python_code
stringlengths
0
1.8M
repo_name
stringclasses
7 values
file_path
stringlengths
5
99
// SPDX-License-Identifier: ISC /* * Copyright (C) 2018 Felix Fietkau <[email protected]> */ #include "mt76.h" static unsigned long mt76_aggr_tid_to_timeo(u8 tidno) { /* Currently voice traffic (AC_VO) always runs without aggregation, * no special handling is needed. AC_BE/AC_BK use tids 0-3. Just check * for non AC_BK/AC_BE and set smaller timeout for it. */ return HZ / (tidno >= 4 ? 25 : 10); } static void mt76_aggr_release(struct mt76_rx_tid *tid, struct sk_buff_head *frames, int idx) { struct sk_buff *skb; tid->head = ieee80211_sn_inc(tid->head); skb = tid->reorder_buf[idx]; if (!skb) return; tid->reorder_buf[idx] = NULL; tid->nframes--; __skb_queue_tail(frames, skb); } static void mt76_rx_aggr_release_frames(struct mt76_rx_tid *tid, struct sk_buff_head *frames, u16 head) { int idx; while (ieee80211_sn_less(tid->head, head)) { idx = tid->head % tid->size; mt76_aggr_release(tid, frames, idx); } } static void mt76_rx_aggr_release_head(struct mt76_rx_tid *tid, struct sk_buff_head *frames) { int idx = tid->head % tid->size; while (tid->reorder_buf[idx]) { mt76_aggr_release(tid, frames, idx); idx = tid->head % tid->size; } } static void mt76_rx_aggr_check_release(struct mt76_rx_tid *tid, struct sk_buff_head *frames) { struct mt76_rx_status *status; struct sk_buff *skb; int start, idx, nframes; if (!tid->nframes) return; mt76_rx_aggr_release_head(tid, frames); start = tid->head % tid->size; nframes = tid->nframes; for (idx = (tid->head + 1) % tid->size; idx != start && nframes; idx = (idx + 1) % tid->size) { skb = tid->reorder_buf[idx]; if (!skb) continue; nframes--; status = (struct mt76_rx_status *)skb->cb; if (!time_after32(jiffies, status->reorder_time + mt76_aggr_tid_to_timeo(tid->num))) continue; mt76_rx_aggr_release_frames(tid, frames, status->seqno); } mt76_rx_aggr_release_head(tid, frames); } static void mt76_rx_aggr_reorder_work(struct work_struct *work) { struct mt76_rx_tid *tid = container_of(work, struct mt76_rx_tid, reorder_work.work); struct mt76_dev *dev = tid->dev; struct sk_buff_head frames; int nframes; __skb_queue_head_init(&frames); local_bh_disable(); rcu_read_lock(); spin_lock(&tid->lock); mt76_rx_aggr_check_release(tid, &frames); nframes = tid->nframes; spin_unlock(&tid->lock); if (nframes) ieee80211_queue_delayed_work(tid->dev->hw, &tid->reorder_work, mt76_aggr_tid_to_timeo(tid->num)); mt76_rx_complete(dev, &frames, NULL); rcu_read_unlock(); local_bh_enable(); } static void mt76_rx_aggr_check_ctl(struct sk_buff *skb, struct sk_buff_head *frames) { struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; struct ieee80211_bar *bar = mt76_skb_get_hdr(skb); struct mt76_wcid *wcid = status->wcid; struct mt76_rx_tid *tid; u8 tidno = status->qos_ctl & IEEE80211_QOS_CTL_TID_MASK; u16 seqno; if (!ieee80211_is_ctl(bar->frame_control)) return; if (!ieee80211_is_back_req(bar->frame_control)) return; status->qos_ctl = tidno = le16_to_cpu(bar->control) >> 12; seqno = IEEE80211_SEQ_TO_SN(le16_to_cpu(bar->start_seq_num)); tid = rcu_dereference(wcid->aggr[tidno]); if (!tid) return; spin_lock_bh(&tid->lock); if (!tid->stopped) { mt76_rx_aggr_release_frames(tid, frames, seqno); mt76_rx_aggr_release_head(tid, frames); } spin_unlock_bh(&tid->lock); } void mt76_rx_aggr_reorder(struct sk_buff *skb, struct sk_buff_head *frames) { struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; struct mt76_wcid *wcid = status->wcid; struct ieee80211_sta *sta; struct mt76_rx_tid *tid; bool sn_less; u16 seqno, head, size, idx; u8 tidno = status->qos_ctl & IEEE80211_QOS_CTL_TID_MASK; u8 ackp; __skb_queue_tail(frames, skb); sta = wcid_to_sta(wcid); if (!sta) return; if (!status->aggr) { if (!(status->flag & RX_FLAG_8023)) mt76_rx_aggr_check_ctl(skb, frames); return; } /* not part of a BA session */ ackp = status->qos_ctl & IEEE80211_QOS_CTL_ACK_POLICY_MASK; if (ackp == IEEE80211_QOS_CTL_ACK_POLICY_NOACK) return; tid = rcu_dereference(wcid->aggr[tidno]); if (!tid) return; status->flag |= RX_FLAG_DUP_VALIDATED; spin_lock_bh(&tid->lock); if (tid->stopped) goto out; head = tid->head; seqno = status->seqno; size = tid->size; sn_less = ieee80211_sn_less(seqno, head); if (!tid->started) { if (sn_less) goto out; tid->started = true; } if (sn_less) { __skb_unlink(skb, frames); dev_kfree_skb(skb); goto out; } if (seqno == head) { tid->head = ieee80211_sn_inc(head); if (tid->nframes) mt76_rx_aggr_release_head(tid, frames); goto out; } __skb_unlink(skb, frames); /* * Frame sequence number exceeds buffering window, free up some space * by releasing previous frames */ if (!ieee80211_sn_less(seqno, head + size)) { head = ieee80211_sn_inc(ieee80211_sn_sub(seqno, size)); mt76_rx_aggr_release_frames(tid, frames, head); } idx = seqno % size; /* Discard if the current slot is already in use */ if (tid->reorder_buf[idx]) { dev_kfree_skb(skb); goto out; } status->reorder_time = jiffies; tid->reorder_buf[idx] = skb; tid->nframes++; mt76_rx_aggr_release_head(tid, frames); ieee80211_queue_delayed_work(tid->dev->hw, &tid->reorder_work, mt76_aggr_tid_to_timeo(tid->num)); out: spin_unlock_bh(&tid->lock); } int mt76_rx_aggr_start(struct mt76_dev *dev, struct mt76_wcid *wcid, u8 tidno, u16 ssn, u16 size) { struct mt76_rx_tid *tid; mt76_rx_aggr_stop(dev, wcid, tidno); tid = kzalloc(struct_size(tid, reorder_buf, size), GFP_KERNEL); if (!tid) return -ENOMEM; tid->dev = dev; tid->head = ssn; tid->size = size; tid->num = tidno; INIT_DELAYED_WORK(&tid->reorder_work, mt76_rx_aggr_reorder_work); spin_lock_init(&tid->lock); rcu_assign_pointer(wcid->aggr[tidno], tid); return 0; } EXPORT_SYMBOL_GPL(mt76_rx_aggr_start); static void mt76_rx_aggr_shutdown(struct mt76_dev *dev, struct mt76_rx_tid *tid) { u16 size = tid->size; int i; spin_lock_bh(&tid->lock); tid->stopped = true; for (i = 0; tid->nframes && i < size; i++) { struct sk_buff *skb = tid->reorder_buf[i]; if (!skb) continue; tid->reorder_buf[i] = NULL; tid->nframes--; dev_kfree_skb(skb); } spin_unlock_bh(&tid->lock); cancel_delayed_work_sync(&tid->reorder_work); } void mt76_rx_aggr_stop(struct mt76_dev *dev, struct mt76_wcid *wcid, u8 tidno) { struct mt76_rx_tid *tid = NULL; tid = rcu_replace_pointer(wcid->aggr[tidno], tid, lockdep_is_held(&dev->mutex)); if (tid) { mt76_rx_aggr_shutdown(dev, tid); kfree_rcu(tid, rcu_head); } } EXPORT_SYMBOL_GPL(mt76_rx_aggr_stop);
linux-master
drivers/net/wireless/mediatek/mt76/agg-rx.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2018 Stanislaw Gruszka <[email protected]> * Copyright (C) 2016 Felix Fietkau <[email protected]> */ #include <linux/module.h> #include "mt76x02.h" #define MT76x02_CCK_RATE(_idx, _rate) { \ .bitrate = _rate, \ .flags = IEEE80211_RATE_SHORT_PREAMBLE, \ .hw_value = (MT_PHY_TYPE_CCK << 8) | (_idx), \ .hw_value_short = (MT_PHY_TYPE_CCK << 8) | (8 + (_idx)), \ } struct ieee80211_rate mt76x02_rates[] = { MT76x02_CCK_RATE(0, 10), MT76x02_CCK_RATE(1, 20), MT76x02_CCK_RATE(2, 55), MT76x02_CCK_RATE(3, 110), OFDM_RATE(0, 60), OFDM_RATE(1, 90), OFDM_RATE(2, 120), OFDM_RATE(3, 180), OFDM_RATE(4, 240), OFDM_RATE(5, 360), OFDM_RATE(6, 480), OFDM_RATE(7, 540), }; EXPORT_SYMBOL_GPL(mt76x02_rates); static const struct ieee80211_iface_limit mt76x02_if_limits[] = { { .max = 1, .types = BIT(NL80211_IFTYPE_ADHOC) }, { .max = 8, .types = BIT(NL80211_IFTYPE_STATION) | #ifdef CONFIG_MAC80211_MESH BIT(NL80211_IFTYPE_MESH_POINT) | #endif BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_P2P_GO) | BIT(NL80211_IFTYPE_AP) }, }; static const struct ieee80211_iface_limit mt76x02u_if_limits[] = { { .max = 1, .types = BIT(NL80211_IFTYPE_ADHOC) }, { .max = 2, .types = BIT(NL80211_IFTYPE_STATION) | #ifdef CONFIG_MAC80211_MESH BIT(NL80211_IFTYPE_MESH_POINT) | #endif BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_P2P_GO) | BIT(NL80211_IFTYPE_AP) }, }; static const struct ieee80211_iface_combination mt76x02_if_comb[] = { { .limits = mt76x02_if_limits, .n_limits = ARRAY_SIZE(mt76x02_if_limits), .max_interfaces = 8, .num_different_channels = 1, .beacon_int_infra_match = true, .radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) | BIT(NL80211_CHAN_WIDTH_20) | BIT(NL80211_CHAN_WIDTH_40) | BIT(NL80211_CHAN_WIDTH_80), } }; static const struct ieee80211_iface_combination mt76x02u_if_comb[] = { { .limits = mt76x02u_if_limits, .n_limits = ARRAY_SIZE(mt76x02u_if_limits), .max_interfaces = 2, .num_different_channels = 1, .beacon_int_infra_match = true, } }; static void mt76x02_led_set_config(struct mt76_phy *mphy, u8 delay_on, u8 delay_off) { struct mt76x02_dev *dev = container_of(mphy->dev, struct mt76x02_dev, mt76); u32 val; val = FIELD_PREP(MT_LED_STATUS_DURATION, 0xff) | FIELD_PREP(MT_LED_STATUS_OFF, delay_off) | FIELD_PREP(MT_LED_STATUS_ON, delay_on); mt76_wr(dev, MT_LED_S0(mphy->leds.pin), val); mt76_wr(dev, MT_LED_S1(mphy->leds.pin), val); val = MT_LED_CTRL_REPLAY(mphy->leds.pin) | MT_LED_CTRL_KICK(mphy->leds.pin); if (mphy->leds.al) val |= MT_LED_CTRL_POLARITY(mphy->leds.pin); mt76_wr(dev, MT_LED_CTRL, val); } static int mt76x02_led_set_blink(struct led_classdev *led_cdev, unsigned long *delay_on, unsigned long *delay_off) { struct mt76_phy *mphy = container_of(led_cdev, struct mt76_phy, leds.cdev); u8 delta_on, delta_off; delta_off = max_t(u8, *delay_off / 10, 1); delta_on = max_t(u8, *delay_on / 10, 1); mt76x02_led_set_config(mphy, delta_on, delta_off); return 0; } static void mt76x02_led_set_brightness(struct led_classdev *led_cdev, enum led_brightness brightness) { struct mt76_phy *mphy = container_of(led_cdev, struct mt76_phy, leds.cdev); if (!brightness) mt76x02_led_set_config(mphy, 0, 0xff); else mt76x02_led_set_config(mphy, 0xff, 0); } int mt76x02_init_device(struct mt76x02_dev *dev) { struct ieee80211_hw *hw = mt76_hw(dev); struct wiphy *wiphy = hw->wiphy; INIT_DELAYED_WORK(&dev->mphy.mac_work, mt76x02_mac_work); hw->queues = 4; hw->max_rates = 1; hw->max_report_rates = 7; hw->max_rate_tries = 1; hw->extra_tx_headroom = 2; if (mt76_is_usb(&dev->mt76)) { hw->extra_tx_headroom += sizeof(struct mt76x02_txwi) + MT_DMA_HDR_LEN; wiphy->iface_combinations = mt76x02u_if_comb; wiphy->n_iface_combinations = ARRAY_SIZE(mt76x02u_if_comb); } else { INIT_DELAYED_WORK(&dev->wdt_work, mt76x02_wdt_work); mt76x02_dfs_init_detector(dev); wiphy->reg_notifier = mt76x02_regd_notifier; wiphy->iface_combinations = mt76x02_if_comb; wiphy->n_iface_combinations = ARRAY_SIZE(mt76x02_if_comb); /* init led callbacks */ if (IS_ENABLED(CONFIG_MT76_LEDS)) { dev->mphy.leds.cdev.brightness_set = mt76x02_led_set_brightness; dev->mphy.leds.cdev.blink_set = mt76x02_led_set_blink; } } wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_VHT_IBSS); hw->sta_data_size = sizeof(struct mt76x02_sta); hw->vif_data_size = sizeof(struct mt76x02_vif); ieee80211_hw_set(hw, SUPPORTS_HT_CCK_RATES); ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING); ieee80211_hw_set(hw, NEEDS_UNIQUE_STA_ADDR); dev->mt76.global_wcid.idx = 255; dev->mt76.global_wcid.hw_key_idx = -1; dev->slottime = 9; if (is_mt76x2(dev)) { dev->mphy.sband_2g.sband.ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING; dev->mphy.sband_5g.sband.ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING; dev->mphy.chainmask = 0x202; dev->mphy.antenna_mask = 3; } else { dev->mphy.chainmask = 0x101; dev->mphy.antenna_mask = 1; } return 0; } EXPORT_SYMBOL_GPL(mt76x02_init_device); void mt76x02_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags, u64 multicast) { struct mt76x02_dev *dev = hw->priv; u32 flags = 0; #define MT76_FILTER(_flag, _hw) do { \ flags |= *total_flags & FIF_##_flag; \ dev->mt76.rxfilter &= ~(_hw); \ dev->mt76.rxfilter |= !(flags & FIF_##_flag) * (_hw); \ } while (0) mutex_lock(&dev->mt76.mutex); dev->mt76.rxfilter &= ~MT_RX_FILTR_CFG_OTHER_BSS; MT76_FILTER(FCSFAIL, MT_RX_FILTR_CFG_CRC_ERR); MT76_FILTER(PLCPFAIL, MT_RX_FILTR_CFG_PHY_ERR); MT76_FILTER(CONTROL, MT_RX_FILTR_CFG_ACK | MT_RX_FILTR_CFG_CTS | MT_RX_FILTR_CFG_CFEND | MT_RX_FILTR_CFG_CFACK | MT_RX_FILTR_CFG_BA | MT_RX_FILTR_CFG_CTRL_RSV); MT76_FILTER(PSPOLL, MT_RX_FILTR_CFG_PSPOLL); *total_flags = flags; mt76_wr(dev, MT_RX_FILTR_CFG, dev->mt76.rxfilter); mutex_unlock(&dev->mt76.mutex); } EXPORT_SYMBOL_GPL(mt76x02_configure_filter); int mt76x02_sta_add(struct mt76_dev *mdev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76); struct mt76x02_sta *msta = (struct mt76x02_sta *)sta->drv_priv; struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv; int idx = 0; memset(msta, 0, sizeof(*msta)); idx = mt76_wcid_alloc(dev->mt76.wcid_mask, MT76x02_N_WCIDS); if (idx < 0) return -ENOSPC; msta->vif = mvif; msta->wcid.sta = 1; msta->wcid.idx = idx; msta->wcid.hw_key_idx = -1; mt76x02_mac_wcid_setup(dev, idx, mvif->idx, sta->addr); mt76x02_mac_wcid_set_drop(dev, idx, false); ewma_pktlen_init(&msta->pktlen); if (vif->type == NL80211_IFTYPE_AP) set_bit(MT_WCID_FLAG_CHECK_PS, &msta->wcid.flags); return 0; } EXPORT_SYMBOL_GPL(mt76x02_sta_add); void mt76x02_sta_remove(struct mt76_dev *mdev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76); struct mt76_wcid *wcid = (struct mt76_wcid *)sta->drv_priv; int idx = wcid->idx; mt76x02_mac_wcid_set_drop(dev, idx, true); mt76x02_mac_wcid_setup(dev, idx, 0, NULL); } EXPORT_SYMBOL_GPL(mt76x02_sta_remove); static void mt76x02_vif_init(struct mt76x02_dev *dev, struct ieee80211_vif *vif, unsigned int idx) { struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv; struct mt76_txq *mtxq; memset(mvif, 0, sizeof(*mvif)); mvif->idx = idx; mvif->group_wcid.idx = MT_VIF_WCID(idx); mvif->group_wcid.hw_key_idx = -1; mt76_packet_id_init(&mvif->group_wcid); mtxq = (struct mt76_txq *)vif->txq->drv_priv; rcu_assign_pointer(dev->mt76.wcid[MT_VIF_WCID(idx)], &mvif->group_wcid); mtxq->wcid = MT_VIF_WCID(idx); } int mt76x02_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mt76x02_dev *dev = hw->priv; unsigned int idx = 0; /* Allow to change address in HW if we create first interface. */ if (!dev->mt76.vif_mask && (((vif->addr[0] ^ dev->mphy.macaddr[0]) & ~GENMASK(4, 1)) || memcmp(vif->addr + 1, dev->mphy.macaddr + 1, ETH_ALEN - 1))) mt76x02_mac_setaddr(dev, vif->addr); if (vif->addr[0] & BIT(1)) idx = 1 + (((dev->mphy.macaddr[0] ^ vif->addr[0]) >> 2) & 7); /* * Client mode typically only has one configurable BSSID register, * which is used for bssidx=0. This is linked to the MAC address. * Since mac80211 allows changing interface types, and we cannot * force the use of the primary MAC address for a station mode * interface, we need some other way of configuring a per-interface * remote BSSID. * The hardware provides an AP-Client feature, where bssidx 0-7 are * used for AP mode and bssidx 8-15 for client mode. * We shift the station interface bss index by 8 to force the * hardware to recognize the BSSID. * The resulting bssidx mismatch for unicast frames is ignored by hw. */ if (vif->type == NL80211_IFTYPE_STATION) idx += 8; /* vif is already set or idx is 8 for AP/Mesh/... */ if (dev->mt76.vif_mask & BIT_ULL(idx) || (vif->type != NL80211_IFTYPE_STATION && idx > 7)) return -EBUSY; dev->mt76.vif_mask |= BIT_ULL(idx); mt76x02_vif_init(dev, vif, idx); return 0; } EXPORT_SYMBOL_GPL(mt76x02_add_interface); void mt76x02_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mt76x02_dev *dev = hw->priv; struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv; dev->mt76.vif_mask &= ~BIT_ULL(mvif->idx); rcu_assign_pointer(dev->mt76.wcid[mvif->group_wcid.idx], NULL); mt76_packet_id_flush(&dev->mt76, &mvif->group_wcid); } EXPORT_SYMBOL_GPL(mt76x02_remove_interface); int mt76x02_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params) { enum ieee80211_ampdu_mlme_action action = params->action; struct ieee80211_sta *sta = params->sta; struct mt76x02_dev *dev = hw->priv; struct mt76x02_sta *msta = (struct mt76x02_sta *)sta->drv_priv; struct ieee80211_txq *txq = sta->txq[params->tid]; u16 tid = params->tid; u16 ssn = params->ssn; struct mt76_txq *mtxq; int ret = 0; if (!txq) return -EINVAL; mtxq = (struct mt76_txq *)txq->drv_priv; mutex_lock(&dev->mt76.mutex); switch (action) { case IEEE80211_AMPDU_RX_START: mt76_rx_aggr_start(&dev->mt76, &msta->wcid, tid, ssn, params->buf_size); mt76_set(dev, MT_WCID_ADDR(msta->wcid.idx) + 4, BIT(16 + tid)); break; case IEEE80211_AMPDU_RX_STOP: mt76_rx_aggr_stop(&dev->mt76, &msta->wcid, tid); mt76_clear(dev, MT_WCID_ADDR(msta->wcid.idx) + 4, BIT(16 + tid)); break; case IEEE80211_AMPDU_TX_OPERATIONAL: mtxq->aggr = true; mtxq->send_bar = false; ieee80211_send_bar(vif, sta->addr, tid, mtxq->agg_ssn); break; case IEEE80211_AMPDU_TX_STOP_FLUSH: case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: mtxq->aggr = false; break; case IEEE80211_AMPDU_TX_START: mtxq->agg_ssn = IEEE80211_SN_TO_SEQ(ssn); ret = IEEE80211_AMPDU_TX_START_IMMEDIATE; break; case IEEE80211_AMPDU_TX_STOP_CONT: mtxq->aggr = false; ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid); break; } mutex_unlock(&dev->mt76.mutex); return ret; } EXPORT_SYMBOL_GPL(mt76x02_ampdu_action); int mt76x02_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { struct mt76x02_dev *dev = hw->priv; struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv; struct mt76x02_sta *msta; struct mt76_wcid *wcid; int idx = key->keyidx; int ret; /* fall back to sw encryption for unsupported ciphers */ switch (key->cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: case WLAN_CIPHER_SUITE_TKIP: case WLAN_CIPHER_SUITE_CCMP: break; default: return -EOPNOTSUPP; } /* * The hardware does not support per-STA RX GTK, fall back * to software mode for these. */ if ((vif->type == NL80211_IFTYPE_ADHOC || vif->type == NL80211_IFTYPE_MESH_POINT) && (key->cipher == WLAN_CIPHER_SUITE_TKIP || key->cipher == WLAN_CIPHER_SUITE_CCMP) && !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) return -EOPNOTSUPP; /* * In USB AP mode, broadcast/multicast frames are setup in beacon * data registers and sent via HW beacons engine, they require to * be already encrypted. */ if (mt76_is_usb(&dev->mt76) && vif->type == NL80211_IFTYPE_AP && !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) return -EOPNOTSUPP; /* MT76x0 GTK offloading does not work with more than one VIF */ if (is_mt76x0(dev) && !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) return -EOPNOTSUPP; msta = sta ? (struct mt76x02_sta *)sta->drv_priv : NULL; wcid = msta ? &msta->wcid : &mvif->group_wcid; if (cmd != SET_KEY) { if (idx == wcid->hw_key_idx) { wcid->hw_key_idx = -1; wcid->sw_iv = false; } return 0; } key->hw_key_idx = wcid->idx; wcid->hw_key_idx = idx; if (key->flags & IEEE80211_KEY_FLAG_RX_MGMT) { key->flags |= IEEE80211_KEY_FLAG_SW_MGMT_TX; wcid->sw_iv = true; } mt76_wcid_key_setup(&dev->mt76, wcid, key); if (!msta) { if (key || wcid->hw_key_idx == idx) { ret = mt76x02_mac_wcid_set_key(dev, wcid->idx, key); if (ret) return ret; } return mt76x02_mac_shared_key_setup(dev, mvif->idx, idx, key); } return mt76x02_mac_wcid_set_key(dev, msta->wcid.idx, key); } EXPORT_SYMBOL_GPL(mt76x02_set_key); int mt76x02_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, unsigned int link_id, u16 queue, const struct ieee80211_tx_queue_params *params) { struct mt76x02_dev *dev = hw->priv; u8 cw_min = 5, cw_max = 10, qid; u32 val; qid = dev->mphy.q_tx[queue]->hw_idx; if (params->cw_min) cw_min = fls(params->cw_min); if (params->cw_max) cw_max = fls(params->cw_max); val = FIELD_PREP(MT_EDCA_CFG_TXOP, params->txop) | FIELD_PREP(MT_EDCA_CFG_AIFSN, params->aifs) | FIELD_PREP(MT_EDCA_CFG_CWMIN, cw_min) | FIELD_PREP(MT_EDCA_CFG_CWMAX, cw_max); mt76_wr(dev, MT_EDCA_CFG_AC(qid), val); val = mt76_rr(dev, MT_WMM_TXOP(qid)); val &= ~(MT_WMM_TXOP_MASK << MT_WMM_TXOP_SHIFT(qid)); val |= params->txop << MT_WMM_TXOP_SHIFT(qid); mt76_wr(dev, MT_WMM_TXOP(qid), val); val = mt76_rr(dev, MT_WMM_AIFSN); val &= ~(MT_WMM_AIFSN_MASK << MT_WMM_AIFSN_SHIFT(qid)); val |= params->aifs << MT_WMM_AIFSN_SHIFT(qid); mt76_wr(dev, MT_WMM_AIFSN, val); val = mt76_rr(dev, MT_WMM_CWMIN); val &= ~(MT_WMM_CWMIN_MASK << MT_WMM_CWMIN_SHIFT(qid)); val |= cw_min << MT_WMM_CWMIN_SHIFT(qid); mt76_wr(dev, MT_WMM_CWMIN, val); val = mt76_rr(dev, MT_WMM_CWMAX); val &= ~(MT_WMM_CWMAX_MASK << MT_WMM_CWMAX_SHIFT(qid)); val |= cw_max << MT_WMM_CWMAX_SHIFT(qid); mt76_wr(dev, MT_WMM_CWMAX, val); return 0; } EXPORT_SYMBOL_GPL(mt76x02_conf_tx); void mt76x02_set_tx_ackto(struct mt76x02_dev *dev) { u8 ackto, sifs, slottime = dev->slottime; /* As defined by IEEE 802.11-2007 17.3.8.6 */ slottime += 3 * dev->coverage_class; mt76_rmw_field(dev, MT_BKOFF_SLOT_CFG, MT_BKOFF_SLOT_CFG_SLOTTIME, slottime); sifs = mt76_get_field(dev, MT_XIFS_TIME_CFG, MT_XIFS_TIME_CFG_OFDM_SIFS); ackto = slottime + sifs; mt76_rmw_field(dev, MT_TX_TIMEOUT_CFG, MT_TX_TIMEOUT_CFG_ACKTO, ackto); } EXPORT_SYMBOL_GPL(mt76x02_set_tx_ackto); void mt76x02_set_coverage_class(struct ieee80211_hw *hw, s16 coverage_class) { struct mt76x02_dev *dev = hw->priv; mutex_lock(&dev->mt76.mutex); dev->coverage_class = max_t(s16, coverage_class, 0); mt76x02_set_tx_ackto(dev); mutex_unlock(&dev->mt76.mutex); } EXPORT_SYMBOL_GPL(mt76x02_set_coverage_class); int mt76x02_set_rts_threshold(struct ieee80211_hw *hw, u32 val) { struct mt76x02_dev *dev = hw->priv; if (val != ~0 && val > 0xffff) return -EINVAL; mutex_lock(&dev->mt76.mutex); mt76x02_mac_set_rts_thresh(dev, val); mutex_unlock(&dev->mt76.mutex); return 0; } EXPORT_SYMBOL_GPL(mt76x02_set_rts_threshold); void mt76x02_sta_rate_tbl_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt76x02_dev *dev = hw->priv; struct mt76x02_sta *msta = (struct mt76x02_sta *)sta->drv_priv; struct ieee80211_sta_rates *rates = rcu_dereference(sta->rates); struct ieee80211_tx_rate rate = {}; if (!rates) return; rate.idx = rates->rate[0].idx; rate.flags = rates->rate[0].flags; mt76x02_mac_wcid_set_rate(dev, &msta->wcid, &rate); } EXPORT_SYMBOL_GPL(mt76x02_sta_rate_tbl_update); void mt76x02_remove_hdr_pad(struct sk_buff *skb, int len) { int hdrlen; if (!len) return; hdrlen = ieee80211_get_hdrlen_from_skb(skb); memmove(skb->data + len, skb->data, hdrlen); skb_pull(skb, len); } EXPORT_SYMBOL_GPL(mt76x02_remove_hdr_pad); void mt76x02_sw_scan_complete(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mt76x02_dev *dev = hw->priv; clear_bit(MT76_SCANNING, &dev->mphy.state); if (dev->cal.gain_init_done) { /* Restore AGC gain and resume calibration after scanning. */ dev->cal.low_gain = -1; ieee80211_queue_delayed_work(hw, &dev->cal_work, 0); } } EXPORT_SYMBOL_GPL(mt76x02_sw_scan_complete); void mt76x02_sta_ps(struct mt76_dev *mdev, struct ieee80211_sta *sta, bool ps) { struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76); struct mt76x02_sta *msta = (struct mt76x02_sta *)sta->drv_priv; int idx = msta->wcid.idx; mt76_stop_tx_queues(&dev->mphy, sta, true); if (mt76_is_mmio(mdev)) mt76x02_mac_wcid_set_drop(dev, idx, ps); } EXPORT_SYMBOL_GPL(mt76x02_sta_ps); void mt76x02_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *info, u64 changed) { struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv; struct mt76x02_dev *dev = hw->priv; mutex_lock(&dev->mt76.mutex); if (changed & BSS_CHANGED_BSSID) mt76x02_mac_set_bssid(dev, mvif->idx, info->bssid); if (changed & BSS_CHANGED_HT || changed & BSS_CHANGED_ERP_CTS_PROT) mt76x02_mac_set_tx_protection(dev, info->use_cts_prot, info->ht_operation_mode); if (changed & BSS_CHANGED_BEACON_INT) { mt76_rmw_field(dev, MT_BEACON_TIME_CFG, MT_BEACON_TIME_CFG_INTVAL, info->beacon_int << 4); dev->mt76.beacon_int = info->beacon_int; } if (changed & BSS_CHANGED_BEACON_ENABLED) mt76x02_mac_set_beacon_enable(dev, vif, info->enable_beacon); if (changed & BSS_CHANGED_ERP_PREAMBLE) mt76x02_mac_set_short_preamble(dev, info->use_short_preamble); if (changed & BSS_CHANGED_ERP_SLOT) { int slottime = info->use_short_slot ? 9 : 20; dev->slottime = slottime; mt76x02_set_tx_ackto(dev); } mutex_unlock(&dev->mt76.mutex); } EXPORT_SYMBOL_GPL(mt76x02_bss_info_changed); void mt76x02_config_mac_addr_list(struct mt76x02_dev *dev) { struct ieee80211_hw *hw = mt76_hw(dev); struct wiphy *wiphy = hw->wiphy; int i; for (i = 0; i < ARRAY_SIZE(dev->macaddr_list); i++) { u8 *addr = dev->macaddr_list[i].addr; memcpy(addr, dev->mphy.macaddr, ETH_ALEN); if (!i) continue; addr[0] |= BIT(1); addr[0] ^= ((i - 1) << 2); } wiphy->addresses = dev->macaddr_list; wiphy->n_addresses = ARRAY_SIZE(dev->macaddr_list); } EXPORT_SYMBOL_GPL(mt76x02_config_mac_addr_list); MODULE_LICENSE("Dual BSD/GPL");
linux-master
drivers/net/wireless/mediatek/mt76/mt76x02_util.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2016 Felix Fietkau <[email protected]> */ #include "mt76.h" #include "trace.h" static u32 mt76_mmio_rr(struct mt76_dev *dev, u32 offset) { u32 val; val = readl(dev->mmio.regs + offset); trace_reg_rr(dev, offset, val); return val; } static void mt76_mmio_wr(struct mt76_dev *dev, u32 offset, u32 val) { trace_reg_wr(dev, offset, val); writel(val, dev->mmio.regs + offset); } static u32 mt76_mmio_rmw(struct mt76_dev *dev, u32 offset, u32 mask, u32 val) { val |= mt76_mmio_rr(dev, offset) & ~mask; mt76_mmio_wr(dev, offset, val); return val; } static void mt76_mmio_write_copy(struct mt76_dev *dev, u32 offset, const void *data, int len) { __iowrite32_copy(dev->mmio.regs + offset, data, DIV_ROUND_UP(len, 4)); } static void mt76_mmio_read_copy(struct mt76_dev *dev, u32 offset, void *data, int len) { __ioread32_copy(data, dev->mmio.regs + offset, DIV_ROUND_UP(len, 4)); } static int mt76_mmio_wr_rp(struct mt76_dev *dev, u32 base, const struct mt76_reg_pair *data, int len) { while (len > 0) { mt76_mmio_wr(dev, data->reg, data->value); data++; len--; } return 0; } static int mt76_mmio_rd_rp(struct mt76_dev *dev, u32 base, struct mt76_reg_pair *data, int len) { while (len > 0) { data->value = mt76_mmio_rr(dev, data->reg); data++; len--; } return 0; } void mt76_set_irq_mask(struct mt76_dev *dev, u32 addr, u32 clear, u32 set) { unsigned long flags; spin_lock_irqsave(&dev->mmio.irq_lock, flags); dev->mmio.irqmask &= ~clear; dev->mmio.irqmask |= set; if (addr) { if (mtk_wed_device_active(&dev->mmio.wed)) mtk_wed_device_irq_set_mask(&dev->mmio.wed, dev->mmio.irqmask); else mt76_mmio_wr(dev, addr, dev->mmio.irqmask); } spin_unlock_irqrestore(&dev->mmio.irq_lock, flags); } EXPORT_SYMBOL_GPL(mt76_set_irq_mask); void mt76_mmio_init(struct mt76_dev *dev, void __iomem *regs) { static const struct mt76_bus_ops mt76_mmio_ops = { .rr = mt76_mmio_rr, .rmw = mt76_mmio_rmw, .wr = mt76_mmio_wr, .write_copy = mt76_mmio_write_copy, .read_copy = mt76_mmio_read_copy, .wr_rp = mt76_mmio_wr_rp, .rd_rp = mt76_mmio_rd_rp, .type = MT76_BUS_MMIO, }; dev->bus = &mt76_mmio_ops; dev->mmio.regs = regs; spin_lock_init(&dev->mmio.irq_lock); } EXPORT_SYMBOL_GPL(mt76_mmio_init);
linux-master
drivers/net/wireless/mediatek/mt76/mmio.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2016 Felix Fietkau <[email protected]> * Copyright (C) 2018 Lorenzo Bianconi <[email protected]> */ #include <linux/kernel.h> #include "mt76x02.h" #include "mt76x02_phy.h" void mt76x02_phy_set_rxpath(struct mt76x02_dev *dev) { u32 val; val = mt76_rr(dev, MT_BBP(AGC, 0)); val &= ~BIT(4); switch (dev->mphy.chainmask & 0xf) { case 2: val |= BIT(3); break; default: val &= ~BIT(3); break; } mt76_wr(dev, MT_BBP(AGC, 0), val); mb(); val = mt76_rr(dev, MT_BBP(AGC, 0)); } EXPORT_SYMBOL_GPL(mt76x02_phy_set_rxpath); void mt76x02_phy_set_txdac(struct mt76x02_dev *dev) { int txpath; txpath = (dev->mphy.chainmask >> 8) & 0xf; switch (txpath) { case 2: mt76_set(dev, MT_BBP(TXBE, 5), 0x3); break; default: mt76_clear(dev, MT_BBP(TXBE, 5), 0x3); break; } } EXPORT_SYMBOL_GPL(mt76x02_phy_set_txdac); static u32 mt76x02_tx_power_mask(u8 v1, u8 v2, u8 v3, u8 v4) { u32 val = 0; val |= (v1 & (BIT(6) - 1)) << 0; val |= (v2 & (BIT(6) - 1)) << 8; val |= (v3 & (BIT(6) - 1)) << 16; val |= (v4 & (BIT(6) - 1)) << 24; return val; } int mt76x02_get_max_rate_power(struct mt76x02_rate_power *r) { s8 ret = 0; int i; for (i = 0; i < sizeof(r->all); i++) ret = max(ret, r->all[i]); return ret; } EXPORT_SYMBOL_GPL(mt76x02_get_max_rate_power); void mt76x02_limit_rate_power(struct mt76x02_rate_power *r, int limit) { int i; for (i = 0; i < sizeof(r->all); i++) if (r->all[i] > limit) r->all[i] = limit; } EXPORT_SYMBOL_GPL(mt76x02_limit_rate_power); void mt76x02_add_rate_power_offset(struct mt76x02_rate_power *r, int offset) { int i; for (i = 0; i < sizeof(r->all); i++) r->all[i] += offset; } EXPORT_SYMBOL_GPL(mt76x02_add_rate_power_offset); void mt76x02_phy_set_txpower(struct mt76x02_dev *dev, int txp_0, int txp_1) { struct mt76x02_rate_power *t = &dev->rate_power; mt76_rmw_field(dev, MT_TX_ALC_CFG_0, MT_TX_ALC_CFG_0_CH_INIT_0, txp_0); mt76_rmw_field(dev, MT_TX_ALC_CFG_0, MT_TX_ALC_CFG_0_CH_INIT_1, txp_1); mt76_wr(dev, MT_TX_PWR_CFG_0, mt76x02_tx_power_mask(t->cck[0], t->cck[2], t->ofdm[0], t->ofdm[2])); mt76_wr(dev, MT_TX_PWR_CFG_1, mt76x02_tx_power_mask(t->ofdm[4], t->ofdm[6], t->ht[0], t->ht[2])); mt76_wr(dev, MT_TX_PWR_CFG_2, mt76x02_tx_power_mask(t->ht[4], t->ht[6], t->ht[8], t->ht[10])); mt76_wr(dev, MT_TX_PWR_CFG_3, mt76x02_tx_power_mask(t->ht[12], t->ht[14], t->ht[0], t->ht[2])); mt76_wr(dev, MT_TX_PWR_CFG_4, mt76x02_tx_power_mask(t->ht[4], t->ht[6], 0, 0)); mt76_wr(dev, MT_TX_PWR_CFG_7, mt76x02_tx_power_mask(t->ofdm[7], t->vht[0], t->ht[7], t->vht[1])); mt76_wr(dev, MT_TX_PWR_CFG_8, mt76x02_tx_power_mask(t->ht[14], 0, t->vht[0], t->vht[1])); mt76_wr(dev, MT_TX_PWR_CFG_9, mt76x02_tx_power_mask(t->ht[7], 0, t->vht[0], t->vht[1])); } EXPORT_SYMBOL_GPL(mt76x02_phy_set_txpower); void mt76x02_phy_set_bw(struct mt76x02_dev *dev, int width, u8 ctrl) { int core_val, agc_val; switch (width) { case NL80211_CHAN_WIDTH_80: core_val = 3; agc_val = 7; break; case NL80211_CHAN_WIDTH_40: core_val = 2; agc_val = 3; break; default: core_val = 0; agc_val = 1; break; } mt76_rmw_field(dev, MT_BBP(CORE, 1), MT_BBP_CORE_R1_BW, core_val); mt76_rmw_field(dev, MT_BBP(AGC, 0), MT_BBP_AGC_R0_BW, agc_val); mt76_rmw_field(dev, MT_BBP(AGC, 0), MT_BBP_AGC_R0_CTRL_CHAN, ctrl); mt76_rmw_field(dev, MT_BBP(TXBE, 0), MT_BBP_TXBE_R0_CTRL_CHAN, ctrl); } EXPORT_SYMBOL_GPL(mt76x02_phy_set_bw); void mt76x02_phy_set_band(struct mt76x02_dev *dev, int band, bool primary_upper) { switch (band) { case NL80211_BAND_2GHZ: mt76_set(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_2G); mt76_clear(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_5G); break; case NL80211_BAND_5GHZ: mt76_clear(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_2G); mt76_set(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_5G); break; } mt76_rmw_field(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_UPPER_40M, primary_upper); } EXPORT_SYMBOL_GPL(mt76x02_phy_set_band); bool mt76x02_phy_adjust_vga_gain(struct mt76x02_dev *dev) { u8 limit = dev->cal.low_gain > 0 ? 16 : 4; bool ret = false; u32 false_cca; false_cca = FIELD_GET(MT_RX_STAT_1_CCA_ERRORS, mt76_rr(dev, MT_RX_STAT_1)); dev->cal.false_cca = false_cca; if (false_cca > 800 && dev->cal.agc_gain_adjust < limit) { dev->cal.agc_gain_adjust += 2; ret = true; } else if ((false_cca < 10 && dev->cal.agc_gain_adjust > 0) || (dev->cal.agc_gain_adjust >= limit && false_cca < 500)) { dev->cal.agc_gain_adjust -= 2; ret = true; } dev->cal.agc_lowest_gain = dev->cal.agc_gain_adjust >= limit; return ret; } EXPORT_SYMBOL_GPL(mt76x02_phy_adjust_vga_gain); void mt76x02_init_agc_gain(struct mt76x02_dev *dev) { dev->cal.agc_gain_init[0] = mt76_get_field(dev, MT_BBP(AGC, 8), MT_BBP_AGC_GAIN); dev->cal.agc_gain_init[1] = mt76_get_field(dev, MT_BBP(AGC, 9), MT_BBP_AGC_GAIN); memcpy(dev->cal.agc_gain_cur, dev->cal.agc_gain_init, sizeof(dev->cal.agc_gain_cur)); dev->cal.low_gain = -1; dev->cal.gain_init_done = true; } EXPORT_SYMBOL_GPL(mt76x02_init_agc_gain);
linux-master
drivers/net/wireless/mediatek/mt76/mt76x02_phy.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2016 Felix Fietkau <[email protected]> */ #include <linux/module.h> #ifndef __CHECKER__ #define CREATE_TRACE_POINTS #include "mt76x02_trace.h" #endif
linux-master
drivers/net/wireless/mediatek/mt76/mt76x02_trace.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2023 MediaTek Inc. */ #include "mt792x.h" static void mt792x_ampdu_stat_read_phy(struct mt792x_phy *phy, struct seq_file *file) { struct mt792x_dev *dev = file->private; int bound[15], range[4], i; if (!phy) return; mt792x_mac_update_mib_stats(phy); /* Tx ampdu stat */ for (i = 0; i < ARRAY_SIZE(range); i++) range[i] = mt76_rr(dev, MT_MIB_ARNG(0, i)); for (i = 0; i < ARRAY_SIZE(bound); i++) bound[i] = MT_MIB_ARNCR_RANGE(range[i / 4], i % 4) + 1; seq_puts(file, "\nPhy0\n"); seq_printf(file, "Length: %8d | ", bound[0]); for (i = 0; i < ARRAY_SIZE(bound) - 1; i++) seq_printf(file, "%3d %3d | ", bound[i] + 1, bound[i + 1]); seq_puts(file, "\nCount: "); for (i = 0; i < ARRAY_SIZE(bound); i++) seq_printf(file, "%8d | ", phy->mt76->aggr_stats[i]); seq_puts(file, "\n"); seq_printf(file, "BA miss count: %d\n", phy->mib.ba_miss_cnt); } int mt792x_tx_stats_show(struct seq_file *file, void *data) { struct mt792x_dev *dev = file->private; struct mt792x_phy *phy = &dev->phy; struct mt76_mib_stats *mib = &phy->mib; int i; mt792x_mutex_acquire(dev); mt792x_ampdu_stat_read_phy(phy, file); seq_puts(file, "Tx MSDU stat:\n"); for (i = 0; i < ARRAY_SIZE(mib->tx_amsdu); i++) { seq_printf(file, "AMSDU pack count of %d MSDU in TXD: %8d ", i + 1, mib->tx_amsdu[i]); if (mib->tx_amsdu_cnt) seq_printf(file, "(%3d%%)\n", mib->tx_amsdu[i] * 100 / mib->tx_amsdu_cnt); else seq_puts(file, "\n"); } mt792x_mutex_release(dev); return 0; } EXPORT_SYMBOL_GPL(mt792x_tx_stats_show); int mt792x_queues_acq(struct seq_file *s, void *data) { struct mt792x_dev *dev = dev_get_drvdata(s->private); int i; mt792x_mutex_acquire(dev); for (i = 0; i < 4; i++) { u32 ctrl, val, qlen = 0; int j; val = mt76_rr(dev, MT_PLE_AC_QEMPTY(i)); ctrl = BIT(31) | BIT(11) | (i << 24); for (j = 0; j < 32; j++) { if (val & BIT(j)) continue; mt76_wr(dev, MT_PLE_FL_Q0_CTRL, ctrl | j); qlen += mt76_get_field(dev, MT_PLE_FL_Q3_CTRL, GENMASK(11, 0)); } seq_printf(s, "AC%d: queued=%d\n", i, qlen); } mt792x_mutex_release(dev); return 0; } EXPORT_SYMBOL_GPL(mt792x_queues_acq); int mt792x_queues_read(struct seq_file *s, void *data) { struct mt792x_dev *dev = dev_get_drvdata(s->private); struct { struct mt76_queue *q; char *queue; } queue_map[] = { { dev->mphy.q_tx[MT_TXQ_BE], "WFDMA0" }, { dev->mt76.q_mcu[MT_MCUQ_WM], "MCUWM" }, { dev->mt76.q_mcu[MT_MCUQ_FWDL], "MCUFWQ" }, }; int i; for (i = 0; i < ARRAY_SIZE(queue_map); i++) { struct mt76_queue *q = queue_map[i].q; if (!q) continue; seq_printf(s, "%s: queued=%d head=%d tail=%d\n", queue_map[i].queue, q->queued, q->head, q->tail); } return 0; } EXPORT_SYMBOL_GPL(mt792x_queues_read); int mt792x_pm_stats(struct seq_file *s, void *data) { struct mt792x_dev *dev = dev_get_drvdata(s->private); struct mt76_connac_pm *pm = &dev->pm; unsigned long awake_time = pm->stats.awake_time; unsigned long doze_time = pm->stats.doze_time; if (!test_bit(MT76_STATE_PM, &dev->mphy.state)) awake_time += jiffies - pm->stats.last_wake_event; else doze_time += jiffies - pm->stats.last_doze_event; seq_printf(s, "awake time: %14u\ndoze time: %15u\n", jiffies_to_msecs(awake_time), jiffies_to_msecs(doze_time)); seq_printf(s, "low power wakes: %9d\n", pm->stats.lp_wake); return 0; } EXPORT_SYMBOL_GPL(mt792x_pm_stats); int mt792x_pm_idle_timeout_set(void *data, u64 val) { struct mt792x_dev *dev = data; dev->pm.idle_timeout = msecs_to_jiffies(val); return 0; } EXPORT_SYMBOL_GPL(mt792x_pm_idle_timeout_set); int mt792x_pm_idle_timeout_get(void *data, u64 *val) { struct mt792x_dev *dev = data; *val = jiffies_to_msecs(dev->pm.idle_timeout); return 0; } EXPORT_SYMBOL_GPL(mt792x_pm_idle_timeout_get);
linux-master
drivers/net/wireless/mediatek/mt76/mt792x_debugfs.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2023 MediaTek Inc. */ #include <linux/module.h> #include <linux/firmware.h> #include "mt792x.h" #include "dma.h" #include "trace.h" irqreturn_t mt792x_irq_handler(int irq, void *dev_instance) { struct mt792x_dev *dev = dev_instance; mt76_wr(dev, dev->irq_map->host_irq_enable, 0); if (!test_bit(MT76_STATE_INITIALIZED, &dev->mphy.state)) return IRQ_NONE; tasklet_schedule(&dev->mt76.irq_tasklet); return IRQ_HANDLED; } EXPORT_SYMBOL_GPL(mt792x_irq_handler); void mt792x_irq_tasklet(unsigned long data) { struct mt792x_dev *dev = (struct mt792x_dev *)data; const struct mt792x_irq_map *irq_map = dev->irq_map; u32 intr, mask = 0; mt76_wr(dev, irq_map->host_irq_enable, 0); intr = mt76_rr(dev, MT_WFDMA0_HOST_INT_STA); intr &= dev->mt76.mmio.irqmask; mt76_wr(dev, MT_WFDMA0_HOST_INT_STA, intr); trace_dev_irq(&dev->mt76, intr, dev->mt76.mmio.irqmask); mask |= intr & (irq_map->rx.data_complete_mask | irq_map->rx.wm_complete_mask | irq_map->rx.wm2_complete_mask); if (intr & dev->irq_map->tx.mcu_complete_mask) mask |= dev->irq_map->tx.mcu_complete_mask; if (intr & MT_INT_MCU_CMD) { u32 intr_sw; intr_sw = mt76_rr(dev, MT_MCU_CMD); /* ack MCU2HOST_SW_INT_STA */ mt76_wr(dev, MT_MCU_CMD, intr_sw); if (intr_sw & MT_MCU_CMD_WAKE_RX_PCIE) { mask |= irq_map->rx.data_complete_mask; intr |= irq_map->rx.data_complete_mask; } } mt76_set_irq_mask(&dev->mt76, irq_map->host_irq_enable, mask, 0); if (intr & dev->irq_map->tx.all_complete_mask) napi_schedule(&dev->mt76.tx_napi); if (intr & irq_map->rx.wm_complete_mask) napi_schedule(&dev->mt76.napi[MT_RXQ_MCU]); if (intr & irq_map->rx.wm2_complete_mask) napi_schedule(&dev->mt76.napi[MT_RXQ_MCU_WA]); if (intr & irq_map->rx.data_complete_mask) napi_schedule(&dev->mt76.napi[MT_RXQ_MAIN]); } EXPORT_SYMBOL_GPL(mt792x_irq_tasklet); void mt792x_rx_poll_complete(struct mt76_dev *mdev, enum mt76_rxq_id q) { struct mt792x_dev *dev = container_of(mdev, struct mt792x_dev, mt76); const struct mt792x_irq_map *irq_map = dev->irq_map; if (q == MT_RXQ_MAIN) mt76_connac_irq_enable(mdev, irq_map->rx.data_complete_mask); else if (q == MT_RXQ_MCU_WA) mt76_connac_irq_enable(mdev, irq_map->rx.wm2_complete_mask); else mt76_connac_irq_enable(mdev, irq_map->rx.wm_complete_mask); } EXPORT_SYMBOL_GPL(mt792x_rx_poll_complete); #define PREFETCH(base, depth) ((base) << 16 | (depth)) static void mt792x_dma_prefetch(struct mt792x_dev *dev) { mt76_wr(dev, MT_WFDMA0_RX_RING0_EXT_CTRL, PREFETCH(0x0, 0x4)); mt76_wr(dev, MT_WFDMA0_RX_RING2_EXT_CTRL, PREFETCH(0x40, 0x4)); mt76_wr(dev, MT_WFDMA0_RX_RING3_EXT_CTRL, PREFETCH(0x80, 0x4)); mt76_wr(dev, MT_WFDMA0_RX_RING4_EXT_CTRL, PREFETCH(0xc0, 0x4)); mt76_wr(dev, MT_WFDMA0_RX_RING5_EXT_CTRL, PREFETCH(0x100, 0x4)); mt76_wr(dev, MT_WFDMA0_TX_RING0_EXT_CTRL, PREFETCH(0x140, 0x4)); mt76_wr(dev, MT_WFDMA0_TX_RING1_EXT_CTRL, PREFETCH(0x180, 0x4)); mt76_wr(dev, MT_WFDMA0_TX_RING2_EXT_CTRL, PREFETCH(0x1c0, 0x4)); mt76_wr(dev, MT_WFDMA0_TX_RING3_EXT_CTRL, PREFETCH(0x200, 0x4)); mt76_wr(dev, MT_WFDMA0_TX_RING4_EXT_CTRL, PREFETCH(0x240, 0x4)); mt76_wr(dev, MT_WFDMA0_TX_RING5_EXT_CTRL, PREFETCH(0x280, 0x4)); mt76_wr(dev, MT_WFDMA0_TX_RING6_EXT_CTRL, PREFETCH(0x2c0, 0x4)); mt76_wr(dev, MT_WFDMA0_TX_RING16_EXT_CTRL, PREFETCH(0x340, 0x4)); mt76_wr(dev, MT_WFDMA0_TX_RING17_EXT_CTRL, PREFETCH(0x380, 0x4)); } int mt792x_dma_enable(struct mt792x_dev *dev) { /* configure perfetch settings */ mt792x_dma_prefetch(dev); /* reset dma idx */ mt76_wr(dev, MT_WFDMA0_RST_DTX_PTR, ~0); /* configure delay interrupt */ mt76_wr(dev, MT_WFDMA0_PRI_DLY_INT_CFG0, 0); mt76_set(dev, MT_WFDMA0_GLO_CFG, MT_WFDMA0_GLO_CFG_TX_WB_DDONE | MT_WFDMA0_GLO_CFG_FIFO_LITTLE_ENDIAN | MT_WFDMA0_GLO_CFG_CLK_GAT_DIS | MT_WFDMA0_GLO_CFG_OMIT_TX_INFO | MT_WFDMA0_GLO_CFG_CSR_DISP_BASE_PTR_CHAIN_EN | MT_WFDMA0_GLO_CFG_OMIT_RX_INFO_PFET2); mt76_set(dev, MT_WFDMA0_GLO_CFG, MT_WFDMA0_GLO_CFG_TX_DMA_EN | MT_WFDMA0_GLO_CFG_RX_DMA_EN); mt76_set(dev, MT_WFDMA_DUMMY_CR, MT_WFDMA_NEED_REINIT); /* enable interrupts for TX/RX rings */ mt76_connac_irq_enable(&dev->mt76, dev->irq_map->tx.all_complete_mask | dev->irq_map->rx.data_complete_mask | dev->irq_map->rx.wm2_complete_mask | dev->irq_map->rx.wm_complete_mask | MT_INT_MCU_CMD); mt76_set(dev, MT_MCU2HOST_SW_INT_ENA, MT_MCU_CMD_WAKE_RX_PCIE); return 0; } EXPORT_SYMBOL_GPL(mt792x_dma_enable); static int mt792x_dma_reset(struct mt792x_dev *dev, bool force) { int i, err; err = mt792x_dma_disable(dev, force); if (err) return err; /* reset hw queues */ for (i = 0; i < __MT_TXQ_MAX; i++) mt76_queue_reset(dev, dev->mphy.q_tx[i]); for (i = 0; i < __MT_MCUQ_MAX; i++) mt76_queue_reset(dev, dev->mt76.q_mcu[i]); mt76_for_each_q_rx(&dev->mt76, i) mt76_queue_reset(dev, &dev->mt76.q_rx[i]); mt76_tx_status_check(&dev->mt76, true); return mt792x_dma_enable(dev); } int mt792x_wpdma_reset(struct mt792x_dev *dev, bool force) { int i, err; /* clean up hw queues */ for (i = 0; i < ARRAY_SIZE(dev->mt76.phy.q_tx); i++) mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[i], true); for (i = 0; i < ARRAY_SIZE(dev->mt76.q_mcu); i++) mt76_queue_tx_cleanup(dev, dev->mt76.q_mcu[i], true); mt76_for_each_q_rx(&dev->mt76, i) mt76_queue_rx_cleanup(dev, &dev->mt76.q_rx[i]); if (force) { err = mt792x_wfsys_reset(dev); if (err) return err; } err = mt792x_dma_reset(dev, force); if (err) return err; mt76_for_each_q_rx(&dev->mt76, i) mt76_queue_rx_reset(dev, i); return 0; } EXPORT_SYMBOL_GPL(mt792x_wpdma_reset); int mt792x_wpdma_reinit_cond(struct mt792x_dev *dev) { struct mt76_connac_pm *pm = &dev->pm; int err; /* check if the wpdma must be reinitialized */ if (mt792x_dma_need_reinit(dev)) { /* disable interrutpts */ mt76_wr(dev, dev->irq_map->host_irq_enable, 0); mt76_wr(dev, MT_PCIE_MAC_INT_ENABLE, 0x0); err = mt792x_wpdma_reset(dev, false); if (err) { dev_err(dev->mt76.dev, "wpdma reset failed\n"); return err; } /* enable interrutpts */ mt76_wr(dev, MT_PCIE_MAC_INT_ENABLE, 0xff); pm->stats.lp_wake++; } return 0; } EXPORT_SYMBOL_GPL(mt792x_wpdma_reinit_cond); int mt792x_dma_disable(struct mt792x_dev *dev, bool force) { /* disable WFDMA0 */ mt76_clear(dev, MT_WFDMA0_GLO_CFG, MT_WFDMA0_GLO_CFG_TX_DMA_EN | MT_WFDMA0_GLO_CFG_RX_DMA_EN | MT_WFDMA0_GLO_CFG_CSR_DISP_BASE_PTR_CHAIN_EN | MT_WFDMA0_GLO_CFG_OMIT_TX_INFO | MT_WFDMA0_GLO_CFG_OMIT_RX_INFO | MT_WFDMA0_GLO_CFG_OMIT_RX_INFO_PFET2); if (!mt76_poll_msec_tick(dev, MT_WFDMA0_GLO_CFG, MT_WFDMA0_GLO_CFG_TX_DMA_BUSY | MT_WFDMA0_GLO_CFG_RX_DMA_BUSY, 0, 100, 1)) return -ETIMEDOUT; /* disable dmashdl */ mt76_clear(dev, MT_WFDMA0_GLO_CFG_EXT0, MT_WFDMA0_CSR_TX_DMASHDL_ENABLE); mt76_set(dev, MT_DMASHDL_SW_CONTROL, MT_DMASHDL_DMASHDL_BYPASS); if (force) { /* reset */ mt76_clear(dev, MT_WFDMA0_RST, MT_WFDMA0_RST_DMASHDL_ALL_RST | MT_WFDMA0_RST_LOGIC_RST); mt76_set(dev, MT_WFDMA0_RST, MT_WFDMA0_RST_DMASHDL_ALL_RST | MT_WFDMA0_RST_LOGIC_RST); } return 0; } EXPORT_SYMBOL_GPL(mt792x_dma_disable); void mt792x_dma_cleanup(struct mt792x_dev *dev) { /* disable */ mt76_clear(dev, MT_WFDMA0_GLO_CFG, MT_WFDMA0_GLO_CFG_TX_DMA_EN | MT_WFDMA0_GLO_CFG_RX_DMA_EN | MT_WFDMA0_GLO_CFG_CSR_DISP_BASE_PTR_CHAIN_EN | MT_WFDMA0_GLO_CFG_OMIT_TX_INFO | MT_WFDMA0_GLO_CFG_OMIT_RX_INFO | MT_WFDMA0_GLO_CFG_OMIT_RX_INFO_PFET2); mt76_poll_msec_tick(dev, MT_WFDMA0_GLO_CFG, MT_WFDMA0_GLO_CFG_TX_DMA_BUSY | MT_WFDMA0_GLO_CFG_RX_DMA_BUSY, 0, 100, 1); /* reset */ mt76_clear(dev, MT_WFDMA0_RST, MT_WFDMA0_RST_DMASHDL_ALL_RST | MT_WFDMA0_RST_LOGIC_RST); mt76_set(dev, MT_WFDMA0_RST, MT_WFDMA0_RST_DMASHDL_ALL_RST | MT_WFDMA0_RST_LOGIC_RST); mt76_dma_cleanup(&dev->mt76); } EXPORT_SYMBOL_GPL(mt792x_dma_cleanup); int mt792x_poll_tx(struct napi_struct *napi, int budget) { struct mt792x_dev *dev; dev = container_of(napi, struct mt792x_dev, mt76.tx_napi); if (!mt76_connac_pm_ref(&dev->mphy, &dev->pm)) { napi_complete(napi); queue_work(dev->mt76.wq, &dev->pm.wake_work); return 0; } mt76_connac_tx_cleanup(&dev->mt76); if (napi_complete(napi)) mt76_connac_irq_enable(&dev->mt76, dev->irq_map->tx.all_complete_mask); mt76_connac_pm_unref(&dev->mphy, &dev->pm); return 0; } EXPORT_SYMBOL_GPL(mt792x_poll_tx); int mt792x_poll_rx(struct napi_struct *napi, int budget) { struct mt792x_dev *dev; int done; dev = container_of(napi->dev, struct mt792x_dev, mt76.napi_dev); if (!mt76_connac_pm_ref(&dev->mphy, &dev->pm)) { napi_complete(napi); queue_work(dev->mt76.wq, &dev->pm.wake_work); return 0; } done = mt76_dma_rx_poll(napi, budget); mt76_connac_pm_unref(&dev->mphy, &dev->pm); return done; } EXPORT_SYMBOL_GPL(mt792x_poll_rx); int mt792x_wfsys_reset(struct mt792x_dev *dev) { u32 addr = is_mt7921(&dev->mt76) ? 0x18000140 : 0x7c000140; mt76_clear(dev, addr, WFSYS_SW_RST_B); msleep(50); mt76_set(dev, addr, WFSYS_SW_RST_B); if (!__mt76_poll_msec(&dev->mt76, addr, WFSYS_SW_INIT_DONE, WFSYS_SW_INIT_DONE, 500)) return -ETIMEDOUT; return 0; } EXPORT_SYMBOL_GPL(mt792x_wfsys_reset);
linux-master
drivers/net/wireless/mediatek/mt76/mt792x_dma.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2016 Felix Fietkau <[email protected]> */ #include "mt76.h" static int mt76_txq_get_qid(struct ieee80211_txq *txq) { if (!txq->sta) return MT_TXQ_BE; return txq->ac; } void mt76_tx_check_agg_ssn(struct ieee80211_sta *sta, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct ieee80211_txq *txq; struct mt76_txq *mtxq; u8 tid; if (!sta || !ieee80211_is_data_qos(hdr->frame_control) || !ieee80211_is_data_present(hdr->frame_control)) return; tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; txq = sta->txq[tid]; mtxq = (struct mt76_txq *)txq->drv_priv; if (!mtxq->aggr) return; mtxq->agg_ssn = le16_to_cpu(hdr->seq_ctrl) + 0x10; } EXPORT_SYMBOL_GPL(mt76_tx_check_agg_ssn); void mt76_tx_status_lock(struct mt76_dev *dev, struct sk_buff_head *list) __acquires(&dev->status_lock) { __skb_queue_head_init(list); spin_lock_bh(&dev->status_lock); } EXPORT_SYMBOL_GPL(mt76_tx_status_lock); void mt76_tx_status_unlock(struct mt76_dev *dev, struct sk_buff_head *list) __releases(&dev->status_lock) { struct ieee80211_hw *hw; struct sk_buff *skb; spin_unlock_bh(&dev->status_lock); rcu_read_lock(); while ((skb = __skb_dequeue(list)) != NULL) { struct ieee80211_tx_status status = { .skb = skb, .info = IEEE80211_SKB_CB(skb), }; struct ieee80211_rate_status rs = {}; struct mt76_tx_cb *cb = mt76_tx_skb_cb(skb); struct mt76_wcid *wcid; wcid = rcu_dereference(dev->wcid[cb->wcid]); if (wcid) { status.sta = wcid_to_sta(wcid); if (status.sta && (wcid->rate.flags || wcid->rate.legacy)) { rs.rate_idx = wcid->rate; status.rates = &rs; status.n_rates = 1; } else { status.n_rates = 0; } } hw = mt76_tx_status_get_hw(dev, skb); spin_lock_bh(&dev->rx_lock); ieee80211_tx_status_ext(hw, &status); spin_unlock_bh(&dev->rx_lock); } rcu_read_unlock(); } EXPORT_SYMBOL_GPL(mt76_tx_status_unlock); static void __mt76_tx_status_skb_done(struct mt76_dev *dev, struct sk_buff *skb, u8 flags, struct sk_buff_head *list) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct mt76_tx_cb *cb = mt76_tx_skb_cb(skb); u8 done = MT_TX_CB_DMA_DONE | MT_TX_CB_TXS_DONE; flags |= cb->flags; cb->flags = flags; if ((flags & done) != done) return; /* Tx status can be unreliable. if it fails, mark the frame as ACKed */ if (flags & MT_TX_CB_TXS_FAILED) { info->status.rates[0].count = 0; info->status.rates[0].idx = -1; info->flags |= IEEE80211_TX_STAT_ACK; } __skb_queue_tail(list, skb); } void mt76_tx_status_skb_done(struct mt76_dev *dev, struct sk_buff *skb, struct sk_buff_head *list) { __mt76_tx_status_skb_done(dev, skb, MT_TX_CB_TXS_DONE, list); } EXPORT_SYMBOL_GPL(mt76_tx_status_skb_done); int mt76_tx_status_skb_add(struct mt76_dev *dev, struct mt76_wcid *wcid, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct mt76_tx_cb *cb = mt76_tx_skb_cb(skb); int pid; memset(cb, 0, sizeof(*cb)); if (!wcid || !rcu_access_pointer(dev->wcid[wcid->idx])) return MT_PACKET_ID_NO_ACK; if (info->flags & IEEE80211_TX_CTL_NO_ACK) return MT_PACKET_ID_NO_ACK; if (!(info->flags & (IEEE80211_TX_CTL_REQ_TX_STATUS | IEEE80211_TX_CTL_RATE_CTRL_PROBE))) { if (mtk_wed_device_active(&dev->mmio.wed) && ((info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP) || ieee80211_is_data(hdr->frame_control))) return MT_PACKET_ID_WED; return MT_PACKET_ID_NO_SKB; } spin_lock_bh(&dev->status_lock); pid = idr_alloc(&wcid->pktid, skb, MT_PACKET_ID_FIRST, MT_PACKET_ID_MASK, GFP_ATOMIC); if (pid < 0) { pid = MT_PACKET_ID_NO_SKB; goto out; } cb->wcid = wcid->idx; cb->pktid = pid; if (list_empty(&wcid->list)) list_add_tail(&wcid->list, &dev->wcid_list); out: spin_unlock_bh(&dev->status_lock); return pid; } EXPORT_SYMBOL_GPL(mt76_tx_status_skb_add); struct sk_buff * mt76_tx_status_skb_get(struct mt76_dev *dev, struct mt76_wcid *wcid, int pktid, struct sk_buff_head *list) { struct sk_buff *skb; int id; lockdep_assert_held(&dev->status_lock); skb = idr_remove(&wcid->pktid, pktid); if (skb) goto out; /* look for stale entries in the wcid idr queue */ idr_for_each_entry(&wcid->pktid, skb, id) { struct mt76_tx_cb *cb = mt76_tx_skb_cb(skb); if (pktid >= 0) { if (!(cb->flags & MT_TX_CB_DMA_DONE)) continue; if (time_is_after_jiffies(cb->jiffies + MT_TX_STATUS_SKB_TIMEOUT)) continue; } /* It has been too long since DMA_DONE, time out this packet * and stop waiting for TXS callback. */ idr_remove(&wcid->pktid, cb->pktid); __mt76_tx_status_skb_done(dev, skb, MT_TX_CB_TXS_FAILED | MT_TX_CB_TXS_DONE, list); } out: if (idr_is_empty(&wcid->pktid)) list_del_init(&wcid->list); return skb; } EXPORT_SYMBOL_GPL(mt76_tx_status_skb_get); void mt76_tx_status_check(struct mt76_dev *dev, bool flush) { struct mt76_wcid *wcid, *tmp; struct sk_buff_head list; mt76_tx_status_lock(dev, &list); list_for_each_entry_safe(wcid, tmp, &dev->wcid_list, list) mt76_tx_status_skb_get(dev, wcid, flush ? -1 : 0, &list); mt76_tx_status_unlock(dev, &list); } EXPORT_SYMBOL_GPL(mt76_tx_status_check); static void mt76_tx_check_non_aql(struct mt76_dev *dev, struct mt76_wcid *wcid, struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); int pending; if (!wcid || info->tx_time_est) return; pending = atomic_dec_return(&wcid->non_aql_packets); if (pending < 0) atomic_cmpxchg(&wcid->non_aql_packets, pending, 0); } void __mt76_tx_complete_skb(struct mt76_dev *dev, u16 wcid_idx, struct sk_buff *skb, struct list_head *free_list) { struct mt76_tx_cb *cb = mt76_tx_skb_cb(skb); struct ieee80211_tx_status status = { .skb = skb, .free_list = free_list, }; struct mt76_wcid *wcid = NULL; struct ieee80211_hw *hw; struct sk_buff_head list; rcu_read_lock(); if (wcid_idx < ARRAY_SIZE(dev->wcid)) wcid = rcu_dereference(dev->wcid[wcid_idx]); mt76_tx_check_non_aql(dev, wcid, skb); #ifdef CONFIG_NL80211_TESTMODE if (mt76_is_testmode_skb(dev, skb, &hw)) { struct mt76_phy *phy = hw->priv; if (skb == phy->test.tx_skb) phy->test.tx_done++; if (phy->test.tx_queued == phy->test.tx_done) wake_up(&dev->tx_wait); dev_kfree_skb_any(skb); goto out; } #endif if (cb->pktid < MT_PACKET_ID_FIRST) { struct ieee80211_rate_status rs = {}; hw = mt76_tx_status_get_hw(dev, skb); status.sta = wcid_to_sta(wcid); if (status.sta && (wcid->rate.flags || wcid->rate.legacy)) { rs.rate_idx = wcid->rate; status.rates = &rs; status.n_rates = 1; } spin_lock_bh(&dev->rx_lock); ieee80211_tx_status_ext(hw, &status); spin_unlock_bh(&dev->rx_lock); goto out; } mt76_tx_status_lock(dev, &list); cb->jiffies = jiffies; __mt76_tx_status_skb_done(dev, skb, MT_TX_CB_DMA_DONE, &list); mt76_tx_status_unlock(dev, &list); out: rcu_read_unlock(); } EXPORT_SYMBOL_GPL(__mt76_tx_complete_skb); static int __mt76_tx_queue_skb(struct mt76_phy *phy, int qid, struct sk_buff *skb, struct mt76_wcid *wcid, struct ieee80211_sta *sta, bool *stop) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct mt76_queue *q = phy->q_tx[qid]; struct mt76_dev *dev = phy->dev; bool non_aql; int pending; int idx; non_aql = !info->tx_time_est; idx = dev->queue_ops->tx_queue_skb(dev, q, qid, skb, wcid, sta); if (idx < 0 || !sta) return idx; wcid = (struct mt76_wcid *)sta->drv_priv; q->entry[idx].wcid = wcid->idx; if (!non_aql) return idx; pending = atomic_inc_return(&wcid->non_aql_packets); if (stop && pending >= MT_MAX_NON_AQL_PKT) *stop = true; return idx; } void mt76_tx(struct mt76_phy *phy, struct ieee80211_sta *sta, struct mt76_wcid *wcid, struct sk_buff *skb) { struct mt76_dev *dev = phy->dev; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct mt76_queue *q; int qid = skb_get_queue_mapping(skb); if (mt76_testmode_enabled(phy)) { ieee80211_free_txskb(phy->hw, skb); return; } if (WARN_ON(qid >= MT_TXQ_PSD)) { qid = MT_TXQ_BE; skb_set_queue_mapping(skb, qid); } if ((dev->drv->drv_flags & MT_DRV_HW_MGMT_TXQ) && !(info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP) && !ieee80211_is_data(hdr->frame_control) && !ieee80211_is_bufferable_mmpdu(skb)) { qid = MT_TXQ_PSD; } if (wcid && !(wcid->tx_info & MT_WCID_TX_INFO_SET)) ieee80211_get_tx_rates(info->control.vif, sta, skb, info->control.rates, 1); info->hw_queue |= FIELD_PREP(MT_TX_HW_QUEUE_PHY, phy->band_idx); q = phy->q_tx[qid]; spin_lock_bh(&q->lock); __mt76_tx_queue_skb(phy, qid, skb, wcid, sta, NULL); dev->queue_ops->kick(dev, q); spin_unlock_bh(&q->lock); } EXPORT_SYMBOL_GPL(mt76_tx); static struct sk_buff * mt76_txq_dequeue(struct mt76_phy *phy, struct mt76_txq *mtxq) { struct ieee80211_txq *txq = mtxq_to_txq(mtxq); struct ieee80211_tx_info *info; struct sk_buff *skb; skb = ieee80211_tx_dequeue(phy->hw, txq); if (!skb) return NULL; info = IEEE80211_SKB_CB(skb); info->hw_queue |= FIELD_PREP(MT_TX_HW_QUEUE_PHY, phy->band_idx); return skb; } static void mt76_queue_ps_skb(struct mt76_phy *phy, struct ieee80211_sta *sta, struct sk_buff *skb, bool last) { struct mt76_wcid *wcid = (struct mt76_wcid *)sta->drv_priv; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; if (last) info->flags |= IEEE80211_TX_STATUS_EOSP | IEEE80211_TX_CTL_REQ_TX_STATUS; mt76_skb_set_moredata(skb, !last); __mt76_tx_queue_skb(phy, MT_TXQ_PSD, skb, wcid, sta, NULL); } void mt76_release_buffered_frames(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u16 tids, int nframes, enum ieee80211_frame_release_type reason, bool more_data) { struct mt76_phy *phy = hw->priv; struct mt76_dev *dev = phy->dev; struct sk_buff *last_skb = NULL; struct mt76_queue *hwq = phy->q_tx[MT_TXQ_PSD]; int i; spin_lock_bh(&hwq->lock); for (i = 0; tids && nframes; i++, tids >>= 1) { struct ieee80211_txq *txq = sta->txq[i]; struct mt76_txq *mtxq = (struct mt76_txq *)txq->drv_priv; struct sk_buff *skb; if (!(tids & 1)) continue; do { skb = mt76_txq_dequeue(phy, mtxq); if (!skb) break; nframes--; if (last_skb) mt76_queue_ps_skb(phy, sta, last_skb, false); last_skb = skb; } while (nframes); } if (last_skb) { mt76_queue_ps_skb(phy, sta, last_skb, true); dev->queue_ops->kick(dev, hwq); } else { ieee80211_sta_eosp(sta); } spin_unlock_bh(&hwq->lock); } EXPORT_SYMBOL_GPL(mt76_release_buffered_frames); static bool mt76_txq_stopped(struct mt76_queue *q) { return q->stopped || q->blocked || q->queued + MT_TXQ_FREE_THR >= q->ndesc; } static int mt76_txq_send_burst(struct mt76_phy *phy, struct mt76_queue *q, struct mt76_txq *mtxq, struct mt76_wcid *wcid) { struct mt76_dev *dev = phy->dev; struct ieee80211_txq *txq = mtxq_to_txq(mtxq); enum mt76_txq_id qid = mt76_txq_get_qid(txq); struct ieee80211_tx_info *info; struct sk_buff *skb; int n_frames = 1; bool stop = false; int idx; if (test_bit(MT_WCID_FLAG_PS, &wcid->flags)) return 0; if (atomic_read(&wcid->non_aql_packets) >= MT_MAX_NON_AQL_PKT) return 0; skb = mt76_txq_dequeue(phy, mtxq); if (!skb) return 0; info = IEEE80211_SKB_CB(skb); if (!(wcid->tx_info & MT_WCID_TX_INFO_SET)) ieee80211_get_tx_rates(txq->vif, txq->sta, skb, info->control.rates, 1); spin_lock(&q->lock); idx = __mt76_tx_queue_skb(phy, qid, skb, wcid, txq->sta, &stop); spin_unlock(&q->lock); if (idx < 0) return idx; do { if (test_bit(MT76_RESET, &phy->state)) return -EBUSY; if (stop || mt76_txq_stopped(q)) break; skb = mt76_txq_dequeue(phy, mtxq); if (!skb) break; info = IEEE80211_SKB_CB(skb); if (!(wcid->tx_info & MT_WCID_TX_INFO_SET)) ieee80211_get_tx_rates(txq->vif, txq->sta, skb, info->control.rates, 1); spin_lock(&q->lock); idx = __mt76_tx_queue_skb(phy, qid, skb, wcid, txq->sta, &stop); spin_unlock(&q->lock); if (idx < 0) break; n_frames++; } while (1); spin_lock(&q->lock); dev->queue_ops->kick(dev, q); spin_unlock(&q->lock); return n_frames; } static int mt76_txq_schedule_list(struct mt76_phy *phy, enum mt76_txq_id qid) { struct mt76_queue *q = phy->q_tx[qid]; struct mt76_dev *dev = phy->dev; struct ieee80211_txq *txq; struct mt76_txq *mtxq; struct mt76_wcid *wcid; int ret = 0; while (1) { int n_frames = 0; if (test_bit(MT76_RESET, &phy->state)) return -EBUSY; if (dev->queue_ops->tx_cleanup && q->queued + 2 * MT_TXQ_FREE_THR >= q->ndesc) { dev->queue_ops->tx_cleanup(dev, q, false); } txq = ieee80211_next_txq(phy->hw, qid); if (!txq) break; mtxq = (struct mt76_txq *)txq->drv_priv; wcid = rcu_dereference(dev->wcid[mtxq->wcid]); if (!wcid || test_bit(MT_WCID_FLAG_PS, &wcid->flags)) continue; if (mtxq->send_bar && mtxq->aggr) { struct ieee80211_txq *txq = mtxq_to_txq(mtxq); struct ieee80211_sta *sta = txq->sta; struct ieee80211_vif *vif = txq->vif; u16 agg_ssn = mtxq->agg_ssn; u8 tid = txq->tid; mtxq->send_bar = false; ieee80211_send_bar(vif, sta->addr, tid, agg_ssn); } if (!mt76_txq_stopped(q)) n_frames = mt76_txq_send_burst(phy, q, mtxq, wcid); ieee80211_return_txq(phy->hw, txq, false); if (unlikely(n_frames < 0)) return n_frames; ret += n_frames; } return ret; } void mt76_txq_schedule(struct mt76_phy *phy, enum mt76_txq_id qid) { int len; if (qid >= 4) return; local_bh_disable(); rcu_read_lock(); do { ieee80211_txq_schedule_start(phy->hw, qid); len = mt76_txq_schedule_list(phy, qid); ieee80211_txq_schedule_end(phy->hw, qid); } while (len > 0); rcu_read_unlock(); local_bh_enable(); } EXPORT_SYMBOL_GPL(mt76_txq_schedule); void mt76_txq_schedule_all(struct mt76_phy *phy) { int i; for (i = 0; i <= MT_TXQ_BK; i++) mt76_txq_schedule(phy, i); } EXPORT_SYMBOL_GPL(mt76_txq_schedule_all); void mt76_tx_worker_run(struct mt76_dev *dev) { struct mt76_phy *phy; int i; for (i = 0; i < ARRAY_SIZE(dev->phys); i++) { phy = dev->phys[i]; if (!phy) continue; mt76_txq_schedule_all(phy); } #ifdef CONFIG_NL80211_TESTMODE for (i = 0; i < ARRAY_SIZE(dev->phys); i++) { phy = dev->phys[i]; if (!phy || !phy->test.tx_pending) continue; mt76_testmode_tx_pending(phy); } #endif } EXPORT_SYMBOL_GPL(mt76_tx_worker_run); void mt76_tx_worker(struct mt76_worker *w) { struct mt76_dev *dev = container_of(w, struct mt76_dev, tx_worker); mt76_tx_worker_run(dev); } void mt76_stop_tx_queues(struct mt76_phy *phy, struct ieee80211_sta *sta, bool send_bar) { int i; for (i = 0; i < ARRAY_SIZE(sta->txq); i++) { struct ieee80211_txq *txq = sta->txq[i]; struct mt76_queue *hwq; struct mt76_txq *mtxq; if (!txq) continue; hwq = phy->q_tx[mt76_txq_get_qid(txq)]; mtxq = (struct mt76_txq *)txq->drv_priv; spin_lock_bh(&hwq->lock); mtxq->send_bar = mtxq->aggr && send_bar; spin_unlock_bh(&hwq->lock); } } EXPORT_SYMBOL_GPL(mt76_stop_tx_queues); void mt76_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *txq) { struct mt76_phy *phy = hw->priv; struct mt76_dev *dev = phy->dev; if (!test_bit(MT76_STATE_RUNNING, &phy->state)) return; mt76_worker_schedule(&dev->tx_worker); } EXPORT_SYMBOL_GPL(mt76_wake_tx_queue); u8 mt76_ac_to_hwq(u8 ac) { static const u8 wmm_queue_map[] = { [IEEE80211_AC_BE] = 0, [IEEE80211_AC_BK] = 1, [IEEE80211_AC_VI] = 2, [IEEE80211_AC_VO] = 3, }; if (WARN_ON(ac >= IEEE80211_NUM_ACS)) return 0; return wmm_queue_map[ac]; } EXPORT_SYMBOL_GPL(mt76_ac_to_hwq); int mt76_skb_adjust_pad(struct sk_buff *skb, int pad) { struct sk_buff *iter, *last = skb; /* First packet of a A-MSDU burst keeps track of the whole burst * length, need to update length of it and the last packet. */ skb_walk_frags(skb, iter) { last = iter; if (!iter->next) { skb->data_len += pad; skb->len += pad; break; } } if (skb_pad(last, pad)) return -ENOMEM; __skb_put(last, pad); return 0; } EXPORT_SYMBOL_GPL(mt76_skb_adjust_pad); void mt76_queue_tx_complete(struct mt76_dev *dev, struct mt76_queue *q, struct mt76_queue_entry *e) { if (e->skb) dev->drv->tx_complete_skb(dev, e); spin_lock_bh(&q->lock); q->tail = (q->tail + 1) % q->ndesc; q->queued--; spin_unlock_bh(&q->lock); } EXPORT_SYMBOL_GPL(mt76_queue_tx_complete); void __mt76_set_tx_blocked(struct mt76_dev *dev, bool blocked) { struct mt76_phy *phy = &dev->phy; struct mt76_queue *q = phy->q_tx[0]; if (blocked == q->blocked) return; q->blocked = blocked; phy = dev->phys[MT_BAND1]; if (phy) { q = phy->q_tx[0]; q->blocked = blocked; } phy = dev->phys[MT_BAND2]; if (phy) { q = phy->q_tx[0]; q->blocked = blocked; } if (!blocked) mt76_worker_schedule(&dev->tx_worker); } EXPORT_SYMBOL_GPL(__mt76_set_tx_blocked); int mt76_token_consume(struct mt76_dev *dev, struct mt76_txwi_cache **ptxwi) { int token; spin_lock_bh(&dev->token_lock); token = idr_alloc(&dev->token, *ptxwi, 0, dev->token_size, GFP_ATOMIC); if (token >= 0) dev->token_count++; #ifdef CONFIG_NET_MEDIATEK_SOC_WED if (mtk_wed_device_active(&dev->mmio.wed) && token >= dev->mmio.wed.wlan.token_start) dev->wed_token_count++; #endif if (dev->token_count >= dev->token_size - MT76_TOKEN_FREE_THR) __mt76_set_tx_blocked(dev, true); spin_unlock_bh(&dev->token_lock); return token; } EXPORT_SYMBOL_GPL(mt76_token_consume); int mt76_rx_token_consume(struct mt76_dev *dev, void *ptr, struct mt76_txwi_cache *t, dma_addr_t phys) { int token; spin_lock_bh(&dev->rx_token_lock); token = idr_alloc(&dev->rx_token, t, 0, dev->rx_token_size, GFP_ATOMIC); if (token >= 0) { t->ptr = ptr; t->dma_addr = phys; } spin_unlock_bh(&dev->rx_token_lock); return token; } EXPORT_SYMBOL_GPL(mt76_rx_token_consume); struct mt76_txwi_cache * mt76_token_release(struct mt76_dev *dev, int token, bool *wake) { struct mt76_txwi_cache *txwi; spin_lock_bh(&dev->token_lock); txwi = idr_remove(&dev->token, token); if (txwi) { dev->token_count--; #ifdef CONFIG_NET_MEDIATEK_SOC_WED if (mtk_wed_device_active(&dev->mmio.wed) && token >= dev->mmio.wed.wlan.token_start && --dev->wed_token_count == 0) wake_up(&dev->tx_wait); #endif } if (dev->token_count < dev->token_size - MT76_TOKEN_FREE_THR && dev->phy.q_tx[0]->blocked) *wake = true; spin_unlock_bh(&dev->token_lock); return txwi; } EXPORT_SYMBOL_GPL(mt76_token_release); struct mt76_txwi_cache * mt76_rx_token_release(struct mt76_dev *dev, int token) { struct mt76_txwi_cache *t; spin_lock_bh(&dev->rx_token_lock); t = idr_remove(&dev->rx_token, token); spin_unlock_bh(&dev->rx_token_lock); return t; } EXPORT_SYMBOL_GPL(mt76_rx_token_release);
linux-master
drivers/net/wireless/mediatek/mt76/tx.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2016 Lorenzo Bianconi <[email protected]> */ #include "mt76x02.h" #define RADAR_SPEC(m, len, el, eh, wl, wh, \ w_tolerance, tl, th, t_tolerance, \ bl, bh, event_exp, power_jmp) \ { \ .mode = m, \ .avg_len = len, \ .e_low = el, \ .e_high = eh, \ .w_low = wl, \ .w_high = wh, \ .w_margin = w_tolerance, \ .t_low = tl, \ .t_high = th, \ .t_margin = t_tolerance, \ .b_low = bl, \ .b_high = bh, \ .event_expiration = event_exp, \ .pwr_jmp = power_jmp \ } static const struct mt76x02_radar_specs etsi_radar_specs[] = { /* 20MHz */ RADAR_SPEC(0, 8, 2, 15, 106, 150, 10, 4900, 100096, 10, 0, 0x7fffffff, 0x155cc0, 0x19cc), RADAR_SPEC(0, 40, 4, 59, 96, 380, 150, 4900, 100096, 40, 0, 0x7fffffff, 0x155cc0, 0x19cc), RADAR_SPEC(3, 60, 20, 46, 300, 640, 80, 4900, 10100, 80, 0, 0x7fffffff, 0x155cc0, 0x19dd), RADAR_SPEC(8, 8, 2, 9, 106, 150, 32, 4900, 296704, 32, 0, 0x7fffffff, 0x2191c0, 0x15cc), /* 40MHz */ RADAR_SPEC(0, 8, 2, 15, 106, 150, 10, 4900, 100096, 10, 0, 0x7fffffff, 0x155cc0, 0x19cc), RADAR_SPEC(0, 40, 4, 59, 96, 380, 150, 4900, 100096, 40, 0, 0x7fffffff, 0x155cc0, 0x19cc), RADAR_SPEC(3, 60, 20, 46, 300, 640, 80, 4900, 10100, 80, 0, 0x7fffffff, 0x155cc0, 0x19dd), RADAR_SPEC(8, 8, 2, 9, 106, 150, 32, 4900, 296704, 32, 0, 0x7fffffff, 0x2191c0, 0x15cc), /* 80MHz */ RADAR_SPEC(0, 8, 2, 15, 106, 150, 10, 4900, 100096, 10, 0, 0x7fffffff, 0x155cc0, 0x19cc), RADAR_SPEC(0, 40, 4, 59, 96, 380, 150, 4900, 100096, 40, 0, 0x7fffffff, 0x155cc0, 0x19cc), RADAR_SPEC(3, 60, 20, 46, 300, 640, 80, 4900, 10100, 80, 0, 0x7fffffff, 0x155cc0, 0x19dd), RADAR_SPEC(8, 8, 2, 9, 106, 150, 32, 4900, 296704, 32, 0, 0x7fffffff, 0x2191c0, 0x15cc) }; static const struct mt76x02_radar_specs fcc_radar_specs[] = { /* 20MHz */ RADAR_SPEC(0, 8, 2, 12, 106, 150, 5, 2900, 80100, 5, 0, 0x7fffffff, 0xfe808, 0x13dc), RADAR_SPEC(0, 8, 2, 7, 106, 140, 5, 27600, 27900, 5, 0, 0x7fffffff, 0xfe808, 0x19dd), RADAR_SPEC(0, 40, 4, 54, 96, 480, 150, 2900, 80100, 40, 0, 0x7fffffff, 0xfe808, 0x12cc), RADAR_SPEC(2, 60, 15, 63, 640, 2080, 32, 19600, 40200, 32, 0, 0x3938700, 0x57bcf00, 0x1289), /* 40MHz */ RADAR_SPEC(0, 8, 2, 12, 106, 150, 5, 2900, 80100, 5, 0, 0x7fffffff, 0xfe808, 0x13dc), RADAR_SPEC(0, 8, 2, 7, 106, 140, 5, 27600, 27900, 5, 0, 0x7fffffff, 0xfe808, 0x19dd), RADAR_SPEC(0, 40, 4, 54, 96, 480, 150, 2900, 80100, 40, 0, 0x7fffffff, 0xfe808, 0x12cc), RADAR_SPEC(2, 60, 15, 63, 640, 2080, 32, 19600, 40200, 32, 0, 0x3938700, 0x57bcf00, 0x1289), /* 80MHz */ RADAR_SPEC(0, 8, 2, 14, 106, 150, 15, 2900, 80100, 15, 0, 0x7fffffff, 0xfe808, 0x16cc), RADAR_SPEC(0, 8, 2, 7, 106, 140, 5, 27600, 27900, 5, 0, 0x7fffffff, 0xfe808, 0x19dd), RADAR_SPEC(0, 40, 4, 54, 96, 480, 150, 2900, 80100, 40, 0, 0x7fffffff, 0xfe808, 0x12cc), RADAR_SPEC(2, 60, 15, 63, 640, 2080, 32, 19600, 40200, 32, 0, 0x3938700, 0x57bcf00, 0x1289) }; static const struct mt76x02_radar_specs jp_w56_radar_specs[] = { /* 20MHz */ RADAR_SPEC(0, 8, 2, 7, 106, 150, 5, 2900, 80100, 5, 0, 0x7fffffff, 0x14c080, 0x13dc), RADAR_SPEC(0, 8, 2, 7, 106, 140, 5, 27600, 27900, 5, 0, 0x7fffffff, 0x14c080, 0x19dd), RADAR_SPEC(0, 40, 4, 44, 96, 480, 150, 2900, 80100, 40, 0, 0x7fffffff, 0x14c080, 0x12cc), RADAR_SPEC(2, 60, 15, 48, 940, 2080, 32, 19600, 40200, 32, 0, 0x3938700, 0X57bcf00, 0x1289), /* 40MHz */ RADAR_SPEC(0, 8, 2, 7, 106, 150, 5, 2900, 80100, 5, 0, 0x7fffffff, 0x14c080, 0x13dc), RADAR_SPEC(0, 8, 2, 7, 106, 140, 5, 27600, 27900, 5, 0, 0x7fffffff, 0x14c080, 0x19dd), RADAR_SPEC(0, 40, 4, 44, 96, 480, 150, 2900, 80100, 40, 0, 0x7fffffff, 0x14c080, 0x12cc), RADAR_SPEC(2, 60, 15, 48, 940, 2080, 32, 19600, 40200, 32, 0, 0x3938700, 0X57bcf00, 0x1289), /* 80MHz */ RADAR_SPEC(0, 8, 2, 9, 106, 150, 15, 2900, 80100, 15, 0, 0x7fffffff, 0x14c080, 0x16cc), RADAR_SPEC(0, 8, 2, 7, 106, 140, 5, 27600, 27900, 5, 0, 0x7fffffff, 0x14c080, 0x19dd), RADAR_SPEC(0, 40, 4, 44, 96, 480, 150, 2900, 80100, 40, 0, 0x7fffffff, 0x14c080, 0x12cc), RADAR_SPEC(2, 60, 15, 48, 940, 2080, 32, 19600, 40200, 32, 0, 0x3938700, 0X57bcf00, 0x1289) }; static const struct mt76x02_radar_specs jp_w53_radar_specs[] = { /* 20MHz */ RADAR_SPEC(0, 8, 2, 9, 106, 150, 20, 28400, 77000, 20, 0, 0x7fffffff, 0x14c080, 0x16cc), { 0 }, RADAR_SPEC(0, 40, 4, 44, 96, 200, 150, 28400, 77000, 60, 0, 0x7fffffff, 0x14c080, 0x16cc), { 0 }, /* 40MHz */ RADAR_SPEC(0, 8, 2, 9, 106, 150, 20, 28400, 77000, 20, 0, 0x7fffffff, 0x14c080, 0x16cc), { 0 }, RADAR_SPEC(0, 40, 4, 44, 96, 200, 150, 28400, 77000, 60, 0, 0x7fffffff, 0x14c080, 0x16cc), { 0 }, /* 80MHz */ RADAR_SPEC(0, 8, 2, 9, 106, 150, 20, 28400, 77000, 20, 0, 0x7fffffff, 0x14c080, 0x16cc), { 0 }, RADAR_SPEC(0, 40, 4, 44, 96, 200, 150, 28400, 77000, 60, 0, 0x7fffffff, 0x14c080, 0x16cc), { 0 } }; static void mt76x02_dfs_set_capture_mode_ctrl(struct mt76x02_dev *dev, u8 enable) { u32 data; data = (1 << 1) | enable; mt76_wr(dev, MT_BBP(DFS, 36), data); } static void mt76x02_dfs_seq_pool_put(struct mt76x02_dev *dev, struct mt76x02_dfs_sequence *seq) { struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd; list_add(&seq->head, &dfs_pd->seq_pool); dfs_pd->seq_stats.seq_pool_len++; dfs_pd->seq_stats.seq_len--; } static struct mt76x02_dfs_sequence * mt76x02_dfs_seq_pool_get(struct mt76x02_dev *dev) { struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd; struct mt76x02_dfs_sequence *seq; if (list_empty(&dfs_pd->seq_pool)) { seq = devm_kzalloc(dev->mt76.dev, sizeof(*seq), GFP_ATOMIC); } else { seq = list_first_entry(&dfs_pd->seq_pool, struct mt76x02_dfs_sequence, head); list_del(&seq->head); dfs_pd->seq_stats.seq_pool_len--; } if (seq) dfs_pd->seq_stats.seq_len++; return seq; } static int mt76x02_dfs_get_multiple(int val, int frac, int margin) { int remainder, factor; if (!frac) return 0; if (abs(val - frac) <= margin) return 1; factor = val / frac; remainder = val % frac; if (remainder > margin) { if ((frac - remainder) <= margin) factor++; else factor = 0; } return factor; } static void mt76x02_dfs_detector_reset(struct mt76x02_dev *dev) { struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd; struct mt76x02_dfs_sequence *seq, *tmp_seq; int i; /* reset hw detector */ mt76_wr(dev, MT_BBP(DFS, 1), 0xf); /* reset sw detector */ for (i = 0; i < ARRAY_SIZE(dfs_pd->event_rb); i++) { dfs_pd->event_rb[i].h_rb = 0; dfs_pd->event_rb[i].t_rb = 0; } list_for_each_entry_safe(seq, tmp_seq, &dfs_pd->sequences, head) { list_del_init(&seq->head); mt76x02_dfs_seq_pool_put(dev, seq); } } static bool mt76x02_dfs_check_chirp(struct mt76x02_dev *dev) { bool ret = false; u32 current_ts, delta_ts; struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd; current_ts = mt76_rr(dev, MT_PBF_LIFE_TIMER); delta_ts = current_ts - dfs_pd->chirp_pulse_ts; dfs_pd->chirp_pulse_ts = current_ts; /* 12 sec */ if (delta_ts <= (12 * (1 << 20))) { if (++dfs_pd->chirp_pulse_cnt > 8) ret = true; } else { dfs_pd->chirp_pulse_cnt = 1; } return ret; } static void mt76x02_dfs_get_hw_pulse(struct mt76x02_dev *dev, struct mt76x02_dfs_hw_pulse *pulse) { u32 data; /* select channel */ data = (MT_DFS_CH_EN << 16) | pulse->engine; mt76_wr(dev, MT_BBP(DFS, 0), data); /* reported period */ pulse->period = mt76_rr(dev, MT_BBP(DFS, 19)); /* reported width */ pulse->w1 = mt76_rr(dev, MT_BBP(DFS, 20)); pulse->w2 = mt76_rr(dev, MT_BBP(DFS, 23)); /* reported burst number */ pulse->burst = mt76_rr(dev, MT_BBP(DFS, 22)); } static bool mt76x02_dfs_check_hw_pulse(struct mt76x02_dev *dev, struct mt76x02_dfs_hw_pulse *pulse) { bool ret = false; if (!pulse->period || !pulse->w1) return false; switch (dev->mt76.region) { case NL80211_DFS_FCC: if (pulse->engine > 3) break; if (pulse->engine == 3) { ret = mt76x02_dfs_check_chirp(dev); break; } /* check short pulse*/ if (pulse->w1 < 120) ret = (pulse->period >= 2900 && (pulse->period <= 4700 || pulse->period >= 6400) && (pulse->period <= 6800 || pulse->period >= 10200) && pulse->period <= 61600); else if (pulse->w1 < 130) /* 120 - 130 */ ret = (pulse->period >= 2900 && pulse->period <= 61600); else ret = (pulse->period >= 3500 && pulse->period <= 10100); break; case NL80211_DFS_ETSI: if (pulse->engine >= 3) break; ret = (pulse->period >= 4900 && (pulse->period <= 10200 || pulse->period >= 12400) && pulse->period <= 100100); break; case NL80211_DFS_JP: if (dev->mphy.chandef.chan->center_freq >= 5250 && dev->mphy.chandef.chan->center_freq <= 5350) { /* JPW53 */ if (pulse->w1 <= 130) ret = (pulse->period >= 28360 && (pulse->period <= 28700 || pulse->period >= 76900) && pulse->period <= 76940); break; } if (pulse->engine > 3) break; if (pulse->engine == 3) { ret = mt76x02_dfs_check_chirp(dev); break; } /* check short pulse*/ if (pulse->w1 < 120) ret = (pulse->period >= 2900 && (pulse->period <= 4700 || pulse->period >= 6400) && (pulse->period <= 6800 || pulse->period >= 27560) && (pulse->period <= 27960 || pulse->period >= 28360) && (pulse->period <= 28700 || pulse->period >= 79900) && pulse->period <= 80100); else if (pulse->w1 < 130) /* 120 - 130 */ ret = (pulse->period >= 2900 && (pulse->period <= 10100 || pulse->period >= 27560) && (pulse->period <= 27960 || pulse->period >= 28360) && (pulse->period <= 28700 || pulse->period >= 79900) && pulse->period <= 80100); else ret = (pulse->period >= 3900 && pulse->period <= 10100); break; case NL80211_DFS_UNSET: default: return false; } return ret; } static bool mt76x02_dfs_fetch_event(struct mt76x02_dev *dev, struct mt76x02_dfs_event *event) { u32 data; /* 1st: DFS_R37[31]: 0 (engine 0) - 1 (engine 2) * 2nd: DFS_R37[21:0]: pulse time * 3rd: DFS_R37[11:0]: pulse width * 3rd: DFS_R37[25:16]: phase * 4th: DFS_R37[12:0]: current pwr * 4th: DFS_R37[21:16]: pwr stable counter * * 1st: DFS_R37[31:0] set to 0xffffffff means no event detected */ data = mt76_rr(dev, MT_BBP(DFS, 37)); if (!MT_DFS_CHECK_EVENT(data)) return false; event->engine = MT_DFS_EVENT_ENGINE(data); data = mt76_rr(dev, MT_BBP(DFS, 37)); event->ts = MT_DFS_EVENT_TIMESTAMP(data); data = mt76_rr(dev, MT_BBP(DFS, 37)); event->width = MT_DFS_EVENT_WIDTH(data); return true; } static bool mt76x02_dfs_check_event(struct mt76x02_dev *dev, struct mt76x02_dfs_event *event) { if (event->engine == 2) { struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd; struct mt76x02_dfs_event_rb *event_buff = &dfs_pd->event_rb[1]; u16 last_event_idx; u32 delta_ts; last_event_idx = mt76_decr(event_buff->t_rb, MT_DFS_EVENT_BUFLEN); delta_ts = event->ts - event_buff->data[last_event_idx].ts; if (delta_ts < MT_DFS_EVENT_TIME_MARGIN && event_buff->data[last_event_idx].width >= 200) return false; } return true; } static void mt76x02_dfs_queue_event(struct mt76x02_dev *dev, struct mt76x02_dfs_event *event) { struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd; struct mt76x02_dfs_event_rb *event_buff; /* add radar event to ring buffer */ event_buff = event->engine == 2 ? &dfs_pd->event_rb[1] : &dfs_pd->event_rb[0]; event_buff->data[event_buff->t_rb] = *event; event_buff->data[event_buff->t_rb].fetch_ts = jiffies; event_buff->t_rb = mt76_incr(event_buff->t_rb, MT_DFS_EVENT_BUFLEN); if (event_buff->t_rb == event_buff->h_rb) event_buff->h_rb = mt76_incr(event_buff->h_rb, MT_DFS_EVENT_BUFLEN); } static int mt76x02_dfs_create_sequence(struct mt76x02_dev *dev, struct mt76x02_dfs_event *event, u16 cur_len) { struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd; struct mt76x02_dfs_sw_detector_params *sw_params; u32 width_delta, with_sum; struct mt76x02_dfs_sequence seq, *seq_p; struct mt76x02_dfs_event_rb *event_rb; struct mt76x02_dfs_event *cur_event; int i, j, end, pri, factor, cur_pri; event_rb = event->engine == 2 ? &dfs_pd->event_rb[1] : &dfs_pd->event_rb[0]; i = mt76_decr(event_rb->t_rb, MT_DFS_EVENT_BUFLEN); end = mt76_decr(event_rb->h_rb, MT_DFS_EVENT_BUFLEN); while (i != end) { cur_event = &event_rb->data[i]; with_sum = event->width + cur_event->width; sw_params = &dfs_pd->sw_dpd_params; switch (dev->mt76.region) { case NL80211_DFS_FCC: case NL80211_DFS_JP: if (with_sum < 600) width_delta = 8; else width_delta = with_sum >> 3; break; case NL80211_DFS_ETSI: if (event->engine == 2) width_delta = with_sum >> 6; else if (with_sum < 620) width_delta = 24; else width_delta = 8; break; case NL80211_DFS_UNSET: default: return -EINVAL; } pri = event->ts - cur_event->ts; if (abs(event->width - cur_event->width) > width_delta || pri < sw_params->min_pri) goto next; if (pri > sw_params->max_pri) break; seq.pri = event->ts - cur_event->ts; seq.first_ts = cur_event->ts; seq.last_ts = event->ts; seq.engine = event->engine; seq.count = 2; j = mt76_decr(i, MT_DFS_EVENT_BUFLEN); while (j != end) { cur_event = &event_rb->data[j]; cur_pri = event->ts - cur_event->ts; factor = mt76x02_dfs_get_multiple(cur_pri, seq.pri, sw_params->pri_margin); if (factor > 0) { seq.first_ts = cur_event->ts; seq.count++; } j = mt76_decr(j, MT_DFS_EVENT_BUFLEN); } if (seq.count <= cur_len) goto next; seq_p = mt76x02_dfs_seq_pool_get(dev); if (!seq_p) return -ENOMEM; *seq_p = seq; INIT_LIST_HEAD(&seq_p->head); list_add(&seq_p->head, &dfs_pd->sequences); next: i = mt76_decr(i, MT_DFS_EVENT_BUFLEN); } return 0; } static u16 mt76x02_dfs_add_event_to_sequence(struct mt76x02_dev *dev, struct mt76x02_dfs_event *event) { struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd; struct mt76x02_dfs_sw_detector_params *sw_params; struct mt76x02_dfs_sequence *seq, *tmp_seq; u16 max_seq_len = 0; int factor, pri; sw_params = &dfs_pd->sw_dpd_params; list_for_each_entry_safe(seq, tmp_seq, &dfs_pd->sequences, head) { if (event->ts > seq->first_ts + MT_DFS_SEQUENCE_WINDOW) { list_del_init(&seq->head); mt76x02_dfs_seq_pool_put(dev, seq); continue; } if (event->engine != seq->engine) continue; pri = event->ts - seq->last_ts; factor = mt76x02_dfs_get_multiple(pri, seq->pri, sw_params->pri_margin); if (factor > 0) { seq->last_ts = event->ts; seq->count++; max_seq_len = max_t(u16, max_seq_len, seq->count); } } return max_seq_len; } static bool mt76x02_dfs_check_detection(struct mt76x02_dev *dev) { struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd; struct mt76x02_dfs_sequence *seq; if (list_empty(&dfs_pd->sequences)) return false; list_for_each_entry(seq, &dfs_pd->sequences, head) { if (seq->count > MT_DFS_SEQUENCE_TH) { dfs_pd->stats[seq->engine].sw_pattern++; return true; } } return false; } static void mt76x02_dfs_add_events(struct mt76x02_dev *dev) { struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd; struct mt76x02_dfs_event event; int i, seq_len; /* disable debug mode */ mt76x02_dfs_set_capture_mode_ctrl(dev, false); for (i = 0; i < MT_DFS_EVENT_LOOP; i++) { if (!mt76x02_dfs_fetch_event(dev, &event)) break; if (dfs_pd->last_event_ts > event.ts) mt76x02_dfs_detector_reset(dev); dfs_pd->last_event_ts = event.ts; if (!mt76x02_dfs_check_event(dev, &event)) continue; seq_len = mt76x02_dfs_add_event_to_sequence(dev, &event); mt76x02_dfs_create_sequence(dev, &event, seq_len); mt76x02_dfs_queue_event(dev, &event); } mt76x02_dfs_set_capture_mode_ctrl(dev, true); } static void mt76x02_dfs_check_event_window(struct mt76x02_dev *dev) { struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd; struct mt76x02_dfs_event_rb *event_buff; struct mt76x02_dfs_event *event; int i; for (i = 0; i < ARRAY_SIZE(dfs_pd->event_rb); i++) { event_buff = &dfs_pd->event_rb[i]; while (event_buff->h_rb != event_buff->t_rb) { event = &event_buff->data[event_buff->h_rb]; /* sorted list */ if (time_is_after_jiffies(event->fetch_ts + MT_DFS_EVENT_WINDOW)) break; event_buff->h_rb = mt76_incr(event_buff->h_rb, MT_DFS_EVENT_BUFLEN); } } } static void mt76x02_dfs_tasklet(struct tasklet_struct *t) { struct mt76x02_dfs_pattern_detector *dfs_pd = from_tasklet(dfs_pd, t, dfs_tasklet); struct mt76x02_dev *dev = container_of(dfs_pd, typeof(*dev), dfs_pd); u32 engine_mask; int i; if (test_bit(MT76_SCANNING, &dev->mphy.state)) goto out; if (time_is_before_jiffies(dfs_pd->last_sw_check + MT_DFS_SW_TIMEOUT)) { bool radar_detected; dfs_pd->last_sw_check = jiffies; mt76x02_dfs_add_events(dev); radar_detected = mt76x02_dfs_check_detection(dev); if (radar_detected) { /* sw detector rx radar pattern */ ieee80211_radar_detected(dev->mt76.hw); mt76x02_dfs_detector_reset(dev); return; } mt76x02_dfs_check_event_window(dev); } engine_mask = mt76_rr(dev, MT_BBP(DFS, 1)); if (!(engine_mask & 0xf)) goto out; for (i = 0; i < MT_DFS_NUM_ENGINES; i++) { struct mt76x02_dfs_hw_pulse pulse; if (!(engine_mask & (1 << i))) continue; pulse.engine = i; mt76x02_dfs_get_hw_pulse(dev, &pulse); if (!mt76x02_dfs_check_hw_pulse(dev, &pulse)) { dfs_pd->stats[i].hw_pulse_discarded++; continue; } /* hw detector rx radar pattern */ dfs_pd->stats[i].hw_pattern++; ieee80211_radar_detected(dev->mt76.hw); mt76x02_dfs_detector_reset(dev); return; } /* reset hw detector */ mt76_wr(dev, MT_BBP(DFS, 1), 0xf); out: mt76x02_irq_enable(dev, MT_INT_GPTIMER); } static void mt76x02_dfs_init_sw_detector(struct mt76x02_dev *dev) { struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd; switch (dev->mt76.region) { case NL80211_DFS_FCC: dfs_pd->sw_dpd_params.max_pri = MT_DFS_FCC_MAX_PRI; dfs_pd->sw_dpd_params.min_pri = MT_DFS_FCC_MIN_PRI; dfs_pd->sw_dpd_params.pri_margin = MT_DFS_PRI_MARGIN; break; case NL80211_DFS_ETSI: dfs_pd->sw_dpd_params.max_pri = MT_DFS_ETSI_MAX_PRI; dfs_pd->sw_dpd_params.min_pri = MT_DFS_ETSI_MIN_PRI; dfs_pd->sw_dpd_params.pri_margin = MT_DFS_PRI_MARGIN << 2; break; case NL80211_DFS_JP: dfs_pd->sw_dpd_params.max_pri = MT_DFS_JP_MAX_PRI; dfs_pd->sw_dpd_params.min_pri = MT_DFS_JP_MIN_PRI; dfs_pd->sw_dpd_params.pri_margin = MT_DFS_PRI_MARGIN; break; case NL80211_DFS_UNSET: default: break; } } static void mt76x02_dfs_set_bbp_params(struct mt76x02_dev *dev) { const struct mt76x02_radar_specs *radar_specs; u8 i, shift; u32 data; switch (dev->mphy.chandef.width) { case NL80211_CHAN_WIDTH_40: shift = MT_DFS_NUM_ENGINES; break; case NL80211_CHAN_WIDTH_80: shift = 2 * MT_DFS_NUM_ENGINES; break; default: shift = 0; break; } switch (dev->mt76.region) { case NL80211_DFS_FCC: radar_specs = &fcc_radar_specs[shift]; break; case NL80211_DFS_ETSI: radar_specs = &etsi_radar_specs[shift]; break; case NL80211_DFS_JP: if (dev->mphy.chandef.chan->center_freq >= 5250 && dev->mphy.chandef.chan->center_freq <= 5350) radar_specs = &jp_w53_radar_specs[shift]; else radar_specs = &jp_w56_radar_specs[shift]; break; case NL80211_DFS_UNSET: default: return; } data = (MT_DFS_VGA_MASK << 16) | (MT_DFS_PWR_GAIN_OFFSET << 12) | (MT_DFS_PWR_DOWN_TIME << 8) | (MT_DFS_SYM_ROUND << 4) | (MT_DFS_DELTA_DELAY & 0xf); mt76_wr(dev, MT_BBP(DFS, 2), data); data = (MT_DFS_RX_PE_MASK << 16) | MT_DFS_PKT_END_MASK; mt76_wr(dev, MT_BBP(DFS, 3), data); for (i = 0; i < MT_DFS_NUM_ENGINES; i++) { /* configure engine */ mt76_wr(dev, MT_BBP(DFS, 0), i); /* detection mode + avg_len */ data = ((radar_specs[i].avg_len & 0x1ff) << 16) | (radar_specs[i].mode & 0xf); mt76_wr(dev, MT_BBP(DFS, 4), data); /* dfs energy */ data = ((radar_specs[i].e_high & 0x0fff) << 16) | (radar_specs[i].e_low & 0x0fff); mt76_wr(dev, MT_BBP(DFS, 5), data); /* dfs period */ mt76_wr(dev, MT_BBP(DFS, 7), radar_specs[i].t_low); mt76_wr(dev, MT_BBP(DFS, 9), radar_specs[i].t_high); /* dfs burst */ mt76_wr(dev, MT_BBP(DFS, 11), radar_specs[i].b_low); mt76_wr(dev, MT_BBP(DFS, 13), radar_specs[i].b_high); /* dfs width */ data = ((radar_specs[i].w_high & 0x0fff) << 16) | (radar_specs[i].w_low & 0x0fff); mt76_wr(dev, MT_BBP(DFS, 14), data); /* dfs margins */ data = (radar_specs[i].w_margin << 16) | radar_specs[i].t_margin; mt76_wr(dev, MT_BBP(DFS, 15), data); /* dfs event expiration */ mt76_wr(dev, MT_BBP(DFS, 17), radar_specs[i].event_expiration); /* dfs pwr adj */ mt76_wr(dev, MT_BBP(DFS, 30), radar_specs[i].pwr_jmp); } /* reset status */ mt76_wr(dev, MT_BBP(DFS, 1), 0xf); mt76_wr(dev, MT_BBP(DFS, 36), 0x3); /* enable detection*/ mt76_wr(dev, MT_BBP(DFS, 0), MT_DFS_CH_EN << 16); mt76_wr(dev, MT_BBP(IBI, 11), 0x0c350001); } void mt76x02_phy_dfs_adjust_agc(struct mt76x02_dev *dev) { u32 agc_r8, agc_r4, val_r8, val_r4, dfs_r31; agc_r8 = mt76_rr(dev, MT_BBP(AGC, 8)); agc_r4 = mt76_rr(dev, MT_BBP(AGC, 4)); val_r8 = (agc_r8 & 0x00007e00) >> 9; val_r4 = agc_r4 & ~0x1f000000; val_r4 += (((val_r8 + 1) >> 1) << 24); mt76_wr(dev, MT_BBP(AGC, 4), val_r4); dfs_r31 = FIELD_GET(MT_BBP_AGC_LNA_HIGH_GAIN, val_r4); dfs_r31 += val_r8; dfs_r31 -= (agc_r8 & 0x00000038) >> 3; dfs_r31 = (dfs_r31 << 16) | 0x00000307; mt76_wr(dev, MT_BBP(DFS, 31), dfs_r31); if (is_mt76x2(dev)) { mt76_wr(dev, MT_BBP(DFS, 32), 0x00040071); } else { /* disable hw detector */ mt76_wr(dev, MT_BBP(DFS, 0), 0); /* enable hw detector */ mt76_wr(dev, MT_BBP(DFS, 0), MT_DFS_CH_EN << 16); } } EXPORT_SYMBOL_GPL(mt76x02_phy_dfs_adjust_agc); void mt76x02_dfs_init_params(struct mt76x02_dev *dev) { if (mt76_phy_dfs_state(&dev->mphy) > MT_DFS_STATE_DISABLED) { mt76x02_dfs_init_sw_detector(dev); mt76x02_dfs_set_bbp_params(dev); /* enable debug mode */ mt76x02_dfs_set_capture_mode_ctrl(dev, true); mt76x02_irq_enable(dev, MT_INT_GPTIMER); mt76_rmw_field(dev, MT_INT_TIMER_EN, MT_INT_TIMER_EN_GP_TIMER_EN, 1); } else { /* disable hw detector */ mt76_wr(dev, MT_BBP(DFS, 0), 0); /* clear detector status */ mt76_wr(dev, MT_BBP(DFS, 1), 0xf); if (mt76_chip(&dev->mt76) == 0x7610 || mt76_chip(&dev->mt76) == 0x7630) mt76_wr(dev, MT_BBP(IBI, 11), 0xfde8081); else mt76_wr(dev, MT_BBP(IBI, 11), 0); mt76x02_irq_disable(dev, MT_INT_GPTIMER); mt76_rmw_field(dev, MT_INT_TIMER_EN, MT_INT_TIMER_EN_GP_TIMER_EN, 0); } } EXPORT_SYMBOL_GPL(mt76x02_dfs_init_params); void mt76x02_dfs_init_detector(struct mt76x02_dev *dev) { struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd; INIT_LIST_HEAD(&dfs_pd->sequences); INIT_LIST_HEAD(&dfs_pd->seq_pool); dev->mt76.region = NL80211_DFS_UNSET; dfs_pd->last_sw_check = jiffies; tasklet_setup(&dfs_pd->dfs_tasklet, mt76x02_dfs_tasklet); } static void mt76x02_dfs_set_domain(struct mt76x02_dev *dev, enum nl80211_dfs_regions region) { struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd; mutex_lock(&dev->mt76.mutex); if (dev->mt76.region != region) { tasklet_disable(&dfs_pd->dfs_tasklet); dev->ed_monitor = dev->ed_monitor_enabled && region == NL80211_DFS_ETSI; mt76x02_edcca_init(dev); dev->mt76.region = region; mt76x02_dfs_init_params(dev); tasklet_enable(&dfs_pd->dfs_tasklet); } mutex_unlock(&dev->mt76.mutex); } void mt76x02_regd_notifier(struct wiphy *wiphy, struct regulatory_request *request) { struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); struct mt76x02_dev *dev = hw->priv; mt76x02_dfs_set_domain(dev, request->dfs_region); }
