) { u8 val; if (!tp_features.second_fan) return false; if (ec_read(fan_select_offset, &val) < 0) return false; val |= 0x01U; if (ec_write(fan_select_offset, val) < 0) return false; return true; } static void fan_update_desired_level(u8 status) { lockdep_assert_held(&fan_mutex); if ((status & (TP_EC_FAN_AUTO | TP_EC_FAN_FULLSPEED)) == 0) { if (status > 7) fan_control_desired_level = 7; else fan_control_desired_level = status; } } static int fan_get_status(u8 *status) { u8 s; /* TODO: * Add TPACPI_FAN_RD_ACPI_FANS ? */ switch (fan_status_access_mode) { case TPACPI_FAN_RD_ACPI_GFAN: { /* 570, 600e/x, 770e, 770x */ int res; if (unlikely(!acpi_evalf(gfan_handle, &res, NULL, "d"))) return -EIO; if (likely(status)) *status = res & 0x07; break; } case TPACPI_FAN_RD_TPEC: /* all except 570, 600e/x, 770e, 770x */ if (unlikely(!acpi_ec_read(fan_status_offset, &s))) return -EIO; if (likely(status)) { *status = s; fan_quirk1_handle(status); } break; default: return -ENXIO; } return 0; } static int fan_get_status_safe(u8 *status) { int rc; u8 s; if (mutex_lock_killable(&fan_mutex)) return -ERESTARTSYS; rc = fan_get_status(&s); if (!rc) fan_update_desired_level(s); mutex_unlock(&fan_mutex); if (rc) return rc; if (status) *status = s; return 0; } static int fan_get_speed(unsigned int *speed) { u8 hi, lo; switch (fan_status_access_mode) { case TPACPI_FAN_RD_TPEC: /* all except 570, 600e/x, 770e, 770x */ if (unlikely(!fan_select_fan1())) return -EIO; if (unlikely(!acpi_ec_read(fan_rpm_offset, &lo) || !acpi_ec_read(fan_rpm_offset + 1, &hi))) return -EIO; if (likely(speed)) *speed = (hi << 8) | lo; break; default: return -ENXIO; } return 0; } static int fan2_get_speed(unsigned int *speed) { u8 hi, lo; bool rc; switch (fan_status_access_mode) { case TPACPI_FAN_RD_TPEC: /* all except 570, 600e/x, 770e, 770x */ if (unlikely(!fan_select_fan2())) return -EIO; rc = !acpi_ec_read(fan_rpm_offset, &lo) || !acpi_ec_read(fan_rpm_offset + 1, &hi); fan_select_fan1(); /* play it safe */ if (rc) return -EIO; if (likely(speed)) *speed = (hi << 8) | lo; break; default: return -ENXIO; } return 0; } static int fan_set_level(int level) { if (!fan_control_allowed) return -EPERM; switch (fan_control_access_mode) { case TPACPI_FAN_WR_ACPI_SFAN: if ((level < 0) || (level > 7)) return -EINVAL; if (tp_features.second_fan_ctl) { if (!fan_select_fan2() || !acpi_evalf(sfan_handle, NULL, NULL, "vd", level)) { pr_warn("Couldn't set 2nd fan level, disabling support\n"); tp_features.second_fan_ctl = 0; } fan_select_fan1(); } if (!acpi_evalf(sfan_handle, NULL, NULL, "vd", level)) return -EIO; break; case TPACPI_FAN_WR_ACPI_FANS: case TPACPI_FAN_WR_TPEC: if (!(level & TP_EC_FAN_AUTO) && !(level & TP_EC_FAN_FULLSPEED) && ((level < 0) || (level > 7))) return -EINVAL; /* safety net should the EC not support AUTO * or FULLSPEED mode bits and just ignore them */ if (level & TP_EC_FAN_FULLSPEED) level |= 7; /* safety min speed 7 */ else if (level & TP_EC_FAN_AUTO) level |= 4; /* safety min speed 4 */ if (tp_features.second_fan_ctl) { if (!fan_select_fan2() || !acpi_ec_write(fan_status_offset, level)) { pr_warn("Couldn't set 2nd fan level, disabling support\n"); tp_features.second_fan_ctl = 0; } fan_select_fan1(); } if (!acpi_ec_write(fan_status_offset, level)) return -EIO; else tp_features.fan_ctrl_status_undef = 0; break; default: return -ENXIO; } vdbg_printk(TPACPI_DBG_FAN, "fan control: set fan control register to 0x%02x\n", level); return 0; } static int fan_set_level_safe(int level) { int rc; if (!fan_control_allowed) return -EPERM; if (mutex_lock_killable(&fan_mutex)) return -ERESTARTSYS; if (level == TPACPI_FAN_LAST_LEVEL) level = fan_control_desired_level; rc = fan_set_level(level); if (!rc) fan_update_desired_level(level); mutex_unlock(&fan_mutex); return rc; } static int fan_set_enable(void) { u8 s; int rc; if (!fan_control_allowed) return -EPERM; if (mutex_lock_killable(&fan_mutex)) return -ERESTARTSYS; switch (fan_control_access_mode) { case TPACPI_FAN_WR_ACPI_FANS: case TPACPI_FAN_WR_TPEC: rc = fan_get_status(&s); if (rc) break; /* Don't go out of emergency fan mode */ if (s != 7) { s &= 0x07; s |= TP_EC_FAN_AUTO | 4; /* min fan speed 4 */ } if (!acpi_ec_write(fan_status_offset, s)) rc = -EIO; else { tp_features.fan_ctrl_status_undef = 0; rc = 0; } break; case TPACPI_FAN_WR_ACPI_SFAN: rc = fan_get_status(&s); if (rc) break; s &= 0x07; /* Set fan to at least level 4 */ s |= 4; if (!acpi_evalf(sfan_handle, NULL, NULL, "vd", s)) rc = -EIO; else rc = 0; break; default: rc = -ENXIO; } mutex_unlock(&fan_mutex); if (!rc) vdbg_printk(TPACPI_DBG_FAN, "fan control: set fan control register to 0x%02x\n", s); return rc; } static int fan_set_disable(void) { int rc; if (!fan_control_allowed) return -EPERM; if (mutex_lock_killable(&fan_mutex)) return -ERESTARTSYS; rc = 0; switch (fan_control_access_mode) { case TPACPI_FAN_WR_ACPI_FANS: case TPACPI_FAN_WR_TPEC: if (!acpi_ec_write(fan_status_offset, 0x00)) rc = -EIO; else { fan_control_desired_level = 0; tp_features.fan_ctrl_status_undef = 0; } break; case TPACPI_FAN_WR_ACPI_SFAN: if (!acpi_evalf(sfan_handle, NULL, NULL, "vd", 0x00)) rc = -EIO; else fan_control_desired_level = 0; break; default: rc = -ENXIO; } if (!rc) vdbg_printk(TPACPI_DBG_FAN, "fan control: set fan control register to 0\n"); mutex_unlock(&fan_mutex); return rc; } static int fan_set_speed(int speed) { int rc; if (!fan_control_allowed) return -EPERM; if (mutex_lock_killable(&fan_mutex)) return -ERESTARTSYS; rc = 0; switch (fan_control_access_mode) { case TPACPI_FAN_WR_ACPI_FANS: if (speed >= 0 && speed <= 65535) { if (!acpi_evalf(fans_handle, NULL, NULL, "vddd", speed, speed, speed)) rc = -EIO; } else rc = -EINVAL; break; default: rc = -ENXIO; } mutex_unlock(&fan_mutex); return rc; } static void fan_watchdog_reset(void) { if (fan_control_access_mode == TPACPI_FAN_WR_NONE) return; if (fan_watchdog_maxinterval > 0 && tpacpi_lifecycle != TPACPI_LIFE_EXITING) mod_delayed_work(tpacpi_wq, &fan_watchdog_task, msecs_to_jiffies(fan_watchdog_maxinterval * 1000)); else cancel_delayed_work(&fan_watchdog_task); } static void fan_watchdog_fire(struct work_struct *ignored) { int rc; if (tpacpi_lifecycle != TPACPI_LIFE_RUNNING) return; pr_notice("fan watchdog: enabling fan\n"); rc = fan_set_enable(); if (rc < 0) { pr_err("fan watchdog: error %d while enabling fan, will try again later...\n", rc); /* reschedule for later */ fan_watchdog_reset(); } } /* * SYSFS fan layout: hwmon compatible (device) * * pwm*_enable: * 0: "disengaged" mode * 1: manual mode * 2: native EC "auto" mode (recommended, hardware default) * * pwm*: set speed in manual mode, ignored otherwise. * 0 is level 0; 255 is level 7. Intermediate points done with linear * interpolation. * * fan*_input: tachometer reading, RPM * * * SYSFS fan layout: extensions * * fan_watchdog (driver): * fan watchdog interval in seconds, 0 disables (default), max 120 */ /* sysfs fan pwm1_enable ----------------------------------------------- */ static ssize_t fan_pwm1_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { int res, mode; u8 status; res = fan_get_status_safe(&status); if (res) return res; if (status & TP_EC_FAN_FULLSPEED) { mode = 0; } else if (status & TP_EC_FAN_AUTO) { mode = 2; } else mode = 1; return sysfs_emit(buf, "%d\n", mode); } static ssize_t fan_pwm1_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long t; int res, level; if (parse_strtoul(buf, 2, &t)) return -EINVAL; tpacpi_disclose_usertask("hwmon pwm1_enable", "set fan mode to %lu\n", t); switch (t) { case 0: level = TP_EC_FAN_FULLSPEED; break; case 1: level = TPACPI_FAN_LAST_LEVEL; break; case 2: level = TP_EC_FAN_AUTO; break; case 3: /* reserved for software-controlled auto mode */ return -ENOSYS; default: return -EINVAL; } res = fan_set_level_safe(level); if (res == -ENXIO) return -EINVAL; else if (res < 0) return res; fan_watchdog_reset(); return count; } static DEVICE_ATTR(pwm1_enable, S_IWUSR | S_IRUGO, fan_pwm1_enable_show, fan_pwm1_enable_store); /* sysfs fan pwm1 ------------------------------------------------------ */ static ssize_t fan_pwm1_show(struct device *dev, struct device_attribute *attr, char *buf) { int res; u8 status; res = fan_get_status_safe(&status); if (res) return res; if ((status & (TP_EC_FAN_AUTO | TP_EC_FAN_FULLSPEED)) != 0) status = fan_control_desired_level; if (status > 7) status = 7; return sysfs_emit(buf, "%u\n", (status * 255) / 7); } static ssize_t fan_pwm1_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long s; int rc; u8 status, newlevel; if (parse_strtoul(buf, 255, &s)) return -EINVAL; tpacpi_disclose_usertask("hwmon pwm1", "set fan speed to %lu\n", s); /* scale down from 0-255 to 0-7 */ newlevel = (s >> 5) & 0x07; if (mutex_lock_killable(&fan_mutex)) return -ERESTARTSYS; rc = fan_get_status(&status); if (!rc && (status & (TP_EC_FAN_AUTO | TP_EC_FAN_FULLSPEED)) == 0) { rc = fan_set_level(newlevel); if (rc == -ENXIO) rc = -EINVAL; else if (!rc) { fan_update_desired_level(newlevel); fan_watchdog_reset(); } } mutex_unlock(&fan_mutex); return (rc) ? rc : count; } static DEVICE_ATTR(pwm1, S_IWUSR | S_IRUGO, fan_pwm1_show, fan_pwm1_store); /* sysfs fan fan1_input ------------------------------------------------ */ static ssize_t fan_fan1_input_show(struct device *dev, struct device_attribute *attr, char *buf) { int res; unsigned int speed; res = fan_get_speed(&speed); if (res < 0) return res; return sysfs_emit(buf, "%u\n", speed); } static DEVICE_ATTR(fan1_input, S_IRUGO, fan_fan1_input_show, NULL); /* sysfs fan fan2_input ------------------------------------------------ */ static ssize_t fan_fan2_input_show(struct device *dev, struct device_attribute *attr, char *buf) { int res; unsigned int speed; res = fan2_get_speed(&speed); if (res < 0) return res; return sysfs_emit(buf, "%u\n", speed); } static DEVICE_ATTR(fan2_input, S_IRUGO, fan_fan2_input_show, NULL); /* sysfs fan fan_watchdog (hwmon driver) ------------------------------- */ static ssize_t fan_watchdog_show(struct device_driver *drv, char *buf) { return sysfs_emit(buf, "%u\n", fan_watchdog_maxinterval); } static ssize_t fan_watchdog_store(struct device_driver *drv, const char *buf, size_t count) { unsigned long t; if (parse_strtoul(buf, 120, &t)) return -EINVAL; if (!fan_control_allowed) return -EPERM; fan_watchdog_maxinterval = t; fan_watchdog_reset(); tpacpi_disclose_usertask("fan_watchdog", "set to %lu\n", t); return count; } static DRIVER_ATTR_RW(fan_watchdog); /* --------------------------------------------------------------------- */ static struct attribute *fan_attributes[] = { &dev_attr_pwm1_enable.attr, &dev_attr_pwm1.attr, &dev_attr_fan1_input.attr, &dev_attr_fan2_input.attr, NULL }; static umode_t fan_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n) { if (fan_status_access_mode == TPACPI_FAN_NONE && fan_control_access_mode == TPACPI_FAN_WR_NONE) return 0; if (attr == &dev_attr_fan2_input.attr) { if (!tp_features.second_fan) return 0; } return attr->mode; } static const struct attribute_group fan_attr_group = { .is_visible = fan_attr_is_visible, .attrs = fan_attributes, }; static struct attribute *fan_driver_attributes[] = { &driver_attr_fan_watchdog.attr, NULL }; static const struct attribute_group fan_driver_attr_group = { .is_visible = fan_attr_is_visible, .attrs = fan_driver_attributes, }; #define TPACPI_FAN_Q1 0x0001 /* Uninitialized HFSP */ #define TPACPI_FAN_2FAN 0x0002 /* EC 0x31 bit 0 selects fan2 */ #define TPACPI_FAN_2CTL 0x0004 /* selects fan2 control */ #define TPACPI_FAN_NOFAN 0x0008 /* no fan available */ static const struct tpacpi_quirk fan_quirk_table[] __initconst = { TPACPI_QEC_IBM('1', 'Y', TPACPI_FAN_Q1), TPACPI_QEC_IBM('7', '8', TPACPI_FAN_Q1), TPACPI_QEC_IBM('7', '6', TPACPI_FAN_Q1), TPACPI_QEC_IBM('7', '0', TPACPI_FAN_Q1), TPACPI_QEC_LNV('7', 'M', TPACPI_FAN_2FAN), TPACPI_Q_LNV('N', '1', TPACPI_FAN_2FAN), TPACPI_Q_LNV3('N', '1', 'D', TPACPI_FAN_2CTL), /* P70 */ TPACPI_Q_LNV3('N', '1', 'E', TPACPI_FAN_2CTL), /* P50 */ TPACPI_Q_LNV3('N', '1', 'T', TPACPI_FAN_2CTL), /* P71 */ TPACPI_Q_LNV3('N', '1', 'U', TPACPI_FAN_2CTL), /* P51 */ TPACPI_Q_LNV3('N', '2', 'C', TPACPI_FAN_2CTL), /* P52 / P72 */ TPACPI_Q_LNV3('N', '2', 'N', TPACPI_FAN_2CTL), /* P53 / P73 */ TPACPI_Q_LNV3('N', '2', 'E', TPACPI_FAN_2CTL), /* P1 / X1 Extreme (1st gen) */ TPACPI_Q_LNV3('N', '2', 'O', TPACPI_FAN_2CTL), /* P1 / X1 Extreme (2nd gen) */ TPACPI_Q_LNV3('N', '3', '0', TPACPI_FAN_2CTL), /* P15 (1st gen) / P15v (1st gen) */ TPACPI_Q_LNV3('N', '3', '7', TPACPI_FAN_2CTL), /* T15g (2nd gen) */ TPACPI_Q_LNV3('N', '1', 'O', TPACPI_FAN_NOFAN), /* X1 Tablet (2nd gen) */ }; static int __init fan_init(struct ibm_init_struct *iibm) { unsigned long quirks; vdbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_FAN, "initializing fan subdriver\n"); mutex_init(&fan_mutex); fan_status_access_mode = TPACPI_FAN_NONE; fan_control_access_mode = TPACPI_FAN_WR_NONE; fan_control_commands = 0; fan_watchdog_maxinterval = 0; tp_features.fan_ctrl_status_undef = 0; tp_features.second_fan = 0; tp_features.second_fan_ctl = 0; fan_control_desired_level = 7; if (tpacpi_is_ibm()) { TPACPI_ACPIHANDLE_INIT(fans); TPACPI_ACPIHANDLE_INIT(gfan); TPACPI_ACPIHANDLE_INIT(sfan); } quirks = tpacpi_check_quirks(fan_quirk_table, ARRAY_SIZE(fan_quirk_table)); if (quirks & TPACPI_FAN_NOFAN) { pr_info("No integrated ThinkPad fan available\n"); return -ENODEV; } if (gfan_handle) { /* 570, 600e/x, 770e, 770x */ fan_status_access_mode = TPACPI_FAN_RD_ACPI_GFAN; } else { /* all other ThinkPads: note that even old-style * ThinkPad ECs supports the fan control register */ if (likely(acpi_ec_read(fan_status_offset, &fan_control_initial_status))) { int res; unsigned int speed; fan_status_access_mode = TPACPI_FAN_RD_TPEC; if (quirks & TPACPI_FAN_Q1) fan_quirk1_setup(); /* Try and probe the 2nd fan */ tp_features.second_fan = 1; /* needed for get_speed to work */ res = fan2_get_speed(&speed); if (res >= 0 && speed != FAN_NOT_PRESENT) { /* It responded - so let's assume it's there */ tp_features.second_fan = 1; tp_features.second_fan_ctl = 1; pr_info("secondary fan control detected & enabled\n"); } else { /* Fan not auto-detected */ tp_features.second_fan = 0; if (quirks & TPACPI_FAN_2FAN) { tp_features.second_fan = 1; pr_info("secondary fan support enabled\n"); } if (quirks & TPACPI_FAN_2CTL) { tp_features.second_fan = 1; tp_features.second_fan_ctl = 1; pr_info("secondary fan control enabled\n"); } } } else { pr_err("ThinkPad ACPI EC access misbehaving, fan status and control unavailable\n"); return -ENODEV; } } if (sfan_handle) { /* 570, 770x-JL */ fan_control_access_mode = TPACPI_FAN_WR_ACPI_SFAN; fan_control_commands |= TPACPI_FAN_CMD_LEVEL | TPACPI_FAN_CMD_ENABLE; } else { if (!gfan_handle) { /* gfan without sfan means no fan control */ /* all other models implement TP EC 0x2f control */ if (fans_handle) { /* X31, X40, X41 */ fan_control_access_mode = TPACPI_FAN_WR_ACPI_FANS; fan_control_commands |= TPACPI_FAN_CMD_SPEED | TPACPI_FAN_CMD_LEVEL | TPACPI_FAN_CMD_ENABLE; } else { fan_control_access_mode = TPACPI_FAN_WR_TPEC; fan_control_commands |= TPACPI_FAN_CMD_LEVEL | TPACPI_FAN_CMD_ENABLE; } } } vdbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_FAN, "fan is %s, modes %d, %d\n", str_supported(fan_status_access_mode != TPACPI_FAN_NONE || fan_control_access_mode != TPACPI_FAN_WR_NONE), fan_status_access_mode, fan_control_access_mode); /* fan control master switch */ if (!fan_control_allowed) { fan_control_access_mode = TPACPI_FAN_WR_NONE; fan_control_commands = 0; dbg_printk(TPACPI_DBG_INIT | TPACPI_DBG_FAN, "fan control features disabled by parameter\n"); } /* update fan_control_desired_level */ if (fan_status_access_mode != TPACPI_FAN_NONE) fan_get_status_safe(NULL); if (fan_status_access_mode == TPACPI_FAN_NONE && fan_control_access_mode == TPACPI_FAN_WR_NONE) return -ENODEV; return 0; } static void fan_exit(void) { vdbg_printk(TPACPI_DBG_EXIT | TPACPI_DBG_FAN, "cancelling any pending fan watchdog tasks\n"); cancel_delayed_work(&fan_watchdog_task); flush_workqueue(tpacpi_wq); } static void fan_suspend(void) { int rc; if (!fan_control_allowed) return; /* Store fan status in cache */ fan_control_resume_level = 0; rc = fan_get_status_safe(&fan_control_resume_level); if (rc) pr_notice("failed to read fan level for later restore during resume: %d\n", rc); /* if it is undefined, don't attempt to restore it. * KEEP THIS LAST */ if (tp_features.fan_ctrl_status_undef) fan_control_resume_level = 0; } static void fan_resume(void) { u8 current_level = 7; bool do_set = false; int rc; /* DSDT *always* updates status on resume */ tp_features.fan_ctrl_status_undef = 0; if (!fan_control_allowed || !fan_control_resume_level || fan_get_status_safe(&current_level)) return; switch (fan_control_access_mode) { case TPACPI_FAN_WR_ACPI_SFAN: /* never decrease fan level */ do_set = (fan_control_resume_level > current_level); break; case TPACPI_FAN_WR_ACPI_FANS: case TPACPI_FAN_WR_TPEC: /* never decrease fan level, scale is: * TP_EC_FAN_FULLSPEED > 7 >= TP_EC_FAN_AUTO * * We expect the firmware to set either 7 or AUTO, but we * handle FULLSPEED out of paranoia. * * So, we can safely only restore FULLSPEED or 7, anything * else could slow the fan. Restoring AUTO is useless, at * best that's exactly what the DSDT already set (it is the * slower it uses). * * Always keep in mind that the DSDT *will* have set the * fans to what the vendor supposes is the best level. We * muck with it only to speed the fan up. */ if (fan_control_resume_level != 7 && !(fan_control_resume_level & TP_EC_FAN_FULLSPEED)) return; else do_set = !(current_level & TP_EC_FAN_FULLSPEED) && (current_level != fan_control_resume_level); break; default: return; } if (do_set) { pr_notice("restoring fan level to 0x%02x\n", fan_control_resume_level); rc = fan_set_level_safe(fan_control_resume_level); if (rc < 0) pr_notice("failed to restore fan level: %d\n", rc); } } static int fan_read(struct seq_file *m) { int rc; u8 status; unsigned int speed = 0; switch (fan_status_access_mode) { case TPACPI_FAN_RD_ACPI_GFAN: /* 570, 600e/x, 770e, 770x */ rc = fan_get_status_safe(&status); if (rc) return rc; seq_printf(m, "status:\t\t%s\n" "level:\t\t%d\n", str_enabled_disabled(status), status); break; case TPACPI_FAN_RD_TPEC: /* all except 570, 600e/x, 770e, 770x */ rc = fan_get_status_safe(&status); if (rc) return rc; seq_printf(m, "status:\t\t%s\n", str_enabled_disabled(status)); rc = fan_get_speed(&speed); if (rc < 0) return rc; seq_printf(m, "speed:\t\t%d\n", speed); if (status & TP_EC_FAN_FULLSPEED) /* Disengaged mode takes precedence */ seq_printf(m, "level:\t\tdisengaged\n"); else if (status & TP_EC_FAN_AUTO) seq_printf(m, "level:\t\tauto\n"); else seq_printf(m, "level:\t\t%d\n", status); break; case TPACPI_FAN_NONE: default: seq_printf(m, "status:\t\tnot supported\n"); } if (fan_control_commands & TPACPI_FAN_CMD_LEVEL) { seq_printf(m, "commands:\tlevel <level>"); switch (fan_control_access_mode) { case TPACPI_FAN_WR_ACPI_SFAN: seq_printf(m, " (<level> is 0-7)\n"); break; default: seq_printf(m, " (<level> is 0-7, auto, disengaged, full-speed)\n"); break; } } if (fan_control_commands & TPACPI_FAN_CMD_ENABLE) seq_printf(m, "commands:\tenable, disable\n" "commands:\twatchdog <timeout> (<timeout> is 0 (off), 1-120 (seconds))\n"); if (fan_control_commands & TPACPI_FAN_CMD_SPEED) seq_printf(m, "commands:\tspeed <speed> (<speed> is 0-65535)\n"); return 0; } static int fan_write_cmd_level(const char *cmd, int *rc) { int level; if (strstarts(cmd, "level auto")) level = TP_EC_FAN_AUTO; else if (strstarts(cmd, "level disengaged") || strstarts(cmd, "level full-speed")) level = TP_EC_FAN_FULLSPEED; else if (sscanf(cmd, "level %d", &level) != 1) return 0; *rc = fan_set_level_safe(level); if (*rc == -ENXIO) pr_err("level command accepted for unsupported access mode %d\n", fan_control_access_mode); else if (!*rc) tpacpi_disclose_usertask("procfs fan", "set level to %d\n", level); return 1; } static int fan_write_cmd_enable(const char *cmd, int *rc) { if (!strstarts(cmd, "enable")) return 0; *rc = fan_set_enable(); if (*rc == -ENXIO) pr_err("enable command accepted for unsupported access mode %d\n", fan_control_access_mode); else if (!*rc) tpacpi_disclose_usertask("procfs fan", "enable\n"); return 1; } static int fan_write_cmd_disable(const char *cmd, int *rc) { if (!strstarts(cmd, "disable")) return 0; *rc = fan_set_disable(); if (*rc == -ENXIO) pr_err("disable command accepted for unsupported access mode %d\n", fan_control_access_mode); else if (!*rc) tpacpi_disclose_usertask("procfs fan", "disable\n"); return 1; } static int fan_write_cmd_speed(const char *cmd, int *rc) { int speed; /* TODO: * Support speed <low> <medium> <high> ? */ if (sscanf(cmd, "speed %d", &speed) != 1) return 0; *rc = fan_set_speed(speed); if (*rc == -ENXIO) pr_err("speed command accepted for unsupported access mode %d\n", fan_control_access_mode); else if (!*rc) tpacpi_disclose_usertask("procfs fan", "set speed to %d\n", speed); return 1; } static int fan_write_cmd_watchdog(const char *cmd, int *rc) { int interval; if (sscanf(cmd, "watchdog %d", &interval) != 1) return 0; if (interval < 0 || interval > 120) *rc = -EINVAL; else { fan_watchdog_maxinterval = interval; tpacpi_disclose_usertask("procfs fan", "set watchdog timer to %d\n", interval); } return 1; } static int fan_write(char *buf) { char *cmd; int rc = 0; while (!rc && (cmd = strsep(&buf, ","))) { if (!((fan_control_commands & TPACPI_FAN_CMD_LEVEL) && fan_write_cmd_level(cmd, &rc)) && !((fan_control_commands & TPACPI_FAN_CMD_ENABLE) && (fan_write_cmd_enable(cmd, &rc) || fan_write_cmd_disable(cmd, &rc) || fan_write_cmd_watchdog(cmd, &rc))) && !((fan_control_commands & TPACPI_FAN_CMD_SPEED) && fan_write_cmd_speed(cmd, &rc)) ) rc = -EINVAL; else if (!rc) fan_watchdog_reset(); } return rc; } static struct ibm_struct fan_driver_data = { .name = "fan", .read = fan_read, .write = fan_write, .exit = fan_exit, .suspend = fan_suspend, .resume = fan_resume, }; /************************************************************************* * Mute LED subdriver */ #define TPACPI_LED_MAX 2 struct tp_led_table { acpi_string name; int on_value; int off_value; int state; }; static struct tp_led_table led_tables[TPACPI_LED_MAX] = { [LED_AUDIO_MUTE] = { .name = "SSMS", .on_value = 1, .off_value = 0, }, [LED_AUDIO_MICMUTE] = { .name = "MMTS", .on_value = 2, .off_value = 0, }, }; static int mute_led_on_off(struct tp_led_table *t, bool state) { acpi_handle temp; int output; if (ACPI_FAILURE(acpi_get_handle(hkey_handle, t->name, &temp))) { pr_warn("Thinkpad ACPI has no %s interface.\n", t->name); return -EIO; } if (!acpi_evalf(hkey_handle, &output, t->name, "dd", state ? t->on_value : t->off_value)) return -EIO; t->state = state; return state; } static int tpacpi_led_set(int whichled, bool on) { struct tp_led_table *t; t = &led_tables[whichled]; if (t->state < 0 || t->state == on) return t->state; return mute_led_on_off(t, on); } static int tpacpi_led_mute_set(struct led_classdev *led_cdev, enum led_brightness brightness) { return tpacpi_led_set(LED_AUDIO_MUTE, brightness != LED_OFF); } static int tpacpi_led_micmute_set(struct led_classdev *led_cdev, enum led_brightness brightness) { return tpacpi_led_set(LED_AUDIO_MICMUTE, brightness != LED_OFF); } static struct led_classdev mute_led_cdev[TPACPI_LED_MAX] = { [LED_AUDIO_MUTE] = { .name = "platform::mute", .max_brightness = 1, .brightness_set_blocking = tpacpi_led_mute_set, .default_trigger = "audio-mute", }, [LED_AUDIO_MICMUTE] = { .name = "platform::micmute", .max_brightness = 1, .brightness_set_blocking = tpacpi_led_micmute_set, .default_trigger = "audio-micmute", }, }; static int mute_led_init(struct ibm_init_struct *iibm) { acpi_handle temp; int i, err; for (i = 0; i < TPACPI_LED_MAX; i++) { struct tp_led_table *t = &led_tables[i]; if (ACPI_FAILURE(acpi_get_handle(hkey_handle, t->name, &temp))) { t->state = -ENODEV; continue; } mute_led_cdev[i].brightness = ledtrig_audio_get(i); err = led_classdev_register(&tpacpi_pdev->dev, &mute_led_cdev[i]); if (err < 0) { while (i--) led_classdev_unregister(&mute_led_cdev[i]); return err; } } return 0; } static void mute_led_exit(void) { int i; for (i = 0; i < TPACPI_LED_MAX; i++) { led_classdev_unregister(&mute_led_cdev[i]); tpacpi_led_set(i, false); } } static void mute_led_resume(void) { int i; for (i = 0; i < TPACPI_LED_MAX; i++) { struct tp_led_table *t = &led_tables[i]; if (t->state >= 0) mute_led_on_off(t, t->state); } } static struct ibm_struct mute_led_driver_data = { .name = "mute_led", .exit = mute_led_exit, .resume = mute_led_resume, }; /* * Battery Wear Control Driver * Contact: Ognjen Galic <[email protected]> */ /* Metadata */ #define GET_START "BCTG" #define SET_START "BCCS" #define GET_STOP "BCSG" #define SET_STOP "BCSS" #define GET_DISCHARGE "BDSG" #define SET_DISCHARGE "BDSS" #define GET_INHIBIT "BICG" #define SET_INHIBIT "BICS" enum { BAT_ANY = 0, BAT_PRIMARY = 1, BAT_SECONDARY = 2 }; enum { /* Error condition bit */ METHOD_ERR = BIT(31), }; enum { /* This is used in the get/set helpers */ THRESHOLD_START, THRESHOLD_STOP, FORCE_DISCHARGE, INHIBIT_CHARGE, }; struct tpacpi_battery_data { int charge_start; int start_support; int charge_stop; int stop_support; unsigned int charge_behaviours; }; struct tpacpi_battery_driver_data { struct tpacpi_battery_data batteries[3]; int individual_addressing; }; static struct tpacpi_battery_driver_data battery_info; /* ACPI helpers/functions/probes */ /** * This evaluates a ACPI method call specific to the battery * ACPI extension. The specifics are that an error is marked * in the 32rd bit of the response, so we just check that here. */ static acpi_status tpacpi_battery_acpi_eval(char *method, int *ret, int param) { int response; if (!acpi_evalf(hkey_handle, &response, method, "dd", param)) { acpi_handle_err(hkey_handle, "%s: evaluate failed", method); return AE_ERROR; } if (response & METHOD_ERR) { acpi_handle_err(hkey_handle, "%s evaluated but flagged as error", method); return AE_ERROR; } *ret = response; return AE_OK; } static int tpacpi_battery_get(int what, int battery, int *ret) { switch (what) { case THRESHOLD_START: if ACPI_FAILURE(tpacpi_battery_acpi_eval(GET_START, ret, battery)) return -ENODEV; /* The value is in the low 8 bits of the response */ *ret = *ret & 0xFF; return 0; case THRESHOLD_STOP: if ACPI_FAILURE(tpacpi_battery_acpi_eval(GET_STOP, ret, battery)) return -ENODEV; /* Value is in lower 8 bits */ *ret = *ret & 0xFF; /* * On the stop value, if we return 0 that * does not make any sense. 0 means Default, which * means that charging stops at 100%, so we return * that. */ if (*ret == 0) *ret = 100; return 0; case FORCE_DISCHARGE: if ACPI_FAILURE(tpacpi_battery_acpi_eval(GET_DISCHARGE, ret, battery)) return -ENODEV; /* The force discharge status is in bit 0 */ *ret = *ret & 0x01; return 0; case INHIBIT_CHARGE: if ACPI_FAILURE(tpacpi_battery_acpi_eval(GET_INHIBIT, ret, battery)) return -ENODEV; /* The inhibit charge status is in bit 0 */ *ret = *ret & 0x01; return 0; default: pr_crit("wrong parameter: %d", what); return -EINVAL; } } static int tpacpi_battery_set(int what, int battery, int value) { int param, ret; /* The first 8 bits are the value of the threshold */ param = value; /* The battery ID is in bits 8-9, 2 bits */ param |= battery << 8; switch (what) { case THRESHOLD_START: if ACPI_FAILURE(tpacpi_battery_acpi_eval(SET_START, &ret, param)) { pr_err("failed to set charge threshold on battery %d", battery); return -ENODEV; } return 0; case THRESHOLD_STOP: if ACPI_FAILURE(tpacpi_battery_acpi_eval(SET_STOP, &ret, param)) { pr_err("failed to set stop threshold: %d", battery); return -ENODEV; } return 0; case FORCE_DISCHARGE: /* Force discharge is in bit 0, * break on AC attach is in bit 1 (won't work on some ThinkPads), * battery ID is in bits 8-9, 2 bits. */ if (ACPI_FAILURE(tpacpi_battery_acpi_eval(SET_DISCHARGE, &ret, param))) { pr_err("failed to set force discharge on %d", battery); return -ENODEV; } return 0; case INHIBIT_CHARGE: /* When setting inhibit charge, we set a default value of * always breaking on AC detach and the effective time is set to * be permanent. * The battery ID is in bits 4-5, 2 bits, * the effective time is in bits 8-23, 2 bytes. * A time of FFFF indicates forever. */ param = value; param |= battery << 4; param |= 0xFFFF << 8; if (ACPI_FAILURE(tpacpi_battery_acpi_eval(SET_INHIBIT, &ret, param))) { pr_err("failed to set inhibit charge on %d", battery); return -ENODEV; } return 0; default: pr_crit("wrong parameter: %d", what); return -EINVAL; } } static int tpacpi_battery_set_validate(int what, int battery, int value) { int ret, v; ret = tpacpi_battery_set(what, battery, value); if (ret < 0) return ret; ret = tpacpi_battery_get(what, battery, &v); if (ret < 0) return ret; if (v == value) return 0; msleep(500); ret = tpacpi_battery_get(what, battery, &v); if (ret < 0) return ret; if (v == value) return 0; return -EIO; } static int tpacpi_battery_probe(int battery) { int ret = 0; memset(&battery_info.batteries[battery], 0, sizeof(battery_info.batteries[battery])); /* * 1) Get the current start threshold * 2) Check for support * 3) Get the current stop threshold * 4) Check for support * 5) Get the current force discharge status * 6) Check for support * 7) Get the current inhibit charge status * 8) Check for support */ if (acpi_has_method(hkey_handle, GET_START)) { if ACPI_FAILURE(tpacpi_battery_acpi_eval(GET_START, &ret, battery)) { pr_err("Error probing battery %d\n", battery); return -ENODEV; } /* Individual addressing is in bit 9 */ if (ret & BIT(9)) battery_info.individual_addressing = true; /* Support is marked in bit 8 */ if (ret & BIT(8)) battery_info.batteries[battery].start_support = 1; else return -ENODEV; if (tpacpi_battery_get(THRESHOLD_START, battery, &battery_info.batteries[battery].charge_start)) { pr_err("Error probing battery %d\n", battery); return -ENODEV; } } if (acpi_has_method(hkey_handle, GET_STOP)) { if ACPI_FAILURE(tpacpi_battery_acpi_eval(GET_STOP, &ret, battery)) { pr_err("Error probing battery stop; %d\n", battery); return -ENODEV; } /* Support is marked in bit 8 */ if (ret & BIT(8)) battery_info.batteries[battery].stop_support = 1; else return -ENODEV; if (tpacpi_battery_get(THRESHOLD_STOP, battery, &battery_info.batteries[battery].charge_stop)) { pr_err("Error probing battery stop: %d\n", battery); return -ENODEV; } } if (acpi_has_method(hkey_handle, GET_DISCHARGE)) { if (ACPI_FAILURE(tpacpi_battery_acpi_eval(GET_DISCHARGE, &ret, battery))) { pr_err("Error probing battery discharge; %d\n", battery); return -ENODEV; } /* Support is marked in bit 8 */ if (ret & BIT(8)) battery_info.batteries[battery].charge_behaviours |= BIT(POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE); } if (acpi_has_method(hkey_handle, GET_INHIBIT)) { if (ACPI_FAILURE(tpacpi_battery_acpi_eval(GET_INHIBIT, &ret, battery))) { pr_err("Error probing battery inhibit charge; %d\n", battery); return -ENODEV; } /* Support is marked in bit 5 */ if (ret & BIT(5)) battery_info.batteries[battery].charge_behaviours |= BIT(POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE); } battery_info.batteries[battery].charge_behaviours |= BIT(POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO); pr_info("battery %d registered (start %d, stop %d, behaviours: 0x%x)\n", battery, battery_info.batteries[battery].charge_start, battery_info.batteries[battery].charge_stop, battery_info.batteries[battery].charge_behaviours); return 0; } /* General helper functions */ static int tpacpi_battery_get_id(const char *battery_name) { if (strcmp(battery_name, "BAT0") == 0 || tp_features.battery_force_primary) return BAT_PRIMARY; if (strcmp(battery_name, "BAT1") == 0) return BAT_SECONDARY; /* * If for some reason the battery is not BAT0 nor is it * BAT1, we will assume it's the default, first battery, * AKA primary. */ pr_warn("unknown battery %s, assuming primary", battery_name); return BAT_PRIMARY; } /* sysfs interface */ static ssize_t tpacpi_battery_store(int what, struct device *dev, const char *buf, size_t count) { struct power_supply *supply = to_power_supply(dev); unsigned long value; int battery, rval; /* * Some systems have support for more than * one battery. If that is the case, * tpacpi_battery_probe marked that addressing * them individually is supported, so we do that * based on the device struct. * * On systems that are not supported, we assume * the primary as most of the ACPI calls fail * with "Any Battery" as the parameter. */ if (battery_info.individual_addressing) /* BAT_PRIMARY or BAT_SECONDARY */ battery = tpacpi_battery_get_id(supply->desc->name); else battery = BAT_PRIMARY; rval = kstrtoul(buf, 10, &value); if (rval) return rval; switch (what) { case THRESHOLD_START: if (!battery_info.batteries[battery].start_support) return -ENODEV; /* valid values are [0, 99] */ if (value > 99) return -EINVAL; if (value > battery_info.batteries[battery].charge_stop) return -EINVAL; if (tpacpi_battery_set(THRESHOLD_START, battery, value)) return -ENODEV; battery_info.batteries[battery].charge_start = value; return count; case THRESHOLD_STOP: if (!battery_info.batteries[battery].stop_support) return -ENODEV; /* valid values are [1, 100] */ if (value < 1 || value > 100) return -EINVAL; if (value < battery_info.batteries[battery].charge_start) return -EINVAL; battery_info.batteries[battery].charge_stop = value; /* * When 100 is passed to stop, we need to flip * it to 0 as that the EC understands that as * "Default", which will charge to 100% */ if (value == 100) value = 0; if (tpacpi_battery_set(THRESHOLD_STOP, battery, value)) return -EINVAL; return count; default: pr_crit("Wrong parameter: %d", what); return -EINVAL; } return count; } static ssize_t tpacpi_battery_show(int what, struct device *dev, char *buf) { struct power_supply *supply = to_power_supply(dev); int ret, battery; /* * Some systems have support for more than * one battery. If that is the case, * tpacpi_battery_probe marked that addressing * them individually is supported, so we; * based on the device struct. * * On systems that are not supported, we assume * the primary as most of the ACPI calls fail * with "Any Battery" as the parameter. */ if (battery_info.individual_addressing) /* BAT_PRIMARY or BAT_SECONDARY */ battery = tpacpi_battery_get_id(supply->desc->name); else battery = BAT_PRIMARY; if (tpacpi_battery_get(what, battery, &ret)) return -ENODEV; return sprintf(buf, "%d\n", ret); } static ssize_t charge_control_start_threshold_show(struct device *device, struct device_attribute *attr, char *buf) { return tpacpi_battery_show(THRESHOLD_START, device, buf); } static ssize_t charge_control_end_threshold_show(struct device *device, struct device_attribute *attr, char *buf) { return tpacpi_battery_show(THRESHOLD_STOP, device, buf); } static ssize_t charge_behaviour_show(struct device *dev, struct device_attribute *attr, char *buf) { enum power_supply_charge_behaviour active = POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO; struct power_supply *supply = to_power_supply(dev); unsigned int available; int ret, battery; battery = tpacpi_battery_get_id(supply->desc->name); available = battery_info.batteries[battery].charge_behaviours; if (available & BIT(POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE)) { if (tpacpi_battery_get(FORCE_DISCHARGE, battery, &ret)) return -ENODEV; if (ret) { active = POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE; goto out; } } if (available & BIT(POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE)) { if (tpacpi_battery_get(INHIBIT_CHARGE, battery, &ret)) return -ENODEV; if (ret) { active = POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE; goto out; } } out: return power_supply_charge_behaviour_show(dev, available, active, buf); } static ssize_t charge_control_start_threshold_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return tpacpi_battery_store(THRESHOLD_START, dev, buf, count); } static ssize_t charge_control_end_threshold_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return tpacpi_battery_store(THRESHOLD_STOP, dev, buf, count); } static ssize_t charge_behaviour_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct power_supply *supply = to_power_supply(dev); int selected, battery, ret = 0; unsigned int available; battery = tpacpi_battery_get_id(supply->desc->name); available = battery_info.batteries[battery].charge_behaviours; selected = power_supply_charge_behaviour_parse(available, buf); if (selected < 0) return selected; switch (selected) { case POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO: if (available & BIT(POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE)) ret = tpacpi_battery_set_validate(FORCE_DISCHARGE, battery, 0); if (available & BIT(POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE)) ret = min(ret, tpacpi_battery_set_validate(INHIBIT_CHARGE, battery, 0)); if (ret < 0) return ret; break; case POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE: if (available & BIT(POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE)) ret = tpacpi_battery_set_validate(INHIBIT_CHARGE, battery, 0); ret = min(ret, tpacpi_battery_set_validate(FORCE_DISCHARGE, battery, 1)); if (ret < 0) return ret; break; case POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE: if (available & BIT(POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE)) ret = tpacpi_battery_set_validate(FORCE_DISCHARGE, battery, 0); ret = min(ret, tpacpi_battery_set_validate(INHIBIT_CHARGE, battery, 1)); if (ret < 0) return ret; break; default: dev_err(dev, "Unexpected charge behaviour: %d\n", selected); return -EINVAL; } return count; } static DEVICE_ATTR_RW(charge_control_start_threshold); static DEVICE_ATTR_RW(charge_control_end_threshold); static DEVICE_ATTR_RW(charge_behaviour); static struct device_attribute dev_attr_charge_start_threshold = __ATTR( charge_start_threshold, 0644, charge_control_start_threshold_show, charge_control_start_threshold_store ); static struct device_attribute dev_attr_charge_stop_threshold = __ATTR( charge_stop_threshold, 0644, charge_control_end_threshold_show, charge_control_end_threshold_store ); static struct attribute *tpacpi_battery_attrs[] = { &dev_attr_charge_control_start_threshold.attr, &dev_attr_charge_control_end_threshold.attr, &dev_attr_charge_start_threshold.attr, &dev_attr_charge_stop_threshold.attr, &dev_attr_charge_behaviour.attr, NULL, }; ATTRIBUTE_GROUPS(tpacpi_battery); /* ACPI battery hooking */ static int tpacpi_battery_add(struct power_supply *battery, struct acpi_battery_hook *hook) { int batteryid = tpacpi_battery_get_id(battery->desc->name); if (tpacpi_battery_probe(batteryid)) return -ENODEV; if (device_add_groups(&battery->dev, tpacpi_battery_groups)) return -ENODEV; return 0; } static int tpacpi_battery_remove(struct power_supply *battery, struct acpi_battery_hook *hook) { device_remove_groups(&battery->dev, tpacpi_battery_groups); return 0; } static struct acpi_battery_hook battery_hook = { .add_battery = tpacpi_battery_add, .remove_battery = tpacpi_battery_remove, .name = "ThinkPad Battery Extension", }; /* Subdriver init/exit */ static const struct tpacpi_quirk battery_quirk_table[] __initconst = { /* * Individual addressing is broken on models that expose the * primary battery as BAT1. */ TPACPI_Q_LNV('J', '7', true), /* B5400 */ TPACPI_Q_LNV('J', 'I', true), /* Thinkpad 11e */ TPACPI_Q_LNV3('R', '0', 'B', true), /* Thinkpad 11e gen 3 */ TPACPI_Q_LNV3('R', '0', 'C', true), /* Thinkpad 13 */ TPACPI_Q_LNV3('R', '0', 'J', true), /* Thinkpad 13 gen 2 */ TPACPI_Q_LNV3('R', '0', 'K', true), /* Thinkpad 11e gen 4 celeron BIOS */ }; static int __init tpacpi_battery_init(struct ibm_init_struct *ibm) { memset(&battery_info, 0, sizeof(battery_info)); tp_features.battery_force_primary = tpacpi_check_quirks( battery_quirk_table, ARRAY_SIZE(battery_quirk_table)); battery_hook_register(&battery_hook); return 0; } static void tpacpi_battery_exit(void) { battery_hook_unregister(&battery_hook); } static struct ibm_struct battery_driver_data = { .name = "battery", .exit = tpacpi_battery_exit, }; /************************************************************************* * LCD Shadow subdriver, for the Lenovo PrivacyGuard feature */ static struct drm_privacy_screen *lcdshadow_dev; static acpi_handle lcdshadow_get_handle; static acpi_handle lcdshadow_set_handle; static int lcdshadow_set_sw_state(struct drm_privacy_screen *priv, enum drm_privacy_screen_status state) { int output; if (WARN_ON(!mutex_is_locked(&priv->lock))) return -EIO; if (!acpi_evalf(lcdshadow_set_handle, &output, NULL, "dd", (int)state)) return -EIO; priv->hw_state = priv->sw_state = state; return 0; } static void lcdshadow_get_hw_state(struct drm_privacy_screen *priv) { int output; if (!acpi_evalf(lcdshadow_get_handle, &output, NULL, "dd", 0)) return; priv->hw_state = priv->sw_state = output & 0x1; } static const struct drm_privacy_screen_ops lcdshadow_ops = { .set_sw_state = lcdshadow_set_sw_state, .get_hw_state = lcdshadow_get_hw_state, }; static int tpacpi_lcdshadow_init(struct ibm_init_struct *iibm) { acpi_status status1, status2; int output; status1 = acpi_get_handle(hkey_handle, "GSSS", &lcdshadow_get_handle); status2 = acpi_get_handle(hkey_handle, "SSSS", &lcdshadow_set_handle); if (ACPI_FAILURE(status1) || ACPI_FAILURE(status2)) return 0; if (!acpi_evalf(lcdshadow_get_handle, &output, NULL, "dd", 0)) return -EIO; if (!(output & 0x10000)) return 0; lcdshadow_dev = drm_privacy_screen_register(&tpacpi_pdev->dev, &lcdshadow_ops, NULL); if (IS_ERR(lcdshadow_dev)) return PTR_ERR(lcdshadow_dev); return 0; } static void lcdshadow_exit(void) { drm_privacy_screen_unregister(lcdshadow_dev); } static void lcdshadow_resume(void) { if (!lcdshadow_dev) return; mutex_lock(&lcdshadow_dev->lock); lcdshadow_set_sw_state(lcdshadow_dev, lcdshadow_dev->sw_state); mutex_unlock(&lcdshadow_dev->lock); } static int lcdshadow_read(struct seq_file *m) { if (!lcdshadow_dev) { seq_puts(m, "status:\t\tnot supported\n"); } else { seq_printf(m, "status:\t\t%d\n", lcdshadow_dev->hw_state); seq_puts(m, "commands:\t0, 1\n"); } return 0; } static int lcdshadow_write(char *buf) { char *cmd; int res, state = -EINVAL; if (!lcdshadow_dev) return -ENODEV; while ((cmd = strsep(&buf, ","))) { res = kstrtoint(cmd, 10, &state); if (res < 0) return res; } if (state >= 2 || state < 0) return -EINVAL; mutex_lock(&lcdshadow_dev->lock); res = lcdshadow_set_sw_state(lcdshadow_dev, state); mutex_unlock(&lcdshadow_dev->lock); drm_privacy_screen_call_notifier_chain(lcdshadow_dev); return res; } static struct ibm_struct lcdshadow_driver_data = { .name = "lcdshadow", .exit = lcdshadow_exit, .resume = lcdshadow_resume, .read = lcdshadow_read, .write = lcdshadow_write, }; /************************************************************************* * Thinkpad sensor interfaces */ #define DYTC_CMD_QUERY 0 /* To get DYTC status - enable/revision */ #define DYTC_QUERY_ENABLE_BIT 8 /* Bit 8 - 0 = disabled, 1 = enabled */ #define DYTC_QUERY_SUBREV_BIT 16 /* Bits 16 - 27 - sub revision */ #define DYTC_QUERY_REV_BIT 28 /* Bits 28 - 31 - revision */ #define DYTC_CMD_GET 2 /* To get current IC function and mode */ #define DYTC_GET_LAPMODE_BIT 17 /* Set when in lapmode */ #define PALMSENSOR_PRESENT_BIT 0 /* Determine if psensor present */ #define PALMSENSOR_ON_BIT 1 /* psensor status */ static bool has_palmsensor; static bool has_lapsensor; static bool palm_state; static bool lap_state; static int dytc_version; static int dytc_command(int command, int *output) { acpi_handle dytc_handle; if (ACPI_FAILURE(acpi_get_handle(hkey_handle, "DYTC", &dytc_handle))) { /* Platform doesn't support DYTC */ return -ENODEV; } if (!acpi_evalf(dytc_handle, output, NULL, "dd", command)) return -EIO; return 0; } static int lapsensor_get(bool *present, bool *state) { int output, err; *present = false; err = dytc_command(DYTC_CMD_GET, &output); if (err) return err; *present = true; /*If we get his far, we have lapmode support*/ *state = output & BIT(DYTC_GET_LAPMODE_BIT) ? true : false; return 0; } static int palmsensor_get(bool *present, bool *state) { acpi_handle psensor_handle; int output; *present = false; if (ACPI_FAILURE(acpi_get_handle(hkey_handle, "GPSS", &psensor_handle))) return -ENODEV; if (!acpi_evalf(psensor_handle, &output, NULL, "d")) return -EIO; *present = output & BIT(PALMSENSOR_PRESENT_BIT) ? true : false; *state = output & BIT(PALMSENSOR_ON_BIT) ? true : false; return 0; } static void lapsensor_refresh(void) { bool state; int err; if (has_lapsensor) { err = lapsensor_get(&has_lapsensor, &state); if (err) return; if (lap_state != state) { lap_state = state; sysfs_notify(&tpacpi_pdev->dev.kobj, NULL, "dytc_lapmode"); } } } static void palmsensor_refresh(void) { bool state; int err; if (has_palmsensor) { err = palmsensor_get(&has_palmsensor, &state); if (err) return; if (palm_state != state) { palm_state = state; sysfs_notify(&tpacpi_pdev->dev.kobj, NULL, "palmsensor"); } } } static ssize_t dytc_lapmode_show(struct device *dev, struct device_attribute *attr, char *buf) { if (has_lapsensor) return sysfs_emit(buf, "%d\n", lap_state); return sysfs_emit(buf, "\n"); } static DEVICE_ATTR_RO(dytc_lapmode); static ssize_t palmsensor_show(struct device *dev, struct device_attribute *attr, char *buf) { if (has_palmsensor) return sysfs_emit(buf, "%d\n", palm_state); return sysfs_emit(buf, "\n"); } static DEVICE_ATTR_RO(palmsensor); static struct attribute *proxsensor_attributes[] = { &dev_attr_dytc_lapmode.attr, &dev_attr_palmsensor.attr, NULL }; static umode_t proxsensor_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n) { if (attr == &dev_attr_dytc_lapmode.attr) { /* * Platforms before DYTC version 5 claim to have a lap sensor, * but it doesn't work, so we ignore them. */ if (!has_lapsensor || dytc_version < 5) return 0; } else if (attr == &dev_attr_palmsensor.attr) { if (!has_palmsensor) return 0; } return attr->mode; } static const struct attribute_group proxsensor_attr_group = { .is_visible = proxsensor_attr_is_visible, .attrs = proxsensor_attributes, }; static int tpacpi_proxsensor_init(struct ibm_init_struct *iibm) { int palm_err, lap_err; palm_err = palmsensor_get(&has_palmsensor, &palm_state); lap_err = lapsensor_get(&has_lapsensor, &lap_state); /* If support isn't available for both devices return -ENODEV */ if ((palm_err == -ENODEV) && (lap_err == -ENODEV)) return -ENODEV; /* Otherwise, if there was an error return it */ if (palm_err && (palm_err != -ENODEV)) return palm_err; if (lap_err && (lap_err != -ENODEV)) return lap_err; return 0; } static struct ibm_struct proxsensor_driver_data = { .name = "proximity-sensor", }; /************************************************************************* * DYTC Platform Profile interface */ #define DYTC_CMD_SET 1 /* To enable/disable IC function mode */ #define DYTC_CMD_MMC_GET 8 /* To get current MMC function and mode */ #define DYTC_CMD_RESET 0x1ff /* To reset back to default */ #define DYTC_CMD_FUNC_CAP 3 /* To get DYTC capabilities */ #define DYTC_FC_MMC 27 /* MMC Mode supported */ #define DYTC_FC_PSC 29 /* PSC Mode supported */ #define DYTC_FC_AMT 31 /* AMT mode supported */ #define DYTC_GET_FUNCTION_BIT 8 /* Bits 8-11 - function setting */ #define DYTC_GET_MODE_BIT 12 /* Bits 12-15 - mode setting */ #define DYTC_SET_FUNCTION_BIT 12 /* Bits 12-15 - function setting */ #define DYTC_SET_MODE_BIT 16 /* Bits 16-19 - mode setting */ #define DYTC_SET_VALID_BIT 20 /* Bit 20 - 1 = on, 0 = off */ #define DYTC_FUNCTION_STD 0 /* Function = 0, standard mode */ #define DYTC_FUNCTION_CQL 1 /* Function = 1, lap mode */ #define DYTC_FUNCTION_MMC 11 /* Function = 11, MMC mode */ #define DYTC_FUNCTION_PSC 13 /* Function = 13, PSC mode */ #define DYTC_FUNCTION_AMT 15 /* Function = 15, AMT mode */ #define DYTC_MODE_AMT_ENABLE 0x1 /* Enable AMT (in balanced mode) */ #define DYTC_MODE_AMT_DISABLE 0xF /* Disable AMT (in other modes) */ #define DYTC_MODE_MMC_PERFORM 2 /* High power mode aka performance */ #define DYTC_MODE_MMC_LOWPOWER 3 /* Low power mode */ #define DYTC_MODE_MMC_BALANCE 0xF /* Default mode aka balanced */ #define DYTC_MODE_MMC_DEFAULT 0 /* Default mode from MMC_GET, aka balanced */ #define DYTC_MODE_PSC_LOWPOWER 3 /* Low power mode */ #define DYTC_MODE_PSC_BALANCE 5 /* Default mode aka balanced */ #define DYTC_MODE_PSC_PERFORM 7 /* High power mode aka performance */ #define DYTC_ERR_MASK 0xF /* Bits 0-3 in cmd result are the error result */ #define DYTC_ERR_SUCCESS 1 /* CMD completed successful */ #define DYTC_SET_COMMAND(function, mode, on) \ (DYTC_CMD_SET | (function) << DYTC_SET_FUNCTION_BIT | \ (mode) << DYTC_SET_MODE_BIT | \ (on) << DYTC_SET_VALID_BIT) #define DYTC_DISABLE_CQL DYTC_SET_COMMAND(DYTC_FUNCTION_CQL, DYTC_MODE_MMC_BALANCE, 0) #define DYTC_ENABLE_CQL DYTC_SET_COMMAND(DYTC_FUNCTION_CQL, DYTC_MODE_MMC_BALANCE, 1) static int dytc_control_amt(bool enable); static bool dytc_amt_active; static enum platform_profile_option dytc_current_profile; static atomic_t dytc_ignore_event = ATOMIC_INIT(0); static DEFINE_MUTEX(dytc_mutex); static int dytc_capabilities; static bool dytc_mmc_get_available; static int profile_force; static int convert_dytc_to_profile(int funcmode, int dytcmode, enum platform_profile_option *profile) { switch (funcmode) { case DYTC_FUNCTION_MMC: switch (dytcmode) { case DYTC_MODE_MMC_LOWPOWER: *profile = PLATFORM_PROFILE_LOW_POWER; break; case DYTC_MODE_MMC_DEFAULT: case DYTC_MODE_MMC_BALANCE: *profile = PLATFORM_PROFILE_BALANCED; break; case DYTC_MODE_MMC_PERFORM: *profile = PLATFORM_PROFILE_PERFORMANCE; break; default: /* Unknown mode */ return -EINVAL; } return 0; case DYTC_FUNCTION_PSC: switch (dytcmode) { case DYTC_MODE_PSC_LOWPOWER: *profile = PLATFORM_PROFILE_LOW_POWER; break; case DYTC_MODE_PSC_BALANCE: *profile = PLATFORM_PROFILE_BALANCED; break; case DYTC_MODE_PSC_PERFORM: *profile = PLATFORM_PROFILE_PERFORMANCE; break; default: /* Unknown mode */ return -EINVAL; } return 0; case DYTC_FUNCTION_AMT: /* For now return balanced. It's the closest we have to 'auto' */ *profile = PLATFORM_PROFILE_BALANCED; return 0; default: /* Unknown function */ return -EOPNOTSUPP; } return 0; } static int convert_profile_to_dytc(enum platform_profile_option profile, int *perfmode) { switch (profile) { case PLATFORM_PROFILE_LOW_POWER: if (dytc_capabilities & BIT(DYTC_FC_MMC)) *perfmode = DYTC_MODE_MMC_LOWPOWER; else if (dytc_capabilities & BIT(DYTC_FC_PSC)) *perfmode = DYTC_MODE_PSC_LOWPOWER; break; case PLATFORM_PROFILE_BALANCED: if (dytc_capabilities & BIT(DYTC_FC_MMC)) *perfmode = DYTC_MODE_MMC_BALANCE; else if (dytc_capabilities & BIT(DYTC_FC_PSC)) *perfmode = DYTC_MODE_PSC_BALANCE; break; case PLATFORM_PROFILE_PERFORMANCE: if (dytc_capabilities & BIT(DYTC_FC_MMC)) *perfmode = DYTC_MODE_MMC_PERFORM; else if (dytc_capabilities & BIT(DYTC_FC_PSC)) *perfmode = DYTC_MODE_PSC_PERFORM; break; default: /* Unknown profile */ return -EOPNOTSUPP; } return 0; } /* * dytc_profile_get: Function to register with platform_profile * handler. Returns current platform profile. */ static int dytc_profile_get(struct platform_profile_handler *pprof, enum platform_profile_option *profile) { *profile = dytc_current_profile; return 0; } static int dytc_control_amt(bool enable) { int dummy; int err; int cmd; if (!(dytc_capabilities & BIT(DYTC_FC_AMT))) { pr_warn("Attempting to toggle AMT on a system that doesn't advertise support\n"); return -ENODEV; } if (enable) cmd = DYTC_SET_COMMAND(DYTC_FUNCTION_AMT, DYTC_MODE_AMT_ENABLE, enable); else cmd = DYTC_SET_COMMAND(DYTC_FUNCTION_AMT, DYTC_MODE_AMT_DISABLE, enable); pr_debug("%sabling AMT (cmd 0x%x)", enable ? "en":"dis", cmd); err = dytc_command(cmd, &dummy); if (err) return err; dytc_amt_active = enable; return 0; } /* * Helper function - check if we are in CQL mode and if we are * - disable CQL, * - run the command * - enable CQL * If not in CQL mode, just run the command */ static int dytc_cql_command(int command, int *output) { int err, cmd_err, dummy; int cur_funcmode; /* Determine if we are in CQL mode. This alters the commands we do */ err = dytc_command(DYTC_CMD_GET, output); if (err) return err; cur_funcmode = (*output >> DYTC_GET_FUNCTION_BIT) & 0xF; /* Check if we're OK to return immediately */ if ((command == DYTC_CMD_GET) && (cur_funcmode != DYTC_FUNCTION_CQL)) return 0; if (cur_funcmode == DYTC_FUNCTION_CQL) { atomic_inc(&dytc_ignore_event); err = dytc_command(DYTC_DISABLE_CQL, &dummy); if (err) return err; } cmd_err = dytc_command(command, output); /* Check return condition after we've restored CQL state */ if (cur_funcmode == DYTC_FUNCTION_CQL) { err = dytc_command(DYTC_ENABLE_CQL, &dummy); if (err) return err; } return cmd_err; } /* * dytc_profile_set: Function to register with platform_profile * handler. Sets current platform profile. */ static int dytc_profile_set(struct platform_profile_handler *pprof, enum platform_profile_option profile) { int perfmode; int output; int err; err = mutex_lock_interruptible(&dytc_mutex); if (err) return err; err = convert_profile_to_dytc(profile, &perfmode); if (err) goto unlock; if (dytc_capabilities & BIT(DYTC_FC_MMC)) { if (profile == PLATFORM_PROFILE_BALANCED) { /* * To get back to balanced mode we need to issue a reset command. * Note we still need to disable CQL mode before hand and re-enable * it afterwards, otherwise dytc_lapmode gets reset to 0 and stays * stuck at 0 for aprox. 30 minutes. */ err = dytc_cql_command(DYTC_CMD_RESET, &output); if (err) goto unlock; } else { /* Determine if we are in CQL mode. This alters the commands we do */ err = dytc_cql_command(DYTC_SET_COMMAND(DYTC_FUNCTION_MMC, perfmode, 1), &output); if (err) goto unlock; } } else if (dytc_capabilities & BIT(DYTC_FC_PSC)) { err = dytc_command(DYTC_SET_COMMAND(DYTC_FUNCTION_PSC, perfmode, 1), &output); if (err) goto unlock; /* system supports AMT, activate it when on balanced */ if (dytc_capabilities & BIT(DYTC_FC_AMT)) dytc_control_amt(profile == PLATFORM_PROFILE_BALANCED); } /* Success - update current profile */ dytc_current_profile = profile; unlock: mutex_unlock(&dytc_mutex); return err; } static void dytc_profile_refresh(void) { enum platform_profile_option profile; int output = 0, err = 0; int perfmode, funcmode = 0; mutex_lock(&dytc_mutex); if (dytc_capabilities & BIT(DYTC_FC_MMC)) { if (dytc_mmc_get_available) err = dytc_command(DYTC_CMD_MMC_GET, &output); else err = dytc_cql_command(DYTC_CMD_GET, &output); funcmode = DYTC_FUNCTION_MMC; } else if (dytc_capabilities & BIT(DYTC_FC_PSC)) { err = dytc_command(DYTC_CMD_GET, &output); /* Check if we are PSC mode, or have AMT enabled */ funcmode = (output >> DYTC_GET_FUNCTION_BIT) & 0xF; } else { /* Unknown profile mode */ err = -ENODEV; } mutex_unlock(&dytc_mutex); if (err) return; perfmode = (output >> DYTC_GET_MODE_BIT) & 0xF; convert_dytc_to_profile(funcmode, perfmode, &profile); if (profile != dytc_current_profile) { dytc_current_profile = profile; platform_profile_notify(); } } static struct platform_profile_handler dytc_profile = { .profile_get = dytc_profile_get, .profile_set = dytc_profile_set, }; static int tpacpi_dytc_profile_init(struct ibm_init_struct *iibm) { int err, output; /* Setup supported modes */ set_bit(PLATFORM_PROFILE_LOW_POWER, dytc_profile.choices); set_bit(PLATFORM_PROFILE_BALANCED, dytc_profile.choices); set_bit(PLATFORM_PROFILE_PERFORMANCE, dytc_profile.choices); err = dytc_command(DYTC_CMD_QUERY, &output); if (err) return err; if (output & BIT(DYTC_QUERY_ENABLE_BIT)) dytc_version = (output >> DYTC_QUERY_REV_BIT) & 0xF; /* Check DYTC is enabled and supports mode setting */ if (dytc_version < 5) return -ENODEV; /* Check what capabilities are supported */ err = dytc_command(DYTC_CMD_FUNC_CAP, &dytc_capabilities); if (err) return err; /* Check if user wants to override the profile selection */ if (profile_force) { switch (profile_force) { case -1: dytc_capabilities = 0; break; case 1: dytc_capabilities = BIT(DYTC_FC_MMC); break; case 2: dytc_capabilities = BIT(DYTC_FC_PSC); break; } pr_debug("Profile selection forced: 0x%x\n", dytc_capabilities); } if (dytc_capabilities & BIT(DYTC_FC_MMC)) { /* MMC MODE */ pr_debug("MMC is supported\n"); /* * Check if MMC_GET functionality available * Version > 6 and return success from MMC_GET command */ dytc_mmc_get_available = false; if (dytc_version >= 6) { err = dytc_command(DYTC_CMD_MMC_GET, &output); if (!err && ((output & DYTC_ERR_MASK) == DYTC_ERR_SUCCESS)) dytc_mmc_get_available = true; } } else if (dytc_capabilities & BIT(DYTC_FC_PSC)) { /* PSC MODE */ pr_debug("PSC is supported\n"); } else { dbg_printk(TPACPI_DBG_INIT, "No DYTC support available\n"); return -ENODEV; } dbg_printk(TPACPI_DBG_INIT, "DYTC version %d: thermal mode available\n", dytc_version); /* Create platform_profile structure and register */ err = platform_profile_register(&dytc_profile); /* * If for some reason platform_profiles aren't enabled * don't quit terminally. */ if (err) return -ENODEV; /* Ensure initial values are correct */ dytc_profile_refresh(); /* Workaround for https://bugzilla.kernel.org/show_bug.cgi?id=216347 */ if (dytc_capabilities & BIT(DYTC_FC_PSC)) dytc_profile_set(NULL, PLATFORM_PROFILE_BALANCED); return 0; } static void dytc_profile_exit(void) { platform_profile_remove(); } static struct ibm_struct dytc_profile_driver_data = { .name = "dytc-profile", .exit = dytc_profile_exit, }; /************************************************************************* * Keyboard language interface */ struct keyboard_lang_data { const char *lang_str; int lang_code; }; static const struct keyboard_lang_data keyboard_lang_data[] = { {"be", 0x080c}, {"cz", 0x0405}, {"da", 0x0406}, {"de", 0x0c07}, {"en", 0x0000}, {"es", 0x2c0a}, {"et", 0x0425}, {"fr", 0x040c}, {"fr-ch", 0x100c}, {"hu", 0x040e}, {"it", 0x0410}, {"jp", 0x0411}, {"nl", 0x0413}, {"nn", 0x0414}, {"pl", 0x0415}, {"pt", 0x0816}, {"sl", 0x041b}, {"sv", 0x081d}, {"tr", 0x041f}, }; static int set_keyboard_lang_command(int command) { acpi_handle sskl_handle; int output; if (ACPI_FAILURE(acpi_get_handle(hkey_handle, "SSKL", &sskl_handle))) { /* Platform doesn't support SSKL */ return -ENODEV; } if (!acpi_evalf(sskl_handle, &output, NULL, "dd", command)) return -EIO; return 0; } static int get_keyboard_lang(int *output) { acpi_handle gskl_handle; int kbd_lang; if (ACPI_FAILURE(acpi_get_handle(hkey_handle, "GSKL", &gskl_handle))) { /* Platform doesn't support GSKL */ return -ENODEV; } if (!acpi_evalf(gskl_handle, &kbd_lang, NULL, "dd", 0x02000000)) return -EIO; /* * METHOD_ERR gets returned on devices where there are no special (e.g. '=', * '(' and ')') keys which use layout dependent key-press emulation. */ if (kbd_lang & METHOD_ERR) return -ENODEV; *output = kbd_lang; return 0; } /* sysfs keyboard language entry */ static ssize_t keyboard_lang_show(struct device *dev, struct device_attribute *attr, char *buf) { int output, err, i, len = 0; err = get_keyboard_lang(&output); if (err) return err; for (i = 0; i < ARRAY_SIZE(keyboard_lang_data); i++) { if (i) len += sysfs_emit_at(buf, len, "%s", " "); if (output == keyboard_lang_data[i].lang_code) { len += sysfs_emit_at(buf, len, "[%s]", keyboard_lang_data[i].lang_str); } else { len += sysfs_emit_at(buf, len, "%s", keyboard_lang_data[i].lang_str); } } len += sysfs_emit_at(buf, len, "\n"); return len; } static ssize_t keyboard_lang_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int err, i; bool lang_found = false; int lang_code = 0; for (i = 0; i < ARRAY_SIZE(keyboard_lang_data); i++) { if (sysfs_streq(buf, keyboard_lang_data[i].lang_str)) { lang_code = keyboard_lang_data[i].lang_code; lang_found = true; break; } } if (lang_found) { lang_code = lang_code | 1 << 24; /* Set language code */ err = set_keyboard_lang_command(lang_code); if (err) return err; } else { dev_err(&tpacpi_pdev->dev, "Unknown Keyboard language. Ignoring\n"); return -EINVAL; } tpacpi_disclose_usertask(attr->attr.name, "keyboard language is set to %s\n", buf); sysfs_notify(&tpacpi_pdev->dev.kobj, NULL, "keyboard_lang"); return count; } static DEVICE_ATTR_RW(keyboard_lang); static struct attribute *kbdlang_attributes[] = { &dev_attr_keyboard_lang.attr, NULL }; static umode_t kbdlang_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n) { return tp_features.kbd_lang ? attr->mode : 0; } static const struct attribute_group kbdlang_attr_group = { .is_visible = kbdlang_attr_is_visible, .attrs = kbdlang_attributes, }; static int tpacpi_kbdlang_init(struct ibm_init_struct *iibm) { int err, output; err = get_keyboard_lang(&output); tp_features.kbd_lang = !err; return err; } static struct ibm_struct kbdlang_driver_data = { .name = "kbdlang", }; /************************************************************************* * DPRC(Dynamic Power Reduction Control) subdriver, for the Lenovo WWAN * and WLAN feature. */ #define DPRC_GET_WWAN_ANTENNA_TYPE 0x40000 #define DPRC_WWAN_ANTENNA_TYPE_A_BIT BIT(4) #define DPRC_WWAN_ANTENNA_TYPE_B_BIT BIT(8) static bool has_antennatype; static int wwan_antennatype; static int dprc_command(int command, int *output) { acpi_handle dprc_handle; if (ACPI_FAILURE(acpi_get_handle(hkey_handle, "DPRC", &dprc_handle))) { /* Platform doesn't support DPRC */ return -ENODEV; } if (!acpi_evalf(dprc_handle, output, NULL, "dd", command)) return -EIO; /* * METHOD_ERR gets returned on devices where few commands are not supported * for example command to get WWAN Antenna type command is not supported on * some devices. */ if (*output & METHOD_ERR) return -ENODEV; return 0; } static int get_wwan_antenna(int *wwan_antennatype) { int output, err; /* Get current Antenna type */ err = dprc_command(DPRC_GET_WWAN_ANTENNA_TYPE, &output); if (err) return err; if (output & DPRC_WWAN_ANTENNA_TYPE_A_BIT) *wwan_antennatype = 1; else if (output & DPRC_WWAN_ANTENNA_TYPE_B_BIT) *wwan_antennatype = 2; else return -ENODEV; return 0; } /* sysfs wwan antenna type entry */ static ssize_t wwan_antenna_type_show(struct device *dev, struct device_attribute *attr, char *buf) { switch (wwan_antennatype) { case 1: return sysfs_emit(buf, "type a\n"); case 2: return sysfs_emit(buf, "type b\n"); default: return -ENODATA; } } static DEVICE_ATTR_RO(wwan_antenna_type); static struct attribute *dprc_attributes[] = { &dev_attr_wwan_antenna_type.attr, NULL }; static umode_t dprc_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n) { return has_antennatype ? attr->mode : 0; } static const struct attribute_group dprc_attr_group = { .is_visible = dprc_attr_is_visible, .attrs = dprc_attributes, }; static int tpacpi_dprc_init(struct ibm_init_struct *iibm) { int err; err = get_wwan_antenna(&wwan_antennatype); if (err) return err; has_antennatype = true; return 0; } static struct ibm_struct dprc_driver_data = { .name = "dprc", }; /* --------------------------------------------------------------------- */ static struct attribute *tpacpi_driver_attributes[] = { &driver_attr_debug_level.attr, &driver_attr_version.attr, &driver_attr_interface_version.attr, #ifdef CONFIG_THINKPAD_ACPI_DEBUGFACILITIES &driver_attr_wlsw_emulstate.attr, &driver_attr_bluetooth_emulstate.attr, &driver_attr_wwan_emulstate.attr, &driver_attr_uwb_emulstate.attr, #endif NULL }; #ifdef CONFIG_THINKPAD_ACPI_DEBUGFACILITIES static umode_t tpacpi_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n) { if (attr == &driver_attr_wlsw_emulstate.attr) { if (!dbg_wlswemul) return 0; } else if (attr == &driver_attr_bluetooth_emulstate.attr) { if (!dbg_bluetoothemul) return 0; } else if (attr == &driver_attr_wwan_emulstate.attr) { if (!dbg_wwanemul) return 0; } else if (attr == &driver_attr_uwb_emulstate.attr) { if (!dbg_uwbemul) return 0; } return attr->mode; } #endif static const struct attribute_group tpacpi_driver_attr_group = { #ifdef CONFIG_THINKPAD_ACPI_DEBUGFACILITIES .is_visible = tpacpi_attr_is_visible, #endif .attrs = tpacpi_driver_attributes, }; static const struct attribute_group *tpacpi_driver_groups[] = { &tpacpi_driver_attr_group, NULL, }; static const struct attribute_group *tpacpi_groups[] = { &adaptive_kbd_attr_group, &hotkey_attr_group, &bluetooth_attr_group, &wan_attr_group, &cmos_attr_group, &proxsensor_attr_group, &kbdlang_attr_group, &dprc_attr_group, NULL, }; static const struct attribute_group *tpacpi_hwmon_groups[] = { &thermal_attr_group, &temp_label_attr_group, &fan_attr_group, NULL, }; static const struct attribute_group *tpacpi_hwmon_driver_groups[] = { &fan_driver_attr_group, NULL, }; /**************************************************************************** **************************************************************************** * * Platform drivers * **************************************************************************** ****************************************************************************/ static struct platform_driver tpacpi_pdriver = { .driver = { .name = TPACPI_DRVR_NAME, .pm = &tpacpi_pm, .groups = tpacpi_driver_groups, .dev_groups = tpacpi_groups, }, .shutdown = tpacpi_shutdown_handler, }; static struct platform_driver tpacpi_hwmon_pdriver = { .driver = { .name = TPACPI_HWMON_DRVR_NAME, .groups = tpacpi_hwmon_driver_groups, }, }; /**************************************************************************** **************************************************************************** * * Infrastructure * **************************************************************************** ****************************************************************************/ /* * HKEY event callout for other subdrivers go here * (yes, it is ugly, but it is quick, safe, and gets the job done */ static void tpacpi_driver_event(const unsigned int hkey_event) { if (ibm_backlight_device) { switch (hkey_event) { case TP_HKEY_EV_BRGHT_UP: case TP_HKEY_EV_BRGHT_DOWN: tpacpi_brightness_notify_change(); } } if (alsa_card) { switch (hkey_event) { case TP_HKEY_EV_VOL_UP: case TP_HKEY_EV_VOL_DOWN: case TP_HKEY_EV_VOL_MUTE: volume_alsa_notify_change(); } } if (tp_features.kbdlight && hkey_event == TP_HKEY_EV_KBD_LIGHT) { enum led_brightness brightness; mutex_lock(&kbdlight_mutex); /* * Check the brightness actually changed, setting the brightness * through kbdlight_set_level() also triggers this event. */ brightness = kbdlight_sysfs_get(NULL); if (kbdlight_brightness != brightness) { kbdlight_brightness = brightness; led_classdev_notify_brightness_hw_changed( &tpacpi_led_kbdlight.led_classdev, brightness); } mutex_unlock(&kbdlight_mutex); } if (hkey_event == TP_HKEY_EV_THM_CSM_COMPLETED) { lapsensor_refresh(); /* If we are already accessing DYTC then skip dytc update */ if (!atomic_add_unless(&dytc_ignore_event, -1, 0)) dytc_profile_refresh(); } if (lcdshadow_dev && hkey_event == TP_HKEY_EV_PRIVACYGUARD_TOGGLE) { enum drm_privacy_screen_status old_hw_state; bool changed; mutex_lock(&lcdshadow_dev->lock); old_hw_state = lcdshadow_dev->hw_state; lcdshadow_get_hw_state(lcdshadow_dev); changed = lcdshadow_dev->hw_state != old_hw_state; mutex_unlock(&lcdshadow_dev->lock); if (changed) drm_privacy_screen_call_notifier_chain(lcdshadow_dev); } if (hkey_event == TP_HKEY_EV_AMT_TOGGLE) { /* If we're enabling AMT we need to force balanced mode */ if (!dytc_amt_active) /* This will also set AMT mode enabled */ dytc_profile_set(NULL, PLATFORM_PROFILE_BALANCED); else dytc_control_amt(!dytc_amt_active); } } static void hotkey_driver_event(const unsigned int scancode) { tpacpi_driver_event(TP_HKEY_EV_HOTKEY_BASE + scancode); } /* --------------------------------------------------------------------- */ /* /proc support */ static struct proc_dir_entry *proc_dir; /* * Module and infrastructure proble, init and exit handling */ static bool force_load; #ifdef CONFIG_THINKPAD_ACPI_DEBUG static const char * __init str_supported(int is_supported) { static char text_unsupported[] __initdata = "not supported"; return (is_supported) ? &text_unsupported[4] : &text_unsupported[0]; } #endif /* CONFIG_THINKPAD_ACPI_DEBUG */ static void ibm_exit(struct ibm_struct *ibm) { dbg_printk(TPACPI_DBG_EXIT, "removing %s\n", ibm->name); list_del_init(&ibm->all_drivers); if (ibm->flags.acpi_notify_installed) { dbg_printk(TPACPI_DBG_EXIT, "%s: acpi_remove_notify_handler\n", ibm->name); BUG_ON(!ibm->acpi); acpi_remove_notify_handler(*ibm->acpi->handle, ibm->acpi->type, dispatch_acpi_notify); ibm->flags.acpi_notify_installed = 0; } if (ibm->flags.proc_created) { dbg_printk(TPACPI_DBG_EXIT, "%s: remove_proc_entry\n", ibm->name); remove_proc_entry(ibm->name, proc_dir); ibm->flags.proc_created = 0; } if (ibm->flags.acpi_driver_registered) { dbg_printk(TPACPI_DBG_EXIT, "%s: acpi_bus_unregister_driver\n", ibm->name); BUG_ON(!ibm->acpi); acpi_bus_unregister_driver(ibm->acpi->driver); kfree(ibm->acpi->driver); ibm->acpi->driver = NULL; ibm->flags.acpi_driver_registered = 0; } if (ibm->flags.init_called && ibm->exit) { ibm->exit(); ibm->flags.init_called = 0; } dbg_printk(TPACPI_DBG_INIT, "finished removing %s\n", ibm->name); } static int __init ibm_init(struct ibm_init_struct *iibm) { int ret; struct ibm_struct *ibm = iibm->data; struct proc_dir_entry *entry; BUG_ON(ibm == NULL); INIT_LIST_HEAD(&ibm->all_drivers); if (ibm->flags.experimental && !experimental) return 0; dbg_printk(TPACPI_DBG_INIT, "probing for %s\n", ibm->name); if (iibm->init) { ret = iibm->init(iibm); if (ret > 0 || ret == -ENODEV) return 0; /* subdriver functionality not available */ if (ret) return ret; ibm->flags.init_called = 1; } if (ibm->acpi) { if (ibm->acpi->hid) { ret = register_tpacpi_subdriver(ibm); if (ret) goto err_out; } if (ibm->acpi->notify) { ret = setup_acpi_notify(ibm); if (ret == -ENODEV) { pr_notice("disabling subdriver %s\n", ibm->name); ret = 0; goto err_out; } if (ret < 0) goto err_out; } } dbg_printk(TPACPI_DBG_INIT, "%s installed\n", ibm->name); if (ibm->read) { umode_t mode = iibm->base_procfs_mode; if (!mode) mode = S_IRUGO; if (ibm->write) mode |= S_IWUSR; entry = proc_create_data(ibm->name, mode, proc_dir, &dispatch_proc_ops, ibm); if (!entry) { pr_err("unable to create proc entry %s\n", ibm->name); ret = -ENODEV; goto err_out; } ibm->flags.proc_created = 1; } list_add_tail(&ibm->all_drivers, &tpacpi_all_drivers); return 0; err_out: dbg_printk(TPACPI_DBG_INIT, "%s: at error exit path with result %d\n", ibm->name, ret); ibm_exit(ibm); return (ret < 0) ? ret : 0; } /* Probing */ static char __init tpacpi_parse_fw_id(const char * const s, u32 *model, u16 *release) { int i; if (!s || strlen(s) < 8) goto invalid; for (i = 0; i < 8; i++) if (!((s[i] >= '0' && s[i] <= '9') || (s[i] >= 'A' && s[i] <= 'Z'))) goto invalid; /* * Most models: xxyTkkWW (#.##c) * Ancient 570/600 and -SL lacks (#.##c) */ if (s[3] == 'T' || s[3] == 'N') { *model = TPID(s[0], s[1]); *release = TPVER(s[4], s[5]); return s[2]; /* New models: xxxyTkkW (#.##c); T550 and some others */ } else if (s[4] == 'T' || s[4] == 'N') { *model = TPID3(s[0], s[1], s[2]); *release = TPVER(s[5], s[6]); return s[3]; } invalid: return '\0'; } static void find_new_ec_fwstr(const struct dmi_header *dm, void *private) { char *ec_fw_string = (char *) private; const char *dmi_data = (const char *)dm; /* * ThinkPad Embedded Controller Program Table on newer models * * Offset | Name | Width | Description * ---------------------------------------------------- * 0x00 | Type | BYTE | 0x8C * 0x01 | Length | BYTE | * 0x02 | Handle | WORD | Varies * 0x04 | Signature | BYTEx6 | ASCII for "LENOVO" * 0x0A | OEM struct offset | BYTE | 0x0B * 0x0B | OEM struct number | BYTE | 0x07, for this structure * 0x0C | OEM struct revision | BYTE | 0x01, for this format * 0x0D | ECP version ID | STR ID | * 0x0E | ECP release date | STR ID | */ /* Return if data structure not match */ if (dm->type != 140 || dm->length < 0x0F || memcmp(dmi_data + 4, "LENOVO", 6) != 0 || dmi_data[0x0A] != 0x0B || dmi_data[0x0B] != 0x07 || dmi_data[0x0C] != 0x01) return; /* fwstr is the first 8byte string */ strncpy(ec_fw_string, dmi_data + 0x0F, 8); } /* returns 0 - probe ok, or < 0 - probe error. * Probe ok doesn't mean thinkpad found. * On error, kfree() cleanup on tp->* is not performed, caller must do it */ static int __must_check __init get_thinkpad_model_data( struct thinkpad_id_data *tp) { const struct dmi_device *dev = NULL; char ec_fw_string[18] = {0}; char const *s; char t; if (!tp) return -EINVAL; memset(tp, 0, sizeof(*tp)); if (dmi_name_in_vendors("IBM")) tp->vendor = PCI_VENDOR_ID_IBM; else if (dmi_name_in_vendors("LENOVO")) tp->vendor = PCI_VENDOR_ID_LENOVO; else return 0; s = dmi_get_system_info(DMI_BIOS_VERSION); tp->bios_version_str = kstrdup(s, GFP_KERNEL); if (s && !tp->bios_version_str) return -ENOMEM; /* Really ancient ThinkPad 240X will fail this, which is fine */ t = tpacpi_parse_fw_id(tp->bios_version_str, &tp->bios_model, &tp->bios_release); if (t != 'E' && t != 'C') return 0; /* * ThinkPad T23 or newer, A31 or newer, R50e or newer, * X32 or newer, all Z series; Some models must have an * up-to-date BIOS or they will not be detected. * * See https://thinkwiki.org/wiki/List_of_DMI_IDs */ while ((dev = dmi_find_device(DMI_DEV_TYPE_OEM_STRING, NULL, dev))) { if (sscanf(dev->name, "IBM ThinkPad Embedded Controller -[%17c", ec_fw_string) == 1) { ec_fw_string[sizeof(ec_fw_string) - 1] = 0; ec_fw_string[strcspn(ec_fw_string, " ]")] = 0; break; } } /* Newer ThinkPads have different EC program info table */ if (!ec_fw_string[0]) dmi_walk(find_new_ec_fwstr, &ec_fw_string); if (ec_fw_string[0]) { tp->ec_version_str = kstrdup(ec_fw_string, GFP_KERNEL); if (!tp->ec_version_str) return -ENOMEM; t = tpacpi_parse_fw_id(ec_fw_string, &tp->ec_model, &tp->ec_release); if (t != 'H') { pr_notice("ThinkPad firmware release %s doesn't match the known patterns\n", ec_fw_string); pr_notice("please report this to %s\n", TPACPI_MAIL); } } s = dmi_get_system_info(DMI_PRODUCT_VERSION); if (s && !(strncasecmp(s, "ThinkPad", 8) && strncasecmp(s, "Lenovo", 6))) { tp->model_str = kstrdup(s, GFP_KERNEL); if (!tp->model_str) return -ENOMEM; } else { s = dmi_get_system_info(DMI_BIOS_VENDOR); if (s && !(strncasecmp(s, "Lenovo", 6))) { tp->model_str = kstrdup(s, GFP_KERNEL); if (!tp->model_str) return -ENOMEM; } } s = dmi_get_system_info(DMI_PRODUCT_NAME); tp->nummodel_str = kstrdup(s, GFP_KERNEL); if (s && !tp->nummodel_str) return -ENOMEM; return 0; } static int __init probe_for_thinkpad(void) { int is_thinkpad; if (acpi_disabled) return -ENODEV; /* It would be dangerous to run the driver in this case */ if (!tpacpi_is_ibm() && !tpacpi_is_lenovo()) return -ENODEV; /* * Non-ancient models have better DMI tagging, but very old models * don't. tpacpi_is_fw_known() is a cheat to help in that case. */ is_thinkpad = (thinkpad_id.model_str != NULL) || (thinkpad_id.ec_model != 0) || tpacpi_is_fw_known(); /* The EC handler is required */ tpacpi_acpi_handle_locate("ec", TPACPI_ACPI_EC_HID, &ec_handle); if (!ec_handle) { if (is_thinkpad) pr_err("Not yet supported ThinkPad detected!\n"); return -ENODEV; } if (!is_thinkpad && !force_load) return -ENODEV; return 0; } static void __init thinkpad_acpi_init_banner(void) { pr_info("%s v%s\n", TPACPI_DESC, TPACPI_VERSION); pr_info("%s\n", TPACPI_URL); pr_info("ThinkPad BIOS %s, EC %s\n", (thinkpad_id.bios_version_str) ? thinkpad_id.bios_version_str : "unknown", (thinkpad_id.ec_version_str) ? thinkpad_id.ec_version_str : "unknown"); BUG_ON(!thinkpad_id.vendor); if (thinkpad_id.model_str) pr_info("%s %s, model %s\n", (thinkpad_id.vendor == PCI_VENDOR_ID_IBM) ? "IBM" : ((thinkpad_id.vendor == PCI_VENDOR_ID_LENOVO) ? "Lenovo" : "Unknown vendor"), thinkpad_id.model_str, (thinkpad_id.nummodel_str) ? thinkpad_id.nummodel_str : "unknown"); } /* Module init, exit, parameters */ static struct ibm_init_struct ibms_init[] __initdata = { { .data = &thinkpad_acpi_driver_data, }, { .init = hotkey_init, .data = &hotkey_driver_data, }, { .init = bluetooth_init, .data = &bluetooth_driver_data, }, { .init = wan_init, .data = &wan_driver_data, }, { .init = uwb_init, .data = &uwb_driver_data, }, #ifdef CONFIG_THINKPAD_ACPI_VIDEO { .init = video_init, .base_procfs_mode = S_IRUSR, .data = &video_driver_data, }, #endif { .init = kbdlight_init, .data = &kbdlight_driver_data, }, { .init = light_init, .data = &light_driver_data, }, { .init = cmos_init, .data = &cmos_driver_data, }, { .init = led_init, .data = &led_driver_data, }, { .init = beep_init, .data = &beep_driver_data, }, { .init = thermal_init, .data = &thermal_driver_data, }, { .init = brightness_init, .data = &brightness_driver_data, }, { .init = volume_init, .data = &volume_driver_data, }, { .init = fan_init, .data = &fan_driver_data, }, { .init = mute_led_init, .data = &mute_led_driver_data, }, { .init = tpacpi_battery_init, .data = &battery_driver_data, }, { .init = tpacpi_lcdshadow_init, .data = &lcdshadow_driver_data, }, { .init = tpacpi_proxsensor_init, .data = &proxsensor_driver_data, }, { .init = tpacpi_dytc_profile_init, .data = &dytc_profile_driver_data, }, { .init = tpacpi_kbdlang_init, .data = &kbdlang_driver_data, }, { .init = tpacpi_dprc_init, .data = &dprc_driver_data, }, }; static int __init set_ibm_param(const char *val, const struct kernel_param *kp) { unsigned int i; struct ibm_struct *ibm; if (!kp || !kp->name || !val) return -EINVAL; for (i = 0; i < ARRAY_SIZE(ibms_init); i++) { ibm = ibms_init[i].data; if (!ibm || !ibm->name) continue; if (strcmp(ibm->name, kp->name) == 0 && ibm->write) { if (strlen(val) > sizeof(ibms_init[i].param) - 1) return -ENOSPC; strcpy(ibms_init[i].param, val); return 0; } } return -EINVAL; } module_param(experimental, int, 0444); MODULE_PARM_DESC(experimental, "Enables experimental features when non-zero"); module_param_named(debug, dbg_level, uint, 0); MODULE_PARM_DESC(debug, "Sets debug level bit-mask"); module_param(force_load, bool, 0444); MODULE_PARM_DESC(force_load, "Attempts to load the driver even on a mis-identified ThinkPad when true"); module_param_named(fan_control, fan_control_allowed, bool, 0444); MODULE_PARM_DESC(fan_control, "Enables setting fan parameters features when true"); module_param_named(brightness_mode, brightness_mode, uint, 0444); MODULE_PARM_DESC(brightness_mode, "Selects brightness control strategy: 0=auto, 1=EC, 2=UCMS, 3=EC+NVRAM"); module_param(brightness_enable, uint, 0444); MODULE_PARM_DESC(brightness_enable, "Enables backlight control when 1, disables when 0"); #ifdef CONFIG_THINKPAD_ACPI_ALSA_SUPPORT module_param_named(volume_mode, volume_mode, uint, 0444); MODULE_PARM_DESC(volume_mode, "Selects volume control strategy: 0=auto, 1=EC, 2=N/A, 3=EC+NVRAM"); module_param_named(volume_capabilities, volume_capabilities, uint, 0444); MODULE_PARM_DESC(volume_capabilities, "Selects the mixer capabilities: 0=auto, 1=volume and mute, 2=mute only"); module_param_named(volume_control, volume_control_allowed, bool, 0444); MODULE_PARM_DESC(volume_control, "Enables software override for the console audio control when true"); module_param_named(software_mute, software_mute_requested, bool, 0444); MODULE_PARM_DESC(software_mute, "Request full software mute control"); /* ALSA module API parameters */ module_param_named(index, alsa_index, int, 0444); MODULE_PARM_DESC(index, "ALSA index for the ACPI EC Mixer"); module_param_named(id, alsa_id, charp, 0444); MODULE_PARM_DESC(id, "ALSA id for the ACPI EC Mixer"); module_param_named(enable, alsa_enable, bool, 0444); MODULE_PARM_DESC(enable, "Enable the ALSA interface for the ACPI EC Mixer"); #endif /* CONFIG_THINKPAD_ACPI_ALSA_SUPPORT */ /* The module parameter can't be read back, that's why 0 is used here */ #define TPACPI_PARAM(feature) \ module_param_call(feature, set_ibm_param, NULL, NULL, 0); \ MODULE_PARM_DESC(feature, "Simulates thinkpad-acpi procfs command at module load, see documentation") TPACPI_PARAM(hotkey); TPACPI_PARAM(bluetooth); TPACPI_PARAM(video); TPACPI_PARAM(light); TPACPI_PARAM(cmos); TPACPI_PARAM(led); TPACPI_PARAM(beep); TPACPI_PARAM(brightness); TPACPI_PARAM(volume); TPACPI_PARAM(fan); #ifdef CONFIG_THINKPAD_ACPI_DEBUGFACILITIES module_param(dbg_wlswemul, uint, 0444); MODULE_PARM_DESC(dbg_wlswemul, "Enables WLSW emulation"); module_param_named(wlsw_state, tpacpi_wlsw_emulstate, bool, 0); MODULE_PARM_DESC(wlsw_state, "Initial state of the emulated WLSW switch"); module_param(dbg_bluetoothemul, uint, 0444); MODULE_PARM_DESC(dbg_bluetoothemul, "Enables bluetooth switch emulation"); module_param_named(bluetooth_state, tpacpi_bluetooth_emulstate, bool, 0); MODULE_PARM_DESC(bluetooth_state, "Initial state of the emulated bluetooth switch"); module_param(dbg_wwanemul, uint, 0444); MODULE_PARM_DESC(dbg_wwanemul, "Enables WWAN switch emulation"); module_param_named(wwan_state, tpacpi_wwan_emulstate, bool, 0); MODULE_PARM_DESC(wwan_state, "Initial state of the emulated WWAN switch"); module_param(dbg_uwbemul, uint, 0444); MODULE_PARM_DESC(dbg_uwbemul, "Enables UWB switch emulation"); module_param_named(uwb_state, tpacpi_uwb_emulstate, bool, 0); MODULE_PARM_DESC(uwb_state, "Initial state of the emulated UWB switch"); #endif module_param(profile_force, int, 0444); MODULE_PARM_DESC(profile_force, "Force profile mode. -1=off, 1=MMC, 2=PSC"); static void thinkpad_acpi_module_exit(void) { struct ibm_struct *ibm, *itmp; tpacpi_lifecycle = TPACPI_LIFE_EXITING; if (tpacpi_hwmon) hwmon_device_unregister(tpacpi_hwmon); if (tp_features.sensors_pdrv_registered) platform_driver_unregister(&tpacpi_hwmon_pdriver); if (tp_features.platform_drv_registered) platform_driver_unregister(&tpacpi_pdriver); list_for_each_entry_safe_reverse(ibm, itmp, &tpacpi_all_drivers, all_drivers) { ibm_exit(ibm); } dbg_printk(TPACPI_DBG_INIT, "finished subdriver exit path...\n"); if (tpacpi_inputdev) { if (tp_features.input_device_registered) input_unregister_device(tpacpi_inputdev); else input_free_device(tpacpi_inputdev); kfree(hotkey_keycode_map); } if (tpacpi_sensors_pdev) platform_device_unregister(tpacpi_sensors_pdev); if (tpacpi_pdev) platform_device_unregister(tpacpi_pdev); if (proc_dir) remove_proc_entry(TPACPI_PROC_DIR, acpi_root_dir); if (tpacpi_wq) destroy_workqueue(tpacpi_wq); kfree(thinkpad_id.bios_version_str); kfree(thinkpad_id.ec_version_str); kfree(thinkpad_id.model_str); kfree(thinkpad_id.nummodel_str); } static int __init thinkpad_acpi_module_init(void) { const struct dmi_system_id *dmi_id; int ret, i; acpi_object_type obj_type; tpacpi_lifecycle = TPACPI_LIFE_INIT; /* Driver-level probe */ ret = get_thinkpad_model_data(&thinkpad_id); if (ret) { pr_err("unable to get DMI data: %d\n", ret); thinkpad_acpi_module_exit(); return ret; } ret = probe_for_thinkpad(); if (ret) { thinkpad_acpi_module_exit(); return ret; } /* Driver initialization */ thinkpad_acpi_init_banner(); tpacpi_check_outdated_fw(); TPACPI_ACPIHANDLE_INIT(ecrd); TPACPI_ACPIHANDLE_INIT(ecwr); /* * Quirk: in some models (e.g. X380 Yoga), an object named ECRD * exists, but it is a register, not a method. */ if (ecrd_handle) { acpi_get_type(ecrd_handle, &obj_type); if (obj_type != ACPI_TYPE_METHOD) ecrd_handle = NULL; } if (ecwr_handle) { acpi_get_type(ecwr_handle, &obj_type); if (obj_type != ACPI_TYPE_METHOD) ecwr_handle = NULL; } tpacpi_wq = create_singlethread_workqueue(TPACPI_WORKQUEUE_NAME); if (!tpacpi_wq) { thinkpad_acpi_module_exit(); return -ENOMEM; } proc_dir = proc_mkdir(TPACPI_PROC_DIR, acpi_root_dir); if (!proc_dir) { pr_err("unable to create proc dir " TPACPI_PROC_DIR "\n"); thinkpad_acpi_module_exit(); return -ENODEV; } dmi_id = dmi_first_match(fwbug_list); if (dmi_id) tp_features.quirks = dmi_id->driver_data; /* Device initialization */ tpacpi_pdev = platform_device_register_simple(TPACPI_DRVR_NAME, PLATFORM_DEVID_NONE, NULL, 0); if (IS_ERR(tpacpi_pdev)) { ret = PTR_ERR(tpacpi_pdev); tpacpi_pdev = NULL; pr_err("unable to register platform device\n"); thinkpad_acpi_module_exit(); return ret; } tpacpi_sensors_pdev = platform_device_register_simple( TPACPI_HWMON_DRVR_NAME, PLATFORM_DEVID_NONE, NULL, 0); if (IS_ERR(tpacpi_sensors_pdev)) { ret = PTR_ERR(tpacpi_sensors_pdev); tpacpi_sensors_pdev = NULL; pr_err("unable to register hwmon platform device\n"); thinkpad_acpi_module_exit(); return ret; } mutex_init(&tpacpi_inputdev_send_mutex); tpacpi_inputdev = input_allocate_device(); if (!tpacpi_inputdev) { thinkpad_acpi_module_exit(); return -ENOMEM; } else { /* Prepare input device, but don't register */ tpacpi_inputdev->name = "ThinkPad Extra Buttons"; tpacpi_inputdev->phys = TPACPI_DRVR_NAME "/input0"; tpacpi_inputdev->id.bustype = BUS_HOST; tpacpi_inputdev->id.vendor = thinkpad_id.vendor; tpacpi_inputdev->id.product = TPACPI_HKEY_INPUT_PRODUCT; tpacpi_inputdev->id.version = TPACPI_HKEY_INPUT_VERSION; tpacpi_inputdev->dev.parent = &tpacpi_pdev->dev; } /* Init subdriver dependencies */ tpacpi_detect_brightness_capabilities(); /* Init subdrivers */ for (i = 0; i < ARRAY_SIZE(ibms_init); i++) { ret = ibm_init(&ibms_init[i]); if (ret >= 0 && *ibms_init[i].param) ret = ibms_init[i].data->write(ibms_init[i].param); if (ret < 0) { thinkpad_acpi_module_exit(); return ret; } } tpacpi_lifecycle = TPACPI_LIFE_RUNNING; ret = platform_driver_register(&tpacpi_pdriver); if (ret) { pr_err("unable to register main platform driver\n"); thinkpad_acpi_module_exit(); return ret; } tp_features.platform_drv_registered = 1; ret = platform_driver_register(&tpacpi_hwmon_pdriver); if (ret) { pr_err("unable to register hwmon platform driver\n"); thinkpad_acpi_module_exit(); return ret; } tp_features.sensors_pdrv_registered = 1; tpacpi_hwmon = hwmon_device_register_with_groups( &tpacpi_sensors_pdev->dev, TPACPI_NAME, NULL, tpacpi_hwmon_groups); if (IS_ERR(tpacpi_hwmon)) { ret = PTR_ERR(tpacpi_hwmon); tpacpi_hwmon = NULL; pr_err("unable to register hwmon device\n"); thinkpad_acpi_module_exit(); return ret; } ret = input_register_device(tpacpi_inputdev); if (ret < 0) { pr_err("unable to register input device\n"); thinkpad_acpi_module_exit(); return ret; } else { tp_features.input_device_registered = 1; } return 0; } MODULE_ALIAS(TPACPI_DRVR_SHORTNAME); /* * This will autoload the driver in almost every ThinkPad * in widespread use. * * Only _VERY_ old models, like the 240, 240x and 570 lack * the HKEY event interface. */ MODULE_DEVICE_TABLE(acpi, ibm_htk_device_ids); /* * DMI matching for module autoloading * * See https://thinkwiki.org/wiki/List_of_DMI_IDs * See https://thinkwiki.org/wiki/BIOS_Upgrade_Downloads * * Only models listed in thinkwiki will be supported, so add yours * if it is not there yet. */ #define IBM_BIOS_MODULE_ALIAS(__type) \ MODULE_ALIAS("dmi:bvnIBM:bvr" __type "ET??WW*") /* Ancient thinkpad BIOSes have to be identified by * BIOS type or model number, and there are far less * BIOS types than model numbers... */ IBM_BIOS_MODULE_ALIAS("I[MU]"); /* 570, 570e */ MODULE_AUTHOR("Borislav Deianov <[email protected]>"); MODULE_AUTHOR("Henrique de Moraes Holschuh <[email protected]>"); MODULE_DESCRIPTION(TPACPI_DESC); MODULE_VERSION(TPACPI_VERSION); MODULE_LICENSE("GPL"); module_init(thinkpad_acpi_module_init); module_exit(thinkpad_acpi_module_exit);
linux-master
drivers/platform/x86/thinkpad_acpi.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * DMI based code to deal with broken DSDTs on X86 tablets which ship with * Android as (part of) the factory image. The factory kernels shipped on these * devices typically have a bunch of things hardcoded, rather than specified * in their DSDT. * * Copyright (C) 2021-2023 Hans de Goede <[email protected]> */ #include <linux/dmi.h> #include <linux/init.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include "x86-android-tablets.h" const struct dmi_system_id x86_android_tablet_ids[] __initconst = { { /* Acer Iconia One 7 B1-750 */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Insyde"), DMI_MATCH(DMI_PRODUCT_NAME, "VESPA2"), }, .driver_data = (void *)&acer_b1_750_info, }, { /* Advantech MICA-071 */ .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Advantech"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "MICA-071"), }, .driver_data = (void *)&advantech_mica_071_info, }, { /* Asus MeMO Pad 7 ME176C */ .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "ME176C"), }, .driver_data = (void *)&asus_me176c_info, }, { /* Asus TF103C */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "TF103C"), }, .driver_data = (void *)&asus_tf103c_info, }, { /* Chuwi Hi8 (CWI509) */ .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "Hampoo"), DMI_MATCH(DMI_BOARD_NAME, "BYT-PA03C"), DMI_MATCH(DMI_SYS_VENDOR, "ilife"), DMI_MATCH(DMI_PRODUCT_NAME, "S806"), }, .driver_data = (void *)&chuwi_hi8_info, }, { /* Cyberbook T116 Android version */ .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "Default string"), DMI_MATCH(DMI_BOARD_NAME, "Cherry Trail CR"), /* Above strings are much too generic, also match on SKU + BIOS date */ DMI_MATCH(DMI_PRODUCT_SKU, "20170531"), DMI_MATCH(DMI_BIOS_DATE, "07/12/2017"), }, .driver_data = (void *)&cyberbook_t116_info, }, { /* CZC P10T */ .ident = "CZC ODEON TPC-10 (\"P10T\")", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "CZC"), DMI_MATCH(DMI_PRODUCT_NAME, "ODEON*TPC-10"), }, .driver_data = (void *)&czc_p10t, }, { /* CZC P10T variant */ .ident = "ViewSonic ViewPad 10", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ViewSonic"), DMI_MATCH(DMI_PRODUCT_NAME, "VPAD10"), }, .driver_data = (void *)&czc_p10t, }, { /* Lenovo Yoga Book X90F / X90L */ .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Intel Corporation"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "CHERRYVIEW D1 PLATFORM"), DMI_EXACT_MATCH(DMI_PRODUCT_VERSION, "YETI-11"), }, .driver_data = (void *)&lenovo_yogabook_x90_info, }, { /* Lenovo Yoga Book X91F / X91L */ .matches = { /* Non exact match to match F + L versions */ DMI_MATCH(DMI_PRODUCT_NAME, "Lenovo YB1-X91"), }, .driver_data = (void *)&lenovo_yogabook_x91_info, }, { /* * Lenovo Yoga Tablet 2 830F/L or 1050F/L (The 8" and 10" * Lenovo Yoga Tablet 2 use the same mainboard) */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Intel Corp."), DMI_MATCH(DMI_PRODUCT_NAME, "VALLEYVIEW C0 PLATFORM"), DMI_MATCH(DMI_BOARD_NAME, "BYT-T FFD8"), /* Partial match on beginning of BIOS version */ DMI_MATCH(DMI_BIOS_VERSION, "BLADE_21"), }, .driver_data = (void *)&lenovo_yoga_tab2_830_1050_info, }, { /* Lenovo Yoga Tab 3 Pro YT3-X90F */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Intel Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, "CHERRYVIEW D1 PLATFORM"), DMI_MATCH(DMI_PRODUCT_VERSION, "Blade3-10A-001"), }, .driver_data = (void *)&lenovo_yt3_info, }, { /* Medion Lifetab S10346 */ .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "AMI Corporation"), DMI_MATCH(DMI_BOARD_NAME, "Aptio CRB"), /* Above strings are much too generic, also match on BIOS date */ DMI_MATCH(DMI_BIOS_DATE, "10/22/2015"), }, .driver_data = (void *)&medion_lifetab_s10346_info, }, { /* Nextbook Ares 8 (BYT version) */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Insyde"), DMI_MATCH(DMI_PRODUCT_NAME, "M890BAP"), }, .driver_data = (void *)&nextbook_ares8_info, }, { /* Nextbook Ares 8A (CHT version)*/ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Insyde"), DMI_MATCH(DMI_PRODUCT_NAME, "CherryTrail"), DMI_MATCH(DMI_BIOS_VERSION, "M882"), }, .driver_data = (void *)&nextbook_ares8a_info, }, { /* Peaq C1010 */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "PEAQ"), DMI_MATCH(DMI_PRODUCT_NAME, "PEAQ PMM C1010 MD99187"), }, .driver_data = (void *)&peaq_c1010_info, }, { /* Whitelabel (sold as various brands) TM800A550L */ .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "AMI Corporation"), DMI_MATCH(DMI_BOARD_NAME, "Aptio CRB"), /* Above strings are too generic, also match on BIOS version */ DMI_MATCH(DMI_BIOS_VERSION, "ZY-8-BI-PX4S70VTR400-X423B-005-D"), }, .driver_data = (void *)&whitelabel_tm800a550l_info, }, { /* Xiaomi Mi Pad 2 */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Xiaomi Inc"), DMI_MATCH(DMI_PRODUCT_NAME, "Mipad2"), }, .driver_data = (void *)&xiaomi_mipad2_info, }, { } }; MODULE_DEVICE_TABLE(dmi, x86_android_tablet_ids);
linux-master
drivers/platform/x86/x86-android-tablets/dmi.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Board info for Asus X86 tablets which ship with Android as the factory image * and which have broken DSDT tables. The factory kernels shipped on these * devices typically have a bunch of things hardcoded, rather than specified * in their DSDT. * * Copyright (C) 2021-2023 Hans de Goede <[email protected]> */ #include <linux/gpio/machine.h> #include <linux/input.h> #include <linux/platform_device.h> #include "shared-psy-info.h" #include "x86-android-tablets.h" /* Asus ME176C and TF103C tablets shared data */ static struct gpiod_lookup_table int3496_gpo2_pin22_gpios = { .dev_id = "intel-int3496", .table = { GPIO_LOOKUP("INT33FC:02", 22, "id", GPIO_ACTIVE_HIGH), { } }, }; static const struct x86_gpio_button asus_me176c_tf103c_lid __initconst = { .button = { .code = SW_LID, .active_low = true, .desc = "lid_sw", .type = EV_SW, .wakeup = true, .debounce_interval = 50, }, .chip = "INT33FC:02", .pin = 12, }; /* Asus ME176C tablets have an Android factory img with everything hardcoded */ static const char * const asus_me176c_accel_mount_matrix[] = { "-1", "0", "0", "0", "1", "0", "0", "0", "1" }; static const struct property_entry asus_me176c_accel_props[] = { PROPERTY_ENTRY_STRING_ARRAY("mount-matrix", asus_me176c_accel_mount_matrix), { } }; static const struct software_node asus_me176c_accel_node = { .properties = asus_me176c_accel_props, }; static const struct property_entry asus_me176c_bq24190_props[] = { PROPERTY_ENTRY_STRING_ARRAY_LEN("supplied-from", tusb1211_chg_det_psy, 1), PROPERTY_ENTRY_REF("monitored-battery", &generic_lipo_hv_4v35_battery_node), PROPERTY_ENTRY_U32("ti,system-minimum-microvolt", 3600000), PROPERTY_ENTRY_BOOL("omit-battery-class"), PROPERTY_ENTRY_BOOL("disable-reset"), { } }; static const struct software_node asus_me176c_bq24190_node = { .properties = asus_me176c_bq24190_props, }; static const struct property_entry asus_me176c_ug3105_props[] = { PROPERTY_ENTRY_STRING_ARRAY_LEN("supplied-from", bq24190_psy, 1), PROPERTY_ENTRY_REF("monitored-battery", &generic_lipo_hv_4v35_battery_node), PROPERTY_ENTRY_U32("upisemi,rsns-microohm", 10000), { } }; static const struct software_node asus_me176c_ug3105_node = { .properties = asus_me176c_ug3105_props, }; static const struct x86_i2c_client_info asus_me176c_i2c_clients[] __initconst = { { /* bq24297 battery charger */ .board_info = { .type = "bq24190", .addr = 0x6b, .dev_name = "bq24297", .swnode = &asus_me176c_bq24190_node, .platform_data = &bq24190_pdata, }, .adapter_path = "\\_SB_.I2C1", .irq_data = { .type = X86_ACPI_IRQ_TYPE_PMIC, .chip = "\\_SB_.I2C7.PMIC", .domain = DOMAIN_BUS_WAKEUP, .index = 0, }, }, { /* ug3105 battery monitor */ .board_info = { .type = "ug3105", .addr = 0x70, .dev_name = "ug3105", .swnode = &asus_me176c_ug3105_node, }, .adapter_path = "\\_SB_.I2C1", }, { /* ak09911 compass */ .board_info = { .type = "ak09911", .addr = 0x0c, .dev_name = "ak09911", }, .adapter_path = "\\_SB_.I2C5", }, { /* kxtj21009 accel */ .board_info = { .type = "kxtj21009", .addr = 0x0f, .dev_name = "kxtj21009", .swnode = &asus_me176c_accel_node, }, .adapter_path = "\\_SB_.I2C5", .irq_data = { .type = X86_ACPI_IRQ_TYPE_APIC, .index = 0x44, .trigger = ACPI_EDGE_SENSITIVE, .polarity = ACPI_ACTIVE_LOW, }, }, { /* goodix touchscreen */ .board_info = { .type = "GDIX1001:00", .addr = 0x14, .dev_name = "goodix_ts", }, .adapter_path = "\\_SB_.I2C6", .irq_data = { .type = X86_ACPI_IRQ_TYPE_APIC, .index = 0x45, .trigger = ACPI_EDGE_SENSITIVE, .polarity = ACPI_ACTIVE_LOW, }, }, }; static const struct x86_serdev_info asus_me176c_serdevs[] __initconst = { { .ctrl_hid = "80860F0A", .ctrl_uid = "2", .ctrl_devname = "serial0", .serdev_hid = "BCM2E3A", }, }; static struct gpiod_lookup_table asus_me176c_goodix_gpios = { .dev_id = "i2c-goodix_ts", .table = { GPIO_LOOKUP("INT33FC:00", 60, "reset", GPIO_ACTIVE_HIGH), GPIO_LOOKUP("INT33FC:02", 28, "irq", GPIO_ACTIVE_HIGH), { } }, }; static struct gpiod_lookup_table * const asus_me176c_gpios[] = { &int3496_gpo2_pin22_gpios, &asus_me176c_goodix_gpios, NULL }; const struct x86_dev_info asus_me176c_info __initconst = { .i2c_client_info = asus_me176c_i2c_clients, .i2c_client_count = ARRAY_SIZE(asus_me176c_i2c_clients), .pdev_info = int3496_pdevs, .pdev_count = 1, .serdev_info = asus_me176c_serdevs, .serdev_count = ARRAY_SIZE(asus_me176c_serdevs), .gpio_button = &asus_me176c_tf103c_lid, .gpio_button_count = 1, .gpiod_lookup_tables = asus_me176c_gpios, .bat_swnode = &generic_lipo_hv_4v35_battery_node, .modules = bq24190_modules, }; /* Asus TF103C tablets have an Android factory img with everything hardcoded */ static const char * const asus_tf103c_accel_mount_matrix[] = { "0", "-1", "0", "-1", "0", "0", "0", "0", "1" }; static const struct property_entry asus_tf103c_accel_props[] = { PROPERTY_ENTRY_STRING_ARRAY("mount-matrix", asus_tf103c_accel_mount_matrix), { } }; static const struct software_node asus_tf103c_accel_node = { .properties = asus_tf103c_accel_props, }; static const struct property_entry asus_tf103c_touchscreen_props[] = { PROPERTY_ENTRY_STRING("compatible", "atmel,atmel_mxt_ts"), { } }; static const struct software_node asus_tf103c_touchscreen_node = { .properties = asus_tf103c_touchscreen_props, }; static const struct property_entry asus_tf103c_battery_props[] = { PROPERTY_ENTRY_STRING("compatible", "simple-battery"), PROPERTY_ENTRY_STRING("device-chemistry", "lithium-ion-polymer"), PROPERTY_ENTRY_U32("precharge-current-microamp", 256000), PROPERTY_ENTRY_U32("charge-term-current-microamp", 128000), PROPERTY_ENTRY_U32("constant-charge-current-max-microamp", 2048000), PROPERTY_ENTRY_U32("constant-charge-voltage-max-microvolt", 4208000), PROPERTY_ENTRY_U32("factory-internal-resistance-micro-ohms", 150000), { } }; static const struct software_node asus_tf103c_battery_node = { .properties = asus_tf103c_battery_props, }; static const struct property_entry asus_tf103c_bq24190_props[] = { PROPERTY_ENTRY_STRING_ARRAY_LEN("supplied-from", tusb1211_chg_det_psy, 1), PROPERTY_ENTRY_REF("monitored-battery", &asus_tf103c_battery_node), PROPERTY_ENTRY_U32("ti,system-minimum-microvolt", 3600000), PROPERTY_ENTRY_BOOL("omit-battery-class"), PROPERTY_ENTRY_BOOL("disable-reset"), { } }; static const struct software_node asus_tf103c_bq24190_node = { .properties = asus_tf103c_bq24190_props, }; static const struct property_entry asus_tf103c_ug3105_props[] = { PROPERTY_ENTRY_STRING_ARRAY_LEN("supplied-from", bq24190_psy, 1), PROPERTY_ENTRY_REF("monitored-battery", &asus_tf103c_battery_node), PROPERTY_ENTRY_U32("upisemi,rsns-microohm", 5000), { } }; static const struct software_node asus_tf103c_ug3105_node = { .properties = asus_tf103c_ug3105_props, }; static const struct x86_i2c_client_info asus_tf103c_i2c_clients[] __initconst = { { /* bq24297 battery charger */ .board_info = { .type = "bq24190", .addr = 0x6b, .dev_name = "bq24297", .swnode = &asus_tf103c_bq24190_node, .platform_data = &bq24190_pdata, }, .adapter_path = "\\_SB_.I2C1", .irq_data = { .type = X86_ACPI_IRQ_TYPE_PMIC, .chip = "\\_SB_.I2C7.PMIC", .domain = DOMAIN_BUS_WAKEUP, .index = 0, }, }, { /* ug3105 battery monitor */ .board_info = { .type = "ug3105", .addr = 0x70, .dev_name = "ug3105", .swnode = &asus_tf103c_ug3105_node, }, .adapter_path = "\\_SB_.I2C1", }, { /* ak09911 compass */ .board_info = { .type = "ak09911", .addr = 0x0c, .dev_name = "ak09911", }, .adapter_path = "\\_SB_.I2C5", }, { /* kxtj21009 accel */ .board_info = { .type = "kxtj21009", .addr = 0x0f, .dev_name = "kxtj21009", .swnode = &asus_tf103c_accel_node, }, .adapter_path = "\\_SB_.I2C5", }, { /* atmel touchscreen */ .board_info = { .type = "atmel_mxt_ts", .addr = 0x4a, .dev_name = "atmel_mxt_ts", .swnode = &asus_tf103c_touchscreen_node, }, .adapter_path = "\\_SB_.I2C6", .irq_data = { .type = X86_ACPI_IRQ_TYPE_GPIOINT, .chip = "INT33FC:02", .index = 28, .trigger = ACPI_EDGE_SENSITIVE, .polarity = ACPI_ACTIVE_LOW, }, }, }; static struct gpiod_lookup_table * const asus_tf103c_gpios[] = { &int3496_gpo2_pin22_gpios, NULL }; const struct x86_dev_info asus_tf103c_info __initconst = { .i2c_client_info = asus_tf103c_i2c_clients, .i2c_client_count = ARRAY_SIZE(asus_tf103c_i2c_clients), .pdev_info = int3496_pdevs, .pdev_count = 1, .gpio_button = &asus_me176c_tf103c_lid, .gpio_button_count = 1, .gpiod_lookup_tables = asus_tf103c_gpios, .bat_swnode = &asus_tf103c_battery_node, .modules = bq24190_modules, };
linux-master
drivers/platform/x86/x86-android-tablets/asus.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Board info for Lenovo X86 tablets which ship with Android as the factory image * and which have broken DSDT tables. The factory kernels shipped on these * devices typically have a bunch of things hardcoded, rather than specified * in their DSDT. * * Copyright (C) 2021-2023 Hans de Goede <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/efi.h> #include <linux/gpio/machine.h> #include <linux/mfd/intel_soc_pmic.h> #include <linux/pinctrl/consumer.h> #include <linux/pinctrl/machine.h> #include <linux/platform_data/lp855x.h> #include <linux/platform_device.h> #include <linux/reboot.h> #include <linux/rmi.h> #include <linux/spi/spi.h> #include "shared-psy-info.h" #include "x86-android-tablets.h" /* * Various Lenovo models use a TI LP8557 LED backlight controller with its PWM * input connected to a PWM output coming from the LCD panel's controller. * The Android kernels have a hack in the i915 driver to write a non-standard * panel specific DSI register to set the duty-cycle of the LCD's PWM output. * * To avoid having to have a similar hack in the mainline kernel program the * LP8557 to directly set the level and use the lp855x_bl driver for control. */ static struct lp855x_platform_data lenovo_lp8557_pdata = { .device_control = 0x86, .initial_brightness = 128, }; /* Lenovo Yoga Book X90F / X90L's Android factory img has everything hardcoded */ static const struct property_entry lenovo_yb1_x90_wacom_props[] = { PROPERTY_ENTRY_U32("hid-descr-addr", 0x0001), PROPERTY_ENTRY_U32("post-reset-deassert-delay-ms", 150), { } }; static const struct software_node lenovo_yb1_x90_wacom_node = { .properties = lenovo_yb1_x90_wacom_props, }; /* * The HiDeep IST940E touchscreen comes up in I2C-HID mode. The native protocol * reports ABS_MT_PRESSURE and ABS_MT_TOUCH_MAJOR which are not reported in HID * mode, so using native mode is preferred. * It could alternatively be used in HID mode by changing the properties to: * PROPERTY_ENTRY_U32("hid-descr-addr", 0x0020), * PROPERTY_ENTRY_U32("post-reset-deassert-delay-ms", 120), * and changing board_info.type to "hid-over-i2c". */ static const struct property_entry lenovo_yb1_x90_hideep_ts_props[] = { PROPERTY_ENTRY_U32("touchscreen-size-x", 1200), PROPERTY_ENTRY_U32("touchscreen-size-y", 1920), PROPERTY_ENTRY_U32("touchscreen-max-pressure", 16384), PROPERTY_ENTRY_BOOL("hideep,force-native-protocol"), { } }; static const struct software_node lenovo_yb1_x90_hideep_ts_node = { .properties = lenovo_yb1_x90_hideep_ts_props, }; static const struct x86_i2c_client_info lenovo_yb1_x90_i2c_clients[] __initconst = { { /* BQ27542 fuel-gauge */ .board_info = { .type = "bq27542", .addr = 0x55, .dev_name = "bq27542", .swnode = &fg_bq25890_supply_node, }, .adapter_path = "\\_SB_.PCI0.I2C1", }, { /* Goodix Touchscreen in keyboard half */ .board_info = { .type = "GDIX1001:00", .addr = 0x14, .dev_name = "goodix_ts", }, .adapter_path = "\\_SB_.PCI0.I2C2", .irq_data = { .type = X86_ACPI_IRQ_TYPE_GPIOINT, .chip = "INT33FF:01", .index = 56, .trigger = ACPI_EDGE_SENSITIVE, .polarity = ACPI_ACTIVE_LOW, }, }, { /* Wacom Digitizer in keyboard half */ .board_info = { .type = "hid-over-i2c", .addr = 0x09, .dev_name = "wacom", .swnode = &lenovo_yb1_x90_wacom_node, }, .adapter_path = "\\_SB_.PCI0.I2C4", .irq_data = { .type = X86_ACPI_IRQ_TYPE_GPIOINT, .chip = "INT33FF:01", .index = 49, .trigger = ACPI_LEVEL_SENSITIVE, .polarity = ACPI_ACTIVE_LOW, }, }, { /* LP8557 Backlight controller */ .board_info = { .type = "lp8557", .addr = 0x2c, .dev_name = "lp8557", .platform_data = &lenovo_lp8557_pdata, }, .adapter_path = "\\_SB_.PCI0.I2C4", }, { /* HiDeep IST940E Touchscreen in display half */ .board_info = { .type = "hideep_ts", .addr = 0x6c, .dev_name = "hideep_ts", .swnode = &lenovo_yb1_x90_hideep_ts_node, }, .adapter_path = "\\_SB_.PCI0.I2C6", .irq_data = { .type = X86_ACPI_IRQ_TYPE_GPIOINT, .chip = "INT33FF:03", .index = 77, .trigger = ACPI_LEVEL_SENSITIVE, .polarity = ACPI_ACTIVE_LOW, }, }, }; static const struct platform_device_info lenovo_yb1_x90_pdevs[] __initconst = { { .name = "yogabook-touch-kbd-digitizer-switch", .id = PLATFORM_DEVID_NONE, }, }; /* * DSDT says UART path is "\\_SB.PCIO.URT1" with a letter 'O' instead of * the number '0' add the link manually. */ static const struct x86_serdev_info lenovo_yb1_x90_serdevs[] __initconst = { { .ctrl_hid = "8086228A", .ctrl_uid = "1", .ctrl_devname = "serial0", .serdev_hid = "BCM2E1A", }, }; static const struct x86_gpio_button lenovo_yb1_x90_lid __initconst = { .button = { .code = SW_LID, .active_low = true, .desc = "lid_sw", .type = EV_SW, .wakeup = true, .debounce_interval = 50, }, .chip = "INT33FF:02", .pin = 19, }; static struct gpiod_lookup_table lenovo_yb1_x90_goodix_gpios = { .dev_id = "i2c-goodix_ts", .table = { GPIO_LOOKUP("INT33FF:01", 53, "reset", GPIO_ACTIVE_HIGH), GPIO_LOOKUP("INT33FF:01", 56, "irq", GPIO_ACTIVE_HIGH), { } }, }; static struct gpiod_lookup_table lenovo_yb1_x90_hideep_gpios = { .dev_id = "i2c-hideep_ts", .table = { GPIO_LOOKUP("INT33FF:00", 7, "reset", GPIO_ACTIVE_LOW), { } }, }; static struct gpiod_lookup_table lenovo_yb1_x90_wacom_gpios = { .dev_id = "i2c-wacom", .table = { GPIO_LOOKUP("INT33FF:00", 82, "reset", GPIO_ACTIVE_LOW), { } }, }; static struct gpiod_lookup_table * const lenovo_yb1_x90_gpios[] = { &lenovo_yb1_x90_hideep_gpios, &lenovo_yb1_x90_goodix_gpios, &lenovo_yb1_x90_wacom_gpios, NULL }; static int __init lenovo_yb1_x90_init(void) { /* Enable the regulators used by the touchscreens */ /* Vprog3B 3.0V used by the goodix touchscreen in the keyboard half */ intel_soc_pmic_exec_mipi_pmic_seq_element(0x6e, 0x9b, 0x02, 0xff); /* Vprog4D 3.0V used by the HiDeep touchscreen in the display half */ intel_soc_pmic_exec_mipi_pmic_seq_element(0x6e, 0x9f, 0x02, 0xff); /* Vprog5A 1.8V used by the HiDeep touchscreen in the display half */ intel_soc_pmic_exec_mipi_pmic_seq_element(0x6e, 0xa0, 0x02, 0xff); /* Vprog5B 1.8V used by the goodix touchscreen in the keyboard half */ intel_soc_pmic_exec_mipi_pmic_seq_element(0x6e, 0xa1, 0x02, 0xff); return 0; } const struct x86_dev_info lenovo_yogabook_x90_info __initconst = { .i2c_client_info = lenovo_yb1_x90_i2c_clients, .i2c_client_count = ARRAY_SIZE(lenovo_yb1_x90_i2c_clients), .pdev_info = lenovo_yb1_x90_pdevs, .pdev_count = ARRAY_SIZE(lenovo_yb1_x90_pdevs), .serdev_info = lenovo_yb1_x90_serdevs, .serdev_count = ARRAY_SIZE(lenovo_yb1_x90_serdevs), .gpio_button = &lenovo_yb1_x90_lid, .gpio_button_count = 1, .gpiod_lookup_tables = lenovo_yb1_x90_gpios, .init = lenovo_yb1_x90_init, }; /* Lenovo Yoga Book X91F/L Windows tablet needs manual instantiation of the fg client */ static const struct x86_i2c_client_info lenovo_yogabook_x91_i2c_clients[] __initconst = { { /* BQ27542 fuel-gauge */ .board_info = { .type = "bq27542", .addr = 0x55, .dev_name = "bq27542", .swnode = &fg_bq25890_supply_node, }, .adapter_path = "\\_SB_.PCI0.I2C1", }, }; const struct x86_dev_info lenovo_yogabook_x91_info __initconst = { .i2c_client_info = lenovo_yogabook_x91_i2c_clients, .i2c_client_count = ARRAY_SIZE(lenovo_yogabook_x91_i2c_clients), }; /* Lenovo Yoga Tablet 2 1050F/L's Android factory img has everything hardcoded */ static const struct property_entry lenovo_yoga_tab2_830_1050_bq24190_props[] = { PROPERTY_ENTRY_STRING_ARRAY_LEN("supplied-from", tusb1211_chg_det_psy, 1), PROPERTY_ENTRY_REF("monitored-battery", &generic_lipo_hv_4v35_battery_node), PROPERTY_ENTRY_BOOL("omit-battery-class"), PROPERTY_ENTRY_BOOL("disable-reset"), { } }; static const struct software_node lenovo_yoga_tab2_830_1050_bq24190_node = { .properties = lenovo_yoga_tab2_830_1050_bq24190_props, }; static const struct x86_gpio_button lenovo_yoga_tab2_830_1050_lid __initconst = { .button = { .code = SW_LID, .active_low = true, .desc = "lid_sw", .type = EV_SW, .wakeup = true, .debounce_interval = 50, }, .chip = "INT33FC:02", .pin = 26, }; /* This gets filled by lenovo_yoga_tab2_830_1050_init() */ static struct rmi_device_platform_data lenovo_yoga_tab2_830_1050_rmi_pdata = { }; static struct x86_i2c_client_info lenovo_yoga_tab2_830_1050_i2c_clients[] __initdata = { { /* * This must be the first entry because lenovo_yoga_tab2_830_1050_init() * may update its swnode. LSM303DA accelerometer + magnetometer. */ .board_info = { .type = "lsm303d", .addr = 0x1d, .dev_name = "lsm303d", }, .adapter_path = "\\_SB_.I2C5", }, { /* AL3320A ambient light sensor */ .board_info = { .type = "al3320a", .addr = 0x1c, .dev_name = "al3320a", }, .adapter_path = "\\_SB_.I2C5", }, { /* bq24292i battery charger */ .board_info = { .type = "bq24190", .addr = 0x6b, .dev_name = "bq24292i", .swnode = &lenovo_yoga_tab2_830_1050_bq24190_node, .platform_data = &bq24190_pdata, }, .adapter_path = "\\_SB_.I2C1", .irq_data = { .type = X86_ACPI_IRQ_TYPE_GPIOINT, .chip = "INT33FC:02", .index = 2, .trigger = ACPI_EDGE_SENSITIVE, .polarity = ACPI_ACTIVE_HIGH, }, }, { /* BQ27541 fuel-gauge */ .board_info = { .type = "bq27541", .addr = 0x55, .dev_name = "bq27541", .swnode = &fg_bq24190_supply_node, }, .adapter_path = "\\_SB_.I2C1", }, { /* Synaptics RMI touchscreen */ .board_info = { .type = "rmi4_i2c", .addr = 0x38, .dev_name = "rmi4_i2c", .platform_data = &lenovo_yoga_tab2_830_1050_rmi_pdata, }, .adapter_path = "\\_SB_.I2C6", .irq_data = { .type = X86_ACPI_IRQ_TYPE_APIC, .index = 0x45, .trigger = ACPI_EDGE_SENSITIVE, .polarity = ACPI_ACTIVE_HIGH, }, }, { /* LP8557 Backlight controller */ .board_info = { .type = "lp8557", .addr = 0x2c, .dev_name = "lp8557", .platform_data = &lenovo_lp8557_pdata, }, .adapter_path = "\\_SB_.I2C3", }, }; static struct gpiod_lookup_table lenovo_yoga_tab2_830_1050_int3496_gpios = { .dev_id = "intel-int3496", .table = { GPIO_LOOKUP("INT33FC:02", 1, "mux", GPIO_ACTIVE_LOW), GPIO_LOOKUP("INT33FC:02", 24, "id", GPIO_ACTIVE_HIGH), { } }, }; #define LENOVO_YOGA_TAB2_830_1050_CODEC_NAME "spi-10WM5102:00" static struct gpiod_lookup_table lenovo_yoga_tab2_830_1050_codec_gpios = { .dev_id = LENOVO_YOGA_TAB2_830_1050_CODEC_NAME, .table = { GPIO_LOOKUP("gpio_crystalcove", 3, "reset", GPIO_ACTIVE_HIGH), GPIO_LOOKUP("INT33FC:01", 23, "wlf,ldoena", GPIO_ACTIVE_HIGH), GPIO_LOOKUP("arizona", 2, "wlf,spkvdd-ena", GPIO_ACTIVE_HIGH), GPIO_LOOKUP("arizona", 4, "wlf,micd-pol", GPIO_ACTIVE_LOW), { } }, }; static struct gpiod_lookup_table * const lenovo_yoga_tab2_830_1050_gpios[] = { &lenovo_yoga_tab2_830_1050_int3496_gpios, &lenovo_yoga_tab2_830_1050_codec_gpios, NULL }; static int __init lenovo_yoga_tab2_830_1050_init(void); static void lenovo_yoga_tab2_830_1050_exit(void); const struct x86_dev_info lenovo_yoga_tab2_830_1050_info __initconst = { .i2c_client_info = lenovo_yoga_tab2_830_1050_i2c_clients, .i2c_client_count = ARRAY_SIZE(lenovo_yoga_tab2_830_1050_i2c_clients), .pdev_info = int3496_pdevs, .pdev_count = 1, .gpio_button = &lenovo_yoga_tab2_830_1050_lid, .gpio_button_count = 1, .gpiod_lookup_tables = lenovo_yoga_tab2_830_1050_gpios, .bat_swnode = &generic_lipo_hv_4v35_battery_node, .modules = bq24190_modules, .init = lenovo_yoga_tab2_830_1050_init, .exit = lenovo_yoga_tab2_830_1050_exit, }; /* * The Lenovo Yoga Tablet 2 830 and 1050 (8" vs 10") versions use the same * mainboard, but the 830 uses a portrait LCD panel with a landscape touchscreen, * requiring the touchscreen driver to adjust the touch-coords to match the LCD. * And requiring the accelerometer to have a mount-matrix set to correct for * the 90° rotation of the LCD vs the frame. */ static const char * const lenovo_yoga_tab2_830_lms303d_mount_matrix[] = { "0", "1", "0", "-1", "0", "0", "0", "0", "1" }; static const struct property_entry lenovo_yoga_tab2_830_lms303d_props[] = { PROPERTY_ENTRY_STRING_ARRAY("mount-matrix", lenovo_yoga_tab2_830_lms303d_mount_matrix), { } }; static const struct software_node lenovo_yoga_tab2_830_lms303d_node = { .properties = lenovo_yoga_tab2_830_lms303d_props, }; static int __init lenovo_yoga_tab2_830_1050_init_touchscreen(void) { struct gpio_desc *gpiod; int ret; /* Use PMIC GPIO 10 bootstrap pin to differentiate 830 vs 1050 */ ret = x86_android_tablet_get_gpiod("gpio_crystalcove", 10, &gpiod); if (ret) return ret; ret = gpiod_get_value_cansleep(gpiod); if (ret) { pr_info("detected Lenovo Yoga Tablet 2 1050F/L\n"); } else { pr_info("detected Lenovo Yoga Tablet 2 830F/L\n"); lenovo_yoga_tab2_830_1050_rmi_pdata.sensor_pdata.axis_align.swap_axes = true; lenovo_yoga_tab2_830_1050_rmi_pdata.sensor_pdata.axis_align.flip_y = true; lenovo_yoga_tab2_830_1050_i2c_clients[0].board_info.swnode = &lenovo_yoga_tab2_830_lms303d_node; } return 0; } /* SUS (INT33FC:02) pin 6 needs to be configured as pmu_clk for the audio codec */ static const struct pinctrl_map lenovo_yoga_tab2_830_1050_codec_pinctrl_map = PIN_MAP_MUX_GROUP(LENOVO_YOGA_TAB2_830_1050_CODEC_NAME, "codec_32khz_clk", "INT33FC:02", "pmu_clk2_grp", "pmu_clk"); static struct pinctrl *lenovo_yoga_tab2_830_1050_codec_pinctrl; static struct sys_off_handler *lenovo_yoga_tab2_830_1050_sys_off_handler; static int __init lenovo_yoga_tab2_830_1050_init_codec(void) { struct device *codec_dev; struct pinctrl *pinctrl; int ret; codec_dev = bus_find_device_by_name(&spi_bus_type, NULL, LENOVO_YOGA_TAB2_830_1050_CODEC_NAME); if (!codec_dev) { pr_err("error cannot find %s device\n", LENOVO_YOGA_TAB2_830_1050_CODEC_NAME); return -ENODEV; } ret = pinctrl_register_mappings(&lenovo_yoga_tab2_830_1050_codec_pinctrl_map, 1); if (ret) goto err_put_device; pinctrl = pinctrl_get_select(codec_dev, "codec_32khz_clk"); if (IS_ERR(pinctrl)) { ret = dev_err_probe(codec_dev, PTR_ERR(pinctrl), "selecting codec_32khz_clk\n"); goto err_unregister_mappings; } /* We're done with the codec_dev now */ put_device(codec_dev); lenovo_yoga_tab2_830_1050_codec_pinctrl = pinctrl; return 0; err_unregister_mappings: pinctrl_unregister_mappings(&lenovo_yoga_tab2_830_1050_codec_pinctrl_map); err_put_device: put_device(codec_dev); return ret; } /* * These tablet's DSDT does not set acpi_gbl_reduced_hardware, so acpi_power_off * gets used as pm_power_off handler. This causes "poweroff" on these tablets * to hang hard. Requiring pressing the powerbutton for 30 seconds *twice* * followed by a normal 3 second press to recover. Avoid this by doing an EFI * poweroff instead. */ static int lenovo_yoga_tab2_830_1050_power_off(struct sys_off_data *data) { efi.reset_system(EFI_RESET_SHUTDOWN, EFI_SUCCESS, 0, NULL); return NOTIFY_DONE; } static int __init lenovo_yoga_tab2_830_1050_init(void) { int ret; ret = lenovo_yoga_tab2_830_1050_init_touchscreen(); if (ret) return ret; ret = lenovo_yoga_tab2_830_1050_init_codec(); if (ret) return ret; /* SYS_OFF_PRIO_FIRMWARE + 1 so that it runs before acpi_power_off */ lenovo_yoga_tab2_830_1050_sys_off_handler = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF, SYS_OFF_PRIO_FIRMWARE + 1, lenovo_yoga_tab2_830_1050_power_off, NULL); if (IS_ERR(lenovo_yoga_tab2_830_1050_sys_off_handler)) return PTR_ERR(lenovo_yoga_tab2_830_1050_sys_off_handler); return 0; } static void lenovo_yoga_tab2_830_1050_exit(void) { unregister_sys_off_handler(lenovo_yoga_tab2_830_1050_sys_off_handler); if (lenovo_yoga_tab2_830_1050_codec_pinctrl) { pinctrl_put(lenovo_yoga_tab2_830_1050_codec_pinctrl); pinctrl_unregister_mappings(&lenovo_yoga_tab2_830_1050_codec_pinctrl_map); } } /* Lenovo Yoga Tab 3 Pro YT3-X90F */ /* * There are 2 batteries, with 2 bq27500 fuel-gauges and 2 bq25892 chargers, * "bq25890-charger-1" is instantiated from: drivers/i2c/busses/i2c-cht-wc.c. */ static const char * const lenovo_yt3_bq25892_0_suppliers[] = { "cht_wcove_pwrsrc" }; static const char * const bq25890_1_psy[] = { "bq25890-charger-1" }; static const struct property_entry fg_bq25890_1_supply_props[] = { PROPERTY_ENTRY_STRING_ARRAY("supplied-from", bq25890_1_psy), { } }; static const struct software_node fg_bq25890_1_supply_node = { .properties = fg_bq25890_1_supply_props, }; /* bq25892 charger settings for the flat lipo battery behind the screen */ static const struct property_entry lenovo_yt3_bq25892_0_props[] = { PROPERTY_ENTRY_STRING_ARRAY("supplied-from", lenovo_yt3_bq25892_0_suppliers), PROPERTY_ENTRY_STRING("linux,power-supply-name", "bq25892-second-chrg"), PROPERTY_ENTRY_U32("linux,iinlim-percentage", 40), PROPERTY_ENTRY_BOOL("linux,skip-reset"), /* Values taken from Android Factory Image */ PROPERTY_ENTRY_U32("ti,charge-current", 2048000), PROPERTY_ENTRY_U32("ti,battery-regulation-voltage", 4352000), PROPERTY_ENTRY_U32("ti,termination-current", 128000), PROPERTY_ENTRY_U32("ti,precharge-current", 128000), PROPERTY_ENTRY_U32("ti,minimum-sys-voltage", 3700000), PROPERTY_ENTRY_U32("ti,boost-voltage", 4998000), PROPERTY_ENTRY_U32("ti,boost-max-current", 500000), PROPERTY_ENTRY_BOOL("ti,use-ilim-pin"), { } }; static const struct software_node lenovo_yt3_bq25892_0_node = { .properties = lenovo_yt3_bq25892_0_props, }; static const struct property_entry lenovo_yt3_hideep_ts_props[] = { PROPERTY_ENTRY_U32("touchscreen-size-x", 1600), PROPERTY_ENTRY_U32("touchscreen-size-y", 2560), PROPERTY_ENTRY_U32("touchscreen-max-pressure", 255), { } }; static const struct software_node lenovo_yt3_hideep_ts_node = { .properties = lenovo_yt3_hideep_ts_props, }; static const struct x86_i2c_client_info lenovo_yt3_i2c_clients[] __initconst = { { /* bq27500 fuel-gauge for the flat lipo battery behind the screen */ .board_info = { .type = "bq27500", .addr = 0x55, .dev_name = "bq27500_0", .swnode = &fg_bq25890_supply_node, }, .adapter_path = "\\_SB_.PCI0.I2C1", }, { /* bq25892 charger for the flat lipo battery behind the screen */ .board_info = { .type = "bq25892", .addr = 0x6b, .dev_name = "bq25892_0", .swnode = &lenovo_yt3_bq25892_0_node, }, .adapter_path = "\\_SB_.PCI0.I2C1", .irq_data = { .type = X86_ACPI_IRQ_TYPE_GPIOINT, .chip = "INT33FF:01", .index = 5, .trigger = ACPI_EDGE_SENSITIVE, .polarity = ACPI_ACTIVE_LOW, }, }, { /* bq27500 fuel-gauge for the round li-ion cells in the hinge */ .board_info = { .type = "bq27500", .addr = 0x55, .dev_name = "bq27500_1", .swnode = &fg_bq25890_1_supply_node, }, .adapter_path = "\\_SB_.PCI0.I2C2", }, { /* HiDeep IST520E Touchscreen */ .board_info = { .type = "hideep_ts", .addr = 0x6c, .dev_name = "hideep_ts", .swnode = &lenovo_yt3_hideep_ts_node, }, .adapter_path = "\\_SB_.PCI0.I2C6", .irq_data = { .type = X86_ACPI_IRQ_TYPE_GPIOINT, .chip = "INT33FF:03", .index = 77, .trigger = ACPI_LEVEL_SENSITIVE, .polarity = ACPI_ACTIVE_LOW, }, }, { /* LP8557 Backlight controller */ .board_info = { .type = "lp8557", .addr = 0x2c, .dev_name = "lp8557", .platform_data = &lenovo_lp8557_pdata, }, .adapter_path = "\\_SB_.PCI0.I2C1", } }; static int __init lenovo_yt3_init(void) { struct gpio_desc *gpiod; int ret; /* * The "bq25892_0" charger IC has its /CE (Charge-Enable) and OTG pins * connected to GPIOs, rather then having them hardwired to the correct * values as is normally done. * * The bq25890_charger driver controls these through I2C, but this only * works if not overridden by the pins. Set these pins here: * 1. Set /CE to 0 to allow charging. * 2. Set OTG to 0 disable V5 boost output since the 5V boost output of * the main "bq25892_1" charger is used when necessary. */ /* /CE pin */ ret = x86_android_tablet_get_gpiod("INT33FF:02", 22, &gpiod); if (ret < 0) return ret; /* * The gpio_desc returned by x86_android_tablet_get_gpiod() is a "raw" * gpio_desc, that is there is no way to pass lookup-flags like * GPIO_ACTIVE_LOW. Set the GPIO to 0 here to enable charging since * the /CE pin is active-low, but not marked as such in the gpio_desc. */ gpiod_set_value(gpiod, 0); /* OTG pin */ ret = x86_android_tablet_get_gpiod("INT33FF:03", 19, &gpiod); if (ret < 0) return ret; gpiod_set_value(gpiod, 0); /* Enable the regulators used by the touchscreen */ intel_soc_pmic_exec_mipi_pmic_seq_element(0x6e, 0x9b, 0x02, 0xff); intel_soc_pmic_exec_mipi_pmic_seq_element(0x6e, 0xa0, 0x02, 0xff); return 0; } static struct gpiod_lookup_table lenovo_yt3_hideep_gpios = { .dev_id = "i2c-hideep_ts", .table = { GPIO_LOOKUP("INT33FF:00", 7, "reset", GPIO_ACTIVE_LOW), { } }, }; static struct gpiod_lookup_table * const lenovo_yt3_gpios[] = { &lenovo_yt3_hideep_gpios, NULL }; const struct x86_dev_info lenovo_yt3_info __initconst = { .i2c_client_info = lenovo_yt3_i2c_clients, .i2c_client_count = ARRAY_SIZE(lenovo_yt3_i2c_clients), .gpiod_lookup_tables = lenovo_yt3_gpios, .init = lenovo_yt3_init, };
linux-master
drivers/platform/x86/x86-android-tablets/lenovo.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * DMI based code to deal with broken DSDTs on X86 tablets which ship with * Android as (part of) the factory image. The factory kernels shipped on these * devices typically have a bunch of things hardcoded, rather than specified * in their DSDT. * * Copyright (C) 2021-2023 Hans de Goede <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/acpi.h> #include <linux/dmi.h> #include <linux/gpio/driver.h> #include <linux/gpio/machine.h> #include <linux/irq.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/serdev.h> #include <linux/string.h> #include "x86-android-tablets.h" /* For gpiochip_get_desc() which is EXPORT_SYMBOL_GPL() */ #include "../../../gpio/gpiolib.h" #include "../../../gpio/gpiolib-acpi.h" static int gpiochip_find_match_label(struct gpio_chip *gc, void *data) { return gc->label && !strcmp(gc->label, data); } int x86_android_tablet_get_gpiod(const char *label, int pin, struct gpio_desc **desc) { struct gpio_desc *gpiod; struct gpio_chip *chip; chip = gpiochip_find((void *)label, gpiochip_find_match_label); if (!chip) { pr_err("error cannot find GPIO chip %s\n", label); return -ENODEV; } gpiod = gpiochip_get_desc(chip, pin); if (IS_ERR(gpiod)) { pr_err("error %ld getting GPIO %s %d\n", PTR_ERR(gpiod), label, pin); return PTR_ERR(gpiod); } *desc = gpiod; return 0; } int x86_acpi_irq_helper_get(const struct x86_acpi_irq_data *data) { struct irq_fwspec fwspec = { }; struct irq_domain *domain; struct acpi_device *adev; struct gpio_desc *gpiod; unsigned int irq_type; acpi_handle handle; acpi_status status; int irq, ret; switch (data->type) { case X86_ACPI_IRQ_TYPE_APIC: /* * The DSDT may already reference the GSI in a device skipped by * acpi_quirk_skip_i2c_client_enumeration(). Unregister the GSI * to avoid EBUSY errors in this case. */ acpi_unregister_gsi(data->index); irq = acpi_register_gsi(NULL, data->index, data->trigger, data->polarity); if (irq < 0) pr_err("error %d getting APIC IRQ %d\n", irq, data->index); return irq; case X86_ACPI_IRQ_TYPE_GPIOINT: /* Like acpi_dev_gpio_irq_get(), but without parsing ACPI resources */ ret = x86_android_tablet_get_gpiod(data->chip, data->index, &gpiod); if (ret) return ret; irq = gpiod_to_irq(gpiod); if (irq < 0) { pr_err("error %d getting IRQ %s %d\n", irq, data->chip, data->index); return irq; } irq_type = acpi_dev_get_irq_type(data->trigger, data->polarity); if (irq_type != IRQ_TYPE_NONE && irq_type != irq_get_trigger_type(irq)) irq_set_irq_type(irq, irq_type); return irq; case X86_ACPI_IRQ_TYPE_PMIC: status = acpi_get_handle(NULL, data->chip, &handle); if (ACPI_FAILURE(status)) { pr_err("error could not get %s handle\n", data->chip); return -ENODEV; } adev = acpi_fetch_acpi_dev(handle); if (!adev) { pr_err("error could not get %s adev\n", data->chip); return -ENODEV; } fwspec.fwnode = acpi_fwnode_handle(adev); domain = irq_find_matching_fwspec(&fwspec, data->domain); if (!domain) { pr_err("error could not find IRQ domain for %s\n", data->chip); return -ENODEV; } return irq_create_mapping(domain, data->index); default: return 0; } } static int i2c_client_count; static int pdev_count; static int serdev_count; static struct i2c_client **i2c_clients; static struct platform_device **pdevs; static struct serdev_device **serdevs; static struct gpio_keys_button *buttons; static struct gpiod_lookup_table * const *gpiod_lookup_tables; static const struct software_node *bat_swnode; static void (*exit_handler)(void); static __init int x86_instantiate_i2c_client(const struct x86_dev_info *dev_info, int idx) { const struct x86_i2c_client_info *client_info = &dev_info->i2c_client_info[idx]; struct i2c_board_info board_info = client_info->board_info; struct i2c_adapter *adap; acpi_handle handle; acpi_status status; board_info.irq = x86_acpi_irq_helper_get(&client_info->irq_data); if (board_info.irq < 0) return board_info.irq; status = acpi_get_handle(NULL, client_info->adapter_path, &handle); if (ACPI_FAILURE(status)) { pr_err("Error could not get %s handle\n", client_info->adapter_path); return -ENODEV; } adap = i2c_acpi_find_adapter_by_handle(handle); if (!adap) { pr_err("error could not get %s adapter\n", client_info->adapter_path); return -ENODEV; } i2c_clients[idx] = i2c_new_client_device(adap, &board_info); put_device(&adap->dev); if (IS_ERR(i2c_clients[idx])) return dev_err_probe(&adap->dev, PTR_ERR(i2c_clients[idx]), "creating I2C-client %d\n", idx); return 0; } static __init int x86_instantiate_serdev(const struct x86_serdev_info *info, int idx) { struct acpi_device *ctrl_adev, *serdev_adev; struct serdev_device *serdev; struct device *ctrl_dev; int ret = -ENODEV; ctrl_adev = acpi_dev_get_first_match_dev(info->ctrl_hid, info->ctrl_uid, -1); if (!ctrl_adev) { pr_err("error could not get %s/%s ctrl adev\n", info->ctrl_hid, info->ctrl_uid); return -ENODEV; } serdev_adev = acpi_dev_get_first_match_dev(info->serdev_hid, NULL, -1); if (!serdev_adev) { pr_err("error could not get %s serdev adev\n", info->serdev_hid); goto put_ctrl_adev; } /* get_first_physical_node() returns a weak ref, no need to put() it */ ctrl_dev = acpi_get_first_physical_node(ctrl_adev); if (!ctrl_dev) { pr_err("error could not get %s/%s ctrl physical dev\n", info->ctrl_hid, info->ctrl_uid); goto put_serdev_adev; } /* ctrl_dev now points to the controller's parent, get the controller */ ctrl_dev = device_find_child_by_name(ctrl_dev, info->ctrl_devname); if (!ctrl_dev) { pr_err("error could not get %s/%s %s ctrl dev\n", info->ctrl_hid, info->ctrl_uid, info->ctrl_devname); goto put_serdev_adev; } serdev = serdev_device_alloc(to_serdev_controller(ctrl_dev)); if (!serdev) { ret = -ENOMEM; goto put_serdev_adev; } ACPI_COMPANION_SET(&serdev->dev, serdev_adev); acpi_device_set_enumerated(serdev_adev); ret = serdev_device_add(serdev); if (ret) { dev_err(&serdev->dev, "error %d adding serdev\n", ret); serdev_device_put(serdev); goto put_serdev_adev; } serdevs[idx] = serdev; put_serdev_adev: acpi_dev_put(serdev_adev); put_ctrl_adev: acpi_dev_put(ctrl_adev); return ret; } static void x86_android_tablet_cleanup(void) { int i; for (i = 0; i < serdev_count; i++) { if (serdevs[i]) serdev_device_remove(serdevs[i]); } kfree(serdevs); for (i = 0; i < pdev_count; i++) platform_device_unregister(pdevs[i]); kfree(pdevs); kfree(buttons); for (i = 0; i < i2c_client_count; i++) i2c_unregister_device(i2c_clients[i]); kfree(i2c_clients); if (exit_handler) exit_handler(); for (i = 0; gpiod_lookup_tables && gpiod_lookup_tables[i]; i++) gpiod_remove_lookup_table(gpiod_lookup_tables[i]); software_node_unregister(bat_swnode); } static __init int x86_android_tablet_init(void) { const struct x86_dev_info *dev_info; const struct dmi_system_id *id; struct gpio_chip *chip; int i, ret = 0; id = dmi_first_match(x86_android_tablet_ids); if (!id) return -ENODEV; dev_info = id->driver_data; /* * The broken DSDTs on these devices often also include broken * _AEI (ACPI Event Interrupt) handlers, disable these. */ if (dev_info->invalid_aei_gpiochip) { chip = gpiochip_find(dev_info->invalid_aei_gpiochip, gpiochip_find_match_label); if (!chip) { pr_err("error cannot find GPIO chip %s\n", dev_info->invalid_aei_gpiochip); return -ENODEV; } acpi_gpiochip_free_interrupts(chip); } /* * Since this runs from module_init() it cannot use -EPROBE_DEFER, * instead pre-load any modules which are listed as requirements. */ for (i = 0; dev_info->modules && dev_info->modules[i]; i++) request_module(dev_info->modules[i]); bat_swnode = dev_info->bat_swnode; if (bat_swnode) { ret = software_node_register(bat_swnode); if (ret) return ret; } gpiod_lookup_tables = dev_info->gpiod_lookup_tables; for (i = 0; gpiod_lookup_tables && gpiod_lookup_tables[i]; i++) gpiod_add_lookup_table(gpiod_lookup_tables[i]); if (dev_info->init) { ret = dev_info->init(); if (ret < 0) { x86_android_tablet_cleanup(); return ret; } exit_handler = dev_info->exit; } i2c_clients = kcalloc(dev_info->i2c_client_count, sizeof(*i2c_clients), GFP_KERNEL); if (!i2c_clients) { x86_android_tablet_cleanup(); return -ENOMEM; } i2c_client_count = dev_info->i2c_client_count; for (i = 0; i < i2c_client_count; i++) { ret = x86_instantiate_i2c_client(dev_info, i); if (ret < 0) { x86_android_tablet_cleanup(); return ret; } } /* + 1 to make space for (optional) gpio_keys_button pdev */ pdevs = kcalloc(dev_info->pdev_count + 1, sizeof(*pdevs), GFP_KERNEL); if (!pdevs) { x86_android_tablet_cleanup(); return -ENOMEM; } pdev_count = dev_info->pdev_count; for (i = 0; i < pdev_count; i++) { pdevs[i] = platform_device_register_full(&dev_info->pdev_info[i]); if (IS_ERR(pdevs[i])) { x86_android_tablet_cleanup(); return PTR_ERR(pdevs[i]); } } serdevs = kcalloc(dev_info->serdev_count, sizeof(*serdevs), GFP_KERNEL); if (!serdevs) { x86_android_tablet_cleanup(); return -ENOMEM; } serdev_count = dev_info->serdev_count; for (i = 0; i < serdev_count; i++) { ret = x86_instantiate_serdev(&dev_info->serdev_info[i], i); if (ret < 0) { x86_android_tablet_cleanup(); return ret; } } if (dev_info->gpio_button_count) { struct gpio_keys_platform_data pdata = { }; struct gpio_desc *gpiod; buttons = kcalloc(dev_info->gpio_button_count, sizeof(*buttons), GFP_KERNEL); if (!buttons) { x86_android_tablet_cleanup(); return -ENOMEM; } for (i = 0; i < dev_info->gpio_button_count; i++) { ret = x86_android_tablet_get_gpiod(dev_info->gpio_button[i].chip, dev_info->gpio_button[i].pin, &gpiod); if (ret < 0) { x86_android_tablet_cleanup(); return ret; } buttons[i] = dev_info->gpio_button[i].button; buttons[i].gpio = desc_to_gpio(gpiod); } pdata.buttons = buttons; pdata.nbuttons = dev_info->gpio_button_count; pdevs[pdev_count] = platform_device_register_data(NULL, "gpio-keys", PLATFORM_DEVID_AUTO, &pdata, sizeof(pdata)); if (IS_ERR(pdevs[pdev_count])) { x86_android_tablet_cleanup(); return PTR_ERR(pdevs[pdev_count]); } pdev_count++; } return 0; } module_init(x86_android_tablet_init); module_exit(x86_android_tablet_cleanup); MODULE_AUTHOR("Hans de Goede <[email protected]>"); MODULE_DESCRIPTION("X86 Android tablets DSDT fixups driver"); MODULE_LICENSE("GPL");
linux-master
drivers/platform/x86/x86-android-tablets/core.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * DMI based code to deal with broken DSDTs on X86 tablets which ship with * Android as (part of) the factory image. The factory kernels shipped on these * devices typically have a bunch of things hardcoded, rather than specified * in their DSDT. * * Copyright (C) 2021-2023 Hans de Goede <[email protected]> */ #include <linux/acpi.h> #include <linux/gpio/machine.h> #include <linux/input.h> #include <linux/platform_device.h> #include "shared-psy-info.h" #include "x86-android-tablets.h" /* Acer Iconia One 7 B1-750 has an Android factory img with everything hardcoded */ static const char * const acer_b1_750_mount_matrix[] = { "-1", "0", "0", "0", "1", "0", "0", "0", "1" }; static const struct property_entry acer_b1_750_bma250e_props[] = { PROPERTY_ENTRY_STRING_ARRAY("mount-matrix", acer_b1_750_mount_matrix), { } }; static const struct software_node acer_b1_750_bma250e_node = { .properties = acer_b1_750_bma250e_props, }; static const struct x86_i2c_client_info acer_b1_750_i2c_clients[] __initconst = { { /* Novatek NVT-ts touchscreen */ .board_info = { .type = "NVT-ts", .addr = 0x34, .dev_name = "NVT-ts", }, .adapter_path = "\\_SB_.I2C4", .irq_data = { .type = X86_ACPI_IRQ_TYPE_GPIOINT, .chip = "INT33FC:02", .index = 3, .trigger = ACPI_EDGE_SENSITIVE, .polarity = ACPI_ACTIVE_LOW, }, }, { /* BMA250E accelerometer */ .board_info = { .type = "bma250e", .addr = 0x18, .swnode = &acer_b1_750_bma250e_node, }, .adapter_path = "\\_SB_.I2C3", .irq_data = { .type = X86_ACPI_IRQ_TYPE_GPIOINT, .chip = "INT33FC:02", .index = 25, .trigger = ACPI_LEVEL_SENSITIVE, .polarity = ACPI_ACTIVE_HIGH, }, }, }; static struct gpiod_lookup_table acer_b1_750_goodix_gpios = { .dev_id = "i2c-NVT-ts", .table = { GPIO_LOOKUP("INT33FC:01", 26, "reset", GPIO_ACTIVE_LOW), { } }, }; static struct gpiod_lookup_table * const acer_b1_750_gpios[] = { &acer_b1_750_goodix_gpios, &int3496_reference_gpios, NULL }; const struct x86_dev_info acer_b1_750_info __initconst = { .i2c_client_info = acer_b1_750_i2c_clients, .i2c_client_count = ARRAY_SIZE(acer_b1_750_i2c_clients), .pdev_info = int3496_pdevs, .pdev_count = 1, .gpiod_lookup_tables = acer_b1_750_gpios, }; /* * Advantech MICA-071 * This is a standard Windows tablet, but it has an extra "quick launch" button * which is not described in the ACPI tables in anyway. * Use the x86-android-tablets infra to create a gpio-button device for this. */ static const struct x86_gpio_button advantech_mica_071_button __initconst = { .button = { .code = KEY_PROG1, .active_low = true, .desc = "prog1_key", .type = EV_KEY, .wakeup = false, .debounce_interval = 50, }, .chip = "INT33FC:00", .pin = 2, }; const struct x86_dev_info advantech_mica_071_info __initconst = { .gpio_button = &advantech_mica_071_button, .gpio_button_count = 1, }; /* * When booted with the BIOS set to Android mode the Chuwi Hi8 (CWI509) DSDT * contains a whole bunch of bogus ACPI I2C devices and is missing entries * for the touchscreen and the accelerometer. */ static const struct property_entry chuwi_hi8_gsl1680_props[] = { PROPERTY_ENTRY_U32("touchscreen-size-x", 1665), PROPERTY_ENTRY_U32("touchscreen-size-y", 1140), PROPERTY_ENTRY_BOOL("touchscreen-swapped-x-y"), PROPERTY_ENTRY_BOOL("silead,home-button"), PROPERTY_ENTRY_STRING("firmware-name", "gsl1680-chuwi-hi8.fw"), { } }; static const struct software_node chuwi_hi8_gsl1680_node = { .properties = chuwi_hi8_gsl1680_props, }; static const char * const chuwi_hi8_mount_matrix[] = { "1", "0", "0", "0", "-1", "0", "0", "0", "1" }; static const struct property_entry chuwi_hi8_bma250e_props[] = { PROPERTY_ENTRY_STRING_ARRAY("mount-matrix", chuwi_hi8_mount_matrix), { } }; static const struct software_node chuwi_hi8_bma250e_node = { .properties = chuwi_hi8_bma250e_props, }; static const struct x86_i2c_client_info chuwi_hi8_i2c_clients[] __initconst = { { /* Silead touchscreen */ .board_info = { .type = "gsl1680", .addr = 0x40, .swnode = &chuwi_hi8_gsl1680_node, }, .adapter_path = "\\_SB_.I2C4", .irq_data = { .type = X86_ACPI_IRQ_TYPE_APIC, .index = 0x44, .trigger = ACPI_EDGE_SENSITIVE, .polarity = ACPI_ACTIVE_HIGH, }, }, { /* BMA250E accelerometer */ .board_info = { .type = "bma250e", .addr = 0x18, .swnode = &chuwi_hi8_bma250e_node, }, .adapter_path = "\\_SB_.I2C3", .irq_data = { .type = X86_ACPI_IRQ_TYPE_GPIOINT, .chip = "INT33FC:02", .index = 23, .trigger = ACPI_LEVEL_SENSITIVE, .polarity = ACPI_ACTIVE_HIGH, }, }, }; static int __init chuwi_hi8_init(void) { /* * Avoid the acpi_unregister_gsi() call in x86_acpi_irq_helper_get() * breaking the touchscreen + logging various errors when the Windows * BIOS is used. */ if (acpi_dev_present("MSSL0001", NULL, 1)) return -ENODEV; return 0; } const struct x86_dev_info chuwi_hi8_info __initconst = { .i2c_client_info = chuwi_hi8_i2c_clients, .i2c_client_count = ARRAY_SIZE(chuwi_hi8_i2c_clients), .init = chuwi_hi8_init, }; /* * Cyberbook T116 Android version * This comes in both Windows and Android versions and even on Android * the DSDT is mostly sane. This tablet has 2 extra general purpose buttons * in the button row with the power + volume-buttons labeled P and F. * Use the x86-android-tablets infra to create a gpio-button device for these. */ static const struct x86_gpio_button cyberbook_t116_buttons[] __initconst = { { .button = { .code = KEY_PROG1, .active_low = true, .desc = "prog1_key", .type = EV_KEY, .wakeup = false, .debounce_interval = 50, }, .chip = "INT33FF:00", .pin = 30, }, { .button = { .code = KEY_PROG2, .active_low = true, .desc = "prog2_key", .type = EV_KEY, .wakeup = false, .debounce_interval = 50, }, .chip = "INT33FF:03", .pin = 48, }, }; const struct x86_dev_info cyberbook_t116_info __initconst = { .gpio_button = cyberbook_t116_buttons, .gpio_button_count = ARRAY_SIZE(cyberbook_t116_buttons), }; #define CZC_EC_EXTRA_PORT 0x68 #define CZC_EC_ANDROID_KEYS 0x63 static int __init czc_p10t_init(void) { /* * The device boots up in "Windows 7" mode, when the home button sends a * Windows specific key sequence (Left Meta + D) and the second button * sends an unknown one while also toggling the Radio Kill Switch. * This is a surprising behavior when the second button is labeled "Back". * * The vendor-supplied Android-x86 build switches the device to a "Android" * mode by writing value 0x63 to the I/O port 0x68. This just seems to just * set bit 6 on address 0x96 in the EC region; switching the bit directly * seems to achieve the same result. It uses a "p10t_switcher" to do the * job. It doesn't seem to be able to do anything else, and no other use * of the port 0x68 is known. * * In the Android mode, the home button sends just a single scancode, * which can be handled in Linux userspace more reasonably and the back * button only sends a scancode without toggling the kill switch. * The scancode can then be mapped either to Back or RF Kill functionality * in userspace, depending on how the button is labeled on that particular * model. */ outb(CZC_EC_ANDROID_KEYS, CZC_EC_EXTRA_PORT); return 0; } const struct x86_dev_info czc_p10t __initconst = { .init = czc_p10t_init, }; /* Medion Lifetab S10346 tablets have an Android factory img with everything hardcoded */ static const char * const medion_lifetab_s10346_accel_mount_matrix[] = { "0", "1", "0", "1", "0", "0", "0", "0", "1" }; static const struct property_entry medion_lifetab_s10346_accel_props[] = { PROPERTY_ENTRY_STRING_ARRAY("mount-matrix", medion_lifetab_s10346_accel_mount_matrix), { } }; static const struct software_node medion_lifetab_s10346_accel_node = { .properties = medion_lifetab_s10346_accel_props, }; /* Note the LCD panel is mounted upside down, this is correctly indicated in the VBT */ static const struct property_entry medion_lifetab_s10346_touchscreen_props[] = { PROPERTY_ENTRY_BOOL("touchscreen-inverted-x"), PROPERTY_ENTRY_BOOL("touchscreen-swapped-x-y"), { } }; static const struct software_node medion_lifetab_s10346_touchscreen_node = { .properties = medion_lifetab_s10346_touchscreen_props, }; static const struct x86_i2c_client_info medion_lifetab_s10346_i2c_clients[] __initconst = { { /* kxtj21009 accel */ .board_info = { .type = "kxtj21009", .addr = 0x0f, .dev_name = "kxtj21009", .swnode = &medion_lifetab_s10346_accel_node, }, .adapter_path = "\\_SB_.I2C3", .irq_data = { .type = X86_ACPI_IRQ_TYPE_GPIOINT, .chip = "INT33FC:02", .index = 23, .trigger = ACPI_EDGE_SENSITIVE, .polarity = ACPI_ACTIVE_HIGH, }, }, { /* goodix touchscreen */ .board_info = { .type = "GDIX1001:00", .addr = 0x14, .dev_name = "goodix_ts", .swnode = &medion_lifetab_s10346_touchscreen_node, }, .adapter_path = "\\_SB_.I2C4", .irq_data = { .type = X86_ACPI_IRQ_TYPE_APIC, .index = 0x44, .trigger = ACPI_EDGE_SENSITIVE, .polarity = ACPI_ACTIVE_LOW, }, }, }; static struct gpiod_lookup_table medion_lifetab_s10346_goodix_gpios = { .dev_id = "i2c-goodix_ts", .table = { GPIO_LOOKUP("INT33FC:01", 26, "reset", GPIO_ACTIVE_HIGH), GPIO_LOOKUP("INT33FC:02", 3, "irq", GPIO_ACTIVE_HIGH), { } }, }; static struct gpiod_lookup_table * const medion_lifetab_s10346_gpios[] = { &medion_lifetab_s10346_goodix_gpios, NULL }; const struct x86_dev_info medion_lifetab_s10346_info __initconst = { .i2c_client_info = medion_lifetab_s10346_i2c_clients, .i2c_client_count = ARRAY_SIZE(medion_lifetab_s10346_i2c_clients), .gpiod_lookup_tables = medion_lifetab_s10346_gpios, }; /* Nextbook Ares 8 (BYT) tablets have an Android factory img with everything hardcoded */ static const char * const nextbook_ares8_accel_mount_matrix[] = { "0", "-1", "0", "-1", "0", "0", "0", "0", "1" }; static const struct property_entry nextbook_ares8_accel_props[] = { PROPERTY_ENTRY_STRING_ARRAY("mount-matrix", nextbook_ares8_accel_mount_matrix), { } }; static const struct software_node nextbook_ares8_accel_node = { .properties = nextbook_ares8_accel_props, }; static const struct property_entry nextbook_ares8_touchscreen_props[] = { PROPERTY_ENTRY_U32("touchscreen-size-x", 800), PROPERTY_ENTRY_U32("touchscreen-size-y", 1280), { } }; static const struct software_node nextbook_ares8_touchscreen_node = { .properties = nextbook_ares8_touchscreen_props, }; static const struct x86_i2c_client_info nextbook_ares8_i2c_clients[] __initconst = { { /* Freescale MMA8653FC accel */ .board_info = { .type = "mma8653", .addr = 0x1d, .dev_name = "mma8653", .swnode = &nextbook_ares8_accel_node, }, .adapter_path = "\\_SB_.I2C3", }, { /* FT5416DQ9 touchscreen controller */ .board_info = { .type = "edt-ft5x06", .addr = 0x38, .dev_name = "ft5416", .swnode = &nextbook_ares8_touchscreen_node, }, .adapter_path = "\\_SB_.I2C4", .irq_data = { .type = X86_ACPI_IRQ_TYPE_GPIOINT, .chip = "INT33FC:02", .index = 3, .trigger = ACPI_EDGE_SENSITIVE, .polarity = ACPI_ACTIVE_LOW, }, }, }; static struct gpiod_lookup_table * const nextbook_ares8_gpios[] = { &int3496_reference_gpios, NULL }; const struct x86_dev_info nextbook_ares8_info __initconst = { .i2c_client_info = nextbook_ares8_i2c_clients, .i2c_client_count = ARRAY_SIZE(nextbook_ares8_i2c_clients), .pdev_info = int3496_pdevs, .pdev_count = 1, .gpiod_lookup_tables = nextbook_ares8_gpios, }; /* Nextbook Ares 8A (CHT) tablets have an Android factory img with everything hardcoded */ static const char * const nextbook_ares8a_accel_mount_matrix[] = { "1", "0", "0", "0", "-1", "0", "0", "0", "1" }; static const struct property_entry nextbook_ares8a_accel_props[] = { PROPERTY_ENTRY_STRING_ARRAY("mount-matrix", nextbook_ares8a_accel_mount_matrix), { } }; static const struct software_node nextbook_ares8a_accel_node = { .properties = nextbook_ares8a_accel_props, }; static const struct x86_i2c_client_info nextbook_ares8a_i2c_clients[] __initconst = { { /* Freescale MMA8653FC accel */ .board_info = { .type = "mma8653", .addr = 0x1d, .dev_name = "mma8653", .swnode = &nextbook_ares8a_accel_node, }, .adapter_path = "\\_SB_.PCI0.I2C3", }, { /* FT5416DQ9 touchscreen controller */ .board_info = { .type = "edt-ft5x06", .addr = 0x38, .dev_name = "ft5416", .swnode = &nextbook_ares8_touchscreen_node, }, .adapter_path = "\\_SB_.PCI0.I2C6", .irq_data = { .type = X86_ACPI_IRQ_TYPE_GPIOINT, .chip = "INT33FF:01", .index = 17, .trigger = ACPI_EDGE_SENSITIVE, .polarity = ACPI_ACTIVE_LOW, }, }, }; static struct gpiod_lookup_table nextbook_ares8a_ft5416_gpios = { .dev_id = "i2c-ft5416", .table = { GPIO_LOOKUP("INT33FF:01", 25, "reset", GPIO_ACTIVE_LOW), { } }, }; static struct gpiod_lookup_table * const nextbook_ares8a_gpios[] = { &nextbook_ares8a_ft5416_gpios, NULL }; const struct x86_dev_info nextbook_ares8a_info __initconst = { .i2c_client_info = nextbook_ares8a_i2c_clients, .i2c_client_count = ARRAY_SIZE(nextbook_ares8a_i2c_clients), .gpiod_lookup_tables = nextbook_ares8a_gpios, }; /* * Peaq C1010 * This is a standard Windows tablet, but it has a special Dolby button. * This button has a WMI interface, but that is broken. Instead of trying to * use the broken WMI interface, instantiate a gpio_keys device for this. */ static const struct x86_gpio_button peaq_c1010_button __initconst = { .button = { .code = KEY_SOUND, .active_low = true, .desc = "dolby_key", .type = EV_KEY, .wakeup = false, .debounce_interval = 50, }, .chip = "INT33FC:00", .pin = 3, }; const struct x86_dev_info peaq_c1010_info __initconst = { .gpio_button = &peaq_c1010_button, .gpio_button_count = 1, /* * Move the ACPI event handler used by the broken WMI interface out of * the way. This is the only event handler on INT33FC:00. */ .invalid_aei_gpiochip = "INT33FC:00", }; /* * Whitelabel (sold as various brands) TM800A550L tablets. * These tablet's DSDT contains a whole bunch of bogus ACPI I2C devices * (removed through acpi_quirk_skip_i2c_client_enumeration()) and * the touchscreen fwnode has the wrong GPIOs. */ static const char * const whitelabel_tm800a550l_accel_mount_matrix[] = { "-1", "0", "0", "0", "1", "0", "0", "0", "1" }; static const struct property_entry whitelabel_tm800a550l_accel_props[] = { PROPERTY_ENTRY_STRING_ARRAY("mount-matrix", whitelabel_tm800a550l_accel_mount_matrix), { } }; static const struct software_node whitelabel_tm800a550l_accel_node = { .properties = whitelabel_tm800a550l_accel_props, }; static const struct property_entry whitelabel_tm800a550l_goodix_props[] = { PROPERTY_ENTRY_STRING("firmware-name", "gt912-tm800a550l.fw"), PROPERTY_ENTRY_STRING("goodix,config-name", "gt912-tm800a550l.cfg"), PROPERTY_ENTRY_U32("goodix,main-clk", 54), { } }; static const struct software_node whitelabel_tm800a550l_goodix_node = { .properties = whitelabel_tm800a550l_goodix_props, }; static const struct x86_i2c_client_info whitelabel_tm800a550l_i2c_clients[] __initconst = { { /* goodix touchscreen */ .board_info = { .type = "GDIX1001:00", .addr = 0x14, .dev_name = "goodix_ts", .swnode = &whitelabel_tm800a550l_goodix_node, }, .adapter_path = "\\_SB_.I2C2", .irq_data = { .type = X86_ACPI_IRQ_TYPE_APIC, .index = 0x44, .trigger = ACPI_EDGE_SENSITIVE, .polarity = ACPI_ACTIVE_HIGH, }, }, { /* kxcj91008 accel */ .board_info = { .type = "kxcj91008", .addr = 0x0f, .dev_name = "kxcj91008", .swnode = &whitelabel_tm800a550l_accel_node, }, .adapter_path = "\\_SB_.I2C3", }, }; static struct gpiod_lookup_table whitelabel_tm800a550l_goodix_gpios = { .dev_id = "i2c-goodix_ts", .table = { GPIO_LOOKUP("INT33FC:01", 26, "reset", GPIO_ACTIVE_HIGH), GPIO_LOOKUP("INT33FC:02", 3, "irq", GPIO_ACTIVE_HIGH), { } }, }; static struct gpiod_lookup_table * const whitelabel_tm800a550l_gpios[] = { &whitelabel_tm800a550l_goodix_gpios, NULL }; const struct x86_dev_info whitelabel_tm800a550l_info __initconst = { .i2c_client_info = whitelabel_tm800a550l_i2c_clients, .i2c_client_count = ARRAY_SIZE(whitelabel_tm800a550l_i2c_clients), .gpiod_lookup_tables = whitelabel_tm800a550l_gpios, }; /* * If the EFI bootloader is not Xiaomi's own signed Android loader, then the * Xiaomi Mi Pad 2 X86 tablet sets OSID in the DSDT to 1 (Windows), causing * a bunch of devices to be hidden. * * This takes care of instantiating the hidden devices manually. */ static const struct x86_i2c_client_info xiaomi_mipad2_i2c_clients[] __initconst = { { /* BQ27520 fuel-gauge */ .board_info = { .type = "bq27520", .addr = 0x55, .dev_name = "bq27520", .swnode = &fg_bq25890_supply_node, }, .adapter_path = "\\_SB_.PCI0.I2C1", }, { /* KTD2026 RGB notification LED controller */ .board_info = { .type = "ktd2026", .addr = 0x30, .dev_name = "ktd2026", }, .adapter_path = "\\_SB_.PCI0.I2C3", }, }; const struct x86_dev_info xiaomi_mipad2_info __initconst = { .i2c_client_info = xiaomi_mipad2_i2c_clients, .i2c_client_count = ARRAY_SIZE(xiaomi_mipad2_i2c_clients), };
linux-master
drivers/platform/x86/x86-android-tablets/other.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Shared psy info for X86 tablets which ship with Android as the factory image * and which have broken DSDT tables. The factory kernels shipped on these * devices typically have a bunch of things hardcoded, rather than specified * in their DSDT. * * Copyright (C) 2021-2023 Hans de Goede <[email protected]> */ #include <linux/gpio/machine.h> #include <linux/platform_device.h> #include <linux/power/bq24190_charger.h> #include <linux/property.h> #include <linux/regulator/machine.h> #include "shared-psy-info.h" /* Generic / shared charger / battery settings */ const char * const tusb1211_chg_det_psy[] = { "tusb1211-charger-detect" }; const char * const bq24190_psy[] = { "bq24190-charger" }; const char * const bq25890_psy[] = { "bq25890-charger-0" }; static const struct property_entry fg_bq24190_supply_props[] = { PROPERTY_ENTRY_STRING_ARRAY("supplied-from", bq24190_psy), { } }; const struct software_node fg_bq24190_supply_node = { .properties = fg_bq24190_supply_props, }; static const struct property_entry fg_bq25890_supply_props[] = { PROPERTY_ENTRY_STRING_ARRAY("supplied-from", bq25890_psy), { } }; const struct software_node fg_bq25890_supply_node = { .properties = fg_bq25890_supply_props, }; /* LiPo HighVoltage (max 4.35V) settings used by most devs with a HV bat. */ static const struct property_entry generic_lipo_hv_4v35_battery_props[] = { PROPERTY_ENTRY_STRING("compatible", "simple-battery"), PROPERTY_ENTRY_STRING("device-chemistry", "lithium-ion"), PROPERTY_ENTRY_U32("precharge-current-microamp", 256000), PROPERTY_ENTRY_U32("charge-term-current-microamp", 128000), PROPERTY_ENTRY_U32("constant-charge-current-max-microamp", 1856000), PROPERTY_ENTRY_U32("constant-charge-voltage-max-microvolt", 4352000), PROPERTY_ENTRY_U32("factory-internal-resistance-micro-ohms", 150000), { } }; const struct software_node generic_lipo_hv_4v35_battery_node = { .properties = generic_lipo_hv_4v35_battery_props, }; /* For enabling the bq24190 5V boost based on id-pin */ static struct regulator_consumer_supply intel_int3496_consumer = { .supply = "vbus", .dev_name = "intel-int3496", }; static const struct regulator_init_data bq24190_vbus_init_data = { .constraints = { .name = "bq24190_vbus", .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, .consumer_supplies = &intel_int3496_consumer, .num_consumer_supplies = 1, }; struct bq24190_platform_data bq24190_pdata = { .regulator_init_data = &bq24190_vbus_init_data, }; const char * const bq24190_modules[] __initconst = { "intel_crystal_cove_charger", /* For the bq24190 IRQ */ "bq24190_charger", /* For the Vbus regulator for intel-int3496 */ NULL }; /* Generic pdevs array and gpio-lookups for micro USB ID pin handling */ const struct platform_device_info int3496_pdevs[] __initconst = { { /* For micro USB ID pin handling */ .name = "intel-int3496", .id = PLATFORM_DEVID_NONE, }, }; struct gpiod_lookup_table int3496_reference_gpios = { .dev_id = "intel-int3496", .table = { GPIO_LOOKUP("INT33FC:01", 15, "vbus", GPIO_ACTIVE_HIGH), GPIO_LOOKUP("INT33FC:02", 1, "mux", GPIO_ACTIVE_HIGH), GPIO_LOOKUP("INT33FC:02", 18, "id", GPIO_ACTIVE_HIGH), { } }, };
linux-master
drivers/platform/x86/x86-android-tablets/shared-psy-info.c
// SPDX-License-Identifier: GPL-2.0 /* * Intel INT0002 "Virtual GPIO" driver * * Copyright (C) 2017 Hans de Goede <[email protected]> * * Loosely based on android x86 kernel code which is: * * Copyright (c) 2014, Intel Corporation. * * Author: Dyut Kumar Sil <[email protected]> * * Some peripherals on Bay Trail and Cherry Trail platforms signal a Power * Management Event (PME) to the Power Management Controller (PMC) to wakeup * the system. When this happens software needs to clear the PME bus 0 status * bit in the GPE0a_STS register to avoid an IRQ storm on IRQ 9. * * This is modelled in ACPI through the INT0002 ACPI device, which is * called a "Virtual GPIO controller" in ACPI because it defines the event * handler to call when the PME triggers through _AEI and _L02 / _E02 * methods as would be done for a real GPIO interrupt in ACPI. Note this * is a hack to define an AML event handler for the PME while using existing * ACPI mechanisms, this is not a real GPIO at all. * * This driver will bind to the INT0002 device, and register as a GPIO * controller, letting gpiolib-acpi.c call the _L02 handler as it would * for a real GPIO controller. */ #include <linux/acpi.h> #include <linux/bitmap.h> #include <linux/gpio/driver.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_data/x86/soc.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/suspend.h> #define DRV_NAME "INT0002 Virtual GPIO" /* For some reason the virtual GPIO pin tied to the GPE is numbered pin 2 */ #define GPE0A_PME_B0_VIRT_GPIO_PIN 2 #define GPE0A_PME_B0_STS_BIT BIT(13) #define GPE0A_PME_B0_EN_BIT BIT(13) #define GPE0A_STS_PORT 0x420 #define GPE0A_EN_PORT 0x428 struct int0002_data { struct gpio_chip chip; int parent_irq; int wake_enable_count; }; /* * As this is not a real GPIO at all, but just a hack to model an event in * ACPI the get / set functions are dummy functions. */ static int int0002_gpio_get(struct gpio_chip *chip, unsigned int offset) { return 0; } static void int0002_gpio_set(struct gpio_chip *chip, unsigned int offset, int value) { } static int int0002_gpio_direction_output(struct gpio_chip *chip, unsigned int offset, int value) { return 0; } static void int0002_irq_ack(struct irq_data *data) { outl(GPE0A_PME_B0_STS_BIT, GPE0A_STS_PORT); } static void int0002_irq_unmask(struct irq_data *data) { u32 gpe_en_reg; gpe_en_reg = inl(GPE0A_EN_PORT); gpe_en_reg |= GPE0A_PME_B0_EN_BIT; outl(gpe_en_reg, GPE0A_EN_PORT); } static void int0002_irq_mask(struct irq_data *data) { u32 gpe_en_reg; gpe_en_reg = inl(GPE0A_EN_PORT); gpe_en_reg &= ~GPE0A_PME_B0_EN_BIT; outl(gpe_en_reg, GPE0A_EN_PORT); } static int int0002_irq_set_wake(struct irq_data *data, unsigned int on) { struct gpio_chip *chip = irq_data_get_irq_chip_data(data); struct int0002_data *int0002 = container_of(chip, struct int0002_data, chip); /* * Applying of the wakeup flag to our parent IRQ is delayed till system * suspend, because we only want to do this when using s2idle. */ if (on) int0002->wake_enable_count++; else int0002->wake_enable_count--; return 0; } static irqreturn_t int0002_irq(int irq, void *data) { struct gpio_chip *chip = data; u32 gpe_sts_reg; gpe_sts_reg = inl(GPE0A_STS_PORT); if (!(gpe_sts_reg & GPE0A_PME_B0_STS_BIT)) return IRQ_NONE; generic_handle_domain_irq_safe(chip->irq.domain, GPE0A_PME_B0_VIRT_GPIO_PIN); pm_wakeup_hard_event(chip->parent); return IRQ_HANDLED; } static bool int0002_check_wake(void *data) { u32 gpe_sts_reg; gpe_sts_reg = inl(GPE0A_STS_PORT); return (gpe_sts_reg & GPE0A_PME_B0_STS_BIT); } static struct irq_chip int0002_irqchip = { .name = DRV_NAME, .irq_ack = int0002_irq_ack, .irq_mask = int0002_irq_mask, .irq_unmask = int0002_irq_unmask, .irq_set_wake = int0002_irq_set_wake, }; static void int0002_init_irq_valid_mask(struct gpio_chip *chip, unsigned long *valid_mask, unsigned int ngpios) { bitmap_clear(valid_mask, 0, GPE0A_PME_B0_VIRT_GPIO_PIN); } static int int0002_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct int0002_data *int0002; struct gpio_irq_chip *girq; struct gpio_chip *chip; int irq, ret; /* Menlow has a different INT0002 device? <sigh> */ if (!soc_intel_is_byt() && !soc_intel_is_cht()) return -ENODEV; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; int0002 = devm_kzalloc(dev, sizeof(*int0002), GFP_KERNEL); if (!int0002) return -ENOMEM; int0002->parent_irq = irq; chip = &int0002->chip; chip->label = DRV_NAME; chip->parent = dev; chip->owner = THIS_MODULE; chip->get = int0002_gpio_get; chip->set = int0002_gpio_set; chip->direction_input = int0002_gpio_get; chip->direction_output = int0002_gpio_direction_output; chip->base = -1; chip->ngpio = GPE0A_PME_B0_VIRT_GPIO_PIN + 1; chip->irq.init_valid_mask = int0002_init_irq_valid_mask; /* * We directly request the irq here instead of passing a flow-handler * to gpiochip_set_chained_irqchip, because the irq is shared. * FIXME: augment this if we managed to pull handling of shared * IRQs into gpiolib. */ ret = devm_request_irq(dev, irq, int0002_irq, IRQF_SHARED, "INT0002", chip); if (ret) { dev_err(dev, "Error requesting IRQ %d: %d\n", irq, ret); return ret; } girq = &chip->irq; girq->chip = &int0002_irqchip; /* This let us handle the parent IRQ in the driver */ girq->parent_handler = NULL; girq->num_parents = 0; girq->parents = NULL; girq->default_type = IRQ_TYPE_NONE; girq->handler = handle_edge_irq; ret = devm_gpiochip_add_data(dev, chip, NULL); if (ret) { dev_err(dev, "Error adding gpio chip: %d\n", ret); return ret; } acpi_register_wakeup_handler(irq, int0002_check_wake, NULL); device_init_wakeup(dev, true); dev_set_drvdata(dev, int0002); return 0; } static void int0002_remove(struct platform_device *pdev) { device_init_wakeup(&pdev->dev, false); acpi_unregister_wakeup_handler(int0002_check_wake, NULL); } static int int0002_suspend(struct device *dev) { struct int0002_data *int0002 = dev_get_drvdata(dev); /* * The INT0002 parent IRQ is often shared with the ACPI GPE IRQ, don't * muck with it when firmware based suspend is used, otherwise we may * cause spurious wakeups from firmware managed suspend. */ if (!pm_suspend_via_firmware() && int0002->wake_enable_count) enable_irq_wake(int0002->parent_irq); return 0; } static int int0002_resume(struct device *dev) { struct int0002_data *int0002 = dev_get_drvdata(dev); if (!pm_suspend_via_firmware() && int0002->wake_enable_count) disable_irq_wake(int0002->parent_irq); return 0; } static const struct dev_pm_ops int0002_pm_ops = { .suspend = int0002_suspend, .resume = int0002_resume, }; static const struct acpi_device_id int0002_acpi_ids[] = { { "INT0002", 0 }, { }, }; MODULE_DEVICE_TABLE(acpi, int0002_acpi_ids); static struct platform_driver int0002_driver = { .driver = { .name = DRV_NAME, .acpi_match_table = int0002_acpi_ids, .pm = &int0002_pm_ops, }, .probe = int0002_probe, .remove_new = int0002_remove, }; module_platform_driver(int0002_driver); MODULE_AUTHOR("Hans de Goede <[email protected]>"); MODULE_DESCRIPTION("Intel INT0002 Virtual GPIO driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/platform/x86/intel/int0002_vgpio.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2013 Matthew Garrett <[email protected]> */ #include <linux/acpi.h> #include <linux/module.h> MODULE_LICENSE("GPL"); static int smartconnect_acpi_init(struct acpi_device *acpi) { unsigned long long value; acpi_status status; status = acpi_evaluate_integer(acpi->handle, "GAOS", NULL, &value); if (ACPI_FAILURE(status)) return -EINVAL; if (value & 0x1) { dev_info(&acpi->dev, "Disabling Intel Smart Connect\n"); status = acpi_execute_simple_method(acpi->handle, "SAOS", 0); } return 0; } static const struct acpi_device_id smartconnect_ids[] = { {"INT33A0", 0}, {"", 0} }; MODULE_DEVICE_TABLE(acpi, smartconnect_ids); static struct acpi_driver smartconnect_driver = { .owner = THIS_MODULE, .name = "intel_smart_connect", .class = "intel_smart_connect", .ids = smartconnect_ids, .ops = { .add = smartconnect_acpi_init, }, }; module_acpi_driver(smartconnect_driver);
linux-master
drivers/platform/x86/intel/smartconnect.c
// SPDX-License-Identifier: GPL-2.0 /* * Intel BXT Whiskey Cove PMIC TMU driver * * Copyright (C) 2016 Intel Corporation. All rights reserved. * * This driver adds TMU (Time Management Unit) support for Intel BXT platform. * It enables the alarm wake-up functionality in the TMU unit of Whiskey Cove * PMIC. */ #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/mfd/intel_soc_pmic.h> #define BXTWC_TMUIRQ 0x4fb6 #define BXTWC_MIRQLVL1 0x4e0e #define BXTWC_MTMUIRQ_REG 0x4fb7 #define BXTWC_MIRQLVL1_MTMU BIT(1) #define BXTWC_TMU_WK_ALRM BIT(1) #define BXTWC_TMU_SYS_ALRM BIT(2) #define BXTWC_TMU_ALRM_MASK (BXTWC_TMU_WK_ALRM | BXTWC_TMU_SYS_ALRM) #define BXTWC_TMU_ALRM_IRQ (BXTWC_TMU_WK_ALRM | BXTWC_TMU_SYS_ALRM) struct wcove_tmu { int irq; struct device *dev; struct regmap *regmap; }; static irqreturn_t bxt_wcove_tmu_irq_handler(int irq, void *data) { struct wcove_tmu *wctmu = data; unsigned int tmu_irq; /* Read TMU interrupt reg */ regmap_read(wctmu->regmap, BXTWC_TMUIRQ, &tmu_irq); if (tmu_irq & BXTWC_TMU_ALRM_IRQ) { /* clear TMU irq */ regmap_write(wctmu->regmap, BXTWC_TMUIRQ, tmu_irq); return IRQ_HANDLED; } return IRQ_NONE; } static int bxt_wcove_tmu_probe(struct platform_device *pdev) { struct intel_soc_pmic *pmic = dev_get_drvdata(pdev->dev.parent); struct regmap_irq_chip_data *regmap_irq_chip; struct wcove_tmu *wctmu; int ret, virq, irq; wctmu = devm_kzalloc(&pdev->dev, sizeof(*wctmu), GFP_KERNEL); if (!wctmu) return -ENOMEM; wctmu->dev = &pdev->dev; wctmu->regmap = pmic->regmap; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; regmap_irq_chip = pmic->irq_chip_data_tmu; virq = regmap_irq_get_virq(regmap_irq_chip, irq); if (virq < 0) { dev_err(&pdev->dev, "failed to get virtual interrupt=%d\n", irq); return virq; } ret = devm_request_threaded_irq(&pdev->dev, virq, NULL, bxt_wcove_tmu_irq_handler, IRQF_ONESHOT, "bxt_wcove_tmu", wctmu); if (ret) { dev_err(&pdev->dev, "request irq failed: %d,virq: %d\n", ret, virq); return ret; } wctmu->irq = virq; /* Unmask TMU second level Wake & System alarm */ regmap_update_bits(wctmu->regmap, BXTWC_MTMUIRQ_REG, BXTWC_TMU_ALRM_MASK, 0); platform_set_drvdata(pdev, wctmu); return 0; } static void bxt_wcove_tmu_remove(struct platform_device *pdev) { struct wcove_tmu *wctmu = platform_get_drvdata(pdev); unsigned int val; /* Mask TMU interrupts */ regmap_read(wctmu->regmap, BXTWC_MIRQLVL1, &val); regmap_write(wctmu->regmap, BXTWC_MIRQLVL1, val | BXTWC_MIRQLVL1_MTMU); regmap_read(wctmu->regmap, BXTWC_MTMUIRQ_REG, &val); regmap_write(wctmu->regmap, BXTWC_MTMUIRQ_REG, val | BXTWC_TMU_ALRM_MASK); } #ifdef CONFIG_PM_SLEEP static int bxtwc_tmu_suspend(struct device *dev) { struct wcove_tmu *wctmu = dev_get_drvdata(dev); enable_irq_wake(wctmu->irq); return 0; } static int bxtwc_tmu_resume(struct device *dev) { struct wcove_tmu *wctmu = dev_get_drvdata(dev); disable_irq_wake(wctmu->irq); return 0; } #endif static SIMPLE_DEV_PM_OPS(bxtwc_tmu_pm_ops, bxtwc_tmu_suspend, bxtwc_tmu_resume); static const struct platform_device_id bxt_wcove_tmu_id_table[] = { { .name = "bxt_wcove_tmu" }, {}, }; MODULE_DEVICE_TABLE(platform, bxt_wcove_tmu_id_table); static struct platform_driver bxt_wcove_tmu_driver = { .probe = bxt_wcove_tmu_probe, .remove_new = bxt_wcove_tmu_remove, .driver = { .name = "bxt_wcove_tmu", .pm = &bxtwc_tmu_pm_ops, }, .id_table = bxt_wcove_tmu_id_table, }; module_platform_driver(bxt_wcove_tmu_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Nilesh Bacchewar <[email protected]>"); MODULE_DESCRIPTION("BXT Whiskey Cove TMU Driver");
linux-master
drivers/platform/x86/intel/bxtwc_tmu.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2013 Matthew Garrett <[email protected]> */ #include <linux/acpi.h> #include <linux/module.h> #include <linux/slab.h> MODULE_LICENSE("GPL"); static ssize_t irst_show_wakeup_events(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_device *acpi; unsigned long long value; acpi_status status; acpi = to_acpi_device(dev); status = acpi_evaluate_integer(acpi->handle, "GFFS", NULL, &value); if (ACPI_FAILURE(status)) return -EINVAL; return sprintf(buf, "%lld\n", value); } static ssize_t irst_store_wakeup_events(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct acpi_device *acpi; acpi_status status; unsigned long value; int error; acpi = to_acpi_device(dev); error = kstrtoul(buf, 0, &value); if (error) return error; status = acpi_execute_simple_method(acpi->handle, "SFFS", value); if (ACPI_FAILURE(status)) return -EINVAL; return count; } static struct device_attribute irst_wakeup_attr = { .attr = { .name = "wakeup_events", .mode = 0600 }, .show = irst_show_wakeup_events, .store = irst_store_wakeup_events }; static ssize_t irst_show_wakeup_time(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_device *acpi; unsigned long long value; acpi_status status; acpi = to_acpi_device(dev); status = acpi_evaluate_integer(acpi->handle, "GFTV", NULL, &value); if (ACPI_FAILURE(status)) return -EINVAL; return sprintf(buf, "%lld\n", value); } static ssize_t irst_store_wakeup_time(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct acpi_device *acpi; acpi_status status; unsigned long value; int error; acpi = to_acpi_device(dev); error = kstrtoul(buf, 0, &value); if (error) return error; status = acpi_execute_simple_method(acpi->handle, "SFTV", value); if (ACPI_FAILURE(status)) return -EINVAL; return count; } static struct device_attribute irst_timeout_attr = { .attr = { .name = "wakeup_time", .mode = 0600 }, .show = irst_show_wakeup_time, .store = irst_store_wakeup_time }; static int irst_add(struct acpi_device *acpi) { int error; error = device_create_file(&acpi->dev, &irst_timeout_attr); if (unlikely(error)) return error; error = device_create_file(&acpi->dev, &irst_wakeup_attr); if (unlikely(error)) device_remove_file(&acpi->dev, &irst_timeout_attr); return error; } static void irst_remove(struct acpi_device *acpi) { device_remove_file(&acpi->dev, &irst_wakeup_attr); device_remove_file(&acpi->dev, &irst_timeout_attr); } static const struct acpi_device_id irst_ids[] = { {"INT3392", 0}, {"", 0} }; static struct acpi_driver irst_driver = { .owner = THIS_MODULE, .name = "intel_rapid_start", .class = "intel_rapid_start", .ids = irst_ids, .ops = { .add = irst_add, .remove = irst_remove, }, }; module_acpi_driver(irst_driver); MODULE_DEVICE_TABLE(acpi, irst_ids);
linux-master
drivers/platform/x86/intel/rst.c