linux-master
drivers/net/wireless/mediatek/mt76/mt76x02_dfs.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2020 MediaTek Inc. */ #include <linux/relay.h> #include "mt7915.h" #include "eeprom.h" #include "mcu.h" #include "mac.h" #define FW_BIN_LOG_MAGIC 0x44e98caf /** global debugfs **/ struct hw_queue_map { const char *name; u8 index; u8 pid; u8 qid; }; static int mt7915_implicit_txbf_set(void *data, u64 val) { struct mt7915_dev *dev = data; /* The existing connected stations shall reconnect to apply * new implicit txbf configuration. */ dev->ibf = !!val; return mt7915_mcu_set_txbf(dev, MT_BF_TYPE_UPDATE); } static int mt7915_implicit_txbf_get(void *data, u64 *val) { struct mt7915_dev *dev = data; *val = dev->ibf; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_implicit_txbf, mt7915_implicit_txbf_get, mt7915_implicit_txbf_set, "%lld\n"); /* test knob of system error recovery */ static ssize_t mt7915_sys_recovery_set(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct mt7915_phy *phy = file->private_data; struct mt7915_dev *dev = phy->dev; bool band = phy->mt76->band_idx; char buf[16]; int ret = 0; u16 val; if (count >= sizeof(buf)) return -EINVAL; if (copy_from_user(buf, user_buf, count)) return -EFAULT; if (count && buf[count - 1] == '\n') buf[count - 1] = '\0'; else buf[count] = '\0'; if (kstrtou16(buf, 0, &val)) return -EINVAL; switch (val) { /* * 0: grab firmware current SER state. * 1: trigger & enable system error L1 recovery. * 2: trigger & enable system error L2 recovery. * 3: trigger & enable system error L3 rx abort. * 4: trigger & enable system error L3 tx abort * 5: trigger & enable system error L3 tx disable. * 6: trigger & enable system error L3 bf recovery. * 7: trigger & enable system error full recovery. * 8: trigger firmware crash. */ case SER_QUERY: ret = mt7915_mcu_set_ser(dev, 0, 0, band); break; case SER_SET_RECOVER_L1: case SER_SET_RECOVER_L2: case SER_SET_RECOVER_L3_RX_ABORT: case SER_SET_RECOVER_L3_TX_ABORT: case SER_SET_RECOVER_L3_TX_DISABLE: case SER_SET_RECOVER_L3_BF: ret = mt7915_mcu_set_ser(dev, SER_ENABLE, BIT(val), band); if (ret) return ret; ret = mt7915_mcu_set_ser(dev, SER_RECOVER, val, band); break; /* enable full chip reset */ case SER_SET_RECOVER_FULL: mt76_set(dev, MT_WFDMA0_MCU_HOST_INT_ENA, MT_MCU_CMD_WDT_MASK); ret = mt7915_mcu_set_ser(dev, 1, 3, band); if (ret) return ret; dev->recovery.state |= MT_MCU_CMD_WDT_MASK; mt7915_reset(dev); break; /* WARNING: trigger firmware crash */ case SER_SET_SYSTEM_ASSERT: mt76_wr(dev, MT_MCU_WM_CIRQ_EINT_MASK_CLR_ADDR, BIT(18)); mt76_wr(dev, MT_MCU_WM_CIRQ_EINT_SOFT_ADDR, BIT(18)); break; default: break; } return ret ? ret : count; } static ssize_t mt7915_sys_recovery_get(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct mt7915_phy *phy = file->private_data; struct mt7915_dev *dev = phy->dev; char *buff; int desc = 0; ssize_t ret; static const size_t bufsz = 1024; buff = kmalloc(bufsz, GFP_KERNEL); if (!buff) return -ENOMEM; /* HELP */ desc += scnprintf(buff + desc, bufsz - desc, "Please echo the correct value ...\n"); desc += scnprintf(buff + desc, bufsz - desc, "0: grab firmware transient SER state\n"); desc += scnprintf(buff + desc, bufsz - desc, "1: trigger system error L1 recovery\n"); desc += scnprintf(buff + desc, bufsz - desc, "2: trigger system error L2 recovery\n"); desc += scnprintf(buff + desc, bufsz - desc, "3: trigger system error L3 rx abort\n"); desc += scnprintf(buff + desc, bufsz - desc, "4: trigger system error L3 tx abort\n"); desc += scnprintf(buff + desc, bufsz - desc, "5: trigger system error L3 tx disable\n"); desc += scnprintf(buff + desc, bufsz - desc, "6: trigger system error L3 bf recovery\n"); desc += scnprintf(buff + desc, bufsz - desc, "7: trigger system error full recovery\n"); desc += scnprintf(buff + desc, bufsz - desc, "8: trigger firmware crash\n"); /* SER statistics */ desc += scnprintf(buff + desc, bufsz - desc, "\nlet's dump firmware SER statistics...\n"); desc += scnprintf(buff + desc, bufsz - desc, "::E R , SER_STATUS = 0x%08x\n", mt76_rr(dev, MT_SWDEF_SER_STATS)); desc += scnprintf(buff + desc, bufsz - desc, "::E R , SER_PLE_ERR = 0x%08x\n", mt76_rr(dev, MT_SWDEF_PLE_STATS)); desc += scnprintf(buff + desc, bufsz - desc, "::E R , SER_PLE_ERR_1 = 0x%08x\n", mt76_rr(dev, MT_SWDEF_PLE1_STATS)); desc += scnprintf(buff + desc, bufsz - desc, "::E R , SER_PLE_ERR_AMSDU = 0x%08x\n", mt76_rr(dev, MT_SWDEF_PLE_AMSDU_STATS)); desc += scnprintf(buff + desc, bufsz - desc, "::E R , SER_PSE_ERR = 0x%08x\n", mt76_rr(dev, MT_SWDEF_PSE_STATS)); desc += scnprintf(buff + desc, bufsz - desc, "::E R , SER_PSE_ERR_1 = 0x%08x\n", mt76_rr(dev, MT_SWDEF_PSE1_STATS)); desc += scnprintf(buff + desc, bufsz - desc, "::E R , SER_LMAC_WISR6_B0 = 0x%08x\n", mt76_rr(dev, MT_SWDEF_LAMC_WISR6_BN0_STATS)); desc += scnprintf(buff + desc, bufsz - desc, "::E R , SER_LMAC_WISR6_B1 = 0x%08x\n", mt76_rr(dev, MT_SWDEF_LAMC_WISR6_BN1_STATS)); desc += scnprintf(buff + desc, bufsz - desc, "::E R , SER_LMAC_WISR7_B0 = 0x%08x\n", mt76_rr(dev, MT_SWDEF_LAMC_WISR7_BN0_STATS)); desc += scnprintf(buff + desc, bufsz - desc, "::E R , SER_LMAC_WISR7_B1 = 0x%08x\n", mt76_rr(dev, MT_SWDEF_LAMC_WISR7_BN1_STATS)); desc += scnprintf(buff + desc, bufsz - desc, "\nSYS_RESET_COUNT: WM %d, WA %d\n", dev->recovery.wm_reset_count, dev->recovery.wa_reset_count); ret = simple_read_from_buffer(user_buf, count, ppos, buff, desc); kfree(buff); return ret; } static const struct file_operations mt7915_sys_recovery_ops = { .write = mt7915_sys_recovery_set, .read = mt7915_sys_recovery_get, .open = simple_open, .llseek = default_llseek, }; static int mt7915_radar_trigger(void *data, u64 val) { struct mt7915_dev *dev = data; if (val > MT_RX_SEL2) return -EINVAL; return mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_RADAR_EMULATE, val, 0, 0); } DEFINE_DEBUGFS_ATTRIBUTE(fops_radar_trigger, NULL, mt7915_radar_trigger, "%lld\n"); static int mt7915_muru_debug_set(void *data, u64 val) { struct mt7915_dev *dev = data; dev->muru_debug = val; mt7915_mcu_muru_debug_set(dev, dev->muru_debug); return 0; } static int mt7915_muru_debug_get(void *data, u64 *val) { struct mt7915_dev *dev = data; *val = dev->muru_debug; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_muru_debug, mt7915_muru_debug_get, mt7915_muru_debug_set, "%lld\n"); static int mt7915_muru_stats_show(struct seq_file *file, void *data) { struct mt7915_phy *phy = file->private; struct mt7915_dev *dev = phy->dev; static const char * const dl_non_he_type[] = { "CCK", "OFDM", "HT MIX", "HT GF", "VHT SU", "VHT 2MU", "VHT 3MU", "VHT 4MU" }; static const char * const dl_he_type[] = { "HE SU", "HE EXT", "HE 2MU", "HE 3MU", "HE 4MU", "HE 2RU", "HE 3RU", "HE 4RU", "HE 5-8RU", "HE 9-16RU", "HE >16RU" }; static const char * const ul_he_type[] = { "HE 2MU", "HE 3MU", "HE 4MU", "HE SU", "HE 2RU", "HE 3RU", "HE 4RU", "HE 5-8RU", "HE 9-16RU", "HE >16RU" }; int ret, i; u64 total_ppdu_cnt, sub_total_cnt; if (!dev->muru_debug) { seq_puts(file, "Please enable muru_debug first.\n"); return 0; } mutex_lock(&dev->mt76.mutex); ret = mt7915_mcu_muru_debug_get(phy); if (ret) goto exit; /* Non-HE Downlink*/ seq_puts(file, "[Non-HE]\nDownlink\nData Type: "); for (i = 0; i < 5; i++) seq_printf(file, "%8s | ", dl_non_he_type[i]); seq_puts(file, "\nTotal Count:"); seq_printf(file, "%8u | %8u | %8u | %8u | %8u | ", phy->mib.dl_cck_cnt, phy->mib.dl_ofdm_cnt, phy->mib.dl_htmix_cnt, phy->mib.dl_htgf_cnt, phy->mib.dl_vht_su_cnt); seq_puts(file, "\nDownlink MU-MIMO\nData Type: "); for (i = 5; i < 8; i++) seq_printf(file, "%8s | ", dl_non_he_type[i]); seq_puts(file, "\nTotal Count:"); seq_printf(file, "%8u | %8u | %8u | ", phy->mib.dl_vht_2mu_cnt, phy->mib.dl_vht_3mu_cnt, phy->mib.dl_vht_4mu_cnt); sub_total_cnt = phy->mib.dl_vht_2mu_cnt + phy->mib.dl_vht_3mu_cnt + phy->mib.dl_vht_4mu_cnt; seq_printf(file, "\nTotal non-HE MU-MIMO DL PPDU count: %lld", sub_total_cnt); total_ppdu_cnt = sub_total_cnt + phy->mib.dl_cck_cnt + phy->mib.dl_ofdm_cnt + phy->mib.dl_htmix_cnt + phy->mib.dl_htgf_cnt + phy->mib.dl_vht_su_cnt; seq_printf(file, "\nAll non-HE DL PPDU count: %lld", total_ppdu_cnt); /* HE Downlink */ seq_puts(file, "\n\n[HE]\nDownlink\nData Type: "); for (i = 0; i < 2; i++) seq_printf(file, "%8s | ", dl_he_type[i]); seq_puts(file, "\nTotal Count:"); seq_printf(file, "%8u | %8u | ", phy->mib.dl_he_su_cnt, phy->mib.dl_he_ext_su_cnt); seq_puts(file, "\nDownlink MU-MIMO\nData Type: "); for (i = 2; i < 5; i++) seq_printf(file, "%8s | ", dl_he_type[i]); seq_puts(file, "\nTotal Count:"); seq_printf(file, "%8u | %8u | %8u | ", phy->mib.dl_he_2mu_cnt, phy->mib.dl_he_3mu_cnt, phy->mib.dl_he_4mu_cnt); seq_puts(file, "\nDownlink OFDMA\nData Type: "); for (i = 5; i < 11; i++) seq_printf(file, "%8s | ", dl_he_type[i]); seq_puts(file, "\nTotal Count:"); seq_printf(file, "%8u | %8u | %8u | %8u | %9u | %8u | ", phy->mib.dl_he_2ru_cnt, phy->mib.dl_he_3ru_cnt, phy->mib.dl_he_4ru_cnt, phy->mib.dl_he_5to8ru_cnt, phy->mib.dl_he_9to16ru_cnt, phy->mib.dl_he_gtr16ru_cnt); sub_total_cnt = phy->mib.dl_he_2mu_cnt + phy->mib.dl_he_3mu_cnt + phy->mib.dl_he_4mu_cnt; total_ppdu_cnt = sub_total_cnt; seq_printf(file, "\nTotal HE MU-MIMO DL PPDU count: %lld", sub_total_cnt); sub_total_cnt = phy->mib.dl_he_2ru_cnt + phy->mib.dl_he_3ru_cnt + phy->mib.dl_he_4ru_cnt + phy->mib.dl_he_5to8ru_cnt + phy->mib.dl_he_9to16ru_cnt + phy->mib.dl_he_gtr16ru_cnt; total_ppdu_cnt += sub_total_cnt; seq_printf(file, "\nTotal HE OFDMA DL PPDU count: %lld", sub_total_cnt); total_ppdu_cnt += phy->mib.dl_he_su_cnt + phy->mib.dl_he_ext_su_cnt; seq_printf(file, "\nAll HE DL PPDU count: %lld", total_ppdu_cnt); /* HE Uplink */ seq_puts(file, "\n\nUplink"); seq_puts(file, "\nTrigger-based Uplink MU-MIMO\nData Type: "); for (i = 0; i < 3; i++) seq_printf(file, "%8s | ", ul_he_type[i]); seq_puts(file, "\nTotal Count:"); seq_printf(file, "%8u | %8u | %8u | ", phy->mib.ul_hetrig_2mu_cnt, phy->mib.ul_hetrig_3mu_cnt, phy->mib.ul_hetrig_4mu_cnt); seq_puts(file, "\nTrigger-based Uplink OFDMA\nData Type: "); for (i = 3; i < 10; i++) seq_printf(file, "%8s | ", ul_he_type[i]); seq_puts(file, "\nTotal Count:"); seq_printf(file, "%8u | %8u | %8u | %8u | %8u | %9u | %7u | ", phy->mib.ul_hetrig_su_cnt, phy->mib.ul_hetrig_2ru_cnt, phy->mib.ul_hetrig_3ru_cnt, phy->mib.ul_hetrig_4ru_cnt, phy->mib.ul_hetrig_5to8ru_cnt, phy->mib.ul_hetrig_9to16ru_cnt, phy->mib.ul_hetrig_gtr16ru_cnt); sub_total_cnt = phy->mib.ul_hetrig_2mu_cnt + phy->mib.ul_hetrig_3mu_cnt + phy->mib.ul_hetrig_4mu_cnt; total_ppdu_cnt = sub_total_cnt; seq_printf(file, "\nTotal HE MU-MIMO UL TB PPDU count: %lld", sub_total_cnt); sub_total_cnt = phy->mib.ul_hetrig_2ru_cnt + phy->mib.ul_hetrig_3ru_cnt + phy->mib.ul_hetrig_4ru_cnt + phy->mib.ul_hetrig_5to8ru_cnt + phy->mib.ul_hetrig_9to16ru_cnt + phy->mib.ul_hetrig_gtr16ru_cnt; total_ppdu_cnt += sub_total_cnt; seq_printf(file, "\nTotal HE OFDMA UL TB PPDU count: %lld", sub_total_cnt); total_ppdu_cnt += phy->mib.ul_hetrig_su_cnt; seq_printf(file, "\nAll HE UL TB PPDU count: %lld\n", total_ppdu_cnt); exit: mutex_unlock(&dev->mt76.mutex); return ret; } DEFINE_SHOW_ATTRIBUTE(mt7915_muru_stats); static int mt7915_rdd_monitor(struct seq_file *s, void *data) { struct mt7915_dev *dev = dev_get_drvdata(s->private); struct cfg80211_chan_def *chandef = &dev->rdd2_chandef; const char *bw; int ret = 0; mutex_lock(&dev->mt76.mutex); if (!cfg80211_chandef_valid(chandef)) { ret = -EINVAL; goto out; } if (!dev->rdd2_phy) { seq_puts(s, "not running\n"); goto out; } switch (chandef->width) { case NL80211_CHAN_WIDTH_40: bw = "40"; break; case NL80211_CHAN_WIDTH_80: bw = "80"; break; case NL80211_CHAN_WIDTH_160: bw = "160"; break; case NL80211_CHAN_WIDTH_80P80: bw = "80P80"; break; default: bw = "20"; break; } seq_printf(s, "channel %d (%d MHz) width %s MHz center1: %d MHz\n", chandef->chan->hw_value, chandef->chan->center_freq, bw, chandef->center_freq1); out: mutex_unlock(&dev->mt76.mutex); return ret; } static int mt7915_fw_debug_wm_set(void *data, u64 val) { struct mt7915_dev *dev = data; enum { DEBUG_TXCMD = 62, DEBUG_CMD_RPT_TX, DEBUG_CMD_RPT_TRIG, DEBUG_SPL, DEBUG_RPT_RX, } debug; bool tx, rx, en; int ret; dev->fw.debug_wm = val ? MCU_FW_LOG_TO_HOST : 0; if (dev->fw.debug_bin) val = 16; else val = dev->fw.debug_wm; tx = dev->fw.debug_wm || (dev->fw.debug_bin & BIT(1)); rx = dev->fw.debug_wm || (dev->fw.debug_bin & BIT(2)); en = dev->fw.debug_wm || (dev->fw.debug_bin & BIT(0)); ret = mt7915_mcu_fw_log_2_host(dev, MCU_FW_LOG_WM, val); if (ret) goto out; for (debug = DEBUG_TXCMD; debug <= DEBUG_RPT_RX; debug++) { if (debug == DEBUG_RPT_RX) val = en && rx; else val = en && tx; ret = mt7915_mcu_fw_dbg_ctrl(dev, debug, val); if (ret) goto out; } /* WM CPU info record control */ mt76_clear(dev, MT_CPU_UTIL_CTRL, BIT(0)); mt76_wr(dev, MT_DIC_CMD_REG_CMD, BIT(2) | BIT(13) | !dev->fw.debug_wm); mt76_wr(dev, MT_MCU_WM_CIRQ_IRQ_MASK_CLR_ADDR, BIT(5)); mt76_wr(dev, MT_MCU_WM_CIRQ_IRQ_SOFT_ADDR, BIT(5)); out: if (ret) dev->fw.debug_wm = 0; return ret; } static int mt7915_fw_debug_wm_get(void *data, u64 *val) { struct mt7915_dev *dev = data; *val = dev->fw.debug_wm; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_fw_debug_wm, mt7915_fw_debug_wm_get, mt7915_fw_debug_wm_set, "%lld\n"); static int mt7915_fw_debug_wa_set(void *data, u64 val) { struct mt7915_dev *dev = data; int ret; dev->fw.debug_wa = val ? MCU_FW_LOG_TO_HOST : 0; ret = mt7915_mcu_fw_log_2_host(dev, MCU_FW_LOG_WA, dev->fw.debug_wa); if (ret) goto out; ret = mt7915_mcu_wa_cmd(dev, MCU_WA_PARAM_CMD(SET), MCU_WA_PARAM_PDMA_RX, !!dev->fw.debug_wa, 0); out: if (ret) dev->fw.debug_wa = 0; return ret; } static int mt7915_fw_debug_wa_get(void *data, u64 *val) { struct mt7915_dev *dev = data; *val = dev->fw.debug_wa; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_fw_debug_wa, mt7915_fw_debug_wa_get, mt7915_fw_debug_wa_set, "%lld\n"); static struct dentry * create_buf_file_cb(const char *filename, struct dentry *parent, umode_t mode, struct rchan_buf *buf, int *is_global) { struct dentry *f; f = debugfs_create_file("fwlog_data", mode, parent, buf, &relay_file_operations); if (IS_ERR(f)) return NULL; *is_global = 1; return f; } static int remove_buf_file_cb(struct dentry *f) { debugfs_remove(f); return 0; } static int mt7915_fw_debug_bin_set(void *data, u64 val) { static struct rchan_callbacks relay_cb = { .create_buf_file = create_buf_file_cb, .remove_buf_file = remove_buf_file_cb, }; struct mt7915_dev *dev = data; if (!dev->relay_fwlog) dev->relay_fwlog = relay_open("fwlog_data", dev->debugfs_dir, 1500, 512, &relay_cb, NULL); if (!dev->relay_fwlog) return -ENOMEM; dev->fw.debug_bin = val; relay_reset(dev->relay_fwlog); return mt7915_fw_debug_wm_set(dev, dev->fw.debug_wm); } static int mt7915_fw_debug_bin_get(void *data, u64 *val) { struct mt7915_dev *dev = data; *val = dev->fw.debug_bin; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_fw_debug_bin, mt7915_fw_debug_bin_get, mt7915_fw_debug_bin_set, "%lld\n"); static int mt7915_fw_util_wm_show(struct seq_file *file, void *data) { struct mt7915_dev *dev = file->private; seq_printf(file, "Program counter: 0x%x\n", mt76_rr(dev, MT_WM_MCU_PC)); if (dev->fw.debug_wm) { seq_printf(file, "Busy: %u%% Peak busy: %u%%\n", mt76_rr(dev, MT_CPU_UTIL_BUSY_PCT), mt76_rr(dev, MT_CPU_UTIL_PEAK_BUSY_PCT)); seq_printf(file, "Idle count: %u Peak idle count: %u\n", mt76_rr(dev, MT_CPU_UTIL_IDLE_CNT), mt76_rr(dev, MT_CPU_UTIL_PEAK_IDLE_CNT)); } return 0; } DEFINE_SHOW_ATTRIBUTE(mt7915_fw_util_wm); static int mt7915_fw_util_wa_show(struct seq_file *file, void *data) { struct mt7915_dev *dev = file->private; seq_printf(file, "Program counter: 0x%x\n", mt76_rr(dev, MT_WA_MCU_PC)); if (dev->fw.debug_wa) return mt7915_mcu_wa_cmd(dev, MCU_WA_PARAM_CMD(QUERY), MCU_WA_PARAM_CPU_UTIL, 0, 0); return 0; } DEFINE_SHOW_ATTRIBUTE(mt7915_fw_util_wa); static void mt7915_ampdu_stat_read_phy(struct mt7915_phy *phy, struct seq_file *file) { struct mt7915_dev *dev = phy->dev; bool ext_phy = phy != &dev->phy; int bound[15], range[4], i; u8 band = phy->mt76->band_idx; /* Tx ampdu stat */ for (i = 0; i < ARRAY_SIZE(range); i++) range[i] = mt76_rr(dev, MT_MIB_ARNG(band, i)); for (i = 0; i < ARRAY_SIZE(bound); i++) bound[i] = MT_MIB_ARNCR_RANGE(range[i / 4], i % 4) + 1; seq_printf(file, "\nPhy %d, Phy band %d\n", ext_phy, band); seq_printf(file, "Length: %8d | ", bound[0]); for (i = 0; i < ARRAY_SIZE(bound) - 1; i++) seq_printf(file, "%3d -%3d | ", bound[i] + 1, bound[i + 1]); seq_puts(file, "\nCount: "); for (i = 0; i < ARRAY_SIZE(bound); i++) seq_printf(file, "%8d | ", phy->mt76->aggr_stats[i]); seq_puts(file, "\n"); seq_printf(file, "BA miss count: %d\n", phy->mib.ba_miss_cnt); } static void mt7915_txbf_stat_read_phy(struct mt7915_phy *phy, struct seq_file *s) { struct mt76_mib_stats *mib = &phy->mib; static const char * const bw[] = { "BW20", "BW40", "BW80", "BW160" }; /* Tx Beamformer monitor */ seq_puts(s, "\nTx Beamformer applied PPDU counts: "); seq_printf(s, "iBF: %d, eBF: %d\n", mib->tx_bf_ibf_ppdu_cnt, mib->tx_bf_ebf_ppdu_cnt); /* Tx Beamformer Rx feedback monitor */ seq_puts(s, "Tx Beamformer Rx feedback statistics: "); seq_printf(s, "All: %d, HE: %d, VHT: %d, HT: %d, ", mib->tx_bf_rx_fb_all_cnt, mib->tx_bf_rx_fb_he_cnt, mib->tx_bf_rx_fb_vht_cnt, mib->tx_bf_rx_fb_ht_cnt); seq_printf(s, "%s, NC: %d, NR: %d\n", bw[mib->tx_bf_rx_fb_bw], mib->tx_bf_rx_fb_nc_cnt, mib->tx_bf_rx_fb_nr_cnt); /* Tx Beamformee Rx NDPA & Tx feedback report */ seq_printf(s, "Tx Beamformee successful feedback frames: %d\n", mib->tx_bf_fb_cpl_cnt); seq_printf(s, "Tx Beamformee feedback triggered counts: %d\n", mib->tx_bf_fb_trig_cnt); /* Tx SU & MU counters */ seq_printf(s, "Tx multi-user Beamforming counts: %d\n", mib->tx_bf_cnt); seq_printf(s, "Tx multi-user MPDU counts: %d\n", mib->tx_mu_mpdu_cnt); seq_printf(s, "Tx multi-user successful MPDU counts: %d\n", mib->tx_mu_acked_mpdu_cnt); seq_printf(s, "Tx single-user successful MPDU counts: %d\n", mib->tx_su_acked_mpdu_cnt); seq_puts(s, "\n"); } static int mt7915_tx_stats_show(struct seq_file *file, void *data) { struct mt7915_phy *phy = file->private; struct mt7915_dev *dev = phy->dev; struct mt76_mib_stats *mib = &phy->mib; int i; mutex_lock(&dev->mt76.mutex); mt7915_ampdu_stat_read_phy(phy, file); mt7915_mac_update_stats(phy); mt7915_txbf_stat_read_phy(phy, file); /* Tx amsdu info */ seq_puts(file, "Tx MSDU statistics:\n"); for (i = 0; i < ARRAY_SIZE(mib->tx_amsdu); i++) { seq_printf(file, "AMSDU pack count of %d MSDU in TXD: %8d ", i + 1, mib->tx_amsdu[i]); if (mib->tx_amsdu_cnt) seq_printf(file, "(%3d%%)\n", mib->tx_amsdu[i] * 100 / mib->tx_amsdu_cnt); else seq_puts(file, "\n"); } mutex_unlock(&dev->mt76.mutex); return 0; } DEFINE_SHOW_ATTRIBUTE(mt7915_tx_stats); static void mt7915_hw_queue_read(struct seq_file *s, u32 size, const struct hw_queue_map *map) { struct mt7915_phy *phy = s->private; struct mt7915_dev *dev = phy->dev; u32 i, val; val = mt76_rr(dev, MT_FL_Q_EMPTY); for (i = 0; i < size; i++) { u32 ctrl, head, tail, queued; if (val & BIT(map[i].index)) continue; ctrl = BIT(31) | (map[i].pid << 10) | ((u32)map[i].qid << 24); mt76_wr(dev, MT_FL_Q0_CTRL, ctrl); head = mt76_get_field(dev, MT_FL_Q2_CTRL, GENMASK(11, 0)); tail = mt76_get_field(dev, MT_FL_Q2_CTRL, GENMASK(27, 16)); queued = mt76_get_field(dev, MT_FL_Q3_CTRL, GENMASK(11, 0)); seq_printf(s, "\t%s: ", map[i].name); seq_printf(s, "queued:0x%03x head:0x%03x tail:0x%03x\n", queued, head, tail); } } static void mt7915_sta_hw_queue_read(void *data, struct ieee80211_sta *sta) { struct mt7915_sta *msta = (struct mt7915_sta *)sta->drv_priv; struct mt7915_dev *dev = msta->vif->phy->dev; struct seq_file *s = data; u8 ac; for (ac = 0; ac < 4; ac++) { u32 qlen, ctrl, val; u32 idx = msta->wcid.idx >> 5; u8 offs = msta->wcid.idx & GENMASK(4, 0); ctrl = BIT(31) | BIT(11) | (ac << 24); val = mt76_rr(dev, MT_PLE_AC_QEMPTY(ac, idx)); if (val & BIT(offs)) continue; mt76_wr(dev, MT_FL_Q0_CTRL, ctrl | msta->wcid.idx); qlen = mt76_get_field(dev, MT_FL_Q3_CTRL, GENMASK(11, 0)); seq_printf(s, "\tSTA %pM wcid %d: AC%d%d queued:%d\n", sta->addr, msta->wcid.idx, msta->vif->mt76.wmm_idx, ac, qlen); } } static int mt7915_hw_queues_show(struct seq_file *file, void *data) { struct mt7915_phy *phy = file->private; struct mt7915_dev *dev = phy->dev; static const struct hw_queue_map ple_queue_map[] = { { "CPU_Q0", 0, 1, MT_CTX0 }, { "CPU_Q1", 1, 1, MT_CTX0 + 1 }, { "CPU_Q2", 2, 1, MT_CTX0 + 2 }, { "CPU_Q3", 3, 1, MT_CTX0 + 3 }, { "ALTX_Q0", 8, 2, MT_LMAC_ALTX0 }, { "BMC_Q0", 9, 2, MT_LMAC_BMC0 }, { "BCN_Q0", 10, 2, MT_LMAC_BCN0 }, { "PSMP_Q0", 11, 2, MT_LMAC_PSMP0 }, { "ALTX_Q1", 12, 2, MT_LMAC_ALTX0 + 4 }, { "BMC_Q1", 13, 2, MT_LMAC_BMC0 + 4 }, { "BCN_Q1", 14, 2, MT_LMAC_BCN0 + 4 }, { "PSMP_Q1", 15, 2, MT_LMAC_PSMP0 + 4 }, }; static const struct hw_queue_map pse_queue_map[] = { { "CPU Q0", 0, 1, MT_CTX0 }, { "CPU Q1", 1, 1, MT_CTX0 + 1 }, { "CPU Q2", 2, 1, MT_CTX0 + 2 }, { "CPU Q3", 3, 1, MT_CTX0 + 3 }, { "HIF_Q0", 8, 0, MT_HIF0 }, { "HIF_Q1", 9, 0, MT_HIF0 + 1 }, { "HIF_Q2", 10, 0, MT_HIF0 + 2 }, { "HIF_Q3", 11, 0, MT_HIF0 + 3 }, { "HIF_Q4", 12, 0, MT_HIF0 + 4 }, { "HIF_Q5", 13, 0, MT_HIF0 + 5 }, { "LMAC_Q", 16, 2, 0 }, { "MDP_TXQ", 17, 2, 1 }, { "MDP_RXQ", 18, 2, 2 }, { "SEC_TXQ", 19, 2, 3 }, { "SEC_RXQ", 20, 2, 4 }, }; u32 val, head, tail; /* ple queue */ val = mt76_rr(dev, MT_PLE_FREEPG_CNT); head = mt76_get_field(dev, MT_PLE_FREEPG_HEAD_TAIL, GENMASK(11, 0)); tail = mt76_get_field(dev, MT_PLE_FREEPG_HEAD_TAIL, GENMASK(27, 16)); seq_puts(file, "PLE page info:\n"); seq_printf(file, "\tTotal free page: 0x%08x head: 0x%03x tail: 0x%03x\n", val, head, tail); val = mt76_rr(dev, MT_PLE_PG_HIF_GROUP); head = mt76_get_field(dev, MT_PLE_HIF_PG_INFO, GENMASK(11, 0)); tail = mt76_get_field(dev, MT_PLE_HIF_PG_INFO, GENMASK(27, 16)); seq_printf(file, "\tHIF free page: 0x%03x res: 0x%03x used: 0x%03x\n", val, head, tail); seq_puts(file, "PLE non-empty queue info:\n"); mt7915_hw_queue_read(file, ARRAY_SIZE(ple_queue_map), &ple_queue_map[0]); /* iterate per-sta ple queue */ ieee80211_iterate_stations_atomic(phy->mt76->hw, mt7915_sta_hw_queue_read, file); /* pse queue */ seq_puts(file, "PSE non-empty queue info:\n"); mt7915_hw_queue_read(file, ARRAY_SIZE(pse_queue_map), &pse_queue_map[0]); return 0; } DEFINE_SHOW_ATTRIBUTE(mt7915_hw_queues); static int mt7915_xmit_queues_show(struct seq_file *file, void *data) { struct mt7915_phy *phy = file->private; struct mt7915_dev *dev = phy->dev; struct { struct mt76_queue *q; char *queue; } queue_map[] = { { phy->mt76->q_tx[MT_TXQ_BE], " MAIN" }, { dev->mt76.q_mcu[MT_MCUQ_WM], " MCUWM" }, { dev->mt76.q_mcu[MT_MCUQ_WA], " MCUWA" }, { dev->mt76.q_mcu[MT_MCUQ_FWDL], "MCUFWDL" }, }; int i; seq_puts(file, " queue | hw-queued | head | tail |\n"); for (i = 0; i < ARRAY_SIZE(queue_map); i++) { struct mt76_queue *q = queue_map[i].q; if (!q) continue; seq_printf(file, " %s | %9d | %9d | %9d |\n", queue_map[i].queue, q->queued, q->head, q->tail); } return 0; } DEFINE_SHOW_ATTRIBUTE(mt7915_xmit_queues); #define mt7915_txpower_puts(rate) \ ({ \ len += scnprintf(buf + len, sz - len, "%-16s:", #rate " (TMAC)"); \ for (i = 0; i < mt7915_sku_group_len[SKU_##rate]; i++, offs++) \ len += scnprintf(buf + len, sz - len, " %6d", txpwr[offs]); \ len += scnprintf(buf + len, sz - len, "\n"); \ }) #define mt7915_txpower_sets(rate, pwr, flag) \ ({ \ offs += len; \ len = mt7915_sku_group_len[rate]; \ if (mode == flag) { \ for (i = 0; i < len; i++) \ req.txpower_sku[offs + i] = pwr; \ } \ }) static ssize_t mt7915_rate_txpower_get(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct mt7915_phy *phy = file->private_data; struct mt7915_dev *dev = phy->dev; s8 txpwr[MT7915_SKU_RATE_NUM]; static const size_t sz = 2048; u8 band = phy->mt76->band_idx; int i, offs = 0, len = 0; ssize_t ret; char *buf; u32 reg; buf = kzalloc(sz, GFP_KERNEL); if (!buf) return -ENOMEM; ret = mt7915_mcu_get_txpower_sku(phy, txpwr, sizeof(txpwr)); if (ret) goto out; /* Txpower propagation path: TMAC -> TXV -> BBP */ len += scnprintf(buf + len, sz - len, "\nPhy%d Tx power table (channel %d)\n", phy != &dev->phy, phy->mt76->chandef.chan->hw_value); len += scnprintf(buf + len, sz - len, "%-16s %6s %6s %6s %6s\n", " ", "1m", "2m", "5m", "11m"); mt7915_txpower_puts(CCK); len += scnprintf(buf + len, sz - len, "%-16s %6s %6s %6s %6s %6s %6s %6s %6s\n", " ", "6m", "9m", "12m", "18m", "24m", "36m", "48m", "54m"); mt7915_txpower_puts(OFDM); len += scnprintf(buf + len, sz - len, "%-16s %6s %6s %6s %6s %6s %6s %6s %6s\n", " ", "mcs0", "mcs1", "mcs2", "mcs3", "mcs4", "mcs5", "mcs6", "mcs7"); mt7915_txpower_puts(HT_BW20); len += scnprintf(buf + len, sz - len, "%-16s %6s %6s %6s %6s %6s %6s %6s %6s %6s\n", " ", "mcs0", "mcs1", "mcs2", "mcs3", "mcs4", "mcs5", "mcs6", "mcs7", "mcs32"); mt7915_txpower_puts(HT_BW40); len += scnprintf(buf + len, sz - len, "%-16s %6s %6s %6s %6s %6s %6s %6s %6s %6s %6s %6s %6s\n", " ", "mcs0", "mcs1", "mcs2", "mcs3", "mcs4", "mcs5", "mcs6", "mcs7", "mcs8", "mcs9", "mcs10", "mcs11"); mt7915_txpower_puts(VHT_BW20); mt7915_txpower_puts(VHT_BW40); mt7915_txpower_puts(VHT_BW80); mt7915_txpower_puts(VHT_BW160); mt7915_txpower_puts(HE_RU26); mt7915_txpower_puts(HE_RU52); mt7915_txpower_puts(HE_RU106); mt7915_txpower_puts(HE_RU242); mt7915_txpower_puts(HE_RU484); mt7915_txpower_puts(HE_RU996); mt7915_txpower_puts(HE_RU2x996); reg = is_mt7915(&dev->mt76) ? MT_WF_PHY_TPC_CTRL_STAT(band) : MT_WF_PHY_TPC_CTRL_STAT_MT7916(band); len += scnprintf(buf + len, sz - len, "\nTx power (bbp) : %6ld\n", mt76_get_field(dev, reg, MT_WF_PHY_TPC_POWER)); ret = simple_read_from_buffer(user_buf, count, ppos, buf, len); out: kfree(buf); return ret; } static ssize_t mt7915_rate_txpower_set(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct mt7915_phy *phy = file->private_data; struct mt7915_dev *dev = phy->dev; struct mt76_phy *mphy = phy->mt76; struct mt7915_mcu_txpower_sku req = { .format_id = TX_POWER_LIMIT_TABLE, .band_idx = phy->mt76->band_idx, }; char buf[100]; int i, ret, pwr160 = 0, pwr80 = 0, pwr40 = 0, pwr20 = 0; enum mac80211_rx_encoding mode; u32 offs = 0, len = 0; if (count >= sizeof(buf)) return -EINVAL; if (copy_from_user(buf, user_buf, count)) return -EFAULT; if (count && buf[count - 1] == '\n') buf[count - 1] = '\0'; else buf[count] = '\0'; if (sscanf(buf, "%u %u %u %u %u", &mode, &pwr160, &pwr80, &pwr40, &pwr20) != 5) { dev_warn(dev->mt76.dev, "per bandwidth power limit: Mode BW160 BW80 BW40 BW20"); return -EINVAL; } if (mode > RX_ENC_HE) return -EINVAL; if (pwr160) pwr160 = mt7915_get_power_bound(phy, pwr160); if (pwr80) pwr80 = mt7915_get_power_bound(phy, pwr80); if (pwr40) pwr40 = mt7915_get_power_bound(phy, pwr40); if (pwr20) pwr20 = mt7915_get_power_bound(phy, pwr20); if (pwr160 < 0 || pwr80 < 0 || pwr40 < 0 || pwr20 < 0) return -EINVAL; mutex_lock(&dev->mt76.mutex); ret = mt7915_mcu_get_txpower_sku(phy, req.txpower_sku, sizeof(req.txpower_sku)); if (ret) goto out; mt7915_txpower_sets(SKU_CCK, pwr20, RX_ENC_LEGACY); mt7915_txpower_sets(SKU_OFDM, pwr20, RX_ENC_LEGACY); if (mode == RX_ENC_LEGACY) goto skip; mt7915_txpower_sets(SKU_HT_BW20, pwr20, RX_ENC_HT); mt7915_txpower_sets(SKU_HT_BW40, pwr40, RX_ENC_HT); if (mode == RX_ENC_HT) goto skip; mt7915_txpower_sets(SKU_VHT_BW20, pwr20, RX_ENC_VHT); mt7915_txpower_sets(SKU_VHT_BW40, pwr40, RX_ENC_VHT); mt7915_txpower_sets(SKU_VHT_BW80, pwr80, RX_ENC_VHT); mt7915_txpower_sets(SKU_VHT_BW160, pwr160, RX_ENC_VHT); if (mode == RX_ENC_VHT) goto skip; mt7915_txpower_sets(SKU_HE_RU26, pwr20, RX_ENC_HE + 1); mt7915_txpower_sets(SKU_HE_RU52, pwr20, RX_ENC_HE + 1); mt7915_txpower_sets(SKU_HE_RU106, pwr20, RX_ENC_HE + 1); mt7915_txpower_sets(SKU_HE_RU242, pwr20, RX_ENC_HE); mt7915_txpower_sets(SKU_HE_RU484, pwr40, RX_ENC_HE); mt7915_txpower_sets(SKU_HE_RU996, pwr80, RX_ENC_HE); mt7915_txpower_sets(SKU_HE_RU2x996, pwr160, RX_ENC_HE); skip: ret = mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(TX_POWER_FEATURE_CTRL), &req, sizeof(req), true); if (ret) goto out; mphy->txpower_cur = max(mphy->txpower_cur, max(pwr160, max(pwr80, max(pwr40, pwr20)))); out: mutex_unlock(&dev->mt76.mutex); return ret ? ret : count; } static const struct file_operations mt7915_rate_txpower_fops = { .write = mt7915_rate_txpower_set, .read = mt7915_rate_txpower_get, .open = simple_open, .owner = THIS_MODULE, .llseek = default_llseek, }; static int mt7915_twt_stats(struct seq_file *s, void *data) { struct mt7915_dev *dev = dev_get_drvdata(s->private); struct mt7915_twt_flow *iter; rcu_read_lock(); seq_puts(s, " wcid | id | flags | exp | mantissa"); seq_puts(s, " | duration | tsf |\n"); list_for_each_entry_rcu(iter, &dev->twt_list, list) seq_printf(s, "%9d | %8d | %5c%c%c%c | %8d | %8d | %8d | %14lld |\n", iter->wcid, iter->id, iter->sched ? 's' : 'u', iter->protection ? 'p' : '-', iter->trigger ? 't' : '-', iter->flowtype ? '-' : 'a', iter->exp, iter->mantissa, iter->duration, iter->tsf); rcu_read_unlock(); return 0; } /* The index of RF registers use the generic regidx, combined with two parts: * WF selection [31:24] and offset [23:0]. */ static int mt7915_rf_regval_get(void *data, u64 *val) { struct mt7915_dev *dev = data; u32 regval; int ret; ret = mt7915_mcu_rf_regval(dev, dev->mt76.debugfs_reg, &regval, false); if (ret) return ret; *val = regval; return 0; } static int mt7915_rf_regval_set(void *data, u64 val) { struct mt7915_dev *dev = data; u32 val32 = val; return mt7915_mcu_rf_regval(dev, dev->mt76.debugfs_reg, &val32, true); } DEFINE_DEBUGFS_ATTRIBUTE(fops_rf_regval, mt7915_rf_regval_get, mt7915_rf_regval_set, "0x%08llx\n"); int mt7915_init_debugfs(struct mt7915_phy *phy) { struct mt7915_dev *dev = phy->dev; bool ext_phy = phy != &dev->phy; struct dentry *dir; dir = mt76_register_debugfs_fops(phy->mt76, NULL); if (!dir) return -ENOMEM; debugfs_create_file("muru_debug", 0600, dir, dev, &fops_muru_debug); debugfs_create_file("muru_stats", 0400, dir, phy, &mt7915_muru_stats_fops); debugfs_create_file("hw-queues", 0400, dir, phy, &mt7915_hw_queues_fops); debugfs_create_file("xmit-queues", 0400, dir, phy, &mt7915_xmit_queues_fops); debugfs_create_file("tx_stats", 0400, dir, phy, &mt7915_tx_stats_fops); debugfs_create_file("sys_recovery", 0600, dir, phy, &mt7915_sys_recovery_ops); debugfs_create_file("fw_debug_wm", 0600, dir, dev, &fops_fw_debug_wm); debugfs_create_file("fw_debug_wa", 0600, dir, dev, &fops_fw_debug_wa); debugfs_create_file("fw_debug_bin", 0600, dir, dev, &fops_fw_debug_bin); debugfs_create_file("fw_util_wm", 0400, dir, dev, &mt7915_fw_util_wm_fops); debugfs_create_file("fw_util_wa", 0400, dir, dev, &mt7915_fw_util_wa_fops); debugfs_create_file("implicit_txbf", 0600, dir, dev, &fops_implicit_txbf); debugfs_create_file("txpower_sku", 0400, dir, phy, &mt7915_rate_txpower_fops); debugfs_create_devm_seqfile(dev->mt76.dev, "twt_stats", dir, mt7915_twt_stats); debugfs_create_file("rf_regval", 0600, dir, dev, &fops_rf_regval); if (!dev->dbdc_support || phy->mt76->band_idx) { debugfs_create_u32("dfs_hw_pattern", 0400, dir, &dev->hw_pattern); debugfs_create_file("radar_trigger", 0200, dir, dev, &fops_radar_trigger); debugfs_create_devm_seqfile(dev->mt76.dev, "rdd_monitor", dir, mt7915_rdd_monitor); } if (!ext_phy) dev->debugfs_dir = dir; return 0; } static void mt7915_debugfs_write_fwlog(struct mt7915_dev *dev, const void *hdr, int hdrlen, const void *data, int len) { static DEFINE_SPINLOCK(lock); unsigned long flags; void *dest; spin_lock_irqsave(&lock, flags); dest = relay_reserve(dev->relay_fwlog, hdrlen + len + 4); if (dest) { *(u32 *)dest = hdrlen + len; dest += 4; if (hdrlen) { memcpy(dest, hdr, hdrlen); dest += hdrlen; } memcpy(dest, data, len); relay_flush(dev->relay_fwlog); } spin_unlock_irqrestore(&lock, flags); } void mt7915_debugfs_rx_fw_monitor(struct mt7915_dev *dev, const void *data, int len) { struct { __le32 magic; __le32 timestamp; __le16 msg_type; __le16 len; } hdr = { .magic = cpu_to_le32(FW_BIN_LOG_MAGIC), .msg_type = cpu_to_le16(PKT_TYPE_RX_FW_MONITOR), }; if (!dev->relay_fwlog) return; hdr.timestamp = cpu_to_le32(mt76_rr(dev, MT_LPON_FRCR(0))); hdr.len = *(__le16 *)data; mt7915_debugfs_write_fwlog(dev, &hdr, sizeof(hdr), data, len); } bool mt7915_debugfs_rx_log(struct mt7915_dev *dev, const void *data, int len) { if (get_unaligned_le32(data) != FW_BIN_LOG_MAGIC) return false; if (dev->relay_fwlog) mt7915_debugfs_write_fwlog(dev, NULL, 0, data, len); return true; } #ifdef CONFIG_MAC80211_DEBUGFS /** per-station debugfs **/ static ssize_t mt7915_sta_fixed_rate_set(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct ieee80211_sta *sta = file->private_data; struct mt7915_sta *msta = (struct mt7915_sta *)sta->drv_priv; struct mt7915_dev *dev = msta->vif->phy->dev; struct ieee80211_vif *vif; struct sta_phy phy = {}; char buf[100]; int ret; u32 field; u8 i, gi, he_ltf; if (count >= sizeof(buf)) return -EINVAL; if (copy_from_user(buf, user_buf, count)) return -EFAULT; if (count && buf[count - 1] == '\n') buf[count - 1] = '\0'; else buf[count] = '\0'; /* mode - cck: 0, ofdm: 1, ht: 2, gf: 3, vht: 4, he_su: 8, he_er: 9 * bw - bw20: 0, bw40: 1, bw80: 2, bw160: 3 * nss - vht: 1~4, he: 1~4, others: ignore * mcs - cck: 0~4, ofdm: 0~7, ht: 0~32, vht: 0~9, he_su: 0~11, he_er: 0~2 * gi - (ht/vht) lgi: 0, sgi: 1; (he) 0.8us: 0, 1.6us: 1, 3.2us: 2 * ldpc - off: 0, on: 1 * stbc - off: 0, on: 1 * he_ltf - 1xltf: 0, 2xltf: 1, 4xltf: 2 */ if (sscanf(buf, "%hhu %hhu %hhu %hhu %hhu %hhu %hhu %hhu", &phy.type, &phy.bw, &phy.nss, &phy.mcs, &gi, &phy.ldpc, &phy.stbc, &he_ltf) != 8) { dev_warn(dev->mt76.dev, "format: Mode BW NSS MCS (HE)GI LDPC STBC HE_LTF\n"); field = RATE_PARAM_AUTO; goto out; } phy.ldpc = (phy.bw || phy.ldpc) * GENMASK(2, 0); for (i = 0; i <= phy.bw; i++) { phy.sgi |= gi << (i << sta->deflink.he_cap.has_he); phy.he_ltf |= he_ltf << (i << sta->deflink.he_cap.has_he); } field = RATE_PARAM_FIXED; out: vif = container_of((void *)msta->vif, struct ieee80211_vif, drv_priv); ret = mt7915_mcu_set_fixed_rate_ctrl(dev, vif, sta, &phy, field); if (ret) return -EFAULT; return count; } static const struct file_operations fops_fixed_rate = { .write = mt7915_sta_fixed_rate_set, .open = simple_open, .owner = THIS_MODULE, .llseek = default_llseek, }; static int mt7915_queues_show(struct seq_file *s, void *data) { struct ieee80211_sta *sta = s->private; mt7915_sta_hw_queue_read(s, sta); return 0; } DEFINE_SHOW_ATTRIBUTE(mt7915_queues); void mt7915_sta_add_debugfs(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct dentry *dir) { debugfs_create_file("fixed_rate", 0600, dir, sta, &fops_fixed_rate); debugfs_create_file("hw-queues", 0400, dir, sta, &mt7915_queues_fops); } #endif
linux-master
drivers/net/wireless/mediatek/mt76/mt7915/debugfs.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2022 MediaTek Inc. */ #include <linux/devcoredump.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/utsname.h> #include "coredump.h" static bool coredump_memdump; module_param(coredump_memdump, bool, 0644); MODULE_PARM_DESC(coredump_memdump, "Optional ability to dump firmware memory"); static const struct mt7915_mem_region mt7915_mem_regions[] = { { .start = 0xe003b400, .len = 0x00003bff, .name = "CRAM", }, }; static const struct mt7915_mem_region mt7916_mem_regions[] = { { .start = 0x00800000, .len = 0x0005ffff, .name = "ROM", }, { .start = 0x00900000, .len = 0x00013fff, .name = "ULM1", }, { .start = 0x02200000, .len = 0x0004ffff, .name = "ULM2", }, { .start = 0x02300000, .len = 0x0004ffff, .name = "ULM3", }, { .start = 0x00400000, .len = 0x00027fff, .name = "SRAM", }, { .start = 0xe0000000, .len = 0x00157fff, .name = "CRAM", }, }; static const struct mt7915_mem_region mt798x_mem_regions[] = { { .start = 0x00800000, .len = 0x0005ffff, .name = "ROM", }, { .start = 0x00900000, .len = 0x0000ffff, .name = "ULM1", }, { .start = 0x02200000, .len = 0x0004ffff, .name = "ULM2", }, { .start = 0x02300000, .len = 0x0004ffff, .name = "ULM3", }, { .start = 0x00400000, .len = 0x00017fff, .name = "SRAM", }, { .start = 0xe0000000, .len = 0x00113fff, .name = "CRAM", }, }; const struct mt7915_mem_region* mt7915_coredump_get_mem_layout(struct mt7915_dev *dev, u32 *num) { switch (mt76_chip(&dev->mt76)) { case 0x7915: *num = ARRAY_SIZE(mt7915_mem_regions); return &mt7915_mem_regions[0]; case 0x7981: case 0x7986: *num = ARRAY_SIZE(mt798x_mem_regions); return &mt798x_mem_regions[0]; case 0x7916: *num = ARRAY_SIZE(mt7916_mem_regions); return &mt7916_mem_regions[0]; default: return NULL; } } static int mt7915_coredump_get_mem_size(struct mt7915_dev *dev) { const struct mt7915_mem_region *mem_region; size_t size = 0; u32 num; int i; mem_region = mt7915_coredump_get_mem_layout(dev, &num); if (!mem_region) return 0; for (i = 0; i < num; i++) { size += mem_region->len; mem_region++; } /* reserve space for the headers */ size += num * sizeof(struct mt7915_mem_hdr); /* make sure it is aligned 4 bytes for debug message print out */ size = ALIGN(size, 4); return size; } struct mt7915_crash_data *mt7915_coredump_new(struct mt7915_dev *dev) { struct mt7915_crash_data *crash_data = dev->coredump.crash_data; lockdep_assert_held(&dev->dump_mutex); guid_gen(&crash_data->guid); ktime_get_real_ts64(&crash_data->timestamp); return crash_data; } static void mt7915_coredump_fw_state(struct mt7915_dev *dev, struct mt7915_coredump *dump, bool *exception) { u32 state, count, type; type = (u32)mt76_get_field(dev, MT_FW_EXCEPT_TYPE, GENMASK(7, 0)); state = (u32)mt76_get_field(dev, MT_FW_ASSERT_STAT, GENMASK(7, 0)); count = is_mt7915(&dev->mt76) ? (u32)mt76_get_field(dev, MT_FW_EXCEPT_COUNT, GENMASK(15, 8)) : (u32)mt76_get_field(dev, MT_FW_EXCEPT_COUNT, GENMASK(7, 0)); /* normal mode: driver can manually trigger assert for detail info */ if (!count) strscpy(dump->fw_state, "normal", sizeof(dump->fw_state)); else if (state > 1 && (count == 1) && type == 5) strscpy(dump->fw_state, "assert", sizeof(dump->fw_state)); else if ((state > 1 && count == 1) || count > 1) strscpy(dump->fw_state, "exception", sizeof(dump->fw_state)); *exception = !!count; } static void mt7915_coredump_fw_trace(struct mt7915_dev *dev, struct mt7915_coredump *dump, bool exception) { u32 n, irq, sch, base = MT_FW_EINT_INFO; /* trap or run? */ dump->last_msg_id = mt76_rr(dev, MT_FW_LAST_MSG_ID); n = is_mt7915(&dev->mt76) ? (u32)mt76_get_field(dev, base, GENMASK(7, 0)) : (u32)mt76_get_field(dev, base, GENMASK(15, 8)); dump->eint_info_idx = n; irq = mt76_rr(dev, base + 0x8); n = is_mt7915(&dev->mt76) ? FIELD_GET(GENMASK(7, 0), irq) : FIELD_GET(GENMASK(23, 16), irq); dump->irq_info_idx = n; sch = mt76_rr(dev, MT_FW_SCHED_INFO); n = is_mt7915(&dev->mt76) ? FIELD_GET(GENMASK(7, 0), sch) : FIELD_GET(GENMASK(15, 8), sch); dump->sched_info_idx = n; if (exception) { u32 i, y; /* sched trace */ n = is_mt7915(&dev->mt76) ? FIELD_GET(GENMASK(15, 8), sch) : FIELD_GET(GENMASK(7, 0), sch); n = n > 60 ? 60 : n; strscpy(dump->trace_sched, "(sched_info) id, time", sizeof(dump->trace_sched)); for (y = dump->sched_info_idx, i = 0; i < n; i++, y++) { mt7915_memcpy_fromio(dev, dump->sched, base + 0xc + y * 12, sizeof(dump->sched)); y = y >= n ? 0 : y; } /* irq trace */ n = is_mt7915(&dev->mt76) ? FIELD_GET(GENMASK(15, 8), irq) : FIELD_GET(GENMASK(7, 0), irq); n = n > 60 ? 60 : n; strscpy(dump->trace_irq, "(irq_info) id, time", sizeof(dump->trace_irq)); for (y = dump->irq_info_idx, i = 0; i < n; i++, y++) { mt7915_memcpy_fromio(dev, dump->irq, base + 0x4 + y * 16, sizeof(dump->irq)); y = y >= n ? 0 : y; } } } static void mt7915_coredump_fw_stack(struct mt7915_dev *dev, struct mt7915_coredump *dump, bool exception) { u32 oldest, i, idx; /* stop call stack record */ if (!exception) mt76_clear(dev, 0x89050200, BIT(0)); oldest = (u32)mt76_get_field(dev, 0x89050200, GENMASK(20, 16)) + 2; for (i = 0; i < 16; i++) { idx = ((oldest + 2 * i + 1) % 32); dump->call_stack[i] = mt76_rr(dev, 0x89050204 + idx * 4); } /* start call stack record */ if (!exception) mt76_set(dev, 0x89050200, BIT(0)); } static void mt7915_coredump_fw_task(struct mt7915_dev *dev, struct mt7915_coredump *dump) { u32 offs = is_mt7915(&dev->mt76) ? 0xe0 : 0x170; strscpy(dump->task_qid, "(task queue id) read, write", sizeof(dump->task_qid)); dump->taskq[0].read = mt76_rr(dev, MT_FW_TASK_QID1); dump->taskq[0].write = mt76_rr(dev, MT_FW_TASK_QID1 - 4); dump->taskq[1].read = mt76_rr(dev, MT_FW_TASK_QID2); dump->taskq[1].write = mt76_rr(dev, MT_FW_TASK_QID2 - 4); strscpy(dump->task_info, "(task stack) start, end, size", sizeof(dump->task_info)); dump->taski[0].start = mt76_rr(dev, MT_FW_TASK_START); dump->taski[0].end = mt76_rr(dev, MT_FW_TASK_END); dump->taski[0].size = mt76_rr(dev, MT_FW_TASK_SIZE); dump->taski[1].start = mt76_rr(dev, MT_FW_TASK_START + offs); dump->taski[1].end = mt76_rr(dev, MT_FW_TASK_END + offs); dump->taski[1].size = mt76_rr(dev, MT_FW_TASK_SIZE + offs); } static void mt7915_coredump_fw_context(struct mt7915_dev *dev, struct mt7915_coredump *dump) { u32 count, idx, id; count = mt76_rr(dev, MT_FW_CIRQ_COUNT); /* current context */ if (!count) { strscpy(dump->fw_context, "(context) interrupt", sizeof(dump->fw_context)); idx = is_mt7915(&dev->mt76) ? (u32)mt76_get_field(dev, MT_FW_CIRQ_IDX, GENMASK(31, 16)) : (u32)mt76_get_field(dev, MT_FW_CIRQ_IDX, GENMASK(15, 0)); dump->context.idx = idx; dump->context.handler = mt76_rr(dev, MT_FW_CIRQ_LISR); } else { idx = mt76_rr(dev, MT_FW_TASK_IDX); id = mt76_rr(dev, MT_FW_TASK_ID); if (!id && idx == 3) { strscpy(dump->fw_context, "(context) idle", sizeof(dump->fw_context)); } else if (id && idx != 3) { strscpy(dump->fw_context, "(context) task", sizeof(dump->fw_context)); dump->context.idx = idx; dump->context.handler = id; } } } static struct mt7915_coredump *mt7915_coredump_build(struct mt7915_dev *dev) { struct mt7915_crash_data *crash_data = dev->coredump.crash_data; struct mt7915_coredump *dump; struct mt7915_coredump_mem *dump_mem; size_t len, sofar = 0, hdr_len = sizeof(*dump); unsigned char *buf; bool exception; len = hdr_len; if (coredump_memdump && crash_data->memdump_buf_len) len += sizeof(*dump_mem) + crash_data->memdump_buf_len; sofar += hdr_len; /* this is going to get big when we start dumping memory and such, * so go ahead and use vmalloc. */ buf = vzalloc(len); if (!buf) return NULL; mutex_lock(&dev->dump_mutex); dump = (struct mt7915_coredump *)(buf); dump->len = len; /* plain text */ strscpy(dump->magic, "mt76-crash-dump", sizeof(dump->magic)); strscpy(dump->kernel, init_utsname()->release, sizeof(dump->kernel)); strscpy(dump->fw_ver, dev->mt76.hw->wiphy->fw_version, sizeof(dump->fw_ver)); guid_copy(&dump->guid, &crash_data->guid); dump->tv_sec = crash_data->timestamp.tv_sec; dump->tv_nsec = crash_data->timestamp.tv_nsec; dump->device_id = mt76_chip(&dev->mt76); mt7915_coredump_fw_state(dev, dump, &exception); mt7915_coredump_fw_trace(dev, dump, exception); mt7915_coredump_fw_task(dev, dump); mt7915_coredump_fw_context(dev, dump); mt7915_coredump_fw_stack(dev, dump, exception); /* gather memory content */ dump_mem = (struct mt7915_coredump_mem *)(buf + sofar); dump_mem->len = crash_data->memdump_buf_len; if (coredump_memdump && crash_data->memdump_buf_len) memcpy(dump_mem->data, crash_data->memdump_buf, crash_data->memdump_buf_len); mutex_unlock(&dev->dump_mutex); return dump; } int mt7915_coredump_submit(struct mt7915_dev *dev) { struct mt7915_coredump *dump; dump = mt7915_coredump_build(dev); if (!dump) { dev_warn(dev->mt76.dev, "no crash dump data found\n"); return -ENODATA; } dev_coredumpv(dev->mt76.dev, dump, dump->len, GFP_KERNEL); return 0; } int mt7915_coredump_register(struct mt7915_dev *dev) { struct mt7915_crash_data *crash_data; crash_data = vzalloc(sizeof(*dev->coredump.crash_data)); if (!crash_data) return -ENOMEM; dev->coredump.crash_data = crash_data; if (coredump_memdump) { crash_data->memdump_buf_len = mt7915_coredump_get_mem_size(dev); if (!crash_data->memdump_buf_len) /* no memory content */ return 0; crash_data->memdump_buf = vzalloc(crash_data->memdump_buf_len); if (!crash_data->memdump_buf) { vfree(crash_data); return -ENOMEM; } } return 0; } void mt7915_coredump_unregister(struct mt7915_dev *dev) { if (dev->coredump.crash_data->memdump_buf) { vfree(dev->coredump.crash_data->memdump_buf); dev->coredump.crash_data->memdump_buf = NULL; dev->coredump.crash_data->memdump_buf_len = 0; } vfree(dev->coredump.crash_data); dev->coredump.crash_data = NULL; }
linux-master
drivers/net/wireless/mediatek/mt76/mt7915/coredump.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2020 MediaTek Inc. */ #include <linux/etherdevice.h> #include <linux/timekeeping.h> #include "coredump.h" #include "mt7915.h" #include "../dma.h" #include "mac.h" #include "mcu.h" #define to_rssi(field, rcpi) ((FIELD_GET(field, rcpi) - 220) / 2) static const struct mt7915_dfs_radar_spec etsi_radar_specs = { .pulse_th = { 110, -10, -80, 40, 5200, 128, 5200 }, .radar_pattern = { [5] = { 1, 0, 6, 32, 28, 0, 990, 5010, 17, 1, 1 }, [6] = { 1, 0, 9, 32, 28, 0, 615, 5010, 27, 1, 1 }, [7] = { 1, 0, 15, 32, 28, 0, 240, 445, 27, 1, 1 }, [8] = { 1, 0, 12, 32, 28, 0, 240, 510, 42, 1, 1 }, [9] = { 1, 1, 0, 0, 0, 0, 2490, 3343, 14, 0, 0, 12, 32, 28, { }, 126 }, [10] = { 1, 1, 0, 0, 0, 0, 2490, 3343, 14, 0, 0, 15, 32, 24, { }, 126 }, [11] = { 1, 1, 0, 0, 0, 0, 823, 2510, 14, 0, 0, 18, 32, 28, { }, 54 }, [12] = { 1, 1, 0, 0, 0, 0, 823, 2510, 14, 0, 0, 27, 32, 24, { }, 54 }, }, }; static const struct mt7915_dfs_radar_spec fcc_radar_specs = { .pulse_th = { 110, -10, -80, 40, 5200, 128, 5200 }, .radar_pattern = { [0] = { 1, 0, 8, 32, 28, 0, 508, 3076, 13, 1, 1 }, [1] = { 1, 0, 12, 32, 28, 0, 140, 240, 17, 1, 1 }, [2] = { 1, 0, 8, 32, 28, 0, 190, 510, 22, 1, 1 }, [3] = { 1, 0, 6, 32, 28, 0, 190, 510, 32, 1, 1 }, [4] = { 1, 0, 9, 255, 28, 0, 323, 343, 13, 1, 32 }, }, }; static const struct mt7915_dfs_radar_spec jp_radar_specs = { .pulse_th = { 110, -10, -80, 40, 5200, 128, 5200 }, .radar_pattern = { [0] = { 1, 0, 8, 32, 28, 0, 508, 3076, 13, 1, 1 }, [1] = { 1, 0, 12, 32, 28, 0, 140, 240, 17, 1, 1 }, [2] = { 1, 0, 8, 32, 28, 0, 190, 510, 22, 1, 1 }, [3] = { 1, 0, 6, 32, 28, 0, 190, 510, 32, 1, 1 }, [4] = { 1, 0, 9, 255, 28, 0, 323, 343, 13, 1, 32 }, [13] = { 1, 0, 7, 32, 28, 0, 3836, 3856, 14, 1, 1 }, [14] = { 1, 0, 6, 32, 28, 0, 615, 5010, 110, 1, 1 }, [15] = { 1, 1, 0, 0, 0, 0, 15, 5010, 110, 0, 0, 12, 32, 28 }, }, }; static struct mt76_wcid *mt7915_rx_get_wcid(struct mt7915_dev *dev, u16 idx, bool unicast) { struct mt7915_sta *sta; struct mt76_wcid *wcid; if (idx >= ARRAY_SIZE(dev->mt76.wcid)) return NULL; wcid = rcu_dereference(dev->mt76.wcid[idx]); if (unicast || !wcid) return wcid; if (!wcid->sta) return NULL; sta = container_of(wcid, struct mt7915_sta, wcid); if (!sta->vif) return NULL; return &sta->vif->sta.wcid; } bool mt7915_mac_wtbl_update(struct mt7915_dev *dev, int idx, u32 mask) { mt76_rmw(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_WLAN_IDX, FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, idx) | mask); return mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000); } u32 mt7915_mac_wtbl_lmac_addr(struct mt7915_dev *dev, u16 wcid, u8 dw) { mt76_wr(dev, MT_WTBLON_TOP_WDUCR, FIELD_PREP(MT_WTBLON_TOP_WDUCR_GROUP, (wcid >> 7))); return MT_WTBL_LMAC_OFFS(wcid, dw); } static void mt7915_mac_sta_poll(struct mt7915_dev *dev) { static const u8 ac_to_tid[] = { [IEEE80211_AC_BE] = 0, [IEEE80211_AC_BK] = 1, [IEEE80211_AC_VI] = 4, [IEEE80211_AC_VO] = 6 }; struct ieee80211_sta *sta; struct mt7915_sta *msta; struct rate_info *rate; u32 tx_time[IEEE80211_NUM_ACS], rx_time[IEEE80211_NUM_ACS]; LIST_HEAD(sta_poll_list); int i; spin_lock_bh(&dev->mt76.sta_poll_lock); list_splice_init(&dev->mt76.sta_poll_list, &sta_poll_list); spin_unlock_bh(&dev->mt76.sta_poll_lock); rcu_read_lock(); while (true) { bool clear = false; u32 addr, val; u16 idx; s8 rssi[4]; u8 bw; spin_lock_bh(&dev->mt76.sta_poll_lock); if (list_empty(&sta_poll_list)) { spin_unlock_bh(&dev->mt76.sta_poll_lock); break; } msta = list_first_entry(&sta_poll_list, struct mt7915_sta, wcid.poll_list); list_del_init(&msta->wcid.poll_list); spin_unlock_bh(&dev->mt76.sta_poll_lock); idx = msta->wcid.idx; /* refresh peer's airtime reporting */ addr = mt7915_mac_wtbl_lmac_addr(dev, idx, 20); for (i = 0; i < IEEE80211_NUM_ACS; i++) { u32 tx_last = msta->airtime_ac[i]; u32 rx_last = msta->airtime_ac[i + 4]; msta->airtime_ac[i] = mt76_rr(dev, addr); msta->airtime_ac[i + 4] = mt76_rr(dev, addr + 4); tx_time[i] = msta->airtime_ac[i] - tx_last; rx_time[i] = msta->airtime_ac[i + 4] - rx_last; if ((tx_last | rx_last) & BIT(30)) clear = true; addr += 8; } if (clear) { mt7915_mac_wtbl_update(dev, idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); memset(msta->airtime_ac, 0, sizeof(msta->airtime_ac)); } if (!msta->wcid.sta) continue; sta = container_of((void *)msta, struct ieee80211_sta, drv_priv); for (i = 0; i < IEEE80211_NUM_ACS; i++) { u8 queue = mt76_connac_lmac_mapping(i); u32 tx_cur = tx_time[queue]; u32 rx_cur = rx_time[queue]; u8 tid = ac_to_tid[i]; if (!tx_cur && !rx_cur) continue; ieee80211_sta_register_airtime(sta, tid, tx_cur, rx_cur); } /* * We don't support reading GI info from txs packets. * For accurate tx status reporting and AQL improvement, * we need to make sure that flags match so polling GI * from per-sta counters directly. */ rate = &msta->wcid.rate; addr = mt7915_mac_wtbl_lmac_addr(dev, idx, 7); val = mt76_rr(dev, addr); switch (rate->bw) { case RATE_INFO_BW_160: bw = IEEE80211_STA_RX_BW_160; break; case RATE_INFO_BW_80: bw = IEEE80211_STA_RX_BW_80; break; case RATE_INFO_BW_40: bw = IEEE80211_STA_RX_BW_40; break; default: bw = IEEE80211_STA_RX_BW_20; break; } if (rate->flags & RATE_INFO_FLAGS_HE_MCS) { u8 offs = 24 + 2 * bw; rate->he_gi = (val & (0x3 << offs)) >> offs; } else if (rate->flags & (RATE_INFO_FLAGS_VHT_MCS | RATE_INFO_FLAGS_MCS)) { if (val & BIT(12 + bw)) rate->flags |= RATE_INFO_FLAGS_SHORT_GI; else rate->flags &= ~RATE_INFO_FLAGS_SHORT_GI; } /* get signal strength of resp frames (CTS/BA/ACK) */ addr = mt7915_mac_wtbl_lmac_addr(dev, idx, 30); val = mt76_rr(dev, addr); rssi[0] = to_rssi(GENMASK(7, 0), val); rssi[1] = to_rssi(GENMASK(15, 8), val); rssi[2] = to_rssi(GENMASK(23, 16), val); rssi[3] = to_rssi(GENMASK(31, 14), val); msta->ack_signal = mt76_rx_signal(msta->vif->phy->mt76->antenna_mask, rssi); ewma_avg_signal_add(&msta->avg_ack_signal, -msta->ack_signal); } rcu_read_unlock(); } void mt7915_mac_enable_rtscts(struct mt7915_dev *dev, struct ieee80211_vif *vif, bool enable) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; u32 addr; addr = mt7915_mac_wtbl_lmac_addr(dev, mvif->sta.wcid.idx, 5); if (enable) mt76_set(dev, addr, BIT(5)); else mt76_clear(dev, addr, BIT(5)); } static void mt7915_wed_check_ppe(struct mt7915_dev *dev, struct mt76_queue *q, struct mt7915_sta *msta, struct sk_buff *skb, u32 info) { struct ieee80211_vif *vif; struct wireless_dev *wdev; if (!msta || !msta->vif) return; if (!mt76_queue_is_wed_rx(q)) return; if (!(info & MT_DMA_INFO_PPE_VLD)) return; vif = container_of((void *)msta->vif, struct ieee80211_vif, drv_priv); wdev = ieee80211_vif_to_wdev(vif); skb->dev = wdev->netdev; mtk_wed_device_ppe_check(&dev->mt76.mmio.wed, skb, FIELD_GET(MT_DMA_PPE_CPU_REASON, info), FIELD_GET(MT_DMA_PPE_ENTRY, info)); } static int mt7915_mac_fill_rx(struct mt7915_dev *dev, struct sk_buff *skb, enum mt76_rxq_id q, u32 *info) { struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; struct mt76_phy *mphy = &dev->mt76.phy; struct mt7915_phy *phy = &dev->phy; struct ieee80211_supported_band *sband; __le32 *rxd = (__le32 *)skb->data; __le32 *rxv = NULL; u32 rxd0 = le32_to_cpu(rxd[0]); u32 rxd1 = le32_to_cpu(rxd[1]); u32 rxd2 = le32_to_cpu(rxd[2]); u32 rxd3 = le32_to_cpu(rxd[3]); u32 rxd4 = le32_to_cpu(rxd[4]); u32 csum_mask = MT_RXD0_NORMAL_IP_SUM | MT_RXD0_NORMAL_UDP_TCP_SUM; bool unicast, insert_ccmp_hdr = false; u8 remove_pad, amsdu_info; u8 mode = 0, qos_ctl = 0; struct mt7915_sta *msta = NULL; u32 csum_status = *(u32 *)skb->cb; bool hdr_trans; u16 hdr_gap; u16 seq_ctrl = 0; __le16 fc = 0; int idx; memset(status, 0, sizeof(*status)); if ((rxd1 & MT_RXD1_NORMAL_BAND_IDX) && !phy->mt76->band_idx) { mphy = dev->mt76.phys[MT_BAND1]; if (!mphy) return -EINVAL; phy = mphy->priv; status->phy_idx = 1; } if (!test_bit(MT76_STATE_RUNNING, &mphy->state)) return -EINVAL; if (rxd2 & MT_RXD2_NORMAL_AMSDU_ERR) return -EINVAL; hdr_trans = rxd2 & MT_RXD2_NORMAL_HDR_TRANS; if (hdr_trans && (rxd1 & MT_RXD1_NORMAL_CM)) return -EINVAL; /* ICV error or CCMP/BIP/WPI MIC error */ if (rxd1 & MT_RXD1_NORMAL_ICV_ERR) status->flag |= RX_FLAG_ONLY_MONITOR; unicast = FIELD_GET(MT_RXD3_NORMAL_ADDR_TYPE, rxd3) == MT_RXD3_NORMAL_U2M; idx = FIELD_GET(MT_RXD1_NORMAL_WLAN_IDX, rxd1); status->wcid = mt7915_rx_get_wcid(dev, idx, unicast); if (status->wcid) { msta = container_of(status->wcid, struct mt7915_sta, wcid); spin_lock_bh(&dev->mt76.sta_poll_lock); if (list_empty(&msta->wcid.poll_list)) list_add_tail(&msta->wcid.poll_list, &dev->mt76.sta_poll_list); spin_unlock_bh(&dev->mt76.sta_poll_lock); } status->freq = mphy->chandef.chan->center_freq; status->band = mphy->chandef.chan->band; if (status->band == NL80211_BAND_5GHZ) sband = &mphy->sband_5g.sband; else if (status->band == NL80211_BAND_6GHZ) sband = &mphy->sband_6g.sband; else sband = &mphy->sband_2g.sband; if (!sband->channels) return -EINVAL; if ((rxd0 & csum_mask) == csum_mask && !(csum_status & (BIT(0) | BIT(2) | BIT(3)))) skb->ip_summed = CHECKSUM_UNNECESSARY; if (rxd1 & MT_RXD1_NORMAL_FCS_ERR) status->flag |= RX_FLAG_FAILED_FCS_CRC; if (rxd1 & MT_RXD1_NORMAL_TKIP_MIC_ERR) status->flag |= RX_FLAG_MMIC_ERROR; if (FIELD_GET(MT_RXD1_NORMAL_SEC_MODE, rxd1) != 0 && !(rxd1 & (MT_RXD1_NORMAL_CLM | MT_RXD1_NORMAL_CM))) { status->flag |= RX_FLAG_DECRYPTED; status->flag |= RX_FLAG_IV_STRIPPED; status->flag |= RX_FLAG_MMIC_STRIPPED | RX_FLAG_MIC_STRIPPED; } remove_pad = FIELD_GET(MT_RXD2_NORMAL_HDR_OFFSET, rxd2); if (rxd2 & MT_RXD2_NORMAL_MAX_LEN_ERROR) return -EINVAL; rxd += 6; if (rxd1 & MT_RXD1_NORMAL_GROUP_4) { u32 v0 = le32_to_cpu(rxd[0]); u32 v2 = le32_to_cpu(rxd[2]); fc = cpu_to_le16(FIELD_GET(MT_RXD6_FRAME_CONTROL, v0)); qos_ctl = FIELD_GET(MT_RXD8_QOS_CTL, v2); seq_ctrl = FIELD_GET(MT_RXD8_SEQ_CTRL, v2); rxd += 4; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; } if (rxd1 & MT_RXD1_NORMAL_GROUP_1) { u8 *data = (u8 *)rxd; if (status->flag & RX_FLAG_DECRYPTED) { switch (FIELD_GET(MT_RXD1_NORMAL_SEC_MODE, rxd1)) { case MT_CIPHER_AES_CCMP: case MT_CIPHER_CCMP_CCX: case MT_CIPHER_CCMP_256: insert_ccmp_hdr = FIELD_GET(MT_RXD2_NORMAL_FRAG, rxd2); fallthrough; case MT_CIPHER_TKIP: case MT_CIPHER_TKIP_NO_MIC: case MT_CIPHER_GCMP: case MT_CIPHER_GCMP_256: status->iv[0] = data[5]; status->iv[1] = data[4]; status->iv[2] = data[3]; status->iv[3] = data[2]; status->iv[4] = data[1]; status->iv[5] = data[0]; break; default: break; } } rxd += 4; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; } if (rxd1 & MT_RXD1_NORMAL_GROUP_2) { status->timestamp = le32_to_cpu(rxd[0]); status->flag |= RX_FLAG_MACTIME_START; if (!(rxd2 & MT_RXD2_NORMAL_NON_AMPDU)) { status->flag |= RX_FLAG_AMPDU_DETAILS; /* all subframes of an A-MPDU have the same timestamp */ if (phy->rx_ampdu_ts != status->timestamp) { if (!++phy->ampdu_ref) phy->ampdu_ref++; } phy->rx_ampdu_ts = status->timestamp; status->ampdu_ref = phy->ampdu_ref; } rxd += 2; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; } /* RXD Group 3 - P-RXV */ if (rxd1 & MT_RXD1_NORMAL_GROUP_3) { u32 v0, v1; int ret; rxv = rxd; rxd += 2; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; v0 = le32_to_cpu(rxv[0]); v1 = le32_to_cpu(rxv[1]); if (v0 & MT_PRXV_HT_AD_CODE) status->enc_flags |= RX_ENC_FLAG_LDPC; status->chains = mphy->antenna_mask; status->chain_signal[0] = to_rssi(MT_PRXV_RCPI0, v1); status->chain_signal[1] = to_rssi(MT_PRXV_RCPI1, v1); status->chain_signal[2] = to_rssi(MT_PRXV_RCPI2, v1); status->chain_signal[3] = to_rssi(MT_PRXV_RCPI3, v1); /* RXD Group 5 - C-RXV */ if (rxd1 & MT_RXD1_NORMAL_GROUP_5) { rxd += 18; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; } if (!is_mt7915(&dev->mt76) || (rxd1 & MT_RXD1_NORMAL_GROUP_5)) { ret = mt76_connac2_mac_fill_rx_rate(&dev->mt76, status, sband, rxv, &mode); if (ret < 0) return ret; } } amsdu_info = FIELD_GET(MT_RXD4_NORMAL_PAYLOAD_FORMAT, rxd4); status->amsdu = !!amsdu_info; if (status->amsdu) { status->first_amsdu = amsdu_info == MT_RXD4_FIRST_AMSDU_FRAME; status->last_amsdu = amsdu_info == MT_RXD4_LAST_AMSDU_FRAME; } hdr_gap = (u8 *)rxd - skb->data + 2 * remove_pad; if (hdr_trans && ieee80211_has_morefrags(fc)) { struct ieee80211_vif *vif; int err; if (!msta || !msta->vif) return -EINVAL; vif = container_of((void *)msta->vif, struct ieee80211_vif, drv_priv); err = mt76_connac2_reverse_frag0_hdr_trans(vif, skb, hdr_gap); if (err) return err; hdr_trans = false; } else { int pad_start = 0; skb_pull(skb, hdr_gap); if (!hdr_trans && status->amsdu) { pad_start = ieee80211_get_hdrlen_from_skb(skb); } else if (hdr_trans && (rxd2 & MT_RXD2_NORMAL_HDR_TRANS_ERROR)) { /* * When header translation failure is indicated, * the hardware will insert an extra 2-byte field * containing the data length after the protocol * type field. This happens either when the LLC-SNAP * pattern did not match, or if a VLAN header was * detected. */ pad_start = 12; if (get_unaligned_be16(skb->data + pad_start) == ETH_P_8021Q) pad_start += 4; else pad_start = 0; } if (pad_start) { memmove(skb->data + 2, skb->data, pad_start); skb_pull(skb, 2); } } if (!hdr_trans) { struct ieee80211_hdr *hdr; if (insert_ccmp_hdr) { u8 key_id = FIELD_GET(MT_RXD1_NORMAL_KEY_ID, rxd1); mt76_insert_ccmp_hdr(skb, key_id); } hdr = mt76_skb_get_hdr(skb); fc = hdr->frame_control; if (ieee80211_is_data_qos(fc)) { seq_ctrl = le16_to_cpu(hdr->seq_ctrl); qos_ctl = *ieee80211_get_qos_ctl(hdr); } } else { status->flag |= RX_FLAG_8023; mt7915_wed_check_ppe(dev, &dev->mt76.q_rx[q], msta, skb, *info); } if (rxv && mode >= MT_PHY_TYPE_HE_SU && !(status->flag & RX_FLAG_8023)) mt76_connac2_mac_decode_he_radiotap(&dev->mt76, skb, rxv, mode); if (!status->wcid || !ieee80211_is_data_qos(fc)) return 0; status->aggr = unicast && !ieee80211_is_qos_nullfunc(fc); status->qos_ctl = qos_ctl; status->seqno = IEEE80211_SEQ_TO_SN(seq_ctrl); return 0; } static void mt7915_mac_fill_rx_vector(struct mt7915_dev *dev, struct sk_buff *skb) { #ifdef CONFIG_NL80211_TESTMODE struct mt7915_phy *phy = &dev->phy; __le32 *rxd = (__le32 *)skb->data; __le32 *rxv_hdr = rxd + 2; __le32 *rxv = rxd + 4; u32 rcpi, ib_rssi, wb_rssi, v20, v21; u8 band_idx; s32 foe; u8 snr; int i; band_idx = le32_get_bits(rxv_hdr[1], MT_RXV_HDR_BAND_IDX); if (band_idx && !phy->mt76->band_idx) { phy = mt7915_ext_phy(dev); if (!phy) goto out; } rcpi = le32_to_cpu(rxv[6]); ib_rssi = le32_to_cpu(rxv[7]); wb_rssi = le32_to_cpu(rxv[8]) >> 5; for (i = 0; i < 4; i++, rcpi >>= 8, ib_rssi >>= 8, wb_rssi >>= 9) { if (i == 3) wb_rssi = le32_to_cpu(rxv[9]); phy->test.last_rcpi[i] = rcpi & 0xff; phy->test.last_ib_rssi[i] = ib_rssi & 0xff; phy->test.last_wb_rssi[i] = wb_rssi & 0xff; } v20 = le32_to_cpu(rxv[20]); v21 = le32_to_cpu(rxv[21]); foe = FIELD_GET(MT_CRXV_FOE_LO, v20) | (FIELD_GET(MT_CRXV_FOE_HI, v21) << MT_CRXV_FOE_SHIFT); snr = FIELD_GET(MT_CRXV_SNR, v20) - 16; phy->test.last_freq_offset = foe; phy->test.last_snr = snr; out: #endif dev_kfree_skb(skb); } static void mt7915_mac_write_txwi_tm(struct mt7915_phy *phy, __le32 *txwi, struct sk_buff *skb) { #ifdef CONFIG_NL80211_TESTMODE struct mt76_testmode_data *td = &phy->mt76->test; const struct ieee80211_rate *r; u8 bw, mode, nss = td->tx_rate_nss; u8 rate_idx = td->tx_rate_idx; u16 rateval = 0; u32 val; bool cck = false; int band; if (skb != phy->mt76->test.tx_skb) return; switch (td->tx_rate_mode) { case MT76_TM_TX_MODE_HT: nss = 1 + (rate_idx >> 3); mode = MT_PHY_TYPE_HT; break; case MT76_TM_TX_MODE_VHT: mode = MT_PHY_TYPE_VHT; break; case MT76_TM_TX_MODE_HE_SU: mode = MT_PHY_TYPE_HE_SU; break; case MT76_TM_TX_MODE_HE_EXT_SU: mode = MT_PHY_TYPE_HE_EXT_SU; break; case MT76_TM_TX_MODE_HE_TB: mode = MT_PHY_TYPE_HE_TB; break; case MT76_TM_TX_MODE_HE_MU: mode = MT_PHY_TYPE_HE_MU; break; case MT76_TM_TX_MODE_CCK: cck = true; fallthrough; case MT76_TM_TX_MODE_OFDM: band = phy->mt76->chandef.chan->band; if (band == NL80211_BAND_2GHZ && !cck) rate_idx += 4; r = &phy->mt76->hw->wiphy->bands[band]->bitrates[rate_idx]; val = cck ? r->hw_value_short : r->hw_value; mode = val >> 8; rate_idx = val & 0xff; break; default: mode = MT_PHY_TYPE_OFDM; break; } switch (phy->mt76->chandef.width) { case NL80211_CHAN_WIDTH_40: bw = 1; break; case NL80211_CHAN_WIDTH_80: bw = 2; break; case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_160: bw = 3; break; default: bw = 0; break; } if (td->tx_rate_stbc && nss == 1) { nss++; rateval |= MT_TX_RATE_STBC; } rateval |= FIELD_PREP(MT_TX_RATE_IDX, rate_idx) | FIELD_PREP(MT_TX_RATE_MODE, mode) | FIELD_PREP(MT_TX_RATE_NSS, nss - 1); txwi[2] |= cpu_to_le32(MT_TXD2_FIX_RATE); le32p_replace_bits(&txwi[3], 1, MT_TXD3_REM_TX_COUNT); if (td->tx_rate_mode < MT76_TM_TX_MODE_HT) txwi[3] |= cpu_to_le32(MT_TXD3_BA_DISABLE); val = MT_TXD6_FIXED_BW | FIELD_PREP(MT_TXD6_BW, bw) | FIELD_PREP(MT_TXD6_TX_RATE, rateval) | FIELD_PREP(MT_TXD6_SGI, td->tx_rate_sgi); /* for HE_SU/HE_EXT_SU PPDU * - 1x, 2x, 4x LTF + 0.8us GI * - 2x LTF + 1.6us GI, 4x LTF + 3.2us GI * for HE_MU PPDU * - 2x, 4x LTF + 0.8us GI * - 2x LTF + 1.6us GI, 4x LTF + 3.2us GI * for HE_TB PPDU * - 1x, 2x LTF + 1.6us GI * - 4x LTF + 3.2us GI */ if (mode >= MT_PHY_TYPE_HE_SU) val |= FIELD_PREP(MT_TXD6_HELTF, td->tx_ltf); if (td->tx_rate_ldpc || (bw > 0 && mode >= MT_PHY_TYPE_HE_SU)) val |= MT_TXD6_LDPC; txwi[3] &= ~cpu_to_le32(MT_TXD3_SN_VALID); txwi[6] |= cpu_to_le32(val); txwi[7] |= cpu_to_le32(FIELD_PREP(MT_TXD7_SPE_IDX, phy->test.spe_idx)); #endif } void mt7915_mac_write_txwi(struct mt76_dev *dev, __le32 *txwi, struct sk_buff *skb, struct mt76_wcid *wcid, int pid, struct ieee80211_key_conf *key, enum mt76_txq_id qid, u32 changed) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); u8 phy_idx = (info->hw_queue & MT_TX_HW_QUEUE_PHY) >> 2; struct mt76_phy *mphy = &dev->phy; if (phy_idx && dev->phys[MT_BAND1]) mphy = dev->phys[MT_BAND1]; mt76_connac2_mac_write_txwi(dev, txwi, skb, wcid, key, pid, qid, changed); if (mt76_testmode_enabled(mphy)) mt7915_mac_write_txwi_tm(mphy->priv, txwi, skb); } int mt7915_tx_prepare_skb(struct mt76_dev *mdev, void *txwi_ptr, enum mt76_txq_id qid, struct mt76_wcid *wcid, struct ieee80211_sta *sta, struct mt76_tx_info *tx_info) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx_info->skb->data; struct mt7915_dev *dev = container_of(mdev, struct mt7915_dev, mt76); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx_info->skb); struct ieee80211_key_conf *key = info->control.hw_key; struct ieee80211_vif *vif = info->control.vif; struct mt76_connac_fw_txp *txp; struct mt76_txwi_cache *t; int id, i, nbuf = tx_info->nbuf - 1; u8 *txwi = (u8 *)txwi_ptr; int pid; if (unlikely(tx_info->skb->len <= ETH_HLEN)) return -EINVAL; if (!wcid) wcid = &dev->mt76.global_wcid; if (sta) { struct mt7915_sta *msta; msta = (struct mt7915_sta *)sta->drv_priv; if (time_after(jiffies, msta->jiffies + HZ / 4)) { info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; msta->jiffies = jiffies; } } t = (struct mt76_txwi_cache *)(txwi + mdev->drv->txwi_size); t->skb = tx_info->skb; id = mt76_token_consume(mdev, &t); if (id < 0) return id; pid = mt76_tx_status_skb_add(mdev, wcid, tx_info->skb); mt7915_mac_write_txwi(mdev, txwi_ptr, tx_info->skb, wcid, pid, key, qid, 0); txp = (struct mt76_connac_fw_txp *)(txwi + MT_TXD_SIZE); for (i = 0; i < nbuf; i++) { txp->buf[i] = cpu_to_le32(tx_info->buf[i + 1].addr); txp->len[i] = cpu_to_le16(tx_info->buf[i + 1].len); } txp->nbuf = nbuf; txp->flags = cpu_to_le16(MT_CT_INFO_APPLY_TXD | MT_CT_INFO_FROM_HOST); if (!key) txp->flags |= cpu_to_le16(MT_CT_INFO_NONE_CIPHER_FRAME); if (!(info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP) && ieee80211_is_mgmt(hdr->frame_control)) txp->flags |= cpu_to_le16(MT_CT_INFO_MGMT_FRAME); if (vif) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; txp->bss_idx = mvif->mt76.idx; } txp->token = cpu_to_le16(id); if (test_bit(MT_WCID_FLAG_4ADDR, &wcid->flags)) txp->rept_wds_wcid = cpu_to_le16(wcid->idx); else txp->rept_wds_wcid = cpu_to_le16(0x3ff); tx_info->skb = DMA_DUMMY_DATA; /* pass partial skb header to fw */ tx_info->buf[1].len = MT_CT_PARSE_LEN; tx_info->buf[1].skip_unmap = true; tx_info->nbuf = MT_CT_DMA_BUF_NUM; return 0; } u32 mt7915_wed_init_buf(void *ptr, dma_addr_t phys, int token_id) { struct mt76_connac_fw_txp *txp = ptr + MT_TXD_SIZE; __le32 *txwi = ptr; u32 val; memset(ptr, 0, MT_TXD_SIZE + sizeof(*txp)); val = FIELD_PREP(MT_TXD0_TX_BYTES, MT_TXD_SIZE) | FIELD_PREP(MT_TXD0_PKT_FMT, MT_TX_TYPE_CT); txwi[0] = cpu_to_le32(val); val = MT_TXD1_LONG_FORMAT | FIELD_PREP(MT_TXD1_HDR_FORMAT, MT_HDR_FORMAT_802_3); txwi[1] = cpu_to_le32(val); txp->token = cpu_to_le16(token_id); txp->nbuf = 1; txp->buf[0] = cpu_to_le32(phys + MT_TXD_SIZE + sizeof(*txp)); return MT_TXD_SIZE + sizeof(*txp); } static void mt7915_mac_tx_free_prepare(struct mt7915_dev *dev) { struct mt76_dev *mdev = &dev->mt76; struct mt76_phy *mphy_ext = mdev->phys[MT_BAND1]; /* clean DMA queues and unmap buffers first */ mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[MT_TXQ_PSD], false); mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[MT_TXQ_BE], false); if (mphy_ext) { mt76_queue_tx_cleanup(dev, mphy_ext->q_tx[MT_TXQ_PSD], false); mt76_queue_tx_cleanup(dev, mphy_ext->q_tx[MT_TXQ_BE], false); } } static void mt7915_mac_tx_free_done(struct mt7915_dev *dev, struct list_head *free_list, bool wake) { struct sk_buff *skb, *tmp; mt7915_mac_sta_poll(dev); if (wake) mt76_set_tx_blocked(&dev->mt76, false); mt76_worker_schedule(&dev->mt76.tx_worker); list_for_each_entry_safe(skb, tmp, free_list, list) { skb_list_del_init(skb); napi_consume_skb(skb, 1); } } static void mt7915_mac_tx_free(struct mt7915_dev *dev, void *data, int len) { struct mt76_connac_tx_free *free = data; __le32 *tx_info = (__le32 *)(data + sizeof(*free)); struct mt76_dev *mdev = &dev->mt76; struct mt76_txwi_cache *txwi; struct ieee80211_sta *sta = NULL; struct mt76_wcid *wcid = NULL; LIST_HEAD(free_list); void *end = data + len; bool v3, wake = false; u16 total, count = 0; u32 txd = le32_to_cpu(free->txd); __le32 *cur_info; mt7915_mac_tx_free_prepare(dev); total = le16_get_bits(free->ctrl, MT_TX_FREE_MSDU_CNT); v3 = (FIELD_GET(MT_TX_FREE_VER, txd) == 0x4); for (cur_info = tx_info; count < total; cur_info++) { u32 msdu, info; u8 i; if (WARN_ON_ONCE((void *)cur_info >= end)) return; /* * 1'b1: new wcid pair. * 1'b0: msdu_id with the same 'wcid pair' as above. */ info = le32_to_cpu(*cur_info); if (info & MT_TX_FREE_PAIR) { struct mt7915_sta *msta; u16 idx; idx = FIELD_GET(MT_TX_FREE_WLAN_ID, info); wcid = rcu_dereference(dev->mt76.wcid[idx]); sta = wcid_to_sta(wcid); if (!sta) continue; msta = container_of(wcid, struct mt7915_sta, wcid); spin_lock_bh(&mdev->sta_poll_lock); if (list_empty(&msta->wcid.poll_list)) list_add_tail(&msta->wcid.poll_list, &mdev->sta_poll_list); spin_unlock_bh(&mdev->sta_poll_lock); continue; } if (!mtk_wed_device_active(&mdev->mmio.wed) && wcid) { u32 tx_retries = 0, tx_failed = 0; if (v3 && (info & MT_TX_FREE_MPDU_HEADER_V3)) { tx_retries = FIELD_GET(MT_TX_FREE_COUNT_V3, info) - 1; tx_failed = tx_retries + !!FIELD_GET(MT_TX_FREE_STAT_V3, info); } else if (!v3 && (info & MT_TX_FREE_MPDU_HEADER)) { tx_retries = FIELD_GET(MT_TX_FREE_COUNT, info) - 1; tx_failed = tx_retries + !!FIELD_GET(MT_TX_FREE_STAT, info); } wcid->stats.tx_retries += tx_retries; wcid->stats.tx_failed += tx_failed; } if (v3 && (info & MT_TX_FREE_MPDU_HEADER_V3)) continue; for (i = 0; i < 1 + v3; i++) { if (v3) { msdu = (info >> (15 * i)) & MT_TX_FREE_MSDU_ID_V3; if (msdu == MT_TX_FREE_MSDU_ID_V3) continue; } else { msdu = FIELD_GET(MT_TX_FREE_MSDU_ID, info); } count++; txwi = mt76_token_release(mdev, msdu, &wake); if (!txwi) continue; mt76_connac2_txwi_free(mdev, txwi, sta, &free_list); } } mt7915_mac_tx_free_done(dev, &free_list, wake); } static void mt7915_mac_tx_free_v0(struct mt7915_dev *dev, void *data, int len) { struct mt76_connac_tx_free *free = data; __le16 *info = (__le16 *)(data + sizeof(*free)); struct mt76_dev *mdev = &dev->mt76; void *end = data + len; LIST_HEAD(free_list); bool wake = false; u8 i, count; mt7915_mac_tx_free_prepare(dev); count = FIELD_GET(MT_TX_FREE_MSDU_CNT_V0, le16_to_cpu(free->ctrl)); if (WARN_ON_ONCE((void *)&info[count] > end)) return; for (i = 0; i < count; i++) { struct mt76_txwi_cache *txwi; u16 msdu = le16_to_cpu(info[i]); txwi = mt76_token_release(mdev, msdu, &wake); if (!txwi) continue; mt76_connac2_txwi_free(mdev, txwi, NULL, &free_list); } mt7915_mac_tx_free_done(dev, &free_list, wake); } static void mt7915_mac_add_txs(struct mt7915_dev *dev, void *data) { struct mt7915_sta *msta = NULL; struct mt76_wcid *wcid; __le32 *txs_data = data; u16 wcidx; u8 pid; wcidx = le32_get_bits(txs_data[2], MT_TXS2_WCID); pid = le32_get_bits(txs_data[3], MT_TXS3_PID); if (pid < MT_PACKET_ID_WED) return; if (wcidx >= mt7915_wtbl_size(dev)) return; rcu_read_lock(); wcid = rcu_dereference(dev->mt76.wcid[wcidx]); if (!wcid) goto out; msta = container_of(wcid, struct mt7915_sta, wcid); if (pid == MT_PACKET_ID_WED) mt76_connac2_mac_fill_txs(&dev->mt76, wcid, txs_data); else mt76_connac2_mac_add_txs_skb(&dev->mt76, wcid, pid, txs_data); if (!wcid->sta) goto out; spin_lock_bh(&dev->mt76.sta_poll_lock); if (list_empty(&msta->wcid.poll_list)) list_add_tail(&msta->wcid.poll_list, &dev->mt76.sta_poll_list); spin_unlock_bh(&dev->mt76.sta_poll_lock); out: rcu_read_unlock(); } bool mt7915_rx_check(struct mt76_dev *mdev, void *data, int len) { struct mt7915_dev *dev = container_of(mdev, struct mt7915_dev, mt76); __le32 *rxd = (__le32 *)data; __le32 *end = (__le32 *)&rxd[len / 4]; enum rx_pkt_type type; type = le32_get_bits(rxd[0], MT_RXD0_PKT_TYPE); switch (type) { case PKT_TYPE_TXRX_NOTIFY: mt7915_mac_tx_free(dev, data, len); return false; case PKT_TYPE_TXRX_NOTIFY_V0: mt7915_mac_tx_free_v0(dev, data, len); return false; case PKT_TYPE_TXS: for (rxd += 2; rxd + 8 <= end; rxd += 8) mt7915_mac_add_txs(dev, rxd); return false; case PKT_TYPE_RX_FW_MONITOR: mt7915_debugfs_rx_fw_monitor(dev, data, len); return false; default: return true; } } void mt7915_queue_rx_skb(struct mt76_dev *mdev, enum mt76_rxq_id q, struct sk_buff *skb, u32 *info) { struct mt7915_dev *dev = container_of(mdev, struct mt7915_dev, mt76); __le32 *rxd = (__le32 *)skb->data; __le32 *end = (__le32 *)&skb->data[skb->len]; enum rx_pkt_type type; type = le32_get_bits(rxd[0], MT_RXD0_PKT_TYPE); switch (type) { case PKT_TYPE_TXRX_NOTIFY: mt7915_mac_tx_free(dev, skb->data, skb->len); napi_consume_skb(skb, 1); break; case PKT_TYPE_TXRX_NOTIFY_V0: mt7915_mac_tx_free_v0(dev, skb->data, skb->len); napi_consume_skb(skb, 1); break; case PKT_TYPE_RX_EVENT: mt7915_mcu_rx_event(dev, skb); break; case PKT_TYPE_TXRXV: mt7915_mac_fill_rx_vector(dev, skb); break; case PKT_TYPE_TXS: for (rxd += 2; rxd + 8 <= end; rxd += 8) mt7915_mac_add_txs(dev, rxd); dev_kfree_skb(skb); break; case PKT_TYPE_RX_FW_MONITOR: mt7915_debugfs_rx_fw_monitor(dev, skb->data, skb->len); dev_kfree_skb(skb); break; case PKT_TYPE_NORMAL: if (!mt7915_mac_fill_rx(dev, skb, q, info)) { mt76_rx(&dev->mt76, q, skb); return; } fallthrough; default: dev_kfree_skb(skb); break; } } void mt7915_mac_cca_stats_reset(struct mt7915_phy *phy) { struct mt7915_dev *dev = phy->dev; u32 reg = MT_WF_PHY_RX_CTRL1(phy->mt76->band_idx); mt76_clear(dev, reg, MT_WF_PHY_RX_CTRL1_STSCNT_EN); mt76_set(dev, reg, BIT(11) | BIT(9)); } void mt7915_mac_reset_counters(struct mt7915_phy *phy) { struct mt7915_dev *dev = phy->dev; int i; for (i = 0; i < 4; i++) { mt76_rr(dev, MT_TX_AGG_CNT(phy->mt76->band_idx, i)); mt76_rr(dev, MT_TX_AGG_CNT2(phy->mt76->band_idx, i)); } phy->mt76->survey_time = ktime_get_boottime(); memset(phy->mt76->aggr_stats, 0, sizeof(phy->mt76->aggr_stats)); /* reset airtime counters */ mt76_set(dev, MT_WF_RMAC_MIB_AIRTIME0(phy->mt76->band_idx), MT_WF_RMAC_MIB_RXTIME_CLR); mt7915_mcu_get_chan_mib_info(phy, true); } void mt7915_mac_set_timing(struct mt7915_phy *phy) { s16 coverage_class = phy->coverage_class; struct mt7915_dev *dev = phy->dev; struct mt7915_phy *ext_phy = mt7915_ext_phy(dev); u32 val, reg_offset; u32 cck = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 231) | FIELD_PREP(MT_TIMEOUT_VAL_CCA, 48); u32 ofdm = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 60) | FIELD_PREP(MT_TIMEOUT_VAL_CCA, 28); u8 band = phy->mt76->band_idx; int eifs_ofdm = 360, sifs = 10, offset; bool a_band = !