// SPDX-License-Identifier: GPL-2.0-only /* * Intel ECLite opregion driver for talking to ECLite firmware running on * Intel Integrated Sensor Hub (ISH) using ISH Transport Protocol (ISHTP) * * Copyright (c) 2021, Intel Corporation. */ #include <linux/acpi.h> #include <linux/bitops.h> #include <linux/device.h> #include <linux/errno.h> #include <linux/intel-ish-client-if.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/suspend.h> #include <linux/types.h> #include <linux/uuid.h> #include <linux/uaccess.h> #define ECLITE_DATA_OPREGION_ID 0x9E #define ECLITE_CMD_OPREGION_ID 0x9F #define ECL_MSG_DATA 0x1 #define ECL_MSG_EVENT 0x2 #define ECL_ISH_READ 0x1 #define ECL_ISH_WRITE 0x2 #define ECL_ISH_HEADER_VERSION 0 #define ECL_CL_RX_RING_SIZE 16 #define ECL_CL_TX_RING_SIZE 8 #define ECL_DATA_OPR_BUFLEN 384 #define ECL_EVENTS_NOTIFY 333 #define cmd_opr_offsetof(element) offsetof(struct opregion_cmd, element) #define cl_data_to_dev(opr_dev) ishtp_device((opr_dev)->cl_device) #ifndef BITS_TO_BYTES #define BITS_TO_BYTES(x) ((x) / 8) #endif struct opregion_cmd { unsigned int command; unsigned int offset; unsigned int length; unsigned int event_id; }; struct opregion_data { char data[ECL_DATA_OPR_BUFLEN]; }; struct opregion_context { struct opregion_cmd cmd_area; struct opregion_data data_area; }; struct ecl_message_header { unsigned int version:2; unsigned int data_type:2; unsigned int request_type:2; unsigned int offset:9; unsigned int data_len:9; unsigned int event:8; }; struct ecl_message { struct ecl_message_header header; char payload[ECL_DATA_OPR_BUFLEN]; }; struct ishtp_opregion_dev { struct opregion_context opr_context; struct ishtp_cl *ecl_ishtp_cl; struct ishtp_cl_device *cl_device; struct ishtp_fw_client *fw_client; struct ishtp_cl_rb *rb; struct acpi_device *adev; unsigned int dsm_event_id; unsigned int ish_link_ready; unsigned int ish_read_done; unsigned int acpi_init_done; wait_queue_head_t read_wait; struct work_struct event_work; struct work_struct reset_work; /* lock for opregion context */ struct mutex lock; }; /* eclite ishtp client UUID: 6a19cc4b-d760-4de3-b14d-f25ebd0fbcd9 */ static const struct ishtp_device_id ecl_ishtp_id_table[] = { { .guid = GUID_INIT(0x6a19cc4b, 0xd760, 0x4de3, 0xb1, 0x4d, 0xf2, 0x5e, 0xbd, 0xf, 0xbc, 0xd9), }, { } }; MODULE_DEVICE_TABLE(ishtp, ecl_ishtp_id_table); /* ACPI DSM UUID: 91d936a7-1f01-49c6-a6b4-72f00ad8d8a5 */ static const guid_t ecl_acpi_guid = GUID_INIT(0x91d936a7, 0x1f01, 0x49c6, 0xa6, 0xb4, 0x72, 0xf0, 0x0a, 0xd8, 0xd8, 0xa5); /** * ecl_ish_cl_read() - Read data from eclite FW * * @opr_dev: pointer to opregion device * * This function issues a read request to eclite FW and waits until it * receives a response. When response is received the read data is copied to * opregion buffer. */ static int ecl_ish_cl_read(struct ishtp_opregion_dev *opr_dev) { struct ecl_message_header header; int len, rv; if (!opr_dev->ish_link_ready) return -EIO; if ((opr_dev->opr_context.cmd_area.offset + opr_dev->opr_context.cmd_area.length) > ECL_DATA_OPR_BUFLEN) { return -EINVAL; } header.version = ECL_ISH_HEADER_VERSION; header.data_type = ECL_MSG_DATA; header.request_type = ECL_ISH_READ; header.offset = opr_dev->opr_context.cmd_area.offset; header.data_len = opr_dev->opr_context.cmd_area.length; header.event = opr_dev->opr_context.cmd_area.event_id; len = sizeof(header); opr_dev->ish_read_done = false; rv = ishtp_cl_send(opr_dev->ecl_ishtp_cl, (uint8_t *)&header, len); if (rv) { dev_err(cl_data_to_dev(opr_dev), "ish-read : send failed\n"); return -EIO; } dev_dbg(cl_data_to_dev(opr_dev), "[ish_rd] Req: off : %x, len : %x\n", header.offset, header.data_len); rv = wait_event_interruptible_timeout(opr_dev->read_wait, opr_dev->ish_read_done, 2 * HZ); if (!rv) { dev_err(cl_data_to_dev(opr_dev), "[ish_rd] No response from firmware\n"); return -EIO; } return 0; } /** * ecl_ish_cl_write() - This function writes data to eclite FW. * * @opr_dev: pointer to opregion device * * This function writes data to eclite FW. */ static int ecl_ish_cl_write(struct ishtp_opregion_dev *opr_dev) { struct ecl_message message; int len; if (!opr_dev->ish_link_ready) return -EIO; if ((opr_dev->opr_context.cmd_area.offset + opr_dev->opr_context.cmd_area.length) > ECL_DATA_OPR_BUFLEN) { return -EINVAL; } message.header.version = ECL_ISH_HEADER_VERSION; message.header.data_type = ECL_MSG_DATA; message.header.request_type = ECL_ISH_WRITE; message.header.offset = opr_dev->opr_context.cmd_area.offset; message.header.data_len = opr_dev->opr_context.cmd_area.length; message.header.event = opr_dev->opr_context.cmd_area.event_id; len = sizeof(struct ecl_message_header) + message.header.data_len; memcpy(message.payload, opr_dev->opr_context.data_area.data + message.header.offset, message.header.data_len); dev_dbg(cl_data_to_dev(opr_dev), "[ish_wr] off : %x, len : %x\n", message.header.offset, message.header.data_len); return ishtp_cl_send(opr_dev->ecl_ishtp_cl, (uint8_t *)&message, len); } static acpi_status ecl_opregion_cmd_handler(u32 function, acpi_physical_address address, u32 bits, u64 *value64, void *handler_context, void *region_context) { struct ishtp_opregion_dev *opr_dev; struct opregion_cmd *cmd; acpi_status status = AE_OK; if (!region_context || !value64) return AE_BAD_PARAMETER; if (function == ACPI_READ) return AE_ERROR; opr_dev = (struct ishtp_opregion_dev *)region_context; mutex_lock(&opr_dev->lock); cmd = &opr_dev->opr_context.cmd_area; switch (address) { case cmd_opr_offsetof(command): cmd->command = (u32)*value64; if (cmd->command == ECL_ISH_READ) status = ecl_ish_cl_read(opr_dev); else if (cmd->command == ECL_ISH_WRITE) status = ecl_ish_cl_write(opr_dev); else status = AE_ERROR; break; case cmd_opr_offsetof(offset): cmd->offset = (u32)*value64; break; case cmd_opr_offsetof(length): cmd->length = (u32)*value64; break; case cmd_opr_offsetof(event_id): cmd->event_id = (u32)*value64; break; default: status = AE_ERROR; } mutex_unlock(&opr_dev->lock); return status; } static acpi_status ecl_opregion_data_handler(u32 function, acpi_physical_address address, u32 bits, u64 *value64, void *handler_context, void *region_context) { struct ishtp_opregion_dev *opr_dev; unsigned int bytes = BITS_TO_BYTES(bits); void *data_addr; if (!region_context || !value64) return AE_BAD_PARAMETER; if (address + bytes > ECL_DATA_OPR_BUFLEN) return AE_BAD_PARAMETER; opr_dev = (struct ishtp_opregion_dev *)region_context; mutex_lock(&opr_dev->lock); data_addr = &opr_dev->opr_context.data_area.data[address]; if (function == ACPI_READ) { memcpy(value64, data_addr, bytes); } else if (function == ACPI_WRITE) { memcpy(data_addr, value64, bytes); } else { mutex_unlock(&opr_dev->lock); return AE_BAD_PARAMETER; } mutex_unlock(&opr_dev->lock); return AE_OK; } static int acpi_find_eclite_device(struct ishtp_opregion_dev *opr_dev) { struct acpi_device *adev; /* Find ECLite device and save reference */ adev = acpi_dev_get_first_match_dev("INTC1035", NULL, -1); if (!adev) { dev_err(cl_data_to_dev(opr_dev), "eclite ACPI device not found\n"); return -ENODEV; } opr_dev->adev = adev; return 0; } static int acpi_opregion_init(struct ishtp_opregion_dev *opr_dev) { acpi_status status; status = acpi_install_address_space_handler(opr_dev->adev->handle, ECLITE_CMD_OPREGION_ID, ecl_opregion_cmd_handler, NULL, opr_dev); if (ACPI_FAILURE(status)) { dev_err(cl_data_to_dev(opr_dev), "cmd space handler install failed\n"); return -ENODEV; } status = acpi_install_address_space_handler(opr_dev->adev->handle, ECLITE_DATA_OPREGION_ID, ecl_opregion_data_handler, NULL, opr_dev); if (ACPI_FAILURE(status)) { dev_err(cl_data_to_dev(opr_dev), "data space handler install failed\n"); acpi_remove_address_space_handler(opr_dev->adev->handle, ECLITE_CMD_OPREGION_ID, ecl_opregion_cmd_handler); return -ENODEV; } opr_dev->acpi_init_done = true; dev_dbg(cl_data_to_dev(opr_dev), "Opregion handlers are installed\n"); return 0; } static void acpi_opregion_deinit(struct ishtp_opregion_dev *opr_dev) { acpi_remove_address_space_handler(opr_dev->adev->handle, ECLITE_CMD_OPREGION_ID, ecl_opregion_cmd_handler); acpi_remove_address_space_handler(opr_dev->adev->handle, ECLITE_DATA_OPREGION_ID, ecl_opregion_data_handler); opr_dev->acpi_init_done = false; } static void ecl_acpi_invoke_dsm(struct work_struct *work) { struct ishtp_opregion_dev *opr_dev; union acpi_object *obj; opr_dev = container_of(work, struct ishtp_opregion_dev, event_work); if (!opr_dev->acpi_init_done) return; obj = acpi_evaluate_dsm(opr_dev->adev->handle, &ecl_acpi_guid, 0, opr_dev->dsm_event_id, NULL); if (!obj) { dev_warn(cl_data_to_dev(opr_dev), "_DSM fn call failed\n"); return; } dev_dbg(cl_data_to_dev(opr_dev), "Exec DSM function code: %d success\n", opr_dev->dsm_event_id); ACPI_FREE(obj); } static void ecl_ish_process_rx_data(struct ishtp_opregion_dev *opr_dev) { struct ecl_message *message = (struct ecl_message *)opr_dev->rb->buffer.data; dev_dbg(cl_data_to_dev(opr_dev), "[ish_rd] Resp: off : %x, len : %x\n", message->header.offset, message->header.data_len); if ((message->header.offset + message->header.data_len) > ECL_DATA_OPR_BUFLEN) { return; } memcpy(opr_dev->opr_context.data_area.data + message->header.offset, message->payload, message->header.data_len); opr_dev->ish_read_done = true; wake_up_interruptible(&opr_dev->read_wait); } static void ecl_ish_process_rx_event(struct ishtp_opregion_dev *opr_dev) { struct ecl_message_header *header = (struct ecl_message_header *)opr_dev->rb->buffer.data; dev_dbg(cl_data_to_dev(opr_dev), "[ish_ev] Evt received: %8x\n", header->event); opr_dev->dsm_event_id = header->event; schedule_work(&opr_dev->event_work); } static int ecl_ish_cl_enable_events(struct ishtp_opregion_dev *opr_dev, bool config_enable) { struct ecl_message message; int len; message.header.version = ECL_ISH_HEADER_VERSION; message.header.data_type = ECL_MSG_DATA; message.header.request_type = ECL_ISH_WRITE; message.header.offset = ECL_EVENTS_NOTIFY; message.header.data_len = 1; message.payload[0] = config_enable; len = sizeof(struct ecl_message_header) + message.header.data_len; return ishtp_cl_send(opr_dev->ecl_ishtp_cl, (uint8_t *)&message, len); } static void ecl_ishtp_cl_event_cb(struct ishtp_cl_device *cl_device) { struct ishtp_cl *ecl_ishtp_cl = ishtp_get_drvdata(cl_device); struct ishtp_opregion_dev *opr_dev; struct ecl_message_header *header; struct ishtp_cl_rb *rb; opr_dev = ishtp_get_client_data(ecl_ishtp_cl); while ((rb = ishtp_cl_rx_get_rb(opr_dev->ecl_ishtp_cl)) != NULL) { opr_dev->rb = rb; header = (struct ecl_message_header *)rb->buffer.data; if (header->data_type == ECL_MSG_DATA) ecl_ish_process_rx_data(opr_dev); else if (header->data_type == ECL_MSG_EVENT) ecl_ish_process_rx_event(opr_dev); else /* Got an event with wrong data_type, ignore it */ dev_err(cl_data_to_dev(opr_dev), "[ish_cb] Received wrong data_type\n"); ishtp_cl_io_rb_recycle(rb); } } static int ecl_ishtp_cl_init(struct ishtp_cl *ecl_ishtp_cl) { struct ishtp_opregion_dev *opr_dev = ishtp_get_client_data(ecl_ishtp_cl); struct ishtp_fw_client *fw_client; struct ishtp_device *dev; int rv; rv = ishtp_cl_link(ecl_ishtp_cl); if (rv) { dev_err(cl_data_to_dev(opr_dev), "ishtp_cl_link failed\n"); return rv; } dev = ishtp_get_ishtp_device(ecl_ishtp_cl); /* Connect to FW client */ ishtp_set_tx_ring_size(ecl_ishtp_cl, ECL_CL_TX_RING_SIZE); ishtp_set_rx_ring_size(ecl_ishtp_cl, ECL_CL_RX_RING_SIZE); fw_client = ishtp_fw_cl_get_client(dev, &ecl_ishtp_id_table[0].guid); if (!fw_client) { dev_err(cl_data_to_dev(opr_dev), "fw client not found\n"); return -ENOENT; } ishtp_cl_set_fw_client_id(ecl_ishtp_cl, ishtp_get_fw_client_id(fw_client)); ishtp_set_connection_state(ecl_ishtp_cl, ISHTP_CL_CONNECTING); rv = ishtp_cl_connect(ecl_ishtp_cl); if (rv) { dev_err(cl_data_to_dev(opr_dev), "client connect failed\n"); ishtp_cl_unlink(ecl_ishtp_cl); return rv; } dev_dbg(cl_data_to_dev(opr_dev), "Host connected to fw client\n"); return 0; } static void ecl_ishtp_cl_deinit(struct ishtp_cl *ecl_ishtp_cl) { ishtp_cl_unlink(ecl_ishtp_cl); ishtp_cl_flush_queues(ecl_ishtp_cl); ishtp_cl_free(ecl_ishtp_cl); } static void ecl_ishtp_cl_reset_handler(struct work_struct *work) { struct ishtp_opregion_dev *opr_dev; struct ishtp_cl_device *cl_device; struct ishtp_cl *ecl_ishtp_cl; int rv; int retry; opr_dev = container_of(work, struct ishtp_opregion_dev, reset_work); opr_dev->ish_link_ready = false; cl_device = opr_dev->cl_device; ecl_ishtp_cl = opr_dev->ecl_ishtp_cl; ecl_ishtp_cl_deinit(ecl_ishtp_cl); ecl_ishtp_cl = ishtp_cl_allocate(cl_device); if (!ecl_ishtp_cl) return; ishtp_set_drvdata(cl_device, ecl_ishtp_cl); ishtp_set_client_data(ecl_ishtp_cl, opr_dev); opr_dev->ecl_ishtp_cl = ecl_ishtp_cl; for (retry = 0; retry < 3; ++retry) { rv = ecl_ishtp_cl_init(ecl_ishtp_cl); if (!rv) break; } if (rv) { ishtp_cl_free(ecl_ishtp_cl); opr_dev->ecl_ishtp_cl = NULL; dev_err(cl_data_to_dev(opr_dev), "[ish_rst] Reset failed. Link not ready.\n"); return; } ishtp_register_event_cb(cl_device, ecl_ishtp_cl_event_cb); dev_info(cl_data_to_dev(opr_dev), "[ish_rst] Reset Success. Link ready.\n"); opr_dev->ish_link_ready = true; if (opr_dev->acpi_init_done) return; rv = acpi_opregion_init(opr_dev); if (rv) { dev_err(cl_data_to_dev(opr_dev), "ACPI opregion init failed\n"); } } static int ecl_ishtp_cl_probe(struct ishtp_cl_device *cl_device) { struct ishtp_cl *ecl_ishtp_cl; struct ishtp_opregion_dev *opr_dev; int rv; opr_dev = devm_kzalloc(ishtp_device(cl_device), sizeof(*opr_dev), GFP_KERNEL); if (!opr_dev) return -ENOMEM; ecl_ishtp_cl = ishtp_cl_allocate(cl_device); if (!ecl_ishtp_cl) return -ENOMEM; ishtp_set_drvdata(cl_device, ecl_ishtp_cl); ishtp_set_client_data(ecl_ishtp_cl, opr_dev); opr_dev->ecl_ishtp_cl = ecl_ishtp_cl; opr_dev->cl_device = cl_device; init_waitqueue_head(&opr_dev->read_wait); INIT_WORK(&opr_dev->event_work, ecl_acpi_invoke_dsm); INIT_WORK(&opr_dev->reset_work, ecl_ishtp_cl_reset_handler); /* Initialize ish client device */ rv = ecl_ishtp_cl_init(ecl_ishtp_cl); if (rv) { dev_err(cl_data_to_dev(opr_dev), "Client init failed\n"); goto err_exit; } dev_dbg(cl_data_to_dev(opr_dev), "eclite-ishtp client initialised\n"); opr_dev->ish_link_ready = true; mutex_init(&opr_dev->lock); rv = acpi_find_eclite_device(opr_dev); if (rv) { dev_err(cl_data_to_dev(opr_dev), "ECLite ACPI ID not found\n"); goto err_exit; } /* Register a handler for eclite fw events */ ishtp_register_event_cb(cl_device, ecl_ishtp_cl_event_cb); /* Now init opregion handlers */ rv = acpi_opregion_init(opr_dev); if (rv) { dev_err(cl_data_to_dev(opr_dev), "ACPI opregion init failed\n"); goto err_exit; } /* Reprobe devices depending on ECLite - battery, fan, etc. */ acpi_dev_clear_dependencies(opr_dev->adev); return 0; err_exit: ishtp_set_connection_state(ecl_ishtp_cl, ISHTP_CL_DISCONNECTING); ishtp_cl_disconnect(ecl_ishtp_cl); ecl_ishtp_cl_deinit(ecl_ishtp_cl); return rv; } static void ecl_ishtp_cl_remove(struct ishtp_cl_device *cl_device) { struct ishtp_cl *ecl_ishtp_cl = ishtp_get_drvdata(cl_device); struct ishtp_opregion_dev *opr_dev = ishtp_get_client_data(ecl_ishtp_cl); if (opr_dev->acpi_init_done) acpi_opregion_deinit(opr_dev); acpi_dev_put(opr_dev->adev); ishtp_set_connection_state(ecl_ishtp_cl, ISHTP_CL_DISCONNECTING); ishtp_cl_disconnect(ecl_ishtp_cl); ecl_ishtp_cl_deinit(ecl_ishtp_cl); cancel_work_sync(&opr_dev->reset_work); cancel_work_sync(&opr_dev->event_work); } static int ecl_ishtp_cl_reset(struct ishtp_cl_device *cl_device) { struct ishtp_cl *ecl_ishtp_cl = ishtp_get_drvdata(cl_device); struct ishtp_opregion_dev *opr_dev = ishtp_get_client_data(ecl_ishtp_cl); schedule_work(&opr_dev->reset_work); return 0; } static int ecl_ishtp_cl_suspend(struct device *device) { struct ishtp_cl_device *cl_device = ishtp_dev_to_cl_device(device); struct ishtp_cl *ecl_ishtp_cl = ishtp_get_drvdata(cl_device); struct ishtp_opregion_dev *opr_dev = ishtp_get_client_data(ecl_ishtp_cl); if (acpi_target_system_state() == ACPI_STATE_S0) return 0; acpi_opregion_deinit(opr_dev); ecl_ish_cl_enable_events(opr_dev, false); return 0; } static int ecl_ishtp_cl_resume(struct device *device) { /* A reset is expected to call after an Sx. At this point * we are not sure if the link is up or not to restore anything, * so do nothing in resume path */ return 0; } static const struct dev_pm_ops ecl_ishtp_pm_ops = { .suspend = ecl_ishtp_cl_suspend, .resume = ecl_ishtp_cl_resume, }; static struct ishtp_cl_driver ecl_ishtp_cl_driver = { .name = "ishtp-eclite", .id = ecl_ishtp_id_table, .probe = ecl_ishtp_cl_probe, .remove = ecl_ishtp_cl_remove, .reset = ecl_ishtp_cl_reset, .driver.pm = &ecl_ishtp_pm_ops, }; static int __init ecl_ishtp_init(void) { return ishtp_cl_driver_register(&ecl_ishtp_cl_driver, THIS_MODULE); } static void __exit ecl_ishtp_exit(void) { return ishtp_cl_driver_unregister(&ecl_ishtp_cl_driver); } late_initcall(ecl_ishtp_init); module_exit(ecl_ishtp_exit); MODULE_DESCRIPTION("ISH ISHTP eclite client opregion driver"); MODULE_AUTHOR("K Naduvalath, Sumesh <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/platform/x86/intel/ishtp_eclite.c
// SPDX-License-Identifier: GPL-2.0 /* * Power-button driver for Dollar Cove TI PMIC * Copyright (C) 2014 Intel Corp * Copyright (c) 2017 Takashi Iwai <[email protected]> */ #include <linux/input.h> #include <linux/interrupt.h> #include <linux/device.h> #include <linux/mfd/intel_soc_pmic.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pm_wakeirq.h> #include <linux/slab.h> #define CHTDC_TI_SIRQ_REG 0x3 #define SIRQ_PWRBTN_REL BIT(0) static irqreturn_t chtdc_ti_pwrbtn_interrupt(int irq, void *dev_id) { struct input_dev *input = dev_id; struct device *dev = input->dev.parent; struct regmap *regmap = dev_get_drvdata(dev); int state; if (!regmap_read(regmap, CHTDC_TI_SIRQ_REG, &state)) { dev_dbg(dev, "SIRQ_REG=0x%x\n", state); input_report_key(input, KEY_POWER, !(state & SIRQ_PWRBTN_REL)); input_sync(input); } return IRQ_HANDLED; } static int chtdc_ti_pwrbtn_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct intel_soc_pmic *pmic = dev_get_drvdata(dev->parent); struct input_dev *input; int irq, err; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; input = devm_input_allocate_device(dev); if (!input) return -ENOMEM; input->name = pdev->name; input->phys = "power-button/input0"; input->id.bustype = BUS_HOST; input_set_capability(input, EV_KEY, KEY_POWER); err = input_register_device(input); if (err) return err; dev_set_drvdata(dev, pmic->regmap); err = devm_request_threaded_irq(dev, irq, NULL, chtdc_ti_pwrbtn_interrupt, IRQF_ONESHOT, KBUILD_MODNAME, input); if (err) return err; device_init_wakeup(dev, true); dev_pm_set_wake_irq(dev, irq); return 0; } static void chtdc_ti_pwrbtn_remove(struct platform_device *pdev) { dev_pm_clear_wake_irq(&pdev->dev); device_init_wakeup(&pdev->dev, false); } static const struct platform_device_id chtdc_ti_pwrbtn_id_table[] = { { .name = "chtdc_ti_pwrbtn" }, {}, }; MODULE_DEVICE_TABLE(platform, chtdc_ti_pwrbtn_id_table); static struct platform_driver chtdc_ti_pwrbtn_driver = { .driver = { .name = KBUILD_MODNAME, }, .probe = chtdc_ti_pwrbtn_probe, .remove_new = chtdc_ti_pwrbtn_remove, .id_table = chtdc_ti_pwrbtn_id_table, }; module_platform_driver(chtdc_ti_pwrbtn_driver); MODULE_DESCRIPTION("Power-button driver for Dollar Cove TI PMIC"); MODULE_LICENSE("GPL v2");
linux-master
drivers/platform/x86/intel/chtdc_ti_pwrbtn.c
// SPDX-License-Identifier: GPL-2.0+ /* * Intel OakTrail Platform support * * Copyright (C) 2010-2011 Intel Corporation * Author: Yin Kangkai ([email protected]) * * based on Compal driver, Copyright (C) 2008 Cezary Jackiewicz * <cezary.jackiewicz (at) gmail.com>, based on MSI driver * Copyright (C) 2006 Lennart Poettering <mzxreary (at) 0pointer (dot) de> * * This driver does below things: * 1. registers itself in the Linux backlight control in * /sys/class/backlight/intel_oaktrail/ * * 2. registers in the rfkill subsystem here: /sys/class/rfkill/rfkillX/ * for these components: wifi, bluetooth, wwan (3g), gps * * This driver might work on other products based on Oaktrail. If you * want to try it you can pass force=1 as argument to the module which * will force it to load even when the DMI data doesn't identify the * product as compatible. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/acpi.h> #include <linux/backlight.h> #include <linux/dmi.h> #include <linux/err.h> #include <linux/fb.h> #include <linux/i2c.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/platform_device.h> #include <linux/rfkill.h> #include <acpi/video.h> #define DRIVER_NAME "intel_oaktrail" #define DRIVER_VERSION "0.4ac1" /* * This is the devices status address in EC space, and the control bits * definition: * * (1 << 0): Camera enable/disable, RW. * (1 << 1): Bluetooth enable/disable, RW. * (1 << 2): GPS enable/disable, RW. * (1 << 3): WiFi enable/disable, RW. * (1 << 4): WWAN (3G) enable/disable, RW. * (1 << 5): Touchscreen enable/disable, Read Only. */ #define OT_EC_DEVICE_STATE_ADDRESS 0xD6 #define OT_EC_CAMERA_MASK (1 << 0) #define OT_EC_BT_MASK (1 << 1) #define OT_EC_GPS_MASK (1 << 2) #define OT_EC_WIFI_MASK (1 << 3) #define OT_EC_WWAN_MASK (1 << 4) #define OT_EC_TS_MASK (1 << 5) /* * This is the address in EC space and commands used to control LCD backlight: * * Two steps needed to change the LCD backlight: * 1. write the backlight percentage into OT_EC_BL_BRIGHTNESS_ADDRESS; * 2. write OT_EC_BL_CONTROL_ON_DATA into OT_EC_BL_CONTROL_ADDRESS. * * To read the LCD back light, just read out the value from * OT_EC_BL_BRIGHTNESS_ADDRESS. * * LCD backlight brightness range: 0 - 100 (OT_EC_BL_BRIGHTNESS_MAX) */ #define OT_EC_BL_BRIGHTNESS_ADDRESS 0x44 #define OT_EC_BL_BRIGHTNESS_MAX 100 #define OT_EC_BL_CONTROL_ADDRESS 0x3A #define OT_EC_BL_CONTROL_ON_DATA 0x1A static bool force; module_param(force, bool, 0); MODULE_PARM_DESC(force, "Force driver load, ignore DMI data"); static struct platform_device *oaktrail_device; static struct backlight_device *oaktrail_bl_device; static struct rfkill *bt_rfkill; static struct rfkill *gps_rfkill; static struct rfkill *wifi_rfkill; static struct rfkill *wwan_rfkill; /* rfkill */ static int oaktrail_rfkill_set(void *data, bool blocked) { u8 value; u8 result; unsigned long radio = (unsigned long) data; ec_read(OT_EC_DEVICE_STATE_ADDRESS, &result); if (!blocked) value = (u8) (result | radio); else value = (u8) (result & ~radio); ec_write(OT_EC_DEVICE_STATE_ADDRESS, value); return 0; } static const struct rfkill_ops oaktrail_rfkill_ops = { .set_block = oaktrail_rfkill_set, }; static struct rfkill *oaktrail_rfkill_new(char *name, enum rfkill_type type, unsigned long mask) { struct rfkill *rfkill_dev; u8 value; int err; rfkill_dev = rfkill_alloc(name, &oaktrail_device->dev, type, &oaktrail_rfkill_ops, (void *)mask); if (!rfkill_dev) return ERR_PTR(-ENOMEM); ec_read(OT_EC_DEVICE_STATE_ADDRESS, &value); rfkill_init_sw_state(rfkill_dev, (value & mask) != 1); err = rfkill_register(rfkill_dev); if (err) { rfkill_destroy(rfkill_dev); return ERR_PTR(err); } return rfkill_dev; } static inline void __oaktrail_rfkill_cleanup(struct rfkill *rf) { if (rf) { rfkill_unregister(rf); rfkill_destroy(rf); } } static void oaktrail_rfkill_cleanup(void) { __oaktrail_rfkill_cleanup(wifi_rfkill); __oaktrail_rfkill_cleanup(bt_rfkill); __oaktrail_rfkill_cleanup(gps_rfkill); __oaktrail_rfkill_cleanup(wwan_rfkill); } static int oaktrail_rfkill_init(void) { int ret; wifi_rfkill = oaktrail_rfkill_new("oaktrail-wifi", RFKILL_TYPE_WLAN, OT_EC_WIFI_MASK); if (IS_ERR(wifi_rfkill)) { ret = PTR_ERR(wifi_rfkill); wifi_rfkill = NULL; goto cleanup; } bt_rfkill = oaktrail_rfkill_new("oaktrail-bluetooth", RFKILL_TYPE_BLUETOOTH, OT_EC_BT_MASK); if (IS_ERR(bt_rfkill)) { ret = PTR_ERR(bt_rfkill); bt_rfkill = NULL; goto cleanup; } gps_rfkill = oaktrail_rfkill_new("oaktrail-gps", RFKILL_TYPE_GPS, OT_EC_GPS_MASK); if (IS_ERR(gps_rfkill)) { ret = PTR_ERR(gps_rfkill); gps_rfkill = NULL; goto cleanup; } wwan_rfkill = oaktrail_rfkill_new("oaktrail-wwan", RFKILL_TYPE_WWAN, OT_EC_WWAN_MASK); if (IS_ERR(wwan_rfkill)) { ret = PTR_ERR(wwan_rfkill); wwan_rfkill = NULL; goto cleanup; } return 0; cleanup: oaktrail_rfkill_cleanup(); return ret; } /* backlight */ static int get_backlight_brightness(struct backlight_device *b) { u8 value; ec_read(OT_EC_BL_BRIGHTNESS_ADDRESS, &value); return value; } static int set_backlight_brightness(struct backlight_device *b) { u8 percent = (u8) b->props.brightness; if (percent < 0 || percent > OT_EC_BL_BRIGHTNESS_MAX) return -EINVAL; ec_write(OT_EC_BL_BRIGHTNESS_ADDRESS, percent); ec_write(OT_EC_BL_CONTROL_ADDRESS, OT_EC_BL_CONTROL_ON_DATA); return 0; } static const struct backlight_ops oaktrail_bl_ops = { .get_brightness = get_backlight_brightness, .update_status = set_backlight_brightness, }; static int oaktrail_backlight_init(void) { struct backlight_device *bd; struct backlight_properties props; memset(&props, 0, sizeof(struct backlight_properties)); props.type = BACKLIGHT_PLATFORM; props.max_brightness = OT_EC_BL_BRIGHTNESS_MAX; bd = backlight_device_register(DRIVER_NAME, &oaktrail_device->dev, NULL, &oaktrail_bl_ops, &props); if (IS_ERR(bd)) { oaktrail_bl_device = NULL; pr_warn("Unable to register backlight device\n"); return PTR_ERR(bd); } oaktrail_bl_device = bd; bd->props.brightness = get_backlight_brightness(bd); bd->props.power = FB_BLANK_UNBLANK; backlight_update_status(bd); return 0; } static void oaktrail_backlight_exit(void) { backlight_device_unregister(oaktrail_bl_device); } static int oaktrail_probe(struct platform_device *pdev) { return 0; } static struct platform_driver oaktrail_driver = { .driver = { .name = DRIVER_NAME, }, .probe = oaktrail_probe, }; static int dmi_check_cb(const struct dmi_system_id *id) { pr_info("Identified model '%s'\n", id->ident); return 0; } static const struct dmi_system_id oaktrail_dmi_table[] __initconst = { { .ident = "OakTrail platform", .matches = { DMI_MATCH(DMI_PRODUCT_NAME, "OakTrail platform"), }, .callback = dmi_check_cb }, { } }; MODULE_DEVICE_TABLE(dmi, oaktrail_dmi_table); static int __init oaktrail_init(void) { int ret; if (acpi_disabled) { pr_err("ACPI needs to be enabled for this driver to work!\n"); return -ENODEV; } if (!force && !dmi_check_system(oaktrail_dmi_table)) { pr_err("Platform not recognized (You could try the module's force-parameter)"); return -ENODEV; } ret = platform_driver_register(&oaktrail_driver); if (ret) { pr_warn("Unable to register platform driver\n"); goto err_driver_reg; } oaktrail_device = platform_device_alloc(DRIVER_NAME, PLATFORM_DEVID_NONE); if (!oaktrail_device) { pr_warn("Unable to allocate platform device\n"); ret = -ENOMEM; goto err_device_alloc; } ret = platform_device_add(oaktrail_device); if (ret) { pr_warn("Unable to add platform device\n"); goto err_device_add; } if (acpi_video_get_backlight_type() == acpi_backlight_vendor) { ret = oaktrail_backlight_init(); if (ret) goto err_backlight; } ret = oaktrail_rfkill_init(); if (ret) { pr_warn("Setup rfkill failed\n"); goto err_rfkill; } pr_info("Driver "DRIVER_VERSION" successfully loaded\n"); return 0; err_rfkill: oaktrail_backlight_exit(); err_backlight: platform_device_del(oaktrail_device); err_device_add: platform_device_put(oaktrail_device); err_device_alloc: platform_driver_unregister(&oaktrail_driver); err_driver_reg: return ret; } static void __exit oaktrail_cleanup(void) { oaktrail_backlight_exit(); oaktrail_rfkill_cleanup(); platform_device_unregister(oaktrail_device); platform_driver_unregister(&oaktrail_driver); pr_info("Driver unloaded\n"); } module_init(oaktrail_init); module_exit(oaktrail_cleanup); MODULE_AUTHOR("Yin Kangkai ([email protected])"); MODULE_DESCRIPTION("Intel Oaktrail Platform ACPI Extras"); MODULE_VERSION(DRIVER_VERSION); MODULE_LICENSE("GPL");
linux-master
drivers/platform/x86/intel/oaktrail.c
// SPDX-License-Identifier: GPL-2.0 /* * Intel Cherry Trail ACPI INT33FE pseudo device driver * * Copyright (C) 2017 Hans de Goede <[email protected]> * * Some Intel Cherry Trail based device which ship with Windows 10, have * this weird INT33FE ACPI device with a CRS table with 4 I2cSerialBusV2 * resources, for 4 different chips attached to various I²C buses: * 1. The Whiskey Cove PMIC, which is also described by the INT34D3 ACPI device * 2. Maxim MAX17047 Fuel Gauge Controller * 3. FUSB302 USB Type-C Controller * 4. PI3USB30532 USB switch * * So this driver is a stub / pseudo driver whose only purpose is to * instantiate I²C clients for chips 2 - 4, so that standard I²C drivers * for these chips can bind to the them. */ #include <linux/dmi.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/regulator/consumer.h> #include <linux/slab.h> #include <linux/usb/pd.h> struct cht_int33fe_data { struct i2c_client *battery_fg; struct i2c_client *fusb302; struct i2c_client *pi3usb30532; struct fwnode_handle *dp; }; /* * Grrr, I severely dislike buggy BIOS-es. At least one BIOS enumerates * the max17047 both through the INT33FE ACPI device (it is right there * in the resources table) as well as through a separate MAX17047 device. * * These helpers are used to work around this by checking if an I²C client * for the max17047 has already been registered. */ static int cht_int33fe_check_for_max17047(struct device *dev, void *data) { struct i2c_client **max17047 = data; struct acpi_device *adev; adev = ACPI_COMPANION(dev); if (!adev) return 0; /* The MAX17047 ACPI node doesn't have an UID, so we don't check that */ if (!acpi_dev_hid_uid_match(adev, "MAX17047", NULL)) return 0; *max17047 = to_i2c_client(dev); return 1; } static const char * const max17047_suppliers[] = { "bq24190-charger" }; static const struct property_entry max17047_properties[] = { PROPERTY_ENTRY_STRING_ARRAY("supplied-from", max17047_suppliers), { } }; static const struct software_node max17047_node = { .name = "max17047", .properties = max17047_properties, }; /* * We are not using inline property here because those are constant, * and we need to adjust this one at runtime to point to real * software node. */ static struct software_node_ref_args fusb302_mux_refs[] = { { .node = NULL }, }; static const struct property_entry fusb302_properties[] = { PROPERTY_ENTRY_STRING("linux,extcon-name", "cht_wcove_pwrsrc"), PROPERTY_ENTRY_REF_ARRAY("usb-role-switch", fusb302_mux_refs), { } }; static const struct software_node fusb302_node = { .name = "fusb302", .properties = fusb302_properties, }; #define PDO_FIXED_FLAGS \ (PDO_FIXED_DUAL_ROLE | PDO_FIXED_DATA_SWAP | PDO_FIXED_USB_COMM) static const u32 src_pdo[] = { PDO_FIXED(5000, 1500, PDO_FIXED_FLAGS), }; static const u32 snk_pdo[] = { PDO_FIXED(5000, 400, PDO_FIXED_FLAGS), PDO_VAR(5000, 12000, 3000), }; static const struct software_node pi3usb30532_node = { .name = "pi3usb30532", }; static const struct software_node displayport_node = { .name = "displayport", }; static const struct property_entry usb_connector_properties[] = { PROPERTY_ENTRY_STRING("data-role", "dual"), PROPERTY_ENTRY_STRING("power-role", "dual"), PROPERTY_ENTRY_STRING("try-power-role", "sink"), PROPERTY_ENTRY_U32_ARRAY("source-pdos", src_pdo), PROPERTY_ENTRY_U32_ARRAY("sink-pdos", snk_pdo), PROPERTY_ENTRY_U32("op-sink-microwatt", 2500000), PROPERTY_ENTRY_REF("orientation-switch", &pi3usb30532_node), PROPERTY_ENTRY_REF("mode-switch", &pi3usb30532_node), PROPERTY_ENTRY_REF("displayport", &displayport_node), { } }; static const struct software_node usb_connector_node = { .name = "connector", .parent = &fusb302_node, .properties = usb_connector_properties, }; static const struct software_node altmodes_node = { .name = "altmodes", .parent = &usb_connector_node, }; static const struct property_entry dp_altmode_properties[] = { PROPERTY_ENTRY_U32("svid", 0xff01), PROPERTY_ENTRY_U32("vdo", 0x0c0086), { } }; static const struct software_node dp_altmode_node = { .name = "displayport-altmode", .parent = &altmodes_node, .properties = dp_altmode_properties, }; static const struct software_node *node_group[] = { &fusb302_node, &max17047_node, &pi3usb30532_node, &displayport_node, &usb_connector_node, &altmodes_node, &dp_altmode_node, NULL }; static int cht_int33fe_setup_dp(struct cht_int33fe_data *data) { struct fwnode_handle *fwnode; struct pci_dev *pdev; fwnode = software_node_fwnode(&displayport_node); if (!fwnode) return -ENODEV; /* First let's find the GPU PCI device */ pdev = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, NULL); if (!pdev || pdev->vendor != PCI_VENDOR_ID_INTEL) { pci_dev_put(pdev); return -ENODEV; } /* Then the DP-2 child device node */ data->dp = device_get_named_child_node(&pdev->dev, "DD04"); pci_dev_put(pdev); if (!data->dp) return -ENODEV; fwnode->secondary = ERR_PTR(-ENODEV); data->dp->secondary = fwnode; return 0; } static void cht_int33fe_remove_nodes(struct cht_int33fe_data *data) { software_node_unregister_node_group(node_group); if (fusb302_mux_refs[0].node) { fwnode_handle_put(software_node_fwnode(fusb302_mux_refs[0].node)); fusb302_mux_refs[0].node = NULL; } if (data->dp) { data->dp->secondary = NULL; fwnode_handle_put(data->dp); data->dp = NULL; } } static int cht_int33fe_add_nodes(struct cht_int33fe_data *data) { const struct software_node *mux_ref_node; int ret; /* * There is no ACPI device node for the USB role mux, so we need to wait * until the mux driver has created software node for the mux device. * It means we depend on the mux driver. This function will return * -EPROBE_DEFER until the mux device is registered. */ mux_ref_node = software_node_find_by_name(NULL, "intel-xhci-usb-sw"); if (!mux_ref_node) return -EPROBE_DEFER; /* * Update node used in "usb-role-switch" property. Note that we * rely on software_node_register_node_group() to use the original * instance of properties instead of copying them. */ fusb302_mux_refs[0].node = mux_ref_node; ret = software_node_register_node_group(node_group); if (ret) return ret; /* The devices that are not created in this driver need extra steps. */ /* * The DP connector does have ACPI device node. In this case we can just * find that ACPI node and assign our node as the secondary node to it. */ ret = cht_int33fe_setup_dp(data); if (ret) goto err_remove_nodes; return 0; err_remove_nodes: cht_int33fe_remove_nodes(data); return ret; } static int cht_int33fe_register_max17047(struct device *dev, struct cht_int33fe_data *data) { struct i2c_client *max17047 = NULL; struct i2c_board_info board_info; struct fwnode_handle *fwnode; int ret; fwnode = software_node_fwnode(&max17047_node); if (!fwnode) return -ENODEV; i2c_for_each_dev(&max17047, cht_int33fe_check_for_max17047); if (max17047) { /* Pre-existing I²C client for the max17047, add device properties */ set_secondary_fwnode(&max17047->dev, fwnode); /* And re-probe to get the new device properties applied */ ret = device_reprobe(&max17047->dev); if (ret) dev_warn(dev, "Reprobing max17047 error: %d\n", ret); return 0; } memset(&board_info, 0, sizeof(board_info)); strscpy(board_info.type, "max17047", I2C_NAME_SIZE); board_info.dev_name = "max17047"; board_info.fwnode = fwnode; data->battery_fg = i2c_acpi_new_device(dev, 1, &board_info); return PTR_ERR_OR_ZERO(data->battery_fg); } static const struct dmi_system_id cht_int33fe_typec_ids[] = { { /* * GPD win / GPD pocket mini laptops * * This DMI match may not seem unique, but it is. In the 67000+ * DMI decode dumps from linux-hardware.org only 116 have * board_vendor set to "AMI Corporation" and of those 116 only * the GPD win's and pocket's board_name is "Default string". */ .matches = { DMI_EXACT_MATCH(DMI_BOARD_VENDOR, "AMI Corporation"), DMI_EXACT_MATCH(DMI_BOARD_NAME, "Default string"), DMI_EXACT_MATCH(DMI_BOARD_SERIAL, "Default string"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "Default string"), }, }, { } }; MODULE_DEVICE_TABLE(dmi, cht_int33fe_typec_ids); static int cht_int33fe_typec_probe(struct platform_device *pdev) { struct i2c_board_info board_info; struct device *dev = &pdev->dev; struct cht_int33fe_data *data; struct fwnode_handle *fwnode; struct regulator *regulator; int fusb302_irq; int ret; if (!dmi_check_system(cht_int33fe_typec_ids)) return -ENODEV; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; /* * We expect the WC PMIC to be paired with a TI bq24292i charger-IC. * We check for the bq24292i vbus regulator here, this has 2 purposes: * 1) The bq24292i allows charging with up to 12V, setting the fusb302's * max-snk voltage to 12V with another charger-IC is not good. * 2) For the fusb302 driver to get the bq24292i vbus regulator, the * regulator-map, which is part of the bq24292i regulator_init_data, * must be registered before the fusb302 is instantiated, otherwise * it will end up with a dummy-regulator. * Note "cht_wc_usb_typec_vbus" comes from the regulator_init_data * which is defined in i2c-cht-wc.c from where the bq24292i I²C client * gets instantiated. We use regulator_get_optional here so that we * don't end up getting a dummy-regulator ourselves. */ regulator = regulator_get_optional(dev, "cht_wc_usb_typec_vbus"); if (IS_ERR(regulator)) { ret = PTR_ERR(regulator); return (ret == -ENODEV) ? -EPROBE_DEFER : ret; } regulator_put(regulator); /* The FUSB302 uses the IRQ at index 1 and is the only IRQ user */ fusb302_irq = acpi_dev_gpio_irq_get(ACPI_COMPANION(dev), 1); if (fusb302_irq < 0) { if (fusb302_irq != -EPROBE_DEFER) dev_err(dev, "Error getting FUSB302 irq\n"); return fusb302_irq; } ret = cht_int33fe_add_nodes(data); if (ret) return ret; /* Work around BIOS bug, see comment on cht_int33fe_check_for_max17047() */ ret = cht_int33fe_register_max17047(dev, data); if (ret) goto out_remove_nodes; fwnode = software_node_fwnode(&fusb302_node); if (!fwnode) { ret = -ENODEV; goto out_unregister_max17047; } memset(&board_info, 0, sizeof(board_info)); strscpy(board_info.type, "typec_fusb302", I2C_NAME_SIZE); board_info.dev_name = "fusb302"; board_info.fwnode = fwnode; board_info.irq = fusb302_irq; data->fusb302 = i2c_acpi_new_device(dev, 2, &board_info); if (IS_ERR(data->fusb302)) { ret = PTR_ERR(data->fusb302); goto out_unregister_max17047; } fwnode = software_node_fwnode(&pi3usb30532_node); if (!fwnode) { ret = -ENODEV; goto out_unregister_fusb302; } memset(&board_info, 0, sizeof(board_info)); board_info.dev_name = "pi3usb30532"; board_info.fwnode = fwnode; strscpy(board_info.type, "pi3usb30532", I2C_NAME_SIZE); data->pi3usb30532 = i2c_acpi_new_device(dev, 3, &board_info); if (IS_ERR(data->pi3usb30532)) { ret = PTR_ERR(data->pi3usb30532); goto out_unregister_fusb302; } platform_set_drvdata(pdev, data); return 0; out_unregister_fusb302: i2c_unregister_device(data->fusb302); out_unregister_max17047: i2c_unregister_device(data->battery_fg); out_remove_nodes: cht_int33fe_remove_nodes(data); return ret; } static void cht_int33fe_typec_remove(struct platform_device *pdev) { struct cht_int33fe_data *data = platform_get_drvdata(pdev); i2c_unregister_device(data->pi3usb30532); i2c_unregister_device(data->fusb302); i2c_unregister_device(data->battery_fg); cht_int33fe_remove_nodes(data); } static const struct acpi_device_id cht_int33fe_acpi_ids[] = { { "INT33FE", }, { } }; static struct platform_driver cht_int33fe_typec_driver = { .driver = { .name = "Intel Cherry Trail ACPI INT33FE Type-C driver", .acpi_match_table = ACPI_PTR(cht_int33fe_acpi_ids), }, .probe = cht_int33fe_typec_probe, .remove_new = cht_int33fe_typec_remove, }; module_platform_driver(cht_int33fe_typec_driver); MODULE_DESCRIPTION("Intel Cherry Trail ACPI INT33FE Type-C pseudo device driver"); MODULE_AUTHOR("Hans de Goede <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/platform/x86/intel/chtwc_int33fe.c
// SPDX-License-Identifier: GPL-2.0 /* * Power-source driver for Bay Trail Crystal Cove PMIC * * Copyright (c) 2023 Hans de Goede <[email protected]> * * Based on intel_crystalcove_pwrsrc.c from Android kernel sources, which is: * Copyright (C) 2013 Intel Corporation */ #include <linux/debugfs.h> #include <linux/mfd/intel_soc_pmic.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/regmap.h> #define CRYSTALCOVE_SPWRSRC_REG 0x1E #define CRYSTALCOVE_RESETSRC0_REG 0x20 #define CRYSTALCOVE_RESETSRC1_REG 0x21 #define CRYSTALCOVE_WAKESRC_REG 0x22 struct crc_pwrsrc_data { struct regmap *regmap; struct dentry *debug_dentry; unsigned int resetsrc0; unsigned int resetsrc1; unsigned int wakesrc; }; static const char * const pwrsrc_pwrsrc_info[] = { /* bit 0 */ "USB", /* bit 1 */ "DC in", /* bit 2 */ "Battery", NULL, }; static const char * const pwrsrc_resetsrc0_info[] = { /* bit 0 */ "SOC reporting a thermal event", /* bit 1 */ "critical PMIC temperature", /* bit 2 */ "critical system temperature", /* bit 3 */ "critical battery temperature", /* bit 4 */ "VSYS under voltage", /* bit 5 */ "VSYS over voltage", /* bit 6 */ "battery removal", NULL, }; static const char * const pwrsrc_resetsrc1_info[] = { /* bit 0 */ "VCRIT threshold", /* bit 1 */ "BATID reporting battery removal", /* bit 2 */ "user pressing the power button", NULL, }; static const char * const pwrsrc_wakesrc_info[] = { /* bit 0 */ "user pressing the power button", /* bit 1 */ "a battery insertion", /* bit 2 */ "a USB charger insertion", /* bit 3 */ "an adapter insertion", NULL, }; static void crc_pwrsrc_log(struct seq_file *seq, const char *prefix, const char * const *info, unsigned int reg_val) { int i; for (i = 0; info[i]; i++) { if (reg_val & BIT(i)) seq_printf(seq, "%s by %s\n", prefix, info[i]); } } static int pwrsrc_show(struct seq_file *seq, void *unused) { struct crc_pwrsrc_data *data = seq->private; unsigned int reg_val; int ret; ret = regmap_read(data->regmap, CRYSTALCOVE_SPWRSRC_REG, &reg_val); if (ret) return ret; crc_pwrsrc_log(seq, "System powered", pwrsrc_pwrsrc_info, reg_val); return 0; } static int resetsrc_show(struct seq_file *seq, void *unused) { struct crc_pwrsrc_data *data = seq->private; crc_pwrsrc_log(seq, "Last shutdown caused", pwrsrc_resetsrc0_info, data->resetsrc0); crc_pwrsrc_log(seq, "Last shutdown caused", pwrsrc_resetsrc1_info, data->resetsrc1); return 0; } static int wakesrc_show(struct seq_file *seq, void *unused) { struct crc_pwrsrc_data *data = seq->private; crc_pwrsrc_log(seq, "Last wake caused", pwrsrc_wakesrc_info, data->wakesrc); return 0; } DEFINE_SHOW_ATTRIBUTE(pwrsrc); DEFINE_SHOW_ATTRIBUTE(resetsrc); DEFINE_SHOW_ATTRIBUTE(wakesrc); static int crc_pwrsrc_read_and_clear(struct crc_pwrsrc_data *data, unsigned int reg, unsigned int *val) { int ret; ret = regmap_read(data->regmap, reg, val); if (ret) return ret; return regmap_write(data->regmap, reg, *val); } static int crc_pwrsrc_probe(struct platform_device *pdev) { struct intel_soc_pmic *pmic = dev_get_drvdata(pdev->dev.parent); struct crc_pwrsrc_data *data; int ret; data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->regmap = pmic->regmap; /* * Read + clear resetsrc0/1 and wakesrc now, so that they get * cleared even if the debugfs interface is never used. * * Properly clearing the wakesrc is important, leaving bit 0 of it * set turns reboot into poweroff on some tablets. */ ret = crc_pwrsrc_read_and_clear(data, CRYSTALCOVE_RESETSRC0_REG, &data->resetsrc0); if (ret) return ret; ret = crc_pwrsrc_read_and_clear(data, CRYSTALCOVE_RESETSRC1_REG, &data->resetsrc1); if (ret) return ret; ret = crc_pwrsrc_read_and_clear(data, CRYSTALCOVE_WAKESRC_REG, &data->wakesrc); if (ret) return ret; data->debug_dentry = debugfs_create_dir(KBUILD_MODNAME, NULL); debugfs_create_file("pwrsrc", 0444, data->debug_dentry, data, &pwrsrc_fops); debugfs_create_file("resetsrc", 0444, data->debug_dentry, data, &resetsrc_fops); debugfs_create_file("wakesrc", 0444, data->debug_dentry, data, &wakesrc_fops); platform_set_drvdata(pdev, data); return 0; } static int crc_pwrsrc_remove(struct platform_device *pdev) { struct crc_pwrsrc_data *data = platform_get_drvdata(pdev); debugfs_remove_recursive(data->debug_dentry); return 0; } static struct platform_driver crc_pwrsrc_driver = { .probe = crc_pwrsrc_probe, .remove = crc_pwrsrc_remove, .driver = { .name = "crystal_cove_pwrsrc", }, }; module_platform_driver(crc_pwrsrc_driver); MODULE_ALIAS("platform:crystal_cove_pwrsrc"); MODULE_AUTHOR("Hans de Goede <[email protected]>"); MODULE_DESCRIPTION("Power-source driver for Bay Trail Crystal Cove PMIC"); MODULE_LICENSE("GPL");
linux-master
drivers/platform/x86/intel/bytcrc_pwrsrc.c
// SPDX-License-Identifier: GPL-2.0 /* * Intel On Demand (Software Defined Silicon) driver * * Copyright (c) 2022, Intel Corporation. * All Rights Reserved. * * Author: "David E. Box" <[email protected]> */ #include <linux/auxiliary_bus.h> #include <linux/bits.h> #include <linux/bitfield.h> #include <linux/device.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/sysfs.h> #include <linux/types.h> #include <linux/uaccess.h> #include "vsec.h" #define ACCESS_TYPE_BARID 2 #define ACCESS_TYPE_LOCAL 3 #define SDSI_MIN_SIZE_DWORDS 276 #define SDSI_SIZE_MAILBOX 1024 #define SDSI_SIZE_REGS 80 #define SDSI_SIZE_CMD sizeof(u64) /* * Write messages are currently up to the size of the mailbox * while read messages are up to 4 times the size of the * mailbox, sent in packets */ #define SDSI_SIZE_WRITE_MSG SDSI_SIZE_MAILBOX #define SDSI_SIZE_READ_MSG (SDSI_SIZE_MAILBOX * 4) #define SDSI_ENABLED_FEATURES_OFFSET 16 #define SDSI_FEATURE_SDSI BIT(3) #define SDSI_FEATURE_METERING BIT(26) #define SDSI_SOCKET_ID_OFFSET 64 #define SDSI_SOCKET_ID GENMASK(3, 0) #define SDSI_MBOX_CMD_SUCCESS 0x40 #define SDSI_MBOX_CMD_TIMEOUT 0x80 #define MBOX_TIMEOUT_US 500000 #define MBOX_TIMEOUT_ACQUIRE_US 1000 #define MBOX_POLLING_PERIOD_US 100 #define MBOX_ACQUIRE_NUM_RETRIES 5 #define MBOX_ACQUIRE_RETRY_DELAY_MS 500 #define MBOX_MAX_PACKETS 4 #define MBOX_OWNER_NONE 0x00 #define MBOX_OWNER_INBAND 0x01 #define CTRL_RUN_BUSY BIT(0) #define CTRL_READ_WRITE BIT(1) #define CTRL_SOM BIT(2) #define CTRL_EOM BIT(3) #define CTRL_OWNER GENMASK(5, 4) #define CTRL_COMPLETE BIT(6) #define CTRL_READY BIT(7) #define CTRL_STATUS GENMASK(15, 8) #define CTRL_PACKET_SIZE GENMASK(31, 16) #define CTRL_MSG_SIZE GENMASK(63, 48) #define DISC_TABLE_SIZE 12 #define DT_ACCESS_TYPE GENMASK(3, 0) #define DT_SIZE GENMASK(27, 12) #define DT_TBIR GENMASK(2, 0) #define DT_OFFSET(v) ((v) & GENMASK(31, 3)) #define SDSI_GUID_V1 0x006DD191 #define GUID_V1_CNTRL_SIZE 8 #define GUID_V1_REGS_SIZE 72 #define SDSI_GUID_V2 0xF210D9EF #define GUID_V2_CNTRL_SIZE 16 #define GUID_V2_REGS_SIZE 80 enum sdsi_command { SDSI_CMD_PROVISION_AKC = 0x0004, SDSI_CMD_PROVISION_CAP = 0x0008, SDSI_CMD_READ_STATE = 0x0010, SDSI_CMD_READ_METER = 0x0014, }; struct sdsi_mbox_info { u64 *payload; void *buffer; int size; }; struct disc_table { u32 access_info; u32 guid; u32 offset; }; struct sdsi_priv { struct mutex mb_lock; /* Mailbox access lock */ struct device *dev; void __iomem *control_addr; void __iomem *mbox_addr; void __iomem *regs_addr; int control_size; int maibox_size; int registers_size; u32 guid; u32 features; }; /* SDSi mailbox operations must be performed using 64bit mov instructions */ static __always_inline void sdsi_memcpy64_toio(u64 __iomem *to, const u64 *from, size_t count_bytes) { size_t count = count_bytes / sizeof(*to); int i; for (i = 0; i < count; i++) writeq(from[i], &to[i]); } static __always_inline void sdsi_memcpy64_fromio(u64 *to, const u64 __iomem *from, size_t count_bytes) { size_t count = count_bytes / sizeof(*to); int i; for (i = 0; i < count; i++) to[i] = readq(&from[i]); } static inline void sdsi_complete_transaction(struct sdsi_priv *priv) { u64 control = FIELD_PREP(CTRL_COMPLETE, 1); lockdep_assert_held(&priv->mb_lock); writeq(control, priv->control_addr); } static int sdsi_status_to_errno(u32 status) { switch (status) { case SDSI_MBOX_CMD_SUCCESS: return 0; case SDSI_MBOX_CMD_TIMEOUT: return -ETIMEDOUT; default: return -EIO; } } static int sdsi_mbox_cmd_read(struct sdsi_priv *priv, struct sdsi_mbox_info *info, size_t *data_size) { struct device *dev = priv->dev; u32 total, loop, eom, status, message_size; u64 control; int ret; lockdep_assert_held(&priv->mb_lock); /* Format and send the read command */ control = FIELD_PREP(CTRL_EOM, 1) | FIELD_PREP(CTRL_SOM, 1) | FIELD_PREP(CTRL_RUN_BUSY, 1) | FIELD_PREP(CTRL_PACKET_SIZE, info->size); writeq(control, priv->control_addr); /* For reads, data sizes that are larger than the mailbox size are read in packets. */ total = 0; loop = 0; do { void *buf = info->buffer + (SDSI_SIZE_MAILBOX * loop); u32 packet_size; /* Poll on ready bit */ ret = readq_poll_timeout(priv->control_addr, control, control & CTRL_READY, MBOX_POLLING_PERIOD_US, MBOX_TIMEOUT_US); if (ret) break; eom = FIELD_GET(CTRL_EOM, control); status = FIELD_GET(CTRL_STATUS, control); packet_size = FIELD_GET(CTRL_PACKET_SIZE, control); message_size = FIELD_GET(CTRL_MSG_SIZE, control); ret = sdsi_status_to_errno(status); if (ret) break; /* Only the last packet can be less than the mailbox size. */ if (!eom && packet_size != SDSI_SIZE_MAILBOX) { dev_err(dev, "Invalid packet size\n"); ret = -EPROTO; break; } if (packet_size > SDSI_SIZE_MAILBOX) { dev_err(dev, "Packet size too large\n"); ret = -EPROTO; break; } sdsi_memcpy64_fromio(buf, priv->mbox_addr, round_up(packet_size, SDSI_SIZE_CMD)); total += packet_size; sdsi_complete_transaction(priv); } while (!eom && ++loop < MBOX_MAX_PACKETS); if (ret) { sdsi_complete_transaction(priv); return ret; } if (!eom) { dev_err(dev, "Exceeded read attempts\n"); return -EPROTO; } /* Message size check is only valid for multi-packet transfers */ if (loop && total != message_size) dev_warn(dev, "Read count %u differs from expected count %u\n", total, message_size); *data_size = total; return 0; } static int sdsi_mbox_cmd_write(struct sdsi_priv *priv, struct sdsi_mbox_info *info) { u64 control; u32 status; int ret; lockdep_assert_held(&priv->mb_lock); /* Write rest of the payload */ sdsi_memcpy64_toio(priv->mbox_addr + SDSI_SIZE_CMD, info->payload + 1, info->size - SDSI_SIZE_CMD); /* Format and send the write command */ control = FIELD_PREP(CTRL_EOM, 1) | FIELD_PREP(CTRL_SOM, 1) | FIELD_PREP(CTRL_RUN_BUSY, 1) | FIELD_PREP(CTRL_READ_WRITE, 1) | FIELD_PREP(CTRL_PACKET_SIZE, info->size); writeq(control, priv->control_addr); /* Poll on ready bit */ ret = readq_poll_timeout(priv->control_addr, control, control & CTRL_READY, MBOX_POLLING_PERIOD_US, MBOX_TIMEOUT_US); if (ret) goto release_mbox; status = FIELD_GET(CTRL_STATUS, control); ret = sdsi_status_to_errno(status); release_mbox: sdsi_complete_transaction(priv); return ret; } static int sdsi_mbox_acquire(struct sdsi_priv *priv, struct sdsi_mbox_info *info) { u64 control; u32 owner; int ret, retries = 0; lockdep_assert_held(&priv->mb_lock); /* Check mailbox is available */ control = readq(priv->control_addr); owner = FIELD_GET(CTRL_OWNER, control); if (owner != MBOX_OWNER_NONE) return -EBUSY; /* * If there has been no recent transaction and no one owns the mailbox, * we should acquire it in under 1ms. However, if we've accessed it * recently it may take up to 2.1 seconds to acquire it again. */ do { /* Write first qword of payload */ writeq(info->payload[0], priv->mbox_addr); /* Check for ownership */ ret = readq_poll_timeout(priv->control_addr, control, FIELD_GET(CTRL_OWNER, control) == MBOX_OWNER_INBAND, MBOX_POLLING_PERIOD_US, MBOX_TIMEOUT_ACQUIRE_US); if (FIELD_GET(CTRL_OWNER, control) == MBOX_OWNER_NONE && retries++ < MBOX_ACQUIRE_NUM_RETRIES) { msleep(MBOX_ACQUIRE_RETRY_DELAY_MS); continue; } /* Either we got it or someone else did. */ break; } while (true); return ret; } static int sdsi_mbox_write(struct sdsi_priv *priv, struct sdsi_mbox_info *info) { int ret; lockdep_assert_held(&priv->mb_lock); ret = sdsi_mbox_acquire(priv, info); if (ret) return ret; return sdsi_mbox_cmd_write(priv, info); } static int sdsi_mbox_read(struct sdsi_priv *priv, struct sdsi_mbox_info *info, size_t *data_size) { int ret; lockdep_assert_held(&priv->mb_lock); ret = sdsi_mbox_acquire(priv, info); if (ret) return ret; return sdsi_mbox_cmd_read(priv, info, data_size); } static ssize_t sdsi_provision(struct sdsi_priv *priv, char *buf, size_t count, enum sdsi_command command) { struct sdsi_mbox_info info; int ret; if (count > (SDSI_SIZE_WRITE_MSG - SDSI_SIZE_CMD)) return -EOVERFLOW; /* Qword aligned message + command qword */ info.size = round_up(count, SDSI_SIZE_CMD) + SDSI_SIZE_CMD; info.payload = kzalloc(info.size, GFP_KERNEL); if (!info.payload) return -ENOMEM; /* Copy message to payload buffer */ memcpy(info.payload, buf, count); /* Command is last qword of payload buffer */ info.payload[(info.size - SDSI_SIZE_CMD) / SDSI_SIZE_CMD] = command; ret = mutex_lock_interruptible(&priv->mb_lock); if (ret) goto free_payload; ret = sdsi_mbox_write(priv, &info); mutex_unlock(&priv->mb_lock); free_payload: kfree(info.payload); if (ret) return ret; return count; } static ssize_t provision_akc_write(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct device *dev = kobj_to_dev(kobj); struct sdsi_priv *priv = dev_get_drvdata(dev); if (off) return -ESPIPE; return sdsi_provision(priv, buf, count, SDSI_CMD_PROVISION_AKC); } static BIN_ATTR_WO(provision_akc, SDSI_SIZE_WRITE_MSG); static ssize_t provision_cap_write(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct device *dev = kobj_to_dev(kobj); struct sdsi_priv *priv = dev_get_drvdata(dev); if (off) return -ESPIPE; return sdsi_provision(priv, buf, count, SDSI_CMD_PROVISION_CAP); } static BIN_ATTR_WO(provision_cap, SDSI_SIZE_WRITE_MSG); static ssize_t certificate_read(u64 command, struct sdsi_priv *priv, char *buf, loff_t off, size_t count) { struct sdsi_mbox_info info; size_t size; int ret; if (off) return 0; /* Buffer for return data */ info.buffer = kmalloc(SDSI_SIZE_READ_MSG, GFP_KERNEL); if (!info.buffer) return -ENOMEM; info.payload = &command; info.size = sizeof(command); ret = mutex_lock_interruptible(&priv->mb_lock); if (ret) goto free_buffer; ret = sdsi_mbox_read(priv, &info, &size); mutex_unlock(&priv->mb_lock); if (ret < 0) goto free_buffer; if (size > count) size = count; memcpy(buf, info.buffer, size); free_buffer: kfree(info.buffer); if (ret) return ret; return size; } static ssize_t state_certificate_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct device *dev = kobj_to_dev(kobj); struct sdsi_priv *priv = dev_get_drvdata(dev); return certificate_read(SDSI_CMD_READ_STATE, priv, buf, off, count); } static BIN_ATTR_ADMIN_RO(state_certificate, SDSI_SIZE_READ_MSG); static ssize_t meter_certificate_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct device *dev = kobj_to_dev(kobj); struct sdsi_priv *priv = dev_get_drvdata(dev); return certificate_read(SDSI_CMD_READ_METER, priv, buf, off, count); } static BIN_ATTR_ADMIN_RO(meter_certificate, SDSI_SIZE_READ_MSG); static ssize_t registers_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct device *dev = kobj_to_dev(kobj); struct sdsi_priv *priv = dev_get_drvdata(dev); void __iomem *addr = priv->regs_addr; int size = priv->registers_size; /* * The check below is performed by the sysfs caller based on the static * file size. But this may be greater than the actual size which is based * on the GUID. So check here again based on actual size before reading. */ if (off >= size) return 0; if (off + count > size) count = size - off; memcpy_fromio(buf, addr + off, count); return count; } static BIN_ATTR_ADMIN_RO(registers, SDSI_SIZE_REGS); static struct bin_attribute *sdsi_bin_attrs[] = { &bin_attr_registers, &bin_attr_state_certificate, &bin_attr_meter_certificate, &bin_attr_provision_akc, &bin_attr_provision_cap, NULL }; static umode_t sdsi_battr_is_visible(struct kobject *kobj, struct bin_attribute *attr, int n) { struct device *dev = kobj_to_dev(kobj); struct sdsi_priv *priv = dev_get_drvdata(dev); /* Registers file is always readable if the device is present */ if (attr == &bin_attr_registers) return attr->attr.mode; /* All other attributes not visible if BIOS has not enabled On Demand */ if (!(priv->features & SDSI_FEATURE_SDSI)) return 0; if (attr == &bin_attr_meter_certificate) return (priv->features & SDSI_FEATURE_METERING) ? attr->attr.mode : 0; return attr->attr.mode; } static ssize_t guid_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sdsi_priv *priv = dev_get_drvdata(dev); return sysfs_emit(buf, "0x%x\n", priv->guid); } static DEVICE_ATTR_RO(guid); static struct attribute *sdsi_attrs[] = { &dev_attr_guid.attr, NULL }; static const struct attribute_group sdsi_group = { .attrs = sdsi_attrs, .bin_attrs = sdsi_bin_attrs, .is_bin_visible = sdsi_battr_is_visible, }; __ATTRIBUTE_GROUPS(sdsi); static int sdsi_get_layout(struct sdsi_priv *priv, struct disc_table *table) { switch (table->guid) { case SDSI_GUID_V1: priv->control_size = GUID_V1_CNTRL_SIZE; priv->registers_size = GUID_V1_REGS_SIZE; break; case SDSI_GUID_V2: priv->control_size = GUID_V2_CNTRL_SIZE; priv->registers_size = GUID_V2_REGS_SIZE; break; default: dev_err(priv->dev, "Unrecognized GUID 0x%x\n", table->guid); return -EINVAL; } return 0; } static int sdsi_map_mbox_registers(struct sdsi_priv *priv, struct pci_dev *parent, struct disc_table *disc_table, struct resource *disc_res) { u32 access_type = FIELD_GET(DT_ACCESS_TYPE, disc_table->access_info); u32 size = FIELD_GET(DT_SIZE, disc_table->access_info); u32 tbir = FIELD_GET(DT_TBIR, disc_table->offset); u32 offset = DT_OFFSET(disc_table->offset); struct resource res = {}; /* Starting location of SDSi MMIO region based on access type */ switch (access_type) { case ACCESS_TYPE_LOCAL: if (tbir) { dev_err(priv->dev, "Unsupported BAR index %u for access type %u\n", tbir, access_type); return -EINVAL; } /* * For access_type LOCAL, the base address is as follows: * base address = end of discovery region + base offset + 1 */ res.start = disc_res->end + offset + 1; break; case ACCESS_TYPE_BARID: res.start = pci_resource_start(parent, tbir) + offset; break; default: dev_err(priv->dev, "Unrecognized access_type %u\n", access_type); return -EINVAL; } res.end = res.start + size * sizeof(u32) - 1; res.flags = IORESOURCE_MEM; priv->control_addr = devm_ioremap_resource(priv->dev, &res); if (IS_ERR(priv->control_addr)) return PTR_ERR(priv->control_addr); priv->mbox_addr = priv->control_addr + priv->control_size; priv->regs_addr = priv->mbox_addr + SDSI_SIZE_MAILBOX; priv->features = readq(priv->regs_addr + SDSI_ENABLED_FEATURES_OFFSET); return 0; } static int sdsi_probe(struct auxiliary_device *auxdev, const struct auxiliary_device_id *id) { struct intel_vsec_device *intel_cap_dev = auxdev_to_ivdev(auxdev); struct disc_table disc_table; struct resource *disc_res; void __iomem *disc_addr; struct sdsi_priv *priv; int ret; priv = devm_kzalloc(&auxdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = &auxdev->dev; mutex_init(&priv->mb_lock); auxiliary_set_drvdata(auxdev, priv); /* Get the SDSi discovery table */ disc_res = &intel_cap_dev->resource[0]; disc_addr = devm_ioremap_resource(&auxdev->dev, disc_res); if (IS_ERR(disc_addr)) return PTR_ERR(disc_addr); memcpy_fromio(&disc_table, disc_addr, DISC_TABLE_SIZE); priv->guid = disc_table.guid; /* Get guid based layout info */ ret = sdsi_get_layout(priv, &disc_table); if (ret) return ret; /* Map the SDSi mailbox registers */ ret = sdsi_map_mbox_registers(priv, intel_cap_dev->pcidev, &disc_table, disc_res); if (ret) return ret; return 0; } static const struct auxiliary_device_id sdsi_aux_id_table[] = { { .name = "intel_vsec.sdsi" }, {} }; MODULE_DEVICE_TABLE(auxiliary, sdsi_aux_id_table); static struct auxiliary_driver sdsi_aux_driver = { .driver = { .dev_groups = sdsi_groups, }, .id_table = sdsi_aux_id_table, .probe = sdsi_probe, /* No remove. All resources are handled under devm */ }; module_auxiliary_driver(sdsi_aux_driver); MODULE_AUTHOR("David E. Box <[email protected]>"); MODULE_DESCRIPTION("Intel On Demand (SDSi) driver"); MODULE_LICENSE("GPL");
linux-master
drivers/platform/x86/intel/sdsi.c
// SPDX-License-Identifier: GPL-2.0 /* * Intel Turbo Boost Max Technology 3.0 legacy (non HWP) enumeration driver * Copyright (c) 2017, Intel Corporation. * All rights reserved. * * Author: Srinivas Pandruvada <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/cpufeature.h> #include <linux/cpuhotplug.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/topology.h> #include <linux/workqueue.h> #include <asm/cpu_device_id.h> #include <asm/intel-family.h> #define MSR_OC_MAILBOX 0x150 #define MSR_OC_MAILBOX_CMD_OFFSET 32 #define MSR_OC_MAILBOX_RSP_OFFSET 32 #define MSR_OC_MAILBOX_BUSY_BIT 63 #define OC_MAILBOX_FC_CONTROL_CMD 0x1C /* * Typical latency to get mail box response is ~3us, It takes +3 us to * process reading mailbox after issuing mailbox write on a Broadwell 3.4 GHz * system. So for most of the time, the first mailbox read should have the * response, but to avoid some boundary cases retry twice. */ #define OC_MAILBOX_RETRY_COUNT 2 static int get_oc_core_priority(unsigned int cpu) { u64 value, cmd = OC_MAILBOX_FC_CONTROL_CMD; int ret, i; /* Issue favored core read command */ value = cmd << MSR_OC_MAILBOX_CMD_OFFSET; /* Set the busy bit to indicate OS is trying to issue command */ value |= BIT_ULL(MSR_OC_MAILBOX_BUSY_BIT); ret = wrmsrl_safe(MSR_OC_MAILBOX, value); if (ret) { pr_debug("cpu %d OC mailbox write failed\n", cpu); return ret; } for (i = 0; i < OC_MAILBOX_RETRY_COUNT; ++i) { ret = rdmsrl_safe(MSR_OC_MAILBOX, &value); if (ret) { pr_debug("cpu %d OC mailbox read failed\n", cpu); break; } if (value & BIT_ULL(MSR_OC_MAILBOX_BUSY_BIT)) { pr_debug("cpu %d OC mailbox still processing\n", cpu); ret = -EBUSY; continue; } if ((value >> MSR_OC_MAILBOX_RSP_OFFSET) & 0xff) { pr_debug("cpu %d OC mailbox cmd failed\n", cpu); ret = -ENXIO; break; } ret = value & 0xff; pr_debug("cpu %d max_ratio %d\n", cpu, ret); break; } return ret; } /* * The work item is needed to avoid CPU hotplug locking issues. The function * itmt_legacy_set_priority() is called from CPU online callback, so can't * call sched_set_itmt_support() from there as this function will aquire * hotplug locks in its path. */ static void itmt_legacy_work_fn(struct work_struct *work) { sched_set_itmt_support(); } static DECLARE_WORK(sched_itmt_work, itmt_legacy_work_fn); static int itmt_legacy_cpu_online(unsigned int cpu) { static u32 max_highest_perf = 0, min_highest_perf = U32_MAX; int priority; priority = get_oc_core_priority(cpu); if (priority < 0) return 0; sched_set_itmt_core_prio(priority, cpu); /* Enable ITMT feature when a core with different priority is found */ if (max_highest_perf <= min_highest_perf) { if (priority > max_highest_perf) max_highest_perf = priority; if (priority < min_highest_perf) min_highest_perf = priority; if (max_highest_perf > min_highest_perf) schedule_work(&sched_itmt_work); } return 0; } static const struct x86_cpu_id itmt_legacy_cpu_ids[] = { X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, NULL), X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, NULL), {} }; static int __init itmt_legacy_init(void) { const struct x86_cpu_id *id; int ret; id = x86_match_cpu(itmt_legacy_cpu_ids); if (!id) return -ENODEV; ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "platform/x86/turbo_max_3:online", itmt_legacy_cpu_online, NULL); if (ret < 0) return ret; return 0; } late_initcall(itmt_legacy_init)
linux-master
drivers/platform/x86/intel/turbo_max_3.c
// SPDX-License-Identifier: GPL-2.0+ /* * Intel Virtual Button driver for Windows 8.1+ * * Copyright (C) 2016 AceLan Kao <[email protected]> * Copyright (C) 2016 Alex Hung <[email protected]> */ #include <linux/acpi.h> #include <linux/dmi.h> #include <linux/input.h> #include <linux/input/sparse-keymap.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/suspend.h> #include "../dual_accel_detect.h" /* Returned when NOT in tablet mode on some HP Stream x360 11 models */ #define VGBS_TABLET_MODE_FLAG_ALT 0x10 /* When NOT in tablet mode, VGBS returns with the flag 0x40 */ #define VGBS_TABLET_MODE_FLAG 0x40 #define VGBS_DOCK_MODE_FLAG 0x80 #define VGBS_TABLET_MODE_FLAGS (VGBS_TABLET_MODE_FLAG | VGBS_TABLET_MODE_FLAG_ALT) MODULE_LICENSE("GPL"); MODULE_AUTHOR("AceLan Kao"); static const struct acpi_device_id intel_vbtn_ids[] = { {"INT33D6", 0}, {"", 0}, }; MODULE_DEVICE_TABLE(acpi, intel_vbtn_ids); /* In theory, these are HID usages. */ static const struct key_entry intel_vbtn_keymap[] = { { KE_KEY, 0xC0, { KEY_POWER } }, /* power key press */ { KE_IGNORE, 0xC1, { KEY_POWER } }, /* power key release */ { KE_KEY, 0xC2, { KEY_LEFTMETA } }, /* 'Windows' key press */ { KE_KEY, 0xC3, { KEY_LEFTMETA } }, /* 'Windows' key release */ { KE_KEY, 0xC4, { KEY_VOLUMEUP } }, /* volume-up key press */ { KE_IGNORE, 0xC5, { KEY_VOLUMEUP } }, /* volume-up key release */ { KE_KEY, 0xC6, { KEY_VOLUMEDOWN } }, /* volume-down key press */ { KE_IGNORE, 0xC7, { KEY_VOLUMEDOWN } }, /* volume-down key release */ { KE_KEY, 0xC8, { KEY_ROTATE_LOCK_TOGGLE } }, /* rotate-lock key press */ { KE_KEY, 0xC9, { KEY_ROTATE_LOCK_TOGGLE } }, /* rotate-lock key release */ { KE_END } }; static const struct key_entry intel_vbtn_switchmap[] = { /* * SW_DOCK should only be reported for docking stations, but DSDTs using the * intel-vbtn code, always seem to use this for 2-in-1s / convertibles and set * SW_DOCK=1 when in laptop-mode (in tandem with setting SW_TABLET_MODE=0). * This causes userspace to think the laptop is docked to a port-replicator * and to disable suspend-on-lid-close, which is undesirable. * Map the dock events to KEY_IGNORE to avoid this broken SW_DOCK reporting. */ { KE_IGNORE, 0xCA, { .sw = { SW_DOCK, 1 } } }, /* Docked */ { KE_IGNORE, 0xCB, { .sw = { SW_DOCK, 0 } } }, /* Undocked */ { KE_SW, 0xCC, { .sw = { SW_TABLET_MODE, 1 } } }, /* Tablet */ { KE_SW, 0xCD, { .sw = { SW_TABLET_MODE, 0 } } }, /* Laptop */ { KE_END } }; struct intel_vbtn_priv { struct input_dev *buttons_dev; struct input_dev *switches_dev; bool dual_accel; bool has_buttons; bool has_switches; bool wakeup_mode; }; static void detect_tablet_mode(struct platform_device *device) { struct intel_vbtn_priv *priv = dev_get_drvdata(&device->dev); acpi_handle handle = ACPI_HANDLE(&device->dev); unsigned long long vgbs; acpi_status status; int m; status = acpi_evaluate_integer(handle, "VGBS", NULL, &vgbs); if (ACPI_FAILURE(status)) return; m = !(vgbs & VGBS_TABLET_MODE_FLAGS); input_report_switch(priv->switches_dev, SW_TABLET_MODE, m); m = (vgbs & VGBS_DOCK_MODE_FLAG) ? 1 : 0; input_report_switch(priv->switches_dev, SW_DOCK, m); } /* * Note this unconditionally creates the 2 input_dev-s and sets up * the sparse-keymaps. Only the registration is conditional on * have_buttons / have_switches. This is done so that the notify * handler can always call sparse_keymap_entry_from_scancode() * on the input_dev-s do determine the event type. */ static int intel_vbtn_input_setup(struct platform_device *device) { struct intel_vbtn_priv *priv = dev_get_drvdata(&device->dev); int ret; priv->buttons_dev = devm_input_allocate_device(&device->dev); if (!priv->buttons_dev) return -ENOMEM; ret = sparse_keymap_setup(priv->buttons_dev, intel_vbtn_keymap, NULL); if (ret) return ret; priv->buttons_dev->dev.parent = &device->dev; priv->buttons_dev->name = "Intel Virtual Buttons"; priv->buttons_dev->id.bustype = BUS_HOST; if (priv->has_buttons) { ret = input_register_device(priv->buttons_dev); if (ret) return ret; } priv->switches_dev = devm_input_allocate_device(&device->dev); if (!priv->switches_dev) return -ENOMEM; ret = sparse_keymap_setup(priv->switches_dev, intel_vbtn_switchmap, NULL); if (ret) return ret; priv->switches_dev->dev.parent = &device->dev; priv->switches_dev->name = "Intel Virtual Switches"; priv->switches_dev->id.bustype = BUS_HOST; if (priv->has_switches) { detect_tablet_mode(device); ret = input_register_device(priv->switches_dev); if (ret) return ret; } return 0; } static void notify_handler(acpi_handle handle, u32 event, void *context) { struct platform_device *device = context; struct intel_vbtn_priv *priv = dev_get_drvdata(&device->dev); unsigned int val = !(event & 1); /* Even=press, Odd=release */ const struct key_entry *ke, *ke_rel; struct input_dev *input_dev; bool autorelease; int ret; if ((ke = sparse_keymap_entry_from_scancode(priv->buttons_dev, event))) { if (!priv->has_buttons) { dev_warn(&device->dev, "Warning: received a button event on a device without buttons, please report this.\n"); return; } input_dev = priv->buttons_dev; } else if ((ke = sparse_keymap_entry_from_scancode(priv->switches_dev, event))) { if (!priv->has_switches) { /* See dual_accel_detect.h for more info */ if (priv->dual_accel) return; dev_info(&device->dev, "Registering Intel Virtual Switches input-dev after receiving a switch event\n"); ret = input_register_device(priv->switches_dev); if (ret) return; priv->has_switches = true; } input_dev = priv->switches_dev; } else { dev_dbg(&device->dev, "unknown event index 0x%x\n", event); return; } if (priv->wakeup_mode) { pm_wakeup_hard_event(&device->dev); /* * Skip reporting an evdev event for button wake events, * mirroring how the drivers/acpi/button.c code skips this too. */ if (ke->type == KE_KEY) return; } /* * Even press events are autorelease if there is no corresponding odd * release event, or if the odd event is KE_IGNORE. */ ke_rel = sparse_keymap_entry_from_scancode(input_dev, event | 1); autorelease = val && (!ke_rel || ke_rel->type == KE_IGNORE); sparse_keymap_report_event(input_dev, event, val, autorelease); } /* * There are several laptops (non 2-in-1) models out there which support VGBS, * but simply always return 0, which we translate to SW_TABLET_MODE=1. This in * turn causes userspace (libinput) to suppress events from the builtin * keyboard and touchpad, making the laptop essentially unusable. * * Since the problem of wrongly reporting SW_TABLET_MODE=1 in combination * with libinput, leads to a non-usable system. Where as OTOH many people will * not even notice when SW_TABLET_MODE is not being reported, a DMI based allow * list is used here. This list mainly matches on the chassis-type of 2-in-1s. * * There are also some 2-in-1s which use the intel-vbtn ACPI interface to report * SW_TABLET_MODE with a chassis-type of 8 ("Portable") or 10 ("Notebook"), * these are matched on a per model basis, since many normal laptops with a * possible broken VGBS ACPI-method also use these chassis-types. */ static const struct dmi_system_id dmi_switches_allow_list[] = { { .matches = { DMI_EXACT_MATCH(DMI_CHASSIS_TYPE, "31" /* Convertible */), }, }, { .matches = { DMI_EXACT_MATCH(DMI_CHASSIS_TYPE, "32" /* Detachable */), }, }, { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Venue 11 Pro 7130"), }, }, { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion 13 x360 PC"), }, }, { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "Switch SA5-271"), }, }, { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Inspiron 7352"), }, }, {} /* Array terminator */ }; static bool intel_vbtn_has_switches(acpi_handle handle, bool dual_accel) { unsigned long long vgbs; acpi_status status; /* See dual_accel_detect.h for more info */ if (dual_accel) return false; if (!dmi_check_system(dmi_switches_allow_list)) return false; status = acpi_evaluate_integer(handle, "VGBS", NULL, &vgbs); return ACPI_SUCCESS(status); } static int intel_vbtn_probe(struct platform_device *device) { acpi_handle handle = ACPI_HANDLE(&device->dev); bool dual_accel, has_buttons, has_switches; struct intel_vbtn_priv *priv; acpi_status status; int err; dual_accel = dual_accel_detect(); has_buttons = acpi_has_method(handle, "VBDL"); has_switches = intel_vbtn_has_switches(handle, dual_accel); if (!has_buttons && !has_switches) { dev_warn(&device->dev, "failed to read Intel Virtual Button driver\n"); return -ENODEV; } priv = devm_kzalloc(&device->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; dev_set_drvdata(&device->dev, priv); priv->dual_accel = dual_accel; priv->has_buttons = has_buttons; priv->has_switches = has_switches; err = intel_vbtn_input_setup(device); if (err) { pr_err("Failed to setup Intel Virtual Button\n"); return err; } status = acpi_install_notify_handler(handle, ACPI_DEVICE_NOTIFY, notify_handler, device); if (ACPI_FAILURE(status)) return -EBUSY; if (has_buttons) { status = acpi_evaluate_object(handle, "VBDL", NULL, NULL); if (ACPI_FAILURE(status)) dev_err(&device->dev, "Error VBDL failed with ACPI status %d\n", status); } device_init_wakeup(&device->dev, true); /* * In order for system wakeup to work, the EC GPE has to be marked as * a wakeup one, so do that here (this setting will persist, but it has * no effect until the wakeup mask is set for the EC GPE). */ acpi_ec_mark_gpe_for_wake(); return 0; } static void intel_vbtn_remove(struct platform_device *device) { acpi_handle handle = ACPI_HANDLE(&device->dev); device_init_wakeup(&device->dev, false); acpi_remove_notify_handler(handle, ACPI_DEVICE_NOTIFY, notify_handler); } static int intel_vbtn_pm_prepare(struct device *dev) { if (device_may_wakeup(dev)) { struct intel_vbtn_priv *priv = dev_get_drvdata(dev); priv->wakeup_mode = true; } return 0; } static void intel_vbtn_pm_complete(struct device *dev) { struct intel_vbtn_priv *priv = dev_get_drvdata(dev); priv->wakeup_mode = false; } static int intel_vbtn_pm_resume(struct device *dev) { intel_vbtn_pm_complete(dev); return 0; } static const struct dev_pm_ops intel_vbtn_pm_ops = { .prepare = intel_vbtn_pm_prepare, .complete = intel_vbtn_pm_complete, .resume = intel_vbtn_pm_resume, .restore = intel_vbtn_pm_resume, .thaw = intel_vbtn_pm_resume, }; static struct platform_driver intel_vbtn_pl_driver = { .driver = { .name = "intel-vbtn", .acpi_match_table = intel_vbtn_ids, .pm = &intel_vbtn_pm_ops, }, .probe = intel_vbtn_probe, .remove_new = intel_vbtn_remove, }; static acpi_status __init check_acpi_dev(acpi_handle handle, u32 lvl, void *context, void **rv) { const struct acpi_device_id *ids = context; struct acpi_device *dev = acpi_fetch_acpi_dev(handle); if (dev && acpi_match_device_ids(dev, ids) == 0) if (!IS_ERR_OR_NULL(acpi_create_platform_device(dev, NULL))) dev_info(&dev->dev, "intel-vbtn: created platform device\n"); return AE_OK; } static int __init intel_vbtn_init(void) { acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, ACPI_UINT32_MAX, check_acpi_dev, NULL, (void *)intel_vbtn_ids, NULL); return platform_driver_register(&intel_vbtn_pl_driver); } module_init(intel_vbtn_init); static void __exit intel_vbtn_exit(void) { platform_driver_unregister(&intel_vbtn_pl_driver); } module_exit(intel_vbtn_exit);
linux-master
drivers/platform/x86/intel/vbtn.c
// SPDX-License-Identifier: GPL-2.0+ /* * Driver for the external-charger IRQ pass-through function of the * Intel Bay Trail Crystal Cove PMIC. * * Note this is NOT a power_supply class driver, it just deals with IRQ * pass-through, this requires a separate driver because the PMIC's * level 2 interrupt for this must be explicitly acked. */ #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/irqdomain.h> #include <linux/mfd/intel_soc_pmic.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/regmap.h> #define CHGRIRQ_REG 0x0a #define MCHGRIRQ_REG 0x17 struct crystal_cove_charger_data { struct mutex buslock; /* irq_bus_lock */ struct irq_chip irqchip; struct regmap *regmap; struct irq_domain *irq_domain; int irq; int charger_irq; u8 mask; u8 new_mask; }; static irqreturn_t crystal_cove_charger_irq(int irq, void *data) { struct crystal_cove_charger_data *charger = data; /* No need to read CHGRIRQ_REG as there is only 1 IRQ */ handle_nested_irq(charger->charger_irq); /* Ack CHGRIRQ 0 */ regmap_write(charger->regmap, CHGRIRQ_REG, BIT(0)); return IRQ_HANDLED; } static void crystal_cove_charger_irq_bus_lock(struct irq_data *data) { struct crystal_cove_charger_data *charger = irq_data_get_irq_chip_data(data); mutex_lock(&charger->buslock); } static void crystal_cove_charger_irq_bus_sync_unlock(struct irq_data *data) { struct crystal_cove_charger_data *charger = irq_data_get_irq_chip_data(data); if (charger->mask != charger->new_mask) { regmap_write(charger->regmap, MCHGRIRQ_REG, charger->new_mask); charger->mask = charger->new_mask; } mutex_unlock(&charger->buslock); } static void crystal_cove_charger_irq_unmask(struct irq_data *data) { struct crystal_cove_charger_data *charger = irq_data_get_irq_chip_data(data); charger->new_mask &= ~BIT(data->hwirq); } static void crystal_cove_charger_irq_mask(struct irq_data *data) { struct crystal_cove_charger_data *charger = irq_data_get_irq_chip_data(data); charger->new_mask |= BIT(data->hwirq); } static void crystal_cove_charger_rm_irq_domain(void *data) { struct crystal_cove_charger_data *charger = data; irq_domain_remove(charger->irq_domain); } static int crystal_cove_charger_probe(struct platform_device *pdev) { struct intel_soc_pmic *pmic = dev_get_drvdata(pdev->dev.parent); struct crystal_cove_charger_data *charger; int ret; charger = devm_kzalloc(&pdev->dev, sizeof(*charger), GFP_KERNEL); if (!charger) return -ENOMEM; charger->regmap = pmic->regmap; mutex_init(&charger->buslock); charger->irq = platform_get_irq(pdev, 0); if (charger->irq < 0) return charger->irq; charger->irq_domain = irq_domain_create_linear(dev_fwnode(pdev->dev.parent), 1, &irq_domain_simple_ops, NULL); if (!charger->irq_domain) return -ENOMEM; /* Distuingish IRQ domain from others sharing (MFD) the same fwnode */ irq_domain_update_bus_token(charger->irq_domain, DOMAIN_BUS_WAKEUP); ret = devm_add_action_or_reset(&pdev->dev, crystal_cove_charger_rm_irq_domain, charger); if (ret) return ret; charger->charger_irq = irq_create_mapping(charger->irq_domain, 0); if (!charger->charger_irq) return -ENOMEM; charger->irqchip.name = KBUILD_MODNAME; charger->irqchip.irq_unmask = crystal_cove_charger_irq_unmask; charger->irqchip.irq_mask = crystal_cove_charger_irq_mask; charger->irqchip.irq_bus_lock = crystal_cove_charger_irq_bus_lock; charger->irqchip.irq_bus_sync_unlock = crystal_cove_charger_irq_bus_sync_unlock; irq_set_chip_data(charger->charger_irq, charger); irq_set_chip_and_handler(charger->charger_irq, &charger->irqchip, handle_simple_irq); irq_set_nested_thread(charger->charger_irq, true); irq_set_noprobe(charger->charger_irq); /* Mask the single 2nd level IRQ before enabling the 1st level IRQ */ charger->mask = charger->new_mask = BIT(0); regmap_write(charger->regmap, MCHGRIRQ_REG, charger->mask); ret = devm_request_threaded_irq(&pdev->dev, charger->irq, NULL, crystal_cove_charger_irq, IRQF_ONESHOT, KBUILD_MODNAME, charger); if (ret) return dev_err_probe(&pdev->dev, ret, "requesting irq\n"); return 0; } static struct platform_driver crystal_cove_charger_driver = { .probe = crystal_cove_charger_probe, .driver = { .name = "crystal_cove_charger", }, }; module_platform_driver(crystal_cove_charger_driver); MODULE_AUTHOR("Hans de Goede <[email protected]"); MODULE_DESCRIPTION("Intel Bay Trail Crystal Cove external charger IRQ pass-through"); MODULE_LICENSE("GPL");
linux-master
drivers/platform/x86/intel/crystal_cove_charger.c
// SPDX-License-Identifier: GPL-2.0 /* * Intel Vendor Specific Extended Capabilities auxiliary bus driver * * Copyright (c) 2021, Intel Corporation. * All Rights Reserved. * * Author: David E. Box <[email protected]> * * This driver discovers and creates auxiliary devices for Intel defined PCIe * "Vendor Specific" and "Designated Vendor Specific" Extended Capabilities, * VSEC and DVSEC respectively. The driver supports features on specific PCIe * endpoints that exist primarily to expose them. */ #include <linux/auxiliary_bus.h> #include <linux/bits.h> #include <linux/delay.h> #include <linux/kernel.h> #include <linux/idr.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/types.h> #include "vsec.h" /* Intel DVSEC offsets */ #define INTEL_DVSEC_ENTRIES 0xA #define INTEL_DVSEC_SIZE 0xB #define INTEL_DVSEC_TABLE 0xC #define INTEL_DVSEC_TABLE_BAR(x) ((x) & GENMASK(2, 0)) #define INTEL_DVSEC_TABLE_OFFSET(x) ((x) & GENMASK(31, 3)) #define TABLE_OFFSET_SHIFT 3 #define PMT_XA_START 0 #define PMT_XA_MAX INT_MAX #define PMT_XA_LIMIT XA_LIMIT(PMT_XA_START, PMT_XA_MAX) static DEFINE_IDA(intel_vsec_ida); static DEFINE_IDA(intel_vsec_sdsi_ida); static DEFINE_XARRAY_ALLOC(auxdev_array); /** * struct intel_vsec_header - Common fields of Intel VSEC and DVSEC registers. * @rev: Revision ID of the VSEC/DVSEC register space * @length: Length of the VSEC/DVSEC register space * @id: ID of the feature * @num_entries: Number of instances of the feature * @entry_size: Size of the discovery table for each feature * @tbir: BAR containing the discovery tables * @offset: BAR offset of start of the first discovery table */ struct intel_vsec_header { u8 rev; u16 length; u16 id; u8 num_entries; u8 entry_size; u8 tbir; u32 offset; }; enum intel_vsec_id { VSEC_ID_TELEMETRY = 2, VSEC_ID_WATCHER = 3, VSEC_ID_CRASHLOG = 4, VSEC_ID_SDSI = 65, VSEC_ID_TPMI = 66, }; static const char *intel_vsec_name(enum intel_vsec_id id) { switch (id) { case VSEC_ID_TELEMETRY: return "telemetry"; case VSEC_ID_WATCHER: return "watcher"; case VSEC_ID_CRASHLOG: return "crashlog"; case VSEC_ID_SDSI: return "sdsi"; case VSEC_ID_TPMI: return "tpmi"; default: return NULL; } } static bool intel_vsec_supported(u16 id, unsigned long caps) { switch (id) { case VSEC_ID_TELEMETRY: return !!(caps & VSEC_CAP_TELEMETRY); case VSEC_ID_WATCHER: return !!(caps & VSEC_CAP_WATCHER); case VSEC_ID_CRASHLOG: return !!(caps & VSEC_CAP_CRASHLOG); case VSEC_ID_SDSI: return !!(caps & VSEC_CAP_SDSI); case VSEC_ID_TPMI: return !!(caps & VSEC_CAP_TPMI); default: return false; } } static void intel_vsec_remove_aux(void *data) { auxiliary_device_delete(data); auxiliary_device_uninit(data); } static DEFINE_MUTEX(vsec_ida_lock); static void intel_vsec_dev_release(struct device *dev) { struct intel_vsec_device *intel_vsec_dev = dev_to_ivdev(dev); mutex_lock(&vsec_ida_lock); ida_free(intel_vsec_dev->ida, intel_vsec_dev->auxdev.id); mutex_unlock(&vsec_ida_lock); kfree(intel_vsec_dev->resource); kfree(intel_vsec_dev); } int intel_vsec_add_aux(struct pci_dev *pdev, struct device *parent, struct intel_vsec_device *intel_vsec_dev, const char *name) { struct auxiliary_device *auxdev = &intel_vsec_dev->auxdev; int ret, id; mutex_lock(&vsec_ida_lock); ret = ida_alloc(intel_vsec_dev->ida, GFP_KERNEL); mutex_unlock(&vsec_ida_lock); if (ret < 0) { kfree(intel_vsec_dev->resource); kfree(intel_vsec_dev); return ret; } if (!parent) parent = &pdev->dev; auxdev->id = ret; auxdev->name = name; auxdev->dev.parent = parent; auxdev->dev.release = intel_vsec_dev_release; ret = auxiliary_device_init(auxdev); if (ret < 0) { intel_vsec_dev_release(&auxdev->dev); return ret; } ret = auxiliary_device_add(auxdev); if (ret < 0) { auxiliary_device_uninit(auxdev); return ret; } ret = devm_add_action_or_reset(parent, intel_vsec_remove_aux, auxdev); if (ret < 0) return ret; /* Add auxdev to list */ ret = xa_alloc(&auxdev_array, &id, intel_vsec_dev, PMT_XA_LIMIT, GFP_KERNEL); if (ret) return ret; return 0; } EXPORT_SYMBOL_NS_GPL(intel_vsec_add_aux, INTEL_VSEC); static int intel_vsec_add_dev(struct pci_dev *pdev, struct intel_vsec_header *header, struct intel_vsec_platform_info *info) { struct intel_vsec_device *intel_vsec_dev; struct resource *res, *tmp; unsigned long quirks = info->quirks; int i; if (!intel_vsec_supported(header->id, info->caps)) return -EINVAL; if (!header->num_entries) { dev_dbg(&pdev->dev, "Invalid 0 entry count for header id %d\n", header->id); return -EINVAL; } if (!header->entry_size) { dev_dbg(&pdev->dev, "Invalid 0 entry size for header id %d\n", header->id); return -EINVAL; } intel_vsec_dev = kzalloc(sizeof(*intel_vsec_dev), GFP_KERNEL); if (!intel_vsec_dev) return -ENOMEM; res = kcalloc(header->num_entries, sizeof(*res), GFP_KERNEL); if (!res) { kfree(intel_vsec_dev); return -ENOMEM; } if (quirks & VSEC_QUIRK_TABLE_SHIFT) header->offset >>= TABLE_OFFSET_SHIFT; /* * The DVSEC/VSEC contains the starting offset and count for a block of * discovery tables. Create a resource array of these tables to the * auxiliary device driver. */ for (i = 0, tmp = res; i < header->num_entries; i++, tmp++) { tmp->start = pdev->resource[header->tbir].start + header->offset + i * (header->entry_size * sizeof(u32)); tmp->end = tmp->start + (header->entry_size * sizeof(u32)) - 1; tmp->flags = IORESOURCE_MEM; } intel_vsec_dev->pcidev = pdev; intel_vsec_dev->resource = res; intel_vsec_dev->num_resources = header->num_entries; intel_vsec_dev->info = info; if (header->id == VSEC_ID_SDSI) intel_vsec_dev->ida = &intel_vsec_sdsi_ida; else intel_vsec_dev->ida = &intel_vsec_ida; return intel_vsec_add_aux(pdev, NULL, intel_vsec_dev, intel_vsec_name(header->id)); } static bool intel_vsec_walk_header(struct pci_dev *pdev, struct intel_vsec_platform_info *info) { struct intel_vsec_header **header = info->headers; bool have_devices = false; int ret; for ( ; *header; header++) { ret = intel_vsec_add_dev(pdev, *header, info); if (ret) dev_info(&pdev->dev, "Could not add device for VSEC id %d\n", (*header)->id); else have_devices = true; } return have_devices; } static bool intel_vsec_walk_dvsec(struct pci_dev *pdev, struct intel_vsec_platform_info *info) { bool have_devices = false; int pos = 0; do { struct intel_vsec_header header; u32 table, hdr; u16 vid; int ret; pos = pci_find_next_ext_capability(pdev, pos, PCI_EXT_CAP_ID_DVSEC); if (!pos) break; pci_read_config_dword(pdev, pos + PCI_DVSEC_HEADER1, &hdr); vid = PCI_DVSEC_HEADER1_VID(hdr); if (vid != PCI_VENDOR_ID_INTEL) continue; /* Support only revision 1 */ header.rev = PCI_DVSEC_HEADER1_REV(hdr); if (header.rev != 1) { dev_info(&pdev->dev, "Unsupported DVSEC revision %d\n", header.rev); continue; } header.length = PCI_DVSEC_HEADER1_LEN(hdr); pci_read_config_byte(pdev, pos + INTEL_DVSEC_ENTRIES, &header.num_entries); pci_read_config_byte(pdev, pos + INTEL_DVSEC_SIZE, &header.entry_size); pci_read_config_dword(pdev, pos + INTEL_DVSEC_TABLE, &table); header.tbir = INTEL_DVSEC_TABLE_BAR(table); header.offset = INTEL_DVSEC_TABLE_OFFSET(table); pci_read_config_dword(pdev, pos + PCI_DVSEC_HEADER2, &hdr); header.id = PCI_DVSEC_HEADER2_ID(hdr); ret = intel_vsec_add_dev(pdev, &header, info); if (ret) continue; have_devices = true; } while (true); return have_devices; } static bool intel_vsec_walk_vsec(struct pci_dev *pdev, struct intel_vsec_platform_info *info) { bool have_devices = false; int pos = 0; do { struct intel_vsec_header header; u32 table, hdr; int ret; pos = pci_find_next_ext_capability(pdev, pos, PCI_EXT_CAP_ID_VNDR); if (!pos) break; pci_read_config_dword(pdev, pos + PCI_VNDR_HEADER, &hdr); /* Support only revision 1 */ header.rev = PCI_VNDR_HEADER_REV(hdr); if (header.rev != 1) { dev_info(&pdev->dev, "Unsupported VSEC revision %d\n", header.rev); continue; } header.id = PCI_VNDR_HEADER_ID(hdr); header.length = PCI_VNDR_HEADER_LEN(hdr); /* entry, size, and table offset are the same as DVSEC */ pci_read_config_byte(pdev, pos + INTEL_DVSEC_ENTRIES, &header.num_entries); pci_read_config_byte(pdev, pos + INTEL_DVSEC_SIZE, &header.entry_size); pci_read_config_dword(pdev, pos + INTEL_DVSEC_TABLE, &table); header.tbir = INTEL_DVSEC_TABLE_BAR(table); header.offset = INTEL_DVSEC_TABLE_OFFSET(table); ret = intel_vsec_add_dev(pdev, &header, info); if (ret) continue; have_devices = true; } while (true); return have_devices; } static int intel_vsec_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct intel_vsec_platform_info *info; bool have_devices = false; int ret; ret = pcim_enable_device(pdev); if (ret) return ret; pci_save_state(pdev); info = (struct intel_vsec_platform_info *)id->driver_data; if (!info) return -EINVAL; if (intel_vsec_walk_dvsec(pdev, info)) have_devices = true; if (intel_vsec_walk_vsec(pdev, info)) have_devices = true; if (info && (info->quirks & VSEC_QUIRK_NO_DVSEC) && intel_vsec_walk_header(pdev, info)) have_devices = true; if (!have_devices) return -ENODEV; return 0; } /* DG1 info */ static struct intel_vsec_header dg1_header = { .length = 0x10, .id = 2, .num_entries = 1, .entry_size = 3, .tbir = 0, .offset = 0x466000, }; static struct intel_vsec_header *dg1_headers[] = { &dg1_header, NULL }; static const struct intel_vsec_platform_info dg1_info = { .caps = VSEC_CAP_TELEMETRY, .headers = dg1_headers, .quirks = VSEC_QUIRK_NO_DVSEC | VSEC_QUIRK_EARLY_HW, }; /* MTL info */ static const struct intel_vsec_platform_info mtl_info = { .caps = VSEC_CAP_TELEMETRY, }; /* OOBMSM info */ static const struct intel_vsec_platform_info oobmsm_info = { .caps = VSEC_CAP_TELEMETRY | VSEC_CAP_SDSI | VSEC_CAP_TPMI, }; /* TGL info */ static const struct intel_vsec_platform_info tgl_info = { .caps = VSEC_CAP_TELEMETRY, .quirks = VSEC_QUIRK_TABLE_SHIFT | VSEC_QUIRK_EARLY_HW, }; #define PCI_DEVICE_ID_INTEL_VSEC_ADL 0x467d #define PCI_DEVICE_ID_INTEL_VSEC_DG1 0x490e #define PCI_DEVICE_ID_INTEL_VSEC_MTL_M 0x7d0d #define PCI_DEVICE_ID_INTEL_VSEC_MTL_S 0xad0d #define PCI_DEVICE_ID_INTEL_VSEC_OOBMSM 0x09a7 #define PCI_DEVICE_ID_INTEL_VSEC_RPL 0xa77d #define PCI_DEVICE_ID_INTEL_VSEC_TGL 0x9a0d static const struct pci_device_id intel_vsec_pci_ids[] = { { PCI_DEVICE_DATA(INTEL, VSEC_ADL, &tgl_info) }, { PCI_DEVICE_DATA(INTEL, VSEC_DG1, &dg1_info) }, { PCI_DEVICE_DATA(INTEL, VSEC_MTL_M, &mtl_info) }, { PCI_DEVICE_DATA(INTEL, VSEC_MTL_S, &mtl_info) }, { PCI_DEVICE_DATA(INTEL, VSEC_OOBMSM, &oobmsm_info) }, { PCI_DEVICE_DATA(INTEL, VSEC_RPL, &tgl_info) }, { PCI_DEVICE_DATA(INTEL, VSEC_TGL, &tgl_info) }, { } }; MODULE_DEVICE_TABLE(pci, intel_vsec_pci_ids); static pci_ers_result_t intel_vsec_pci_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { pci_ers_result_t status = PCI_ERS_RESULT_NEED_RESET; dev_info(&pdev->dev, "PCI error detected, state %d", state); if (state == pci_channel_io_perm_failure) status = PCI_ERS_RESULT_DISCONNECT; else pci_disable_device(pdev); return status; } static pci_ers_result_t intel_vsec_pci_slot_reset(struct pci_dev *pdev) { struct intel_vsec_device *intel_vsec_dev; pci_ers_result_t status = PCI_ERS_RESULT_DISCONNECT; const struct pci_device_id *pci_dev_id; unsigned long index; dev_info(&pdev->dev, "Resetting PCI slot\n"); msleep(2000); if (pci_enable_device(pdev)) { dev_info(&pdev->dev, "Failed to re-enable PCI device after reset.\n"); goto out; } status = PCI_ERS_RESULT_RECOVERED; xa_for_each(&auxdev_array, index, intel_vsec_dev) { /* check if pdev doesn't match */ if (pdev != intel_vsec_dev->pcidev) continue; devm_release_action(&pdev->dev, intel_vsec_remove_aux, &intel_vsec_dev->auxdev); } pci_disable_device(pdev); pci_restore_state(pdev); pci_dev_id = pci_match_id(intel_vsec_pci_ids, pdev); intel_vsec_pci_probe(pdev, pci_dev_id); out: return status; } static void intel_vsec_pci_resume(struct pci_dev *pdev) { dev_info(&pdev->dev, "Done resuming PCI device\n"); } static const struct pci_error_handlers intel_vsec_pci_err_handlers = { .error_detected = intel_vsec_pci_error_detected, .slot_reset = intel_vsec_pci_slot_reset, .resume = intel_vsec_pci_resume, }; static struct pci_driver intel_vsec_pci_driver = { .name = "intel_vsec", .id_table = intel_vsec_pci_ids, .probe = intel_vsec_pci_probe, .err_handler = &intel_vsec_pci_err_handlers, }; module_pci_driver(intel_vsec_pci_driver); MODULE_AUTHOR("David E. Box <[email protected]>"); MODULE_DESCRIPTION("Intel Extended Capabilities auxiliary bus driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/platform/x86/intel/vsec.c