(phy->mt76->chandef.chan->band == NL80211_BAND_2GHZ); if (!test_bit(MT76_STATE_RUNNING, &phy->mt76->state)) return; if (ext_phy) coverage_class = max_t(s16, dev->phy.coverage_class, ext_phy->coverage_class); mt76_set(dev, MT_ARB_SCR(band), MT_ARB_SCR_TX_DISABLE | MT_ARB_SCR_RX_DISABLE); udelay(1); offset = 3 * coverage_class; reg_offset = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, offset) | FIELD_PREP(MT_TIMEOUT_VAL_CCA, offset); if (!is_mt7915(&dev->mt76)) { if (!a_band) { mt76_wr(dev, MT_TMAC_ICR1(band), FIELD_PREP(MT_IFS_EIFS_CCK, 314)); eifs_ofdm = 78; } else { eifs_ofdm = 84; } } else if (a_band) { sifs = 16; } mt76_wr(dev, MT_TMAC_CDTR(band), cck + reg_offset); mt76_wr(dev, MT_TMAC_ODTR(band), ofdm + reg_offset); mt76_wr(dev, MT_TMAC_ICR0(band), FIELD_PREP(MT_IFS_EIFS_OFDM, eifs_ofdm) | FIELD_PREP(MT_IFS_RIFS, 2) | FIELD_PREP(MT_IFS_SIFS, sifs) | FIELD_PREP(MT_IFS_SLOT, phy->slottime)); if (phy->slottime < 20 || a_band) val = MT7915_CFEND_RATE_DEFAULT; else val = MT7915_CFEND_RATE_11B; mt76_rmw_field(dev, MT_AGG_ACR0(band), MT_AGG_ACR_CFEND_RATE, val); mt76_clear(dev, MT_ARB_SCR(band), MT_ARB_SCR_TX_DISABLE | MT_ARB_SCR_RX_DISABLE); } void mt7915_mac_enable_nf(struct mt7915_dev *dev, bool band) { u32 reg; reg = is_mt7915(&dev->mt76) ? MT_WF_PHY_RXTD12(band) : MT_WF_PHY_RXTD12_MT7916(band); mt76_set(dev, reg, MT_WF_PHY_RXTD12_IRPI_SW_CLR_ONLY | MT_WF_PHY_RXTD12_IRPI_SW_CLR); reg = is_mt7915(&dev->mt76) ? MT_WF_PHY_RX_CTRL1(band) : MT_WF_PHY_RX_CTRL1_MT7916(band); mt76_set(dev, reg, FIELD_PREP(MT_WF_PHY_RX_CTRL1_IPI_EN, 0x5)); } static u8 mt7915_phy_get_nf(struct mt7915_phy *phy, int idx) { static const u8 nf_power[] = { 92, 89, 86, 83, 80, 75, 70, 65, 60, 55, 52 }; struct mt7915_dev *dev = phy->dev; u32 val, sum = 0, n = 0; int nss, i; for (nss = 0; nss < hweight8(phy->mt76->chainmask); nss++) { u32 reg = is_mt7915(&dev->mt76) ? MT_WF_IRPI_NSS(0, nss + (idx << dev->dbdc_support)) : MT_WF_IRPI_NSS_MT7916(idx, nss); for (i = 0; i < ARRAY_SIZE(nf_power); i++, reg += 4) { val = mt76_rr(dev, reg); sum += val * nf_power[i]; n += val; } } if (!n) return 0; return sum / n; } void mt7915_update_channel(struct mt76_phy *mphy) { struct mt7915_phy *phy = (struct mt7915_phy *)mphy->priv; struct mt76_channel_state *state = mphy->chan_state; int nf; mt7915_mcu_get_chan_mib_info(phy, false); nf = mt7915_phy_get_nf(phy, phy->mt76->band_idx); if (!phy->noise) phy->noise = nf << 4; else if (nf) phy->noise += nf - (phy->noise >> 4); state->noise = -(phy->noise >> 4); } static bool mt7915_wait_reset_state(struct mt7915_dev *dev, u32 state) { bool ret; ret = wait_event_timeout(dev->reset_wait, (READ_ONCE(dev->recovery.state) & state), MT7915_RESET_TIMEOUT); WARN(!ret, "Timeout waiting for MCU reset state %x\n", state); return ret; } static void mt7915_update_vif_beacon(void *priv, u8 *mac, struct ieee80211_vif *vif) { struct ieee80211_hw *hw = priv; switch (vif->type) { case NL80211_IFTYPE_MESH_POINT: case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_AP: mt7915_mcu_add_beacon(hw, vif, vif->bss_conf.enable_beacon, BSS_CHANGED_BEACON_ENABLED); break; default: break; } } static void mt7915_update_beacons(struct mt7915_dev *dev) { struct mt76_phy *mphy_ext = dev->mt76.phys[MT_BAND1]; ieee80211_iterate_active_interfaces(dev->mt76.hw, IEEE80211_IFACE_ITER_RESUME_ALL, mt7915_update_vif_beacon, dev->mt76.hw); if (!mphy_ext) return; ieee80211_iterate_active_interfaces(mphy_ext->hw, IEEE80211_IFACE_ITER_RESUME_ALL, mt7915_update_vif_beacon, mphy_ext->hw); } static int mt7915_mac_restart(struct mt7915_dev *dev) { struct mt7915_phy *phy2; struct mt76_phy *ext_phy; struct mt76_dev *mdev = &dev->mt76; int i, ret; ext_phy = dev->mt76.phys[MT_BAND1]; phy2 = ext_phy ? ext_phy->priv : NULL; if (dev->hif2) { mt76_wr(dev, MT_INT1_MASK_CSR, 0x0); mt76_wr(dev, MT_INT1_SOURCE_CSR, ~0); } if (dev_is_pci(mdev->dev)) { mt76_wr(dev, MT_PCIE_MAC_INT_ENABLE, 0x0); if (dev->hif2) { if (is_mt7915(mdev)) mt76_wr(dev, MT_PCIE1_MAC_INT_ENABLE, 0x0); else mt76_wr(dev, MT_PCIE1_MAC_INT_ENABLE_MT7916, 0x0); } } set_bit(MT76_RESET, &dev->mphy.state); set_bit(MT76_MCU_RESET, &dev->mphy.state); wake_up(&dev->mt76.mcu.wait); if (ext_phy) { set_bit(MT76_RESET, &ext_phy->state); set_bit(MT76_MCU_RESET, &ext_phy->state); } /* lock/unlock all queues to ensure that no tx is pending */ mt76_txq_schedule_all(&dev->mphy); if (ext_phy) mt76_txq_schedule_all(ext_phy); /* disable all tx/rx napi */ mt76_worker_disable(&dev->mt76.tx_worker); mt76_for_each_q_rx(mdev, i) { if (mdev->q_rx[i].ndesc) napi_disable(&dev->mt76.napi[i]); } napi_disable(&dev->mt76.tx_napi); /* token reinit */ mt76_connac2_tx_token_put(&dev->mt76); idr_init(&dev->mt76.token); mt7915_dma_reset(dev, true); local_bh_disable(); mt76_for_each_q_rx(mdev, i) { if (mdev->q_rx[i].ndesc) { napi_enable(&dev->mt76.napi[i]); napi_schedule(&dev->mt76.napi[i]); } } local_bh_enable(); clear_bit(MT76_MCU_RESET, &dev->mphy.state); clear_bit(MT76_STATE_MCU_RUNNING, &dev->mphy.state); mt76_wr(dev, MT_INT_MASK_CSR, dev->mt76.mmio.irqmask); mt76_wr(dev, MT_INT_SOURCE_CSR, ~0); if (dev->hif2) { mt76_wr(dev, MT_INT1_MASK_CSR, dev->mt76.mmio.irqmask); mt76_wr(dev, MT_INT1_SOURCE_CSR, ~0); } if (dev_is_pci(mdev->dev)) { mt76_wr(dev, MT_PCIE_MAC_INT_ENABLE, 0xff); if (dev->hif2) { if (is_mt7915(mdev)) mt76_wr(dev, MT_PCIE1_MAC_INT_ENABLE, 0xff); else mt76_wr(dev, MT_PCIE1_MAC_INT_ENABLE_MT7916, 0xff); } } /* load firmware */ ret = mt7915_mcu_init_firmware(dev); if (ret) goto out; /* set the necessary init items */ ret = mt7915_mcu_set_eeprom(dev); if (ret) goto out; mt7915_mac_init(dev); mt7915_init_txpower(dev, &dev->mphy.sband_2g.sband); mt7915_init_txpower(dev, &dev->mphy.sband_5g.sband); ret = mt7915_txbf_init(dev); if (test_bit(MT76_STATE_RUNNING, &dev->mphy.state)) { ret = mt7915_run(dev->mphy.hw); if (ret) goto out; } if (ext_phy && test_bit(MT76_STATE_RUNNING, &ext_phy->state)) { ret = mt7915_run(ext_phy->hw); if (ret) goto out; } out: /* reset done */ clear_bit(MT76_RESET, &dev->mphy.state); if (phy2) clear_bit(MT76_RESET, &phy2->mt76->state); local_bh_disable(); napi_enable(&dev->mt76.tx_napi); napi_schedule(&dev->mt76.tx_napi); local_bh_enable(); mt76_worker_enable(&dev->mt76.tx_worker); return ret; } static void mt7915_mac_full_reset(struct mt7915_dev *dev) { struct mt76_phy *ext_phy; int i; ext_phy = dev->mt76.phys[MT_BAND1]; dev->recovery.hw_full_reset = true; wake_up(&dev->mt76.mcu.wait); ieee80211_stop_queues(mt76_hw(dev)); if (ext_phy) ieee80211_stop_queues(ext_phy->hw); cancel_delayed_work_sync(&dev->mphy.mac_work); if (ext_phy) cancel_delayed_work_sync(&ext_phy->mac_work); mutex_lock(&dev->mt76.mutex); for (i = 0; i < 10; i++) { if (!mt7915_mac_restart(dev)) break; } mutex_unlock(&dev->mt76.mutex); if (i == 10) dev_err(dev->mt76.dev, "chip full reset failed\n"); ieee80211_restart_hw(mt76_hw(dev)); if (ext_phy) ieee80211_restart_hw(ext_phy->hw); ieee80211_wake_queues(mt76_hw(dev)); if (ext_phy) ieee80211_wake_queues(ext_phy->hw); dev->recovery.hw_full_reset = false; ieee80211_queue_delayed_work(mt76_hw(dev), &dev->mphy.mac_work, MT7915_WATCHDOG_TIME); if (ext_phy) ieee80211_queue_delayed_work(ext_phy->hw, &ext_phy->mac_work, MT7915_WATCHDOG_TIME); } /* system error recovery */ void mt7915_mac_reset_work(struct work_struct *work) { struct mt7915_phy *phy2; struct mt76_phy *ext_phy; struct mt7915_dev *dev; int i; dev = container_of(work, struct mt7915_dev, reset_work); ext_phy = dev->mt76.phys[MT_BAND1]; phy2 = ext_phy ? ext_phy->priv : NULL; /* chip full reset */ if (dev->recovery.restart) { /* disable WA/WM WDT */ mt76_clear(dev, MT_WFDMA0_MCU_HOST_INT_ENA, MT_MCU_CMD_WDT_MASK); if (READ_ONCE(dev->recovery.state) & MT_MCU_CMD_WA_WDT) dev->recovery.wa_reset_count++; else dev->recovery.wm_reset_count++; mt7915_mac_full_reset(dev); /* enable mcu irq */ mt7915_irq_enable(dev, MT_INT_MCU_CMD); mt7915_irq_disable(dev, 0); /* enable WA/WM WDT */ mt76_set(dev, MT_WFDMA0_MCU_HOST_INT_ENA, MT_MCU_CMD_WDT_MASK); dev->recovery.state = MT_MCU_CMD_NORMAL_STATE; dev->recovery.restart = false; return; } /* chip partial reset */ if (!(READ_ONCE(dev->recovery.state) & MT_MCU_CMD_STOP_DMA)) return; if (mtk_wed_device_active(&dev->mt76.mmio.wed)) { mtk_wed_device_stop(&dev->mt76.mmio.wed); if (!is_mt798x(&dev->mt76)) mt76_wr(dev, MT_INT_WED_MASK_CSR, 0); } ieee80211_stop_queues(mt76_hw(dev)); if (ext_phy) ieee80211_stop_queues(ext_phy->hw); set_bit(MT76_RESET, &dev->mphy.state); set_bit(MT76_MCU_RESET, &dev->mphy.state); wake_up(&dev->mt76.mcu.wait); cancel_delayed_work_sync(&dev->mphy.mac_work); if (phy2) { set_bit(MT76_RESET, &phy2->mt76->state); cancel_delayed_work_sync(&phy2->mt76->mac_work); } mt76_worker_disable(&dev->mt76.tx_worker); mt76_for_each_q_rx(&dev->mt76, i) napi_disable(&dev->mt76.napi[i]); napi_disable(&dev->mt76.tx_napi); mutex_lock(&dev->mt76.mutex); mt76_wr(dev, MT_MCU_INT_EVENT, MT_MCU_INT_EVENT_DMA_STOPPED); if (mt7915_wait_reset_state(dev, MT_MCU_CMD_RESET_DONE)) { mt7915_dma_reset(dev, false); mt76_connac2_tx_token_put(&dev->mt76); idr_init(&dev->mt76.token); mt76_wr(dev, MT_MCU_INT_EVENT, MT_MCU_INT_EVENT_DMA_INIT); mt7915_wait_reset_state(dev, MT_MCU_CMD_RECOVERY_DONE); } mt76_wr(dev, MT_MCU_INT_EVENT, MT_MCU_INT_EVENT_RESET_DONE); mt7915_wait_reset_state(dev, MT_MCU_CMD_NORMAL_STATE); /* enable DMA Tx/Rx and interrupt */ mt7915_dma_start(dev, false, false); clear_bit(MT76_MCU_RESET, &dev->mphy.state); clear_bit(MT76_RESET, &dev->mphy.state); if (phy2) clear_bit(MT76_RESET, &phy2->mt76->state); local_bh_disable(); mt76_for_each_q_rx(&dev->mt76, i) { napi_enable(&dev->mt76.napi[i]); napi_schedule(&dev->mt76.napi[i]); } local_bh_enable(); tasklet_schedule(&dev->mt76.irq_tasklet); mt76_worker_enable(&dev->mt76.tx_worker); local_bh_disable(); napi_enable(&dev->mt76.tx_napi); napi_schedule(&dev->mt76.tx_napi); local_bh_enable(); ieee80211_wake_queues(mt76_hw(dev)); if (ext_phy) ieee80211_wake_queues(ext_phy->hw); mutex_unlock(&dev->mt76.mutex); mt7915_update_beacons(dev); ieee80211_queue_delayed_work(mt76_hw(dev), &dev->mphy.mac_work, MT7915_WATCHDOG_TIME); if (phy2) ieee80211_queue_delayed_work(ext_phy->hw, &phy2->mt76->mac_work, MT7915_WATCHDOG_TIME); } /* firmware coredump */ void mt7915_mac_dump_work(struct work_struct *work) { const struct mt7915_mem_region *mem_region; struct mt7915_crash_data *crash_data; struct mt7915_dev *dev; struct mt7915_mem_hdr *hdr; size_t buf_len; int i; u32 num; u8 *buf; dev = container_of(work, struct mt7915_dev, dump_work); mutex_lock(&dev->dump_mutex); crash_data = mt7915_coredump_new(dev); if (!crash_data) { mutex_unlock(&dev->dump_mutex); goto skip_coredump; } mem_region = mt7915_coredump_get_mem_layout(dev, &num); if (!mem_region || !crash_data->memdump_buf_len) { mutex_unlock(&dev->dump_mutex); goto skip_memdump; } buf = crash_data->memdump_buf; buf_len = crash_data->memdump_buf_len; /* dumping memory content... */ memset(buf, 0, buf_len); for (i = 0; i < num; i++) { if (mem_region->len > buf_len) { dev_warn(dev->mt76.dev, "%s len %lu is too large\n", mem_region->name, (unsigned long)mem_region->len); break; } /* reserve space for the header */ hdr = (void *)buf; buf += sizeof(*hdr); buf_len -= sizeof(*hdr); mt7915_memcpy_fromio(dev, buf, mem_region->start, mem_region->len); hdr->start = mem_region->start; hdr->len = mem_region->len; if (!mem_region->len) /* note: the header remains, just with zero length */ break; buf += mem_region->len; buf_len -= mem_region->len; mem_region++; } mutex_unlock(&dev->dump_mutex); skip_memdump: mt7915_coredump_submit(dev); skip_coredump: queue_work(dev->mt76.wq, &dev->reset_work); } void mt7915_reset(struct mt7915_dev *dev) { if (!dev->recovery.hw_init_done) return; if (dev->recovery.hw_full_reset) return; /* wm/wa exception: do full recovery */ if (READ_ONCE(dev->recovery.state) & MT_MCU_CMD_WDT_MASK) { dev->recovery.restart = true; dev_info(dev->mt76.dev, "%s indicated firmware crash, attempting recovery\n", wiphy_name(dev->mt76.hw->wiphy)); mt7915_irq_disable(dev, MT_INT_MCU_CMD); queue_work(dev->mt76.wq, &dev->dump_work); return; } queue_work(dev->mt76.wq, &dev->reset_work); wake_up(&dev->reset_wait); } void mt7915_mac_update_stats(struct mt7915_phy *phy) { struct mt76_mib_stats *mib = &phy->mib; struct mt7915_dev *dev = phy->dev; int i, aggr0 = 0, aggr1, cnt; u8 band = phy->mt76->band_idx; u32 val; cnt = mt76_rr(dev, MT_MIB_SDR3(band)); mib->fcs_err_cnt += is_mt7915(&dev->mt76) ? FIELD_GET(MT_MIB_SDR3_FCS_ERR_MASK, cnt) : FIELD_GET(MT_MIB_SDR3_FCS_ERR_MASK_MT7916, cnt); cnt = mt76_rr(dev, MT_MIB_SDR4(band)); mib->rx_fifo_full_cnt += FIELD_GET(MT_MIB_SDR4_RX_FIFO_FULL_MASK, cnt); cnt = mt76_rr(dev, MT_MIB_SDR5(band)); mib->rx_mpdu_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_SDR6(band)); mib->channel_idle_cnt += FIELD_GET(MT_MIB_SDR6_CHANNEL_IDL_CNT_MASK, cnt); cnt = mt76_rr(dev, MT_MIB_SDR7(band)); mib->rx_vector_mismatch_cnt += FIELD_GET(MT_MIB_SDR7_RX_VECTOR_MISMATCH_CNT_MASK, cnt); cnt = mt76_rr(dev, MT_MIB_SDR8(band)); mib->rx_delimiter_fail_cnt += FIELD_GET(MT_MIB_SDR8_RX_DELIMITER_FAIL_CNT_MASK, cnt); cnt = mt76_rr(dev, MT_MIB_SDR10(band)); mib->rx_mrdy_cnt += is_mt7915(&dev->mt76) ? FIELD_GET(MT_MIB_SDR10_MRDY_COUNT_MASK, cnt) : FIELD_GET(MT_MIB_SDR10_MRDY_COUNT_MASK_MT7916, cnt); cnt = mt76_rr(dev, MT_MIB_SDR11(band)); mib->rx_len_mismatch_cnt += FIELD_GET(MT_MIB_SDR11_RX_LEN_MISMATCH_CNT_MASK, cnt); cnt = mt76_rr(dev, MT_MIB_SDR12(band)); mib->tx_ampdu_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_SDR13(band)); mib->tx_stop_q_empty_cnt += FIELD_GET(MT_MIB_SDR13_TX_STOP_Q_EMPTY_CNT_MASK, cnt); cnt = mt76_rr(dev, MT_MIB_SDR14(band)); mib->tx_mpdu_attempts_cnt += is_mt7915(&dev->mt76) ? FIELD_GET(MT_MIB_SDR14_TX_MPDU_ATTEMPTS_CNT_MASK, cnt) : FIELD_GET(MT_MIB_SDR14_TX_MPDU_ATTEMPTS_CNT_MASK_MT7916, cnt); cnt = mt76_rr(dev, MT_MIB_SDR15(band)); mib->tx_mpdu_success_cnt += is_mt7915(&dev->mt76) ? FIELD_GET(MT_MIB_SDR15_TX_MPDU_SUCCESS_CNT_MASK, cnt) : FIELD_GET(MT_MIB_SDR15_TX_MPDU_SUCCESS_CNT_MASK_MT7916, cnt); cnt = mt76_rr(dev, MT_MIB_SDR16(band)); mib->primary_cca_busy_time += FIELD_GET(MT_MIB_SDR16_PRIMARY_CCA_BUSY_TIME_MASK, cnt); cnt = mt76_rr(dev, MT_MIB_SDR17(band)); mib->secondary_cca_busy_time += FIELD_GET(MT_MIB_SDR17_SECONDARY_CCA_BUSY_TIME_MASK, cnt); cnt = mt76_rr(dev, MT_MIB_SDR18(band)); mib->primary_energy_detect_time += FIELD_GET(MT_MIB_SDR18_PRIMARY_ENERGY_DETECT_TIME_MASK, cnt); cnt = mt76_rr(dev, MT_MIB_SDR19(band)); mib->cck_mdrdy_time += FIELD_GET(MT_MIB_SDR19_CCK_MDRDY_TIME_MASK, cnt); cnt = mt76_rr(dev, MT_MIB_SDR20(band)); mib->ofdm_mdrdy_time += FIELD_GET(MT_MIB_SDR20_OFDM_VHT_MDRDY_TIME_MASK, cnt); cnt = mt76_rr(dev, MT_MIB_SDR21(band)); mib->green_mdrdy_time += FIELD_GET(MT_MIB_SDR21_GREEN_MDRDY_TIME_MASK, cnt); cnt = mt76_rr(dev, MT_MIB_SDR22(band)); mib->rx_ampdu_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_SDR23(band)); mib->rx_ampdu_bytes_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_SDR24(band)); mib->rx_ampdu_valid_subframe_cnt += is_mt7915(&dev->mt76) ? FIELD_GET(MT_MIB_SDR24_RX_AMPDU_SF_CNT_MASK, cnt) : FIELD_GET(MT_MIB_SDR24_RX_AMPDU_SF_CNT_MASK_MT7916, cnt); cnt = mt76_rr(dev, MT_MIB_SDR25(band)); mib->rx_ampdu_valid_subframe_bytes_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_SDR27(band)); mib->tx_rwp_fail_cnt += FIELD_GET(MT_MIB_SDR27_TX_RWP_FAIL_CNT_MASK, cnt); cnt = mt76_rr(dev, MT_MIB_SDR28(band)); mib->tx_rwp_need_cnt += FIELD_GET(MT_MIB_SDR28_TX_RWP_NEED_CNT_MASK, cnt); cnt = mt76_rr(dev, MT_MIB_SDR29(band)); mib->rx_pfdrop_cnt += is_mt7915(&dev->mt76) ? FIELD_GET(MT_MIB_SDR29_RX_PFDROP_CNT_MASK, cnt) : FIELD_GET(MT_MIB_SDR29_RX_PFDROP_CNT_MASK_MT7916, cnt); cnt = mt76_rr(dev, MT_MIB_SDRVEC(band)); mib->rx_vec_queue_overflow_drop_cnt += is_mt7915(&dev->mt76) ? FIELD_GET(MT_MIB_SDR30_RX_VEC_QUEUE_OVERFLOW_DROP_CNT_MASK, cnt) : FIELD_GET(MT_MIB_SDR30_RX_VEC_QUEUE_OVERFLOW_DROP_CNT_MASK_MT7916, cnt); cnt = mt76_rr(dev, MT_MIB_SDR31(band)); mib->rx_ba_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_SDRMUBF(band)); mib->tx_bf_cnt += FIELD_GET(MT_MIB_MU_BF_TX_CNT, cnt); cnt = mt76_rr(dev, MT_MIB_DR8(band)); mib->tx_mu_mpdu_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_DR9(band)); mib->tx_mu_acked_mpdu_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_DR11(band)); mib->tx_su_acked_mpdu_cnt += cnt; cnt = mt76_rr(dev, MT_ETBF_PAR_RPT0(band)); mib->tx_bf_rx_fb_bw = FIELD_GET(MT_ETBF_PAR_RPT0_FB_BW, cnt); mib->tx_bf_rx_fb_nc_cnt += FIELD_GET(MT_ETBF_PAR_RPT0_FB_NC, cnt); mib->tx_bf_rx_fb_nr_cnt += FIELD_GET(MT_ETBF_PAR_RPT0_FB_NR, cnt); for (i = 0; i < ARRAY_SIZE(mib->tx_amsdu); i++) { cnt = mt76_rr(dev, MT_PLE_AMSDU_PACK_MSDU_CNT(i)); mib->tx_amsdu[i] += cnt; mib->tx_amsdu_cnt += cnt; } if (is_mt7915(&dev->mt76)) { for (i = 0, aggr1 = aggr0 + 8; i < 4; i++) { val = mt76_rr(dev, MT_MIB_MB_SDR1(band, (i << 4))); mib->ba_miss_cnt += FIELD_GET(MT_MIB_BA_MISS_COUNT_MASK, val); mib->ack_fail_cnt += FIELD_GET(MT_MIB_ACK_FAIL_COUNT_MASK, val); val = mt76_rr(dev, MT_MIB_MB_SDR0(band, (i << 4))); mib->rts_cnt += FIELD_GET(MT_MIB_RTS_COUNT_MASK, val); mib->rts_retries_cnt += FIELD_GET(MT_MIB_RTS_RETRIES_COUNT_MASK, val); val = mt76_rr(dev, MT_TX_AGG_CNT(band, i)); phy->mt76->aggr_stats[aggr0++] += val & 0xffff; phy->mt76->aggr_stats[aggr0++] += val >> 16; val = mt76_rr(dev, MT_TX_AGG_CNT2(band, i)); phy->mt76->aggr_stats[aggr1++] += val & 0xffff; phy->mt76->aggr_stats[aggr1++] += val >> 16; } cnt = mt76_rr(dev, MT_MIB_SDR32(band)); mib->tx_pkt_ebf_cnt += FIELD_GET(MT_MIB_SDR32_TX_PKT_EBF_CNT, cnt); cnt = mt76_rr(dev, MT_MIB_SDR33(band)); mib->tx_pkt_ibf_cnt += FIELD_GET(MT_MIB_SDR33_TX_PKT_IBF_CNT, cnt); cnt = mt76_rr(dev, MT_ETBF_TX_APP_CNT(band)); mib->tx_bf_ibf_ppdu_cnt += FIELD_GET(MT_ETBF_TX_IBF_CNT, cnt); mib->tx_bf_ebf_ppdu_cnt += FIELD_GET(MT_ETBF_TX_EBF_CNT, cnt); cnt = mt76_rr(dev, MT_ETBF_TX_NDP_BFRP(band)); mib->tx_bf_fb_cpl_cnt += FIELD_GET(MT_ETBF_TX_FB_CPL, cnt); mib->tx_bf_fb_trig_cnt += FIELD_GET(MT_ETBF_TX_FB_TRI, cnt); cnt = mt76_rr(dev, MT_ETBF_RX_FB_CNT(band)); mib->tx_bf_rx_fb_all_cnt += FIELD_GET(MT_ETBF_RX_FB_ALL, cnt); mib->tx_bf_rx_fb_he_cnt += FIELD_GET(MT_ETBF_RX_FB_HE, cnt); mib->tx_bf_rx_fb_vht_cnt += FIELD_GET(MT_ETBF_RX_FB_VHT, cnt); mib->tx_bf_rx_fb_ht_cnt += FIELD_GET(MT_ETBF_RX_FB_HT, cnt); } else { for (i = 0; i < 2; i++) { /* rts count */ val = mt76_rr(dev, MT_MIB_MB_SDR0(band, (i << 2))); mib->rts_cnt += FIELD_GET(GENMASK(15, 0), val); mib->rts_cnt += FIELD_GET(GENMASK(31, 16), val); /* rts retry count */ val = mt76_rr(dev, MT_MIB_MB_SDR1(band, (i << 2))); mib->rts_retries_cnt += FIELD_GET(GENMASK(15, 0), val); mib->rts_retries_cnt += FIELD_GET(GENMASK(31, 16), val); /* ba miss count */ val = mt76_rr(dev, MT_MIB_MB_SDR2(band, (i << 2))); mib->ba_miss_cnt += FIELD_GET(GENMASK(15, 0), val); mib->ba_miss_cnt += FIELD_GET(GENMASK(31, 16), val); /* ack fail count */ val = mt76_rr(dev, MT_MIB_MB_BFTF(band, (i << 2))); mib->ack_fail_cnt += FIELD_GET(GENMASK(15, 0), val); mib->ack_fail_cnt += FIELD_GET(GENMASK(31, 16), val); } for (i = 0; i < 8; i++) { val = mt76_rr(dev, MT_TX_AGG_CNT(band, i)); phy->mt76->aggr_stats[aggr0++] += FIELD_GET(GENMASK(15, 0), val); phy->mt76->aggr_stats[aggr0++] += FIELD_GET(GENMASK(31, 16), val); } cnt = mt76_rr(dev, MT_MIB_SDR32(band)); mib->tx_pkt_ibf_cnt += FIELD_GET(MT_MIB_SDR32_TX_PKT_IBF_CNT, cnt); mib->tx_bf_ibf_ppdu_cnt += FIELD_GET(MT_MIB_SDR32_TX_PKT_IBF_CNT, cnt); mib->tx_pkt_ebf_cnt += FIELD_GET(MT_MIB_SDR32_TX_PKT_EBF_CNT, cnt); mib->tx_bf_ebf_ppdu_cnt += FIELD_GET(MT_MIB_SDR32_TX_PKT_EBF_CNT, cnt); cnt = mt76_rr(dev, MT_MIB_BFCR7(band)); mib->tx_bf_fb_cpl_cnt += FIELD_GET(MT_MIB_BFCR7_BFEE_TX_FB_CPL, cnt); cnt = mt76_rr(dev, MT_MIB_BFCR2(band)); mib->tx_bf_fb_trig_cnt += FIELD_GET(MT_MIB_BFCR2_BFEE_TX_FB_TRIG, cnt); cnt = mt76_rr(dev, MT_MIB_BFCR0(band)); mib->tx_bf_rx_fb_vht_cnt += FIELD_GET(MT_MIB_BFCR0_RX_FB_VHT, cnt); mib->tx_bf_rx_fb_all_cnt += FIELD_GET(MT_MIB_BFCR0_RX_FB_VHT, cnt); mib->tx_bf_rx_fb_ht_cnt += FIELD_GET(MT_MIB_BFCR0_RX_FB_HT, cnt); mib->tx_bf_rx_fb_all_cnt += FIELD_GET(MT_MIB_BFCR0_RX_FB_HT, cnt); cnt = mt76_rr(dev, MT_MIB_BFCR1(band)); mib->tx_bf_rx_fb_he_cnt += FIELD_GET(MT_MIB_BFCR1_RX_FB_HE, cnt); mib->tx_bf_rx_fb_all_cnt += FIELD_GET(MT_MIB_BFCR1_RX_FB_HE, cnt); } } static void mt7915_mac_severe_check(struct mt7915_phy *phy) { struct mt7915_dev *dev = phy->dev; u32 trb; if (!phy->omac_mask) return; /* In rare cases, TRB pointers might be out of sync leads to RMAC * stopping Rx, so check status periodically to see if TRB hardware * requires minimal recovery. */ trb = mt76_rr(dev, MT_TRB_RXPSR0(phy->mt76->band_idx)); if ((FIELD_GET(MT_TRB_RXPSR0_RX_RMAC_PTR, trb) != FIELD_GET(MT_TRB_RXPSR0_RX_WTBL_PTR, trb)) && (FIELD_GET(MT_TRB_RXPSR0_RX_RMAC_PTR, phy->trb_ts) != FIELD_GET(MT_TRB_RXPSR0_RX_WTBL_PTR, phy->trb_ts)) && trb == phy->trb_ts) mt7915_mcu_set_ser(dev, SER_RECOVER, SER_SET_RECOVER_L3_RX_ABORT, phy->mt76->band_idx); phy->trb_ts = trb; } void mt7915_mac_sta_rc_work(struct work_struct *work) { struct mt7915_dev *dev = container_of(work, struct mt7915_dev, rc_work); struct ieee80211_sta *sta; struct ieee80211_vif *vif; struct mt7915_sta *msta; u32 changed; LIST_HEAD(list); spin_lock_bh(&dev->mt76.sta_poll_lock); list_splice_init(&dev->sta_rc_list, &list); while (!list_empty(&list)) { msta = list_first_entry(&list, struct mt7915_sta, rc_list); list_del_init(&msta->rc_list); changed = msta->changed; msta->changed = 0; spin_unlock_bh(&dev->mt76.sta_poll_lock); sta = container_of((void *)msta, struct ieee80211_sta, drv_priv); vif = container_of((void *)msta->vif, struct ieee80211_vif, drv_priv); if (changed & (IEEE80211_RC_SUPP_RATES_CHANGED | IEEE80211_RC_NSS_CHANGED | IEEE80211_RC_BW_CHANGED)) mt7915_mcu_add_rate_ctrl(dev, vif, sta, true); if (changed & IEEE80211_RC_SMPS_CHANGED) mt7915_mcu_add_smps(dev, vif, sta); spin_lock_bh(&dev->mt76.sta_poll_lock); } spin_unlock_bh(&dev->mt76.sta_poll_lock); } void mt7915_mac_work(struct work_struct *work) { struct mt7915_phy *phy; struct mt76_phy *mphy; mphy = (struct mt76_phy *)container_of(work, struct mt76_phy, mac_work.work); phy = mphy->priv; mutex_lock(&mphy->dev->mutex); mt76_update_survey(mphy); if (++mphy->mac_work_count == 5) { mphy->mac_work_count = 0; mt7915_mac_update_stats(phy); mt7915_mac_severe_check(phy); if (phy->dev->muru_debug) mt7915_mcu_muru_debug_get(phy); } mutex_unlock(&mphy->dev->mutex); mt76_tx_status_check(mphy->dev, false); ieee80211_queue_delayed_work(mphy->hw, &mphy->mac_work, MT7915_WATCHDOG_TIME); } static void mt7915_dfs_stop_radar_detector(struct mt7915_phy *phy) { struct mt7915_dev *dev = phy->dev; if (phy->rdd_state & BIT(0)) mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_STOP, 0, MT_RX_SEL0, 0); if (phy->rdd_state & BIT(1)) mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_STOP, 1, MT_RX_SEL0, 0); } static int mt7915_dfs_start_rdd(struct mt7915_dev *dev, int chain) { int err, region; switch (dev->mt76.region) { case NL80211_DFS_ETSI: region = 0; break; case NL80211_DFS_JP: region = 2; break; case NL80211_DFS_FCC: default: region = 1; break; } err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_START, chain, MT_RX_SEL0, region); if (err < 0) return err; if (is_mt7915(&dev->mt76)) { err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_SET_WF_ANT, chain, 0, dev->dbdc_support ? 2 : 0); if (err < 0) return err; } return mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_DET_MODE, chain, MT_RX_SEL0, 1); } static int mt7915_dfs_start_radar_detector(struct mt7915_phy *phy) { struct cfg80211_chan_def *chandef = &phy->mt76->chandef; struct mt7915_dev *dev = phy->dev; int err; /* start CAC */ err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_CAC_START, phy->mt76->band_idx, MT_RX_SEL0, 0); if (err < 0) return err; err = mt7915_dfs_start_rdd(dev, phy->mt76->band_idx); if (err < 0) return err; phy->rdd_state |= BIT(phy->mt76->band_idx); if (!is_mt7915(&dev->mt76)) return 0; if (chandef->width == NL80211_CHAN_WIDTH_160 || chandef->width == NL80211_CHAN_WIDTH_80P80) { err = mt7915_dfs_start_rdd(dev, 1); if (err < 0) return err; phy->rdd_state |= BIT(1); } return 0; } static int mt7915_dfs_init_radar_specs(struct mt7915_phy *phy) { const struct mt7915_dfs_radar_spec *radar_specs; struct mt7915_dev *dev = phy->dev; int err, i; switch (dev->mt76.region) { case NL80211_DFS_FCC: radar_specs = &fcc_radar_specs; err = mt7915_mcu_set_fcc5_lpn(dev, 8); if (err < 0) return err; break; case NL80211_DFS_ETSI: radar_specs = &etsi_radar_specs; break; case NL80211_DFS_JP: radar_specs = &jp_radar_specs; break; default: return -EINVAL; } for (i = 0; i < ARRAY_SIZE(radar_specs->radar_pattern); i++) { err = mt7915_mcu_set_radar_th(dev, i, &radar_specs->radar_pattern[i]); if (err < 0) return err; } return mt7915_mcu_set_pulse_th(dev, &radar_specs->pulse_th); } int mt7915_dfs_init_radar_detector(struct mt7915_phy *phy) { struct mt7915_dev *dev = phy->dev; enum mt76_dfs_state dfs_state, prev_state; int err; prev_state = phy->mt76->dfs_state; dfs_state = mt76_phy_dfs_state(phy->mt76); if (prev_state == dfs_state) return 0; if (prev_state == MT_DFS_STATE_UNKNOWN) mt7915_dfs_stop_radar_detector(phy); if (dfs_state == MT_DFS_STATE_DISABLED) goto stop; if (prev_state <= MT_DFS_STATE_DISABLED) { err = mt7915_dfs_init_radar_specs(phy); if (err < 0) return err; err = mt7915_dfs_start_radar_detector(phy); if (err < 0) return err; phy->mt76->dfs_state = MT_DFS_STATE_CAC; } if (dfs_state == MT_DFS_STATE_CAC) return 0; err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_CAC_END, phy->mt76->band_idx, MT_RX_SEL0, 0); if (err < 0) { phy->mt76->dfs_state = MT_DFS_STATE_UNKNOWN; return err; } phy->mt76->dfs_state = MT_DFS_STATE_ACTIVE; return 0; stop: err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_NORMAL_START, phy->mt76->band_idx, MT_RX_SEL0, 0); if (err < 0) return err; if (is_mt7915(&dev->mt76)) { err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_SET_WF_ANT, phy->mt76->band_idx, 0, dev->dbdc_support ? 2 : 0); if (err < 0) return err; } mt7915_dfs_stop_radar_detector(phy); phy->mt76->dfs_state = MT_DFS_STATE_DISABLED; return 0; } static int mt7915_mac_twt_duration_align(int duration) { return duration << 8; } static u64 mt7915_mac_twt_sched_list_add(struct mt7915_dev *dev, struct mt7915_twt_flow *flow) { struct mt7915_twt_flow *iter, *iter_next; u32 duration = flow->duration << 8; u64 start_tsf; iter = list_first_entry_or_null(&dev->twt_list, struct mt7915_twt_flow, list); if (!iter || !iter->sched || iter->start_tsf > duration) { /* add flow as first entry in the list */ list_add(&flow->list, &dev->twt_list); return 0; } list_for_each_entry_safe(iter, iter_next, &dev->twt_list, list) { start_tsf = iter->start_tsf + mt7915_mac_twt_duration_align(iter->duration); if (list_is_last(&iter->list, &dev->twt_list)) break; if (!iter_next->sched || iter_next->start_tsf > start_tsf + duration) { list_add(&flow->list, &iter->list); goto out; } } /* add flow as last entry in the list */ list_add_tail(&flow->list, &dev->twt_list); out: return start_tsf; } static int mt7915_mac_check_twt_req(struct ieee80211_twt_setup *twt) { struct ieee80211_twt_params *twt_agrt; u64 interval, duration; u16 mantissa; u8 exp; /* only individual agreement supported */ if (twt->control & IEEE80211_TWT_CONTROL_NEG_TYPE_BROADCAST) return -EOPNOTSUPP; /* only 256us unit supported */ if (twt->control & IEEE80211_TWT_CONTROL_WAKE_DUR_UNIT) return -EOPNOTSUPP; twt_agrt = (struct ieee80211_twt_params *)twt->params; /* explicit agreement not supported */ if (!(twt_agrt->req_type & cpu_to_le16(IEEE80211_TWT_REQTYPE_IMPLICIT))) return -EOPNOTSUPP; exp = FIELD_GET(IEEE80211_TWT_REQTYPE_WAKE_INT_EXP, le16_to_cpu(twt_agrt->req_type)); mantissa = le16_to_cpu(twt_agrt->mantissa); duration = twt_agrt->min_twt_dur << 8; interval = (u64)mantissa << exp; if (interval < duration) return -EOPNOTSUPP; return 0; } static bool mt7915_mac_twt_param_equal(struct mt7915_sta *msta, struct ieee80211_twt_params *twt_agrt) { u16 type = le16_to_cpu(twt_agrt->req_type); u8 exp; int i; exp = FIELD_GET(IEEE80211_TWT_REQTYPE_WAKE_INT_EXP, type); for (i = 0; i < MT7915_MAX_STA_TWT_AGRT; i++) { struct mt7915_twt_flow *f; if (!(msta->twt.flowid_mask & BIT(i))) continue; f = &msta->twt.flow[i]; if (f->duration == twt_agrt->min_twt_dur && f->mantissa == twt_agrt->mantissa && f->exp == exp && f->protection == !!(type & IEEE80211_TWT_REQTYPE_PROTECTION) && f->flowtype == !!(type & IEEE80211_TWT_REQTYPE_FLOWTYPE) && f->trigger == !!(type & IEEE80211_TWT_REQTYPE_TRIGGER)) return true; } return false; } void mt7915_mac_add_twt_setup(struct ieee80211_hw *hw, struct ieee80211_sta *sta, struct ieee80211_twt_setup *twt) { enum ieee80211_twt_setup_cmd setup_cmd = TWT_SETUP_CMD_REJECT; struct mt7915_sta *msta = (struct mt7915_sta *)sta->drv_priv; struct ieee80211_twt_params *twt_agrt = (void *)twt->params; u16 req_type = le16_to_cpu(twt_agrt->req_type); enum ieee80211_twt_setup_cmd sta_setup_cmd; struct mt7915_dev *dev = mt7915_hw_dev(hw); struct mt7915_twt_flow *flow; int flowid, table_id; u8 exp; if (mt7915_mac_check_twt_req(twt)) goto out; mutex_lock(&dev->mt76.mutex); if (dev->twt.n_agrt == MT7915_MAX_TWT_AGRT) goto unlock; if (hweight8(msta->twt.flowid_mask) == ARRAY_SIZE(msta->twt.flow)) goto unlock; if (twt_agrt->min_twt_dur < MT7915_MIN_TWT_DUR) { setup_cmd = TWT_SETUP_CMD_DICTATE; twt_agrt->min_twt_dur = MT7915_MIN_TWT_DUR; goto unlock; } flowid = ffs(~msta->twt.flowid_mask) - 1; twt_agrt->req_type &= ~cpu_to_le16(IEEE80211_TWT_REQTYPE_FLOWID); twt_agrt->req_type |= le16_encode_bits(flowid, IEEE80211_TWT_REQTYPE_FLOWID); table_id = ffs(~dev->twt.table_mask) - 1; exp = FIELD_GET(IEEE80211_TWT_REQTYPE_WAKE_INT_EXP, req_type); sta_setup_cmd = FIELD_GET(IEEE80211_TWT_REQTYPE_SETUP_CMD, req_type); if (mt7915_mac_twt_param_equal(msta, twt_agrt)) goto unlock; flow = &msta->twt.flow[flowid]; memset(flow, 0, sizeof(*flow)); INIT_LIST_HEAD(&flow->list); flow->wcid = msta->wcid.idx; flow->table_id = table_id; flow->id = flowid; flow->duration = twt_agrt->min_twt_dur; flow->mantissa = twt_agrt->mantissa; flow->exp = exp; flow->protection = !!(req_type & IEEE80211_TWT_REQTYPE_PROTECTION); flow->flowtype = !!(req_type & IEEE80211_TWT_REQTYPE_FLOWTYPE); flow->trigger = !!(req_type & IEEE80211_TWT_REQTYPE_TRIGGER); if (sta_setup_cmd == TWT_SETUP_CMD_REQUEST || sta_setup_cmd == TWT_SETUP_CMD_SUGGEST) { u64 interval = (u64)le16_to_cpu(twt_agrt->mantissa) << exp; u64 flow_tsf, curr_tsf; u32 rem; flow->sched = true; flow->start_tsf = mt7915_mac_twt_sched_list_add(dev, flow); curr_tsf = __mt7915_get_tsf(hw, msta->vif); div_u64_rem(curr_tsf - flow->start_tsf, interval, &rem); flow_tsf = curr_tsf + interval - rem; twt_agrt->twt = cpu_to_le64(flow_tsf); } else { list_add_tail(&flow->list, &dev->twt_list); } flow->tsf = le64_to_cpu(twt_agrt->twt); if (mt7915_mcu_twt_agrt_update(dev, msta->vif, flow, MCU_TWT_AGRT_ADD)) goto unlock; setup_cmd = TWT_SETUP_CMD_ACCEPT; dev->twt.table_mask |= BIT(table_id); msta->twt.flowid_mask |= BIT(flowid); dev->twt.n_agrt++; unlock: mutex_unlock(&dev->mt76.mutex); out: twt_agrt->req_type &= ~cpu_to_le16(IEEE80211_TWT_REQTYPE_SETUP_CMD); twt_agrt->req_type |= le16_encode_bits(setup_cmd, IEEE80211_TWT_REQTYPE_SETUP_CMD); twt->control = (twt->control & IEEE80211_TWT_CONTROL_WAKE_DUR_UNIT) | (twt->control & IEEE80211_TWT_CONTROL_RX_DISABLED); } void mt7915_mac_twt_teardown_flow(struct mt7915_dev *dev, struct mt7915_sta *msta, u8 flowid) { struct mt7915_twt_flow *flow; lockdep_assert_held(&dev->mt76.mutex); if (flowid >= ARRAY_SIZE(msta->twt.flow)) return; if (!(msta->twt.flowid_mask & BIT(flowid))) return; flow = &msta->twt.flow[flowid]; if (mt7915_mcu_twt_agrt_update(dev, msta->vif, flow, MCU_TWT_AGRT_DELETE)) return; list_del_init(&flow->list); msta->twt.flowid_mask &= ~BIT(flowid); dev->twt.table_mask &= ~BIT(flow->table_id); dev->twt.n_agrt--; }
linux-master
drivers/net/wireless/mediatek/mt76/mt7915/mac.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2020 MediaTek Inc. */ #include <linux/etherdevice.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/of.h> #include <linux/thermal.h> #include "mt7915.h" #include "mac.h" #include "mcu.h" #include "coredump.h" #include "eeprom.h" static const struct ieee80211_iface_limit if_limits[] = { { .max = 1, .types = BIT(NL80211_IFTYPE_ADHOC) }, { .max = 16, .types = BIT(NL80211_IFTYPE_AP) #ifdef CONFIG_MAC80211_MESH | BIT(NL80211_IFTYPE_MESH_POINT) #endif }, { .max = MT7915_MAX_INTERFACES, .types = BIT(NL80211_IFTYPE_STATION) } }; static const struct ieee80211_iface_combination if_comb[] = { { .limits = if_limits, .n_limits = ARRAY_SIZE(if_limits), .max_interfaces = MT7915_MAX_INTERFACES, .num_different_channels = 1, .beacon_int_infra_match = true, .radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) | BIT(NL80211_CHAN_WIDTH_20) | BIT(NL80211_CHAN_WIDTH_40) | BIT(NL80211_CHAN_WIDTH_80) | BIT(NL80211_CHAN_WIDTH_160), } }; static ssize_t mt7915_thermal_temp_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mt7915_phy *phy = dev_get_drvdata(dev); int i = to_sensor_dev_attr(attr)->index; int temperature; switch (i) { case 0: temperature = mt7915_mcu_get_temperature(phy); if (temperature < 0) return temperature; /* display in millidegree celcius */ return sprintf(buf, "%u\n", temperature * 1000); case 1: case 2: return sprintf(buf, "%u\n", phy->throttle_temp[i - 1] * 1000); case 3: return sprintf(buf, "%hhu\n", phy->throttle_state); default: return -EINVAL; } } static ssize_t mt7915_thermal_temp_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct mt7915_phy *phy = dev_get_drvdata(dev); int ret, i = to_sensor_dev_attr(attr)->index; long val; ret = kstrtol(buf, 10, &val); if (ret < 0) return ret; mutex_lock(&phy->dev->mt76.mutex); val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), 60, 130); if ((i - 1 == MT7915_CRIT_TEMP_IDX && val > phy->throttle_temp[MT7915_MAX_TEMP_IDX]) || (i - 1 == MT7915_MAX_TEMP_IDX && val < phy->throttle_temp[MT7915_CRIT_TEMP_IDX])) { dev_err(phy->dev->mt76.dev, "temp1_max shall be greater than temp1_crit."); mutex_unlock(&phy->dev->mt76.mutex); return -EINVAL; } phy->throttle_temp[i - 1] = val; mutex_unlock(&phy->dev->mt76.mutex); ret = mt7915_mcu_set_thermal_protect(phy); if (ret) return ret; return count; } static SENSOR_DEVICE_ATTR_RO(temp1_input, mt7915_thermal_temp, 0); static SENSOR_DEVICE_ATTR_RW(temp1_crit, mt7915_thermal_temp, 1); static SENSOR_DEVICE_ATTR_RW(temp1_max, mt7915_thermal_temp, 2); static SENSOR_DEVICE_ATTR_RO(throttle1, mt7915_thermal_temp, 3); static struct attribute *mt7915_hwmon_attrs[] = { &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_crit.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_throttle1.dev_attr.attr, NULL, }; ATTRIBUTE_GROUPS(mt7915_hwmon); static int mt7915_thermal_get_max_throttle_state(struct thermal_cooling_device *cdev, unsigned long *state) { *state = MT7915_CDEV_THROTTLE_MAX; return 0; } static int mt7915_thermal_get_cur_throttle_state(struct thermal_cooling_device *cdev, unsigned long *state) { struct mt7915_phy *phy = cdev->devdata; *state = phy->cdev_state; return 0; } static int mt7915_thermal_set_cur_throttle_state(struct thermal_cooling_device *cdev, unsigned long state) { struct mt7915_phy *phy = cdev->devdata; u8 throttling = MT7915_THERMAL_THROTTLE_MAX - state; int ret; if (state > MT7915_CDEV_THROTTLE_MAX) { dev_err(phy->dev->mt76.dev, "please specify a valid throttling state\n"); return -EINVAL; } if (state == phy->cdev_state) return 0; /* * cooling_device convention: 0 = no cooling, more = more cooling * mcu convention: 1 = max cooling, more = less cooling */ ret = mt7915_mcu_set_thermal_throttling(phy, throttling); if (ret) return ret; phy->cdev_state = state; return 0; } static const struct thermal_cooling_device_ops mt7915_thermal_ops = { .get_max_state = mt7915_thermal_get_max_throttle_state, .get_cur_state = mt7915_thermal_get_cur_throttle_state, .set_cur_state = mt7915_thermal_set_cur_throttle_state, }; static void mt7915_unregister_thermal(struct mt7915_phy *phy) { struct wiphy *wiphy = phy->mt76->hw->wiphy; if (!phy->cdev) return; sysfs_remove_link(&wiphy->dev.kobj, "cooling_device"); thermal_cooling_device_unregister(phy->cdev); } static int mt7915_thermal_init(struct mt7915_phy *phy) { struct wiphy *wiphy = phy->mt76->hw->wiphy; struct thermal_cooling_device *cdev; struct device *hwmon; const char *name; name = devm_kasprintf(&wiphy->dev, GFP_KERNEL, "mt7915_%s", wiphy_name(wiphy)); cdev = thermal_cooling_device_register(name, phy, &mt7915_thermal_ops); if (!IS_ERR(cdev)) { if (sysfs_create_link(&wiphy->dev.kobj, &cdev->device.kobj, "cooling_device") < 0) thermal_cooling_device_unregister(cdev); else phy->cdev = cdev; } /* initialize critical/maximum high temperature */ phy->throttle_temp[MT7915_CRIT_TEMP_IDX] = MT7915_CRIT_TEMP; phy->throttle_temp[MT7915_MAX_TEMP_IDX] = MT7915_MAX_TEMP; if (!IS_REACHABLE(CONFIG_HWMON)) return 0; hwmon = devm_hwmon_device_register_with_groups(&wiphy->dev, name, phy, mt7915_hwmon_groups); if (IS_ERR(hwmon)) return PTR_ERR(hwmon); return 0; } static void mt7915_led_set_config(struct led_classdev *led_cdev, u8 delay_on, u8 delay_off) { struct mt7915_dev *dev; struct mt76_phy *mphy; u32 val; mphy = container_of(led_cdev, struct mt76_phy, leds.cdev); dev = container_of(mphy->dev, struct mt7915_dev, mt76); /* set PWM mode */ val = FIELD_PREP(MT_LED_STATUS_DURATION, 0xffff) | FIELD_PREP(MT_LED_STATUS_OFF, delay_off) | FIELD_PREP(MT_LED_STATUS_ON, delay_on); mt76_wr(dev, MT_LED_STATUS_0(mphy->band_idx), val); mt76_wr(dev, MT_LED_STATUS_1(mphy->band_idx), val); /* enable LED */ mt76_wr(dev, MT_LED_EN(mphy->band_idx), 1); /* control LED */ val = MT_LED_CTRL_KICK; if (dev->mphy.leds.al) val |= MT_LED_CTRL_POLARITY; if (mphy->band_idx) val |= MT_LED_CTRL_BAND; mt76_wr(dev, MT_LED_CTRL(mphy->band_idx), val); mt76_clear(dev, MT_LED_CTRL(mphy->band_idx), MT_LED_CTRL_KICK); } static int mt7915_led_set_blink(struct led_classdev *led_cdev, unsigned long *delay_on, unsigned long *delay_off) { u16 delta_on = 0, delta_off = 0; #define HW_TICK 10 #define TO_HW_TICK(_t) (((_t) > HW_TICK) ? ((_t) / HW_TICK) : HW_TICK) if (*delay_on) delta_on = TO_HW_TICK(*delay_on); if (*delay_off) delta_off = TO_HW_TICK(*delay_off); mt7915_led_set_config(led_cdev, delta_on, delta_off); return 0; } static void mt7915_led_set_brightness(struct led_classdev *led_cdev, enum led_brightness brightness) { if (!brightness) mt7915_led_set_config(led_cdev, 0, 0xff); else mt7915_led_set_config(led_cdev, 0xff, 0); } void mt7915_init_txpower(struct mt7915_dev *dev, struct ieee80211_supported_band *sband) { int i, n_chains = hweight8(dev->mphy.antenna_mask); int nss_delta = mt76_tx_power_nss_delta(n_chains); int pwr_delta = mt7915_eeprom_get_power_delta(dev, sband->band); struct mt76_power_limits limits; for (i = 0; i < sband->n_channels; i++) { struct ieee80211_channel *chan = &sband->channels[i]; u32 target_power = 0; int j; for (j = 0; j < n_chains; j++) { u32 val; val = mt7915_eeprom_get_target_power(dev, chan, j); target_power = max(target_power, val); } target_power += pwr_delta; target_power = mt76_get_rate_power_limits(&dev->mphy, chan, &limits, target_power); target_power += nss_delta; target_power = DIV_ROUND_UP(target_power, 2); chan->max_power = min_t(int, chan->max_reg_power, target_power); chan->orig_mpwr = target_power; } } static void mt7915_regd_notifier(struct wiphy *wiphy, struct regulatory_request *request) { struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); struct mt7915_dev *dev = mt7915_hw_dev(hw); struct mt76_phy *mphy = hw->priv; struct mt7915_phy *phy = mphy->priv; memcpy(dev->mt76.alpha2, request->alpha2, sizeof(dev->mt76.alpha2)); dev->mt76.region = request->dfs_region; if (dev->mt76.region == NL80211_DFS_UNSET) mt7915_mcu_rdd_background_enable(phy, NULL); mt7915_init_txpower(dev, &mphy->sband_2g.sband); mt7915_init_txpower(dev, &mphy->sband_5g.sband); mt7915_init_txpower(dev, &mphy->sband_6g.sband); mphy->dfs_state = MT_DFS_STATE_UNKNOWN; mt7915_dfs_init_radar_detector(phy); } static void mt7915_init_wiphy(struct mt7915_phy *phy) { struct mt76_phy *mphy = phy->mt76; struct ieee80211_hw *hw = mphy->hw; struct mt76_dev *mdev = &phy->dev->mt76; struct wiphy *wiphy = hw->wiphy; struct mt7915_dev *dev = phy->dev; hw->queues = 4; hw->max_rx_aggregation_subframes = IEEE80211_MAX_AMPDU_BUF_HE; hw->max_tx_aggregation_subframes = IEEE80211_MAX_AMPDU_BUF_HE; hw->netdev_features = NETIF_F_RXCSUM; hw->radiotap_timestamp.units_pos = IEEE80211_RADIOTAP_TIMESTAMP_UNIT_US; phy->slottime = 9; hw->sta_data_size = sizeof(struct mt7915_sta); hw->vif_data_size = sizeof(struct mt7915_vif); wiphy->iface_combinations = if_comb; wiphy->n_iface_combinations = ARRAY_SIZE(if_comb); wiphy->reg_notifier = mt7915_regd_notifier; wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH; wiphy->mbssid_max_interfaces = 16; wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BSS_COLOR); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_VHT_IBSS); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_LEGACY); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_HT); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_VHT); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_HE); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_UNSOL_BCAST_PROBE_RESP); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_FILS_DISCOVERY); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_ACK_SIGNAL_SUPPORT); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0); if (!is_mt7915(&dev->mt76)) wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_STA_TX_PWR); if (!mdev->dev->of_node || !of_property_read_bool(mdev->dev->of_node, "mediatek,disable-radar-background")) wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_RADAR_BACKGROUND); ieee80211_hw_set(hw, HAS_RATE_CONTROL); ieee80211_hw_set(hw, SUPPORTS_TX_ENCAP_OFFLOAD); ieee80211_hw_set(hw, SUPPORTS_RX_DECAP_OFFLOAD); ieee80211_hw_set(hw, SUPPORTS_MULTI_BSSID); ieee80211_hw_set(hw, WANT_MONITOR_VIF); hw->max_tx_fragments = 4; if (phy->mt76->cap.has_2ghz) { phy->mt76->sband_2g.sband.ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING | IEEE80211_HT_CAP_MAX_AMSDU; phy->mt76->sband_2g.sband.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_4; } if (phy->mt76->cap.has_5ghz) { struct ieee80211_sta_vht_cap *vht_cap; vht_cap = &phy->mt76->sband_5g.sband.vht_cap; phy->mt76->sband_5g.sband.ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING | IEEE80211_HT_CAP_MAX_AMSDU; phy->mt76->sband_5g.sband.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_4; if (is_mt7915(&dev->mt76)) { vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991 | IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK; if (!dev->dbdc_support) vht_cap->cap |= IEEE80211_VHT_CAP_SHORT_GI_160 | FIELD_PREP(IEEE80211_VHT_CAP_EXT_NSS_BW_MASK, 1); } else { vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 | IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK; /* mt7916 dbdc with 2g 2x2 bw40 and 5g 2x2 bw160c */ vht_cap->cap |= IEEE80211_VHT_CAP_SHORT_GI_160 | IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ; } if (!is_mt7915(&dev->mt76) || !dev->dbdc_support) ieee80211_hw_set(hw, SUPPORTS_VHT_EXT_NSS_BW); } mt76_set_stream_caps(phy->mt76, true); mt7915_set_stream_vht_txbf_caps(phy); mt7915_set_stream_he_caps(phy); wiphy->available_antennas_rx = phy->mt76->antenna_mask; wiphy->available_antennas_tx = phy->mt76->antenna_mask; /* init led callbacks */ if (IS_ENABLED(CONFIG_MT76_LEDS)) { mphy->leds.cdev.brightness_set = mt7915_led_set_brightness; mphy->leds.cdev.blink_set = mt7915_led_set_blink; } } static void mt7915_mac_init_band(struct mt7915_dev *dev, u8 band) { u32 mask, set; mt76_rmw_field(dev, MT_TMAC_CTCR0(band), MT_TMAC_CTCR0_INS_DDLMT_REFTIME, 0x3f); mt76_set(dev, MT_TMAC_CTCR0(band), MT_TMAC_CTCR0_INS_DDLMT_VHT_SMPDU_EN | MT_TMAC_CTCR0_INS_DDLMT_EN); mask = MT_MDP_RCFR0_MCU_RX_MGMT | MT_MDP_RCFR0_MCU_RX_CTL_NON_BAR | MT_MDP_RCFR0_MCU_RX_CTL_BAR; set = FIELD_PREP(MT_MDP_RCFR0_MCU_RX_MGMT, MT_MDP_TO_HIF) | FIELD_PREP(MT_MDP_RCFR0_MCU_RX_CTL_NON_BAR, MT_MDP_TO_HIF) | FIELD_PREP(MT_MDP_RCFR0_MCU_RX_CTL_BAR, MT_MDP_TO_HIF); mt76_rmw(dev, MT_MDP_BNRCFR0(band), mask, set); mask = MT_MDP_RCFR1_MCU_RX_BYPASS | MT_MDP_RCFR1_RX_DROPPED_UCAST | MT_MDP_RCFR1_RX_DROPPED_MCAST; set = FIELD_PREP(MT_MDP_RCFR1_MCU_RX_BYPASS, MT_MDP_TO_HIF) | FIELD_PREP(MT_MDP_RCFR1_RX_DROPPED_UCAST, MT_MDP_TO_HIF) | FIELD_PREP(MT_MDP_RCFR1_RX_DROPPED_MCAST, MT_MDP_TO_HIF); mt76_rmw(dev, MT_MDP_BNRCFR1(band), mask, set); mt76_rmw_field(dev, MT_DMA_DCR0(band), MT_DMA_DCR0_MAX_RX_LEN, 0x680); /* mt7915: disable rx rate report by default due to hw issues */ mt76_clear(dev, MT_DMA_DCR0(band), MT_DMA_DCR0_RXD_G5_EN); /* clear estimated value of EIFS for Rx duration & OBSS time */ mt76_wr(dev, MT_WF_RMAC_RSVD0(band), MT_WF_RMAC_RSVD0_EIFS_CLR); /* clear backoff time for Rx duration */ mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME1(band), MT_WF_RMAC_MIB_NONQOSD_BACKOFF); mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME3(band), MT_WF_RMAC_MIB_QOS01_BACKOFF); mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME4(band), MT_WF_RMAC_MIB_QOS23_BACKOFF); /* clear backoff time and set software compensation for OBSS time */ mask = MT_WF_RMAC_MIB_OBSS_BACKOFF | MT_WF_RMAC_MIB_ED_OFFSET; set = FIELD_PREP(MT_WF_RMAC_MIB_OBSS_BACKOFF, 0) | FIELD_PREP(MT_WF_RMAC_MIB_ED_OFFSET, 4); mt76_rmw(dev, MT_WF_RMAC_MIB_AIRTIME0(band), mask, set); /* filter out non-resp frames and get instanstaeous signal reporting */ mask = MT_WTBLOFF_TOP_RSCR_RCPI_MODE | MT_WTBLOFF_TOP_RSCR_RCPI_PARAM; set = FIELD_PREP(MT_WTBLOFF_TOP_RSCR_RCPI_MODE, 0) | FIELD_PREP(MT_WTBLOFF_TOP_RSCR_RCPI_PARAM, 0x3); mt76_rmw(dev, MT_WTBLOFF_TOP_RSCR(band), mask, set); /* MT_TXD5_TX_STATUS_HOST (MPDU format) has higher priority than * MT_AGG_ACR_PPDU_TXS2H (PPDU format) even though ACR bit is set. */ if (mtk_wed_device_active(&dev->mt76.mmio.wed)) mt76_set(dev, MT_AGG_ACR4(band), MT_AGG_ACR_PPDU_TXS2H); } static void mt7915_init_led_mux(struct mt7915_dev *dev) { if (!IS_ENABLED(CONFIG_MT76_LEDS)) return; if (dev->dbdc_support) { switch (mt76_chip(&dev->mt76)) { case 0x7915: mt76_rmw_field(dev, MT_LED_GPIO_MUX2, GENMASK(11, 8), 4); mt76_rmw_field(dev, MT_LED_GPIO_MUX3, GENMASK(11, 8), 4); break; case 0x7986: mt76_rmw_field(dev, MT_LED_GPIO_MUX0, GENMASK(7, 4), 1); mt76_rmw_field(dev, MT_LED_GPIO_MUX0, GENMASK(11, 8), 1); break; case 0x7916: mt76_rmw_field(dev, MT_LED_GPIO_MUX1, GENMASK(27, 24), 3); mt76_rmw_field(dev, MT_LED_GPIO_MUX1, GENMASK(31, 28), 3); break; default: break; } } else if (dev->mphy.leds.pin) { switch (mt76_chip(&dev->mt76)) { case 0x7915: mt76_rmw_field(dev, MT_LED_GPIO_MUX3, GENMASK(11, 8), 4); break; case 0x7986: mt76_rmw_field(dev, MT_LED_GPIO_MUX0, GENMASK(11, 8), 1); break; case 0x7916: mt76_rmw_field(dev, MT_LED_GPIO_MUX1, GENMASK(31, 28), 3); break; default: break; } } else { switch (mt76_chip(&dev->mt76)) { case 0x7915: mt76_rmw_field(dev, MT_LED_GPIO_MUX2, GENMASK(11, 8), 4); break; case 0x7986: mt76_rmw_field(dev, MT_LED_GPIO_MUX0, GENMASK(7, 4), 1); break; case 0x7916: mt76_rmw_field(dev, MT_LED_GPIO_MUX1, GENMASK(27, 24), 3); break; default: break; } } } void mt7915_mac_init(struct mt7915_dev *dev) { int i; u32 rx_len = is_mt7915(&dev->mt76) ? 0x400 : 0x680; /* config pse qid6 wfdma port selection */ if (!is_mt7915(&dev->mt76) && dev->hif2) mt76_rmw(dev, MT_WF_PP_TOP_RXQ_WFDMA_CF_5, 0, MT_WF_PP_TOP_RXQ_QID6_WFDMA_HIF_SEL_MASK); mt76_rmw_field(dev, MT_MDP_DCR1, MT_MDP_DCR1_MAX_RX_LEN, rx_len); if (!is_mt7915(&dev->mt76)) mt76_clear(dev, MT_MDP_DCR2, MT_MDP_DCR2_RX_TRANS_SHORT); else mt76_clear(dev, MT_PLE_HOST_RPT0, MT_PLE_HOST_RPT0_TX_LATENCY); /* enable hardware de-agg */ mt76_set(dev, MT_MDP_DCR0, MT_MDP_DCR0_DAMSDU_EN); for (i = 0; i < mt7915_wtbl_size(dev); i++) mt7915_mac_wtbl_update(dev, i, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); for (i = 0; i < 2; i++) mt7915_mac_init_band(dev, i); mt7915_init_led_mux(dev); } int mt7915_txbf_init(struct mt7915_dev *dev) { int ret; if (dev->dbdc_support) { ret = mt7915_mcu_set_txbf(dev, MT_BF_MODULE_UPDATE); if (ret) return ret; } /* trigger sounding packets */ ret = mt7915_mcu_set_txbf(dev, MT_BF_SOUNDING_ON); if (ret) return ret; /* enable eBF */ return mt7915_mcu_set_txbf(dev, MT_BF_TYPE_UPDATE); } static struct mt7915_phy * mt7915_alloc_ext_phy(struct mt7915_dev *dev) { struct mt7915_phy *phy; struct mt76_phy *mphy; if (!dev->dbdc_support) return NULL; mphy = mt76_alloc_phy(&dev->mt76, sizeof(*phy), &mt7915_ops, MT_BAND1); if (!mphy) return ERR_PTR(-ENOMEM); phy = mphy->priv; phy->dev = dev; phy->mt76 = mphy; /* Bind main phy to band0 and ext_phy to band1 for dbdc case */ phy->mt76->band_idx = 1; return phy; } static int mt7915_register_ext_phy(struct mt7915_dev *dev, struct mt7915_phy *phy) { struct mt76_phy *mphy = phy->mt76; int ret; INIT_DELAYED_WORK(&mphy->mac_work, mt7915_mac_work); mt7915_eeprom_parse_hw_cap(dev, phy); memcpy(mphy->macaddr, dev->mt76.eeprom.data + MT_EE_MAC_ADDR2, ETH_ALEN); /* Make the secondary PHY MAC address local without overlapping with * the usual MAC address allocation scheme on multiple virtual interfaces */ if (!is_valid_ether_addr(mphy->macaddr)) { memcpy(mphy->macaddr, dev->mt76.eeprom.data + MT_EE_MAC_ADDR, ETH_ALEN); mphy->macaddr[0] |= 2; mphy->macaddr[0] ^= BIT(7); } mt76_eeprom_override(mphy); /* init wiphy according to mphy and phy */ mt7915_init_wiphy(phy); ret = mt76_register_phy(mphy, true, mt76_rates, ARRAY_SIZE(mt76_rates)); if (ret) return ret; ret = mt7915_thermal_init(phy); if (ret) goto unreg; mt7915_init_debugfs(phy); return 0; unreg: mt76_unregister_phy(mphy); return ret; } static void mt7915_init_work(struct work_struct *work) { struct mt7915_dev *dev = container_of(work, struct mt7915_dev, init_work); mt7915_mcu_set_eeprom(dev); mt7915_mac_init(dev); mt7915_init_txpower(dev, &dev->mphy.sband_2g.sband); mt7915_init_txpower(dev, &dev->mphy.sband_5g.sband); mt7915_init_txpower(dev, &dev->mphy.sband_6g.sband); mt7915_txbf_init(dev); } void mt7915_wfsys_reset(struct mt7915_dev *dev) { #define MT_MCU_DUMMY_RANDOM GENMASK(15, 0) #define MT_MCU_DUMMY_DEFAULT GENMASK(31, 16) if (is_mt7915(&dev->mt76)) { u32 val = MT_TOP_PWR_KEY | MT_TOP_PWR_SW_PWR_ON | MT_TOP_PWR_PWR_ON; mt76_wr(dev, MT_MCU_WFDMA0_DUMMY_CR, MT_MCU_DUMMY_RANDOM); /* change to software control */ val |= MT_TOP_PWR_SW_RST; mt76_wr(dev, MT_TOP_PWR_CTRL, val); /* reset wfsys */ val &= ~MT_TOP_PWR_SW_RST; mt76_wr(dev, MT_TOP_PWR_CTRL, val); /* release wfsys then mcu re-executes romcode */ val |= MT_TOP_PWR_SW_RST; mt76_wr(dev, MT_TOP_PWR_CTRL, val); /* switch to hw control */ val &= ~MT_TOP_PWR_SW_RST; val |= MT_TOP_PWR_HW_CTRL; mt76_wr(dev, MT_TOP_PWR_CTRL, val); /* check whether mcu resets to default */ if (!mt76_poll_msec(dev, MT_MCU_WFDMA0_DUMMY_CR, MT_MCU_DUMMY_DEFAULT, MT_MCU_DUMMY_DEFAULT, 1000)) { dev_err(dev->mt76.dev, "wifi subsystem reset failure\n"); return; } /* wfsys reset won't clear host registers */ mt76_clear(dev, MT_TOP_MISC, MT_TOP_MISC_FW_STATE); msleep(100); } else if (is_mt798x(&dev->mt76)) { mt7986_wmac_disable(dev); msleep(20); mt7986_wmac_enable(dev); msleep(20); } else { mt76_set(dev, MT_WF_SUBSYS_RST, 0x1); msleep(20); mt76_clear(dev, MT_WF_SUBSYS_RST, 0x1); msleep(20); } } static bool mt7915_band_config(struct mt7915_dev *dev) { bool ret = true; dev->phy.mt76->band_idx = 0; if (is_mt798x(&dev->mt76)) { u32 sku = mt7915_check_adie(dev, true); /* * for mt7986, dbdc support is determined by the number * of adie chips and the main phy is bound to band1 when * dbdc is disabled. */ if (sku == MT7975_ONE_ADIE || sku == MT7976_ONE_ADIE) { dev->phy.mt76->band_idx = 1; ret = false; } } else { ret = is_mt7915(&dev->mt76) ? !!(mt76_rr(dev, MT_HW_BOUND) & BIT(5)) : true; } return ret; } static int mt7915_init_hardware(struct mt7915_dev *dev, struct mt7915_phy *phy2) { int ret, idx; mt76_wr(dev, MT_INT_MASK_CSR, 0); mt76_wr(dev, MT_INT_SOURCE_CSR, ~0); INIT_WORK(&dev->init_work, mt7915_init_work); ret = mt7915_dma_init(dev, phy2); if (ret) return ret; set_bit(MT76_STATE_INITIALIZED, &dev->mphy.state); ret = mt7915_mcu_init(dev); if (ret) return ret; ret = mt7915_eeprom_init(dev); if (ret < 0) return ret; if (dev->flash_mode) { ret = mt7915_mcu_apply_group_cal(dev); if (ret) return ret; } /* Beacon and mgmt frames should occupy wcid 0 */ idx = mt76_wcid_alloc(dev->mt76.wcid_mask, MT7915_WTBL_STA); if (idx) return -ENOSPC; dev->mt76.global_wcid.idx = idx; dev->mt76.global_wcid.hw_key_idx = -1; dev->mt76.global_wcid.tx_info |= MT_WCID_TX_INFO_SET; rcu_assign_pointer(dev->mt76.wcid[idx], &dev->mt76.global_wcid); return 0; } void mt7915_set_stream_vht_txbf_caps(struct mt7915_phy *phy) { int sts; u32 *cap; if (!phy->mt76->cap.has_5ghz) return; sts = hweight8(phy->mt76->chainmask); cap = &phy->mt76->sband_5g.sband.vht_cap.cap; *cap |= IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE | FIELD_PREP(IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK, sts - 1); *cap &= ~(IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK | IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE | IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE); if (sts < 2) return; *cap |= IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE | IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE | FIELD_PREP(IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK, sts - 1); } static void mt7915_set_stream_he_txbf_caps(struct mt7915_phy *phy, struct ieee80211_sta_he_cap *he_cap, int vif) { struct mt7915_dev *dev = phy->dev; struct ieee80211_he_cap_elem *elem = &he_cap->he_cap_elem; int sts = hweight8(phy->mt76->chainmask); u8 c, sts_160 = sts; /* Can do 1/2 of STS in 160Mhz mode for mt7915 */ if (is_mt7915(&dev->mt76)) { if (!dev->dbdc_support) sts_160 /= 2; else sts_160 = 0; } #ifdef CONFIG_MAC80211_MESH if (vif == NL80211_IFTYPE_MESH_POINT) return; #endif elem->phy_cap_info[3] &= ~IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER; elem->phy_cap_info[4] &= ~IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER; c = IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK; if (sts_160) c |= IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK; elem->phy_cap_info[5] &= ~c; c = IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB | IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB; elem->phy_cap_info[6] &= ~c; elem->phy_cap_info[7] &= ~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK; c = IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US; if (!is_mt7915(&dev->mt76)) c |= IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO | IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO; elem->phy_cap_info[2] |= c; c = IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE | IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4; if (sts_160) c |= IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4; elem->phy_cap_info[4] |= c; /* do not support NG16 due to spec D4.0 changes subcarrier idx */ c = IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU | IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU; if (vif == NL80211_IFTYPE_STATION) c |= IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO; elem->phy_cap_info[6] |= c; if (sts < 2) return; /* the maximum cap is 4 x 3, (Nr, Nc) = (3, 2) */ elem->phy_cap_info[7] |= min_t(int, sts - 1, 2) << 3; if (vif != NL80211_IFTYPE_AP) return; elem->phy_cap_info[3] |= IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER; elem->phy_cap_info[4] |= IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER; c = FIELD_PREP(IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK, sts - 1); if (sts_160) c |= FIELD_PREP(IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK, sts_160 - 1); elem->phy_cap_info[5] |= c; c = IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB | IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB; elem->phy_cap_info[6] |= c; if (!is_mt7915(&dev->mt76)) { c = IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ | IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ; elem->phy_cap_info[7] |= c; } } static int mt7915_init_he_caps(struct mt7915_phy *phy, enum nl80211_band band, struct ieee80211_sband_iftype_data *data) { struct mt7915_dev *dev = phy->dev; int i, idx = 0, nss = hweight8(phy->mt76->antenna_mask); u16 mcs_map = 0; u16 mcs_map_160 = 0; u8 nss_160; if (!is_mt7915(&dev->mt76)) nss_160 = nss; else if (!dev->dbdc_support) /* Can do 1/2 of NSS streams in 160Mhz mode for mt7915 */ nss_160 = nss / 2; else /* Can't do 160MHz with mt7915 dbdc */ nss_160 = 0; for (i = 0; i < 8; i++) { if (i < nss) mcs_map |= (IEEE80211_HE_MCS_SUPPORT_0_11 << (i * 2)); else mcs_map |= (IEEE80211_HE_MCS_NOT_SUPPORTED << (i * 2)); if (i < nss_160) mcs_map_160 |= (IEEE80211_HE_MCS_SUPPORT_0_11 << (i * 2)); else mcs_map_160 |= (IEEE80211_HE_MCS_NOT_SUPPORTED << (i * 2)); } for (i = 0; i < NUM_NL80211_IFTYPES; i++) { struct ieee80211_sta_he_cap *he_cap = &data[idx].he_cap; struct ieee80211_he_cap_elem *he_cap_elem = &he_cap->he_cap_elem; struct ieee80211_he_mcs_nss_supp *he_mcs = &he_cap->he_mcs_nss_supp; switch (i) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_AP: #ifdef CONFIG_MAC80211_MESH case NL80211_IFTYPE_MESH_POINT: #endif break; default: continue; } data[idx].types_mask = BIT(i); he_cap->has_he = true; he_cap_elem->mac_cap_info[0] = IEEE80211_HE_MAC_CAP0_HTC_HE; he_cap_elem->mac_cap_info[3] = IEEE80211_HE_MAC_CAP3_OMI_CONTROL | IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3; he_cap_elem->mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU; if (band == NL80211_BAND_2GHZ) he_cap_elem->phy_cap_info[0] = IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G; else if (nss_160) he_cap_elem->phy_cap_info[0] = IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; else he_cap_elem->phy_cap_info[0] = IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G; he_cap_elem->phy_cap_info[1] = IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD; he_cap_elem->phy_cap_info[2] = IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ | IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ; switch (i) { case NL80211_IFTYPE_AP: he_cap_elem->mac_cap_info[0] |= IEEE80211_HE_MAC_CAP0_TWT_RES; he_cap_elem->mac_cap_info[2] |= IEEE80211_HE_MAC_CAP2_BSR; he_cap_elem->mac_cap_info[4] |= IEEE80211_HE_MAC_CAP4_BQR; he_cap_elem->mac_cap_info[5] |= IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX; he_cap_elem->phy_cap_info[3] |= IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK | IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK; he_cap_elem->phy_cap_info[6] |= IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE | IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT; he_cap_elem->phy_cap_info[9] |= IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU | IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU; break; case NL80211_IFTYPE_STATION: he_cap_elem->mac_cap_info[1] |= IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US; if (band == NL80211_BAND_2GHZ) he_cap_elem->phy_cap_info[0] |= IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G; else he_cap_elem->phy_cap_info[0] |= IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G; he_cap_elem->phy_cap_info[1] |= IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A | IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US; he_cap_elem->phy_cap_info[3] |= IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK | IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK; he_cap_elem->phy_cap_info[6] |= IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB | IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE | IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT; he_cap_elem->phy_cap_info[7] |= IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP | IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI; he_cap_elem->phy_cap_info[8] |= IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G | IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484; if (nss_160) he_cap_elem->phy_cap_info[8] |= IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU | IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU; he_cap_elem->phy_cap_info[9] |= IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM | IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK | IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU | IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU | IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB | IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB; break; } memset(he_mcs, 0, sizeof(*he_mcs)); he_mcs->rx_mcs_80 = cpu_to_le16(mcs_map); he_mcs->tx_mcs_80 = cpu_to_le16(mcs_map); he_mcs->rx_mcs_160 = cpu_to_le16(mcs_map_160); he_mcs->tx_mcs_160 = cpu_to_le16(mcs_map_160); mt7915_set_stream_he_txbf_caps(phy, he_cap, i); memset(he_cap->ppe_thres, 0, sizeof(he_cap->ppe_thres)); if (he_cap_elem->phy_cap_info[6] & IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) { mt76_connac_gen_ppe_thresh(he_cap->ppe_thres, nss); } else { he_cap_elem->phy_cap_info[9] |= u8_encode_bits(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US, IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK); } if (band == NL80211_BAND_6GHZ) { u16 cap = IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS | IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS; cap |= u16_encode_bits(IEEE80211_HT_MPDU_DENSITY_2, IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START) | u16_encode_bits(IEEE80211_VHT_MAX_AMPDU_1024K, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP) | u16_encode_bits(IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN); data[idx].he_6ghz_capa.capa = cpu_to_le16(cap); } idx++; } return idx; } void mt7915_set_stream_he_caps(struct mt7915_phy *phy) { struct ieee80211_sband_iftype_data *data; struct ieee80211_supported_band *band; int n; if (phy->mt76->cap.has_2ghz) { data = phy->iftype[NL80211_BAND_2GHZ]; n = mt7915_init_he_caps(phy, NL80211_BAND_2GHZ, data); band = &phy->mt76->sband_2g.sband; band->iftype_data = data; band->n_iftype_data = n; } if (phy->mt76->cap.has_5ghz) { data = phy->iftype[NL80211_BAND_5GHZ]; n = mt7915_init_he_caps(phy, NL80211_BAND_5GHZ, data); band = &phy->mt76->sband_5g.sband; band->iftype_data = data; band->n_iftype_data = n; } if (phy->mt76->cap.has_6ghz) { data = phy->iftype[NL80211_BAND_6GHZ]; n = mt7915_init_he_caps(phy, NL80211_BAND_6GHZ, data); band = &phy->mt76->sband_6g.sband; band->iftype_data = data; band->n_iftype_data = n; } } static void mt7915_unregister_ext_phy(struct mt7915_dev *dev) { struct mt7915_phy *phy = mt7915_ext_phy(dev); struct mt76_phy *mphy = dev->mt76.phys[MT_BAND1]; if (!phy) return; mt7915_unregister_thermal(phy); mt76_unregister_phy(mphy); ieee80211_free_hw(mphy->hw); } static void mt7915_stop_hardware(struct mt7915_dev *dev) { mt7915_mcu_exit(dev); mt76_connac2_tx_token_put(&dev->mt76); mt7915_dma_cleanup(dev); tasklet_disable(&dev->mt76.irq_tasklet); if (is_mt798x(&dev->mt76)) mt7986_wmac_disable(dev); } int mt7915_register_device(struct mt7915_dev *dev) { struct mt7915_phy *phy2; int ret; dev->phy.dev = dev; dev->phy.mt76 = &dev->mt76.phy; dev->mt76.phy.priv = &dev->phy; INIT_WORK(&dev->rc_work, mt7915_mac_sta_rc_work); INIT_DELAYED_WORK(&dev->mphy.mac_work, mt7915_mac_work); INIT_LIST_HEAD(&dev->sta_rc_list); INIT_LIST_HEAD(&dev->twt_list); init_waitqueue_head(&dev->reset_wait); INIT_WORK(&dev->reset_work, mt7915_mac_reset_work); INIT_WORK(&dev->dump_work, mt7915_mac_dump_work); mutex_init(&dev->dump_mutex); dev->dbdc_support = mt7915_band_config(dev); phy2 = mt7915_alloc_ext_phy(dev); if (IS_ERR(phy2)) return PTR_ERR(phy2); ret = mt7915_init_hardware(dev, phy2); if (ret) goto free_phy2; mt7915_init_wiphy(&dev->phy); #ifdef CONFIG_NL80211_TESTMODE dev->mt76.test_ops = &mt7915_testmode_ops; #endif ret = mt76_register_device(&dev->mt76, true, mt76_rates, ARRAY_SIZE(mt76_rates)); if (ret) goto stop_hw; ret = mt7915_thermal_init(&dev->phy); if (ret) goto unreg_dev; ieee80211_queue_work(mt76_hw(dev), &dev->init_work); if (phy2) { ret = mt7915_register_ext_phy(dev, phy2); if (ret) goto unreg_thermal; } dev->recovery.hw_init_done = true; ret = mt7915_init_debugfs(&dev->phy); if (ret) goto unreg_thermal; ret = mt7915_coredump_register(dev); if (ret) goto unreg_thermal; return 0; unreg_thermal: mt7915_unregister_thermal(&dev->phy); unreg_dev: mt76_unregister_device(&dev->mt76); stop_hw: mt7915_stop_hardware(dev); free_phy2: if (phy2) ieee80211_free_hw(phy2->mt76->hw); return ret; } void mt7915_unregister_device(struct mt7915_dev *dev) { mt7915_unregister_ext_phy(dev); mt7915_coredump_unregister(dev); mt7915_unregister_thermal(&dev->phy); mt76_unregister_device(&dev->mt76); mt7915_stop_hardware(dev); mt76_free_device(&dev->mt76); }
linux-master
drivers/net/wireless/mediatek/mt76/mt7915/init.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2020 MediaTek Inc. * * Author: Ryder Lee <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include "mt7915.h" #include "mac.h" #include "../trace.h" static LIST_HEAD(hif_list); static DEFINE_SPINLOCK(hif_lock); static u32 hif_idx; static const struct pci_device_id mt7915_pci_device_table[] = { { PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7915) }, { PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7906) }, { }, }; static const struct pci_device_id mt7915_hif_device_table[] = { { PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7916) }, { PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x790a) }, { }, }; static struct mt7915_hif *mt7915_pci_get_hif2(u32 idx) { struct mt7915_hif *hif; u32 val; spin_lock_bh(&hif_lock); list_for_each_entry(hif, &hif_list, list) { val = readl(hif->regs + MT_PCIE_RECOG_ID); val &= MT_PCIE_RECOG_ID_MASK; if (val != idx) continue; get_device(hif->dev); goto out; } hif = NULL; out: spin_unlock_bh(&hif_lock); return hif; } static void mt7915_put_hif2(struct mt7915_hif *hif) { if (!hif) return; put_device(hif->dev); } static struct mt7915_hif *mt7915_pci_init_hif2(struct pci_dev *pdev) { struct pci_dev *tmp_pdev; hif_idx++; tmp_pdev = pci_get_device(PCI_VENDOR_ID_MEDIATEK, 0x7916, NULL); if (!tmp_pdev) { tmp_pdev = pci_get_device(PCI_VENDOR_ID_MEDIATEK, 0x790a, NULL); if (!tmp_pdev) return NULL; } pci_dev_put(tmp_pdev); writel(hif_idx | MT_PCIE_RECOG_ID_SEM, pcim_iomap_table(pdev)[0] + MT_PCIE_RECOG_ID); return mt7915_pci_get_hif2(hif_idx); } static int mt7915_pci_hif2_probe(struct pci_dev *pdev) { struct mt7915_hif *hif; hif = devm_kzalloc(&pdev->dev, sizeof(*hif), GFP_KERNEL); if (!hif) return -ENOMEM; hif->dev = &pdev->dev; hif->regs = pcim_iomap_table(pdev)[0]; hif->irq = pdev->irq; spin_lock_bh(&hif_lock); list_add(&hif->list, &hif_list); spin_unlock_bh(&hif_lock); pci_set_drvdata(pdev, hif); return 0; } static int mt7915_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct mt7915_hif *hif2 = NULL; struct mt7915_dev *dev; struct mt76_dev *mdev; int irq; int ret; ret = pcim_enable_device(pdev); if (ret) return ret; ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev)); if (ret) return ret; pci_set_master(pdev); ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); if (ret) return ret; mt76_pci_disable_aspm(pdev); if (id->device == 0x7916 || id->device == 0x790a) return mt7915_pci_hif2_probe(pdev); dev = mt7915_mmio_probe(&pdev->dev, pcim_iomap_table(pdev)[0], id->device); if (IS_ERR(dev)) return PTR_ERR(dev); mdev = &dev->mt76; mt7915_wfsys_reset(dev); hif2 = mt7915_pci_init_hif2(pdev); ret = mt7915_mmio_wed_init(dev, pdev, true, &irq); if (ret < 0) goto free_wed_or_irq_vector; if (!ret) { hif2 = mt7915_pci_init_hif2(pdev); ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); if (ret < 0) goto free_device; irq = pdev->irq; } ret = devm_request_irq(mdev->dev, irq, mt7915_irq_handler, IRQF_SHARED, KBUILD_MODNAME, dev); if (ret) goto free_wed_or_irq_vector; /* master switch of PCIe tnterrupt enable */ mt76_wr(dev, MT_PCIE_MAC_INT_ENABLE, 0xff); if (hif2) { dev->hif2 = hif2; mt76_wr(dev, MT_INT1_MASK_CSR, 0); /* master switch of PCIe tnterrupt enable */ if (is_mt7915(mdev)) mt76_wr(dev, MT_PCIE1_MAC_INT_ENABLE, 0xff); else mt76_wr(dev, MT_PCIE1_MAC_INT_ENABLE_MT7916, 0xff); ret = devm_request_irq(mdev->dev, dev->hif2->irq, mt7915_irq_handler, IRQF_SHARED, KBUILD_MODNAME "-hif", dev); if (ret) goto free_hif2; } ret = mt7915_register_device(dev); if (ret) goto free_hif2_irq; return 0; free_hif2_irq: if (dev->hif2) devm_free_irq(mdev->dev, dev->hif2->irq, dev); free_hif2: if (dev->hif2) put_device(dev->hif2->dev); devm_free_irq(mdev->dev, irq, dev); free_wed_or_irq_vector: if (mtk_wed_device_active(&mdev->mmio.wed)) mtk_wed_device_detach(&mdev->mmio.wed); else pci_free_irq_vectors(pdev); free_device: mt76_free_device(&dev->mt76); return ret; } static void mt7915_hif_remove(struct pci_dev *pdev) { struct mt7915_hif *hif = pci_get_drvdata(pdev); list_del(&hif->list); } static void mt7915_pci_remove(struct pci_dev *pdev) { struct mt76_dev *mdev; struct mt7915_dev *dev; mdev = pci_get_drvdata(pdev); dev = container_of(mdev, struct mt7915_dev, mt76); mt7915_put_hif2(dev->hif2); mt7915_unregister_device(dev); } struct pci_driver mt7915_hif_driver = { .name = KBUILD_MODNAME "_hif", .id_table = mt7915_hif_device_table, .probe = mt7915_pci_probe, .remove = mt7915_hif_remove, }; struct pci_driver mt7915_pci_driver = { .name = KBUILD_MODNAME, .id_table = mt7915_pci_device_table, .probe = mt7915_pci_probe, .remove = mt7915_pci_remove, }; MODULE_DEVICE_TABLE(pci, mt7915_pci_device_table); MODULE_DEVICE_TABLE(pci, mt7915_hif_device_table); MODULE_FIRMWARE(MT7915_FIRMWARE_WA); MODULE_FIRMWARE(MT7915_FIRMWARE_WM); MODULE_FIRMWARE(MT7915_ROM_PATCH); MODULE_FIRMWARE(MT7916_FIRMWARE_WA); MODULE_FIRMWARE(MT7916_FIRMWARE_WM); MODULE_FIRMWARE(MT7916_ROM_PATCH);
linux-master
drivers/net/wireless/mediatek/mt76/mt7915/pci.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2020 MediaTek Inc. */ #include "mt7915.h" #include "mac.h" #include "mcu.h" #include "testmode.h" enum { TM_CHANGED_TXPOWER, TM_CHANGED_FREQ_OFFSET, /* must be last */ NUM_TM_CHANGED }; static const u8 tm_change_map[] = { [TM_CHANGED_TXPOWER] = MT76_TM_ATTR_TX_POWER, [TM_CHANGED_FREQ_OFFSET] = MT76_TM_ATTR_FREQ_OFFSET, }; struct reg_band { u32 band[2]; }; #define REG_BAND(_list, _reg) \ { _list.band[0] = MT_##_reg(0); \ _list.band[1] = MT_##_reg(1); } #define REG_BAND_IDX(_list, _reg, _idx) \ { _list.band[0] = MT_##_reg(0, _idx); \ _list.band[1] = MT_##_reg(1, _idx); } #define TM_REG_MAX_ID 17 static struct reg_band reg_backup_list[TM_REG_MAX_ID]; static int mt7915_tm_set_tx_power(struct mt7915_phy *phy) { struct mt7915_dev *dev = phy->dev; struct mt76_phy *mphy = phy->mt76; struct cfg80211_chan_def *chandef = &mphy->chandef; int freq = chandef->center_freq1; int ret; struct { u8 format_id; u8 band_idx; s8 tx_power; u8 ant_idx; /* Only 0 is valid */ u8 center_chan; u8 rsv[3]; } __packed req = { .format_id = 0xf, .band_idx = phy->mt76->band_idx, .center_chan = ieee80211_frequency_to_channel(freq), }; u8 *tx_power = NULL; if (phy->mt76->test.state != MT76_TM_STATE_OFF) tx_power = phy->mt76->test.tx_power; /* Tx power of the other antennas are the same as antenna 0 */ if (tx_power && tx_power[0]) req.tx_power = tx_power[0]; ret = mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(TX_POWER_FEATURE_CTRL), &req, sizeof(req), false); return ret; } static int mt7915_tm_set_freq_offset(struct mt7915_phy *phy, bool en, u32 val) { struct mt7915_dev *dev = phy->dev; struct mt7915_tm_cmd req = { .testmode_en = en, .param_idx = MCU_ATE_SET_FREQ_OFFSET, .param.freq.band = phy->mt76->band_idx, .param.freq.freq_offset = cpu_to_le32(val), }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(ATE_CTRL), &req, sizeof(req), false); } static int mt7915_tm_mode_ctrl(struct mt7915_dev *dev, bool enable) { struct { u8 format_id; bool enable; u8 rsv[2]; } __packed req = { .format_id = 0x6, .enable = enable, }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(TX_POWER_FEATURE_CTRL), &req, sizeof(req), false); } static int mt7915_tm_set_trx(struct mt7915_phy *phy, int type, bool en) { struct mt7915_dev *dev = phy->dev; struct mt7915_tm_cmd req = { .testmode_en = 1, .param_idx = MCU_ATE_SET_TRX, .param.trx.type = type, .param.trx.enable = en, .param.trx.band = phy->mt76->band_idx, }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(ATE_CTRL), &req, sizeof(req), false); } static int mt7915_tm_clean_hwq(struct mt7915_phy *phy, u8 wcid) { struct mt7915_dev *dev = phy->dev; struct mt7915_tm_cmd req = { .testmode_en = 1, .param_idx = MCU_ATE_CLEAN_TXQUEUE, .param.clean.wcid = wcid, .param.clean.band = phy->mt76->band_idx, }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(ATE_CTRL), &req, sizeof(req), false); } static int mt7915_tm_set_slot_time(struct mt7915_phy *phy, u8 slot_time, u8 sifs) { struct mt7915_dev *dev = phy->dev; struct mt7915_tm_cmd req = { .testmode_en = !(phy->mt76->test.state == MT76_TM_STATE_OFF), .param_idx = MCU_ATE_SET_SLOT_TIME, .param.slot.slot_time = slot_time, .param.slot.sifs = sifs, .param.slot.rifs = 2, .param.slot.eifs = cpu_to_le16(60), .param.slot.band = phy->mt76->band_idx, }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(ATE_CTRL), &req, sizeof(req), false); } static int mt7915_tm_set_tam_arb(struct mt7915_phy *phy, bool enable, bool mu) { struct mt7915_dev *dev = phy->dev; u32 op_mode; if (!enable) op_mode = TAM_ARB_OP_MODE_NORMAL; else if (mu) op_mode = TAM_ARB_OP_MODE_TEST; else op_mode = TAM_ARB_OP_MODE_FORCE_SU; return mt7915_mcu_set_muru_ctrl(dev, MURU_SET_ARB_OP_MODE, op_mode); } static int mt7915_tm_set_wmm_qid(struct mt7915_phy *phy, u8 qid, u8 aifs, u8 cw_min, u16 cw_max, u16 txop) { struct mt7915_vif *mvif = (struct mt7915_vif *)phy->monitor_vif->drv_priv; struct mt7915_mcu_tx req = { .total = 1 }; struct edca *e = &req.edca[0]; e->queue = qid + mvif->mt76.wmm_idx * MT76_CONNAC_MAX_WMM_SETS; e->set = WMM_PARAM_SET; e->aifs = aifs; e->cw_min = cw_min; e->cw_max = cpu_to_le16(cw_max); e->txop = cpu_to_le16(txop); return mt7915_mcu_update_edca(phy->dev, &req); } static int mt7915_tm_set_ipg_params(struct mt7915_phy *phy, u32 ipg, u8 mode) { #define TM_DEFAULT_SIFS 10 #define TM_MAX_SIFS 127 #define TM_MAX_AIFSN 0xf #define TM_MIN_AIFSN 0x1 #define BBP_PROC_TIME 1500 struct mt7915_dev *dev = phy->dev; u8 sig_ext = (mode == MT76_TM_TX_MODE_CCK) ? 0 : 6; u8 slot_time = 9, sifs = TM_DEFAULT_SIFS; u8 aifsn = TM_MIN_AIFSN; u8 band = phy->mt76->band_idx; u32 i2t_time, tr2t_time, txv_time; u16 cw = 0; if (ipg < sig_ext + slot_time + sifs) ipg = 0; if (!ipg) goto done; ipg -= sig_ext; if (ipg <= (TM_MAX_SIFS + slot_time)) { sifs = ipg - slot_time; } else { u32 val = (ipg + slot_time) / slot_time; while (val >>= 1) cw++; if (cw > 16) cw = 16; ipg -= ((1 << cw) - 1) * slot_time; aifsn = ipg / slot_time; if (aifsn > TM_MAX_AIFSN) aifsn = TM_MAX_AIFSN; ipg -= aifsn * slot_time; if (ipg > TM_DEFAULT_SIFS) sifs = min_t(u32, ipg, TM_MAX_SIFS); } done: txv_time = mt76_get_field(dev, MT_TMAC_ATCR(band), MT_TMAC_ATCR_TXV_TOUT); txv_time *= 50; /* normal clock time */ i2t_time = (slot_time * 1000 - txv_time - BBP_PROC_TIME) / 50; tr2t_time = (sifs * 1000 - txv_time - BBP_PROC_TIME) / 50; mt76_set(dev, MT_TMAC_TRCR0(band), FIELD_PREP(MT_TMAC_TRCR0_TR2T_CHK, tr2t_time) | FIELD_PREP(MT_TMAC_TRCR0_I2T_CHK, i2t_time)); mt7915_tm_set_slot_time(phy, slot_time, sifs); return mt7915_tm_set_wmm_qid(phy, mt76_connac_lmac_mapping(IEEE80211_AC_BE), aifsn, cw, cw, 0); } static int mt7915_tm_set_tx_len(struct mt7915_phy *phy, u32 tx_time) { struct mt76_phy *mphy = phy->mt76; struct mt76_testmode_data *td = &mphy->test; struct ieee80211_supported_band *sband; struct rate_info rate = {}; u16 flags = 0, tx_len; u32 bitrate; int ret; if (!tx_time) return 0; rate.mcs = td->tx_rate_idx; rate.nss = td->tx_rate_nss; switch (td->tx_rate_mode) { case MT76_TM_TX_MODE_CCK: case MT76_TM_TX_MODE_OFDM: if (mphy->chandef.chan->band == NL80211_BAND_5GHZ) sband = &mphy->sband_5g.sband; else if (mphy->chandef.chan->band == NL80211_BAND_6GHZ) sband = &mphy->sband_6g.sband; else sband = &mphy->sband_2g.sband; rate.legacy = sband->bitrates[rate.mcs].bitrate; break; case MT76_TM_TX_MODE_HT: rate.mcs += rate.nss * 8; flags |= RATE_INFO_FLAGS_MCS; if (td->tx_rate_sgi) flags |= RATE_INFO_FLAGS_SHORT_GI; break; case MT76_TM_TX_MODE_VHT: flags |= RATE_INFO_FLAGS_VHT_MCS; if (td->tx_rate_sgi) flags |= RATE_INFO_FLAGS_SHORT_GI; break; case MT76_TM_TX_MODE_HE_SU: case MT76_TM_TX_MODE_HE_EXT_SU: case MT76_TM_TX_MODE_HE_TB: case MT76_TM_TX_MODE_HE_MU: rate.he_gi = td->tx_rate_sgi; flags |= RATE_INFO_FLAGS_HE_MCS; break; default: break; } rate.flags = flags; switch (mphy->chandef.width) { case NL80211_CHAN_WIDTH_160: case NL80211_CHAN_WIDTH_80P80: rate.bw = RATE_INFO_BW_160; break; case NL80211_CHAN_WIDTH_80: rate.bw = RATE_INFO_BW_80; break; case NL80211_CHAN_WIDTH_40: rate.bw = RATE_INFO_BW_40; break; default: rate.bw = RATE_INFO_BW_20; break; } bitrate = cfg80211_calculate_bitrate(&rate); tx_len = bitrate * tx_time / 10 / 8; ret = mt76_testmode_alloc_skb(phy->mt76, tx_len); if (ret) return ret; return 0; } static void mt7915_tm_reg_backup_restore(struct mt7915_phy *phy) { int n_regs = ARRAY_SIZE(reg_backup_list); struct mt7915_dev *dev = phy->dev; u32 *b = phy->test.reg_backup; u8 band = phy->mt76->band_idx; int i; REG_BAND_IDX(reg_backup_list[0], AGG_PCR0, 0); REG_BAND_IDX(reg_backup_list[1], AGG_PCR0, 1); REG_BAND_IDX(reg_backup_list[2], AGG_AWSCR0, 0); REG_BAND_IDX(reg_backup_list[3], AGG_AWSCR0, 1); REG_BAND_IDX(reg_backup_list[4], AGG_AWSCR0, 2); REG_BAND_IDX(reg_backup_list[5], AGG_AWSCR0, 3); REG_BAND(reg_backup_list[6], AGG_MRCR); REG_BAND(reg_backup_list[7], TMAC_TFCR0); REG_BAND(reg_backup_list[8], TMAC_TCR0); REG_BAND(reg_backup_list[9], AGG_ATCR1); REG_BAND(reg_backup_list[10], AGG_ATCR3); REG_BAND(reg_backup_list[11], TMAC_TRCR0); REG_BAND(reg_backup_list[12], TMAC_ICR0); REG_BAND_IDX(reg_backup_list[13], ARB_DRNGR0, 0); REG_BAND_IDX(reg_backup_list[14], ARB_DRNGR0, 1); REG_BAND(reg_backup_list[15], WF_RFCR); REG_BAND(reg_backup_list[16], WF_RFCR1); if (phy->mt76->test.state == MT76_TM_STATE_OFF) { for (i = 0; i < n_regs; i++) mt76_wr(dev, reg_backup_list[i].band[band], b[i]); return; } if (!b) { b = devm_kzalloc(dev->mt76.dev, 4 * n_regs, GFP_KERNEL); if (!b) return; phy->test.reg_backup = b; for (i = 0; i < n_regs; i++) b[i] = mt76_rr(dev, reg_backup_list[i].band[band]); } mt76_clear(dev, MT_AGG_PCR0(band, 0), MT_AGG_PCR0_MM_PROT | MT_AGG_PCR0_GF_PROT | MT_AGG_PCR0_ERP_PROT | MT_AGG_PCR0_VHT_PROT | MT_AGG_PCR0_BW20_PROT | MT_AGG_PCR0_BW40_PROT | MT_AGG_PCR0_BW80_PROT); mt76_set(dev, MT_AGG_PCR0(band, 0), MT_AGG_PCR0_PTA_WIN_DIS); mt76_wr(dev, MT_AGG_PCR0(band, 1), MT_AGG_PCR1_RTS0_NUM_THRES | MT_AGG_PCR1_RTS0_LEN_THRES); mt76_clear(dev, MT_AGG_MRCR(band), MT_AGG_MRCR_BAR_CNT_LIMIT | MT_AGG_MRCR_LAST_RTS_CTS_RN | MT_AGG_MRCR_RTS_FAIL_LIMIT | MT_AGG_MRCR_TXCMD_RTS_FAIL_LIMIT); mt76_rmw(dev, MT_AGG_MRCR(band), MT_AGG_MRCR_RTS_FAIL_LIMIT | MT_AGG_MRCR_TXCMD_RTS_FAIL_LIMIT, FIELD_PREP(MT_AGG_MRCR_RTS_FAIL_LIMIT, 1) | FIELD_PREP(MT_AGG_MRCR_TXCMD_RTS_FAIL_LIMIT, 1)); mt76_wr(dev, MT_TMAC_TFCR0(band), 0); mt76_clear(dev, MT_TMAC_TCR0(band), MT_TMAC_TCR0_TBTT_STOP_CTRL); /* config rx filter for testmode rx */ mt76_wr(dev, MT_WF_RFCR(band), 0xcf70a); mt76_wr(dev, MT_WF_RFCR1(band), 0); } static void mt7915_tm_init(struct mt7915_phy *phy, bool en) { struct mt7915_dev *dev = phy->dev; if (!test_bit(MT76_STATE_RUNNING, &phy->mt76->state)) return; mt7915_mcu_set_sku_en(phy, !en); mt7915_tm_mode_ctrl(dev, en); mt7915_tm_reg_backup_restore(phy); mt7915_tm_set_trx(phy, TM_MAC_TXRX, !en); mt7915_mcu_add_bss_info(phy, phy->monitor_vif, en); mt7915_mcu_add_sta(dev, phy->monitor_vif, NULL, en); if (!en) mt7915_tm_set_tam_arb(phy, en, 0); } static void mt7915_tm_update_channel(struct mt7915_phy *phy) { mutex_unlock(&phy->dev->mt76.mutex); mt7915_set_channel(phy); mutex_lock(&phy->dev->mt76.mutex); mt7915_mcu_set_chan_info(phy, MCU_EXT_CMD(SET_RX_PATH)); } static void mt7915_tm_set_tx_frames(struct mt7915_phy *phy, bool en) { struct mt76_testmode_data *td = &phy->mt76->test; struct mt7915_dev *dev = phy->dev; struct ieee80211_tx_info *info; u8 duty_cycle = td->tx_duty_cycle; u32 tx_time = td->tx_time; u32 ipg = td->tx_ipg; mt7915_tm_set_trx(phy, TM_MAC_RX_RXV, false); mt7915_tm_clean_hwq(phy, dev->mt76.global_wcid.idx); if (en) { mt7915_tm_update_channel(phy); if (td->tx_spe_idx) phy->test.spe_idx = td->tx_spe_idx; else phy->test.spe_idx = mt76_connac_spe_idx(td->tx_antenna_mask); } mt7915_tm_set_tam_arb(phy, en, td->tx_rate_mode == MT76_TM_TX_MODE_HE_MU); /* if all three params are set, duty_cycle will be ignored */ if (duty_cycle && tx_time && !ipg) { ipg = tx_time * 100 / duty_cycle - tx_time; } else if (duty_cycle && !tx_time && ipg) { if (duty_cycle < 100) tx_time = duty_cycle * ipg / (100 - duty_cycle); } mt7915_tm_set_ipg_params(phy, ipg, td->tx_rate_mode); mt7915_tm_set_tx_len(phy, tx_time); if (ipg) td->tx_queued_limit = MT76_TM_TIMEOUT * 1000000 / ipg / 2; if (!en || !td->tx_skb) return; info = IEEE80211_SKB_CB(td->tx_skb); info->control.vif = phy->monitor_vif; mt7915_tm_set_trx(phy, TM_MAC_TX, en); } static void mt7915_tm_set_rx_frames(struct mt7915_phy *phy, bool en) { mt7915_tm_set_trx(phy, TM_MAC_RX_RXV, false); if (en) { struct mt7915_dev *dev = phy->dev; mt7915_tm_update_channel(phy); /* read-clear */ mt76_rr(dev, MT_MIB_SDR3(phy->mt76->band_idx)); mt7915_tm_set_trx(phy, TM_MAC_RX_RXV, en); } } static int mt7915_tm_rf_switch_mode(struct mt7915_dev *dev, u32 oper) { struct mt7915_tm_rf_test req = { .op.op_mode = cpu_to_le32(oper), }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(RF_TEST), &req, sizeof(req), true); } static int mt7915_tm_set_tx_cont(struct mt7915_phy *phy, bool en) { #define TX_CONT_START 0x05 #define TX_CONT_STOP 0x06 struct mt7915_dev *dev = phy->dev; struct cfg80211_chan_def *chandef = &phy->mt76->chandef; int freq1 = ieee80211_frequency_to_channel(chandef->center_freq1); struct mt76_testmode_data *td = &phy->mt76->test; u32 func_idx = en ? TX_CONT_START : TX_CONT_STOP; u8 rate_idx = td->tx_rate_idx, mode; u8 band = phy->mt76->band_idx; u16 rateval; struct mt7915_tm_rf_test req = { .action = 1, .icap_len = 120, .op.rf.func_idx = cpu_to_le32(func_idx), }; struct tm_tx_cont *tx_cont = &req.op.rf.param.tx_cont; tx_cont->control_ch = chandef->chan->hw_value; tx_cont->center_ch = freq1; tx_cont->tx_ant = td->tx_antenna_mask; tx_cont->band = band; switch (chandef->width) { case NL80211_CHAN_WIDTH_40: tx_cont->bw = CMD_CBW_40MHZ; break; case NL80211_CHAN_WIDTH_80: tx_cont->bw = CMD_CBW_80MHZ; break; case NL80211_CHAN_WIDTH_80P80: tx_cont->bw = CMD_CBW_8080MHZ; break; case NL80211_CHAN_WIDTH_160: tx_cont->bw = CMD_CBW_160MHZ; break; case NL80211_CHAN_WIDTH_5: tx_cont->bw = CMD_CBW_5MHZ; break; case NL80211_CHAN_WIDTH_10: tx_cont->bw = CMD_CBW_10MHZ; break; case NL80211_CHAN_WIDTH_20: tx_cont->bw = CMD_CBW_20MHZ; break; case NL80211_CHAN_WIDTH_20_NOHT: tx_cont->bw = CMD_CBW_20MHZ; break; default: return -EINVAL; } if (!en) { req.op.rf.param.func_data = cpu_to_le32(band); goto out; } if (td->tx_rate_mode <= MT76_TM_TX_MODE_OFDM) { struct ieee80211_supported_band *sband; u8 idx = rate_idx; if (chandef->chan->band == NL80211_BAND_5GHZ) sband = &phy->mt76->sband_5g.sband; else if (chandef->chan->band == NL80211_BAND_6GHZ) sband = &phy->mt76->sband_6g.sband; else sband = &phy->mt76->sband_2g.sband; if (td->tx_rate_mode == MT76_TM_TX_MODE_OFDM) idx += 4; rate_idx = sband->bitrates[idx].hw_value & 0xff; } switch (td->tx_rate_mode) { case MT76_TM_TX_MODE_CCK: mode = MT_PHY_TYPE_CCK; break; case MT76_TM_TX_MODE_OFDM: mode = MT_PHY_TYPE_OFDM; break; case MT76_TM_TX_MODE_HT: mode = MT_PHY_TYPE_HT; break; case MT76_TM_TX_MODE_VHT: mode = MT_PHY_TYPE_VHT; break; case MT76_TM_TX_MODE_HE_SU: mode = MT_PHY_TYPE_HE_SU; break; case MT76_TM_TX_MODE_HE_EXT_SU: mode = MT_PHY_TYPE_HE_EXT_SU; break; case MT76_TM_TX_MODE_HE_TB: mode = MT_PHY_TYPE_HE_TB; break; case MT76_TM_TX_MODE_HE_MU: mode = MT_PHY_TYPE_HE_MU; break; default: return -EINVAL; } rateval = mode << 6 | rate_idx; tx_cont->rateval = cpu_to_le16(rateval); out: if (!en) { int ret; ret = mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(RF_TEST), &req, sizeof(req), true); if (ret) return ret; return mt7915_tm_rf_switch_mode(dev, RF_OPER_NORMAL); } mt7915_tm_rf_switch_mode(dev, RF_OPER_RF_TEST); mt7915_tm_update_channel(phy); return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(RF_TEST), &req, sizeof(req), true); } static void mt7915_tm_update_params(struct mt7915_phy *phy, u32 changed) { struct mt76_testmode_data *td = &phy->mt76->test; bool en = phy->mt76->test.state != MT76_TM_STATE_OFF; if (changed & BIT(TM_CHANGED_FREQ_OFFSET)) mt7915_tm_set_freq_offset(phy, en, en ? td->freq_offset : 0); if (changed & BIT(TM_CHANGED_TXPOWER)) mt7915_tm_set_tx_power(phy); } static int mt7915_tm_set_state(struct mt76_phy *mphy, enum mt76_testmode_state state) { struct mt76_testmode_data *td = &mphy->test; struct mt7915_phy *phy = mphy->priv; enum mt76_testmode_state prev_state = td->state; mphy->test.state = state; if (prev_state == MT76_TM_STATE_TX_FRAMES || state == MT76_TM_STATE_TX_FRAMES) mt7915_tm_set_tx_frames(phy, state == MT76_TM_STATE_TX_FRAMES); else if (prev_state == MT76_TM_STATE_RX_FRAMES || state == MT76_TM_STATE_RX_FRAMES) mt7915_tm_set_rx_frames(phy, state == MT76_TM_STATE_RX_FRAMES); else if (prev_state == MT76_TM_STATE_TX_CONT || state == MT76_TM_STATE_TX_CONT) mt7915_tm_set_tx_cont(phy, state == MT76_TM_STATE_TX_CONT); else if (prev_state == MT76_TM_STATE_OFF || state == MT76_TM_STATE_OFF) mt7915_tm_init(phy, !(state == MT76_TM_STATE_OFF)); if ((state == MT76_TM_STATE_IDLE && prev_state == MT76_TM_STATE_OFF) || (state == MT76_TM_STATE_OFF && prev_state == MT76_TM_STATE_IDLE)) { u32 changed = 0; int i; for (i = 0; i < ARRAY_SIZE(tm_change_map); i++) { u16 cur = tm_change_map[i]; if (td->param_set[cur / 32] & BIT(cur % 32)) changed |= BIT(i); } mt7915_tm_update_params(phy, changed); } return 0; } static int mt7915_tm_set_params(struct mt76_phy *mphy, struct nlattr **tb, enum mt76_testmode_state new_state) { struct mt76_testmode_data *td = &mphy->test; struct mt7915_phy *phy = mphy->priv; struct mt7915_dev *dev = phy->dev; u32 chainmask = mphy->chainmask, changed = 0; bool ext_phy = phy != &dev->phy; int i; BUILD_BUG_ON(NUM_TM_CHANGED >= 32); if (new_state == MT76_TM_STATE_OFF || td->state == MT76_TM_STATE_OFF) return 0; chainmask = ext_phy ? chainmask >> dev->chainshift : chainmask; if (td->tx_antenna_mask > chainmask) return -EINVAL; for (i = 0; i < ARRAY_SIZE(tm_change_map); i++) { if (tb[tm_change_map[i]]) changed |= BIT(i); } mt7915_tm_update_params(phy, changed); return 0; } static int mt7915_tm_dump_stats(struct mt76_phy *mphy, struct sk_buff *msg) { struct mt7915_phy *phy = mphy->priv; struct mt7915_dev *dev = phy->dev; enum mt76_rxq_id q; void *rx, *rssi; u16 fcs_err; int i; u32 cnt; rx = nla_nest_start(msg, MT76_TM_STATS_ATTR_LAST_RX); if (!rx) return -ENOMEM; if (nla_put_s32(msg, MT76_TM_RX_ATTR_FREQ_OFFSET, phy->test.last_freq_offset)) return -ENOMEM; rssi = nla_nest_start(msg, MT76_TM_RX_ATTR_RCPI); if (!rssi) return -ENOMEM; for (i = 0; i < ARRAY_SIZE(phy->test.last_rcpi); i++) if (nla_put_u8(msg, i, phy->test.last_rcpi[i])) return -ENOMEM; nla_nest_end(msg, rssi); rssi = nla_nest_start(msg, MT76_TM_RX_ATTR_IB_RSSI); if (!rssi) return -ENOMEM; for (i = 0; i < ARRAY_SIZE(phy->test.last_ib_rssi); i++) if (nla_put_s8(msg, i, phy->test.last_ib_rssi[i])) return -ENOMEM; nla_nest_end(msg, rssi); rssi = nla_nest_start(msg, MT76_TM_RX_ATTR_WB_RSSI); if (!rssi) return -ENOMEM; for (i = 0; i < ARRAY_SIZE(phy->test.last_wb_rssi); i++) if (nla_put_s8(msg, i, phy->test.last_wb_rssi[i])) return -ENOMEM; nla_nest_end(msg, rssi); if (nla_put_u8(msg, MT76_TM_RX_ATTR_SNR, phy->test.last_snr)) return -ENOMEM; nla_nest_end(msg, rx); cnt = mt76_rr(dev, MT_MIB_SDR3(phy->mt76->band_idx)); fcs_err = is_mt7915(&dev->mt76) ? FIELD_GET(MT_MIB_SDR3_FCS_ERR_MASK, cnt) : FIELD_GET(MT_MIB_SDR3_FCS_ERR_MASK_MT7916, cnt); q = phy->mt76->band_idx ? MT_RXQ_BAND1 : MT_RXQ_MAIN; mphy->test.rx_stats.packets[q] += fcs_err; mphy->test.rx_stats.fcs_error[q] += fcs_err; return 0; } const struct mt76_testmode_ops mt7915_testmode_ops = { .set_state = mt7915_tm_set_state, .set_params = mt7915_tm_set_params, .dump_stats = mt7915_tm_dump_stats, };
linux-master
drivers/net/wireless/mediatek/mt76/mt7915/testmode.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2020 MediaTek Inc. */ #include <linux/firmware.h> #include "mt7915.h" #include "eeprom.h" static int mt7915_eeprom_load_precal(struct mt7915_dev *dev) { struct mt76_dev *mdev = &dev->mt76; u8 *eeprom = mdev->eeprom.data; u32 val = eeprom[MT_EE_DO_PRE_CAL]; u32 offs; if (!dev->flash_mode) return 0; if (val != (MT_EE_WIFI_CAL_DPD | MT_EE_WIFI_CAL_GROUP)) return 0; val = MT_EE_CAL_GROUP_SIZE + MT_EE_CAL_DPD_SIZE; dev->cal = devm_kzalloc(mdev->dev, val, GFP_KERNEL); if (!dev->cal) return -ENOMEM; offs = is_mt7915(&dev->mt76) ? MT_EE_PRECAL : MT_EE_PRECAL_V2; return mt76_get_of_eeprom(mdev, dev->cal, offs, val); } static int mt7915_check_eeprom(struct mt7915_dev *dev) { u8 *eeprom = dev->mt76.eeprom.data; u16 val = get_unaligned_le16(eeprom); #define CHECK_EEPROM_ERR(match) (match ? 0 : -EINVAL) switch (val) { case 0x7915: return CHECK_EEPROM_ERR(is_mt7915(&dev->mt76)); case 0x7916: return CHECK_EEPROM_ERR(is_mt7916(&dev->mt76)); case 0x7981: return CHECK_EEPROM_ERR(is_mt7981(&dev->mt76)); case 0x7986: return CHECK_EEPROM_ERR(is_mt7986(&dev->mt76)); default: return -EINVAL; } } static char *mt7915_eeprom_name(struct mt7915_dev *dev) { switch (mt76_chip(&dev->mt76)) { case 0x7915: return dev->dbdc_support ? MT7915_EEPROM_DEFAULT_DBDC : MT7915_EEPROM_DEFAULT; case 0x7981: /* mt7981 only supports mt7976 and only in DBDC mode */ return MT7981_EEPROM_MT7976_DEFAULT_DBDC; case 0x7986: switch (mt7915_check_adie(dev, true)) { case MT7976_ONE_ADIE_DBDC: return MT7986_EEPROM_MT7976_DEFAULT_DBDC; case MT7975_ONE_ADIE: return MT7986_EEPROM_MT7975_DEFAULT; case MT7976_ONE_ADIE: return MT7986_EEPROM_MT7976_DEFAULT; case MT7975_DUAL_ADIE: return MT7986_EEPROM_MT7975_DUAL_DEFAULT; case MT7976_DUAL_ADIE: return MT7986_EEPROM_MT7976_DUAL_DEFAULT; default: break; } return NULL; default: return MT7916_EEPROM_DEFAULT; } } static int mt7915_eeprom_load_default(struct mt7915_dev *dev) { u8 *eeprom = dev->mt76.eeprom.data; const struct firmware *fw = NULL; int ret; ret = request_firmware(&fw, mt7915_eeprom_name(dev), dev->mt76.dev); if (ret) return ret; if (!fw || !fw->data) { dev_err(dev->mt76.dev, "Invalid default bin\n"); ret = -EINVAL; goto out; } memcpy(eeprom, fw->data, mt7915_eeprom_size(dev)); dev->flash_mode = true; out: release_firmware(fw); return ret; } static int mt7915_eeprom_load(struct mt7915_dev *dev) { int ret; u16 eeprom_size = mt7915_eeprom_size(dev); ret = mt76_eeprom_init(&dev->mt76, eeprom_size); if (ret < 0) return ret; if (ret) { dev->flash_mode = true; } else { u8 free_block_num; u32 block_num, i; u32 eeprom_blk_size = MT7915_EEPROM_BLOCK_SIZE; ret = mt7915_mcu_get_eeprom_free_block(dev, &free_block_num); if (ret < 0) return ret; /* efuse info isn't enough */ if (free_block_num >= 29) return -EINVAL; /* read eeprom data from efuse */ block_num = DIV_ROUND_UP(eeprom_size, eeprom_blk_size); for (i = 0; i < block_num; i++) { ret = mt7915_mcu_get_eeprom(dev, i * eeprom_blk_size); if (ret < 0) return ret; } } return mt7915_check_eeprom(dev); } static void mt7915_eeprom_parse_band_config(struct mt7915_phy *phy) { struct mt7915_dev *dev = phy->dev; u8 *eeprom = dev->mt76.eeprom.data; u8 band = phy->mt76->band_idx; u32 val; val = eeprom[MT_EE_WIFI_CONF + band]; val = FIELD_GET(MT_EE_WIFI_CONF0_BAND_SEL, val); if (!is_mt7915(&dev->mt76)) { switch (val) { case MT_EE_V2_BAND_SEL_5GHZ: phy->mt76->cap.has_5ghz = true; return; case MT_EE_V2_BAND_SEL_6GHZ: phy->mt76->cap.has_6ghz = true; return; case MT_EE_V2_BAND_SEL_5GHZ_6GHZ: phy->mt76->cap.has_5ghz = true; phy->mt76->cap.has_6ghz = true; return; default: phy->mt76->cap.has_2ghz = true; return; } } else if (val == MT_EE_BAND_SEL_DEFAULT && dev->dbdc_support) { val = band ? MT_EE_BAND_SEL_5GHZ : MT_EE_BAND_SEL_2GHZ; } switch (val) { case MT_EE_BAND_SEL_5GHZ: phy->mt76->cap.has_5ghz = true; break; case MT_EE_BAND_SEL_2GHZ: phy->mt76->cap.has_2ghz = true; break; default: phy->mt76->cap.has_2ghz = true; phy->mt76->cap.has_5ghz = true; break; } } void mt7915_eeprom_parse_hw_cap(struct mt7915_dev *dev, struct mt7915_phy *phy) { u8 path, nss, nss_max = 4, *eeprom = dev->mt76.eeprom.data; struct mt76_phy *mphy = phy->mt76; u8 band = phy->mt76->band_idx; mt7915_eeprom_parse_band_config(phy); /* read tx/rx path from eeprom */ if (is_mt7915(&dev->mt76)) { path = FIELD_GET(MT_EE_WIFI_CONF0_TX_PATH, eeprom[MT_EE_WIFI_CONF]); } else { path = FIELD_GET(MT_EE_WIFI_CONF0_TX_PATH, eeprom[MT_EE_WIFI_CONF + band]); } if (!path || path > 4) path = 4; /* read tx/rx stream */ nss = path; if (dev->dbdc_support) { if (is_mt7915(&dev->mt76)) { path = min_t(u8, path, 2); nss = FIELD_GET(MT_EE_WIFI_CONF3_TX_PATH_B0, eeprom[MT_EE_WIFI_CONF + 3]); if (band) nss = FIELD_GET(MT_EE_WIFI_CONF3_TX_PATH_B1, eeprom[MT_EE_WIFI_CONF + 3]); } else { nss = FIELD_GET(MT_EE_WIFI_CONF_STREAM_NUM, eeprom[MT_EE_WIFI_CONF + 2 + band]); } if (!is_mt798x(&dev->mt76)) nss_max = 2; } if (!nss) nss = nss_max; nss = min_t(u8, min_t(u8, nss_max, nss), path); mphy->chainmask = BIT(path) - 1; if (band) mphy->chainmask <<= dev->chainshift; mphy->antenna_mask = BIT(nss) - 1; dev->chainmask |= mphy->chainmask; dev->chainshift = hweight8(dev->mphy.chainmask); } int mt7915_eeprom_init(struct mt7915_dev *dev) { int ret; ret = mt7915_eeprom_load(dev); if (ret < 0) { if (ret != -EINVAL) return ret; dev_warn(dev->mt76.dev, "eeprom load fail, use default bin\n"); ret = mt7915_eeprom_load_default(dev); if (ret) return ret; } ret = mt7915_eeprom_load_precal(dev); if (ret) return ret; mt7915_eeprom_parse_hw_cap(dev, &dev->phy); memcpy(dev->mphy.macaddr, dev->mt76.eeprom.data + MT_EE_MAC_ADDR, ETH_ALEN); mt76_eeprom_override(&dev->mphy); return 0; } int mt7915_eeprom_get_target_power(struct mt7915_dev *dev, struct ieee80211_channel *chan, u8 chain_idx) { u8 *eeprom = dev->mt76.eeprom.data; int index, target_power; bool tssi_on, is_7976; if (chain_idx > 3) return -EINVAL; tssi_on = mt7915_tssi_enabled(dev, chan->band); is_7976 = mt7915_check_adie(dev, false) || is_mt7916(&dev->mt76); if (chan->band == NL80211_BAND_2GHZ) { if (is_7976) { index = MT_EE_TX0_POWER_2G_V2 + chain_idx; target_power = eeprom[index]; } else { index = MT_EE_TX0_POWER_2G + chain_idx * 3; target_power = eeprom[index]; if (!tssi_on) target_power += eeprom[index + 1]; } } else if (chan->band == NL80211_BAND_5GHZ) { int group = mt7915_get_channel_group_5g(chan->hw_value, is_7976); if (is_7976) { index = MT_EE_TX0_POWER_5G_V2 + chain_idx * 5; target_power = eeprom[index + group]; } else { index = MT_EE_TX0_POWER_5G + chain_idx * 12; target_power = eeprom[index + group]; if (!tssi_on) target_power += eeprom[index + 8]; } } else { int group = mt7915_get_channel_group_6g(chan->hw_value); index = MT_EE_TX0_POWER_6G_V2 + chain_idx * 8; target_power = is_7976 ? eeprom[index + group] : 0; } return target_power; } s8 mt7915_eeprom_get_power_delta(struct mt7915_dev *dev, int band) { u8 *eeprom = dev->mt76.eeprom.data; u32 val, offs; s8 delta; bool is_7976 = mt7915_check_adie(dev, false) || is_mt7916(&dev->mt76); if (band == NL80211_BAND_2GHZ) offs = is_7976 ? MT_EE_RATE_DELTA_2G_V2 : MT_EE_RATE_DELTA_2G; else if (band == NL80211_BAND_5GHZ) offs = is_7976 ? MT_EE_RATE_DELTA_5G_V2 : MT_EE_RATE_DELTA_5G; else offs = is_7976 ? MT_EE_RATE_DELTA_6G_V2 : 0; val = eeprom[offs]; if (!offs || !(val & MT_EE_RATE_DELTA_EN)) return 0; delta = FIELD_GET(MT_EE_RATE_DELTA_MASK, val); return val & MT_EE_RATE_DELTA_SIGN ? delta : -delta; } const u8 mt7915_sku_group_len[] = { [SKU_CCK] = 4, [SKU_OFDM] = 8, [SKU_HT_BW20] = 8, [SKU_HT_BW40] = 9, [SKU_VHT_BW20] = 12, [SKU_VHT_BW40] = 12, [SKU_VHT_BW80] = 12, [SKU_VHT_BW160] = 12, [SKU_HE_RU26] = 12, [SKU_HE_RU52] = 12, [SKU_HE_RU106] = 12, [SKU_HE_RU242] = 12, [SKU_HE_RU484] = 12, [SKU_HE_RU996] = 12, [SKU_HE_RU2x996] = 12 };
linux-master
drivers/net/wireless/mediatek/mt76/mt7915/eeprom.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2020 MediaTek Inc. */ #include "mt7915.h" #include "../dma.h" #include "mac.h" static int mt7915_init_tx_queues(struct mt7915_phy *phy, int idx, int n_desc, int ring_base) { struct mt7915_dev *dev = phy->dev; if (mtk_wed_device_active(&phy->dev->mt76.mmio.wed)) { if (is_mt798x(&dev->mt76)) ring_base += MT_TXQ_ID(0) * MT_RING_SIZE; else ring_base = MT_WED_TX_RING_BASE; idx -= MT_TXQ_ID(0); } return mt76_connac_init_tx_queues(phy->mt76, idx, n_desc, ring_base, MT_WED_Q_TX(idx)); } static int mt7915_poll_tx(struct napi_struct *napi, int budget) { struct mt7915_dev *dev; dev = container_of(napi, struct mt7915_dev, mt76.tx_napi); mt76_connac_tx_cleanup(&dev->mt76); if (napi_complete_done(napi, 0)) mt7915_irq_enable(dev, MT_INT_TX_DONE_MCU); return 0; } static void mt7915_dma_config(struct mt7915_dev *dev) { #define Q_CONFIG(q, wfdma, int, id) do { \ if (wfdma) \ dev->wfdma_mask |= (1 << (q)); \ dev->q_int_mask[(q)] = int; \ dev->q_id[(q)] = id; \ } while (0) #define MCUQ_CONFIG(q, wfdma, int, id) Q_CONFIG(q, (wfdma), (int), (id)) #define RXQ_CONFIG(q, wfdma, int, id) Q_CONFIG(__RXQ(q), (wfdma), (int), (id)) #define TXQ_CONFIG(q, wfdma, int, id) Q_CONFIG(__TXQ(q), (wfdma), (int), (id)) if (is_mt7915(&dev->mt76)) { RXQ_CONFIG(MT_RXQ_MAIN, WFDMA0, MT_INT_RX_DONE_BAND0, MT7915_RXQ_BAND0); RXQ_CONFIG(MT_RXQ_MCU, WFDMA1, MT_INT_RX_DONE_WM, MT7915_RXQ_MCU_WM); RXQ_CONFIG(MT_RXQ_MCU_WA, WFDMA1, MT_INT_RX_DONE_WA, MT7915_RXQ_MCU_WA); RXQ_CONFIG(MT_RXQ_BAND1, WFDMA0, MT_INT_RX_DONE_BAND1, MT7915_RXQ_BAND1); RXQ_CONFIG(MT_RXQ_BAND1_WA, WFDMA1, MT_INT_RX_DONE_WA_EXT, MT7915_RXQ_MCU_WA_EXT); RXQ_CONFIG(MT_RXQ_MAIN_WA, WFDMA1, MT_INT_RX_DONE_WA_MAIN, MT7915_RXQ_MCU_WA); TXQ_CONFIG(0, WFDMA1, MT_INT_TX_DONE_BAND0, MT7915_TXQ_BAND0); TXQ_CONFIG(1, WFDMA1, MT_INT_TX_DONE_BAND1, MT7915_TXQ_BAND1); MCUQ_CONFIG(MT_MCUQ_WM, WFDMA1, MT_INT_TX_DONE_MCU_WM, MT7915_TXQ_MCU_WM); MCUQ_CONFIG(MT_MCUQ_WA, WFDMA1, MT_INT_TX_DONE_MCU_WA, MT7915_TXQ_MCU_WA); MCUQ_CONFIG(MT_MCUQ_FWDL, WFDMA1, MT_INT_TX_DONE_FWDL, MT7915_TXQ_FWDL); } else { RXQ_CONFIG(MT_RXQ_MCU, WFDMA0, MT_INT_RX_DONE_WM, MT7916_RXQ_MCU_WM); RXQ_CONFIG(MT_RXQ_BAND1_WA, WFDMA0, MT_INT_RX_DONE_WA_EXT_MT7916, MT7916_RXQ_MCU_WA_EXT); MCUQ_CONFIG(MT_MCUQ_WM, WFDMA0, MT_INT_TX_DONE_MCU_WM, MT7915_TXQ_MCU_WM); MCUQ_CONFIG(MT_MCUQ_WA, WFDMA0, MT_INT_TX_DONE_MCU_WA_MT7916, MT7915_TXQ_MCU_WA); MCUQ_CONFIG(MT_MCUQ_FWDL, WFDMA0, MT_INT_TX_DONE_FWDL, MT7915_TXQ_FWDL); if (is_mt7916(&dev->mt76) && mtk_wed_device_active(&dev->mt76.mmio.wed)) { RXQ_CONFIG(MT_RXQ_MAIN, WFDMA0, MT_INT_WED_RX_DONE_BAND0_MT7916, MT7916_RXQ_BAND0); RXQ_CONFIG(MT_RXQ_MCU_WA, WFDMA0, MT_INT_WED_RX_DONE_WA_MT7916, MT7916_RXQ_MCU_WA); if (dev->hif2) RXQ_CONFIG(MT_RXQ_BAND1, WFDMA0, MT_INT_RX_DONE_BAND1_MT7916, MT7916_RXQ_BAND1); else RXQ_CONFIG(MT_RXQ_BAND1, WFDMA0, MT_INT_WED_RX_DONE_BAND1_MT7916, MT7916_RXQ_BAND1); RXQ_CONFIG(MT_RXQ_MAIN_WA, WFDMA0, MT_INT_WED_RX_DONE_WA_MAIN_MT7916, MT7916_RXQ_MCU_WA_MAIN); TXQ_CONFIG(0, WFDMA0, MT_INT_WED_TX_DONE_BAND0, MT7915_TXQ_BAND0); TXQ_CONFIG(1, WFDMA0, MT_INT_WED_TX_DONE_BAND1, MT7915_TXQ_BAND1); } else { RXQ_CONFIG(MT_RXQ_MAIN, WFDMA0, MT_INT_RX_DONE_BAND0_MT7916, MT7916_RXQ_BAND0); RXQ_CONFIG(MT_RXQ_MCU_WA, WFDMA0, MT_INT_RX_DONE_WA, MT7916_RXQ_MCU_WA); RXQ_CONFIG(MT_RXQ_BAND1, WFDMA0, MT_INT_RX_DONE_BAND1_MT7916, MT7916_RXQ_BAND1); RXQ_CONFIG(MT_RXQ_MAIN_WA, WFDMA0, MT_INT_RX_DONE_WA_MAIN_MT7916, MT7916_RXQ_MCU_WA_MAIN); TXQ_CONFIG(0, WFDMA0, MT_INT_TX_DONE_BAND0, MT7915_TXQ_BAND0); TXQ_CONFIG(1, WFDMA0, MT_INT_TX_DONE_BAND1, MT7915_TXQ_BAND1); } } } static void __mt7915_dma_prefetch(struct mt7915_dev *dev, u32 ofs) { #define PREFETCH(_base, _depth) ((_base) << 16 | (_depth)) u32 base = 0; /* prefetch SRAM wrapping boundary for tx/rx ring. */ mt76_wr(dev, MT_MCUQ_EXT_CTRL(MT_MCUQ_FWDL) + ofs, PREFETCH(0x0, 0x4)); mt76_wr(dev, MT_MCUQ_EXT_CTRL(MT_MCUQ_WM) + ofs, PREFETCH(0x40, 0x4)); mt76_wr(dev, MT_TXQ_EXT_CTRL(0) + ofs, PREFETCH(0x80, 0x4)); mt76_wr(dev, MT_TXQ_EXT_CTRL(1) + ofs, PREFETCH(0xc0, 0x4)); mt76_wr(dev, MT_MCUQ_EXT_CTRL(MT_MCUQ_WA) + ofs, PREFETCH(0x100, 0x4)); mt76_wr(dev, MT_RXQ_BAND1_CTRL(MT_RXQ_MCU) + ofs, PREFETCH(0x140, 0x4)); mt76_wr(dev, MT_RXQ_BAND1_CTRL(MT_RXQ_MCU_WA) + ofs, PREFETCH(0x180, 0x4)); if (!is_mt7915(&dev->mt76)) { mt76_wr(dev, MT_RXQ_BAND1_CTRL(MT_RXQ_MAIN_WA) + ofs, PREFETCH(0x1c0, 0x4)); base = 0x40; } mt76_wr(dev, MT_RXQ_BAND1_CTRL(MT_RXQ_BAND1_WA) + ofs, PREFETCH(0x1c0 + base, 0x4)); mt76_wr(dev, MT_RXQ_BAND1_CTRL(MT_RXQ_MAIN) + ofs, PREFETCH(0x200 + base, 0x4)); mt76_wr(dev, MT_RXQ_BAND1_CTRL(MT_RXQ_BAND1) + ofs, PREFETCH(0x240 + base, 0x4)); /* for mt7915, the ring which is next the last * used ring must be initialized. */ if (is_mt7915(&dev->mt76)) { ofs += 0x4; mt76_wr(dev, MT_MCUQ_EXT_CTRL(MT_MCUQ_WA) + ofs, PREFETCH(0x140, 0x0)); mt76_wr(dev, MT_RXQ_BAND1_CTRL(MT_RXQ_BAND1_WA) + ofs, PREFETCH(0x200 + base, 0x0)); mt76_wr(dev, MT_RXQ_BAND1_CTRL(MT_RXQ_BAND1) + ofs, PREFETCH(0x280 + base, 0x0)); } } void mt7915_dma_prefetch(struct mt7915_dev *dev) { __mt7915_dma_prefetch(dev, 0); if (dev->hif2) __mt7915_dma_prefetch(dev, MT_WFDMA0_PCIE1(0) - MT_WFDMA0(0)); } static void mt7915_dma_disable(struct mt7915_dev *dev, bool rst) { struct mt76_dev *mdev = &dev->mt76; u32 hif1_ofs = 0; if (dev->hif2) hif1_ofs = MT_WFDMA0_PCIE1(0) - MT_WFDMA0(0); /* reset */ if (rst) { mt76_clear(dev, MT_WFDMA0_RST, MT_WFDMA0_RST_DMASHDL_ALL_RST | MT_WFDMA0_RST_LOGIC_RST); mt76_set(dev, MT_WFDMA0_RST, MT_WFDMA0_RST_DMASHDL_ALL_RST | MT_WFDMA0_RST_LOGIC_RST); if (is_mt7915(mdev)) { mt76_clear(dev, MT_WFDMA1_RST, MT_WFDMA1_RST_DMASHDL_ALL_RST | MT_WFDMA1_RST_LOGIC_RST); mt76_set(dev, MT_WFDMA1_RST, MT_WFDMA1_RST_DMASHDL_ALL_RST | MT_WFDMA1_RST_LOGIC_RST); } if (dev->hif2) { mt76_clear(dev, MT_WFDMA0_RST + hif1_ofs, MT_WFDMA0_RST_DMASHDL_ALL_RST | MT_WFDMA0_RST_LOGIC_RST); mt76_set(dev, MT_WFDMA0_RST + hif1_ofs, MT_WFDMA0_RST_DMASHDL_ALL_RST | MT_WFDMA0_RST_LOGIC_RST); if (is_mt7915(mdev)) { mt76_clear(dev, MT_WFDMA1_RST + hif1_ofs, MT_WFDMA1_RST_DMASHDL_ALL_RST | MT_WFDMA1_RST_LOGIC_RST); mt76_set(dev, MT_WFDMA1_RST + hif1_ofs, MT_WFDMA1_RST_DMASHDL_ALL_RST | MT_WFDMA1_RST_LOGIC_RST); } } } /* disable */ mt76_clear(dev, MT_WFDMA0_GLO_CFG, MT_WFDMA0_GLO_CFG_TX_DMA_EN | MT_WFDMA0_GLO_CFG_RX_DMA_EN | MT_WFDMA0_GLO_CFG_OMIT_TX_INFO | MT_WFDMA0_GLO_CFG_OMIT_RX_INFO | MT_WFDMA0_GLO_CFG_OMIT_RX_INFO_PFET2); if (is_mt7915(mdev)) mt76_clear(dev, MT_WFDMA1_GLO_CFG, MT_WFDMA1_GLO_CFG_TX_DMA_EN | MT_WFDMA1_GLO_CFG_RX_DMA_EN | MT_WFDMA1_GLO_CFG_OMIT_TX_INFO | MT_WFDMA1_GLO_CFG_OMIT_RX_INFO | MT_WFDMA1_GLO_CFG_OMIT_RX_INFO_PFET2); if (dev->hif2) { mt76_clear(dev, MT_WFDMA0_GLO_CFG + hif1_ofs, MT_WFDMA0_GLO_CFG_TX_DMA_EN | MT_WFDMA0_GLO_CFG_RX_DMA_EN | MT_WFDMA0_GLO_CFG_OMIT_TX_INFO | MT_WFDMA0_GLO_CFG_OMIT_RX_INFO | MT_WFDMA0_GLO_CFG_OMIT_RX_INFO_PFET2); if (is_mt7915(mdev)) mt76_clear(dev, MT_WFDMA1_GLO_CFG + hif1_ofs, MT_WFDMA1_GLO_CFG_TX_DMA_EN | MT_WFDMA1_GLO_CFG_RX_DMA_EN | MT_WFDMA1_GLO_CFG_OMIT_TX_INFO | MT_WFDMA1_GLO_CFG_OMIT_RX_INFO | MT_WFDMA1_GLO_CFG_OMIT_RX_INFO_PFET2); } } int mt7915_dma_start(struct mt7915_dev *dev, bool reset, bool wed_reset) { struct mt76_dev *mdev = &dev->mt76; u32 hif1_ofs = 0; u32 irq_mask; if (dev->hif2) hif1_ofs = MT_WFDMA0_PCIE1(0) - MT_WFDMA0(0); /* enable wpdma tx/rx */ if (!reset) { mt76_set(dev, MT_WFDMA0_GLO_CFG, MT_WFDMA0_GLO_CFG_TX_DMA_EN | MT_WFDMA0_GLO_CFG_RX_DMA_EN | MT_WFDMA0_GLO_CFG_OMIT_TX_INFO | MT_WFDMA0_GLO_CFG_OMIT_RX_INFO_PFET2); if (is_mt7915(mdev)) mt76_set(dev, MT_WFDMA1_GLO_CFG, MT_WFDMA1_GLO_CFG_TX_DMA_EN | MT_WFDMA1_GLO_CFG_RX_DMA_EN | MT_WFDMA1_GLO_CFG_OMIT_TX_INFO | MT_WFDMA1_GLO_CFG_OMIT_RX_INFO); if (dev->hif2) { mt76_set(dev, MT_WFDMA0_GLO_CFG + hif1_ofs, MT_WFDMA0_GLO_CFG_TX_DMA_EN | MT_WFDMA0_GLO_CFG_RX_DMA_EN | MT_WFDMA0_GLO_CFG_OMIT_TX_INFO | MT_WFDMA0_GLO_CFG_OMIT_RX_INFO_PFET2); if (is_mt7915(mdev)) mt76_set(dev, MT_WFDMA1_GLO_CFG + hif1_ofs, MT_WFDMA1_GLO_CFG_TX_DMA_EN | MT_WFDMA1_GLO_CFG_RX_DMA_EN | MT_WFDMA1_GLO_CFG_OMIT_TX_INFO | MT_WFDMA1_GLO_CFG_OMIT_RX_INFO); mt76_set(dev, MT_WFDMA_HOST_CONFIG, MT_WFDMA_HOST_CONFIG_PDMA_BAND); } } /* enable interrupts for TX/RX rings */ irq_mask = MT_INT_RX_DONE_MCU | MT_INT_TX_DONE_MCU | MT_INT_MCU_CMD; if (!dev->phy.mt76->band_idx) irq_mask |= MT_INT_BAND0_RX_DONE; if (dev->dbdc_support || dev->phy.mt76->band_idx) irq_mask |= MT_INT_BAND1_RX_DONE; if (mtk_wed_device_active(&dev->mt76.mmio.wed) && wed_reset) { u32 wed_irq_mask = irq_mask; int ret; wed_irq_mask |= MT_INT_TX_DONE_BAND0 | MT_INT_TX_DONE_BAND1; if (!is_mt798x(&dev->mt76)) mt76_wr(dev, MT_INT_WED_MASK_CSR, wed_irq_mask); else mt76_wr(dev, MT_INT_MASK_CSR, wed_irq_mask); ret = mt7915_mcu_wed_enable_rx_stats(dev); if (ret) return ret; mtk_wed_device_start(&dev->mt76.mmio.wed, wed_irq_mask); } irq_mask = reset ? MT_INT_MCU_CMD : irq_mask; mt7915_irq_enable(dev, irq_mask); mt7915_irq_disable(dev, 0); return 0; } static int mt7915_dma_enable(struct mt7915_dev *dev, bool reset) { struct mt76_dev *mdev = &dev->mt76; u32 hif1_ofs = 0; if (dev->hif2) hif1_ofs = MT_WFDMA0_PCIE1(0) - MT_WFDMA0(0); /* reset dma idx */ mt76_wr(dev, MT_WFDMA0_RST_DTX_PTR, ~0); if (is_mt7915(mdev)) mt76_wr(dev, MT_WFDMA1_RST_DTX_PTR, ~0); if (dev->hif2) { mt76_wr(dev, MT_WFDMA0_RST_DTX_PTR + hif1_ofs, ~0); if (is_mt7915(mdev)) mt76_wr(dev, MT_WFDMA1_RST_DTX_PTR + hif1_ofs, ~0); } /* configure delay interrupt off */ mt76_wr(dev, MT_WFDMA0_PRI_DLY_INT_CFG0, 0); if (is_mt7915(mdev)) { mt76_wr(dev, MT_WFDMA1_PRI_DLY_INT_CFG0, 0); } else { mt76_wr(dev, MT_WFDMA0_PRI_DLY_INT_CFG1, 0); mt76_wr(dev, MT_WFDMA0_PRI_DLY_INT_CFG2, 0); } if (dev->hif2) { mt76_wr(dev, MT_WFDMA0_PRI_DLY_INT_CFG0 + hif1_ofs, 0); if (is_mt7915(mdev)) { mt76_wr(dev, MT_WFDMA1_PRI_DLY_INT_CFG0 + hif1_ofs, 0); } else { mt76_wr(dev, MT_WFDMA0_PRI_DLY_INT_CFG1 + hif1_ofs, 0); mt76_wr(dev, MT_WFDMA0_PRI_DLY_INT_CFG2 + hif1_ofs, 0); } } /* configure perfetch settings */ mt7915_dma_prefetch(dev); /* hif wait WFDMA idle */ mt76_set(dev, MT_WFDMA0_BUSY_ENA, MT_WFDMA0_BUSY_ENA_TX_FIFO0 | MT_WFDMA0_BUSY_ENA_TX_FIFO1 | MT_WFDMA0_BUSY_ENA_RX_FIFO); if (is_mt7915(mdev)) mt76_set(dev, MT_WFDMA1_BUSY_ENA, MT_WFDMA1_BUSY_ENA_TX_FIFO0 | MT_WFDMA1_BUSY_ENA_TX_FIFO1 | MT_WFDMA1_BUSY_ENA_RX_FIFO); if (dev->hif2) { mt76_set(dev, MT_WFDMA0_BUSY_ENA + hif1_ofs, MT_WFDMA0_PCIE1_BUSY_ENA_TX_FIFO0 | MT_WFDMA0_PCIE1_BUSY_ENA_TX_FIFO1 | MT_WFDMA0_PCIE1_BUSY_ENA_RX_FIFO); if (is_mt7915(mdev)) mt76_set(dev, MT_WFDMA1_BUSY_ENA + hif1_ofs, MT_WFDMA1_PCIE1_BUSY_ENA_TX_FIFO0 | MT_WFDMA1_PCIE1_BUSY_ENA_TX_FIFO1 | MT_WFDMA1_PCIE1_BUSY_ENA_RX_FIFO); } mt76_poll(dev, MT_WFDMA_EXT_CSR_HIF_MISC, MT_WFDMA_EXT_CSR_HIF_MISC_BUSY, 0, 1000); return mt7915_dma_start(dev, reset, true); } int mt7915_dma_init(struct mt7915_dev *dev, struct mt7915_phy *phy2) { struct mt76_dev *mdev = &dev->mt76; u32 wa_rx_base, wa_rx_idx; u32 hif1_ofs = 0; int ret; mt7915_dma_config(dev); mt76_dma_attach(&dev->mt76); if (dev->hif2) hif1_ofs = MT_WFDMA0_PCIE1(0) - MT_WFDMA0(0); mt7915_dma_disable(dev, true); if (mtk_wed_device_active(&mdev->mmio.wed)) { if (!is_mt798x(mdev)) { u8 wed_control_rx1 = is_mt7915(mdev) ? 1 : 2; mt76_set(dev, MT_WFDMA_HOST_CONFIG, MT_WFDMA_HOST_CONFIG_WED); mt76_wr(dev, MT_WFDMA_WED_RING_CONTROL, FIELD_PREP(MT_WFDMA_WED_RING_CONTROL_TX0, 18) | FIELD_PREP(MT_WFDMA_WED_RING_CONTROL_TX1, 19) | FIELD_PREP(MT_WFDMA_WED_RING_CONTROL_RX1, wed_control_rx1)); if (is_mt7915(mdev)) mt76_rmw(dev, MT_WFDMA0_EXT0_CFG, MT_WFDMA0_EXT0_RXWB_KEEP, MT_WFDMA0_EXT0_RXWB_KEEP); } } else { mt76_clear(dev, MT_WFDMA_HOST_CONFIG, MT_WFDMA_HOST_CONFIG_WED); } /* init tx queue */ ret = mt7915_init_tx_queues(&dev->phy, MT_TXQ_ID(dev->phy.mt76->band_idx), MT7915_TX_RING_SIZE, MT_TXQ_RING_BASE(0)); if (ret) return ret; if (phy2) { ret = mt7915_init_tx_queues(phy2, MT_TXQ_ID(phy2->mt76->band_idx), MT7915_TX_RING_SIZE, MT_TXQ_RING_BASE(1)); if (ret) return ret; } /* command to WM */ ret = mt76_init_mcu_queue(&dev->mt76, MT_MCUQ_WM, MT_MCUQ_ID(MT_MCUQ_WM), MT7915_TX_MCU_RING_SIZE, MT_MCUQ_RING_BASE(MT_MCUQ_WM)); if (ret) return ret; /* command to WA */ ret = mt76_init_mcu_queue(&dev->mt76, MT_MCUQ_WA, MT_MCUQ_ID(MT_MCUQ_WA), MT7915_TX_MCU_RING_SIZE, MT_MCUQ_RING_BASE(MT_MCUQ_WA)); if (ret) return ret; /* firmware download */ ret = mt76_init_mcu_queue(&dev->mt76, MT_MCUQ_FWDL, MT_MCUQ_ID(MT_MCUQ_FWDL), MT7915_TX_FWDL_RING_SIZE, MT_MCUQ_RING_BASE(MT_MCUQ_FWDL)); if (ret) return ret; /* event from WM */ ret = mt76_queue_alloc(dev, &dev->mt76.q_rx[MT_RXQ_MCU], MT_RXQ_ID(MT_RXQ_MCU), MT7915_RX_MCU_RING_SIZE, MT_RX_BUF_SIZE, MT_RXQ_RING_BASE(MT_RXQ_MCU)); if (ret) return ret; /* event from WA */ if (mtk_wed_device_active(&mdev->mmio.wed) && is_mt7915(mdev)) { wa_rx_base = MT_WED_RX_RING_BASE; wa_rx_idx = MT7915_RXQ_MCU_WA; dev->mt76.q_rx[MT_RXQ_MCU_WA].flags = MT_WED_Q_TXFREE; } else { wa_rx_base = MT_RXQ_RING_BASE(MT_RXQ_MCU_WA); wa_rx_idx = MT_RXQ_ID(MT_RXQ_MCU_WA); } ret = mt76_queue_alloc(dev, &dev->mt76.q_rx[MT_RXQ_MCU_WA], wa_rx_idx, MT7915_RX_MCU_RING_SIZE, MT_RX_BUF_SIZE, wa_rx_base); if (ret) return ret; /* rx data queue for band0 */ if (!dev->phy.mt76->band_idx) { if (mtk_wed_device_active(&mdev->mmio.wed) && mtk_wed_get_rx_capa(&mdev->mmio.wed)) { dev->mt76.q_rx[MT_RXQ_MAIN].flags = MT_WED_Q_RX(MT7915_RXQ_BAND0); dev->mt76.rx_token_size += MT7915_RX_RING_SIZE; } ret = mt76_queue_alloc(dev, &dev->mt76.q_rx[MT_RXQ_MAIN], MT_RXQ_ID(MT_RXQ_MAIN), MT7915_RX_RING_SIZE, MT_RX_BUF_SIZE, MT_RXQ_RING_BASE(MT_RXQ_MAIN)); if (ret) return ret; } /* tx free notify event from WA for band0 */ if (!is_mt7915(mdev)) { wa_rx_base = MT_RXQ_RING_BASE(MT_RXQ_MAIN_WA); wa_rx_idx = MT_RXQ_ID(MT_RXQ_MAIN_WA); if (mtk_wed_device_active(&mdev->mmio.wed)) { mdev->q_rx[MT_RXQ_MAIN_WA].flags = MT_WED_Q_TXFREE; if (is_mt7916(mdev)) { wa_rx_base = MT_WED_RX_RING_BASE; wa_rx_idx = MT7915_RXQ_MCU_WA; } } ret = mt76_queue_alloc(dev, &dev->mt76.q_rx[MT_RXQ_MAIN_WA], wa_rx_idx, MT7915_RX_MCU_RING_SIZE, MT_RX_BUF_SIZE, wa_rx_base); if (ret) return ret; } if (dev->dbdc_support || dev->phy.mt76->band_idx) { if (mtk_wed_device_active(&mdev->mmio.wed) && mtk_wed_get_rx_capa(&mdev->mmio.wed)) { dev->mt76.q_rx[MT_RXQ_BAND1].flags = MT_WED_Q_RX(MT7915_RXQ_BAND1); dev->mt76.rx_token_size += MT7915_RX_RING_SIZE; } /* rx data queue for band1 */ ret = mt76_queue_alloc(dev, &dev->mt76.q_rx[MT_RXQ_BAND1], MT_RXQ_ID(MT_RXQ_BAND1), MT7915_RX_RING_SIZE, MT_RX_BUF_SIZE, MT_RXQ_RING_BASE(MT_RXQ_BAND1) + hif1_ofs); if (ret) return ret; /* tx free notify event from WA for band1 */ ret = mt76_queue_alloc(dev, &dev->mt76.q_rx[MT_RXQ_BAND1_WA], MT_RXQ_ID(MT_RXQ_BAND1_WA), MT7915_RX_MCU_RING_SIZE, MT_RX_BUF_SIZE, MT_RXQ_RING_BASE(MT_RXQ_BAND1_WA) + hif1_ofs); if (ret) return ret; } ret = mt76_init_queues(dev, mt76_dma_rx_poll); if (ret < 0) return ret; netif_napi_add_tx(&dev->mt76.tx_napi_dev, &dev->mt76.tx_napi, mt7915_poll_tx); napi_enable(&dev->mt76.tx_napi); mt7915_dma_enable(dev, false); return 0; } static void mt7915_dma_wed_reset(struct mt7915_dev *dev) { struct mt76_dev *mdev = &dev->mt76; if (!test_bit(MT76_STATE_WED_RESET, &dev->mphy.state)) return; complete(&mdev->mmio.wed_reset); if (!wait_for_completion_timeout(&dev->mt76.mmio.wed_reset_complete, 3 * HZ)) dev_err(dev->mt76.dev, "wed reset complete timeout\n"); } static void mt7915_dma_reset_tx_queue(struct mt7915_dev *dev, struct mt76_queue *q) { mt76_queue_reset(dev, q); if (mtk_wed_device_active(&dev->mt76.mmio.wed)) mt76_dma_wed_setup(&dev->mt76, q, true); } int mt7915_dma_reset(struct mt7915_dev *dev, bool force) { struct mt76_phy *mphy_ext = dev->mt76.phys[MT_BAND1]; struct mtk_wed_device *wed = &dev->mt76.mmio.wed; int i; /* clean up hw queues */ for (i = 0; i < ARRAY_SIZE(dev->mt76.phy.q_tx); i++) { mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[i], true); if (mphy_ext) mt76_queue_tx_cleanup(dev, mphy_ext->q_tx[i], true); } for (i = 0; i < ARRAY_SIZE(dev->mt76.q_mcu); i++) mt76_queue_tx_cleanup(dev, dev->mt76.q_mcu[i], true); mt76_for_each_q_rx(&dev->mt76, i) mt76_queue_rx_cleanup(dev, &dev->mt76.q_rx[i]); /* reset wfsys */ if (force) mt7915_wfsys_reset(dev); if (mtk_wed_device_active(wed)) mtk_wed_device_dma_reset(wed); mt7915_dma_disable(dev, force); mt7915_dma_wed_reset(dev); /* reset hw queues */ for (i = 0; i < __MT_TXQ_MAX; i++) { mt7915_dma_reset_tx_queue(dev, dev->mphy.q_tx[i]); if (mphy_ext) mt7915_dma_reset_tx_queue(dev, mphy_ext->q_tx[i]); } for (i = 0; i < __MT_MCUQ_MAX; i++) mt76_queue_reset(dev, dev->mt76.q_mcu[i]); mt76_for_each_q_rx(&dev->mt76, i) { if (dev->mt76.q_rx[i].flags == MT_WED_Q_TXFREE) continue; mt76_queue_reset(dev, &dev->mt76.q_rx[i]); } mt76_tx_status_check(&dev->mt76, true); mt76_for_each_q_rx(&dev->mt76, i) mt76_queue_rx_reset(dev, i); if (mtk_wed_device_active(wed) && is_mt7915(&dev->mt76)) mt76_rmw(dev, MT_WFDMA0_EXT0_CFG, MT_WFDMA0_EXT0_RXWB_KEEP, MT_WFDMA0_EXT0_RXWB_KEEP); mt7915_dma_enable(dev, !force); return 0; } void mt7915_dma_cleanup(struct mt7915_dev *dev) { mt7915_dma_disable(dev, true); mt76_dma_cleanup(&dev->mt76); }
linux-master
drivers/net/wireless/mediatek/mt76/mt7915/dma.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2020 MediaTek Inc. */ #include <linux/etherdevice.h> #include <linux/platform_device.h> #include <linux/pci.h> #include <linux/module.h> #include "mt7915.h" #include "mcu.h" static bool mt7915_dev_running(struct mt7915_dev *dev) { struct mt7915_phy *phy; if (test_bit(MT76_STATE_RUNNING, &dev->mphy.state)) return true; phy = mt7915_ext_phy(dev); return phy && test_bit(MT76_STATE_RUNNING, &phy->mt76->state); } int mt7915_run(struct ieee80211_hw *hw) { struct mt7915_dev *dev = mt7915_hw_dev(hw); struct mt7915_phy *phy = mt7915_hw_phy(hw); bool running; int ret; running = mt7915_dev_running(dev); if (!running) { ret = mt76_connac_mcu_set_pm(&dev->mt76, dev->phy.mt76->band_idx, 0); if (ret) goto out; ret = mt7915_mcu_set_mac(dev, dev->phy.mt76->band_idx, true, true); if (ret) goto out; mt7915_mac_enable_nf(dev, dev->phy.mt76->band_idx); } if (phy != &dev->phy) { ret = mt76_connac_mcu_set_pm(&dev->mt76, phy->mt76->band_idx, 0); if (ret) goto out; ret = mt7915_mcu_set_mac(dev, phy->mt76->band_idx, true, true); if (ret) goto out; mt7915_mac_enable_nf(dev, phy->mt76->band_idx); } ret = mt7915_mcu_set_thermal_throttling(phy, MT7915_THERMAL_THROTTLE_MAX); if (ret) goto out; ret = mt7915_mcu_set_thermal_protect(phy); if (ret) goto out; ret = mt76_connac_mcu_set_rts_thresh(&dev->mt76, 0x92b, phy->mt76->band_idx); if (ret) goto out; ret = mt7915_mcu_set_sku_en(phy, true); if (ret) goto out; ret = mt7915_mcu_set_chan_info(phy, MCU_EXT_CMD(SET_RX_PATH)); if (ret) goto out; set_bit(MT76_STATE_RUNNING, &phy->mt76->state); if (!mt76_testmode_enabled(phy->mt76)) ieee80211_queue_delayed_work(hw, &phy->mt76->mac_work, MT7915_WATCHDOG_TIME); if (!running) mt7915_mac_reset_counters(phy); out: return ret; } static int mt7915_start(struct ieee80211_hw *hw) { struct mt7915_dev *dev = mt7915_hw_dev(hw); int ret; flush_work(&dev->init_work); mutex_lock(&dev->mt76.mutex); ret = mt7915_run(hw); mutex_unlock(&dev->mt76.mutex); return ret; } static void mt7915_stop(struct ieee80211_hw *hw) { struct mt7915_dev *dev = mt7915_hw_dev(hw); struct mt7915_phy *phy = mt7915_hw_phy(hw); cancel_delayed_work_sync(&phy->mt76->mac_work); mutex_lock(&dev->mt76.mutex); mt76_testmode_reset(phy->mt76, true); clear_bit(MT76_STATE_RUNNING, &phy->mt76->state); if (phy != &dev->phy) { mt76_connac_mcu_set_pm(&dev->mt76, phy->mt76->band_idx, 1); mt7915_mcu_set_mac(dev, phy->mt76->band_idx, false, false); } if (!mt7915_dev_running(dev)) { mt76_connac_mcu_set_pm(&dev->mt76, dev->phy.mt76->band_idx, 1); mt7915_mcu_set_mac(dev, dev->phy.mt76->band_idx, false, false); } mutex_unlock(&dev->mt76.mutex); } static inline int get_free_idx(u32 mask, u8 start, u8 end) { return ffs(~mask & GENMASK(end, start)); } static int get_omac_idx(enum nl80211_iftype type, u64 mask) { int i; switch (type) { case NL80211_IFTYPE_MESH_POINT: case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_STATION: /* prefer hw bssid slot 1-3 */ i = get_free_idx(mask, HW_BSSID_1, HW_BSSID_3); if (i) return i - 1; if (type != NL80211_IFTYPE_STATION) break; i = get_free_idx(mask, EXT_BSSID_1, EXT_BSSID_MAX); if (i) return i - 1; if (~mask & BIT(HW_BSSID_0)) return HW_BSSID_0; break; case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_AP: /* ap uses hw bssid 0 and ext bssid */ if (~mask & BIT(HW_BSSID_0)) return HW_BSSID_0; i = get_free_idx(mask, EXT_BSSID_1, EXT_BSSID_MAX); if (i) return i - 1; break; default: WARN_ON(1); break; } return -1; } static void mt7915_init_bitrate_mask(struct ieee80211_vif *vif) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; int i; for (i = 0; i < ARRAY_SIZE(mvif->bitrate_mask.control); i++) { mvif->bitrate_mask.control[i].gi = NL80211_TXRATE_DEFAULT_GI; mvif->bitrate_mask.control[i].he_gi = 0xff; mvif->bitrate_mask.control[i].he_ltf = 0xff; mvif->bitrate_mask.control[i].legacy = GENMASK(31, 0); memset(mvif->bitrate_mask.control[i].ht_mcs, 0xff, sizeof(mvif->bitrate_mask.control[i].ht_mcs)); memset(mvif->bitrate_mask.control[i].vht_mcs, 0xff, sizeof(mvif->bitrate_mask.control[i].vht_mcs)); memset(mvif->bitrate_mask.control[i].he_mcs, 0xff, sizeof(mvif->bitrate_mask.control[i].he_mcs)); } } static int mt7915_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct mt7915_dev *dev = mt7915_hw_dev(hw); struct mt7915_phy *phy = mt7915_hw_phy(hw); struct mt76_txq *mtxq; bool ext_phy = phy != &dev->phy; int idx, ret = 0; mutex_lock(&dev->mt76.mutex); mt76_testmode_reset(phy->mt76, true); if (vif->type == NL80211_IFTYPE_MONITOR && is_zero_ether_addr(vif->addr)) phy->monitor_vif = vif; mvif->mt76.idx = __ffs64(~dev->mt76.vif_mask); if (mvif->mt76.idx >= (MT7915_MAX_INTERFACES << dev->dbdc_support)) { ret = -ENOSPC; goto out; } idx = get_omac_idx(vif->type, phy->omac_mask); if (idx < 0) { ret = -ENOSPC; goto out; } mvif->mt76.omac_idx = idx; mvif->phy = phy; mvif->mt76.band_idx = phy->mt76->band_idx; mvif->mt76.wmm_idx = vif->type != NL80211_IFTYPE_AP; if (ext_phy) mvif->mt76.wmm_idx += 2; ret = mt7915_mcu_add_dev_info(phy, vif, true); if (ret) goto out; dev->mt76.vif_mask |= BIT_ULL(mvif->mt76.idx); phy->omac_mask |= BIT_ULL(mvif->mt76.omac_idx); idx = MT7915_WTBL_RESERVED - mvif->mt76.idx; INIT_LIST_HEAD(&mvif->sta.rc_list); INIT_LIST_HEAD(&mvif->sta.wcid.poll_list); mvif->sta.wcid.idx = idx; mvif->sta.wcid.phy_idx = ext_phy; mvif->sta.wcid.hw_key_idx = -1; mvif->sta.wcid.tx_info |= MT_WCID_TX_INFO_SET; mt76_packet_id_init(&mvif->sta.wcid); mt7915_mac_wtbl_update(dev, idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); if (vif->txq) { mtxq = (struct mt76_txq *)vif->txq->drv_priv; mtxq->wcid = idx; } if (vif->type != NL80211_IFTYPE_AP && (!mvif->mt76.omac_idx || mvif->mt76.omac_idx > 3)) vif->offload_flags = 0; vif->offload_flags |= IEEE80211_OFFLOAD_ENCAP_4ADDR; mt7915_init_bitrate_mask(vif); memset(&mvif->cap, -1, sizeof(mvif->cap)); mt7915_mcu_add_bss_info(phy, vif, true); mt7915_mcu_add_sta(dev, vif, NULL, true); rcu_assign_pointer(dev->mt76.wcid[idx], &mvif->sta.wcid); out: mutex_unlock(&dev->mt76.mutex); return ret; } static void mt7915_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct mt7915_sta *msta = &mvif->sta; struct mt7915_dev *dev = mt7915_hw_dev(hw); struct mt7915_phy *phy = mt7915_hw_phy(hw); int idx = msta->wcid.idx; mt7915_mcu_add_bss_info(phy, vif, false); mt7915_mcu_add_sta(dev, vif, NULL, false); mutex_lock(&dev->mt76.mutex); mt76_testmode_reset(phy->mt76, true); mutex_unlock(&dev->mt76.mutex); if (vif == phy->monitor_vif) phy->monitor_vif = NULL; mt7915_mcu_add_dev_info(phy, vif, false); rcu_assign_pointer(dev->mt76.wcid[idx], NULL); mutex_lock(&dev->mt76.mutex); dev->mt76.vif_mask &= ~BIT_ULL(mvif->mt76.idx); phy->omac_mask &= ~BIT_ULL(mvif->mt76.omac_idx); mutex_unlock(&dev->mt76.mutex); spin_lock_bh(&dev->mt76.sta_poll_lock); if (!list_empty(&msta->wcid.poll_list)) list_del_init(&msta->wcid.poll_list); spin_unlock_bh(&dev->mt76.sta_poll_lock); mt76_packet_id_flush(&dev->mt76, &msta->wcid); } int mt7915_set_channel(struct mt7915_phy *phy) { struct mt7915_dev *dev = phy->dev; int ret; cancel_delayed_work_sync(&phy->mt76->mac_work); mutex_lock(&dev->mt76.mutex); set_bit(MT76_RESET, &phy->mt76->state); mt76_set_channel(phy->mt76); if (dev->flash_mode) { ret = mt7915_mcu_apply_tx_dpd(phy); if (ret) goto out; } ret = mt7915_mcu_set_chan_info(phy, MCU_EXT_CMD(CHANNEL_SWITCH)); if (ret) goto out; mt7915_mac_set_timing(phy); ret = mt7915_dfs_init_radar_detector(phy); mt7915_mac_cca_stats_reset(phy); mt7915_mac_reset_counters(phy); phy->noise = 0; out: clear_bit(MT76_RESET, &phy->mt76->state); mutex_unlock(&dev->mt76.mutex); mt76_txq_schedule_all(phy->mt76); if (!mt76_testmode_enabled(phy->mt76)) ieee80211_queue_delayed_work(phy->mt76->hw, &phy->mt76->mac_work, MT7915_WATCHDOG_TIME); return ret; } static int mt7915_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { struct mt7915_dev *dev = mt7915_hw_dev(hw); struct mt7915_phy *phy = mt7915_hw_phy(hw); struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct mt7915_sta *msta = sta ? (struct mt7915_sta *)sta->drv_priv : &mvif->sta; struct mt76_wcid *wcid = &msta->wcid; u8 *wcid_keyidx = &wcid->hw_key_idx; int idx = key->keyidx; int err = 0; /* The hardware does not support per-STA RX GTK, fallback * to software mode for these. */ if ((vif->type == NL80211_IFTYPE_ADHOC || vif->type == NL80211_IFTYPE_MESH_POINT) && (key->cipher == WLAN_CIPHER_SUITE_TKIP || key->cipher == WLAN_CIPHER_SUITE_CCMP) && !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) return -EOPNOTSUPP; /* fall back to sw encryption for unsupported ciphers */ switch (key->cipher) { case WLAN_CIPHER_SUITE_AES_CMAC: wcid_keyidx = &wcid->hw_key_idx2; key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIE; break; case WLAN_CIPHER_SUITE_TKIP: case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: case WLAN_CIPHER_SUITE_SMS4: break; case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: default: return -EOPNOTSUPP; } mutex_lock(&dev->mt76.mutex); if (cmd == SET_KEY && !sta && !mvif->mt76.cipher) { mvif->mt76.cipher = mt76_connac_mcu_get_cipher(key->cipher); mt7915_mcu_add_bss_info(phy, vif, true); } if (cmd == SET_KEY) { *wcid_keyidx = idx; } else { if (idx == *wcid_keyidx) *wcid_keyidx = -1; goto out; } mt76_wcid_key_setup(&dev->mt76, wcid, key); err = mt76_connac_mcu_add_key(&dev->mt76, vif, &msta->bip, key, MCU_EXT_CMD(STA_REC_UPDATE), &msta->wcid, cmd); out: mutex_unlock(&dev->mt76.mutex); return err; } static int mt7915_set_sar_specs(struct ieee80211_hw *hw, const struct cfg80211_sar_specs *sar) { struct mt7915_phy *phy = mt7915_hw_phy(hw); struct mt7915_dev *dev = mt7915_hw_dev(hw); int err = -EINVAL; mutex_lock(&dev->mt76.mutex); if (!cfg80211_chandef_valid(&phy->mt76->chandef)) goto out; err = mt76_init_sar_power(hw, sar); if (err) goto out; err = mt7915_mcu_set_txpower_sku(phy); out: mutex_unlock(&dev->mt76.mutex); return err; } static int mt7915_config(struct ieee80211_hw *hw, u32 changed) { struct mt7915_dev *dev = mt7915_hw_dev(hw); struct mt7915_phy *phy = mt7915_hw_phy(hw); int ret; if (changed & IEEE80211_CONF_CHANGE_CHANNEL) { #ifdef CONFIG_NL80211_TESTMODE if (phy->mt76->test.state != MT76_TM_STATE_OFF) { mutex_lock(&dev->mt76.mutex); mt76_testmode_reset(phy->mt76, false); mutex_unlock(&dev->mt76.mutex); } #endif ieee80211_stop_queues(hw); ret = mt7915_set_channel(phy); if (ret) return ret; ieee80211_wake_queues(hw); } if (changed & (IEEE80211_CONF_CHANGE_POWER | IEEE80211_CONF_CHANGE_CHANNEL)) { ret = mt7915_mcu_set_txpower_sku(phy); if (ret) return ret; } mutex_lock(&dev->mt76.mutex); if (changed & IEEE80211_CONF_CHANGE_MONITOR) { bool enabled = !!(hw->conf.flags & IEEE80211_CONF_MONITOR); bool band = phy->mt76->band_idx; if (!enabled) phy->rxfilter |= MT_WF_RFCR_DROP_OTHER_UC; else phy->rxfilter &= ~MT_WF_RFCR_DROP_OTHER_UC; mt76_rmw_field(dev, MT_DMA_DCR0(band), MT_DMA_DCR0_RXD_G5_EN, enabled); mt76_testmode_reset(phy->mt76, true); mt76_wr(dev, MT_WF_RFCR(band), phy->rxfilter); } mutex_unlock(&dev->mt76.mutex); return 0; } static int mt7915_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, unsigned int link_id, u16 queue, const struct ieee80211_tx_queue_params *params) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; /* no need to update right away, we'll get BSS_CHANGED_QOS */ queue = mt76_connac_lmac_mapping(queue); mvif->queue_params[queue] = *params; return 0; } static void mt7915_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags, u64 multicast) { struct mt7915_dev *dev = mt7915_hw_dev(hw); struct mt7915_phy *phy = mt7915_hw_phy(hw); bool band = phy->mt76->band_idx; u32 ctl_flags = MT_WF_RFCR1_DROP_ACK | MT_WF_RFCR1_DROP_BF_POLL | MT_WF_RFCR1_DROP_BA | MT_WF_RFCR1_DROP_CFEND | MT_WF_RFCR1_DROP_CFACK; u32 flags = 0; #define MT76_FILTER(_flag, _hw) do { \ flags |= *total_flags & FIF_##_flag; \ phy->rxfilter &= ~(_hw); \ phy->rxfilter |= !(flags & FIF_##_flag) * (_hw); \ } while (0) mutex_lock(&dev->mt76.mutex); phy->rxfilter &= ~(MT_WF_RFCR_DROP_OTHER_BSS | MT_WF_RFCR_DROP_OTHER_BEACON | MT_WF_RFCR_DROP_FRAME_REPORT | MT_WF_RFCR_DROP_PROBEREQ | MT_WF_RFCR_DROP_MCAST_FILTERED | MT_WF_RFCR_DROP_MCAST | MT_WF_RFCR_DROP_BCAST | MT_WF_RFCR_DROP_DUPLICATE | MT_WF_RFCR_DROP_A2_BSSID | MT_WF_RFCR_DROP_UNWANTED_CTL | MT_WF_RFCR_DROP_STBC_MULTI); MT76_FILTER(OTHER_BSS, MT_WF_RFCR_DROP_OTHER_TIM | MT_WF_RFCR_DROP_A3_MAC | MT_WF_RFCR_DROP_A3_BSSID); MT76_FILTER(FCSFAIL, MT_WF_RFCR_DROP_FCSFAIL); MT76_FILTER(CONTROL, MT_WF_RFCR_DROP_CTS | MT_WF_RFCR_DROP_RTS | MT_WF_RFCR_DROP_CTL_RSV | MT_WF_RFCR_DROP_NDPA); *total_flags = flags; mt76_wr(dev, MT_WF_RFCR(band), phy->rxfilter); if (*total_flags & FIF_CONTROL) mt76_clear(dev, MT_WF_RFCR1(band), ctl_flags); else mt76_set(dev, MT_WF_RFCR1(band), ctl_flags); mutex_unlock(&dev->mt76.mutex); } static void mt7915_update_bss_color(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct cfg80211_he_bss_color *bss_color) { struct mt7915_dev *dev = mt7915_hw_dev(hw); switch (vif->type) { case NL80211_IFTYPE_AP: { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; if (mvif->mt76.omac_idx > HW_BSSID_MAX) return; fallthrough; } case NL80211_IFTYPE_STATION: mt7915_mcu_update_bss_color(dev, vif, bss_color); break; default: break; } } static void mt7915_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *info, u64 changed) { struct mt7915_phy *phy = mt7915_hw_phy(hw); struct mt7915_dev *dev = mt7915_hw_dev(hw); int set_bss_info = -1, set_sta = -1; mutex_lock(&dev->mt76.mutex); /* * station mode uses BSSID to map the wlan entry to a peer, * and then peer references bss_info_rfch to set bandwidth cap. */ if (changed & BSS_CHANGED_BSSID && vif->type == NL80211_IFTYPE_STATION) set_bss_info = set_sta = !is_zero_ether_addr(info->bssid); if (changed & BSS_CHANGED_ASSOC) set_bss_info = vif->cfg.assoc; if (changed & BSS_CHANGED_BEACON_ENABLED && vif->type != NL80211_IFTYPE_AP) set_bss_info = set_sta = info->enable_beacon; if (set_bss_info == 1) mt7915_mcu_add_bss_info(phy, vif, true); if (set_sta == 1) mt7915_mcu_add_sta(dev, vif, NULL, true); if (changed & BSS_CHANGED_ERP_CTS_PROT) mt7915_mac_enable_rtscts(dev, vif, info->use_cts_prot); if (changed & BSS_CHANGED_ERP_SLOT) { int slottime = info->use_short_slot ? 9 : 20; if (slottime != phy->slottime) { phy->slottime = slottime; mt7915_mac_set_timing(phy); } } /* ensure that enable txcmd_mode after bss_info */ if (changed & (BSS_CHANGED_QOS | BSS_CHANGED_BEACON_ENABLED)) mt7915_mcu_set_tx(dev, vif); if (changed & BSS_CHANGED_HE_OBSS_PD) mt7915_mcu_add_obss_spr(phy, vif, &info->he_obss_pd); if (changed & BSS_CHANGED_HE_BSS_COLOR) mt7915_update_bss_color(hw, vif, &info->he_bss_color); if (changed & (BSS_CHANGED_BEACON | BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_UNSOL_BCAST_PROBE_RESP | BSS_CHANGED_FILS_DISCOVERY)) mt7915_mcu_add_beacon(hw, vif, info->enable_beacon, changed); if (set_bss_info == 0) mt7915_mcu_add_bss_info(phy, vif, false); if (set_sta == 0) mt7915_mcu_add_sta(dev, vif, NULL, false); mutex_unlock(&dev->mt76.mutex); } static void mt7915_vif_check_caps(struct mt7915_phy *phy, struct ieee80211_vif *vif) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct mt7915_vif_cap *vc = &mvif->cap; vc->ht_ldpc = vif->bss_conf.ht_ldpc; vc->vht_ldpc = vif->bss_conf.vht_ldpc; vc->vht_su_ebfer = vif->bss_conf.vht_su_beamformer; vc->vht_su_ebfee = vif->bss_conf.vht_su_beamformee; vc->vht_mu_ebfer = vif->bss_conf.vht_mu_beamformer; vc->vht_mu_ebfee = vif->bss_conf.vht_mu_beamformee; vc->he_ldpc = vif->bss_conf.he_ldpc; vc->he_su_ebfer = vif->bss_conf.he_su_beamformer; vc->he_su_ebfee = vif->bss_conf.he_su_beamformee; vc->he_mu_ebfer = vif->bss_conf.he_mu_beamformer; } static int mt7915_start_ap(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *link_conf) { struct mt7915_phy *phy = mt7915_hw_phy(hw); struct mt7915_dev *dev = mt7915_hw_dev(hw); int err; mutex_lock(&dev->mt76.mutex); mt7915_vif_check_caps(phy, vif); err = mt7915_mcu_add_bss_info(phy, vif, true); if (err) goto out; err = mt7915_mcu_add_sta(dev, vif, NULL, true); out: mutex_unlock(&dev->mt76.mutex); return err; } static void mt7915_stop_ap(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *link_conf) { struct mt7915_dev *dev = mt7915_hw_dev(hw); mutex_lock(&dev->mt76.mutex); mt7915_mcu_add_sta(dev, vif, NULL, false); mutex_unlock(&dev->mt76.mutex); } static void mt7915_channel_switch_beacon(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct cfg80211_chan_def *chandef) { struct mt7915_dev *dev = mt7915_hw_dev(hw); mutex_lock(&dev->mt76.mutex); mt7915_mcu_add_beacon(hw, vif, true, BSS_CHANGED_BEACON); mutex_unlock(&dev->mt76.mutex); } int mt7915_mac_sta_add(struct mt76_dev *mdev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7915_dev *dev = container_of(mdev, struct mt7915_dev, mt76); struct mt7915_sta *msta = (struct mt7915_sta *)sta->drv_priv; struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; bool ext_phy = mvif->phy != &dev->phy; int ret, idx; idx = mt76_wcid_alloc(dev->mt76.wcid_mask, MT7915_WTBL_STA); if (idx < 0) return -ENOSPC; INIT_LIST_HEAD(&msta->rc_list); INIT_LIST_HEAD(&msta->wcid.poll_list); msta->vif = mvif; msta->wcid.sta = 1; msta->wcid.idx = idx; msta->wcid.phy_idx = ext_phy; msta->wcid.tx_info |= MT_WCID_TX_INFO_SET; msta->jiffies = jiffies; ewma_avg_signal_init(&msta->avg_ack_signal); mt7915_mac_wtbl_update(dev, idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); ret = mt7915_mcu_add_sta(dev, vif, sta, true); if (ret) return ret; return mt7915_mcu_add_rate_ctrl(dev, vif, sta, false); } void mt7915_mac_sta_remove(struct mt76_dev *mdev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7915_dev *dev = container_of(mdev, struct mt7915_dev, mt76); struct mt7915_sta *msta = (struct mt7915_sta *)sta->drv_priv; int i; mt7915_mcu_add_sta(dev, vif, sta, false); mt7915_mac_wtbl_update(dev, msta->wcid.idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); for (i = 0; i < ARRAY_SIZE(msta->twt.flow); i++) mt7915_mac_twt_teardown_flow(dev, msta, i); spin_lock_bh(&mdev->sta_poll_lock); if (!list_empty(&msta->wcid.poll_list)) list_del_init(&msta->wcid.poll_list); if (!list_empty(&msta->rc_list)) list_del_init(&msta->rc_list); spin_unlock_bh(&mdev->sta_poll_lock); } static void mt7915_tx(struct ieee80211_hw *hw, struct ieee80211_tx_control *control, struct sk_buff *skb) { struct mt7915_dev *dev = mt7915_hw_dev(hw); struct mt76_phy *mphy = hw->priv; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_vif *vif = info->control.vif; struct mt76_wcid *wcid = &dev->mt76.global_wcid; if (control->sta) { struct mt7915_sta *sta; sta = (struct mt7915_sta *)control->sta->drv_priv; wcid = &sta->wcid; } if (vif && !control->sta) { struct mt7915_vif *mvif; mvif = (struct mt7915_vif *)vif->drv_priv; wcid = &mvif->sta.wcid; } mt76_tx(mphy, control->sta, wcid, skb); } static int mt7915_set_rts_threshold(struct ieee80211_hw *hw, u32 val) { struct mt7915_dev *dev = mt7915_hw_dev(hw); struct mt7915_phy *phy = mt7915_hw_phy(hw); int ret; mutex_lock(&dev->mt76.mutex); ret = mt76_connac_mcu_set_rts_thresh(&dev->mt76, val, phy->mt76->band_idx); mutex_unlock(&dev->mt76.mutex); return ret; } static int mt7915_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params) { enum ieee80211_ampdu_mlme_action action = params->action; struct mt7915_dev *dev = mt7915_hw_dev(hw); struct ieee80211_sta *sta = params->sta; struct ieee80211_txq *txq = sta->txq[params->tid]; struct mt7915_sta *msta = (struct mt7915_sta *)sta->drv_priv; u16 tid = params->tid; u16 ssn = params->ssn; struct mt76_txq *mtxq; int ret = 0; if (!txq) return -EINVAL; mtxq = (struct mt76_txq *)txq->drv_priv; mutex_lock(&dev->mt76.mutex); switch (action) { case IEEE80211_AMPDU_RX_START: mt76_rx_aggr_start(&dev->mt76, &msta->wcid, tid, ssn, params->buf_size); ret = mt7915_mcu_add_rx_ba(dev, params, true); break; case IEEE80211_AMPDU_RX_STOP: mt76_rx_aggr_stop(&dev->mt76, &msta->wcid, tid); ret = mt7915_mcu_add_rx_ba(dev, params, false); break; case IEEE80211_AMPDU_TX_OPERATIONAL: mtxq->aggr = true; mtxq->send_bar = false; ret = mt7915_mcu_add_tx_ba(dev, params, true); break; case IEEE80211_AMPDU_TX_STOP_FLUSH: case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: mtxq->aggr = false; clear_bit(tid, &msta->wcid.ampdu_state); ret = mt7915_mcu_add_tx_ba(dev, params, false); break; case IEEE80211_AMPDU_TX_START: set_bit(tid, &msta->wcid.ampdu_state); ret = IEEE80211_AMPDU_TX_START_IMMEDIATE; break; case IEEE80211_AMPDU_TX_STOP_CONT: mtxq->aggr = false; clear_bit(tid, &msta->wcid.ampdu_state); ret = mt7915_mcu_add_tx_ba(dev, params, false); ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid); break; } mutex_unlock(&dev->mt76.mutex); return ret; } static int mt7915_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { return mt76_sta_state(hw, vif, sta, IEEE80211_STA_NOTEXIST, IEEE80211_STA_NONE); } static int mt7915_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { return mt76_sta_state(hw, vif, sta, IEEE80211_STA_NONE, IEEE80211_STA_NOTEXIST); } static int mt7915_get_stats(struct ieee80211_hw *hw, struct ieee80211_low_level_stats *stats) { struct mt7915_phy *phy = mt7915_hw_phy(hw); struct mt7915_dev *dev = mt7915_hw_dev(hw); struct mt76_mib_stats *mib = &phy->mib; mutex_lock(&dev->mt76.mutex); stats->dot11RTSSuccessCount = mib->rts_cnt; stats->dot11RTSFailureCount = mib->rts_retries_cnt; stats->dot11FCSErrorCount = mib->fcs_err_cnt; stats->dot11ACKFailureCount = mib->ack_fail_cnt; mutex_unlock(&dev->mt76.mutex); return 0; } u64 __mt7915_get_tsf(struct ieee80211_hw *hw, struct mt7915_vif *mvif) { struct mt7915_dev *dev = mt7915_hw_dev(hw); struct mt7915_phy *phy = mt7915_hw_phy(hw); bool band = phy->mt76->band_idx; union { u64 t64; u32 t32[2]; } tsf; u16 n; lockdep_assert_held(&dev->mt76.mutex); n = mvif->mt76.omac_idx > HW_BSSID_MAX ? HW_BSSID_0 : mvif->mt76.omac_idx; /* TSF software read */ if (is_mt7915(&dev->mt76)) mt76_rmw(dev, MT_LPON_TCR(band, n), MT_LPON_TCR_SW_MODE, MT_LPON_TCR_SW_READ); else mt76_rmw(dev, MT_LPON_TCR_MT7916(band, n), MT_LPON_TCR_SW_MODE, MT_LPON_TCR_SW_READ); tsf.t32[0] = mt76_rr(dev, MT_LPON_UTTR0(band)); tsf.t32[1] = mt76_rr(dev, MT_LPON_UTTR1(band)); return tsf.t64; } static u64 mt7915_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct mt7915_dev *dev = mt7915_hw_dev(hw); u64 ret; mutex_lock(&dev->mt76.mutex); ret = __mt7915_get_tsf(hw, mvif); mutex_unlock(&dev->mt76.mutex); return ret; } static void mt7915_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 timestamp) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct mt7915_dev *dev = mt7915_hw_dev(hw); struct mt7915_phy *phy = mt7915_hw_phy(hw); bool band = phy->mt76->band_idx; union { u64 t64; u32 t32[2]; } tsf = { .t64 = timestamp, }; u16 n; mutex_lock(&dev->mt76.mutex); n = mvif->mt76.omac_idx > HW_BSSID_MAX ? HW_BSSID_0 : mvif->mt76.omac_idx; mt76_wr(dev, MT_LPON_UTTR0(band), tsf.t32[0]); mt76_wr(dev, MT_LPON_UTTR1(band), tsf.t32[1]); /* TSF software overwrite */ if (is_mt7915(&dev->mt76)) mt76_rmw(dev, MT_LPON_TCR(band, n), MT_LPON_TCR_SW_MODE, MT_LPON_TCR_SW_WRITE); else mt76_rmw(dev, MT_LPON_TCR_MT7916(band, n), MT_LPON_TCR_SW_MODE, MT_LPON_TCR_SW_WRITE); mutex_unlock(&dev->mt76.mutex); } static void mt7915_offset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, s64 timestamp) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct mt7915_dev *dev = mt7915_hw_dev(hw); struct mt7915_phy *phy = mt7915_hw_phy(hw); bool band = phy->mt76->band_idx; union { u64 t64; u32 t32[2]; } tsf = { .t64 = timestamp, }; u16 n; mutex_lock(&dev->mt76.mutex); n = mvif->mt76.omac_idx > HW_BSSID_MAX ? HW_BSSID_0 : mvif->mt76.omac_idx; mt76_wr(dev, MT_LPON_UTTR0(band), tsf.t32[0]); mt76_wr(dev, MT_LPON_UTTR1(band), tsf.t32[1]); /* TSF software adjust*/ if (is_mt7915(&dev->mt76)) mt76_rmw(dev, MT_LPON_TCR(band, n), MT_LPON_TCR_SW_MODE, MT_LPON_TCR_SW_ADJUST); else mt76_rmw(dev, MT_LPON_TCR_MT7916(band, n), MT_LPON_TCR_SW_MODE, MT_LPON_TCR_SW_ADJUST); mutex_unlock(&dev->mt76.mutex); } static void mt7915_set_coverage_class(struct ieee80211_hw *hw, s16 coverage_class) { struct mt7915_phy *phy = mt7915_hw_phy(hw); struct mt7915_dev *dev = phy->dev; mutex_lock(&dev->mt76.mutex); phy->coverage_class = max_t(s16, coverage_class, 0); mt7915_mac_set_timing(phy); mutex_unlock(&dev->mt76.mutex); } static int mt7915_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant) { struct mt7915_dev *dev = mt7915_hw_dev(hw); struct mt7915_phy *phy = mt7915_hw_phy(hw); int max_nss = hweight8(hw->wiphy->available_antennas_tx); u8 chainshift = dev->chainshift; u8 band = phy->mt76->band_idx; if (!tx_ant || tx_ant != rx_ant || ffs(tx_ant) > max_nss) return -EINVAL; mutex_lock(&dev->mt76.mutex); phy->mt76->antenna_mask = tx_ant; /* handle a variant of mt7916 which has 3T3R but nss2 on 5 GHz band */ if (is_mt7916(&dev->mt76) && band && hweight8(tx_ant) == max_nss) phy->mt76->chainmask = (dev->chainmask >> chainshift) << chainshift; else phy->mt76->chainmask = tx_ant << (chainshift * band); mt76_set_stream_caps(phy->mt76, true); mt7915_set_stream_vht_txbf_caps(phy); mt7915_set_stream_he_caps(phy); mutex_unlock(&dev->mt76.mutex); return 0; } static void mt7915_sta_statistics(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct station_info *sinfo) { struct mt7915_phy *phy = mt7915_hw_phy(hw); struct mt7915_sta *msta = (struct mt7915_sta *)sta->drv_priv; struct rate_info *txrate = &msta->wcid.rate; struct rate_info rxrate = {}; if (is_mt7915(&phy->dev->mt76) && !mt7915_mcu_get_rx_rate(phy, vif, sta, &rxrate)) { sinfo->rxrate = rxrate; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE); } if (txrate->legacy || txrate->flags) { if (txrate->legacy) { sinfo->txrate.legacy = txrate->legacy; } else { sinfo->txrate.mcs = txrate->mcs; sinfo->txrate.nss = txrate->nss; sinfo->txrate.bw = txrate->bw; sinfo->txrate.he_gi = txrate->he_gi; sinfo->txrate.he_dcm = txrate->he_dcm; sinfo->txrate.he_ru_alloc = txrate->he_ru_alloc; } sinfo->txrate.flags = txrate->flags; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); } /* offloading flows bypass networking stack, so driver counts and * reports sta statistics via NL80211_STA_INFO when WED is active. */ if (mtk_wed_device_active(&phy->dev->mt76.mmio.wed)) { sinfo->tx_bytes = msta->wcid.stats.tx_bytes; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64); if (!mt7915_mcu_wed_wa_tx_stats(phy->dev, msta->wcid.idx)) { sinfo->tx_packets = msta->wcid.stats.tx_packets; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS); } if (mtk_wed_get_rx_capa(&phy->dev->mt76.mmio.wed)) { sinfo->rx_bytes = msta->wcid.stats.rx_bytes; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64); sinfo->rx_packets = msta->wcid.stats.rx_packets; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS); } } sinfo->tx_failed = msta->wcid.stats.tx_failed; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED); sinfo->tx_retries = msta->wcid.stats.tx_retries; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES); sinfo->ack_signal = (s8)msta->ack_signal; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL); sinfo->avg_ack_signal = -(s8)ewma_avg_signal_read(&msta->avg_ack_signal); sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG); } static void mt7915_sta_rc_work(void *data, struct ieee80211_sta *sta) { struct mt7915_sta *msta = (struct mt7915_sta *)sta->drv_priv; struct mt7915_dev *dev = msta->vif->phy->dev; u32 *changed = data; spin_lock_bh(&dev->mt76.sta_poll_lock); msta->changed |= *changed; if (list_empty(&msta->rc_list)) list_add_tail(&msta->rc_list, &dev->sta_rc_list); spin_unlock_bh(&dev->mt76.sta_poll_lock); } static void mt7915_sta_rc_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, u32 changed) { struct mt7915_phy *phy = mt7915_hw_phy(hw); struct mt7915_dev *dev = phy->dev; mt7915_sta_rc_work(&changed, sta); ieee80211_queue_work(hw, &dev->rc_work); } static int mt7915_set_bitrate_mask(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const struct cfg80211_bitrate_mask *mask) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct mt7915_phy *phy = mt7915_hw_phy(hw); struct mt7915_dev *dev = phy->dev; u32 changed = IEEE80211_RC_SUPP_RATES_CHANGED; mvif->bitrate_mask = *mask; /* if multiple rates across different preambles are given we can * reconfigure this info with all peers using sta_rec command with * the below exception cases. * - single rate : if a rate is passed along with different preambles, * we select the highest one as fixed rate. i.e VHT MCS for VHT peers. * - multiple rates: if it's not in range format i.e 0-{7,8,9} for VHT * then multiple MCS setting (MCS 4,5,6) is not supported. */ ieee80211_iterate_stations_atomic(hw, mt7915_sta_rc_work, &changed); ieee80211_queue_work(hw, &dev->rc_work); return 0; } static void mt7915_sta_set_4addr(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, bool enabled) { struct mt7915_dev *dev = mt7915_hw_dev(hw); struct mt7915_sta *msta = (struct mt7915_sta *)sta->drv_priv; if (enabled) set_bit(MT_WCID_FLAG_4ADDR, &msta->wcid.flags); else clear_bit(MT_WCID_FLAG_4ADDR, &msta->wcid.flags); mt76_connac_mcu_wtbl_update_hdr_trans(&dev->mt76, vif, sta); } static void mt7915_sta_set_decap_offload(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, bool enabled) { struct mt7915_dev *dev = mt7915_hw_dev(hw); struct mt7915_sta *msta = (struct mt7915_sta *)sta->drv_priv; if (enabled) set_bit(MT_WCID_FLAG_HDR_TRANS, &msta->wcid.flags); else clear_bit(MT_WCID_FLAG_HDR_TRANS, &msta->wcid.flags); mt76_connac_mcu_wtbl_update_hdr_trans(&dev->mt76, vif, sta); } static int mt7915_sta_set_txpwr(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7915_phy *phy = mt7915_hw_phy(hw); struct mt7915_dev *dev = mt7915_hw_dev(hw); s16 txpower = sta->deflink.txpwr.power; int ret; if (sta->deflink.txpwr.type == NL80211_TX_POWER_AUTOMATIC) txpower = 0; mutex_lock(&dev->mt76.mutex); /* NOTE: temporarily use 0 as minimum limit, which is a * global setting and will be applied to all stations. */ ret = mt7915_mcu_set_txpower_frame_min(phy, 0); if (ret) goto out; /* This only applies to data frames while pushing traffic, * whereas the management frames or other packets that are * using fixed rate can be configured via TxD. */ ret = mt7915_mcu_set_txpower_frame(phy, vif, sta, txpower); out: mutex_unlock(&dev->mt76.mutex); return ret; } static const char mt7915_gstrings_stats[][ETH_GSTRING_LEN] = { "tx_ampdu_cnt", "tx_stop_q_empty_cnt", "tx_mpdu_attempts", "tx_mpdu_success", "tx_rwp_fail_cnt", "tx_rwp_need_cnt", "tx_pkt_ebf_cnt", "tx_pkt_ibf_cnt", "tx_ampdu_len:0-1", "tx_ampdu_len:2-10", "tx_ampdu_len:11-19", "tx_ampdu_len:20-28", "tx_ampdu_len:29-37", "tx_ampdu_len:38-46", "tx_ampdu_len:47-55", "tx_ampdu_len:56-79", "tx_ampdu_len:80-103", "tx_ampdu_len:104-127", "tx_ampdu_len:128-151", "tx_ampdu_len:152-175", "tx_ampdu_len:176-199", "tx_ampdu_len:200-223", "tx_ampdu_len:224-247", "ba_miss_count", "tx_beamformer_ppdu_iBF", "tx_beamformer_ppdu_eBF", "tx_beamformer_rx_feedback_all", "tx_beamformer_rx_feedback_he", "tx_beamformer_rx_feedback_vht", "tx_beamformer_rx_feedback_ht", "tx_beamformer_rx_feedback_bw", /* zero based idx: 20, 40, 80, 160 */ "tx_beamformer_rx_feedback_nc", "tx_beamformer_rx_feedback_nr", "tx_beamformee_ok_feedback_pkts", "tx_beamformee_feedback_trig", "tx_mu_beamforming", "tx_mu_mpdu", "tx_mu_successful_mpdu", "tx_su_successful_mpdu", "tx_msdu_pack_1", "tx_msdu_pack_2", "tx_msdu_pack_3", "tx_msdu_pack_4", "tx_msdu_pack_5", "tx_msdu_pack_6", "tx_msdu_pack_7", "tx_msdu_pack_8", /* rx counters */ "rx_fifo_full_cnt", "rx_mpdu_cnt", "channel_idle_cnt", "primary_cca_busy_time", "secondary_cca_busy_time", "primary_energy_detect_time", "cck_mdrdy_time", "ofdm_mdrdy_time", "green_mdrdy_time", "rx_vector_mismatch_cnt", "rx_delimiter_fail_cnt", "rx_mrdy_cnt", "rx_len_mismatch_cnt", "rx_ampdu_cnt", "rx_ampdu_bytes_cnt", "rx_ampdu_valid_subframe_cnt", "rx_ampdu_valid_subframe_b_cnt", "rx_pfdrop_cnt", "rx_vec_queue_overflow_drop_cnt", "rx_ba_cnt", /* muru mu-mimo and ofdma related stats */ "dl_cck_cnt", "dl_ofdm_cnt", "dl_htmix_cnt", "dl_htgf_cnt", "dl_vht_su_cnt", "dl_vht_2mu_cnt", "dl_vht_3mu_cnt", "dl_vht_4mu_cnt", "dl_he_su_cnt", "dl_he_ext_su_cnt", "dl_he_2ru_cnt", "dl_he_2mu_cnt", "dl_he_3ru_cnt", "dl_he_3mu_cnt", "dl_he_4ru_cnt", "dl_he_4mu_cnt", "dl_he_5to8ru_cnt", "dl_he_9to16ru_cnt", "dl_he_gtr16ru_cnt", "ul_hetrig_su_cnt", "ul_hetrig_2ru_cnt", "ul_hetrig_3ru_cnt", "ul_hetrig_4ru_cnt", "ul_hetrig_5to8ru_cnt", "ul_hetrig_9to16ru_cnt", "ul_hetrig_gtr16ru_cnt", "ul_hetrig_2mu_cnt", "ul_hetrig_3mu_cnt", "ul_hetrig_4mu_cnt", /* per vif counters */ "v_tx_mode_cck", "v_tx_mode_ofdm", "v_tx_mode_ht", "v_tx_mode_ht_gf", "v_tx_mode_vht", "v_tx_mode_he_su", "v_tx_mode_he_ext_su", "v_tx_mode_he_tb", "v_tx_mode_he_mu", "v_tx_bw_20", "v_tx_bw_40", "v_tx_bw_80", "v_tx_bw_160", "v_tx_mcs_0", "v_tx_mcs_1", "v_tx_mcs_2", "v_tx_mcs_3", "v_tx_mcs_4", "v_tx_mcs_5", "v_tx_mcs_6", "v_tx_mcs_7", "v_tx_mcs_8", "v_tx_mcs_9", "v_tx_mcs_10", "v_tx_mcs_11", "v_tx_nss_1", "v_tx_nss_2", "v_tx_nss_3", "v_tx_nss_4", }; #define MT7915_SSTATS_LEN ARRAY_SIZE(mt7915_gstrings_stats) /* Ethtool related API */ static void mt7915_get_et_strings(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u32 sset, u8 *data) { if (sset != ETH_SS_STATS) return; memcpy(data, *mt7915_gstrings_stats, sizeof(mt7915_gstrings_stats)); data += sizeof(mt7915_gstrings_stats); page_pool_ethtool_stats_get_strings(data); } static int mt7915_get_et_sset_count(struct ieee80211_hw *hw, struct ieee80211_vif *vif, int sset) { if (sset != ETH_SS_STATS) return 0; return MT7915_SSTATS_LEN + page_pool_ethtool_stats_get_count(); } static void mt7915_ethtool_worker(void *wi_data, struct ieee80211_sta *sta) { struct mt76_ethtool_worker_info *wi = wi_data; struct mt7915_sta *msta = (struct mt7915_sta *)sta->drv_priv; if (msta->vif->mt76.idx != wi->idx) return; mt76_ethtool_worker(wi, &msta->wcid.stats, false); } static void mt7915_get_et_stats(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ethtool_stats *stats, u64 *data) { struct mt7915_dev *dev = mt7915_hw_dev(hw); struct mt7915_phy *phy = mt7915_hw_phy(hw); struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct mt76_mib_stats *mib = &phy->mib; struct mt76_ethtool_worker_info wi = { .data = data, .idx = mvif->mt76.idx, }; /* See mt7915_ampdu_stat_read_phy, etc */ int i, ei = 0, stats_size; mutex_lock(&dev->mt76.mutex); mt7915_mac_update_stats(phy); data[ei++] = mib->tx_ampdu_cnt; data[ei++] = mib->tx_stop_q_empty_cnt; data[ei++] = mib->tx_mpdu_attempts_cnt; data[ei++] = mib->tx_mpdu_success_cnt; data[ei++] = mib->tx_rwp_fail_cnt; data[ei++] = mib->tx_rwp_need_cnt; data[ei++] = mib->tx_pkt_ebf_cnt; data[ei++] = mib->tx_pkt_ibf_cnt; /* Tx ampdu stat */ for (i = 0; i < 15 /*ARRAY_SIZE(bound)*/; i++) data[ei++] = phy->mt76->aggr_stats[i]; data[ei++] = phy->mib.ba_miss_cnt; /* Tx Beamformer monitor */ data[ei++] = mib->tx_bf_ibf_ppdu_cnt; data[ei++] = mib->tx_bf_ebf_ppdu_cnt; /* Tx Beamformer Rx feedback monitor */ data[ei++] = mib->tx_bf_rx_fb_all_cnt; data[ei++] = mib->tx_bf_rx_fb_he_cnt; data[ei++] = mib->tx_bf_rx_fb_vht_cnt; data[ei++] = mib->tx_bf_rx_fb_ht_cnt; data[ei++] = mib->tx_bf_rx_fb_bw; data[ei++] = mib->tx_bf_rx_fb_nc_cnt; data[ei++] = mib->tx_bf_rx_fb_nr_cnt; /* Tx Beamformee Rx NDPA & Tx feedback report */ data[ei++] = mib->tx_bf_fb_cpl_cnt; data[ei++] = mib->tx_bf_fb_trig_cnt; /* Tx SU & MU counters */ data[ei++] = mib->tx_bf_cnt; data[ei++] = mib->tx_mu_mpdu_cnt; data[ei++] = mib->tx_mu_acked_mpdu_cnt; data[ei++] = mib->tx_su_acked_mpdu_cnt; /* Tx amsdu info (pack-count histogram) */ for (i = 0; i < ARRAY_SIZE(mib->tx_amsdu); i++) data[ei++] = mib->tx_amsdu[i]; /* rx counters */ data[ei++] = mib->rx_fifo_full_cnt; data[ei++] = mib->rx_mpdu_cnt; data[ei++] = mib->channel_idle_cnt; data[ei++] = mib->primary_cca_busy_time; data[ei++] = mib->secondary_cca_busy_time; data[ei++] = mib->primary_energy_detect_time; data[ei++] = mib->cck_mdrdy_time; data[ei++] = mib->ofdm_mdrdy_time; data[ei++] = mib->green_mdrdy_time; data[ei++] = mib->rx_vector_mismatch_cnt; data[ei++] = mib->rx_delimiter_fail_cnt; data[ei++] = mib->rx_mrdy_cnt; data[ei++] = mib->rx_len_mismatch_cnt; data[ei++] = mib->rx_ampdu_cnt; data[ei++] = mib->rx_ampdu_bytes_cnt; data[ei++] = mib->rx_ampdu_valid_subframe_cnt; data[ei++] = mib->rx_ampdu_valid_subframe_bytes_cnt; data[ei++] = mib->rx_pfdrop_cnt; data[ei++] = mib->rx_vec_queue_overflow_drop_cnt; data[ei++] = mib->rx_ba_cnt; data[ei++] = mib->dl_cck_cnt; data[ei++] = mib->dl_ofdm_cnt; data[ei++] = mib->dl_htmix_cnt; data[ei++] = mib->dl_htgf_cnt; data[ei++] = mib->dl_vht_su_cnt; data[ei++] = mib->dl_vht_2mu_cnt; data[ei++] = mib->dl_vht_3mu_cnt; data[ei++] = mib->dl_vht_4mu_cnt; data[ei++] = mib->dl_he_su_cnt; data[ei++] = mib->dl_he_ext_su_cnt; data[ei++] = mib->dl_he_2ru_cnt; data[ei++] = mib->dl_he_2mu_cnt; data[ei++] = mib->dl_he_3ru_cnt; data[ei++] = mib->dl_he_3mu_cnt; data[ei++] = mib->dl_he_4ru_cnt; data[ei++] = mib->dl_he_4mu_cnt; data[ei++] = mib->dl_he_5to8ru_cnt; data[ei++] = mib->dl_he_9to16ru_cnt; data[ei++] = mib->dl_he_gtr16ru_cnt; data[ei++] = mib->ul_hetrig_su_cnt; data[ei++] = mib->ul_hetrig_2ru_cnt; data[ei++] = mib->ul_hetrig_3ru_cnt; data[ei++] = mib->ul_hetrig_4ru_cnt; data[ei++] = mib->ul_hetrig_5to8ru_cnt; data[ei++] = mib->ul_hetrig_9to16ru_cnt; data[ei++] = mib->ul_hetrig_gtr16ru_cnt; data[ei++] = mib->ul_hetrig_2mu_cnt; data[ei++] = mib->ul_hetrig_3mu_cnt; data[ei++] = mib->ul_hetrig_4mu_cnt; /* Add values for all stations owned by this vif */ wi.initial_stat_idx = ei; ieee80211_iterate_stations_atomic(hw, mt7915_ethtool_worker, &wi); mutex_unlock(&dev->mt76.mutex); if (wi.sta_count == 0) return; ei += wi.worker_stat_count; mt76_ethtool_page_pool_stats(&dev->mt76, &data[ei], &ei); stats_size = MT7915_SSTATS_LEN + page_pool_ethtool_stats_get_count(); if (ei != stats_size) dev_err(dev->mt76.dev, "ei: %d size: %d", ei, stats_size); } static void mt7915_twt_teardown_request(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u8 flowid) { struct mt7915_sta *msta = (struct mt7915_sta *)sta->drv_priv; struct mt7915_dev *dev = mt7915_hw_dev(hw); mutex_lock(&dev->mt76.mutex); mt7915_mac_twt_teardown_flow(dev, msta, flowid); mutex_unlock(&dev->mt76.mutex); } static int mt7915_set_radar_background(struct ieee80211_hw *hw, struct cfg80211_chan_def *chandef) { struct mt7915_phy *phy = mt7915_hw_phy(hw); struct mt7915_dev *dev = phy->dev; int ret = -EINVAL; bool running; mutex_lock(&dev->mt76.mutex); if (dev->mt76.region == NL80211_DFS_UNSET) goto out; if (dev->rdd2_phy && dev->rdd2_phy != phy) { /* rdd2 is already locked */ ret = -EBUSY; goto out; } /* rdd2 already configured on a radar channel */ running = dev->rdd2_phy && cfg80211_chandef_valid(&dev->rdd2_chandef) && !!(dev->rdd2_chandef.chan->flags & IEEE80211_CHAN_RADAR); if (!chandef || running || !(chandef->chan->flags & IEEE80211_CHAN_RADAR)) { ret = mt7915_mcu_rdd_background_enable(phy, NULL); if (ret) goto out; if (!running) goto update_phy; } ret = mt7915_mcu_rdd_background_enable(phy, chandef); if (ret) goto out; update_phy: dev->rdd2_phy = chandef ? phy : NULL; if (chandef) dev->rdd2_chandef = *chandef; out: mutex_unlock(&dev->mt76.mutex); return ret; } #ifdef CONFIG_NET_MEDIATEK_SOC_WED static int mt7915_net_fill_forward_path(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct net_device_path_ctx *ctx, struct net_device_path *path) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct mt7915_sta *msta = (struct mt7915_sta *)sta->drv_priv; struct mt7915_dev *dev = mt7915_hw_dev(hw); struct mt7915_phy *phy = mt7915_hw_phy(hw); struct mtk_wed_device *wed = &dev->mt76.mmio.wed; if (!mtk_wed_device_active(wed)) return -ENODEV; if (msta->wcid.idx > 0xff) return -EIO; path->type = DEV_PATH_MTK_WDMA; path->dev = ctx->dev; path->mtk_wdma.wdma_idx = wed->wdma_idx; path->mtk_wdma.bss = mvif->mt76.idx; path->mtk_wdma.wcid = is_mt7915(&dev->mt76) ? msta->wcid.idx : 0x3ff; path->mtk_wdma.queue = phy != &dev->phy; ctx->dev = NULL; return 0; } #endif const struct ieee80211_ops mt7915_ops = { .tx = mt7915_tx, .start = mt7915_start, .stop = mt7915_stop, .add_interface = mt7915_add_interface, .remove_interface = mt7915_remove_interface, .config = mt7915_config, .conf_tx = mt7915_conf_tx, .configure_filter = mt7915_configure_filter, .bss_info_changed = mt7915_bss_info_changed, .start_ap = mt7915_start_ap, .stop_ap = mt7915_stop_ap, .sta_add = mt7915_sta_add, .sta_remove = mt7915_sta_remove, .sta_pre_rcu_remove = mt76_sta_pre_rcu_remove, .sta_rc_update = mt7915_sta_rc_update, .set_key = mt7915_set_key, .ampdu_action = mt7915_ampdu_action, .set_rts_threshold = mt7915_set_rts_threshold, .wake_tx_queue = mt76_wake_tx_queue, .sw_scan_start = mt76_sw_scan, .sw_scan_complete = mt76_sw_scan_complete, .release_buffered_frames = mt76_release_buffered_frames, .get_txpower = mt76_get_txpower, .set_sar_specs = mt7915_set_sar_specs, .channel_switch_beacon = mt7915_channel_switch_beacon, .get_stats = mt7915_get_stats, .get_et_sset_count = mt7915_get_et_sset_count, .get_et_stats = mt7915_get_et_stats, .get_et_strings = mt7915_get_et_strings, .get_tsf = mt7915_get_tsf, .set_tsf = mt7915_set_tsf, .offset_tsf = mt7915_offset_tsf, .get_survey = mt76_get_survey, .get_antenna = mt76_get_antenna, .set_antenna = mt7915_set_antenna, .set_bitrate_mask = mt7915_set_bitrate_mask, .set_coverage_class = mt7915_set_coverage_class, .sta_statistics = mt7915_sta_statistics, .sta_set_txpwr = mt7915_sta_set_txpwr, .sta_set_4addr = mt7915_sta_set_4addr, .sta_set_decap_offload = mt7915_sta_set_decap_offload, .add_twt_setup = mt7915_mac_add_twt_setup, .twt_teardown_request = mt7915_twt_teardown_request, CFG80211_TESTMODE_CMD(mt76_testmode_cmd) CFG80211_TESTMODE_DUMP(mt76_testmode_dump) #ifdef CONFIG_MAC80211_DEBUGFS .sta_add_debugfs = mt7915_sta_add_debugfs, #endif .set_radar_background = mt7915_set_radar_background, #ifdef CONFIG_NET_MEDIATEK_SOC_WED .net_fill_forward_path = mt7915_net_fill_forward_path, #endif };