// SPDX-License-Identifier: GPL-2.0+ /* * Intel HID event & 5 button array driver * * Copyright (C) 2015 Alex Hung <[email protected]> * Copyright (C) 2015 Andrew Lutomirski <[email protected]> */ #include <linux/acpi.h> #include <linux/dmi.h> #include <linux/input.h> #include <linux/input/sparse-keymap.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/suspend.h> #include "../dual_accel_detect.h" enum intel_hid_tablet_sw_mode { TABLET_SW_AUTO = -1, TABLET_SW_OFF = 0, TABLET_SW_AT_EVENT, TABLET_SW_AT_PROBE, }; static bool enable_5_button_array; module_param(enable_5_button_array, bool, 0444); MODULE_PARM_DESC(enable_5_button_array, "Enable 5 Button Array support. " "If you need this please report this to: [email protected]"); static int enable_sw_tablet_mode = TABLET_SW_AUTO; module_param(enable_sw_tablet_mode, int, 0444); MODULE_PARM_DESC(enable_sw_tablet_mode, "Enable SW_TABLET_MODE reporting -1:auto 0:off 1:at-first-event 2:at-probe. " "If you need this please report this to: [email protected]"); /* When NOT in tablet mode, VGBS returns with the flag 0x40 */ #define TABLET_MODE_FLAG BIT(6) MODULE_LICENSE("GPL"); MODULE_AUTHOR("Alex Hung"); static const struct acpi_device_id intel_hid_ids[] = { {"INT33D5", 0}, {"INTC1051", 0}, {"INTC1054", 0}, {"INTC1070", 0}, {"INTC1076", 0}, {"INTC1077", 0}, {"INTC1078", 0}, {"", 0}, }; MODULE_DEVICE_TABLE(acpi, intel_hid_ids); /* In theory, these are HID usages. */ static const struct key_entry intel_hid_keymap[] = { /* 1: LSuper (Page 0x07, usage 0xE3) -- unclear what to do */ /* 2: Toggle SW_ROTATE_LOCK -- easy to implement if seen in wild */ { KE_KEY, 3, { KEY_NUMLOCK } }, { KE_KEY, 4, { KEY_HOME } }, { KE_KEY, 5, { KEY_END } }, { KE_KEY, 6, { KEY_PAGEUP } }, { KE_KEY, 7, { KEY_PAGEDOWN } }, { KE_KEY, 8, { KEY_RFKILL } }, { KE_KEY, 9, { KEY_POWER } }, { KE_KEY, 11, { KEY_SLEEP } }, /* 13 has two different meanings in the spec -- ignore it. */ { KE_KEY, 14, { KEY_STOPCD } }, { KE_KEY, 15, { KEY_PLAYPAUSE } }, { KE_KEY, 16, { KEY_MUTE } }, { KE_KEY, 17, { KEY_VOLUMEUP } }, { KE_KEY, 18, { KEY_VOLUMEDOWN } }, { KE_KEY, 19, { KEY_BRIGHTNESSUP } }, { KE_KEY, 20, { KEY_BRIGHTNESSDOWN } }, /* 27: wake -- needs special handling */ { KE_END }, }; /* 5 button array notification value. */ static const struct key_entry intel_array_keymap[] = { { KE_KEY, 0xC2, { KEY_LEFTMETA } }, /* Press */ { KE_IGNORE, 0xC3, { KEY_LEFTMETA } }, /* Release */ { KE_KEY, 0xC4, { KEY_VOLUMEUP } }, /* Press */ { KE_IGNORE, 0xC5, { KEY_VOLUMEUP } }, /* Release */ { KE_KEY, 0xC6, { KEY_VOLUMEDOWN } }, /* Press */ { KE_IGNORE, 0xC7, { KEY_VOLUMEDOWN } }, /* Release */ { KE_KEY, 0xC8, { KEY_ROTATE_LOCK_TOGGLE } }, /* Press */ { KE_IGNORE, 0xC9, { KEY_ROTATE_LOCK_TOGGLE } }, /* Release */ { KE_KEY, 0xCE, { KEY_POWER } }, /* Press */ { KE_IGNORE, 0xCF, { KEY_POWER } }, /* Release */ { KE_END }, }; static const struct dmi_system_id button_array_table[] = { { .ident = "Wacom MobileStudio Pro 13", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Wacom Co.,Ltd"), DMI_MATCH(DMI_PRODUCT_NAME, "Wacom MobileStudio Pro 13"), }, }, { .ident = "Wacom MobileStudio Pro 16", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Wacom Co.,Ltd"), DMI_MATCH(DMI_PRODUCT_NAME, "Wacom MobileStudio Pro 16"), }, }, { .ident = "HP Spectre x2 (2015)", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "HP Spectre x2 Detachable"), }, }, { .ident = "Lenovo ThinkPad X1 Tablet Gen 2", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Tablet Gen 2"), }, }, { .ident = "Microsoft Surface Go 3", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Microsoft Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, "Surface Go 3"), }, }, { } }; /* * Some convertible use the intel-hid ACPI interface to report SW_TABLET_MODE, * these need to be compared via a DMI based authorization list because some * models have unreliable VGBS return which could cause incorrect * SW_TABLET_MODE report. */ static const struct dmi_system_id dmi_vgbs_allow_list[] = { { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "HP Spectre x360 Convertible 15-df0xxx"), }, }, { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Microsoft Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, "Surface Go"), }, }, { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "HP Elite Dragonfly G2 Notebook PC"), }, }, { } }; /* * Some devices, even non convertible ones, can send incorrect SW_TABLET_MODE * reports. Accept such reports only from devices in this list. */ static const struct dmi_system_id dmi_auto_add_switch[] = { { .matches = { DMI_EXACT_MATCH(DMI_CHASSIS_TYPE, "31" /* Convertible */), }, }, { .matches = { DMI_EXACT_MATCH(DMI_CHASSIS_TYPE, "32" /* Detachable */), }, }, {} /* Array terminator */ }; struct intel_hid_priv { struct input_dev *input_dev; struct input_dev *array; struct input_dev *switches; bool wakeup_mode; }; #define HID_EVENT_FILTER_UUID "eeec56b3-4442-408f-a792-4edd4d758054" enum intel_hid_dsm_fn_codes { INTEL_HID_DSM_FN_INVALID, INTEL_HID_DSM_BTNL_FN, INTEL_HID_DSM_HDMM_FN, INTEL_HID_DSM_HDSM_FN, INTEL_HID_DSM_HDEM_FN, INTEL_HID_DSM_BTNS_FN, INTEL_HID_DSM_BTNE_FN, INTEL_HID_DSM_HEBC_V1_FN, INTEL_HID_DSM_VGBS_FN, INTEL_HID_DSM_HEBC_V2_FN, INTEL_HID_DSM_FN_MAX }; static const char *intel_hid_dsm_fn_to_method[INTEL_HID_DSM_FN_MAX] = { NULL, "BTNL", "HDMM", "HDSM", "HDEM", "BTNS", "BTNE", "HEBC", "VGBS", "HEBC" }; static unsigned long long intel_hid_dsm_fn_mask; static guid_t intel_dsm_guid; static bool intel_hid_execute_method(acpi_handle handle, enum intel_hid_dsm_fn_codes fn_index, unsigned long long arg) { union acpi_object *obj, argv4, req; acpi_status status; char *method_name; if (fn_index <= INTEL_HID_DSM_FN_INVALID || fn_index >= INTEL_HID_DSM_FN_MAX) return false; method_name = (char *)intel_hid_dsm_fn_to_method[fn_index]; if (!(intel_hid_dsm_fn_mask & BIT(fn_index))) goto skip_dsm_exec; /* All methods expects a package with one integer element */ req.type = ACPI_TYPE_INTEGER; req.integer.value = arg; argv4.type = ACPI_TYPE_PACKAGE; argv4.package.count = 1; argv4.package.elements = &req; obj = acpi_evaluate_dsm(handle, &intel_dsm_guid, 1, fn_index, &argv4); if (obj) { acpi_handle_debug(handle, "Exec DSM Fn code: %d[%s] success\n", fn_index, method_name); ACPI_FREE(obj); return true; } skip_dsm_exec: status = acpi_execute_simple_method(handle, method_name, arg); if (ACPI_SUCCESS(status)) return true; return false; } static bool intel_hid_evaluate_method(acpi_handle handle, enum intel_hid_dsm_fn_codes fn_index, unsigned long long *result) { union acpi_object *obj; acpi_status status; char *method_name; if (fn_index <= INTEL_HID_DSM_FN_INVALID || fn_index >= INTEL_HID_DSM_FN_MAX) return false; method_name = (char *)intel_hid_dsm_fn_to_method[fn_index]; if (!(intel_hid_dsm_fn_mask & BIT(fn_index))) goto skip_dsm_eval; obj = acpi_evaluate_dsm_typed(handle, &intel_dsm_guid, 1, fn_index, NULL, ACPI_TYPE_INTEGER); if (obj) { *result = obj->integer.value; acpi_handle_debug(handle, "Eval DSM Fn code: %d[%s] results: 0x%llx\n", fn_index, method_name, *result); ACPI_FREE(obj); return true; } skip_dsm_eval: status = acpi_evaluate_integer(handle, method_name, NULL, result); if (ACPI_SUCCESS(status)) return true; return false; } static void intel_hid_init_dsm(acpi_handle handle) { union acpi_object *obj; guid_parse(HID_EVENT_FILTER_UUID, &intel_dsm_guid); obj = acpi_evaluate_dsm_typed(handle, &intel_dsm_guid, 1, 0, NULL, ACPI_TYPE_BUFFER); if (obj) { switch (obj->buffer.length) { default: case 2: intel_hid_dsm_fn_mask = *(u16 *)obj->buffer.pointer; break; case 1: intel_hid_dsm_fn_mask = *obj->buffer.pointer; break; case 0: acpi_handle_warn(handle, "intel_hid_dsm_fn_mask length is zero\n"); intel_hid_dsm_fn_mask = 0; break; } ACPI_FREE(obj); } acpi_handle_debug(handle, "intel_hid_dsm_fn_mask = %llx\n", intel_hid_dsm_fn_mask); } static int intel_hid_set_enable(struct device *device, bool enable) { acpi_handle handle = ACPI_HANDLE(device); /* Enable|disable features - power button is always enabled */ if (!intel_hid_execute_method(handle, INTEL_HID_DSM_HDSM_FN, enable)) { dev_warn(device, "failed to %sable hotkeys\n", enable ? "en" : "dis"); return -EIO; } return 0; } static void intel_button_array_enable(struct device *device, bool enable) { struct intel_hid_priv *priv = dev_get_drvdata(device); acpi_handle handle = ACPI_HANDLE(device); unsigned long long button_cap; acpi_status status; if (!priv->array) return; /* Query supported platform features */ status = acpi_evaluate_integer(handle, "BTNC", NULL, &button_cap); if (ACPI_FAILURE(status)) { dev_warn(device, "failed to get button capability\n"); return; } /* Enable|disable features - power button is always enabled */ if (!intel_hid_execute_method(handle, INTEL_HID_DSM_BTNE_FN, enable ? button_cap : 1)) dev_warn(device, "failed to set button capability\n"); } static int intel_hid_pm_prepare(struct device *device) { if (device_may_wakeup(device)) { struct intel_hid_priv *priv = dev_get_drvdata(device); priv->wakeup_mode = true; } return 0; } static void intel_hid_pm_complete(struct device *device) { struct intel_hid_priv *priv = dev_get_drvdata(device); priv->wakeup_mode = false; } static int intel_hid_pl_suspend_handler(struct device *device) { intel_button_array_enable(device, false); if (!pm_suspend_no_platform()) intel_hid_set_enable(device, false); return 0; } static int intel_hid_pl_resume_handler(struct device *device) { intel_hid_pm_complete(device); if (!pm_suspend_no_platform()) intel_hid_set_enable(device, true); intel_button_array_enable(device, true); return 0; } static const struct dev_pm_ops intel_hid_pl_pm_ops = { .prepare = intel_hid_pm_prepare, .complete = intel_hid_pm_complete, .freeze = intel_hid_pl_suspend_handler, .thaw = intel_hid_pl_resume_handler, .restore = intel_hid_pl_resume_handler, .suspend = intel_hid_pl_suspend_handler, .resume = intel_hid_pl_resume_handler, }; static int intel_hid_input_setup(struct platform_device *device) { struct intel_hid_priv *priv = dev_get_drvdata(&device->dev); int ret; priv->input_dev = devm_input_allocate_device(&device->dev); if (!priv->input_dev) return -ENOMEM; ret = sparse_keymap_setup(priv->input_dev, intel_hid_keymap, NULL); if (ret) return ret; priv->input_dev->name = "Intel HID events"; priv->input_dev->id.bustype = BUS_HOST; return input_register_device(priv->input_dev); } static int intel_button_array_input_setup(struct platform_device *device) { struct intel_hid_priv *priv = dev_get_drvdata(&device->dev); int ret; /* Setup input device for 5 button array */ priv->array = devm_input_allocate_device(&device->dev); if (!priv->array) return -ENOMEM; ret = sparse_keymap_setup(priv->array, intel_array_keymap, NULL); if (ret) return ret; priv->array->name = "Intel HID 5 button array"; priv->array->id.bustype = BUS_HOST; return input_register_device(priv->array); } static int intel_hid_switches_setup(struct platform_device *device) { struct intel_hid_priv *priv = dev_get_drvdata(&device->dev); /* Setup input device for switches */ priv->switches = devm_input_allocate_device(&device->dev); if (!priv->switches) return -ENOMEM; __set_bit(EV_SW, priv->switches->evbit); __set_bit(SW_TABLET_MODE, priv->switches->swbit); priv->switches->name = "Intel HID switches"; priv->switches->id.bustype = BUS_HOST; return input_register_device(priv->switches); } static void report_tablet_mode_state(struct platform_device *device) { struct intel_hid_priv *priv = dev_get_drvdata(&device->dev); acpi_handle handle = ACPI_HANDLE(&device->dev); unsigned long long vgbs; int m; if (!intel_hid_evaluate_method(handle, INTEL_HID_DSM_VGBS_FN, &vgbs)) return; m = !(vgbs & TABLET_MODE_FLAG); input_report_switch(priv->switches, SW_TABLET_MODE, m); input_sync(priv->switches); } static bool report_tablet_mode_event(struct input_dev *input_dev, u32 event) { if (!input_dev) return false; switch (event) { case 0xcc: input_report_switch(input_dev, SW_TABLET_MODE, 1); input_sync(input_dev); return true; case 0xcd: input_report_switch(input_dev, SW_TABLET_MODE, 0); input_sync(input_dev); return true; default: return false; } } static void notify_handler(acpi_handle handle, u32 event, void *context) { struct platform_device *device = context; struct intel_hid_priv *priv = dev_get_drvdata(&device->dev); unsigned long long ev_index; int err; /* * Some convertible have unreliable VGBS return which could cause incorrect * SW_TABLET_MODE report, in these cases we enable support when receiving * the first event instead of during driver setup. */ if (!priv->switches && enable_sw_tablet_mode == TABLET_SW_AT_EVENT && (event == 0xcc || event == 0xcd)) { dev_info(&device->dev, "switch event received, enable switches supports\n"); err = intel_hid_switches_setup(device); if (err) pr_err("Failed to setup Intel HID switches\n"); } if (priv->wakeup_mode) { /* * Needed for wakeup from suspend-to-idle to work on some * platforms that don't expose the 5-button array, but still * send notifies with the power button event code to this * device object on power button actions while suspended. */ if (event == 0xce) goto wakeup; /* * Some devices send (duplicate) tablet-mode events when moved * around even though the mode has not changed; and they do this * even when suspended. * Update the switch state in case it changed and then return * without waking up to avoid spurious wakeups. */ if (event == 0xcc || event == 0xcd) { report_tablet_mode_event(priv->switches, event); return; } /* Wake up on 5-button array events only. */ if (event == 0xc0 || !priv->array) return; if (!sparse_keymap_entry_from_scancode(priv->array, event)) { dev_info(&device->dev, "unknown event 0x%x\n", event); return; } wakeup: pm_wakeup_hard_event(&device->dev); return; } /* * Needed for suspend to work on some platforms that don't expose * the 5-button array, but still send notifies with power button * event code to this device object on power button actions. * * Report the power button press and release. */ if (!priv->array) { if (event == 0xce) { input_report_key(priv->input_dev, KEY_POWER, 1); input_sync(priv->input_dev); return; } if (event == 0xcf) { input_report_key(priv->input_dev, KEY_POWER, 0); input_sync(priv->input_dev); return; } } if (report_tablet_mode_event(priv->switches, event)) return; /* 0xC0 is for HID events, other values are for 5 button array */ if (event != 0xc0) { if (!priv->array || !sparse_keymap_report_event(priv->array, event, 1, true)) dev_dbg(&device->dev, "unknown event 0x%x\n", event); return; } if (!intel_hid_evaluate_method(handle, INTEL_HID_DSM_HDEM_FN, &ev_index)) { dev_warn(&device->dev, "failed to get event index\n"); return; } if (!sparse_keymap_report_event(priv->input_dev, ev_index, 1, true)) dev_dbg(&device->dev, "unknown event index 0x%llx\n", ev_index); } static bool button_array_present(struct platform_device *device) { acpi_handle handle = ACPI_HANDLE(&device->dev); unsigned long long event_cap; if (intel_hid_evaluate_method(handle, INTEL_HID_DSM_HEBC_V2_FN, &event_cap)) { /* Check presence of 5 button array or v2 power button */ if (event_cap & 0x60000) return true; } if (intel_hid_evaluate_method(handle, INTEL_HID_DSM_HEBC_V1_FN, &event_cap)) { if (event_cap & 0x20000) return true; } if (enable_5_button_array || dmi_check_system(button_array_table)) return true; return false; } static int intel_hid_probe(struct platform_device *device) { acpi_handle handle = ACPI_HANDLE(&device->dev); unsigned long long mode, dummy; struct intel_hid_priv *priv; acpi_status status; int err; intel_hid_init_dsm(handle); if (!intel_hid_evaluate_method(handle, INTEL_HID_DSM_HDMM_FN, &mode)) { dev_warn(&device->dev, "failed to read mode\n"); return -ENODEV; } if (mode != 0) { /* * This driver only implements "simple" mode. There appear * to be no other modes, but we should be paranoid and check * for compatibility. */ dev_info(&device->dev, "platform is not in simple mode\n"); return -ENODEV; } priv = devm_kzalloc(&device->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; dev_set_drvdata(&device->dev, priv); /* See dual_accel_detect.h for more info on the dual_accel check. */ if (enable_sw_tablet_mode == TABLET_SW_AUTO) { if (dmi_check_system(dmi_vgbs_allow_list)) enable_sw_tablet_mode = TABLET_SW_AT_PROBE; else if (dmi_check_system(dmi_auto_add_switch) && !dual_accel_detect()) enable_sw_tablet_mode = TABLET_SW_AT_EVENT; else enable_sw_tablet_mode = TABLET_SW_OFF; } err = intel_hid_input_setup(device); if (err) { pr_err("Failed to setup Intel HID hotkeys\n"); return err; } /* Setup 5 button array */ if (button_array_present(device)) { dev_info(&device->dev, "platform supports 5 button array\n"); err = intel_button_array_input_setup(device); if (err) pr_err("Failed to setup Intel 5 button array hotkeys\n"); } /* Setup switches for devices that we know VGBS return correctly */ if (enable_sw_tablet_mode == TABLET_SW_AT_PROBE) { dev_info(&device->dev, "platform supports switches\n"); err = intel_hid_switches_setup(device); if (err) pr_err("Failed to setup Intel HID switches\n"); else report_tablet_mode_state(device); } status = acpi_install_notify_handler(handle, ACPI_DEVICE_NOTIFY, notify_handler, device); if (ACPI_FAILURE(status)) return -EBUSY; err = intel_hid_set_enable(&device->dev, true); if (err) goto err_remove_notify; intel_button_array_enable(&device->dev, true); /* * Call button load method to enable HID power button * Always do this since it activates events on some devices without * a button array too. */ if (!intel_hid_evaluate_method(handle, INTEL_HID_DSM_BTNL_FN, &dummy)) dev_warn(&device->dev, "failed to enable HID power button\n"); device_init_wakeup(&device->dev, true); /* * In order for system wakeup to work, the EC GPE has to be marked as * a wakeup one, so do that here (this setting will persist, but it has * no effect until the wakeup mask is set for the EC GPE). */ acpi_ec_mark_gpe_for_wake(); return 0; err_remove_notify: acpi_remove_notify_handler(handle, ACPI_DEVICE_NOTIFY, notify_handler); return err; } static void intel_hid_remove(struct platform_device *device) { acpi_handle handle = ACPI_HANDLE(&device->dev); device_init_wakeup(&device->dev, false); acpi_remove_notify_handler(handle, ACPI_DEVICE_NOTIFY, notify_handler); intel_hid_set_enable(&device->dev, false); intel_button_array_enable(&device->dev, false); } static struct platform_driver intel_hid_pl_driver = { .driver = { .name = "intel-hid", .acpi_match_table = intel_hid_ids, .pm = &intel_hid_pl_pm_ops, }, .probe = intel_hid_probe, .remove_new = intel_hid_remove, }; /* * Unfortunately, some laptops provide a _HID="INT33D5" device with * _CID="PNP0C02". This causes the pnpacpi scan driver to claim the * ACPI node, so no platform device will be created. The pnpacpi * driver rejects this device in subsequent processing, so no physical * node is created at all. * * As a workaround until the ACPI core figures out how to handle * this corner case, manually ask the ACPI platform device code to * claim the ACPI node. */ static acpi_status __init check_acpi_dev(acpi_handle handle, u32 lvl, void *context, void **rv) { const struct acpi_device_id *ids = context; struct acpi_device *dev = acpi_fetch_acpi_dev(handle); if (dev && acpi_match_device_ids(dev, ids) == 0) if (!IS_ERR_OR_NULL(acpi_create_platform_device(dev, NULL))) dev_info(&dev->dev, "intel-hid: created platform device\n"); return AE_OK; } static int __init intel_hid_init(void) { acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, ACPI_UINT32_MAX, check_acpi_dev, NULL, (void *)intel_hid_ids, NULL); return platform_driver_register(&intel_hid_pl_driver); } module_init(intel_hid_init); static void __exit intel_hid_exit(void) { platform_driver_unregister(&intel_hid_pl_driver); } module_exit(intel_hid_exit);
linux-master
drivers/platform/x86/intel/hid.c
// SPDX-License-Identifier: GPL-2.0 /* * Power-button driver for Basin Cove PMIC * * Copyright (c) 2019, Intel Corporation. * Author: Andy Shevchenko <[email protected]> */ #include <linux/input.h> #include <linux/interrupt.h> #include <linux/device.h> #include <linux/mfd/intel_soc_pmic.h> #include <linux/mfd/intel_soc_pmic_mrfld.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pm_wakeirq.h> #include <linux/slab.h> #define BCOVE_PBSTATUS 0x27 #define BCOVE_PBSTATUS_PBLVL BIT(4) /* 1 - release, 0 - press */ static irqreturn_t mrfld_pwrbtn_interrupt(int irq, void *dev_id) { struct input_dev *input = dev_id; struct device *dev = input->dev.parent; struct regmap *regmap = dev_get_drvdata(dev); unsigned int state; int ret; ret = regmap_read(regmap, BCOVE_PBSTATUS, &state); if (ret) return IRQ_NONE; dev_dbg(dev, "PBSTATUS=0x%x\n", state); input_report_key(input, KEY_POWER, !(state & BCOVE_PBSTATUS_PBLVL)); input_sync(input); regmap_update_bits(regmap, BCOVE_MIRQLVL1, BCOVE_LVL1_PWRBTN, 0); return IRQ_HANDLED; } static int mrfld_pwrbtn_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct intel_soc_pmic *pmic = dev_get_drvdata(dev->parent); struct input_dev *input; int irq, ret; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; input = devm_input_allocate_device(dev); if (!input) return -ENOMEM; input->name = pdev->name; input->phys = "power-button/input0"; input->id.bustype = BUS_HOST; input->dev.parent = dev; input_set_capability(input, EV_KEY, KEY_POWER); ret = input_register_device(input); if (ret) return ret; dev_set_drvdata(dev, pmic->regmap); ret = devm_request_threaded_irq(dev, irq, NULL, mrfld_pwrbtn_interrupt, IRQF_ONESHOT | IRQF_SHARED, pdev->name, input); if (ret) return ret; regmap_update_bits(pmic->regmap, BCOVE_MIRQLVL1, BCOVE_LVL1_PWRBTN, 0); regmap_update_bits(pmic->regmap, BCOVE_MPBIRQ, BCOVE_PBIRQ_PBTN, 0); device_init_wakeup(dev, true); dev_pm_set_wake_irq(dev, irq); return 0; } static void mrfld_pwrbtn_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; dev_pm_clear_wake_irq(dev); device_init_wakeup(dev, false); } static const struct platform_device_id mrfld_pwrbtn_id_table[] = { { .name = "mrfld_bcove_pwrbtn" }, {} }; MODULE_DEVICE_TABLE(platform, mrfld_pwrbtn_id_table); static struct platform_driver mrfld_pwrbtn_driver = { .driver = { .name = "mrfld_bcove_pwrbtn", }, .probe = mrfld_pwrbtn_probe, .remove_new = mrfld_pwrbtn_remove, .id_table = mrfld_pwrbtn_id_table, }; module_platform_driver(mrfld_pwrbtn_driver); MODULE_DESCRIPTION("Power-button driver for Basin Cove PMIC"); MODULE_LICENSE("GPL v2");
linux-master
drivers/platform/x86/intel/mrfld_pwrbtn.c
// SPDX-License-Identifier: GPL-2.0 /* * Driver for the Intel P-Unit Mailbox IPC mechanism * * (C) Copyright 2015 Intel Corporation * * The heart of the P-Unit is the Foxton microcontroller and its firmware, * which provide mailbox interface for power management usage. */ #include <linux/bitops.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <asm/intel_punit_ipc.h> /* IPC Mailbox registers */ #define OFFSET_DATA_LOW 0x0 #define OFFSET_DATA_HIGH 0x4 /* bit field of interface register */ #define CMD_RUN BIT(31) #define CMD_ERRCODE_MASK GENMASK(7, 0) #define CMD_PARA1_SHIFT 8 #define CMD_PARA2_SHIFT 16 #define CMD_TIMEOUT_SECONDS 1 enum { BASE_DATA = 0, BASE_IFACE, BASE_MAX, }; typedef struct { struct device *dev; struct mutex lock; int irq; struct completion cmd_complete; /* base of interface and data registers */ void __iomem *base[RESERVED_IPC][BASE_MAX]; IPC_TYPE type; } IPC_DEV; static IPC_DEV *punit_ipcdev; static inline u32 ipc_read_status(IPC_DEV *ipcdev, IPC_TYPE type) { return readl(ipcdev->base[type][BASE_IFACE]); } static inline void ipc_write_cmd(IPC_DEV *ipcdev, IPC_TYPE type, u32 cmd) { writel(cmd, ipcdev->base[type][BASE_IFACE]); } static inline u32 ipc_read_data_low(IPC_DEV *ipcdev, IPC_TYPE type) { return readl(ipcdev->base[type][BASE_DATA] + OFFSET_DATA_LOW); } static inline u32 ipc_read_data_high(IPC_DEV *ipcdev, IPC_TYPE type) { return readl(ipcdev->base[type][BASE_DATA] + OFFSET_DATA_HIGH); } static inline void ipc_write_data_low(IPC_DEV *ipcdev, IPC_TYPE type, u32 data) { writel(data, ipcdev->base[type][BASE_DATA] + OFFSET_DATA_LOW); } static inline void ipc_write_data_high(IPC_DEV *ipcdev, IPC_TYPE type, u32 data) { writel(data, ipcdev->base[type][BASE_DATA] + OFFSET_DATA_HIGH); } static const char *ipc_err_string(int error) { if (error == IPC_PUNIT_ERR_SUCCESS) return "no error"; else if (error == IPC_PUNIT_ERR_INVALID_CMD) return "invalid command"; else if (error == IPC_PUNIT_ERR_INVALID_PARAMETER) return "invalid parameter"; else if (error == IPC_PUNIT_ERR_CMD_TIMEOUT) return "command timeout"; else if (error == IPC_PUNIT_ERR_CMD_LOCKED) return "command locked"; else if (error == IPC_PUNIT_ERR_INVALID_VR_ID) return "invalid vr id"; else if (error == IPC_PUNIT_ERR_VR_ERR) return "vr error"; else return "unknown error"; } static int intel_punit_ipc_check_status(IPC_DEV *ipcdev, IPC_TYPE type) { int loops = CMD_TIMEOUT_SECONDS * USEC_PER_SEC; int errcode; int status; if (ipcdev->irq) { if (!wait_for_completion_timeout(&ipcdev->cmd_complete, CMD_TIMEOUT_SECONDS * HZ)) { dev_err(ipcdev->dev, "IPC timed out\n"); return -ETIMEDOUT; } } else { while ((ipc_read_status(ipcdev, type) & CMD_RUN) && --loops) udelay(1); if (!loops) { dev_err(ipcdev->dev, "IPC timed out\n"); return -ETIMEDOUT; } } status = ipc_read_status(ipcdev, type); errcode = status & CMD_ERRCODE_MASK; if (errcode) { dev_err(ipcdev->dev, "IPC failed: %s, IPC_STS=0x%x\n", ipc_err_string(errcode), status); return -EIO; } return 0; } /** * intel_punit_ipc_simple_command() - Simple IPC command * @cmd: IPC command code. * @para1: First 8bit parameter, set 0 if not used. * @para2: Second 8bit parameter, set 0 if not used. * * Send a IPC command to P-Unit when there is no data transaction * * Return: IPC error code or 0 on success. */ int intel_punit_ipc_simple_command(int cmd, int para1, int para2) { IPC_DEV *ipcdev = punit_ipcdev; IPC_TYPE type; u32 val; int ret; mutex_lock(&ipcdev->lock); reinit_completion(&ipcdev->cmd_complete); type = (cmd & IPC_PUNIT_CMD_TYPE_MASK) >> IPC_TYPE_OFFSET; val = cmd & ~IPC_PUNIT_CMD_TYPE_MASK; val |= CMD_RUN | para2 << CMD_PARA2_SHIFT | para1 << CMD_PARA1_SHIFT; ipc_write_cmd(ipcdev, type, val); ret = intel_punit_ipc_check_status(ipcdev, type); mutex_unlock(&ipcdev->lock); return ret; } EXPORT_SYMBOL(intel_punit_ipc_simple_command); /** * intel_punit_ipc_command() - IPC command with data and pointers * @cmd: IPC command code. * @para1: First 8bit parameter, set 0 if not used. * @para2: Second 8bit parameter, set 0 if not used. * @in: Input data, 32bit for BIOS cmd, two 32bit for GTD and ISPD. * @out: Output data. * * Send a IPC command to P-Unit with data transaction * * Return: IPC error code or 0 on success. */ int intel_punit_ipc_command(u32 cmd, u32 para1, u32 para2, u32 *in, u32 *out) { IPC_DEV *ipcdev = punit_ipcdev; IPC_TYPE type; u32 val; int ret; mutex_lock(&ipcdev->lock); reinit_completion(&ipcdev->cmd_complete); type = (cmd & IPC_PUNIT_CMD_TYPE_MASK) >> IPC_TYPE_OFFSET; if (in) { ipc_write_data_low(ipcdev, type, *in); if (type == GTDRIVER_IPC || type == ISPDRIVER_IPC) ipc_write_data_high(ipcdev, type, *++in); } val = cmd & ~IPC_PUNIT_CMD_TYPE_MASK; val |= CMD_RUN | para2 << CMD_PARA2_SHIFT | para1 << CMD_PARA1_SHIFT; ipc_write_cmd(ipcdev, type, val); ret = intel_punit_ipc_check_status(ipcdev, type); if (ret) goto out; if (out) { *out = ipc_read_data_low(ipcdev, type); if (type == GTDRIVER_IPC || type == ISPDRIVER_IPC) *++out = ipc_read_data_high(ipcdev, type); } out: mutex_unlock(&ipcdev->lock); return ret; } EXPORT_SYMBOL_GPL(intel_punit_ipc_command); static irqreturn_t intel_punit_ioc(int irq, void *dev_id) { IPC_DEV *ipcdev = dev_id; complete(&ipcdev->cmd_complete); return IRQ_HANDLED; } static int intel_punit_get_bars(struct platform_device *pdev) { void __iomem *addr; /* * The following resources are required * - BIOS_IPC BASE_DATA * - BIOS_IPC BASE_IFACE */ addr = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(addr)) return PTR_ERR(addr); punit_ipcdev->base[BIOS_IPC][BASE_DATA] = addr; addr = devm_platform_ioremap_resource(pdev, 1); if (IS_ERR(addr)) return PTR_ERR(addr); punit_ipcdev->base[BIOS_IPC][BASE_IFACE] = addr; /* * The following resources are optional * - ISPDRIVER_IPC BASE_DATA * - ISPDRIVER_IPC BASE_IFACE * - GTDRIVER_IPC BASE_DATA * - GTDRIVER_IPC BASE_IFACE */ addr = devm_platform_ioremap_resource(pdev, 2); if (!IS_ERR(addr)) punit_ipcdev->base[ISPDRIVER_IPC][BASE_DATA] = addr; addr = devm_platform_ioremap_resource(pdev, 3); if (!IS_ERR(addr)) punit_ipcdev->base[ISPDRIVER_IPC][BASE_IFACE] = addr; addr = devm_platform_ioremap_resource(pdev, 4); if (!IS_ERR(addr)) punit_ipcdev->base[GTDRIVER_IPC][BASE_DATA] = addr; addr = devm_platform_ioremap_resource(pdev, 5); if (!IS_ERR(addr)) punit_ipcdev->base[GTDRIVER_IPC][BASE_IFACE] = addr; return 0; } static int intel_punit_ipc_probe(struct platform_device *pdev) { int irq, ret; punit_ipcdev = devm_kzalloc(&pdev->dev, sizeof(*punit_ipcdev), GFP_KERNEL); if (!punit_ipcdev) return -ENOMEM; platform_set_drvdata(pdev, punit_ipcdev); irq = platform_get_irq_optional(pdev, 0); if (irq < 0) { dev_warn(&pdev->dev, "Invalid IRQ, using polling mode\n"); } else { ret = devm_request_irq(&pdev->dev, irq, intel_punit_ioc, IRQF_NO_SUSPEND, "intel_punit_ipc", &punit_ipcdev); if (ret) { dev_err(&pdev->dev, "Failed to request irq: %d\n", irq); return ret; } punit_ipcdev->irq = irq; } ret = intel_punit_get_bars(pdev); if (ret) return ret; punit_ipcdev->dev = &pdev->dev; mutex_init(&punit_ipcdev->lock); init_completion(&punit_ipcdev->cmd_complete); return 0; } static const struct acpi_device_id punit_ipc_acpi_ids[] = { { "INT34D4", 0 }, { } }; MODULE_DEVICE_TABLE(acpi, punit_ipc_acpi_ids); static struct platform_driver intel_punit_ipc_driver = { .probe = intel_punit_ipc_probe, .driver = { .name = "intel_punit_ipc", .acpi_match_table = punit_ipc_acpi_ids, }, }; static int __init intel_punit_ipc_init(void) { return platform_driver_register(&intel_punit_ipc_driver); } static void __exit intel_punit_ipc_exit(void) { platform_driver_unregister(&intel_punit_ipc_driver); } MODULE_AUTHOR("Zha Qipeng <[email protected]>"); MODULE_DESCRIPTION("Intel P-Unit IPC driver"); MODULE_LICENSE("GPL v2"); /* Some modules are dependent on this, so init earlier */ fs_initcall(intel_punit_ipc_init); module_exit(intel_punit_ipc_exit);
linux-master
drivers/platform/x86/intel/punit_ipc.c
// SPDX-License-Identifier: GPL-2.0-only /* * intel-tpmi : Driver to enumerate TPMI features and create devices * * Copyright (c) 2023, Intel Corporation. * All Rights Reserved. * * The TPMI (Topology Aware Register and PM Capsule Interface) provides a * flexible, extendable and PCIe enumerable MMIO interface for PM features. * * For example Intel RAPL (Running Average Power Limit) provides a MMIO * interface using TPMI. This has advantage over traditional MSR * (Model Specific Register) interface, where a thread needs to be scheduled * on the target CPU to read or write. Also the RAPL features vary between * CPU models, and hence lot of model specific code. Here TPMI provides an * architectural interface by providing hierarchical tables and fields, * which will not need any model specific implementation. * * The TPMI interface uses a PCI VSEC structure to expose the location of * MMIO region. * * This VSEC structure is present in the PCI configuration space of the * Intel Out-of-Band (OOB) device, which is handled by the Intel VSEC * driver. The Intel VSEC driver parses VSEC structures present in the PCI * configuration space of the given device and creates an auxiliary device * object for each of them. In particular, it creates an auxiliary device * object representing TPMI that can be bound by an auxiliary driver. * * This TPMI driver will bind to the TPMI auxiliary device object created * by the Intel VSEC driver. * * The TPMI specification defines a PFS (PM Feature Structure) table. * This table is present in the TPMI MMIO region. The starting address * of PFS is derived from the tBIR (Bar Indicator Register) and "Address" * field from the VSEC header. * * Each TPMI PM feature has one entry in the PFS with a unique TPMI * ID and its access details. The TPMI driver creates device nodes * for the supported PM features. * * The names of the devices created by the TPMI driver start with the * "intel_vsec.tpmi-" prefix which is followed by a specific name of the * given PM feature (for example, "intel_vsec.tpmi-rapl.0"). * * The device nodes are create by using interface "intel_vsec_add_aux()" * provided by the Intel VSEC driver. */ #include <linux/auxiliary_bus.h> #include <linux/bitfield.h> #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/intel_tpmi.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/security.h> #include <linux/sizes.h> #include <linux/string_helpers.h> #include "vsec.h" /** * struct intel_tpmi_pfs_entry - TPMI PM Feature Structure (PFS) entry * @tpmi_id: TPMI feature identifier (what the feature is and its data format). * @num_entries: Number of feature interface instances present in the PFS. * This represents the maximum number of Power domains in the SoC. * @entry_size: Interface instance entry size in 32-bit words. * @cap_offset: Offset from the PM_Features base address to the base of the PM VSEC * register bank in KB. * @attribute: Feature attribute: 0=BIOS. 1=OS. 2-3=Reserved. * @reserved: Bits for use in the future. * * Represents one TPMI feature entry data in the PFS retrieved as is * from the hardware. */ struct intel_tpmi_pfs_entry { u64 tpmi_id:8; u64 num_entries:8; u64 entry_size:16; u64 cap_offset:16; u64 attribute:2; u64 reserved:14; } __packed; /** * struct intel_tpmi_pm_feature - TPMI PM Feature information for a TPMI ID * @pfs_header: PFS header retireved from the hardware. * @vsec_offset: Starting MMIO address for this feature in bytes. Essentially * this offset = "Address" from VSEC header + PFS Capability * offset for this feature entry. * @vsec_dev: Pointer to intel_vsec_device structure for this TPMI device * * Represents TPMI instance information for one TPMI ID. */ struct intel_tpmi_pm_feature { struct intel_tpmi_pfs_entry pfs_header; unsigned int vsec_offset; struct intel_vsec_device *vsec_dev; }; /** * struct intel_tpmi_info - TPMI information for all IDs in an instance * @tpmi_features: Pointer to a list of TPMI feature instances * @vsec_dev: Pointer to intel_vsec_device structure for this TPMI device * @feature_count: Number of TPMI of TPMI instances pointed by tpmi_features * @pfs_start: Start of PFS offset for the TPMI instances in this device * @plat_info: Stores platform info which can be used by the client drivers * @tpmi_control_mem: Memory mapped IO for getting control information * @dbgfs_dir: debugfs entry pointer * * Stores the information for all TPMI devices enumerated from a single PCI device. */ struct intel_tpmi_info { struct intel_tpmi_pm_feature *tpmi_features; struct intel_vsec_device *vsec_dev; int feature_count; u64 pfs_start; struct intel_tpmi_plat_info plat_info; void __iomem *tpmi_control_mem; struct dentry *dbgfs_dir; }; /** * struct tpmi_info_header - CPU package ID to PCI device mapping information * @fn: PCI function number * @dev: PCI device number * @bus: PCI bus number * @pkg: CPU Package id * @reserved: Reserved for future use * @lock: When set to 1 the register is locked and becomes read-only * until next reset. Not for use by the OS driver. * * The structure to read hardware provided mapping information. */ struct tpmi_info_header { u64 fn:3; u64 dev:5; u64 bus:8; u64 pkg:8; u64 reserved:39; u64 lock:1; } __packed; /* * List of supported TMPI IDs. * Some TMPI IDs are not used by Linux, so the numbers are not consecutive. */ enum intel_tpmi_id { TPMI_ID_RAPL = 0, /* Running Average Power Limit */ TPMI_ID_PEM = 1, /* Power and Perf excursion Monitor */ TPMI_ID_UNCORE = 2, /* Uncore Frequency Scaling */ TPMI_ID_SST = 5, /* Speed Select Technology */ TPMI_CONTROL_ID = 0x80, /* Special ID for getting feature status */ TPMI_INFO_ID = 0x81, /* Special ID for PCI BDF and Package ID information */ }; /* * The size from hardware is in u32 units. This size is from a trusted hardware, * but better to verify for pre silicon platforms. Set size to 0, when invalid. */ #define TPMI_GET_SINGLE_ENTRY_SIZE(pfs) \ ({ \ pfs->pfs_header.entry_size > SZ_1K ? 0 : pfs->pfs_header.entry_size << 2; \ }) /* Used during auxbus device creation */ static DEFINE_IDA(intel_vsec_tpmi_ida); struct intel_tpmi_plat_info *tpmi_get_platform_data(struct auxiliary_device *auxdev) { struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev); return vsec_dev->priv_data; } EXPORT_SYMBOL_NS_GPL(tpmi_get_platform_data, INTEL_TPMI); int tpmi_get_resource_count(struct auxiliary_device *auxdev) { struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev); if (vsec_dev) return vsec_dev->num_resources; return 0; } EXPORT_SYMBOL_NS_GPL(tpmi_get_resource_count, INTEL_TPMI); struct resource *tpmi_get_resource_at_index(struct auxiliary_device *auxdev, int index) { struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev); if (vsec_dev && index < vsec_dev->num_resources) return &vsec_dev->resource[index]; return NULL; } EXPORT_SYMBOL_NS_GPL(tpmi_get_resource_at_index, INTEL_TPMI); /* TPMI Control Interface */ #define TPMI_CONTROL_STATUS_OFFSET 0x00 #define TPMI_COMMAND_OFFSET 0x08 /* * Spec is calling for max 1 seconds to get ownership at the worst * case. Read at 10 ms timeouts and repeat up to 1 second. */ #define TPMI_CONTROL_TIMEOUT_US (10 * USEC_PER_MSEC) #define TPMI_CONTROL_TIMEOUT_MAX_US (1 * USEC_PER_SEC) #define TPMI_RB_TIMEOUT_US (10 * USEC_PER_MSEC) #define TPMI_RB_TIMEOUT_MAX_US USEC_PER_SEC /* TPMI Control status register defines */ #define TPMI_CONTROL_STATUS_RB BIT_ULL(0) #define TPMI_CONTROL_STATUS_OWNER GENMASK_ULL(5, 4) #define TPMI_OWNER_NONE 0 #define TPMI_OWNER_IN_BAND 1 #define TPMI_CONTROL_STATUS_CPL BIT_ULL(6) #define TPMI_CONTROL_STATUS_RESULT GENMASK_ULL(15, 8) #define TPMI_CONTROL_STATUS_LEN GENMASK_ULL(31, 16) #define TPMI_CMD_PKT_LEN 2 #define TPMI_CMD_STATUS_SUCCESS 0x40 /* TPMI command data registers */ #define TMPI_CONTROL_DATA_CMD GENMASK_ULL(7, 0) #define TMPI_CONTROL_DATA_VAL GENMASK_ULL(63, 32) #define TPMI_CONTROL_DATA_VAL_FEATURE GENMASK_ULL(48, 40) /* Command to send via control interface */ #define TPMI_CONTROL_GET_STATE_CMD 0x10 #define TPMI_CONTROL_CMD_MASK GENMASK_ULL(48, 40) #define TPMI_CMD_LEN_MASK GENMASK_ULL(18, 16) #define TPMI_STATE_DISABLED BIT_ULL(0) #define TPMI_STATE_LOCKED BIT_ULL(31) /* Mutex to complete get feature status without interruption */ static DEFINE_MUTEX(tpmi_dev_lock); static int tpmi_wait_for_owner(struct intel_tpmi_info *tpmi_info, u8 owner) { u64 control; return readq_poll_timeout(tpmi_info->tpmi_control_mem + TPMI_CONTROL_STATUS_OFFSET, control, owner == FIELD_GET(TPMI_CONTROL_STATUS_OWNER, control), TPMI_CONTROL_TIMEOUT_US, TPMI_CONTROL_TIMEOUT_MAX_US); } static int tpmi_read_feature_status(struct intel_tpmi_info *tpmi_info, int feature_id, int *locked, int *disabled) { u64 control, data; int ret; if (!tpmi_info->tpmi_control_mem) return -EFAULT; mutex_lock(&tpmi_dev_lock); /* Wait for owner bit set to 0 (none) */ ret = tpmi_wait_for_owner(tpmi_info, TPMI_OWNER_NONE); if (ret) goto err_unlock; /* set command id to 0x10 for TPMI_GET_STATE */ data = FIELD_PREP(TMPI_CONTROL_DATA_CMD, TPMI_CONTROL_GET_STATE_CMD); /* 32 bits for DATA offset and +8 for feature_id field */ data |= FIELD_PREP(TPMI_CONTROL_DATA_VAL_FEATURE, feature_id); /* Write at command offset for qword access */ writeq(data, tpmi_info->tpmi_control_mem + TPMI_COMMAND_OFFSET); /* Wait for owner bit set to in-band */ ret = tpmi_wait_for_owner(tpmi_info, TPMI_OWNER_IN_BAND); if (ret) goto err_unlock; /* Set Run Busy and packet length of 2 dwords */ control = TPMI_CONTROL_STATUS_RB; control |= FIELD_PREP(TPMI_CONTROL_STATUS_LEN, TPMI_CMD_PKT_LEN); /* Write at status offset for qword access */ writeq(control, tpmi_info->tpmi_control_mem + TPMI_CONTROL_STATUS_OFFSET); /* Wait for Run Busy clear */ ret = readq_poll_timeout(tpmi_info->tpmi_control_mem + TPMI_CONTROL_STATUS_OFFSET, control, !(control & TPMI_CONTROL_STATUS_RB), TPMI_RB_TIMEOUT_US, TPMI_RB_TIMEOUT_MAX_US); if (ret) goto done_proc; control = FIELD_GET(TPMI_CONTROL_STATUS_RESULT, control); if (control != TPMI_CMD_STATUS_SUCCESS) { ret = -EBUSY; goto done_proc; } /* Response is ready */ data = readq(tpmi_info->tpmi_control_mem + TPMI_COMMAND_OFFSET); data = FIELD_GET(TMPI_CONTROL_DATA_VAL, data); *disabled = 0; *locked = 0; if (!(data & TPMI_STATE_DISABLED)) *disabled = 1; if (data & TPMI_STATE_LOCKED) *locked = 1; ret = 0; done_proc: /* Set CPL "completion" bit */ writeq(TPMI_CONTROL_STATUS_CPL, tpmi_info->tpmi_control_mem + TPMI_CONTROL_STATUS_OFFSET); err_unlock: mutex_unlock(&tpmi_dev_lock); return ret; } int tpmi_get_feature_status(struct auxiliary_device *auxdev, int feature_id, int *locked, int *disabled) { struct intel_vsec_device *intel_vsec_dev = dev_to_ivdev(auxdev->dev.parent); struct intel_tpmi_info *tpmi_info = auxiliary_get_drvdata(&intel_vsec_dev->auxdev); return tpmi_read_feature_status(tpmi_info, feature_id, locked, disabled); } EXPORT_SYMBOL_NS_GPL(tpmi_get_feature_status, INTEL_TPMI); static int tpmi_pfs_dbg_show(struct seq_file *s, void *unused) { struct intel_tpmi_info *tpmi_info = s->private; struct intel_tpmi_pm_feature *pfs; int locked, disabled, ret, i; seq_printf(s, "tpmi PFS start offset 0x:%llx\n", tpmi_info->pfs_start); seq_puts(s, "tpmi_id\t\tentries\t\tsize\t\tcap_offset\tattribute\tvsec_offset\tlocked\tdisabled\n"); for (i = 0; i < tpmi_info->feature_count; ++i) { pfs = &tpmi_info->tpmi_features[i]; ret = tpmi_read_feature_status(tpmi_info, pfs->pfs_header.tpmi_id, &locked, &disabled); if (ret) { locked = 'U'; disabled = 'U'; } else { disabled = disabled ? 'Y' : 'N'; locked = locked ? 'Y' : 'N'; } seq_printf(s, "0x%02x\t\t0x%02x\t\t0x%04x\t\t0x%04x\t\t0x%02x\t\t0x%08x\t%c\t%c\n", pfs->pfs_header.tpmi_id, pfs->pfs_header.num_entries, pfs->pfs_header.entry_size, pfs->pfs_header.cap_offset, pfs->pfs_header.attribute, pfs->vsec_offset, locked, disabled); } return 0; } DEFINE_SHOW_ATTRIBUTE(tpmi_pfs_dbg); #define MEM_DUMP_COLUMN_COUNT 8 static int tpmi_mem_dump_show(struct seq_file *s, void *unused) { size_t row_size = MEM_DUMP_COLUMN_COUNT * sizeof(u32); struct intel_tpmi_pm_feature *pfs = s->private; int count, ret = 0; void __iomem *mem; u32 off, size; u8 *buffer; size = TPMI_GET_SINGLE_ENTRY_SIZE(pfs); if (!size) return -EIO; buffer = kmalloc(size, GFP_KERNEL); if (!buffer) return -ENOMEM; off = pfs->vsec_offset; mutex_lock(&tpmi_dev_lock); for (count = 0; count < pfs->pfs_header.num_entries; ++count) { seq_printf(s, "TPMI Instance:%d offset:0x%x\n", count, off); mem = ioremap(off, size); if (!mem) { ret = -ENOMEM; break; } memcpy_fromio(buffer, mem, size); seq_hex_dump(s, " ", DUMP_PREFIX_OFFSET, row_size, sizeof(u32), buffer, size, false); iounmap(mem); off += size; } mutex_unlock(&tpmi_dev_lock); kfree(buffer); return ret; } DEFINE_SHOW_ATTRIBUTE(tpmi_mem_dump); static ssize_t mem_write(struct file *file, const char __user *userbuf, size_t len, loff_t *ppos) { struct seq_file *m = file->private_data; struct intel_tpmi_pm_feature *pfs = m->private; u32 addr, value, punit, size; u32 num_elems, *array; void __iomem *mem; int ret; size = TPMI_GET_SINGLE_ENTRY_SIZE(pfs); if (!size) return -EIO; ret = parse_int_array_user(userbuf, len, (int **)&array); if (ret < 0) return ret; num_elems = *array; if (num_elems != 3) { ret = -EINVAL; goto exit_write; } punit = array[1]; addr = array[2]; value = array[3]; if (punit >= pfs->pfs_header.num_entries) { ret = -EINVAL; goto exit_write; } if (addr >= size) { ret = -EINVAL; goto exit_write; } mutex_lock(&tpmi_dev_lock); mem = ioremap(pfs->vsec_offset + punit * size, size); if (!mem) { ret = -ENOMEM; goto unlock_mem_write; } writel(value, mem + addr); iounmap(mem); ret = len; unlock_mem_write: mutex_unlock(&tpmi_dev_lock); exit_write: kfree(array); return ret; } static int mem_write_show(struct seq_file *s, void *unused) { return 0; } static int mem_write_open(struct inode *inode, struct file *file) { return single_open(file, mem_write_show, inode->i_private); } static const struct file_operations mem_write_ops = { .open = mem_write_open, .read = seq_read, .write = mem_write, .llseek = seq_lseek, .release = single_release, }; #define tpmi_to_dev(info) (&info->vsec_dev->pcidev->dev) static void tpmi_dbgfs_register(struct intel_tpmi_info *tpmi_info) { char name[64]; int i; snprintf(name, sizeof(name), "tpmi-%s", dev_name(tpmi_to_dev(tpmi_info))); tpmi_info->dbgfs_dir = debugfs_create_dir(name, NULL); debugfs_create_file("pfs_dump", 0444, tpmi_info->dbgfs_dir, tpmi_info, &tpmi_pfs_dbg_fops); for (i = 0; i < tpmi_info->feature_count; ++i) { struct intel_tpmi_pm_feature *pfs; struct dentry *dir; pfs = &tpmi_info->tpmi_features[i]; snprintf(name, sizeof(name), "tpmi-id-%02x", pfs->pfs_header.tpmi_id); dir = debugfs_create_dir(name, tpmi_info->dbgfs_dir); debugfs_create_file("mem_dump", 0444, dir, pfs, &tpmi_mem_dump_fops); debugfs_create_file("mem_write", 0644, dir, pfs, &mem_write_ops); } } static void tpmi_set_control_base(struct auxiliary_device *auxdev, struct intel_tpmi_info *tpmi_info, struct intel_tpmi_pm_feature *pfs) { void __iomem *mem; u32 size; size = TPMI_GET_SINGLE_ENTRY_SIZE(pfs); if (!size) return; mem = devm_ioremap(&auxdev->dev, pfs->vsec_offset, size); if (!mem) return; /* mem is pointing to TPMI CONTROL base */ tpmi_info->tpmi_control_mem = mem; } static const char *intel_tpmi_name(enum intel_tpmi_id id) { switch (id) { case TPMI_ID_RAPL: return "rapl"; case TPMI_ID_PEM: return "pem"; case TPMI_ID_UNCORE: return "uncore"; case TPMI_ID_SST: return "sst"; default: return NULL; } } /* String Length for tpmi-"feature_name(upto 8 bytes)" */ #define TPMI_FEATURE_NAME_LEN 14 static int tpmi_create_device(struct intel_tpmi_info *tpmi_info, struct intel_tpmi_pm_feature *pfs, u64 pfs_start) { struct intel_vsec_device *vsec_dev = tpmi_info->vsec_dev; char feature_id_name[TPMI_FEATURE_NAME_LEN]; struct intel_vsec_device *feature_vsec_dev; struct resource *res, *tmp; const char *name; int i; name = intel_tpmi_name(pfs->pfs_header.tpmi_id); if (!name) return -EOPNOTSUPP; res = kcalloc(pfs->pfs_header.num_entries, sizeof(*res), GFP_KERNEL); if (!res) return -ENOMEM; feature_vsec_dev = kzalloc(sizeof(*feature_vsec_dev), GFP_KERNEL); if (!feature_vsec_dev) { kfree(res); return -ENOMEM; } snprintf(feature_id_name, sizeof(feature_id_name), "tpmi-%s", name); for (i = 0, tmp = res; i < pfs->pfs_header.num_entries; i++, tmp++) { u64 entry_size_bytes = pfs->pfs_header.entry_size * sizeof(u32); tmp->start = pfs->vsec_offset + entry_size_bytes * i; tmp->end = tmp->start + entry_size_bytes - 1; tmp->flags = IORESOURCE_MEM; } feature_vsec_dev->pcidev = vsec_dev->pcidev; feature_vsec_dev->resource = res; feature_vsec_dev->num_resources = pfs->pfs_header.num_entries; feature_vsec_dev->priv_data = &tpmi_info->plat_info; feature_vsec_dev->priv_data_size = sizeof(tpmi_info->plat_info); feature_vsec_dev->ida = &intel_vsec_tpmi_ida; /* * intel_vsec_add_aux() is resource managed, no explicit * delete is required on error or on module unload. * feature_vsec_dev and res memory are also freed as part of * device deletion. */ return intel_vsec_add_aux(vsec_dev->pcidev, &vsec_dev->auxdev.dev, feature_vsec_dev, feature_id_name); } static int tpmi_create_devices(struct intel_tpmi_info *tpmi_info) { struct intel_vsec_device *vsec_dev = tpmi_info->vsec_dev; int ret, i; for (i = 0; i < vsec_dev->num_resources; i++) { ret = tpmi_create_device(tpmi_info, &tpmi_info->tpmi_features[i], tpmi_info->pfs_start); /* * Fail, if the supported features fails to create device, * otherwise, continue. Even if one device failed to create, * fail the loading of driver. Since intel_vsec_add_aux() * is resource managed, no clean up is required for the * successfully created devices. */ if (ret && ret != -EOPNOTSUPP) return ret; } return 0; } #define TPMI_INFO_BUS_INFO_OFFSET 0x08 static int tpmi_process_info(struct intel_tpmi_info *tpmi_info, struct intel_tpmi_pm_feature *pfs) { struct tpmi_info_header header; void __iomem *info_mem; info_mem = ioremap(pfs->vsec_offset + TPMI_INFO_BUS_INFO_OFFSET, pfs->pfs_header.entry_size * sizeof(u32) - TPMI_INFO_BUS_INFO_OFFSET); if (!info_mem) return -ENOMEM; memcpy_fromio(&header, info_mem, sizeof(header)); tpmi_info->plat_info.package_id = header.pkg; tpmi_info->plat_info.bus_number = header.bus; tpmi_info->plat_info.device_number = header.dev; tpmi_info->plat_info.function_number = header.fn; iounmap(info_mem); return 0; } static int tpmi_fetch_pfs_header(struct intel_tpmi_pm_feature *pfs, u64 start, int size) { void __iomem *pfs_mem; pfs_mem = ioremap(start, size); if (!pfs_mem) return -ENOMEM; memcpy_fromio(&pfs->pfs_header, pfs_mem, sizeof(pfs->pfs_header)); iounmap(pfs_mem); return 0; } #define TPMI_CAP_OFFSET_UNIT 1024 static int intel_vsec_tpmi_init(struct auxiliary_device *auxdev) { struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev); struct pci_dev *pci_dev = vsec_dev->pcidev; struct intel_tpmi_info *tpmi_info; u64 pfs_start = 0; int ret, i; tpmi_info = devm_kzalloc(&auxdev->dev, sizeof(*tpmi_info), GFP_KERNEL); if (!tpmi_info) return -ENOMEM; tpmi_info->vsec_dev = vsec_dev; tpmi_info->feature_count = vsec_dev->num_resources; tpmi_info->plat_info.bus_number = pci_dev->bus->number; tpmi_info->tpmi_features = devm_kcalloc(&auxdev->dev, vsec_dev->num_resources, sizeof(*tpmi_info->tpmi_features), GFP_KERNEL); if (!tpmi_info->tpmi_features) return -ENOMEM; for (i = 0; i < vsec_dev->num_resources; i++) { struct intel_tpmi_pm_feature *pfs; struct resource *res; u64 res_start; int size, ret; pfs = &tpmi_info->tpmi_features[i]; pfs->vsec_dev = vsec_dev; res = &vsec_dev->resource[i]; if (!res) continue; res_start = res->start; size = resource_size(res); if (size < 0) continue; ret = tpmi_fetch_pfs_header(pfs, res_start, size); if (ret) continue; if (!pfs_start) pfs_start = res_start; pfs->vsec_offset = pfs_start + pfs->pfs_header.cap_offset * TPMI_CAP_OFFSET_UNIT; /* * Process TPMI_INFO to get PCI device to CPU package ID. * Device nodes for TPMI features are not created in this * for loop. So, the mapping information will be available * when actual device nodes created outside this * loop via tpmi_create_devices(). */ if (pfs->pfs_header.tpmi_id == TPMI_INFO_ID) tpmi_process_info(tpmi_info, pfs); if (pfs->pfs_header.tpmi_id == TPMI_CONTROL_ID) tpmi_set_control_base(auxdev, tpmi_info, pfs); } tpmi_info->pfs_start = pfs_start; auxiliary_set_drvdata(auxdev, tpmi_info); ret = tpmi_create_devices(tpmi_info); if (ret) return ret; /* * Allow debugfs when security policy allows. Everything this debugfs * interface provides, can also be done via /dev/mem access. If * /dev/mem interface is locked, don't allow debugfs to present any * information. Also check for CAP_SYS_RAWIO as /dev/mem interface. */ if (!security_locked_down(LOCKDOWN_DEV_MEM) && capable(CAP_SYS_RAWIO)) tpmi_dbgfs_register(tpmi_info); return 0; } static int tpmi_probe(struct auxiliary_device *auxdev, const struct auxiliary_device_id *id) { return intel_vsec_tpmi_init(auxdev); } static void tpmi_remove(struct auxiliary_device *auxdev) { struct intel_tpmi_info *tpmi_info = auxiliary_get_drvdata(auxdev); debugfs_remove_recursive(tpmi_info->dbgfs_dir); } static const struct auxiliary_device_id tpmi_id_table[] = { { .name = "intel_vsec.tpmi" }, {} }; MODULE_DEVICE_TABLE(auxiliary, tpmi_id_table); static struct auxiliary_driver tpmi_aux_driver = { .id_table = tpmi_id_table, .probe = tpmi_probe, .remove = tpmi_remove, }; module_auxiliary_driver(tpmi_aux_driver); MODULE_IMPORT_NS(INTEL_VSEC); MODULE_DESCRIPTION("Intel TPMI enumeration module"); MODULE_LICENSE("GPL");
linux-master
drivers/platform/x86/intel/tpmi.c
// SPDX-License-Identifier: GPL-2.0 /* * Intel Uncore Frequency Control: Common code implementation * Copyright (c) 2022, Intel Corporation. * All rights reserved. * */ #include <linux/cpu.h> #include <linux/module.h> #include "uncore-frequency-common.h" /* Mutex to control all mutual exclusions */ static DEFINE_MUTEX(uncore_lock); /* Root of the all uncore sysfs kobjs */ static struct kobject *uncore_root_kobj; /* uncore instance count */ static int uncore_instance_count; static DEFINE_IDA(intel_uncore_ida); /* callbacks for actual HW read/write */ static int (*uncore_read)(struct uncore_data *data, unsigned int *min, unsigned int *max); static int (*uncore_write)(struct uncore_data *data, unsigned int input, unsigned int min_max); static int (*uncore_read_freq)(struct uncore_data *data, unsigned int *freq); static ssize_t show_domain_id(struct device *dev, struct device_attribute *attr, char *buf) { struct uncore_data *data = container_of(attr, struct uncore_data, domain_id_dev_attr); return sprintf(buf, "%u\n", data->domain_id); } static ssize_t show_fabric_cluster_id(struct device *dev, struct device_attribute *attr, char *buf) { struct uncore_data *data = container_of(attr, struct uncore_data, fabric_cluster_id_dev_attr); return sprintf(buf, "%u\n", data->cluster_id); } static ssize_t show_package_id(struct device *dev, struct device_attribute *attr, char *buf) { struct uncore_data *data = container_of(attr, struct uncore_data, package_id_dev_attr); return sprintf(buf, "%u\n", data->package_id); } static ssize_t show_min_max_freq_khz(struct uncore_data *data, char *buf, int min_max) { unsigned int min, max; int ret; mutex_lock(&uncore_lock); ret = uncore_read(data, &min, &max); mutex_unlock(&uncore_lock); if (ret) return ret; if (min_max) return sprintf(buf, "%u\n", max); return sprintf(buf, "%u\n", min); } static ssize_t store_min_max_freq_khz(struct uncore_data *data, const char *buf, ssize_t count, int min_max) { unsigned int input; int ret; if (kstrtouint(buf, 10, &input)) return -EINVAL; mutex_lock(&uncore_lock); ret = uncore_write(data, input, min_max); mutex_unlock(&uncore_lock); if (ret) return ret; return count; } static ssize_t show_perf_status_freq_khz(struct uncore_data *data, char *buf) { unsigned int freq; int ret; mutex_lock(&uncore_lock); ret = uncore_read_freq(data, &freq); mutex_unlock(&uncore_lock); if (ret) return ret; return sprintf(buf, "%u\n", freq); } #define store_uncore_min_max(name, min_max) \ static ssize_t store_##name(struct device *dev, \ struct device_attribute *attr, \ const char *buf, size_t count) \ { \ struct uncore_data *data = container_of(attr, struct uncore_data, name##_dev_attr);\ \ return store_min_max_freq_khz(data, buf, count, \ min_max); \ } #define show_uncore_min_max(name, min_max) \ static ssize_t show_##name(struct device *dev, \ struct device_attribute *attr, char *buf)\ { \ struct uncore_data *data = container_of(attr, struct uncore_data, name##_dev_attr);\ \ return show_min_max_freq_khz(data, buf, min_max); \ } #define show_uncore_perf_status(name) \ static ssize_t show_##name(struct device *dev, \ struct device_attribute *attr, char *buf)\ { \ struct uncore_data *data = container_of(attr, struct uncore_data, name##_dev_attr);\ \ return show_perf_status_freq_khz(data, buf); \ } store_uncore_min_max(min_freq_khz, 0); store_uncore_min_max(max_freq_khz, 1); show_uncore_min_max(min_freq_khz, 0); show_uncore_min_max(max_freq_khz, 1); show_uncore_perf_status(current_freq_khz); #define show_uncore_data(member_name) \ static ssize_t show_##member_name(struct device *dev, \ struct device_attribute *attr, char *buf)\ { \ struct uncore_data *data = container_of(attr, struct uncore_data,\ member_name##_dev_attr);\ \ return sysfs_emit(buf, "%u\n", \ data->member_name); \ } \ show_uncore_data(initial_min_freq_khz); show_uncore_data(initial_max_freq_khz); #define init_attribute_rw(_name) \ do { \ sysfs_attr_init(&data->_name##_dev_attr.attr); \ data->_name##_dev_attr.show = show_##_name; \ data->_name##_dev_attr.store = store_##_name; \ data->_name##_dev_attr.attr.name = #_name; \ data->_name##_dev_attr.attr.mode = 0644; \ } while (0) #define init_attribute_ro(_name) \ do { \ sysfs_attr_init(&data->_name##_dev_attr.attr); \ data->_name##_dev_attr.show = show_##_name; \ data->_name##_dev_attr.store = NULL; \ data->_name##_dev_attr.attr.name = #_name; \ data->_name##_dev_attr.attr.mode = 0444; \ } while (0) #define init_attribute_root_ro(_name) \ do { \ sysfs_attr_init(&data->_name##_dev_attr.attr); \ data->_name##_dev_attr.show = show_##_name; \ data->_name##_dev_attr.store = NULL; \ data->_name##_dev_attr.attr.name = #_name; \ data->_name##_dev_attr.attr.mode = 0400; \ } while (0) static int create_attr_group(struct uncore_data *data, char *name) { int ret, index = 0; init_attribute_rw(max_freq_khz); init_attribute_rw(min_freq_khz); init_attribute_ro(initial_min_freq_khz); init_attribute_ro(initial_max_freq_khz); init_attribute_root_ro(current_freq_khz); if (data->domain_id != UNCORE_DOMAIN_ID_INVALID) { init_attribute_root_ro(domain_id); data->uncore_attrs[index++] = &data->domain_id_dev_attr.attr; init_attribute_root_ro(fabric_cluster_id); data->uncore_attrs[index++] = &data->fabric_cluster_id_dev_attr.attr; init_attribute_root_ro(package_id); data->uncore_attrs[index++] = &data->package_id_dev_attr.attr; } data->uncore_attrs[index++] = &data->max_freq_khz_dev_attr.attr; data->uncore_attrs[index++] = &data->min_freq_khz_dev_attr.attr; data->uncore_attrs[index++] = &data->initial_min_freq_khz_dev_attr.attr; data->uncore_attrs[index++] = &data->initial_max_freq_khz_dev_attr.attr; data->uncore_attrs[index++] = &data->current_freq_khz_dev_attr.attr; data->uncore_attrs[index] = NULL; data->uncore_attr_group.name = name; data->uncore_attr_group.attrs = data->uncore_attrs; ret = sysfs_create_group(uncore_root_kobj, &data->uncore_attr_group); return ret; } static void delete_attr_group(struct uncore_data *data, char *name) { sysfs_remove_group(uncore_root_kobj, &data->uncore_attr_group); } int uncore_freq_add_entry(struct uncore_data *data, int cpu) { int ret = 0; mutex_lock(&uncore_lock); if (data->valid) { /* control cpu changed */ data->control_cpu = cpu; goto uncore_unlock; } if (data->domain_id != UNCORE_DOMAIN_ID_INVALID) { ret = ida_alloc(&intel_uncore_ida, GFP_KERNEL); if (ret < 0) goto uncore_unlock; data->instance_id = ret; sprintf(data->name, "uncore%02d", ret); } else { sprintf(data->name, "package_%02d_die_%02d", data->package_id, data->die_id); } uncore_read(data, &data->initial_min_freq_khz, &data->initial_max_freq_khz); ret = create_attr_group(data, data->name); if (ret) { if (data->domain_id != UNCORE_DOMAIN_ID_INVALID) ida_free(&intel_uncore_ida, data->instance_id); } else { data->control_cpu = cpu; data->valid = true; } uncore_unlock: mutex_unlock(&uncore_lock); return ret; } EXPORT_SYMBOL_NS_GPL(uncore_freq_add_entry, INTEL_UNCORE_FREQUENCY); void uncore_freq_remove_die_entry(struct uncore_data *data) { mutex_lock(&uncore_lock); delete_attr_group(data, data->name); data->control_cpu = -1; data->valid = false; if (data->domain_id != UNCORE_DOMAIN_ID_INVALID) ida_free(&intel_uncore_ida, data->instance_id); mutex_unlock(&uncore_lock); } EXPORT_SYMBOL_NS_GPL(uncore_freq_remove_die_entry, INTEL_UNCORE_FREQUENCY); int uncore_freq_common_init(int (*read_control_freq)(struct uncore_data *data, unsigned int *min, unsigned int *max), int (*write_control_freq)(struct uncore_data *data, unsigned int input, unsigned int set_max), int (*read_freq)(struct uncore_data *data, unsigned int *freq)) { mutex_lock(&uncore_lock); uncore_read = read_control_freq; uncore_write = write_control_freq; uncore_read_freq = read_freq; if (!uncore_root_kobj) { struct device *dev_root = bus_get_dev_root(&cpu_subsys); if (dev_root) { uncore_root_kobj = kobject_create_and_add("intel_uncore_frequency", &dev_root->kobj); put_device(dev_root); } } if (uncore_root_kobj) ++uncore_instance_count; mutex_unlock(&uncore_lock); return uncore_root_kobj ? 0 : -ENOMEM; } EXPORT_SYMBOL_NS_GPL(uncore_freq_common_init, INTEL_UNCORE_FREQUENCY); void uncore_freq_common_exit(void) { mutex_lock(&uncore_lock); --uncore_instance_count; if (!uncore_instance_count) { kobject_put(uncore_root_kobj); uncore_root_kobj = NULL; } mutex_unlock(&uncore_lock); } EXPORT_SYMBOL_NS_GPL(uncore_freq_common_exit, INTEL_UNCORE_FREQUENCY); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Intel Uncore Frequency Common Module");
linux-master
drivers/platform/x86/intel/uncore-frequency/uncore-frequency-common.c
// SPDX-License-Identifier: GPL-2.0 /* * Intel Uncore Frequency Setting * Copyright (c) 2022, Intel Corporation. * All rights reserved. * * Provide interface to set MSR 620 at a granularity of per die. On CPU online, * one control CPU is identified per die to read/write limit. This control CPU * is changed, if the CPU state is changed to offline. When the last CPU is * offline in a die then remove the sysfs object for that die. * The majority of actual code is related to sysfs create and read/write * attributes. * * Author: Srinivas Pandruvada <[email protected]> */ #include <linux/cpu.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/suspend.h> #include <asm/cpu_device_id.h> #include <asm/intel-family.h> #include "uncore-frequency-common.h" /* Max instances for uncore data, one for each die */ static int uncore_max_entries __read_mostly; /* Storage for uncore data for all instances */ static struct uncore_data *uncore_instances; /* Stores the CPU mask of the target CPUs to use during uncore read/write */ static cpumask_t uncore_cpu_mask; /* CPU online callback register instance */ static enum cpuhp_state uncore_hp_state __read_mostly; #define MSR_UNCORE_RATIO_LIMIT 0x620 #define MSR_UNCORE_PERF_STATUS 0x621 #define UNCORE_FREQ_KHZ_MULTIPLIER 100000 static int uncore_read_control_freq(struct uncore_data *data, unsigned int *min, unsigned int *max) { u64 cap; int ret; if (data->control_cpu < 0) return -ENXIO; ret = rdmsrl_on_cpu(data->control_cpu, MSR_UNCORE_RATIO_LIMIT, &cap); if (ret) return ret; *max = (cap & 0x7F) * UNCORE_FREQ_KHZ_MULTIPLIER; *min = ((cap & GENMASK(14, 8)) >> 8) * UNCORE_FREQ_KHZ_MULTIPLIER; return 0; } static int uncore_write_control_freq(struct uncore_data *data, unsigned int input, unsigned int min_max) { int ret; u64 cap; input /= UNCORE_FREQ_KHZ_MULTIPLIER; if (!input || input > 0x7F) return -EINVAL; if (data->control_cpu < 0) return -ENXIO; ret = rdmsrl_on_cpu(data->control_cpu, MSR_UNCORE_RATIO_LIMIT, &cap); if (ret) return ret; if (min_max) { cap &= ~0x7F; cap |= input; } else { cap &= ~GENMASK(14, 8); cap |= (input << 8); } ret = wrmsrl_on_cpu(data->control_cpu, MSR_UNCORE_RATIO_LIMIT, cap); if (ret) return ret; data->stored_uncore_data = cap; return 0; } static int uncore_read_freq(struct uncore_data *data, unsigned int *freq) { u64 ratio; int ret; if (data->control_cpu < 0) return -ENXIO; ret = rdmsrl_on_cpu(data->control_cpu, MSR_UNCORE_PERF_STATUS, &ratio); if (ret) return ret; *freq = (ratio & 0x7F) * UNCORE_FREQ_KHZ_MULTIPLIER; return 0; } /* Caller provides protection */ static struct uncore_data *uncore_get_instance(unsigned int cpu) { int id = topology_logical_die_id(cpu); if (id >= 0 && id < uncore_max_entries) return &uncore_instances[id]; return NULL; } static int uncore_event_cpu_online(unsigned int cpu) { struct uncore_data *data; int target; /* Check if there is an online cpu in the package for uncore MSR */ target = cpumask_any_and(&uncore_cpu_mask, topology_die_cpumask(cpu)); if (target < nr_cpu_ids) return 0; /* Use this CPU on this die as a control CPU */ cpumask_set_cpu(cpu, &uncore_cpu_mask); data = uncore_get_instance(cpu); if (!data) return 0; data->package_id = topology_physical_package_id(cpu); data->die_id = topology_die_id(cpu); data->domain_id = UNCORE_DOMAIN_ID_INVALID; return uncore_freq_add_entry(data, cpu); } static int uncore_event_cpu_offline(unsigned int cpu) { struct uncore_data *data; int target; data = uncore_get_instance(cpu); if (!data) return 0; /* Check if existing cpu is used for uncore MSRs */ if (!cpumask_test_and_clear_cpu(cpu, &uncore_cpu_mask)) return 0; /* Find a new cpu to set uncore MSR */ target = cpumask_any_but(topology_die_cpumask(cpu), cpu); if (target < nr_cpu_ids) { cpumask_set_cpu(target, &uncore_cpu_mask); uncore_freq_add_entry(data, target); } else { uncore_freq_remove_die_entry(data); } return 0; } static int uncore_pm_notify(struct notifier_block *nb, unsigned long mode, void *_unused) { int i; switch (mode) { case PM_POST_HIBERNATION: case PM_POST_RESTORE: case PM_POST_SUSPEND: for (i = 0; i < uncore_max_entries; ++i) { struct uncore_data *data = &uncore_instances[i]; if (!data || !data->valid || !data->stored_uncore_data) return 0; wrmsrl_on_cpu(data->control_cpu, MSR_UNCORE_RATIO_LIMIT, data->stored_uncore_data); } break; default: break; } return 0; } static struct notifier_block uncore_pm_nb = { .notifier_call = uncore_pm_notify, }; static const struct x86_cpu_id intel_uncore_cpu_ids[] = { X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G, NULL), X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, NULL), X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, NULL), X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, NULL), X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL), X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL), X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL), X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, NULL), X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, NULL), X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, NULL), X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE, NULL), X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_P, NULL), X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_S, NULL), X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE, NULL), X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L, NULL), {} }; MODULE_DEVICE_TABLE(x86cpu, intel_uncore_cpu_ids); static int __init intel_uncore_init(void) { const struct x86_cpu_id *id; int ret; if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR)) return -ENODEV; id = x86_match_cpu(intel_uncore_cpu_ids); if (!id) return -ENODEV; uncore_max_entries = topology_max_packages() * topology_max_die_per_package(); uncore_instances = kcalloc(uncore_max_entries, sizeof(*uncore_instances), GFP_KERNEL); if (!uncore_instances) return -ENOMEM; ret = uncore_freq_common_init(uncore_read_control_freq, uncore_write_control_freq, uncore_read_freq); if (ret) goto err_free; ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "platform/x86/uncore-freq:online", uncore_event_cpu_online, uncore_event_cpu_offline); if (ret < 0) goto err_rem_kobj; uncore_hp_state = ret; ret = register_pm_notifier(&uncore_pm_nb); if (ret) goto err_rem_state; return 0; err_rem_state: cpuhp_remove_state(uncore_hp_state); err_rem_kobj: uncore_freq_common_exit(); err_free: kfree(uncore_instances); return ret; } module_init(intel_uncore_init) static void __exit intel_uncore_exit(void) { int i; unregister_pm_notifier(&uncore_pm_nb); cpuhp_remove_state(uncore_hp_state); for (i = 0; i < uncore_max_entries; ++i) uncore_freq_remove_die_entry(&uncore_instances[i]); uncore_freq_common_exit(); kfree(uncore_instances); } module_exit(intel_uncore_exit) MODULE_IMPORT_NS(INTEL_UNCORE_FREQUENCY); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Intel Uncore Frequency Limits Driver");
linux-master
drivers/platform/x86/intel/uncore-frequency/uncore-frequency.c
// SPDX-License-Identifier: GPL-2.0-only /* * uncore-frquency-tpmi: Uncore frequency scaling using TPMI * * Copyright (c) 2023, Intel Corporation. * All Rights Reserved. * * The hardware interface to read/write is basically substitution of * MSR 0x620 and 0x621. * There are specific MMIO offset and bits to get/set minimum and * maximum uncore ratio, similar to MSRs. * The scope of the uncore MSRs was package scope. But TPMI allows * new gen CPUs to have multiple uncore controls at uncore-cluster * level. Each package can have multiple power domains which further * can have multiple clusters. * Here number of power domains = number of resources in this aux * device. There are offsets and bits to discover number of clusters * and offset for each cluster level controls. * */ #include <linux/auxiliary_bus.h> #include <linux/bitfield.h> #include <linux/bits.h> #include <linux/io.h> #include <linux/module.h> #include <linux/intel_tpmi.h> #include "uncore-frequency-common.h" #define UNCORE_HEADER_VERSION 1 #define UNCORE_HEADER_INDEX 0 #define UNCORE_FABRIC_CLUSTER_OFFSET 8 /* status + control + adv_ctl1 + adv_ctl2 */ #define UNCORE_FABRIC_CLUSTER_SIZE (4 * 8) #define UNCORE_STATUS_INDEX 0 #define UNCORE_CONTROL_INDEX 8 #define UNCORE_FREQ_KHZ_MULTIPLIER 100000 struct tpmi_uncore_struct; /* Information for each cluster */ struct tpmi_uncore_cluster_info { bool root_domain; u8 __iomem *cluster_base; struct uncore_data uncore_data; struct tpmi_uncore_struct *uncore_root; }; /* Information for each power domain */ struct tpmi_uncore_power_domain_info { u8 __iomem *uncore_base; int ufs_header_ver; int cluster_count; struct tpmi_uncore_cluster_info *cluster_infos; }; /* Information for all power domains in a package */ struct tpmi_uncore_struct { int power_domain_count; int max_ratio; int min_ratio; struct tpmi_uncore_power_domain_info *pd_info; struct tpmi_uncore_cluster_info root_cluster; }; #define UNCORE_GENMASK_MIN_RATIO GENMASK_ULL(21, 15) #define UNCORE_GENMASK_MAX_RATIO GENMASK_ULL(14, 8) #define UNCORE_GENMASK_CURRENT_RATIO GENMASK_ULL(6, 0) /* Helper function to read MMIO offset for max/min control frequency */ static void read_control_freq(struct tpmi_uncore_cluster_info *cluster_info, unsigned int *min, unsigned int *max) { u64 control; control = readq(cluster_info->cluster_base + UNCORE_CONTROL_INDEX); *max = FIELD_GET(UNCORE_GENMASK_MAX_RATIO, control) * UNCORE_FREQ_KHZ_MULTIPLIER; *min = FIELD_GET(UNCORE_GENMASK_MIN_RATIO, control) * UNCORE_FREQ_KHZ_MULTIPLIER; } #define UNCORE_MAX_RATIO FIELD_MAX(UNCORE_GENMASK_MAX_RATIO) /* Callback for sysfs read for max/min frequencies. Called under mutex locks */ static int uncore_read_control_freq(struct uncore_data *data, unsigned int *min, unsigned int *max) { struct tpmi_uncore_cluster_info *cluster_info; cluster_info = container_of(data, struct tpmi_uncore_cluster_info, uncore_data); if (cluster_info->root_domain) { struct tpmi_uncore_struct *uncore_root = cluster_info->uncore_root; int i, _min = 0, _max = 0; *min = UNCORE_MAX_RATIO * UNCORE_FREQ_KHZ_MULTIPLIER; *max = 0; /* * Get the max/min by looking at each cluster. Get the lowest * min and highest max. */ for (i = 0; i < uncore_root->power_domain_count; ++i) { int j; for (j = 0; j < uncore_root->pd_info[i].cluster_count; ++j) { read_control_freq(&uncore_root->pd_info[i].cluster_infos[j], &_min, &_max); if (*min > _min) *min = _min; if (*max < _max) *max = _max; } } return 0; } read_control_freq(cluster_info, min, max); return 0; } /* Helper function to write MMIO offset for max/min control frequency */ static void write_control_freq(struct tpmi_uncore_cluster_info *cluster_info, unsigned int input, unsigned int min_max) { u64 control; control = readq(cluster_info->cluster_base + UNCORE_CONTROL_INDEX); if (min_max) { control &= ~UNCORE_GENMASK_MAX_RATIO; control |= FIELD_PREP(UNCORE_GENMASK_MAX_RATIO, input); } else { control &= ~UNCORE_GENMASK_MIN_RATIO; control |= FIELD_PREP(UNCORE_GENMASK_MIN_RATIO, input); } writeq(control, (cluster_info->cluster_base + UNCORE_CONTROL_INDEX)); } /* Callback for sysfs write for max/min frequencies. Called under mutex locks */ static int uncore_write_control_freq(struct uncore_data *data, unsigned int input, unsigned int min_max) { struct tpmi_uncore_cluster_info *cluster_info; struct tpmi_uncore_struct *uncore_root; input /= UNCORE_FREQ_KHZ_MULTIPLIER; if (!input || input > UNCORE_MAX_RATIO) return -EINVAL; cluster_info = container_of(data, struct tpmi_uncore_cluster_info, uncore_data); uncore_root = cluster_info->uncore_root; /* Update each cluster in a package */ if (cluster_info->root_domain) { struct tpmi_uncore_struct *uncore_root = cluster_info->uncore_root; int i; for (i = 0; i < uncore_root->power_domain_count; ++i) { int j; for (j = 0; j < uncore_root->pd_info[i].cluster_count; ++j) write_control_freq(&uncore_root->pd_info[i].cluster_infos[j], input, min_max); } if (min_max) uncore_root->max_ratio = input; else uncore_root->min_ratio = input; return 0; } if (min_max && uncore_root->max_ratio && uncore_root->max_ratio < input) return -EINVAL; if (!min_max && uncore_root->min_ratio && uncore_root->min_ratio > input) return -EINVAL; write_control_freq(cluster_info, input, min_max); return 0; } /* Callback for sysfs read for the current uncore frequency. Called under mutex locks */ static int uncore_read_freq(struct uncore_data *data, unsigned int *freq) { struct tpmi_uncore_cluster_info *cluster_info; u64 status; cluster_info = container_of(data, struct tpmi_uncore_cluster_info, uncore_data); if (cluster_info->root_domain) return -ENODATA; status = readq((u8 __iomem *)cluster_info->cluster_base + UNCORE_STATUS_INDEX); *freq = FIELD_GET(UNCORE_GENMASK_CURRENT_RATIO, status) * UNCORE_FREQ_KHZ_MULTIPLIER; return 0; } static void remove_cluster_entries(struct tpmi_uncore_struct *tpmi_uncore) { int i; for (i = 0; i < tpmi_uncore->power_domain_count; ++i) { struct tpmi_uncore_power_domain_info *pd_info; int j; pd_info = &tpmi_uncore->pd_info[i]; if (!pd_info->uncore_base) continue; for (j = 0; j < pd_info->cluster_count; ++j) { struct tpmi_uncore_cluster_info *cluster_info; cluster_info = &pd_info->cluster_infos[j]; uncore_freq_remove_die_entry(&cluster_info->uncore_data); } } } #define UNCORE_VERSION_MASK GENMASK_ULL(7, 0) #define UNCORE_LOCAL_FABRIC_CLUSTER_ID_MASK GENMASK_ULL(15, 8) #define UNCORE_CLUSTER_OFF_MASK GENMASK_ULL(7, 0) #define UNCORE_MAX_CLUSTER_PER_DOMAIN 8 static int uncore_probe(struct auxiliary_device *auxdev, const struct auxiliary_device_id *id) { struct intel_tpmi_plat_info *plat_info; struct tpmi_uncore_struct *tpmi_uncore; int ret, i, pkg = 0; int num_resources; /* Get number of power domains, which is equal to number of resources */ num_resources = tpmi_get_resource_count(auxdev); if (!num_resources) return -EINVAL; /* Register callbacks to uncore core */ ret = uncore_freq_common_init(uncore_read_control_freq, uncore_write_control_freq, uncore_read_freq); if (ret) return ret; /* Allocate uncore instance per package */ tpmi_uncore = devm_kzalloc(&auxdev->dev, sizeof(*tpmi_uncore), GFP_KERNEL); if (!tpmi_uncore) { ret = -ENOMEM; goto err_rem_common; } /* Allocate memory for all power domains in a package */ tpmi_uncore->pd_info = devm_kcalloc(&auxdev->dev, num_resources, sizeof(*tpmi_uncore->pd_info), GFP_KERNEL); if (!tpmi_uncore->pd_info) { ret = -ENOMEM; goto err_rem_common; } tpmi_uncore->power_domain_count = num_resources; /* Get the package ID from the TPMI core */ plat_info = tpmi_get_platform_data(auxdev); if (plat_info) pkg = plat_info->package_id; else dev_info(&auxdev->dev, "Platform information is NULL\n"); for (i = 0; i < num_resources; ++i) { struct tpmi_uncore_power_domain_info *pd_info; struct resource *res; u64 cluster_offset; u8 cluster_mask; int mask, j; u64 header; res = tpmi_get_resource_at_index(auxdev, i); if (!res) continue; pd_info = &tpmi_uncore->pd_info[i]; pd_info->uncore_base = devm_ioremap_resource(&auxdev->dev, res); if (IS_ERR(pd_info->uncore_base)) { ret = PTR_ERR(pd_info->uncore_base); /* * Set to NULL so that clean up can still remove other * entries already created if any by * remove_cluster_entries() */ pd_info->uncore_base = NULL; goto remove_clusters; } /* Check for version and skip this resource if there is mismatch */ header = readq(pd_info->uncore_base); pd_info->ufs_header_ver = header & UNCORE_VERSION_MASK; if (pd_info->ufs_header_ver != UNCORE_HEADER_VERSION) { dev_info(&auxdev->dev, "Uncore: Unsupported version:%d\n", pd_info->ufs_header_ver); continue; } /* Get Cluster ID Mask */ cluster_mask = FIELD_GET(UNCORE_LOCAL_FABRIC_CLUSTER_ID_MASK, header); if (!cluster_mask) { dev_info(&auxdev->dev, "Uncore: Invalid cluster mask:%x\n", cluster_mask); continue; } /* Find out number of clusters in this resource */ pd_info->cluster_count = hweight8(cluster_mask); pd_info->cluster_infos = devm_kcalloc(&auxdev->dev, pd_info->cluster_count, sizeof(struct tpmi_uncore_cluster_info), GFP_KERNEL); if (!pd_info->cluster_infos) { ret = -ENOMEM; goto remove_clusters; } /* * Each byte in the register point to status and control * registers belonging to cluster id 0-8. */ cluster_offset = readq(pd_info->uncore_base + UNCORE_FABRIC_CLUSTER_OFFSET); for (j = 0; j < pd_info->cluster_count; ++j) { struct tpmi_uncore_cluster_info *cluster_info; /* Get the offset for this cluster */ mask = (cluster_offset & UNCORE_CLUSTER_OFF_MASK); /* Offset in QWORD, so change to bytes */ mask <<= 3; cluster_info = &pd_info->cluster_infos[j]; cluster_info->cluster_base = pd_info->uncore_base + mask; cluster_info->uncore_data.package_id = pkg; /* There are no dies like Cascade Lake */ cluster_info->uncore_data.die_id = 0; cluster_info->uncore_data.domain_id = i; cluster_info->uncore_data.cluster_id = j; cluster_info->uncore_root = tpmi_uncore; ret = uncore_freq_add_entry(&cluster_info->uncore_data, 0); if (ret) { cluster_info->cluster_base = NULL; goto remove_clusters; } /* Point to next cluster offset */ cluster_offset >>= UNCORE_MAX_CLUSTER_PER_DOMAIN; } } auxiliary_set_drvdata(auxdev, tpmi_uncore); tpmi_uncore->root_cluster.root_domain = true; tpmi_uncore->root_cluster.uncore_root = tpmi_uncore; tpmi_uncore->root_cluster.uncore_data.package_id = pkg; tpmi_uncore->root_cluster.uncore_data.domain_id = UNCORE_DOMAIN_ID_INVALID; ret = uncore_freq_add_entry(&tpmi_uncore->root_cluster.uncore_data, 0); if (ret) goto remove_clusters; return 0; remove_clusters: remove_cluster_entries(tpmi_uncore); err_rem_common: uncore_freq_common_exit(); return ret; } static void uncore_remove(struct auxiliary_device *auxdev) { struct tpmi_uncore_struct *tpmi_uncore = auxiliary_get_drvdata(auxdev); uncore_freq_remove_die_entry(&tpmi_uncore->root_cluster.uncore_data); remove_cluster_entries(tpmi_uncore); uncore_freq_common_exit(); } static const struct auxiliary_device_id intel_uncore_id_table[] = { { .name = "intel_vsec.tpmi-uncore" }, {} }; MODULE_DEVICE_TABLE(auxiliary, intel_uncore_id_table); static struct auxiliary_driver intel_uncore_aux_driver = { .id_table = intel_uncore_id_table, .remove = uncore_remove, .probe = uncore_probe, }; module_auxiliary_driver(intel_uncore_aux_driver); MODULE_IMPORT_NS(INTEL_TPMI); MODULE_IMPORT_NS(INTEL_UNCORE_FREQUENCY); MODULE_DESCRIPTION("Intel TPMI UFS Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/platform/x86/intel/uncore-frequency/uncore-frequency-tpmi.c