linux-master
drivers/net/wireless/mediatek/mt76/mt7915/main.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2020 MediaTek Inc. */ #include <linux/fs.h> #include "mt7915.h" #include "mcu.h" #include "mac.h" #include "eeprom.h" #define fw_name(_dev, name, ...) ({ \ char *_fw; \ switch (mt76_chip(&(_dev)->mt76)) { \ case 0x7915: \ _fw = MT7915_##name; \ break; \ case 0x7981: \ _fw = MT7981_##name; \ break; \ case 0x7986: \ _fw = MT7986_##name##__VA_ARGS__; \ break; \ default: \ _fw = MT7916_##name; \ break; \ } \ _fw; \ }) #define fw_name_var(_dev, name) (mt7915_check_adie(dev, false) ? \ fw_name(_dev, name) : \ fw_name(_dev, name, _MT7975)) #define MCU_PATCH_ADDRESS 0x200000 #define HE_PHY(p, c) u8_get_bits(c, IEEE80211_HE_PHY_##p) #define HE_MAC(m, c) u8_get_bits(c, IEEE80211_HE_MAC_##m) static bool sr_scene_detect = true; module_param(sr_scene_detect, bool, 0644); MODULE_PARM_DESC(sr_scene_detect, "Enable firmware scene detection algorithm"); static u8 mt7915_mcu_get_sta_nss(u16 mcs_map) { u8 nss; for (nss = 8; nss > 0; nss--) { u8 nss_mcs = (mcs_map >> (2 * (nss - 1))) & 3; if (nss_mcs != IEEE80211_VHT_MCS_NOT_SUPPORTED) break; } return nss - 1; } static void mt7915_mcu_set_sta_he_mcs(struct ieee80211_sta *sta, __le16 *he_mcs, u16 mcs_map) { struct mt7915_sta *msta = (struct mt7915_sta *)sta->drv_priv; struct mt7915_dev *dev = msta->vif->phy->dev; enum nl80211_band band = msta->vif->phy->mt76->chandef.chan->band; const u16 *mask = msta->vif->bitrate_mask.control[band].he_mcs; int nss, max_nss = sta->deflink.rx_nss > 3 ? 4 : sta->deflink.rx_nss; for (nss = 0; nss < max_nss; nss++) { int mcs; switch ((mcs_map >> (2 * nss)) & 0x3) { case IEEE80211_HE_MCS_SUPPORT_0_11: mcs = GENMASK(11, 0); break; case IEEE80211_HE_MCS_SUPPORT_0_9: mcs = GENMASK(9, 0); break; case IEEE80211_HE_MCS_SUPPORT_0_7: mcs = GENMASK(7, 0); break; default: mcs = 0; } mcs = mcs ? fls(mcs & mask[nss]) - 1 : -1; switch (mcs) { case 0 ... 7: mcs = IEEE80211_HE_MCS_SUPPORT_0_7; break; case 8 ... 9: mcs = IEEE80211_HE_MCS_SUPPORT_0_9; break; case 10 ... 11: mcs = IEEE80211_HE_MCS_SUPPORT_0_11; break; default: mcs = IEEE80211_HE_MCS_NOT_SUPPORTED; break; } mcs_map &= ~(0x3 << (nss * 2)); mcs_map |= mcs << (nss * 2); /* only support 2ss on 160MHz for mt7915 */ if (is_mt7915(&dev->mt76) && nss > 1 && sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) break; } *he_mcs = cpu_to_le16(mcs_map); } static void mt7915_mcu_set_sta_vht_mcs(struct ieee80211_sta *sta, __le16 *vht_mcs, const u16 *mask) { struct mt7915_sta *msta = (struct mt7915_sta *)sta->drv_priv; struct mt7915_dev *dev = msta->vif->phy->dev; u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map); int nss, max_nss = sta->deflink.rx_nss > 3 ? 4 : sta->deflink.rx_nss; u16 mcs; for (nss = 0; nss < max_nss; nss++, mcs_map >>= 2) { switch (mcs_map & 0x3) { case IEEE80211_VHT_MCS_SUPPORT_0_9: mcs = GENMASK(9, 0); break; case IEEE80211_VHT_MCS_SUPPORT_0_8: mcs = GENMASK(8, 0); break; case IEEE80211_VHT_MCS_SUPPORT_0_7: mcs = GENMASK(7, 0); break; default: mcs = 0; } vht_mcs[nss] = cpu_to_le16(mcs & mask[nss]); /* only support 2ss on 160MHz for mt7915 */ if (is_mt7915(&dev->mt76) && nss > 1 && sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) break; } } static void mt7915_mcu_set_sta_ht_mcs(struct ieee80211_sta *sta, u8 *ht_mcs, const u8 *mask) { int nss, max_nss = sta->deflink.rx_nss > 3 ? 4 : sta->deflink.rx_nss; for (nss = 0; nss < max_nss; nss++) ht_mcs[nss] = sta->deflink.ht_cap.mcs.rx_mask[nss] & mask[nss]; } static int mt7915_mcu_parse_response(struct mt76_dev *mdev, int cmd, struct sk_buff *skb, int seq) { struct mt76_connac2_mcu_rxd *rxd; int ret = 0; if (!skb) { dev_err(mdev->dev, "Message %08x (seq %d) timeout\n", cmd, seq); return -ETIMEDOUT; } rxd = (struct mt76_connac2_mcu_rxd *)skb->data; if (seq != rxd->seq && !(rxd->eid == MCU_CMD_EXT_CID && rxd->ext_eid == MCU_EXT_EVENT_WA_TX_STAT)) return -EAGAIN; if (cmd == MCU_CMD(PATCH_SEM_CONTROL)) { skb_pull(skb, sizeof(*rxd) - 4); ret = *skb->data; } else if (cmd == MCU_EXT_CMD(THERMAL_CTRL)) { skb_pull(skb, sizeof(*rxd) + 4); ret = le32_to_cpu(*(__le32 *)skb->data); } else { skb_pull(skb, sizeof(struct mt76_connac2_mcu_rxd)); } return ret; } static int mt7915_mcu_send_message(struct mt76_dev *mdev, struct sk_buff *skb, int cmd, int *wait_seq) { struct mt7915_dev *dev = container_of(mdev, struct mt7915_dev, mt76); enum mt76_mcuq_id qid; int ret; ret = mt76_connac2_mcu_fill_message(mdev, skb, cmd, wait_seq); if (ret) return ret; if (cmd == MCU_CMD(FW_SCATTER)) qid = MT_MCUQ_FWDL; else if (test_bit(MT76_STATE_MCU_RUNNING, &dev->mphy.state)) qid = MT_MCUQ_WA; else qid = MT_MCUQ_WM; return mt76_tx_queue_skb_raw(dev, mdev->q_mcu[qid], skb, 0); } int mt7915_mcu_wa_cmd(struct mt7915_dev *dev, int cmd, u32 a1, u32 a2, u32 a3) { struct { __le32 args[3]; } req = { .args = { cpu_to_le32(a1), cpu_to_le32(a2), cpu_to_le32(a3), }, }; return mt76_mcu_send_msg(&dev->mt76, cmd, &req, sizeof(req), false); } static void mt7915_mcu_csa_finish(void *priv, u8 *mac, struct ieee80211_vif *vif) { if (vif->bss_conf.csa_active) ieee80211_csa_finish(vif); } static void mt7915_mcu_rx_csa_notify(struct mt7915_dev *dev, struct sk_buff *skb) { struct mt76_phy *mphy = &dev->mt76.phy; struct mt7915_mcu_csa_notify *c; c = (struct mt7915_mcu_csa_notify *)skb->data; if (c->band_idx > MT_BAND1) return; if ((c->band_idx && !dev->phy.mt76->band_idx) && dev->mt76.phys[MT_BAND1]) mphy = dev->mt76.phys[MT_BAND1]; ieee80211_iterate_active_interfaces_atomic(mphy->hw, IEEE80211_IFACE_ITER_RESUME_ALL, mt7915_mcu_csa_finish, mphy->hw); } static void mt7915_mcu_rx_thermal_notify(struct mt7915_dev *dev, struct sk_buff *skb) { struct mt76_phy *mphy = &dev->mt76.phy; struct mt7915_mcu_thermal_notify *t; struct mt7915_phy *phy; t = (struct mt7915_mcu_thermal_notify *)skb->data; if (t->ctrl.ctrl_id != THERMAL_PROTECT_ENABLE) return; if (t->ctrl.band_idx > MT_BAND1) return; if ((t->ctrl.band_idx && !dev->phy.mt76->band_idx) && dev->mt76.phys[MT_BAND1]) mphy = dev->mt76.phys[MT_BAND1]; phy = (struct mt7915_phy *)mphy->priv; phy->throttle_state = t->ctrl.duty.duty_cycle; } static void mt7915_mcu_rx_radar_detected(struct mt7915_dev *dev, struct sk_buff *skb) { struct mt76_phy *mphy = &dev->mt76.phy; struct mt7915_mcu_rdd_report *r; r = (struct mt7915_mcu_rdd_report *)skb->data; if (r->band_idx > MT_RX_SEL2) return; if ((r->band_idx && !dev->phy.mt76->band_idx) && dev->mt76.phys[MT_BAND1]) mphy = dev->mt76.phys[MT_BAND1]; if (r->band_idx == MT_RX_SEL2) cfg80211_background_radar_event(mphy->hw->wiphy, &dev->rdd2_chandef, GFP_ATOMIC); else ieee80211_radar_detected(mphy->hw); dev->hw_pattern++; } static void mt7915_mcu_rx_log_message(struct mt7915_dev *dev, struct sk_buff *skb) { struct mt76_connac2_mcu_rxd *rxd; int len = skb->len - sizeof(*rxd); const char *data, *type; rxd = (struct mt76_connac2_mcu_rxd *)skb->data; data = (char *)&rxd[1]; switch (rxd->s2d_index) { case 0: if (mt7915_debugfs_rx_log(dev, data, len)) return; type = "WM"; break; case 2: type = "WA"; break; default: type = "unknown"; break; } wiphy_info(mt76_hw(dev)->wiphy, "%s: %.*s", type, len, data); } static void mt7915_mcu_cca_finish(void *priv, u8 *mac, struct ieee80211_vif *vif) { if (!vif->bss_conf.color_change_active) return; ieee80211_color_change_finish(vif); } static void mt7915_mcu_rx_bcc_notify(struct mt7915_dev *dev, struct sk_buff *skb) { struct mt76_phy *mphy = &dev->mt76.phy; struct mt7915_mcu_bcc_notify *b; b = (struct mt7915_mcu_bcc_notify *)skb->data; if (b->band_idx > MT_BAND1) return; if ((b->band_idx && !dev->phy.mt76->band_idx) && dev->mt76.phys[MT_BAND1]) mphy = dev->mt76.phys[MT_BAND1]; ieee80211_iterate_active_interfaces_atomic(mphy->hw, IEEE80211_IFACE_ITER_RESUME_ALL, mt7915_mcu_cca_finish, mphy->hw); } static void mt7915_mcu_rx_ext_event(struct mt7915_dev *dev, struct sk_buff *skb) { struct mt76_connac2_mcu_rxd *rxd; rxd = (struct mt76_connac2_mcu_rxd *)skb->data; switch (rxd->ext_eid) { case MCU_EXT_EVENT_THERMAL_PROTECT: mt7915_mcu_rx_thermal_notify(dev, skb); break; case MCU_EXT_EVENT_RDD_REPORT: mt7915_mcu_rx_radar_detected(dev, skb); break; case MCU_EXT_EVENT_CSA_NOTIFY: mt7915_mcu_rx_csa_notify(dev, skb); break; case MCU_EXT_EVENT_FW_LOG_2_HOST: mt7915_mcu_rx_log_message(dev, skb); break; case MCU_EXT_EVENT_BCC_NOTIFY: mt7915_mcu_rx_bcc_notify(dev, skb); break; default: break; } } static void mt7915_mcu_rx_unsolicited_event(struct mt7915_dev *dev, struct sk_buff *skb) { struct mt76_connac2_mcu_rxd *rxd; rxd = (struct mt76_connac2_mcu_rxd *)skb->data; switch (rxd->eid) { case MCU_EVENT_EXT: mt7915_mcu_rx_ext_event(dev, skb); break; default: break; } dev_kfree_skb(skb); } void mt7915_mcu_rx_event(struct mt7915_dev *dev, struct sk_buff *skb) { struct mt76_connac2_mcu_rxd *rxd; rxd = (struct mt76_connac2_mcu_rxd *)skb->data; if ((rxd->ext_eid == MCU_EXT_EVENT_THERMAL_PROTECT || rxd->ext_eid == MCU_EXT_EVENT_FW_LOG_2_HOST || rxd->ext_eid == MCU_EXT_EVENT_ASSERT_DUMP || rxd->ext_eid == MCU_EXT_EVENT_PS_SYNC || rxd->ext_eid == MCU_EXT_EVENT_BCC_NOTIFY || !rxd->seq) && !(rxd->eid == MCU_CMD_EXT_CID && rxd->ext_eid == MCU_EXT_EVENT_WA_TX_STAT)) mt7915_mcu_rx_unsolicited_event(dev, skb); else mt76_mcu_rx_event(&dev->mt76, skb); } static struct tlv * mt7915_mcu_add_nested_subtlv(struct sk_buff *skb, int sub_tag, int sub_len, __le16 *sub_ntlv, __le16 *len) { struct tlv *ptlv, tlv = { .tag = cpu_to_le16(sub_tag), .len = cpu_to_le16(sub_len), }; ptlv = skb_put(skb, sub_len); memcpy(ptlv, &tlv, sizeof(tlv)); le16_add_cpu(sub_ntlv, 1); le16_add_cpu(len, sub_len); return ptlv; } /** bss info **/ struct mt7915_he_obss_narrow_bw_ru_data { bool tolerated; }; static void mt7915_check_he_obss_narrow_bw_ru_iter(struct wiphy *wiphy, struct cfg80211_bss *bss, void *_data) { struct mt7915_he_obss_narrow_bw_ru_data *data = _data; const struct element *elem; rcu_read_lock(); elem = ieee80211_bss_get_elem(bss, WLAN_EID_EXT_CAPABILITY); if (!elem || elem->datalen <= 10 || !(elem->data[10] & WLAN_EXT_CAPA10_OBSS_NARROW_BW_RU_TOLERANCE_SUPPORT)) data->tolerated = false; rcu_read_unlock(); } static bool mt7915_check_he_obss_narrow_bw_ru(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mt7915_he_obss_narrow_bw_ru_data iter_data = { .tolerated = true, }; if (!(vif->bss_conf.chandef.chan->flags & IEEE80211_CHAN_RADAR)) return false; cfg80211_bss_iter(hw->wiphy, &vif->bss_conf.chandef, mt7915_check_he_obss_narrow_bw_ru_iter, &iter_data); /* * If there is at least one AP on radar channel that cannot * tolerate 26-tone RU UL OFDMA transmissions using HE TB PPDU. */ return !iter_data.tolerated; } static void mt7915_mcu_bss_rfch_tlv(struct sk_buff *skb, struct ieee80211_vif *vif, struct mt7915_phy *phy) { struct cfg80211_chan_def *chandef = &phy->mt76->chandef; struct bss_info_rf_ch *ch; struct tlv *tlv; int freq1 = chandef->center_freq1; tlv = mt76_connac_mcu_add_tlv(skb, BSS_INFO_RF_CH, sizeof(*ch)); ch = (struct bss_info_rf_ch *)tlv; ch->pri_ch = chandef->chan->hw_value; ch->center_ch0 = ieee80211_frequency_to_channel(freq1); ch->bw = mt76_connac_chan_bw(chandef); if (chandef->width == NL80211_CHAN_WIDTH_80P80) { int freq2 = chandef->center_freq2; ch->center_ch1 = ieee80211_frequency_to_channel(freq2); } if (vif->bss_conf.he_support && vif->type == NL80211_IFTYPE_STATION) { struct mt76_phy *mphy = phy->mt76; ch->he_ru26_block = mt7915_check_he_obss_narrow_bw_ru(mphy->hw, vif); ch->he_all_disable = false; } else { ch->he_all_disable = true; } } static void mt7915_mcu_bss_ra_tlv(struct sk_buff *skb, struct ieee80211_vif *vif, struct mt7915_phy *phy) { int max_nss = hweight8(phy->mt76->antenna_mask); struct bss_info_ra *ra; struct tlv *tlv; tlv = mt76_connac_mcu_add_tlv(skb, BSS_INFO_RA, sizeof(*ra)); ra = (struct bss_info_ra *)tlv; ra->op_mode = vif->type == NL80211_IFTYPE_AP; ra->adhoc_en = vif->type == NL80211_IFTYPE_ADHOC; ra->short_preamble = true; ra->tx_streams = max_nss; ra->rx_streams = max_nss; ra->algo = 4; ra->train_up_rule = 2; ra->train_up_high_thres = 110; ra->train_up_rule_rssi = -70; ra->low_traffic_thres = 2; ra->phy_cap = cpu_to_le32(0xfdf); ra->interval = cpu_to_le32(500); ra->fast_interval = cpu_to_le32(100); } static void mt7915_mcu_bss_he_tlv(struct sk_buff *skb, struct ieee80211_vif *vif, struct mt7915_phy *phy) { #define DEFAULT_HE_PE_DURATION 4 #define DEFAULT_HE_DURATION_RTS_THRES 1023 const struct ieee80211_sta_he_cap *cap; struct bss_info_he *he; struct tlv *tlv; cap = mt76_connac_get_he_phy_cap(phy->mt76, vif); tlv = mt76_connac_mcu_add_tlv(skb, BSS_INFO_HE_BASIC, sizeof(*he)); he = (struct bss_info_he *)tlv; he->he_pe_duration = vif->bss_conf.htc_trig_based_pkt_ext; if (!he->he_pe_duration) he->he_pe_duration = DEFAULT_HE_PE_DURATION; he->he_rts_thres = cpu_to_le16(vif->bss_conf.frame_time_rts_th); if (!he->he_rts_thres) he->he_rts_thres = cpu_to_le16(DEFAULT_HE_DURATION_RTS_THRES); he->max_nss_mcs[CMD_HE_MCS_BW80] = cap->he_mcs_nss_supp.tx_mcs_80; he->max_nss_mcs[CMD_HE_MCS_BW160] = cap->he_mcs_nss_supp.tx_mcs_160; he->max_nss_mcs[CMD_HE_MCS_BW8080] = cap->he_mcs_nss_supp.tx_mcs_80p80; } static void mt7915_mcu_bss_hw_amsdu_tlv(struct sk_buff *skb) { #define TXD_CMP_MAP1 GENMASK(15, 0) #define TXD_CMP_MAP2 (GENMASK(31, 0) & ~BIT(23)) struct bss_info_hw_amsdu *amsdu; struct tlv *tlv; tlv = mt76_connac_mcu_add_tlv(skb, BSS_INFO_HW_AMSDU, sizeof(*amsdu)); amsdu = (struct bss_info_hw_amsdu *)tlv; amsdu->cmp_bitmap_0 = cpu_to_le32(TXD_CMP_MAP1); amsdu->cmp_bitmap_1 = cpu_to_le32(TXD_CMP_MAP2); amsdu->trig_thres = cpu_to_le16(2); amsdu->enable = true; } static void mt7915_mcu_bss_bmc_tlv(struct sk_buff *skb, struct mt7915_phy *phy) { struct bss_info_bmc_rate *bmc; struct cfg80211_chan_def *chandef = &phy->mt76->chandef; enum nl80211_band band = chandef->chan->band; struct tlv *tlv; tlv = mt76_connac_mcu_add_tlv(skb, BSS_INFO_BMC_RATE, sizeof(*bmc)); bmc = (struct bss_info_bmc_rate *)tlv; if (band == NL80211_BAND_2GHZ) { bmc->short_preamble = true; } else { bmc->bc_trans = cpu_to_le16(0x2000); bmc->mc_trans = cpu_to_le16(0x2080); } } static int mt7915_mcu_muar_config(struct mt7915_phy *phy, struct ieee80211_vif *vif, bool bssid, bool enable) { struct mt7915_dev *dev = phy->dev; struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; u32 idx = mvif->mt76.omac_idx - REPEATER_BSSID_START; u32 mask = phy->omac_mask >> 32 & ~BIT(idx); const u8 *addr = vif->addr; struct { u8 mode; u8 force_clear; u8 clear_bitmap[8]; u8 entry_count; u8 write; u8 band; u8 index; u8 bssid; u8 addr[ETH_ALEN]; } __packed req = { .mode = !!mask || enable, .entry_count = 1, .write = 1, .band = phy->mt76->band_idx, .index = idx * 2 + bssid, }; if (bssid) addr = vif->bss_conf.bssid; if (enable) ether_addr_copy(req.addr, addr); return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(MUAR_UPDATE), &req, sizeof(req), true); } int mt7915_mcu_add_bss_info(struct mt7915_phy *phy, struct ieee80211_vif *vif, int enable) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct mt7915_dev *dev = phy->dev; struct sk_buff *skb; if (mvif->mt76.omac_idx >= REPEATER_BSSID_START) { mt7915_mcu_muar_config(phy, vif, false, enable); mt7915_mcu_muar_config(phy, vif, true, enable); } skb = __mt76_connac_mcu_alloc_sta_req(&dev->mt76, &mvif->mt76, NULL, MT7915_BSS_UPDATE_MAX_SIZE); if (IS_ERR(skb)) return PTR_ERR(skb); /* bss_omac must be first */ if (enable) mt76_connac_mcu_bss_omac_tlv(skb, vif); mt76_connac_mcu_bss_basic_tlv(skb, vif, NULL, phy->mt76, mvif->sta.wcid.idx, enable); if (vif->type == NL80211_IFTYPE_MONITOR) goto out; if (enable) { mt7915_mcu_bss_rfch_tlv(skb, vif, phy); mt7915_mcu_bss_bmc_tlv(skb, phy); mt7915_mcu_bss_ra_tlv(skb, vif, phy); mt7915_mcu_bss_hw_amsdu_tlv(skb); if (vif->bss_conf.he_support) mt7915_mcu_bss_he_tlv(skb, vif, phy); if (mvif->mt76.omac_idx >= EXT_BSSID_START && mvif->mt76.omac_idx < REPEATER_BSSID_START) mt76_connac_mcu_bss_ext_tlv(skb, &mvif->mt76); } out: return mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_EXT_CMD(BSS_INFO_UPDATE), true); } /** starec & wtbl **/ int mt7915_mcu_add_tx_ba(struct mt7915_dev *dev, struct ieee80211_ampdu_params *params, bool enable) { struct mt7915_sta *msta = (struct mt7915_sta *)params->sta->drv_priv; struct mt7915_vif *mvif = msta->vif; if (enable && !params->amsdu) msta->wcid.amsdu = false; return mt76_connac_mcu_sta_ba(&dev->mt76, &mvif->mt76, params, MCU_EXT_CMD(STA_REC_UPDATE), enable, true); } int mt7915_mcu_add_rx_ba(struct mt7915_dev *dev, struct ieee80211_ampdu_params *params, bool enable) { struct mt7915_sta *msta = (struct mt7915_sta *)params->sta->drv_priv; struct mt7915_vif *mvif = msta->vif; return mt76_connac_mcu_sta_ba(&dev->mt76, &mvif->mt76, params, MCU_EXT_CMD(STA_REC_UPDATE), enable, false); } static void mt7915_mcu_sta_he_tlv(struct sk_buff *skb, struct ieee80211_sta *sta, struct ieee80211_vif *vif) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct ieee80211_he_cap_elem *elem = &sta->deflink.he_cap.he_cap_elem; struct ieee80211_he_mcs_nss_supp mcs_map; struct sta_rec_he *he; struct tlv *tlv; u32 cap = 0; if (!sta->deflink.he_cap.has_he) return; tlv = mt76_connac_mcu_add_tlv(skb, STA_REC_HE, sizeof(*he)); he = (struct sta_rec_he *)tlv; if (elem->mac_cap_info[0] & IEEE80211_HE_MAC_CAP0_HTC_HE) cap |= STA_REC_HE_CAP_HTC; if (elem->mac_cap_info[2] & IEEE80211_HE_MAC_CAP2_BSR) cap |= STA_REC_HE_CAP_BSR; if (elem->mac_cap_info[3] & IEEE80211_HE_MAC_CAP3_OMI_CONTROL) cap |= STA_REC_HE_CAP_OM; if (elem->mac_cap_info[4] & IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU) cap |= STA_REC_HE_CAP_AMSDU_IN_AMPDU; if (elem->mac_cap_info[4] & IEEE80211_HE_MAC_CAP4_BQR) cap |= STA_REC_HE_CAP_BQR; if (elem->phy_cap_info[0] & (IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G)) cap |= STA_REC_HE_CAP_BW20_RU242_SUPPORT; if (mvif->cap.he_ldpc && (elem->phy_cap_info[1] & IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD)) cap |= STA_REC_HE_CAP_LDPC; if (elem->phy_cap_info[1] & IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US) cap |= STA_REC_HE_CAP_SU_PPDU_1LTF_8US_GI; if (elem->phy_cap_info[2] & IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US) cap |= STA_REC_HE_CAP_NDP_4LTF_3DOT2MS_GI; if (elem->phy_cap_info[2] & IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ) cap |= STA_REC_HE_CAP_LE_EQ_80M_TX_STBC; if (elem->phy_cap_info[2] & IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ) cap |= STA_REC_HE_CAP_LE_EQ_80M_RX_STBC; if (elem->phy_cap_info[6] & IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB) cap |= STA_REC_HE_CAP_TRIG_CQI_FK; if (elem->phy_cap_info[6] & IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE) cap |= STA_REC_HE_CAP_PARTIAL_BW_EXT_RANGE; if (elem->phy_cap_info[7] & IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI) cap |= STA_REC_HE_CAP_SU_MU_PPDU_4LTF_8US_GI; if (elem->phy_cap_info[7] & IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ) cap |= STA_REC_HE_CAP_GT_80M_TX_STBC; if (elem->phy_cap_info[7] & IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ) cap |= STA_REC_HE_CAP_GT_80M_RX_STBC; if (elem->phy_cap_info[8] & IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI) cap |= STA_REC_HE_CAP_ER_SU_PPDU_4LTF_8US_GI; if (elem->phy_cap_info[8] & IEEE80211_HE_PHY_CAP8_HE_ER_SU_1XLTF_AND_08_US_GI) cap |= STA_REC_HE_CAP_ER_SU_PPDU_1LTF_8US_GI; if (elem->phy_cap_info[9] & IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU) cap |= STA_REC_HE_CAP_TX_1024QAM_UNDER_RU242; if (elem->phy_cap_info[9] & IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU) cap |= STA_REC_HE_CAP_RX_1024QAM_UNDER_RU242; he->he_cap = cpu_to_le32(cap); mcs_map = sta->deflink.he_cap.he_mcs_nss_supp; switch (sta->deflink.bandwidth) { case IEEE80211_STA_RX_BW_160: if (elem->phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) mt7915_mcu_set_sta_he_mcs(sta, &he->max_nss_mcs[CMD_HE_MCS_BW8080], le16_to_cpu(mcs_map.rx_mcs_80p80)); mt7915_mcu_set_sta_he_mcs(sta, &he->max_nss_mcs[CMD_HE_MCS_BW160], le16_to_cpu(mcs_map.rx_mcs_160)); fallthrough; default: mt7915_mcu_set_sta_he_mcs(sta, &he->max_nss_mcs[CMD_HE_MCS_BW80], le16_to_cpu(mcs_map.rx_mcs_80)); break; } he->t_frame_dur = HE_MAC(CAP1_TF_MAC_PAD_DUR_MASK, elem->mac_cap_info[1]); he->max_ampdu_exp = HE_MAC(CAP3_MAX_AMPDU_LEN_EXP_MASK, elem->mac_cap_info[3]); he->bw_set = HE_PHY(CAP0_CHANNEL_WIDTH_SET_MASK, elem->phy_cap_info[0]); he->device_class = HE_PHY(CAP1_DEVICE_CLASS_A, elem->phy_cap_info[1]); he->punc_pream_rx = HE_PHY(CAP1_PREAMBLE_PUNC_RX_MASK, elem->phy_cap_info[1]); he->dcm_tx_mode = HE_PHY(CAP3_DCM_MAX_CONST_TX_MASK, elem->phy_cap_info[3]); he->dcm_tx_max_nss = HE_PHY(CAP3_DCM_MAX_TX_NSS_2, elem->phy_cap_info[3]); he->dcm_rx_mode = HE_PHY(CAP3_DCM_MAX_CONST_RX_MASK, elem->phy_cap_info[3]); he->dcm_rx_max_nss = HE_PHY(CAP3_DCM_MAX_RX_NSS_2, elem->phy_cap_info[3]); he->dcm_rx_max_nss = HE_PHY(CAP8_DCM_MAX_RU_MASK, elem->phy_cap_info[8]); he->pkt_ext = 2; } static void mt7915_mcu_sta_muru_tlv(struct mt7915_dev *dev, struct sk_buff *skb, struct ieee80211_sta *sta, struct ieee80211_vif *vif) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct ieee80211_he_cap_elem *elem = &sta->deflink.he_cap.he_cap_elem; struct sta_rec_muru *muru; struct tlv *tlv; if (vif->type != NL80211_IFTYPE_STATION && vif->type != NL80211_IFTYPE_AP) return; tlv = mt76_connac_mcu_add_tlv(skb, STA_REC_MURU, sizeof(*muru)); muru = (struct sta_rec_muru *)tlv; muru->cfg.mimo_dl_en = mvif->cap.he_mu_ebfer || mvif->cap.vht_mu_ebfer || mvif->cap.vht_mu_ebfee; if (!is_mt7915(&dev->mt76)) muru->cfg.mimo_ul_en = true; muru->cfg.ofdma_dl_en = true; if (sta->deflink.vht_cap.vht_supported) muru->mimo_dl.vht_mu_bfee = !!(sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE); if (!sta->deflink.he_cap.has_he) return; muru->mimo_dl.partial_bw_dl_mimo = HE_PHY(CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO, elem->phy_cap_info[6]); muru->mimo_ul.full_ul_mimo = HE_PHY(CAP2_UL_MU_FULL_MU_MIMO, elem->phy_cap_info[2]); muru->mimo_ul.partial_ul_mimo = HE_PHY(CAP2_UL_MU_PARTIAL_MU_MIMO, elem->phy_cap_info[2]); muru->ofdma_dl.punc_pream_rx = HE_PHY(CAP1_PREAMBLE_PUNC_RX_MASK, elem->phy_cap_info[1]); muru->ofdma_dl.he_20m_in_40m_2g = HE_PHY(CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G, elem->phy_cap_info[8]); muru->ofdma_dl.he_20m_in_160m = HE_PHY(CAP8_20MHZ_IN_160MHZ_HE_PPDU, elem->phy_cap_info[8]); muru->ofdma_dl.he_80m_in_160m = HE_PHY(CAP8_80MHZ_IN_160MHZ_HE_PPDU, elem->phy_cap_info[8]); muru->ofdma_ul.t_frame_dur = HE_MAC(CAP1_TF_MAC_PAD_DUR_MASK, elem->mac_cap_info[1]); muru->ofdma_ul.mu_cascading = HE_MAC(CAP2_MU_CASCADING, elem->mac_cap_info[2]); muru->ofdma_ul.uo_ra = HE_MAC(CAP3_OFDMA_RA, elem->mac_cap_info[3]); } static void mt7915_mcu_sta_ht_tlv(struct sk_buff *skb, struct ieee80211_sta *sta) { struct sta_rec_ht *ht; struct tlv *tlv; if (!sta->deflink.ht_cap.ht_supported) return; tlv = mt76_connac_mcu_add_tlv(skb, STA_REC_HT, sizeof(*ht)); ht = (struct sta_rec_ht *)tlv; ht->ht_cap = cpu_to_le16(sta->deflink.ht_cap.cap); } static void mt7915_mcu_sta_vht_tlv(struct sk_buff *skb, struct ieee80211_sta *sta) { struct sta_rec_vht *vht; struct tlv *tlv; if (!sta->deflink.vht_cap.vht_supported) return; tlv = mt76_connac_mcu_add_tlv(skb, STA_REC_VHT, sizeof(*vht)); vht = (struct sta_rec_vht *)tlv; vht->vht_cap = cpu_to_le32(sta->deflink.vht_cap.cap); vht->vht_rx_mcs_map = sta->deflink.vht_cap.vht_mcs.rx_mcs_map; vht->vht_tx_mcs_map = sta->deflink.vht_cap.vht_mcs.tx_mcs_map; } static void mt7915_mcu_sta_amsdu_tlv(struct mt7915_dev *dev, struct sk_buff *skb, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7915_sta *msta = (struct mt7915_sta *)sta->drv_priv; struct sta_rec_amsdu *amsdu; struct tlv *tlv; if (vif->type != NL80211_IFTYPE_STATION && vif->type != NL80211_IFTYPE_AP) return; if (!sta->deflink.agg.max_amsdu_len) return; tlv = mt76_connac_mcu_add_tlv(skb, STA_REC_HW_AMSDU, sizeof(*amsdu)); amsdu = (struct sta_rec_amsdu *)tlv; amsdu->max_amsdu_num = 8; amsdu->amsdu_en = true; msta->wcid.amsdu = true; switch (sta->deflink.agg.max_amsdu_len) { case IEEE80211_MAX_MPDU_LEN_VHT_11454: if (!is_mt7915(&dev->mt76)) { amsdu->max_mpdu_size = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; return; } fallthrough; case IEEE80211_MAX_MPDU_LEN_HT_7935: case IEEE80211_MAX_MPDU_LEN_VHT_7991: amsdu->max_mpdu_size = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991; return; default: amsdu->max_mpdu_size = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; return; } } static int mt7915_mcu_sta_wtbl_tlv(struct mt7915_dev *dev, struct sk_buff *skb, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct mt7915_sta *msta; struct wtbl_req_hdr *wtbl_hdr; struct mt76_wcid *wcid; struct tlv *tlv; msta = sta ? (struct mt7915_sta *)sta->drv_priv : &mvif->sta; wcid = sta ? &msta->wcid : NULL; tlv = mt76_connac_mcu_add_tlv(skb, STA_REC_WTBL, sizeof(struct tlv)); wtbl_hdr = mt76_connac_mcu_alloc_wtbl_req(&dev->mt76, &msta->wcid, WTBL_RESET_AND_SET, tlv, &skb); if (IS_ERR(wtbl_hdr)) return PTR_ERR(wtbl_hdr); mt76_connac_mcu_wtbl_generic_tlv(&dev->mt76, skb, vif, sta, tlv, wtbl_hdr); mt76_connac_mcu_wtbl_hdr_trans_tlv(skb, vif, wcid, tlv, wtbl_hdr); if (sta) mt76_connac_mcu_wtbl_ht_tlv(&dev->mt76, skb, sta, tlv, wtbl_hdr, mvif->cap.ht_ldpc, mvif->cap.vht_ldpc); return 0; } static inline bool mt7915_is_ebf_supported(struct mt7915_phy *phy, struct ieee80211_vif *vif, struct ieee80211_sta *sta, bool bfee) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; int tx_ant = hweight8(phy->mt76->chainmask) - 1; if (vif->type != NL80211_IFTYPE_STATION && vif->type != NL80211_IFTYPE_AP) return false; if (!bfee && tx_ant < 2) return false; if (sta->deflink.he_cap.has_he) { struct ieee80211_he_cap_elem *pe = &sta->deflink.he_cap.he_cap_elem; if (bfee) return mvif->cap.he_su_ebfee && HE_PHY(CAP3_SU_BEAMFORMER, pe->phy_cap_info[3]); else return mvif->cap.he_su_ebfer && HE_PHY(CAP4_SU_BEAMFORMEE, pe->phy_cap_info[4]); } if (sta->deflink.vht_cap.vht_supported) { u32 cap = sta->deflink.vht_cap.cap; if (bfee) return mvif->cap.vht_su_ebfee && (cap & IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE); else return mvif->cap.vht_su_ebfer && (cap & IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE); } return false; } static void mt7915_mcu_sta_sounding_rate(struct sta_rec_bf *bf) { bf->sounding_phy = MT_PHY_TYPE_OFDM; bf->ndp_rate = 0; /* mcs0 */ bf->ndpa_rate = MT7915_CFEND_RATE_DEFAULT; /* ofdm 24m */ bf->rept_poll_rate = MT7915_CFEND_RATE_DEFAULT; /* ofdm 24m */ } static void mt7915_mcu_sta_bfer_ht(struct ieee80211_sta *sta, struct mt7915_phy *phy, struct sta_rec_bf *bf) { struct ieee80211_mcs_info *mcs = &sta->deflink.ht_cap.mcs; u8 n = 0; bf->tx_mode = MT_PHY_TYPE_HT; if ((mcs->tx_params & IEEE80211_HT_MCS_TX_RX_DIFF) && (mcs->tx_params & IEEE80211_HT_MCS_TX_DEFINED)) n = FIELD_GET(IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK, mcs->tx_params); else if (mcs->rx_mask[3]) n = 3; else if (mcs->rx_mask[2]) n = 2; else if (mcs->rx_mask[1]) n = 1; bf->nrow = hweight8(phy->mt76->chainmask) - 1; bf->ncol = min_t(u8, bf->nrow, n); bf->ibf_ncol = n; } static void mt7915_mcu_sta_bfer_vht(struct ieee80211_sta *sta, struct mt7915_phy *phy, struct sta_rec_bf *bf, bool explicit) { struct ieee80211_sta_vht_cap *pc = &sta->deflink.vht_cap; struct ieee80211_sta_vht_cap *vc = &phy->mt76->sband_5g.sband.vht_cap; u16 mcs_map = le16_to_cpu(pc->vht_mcs.rx_mcs_map); u8 nss_mcs = mt7915_mcu_get_sta_nss(mcs_map); u8 tx_ant = hweight8(phy->mt76->chainmask) - 1; bf->tx_mode = MT_PHY_TYPE_VHT; if (explicit) { u8 sts, snd_dim; mt7915_mcu_sta_sounding_rate(bf); sts = FIELD_GET(IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK, pc->cap); snd_dim = FIELD_GET(IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK, vc->cap); bf->nrow = min_t(u8, min_t(u8, snd_dim, sts), tx_ant); bf->ncol = min_t(u8, nss_mcs, bf->nrow); bf->ibf_ncol = bf->ncol; if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) bf->nrow = 1; } else { bf->nrow = tx_ant; bf->ncol = min_t(u8, nss_mcs, bf->nrow); bf->ibf_ncol = nss_mcs; if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) bf->ibf_nrow = 1; } } static void mt7915_mcu_sta_bfer_he(struct ieee80211_sta *sta, struct ieee80211_vif *vif, struct mt7915_phy *phy, struct sta_rec_bf *bf) { struct ieee80211_sta_he_cap *pc = &sta->deflink.he_cap; struct ieee80211_he_cap_elem *pe = &pc->he_cap_elem; const struct ieee80211_sta_he_cap *vc = mt76_connac_get_he_phy_cap(phy->mt76, vif); const struct ieee80211_he_cap_elem *ve = &vc->he_cap_elem; u16 mcs_map = le16_to_cpu(pc->he_mcs_nss_supp.rx_mcs_80); u8 nss_mcs = mt7915_mcu_get_sta_nss(mcs_map); u8 snd_dim, sts; bf->tx_mode = MT_PHY_TYPE_HE_SU; mt7915_mcu_sta_sounding_rate(bf); bf->trigger_su = HE_PHY(CAP6_TRIG_SU_BEAMFORMING_FB, pe->phy_cap_info[6]); bf->trigger_mu = HE_PHY(CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB, pe->phy_cap_info[6]); snd_dim = HE_PHY(CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK, ve->phy_cap_info[5]); sts = HE_PHY(CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_MASK, pe->phy_cap_info[4]); bf->nrow = min_t(u8, snd_dim, sts); bf->ncol = min_t(u8, nss_mcs, bf->nrow); bf->ibf_ncol = bf->ncol; if (sta->deflink.bandwidth != IEEE80211_STA_RX_BW_160) return; /* go over for 160MHz and 80p80 */ if (pe->phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) { mcs_map = le16_to_cpu(pc->he_mcs_nss_supp.rx_mcs_160); nss_mcs = mt7915_mcu_get_sta_nss(mcs_map); bf->ncol_gt_bw80 = nss_mcs; } if (pe->phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) { mcs_map = le16_to_cpu(pc->he_mcs_nss_supp.rx_mcs_80p80); nss_mcs = mt7915_mcu_get_sta_nss(mcs_map); if (bf->ncol_gt_bw80) bf->ncol_gt_bw80 = min_t(u8, bf->ncol_gt_bw80, nss_mcs); else bf->ncol_gt_bw80 = nss_mcs; } snd_dim = HE_PHY(CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK, ve->phy_cap_info[5]); sts = HE_PHY(CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_MASK, pe->phy_cap_info[4]); bf->nrow_gt_bw80 = min_t(int, snd_dim, sts); } static void mt7915_mcu_sta_bfer_tlv(struct mt7915_dev *dev, struct sk_buff *skb, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct mt7915_phy *phy = mvif->phy; int tx_ant = hweight8(phy->mt76->chainmask) - 1; struct sta_rec_bf *bf; struct tlv *tlv; const u8 matrix[4][4] = { {0, 0, 0, 0}, {1, 1, 0, 0}, /* 2x1, 2x2, 2x3, 2x4 */ {2, 4, 4, 0}, /* 3x1, 3x2, 3x3, 3x4 */ {3, 5, 6, 0} /* 4x1, 4x2, 4x3, 4x4 */ }; bool ebf; if (!(sta->deflink.ht_cap.ht_supported || sta->deflink.he_cap.has_he)) return; ebf = mt7915_is_ebf_supported(phy, vif, sta, false); if (!ebf && !dev->ibf) return; tlv = mt76_connac_mcu_add_tlv(skb, STA_REC_BF, sizeof(*bf)); bf = (struct sta_rec_bf *)tlv; /* he: eBF only, in accordance with spec * vht: support eBF and iBF * ht: iBF only, since mac80211 lacks of eBF support */ if (sta->deflink.he_cap.has_he && ebf) mt7915_mcu_sta_bfer_he(sta, vif, phy, bf); else if (sta->deflink.vht_cap.vht_supported) mt7915_mcu_sta_bfer_vht(sta, phy, bf, ebf); else if (sta->deflink.ht_cap.ht_supported) mt7915_mcu_sta_bfer_ht(sta, phy, bf); else return; bf->bf_cap = ebf ? ebf : dev->ibf << 1; bf->bw = sta->deflink.bandwidth; bf->ibf_dbw = sta->deflink.bandwidth; bf->ibf_nrow = tx_ant; if (!ebf && sta->deflink.bandwidth <= IEEE80211_STA_RX_BW_40 && !bf->ncol) bf->ibf_timeout = 0x48; else bf->ibf_timeout = 0x18; if (ebf && bf->nrow != tx_ant) bf->mem_20m = matrix[tx_ant][bf->ncol]; else bf->mem_20m = matrix[bf->nrow][bf->ncol]; switch (sta->deflink.bandwidth) { case IEEE80211_STA_RX_BW_160: case IEEE80211_STA_RX_BW_80: bf->mem_total = bf->mem_20m * 2; break; case IEEE80211_STA_RX_BW_40: bf->mem_total = bf->mem_20m; break; case IEEE80211_STA_RX_BW_20: default: break; } } static void mt7915_mcu_sta_bfee_tlv(struct mt7915_dev *dev, struct sk_buff *skb, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct mt7915_phy *phy = mvif->phy; int tx_ant = hweight8(phy->mt76->chainmask) - 1; struct sta_rec_bfee *bfee; struct tlv *tlv; u8 nrow = 0; if (!(sta->deflink.vht_cap.vht_supported || sta->deflink.he_cap.has_he)) return; if (!mt7915_is_ebf_supported(phy, vif, sta, true)) return; tlv = mt76_connac_mcu_add_tlv(skb, STA_REC_BFEE, sizeof(*bfee)); bfee = (struct sta_rec_bfee *)tlv; if (sta->deflink.he_cap.has_he) { struct ieee80211_he_cap_elem *pe = &sta->deflink.he_cap.he_cap_elem; nrow = HE_PHY(CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK, pe->phy_cap_info[5]); } else if (sta->deflink.vht_cap.vht_supported) { struct ieee80211_sta_vht_cap *pc = &sta->deflink.vht_cap; nrow = FIELD_GET(IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK, pc->cap); } /* reply with identity matrix to avoid 2x2 BF negative gain */ bfee->fb_identity_matrix = (nrow == 1 && tx_ant == 2); } static enum mcu_mmps_mode mt7915_mcu_get_mmps_mode(enum ieee80211_smps_mode smps) { switch (smps) { case IEEE80211_SMPS_OFF: return MCU_MMPS_DISABLE; case IEEE80211_SMPS_STATIC: return MCU_MMPS_STATIC; case IEEE80211_SMPS_DYNAMIC: return MCU_MMPS_DYNAMIC; default: return MCU_MMPS_DISABLE; } } int mt7915_mcu_set_fixed_rate_ctrl(struct mt7915_dev *dev, struct ieee80211_vif *vif, struct ieee80211_sta *sta, void *data, u32 field) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct mt7915_sta *msta = (struct mt7915_sta *)sta->drv_priv; struct sta_phy *phy = data; struct sta_rec_ra_fixed *ra; struct sk_buff *skb; struct tlv *tlv; skb = mt76_connac_mcu_alloc_sta_req(&dev->mt76, &mvif->mt76, &msta->wcid); if (IS_ERR(skb)) return PTR_ERR(skb); tlv = mt76_connac_mcu_add_tlv(skb, STA_REC_RA_UPDATE, sizeof(*ra)); ra = (struct sta_rec_ra_fixed *)tlv; switch (field) { case RATE_PARAM_AUTO: break; case RATE_PARAM_FIXED: case RATE_PARAM_FIXED_MCS: case RATE_PARAM_FIXED_GI: case RATE_PARAM_FIXED_HE_LTF: if (phy) ra->phy = *phy; break; case RATE_PARAM_MMPS_UPDATE: ra->mmps_mode = mt7915_mcu_get_mmps_mode(sta->deflink.smps_mode); break; case RATE_PARAM_SPE_UPDATE: ra->spe_idx = *(u8 *)data; break; default: break; } ra->field = cpu_to_le32(field); return mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_EXT_CMD(STA_REC_UPDATE), true); } int mt7915_mcu_add_smps(struct mt7915_dev *dev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct mt7915_sta *msta = (struct mt7915_sta *)sta->drv_priv; struct wtbl_req_hdr *wtbl_hdr; struct tlv *sta_wtbl; struct sk_buff *skb; int ret; skb = mt76_connac_mcu_alloc_sta_req(&dev->mt76, &mvif->mt76, &msta->wcid); if (IS_ERR(skb)) return PTR_ERR(skb); sta_wtbl = mt76_connac_mcu_add_tlv(skb, STA_REC_WTBL, sizeof(struct tlv)); wtbl_hdr = mt76_connac_mcu_alloc_wtbl_req(&dev->mt76, &msta->wcid, WTBL_SET, sta_wtbl, &skb); if (IS_ERR(wtbl_hdr)) return PTR_ERR(wtbl_hdr); mt76_connac_mcu_wtbl_smps_tlv(skb, sta, sta_wtbl, wtbl_hdr); ret = mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_EXT_CMD(STA_REC_UPDATE), true); if (ret) return ret; return mt7915_mcu_set_fixed_rate_ctrl(dev, vif, sta, NULL, RATE_PARAM_MMPS_UPDATE); } static int mt7915_mcu_set_spe_idx(struct mt7915_dev *dev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct mt76_phy *mphy = mvif->phy->mt76; u8 spe_idx = mt76_connac_spe_idx(mphy->antenna_mask); return mt7915_mcu_set_fixed_rate_ctrl(dev, vif, sta, &spe_idx, RATE_PARAM_SPE_UPDATE); } static int mt7915_mcu_add_rate_ctrl_fixed(struct mt7915_dev *dev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct cfg80211_chan_def *chandef = &mvif->phy->mt76->chandef; struct cfg80211_bitrate_mask *mask = &mvif->bitrate_mask; enum nl80211_band band = chandef->chan->band; struct sta_phy phy = {}; int ret, nrates = 0; #define __sta_phy_bitrate_mask_check(_mcs, _gi, _ht, _he) \ do { \ u8 i, gi = mask->control[band]._gi; \ gi = (_he) ? gi : gi == NL80211_TXRATE_FORCE_SGI; \ for (i = 0; i <= sta->deflink.bandwidth; i++) { \ phy.sgi |= gi << (i << (_he)); \ phy.he_ltf |= mask->control[band].he_ltf << (i << (_he));\ } \ for (i = 0; i < ARRAY_SIZE(mask->control[band]._mcs); i++) { \ if (!mask->control[band]._mcs[i]) \ continue; \ nrates += hweight16(mask->control[band]._mcs[i]); \ phy.mcs = ffs(mask->control[band]._mcs[i]) - 1; \ if (_ht) \ phy.mcs += 8 * i; \ } \ } while (0) if (sta->deflink.he_cap.has_he) { __sta_phy_bitrate_mask_check(he_mcs, he_gi, 0, 1); } else if (sta->deflink.vht_cap.vht_supported) { __sta_phy_bitrate_mask_check(vht_mcs, gi, 0, 0); } else if (sta->deflink.ht_cap.ht_supported) { __sta_phy_bitrate_mask_check(ht_mcs, gi, 1, 0); } else { nrates = hweight32(mask->control[band].legacy); phy.mcs = ffs(mask->control[band].legacy) - 1; } #undef __sta_phy_bitrate_mask_check /* fall back to auto rate control */ if (mask->control[band].gi == NL80211_TXRATE_DEFAULT_GI && mask->control[band].he_gi == GENMASK(7, 0) && mask->control[band].he_ltf == GENMASK(7, 0) && nrates != 1) return 0; /* fixed single rate */ if (nrates == 1) { ret = mt7915_mcu_set_fixed_rate_ctrl(dev, vif, sta, &phy, RATE_PARAM_FIXED_MCS); if (ret) return ret; } /* fixed GI */ if (mask->control[band].gi != NL80211_TXRATE_DEFAULT_GI || mask->control[band].he_gi != GENMASK(7, 0)) { struct mt7915_sta *msta = (struct mt7915_sta *)sta->drv_priv; u32 addr; /* firmware updates only TXCMD but doesn't take WTBL into * account, so driver should update here to reflect the * actual txrate hardware sends out. */ addr = mt7915_mac_wtbl_lmac_addr(dev, msta->wcid.idx, 7); if (sta->deflink.he_cap.has_he) mt76_rmw_field(dev, addr, GENMASK(31, 24), phy.sgi); else mt76_rmw_field(dev, addr, GENMASK(15, 12), phy.sgi); ret = mt7915_mcu_set_fixed_rate_ctrl(dev, vif, sta, &phy, RATE_PARAM_FIXED_GI); if (ret) return ret; } /* fixed HE_LTF */ if (mask->control[band].he_ltf != GENMASK(7, 0)) { ret = mt7915_mcu_set_fixed_rate_ctrl(dev, vif, sta, &phy, RATE_PARAM_FIXED_HE_LTF); if (ret) return ret; } return mt7915_mcu_set_spe_idx(dev, vif, sta); } static void mt7915_mcu_sta_rate_ctrl_tlv(struct sk_buff *skb, struct mt7915_dev *dev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct mt76_phy *mphy = mvif->phy->mt76; struct cfg80211_chan_def *chandef = &mphy->chandef; struct cfg80211_bitrate_mask *mask = &mvif->bitrate_mask; enum nl80211_band band = chandef->chan->band; struct sta_rec_ra *ra; struct tlv *tlv; u32 supp_rate = sta->deflink.supp_rates[band]; u32 cap = sta->wme ? STA_CAP_WMM : 0; tlv = mt76_connac_mcu_add_tlv(skb, STA_REC_RA, sizeof(*ra)); ra = (struct sta_rec_ra *)tlv; ra->valid = true; ra->auto_rate = true; ra->phy_mode = mt76_connac_get_phy_mode(mphy, vif, band, sta); ra->channel = chandef->chan->hw_value; ra->bw = sta->deflink.bandwidth; ra->phy.bw = sta->deflink.bandwidth; ra->mmps_mode = mt7915_mcu_get_mmps_mode(sta->deflink.smps_mode); if (supp_rate) { supp_rate &= mask->control[band].legacy; ra->rate_len = hweight32(supp_rate); if (band == NL80211_BAND_2GHZ) { ra->supp_mode = MODE_CCK; ra->supp_cck_rate = supp_rate & GENMASK(3, 0); if (ra->rate_len > 4) { ra->supp_mode |= MODE_OFDM; ra->supp_ofdm_rate = supp_rate >> 4; } } else { ra->supp_mode = MODE_OFDM; ra->supp_ofdm_rate = supp_rate; } } if (sta->deflink.ht_cap.ht_supported) { ra->supp_mode |= MODE_HT; ra->af = sta->deflink.ht_cap.ampdu_factor; ra->ht_gf = !!(sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_GRN_FLD); cap |= STA_CAP_HT; if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) cap |= STA_CAP_SGI_20; if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40) cap |= STA_CAP_SGI_40; if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_TX_STBC) cap |= STA_CAP_TX_STBC; if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC) cap |= STA_CAP_RX_STBC; if (mvif->cap.ht_ldpc && (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)) cap |= STA_CAP_LDPC; mt7915_mcu_set_sta_ht_mcs(sta, ra->ht_mcs, mask->control[band].ht_mcs); ra->supp_ht_mcs = *(__le32 *)ra->ht_mcs; } if (sta->deflink.vht_cap.vht_supported) { u8 af; ra->supp_mode |= MODE_VHT; af = FIELD_GET(IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK, sta->deflink.vht_cap.cap); ra->af = max_t(u8, ra->af, af); cap |= STA_CAP_VHT; if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80) cap |= STA_CAP_VHT_SGI_80; if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_160) cap |= STA_CAP_VHT_SGI_160; if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_TXSTBC) cap |= STA_CAP_VHT_TX_STBC; if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_1) cap |= STA_CAP_VHT_RX_STBC; if (mvif->cap.vht_ldpc && (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)) cap |= STA_CAP_VHT_LDPC; mt7915_mcu_set_sta_vht_mcs(sta, ra->supp_vht_mcs, mask->control[band].vht_mcs); } if (sta->deflink.he_cap.has_he) { ra->supp_mode |= MODE_HE; cap |= STA_CAP_HE; if (sta->deflink.he_6ghz_capa.capa) ra->af = le16_get_bits(sta->deflink.he_6ghz_capa.capa, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP); } ra->sta_cap = cpu_to_le32(cap); } int mt7915_mcu_add_rate_ctrl(struct mt7915_dev *dev, struct ieee80211_vif *vif, struct ieee80211_sta *sta, bool changed) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct mt7915_sta *msta = (struct mt7915_sta *)sta->drv_priv; struct sk_buff *skb; int ret; skb = mt76_connac_mcu_alloc_sta_req(&dev->mt76, &mvif->mt76, &msta->wcid); if (IS_ERR(skb)) return PTR_ERR(skb); /* firmware rc algorithm refers to sta_rec_he for HE control. * once dev->rc_work changes the settings driver should also * update sta_rec_he here. */ if (changed) mt7915_mcu_sta_he_tlv(skb, sta, vif); /* sta_rec_ra accommodates BW, NSS and only MCS range format * i.e 0-{7,8,9} for VHT. */ mt7915_mcu_sta_rate_ctrl_tlv(skb, dev, vif, sta); ret = mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_EXT_CMD(STA_REC_UPDATE), true); if (ret) return ret; /* sta_rec_ra_fixed accommodates single rate, (HE)GI and HE_LTE, * and updates as peer fixed rate parameters, which overrides * sta_rec_ra and firmware rate control algorithm. */ return mt7915_mcu_add_rate_ctrl_fixed(dev, vif, sta); } static int mt7915_mcu_add_group(struct mt7915_dev *dev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { #define MT_STA_BSS_GROUP 1 struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct mt7915_sta *msta; struct { __le32 action; u8 wlan_idx_lo; u8 status; u8 wlan_idx_hi; u8 rsv0[5]; __le32 val; u8 rsv1[8]; } __packed req = { .action = cpu_to_le32(MT_STA_BSS_GROUP), .val = cpu_to_le32(mvif->mt76.idx % 16), }; msta = sta ? (struct mt7915_sta *)sta->drv_priv : &mvif->sta; req.wlan_idx_lo = to_wcid_lo(msta->wcid.idx); req.wlan_idx_hi = to_wcid_hi(msta->wcid.idx); return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(SET_DRR_CTRL), &req, sizeof(req), true); } int mt7915_mcu_add_sta(struct mt7915_dev *dev, struct ieee80211_vif *vif, struct ieee80211_sta *sta, bool enable) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct mt7915_sta *msta; struct sk_buff *skb; int ret; msta = sta ? (struct mt7915_sta *)sta->drv_priv : &mvif->sta; skb = mt76_connac_mcu_alloc_sta_req(&dev->mt76, &mvif->mt76, &msta->wcid); if (IS_ERR(skb)) return PTR_ERR(skb); /* starec basic */ mt76_connac_mcu_sta_basic_tlv(&dev->mt76, skb, vif, sta, enable, !rcu_access_pointer(dev->mt76.wcid[msta->wcid.idx])); if (!enable) goto out; /* tag order is in accordance with firmware dependency. */ if (sta) { /* starec bfer */ mt7915_mcu_sta_bfer_tlv(dev, skb, vif, sta); /* starec ht */ mt7915_mcu_sta_ht_tlv(skb, sta); /* starec vht */ mt7915_mcu_sta_vht_tlv(skb, sta); /* starec uapsd */ mt76_connac_mcu_sta_uapsd(skb, vif, sta); } ret = mt7915_mcu_sta_wtbl_tlv(dev, skb, vif, sta); if (ret) { dev_kfree_skb(skb); return ret; } if (sta) { /* starec amsdu */ mt7915_mcu_sta_amsdu_tlv(dev, skb, vif, sta); /* starec he */ mt7915_mcu_sta_he_tlv(skb, sta, vif); /* starec muru */ mt7915_mcu_sta_muru_tlv(dev, skb, sta, vif); /* starec bfee */ mt7915_mcu_sta_bfee_tlv(dev, skb, vif, sta); } ret = mt7915_mcu_add_group(dev, vif, sta); if (ret) { dev_kfree_skb(skb); return ret; } out: ret = mt76_connac_mcu_sta_wed_update(&dev->mt76, skb); if (ret) return ret; return mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_EXT_CMD(STA_REC_UPDATE), true); } int mt7915_mcu_wed_enable_rx_stats(struct mt7915_dev *dev) { #ifdef CONFIG_NET_MEDIATEK_SOC_WED struct mtk_wed_device *wed = &dev->mt76.mmio.wed; struct { __le32 args[2]; } req = { .args[0] = cpu_to_le32(1), .args[1] = cpu_to_le32(6), }; return mtk_wed_device_update_msg(wed, MTK_WED_WO_CMD_RXCNT_CTRL, &req, sizeof(req)); #else return 0; #endif } int mt7915_mcu_add_dev_info(struct mt7915_phy *phy, struct ieee80211_vif *vif, bool enable) { struct mt7915_dev *dev = phy->dev; struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct { struct req_hdr { u8 omac_idx; u8 band_idx; __le16 tlv_num; u8 is_tlv_append; u8 rsv[3]; } __packed hdr; struct req_tlv { __le16 tag; __le16 len; u8 active; u8 band_idx; u8 omac_addr[ETH_ALEN]; } __packed tlv; } data = { .hdr = { .omac_idx = mvif->mt76.omac_idx, .band_idx = mvif->mt76.band_idx, .tlv_num = cpu_to_le16(1), .is_tlv_append = 1, }, .tlv = { .tag = cpu_to_le16(DEV_INFO_ACTIVE), .len = cpu_to_le16(sizeof(struct req_tlv)), .active = enable, .band_idx = mvif->mt76.band_idx, }, }; if (mvif->mt76.omac_idx >= REPEATER_BSSID_START) return mt7915_mcu_muar_config(phy, vif, false, enable); memcpy(data.tlv.omac_addr, vif->addr, ETH_ALEN); return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(DEV_INFO_UPDATE), &data, sizeof(data), true); } static void mt7915_mcu_beacon_cntdwn(struct ieee80211_vif *vif, struct sk_buff *rskb, struct sk_buff *skb, struct bss_info_bcn *bcn, struct ieee80211_mutable_offsets *offs) { struct bss_info_bcn_cntdwn *info; struct tlv *tlv; int sub_tag; if (!offs->cntdwn_counter_offs[0]) return; sub_tag = vif->bss_conf.csa_active ? BSS_INFO_BCN_CSA : BSS_INFO_BCN_BCC; tlv = mt7915_mcu_add_nested_subtlv(rskb, sub_tag, sizeof(*info), &bcn->sub_ntlv, &bcn->len); info = (struct bss_info_bcn_cntdwn *)tlv; info->cnt = skb->data[offs->cntdwn_counter_offs[0]]; } static void mt7915_mcu_beacon_mbss(struct sk_buff *rskb, struct sk_buff *skb, struct ieee80211_vif *vif, struct bss_info_bcn *bcn, struct ieee80211_mutable_offsets *offs) { struct bss_info_bcn_mbss *mbss; const struct element *elem; struct tlv *tlv; if (!vif->bss_conf.bssid_indicator) return; tlv = mt7915_mcu_add_nested_subtlv(rskb, BSS_INFO_BCN_MBSSID, sizeof(*mbss), &bcn->sub_ntlv, &bcn->len); mbss = (struct bss_info_bcn_mbss *)tlv; mbss->offset[0] = cpu_to_le16(offs->tim_offset); mbss->bitmap = cpu_to_le32(1); for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, &skb->data[offs->mbssid_off], skb->len - offs->mbssid_off) { const struct element *sub_elem; if (elem->datalen < 2) continue; for_each_element(sub_elem, elem->data + 1, elem->datalen - 1) { const struct ieee80211_bssid_index *idx; const u8 *idx_ie; if (sub_elem->id || sub_elem->datalen < 4) continue; /* not a valid BSS profile */ /* Find WLAN_EID_MULTI_BSSID_IDX * in the merged nontransmitted profile */ idx_ie = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, sub_elem->data, sub_elem->datalen); if (!idx_ie || idx_ie[1] < sizeof(*idx)) continue; idx = (void *)(idx_ie + 2); if (!idx->bssid_index || idx->bssid_index > 31) continue; mbss->offset[idx->bssid_index] = cpu_to_le16(idx_ie - skb->data); mbss->bitmap |= cpu_to_le32(BIT(idx->bssid_index)); } } } static void mt7915_mcu_beacon_cont(struct mt7915_dev *dev, struct ieee80211_vif *vif, struct sk_buff *rskb, struct sk_buff *skb, struct bss_info_bcn *bcn, struct ieee80211_mutable_offsets *offs) { struct mt76_wcid *wcid = &dev->mt76.global_wcid; struct bss_info_bcn_cont *cont; struct tlv *tlv; u8 *buf; int len = sizeof(*cont) + MT_TXD_SIZE + skb->len; len = (len & 0x3) ? ((len | 0x3) + 1) : len; tlv = mt7915_mcu_add_nested_subtlv(rskb, BSS_INFO_BCN_CONTENT, len, &bcn->sub_ntlv, &bcn->len); cont = (struct bss_info_bcn_cont *)tlv; cont->pkt_len = cpu_to_le16(MT_TXD_SIZE + skb->len); cont->tim_ofs = cpu_to_le16(offs->tim_offset); if (offs->cntdwn_counter_offs[0]) { u16 offset = offs->cntdwn_counter_offs[0]; if (vif->bss_conf.csa_active) cont->csa_ofs = cpu_to_le16(offset - 4); if (vif->bss_conf.color_change_active) cont->bcc_ofs = cpu_to_le16(offset - 3); } buf = (u8 *)tlv + sizeof(*cont); mt7915_mac_write_txwi(&dev->mt76, (__le32 *)buf, skb, wcid, 0, NULL, 0, BSS_CHANGED_BEACON); memcpy(buf + MT_TXD_SIZE, skb->data, skb->len); } static void mt7915_mcu_beacon_inband_discov(struct mt7915_dev *dev, struct ieee80211_vif *vif, struct sk_buff *rskb, struct bss_info_bcn *bcn, u32 changed) { #define OFFLOAD_TX_MODE_SU BIT(0) #define OFFLOAD_TX_MODE_MU BIT(1) struct ieee80211_hw *hw = mt76_hw(dev); struct mt7915_phy *phy = mt7915_hw_phy(hw); struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct cfg80211_chan_def *chandef = &mvif->phy->mt76->chandef; enum nl80211_band band = chandef->chan->band; struct mt76_wcid *wcid = &dev->mt76.global_wcid; struct bss_info_inband_discovery *discov; struct ieee80211_tx_info *info; struct sk_buff *skb = NULL; struct tlv *tlv; bool ext_phy = phy != &dev->phy; u8 *buf, interval; int len; if (changed & BSS_CHANGED_FILS_DISCOVERY && vif->bss_conf.fils_discovery.max_interval) { interval = vif->bss_conf.fils_discovery.max_interval; skb = ieee80211_get_fils_discovery_tmpl(hw, vif); } else if (changed & BSS_CHANGED_UNSOL_BCAST_PROBE_RESP && vif->bss_conf.unsol_bcast_probe_resp_interval) { interval = vif->bss_conf.unsol_bcast_probe_resp_interval; skb = ieee80211_get_unsol_bcast_probe_resp_tmpl(hw, vif); } if (!skb) return; info = IEEE80211_SKB_CB(skb); info->control.vif = vif; info->band = band; info->hw_queue |= FIELD_PREP(MT_TX_HW_QUEUE_PHY, ext_phy); len = sizeof(*discov) + MT_TXD_SIZE + skb->len; len = (len & 0x3) ? ((len | 0x3) + 1) : len; if (len > (MT7915_MAX_BSS_OFFLOAD_SIZE - rskb->len)) { dev_err(dev->mt76.dev, "inband discovery size limit exceed\n"); dev_kfree_skb(skb); return; } tlv = mt7915_mcu_add_nested_subtlv(rskb, BSS_INFO_BCN_DISCOV, len, &bcn->sub_ntlv, &bcn->len); discov = (struct bss_info_inband_discovery *)tlv; discov->tx_mode = OFFLOAD_TX_MODE_SU; /* 0: UNSOL PROBE RESP, 1: FILS DISCOV */ discov->tx_type = !!(changed & BSS_CHANGED_FILS_DISCOVERY); discov->tx_interval = interval; discov->prob_rsp_len = cpu_to_le16(MT_TXD_SIZE + skb->len); discov->enable = true; buf = (u8 *)tlv + sizeof(*discov); mt7915_mac_write_txwi(&dev->mt76, (__le32 *)buf, skb, wcid, 0, NULL, 0, changed); memcpy(buf + MT_TXD_SIZE, skb->data, skb->len); dev_kfree_skb(skb); } int mt7915_mcu_add_beacon(struct ieee80211_hw *hw, struct ieee80211_vif *vif, int en, u32 changed) { struct mt7915_dev *dev = mt7915_hw_dev(hw); struct mt7915_phy *phy = mt7915_hw_phy(hw); struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct ieee80211_mutable_offsets offs; struct ieee80211_tx_info *info; struct sk_buff *skb, *rskb; struct tlv *tlv; struct bss_info_bcn *bcn; int len = MT7915_MAX_BSS_OFFLOAD_SIZE; bool ext_phy = phy != &dev->phy; if (vif->bss_conf.nontransmitted) return 0; rskb = __mt76_connac_mcu_alloc_sta_req(&dev->mt76, &mvif->mt76, NULL, len); if (IS_ERR(rskb)) return PTR_ERR(rskb); tlv = mt76_connac_mcu_add_tlv(rskb, BSS_INFO_OFFLOAD, sizeof(*bcn)); bcn = (struct bss_info_bcn *)tlv; bcn->enable = en; if (!en) goto out; skb = ieee80211_beacon_get_template(hw, vif, &offs, 0); if (!skb) return -EINVAL; if (skb->len > MT7915_MAX_BEACON_SIZE - MT_TXD_SIZE) { dev_err(dev->mt76.dev, "Bcn size limit exceed\n"); dev_kfree_skb(skb); return -EINVAL; } info = IEEE80211_SKB_CB(skb); info->hw_queue = FIELD_PREP(MT_TX_HW_QUEUE_PHY, ext_phy); mt7915_mcu_beacon_cntdwn(vif, rskb, skb, bcn, &offs); mt7915_mcu_beacon_mbss(rskb, skb, vif, bcn, &offs); mt7915_mcu_beacon_cont(dev, vif, rskb, skb, bcn, &offs); dev_kfree_skb(skb); if (changed & BSS_CHANGED_UNSOL_BCAST_PROBE_RESP || changed & BSS_CHANGED_FILS_DISCOVERY) mt7915_mcu_beacon_inband_discov(dev, vif, rskb, bcn, changed); out: return mt76_mcu_skb_send_msg(&phy->dev->mt76, rskb, MCU_EXT_CMD(BSS_INFO_UPDATE), true); } static int mt7915_driver_own(struct mt7915_dev *dev, u8 band) { mt76_wr(dev, MT_TOP_LPCR_HOST_BAND(band), MT_TOP_LPCR_HOST_DRV_OWN); if (!mt76_poll_msec(dev, MT_TOP_LPCR_HOST_BAND(band), MT_TOP_LPCR_HOST_FW_OWN_STAT, 0, 500)) { dev_err(dev->mt76.dev, "Timeout for driver own\n"); return -EIO; } /* clear irq when the driver own success */ mt76_wr(dev, MT_TOP_LPCR_HOST_BAND_IRQ_STAT(band), MT_TOP_LPCR_HOST_BAND_STAT); return 0; } static int mt7915_firmware_state(struct mt7915_dev *dev, bool wa) { u32 state = FIELD_PREP(MT_TOP_MISC_FW_STATE, wa ? FW_STATE_RDY : FW_STATE_FW_DOWNLOAD); if (!mt76_poll_msec(dev, MT_TOP_MISC, MT_TOP_MISC_FW_STATE, state, 1000)) { dev_err(dev->mt76.dev, "Timeout for initializing firmware\n"); return -EIO; } return 0; } static int mt7915_load_firmware(struct mt7915_dev *dev) { int ret; /* make sure fw is download state */ if (mt7915_firmware_state(dev, false)) { /* restart firmware once */ mt76_connac_mcu_restart(&dev->mt76); ret = mt7915_firmware_state(dev, false); if (ret) { dev_err(dev->mt76.dev, "Firmware is not ready for download\n"); return ret; } } ret = mt76_connac2_load_patch(&dev->mt76, fw_name_var(dev, ROM_PATCH)); if (ret) return ret; ret = mt76_connac2_load_ram(&dev->mt76, fw_name_var(dev, FIRMWARE_WM), fw_name(dev, FIRMWARE_WA)); if (ret) return ret; ret = mt7915_firmware_state(dev, true); if (ret) return ret; mt76_queue_tx_cleanup(dev, dev->mt76.q_mcu[MT_MCUQ_FWDL], false); dev_dbg(dev->mt76.dev, "Firmware init done\n"); return 0; } int mt7915_mcu_fw_log_2_host(struct mt7915_dev *dev, u8 type, u8 ctrl) { struct { u8 ctrl_val; u8 pad[3]; } data = { .ctrl_val = ctrl }; if (type == MCU_FW_LOG_WA) return mt76_mcu_send_msg(&dev->mt76, MCU_WA_EXT_CMD(FW_LOG_2_HOST), &data, sizeof(data), true); return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(FW_LOG_2_HOST), &data, sizeof(data), true); } int mt7915_mcu_fw_dbg_ctrl(struct mt7915_dev *dev, u32 module, u8 level) { struct { u8 ver; u8 pad; __le16 len; u8 level; u8 rsv[3]; __le32 module_idx; } data = { .module_idx = cpu_to_le32(module), .level = level, }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(FW_DBG_CTRL), &data, sizeof(data), false); } int mt7915_mcu_muru_debug_set(struct mt7915_dev *dev, bool enabled) { struct { __le32 cmd; u8 enable; } data = { .cmd = cpu_to_le32(MURU_SET_TXC_TX_STATS_EN), .enable = enabled, }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(MURU_CTRL), &data, sizeof(data), false); } int mt7915_mcu_muru_debug_get(struct mt7915_phy *phy) { struct mt7915_dev *dev = phy->dev; struct sk_buff *skb; struct mt7915_mcu_muru_stats *mu_stats; int ret; struct { __le32 cmd; u8 band_idx; } req = { .cmd = cpu_to_le32(MURU_GET_TXC_TX_STATS), .band_idx = phy->mt76->band_idx, }; ret = mt76_mcu_send_and_get_msg(&dev->mt76, MCU_EXT_CMD(MURU_CTRL), &req, sizeof(req), true, &skb); if (ret) return ret; mu_stats = (struct mt7915_mcu_muru_stats *)(skb->data); /* accumulate stats, these are clear-on-read */ #define __dl_u32(s) phy->mib.dl_##s += le32_to_cpu(mu_stats->dl.s) #define __ul_u32(s) phy->mib.ul_##s += le32_to_cpu(mu_stats->ul.s) __dl_u32(cck_cnt); __dl_u32(ofdm_cnt); __dl_u32(htmix_cnt); __dl_u32(htgf_cnt); __dl_u32(vht_su_cnt); __dl_u32(vht_2mu_cnt); __dl_u32(vht_3mu_cnt); __dl_u32(vht_4mu_cnt); __dl_u32(he_su_cnt); __dl_u32(he_2ru_cnt); __dl_u32(he_2mu_cnt); __dl_u32(he_3ru_cnt); __dl_u32(he_3mu_cnt); __dl_u32(he_4ru_cnt); __dl_u32(he_4mu_cnt); __dl_u32(he_5to8ru_cnt); __dl_u32(he_9to16ru_cnt); __dl_u32(he_gtr16ru_cnt); __ul_u32(hetrig_su_cnt); __ul_u32(hetrig_2ru_cnt); __ul_u32(hetrig_3ru_cnt); __ul_u32(hetrig_4ru_cnt); __ul_u32(hetrig_5to8ru_cnt); __ul_u32(hetrig_9to16ru_cnt); __ul_u32(hetrig_gtr16ru_cnt); __ul_u32(hetrig_2mu_cnt); __ul_u32(hetrig_3mu_cnt); __ul_u32(hetrig_4mu_cnt); #undef __dl_u32 #undef __ul_u32 dev_kfree_skb(skb); return 0; } static int mt7915_mcu_set_mwds(struct mt7915_dev *dev, bool enabled) { struct { u8 enable; u8 _rsv[3]; } __packed req = { .enable = enabled }; return mt76_mcu_send_msg(&dev->mt76, MCU_WA_EXT_CMD(MWDS_SUPPORT), &req, sizeof(req), false); } int mt7915_mcu_set_muru_ctrl(struct mt7915_dev *dev, u32 cmd, u32 val) { struct { __le32 cmd; u8 val[4]; } __packed req = { .cmd = cpu_to_le32(cmd), }; put_unaligned_le32(val, req.val); return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(MURU_CTRL), &req, sizeof(req), false); } static int mt7915_mcu_init_rx_airtime(struct mt7915_dev *dev) { #define RX_AIRTIME_FEATURE_CTRL 1 #define RX_AIRTIME_BITWISE_CTRL 2 #define RX_AIRTIME_CLEAR_EN 1 struct { __le16 field; __le16 sub_field; __le32 set_status; __le32 get_status; u8 _rsv[12]; bool airtime_en; bool mibtime_en; bool earlyend_en; u8 _rsv1[9]; bool airtime_clear; bool mibtime_clear; u8 _rsv2[98]; } __packed req = { .field = cpu_to_le16(RX_AIRTIME_BITWISE_CTRL), .sub_field = cpu_to_le16(RX_AIRTIME_CLEAR_EN), .airtime_clear = true, }; int ret; ret = mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(RX_AIRTIME_CTRL), &req, sizeof(req), true); if (ret) return ret; req.field = cpu_to_le16(RX_AIRTIME_FEATURE_CTRL); req.sub_field = cpu_to_le16(RX_AIRTIME_CLEAR_EN); req.airtime_en = true; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(RX_AIRTIME_CTRL), &req, sizeof(req), true); } static int mt7915_red_set_watermark(struct mt7915_dev *dev) { #define RED_GLOBAL_TOKEN_WATERMARK 2 struct { __le32 args[3]; u8 cmd; u8 version; u8 __rsv1[4]; __le16 len; __le16 high_mark; __le16 low_mark; u8 __rsv2[12]; } __packed req = { .args[0] = cpu_to_le32(MCU_WA_PARAM_RED_SETTING), .cmd = RED_GLOBAL_TOKEN_WATERMARK, .len = cpu_to_le16(sizeof(req) - sizeof(req.args)), .high_mark = cpu_to_le16(MT7915_HW_TOKEN_SIZE - 256), .low_mark = cpu_to_le16(MT7915_HW_TOKEN_SIZE - 256 - 1536), }; return mt76_mcu_send_msg(&dev->mt76, MCU_WA_PARAM_CMD(SET), &req, sizeof(req), false); } static int mt7915_mcu_set_red(struct mt7915_dev *dev, bool enabled) { #define RED_DISABLE 0 #define RED_BY_WA_ENABLE 2 int ret; u32 red_type = enabled ? RED_BY_WA_ENABLE : RED_DISABLE; __le32 req = cpu_to_le32(red_type); if (enabled) { ret = mt7915_red_set_watermark(dev); if (ret < 0) return ret; } ret = mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(RED_ENABLE), &req, sizeof(req), false); if (ret < 0) return ret; return mt7915_mcu_wa_cmd(dev, MCU_WA_PARAM_CMD(SET), MCU_WA_PARAM_RED, enabled, 0); } int mt7915_mcu_init_firmware(struct mt7915_dev *dev) { int ret; /* force firmware operation mode into normal state, * which should be set before firmware download stage. */ mt76_wr(dev, MT_SWDEF_MODE, MT_SWDEF_NORMAL_MODE); ret = mt7915_driver_own(dev, 0); if (ret) return ret; /* set driver own for band1 when two hif exist */ if (dev->hif2) { ret = mt7915_driver_own(dev, 1); if (ret) return ret; } ret = mt7915_load_firmware(dev); if (ret) return ret; set_bit(MT76_STATE_MCU_RUNNING, &dev->mphy.state); ret = mt7915_mcu_fw_log_2_host(dev, MCU_FW_LOG_WM, 0); if (ret) return ret; ret = mt7915_mcu_fw_log_2_host(dev, MCU_FW_LOG_WA, 0); if (ret) return ret; if ((mtk_wed_device_active(&dev->mt76.mmio.wed) && is_mt7915(&dev->mt76)) || !mtk_wed_get_rx_capa(&dev->mt76.mmio.wed)) mt7915_mcu_wa_cmd(dev, MCU_WA_PARAM_CMD(CAPABILITY), 0, 0, 0); ret = mt7915_mcu_set_mwds(dev, 1); if (ret) return ret; ret = mt7915_mcu_set_muru_ctrl(dev, MURU_SET_PLATFORM_TYPE, MURU_PLATFORM_TYPE_PERF_LEVEL_2); if (ret) return ret; ret = mt7915_mcu_init_rx_airtime(dev); if (ret) return ret; return mt7915_mcu_set_red(dev, mtk_wed_device_active(&dev->mt76.mmio.wed)); } int mt7915_mcu_init(struct mt7915_dev *dev) { static const struct mt76_mcu_ops mt7915_mcu_ops = { .headroom = sizeof(struct mt76_connac2_mcu_txd), .mcu_skb_send_msg = mt7915_mcu_send_message, .mcu_parse_response = mt7915_mcu_parse_response, }; dev->mt76.mcu_ops = &mt7915_mcu_ops; return mt7915_mcu_init_firmware(dev); } void mt7915_mcu_exit(struct mt7915_dev *dev) { mt76_connac_mcu_restart(&dev->mt76); if (mt7915_firmware_state(dev, false)) { dev_err(dev->mt76.dev, "Failed to exit mcu\n"); goto out; } mt76_wr(dev, MT_TOP_LPCR_HOST_BAND(0), MT_TOP_LPCR_HOST_FW_OWN); if (dev->hif2) mt76_wr(dev, MT_TOP_LPCR_HOST_BAND(1), MT_TOP_LPCR_HOST_FW_OWN); out: skb_queue_purge(&dev->mt76.mcu.res_q); } static int mt7915_mcu_set_rx_hdr_trans_blacklist(struct mt7915_dev *dev, int band) { struct { u8 operation; u8 count; u8 _rsv[2]; u8 index; u8 enable; __le16 etype; } req = { .operation = 1, .count = 1, .enable = 1, .etype = cpu_to_le16(ETH_P_PAE), }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(RX_HDR_TRANS), &req, sizeof(req), false); } int mt7915_mcu_set_mac(struct mt7915_dev *dev, int band, bool enable, bool hdr_trans) { struct { u8 operation; u8 enable; u8 check_bssid; u8 insert_vlan; u8 remove_vlan; u8 tid; u8 mode; u8 rsv; } __packed req_trans = { .enable = hdr_trans, }; struct { u8 enable; u8 band; u8 rsv[2]; } __packed req_mac = { .enable = enable, .band = band, }; int ret; ret = mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(RX_HDR_TRANS), &req_trans, sizeof(req_trans), false); if (ret) return ret; if (hdr_trans) mt7915_mcu_set_rx_hdr_trans_blacklist(dev, band); return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(MAC_INIT_CTRL), &req_mac, sizeof(req_mac), true); } int mt7915_mcu_update_edca(struct mt7915_dev *dev, void *param) { struct mt7915_mcu_tx *req = (struct mt7915_mcu_tx *)param; u8 num = req->total; size_t len = sizeof(*req) - (IEEE80211_NUM_ACS - num) * sizeof(struct edca); return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(EDCA_UPDATE), req, len, true); } int mt7915_mcu_set_tx(struct mt7915_dev *dev, struct ieee80211_vif *vif) { #define TX_CMD_MODE 1 struct mt7915_mcu_tx req = { .valid = true, .mode = TX_CMD_MODE, .total = IEEE80211_NUM_ACS, }; struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; int ac; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { struct ieee80211_tx_queue_params *q = &mvif->queue_params[ac]; struct edca *e = &req.edca[ac]; e->set = WMM_PARAM_SET; e->queue = ac + mvif->mt76.wmm_idx * MT76_CONNAC_MAX_WMM_SETS; e->aifs = q->aifs; e->txop = cpu_to_le16(q->txop); if (q->cw_min) e->cw_min = fls(q->cw_min); else e->cw_min = 5; if (q->cw_max) e->cw_max = cpu_to_le16(fls(q->cw_max)); else e->cw_max = cpu_to_le16(10); } return mt7915_mcu_update_edca(dev, &req); } int mt7915_mcu_set_fcc5_lpn(struct mt7915_dev *dev, int val) { struct { __le32 tag; __le16 min_lpn; u8 rsv[2]; } __packed req = { .tag = cpu_to_le32(0x1), .min_lpn = cpu_to_le16(val), }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(SET_RDD_TH), &req, sizeof(req), true); } int mt7915_mcu_set_pulse_th(struct mt7915_dev *dev, const struct mt7915_dfs_pulse *pulse) { struct { __le32 tag; __le32 max_width; /* us */ __le32 max_pwr; /* dbm */ __le32 min_pwr; /* dbm */ __le32 min_stgr_pri; /* us */ __le32 max_stgr_pri; /* us */ __le32 min_cr_pri; /* us */ __le32 max_cr_pri; /* us */ } __packed req = { .tag = cpu_to_le32(0x3), #define __req_field(field) .field = cpu_to_le32(pulse->field) __req_field(max_width), __req_field(max_pwr), __req_field(min_pwr), __req_field(min_stgr_pri), __req_field(max_stgr_pri), __req_field(min_cr_pri), __req_field(max_cr_pri), #undef __req_field }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(SET_RDD_TH), &req, sizeof(req), true); } int mt7915_mcu_set_radar_th(struct mt7915_dev *dev, int index, const struct mt7915_dfs_pattern *pattern) { struct { __le32 tag; __le16 radar_type; u8 enb; u8 stgr; u8 min_crpn; u8 max_crpn; u8 min_crpr; u8 min_pw; __le32 min_pri; __le32 max_pri; u8 max_pw; u8 min_crbn; u8 max_crbn; u8 min_stgpn; u8 max_stgpn; u8 min_stgpr; u8 rsv[2]; __le32 min_stgpr_diff; } __packed req = { .tag = cpu_to_le32(0x2), .radar_type = cpu_to_le16(index), #define __req_field_u8(field) .field = pattern->field #define __req_field_u32(field) .field = cpu_to_le32(pattern->field) __req_field_u8(enb), __req_field_u8(stgr), __req_field_u8(min_crpn), __req_field_u8(max_crpn), __req_field_u8(min_crpr), __req_field_u8(min_pw), __req_field_u32(min_pri), __req_field_u32(max_pri), __req_field_u8(max_pw), __req_field_u8(min_crbn), __req_field_u8(max_crbn), __req_field_u8(min_stgpn), __req_field_u8(max_stgpn), __req_field_u8(min_stgpr), __req_field_u32(min_stgpr_diff), #undef __req_field_u8 #undef __req_field_u32 }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(SET_RDD_TH), &req, sizeof(req), true); } static int mt7915_mcu_background_chain_ctrl(struct mt7915_phy *phy, struct cfg80211_chan_def *chandef, int cmd) { struct mt7915_dev *dev = phy->dev; struct mt76_phy *mphy = phy->mt76; struct ieee80211_channel *chan = mphy->chandef.chan; int freq = mphy->chandef.center_freq1; struct mt7915_mcu_background_chain_ctrl req = { .monitor_scan_type = 2, /* simple rx */ }; if (!chandef && cmd != CH_SWITCH_BACKGROUND_SCAN_STOP) return -EINVAL; if (!cfg80211_chandef_valid(&mphy->chandef)) return -EINVAL; switch (cmd) { case CH_SWITCH_BACKGROUND_SCAN_START: { req.chan = chan->hw_value; req.central_chan = ieee80211_frequency_to_channel(freq); req.bw = mt76_connac_chan_bw(&mphy->chandef); req.monitor_chan = chandef->chan->hw_value; req.monitor_central_chan = ieee80211_frequency_to_channel(chandef->center_freq1); req.monitor_bw = mt76_connac_chan_bw(chandef); req.band_idx = phy->mt76->band_idx; req.scan_mode = 1; break; } case CH_SWITCH_BACKGROUND_SCAN_RUNNING: req.monitor_chan = chandef->chan->hw_value; req.monitor_central_chan = ieee80211_frequency_to_channel(chandef->center_freq1); req.band_idx = phy->mt76->band_idx; req.scan_mode = 2; break; case CH_SWITCH_BACKGROUND_SCAN_STOP: req.chan = chan->hw_value; req.central_chan = ieee80211_frequency_to_channel(freq); req.bw = mt76_connac_chan_bw(&mphy->chandef); req.tx_stream = hweight8(mphy->antenna_mask); req.rx_stream = mphy->antenna_mask; break; default: return -EINVAL; } req.band = chandef ? chandef->chan->band == NL80211_BAND_5GHZ : 1; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(OFFCH_SCAN_CTRL), &req, sizeof(req), false); } int mt7915_mcu_rdd_background_enable(struct mt7915_phy *phy, struct cfg80211_chan_def *chandef) { struct mt7915_dev *dev = phy->dev; int err, region; if (!chandef) { /* disable offchain */ err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_STOP, MT_RX_SEL2, 0, 0); if (err) return err; return mt7915_mcu_background_chain_ctrl(phy, NULL, CH_SWITCH_BACKGROUND_SCAN_STOP); } err = mt7915_mcu_background_chain_ctrl(phy, chandef, CH_SWITCH_BACKGROUND_SCAN_START); if (err) return err; switch (dev->mt76.region) { case NL80211_DFS_ETSI: region = 0; break; case NL80211_DFS_JP: region = 2; break; case NL80211_DFS_FCC: default: region = 1; break; } return mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_START, MT_RX_SEL2, 0, region); } int mt7915_mcu_set_chan_info(struct mt7915_phy *phy, int cmd) { static const u8 ch_band[] = { [NL80211_BAND_2GHZ] = 0, [NL80211_BAND_5GHZ] = 1, [NL80211_BAND_6GHZ] = 2, }; struct mt7915_dev *dev = phy->dev; struct cfg80211_chan_def *chandef = &phy->mt76->chandef; int freq1 = chandef->center_freq1; u8 band = phy->mt76->band_idx; struct { u8 control_ch; u8 center_ch; u8 bw; u8 tx_path_num; u8 rx_path; /* mask or num */ u8 switch_reason; u8 band_idx; u8 center_ch2; /* for 80+80 only */ __le16 cac_case; u8 channel_band; u8 rsv0; __le32 outband_freq; u8 txpower_drop; u8 ap_bw; u8 ap_center_ch; u8 rsv1[57]; } __packed req = { .control_ch = chandef->chan->hw_value, .center_ch = ieee80211_frequency_to_channel(freq1), .bw = mt76_connac_chan_bw(chandef), .tx_path_num = hweight16(phy->mt76->chainmask), .rx_path = phy->mt76->chainmask >> (dev->chainshift * band), .band_idx = band, .channel_band = ch_band[chandef->chan->band], }; #ifdef CONFIG_NL80211_TESTMODE if (phy->mt76->test.tx_antenna_mask && mt76_testmode_enabled(phy->mt76)) { req.tx_path_num = fls(phy->mt76->test.tx_antenna_mask); req.rx_path = phy->mt76->test.tx_antenna_mask; } #endif if (mt76_connac_spe_idx(phy->mt76->antenna_mask)) req.tx_path_num = fls(phy->mt76->antenna_mask); if (cmd == MCU_EXT_CMD(SET_RX_PATH) || dev->mt76.hw->conf.flags & IEEE80211_CONF_MONITOR) req.switch_reason = CH_SWITCH_NORMAL; else if (phy->mt76->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL) req.switch_reason = CH_SWITCH_SCAN_BYPASS_DPD; else if (!cfg80211_reg_can_beacon(phy->mt76->hw->wiphy, chandef, NL80211_IFTYPE_AP)) req.switch_reason = CH_SWITCH_DFS; else req.switch_reason = CH_SWITCH_NORMAL; if (cmd == MCU_EXT_CMD(CHANNEL_SWITCH)) req.rx_path = hweight8(req.rx_path); if (chandef->width == NL80211_CHAN_WIDTH_80P80) { int freq2 = chandef->center_freq2; req.center_ch2 = ieee80211_frequency_to_channel(freq2); } return mt76_mcu_send_msg(&dev->mt76, cmd, &req, sizeof(req), true); } static int mt7915_mcu_set_eeprom_flash(struct mt7915_dev *dev) { #define MAX_PAGE_IDX_MASK GENMASK(7, 5) #define PAGE_IDX_MASK GENMASK(4, 2) #define PER_PAGE_SIZE 0x400 struct mt7915_mcu_eeprom req = { .buffer_mode = EE_MODE_BUFFER }; u16 eeprom_size = mt7915_eeprom_size(dev); u8 total = DIV_ROUND_UP(eeprom_size, PER_PAGE_SIZE); u8 *eep = (u8 *)dev->mt76.eeprom.data; int eep_len; int i; for (i = 0; i < total; i++, eep += eep_len) { struct sk_buff *skb; int ret; if (i == total - 1 && !!(eeprom_size % PER_PAGE_SIZE)) eep_len = eeprom_size % PER_PAGE_SIZE; else eep_len = PER_PAGE_SIZE; skb = mt76_mcu_msg_alloc(&dev->mt76, NULL, sizeof(req) + eep_len); if (!skb) return -ENOMEM; req.format = FIELD_PREP(MAX_PAGE_IDX_MASK, total - 1) | FIELD_PREP(PAGE_IDX_MASK, i) | EE_FORMAT_WHOLE; req.len = cpu_to_le16(eep_len); skb_put_data(skb, &req, sizeof(req)); skb_put_data(skb, eep, eep_len); ret = mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_EXT_CMD(EFUSE_BUFFER_MODE), true); if (ret) return ret; } return 0; } int mt7915_mcu_set_eeprom(struct mt7915_dev *dev) { struct mt7915_mcu_eeprom req = { .buffer_mode = EE_MODE_EFUSE, .format = EE_FORMAT_WHOLE, }; if (dev->flash_mode) return mt7915_mcu_set_eeprom_flash(dev); return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(EFUSE_BUFFER_MODE), &req, sizeof(req), true); } int mt7915_mcu_get_eeprom(struct mt7915_dev *dev, u32 offset) { struct mt7915_mcu_eeprom_info req = { .addr = cpu_to_le32(round_down(offset, MT7915_EEPROM_BLOCK_SIZE)), }; struct mt7915_mcu_eeprom_info *res; struct sk_buff *skb; int ret; u8 *buf; ret = mt76_mcu_send_and_get_msg(&dev->mt76, MCU_EXT_QUERY(EFUSE_ACCESS), &req, sizeof(req), true, &skb); if (ret) return ret; res = (struct mt7915_mcu_eeprom_info *)skb->data; buf = dev->mt76.eeprom.data + le32_to_cpu(res->addr); memcpy(buf, res->data, MT7915_EEPROM_BLOCK_SIZE); dev_kfree_skb(skb); return 0; } int mt7915_mcu_get_eeprom_free_block(struct mt7915_dev *dev, u8 *block_num) { struct { u8 _rsv; u8 version; u8 die_idx; u8 _rsv2; } __packed req = { .version = 1, }; struct sk_buff *skb; int ret; ret = mt76_mcu_send_and_get_msg(&dev->mt76, MCU_EXT_QUERY(EFUSE_FREE_BLOCK), &req, sizeof(req), true, &skb); if (ret) return ret; *block_num = *(u8 *)skb->data; dev_kfree_skb(skb); return 0; } static int mt7915_mcu_set_pre_cal(struct mt7915_dev *dev, u8 idx, u8 *data, u32 len, int cmd) { struct { u8 dir; u8 valid; __le16 bitmap; s8 precal; u8 action; u8 band; u8 idx; u8 rsv[4]; __le32 len; } req = {}; struct sk_buff *skb; skb = mt76_mcu_msg_alloc(&dev->mt76, NULL, sizeof(req) + len); if (!skb) return -ENOMEM; req.idx = idx; req.len = cpu_to_le32(len); skb_put_data(skb, &req, sizeof(req)); skb_put_data(skb, data, len); return mt76_mcu_skb_send_msg(&dev->mt76, skb, cmd, false); } int mt7915_mcu_apply_group_cal(struct mt7915_dev *dev) { u8 idx = 0, *cal = dev->cal, *eep = dev->mt76.eeprom.data; u32 total = MT_EE_CAL_GROUP_SIZE; if (!(eep[MT_EE_DO_PRE_CAL] & MT_EE_WIFI_CAL_GROUP)) return 0; /* * Items: Rx DCOC, RSSI DCOC, Tx TSSI DCOC, Tx LPFG * Tx FDIQ, Tx DCIQ, Rx FDIQ, Rx FIIQ, ADCDCOC */ while (total > 0) { int ret, len; len = min_t(u32, total, MT_EE_CAL_UNIT); ret = mt7915_mcu_set_pre_cal(dev, idx, cal, len, MCU_EXT_CMD(GROUP_PRE_CAL_INFO)); if (ret) return ret; total -= len; cal += len; idx++; } return 0; } static int mt7915_find_freq_idx(const u16 *freqs, int n_freqs, u16 cur) { int i; for (i = 0; i < n_freqs; i++) if (cur == freqs[i]) return i; return -1; } static int mt7915_dpd_freq_idx(u16 freq, u8 bw) { static const u16 freq_list[] = { 5180, 5200, 5220, 5240, 5260, 5280, 5300, 5320, 5500, 5520, 5540, 5560, 5580, 5600, 5620, 5640, 5660, 5680, 5700, 5745, 5765, 5785, 5805, 5825 }; int offset_2g = ARRAY_SIZE(freq_list); int idx; if (freq < 4000) { if (freq < 2432) return offset_2g; if (freq < 2457) return offset_2g + 1; return offset_2g + 2; } if (bw == NL80211_CHAN_WIDTH_80P80 || bw == NL80211_CHAN_WIDTH_160) return -1; if (bw != NL80211_CHAN_WIDTH_20) { idx = mt7915_find_freq_idx(freq_list, ARRAY_SIZE(freq_list), freq + 10); if (idx >= 0) return idx; idx = mt7915_find_freq_idx(freq_list, ARRAY_SIZE(freq_list), freq - 10); if (idx >= 0) return idx; } return mt7915_find_freq_idx(freq_list, ARRAY_SIZE(freq_list), freq); } int mt7915_mcu_apply_tx_dpd(struct mt7915_phy *phy) { struct mt7915_dev *dev = phy->dev; struct cfg80211_chan_def *chandef = &phy->mt76->chandef; u16 total = 2, center_freq = chandef->center_freq1; u8 *cal = dev->cal, *eep = dev->mt76.eeprom.data; int idx; if (!