// SPDX-License-Identifier: GPL-2.0 /* * Slim Bootloader(SBL) firmware update signaling driver * * Slim Bootloader is a small, open-source, non UEFI compliant, boot firmware * optimized for running on certain Intel platforms. * * SBL exposes an ACPI-WMI device via /sys/bus/wmi/devices/<INTEL_WMI_SBL_GUID>. * This driver further adds "firmware_update_request" device attribute. * This attribute normally has a value of 0 and userspace can signal SBL * to update firmware, on next reboot, by writing a value of 1. * * More details of SBL firmware update process is available at: * https://slimbootloader.github.io/security/firmware-update.html */ #include <linux/acpi.h> #include <linux/device.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/sysfs.h> #include <linux/wmi.h> #define INTEL_WMI_SBL_GUID "44FADEB1-B204-40F2-8581-394BBDC1B651" static int get_fwu_request(struct device *dev, u32 *out) { struct acpi_buffer result = {ACPI_ALLOCATE_BUFFER, NULL}; union acpi_object *obj; acpi_status status; status = wmi_query_block(INTEL_WMI_SBL_GUID, 0, &result); if (ACPI_FAILURE(status)) { dev_err(dev, "wmi_query_block failed\n"); return -ENODEV; } obj = (union acpi_object *)result.pointer; if (!obj || obj->type != ACPI_TYPE_INTEGER) { dev_warn(dev, "wmi_query_block returned invalid value\n"); kfree(obj); return -EINVAL; } *out = obj->integer.value; kfree(obj); return 0; } static int set_fwu_request(struct device *dev, u32 in) { struct acpi_buffer input; acpi_status status; u32 value; value = in; input.length = sizeof(u32); input.pointer = &value; status = wmi_set_block(INTEL_WMI_SBL_GUID, 0, &input); if (ACPI_FAILURE(status)) { dev_err(dev, "wmi_set_block failed\n"); return -ENODEV; } return 0; } static ssize_t firmware_update_request_show(struct device *dev, struct device_attribute *attr, char *buf) { u32 val; int ret; ret = get_fwu_request(dev, &val); if (ret) return ret; return sprintf(buf, "%d\n", val); } static ssize_t firmware_update_request_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned int val; int ret; ret = kstrtouint(buf, 0, &val); if (ret) return ret; /* May later be extended to support values other than 0 and 1 */ if (val > 1) return -ERANGE; ret = set_fwu_request(dev, val); if (ret) return ret; return count; } static DEVICE_ATTR_RW(firmware_update_request); static struct attribute *firmware_update_attrs[] = { &dev_attr_firmware_update_request.attr, NULL }; ATTRIBUTE_GROUPS(firmware_update); static int intel_wmi_sbl_fw_update_probe(struct wmi_device *wdev, const void *context) { dev_info(&wdev->dev, "Slim Bootloader signaling driver attached\n"); return 0; } static void intel_wmi_sbl_fw_update_remove(struct wmi_device *wdev) { dev_info(&wdev->dev, "Slim Bootloader signaling driver removed\n"); } static const struct wmi_device_id intel_wmi_sbl_id_table[] = { { .guid_string = INTEL_WMI_SBL_GUID }, {} }; MODULE_DEVICE_TABLE(wmi, intel_wmi_sbl_id_table); static struct wmi_driver intel_wmi_sbl_fw_update_driver = { .driver = { .name = "intel-wmi-sbl-fw-update", .dev_groups = firmware_update_groups, }, .probe = intel_wmi_sbl_fw_update_probe, .remove = intel_wmi_sbl_fw_update_remove, .id_table = intel_wmi_sbl_id_table, }; module_wmi_driver(intel_wmi_sbl_fw_update_driver); MODULE_AUTHOR("Jithu Joseph <[email protected]>"); MODULE_DESCRIPTION("Slim Bootloader firmware update signaling driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/platform/x86/intel/wmi/sbl-fw-update.c
// SPDX-License-Identifier: GPL-2.0 /* * WMI Thunderbolt driver * * Copyright (C) 2017 Dell Inc. All Rights Reserved. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/acpi.h> #include <linux/device.h> #include <linux/fs.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/string.h> #include <linux/sysfs.h> #include <linux/types.h> #include <linux/wmi.h> #define INTEL_WMI_THUNDERBOLT_GUID "86CCFD48-205E-4A77-9C48-2021CBEDE341" static ssize_t force_power_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct acpi_buffer input; acpi_status status; u8 mode; input.length = sizeof(u8); input.pointer = &mode; mode = hex_to_bin(buf[0]); dev_dbg(dev, "force_power: storing %#x\n", mode); if (mode == 0 || mode == 1) { status = wmi_evaluate_method(INTEL_WMI_THUNDERBOLT_GUID, 0, 1, &input, NULL); if (ACPI_FAILURE(status)) { dev_dbg(dev, "force_power: failed to evaluate ACPI method\n"); return -ENODEV; } } else { dev_dbg(dev, "force_power: unsupported mode\n"); return -EINVAL; } return count; } static DEVICE_ATTR_WO(force_power); static struct attribute *tbt_attrs[] = { &dev_attr_force_power.attr, NULL }; ATTRIBUTE_GROUPS(tbt); static const struct wmi_device_id intel_wmi_thunderbolt_id_table[] = { { .guid_string = INTEL_WMI_THUNDERBOLT_GUID }, { }, }; static struct wmi_driver intel_wmi_thunderbolt_driver = { .driver = { .name = "intel-wmi-thunderbolt", .dev_groups = tbt_groups, }, .id_table = intel_wmi_thunderbolt_id_table, }; module_wmi_driver(intel_wmi_thunderbolt_driver); MODULE_DEVICE_TABLE(wmi, intel_wmi_thunderbolt_id_table); MODULE_AUTHOR("Mario Limonciello <[email protected]>"); MODULE_DESCRIPTION("Intel WMI Thunderbolt force power driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/platform/x86/intel/wmi/thunderbolt.c
// SPDX-License-Identifier: GPL-2.0 /* Author: Hans de Goede <[email protected]> */ #include <linux/acpi.h> #include <linux/gpio/consumer.h> #include <linux/leds.h> #include "common.h" static int int3472_pled_set(struct led_classdev *led_cdev, enum led_brightness brightness) { struct int3472_discrete_device *int3472 = container_of(led_cdev, struct int3472_discrete_device, pled.classdev); gpiod_set_value_cansleep(int3472->pled.gpio, brightness); return 0; } int skl_int3472_register_pled(struct int3472_discrete_device *int3472, struct acpi_resource_gpio *agpio, u32 polarity) { char *p, *path = agpio->resource_source.string_ptr; int ret; if (int3472->pled.classdev.dev) return -EBUSY; int3472->pled.gpio = acpi_get_and_request_gpiod(path, agpio->pin_table[0], "int3472,privacy-led"); if (IS_ERR(int3472->pled.gpio)) return dev_err_probe(int3472->dev, PTR_ERR(int3472->pled.gpio), "getting privacy LED GPIO\n"); if (polarity == GPIO_ACTIVE_LOW) gpiod_toggle_active_low(int3472->pled.gpio); /* Ensure the pin is in output mode and non-active state */ gpiod_direction_output(int3472->pled.gpio, 0); /* Generate the name, replacing the ':' in the ACPI devname with '_' */ snprintf(int3472->pled.name, sizeof(int3472->pled.name), "%s::privacy_led", acpi_dev_name(int3472->sensor)); p = strchr(int3472->pled.name, ':'); if (p) *p = '_'; int3472->pled.classdev.name = int3472->pled.name; int3472->pled.classdev.max_brightness = 1; int3472->pled.classdev.brightness_set_blocking = int3472_pled_set; ret = led_classdev_register(int3472->dev, &int3472->pled.classdev); if (ret) goto err_free_gpio; int3472->pled.lookup.provider = int3472->pled.name; int3472->pled.lookup.dev_id = int3472->sensor_name; int3472->pled.lookup.con_id = "privacy-led"; led_add_lookup(&int3472->pled.lookup); return 0; err_free_gpio: gpiod_put(int3472->pled.gpio); return ret; } void skl_int3472_unregister_pled(struct int3472_discrete_device *int3472) { if (IS_ERR_OR_NULL(int3472->pled.classdev.dev)) return; led_remove_lookup(&int3472->pled.lookup); led_classdev_unregister(&int3472->pled.classdev); gpiod_put(int3472->pled.gpio); }
linux-master
drivers/platform/x86/intel/int3472/led.c
// SPDX-License-Identifier: GPL-2.0 /* Author: Dan Scally <[email protected]> */ #include <linux/acpi.h> #include <linux/slab.h> #include "common.h" union acpi_object *skl_int3472_get_acpi_buffer(struct acpi_device *adev, char *id) { struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; acpi_handle handle = adev->handle; union acpi_object *obj; acpi_status status; status = acpi_evaluate_object(handle, id, NULL, &buffer); if (ACPI_FAILURE(status)) return ERR_PTR(-ENODEV); obj = buffer.pointer; if (!obj) return ERR_PTR(-ENODEV); if (obj->type != ACPI_TYPE_BUFFER) { acpi_handle_err(handle, "%s object is not an ACPI buffer\n", id); kfree(obj); return ERR_PTR(-EINVAL); } return obj; } int skl_int3472_fill_cldb(struct acpi_device *adev, struct int3472_cldb *cldb) { union acpi_object *obj; int ret; obj = skl_int3472_get_acpi_buffer(adev, "CLDB"); if (IS_ERR(obj)) return PTR_ERR(obj); if (obj->buffer.length > sizeof(*cldb)) { acpi_handle_err(adev->handle, "The CLDB buffer is too large\n"); ret = -EINVAL; goto out_free_obj; } memcpy(cldb, obj->buffer.pointer, obj->buffer.length); ret = 0; out_free_obj: kfree(obj); return ret; } /* sensor_adev_ret may be NULL, name_ret must not be NULL */ int skl_int3472_get_sensor_adev_and_name(struct device *dev, struct acpi_device **sensor_adev_ret, const char **name_ret) { struct acpi_device *adev = ACPI_COMPANION(dev); struct acpi_device *sensor; int ret = 0; sensor = acpi_dev_get_next_consumer_dev(adev, NULL); if (!sensor) { dev_err(dev, "INT3472 seems to have no dependents.\n"); return -ENODEV; } *name_ret = devm_kasprintf(dev, GFP_KERNEL, I2C_DEV_NAME_FORMAT, acpi_dev_name(sensor)); if (!*name_ret) ret = -ENOMEM; if (ret == 0 && sensor_adev_ret) *sensor_adev_ret = sensor; else acpi_dev_put(sensor); return ret; }
linux-master
drivers/platform/x86/intel/int3472/common.c
// SPDX-License-Identifier: GPL-2.0 /* Author: Dan Scally <[email protected]> */ #include <linux/acpi.h> #include <linux/bitfield.h> #include <linux/device.h> #include <linux/gpio/consumer.h> #include <linux/gpio/machine.h> #include <linux/i2c.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/overflow.h> #include <linux/platform_device.h> #include <linux/uuid.h> #include "common.h" /* * 79234640-9e10-4fea-a5c1-b5aa8b19756f * This _DSM GUID returns information about the GPIO lines mapped to a * discrete INT3472 device. Function number 1 returns a count of the GPIO * lines that are mapped. Subsequent functions return 32 bit ints encoding * information about the GPIO line, including its purpose. */ static const guid_t int3472_gpio_guid = GUID_INIT(0x79234640, 0x9e10, 0x4fea, 0xa5, 0xc1, 0xb5, 0xaa, 0x8b, 0x19, 0x75, 0x6f); #define INT3472_GPIO_DSM_TYPE GENMASK(7, 0) #define INT3472_GPIO_DSM_PIN GENMASK(15, 8) #define INT3472_GPIO_DSM_SENSOR_ON_VAL GENMASK(31, 24) /* * 822ace8f-2814-4174-a56b-5f029fe079ee * This _DSM GUID returns a string from the sensor device, which acts as a * module identifier. */ static const guid_t cio2_sensor_module_guid = GUID_INIT(0x822ace8f, 0x2814, 0x4174, 0xa5, 0x6b, 0x5f, 0x02, 0x9f, 0xe0, 0x79, 0xee); static void skl_int3472_log_sensor_module_name(struct int3472_discrete_device *int3472) { union acpi_object *obj; obj = acpi_evaluate_dsm_typed(int3472->sensor->handle, &cio2_sensor_module_guid, 0x00, 0x01, NULL, ACPI_TYPE_STRING); if (obj) { dev_dbg(int3472->dev, "Sensor module id: '%s'\n", obj->string.pointer); ACPI_FREE(obj); } } static int skl_int3472_map_gpio_to_sensor(struct int3472_discrete_device *int3472, struct acpi_resource_gpio *agpio, const char *func, u32 polarity) { char *path = agpio->resource_source.string_ptr; struct gpiod_lookup *table_entry; struct acpi_device *adev; acpi_handle handle; acpi_status status; if (int3472->n_sensor_gpios >= INT3472_MAX_SENSOR_GPIOS) { dev_warn(int3472->dev, "Too many GPIOs mapped\n"); return -EINVAL; } status = acpi_get_handle(NULL, path, &handle); if (ACPI_FAILURE(status)) return -EINVAL; adev = acpi_fetch_acpi_dev(handle); if (!adev) return -ENODEV; table_entry = &int3472->gpios.table[int3472->n_sensor_gpios]; table_entry->key = acpi_dev_name(adev); table_entry->chip_hwnum = agpio->pin_table[0]; table_entry->con_id = func; table_entry->idx = 0; table_entry->flags = polarity; int3472->n_sensor_gpios++; return 0; } static void int3472_get_func_and_polarity(u8 type, const char **func, u32 *polarity) { switch (type) { case INT3472_GPIO_TYPE_RESET: *func = "reset"; *polarity = GPIO_ACTIVE_LOW; break; case INT3472_GPIO_TYPE_POWERDOWN: *func = "powerdown"; *polarity = GPIO_ACTIVE_LOW; break; case INT3472_GPIO_TYPE_CLK_ENABLE: *func = "clk-enable"; *polarity = GPIO_ACTIVE_HIGH; break; case INT3472_GPIO_TYPE_PRIVACY_LED: *func = "privacy-led"; *polarity = GPIO_ACTIVE_HIGH; break; case INT3472_GPIO_TYPE_POWER_ENABLE: *func = "power-enable"; *polarity = GPIO_ACTIVE_HIGH; break; default: *func = "unknown"; *polarity = GPIO_ACTIVE_HIGH; break; } } /** * skl_int3472_handle_gpio_resources: Map PMIC resources to consuming sensor * @ares: A pointer to a &struct acpi_resource * @data: A pointer to a &struct int3472_discrete_device * * This function handles GPIO resources that are against an INT3472 * ACPI device, by checking the value of the corresponding _DSM entry. * This will return a 32bit int, where the lowest byte represents the * function of the GPIO pin: * * 0x00 Reset * 0x01 Power down * 0x0b Power enable * 0x0c Clock enable * 0x0d Privacy LED * * There are some known platform specific quirks where that does not quite * hold up; for example where a pin with type 0x01 (Power down) is mapped to * a sensor pin that performs a reset function or entries in _CRS and _DSM that * do not actually correspond to a physical connection. These will be handled * by the mapping sub-functions. * * GPIOs will either be mapped directly to the sensor device or else used * to create clocks and regulators via the usual frameworks. * * Return: * * 1 - To continue the loop * * 0 - When all resources found are handled properly. * * -EINVAL - If the resource is not a GPIO IO resource * * -ENODEV - If the resource has no corresponding _DSM entry * * -Other - Errors propagated from one of the sub-functions. */ static int skl_int3472_handle_gpio_resources(struct acpi_resource *ares, void *data) { struct int3472_discrete_device *int3472 = data; struct acpi_resource_gpio *agpio; u8 active_value, pin, type; union acpi_object *obj; const char *err_msg; const char *func; u32 polarity; int ret; if (!acpi_gpio_get_io_resource(ares, &agpio)) return 1; /* * ngpios + 2 because the index of this _DSM function is 1-based and * the first function is just a count. */ obj = acpi_evaluate_dsm_typed(int3472->adev->handle, &int3472_gpio_guid, 0x00, int3472->ngpios + 2, NULL, ACPI_TYPE_INTEGER); if (!obj) { dev_warn(int3472->dev, "No _DSM entry for GPIO pin %u\n", agpio->pin_table[0]); return 1; } type = FIELD_GET(INT3472_GPIO_DSM_TYPE, obj->integer.value); int3472_get_func_and_polarity(type, &func, &polarity); pin = FIELD_GET(INT3472_GPIO_DSM_PIN, obj->integer.value); if (pin != agpio->pin_table[0]) dev_warn(int3472->dev, "%s %s pin number mismatch _DSM %d resource %d\n", func, agpio->resource_source.string_ptr, pin, agpio->pin_table[0]); active_value = FIELD_GET(INT3472_GPIO_DSM_SENSOR_ON_VAL, obj->integer.value); if (!active_value) polarity ^= GPIO_ACTIVE_LOW; dev_dbg(int3472->dev, "%s %s pin %d active-%s\n", func, agpio->resource_source.string_ptr, agpio->pin_table[0], (polarity == GPIO_ACTIVE_HIGH) ? "high" : "low"); switch (type) { case INT3472_GPIO_TYPE_RESET: case INT3472_GPIO_TYPE_POWERDOWN: ret = skl_int3472_map_gpio_to_sensor(int3472, agpio, func, polarity); if (ret) err_msg = "Failed to map GPIO pin to sensor\n"; break; case INT3472_GPIO_TYPE_CLK_ENABLE: ret = skl_int3472_register_gpio_clock(int3472, agpio, polarity); if (ret) err_msg = "Failed to register clock\n"; break; case INT3472_GPIO_TYPE_PRIVACY_LED: ret = skl_int3472_register_pled(int3472, agpio, polarity); if (ret) err_msg = "Failed to register LED\n"; break; case INT3472_GPIO_TYPE_POWER_ENABLE: ret = skl_int3472_register_regulator(int3472, agpio); if (ret) err_msg = "Failed to map regulator to sensor\n"; break; default: dev_warn(int3472->dev, "GPIO type 0x%02x unknown; the sensor may not work\n", type); ret = 1; break; } int3472->ngpios++; ACPI_FREE(obj); if (ret < 0) return dev_err_probe(int3472->dev, ret, err_msg); return ret; } static int skl_int3472_parse_crs(struct int3472_discrete_device *int3472) { LIST_HEAD(resource_list); int ret; skl_int3472_log_sensor_module_name(int3472); ret = acpi_dev_get_resources(int3472->adev, &resource_list, skl_int3472_handle_gpio_resources, int3472); if (ret < 0) return ret; acpi_dev_free_resource_list(&resource_list); /* Register _DSM based clock (no-op if a GPIO clock was already registered) */ ret = skl_int3472_register_dsm_clock(int3472); if (ret < 0) return ret; int3472->gpios.dev_id = int3472->sensor_name; gpiod_add_lookup_table(&int3472->gpios); return 0; } static void skl_int3472_discrete_remove(struct platform_device *pdev) { struct int3472_discrete_device *int3472 = platform_get_drvdata(pdev); gpiod_remove_lookup_table(&int3472->gpios); skl_int3472_unregister_clock(int3472); skl_int3472_unregister_pled(int3472); skl_int3472_unregister_regulator(int3472); } static int skl_int3472_discrete_probe(struct platform_device *pdev) { struct acpi_device *adev = ACPI_COMPANION(&pdev->dev); struct int3472_discrete_device *int3472; struct int3472_cldb cldb; int ret; ret = skl_int3472_fill_cldb(adev, &cldb); if (ret) { dev_err(&pdev->dev, "Couldn't fill CLDB structure\n"); return ret; } if (cldb.control_logic_type != 1) { dev_err(&pdev->dev, "Unsupported control logic type %u\n", cldb.control_logic_type); return -EINVAL; } /* Max num GPIOs we've seen plus a terminator */ int3472 = devm_kzalloc(&pdev->dev, struct_size(int3472, gpios.table, INT3472_MAX_SENSOR_GPIOS + 1), GFP_KERNEL); if (!int3472) return -ENOMEM; int3472->adev = adev; int3472->dev = &pdev->dev; platform_set_drvdata(pdev, int3472); int3472->clock.imgclk_index = cldb.clock_source; ret = skl_int3472_get_sensor_adev_and_name(&pdev->dev, &int3472->sensor, &int3472->sensor_name); if (ret) return ret; /* * Initialising this list means we can call gpiod_remove_lookup_table() * in failure paths without issue. */ INIT_LIST_HEAD(&int3472->gpios.list); ret = skl_int3472_parse_crs(int3472); if (ret) { skl_int3472_discrete_remove(pdev); return ret; } acpi_dev_clear_dependencies(adev); return 0; } static const struct acpi_device_id int3472_device_id[] = { { "INT3472", 0 }, { } }; MODULE_DEVICE_TABLE(acpi, int3472_device_id); static struct platform_driver int3472_discrete = { .driver = { .name = "int3472-discrete", .acpi_match_table = int3472_device_id, }, .probe = skl_int3472_discrete_probe, .remove_new = skl_int3472_discrete_remove, }; module_platform_driver(int3472_discrete); MODULE_DESCRIPTION("Intel SkyLake INT3472 ACPI Discrete Device Driver"); MODULE_AUTHOR("Daniel Scally <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/platform/x86/intel/int3472/discrete.c
// SPDX-License-Identifier: GPL-2.0 /* * TI TPS68470 PMIC platform data definition. * * Copyright (c) 2021 Dan Scally <[email protected]> * Copyright (c) 2021 Red Hat Inc. * * Red Hat authors: * Hans de Goede <[email protected]> */ #include <linux/dmi.h> #include <linux/gpio/machine.h> #include <linux/platform_data/tps68470.h> #include <linux/regulator/machine.h> #include "tps68470.h" static struct regulator_consumer_supply int347a_core_consumer_supplies[] = { REGULATOR_SUPPLY("dvdd", "i2c-INT347A:00"), }; static struct regulator_consumer_supply int347a_ana_consumer_supplies[] = { REGULATOR_SUPPLY("avdd", "i2c-INT347A:00"), }; static struct regulator_consumer_supply int347a_vcm_consumer_supplies[] = { REGULATOR_SUPPLY("vdd", "i2c-INT347A:00-VCM"), }; static struct regulator_consumer_supply int347a_vsio_consumer_supplies[] = { REGULATOR_SUPPLY("dovdd", "i2c-INT347A:00"), REGULATOR_SUPPLY("vsio", "i2c-INT347A:00-VCM"), REGULATOR_SUPPLY("vddd", "i2c-INT347E:00"), }; static struct regulator_consumer_supply int347a_aux1_consumer_supplies[] = { REGULATOR_SUPPLY("vdda", "i2c-INT347E:00"), }; static struct regulator_consumer_supply int347a_aux2_consumer_supplies[] = { REGULATOR_SUPPLY("vdddo", "i2c-INT347E:00"), }; static const struct regulator_init_data surface_go_tps68470_core_reg_init_data = { .constraints = { .min_uV = 1200000, .max_uV = 1200000, .apply_uV = true, .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, .num_consumer_supplies = ARRAY_SIZE(int347a_core_consumer_supplies), .consumer_supplies = int347a_core_consumer_supplies, }; static const struct regulator_init_data surface_go_tps68470_ana_reg_init_data = { .constraints = { .min_uV = 2815200, .max_uV = 2815200, .apply_uV = true, .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, .num_consumer_supplies = ARRAY_SIZE(int347a_ana_consumer_supplies), .consumer_supplies = int347a_ana_consumer_supplies, }; static const struct regulator_init_data surface_go_tps68470_vcm_reg_init_data = { .constraints = { .min_uV = 2815200, .max_uV = 2815200, .apply_uV = true, .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, .num_consumer_supplies = ARRAY_SIZE(int347a_vcm_consumer_supplies), .consumer_supplies = int347a_vcm_consumer_supplies, }; /* Ensure the always-on VIO regulator has the same voltage as VSIO */ static const struct regulator_init_data surface_go_tps68470_vio_reg_init_data = { .constraints = { .min_uV = 1800600, .max_uV = 1800600, .apply_uV = true, .always_on = true, }, }; static const struct regulator_init_data surface_go_tps68470_vsio_reg_init_data = { .constraints = { .min_uV = 1800600, .max_uV = 1800600, .apply_uV = true, .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, .num_consumer_supplies = ARRAY_SIZE(int347a_vsio_consumer_supplies), .consumer_supplies = int347a_vsio_consumer_supplies, }; static const struct regulator_init_data surface_go_tps68470_aux1_reg_init_data = { .constraints = { .min_uV = 2815200, .max_uV = 2815200, .apply_uV = 1, .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, .num_consumer_supplies = ARRAY_SIZE(int347a_aux1_consumer_supplies), .consumer_supplies = int347a_aux1_consumer_supplies, }; static const struct regulator_init_data surface_go_tps68470_aux2_reg_init_data = { .constraints = { .min_uV = 1800600, .max_uV = 1800600, .apply_uV = 1, .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, .num_consumer_supplies = ARRAY_SIZE(int347a_aux2_consumer_supplies), .consumer_supplies = int347a_aux2_consumer_supplies, }; static const struct tps68470_regulator_platform_data surface_go_tps68470_pdata = { .reg_init_data = { [TPS68470_CORE] = &surface_go_tps68470_core_reg_init_data, [TPS68470_ANA] = &surface_go_tps68470_ana_reg_init_data, [TPS68470_VCM] = &surface_go_tps68470_vcm_reg_init_data, [TPS68470_VIO] = &surface_go_tps68470_vio_reg_init_data, [TPS68470_VSIO] = &surface_go_tps68470_vsio_reg_init_data, [TPS68470_AUX1] = &surface_go_tps68470_aux1_reg_init_data, [TPS68470_AUX2] = &surface_go_tps68470_aux2_reg_init_data, }, }; static struct gpiod_lookup_table surface_go_int347a_gpios = { .dev_id = "i2c-INT347A:00", .table = { GPIO_LOOKUP("tps68470-gpio", 9, "reset", GPIO_ACTIVE_LOW), GPIO_LOOKUP("tps68470-gpio", 7, "powerdown", GPIO_ACTIVE_LOW), { } } }; static struct gpiod_lookup_table surface_go_int347e_gpios = { .dev_id = "i2c-INT347E:00", .table = { GPIO_LOOKUP("tps68470-gpio", 5, "enable", GPIO_ACTIVE_HIGH), { } } }; static const struct int3472_tps68470_board_data surface_go_tps68470_board_data = { .dev_name = "i2c-INT3472:05", .tps68470_regulator_pdata = &surface_go_tps68470_pdata, .n_gpiod_lookups = 2, .tps68470_gpio_lookup_tables = { &surface_go_int347a_gpios, &surface_go_int347e_gpios, }, }; static const struct int3472_tps68470_board_data surface_go3_tps68470_board_data = { .dev_name = "i2c-INT3472:01", .tps68470_regulator_pdata = &surface_go_tps68470_pdata, .n_gpiod_lookups = 2, .tps68470_gpio_lookup_tables = { &surface_go_int347a_gpios, &surface_go_int347e_gpios, }, }; static const struct dmi_system_id int3472_tps68470_board_data_table[] = { { .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Microsoft Corporation"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "Surface Go"), }, .driver_data = (void *)&surface_go_tps68470_board_data, }, { .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Microsoft Corporation"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "Surface Go 2"), }, .driver_data = (void *)&surface_go_tps68470_board_data, }, { .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Microsoft Corporation"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "Surface Go 3"), }, .driver_data = (void *)&surface_go3_tps68470_board_data, }, { } }; const struct int3472_tps68470_board_data *int3472_tps68470_get_board_data(const char *dev_name) { const struct int3472_tps68470_board_data *board_data; const struct dmi_system_id *match; for (match = dmi_first_match(int3472_tps68470_board_data_table); match; match = dmi_first_match(match + 1)) { board_data = match->driver_data; if (strcmp(board_data->dev_name, dev_name) == 0) return board_data; } return NULL; }
linux-master
drivers/platform/x86/intel/int3472/tps68470_board_data.c
// SPDX-License-Identifier: GPL-2.0 /* Author: Dan Scally <[email protected]> */ #include <linux/acpi.h> #include <linux/i2c.h> #include <linux/kernel.h> #include <linux/mfd/core.h> #include <linux/mfd/tps68470.h> #include <linux/platform_device.h> #include <linux/platform_data/tps68470.h> #include <linux/regmap.h> #include <linux/string.h> #include "common.h" #include "tps68470.h" #define DESIGNED_FOR_CHROMEOS 1 #define DESIGNED_FOR_WINDOWS 2 #define TPS68470_WIN_MFD_CELL_COUNT 3 static const struct mfd_cell tps68470_cros[] = { { .name = "tps68470-gpio" }, { .name = "tps68470_pmic_opregion" }, }; static const struct regmap_config tps68470_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = TPS68470_REG_MAX, }; static int tps68470_chip_init(struct device *dev, struct regmap *regmap) { unsigned int version; int ret; /* Force software reset */ ret = regmap_write(regmap, TPS68470_REG_RESET, TPS68470_REG_RESET_MASK); if (ret) return ret; ret = regmap_read(regmap, TPS68470_REG_REVID, &version); if (ret) { dev_err(dev, "Failed to read revision register: %d\n", ret); return ret; } dev_info(dev, "TPS68470 REVID: 0x%02x\n", version); return 0; } /** skl_int3472_tps68470_calc_type: Check what platform a device is designed for * @adev: A pointer to a &struct acpi_device * * Check CLDB buffer against the PMIC's adev. If present, then we check * the value of control_logic_type field and follow one of the * following scenarios: * * 1. No CLDB - likely ACPI tables designed for ChromeOS. We * create platform devices for the GPIOs and OpRegion drivers. * * 2. CLDB, with control_logic_type = 2 - probably ACPI tables * made for Windows 2-in-1 platforms. Register pdevs for GPIO, * Clock and Regulator drivers to bind to. * * 3. Any other value in control_logic_type, we should never have * gotten to this point; fail probe and return. * * Return: * * 1 Device intended for ChromeOS * * 2 Device intended for Windows * * -EINVAL Where @adev has an object named CLDB but it does not conform to * our expectations */ static int skl_int3472_tps68470_calc_type(struct acpi_device *adev) { struct int3472_cldb cldb = { 0 }; int ret; /* * A CLDB buffer that exists, but which does not match our expectations * should trigger an error so we don't blindly continue. */ ret = skl_int3472_fill_cldb(adev, &cldb); if (ret && ret != -ENODEV) return ret; if (ret) return DESIGNED_FOR_CHROMEOS; if (cldb.control_logic_type != 2) return -EINVAL; return DESIGNED_FOR_WINDOWS; } /* * Return the size of the flexible array member, because we'll need that later * on to pass .pdata_size to cells. */ static int skl_int3472_fill_clk_pdata(struct device *dev, struct tps68470_clk_platform_data **clk_pdata) { struct acpi_device *adev = ACPI_COMPANION(dev); struct acpi_device *consumer; unsigned int n_consumers = 0; const char *sensor_name; unsigned int i = 0; for_each_acpi_consumer_dev(adev, consumer) n_consumers++; if (!n_consumers) { dev_err(dev, "INT3472 seems to have no dependents\n"); return -ENODEV; } *clk_pdata = devm_kzalloc(dev, struct_size(*clk_pdata, consumers, n_consumers), GFP_KERNEL); if (!*clk_pdata) return -ENOMEM; (*clk_pdata)->n_consumers = n_consumers; i = 0; for_each_acpi_consumer_dev(adev, consumer) { sensor_name = devm_kasprintf(dev, GFP_KERNEL, I2C_DEV_NAME_FORMAT, acpi_dev_name(consumer)); if (!sensor_name) { acpi_dev_put(consumer); return -ENOMEM; } (*clk_pdata)->consumers[i].consumer_dev_name = sensor_name; i++; } return n_consumers; } static int skl_int3472_tps68470_probe(struct i2c_client *client) { struct acpi_device *adev = ACPI_COMPANION(&client->dev); const struct int3472_tps68470_board_data *board_data; struct tps68470_clk_platform_data *clk_pdata; struct mfd_cell *cells; struct regmap *regmap; int n_consumers; int device_type; int ret; int i; n_consumers = skl_int3472_fill_clk_pdata(&client->dev, &clk_pdata); if (n_consumers < 0) return n_consumers; regmap = devm_regmap_init_i2c(client, &tps68470_regmap_config); if (IS_ERR(regmap)) { dev_err(&client->dev, "Failed to create regmap: %ld\n", PTR_ERR(regmap)); return PTR_ERR(regmap); } i2c_set_clientdata(client, regmap); ret = tps68470_chip_init(&client->dev, regmap); if (ret < 0) { dev_err(&client->dev, "TPS68470 init error %d\n", ret); return ret; } device_type = skl_int3472_tps68470_calc_type(adev); switch (device_type) { case DESIGNED_FOR_WINDOWS: board_data = int3472_tps68470_get_board_data(dev_name(&client->dev)); if (!board_data) return dev_err_probe(&client->dev, -ENODEV, "No board-data found for this model\n"); cells = kcalloc(TPS68470_WIN_MFD_CELL_COUNT, sizeof(*cells), GFP_KERNEL); if (!cells) return -ENOMEM; /* * The order of the cells matters here! The clk must be first * because the regulator depends on it. The gpios must be last, * acpi_gpiochip_add() calls acpi_dev_clear_dependencies() and * the clk + regulators must be ready when this happens. */ cells[0].name = "tps68470-clk"; cells[0].platform_data = clk_pdata; cells[0].pdata_size = struct_size(clk_pdata, consumers, n_consumers); cells[1].name = "tps68470-regulator"; cells[1].platform_data = (void *)board_data->tps68470_regulator_pdata; cells[1].pdata_size = sizeof(struct tps68470_regulator_platform_data); cells[2].name = "tps68470-gpio"; for (i = 0; i < board_data->n_gpiod_lookups; i++) gpiod_add_lookup_table(board_data->tps68470_gpio_lookup_tables[i]); ret = devm_mfd_add_devices(&client->dev, PLATFORM_DEVID_NONE, cells, TPS68470_WIN_MFD_CELL_COUNT, NULL, 0, NULL); kfree(cells); if (ret) { for (i = 0; i < board_data->n_gpiod_lookups; i++) gpiod_remove_lookup_table(board_data->tps68470_gpio_lookup_tables[i]); } break; case DESIGNED_FOR_CHROMEOS: ret = devm_mfd_add_devices(&client->dev, PLATFORM_DEVID_NONE, tps68470_cros, ARRAY_SIZE(tps68470_cros), NULL, 0, NULL); break; default: dev_err(&client->dev, "Failed to add MFD devices\n"); return device_type; } /* * No acpi_dev_clear_dependencies() here, since the acpi_gpiochip_add() * for the GPIO cell already does this. */ return ret; } static void skl_int3472_tps68470_remove(struct i2c_client *client) { const struct int3472_tps68470_board_data *board_data; int i; board_data = int3472_tps68470_get_board_data(dev_name(&client->dev)); if (board_data) { for (i = 0; i < board_data->n_gpiod_lookups; i++) gpiod_remove_lookup_table(board_data->tps68470_gpio_lookup_tables[i]); } } static const struct acpi_device_id int3472_device_id[] = { { "INT3472", 0 }, { } }; MODULE_DEVICE_TABLE(acpi, int3472_device_id); static struct i2c_driver int3472_tps68470 = { .driver = { .name = "int3472-tps68470", .acpi_match_table = int3472_device_id, }, .probe = skl_int3472_tps68470_probe, .remove = skl_int3472_tps68470_remove, }; module_i2c_driver(int3472_tps68470); MODULE_DESCRIPTION("Intel SkyLake INT3472 ACPI TPS68470 Device Driver"); MODULE_AUTHOR("Daniel Scally <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_SOFTDEP("pre: clk-tps68470 tps68470-regulator");
linux-master
drivers/platform/x86/intel/int3472/tps68470.c
// SPDX-License-Identifier: GPL-2.0 /* Author: Dan Scally <[email protected]> */ #include <linux/acpi.h> #include <linux/clkdev.h> #include <linux/clk-provider.h> #include <linux/device.h> #include <linux/dmi.h> #include <linux/gpio/consumer.h> #include <linux/regulator/driver.h> #include <linux/slab.h> #include "common.h" /* * 82c0d13a-78c5-4244-9bb1-eb8b539a8d11 * This _DSM GUID allows controlling the sensor clk when it is not controlled * through a GPIO. */ static const guid_t img_clk_guid = GUID_INIT(0x82c0d13a, 0x78c5, 0x4244, 0x9b, 0xb1, 0xeb, 0x8b, 0x53, 0x9a, 0x8d, 0x11); static void skl_int3472_enable_clk(struct int3472_clock *clk, int enable) { struct int3472_discrete_device *int3472 = to_int3472_device(clk); union acpi_object args[3]; union acpi_object argv4; if (clk->ena_gpio) { gpiod_set_value_cansleep(clk->ena_gpio, enable); return; } args[0].integer.type = ACPI_TYPE_INTEGER; args[0].integer.value = clk->imgclk_index; args[1].integer.type = ACPI_TYPE_INTEGER; args[1].integer.value = enable; args[2].integer.type = ACPI_TYPE_INTEGER; args[2].integer.value = 1; argv4.type = ACPI_TYPE_PACKAGE; argv4.package.count = 3; argv4.package.elements = args; acpi_evaluate_dsm(acpi_device_handle(int3472->adev), &img_clk_guid, 0, 1, &argv4); } /* * The regulators have to have .ops to be valid, but the only ops we actually * support are .enable and .disable which are handled via .ena_gpiod. Pass an * empty struct to clear the check without lying about capabilities. */ static const struct regulator_ops int3472_gpio_regulator_ops; static int skl_int3472_clk_prepare(struct clk_hw *hw) { skl_int3472_enable_clk(to_int3472_clk(hw), 1); return 0; } static void skl_int3472_clk_unprepare(struct clk_hw *hw) { skl_int3472_enable_clk(to_int3472_clk(hw), 0); } static int skl_int3472_clk_enable(struct clk_hw *hw) { /* * We're just turning a GPIO on to enable the clock, which operation * has the potential to sleep. Given .enable() cannot sleep, but * .prepare() can, we toggle the GPIO in .prepare() instead. Thus, * nothing to do here. */ return 0; } static void skl_int3472_clk_disable(struct clk_hw *hw) { /* Likewise, nothing to do here... */ } static unsigned int skl_int3472_get_clk_frequency(struct int3472_discrete_device *int3472) { union acpi_object *obj; unsigned int freq; obj = skl_int3472_get_acpi_buffer(int3472->sensor, "SSDB"); if (IS_ERR(obj)) return 0; /* report rate as 0 on error */ if (obj->buffer.length < CIO2_SENSOR_SSDB_MCLKSPEED_OFFSET + sizeof(u32)) { dev_err(int3472->dev, "The buffer is too small\n"); kfree(obj); return 0; } freq = *(u32 *)(obj->buffer.pointer + CIO2_SENSOR_SSDB_MCLKSPEED_OFFSET); kfree(obj); return freq; } static unsigned long skl_int3472_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct int3472_clock *clk = to_int3472_clk(hw); return clk->frequency; } static const struct clk_ops skl_int3472_clock_ops = { .prepare = skl_int3472_clk_prepare, .unprepare = skl_int3472_clk_unprepare, .enable = skl_int3472_clk_enable, .disable = skl_int3472_clk_disable, .recalc_rate = skl_int3472_clk_recalc_rate, }; int skl_int3472_register_dsm_clock(struct int3472_discrete_device *int3472) { struct acpi_device *adev = int3472->adev; struct clk_init_data init = { .ops = &skl_int3472_clock_ops, .flags = CLK_GET_RATE_NOCACHE, }; int ret; if (int3472->clock.cl) return 0; /* A GPIO controlled clk has already been registered */ if (!acpi_check_dsm(adev->handle, &img_clk_guid, 0, BIT(1))) return 0; /* DSM clock control is not available */ init.name = kasprintf(GFP_KERNEL, "%s-clk", acpi_dev_name(adev)); if (!init.name) return -ENOMEM; int3472->clock.frequency = skl_int3472_get_clk_frequency(int3472); int3472->clock.clk_hw.init = &init; int3472->clock.clk = clk_register(&adev->dev, &int3472->clock.clk_hw); if (IS_ERR(int3472->clock.clk)) { ret = PTR_ERR(int3472->clock.clk); goto out_free_init_name; } int3472->clock.cl = clkdev_create(int3472->clock.clk, NULL, int3472->sensor_name); if (!int3472->clock.cl) { ret = -ENOMEM; goto err_unregister_clk; } kfree(init.name); return 0; err_unregister_clk: clk_unregister(int3472->clock.clk); out_free_init_name: kfree(init.name); return ret; } int skl_int3472_register_gpio_clock(struct int3472_discrete_device *int3472, struct acpi_resource_gpio *agpio, u32 polarity) { char *path = agpio->resource_source.string_ptr; struct clk_init_data init = { .ops = &skl_int3472_clock_ops, .flags = CLK_GET_RATE_NOCACHE, }; int ret; if (int3472->clock.cl) return -EBUSY; int3472->clock.ena_gpio = acpi_get_and_request_gpiod(path, agpio->pin_table[0], "int3472,clk-enable"); if (IS_ERR(int3472->clock.ena_gpio)) { ret = PTR_ERR(int3472->clock.ena_gpio); int3472->clock.ena_gpio = NULL; return dev_err_probe(int3472->dev, ret, "getting clk-enable GPIO\n"); } if (polarity == GPIO_ACTIVE_LOW) gpiod_toggle_active_low(int3472->clock.ena_gpio); /* Ensure the pin is in output mode and non-active state */ gpiod_direction_output(int3472->clock.ena_gpio, 0); init.name = kasprintf(GFP_KERNEL, "%s-clk", acpi_dev_name(int3472->adev)); if (!init.name) { ret = -ENOMEM; goto out_put_gpio; } int3472->clock.frequency = skl_int3472_get_clk_frequency(int3472); int3472->clock.clk_hw.init = &init; int3472->clock.clk = clk_register(&int3472->adev->dev, &int3472->clock.clk_hw); if (IS_ERR(int3472->clock.clk)) { ret = PTR_ERR(int3472->clock.clk); goto out_free_init_name; } int3472->clock.cl = clkdev_create(int3472->clock.clk, NULL, int3472->sensor_name); if (!int3472->clock.cl) { ret = -ENOMEM; goto err_unregister_clk; } kfree(init.name); return 0; err_unregister_clk: clk_unregister(int3472->clock.clk); out_free_init_name: kfree(init.name); out_put_gpio: gpiod_put(int3472->clock.ena_gpio); return ret; } void skl_int3472_unregister_clock(struct int3472_discrete_device *int3472) { if (!int3472->clock.cl) return; clkdev_drop(int3472->clock.cl); clk_unregister(int3472->clock.clk); gpiod_put(int3472->clock.ena_gpio); } /* * The INT3472 device is going to be the only supplier of a regulator for * the sensor device. But unlike the clk framework the regulator framework * does not allow matching by consumer-device-name only. * * Ideally all sensor drivers would use "avdd" as supply-id. But for drivers * where this cannot be changed because another supply-id is already used in * e.g. DeviceTree files an alias for the other supply-id can be added here. * * Do not forget to update GPIO_REGULATOR_SUPPLY_MAP_COUNT when changing this. */ static const char * const skl_int3472_regulator_map_supplies[] = { "avdd", "AVDD", }; static_assert(ARRAY_SIZE(skl_int3472_regulator_map_supplies) == GPIO_REGULATOR_SUPPLY_MAP_COUNT); /* * On some models there is a single GPIO regulator which is shared between * sensors and only listed in the ACPI resources of one sensor. * This DMI table contains the name of the second sensor. This is used to add * entries for the second sensor to the supply_map. */ static const struct dmi_system_id skl_int3472_regulator_second_sensor[] = { { /* Lenovo Miix 510-12IKB */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_PRODUCT_VERSION, "MIIX 510-12IKB"), }, .driver_data = "i2c-OVTI2680:00", }, { } }; int skl_int3472_register_regulator(struct int3472_discrete_device *int3472, struct acpi_resource_gpio *agpio) { char *path = agpio->resource_source.string_ptr; struct regulator_init_data init_data = { }; struct regulator_config cfg = { }; const char *second_sensor = NULL; const struct dmi_system_id *id; int i, j, ret; id = dmi_first_match(skl_int3472_regulator_second_sensor); if (id) second_sensor = id->driver_data; for (i = 0, j = 0; i < ARRAY_SIZE(skl_int3472_regulator_map_supplies); i++) { int3472->regulator.supply_map[j].supply = skl_int3472_regulator_map_supplies[i]; int3472->regulator.supply_map[j].dev_name = int3472->sensor_name; j++; if (second_sensor) { int3472->regulator.supply_map[j].supply = skl_int3472_regulator_map_supplies[i]; int3472->regulator.supply_map[j].dev_name = second_sensor; j++; } } init_data.constraints.valid_ops_mask = REGULATOR_CHANGE_STATUS; init_data.consumer_supplies = int3472->regulator.supply_map; init_data.num_consumer_supplies = j; snprintf(int3472->regulator.regulator_name, sizeof(int3472->regulator.regulator_name), "%s-regulator", acpi_dev_name(int3472->adev)); snprintf(int3472->regulator.supply_name, GPIO_REGULATOR_SUPPLY_NAME_LENGTH, "supply-0"); int3472->regulator.rdesc = INT3472_REGULATOR( int3472->regulator.regulator_name, int3472->regulator.supply_name, &int3472_gpio_regulator_ops); int3472->regulator.gpio = acpi_get_and_request_gpiod(path, agpio->pin_table[0], "int3472,regulator"); if (IS_ERR(int3472->regulator.gpio)) { ret = PTR_ERR(int3472->regulator.gpio); int3472->regulator.gpio = NULL; return dev_err_probe(int3472->dev, ret, "getting regulator GPIO\n"); } /* Ensure the pin is in output mode and non-active state */ gpiod_direction_output(int3472->regulator.gpio, 0); cfg.dev = &int3472->adev->dev; cfg.init_data = &init_data; cfg.ena_gpiod = int3472->regulator.gpio; int3472->regulator.rdev = regulator_register(int3472->dev, &int3472->regulator.rdesc, &cfg); if (IS_ERR(int3472->regulator.rdev)) { ret = PTR_ERR(int3472->regulator.rdev); goto err_free_gpio; } return 0; err_free_gpio: gpiod_put(int3472->regulator.gpio); return ret; } void skl_int3472_unregister_regulator(struct int3472_discrete_device *int3472) { regulator_unregister(int3472->regulator.rdev); gpiod_put(int3472->regulator.gpio); }
linux-master
drivers/platform/x86/intel/int3472/clk_and_regulator.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2022 Intel Corporation. */ #include <linux/cpu.h> #include <linux/delay.h> #include <linux/fs.h> #include <linux/semaphore.h> #include <linux/slab.h> #include "ifs.h" /* * Protects against simultaneous tests on multiple cores, or * reloading can file while a test is in progress */ static DEFINE_SEMAPHORE(ifs_sem, 1); /* * The sysfs interface to check additional details of last test * cat /sys/devices/system/platform/ifs/details */ static ssize_t details_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ifs_data *ifsd = ifs_get_data(dev); return sysfs_emit(buf, "%#llx\n", ifsd->scan_details); } static DEVICE_ATTR_RO(details); static const char * const status_msg[] = { [SCAN_NOT_TESTED] = "untested", [SCAN_TEST_PASS] = "pass", [SCAN_TEST_FAIL] = "fail" }; /* * The sysfs interface to check the test status: * To check the status of last test * cat /sys/devices/platform/ifs/status */ static ssize_t status_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ifs_data *ifsd = ifs_get_data(dev); return sysfs_emit(buf, "%s\n", status_msg[ifsd->status]); } static DEVICE_ATTR_RO(status); /* * The sysfs interface for single core testing * To start test, for example, cpu5 * echo 5 > /sys/devices/platform/ifs/run_test * To check the result: * cat /sys/devices/platform/ifs/result * The sibling core gets tested at the same time. */ static ssize_t run_test_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned int cpu; int rc; rc = kstrtouint(buf, 0, &cpu); if (rc < 0 || cpu >= nr_cpu_ids) return -EINVAL; if (down_interruptible(&ifs_sem)) return -EINTR; rc = do_core_test(cpu, dev); up(&ifs_sem); return rc ? rc : count; } static DEVICE_ATTR_WO(run_test); static ssize_t current_batch_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ifs_data *ifsd = ifs_get_data(dev); unsigned int cur_batch; int rc; rc = kstrtouint(buf, 0, &cur_batch); if (rc < 0 || cur_batch > 0xff) return -EINVAL; if (down_interruptible(&ifs_sem)) return -EINTR; ifsd->cur_batch = cur_batch; rc = ifs_load_firmware(dev); up(&ifs_sem); return (rc == 0) ? count : rc; } static ssize_t current_batch_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ifs_data *ifsd = ifs_get_data(dev); if (!ifsd->loaded) return sysfs_emit(buf, "none\n"); else return sysfs_emit(buf, "0x%02x\n", ifsd->cur_batch); } static DEVICE_ATTR_RW(current_batch); /* * Display currently loaded IFS image version. */ static ssize_t image_version_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ifs_data *ifsd = ifs_get_data(dev); if (!ifsd->loaded) return sysfs_emit(buf, "%s\n", "none"); else return sysfs_emit(buf, "%#x\n", ifsd->loaded_version); } static DEVICE_ATTR_RO(image_version); /* global scan sysfs attributes */ struct attribute *plat_ifs_attrs[] = { &dev_attr_details.attr, &dev_attr_status.attr, &dev_attr_run_test.attr, &dev_attr_current_batch.attr, &dev_attr_image_version.attr, NULL }; /* global array sysfs attributes */ struct attribute *plat_ifs_array_attrs[] = { &dev_attr_details.attr, &dev_attr_status.attr, &dev_attr_run_test.attr, NULL };
linux-master
drivers/platform/x86/intel/ifs/sysfs.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2022 Intel Corporation. */ #include <linux/cpu.h> #include <linux/delay.h> #include <linux/fs.h> #include <linux/nmi.h> #include <linux/slab.h> #include <linux/stop_machine.h> #include "ifs.h" /* * Note all code and data in this file is protected by * ifs_sem. On HT systems all threads on a core will * execute together, but only the first thread on the * core will update results of the test. */ #define CREATE_TRACE_POINTS #include <trace/events/intel_ifs.h> /* Max retries on the same chunk */ #define MAX_IFS_RETRIES 5 /* * Number of TSC cycles that a logical CPU will wait for the other * logical CPU on the core in the WRMSR(ACTIVATE_SCAN). */ #define IFS_THREAD_WAIT 100000 enum ifs_status_err_code { IFS_NO_ERROR = 0, IFS_OTHER_THREAD_COULD_NOT_JOIN = 1, IFS_INTERRUPTED_BEFORE_RENDEZVOUS = 2, IFS_POWER_MGMT_INADEQUATE_FOR_SCAN = 3, IFS_INVALID_CHUNK_RANGE = 4, IFS_MISMATCH_ARGUMENTS_BETWEEN_THREADS = 5, IFS_CORE_NOT_CAPABLE_CURRENTLY = 6, IFS_UNASSIGNED_ERROR_CODE = 7, IFS_EXCEED_NUMBER_OF_THREADS_CONCURRENT = 8, IFS_INTERRUPTED_DURING_EXECUTION = 9, }; static const char * const scan_test_status[] = { [IFS_NO_ERROR] = "SCAN no error", [IFS_OTHER_THREAD_COULD_NOT_JOIN] = "Other thread could not join.", [IFS_INTERRUPTED_BEFORE_RENDEZVOUS] = "Interrupt occurred prior to SCAN coordination.", [IFS_POWER_MGMT_INADEQUATE_FOR_SCAN] = "Core Abort SCAN Response due to power management condition.", [IFS_INVALID_CHUNK_RANGE] = "Non valid chunks in the range", [IFS_MISMATCH_ARGUMENTS_BETWEEN_THREADS] = "Mismatch in arguments between threads T0/T1.", [IFS_CORE_NOT_CAPABLE_CURRENTLY] = "Core not capable of performing SCAN currently", [IFS_UNASSIGNED_ERROR_CODE] = "Unassigned error code 0x7", [IFS_EXCEED_NUMBER_OF_THREADS_CONCURRENT] = "Exceeded number of Logical Processors (LP) allowed to run Scan-At-Field concurrently", [IFS_INTERRUPTED_DURING_EXECUTION] = "Interrupt occurred prior to SCAN start", }; static void message_not_tested(struct device *dev, int cpu, union ifs_status status) { if (status.error_code < ARRAY_SIZE(scan_test_status)) { dev_info(dev, "CPU(s) %*pbl: SCAN operation did not start. %s\n", cpumask_pr_args(cpu_smt_mask(cpu)), scan_test_status[status.error_code]); } else if (status.error_code == IFS_SW_TIMEOUT) { dev_info(dev, "CPU(s) %*pbl: software timeout during scan\n", cpumask_pr_args(cpu_smt_mask(cpu))); } else if (status.error_code == IFS_SW_PARTIAL_COMPLETION) { dev_info(dev, "CPU(s) %*pbl: %s\n", cpumask_pr_args(cpu_smt_mask(cpu)), "Not all scan chunks were executed. Maximum forward progress retries exceeded"); } else { dev_info(dev, "CPU(s) %*pbl: SCAN unknown status %llx\n", cpumask_pr_args(cpu_smt_mask(cpu)), status.data); } } static void message_fail(struct device *dev, int cpu, union ifs_status status) { struct ifs_data *ifsd = ifs_get_data(dev); /* * control_error is set when the microcode runs into a problem * loading the image from the reserved BIOS memory, or it has * been corrupted. Reloading the image may fix this issue. */ if (status.control_error) { dev_err(dev, "CPU(s) %*pbl: could not execute from loaded scan image. Batch: %02x version: 0x%x\n", cpumask_pr_args(cpu_smt_mask(cpu)), ifsd->cur_batch, ifsd->loaded_version); } /* * signature_error is set when the output from the scan chains does not * match the expected signature. This might be a transient problem (e.g. * due to a bit flip from an alpha particle or neutron). If the problem * repeats on a subsequent test, then it indicates an actual problem in * the core being tested. */ if (status.signature_error) { dev_err(dev, "CPU(s) %*pbl: test signature incorrect. Batch: %02x version: 0x%x\n", cpumask_pr_args(cpu_smt_mask(cpu)), ifsd->cur_batch, ifsd->loaded_version); } } static bool can_restart(union ifs_status status) { enum ifs_status_err_code err_code = status.error_code; /* Signature for chunk is bad, or scan test failed */ if (status.signature_error || status.control_error) return false; switch (err_code) { case IFS_NO_ERROR: case IFS_OTHER_THREAD_COULD_NOT_JOIN: case IFS_INTERRUPTED_BEFORE_RENDEZVOUS: case IFS_POWER_MGMT_INADEQUATE_FOR_SCAN: case IFS_EXCEED_NUMBER_OF_THREADS_CONCURRENT: case IFS_INTERRUPTED_DURING_EXECUTION: return true; case IFS_INVALID_CHUNK_RANGE: case IFS_MISMATCH_ARGUMENTS_BETWEEN_THREADS: case IFS_CORE_NOT_CAPABLE_CURRENTLY: case IFS_UNASSIGNED_ERROR_CODE: break; } return false; } /* * Execute the scan. Called "simultaneously" on all threads of a core * at high priority using the stop_cpus mechanism. */ static int doscan(void *data) { int cpu = smp_processor_id(); u64 *msrs = data; int first; /* Only the first logical CPU on a core reports result */ first = cpumask_first(cpu_smt_mask(cpu)); /* * This WRMSR will wait for other HT threads to also write * to this MSR (at most for activate.delay cycles). Then it * starts scan of each requested chunk. The core scan happens * during the "execution" of the WRMSR. This instruction can * take up to 200 milliseconds (in the case where all chunks * are processed in a single pass) before it retires. */ wrmsrl(MSR_ACTIVATE_SCAN, msrs[0]); if (cpu == first) { /* Pass back the result of the scan */ rdmsrl(MSR_SCAN_STATUS, msrs[1]); } return 0; } /* * Use stop_core_cpuslocked() to synchronize writing to MSR_ACTIVATE_SCAN * on all threads of the core to be tested. Loop if necessary to complete * run of all chunks. Include some defensive tests to make sure forward * progress is made, and that the whole test completes in a reasonable time. */ static void ifs_test_core(int cpu, struct device *dev) { union ifs_scan activate; union ifs_status status; unsigned long timeout; struct ifs_data *ifsd; u64 msrvals[2]; int retries; ifsd = ifs_get_data(dev); activate.rsvd = 0; activate.delay = IFS_THREAD_WAIT; activate.sigmce = 0; activate.start = 0; activate.stop = ifsd->valid_chunks - 1; timeout = jiffies + HZ / 2; retries = MAX_IFS_RETRIES; while (activate.start <= activate.stop) { if (time_after(jiffies, timeout)) { status.error_code = IFS_SW_TIMEOUT; break; } msrvals[0] = activate.data; stop_core_cpuslocked(cpu, doscan, msrvals); status.data = msrvals[1]; trace_ifs_status(cpu, activate, status); /* Some cases can be retried, give up for others */ if (!can_restart(status)) break; if (status.chunk_num == activate.start) { /* Check for forward progress */ if (--retries == 0) { if (status.error_code == IFS_NO_ERROR) status.error_code = IFS_SW_PARTIAL_COMPLETION; break; } } else { retries = MAX_IFS_RETRIES; activate.start = status.chunk_num; } } /* Update status for this core */ ifsd->scan_details = status.data; if (status.control_error || status.signature_error) { ifsd->status = SCAN_TEST_FAIL; message_fail(dev, cpu, status); } else if (status.error_code) { ifsd->status = SCAN_NOT_TESTED; message_not_tested(dev, cpu, status); } else { ifsd->status = SCAN_TEST_PASS; } } #define SPINUNIT 100 /* 100 nsec */ static atomic_t array_cpus_out; /* * Simplified cpu sibling rendezvous loop based on microcode loader __wait_for_cpus() */ static void wait_for_sibling_cpu(atomic_t *t, long long timeout) { int cpu = smp_processor_id(); const struct cpumask *smt_mask = cpu_smt_mask(cpu); int all_cpus = cpumask_weight(smt_mask); atomic_inc(t); while (atomic_read(t) < all_cpus) { if (timeout < SPINUNIT) return; ndelay(SPINUNIT); timeout -= SPINUNIT; touch_nmi_watchdog(); } } static int do_array_test(void *data) { union ifs_array *command = data; int cpu = smp_processor_id(); int first; /* * Only one logical CPU on a core needs to trigger the Array test via MSR write. */ first = cpumask_first(cpu_smt_mask(cpu)); if (cpu == first) { wrmsrl(MSR_ARRAY_BIST, command->data); /* Pass back the result of the test */ rdmsrl(MSR_ARRAY_BIST, command->data); } /* Tests complete faster if the sibling is spinning here */ wait_for_sibling_cpu(&array_cpus_out, NSEC_PER_SEC); return 0; } static void ifs_array_test_core(int cpu, struct device *dev) { union ifs_array command = {}; bool timed_out = false; struct ifs_data *ifsd; unsigned long timeout; ifsd = ifs_get_data(dev); command.array_bitmask = ~0U; timeout = jiffies + HZ / 2; do { if (time_after(jiffies, timeout)) { timed_out = true; break; } atomic_set(&array_cpus_out, 0); stop_core_cpuslocked(cpu, do_array_test, &command); if (command.ctrl_result) break; } while (command.array_bitmask); ifsd->scan_details = command.data; if (command.ctrl_result) ifsd->status = SCAN_TEST_FAIL; else if (timed_out || command.array_bitmask) ifsd->status = SCAN_NOT_TESTED; else ifsd->status = SCAN_TEST_PASS; } /* * Initiate per core test. It wakes up work queue threads on the target cpu and * its sibling cpu. Once all sibling threads wake up, the scan test gets executed and * wait for all sibling threads to finish the scan test. */ int do_core_test(int cpu, struct device *dev) { const struct ifs_test_caps *test = ifs_get_test_caps(dev); struct ifs_data *ifsd = ifs_get_data(dev); int ret = 0; /* Prevent CPUs from being taken offline during the scan test */ cpus_read_lock(); if (!cpu_online(cpu)) { dev_info(dev, "cannot test on the offline cpu %d\n", cpu); ret = -EINVAL; goto out; } switch (test->test_num) { case IFS_TYPE_SAF: if (!ifsd->loaded) return -EPERM; ifs_test_core(cpu, dev); break; case IFS_TYPE_ARRAY_BIST: ifs_array_test_core(cpu, dev); break; default: return -EINVAL; } out: cpus_read_unlock(); return ret; }
linux-master
drivers/platform/x86/intel/ifs/runtest.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2022 Intel Corporation. */ #include <linux/module.h> #include <linux/kdev_t.h> #include <linux/semaphore.h> #include <linux/slab.h> #include <asm/cpu_device_id.h> #include "ifs.h" #define X86_MATCH(model) \ X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, \ INTEL_FAM6_##model, X86_FEATURE_CORE_CAPABILITIES, NULL) static const struct x86_cpu_id ifs_cpu_ids[] __initconst = { X86_MATCH(SAPPHIRERAPIDS_X), X86_MATCH(EMERALDRAPIDS_X), {} }; MODULE_DEVICE_TABLE(x86cpu, ifs_cpu_ids); ATTRIBUTE_GROUPS(plat_ifs); ATTRIBUTE_GROUPS(plat_ifs_array); bool *ifs_pkg_auth; static const struct ifs_test_caps scan_test = { .integrity_cap_bit = MSR_INTEGRITY_CAPS_PERIODIC_BIST_BIT, .test_num = IFS_TYPE_SAF, }; static const struct ifs_test_caps array_test = { .integrity_cap_bit = MSR_INTEGRITY_CAPS_ARRAY_BIST_BIT, .test_num = IFS_TYPE_ARRAY_BIST, }; static struct ifs_device ifs_devices[] = { [IFS_TYPE_SAF] = { .test_caps = &scan_test, .misc = { .name = "intel_ifs_0", .minor = MISC_DYNAMIC_MINOR, .groups = plat_ifs_groups, }, }, [IFS_TYPE_ARRAY_BIST] = { .test_caps = &array_test, .misc = { .name = "intel_ifs_1", .minor = MISC_DYNAMIC_MINOR, .groups = plat_ifs_array_groups, }, }, }; #define IFS_NUMTESTS ARRAY_SIZE(ifs_devices) static void ifs_cleanup(void) { int i; for (i = 0; i < IFS_NUMTESTS; i++) { if (ifs_devices[i].misc.this_device) misc_deregister(&ifs_devices[i].misc); } kfree(ifs_pkg_auth); } static int __init ifs_init(void) { const struct x86_cpu_id *m; u64 msrval; int i, ret; m = x86_match_cpu(ifs_cpu_ids); if (!m) return -ENODEV; if (rdmsrl_safe(MSR_IA32_CORE_CAPS, &msrval)) return -ENODEV; if (!(msrval & MSR_IA32_CORE_CAPS_INTEGRITY_CAPS)) return -ENODEV; if (rdmsrl_safe(MSR_INTEGRITY_CAPS, &msrval)) return -ENODEV; ifs_pkg_auth = kmalloc_array(topology_max_packages(), sizeof(bool), GFP_KERNEL); if (!ifs_pkg_auth) return -ENOMEM; for (i = 0; i < IFS_NUMTESTS; i++) { if (!(msrval & BIT(ifs_devices[i].test_caps->integrity_cap_bit))) continue; ret = misc_register(&ifs_devices[i].misc); if (ret) goto err_exit; } return 0; err_exit: ifs_cleanup(); return ret; } static void __exit ifs_exit(void) { ifs_cleanup(); } module_init(ifs_init); module_exit(ifs_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Intel In Field Scan (IFS) device");
linux-master
drivers/platform/x86/intel/ifs/core.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2022 Intel Corporation. */ #include <linux/firmware.h> #include <asm/cpu.h> #include <asm/microcode.h> #include "ifs.h" #define IFS_CHUNK_ALIGNMENT 256 union meta_data { struct { u32 meta_type; // metadata type u32 meta_size; // size of this entire struct including hdrs. u32 test_type; // IFS test type u32 fusa_info; // Fusa info u32 total_images; // Total number of images u32 current_image; // Current Image # u32 total_chunks; // Total number of chunks in this image u32 starting_chunk; // Starting chunk number in this image u32 size_per_chunk; // size of each chunk u32 chunks_per_stride; // number of chunks in a stride }; u8 padding[IFS_CHUNK_ALIGNMENT]; }; #define IFS_HEADER_SIZE (sizeof(struct microcode_header_intel)) #define META_TYPE_IFS 1 static struct microcode_header_intel *ifs_header_ptr; /* pointer to the ifs image header */ static u64 ifs_hash_ptr; /* Address of ifs metadata (hash) */ static u64 ifs_test_image_ptr; /* 256B aligned address of test pattern */ static DECLARE_COMPLETION(ifs_done); static const char * const scan_hash_status[] = { [0] = "No error reported", [1] = "Attempt to copy scan hashes when copy already in progress", [2] = "Secure Memory not set up correctly", [3] = "FuSaInfo.ProgramID does not match or ff-mm-ss does not match", [4] = "Reserved", [5] = "Integrity check failed", [6] = "Scan reload or test is in progress" }; static const char * const scan_authentication_status[] = { [0] = "No error reported", [1] = "Attempt to authenticate a chunk which is already marked as authentic", [2] = "Chunk authentication error. The hash of chunk did not match expected value" }; #define MC_HEADER_META_TYPE_END (0) struct metadata_header { unsigned int type; unsigned int blk_size; }; static struct metadata_header *find_meta_data(void *ucode, unsigned int meta_type) { struct microcode_header_intel *hdr = &((struct microcode_intel *)ucode)->hdr; struct metadata_header *meta_header; unsigned long data_size, total_meta; unsigned long meta_size = 0; data_size = intel_microcode_get_datasize(hdr); total_meta = hdr->metasize; if (!total_meta) return NULL; meta_header = (ucode + MC_HEADER_SIZE + data_size) - total_meta; while (meta_header->type != MC_HEADER_META_TYPE_END && meta_header->blk_size && meta_size < total_meta) { meta_size += meta_header->blk_size; if (meta_header->type == meta_type) return meta_header; meta_header = (void *)meta_header + meta_header->blk_size; } return NULL; } /* * To copy scan hashes and authenticate test chunks, the initiating cpu must point * to the EDX:EAX to the test image in linear address. * Run wrmsr(MSR_COPY_SCAN_HASHES) for scan hash copy and run wrmsr(MSR_AUTHENTICATE_AND_COPY_CHUNK) * for scan hash copy and test chunk authentication. */ static void copy_hashes_authenticate_chunks(struct work_struct *work) { struct ifs_work *local_work = container_of(work, struct ifs_work, w); union ifs_scan_hashes_status hashes_status; union ifs_chunks_auth_status chunk_status; struct device *dev = local_work->dev; int i, num_chunks, chunk_size; struct ifs_data *ifsd; u64 linear_addr, base; u32 err_code; ifsd = ifs_get_data(dev); /* run scan hash copy */ wrmsrl(MSR_COPY_SCAN_HASHES, ifs_hash_ptr); rdmsrl(MSR_SCAN_HASHES_STATUS, hashes_status.data); /* enumerate the scan image information */ num_chunks = hashes_status.num_chunks; chunk_size = hashes_status.chunk_size * 1024; err_code = hashes_status.error_code; if (!hashes_status.valid) { ifsd->loading_error = true; if (err_code >= ARRAY_SIZE(scan_hash_status)) { dev_err(dev, "invalid error code 0x%x for hash copy\n", err_code); goto done; } dev_err(dev, "Hash copy error : %s", scan_hash_status[err_code]); goto done; } /* base linear address to the scan data */ base = ifs_test_image_ptr; /* scan data authentication and copy chunks to secured memory */ for (i = 0; i < num_chunks; i++) { linear_addr = base + i * chunk_size; linear_addr |= i; wrmsrl(MSR_AUTHENTICATE_AND_COPY_CHUNK, linear_addr); rdmsrl(MSR_CHUNKS_AUTHENTICATION_STATUS, chunk_status.data); ifsd->valid_chunks = chunk_status.valid_chunks; err_code = chunk_status.error_code; if (err_code) { ifsd->loading_error = true; if (err_code >= ARRAY_SIZE(scan_authentication_status)) { dev_err(dev, "invalid error code 0x%x for authentication\n", err_code); goto done; } dev_err(dev, "Chunk authentication error %s\n", scan_authentication_status[err_code]); goto done; } } done: complete(&ifs_done); } static int validate_ifs_metadata(struct device *dev) { struct ifs_data *ifsd = ifs_get_data(dev); union meta_data *ifs_meta; char test_file[64]; int ret = -EINVAL; snprintf(test_file, sizeof(test_file), "%02x-%02x-%02x-%02x.scan", boot_cpu_data.x86, boot_cpu_data.x86_model, boot_cpu_data.x86_stepping, ifsd->cur_batch); ifs_meta = (union meta_data *)find_meta_data(ifs_header_ptr, META_TYPE_IFS); if (!ifs_meta) { dev_err(dev, "IFS Metadata missing in file %s\n", test_file); return ret; } ifs_test_image_ptr = (u64)ifs_meta + sizeof(union meta_data); /* Scan chunk start must be 256 byte aligned */ if (!IS_ALIGNED(ifs_test_image_ptr, IFS_CHUNK_ALIGNMENT)) { dev_err(dev, "Scan pattern is not aligned on %d bytes aligned in %s\n", IFS_CHUNK_ALIGNMENT, test_file); return ret; } if (ifs_meta->current_image != ifsd->cur_batch) { dev_warn(dev, "Mismatch between filename %s and batch metadata 0x%02x\n", test_file, ifs_meta->current_image); return ret; } return 0; } /* * IFS requires scan chunks authenticated per each socket in the platform. * Once the test chunk is authenticated, it is automatically copied to secured memory * and proceed the authentication for the next chunk. */ static int scan_chunks_sanity_check(struct device *dev) { struct ifs_data *ifsd = ifs_get_data(dev); struct ifs_work local_work; int curr_pkg, cpu, ret; memset(ifs_pkg_auth, 0, (topology_max_packages() * sizeof(bool))); ret = validate_ifs_metadata(dev); if (ret) return ret; ifsd->loading_error = false; ifsd->loaded_version = ifs_header_ptr->rev; /* copy the scan hash and authenticate per package */ cpus_read_lock(); for_each_online_cpu(cpu) { curr_pkg = topology_physical_package_id(cpu); if (ifs_pkg_auth[curr_pkg]) continue; reinit_completion(&ifs_done); local_work.dev = dev; INIT_WORK_ONSTACK(&local_work.w, copy_hashes_authenticate_chunks); schedule_work_on(cpu, &local_work.w); wait_for_completion(&ifs_done); if (ifsd->loading_error) { ret = -EIO; goto out; } ifs_pkg_auth[curr_pkg] = 1; } ret = 0; out: cpus_read_unlock(); return ret; } static int image_sanity_check(struct device *dev, const struct microcode_header_intel *data) { struct ucode_cpu_info uci; /* Provide a specific error message when loading an older/unsupported image */ if (data->hdrver != MC_HEADER_TYPE_IFS) { dev_err(dev, "Header version %d not supported\n", data->hdrver); return -EINVAL; } if (intel_microcode_sanity_check((void *)data, true, MC_HEADER_TYPE_IFS)) { dev_err(dev, "sanity check failed\n"); return -EINVAL; } intel_cpu_collect_info(&uci); if (!intel_find_matching_signature((void *)data, uci.cpu_sig.sig, uci.cpu_sig.pf)) { dev_err(dev, "cpu signature, processor flags not matching\n"); return -EINVAL; } return 0; } /* * Load ifs image. Before loading ifs module, the ifs image must be located * in /lib/firmware/intel/ifs_x/ and named as family-model-stepping-02x.{testname}. */ int ifs_load_firmware(struct device *dev) { const struct ifs_test_caps *test = ifs_get_test_caps(dev); struct ifs_data *ifsd = ifs_get_data(dev); const struct firmware *fw; char scan_path[64]; int ret = -EINVAL; snprintf(scan_path, sizeof(scan_path), "intel/ifs_%d/%02x-%02x-%02x-%02x.scan", test->test_num, boot_cpu_data.x86, boot_cpu_data.x86_model, boot_cpu_data.x86_stepping, ifsd->cur_batch); ret = request_firmware_direct(&fw, scan_path, dev); if (ret) { dev_err(dev, "ifs file %s load failed\n", scan_path); goto done; } ret = image_sanity_check(dev, (struct microcode_header_intel *)fw->data); if (ret) goto release; ifs_header_ptr = (struct microcode_header_intel *)fw->data; ifs_hash_ptr = (u64)(ifs_header_ptr + 1); ret = scan_chunks_sanity_check(dev); if (ret) dev_err(dev, "Load failure for batch: %02x\n", ifsd->cur_batch); release: release_firmware(fw); done: ifsd->loaded = (ret == 0); return ret; }
linux-master
drivers/platform/x86/intel/ifs/load.c
// SPDX-License-Identifier: GPL-2.0 /* * Intel Platform Monitory Technology Telemetry driver * * Copyright (c) 2020, Intel Corporation. * All Rights Reserved. * * Author: "Alexander Duyck" <[email protected]> */ #include <linux/kernel.h> #include <linux/io-64-nonatomic-lo-hi.h> #include <linux/module.h> #include <linux/mm.h> #include <linux/pci.h> #include "../vsec.h" #include "class.h" #define PMT_XA_START 0 #define PMT_XA_MAX INT_MAX #define PMT_XA_LIMIT XA_LIMIT(PMT_XA_START, PMT_XA_MAX) #define GUID_SPR_PUNIT 0x9956f43f bool intel_pmt_is_early_client_hw(struct device *dev) { struct intel_vsec_device *ivdev = dev_to_ivdev(dev); /* * Early implementations of PMT on client platforms have some * differences from the server platforms (which use the Out Of Band * Management Services Module OOBMSM). */ return !!(ivdev->info->quirks & VSEC_QUIRK_EARLY_HW); } EXPORT_SYMBOL_NS_GPL(intel_pmt_is_early_client_hw, INTEL_PMT); static inline int pmt_memcpy64_fromio(void *to, const u64 __iomem *from, size_t count) { int i, remain; u64 *buf = to; if (!IS_ALIGNED((unsigned long)from, 8)) return -EFAULT; for (i = 0; i < count/8; i++) buf[i] = readq(&from[i]); /* Copy any remaining bytes */ remain = count % 8; if (remain) { u64 tmp = readq(&from[i]); memcpy(&buf[i], &tmp, remain); } return count; } /* * sysfs */ static ssize_t intel_pmt_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct intel_pmt_entry *entry = container_of(attr, struct intel_pmt_entry, pmt_bin_attr); if (off < 0) return -EINVAL; if (off >= entry->size) return 0; if (count > entry->size - off) count = entry->size - off; if (entry->guid == GUID_SPR_PUNIT) /* PUNIT on SPR only supports aligned 64-bit read */ count = pmt_memcpy64_fromio(buf, entry->base + off, count); else memcpy_fromio(buf, entry->base + off, count); return count; } static int intel_pmt_mmap(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, struct vm_area_struct *vma) { struct intel_pmt_entry *entry = container_of(attr, struct intel_pmt_entry, pmt_bin_attr); unsigned long vsize = vma->vm_end - vma->vm_start; struct device *dev = kobj_to_dev(kobj); unsigned long phys = entry->base_addr; unsigned long pfn = PFN_DOWN(phys); unsigned long psize; if (vma->vm_flags & (VM_WRITE | VM_MAYWRITE)) return -EROFS; psize = (PFN_UP(entry->base_addr + entry->size) - pfn) * PAGE_SIZE; if (vsize > psize) { dev_err(dev, "Requested mmap size is too large\n"); return -EINVAL; } vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); if (io_remap_pfn_range(vma, vma->vm_start, pfn, vsize, vma->vm_page_prot)) return -EAGAIN; return 0; } static ssize_t guid_show(struct device *dev, struct device_attribute *attr, char *buf) { struct intel_pmt_entry *entry = dev_get_drvdata(dev); return sprintf(buf, "0x%x\n", entry->guid); } static DEVICE_ATTR_RO(guid); static ssize_t size_show(struct device *dev, struct device_attribute *attr, char *buf) { struct intel_pmt_entry *entry = dev_get_drvdata(dev); return sprintf(buf, "%zu\n", entry->size); } static DEVICE_ATTR_RO(size); static ssize_t offset_show(struct device *dev, struct device_attribute *attr, char *buf) { struct intel_pmt_entry *entry = dev_get_drvdata(dev); return sprintf(buf, "%lu\n", offset_in_page(entry->base_addr)); } static DEVICE_ATTR_RO(offset); static struct attribute *intel_pmt_attrs[] = { &dev_attr_guid.attr, &dev_attr_size.attr, &dev_attr_offset.attr, NULL }; ATTRIBUTE_GROUPS(intel_pmt); static struct class intel_pmt_class = { .name = "intel_pmt", .dev_groups = intel_pmt_groups, }; static int intel_pmt_populate_entry(struct intel_pmt_entry *entry, struct intel_pmt_header *header, struct device *dev, struct resource *disc_res) { struct pci_dev *pci_dev = to_pci_dev(dev->parent); u8 bir; /* * The base offset should always be 8 byte aligned. * * For non-local access types the lower 3 bits of base offset * contains the index of the base address register where the * telemetry can be found. */ bir = GET_BIR(header->base_offset); /* Local access and BARID only for now */ switch (header->access_type) { case ACCESS_LOCAL: if (bir) { dev_err(dev, "Unsupported BAR index %d for access type %d\n", bir, header->access_type); return -EINVAL; } /* * For access_type LOCAL, the base address is as follows: * base address = end of discovery region + base offset */ entry->base_addr = disc_res->end + 1 + header->base_offset; /* * Some hardware use a different calculation for the base address * when access_type == ACCESS_LOCAL. On the these systems * ACCCESS_LOCAL refers to an address in the same BAR as the * header but at a fixed offset. But as the header address was * supplied to the driver, we don't know which BAR it was in. * So search for the bar whose range includes the header address. */ if (intel_pmt_is_early_client_hw(dev)) { int i; entry->base_addr = 0; for (i = 0; i < 6; i++) if (disc_res->start >= pci_resource_start(pci_dev, i) && (disc_res->start <= pci_resource_end(pci_dev, i))) { entry->base_addr = pci_resource_start(pci_dev, i) + header->base_offset; break; } if (!entry->base_addr) return -EINVAL; } break; case ACCESS_BARID: /* * If another BAR was specified then the base offset * represents the offset within that BAR. SO retrieve the * address from the parent PCI device and add offset. */ entry->base_addr = pci_resource_start(pci_dev, bir) + GET_ADDRESS(header->base_offset); break; default: dev_err(dev, "Unsupported access type %d\n", header->access_type); return -EINVAL; } entry->guid = header->guid; entry->size = header->size; return 0; } static int intel_pmt_dev_register(struct intel_pmt_entry *entry, struct intel_pmt_namespace *ns, struct device *parent) { struct resource res = {0}; struct device *dev; int ret; ret = xa_alloc(ns->xa, &entry->devid, entry, PMT_XA_LIMIT, GFP_KERNEL); if (ret) return ret; dev = device_create(&intel_pmt_class, parent, MKDEV(0, 0), entry, "%s%d", ns->name, entry->devid); if (IS_ERR(dev)) { dev_err(parent, "Could not create %s%d device node\n", ns->name, entry->devid); ret = PTR_ERR(dev); goto fail_dev_create; } entry->kobj = &dev->kobj; if (ns->attr_grp) { ret = sysfs_create_group(entry->kobj, ns->attr_grp); if (ret) goto fail_sysfs; } /* if size is 0 assume no data buffer, so no file needed */ if (!entry->size) return 0; res.start = entry->base_addr; res.end = res.start + entry->size - 1; res.flags = IORESOURCE_MEM; entry->base = devm_ioremap_resource(dev, &res); if (IS_ERR(entry->base)) { ret = PTR_ERR(entry->base); goto fail_ioremap; } sysfs_bin_attr_init(&entry->pmt_bin_attr); entry->pmt_bin_attr.attr.name = ns->name; entry->pmt_bin_attr.attr.mode = 0440; entry->pmt_bin_attr.mmap = intel_pmt_mmap; entry->pmt_bin_attr.read = intel_pmt_read; entry->pmt_bin_attr.size = entry->size; ret = sysfs_create_bin_file(&dev->kobj, &entry->pmt_bin_attr); if (!ret) return 0; fail_ioremap: if (ns->attr_grp) sysfs_remove_group(entry->kobj, ns->attr_grp); fail_sysfs: device_unregister(dev); fail_dev_create: xa_erase(ns->xa, entry->devid); return ret; } int intel_pmt_dev_create(struct intel_pmt_entry *entry, struct intel_pmt_namespace *ns, struct intel_vsec_device *intel_vsec_dev, int idx) { struct device *dev = &intel_vsec_dev->auxdev.dev; struct intel_pmt_header header; struct resource *disc_res; int ret; disc_res = &intel_vsec_dev->resource[idx]; entry->disc_table = devm_ioremap_resource(dev, disc_res); if (IS_ERR(entry->disc_table)) return PTR_ERR(entry->disc_table); ret = ns->pmt_header_decode(entry, &header, dev); if (ret) return ret; ret = intel_pmt_populate_entry(entry, &header, dev, disc_res); if (ret) return ret; return intel_pmt_dev_register(entry, ns, dev); } EXPORT_SYMBOL_NS_GPL(intel_pmt_dev_create, INTEL_PMT); void intel_pmt_dev_destroy(struct intel_pmt_entry *entry, struct intel_pmt_namespace *ns) { struct device *dev = kobj_to_dev(entry->kobj); if (entry->size) sysfs_remove_bin_file(entry->kobj, &entry->pmt_bin_attr); if (ns->attr_grp) sysfs_remove_group(entry->kobj, ns->attr_grp); device_unregister(dev); xa_erase(ns->xa, entry->devid); } EXPORT_SYMBOL_NS_GPL(intel_pmt_dev_destroy, INTEL_PMT); static int __init pmt_class_init(void) { return class_register(&intel_pmt_class); } static void __exit pmt_class_exit(void) { class_unregister(&intel_pmt_class); } module_init(pmt_class_init); module_exit(pmt_class_exit); MODULE_AUTHOR("Alexander Duyck <[email protected]>"); MODULE_DESCRIPTION("Intel PMT Class driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/platform/x86/intel/pmt/class.c
// SPDX-License-Identifier: GPL-2.0 /* * Intel Platform Monitory Technology Telemetry driver * * Copyright (c) 2020, Intel Corporation. * All Rights Reserved. * * Author: "David E. Box" <[email protected]> */ #include <linux/auxiliary_bus.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/overflow.h> #include "../vsec.h" #include "class.h" #define TELEM_SIZE_OFFSET 0x0 #define TELEM_GUID_OFFSET 0x4 #define TELEM_BASE_OFFSET 0x8 #define TELEM_ACCESS(v) ((v) & GENMASK(3, 0)) #define TELEM_TYPE(v) (((v) & GENMASK(7, 4)) >> 4) /* size is in bytes */ #define TELEM_SIZE(v) (((v) & GENMASK(27, 12)) >> 10) /* Used by client hardware to identify a fixed telemetry entry*/ #define TELEM_CLIENT_FIXED_BLOCK_GUID 0x10000000 enum telem_type { TELEM_TYPE_PUNIT = 0, TELEM_TYPE_CRASHLOG, TELEM_TYPE_PUNIT_FIXED, }; struct pmt_telem_priv { int num_entries; struct intel_pmt_entry entry[]; }; static bool pmt_telem_region_overlaps(struct intel_pmt_entry *entry, struct device *dev) { u32 guid = readl(entry->disc_table + TELEM_GUID_OFFSET); if (intel_pmt_is_early_client_hw(dev)) { u32 type = TELEM_TYPE(readl(entry->disc_table)); if ((type == TELEM_TYPE_PUNIT_FIXED) || (guid == TELEM_CLIENT_FIXED_BLOCK_GUID)) return true; } return false; } static int pmt_telem_header_decode(struct intel_pmt_entry *entry, struct intel_pmt_header *header, struct device *dev) { void __iomem *disc_table = entry->disc_table; if (pmt_telem_region_overlaps(entry, dev)) return 1; header->access_type = TELEM_ACCESS(readl(disc_table)); header->guid = readl(disc_table + TELEM_GUID_OFFSET); header->base_offset = readl(disc_table + TELEM_BASE_OFFSET); /* Size is measured in DWORDS, but accessor returns bytes */ header->size = TELEM_SIZE(readl(disc_table)); /* * Some devices may expose non-functioning entries that are * reserved for future use. They have zero size. Do not fail * probe for these. Just ignore them. */ if (header->size == 0 || header->access_type == 0xF) return 1; return 0; } static DEFINE_XARRAY_ALLOC(telem_array); static struct intel_pmt_namespace pmt_telem_ns = { .name = "telem", .xa = &telem_array, .pmt_header_decode = pmt_telem_header_decode, }; static void pmt_telem_remove(struct auxiliary_device *auxdev) { struct pmt_telem_priv *priv = auxiliary_get_drvdata(auxdev); int i; for (i = 0; i < priv->num_entries; i++) intel_pmt_dev_destroy(&priv->entry[i], &pmt_telem_ns); } static int pmt_telem_probe(struct auxiliary_device *auxdev, const struct auxiliary_device_id *id) { struct intel_vsec_device *intel_vsec_dev = auxdev_to_ivdev(auxdev); struct pmt_telem_priv *priv; size_t size; int i, ret; size = struct_size(priv, entry, intel_vsec_dev->num_resources); priv = devm_kzalloc(&auxdev->dev, size, GFP_KERNEL); if (!priv) return -ENOMEM; auxiliary_set_drvdata(auxdev, priv); for (i = 0; i < intel_vsec_dev->num_resources; i++) { struct intel_pmt_entry *entry = &priv->entry[priv->num_entries]; ret = intel_pmt_dev_create(entry, &pmt_telem_ns, intel_vsec_dev, i); if (ret < 0) goto abort_probe; if (ret) continue; priv->num_entries++; } return 0; abort_probe: pmt_telem_remove(auxdev); return ret; } static const struct auxiliary_device_id pmt_telem_id_table[] = { { .name = "intel_vsec.telemetry" }, {} }; MODULE_DEVICE_TABLE(auxiliary, pmt_telem_id_table); static struct auxiliary_driver pmt_telem_aux_driver = { .id_table = pmt_telem_id_table, .remove = pmt_telem_remove, .probe = pmt_telem_probe, }; static int __init pmt_telem_init(void) { return auxiliary_driver_register(&pmt_telem_aux_driver); } module_init(pmt_telem_init); static void __exit pmt_telem_exit(void) { auxiliary_driver_unregister(&pmt_telem_aux_driver); xa_destroy(&telem_array); } module_exit(pmt_telem_exit); MODULE_AUTHOR("David E. Box <[email protected]>"); MODULE_DESCRIPTION("Intel PMT Telemetry driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(INTEL_PMT);
linux-master
drivers/platform/x86/intel/pmt/telemetry.c
// SPDX-License-Identifier: GPL-2.0 /* * Intel Platform Monitoring Technology Crashlog driver * * Copyright (c) 2020, Intel Corporation. * All Rights Reserved. * * Author: "Alexander Duyck" <[email protected]> */ #include <linux/auxiliary_bus.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/overflow.h> #include "../vsec.h" #include "class.h" /* Crashlog discovery header types */ #define CRASH_TYPE_OOBMSM 1 /* Control Flags */ #define CRASHLOG_FLAG_DISABLE BIT(28) /* * Bits 29 and 30 control the state of bit 31. * * Bit 29 will clear bit 31, if set, allowing a new crashlog to be captured. * Bit 30 will immediately trigger a crashlog to be generated, setting bit 31. * Bit 31 is the read-only status with a 1 indicating log is complete. */ #define CRASHLOG_FLAG_TRIGGER_CLEAR BIT(29) #define CRASHLOG_FLAG_TRIGGER_EXECUTE BIT(30) #define CRASHLOG_FLAG_TRIGGER_COMPLETE BIT(31) #define CRASHLOG_FLAG_TRIGGER_MASK GENMASK(31, 28) /* Crashlog Discovery Header */ #define CONTROL_OFFSET 0x0 #define GUID_OFFSET 0x4 #define BASE_OFFSET 0x8 #define SIZE_OFFSET 0xC #define GET_ACCESS(v) ((v) & GENMASK(3, 0)) #define GET_TYPE(v) (((v) & GENMASK(7, 4)) >> 4) #define GET_VERSION(v) (((v) & GENMASK(19, 16)) >> 16) /* size is in bytes */ #define GET_SIZE(v) ((v) * sizeof(u32)) struct crashlog_entry { /* entry must be first member of struct */ struct intel_pmt_entry entry; struct mutex control_mutex; }; struct pmt_crashlog_priv { int num_entries; struct crashlog_entry entry[]; }; /* * I/O */ static bool pmt_crashlog_complete(struct intel_pmt_entry *entry) { u32 control = readl(entry->disc_table + CONTROL_OFFSET); /* return current value of the crashlog complete flag */ return !!(control & CRASHLOG_FLAG_TRIGGER_COMPLETE); } static bool pmt_crashlog_disabled(struct intel_pmt_entry *entry) { u32 control = readl(entry->disc_table + CONTROL_OFFSET); /* return current value of the crashlog disabled flag */ return !!(control & CRASHLOG_FLAG_DISABLE); } static bool pmt_crashlog_supported(struct intel_pmt_entry *entry) { u32 discovery_header = readl(entry->disc_table + CONTROL_OFFSET); u32 crash_type, version; crash_type = GET_TYPE(discovery_header); version = GET_VERSION(discovery_header); /* * Currently we only recognize OOBMSM version 0 devices. * We can ignore all other crashlog devices in the system. */ return crash_type == CRASH_TYPE_OOBMSM && version == 0; } static void pmt_crashlog_set_disable(struct intel_pmt_entry *entry, bool disable) { u32 control = readl(entry->disc_table + CONTROL_OFFSET); /* clear trigger bits so we are only modifying disable flag */ control &= ~CRASHLOG_FLAG_TRIGGER_MASK; if (disable) control |= CRASHLOG_FLAG_DISABLE; else control &= ~CRASHLOG_FLAG_DISABLE; writel(control, entry->disc_table + CONTROL_OFFSET); } static void pmt_crashlog_set_clear(struct intel_pmt_entry *entry) { u32 control = readl(entry->disc_table + CONTROL_OFFSET); control &= ~CRASHLOG_FLAG_TRIGGER_MASK; control |= CRASHLOG_FLAG_TRIGGER_CLEAR; writel(control, entry->disc_table + CONTROL_OFFSET); } static void pmt_crashlog_set_execute(struct intel_pmt_entry *entry) { u32 control = readl(entry->disc_table + CONTROL_OFFSET); control &= ~CRASHLOG_FLAG_TRIGGER_MASK; control |= CRASHLOG_FLAG_TRIGGER_EXECUTE; writel(control, entry->disc_table + CONTROL_OFFSET); } /* * sysfs */ static ssize_t enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct intel_pmt_entry *entry = dev_get_drvdata(dev); int enabled = !pmt_crashlog_disabled(entry); return sprintf(buf, "%d\n", enabled); } static ssize_t enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct crashlog_entry *entry; bool enabled; int result; entry = dev_get_drvdata(dev); result = kstrtobool(buf, &enabled); if (result) return result; mutex_lock(&entry->control_mutex); pmt_crashlog_set_disable(&entry->entry, !enabled); mutex_unlock(&entry->control_mutex); return count; } static DEVICE_ATTR_RW(enable); static ssize_t trigger_show(struct device *dev, struct device_attribute *attr, char *buf) { struct intel_pmt_entry *entry; int trigger; entry = dev_get_drvdata(dev); trigger = pmt_crashlog_complete(entry); return sprintf(buf, "%d\n", trigger); } static ssize_t trigger_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct crashlog_entry *entry; bool trigger; int result; entry = dev_get_drvdata(dev); result = kstrtobool(buf, &trigger); if (result) return result; mutex_lock(&entry->control_mutex); if (!trigger) { pmt_crashlog_set_clear(&entry->entry); } else if (pmt_crashlog_complete(&entry->entry)) { /* we cannot trigger a new crash if one is still pending */ result = -EEXIST; goto err; } else if (pmt_crashlog_disabled(&entry->entry)) { /* if device is currently disabled, return busy */ result = -EBUSY; goto err; } else { pmt_crashlog_set_execute(&entry->entry); } result = count; err: mutex_unlock(&entry->control_mutex); return result; } static DEVICE_ATTR_RW(trigger); static struct attribute *pmt_crashlog_attrs[] = { &dev_attr_enable.attr, &dev_attr_trigger.attr, NULL }; static const struct attribute_group pmt_crashlog_group = { .attrs = pmt_crashlog_attrs, }; static int pmt_crashlog_header_decode(struct intel_pmt_entry *entry, struct intel_pmt_header *header, struct device *dev) { void __iomem *disc_table = entry->disc_table; struct crashlog_entry *crashlog; if (!pmt_crashlog_supported(entry)) return 1; /* initialize control mutex */ crashlog = container_of(entry, struct crashlog_entry, entry); mutex_init(&crashlog->control_mutex); header->access_type = GET_ACCESS(readl(disc_table)); header->guid = readl(disc_table + GUID_OFFSET); header->base_offset = readl(disc_table + BASE_OFFSET); /* Size is measured in DWORDS, but accessor returns bytes */ header->size = GET_SIZE(readl(disc_table + SIZE_OFFSET)); return 0; } static DEFINE_XARRAY_ALLOC(crashlog_array); static struct intel_pmt_namespace pmt_crashlog_ns = { .name = "crashlog", .xa = &crashlog_array, .attr_grp = &pmt_crashlog_group, .pmt_header_decode = pmt_crashlog_header_decode, }; /* * initialization */ static void pmt_crashlog_remove(struct auxiliary_device *auxdev) { struct pmt_crashlog_priv *priv = auxiliary_get_drvdata(auxdev); int i; for (i = 0; i < priv->num_entries; i++) intel_pmt_dev_destroy(&priv->entry[i].entry, &pmt_crashlog_ns); } static int pmt_crashlog_probe(struct auxiliary_device *auxdev, const struct auxiliary_device_id *id) { struct intel_vsec_device *intel_vsec_dev = auxdev_to_ivdev(auxdev); struct pmt_crashlog_priv *priv; size_t size; int i, ret; size = struct_size(priv, entry, intel_vsec_dev->num_resources); priv = devm_kzalloc(&auxdev->dev, size, GFP_KERNEL); if (!priv) return -ENOMEM; auxiliary_set_drvdata(auxdev, priv); for (i = 0; i < intel_vsec_dev->num_resources; i++) { struct intel_pmt_entry *entry = &priv->entry[priv->num_entries].entry; ret = intel_pmt_dev_create(entry, &pmt_crashlog_ns, intel_vsec_dev, i); if (ret < 0) goto abort_probe; if (ret) continue; priv->num_entries++; } return 0; abort_probe: pmt_crashlog_remove(auxdev); return ret; } static const struct auxiliary_device_id pmt_crashlog_id_table[] = { { .name = "intel_vsec.crashlog" }, {} }; MODULE_DEVICE_TABLE(auxiliary, pmt_crashlog_id_table); static struct auxiliary_driver pmt_crashlog_aux_driver = { .id_table = pmt_crashlog_id_table, .remove = pmt_crashlog_remove, .probe = pmt_crashlog_probe, }; static int __init pmt_crashlog_init(void) { return auxiliary_driver_register(&pmt_crashlog_aux_driver); } static void __exit pmt_crashlog_exit(void) { auxiliary_driver_unregister(&pmt_crashlog_aux_driver); xa_destroy(&crashlog_array); } module_init(pmt_crashlog_init); module_exit(pmt_crashlog_exit); MODULE_AUTHOR("Alexander Duyck <[email protected]>"); MODULE_DESCRIPTION("Intel PMT Crashlog driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(INTEL_PMT);
linux-master
drivers/platform/x86/intel/pmt/crashlog.c
// SPDX-License-Identifier: GPL-2.0+ /* * Driver for controlling LEDs for cameras connected to the Intel atomisp2 * The main purpose of this driver is to turn off LEDs which are on at boot. * * Copyright (C) 2020 Hans de Goede <[email protected]> */ #include <linux/dmi.h> #include <linux/gpio/consumer.h> #include <linux/gpio/machine.h> #include <linux/leds.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/platform_device.h> #include <linux/workqueue.h> /* This must be leds-gpio as the leds-gpio driver binds to the name */ #define DEV_NAME "leds-gpio" static const struct gpio_led atomisp2_leds[] = { { .name = "atomisp2::camera", .default_state = LEDS_GPIO_DEFSTATE_OFF, }, }; static const struct gpio_led_platform_data atomisp2_leds_pdata = { .num_leds = ARRAY_SIZE(atomisp2_leds), .leds = atomisp2_leds, }; static struct gpiod_lookup_table asus_t100ta_lookup = { .dev_id = DEV_NAME, .table = { GPIO_LOOKUP_IDX("INT33FC:02", 8, NULL, 0, GPIO_ACTIVE_HIGH), { } } }; static struct gpiod_lookup_table asus_t100chi_lookup = { .dev_id = DEV_NAME, .table = { GPIO_LOOKUP_IDX("INT33FC:01", 24, NULL, 0, GPIO_ACTIVE_HIGH), { } } }; static const struct dmi_system_id atomisp2_led_systems[] __initconst = { { .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), /* Non exact match to also match T100TAF */ DMI_MATCH(DMI_PRODUCT_NAME, "T100TA"), }, .driver_data = &asus_t100ta_lookup, }, { .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "T200TA"), }, .driver_data = &asus_t100ta_lookup, }, { .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "T100CHI"), }, .driver_data = &asus_t100chi_lookup, }, {} /* Terminating entry */ }; MODULE_DEVICE_TABLE(dmi, atomisp2_led_systems); static struct gpiod_lookup_table *gpio_lookup; static struct platform_device *pdev; static int __init atomisp2_led_init(void) { const struct dmi_system_id *system; system = dmi_first_match(atomisp2_led_systems); if (!system) return -ENODEV; gpio_lookup = system->driver_data; gpiod_add_lookup_table(gpio_lookup); pdev = platform_device_register_resndata(NULL, DEV_NAME, PLATFORM_DEVID_NONE, NULL, 0, &atomisp2_leds_pdata, sizeof(atomisp2_leds_pdata)); if (IS_ERR(pdev)) gpiod_remove_lookup_table(gpio_lookup); return PTR_ERR_OR_ZERO(pdev); } static void __exit atomisp2_led_cleanup(void) { platform_device_unregister(pdev); gpiod_remove_lookup_table(gpio_lookup); } module_init(atomisp2_led_init); module_exit(atomisp2_led_cleanup); /* * The ACPI INIT method from Asus WMI's code on the T100TA and T200TA turns the * LED on (without the WMI interface allowing further control over the LED). * Ensure we are loaded after asus-nb-wmi so that we turn the LED off again. */ MODULE_SOFTDEP("pre: asus_nb_wmi"); MODULE_AUTHOR("Hans de Goede <[email protected]"); MODULE_DESCRIPTION("Intel atomisp2 camera LED driver"); MODULE_LICENSE("GPL");
linux-master
drivers/platform/x86/intel/atomisp2/led.c
// SPDX-License-Identifier: GPL-2.0 /* * Dummy driver for Intel's Image Signal Processor found on Bay Trail * and Cherry Trail devices. The sole purpose of this driver is to allow * the ISP to be put in D3. * * Copyright (C) 2018 Hans de Goede <[email protected]> * * Based on various non upstream patches for ISP support: * Copyright (C) 2010-2017 Intel Corporation. All rights reserved. * Copyright (c) 2010 Silicon Hive www.siliconhive.com. */ #include <linux/delay.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/pci.h> #include <linux/pm_runtime.h> #include <asm/iosf_mbi.h> /* PCI configuration regs */ #define PCI_INTERRUPT_CTRL 0x9c #define PCI_CSI_CONTROL 0xe8 #define PCI_CSI_CONTROL_PORTS_OFF_MASK 0x7 /* IOSF BT_MBI_UNIT_PMC regs */ #define ISPSSPM0 0x39 #define ISPSSPM0_ISPSSC_OFFSET 0 #define ISPSSPM0_ISPSSC_MASK 0x00000003 #define ISPSSPM0_ISPSSS_OFFSET 24 #define ISPSSPM0_ISPSSS_MASK 0x03000000 #define ISPSSPM0_IUNIT_POWER_ON 0x0 #define ISPSSPM0_IUNIT_POWER_OFF 0x3 static int isp_set_power(struct pci_dev *dev, bool enable) { unsigned long timeout; u32 val = enable ? ISPSSPM0_IUNIT_POWER_ON : ISPSSPM0_IUNIT_POWER_OFF; /* Write to ISPSSPM0 bit[1:0] to power on/off the IUNIT */ iosf_mbi_modify(BT_MBI_UNIT_PMC, MBI_REG_READ, ISPSSPM0, val, ISPSSPM0_ISPSSC_MASK); /* * There should be no IUNIT access while power-down is * in progress. HW sighting: 4567865. * Wait up to 50 ms for the IUNIT to shut down. * And we do the same for power on. */ timeout = jiffies + msecs_to_jiffies(50); do { u32 tmp; /* Wait until ISPSSPM0 bit[25:24] shows the right value */ iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_REG_READ, ISPSSPM0, &tmp); tmp = (tmp & ISPSSPM0_ISPSSS_MASK) >> ISPSSPM0_ISPSSS_OFFSET; if (tmp == val) return 0; usleep_range(1000, 2000); } while (time_before(jiffies, timeout)); dev_err(&dev->dev, "IUNIT power-%s timeout.\n", enable ? "on" : "off"); return -EBUSY; } static int isp_probe(struct pci_dev *dev, const struct pci_device_id *id) { pm_runtime_allow(&dev->dev); pm_runtime_put_sync_suspend(&dev->dev); return 0; } static void isp_remove(struct pci_dev *dev) { pm_runtime_get_sync(&dev->dev); pm_runtime_forbid(&dev->dev); } static int isp_pci_suspend(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); u32 val; pci_write_config_dword(pdev, PCI_INTERRUPT_CTRL, 0); /* * MRFLD IUNIT DPHY is located in an always-power-on island * MRFLD HW design need all CSI ports are disabled before * powering down the IUNIT. */ pci_read_config_dword(pdev, PCI_CSI_CONTROL, &val); val |= PCI_CSI_CONTROL_PORTS_OFF_MASK; pci_write_config_dword(pdev, PCI_CSI_CONTROL, val); /* * We lose config space access when punit power gates * the ISP. Can't use pci_set_power_state() because * pmcsr won't actually change when we write to it. */ pci_save_state(pdev); pdev->current_state = PCI_D3cold; isp_set_power(pdev, false); return 0; } static int isp_pci_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); isp_set_power(pdev, true); pdev->current_state = PCI_D0; pci_restore_state(pdev); return 0; } static UNIVERSAL_DEV_PM_OPS(isp_pm_ops, isp_pci_suspend, isp_pci_resume, NULL); static const struct pci_device_id isp_id_table[] = { { PCI_VDEVICE(INTEL, 0x0f38), }, { PCI_VDEVICE(INTEL, 0x22b8), }, { 0, } }; MODULE_DEVICE_TABLE(pci, isp_id_table); static struct pci_driver isp_pci_driver = { .name = "intel_atomisp2_pm", .id_table = isp_id_table, .probe = isp_probe, .remove = isp_remove, .driver.pm = &isp_pm_ops, }; module_pci_driver(isp_pci_driver); MODULE_DESCRIPTION("Intel AtomISP2 dummy / power-management drv (for suspend)"); MODULE_AUTHOR("Hans de Goede <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/platform/x86/intel/atomisp2/pm.c
// SPDX-License-Identifier: GPL-2.0 /* * Intel SOC Telemetry debugfs Driver: Currently supports APL * Copyright (c) 2015, Intel Corporation. * All Rights Reserved. * * This file provides the debugfs interfaces for telemetry. * /sys/kernel/debug/telemetry/pss_info: Shows Primary Control Sub-Sys Counters * /sys/kernel/debug/telemetry/ioss_info: Shows IO Sub-System Counters * /sys/kernel/debug/telemetry/soc_states: Shows SoC State * /sys/kernel/debug/telemetry/pss_trace_verbosity: Read and Change Tracing * Verbosity via firmware * /sys/kernel/debug/telemetry/ioss_race_verbosity: Write and Change Tracing * Verbosity via firmware */ #include <linux/debugfs.h> #include <linux/device.h> #include <linux/mfd/intel_pmc_bxt.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/seq_file.h> #include <linux/suspend.h> #include <asm/cpu_device_id.h> #include <asm/intel-family.h> #include <asm/intel_telemetry.h> #define DRIVER_NAME "telemetry_soc_debugfs" #define DRIVER_VERSION "1.0.0" /* ApolloLake SoC Event-IDs */ #define TELEM_APL_PSS_PSTATES_ID 0x2802 #define TELEM_APL_PSS_IDLE_ID 0x2806 #define TELEM_APL_PCS_IDLE_BLOCKED_ID 0x2C00 #define TELEM_APL_PCS_S0IX_BLOCKED_ID 0x2C01 #define TELEM_APL_PSS_WAKEUP_ID 0x2C02 #define TELEM_APL_PSS_LTR_BLOCKING_ID 0x2C03 #define TELEM_APL_S0IX_TOTAL_OCC_ID 0x4000 #define TELEM_APL_S0IX_SHLW_OCC_ID 0x4001 #define TELEM_APL_S0IX_DEEP_OCC_ID 0x4002 #define TELEM_APL_S0IX_TOTAL_RES_ID 0x4800 #define TELEM_APL_S0IX_SHLW_RES_ID 0x4801 #define TELEM_APL_S0IX_DEEP_RES_ID 0x4802 #define TELEM_APL_D0IX_ID 0x581A #define TELEM_APL_D3_ID 0x5819 #define TELEM_APL_PG_ID 0x5818 #define TELEM_INFO_SRAMEVTS_MASK 0xFF00 #define TELEM_INFO_SRAMEVTS_SHIFT 0x8 #define TELEM_SSRAM_READ_TIMEOUT 10 #define TELEM_MASK_BIT 1 #define TELEM_MASK_BYTE 0xFF #define BYTES_PER_LONG 8 #define TELEM_APL_MASK_PCS_STATE 0xF /* Max events in bitmap to check for */ #define TELEM_PSS_IDLE_EVTS 25 #define TELEM_PSS_IDLE_BLOCKED_EVTS 20 #define TELEM_PSS_S0IX_BLOCKED_EVTS 20 #define TELEM_PSS_S0IX_WAKEUP_EVTS 20 #define TELEM_PSS_LTR_BLOCKING_EVTS 20 #define TELEM_IOSS_DX_D0IX_EVTS 25 #define TELEM_IOSS_PG_EVTS 30 #define TELEM_CHECK_AND_PARSE_EVTS(EVTID, EVTNUM, BUF, EVTLOG, EVTDAT, MASK) { \ if (evtlog[index].telem_evtid == (EVTID)) { \ for (idx = 0; idx < (EVTNUM); idx++) \ (BUF)[idx] = ((EVTLOG) >> (EVTDAT)[idx].bit_pos) & \ (MASK); \ continue; \ } \ } #define TELEM_CHECK_AND_PARSE_CTRS(EVTID, CTR) { \ if (evtlog[index].telem_evtid == (EVTID)) { \ (CTR) = evtlog[index].telem_evtlog; \ continue; \ } \ } static u8 suspend_prep_ok; static u32 suspend_shlw_ctr_temp, suspend_deep_ctr_temp; static u64 suspend_shlw_res_temp, suspend_deep_res_temp; struct telemetry_susp_stats { u32 shlw_ctr; u32 deep_ctr; u64 shlw_res; u64 deep_res; }; /* Bitmap definitions for default counters in APL */ struct telem_pss_idle_stateinfo { const char *name; u32 bit_pos; }; static struct telem_pss_idle_stateinfo telem_apl_pss_idle_data[] = { {"IA_CORE0_C1E", 0}, {"IA_CORE1_C1E", 1}, {"IA_CORE2_C1E", 2}, {"IA_CORE3_C1E", 3}, {"IA_CORE0_C6", 16}, {"IA_CORE1_C6", 17}, {"IA_CORE2_C6", 18}, {"IA_CORE3_C6", 19}, {"IA_MODULE0_C7", 32}, {"IA_MODULE1_C7", 33}, {"GT_RC6", 40}, {"IUNIT_PROCESSING_IDLE", 41}, {"FAR_MEM_IDLE", 43}, {"DISPLAY_IDLE", 44}, {"IUNIT_INPUT_SYSTEM_IDLE", 45}, {"PCS_STATUS", 60}, }; struct telem_pcs_blkd_info { const char *name; u32 bit_pos; }; static struct telem_pcs_blkd_info telem_apl_pcs_idle_blkd_data[] = { {"COMPUTE", 0}, {"MISC", 8}, {"MODULE_ACTIONS_PENDING", 16}, {"LTR", 24}, {"DISPLAY_WAKE", 32}, {"ISP_WAKE", 40}, {"PSF0_ACTIVE", 48}, }; static struct telem_pcs_blkd_info telem_apl_pcs_s0ix_blkd_data[] = { {"LTR", 0}, {"IRTL", 8}, {"WAKE_DEADLINE_PENDING", 16}, {"DISPLAY", 24}, {"ISP", 32}, {"CORE", 40}, {"PMC", 48}, {"MISC", 56}, }; struct telem_pss_ltr_info { const char *name; u32 bit_pos; }; static struct telem_pss_ltr_info telem_apl_pss_ltr_data[] = { {"CORE_ACTIVE", 0}, {"MEM_UP", 8}, {"DFX", 16}, {"DFX_FORCE_LTR", 24}, {"DISPLAY", 32}, {"ISP", 40}, {"SOUTH", 48}, }; struct telem_pss_wakeup_info { const char *name; u32 bit_pos; }; static struct telem_pss_wakeup_info telem_apl_pss_wakeup[] = { {"IP_IDLE", 0}, {"DISPLAY_WAKE", 8}, {"VOLTAGE_REG_INT", 16}, {"DROWSY_TIMER (HOTPLUG)", 24}, {"CORE_WAKE", 32}, {"MISC_S0IX", 40}, {"MISC_ABORT", 56}, }; struct telem_ioss_d0ix_stateinfo { const char *name; u32 bit_pos; }; static struct telem_ioss_d0ix_stateinfo telem_apl_ioss_d0ix_data[] = { {"CSE", 0}, {"SCC2", 1}, {"GMM", 2}, {"XDCI", 3}, {"XHCI", 4}, {"ISH", 5}, {"AVS", 6}, {"PCIE0P1", 7}, {"PECI0P0", 8}, {"LPSS", 9}, {"SCC", 10}, {"PWM", 11}, {"PCIE1_P3", 12}, {"PCIE1_P2", 13}, {"PCIE1_P1", 14}, {"PCIE1_P0", 15}, {"CNV", 16}, {"SATA", 17}, {"PRTC", 18}, }; struct telem_ioss_pg_info { const char *name; u32 bit_pos; }; static struct telem_ioss_pg_info telem_apl_ioss_pg_data[] = { {"LPSS", 0}, {"SCC", 1}, {"P2SB", 2}, {"SCC2", 3}, {"GMM", 4}, {"PCIE0", 5}, {"XDCI", 6}, {"xHCI", 7}, {"CSE", 8}, {"SPI", 9}, {"AVSPGD4", 10}, {"AVSPGD3", 11}, {"AVSPGD2", 12}, {"AVSPGD1", 13}, {"ISH", 14}, {"EXI", 15}, {"NPKVRC", 16}, {"NPKVNN", 17}, {"CUNIT", 18}, {"FUSE_CTRL", 19}, {"PCIE1", 20}, {"CNV", 21}, {"LPC", 22}, {"SATA", 23}, {"SMB", 24}, {"PRTC", 25}, }; struct telemetry_debugfs_conf { struct telemetry_susp_stats suspend_stats; struct dentry *telemetry_dbg_dir; /* Bitmap Data */ struct telem_ioss_d0ix_stateinfo *ioss_d0ix_data; struct telem_pss_idle_stateinfo *pss_idle_data; struct telem_pcs_blkd_info *pcs_idle_blkd_data; struct telem_pcs_blkd_info *pcs_s0ix_blkd_data; struct telem_pss_wakeup_info *pss_wakeup; struct telem_pss_ltr_info *pss_ltr_data; struct telem_ioss_pg_info *ioss_pg_data; u8 pcs_idle_blkd_evts; u8 pcs_s0ix_blkd_evts; u8 pss_wakeup_evts; u8 pss_idle_evts; u8 pss_ltr_evts; u8 ioss_d0ix_evts; u8 ioss_pg_evts; /* IDs */ u16 pss_ltr_blocking_id; u16 pcs_idle_blkd_id; u16 pcs_s0ix_blkd_id; u16 s0ix_total_occ_id; u16 s0ix_shlw_occ_id; u16 s0ix_deep_occ_id; u16 s0ix_total_res_id; u16 s0ix_shlw_res_id; u16 s0ix_deep_res_id; u16 pss_wakeup_id; u16 ioss_d0ix_id; u16 pstates_id; u16 pss_idle_id; u16 ioss_d3_id; u16 ioss_pg_id; }; static struct telemetry_debugfs_conf *debugfs_conf; static struct telemetry_debugfs_conf telem_apl_debugfs_conf = { .pss_idle_data = telem_apl_pss_idle_data, .pcs_idle_blkd_data = telem_apl_pcs_idle_blkd_data, .pcs_s0ix_blkd_data = telem_apl_pcs_s0ix_blkd_data, .pss_ltr_data = telem_apl_pss_ltr_data, .pss_wakeup = telem_apl_pss_wakeup, .ioss_d0ix_data = telem_apl_ioss_d0ix_data, .ioss_pg_data = telem_apl_ioss_pg_data, .pss_idle_evts = ARRAY_SIZE(telem_apl_pss_idle_data), .pcs_idle_blkd_evts = ARRAY_SIZE(telem_apl_pcs_idle_blkd_data), .pcs_s0ix_blkd_evts = ARRAY_SIZE(telem_apl_pcs_s0ix_blkd_data), .pss_ltr_evts = ARRAY_SIZE(telem_apl_pss_ltr_data), .pss_wakeup_evts = ARRAY_SIZE(telem_apl_pss_wakeup), .ioss_d0ix_evts = ARRAY_SIZE(telem_apl_ioss_d0ix_data), .ioss_pg_evts = ARRAY_SIZE(telem_apl_ioss_pg_data), .pstates_id = TELEM_APL_PSS_PSTATES_ID, .pss_idle_id = TELEM_APL_PSS_IDLE_ID, .pcs_idle_blkd_id = TELEM_APL_PCS_IDLE_BLOCKED_ID, .pcs_s0ix_blkd_id = TELEM_APL_PCS_S0IX_BLOCKED_ID, .pss_wakeup_id = TELEM_APL_PSS_WAKEUP_ID, .pss_ltr_blocking_id = TELEM_APL_PSS_LTR_BLOCKING_ID, .s0ix_total_occ_id = TELEM_APL_S0IX_TOTAL_OCC_ID, .s0ix_shlw_occ_id = TELEM_APL_S0IX_SHLW_OCC_ID, .s0ix_deep_occ_id = TELEM_APL_S0IX_DEEP_OCC_ID, .s0ix_total_res_id = TELEM_APL_S0IX_TOTAL_RES_ID, .s0ix_shlw_res_id = TELEM_APL_S0IX_SHLW_RES_ID, .s0ix_deep_res_id = TELEM_APL_S0IX_DEEP_RES_ID, .ioss_d0ix_id = TELEM_APL_D0IX_ID, .ioss_d3_id = TELEM_APL_D3_ID, .ioss_pg_id = TELEM_APL_PG_ID, }; static const struct x86_cpu_id telemetry_debugfs_cpu_ids[] = { X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT, &telem_apl_debugfs_conf), X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS, &telem_apl_debugfs_conf), {} }; MODULE_DEVICE_TABLE(x86cpu, telemetry_debugfs_cpu_ids); static int telemetry_debugfs_check_evts(void) { if ((debugfs_conf->pss_idle_evts > TELEM_PSS_IDLE_EVTS) || (debugfs_conf->pcs_idle_blkd_evts > TELEM_PSS_IDLE_BLOCKED_EVTS) || (debugfs_conf->pcs_s0ix_blkd_evts > TELEM_PSS_S0IX_BLOCKED_EVTS) || (debugfs_conf->pss_ltr_evts > TELEM_PSS_LTR_BLOCKING_EVTS) || (debugfs_conf->pss_wakeup_evts > TELEM_PSS_S0IX_WAKEUP_EVTS) || (debugfs_conf->ioss_d0ix_evts > TELEM_IOSS_DX_D0IX_EVTS) || (debugfs_conf->ioss_pg_evts > TELEM_IOSS_PG_EVTS)) return -EINVAL; return 0; } static int telem_pss_states_show(struct seq_file *s, void *unused) { struct telemetry_evtlog evtlog[TELEM_MAX_OS_ALLOCATED_EVENTS]; struct telemetry_debugfs_conf *conf = debugfs_conf; const char *name[TELEM_MAX_OS_ALLOCATED_EVENTS]; u32 pcs_idle_blkd[TELEM_PSS_IDLE_BLOCKED_EVTS], pcs_s0ix_blkd[TELEM_PSS_S0IX_BLOCKED_EVTS], pss_s0ix_wakeup[TELEM_PSS_S0IX_WAKEUP_EVTS], pss_ltr_blkd[TELEM_PSS_LTR_BLOCKING_EVTS], pss_idle[TELEM_PSS_IDLE_EVTS]; int index, idx, ret, err = 0; u64 pstates = 0; ret = telemetry_read_eventlog(TELEM_PSS, evtlog, TELEM_MAX_OS_ALLOCATED_EVENTS); if (ret < 0) return ret; err = telemetry_get_evtname(TELEM_PSS, name, TELEM_MAX_OS_ALLOCATED_EVENTS); if (err < 0) return err; seq_puts(s, "\n----------------------------------------------------\n"); seq_puts(s, "\tPSS TELEM EVENTLOG (Residency = field/19.2 us\n"); seq_puts(s, "----------------------------------------------------\n"); for (index = 0; index < ret; index++) { seq_printf(s, "%-32s %llu\n", name[index], evtlog[index].telem_evtlog); /* Fetch PSS IDLE State */ if (evtlog[index].telem_evtid == conf->pss_idle_id) { pss_idle[conf->pss_idle_evts - 1] = (evtlog[index].telem_evtlog >> conf->pss_idle_data[conf->pss_idle_evts - 1].bit_pos) & TELEM_APL_MASK_PCS_STATE; } TELEM_CHECK_AND_PARSE_EVTS(conf->pss_idle_id, conf->pss_idle_evts - 1, pss_idle, evtlog[index].telem_evtlog, conf->pss_idle_data, TELEM_MASK_BIT); TELEM_CHECK_AND_PARSE_EVTS(conf->pcs_idle_blkd_id, conf->pcs_idle_blkd_evts, pcs_idle_blkd, evtlog[index].telem_evtlog, conf->pcs_idle_blkd_data, TELEM_MASK_BYTE); TELEM_CHECK_AND_PARSE_EVTS(conf->pcs_s0ix_blkd_id, conf->pcs_s0ix_blkd_evts, pcs_s0ix_blkd, evtlog[index].telem_evtlog, conf->pcs_s0ix_blkd_data, TELEM_MASK_BYTE); TELEM_CHECK_AND_PARSE_EVTS(conf->pss_wakeup_id, conf->pss_wakeup_evts, pss_s0ix_wakeup, evtlog[index].telem_evtlog, conf->pss_wakeup, TELEM_MASK_BYTE); TELEM_CHECK_AND_PARSE_EVTS(conf->pss_ltr_blocking_id, conf->pss_ltr_evts, pss_ltr_blkd, evtlog[index].telem_evtlog, conf->pss_ltr_data, TELEM_MASK_BYTE); if (evtlog[index].telem_evtid == debugfs_conf->pstates_id) pstates = evtlog[index].telem_evtlog; } seq_puts(s, "\n--------------------------------------\n"); seq_puts(s, "PStates\n"); seq_puts(s, "--------------------------------------\n"); seq_puts(s, "Domain\t\t\t\tFreq(Mhz)\n"); seq_printf(s, " IA\t\t\t\t %llu\n GT\t\t\t\t %llu\n", (pstates & TELEM_MASK_BYTE)*100, ((pstates >> 8) & TELEM_MASK_BYTE)*50/3); seq_printf(s, " IUNIT\t\t\t\t %llu\n SA\t\t\t\t %llu\n", ((pstates >> 16) & TELEM_MASK_BYTE)*25, ((pstates >> 24) & TELEM_MASK_BYTE)*50/3); seq_puts(s, "\n--------------------------------------\n"); seq_puts(s, "PSS IDLE Status\n"); seq_puts(s, "--------------------------------------\n"); seq_puts(s, "Device\t\t\t\t\tIDLE\n"); for (index = 0; index < debugfs_conf->pss_idle_evts; index++) { seq_printf(s, "%-32s\t%u\n", debugfs_conf->pss_idle_data[index].name, pss_idle[index]); } seq_puts(s, "\n--------------------------------------\n"); seq_puts(s, "PSS Idle blkd Status (~1ms saturating bucket)\n"); seq_puts(s, "--------------------------------------\n"); seq_puts(s, "Blocker\t\t\t\t\tCount\n"); for (index = 0; index < debugfs_conf->pcs_idle_blkd_evts; index++) { seq_printf(s, "%-32s\t%u\n", debugfs_conf->pcs_idle_blkd_data[index].name, pcs_idle_blkd[index]); } seq_puts(s, "\n--------------------------------------\n"); seq_puts(s, "PSS S0ix blkd Status (~1ms saturating bucket)\n"); seq_puts(s, "--------------------------------------\n"); seq_puts(s, "Blocker\t\t\t\t\tCount\n"); for (index = 0; index < debugfs_conf->pcs_s0ix_blkd_evts; index++) { seq_printf(s, "%-32s\t%u\n", debugfs_conf->pcs_s0ix_blkd_data[index].name, pcs_s0ix_blkd[index]); } seq_puts(s, "\n--------------------------------------\n"); seq_puts(s, "LTR Blocking Status (~1ms saturating bucket)\n"); seq_puts(s, "--------------------------------------\n"); seq_puts(s, "Blocker\t\t\t\t\tCount\n"); for (index = 0; index < debugfs_conf->pss_ltr_evts; index++) { seq_printf(s, "%-32s\t%u\n", debugfs_conf->pss_ltr_data[index].name, pss_s0ix_wakeup[index]); } seq_puts(s, "\n--------------------------------------\n"); seq_puts(s, "Wakes Status (~1ms saturating bucket)\n"); seq_puts(s, "--------------------------------------\n"); seq_puts(s, "Wakes\t\t\t\t\tCount\n"); for (index = 0; index < debugfs_conf->pss_wakeup_evts; index++) { seq_printf(s, "%-32s\t%u\n", debugfs_conf->pss_wakeup[index].name, pss_ltr_blkd[index]); } return 0; } DEFINE_SHOW_ATTRIBUTE(telem_pss_states); static int telem_ioss_states_show(struct seq_file *s, void *unused) { struct telemetry_evtlog evtlog[TELEM_MAX_OS_ALLOCATED_EVENTS]; const char *name[TELEM_MAX_OS_ALLOCATED_EVENTS]; int index, ret, err; ret = telemetry_read_eventlog(TELEM_IOSS, evtlog, TELEM_MAX_OS_ALLOCATED_EVENTS); if (ret < 0) return ret; err = telemetry_get_evtname(TELEM_IOSS, name, TELEM_MAX_OS_ALLOCATED_EVENTS); if (err < 0) return err; seq_puts(s, "--------------------------------------\n"); seq_puts(s, "\tI0SS TELEMETRY EVENTLOG\n"); seq_puts(s, "--------------------------------------\n"); for (index = 0; index < ret; index++) { seq_printf(s, "%-32s 0x%llx\n", name[index], evtlog[index].telem_evtlog); } return 0; } DEFINE_SHOW_ATTRIBUTE(telem_ioss_states); static int telem_soc_states_show(struct seq_file *s, void *unused) { u32 d3_sts[TELEM_IOSS_DX_D0IX_EVTS], d0ix_sts[TELEM_IOSS_DX_D0IX_EVTS]; u32 pg_sts[TELEM_IOSS_PG_EVTS], pss_idle[TELEM_PSS_IDLE_EVTS]; struct telemetry_evtlog evtlog[TELEM_MAX_OS_ALLOCATED_EVENTS]; u32 s0ix_total_ctr = 0, s0ix_shlw_ctr = 0, s0ix_deep_ctr = 0; u64 s0ix_total_res = 0, s0ix_shlw_res = 0, s0ix_deep_res = 0; struct telemetry_debugfs_conf *conf = debugfs_conf; struct pci_dev *dev = NULL; int index, idx, ret; u32 d3_state; u16 pmcsr; ret = telemetry_read_eventlog(TELEM_IOSS, evtlog, TELEM_MAX_OS_ALLOCATED_EVENTS); if (ret < 0) return ret; for (index = 0; index < ret; index++) { TELEM_CHECK_AND_PARSE_EVTS(conf->ioss_d3_id, conf->ioss_d0ix_evts, d3_sts, evtlog[index].telem_evtlog, conf->ioss_d0ix_data, TELEM_MASK_BIT); TELEM_CHECK_AND_PARSE_EVTS(conf->ioss_pg_id, conf->ioss_pg_evts, pg_sts, evtlog[index].telem_evtlog, conf->ioss_pg_data, TELEM_MASK_BIT); TELEM_CHECK_AND_PARSE_EVTS(conf->ioss_d0ix_id, conf->ioss_d0ix_evts, d0ix_sts, evtlog[index].telem_evtlog, conf->ioss_d0ix_data, TELEM_MASK_BIT); TELEM_CHECK_AND_PARSE_CTRS(conf->s0ix_total_occ_id, s0ix_total_ctr); TELEM_CHECK_AND_PARSE_CTRS(conf->s0ix_shlw_occ_id, s0ix_shlw_ctr); TELEM_CHECK_AND_PARSE_CTRS(conf->s0ix_deep_occ_id, s0ix_deep_ctr); TELEM_CHECK_AND_PARSE_CTRS(conf->s0ix_total_res_id, s0ix_total_res); TELEM_CHECK_AND_PARSE_CTRS(conf->s0ix_shlw_res_id, s0ix_shlw_res); TELEM_CHECK_AND_PARSE_CTRS(conf->s0ix_deep_res_id, s0ix_deep_res); } seq_puts(s, "\n---------------------------------------------------\n"); seq_puts(s, "S0IX Type\t\t\t Occurrence\t\t Residency(us)\n"); seq_puts(s, "---------------------------------------------------\n"); seq_printf(s, "S0IX Shallow\t\t\t %10u\t %10llu\n", s0ix_shlw_ctr - conf->suspend_stats.shlw_ctr, (u64)((s0ix_shlw_res - conf->suspend_stats.shlw_res)*10/192)); seq_printf(s, "S0IX Deep\t\t\t %10u\t %10llu\n", s0ix_deep_ctr - conf->suspend_stats.deep_ctr, (u64)((s0ix_deep_res - conf->suspend_stats.deep_res)*10/192)); seq_printf(s, "Suspend(With S0ixShallow)\t %10u\t %10llu\n", conf->suspend_stats.shlw_ctr, (u64)(conf->suspend_stats.shlw_res*10)/192); seq_printf(s, "Suspend(With S0ixDeep)\t\t %10u\t %10llu\n", conf->suspend_stats.deep_ctr, (u64)(conf->suspend_stats.deep_res*10)/192); seq_printf(s, "TOTAL S0IX\t\t\t %10u\t %10llu\n", s0ix_total_ctr, (u64)(s0ix_total_res*10/192)); seq_puts(s, "\n-------------------------------------------------\n"); seq_puts(s, "\t\tDEVICE STATES\n"); seq_puts(s, "-------------------------------------------------\n"); for_each_pci_dev(dev) { pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); d3_state = ((pmcsr & PCI_PM_CTRL_STATE_MASK) == (__force int)PCI_D3hot) ? 1 : 0; seq_printf(s, "pci %04x %04X %s %20.20s: ", dev->vendor, dev->device, dev_name(&dev->dev), dev_driver_string(&dev->dev)); seq_printf(s, " d3:%x\n", d3_state); } seq_puts(s, "\n--------------------------------------\n"); seq_puts(s, "D3/D0i3 Status\n"); seq_puts(s, "--------------------------------------\n"); seq_puts(s, "Block\t\t D3\t D0i3\n"); for (index = 0; index < conf->ioss_d0ix_evts; index++) { seq_printf(s, "%-10s\t %u\t %u\n", conf->ioss_d0ix_data[index].name, d3_sts[index], d0ix_sts[index]); } seq_puts(s, "\n--------------------------------------\n"); seq_puts(s, "South Complex PowerGate Status\n"); seq_puts(s, "--------------------------------------\n"); seq_puts(s, "Device\t\t PG\n"); for (index = 0; index < conf->ioss_pg_evts; index++) { seq_printf(s, "%-10s\t %u\n", conf->ioss_pg_data[index].name, pg_sts[index]); } evtlog->telem_evtid = conf->pss_idle_id; ret = telemetry_read_events(TELEM_PSS, evtlog, 1); if (ret < 0) return ret; seq_puts(s, "\n-----------------------------------------\n"); seq_puts(s, "North Idle Status\n"); seq_puts(s, "-----------------------------------------\n"); for (idx = 0; idx < conf->pss_idle_evts - 1; idx++) { pss_idle[idx] = (evtlog->telem_evtlog >> conf->pss_idle_data[idx].bit_pos) & TELEM_MASK_BIT; } pss_idle[idx] = (evtlog->telem_evtlog >> conf->pss_idle_data[idx].bit_pos) & TELEM_APL_MASK_PCS_STATE; for (index = 0; index < conf->pss_idle_evts; index++) { seq_printf(s, "%-30s %u\n", conf->pss_idle_data[index].name, pss_idle[index]); } seq_puts(s, "\nPCS_STATUS Code\n"); seq_puts(s, "0:C0 1:C1 2:C1_DN_WT_DEV 3:C2 4:C2_WT_DE_MEM_UP\n"); seq_puts(s, "5:C2_WT_DE_MEM_DOWN 6:C2_UP_WT_DEV 7:C2_DN 8:C2_VOA\n"); seq_puts(s, "9:C2_VOA_UP 10:S0IX_PRE 11:S0IX\n"); return 0; } DEFINE_SHOW_ATTRIBUTE(telem_soc_states); static int telem_s0ix_res_get(void *data, u64 *val) { struct telemetry_plt_config *plt_config = telemetry_get_pltdata(); u64 s0ix_total_res; int ret; ret = intel_pmc_s0ix_counter_read(plt_config->pmc, &s0ix_total_res); if (ret) { pr_err("Failed to read S0ix residency"); return ret; } *val = s0ix_total_res; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(telem_s0ix_fops, telem_s0ix_res_get, NULL, "%llu\n"); static int telem_pss_trc_verb_show(struct seq_file *s, void *unused) { u32 verbosity; int err; err = telemetry_get_trace_verbosity(TELEM_PSS, &verbosity); if (err) { pr_err("Get PSS Trace Verbosity Failed with Error %d\n", err); return -EFAULT; } seq_printf(s, "PSS Trace Verbosity %u\n", verbosity); return 0; } static ssize_t telem_pss_trc_verb_write(struct file *file, const char __user *userbuf, size_t count, loff_t *ppos) { u32 verbosity; int err; err = kstrtou32_from_user(userbuf, count, 0, &verbosity); if (err) return err; err = telemetry_set_trace_verbosity(TELEM_PSS, verbosity); if (err) { pr_err("Changing PSS Trace Verbosity Failed. Error %d\n", err); return err; } return count; } static int telem_pss_trc_verb_open(struct inode *inode, struct file *file) { return single_open(file, telem_pss_trc_verb_show, inode->i_private); } static const struct file_operations telem_pss_trc_verb_ops = { .open = telem_pss_trc_verb_open, .read = seq_read, .write = telem_pss_trc_verb_write, .llseek = seq_lseek, .release = single_release, }; static int telem_ioss_trc_verb_show(struct seq_file *s, void *unused) { u32 verbosity; int err; err = telemetry_get_trace_verbosity(TELEM_IOSS, &verbosity); if (err) { pr_err("Get IOSS Trace Verbosity Failed with Error %d\n", err); return -EFAULT; } seq_printf(s, "IOSS Trace Verbosity %u\n", verbosity); return 0; } static ssize_t telem_ioss_trc_verb_write(struct file *file, const char __user *userbuf, size_t count, loff_t *ppos) { u32 verbosity; int err; err = kstrtou32_from_user(userbuf, count, 0, &verbosity); if (err) return err; err = telemetry_set_trace_verbosity(TELEM_IOSS, verbosity); if (err) { pr_err("Changing IOSS Trace Verbosity Failed. Error %d\n", err); return err; } return count; } static int telem_ioss_trc_verb_open(struct inode *inode, struct file *file) { return single_open(file, telem_ioss_trc_verb_show, inode->i_private); } static const struct file_operations telem_ioss_trc_verb_ops = { .open = telem_ioss_trc_verb_open, .read = seq_read, .write = telem_ioss_trc_verb_write, .llseek = seq_lseek, .release = single_release, }; static int pm_suspend_prep_cb(void) { struct telemetry_evtlog evtlog[TELEM_MAX_OS_ALLOCATED_EVENTS]; struct telemetry_debugfs_conf *conf = debugfs_conf; int ret, index; ret = telemetry_raw_read_eventlog(TELEM_IOSS, evtlog, TELEM_MAX_OS_ALLOCATED_EVENTS); if (ret < 0) { suspend_prep_ok = 0; goto out; } for (index = 0; index < ret; index++) { TELEM_CHECK_AND_PARSE_CTRS(conf->s0ix_shlw_occ_id, suspend_shlw_ctr_temp); TELEM_CHECK_AND_PARSE_CTRS(conf->s0ix_deep_occ_id, suspend_deep_ctr_temp); TELEM_CHECK_AND_PARSE_CTRS(conf->s0ix_shlw_res_id, suspend_shlw_res_temp); TELEM_CHECK_AND_PARSE_CTRS(conf->s0ix_deep_res_id, suspend_deep_res_temp); } suspend_prep_ok = 1; out: return NOTIFY_OK; } static int pm_suspend_exit_cb(void) { struct telemetry_evtlog evtlog[TELEM_MAX_OS_ALLOCATED_EVENTS]; static u32 suspend_shlw_ctr_exit, suspend_deep_ctr_exit; static u64 suspend_shlw_res_exit, suspend_deep_res_exit; struct telemetry_debugfs_conf *conf = debugfs_conf; int ret, index; if (!suspend_prep_ok) goto out; ret = telemetry_raw_read_eventlog(TELEM_IOSS, evtlog, TELEM_MAX_OS_ALLOCATED_EVENTS); if (ret < 0) goto out; for (index = 0; index < ret; index++) { TELEM_CHECK_AND_PARSE_CTRS(conf->s0ix_shlw_occ_id, suspend_shlw_ctr_exit); TELEM_CHECK_AND_PARSE_CTRS(conf->s0ix_deep_occ_id, suspend_deep_ctr_exit); TELEM_CHECK_AND_PARSE_CTRS(conf->s0ix_shlw_res_id, suspend_shlw_res_exit); TELEM_CHECK_AND_PARSE_CTRS(conf->s0ix_deep_res_id, suspend_deep_res_exit); } if ((suspend_shlw_ctr_exit < suspend_shlw_ctr_temp) || (suspend_deep_ctr_exit < suspend_deep_ctr_temp) || (suspend_shlw_res_exit < suspend_shlw_res_temp) || (suspend_deep_res_exit < suspend_deep_res_temp)) { pr_err("Wrong s0ix counters detected\n"); goto out; } /* * Due to some design limitations in the firmware, sometimes the * counters do not get updated by the time we reach here. As a * workaround, we try to see if this was a genuine case of sleep * failure or not by cross-checking from PMC GCR registers directly. */ if (suspend_shlw_ctr_exit == suspend_shlw_ctr_temp && suspend_deep_ctr_exit == suspend_deep_ctr_temp) { struct telemetry_plt_config *plt_config = telemetry_get_pltdata(); struct intel_pmc_dev *pmc = plt_config->pmc; ret = intel_pmc_gcr_read64(pmc, PMC_GCR_TELEM_SHLW_S0IX_REG, &suspend_shlw_res_exit); if (ret < 0) goto out; ret = intel_pmc_gcr_read64(pmc, PMC_GCR_TELEM_DEEP_S0IX_REG, &suspend_deep_res_exit); if (ret < 0) goto out; if (suspend_shlw_res_exit > suspend_shlw_res_temp) suspend_shlw_ctr_exit++; if (suspend_deep_res_exit > suspend_deep_res_temp) suspend_deep_ctr_exit++; } suspend_shlw_ctr_exit -= suspend_shlw_ctr_temp; suspend_deep_ctr_exit -= suspend_deep_ctr_temp; suspend_shlw_res_exit -= suspend_shlw_res_temp; suspend_deep_res_exit -= suspend_deep_res_temp; if (suspend_shlw_ctr_exit != 0) { conf->suspend_stats.shlw_ctr += suspend_shlw_ctr_exit; conf->suspend_stats.shlw_res += suspend_shlw_res_exit; } if (suspend_deep_ctr_exit != 0) { conf->suspend_stats.deep_ctr += suspend_deep_ctr_exit; conf->suspend_stats.deep_res += suspend_deep_res_exit; } out: suspend_prep_ok = 0; return NOTIFY_OK; } static int pm_notification(struct notifier_block *this, unsigned long event, void *ptr) { switch (event) { case PM_SUSPEND_PREPARE: return pm_suspend_prep_cb(); case PM_POST_SUSPEND: return pm_suspend_exit_cb(); } return NOTIFY_DONE; } static struct notifier_block pm_notifier = { .notifier_call = pm_notification, }; static int __init telemetry_debugfs_init(void) { const struct x86_cpu_id *id; int err; struct dentry *dir; /* Only APL supported for now */ id = x86_match_cpu(telemetry_debugfs_cpu_ids); if (!id) return -ENODEV; debugfs_conf = (struct telemetry_debugfs_conf *)id->driver_data; if (!telemetry_get_pltdata()) { pr_info("Invalid pltconfig, ensure IPC1 device is enabled in BIOS\n"); return -ENODEV; } err = telemetry_debugfs_check_evts(); if (err < 0) { pr_info("telemetry_debugfs_check_evts failed\n"); return -EINVAL; } register_pm_notifier(&pm_notifier); dir = debugfs_create_dir("telemetry", NULL); debugfs_conf->telemetry_dbg_dir = dir; debugfs_create_file("pss_info", S_IFREG | S_IRUGO, dir, NULL, &telem_pss_states_fops); debugfs_create_file("ioss_info", S_IFREG | S_IRUGO, dir, NULL, &telem_ioss_states_fops); debugfs_create_file("soc_states", S_IFREG | S_IRUGO, dir, NULL, &telem_soc_states_fops); debugfs_create_file("s0ix_residency_usec", S_IFREG | S_IRUGO, dir, NULL, &telem_s0ix_fops); debugfs_create_file("pss_trace_verbosity", S_IFREG | S_IRUGO, dir, NULL, &telem_pss_trc_verb_ops); debugfs_create_file("ioss_trace_verbosity", S_IFREG | S_IRUGO, dir, NULL, &telem_ioss_trc_verb_ops); return 0; } static void __exit telemetry_debugfs_exit(void) { debugfs_remove_recursive(debugfs_conf->telemetry_dbg_dir); debugfs_conf->telemetry_dbg_dir = NULL; unregister_pm_notifier(&pm_notifier); } late_initcall(telemetry_debugfs_init); module_exit(telemetry_debugfs_exit); MODULE_AUTHOR("Souvik Kumar Chakravarty <[email protected]>"); MODULE_DESCRIPTION("Intel SoC Telemetry debugfs Interface"); MODULE_VERSION(DRIVER_VERSION); MODULE_LICENSE("GPL v2");
linux-master
drivers/platform/x86/intel/telemetry/debugfs.c
// SPDX-License-Identifier: GPL-2.0 /* * Intel SOC Telemetry Platform Driver: Currently supports APL * Copyright (c) 2015, Intel Corporation. * All Rights Reserved. * * This file provides the platform specific telemetry implementation for APL. * It used the PUNIT and PMC IPC interfaces for configuring the counters. * The accumulated results are fetched from SRAM. */ #include <linux/io.h> #include <linux/module.h> #include <linux/platform_device.h> #include <asm/cpu_device_id.h> #include <asm/intel-family.h> #include <asm/intel_punit_ipc.h> #include <asm/intel_telemetry.h> #define DRIVER_NAME "intel_telemetry" #define DRIVER_VERSION "1.0.0" #define TELEM_TRC_VERBOSITY_MASK 0x3 #define TELEM_MIN_PERIOD(x) ((x) & 0x7F0000) #define TELEM_MAX_PERIOD(x) ((x) & 0x7F000000) #define TELEM_SAMPLE_PERIOD_INVALID(x) ((x) & (BIT(7))) #define TELEM_CLEAR_SAMPLE_PERIOD(x) ((x) &= ~0x7F) #define TELEM_SAMPLING_DEFAULT_PERIOD 0xD #define TELEM_MAX_EVENTS_SRAM 28 #define TELEM_SSRAM_STARTTIME_OFFSET 8 #define TELEM_SSRAM_EVTLOG_OFFSET 16 #define IOSS_TELEM 0xeb #define IOSS_TELEM_EVENT_READ 0x0 #define IOSS_TELEM_EVENT_WRITE 0x1 #define IOSS_TELEM_INFO_READ 0x2 #define IOSS_TELEM_TRACE_CTL_READ 0x5 #define IOSS_TELEM_TRACE_CTL_WRITE 0x6 #define IOSS_TELEM_EVENT_CTL_READ 0x7 #define IOSS_TELEM_EVENT_CTL_WRITE 0x8 #define IOSS_TELEM_EVT_WRITE_SIZE 0x3 #define TELEM_INFO_SRAMEVTS_MASK 0xFF00 #define TELEM_INFO_SRAMEVTS_SHIFT 0x8 #define TELEM_SSRAM_READ_TIMEOUT 10 #define TELEM_INFO_NENABLES_MASK 0xFF #define TELEM_EVENT_ENABLE 0x8000 #define TELEM_MASK_BIT 1 #define TELEM_MASK_BYTE 0xFF #define BYTES_PER_LONG 8 #define TELEM_MASK_PCS_STATE 0xF #define TELEM_DISABLE(x) ((x) &= ~(BIT(31))) #define TELEM_CLEAR_EVENTS(x) ((x) |= (BIT(30))) #define TELEM_ENABLE_SRAM_EVT_TRACE(x) ((x) &= ~(BIT(30) | BIT(24))) #define TELEM_ENABLE_PERIODIC(x) ((x) |= (BIT(23) | BIT(31) | BIT(7))) #define TELEM_EXTRACT_VERBOSITY(x, y) ((y) = (((x) >> 27) & 0x3)) #define TELEM_CLEAR_VERBOSITY_BITS(x) ((x) &= ~(BIT(27) | BIT(28))) #define TELEM_SET_VERBOSITY_BITS(x, y) ((x) |= ((y) << 27)) enum telemetry_action { TELEM_UPDATE = 0, TELEM_ADD, TELEM_RESET, TELEM_ACTION_NONE }; struct telem_ssram_region { u64 timestamp; u64 start_time; u64 events[TELEM_MAX_EVENTS_SRAM]; }; static struct telemetry_plt_config *telm_conf; /* * The following counters are programmed by default during setup. * Only 20 allocated to kernel driver */ static struct telemetry_evtmap telemetry_apl_ioss_default_events[TELEM_MAX_OS_ALLOCATED_EVENTS] = { {"SOC_S0IX_TOTAL_RES", 0x4800}, {"SOC_S0IX_TOTAL_OCC", 0x4000}, {"SOC_S0IX_SHALLOW_RES", 0x4801}, {"SOC_S0IX_SHALLOW_OCC", 0x4001}, {"SOC_S0IX_DEEP_RES", 0x4802}, {"SOC_S0IX_DEEP_OCC", 0x4002}, {"PMC_POWER_GATE", 0x5818}, {"PMC_D3_STATES", 0x5819}, {"PMC_D0I3_STATES", 0x581A}, {"PMC_S0IX_WAKE_REASON_GPIO", 0x6000}, {"PMC_S0IX_WAKE_REASON_TIMER", 0x6001}, {"PMC_S0IX_WAKE_REASON_VNNREQ", 0x6002}, {"PMC_S0IX_WAKE_REASON_LOWPOWER", 0x6003}, {"PMC_S0IX_WAKE_REASON_EXTERNAL", 0x6004}, {"PMC_S0IX_WAKE_REASON_MISC", 0x6005}, {"PMC_S0IX_BLOCKING_IPS_D3_D0I3", 0x6006}, {"PMC_S0IX_BLOCKING_IPS_PG", 0x6007}, {"PMC_S0IX_BLOCKING_MISC_IPS_PG", 0x6008}, {"PMC_S0IX_BLOCK_IPS_VNN_REQ", 0x6009}, {"PMC_S0IX_BLOCK_IPS_CLOCKS", 0x600B}, }; static struct telemetry_evtmap telemetry_apl_pss_default_events[TELEM_MAX_OS_ALLOCATED_EVENTS] = { {"IA_CORE0_C6_RES", 0x0400}, {"IA_CORE0_C6_CTR", 0x0000}, {"IA_MODULE0_C7_RES", 0x0410}, {"IA_MODULE0_C7_CTR", 0x000E}, {"IA_C0_RES", 0x0805}, {"PCS_LTR", 0x2801}, {"PSTATES", 0x2802}, {"SOC_S0I3_RES", 0x0409}, {"SOC_S0I3_CTR", 0x000A}, {"PCS_S0I3_CTR", 0x0009}, {"PCS_C1E_RES", 0x041A}, {"PCS_IDLE_STATUS", 0x2806}, {"IA_PERF_LIMITS", 0x280B}, {"GT_PERF_LIMITS", 0x280C}, {"PCS_WAKEUP_S0IX_CTR", 0x0030}, {"PCS_IDLE_BLOCKED", 0x2C00}, {"PCS_S0IX_BLOCKED", 0x2C01}, {"PCS_S0IX_WAKE_REASONS", 0x2C02}, {"PCS_LTR_BLOCKING", 0x2C03}, {"PC2_AND_MEM_SHALLOW_IDLE_RES", 0x1D40}, }; static struct telemetry_evtmap telemetry_glk_pss_default_events[TELEM_MAX_OS_ALLOCATED_EVENTS] = { {"IA_CORE0_C6_RES", 0x0400}, {"IA_CORE0_C6_CTR", 0x0000}, {"IA_MODULE0_C7_RES", 0x0410}, {"IA_MODULE0_C7_CTR", 0x000C}, {"IA_C0_RES", 0x0805}, {"PCS_LTR", 0x2801}, {"PSTATES", 0x2802}, {"SOC_S0I3_RES", 0x0407}, {"SOC_S0I3_CTR", 0x0008}, {"PCS_S0I3_CTR", 0x0007}, {"PCS_C1E_RES", 0x0414}, {"PCS_IDLE_STATUS", 0x2806}, {"IA_PERF_LIMITS", 0x280B}, {"GT_PERF_LIMITS", 0x280C}, {"PCS_WAKEUP_S0IX_CTR", 0x0025}, {"PCS_IDLE_BLOCKED", 0x2C00}, {"PCS_S0IX_BLOCKED", 0x2C01}, {"PCS_S0IX_WAKE_REASONS", 0x2C02}, {"PCS_LTR_BLOCKING", 0x2C03}, {"PC2_AND_MEM_SHALLOW_IDLE_RES", 0x1D40}, }; /* APL specific Data */ static struct telemetry_plt_config telem_apl_config = { .pss_config = { .telem_evts = telemetry_apl_pss_default_events, }, .ioss_config = { .telem_evts = telemetry_apl_ioss_default_events, }, }; /* GLK specific Data */ static struct telemetry_plt_config telem_glk_config = { .pss_config = { .telem_evts = telemetry_glk_pss_default_events, }, .ioss_config = { .telem_evts = telemetry_apl_ioss_default_events, }, }; static const struct x86_cpu_id telemetry_cpu_ids[] = { X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT, &telem_apl_config), X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS, &telem_glk_config), {} }; MODULE_DEVICE_TABLE(x86cpu, telemetry_cpu_ids); static inline int telem_get_unitconfig(enum telemetry_unit telem_unit, struct telemetry_unit_config **unit_config) { if (telem_unit == TELEM_PSS) *unit_config = &(telm_conf->pss_config); else if (telem_unit == TELEM_IOSS) *unit_config = &(telm_conf->ioss_config); else return -EINVAL; return 0; } static int telemetry_check_evtid(enum telemetry_unit telem_unit, u32 *evtmap, u8 len, enum telemetry_action action) { struct telemetry_unit_config *unit_config; int ret; ret = telem_get_unitconfig(telem_unit, &unit_config); if (ret < 0) return ret; switch (action) { case TELEM_RESET: if (len > TELEM_MAX_EVENTS_SRAM) return -EINVAL; break; case TELEM_UPDATE: if (len > TELEM_MAX_EVENTS_SRAM) return -EINVAL; if ((len > 0) && (evtmap == NULL)) return -EINVAL; break; case TELEM_ADD: if ((len + unit_config->ssram_evts_used) > TELEM_MAX_EVENTS_SRAM) return -EINVAL; if ((len > 0) && (evtmap == NULL)) return -EINVAL; break; default: pr_err("Unknown Telemetry action specified %d\n", action); return -EINVAL; } return 0; } static inline int telemetry_plt_config_ioss_event(u32 evt_id, int index) { u32 write_buf; write_buf = evt_id | TELEM_EVENT_ENABLE; write_buf <<= BITS_PER_BYTE; write_buf |= index; return intel_scu_ipc_dev_command(telm_conf->scu, IOSS_TELEM, IOSS_TELEM_EVENT_WRITE, &write_buf, IOSS_TELEM_EVT_WRITE_SIZE, NULL, 0); } static inline int telemetry_plt_config_pss_event(u32 evt_id, int index) { u32 write_buf; int ret; write_buf = evt_id | TELEM_EVENT_ENABLE; ret = intel_punit_ipc_command(IPC_PUNIT_BIOS_WRITE_TELE_EVENT, index, 0, &write_buf, NULL); return ret; } static int telemetry_setup_iossevtconfig(struct telemetry_evtconfig evtconfig, enum telemetry_action action) { struct intel_scu_ipc_dev *scu = telm_conf->scu; u8 num_ioss_evts, ioss_period; int ret, index, idx; u32 *ioss_evtmap; u32 telem_ctrl; num_ioss_evts = evtconfig.num_evts; ioss_period = evtconfig.period; ioss_evtmap = evtconfig.evtmap; /* Get telemetry EVENT CTL */ ret = intel_scu_ipc_dev_command(scu, IOSS_TELEM, IOSS_TELEM_EVENT_CTL_READ, NULL, 0, &telem_ctrl, sizeof(telem_ctrl)); if (ret) { pr_err("IOSS TELEM_CTRL Read Failed\n"); return ret; } /* Disable Telemetry */ TELEM_DISABLE(telem_ctrl); ret = intel_scu_ipc_dev_command(scu, IOSS_TELEM, IOSS_TELEM_EVENT_CTL_WRITE, &telem_ctrl, sizeof(telem_ctrl), NULL, 0); if (ret) { pr_err("IOSS TELEM_CTRL Event Disable Write Failed\n"); return ret; } /* Reset Everything */ if (action == TELEM_RESET) { /* Clear All Events */ TELEM_CLEAR_EVENTS(telem_ctrl); ret = intel_scu_ipc_dev_command(scu, IOSS_TELEM, IOSS_TELEM_EVENT_CTL_WRITE, &telem_ctrl, sizeof(telem_ctrl), NULL, 0); if (ret) { pr_err("IOSS TELEM_CTRL Event Disable Write Failed\n"); return ret; } telm_conf->ioss_config.ssram_evts_used = 0; /* Configure Events */ for (idx = 0; idx < num_ioss_evts; idx++) { if (telemetry_plt_config_ioss_event( telm_conf->ioss_config.telem_evts[idx].evt_id, idx)) { pr_err("IOSS TELEM_RESET Fail for data: %x\n", telm_conf->ioss_config.telem_evts[idx].evt_id); continue; } telm_conf->ioss_config.ssram_evts_used++; } } /* Re-Configure Everything */ if (action == TELEM_UPDATE) { /* Clear All Events */ TELEM_CLEAR_EVENTS(telem_ctrl); ret = intel_scu_ipc_dev_command(scu, IOSS_TELEM, IOSS_TELEM_EVENT_CTL_WRITE, &telem_ctrl, sizeof(telem_ctrl), NULL, 0); if (ret) { pr_err("IOSS TELEM_CTRL Event Disable Write Failed\n"); return ret; } telm_conf->ioss_config.ssram_evts_used = 0; /* Configure Events */ for (index = 0; index < num_ioss_evts; index++) { telm_conf->ioss_config.telem_evts[index].evt_id = ioss_evtmap[index]; if (telemetry_plt_config_ioss_event( telm_conf->ioss_config.telem_evts[index].evt_id, index)) { pr_err("IOSS TELEM_UPDATE Fail for Evt%x\n", ioss_evtmap[index]); continue; } telm_conf->ioss_config.ssram_evts_used++; } } /* Add some Events */ if (action == TELEM_ADD) { /* Configure Events */ for (index = telm_conf->ioss_config.ssram_evts_used, idx = 0; idx < num_ioss_evts; index++, idx++) { telm_conf->ioss_config.telem_evts[index].evt_id = ioss_evtmap[idx]; if (telemetry_plt_config_ioss_event( telm_conf->ioss_config.telem_evts[index].evt_id, index)) { pr_err("IOSS TELEM_ADD Fail for Event %x\n", ioss_evtmap[idx]); continue; } telm_conf->ioss_config.ssram_evts_used++; } } /* Enable Periodic Telemetry Events and enable SRAM trace */ TELEM_CLEAR_SAMPLE_PERIOD(telem_ctrl); TELEM_ENABLE_SRAM_EVT_TRACE(telem_ctrl); TELEM_ENABLE_PERIODIC(telem_ctrl); telem_ctrl |= ioss_period; ret = intel_scu_ipc_dev_command(scu, IOSS_TELEM, IOSS_TELEM_EVENT_CTL_WRITE, &telem_ctrl, sizeof(telem_ctrl), NULL, 0); if (ret) { pr_err("IOSS TELEM_CTRL Event Enable Write Failed\n"); return ret; } telm_conf->ioss_config.curr_period = ioss_period; return 0; } static int telemetry_setup_pssevtconfig(struct telemetry_evtconfig evtconfig, enum telemetry_action action) { u8 num_pss_evts, pss_period; int ret, index, idx; u32 *pss_evtmap; u32 telem_ctrl; num_pss_evts = evtconfig.num_evts; pss_period = evtconfig.period; pss_evtmap = evtconfig.evtmap; /* PSS Config */ /* Get telemetry EVENT CTL */ ret = intel_punit_ipc_command(IPC_PUNIT_BIOS_READ_TELE_EVENT_CTRL, 0, 0, NULL, &telem_ctrl); if (ret) { pr_err("PSS TELEM_CTRL Read Failed\n"); return ret; } /* Disable Telemetry */ TELEM_DISABLE(telem_ctrl); ret = intel_punit_ipc_command(IPC_PUNIT_BIOS_WRITE_TELE_EVENT_CTRL, 0, 0, &telem_ctrl, NULL); if (ret) { pr_err("PSS TELEM_CTRL Event Disable Write Failed\n"); return ret; } /* Reset Everything */ if (action == TELEM_RESET) { /* Clear All Events */ TELEM_CLEAR_EVENTS(telem_ctrl); ret = intel_punit_ipc_command( IPC_PUNIT_BIOS_WRITE_TELE_EVENT_CTRL, 0, 0, &telem_ctrl, NULL); if (ret) { pr_err("PSS TELEM_CTRL Event Disable Write Failed\n"); return ret; } telm_conf->pss_config.ssram_evts_used = 0; /* Configure Events */ for (idx = 0; idx < num_pss_evts; idx++) { if (telemetry_plt_config_pss_event( telm_conf->pss_config.telem_evts[idx].evt_id, idx)) { pr_err("PSS TELEM_RESET Fail for Event %x\n", telm_conf->pss_config.telem_evts[idx].evt_id); continue; } telm_conf->pss_config.ssram_evts_used++; } } /* Re-Configure Everything */ if (action == TELEM_UPDATE) { /* Clear All Events */ TELEM_CLEAR_EVENTS(telem_ctrl); ret = intel_punit_ipc_command( IPC_PUNIT_BIOS_WRITE_TELE_EVENT_CTRL, 0, 0, &telem_ctrl, NULL); if (ret) { pr_err("PSS TELEM_CTRL Event Disable Write Failed\n"); return ret; } telm_conf->pss_config.ssram_evts_used = 0; /* Configure Events */ for (index = 0; index < num_pss_evts; index++) { telm_conf->pss_config.telem_evts[index].evt_id = pss_evtmap[index]; if (telemetry_plt_config_pss_event( telm_conf->pss_config.telem_evts[index].evt_id, index)) { pr_err("PSS TELEM_UPDATE Fail for Event %x\n", pss_evtmap[index]); continue; } telm_conf->pss_config.ssram_evts_used++; } } /* Add some Events */ if (action == TELEM_ADD) { /* Configure Events */ for (index = telm_conf->pss_config.ssram_evts_used, idx = 0; idx < num_pss_evts; index++, idx++) { telm_conf->pss_config.telem_evts[index].evt_id = pss_evtmap[idx]; if (telemetry_plt_config_pss_event( telm_conf->pss_config.telem_evts[index].evt_id, index)) { pr_err("PSS TELEM_ADD Fail for Event %x\n", pss_evtmap[idx]); continue; } telm_conf->pss_config.ssram_evts_used++; } } /* Enable Periodic Telemetry Events and enable SRAM trace */ TELEM_CLEAR_SAMPLE_PERIOD(telem_ctrl); TELEM_ENABLE_SRAM_EVT_TRACE(telem_ctrl); TELEM_ENABLE_PERIODIC(telem_ctrl); telem_ctrl |= pss_period; ret = intel_punit_ipc_command(IPC_PUNIT_BIOS_WRITE_TELE_EVENT_CTRL, 0, 0, &telem_ctrl, NULL); if (ret) { pr_err("PSS TELEM_CTRL Event Enable Write Failed\n"); return ret; } telm_conf->pss_config.curr_period = pss_period; return 0; } static int telemetry_setup_evtconfig(struct telemetry_evtconfig pss_evtconfig, struct telemetry_evtconfig ioss_evtconfig, enum telemetry_action action) { int ret; mutex_lock(&(telm_conf->telem_lock)); if ((action == TELEM_UPDATE) && (telm_conf->telem_in_use)) { ret = -EBUSY; goto out; } ret = telemetry_check_evtid(TELEM_PSS, pss_evtconfig.evtmap, pss_evtconfig.num_evts, action); if (ret) goto out; ret = telemetry_check_evtid(TELEM_IOSS, ioss_evtconfig.evtmap, ioss_evtconfig.num_evts, action); if (ret) goto out; if (ioss_evtconfig.num_evts) { ret = telemetry_setup_iossevtconfig(ioss_evtconfig, action); if (ret) goto out; } if (pss_evtconfig.num_evts) { ret = telemetry_setup_pssevtconfig(pss_evtconfig, action); if (ret) goto out; } if ((action == TELEM_UPDATE) || (action == TELEM_ADD)) telm_conf->telem_in_use = true; else telm_conf->telem_in_use = false; out: mutex_unlock(&(telm_conf->telem_lock)); return ret; } static int telemetry_setup(struct platform_device *pdev) { struct telemetry_evtconfig pss_evtconfig, ioss_evtconfig; u32 read_buf, events, event_regs; int ret; ret = intel_scu_ipc_dev_command(telm_conf->scu, IOSS_TELEM, IOSS_TELEM_INFO_READ, NULL, 0, &read_buf, sizeof(read_buf)); if (ret) { dev_err(&pdev->dev, "IOSS TELEM_INFO Read Failed\n"); return ret; } /* Get telemetry Info */ events = (read_buf & TELEM_INFO_SRAMEVTS_MASK) >> TELEM_INFO_SRAMEVTS_SHIFT; event_regs = read_buf & TELEM_INFO_NENABLES_MASK; if ((events < TELEM_MAX_EVENTS_SRAM) || (event_regs < TELEM_MAX_EVENTS_SRAM)) { dev_err(&pdev->dev, "IOSS:Insufficient Space for SRAM Trace\n"); dev_err(&pdev->dev, "SRAM Events %d; Event Regs %d\n", events, event_regs); return -ENOMEM; } telm_conf->ioss_config.min_period = TELEM_MIN_PERIOD(read_buf); telm_conf->ioss_config.max_period = TELEM_MAX_PERIOD(read_buf); /* PUNIT Mailbox Setup */ ret = intel_punit_ipc_command(IPC_PUNIT_BIOS_READ_TELE_INFO, 0, 0, NULL, &read_buf); if (ret) { dev_err(&pdev->dev, "PSS TELEM_INFO Read Failed\n"); return ret; } /* Get telemetry Info */ events = (read_buf & TELEM_INFO_SRAMEVTS_MASK) >> TELEM_INFO_SRAMEVTS_SHIFT; event_regs = read_buf & TELEM_INFO_SRAMEVTS_MASK; if ((events < TELEM_MAX_EVENTS_SRAM) || (event_regs < TELEM_MAX_EVENTS_SRAM)) { dev_err(&pdev->dev, "PSS:Insufficient Space for SRAM Trace\n"); dev_err(&pdev->dev, "SRAM Events %d; Event Regs %d\n", events, event_regs); return -ENOMEM; } telm_conf->pss_config.min_period = TELEM_MIN_PERIOD(read_buf); telm_conf->pss_config.max_period = TELEM_MAX_PERIOD(read_buf); pss_evtconfig.evtmap = NULL; pss_evtconfig.num_evts = TELEM_MAX_OS_ALLOCATED_EVENTS; pss_evtconfig.period = TELEM_SAMPLING_DEFAULT_PERIOD; ioss_evtconfig.evtmap = NULL; ioss_evtconfig.num_evts = TELEM_MAX_OS_ALLOCATED_EVENTS; ioss_evtconfig.period = TELEM_SAMPLING_DEFAULT_PERIOD; ret = telemetry_setup_evtconfig(pss_evtconfig, ioss_evtconfig, TELEM_RESET); if (ret) { dev_err(&pdev->dev, "TELEMETRY Setup Failed\n"); return ret; } return 0; } static int telemetry_plt_update_events(struct telemetry_evtconfig pss_evtconfig, struct telemetry_evtconfig ioss_evtconfig) { int ret; if ((pss_evtconfig.num_evts > 0) && (TELEM_SAMPLE_PERIOD_INVALID(pss_evtconfig.period))) { pr_err("PSS Sampling Period Out of Range\n"); return -EINVAL; } if ((ioss_evtconfig.num_evts > 0) && (TELEM_SAMPLE_PERIOD_INVALID(ioss_evtconfig.period))) { pr_err("IOSS Sampling Period Out of Range\n"); return -EINVAL; } ret = telemetry_setup_evtconfig(pss_evtconfig, ioss_evtconfig, TELEM_UPDATE); if (ret) pr_err("TELEMETRY Config Failed\n"); return ret; } static int telemetry_plt_set_sampling_period(u8 pss_period, u8 ioss_period) { u32 telem_ctrl = 0; int ret = 0; mutex_lock(&(telm_conf->telem_lock)); if (ioss_period) { struct intel_scu_ipc_dev *scu = telm_conf->scu; if (TELEM_SAMPLE_PERIOD_INVALID(ioss_period)) { pr_err("IOSS Sampling Period Out of Range\n"); ret = -EINVAL; goto out; } /* Get telemetry EVENT CTL */ ret = intel_scu_ipc_dev_command(scu, IOSS_TELEM, IOSS_TELEM_EVENT_CTL_READ, NULL, 0, &telem_ctrl, sizeof(telem_ctrl)); if (ret) { pr_err("IOSS TELEM_CTRL Read Failed\n"); goto out; } /* Disable Telemetry */ TELEM_DISABLE(telem_ctrl); ret = intel_scu_ipc_dev_command(scu, IOSS_TELEM, IOSS_TELEM_EVENT_CTL_WRITE, &telem_ctrl, sizeof(telem_ctrl), NULL, 0); if (ret) { pr_err("IOSS TELEM_CTRL Event Disable Write Failed\n"); goto out; } /* Enable Periodic Telemetry Events and enable SRAM trace */ TELEM_CLEAR_SAMPLE_PERIOD(telem_ctrl); TELEM_ENABLE_SRAM_EVT_TRACE(telem_ctrl); TELEM_ENABLE_PERIODIC(telem_ctrl); telem_ctrl |= ioss_period; ret = intel_scu_ipc_dev_command(scu, IOSS_TELEM, IOSS_TELEM_EVENT_CTL_WRITE, &telem_ctrl, sizeof(telem_ctrl), NULL, 0); if (ret) { pr_err("IOSS TELEM_CTRL Event Enable Write Failed\n"); goto out; } telm_conf->ioss_config.curr_period = ioss_period; } if (pss_period) { if (TELEM_SAMPLE_PERIOD_INVALID(pss_period)) { pr_err("PSS Sampling Period Out of Range\n"); ret = -EINVAL; goto out; } /* Get telemetry EVENT CTL */ ret = intel_punit_ipc_command( IPC_PUNIT_BIOS_READ_TELE_EVENT_CTRL, 0, 0, NULL, &telem_ctrl); if (ret) { pr_err("PSS TELEM_CTRL Read Failed\n"); goto out; } /* Disable Telemetry */ TELEM_DISABLE(telem_ctrl); ret = intel_punit_ipc_command( IPC_PUNIT_BIOS_WRITE_TELE_EVENT_CTRL, 0, 0, &telem_ctrl, NULL); if (ret) { pr_err("PSS TELEM_CTRL Event Disable Write Failed\n"); goto out; } /* Enable Periodic Telemetry Events and enable SRAM trace */ TELEM_CLEAR_SAMPLE_PERIOD(telem_ctrl); TELEM_ENABLE_SRAM_EVT_TRACE(telem_ctrl); TELEM_ENABLE_PERIODIC(telem_ctrl); telem_ctrl |= pss_period; ret = intel_punit_ipc_command( IPC_PUNIT_BIOS_WRITE_TELE_EVENT_CTRL, 0, 0, &telem_ctrl, NULL); if (ret) { pr_err("PSS TELEM_CTRL Event Enable Write Failed\n"); goto out; } telm_conf->pss_config.curr_period = pss_period; } out: mutex_unlock(&(telm_conf->telem_lock)); return ret; } static int telemetry_plt_get_sampling_period(u8 *pss_min_period, u8 *pss_max_period, u8 *ioss_min_period, u8 *ioss_max_period) { *pss_min_period = telm_conf->pss_config.min_period; *pss_max_period = telm_conf->pss_config.max_period; *ioss_min_period = telm_conf->ioss_config.min_period; *ioss_max_period = telm_conf->ioss_config.max_period; return 0; } static int telemetry_plt_reset_events(void) { struct telemetry_evtconfig pss_evtconfig, ioss_evtconfig; int ret; pss_evtconfig.evtmap = NULL; pss_evtconfig.num_evts = TELEM_MAX_OS_ALLOCATED_EVENTS; pss_evtconfig.period = TELEM_SAMPLING_DEFAULT_PERIOD; ioss_evtconfig.evtmap = NULL; ioss_evtconfig.num_evts = TELEM_MAX_OS_ALLOCATED_EVENTS; ioss_evtconfig.period = TELEM_SAMPLING_DEFAULT_PERIOD; ret = telemetry_setup_evtconfig(pss_evtconfig, ioss_evtconfig, TELEM_RESET); if (ret) pr_err("TELEMETRY Reset Failed\n"); return ret; } static int telemetry_plt_get_eventconfig(struct telemetry_evtconfig *pss_config, struct telemetry_evtconfig *ioss_config, int pss_len, int ioss_len) { u32 *pss_evtmap, *ioss_evtmap; u32 index; pss_evtmap = pss_config->evtmap; ioss_evtmap = ioss_config->evtmap; mutex_lock(&(telm_conf->telem_lock)); pss_config->num_evts = telm_conf->pss_config.ssram_evts_used; ioss_config->num_evts = telm_conf->ioss_config.ssram_evts_used; pss_config->period = telm_conf->pss_config.curr_period; ioss_config->period = telm_conf->ioss_config.curr_period; if ((pss_len < telm_conf->pss_config.ssram_evts_used) || (ioss_len < telm_conf->ioss_config.ssram_evts_used)) { mutex_unlock(&(telm_conf->telem_lock)); return -EINVAL; } for (index = 0; index < telm_conf->pss_config.ssram_evts_used; index++) { pss_evtmap[index] = telm_conf->pss_config.telem_evts[index].evt_id; } for (index = 0; index < telm_conf->ioss_config.ssram_evts_used; index++) { ioss_evtmap[index] = telm_conf->ioss_config.telem_evts[index].evt_id; } mutex_unlock(&(telm_conf->telem_lock)); return 0; } static int telemetry_plt_add_events(u8 num_pss_evts, u8 num_ioss_evts, u32 *pss_evtmap, u32 *ioss_evtmap) { struct telemetry_evtconfig pss_evtconfig, ioss_evtconfig; int ret; pss_evtconfig.evtmap = pss_evtmap; pss_evtconfig.num_evts = num_pss_evts; pss_evtconfig.period = telm_conf->pss_config.curr_period; ioss_evtconfig.evtmap = ioss_evtmap; ioss_evtconfig.num_evts = num_ioss_evts; ioss_evtconfig.period = telm_conf->ioss_config.curr_period; ret = telemetry_setup_evtconfig(pss_evtconfig, ioss_evtconfig, TELEM_ADD); if (ret) pr_err("TELEMETRY ADD Failed\n"); return ret; } static int telem_evtlog_read(enum telemetry_unit telem_unit, struct telem_ssram_region *ssram_region, u8 len) { struct telemetry_unit_config *unit_config; u64 timestamp_prev, timestamp_next; int ret, index, timeout = 0; ret = telem_get_unitconfig(telem_unit, &unit_config); if (ret < 0) return ret; if (len > unit_config->ssram_evts_used) len = unit_config->ssram_evts_used; do { timestamp_prev = readq(unit_config->regmap); if (!timestamp_prev) { pr_err("Ssram under update. Please Try Later\n"); return -EBUSY; } ssram_region->start_time = readq(unit_config->regmap + TELEM_SSRAM_STARTTIME_OFFSET); for (index = 0; index < len; index++) { ssram_region->events[index] = readq(unit_config->regmap + TELEM_SSRAM_EVTLOG_OFFSET + BYTES_PER_LONG*index); } timestamp_next = readq(unit_config->regmap); if (!timestamp_next) { pr_err("Ssram under update. Please Try Later\n"); return -EBUSY; } if (timeout++ > TELEM_SSRAM_READ_TIMEOUT) { pr_err("Timeout while reading Events\n"); return -EBUSY; } } while (timestamp_prev != timestamp_next); ssram_region->timestamp = timestamp_next; return len; } static int telemetry_plt_raw_read_eventlog(enum telemetry_unit telem_unit, struct telemetry_evtlog *evtlog, int len, int log_all_evts) { int index, idx1, ret, readlen = len; struct telem_ssram_region ssram_region; struct telemetry_evtmap *evtmap; switch (telem_unit) { case TELEM_PSS: evtmap = telm_conf->pss_config.telem_evts; break; case TELEM_IOSS: evtmap = telm_conf->ioss_config.telem_evts; break; default: pr_err("Unknown Telemetry Unit Specified %d\n", telem_unit); return -EINVAL; } if (!log_all_evts) readlen = TELEM_MAX_EVENTS_SRAM; ret = telem_evtlog_read(telem_unit, &ssram_region, readlen); if (ret < 0) return ret; /* Invalid evt-id array specified via length mismatch */ if ((!log_all_evts) && (len > ret)) return -EINVAL; if (log_all_evts) for (index = 0; index < ret; index++) { evtlog[index].telem_evtlog = ssram_region.events[index]; evtlog[index].telem_evtid = evtmap[index].evt_id; } else for (index = 0, readlen = 0; (index < ret) && (readlen < len); index++) { for (idx1 = 0; idx1 < len; idx1++) { /* Elements matched */ if (evtmap[index].evt_id == evtlog[idx1].telem_evtid) { evtlog[idx1].telem_evtlog = ssram_region.events[index]; readlen++; break; } } } return readlen; } static int telemetry_plt_read_eventlog(enum telemetry_unit telem_unit, struct telemetry_evtlog *evtlog, int len, int log_all_evts) { int ret; mutex_lock(&(telm_conf->telem_lock)); ret = telemetry_plt_raw_read_eventlog(telem_unit, evtlog, len, log_all_evts); mutex_unlock(&(telm_conf->telem_lock)); return ret; } static int telemetry_plt_get_trace_verbosity(enum telemetry_unit telem_unit, u32 *verbosity) { u32 temp = 0; int ret; if (verbosity == NULL) return -EINVAL; mutex_lock(&(telm_conf->telem_trace_lock)); switch (telem_unit) { case TELEM_PSS: ret = intel_punit_ipc_command( IPC_PUNIT_BIOS_READ_TELE_TRACE_CTRL, 0, 0, NULL, &temp); if (ret) { pr_err("PSS TRACE_CTRL Read Failed\n"); goto out; } break; case TELEM_IOSS: ret = intel_scu_ipc_dev_command(telm_conf->scu, IOSS_TELEM, IOSS_TELEM_TRACE_CTL_READ, NULL, 0, &temp, sizeof(temp)); if (ret) { pr_err("IOSS TRACE_CTL Read Failed\n"); goto out; } break; default: pr_err("Unknown Telemetry Unit Specified %d\n", telem_unit); ret = -EINVAL; break; } TELEM_EXTRACT_VERBOSITY(temp, *verbosity); out: mutex_unlock(&(telm_conf->telem_trace_lock)); return ret; } static int telemetry_plt_set_trace_verbosity(enum telemetry_unit telem_unit, u32 verbosity) { u32 temp = 0; int ret; verbosity &= TELEM_TRC_VERBOSITY_MASK; mutex_lock(&(telm_conf->telem_trace_lock)); switch (telem_unit) { case TELEM_PSS: ret = intel_punit_ipc_command( IPC_PUNIT_BIOS_READ_TELE_TRACE_CTRL, 0, 0, NULL, &temp); if (ret) { pr_err("PSS TRACE_CTRL Read Failed\n"); goto out; } TELEM_CLEAR_VERBOSITY_BITS(temp); TELEM_SET_VERBOSITY_BITS(temp, verbosity); ret = intel_punit_ipc_command( IPC_PUNIT_BIOS_WRITE_TELE_TRACE_CTRL, 0, 0, &temp, NULL); if (ret) { pr_err("PSS TRACE_CTRL Verbosity Set Failed\n"); goto out; } break; case TELEM_IOSS: ret = intel_scu_ipc_dev_command(telm_conf->scu, IOSS_TELEM, IOSS_TELEM_TRACE_CTL_READ, NULL, 0, &temp, sizeof(temp)); if (ret) { pr_err("IOSS TRACE_CTL Read Failed\n"); goto out; } TELEM_CLEAR_VERBOSITY_BITS(temp); TELEM_SET_VERBOSITY_BITS(temp, verbosity); ret = intel_scu_ipc_dev_command(telm_conf->scu, IOSS_TELEM, IOSS_TELEM_TRACE_CTL_WRITE, &temp, sizeof(temp), NULL, 0); if (ret) { pr_err("IOSS TRACE_CTL Verbosity Set Failed\n"); goto out; } break; default: pr_err("Unknown Telemetry Unit Specified %d\n", telem_unit); ret = -EINVAL; break; } out: mutex_unlock(&(telm_conf->telem_trace_lock)); return ret; } static const struct telemetry_core_ops telm_pltops = { .get_trace_verbosity = telemetry_plt_get_trace_verbosity, .set_trace_verbosity = telemetry_plt_set_trace_verbosity, .set_sampling_period = telemetry_plt_set_sampling_period, .get_sampling_period = telemetry_plt_get_sampling_period, .raw_read_eventlog = telemetry_plt_raw_read_eventlog, .get_eventconfig = telemetry_plt_get_eventconfig, .update_events = telemetry_plt_update_events, .read_eventlog = telemetry_plt_read_eventlog, .reset_events = telemetry_plt_reset_events, .add_events = telemetry_plt_add_events, }; static int telemetry_pltdrv_probe(struct platform_device *pdev) { const struct x86_cpu_id *id; void __iomem *mem; int ret; id = x86_match_cpu(telemetry_cpu_ids); if (!id) return -ENODEV; telm_conf = (struct telemetry_plt_config *)id->driver_data; telm_conf->pmc = dev_get_drvdata(pdev->dev.parent); mem = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(mem)) return PTR_ERR(mem); telm_conf->pss_config.regmap = mem; mem = devm_platform_ioremap_resource(pdev, 1); if (IS_ERR(mem)) return PTR_ERR(mem); telm_conf->ioss_config.regmap = mem; telm_conf->scu = devm_intel_scu_ipc_dev_get(&pdev->dev); if (!telm_conf->scu) { ret = -EPROBE_DEFER; goto out; } mutex_init(&telm_conf->telem_lock); mutex_init(&telm_conf->telem_trace_lock); ret = telemetry_setup(pdev); if (ret) goto out; ret = telemetry_set_pltdata(&telm_pltops, telm_conf); if (ret) { dev_err(&pdev->dev, "TELEMETRY Set Pltops Failed.\n"); goto out; } return 0; out: dev_err(&pdev->dev, "TELEMETRY Setup Failed.\n"); return ret; } static void telemetry_pltdrv_remove(struct platform_device *pdev) { telemetry_clear_pltdata(); } static struct platform_driver telemetry_soc_driver = { .probe = telemetry_pltdrv_probe, .remove_new = telemetry_pltdrv_remove, .driver = { .name = DRIVER_NAME, }, }; static int __init telemetry_module_init(void) { return platform_driver_register(&telemetry_soc_driver); } static void __exit telemetry_module_exit(void) { platform_driver_unregister(&telemetry_soc_driver); } device_initcall(telemetry_module_init); module_exit(telemetry_module_exit); MODULE_AUTHOR("Souvik Kumar Chakravarty <[email protected]>"); MODULE_DESCRIPTION("Intel SoC Telemetry Platform Driver"); MODULE_VERSION(DRIVER_VERSION); MODULE_LICENSE("GPL v2");
linux-master
drivers/platform/x86/intel/telemetry/pltdrv.c
// SPDX-License-Identifier: GPL-2.0 /* * Intel SoC Core Telemetry Driver * Copyright (C) 2015, Intel Corporation. * All Rights Reserved. * * Telemetry Framework provides platform related PM and performance statistics. * This file provides the core telemetry API implementation. */ #include <linux/device.h> #include <linux/module.h> #include <asm/intel_telemetry.h> #define DRIVER_NAME "intel_telemetry_core" struct telemetry_core_config { struct telemetry_plt_config *plt_config; const struct telemetry_core_ops *telem_ops; }; static struct telemetry_core_config telm_core_conf; static int telemetry_def_update_events(struct telemetry_evtconfig pss_evtconfig, struct telemetry_evtconfig ioss_evtconfig) { return 0; } static int telemetry_def_set_sampling_period(u8 pss_period, u8 ioss_period) { return 0; } static int telemetry_def_get_sampling_period(u8 *pss_min_period, u8 *pss_max_period, u8 *ioss_min_period, u8 *ioss_max_period) { return 0; } static int telemetry_def_get_eventconfig( struct telemetry_evtconfig *pss_evtconfig, struct telemetry_evtconfig *ioss_evtconfig, int pss_len, int ioss_len) { return 0; } static int telemetry_def_get_trace_verbosity(enum telemetry_unit telem_unit, u32 *verbosity) { return 0; } static int telemetry_def_set_trace_verbosity(enum telemetry_unit telem_unit, u32 verbosity) { return 0; } static int telemetry_def_raw_read_eventlog(enum telemetry_unit telem_unit, struct telemetry_evtlog *evtlog, int len, int log_all_evts) { return 0; } static int telemetry_def_read_eventlog(enum telemetry_unit telem_unit, struct telemetry_evtlog *evtlog, int len, int log_all_evts) { return 0; } static int telemetry_def_add_events(u8 num_pss_evts, u8 num_ioss_evts, u32 *pss_evtmap, u32 *ioss_evtmap) { return 0; } static int telemetry_def_reset_events(void) { return 0; } static const struct telemetry_core_ops telm_defpltops = { .set_sampling_period = telemetry_def_set_sampling_period, .get_sampling_period = telemetry_def_get_sampling_period, .get_trace_verbosity = telemetry_def_get_trace_verbosity, .set_trace_verbosity = telemetry_def_set_trace_verbosity, .raw_read_eventlog = telemetry_def_raw_read_eventlog, .get_eventconfig = telemetry_def_get_eventconfig, .read_eventlog = telemetry_def_read_eventlog, .update_events = telemetry_def_update_events, .reset_events = telemetry_def_reset_events, .add_events = telemetry_def_add_events, }; /** * telemetry_update_events() - Update telemetry Configuration * @pss_evtconfig: PSS related config. No change if num_evts = 0. * @pss_evtconfig: IOSS related config. No change if num_evts = 0. * * This API updates the IOSS & PSS Telemetry configuration. Old config * is overwritten. Call telemetry_reset_events when logging is over * All sample period values should be in the form of: * bits[6:3] -> value; bits [0:2]-> Exponent; Period = (Value *16^Exponent) * * Return: 0 success, < 0 for failure */ int telemetry_update_events(struct telemetry_evtconfig pss_evtconfig, struct telemetry_evtconfig ioss_evtconfig) { return telm_core_conf.telem_ops->update_events(pss_evtconfig, ioss_evtconfig); } EXPORT_SYMBOL_GPL(telemetry_update_events); /** * telemetry_set_sampling_period() - Sets the IOSS & PSS sampling period * @pss_period: placeholder for PSS Period to be set. * Set to 0 if not required to be updated * @ioss_period: placeholder for IOSS Period to be set * Set to 0 if not required to be updated * * All values should be in the form of: * bits[6:3] -> value; bits [0:2]-> Exponent; Period = (Value *16^Exponent) * * Return: 0 success, < 0 for failure */ int telemetry_set_sampling_period(u8 pss_period, u8 ioss_period) { return telm_core_conf.telem_ops->set_sampling_period(pss_period, ioss_period); } EXPORT_SYMBOL_GPL(telemetry_set_sampling_period); /** * telemetry_get_sampling_period() - Get IOSS & PSS min & max sampling period * @pss_min_period: placeholder for PSS Min Period supported * @pss_max_period: placeholder for PSS Max Period supported * @ioss_min_period: placeholder for IOSS Min Period supported * @ioss_max_period: placeholder for IOSS Max Period supported * * All values should be in the form of: * bits[6:3] -> value; bits [0:2]-> Exponent; Period = (Value *16^Exponent) * * Return: 0 success, < 0 for failure */ int telemetry_get_sampling_period(u8 *pss_min_period, u8 *pss_max_period, u8 *ioss_min_period, u8 *ioss_max_period) { return telm_core_conf.telem_ops->get_sampling_period(pss_min_period, pss_max_period, ioss_min_period, ioss_max_period); } EXPORT_SYMBOL_GPL(telemetry_get_sampling_period); /** * telemetry_reset_events() - Restore the IOSS & PSS configuration to default * * Return: 0 success, < 0 for failure */ int telemetry_reset_events(void) { return telm_core_conf.telem_ops->reset_events(); } EXPORT_SYMBOL_GPL(telemetry_reset_events); /** * telemetry_get_eventconfig() - Returns the pss and ioss events enabled * @pss_evtconfig: Pointer to PSS related configuration. * @pss_evtconfig: Pointer to IOSS related configuration. * @pss_len: Number of u32 elements allocated for pss_evtconfig array * @ioss_len: Number of u32 elements allocated for ioss_evtconfig array * * Return: 0 success, < 0 for failure */ int telemetry_get_eventconfig(struct telemetry_evtconfig *pss_evtconfig, struct telemetry_evtconfig *ioss_evtconfig, int pss_len, int ioss_len) { return telm_core_conf.telem_ops->get_eventconfig(pss_evtconfig, ioss_evtconfig, pss_len, ioss_len); } EXPORT_SYMBOL_GPL(telemetry_get_eventconfig); /** * telemetry_add_events() - Add IOSS & PSS configuration to existing settings. * @num_pss_evts: Number of PSS Events (<29) in pss_evtmap. Can be 0. * @num_ioss_evts: Number of IOSS Events (<29) in ioss_evtmap. Can be 0. * @pss_evtmap: Array of PSS Event-IDs to Enable * @ioss_evtmap: Array of PSS Event-IDs to Enable * * Events are appended to Old Configuration. In case of total events > 28, it * returns error. Call telemetry_reset_events to reset after eventlog done * * Return: 0 success, < 0 for failure */ int telemetry_add_events(u8 num_pss_evts, u8 num_ioss_evts, u32 *pss_evtmap, u32 *ioss_evtmap) { return telm_core_conf.telem_ops->add_events(num_pss_evts, num_ioss_evts, pss_evtmap, ioss_evtmap); } EXPORT_SYMBOL_GPL(telemetry_add_events); /** * telemetry_read_events() - Fetches samples as specified by evtlog.telem_evt_id * @telem_unit: Specify whether IOSS or PSS Read * @evtlog: Array of telemetry_evtlog structs to fill data * evtlog.telem_evt_id specifies the ids to read * @len: Length of array of evtlog * * Return: number of eventlogs read for success, < 0 for failure */ int telemetry_read_events(enum telemetry_unit telem_unit, struct telemetry_evtlog *evtlog, int len) { return telm_core_conf.telem_ops->read_eventlog(telem_unit, evtlog, len, 0); } EXPORT_SYMBOL_GPL(telemetry_read_events); /** * telemetry_raw_read_events() - Fetch samples specified by evtlog.telem_evt_id * @telem_unit: Specify whether IOSS or PSS Read * @evtlog: Array of telemetry_evtlog structs to fill data * evtlog.telem_evt_id specifies the ids to read * @len: Length of array of evtlog * * The caller must take care of locking in this case. * * Return: number of eventlogs read for success, < 0 for failure */ int telemetry_raw_read_events(enum telemetry_unit telem_unit, struct telemetry_evtlog *evtlog, int len) { return telm_core_conf.telem_ops->raw_read_eventlog(telem_unit, evtlog, len, 0); } EXPORT_SYMBOL_GPL(telemetry_raw_read_events); /** * telemetry_read_eventlog() - Fetch the Telemetry log from PSS or IOSS * @telem_unit: Specify whether IOSS or PSS Read * @evtlog: Array of telemetry_evtlog structs to fill data * @len: Length of array of evtlog * * Return: number of eventlogs read for success, < 0 for failure */ int telemetry_read_eventlog(enum telemetry_unit telem_unit, struct telemetry_evtlog *evtlog, int len) { return telm_core_conf.telem_ops->read_eventlog(telem_unit, evtlog, len, 1); } EXPORT_SYMBOL_GPL(telemetry_read_eventlog); /** * telemetry_raw_read_eventlog() - Fetch the Telemetry log from PSS or IOSS * @telem_unit: Specify whether IOSS or PSS Read * @evtlog: Array of telemetry_evtlog structs to fill data * @len: Length of array of evtlog * * The caller must take care of locking in this case. * * Return: number of eventlogs read for success, < 0 for failure */ int telemetry_raw_read_eventlog(enum telemetry_unit telem_unit, struct telemetry_evtlog *evtlog, int len) { return telm_core_conf.telem_ops->raw_read_eventlog(telem_unit, evtlog, len, 1); } EXPORT_SYMBOL_GPL(telemetry_raw_read_eventlog); /** * telemetry_get_trace_verbosity() - Get the IOSS & PSS Trace verbosity * @telem_unit: Specify whether IOSS or PSS Read * @verbosity: Pointer to return Verbosity * * Return: 0 success, < 0 for failure */ int telemetry_get_trace_verbosity(enum telemetry_unit telem_unit, u32 *verbosity) { return telm_core_conf.telem_ops->get_trace_verbosity(telem_unit, verbosity); } EXPORT_SYMBOL_GPL(telemetry_get_trace_verbosity); /** * telemetry_set_trace_verbosity() - Update the IOSS & PSS Trace verbosity * @telem_unit: Specify whether IOSS or PSS Read * @verbosity: Verbosity to set * * Return: 0 success, < 0 for failure */ int telemetry_set_trace_verbosity(enum telemetry_unit telem_unit, u32 verbosity) { return telm_core_conf.telem_ops->set_trace_verbosity(telem_unit, verbosity); } EXPORT_SYMBOL_GPL(telemetry_set_trace_verbosity); /** * telemetry_set_pltdata() - Set the platform specific Data * @ops: Pointer to ops structure * @pltconfig: Platform config data * * Usage by other than telemetry pltdrv module is invalid * * Return: 0 success, < 0 for failure */ int telemetry_set_pltdata(const struct telemetry_core_ops *ops, struct telemetry_plt_config *pltconfig) { if (ops) telm_core_conf.telem_ops = ops; if (pltconfig) telm_core_conf.plt_config = pltconfig; return 0; } EXPORT_SYMBOL_GPL(telemetry_set_pltdata); /** * telemetry_clear_pltdata() - Clear the platform specific Data * * Usage by other than telemetry pltdrv module is invalid * * Return: 0 success, < 0 for failure */ int telemetry_clear_pltdata(void) { telm_core_conf.telem_ops = &telm_defpltops; telm_core_conf.plt_config = NULL; return 0; } EXPORT_SYMBOL_GPL(telemetry_clear_pltdata); /** * telemetry_get_pltdata() - Return telemetry platform config * * May be used by other telemetry modules to get platform specific * configuration. */ struct telemetry_plt_config *telemetry_get_pltdata(void) { return telm_core_conf.plt_config; } EXPORT_SYMBOL_GPL(telemetry_get_pltdata); static inline int telemetry_get_pssevtname(enum telemetry_unit telem_unit, const char **name, int len) { struct telemetry_unit_config psscfg; int i; if (!telm_core_conf.plt_config) return -EINVAL; psscfg = telm_core_conf.plt_config->pss_config; if (len > psscfg.ssram_evts_used) len = psscfg.ssram_evts_used; for (i = 0; i < len; i++) name[i] = psscfg.telem_evts[i].name; return 0; } static inline int telemetry_get_iossevtname(enum telemetry_unit telem_unit, const char **name, int len) { struct telemetry_unit_config iosscfg; int i; if (!(telm_core_conf.plt_config)) return -EINVAL; iosscfg = telm_core_conf.plt_config->ioss_config; if (len > iosscfg.ssram_evts_used) len = iosscfg.ssram_evts_used; for (i = 0; i < len; i++) name[i] = iosscfg.telem_evts[i].name; return 0; } /** * telemetry_get_evtname() - Checkif platform config is valid * @telem_unit: Telemetry Unit to check * @name: Array of character pointers to contain name * @len: length of array name provided by user * * Usage by other than telemetry debugfs module is invalid * * Return: 0 success, < 0 for failure */ int telemetry_get_evtname(enum telemetry_unit telem_unit, const char **name, int len) { int ret = -EINVAL; if (telem_unit == TELEM_PSS) ret = telemetry_get_pssevtname(telem_unit, name, len); else if (telem_unit == TELEM_IOSS) ret = telemetry_get_iossevtname(telem_unit, name, len); return ret; } EXPORT_SYMBOL_GPL(telemetry_get_evtname); static int __init telemetry_module_init(void) { pr_info(pr_fmt(DRIVER_NAME) " Init\n"); telm_core_conf.telem_ops = &telm_defpltops; return 0; } static void __exit telemetry_module_exit(void) { } module_init(telemetry_module_init); module_exit(telemetry_module_exit); MODULE_AUTHOR("Souvik Kumar Chakravarty <[email protected]>"); MODULE_DESCRIPTION("Intel SoC Telemetry Interface"); MODULE_LICENSE("GPL v2");
linux-master
drivers/platform/x86/intel/telemetry/core.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2021, Intel Corporation. */ #include <linux/acpi.h> #include <linux/kobject.h> #include <linux/platform_device.h> #include <linux/sysfs.h> #include "intel_sar.h" /** * get_int_value: Retrieve integer values from ACPI Object * @obj: acpi_object pointer which has the integer value * @out: output pointer will get integer value * * Function is used to retrieve integer value from acpi object. * * Return: * * 0 on success * * -EIO if there is an issue in acpi_object passed. */ static int get_int_value(union acpi_object *obj, int *out) { if (!obj || obj->type != ACPI_TYPE_INTEGER) return -EIO; *out = (int)obj->integer.value; return 0; } /** * update_sar_data: sar data is updated based on regulatory mode * @context: pointer to driver context structure * * sar_data is updated based on regulatory value * context->reg_value will never exceed MAX_REGULATORY */ static void update_sar_data(struct wwan_sar_context *context) { struct wwan_device_mode_configuration *config = &context->config_data[context->reg_value]; if (config->device_mode_info && context->sar_data.device_mode < config->total_dev_mode) { int itr = 0; for (itr = 0; itr < config->total_dev_mode; itr++) { if (context->sar_data.device_mode == config->device_mode_info[itr].device_mode) { struct wwan_device_mode_info *dev_mode = &config->device_mode_info[itr]; context->sar_data.antennatable_index = dev_mode->antennatable_index; context->sar_data.bandtable_index = dev_mode->bandtable_index; context->sar_data.sartable_index = dev_mode->sartable_index; break; } } } } /** * parse_package: parse acpi package for retrieving SAR information * @context: pointer to driver context structure * @item : acpi_object pointer * * Given acpi_object is iterated to retrieve information for each device mode. * If a given package corresponding to a specific device mode is faulty, it is * skipped and the specific entry in context structure will have the default value * of zero. Decoding of subsequent device modes is realized by having "continue" * statements in the for loop on encountering error in parsing given device mode. * * Return: * AE_OK if success * AE_ERROR on error */ static acpi_status parse_package(struct wwan_sar_context *context, union acpi_object *item) { struct wwan_device_mode_configuration *data; int value, itr, reg; union acpi_object *num; num = &item->package.elements[0]; if (get_int_value(num, &value) || value < 0 || value >= MAX_REGULATORY) return AE_ERROR; reg = value; data = &context->config_data[reg]; if (data->total_dev_mode > MAX_DEV_MODES || data->total_dev_mode == 0 || item->package.count <= data->total_dev_mode) return AE_ERROR; data->device_mode_info = kmalloc_array(data->total_dev_mode, sizeof(struct wwan_device_mode_info), GFP_KERNEL); if (!data->device_mode_info) return AE_ERROR; for (itr = 0; itr < data->total_dev_mode; itr++) { struct wwan_device_mode_info temp = { 0 }; num = &item->package.elements[itr + 1]; if (num->type != ACPI_TYPE_PACKAGE || num->package.count < TOTAL_DATA) continue; if (get_int_value(&num->package.elements[0], &temp.device_mode)) continue; if (get_int_value(&num->package.elements[1], &temp.bandtable_index)) continue; if (get_int_value(&num->package.elements[2], &temp.antennatable_index)) continue; if (get_int_value(&num->package.elements[3], &temp.sartable_index)) continue; data->device_mode_info[itr] = temp; } return AE_OK; } /** * sar_get_device_mode: Extraction of information from BIOS via DSM calls * @device: ACPI device for which to retrieve the data * * Retrieve the current device mode information from the BIOS. * * Return: * AE_OK on success * AE_ERROR on error */ static acpi_status sar_get_device_mode(struct platform_device *device) { struct wwan_sar_context *context = dev_get_drvdata(&device->dev); acpi_status status = AE_OK; union acpi_object *out; u32 rev = 0; out = acpi_evaluate_dsm_typed(context->handle, &context->guid, rev, COMMAND_ID_DEV_MODE, NULL, ACPI_TYPE_INTEGER); if (!out) { dev_err(&device->dev, "DSM cmd:%d Failed to retrieve value\n", COMMAND_ID_DEV_MODE); status = AE_ERROR; goto dev_mode_error; } context->sar_data.device_mode = out->integer.value; update_sar_data(context); sysfs_notify(&device->dev.kobj, NULL, SYSFS_DATANAME); dev_mode_error: ACPI_FREE(out); return status; } static const struct acpi_device_id sar_device_ids[] = { { "INTC1092", 0}, {} }; MODULE_DEVICE_TABLE(acpi, sar_device_ids); static ssize_t intc_data_show(struct device *dev, struct device_attribute *attr, char *buf) { struct wwan_sar_context *context = dev_get_drvdata(dev); return sysfs_emit(buf, "%d %d %d %d\n", context->sar_data.device_mode, context->sar_data.bandtable_index, context->sar_data.antennatable_index, context->sar_data.sartable_index); } static DEVICE_ATTR_RO(intc_data); static ssize_t intc_reg_show(struct device *dev, struct device_attribute *attr, char *buf) { struct wwan_sar_context *context = dev_get_drvdata(dev); return sysfs_emit(buf, "%d\n", context->reg_value); } static ssize_t intc_reg_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct wwan_sar_context *context = dev_get_drvdata(dev); unsigned int value; int read; if (!count) return -EINVAL; read = kstrtouint(buf, 10, &value); if (read < 0) return read; if (value >= MAX_REGULATORY) return -EOVERFLOW; context->reg_value = value; update_sar_data(context); sysfs_notify(&dev->kobj, NULL, SYSFS_DATANAME); return count; } static DEVICE_ATTR_RW(intc_reg); static struct attribute *intcsar_attrs[] = { &dev_attr_intc_data.attr, &dev_attr_intc_reg.attr, NULL }; static struct attribute_group intcsar_group = { .attrs = intcsar_attrs, }; static void sar_notify(acpi_handle handle, u32 event, void *data) { struct platform_device *device = data; if (event == SAR_EVENT) { if (sar_get_device_mode(device) != AE_OK) dev_err(&device->dev, "sar_get_device_mode error"); } } static void sar_get_data(int reg, struct wwan_sar_context *context) { union acpi_object *out, req; u32 rev = 0; req.type = ACPI_TYPE_INTEGER; req.integer.value = reg; out = acpi_evaluate_dsm_typed(context->handle, &context->guid, rev, COMMAND_ID_CONFIG_TABLE, &req, ACPI_TYPE_PACKAGE); if (!out) return; if (out->package.count >= 3 && out->package.elements[0].type == ACPI_TYPE_INTEGER && out->package.elements[1].type == ACPI_TYPE_INTEGER && out->package.elements[2].type == ACPI_TYPE_PACKAGE && out->package.elements[2].package.count > 0) { context->config_data[reg].version = out->package.elements[0].integer.value; context->config_data[reg].total_dev_mode = out->package.elements[1].integer.value; if (context->config_data[reg].total_dev_mode <= 0 || context->config_data[reg].total_dev_mode > MAX_DEV_MODES) { ACPI_FREE(out); return; } parse_package(context, &out->package.elements[2]); } ACPI_FREE(out); } static int sar_probe(struct platform_device *device) { struct wwan_sar_context *context; int reg; int result; context = kzalloc(sizeof(*context), GFP_KERNEL); if (!context) return -ENOMEM; context->sar_device = device; context->handle = ACPI_HANDLE(&device->dev); dev_set_drvdata(&device->dev, context); result = guid_parse(SAR_DSM_UUID, &context->guid); if (result) { dev_err(&device->dev, "SAR UUID parse error: %d\n", result); goto r_free; } for (reg = 0; reg < MAX_REGULATORY; reg++) sar_get_data(reg, context); if (sar_get_device_mode(device) != AE_OK) { dev_err(&device->dev, "Failed to get device mode\n"); result = -EIO; goto r_free; } result = sysfs_create_group(&device->dev.kobj, &intcsar_group); if (result) { dev_err(&device->dev, "sysfs creation failed\n"); goto r_free; } if (acpi_install_notify_handler(ACPI_HANDLE(&device->dev), ACPI_DEVICE_NOTIFY, sar_notify, (void *)device) != AE_OK) { dev_err(&device->dev, "Failed acpi_install_notify_handler\n"); result = -EIO; goto r_sys; } return 0; r_sys: sysfs_remove_group(&device->dev.kobj, &intcsar_group); r_free: kfree(context); return result; } static void sar_remove(struct platform_device *device) { struct wwan_sar_context *context = dev_get_drvdata(&device->dev); int reg; acpi_remove_notify_handler(ACPI_HANDLE(&device->dev), ACPI_DEVICE_NOTIFY, sar_notify); sysfs_remove_group(&device->dev.kobj, &intcsar_group); for (reg = 0; reg < MAX_REGULATORY; reg++) kfree(context->config_data[reg].device_mode_info); kfree(context); } static struct platform_driver sar_driver = { .probe = sar_probe, .remove_new = sar_remove, .driver = { .name = DRVNAME, .acpi_match_table = ACPI_PTR(sar_device_ids) } }; module_platform_driver(sar_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Platform device driver for INTEL MODEM BIOS SAR"); MODULE_AUTHOR("Shravan Sudhakar <[email protected]>");
linux-master
drivers/platform/x86/intel/int1092/intel_sar.c