(eep[MT_EE_DO_PRE_CAL] & MT_EE_WIFI_CAL_DPD)) return 0; idx = mt7915_dpd_freq_idx(center_freq, chandef->width); if (idx < 0) return -EINVAL; /* Items: Tx DPD, Tx Flatness */ idx = idx * 2; cal += MT_EE_CAL_GROUP_SIZE; while (total--) { int ret; cal += (idx * MT_EE_CAL_UNIT); ret = mt7915_mcu_set_pre_cal(dev, idx, cal, MT_EE_CAL_UNIT, MCU_EXT_CMD(DPD_PRE_CAL_INFO)); if (ret) return ret; idx++; } return 0; } int mt7915_mcu_get_chan_mib_info(struct mt7915_phy *phy, bool chan_switch) { struct mt76_channel_state *state = phy->mt76->chan_state; struct mt76_channel_state *state_ts = &phy->state_ts; struct mt7915_dev *dev = phy->dev; struct mt7915_mcu_mib *res, req[5]; struct sk_buff *skb; static const u32 *offs; int i, ret, len, offs_cc; u64 cc_tx; /* strict order */ if (is_mt7915(&dev->mt76)) { static const u32 chip_offs[] = { MIB_NON_WIFI_TIME, MIB_TX_TIME, MIB_RX_TIME, MIB_OBSS_AIRTIME, MIB_TXOP_INIT_COUNT, }; len = ARRAY_SIZE(chip_offs); offs = chip_offs; offs_cc = 20; } else { static const u32 chip_offs[] = { MIB_NON_WIFI_TIME_V2, MIB_TX_TIME_V2, MIB_RX_TIME_V2, MIB_OBSS_AIRTIME_V2 }; len = ARRAY_SIZE(chip_offs); offs = chip_offs; offs_cc = 0; } for (i = 0; i < len; i++) { req[i].band = cpu_to_le32(phy->mt76->band_idx); req[i].offs = cpu_to_le32(offs[i]); } ret = mt76_mcu_send_and_get_msg(&dev->mt76, MCU_EXT_CMD(GET_MIB_INFO), req, len * sizeof(req[0]), true, &skb); if (ret) return ret; res = (struct mt7915_mcu_mib *)(skb->data + offs_cc); #define __res_u64(s) le64_to_cpu(res[s].data) /* subtract Tx backoff time from Tx duration */ cc_tx = is_mt7915(&dev->mt76) ? __res_u64(1) - __res_u64(4) : __res_u64(1); if (chan_switch) goto out; state->cc_tx += cc_tx - state_ts->cc_tx; state->cc_bss_rx += __res_u64(2) - state_ts->cc_bss_rx; state->cc_rx += __res_u64(2) + __res_u64(3) - state_ts->cc_rx; state->cc_busy += __res_u64(0) + cc_tx + __res_u64(2) + __res_u64(3) - state_ts->cc_busy; out: state_ts->cc_tx = cc_tx; state_ts->cc_bss_rx = __res_u64(2); state_ts->cc_rx = __res_u64(2) + __res_u64(3); state_ts->cc_busy = __res_u64(0) + cc_tx + __res_u64(2) + __res_u64(3); #undef __res_u64 dev_kfree_skb(skb); return 0; } int mt7915_mcu_get_temperature(struct mt7915_phy *phy) { struct mt7915_dev *dev = phy->dev; struct { u8 ctrl_id; u8 action; u8 band_idx; u8 rsv[5]; } req = { .ctrl_id = THERMAL_SENSOR_TEMP_QUERY, .band_idx = phy->mt76->band_idx, }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(THERMAL_CTRL), &req, sizeof(req), true); } int mt7915_mcu_set_thermal_throttling(struct mt7915_phy *phy, u8 state) { struct mt7915_dev *dev = phy->dev; struct mt7915_mcu_thermal_ctrl req = { .band_idx = phy->mt76->band_idx, .ctrl_id = THERMAL_PROTECT_DUTY_CONFIG, }; int level, ret; /* set duty cycle and level */ for (level = 0; level < 4; level++) { req.duty.duty_level = level; req.duty.duty_cycle = state; state /= 2; ret = mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(THERMAL_PROT), &req, sizeof(req), false); if (ret) return ret; } return 0; } int mt7915_mcu_set_thermal_protect(struct mt7915_phy *phy) { struct mt7915_dev *dev = phy->dev; struct { struct mt7915_mcu_thermal_ctrl ctrl; __le32 trigger_temp; __le32 restore_temp; __le16 sustain_time; u8 rsv[2]; } __packed req = { .ctrl = { .band_idx = phy->mt76->band_idx, .type.protect_type = 1, .type.trigger_type = 1, }, }; int ret; req.ctrl.ctrl_id = THERMAL_PROTECT_DISABLE; ret = mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(THERMAL_PROT), &req, sizeof(req.ctrl), false); if (ret) return ret; /* set high-temperature trigger threshold */ req.ctrl.ctrl_id = THERMAL_PROTECT_ENABLE; /* add a safety margin ~10 */ req.restore_temp = cpu_to_le32(phy->throttle_temp[0] - 10); req.trigger_temp = cpu_to_le32(phy->throttle_temp[1]); req.sustain_time = cpu_to_le16(10); return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(THERMAL_PROT), &req, sizeof(req), false); } int mt7915_mcu_set_txpower_frame_min(struct mt7915_phy *phy, s8 txpower) { struct mt7915_dev *dev = phy->dev; struct { u8 format_id; u8 rsv; u8 band_idx; s8 txpower_min; } __packed req = { .format_id = TX_POWER_LIMIT_FRAME_MIN, .band_idx = phy->mt76->band_idx, .txpower_min = txpower * 2, /* 0.5db */ }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(TX_POWER_FEATURE_CTRL), &req, sizeof(req), true); } int mt7915_mcu_set_txpower_frame(struct mt7915_phy *phy, struct ieee80211_vif *vif, struct ieee80211_sta *sta, s8 txpower) { struct mt7915_sta *msta = (struct mt7915_sta *)sta->drv_priv; struct mt7915_dev *dev = phy->dev; struct mt76_phy *mphy = phy->mt76; struct { u8 format_id; u8 rsv[3]; u8 band_idx; s8 txpower_max; __le16 wcid; s8 txpower_offs[48]; } __packed req = { .format_id = TX_POWER_LIMIT_FRAME, .band_idx = phy->mt76->band_idx, .txpower_max = DIV_ROUND_UP(mphy->txpower_cur, 2), .wcid = cpu_to_le16(msta->wcid.idx), }; int ret; s8 txpower_sku[MT7915_SKU_RATE_NUM]; ret = mt7915_mcu_get_txpower_sku(phy, txpower_sku, sizeof(txpower_sku)); if (ret) return ret; txpower = mt7915_get_power_bound(phy, txpower); if (txpower > mphy->txpower_cur || txpower < 0) return -EINVAL; if (txpower) { u32 offs, len, i; if (sta->deflink.ht_cap.ht_supported) { const u8 *sku_len = mt7915_sku_group_len; offs = sku_len[SKU_CCK] + sku_len[SKU_OFDM]; len = sku_len[SKU_HT_BW20] + sku_len[SKU_HT_BW40]; if (sta->deflink.vht_cap.vht_supported) { offs += len; len = sku_len[SKU_VHT_BW20] * 4; if (sta->deflink.he_cap.has_he) { offs += len + sku_len[SKU_HE_RU26] * 3; len = sku_len[SKU_HE_RU242] * 4; } } } else { return -EINVAL; } for (i = 0; i < len; i++, offs++) req.txpower_offs[i] = DIV_ROUND_UP(txpower - txpower_sku[offs], 2); } return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(TX_POWER_FEATURE_CTRL), &req, sizeof(req), true); } int mt7915_mcu_set_txpower_sku(struct mt7915_phy *phy) { struct mt7915_dev *dev = phy->dev; struct mt76_phy *mphy = phy->mt76; struct ieee80211_hw *hw = mphy->hw; struct mt7915_mcu_txpower_sku req = { .format_id = TX_POWER_LIMIT_TABLE, .band_idx = phy->mt76->band_idx, }; struct mt76_power_limits limits_array; s8 *la = (s8 *)&limits_array; int i, idx; int tx_power; tx_power = mt7915_get_power_bound(phy, hw->conf.power_level); tx_power = mt76_get_rate_power_limits(mphy, mphy->chandef.chan, &limits_array, tx_power); mphy->txpower_cur = tx_power; for (i = 0, idx = 0; i < ARRAY_SIZE(mt7915_sku_group_len); i++) { u8 mcs_num, len = mt7915_sku_group_len[i]; int j; if (i >= SKU_HT_BW20 && i <= SKU_VHT_BW160) { mcs_num = 10; if (i == SKU_HT_BW20 || i == SKU_VHT_BW20) la = (s8 *)&limits_array + 12; } else { mcs_num = len; } for (j = 0; j < min_t(u8, mcs_num, len); j++) req.txpower_sku[idx + j] = la[j]; la += mcs_num; idx += len; } return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(TX_POWER_FEATURE_CTRL), &req, sizeof(req), true); } int mt7915_mcu_get_txpower_sku(struct mt7915_phy *phy, s8 *txpower, int len) { #define RATE_POWER_INFO 2 struct mt7915_dev *dev = phy->dev; struct { u8 format_id; u8 category; u8 band_idx; u8 _rsv; } __packed req = { .format_id = TX_POWER_LIMIT_INFO, .category = RATE_POWER_INFO, .band_idx = phy->mt76->band_idx, }; s8 txpower_sku[MT7915_SKU_RATE_NUM][2]; struct sk_buff *skb; int ret, i; ret = mt76_mcu_send_and_get_msg(&dev->mt76, MCU_EXT_CMD(TX_POWER_FEATURE_CTRL), &req, sizeof(req), true, &skb); if (ret) return ret; memcpy(txpower_sku, skb->data + 4, sizeof(txpower_sku)); for (i = 0; i < len; i++) txpower[i] = txpower_sku[i][req.band_idx]; dev_kfree_skb(skb); return 0; } int mt7915_mcu_set_test_param(struct mt7915_dev *dev, u8 param, bool test_mode, u8 en) { struct { u8 test_mode_en; u8 param_idx; u8 _rsv[2]; u8 enable; u8 _rsv2[3]; u8 pad[8]; } __packed req = { .test_mode_en = test_mode, .param_idx = param, .enable = en, }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(ATE_CTRL), &req, sizeof(req), false); } int mt7915_mcu_set_sku_en(struct mt7915_phy *phy, bool enable) { struct mt7915_dev *dev = phy->dev; struct mt7915_sku { u8 format_id; u8 sku_enable; u8 band_idx; u8 rsv; } __packed req = { .format_id = TX_POWER_LIMIT_ENABLE, .band_idx = phy->mt76->band_idx, .sku_enable = enable, }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(TX_POWER_FEATURE_CTRL), &req, sizeof(req), true); } int mt7915_mcu_set_ser(struct mt7915_dev *dev, u8 action, u8 set, u8 band) { struct { u8 action; u8 set; u8 band; u8 rsv; } req = { .action = action, .set = set, .band = band, }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(SET_SER_TRIGGER), &req, sizeof(req), false); } int mt7915_mcu_set_txbf(struct mt7915_dev *dev, u8 action) { struct { u8 action; union { struct { u8 snd_mode; u8 sta_num; u8 rsv; u8 wlan_idx[4]; __le32 snd_period; /* ms */ } __packed snd; struct { bool ebf; bool ibf; u8 rsv; } __packed type; struct { u8 bf_num; u8 bf_bitmap; u8 bf_sel[8]; u8 rsv[5]; } __packed mod; }; } __packed req = { .action = action, }; #define MT_BF_PROCESSING 4 switch (action) { case MT_BF_SOUNDING_ON: req.snd.snd_mode = MT_BF_PROCESSING; break; case MT_BF_TYPE_UPDATE: req.type.ebf = true; req.type.ibf = dev->ibf; break; case MT_BF_MODULE_UPDATE: req.mod.bf_num = 2; req.mod.bf_bitmap = GENMASK(1, 0); break; default: return -EINVAL; } return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(TXBF_ACTION), &req, sizeof(req), true); } static int mt7915_mcu_enable_obss_spr(struct mt7915_phy *phy, u8 action, u8 val) { struct mt7915_dev *dev = phy->dev; struct mt7915_mcu_sr_ctrl req = { .action = action, .argnum = 1, .band_idx = phy->mt76->band_idx, .val = cpu_to_le32(val), }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(SET_SPR), &req, sizeof(req), true); } static int mt7915_mcu_set_obss_spr_pd(struct mt7915_phy *phy, struct ieee80211_he_obss_pd *he_obss_pd) { struct mt7915_dev *dev = phy->dev; struct { struct mt7915_mcu_sr_ctrl ctrl; struct { u8 pd_th_non_srg; u8 pd_th_srg; u8 period_offs; u8 rcpi_src; __le16 obss_pd_min; __le16 obss_pd_min_srg; u8 resp_txpwr_mode; u8 txpwr_restrict_mode; u8 txpwr_ref; u8 rsv[3]; } __packed param; } __packed req = { .ctrl = { .action = SPR_SET_PARAM, .argnum = 9, .band_idx = phy->mt76->band_idx, }, }; int ret; u8 max_th = 82, non_srg_max_th = 62; /* disable firmware dynamical PD asjustment */ ret = mt7915_mcu_enable_obss_spr(phy, SPR_ENABLE_DPD, false); if (ret) return ret; if (he_obss_pd->sr_ctrl & IEEE80211_HE_SPR_NON_SRG_OBSS_PD_SR_DISALLOWED) req.param.pd_th_non_srg = max_th; else if (he_obss_pd->sr_ctrl & IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT) req.param.pd_th_non_srg = max_th - he_obss_pd->non_srg_max_offset; else req.param.pd_th_non_srg = non_srg_max_th; if (he_obss_pd->sr_ctrl & IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT) req.param.pd_th_srg = max_th - he_obss_pd->max_offset; req.param.obss_pd_min = cpu_to_le16(82); req.param.obss_pd_min_srg = cpu_to_le16(82); req.param.txpwr_restrict_mode = 2; req.param.txpwr_ref = 21; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(SET_SPR), &req, sizeof(req), true); } static int mt7915_mcu_set_obss_spr_siga(struct mt7915_phy *phy, struct ieee80211_vif *vif, struct ieee80211_he_obss_pd *he_obss_pd) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct mt7915_dev *dev = phy->dev; u8 omac = mvif->mt76.omac_idx; struct { struct mt7915_mcu_sr_ctrl ctrl; struct { u8 omac; u8 rsv[3]; u8 flag[20]; } __packed siga; } __packed req = { .ctrl = { .action = SPR_SET_SIGA, .argnum = 1, .band_idx = phy->mt76->band_idx, }, .siga = { .omac = omac > HW_BSSID_MAX ? omac - 12 : omac, }, }; int ret; if (he_obss_pd->sr_ctrl & IEEE80211_HE_SPR_HESIGA_SR_VAL15_ALLOWED) req.siga.flag[req.siga.omac] = 0xf; else return 0; /* switch to normal AP mode */ ret = mt7915_mcu_enable_obss_spr(phy, SPR_ENABLE_MODE, 0); if (ret) return ret; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(SET_SPR), &req, sizeof(req), true); } static int mt7915_mcu_set_obss_spr_bitmap(struct mt7915_phy *phy, struct ieee80211_he_obss_pd *he_obss_pd) { struct mt7915_dev *dev = phy->dev; struct { struct mt7915_mcu_sr_ctrl ctrl; struct { __le32 color_l[2]; __le32 color_h[2]; __le32 bssid_l[2]; __le32 bssid_h[2]; } __packed bitmap; } __packed req = { .ctrl = { .action = SPR_SET_SRG_BITMAP, .argnum = 4, .band_idx = phy->mt76->band_idx, }, }; u32 bitmap; memcpy(&bitmap, he_obss_pd->bss_color_bitmap, sizeof(bitmap)); req.bitmap.color_l[req.ctrl.band_idx] = cpu_to_le32(bitmap); memcpy(&bitmap, he_obss_pd->bss_color_bitmap + 4, sizeof(bitmap)); req.bitmap.color_h[req.ctrl.band_idx] = cpu_to_le32(bitmap); memcpy(&bitmap, he_obss_pd->partial_bssid_bitmap, sizeof(bitmap)); req.bitmap.bssid_l[req.ctrl.band_idx] = cpu_to_le32(bitmap); memcpy(&bitmap, he_obss_pd->partial_bssid_bitmap + 4, sizeof(bitmap)); req.bitmap.bssid_h[req.ctrl.band_idx] = cpu_to_le32(bitmap); return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(SET_SPR), &req, sizeof(req), true); } int mt7915_mcu_add_obss_spr(struct mt7915_phy *phy, struct ieee80211_vif *vif, struct ieee80211_he_obss_pd *he_obss_pd) { int ret; /* enable firmware scene detection algorithms */ ret = mt7915_mcu_enable_obss_spr(phy, SPR_ENABLE_SD, sr_scene_detect); if (ret) return ret; /* firmware dynamically adjusts PD threshold so skip manual control */ if (sr_scene_detect && !he_obss_pd->enable) return 0; /* enable spatial reuse */ ret = mt7915_mcu_enable_obss_spr(phy, SPR_ENABLE, he_obss_pd->enable); if (ret) return ret; if (sr_scene_detect || !he_obss_pd->enable) return 0; ret = mt7915_mcu_enable_obss_spr(phy, SPR_ENABLE_TX, true); if (ret) return ret; /* set SRG/non-SRG OBSS PD threshold */ ret = mt7915_mcu_set_obss_spr_pd(phy, he_obss_pd); if (ret) return ret; /* Set SR prohibit */ ret = mt7915_mcu_set_obss_spr_siga(phy, vif, he_obss_pd); if (ret) return ret; /* set SRG BSS color/BSSID bitmap */ return mt7915_mcu_set_obss_spr_bitmap(phy, he_obss_pd); } int mt7915_mcu_get_rx_rate(struct mt7915_phy *phy, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct rate_info *rate) { struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct mt7915_sta *msta = (struct mt7915_sta *)sta->drv_priv; struct mt7915_dev *dev = phy->dev; struct mt76_phy *mphy = phy->mt76; struct { u8 category; u8 band; __le16 wcid; } __packed req = { .category = MCU_PHY_STATE_CONTENTION_RX_RATE, .band = mvif->mt76.band_idx, .wcid = cpu_to_le16(msta->wcid.idx), }; struct ieee80211_supported_band *sband; struct mt7915_mcu_phy_rx_info *res; struct sk_buff *skb; int ret; bool cck = false; ret = mt76_mcu_send_and_get_msg(&dev->mt76, MCU_EXT_CMD(PHY_STAT_INFO), &req, sizeof(req), true, &skb); if (ret) return ret; res = (struct mt7915_mcu_phy_rx_info *)skb->data; rate->mcs = res->rate; rate->nss = res->nsts + 1; switch (res->mode) { case MT_PHY_TYPE_CCK: cck = true; fallthrough; case MT_PHY_TYPE_OFDM: if (mphy->chandef.chan->band == NL80211_BAND_5GHZ) sband = &mphy->sband_5g.sband; else if (mphy->chandef.chan->band == NL80211_BAND_6GHZ) sband = &mphy->sband_6g.sband; else sband = &mphy->sband_2g.sband; rate->mcs = mt76_get_rate(&dev->mt76, sband, rate->mcs, cck); rate->legacy = sband->bitrates[rate->mcs].bitrate; break; case MT_PHY_TYPE_HT: case MT_PHY_TYPE_HT_GF: if (rate->mcs > 31) { ret = -EINVAL; goto out; } rate->flags = RATE_INFO_FLAGS_MCS; if (res->gi) rate->flags |= RATE_INFO_FLAGS_SHORT_GI; break; case MT_PHY_TYPE_VHT: if (rate->mcs > 9) { ret = -EINVAL; goto out; } rate->flags = RATE_INFO_FLAGS_VHT_MCS; if (res->gi) rate->flags |= RATE_INFO_FLAGS_SHORT_GI; break; case MT_PHY_TYPE_HE_SU: case MT_PHY_TYPE_HE_EXT_SU: case MT_PHY_TYPE_HE_TB: case MT_PHY_TYPE_HE_MU: if (res->gi > NL80211_RATE_INFO_HE_GI_3_2 || rate->mcs > 11) { ret = -EINVAL; goto out; } rate->he_gi = res->gi; rate->flags = RATE_INFO_FLAGS_HE_MCS; break; default: ret = -EINVAL; goto out; } switch (res->bw) { case IEEE80211_STA_RX_BW_160: rate->bw = RATE_INFO_BW_160; break; case IEEE80211_STA_RX_BW_80: rate->bw = RATE_INFO_BW_80; break; case IEEE80211_STA_RX_BW_40: rate->bw = RATE_INFO_BW_40; break; default: rate->bw = RATE_INFO_BW_20; break; } out: dev_kfree_skb(skb); return ret; } int mt7915_mcu_update_bss_color(struct mt7915_dev *dev, struct ieee80211_vif *vif, struct cfg80211_he_bss_color *he_bss_color) { int len = sizeof(struct sta_req_hdr) + sizeof(struct bss_info_color); struct mt7915_vif *mvif = (struct mt7915_vif *)vif->drv_priv; struct bss_info_color *bss_color; struct sk_buff *skb; struct tlv *tlv; skb = __mt76_connac_mcu_alloc_sta_req(&dev->mt76, &mvif->mt76, NULL, len); if (IS_ERR(skb)) return PTR_ERR(skb); tlv = mt76_connac_mcu_add_tlv(skb, BSS_INFO_BSS_COLOR, sizeof(*bss_color)); bss_color = (struct bss_info_color *)tlv; bss_color->disable = !he_bss_color->enabled; bss_color->color = he_bss_color->color; return mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_EXT_CMD(BSS_INFO_UPDATE), true); } #define TWT_AGRT_TRIGGER BIT(0) #define TWT_AGRT_ANNOUNCE BIT(1) #define TWT_AGRT_PROTECT BIT(2) int mt7915_mcu_twt_agrt_update(struct mt7915_dev *dev, struct mt7915_vif *mvif, struct mt7915_twt_flow *flow, int cmd) { struct { u8 tbl_idx; u8 cmd; u8 own_mac_idx; u8 flowid; /* 0xff for group id */ __le16 peer_id; /* specify the peer_id (msb=0) * or group_id (msb=1) */ u8 duration; /* 256 us */ u8 bss_idx; __le64 start_tsf; __le16 mantissa; u8 exponent; u8 is_ap; u8 agrt_params; u8 rsv[23]; } __packed req = { .tbl_idx = flow->table_id, .cmd = cmd, .own_mac_idx = mvif->mt76.omac_idx, .flowid = flow->id, .peer_id = cpu_to_le16(flow->wcid), .duration = flow->duration, .bss_idx = mvif->mt76.idx, .start_tsf = cpu_to_le64(flow->tsf), .mantissa = flow->mantissa, .exponent = flow->exp, .is_ap = true, }; if (flow->protection) req.agrt_params |= TWT_AGRT_PROTECT; if (!flow->flowtype) req.agrt_params |= TWT_AGRT_ANNOUNCE; if (flow->trigger) req.agrt_params |= TWT_AGRT_TRIGGER; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(TWT_AGRT_UPDATE), &req, sizeof(req), true); } int mt7915_mcu_wed_wa_tx_stats(struct mt7915_dev *dev, u16 wlan_idx) { struct { __le32 cmd; __le32 num; __le32 __rsv; __le16 wlan_idx; } req = { .cmd = cpu_to_le32(0x15), .num = cpu_to_le32(1), .wlan_idx = cpu_to_le16(wlan_idx), }; struct mt7915_mcu_wa_tx_stat { __le16 wlan_idx; u8 __rsv[2]; /* tx_bytes is deprecated since WA byte counter uses u32, * which easily leads to overflow. */ __le32 tx_bytes; __le32 tx_packets; } *res; struct mt76_wcid *wcid; struct sk_buff *skb; int ret; ret = mt76_mcu_send_and_get_msg(&dev->mt76, MCU_WA_PARAM_CMD(QUERY), &req, sizeof(req), true, &skb); if (ret) return ret; if (!is_mt7915(&dev->mt76)) skb_pull(skb, 4); res = (struct mt7915_mcu_wa_tx_stat *)skb->data; if (le16_to_cpu(res->wlan_idx) != wlan_idx) { ret = -EINVAL; goto out; } rcu_read_lock(); wcid = rcu_dereference(dev->mt76.wcid[wlan_idx]); if (wcid) wcid->stats.tx_packets += le32_to_cpu(res->tx_packets); else ret = -EINVAL; rcu_read_unlock(); out: dev_kfree_skb(skb); return ret; } int mt7915_mcu_rf_regval(struct mt7915_dev *dev, u32 regidx, u32 *val, bool set) { struct { __le32 idx; __le32 ofs; __le32 data; } __packed req = { .idx = cpu_to_le32(u32_get_bits(regidx, GENMASK(31, 24))), .ofs = cpu_to_le32(u32_get_bits(regidx, GENMASK(23, 0))), .data = set ? cpu_to_le32(*val) : 0, }; struct sk_buff *skb; int ret; if (set) return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(RF_REG_ACCESS), &req, sizeof(req), false); ret = mt76_mcu_send_and_get_msg(&dev->mt76, MCU_EXT_QUERY(RF_REG_ACCESS), &req, sizeof(req), true, &skb); if (ret) return ret; *val = le32_to_cpu(*(__le32 *)(skb->data + 8)); dev_kfree_skb(skb); return 0; }
linux-master
drivers/net/wireless/mediatek/mt76/mt7915/mcu.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2020 MediaTek Inc. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/rtnetlink.h> #include <linux/pci.h> #include "mt7915.h" #include "mac.h" #include "mcu.h" #include "../trace.h" #include "../dma.h" static bool wed_enable; module_param(wed_enable, bool, 0644); MODULE_PARM_DESC(wed_enable, "Enable Wireless Ethernet Dispatch support"); static const u32 mt7915_reg[] = { [INT_SOURCE_CSR] = 0xd7010, [INT_MASK_CSR] = 0xd7014, [INT1_SOURCE_CSR] = 0xd7088, [INT1_MASK_CSR] = 0xd708c, [INT_MCU_CMD_SOURCE] = 0xd51f0, [INT_MCU_CMD_EVENT] = 0x3108, [WFDMA0_ADDR] = 0xd4000, [WFDMA0_PCIE1_ADDR] = 0xd8000, [WFDMA_EXT_CSR_ADDR] = 0xd7000, [CBTOP1_PHY_END] = 0x77ffffff, [INFRA_MCU_ADDR_END] = 0x7c3fffff, [FW_ASSERT_STAT_ADDR] = 0x219848, [FW_EXCEPT_TYPE_ADDR] = 0x21987c, [FW_EXCEPT_COUNT_ADDR] = 0x219848, [FW_CIRQ_COUNT_ADDR] = 0x216f94, [FW_CIRQ_IDX_ADDR] = 0x216ef8, [FW_CIRQ_LISR_ADDR] = 0x2170ac, [FW_TASK_ID_ADDR] = 0x216f90, [FW_TASK_IDX_ADDR] = 0x216f9c, [FW_TASK_QID1_ADDR] = 0x219680, [FW_TASK_QID2_ADDR] = 0x219760, [FW_TASK_START_ADDR] = 0x219558, [FW_TASK_END_ADDR] = 0x219554, [FW_TASK_SIZE_ADDR] = 0x219560, [FW_LAST_MSG_ID_ADDR] = 0x216f70, [FW_EINT_INFO_ADDR] = 0x219818, [FW_SCHED_INFO_ADDR] = 0x219828, [SWDEF_BASE_ADDR] = 0x41f200, [TXQ_WED_RING_BASE] = 0xd7300, [RXQ_WED_RING_BASE] = 0xd7410, [RXQ_WED_DATA_RING_BASE] = 0xd4500, }; static const u32 mt7916_reg[] = { [INT_SOURCE_CSR] = 0xd4200, [INT_MASK_CSR] = 0xd4204, [INT1_SOURCE_CSR] = 0xd8200, [INT1_MASK_CSR] = 0xd8204, [INT_MCU_CMD_SOURCE] = 0xd41f0, [INT_MCU_CMD_EVENT] = 0x2108, [WFDMA0_ADDR] = 0xd4000, [WFDMA0_PCIE1_ADDR] = 0xd8000, [WFDMA_EXT_CSR_ADDR] = 0xd7000, [CBTOP1_PHY_END] = 0x7fffffff, [INFRA_MCU_ADDR_END] = 0x7c085fff, [FW_ASSERT_STAT_ADDR] = 0x02204c14, [FW_EXCEPT_TYPE_ADDR] = 0x022051a4, [FW_EXCEPT_COUNT_ADDR] = 0x022050bc, [FW_CIRQ_COUNT_ADDR] = 0x022001ac, [FW_CIRQ_IDX_ADDR] = 0x02204f84, [FW_CIRQ_LISR_ADDR] = 0x022050d0, [FW_TASK_ID_ADDR] = 0x0220406c, [FW_TASK_IDX_ADDR] = 0x0220500c, [FW_TASK_QID1_ADDR] = 0x022028c8, [FW_TASK_QID2_ADDR] = 0x02202a38, [FW_TASK_START_ADDR] = 0x0220286c, [FW_TASK_END_ADDR] = 0x02202870, [FW_TASK_SIZE_ADDR] = 0x02202878, [FW_LAST_MSG_ID_ADDR] = 0x02204fe8, [FW_EINT_INFO_ADDR] = 0x0220525c, [FW_SCHED_INFO_ADDR] = 0x0220516c, [SWDEF_BASE_ADDR] = 0x411400, [TXQ_WED_RING_BASE] = 0xd7300, [RXQ_WED_RING_BASE] = 0xd7410, [RXQ_WED_DATA_RING_BASE] = 0xd4540, }; static const u32 mt7986_reg[] = { [INT_SOURCE_CSR] = 0x24200, [INT_MASK_CSR] = 0x24204, [INT1_SOURCE_CSR] = 0x28200, [INT1_MASK_CSR] = 0x28204, [INT_MCU_CMD_SOURCE] = 0x241f0, [INT_MCU_CMD_EVENT] = 0x54000108, [WFDMA0_ADDR] = 0x24000, [WFDMA0_PCIE1_ADDR] = 0x28000, [WFDMA_EXT_CSR_ADDR] = 0x27000, [CBTOP1_PHY_END] = 0x7fffffff, [INFRA_MCU_ADDR_END] = 0x7c085fff, [FW_ASSERT_STAT_ADDR] = 0x02204b54, [FW_EXCEPT_TYPE_ADDR] = 0x022050dc, [FW_EXCEPT_COUNT_ADDR] = 0x02204ffc, [FW_CIRQ_COUNT_ADDR] = 0x022001ac, [FW_CIRQ_IDX_ADDR] = 0x02204ec4, [FW_CIRQ_LISR_ADDR] = 0x02205010, [FW_TASK_ID_ADDR] = 0x02204fac, [FW_TASK_IDX_ADDR] = 0x02204f4c, [FW_TASK_QID1_ADDR] = 0x02202814, [FW_TASK_QID2_ADDR] = 0x02202984, [FW_TASK_START_ADDR] = 0x022027b8, [FW_TASK_END_ADDR] = 0x022027bc, [FW_TASK_SIZE_ADDR] = 0x022027c4, [FW_LAST_MSG_ID_ADDR] = 0x02204f28, [FW_EINT_INFO_ADDR] = 0x02205194, [FW_SCHED_INFO_ADDR] = 0x022051a4, [SWDEF_BASE_ADDR] = 0x411400, [TXQ_WED_RING_BASE] = 0x24420, [RXQ_WED_RING_BASE] = 0x24520, [RXQ_WED_DATA_RING_BASE] = 0x24540, }; static const u32 mt7915_offs[] = { [TMAC_CDTR] = 0x090, [TMAC_ODTR] = 0x094, [TMAC_ATCR] = 0x098, [TMAC_TRCR0] = 0x09c, [TMAC_ICR0] = 0x0a4, [TMAC_ICR1] = 0x0b4, [TMAC_CTCR0] = 0x0f4, [TMAC_TFCR0] = 0x1e0, [MDP_BNRCFR0] = 0x070, [MDP_BNRCFR1] = 0x074, [ARB_DRNGR0] = 0x194, [ARB_SCR] = 0x080, [RMAC_MIB_AIRTIME14] = 0x3b8, [AGG_AWSCR0] = 0x05c, [AGG_PCR0] = 0x06c, [AGG_ACR0] = 0x084, [AGG_ACR4] = 0x08c, [AGG_MRCR] = 0x098, [AGG_ATCR1] = 0x0f0, [AGG_ATCR3] = 0x0f4, [LPON_UTTR0] = 0x080, [LPON_UTTR1] = 0x084, [LPON_FRCR] = 0x314, [MIB_SDR3] = 0x014, [MIB_SDR4] = 0x018, [MIB_SDR5] = 0x01c, [MIB_SDR7] = 0x024, [MIB_SDR8] = 0x028, [MIB_SDR9] = 0x02c, [MIB_SDR10] = 0x030, [MIB_SDR11] = 0x034, [MIB_SDR12] = 0x038, [MIB_SDR13] = 0x03c, [MIB_SDR14] = 0x040, [MIB_SDR15] = 0x044, [MIB_SDR16] = 0x048, [MIB_SDR17] = 0x04c, [MIB_SDR18] = 0x050, [MIB_SDR19] = 0x054, [MIB_SDR20] = 0x058, [MIB_SDR21] = 0x05c, [MIB_SDR22] = 0x060, [MIB_SDR23] = 0x064, [MIB_SDR24] = 0x068, [MIB_SDR25] = 0x06c, [MIB_SDR27] = 0x074, [MIB_SDR28] = 0x078, [MIB_SDR29] = 0x07c, [MIB_SDRVEC] = 0x080, [MIB_SDR31] = 0x084, [MIB_SDR32] = 0x088, [MIB_SDRMUBF] = 0x090, [MIB_DR8] = 0x0c0, [MIB_DR9] = 0x0c4, [MIB_DR11] = 0x0cc, [MIB_MB_SDR0] = 0x100, [MIB_MB_SDR1] = 0x104, [TX_AGG_CNT] = 0x0a8, [TX_AGG_CNT2] = 0x164, [MIB_ARNG] = 0x4b8, [WTBLON_TOP_WDUCR] = 0x0, [WTBL_UPDATE] = 0x030, [PLE_FL_Q_EMPTY] = 0x0b0, [PLE_FL_Q_CTRL] = 0x1b0, [PLE_AC_QEMPTY] = 0x500, [PLE_FREEPG_CNT] = 0x100, [PLE_FREEPG_HEAD_TAIL] = 0x104, [PLE_PG_HIF_GROUP] = 0x110, [PLE_HIF_PG_INFO] = 0x114, [AC_OFFSET] = 0x040, [ETBF_PAR_RPT0] = 0x068, }; static const u32 mt7916_offs[] = { [TMAC_CDTR] = 0x0c8, [TMAC_ODTR] = 0x0cc, [TMAC_ATCR] = 0x00c, [TMAC_TRCR0] = 0x010, [TMAC_ICR0] = 0x014, [TMAC_ICR1] = 0x018, [TMAC_CTCR0] = 0x114, [TMAC_TFCR0] = 0x0e4, [MDP_BNRCFR0] = 0x090, [MDP_BNRCFR1] = 0x094, [ARB_DRNGR0] = 0x1e0, [ARB_SCR] = 0x000, [RMAC_MIB_AIRTIME14] = 0x0398, [AGG_AWSCR0] = 0x030, [AGG_PCR0] = 0x040, [AGG_ACR0] = 0x054, [AGG_ACR4] = 0x05c, [AGG_MRCR] = 0x068, [AGG_ATCR1] = 0x1a8, [AGG_ATCR3] = 0x080, [LPON_UTTR0] = 0x360, [LPON_UTTR1] = 0x364, [LPON_FRCR] = 0x37c, [MIB_SDR3] = 0x698, [MIB_SDR4] = 0x788, [MIB_SDR5] = 0x780, [MIB_SDR7] = 0x5a8, [MIB_SDR8] = 0x78c, [MIB_SDR9] = 0x024, [MIB_SDR10] = 0x76c, [MIB_SDR11] = 0x790, [MIB_SDR12] = 0x558, [MIB_SDR13] = 0x560, [MIB_SDR14] = 0x564, [MIB_SDR15] = 0x568, [MIB_SDR16] = 0x7fc, [MIB_SDR17] = 0x800, [MIB_SDR18] = 0x030, [MIB_SDR19] = 0x5ac, [MIB_SDR20] = 0x5b0, [MIB_SDR21] = 0x5b4, [MIB_SDR22] = 0x770, [MIB_SDR23] = 0x774, [MIB_SDR24] = 0x778, [MIB_SDR25] = 0x77c, [MIB_SDR27] = 0x080, [MIB_SDR28] = 0x084, [MIB_SDR29] = 0x650, [MIB_SDRVEC] = 0x5a8, [MIB_SDR31] = 0x55c, [MIB_SDR32] = 0x7a8, [MIB_SDRMUBF] = 0x7ac, [MIB_DR8] = 0x56c, [MIB_DR9] = 0x570, [MIB_DR11] = 0x574, [MIB_MB_SDR0] = 0x688, [MIB_MB_SDR1] = 0x690, [TX_AGG_CNT] = 0x7dc, [TX_AGG_CNT2] = 0x7ec, [MIB_ARNG] = 0x0b0, [WTBLON_TOP_WDUCR] = 0x200, [WTBL_UPDATE] = 0x230, [PLE_FL_Q_EMPTY] = 0x360, [PLE_FL_Q_CTRL] = 0x3e0, [PLE_AC_QEMPTY] = 0x600, [PLE_FREEPG_CNT] = 0x380, [PLE_FREEPG_HEAD_TAIL] = 0x384, [PLE_PG_HIF_GROUP] = 0x00c, [PLE_HIF_PG_INFO] = 0x388, [AC_OFFSET] = 0x080, [ETBF_PAR_RPT0] = 0x100, }; static const struct mt76_connac_reg_map mt7915_reg_map[] = { { 0x00400000, 0x80000, 0x10000 }, /* WF_MCU_SYSRAM */ { 0x00410000, 0x90000, 0x10000 }, /* WF_MCU_SYSRAM (configure regs) */ { 0x40000000, 0x70000, 0x10000 }, /* WF_UMAC_SYSRAM */ { 0x54000000, 0x02000, 0x01000 }, /* WFDMA PCIE0 MCU DMA0 */ { 0x55000000, 0x03000, 0x01000 }, /* WFDMA PCIE0 MCU DMA1 */ { 0x58000000, 0x06000, 0x01000 }, /* WFDMA PCIE1 MCU DMA0 (MEM_DMA) */ { 0x59000000, 0x07000, 0x01000 }, /* WFDMA PCIE1 MCU DMA1 */ { 0x7c000000, 0xf0000, 0x10000 }, /* CONN_INFRA */ { 0x7c020000, 0xd0000, 0x10000 }, /* CONN_INFRA, WFDMA */ { 0x80020000, 0xb0000, 0x10000 }, /* WF_TOP_MISC_OFF */ { 0x81020000, 0xc0000, 0x10000 }, /* WF_TOP_MISC_ON */ { 0x820c0000, 0x08000, 0x04000 }, /* WF_UMAC_TOP (PLE) */ { 0x820c8000, 0x0c000, 0x02000 }, /* WF_UMAC_TOP (PSE) */ { 0x820cc000, 0x0e000, 0x02000 }, /* WF_UMAC_TOP (PP) */ { 0x820ce000, 0x21c00, 0x00200 }, /* WF_LMAC_TOP (WF_SEC) */ { 0x820cf000, 0x22000, 0x01000 }, /* WF_LMAC_TOP (WF_PF) */ { 0x820d0000, 0x30000, 0x10000 }, /* WF_LMAC_TOP (WF_WTBLON) */ { 0x820e0000, 0x20000, 0x00400 }, /* WF_LMAC_TOP BN0 (WF_CFG) */ { 0x820e1000, 0x20400, 0x00200 }, /* WF_LMAC_TOP BN0 (WF_TRB) */ { 0x820e2000, 0x20800, 0x00400 }, /* WF_LMAC_TOP BN0 (WF_AGG) */ { 0x820e3000, 0x20c00, 0x00400 }, /* WF_LMAC_TOP BN0 (WF_ARB) */ { 0x820e4000, 0x21000, 0x00400 }, /* WF_LMAC_TOP BN0 (WF_TMAC) */ { 0x820e5000, 0x21400, 0x00800 }, /* WF_LMAC_TOP BN0 (WF_RMAC) */ { 0x820e7000, 0x21e00, 0x00200 }, /* WF_LMAC_TOP BN0 (WF_DMA) */ { 0x820e9000, 0x23400, 0x00200 }, /* WF_LMAC_TOP BN0 (WF_WTBLOFF) */ { 0x820ea000, 0x24000, 0x00200 }, /* WF_LMAC_TOP BN0 (WF_ETBF) */ { 0x820eb000, 0x24200, 0x00400 }, /* WF_LMAC_TOP BN0 (WF_LPON) */ { 0x820ec000, 0x24600, 0x00200 }, /* WF_LMAC_TOP BN0 (WF_INT) */ { 0x820ed000, 0x24800, 0x00800 }, /* WF_LMAC_TOP BN0 (WF_MIB) */ { 0x820f0000, 0xa0000, 0x00400 }, /* WF_LMAC_TOP BN1 (WF_CFG) */ { 0x820f1000, 0xa0600, 0x00200 }, /* WF_LMAC_TOP BN1 (WF_TRB) */ { 0x820f2000, 0xa0800, 0x00400 }, /* WF_LMAC_TOP BN1 (WF_AGG) */ { 0x820f3000, 0xa0c00, 0x00400 }, /* WF_LMAC_TOP BN1 (WF_ARB) */ { 0x820f4000, 0xa1000, 0x00400 }, /* WF_LMAC_TOP BN1 (WF_TMAC) */ { 0x820f5000, 0xa1400, 0x00800 }, /* WF_LMAC_TOP BN1 (WF_RMAC) */ { 0x820f7000, 0xa1e00, 0x00200 }, /* WF_LMAC_TOP BN1 (WF_DMA) */ { 0x820f9000, 0xa3400, 0x00200 }, /* WF_LMAC_TOP BN1 (WF_WTBLOFF) */ { 0x820fa000, 0xa4000, 0x00200 }, /* WF_LMAC_TOP BN1 (WF_ETBF) */ { 0x820fb000, 0xa4200, 0x00400 }, /* WF_LMAC_TOP BN1 (WF_LPON) */ { 0x820fc000, 0xa4600, 0x00200 }, /* WF_LMAC_TOP BN1 (WF_INT) */ { 0x820fd000, 0xa4800, 0x00800 }, /* WF_LMAC_TOP BN1 (WF_MIB) */ { 0x0, 0x0, 0x0 }, /* imply end of search */ }; static const struct mt76_connac_reg_map mt7916_reg_map[] = { { 0x54000000, 0x02000, 0x01000 }, /* WFDMA_0 (PCIE0 MCU DMA0) */ { 0x55000000, 0x03000, 0x01000 }, /* WFDMA_1 (PCIE0 MCU DMA1) */ { 0x56000000, 0x04000, 0x01000 }, /* WFDMA_2 (Reserved) */ { 0x57000000, 0x05000, 0x01000 }, /* WFDMA_3 (MCU wrap CR) */ { 0x58000000, 0x06000, 0x01000 }, /* WFDMA_4 (PCIE1 MCU DMA0) */ { 0x59000000, 0x07000, 0x01000 }, /* WFDMA_5 (PCIE1 MCU DMA1) */ { 0x820c0000, 0x08000, 0x04000 }, /* WF_UMAC_TOP (PLE) */ { 0x820c8000, 0x0c000, 0x02000 }, /* WF_UMAC_TOP (PSE) */ { 0x820cc000, 0x0e000, 0x02000 }, /* WF_UMAC_TOP (PP) */ { 0x820e0000, 0x20000, 0x00400 }, /* WF_LMAC_TOP BN0 (WF_CFG) */ { 0x820e1000, 0x20400, 0x00200 }, /* WF_LMAC_TOP BN0 (WF_TRB) */ { 0x820e2000, 0x20800, 0x00400 }, /* WF_LMAC_TOP BN0 (WF_AGG) */ { 0x820e3000, 0x20c00, 0x00400 }, /* WF_LMAC_TOP BN0 (WF_ARB) */ { 0x820e4000, 0x21000, 0x00400 }, /* WF_LMAC_TOP BN0 (WF_TMAC) */ { 0x820e5000, 0x21400, 0x00800 }, /* WF_LMAC_TOP BN0 (WF_RMAC) */ { 0x820ce000, 0x21c00, 0x00200 }, /* WF_LMAC_TOP (WF_SEC) */ { 0x820e7000, 0x21e00, 0x00200 }, /* WF_LMAC_TOP BN0 (WF_DMA) */ { 0x820cf000, 0x22000, 0x01000 }, /* WF_LMAC_TOP (WF_PF) */ { 0x820e9000, 0x23400, 0x00200 }, /* WF_LMAC_TOP BN0 (WF_WTBLOFF) */ { 0x820ea000, 0x24000, 0x00200 }, /* WF_LMAC_TOP BN0 (WF_ETBF) */ { 0x820eb000, 0x24200, 0x00400 }, /* WF_LMAC_TOP BN0 (WF_LPON) */ { 0x820ec000, 0x24600, 0x00200 }, /* WF_LMAC_TOP BN0 (WF_INT) */ { 0x820ed000, 0x24800, 0x00800 }, /* WF_LMAC_TOP BN0 (WF_MIB) */ { 0x820ca000, 0x26000, 0x02000 }, /* WF_LMAC_TOP BN0 (WF_MUCOP) */ { 0x820d0000, 0x30000, 0x10000 }, /* WF_LMAC_TOP (WF_WTBLON) */ { 0x00400000, 0x80000, 0x10000 }, /* WF_MCU_SYSRAM */ { 0x00410000, 0x90000, 0x10000 }, /* WF_MCU_SYSRAM (configure cr) */ { 0x820f0000, 0xa0000, 0x00400 }, /* WF_LMAC_TOP BN1 (WF_CFG) */ { 0x820f1000, 0xa0600, 0x00200 }, /* WF_LMAC_TOP BN1 (WF_TRB) */ { 0x820f2000, 0xa0800, 0x00400 }, /* WF_LMAC_TOP BN1 (WF_AGG) */ { 0x820f3000, 0xa0c00, 0x00400 }, /* WF_LMAC_TOP BN1 (WF_ARB) */ { 0x820f4000, 0xa1000, 0x00400 }, /* WF_LMAC_TOP BN1 (WF_TMAC) */ { 0x820f5000, 0xa1400, 0x00800 }, /* WF_LMAC_TOP BN1 (WF_RMAC) */ { 0x820f7000, 0xa1e00, 0x00200 }, /* WF_LMAC_TOP BN1 (WF_DMA) */ { 0x820f9000, 0xa3400, 0x00200 }, /* WF_LMAC_TOP BN1 (WF_WTBLOFF) */ { 0x820fa000, 0xa4000, 0x00200 }, /* WF_LMAC_TOP BN1 (WF_ETBF) */ { 0x820fb000, 0xa4200, 0x00400 }, /* WF_LMAC_TOP BN1 (WF_LPON) */ { 0x820fc000, 0xa4600, 0x00200 }, /* WF_LMAC_TOP BN1 (WF_INT) */ { 0x820fd000, 0xa4800, 0x00800 }, /* WF_LMAC_TOP BN1 (WF_MIB) */ { 0x820c4000, 0xa8000, 0x01000 }, /* WF_LMAC_TOP (WF_UWTBL ) */ { 0x820b0000, 0xae000, 0x01000 }, /* [APB2] WFSYS_ON */ { 0x80020000, 0xb0000, 0x10000 }, /* WF_TOP_MISC_OFF */ { 0x81020000, 0xc0000, 0x10000 }, /* WF_TOP_MISC_ON */ { 0x0, 0x0, 0x0 }, /* imply end of search */ }; static const struct mt76_connac_reg_map mt7986_reg_map[] = { { 0x54000000, 0x402000, 0x01000 }, /* WFDMA_0 (PCIE0 MCU DMA0) */ { 0x55000000, 0x403000, 0x01000 }, /* WFDMA_1 (PCIE0 MCU DMA1) */ { 0x56000000, 0x404000, 0x01000 }, /* WFDMA_2 (Reserved) */ { 0x57000000, 0x405000, 0x01000 }, /* WFDMA_3 (MCU wrap CR) */ { 0x58000000, 0x406000, 0x01000 }, /* WFDMA_4 (PCIE1 MCU DMA0) */ { 0x59000000, 0x407000, 0x01000 }, /* WFDMA_5 (PCIE1 MCU DMA1) */ { 0x820c0000, 0x408000, 0x04000 }, /* WF_UMAC_TOP (PLE) */ { 0x820c8000, 0x40c000, 0x02000 }, /* WF_UMAC_TOP (PSE) */ { 0x820cc000, 0x40e000, 0x02000 }, /* WF_UMAC_TOP (PP) */ { 0x820e0000, 0x420000, 0x00400 }, /* WF_LMAC_TOP BN0 (WF_CFG) */ { 0x820e1000, 0x420400, 0x00200 }, /* WF_LMAC_TOP BN0 (WF_TRB) */ { 0x820e2000, 0x420800, 0x00400 }, /* WF_LMAC_TOP BN0 (WF_AGG) */ { 0x820e3000, 0x420c00, 0x00400 }, /* WF_LMAC_TOP BN0 (WF_ARB) */ { 0x820e4000, 0x421000, 0x00400 }, /* WF_LMAC_TOP BN0 (WF_TMAC) */ { 0x820e5000, 0x421400, 0x00800 }, /* WF_LMAC_TOP BN0 (WF_RMAC) */ { 0x820ce000, 0x421c00, 0x00200 }, /* WF_LMAC_TOP (WF_SEC) */ { 0x820e7000, 0x421e00, 0x00200 }, /* WF_LMAC_TOP BN0 (WF_DMA) */ { 0x820cf000, 0x422000, 0x01000 }, /* WF_LMAC_TOP (WF_PF) */ { 0x820e9000, 0x423400, 0x00200 }, /* WF_LMAC_TOP BN0 (WF_WTBLOFF) */ { 0x820ea000, 0x424000, 0x00200 }, /* WF_LMAC_TOP BN0 (WF_ETBF) */ { 0x820eb000, 0x424200, 0x00400 }, /* WF_LMAC_TOP BN0 (WF_LPON) */ { 0x820ec000, 0x424600, 0x00200 }, /* WF_LMAC_TOP BN0 (WF_INT) */ { 0x820ed000, 0x424800, 0x00800 }, /* WF_LMAC_TOP BN0 (WF_MIB) */ { 0x820ca000, 0x426000, 0x02000 }, /* WF_LMAC_TOP BN0 (WF_MUCOP) */ { 0x820d0000, 0x430000, 0x10000 }, /* WF_LMAC_TOP (WF_WTBLON) */ { 0x00400000, 0x480000, 0x10000 }, /* WF_MCU_SYSRAM */ { 0x00410000, 0x490000, 0x10000 }, /* WF_MCU_SYSRAM */ { 0x820f0000, 0x4a0000, 0x00400 }, /* WF_LMAC_TOP BN1 (WF_CFG) */ { 0x820f1000, 0x4a0600, 0x00200 }, /* WF_LMAC_TOP BN1 (WF_TRB) */ { 0x820f2000, 0x4a0800, 0x00400 }, /* WF_LMAC_TOP BN1 (WF_AGG) */ { 0x820f3000, 0x4a0c00, 0x00400 }, /* WF_LMAC_TOP BN1 (WF_ARB) */ { 0x820f4000, 0x4a1000, 0x00400 }, /* WF_LMAC_TOP BN1 (WF_TMAC) */ { 0x820f5000, 0x4a1400, 0x00800 }, /* WF_LMAC_TOP BN1 (WF_RMAC) */ { 0x820f7000, 0x4a1e00, 0x00200 }, /* WF_LMAC_TOP BN1 (WF_DMA) */ { 0x820f9000, 0x4a3400, 0x00200 }, /* WF_LMAC_TOP BN1 (WF_WTBLOFF) */ { 0x820fa000, 0x4a4000, 0x00200 }, /* WF_LMAC_TOP BN1 (WF_ETBF) */ { 0x820fb000, 0x4a4200, 0x00400 }, /* WF_LMAC_TOP BN1 (WF_LPON) */ { 0x820fc000, 0x4a4600, 0x00200 }, /* WF_LMAC_TOP BN1 (WF_INT) */ { 0x820fd000, 0x4a4800, 0x00800 }, /* WF_LMAC_TOP BN1 (WF_MIB) */ { 0x820c4000, 0x4a8000, 0x01000 }, /* WF_LMAC_TOP (WF_UWTBL ) */ { 0x820b0000, 0x4ae000, 0x01000 }, /* [APB2] WFSYS_ON */ { 0x80020000, 0x4b0000, 0x10000 }, /* WF_TOP_MISC_OFF */ { 0x81020000, 0x4c0000, 0x10000 }, /* WF_TOP_MISC_ON */ { 0x89000000, 0x4d0000, 0x01000 }, /* WF_MCU_CFG_ON */ { 0x89010000, 0x4d1000, 0x01000 }, /* WF_MCU_CIRQ */ { 0x89020000, 0x4d2000, 0x01000 }, /* WF_MCU_GPT */ { 0x89030000, 0x4d3000, 0x01000 }, /* WF_MCU_WDT */ { 0x80010000, 0x4d4000, 0x01000 }, /* WF_AXIDMA */ { 0x0, 0x0, 0x0 }, /* imply end of search */ }; static u32 mt7915_reg_map_l1(struct mt7915_dev *dev, u32 addr) { u32 offset = FIELD_GET(MT_HIF_REMAP_L1_OFFSET, addr); u32 base = FIELD_GET(MT_HIF_REMAP_L1_BASE, addr); u32 l1_remap; if (is_mt798x(&dev->mt76)) return MT_CONN_INFRA_OFFSET(addr); l1_remap = is_mt7915(&dev->mt76) ? MT_HIF_REMAP_L1 : MT_HIF_REMAP_L1_MT7916; dev->bus_ops->rmw(&dev->mt76, l1_remap, MT_HIF_REMAP_L1_MASK, FIELD_PREP(MT_HIF_REMAP_L1_MASK, base)); /* use read to push write */ dev->bus_ops->rr(&dev->mt76, l1_remap); return MT_HIF_REMAP_BASE_L1 + offset; } static u32 mt7915_reg_map_l2(struct mt7915_dev *dev, u32 addr) { u32 offset, base; if (is_mt7915(&dev->mt76)) { offset = FIELD_GET(MT_HIF_REMAP_L2_OFFSET, addr); base = FIELD_GET(MT_HIF_REMAP_L2_BASE, addr); dev->bus_ops->rmw(&dev->mt76, MT_HIF_REMAP_L2, MT_HIF_REMAP_L2_MASK, FIELD_PREP(MT_HIF_REMAP_L2_MASK, base)); /* use read to push write */ dev->bus_ops->rr(&dev->mt76, MT_HIF_REMAP_L2); } else { u32 ofs = is_mt798x(&dev->mt76) ? 0x400000 : 0; offset = FIELD_GET(MT_HIF_REMAP_L2_OFFSET_MT7916, addr); base = FIELD_GET(MT_HIF_REMAP_L2_BASE_MT7916, addr); dev->bus_ops->rmw(&dev->mt76, MT_HIF_REMAP_L2_MT7916 + ofs, MT_HIF_REMAP_L2_MASK_MT7916, FIELD_PREP(MT_HIF_REMAP_L2_MASK_MT7916, base)); /* use read to push write */ dev->bus_ops->rr(&dev->mt76, MT_HIF_REMAP_L2_MT7916 + ofs); offset += (MT_HIF_REMAP_BASE_L2_MT7916 + ofs); } return offset; } static u32 __mt7915_reg_addr(struct mt7915_dev *dev, u32 addr) { int i; if (addr < 0x100000) return addr; if (!dev->reg.map) { dev_err(dev->mt76.dev, "err: reg_map is null\n"); return addr; } for (i = 0; i < dev->reg.map_size; i++) { u32 ofs; if (addr < dev->reg.map[i].phys) continue; ofs = addr - dev->reg.map[i].phys; if (ofs > dev->reg.map[i].size) continue; return dev->reg.map[i].maps + ofs; } if ((addr >= MT_INFRA_BASE && addr < MT_WFSYS0_PHY_START) || (addr >= MT_WFSYS0_PHY_START && addr < MT_WFSYS1_PHY_START) || (addr >= MT_WFSYS1_PHY_START && addr <= MT_WFSYS1_PHY_END)) return mt7915_reg_map_l1(dev, addr); if (dev_is_pci(dev->mt76.dev) && ((addr >= MT_CBTOP1_PHY_START && addr <= MT_CBTOP1_PHY_END) || addr >= MT_CBTOP2_PHY_START)) return mt7915_reg_map_l1(dev, addr); /* CONN_INFRA: covert to phyiscal addr and use layer 1 remap */ if (addr >= MT_INFRA_MCU_START && addr <= MT_INFRA_MCU_END) { addr = addr - MT_INFRA_MCU_START + MT_INFRA_BASE; return mt7915_reg_map_l1(dev, addr); } return mt7915_reg_map_l2(dev, addr); } void mt7915_memcpy_fromio(struct mt7915_dev *dev, void *buf, u32 offset, size_t len) { u32 addr = __mt7915_reg_addr(dev, offset); memcpy_fromio(buf, dev->mt76.mmio.regs + addr, len); } static u32 mt7915_rr(struct mt76_dev *mdev, u32 offset) { struct mt7915_dev *dev = container_of(mdev, struct mt7915_dev, mt76); u32 addr = __mt7915_reg_addr(dev, offset); return dev->bus_ops->rr(mdev, addr); } static void mt7915_wr(struct mt76_dev *mdev, u32 offset, u32 val) { struct mt7915_dev *dev = container_of(mdev, struct mt7915_dev, mt76); u32 addr = __mt7915_reg_addr(dev, offset); dev->bus_ops->wr(mdev, addr, val); } static u32 mt7915_rmw(struct mt76_dev *mdev, u32 offset, u32 mask, u32 val) { struct mt7915_dev *dev = container_of(mdev, struct mt7915_dev, mt76); u32 addr = __mt7915_reg_addr(dev, offset); return dev->bus_ops->rmw(mdev, addr, mask, val); } #ifdef CONFIG_NET_MEDIATEK_SOC_WED static int mt7915_mmio_wed_offload_enable(struct mtk_wed_device *wed) { struct mt7915_dev *dev; dev = container_of(wed, struct mt7915_dev, mt76.mmio.wed); spin_lock_bh(&dev->mt76.token_lock); dev->mt76.token_size = wed->wlan.token_start; spin_unlock_bh(&dev->mt76.token_lock); return !wait_event_timeout(dev->mt76.tx_wait, !dev->mt76.wed_token_count, HZ); } static void mt7915_mmio_wed_offload_disable(struct mtk_wed_device *wed) { struct mt7915_dev *dev; dev = container_of(wed, struct mt7915_dev, mt76.mmio.wed); spin_lock_bh(&dev->mt76.token_lock); dev->mt76.token_size = MT7915_TOKEN_SIZE; spin_unlock_bh(&dev->mt76.token_lock); } static void mt7915_mmio_wed_release_rx_buf(struct mtk_wed_device *wed) { struct mt7915_dev *dev; int i; dev = container_of(wed, struct mt7915_dev, mt76.mmio.wed); for (i = 0; i < dev->mt76.rx_token_size; i++) { struct mt76_txwi_cache *t; t = mt76_rx_token_release(&dev->mt76, i); if (!t || !t->ptr) continue; mt76_put_page_pool_buf(t->ptr, false); t->ptr = NULL; mt76_put_rxwi(&dev->mt76, t); } mt76_free_pending_rxwi(&dev->mt76); } static u32 mt7915_mmio_wed_init_rx_buf(struct mtk_wed_device *wed, int size) { struct mtk_rxbm_desc *desc = wed->rx_buf_ring.desc; struct mt76_txwi_cache *t = NULL; struct mt7915_dev *dev; struct mt76_queue *q; int i, len; dev = container_of(wed, struct mt7915_dev, mt76.mmio.wed); q = &dev->mt76.q_rx[MT_RXQ_MAIN]; len = SKB_WITH_OVERHEAD(q->buf_size); for (i = 0; i < size; i++) { enum dma_data_direction dir; dma_addr_t addr; u32 offset; int token; void *buf; t = mt76_get_rxwi(&dev->mt76); if (!t) goto unmap; buf = mt76_get_page_pool_buf(q, &offset, q->buf_size); if (!buf) goto unmap; addr = page_pool_get_dma_addr(virt_to_head_page(buf)) + offset; dir = page_pool_get_dma_dir(q->page_pool); dma_sync_single_for_device(dev->mt76.dma_dev, addr, len, dir); desc->buf0 = cpu_to_le32(addr); token = mt76_rx_token_consume(&dev->mt76, buf, t, addr); if (token < 0) { mt76_put_page_pool_buf(buf, false); goto unmap; } desc->token |= cpu_to_le32(FIELD_PREP(MT_DMA_CTL_TOKEN, token)); desc++; } return 0; unmap: if (t) mt76_put_rxwi(&dev->mt76, t); mt7915_mmio_wed_release_rx_buf(wed); return -ENOMEM; } static void mt7915_mmio_wed_update_rx_stats(struct mtk_wed_device *wed, struct mtk_wed_wo_rx_stats *stats) { int idx = le16_to_cpu(stats->wlan_idx); struct mt7915_dev *dev; struct mt76_wcid *wcid; dev = container_of(wed, struct mt7915_dev, mt76.mmio.wed); if (idx >= mt7915_wtbl_size(dev)) return; rcu_read_lock(); wcid = rcu_dereference(dev->mt76.wcid[idx]); if (wcid) { wcid->stats.rx_bytes += le32_to_cpu(stats->rx_byte_cnt); wcid->stats.rx_packets += le32_to_cpu(stats->rx_pkt_cnt); wcid->stats.rx_errors += le32_to_cpu(stats->rx_err_cnt); wcid->stats.rx_drops += le32_to_cpu(stats->rx_drop_cnt); } rcu_read_unlock(); } static int mt7915_mmio_wed_reset(struct mtk_wed_device *wed) { struct mt76_dev *mdev = container_of(wed, struct mt76_dev, mmio.wed); struct mt7915_dev *dev = container_of(mdev, struct mt7915_dev, mt76); struct mt76_phy *mphy = &dev->mphy; int ret; ASSERT_RTNL(); if (test_and_set_bit(MT76_STATE_WED_RESET, &mphy->state)) return -EBUSY; ret = mt7915_mcu_set_ser(dev, SER_RECOVER, SER_SET_RECOVER_L1, mphy->band_idx); if (ret) goto out; rtnl_unlock(); if (!wait_for_completion_timeout(&mdev->mmio.wed_reset, 20 * HZ)) { dev_err(mdev->dev, "wed reset timeout\n"); ret = -ETIMEDOUT; } rtnl_lock(); out: clear_bit(MT76_STATE_WED_RESET, &mphy->state); return ret; } static void mt7915_mmio_wed_reset_complete(struct mtk_wed_device *wed) { struct mt76_dev *dev = container_of(wed, struct mt76_dev, mmio.wed); complete(&dev->mmio.wed_reset_complete); } #endif int mt7915_mmio_wed_init(struct mt7915_dev *dev, void *pdev_ptr, bool pci, int *irq) { #ifdef CONFIG_NET_MEDIATEK_SOC_WED struct mtk_wed_device *wed = &dev->mt76.mmio.wed; int ret; if (!wed_enable) return 0; if (pci) { struct pci_dev *pci_dev = pdev_ptr; wed->wlan.pci_dev = pci_dev; wed->wlan.bus_type = MTK_WED_BUS_PCIE; wed->wlan.base = devm_ioremap(dev->mt76.dev, pci_resource_start(pci_dev, 0), pci_resource_len(pci_dev, 0)); wed->wlan.phy_base = pci_resource_start(pci_dev, 0); wed->wlan.wpdma_int = pci_resource_start(pci_dev, 0) + MT_INT_WED_SOURCE_CSR; wed->wlan.wpdma_mask = pci_resource_start(pci_dev, 0) + MT_INT_WED_MASK_CSR; wed->wlan.wpdma_phys = pci_resource_start(pci_dev, 0) + MT_WFDMA_EXT_CSR_BASE; wed->wlan.wpdma_tx = pci_resource_start(pci_dev, 0) + MT_TXQ_WED_RING_BASE; wed->wlan.wpdma_txfree = pci_resource_start(pci_dev, 0) + MT_RXQ_WED_RING_BASE; wed->wlan.wpdma_rx_glo = pci_resource_start(pci_dev, 0) + MT_WPDMA_GLO_CFG; wed->wlan.wpdma_rx = pci_resource_start(pci_dev, 0) + MT_RXQ_WED_DATA_RING_BASE; } else { struct platform_device *plat_dev = pdev_ptr; struct resource *res; res = platform_get_resource(plat_dev, IORESOURCE_MEM, 0); if (!res) return -ENOMEM; wed->wlan.platform_dev = plat_dev; wed->wlan.bus_type = MTK_WED_BUS_AXI; wed->wlan.base = devm_ioremap(dev->mt76.dev, res->start, resource_size(res)); wed->wlan.phy_base = res->start; wed->wlan.wpdma_int = res->start + MT_INT_SOURCE_CSR; wed->wlan.wpdma_mask = res->start + MT_INT_MASK_CSR; wed->wlan.wpdma_tx = res->start + MT_TXQ_WED_RING_BASE; wed->wlan.wpdma_txfree = res->start + MT_RXQ_WED_RING_BASE; wed->wlan.wpdma_rx_glo = res->start + MT_WPDMA_GLO_CFG; wed->wlan.wpdma_rx = res->start + MT_RXQ_WED_DATA_RING_BASE; } wed->wlan.nbuf = MT7915_HW_TOKEN_SIZE; wed->wlan.tx_tbit[0] = is_mt7915(&dev->mt76) ? 4 : 30; wed->wlan.tx_tbit[1] = is_mt7915(&dev->mt76) ? 5 : 31; wed->wlan.txfree_tbit = is_mt798x(&dev->mt76) ? 2 : 1; wed->wlan.token_start = MT7915_TOKEN_SIZE - wed->wlan.nbuf; wed->wlan.wcid_512 = !is_mt7915(&dev->mt76); wed->wlan.rx_nbuf = 65536; wed->wlan.rx_npkt = MT7915_WED_RX_TOKEN_SIZE; wed->wlan.rx_size = SKB_WITH_OVERHEAD(MT_RX_BUF_SIZE); if (is_mt7915(&dev->mt76)) { wed->wlan.rx_tbit[0] = 16; wed->wlan.rx_tbit[1] = 17; } else if (is_mt798x(&dev->mt76)) { wed->wlan.rx_tbit[0] = 22; wed->wlan.rx_tbit[1] = 23; } else { wed->wlan.rx_tbit[0] = 18; wed->wlan.rx_tbit[1] = 19; } wed->wlan.init_buf = mt7915_wed_init_buf; wed->wlan.offload_enable = mt7915_mmio_wed_offload_enable; wed->wlan.offload_disable = mt7915_mmio_wed_offload_disable; wed->wlan.init_rx_buf = mt7915_mmio_wed_init_rx_buf; wed->wlan.release_rx_buf = mt7915_mmio_wed_release_rx_buf; wed->wlan.update_wo_rx_stats = mt7915_mmio_wed_update_rx_stats; wed->wlan.reset = mt7915_mmio_wed_reset; wed->wlan.reset_complete = mt7915_mmio_wed_reset_complete; dev->mt76.rx_token_size = wed->wlan.rx_npkt; if (mtk_wed_device_attach(wed)) return 0; *irq = wed->irq; dev->mt76.dma_dev = wed->dev; ret = dma_set_mask(wed->dev, DMA_BIT_MASK(32)); if (ret) return ret; return 1; #else return 0; #endif } static int mt7915_mmio_init(struct mt76_dev *mdev, void __iomem *mem_base, u32 device_id) { struct mt76_bus_ops *bus_ops; struct mt7915_dev *dev; dev = container_of(mdev, struct mt7915_dev, mt76); mt76_mmio_init(&dev->mt76, mem_base); switch (device_id) { case 0x7915: dev->reg.reg_rev = mt7915_reg; dev->reg.offs_rev = mt7915_offs; dev->reg.map = mt7915_reg_map; dev->reg.map_size = ARRAY_SIZE(mt7915_reg_map); break; case 0x7906: dev->reg.reg_rev = mt7916_reg; dev->reg.offs_rev = mt7916_offs; dev->reg.map = mt7916_reg_map; dev->reg.map_size = ARRAY_SIZE(mt7916_reg_map); break; case 0x7981: case 0x7986: dev->reg.reg_rev = mt7986_reg; dev->reg.offs_rev = mt7916_offs; dev->reg.map = mt7986_reg_map; dev->reg.map_size = ARRAY_SIZE(mt7986_reg_map); break; default: return -EINVAL; } dev->bus_ops = dev->mt76.bus; bus_ops = devm_kmemdup(dev->mt76.dev, dev->bus_ops, sizeof(*bus_ops), GFP_KERNEL); if (!bus_ops) return -ENOMEM; bus_ops->rr = mt7915_rr; bus_ops->wr = mt7915_wr; bus_ops->rmw = mt7915_rmw; dev->mt76.bus = bus_ops; mdev->rev = (device_id << 16) | (mt76_rr(dev, MT_HW_REV) & 0xff); dev_dbg(mdev->dev, "ASIC revision: %04x\n", mdev->rev); return 0; } void mt7915_dual_hif_set_irq_mask(struct mt7915_dev *dev, bool write_reg, u32 clear, u32 set) { struct mt76_dev *mdev = &dev->mt76; unsigned long flags; spin_lock_irqsave(&mdev->mmio.irq_lock, flags); mdev->mmio.irqmask &= ~clear; mdev->mmio.irqmask |= set; if (write_reg) { if (mtk_wed_device_active(&mdev->mmio.wed)) mtk_wed_device_irq_set_mask(&mdev->mmio.wed, mdev->mmio.irqmask); else mt76_wr(dev, MT_INT_MASK_CSR, mdev->mmio.irqmask); mt76_wr(dev, MT_INT1_MASK_CSR, mdev->mmio.irqmask); } spin_unlock_irqrestore(&mdev->mmio.irq_lock, flags); } static void mt7915_rx_poll_complete(struct mt76_dev *mdev, enum mt76_rxq_id q) { struct mt7915_dev *dev = container_of(mdev, struct mt7915_dev, mt76); mt7915_irq_enable(dev, MT_INT_RX(q)); } /* TODO: support 2/4/6/8 MSI-X vectors */ static void mt7915_irq_tasklet(struct tasklet_struct *t) { struct mt7915_dev *dev = from_tasklet(dev, t, mt76.irq_tasklet); struct mtk_wed_device *wed = &dev->mt76.mmio.wed; u32 intr, intr1, mask; if (mtk_wed_device_active(wed)) { mtk_wed_device_irq_set_mask(wed, 0); if (dev->hif2) mt76_wr(dev, MT_INT1_MASK_CSR, 0); intr = mtk_wed_device_irq_get(wed, dev->mt76.mmio.irqmask); } else { mt76_wr(dev, MT_INT_MASK_CSR, 0); if (dev->hif2) mt76_wr(dev, MT_INT1_MASK_CSR, 0); intr = mt76_rr(dev, MT_INT_SOURCE_CSR); intr &= dev->mt76.mmio.irqmask; mt76_wr(dev, MT_INT_SOURCE_CSR, intr); } if (dev->hif2) { intr1 = mt76_rr(dev, MT_INT1_SOURCE_CSR); intr1 &= dev->mt76.mmio.irqmask; mt76_wr(dev, MT_INT1_SOURCE_CSR, intr1); intr |= intr1; } trace_dev_irq(&dev->mt76, intr, dev->mt76.mmio.irqmask); mask = intr & MT_INT_RX_DONE_ALL; if (intr & MT_INT_TX_DONE_MCU) mask |= MT_INT_TX_DONE_MCU; mt7915_irq_disable(dev, mask); if (intr & MT_INT_TX_DONE_MCU) napi_schedule(&dev->mt76.tx_napi); if (intr & MT_INT_RX(MT_RXQ_MAIN)) napi_schedule(&dev->mt76.napi[MT_RXQ_MAIN]); if (intr & MT_INT_RX(MT_RXQ_BAND1)) napi_schedule(&dev->mt76.napi[MT_RXQ_BAND1]); if (intr & MT_INT_RX(MT_RXQ_MCU)) napi_schedule(&dev->mt76.napi[MT_RXQ_MCU]); if (intr & MT_INT_RX(MT_RXQ_MCU_WA)) napi_schedule(&dev->mt76.napi[MT_RXQ_MCU_WA]); if (!is_mt7915(&dev->mt76) && (intr & MT_INT_RX(MT_RXQ_MAIN_WA))) napi_schedule(&dev->mt76.napi[MT_RXQ_MAIN_WA]); if (intr & MT_INT_RX(MT_RXQ_BAND1_WA)) napi_schedule(&dev->mt76.napi[MT_RXQ_BAND1_WA]); if (intr & MT_INT_MCU_CMD) { u32 val = mt76_rr(dev, MT_MCU_CMD); mt76_wr(dev, MT_MCU_CMD, val); if (val & (MT_MCU_CMD_ERROR_MASK | MT_MCU_CMD_WDT_MASK)) { dev->recovery.state = val; mt7915_reset(dev); } } } irqreturn_t mt7915_irq_handler(int irq, void *dev_instance) { struct mt7915_dev *dev = dev_instance; struct mtk_wed_device *wed = &dev->mt76.mmio.wed; if (mtk_wed_device_active(wed)) mtk_wed_device_irq_set_mask(wed, 0); else mt76_wr(dev, MT_INT_MASK_CSR, 0); if (dev->hif2) mt76_wr(dev, MT_INT1_MASK_CSR, 0); if (!test_bit(MT76_STATE_INITIALIZED, &dev->mphy.state)) return IRQ_NONE; tasklet_schedule(&dev->mt76.irq_tasklet); return IRQ_HANDLED; } struct mt7915_dev *mt7915_mmio_probe(struct device *pdev, void __iomem *mem_base, u32 device_id) { static const struct mt76_driver_ops drv_ops = { /* txwi_size = txd size + txp size */ .txwi_size = MT_TXD_SIZE + sizeof(struct mt76_connac_fw_txp), .drv_flags = MT_DRV_TXWI_NO_FREE | MT_DRV_HW_MGMT_TXQ | MT_DRV_AMSDU_OFFLOAD, .survey_flags = SURVEY_INFO_TIME_TX | SURVEY_INFO_TIME_RX | SURVEY_INFO_TIME_BSS_RX, .token_size = MT7915_TOKEN_SIZE, .tx_prepare_skb = mt7915_tx_prepare_skb, .tx_complete_skb = mt76_connac_tx_complete_skb, .rx_skb = mt7915_queue_rx_skb, .rx_check = mt7915_rx_check, .rx_poll_complete = mt7915_rx_poll_complete, .sta_add = mt7915_mac_sta_add, .sta_remove = mt7915_mac_sta_remove, .update_survey = mt7915_update_channel, }; struct mt7915_dev *dev; struct mt76_dev *mdev; int ret; mdev = mt76_alloc_device(pdev, sizeof(*dev), &mt7915_ops, &drv_ops); if (!mdev) return ERR_PTR(-ENOMEM); dev = container_of(mdev, struct mt7915_dev, mt76); ret = mt7915_mmio_init(mdev, mem_base, device_id); if (ret) goto error; tasklet_setup(&mdev->irq_tasklet, mt7915_irq_tasklet); return dev; error: mt76_free_device(&dev->mt76); return ERR_PTR(ret); } static int __init mt7915_init(void) { int ret; ret = pci_register_driver(&mt7915_hif_driver); if (ret) return ret; ret = pci_register_driver(&mt7915_pci_driver); if (ret) goto error_pci; if (IS_ENABLED(CONFIG_MT798X_WMAC)) { ret = platform_driver_register(&mt798x_wmac_driver); if (ret) goto error_wmac; } return 0; error_wmac: pci_unregister_driver(&mt7915_pci_driver); error_pci: pci_unregister_driver(&mt7915_hif_driver); return ret; } static void __exit mt7915_exit(void) { if (IS_ENABLED(CONFIG_MT798X_WMAC)) platform_driver_unregister(&mt798x_wmac_driver); pci_unregister_driver(&mt7915_pci_driver); pci_unregister_driver(&mt7915_hif_driver); } module_init(mt7915_init); module_exit(mt7915_exit); MODULE_LICENSE("Dual BSD/GPL");
linux-master
drivers/net/wireless/mediatek/mt76/mt7915/mmio.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2022 MediaTek Inc. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pinctrl/consumer.h> #include <linux/of.h> #include <linux/of_reserved_mem.h> #include <linux/of_gpio.h> #include <linux/iopoll.h> #include <linux/reset.h> #include <linux/of_net.h> #include <linux/clk.h> #include "mt7915.h" #define MT7981_CON_INFRA_VERSION 0x02090000 #define MT7986_CON_INFRA_VERSION 0x02070000 /* INFRACFG */ #define MT_INFRACFG_CONN2AP_SLPPROT 0x0d0 #define MT_INFRACFG_AP2CONN_SLPPROT 0x0d4 #define MT_INFRACFG_RX_EN_MASK BIT(16) #define MT_INFRACFG_TX_RDY_MASK BIT(4) #define MT_INFRACFG_TX_EN_MASK BIT(0) /* TOP POS */ #define MT_TOP_POS_FAST_CTRL 0x114 #define MT_TOP_POS_FAST_EN_MASK BIT(3) #define MT_TOP_POS_SKU 0x21c #define MT_TOP_POS_SKU_MASK GENMASK(31, 28) #define MT_TOP_POS_SKU_ADIE_DBDC_MASK BIT(2) enum { ADIE_SB, ADIE_DBDC }; static int mt76_wmac_spi_read(struct mt7915_dev *dev, u8 adie, u32 addr, u32 *val) { int ret; u32 cur; ret = read_poll_timeout(mt76_rr, cur, !(cur & MT_TOP_SPI_POLLING_BIT), USEC_PER_MSEC, 50 * USEC_PER_MSEC, false, dev, MT_TOP_SPI_BUSY_CR(adie)); if (ret) return ret; mt76_wr(dev, MT_TOP_SPI_ADDR_CR(adie), MT_TOP_SPI_READ_ADDR_FORMAT | addr); mt76_wr(dev, MT_TOP_SPI_WRITE_DATA_CR(adie), 0); ret = read_poll_timeout(mt76_rr, cur, !(cur & MT_TOP_SPI_POLLING_BIT), USEC_PER_MSEC, 50 * USEC_PER_MSEC, false, dev, MT_TOP_SPI_BUSY_CR(adie)); if (ret) return ret; *val = mt76_rr(dev, MT_TOP_SPI_READ_DATA_CR(adie)); return 0; } static int mt76_wmac_spi_write(struct mt7915_dev *dev, u8 adie, u32 addr, u32 val) { int ret; u32 cur; ret = read_poll_timeout(mt76_rr, cur, !(cur & MT_TOP_SPI_POLLING_BIT), USEC_PER_MSEC, 50 * USEC_PER_MSEC, false, dev, MT_TOP_SPI_BUSY_CR(adie)); if (ret) return ret; mt76_wr(dev, MT_TOP_SPI_ADDR_CR(adie), MT_TOP_SPI_WRITE_ADDR_FORMAT | addr); mt76_wr(dev, MT_TOP_SPI_WRITE_DATA_CR(adie), val); return read_poll_timeout(mt76_rr, cur, !(cur & MT_TOP_SPI_POLLING_BIT), USEC_PER_MSEC, 50 * USEC_PER_MSEC, false, dev, MT_TOP_SPI_BUSY_CR(adie)); } static int mt76_wmac_spi_rmw(struct mt7915_dev *dev, u8 adie, u32 addr, u32 mask, u32 val) { u32 cur, ret; ret = mt76_wmac_spi_read(dev, adie, addr, &cur); if (ret) return ret; cur &= ~mask; cur |= val; return mt76_wmac_spi_write(dev, adie, addr, cur); } static int mt7986_wmac_adie_efuse_read(struct mt7915_dev *dev, u8 adie, u32 addr, u32 *data) { int ret, temp; u32 val, mask; ret = mt76_wmac_spi_write(dev, adie, MT_ADIE_EFUSE_CFG, MT_ADIE_EFUSE_CTRL_MASK); if (ret) return ret; ret = mt76_wmac_spi_rmw(dev, adie, MT_ADIE_EFUSE2_CTRL, BIT(30), 0x0); if (ret) return ret; mask = (MT_ADIE_EFUSE_MODE_MASK | MT_ADIE_EFUSE_ADDR_MASK | MT_ADIE_EFUSE_KICK_MASK); val = FIELD_PREP(MT_ADIE_EFUSE_MODE_MASK, 0) | FIELD_PREP(MT_ADIE_EFUSE_ADDR_MASK, addr) | FIELD_PREP(MT_ADIE_EFUSE_KICK_MASK, 1); ret = mt76_wmac_spi_rmw(dev, adie, MT_ADIE_EFUSE2_CTRL, mask, val); if (ret) return ret; ret = read_poll_timeout(mt76_wmac_spi_read, temp, !temp && !FIELD_GET(MT_ADIE_EFUSE_KICK_MASK, val), USEC_PER_MSEC, 50 * USEC_PER_MSEC, false, dev, adie, MT_ADIE_EFUSE2_CTRL, &val); if (ret) return ret; ret = mt76_wmac_spi_read(dev, adie, MT_ADIE_EFUSE2_CTRL, &val); if (ret) return ret; if (FIELD_GET(MT_ADIE_EFUSE_VALID_MASK, val) == 1) ret = mt76_wmac_spi_read(dev, adie, MT_ADIE_EFUSE_RDATA0, data); return ret; } static inline void mt76_wmac_spi_lock(struct mt7915_dev *dev) { u32 cur; read_poll_timeout(mt76_rr, cur, FIELD_GET(MT_SEMA_RFSPI_STATUS_MASK, cur), 1000, 1000 * MSEC_PER_SEC, false, dev, MT_SEMA_RFSPI_STATUS); } static inline void mt76_wmac_spi_unlock(struct mt7915_dev *dev) { mt76_wr(dev, MT_SEMA_RFSPI_RELEASE, 1); } static u32 mt76_wmac_rmw(void __iomem *base, u32 offset, u32 mask, u32 val) { val |= readl(base + offset) & ~mask; writel(val, base + offset); return val; } static u8 mt798x_wmac_check_adie_type(struct mt7915_dev *dev) { u32 val; /* Only DBDC A-die is used with MT7981 */ if (is_mt7981(&dev->mt76)) return ADIE_DBDC; val = readl(dev->sku + MT_TOP_POS_SKU); return FIELD_GET(MT_TOP_POS_SKU_ADIE_DBDC_MASK, val); } static int mt7986_wmac_consys_reset(struct mt7915_dev *dev, bool enable) { if (!enable) return reset_control_assert(dev->rstc); mt76_wmac_rmw(dev->sku, MT_TOP_POS_FAST_CTRL, MT_TOP_POS_FAST_EN_MASK, FIELD_PREP(MT_TOP_POS_FAST_EN_MASK, 0x1)); return reset_control_deassert(dev->rstc); } static int mt7986_wmac_gpio_setup(struct mt7915_dev *dev) { struct pinctrl_state *state; struct pinctrl *pinctrl; int ret; u8 type; type = mt798x_wmac_check_adie_type(dev); pinctrl = devm_pinctrl_get(dev->mt76.dev); if (IS_ERR(pinctrl)) return PTR_ERR(pinctrl); switch (type) { case ADIE_SB: state = pinctrl_lookup_state(pinctrl, "default"); if (IS_ERR_OR_NULL(state)) return -EINVAL; break; case ADIE_DBDC: state = pinctrl_lookup_state(pinctrl, "dbdc"); if (IS_ERR_OR_NULL(state)) return -EINVAL; break; default: return -EINVAL; } ret = pinctrl_select_state(pinctrl, state); if (ret) return ret; usleep_range(500, 1000); return 0; } static int mt7986_wmac_consys_lockup(struct mt7915_dev *dev, bool enable) { int ret; u32 cur; mt76_wmac_rmw(dev->dcm, MT_INFRACFG_AP2CONN_SLPPROT, MT_INFRACFG_RX_EN_MASK, FIELD_PREP(MT_INFRACFG_RX_EN_MASK, enable)); ret = read_poll_timeout(readl, cur, !(cur & MT_INFRACFG_RX_EN_MASK), USEC_PER_MSEC, 50 * USEC_PER_MSEC, false, dev->dcm + MT_INFRACFG_AP2CONN_SLPPROT); if (ret) return ret; mt76_wmac_rmw(dev->dcm, MT_INFRACFG_AP2CONN_SLPPROT, MT_INFRACFG_TX_EN_MASK, FIELD_PREP(MT_INFRACFG_TX_EN_MASK, enable)); ret = read_poll_timeout(readl, cur, !(cur & MT_INFRACFG_TX_RDY_MASK), USEC_PER_MSEC, 50 * USEC_PER_MSEC, false, dev->dcm + MT_INFRACFG_AP2CONN_SLPPROT); if (ret) return ret; mt76_wmac_rmw(dev->dcm, MT_INFRACFG_CONN2AP_SLPPROT, MT_INFRACFG_RX_EN_MASK, FIELD_PREP(MT_INFRACFG_RX_EN_MASK, enable)); mt76_wmac_rmw(dev->dcm, MT_INFRACFG_CONN2AP_SLPPROT, MT_INFRACFG_TX_EN_MASK, FIELD_PREP(MT_INFRACFG_TX_EN_MASK, enable)); return 0; } static int mt798x_wmac_coninfra_check(struct mt7915_dev *dev) { u32 cur; u32 con_infra_version; if (is_mt7981(&dev->mt76)) { con_infra_version = MT7981_CON_INFRA_VERSION; } else if (is_mt7986(&dev->mt76)) { con_infra_version = MT7986_CON_INFRA_VERSION; } else { WARN_ON(1); return -EINVAL; } return read_poll_timeout(mt76_rr, cur, (cur == con_infra_version), USEC_PER_MSEC, 50 * USEC_PER_MSEC, false, dev, MT_CONN_INFRA_BASE); } static int mt798x_wmac_coninfra_setup(struct mt7915_dev *dev) { struct device *pdev = dev->mt76.dev; struct reserved_mem *rmem; struct device_node *np; u32 val; np = of_parse_phandle(pdev->of_node, "memory-region", 0); if (!np) return -EINVAL; rmem = of_reserved_mem_lookup(np); of_node_put(np); if (!rmem) return -EINVAL; val = (rmem->base >> 16) & MT_TOP_MCU_EMI_BASE_MASK; if (is_mt7986(&dev->mt76)) { /* Set conninfra subsys PLL check */ mt76_rmw_field(dev, MT_INFRA_CKGEN_BUS, MT_INFRA_CKGEN_BUS_RDY_SEL_MASK, 0x1); mt76_rmw_field(dev, MT_INFRA_CKGEN_BUS, MT_INFRA_CKGEN_BUS_RDY_SEL_MASK, 0x1); } mt76_rmw_field(dev, MT_TOP_MCU_EMI_BASE, MT_TOP_MCU_EMI_BASE_MASK, val); if (is_mt7981(&dev->mt76)) { mt76_rmw_field(dev, MT_TOP_WF_AP_PERI_BASE, MT_TOP_WF_AP_PERI_BASE_MASK, 0x300d0000 >> 16); mt76_rmw_field(dev, MT_TOP_EFUSE_BASE, MT_TOP_EFUSE_BASE_MASK, 0x11f20000 >> 16); } mt76_wr(dev, MT_INFRA_BUS_EMI_START, rmem->base); mt76_wr(dev, MT_INFRA_BUS_EMI_END, rmem->size); mt76_rr(dev, MT_CONN_INFRA_EFUSE); /* Set conninfra sysram */ mt76_wr(dev, MT_TOP_RGU_SYSRAM_PDN, 0); mt76_wr(dev, MT_TOP_RGU_SYSRAM_SLP, 1); return 0; } static int mt798x_wmac_sku_setup(struct mt7915_dev *dev, u32 *adie_type) { int ret; u32 adie_main = 0, adie_ext = 0; mt76_rmw_field(dev, MT_CONN_INFRA_ADIE_RESET, MT_CONN_INFRA_ADIE1_RESET_MASK, 0x1); if (is_mt7986(&dev->mt76)) { mt76_rmw_field(dev, MT_CONN_INFRA_ADIE_RESET, MT_CONN_INFRA_ADIE2_RESET_MASK, 0x1); } mt76_wmac_spi_lock(dev); ret = mt76_wmac_spi_read(dev, 0, MT_ADIE_CHIP_ID, &adie_main); if (ret) goto out; if (is_mt7986(&dev->mt76)) { ret = mt76_wmac_spi_read(dev, 1, MT_ADIE_CHIP_ID, &adie_ext); if (ret) goto out; } *adie_type = FIELD_GET(MT_ADIE_CHIP_ID_MASK, adie_main) | (MT_ADIE_CHIP_ID_MASK & adie_ext); out: mt76_wmac_spi_unlock(dev); return 0; } static inline u16 mt7986_adie_idx(u8 adie, u32 adie_type) { if (adie == 0) return u32_get_bits(adie_type, MT_ADIE_IDX0); else return u32_get_bits(adie_type, MT_ADIE_IDX1); } static inline bool is_7975(struct mt7915_dev *dev, u8 adie, u32 adie_type) { return mt7986_adie_idx(adie, adie_type) == 0x7975; } static inline bool is_7976(struct mt7915_dev *dev, u8 adie, u32 adie_type) { return mt7986_adie_idx(adie, adie_type) == 0x7976; } static int mt7986_wmac_adie_thermal_cal(struct mt7915_dev *dev, u8 adie) { int ret; u32 data, val; ret = mt7986_wmac_adie_efuse_read(dev, adie, MT_ADIE_THADC_ANALOG, &data); if (ret || FIELD_GET(MT_ADIE_ANA_EN_MASK, data)) { val = FIELD_GET(MT_ADIE_VRPI_SEL_EFUSE_MASK, data); ret = mt76_wmac_spi_rmw(dev, adie, MT_ADIE_RG_TOP_THADC_BG, MT_ADIE_VRPI_SEL_CR_MASK, FIELD_PREP(MT_ADIE_VRPI_SEL_CR_MASK, val)); if (ret) return ret; val = FIELD_GET(MT_ADIE_PGA_GAIN_EFUSE_MASK, data); ret = mt76_wmac_spi_rmw(dev, adie, MT_ADIE_RG_TOP_THADC, MT_ADIE_PGA_GAIN_MASK, FIELD_PREP(MT_ADIE_PGA_GAIN_MASK, val)); if (ret) return ret; } ret = mt7986_wmac_adie_efuse_read(dev, adie, MT_ADIE_THADC_SLOP, &data); if (ret || FIELD_GET(MT_ADIE_ANA_EN_MASK, data)) { val = FIELD_GET(MT_ADIE_LDO_CTRL_EFUSE_MASK, data); return mt76_wmac_spi_rmw(dev, adie, MT_ADIE_RG_TOP_THADC, MT_ADIE_LDO_CTRL_MASK, FIELD_PREP(MT_ADIE_LDO_CTRL_MASK, val)); } return 0; } static int mt7986_read_efuse_xo_trim_7976(struct mt7915_dev *dev, u8 adie, bool is_40m, int *result) { int ret; u32 data, addr; addr = is_40m ? MT_ADIE_XTAL_AXM_40M_OSC : MT_ADIE_XTAL_AXM_80M_OSC; ret = mt7986_wmac_adie_efuse_read(dev, adie, addr, &data); if (ret) return ret; if (!FIELD_GET(MT_ADIE_XO_TRIM_EN_MASK, data)) { *result = 64; } else { *result = FIELD_GET(MT_ADIE_TRIM_MASK, data); addr = is_40m ? MT_ADIE_XTAL_TRIM1_40M_OSC : MT_ADIE_XTAL_TRIM1_80M_OSC; ret = mt7986_wmac_adie_efuse_read(dev, adie, addr, &data); if (ret) return ret; if (FIELD_GET(MT_ADIE_XO_TRIM_EN_MASK, data) && FIELD_GET(MT_ADIE_XTAL_DECREASE_MASK, data)) *result -= FIELD_GET(MT_ADIE_EFUSE_TRIM_MASK, data); else if (FIELD_GET(MT_ADIE_XO_TRIM_EN_MASK, data)) *result += FIELD_GET(MT_ADIE_EFUSE_TRIM_MASK, data); *result = max(0, min(127, *result)); } return 0; } static int mt7986_wmac_adie_xtal_trim_7976(struct mt7915_dev *dev, u8 adie) { int ret, trim_80m, trim_40m; u32 data, val, mode; ret = mt7986_wmac_adie_efuse_read(dev, adie, MT_ADIE_XO_TRIM_FLOW, &data); if (ret || !FIELD_GET(BIT(1), data)) return 0; ret = mt7986_read_efuse_xo_trim_7976(dev, adie, false, &trim_80m); if (ret) return ret; ret = mt7986_read_efuse_xo_trim_7976(dev, adie, true, &trim_40m); if (ret) return ret; ret = mt76_wmac_spi_read(dev, adie, MT_ADIE_RG_STRAP_PIN_IN, &val); if (ret) return ret; mode = FIELD_PREP(GENMASK(6, 4), val); if (!mode || mode == 0x2) { ret = mt76_wmac_spi_rmw(dev, adie, MT_ADIE_XTAL_C1, GENMASK(31, 24), FIELD_PREP(GENMASK(31, 24), trim_80m)); if (ret) return ret; ret = mt76_wmac_spi_rmw(dev, adie, MT_ADIE_XTAL_C2, GENMASK(31, 24), FIELD_PREP(GENMASK(31, 24), trim_80m)); } else if (mode == 0x3 || mode == 0x4 || mode == 0x6) { ret = mt76_wmac_spi_rmw(dev, adie, MT_ADIE_XTAL_C1, GENMASK(23, 16), FIELD_PREP(GENMASK(23, 16), trim_40m)); if (ret) return ret; ret = mt76_wmac_spi_rmw(dev, adie, MT_ADIE_XTAL_C2, GENMASK(23, 16), FIELD_PREP(GENMASK(23, 16), trim_40m)); } return ret; } static int mt798x_wmac_adie_patch_7976(struct mt7915_dev *dev, u8 adie) { u32 id, version, rg_xo_01, rg_xo_03; int ret; ret = mt76_wmac_spi_read(dev, adie, MT_ADIE_CHIP_ID, &id); if (ret) return ret; version = FIELD_GET(MT_ADIE_VERSION_MASK, id); ret = mt76_wmac_spi_write(dev, adie, MT_ADIE_RG_TOP_THADC, 0x4a563b00); if (ret) return ret; if (version == 0x8a00 || version == 0x8a10 || version == 0x8b00) { rg_xo_01 = 0x1d59080f; rg_xo_03 = 0x34c00fe0; } else { if (is_mt7981(&dev->mt76)) { rg_xo_01 = 0x1959c80f; } else if (is_mt7986(&dev->mt76)) { rg_xo_01 = 0x1959f80f; } else { WARN_ON(1); return -EINVAL; } rg_xo_03 = 0x34d00fe0; } ret = mt76_wmac_spi_write(dev, adie, MT_ADIE_RG_XO_01, rg_xo_01); if (ret) return ret; return mt76_wmac_spi_write(dev, adie, MT_ADIE_RG_XO_03, rg_xo_03); } static int mt7986_read_efuse_xo_trim_7975(struct mt7915_dev *dev, u8 adie, u32 addr, u32 *result) { int ret; u32 data; ret = mt7986_wmac_adie_efuse_read(dev, adie, addr, &data); if (ret) return ret; if ((data & MT_ADIE_XO_TRIM_EN_MASK)) { if ((data & MT_ADIE_XTAL_DECREASE_MASK)) *result -= (data & MT_ADIE_EFUSE_TRIM_MASK); else *result += (data & MT_ADIE_EFUSE_TRIM_MASK); *result = (*result & MT_ADIE_TRIM_MASK); } return 0; } static int mt7986_wmac_adie_xtal_trim_7975(struct mt7915_dev *dev, u8 adie) { int ret; u32 data, result = 0, value; ret = mt7986_wmac_adie_efuse_read(dev, adie, MT_ADIE_7975_XTAL_EN, &data); if (ret || !(data & BIT(1))) return 0; ret = mt7986_wmac_adie_efuse_read(dev, adie, MT_ADIE_7975_XTAL_CAL, &data); if (ret) return ret; if (data & MT_ADIE_XO_TRIM_EN_MASK) result = (data & MT_ADIE_TRIM_MASK); ret = mt7986_read_efuse_xo_trim_7975(dev, adie, MT_ADIE_7975_XO_TRIM2, &result); if (ret) return ret; ret = mt7986_read_efuse_xo_trim_7975(dev, adie, MT_ADIE_7975_XO_TRIM3, &result); if (ret) return ret; ret = mt7986_read_efuse_xo_trim_7975(dev, adie, MT_ADIE_7975_XO_TRIM4, &result); if (ret) return ret; /* Update trim value to C1 and C2*/ value = FIELD_GET(MT_ADIE_7975_XO_CTRL2_C1_MASK, result) | FIELD_GET(MT_ADIE_7975_XO_CTRL2_C2_MASK, result); ret = mt76_wmac_spi_rmw(dev, adie, MT_ADIE_7975_XO_CTRL2, MT_ADIE_7975_XO_CTRL2_MASK, value); if (ret) return ret; ret = mt76_wmac_spi_read(dev, adie, MT_ADIE_7975_XTAL, &value); if (ret) return ret; if (value & MT_ADIE_7975_XTAL_EN_MASK) { ret = mt76_wmac_spi_rmw(dev, adie, MT_ADIE_7975_XO_2, MT_ADIE_7975_XO_2_FIX_EN, 0x0); if (ret) return ret; } return mt76_wmac_spi_rmw(dev, adie, MT_ADIE_7975_XO_CTRL6, MT_ADIE_7975_XO_CTRL6_MASK, 0x1); } static int mt7986_wmac_adie_patch_7975(struct mt7915_dev *dev, u8 adie) { int ret; /* disable CAL LDO and fine tune RFDIG LDO */ ret = mt76_wmac_spi_write(dev, adie, 0x348, 0x00000002); if (ret) return ret; ret = mt76_wmac_spi_write(dev, adie, 0x378, 0x00000002); if (ret) return ret; ret = mt76_wmac_spi_write(dev, adie, 0x3a8, 0x00000002); if (ret) return ret; ret = mt76_wmac_spi_write(dev, adie, 0x3d8, 0x00000002); if (ret) return ret; /* set CKA driving and filter */ ret = mt76_wmac_spi_write(dev, adie, 0xa1c, 0x30000aaa); if (ret) return ret; /* set CKB LDO to 1.4V */ ret = mt76_wmac_spi_write(dev, adie, 0xa84, 0x8470008a); if (ret) return ret; /* turn on SX0 LTBUF */ if (is_mt7981(&dev->mt76)) { ret = mt76_wmac_spi_write(dev, adie, 0x074, 0x00000007); } else if (is_mt7986(&dev->mt76)) { ret = mt76_wmac_spi_write(dev, adie, 0x074, 0x00000002); } else { WARN_ON(1); return -EINVAL; } if (ret) return ret; /* CK_BUF_SW_EN = 1 (all buf in manual mode.) */ ret = mt76_wmac_spi_write(dev, adie, 0xaa4, 0x01001fc0); if (ret) return ret; /* BT mode/WF normal mode 00000005 */ ret = mt76_wmac_spi_write(dev, adie, 0x070, 0x00000005); if (ret) return ret; /* BG thermal sensor offset update */ ret = mt76_wmac_spi_write(dev, adie, 0x344, 0x00000088); if (ret) return ret; ret = mt76_wmac_spi_write(dev, adie, 0x374, 0x00000088); if (ret) return ret; ret = mt76_wmac_spi_write(dev, adie, 0x3a4, 0x00000088); if (ret) return ret; ret = mt76_wmac_spi_write(dev, adie, 0x3d4, 0x00000088); if (ret) return ret; /* set WCON VDD IPTAT to "0000" */ ret = mt76_wmac_spi_write(dev, adie, 0xa80, 0x44d07000); if (ret) return ret; /* change back LTBUF SX3 drving to default value */ ret = mt76_wmac_spi_write(dev, adie, 0xa88, 0x3900aaaa); if (ret) return ret; /* SM input cap off */ ret = mt76_wmac_spi_write(dev, adie, 0x2c4, 0x00000000); if (ret) return ret; /* set CKB driving and filter */ if (is_mt7986(&dev->mt76)) return mt76_wmac_spi_write(dev, adie, 0x2c8, 0x00000072); return ret; } static int mt7986_wmac_adie_cfg(struct mt7915_dev *dev, u8 adie, u32 adie_type) { int ret; mt76_wmac_spi_lock(dev); ret = mt76_wmac_spi_write(dev, adie, MT_ADIE_CLK_EN, ~0); if (ret) goto out; if (is_7975(dev, adie, adie_type)) { ret = mt76_wmac_spi_rmw(dev, adie, MT_ADIE_7975_COCLK, BIT(1), 0x1); if (ret) goto out; ret = mt7986_wmac_adie_thermal_cal(dev, adie); if (ret) goto out; ret = mt7986_wmac_adie_xtal_trim_7975(dev, adie); if (ret) goto out; ret = mt7986_wmac_adie_patch_7975(dev, adie); } else if (is_7976(dev, adie, adie_type)) { if (mt798x_wmac_check_adie_type(dev) == ADIE_DBDC) { ret = mt76_wmac_spi_write(dev, adie, MT_ADIE_WRI_CK_SEL, 0x1c); if (ret) goto out; } ret = mt7986_wmac_adie_thermal_cal(dev, adie); if (ret) goto out; ret = mt7986_wmac_adie_xtal_trim_7976(dev, adie); if (ret) goto out; ret = mt798x_wmac_adie_patch_7976(dev, adie); } out: mt76_wmac_spi_unlock(dev); return ret; } static int mt7986_wmac_afe_cal(struct mt7915_dev *dev, u8 adie, bool dbdc, u32 adie_type) { int ret; u8 idx; u32 txcal; mt76_wmac_spi_lock(dev); if (is_7975(dev, adie, adie_type)) ret = mt76_wmac_spi_write(dev, adie, MT_AFE_RG_ENCAL_WBTAC_IF_SW, 0x80000000); else ret = mt76_wmac_spi_write(dev, adie, MT_AFE_RG_ENCAL_WBTAC_IF_SW, 0x88888005); if (ret) goto out; idx = dbdc ? ADIE_DBDC : adie; mt76_rmw_field(dev, MT_AFE_DIG_EN_01(idx), MT_AFE_RG_WBG_EN_RCK_MASK, 0x1); usleep_range(60, 100); mt76_rmw(dev, MT_AFE_DIG_EN_01(idx), MT_AFE_RG_WBG_EN_RCK_MASK, 0x0); mt76_rmw_field(dev, MT_AFE_DIG_EN_03(idx), MT_AFE_RG_WBG_EN_BPLL_UP_MASK, 0x1); usleep_range(30, 100); mt76_rmw_field(dev, MT_AFE_DIG_EN_03(idx), MT_AFE_RG_WBG_EN_WPLL_UP_MASK, 0x1); usleep_range(60, 100); txcal = (MT_AFE_RG_WBG_EN_TXCAL_BT | MT_AFE_RG_WBG_EN_TXCAL_WF0 | MT_AFE_RG_WBG_EN_TXCAL_WF1 | MT_AFE_RG_WBG_EN_TXCAL_WF2 | MT_AFE_RG_WBG_EN_TXCAL_WF3); if (is_mt7981(&dev->mt76)) txcal |= MT_AFE_RG_WBG_EN_TXCAL_WF4; mt76_set(dev, MT_AFE_DIG_EN_01(idx), txcal); usleep_range(800, 1000); mt76_clear(dev, MT_AFE_DIG_EN_01(idx), txcal); mt76_rmw(dev, MT_AFE_DIG_EN_03(idx), MT_AFE_RG_WBG_EN_PLL_UP_MASK, 0x0); ret = mt76_wmac_spi_write(dev, adie, MT_AFE_RG_ENCAL_WBTAC_IF_SW, 0x5); out: mt76_wmac_spi_unlock(dev); return ret; } static void mt7986_wmac_subsys_pll_initial(struct mt7915_dev *dev, u8 band) { mt76_rmw(dev, MT_AFE_PLL_STB_TIME(band), MT_AFE_PLL_STB_TIME_MASK, MT_AFE_PLL_STB_TIME_VAL); mt76_rmw(dev, MT_AFE_DIG_EN_02(band), MT_AFE_PLL_CFG_MASK, MT_AFE_PLL_CFG_VAL); mt76_rmw(dev, MT_AFE_DIG_TOP_01(band), MT_AFE_DIG_TOP_01_MASK, MT_AFE_DIG_TOP_01_VAL); } static void mt7986_wmac_subsys_setting(struct mt7915_dev *dev) { /* Subsys pll init */ mt7986_wmac_subsys_pll_initial(dev, 0); mt7986_wmac_subsys_pll_initial(dev, 1); /* Set legacy OSC control stable time*/ mt76_rmw(dev, MT_CONN_INFRA_OSC_RC_EN, MT_CONN_INFRA_OSC_RC_EN_MASK, 0x0); mt76_rmw(dev, MT_CONN_INFRA_OSC_CTRL, MT_CONN_INFRA_OSC_STB_TIME_MASK, 0x80706); /* prevent subsys from power on/of in a short time interval */ mt76_rmw(dev, MT_TOP_WFSYS_PWR, MT_TOP_PWR_ACK_MASK | MT_TOP_PWR_KEY_MASK, MT_TOP_PWR_KEY); } static int mt7986_wmac_bus_timeout(struct mt7915_dev *dev) { mt76_rmw_field(dev, MT_INFRA_BUS_OFF_TIMEOUT, MT_INFRA_BUS_TIMEOUT_LIMIT_MASK, 0x2); mt76_rmw_field(dev, MT_INFRA_BUS_OFF_TIMEOUT, MT_INFRA_BUS_TIMEOUT_EN_MASK, 0xf); mt76_rmw_field(dev, MT_INFRA_BUS_ON_TIMEOUT, MT_INFRA_BUS_TIMEOUT_LIMIT_MASK, 0xc); mt76_rmw_field(dev, MT_INFRA_BUS_ON_TIMEOUT, MT_INFRA_BUS_TIMEOUT_EN_MASK, 0xf); return mt798x_wmac_coninfra_check(dev); } static void mt7986_wmac_clock_enable(struct mt7915_dev *dev, u32 adie_type) { u32 cur; mt76_rmw_field(dev, MT_INFRA_CKGEN_BUS_WPLL_DIV_1, MT_INFRA_CKGEN_DIV_SEL_MASK, 0x1); mt76_rmw_field(dev, MT_INFRA_CKGEN_BUS_WPLL_DIV_2, MT_INFRA_CKGEN_DIV_SEL_MASK, 0x1); mt76_rmw_field(dev, MT_INFRA_CKGEN_BUS_WPLL_DIV_1, MT_INFRA_CKGEN_DIV_EN_MASK, 0x1); mt76_rmw_field(dev, MT_INFRA_CKGEN_BUS_WPLL_DIV_2, MT_INFRA_CKGEN_DIV_EN_MASK, 0x1); mt76_rmw_field(dev, MT_INFRA_CKGEN_RFSPI_WPLL_DIV, MT_INFRA_CKGEN_DIV_SEL_MASK, 0x8); mt76_rmw_field(dev, MT_INFRA_CKGEN_RFSPI_WPLL_DIV, MT_INFRA_CKGEN_DIV_EN_MASK, 0x1); mt76_rmw_field(dev, MT_INFRA_CKGEN_BUS, MT_INFRA_CKGEN_BUS_CLK_SEL_MASK, 0x0); mt76_rmw_field(dev, MT_CONN_INFRA_HW_CTRL, MT_CONN_INFRA_HW_CTRL_MASK, 0x1); mt76_rmw(dev, MT_TOP_CONN_INFRA_WAKEUP, MT_TOP_CONN_INFRA_WAKEUP_MASK, 0x1); usleep_range(900, 1000); mt76_wmac_spi_lock(dev); if (is_7975(dev, 0, adie_type) || is_7976(dev, 0, adie_type)) { mt76_rmw_field(dev, MT_ADIE_SLP_CTRL_CK0(0), MT_SLP_CTRL_EN_MASK, 0x1); read_poll_timeout(mt76_rr, cur, !(cur & MT_SLP_CTRL_BSY_MASK), USEC_PER_MSEC, 50 * USEC_PER_MSEC, false, dev, MT_ADIE_SLP_CTRL_CK0(0)); } if (is_7975(dev, 1, adie_type) || is_7976(dev, 1, adie_type)) { mt76_rmw_field(dev, MT_ADIE_SLP_CTRL_CK0(1), MT_SLP_CTRL_EN_MASK, 0x1); read_poll_timeout(mt76_rr, cur, !(cur & MT_SLP_CTRL_BSY_MASK), USEC_PER_MSEC, 50 * USEC_PER_MSEC, false, dev, MT_ADIE_SLP_CTRL_CK0(0)); } mt76_wmac_spi_unlock(dev); mt76_rmw(dev, MT_TOP_CONN_INFRA_WAKEUP, MT_TOP_CONN_INFRA_WAKEUP_MASK, 0x0); usleep_range(900, 1000); } static int mt7986_wmac_top_wfsys_wakeup(struct mt7915_dev *dev, bool enable) { mt76_rmw_field(dev, MT_TOP_WFSYS_WAKEUP, MT_TOP_WFSYS_WAKEUP_MASK, enable); usleep_range(900, 1000); if (!enable) return 0; return mt798x_wmac_coninfra_check(dev); } static int mt7986_wmac_wm_enable(struct mt7915_dev *dev, bool enable) { u32 cur; if (is_mt7986(&dev->mt76)) mt76_wr(dev, MT_CONNINFRA_SKU_DEC_ADDR, 0); mt76_rmw_field(dev, MT7986_TOP_WM_RESET, MT7986_TOP_WM_RESET_MASK, enable); if (!enable) return 0; return read_poll_timeout(mt76_rr, cur, (cur == 0x1d1e), USEC_PER_MSEC, 5000 * USEC_PER_MSEC, false, dev, MT_TOP_CFG_ON_ROM_IDX); } static int mt7986_wmac_wfsys_poweron(struct mt7915_dev *dev, bool enable) { u32 mask = MT_TOP_PWR_EN_MASK | MT_TOP_PWR_KEY_MASK; u32 cur; mt76_rmw(dev, MT_TOP_WFSYS_PWR, mask, MT_TOP_PWR_KEY | FIELD_PREP(MT_TOP_PWR_EN_MASK, enable)); return read_poll_timeout(mt76_rr, cur, (FIELD_GET(MT_TOP_WFSYS_RESET_STATUS_MASK, cur) == enable), USEC_PER_MSEC, 50 * USEC_PER_MSEC, false, dev, MT_TOP_WFSYS_RESET_STATUS); } static int mt7986_wmac_wfsys_setting(struct mt7915_dev *dev) { int ret; u32 cur; /* Turn off wfsys2conn bus sleep protect */ mt76_rmw(dev, MT_CONN_INFRA_WF_SLP_PROT, MT_CONN_INFRA_WF_SLP_PROT_MASK, 0x0); ret = mt7986_wmac_wfsys_poweron(dev, true); if (ret) return ret; /* Check bus sleep protect */ ret = read_poll_timeout(mt76_rr, cur, !(cur & MT_CONN_INFRA_CONN_WF_MASK), USEC_PER_MSEC, 50 * USEC_PER_MSEC, false, dev, MT_CONN_INFRA_WF_SLP_PROT_RDY); if (ret) return ret; ret = read_poll_timeout(mt76_rr, cur, !(cur & MT_SLP_WFDMA2CONN_MASK), USEC_PER_MSEC, 50 * USEC_PER_MSEC, false, dev, MT_SLP_STATUS); if (ret) return ret; return read_poll_timeout(mt76_rr, cur, (cur == 0x02060000), USEC_PER_MSEC, 50 * USEC_PER_MSEC, false, dev, MT_TOP_CFG_IP_VERSION_ADDR); } static void mt7986_wmac_wfsys_set_timeout(struct mt7915_dev *dev) { u32 mask = MT_MCU_BUS_TIMEOUT_SET_MASK | MT_MCU_BUS_TIMEOUT_CG_EN_MASK | MT_MCU_BUS_TIMEOUT_EN_MASK; u32 val = FIELD_PREP(MT_MCU_BUS_TIMEOUT_SET_MASK, 1) | FIELD_PREP(MT_MCU_BUS_TIMEOUT_CG_EN_MASK, 1) | FIELD_PREP(MT_MCU_BUS_TIMEOUT_EN_MASK, 1); mt76_rmw(dev, MT_MCU_BUS_TIMEOUT, mask, val); mt76_wr(dev, MT_MCU_BUS_REMAP, 0x810f0000); mask = MT_MCU_BUS_DBG_TIMEOUT_SET_MASK | MT_MCU_BUS_DBG_TIMEOUT_CK_EN_MASK | MT_MCU_BUS_DBG_TIMEOUT_EN_MASK; val = FIELD_PREP(MT_MCU_BUS_DBG_TIMEOUT_SET_MASK, 0x3aa) | FIELD_PREP(MT_MCU_BUS_DBG_TIMEOUT_CK_EN_MASK, 1) | FIELD_PREP(MT_MCU_BUS_DBG_TIMEOUT_EN_MASK, 1); mt76_rmw(dev, MT_MCU_BUS_DBG_TIMEOUT, mask, val); } static int mt7986_wmac_sku_update(struct mt7915_dev *dev, u32 adie_type) { u32 val; if (is_7976(dev, 0, adie_type) && is_7976(dev, 1, adie_type)) val = 0xf; else if (is_7975(dev, 0, adie_type) && is_7975(dev, 1, adie_type)) val = 0xd; else if (is_7976(dev, 0, adie_type)) val = 0x7; else if (is_7975(dev, 1, adie_type)) val = 0x8; else if (is_7976(dev, 1, adie_type)) val = 0xa; else return -EINVAL; mt76_wmac_rmw(dev->sku, MT_TOP_POS_SKU, MT_TOP_POS_SKU_MASK, FIELD_PREP(MT_TOP_POS_SKU_MASK, val)); mt76_wr(dev, MT_CONNINFRA_SKU_DEC_ADDR, val); return 0; } static int mt7986_wmac_adie_setup(struct mt7915_dev *dev, u8 adie, u32 adie_type) { int ret; if (!(is_7975(dev, adie, adie_type) || is_7976(dev, adie, adie_type))) return 0; ret = mt7986_wmac_adie_cfg(dev, adie, adie_type); if (ret) return ret; ret = mt7986_wmac_afe_cal(dev, adie, false, adie_type); if (ret) return ret; if (!adie && (mt798x_wmac_check_adie_type(dev) == ADIE_DBDC)) ret = mt7986_wmac_afe_cal(dev, adie, true, adie_type); return ret; } static int mt7986_wmac_subsys_powerup(struct mt7915_dev *dev, u32 adie_type) { int ret; mt7986_wmac_subsys_setting(dev); ret = mt7986_wmac_bus_timeout(dev); if (ret) return ret; mt7986_wmac_clock_enable(dev, adie_type); return 0; } static int mt7986_wmac_wfsys_powerup(struct mt7915_dev *dev) { int ret; ret = mt7986_wmac_wm_enable(dev, false); if (ret) return ret; ret = mt7986_wmac_wfsys_setting(dev); if (ret) return ret; mt7986_wmac_wfsys_set_timeout(dev); return mt7986_wmac_wm_enable(dev, true); } int mt7986_wmac_enable(struct mt7915_dev *dev) { int ret; u32 adie_type; ret = mt7986_wmac_consys_reset(dev, true); if (ret) return ret; ret = mt7986_wmac_gpio_setup(dev); if (ret) return ret; ret = mt7986_wmac_consys_lockup(dev, false); if (ret) return ret; ret = mt798x_wmac_coninfra_check(dev); if (ret) return ret; ret = mt798x_wmac_coninfra_setup(dev); if (ret) return ret; ret = mt798x_wmac_sku_setup(dev, &adie_type); if (ret) return ret; ret = mt7986_wmac_adie_setup(dev, 0, adie_type); if (ret) return ret; /* mt7981 doesn't support a second a-die */ if (is_mt7986(&dev->mt76)) { ret = mt7986_wmac_adie_setup(dev, 1, adie_type); if (ret) return ret; } ret = mt7986_wmac_subsys_powerup(dev, adie_type); if (ret) return ret; ret = mt7986_wmac_top_wfsys_wakeup(dev, true); if (ret) return ret; ret = mt7986_wmac_wfsys_powerup(dev); if (ret) return ret; return mt7986_wmac_sku_update(dev, adie_type); } void mt7986_wmac_disable(struct mt7915_dev *dev) { u32 cur; mt7986_wmac_top_wfsys_wakeup(dev, true); /* Turn on wfsys2conn bus sleep protect */ mt76_rmw_field(dev, MT_CONN_INFRA_WF_SLP_PROT, MT_CONN_INFRA_WF_SLP_PROT_MASK, 0x1); /* Check wfsys2conn bus sleep protect */ read_poll_timeout(mt76_rr, cur, !(cur ^ MT_CONN_INFRA_CONN), USEC_PER_MSEC, 50 * USEC_PER_MSEC, false, dev, MT_CONN_INFRA_WF_SLP_PROT_RDY); mt7986_wmac_wfsys_poweron(dev, false); /* Turn back wpll setting */ mt76_rmw_field(dev, MT_AFE_DIG_EN_02(0), MT_AFE_MCU_BPLL_CFG_MASK, 0x2); mt76_rmw_field(dev, MT_AFE_DIG_EN_02(0), MT_AFE_WPLL_CFG_MASK, 0x2); /* Reset EMI */ mt76_rmw_field(dev, MT_CONN_INFRA_EMI_REQ, MT_CONN_INFRA_EMI_REQ_MASK, 0x1); mt76_rmw_field(dev, MT_CONN_INFRA_EMI_REQ, MT_CONN_INFRA_EMI_REQ_MASK, 0x0); mt76_rmw_field(dev, MT_CONN_INFRA_EMI_REQ, MT_CONN_INFRA_INFRA_REQ_MASK, 0x1); mt76_rmw_field(dev, MT_CONN_INFRA_EMI_REQ, MT_CONN_INFRA_INFRA_REQ_MASK, 0x0); mt7986_wmac_top_wfsys_wakeup(dev, false); mt7986_wmac_consys_lockup(dev, true); mt7986_wmac_consys_reset(dev, false); } static int mt798x_wmac_init(struct mt7915_dev *dev) { struct device *pdev = dev->mt76.dev; struct platform_device *pfdev = to_platform_device(pdev); struct clk *mcu_clk, *ap_conn_clk; mcu_clk = devm_clk_get(pdev, "mcu"); if (IS_ERR(mcu_clk)) dev_err(pdev, "mcu clock not found\n"); else if (clk_prepare_enable(mcu_clk)) dev_err(pdev, "mcu clock configuration failed\n"); ap_conn_clk = devm_clk_get(pdev, "ap2conn"); if (IS_ERR(ap_conn_clk)) dev_err(pdev, "ap2conn clock not found\n"); else if (clk_prepare_enable(ap_conn_clk)) dev_err(pdev, "ap2conn clock configuration failed\n"); dev->dcm = devm_platform_ioremap_resource(pfdev, 1); if (IS_ERR(dev->dcm)) return PTR_ERR(dev->dcm); dev->sku = devm_platform_ioremap_resource(pfdev, 2); if (IS_ERR(dev->sku)) return PTR_ERR(dev->sku); dev->rstc = devm_reset_control_get(pdev, "consys"); if (IS_ERR(dev->rstc)) return PTR_ERR(dev->rstc); return 0; } static int mt798x_wmac_probe(struct platform_device *pdev) { void __iomem *mem_base; struct mt7915_dev *dev; struct mt76_dev *mdev; int irq, ret; u32 chip_id; chip_id = (uintptr_t)of_device_get_match_data(&pdev->dev); mem_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(mem_base)) { dev_err(&pdev->dev, "Failed to get memory resource\n"); return PTR_ERR(mem_base); } dev = mt7915_mmio_probe(&pdev->dev, mem_base, chip_id); if (IS_ERR(dev)) return PTR_ERR(dev); mdev = &dev->mt76; ret = mt7915_mmio_wed_init(dev, pdev, false, &irq); if (ret < 0) goto free_device; if (!ret) { irq = platform_get_irq(pdev, 0); if (irq < 0) { ret = irq; goto free_device; } } ret = devm_request_irq(mdev->dev, irq, mt7915_irq_handler, IRQF_SHARED, KBUILD_MODNAME, dev); if (ret) goto free_device; ret = mt798x_wmac_init(dev); if (ret) goto free_irq; mt7915_wfsys_reset(dev); ret = mt7915_register_device(dev); if (ret) goto free_irq; return 0; free_irq: devm_free_irq(mdev->dev, irq, dev); free_device: if (mtk_wed_device_active(&mdev->mmio.wed)) mtk_wed_device_detach(&mdev->mmio.wed); mt76_free_device(mdev); return ret; } static int mt798x_wmac_remove(struct platform_device *pdev) { struct mt7915_dev *dev = platform_get_drvdata(pdev); mt7915_unregister_device(dev); return 0; } static const struct of_device_id mt798x_wmac_of_match[] = { { .compatible = "mediatek,mt7981-wmac", .data = (u32 *)0x7981 }, { .compatible = "mediatek,mt7986-wmac", .data = (u32 *)0x7986 }, {}, }; MODULE_DEVICE_TABLE(of, mt798x_wmac_of_match); struct platform_driver mt798x_wmac_driver = { .driver = { .name = "mt798x-wmac", .of_match_table = mt798x_wmac_of_match, }, .probe = mt798x_wmac_probe, .remove = mt798x_wmac_remove, }; MODULE_FIRMWARE(MT7986_FIRMWARE_WA); MODULE_FIRMWARE(MT7986_FIRMWARE_WM); MODULE_FIRMWARE(MT7986_FIRMWARE_WM_MT7975); MODULE_FIRMWARE(MT7986_ROM_PATCH); MODULE_FIRMWARE(MT7986_ROM_PATCH_MT7975); MODULE_FIRMWARE(MT7981_FIRMWARE_WA); MODULE_FIRMWARE(MT7981_FIRMWARE_WM); MODULE_FIRMWARE(MT7981_ROM_PATCH);