// SPDX-License-Identifier: GPL-2.0 /* * This file contains platform specific structure definitions * and init function used by Cannon Lake Point PCH. * * Copyright (c) 2022, Intel Corporation. * All Rights Reserved. * */ #include "core.h" /* Cannon Lake: PGD PFET Enable Ack Status Register(s) bitmap */ const struct pmc_bit_map cnp_pfear_map[] = { {"PMC", BIT(0)}, {"OPI-DMI", BIT(1)}, {"SPI/eSPI", BIT(2)}, {"XHCI", BIT(3)}, {"SPA", BIT(4)}, {"SPB", BIT(5)}, {"SPC", BIT(6)}, {"GBE", BIT(7)}, {"SATA", BIT(0)}, {"HDA_PGD0", BIT(1)}, {"HDA_PGD1", BIT(2)}, {"HDA_PGD2", BIT(3)}, {"HDA_PGD3", BIT(4)}, {"SPD", BIT(5)}, {"LPSS", BIT(6)}, {"LPC", BIT(7)}, {"SMB", BIT(0)}, {"ISH", BIT(1)}, {"P2SB", BIT(2)}, {"NPK_VNN", BIT(3)}, {"SDX", BIT(4)}, {"SPE", BIT(5)}, {"Fuse", BIT(6)}, {"SBR8", BIT(7)}, {"CSME_FSC", BIT(0)}, {"USB3_OTG", BIT(1)}, {"EXI", BIT(2)}, {"CSE", BIT(3)}, {"CSME_KVM", BIT(4)}, {"CSME_PMT", BIT(5)}, {"CSME_CLINK", BIT(6)}, {"CSME_PTIO", BIT(7)}, {"CSME_USBR", BIT(0)}, {"CSME_SUSRAM", BIT(1)}, {"CSME_SMT1", BIT(2)}, {"CSME_SMT4", BIT(3)}, {"CSME_SMS2", BIT(4)}, {"CSME_SMS1", BIT(5)}, {"CSME_RTC", BIT(6)}, {"CSME_PSF", BIT(7)}, {"SBR0", BIT(0)}, {"SBR1", BIT(1)}, {"SBR2", BIT(2)}, {"SBR3", BIT(3)}, {"SBR4", BIT(4)}, {"SBR5", BIT(5)}, {"CSME_PECI", BIT(6)}, {"PSF1", BIT(7)}, {"PSF2", BIT(0)}, {"PSF3", BIT(1)}, {"PSF4", BIT(2)}, {"CNVI", BIT(3)}, {"UFS0", BIT(4)}, {"EMMC", BIT(5)}, {"SPF", BIT(6)}, {"SBR6", BIT(7)}, {"SBR7", BIT(0)}, {"NPK_AON", BIT(1)}, {"HDA_PGD4", BIT(2)}, {"HDA_PGD5", BIT(3)}, {"HDA_PGD6", BIT(4)}, {"PSF6", BIT(5)}, {"PSF7", BIT(6)}, {"PSF8", BIT(7)}, {} }; const struct pmc_bit_map *ext_cnp_pfear_map[] = { /* * Check intel_pmc_core_ids[] users of cnp_reg_map for * a list of core SoCs using this. */ cnp_pfear_map, NULL }; const struct pmc_bit_map cnp_slps0_dbg0_map[] = { {"AUDIO_D3", BIT(0)}, {"OTG_D3", BIT(1)}, {"XHCI_D3", BIT(2)}, {"LPIO_D3", BIT(3)}, {"SDX_D3", BIT(4)}, {"SATA_D3", BIT(5)}, {"UFS0_D3", BIT(6)}, {"UFS1_D3", BIT(7)}, {"EMMC_D3", BIT(8)}, {} }; const struct pmc_bit_map cnp_slps0_dbg1_map[] = { {"SDIO_PLL_OFF", BIT(0)}, {"USB2_PLL_OFF", BIT(1)}, {"AUDIO_PLL_OFF", BIT(2)}, {"OC_PLL_OFF", BIT(3)}, {"MAIN_PLL_OFF", BIT(4)}, {"XOSC_OFF", BIT(5)}, {"LPC_CLKS_GATED", BIT(6)}, {"PCIE_CLKREQS_IDLE", BIT(7)}, {"AUDIO_ROSC_OFF", BIT(8)}, {"HPET_XOSC_CLK_REQ", BIT(9)}, {"PMC_ROSC_SLOW_CLK", BIT(10)}, {"AON2_ROSC_GATED", BIT(11)}, {"CLKACKS_DEASSERTED", BIT(12)}, {} }; const struct pmc_bit_map cnp_slps0_dbg2_map[] = { {"MPHY_CORE_GATED", BIT(0)}, {"CSME_GATED", BIT(1)}, {"USB2_SUS_GATED", BIT(2)}, {"DYN_FLEX_IO_IDLE", BIT(3)}, {"GBE_NO_LINK", BIT(4)}, {"THERM_SEN_DISABLED", BIT(5)}, {"PCIE_LOW_POWER", BIT(6)}, {"ISH_VNNAON_REQ_ACT", BIT(7)}, {"ISH_VNN_REQ_ACT", BIT(8)}, {"CNV_VNNAON_REQ_ACT", BIT(9)}, {"CNV_VNN_REQ_ACT", BIT(10)}, {"NPK_VNNON_REQ_ACT", BIT(11)}, {"PMSYNC_STATE_IDLE", BIT(12)}, {"ALST_GT_THRES", BIT(13)}, {"PMC_ARC_PG_READY", BIT(14)}, {} }; const struct pmc_bit_map *cnp_slps0_dbg_maps[] = { cnp_slps0_dbg0_map, cnp_slps0_dbg1_map, cnp_slps0_dbg2_map, NULL }; const struct pmc_bit_map cnp_ltr_show_map[] = { {"SOUTHPORT_A", CNP_PMC_LTR_SPA}, {"SOUTHPORT_B", CNP_PMC_LTR_SPB}, {"SATA", CNP_PMC_LTR_SATA}, {"GIGABIT_ETHERNET", CNP_PMC_LTR_GBE}, {"XHCI", CNP_PMC_LTR_XHCI}, {"Reserved", CNP_PMC_LTR_RESERVED}, {"ME", CNP_PMC_LTR_ME}, /* EVA is Enterprise Value Add, doesn't really exist on PCH */ {"EVA", CNP_PMC_LTR_EVA}, {"SOUTHPORT_C", CNP_PMC_LTR_SPC}, {"HD_AUDIO", CNP_PMC_LTR_AZ}, {"CNV", CNP_PMC_LTR_CNV}, {"LPSS", CNP_PMC_LTR_LPSS}, {"SOUTHPORT_D", CNP_PMC_LTR_SPD}, {"SOUTHPORT_E", CNP_PMC_LTR_SPE}, {"CAMERA", CNP_PMC_LTR_CAM}, {"ESPI", CNP_PMC_LTR_ESPI}, {"SCC", CNP_PMC_LTR_SCC}, {"ISH", CNP_PMC_LTR_ISH}, {"UFSX2", CNP_PMC_LTR_UFSX2}, {"EMMC", CNP_PMC_LTR_EMMC}, /* * Check intel_pmc_core_ids[] users of cnp_reg_map for * a list of core SoCs using this. */ {"WIGIG", ICL_PMC_LTR_WIGIG}, {"THC0", TGL_PMC_LTR_THC0}, {"THC1", TGL_PMC_LTR_THC1}, /* Below two cannot be used for LTR_IGNORE */ {"CURRENT_PLATFORM", CNP_PMC_LTR_CUR_PLT}, {"AGGREGATED_SYSTEM", CNP_PMC_LTR_CUR_ASLT}, {} }; const struct pmc_reg_map cnp_reg_map = { .pfear_sts = ext_cnp_pfear_map, .slp_s0_offset = CNP_PMC_SLP_S0_RES_COUNTER_OFFSET, .slp_s0_res_counter_step = SPT_PMC_SLP_S0_RES_COUNTER_STEP, .slps0_dbg_maps = cnp_slps0_dbg_maps, .ltr_show_sts = cnp_ltr_show_map, .msr_sts = msr_map, .slps0_dbg_offset = CNP_PMC_SLPS0_DBG_OFFSET, .ltr_ignore_offset = CNP_PMC_LTR_IGNORE_OFFSET, .regmap_length = CNP_PMC_MMIO_REG_LEN, .ppfear0_offset = CNP_PMC_HOST_PPFEAR0A, .ppfear_buckets = CNP_PPFEAR_NUM_ENTRIES, .pm_cfg_offset = CNP_PMC_PM_CFG_OFFSET, .pm_read_disable_bit = CNP_PMC_READ_DISABLE_BIT, .ltr_ignore_max = CNP_NUM_IP_IGN_ALLOWED, .etr3_offset = ETR3_OFFSET, }; int cnp_core_init(struct pmc_dev *pmcdev) { struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; int ret; pmc->map = &cnp_reg_map; ret = get_primary_reg_base(pmc); if (ret) return ret; /* Due to a hardware limitation, the GBE LTR blocks PC10 * when a cable is attached. Tell the PMC to ignore it. */ dev_dbg(&pmcdev->pdev->dev, "ignoring GBE LTR\n"); pmc_core_send_ltr_ignore(pmcdev, 3); return 0; }
linux-master
drivers/platform/x86/intel/pmc/cnp.c
// SPDX-License-Identifier: GPL-2.0 /* * This file contains platform specific structure definitions * and init function used by Meteor Lake PCH. * * Copyright (c) 2022, Intel Corporation. * All Rights Reserved. * */ #include <linux/pci.h> #include "core.h" /* * Die Mapping to Product. * Product SOCDie IOEDie PCHDie * MTL-M SOC-M IOE-M None * MTL-P SOC-M IOE-P None * MTL-S SOC-S IOE-P PCH-S */ const struct pmc_bit_map mtl_socm_pfear_map[] = { {"PMC", BIT(0)}, {"OPI", BIT(1)}, {"SPI", BIT(2)}, {"XHCI", BIT(3)}, {"SPA", BIT(4)}, {"SPB", BIT(5)}, {"SPC", BIT(6)}, {"GBE", BIT(7)}, {"SATA", BIT(0)}, {"DSP0", BIT(1)}, {"DSP1", BIT(2)}, {"DSP2", BIT(3)}, {"DSP3", BIT(4)}, {"SPD", BIT(5)}, {"LPSS", BIT(6)}, {"LPC", BIT(7)}, {"SMB", BIT(0)}, {"ISH", BIT(1)}, {"P2SB", BIT(2)}, {"NPK_VNN", BIT(3)}, {"SDX", BIT(4)}, {"SPE", BIT(5)}, {"FUSE", BIT(6)}, {"SBR8", BIT(7)}, {"RSVD24", BIT(0)}, {"OTG", BIT(1)}, {"EXI", BIT(2)}, {"CSE", BIT(3)}, {"CSME_KVM", BIT(4)}, {"CSME_PMT", BIT(5)}, {"CSME_CLINK", BIT(6)}, {"CSME_PTIO", BIT(7)}, {"CSME_USBR", BIT(0)}, {"CSME_SUSRAM", BIT(1)}, {"CSME_SMT1", BIT(2)}, {"RSVD35", BIT(3)}, {"CSME_SMS2", BIT(4)}, {"CSME_SMS", BIT(5)}, {"CSME_RTC", BIT(6)}, {"CSME_PSF", BIT(7)}, {"SBR0", BIT(0)}, {"SBR1", BIT(1)}, {"SBR2", BIT(2)}, {"SBR3", BIT(3)}, {"SBR4", BIT(4)}, {"SBR5", BIT(5)}, {"RSVD46", BIT(6)}, {"PSF1", BIT(7)}, {"PSF2", BIT(0)}, {"PSF3", BIT(1)}, {"PSF4", BIT(2)}, {"CNVI", BIT(3)}, {"UFSX2", BIT(4)}, {"EMMC", BIT(5)}, {"SPF", BIT(6)}, {"SBR6", BIT(7)}, {"SBR7", BIT(0)}, {"NPK_AON", BIT(1)}, {"HDA4", BIT(2)}, {"HDA5", BIT(3)}, {"HDA6", BIT(4)}, {"PSF6", BIT(5)}, {"RSVD62", BIT(6)}, {"RSVD63", BIT(7)}, {} }; const struct pmc_bit_map *ext_mtl_socm_pfear_map[] = { mtl_socm_pfear_map, NULL }; const struct pmc_bit_map mtl_socm_ltr_show_map[] = { {"SOUTHPORT_A", CNP_PMC_LTR_SPA}, {"SOUTHPORT_B", CNP_PMC_LTR_SPB}, {"SATA", CNP_PMC_LTR_SATA}, {"GIGABIT_ETHERNET", CNP_PMC_LTR_GBE}, {"XHCI", CNP_PMC_LTR_XHCI}, {"SOUTHPORT_F", ADL_PMC_LTR_SPF}, {"ME", CNP_PMC_LTR_ME}, {"SATA1", CNP_PMC_LTR_EVA}, {"SOUTHPORT_C", CNP_PMC_LTR_SPC}, {"HD_AUDIO", CNP_PMC_LTR_AZ}, {"CNV", CNP_PMC_LTR_CNV}, {"LPSS", CNP_PMC_LTR_LPSS}, {"SOUTHPORT_D", CNP_PMC_LTR_SPD}, {"SOUTHPORT_E", CNP_PMC_LTR_SPE}, {"SATA2", CNP_PMC_LTR_CAM}, {"ESPI", CNP_PMC_LTR_ESPI}, {"SCC", CNP_PMC_LTR_SCC}, {"ISH", CNP_PMC_LTR_ISH}, {"UFSX2", CNP_PMC_LTR_UFSX2}, {"EMMC", CNP_PMC_LTR_EMMC}, {"WIGIG", ICL_PMC_LTR_WIGIG}, {"THC0", TGL_PMC_LTR_THC0}, {"THC1", TGL_PMC_LTR_THC1}, {"SOUTHPORT_G", MTL_PMC_LTR_SPG}, {"ESE", MTL_PMC_LTR_ESE}, {"IOE_PMC", MTL_PMC_LTR_IOE_PMC}, /* Below two cannot be used for LTR_IGNORE */ {"CURRENT_PLATFORM", CNP_PMC_LTR_CUR_PLT}, {"AGGREGATED_SYSTEM", CNP_PMC_LTR_CUR_ASLT}, {} }; const struct pmc_bit_map mtl_socm_clocksource_status_map[] = { {"AON2_OFF_STS", BIT(0)}, {"AON3_OFF_STS", BIT(1)}, {"AON4_OFF_STS", BIT(2)}, {"AON5_OFF_STS", BIT(3)}, {"AON1_OFF_STS", BIT(4)}, {"XTAL_LVM_OFF_STS", BIT(5)}, {"MPFPW1_0_PLL_OFF_STS", BIT(6)}, {"MPFPW1_1_PLL_OFF_STS", BIT(7)}, {"USB3_PLL_OFF_STS", BIT(8)}, {"AON3_SPL_OFF_STS", BIT(9)}, {"MPFPW2_0_PLL_OFF_STS", BIT(12)}, {"MPFPW3_0_PLL_OFF_STS", BIT(13)}, {"XTAL_AGGR_OFF_STS", BIT(17)}, {"USB2_PLL_OFF_STS", BIT(18)}, {"FILTER_PLL_OFF_STS", BIT(22)}, {"ACE_PLL_OFF_STS", BIT(24)}, {"FABRIC_PLL_OFF_STS", BIT(25)}, {"SOC_PLL_OFF_STS", BIT(26)}, {"PCIFAB_PLL_OFF_STS", BIT(27)}, {"REF_PLL_OFF_STS", BIT(28)}, {"IMG_PLL_OFF_STS", BIT(29)}, {"RTC_PLL_OFF_STS", BIT(31)}, {} }; const struct pmc_bit_map mtl_socm_power_gating_status_0_map[] = { {"PMC_PGD0_PG_STS", BIT(0)}, {"DMI_PGD0_PG_STS", BIT(1)}, {"ESPISPI_PGD0_PG_STS", BIT(2)}, {"XHCI_PGD0_PG_STS", BIT(3)}, {"SPA_PGD0_PG_STS", BIT(4)}, {"SPB_PGD0_PG_STS", BIT(5)}, {"SPC_PGD0_PG_STS", BIT(6)}, {"GBE_PGD0_PG_STS", BIT(7)}, {"SATA_PGD0_PG_STS", BIT(8)}, {"PSF13_PGD0_PG_STS", BIT(9)}, {"SOC_D2D_PGD3_PG_STS", BIT(10)}, {"MPFPW3_PGD0_PG_STS", BIT(11)}, {"ESE_PGD0_PG_STS", BIT(12)}, {"SPD_PGD0_PG_STS", BIT(13)}, {"LPSS_PGD0_PG_STS", BIT(14)}, {"LPC_PGD0_PG_STS", BIT(15)}, {"SMB_PGD0_PG_STS", BIT(16)}, {"ISH_PGD0_PG_STS", BIT(17)}, {"P2S_PGD0_PG_STS", BIT(18)}, {"NPK_PGD0_PG_STS", BIT(19)}, {"DBG_SBR_PGD0_PG_STS", BIT(20)}, {"SBRG_PGD0_PG_STS", BIT(21)}, {"FUSE_PGD0_PG_STS", BIT(22)}, {"SBR8_PGD0_PG_STS", BIT(23)}, {"SOC_D2D_PGD2_PG_STS", BIT(24)}, {"XDCI_PGD0_PG_STS", BIT(25)}, {"EXI_PGD0_PG_STS", BIT(26)}, {"CSE_PGD0_PG_STS", BIT(27)}, {"KVMCC_PGD0_PG_STS", BIT(28)}, {"PMT_PGD0_PG_STS", BIT(29)}, {"CLINK_PGD0_PG_STS", BIT(30)}, {"PTIO_PGD0_PG_STS", BIT(31)}, {} }; const struct pmc_bit_map mtl_socm_power_gating_status_1_map[] = { {"USBR0_PGD0_PG_STS", BIT(0)}, {"SUSRAM_PGD0_PG_STS", BIT(1)}, {"SMT1_PGD0_PG_STS", BIT(2)}, {"FIACPCB_U_PGD0_PG_STS", BIT(3)}, {"SMS2_PGD0_PG_STS", BIT(4)}, {"SMS1_PGD0_PG_STS", BIT(5)}, {"CSMERTC_PGD0_PG_STS", BIT(6)}, {"CSMEPSF_PGD0_PG_STS", BIT(7)}, {"SBR0_PGD0_PG_STS", BIT(8)}, {"SBR1_PGD0_PG_STS", BIT(9)}, {"SBR2_PGD0_PG_STS", BIT(10)}, {"SBR3_PGD0_PG_STS", BIT(11)}, {"U3FPW1_PGD0_PG_STS", BIT(12)}, {"SBR5_PGD0_PG_STS", BIT(13)}, {"MPFPW1_PGD0_PG_STS", BIT(14)}, {"UFSPW1_PGD0_PG_STS", BIT(15)}, {"FIA_X_PGD0_PG_STS", BIT(16)}, {"SOC_D2D_PGD0_PG_STS", BIT(17)}, {"MPFPW2_PGD0_PG_STS", BIT(18)}, {"CNVI_PGD0_PG_STS", BIT(19)}, {"UFSX2_PGD0_PG_STS", BIT(20)}, {"ENDBG_PGD0_PG_STS", BIT(21)}, {"DBG_PSF_PGD0_PG_STS", BIT(22)}, {"SBR6_PGD0_PG_STS", BIT(23)}, {"SBR7_PGD0_PG_STS", BIT(24)}, {"NPK_PGD1_PG_STS", BIT(25)}, {"FIACPCB_X_PGD0_PG_STS", BIT(26)}, {"DBC_PGD0_PG_STS", BIT(27)}, {"FUSEGPSB_PGD0_PG_STS", BIT(28)}, {"PSF6_PGD0_PG_STS", BIT(29)}, {"PSF7_PGD0_PG_STS", BIT(30)}, {"GBETSN1_PGD0_PG_STS", BIT(31)}, {} }; const struct pmc_bit_map mtl_socm_power_gating_status_2_map[] = { {"PSF8_PGD0_PG_STS", BIT(0)}, {"FIA_PGD0_PG_STS", BIT(1)}, {"SOC_D2D_PGD1_PG_STS", BIT(2)}, {"FIA_U_PGD0_PG_STS", BIT(3)}, {"TAM_PGD0_PG_STS", BIT(4)}, {"GBETSN_PGD0_PG_STS", BIT(5)}, {"TBTLSX_PGD0_PG_STS", BIT(6)}, {"THC0_PGD0_PG_STS", BIT(7)}, {"THC1_PGD0_PG_STS", BIT(8)}, {"PMC_PGD1_PG_STS", BIT(9)}, {"GNA_PGD0_PG_STS", BIT(10)}, {"ACE_PGD0_PG_STS", BIT(11)}, {"ACE_PGD1_PG_STS", BIT(12)}, {"ACE_PGD2_PG_STS", BIT(13)}, {"ACE_PGD3_PG_STS", BIT(14)}, {"ACE_PGD4_PG_STS", BIT(15)}, {"ACE_PGD5_PG_STS", BIT(16)}, {"ACE_PGD6_PG_STS", BIT(17)}, {"ACE_PGD7_PG_STS", BIT(18)}, {"ACE_PGD8_PG_STS", BIT(19)}, {"FIA_PGS_PGD0_PG_STS", BIT(20)}, {"FIACPCB_PGS_PGD0_PG_STS", BIT(21)}, {"FUSEPMSB_PGD0_PG_STS", BIT(22)}, {} }; const struct pmc_bit_map mtl_socm_d3_status_0_map[] = { {"LPSS_D3_STS", BIT(3)}, {"XDCI_D3_STS", BIT(4)}, {"XHCI_D3_STS", BIT(5)}, {"SPA_D3_STS", BIT(12)}, {"SPB_D3_STS", BIT(13)}, {"SPC_D3_STS", BIT(14)}, {"SPD_D3_STS", BIT(15)}, {"ESPISPI_D3_STS", BIT(18)}, {"SATA_D3_STS", BIT(20)}, {"PSTH_D3_STS", BIT(21)}, {"DMI_D3_STS", BIT(22)}, {} }; const struct pmc_bit_map mtl_socm_d3_status_1_map[] = { {"GBETSN1_D3_STS", BIT(14)}, {"GBE_D3_STS", BIT(19)}, {"ITSS_D3_STS", BIT(23)}, {"P2S_D3_STS", BIT(24)}, {"CNVI_D3_STS", BIT(27)}, {"UFSX2_D3_STS", BIT(28)}, {} }; const struct pmc_bit_map mtl_socm_d3_status_2_map[] = { {"GNA_D3_STS", BIT(0)}, {"CSMERTC_D3_STS", BIT(1)}, {"SUSRAM_D3_STS", BIT(2)}, {"CSE_D3_STS", BIT(4)}, {"KVMCC_D3_STS", BIT(5)}, {"USBR0_D3_STS", BIT(6)}, {"ISH_D3_STS", BIT(7)}, {"SMT1_D3_STS", BIT(8)}, {"SMT2_D3_STS", BIT(9)}, {"SMT3_D3_STS", BIT(10)}, {"CLINK_D3_STS", BIT(14)}, {"PTIO_D3_STS", BIT(16)}, {"PMT_D3_STS", BIT(17)}, {"SMS1_D3_STS", BIT(18)}, {"SMS2_D3_STS", BIT(19)}, {} }; const struct pmc_bit_map mtl_socm_d3_status_3_map[] = { {"ESE_D3_STS", BIT(2)}, {"GBETSN_D3_STS", BIT(13)}, {"THC0_D3_STS", BIT(14)}, {"THC1_D3_STS", BIT(15)}, {"ACE_D3_STS", BIT(23)}, {} }; const struct pmc_bit_map mtl_socm_vnn_req_status_0_map[] = { {"LPSS_VNN_REQ_STS", BIT(3)}, {"FIA_VNN_REQ_STS", BIT(17)}, {"ESPISPI_VNN_REQ_STS", BIT(18)}, {} }; const struct pmc_bit_map mtl_socm_vnn_req_status_1_map[] = { {"NPK_VNN_REQ_STS", BIT(4)}, {"DFXAGG_VNN_REQ_STS", BIT(8)}, {"EXI_VNN_REQ_STS", BIT(9)}, {"P2D_VNN_REQ_STS", BIT(18)}, {"GBE_VNN_REQ_STS", BIT(19)}, {"SMB_VNN_REQ_STS", BIT(25)}, {"LPC_VNN_REQ_STS", BIT(26)}, {} }; const struct pmc_bit_map mtl_socm_vnn_req_status_2_map[] = { {"CSMERTC_VNN_REQ_STS", BIT(1)}, {"CSE_VNN_REQ_STS", BIT(4)}, {"ISH_VNN_REQ_STS", BIT(7)}, {"SMT1_VNN_REQ_STS", BIT(8)}, {"CLINK_VNN_REQ_STS", BIT(14)}, {"SMS1_VNN_REQ_STS", BIT(18)}, {"SMS2_VNN_REQ_STS", BIT(19)}, {"GPIOCOM4_VNN_REQ_STS", BIT(20)}, {"GPIOCOM3_VNN_REQ_STS", BIT(21)}, {"GPIOCOM2_VNN_REQ_STS", BIT(22)}, {"GPIOCOM1_VNN_REQ_STS", BIT(23)}, {"GPIOCOM0_VNN_REQ_STS", BIT(24)}, {} }; const struct pmc_bit_map mtl_socm_vnn_req_status_3_map[] = { {"ESE_VNN_REQ_STS", BIT(2)}, {"DTS0_VNN_REQ_STS", BIT(7)}, {"GPIOCOM5_VNN_REQ_STS", BIT(11)}, {} }; const struct pmc_bit_map mtl_socm_vnn_misc_status_map[] = { {"CPU_C10_REQ_STS", BIT(0)}, {"TS_OFF_REQ_STS", BIT(1)}, {"PNDE_MET_REQ_STS", BIT(2)}, {"PCIE_DEEP_PM_REQ_STS", BIT(3)}, {"PMC_CLK_THROTTLE_EN_REQ_STS", BIT(4)}, {"NPK_VNNAON_REQ_STS", BIT(5)}, {"VNN_SOC_REQ_STS", BIT(6)}, {"ISH_VNNAON_REQ_STS", BIT(7)}, {"IOE_COND_MET_S02I2_0_REQ_STS", BIT(8)}, {"IOE_COND_MET_S02I2_1_REQ_STS", BIT(9)}, {"IOE_COND_MET_S02I2_2_REQ_STS", BIT(10)}, {"PLT_GREATER_REQ_STS", BIT(11)}, {"PCIE_CLKREQ_REQ_STS", BIT(12)}, {"PMC_IDLE_FB_OCP_REQ_STS", BIT(13)}, {"PM_SYNC_STATES_REQ_STS", BIT(14)}, {"EA_REQ_STS", BIT(15)}, {"MPHY_CORE_OFF_REQ_STS", BIT(16)}, {"BRK_EV_EN_REQ_STS", BIT(17)}, {"AUTO_DEMO_EN_REQ_STS", BIT(18)}, {"ITSS_CLK_SRC_REQ_STS", BIT(19)}, {"LPC_CLK_SRC_REQ_STS", BIT(20)}, {"ARC_IDLE_REQ_STS", BIT(21)}, {"MPHY_SUS_REQ_STS", BIT(22)}, {"FIA_DEEP_PM_REQ_STS", BIT(23)}, {"UXD_CONNECTED_REQ_STS", BIT(24)}, {"ARC_INTERRUPT_WAKE_REQ_STS", BIT(25)}, {"USB2_VNNAON_ACT_REQ_STS", BIT(26)}, {"PRE_WAKE0_REQ_STS", BIT(27)}, {"PRE_WAKE1_REQ_STS", BIT(28)}, {"PRE_WAKE2_EN_REQ_STS", BIT(29)}, {"WOV_REQ_STS", BIT(30)}, {"CNVI_V1P05_REQ_STS", BIT(31)}, {} }; const struct pmc_bit_map mtl_socm_signal_status_map[] = { {"LSX_Wake0_En_STS", BIT(0)}, {"LSX_Wake0_Pol_STS", BIT(1)}, {"LSX_Wake1_En_STS", BIT(2)}, {"LSX_Wake1_Pol_STS", BIT(3)}, {"LSX_Wake2_En_STS", BIT(4)}, {"LSX_Wake2_Pol_STS", BIT(5)}, {"LSX_Wake3_En_STS", BIT(6)}, {"LSX_Wake3_Pol_STS", BIT(7)}, {"LSX_Wake4_En_STS", BIT(8)}, {"LSX_Wake4_Pol_STS", BIT(9)}, {"LSX_Wake5_En_STS", BIT(10)}, {"LSX_Wake5_Pol_STS", BIT(11)}, {"LSX_Wake6_En_STS", BIT(12)}, {"LSX_Wake6_Pol_STS", BIT(13)}, {"LSX_Wake7_En_STS", BIT(14)}, {"LSX_Wake7_Pol_STS", BIT(15)}, {"LPSS_Wake0_En_STS", BIT(16)}, {"LPSS_Wake0_Pol_STS", BIT(17)}, {"LPSS_Wake1_En_STS", BIT(18)}, {"LPSS_Wake1_Pol_STS", BIT(19)}, {"Int_Timer_SS_Wake0_En_STS", BIT(20)}, {"Int_Timer_SS_Wake0_Pol_STS", BIT(21)}, {"Int_Timer_SS_Wake1_En_STS", BIT(22)}, {"Int_Timer_SS_Wake1_Pol_STS", BIT(23)}, {"Int_Timer_SS_Wake2_En_STS", BIT(24)}, {"Int_Timer_SS_Wake2_Pol_STS", BIT(25)}, {"Int_Timer_SS_Wake3_En_STS", BIT(26)}, {"Int_Timer_SS_Wake3_Pol_STS", BIT(27)}, {"Int_Timer_SS_Wake4_En_STS", BIT(28)}, {"Int_Timer_SS_Wake4_Pol_STS", BIT(29)}, {"Int_Timer_SS_Wake5_En_STS", BIT(30)}, {"Int_Timer_SS_Wake5_Pol_STS", BIT(31)}, {} }; const struct pmc_bit_map *mtl_socm_lpm_maps[] = { mtl_socm_clocksource_status_map, mtl_socm_power_gating_status_0_map, mtl_socm_power_gating_status_1_map, mtl_socm_power_gating_status_2_map, mtl_socm_d3_status_0_map, mtl_socm_d3_status_1_map, mtl_socm_d3_status_2_map, mtl_socm_d3_status_3_map, mtl_socm_vnn_req_status_0_map, mtl_socm_vnn_req_status_1_map, mtl_socm_vnn_req_status_2_map, mtl_socm_vnn_req_status_3_map, mtl_socm_vnn_misc_status_map, mtl_socm_signal_status_map, NULL }; const struct pmc_reg_map mtl_socm_reg_map = { .pfear_sts = ext_mtl_socm_pfear_map, .slp_s0_offset = CNP_PMC_SLP_S0_RES_COUNTER_OFFSET, .slp_s0_res_counter_step = TGL_PMC_SLP_S0_RES_COUNTER_STEP, .ltr_show_sts = mtl_socm_ltr_show_map, .msr_sts = msr_map, .ltr_ignore_offset = CNP_PMC_LTR_IGNORE_OFFSET, .regmap_length = MTL_SOC_PMC_MMIO_REG_LEN, .ppfear0_offset = CNP_PMC_HOST_PPFEAR0A, .ppfear_buckets = MTL_SOCM_PPFEAR_NUM_ENTRIES, .pm_cfg_offset = CNP_PMC_PM_CFG_OFFSET, .pm_read_disable_bit = CNP_PMC_READ_DISABLE_BIT, .lpm_num_maps = ADL_LPM_NUM_MAPS, .ltr_ignore_max = MTL_SOCM_NUM_IP_IGN_ALLOWED, .lpm_res_counter_step_x2 = TGL_PMC_LPM_RES_COUNTER_STEP_X2, .etr3_offset = ETR3_OFFSET, .lpm_sts_latch_en_offset = MTL_LPM_STATUS_LATCH_EN_OFFSET, .lpm_priority_offset = MTL_LPM_PRI_OFFSET, .lpm_en_offset = MTL_LPM_EN_OFFSET, .lpm_residency_offset = MTL_LPM_RESIDENCY_OFFSET, .lpm_sts = mtl_socm_lpm_maps, .lpm_status_offset = MTL_LPM_STATUS_OFFSET, .lpm_live_status_offset = MTL_LPM_LIVE_STATUS_OFFSET, }; const struct pmc_bit_map mtl_ioep_pfear_map[] = { {"PMC_0", BIT(0)}, {"OPI", BIT(1)}, {"TCSS", BIT(2)}, {"RSVD3", BIT(3)}, {"SPA", BIT(4)}, {"SPB", BIT(5)}, {"SPC", BIT(6)}, {"IOE_D2D_3", BIT(7)}, {"RSVD8", BIT(0)}, {"RSVD9", BIT(1)}, {"SPE", BIT(2)}, {"RSVD11", BIT(3)}, {"RSVD12", BIT(4)}, {"SPD", BIT(5)}, {"ACE_7", BIT(6)}, {"RSVD15", BIT(7)}, {"ACE_0", BIT(0)}, {"FIACPCB_P", BIT(1)}, {"P2S", BIT(2)}, {"RSVD19", BIT(3)}, {"ACE_8", BIT(4)}, {"IOE_D2D_0", BIT(5)}, {"FUSE", BIT(6)}, {"RSVD23", BIT(7)}, {"FIACPCB_P5", BIT(0)}, {"ACE_3", BIT(1)}, {"RSF5", BIT(2)}, {"ACE_2", BIT(3)}, {"ACE_4", BIT(4)}, {"RSVD29", BIT(5)}, {"RSF10", BIT(6)}, {"MPFPW5", BIT(7)}, {"PSF9", BIT(0)}, {"MPFPW4", BIT(1)}, {"RSVD34", BIT(2)}, {"RSVD35", BIT(3)}, {"RSVD36", BIT(4)}, {"RSVD37", BIT(5)}, {"RSVD38", BIT(6)}, {"RSVD39", BIT(7)}, {"SBR0", BIT(0)}, {"SBR1", BIT(1)}, {"SBR2", BIT(2)}, {"SBR3", BIT(3)}, {"SBR4", BIT(4)}, {"SBR5", BIT(5)}, {"RSVD46", BIT(6)}, {"RSVD47", BIT(7)}, {"RSVD48", BIT(0)}, {"FIA_P5", BIT(1)}, {"RSVD50", BIT(2)}, {"RSVD51", BIT(3)}, {"RSVD52", BIT(4)}, {"RSVD53", BIT(5)}, {"RSVD54", BIT(6)}, {"ACE_1", BIT(7)}, {"RSVD56", BIT(0)}, {"ACE_5", BIT(1)}, {"RSVD58", BIT(2)}, {"G5FPW1", BIT(3)}, {"RSVD60", BIT(4)}, {"ACE_6", BIT(5)}, {"RSVD62", BIT(6)}, {"GBETSN1", BIT(7)}, {"RSVD64", BIT(0)}, {"FIA", BIT(1)}, {"RSVD66", BIT(2)}, {"FIA_P", BIT(3)}, {"TAM", BIT(4)}, {"GBETSN", BIT(5)}, {"IOE_D2D_2", BIT(6)}, {"IOE_D2D_1", BIT(7)}, {"SPF", BIT(0)}, {"PMC_1", BIT(1)}, {} }; const struct pmc_bit_map *ext_mtl_ioep_pfear_map[] = { mtl_ioep_pfear_map, NULL }; const struct pmc_bit_map mtl_ioep_ltr_show_map[] = { {"SOUTHPORT_A", CNP_PMC_LTR_SPA}, {"SOUTHPORT_B", CNP_PMC_LTR_SPB}, {"SATA", CNP_PMC_LTR_SATA}, {"GIGABIT_ETHERNET", CNP_PMC_LTR_GBE}, {"XHCI", CNP_PMC_LTR_XHCI}, {"SOUTHPORT_F", ADL_PMC_LTR_SPF}, {"ME", CNP_PMC_LTR_ME}, {"SATA1", CNP_PMC_LTR_EVA}, {"SOUTHPORT_C", CNP_PMC_LTR_SPC}, {"HD_AUDIO", CNP_PMC_LTR_AZ}, {"CNV", CNP_PMC_LTR_CNV}, {"LPSS", CNP_PMC_LTR_LPSS}, {"SOUTHPORT_D", CNP_PMC_LTR_SPD}, {"SOUTHPORT_E", CNP_PMC_LTR_SPE}, {"SATA2", CNP_PMC_LTR_CAM}, {"ESPI", CNP_PMC_LTR_ESPI}, {"SCC", CNP_PMC_LTR_SCC}, {"Reserved", MTL_PMC_LTR_RESERVED}, {"UFSX2", CNP_PMC_LTR_UFSX2}, {"EMMC", CNP_PMC_LTR_EMMC}, {"WIGIG", ICL_PMC_LTR_WIGIG}, {"THC0", TGL_PMC_LTR_THC0}, {"THC1", TGL_PMC_LTR_THC1}, {"SOUTHPORT_G", MTL_PMC_LTR_SPG}, /* Below two cannot be used for LTR_IGNORE */ {"CURRENT_PLATFORM", CNP_PMC_LTR_CUR_PLT}, {"AGGREGATED_SYSTEM", CNP_PMC_LTR_CUR_ASLT}, {} }; const struct pmc_bit_map mtl_ioep_clocksource_status_map[] = { {"AON2_OFF_STS", BIT(0)}, {"AON3_OFF_STS", BIT(1)}, {"AON4_OFF_STS", BIT(2)}, {"AON5_OFF_STS", BIT(3)}, {"AON1_OFF_STS", BIT(4)}, {"TBT_PLL_OFF_STS", BIT(5)}, {"TMU_PLL_OFF_STS", BIT(6)}, {"BCLK_PLL_OFF_STS", BIT(7)}, {"D2D_PLL_OFF_STS", BIT(8)}, {"AON3_SPL_OFF_STS", BIT(9)}, {"MPFPW4_0_PLL_OFF_STS", BIT(12)}, {"MPFPW5_0_PLL_OFF_STS", BIT(13)}, {"G5FPW_0_PLL_OFF_STS", BIT(14)}, {"G5FPW_1_PLL_OFF_STS", BIT(15)}, {"XTAL_AGGR_OFF_STS", BIT(17)}, {"FABRIC_PLL_OFF_STS", BIT(25)}, {"SOC_PLL_OFF_STS", BIT(26)}, {"REF_PLL_OFF_STS", BIT(28)}, {"RTC_PLL_OFF_STS", BIT(31)}, {} }; const struct pmc_bit_map mtl_ioep_power_gating_status_0_map[] = { {"PMC_PGD0_PG_STS", BIT(0)}, {"DMI_PGD0_PG_STS", BIT(1)}, {"TCSS_PGD0_PG_STS", BIT(2)}, {"SPA_PGD0_PG_STS", BIT(4)}, {"SPB_PGD0_PG_STS", BIT(5)}, {"SPC_PGD0_PG_STS", BIT(6)}, {"IOE_D2D_PGD3_PG_STS", BIT(7)}, {"SPE_PGD0_PG_STS", BIT(10)}, {"SPD_PGD0_PG_STS", BIT(13)}, {"ACE_PGD7_PG_STS", BIT(14)}, {"ACE_PGD0_PG_STS", BIT(16)}, {"FIACPCB_P_PGD0_PG_STS", BIT(17)}, {"P2S_PGD0_PG_STS", BIT(18)}, {"ACE_PGD8_PG_STS", BIT(20)}, {"IOE_D2D_PGD0_PG_STS", BIT(21)}, {"FUSE_PGD0_PG_STS", BIT(22)}, {"FIACPCB_P5_PGD0_PG_STS", BIT(24)}, {"ACE_PGD3_PG_STS", BIT(25)}, {"PSF5_PGD0_PG_STS", BIT(26)}, {"ACE_PGD2_PG_STS", BIT(27)}, {"ACE_PGD4_PG_STS", BIT(28)}, {"PSF10_PGD0_PG_STS", BIT(30)}, {"MPFPW5_PGD0_PG_STS", BIT(31)}, {} }; const struct pmc_bit_map mtl_ioep_power_gating_status_1_map[] = { {"PSF9_PGD0_PG_STS", BIT(0)}, {"MPFPW4_PGD0_PG_STS", BIT(1)}, {"SBR0_PGD0_PG_STS", BIT(8)}, {"SBR1_PGD0_PG_STS", BIT(9)}, {"SBR2_PGD0_PG_STS", BIT(10)}, {"SBR3_PGD0_PG_STS", BIT(11)}, {"SBR4_PGD0_PG_STS", BIT(12)}, {"SBR5_PGD0_PG_STS", BIT(13)}, {"FIA_P5_PGD0_PG_STS", BIT(17)}, {"ACE_PGD1_PGD0_PG_STS", BIT(23)}, {"ACE_PGD5_PGD1_PG_STS", BIT(25)}, {"G5FPW1_PGD0_PG_STS", BIT(27)}, {"ACE_PGD6_PG_STS", BIT(29)}, {"GBETSN1_PGD0_PG_STS", BIT(31)}, {} }; const struct pmc_bit_map mtl_ioep_power_gating_status_2_map[] = { {"FIA_PGD0_PG_STS", BIT(1)}, {"FIA_P_PGD0_PG_STS", BIT(3)}, {"TAM_PGD0_PG_STS", BIT(4)}, {"GBETSN_PGD0_PG_STS", BIT(5)}, {"IOE_D2D_PGD2_PG_STS", BIT(6)}, {"IOE_D2D_PGD1_PG_STS", BIT(7)}, {"SPF_PGD0_PG_STS", BIT(8)}, {"PMC_PGD1_PG_STS", BIT(9)}, {} }; const struct pmc_bit_map mtl_ioep_d3_status_0_map[] = { {"SPF_D3_STS", BIT(0)}, {"SPA_D3_STS", BIT(12)}, {"SPB_D3_STS", BIT(13)}, {"SPC_D3_STS", BIT(14)}, {"SPD_D3_STS", BIT(15)}, {"SPE_D3_STS", BIT(16)}, {"DMI_D3_STS", BIT(22)}, {} }; const struct pmc_bit_map mtl_ioep_d3_status_1_map[] = { {"GBETSN1_D3_STS", BIT(14)}, {"P2S_D3_STS", BIT(24)}, {} }; const struct pmc_bit_map mtl_ioep_d3_status_2_map[] = { {} }; const struct pmc_bit_map mtl_ioep_d3_status_3_map[] = { {"GBETSN_D3_STS", BIT(13)}, {"ACE_D3_STS", BIT(23)}, {} }; const struct pmc_bit_map mtl_ioep_vnn_req_status_0_map[] = { {"FIA_VNN_REQ_STS", BIT(17)}, {} }; const struct pmc_bit_map mtl_ioep_vnn_req_status_1_map[] = { {"DFXAGG_VNN_REQ_STS", BIT(8)}, {} }; const struct pmc_bit_map mtl_ioep_vnn_req_status_2_map[] = { {} }; const struct pmc_bit_map mtl_ioep_vnn_req_status_3_map[] = { {"DTS0_VNN_REQ_STS", BIT(7)}, {"DISP_VNN_REQ_STS", BIT(19)}, {} }; const struct pmc_bit_map mtl_ioep_vnn_misc_status_map[] = { {"CPU_C10_REQ_STS", BIT(0)}, {"TS_OFF_REQ_STS", BIT(1)}, {"PNDE_MET_REQ_STS", BIT(2)}, {"PCIE_DEEP_PM_REQ_STS", BIT(3)}, {"PMC_CLK_THROTTLE_EN_REQ_STS", BIT(4)}, {"NPK_VNNAON_REQ_STS", BIT(5)}, {"VNN_SOC_REQ_STS", BIT(6)}, {"USB_DEVICE_ATTACHED_REQ_STS", BIT(8)}, {"FIA_EXIT_REQ_STS", BIT(9)}, {"USB2_SUS_PG_REQ_STS", BIT(10)}, {"PLT_GREATER_REQ_STS", BIT(11)}, {"PCIE_CLKREQ_REQ_STS", BIT(12)}, {"PMC_IDLE_FB_OCP_REQ_STS", BIT(13)}, {"PM_SYNC_STATES_REQ_STS", BIT(14)}, {"EA_REQ_STS", BIT(15)}, {"MPHY_CORE_OFF_REQ_STS", BIT(16)}, {"BRK_EV_EN_REQ_STS", BIT(17)}, {"AUTO_DEMO_EN_REQ_STS", BIT(18)}, {"ITSS_CLK_SRC_REQ_STS", BIT(19)}, {"LPC_CLK_SRC_REQ_STS", BIT(20)}, {"ARC_IDLE_REQ_STS", BIT(21)}, {"MPHY_SUS_REQ_STS", BIT(22)}, {"FIA_DEEP_PM_REQ_STS", BIT(23)}, {"UXD_CONNECTED_REQ_STS", BIT(24)}, {"ARC_INTERRUPT_WAKE_REQ_STS", BIT(25)}, {"USB2_VNNAON_ACT_REQ_STS", BIT(26)}, {"PRE_WAKE0_REQ_STS", BIT(27)}, {"PRE_WAKE1_REQ_STS", BIT(28)}, {"PRE_WAKE2_EN_REQ_STS", BIT(29)}, {"WOV_REQ_STS", BIT(30)}, {"CNVI_V1P05_REQ_STS", BIT(31)}, {} }; const struct pmc_bit_map *mtl_ioep_lpm_maps[] = { mtl_ioep_clocksource_status_map, mtl_ioep_power_gating_status_0_map, mtl_ioep_power_gating_status_1_map, mtl_ioep_power_gating_status_2_map, mtl_ioep_d3_status_0_map, mtl_ioep_d3_status_1_map, mtl_ioep_d3_status_2_map, mtl_ioep_d3_status_3_map, mtl_ioep_vnn_req_status_0_map, mtl_ioep_vnn_req_status_1_map, mtl_ioep_vnn_req_status_2_map, mtl_ioep_vnn_req_status_3_map, mtl_ioep_vnn_misc_status_map, mtl_socm_signal_status_map, NULL }; const struct pmc_reg_map mtl_ioep_reg_map = { .regmap_length = MTL_IOE_PMC_MMIO_REG_LEN, .pfear_sts = ext_mtl_ioep_pfear_map, .ppfear0_offset = CNP_PMC_HOST_PPFEAR0A, .ppfear_buckets = MTL_IOE_PPFEAR_NUM_ENTRIES, .lpm_status_offset = MTL_LPM_STATUS_OFFSET, .lpm_live_status_offset = MTL_LPM_LIVE_STATUS_OFFSET, .lpm_sts = mtl_ioep_lpm_maps, .ltr_show_sts = mtl_ioep_ltr_show_map, .ltr_ignore_offset = CNP_PMC_LTR_IGNORE_OFFSET, .ltr_ignore_max = ADL_NUM_IP_IGN_ALLOWED, }; const struct pmc_bit_map mtl_ioem_pfear_map[] = { {"PMC_0", BIT(0)}, {"OPI", BIT(1)}, {"TCSS", BIT(2)}, {"RSVD3", BIT(3)}, {"SPA", BIT(4)}, {"SPB", BIT(5)}, {"SPC", BIT(6)}, {"IOE_D2D_3", BIT(7)}, {"RSVD8", BIT(0)}, {"RSVD9", BIT(1)}, {"SPE", BIT(2)}, {"RSVD11", BIT(3)}, {"RSVD12", BIT(4)}, {"SPD", BIT(5)}, {"ACE_7", BIT(6)}, {"RSVD15", BIT(7)}, {"ACE_0", BIT(0)}, {"FIACPCB_P", BIT(1)}, {"P2S", BIT(2)}, {"RSVD19", BIT(3)}, {"ACE_8", BIT(4)}, {"IOE_D2D_0", BIT(5)}, {"FUSE", BIT(6)}, {"RSVD23", BIT(7)}, {"FIACPCB_P5", BIT(0)}, {"ACE_3", BIT(1)}, {"RSF5", BIT(2)}, {"ACE_2", BIT(3)}, {"ACE_4", BIT(4)}, {"RSVD29", BIT(5)}, {"RSF10", BIT(6)}, {"MPFPW5", BIT(7)}, {"PSF9", BIT(0)}, {"MPFPW4", BIT(1)}, {"RSVD34", BIT(2)}, {"RSVD35", BIT(3)}, {"RSVD36", BIT(4)}, {"RSVD37", BIT(5)}, {"RSVD38", BIT(6)}, {"RSVD39", BIT(7)}, {"SBR0", BIT(0)}, {"SBR1", BIT(1)}, {"SBR2", BIT(2)}, {"SBR3", BIT(3)}, {"SBR4", BIT(4)}, {"RSVD45", BIT(5)}, {"RSVD46", BIT(6)}, {"RSVD47", BIT(7)}, {"RSVD48", BIT(0)}, {"FIA_P5", BIT(1)}, {"RSVD50", BIT(2)}, {"RSVD51", BIT(3)}, {"RSVD52", BIT(4)}, {"RSVD53", BIT(5)}, {"RSVD54", BIT(6)}, {"ACE_1", BIT(7)}, {"RSVD56", BIT(0)}, {"ACE_5", BIT(1)}, {"RSVD58", BIT(2)}, {"G5FPW1", BIT(3)}, {"RSVD60", BIT(4)}, {"ACE_6", BIT(5)}, {"RSVD62", BIT(6)}, {"GBETSN1", BIT(7)}, {"RSVD64", BIT(0)}, {"FIA", BIT(1)}, {"RSVD66", BIT(2)}, {"FIA_P", BIT(3)}, {"TAM", BIT(4)}, {"GBETSN", BIT(5)}, {"IOE_D2D_2", BIT(6)}, {"IOE_D2D_1", BIT(7)}, {"SPF", BIT(0)}, {"PMC_1", BIT(1)}, {} }; const struct pmc_bit_map *ext_mtl_ioem_pfear_map[] = { mtl_ioem_pfear_map, NULL }; const struct pmc_bit_map mtl_ioem_power_gating_status_1_map[] = { {"PSF9_PGD0_PG_STS", BIT(0)}, {"MPFPW4_PGD0_PG_STS", BIT(1)}, {"SBR0_PGD0_PG_STS", BIT(8)}, {"SBR1_PGD0_PG_STS", BIT(9)}, {"SBR2_PGD0_PG_STS", BIT(10)}, {"SBR3_PGD0_PG_STS", BIT(11)}, {"SBR4_PGD0_PG_STS", BIT(12)}, {"FIA_P5_PGD0_PG_STS", BIT(17)}, {"ACE_PGD1_PGD0_PG_STS", BIT(23)}, {"ACE_PGD5_PGD1_PG_STS", BIT(25)}, {"G5FPW1_PGD0_PG_STS", BIT(27)}, {"ACE_PGD6_PG_STS", BIT(29)}, {"GBETSN1_PGD0_PG_STS", BIT(31)}, {} }; const struct pmc_bit_map *mtl_ioem_lpm_maps[] = { mtl_ioep_clocksource_status_map, mtl_ioep_power_gating_status_0_map, mtl_ioem_power_gating_status_1_map, mtl_ioep_power_gating_status_2_map, mtl_ioep_d3_status_0_map, mtl_ioep_d3_status_1_map, mtl_ioep_d3_status_2_map, mtl_ioep_d3_status_3_map, mtl_ioep_vnn_req_status_0_map, mtl_ioep_vnn_req_status_1_map, mtl_ioep_vnn_req_status_2_map, mtl_ioep_vnn_req_status_3_map, mtl_ioep_vnn_misc_status_map, mtl_socm_signal_status_map, NULL }; const struct pmc_reg_map mtl_ioem_reg_map = { .regmap_length = MTL_IOE_PMC_MMIO_REG_LEN, .pfear_sts = ext_mtl_ioem_pfear_map, .ppfear0_offset = CNP_PMC_HOST_PPFEAR0A, .ppfear_buckets = MTL_IOE_PPFEAR_NUM_ENTRIES, .lpm_status_offset = MTL_LPM_STATUS_OFFSET, .lpm_live_status_offset = MTL_LPM_LIVE_STATUS_OFFSET, .lpm_sts = mtl_ioem_lpm_maps, .ltr_show_sts = mtl_ioep_ltr_show_map, .ltr_ignore_offset = CNP_PMC_LTR_IGNORE_OFFSET, .ltr_ignore_max = ADL_NUM_IP_IGN_ALLOWED, }; #define PMC_DEVID_SOCM 0x7e7f #define PMC_DEVID_IOEP 0x7ecf #define PMC_DEVID_IOEM 0x7ebf static struct pmc_info mtl_pmc_info_list[] = { { .devid = PMC_DEVID_SOCM, .map = &mtl_socm_reg_map, }, { .devid = PMC_DEVID_IOEP, .map = &mtl_ioep_reg_map, }, { .devid = PMC_DEVID_IOEM, .map = &mtl_ioem_reg_map }, {} }; #define MTL_GNA_PCI_DEV 0x7e4c #define MTL_IPU_PCI_DEV 0x7d19 #define MTL_VPU_PCI_DEV 0x7d1d static void mtl_set_device_d3(unsigned int device) { struct pci_dev *pcidev; pcidev = pci_get_device(PCI_VENDOR_ID_INTEL, device, NULL); if (pcidev) { if (!device_trylock(&pcidev->dev)) { pci_dev_put(pcidev); return; } if (!pcidev->dev.driver) { dev_info(&pcidev->dev, "Setting to D3hot\n"); pci_set_power_state(pcidev, PCI_D3hot); } device_unlock(&pcidev->dev); pci_dev_put(pcidev); } } /* * Set power state of select devices that do not have drivers to D3 * so that they do not block Package C entry. */ static void mtl_d3_fixup(void) { mtl_set_device_d3(MTL_GNA_PCI_DEV); mtl_set_device_d3(MTL_IPU_PCI_DEV); mtl_set_device_d3(MTL_VPU_PCI_DEV); } static int mtl_resume(struct pmc_dev *pmcdev) { mtl_d3_fixup(); return pmc_core_resume_common(pmcdev); } int mtl_core_init(struct pmc_dev *pmcdev) { struct pmc *pmc = pmcdev->pmcs[PMC_IDX_SOC]; int ret = 0; mtl_d3_fixup(); pmcdev->resume = mtl_resume; pmcdev->regmap_list = mtl_pmc_info_list; pmc_core_ssram_init(pmcdev); /* If regbase not assigned, set map and discover using legacy method */ if (!pmc->regbase) { pmc->map = &mtl_socm_reg_map; ret = get_primary_reg_base(pmc); if (ret) return ret; } /* Due to a hardware limitation, the GBE LTR blocks PC10 * when a cable is attached. Tell the PMC to ignore it. */ dev_dbg(&pmcdev->pdev->dev, "ignoring GBE LTR\n"); pmc_core_send_ltr_ignore(pmcdev, 3); return 0; }
linux-master
drivers/platform/x86/intel/pmc/mtl.c
// SPDX-License-Identifier: GPL-2.0 /* * This file contains functions to handle discovery of PMC metrics located * in the PMC SSRAM PCI device. * * Copyright (c) 2023, Intel Corporation. * All Rights Reserved. * */ #include <linux/pci.h> #include <linux/io-64-nonatomic-lo-hi.h> #include "core.h" #define SSRAM_HDR_SIZE 0x100 #define SSRAM_PWRM_OFFSET 0x14 #define SSRAM_DVSEC_OFFSET 0x1C #define SSRAM_DVSEC_SIZE 0x10 #define SSRAM_PCH_OFFSET 0x60 #define SSRAM_IOE_OFFSET 0x68 #define SSRAM_DEVID_OFFSET 0x70 static const struct pmc_reg_map *pmc_core_find_regmap(struct pmc_info *list, u16 devid) { for (; list->map; ++list) if (devid == list->devid) return list->map; return NULL; } static inline u64 get_base(void __iomem *addr, u32 offset) { return lo_hi_readq(addr + offset) & GENMASK_ULL(63, 3); } static void pmc_core_pmc_add(struct pmc_dev *pmcdev, u64 pwrm_base, const struct pmc_reg_map *reg_map, int pmc_index) { struct pmc *pmc = pmcdev->pmcs[pmc_index]; if (!pwrm_base) return; /* Memory for primary PMC has been allocated in core.c */ if (!pmc) { pmc = devm_kzalloc(&pmcdev->pdev->dev, sizeof(*pmc), GFP_KERNEL); if (!pmc) return; } pmc->map = reg_map; pmc->base_addr = pwrm_base; pmc->regbase = ioremap(pmc->base_addr, pmc->map->regmap_length); if (!pmc->regbase) { devm_kfree(&pmcdev->pdev->dev, pmc); return; } pmcdev->pmcs[pmc_index] = pmc; } static void pmc_core_ssram_get_pmc(struct pmc_dev *pmcdev, void __iomem *ssram, u32 offset, int pmc_idx) { u64 pwrm_base; u16 devid; if (pmc_idx != PMC_IDX_SOC) { u64 ssram_base = get_base(ssram, offset); if (!ssram_base) return; ssram = ioremap(ssram_base, SSRAM_HDR_SIZE); if (!ssram) return; } pwrm_base = get_base(ssram, SSRAM_PWRM_OFFSET); devid = readw(ssram + SSRAM_DEVID_OFFSET); if (pmcdev->regmap_list) { const struct pmc_reg_map *map; map = pmc_core_find_regmap(pmcdev->regmap_list, devid); if (map) pmc_core_pmc_add(pmcdev, pwrm_base, map, pmc_idx); } if (pmc_idx != PMC_IDX_SOC) iounmap(ssram); } void pmc_core_ssram_init(struct pmc_dev *pmcdev) { void __iomem *ssram; struct pci_dev *pcidev; u64 ssram_base; int ret; pcidev = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(20, 2)); if (!pcidev) goto out; ret = pcim_enable_device(pcidev); if (ret) goto release_dev; ssram_base = pcidev->resource[0].start; ssram = ioremap(ssram_base, SSRAM_HDR_SIZE); if (!ssram) goto disable_dev; pmcdev->ssram_pcidev = pcidev; pmc_core_ssram_get_pmc(pmcdev, ssram, 0, PMC_IDX_SOC); pmc_core_ssram_get_pmc(pmcdev, ssram, SSRAM_IOE_OFFSET, PMC_IDX_IOE); pmc_core_ssram_get_pmc(pmcdev, ssram, SSRAM_PCH_OFFSET, PMC_IDX_PCH); iounmap(ssram); out: return; disable_dev: pci_disable_device(pcidev); release_dev: pci_dev_put(pcidev); }
linux-master
drivers/platform/x86/intel/pmc/core_ssram.c
// SPDX-License-Identifier: GPL-2.0 /* * This file contains platform specific structure definitions * and init function used by Alder Lake PCH. * * Copyright (c) 2022, Intel Corporation. * All Rights Reserved. * */ #include "core.h" /* Alder Lake: PGD PFET Enable Ack Status Register(s) bitmap */ const struct pmc_bit_map adl_pfear_map[] = { {"SPI/eSPI", BIT(2)}, {"XHCI", BIT(3)}, {"SPA", BIT(4)}, {"SPB", BIT(5)}, {"SPC", BIT(6)}, {"GBE", BIT(7)}, {"SATA", BIT(0)}, {"HDA_PGD0", BIT(1)}, {"HDA_PGD1", BIT(2)}, {"HDA_PGD2", BIT(3)}, {"HDA_PGD3", BIT(4)}, {"SPD", BIT(5)}, {"LPSS", BIT(6)}, {"SMB", BIT(0)}, {"ISH", BIT(1)}, {"ITH", BIT(3)}, {"XDCI", BIT(1)}, {"DCI", BIT(2)}, {"CSE", BIT(3)}, {"CSME_KVM", BIT(4)}, {"CSME_PMT", BIT(5)}, {"CSME_CLINK", BIT(6)}, {"CSME_PTIO", BIT(7)}, {"CSME_USBR", BIT(0)}, {"CSME_SUSRAM", BIT(1)}, {"CSME_SMT1", BIT(2)}, {"CSME_SMS2", BIT(4)}, {"CSME_SMS1", BIT(5)}, {"CSME_RTC", BIT(6)}, {"CSME_PSF", BIT(7)}, {"CNVI", BIT(3)}, {"HDA_PGD4", BIT(2)}, {"HDA_PGD5", BIT(3)}, {"HDA_PGD6", BIT(4)}, {} }; const struct pmc_bit_map *ext_adl_pfear_map[] = { /* * Check intel_pmc_core_ids[] users of cnp_reg_map for * a list of core SoCs using this. */ adl_pfear_map, NULL }; const struct pmc_bit_map adl_ltr_show_map[] = { {"SOUTHPORT_A", CNP_PMC_LTR_SPA}, {"SOUTHPORT_B", CNP_PMC_LTR_SPB}, {"SATA", CNP_PMC_LTR_SATA}, {"GIGABIT_ETHERNET", CNP_PMC_LTR_GBE}, {"XHCI", CNP_PMC_LTR_XHCI}, {"SOUTHPORT_F", ADL_PMC_LTR_SPF}, {"ME", CNP_PMC_LTR_ME}, /* EVA is Enterprise Value Add, doesn't really exist on PCH */ {"SATA1", CNP_PMC_LTR_EVA}, {"SOUTHPORT_C", CNP_PMC_LTR_SPC}, {"HD_AUDIO", CNP_PMC_LTR_AZ}, {"CNV", CNP_PMC_LTR_CNV}, {"LPSS", CNP_PMC_LTR_LPSS}, {"SOUTHPORT_D", CNP_PMC_LTR_SPD}, {"SOUTHPORT_E", CNP_PMC_LTR_SPE}, {"SATA2", CNP_PMC_LTR_CAM}, {"ESPI", CNP_PMC_LTR_ESPI}, {"SCC", CNP_PMC_LTR_SCC}, {"ISH", CNP_PMC_LTR_ISH}, {"UFSX2", CNP_PMC_LTR_UFSX2}, {"EMMC", CNP_PMC_LTR_EMMC}, /* * Check intel_pmc_core_ids[] users of cnp_reg_map for * a list of core SoCs using this. */ {"WIGIG", ICL_PMC_LTR_WIGIG}, {"THC0", TGL_PMC_LTR_THC0}, {"THC1", TGL_PMC_LTR_THC1}, {"SOUTHPORT_G", CNP_PMC_LTR_RESERVED}, /* Below two cannot be used for LTR_IGNORE */ {"CURRENT_PLATFORM", CNP_PMC_LTR_CUR_PLT}, {"AGGREGATED_SYSTEM", CNP_PMC_LTR_CUR_ASLT}, {} }; const struct pmc_bit_map adl_clocksource_status_map[] = { {"CLKPART1_OFF_STS", BIT(0)}, {"CLKPART2_OFF_STS", BIT(1)}, {"CLKPART3_OFF_STS", BIT(2)}, {"CLKPART4_OFF_STS", BIT(3)}, {"CLKPART5_OFF_STS", BIT(4)}, {"CLKPART6_OFF_STS", BIT(5)}, {"CLKPART7_OFF_STS", BIT(6)}, {"CLKPART8_OFF_STS", BIT(7)}, {"PCIE0PLL_OFF_STS", BIT(10)}, {"PCIE1PLL_OFF_STS", BIT(11)}, {"PCIE2PLL_OFF_STS", BIT(12)}, {"PCIE3PLL_OFF_STS", BIT(13)}, {"PCIE4PLL_OFF_STS", BIT(14)}, {"PCIE5PLL_OFF_STS", BIT(15)}, {"PCIE6PLL_OFF_STS", BIT(16)}, {"USB2PLL_OFF_STS", BIT(18)}, {"OCPLL_OFF_STS", BIT(22)}, {"AUDIOPLL_OFF_STS", BIT(23)}, {"GBEPLL_OFF_STS", BIT(24)}, {"Fast_XTAL_Osc_OFF_STS", BIT(25)}, {"AC_Ring_Osc_OFF_STS", BIT(26)}, {"MC_Ring_Osc_OFF_STS", BIT(27)}, {"SATAPLL_OFF_STS", BIT(29)}, {"USB3PLL_OFF_STS", BIT(31)}, {} }; const struct pmc_bit_map adl_power_gating_status_0_map[] = { {"PMC_PGD0_PG_STS", BIT(0)}, {"DMI_PGD0_PG_STS", BIT(1)}, {"ESPISPI_PGD0_PG_STS", BIT(2)}, {"XHCI_PGD0_PG_STS", BIT(3)}, {"SPA_PGD0_PG_STS", BIT(4)}, {"SPB_PGD0_PG_STS", BIT(5)}, {"SPC_PGD0_PG_STS", BIT(6)}, {"GBE_PGD0_PG_STS", BIT(7)}, {"SATA_PGD0_PG_STS", BIT(8)}, {"DSP_PGD0_PG_STS", BIT(9)}, {"DSP_PGD1_PG_STS", BIT(10)}, {"DSP_PGD2_PG_STS", BIT(11)}, {"DSP_PGD3_PG_STS", BIT(12)}, {"SPD_PGD0_PG_STS", BIT(13)}, {"LPSS_PGD0_PG_STS", BIT(14)}, {"SMB_PGD0_PG_STS", BIT(16)}, {"ISH_PGD0_PG_STS", BIT(17)}, {"NPK_PGD0_PG_STS", BIT(19)}, {"PECI_PGD0_PG_STS", BIT(21)}, {"XDCI_PGD0_PG_STS", BIT(25)}, {"EXI_PGD0_PG_STS", BIT(26)}, {"CSE_PGD0_PG_STS", BIT(27)}, {"KVMCC_PGD0_PG_STS", BIT(28)}, {"PMT_PGD0_PG_STS", BIT(29)}, {"CLINK_PGD0_PG_STS", BIT(30)}, {"PTIO_PGD0_PG_STS", BIT(31)}, {} }; const struct pmc_bit_map adl_power_gating_status_1_map[] = { {"USBR0_PGD0_PG_STS", BIT(0)}, {"SMT1_PGD0_PG_STS", BIT(2)}, {"CSMERTC_PGD0_PG_STS", BIT(6)}, {"CSMEPSF_PGD0_PG_STS", BIT(7)}, {"CNVI_PGD0_PG_STS", BIT(19)}, {"DSP_PGD4_PG_STS", BIT(26)}, {"SPG_PGD0_PG_STS", BIT(27)}, {"SPE_PGD0_PG_STS", BIT(28)}, {} }; const struct pmc_bit_map adl_power_gating_status_2_map[] = { {"THC0_PGD0_PG_STS", BIT(7)}, {"THC1_PGD0_PG_STS", BIT(8)}, {"SPF_PGD0_PG_STS", BIT(14)}, {} }; const struct pmc_bit_map adl_d3_status_0_map[] = { {"ISH_D3_STS", BIT(2)}, {"LPSS_D3_STS", BIT(3)}, {"XDCI_D3_STS", BIT(4)}, {"XHCI_D3_STS", BIT(5)}, {"SPA_D3_STS", BIT(12)}, {"SPB_D3_STS", BIT(13)}, {"SPC_D3_STS", BIT(14)}, {"SPD_D3_STS", BIT(15)}, {"SPE_D3_STS", BIT(16)}, {"DSP_D3_STS", BIT(19)}, {"SATA_D3_STS", BIT(20)}, {"DMI_D3_STS", BIT(22)}, {} }; const struct pmc_bit_map adl_d3_status_1_map[] = { {"GBE_D3_STS", BIT(19)}, {"CNVI_D3_STS", BIT(27)}, {} }; const struct pmc_bit_map adl_d3_status_2_map[] = { {"CSMERTC_D3_STS", BIT(1)}, {"CSE_D3_STS", BIT(4)}, {"KVMCC_D3_STS", BIT(5)}, {"USBR0_D3_STS", BIT(6)}, {"SMT1_D3_STS", BIT(8)}, {"PTIO_D3_STS", BIT(16)}, {"PMT_D3_STS", BIT(17)}, {} }; const struct pmc_bit_map adl_d3_status_3_map[] = { {"THC0_D3_STS", BIT(14)}, {"THC1_D3_STS", BIT(15)}, {} }; const struct pmc_bit_map adl_vnn_req_status_0_map[] = { {"ISH_VNN_REQ_STS", BIT(2)}, {"ESPISPI_VNN_REQ_STS", BIT(18)}, {"DSP_VNN_REQ_STS", BIT(19)}, {} }; const struct pmc_bit_map adl_vnn_req_status_1_map[] = { {"NPK_VNN_REQ_STS", BIT(4)}, {"EXI_VNN_REQ_STS", BIT(9)}, {"GBE_VNN_REQ_STS", BIT(19)}, {"SMB_VNN_REQ_STS", BIT(25)}, {"CNVI_VNN_REQ_STS", BIT(27)}, {} }; const struct pmc_bit_map adl_vnn_req_status_2_map[] = { {"CSMERTC_VNN_REQ_STS", BIT(1)}, {"CSE_VNN_REQ_STS", BIT(4)}, {"SMT1_VNN_REQ_STS", BIT(8)}, {"CLINK_VNN_REQ_STS", BIT(14)}, {"GPIOCOM4_VNN_REQ_STS", BIT(20)}, {"GPIOCOM3_VNN_REQ_STS", BIT(21)}, {"GPIOCOM2_VNN_REQ_STS", BIT(22)}, {"GPIOCOM1_VNN_REQ_STS", BIT(23)}, {"GPIOCOM0_VNN_REQ_STS", BIT(24)}, {} }; const struct pmc_bit_map adl_vnn_req_status_3_map[] = { {"GPIOCOM5_VNN_REQ_STS", BIT(11)}, {} }; const struct pmc_bit_map adl_vnn_misc_status_map[] = { {"CPU_C10_REQ_STS", BIT(0)}, {"PCIe_LPM_En_REQ_STS", BIT(3)}, {"ITH_REQ_STS", BIT(5)}, {"CNVI_REQ_STS", BIT(6)}, {"ISH_REQ_STS", BIT(7)}, {"USB2_SUS_PG_Sys_REQ_STS", BIT(10)}, {"PCIe_Clk_REQ_STS", BIT(12)}, {"MPHY_Core_DL_REQ_STS", BIT(16)}, {"Break-even_En_REQ_STS", BIT(17)}, {"MPHY_SUS_REQ_STS", BIT(22)}, {"xDCI_attached_REQ_STS", BIT(24)}, {} }; const struct pmc_bit_map *adl_lpm_maps[] = { adl_clocksource_status_map, adl_power_gating_status_0_map, adl_power_gating_status_1_map, adl_power_gating_status_2_map, adl_d3_status_0_map, adl_d3_status_1_map, adl_d3_status_2_map, adl_d3_status_3_map, adl_vnn_req_status_0_map, adl_vnn_req_status_1_map, adl_vnn_req_status_2_map, adl_vnn_req_status_3_map, adl_vnn_misc_status_map, tgl_signal_status_map, NULL }; const struct pmc_reg_map adl_reg_map = { .pfear_sts = ext_adl_pfear_map, .slp_s0_offset = ADL_PMC_SLP_S0_RES_COUNTER_OFFSET, .slp_s0_res_counter_step = TGL_PMC_SLP_S0_RES_COUNTER_STEP, .ltr_show_sts = adl_ltr_show_map, .msr_sts = msr_map, .ltr_ignore_offset = CNP_PMC_LTR_IGNORE_OFFSET, .regmap_length = CNP_PMC_MMIO_REG_LEN, .ppfear0_offset = CNP_PMC_HOST_PPFEAR0A, .ppfear_buckets = CNP_PPFEAR_NUM_ENTRIES, .pm_cfg_offset = CNP_PMC_PM_CFG_OFFSET, .pm_read_disable_bit = CNP_PMC_READ_DISABLE_BIT, .ltr_ignore_max = ADL_NUM_IP_IGN_ALLOWED, .lpm_num_modes = ADL_LPM_NUM_MODES, .lpm_num_maps = ADL_LPM_NUM_MAPS, .lpm_res_counter_step_x2 = TGL_PMC_LPM_RES_COUNTER_STEP_X2, .etr3_offset = ETR3_OFFSET, .lpm_sts_latch_en_offset = ADL_LPM_STATUS_LATCH_EN_OFFSET, .lpm_priority_offset = ADL_LPM_PRI_OFFSET, .lpm_en_offset = ADL_LPM_EN_OFFSET, .lpm_residency_offset = ADL_LPM_RESIDENCY_OFFSET, .lpm_sts = adl_lpm_maps, .lpm_status_offset = ADL_LPM_STATUS_OFFSET, .lpm_live_status_offset = ADL_LPM_LIVE_STATUS_OFFSET, }; int adl_core_init(struct pmc_dev *pmcdev) { struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; int ret; pmc->map = &adl_reg_map; ret = get_primary_reg_base(pmc); if (ret) return ret; /* Due to a hardware limitation, the GBE LTR blocks PC10 * when a cable is attached. Tell the PMC to ignore it. */ dev_dbg(&pmcdev->pdev->dev, "ignoring GBE LTR\n"); pmc_core_send_ltr_ignore(pmcdev, 3); return 0; }
linux-master
drivers/platform/x86/intel/pmc/adl.c
// SPDX-License-Identifier: GPL-2.0 /* * Intel PMC Core platform init * Copyright (c) 2019, Google Inc. * Author - Rajat Jain * * This code instantiates platform devices for intel_pmc_core driver, only * on supported platforms that may not have the ACPI devices in the ACPI tables. * No new platforms should be added here, because we expect that new platforms * should all have the ACPI device, which is the preferred way of enumeration. */ #include <linux/acpi.h> #include <linux/module.h> #include <linux/platform_device.h> #include <asm/cpu_device_id.h> #include <asm/intel-family.h> #include <xen/xen.h> static void intel_pmc_core_release(struct device *dev) { kfree(dev); } static struct platform_device *pmc_core_device; /* * intel_pmc_core_platform_ids is the list of platforms where we want to * instantiate the platform_device if not already instantiated. This is * different than intel_pmc_core_ids in intel_pmc_core.c which is the * list of platforms that the driver supports for pmc_core device. The * other list may grow, but this list should not. */ static const struct x86_cpu_id intel_pmc_core_platform_ids[] = { X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L, &pmc_core_device), X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE, &pmc_core_device), X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L, &pmc_core_device), X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE, &pmc_core_device), X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L, &pmc_core_device), X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, &pmc_core_device), X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE, &pmc_core_device), X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L, &pmc_core_device), {} }; MODULE_DEVICE_TABLE(x86cpu, intel_pmc_core_platform_ids); static int __init pmc_core_platform_init(void) { int retval; /* Skip creating the platform device if ACPI already has a device */ if (acpi_dev_present("INT33A1", NULL, -1)) return -ENODEV; /* * Skip forcefully attaching the device for VMs. Make an exception for * Xen dom0, which does have full hardware access. */ if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR) && !xen_initial_domain()) return -ENODEV; if (!x86_match_cpu(intel_pmc_core_platform_ids)) return -ENODEV; pmc_core_device = kzalloc(sizeof(*pmc_core_device), GFP_KERNEL); if (!pmc_core_device) return -ENOMEM; pmc_core_device->name = "intel_pmc_core"; pmc_core_device->dev.release = intel_pmc_core_release; retval = platform_device_register(pmc_core_device); if (retval) platform_device_put(pmc_core_device); return retval; } static void __exit pmc_core_platform_exit(void) { platform_device_unregister(pmc_core_device); } module_init(pmc_core_platform_init); module_exit(pmc_core_platform_exit); MODULE_LICENSE("GPL v2");
linux-master
drivers/platform/x86/intel/pmc/pltdrv.c
// SPDX-License-Identifier: GPL-2.0 /* * This file contains platform specific structure definitions * and init function used by Ice Lake PCH. * * Copyright (c) 2022, Intel Corporation. * All Rights Reserved. * */ #include "core.h" const struct pmc_bit_map icl_pfear_map[] = { {"RES_65", BIT(0)}, {"RES_66", BIT(1)}, {"RES_67", BIT(2)}, {"TAM", BIT(3)}, {"GBETSN", BIT(4)}, {"TBTLSX", BIT(5)}, {"RES_71", BIT(6)}, {"RES_72", BIT(7)}, {} }; const struct pmc_bit_map *ext_icl_pfear_map[] = { /* * Check intel_pmc_core_ids[] users of icl_reg_map for * a list of core SoCs using this. */ cnp_pfear_map, icl_pfear_map, NULL }; const struct pmc_reg_map icl_reg_map = { .pfear_sts = ext_icl_pfear_map, .slp_s0_offset = CNP_PMC_SLP_S0_RES_COUNTER_OFFSET, .slp_s0_res_counter_step = ICL_PMC_SLP_S0_RES_COUNTER_STEP, .slps0_dbg_maps = cnp_slps0_dbg_maps, .ltr_show_sts = cnp_ltr_show_map, .msr_sts = msr_map, .slps0_dbg_offset = CNP_PMC_SLPS0_DBG_OFFSET, .ltr_ignore_offset = CNP_PMC_LTR_IGNORE_OFFSET, .regmap_length = CNP_PMC_MMIO_REG_LEN, .ppfear0_offset = CNP_PMC_HOST_PPFEAR0A, .ppfear_buckets = ICL_PPFEAR_NUM_ENTRIES, .pm_cfg_offset = CNP_PMC_PM_CFG_OFFSET, .pm_read_disable_bit = CNP_PMC_READ_DISABLE_BIT, .ltr_ignore_max = ICL_NUM_IP_IGN_ALLOWED, .etr3_offset = ETR3_OFFSET, }; int icl_core_init(struct pmc_dev *pmcdev) { struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; pmc->map = &icl_reg_map; return get_primary_reg_base(pmc); }
linux-master
drivers/platform/x86/intel/pmc/icl.c
// SPDX-License-Identifier: GPL-2.0 /* * Intel Core SoC Power Management Controller Driver * * Copyright (c) 2016, Intel Corporation. * All Rights Reserved. * * Authors: Rajneesh Bhardwaj <[email protected]> * Vishwanath Somayaji <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/bitfield.h> #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/dmi.h> #include <linux/io.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/suspend.h> #include <asm/cpu_device_id.h> #include <asm/intel-family.h> #include <asm/msr.h> #include <asm/tsc.h> #include "core.h" /* Maximum number of modes supported by platfoms that has low power mode capability */ const char *pmc_lpm_modes[] = { "S0i2.0", "S0i2.1", "S0i2.2", "S0i3.0", "S0i3.1", "S0i3.2", "S0i3.3", "S0i3.4", NULL }; /* PKGC MSRs are common across Intel Core SoCs */ const struct pmc_bit_map msr_map[] = { {"Package C2", MSR_PKG_C2_RESIDENCY}, {"Package C3", MSR_PKG_C3_RESIDENCY}, {"Package C6", MSR_PKG_C6_RESIDENCY}, {"Package C7", MSR_PKG_C7_RESIDENCY}, {"Package C8", MSR_PKG_C8_RESIDENCY}, {"Package C9", MSR_PKG_C9_RESIDENCY}, {"Package C10", MSR_PKG_C10_RESIDENCY}, {} }; static inline u32 pmc_core_reg_read(struct pmc *pmc, int reg_offset) { return readl(pmc->regbase + reg_offset); } static inline void pmc_core_reg_write(struct pmc *pmc, int reg_offset, u32 val) { writel(val, pmc->regbase + reg_offset); } static inline u64 pmc_core_adjust_slp_s0_step(struct pmc *pmc, u32 value) { /* * ADL PCH does not have the SLP_S0 counter and LPM Residency counters are * used as a workaround which uses 30.5 usec tick. All other client * programs have the legacy SLP_S0 residency counter that is using the 122 * usec tick. */ const int lpm_adj_x2 = pmc->map->lpm_res_counter_step_x2; if (pmc->map == &adl_reg_map) return (u64)value * GET_X2_COUNTER((u64)lpm_adj_x2); else return (u64)value * pmc->map->slp_s0_res_counter_step; } static int set_etr3(struct pmc_dev *pmcdev) { struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; const struct pmc_reg_map *map = pmc->map; u32 reg; int err; if (!map->etr3_offset) return -EOPNOTSUPP; mutex_lock(&pmcdev->lock); /* check if CF9 is locked */ reg = pmc_core_reg_read(pmc, map->etr3_offset); if (reg & ETR3_CF9LOCK) { err = -EACCES; goto out_unlock; } /* write CF9 global reset bit */ reg |= ETR3_CF9GR; pmc_core_reg_write(pmc, map->etr3_offset, reg); reg = pmc_core_reg_read(pmc, map->etr3_offset); if (!(reg & ETR3_CF9GR)) { err = -EIO; goto out_unlock; } err = 0; out_unlock: mutex_unlock(&pmcdev->lock); return err; } static umode_t etr3_is_visible(struct kobject *kobj, struct attribute *attr, int idx) { struct device *dev = kobj_to_dev(kobj); struct pmc_dev *pmcdev = dev_get_drvdata(dev); struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; const struct pmc_reg_map *map = pmc->map; u32 reg; mutex_lock(&pmcdev->lock); reg = pmc_core_reg_read(pmc, map->etr3_offset); mutex_unlock(&pmcdev->lock); return reg & ETR3_CF9LOCK ? attr->mode & (SYSFS_PREALLOC | 0444) : attr->mode; } static ssize_t etr3_show(struct device *dev, struct device_attribute *attr, char *buf) { struct pmc_dev *pmcdev = dev_get_drvdata(dev); struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; const struct pmc_reg_map *map = pmc->map; u32 reg; if (!map->etr3_offset) return -EOPNOTSUPP; mutex_lock(&pmcdev->lock); reg = pmc_core_reg_read(pmc, map->etr3_offset); reg &= ETR3_CF9GR | ETR3_CF9LOCK; mutex_unlock(&pmcdev->lock); return sysfs_emit(buf, "0x%08x", reg); } static ssize_t etr3_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct pmc_dev *pmcdev = dev_get_drvdata(dev); int err; u32 reg; err = kstrtouint(buf, 16, &reg); if (err) return err; /* allow only CF9 writes */ if (reg != ETR3_CF9GR) return -EINVAL; err = set_etr3(pmcdev); if (err) return err; return len; } static DEVICE_ATTR_RW(etr3); static struct attribute *pmc_attrs[] = { &dev_attr_etr3.attr, NULL }; static const struct attribute_group pmc_attr_group = { .attrs = pmc_attrs, .is_visible = etr3_is_visible, }; static const struct attribute_group *pmc_dev_groups[] = { &pmc_attr_group, NULL }; static int pmc_core_dev_state_get(void *data, u64 *val) { struct pmc *pmc = data; const struct pmc_reg_map *map = pmc->map; u32 value; value = pmc_core_reg_read(pmc, map->slp_s0_offset); *val = pmc_core_adjust_slp_s0_step(pmc, value); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(pmc_core_dev_state, pmc_core_dev_state_get, NULL, "%llu\n"); static int pmc_core_check_read_lock_bit(struct pmc *pmc) { u32 value; value = pmc_core_reg_read(pmc, pmc->map->pm_cfg_offset); return value & BIT(pmc->map->pm_read_disable_bit); } static void pmc_core_slps0_display(struct pmc *pmc, struct device *dev, struct seq_file *s) { const struct pmc_bit_map **maps = pmc->map->slps0_dbg_maps; const struct pmc_bit_map *map; int offset = pmc->map->slps0_dbg_offset; u32 data; while (*maps) { map = *maps; data = pmc_core_reg_read(pmc, offset); offset += 4; while (map->name) { if (dev) dev_info(dev, "SLP_S0_DBG: %-32s\tState: %s\n", map->name, data & map->bit_mask ? "Yes" : "No"); if (s) seq_printf(s, "SLP_S0_DBG: %-32s\tState: %s\n", map->name, data & map->bit_mask ? "Yes" : "No"); ++map; } ++maps; } } static int pmc_core_lpm_get_arr_size(const struct pmc_bit_map **maps) { int idx; for (idx = 0; maps[idx]; idx++) ;/* Nothing */ return idx; } static void pmc_core_lpm_display(struct pmc *pmc, struct device *dev, struct seq_file *s, u32 offset, int pmc_index, const char *str, const struct pmc_bit_map **maps) { int index, idx, len = 32, bit_mask, arr_size; u32 *lpm_regs; arr_size = pmc_core_lpm_get_arr_size(maps); lpm_regs = kmalloc_array(arr_size, sizeof(*lpm_regs), GFP_KERNEL); if (!lpm_regs) return; for (index = 0; index < arr_size; index++) { lpm_regs[index] = pmc_core_reg_read(pmc, offset); offset += 4; } for (idx = 0; idx < arr_size; idx++) { if (dev) dev_info(dev, "\nPMC%d:LPM_%s_%d:\t0x%x\n", pmc_index, str, idx, lpm_regs[idx]); if (s) seq_printf(s, "\nPMC%d:LPM_%s_%d:\t0x%x\n", pmc_index, str, idx, lpm_regs[idx]); for (index = 0; maps[idx][index].name && index < len; index++) { bit_mask = maps[idx][index].bit_mask; if (dev) dev_info(dev, "PMC%d:%-30s %-30d\n", pmc_index, maps[idx][index].name, lpm_regs[idx] & bit_mask ? 1 : 0); if (s) seq_printf(s, "PMC%d:%-30s %-30d\n", pmc_index, maps[idx][index].name, lpm_regs[idx] & bit_mask ? 1 : 0); } } kfree(lpm_regs); } static bool slps0_dbg_latch; static inline u8 pmc_core_reg_read_byte(struct pmc *pmc, int offset) { return readb(pmc->regbase + offset); } static void pmc_core_display_map(struct seq_file *s, int index, int idx, int ip, int pmc_index, u8 pf_reg, const struct pmc_bit_map **pf_map) { seq_printf(s, "PMC%d:PCH IP: %-2d - %-32s\tState: %s\n", pmc_index, ip, pf_map[idx][index].name, pf_map[idx][index].bit_mask & pf_reg ? "Off" : "On"); } static int pmc_core_ppfear_show(struct seq_file *s, void *unused) { struct pmc_dev *pmcdev = s->private; int i; for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) { struct pmc *pmc = pmcdev->pmcs[i]; const struct pmc_bit_map **maps; u8 pf_regs[PPFEAR_MAX_NUM_ENTRIES]; int index, iter, idx, ip = 0; if (!pmc) continue; maps = pmc->map->pfear_sts; iter = pmc->map->ppfear0_offset; for (index = 0; index < pmc->map->ppfear_buckets && index < PPFEAR_MAX_NUM_ENTRIES; index++, iter++) pf_regs[index] = pmc_core_reg_read_byte(pmc, iter); for (idx = 0; maps[idx]; idx++) { for (index = 0; maps[idx][index].name && index < pmc->map->ppfear_buckets * 8; ip++, index++) pmc_core_display_map(s, index, idx, ip, i, pf_regs[index / 8], maps); } } return 0; } DEFINE_SHOW_ATTRIBUTE(pmc_core_ppfear); /* This function should return link status, 0 means ready */ static int pmc_core_mtpmc_link_status(struct pmc *pmc) { u32 value; value = pmc_core_reg_read(pmc, SPT_PMC_PM_STS_OFFSET); return value & BIT(SPT_PMC_MSG_FULL_STS_BIT); } static int pmc_core_send_msg(struct pmc *pmc, u32 *addr_xram) { u32 dest; int timeout; for (timeout = NUM_RETRIES; timeout > 0; timeout--) { if (pmc_core_mtpmc_link_status(pmc) == 0) break; msleep(5); } if (timeout <= 0 && pmc_core_mtpmc_link_status(pmc)) return -EBUSY; dest = (*addr_xram & MTPMC_MASK) | (1U << 1); pmc_core_reg_write(pmc, SPT_PMC_MTPMC_OFFSET, dest); return 0; } static int pmc_core_mphy_pg_show(struct seq_file *s, void *unused) { struct pmc_dev *pmcdev = s->private; struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; const struct pmc_bit_map *map = pmc->map->mphy_sts; u32 mphy_core_reg_low, mphy_core_reg_high; u32 val_low, val_high; int index, err = 0; if (pmcdev->pmc_xram_read_bit) { seq_puts(s, "Access denied: please disable PMC_READ_DISABLE setting in BIOS."); return 0; } mphy_core_reg_low = (SPT_PMC_MPHY_CORE_STS_0 << 16); mphy_core_reg_high = (SPT_PMC_MPHY_CORE_STS_1 << 16); mutex_lock(&pmcdev->lock); if (pmc_core_send_msg(pmc, &mphy_core_reg_low) != 0) { err = -EBUSY; goto out_unlock; } msleep(10); val_low = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET); if (pmc_core_send_msg(pmc, &mphy_core_reg_high) != 0) { err = -EBUSY; goto out_unlock; } msleep(10); val_high = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET); for (index = 0; index < 8 && map[index].name; index++) { seq_printf(s, "%-32s\tState: %s\n", map[index].name, map[index].bit_mask & val_low ? "Not power gated" : "Power gated"); } for (index = 8; map[index].name; index++) { seq_printf(s, "%-32s\tState: %s\n", map[index].name, map[index].bit_mask & val_high ? "Not power gated" : "Power gated"); } out_unlock: mutex_unlock(&pmcdev->lock); return err; } DEFINE_SHOW_ATTRIBUTE(pmc_core_mphy_pg); static int pmc_core_pll_show(struct seq_file *s, void *unused) { struct pmc_dev *pmcdev = s->private; struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; const struct pmc_bit_map *map = pmc->map->pll_sts; u32 mphy_common_reg, val; int index, err = 0; if (pmcdev->pmc_xram_read_bit) { seq_puts(s, "Access denied: please disable PMC_READ_DISABLE setting in BIOS."); return 0; } mphy_common_reg = (SPT_PMC_MPHY_COM_STS_0 << 16); mutex_lock(&pmcdev->lock); if (pmc_core_send_msg(pmc, &mphy_common_reg) != 0) { err = -EBUSY; goto out_unlock; } /* Observed PMC HW response latency for MTPMC-MFPMC is ~10 ms */ msleep(10); val = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET); for (index = 0; map[index].name ; index++) { seq_printf(s, "%-32s\tState: %s\n", map[index].name, map[index].bit_mask & val ? "Active" : "Idle"); } out_unlock: mutex_unlock(&pmcdev->lock); return err; } DEFINE_SHOW_ATTRIBUTE(pmc_core_pll); int pmc_core_send_ltr_ignore(struct pmc_dev *pmcdev, u32 value) { struct pmc *pmc; const struct pmc_reg_map *map; u32 reg; int pmc_index, ltr_index; ltr_index = value; /* For platforms with multiple pmcs, ltr index value given by user * is based on the contiguous indexes from ltr_show output. * pmc index and ltr index needs to be calculated from it. */ for (pmc_index = 0; pmc_index < ARRAY_SIZE(pmcdev->pmcs) && ltr_index > 0; pmc_index++) { pmc = pmcdev->pmcs[pmc_index]; if (!pmc) continue; map = pmc->map; if (ltr_index <= map->ltr_ignore_max) break; /* Along with IP names, ltr_show map includes CURRENT_PLATFORM * and AGGREGATED_SYSTEM values per PMC. Take these two index * values into account in ltr_index calculation. Also, to start * ltr index from zero for next pmc, subtract it by 1. */ ltr_index = ltr_index - (map->ltr_ignore_max + 2) - 1; } if (pmc_index >= ARRAY_SIZE(pmcdev->pmcs) || ltr_index < 0) return -EINVAL; pr_debug("ltr_ignore for pmc%d: ltr_index:%d\n", pmc_index, ltr_index); mutex_lock(&pmcdev->lock); reg = pmc_core_reg_read(pmc, map->ltr_ignore_offset); reg |= BIT(ltr_index); pmc_core_reg_write(pmc, map->ltr_ignore_offset, reg); mutex_unlock(&pmcdev->lock); return 0; } static ssize_t pmc_core_ltr_ignore_write(struct file *file, const char __user *userbuf, size_t count, loff_t *ppos) { struct seq_file *s = file->private_data; struct pmc_dev *pmcdev = s->private; u32 buf_size, value; int err; buf_size = min_t(u32, count, 64); err = kstrtou32_from_user(userbuf, buf_size, 10, &value); if (err) return err; err = pmc_core_send_ltr_ignore(pmcdev, value); return err == 0 ? count : err; } static int pmc_core_ltr_ignore_show(struct seq_file *s, void *unused) { return 0; } static int pmc_core_ltr_ignore_open(struct inode *inode, struct file *file) { return single_open(file, pmc_core_ltr_ignore_show, inode->i_private); } static const struct file_operations pmc_core_ltr_ignore_ops = { .open = pmc_core_ltr_ignore_open, .read = seq_read, .write = pmc_core_ltr_ignore_write, .llseek = seq_lseek, .release = single_release, }; static void pmc_core_slps0_dbg_latch(struct pmc_dev *pmcdev, bool reset) { struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; const struct pmc_reg_map *map = pmc->map; u32 fd; mutex_lock(&pmcdev->lock); if (!reset && !slps0_dbg_latch) goto out_unlock; fd = pmc_core_reg_read(pmc, map->slps0_dbg_offset); if (reset) fd &= ~CNP_PMC_LATCH_SLPS0_EVENTS; else fd |= CNP_PMC_LATCH_SLPS0_EVENTS; pmc_core_reg_write(pmc, map->slps0_dbg_offset, fd); slps0_dbg_latch = false; out_unlock: mutex_unlock(&pmcdev->lock); } static int pmc_core_slps0_dbg_show(struct seq_file *s, void *unused) { struct pmc_dev *pmcdev = s->private; pmc_core_slps0_dbg_latch(pmcdev, false); pmc_core_slps0_display(pmcdev->pmcs[PMC_IDX_MAIN], NULL, s); pmc_core_slps0_dbg_latch(pmcdev, true); return 0; } DEFINE_SHOW_ATTRIBUTE(pmc_core_slps0_dbg); static u32 convert_ltr_scale(u32 val) { /* * As per PCIE specification supporting document * ECN_LatencyTolnReporting_14Aug08.pdf the Latency * Tolerance Reporting data payload is encoded in a * 3 bit scale and 10 bit value fields. Values are * multiplied by the indicated scale to yield an absolute time * value, expressible in a range from 1 nanosecond to * 2^25*(2^10-1) = 34,326,183,936 nanoseconds. * * scale encoding is as follows: * * ---------------------------------------------- * |scale factor | Multiplier (ns) | * ---------------------------------------------- * | 0 | 1 | * | 1 | 32 | * | 2 | 1024 | * | 3 | 32768 | * | 4 | 1048576 | * | 5 | 33554432 | * | 6 | Invalid | * | 7 | Invalid | * ---------------------------------------------- */ if (val > 5) { pr_warn("Invalid LTR scale factor.\n"); return 0; } return 1U << (5 * val); } static int pmc_core_ltr_show(struct seq_file *s, void *unused) { struct pmc_dev *pmcdev = s->private; u64 decoded_snoop_ltr, decoded_non_snoop_ltr; u32 ltr_raw_data, scale, val; u16 snoop_ltr, nonsnoop_ltr; int i, index, ltr_index = 0; for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) { struct pmc *pmc = pmcdev->pmcs[i]; const struct pmc_bit_map *map; if (!pmc) continue; map = pmc->map->ltr_show_sts; for (index = 0; map[index].name; index++) { decoded_snoop_ltr = decoded_non_snoop_ltr = 0; ltr_raw_data = pmc_core_reg_read(pmc, map[index].bit_mask); snoop_ltr = ltr_raw_data & ~MTPMC_MASK; nonsnoop_ltr = (ltr_raw_data >> 0x10) & ~MTPMC_MASK; if (FIELD_GET(LTR_REQ_NONSNOOP, ltr_raw_data)) { scale = FIELD_GET(LTR_DECODED_SCALE, nonsnoop_ltr); val = FIELD_GET(LTR_DECODED_VAL, nonsnoop_ltr); decoded_non_snoop_ltr = val * convert_ltr_scale(scale); } if (FIELD_GET(LTR_REQ_SNOOP, ltr_raw_data)) { scale = FIELD_GET(LTR_DECODED_SCALE, snoop_ltr); val = FIELD_GET(LTR_DECODED_VAL, snoop_ltr); decoded_snoop_ltr = val * convert_ltr_scale(scale); } seq_printf(s, "%d\tPMC%d:%-32s\tLTR: RAW: 0x%-16x\tNon-Snoop(ns): %-16llu\tSnoop(ns): %-16llu\n", ltr_index, i, map[index].name, ltr_raw_data, decoded_non_snoop_ltr, decoded_snoop_ltr); ltr_index++; } } return 0; } DEFINE_SHOW_ATTRIBUTE(pmc_core_ltr); static inline u64 adjust_lpm_residency(struct pmc *pmc, u32 offset, const int lpm_adj_x2) { u64 lpm_res = pmc_core_reg_read(pmc, offset); return GET_X2_COUNTER((u64)lpm_adj_x2 * lpm_res); } static int pmc_core_substate_res_show(struct seq_file *s, void *unused) { struct pmc_dev *pmcdev = s->private; struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; const int lpm_adj_x2 = pmc->map->lpm_res_counter_step_x2; u32 offset = pmc->map->lpm_residency_offset; int i, mode; seq_printf(s, "%-10s %-15s\n", "Substate", "Residency"); pmc_for_each_mode(i, mode, pmcdev) { seq_printf(s, "%-10s %-15llu\n", pmc_lpm_modes[mode], adjust_lpm_residency(pmc, offset + (4 * mode), lpm_adj_x2)); } return 0; } DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_res); static int pmc_core_substate_sts_regs_show(struct seq_file *s, void *unused) { struct pmc_dev *pmcdev = s->private; int i; for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) { struct pmc *pmc = pmcdev->pmcs[i]; const struct pmc_bit_map **maps; u32 offset; if (!pmc) continue; maps = pmc->map->lpm_sts; offset = pmc->map->lpm_status_offset; pmc_core_lpm_display(pmc, NULL, s, offset, i, "STATUS", maps); } return 0; } DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_sts_regs); static int pmc_core_substate_l_sts_regs_show(struct seq_file *s, void *unused) { struct pmc_dev *pmcdev = s->private; int i; for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) { struct pmc *pmc = pmcdev->pmcs[i]; const struct pmc_bit_map **maps; u32 offset; if (!pmc) continue; maps = pmc->map->lpm_sts; offset = pmc->map->lpm_live_status_offset; pmc_core_lpm_display(pmc, NULL, s, offset, i, "LIVE_STATUS", maps); } return 0; } DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_l_sts_regs); static void pmc_core_substate_req_header_show(struct seq_file *s) { struct pmc_dev *pmcdev = s->private; int i, mode; seq_printf(s, "%30s |", "Element"); pmc_for_each_mode(i, mode, pmcdev) seq_printf(s, " %9s |", pmc_lpm_modes[mode]); seq_printf(s, " %9s |\n", "Status"); } static int pmc_core_substate_req_regs_show(struct seq_file *s, void *unused) { struct pmc_dev *pmcdev = s->private; struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; const struct pmc_bit_map **maps = pmc->map->lpm_sts; const struct pmc_bit_map *map; const int num_maps = pmc->map->lpm_num_maps; u32 sts_offset = pmc->map->lpm_status_offset; u32 *lpm_req_regs = pmc->lpm_req_regs; int mp; /* Display the header */ pmc_core_substate_req_header_show(s); /* Loop over maps */ for (mp = 0; mp < num_maps; mp++) { u32 req_mask = 0; u32 lpm_status; int mode, idx, i, len = 32; /* * Capture the requirements and create a mask so that we only * show an element if it's required for at least one of the * enabled low power modes */ pmc_for_each_mode(idx, mode, pmcdev) req_mask |= lpm_req_regs[mp + (mode * num_maps)]; /* Get the last latched status for this map */ lpm_status = pmc_core_reg_read(pmc, sts_offset + (mp * 4)); /* Loop over elements in this map */ map = maps[mp]; for (i = 0; map[i].name && i < len; i++) { u32 bit_mask = map[i].bit_mask; if (!(bit_mask & req_mask)) /* * Not required for any enabled states * so don't display */ continue; /* Display the element name in the first column */ seq_printf(s, "%30s |", map[i].name); /* Loop over the enabled states and display if required */ pmc_for_each_mode(idx, mode, pmcdev) { if (lpm_req_regs[mp + (mode * num_maps)] & bit_mask) seq_printf(s, " %9s |", "Required"); else seq_printf(s, " %9s |", " "); } /* In Status column, show the last captured state of this agent */ if (lpm_status & bit_mask) seq_printf(s, " %9s |", "Yes"); else seq_printf(s, " %9s |", " "); seq_puts(s, "\n"); } } return 0; } DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_req_regs); static int pmc_core_lpm_latch_mode_show(struct seq_file *s, void *unused) { struct pmc_dev *pmcdev = s->private; struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; bool c10; u32 reg; int idx, mode; reg = pmc_core_reg_read(pmc, pmc->map->lpm_sts_latch_en_offset); if (reg & LPM_STS_LATCH_MODE) { seq_puts(s, "c10"); c10 = false; } else { seq_puts(s, "[c10]"); c10 = true; } pmc_for_each_mode(idx, mode, pmcdev) { if ((BIT(mode) & reg) && !c10) seq_printf(s, " [%s]", pmc_lpm_modes[mode]); else seq_printf(s, " %s", pmc_lpm_modes[mode]); } seq_puts(s, " clear\n"); return 0; } static ssize_t pmc_core_lpm_latch_mode_write(struct file *file, const char __user *userbuf, size_t count, loff_t *ppos) { struct seq_file *s = file->private_data; struct pmc_dev *pmcdev = s->private; struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; bool clear = false, c10 = false; unsigned char buf[8]; int idx, m, mode; u32 reg; if (count > sizeof(buf) - 1) return -EINVAL; if (copy_from_user(buf, userbuf, count)) return -EFAULT; buf[count] = '\0'; /* * Allowed strings are: * Any enabled substate, e.g. 'S0i2.0' * 'c10' * 'clear' */ mode = sysfs_match_string(pmc_lpm_modes, buf); /* Check string matches enabled mode */ pmc_for_each_mode(idx, m, pmcdev) if (mode == m) break; if (mode != m || mode < 0) { if (sysfs_streq(buf, "clear")) clear = true; else if (sysfs_streq(buf, "c10")) c10 = true; else return -EINVAL; } if (clear) { mutex_lock(&pmcdev->lock); reg = pmc_core_reg_read(pmc, pmc->map->etr3_offset); reg |= ETR3_CLEAR_LPM_EVENTS; pmc_core_reg_write(pmc, pmc->map->etr3_offset, reg); mutex_unlock(&pmcdev->lock); return count; } if (c10) { mutex_lock(&pmcdev->lock); reg = pmc_core_reg_read(pmc, pmc->map->lpm_sts_latch_en_offset); reg &= ~LPM_STS_LATCH_MODE; pmc_core_reg_write(pmc, pmc->map->lpm_sts_latch_en_offset, reg); mutex_unlock(&pmcdev->lock); return count; } /* * For LPM mode latching we set the latch enable bit and selected mode * and clear everything else. */ reg = LPM_STS_LATCH_MODE | BIT(mode); mutex_lock(&pmcdev->lock); pmc_core_reg_write(pmc, pmc->map->lpm_sts_latch_en_offset, reg); mutex_unlock(&pmcdev->lock); return count; } DEFINE_PMC_CORE_ATTR_WRITE(pmc_core_lpm_latch_mode); static int pmc_core_pkgc_show(struct seq_file *s, void *unused) { struct pmc *pmc = s->private; const struct pmc_bit_map *map = pmc->map->msr_sts; u64 pcstate_count; int index; for (index = 0; map[index].name ; index++) { if (rdmsrl_safe(map[index].bit_mask, &pcstate_count)) continue; pcstate_count *= 1000; do_div(pcstate_count, tsc_khz); seq_printf(s, "%-8s : %llu\n", map[index].name, pcstate_count); } return 0; } DEFINE_SHOW_ATTRIBUTE(pmc_core_pkgc); static bool pmc_core_pri_verify(u32 lpm_pri, u8 *mode_order) { int i, j; if (!lpm_pri) return false; /* * Each byte contains the priority level for 2 modes (7:4 and 3:0). * In a 32 bit register this allows for describing 8 modes. Store the * levels and look for values out of range. */ for (i = 0; i < 8; i++) { int level = lpm_pri & GENMASK(3, 0); if (level >= LPM_MAX_NUM_MODES) return false; mode_order[i] = level; lpm_pri >>= 4; } /* Check that we have unique values */ for (i = 0; i < LPM_MAX_NUM_MODES - 1; i++) for (j = i + 1; j < LPM_MAX_NUM_MODES; j++) if (mode_order[i] == mode_order[j]) return false; return true; } static void pmc_core_get_low_power_modes(struct platform_device *pdev) { struct pmc_dev *pmcdev = platform_get_drvdata(pdev); struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; u8 pri_order[LPM_MAX_NUM_MODES] = LPM_DEFAULT_PRI; u8 mode_order[LPM_MAX_NUM_MODES]; u32 lpm_pri; u32 lpm_en; int mode, i, p; /* Use LPM Maps to indicate support for substates */ if (!pmc->map->lpm_num_maps) return; lpm_en = pmc_core_reg_read(pmc, pmc->map->lpm_en_offset); /* For MTL, BIT 31 is not an lpm mode but a enable bit. * Lower byte is enough to cover the number of lpm modes for all * platforms and hence mask the upper 3 bytes. */ pmcdev->num_lpm_modes = hweight32(lpm_en & 0xFF); /* Read 32 bit LPM_PRI register */ lpm_pri = pmc_core_reg_read(pmc, pmc->map->lpm_priority_offset); /* * If lpm_pri value passes verification, then override the default * modes here. Otherwise stick with the default. */ if (pmc_core_pri_verify(lpm_pri, mode_order)) /* Get list of modes in priority order */ for (mode = 0; mode < LPM_MAX_NUM_MODES; mode++) pri_order[mode_order[mode]] = mode; else dev_warn(&pdev->dev, "Assuming a default substate order for this platform\n"); /* * Loop through all modes from lowest to highest priority, * and capture all enabled modes in order */ i = 0; for (p = LPM_MAX_NUM_MODES - 1; p >= 0; p--) { int mode = pri_order[p]; if (!(BIT(mode) & lpm_en)) continue; pmcdev->lpm_en_modes[i++] = mode; } } int get_primary_reg_base(struct pmc *pmc) { u64 slp_s0_addr; if (lpit_read_residency_count_address(&slp_s0_addr)) { pmc->base_addr = PMC_BASE_ADDR_DEFAULT; if (page_is_ram(PHYS_PFN(pmc->base_addr))) return -ENODEV; } else { pmc->base_addr = slp_s0_addr - pmc->map->slp_s0_offset; } pmc->regbase = ioremap(pmc->base_addr, pmc->map->regmap_length); if (!pmc->regbase) return -ENOMEM; return 0; } static void pmc_core_dbgfs_unregister(struct pmc_dev *pmcdev) { debugfs_remove_recursive(pmcdev->dbgfs_dir); } static void pmc_core_dbgfs_register(struct pmc_dev *pmcdev) { struct pmc *primary_pmc = pmcdev->pmcs[PMC_IDX_MAIN]; struct dentry *dir; dir = debugfs_create_dir("pmc_core", NULL); pmcdev->dbgfs_dir = dir; debugfs_create_file("slp_s0_residency_usec", 0444, dir, primary_pmc, &pmc_core_dev_state); if (primary_pmc->map->pfear_sts) debugfs_create_file("pch_ip_power_gating_status", 0444, dir, pmcdev, &pmc_core_ppfear_fops); debugfs_create_file("ltr_ignore", 0644, dir, pmcdev, &pmc_core_ltr_ignore_ops); debugfs_create_file("ltr_show", 0444, dir, pmcdev, &pmc_core_ltr_fops); debugfs_create_file("package_cstate_show", 0444, dir, primary_pmc, &pmc_core_pkgc_fops); if (primary_pmc->map->pll_sts) debugfs_create_file("pll_status", 0444, dir, pmcdev, &pmc_core_pll_fops); if (primary_pmc->map->mphy_sts) debugfs_create_file("mphy_core_lanes_power_gating_status", 0444, dir, pmcdev, &pmc_core_mphy_pg_fops); if (primary_pmc->map->slps0_dbg_maps) { debugfs_create_file("slp_s0_debug_status", 0444, dir, pmcdev, &pmc_core_slps0_dbg_fops); debugfs_create_bool("slp_s0_dbg_latch", 0644, dir, &slps0_dbg_latch); } if (primary_pmc->map->lpm_en_offset) { debugfs_create_file("substate_residencies", 0444, pmcdev->dbgfs_dir, pmcdev, &pmc_core_substate_res_fops); } if (primary_pmc->map->lpm_status_offset) { debugfs_create_file("substate_status_registers", 0444, pmcdev->dbgfs_dir, pmcdev, &pmc_core_substate_sts_regs_fops); debugfs_create_file("substate_live_status_registers", 0444, pmcdev->dbgfs_dir, pmcdev, &pmc_core_substate_l_sts_regs_fops); debugfs_create_file("lpm_latch_mode", 0644, pmcdev->dbgfs_dir, pmcdev, &pmc_core_lpm_latch_mode_fops); } if (primary_pmc->lpm_req_regs) { debugfs_create_file("substate_requirements", 0444, pmcdev->dbgfs_dir, pmcdev, &pmc_core_substate_req_regs_fops); } } static const struct x86_cpu_id intel_pmc_core_ids[] = { X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L, spt_core_init), X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE, spt_core_init), X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L, spt_core_init), X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE, spt_core_init), X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L, cnp_core_init), X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, icl_core_init), X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI, icl_core_init), X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE, cnp_core_init), X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L, cnp_core_init), X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, tgl_core_init), X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, tgl_core_init), X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT, tgl_core_init), X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L, icl_core_init), X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE, tgl_core_init), X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, tgl_core_init), X86_MATCH_INTEL_FAM6_MODEL(ATOM_GRACEMONT, tgl_core_init), X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, adl_core_init), X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_P, tgl_core_init), X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE, adl_core_init), X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_S, adl_core_init), X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L, mtl_core_init), {} }; MODULE_DEVICE_TABLE(x86cpu, intel_pmc_core_ids); static const struct pci_device_id pmc_pci_ids[] = { { PCI_VDEVICE(INTEL, SPT_PMC_PCI_DEVICE_ID) }, { } }; /* * This quirk can be used on those platforms where * the platform BIOS enforces 24Mhz crystal to shutdown * before PMC can assert SLP_S0#. */ static bool xtal_ignore; static int quirk_xtal_ignore(const struct dmi_system_id *id) { xtal_ignore = true; return 0; } static void pmc_core_xtal_ignore(struct pmc *pmc) { u32 value; value = pmc_core_reg_read(pmc, pmc->map->pm_vric1_offset); /* 24MHz Crystal Shutdown Qualification Disable */ value |= SPT_PMC_VRIC1_XTALSDQDIS; /* Low Voltage Mode Enable */ value &= ~SPT_PMC_VRIC1_SLPS0LVEN; pmc_core_reg_write(pmc, pmc->map->pm_vric1_offset, value); } static const struct dmi_system_id pmc_core_dmi_table[] = { { .callback = quirk_xtal_ignore, .ident = "HP Elite x2 1013 G3", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "HP Elite x2 1013 G3"), }, }, {} }; static void pmc_core_do_dmi_quirks(struct pmc *pmc) { dmi_check_system(pmc_core_dmi_table); if (xtal_ignore) pmc_core_xtal_ignore(pmc); } static void pmc_core_clean_structure(struct platform_device *pdev) { struct pmc_dev *pmcdev = platform_get_drvdata(pdev); int i; for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) { struct pmc *pmc = pmcdev->pmcs[i]; if (pmc) iounmap(pmc->regbase); } if (pmcdev->ssram_pcidev) { pci_dev_put(pmcdev->ssram_pcidev); pci_disable_device(pmcdev->ssram_pcidev); } platform_set_drvdata(pdev, NULL); mutex_destroy(&pmcdev->lock); } static int pmc_core_probe(struct platform_device *pdev) { static bool device_initialized; struct pmc_dev *pmcdev; const struct x86_cpu_id *cpu_id; int (*core_init)(struct pmc_dev *pmcdev); struct pmc *primary_pmc; int ret; if (device_initialized) return -ENODEV; pmcdev = devm_kzalloc(&pdev->dev, sizeof(*pmcdev), GFP_KERNEL); if (!pmcdev) return -ENOMEM; platform_set_drvdata(pdev, pmcdev); pmcdev->pdev = pdev; cpu_id = x86_match_cpu(intel_pmc_core_ids); if (!cpu_id) return -ENODEV; core_init = (int (*)(struct pmc_dev *))cpu_id->driver_data; /* Primary PMC */ primary_pmc = devm_kzalloc(&pdev->dev, sizeof(*primary_pmc), GFP_KERNEL); if (!primary_pmc) return -ENOMEM; pmcdev->pmcs[PMC_IDX_MAIN] = primary_pmc; /* * Coffee Lake has CPU ID of Kaby Lake and Cannon Lake PCH. So here * Sunrisepoint PCH regmap can't be used. Use Cannon Lake PCH regmap * in this case. */ if (core_init == spt_core_init && !pci_dev_present(pmc_pci_ids)) core_init = cnp_core_init; mutex_init(&pmcdev->lock); ret = core_init(pmcdev); if (ret) { pmc_core_clean_structure(pdev); return ret; } pmcdev->pmc_xram_read_bit = pmc_core_check_read_lock_bit(primary_pmc); pmc_core_get_low_power_modes(pdev); pmc_core_do_dmi_quirks(primary_pmc); pmc_core_dbgfs_register(pmcdev); pm_report_max_hw_sleep(FIELD_MAX(SLP_S0_RES_COUNTER_MASK) * pmc_core_adjust_slp_s0_step(primary_pmc, 1)); device_initialized = true; dev_info(&pdev->dev, " initialized\n"); return 0; } static void pmc_core_remove(struct platform_device *pdev) { struct pmc_dev *pmcdev = platform_get_drvdata(pdev); pmc_core_dbgfs_unregister(pmcdev); pmc_core_clean_structure(pdev); } static bool warn_on_s0ix_failures; module_param(warn_on_s0ix_failures, bool, 0644); MODULE_PARM_DESC(warn_on_s0ix_failures, "Check and warn for S0ix failures"); static __maybe_unused int pmc_core_suspend(struct device *dev) { struct pmc_dev *pmcdev = dev_get_drvdata(dev); struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; /* Check if the syspend will actually use S0ix */ if (pm_suspend_via_firmware()) return 0; /* Save PC10 residency for checking later */ if (rdmsrl_safe(MSR_PKG_C10_RESIDENCY, &pmcdev->pc10_counter)) return -EIO; /* Save S0ix residency for checking later */ if (pmc_core_dev_state_get(pmc, &pmcdev->s0ix_counter)) return -EIO; return 0; } static inline bool pmc_core_is_pc10_failed(struct pmc_dev *pmcdev) { u64 pc10_counter; if (rdmsrl_safe(MSR_PKG_C10_RESIDENCY, &pc10_counter)) return false; if (pc10_counter == pmcdev->pc10_counter) return true; return false; } static inline bool pmc_core_is_s0ix_failed(struct pmc_dev *pmcdev) { u64 s0ix_counter; if (pmc_core_dev_state_get(pmcdev->pmcs[PMC_IDX_MAIN], &s0ix_counter)) return false; pm_report_hw_sleep_time((u32)(s0ix_counter - pmcdev->s0ix_counter)); if (s0ix_counter == pmcdev->s0ix_counter) return true; return false; } int pmc_core_resume_common(struct pmc_dev *pmcdev) { struct device *dev = &pmcdev->pdev->dev; struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; const struct pmc_bit_map **maps = pmc->map->lpm_sts; int offset = pmc->map->lpm_status_offset; int i; /* Check if the syspend used S0ix */ if (pm_suspend_via_firmware()) return 0; if (!pmc_core_is_s0ix_failed(pmcdev)) return 0; if (!warn_on_s0ix_failures) return 0; if (pmc_core_is_pc10_failed(pmcdev)) { /* S0ix failed because of PC10 entry failure */ dev_info(dev, "CPU did not enter PC10!!! (PC10 cnt=0x%llx)\n", pmcdev->pc10_counter); return 0; } /* The real interesting case - S0ix failed - lets ask PMC why. */ dev_warn(dev, "CPU did not enter SLP_S0!!! (S0ix cnt=%llu)\n", pmcdev->s0ix_counter); if (pmc->map->slps0_dbg_maps) pmc_core_slps0_display(pmc, dev, NULL); for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) { struct pmc *pmc = pmcdev->pmcs[i]; if (!pmc) continue; if (pmc->map->lpm_sts) pmc_core_lpm_display(pmc, dev, NULL, offset, i, "STATUS", maps); } return 0; } static __maybe_unused int pmc_core_resume(struct device *dev) { struct pmc_dev *pmcdev = dev_get_drvdata(dev); if (pmcdev->resume) return pmcdev->resume(pmcdev); return pmc_core_resume_common(pmcdev); } static const struct dev_pm_ops pmc_core_pm_ops = { SET_LATE_SYSTEM_SLEEP_PM_OPS(pmc_core_suspend, pmc_core_resume) }; static const struct acpi_device_id pmc_core_acpi_ids[] = { {"INT33A1", 0}, /* _HID for Intel Power Engine, _CID PNP0D80*/ { } }; MODULE_DEVICE_TABLE(acpi, pmc_core_acpi_ids); static struct platform_driver pmc_core_driver = { .driver = { .name = "intel_pmc_core", .acpi_match_table = ACPI_PTR(pmc_core_acpi_ids), .pm = &pmc_core_pm_ops, .dev_groups = pmc_dev_groups, }, .probe = pmc_core_probe, .remove_new = pmc_core_remove, }; module_platform_driver(pmc_core_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Intel PMC Core Driver");
linux-master
drivers/platform/x86/intel/pmc/core.c
// SPDX-License-Identifier: GPL-2.0 /* * This file contains platform specific structure definitions * and init function used by Tiger Lake PCH. * * Copyright (c) 2022, Intel Corporation. * All Rights Reserved. * */ #include "core.h" #define ACPI_S0IX_DSM_UUID "57a6512e-3979-4e9d-9708-ff13b2508972" #define ACPI_GET_LOW_MODE_REGISTERS 1 const struct pmc_bit_map tgl_pfear_map[] = { {"PSF9", BIT(0)}, {"RES_66", BIT(1)}, {"RES_67", BIT(2)}, {"RES_68", BIT(3)}, {"RES_69", BIT(4)}, {"RES_70", BIT(5)}, {"TBTLSX", BIT(6)}, {} }; const struct pmc_bit_map *ext_tgl_pfear_map[] = { /* * Check intel_pmc_core_ids[] users of tgl_reg_map for * a list of core SoCs using this. */ cnp_pfear_map, tgl_pfear_map, NULL }; const struct pmc_bit_map tgl_clocksource_status_map[] = { {"USB2PLL_OFF_STS", BIT(18)}, {"PCIe/USB3.1_Gen2PLL_OFF_STS", BIT(19)}, {"PCIe_Gen3PLL_OFF_STS", BIT(20)}, {"OPIOPLL_OFF_STS", BIT(21)}, {"OCPLL_OFF_STS", BIT(22)}, {"MainPLL_OFF_STS", BIT(23)}, {"MIPIPLL_OFF_STS", BIT(24)}, {"Fast_XTAL_Osc_OFF_STS", BIT(25)}, {"AC_Ring_Osc_OFF_STS", BIT(26)}, {"MC_Ring_Osc_OFF_STS", BIT(27)}, {"SATAPLL_OFF_STS", BIT(29)}, {"XTAL_USB2PLL_OFF_STS", BIT(31)}, {} }; const struct pmc_bit_map tgl_power_gating_status_map[] = { {"CSME_PG_STS", BIT(0)}, {"SATA_PG_STS", BIT(1)}, {"xHCI_PG_STS", BIT(2)}, {"UFSX2_PG_STS", BIT(3)}, {"OTG_PG_STS", BIT(5)}, {"SPA_PG_STS", BIT(6)}, {"SPB_PG_STS", BIT(7)}, {"SPC_PG_STS", BIT(8)}, {"SPD_PG_STS", BIT(9)}, {"SPE_PG_STS", BIT(10)}, {"SPF_PG_STS", BIT(11)}, {"LSX_PG_STS", BIT(13)}, {"P2SB_PG_STS", BIT(14)}, {"PSF_PG_STS", BIT(15)}, {"SBR_PG_STS", BIT(16)}, {"OPIDMI_PG_STS", BIT(17)}, {"THC0_PG_STS", BIT(18)}, {"THC1_PG_STS", BIT(19)}, {"GBETSN_PG_STS", BIT(20)}, {"GBE_PG_STS", BIT(21)}, {"LPSS_PG_STS", BIT(22)}, {"MMP_UFSX2_PG_STS", BIT(23)}, {"MMP_UFSX2B_PG_STS", BIT(24)}, {"FIA_PG_STS", BIT(25)}, {} }; const struct pmc_bit_map tgl_d3_status_map[] = { {"ADSP_D3_STS", BIT(0)}, {"SATA_D3_STS", BIT(1)}, {"xHCI0_D3_STS", BIT(2)}, {"xDCI1_D3_STS", BIT(5)}, {"SDX_D3_STS", BIT(6)}, {"EMMC_D3_STS", BIT(7)}, {"IS_D3_STS", BIT(8)}, {"THC0_D3_STS", BIT(9)}, {"THC1_D3_STS", BIT(10)}, {"GBE_D3_STS", BIT(11)}, {"GBE_TSN_D3_STS", BIT(12)}, {} }; const struct pmc_bit_map tgl_vnn_req_status_map[] = { {"GPIO_COM0_VNN_REQ_STS", BIT(1)}, {"GPIO_COM1_VNN_REQ_STS", BIT(2)}, {"GPIO_COM2_VNN_REQ_STS", BIT(3)}, {"GPIO_COM3_VNN_REQ_STS", BIT(4)}, {"GPIO_COM4_VNN_REQ_STS", BIT(5)}, {"GPIO_COM5_VNN_REQ_STS", BIT(6)}, {"Audio_VNN_REQ_STS", BIT(7)}, {"ISH_VNN_REQ_STS", BIT(8)}, {"CNVI_VNN_REQ_STS", BIT(9)}, {"eSPI_VNN_REQ_STS", BIT(10)}, {"Display_VNN_REQ_STS", BIT(11)}, {"DTS_VNN_REQ_STS", BIT(12)}, {"SMBUS_VNN_REQ_STS", BIT(14)}, {"CSME_VNN_REQ_STS", BIT(15)}, {"SMLINK0_VNN_REQ_STS", BIT(16)}, {"SMLINK1_VNN_REQ_STS", BIT(17)}, {"CLINK_VNN_REQ_STS", BIT(20)}, {"DCI_VNN_REQ_STS", BIT(21)}, {"ITH_VNN_REQ_STS", BIT(22)}, {"CSME_VNN_REQ_STS", BIT(24)}, {"GBE_VNN_REQ_STS", BIT(25)}, {} }; const struct pmc_bit_map tgl_vnn_misc_status_map[] = { {"CPU_C10_REQ_STS_0", BIT(0)}, {"PCIe_LPM_En_REQ_STS_3", BIT(3)}, {"ITH_REQ_STS_5", BIT(5)}, {"CNVI_REQ_STS_6", BIT(6)}, {"ISH_REQ_STS_7", BIT(7)}, {"USB2_SUS_PG_Sys_REQ_STS_10", BIT(10)}, {"PCIe_Clk_REQ_STS_12", BIT(12)}, {"MPHY_Core_DL_REQ_STS_16", BIT(16)}, {"Break-even_En_REQ_STS_17", BIT(17)}, {"Auto-demo_En_REQ_STS_18", BIT(18)}, {"MPHY_SUS_REQ_STS_22", BIT(22)}, {"xDCI_attached_REQ_STS_24", BIT(24)}, {} }; const struct pmc_bit_map tgl_signal_status_map[] = { {"LSX_Wake0_En_STS", BIT(0)}, {"LSX_Wake0_Pol_STS", BIT(1)}, {"LSX_Wake1_En_STS", BIT(2)}, {"LSX_Wake1_Pol_STS", BIT(3)}, {"LSX_Wake2_En_STS", BIT(4)}, {"LSX_Wake2_Pol_STS", BIT(5)}, {"LSX_Wake3_En_STS", BIT(6)}, {"LSX_Wake3_Pol_STS", BIT(7)}, {"LSX_Wake4_En_STS", BIT(8)}, {"LSX_Wake4_Pol_STS", BIT(9)}, {"LSX_Wake5_En_STS", BIT(10)}, {"LSX_Wake5_Pol_STS", BIT(11)}, {"LSX_Wake6_En_STS", BIT(12)}, {"LSX_Wake6_Pol_STS", BIT(13)}, {"LSX_Wake7_En_STS", BIT(14)}, {"LSX_Wake7_Pol_STS", BIT(15)}, {"Intel_Se_IO_Wake0_En_STS", BIT(16)}, {"Intel_Se_IO_Wake0_Pol_STS", BIT(17)}, {"Intel_Se_IO_Wake1_En_STS", BIT(18)}, {"Intel_Se_IO_Wake1_Pol_STS", BIT(19)}, {"Int_Timer_SS_Wake0_En_STS", BIT(20)}, {"Int_Timer_SS_Wake0_Pol_STS", BIT(21)}, {"Int_Timer_SS_Wake1_En_STS", BIT(22)}, {"Int_Timer_SS_Wake1_Pol_STS", BIT(23)}, {"Int_Timer_SS_Wake2_En_STS", BIT(24)}, {"Int_Timer_SS_Wake2_Pol_STS", BIT(25)}, {"Int_Timer_SS_Wake3_En_STS", BIT(26)}, {"Int_Timer_SS_Wake3_Pol_STS", BIT(27)}, {"Int_Timer_SS_Wake4_En_STS", BIT(28)}, {"Int_Timer_SS_Wake4_Pol_STS", BIT(29)}, {"Int_Timer_SS_Wake5_En_STS", BIT(30)}, {"Int_Timer_SS_Wake5_Pol_STS", BIT(31)}, {} }; const struct pmc_bit_map *tgl_lpm_maps[] = { tgl_clocksource_status_map, tgl_power_gating_status_map, tgl_d3_status_map, tgl_vnn_req_status_map, tgl_vnn_misc_status_map, tgl_signal_status_map, NULL }; const struct pmc_reg_map tgl_reg_map = { .pfear_sts = ext_tgl_pfear_map, .slp_s0_offset = CNP_PMC_SLP_S0_RES_COUNTER_OFFSET, .slp_s0_res_counter_step = TGL_PMC_SLP_S0_RES_COUNTER_STEP, .ltr_show_sts = cnp_ltr_show_map, .msr_sts = msr_map, .ltr_ignore_offset = CNP_PMC_LTR_IGNORE_OFFSET, .regmap_length = CNP_PMC_MMIO_REG_LEN, .ppfear0_offset = CNP_PMC_HOST_PPFEAR0A, .ppfear_buckets = ICL_PPFEAR_NUM_ENTRIES, .pm_cfg_offset = CNP_PMC_PM_CFG_OFFSET, .pm_read_disable_bit = CNP_PMC_READ_DISABLE_BIT, .ltr_ignore_max = TGL_NUM_IP_IGN_ALLOWED, .lpm_num_maps = TGL_LPM_NUM_MAPS, .lpm_res_counter_step_x2 = TGL_PMC_LPM_RES_COUNTER_STEP_X2, .lpm_sts_latch_en_offset = TGL_LPM_STS_LATCH_EN_OFFSET, .lpm_en_offset = TGL_LPM_EN_OFFSET, .lpm_priority_offset = TGL_LPM_PRI_OFFSET, .lpm_residency_offset = TGL_LPM_RESIDENCY_OFFSET, .lpm_sts = tgl_lpm_maps, .lpm_status_offset = TGL_LPM_STATUS_OFFSET, .lpm_live_status_offset = TGL_LPM_LIVE_STATUS_OFFSET, .etr3_offset = ETR3_OFFSET, }; void pmc_core_get_tgl_lpm_reqs(struct platform_device *pdev) { struct pmc_dev *pmcdev = platform_get_drvdata(pdev); struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; const int num_maps = pmc->map->lpm_num_maps; u32 lpm_size = LPM_MAX_NUM_MODES * num_maps * 4; union acpi_object *out_obj; struct acpi_device *adev; guid_t s0ix_dsm_guid; u32 *lpm_req_regs, *addr; adev = ACPI_COMPANION(&pdev->dev); if (!adev) return; guid_parse(ACPI_S0IX_DSM_UUID, &s0ix_dsm_guid); out_obj = acpi_evaluate_dsm_typed(adev->handle, &s0ix_dsm_guid, 0, ACPI_GET_LOW_MODE_REGISTERS, NULL, ACPI_TYPE_BUFFER); if (out_obj) { u32 size = out_obj->buffer.length; if (size != lpm_size) { acpi_handle_debug(adev->handle, "_DSM returned unexpected buffer size, have %u, expect %u\n", size, lpm_size); goto free_acpi_obj; } } else { acpi_handle_debug(adev->handle, "_DSM function 0 evaluation failed\n"); goto free_acpi_obj; } addr = (u32 *)out_obj->buffer.pointer; lpm_req_regs = devm_kzalloc(&pdev->dev, lpm_size * sizeof(u32), GFP_KERNEL); if (!lpm_req_regs) goto free_acpi_obj; memcpy(lpm_req_regs, addr, lpm_size); pmc->lpm_req_regs = lpm_req_regs; free_acpi_obj: ACPI_FREE(out_obj); } int tgl_core_init(struct pmc_dev *pmcdev) { struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; int ret; pmc->map = &tgl_reg_map; ret = get_primary_reg_base(pmc); if (ret) return ret; pmc_core_get_tgl_lpm_reqs(pmcdev->pdev); /* Due to a hardware limitation, the GBE LTR blocks PC10 * when a cable is attached. Tell the PMC to ignore it. */ dev_dbg(&pmcdev->pdev->dev, "ignoring GBE LTR\n"); pmc_core_send_ltr_ignore(pmcdev, 3); return 0; }
linux-master
drivers/platform/x86/intel/pmc/tgl.c
// SPDX-License-Identifier: GPL-2.0 /* * This file contains platform specific structure definitions * and init function used by Sunrise Point PCH. * * Copyright (c) 2022, Intel Corporation. * All Rights Reserved. * */ #include "core.h" const struct pmc_bit_map spt_pll_map[] = { {"MIPI PLL", SPT_PMC_BIT_MPHY_CMN_LANE0}, {"GEN2 USB2PCIE2 PLL", SPT_PMC_BIT_MPHY_CMN_LANE1}, {"DMIPCIE3 PLL", SPT_PMC_BIT_MPHY_CMN_LANE2}, {"SATA PLL", SPT_PMC_BIT_MPHY_CMN_LANE3}, {} }; const struct pmc_bit_map spt_mphy_map[] = { {"MPHY CORE LANE 0", SPT_PMC_BIT_MPHY_LANE0}, {"MPHY CORE LANE 1", SPT_PMC_BIT_MPHY_LANE1}, {"MPHY CORE LANE 2", SPT_PMC_BIT_MPHY_LANE2}, {"MPHY CORE LANE 3", SPT_PMC_BIT_MPHY_LANE3}, {"MPHY CORE LANE 4", SPT_PMC_BIT_MPHY_LANE4}, {"MPHY CORE LANE 5", SPT_PMC_BIT_MPHY_LANE5}, {"MPHY CORE LANE 6", SPT_PMC_BIT_MPHY_LANE6}, {"MPHY CORE LANE 7", SPT_PMC_BIT_MPHY_LANE7}, {"MPHY CORE LANE 8", SPT_PMC_BIT_MPHY_LANE8}, {"MPHY CORE LANE 9", SPT_PMC_BIT_MPHY_LANE9}, {"MPHY CORE LANE 10", SPT_PMC_BIT_MPHY_LANE10}, {"MPHY CORE LANE 11", SPT_PMC_BIT_MPHY_LANE11}, {"MPHY CORE LANE 12", SPT_PMC_BIT_MPHY_LANE12}, {"MPHY CORE LANE 13", SPT_PMC_BIT_MPHY_LANE13}, {"MPHY CORE LANE 14", SPT_PMC_BIT_MPHY_LANE14}, {"MPHY CORE LANE 15", SPT_PMC_BIT_MPHY_LANE15}, {} }; const struct pmc_bit_map spt_pfear_map[] = { {"PMC", SPT_PMC_BIT_PMC}, {"OPI-DMI", SPT_PMC_BIT_OPI}, {"SPI / eSPI", SPT_PMC_BIT_SPI}, {"XHCI", SPT_PMC_BIT_XHCI}, {"SPA", SPT_PMC_BIT_SPA}, {"SPB", SPT_PMC_BIT_SPB}, {"SPC", SPT_PMC_BIT_SPC}, {"GBE", SPT_PMC_BIT_GBE}, {"SATA", SPT_PMC_BIT_SATA}, {"HDA-PGD0", SPT_PMC_BIT_HDA_PGD0}, {"HDA-PGD1", SPT_PMC_BIT_HDA_PGD1}, {"HDA-PGD2", SPT_PMC_BIT_HDA_PGD2}, {"HDA-PGD3", SPT_PMC_BIT_HDA_PGD3}, {"RSVD", SPT_PMC_BIT_RSVD_0B}, {"LPSS", SPT_PMC_BIT_LPSS}, {"LPC", SPT_PMC_BIT_LPC}, {"SMB", SPT_PMC_BIT_SMB}, {"ISH", SPT_PMC_BIT_ISH}, {"P2SB", SPT_PMC_BIT_P2SB}, {"DFX", SPT_PMC_BIT_DFX}, {"SCC", SPT_PMC_BIT_SCC}, {"RSVD", SPT_PMC_BIT_RSVD_0C}, {"FUSE", SPT_PMC_BIT_FUSE}, {"CAMERA", SPT_PMC_BIT_CAMREA}, {"RSVD", SPT_PMC_BIT_RSVD_0D}, {"USB3-OTG", SPT_PMC_BIT_USB3_OTG}, {"EXI", SPT_PMC_BIT_EXI}, {"CSE", SPT_PMC_BIT_CSE}, {"CSME_KVM", SPT_PMC_BIT_CSME_KVM}, {"CSME_PMT", SPT_PMC_BIT_CSME_PMT}, {"CSME_CLINK", SPT_PMC_BIT_CSME_CLINK}, {"CSME_PTIO", SPT_PMC_BIT_CSME_PTIO}, {"CSME_USBR", SPT_PMC_BIT_CSME_USBR}, {"CSME_SUSRAM", SPT_PMC_BIT_CSME_SUSRAM}, {"CSME_SMT", SPT_PMC_BIT_CSME_SMT}, {"RSVD", SPT_PMC_BIT_RSVD_1A}, {"CSME_SMS2", SPT_PMC_BIT_CSME_SMS2}, {"CSME_SMS1", SPT_PMC_BIT_CSME_SMS1}, {"CSME_RTC", SPT_PMC_BIT_CSME_RTC}, {"CSME_PSF", SPT_PMC_BIT_CSME_PSF}, {} }; const struct pmc_bit_map *ext_spt_pfear_map[] = { /* * Check intel_pmc_core_ids[] users of spt_reg_map for * a list of core SoCs using this. */ spt_pfear_map, NULL }; const struct pmc_bit_map spt_ltr_show_map[] = { {"SOUTHPORT_A", SPT_PMC_LTR_SPA}, {"SOUTHPORT_B", SPT_PMC_LTR_SPB}, {"SATA", SPT_PMC_LTR_SATA}, {"GIGABIT_ETHERNET", SPT_PMC_LTR_GBE}, {"XHCI", SPT_PMC_LTR_XHCI}, {"Reserved", SPT_PMC_LTR_RESERVED}, {"ME", SPT_PMC_LTR_ME}, /* EVA is Enterprise Value Add, doesn't really exist on PCH */ {"EVA", SPT_PMC_LTR_EVA}, {"SOUTHPORT_C", SPT_PMC_LTR_SPC}, {"HD_AUDIO", SPT_PMC_LTR_AZ}, {"LPSS", SPT_PMC_LTR_LPSS}, {"SOUTHPORT_D", SPT_PMC_LTR_SPD}, {"SOUTHPORT_E", SPT_PMC_LTR_SPE}, {"CAMERA", SPT_PMC_LTR_CAM}, {"ESPI", SPT_PMC_LTR_ESPI}, {"SCC", SPT_PMC_LTR_SCC}, {"ISH", SPT_PMC_LTR_ISH}, /* Below two cannot be used for LTR_IGNORE */ {"CURRENT_PLATFORM", SPT_PMC_LTR_CUR_PLT}, {"AGGREGATED_SYSTEM", SPT_PMC_LTR_CUR_ASLT}, {} }; const struct pmc_reg_map spt_reg_map = { .pfear_sts = ext_spt_pfear_map, .mphy_sts = spt_mphy_map, .pll_sts = spt_pll_map, .ltr_show_sts = spt_ltr_show_map, .msr_sts = msr_map, .slp_s0_offset = SPT_PMC_SLP_S0_RES_COUNTER_OFFSET, .slp_s0_res_counter_step = SPT_PMC_SLP_S0_RES_COUNTER_STEP, .ltr_ignore_offset = SPT_PMC_LTR_IGNORE_OFFSET, .regmap_length = SPT_PMC_MMIO_REG_LEN, .ppfear0_offset = SPT_PMC_XRAM_PPFEAR0A, .ppfear_buckets = SPT_PPFEAR_NUM_ENTRIES, .pm_cfg_offset = SPT_PMC_PM_CFG_OFFSET, .pm_read_disable_bit = SPT_PMC_READ_DISABLE_BIT, .ltr_ignore_max = SPT_NUM_IP_IGN_ALLOWED, .pm_vric1_offset = SPT_PMC_VRIC1_OFFSET, }; int spt_core_init(struct pmc_dev *pmcdev) { struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; pmc->map = &spt_reg_map; return get_primary_reg_base(pmc); }
linux-master
drivers/platform/x86/intel/pmc/spt.c
// SPDX-License-Identifier: GPL-2.0 /* * Intel Speed Select Interface: Mbox via MSR Interface * Copyright (c) 2019, Intel Corporation. * All rights reserved. * * Author: Srinivas Pandruvada <[email protected]> */ #include <linux/module.h> #include <linux/cpuhotplug.h> #include <linux/pci.h> #include <linux/sched/signal.h> #include <linux/slab.h> #include <linux/suspend.h> #include <linux/topology.h> #include <linux/uaccess.h> #include <uapi/linux/isst_if.h> #include <asm/cpu_device_id.h> #include <asm/intel-family.h> #include "isst_if_common.h" #define MSR_OS_MAILBOX_INTERFACE 0xB0 #define MSR_OS_MAILBOX_DATA 0xB1 #define MSR_OS_MAILBOX_BUSY_BIT 31 /* * Based on experiments count is never more than 1, as the MSR overhead * is enough to finish the command. So here this is the worst case number. */ #define OS_MAILBOX_RETRY_COUNT 3 static int isst_if_send_mbox_cmd(u8 command, u8 sub_command, u32 parameter, u32 command_data, u32 *response_data) { u32 retries; u64 data; int ret; /* Poll for rb bit == 0 */ retries = OS_MAILBOX_RETRY_COUNT; do { rdmsrl(MSR_OS_MAILBOX_INTERFACE, data); if (data & BIT_ULL(MSR_OS_MAILBOX_BUSY_BIT)) { ret = -EBUSY; continue; } ret = 0; break; } while (--retries); if (ret) return ret; /* Write DATA register */ wrmsrl(MSR_OS_MAILBOX_DATA, command_data); /* Write command register */ data = BIT_ULL(MSR_OS_MAILBOX_BUSY_BIT) | (parameter & GENMASK_ULL(13, 0)) << 16 | (sub_command << 8) | command; wrmsrl(MSR_OS_MAILBOX_INTERFACE, data); /* Poll for rb bit == 0 */ retries = OS_MAILBOX_RETRY_COUNT; do { rdmsrl(MSR_OS_MAILBOX_INTERFACE, data); if (data & BIT_ULL(MSR_OS_MAILBOX_BUSY_BIT)) { ret = -EBUSY; continue; } if (data & 0xff) return -ENXIO; if (response_data) { rdmsrl(MSR_OS_MAILBOX_DATA, data); *response_data = data; } ret = 0; break; } while (--retries); return ret; } struct msrl_action { int err; struct isst_if_mbox_cmd *mbox_cmd; }; /* revisit, smp_call_function_single should be enough for atomic mailbox! */ static void msrl_update_func(void *info) { struct msrl_action *act = info; act->err = isst_if_send_mbox_cmd(act->mbox_cmd->command, act->mbox_cmd->sub_command, act->mbox_cmd->parameter, act->mbox_cmd->req_data, &act->mbox_cmd->resp_data); } static long isst_if_mbox_proc_cmd(u8 *cmd_ptr, int *write_only, int resume) { struct msrl_action action; int ret; action.mbox_cmd = (struct isst_if_mbox_cmd *)cmd_ptr; if (isst_if_mbox_cmd_invalid(action.mbox_cmd)) return -EINVAL; if (isst_if_mbox_cmd_set_req(action.mbox_cmd) && !capable(CAP_SYS_ADMIN)) return -EPERM; /* * To complete mailbox command, we need to access two MSRs. * So we don't want race to complete a mailbox transcation. * Here smp_call ensures that msrl_update_func() has no race * and also with wait flag, wait for completion. * smp_call_function_single is using get_cpu() and put_cpu(). */ ret = smp_call_function_single(action.mbox_cmd->logical_cpu, msrl_update_func, &action, 1); if (ret) return ret; if (!action.err && !resume && isst_if_mbox_cmd_set_req(action.mbox_cmd)) action.err = isst_store_cmd(action.mbox_cmd->command, action.mbox_cmd->sub_command, action.mbox_cmd->logical_cpu, 1, action.mbox_cmd->parameter, action.mbox_cmd->req_data); *write_only = 0; return action.err; } static int isst_pm_notify(struct notifier_block *nb, unsigned long mode, void *_unused) { switch (mode) { case PM_POST_HIBERNATION: case PM_POST_RESTORE: case PM_POST_SUSPEND: isst_resume_common(); break; default: break; } return 0; } static struct notifier_block isst_pm_nb = { .notifier_call = isst_pm_notify, }; static const struct x86_cpu_id isst_if_cpu_ids[] = { X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, NULL), {} }; MODULE_DEVICE_TABLE(x86cpu, isst_if_cpu_ids); static int __init isst_if_mbox_init(void) { struct isst_if_cmd_cb cb; const struct x86_cpu_id *id; u64 data; int ret; id = x86_match_cpu(isst_if_cpu_ids); if (!id) return -ENODEV; /* Check presence of mailbox MSRs */ ret = rdmsrl_safe(MSR_OS_MAILBOX_INTERFACE, &data); if (ret) return ret; ret = rdmsrl_safe(MSR_OS_MAILBOX_DATA, &data); if (ret) return ret; memset(&cb, 0, sizeof(cb)); cb.cmd_size = sizeof(struct isst_if_mbox_cmd); cb.offset = offsetof(struct isst_if_mbox_cmds, mbox_cmd); cb.cmd_callback = isst_if_mbox_proc_cmd; cb.owner = THIS_MODULE; ret = isst_if_cdev_register(ISST_IF_DEV_MBOX, &cb); if (ret) return ret; ret = register_pm_notifier(&isst_pm_nb); if (ret) isst_if_cdev_unregister(ISST_IF_DEV_MBOX); return ret; } module_init(isst_if_mbox_init) static void __exit isst_if_mbox_exit(void) { unregister_pm_notifier(&isst_pm_nb); isst_if_cdev_unregister(ISST_IF_DEV_MBOX); } module_exit(isst_if_mbox_exit) MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Intel speed select interface mailbox driver");
linux-master
drivers/platform/x86/intel/speed_select_if/isst_if_mbox_msr.c
// SPDX-License-Identifier: GPL-2.0 /* * Intel Speed Select Interface: Common functions * Copyright (c) 2019, Intel Corporation. * All rights reserved. * * Author: Srinivas Pandruvada <[email protected]> */ #include <linux/cpufeature.h> #include <linux/cpuhotplug.h> #include <linux/fs.h> #include <linux/hashtable.h> #include <linux/miscdevice.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/sched/signal.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <uapi/linux/isst_if.h> #include <asm/cpu_device_id.h> #include <asm/intel-family.h> #include "isst_if_common.h" #define MSR_THREAD_ID_INFO 0x53 #define MSR_PM_LOGICAL_ID 0x54 #define MSR_CPU_BUS_NUMBER 0x128 static struct isst_if_cmd_cb punit_callbacks[ISST_IF_DEV_MAX]; static int punit_msr_white_list[] = { MSR_TURBO_RATIO_LIMIT, MSR_CONFIG_TDP_CONTROL, MSR_TURBO_RATIO_LIMIT1, MSR_TURBO_RATIO_LIMIT2, MSR_PM_LOGICAL_ID, }; struct isst_valid_cmd_ranges { u16 cmd; u16 sub_cmd_beg; u16 sub_cmd_end; }; struct isst_cmd_set_req_type { u16 cmd; u16 sub_cmd; u16 param; }; static const struct isst_valid_cmd_ranges isst_valid_cmds[] = { {0xD0, 0x00, 0x03}, {0x7F, 0x00, 0x0C}, {0x7F, 0x10, 0x12}, {0x7F, 0x20, 0x23}, {0x94, 0x03, 0x03}, {0x95, 0x03, 0x03}, }; static const struct isst_cmd_set_req_type isst_cmd_set_reqs[] = { {0xD0, 0x00, 0x08}, {0xD0, 0x01, 0x08}, {0xD0, 0x02, 0x08}, {0xD0, 0x03, 0x08}, {0x7F, 0x02, 0x00}, {0x7F, 0x08, 0x00}, {0x95, 0x03, 0x03}, }; struct isst_cmd { struct hlist_node hnode; u64 data; u32 cmd; int cpu; int mbox_cmd_type; u32 param; }; static bool isst_hpm_support; static DECLARE_HASHTABLE(isst_hash, 8); static DEFINE_MUTEX(isst_hash_lock); static int isst_store_new_cmd(int cmd, u32 cpu, int mbox_cmd_type, u32 param, u32 data) { struct isst_cmd *sst_cmd; sst_cmd = kmalloc(sizeof(*sst_cmd), GFP_KERNEL); if (!sst_cmd) return -ENOMEM; sst_cmd->cpu = cpu; sst_cmd->cmd = cmd; sst_cmd->mbox_cmd_type = mbox_cmd_type; sst_cmd->param = param; sst_cmd->data = data; hash_add(isst_hash, &sst_cmd->hnode, sst_cmd->cmd); return 0; } static void isst_delete_hash(void) { struct isst_cmd *sst_cmd; struct hlist_node *tmp; int i; hash_for_each_safe(isst_hash, i, tmp, sst_cmd, hnode) { hash_del(&sst_cmd->hnode); kfree(sst_cmd); } } /** * isst_store_cmd() - Store command to a hash table * @cmd: Mailbox command. * @sub_cmd: Mailbox sub-command or MSR id. * @cpu: Target CPU for the command * @mbox_cmd_type: Mailbox or MSR command. * @param: Mailbox parameter. * @data: Mailbox request data or MSR data. * * Stores the command to a hash table if there is no such command already * stored. If already stored update the latest parameter and data for the * command. * * Return: Return result of store to hash table, 0 for success, others for * failure. */ int isst_store_cmd(int cmd, int sub_cmd, u32 cpu, int mbox_cmd_type, u32 param, u64 data) { struct isst_cmd *sst_cmd; int full_cmd, ret; full_cmd = (cmd & GENMASK_ULL(15, 0)) << 16; full_cmd |= (sub_cmd & GENMASK_ULL(15, 0)); mutex_lock(&isst_hash_lock); hash_for_each_possible(isst_hash, sst_cmd, hnode, full_cmd) { if (sst_cmd->cmd == full_cmd && sst_cmd->cpu == cpu && sst_cmd->mbox_cmd_type == mbox_cmd_type) { sst_cmd->param = param; sst_cmd->data = data; mutex_unlock(&isst_hash_lock); return 0; } } ret = isst_store_new_cmd(full_cmd, cpu, mbox_cmd_type, param, data); mutex_unlock(&isst_hash_lock); return ret; } EXPORT_SYMBOL_GPL(isst_store_cmd); static void isst_mbox_resume_command(struct isst_if_cmd_cb *cb, struct isst_cmd *sst_cmd) { struct isst_if_mbox_cmd mbox_cmd; int wr_only; mbox_cmd.command = (sst_cmd->cmd & GENMASK_ULL(31, 16)) >> 16; mbox_cmd.sub_command = sst_cmd->cmd & GENMASK_ULL(15, 0); mbox_cmd.parameter = sst_cmd->param; mbox_cmd.req_data = sst_cmd->data; mbox_cmd.logical_cpu = sst_cmd->cpu; (cb->cmd_callback)((u8 *)&mbox_cmd, &wr_only, 1); } /** * isst_resume_common() - Process Resume request * * On resume replay all mailbox commands and MSRs. * * Return: None. */ void isst_resume_common(void) { struct isst_cmd *sst_cmd; int i; hash_for_each(isst_hash, i, sst_cmd, hnode) { struct isst_if_cmd_cb *cb; if (sst_cmd->mbox_cmd_type) { cb = &punit_callbacks[ISST_IF_DEV_MBOX]; if (cb->registered) isst_mbox_resume_command(cb, sst_cmd); } else { wrmsrl_safe_on_cpu(sst_cmd->cpu, sst_cmd->cmd, sst_cmd->data); } } } EXPORT_SYMBOL_GPL(isst_resume_common); static void isst_restore_msr_local(int cpu) { struct isst_cmd *sst_cmd; int i; mutex_lock(&isst_hash_lock); for (i = 0; i < ARRAY_SIZE(punit_msr_white_list); ++i) { if (!punit_msr_white_list[i]) break; hash_for_each_possible(isst_hash, sst_cmd, hnode, punit_msr_white_list[i]) { if (!sst_cmd->mbox_cmd_type && sst_cmd->cpu == cpu) wrmsrl_safe(sst_cmd->cmd, sst_cmd->data); } } mutex_unlock(&isst_hash_lock); } /** * isst_if_mbox_cmd_invalid() - Check invalid mailbox commands * @cmd: Pointer to the command structure to verify. * * Invalid command to PUNIT to may result in instability of the platform. * This function has a whitelist of commands, which are allowed. * * Return: Return true if the command is invalid, else false. */ bool isst_if_mbox_cmd_invalid(struct isst_if_mbox_cmd *cmd) { int i; if (cmd->logical_cpu >= nr_cpu_ids) return true; for (i = 0; i < ARRAY_SIZE(isst_valid_cmds); ++i) { if (cmd->command == isst_valid_cmds[i].cmd && (cmd->sub_command >= isst_valid_cmds[i].sub_cmd_beg && cmd->sub_command <= isst_valid_cmds[i].sub_cmd_end)) { return false; } } return true; } EXPORT_SYMBOL_GPL(isst_if_mbox_cmd_invalid); /** * isst_if_mbox_cmd_set_req() - Check mailbox command is a set request * @cmd: Pointer to the command structure to verify. * * Check if the given mail box level is set request and not a get request. * * Return: Return true if the command is set_req, else false. */ bool isst_if_mbox_cmd_set_req(struct isst_if_mbox_cmd *cmd) { int i; for (i = 0; i < ARRAY_SIZE(isst_cmd_set_reqs); ++i) { if (cmd->command == isst_cmd_set_reqs[i].cmd && cmd->sub_command == isst_cmd_set_reqs[i].sub_cmd && cmd->parameter == isst_cmd_set_reqs[i].param) { return true; } } return false; } EXPORT_SYMBOL_GPL(isst_if_mbox_cmd_set_req); static int isst_if_api_version; static int isst_if_get_platform_info(void __user *argp) { struct isst_if_platform_info info; info.api_version = isst_if_api_version; info.driver_version = ISST_IF_DRIVER_VERSION; info.max_cmds_per_ioctl = ISST_IF_CMD_LIMIT; info.mbox_supported = punit_callbacks[ISST_IF_DEV_MBOX].registered; info.mmio_supported = punit_callbacks[ISST_IF_DEV_MMIO].registered; if (copy_to_user(argp, &info, sizeof(info))) return -EFAULT; return 0; } #define ISST_MAX_BUS_NUMBER 2 struct isst_if_cpu_info { /* For BUS 0 and BUS 1 only, which we need for PUNIT interface */ int bus_info[ISST_MAX_BUS_NUMBER]; struct pci_dev *pci_dev[ISST_MAX_BUS_NUMBER]; int punit_cpu_id; int numa_node; }; struct isst_if_pkg_info { struct pci_dev *pci_dev[ISST_MAX_BUS_NUMBER]; }; static struct isst_if_cpu_info *isst_cpu_info; static struct isst_if_pkg_info *isst_pkg_info; static struct pci_dev *_isst_if_get_pci_dev(int cpu, int bus_no, int dev, int fn) { struct pci_dev *matched_pci_dev = NULL; struct pci_dev *pci_dev = NULL; struct pci_dev *_pci_dev = NULL; int no_matches = 0, pkg_id; int bus_number; if (bus_no < 0 || bus_no >= ISST_MAX_BUS_NUMBER || cpu < 0 || cpu >= nr_cpu_ids || cpu >= num_possible_cpus()) return NULL; pkg_id = topology_physical_package_id(cpu); bus_number = isst_cpu_info[cpu].bus_info[bus_no]; if (bus_number < 0) return NULL; for_each_pci_dev(_pci_dev) { int node; if (_pci_dev->bus->number != bus_number || _pci_dev->devfn != PCI_DEVFN(dev, fn)) continue; ++no_matches; if (!matched_pci_dev) matched_pci_dev = _pci_dev; node = dev_to_node(&_pci_dev->dev); if (node == NUMA_NO_NODE) { pr_info_once("Fail to get numa node for CPU:%d bus:%d dev:%d fn:%d\n", cpu, bus_no, dev, fn); continue; } if (node == isst_cpu_info[cpu].numa_node) { isst_pkg_info[pkg_id].pci_dev[bus_no] = _pci_dev; pci_dev = _pci_dev; break; } } /* * If there is no numa matched pci_dev, then there can be following cases: * 1. CONFIG_NUMA is not defined: In this case if there is only single device * match, then we don't need numa information. Simply return last match. * Othewise return NULL. * 2. NUMA information is not exposed via _SEG method. In this case it is similar * to case 1. * 3. Numa information doesn't match with CPU numa node and more than one match * return NULL. */ if (!pci_dev && no_matches == 1) pci_dev = matched_pci_dev; /* Return pci_dev pointer for any matched CPU in the package */ if (!pci_dev) pci_dev = isst_pkg_info[pkg_id].pci_dev[bus_no]; return pci_dev; } /** * isst_if_get_pci_dev() - Get the PCI device instance for a CPU * @cpu: Logical CPU number. * @bus_no: The bus number assigned by the hardware. * @dev: The device number assigned by the hardware. * @fn: The function number assigned by the hardware. * * Using cached bus information, find out the PCI device for a bus number, * device and function. * * Return: Return pci_dev pointer or NULL. */ struct pci_dev *isst_if_get_pci_dev(int cpu, int bus_no, int dev, int fn) { struct pci_dev *pci_dev; if (bus_no < 0 || bus_no >= ISST_MAX_BUS_NUMBER || cpu < 0 || cpu >= nr_cpu_ids || cpu >= num_possible_cpus()) return NULL; pci_dev = isst_cpu_info[cpu].pci_dev[bus_no]; if (pci_dev && pci_dev->devfn == PCI_DEVFN(dev, fn)) return pci_dev; return _isst_if_get_pci_dev(cpu, bus_no, dev, fn); } EXPORT_SYMBOL_GPL(isst_if_get_pci_dev); static int isst_if_cpu_online(unsigned int cpu) { u64 data; int ret; isst_cpu_info[cpu].numa_node = cpu_to_node(cpu); ret = rdmsrl_safe(MSR_CPU_BUS_NUMBER, &data); if (ret) { /* This is not a fatal error on MSR mailbox only I/F */ isst_cpu_info[cpu].bus_info[0] = -1; isst_cpu_info[cpu].bus_info[1] = -1; } else { isst_cpu_info[cpu].bus_info[0] = data & 0xff; isst_cpu_info[cpu].bus_info[1] = (data >> 8) & 0xff; isst_cpu_info[cpu].pci_dev[0] = _isst_if_get_pci_dev(cpu, 0, 0, 1); isst_cpu_info[cpu].pci_dev[1] = _isst_if_get_pci_dev(cpu, 1, 30, 1); } if (isst_hpm_support) { ret = rdmsrl_safe(MSR_PM_LOGICAL_ID, &data); if (!ret) goto set_punit_id; } ret = rdmsrl_safe(MSR_THREAD_ID_INFO, &data); if (ret) { isst_cpu_info[cpu].punit_cpu_id = -1; return ret; } set_punit_id: isst_cpu_info[cpu].punit_cpu_id = data; isst_restore_msr_local(cpu); return 0; } static int isst_if_online_id; static int isst_if_cpu_info_init(void) { int ret; isst_cpu_info = kcalloc(num_possible_cpus(), sizeof(*isst_cpu_info), GFP_KERNEL); if (!isst_cpu_info) return -ENOMEM; isst_pkg_info = kcalloc(topology_max_packages(), sizeof(*isst_pkg_info), GFP_KERNEL); if (!isst_pkg_info) { kfree(isst_cpu_info); return -ENOMEM; } ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "platform/x86/isst-if:online", isst_if_cpu_online, NULL); if (ret < 0) { kfree(isst_pkg_info); kfree(isst_cpu_info); return ret; } isst_if_online_id = ret; return 0; } static void isst_if_cpu_info_exit(void) { cpuhp_remove_state(isst_if_online_id); kfree(isst_pkg_info); kfree(isst_cpu_info); }; static long isst_if_proc_phyid_req(u8 *cmd_ptr, int *write_only, int resume) { struct isst_if_cpu_map *cpu_map; cpu_map = (struct isst_if_cpu_map *)cmd_ptr; if (cpu_map->logical_cpu >= nr_cpu_ids || cpu_map->logical_cpu >= num_possible_cpus()) return -EINVAL; *write_only = 0; cpu_map->physical_cpu = isst_cpu_info[cpu_map->logical_cpu].punit_cpu_id; return 0; } static bool match_punit_msr_white_list(int msr) { int i; for (i = 0; i < ARRAY_SIZE(punit_msr_white_list); ++i) { if (punit_msr_white_list[i] == msr) return true; } return false; } static long isst_if_msr_cmd_req(u8 *cmd_ptr, int *write_only, int resume) { struct isst_if_msr_cmd *msr_cmd; int ret; msr_cmd = (struct isst_if_msr_cmd *)cmd_ptr; if (!match_punit_msr_white_list(msr_cmd->msr)) return -EINVAL; if (msr_cmd->logical_cpu >= nr_cpu_ids) return -EINVAL; if (msr_cmd->read_write) { if (!capable(CAP_SYS_ADMIN)) return -EPERM; ret = wrmsrl_safe_on_cpu(msr_cmd->logical_cpu, msr_cmd->msr, msr_cmd->data); *write_only = 1; if (!ret && !resume) ret = isst_store_cmd(0, msr_cmd->msr, msr_cmd->logical_cpu, 0, 0, msr_cmd->data); } else { u64 data; ret = rdmsrl_safe_on_cpu(msr_cmd->logical_cpu, msr_cmd->msr, &data); if (!ret) { msr_cmd->data = data; *write_only = 0; } } return ret; } static long isst_if_exec_multi_cmd(void __user *argp, struct isst_if_cmd_cb *cb) { unsigned char __user *ptr; u32 cmd_count; u8 *cmd_ptr; long ret; int i; /* Each multi command has u32 command count as the first field */ if (copy_from_user(&cmd_count, argp, sizeof(cmd_count))) return -EFAULT; if (!cmd_count || cmd_count > ISST_IF_CMD_LIMIT) return -EINVAL; cmd_ptr = kmalloc(cb->cmd_size, GFP_KERNEL); if (!cmd_ptr) return -ENOMEM; /* cb->offset points to start of the command after the command count */ ptr = argp + cb->offset; for (i = 0; i < cmd_count; ++i) { int wr_only; if (signal_pending(current)) { ret = -EINTR; break; } if (copy_from_user(cmd_ptr, ptr, cb->cmd_size)) { ret = -EFAULT; break; } ret = cb->cmd_callback(cmd_ptr, &wr_only, 0); if (ret) break; if (!wr_only && copy_to_user(ptr, cmd_ptr, cb->cmd_size)) { ret = -EFAULT; break; } ptr += cb->cmd_size; } kfree(cmd_ptr); return i ? i : ret; } static long isst_if_def_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { void __user *argp = (void __user *)arg; struct isst_if_cmd_cb cmd_cb; struct isst_if_cmd_cb *cb; long ret = -ENOTTY; int i; switch (cmd) { case ISST_IF_GET_PLATFORM_INFO: ret = isst_if_get_platform_info(argp); break; case ISST_IF_GET_PHY_ID: cmd_cb.cmd_size = sizeof(struct isst_if_cpu_map); cmd_cb.offset = offsetof(struct isst_if_cpu_maps, cpu_map); cmd_cb.cmd_callback = isst_if_proc_phyid_req; ret = isst_if_exec_multi_cmd(argp, &cmd_cb); break; case ISST_IF_IO_CMD: cb = &punit_callbacks[ISST_IF_DEV_MMIO]; if (cb->registered) ret = isst_if_exec_multi_cmd(argp, cb); break; case ISST_IF_MBOX_COMMAND: cb = &punit_callbacks[ISST_IF_DEV_MBOX]; if (cb->registered) ret = isst_if_exec_multi_cmd(argp, cb); break; case ISST_IF_MSR_COMMAND: cmd_cb.cmd_size = sizeof(struct isst_if_msr_cmd); cmd_cb.offset = offsetof(struct isst_if_msr_cmds, msr_cmd); cmd_cb.cmd_callback = isst_if_msr_cmd_req; ret = isst_if_exec_multi_cmd(argp, &cmd_cb); break; default: for (i = 0; i < ISST_IF_DEV_MAX; ++i) { struct isst_if_cmd_cb *cb = &punit_callbacks[i]; int ret; if (cb->def_ioctl) { ret = cb->def_ioctl(file, cmd, arg); if (!ret) return ret; } } break; } return ret; } /* Lock to prevent module registration when already opened by user space */ static DEFINE_MUTEX(punit_misc_dev_open_lock); /* Lock to allow one shared misc device for all ISST interfaces */ static DEFINE_MUTEX(punit_misc_dev_reg_lock); static int misc_usage_count; static int misc_device_ret; static int misc_device_open; static int isst_if_open(struct inode *inode, struct file *file) { int i, ret = 0; /* Fail open, if a module is going away */ mutex_lock(&punit_misc_dev_open_lock); for (i = 0; i < ISST_IF_DEV_MAX; ++i) { struct isst_if_cmd_cb *cb = &punit_callbacks[i]; if (cb->registered && !try_module_get(cb->owner)) { ret = -ENODEV; break; } } if (ret) { int j; for (j = 0; j < i; ++j) { struct isst_if_cmd_cb *cb; cb = &punit_callbacks[j]; if (cb->registered) module_put(cb->owner); } } else { misc_device_open++; } mutex_unlock(&punit_misc_dev_open_lock); return ret; } static int isst_if_relase(struct inode *inode, struct file *f) { int i; mutex_lock(&punit_misc_dev_open_lock); misc_device_open--; for (i = 0; i < ISST_IF_DEV_MAX; ++i) { struct isst_if_cmd_cb *cb = &punit_callbacks[i]; if (cb->registered) module_put(cb->owner); } mutex_unlock(&punit_misc_dev_open_lock); return 0; } static const struct file_operations isst_if_char_driver_ops = { .open = isst_if_open, .unlocked_ioctl = isst_if_def_ioctl, .release = isst_if_relase, }; static struct miscdevice isst_if_char_driver = { .minor = MISC_DYNAMIC_MINOR, .name = "isst_interface", .fops = &isst_if_char_driver_ops, }; static const struct x86_cpu_id hpm_cpu_ids[] = { X86_MATCH_INTEL_FAM6_MODEL(GRANITERAPIDS_X, NULL), X86_MATCH_INTEL_FAM6_MODEL(ATOM_CRESTMONT_X, NULL), {} }; static int isst_misc_reg(void) { mutex_lock(&punit_misc_dev_reg_lock); if (misc_device_ret) goto unlock_exit; if (!misc_usage_count) { const struct x86_cpu_id *id; id = x86_match_cpu(hpm_cpu_ids); if (id) isst_hpm_support = true; misc_device_ret = isst_if_cpu_info_init(); if (misc_device_ret) goto unlock_exit; misc_device_ret = misc_register(&isst_if_char_driver); if (misc_device_ret) { isst_if_cpu_info_exit(); goto unlock_exit; } } misc_usage_count++; unlock_exit: mutex_unlock(&punit_misc_dev_reg_lock); return misc_device_ret; } static void isst_misc_unreg(void) { mutex_lock(&punit_misc_dev_reg_lock); if (misc_usage_count) misc_usage_count--; if (!misc_usage_count && !misc_device_ret) { misc_deregister(&isst_if_char_driver); isst_if_cpu_info_exit(); } mutex_unlock(&punit_misc_dev_reg_lock); } /** * isst_if_cdev_register() - Register callback for IOCTL * @device_type: The device type this callback handling. * @cb: Callback structure. * * This function registers a callback to device type. On very first call * it will register a misc device, which is used for user kernel interface. * Other calls simply increment ref count. Registry will fail, if the user * already opened misc device for operation. Also if the misc device * creation failed, then it will not try again and all callers will get * failure code. * * Return: Return the return value from the misc creation device or -EINVAL * for unsupported device type. */ int isst_if_cdev_register(int device_type, struct isst_if_cmd_cb *cb) { int ret; if (device_type >= ISST_IF_DEV_MAX) return -EINVAL; mutex_lock(&punit_misc_dev_open_lock); /* Device is already open, we don't want to add new callbacks */ if (misc_device_open) { mutex_unlock(&punit_misc_dev_open_lock); return -EAGAIN; } if (!cb->api_version) cb->api_version = ISST_IF_API_VERSION; if (cb->api_version > isst_if_api_version) isst_if_api_version = cb->api_version; memcpy(&punit_callbacks[device_type], cb, sizeof(*cb)); punit_callbacks[device_type].registered = 1; mutex_unlock(&punit_misc_dev_open_lock); ret = isst_misc_reg(); if (ret) { /* * No need of mutex as the misc device register failed * as no one can open device yet. Hence no contention. */ punit_callbacks[device_type].registered = 0; return ret; } return 0; } EXPORT_SYMBOL_GPL(isst_if_cdev_register); /** * isst_if_cdev_unregister() - Unregister callback for IOCTL * @device_type: The device type to unregister. * * This function unregisters the previously registered callback. If this * is the last callback unregistering, then misc device is removed. * * Return: None. */ void isst_if_cdev_unregister(int device_type) { isst_misc_unreg(); mutex_lock(&punit_misc_dev_open_lock); punit_callbacks[device_type].def_ioctl = NULL; punit_callbacks[device_type].registered = 0; if (device_type == ISST_IF_DEV_MBOX) isst_delete_hash(); mutex_unlock(&punit_misc_dev_open_lock); } EXPORT_SYMBOL_GPL(isst_if_cdev_unregister); MODULE_LICENSE("GPL v2");
linux-master
drivers/platform/x86/intel/speed_select_if/isst_if_common.c
// SPDX-License-Identifier: GPL-2.0 /* * Intel Speed Select Interface: Mbox via PCI Interface * Copyright (c) 2019, Intel Corporation. * All rights reserved. * * Author: Srinivas Pandruvada <[email protected]> */ #include <linux/cpufeature.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/sched/signal.h> #include <linux/uaccess.h> #include <uapi/linux/isst_if.h> #include "isst_if_common.h" #define PUNIT_MAILBOX_DATA 0xA0 #define PUNIT_MAILBOX_INTERFACE 0xA4 #define PUNIT_MAILBOX_BUSY_BIT 31 /* * The average time to complete mailbox commands is less than 40us. Most of * the commands complete in few micro seconds. But the same firmware handles * requests from all power management features. * We can create a scenario where we flood the firmware with requests then * the mailbox response can be delayed for 100s of micro seconds. So define * two timeouts. One for average case and one for long. * If the firmware is taking more than average, just call cond_resched(). */ #define OS_MAILBOX_TIMEOUT_AVG_US 40 #define OS_MAILBOX_TIMEOUT_MAX_US 1000 struct isst_if_device { struct mutex mutex; }; static int isst_if_mbox_cmd(struct pci_dev *pdev, struct isst_if_mbox_cmd *mbox_cmd) { s64 tm_delta = 0; ktime_t tm; u32 data; int ret; /* Poll for rb bit == 0 */ tm = ktime_get(); do { ret = pci_read_config_dword(pdev, PUNIT_MAILBOX_INTERFACE, &data); if (ret) return ret; if (data & BIT_ULL(PUNIT_MAILBOX_BUSY_BIT)) { ret = -EBUSY; tm_delta = ktime_us_delta(ktime_get(), tm); if (tm_delta > OS_MAILBOX_TIMEOUT_AVG_US) cond_resched(); continue; } ret = 0; break; } while (tm_delta < OS_MAILBOX_TIMEOUT_MAX_US); if (ret) return ret; /* Write DATA register */ ret = pci_write_config_dword(pdev, PUNIT_MAILBOX_DATA, mbox_cmd->req_data); if (ret) return ret; /* Write command register */ data = BIT_ULL(PUNIT_MAILBOX_BUSY_BIT) | (mbox_cmd->parameter & GENMASK_ULL(13, 0)) << 16 | (mbox_cmd->sub_command << 8) | mbox_cmd->command; ret = pci_write_config_dword(pdev, PUNIT_MAILBOX_INTERFACE, data); if (ret) return ret; /* Poll for rb bit == 0 */ tm_delta = 0; tm = ktime_get(); do { ret = pci_read_config_dword(pdev, PUNIT_MAILBOX_INTERFACE, &data); if (ret) return ret; if (data & BIT_ULL(PUNIT_MAILBOX_BUSY_BIT)) { ret = -EBUSY; tm_delta = ktime_us_delta(ktime_get(), tm); if (tm_delta > OS_MAILBOX_TIMEOUT_AVG_US) cond_resched(); continue; } if (data & 0xff) return -ENXIO; ret = pci_read_config_dword(pdev, PUNIT_MAILBOX_DATA, &data); if (ret) return ret; mbox_cmd->resp_data = data; ret = 0; break; } while (tm_delta < OS_MAILBOX_TIMEOUT_MAX_US); return ret; } static long isst_if_mbox_proc_cmd(u8 *cmd_ptr, int *write_only, int resume) { struct isst_if_mbox_cmd *mbox_cmd; struct isst_if_device *punit_dev; struct pci_dev *pdev; int ret; mbox_cmd = (struct isst_if_mbox_cmd *)cmd_ptr; if (isst_if_mbox_cmd_invalid(mbox_cmd)) return -EINVAL; if (isst_if_mbox_cmd_set_req(mbox_cmd) && !capable(CAP_SYS_ADMIN)) return -EPERM; pdev = isst_if_get_pci_dev(mbox_cmd->logical_cpu, 1, 30, 1); if (!pdev) return -EINVAL; punit_dev = pci_get_drvdata(pdev); if (!punit_dev) return -EINVAL; /* * Basically we are allowing one complete mailbox transaction on * a mapped PCI device at a time. */ mutex_lock(&punit_dev->mutex); ret = isst_if_mbox_cmd(pdev, mbox_cmd); if (!ret && !resume && isst_if_mbox_cmd_set_req(mbox_cmd)) ret = isst_store_cmd(mbox_cmd->command, mbox_cmd->sub_command, mbox_cmd->logical_cpu, 1, mbox_cmd->parameter, mbox_cmd->req_data); mutex_unlock(&punit_dev->mutex); if (ret) return ret; *write_only = 0; return 0; } static const struct pci_device_id isst_if_mbox_ids[] = { { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_CFG_MBOX_DEVID_0)}, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_CFG_MBOX_DEVID_1)}, { 0 }, }; MODULE_DEVICE_TABLE(pci, isst_if_mbox_ids); static int isst_if_mbox_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct isst_if_device *punit_dev; struct isst_if_cmd_cb cb; int ret; punit_dev = devm_kzalloc(&pdev->dev, sizeof(*punit_dev), GFP_KERNEL); if (!punit_dev) return -ENOMEM; ret = pcim_enable_device(pdev); if (ret) return ret; mutex_init(&punit_dev->mutex); pci_set_drvdata(pdev, punit_dev); memset(&cb, 0, sizeof(cb)); cb.cmd_size = sizeof(struct isst_if_mbox_cmd); cb.offset = offsetof(struct isst_if_mbox_cmds, mbox_cmd); cb.cmd_callback = isst_if_mbox_proc_cmd; cb.owner = THIS_MODULE; ret = isst_if_cdev_register(ISST_IF_DEV_MBOX, &cb); if (ret) mutex_destroy(&punit_dev->mutex); return ret; } static void isst_if_mbox_remove(struct pci_dev *pdev) { struct isst_if_device *punit_dev; punit_dev = pci_get_drvdata(pdev); isst_if_cdev_unregister(ISST_IF_DEV_MBOX); mutex_destroy(&punit_dev->mutex); } static int __maybe_unused isst_if_resume(struct device *device) { isst_resume_common(); return 0; } static SIMPLE_DEV_PM_OPS(isst_if_pm_ops, NULL, isst_if_resume); static struct pci_driver isst_if_pci_driver = { .name = "isst_if_mbox_pci", .id_table = isst_if_mbox_ids, .probe = isst_if_mbox_probe, .remove = isst_if_mbox_remove, .driver.pm = &isst_if_pm_ops, }; module_pci_driver(isst_if_pci_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Intel speed select interface pci mailbox driver");
linux-master
drivers/platform/x86/intel/speed_select_if/isst_if_mbox_pci.c
// SPDX-License-Identifier: GPL-2.0 /* * Intel Speed Select Interface: MMIO Interface * Copyright (c) 2019, Intel Corporation. * All rights reserved. * * Author: Srinivas Pandruvada <[email protected]> */ #include <linux/module.h> #include <linux/pci.h> #include <linux/sched/signal.h> #include <linux/uaccess.h> #include <uapi/linux/isst_if.h> #include "isst_if_common.h" struct isst_mmio_range { int beg; int end; }; static struct isst_mmio_range mmio_range_devid_0[] = { {0x04, 0x14}, {0x20, 0xD0}, }; static struct isst_mmio_range mmio_range_devid_1[] = { {0x04, 0x14}, {0x20, 0x11C}, }; struct isst_if_device { void __iomem *punit_mmio; u32 range_0[5]; u32 range_1[64]; struct isst_mmio_range *mmio_range; struct mutex mutex; }; static long isst_if_mmio_rd_wr(u8 *cmd_ptr, int *write_only, int resume) { struct isst_if_device *punit_dev; struct isst_if_io_reg *io_reg; struct pci_dev *pdev; io_reg = (struct isst_if_io_reg *)cmd_ptr; if (io_reg->reg % 4) return -EINVAL; if (io_reg->read_write && !capable(CAP_SYS_ADMIN)) return -EPERM; pdev = isst_if_get_pci_dev(io_reg->logical_cpu, 0, 0, 1); if (!pdev) return -EINVAL; punit_dev = pci_get_drvdata(pdev); if (!punit_dev) return -EINVAL; if (io_reg->reg < punit_dev->mmio_range[0].beg || io_reg->reg > punit_dev->mmio_range[1].end) return -EINVAL; /* * Ensure that operation is complete on a PCI device to avoid read * write race by using per PCI device mutex. */ mutex_lock(&punit_dev->mutex); if (io_reg->read_write) { writel(io_reg->value, punit_dev->punit_mmio+io_reg->reg); *write_only = 1; } else { io_reg->value = readl(punit_dev->punit_mmio+io_reg->reg); *write_only = 0; } mutex_unlock(&punit_dev->mutex); return 0; } static const struct pci_device_id isst_if_ids[] = { { PCI_DEVICE_DATA(INTEL, RAPL_PRIO_DEVID_0, &mmio_range_devid_0)}, { PCI_DEVICE_DATA(INTEL, RAPL_PRIO_DEVID_1, &mmio_range_devid_1)}, { 0 }, }; MODULE_DEVICE_TABLE(pci, isst_if_ids); static int isst_if_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct isst_if_device *punit_dev; struct isst_if_cmd_cb cb; u32 mmio_base, pcu_base; u64 base_addr; int ret; punit_dev = devm_kzalloc(&pdev->dev, sizeof(*punit_dev), GFP_KERNEL); if (!punit_dev) return -ENOMEM; ret = pcim_enable_device(pdev); if (ret) return ret; ret = pci_read_config_dword(pdev, 0xD0, &mmio_base); if (ret) return ret; ret = pci_read_config_dword(pdev, 0xFC, &pcu_base); if (ret) return ret; pcu_base &= GENMASK(10, 0); base_addr = (u64)mmio_base << 23 | (u64) pcu_base << 12; punit_dev->punit_mmio = devm_ioremap(&pdev->dev, base_addr, 256); if (!punit_dev->punit_mmio) return -ENOMEM; mutex_init(&punit_dev->mutex); pci_set_drvdata(pdev, punit_dev); punit_dev->mmio_range = (struct isst_mmio_range *) ent->driver_data; memset(&cb, 0, sizeof(cb)); cb.cmd_size = sizeof(struct isst_if_io_reg); cb.offset = offsetof(struct isst_if_io_regs, io_reg); cb.cmd_callback = isst_if_mmio_rd_wr; cb.owner = THIS_MODULE; ret = isst_if_cdev_register(ISST_IF_DEV_MMIO, &cb); if (ret) mutex_destroy(&punit_dev->mutex); return ret; } static void isst_if_remove(struct pci_dev *pdev) { struct isst_if_device *punit_dev; punit_dev = pci_get_drvdata(pdev); isst_if_cdev_unregister(ISST_IF_DEV_MMIO); mutex_destroy(&punit_dev->mutex); } static int __maybe_unused isst_if_suspend(struct device *device) { struct isst_if_device *punit_dev = dev_get_drvdata(device); int i; for (i = 0; i < ARRAY_SIZE(punit_dev->range_0); ++i) punit_dev->range_0[i] = readl(punit_dev->punit_mmio + punit_dev->mmio_range[0].beg + 4 * i); for (i = 0; i < ARRAY_SIZE(punit_dev->range_1); ++i) { u32 addr; addr = punit_dev->mmio_range[1].beg + 4 * i; if (addr > punit_dev->mmio_range[1].end) break; punit_dev->range_1[i] = readl(punit_dev->punit_mmio + addr); } return 0; } static int __maybe_unused isst_if_resume(struct device *device) { struct isst_if_device *punit_dev = dev_get_drvdata(device); int i; for (i = 0; i < ARRAY_SIZE(punit_dev->range_0); ++i) writel(punit_dev->range_0[i], punit_dev->punit_mmio + punit_dev->mmio_range[0].beg + 4 * i); for (i = 0; i < ARRAY_SIZE(punit_dev->range_1); ++i) { u32 addr; addr = punit_dev->mmio_range[1].beg + 4 * i; if (addr > punit_dev->mmio_range[1].end) break; writel(punit_dev->range_1[i], punit_dev->punit_mmio + addr); } return 0; } static SIMPLE_DEV_PM_OPS(isst_if_pm_ops, isst_if_suspend, isst_if_resume); static struct pci_driver isst_if_pci_driver = { .name = "isst_if_pci", .id_table = isst_if_ids, .probe = isst_if_probe, .remove = isst_if_remove, .driver.pm = &isst_if_pm_ops, }; module_pci_driver(isst_if_pci_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Intel speed select interface mmio driver");
linux-master
drivers/platform/x86/intel/speed_select_if/isst_if_mmio.c
// SPDX-License-Identifier: GPL-2.0-only /* * isst_tpmi.c: SST TPMI interface core * * Copyright (c) 2023, Intel Corporation. * All Rights Reserved. * * This information will be useful to understand flows: * In the current generation of platforms, TPMI is supported via OOB * PCI device. This PCI device has one instance per CPU package. * There is a unique TPMI ID for SST. Each TPMI ID also has multiple * entries, representing per power domain information. * * There is one dev file for complete SST information and control same as the * prior generation of hardware. User spaces don't need to know how the * information is presented by the hardware. The TPMI core module implements * the hardware mapping. */ #include <linux/auxiliary_bus.h> #include <linux/delay.h> #include <linux/intel_tpmi.h> #include <linux/fs.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <uapi/linux/isst_if.h> #include "isst_tpmi_core.h" #include "isst_if_common.h" /* Supported SST hardware version by this driver */ #define ISST_HEADER_VERSION 1 /* * Used to indicate if value read from MMIO needs to get multiplied * to get to a standard unit or not. */ #define SST_MUL_FACTOR_NONE 1 /* Define 100 as a scaling factor frequency ratio to frequency conversion */ #define SST_MUL_FACTOR_FREQ 100 /* All SST regs are 64 bit size */ #define SST_REG_SIZE 8 /** * struct sst_header - SST main header * @interface_version: Version number for this interface * @cap_mask: Bitmask of the supported sub features. 1=the sub feature is enabled. * 0=disabled. * Bit[8]= SST_CP enable (1), disable (0) * bit[9]= SST_PP enable (1), disable (0) * other bits are reserved for future use * @cp_offset: Qword (8 bytes) offset to the SST_CP register bank * @pp_offset: Qword (8 bytes) offset to the SST_PP register bank * @reserved: Reserved for future use * * This register allows SW to discover SST capability and the offsets to SST-CP * and SST-PP register banks. */ struct sst_header { u8 interface_version; u8 cap_mask; u8 cp_offset; u8 pp_offset; u32 reserved; } __packed; /** * struct cp_header - SST-CP (core-power) header * @feature_id: 0=SST-CP, 1=SST-PP, 2=SST-BF, 3=SST-TF * @feature_rev: Interface Version number for this SST feature * @ratio_unit: Frequency ratio unit. 00: 100MHz. All others are reserved * @reserved: Reserved for future use * * This structure is used store SST-CP header. This is packed to the same * format as defined in the specifications. */ struct cp_header { u64 feature_id :4; u64 feature_rev :8; u64 ratio_unit :2; u64 reserved :50; } __packed; /** * struct pp_header - SST-PP (Perf profile) header * @feature_id: 0=SST-CP, 1=SST-PP, 2=SST-BF, 3=SST-TF * @feature_rev: Interface Version number for this SST feature * @level_en_mask: SST-PP level enable/disable fuse mask * @allowed_level_mask: Allowed level mask used for dynamic config level switching * @reserved0: Reserved for future use * @ratio_unit: Frequency ratio unit. 00: 100MHz. All others are reserved * @block_size: Size of PP block in Qword unit (8 bytes) * @dynamic_switch: If set (1), dynamic switching of SST PP is supported * @memory_ratio_unit: Memory Controller frequency ratio unit. 00: 100MHz, others reserved * @reserved1: Reserved for future use * * This structure is used store SST-PP header. This is packed to the same * format as defined in the specifications. */ struct pp_header { u64 feature_id :4; u64 feature_rev :8; u64 level_en_mask :8; u64 allowed_level_mask :8; u64 reserved0 :4; u64 ratio_unit :2; u64 block_size :8; u64 dynamic_switch :1; u64 memory_ratio_unit :2; u64 reserved1 :19; } __packed; /** * struct feature_offset - Offsets to SST-PP features * @pp_offset: Qword offset within PP level for the SST_PP register bank * @bf_offset: Qword offset within PP level for the SST_BF register bank * @tf_offset: Qword offset within PP level for the SST_TF register bank * @reserved: Reserved for future use * * This structure is used store offsets for SST features in the register bank. * This is packed to the same format as defined in the specifications. */ struct feature_offset { u64 pp_offset :8; u64 bf_offset :8; u64 tf_offset :8; u64 reserved :40; } __packed; /** * struct levels_offset - Offsets to each SST PP level * @sst_pp_level0_offset: Qword offset to the register block of PP level 0 * @sst_pp_level1_offset: Qword offset to the register block of PP level 1 * @sst_pp_level2_offset: Qword offset to the register block of PP level 2 * @sst_pp_level3_offset: Qword offset to the register block of PP level 3 * @sst_pp_level4_offset: Qword offset to the register block of PP level 4 * @reserved: Reserved for future use * * This structure is used store offsets of SST PP levels in the register bank. * This is packed to the same format as defined in the specifications. */ struct levels_offset { u64 sst_pp_level0_offset :8; u64 sst_pp_level1_offset :8; u64 sst_pp_level2_offset :8; u64 sst_pp_level3_offset :8; u64 sst_pp_level4_offset :8; u64 reserved :24; } __packed; /** * struct pp_control_offset - Offsets for SST PP controls * @perf_level: A SST-PP level that SW intends to switch to * @perf_level_lock: SST-PP level select lock. 0 - unlocked. 1 - locked till next reset * @resvd0: Reserved for future use * @current_state: Bit mask to control the enable(1)/disable(0) state of each feature * of the current PP level, bit 0 = BF, bit 1 = TF, bit 2-7 = reserved * @reserved: Reserved for future use * * This structure is used store offsets of SST PP controls in the register bank. * This is packed to the same format as defined in the specifications. */ struct pp_control_offset { u64 perf_level :3; u64 perf_level_lock :1; u64 resvd0 :4; u64 current_state :8; u64 reserved :48; } __packed; /** * struct pp_status_offset - Offsets for SST PP status fields * @sst_pp_level: Returns the current SST-PP level * @sst_pp_lock: Returns the lock bit setting of perf_level_lock in pp_control_offset * @error_type: Returns last error of SST-PP level change request. 0: no error, * 1: level change not allowed, others: reserved * @feature_state: Bit mask to indicate the enable(1)/disable(0) state of each feature of the * current PP level. bit 0 = BF, bit 1 = TF, bit 2-7 reserved * @reserved0: Reserved for future use * @feature_error_type: Returns last error of the specific feature. Three error_type bits per * feature. i.e. ERROR_TYPE[2:0] for BF, ERROR_TYPE[5:3] for TF, etc. * 0x0: no error, 0x1: The specific feature is not supported by the hardware. * 0x2-0x6: Reserved. 0x7: feature state change is not allowed. * @reserved1: Reserved for future use * * This structure is used store offsets of SST PP status in the register bank. * This is packed to the same format as defined in the specifications. */ struct pp_status_offset { u64 sst_pp_level :3; u64 sst_pp_lock :1; u64 error_type :4; u64 feature_state :8; u64 reserved0 :16; u64 feature_error_type : 24; u64 reserved1 :8; } __packed; /** * struct perf_level - Used to store perf level and mmio offset * @mmio_offset: mmio offset for a perf level * @level: perf level for this offset * * This structure is used store final mmio offset of each perf level from the * SST base mmio offset. */ struct perf_level { int mmio_offset; int level; }; /** * struct tpmi_per_power_domain_info - Store per power_domain SST info * @package_id: Package id for this power_domain * @power_domain_id: Power domain id, Each entry from the SST-TPMI instance is a power_domain. * @max_level: Max possible PP level possible for this power_domain * @ratio_unit: Ratio unit for converting to MHz * @avx_levels: Number of AVX levels * @pp_block_size: Block size from PP header * @sst_header: Store SST header for this power_domain * @cp_header: Store SST-CP header for this power_domain * @pp_header: Store SST-PP header for this power_domain * @perf_levels: Pointer to each perf level to map level to mmio offset * @feature_offsets: Store feature offsets for each PP-level * @control_offset: Store the control offset for each PP-level * @status_offset: Store the status offset for each PP-level * @sst_base: Mapped SST base IO memory * @auxdev: Auxiliary device instance enumerated this instance * @saved_sst_cp_control: Save SST-CP control configuration to store restore for suspend/resume * @saved_clos_configs: Save SST-CP CLOS configuration to store restore for suspend/resume * @saved_clos_assocs: Save SST-CP CLOS association to store restore for suspend/resume * @saved_pp_control: Save SST-PP control information to store restore for suspend/resume * * This structure is used store complete SST information for a power_domain. This information * is used to read/write request for any SST IOCTL. Each physical CPU package can have multiple * power_domains. Each power domain describes its own SST information and has its own controls. */ struct tpmi_per_power_domain_info { int package_id; int power_domain_id; int max_level; int ratio_unit; int avx_levels; int pp_block_size; struct sst_header sst_header; struct cp_header cp_header; struct pp_header pp_header; struct perf_level *perf_levels; struct feature_offset feature_offsets; struct pp_control_offset control_offset; struct pp_status_offset status_offset; void __iomem *sst_base; struct auxiliary_device *auxdev; u64 saved_sst_cp_control; u64 saved_clos_configs[4]; u64 saved_clos_assocs[4]; u64 saved_pp_control; }; /** * struct tpmi_sst_struct - Store sst info for a package * @package_id: Package id for this aux device instance * @number_of_power_domains: Number of power_domains pointed by power_domain_info pointer * @power_domain_info: Pointer to power domains information * * This structure is used store full SST information for a package. * Each package has a unique OOB PCI device, which enumerates TPMI. * Each Package will have multiple power_domains. */ struct tpmi_sst_struct { int package_id; int number_of_power_domains; struct tpmi_per_power_domain_info *power_domain_info; }; /** * struct tpmi_sst_common_struct - Store all SST instances * @max_index: Maximum instances currently present * @sst_inst: Pointer to per package instance * * Stores every SST Package instance. */ struct tpmi_sst_common_struct { int max_index; struct tpmi_sst_struct **sst_inst; }; /* * Each IOCTL request is processed under this lock. Also used to protect * registration functions and common data structures. */ static DEFINE_MUTEX(isst_tpmi_dev_lock); /* Usage count to track, number of TPMI SST instances registered to this core. */ static int isst_core_usage_count; /* Stores complete SST information for every package and power_domain */ static struct tpmi_sst_common_struct isst_common; #define SST_MAX_AVX_LEVELS 3 #define SST_PP_OFFSET_0 8 #define SST_PP_OFFSET_1 16 #define SST_PP_OFFSET_SIZE 8 static int sst_add_perf_profiles(struct auxiliary_device *auxdev, struct tpmi_per_power_domain_info *pd_info, int levels) { u64 perf_level_offsets; int i; pd_info->perf_levels = devm_kcalloc(&auxdev->dev, levels, sizeof(struct perf_level), GFP_KERNEL); if (!pd_info->perf_levels) return 0; pd_info->ratio_unit = pd_info->pp_header.ratio_unit; pd_info->avx_levels = SST_MAX_AVX_LEVELS; pd_info->pp_block_size = pd_info->pp_header.block_size; /* Read PP Offset 0: Get feature offset with PP level */ *((u64 *)&pd_info->feature_offsets) = readq(pd_info->sst_base + pd_info->sst_header.pp_offset + SST_PP_OFFSET_0); perf_level_offsets = readq(pd_info->sst_base + pd_info->sst_header.pp_offset + SST_PP_OFFSET_1); for (i = 0; i < levels; ++i) { u64 offset; offset = perf_level_offsets & (0xffULL << (i * SST_PP_OFFSET_SIZE)); offset >>= (i * 8); offset &= 0xff; offset *= 8; /* Convert to byte from QWORD offset */ pd_info->perf_levels[i].mmio_offset = pd_info->sst_header.pp_offset + offset; } return 0; } static int sst_main(struct auxiliary_device *auxdev, struct tpmi_per_power_domain_info *pd_info) { int i, mask, levels; *((u64 *)&pd_info->sst_header) = readq(pd_info->sst_base); pd_info->sst_header.cp_offset *= 8; pd_info->sst_header.pp_offset *= 8; if (pd_info->sst_header.interface_version != ISST_HEADER_VERSION) { dev_err(&auxdev->dev, "SST: Unsupported version:%x\n", pd_info->sst_header.interface_version); return -ENODEV; } /* Read SST CP Header */ *((u64 *)&pd_info->cp_header) = readq(pd_info->sst_base + pd_info->sst_header.cp_offset); /* Read PP header */ *((u64 *)&pd_info->pp_header) = readq(pd_info->sst_base + pd_info->sst_header.pp_offset); /* Force level_en_mask level 0 */ pd_info->pp_header.level_en_mask |= 0x01; mask = 0x01; levels = 0; for (i = 0; i < 8; ++i) { if (pd_info->pp_header.level_en_mask & mask) levels = i; mask <<= 1; } pd_info->max_level = levels; sst_add_perf_profiles(auxdev, pd_info, levels + 1); return 0; } /* * Map a package and power_domain id to SST information structure unique for a power_domain. * The caller should call under isst_tpmi_dev_lock. */ static struct tpmi_per_power_domain_info *get_instance(int pkg_id, int power_domain_id) { struct tpmi_per_power_domain_info *power_domain_info; struct tpmi_sst_struct *sst_inst; if (pkg_id < 0 || pkg_id > isst_common.max_index || pkg_id >= topology_max_packages()) return NULL; sst_inst = isst_common.sst_inst[pkg_id]; if (!sst_inst) return NULL; if (power_domain_id < 0 || power_domain_id >= sst_inst->number_of_power_domains) return NULL; power_domain_info = &sst_inst->power_domain_info[power_domain_id]; if (power_domain_info && !power_domain_info->sst_base) return NULL; return power_domain_info; } static bool disable_dynamic_sst_features(void) { u64 value; rdmsrl(MSR_PM_ENABLE, value); return !(value & 0x1); } #define _read_cp_info(name_str, name, offset, start, width, mult_factor)\ {\ u64 val, mask;\ \ val = readq(power_domain_info->sst_base + power_domain_info->sst_header.cp_offset +\ (offset));\ mask = GENMASK_ULL((start + width - 1), start);\ val &= mask; \ val >>= start;\ name = (val * mult_factor);\ } #define _write_cp_info(name_str, name, offset, start, width, div_factor)\ {\ u64 val, mask;\ \ val = readq(power_domain_info->sst_base +\ power_domain_info->sst_header.cp_offset + (offset));\ mask = GENMASK_ULL((start + width - 1), start);\ val &= ~mask;\ val |= (name / div_factor) << start;\ writeq(val, power_domain_info->sst_base + power_domain_info->sst_header.cp_offset +\ (offset));\ } #define SST_CP_CONTROL_OFFSET 8 #define SST_CP_STATUS_OFFSET 16 #define SST_CP_ENABLE_START 0 #define SST_CP_ENABLE_WIDTH 1 #define SST_CP_PRIORITY_TYPE_START 1 #define SST_CP_PRIORITY_TYPE_WIDTH 1 static long isst_if_core_power_state(void __user *argp) { struct tpmi_per_power_domain_info *power_domain_info; struct isst_core_power core_power; if (disable_dynamic_sst_features()) return -EFAULT; if (copy_from_user(&core_power, argp, sizeof(core_power))) return -EFAULT; power_domain_info = get_instance(core_power.socket_id, core_power.power_domain_id); if (!power_domain_info) return -EINVAL; if (core_power.get_set) { _write_cp_info("cp_enable", core_power.enable, SST_CP_CONTROL_OFFSET, SST_CP_ENABLE_START, SST_CP_ENABLE_WIDTH, SST_MUL_FACTOR_NONE) _write_cp_info("cp_prio_type", core_power.priority_type, SST_CP_CONTROL_OFFSET, SST_CP_PRIORITY_TYPE_START, SST_CP_PRIORITY_TYPE_WIDTH, SST_MUL_FACTOR_NONE) } else { /* get */ _read_cp_info("cp_enable", core_power.enable, SST_CP_STATUS_OFFSET, SST_CP_ENABLE_START, SST_CP_ENABLE_WIDTH, SST_MUL_FACTOR_NONE) _read_cp_info("cp_prio_type", core_power.priority_type, SST_CP_STATUS_OFFSET, SST_CP_PRIORITY_TYPE_START, SST_CP_PRIORITY_TYPE_WIDTH, SST_MUL_FACTOR_NONE) core_power.supported = !!(power_domain_info->sst_header.cap_mask & BIT(0)); if (copy_to_user(argp, &core_power, sizeof(core_power))) return -EFAULT; } return 0; } #define SST_CLOS_CONFIG_0_OFFSET 24 #define SST_CLOS_CONFIG_PRIO_START 4 #define SST_CLOS_CONFIG_PRIO_WIDTH 4 #define SST_CLOS_CONFIG_MIN_START 8 #define SST_CLOS_CONFIG_MIN_WIDTH 8 #define SST_CLOS_CONFIG_MAX_START 16 #define SST_CLOS_CONFIG_MAX_WIDTH 8 static long isst_if_clos_param(void __user *argp) { struct tpmi_per_power_domain_info *power_domain_info; struct isst_clos_param clos_param; if (copy_from_user(&clos_param, argp, sizeof(clos_param))) return -EFAULT; power_domain_info = get_instance(clos_param.socket_id, clos_param.power_domain_id); if (!power_domain_info) return -EINVAL; if (clos_param.get_set) { _write_cp_info("clos.min_freq", clos_param.min_freq_mhz, (SST_CLOS_CONFIG_0_OFFSET + clos_param.clos * SST_REG_SIZE), SST_CLOS_CONFIG_MIN_START, SST_CLOS_CONFIG_MIN_WIDTH, SST_MUL_FACTOR_FREQ); _write_cp_info("clos.max_freq", clos_param.max_freq_mhz, (SST_CLOS_CONFIG_0_OFFSET + clos_param.clos * SST_REG_SIZE), SST_CLOS_CONFIG_MAX_START, SST_CLOS_CONFIG_MAX_WIDTH, SST_MUL_FACTOR_FREQ); _write_cp_info("clos.prio", clos_param.prop_prio, (SST_CLOS_CONFIG_0_OFFSET + clos_param.clos * SST_REG_SIZE), SST_CLOS_CONFIG_PRIO_START, SST_CLOS_CONFIG_PRIO_WIDTH, SST_MUL_FACTOR_NONE); } else { /* get */ _read_cp_info("clos.min_freq", clos_param.min_freq_mhz, (SST_CLOS_CONFIG_0_OFFSET + clos_param.clos * SST_REG_SIZE), SST_CLOS_CONFIG_MIN_START, SST_CLOS_CONFIG_MIN_WIDTH, SST_MUL_FACTOR_FREQ) _read_cp_info("clos.max_freq", clos_param.max_freq_mhz, (SST_CLOS_CONFIG_0_OFFSET + clos_param.clos * SST_REG_SIZE), SST_CLOS_CONFIG_MAX_START, SST_CLOS_CONFIG_MAX_WIDTH, SST_MUL_FACTOR_FREQ) _read_cp_info("clos.prio", clos_param.prop_prio, (SST_CLOS_CONFIG_0_OFFSET + clos_param.clos * SST_REG_SIZE), SST_CLOS_CONFIG_PRIO_START, SST_CLOS_CONFIG_PRIO_WIDTH, SST_MUL_FACTOR_NONE) if (copy_to_user(argp, &clos_param, sizeof(clos_param))) return -EFAULT; } return 0; } #define SST_CLOS_ASSOC_0_OFFSET 56 #define SST_CLOS_ASSOC_CPUS_PER_REG 16 #define SST_CLOS_ASSOC_BITS_PER_CPU 4 static long isst_if_clos_assoc(void __user *argp) { struct isst_if_clos_assoc_cmds assoc_cmds; unsigned char __user *ptr; int i; /* Each multi command has u16 command count as the first field */ if (copy_from_user(&assoc_cmds, argp, sizeof(assoc_cmds))) return -EFAULT; if (!assoc_cmds.cmd_count || assoc_cmds.cmd_count > ISST_IF_CMD_LIMIT) return -EINVAL; ptr = argp + offsetof(struct isst_if_clos_assoc_cmds, assoc_info); for (i = 0; i < assoc_cmds.cmd_count; ++i) { struct tpmi_per_power_domain_info *power_domain_info; struct isst_if_clos_assoc clos_assoc; int punit_id, punit_cpu_no, pkg_id; struct tpmi_sst_struct *sst_inst; int offset, shift, cpu; u64 val, mask, clos; if (copy_from_user(&clos_assoc, ptr, sizeof(clos_assoc))) return -EFAULT; if (clos_assoc.socket_id > topology_max_packages()) return -EINVAL; cpu = clos_assoc.logical_cpu; clos = clos_assoc.clos; if (assoc_cmds.punit_cpu_map) punit_cpu_no = cpu; else return -EOPNOTSUPP; if (punit_cpu_no < 0) return -EINVAL; punit_id = clos_assoc.power_domain_id; pkg_id = clos_assoc.socket_id; sst_inst = isst_common.sst_inst[pkg_id]; if (clos_assoc.power_domain_id > sst_inst->number_of_power_domains) return -EINVAL; power_domain_info = &sst_inst->power_domain_info[punit_id]; offset = SST_CLOS_ASSOC_0_OFFSET + (punit_cpu_no / SST_CLOS_ASSOC_CPUS_PER_REG) * SST_REG_SIZE; shift = punit_cpu_no % SST_CLOS_ASSOC_CPUS_PER_REG; shift *= SST_CLOS_ASSOC_BITS_PER_CPU; val = readq(power_domain_info->sst_base + power_domain_info->sst_header.cp_offset + offset); if (assoc_cmds.get_set) { mask = GENMASK_ULL((shift + SST_CLOS_ASSOC_BITS_PER_CPU - 1), shift); val &= ~mask; val |= (clos << shift); writeq(val, power_domain_info->sst_base + power_domain_info->sst_header.cp_offset + offset); } else { val >>= shift; clos_assoc.clos = val & GENMASK(SST_CLOS_ASSOC_BITS_PER_CPU - 1, 0); if (copy_to_user(ptr, &clos_assoc, sizeof(clos_assoc))) return -EFAULT; } ptr += sizeof(clos_assoc); } return 0; } #define _read_pp_info(name_str, name, offset, start, width, mult_factor)\ {\ u64 val, _mask;\ \ val = readq(power_domain_info->sst_base + power_domain_info->sst_header.pp_offset +\ (offset));\ _mask = GENMASK_ULL((start + width - 1), start);\ val &= _mask;\ val >>= start;\ name = (val * mult_factor);\ } #define _write_pp_info(name_str, name, offset, start, width, div_factor)\ {\ u64 val, _mask;\ \ val = readq(power_domain_info->sst_base + power_domain_info->sst_header.pp_offset +\ (offset));\ _mask = GENMASK((start + width - 1), start);\ val &= ~_mask;\ val |= (name / div_factor) << start;\ writeq(val, power_domain_info->sst_base + power_domain_info->sst_header.pp_offset +\ (offset));\ } #define _read_bf_level_info(name_str, name, level, offset, start, width, mult_factor)\ {\ u64 val, _mask;\ \ val = readq(power_domain_info->sst_base +\ power_domain_info->perf_levels[level].mmio_offset +\ (power_domain_info->feature_offsets.bf_offset * 8) + (offset));\ _mask = GENMASK_ULL((start + width - 1), start);\ val &= _mask; \ val >>= start;\ name = (val * mult_factor);\ } #define _read_tf_level_info(name_str, name, level, offset, start, width, mult_factor)\ {\ u64 val, _mask;\ \ val = readq(power_domain_info->sst_base +\ power_domain_info->perf_levels[level].mmio_offset +\ (power_domain_info->feature_offsets.tf_offset * 8) + (offset));\ _mask = GENMASK_ULL((start + width - 1), start);\ val &= _mask; \ val >>= start;\ name = (val * mult_factor);\ } #define SST_PP_STATUS_OFFSET 32 #define SST_PP_LEVEL_START 0 #define SST_PP_LEVEL_WIDTH 3 #define SST_PP_LOCK_START 3 #define SST_PP_LOCK_WIDTH 1 #define SST_PP_FEATURE_STATE_START 8 #define SST_PP_FEATURE_STATE_WIDTH 8 #define SST_BF_FEATURE_SUPPORTED_START 12 #define SST_BF_FEATURE_SUPPORTED_WIDTH 1 #define SST_TF_FEATURE_SUPPORTED_START 12 #define SST_TF_FEATURE_SUPPORTED_WIDTH 1 static int isst_if_get_perf_level(void __user *argp) { struct isst_perf_level_info perf_level; struct tpmi_per_power_domain_info *power_domain_info; if (copy_from_user(&perf_level, argp, sizeof(perf_level))) return -EFAULT; power_domain_info = get_instance(perf_level.socket_id, perf_level.power_domain_id); if (!power_domain_info) return -EINVAL; perf_level.max_level = power_domain_info->max_level; perf_level.level_mask = power_domain_info->pp_header.allowed_level_mask; perf_level.feature_rev = power_domain_info->pp_header.feature_rev; _read_pp_info("current_level", perf_level.current_level, SST_PP_STATUS_OFFSET, SST_PP_LEVEL_START, SST_PP_LEVEL_WIDTH, SST_MUL_FACTOR_NONE) _read_pp_info("locked", perf_level.locked, SST_PP_STATUS_OFFSET, SST_PP_LOCK_START, SST_PP_LEVEL_WIDTH, SST_MUL_FACTOR_NONE) _read_pp_info("feature_state", perf_level.feature_state, SST_PP_STATUS_OFFSET, SST_PP_FEATURE_STATE_START, SST_PP_FEATURE_STATE_WIDTH, SST_MUL_FACTOR_NONE) perf_level.enabled = !!(power_domain_info->sst_header.cap_mask & BIT(1)); _read_bf_level_info("bf_support", perf_level.sst_bf_support, 0, 0, SST_BF_FEATURE_SUPPORTED_START, SST_BF_FEATURE_SUPPORTED_WIDTH, SST_MUL_FACTOR_NONE); _read_tf_level_info("tf_support", perf_level.sst_tf_support, 0, 0, SST_TF_FEATURE_SUPPORTED_START, SST_TF_FEATURE_SUPPORTED_WIDTH, SST_MUL_FACTOR_NONE); if (copy_to_user(argp, &perf_level, sizeof(perf_level))) return -EFAULT; return 0; } #define SST_PP_CONTROL_OFFSET 24 #define SST_PP_LEVEL_CHANGE_TIME_MS 5 #define SST_PP_LEVEL_CHANGE_RETRY_COUNT 3 static int isst_if_set_perf_level(void __user *argp) { struct isst_perf_level_control perf_level; struct tpmi_per_power_domain_info *power_domain_info; int level, retry = 0; if (disable_dynamic_sst_features()) return -EFAULT; if (copy_from_user(&perf_level, argp, sizeof(perf_level))) return -EFAULT; power_domain_info = get_instance(perf_level.socket_id, perf_level.power_domain_id); if (!power_domain_info) return -EINVAL; if (!(power_domain_info->pp_header.allowed_level_mask & BIT(perf_level.level))) return -EINVAL; _read_pp_info("current_level", level, SST_PP_STATUS_OFFSET, SST_PP_LEVEL_START, SST_PP_LEVEL_WIDTH, SST_MUL_FACTOR_NONE) /* If the requested new level is same as the current level, reject */ if (perf_level.level == level) return -EINVAL; _write_pp_info("perf_level", perf_level.level, SST_PP_CONTROL_OFFSET, SST_PP_LEVEL_START, SST_PP_LEVEL_WIDTH, SST_MUL_FACTOR_NONE) /* It is possible that firmware is busy (although unlikely), so retry */ do { /* Give time to FW to process */ msleep(SST_PP_LEVEL_CHANGE_TIME_MS); _read_pp_info("current_level", level, SST_PP_STATUS_OFFSET, SST_PP_LEVEL_START, SST_PP_LEVEL_WIDTH, SST_MUL_FACTOR_NONE) /* Check if the new level is active */ if (perf_level.level == level) break; } while (retry++ < SST_PP_LEVEL_CHANGE_RETRY_COUNT); /* If the level change didn't happen, return fault */ if (perf_level.level != level) return -EFAULT; /* Reset the feature state on level change */ _write_pp_info("perf_feature", 0, SST_PP_CONTROL_OFFSET, SST_PP_FEATURE_STATE_START, SST_PP_FEATURE_STATE_WIDTH, SST_MUL_FACTOR_NONE) /* Give time to FW to process */ msleep(SST_PP_LEVEL_CHANGE_TIME_MS); return 0; } static int isst_if_set_perf_feature(void __user *argp) { struct isst_perf_feature_control perf_feature; struct tpmi_per_power_domain_info *power_domain_info; if (disable_dynamic_sst_features()) return -EFAULT; if (copy_from_user(&perf_feature, argp, sizeof(perf_feature))) return -EFAULT; power_domain_info = get_instance(perf_feature.socket_id, perf_feature.power_domain_id); if (!power_domain_info) return -EINVAL; _write_pp_info("perf_feature", perf_feature.feature, SST_PP_CONTROL_OFFSET, SST_PP_FEATURE_STATE_START, SST_PP_FEATURE_STATE_WIDTH, SST_MUL_FACTOR_NONE) return 0; } #define _read_pp_level_info(name_str, name, level, offset, start, width, mult_factor)\ {\ u64 val, _mask;\ \ val = readq(power_domain_info->sst_base +\ power_domain_info->perf_levels[level].mmio_offset +\ (power_domain_info->feature_offsets.pp_offset * 8) + (offset));\ _mask = GENMASK_ULL((start + width - 1), start);\ val &= _mask; \ val >>= start;\ name = (val * mult_factor);\ } #define SST_PP_INFO_0_OFFSET 0 #define SST_PP_INFO_1_OFFSET 8 #define SST_PP_INFO_2_OFFSET 16 #define SST_PP_INFO_3_OFFSET 24 /* SST_PP_INFO_4_OFFSET to SST_PP_INFO_9_OFFSET are trl levels */ #define SST_PP_INFO_4_OFFSET 32 #define SST_PP_INFO_10_OFFSET 80 #define SST_PP_INFO_11_OFFSET 88 #define SST_PP_P1_SSE_START 0 #define SST_PP_P1_SSE_WIDTH 8 #define SST_PP_P1_AVX2_START 8 #define SST_PP_P1_AVX2_WIDTH 8 #define SST_PP_P1_AVX512_START 16 #define SST_PP_P1_AVX512_WIDTH 8 #define SST_PP_P1_AMX_START 24 #define SST_PP_P1_AMX_WIDTH 8 #define SST_PP_TDP_START 32 #define SST_PP_TDP_WIDTH 15 #define SST_PP_T_PROCHOT_START 47 #define SST_PP_T_PROCHOT_WIDTH 8 #define SST_PP_MAX_MEMORY_FREQ_START 55 #define SST_PP_MAX_MEMORY_FREQ_WIDTH 7 #define SST_PP_COOLING_TYPE_START 62 #define SST_PP_COOLING_TYPE_WIDTH 2 #define SST_PP_TRL_0_RATIO_0_START 0 #define SST_PP_TRL_0_RATIO_0_WIDTH 8 #define SST_PP_TRL_CORES_BUCKET_0_START 0 #define SST_PP_TRL_CORES_BUCKET_0_WIDTH 8 #define SST_PP_CORE_RATIO_P0_START 0 #define SST_PP_CORE_RATIO_P0_WIDTH 8 #define SST_PP_CORE_RATIO_P1_START 8 #define SST_PP_CORE_RATIO_P1_WIDTH 8 #define SST_PP_CORE_RATIO_PN_START 16 #define SST_PP_CORE_RATIO_PN_WIDTH 8 #define SST_PP_CORE_RATIO_PM_START 24 #define SST_PP_CORE_RATIO_PM_WIDTH 8 #define SST_PP_CORE_RATIO_P0_FABRIC_START 32 #define SST_PP_CORE_RATIO_P0_FABRIC_WIDTH 8 #define SST_PP_CORE_RATIO_P1_FABRIC_START 40 #define SST_PP_CORE_RATIO_P1_FABRIC_WIDTH 8 #define SST_PP_CORE_RATIO_PM_FABRIC_START 48 #define SST_PP_CORE_RATIO_PM_FABRIC_WIDTH 8 static int isst_if_get_perf_level_info(void __user *argp) { struct isst_perf_level_data_info perf_level; struct tpmi_per_power_domain_info *power_domain_info; int i, j; if (copy_from_user(&perf_level, argp, sizeof(perf_level))) return -EFAULT; power_domain_info = get_instance(perf_level.socket_id, perf_level.power_domain_id); if (!power_domain_info) return -EINVAL; if (perf_level.level > power_domain_info->max_level) return -EINVAL; if (!(power_domain_info->pp_header.level_en_mask & BIT(perf_level.level))) return -EINVAL; _read_pp_level_info("tdp_ratio", perf_level.tdp_ratio, perf_level.level, SST_PP_INFO_0_OFFSET, SST_PP_P1_SSE_START, SST_PP_P1_SSE_WIDTH, SST_MUL_FACTOR_NONE) _read_pp_level_info("base_freq_mhz", perf_level.base_freq_mhz, perf_level.level, SST_PP_INFO_0_OFFSET, SST_PP_P1_SSE_START, SST_PP_P1_SSE_WIDTH, SST_MUL_FACTOR_FREQ) _read_pp_level_info("base_freq_avx2_mhz", perf_level.base_freq_avx2_mhz, perf_level.level, SST_PP_INFO_0_OFFSET, SST_PP_P1_AVX2_START, SST_PP_P1_AVX2_WIDTH, SST_MUL_FACTOR_FREQ) _read_pp_level_info("base_freq_avx512_mhz", perf_level.base_freq_avx512_mhz, perf_level.level, SST_PP_INFO_0_OFFSET, SST_PP_P1_AVX512_START, SST_PP_P1_AVX512_WIDTH, SST_MUL_FACTOR_FREQ) _read_pp_level_info("base_freq_amx_mhz", perf_level.base_freq_amx_mhz, perf_level.level, SST_PP_INFO_0_OFFSET, SST_PP_P1_AMX_START, SST_PP_P1_AMX_WIDTH, SST_MUL_FACTOR_FREQ) _read_pp_level_info("thermal_design_power_w", perf_level.thermal_design_power_w, perf_level.level, SST_PP_INFO_1_OFFSET, SST_PP_TDP_START, SST_PP_TDP_WIDTH, SST_MUL_FACTOR_NONE) perf_level.thermal_design_power_w /= 8; /* units are in 1/8th watt */ _read_pp_level_info("tjunction_max_c", perf_level.tjunction_max_c, perf_level.level, SST_PP_INFO_1_OFFSET, SST_PP_T_PROCHOT_START, SST_PP_T_PROCHOT_WIDTH, SST_MUL_FACTOR_NONE) _read_pp_level_info("max_memory_freq_mhz", perf_level.max_memory_freq_mhz, perf_level.level, SST_PP_INFO_1_OFFSET, SST_PP_MAX_MEMORY_FREQ_START, SST_PP_MAX_MEMORY_FREQ_WIDTH, SST_MUL_FACTOR_FREQ) _read_pp_level_info("cooling_type", perf_level.cooling_type, perf_level.level, SST_PP_INFO_1_OFFSET, SST_PP_COOLING_TYPE_START, SST_PP_COOLING_TYPE_WIDTH, SST_MUL_FACTOR_NONE) for (i = 0; i < TRL_MAX_LEVELS; ++i) { for (j = 0; j < TRL_MAX_BUCKETS; ++j) _read_pp_level_info("trl*_bucket*_freq_mhz", perf_level.trl_freq_mhz[i][j], perf_level.level, SST_PP_INFO_4_OFFSET + (i * SST_PP_TRL_0_RATIO_0_WIDTH), j * SST_PP_TRL_0_RATIO_0_WIDTH, SST_PP_TRL_0_RATIO_0_WIDTH, SST_MUL_FACTOR_FREQ); } for (i = 0; i < TRL_MAX_BUCKETS; ++i) _read_pp_level_info("bucket*_core_count", perf_level.bucket_core_counts[i], perf_level.level, SST_PP_INFO_10_OFFSET, SST_PP_TRL_CORES_BUCKET_0_WIDTH * i, SST_PP_TRL_CORES_BUCKET_0_WIDTH, SST_MUL_FACTOR_NONE) perf_level.max_buckets = TRL_MAX_BUCKETS; perf_level.max_trl_levels = TRL_MAX_LEVELS; _read_pp_level_info("p0_freq_mhz", perf_level.p0_freq_mhz, perf_level.level, SST_PP_INFO_11_OFFSET, SST_PP_CORE_RATIO_P0_START, SST_PP_CORE_RATIO_P0_WIDTH, SST_MUL_FACTOR_FREQ) _read_pp_level_info("p1_freq_mhz", perf_level.p1_freq_mhz, perf_level.level, SST_PP_INFO_11_OFFSET, SST_PP_CORE_RATIO_P1_START, SST_PP_CORE_RATIO_P1_WIDTH, SST_MUL_FACTOR_FREQ) _read_pp_level_info("pn_freq_mhz", perf_level.pn_freq_mhz, perf_level.level, SST_PP_INFO_11_OFFSET, SST_PP_CORE_RATIO_PN_START, SST_PP_CORE_RATIO_PN_WIDTH, SST_MUL_FACTOR_FREQ) _read_pp_level_info("pm_freq_mhz", perf_level.pm_freq_mhz, perf_level.level, SST_PP_INFO_11_OFFSET, SST_PP_CORE_RATIO_PM_START, SST_PP_CORE_RATIO_PM_WIDTH, SST_MUL_FACTOR_FREQ) _read_pp_level_info("p0_fabric_freq_mhz", perf_level.p0_fabric_freq_mhz, perf_level.level, SST_PP_INFO_11_OFFSET, SST_PP_CORE_RATIO_P0_FABRIC_START, SST_PP_CORE_RATIO_P0_FABRIC_WIDTH, SST_MUL_FACTOR_FREQ) _read_pp_level_info("p1_fabric_freq_mhz", perf_level.p1_fabric_freq_mhz, perf_level.level, SST_PP_INFO_11_OFFSET, SST_PP_CORE_RATIO_P1_FABRIC_START, SST_PP_CORE_RATIO_P1_FABRIC_WIDTH, SST_MUL_FACTOR_FREQ) _read_pp_level_info("pm_fabric_freq_mhz", perf_level.pm_fabric_freq_mhz, perf_level.level, SST_PP_INFO_11_OFFSET, SST_PP_CORE_RATIO_PM_FABRIC_START, SST_PP_CORE_RATIO_PM_FABRIC_WIDTH, SST_MUL_FACTOR_FREQ) if (copy_to_user(argp, &perf_level, sizeof(perf_level))) return -EFAULT; return 0; } #define SST_PP_FUSED_CORE_COUNT_START 0 #define SST_PP_FUSED_CORE_COUNT_WIDTH 8 #define SST_PP_RSLVD_CORE_COUNT_START 8 #define SST_PP_RSLVD_CORE_COUNT_WIDTH 8 #define SST_PP_RSLVD_CORE_MASK_START 0 #define SST_PP_RSLVD_CORE_MASK_WIDTH 64 static int isst_if_get_perf_level_mask(void __user *argp) { static struct isst_perf_level_cpu_mask cpumask; struct tpmi_per_power_domain_info *power_domain_info; u64 mask; if (copy_from_user(&cpumask, argp, sizeof(cpumask))) return -EFAULT; power_domain_info = get_instance(cpumask.socket_id, cpumask.power_domain_id); if (!power_domain_info) return -EINVAL; _read_pp_level_info("mask", mask, cpumask.level, SST_PP_INFO_2_OFFSET, SST_PP_RSLVD_CORE_MASK_START, SST_PP_RSLVD_CORE_MASK_WIDTH, SST_MUL_FACTOR_NONE) cpumask.mask = mask; if (!cpumask.punit_cpu_map) return -EOPNOTSUPP; if (copy_to_user(argp, &cpumask, sizeof(cpumask))) return -EFAULT; return 0; } #define SST_BF_INFO_0_OFFSET 0 #define SST_BF_INFO_1_OFFSET 8 #define SST_BF_P1_HIGH_START 13 #define SST_BF_P1_HIGH_WIDTH 8 #define SST_BF_P1_LOW_START 21 #define SST_BF_P1_LOW_WIDTH 8 #define SST_BF_T_PROHOT_START 38 #define SST_BF_T_PROHOT_WIDTH 8 #define SST_BF_TDP_START 46 #define SST_BF_TDP_WIDTH 15 static int isst_if_get_base_freq_info(void __user *argp) { static struct isst_base_freq_info base_freq; struct tpmi_per_power_domain_info *power_domain_info; if (copy_from_user(&base_freq, argp, sizeof(base_freq))) return -EFAULT; power_domain_info = get_instance(base_freq.socket_id, base_freq.power_domain_id); if (!power_domain_info) return -EINVAL; if (base_freq.level > power_domain_info->max_level) return -EINVAL; _read_bf_level_info("p1_high", base_freq.high_base_freq_mhz, base_freq.level, SST_BF_INFO_0_OFFSET, SST_BF_P1_HIGH_START, SST_BF_P1_HIGH_WIDTH, SST_MUL_FACTOR_FREQ) _read_bf_level_info("p1_low", base_freq.low_base_freq_mhz, base_freq.level, SST_BF_INFO_0_OFFSET, SST_BF_P1_LOW_START, SST_BF_P1_LOW_WIDTH, SST_MUL_FACTOR_FREQ) _read_bf_level_info("BF-TJ", base_freq.tjunction_max_c, base_freq.level, SST_BF_INFO_0_OFFSET, SST_BF_T_PROHOT_START, SST_BF_T_PROHOT_WIDTH, SST_MUL_FACTOR_NONE) _read_bf_level_info("BF-tdp", base_freq.thermal_design_power_w, base_freq.level, SST_BF_INFO_0_OFFSET, SST_BF_TDP_START, SST_BF_TDP_WIDTH, SST_MUL_FACTOR_NONE) base_freq.thermal_design_power_w /= 8; /*unit = 1/8th watt*/ if (copy_to_user(argp, &base_freq, sizeof(base_freq))) return -EFAULT; return 0; } #define P1_HI_CORE_MASK_START 0 #define P1_HI_CORE_MASK_WIDTH 64 static int isst_if_get_base_freq_mask(void __user *argp) { static struct isst_perf_level_cpu_mask cpumask; struct tpmi_per_power_domain_info *power_domain_info; u64 mask; if (copy_from_user(&cpumask, argp, sizeof(cpumask))) return -EFAULT; power_domain_info = get_instance(cpumask.socket_id, cpumask.power_domain_id); if (!power_domain_info) return -EINVAL; _read_bf_level_info("BF-cpumask", mask, cpumask.level, SST_BF_INFO_1_OFFSET, P1_HI_CORE_MASK_START, P1_HI_CORE_MASK_WIDTH, SST_MUL_FACTOR_NONE) cpumask.mask = mask; if (!cpumask.punit_cpu_map) return -EOPNOTSUPP; if (copy_to_user(argp, &cpumask, sizeof(cpumask))) return -EFAULT; return 0; } static int isst_if_get_tpmi_instance_count(void __user *argp) { struct isst_tpmi_instance_count tpmi_inst; struct tpmi_sst_struct *sst_inst; int i; if (copy_from_user(&tpmi_inst, argp, sizeof(tpmi_inst))) return -EFAULT; if (tpmi_inst.socket_id >= topology_max_packages()) return -EINVAL; tpmi_inst.count = isst_common.sst_inst[tpmi_inst.socket_id]->number_of_power_domains; sst_inst = isst_common.sst_inst[tpmi_inst.socket_id]; tpmi_inst.valid_mask = 0; for (i = 0; i < sst_inst->number_of_power_domains; ++i) { struct tpmi_per_power_domain_info *pd_info; pd_info = &sst_inst->power_domain_info[i]; if (pd_info->sst_base) tpmi_inst.valid_mask |= BIT(i); } if (copy_to_user(argp, &tpmi_inst, sizeof(tpmi_inst))) return -EFAULT; return 0; } #define SST_TF_INFO_0_OFFSET 0 #define SST_TF_INFO_1_OFFSET 8 #define SST_TF_INFO_2_OFFSET 16 #define SST_TF_MAX_LP_CLIP_RATIOS TRL_MAX_LEVELS #define SST_TF_LP_CLIP_RATIO_0_START 16 #define SST_TF_LP_CLIP_RATIO_0_WIDTH 8 #define SST_TF_RATIO_0_START 0 #define SST_TF_RATIO_0_WIDTH 8 #define SST_TF_NUM_CORE_0_START 0 #define SST_TF_NUM_CORE_0_WIDTH 8 static int isst_if_get_turbo_freq_info(void __user *argp) { static struct isst_turbo_freq_info turbo_freq; struct tpmi_per_power_domain_info *power_domain_info; int i, j; if (copy_from_user(&turbo_freq, argp, sizeof(turbo_freq))) return -EFAULT; power_domain_info = get_instance(turbo_freq.socket_id, turbo_freq.power_domain_id); if (!power_domain_info) return -EINVAL; if (turbo_freq.level > power_domain_info->max_level) return -EINVAL; turbo_freq.max_buckets = TRL_MAX_BUCKETS; turbo_freq.max_trl_levels = TRL_MAX_LEVELS; turbo_freq.max_clip_freqs = SST_TF_MAX_LP_CLIP_RATIOS; for (i = 0; i < turbo_freq.max_clip_freqs; ++i) _read_tf_level_info("lp_clip*", turbo_freq.lp_clip_freq_mhz[i], turbo_freq.level, SST_TF_INFO_0_OFFSET, SST_TF_LP_CLIP_RATIO_0_START + (i * SST_TF_LP_CLIP_RATIO_0_WIDTH), SST_TF_LP_CLIP_RATIO_0_WIDTH, SST_MUL_FACTOR_FREQ) for (i = 0; i < TRL_MAX_LEVELS; ++i) { for (j = 0; j < TRL_MAX_BUCKETS; ++j) _read_tf_level_info("cydn*_bucket_*_trl", turbo_freq.trl_freq_mhz[i][j], turbo_freq.level, SST_TF_INFO_2_OFFSET + (i * SST_TF_RATIO_0_WIDTH), j * SST_TF_RATIO_0_WIDTH, SST_TF_RATIO_0_WIDTH, SST_MUL_FACTOR_FREQ) } for (i = 0; i < TRL_MAX_BUCKETS; ++i) _read_tf_level_info("bucket_*_core_count", turbo_freq.bucket_core_counts[i], turbo_freq.level, SST_TF_INFO_1_OFFSET, SST_TF_NUM_CORE_0_WIDTH * i, SST_TF_NUM_CORE_0_WIDTH, SST_MUL_FACTOR_NONE) if (copy_to_user(argp, &turbo_freq, sizeof(turbo_freq))) return -EFAULT; return 0; } static long isst_if_def_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { void __user *argp = (void __user *)arg; long ret = -ENOTTY; mutex_lock(&isst_tpmi_dev_lock); switch (cmd) { case ISST_IF_COUNT_TPMI_INSTANCES: ret = isst_if_get_tpmi_instance_count(argp); break; case ISST_IF_CORE_POWER_STATE: ret = isst_if_core_power_state(argp); break; case ISST_IF_CLOS_PARAM: ret = isst_if_clos_param(argp); break; case ISST_IF_CLOS_ASSOC: ret = isst_if_clos_assoc(argp); break; case ISST_IF_PERF_LEVELS: ret = isst_if_get_perf_level(argp); break; case ISST_IF_PERF_SET_LEVEL: ret = isst_if_set_perf_level(argp); break; case ISST_IF_PERF_SET_FEATURE: ret = isst_if_set_perf_feature(argp); break; case ISST_IF_GET_PERF_LEVEL_INFO: ret = isst_if_get_perf_level_info(argp); break; case ISST_IF_GET_PERF_LEVEL_CPU_MASK: ret = isst_if_get_perf_level_mask(argp); break; case ISST_IF_GET_BASE_FREQ_INFO: ret = isst_if_get_base_freq_info(argp); break; case ISST_IF_GET_BASE_FREQ_CPU_MASK: ret = isst_if_get_base_freq_mask(argp); break; case ISST_IF_GET_TURBO_FREQ_INFO: ret = isst_if_get_turbo_freq_info(argp); break; default: break; } mutex_unlock(&isst_tpmi_dev_lock); return ret; } #define TPMI_SST_AUTO_SUSPEND_DELAY_MS 2000 int tpmi_sst_dev_add(struct auxiliary_device *auxdev) { struct intel_tpmi_plat_info *plat_info; struct tpmi_sst_struct *tpmi_sst; int i, ret, pkg = 0, inst = 0; int num_resources; plat_info = tpmi_get_platform_data(auxdev); if (!plat_info) { dev_err(&auxdev->dev, "No platform info\n"); return -EINVAL; } pkg = plat_info->package_id; if (pkg >= topology_max_packages()) { dev_err(&auxdev->dev, "Invalid package id :%x\n", pkg); return -EINVAL; } if (isst_common.sst_inst[pkg]) return -EEXIST; num_resources = tpmi_get_resource_count(auxdev); if (!num_resources) return -EINVAL; tpmi_sst = devm_kzalloc(&auxdev->dev, sizeof(*tpmi_sst), GFP_KERNEL); if (!tpmi_sst) return -ENOMEM; tpmi_sst->power_domain_info = devm_kcalloc(&auxdev->dev, num_resources, sizeof(*tpmi_sst->power_domain_info), GFP_KERNEL); if (!tpmi_sst->power_domain_info) return -ENOMEM; tpmi_sst->number_of_power_domains = num_resources; for (i = 0; i < num_resources; ++i) { struct resource *res; res = tpmi_get_resource_at_index(auxdev, i); if (!res) { tpmi_sst->power_domain_info[i].sst_base = NULL; continue; } tpmi_sst->power_domain_info[i].package_id = pkg; tpmi_sst->power_domain_info[i].power_domain_id = i; tpmi_sst->power_domain_info[i].auxdev = auxdev; tpmi_sst->power_domain_info[i].sst_base = devm_ioremap_resource(&auxdev->dev, res); if (IS_ERR(tpmi_sst->power_domain_info[i].sst_base)) return PTR_ERR(tpmi_sst->power_domain_info[i].sst_base); ret = sst_main(auxdev, &tpmi_sst->power_domain_info[i]); if (ret) { devm_iounmap(&auxdev->dev, tpmi_sst->power_domain_info[i].sst_base); tpmi_sst->power_domain_info[i].sst_base = NULL; continue; } ++inst; } if (!inst) return -ENODEV; tpmi_sst->package_id = pkg; auxiliary_set_drvdata(auxdev, tpmi_sst); mutex_lock(&isst_tpmi_dev_lock); if (isst_common.max_index < pkg) isst_common.max_index = pkg; isst_common.sst_inst[pkg] = tpmi_sst; mutex_unlock(&isst_tpmi_dev_lock); return 0; } EXPORT_SYMBOL_NS_GPL(tpmi_sst_dev_add, INTEL_TPMI_SST); void tpmi_sst_dev_remove(struct auxiliary_device *auxdev) { struct tpmi_sst_struct *tpmi_sst = auxiliary_get_drvdata(auxdev); mutex_lock(&isst_tpmi_dev_lock); isst_common.sst_inst[tpmi_sst->package_id] = NULL; mutex_unlock(&isst_tpmi_dev_lock); } EXPORT_SYMBOL_NS_GPL(tpmi_sst_dev_remove, INTEL_TPMI_SST); void tpmi_sst_dev_suspend(struct auxiliary_device *auxdev) { struct tpmi_sst_struct *tpmi_sst = auxiliary_get_drvdata(auxdev); struct tpmi_per_power_domain_info *power_domain_info = tpmi_sst->power_domain_info; void __iomem *cp_base; cp_base = power_domain_info->sst_base + power_domain_info->sst_header.cp_offset; power_domain_info->saved_sst_cp_control = readq(cp_base + SST_CP_CONTROL_OFFSET); memcpy_fromio(power_domain_info->saved_clos_configs, cp_base + SST_CLOS_CONFIG_0_OFFSET, sizeof(power_domain_info->saved_clos_configs)); memcpy_fromio(power_domain_info->saved_clos_assocs, cp_base + SST_CLOS_ASSOC_0_OFFSET, sizeof(power_domain_info->saved_clos_assocs)); power_domain_info->saved_pp_control = readq(power_domain_info->sst_base + power_domain_info->sst_header.pp_offset + SST_PP_CONTROL_OFFSET); } EXPORT_SYMBOL_NS_GPL(tpmi_sst_dev_suspend, INTEL_TPMI_SST); void tpmi_sst_dev_resume(struct auxiliary_device *auxdev) { struct tpmi_sst_struct *tpmi_sst = auxiliary_get_drvdata(auxdev); struct tpmi_per_power_domain_info *power_domain_info = tpmi_sst->power_domain_info; void __iomem *cp_base; cp_base = power_domain_info->sst_base + power_domain_info->sst_header.cp_offset; writeq(power_domain_info->saved_sst_cp_control, cp_base + SST_CP_CONTROL_OFFSET); memcpy_toio(cp_base + SST_CLOS_CONFIG_0_OFFSET, power_domain_info->saved_clos_configs, sizeof(power_domain_info->saved_clos_configs)); memcpy_toio(cp_base + SST_CLOS_ASSOC_0_OFFSET, power_domain_info->saved_clos_assocs, sizeof(power_domain_info->saved_clos_assocs)); writeq(power_domain_info->saved_pp_control, power_domain_info->sst_base + power_domain_info->sst_header.pp_offset + SST_PP_CONTROL_OFFSET); } EXPORT_SYMBOL_NS_GPL(tpmi_sst_dev_resume, INTEL_TPMI_SST); #define ISST_TPMI_API_VERSION 0x02 int tpmi_sst_init(void) { struct isst_if_cmd_cb cb; int ret = 0; mutex_lock(&isst_tpmi_dev_lock); if (isst_core_usage_count) { ++isst_core_usage_count; goto init_done; } isst_common.sst_inst = kcalloc(topology_max_packages(), sizeof(*isst_common.sst_inst), GFP_KERNEL); if (!isst_common.sst_inst) { ret = -ENOMEM; goto init_done; } memset(&cb, 0, sizeof(cb)); cb.cmd_size = sizeof(struct isst_if_io_reg); cb.offset = offsetof(struct isst_if_io_regs, io_reg); cb.cmd_callback = NULL; cb.api_version = ISST_TPMI_API_VERSION; cb.def_ioctl = isst_if_def_ioctl; cb.owner = THIS_MODULE; ret = isst_if_cdev_register(ISST_IF_DEV_TPMI, &cb); if (ret) kfree(isst_common.sst_inst); else ++isst_core_usage_count; init_done: mutex_unlock(&isst_tpmi_dev_lock); return ret; } EXPORT_SYMBOL_NS_GPL(tpmi_sst_init, INTEL_TPMI_SST); void tpmi_sst_exit(void) { mutex_lock(&isst_tpmi_dev_lock); if (isst_core_usage_count) --isst_core_usage_count; if (!isst_core_usage_count) { isst_if_cdev_unregister(ISST_IF_DEV_TPMI); kfree(isst_common.sst_inst); } mutex_unlock(&isst_tpmi_dev_lock); } EXPORT_SYMBOL_NS_GPL(tpmi_sst_exit, INTEL_TPMI_SST); MODULE_IMPORT_NS(INTEL_TPMI); MODULE_IMPORT_NS(INTEL_TPMI_POWER_DOMAIN); MODULE_LICENSE("GPL");
linux-master
drivers/platform/x86/intel/speed_select_if/isst_tpmi_core.c