linux-master
drivers/net/wireless/mediatek/mt76/mt7915/soc.c
// SPDX-License-Identifier: ISC #include "mt7603.h" static int mt7603_reset_read(struct seq_file *s, void *data) { struct mt7603_dev *dev = dev_get_drvdata(s->private); static const char * const reset_cause_str[] = { [RESET_CAUSE_TX_HANG] = "TX hang", [RESET_CAUSE_TX_BUSY] = "TX DMA busy stuck", [RESET_CAUSE_RX_BUSY] = "RX DMA busy stuck", [RESET_CAUSE_RX_PSE_BUSY] = "RX PSE busy stuck", [RESET_CAUSE_BEACON_STUCK] = "Beacon stuck", [RESET_CAUSE_MCU_HANG] = "MCU hang", [RESET_CAUSE_RESET_FAILED] = "PSE reset failed", }; int i; for (i = 0; i < ARRAY_SIZE(reset_cause_str); i++) { if (!reset_cause_str[i]) continue; seq_printf(s, "%20s: %u\n", reset_cause_str[i], dev->reset_cause[i]); } return 0; } static int mt7603_radio_read(struct seq_file *s, void *data) { struct mt7603_dev *dev = dev_get_drvdata(s->private); seq_printf(s, "Sensitivity: %d\n", dev->sensitivity); seq_printf(s, "False CCA: ofdm=%d cck=%d\n", dev->false_cca_ofdm, dev->false_cca_cck); return 0; } static int mt7603_edcca_set(void *data, u64 val) { struct mt7603_dev *dev = data; mutex_lock(&dev->mt76.mutex); dev->ed_monitor_enabled = !!val; dev->ed_monitor = dev->ed_monitor_enabled && dev->mt76.region == NL80211_DFS_ETSI; mt7603_init_edcca(dev); mutex_unlock(&dev->mt76.mutex); return 0; } static int mt7603_edcca_get(void *data, u64 *val) { struct mt7603_dev *dev = data; *val = dev->ed_monitor_enabled; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_edcca, mt7603_edcca_get, mt7603_edcca_set, "%lld\n"); static int mt7603_ampdu_stat_show(struct seq_file *file, void *data) { struct mt7603_dev *dev = file->private; int bound[3], i, range; range = mt76_rr(dev, MT_AGG_ASRCR); for (i = 0; i < ARRAY_SIZE(bound); i++) bound[i] = MT_AGG_ASRCR_RANGE(range, i) + 1; seq_printf(file, "Length: %8d | ", bound[0]); for (i = 0; i < ARRAY_SIZE(bound) - 1; i++) seq_printf(file, "%3d -%3d | ", bound[i], bound[i + 1]); seq_puts(file, "\nCount: "); for (i = 0; i < ARRAY_SIZE(bound); i++) seq_printf(file, "%8d | ", dev->mphy.aggr_stats[i]); seq_puts(file, "\n"); return 0; } DEFINE_SHOW_ATTRIBUTE(mt7603_ampdu_stat); void mt7603_init_debugfs(struct mt7603_dev *dev) { struct dentry *dir; dir = mt76_register_debugfs(&dev->mt76); if (!dir) return; debugfs_create_file("ampdu_stat", 0400, dir, dev, &mt7603_ampdu_stat_fops); debugfs_create_devm_seqfile(dev->mt76.dev, "xmit-queues", dir, mt76_queues_read); debugfs_create_file("edcca", 0600, dir, dev, &fops_edcca); debugfs_create_u32("reset_test", 0600, dir, &dev->reset_test); debugfs_create_devm_seqfile(dev->mt76.dev, "reset", dir, mt7603_reset_read); debugfs_create_devm_seqfile(dev->mt76.dev, "radio", dir, mt7603_radio_read); debugfs_create_u8("sensitivity_limit", 0600, dir, &dev->sensitivity_limit); debugfs_create_bool("dynamic_sensitivity", 0600, dir, &dev->dynamic_sensitivity); }
linux-master
drivers/net/wireless/mediatek/mt76/mt7603/debugfs.c
// SPDX-License-Identifier: ISC #include <linux/etherdevice.h> #include <linux/timekeeping.h> #include "mt7603.h" #include "mac.h" #include "../trace.h" #define MT_PSE_PAGE_SIZE 128 static u32 mt7603_ac_queue_mask0(u32 mask) { u32 ret = 0; ret |= GENMASK(3, 0) * !!(mask & BIT(0)); ret |= GENMASK(8, 5) * !!(mask & BIT(1)); ret |= GENMASK(13, 10) * !!(mask & BIT(2)); ret |= GENMASK(19, 16) * !!(mask & BIT(3)); return ret; } static void mt76_stop_tx_ac(struct mt7603_dev *dev, u32 mask) { mt76_set(dev, MT_WF_ARB_TX_STOP_0, mt7603_ac_queue_mask0(mask)); } static void mt76_start_tx_ac(struct mt7603_dev *dev, u32 mask) { mt76_set(dev, MT_WF_ARB_TX_START_0, mt7603_ac_queue_mask0(mask)); } void mt7603_mac_reset_counters(struct mt7603_dev *dev) { int i; for (i = 0; i < 2; i++) mt76_rr(dev, MT_TX_AGG_CNT(i)); memset(dev->mphy.aggr_stats, 0, sizeof(dev->mphy.aggr_stats)); } void mt7603_mac_set_timing(struct mt7603_dev *dev) { u32 cck = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 231) | FIELD_PREP(MT_TIMEOUT_VAL_CCA, 48); u32 ofdm = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 60) | FIELD_PREP(MT_TIMEOUT_VAL_CCA, 24); int offset = 3 * dev->coverage_class; u32 reg_offset = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, offset) | FIELD_PREP(MT_TIMEOUT_VAL_CCA, offset); bool is_5ghz = dev->mphy.chandef.chan->band == NL80211_BAND_5GHZ; int sifs; u32 val; if (is_5ghz) sifs = 16; else sifs = 10; mt76_set(dev, MT_ARB_SCR, MT_ARB_SCR_TX_DISABLE | MT_ARB_SCR_RX_DISABLE); udelay(1); mt76_wr(dev, MT_TIMEOUT_CCK, cck + reg_offset); mt76_wr(dev, MT_TIMEOUT_OFDM, ofdm + reg_offset); mt76_wr(dev, MT_IFS, FIELD_PREP(MT_IFS_EIFS, 360) | FIELD_PREP(MT_IFS_RIFS, 2) | FIELD_PREP(MT_IFS_SIFS, sifs) | FIELD_PREP(MT_IFS_SLOT, dev->slottime)); if (dev->slottime < 20 || is_5ghz) val = MT7603_CFEND_RATE_DEFAULT; else val = MT7603_CFEND_RATE_11B; mt76_rmw_field(dev, MT_AGG_CONTROL, MT_AGG_CONTROL_CFEND_RATE, val); mt76_clear(dev, MT_ARB_SCR, MT_ARB_SCR_TX_DISABLE | MT_ARB_SCR_RX_DISABLE); } static void mt7603_wtbl_update(struct mt7603_dev *dev, int idx, u32 mask) { mt76_rmw(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_WLAN_IDX, FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, idx) | mask); mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000); } static u32 mt7603_wtbl1_addr(int idx) { return MT_WTBL1_BASE + idx * MT_WTBL1_SIZE; } static u32 mt7603_wtbl2_addr(int idx) { /* Mapped to WTBL2 */ return MT_PCIE_REMAP_BASE_1 + idx * MT_WTBL2_SIZE; } static u32 mt7603_wtbl3_addr(int idx) { u32 base = mt7603_wtbl2_addr(MT7603_WTBL_SIZE); return base + idx * MT_WTBL3_SIZE; } static u32 mt7603_wtbl4_addr(int idx) { u32 base = mt7603_wtbl3_addr(MT7603_WTBL_SIZE); return base + idx * MT_WTBL4_SIZE; } void mt7603_wtbl_init(struct mt7603_dev *dev, int idx, int vif, const u8 *mac_addr) { const void *_mac = mac_addr; u32 addr = mt7603_wtbl1_addr(idx); u32 w0 = 0, w1 = 0; int i; if (_mac) { w0 = FIELD_PREP(MT_WTBL1_W0_ADDR_HI, get_unaligned_le16(_mac + 4)); w1 = FIELD_PREP(MT_WTBL1_W1_ADDR_LO, get_unaligned_le32(_mac)); } if (vif < 0) vif = 0; else w0 |= MT_WTBL1_W0_RX_CHECK_A1; w0 |= FIELD_PREP(MT_WTBL1_W0_MUAR_IDX, vif); mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000); mt76_set(dev, addr + 0 * 4, w0); mt76_set(dev, addr + 1 * 4, w1); mt76_set(dev, addr + 2 * 4, MT_WTBL1_W2_ADMISSION_CONTROL); mt76_stop_tx_ac(dev, GENMASK(3, 0)); addr = mt7603_wtbl2_addr(idx); for (i = 0; i < MT_WTBL2_SIZE; i += 4) mt76_wr(dev, addr + i, 0); mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_WTBL2); mt76_start_tx_ac(dev, GENMASK(3, 0)); addr = mt7603_wtbl3_addr(idx); for (i = 0; i < MT_WTBL3_SIZE; i += 4) mt76_wr(dev, addr + i, 0); addr = mt7603_wtbl4_addr(idx); for (i = 0; i < MT_WTBL4_SIZE; i += 4) mt76_wr(dev, addr + i, 0); mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); } static void mt7603_wtbl_set_skip_tx(struct mt7603_dev *dev, int idx, bool enabled) { u32 addr = mt7603_wtbl1_addr(idx); u32 val = mt76_rr(dev, addr + 3 * 4); val &= ~MT_WTBL1_W3_SKIP_TX; val |= enabled * MT_WTBL1_W3_SKIP_TX; mt76_wr(dev, addr + 3 * 4, val); } void mt7603_filter_tx(struct mt7603_dev *dev, int mac_idx, int idx, bool abort) { u32 flush_mask; int i, port, queue; if (abort) { port = 3; /* PSE */ queue = 8; /* free queue */ } else { port = 0; /* HIF */ queue = 1; /* MCU queue */ } mt7603_wtbl_set_skip_tx(dev, idx, true); mt76_wr(dev, MT_TX_ABORT, MT_TX_ABORT_EN | FIELD_PREP(MT_TX_ABORT_WCID, idx)); flush_mask = MT_WF_ARB_TX_FLUSH_AC0 | MT_WF_ARB_TX_FLUSH_AC1 | MT_WF_ARB_TX_FLUSH_AC2 | MT_WF_ARB_TX_FLUSH_AC3; flush_mask <<= mac_idx; mt76_wr(dev, MT_WF_ARB_TX_FLUSH_0, flush_mask); mt76_poll(dev, MT_WF_ARB_TX_FLUSH_0, flush_mask, 0, 20000); mt76_wr(dev, MT_WF_ARB_TX_START_0, flush_mask); mt76_wr(dev, MT_TX_ABORT, 0); for (i = 0; i < 4; i++) { mt76_wr(dev, MT_DMA_FQCR0, MT_DMA_FQCR0_BUSY | FIELD_PREP(MT_DMA_FQCR0_TARGET_WCID, idx) | FIELD_PREP(MT_DMA_FQCR0_TARGET_QID, i) | FIELD_PREP(MT_DMA_FQCR0_DEST_PORT_ID, port) | FIELD_PREP(MT_DMA_FQCR0_DEST_QUEUE_ID, queue)); mt76_poll(dev, MT_DMA_FQCR0, MT_DMA_FQCR0_BUSY, 0, 5000); } WARN_ON_ONCE(mt76_rr(dev, MT_DMA_FQCR0) & MT_DMA_FQCR0_BUSY); mt7603_wtbl_set_skip_tx(dev, idx, false); } void mt7603_wtbl_set_smps(struct mt7603_dev *dev, struct mt7603_sta *sta, bool enabled) { u32 addr = mt7603_wtbl1_addr(sta->wcid.idx); if (sta->smps == enabled) return; mt76_rmw_field(dev, addr + 2 * 4, MT_WTBL1_W2_SMPS, enabled); sta->smps = enabled; } void mt7603_wtbl_set_ps(struct mt7603_dev *dev, struct mt7603_sta *sta, bool enabled) { int idx = sta->wcid.idx; u32 addr; spin_lock_bh(&dev->ps_lock); if (sta->ps == enabled) goto out; mt76_wr(dev, MT_PSE_RTA, FIELD_PREP(MT_PSE_RTA_TAG_ID, idx) | FIELD_PREP(MT_PSE_RTA_PORT_ID, 0) | FIELD_PREP(MT_PSE_RTA_QUEUE_ID, 1) | FIELD_PREP(MT_PSE_RTA_REDIRECT_EN, enabled) | MT_PSE_RTA_WRITE | MT_PSE_RTA_BUSY); mt76_poll(dev, MT_PSE_RTA, MT_PSE_RTA_BUSY, 0, 5000); if (enabled) mt7603_filter_tx(dev, sta->vif->idx, idx, false); addr = mt7603_wtbl1_addr(idx); mt76_set(dev, MT_WTBL1_OR, MT_WTBL1_OR_PSM_WRITE); mt76_rmw(dev, addr + 3 * 4, MT_WTBL1_W3_POWER_SAVE, enabled * MT_WTBL1_W3_POWER_SAVE); mt76_clear(dev, MT_WTBL1_OR, MT_WTBL1_OR_PSM_WRITE); sta->ps = enabled; out: spin_unlock_bh(&dev->ps_lock); } void mt7603_wtbl_clear(struct mt7603_dev *dev, int idx) { int wtbl2_frame_size = MT_PSE_PAGE_SIZE / MT_WTBL2_SIZE; int wtbl2_frame = idx / wtbl2_frame_size; int wtbl2_entry = idx % wtbl2_frame_size; int wtbl3_base_frame = MT_WTBL3_OFFSET / MT_PSE_PAGE_SIZE; int wtbl3_frame_size = MT_PSE_PAGE_SIZE / MT_WTBL3_SIZE; int wtbl3_frame = wtbl3_base_frame + idx / wtbl3_frame_size; int wtbl3_entry = (idx % wtbl3_frame_size) * 2; int wtbl4_base_frame = MT_WTBL4_OFFSET / MT_PSE_PAGE_SIZE; int wtbl4_frame_size = MT_PSE_PAGE_SIZE / MT_WTBL4_SIZE; int wtbl4_frame = wtbl4_base_frame + idx / wtbl4_frame_size; int wtbl4_entry = idx % wtbl4_frame_size; u32 addr = MT_WTBL1_BASE + idx * MT_WTBL1_SIZE; int i; mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000); mt76_wr(dev, addr + 0 * 4, MT_WTBL1_W0_RX_CHECK_A1 | MT_WTBL1_W0_RX_CHECK_A2 | MT_WTBL1_W0_RX_VALID); mt76_wr(dev, addr + 1 * 4, 0); mt76_wr(dev, addr + 2 * 4, 0); mt76_set(dev, MT_WTBL1_OR, MT_WTBL1_OR_PSM_WRITE); mt76_wr(dev, addr + 3 * 4, FIELD_PREP(MT_WTBL1_W3_WTBL2_FRAME_ID, wtbl2_frame) | FIELD_PREP(MT_WTBL1_W3_WTBL2_ENTRY_ID, wtbl2_entry) | FIELD_PREP(MT_WTBL1_W3_WTBL4_FRAME_ID, wtbl4_frame) | MT_WTBL1_W3_I_PSM | MT_WTBL1_W3_KEEP_I_PSM); mt76_wr(dev, addr + 4 * 4, FIELD_PREP(MT_WTBL1_W4_WTBL3_FRAME_ID, wtbl3_frame) | FIELD_PREP(MT_WTBL1_W4_WTBL3_ENTRY_ID, wtbl3_entry) | FIELD_PREP(MT_WTBL1_W4_WTBL4_ENTRY_ID, wtbl4_entry)); mt76_clear(dev, MT_WTBL1_OR, MT_WTBL1_OR_PSM_WRITE); addr = mt7603_wtbl2_addr(idx); /* Clear BA information */ mt76_wr(dev, addr + (15 * 4), 0); mt76_stop_tx_ac(dev, GENMASK(3, 0)); for (i = 2; i <= 4; i++) mt76_wr(dev, addr + (i * 4), 0); mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_WTBL2); mt76_start_tx_ac(dev, GENMASK(3, 0)); mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_RX_COUNT_CLEAR); mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_TX_COUNT_CLEAR); mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); } void mt7603_wtbl_update_cap(struct mt7603_dev *dev, struct ieee80211_sta *sta) { struct mt7603_sta *msta = (struct mt7603_sta *)sta->drv_priv; int idx = msta->wcid.idx; u8 ampdu_density; u32 addr; u32 val; addr = mt7603_wtbl1_addr(idx); ampdu_density = sta->deflink.ht_cap.ampdu_density; if (ampdu_density < IEEE80211_HT_MPDU_DENSITY_4) ampdu_density = IEEE80211_HT_MPDU_DENSITY_4; val = mt76_rr(dev, addr + 2 * 4); val &= MT_WTBL1_W2_KEY_TYPE | MT_WTBL1_W2_ADMISSION_CONTROL; val |= FIELD_PREP(MT_WTBL1_W2_AMPDU_FACTOR, sta->deflink.ht_cap.ampdu_factor) | FIELD_PREP(MT_WTBL1_W2_MPDU_DENSITY, sta->deflink.ht_cap.ampdu_density) | MT_WTBL1_W2_TXS_BAF_REPORT; if (sta->deflink.ht_cap.cap) val |= MT_WTBL1_W2_HT; if (sta->deflink.vht_cap.cap) val |= MT_WTBL1_W2_VHT; mt76_wr(dev, addr + 2 * 4, val); addr = mt7603_wtbl2_addr(idx); val = mt76_rr(dev, addr + 9 * 4); val &= ~(MT_WTBL2_W9_SHORT_GI_20 | MT_WTBL2_W9_SHORT_GI_40 | MT_WTBL2_W9_SHORT_GI_80); if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) val |= MT_WTBL2_W9_SHORT_GI_20; if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40) val |= MT_WTBL2_W9_SHORT_GI_40; mt76_wr(dev, addr + 9 * 4, val); } void mt7603_mac_rx_ba_reset(struct mt7603_dev *dev, void *addr, u8 tid) { mt76_wr(dev, MT_BA_CONTROL_0, get_unaligned_le32(addr)); mt76_wr(dev, MT_BA_CONTROL_1, (get_unaligned_le16(addr + 4) | FIELD_PREP(MT_BA_CONTROL_1_TID, tid) | MT_BA_CONTROL_1_RESET)); } void mt7603_mac_tx_ba_reset(struct mt7603_dev *dev, int wcid, int tid, int ba_size) { u32 addr = mt7603_wtbl2_addr(wcid); u32 tid_mask = FIELD_PREP(MT_WTBL2_W15_BA_EN_TIDS, BIT(tid)) | (MT_WTBL2_W15_BA_WIN_SIZE << (tid * MT_WTBL2_W15_BA_WIN_SIZE_SHIFT)); u32 tid_val; int i; if (ba_size < 0) { /* disable */ mt76_clear(dev, addr + (15 * 4), tid_mask); return; } for (i = 7; i > 0; i--) { if (ba_size >= MT_AGG_SIZE_LIMIT(i)) break; } tid_val = FIELD_PREP(MT_WTBL2_W15_BA_EN_TIDS, BIT(tid)) | i << (tid * MT_WTBL2_W15_BA_WIN_SIZE_SHIFT); mt76_rmw(dev, addr + (15 * 4), tid_mask, tid_val); } void mt7603_mac_sta_poll(struct mt7603_dev *dev) { static const u8 ac_to_tid[4] = { [IEEE80211_AC_BE] = 0, [IEEE80211_AC_BK] = 1, [IEEE80211_AC_VI] = 4, [IEEE80211_AC_VO] = 6 }; struct ieee80211_sta *sta; struct mt7603_sta *msta; u32 total_airtime = 0; u32 airtime[4]; u32 addr; int i; rcu_read_lock(); while (1) { bool clear = false; spin_lock_bh(&dev->mt76.sta_poll_lock); if (list_empty(&dev->mt76.sta_poll_list)) { spin_unlock_bh(&dev->mt76.sta_poll_lock); break; } msta = list_first_entry(&dev->mt76.sta_poll_list, struct mt7603_sta, wcid.poll_list); list_del_init(&msta->wcid.poll_list); spin_unlock_bh(&dev->mt76.sta_poll_lock); addr = mt7603_wtbl4_addr(msta->wcid.idx); for (i = 0; i < 4; i++) { u32 airtime_last = msta->tx_airtime_ac[i]; msta->tx_airtime_ac[i] = mt76_rr(dev, addr + i * 8); airtime[i] = msta->tx_airtime_ac[i] - airtime_last; airtime[i] *= 32; total_airtime += airtime[i]; if (msta->tx_airtime_ac[i] & BIT(22)) clear = true; } if (clear) { mt7603_wtbl_update(dev, msta->wcid.idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); memset(msta->tx_airtime_ac, 0, sizeof(msta->tx_airtime_ac)); } if (!msta->wcid.sta) continue; sta = container_of((void *)msta, struct ieee80211_sta, drv_priv); for (i = 0; i < 4; i++) { struct mt76_queue *q = dev->mphy.q_tx[i]; u8 qidx = q->hw_idx; u8 tid = ac_to_tid[i]; u32 txtime = airtime[qidx]; if (!txtime) continue; ieee80211_sta_register_airtime(sta, tid, txtime, 0); } } rcu_read_unlock(); if (!total_airtime) return; spin_lock_bh(&dev->mt76.cc_lock); dev->mphy.chan_state->cc_tx += total_airtime; spin_unlock_bh(&dev->mt76.cc_lock); } static struct mt76_wcid * mt7603_rx_get_wcid(struct mt7603_dev *dev, u8 idx, bool unicast) { struct mt7603_sta *sta; struct mt76_wcid *wcid; if (idx >= MT7603_WTBL_SIZE) return NULL; wcid = rcu_dereference(dev->mt76.wcid[idx]); if (unicast || !wcid) return wcid; if (!wcid->sta) return NULL; sta = container_of(wcid, struct mt7603_sta, wcid); if (!sta->vif) return NULL; return &sta->vif->sta.wcid; } int mt7603_mac_fill_rx(struct mt7603_dev *dev, struct sk_buff *skb) { struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; struct ieee80211_supported_band *sband; struct ieee80211_hdr *hdr; __le32 *rxd = (__le32 *)skb->data; u32 rxd0 = le32_to_cpu(rxd[0]); u32 rxd1 = le32_to_cpu(rxd[1]); u32 rxd2 = le32_to_cpu(rxd[2]); bool unicast = rxd1 & MT_RXD1_NORMAL_U2M; bool insert_ccmp_hdr = false; bool remove_pad; int idx; int i; memset(status, 0, sizeof(*status)); i = FIELD_GET(MT_RXD1_NORMAL_CH_FREQ, rxd1); sband = (i & 1) ? &dev->mphy.sband_5g.sband : &dev->mphy.sband_2g.sband; i >>= 1; idx = FIELD_GET(MT_RXD2_NORMAL_WLAN_IDX, rxd2); status->wcid = mt7603_rx_get_wcid(dev, idx, unicast); status->band = sband->band; if (i < sband->n_channels) status->freq = sband->channels[i].center_freq; if (rxd2 & MT_RXD2_NORMAL_FCS_ERR) status->flag |= RX_FLAG_FAILED_FCS_CRC; if (rxd2 & MT_RXD2_NORMAL_TKIP_MIC_ERR) status->flag |= RX_FLAG_MMIC_ERROR; /* ICV error or CCMP/BIP/WPI MIC error */ if (rxd2 & MT_RXD2_NORMAL_ICV_ERR) status->flag |= RX_FLAG_ONLY_MONITOR; if (FIELD_GET(MT_RXD2_NORMAL_SEC_MODE, rxd2) != 0 && !(rxd2 & (MT_RXD2_NORMAL_CLM | MT_RXD2_NORMAL_CM))) { status->flag |= RX_FLAG_DECRYPTED; status->flag |= RX_FLAG_IV_STRIPPED; status->flag |= RX_FLAG_MMIC_STRIPPED | RX_FLAG_MIC_STRIPPED; } remove_pad = rxd1 & MT_RXD1_NORMAL_HDR_OFFSET; if (rxd2 & MT_RXD2_NORMAL_MAX_LEN_ERROR) return -EINVAL; if (!sband->channels) return -EINVAL; rxd += 4; if (rxd0 & MT_RXD0_NORMAL_GROUP_4) { rxd += 4; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; } if (rxd0 & MT_RXD0_NORMAL_GROUP_1) { u8 *data = (u8 *)rxd; if (status->flag & RX_FLAG_DECRYPTED) { switch (FIELD_GET(MT_RXD2_NORMAL_SEC_MODE, rxd2)) { case MT_CIPHER_AES_CCMP: case MT_CIPHER_CCMP_CCX: case MT_CIPHER_CCMP_256: insert_ccmp_hdr = FIELD_GET(MT_RXD2_NORMAL_FRAG, rxd2); fallthrough; case MT_CIPHER_TKIP: case MT_CIPHER_TKIP_NO_MIC: case MT_CIPHER_GCMP: case MT_CIPHER_GCMP_256: status->iv[0] = data[5]; status->iv[1] = data[4]; status->iv[2] = data[3]; status->iv[3] = data[2]; status->iv[4] = data[1]; status->iv[5] = data[0]; break; default: break; } } rxd += 4; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; } if (rxd0 & MT_RXD0_NORMAL_GROUP_2) { status->timestamp = le32_to_cpu(rxd[0]); status->flag |= RX_FLAG_MACTIME_START; if (!(rxd2 & (MT_RXD2_NORMAL_NON_AMPDU_SUB | MT_RXD2_NORMAL_NON_AMPDU))) { status->flag |= RX_FLAG_AMPDU_DETAILS; /* all subframes of an A-MPDU have the same timestamp */ if (dev->rx_ampdu_ts != status->timestamp) { if (!++dev->ampdu_ref) dev->ampdu_ref++; } dev->rx_ampdu_ts = status->timestamp; status->ampdu_ref = dev->ampdu_ref; } rxd += 2; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; } if (rxd0 & MT_RXD0_NORMAL_GROUP_3) { u32 rxdg0 = le32_to_cpu(rxd[0]); u32 rxdg3 = le32_to_cpu(rxd[3]); bool cck = false; i = FIELD_GET(MT_RXV1_TX_RATE, rxdg0); switch (FIELD_GET(MT_RXV1_TX_MODE, rxdg0)) { case MT_PHY_TYPE_CCK: cck = true; fallthrough; case MT_PHY_TYPE_OFDM: i = mt76_get_rate(&dev->mt76, sband, i, cck); break; case MT_PHY_TYPE_HT_GF: case MT_PHY_TYPE_HT: status->encoding = RX_ENC_HT; if (i > 15) return -EINVAL; break; default: return -EINVAL; } if (rxdg0 & MT_RXV1_HT_SHORT_GI) status->enc_flags |= RX_ENC_FLAG_SHORT_GI; if (rxdg0 & MT_RXV1_HT_AD_CODE) status->enc_flags |= RX_ENC_FLAG_LDPC; status->enc_flags |= RX_ENC_FLAG_STBC_MASK * FIELD_GET(MT_RXV1_HT_STBC, rxdg0); status->rate_idx = i; status->chains = dev->mphy.antenna_mask; status->chain_signal[0] = FIELD_GET(MT_RXV4_IB_RSSI0, rxdg3) + dev->rssi_offset[0]; status->chain_signal[1] = FIELD_GET(MT_RXV4_IB_RSSI1, rxdg3) + dev->rssi_offset[1]; if (FIELD_GET(MT_RXV1_FRAME_MODE, rxdg0) == 1) status->bw = RATE_INFO_BW_40; rxd += 6; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; } else { return -EINVAL; } skb_pull(skb, (u8 *)rxd - skb->data + 2 * remove_pad); if (insert_ccmp_hdr) { u8 key_id = FIELD_GET(MT_RXD1_NORMAL_KEY_ID, rxd1); mt76_insert_ccmp_hdr(skb, key_id); } hdr = (struct ieee80211_hdr *)skb->data; if (!status->wcid || !ieee80211_is_data_qos(hdr->frame_control)) return 0; status->aggr = unicast && !ieee80211_is_qos_nullfunc(hdr->frame_control); status->qos_ctl = *ieee80211_get_qos_ctl(hdr); status->seqno = IEEE80211_SEQ_TO_SN(le16_to_cpu(hdr->seq_ctrl)); return 0; } static u16 mt7603_mac_tx_rate_val(struct mt7603_dev *dev, const struct ieee80211_tx_rate *rate, bool stbc, u8 *bw) { u8 phy, nss, rate_idx; u16 rateval; *bw = 0; if (rate->flags & IEEE80211_TX_RC_MCS) { rate_idx = rate->idx; nss = 1 + (rate->idx >> 3); phy = MT_PHY_TYPE_HT; if (rate->flags & IEEE80211_TX_RC_GREEN_FIELD) phy = MT_PHY_TYPE_HT_GF; if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) *bw = 1; } else { const struct ieee80211_rate *r; int band = dev->mphy.chandef.chan->band; u16 val; nss = 1; r = &mt76_hw(dev)->wiphy->bands[band]->bitrates[rate->idx]; if (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) val = r->hw_value_short; else val = r->hw_value; phy = val >> 8; rate_idx = val & 0xff; } rateval = (FIELD_PREP(MT_TX_RATE_IDX, rate_idx) | FIELD_PREP(MT_TX_RATE_MODE, phy)); if (stbc && nss == 1) rateval |= MT_TX_RATE_STBC; return rateval; } void mt7603_wtbl_set_rates(struct mt7603_dev *dev, struct mt7603_sta *sta, struct ieee80211_tx_rate *probe_rate, struct ieee80211_tx_rate *rates) { struct ieee80211_tx_rate *ref; int wcid = sta->wcid.idx; u32 addr = mt7603_wtbl2_addr(wcid); bool stbc = false; int n_rates = sta->n_rates; u8 bw, bw_prev, bw_idx = 0; u16 val[4]; u16 probe_val; u32 w9 = mt76_rr(dev, addr + 9 * 4); bool rateset; int i, k; if (!mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000)) return; for (i = n_rates; i < 4; i++) rates[i] = rates[n_rates - 1]; rateset = !(sta->rate_set_tsf & BIT(0)); memcpy(sta->rateset[rateset].rates, rates, sizeof(sta->rateset[rateset].rates)); if (probe_rate) { sta->rateset[rateset].probe_rate = *probe_rate; ref = &sta->rateset[rateset].probe_rate; } else { sta->rateset[rateset].probe_rate.idx = -1; ref = &sta->rateset[rateset].rates[0]; } rates = sta->rateset[rateset].rates; for (i = 0; i < ARRAY_SIZE(sta->rateset[rateset].rates); i++) { /* * We don't support switching between short and long GI * within the rate set. For accurate tx status reporting, we * need to make sure that flags match. * For improved performance, avoid duplicate entries by * decrementing the MCS index if necessary */ if ((ref->flags ^ rates[i].flags) & IEEE80211_TX_RC_SHORT_GI) rates[i].flags ^= IEEE80211_TX_RC_SHORT_GI; for (k = 0; k < i; k++) { if (rates[i].idx != rates[k].idx) continue; if ((rates[i].flags ^ rates[k].flags) & IEEE80211_TX_RC_40_MHZ_WIDTH) continue; if (!rates[i].idx) continue; rates[i].idx--; } } w9 &= MT_WTBL2_W9_SHORT_GI_20 | MT_WTBL2_W9_SHORT_GI_40 | MT_WTBL2_W9_SHORT_GI_80; val[0] = mt7603_mac_tx_rate_val(dev, &rates[0], stbc, &bw); bw_prev = bw; if (probe_rate) { probe_val = mt7603_mac_tx_rate_val(dev, probe_rate, stbc, &bw); if (bw) bw_idx = 1; else bw_prev = 0; } else { probe_val = val[0]; } w9 |= FIELD_PREP(MT_WTBL2_W9_CC_BW_SEL, bw); w9 |= FIELD_PREP(MT_WTBL2_W9_BW_CAP, bw); val[1] = mt7603_mac_tx_rate_val(dev, &rates[1], stbc, &bw); if (bw_prev) { bw_idx = 3; bw_prev = bw; } val[2] = mt7603_mac_tx_rate_val(dev, &rates[2], stbc, &bw); if (bw_prev) { bw_idx = 5; bw_prev = bw; } val[3] = mt7603_mac_tx_rate_val(dev, &rates[3], stbc, &bw); if (bw_prev) bw_idx = 7; w9 |= FIELD_PREP(MT_WTBL2_W9_CHANGE_BW_RATE, bw_idx ? bw_idx - 1 : 7); mt76_wr(dev, MT_WTBL_RIUCR0, w9); mt76_wr(dev, MT_WTBL_RIUCR1, FIELD_PREP(MT_WTBL_RIUCR1_RATE0, probe_val) | FIELD_PREP(MT_WTBL_RIUCR1_RATE1, val[0]) | FIELD_PREP(MT_WTBL_RIUCR1_RATE2_LO, val[1])); mt76_wr(dev, MT_WTBL_RIUCR2, FIELD_PREP(MT_WTBL_RIUCR2_RATE2_HI, val[1] >> 8) | FIELD_PREP(MT_WTBL_RIUCR2_RATE3, val[1]) | FIELD_PREP(MT_WTBL_RIUCR2_RATE4, val[2]) | FIELD_PREP(MT_WTBL_RIUCR2_RATE5_LO, val[2])); mt76_wr(dev, MT_WTBL_RIUCR3, FIELD_PREP(MT_WTBL_RIUCR3_RATE5_HI, val[2] >> 4) | FIELD_PREP(MT_WTBL_RIUCR3_RATE6, val[3]) | FIELD_PREP(MT_WTBL_RIUCR3_RATE7, val[3])); mt76_set(dev, MT_LPON_T0CR, MT_LPON_T0CR_MODE); /* TSF read */ sta->rate_set_tsf = (mt76_rr(dev, MT_LPON_UTTR0) & ~BIT(0)) | rateset; mt76_wr(dev, MT_WTBL_UPDATE, FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, wcid) | MT_WTBL_UPDATE_RATE_UPDATE | MT_WTBL_UPDATE_TX_COUNT_CLEAR); if (!(sta->wcid.tx_info & MT_WCID_TX_INFO_SET)) mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000); sta->rate_count = 2 * MT7603_RATE_RETRY * n_rates; sta->wcid.tx_info |= MT_WCID_TX_INFO_SET; } static enum mt76_cipher_type mt7603_mac_get_key_info(struct ieee80211_key_conf *key, u8 *key_data) { memset(key_data, 0, 32); if (!key) return MT_CIPHER_NONE; if (key->keylen > 32) return MT_CIPHER_NONE; memcpy(key_data, key->key, key->keylen); switch (key->cipher) { case WLAN_CIPHER_SUITE_WEP40: return MT_CIPHER_WEP40; case WLAN_CIPHER_SUITE_WEP104: return MT_CIPHER_WEP104; case WLAN_CIPHER_SUITE_TKIP: /* Rx/Tx MIC keys are swapped */ memcpy(key_data + 16, key->key + 24, 8); memcpy(key_data + 24, key->key + 16, 8); return MT_CIPHER_TKIP; case WLAN_CIPHER_SUITE_CCMP: return MT_CIPHER_AES_CCMP; default: return MT_CIPHER_NONE; } } int mt7603_wtbl_set_key(struct mt7603_dev *dev, int wcid, struct ieee80211_key_conf *key) { enum mt76_cipher_type cipher; u32 addr = mt7603_wtbl3_addr(wcid); u8 key_data[32]; int key_len = sizeof(key_data); cipher = mt7603_mac_get_key_info(key, key_data); if (cipher == MT_CIPHER_NONE && key) return -EOPNOTSUPP; if (key && (cipher == MT_CIPHER_WEP40 || cipher == MT_CIPHER_WEP104)) { addr += key->keyidx * 16; key_len = 16; } mt76_wr_copy(dev, addr, key_data, key_len); addr = mt7603_wtbl1_addr(wcid); mt76_rmw_field(dev, addr + 2 * 4, MT_WTBL1_W2_KEY_TYPE, cipher); if (key) mt76_rmw_field(dev, addr, MT_WTBL1_W0_KEY_IDX, key->keyidx); mt76_rmw_field(dev, addr, MT_WTBL1_W0_RX_KEY_VALID, !!key); return 0; } static int mt7603_mac_write_txwi(struct mt7603_dev *dev, __le32 *txwi, struct sk_buff *skb, enum mt76_txq_id qid, struct mt76_wcid *wcid, struct ieee80211_sta *sta, int pid, struct ieee80211_key_conf *key) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_tx_rate *rate = &info->control.rates[0]; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; struct ieee80211_vif *vif = info->control.vif; struct mt76_queue *q = dev->mphy.q_tx[qid]; struct mt7603_vif *mvif; int wlan_idx; int hdr_len = ieee80211_get_hdrlen_from_skb(skb); int tx_count = 8; u8 frame_type, frame_subtype; u16 fc = le16_to_cpu(hdr->frame_control); u16 seqno = 0; u8 vif_idx = 0; u32 val; u8 bw; if (vif) { mvif = (struct mt7603_vif *)vif->drv_priv; vif_idx = mvif->idx; if (vif_idx && qid >= MT_TXQ_BEACON) vif_idx += 0x10; } if (sta) { struct mt7603_sta *msta = (struct mt7603_sta *)sta->drv_priv; tx_count = msta->rate_count; } if (wcid) wlan_idx = wcid->idx; else wlan_idx = MT7603_WTBL_RESERVED; frame_type = (fc & IEEE80211_FCTL_FTYPE) >> 2; frame_subtype = (fc & IEEE80211_FCTL_STYPE) >> 4; val = FIELD_PREP(MT_TXD0_TX_BYTES, skb->len + MT_TXD_SIZE) | FIELD_PREP(MT_TXD0_Q_IDX, q->hw_idx); txwi[0] = cpu_to_le32(val); val = MT_TXD1_LONG_FORMAT | FIELD_PREP(MT_TXD1_OWN_MAC, vif_idx) | FIELD_PREP(MT_TXD1_TID, skb->priority & IEEE80211_QOS_CTL_TID_MASK) | FIELD_PREP(MT_TXD1_HDR_FORMAT, MT_HDR_FORMAT_802_11) | FIELD_PREP(MT_TXD1_HDR_INFO, hdr_len / 2) | FIELD_PREP(MT_TXD1_WLAN_IDX, wlan_idx) | FIELD_PREP(MT_TXD1_PROTECTED, !!key); txwi[1] = cpu_to_le32(val); if (info->flags & IEEE80211_TX_CTL_NO_ACK) txwi[1] |= cpu_to_le32(MT_TXD1_NO_ACK); val = FIELD_PREP(MT_TXD2_FRAME_TYPE, frame_type) | FIELD_PREP(MT_TXD2_SUB_TYPE, frame_subtype) | FIELD_PREP(MT_TXD2_MULTICAST, is_multicast_ether_addr(hdr->addr1)); txwi[2] = cpu_to_le32(val); if (!(info->flags & IEEE80211_TX_CTL_AMPDU)) txwi[2] |= cpu_to_le32(MT_TXD2_BA_DISABLE); txwi[4] = 0; val = MT_TXD5_TX_STATUS_HOST | MT_TXD5_SW_POWER_MGMT | FIELD_PREP(MT_TXD5_PID, pid); txwi[5] = cpu_to_le32(val); txwi[6] = 0; if (rate->idx >= 0 && rate->count && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) { bool stbc = info->flags & IEEE80211_TX_CTL_STBC; u16 rateval = mt7603_mac_tx_rate_val(dev, rate, stbc, &bw); txwi[2] |= cpu_to_le32(MT_TXD2_FIX_RATE); val = MT_TXD6_FIXED_BW | FIELD_PREP(MT_TXD6_BW, bw) | FIELD_PREP(MT_TXD6_TX_RATE, rateval); txwi[6] |= cpu_to_le32(val); if (rate->flags & IEEE80211_TX_RC_SHORT_GI) txwi[6] |= cpu_to_le32(MT_TXD6_SGI); if (!(rate->flags & IEEE80211_TX_RC_MCS)) txwi[2] |= cpu_to_le32(MT_TXD2_BA_DISABLE); tx_count = rate->count; } /* use maximum tx count for beacons and buffered multicast */ if (qid >= MT_TXQ_BEACON) tx_count = 0x1f; val = FIELD_PREP(MT_TXD3_REM_TX_COUNT, tx_count) | MT_TXD3_SN_VALID; if (ieee80211_is_data_qos(hdr->frame_control)) seqno = le16_to_cpu(hdr->seq_ctrl); else if (ieee80211_is_back_req(hdr->frame_control)) seqno = le16_to_cpu(bar->start_seq_num); else val &= ~MT_TXD3_SN_VALID; val |= FIELD_PREP(MT_TXD3_SEQ, seqno >> 4); txwi[3] = cpu_to_le32(val); if (key) { u64 pn = atomic64_inc_return(&key->tx_pn); txwi[3] |= cpu_to_le32(MT_TXD3_PN_VALID); txwi[4] = cpu_to_le32(pn & GENMASK(31, 0)); txwi[5] |= cpu_to_le32(FIELD_PREP(MT_TXD5_PN_HIGH, pn >> 32)); } txwi[7] = 0; return 0; } int mt7603_tx_prepare_skb(struct mt76_dev *mdev, void *txwi_ptr, enum mt76_txq_id qid, struct mt76_wcid *wcid, struct ieee80211_sta *sta, struct mt76_tx_info *tx_info) { struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76); struct mt7603_sta *msta = container_of(wcid, struct mt7603_sta, wcid); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx_info->skb); struct ieee80211_key_conf *key = info->control.hw_key; int pid; if (!wcid) wcid = &dev->global_sta.wcid; if (sta) { msta = (struct mt7603_sta *)sta->drv_priv; if ((info->flags & (IEEE80211_TX_CTL_NO_PS_BUFFER | IEEE80211_TX_CTL_CLEAR_PS_FILT)) || (info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE)) mt7603_wtbl_set_ps(dev, msta, false); mt76_tx_check_agg_ssn(sta, tx_info->skb); } pid = mt76_tx_status_skb_add(mdev, wcid, tx_info->skb); if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) { spin_lock_bh(&dev->mt76.lock); mt7603_wtbl_set_rates(dev, msta, &info->control.rates[0], msta->rates); msta->rate_probe = true; spin_unlock_bh(&dev->mt76.lock); } mt7603_mac_write_txwi(dev, txwi_ptr, tx_info->skb, qid, wcid, sta, pid, key); return 0; } static bool mt7603_fill_txs(struct mt7603_dev *dev, struct mt7603_sta *sta, struct ieee80211_tx_info *info, __le32 *txs_data) { struct ieee80211_supported_band *sband; struct mt7603_rate_set *rs; int first_idx = 0, last_idx; u32 rate_set_tsf; u32 final_rate; u32 final_rate_flags; bool rs_idx; bool ack_timeout; bool fixed_rate; bool probe; bool ampdu; bool cck = false; int count; u32 txs; int idx; int i; fixed_rate = info->status.rates[0].count; probe = !!(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); txs = le32_to_cpu(txs_data[4]); ampdu = !fixed_rate && (txs & MT_TXS4_AMPDU); count = FIELD_GET(MT_TXS4_TX_COUNT, txs); last_idx = FIELD_GET(MT_TXS4_LAST_TX_RATE, txs); txs = le32_to_cpu(txs_data[0]); final_rate = FIELD_GET(MT_TXS0_TX_RATE, txs); ack_timeout = txs & MT_TXS0_ACK_TIMEOUT; if (!ampdu && (txs & MT_TXS0_RTS_TIMEOUT)) return false; if (txs & MT_TXS0_QUEUE_TIMEOUT) return false; if (!ack_timeout) info->flags |= IEEE80211_TX_STAT_ACK; info->status.ampdu_len = 1; info->status.ampdu_ack_len = !!(info->flags & IEEE80211_TX_STAT_ACK); if (ampdu || (info->flags & IEEE80211_TX_CTL_AMPDU)) info->flags |= IEEE80211_TX_STAT_AMPDU | IEEE80211_TX_CTL_AMPDU; first_idx = max_t(int, 0, last_idx - (count - 1) / MT7603_RATE_RETRY); if (fixed_rate && !probe) { info->status.rates[0].count = count; i = 0; goto out; } rate_set_tsf = READ_ONCE(sta->rate_set_tsf); rs_idx = !((u32)(le32_get_bits(txs_data[1], MT_TXS1_F0_TIMESTAMP) - rate_set_tsf) < 1000000); rs_idx ^= rate_set_tsf & BIT(0); rs = &sta->rateset[rs_idx]; if (!first_idx && rs->probe_rate.idx >= 0) { info->status.rates[0] = rs->probe_rate; spin_lock_bh(&dev->mt76.lock); if (sta->rate_probe) { mt7603_wtbl_set_rates(dev, sta, NULL, sta->rates); sta->rate_probe = false; } spin_unlock_bh(&dev->mt76.lock); } else { info->status.rates[0] = rs->rates[first_idx / 2]; } info->status.rates[0].count = 0; for (i = 0, idx = first_idx; count && idx <= last_idx; idx++) { struct ieee80211_tx_rate *cur_rate; int cur_count; cur_rate = &rs->rates[idx / 2]; cur_count = min_t(int, MT7603_RATE_RETRY, count); count -= cur_count; if (idx && (cur_rate->idx != info->status.rates[i].idx || cur_rate->flags != info->status.rates[i].flags)) { i++; if (i == ARRAY_SIZE(info->status.rates)) { i--; break; } info->status.rates[i] = *cur_rate; info->status.rates[i].count = 0; } info->status.rates[i].count += cur_count; } out: final_rate_flags = info->status.rates[i].flags; switch (FIELD_GET(MT_TX_RATE_MODE, final_rate)) { case MT_PHY_TYPE_CCK: cck = true; fallthrough; case MT_PHY_TYPE_OFDM: if (dev->mphy.chandef.chan->band == NL80211_BAND_5GHZ) sband = &dev->mphy.sband_5g.sband; else sband = &dev->mphy.sband_2g.sband; final_rate &= GENMASK(5, 0); final_rate = mt76_get_rate(&dev->mt76, sband, final_rate, cck); final_rate_flags = 0; break; case MT_PHY_TYPE_HT_GF: case MT_PHY_TYPE_HT: final_rate_flags |= IEEE80211_TX_RC_MCS; final_rate &= GENMASK(5, 0); if (final_rate > 15) return false; break; default: return false; } info->status.rates[i].idx = final_rate; info->status.rates[i].flags = final_rate_flags; return true; } static bool mt7603_mac_add_txs_skb(struct mt7603_dev *dev, struct mt7603_sta *sta, int pid, __le32 *txs_data) { struct mt76_dev *mdev = &dev->mt76; struct sk_buff_head list; struct sk_buff *skb; if (pid < MT_PACKET_ID_FIRST) return false; trace_mac_txdone(mdev, sta->wcid.idx, pid); mt76_tx_status_lock(mdev, &list); skb = mt76_tx_status_skb_get(mdev, &sta->wcid, pid, &list); if (skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); if (!mt7603_fill_txs(dev, sta, info, txs_data)) { info->status.rates[0].count = 0; info->status.rates[0].idx = -1; } mt76_tx_status_skb_done(mdev, skb, &list); } mt76_tx_status_unlock(mdev, &list); return !!skb; } void mt7603_mac_add_txs(struct mt7603_dev *dev, void *data) { struct ieee80211_tx_info info = {}; struct ieee80211_sta *sta = NULL; struct mt7603_sta *msta = NULL; struct mt76_wcid *wcid; __le32 *txs_data = data; u8 wcidx; u8 pid; pid = le32_get_bits(txs_data[4], MT_TXS4_PID); wcidx = le32_get_bits(txs_data[3], MT_TXS3_WCID); if (pid == MT_PACKET_ID_NO_ACK) return; if (wcidx >= MT7603_WTBL_SIZE) return; rcu_read_lock(); wcid = rcu_dereference(dev->mt76.wcid[wcidx]); if (!wcid) goto out; msta = container_of(wcid, struct mt7603_sta, wcid); sta = wcid_to_sta(wcid); if (list_empty(&msta->wcid.poll_list)) { spin_lock_bh(&dev->mt76.sta_poll_lock); list_add_tail(&msta->wcid.poll_list, &dev->mt76.sta_poll_list); spin_unlock_bh(&dev->mt76.sta_poll_lock); } if (mt7603_mac_add_txs_skb(dev, msta, pid, txs_data)) goto out; if (wcidx >= MT7603_WTBL_STA || !sta) goto out; if (mt7603_fill_txs(dev, msta, &info, txs_data)) { spin_lock_bh(&dev->mt76.rx_lock); ieee80211_tx_status_noskb(mt76_hw(dev), sta, &info); spin_unlock_bh(&dev->mt76.rx_lock); } out: rcu_read_unlock(); } void mt7603_tx_complete_skb(struct mt76_dev *mdev, struct mt76_queue_entry *e) { struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76); struct sk_buff *skb = e->skb; if (!e->txwi) { dev_kfree_skb_any(skb); return; } dev->tx_hang_check = 0; mt76_tx_complete_skb(mdev, e->wcid, skb); } static bool wait_for_wpdma(struct mt7603_dev *dev) { return mt76_poll(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_DMA_BUSY | MT_WPDMA_GLO_CFG_RX_DMA_BUSY, 0, 1000); } static void mt7603_pse_reset(struct mt7603_dev *dev) { /* Clear previous reset result */ if (!dev->reset_cause[RESET_CAUSE_RESET_FAILED]) mt76_clear(dev, MT_MCU_DEBUG_RESET, MT_MCU_DEBUG_RESET_PSE_S); /* Reset PSE */ mt76_set(dev, MT_MCU_DEBUG_RESET, MT_MCU_DEBUG_RESET_PSE); if (!mt76_poll_msec(dev, MT_MCU_DEBUG_RESET, MT_MCU_DEBUG_RESET_PSE_S, MT_MCU_DEBUG_RESET_PSE_S, 500)) { dev->reset_cause[RESET_CAUSE_RESET_FAILED]++; mt76_clear(dev, MT_MCU_DEBUG_RESET, MT_MCU_DEBUG_RESET_PSE); } else { dev->reset_cause[RESET_CAUSE_RESET_FAILED] = 0; mt76_clear(dev, MT_MCU_DEBUG_RESET, MT_MCU_DEBUG_RESET_QUEUES); } if (dev->reset_cause[RESET_CAUSE_RESET_FAILED] >= 3) dev->reset_cause[RESET_CAUSE_RESET_FAILED] = 0; } void mt7603_mac_dma_start(struct mt7603_dev *dev) { mt7603_mac_start(dev); wait_for_wpdma(dev); usleep_range(50, 100); mt76_set(dev, MT_WPDMA_GLO_CFG, (MT_WPDMA_GLO_CFG_TX_DMA_EN | MT_WPDMA_GLO_CFG_RX_DMA_EN | FIELD_PREP(MT_WPDMA_GLO_CFG_DMA_BURST_SIZE, 3) | MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE)); mt7603_irq_enable(dev, MT_INT_RX_DONE_ALL | MT_INT_TX_DONE_ALL); } void mt7603_mac_start(struct mt7603_dev *dev) { mt76_clear(dev, MT_ARB_SCR, MT_ARB_SCR_TX_DISABLE | MT_ARB_SCR_RX_DISABLE); mt76_wr(dev, MT_WF_ARB_TX_START_0, ~0); mt76_set(dev, MT_WF_ARB_RQCR, MT_WF_ARB_RQCR_RX_START); } void mt7603_mac_stop(struct mt7603_dev *dev) { mt76_set(dev, MT_ARB_SCR, MT_ARB_SCR_TX_DISABLE | MT_ARB_SCR_RX_DISABLE); mt76_wr(dev, MT_WF_ARB_TX_START_0, 0); mt76_clear(dev, MT_WF_ARB_RQCR, MT_WF_ARB_RQCR_RX_START); } void mt7603_pse_client_reset(struct mt7603_dev *dev) { u32 addr; addr = mt7603_reg_map(dev, MT_CLIENT_BASE_PHYS_ADDR + MT_CLIENT_RESET_TX); /* Clear previous reset state */ mt76_clear(dev, addr, MT_CLIENT_RESET_TX_R_E_1 | MT_CLIENT_RESET_TX_R_E_2 | MT_CLIENT_RESET_TX_R_E_1_S | MT_CLIENT_RESET_TX_R_E_2_S); /* Start PSE client TX abort */ mt76_set(dev, addr, MT_CLIENT_RESET_TX_R_E_1); mt76_poll_msec(dev, addr, MT_CLIENT_RESET_TX_R_E_1_S, MT_CLIENT_RESET_TX_R_E_1_S, 500); mt76_set(dev, addr, MT_CLIENT_RESET_TX_R_E_2); mt76_set(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_SW_RESET); /* Wait for PSE client to clear TX FIFO */ mt76_poll_msec(dev, addr, MT_CLIENT_RESET_TX_R_E_2_S, MT_CLIENT_RESET_TX_R_E_2_S, 500); /* Clear PSE client TX abort state */ mt76_clear(dev, addr, MT_CLIENT_RESET_TX_R_E_1 | MT_CLIENT_RESET_TX_R_E_2); } static void mt7603_dma_sched_reset(struct mt7603_dev *dev) { if (!is_mt7628(dev)) return; mt76_set(dev, MT_SCH_4, MT_SCH_4_RESET); mt76_clear(dev, MT_SCH_4, MT_SCH_4_RESET); } static void mt7603_mac_watchdog_reset(struct mt7603_dev *dev) { int beacon_int = dev->mt76.beacon_int; u32 mask = dev->mt76.mmio.irqmask; int i; ieee80211_stop_queues(dev->mt76.hw); set_bit(MT76_RESET, &dev->mphy.state); /* lock/unlock all queues to ensure that no tx is pending */ mt76_txq_schedule_all(&dev->mphy); mt76_worker_disable(&dev->mt76.tx_worker); tasklet_disable(&dev->mt76.pre_tbtt_tasklet); napi_disable(&dev->mt76.napi[0]); napi_disable(&dev->mt76.napi[1]); napi_disable(&dev->mt76.tx_napi); mutex_lock(&dev->mt76.mutex); mt7603_beacon_set_timer(dev, -1, 0); if (dev->reset_cause[RESET_CAUSE_RESET_FAILED] || dev->cur_reset_cause == RESET_CAUSE_RX_PSE_BUSY || dev->cur_reset_cause == RESET_CAUSE_BEACON_STUCK || dev->cur_reset_cause == RESET_CAUSE_TX_HANG) mt7603_pse_reset(dev); if (dev->reset_cause[RESET_CAUSE_RESET_FAILED]) goto skip_dma_reset; mt7603_mac_stop(dev); mt76_clear(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_RX_DMA_EN | MT_WPDMA_GLO_CFG_TX_DMA_EN | MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE); usleep_range(1000, 2000); mt7603_irq_disable(dev, mask); mt76_set(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_FORCE_TX_EOF); mt7603_pse_client_reset(dev); mt76_queue_tx_cleanup(dev, dev->mt76.q_mcu[MT_MCUQ_WM], true); for (i = 0; i < __MT_TXQ_MAX; i++) mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[i], true); mt76_for_each_q_rx(&dev->mt76, i) { mt76_queue_rx_reset(dev, i); } mt76_tx_status_check(&dev->mt76, true); mt7603_dma_sched_reset(dev); mt7603_mac_dma_start(dev); mt7603_irq_enable(dev, mask); skip_dma_reset: clear_bit(MT76_RESET, &dev->mphy.state); mutex_unlock(&dev->mt76.mutex); mt76_worker_enable(&dev->mt76.tx_worker); tasklet_enable(&dev->mt76.pre_tbtt_tasklet); mt7603_beacon_set_timer(dev, -1, beacon_int); local_bh_disable(); napi_enable(&dev->mt76.tx_napi); napi_schedule(&dev->mt76.tx_napi); napi_enable(&dev->mt76.napi[0]); napi_schedule(&dev->mt76.napi[0]); napi_enable(&dev->mt76.napi[1]); napi_schedule(&dev->mt76.napi[1]); local_bh_enable(); ieee80211_wake_queues(dev->mt76.hw); mt76_txq_schedule_all(&dev->mphy); } static u32 mt7603_dma_debug(struct mt7603_dev *dev, u8 index) { u32 val; mt76_wr(dev, MT_WPDMA_DEBUG, FIELD_PREP(MT_WPDMA_DEBUG_IDX, index) | MT_WPDMA_DEBUG_SEL); val = mt76_rr(dev, MT_WPDMA_DEBUG); return FIELD_GET(MT_WPDMA_DEBUG_VALUE, val); } static bool mt7603_rx_fifo_busy(struct mt7603_dev *dev) { if (is_mt7628(dev)) return mt7603_dma_debug(dev, 9) & BIT(9); return mt7603_dma_debug(dev, 2) & BIT(8); } static bool mt7603_rx_dma_busy(struct mt7603_dev *dev) { if (!(mt76_rr(dev, MT_WPDMA_GLO_CFG) & MT_WPDMA_GLO_CFG_RX_DMA_BUSY)) return false; return mt7603_rx_fifo_busy(dev); } static bool mt7603_tx_dma_busy(struct mt7603_dev *dev) { u32 val; if (!(mt76_rr(dev, MT_WPDMA_GLO_CFG) & MT_WPDMA_GLO_CFG_TX_DMA_BUSY)) return false; val = mt7603_dma_debug(dev, 9); return (val & BIT(8)) && (val & 0xf) != 0xf; } static bool mt7603_tx_hang(struct mt7603_dev *dev) { struct mt76_queue *q; u32 dma_idx, prev_dma_idx; int i; for (i = 0; i < 4; i++) { q = dev->mphy.q_tx[i]; if (!q->queued) continue; prev_dma_idx = dev->tx_dma_idx[i]; dma_idx = readl(&q->regs->dma_idx); dev->tx_dma_idx[i] = dma_idx; if (dma_idx == prev_dma_idx && dma_idx != readl(&q->regs->cpu_idx)) break; } return i < 4; } static bool mt7603_rx_pse_busy(struct mt7603_dev *dev) { u32 addr, val; if (mt76_rr(dev, MT_MCU_DEBUG_RESET) & MT_MCU_DEBUG_RESET_QUEUES) return true; if (mt7603_rx_fifo_busy(dev)) return false; addr = mt7603_reg_map(dev, MT_CLIENT_BASE_PHYS_ADDR + MT_CLIENT_STATUS); mt76_wr(dev, addr, 3); val = mt76_rr(dev, addr) >> 16; if (is_mt7628(dev) && (val & 0x4001) == 0x4001) return true; return (val & 0x8001) == 0x8001 || (val & 0xe001) == 0xe001; } static bool mt7603_watchdog_check(struct mt7603_dev *dev, u8 *counter, enum mt7603_reset_cause cause, bool (*check)(struct mt7603_dev *dev)) { if (dev->reset_test == cause + 1) { dev->reset_test = 0; goto trigger; } if (check) { if (!check(dev) && *counter < MT7603_WATCHDOG_TIMEOUT) { *counter = 0; return false; } (*counter)++; } if (*counter < MT7603_WATCHDOG_TIMEOUT) return false; trigger: dev->cur_reset_cause = cause; dev->reset_cause[cause]++; return true; } void mt7603_update_channel(struct mt76_phy *mphy) { struct mt7603_dev *dev = container_of(mphy->dev, struct mt7603_dev, mt76); struct mt76_channel_state *state; state = mphy->chan_state; state->cc_busy += mt76_rr(dev, MT_MIB_STAT_CCA); } void mt7603_edcca_set_strict(struct mt7603_dev *dev, bool val) { u32 rxtd_6 = 0xd7c80000; if (val == dev->ed_strict_mode) return; dev->ed_strict_mode = val; /* Ensure that ED/CCA does not trigger if disabled */ if (!dev->ed_monitor) rxtd_6 |= FIELD_PREP(MT_RXTD_6_CCAED_TH, 0x34); else rxtd_6 |= FIELD_PREP(MT_RXTD_6_CCAED_TH, 0x7d); if (dev->ed_monitor && !dev->ed_strict_mode) rxtd_6 |= FIELD_PREP(MT_RXTD_6_ACI_TH, 0x0f); else rxtd_6 |= FIELD_PREP(MT_RXTD_6_ACI_TH, 0x10); mt76_wr(dev, MT_RXTD(6), rxtd_6); mt76_rmw_field(dev, MT_RXTD(13), MT_RXTD_13_ACI_TH_EN, dev->ed_monitor && !dev->ed_strict_mode); } static void mt7603_edcca_check(struct mt7603_dev *dev) { u32 val = mt76_rr(dev, MT_AGC(41)); ktime_t cur_time; int rssi0, rssi1; u32 active; u32 ed_busy; if (!dev->ed_monitor) return; rssi0 = FIELD_GET(MT_AGC_41_RSSI_0, val); if (rssi0 > 128) rssi0 -= 256; if (dev->mphy.antenna_mask & BIT(1)) { rssi1 = FIELD_GET(MT_AGC_41_RSSI_1, val); if (rssi1 > 128) rssi1 -= 256; } else { rssi1 = rssi0; } if (max(rssi0, rssi1) >= -40 && dev->ed_strong_signal < MT7603_EDCCA_BLOCK_TH) dev->ed_strong_signal++; else if (dev->ed_strong_signal > 0) dev->ed_strong_signal--; cur_time = ktime_get_boottime(); ed_busy = mt76_rr(dev, MT_MIB_STAT_ED) & MT_MIB_STAT_ED_MASK; active = ktime_to_us(ktime_sub(cur_time, dev->ed_time)); dev->ed_time = cur_time; if (!active) return; if (100 * ed_busy / active > 90) { if (dev->ed_trigger < 0) dev->ed_trigger = 0; dev->ed_trigger++; } else { if (dev->ed_trigger > 0) dev->ed_trigger = 0; dev->ed_trigger--; } if (dev->ed_trigger > MT7603_EDCCA_BLOCK_TH || dev->ed_strong_signal < MT7603_EDCCA_BLOCK_TH / 2) { mt7603_edcca_set_strict(dev, true); } else if (dev->ed_trigger < -MT7603_EDCCA_BLOCK_TH) { mt7603_edcca_set_strict(dev, false); } if (dev->ed_trigger > MT7603_EDCCA_BLOCK_TH) dev->ed_trigger = MT7603_EDCCA_BLOCK_TH; else if (dev->ed_trigger < -MT7603_EDCCA_BLOCK_TH) dev->ed_trigger = -MT7603_EDCCA_BLOCK_TH; } void mt7603_cca_stats_reset(struct mt7603_dev *dev) { mt76_set(dev, MT_PHYCTRL(2), MT_PHYCTRL_2_STATUS_RESET); mt76_clear(dev, MT_PHYCTRL(2), MT_PHYCTRL_2_STATUS_RESET); mt76_set(dev, MT_PHYCTRL(2), MT_PHYCTRL_2_STATUS_EN); } static void mt7603_adjust_sensitivity(struct mt7603_dev *dev) { u32 agc0 = dev->agc0, agc3 = dev->agc3; u32 adj; if (!dev->sensitivity || dev->sensitivity < -100) { dev->sensitivity = 0; } else if (dev->sensitivity <= -84) { adj = 7 + (dev->sensitivity + 92) / 2; agc0 = 0x56f0076f; agc0 |= adj << 12; agc0 |= adj << 16; agc3 = 0x81d0d5e3; } else if (dev->sensitivity <= -72) { adj = 7 + (dev->sensitivity + 80) / 2; agc0 = 0x6af0006f; agc0 |= adj << 8; agc0 |= adj << 12; agc0 |= adj << 16; agc3 = 0x8181d5e3; } else { if (dev->sensitivity > -54) dev->sensitivity = -54; adj = 7 + (dev->sensitivity + 80) / 2; agc0 = 0x7ff0000f; agc0 |= adj << 4; agc0 |= adj << 8; agc0 |= adj << 12; agc0 |= adj << 16; agc3 = 0x818181e3; } mt76_wr(dev, MT_AGC(0), agc0); mt76_wr(dev, MT_AGC1(0), agc0); mt76_wr(dev, MT_AGC(3), agc3); mt76_wr(dev, MT_AGC1(3), agc3); } static void mt7603_false_cca_check(struct mt7603_dev *dev) { int pd_cck, pd_ofdm, mdrdy_cck, mdrdy_ofdm; int false_cca; int min_signal; u32 val; if (!dev->dynamic_sensitivity) return; val = mt76_rr(dev, MT_PHYCTRL_STAT_PD); pd_cck = FIELD_GET(MT_PHYCTRL_STAT_PD_CCK, val); pd_ofdm = FIELD_GET(MT_PHYCTRL_STAT_PD_OFDM, val); val = mt76_rr(dev, MT_PHYCTRL_STAT_MDRDY); mdrdy_cck = FIELD_GET(MT_PHYCTRL_STAT_MDRDY_CCK, val); mdrdy_ofdm = FIELD_GET(MT_PHYCTRL_STAT_MDRDY_OFDM, val); dev->false_cca_ofdm = pd_ofdm - mdrdy_ofdm; dev->false_cca_cck = pd_cck - mdrdy_cck; mt7603_cca_stats_reset(dev); min_signal = mt76_get_min_avg_rssi(&dev->mt76, false); if (!min_signal) { dev->sensitivity = 0; dev->last_cca_adj = jiffies; goto out; } min_signal -= 15; false_cca = dev->false_cca_ofdm + dev->false_cca_cck; if (false_cca > 600 && dev->sensitivity < -100 + dev->sensitivity_limit) { if (!dev->sensitivity) dev->sensitivity = -92; else dev->sensitivity += 2; dev->last_cca_adj = jiffies; } else if (false_cca < 100 || time_after(jiffies, dev->last_cca_adj + 10 * HZ)) { dev->last_cca_adj = jiffies; if (!dev->sensitivity) goto out; dev->sensitivity -= 2; } if (dev->sensitivity && dev->sensitivity > min_signal) { dev->sensitivity = min_signal; dev->last_cca_adj = jiffies; } out: mt7603_adjust_sensitivity(dev); } void mt7603_mac_work(struct work_struct *work) { struct mt7603_dev *dev = container_of(work, struct mt7603_dev, mphy.mac_work.work); bool reset = false; int i, idx; mt76_tx_status_check(&dev->mt76, false); mutex_lock(&dev->mt76.mutex); dev->mphy.mac_work_count++; mt76_update_survey(&dev->mphy); mt7603_edcca_check(dev); for (i = 0, idx = 0; i < 2; i++) { u32 val = mt76_rr(dev, MT_TX_AGG_CNT(i)); dev->mphy.aggr_stats[idx++] += val & 0xffff; dev->mphy.aggr_stats[idx++] += val >> 16; } if (dev->mphy.mac_work_count == 10) mt7603_false_cca_check(dev); if (mt7603_watchdog_check(dev, &dev->rx_pse_check, RESET_CAUSE_RX_PSE_BUSY, mt7603_rx_pse_busy) || mt7603_watchdog_check(dev, &dev->beacon_check, RESET_CAUSE_BEACON_STUCK, NULL) || mt7603_watchdog_check(dev, &dev->tx_hang_check, RESET_CAUSE_TX_HANG, mt7603_tx_hang) || mt7603_watchdog_check(dev, &dev->tx_dma_check, RESET_CAUSE_TX_BUSY, mt7603_tx_dma_busy) || mt7603_watchdog_check(dev, &dev->rx_dma_check, RESET_CAUSE_RX_BUSY, mt7603_rx_dma_busy) || mt7603_watchdog_check(dev, &dev->mcu_hang, RESET_CAUSE_MCU_HANG, NULL) || dev->reset_cause[RESET_CAUSE_RESET_FAILED]) { dev->beacon_check = 0; dev->tx_dma_check = 0; dev->tx_hang_check = 0; dev->rx_dma_check = 0; dev->rx_pse_check = 0; dev->mcu_hang = 0; dev->rx_dma_idx = ~0; memset(dev->tx_dma_idx, 0xff, sizeof(dev->tx_dma_idx)); reset = true; dev->mphy.mac_work_count = 0; } if (dev->mphy.mac_work_count >= 10) dev->mphy.mac_work_count = 0; mutex_unlock(&dev->mt76.mutex); if (reset) mt7603_mac_watchdog_reset(dev); ieee80211_queue_delayed_work(mt76_hw(dev), &dev->mphy.mac_work, msecs_to_jiffies(MT7603_WATCHDOG_TIME)); }
linux-master
drivers/net/wireless/mediatek/mt76/mt7603/mac.c
// SPDX-License-Identifier: ISC #include <linux/etherdevice.h> #include "mt7603.h" #include "mac.h" #include "eeprom.h" const struct mt76_driver_ops mt7603_drv_ops = { .txwi_size = MT_TXD_SIZE, .drv_flags = MT_DRV_SW_RX_AIRTIME, .survey_flags = SURVEY_INFO_TIME_TX, .tx_prepare_skb = mt7603_tx_prepare_skb, .tx_complete_skb = mt7603_tx_complete_skb, .rx_skb = mt7603_queue_rx_skb, .rx_poll_complete = mt7603_rx_poll_complete, .sta_ps = mt7603_sta_ps, .sta_add = mt7603_sta_add, .sta_assoc = mt7603_sta_assoc, .sta_remove = mt7603_sta_remove, .update_survey = mt7603_update_channel, }; static void mt7603_set_tmac_template(struct mt7603_dev *dev) { u32 desc[5] = { [1] = FIELD_PREP(MT_TXD3_REM_TX_COUNT, 0xf), [3] = MT_TXD5_SW_POWER_MGMT }; u32 addr; int i; addr = mt7603_reg_map(dev, MT_CLIENT_BASE_PHYS_ADDR); addr += MT_CLIENT_TMAC_INFO_TEMPLATE; for (i = 0; i < ARRAY_SIZE(desc); i++) mt76_wr(dev, addr + 4 * i, desc[i]); } static void mt7603_dma_sched_init(struct mt7603_dev *dev) { int page_size = 128; int page_count; int max_len = 1792; int max_amsdu_pages = 4096 / page_size; int max_mcu_len = 4096; int max_beacon_len = 512 * 4 + max_len; int max_mcast_pages = 4 * max_len / page_size; int reserved_count = 0; int beacon_pages; int mcu_pages; int i; page_count = mt76_get_field(dev, MT_PSE_FC_P0, MT_PSE_FC_P0_MAX_QUOTA); beacon_pages = 4 * (max_beacon_len / page_size); mcu_pages = max_mcu_len / page_size; mt76_wr(dev, MT_PSE_FRP, FIELD_PREP(MT_PSE_FRP_P0, 7) | FIELD_PREP(MT_PSE_FRP_P1, 6) | FIELD_PREP(MT_PSE_FRP_P2_RQ2, 4)); mt76_wr(dev, MT_HIGH_PRIORITY_1, 0x55555553); mt76_wr(dev, MT_HIGH_PRIORITY_2, 0x78555555); mt76_wr(dev, MT_QUEUE_PRIORITY_1, 0x2b1a096e); mt76_wr(dev, MT_QUEUE_PRIORITY_2, 0x785f4d3c); mt76_wr(dev, MT_PRIORITY_MASK, 0xffffffff); mt76_wr(dev, MT_SCH_1, page_count | (2 << 28)); mt76_wr(dev, MT_SCH_2, max_amsdu_pages); for (i = 0; i <= 4; i++) mt76_wr(dev, MT_PAGE_COUNT(i), max_amsdu_pages); reserved_count += 5 * max_amsdu_pages; mt76_wr(dev, MT_PAGE_COUNT(5), mcu_pages); reserved_count += mcu_pages; mt76_wr(dev, MT_PAGE_COUNT(7), beacon_pages); reserved_count += beacon_pages; mt76_wr(dev, MT_PAGE_COUNT(8), max_mcast_pages); reserved_count += max_mcast_pages; if (is_mt7603(dev)) reserved_count = 0; mt76_wr(dev, MT_RSV_MAX_THRESH, page_count - reserved_count); if (is_mt7603(dev) && mt76xx_rev(dev) >= MT7603_REV_E2) { mt76_wr(dev, MT_GROUP_THRESH(0), page_count - beacon_pages - mcu_pages); mt76_wr(dev, MT_GROUP_THRESH(1), beacon_pages); mt76_wr(dev, MT_BMAP_0, 0x0080ff5f); mt76_wr(dev, MT_GROUP_THRESH(2), mcu_pages); mt76_wr(dev, MT_BMAP_1, 0x00000020); } else { mt76_wr(dev, MT_GROUP_THRESH(0), page_count); mt76_wr(dev, MT_BMAP_0, 0xffff); } mt76_wr(dev, MT_SCH_4, 0); for (i = 0; i <= 15; i++) mt76_wr(dev, MT_TXTIME_THRESH(i), 0xfffff); mt76_set(dev, MT_SCH_4, BIT(6)); } static void mt7603_phy_init(struct mt7603_dev *dev) { int rx_chains = dev->mphy.antenna_mask; int tx_chains = hweight8(rx_chains) - 1; mt76_rmw(dev, MT_WF_RMAC_RMCR, (MT_WF_RMAC_RMCR_SMPS_MODE | MT_WF_RMAC_RMCR_RX_STREAMS), (FIELD_PREP(MT_WF_RMAC_RMCR_SMPS_MODE, 3) | FIELD_PREP(MT_WF_RMAC_RMCR_RX_STREAMS, rx_chains))); mt76_rmw_field(dev, MT_TMAC_TCR, MT_TMAC_TCR_TX_STREAMS, tx_chains); dev->agc0 = mt76_rr(dev, MT_AGC(0)); dev->agc3 = mt76_rr(dev, MT_AGC(3)); } static void mt7603_mac_init(struct mt7603_dev *dev) { u8 bc_addr[ETH_ALEN]; u32 addr; int i; mt76_wr(dev, MT_AGG_BA_SIZE_LIMIT_0, (MT_AGG_SIZE_LIMIT(0) << 0 * MT_AGG_BA_SIZE_LIMIT_SHIFT) | (MT_AGG_SIZE_LIMIT(1) << 1 * MT_AGG_BA_SIZE_LIMIT_SHIFT) | (MT_AGG_SIZE_LIMIT(2) << 2 * MT_AGG_BA_SIZE_LIMIT_SHIFT) | (MT_AGG_SIZE_LIMIT(3) << 3 * MT_AGG_BA_SIZE_LIMIT_SHIFT)); mt76_wr(dev, MT_AGG_BA_SIZE_LIMIT_1, (MT_AGG_SIZE_LIMIT(4) << 0 * MT_AGG_BA_SIZE_LIMIT_SHIFT) | (MT_AGG_SIZE_LIMIT(5) << 1 * MT_AGG_BA_SIZE_LIMIT_SHIFT) | (MT_AGG_SIZE_LIMIT(6) << 2 * MT_AGG_BA_SIZE_LIMIT_SHIFT) | (MT_AGG_SIZE_LIMIT(7) << 3 * MT_AGG_BA_SIZE_LIMIT_SHIFT)); mt76_wr(dev, MT_AGG_LIMIT, FIELD_PREP(MT_AGG_LIMIT_AC(0), 24) | FIELD_PREP(MT_AGG_LIMIT_AC(1), 24) | FIELD_PREP(MT_AGG_LIMIT_AC(2), 24) | FIELD_PREP(MT_AGG_LIMIT_AC(3), 24)); mt76_wr(dev, MT_AGG_LIMIT_1, FIELD_PREP(MT_AGG_LIMIT_AC(0), 24) | FIELD_PREP(MT_AGG_LIMIT_AC(1), 24) | FIELD_PREP(MT_AGG_LIMIT_AC(2), 24) | FIELD_PREP(MT_AGG_LIMIT_AC(3), 24)); mt76_wr(dev, MT_AGG_CONTROL, FIELD_PREP(MT_AGG_CONTROL_BAR_RATE, 0x4b) | FIELD_PREP(MT_AGG_CONTROL_CFEND_RATE, 0x69) | MT_AGG_CONTROL_NO_BA_AR_RULE); mt76_wr(dev, MT_AGG_RETRY_CONTROL, FIELD_PREP(MT_AGG_RETRY_CONTROL_BAR_LIMIT, 1) | FIELD_PREP(MT_AGG_RETRY_CONTROL_RTS_LIMIT, 15)); mt76_wr(dev, MT_DMA_DCR0, MT_DMA_DCR0_RX_VEC_DROP | FIELD_PREP(MT_DMA_DCR0_MAX_RX_LEN, 4096)); mt76_rmw(dev, MT_DMA_VCFR0, BIT(0), BIT(13)); mt76_rmw(dev, MT_DMA_TMCFR0, BIT(0) | BIT(1), BIT(13)); mt76_clear(dev, MT_WF_RMAC_TMR_PA, BIT(31)); mt76_set(dev, MT_WF_RMACDR, MT_WF_RMACDR_MAXLEN_20BIT); mt76_rmw(dev, MT_WF_RMAC_MAXMINLEN, 0xffffff, 0x19000); mt76_wr(dev, MT_WF_RFCR1, 0); mt76_set(dev, MT_TMAC_TCR, MT_TMAC_TCR_RX_RIFS_MODE); mt7603_set_tmac_template(dev); /* Enable RX group to HIF */ addr = mt7603_reg_map(dev, MT_CLIENT_BASE_PHYS_ADDR); mt76_set(dev, addr + MT_CLIENT_RXINF, MT_CLIENT_RXINF_RXSH_GROUPS); /* Enable RX group to MCU */ mt76_set(dev, MT_DMA_DCR1, GENMASK(13, 11)); mt76_rmw_field(dev, MT_AGG_PCR_RTS, MT_AGG_PCR_RTS_PKT_THR, 3); mt76_set(dev, MT_TMAC_PCR, MT_TMAC_PCR_SPE_EN); /* include preamble detection in CCA trigger signal */ mt76_rmw_field(dev, MT_TXREQ, MT_TXREQ_CCA_SRC_SEL, 2); mt76_wr(dev, MT_RXREQ, 4); /* Configure all rx packets to HIF */ mt76_wr(dev, MT_DMA_RCFR0, 0xc0000000); /* Configure MCU txs selection with aggregation */ mt76_wr(dev, MT_DMA_TCFR0, FIELD_PREP(MT_DMA_TCFR_TXS_AGGR_TIMEOUT, 1) | /* 32 us */ MT_DMA_TCFR_TXS_AGGR_COUNT); /* Configure HIF txs selection with aggregation */ mt76_wr(dev, MT_DMA_TCFR1, FIELD_PREP(MT_DMA_TCFR_TXS_AGGR_TIMEOUT, 1) | /* 32 us */ MT_DMA_TCFR_TXS_AGGR_COUNT | /* Maximum count */ MT_DMA_TCFR_TXS_BIT_MAP); mt76_wr(dev, MT_MCU_PCIE_REMAP_1, MT_PSE_WTBL_2_PHYS_ADDR); for (i = 0; i < MT7603_WTBL_SIZE; i++) mt7603_wtbl_clear(dev, i); eth_broadcast_addr(bc_addr); mt7603_wtbl_init(dev, MT7603_WTBL_RESERVED, -1, bc_addr); dev->global_sta.wcid.idx = MT7603_WTBL_RESERVED; rcu_assign_pointer(dev->mt76.wcid[MT7603_WTBL_RESERVED], &dev->global_sta.wcid); mt76_rmw_field(dev, MT_LPON_BTEIR, MT_LPON_BTEIR_MBSS_MODE, 2); mt76_rmw_field(dev, MT_WF_RMACDR, MT_WF_RMACDR_MBSSID_MASK, 2); mt76_wr(dev, MT_AGG_ARUCR, FIELD_PREP(MT_AGG_ARxCR_LIMIT(0), 7) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(1), 2) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(2), 2) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(3), 2) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(4), 1) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(5), 1) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(6), 1) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(7), 1)); mt76_wr(dev, MT_AGG_ARDCR, FIELD_PREP(MT_AGG_ARxCR_LIMIT(0), MT7603_RATE_RETRY - 1) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(1), MT7603_RATE_RETRY - 1) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(2), MT7603_RATE_RETRY - 1) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(3), MT7603_RATE_RETRY - 1) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(4), MT7603_RATE_RETRY - 1) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(5), MT7603_RATE_RETRY - 1) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(6), MT7603_RATE_RETRY - 1) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(7), MT7603_RATE_RETRY - 1)); mt76_wr(dev, MT_AGG_ARCR, (FIELD_PREP(MT_AGG_ARCR_RTS_RATE_THR, 2) | MT_AGG_ARCR_RATE_DOWN_RATIO_EN | FIELD_PREP(MT_AGG_ARCR_RATE_DOWN_RATIO, 1) | FIELD_PREP(MT_AGG_ARCR_RATE_UP_EXTRA_TH, 4))); mt76_set(dev, MT_WTBL_RMVTCR, MT_WTBL_RMVTCR_RX_MV_MODE); mt76_clear(dev, MT_SEC_SCR, MT_SEC_SCR_MASK_ORDER); mt76_clear(dev, MT_SEC_SCR, BIT(18)); /* Set secondary beacon time offsets */ for (i = 0; i <= 4; i++) mt76_rmw_field(dev, MT_LPON_SBTOR(i), MT_LPON_SBTOR_TIME_OFFSET, (i + 1) * (20 + 4096)); } static int mt7603_init_hardware(struct mt7603_dev *dev) { int i, ret; mt76_wr(dev, MT_INT_SOURCE_CSR, ~0); ret = mt7603_eeprom_init(dev); if (ret < 0) return ret; ret = mt7603_dma_init(dev); if (ret) return ret; mt76_wr(dev, MT_WPDMA_GLO_CFG, 0x52000850); mt7603_mac_dma_start(dev); dev->rxfilter = mt76_rr(dev, MT_WF_RFCR); set_bit(MT76_STATE_INITIALIZED, &dev->mphy.state); for (i = 0; i < MT7603_WTBL_SIZE; i++) { mt76_wr(dev, MT_PSE_RTA, MT_PSE_RTA_BUSY | MT_PSE_RTA_WRITE | FIELD_PREP(MT_PSE_RTA_TAG_ID, i)); mt76_poll(dev, MT_PSE_RTA, MT_PSE_RTA_BUSY, 0, 5000); } ret = mt7603_mcu_init(dev); if (ret) return ret; mt7603_dma_sched_init(dev); mt7603_mcu_set_eeprom(dev); mt7603_phy_init(dev); mt7603_mac_init(dev); return 0; } static const struct ieee80211_iface_limit if_limits[] = { { .max = 1, .types = BIT(NL80211_IFTYPE_ADHOC) }, { .max = MT7603_MAX_INTERFACES, .types = BIT(NL80211_IFTYPE_STATION) | #ifdef CONFIG_MAC80211_MESH BIT(NL80211_IFTYPE_MESH_POINT) | #endif BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_P2P_GO) | BIT(NL80211_IFTYPE_AP) }, }; static const struct ieee80211_iface_combination if_comb[] = { { .limits = if_limits, .n_limits = ARRAY_SIZE(if_limits), .max_interfaces = 4, .num_different_channels = 1, .beacon_int_infra_match = true, } }; static void mt7603_led_set_config(struct mt76_phy *mphy, u8 delay_on, u8 delay_off) { struct mt7603_dev *dev = container_of(mphy->dev, struct mt7603_dev, mt76); u32 val, addr; val = FIELD_PREP(MT_LED_STATUS_DURATION, 0xffff) | FIELD_PREP(MT_LED_STATUS_OFF, delay_off) | FIELD_PREP(MT_LED_STATUS_ON, delay_on); addr = mt7603_reg_map(dev, MT_LED_STATUS_0(mphy->leds.pin)); mt76_wr(dev, addr, val); addr = mt7603_reg_map(dev, MT_LED_STATUS_1(mphy->leds.pin)); mt76_wr(dev, addr, val); val = MT_LED_CTRL_REPLAY(mphy->leds.pin) | MT_LED_CTRL_KICK(mphy->leds.pin); if (mphy->leds.al) val |= MT_LED_CTRL_POLARITY(mphy->leds.pin); addr = mt7603_reg_map(dev, MT_LED_CTRL); mt76_wr(dev, addr, val); } static int mt7603_led_set_blink(struct led_classdev *led_cdev, unsigned long *delay_on, unsigned long *delay_off) { struct mt76_phy *mphy = container_of(led_cdev, struct mt76_phy, leds.cdev); u8 delta_on, delta_off; delta_off = max_t(u8, *delay_off / 10, 1); delta_on = max_t(u8, *delay_on / 10, 1); mt7603_led_set_config(mphy, delta_on, delta_off); return 0; } static void mt7603_led_set_brightness(struct led_classdev *led_cdev, enum led_brightness brightness) { struct mt76_phy *mphy = container_of(led_cdev, struct mt76_phy, leds.cdev); if (!brightness) mt7603_led_set_config(mphy, 0, 0xff); else mt7603_led_set_config(mphy, 0xff, 0); } static u32 __mt7603_reg_addr(struct mt7603_dev *dev, u32 addr) { if (addr < 0x100000) return addr; return mt7603_reg_map(dev, addr); } static u32 mt7603_rr(struct mt76_dev *mdev, u32 offset) { struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76); u32 addr = __mt7603_reg_addr(dev, offset); return dev->bus_ops->rr(mdev, addr); } static void mt7603_wr(struct mt76_dev *mdev, u32 offset, u32 val) { struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76); u32 addr = __mt7603_reg_addr(dev, offset); dev->bus_ops->wr(mdev, addr, val); } static u32 mt7603_rmw(struct mt76_dev *mdev, u32 offset, u32 mask, u32 val) { struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76); u32 addr = __mt7603_reg_addr(dev, offset); return dev->bus_ops->rmw(mdev, addr, mask, val); } static void mt7603_regd_notifier(struct wiphy *wiphy, struct regulatory_request *request) { struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); struct mt7603_dev *dev = hw->priv; dev->mt76.region = request->dfs_region; dev->ed_monitor = dev->ed_monitor_enabled && dev->mt76.region == NL80211_DFS_ETSI; } static int mt7603_txpower_signed(int val) { bool sign = val & BIT(6); if (!(val & BIT(7))) return 0; val &= GENMASK(5, 0); if (!sign) val = -val; return val; } static void mt7603_init_txpower(struct mt7603_dev *dev, struct ieee80211_supported_band *sband) { struct ieee80211_channel *chan; u8 *eeprom = (u8 *)dev->mt76.eeprom.data; int target_power = eeprom[MT_EE_TX_POWER_0_START_2G + 2] & ~BIT(7); u8 *rate_power = &eeprom[MT_EE_TX_POWER_CCK]; bool ext_pa = eeprom[MT_EE_NIC_CONF_0 + 1] & BIT(1); int max_offset, cur_offset; int i; if (ext_pa && is_mt7603(dev)) target_power = eeprom[MT_EE_TX_POWER_TSSI_OFF] & ~BIT(7); if (target_power & BIT(6)) target_power = -(target_power & GENMASK(5, 0)); max_offset = 0; for (i = 0; i < 14; i++) { cur_offset = mt7603_txpower_signed(rate_power[i]); max_offset = max(max_offset, cur_offset); } target_power += max_offset; dev->tx_power_limit = target_power; dev->mphy.txpower_cur = target_power; target_power = DIV_ROUND_UP(target_power, 2); /* add 3 dBm for 2SS devices (combined output) */ if (dev->mphy.antenna_mask & BIT(1)) target_power += 3; for (i = 0; i < sband->n_channels; i++) { chan = &sband->channels[i]; chan->max_power = min_t(int, chan->max_reg_power, target_power); chan->orig_mpwr = target_power; } } int mt7603_register_device(struct mt7603_dev *dev) { struct mt76_bus_ops *bus_ops; struct ieee80211_hw *hw = mt76_hw(dev); struct wiphy *wiphy = hw->wiphy; int ret; dev->bus_ops = dev->mt76.bus; bus_ops = devm_kmemdup(dev->mt76.dev, dev->bus_ops, sizeof(*bus_ops), GFP_KERNEL); if (!bus_ops) return -ENOMEM; bus_ops->rr = mt7603_rr; bus_ops->wr = mt7603_wr; bus_ops->rmw = mt7603_rmw; dev->mt76.bus = bus_ops; spin_lock_init(&dev->ps_lock); INIT_DELAYED_WORK(&dev->mphy.mac_work, mt7603_mac_work); tasklet_setup(&dev->mt76.pre_tbtt_tasklet, mt7603_pre_tbtt_tasklet); dev->slottime = 9; dev->sensitivity_limit = 28; dev->dynamic_sensitivity = true; ret = mt7603_init_hardware(dev); if (ret) return ret; hw->queues = 4; hw->max_rates = 3; hw->max_report_rates = 7; hw->max_rate_tries = 11; hw->radiotap_timestamp.units_pos = IEEE80211_RADIOTAP_TIMESTAMP_UNIT_US; hw->sta_data_size = sizeof(struct mt7603_sta); hw->vif_data_size = sizeof(struct mt7603_vif); wiphy->iface_combinations = if_comb; wiphy->n_iface_combinations = ARRAY_SIZE(if_comb); ieee80211_hw_set(hw, TX_STATUS_NO_AMPDU_LEN); ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING); ieee80211_hw_set(hw, NEEDS_UNIQUE_STA_ADDR); /* init led callbacks */ if (IS_ENABLED(CONFIG_MT76_LEDS)) { dev->mphy.leds.cdev.brightness_set = mt7603_led_set_brightness; dev->mphy.leds.cdev.blink_set = mt7603_led_set_blink; } wiphy->reg_notifier = mt7603_regd_notifier; ret = mt76_register_device(&dev->mt76, true, mt76_rates, ARRAY_SIZE(mt76_rates)); if (ret) return ret; mt7603_init_debugfs(dev); mt7603_init_txpower(dev, &dev->mphy.sband_2g.sband); return 0; } void mt7603_unregister_device(struct mt7603_dev *dev) { tasklet_disable(&dev->mt76.pre_tbtt_tasklet); mt76_unregister_device(&dev->mt76); mt7603_mcu_exit(dev); mt7603_dma_cleanup(dev); mt76_free_device(&dev->mt76); }
linux-master
drivers/net/wireless/mediatek/mt76/mt7603/init.c
// SPDX-License-Identifier: ISC #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include "mt7603.h" static const struct pci_device_id mt76pci_device_table[] = { { PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7603) }, { }, }; static int mt76pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct mt7603_dev *dev; struct mt76_dev *mdev; int ret; ret = pcim_enable_device(pdev); if (ret) return ret; ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev)); if (ret) return ret; pci_set_master(pdev); ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); if (ret) return ret; mdev = mt76_alloc_device(&pdev->dev, sizeof(*dev), &mt7603_ops, &mt7603_drv_ops); if (!mdev) return -ENOMEM; dev = container_of(mdev, struct mt7603_dev, mt76); mt76_mmio_init(mdev, pcim_iomap_table(pdev)[0]); mdev->rev = (mt76_rr(dev, MT_HW_CHIPID) << 16) | (mt76_rr(dev, MT_HW_REV) & 0xff); dev_info(mdev->dev, "ASIC revision: %04x\n", mdev->rev); mt76_wr(dev, MT_INT_MASK_CSR, 0); ret = devm_request_irq(mdev->dev, pdev->irq, mt7603_irq_handler, IRQF_SHARED, KBUILD_MODNAME, dev); if (ret) goto error; ret = mt7603_register_device(dev); if (ret) goto error; return 0; error: mt76_free_device(&dev->mt76); return ret; } static void mt76pci_remove(struct pci_dev *pdev) { struct mt76_dev *mdev = pci_get_drvdata(pdev); struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76); mt7603_unregister_device(dev); } MODULE_DEVICE_TABLE(pci, mt76pci_device_table); MODULE_FIRMWARE(MT7603_FIRMWARE_E1); MODULE_FIRMWARE(MT7603_FIRMWARE_E2); struct pci_driver mt7603_pci_driver = { .name = KBUILD_MODNAME, .id_table = mt76pci_device_table, .probe = mt76pci_probe, .remove = mt76pci_remove, };
linux-master
drivers/net/wireless/mediatek/mt76/mt7603/pci.c
// SPDX-License-Identifier: ISC #include "mt7603.h" #include "../trace.h" void mt7603_rx_poll_complete(struct mt76_dev *mdev, enum mt76_rxq_id q) { struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76); mt7603_irq_enable(dev, MT_INT_RX_DONE(q)); } irqreturn_t mt7603_irq_handler(int irq, void *dev_instance) { struct mt7603_dev *dev = dev_instance; u32 intr; intr = mt76_rr(dev, MT_INT_SOURCE_CSR); mt76_wr(dev, MT_INT_SOURCE_CSR, intr); if (!test_bit(MT76_STATE_INITIALIZED, &dev->mphy.state)) return IRQ_NONE; trace_dev_irq(&dev->mt76, intr, dev->mt76.mmio.irqmask); intr &= dev->mt76.mmio.irqmask; if (intr & MT_INT_MAC_IRQ3) { u32 hwintr = mt76_rr(dev, MT_HW_INT_STATUS(3)); mt76_wr(dev, MT_HW_INT_STATUS(3), hwintr); if (hwintr & MT_HW_INT3_PRE_TBTT0) tasklet_schedule(&dev->mt76.pre_tbtt_tasklet); if ((hwintr & MT_HW_INT3_TBTT0) && dev->mt76.csa_complete) mt76_csa_finish(&dev->mt76); } if (intr & MT_INT_TX_DONE_ALL) { mt7603_irq_disable(dev, MT_INT_TX_DONE_ALL); napi_schedule(&dev->mt76.tx_napi); } if (intr & MT_INT_RX_DONE(0)) { mt7603_irq_disable(dev, MT_INT_RX_DONE(0)); napi_schedule(&dev->mt76.napi[0]); } if (intr & MT_INT_RX_DONE(1)) { mt7603_irq_disable(dev, MT_INT_RX_DONE(1)); napi_schedule(&dev->mt76.napi[1]); } return IRQ_HANDLED; } u32 mt7603_reg_map(struct mt7603_dev *dev, u32 addr) { u32 base = addr & MT_MCU_PCIE_REMAP_2_BASE; u32 offset = addr & MT_MCU_PCIE_REMAP_2_OFFSET; dev->bus_ops->wr(&dev->mt76, MT_MCU_PCIE_REMAP_2, base); return MT_PCIE_REMAP_BASE_2 + offset; }
linux-master
drivers/net/wireless/mediatek/mt76/mt7603/core.c
// SPDX-License-Identifier: ISC #include <linux/of.h> #include "mt7603.h" #include "eeprom.h" static int mt7603_efuse_read(struct mt7603_dev *dev, u32 base, u16 addr, u8 *data) { u32 val; int i; val = mt76_rr(dev, base + MT_EFUSE_CTRL); val &= ~(MT_EFUSE_CTRL_AIN | MT_EFUSE_CTRL_MODE); val |= FIELD_PREP(MT_EFUSE_CTRL_AIN, addr & ~0xf); val |= MT_EFUSE_CTRL_KICK; mt76_wr(dev, base + MT_EFUSE_CTRL, val); if (!mt76_poll(dev, base + MT_EFUSE_CTRL, MT_EFUSE_CTRL_KICK, 0, 1000)) return -ETIMEDOUT; udelay(2); val = mt76_rr(dev, base + MT_EFUSE_CTRL); if ((val & MT_EFUSE_CTRL_AOUT) == MT_EFUSE_CTRL_AOUT || WARN_ON_ONCE(!(val & MT_EFUSE_CTRL_VALID))) { memset(data, 0xff, 16); return 0; } for (i = 0; i < 4; i++) { val = mt76_rr(dev, base + MT_EFUSE_RDATA(i)); put_unaligned_le32(val, data + 4 * i); } return 0; } static int mt7603_efuse_init(struct mt7603_dev *dev) { u32 base = mt7603_reg_map(dev, MT_EFUSE_BASE); int len = MT7603_EEPROM_SIZE; void *buf; int ret, i; if (mt76_rr(dev, base + MT_EFUSE_BASE_CTRL) & MT_EFUSE_BASE_CTRL_EMPTY) return 0; dev->mt76.otp.data = devm_kzalloc(dev->mt76.dev, len, GFP_KERNEL); dev->mt76.otp.size = len; if (!dev->mt76.otp.data) return -ENOMEM; buf = dev->mt76.otp.data; for (i = 0; i + 16 <= len; i += 16) { ret = mt7603_efuse_read(dev, base, i, buf + i); if (ret) return ret; } return 0; } static bool mt7603_has_cal_free_data(struct mt7603_dev *dev, u8 *efuse) { if (!efuse[MT_EE_TEMP_SENSOR_CAL]) return false; if (get_unaligned_le16(efuse + MT_EE_TX_POWER_0_START_2G) == 0) return false; if (get_unaligned_le16(efuse + MT_EE_TX_POWER_1_START_2G) == 0) return false; if (!efuse[MT_EE_CP_FT_VERSION]) return false; if (!efuse[MT_EE_XTAL_FREQ_OFFSET]) return false; if (!efuse[MT_EE_XTAL_WF_RFCAL]) return false; return true; } static void mt7603_apply_cal_free_data(struct mt7603_dev *dev, u8 *efuse) { static const u8 cal_free_bytes[] = { MT_EE_TEMP_SENSOR_CAL, MT_EE_CP_FT_VERSION, MT_EE_XTAL_FREQ_OFFSET, MT_EE_XTAL_WF_RFCAL, /* Skip for MT7628 */ MT_EE_TX_POWER_0_START_2G, MT_EE_TX_POWER_0_START_2G + 1, MT_EE_TX_POWER_1_START_2G, MT_EE_TX_POWER_1_START_2G + 1, }; struct device_node *np = dev->mt76.dev->of_node; u8 *eeprom = dev->mt76.eeprom.data; int n = ARRAY_SIZE(cal_free_bytes); int i; if (!np || !of_property_read_bool(np, "mediatek,eeprom-merge-otp")) return; if (!mt7603_has_cal_free_data(dev, efuse)) return; if (is_mt7628(dev)) n -= 4; for (i = 0; i < n; i++) { int offset = cal_free_bytes[i]; eeprom[offset] = efuse[offset]; } } static int mt7603_eeprom_load(struct mt7603_dev *dev) { int ret; ret = mt76_eeprom_init(&dev->mt76, MT7603_EEPROM_SIZE); if (ret < 0) return ret; return mt7603_efuse_init(dev); } static int mt7603_check_eeprom(struct mt76_dev *dev) { u16 val = get_unaligned_le16(dev->eeprom.data); switch (val) { case 0x7628: case 0x7603: case 0x7600: return 0; default: return -EINVAL; } } static inline bool is_mt7688(struct mt7603_dev *dev) { return mt76_rr(dev, MT_EFUSE_BASE + 0x64) & BIT(4); } int mt7603_eeprom_init(struct mt7603_dev *dev) { u8 *eeprom; int ret; ret = mt7603_eeprom_load(dev); if (ret < 0) return ret; if (dev->mt76.otp.data) { if (mt7603_check_eeprom(&dev->mt76) == 0) mt7603_apply_cal_free_data(dev, dev->mt76.otp.data); else memcpy(dev->mt76.eeprom.data, dev->mt76.otp.data, MT7603_EEPROM_SIZE); } eeprom = (u8 *)dev->mt76.eeprom.data; dev->mphy.cap.has_2ghz = true; memcpy(dev->mphy.macaddr, eeprom + MT_EE_MAC_ADDR, ETH_ALEN); /* Check for 1SS devices */ dev->mphy.antenna_mask = 3; if (FIELD_GET(MT_EE_NIC_CONF_0_RX_PATH, eeprom[MT_EE_NIC_CONF_0]) == 1 || FIELD_GET(MT_EE_NIC_CONF_0_TX_PATH, eeprom[MT_EE_NIC_CONF_0]) == 1 || is_mt7688(dev)) dev->mphy.antenna_mask = 1; mt76_eeprom_override(&dev->mphy); return 0; }
linux-master
drivers/net/wireless/mediatek/mt76/mt7603/eeprom.c
// SPDX-License-Identifier: ISC #include "mt7603.h" #include "mac.h" #include "../dma.h" static void mt7603_rx_loopback_skb(struct mt7603_dev *dev, struct sk_buff *skb) { static const u8 tid_to_ac[8] = { IEEE80211_AC_BE, IEEE80211_AC_BK, IEEE80211_AC_BK, IEEE80211_AC_BE, IEEE80211_AC_VI, IEEE80211_AC_VI, IEEE80211_AC_VO, IEEE80211_AC_VO }; __le32 *txd = (__le32 *)skb->data; struct ieee80211_hdr *hdr; struct ieee80211_sta *sta; struct mt7603_sta *msta; struct mt76_wcid *wcid; void *priv; int idx; u32 val; u8 tid = 0; if (skb->len < MT_TXD_SIZE + sizeof(struct ieee80211_hdr)) goto free; val = le32_to_cpu(txd[1]); idx = FIELD_GET(MT_TXD1_WLAN_IDX, val); skb->priority = FIELD_GET(MT_TXD1_TID, val); if (idx >= MT7603_WTBL_STA - 1) goto free; wcid = rcu_dereference(dev->mt76.wcid[idx]); if (!wcid) goto free; priv = msta = container_of(wcid, struct mt7603_sta, wcid); val = le32_to_cpu(txd[0]); val &= ~(MT_TXD0_P_IDX | MT_TXD0_Q_IDX); val |= FIELD_PREP(MT_TXD0_Q_IDX, MT_TX_HW_QUEUE_MGMT); txd[0] = cpu_to_le32(val); sta = container_of(priv, struct ieee80211_sta, drv_priv); hdr = (struct ieee80211_hdr *)&skb->data[MT_TXD_SIZE]; if (ieee80211_is_data_qos(hdr->frame_control)) tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TAG1D_MASK; skb_set_queue_mapping(skb, tid_to_ac[tid]); ieee80211_sta_set_buffered(sta, tid, true); spin_lock_bh(&dev->ps_lock); __skb_queue_tail(&msta->psq, skb); if (skb_queue_len(&msta->psq) >= 64) { skb = __skb_dequeue(&msta->psq); dev_kfree_skb(skb); } spin_unlock_bh(&dev->ps_lock); return; free: dev_kfree_skb(skb); } void mt7603_queue_rx_skb(struct mt76_dev *mdev, enum mt76_rxq_id q, struct sk_buff *skb, u32 *info) { struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76); __le32 *rxd = (__le32 *)skb->data; __le32 *end = (__le32 *)&skb->data[skb->len]; enum rx_pkt_type type; type = le32_get_bits(rxd[0], MT_RXD0_PKT_TYPE); if (q == MT_RXQ_MCU) { if (type == PKT_TYPE_RX_EVENT) mt76_mcu_rx_event(&dev->mt76, skb); else mt7603_rx_loopback_skb(dev, skb); return; } switch (type) { case PKT_TYPE_TXS: for (rxd++; rxd + 5 <= end; rxd += 5) mt7603_mac_add_txs(dev, rxd); dev_kfree_skb(skb); break; case PKT_TYPE_RX_EVENT: mt76_mcu_rx_event(&dev->mt76, skb); return; case PKT_TYPE_NORMAL: if (mt7603_mac_fill_rx(dev, skb) == 0) { mt76_rx(&dev->mt76, q, skb); return; } fallthrough; default: dev_kfree_skb(skb); break; } } static int mt7603_init_rx_queue(struct mt7603_dev *dev, struct mt76_queue *q, int idx, int n_desc, int bufsize) { int err; err = mt76_queue_alloc(dev, q, idx, n_desc, bufsize, MT_RX_RING_BASE); if (err < 0) return err; mt7603_irq_enable(dev, MT_INT_RX_DONE(idx)); return 0; } static int mt7603_poll_tx(struct napi_struct *napi, int budget) { struct mt7603_dev *dev; int i; dev = container_of(napi, struct mt7603_dev, mt76.tx_napi); dev->tx_dma_check = 0; mt76_queue_tx_cleanup(dev, dev->mt76.q_mcu[MT_MCUQ_WM], false); for (i = MT_TXQ_PSD; i >= 0; i--) mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[i], false); if (napi_complete_done(napi, 0)) mt7603_irq_enable(dev, MT_INT_TX_DONE_ALL); mt76_queue_tx_cleanup(dev, dev->mt76.q_mcu[MT_MCUQ_WM], false); for (i = MT_TXQ_PSD; i >= 0; i--) mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[i], false); mt7603_mac_sta_poll(dev); mt76_worker_schedule(&dev->mt76.tx_worker); return 0; } int mt7603_dma_init(struct mt7603_dev *dev) { static const u8 wmm_queue_map[] = { [IEEE80211_AC_BK] = 0, [IEEE80211_AC_BE] = 1, [IEEE80211_AC_VI] = 2, [IEEE80211_AC_VO] = 3, }; int ret; int i; mt76_dma_attach(&dev->mt76); mt76_clear(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_DMA_EN | MT_WPDMA_GLO_CFG_RX_DMA_EN | MT_WPDMA_GLO_CFG_DMA_BURST_SIZE | MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE); mt76_wr(dev, MT_WPDMA_RST_IDX, ~0); mt7603_pse_client_reset(dev); for (i = 0; i < ARRAY_SIZE(wmm_queue_map); i++) { ret = mt76_init_tx_queue(&dev->mphy, i, wmm_queue_map[i], MT7603_TX_RING_SIZE, MT_TX_RING_BASE, 0); if (ret) return ret; } ret = mt76_init_tx_queue(&dev->mphy, MT_TXQ_PSD, MT_TX_HW_QUEUE_MGMT, MT7603_PSD_RING_SIZE, MT_TX_RING_BASE, 0); if (ret) return ret; ret = mt76_init_mcu_queue(&dev->mt76, MT_MCUQ_WM, MT_TX_HW_QUEUE_MCU, MT_MCU_RING_SIZE, MT_TX_RING_BASE); if (ret) return ret; ret = mt76_init_tx_queue(&dev->mphy, MT_TXQ_BEACON, MT_TX_HW_QUEUE_BCN, MT_MCU_RING_SIZE, MT_TX_RING_BASE, 0); if (ret) return ret; ret = mt76_init_tx_queue(&dev->mphy, MT_TXQ_CAB, MT_TX_HW_QUEUE_BMC, MT_MCU_RING_SIZE, MT_TX_RING_BASE, 0); if (ret) return ret; mt7603_irq_enable(dev, MT_INT_TX_DONE(IEEE80211_AC_VO) | MT_INT_TX_DONE(IEEE80211_AC_VI) | MT_INT_TX_DONE(IEEE80211_AC_BE) | MT_INT_TX_DONE(IEEE80211_AC_BK) | MT_INT_TX_DONE(MT_TX_HW_QUEUE_MGMT) | MT_INT_TX_DONE(MT_TX_HW_QUEUE_MCU) | MT_INT_TX_DONE(MT_TX_HW_QUEUE_BCN) | MT_INT_TX_DONE(MT_TX_HW_QUEUE_BMC)); ret = mt7603_init_rx_queue(dev, &dev->mt76.q_rx[MT_RXQ_MCU], 1, MT7603_MCU_RX_RING_SIZE, MT_RX_BUF_SIZE); if (ret) return ret; ret = mt7603_init_rx_queue(dev, &dev->mt76.q_rx[MT_RXQ_MAIN], 0, MT7603_RX_RING_SIZE, MT_RX_BUF_SIZE); if (ret) return ret; mt76_wr(dev, MT_DELAY_INT_CFG, 0); ret = mt76_init_queues(dev, mt76_dma_rx_poll); if (ret) return ret; netif_napi_add_tx(&dev->mt76.tx_napi_dev, &dev->mt76.tx_napi, mt7603_poll_tx); napi_enable(&dev->mt76.tx_napi); return 0; } void mt7603_dma_cleanup(struct mt7603_dev *dev) { mt76_clear(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_DMA_EN | MT_WPDMA_GLO_CFG_RX_DMA_EN | MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE); mt76_dma_cleanup(&dev->mt76); }
linux-master
drivers/net/wireless/mediatek/mt76/mt7603/dma.c
// SPDX-License-Identifier: ISC #include <linux/etherdevice.h> #include <linux/platform_device.h> #include <linux/pci.h> #include <linux/module.h> #include "mt7603.h" #include "mac.h" #include "eeprom.h" static int mt7603_start(struct ieee80211_hw *hw) { struct mt7603_dev *dev = hw->priv; mt7603_mac_reset_counters(dev); mt7603_mac_start(dev); dev->mphy.survey_time = ktime_get_boottime(); set_bit(MT76_STATE_RUNNING, &dev->mphy.state); mt7603_mac_work(&dev->mphy.mac_work.work); return 0; } static void mt7603_stop(struct ieee80211_hw *hw) { struct mt7603_dev *dev = hw->priv; clear_bit(MT76_STATE_RUNNING, &dev->mphy.state); cancel_delayed_work_sync(&dev->mphy.mac_work); mt7603_mac_stop(dev); } static int mt7603_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mt7603_vif *mvif = (struct mt7603_vif *)vif->drv_priv; struct mt7603_dev *dev = hw->priv; struct mt76_txq *mtxq; u8 bc_addr[ETH_ALEN]; int idx; int ret = 0; mutex_lock(&dev->mt76.mutex); mvif->idx = __ffs64(~dev->mt76.vif_mask); if (mvif->idx >= MT7603_MAX_INTERFACES) { ret = -ENOSPC; goto out; } mt76_wr(dev, MT_MAC_ADDR0(mvif->idx), get_unaligned_le32(vif->addr)); mt76_wr(dev, MT_MAC_ADDR1(mvif->idx), (get_unaligned_le16(vif->addr + 4) | MT_MAC_ADDR1_VALID)); if (vif->type == NL80211_IFTYPE_AP) { mt76_wr(dev, MT_BSSID0(mvif->idx), get_unaligned_le32(vif->addr)); mt76_wr(dev, MT_BSSID1(mvif->idx), (get_unaligned_le16(vif->addr + 4) | MT_BSSID1_VALID)); } idx = MT7603_WTBL_RESERVED - 1 - mvif->idx; dev->mt76.vif_mask |= BIT_ULL(mvif->idx); INIT_LIST_HEAD(&mvif->sta.wcid.poll_list); mvif->sta.wcid.idx = idx; mvif->sta.wcid.hw_key_idx = -1; mvif->sta.vif = mvif; mt76_packet_id_init(&mvif->sta.wcid); eth_broadcast_addr(bc_addr); mt7603_wtbl_init(dev, idx, mvif->idx, bc_addr); mtxq = (struct mt76_txq *)vif->txq->drv_priv; mtxq->wcid = idx; rcu_assign_pointer(dev->mt76.wcid[idx], &mvif->sta.wcid); out: mutex_unlock(&dev->mt76.mutex); return ret; } static void mt7603_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mt7603_vif *mvif = (struct mt7603_vif *)vif->drv_priv; struct mt7603_sta *msta = &mvif->sta; struct mt7603_dev *dev = hw->priv; int idx = msta->wcid.idx; mt76_wr(dev, MT_MAC_ADDR0(mvif->idx), 0); mt76_wr(dev, MT_MAC_ADDR1(mvif->idx), 0); mt76_wr(dev, MT_BSSID0(mvif->idx), 0); mt76_wr(dev, MT_BSSID1(mvif->idx), 0); mt7603_beacon_set_timer(dev, mvif->idx, 0); rcu_assign_pointer(dev->mt76.wcid[idx], NULL); spin_lock_bh(&dev->mt76.sta_poll_lock); if (!list_empty(&msta->wcid.poll_list)) list_del_init(&msta->wcid.poll_list); spin_unlock_bh(&dev->mt76.sta_poll_lock); mutex_lock(&dev->mt76.mutex); dev->mt76.vif_mask &= ~BIT_ULL(mvif->idx); mutex_unlock(&dev->mt76.mutex); mt76_packet_id_flush(&dev->mt76, &mvif->sta.wcid); } void mt7603_init_edcca(struct mt7603_dev *dev) { /* Set lower signal level to -65dBm */ mt76_rmw_field(dev, MT_RXTD(8), MT_RXTD_8_LOWER_SIGNAL, 0x23); /* clear previous energy detect monitor results */ mt76_rr(dev, MT_MIB_STAT_ED); if (dev->ed_monitor) mt76_set(dev, MT_MIB_CTL, MT_MIB_CTL_ED_TIME); else mt76_clear(dev, MT_MIB_CTL, MT_MIB_CTL_ED_TIME); dev->ed_strict_mode = 0xff; dev->ed_strong_signal = 0; dev->ed_time = ktime_get_boottime(); mt7603_edcca_set_strict(dev, false); } static int mt7603_set_channel(struct ieee80211_hw *hw, struct cfg80211_chan_def *def) { struct mt7603_dev *dev = hw->priv; u8 *rssi_data = (u8 *)dev->mt76.eeprom.data; int idx, ret; u8 bw = MT_BW_20; bool failed = false; ieee80211_stop_queues(hw); cancel_delayed_work_sync(&dev->mphy.mac_work); tasklet_disable(&dev->mt76.pre_tbtt_tasklet); mutex_lock(&dev->mt76.mutex); set_bit(MT76_RESET, &dev->mphy.state); mt7603_beacon_set_timer(dev, -1, 0); mt76_set_channel(&dev->mphy); mt7603_mac_stop(dev); if (def->width == NL80211_CHAN_WIDTH_40) bw = MT_BW_40; dev->mphy.chandef = *def; mt76_rmw_field(dev, MT_AGG_BWCR, MT_AGG_BWCR_BW, bw); ret = mt7603_mcu_set_channel(dev); if (ret) { failed = true; goto out; } if (def->chan->band == NL80211_BAND_5GHZ) { idx = 1; rssi_data += MT_EE_RSSI_OFFSET_5G; } else { idx = 0; rssi_data += MT_EE_RSSI_OFFSET_2G; } memcpy(dev->rssi_offset, rssi_data, sizeof(dev->rssi_offset)); idx |= (def->chan - mt76_hw(dev)->wiphy->bands[def->chan->band]->channels) << 1; mt76_wr(dev, MT_WF_RMAC_CH_FREQ, idx); mt7603_mac_set_timing(dev); mt7603_mac_start(dev); clear_bit(MT76_RESET, &dev->mphy.state); mt76_txq_schedule_all(&dev->mphy); ieee80211_queue_delayed_work(mt76_hw(dev), &dev->mphy.mac_work, msecs_to_jiffies(MT7603_WATCHDOG_TIME)); /* reset channel stats */ mt76_clear(dev, MT_MIB_CTL, MT_MIB_CTL_READ_CLR_DIS); mt76_set(dev, MT_MIB_CTL, MT_MIB_CTL_CCA_NAV_TX | MT_MIB_CTL_PSCCA_TIME); mt76_rr(dev, MT_MIB_STAT_CCA); mt7603_cca_stats_reset(dev); dev->mphy.survey_time = ktime_get_boottime(); mt7603_init_edcca(dev); out: if (!(mt76_hw(dev)->conf.flags & IEEE80211_CONF_OFFCHANNEL)) mt7603_beacon_set_timer(dev, -1, dev->mt76.beacon_int); mutex_unlock(&dev->mt76.mutex); tasklet_enable(&dev->mt76.pre_tbtt_tasklet); if (failed) mt7603_mac_work(&dev->mphy.mac_work.work); ieee80211_wake_queues(hw); return ret; } static int mt7603_set_sar_specs(struct ieee80211_hw *hw, const struct cfg80211_sar_specs *sar) { struct mt7603_dev *dev = hw->priv; struct mt76_phy *mphy = &dev->mphy; int err; if (!cfg80211_chandef_valid(&mphy->chandef)) return -EINVAL; err = mt76_init_sar_power(hw, sar); if (err) return err; return mt7603_set_channel(hw, &mphy->chandef); } static int mt7603_config(struct ieee80211_hw *hw, u32 changed) { struct mt7603_dev *dev = hw->priv; int ret = 0; if (changed & (IEEE80211_CONF_CHANGE_CHANNEL | IEEE80211_CONF_CHANGE_POWER)) ret = mt7603_set_channel(hw, &hw->conf.chandef); if (changed & IEEE80211_CONF_CHANGE_MONITOR) { mutex_lock(&dev->mt76.mutex); if (!(hw->conf.flags & IEEE80211_CONF_MONITOR)) dev->rxfilter |= MT_WF_RFCR_DROP_OTHER_UC; else dev->rxfilter &= ~MT_WF_RFCR_DROP_OTHER_UC; mt76_wr(dev, MT_WF_RFCR, dev->rxfilter); mutex_unlock(&dev->mt76.mutex); } return ret; } static void mt7603_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags, u64 multicast) { struct mt7603_dev *dev = hw->priv; u32 flags = 0; #define MT76_FILTER(_flag, _hw) do { \ flags |= *total_flags & FIF_##_flag; \ dev->rxfilter &= ~(_hw); \ dev->rxfilter |= !(flags & FIF_##_flag) * (_hw); \ } while (0) dev->rxfilter &= ~(MT_WF_RFCR_DROP_OTHER_BSS | MT_WF_RFCR_DROP_OTHER_BEACON | MT_WF_RFCR_DROP_FRAME_REPORT | MT_WF_RFCR_DROP_PROBEREQ | MT_WF_RFCR_DROP_MCAST_FILTERED | MT_WF_RFCR_DROP_MCAST | MT_WF_RFCR_DROP_BCAST | MT_WF_RFCR_DROP_DUPLICATE | MT_WF_RFCR_DROP_A2_BSSID | MT_WF_RFCR_DROP_UNWANTED_CTL | MT_WF_RFCR_DROP_STBC_MULTI); MT76_FILTER(OTHER_BSS, MT_WF_RFCR_DROP_OTHER_TIM | MT_WF_RFCR_DROP_A3_MAC | MT_WF_RFCR_DROP_A3_BSSID); MT76_FILTER(FCSFAIL, MT_WF_RFCR_DROP_FCSFAIL); MT76_FILTER(CONTROL, MT_WF_RFCR_DROP_CTS | MT_WF_RFCR_DROP_RTS | MT_WF_RFCR_DROP_CTL_RSV | MT_WF_RFCR_DROP_NDPA); *total_flags = flags; mt76_wr(dev, MT_WF_RFCR, dev->rxfilter); } static void mt7603_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *info, u64 changed) { struct mt7603_dev *dev = hw->priv; struct mt7603_vif *mvif = (struct mt7603_vif *)vif->drv_priv; mutex_lock(&dev->mt76.mutex); if (changed & (BSS_CHANGED_ASSOC | BSS_CHANGED_BSSID)) { if (vif->cfg.assoc || vif->cfg.ibss_joined) { mt76_wr(dev, MT_BSSID0(mvif->idx), get_unaligned_le32(info->bssid)); mt76_wr(dev, MT_BSSID1(mvif->idx), (get_unaligned_le16(info->bssid + 4) | MT_BSSID1_VALID)); } else { mt76_wr(dev, MT_BSSID0(mvif->idx), 0); mt76_wr(dev, MT_BSSID1(mvif->idx), 0); } } if (changed & BSS_CHANGED_ERP_SLOT) { int slottime = info->use_short_slot ? 9 : 20; if (slottime != dev->slottime) { dev->slottime = slottime; mt7603_mac_set_timing(dev); } } if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON_INT)) { int beacon_int = !!info->enable_beacon * info->beacon_int; tasklet_disable(&dev->mt76.pre_tbtt_tasklet); mt7603_beacon_set_timer(dev, mvif->idx, beacon_int); tasklet_enable(&dev->mt76.pre_tbtt_tasklet); } mutex_unlock(&dev->mt76.mutex); } int mt7603_sta_add(struct mt76_dev *mdev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76); struct mt7603_sta *msta = (struct mt7603_sta *)sta->drv_priv; struct mt7603_vif *mvif = (struct mt7603_vif *)vif->drv_priv; int idx; int ret = 0; idx = mt76_wcid_alloc(dev->mt76.wcid_mask, MT7603_WTBL_STA - 1); if (idx < 0) return -ENOSPC; INIT_LIST_HEAD(&msta->wcid.poll_list); __skb_queue_head_init(&msta->psq); msta->ps = ~0; msta->smps = ~0; msta->wcid.sta = 1; msta->wcid.idx = idx; msta->vif = mvif; mt7603_wtbl_init(dev, idx, mvif->idx, sta->addr); mt7603_wtbl_set_ps(dev, msta, false); if (vif->type == NL80211_IFTYPE_AP) set_bit(MT_WCID_FLAG_CHECK_PS, &msta->wcid.flags); return ret; } void mt7603_sta_assoc(struct mt76_dev *mdev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76); mt7603_wtbl_update_cap(dev, sta); } void mt7603_sta_remove(struct mt76_dev *mdev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76); struct mt7603_vif *mvif = (struct mt7603_vif *)vif->drv_priv; struct mt7603_sta *msta = (struct mt7603_sta *)sta->drv_priv; struct mt76_wcid *wcid = (struct mt76_wcid *)sta->drv_priv; spin_lock_bh(&dev->ps_lock); __skb_queue_purge(&msta->psq); mt7603_filter_tx(dev, mvif->idx, wcid->idx, true); spin_unlock_bh(&dev->ps_lock); spin_lock_bh(&mdev->sta_poll_lock); if (!list_empty(&msta->wcid.poll_list)) list_del_init(&msta->wcid.poll_list); spin_unlock_bh(&mdev->sta_poll_lock); mt7603_wtbl_clear(dev, wcid->idx); } static void mt7603_ps_tx_list(struct mt7603_dev *dev, struct sk_buff_head *list) { struct sk_buff *skb; while ((skb = __skb_dequeue(list)) != NULL) { int qid = skb_get_queue_mapping(skb); mt76_tx_queue_skb_raw(dev, dev->mphy.q_tx[qid], skb, 0); } } void mt7603_sta_ps(struct mt76_dev *mdev, struct ieee80211_sta *sta, bool ps) { struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76); struct mt7603_sta *msta = (struct mt7603_sta *)sta->drv_priv; struct sk_buff_head list; mt76_stop_tx_queues(&dev->mphy, sta, true); mt7603_wtbl_set_ps(dev, msta, ps); if (ps) return; __skb_queue_head_init(&list); spin_lock_bh(&dev->ps_lock); skb_queue_splice_tail_init(&msta->psq, &list); spin_unlock_bh(&dev->ps_lock); mt7603_ps_tx_list(dev, &list); } static void mt7603_ps_set_more_data(struct sk_buff *skb) { struct ieee80211_hdr *hdr; hdr = (struct ieee80211_hdr *)&skb->data[MT_TXD_SIZE]; hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); } static void mt7603_release_buffered_frames(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u16 tids, int nframes, enum ieee80211_frame_release_type reason, bool more_data) { struct mt7603_dev *dev = hw->priv; struct mt7603_sta *msta = (struct mt7603_sta *)sta->drv_priv; struct sk_buff_head list; struct sk_buff *skb, *tmp; __skb_queue_head_init(&list); mt7603_wtbl_set_ps(dev, msta, false); spin_lock_bh(&dev->ps_lock); skb_queue_walk_safe(&msta->psq, skb, tmp) { if (!nframes) break; if (!(tids & BIT(skb->priority))) continue; skb_set_queue_mapping(skb, MT_TXQ_PSD); __skb_unlink(skb, &msta->psq); mt7603_ps_set_more_data(skb); __skb_queue_tail(&list, skb); nframes--; } spin_unlock_bh(&dev->ps_lock); if (!skb_queue_empty(&list)) ieee80211_sta_eosp(sta); mt7603_ps_tx_list(dev, &list); if (nframes) mt76_release_buffered_frames(hw, sta, tids, nframes, reason, more_data); } static int mt7603_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { struct mt7603_dev *dev = hw->priv; struct mt7603_vif *mvif = (struct mt7603_vif *)vif->drv_priv; struct mt7603_sta *msta = sta ? (struct mt7603_sta *)sta->drv_priv : &mvif->sta; struct mt76_wcid *wcid = &msta->wcid; int idx = key->keyidx; /* fall back to sw encryption for unsupported ciphers */ switch (key->cipher) { case WLAN_CIPHER_SUITE_TKIP: case WLAN_CIPHER_SUITE_CCMP: break; default: return -EOPNOTSUPP; } /* * The hardware does not support per-STA RX GTK, fall back * to software mode for these. */ if ((vif->type == NL80211_IFTYPE_ADHOC || vif->type == NL80211_IFTYPE_MESH_POINT) && (key->cipher == WLAN_CIPHER_SUITE_TKIP || key->cipher == WLAN_CIPHER_SUITE_CCMP) && !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) return -EOPNOTSUPP; if (cmd != SET_KEY) { if (idx == wcid->hw_key_idx) wcid->hw_key_idx = -1; return 0; } key->hw_key_idx = wcid->idx; wcid->hw_key_idx = idx; mt76_wcid_key_setup(&dev->mt76, wcid, key); return mt7603_wtbl_set_key(dev, wcid->idx, key); } static int mt7603_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, unsigned int link_id, u16 queue, const struct ieee80211_tx_queue_params *params) { struct mt7603_dev *dev = hw->priv; u16 cw_min = (1 << 5) - 1; u16 cw_max = (1 << 10) - 1; u32 val; queue = dev->mphy.q_tx[queue]->hw_idx; if (params->cw_min) cw_min = params->cw_min; if (params->cw_max) cw_max = params->cw_max; mutex_lock(&dev->mt76.mutex); mt7603_mac_stop(dev); val = mt76_rr(dev, MT_WMM_TXOP(queue)); val &= ~(MT_WMM_TXOP_MASK << MT_WMM_TXOP_SHIFT(queue)); val |= params->txop << MT_WMM_TXOP_SHIFT(queue); mt76_wr(dev, MT_WMM_TXOP(queue), val); val = mt76_rr(dev, MT_WMM_AIFSN); val &= ~(MT_WMM_AIFSN_MASK << MT_WMM_AIFSN_SHIFT(queue)); val |= params->aifs << MT_WMM_AIFSN_SHIFT(queue); mt76_wr(dev, MT_WMM_AIFSN, val); val = mt76_rr(dev, MT_WMM_CWMIN); val &= ~(MT_WMM_CWMIN_MASK << MT_WMM_CWMIN_SHIFT(queue)); val |= cw_min << MT_WMM_CWMIN_SHIFT(queue); mt76_wr(dev, MT_WMM_CWMIN, val); val = mt76_rr(dev, MT_WMM_CWMAX(queue)); val &= ~(MT_WMM_CWMAX_MASK << MT_WMM_CWMAX_SHIFT(queue)); val |= cw_max << MT_WMM_CWMAX_SHIFT(queue); mt76_wr(dev, MT_WMM_CWMAX(queue), val); mt7603_mac_start(dev); mutex_unlock(&dev->mt76.mutex); return 0; } static void mt7603_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u32 queues, bool drop) { } static int mt7603_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params) { enum ieee80211_ampdu_mlme_action action = params->action; struct mt7603_dev *dev = hw->priv; struct ieee80211_sta *sta = params->sta; struct ieee80211_txq *txq = sta->txq[params->tid]; struct mt7603_sta *msta = (struct mt7603_sta *)sta->drv_priv; u16 tid = params->tid; u16 ssn = params->ssn; u8 ba_size = params->buf_size; struct mt76_txq *mtxq; int ret = 0; if (!txq) return -EINVAL; mtxq = (struct mt76_txq *)txq->drv_priv; mutex_lock(&dev->mt76.mutex); switch (action) { case IEEE80211_AMPDU_RX_START: mt76_rx_aggr_start(&dev->mt76, &msta->wcid, tid, ssn, params->buf_size); mt7603_mac_rx_ba_reset(dev, sta->addr, tid); break; case IEEE80211_AMPDU_RX_STOP: mt76_rx_aggr_stop(&dev->mt76, &msta->wcid, tid); break; case IEEE80211_AMPDU_TX_OPERATIONAL: mtxq->aggr = true; mtxq->send_bar = false; mt7603_mac_tx_ba_reset(dev, msta->wcid.idx, tid, ba_size); break; case IEEE80211_AMPDU_TX_STOP_FLUSH: case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: mtxq->aggr = false; mt7603_mac_tx_ba_reset(dev, msta->wcid.idx, tid, -1); break; case IEEE80211_AMPDU_TX_START: mtxq->agg_ssn = IEEE80211_SN_TO_SEQ(ssn); ret = IEEE80211_AMPDU_TX_START_IMMEDIATE; break; case IEEE80211_AMPDU_TX_STOP_CONT: mtxq->aggr = false; mt7603_mac_tx_ba_reset(dev, msta->wcid.idx, tid, -1); ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid); break; } mutex_unlock(&dev->mt76.mutex); return ret; } static void mt7603_sta_rate_tbl_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7603_dev *dev = hw->priv; struct mt7603_sta *msta = (struct mt7603_sta *)sta->drv_priv; struct ieee80211_sta_rates *sta_rates = rcu_dereference(sta->rates); int i; if (!sta_rates) return; spin_lock_bh(&dev->mt76.lock); for (i = 0; i < ARRAY_SIZE(msta->rates); i++) { msta->rates[i].idx = sta_rates->rate[i].idx; msta->rates[i].count = sta_rates->rate[i].count; msta->rates[i].flags = sta_rates->rate[i].flags; if (msta->rates[i].idx < 0 || !msta->rates[i].count) break; } msta->n_rates = i; mt7603_wtbl_set_rates(dev, msta, NULL, msta->rates); msta->rate_probe = false; mt7603_wtbl_set_smps(dev, msta, sta->deflink.smps_mode == IEEE80211_SMPS_DYNAMIC); spin_unlock_bh(&dev->mt76.lock); } static void mt7603_set_coverage_class(struct ieee80211_hw *hw, s16 coverage_class) { struct mt7603_dev *dev = hw->priv; mutex_lock(&dev->mt76.mutex); dev->coverage_class = max_t(s16, coverage_class, 0); mt7603_mac_set_timing(dev); mutex_unlock(&dev->mt76.mutex); } static void mt7603_tx(struct ieee80211_hw *hw, struct ieee80211_tx_control *control, struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_vif *vif = info->control.vif; struct mt7603_dev *dev = hw->priv; struct mt76_wcid *wcid = &dev->global_sta.wcid; if (control->sta) { struct mt7603_sta *msta; msta = (struct mt7603_sta *)control->sta->drv_priv; wcid = &msta->wcid; } else if (vif) { struct mt7603_vif *mvif; mvif = (struct mt7603_vif *)vif->drv_priv; wcid = &mvif->sta.wcid; } mt76_tx(&dev->mphy, control->sta, wcid, skb); } const struct ieee80211_ops mt7603_ops = { .tx = mt7603_tx, .start = mt7603_start, .stop = mt7603_stop, .add_interface = mt7603_add_interface, .remove_interface = mt7603_remove_interface, .config = mt7603_config, .configure_filter = mt7603_configure_filter, .bss_info_changed = mt7603_bss_info_changed, .sta_state = mt76_sta_state, .sta_pre_rcu_remove = mt76_sta_pre_rcu_remove, .set_key = mt7603_set_key, .conf_tx = mt7603_conf_tx, .sw_scan_start = mt76_sw_scan, .sw_scan_complete = mt76_sw_scan_complete, .flush = mt7603_flush, .ampdu_action = mt7603_ampdu_action, .get_txpower = mt76_get_txpower, .wake_tx_queue = mt76_wake_tx_queue, .sta_rate_tbl_update = mt7603_sta_rate_tbl_update, .release_buffered_frames = mt7603_release_buffered_frames, .set_coverage_class = mt7603_set_coverage_class, .set_tim = mt76_set_tim, .get_survey = mt76_get_survey, .get_antenna = mt76_get_antenna, .set_sar_specs = mt7603_set_sar_specs, }; MODULE_LICENSE("Dual BSD/GPL"); static int __init mt7603_init(void) { int ret; ret = platform_driver_register(&mt76_wmac_driver); if (ret) return ret; #ifdef CONFIG_PCI ret = pci_register_driver(&mt7603_pci_driver); if (ret) platform_driver_unregister(&mt76_wmac_driver); #endif return ret; } static void __exit mt7603_exit(void) { #ifdef CONFIG_PCI pci_unregister_driver(&mt7603_pci_driver); #endif platform_driver_unregister(&mt76_wmac_driver); } module_init(mt7603_init); module_exit(mt7603_exit);
linux-master
drivers/net/wireless/mediatek/mt76/mt7603/main.c
// SPDX-License-Identifier: ISC #include <linux/firmware.h> #include "mt7603.h" #include "mcu.h" #include "eeprom.h" #define MCU_SKB_RESERVE 8 struct mt7603_fw_trailer { char fw_ver[10]; char build_date[15]; __le32 dl_len; } __packed; static int mt7603_mcu_parse_response(struct mt76_dev *mdev, int cmd, struct sk_buff *skb, int seq) { struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76); struct mt7603_mcu_rxd *rxd; if (!skb) { dev_err(mdev->dev, "MCU message %02x (seq %d) timed out\n", abs(cmd), seq); dev->mcu_hang = MT7603_WATCHDOG_TIMEOUT; return -ETIMEDOUT; } rxd = (struct mt7603_mcu_rxd *)skb->data; if (seq != rxd->seq) return -EAGAIN; return 0; } static int mt7603_mcu_skb_send_msg(struct mt76_dev *mdev, struct sk_buff *skb, int cmd, int *wait_seq) { struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76); int hdrlen = dev->mcu_running ? sizeof(struct mt7603_mcu_txd) : 12; struct mt7603_mcu_txd *txd; u8 seq; mdev->mcu.timeout = 3 * HZ; seq = ++mdev->mcu.msg_seq & 0xf; if (!seq) seq = ++mdev->mcu.msg_seq & 0xf; txd = (struct mt7603_mcu_txd *)skb_push(skb, hdrlen); txd->len = cpu_to_le16(skb->len); if (cmd == -MCU_CMD_FW_SCATTER) txd->pq_id = cpu_to_le16(MCU_PORT_QUEUE_FW); else txd->pq_id = cpu_to_le16(MCU_PORT_QUEUE); txd->pkt_type = MCU_PKT_ID; txd->seq = seq; if (cmd < 0) { txd->cid = -cmd; txd->set_query = MCU_Q_NA; } else { txd->cid = MCU_CMD_EXT_CID; txd->ext_cid = cmd; txd->set_query = MCU_Q_SET; txd->ext_cid_ack = 1; } if (wait_seq) *wait_seq = seq; return mt76_tx_queue_skb_raw(dev, mdev->q_mcu[MT_MCUQ_WM], skb, 0); } static int mt7603_mcu_init_download(struct mt7603_dev *dev, u32 addr, u32 len) { struct { __le32 addr; __le32 len; __le32 mode; } req = { .addr = cpu_to_le32(addr), .len = cpu_to_le32(len), .mode = cpu_to_le32(BIT(31)), }; return mt76_mcu_send_msg(&dev->mt76, -MCU_CMD_TARGET_ADDRESS_LEN_REQ, &req, sizeof(req), true); } static int mt7603_mcu_start_firmware(struct mt7603_dev *dev, u32 addr) { struct { __le32 override; __le32 addr; } req = { .override = cpu_to_le32(addr ? 1 : 0), .addr = cpu_to_le32(addr), }; return mt76_mcu_send_msg(&dev->mt76, -MCU_CMD_FW_START_REQ, &req, sizeof(req), true); } static int mt7603_mcu_restart(struct mt76_dev *dev) { return mt76_mcu_send_msg(dev, -MCU_CMD_RESTART_DL_REQ, NULL, 0, true); } static int mt7603_load_firmware(struct mt7603_dev *dev) { const struct firmware *fw; const struct mt7603_fw_trailer *hdr; const char *firmware; int dl_len; u32 addr, val; int ret; if (is_mt7628(dev)) { if (mt76xx_rev(dev) == MT7628_REV_E1) firmware = MT7628_FIRMWARE_E1; else firmware = MT7628_FIRMWARE_E2; } else { if (mt76xx_rev(dev) < MT7603_REV_E2) firmware = MT7603_FIRMWARE_E1; else firmware = MT7603_FIRMWARE_E2; } ret = request_firmware(&fw, firmware, dev->mt76.dev); if (ret) return ret; if (!fw || !fw->data || fw->size < sizeof(*hdr)) { dev_err(dev->mt76.dev, "Invalid firmware\n"); ret = -EINVAL; goto out; } hdr = (const struct mt7603_fw_trailer *)(fw->data + fw->size - sizeof(*hdr)); dev_info(dev->mt76.dev, "Firmware Version: %.10s\n", hdr->fw_ver); dev_info(dev->mt76.dev, "Build Time: %.15s\n", hdr->build_date); addr = mt7603_reg_map(dev, 0x50012498); mt76_wr(dev, addr, 0x5); mt76_wr(dev, addr, 0x5); udelay(1); /* switch to bypass mode */ mt76_rmw(dev, MT_SCH_4, MT_SCH_4_FORCE_QID, MT_SCH_4_BYPASS | FIELD_PREP(MT_SCH_4_FORCE_QID, 5)); val = mt76_rr(dev, MT_TOP_MISC2); if (val & BIT(1)) { dev_info(dev->mt76.dev, "Firmware already running...\n"); goto running; } if (!mt76_poll_msec(dev, MT_TOP_MISC2, BIT(0) | BIT(1), BIT(0), 500)) { dev_err(dev->mt76.dev, "Timeout waiting for ROM code to become ready\n"); ret = -EIO; goto out; } dl_len = le32_to_cpu(hdr->dl_len) + 4; ret = mt7603_mcu_init_download(dev, MCU_FIRMWARE_ADDRESS, dl_len); if (ret) { dev_err(dev->mt76.dev, "Download request failed\n"); goto out; } ret = mt76_mcu_send_firmware(&dev->mt76, -MCU_CMD_FW_SCATTER, fw->data, dl_len); if (ret) { dev_err(dev->mt76.dev, "Failed to send firmware to device\n"); goto out; } ret = mt7603_mcu_start_firmware(dev, MCU_FIRMWARE_ADDRESS); if (ret) { dev_err(dev->mt76.dev, "Failed to start firmware\n"); goto out; } if (!mt76_poll_msec(dev, MT_TOP_MISC2, BIT(1), BIT(1), 500)) { dev_err(dev->mt76.dev, "Timeout waiting for firmware to initialize\n"); ret = -EIO; goto out; } running: mt76_clear(dev, MT_SCH_4, MT_SCH_4_FORCE_QID | MT_SCH_4_BYPASS); mt76_set(dev, MT_SCH_4, BIT(8)); mt76_clear(dev, MT_SCH_4, BIT(8)); dev->mcu_running = true; snprintf(dev->mt76.hw->wiphy->fw_version, sizeof(dev->mt76.hw->wiphy->fw_version), "%.10s-%.15s", hdr->fw_ver, hdr->build_date); dev_info(dev->mt76.dev, "firmware init done\n"); out: release_firmware(fw); return ret; } int mt7603_mcu_init(struct mt7603_dev *dev) { static const struct mt76_mcu_ops mt7603_mcu_ops = { .headroom = sizeof(struct mt7603_mcu_txd), .mcu_skb_send_msg = mt7603_mcu_skb_send_msg, .mcu_parse_response = mt7603_mcu_parse_response, }; dev->mt76.mcu_ops = &mt7603_mcu_ops; return mt7603_load_firmware(dev); } void mt7603_mcu_exit(struct mt7603_dev *dev) { mt7603_mcu_restart(&dev->mt76); skb_queue_purge(&dev->mt76.mcu.res_q); } int mt7603_mcu_set_eeprom(struct mt7603_dev *dev) { static const u16 req_fields[] = { #define WORD(_start) \ _start, \ _start + 1 #define GROUP_2G(_start) \ WORD(_start), \ WORD(_start + 2), \ WORD(_start + 4) MT_EE_NIC_CONF_0 + 1, WORD(MT_EE_NIC_CONF_1), MT_EE_WIFI_RF_SETTING, MT_EE_TX_POWER_DELTA_BW40, MT_EE_TX_POWER_DELTA_BW80 + 1, MT_EE_TX_POWER_EXT_PA_5G, MT_EE_TEMP_SENSOR_CAL, GROUP_2G(MT_EE_TX_POWER_0_START_2G), GROUP_2G(MT_EE_TX_POWER_1_START_2G), WORD(MT_EE_TX_POWER_CCK), WORD(MT_EE_TX_POWER_OFDM_2G_6M), WORD(MT_EE_TX_POWER_OFDM_2G_24M), WORD(MT_EE_TX_POWER_OFDM_2G_54M), WORD(MT_EE_TX_POWER_HT_BPSK_QPSK), WORD(MT_EE_TX_POWER_HT_16_64_QAM), WORD(MT_EE_TX_POWER_HT_64_QAM), MT_EE_ELAN_RX_MODE_GAIN, MT_EE_ELAN_RX_MODE_NF, MT_EE_ELAN_RX_MODE_P1DB, MT_EE_ELAN_BYPASS_MODE_GAIN, MT_EE_ELAN_BYPASS_MODE_NF, MT_EE_ELAN_BYPASS_MODE_P1DB, WORD(MT_EE_STEP_NUM_NEG_6_7), WORD(MT_EE_STEP_NUM_NEG_4_5), WORD(MT_EE_STEP_NUM_NEG_2_3), WORD(MT_EE_STEP_NUM_NEG_0_1), WORD(MT_EE_REF_STEP_24G), WORD(MT_EE_STEP_NUM_PLUS_1_2), WORD(MT_EE_STEP_NUM_PLUS_3_4), WORD(MT_EE_STEP_NUM_PLUS_5_6), MT_EE_STEP_NUM_PLUS_7, MT_EE_XTAL_FREQ_OFFSET, MT_EE_XTAL_TRIM_2_COMP, MT_EE_XTAL_TRIM_3_COMP, MT_EE_XTAL_WF_RFCAL, /* unknown fields below */ WORD(0x24), 0x34, 0x39, 0x3b, WORD(0x42), WORD(0x9e), 0xf2, WORD(0xf8), 0xfa, 0x12e, WORD(0x130), WORD(0x132), WORD(0x134), WORD(0x136), WORD(0x138), WORD(0x13a), WORD(0x13c), WORD(0x13e), #undef GROUP_2G #undef WORD }; struct req_data { __le16 addr; u8 val; u8 pad; } __packed; struct { u8 buffer_mode; u8 len; u8 pad[2]; } req_hdr = { .buffer_mode = 1, .len = ARRAY_SIZE(req_fields) - 1, }; const int size = 0xff * sizeof(struct req_data); u8 *req, *eep = (u8 *)dev->mt76.eeprom.data; int i, ret, len = sizeof(req_hdr) + size; struct req_data *data; BUILD_BUG_ON(ARRAY_SIZE(req_fields) * sizeof(*data) > size); req = kmalloc(len, GFP_KERNEL); if (!req) return -ENOMEM; memcpy(req, &req_hdr, sizeof(req_hdr)); data = (struct req_data *)(req + sizeof(req_hdr)); memset(data, 0, size); for (i = 0; i < ARRAY_SIZE(req_fields); i++) { data[i].addr = cpu_to_le16(req_fields[i]); data[i].val = eep[req_fields[i]]; } ret = mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD_EFUSE_BUFFER_MODE, req, len, true); kfree(req); return ret; } static int mt7603_mcu_set_tx_power(struct mt7603_dev *dev) { struct { u8 center_channel; u8 tssi; u8 temp_comp; u8 target_power[2]; u8 rate_power_delta[14]; u8 bw_power_delta; u8 ch_power_delta[6]; u8 temp_comp_power[17]; u8 reserved; } req = { .center_channel = dev->mphy.chandef.chan->hw_value, #define EEP_VAL(n) ((u8 *)dev->mt76.eeprom.data)[n] .tssi = EEP_VAL(MT_EE_NIC_CONF_1 + 1), .temp_comp = EEP_VAL(MT_EE_NIC_CONF_1), .target_power = { EEP_VAL(MT_EE_TX_POWER_0_START_2G + 2), EEP_VAL(MT_EE_TX_POWER_1_START_2G + 2) }, .bw_power_delta = EEP_VAL(MT_EE_TX_POWER_DELTA_BW40), .ch_power_delta = { EEP_VAL(MT_EE_TX_POWER_0_START_2G + 3), EEP_VAL(MT_EE_TX_POWER_0_START_2G + 4), EEP_VAL(MT_EE_TX_POWER_0_START_2G + 5), EEP_VAL(MT_EE_TX_POWER_1_START_2G + 3), EEP_VAL(MT_EE_TX_POWER_1_START_2G + 4), EEP_VAL(MT_EE_TX_POWER_1_START_2G + 5) }, #undef EEP_VAL }; u8 *eep = (u8 *)dev->mt76.eeprom.data; memcpy(req.rate_power_delta, eep + MT_EE_TX_POWER_CCK, sizeof(req.rate_power_delta)); memcpy(req.temp_comp_power, eep + MT_EE_STEP_NUM_NEG_6_7, sizeof(req.temp_comp_power)); return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD_SET_TX_POWER_CTRL, &req, sizeof(req), true); } int mt7603_mcu_set_channel(struct mt7603_dev *dev) { struct cfg80211_chan_def *chandef = &dev->mphy.chandef; struct ieee80211_hw *hw = mt76_hw(dev); int n_chains = hweight8(dev->mphy.antenna_mask); struct { u8 control_chan; u8 center_chan; u8 bw; u8 tx_streams; u8 rx_streams; u8 _res0[7]; u8 txpower[21]; u8 _res1[3]; } req = { .control_chan = chandef->chan->hw_value, .center_chan = chandef->chan->hw_value, .bw = MT_BW_20, .tx_streams = n_chains, .rx_streams = n_chains, }; s8 tx_power = hw->conf.power_level * 2; int i, ret; if (dev->mphy.chandef.width == NL80211_CHAN_WIDTH_40) { req.bw = MT_BW_40; if (chandef->center_freq1 > chandef->chan->center_freq) req.center_chan += 2; else req.center_chan -= 2; } tx_power = mt76_get_sar_power(&dev->mphy, chandef->chan, tx_power); if (dev->mphy.antenna_mask == 3) tx_power -= 6; tx_power = min(tx_power, dev->tx_power_limit); dev->mphy.txpower_cur = tx_power; for (i = 0; i < ARRAY_SIZE(req.txpower); i++) req.txpower[i] = tx_power; ret = mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD_CHANNEL_SWITCH, &req, sizeof(req), true); if (ret) return ret; return mt7603_mcu_set_tx_power(dev); }
linux-master
drivers/net/wireless/mediatek/mt76/mt7603/mcu.c
// SPDX-License-Identifier: ISC #include "mt7603.h" struct beacon_bc_data { struct mt7603_dev *dev; struct sk_buff_head q; struct sk_buff *tail[MT7603_MAX_INTERFACES]; int count[MT7603_MAX_INTERFACES]; }; static void mt7603_update_beacon_iter(void *priv, u8 *mac, struct ieee80211_vif *vif) { struct mt7603_dev *dev = (struct mt7603_dev *)priv; struct mt76_dev *mdev = &dev->mt76; struct mt7603_vif *mvif = (struct mt7603_vif *)vif->drv_priv; struct sk_buff *skb = NULL; if (!(mdev->beacon_mask & BIT(mvif->idx))) return; skb = ieee80211_beacon_get(mt76_hw(dev), vif, 0); if (!skb) return; mt76_tx_queue_skb(dev, dev->mphy.q_tx[MT_TXQ_BEACON], MT_TXQ_BEACON, skb, &mvif->sta.wcid, NULL); spin_lock_bh(&dev->ps_lock); mt76_wr(dev, MT_DMA_FQCR0, MT_DMA_FQCR0_BUSY | FIELD_PREP(MT_DMA_FQCR0_TARGET_WCID, mvif->sta.wcid.idx) | FIELD_PREP(MT_DMA_FQCR0_TARGET_QID, dev->mphy.q_tx[MT_TXQ_CAB]->hw_idx) | FIELD_PREP(MT_DMA_FQCR0_DEST_PORT_ID, 3) | FIELD_PREP(MT_DMA_FQCR0_DEST_QUEUE_ID, 8)); if (!mt76_poll(dev, MT_DMA_FQCR0, MT_DMA_FQCR0_BUSY, 0, 5000)) dev->beacon_check = MT7603_WATCHDOG_TIMEOUT; spin_unlock_bh(&dev->ps_lock); } static void mt7603_add_buffered_bc(void *priv, u8 *mac, struct ieee80211_vif *vif) { struct beacon_bc_data *data = priv; struct mt7603_dev *dev = data->dev; struct mt7603_vif *mvif = (struct mt7603_vif *)vif->drv_priv; struct ieee80211_tx_info *info; struct sk_buff *skb; if (!(dev->mt76.beacon_mask & BIT(mvif->idx))) return; skb = ieee80211_get_buffered_bc(mt76_hw(dev), vif); if (!skb) return; info = IEEE80211_SKB_CB(skb); info->control.vif = vif; info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; mt76_skb_set_moredata(skb, true); __skb_queue_tail(&data->q, skb); data->tail[mvif->idx] = skb; data->count[mvif->idx]++; } void mt7603_pre_tbtt_tasklet(struct tasklet_struct *t) { struct mt7603_dev *dev = from_tasklet(dev, t, mt76.pre_tbtt_tasklet); struct mt76_dev *mdev = &dev->mt76; struct mt76_queue *q; struct beacon_bc_data data = {}; struct sk_buff *skb; int i, nframes; if (mt76_hw(dev)->conf.flags & IEEE80211_CONF_OFFCHANNEL) return; data.dev = dev; __skb_queue_head_init(&data.q); q = dev->mphy.q_tx[MT_TXQ_BEACON]; spin_lock(&q->lock); ieee80211_iterate_active_interfaces_atomic(mt76_hw(dev), IEEE80211_IFACE_ITER_RESUME_ALL, mt7603_update_beacon_iter, dev); mt76_queue_kick(dev, q); spin_unlock(&q->lock); /* Flush all previous CAB queue packets */ mt76_wr(dev, MT_WF_ARB_CAB_FLUSH, GENMASK(30, 16) | BIT(0)); mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[MT_TXQ_CAB], false); mt76_csa_check(mdev); if (mdev->csa_complete) goto out; q = dev->mphy.q_tx[MT_TXQ_CAB]; do { nframes = skb_queue_len(&data.q); ieee80211_iterate_active_interfaces_atomic(mt76_hw(dev), IEEE80211_IFACE_ITER_RESUME_ALL, mt7603_add_buffered_bc, &data); } while (nframes != skb_queue_len(&data.q) && skb_queue_len(&data.q) < 8); if (skb_queue_empty(&data.q)) goto out; for (i = 0; i < ARRAY_SIZE(data.tail); i++) { if (!data.tail[i]) continue; mt76_skb_set_moredata(data.tail[i], false); } spin_lock(&q->lock); while ((skb = __skb_dequeue(&data.q)) != NULL) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_vif *vif = info->control.vif; struct mt7603_vif *mvif = (struct mt7603_vif *)vif->drv_priv; mt76_tx_queue_skb(dev, q, MT_TXQ_CAB, skb, &mvif->sta.wcid, NULL); } mt76_queue_kick(dev, q); spin_unlock(&q->lock); for (i = 0; i < ARRAY_SIZE(data.count); i++) mt76_wr(dev, MT_WF_ARB_CAB_COUNT_B0_REG(i), data.count[i] << MT_WF_ARB_CAB_COUNT_B0_SHIFT(i)); mt76_wr(dev, MT_WF_ARB_CAB_START, MT_WF_ARB_CAB_START_BSSn(0) | (MT_WF_ARB_CAB_START_BSS0n(1) * ((1 << (MT7603_MAX_INTERFACES - 1)) - 1))); out: mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[MT_TXQ_BEACON], false); if (dev->mphy.q_tx[MT_TXQ_BEACON]->queued > hweight8(mdev->beacon_mask)) dev->beacon_check++; } void mt7603_beacon_set_timer(struct mt7603_dev *dev, int idx, int intval) { u32 pre_tbtt = MT7603_PRE_TBTT_TIME / 64; if (idx >= 0) { if (intval) dev->mt76.beacon_mask |= BIT(idx); else dev->mt76.beacon_mask &= ~BIT(idx); } if (!dev->mt76.beacon_mask || (!intval && idx < 0)) { mt7603_irq_disable(dev, MT_INT_MAC_IRQ3); mt76_clear(dev, MT_ARB_SCR, MT_ARB_SCR_BCNQ_OPMODE_MASK); mt76_wr(dev, MT_HW_INT_MASK(3), 0); return; } if (intval) dev->mt76.beacon_int = intval; mt76_wr(dev, MT_TBTT, FIELD_PREP(MT_TBTT_PERIOD, intval) | MT_TBTT_CAL_ENABLE); mt76_wr(dev, MT_TBTT_TIMER_CFG, 0x99); /* start timer */ mt76_rmw_field(dev, MT_ARB_SCR, MT_ARB_SCR_BCNQ_OPMODE_MASK, MT_BCNQ_OPMODE_AP); mt76_clear(dev, MT_ARB_SCR, MT_ARB_SCR_TBTT_BCN_PRIO); mt76_set(dev, MT_ARB_SCR, MT_ARB_SCR_TBTT_BCAST_PRIO); mt76_wr(dev, MT_PRE_TBTT, pre_tbtt); mt76_set(dev, MT_HW_INT_MASK(3), MT_HW_INT3_PRE_TBTT0 | MT_HW_INT3_TBTT0); mt76_set(dev, MT_WF_ARB_BCN_START, MT_WF_ARB_BCN_START_BSSn(0) | ((dev->mt76.beacon_mask >> 1) * MT_WF_ARB_BCN_START_BSS0n(1))); mt7603_irq_enable(dev, MT_INT_MAC_IRQ3); if (dev->mt76.beacon_mask & ~BIT(0)) mt76_set(dev, MT_LPON_SBTOR(0), MT_LPON_SBTOR_SUB_BSS_EN); else mt76_clear(dev, MT_LPON_SBTOR(0), MT_LPON_SBTOR_SUB_BSS_EN); }
linux-master
drivers/net/wireless/mediatek/mt76/mt7603/beacon.c
// SPDX-License-Identifier: ISC #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include "mt7603.h" static int mt76_wmac_probe(struct platform_device *pdev) { struct mt7603_dev *dev; void __iomem *mem_base; struct mt76_dev *mdev; int irq; int ret; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; mem_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(mem_base)) return PTR_ERR(mem_base); mdev = mt76_alloc_device(&pdev->dev, sizeof(*dev), &mt7603_ops, &mt7603_drv_ops); if (!mdev) return -ENOMEM; dev = container_of(mdev, struct mt7603_dev, mt76); mt76_mmio_init(mdev, mem_base); mdev->rev = (mt76_rr(dev, MT_HW_CHIPID) << 16) | (mt76_rr(dev, MT_HW_REV) & 0xff); dev_info(mdev->dev, "ASIC revision: %04x\n", mdev->rev); mt76_wr(dev, MT_INT_MASK_CSR, 0); ret = devm_request_irq(mdev->dev, irq, mt7603_irq_handler, IRQF_SHARED, KBUILD_MODNAME, dev); if (ret) goto error; ret = mt7603_register_device(dev); if (ret) goto error; return 0; error: ieee80211_free_hw(mt76_hw(dev)); return ret; } static int mt76_wmac_remove(struct platform_device *pdev) { struct mt76_dev *mdev = platform_get_drvdata(pdev); struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76); mt7603_unregister_device(dev); return 0; } static const struct of_device_id of_wmac_match[] = { { .compatible = "mediatek,mt7628-wmac" }, {}, }; MODULE_DEVICE_TABLE(of, of_wmac_match); MODULE_FIRMWARE(MT7628_FIRMWARE_E1); MODULE_FIRMWARE(MT7628_FIRMWARE_E2); struct platform_driver mt76_wmac_driver = { .probe = mt76_wmac_probe, .remove = mt76_wmac_remove, .driver = { .name = "mt76_wmac", .of_match_table = of_wmac_match, }, };
linux-master
drivers/net/wireless/mediatek/mt76/mt7603/soc.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 Jakub Kicinski <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/usb.h> #include "mt76x0.h" #include "mcu.h" #include "../mt76x02_usb.h" static struct usb_device_id mt76x0_device_table[] = { { USB_DEVICE(0x148F, 0x7610) }, /* MT7610U */ { USB_DEVICE(0x13B1, 0x003E) }, /* Linksys AE6000 */ { USB_DEVICE(0x0E8D, 0x7610) }, /* Sabrent NTWLAC */ { USB_DEVICE(0x7392, 0xa711) }, /* Edimax 7711mac */ { USB_DEVICE(0x7392, 0xb711) }, /* Edimax / Elecom */ { USB_DEVICE(0x148f, 0x761a) }, /* TP-Link TL-WDN5200 */ { USB_DEVICE(0x148f, 0x760a) }, /* TP-Link unknown */ { USB_DEVICE(0x0b05, 0x17d1) }, /* Asus USB-AC51 */ { USB_DEVICE(0x0b05, 0x17db) }, /* Asus USB-AC50 */ { USB_DEVICE(0x0df6, 0x0075) }, /* Sitecom WLA-3100 */ { USB_DEVICE(0x2019, 0xab31) }, /* Planex GW-450D */ { USB_DEVICE(0x2001, 0x3d02) }, /* D-LINK DWA-171 rev B1 */ { USB_DEVICE(0x0586, 0x3425) }, /* Zyxel NWD6505 */ { USB_DEVICE(0x07b8, 0x7610) }, /* AboCom AU7212 */ { USB_DEVICE(0x04bb, 0x0951) }, /* I-O DATA WN-AC433UK */ { USB_DEVICE(0x057c, 0x8502) }, /* AVM FRITZ!WLAN USB Stick AC 430 */ { USB_DEVICE(0x293c, 0x5702) }, /* Comcast Xfinity KXW02AAA */ { USB_DEVICE(0x20f4, 0x806b) }, /* TRENDnet TEW-806UBH */ { USB_DEVICE(0x7392, 0xc711) }, /* Devolo Wifi ac Stick */ { USB_DEVICE(0x0df6, 0x0079) }, /* Sitecom Europe B.V. ac Stick */ { USB_DEVICE(0x2357, 0x0123) }, /* TP-LINK T2UHP_US_v1 */ { USB_DEVICE(0x2357, 0x010b) }, /* TP-LINK T2UHP_UN_v1 */ /* TP-LINK Archer T1U */ { USB_DEVICE(0x2357, 0x0105), .driver_info = 1, }, /* MT7630U */ { USB_DEVICE_AND_INTERFACE_INFO(0x0E8D, 0x7630, 0xff, 0x2, 0xff)}, /* MT7650U */ { USB_DEVICE_AND_INTERFACE_INFO(0x0E8D, 0x7650, 0xff, 0x2, 0xff)}, { 0, } }; static void mt76x0_init_usb_dma(struct mt76x02_dev *dev) { u32 val; val = mt76_rr(dev, MT_USB_DMA_CFG); val |= MT_USB_DMA_CFG_RX_BULK_EN | MT_USB_DMA_CFG_TX_BULK_EN; /* disable AGGR_BULK_RX in order to receive one * frame in each rx urb and avoid copies */ val &= ~MT_USB_DMA_CFG_RX_BULK_AGG_EN; mt76_wr(dev, MT_USB_DMA_CFG, val); val = mt76_rr(dev, MT_COM_REG0); if (val & 1) dev_dbg(dev->mt76.dev, "MCU not ready\n"); val = mt76_rr(dev, MT_USB_DMA_CFG); val |= MT_USB_DMA_CFG_RX_DROP_OR_PAD; mt76_wr(dev, MT_USB_DMA_CFG, val); val &= ~MT_USB_DMA_CFG_RX_DROP_OR_PAD; mt76_wr(dev, MT_USB_DMA_CFG, val); } static void mt76x0u_cleanup(struct mt76x02_dev *dev) { clear_bit(MT76_STATE_INITIALIZED, &dev->mphy.state); mt76x0_chip_onoff(dev, false, false); mt76u_queues_deinit(&dev->mt76); } static void mt76x0u_stop(struct ieee80211_hw *hw) { struct mt76x02_dev *dev = hw->priv; clear_bit(MT76_STATE_RUNNING, &dev->mphy.state); cancel_delayed_work_sync(&dev->cal_work); cancel_delayed_work_sync(&dev->mphy.mac_work); mt76u_stop_tx(&dev->mt76); mt76x02u_exit_beacon_config(dev); if (test_bit(MT76_REMOVED, &dev->mphy.state)) return; if (!mt76_poll(dev, MT_USB_DMA_CFG, MT_USB_DMA_CFG_TX_BUSY, 0, 1000)) dev_warn(dev->mt76.dev, "TX DMA did not stop\n"); mt76x0_mac_stop(dev); if (!mt76_poll(dev, MT_USB_DMA_CFG, MT_USB_DMA_CFG_RX_BUSY, 0, 1000)) dev_warn(dev->mt76.dev, "RX DMA did not stop\n"); } static int mt76x0u_start(struct ieee80211_hw *hw) { struct mt76x02_dev *dev = hw->priv; int ret; ret = mt76x02u_mac_start(dev); if (ret) return ret; mt76x0_phy_calibrate(dev, true); ieee80211_queue_delayed_work(dev->mt76.hw, &dev->mphy.mac_work, MT_MAC_WORK_INTERVAL); ieee80211_queue_delayed_work(dev->mt76.hw, &dev->cal_work, MT_CALIBRATE_INTERVAL); set_bit(MT76_STATE_RUNNING, &dev->mphy.state); return 0; } static const struct ieee80211_ops mt76x0u_ops = { .tx = mt76x02_tx, .start = mt76x0u_start, .stop = mt76x0u_stop, .add_interface = mt76x02_add_interface, .remove_interface = mt76x02_remove_interface, .config = mt76x0_config, .configure_filter = mt76x02_configure_filter, .bss_info_changed = mt76x02_bss_info_changed, .sta_state = mt76_sta_state, .sta_pre_rcu_remove = mt76_sta_pre_rcu_remove, .set_key = mt76x02_set_key, .conf_tx = mt76x02_conf_tx, .sw_scan_start = mt76_sw_scan, .sw_scan_complete = mt76x02_sw_scan_complete, .ampdu_action = mt76x02_ampdu_action, .sta_rate_tbl_update = mt76x02_sta_rate_tbl_update, .set_rts_threshold = mt76x02_set_rts_threshold, .wake_tx_queue = mt76_wake_tx_queue, .get_txpower = mt76_get_txpower, .get_survey = mt76_get_survey, .set_tim = mt76_set_tim, .release_buffered_frames = mt76_release_buffered_frames, .get_antenna = mt76_get_antenna, .set_sar_specs = mt76x0_set_sar_specs, }; static int mt76x0u_init_hardware(struct mt76x02_dev *dev, bool reset) { int err; mt76x0_chip_onoff(dev, true, reset); if (!mt76x02_wait_for_mac(&dev->mt76)) return -ETIMEDOUT; err = mt76x0u_mcu_init(dev); if (err < 0) return err; mt76x0_init_usb_dma(dev); err = mt76x0_init_hardware(dev); if (err < 0) return err; mt76x02u_init_beacon_config(dev); mt76_rmw(dev, MT_US_CYC_CFG, MT_US_CYC_CNT, 0x1e); mt76_wr(dev, MT_TXOP_CTRL_CFG, FIELD_PREP(MT_TXOP_TRUN_EN, 0x3f) | FIELD_PREP(MT_TXOP_EXT_CCA_DLY, 0x58)); return 0; } static int mt76x0u_register_device(struct mt76x02_dev *dev) { struct ieee80211_hw *hw = dev->mt76.hw; struct mt76_usb *usb = &dev->mt76.usb; int err; usb->mcu.data = devm_kmalloc(dev->mt76.dev, MCU_RESP_URB_SIZE, GFP_KERNEL); if (!usb->mcu.data) return -ENOMEM; err = mt76u_alloc_queues(&dev->mt76); if (err < 0) goto out_err; err = mt76x0u_init_hardware(dev, true); if (err < 0) goto out_err; /* check hw sg support in order to enable AMSDU */ hw->max_tx_fragments = dev->mt76.usb.sg_en ? MT_TX_SG_MAX_SIZE : 1; err = mt76x0_register_device(dev); if (err < 0) goto out_err; set_bit(MT76_STATE_INITIALIZED, &dev->mphy.state); return 0; out_err: mt76x0u_cleanup(dev); return err; } static int mt76x0u_probe(struct usb_interface *usb_intf, const struct usb_device_id *id) { static const struct mt76_driver_ops drv_ops = { .drv_flags = MT_DRV_SW_RX_AIRTIME, .survey_flags = SURVEY_INFO_TIME_TX, .update_survey = mt76x02_update_channel, .tx_prepare_skb = mt76x02u_tx_prepare_skb, .tx_complete_skb = mt76x02u_tx_complete_skb, .tx_status_data = mt76x02_tx_status_data, .rx_skb = mt76x02_queue_rx_skb, .sta_ps = mt76x02_sta_ps, .sta_add = mt76x02_sta_add, .sta_remove = mt76x02_sta_remove, }; struct usb_device *usb_dev = interface_to_usbdev(usb_intf); struct mt76x02_dev *dev; struct mt76_dev *mdev; u32 mac_rev; int ret; mdev = mt76_alloc_device(&usb_intf->dev, sizeof(*dev), &mt76x0u_ops, &drv_ops); if (!mdev) return -ENOMEM; dev = container_of(mdev, struct mt76x02_dev, mt76); mutex_init(&dev->phy_mutex); /* Quirk for Archer T1U */ if (id->driver_info) dev->no_2ghz = true; usb_dev = usb_get_dev(usb_dev); usb_reset_device(usb_dev); usb_set_intfdata(usb_intf, dev); mt76x02u_init_mcu(mdev); ret = mt76u_init(mdev, usb_intf); if (ret) goto err; /* Disable the HW, otherwise MCU fail to initialize on hot reboot */ mt76x0_chip_onoff(dev, false, false); if (!mt76x02_wait_for_mac(mdev)) { ret = -ETIMEDOUT; goto err; } mdev->rev = mt76_rr(dev, MT_ASIC_VERSION); mac_rev = mt76_rr(dev, MT_MAC_CSR0); dev_info(mdev->dev, "ASIC revision: %08x MAC revision: %08x\n", mdev->rev, mac_rev); if (!is_mt76x0(dev)) { ret = -ENODEV; goto err; } /* Note: vendor driver skips this check for MT76X0U */ if (!(mt76_rr(dev, MT_EFUSE_CTRL) & MT_EFUSE_CTRL_SEL)) dev_warn(mdev->dev, "Warning: eFUSE not present\n"); ret = mt76x0u_register_device(dev); if (ret < 0) goto err; return 0; err: usb_set_intfdata(usb_intf, NULL); usb_put_dev(interface_to_usbdev(usb_intf)); mt76u_queues_deinit(&dev->mt76); mt76_free_device(&dev->mt76); return ret; } static void mt76x0_disconnect(struct usb_interface *usb_intf) { struct mt76x02_dev *dev = usb_get_intfdata(usb_intf); bool initialized = test_bit(MT76_STATE_INITIALIZED, &dev->mphy.state); if (!initialized) return; ieee80211_unregister_hw(dev->mt76.hw); mt76x0u_cleanup(dev); usb_set_intfdata(usb_intf, NULL); usb_put_dev(interface_to_usbdev(usb_intf)); mt76_free_device(&dev->mt76); } static int __maybe_unused mt76x0_suspend(struct usb_interface *usb_intf, pm_message_t state) { struct mt76x02_dev *dev = usb_get_intfdata(usb_intf); mt76u_stop_rx(&dev->mt76); clear_bit(MT76_STATE_MCU_RUNNING, &dev->mphy.state); mt76x0_chip_onoff(dev, false, false); return 0; } static int __maybe_unused mt76x0_resume(struct usb_interface *usb_intf) { struct mt76x02_dev *dev = usb_get_intfdata(usb_intf); int ret; ret = mt76u_resume_rx(&dev->mt76); if (ret < 0) goto err; ret = mt76x0u_init_hardware(dev, false); if (ret) goto err; return 0; err: mt76x0u_cleanup(dev); return ret; } MODULE_DEVICE_TABLE(usb, mt76x0_device_table); MODULE_FIRMWARE(MT7610E_FIRMWARE); MODULE_FIRMWARE(MT7610U_FIRMWARE); MODULE_LICENSE("GPL"); static struct usb_driver mt76x0_driver = { .name = KBUILD_MODNAME, .id_table = mt76x0_device_table, .probe = mt76x0u_probe, .disconnect = mt76x0_disconnect, .suspend = mt76x0_suspend, .resume = mt76x0_resume, .reset_resume = mt76x0_resume, .soft_unbind = 1, .disable_hub_initiated_lpm = 1, }; module_usb_driver(mt76x0_driver);
linux-master
drivers/net/wireless/mediatek/mt76/mt76x0/usb.c
// SPDX-License-Identifier: GPL-2.0-only /* * (c) Copyright 2002-2010, Ralink Technology, Inc. * Copyright (C) 2014 Felix Fietkau <[email protected]> * Copyright (C) 2015 Jakub Kicinski <[email protected]> * Copyright (C) 2018 Stanislaw Gruszka <[email protected]> */ #include "mt76x0.h" #include "eeprom.h" #include "mcu.h" #include "initvals.h" #include "initvals_init.h" #include "../mt76x02_phy.h" static void mt76x0_set_wlan_state(struct mt76x02_dev *dev, u32 val, bool enable) { u32 mask = MT_CMB_CTRL_XTAL_RDY | MT_CMB_CTRL_PLL_LD; /* Note: we don't turn off WLAN_CLK because that makes the device * not respond properly on the probe path. * In case anyone (PSM?) wants to use this function we can * bring the clock stuff back and fixup the probe path. */ if (enable) val |= (MT_WLAN_FUN_CTRL_WLAN_EN | MT_WLAN_FUN_CTRL_WLAN_CLK_EN); else val &= ~(MT_WLAN_FUN_CTRL_WLAN_EN); mt76_wr(dev, MT_WLAN_FUN_CTRL, val); udelay(20); /* Note: vendor driver tries to disable/enable wlan here and retry * but the code which does it is so buggy it must have never * triggered, so don't bother. */ if (enable && !mt76_poll(dev, MT_CMB_CTRL, mask, mask, 2000)) dev_err(dev->mt76.dev, "PLL and XTAL check failed\n"); } void mt76x0_chip_onoff(struct mt76x02_dev *dev, bool enable, bool reset) { u32 val; val = mt76_rr(dev, MT_WLAN_FUN_CTRL); if (reset) { val |= MT_WLAN_FUN_CTRL_GPIO_OUT_EN; val &= ~MT_WLAN_FUN_CTRL_FRC_WL_ANT_SEL; if (val & MT_WLAN_FUN_CTRL_WLAN_EN) { val |= (MT_WLAN_FUN_CTRL_WLAN_RESET | MT_WLAN_FUN_CTRL_WLAN_RESET_RF); mt76_wr(dev, MT_WLAN_FUN_CTRL, val); udelay(20); val &= ~(MT_WLAN_FUN_CTRL_WLAN_RESET | MT_WLAN_FUN_CTRL_WLAN_RESET_RF); } } mt76_wr(dev, MT_WLAN_FUN_CTRL, val); udelay(20); mt76x0_set_wlan_state(dev, val, enable); } EXPORT_SYMBOL_GPL(mt76x0_chip_onoff); static void mt76x0_reset_csr_bbp(struct mt76x02_dev *dev) { mt76_wr(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_RESET_CSR | MT_MAC_SYS_CTRL_RESET_BBP); msleep(200); mt76_clear(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_RESET_CSR | MT_MAC_SYS_CTRL_RESET_BBP); } #define RANDOM_WRITE(dev, tab) \ mt76_wr_rp(dev, MT_MCU_MEMMAP_WLAN, \ tab, ARRAY_SIZE(tab)) static int mt76x0_init_bbp(struct mt76x02_dev *dev) { int ret, i; ret = mt76x0_phy_wait_bbp_ready(dev); if (ret) return ret; RANDOM_WRITE(dev, mt76x0_bbp_init_tab); for (i = 0; i < ARRAY_SIZE(mt76x0_bbp_switch_tab); i++) { const struct mt76x0_bbp_switch_item *item = &mt76x0_bbp_switch_tab[i]; const struct mt76_reg_pair *pair = &item->reg_pair; if (((RF_G_BAND | RF_BW_20) & item->bw_band) == (RF_G_BAND | RF_BW_20)) mt76_wr(dev, pair->reg, pair->value); } RANDOM_WRITE(dev, mt76x0_dcoc_tab); return 0; } static void mt76x0_init_mac_registers(struct mt76x02_dev *dev) { RANDOM_WRITE(dev, common_mac_reg_table); /* Enable PBF and MAC clock SYS_CTRL[11:10] = 0x3 */ RANDOM_WRITE(dev, mt76x0_mac_reg_table); /* Release BBP and MAC reset MAC_SYS_CTRL[1:0] = 0x0 */ mt76_clear(dev, MT_MAC_SYS_CTRL, 0x3); /* Set 0x141C[15:12]=0xF */ mt76_set(dev, MT_EXT_CCA_CFG, 0xf000); mt76_clear(dev, MT_FCE_L2_STUFF, MT_FCE_L2_STUFF_WR_MPDU_LEN_EN); /* * tx_ring 9 is for mgmt frame * tx_ring 8 is for in-band command frame. * WMM_RG0_TXQMA: this register setting is for FCE to * define the rule of tx_ring 9 * WMM_RG1_TXQMA: this register setting is for FCE to * define the rule of tx_ring 8 */ mt76_rmw(dev, MT_WMM_CTRL, 0x3ff, 0x201); } void mt76x0_mac_stop(struct mt76x02_dev *dev) { int i = 200, ok = 0; mt76_clear(dev, MT_TXOP_CTRL_CFG, MT_TXOP_ED_CCA_EN); /* Page count on TxQ */ while (i-- && ((mt76_rr(dev, 0x0438) & 0xffffffff) || (mt76_rr(dev, 0x0a30) & 0x000000ff) || (mt76_rr(dev, 0x0a34) & 0x00ff00ff))) msleep(10); if (!mt76_poll(dev, MT_MAC_STATUS, MT_MAC_STATUS_TX, 0, 1000)) dev_warn(dev->mt76.dev, "Warning: MAC TX did not stop!\n"); mt76_clear(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_ENABLE_RX | MT_MAC_SYS_CTRL_ENABLE_TX); /* Page count on RxQ */ for (i = 0; i < 200; i++) { if (!(mt76_rr(dev, MT_RXQ_STA) & 0x00ff0000) && !mt76_rr(dev, 0x0a30) && !mt76_rr(dev, 0x0a34)) { if (ok++ > 5) break; continue; } msleep(1); } if (!mt76_poll(dev, MT_MAC_STATUS, MT_MAC_STATUS_RX, 0, 1000)) dev_warn(dev->mt76.dev, "Warning: MAC RX did not stop!\n"); } EXPORT_SYMBOL_GPL(mt76x0_mac_stop); int mt76x0_init_hardware(struct mt76x02_dev *dev) { int ret, i, k; if (!mt76x02_wait_for_wpdma(&dev->mt76, 1000)) return -EIO; /* Wait for ASIC ready after FW load. */ if (!mt76x02_wait_for_mac(&dev->mt76)) return -ETIMEDOUT; mt76x0_reset_csr_bbp(dev); ret = mt76x02_mcu_function_select(dev, Q_SELECT, 1); if (ret) return ret; mt76x0_init_mac_registers(dev); if (!mt76x02_wait_for_txrx_idle(&dev->mt76)) return -EIO; ret = mt76x0_init_bbp(dev); if (ret) return ret; dev->mt76.rxfilter = mt76_rr(dev, MT_RX_FILTR_CFG); for (i = 0; i < 16; i++) for (k = 0; k < 4; k++) mt76x02_mac_shared_key_setup(dev, i, k, NULL); for (i = 0; i < 256; i++) mt76x02_mac_wcid_setup(dev, i, 0, NULL); ret = mt76x0_eeprom_init(dev); if (ret) return ret; mt76x0_phy_init(dev); return 0; } EXPORT_SYMBOL_GPL(mt76x0_init_hardware); static void mt76x0_init_txpower(struct mt76x02_dev *dev, struct ieee80211_supported_band *sband) { struct ieee80211_channel *chan; struct mt76x02_rate_power t; s8 tp; int i; for (i = 0; i < sband->n_channels; i++) { chan = &sband->channels[i]; mt76x0_get_tx_power_per_rate(dev, chan, &t); mt76x0_get_power_info(dev, chan, &tp); chan->orig_mpwr = (mt76x02_get_max_rate_power(&t) + tp) / 2; chan->max_power = min_t(int, chan->max_reg_power, chan->orig_mpwr); } } int mt76x0_register_device(struct mt76x02_dev *dev) { int ret; ret = mt76x02_init_device(dev); if (ret) return ret; mt76x02_config_mac_addr_list(dev); ret = mt76_register_device(&dev->mt76, true, mt76x02_rates, ARRAY_SIZE(mt76x02_rates)); if (ret) return ret; if (dev->mphy.cap.has_5ghz) { struct ieee80211_supported_band *sband; sband = &dev->mphy.sband_5g.sband; sband->vht_cap.cap &= ~IEEE80211_VHT_CAP_RXLDPC; mt76x0_init_txpower(dev, sband); } if (dev->mphy.cap.has_2ghz) mt76x0_init_txpower(dev, &dev->mphy.sband_2g.sband); mt76x02_init_debugfs(dev); return 0; } EXPORT_SYMBOL_GPL(mt76x0_register_device);
linux-master
drivers/net/wireless/mediatek/mt76/mt76x0/init.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2016 Felix Fietkau <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include "mt76x0.h" #include "mcu.h" static int mt76x0e_start(struct ieee80211_hw *hw) { struct mt76x02_dev *dev = hw->priv; mt76x02_mac_start(dev); mt76x0_phy_calibrate(dev, true); ieee80211_queue_delayed_work(dev->mt76.hw, &dev->mphy.mac_work, MT_MAC_WORK_INTERVAL); ieee80211_queue_delayed_work(dev->mt76.hw, &dev->cal_work, MT_CALIBRATE_INTERVAL); set_bit(MT76_STATE_RUNNING, &dev->mphy.state); return 0; } static void mt76x0e_stop_hw(struct mt76x02_dev *dev) { cancel_delayed_work_sync(&dev->cal_work); cancel_delayed_work_sync(&dev->mphy.mac_work); clear_bit(MT76_RESTART, &dev->mphy.state); if (!mt76_poll(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_DMA_BUSY, 0, 1000)) dev_warn(dev->mt76.dev, "TX DMA did not stop\n"); mt76_clear(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_DMA_EN); mt76x0_mac_stop(dev); if (!mt76_poll(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_RX_DMA_BUSY, 0, 1000)) dev_warn(dev->mt76.dev, "TX DMA did not stop\n"); mt76_clear(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_RX_DMA_EN); } static void mt76x0e_stop(struct ieee80211_hw *hw) { struct mt76x02_dev *dev = hw->priv; clear_bit(MT76_STATE_RUNNING, &dev->mphy.state); mt76x0e_stop_hw(dev); } static void mt76x0e_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u32 queues, bool drop) { } static const struct ieee80211_ops mt76x0e_ops = { .tx = mt76x02_tx, .start = mt76x0e_start, .stop = mt76x0e_stop, .add_interface = mt76x02_add_interface, .remove_interface = mt76x02_remove_interface, .config = mt76x0_config, .configure_filter = mt76x02_configure_filter, .bss_info_changed = mt76x02_bss_info_changed, .sta_state = mt76_sta_state, .sta_pre_rcu_remove = mt76_sta_pre_rcu_remove, .set_key = mt76x02_set_key, .conf_tx = mt76x02_conf_tx, .sw_scan_start = mt76_sw_scan, .sw_scan_complete = mt76x02_sw_scan_complete, .ampdu_action = mt76x02_ampdu_action, .sta_rate_tbl_update = mt76x02_sta_rate_tbl_update, .wake_tx_queue = mt76_wake_tx_queue, .get_survey = mt76_get_survey, .get_txpower = mt76_get_txpower, .flush = mt76x0e_flush, .set_tim = mt76_set_tim, .release_buffered_frames = mt76_release_buffered_frames, .set_coverage_class = mt76x02_set_coverage_class, .set_rts_threshold = mt76x02_set_rts_threshold, .get_antenna = mt76_get_antenna, .reconfig_complete = mt76x02_reconfig_complete, .set_sar_specs = mt76x0_set_sar_specs, }; static int mt76x0e_init_hardware(struct mt76x02_dev *dev, bool resume) { int err; mt76x0_chip_onoff(dev, true, false); if (!mt76x02_wait_for_mac(&dev->mt76)) return -ETIMEDOUT; mt76x02_dma_disable(dev); err = mt76x0e_mcu_init(dev); if (err < 0) return err; if (!resume) { err = mt76x02_dma_init(dev); if (err < 0) return err; } err = mt76x0_init_hardware(dev); if (err < 0) return err; mt76x02e_init_beacon_config(dev); if (mt76_chip(&dev->mt76) == 0x7610) { u16 val; mt76_clear(dev, MT_COEXCFG0, BIT(0)); val = mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_0); if (!(val & MT_EE_NIC_CONF_0_PA_IO_CURRENT)) mt76_set(dev, MT_XO_CTRL7, 0xc03); } mt76_clear(dev, 0x110, BIT(9)); mt76_set(dev, MT_MAX_LEN_CFG, BIT(13)); return 0; } static int mt76x0e_register_device(struct mt76x02_dev *dev) { int err; err = mt76x0e_init_hardware(dev, false); if (err < 0) return err; err = mt76x0_register_device(dev); if (err < 0) return err; set_bit(MT76_STATE_INITIALIZED, &dev->mphy.state); return 0; } static int mt76x0e_probe(struct pci_dev *pdev, const struct pci_device_id *id) { static const struct mt76_driver_ops drv_ops = { .txwi_size = sizeof(struct mt76x02_txwi), .drv_flags = MT_DRV_TX_ALIGNED4_SKBS | MT_DRV_SW_RX_AIRTIME, .survey_flags = SURVEY_INFO_TIME_TX, .update_survey = mt76x02_update_channel, .tx_prepare_skb = mt76x02_tx_prepare_skb, .tx_complete_skb = mt76x02_tx_complete_skb, .rx_skb = mt76x02_queue_rx_skb, .rx_poll_complete = mt76x02_rx_poll_complete, .sta_ps = mt76x02_sta_ps, .sta_add = mt76x02_sta_add, .sta_remove = mt76x02_sta_remove, }; struct mt76x02_dev *dev; struct mt76_dev *mdev; int ret; ret = pcim_enable_device(pdev); if (ret) return ret; ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev)); if (ret) return ret; pci_set_master(pdev); ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); if (ret) return ret; mt76_pci_disable_aspm(pdev); mdev = mt76_alloc_device(&pdev->dev, sizeof(*dev), &mt76x0e_ops, &drv_ops); if (!mdev) return -ENOMEM; dev = container_of(mdev, struct mt76x02_dev, mt76); mutex_init(&dev->phy_mutex); mt76_mmio_init(mdev, pcim_iomap_table(pdev)[0]); mdev->rev = mt76_rr(dev, MT_ASIC_VERSION); dev_info(mdev->dev, "ASIC revision: %08x\n", mdev->rev); mt76_wr(dev, MT_INT_MASK_CSR, 0); ret = devm_request_irq(mdev->dev, pdev->irq, mt76x02_irq_handler, IRQF_SHARED, KBUILD_MODNAME, dev); if (ret) goto error; ret = mt76x0e_register_device(dev); if (ret < 0) goto error; return 0; error: mt76_free_device(&dev->mt76); return ret; } static void mt76x0e_cleanup(struct mt76x02_dev *dev) { clear_bit(MT76_STATE_INITIALIZED, &dev->mphy.state); tasklet_disable(&dev->mt76.pre_tbtt_tasklet); mt76x0_chip_onoff(dev, false, false); mt76x0e_stop_hw(dev); mt76_dma_cleanup(&dev->mt76); mt76x02_mcu_cleanup(dev); } static void mt76x0e_remove(struct pci_dev *pdev) { struct mt76_dev *mdev = pci_get_drvdata(pdev); struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76); mt76_unregister_device(mdev); mt76x0e_cleanup(dev); mt76_free_device(mdev); } #ifdef CONFIG_PM static int mt76x0e_suspend(struct pci_dev *pdev, pm_message_t state) { struct mt76_dev *mdev = pci_get_drvdata(pdev); struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76); int i; mt76_worker_disable(&mdev->tx_worker); for (i = 0; i < ARRAY_SIZE(mdev->phy.q_tx); i++) mt76_queue_tx_cleanup(dev, mdev->phy.q_tx[i], true); for (i = 0; i < ARRAY_SIZE(mdev->q_mcu); i++) mt76_queue_tx_cleanup(dev, mdev->q_mcu[i], true); napi_disable(&mdev->tx_napi); mt76_for_each_q_rx(mdev, i) napi_disable(&mdev->napi[i]); mt76x02_dma_disable(dev); mt76x02_mcu_cleanup(dev); mt76x0_chip_onoff(dev, false, false); pci_enable_wake(pdev, pci_choose_state(pdev, state), true); pci_save_state(pdev); return pci_set_power_state(pdev, pci_choose_state(pdev, state)); } static int mt76x0e_resume(struct pci_dev *pdev) { struct mt76_dev *mdev = pci_get_drvdata(pdev); struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76); int err, i; err = pci_set_power_state(pdev, PCI_D0); if (err) return err; pci_restore_state(pdev); mt76_worker_enable(&mdev->tx_worker); local_bh_disable(); mt76_for_each_q_rx(mdev, i) { mt76_queue_rx_reset(dev, i); napi_enable(&mdev->napi[i]); napi_schedule(&mdev->napi[i]); } napi_enable(&mdev->tx_napi); napi_schedule(&mdev->tx_napi); local_bh_enable(); return mt76x0e_init_hardware(dev, true); } #endif /* CONFIG_PM */ static const struct pci_device_id mt76x0e_device_table[] = { { PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7610) }, { PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7630) }, { PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7650) }, { }, }; MODULE_DEVICE_TABLE(pci, mt76x0e_device_table); MODULE_FIRMWARE(MT7610E_FIRMWARE); MODULE_FIRMWARE(MT7650E_FIRMWARE); MODULE_LICENSE("Dual BSD/GPL"); static struct pci_driver mt76x0e_driver = { .name = KBUILD_MODNAME, .id_table = mt76x0e_device_table, .probe = mt76x0e_probe, .remove = mt76x0e_remove, #ifdef CONFIG_PM .suspend = mt76x0e_suspend, .resume = mt76x0e_resume, #endif /* CONFIG_PM */ }; module_pci_driver(mt76x0e_driver);
linux-master
drivers/net/wireless/mediatek/mt76/mt76x0/pci.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2018 Lorenzo Bianconi <[email protected]> */ #include <linux/kernel.h> #include <linux/firmware.h> #include "mt76x0.h" #include "mcu.h" #define MT_MCU_IVB_ADDR (MT_MCU_ILM_ADDR + 0x54000 - MT_MCU_IVB_SIZE) static int mt76x0e_load_firmware(struct mt76x02_dev *dev) { bool is_combo_chip = mt76_chip(&dev->mt76) != 0x7610; u32 val, ilm_len, dlm_len, offset = 0; const struct mt76x02_fw_header *hdr; const struct firmware *fw; const char *firmware; const u8 *fw_payload; int len, err; if (is_combo_chip) firmware = MT7650E_FIRMWARE; else firmware = MT7610E_FIRMWARE; err = request_firmware(&fw, firmware, dev->mt76.dev); if (err) return err; if (!fw || !fw->data || fw->size < sizeof(*hdr)) { err = -EIO; goto out; } hdr = (const struct mt76x02_fw_header *)fw->data; len = sizeof(*hdr); len += le32_to_cpu(hdr->ilm_len); len += le32_to_cpu(hdr->dlm_len); if (fw->size != len) { err = -EIO; goto out; } fw_payload = fw->data + sizeof(*hdr); val = le16_to_cpu(hdr->fw_ver); dev_info(dev->mt76.dev, "Firmware Version: %d.%d.%02d\n", (val >> 12) & 0xf, (val >> 8) & 0xf, val & 0xf); val = le16_to_cpu(hdr->fw_ver); dev_dbg(dev->mt76.dev, "Firmware Version: %d.%d.%02d Build: %x Build time: %.16s\n", (val >> 12) & 0xf, (val >> 8) & 0xf, val & 0xf, le16_to_cpu(hdr->build_ver), hdr->build_time); if (is_combo_chip && !mt76_poll(dev, MT_MCU_SEMAPHORE_00, 1, 1, 600)) { dev_err(dev->mt76.dev, "Could not get hardware semaphore for loading fw\n"); err = -ETIMEDOUT; goto out; } /* upload ILM. */ mt76_wr(dev, MT_MCU_PCIE_REMAP_BASE4, 0); ilm_len = le32_to_cpu(hdr->ilm_len); if (is_combo_chip) { ilm_len -= MT_MCU_IVB_SIZE; offset = MT_MCU_IVB_SIZE; } dev_dbg(dev->mt76.dev, "loading FW - ILM %u\n", ilm_len); mt76_wr_copy(dev, MT_MCU_ILM_ADDR + offset, fw_payload + offset, ilm_len); /* upload IVB. */ if (is_combo_chip) { dev_dbg(dev->mt76.dev, "loading FW - IVB %u\n", MT_MCU_IVB_SIZE); mt76_wr_copy(dev, MT_MCU_IVB_ADDR, fw_payload, MT_MCU_IVB_SIZE); } /* upload DLM. */ mt76_wr(dev, MT_MCU_PCIE_REMAP_BASE4, MT_MCU_DLM_OFFSET); dlm_len = le32_to_cpu(hdr->dlm_len); dev_dbg(dev->mt76.dev, "loading FW - DLM %u\n", dlm_len); mt76_wr_copy(dev, MT_MCU_ILM_ADDR, fw_payload + le32_to_cpu(hdr->ilm_len), dlm_len); /* trigger firmware */ mt76_wr(dev, MT_MCU_PCIE_REMAP_BASE4, 0); if (is_combo_chip) mt76_wr(dev, MT_MCU_INT_LEVEL, 0x3); else mt76_wr(dev, MT_MCU_RESET_CTL, 0x300); if (!mt76_poll_msec(dev, MT_MCU_COM_REG0, 1, 1, 1000)) { dev_err(dev->mt76.dev, "Firmware failed to start\n"); err = -ETIMEDOUT; goto out; } mt76x02_set_ethtool_fwver(dev, hdr); dev_dbg(dev->mt76.dev, "Firmware running!\n"); out: if (is_combo_chip) mt76_wr(dev, MT_MCU_SEMAPHORE_00, 0x1); release_firmware(fw); return err; } int mt76x0e_mcu_init(struct mt76x02_dev *dev) { static const struct mt76_mcu_ops mt76x0e_mcu_ops = { .mcu_send_msg = mt76x02_mcu_msg_send, .mcu_parse_response = mt76x02_mcu_parse_response, }; int err; dev->mt76.mcu_ops = &mt76x0e_mcu_ops; err = mt76x0e_load_firmware(dev); if (err < 0) return err; set_bit(MT76_STATE_MCU_RUNNING, &dev->mphy.state); return 0; }
linux-master
drivers/net/wireless/mediatek/mt76/mt76x0/pci_mcu.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2018 Lorenzo Bianconi <[email protected]> */ #include <linux/kernel.h> #include <linux/firmware.h> #include <linux/module.h> #include "mt76x0.h" #include "mcu.h" #include "../mt76x02_usb.h" #define MCU_FW_URB_MAX_PAYLOAD 0x38f8 #define MCU_FW_URB_SIZE (MCU_FW_URB_MAX_PAYLOAD + 12) static int mt76x0u_upload_firmware(struct mt76x02_dev *dev, const struct mt76x02_fw_header *hdr) { u8 *fw_payload = (u8 *)(hdr + 1); u32 ilm_len, dlm_len; void *ivb; int err; ivb = kmemdup(fw_payload, MT_MCU_IVB_SIZE, GFP_KERNEL); if (!ivb) return -ENOMEM; ilm_len = le32_to_cpu(hdr->ilm_len) - MT_MCU_IVB_SIZE; dev_dbg(dev->mt76.dev, "loading FW - ILM %u + IVB %u\n", ilm_len, MT_MCU_IVB_SIZE); err = mt76x02u_mcu_fw_send_data(dev, fw_payload + MT_MCU_IVB_SIZE, ilm_len, MCU_FW_URB_MAX_PAYLOAD, MT_MCU_IVB_SIZE); if (err) goto out; dlm_len = le32_to_cpu(hdr->dlm_len); dev_dbg(dev->mt76.dev, "loading FW - DLM %u\n", dlm_len); err = mt76x02u_mcu_fw_send_data(dev, fw_payload + le32_to_cpu(hdr->ilm_len), dlm_len, MCU_FW_URB_MAX_PAYLOAD, MT_MCU_DLM_OFFSET); if (err) goto out; err = mt76u_vendor_request(&dev->mt76, MT_VEND_DEV_MODE, USB_DIR_OUT | USB_TYPE_VENDOR, 0x12, 0, ivb, MT_MCU_IVB_SIZE); if (err < 0) goto out; if (!mt76_poll_msec(dev, MT_MCU_COM_REG0, 1, 1, 1000)) { dev_err(dev->mt76.dev, "Firmware failed to start\n"); err = -ETIMEDOUT; goto out; } dev_dbg(dev->mt76.dev, "Firmware running!\n"); out: kfree(ivb); return err; } static int mt76x0_get_firmware(struct mt76x02_dev *dev, const struct firmware **fw) { int err; /* try to load mt7610e fw if available * otherwise fall back to mt7610u one */ err = firmware_request_nowarn(fw, MT7610E_FIRMWARE, dev->mt76.dev); if (err) { dev_info(dev->mt76.dev, "%s not found, switching to %s", MT7610E_FIRMWARE, MT7610U_FIRMWARE); return request_firmware(fw, MT7610U_FIRMWARE, dev->mt76.dev); } return 0; } static int mt76x0u_load_firmware(struct mt76x02_dev *dev) { const struct firmware *fw; const struct mt76x02_fw_header *hdr; int len, ret; u32 val; mt76_wr(dev, MT_USB_DMA_CFG, (MT_USB_DMA_CFG_RX_BULK_EN | MT_USB_DMA_CFG_TX_BULK_EN)); if (mt76x0_firmware_running(dev)) return 0; ret = mt76x0_get_firmware(dev, &fw); if (ret) return ret; if (!fw || !fw->data || fw->size < sizeof(*hdr)) goto err_inv_fw; hdr = (const struct mt76x02_fw_header *)fw->data; if (le32_to_cpu(hdr->ilm_len) <= MT_MCU_IVB_SIZE) goto err_inv_fw; len = sizeof(*hdr); len += le32_to_cpu(hdr->ilm_len); len += le32_to_cpu(hdr->dlm_len); if (fw->size != len) goto err_inv_fw; val = le16_to_cpu(hdr->fw_ver); dev_dbg(dev->mt76.dev, "Firmware Version: %d.%d.%02d Build: %x Build time: %.16s\n", (val >> 12) & 0xf, (val >> 8) & 0xf, val & 0xf, le16_to_cpu(hdr->build_ver), hdr->build_time); len = le32_to_cpu(hdr->ilm_len); mt76_wr(dev, 0x1004, 0x2c); mt76_set(dev, MT_USB_DMA_CFG, (MT_USB_DMA_CFG_RX_BULK_EN | MT_USB_DMA_CFG_TX_BULK_EN) | FIELD_PREP(MT_USB_DMA_CFG_RX_BULK_AGG_TOUT, 0x20)); mt76x02u_mcu_fw_reset(dev); usleep_range(5000, 6000); mt76_wr(dev, MT_FCE_PSE_CTRL, 1); /* FCE tx_fs_base_ptr */ mt76_wr(dev, MT_TX_CPU_FROM_FCE_BASE_PTR, 0x400230); /* FCE tx_fs_max_cnt */ mt76_wr(dev, MT_TX_CPU_FROM_FCE_MAX_COUNT, 1); /* FCE pdma enable */ mt76_wr(dev, MT_FCE_PDMA_GLOBAL_CONF, 0x44); /* FCE skip_fs_en */ mt76_wr(dev, MT_FCE_SKIP_FS, 3); val = mt76_rr(dev, MT_USB_DMA_CFG); val |= MT_USB_DMA_CFG_UDMA_TX_WL_DROP; mt76_wr(dev, MT_USB_DMA_CFG, val); val &= ~MT_USB_DMA_CFG_UDMA_TX_WL_DROP; mt76_wr(dev, MT_USB_DMA_CFG, val); ret = mt76x0u_upload_firmware(dev, hdr); mt76x02_set_ethtool_fwver(dev, hdr); release_firmware(fw); mt76_wr(dev, MT_FCE_PSE_CTRL, 1); return ret; err_inv_fw: dev_err(dev->mt76.dev, "Invalid firmware image\n"); release_firmware(fw); return -ENOENT; } int mt76x0u_mcu_init(struct mt76x02_dev *dev) { int ret; ret = mt76x0u_load_firmware(dev); if (ret < 0) return ret; set_bit(MT76_STATE_MCU_RUNNING, &dev->mphy.state); return 0; }
linux-master
drivers/net/wireless/mediatek/mt76/mt76x0/usb_mcu.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2014 Felix Fietkau <[email protected]> * Copyright (C) 2015 Jakub Kicinski <[email protected]> * Copyright (C) 2018 Stanislaw Gruszka <[email protected]> */ #include <linux/module.h> #include <linux/of.h> #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> #include <linux/etherdevice.h> #include <asm/unaligned.h> #include "mt76x0.h" #include "eeprom.h" #include "../mt76x02_phy.h" #define MT_MAP_READS DIV_ROUND_UP(MT_EFUSE_USAGE_MAP_SIZE, 16) static int mt76x0_efuse_physical_size_check(struct mt76x02_dev *dev) { u8 data[MT_MAP_READS * 16]; int ret, i; u32 start = 0, end = 0, cnt_free; ret = mt76x02_get_efuse_data(dev, MT_EE_USAGE_MAP_START, data, sizeof(data), MT_EE_PHYSICAL_READ); if (ret) return ret; for (i = 0; i < MT_EFUSE_USAGE_MAP_SIZE; i++) if (!data[i]) { if (!start) start = MT_EE_USAGE_MAP_START + i; end = MT_EE_USAGE_MAP_START + i; } cnt_free = end - start + 1; if (MT_EFUSE_USAGE_MAP_SIZE - cnt_free < 5) { dev_err(dev->mt76.dev, "driver does not support default EEPROM\n"); return -EINVAL; } return 0; } static void mt76x0_set_chip_cap(struct mt76x02_dev *dev) { u16 nic_conf0 = mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_0); u16 nic_conf1 = mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_1); mt76x02_eeprom_parse_hw_cap(dev); dev_dbg(dev->mt76.dev, "2GHz %d 5GHz %d\n", dev->mphy.cap.has_2ghz, dev->mphy.cap.has_5ghz); if (dev->no_2ghz) { dev->mphy.cap.has_2ghz = false; dev_dbg(dev->mt76.dev, "mask out 2GHz support\n"); } if (is_mt7630(dev)) { dev->mphy.cap.has_5ghz = false; dev_dbg(dev->mt76.dev, "mask out 5GHz support\n"); } if (!mt76x02_field_valid(nic_conf1 & 0xff)) nic_conf1 &= 0xff00; if (nic_conf1 & MT_EE_NIC_CONF_1_HW_RF_CTRL) dev_dbg(dev->mt76.dev, "driver does not support HW RF ctrl\n"); if (!mt76x02_field_valid(nic_conf0 >> 8)) return; if (FIELD_GET(MT_EE_NIC_CONF_0_RX_PATH, nic_conf0) > 1 || FIELD_GET(MT_EE_NIC_CONF_0_TX_PATH, nic_conf0) > 1) dev_err(dev->mt76.dev, "invalid tx-rx stream\n"); } static void mt76x0_set_temp_offset(struct mt76x02_dev *dev) { u8 val; val = mt76x02_eeprom_get(dev, MT_EE_2G_TARGET_POWER) >> 8; if (mt76x02_field_valid(val)) dev->cal.rx.temp_offset = mt76x02_sign_extend(val, 8); else dev->cal.rx.temp_offset = -10; } static void mt76x0_set_freq_offset(struct mt76x02_dev *dev) { struct mt76x02_rx_freq_cal *caldata = &dev->cal.rx; u8 val; val = mt76x02_eeprom_get(dev, MT_EE_FREQ_OFFSET); if (!mt76x02_field_valid(val)) val = 0; caldata->freq_offset = val; val = mt76x02_eeprom_get(dev, MT_EE_TSSI_BOUND4) >> 8; if (!mt76x02_field_valid(val)) val = 0; caldata->freq_offset -= mt76x02_sign_extend(val, 8); } void mt76x0_read_rx_gain(struct mt76x02_dev *dev) { struct ieee80211_channel *chan = dev->mphy.chandef.chan; struct mt76x02_rx_freq_cal *caldata = &dev->cal.rx; s8 val, lna_5g[3], lna_2g; u16 rssi_offset; int i; mt76x02_get_rx_gain(dev, chan->band, &rssi_offset, &lna_2g, lna_5g); caldata->lna_gain = mt76x02_get_lna_gain(dev, &lna_2g, lna_5g, chan); for (i = 0; i < ARRAY_SIZE(caldata->rssi_offset); i++) { val = rssi_offset >> (8 * i); if (val < -10 || val > 10) val = 0; caldata->rssi_offset[i] = val; } } static s8 mt76x0_get_delta(struct mt76x02_dev *dev) { struct cfg80211_chan_def *chandef = &dev->mphy.chandef; u8 val; if (chandef->width == NL80211_CHAN_WIDTH_80) { val = mt76x02_eeprom_get(dev, MT_EE_5G_TARGET_POWER) >> 8; } else if (chandef->width == NL80211_CHAN_WIDTH_40) { u16 data; data = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_DELTA_BW40); if (chandef->chan->band == NL80211_BAND_5GHZ) val = data >> 8; else val = data; } else { return 0; } return mt76x02_rate_power_val(val); } void mt76x0_get_tx_power_per_rate(struct mt76x02_dev *dev, struct ieee80211_channel *chan, struct mt76x02_rate_power *t) { bool is_2ghz = chan->band == NL80211_BAND_2GHZ; u16 val, addr; s8 delta; memset(t, 0, sizeof(*t)); /* cck 1M, 2M, 5.5M, 11M */ val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_BYRATE_BASE); t->cck[0] = t->cck[1] = s6_to_s8(val); t->cck[2] = t->cck[3] = s6_to_s8(val >> 8); /* ofdm 6M, 9M, 12M, 18M */ addr = is_2ghz ? MT_EE_TX_POWER_BYRATE_BASE + 2 : 0x120; val = mt76x02_eeprom_get(dev, addr); t->ofdm[0] = t->ofdm[1] = s6_to_s8(val); t->ofdm[2] = t->ofdm[3] = s6_to_s8(val >> 8); /* ofdm 24M, 36M, 48M, 54M */ addr = is_2ghz ? MT_EE_TX_POWER_BYRATE_BASE + 4 : 0x122; val = mt76x02_eeprom_get(dev, addr); t->ofdm[4] = t->ofdm[5] = s6_to_s8(val); t->ofdm[6] = t->ofdm[7] = s6_to_s8(val >> 8); /* ht-vht mcs 1ss 0, 1, 2, 3 */ addr = is_2ghz ? MT_EE_TX_POWER_BYRATE_BASE + 6 : 0x124; val = mt76x02_eeprom_get(dev, addr); t->ht[0] = t->ht[1] = s6_to_s8(val); t->ht[2] = t->ht[3] = s6_to_s8(val >> 8); /* ht-vht mcs 1ss 4, 5, 6 */ addr = is_2ghz ? MT_EE_TX_POWER_BYRATE_BASE + 8 : 0x126; val = mt76x02_eeprom_get(dev, addr); t->ht[4] = t->ht[5] = s6_to_s8(val); t->ht[6] = t->ht[7] = s6_to_s8(val >> 8); /* vht mcs 8, 9 5GHz */ val = mt76x02_eeprom_get(dev, 0x12c); t->vht[0] = s6_to_s8(val); t->vht[1] = s6_to_s8(val >> 8); delta = mt76x0_tssi_enabled(dev) ? 0 : mt76x0_get_delta(dev); mt76x02_add_rate_power_offset(t, delta); } void mt76x0_get_power_info(struct mt76x02_dev *dev, struct ieee80211_channel *chan, s8 *tp) { static const struct mt76x0_chan_map { u8 chan; u8 offset; } chan_map[] = { { 2, 0 }, { 4, 2 }, { 6, 4 }, { 8, 6 }, { 10, 8 }, { 12, 10 }, { 14, 12 }, { 38, 0 }, { 44, 2 }, { 48, 4 }, { 54, 6 }, { 60, 8 }, { 64, 10 }, { 102, 12 }, { 108, 14 }, { 112, 16 }, { 118, 18 }, { 124, 20 }, { 128, 22 }, { 134, 24 }, { 140, 26 }, { 151, 28 }, { 157, 30 }, { 161, 32 }, { 167, 34 }, { 171, 36 }, { 175, 38 }, }; u8 offset, addr; int i, idx = 0; u16 data; if (mt76x0_tssi_enabled(dev)) { s8 target_power; if (chan->band == NL80211_BAND_5GHZ) data = mt76x02_eeprom_get(dev, MT_EE_5G_TARGET_POWER); else data = mt76x02_eeprom_get(dev, MT_EE_2G_TARGET_POWER); target_power = (data & 0xff) - dev->rate_power.ofdm[7]; *tp = target_power + mt76x0_get_delta(dev); return; } for (i = 0; i < ARRAY_SIZE(chan_map); i++) { if (chan->hw_value <= chan_map[i].chan) { idx = (chan->hw_value == chan_map[i].chan); offset = chan_map[i].offset; break; } } if (i == ARRAY_SIZE(chan_map)) offset = chan_map[0].offset; if (chan->band == NL80211_BAND_2GHZ) { addr = MT_EE_TX_POWER_DELTA_BW80 + offset; } else { switch (chan->hw_value) { case 42: offset = 2; break; case 58: offset = 8; break; case 106: offset = 14; break; case 122: offset = 20; break; case 155: offset = 30; break; default: break; } addr = MT_EE_TX_POWER_0_GRP4_TSSI_SLOPE + 2 + offset; } data = mt76x02_eeprom_get(dev, addr); *tp = data >> (8 * idx); if (*tp < 0 || *tp > 0x3f) *tp = 5; } static int mt76x0_check_eeprom(struct mt76x02_dev *dev) { u16 val; val = get_unaligned_le16(dev->mt76.eeprom.data); if (!val) val = get_unaligned_le16(dev->mt76.eeprom.data + MT_EE_PCI_ID); switch (val) { case 0x7650: case 0x7610: return 0; default: dev_err(dev->mt76.dev, "EEPROM data check failed: %04x\n", val); return -EINVAL; } } static int mt76x0_load_eeprom(struct mt76x02_dev *dev) { int found; found = mt76_eeprom_init(&dev->mt76, MT76X0_EEPROM_SIZE); if (found < 0) return found; if (found && !mt76x0_check_eeprom(dev)) return 0; found = mt76x0_efuse_physical_size_check(dev); if (found < 0) return found; return mt76x02_get_efuse_data(dev, 0, dev->mt76.eeprom.data, MT76X0_EEPROM_SIZE, MT_EE_READ); } int mt76x0_eeprom_init(struct mt76x02_dev *dev) { u8 version, fae; u16 data; int err; err = mt76x0_load_eeprom(dev); if (err < 0) return err; data = mt76x02_eeprom_get(dev, MT_EE_VERSION); version = data >> 8; fae = data; if (version > MT76X0U_EE_MAX_VER) dev_warn(dev->mt76.dev, "Warning: unsupported EEPROM version %02hhx\n", version); dev_info(dev->mt76.dev, "EEPROM ver:%02hhx fae:%02hhx\n", version, fae); memcpy(dev->mphy.macaddr, (u8 *)dev->mt76.eeprom.data + MT_EE_MAC_ADDR, ETH_ALEN); mt76_eeprom_override(&dev->mphy); mt76x02_mac_setaddr(dev, dev->mphy.macaddr); mt76x0_set_chip_cap(dev); mt76x0_set_freq_offset(dev); mt76x0_set_temp_offset(dev); return 0; } MODULE_LICENSE("Dual BSD/GPL");
linux-master
drivers/net/wireless/mediatek/mt76/mt76x0/eeprom.c
// SPDX-License-Identifier: GPL-2.0-only /* * (c) Copyright 2002-2010, Ralink Technology, Inc. * Copyright (C) 2014 Felix Fietkau <[email protected]> * Copyright (C) 2015 Jakub Kicinski <[email protected]> * Copyright (C) 2018 Stanislaw Gruszka <[email protected]> */ #include <linux/kernel.h> #include <linux/etherdevice.h> #include "mt76x0.h" #include "mcu.h" #include "eeprom.h" #include "phy.h" #include "initvals.h" #include "initvals_phy.h" #include "../mt76x02_phy.h" static int mt76x0_rf_csr_wr(struct mt76x02_dev *dev, u32 offset, u8 value) { int ret = 0; u8 bank, reg; if (test_bit(MT76_REMOVED, &dev->mphy.state)) return -ENODEV; bank = MT_RF_BANK(offset); reg = MT_RF_REG(offset); if (WARN_ON_ONCE(reg > 127) || WARN_ON_ONCE(bank > 8)) return -EINVAL; mutex_lock(&dev->phy_mutex); if (!mt76_poll(dev, MT_RF_CSR_CFG, MT_RF_CSR_CFG_KICK, 0, 100)) { ret = -ETIMEDOUT; goto out; } mt76_wr(dev, MT_RF_CSR_CFG, FIELD_PREP(MT_RF_CSR_CFG_DATA, value) | FIELD_PREP(MT_RF_CSR_CFG_REG_BANK, bank) | FIELD_PREP(MT_RF_CSR_CFG_REG_ID, reg) | MT_RF_CSR_CFG_WR | MT_RF_CSR_CFG_KICK); out: mutex_unlock(&dev->phy_mutex); if (ret < 0) dev_err(dev->mt76.dev, "Error: RF write %d:%d failed:%d!!\n", bank, reg, ret); return ret; } static int mt76x0_rf_csr_rr(struct mt76x02_dev *dev, u32 offset) { int ret = -ETIMEDOUT; u32 val; u8 bank, reg; if (test_bit(MT76_REMOVED, &dev->mphy.state)) return -ENODEV; bank = MT_RF_BANK(offset); reg = MT_RF_REG(offset); if (WARN_ON_ONCE(reg > 127) || WARN_ON_ONCE(bank > 8)) return -EINVAL; mutex_lock(&dev->phy_mutex); if (!mt76_poll(dev, MT_RF_CSR_CFG, MT_RF_CSR_CFG_KICK, 0, 100)) goto out; mt76_wr(dev, MT_RF_CSR_CFG, FIELD_PREP(MT_RF_CSR_CFG_REG_BANK, bank) | FIELD_PREP(MT_RF_CSR_CFG_REG_ID, reg) | MT_RF_CSR_CFG_KICK); if (!mt76_poll(dev, MT_RF_CSR_CFG, MT_RF_CSR_CFG_KICK, 0, 100)) goto out; val = mt76_rr(dev, MT_RF_CSR_CFG); if (FIELD_GET(MT_RF_CSR_CFG_REG_ID, val) == reg && FIELD_GET(MT_RF_CSR_CFG_REG_BANK, val) == bank) ret = FIELD_GET(MT_RF_CSR_CFG_DATA, val); out: mutex_unlock(&dev->phy_mutex); if (ret < 0) dev_err(dev->mt76.dev, "Error: RF read %d:%d failed:%d!!\n", bank, reg, ret); return ret; } static int mt76x0_rf_wr(struct mt76x02_dev *dev, u32 offset, u8 val) { if (mt76_is_usb(&dev->mt76)) { struct mt76_reg_pair pair = { .reg = offset, .value = val, }; WARN_ON_ONCE(!test_bit(MT76_STATE_MCU_RUNNING, &dev->mphy.state)); return mt76_wr_rp(dev, MT_MCU_MEMMAP_RF, &pair, 1); } else { return mt76x0_rf_csr_wr(dev, offset, val); } } static int mt76x0_rf_rr(struct mt76x02_dev *dev, u32 offset) { int ret; u32 val; if (mt76_is_usb(&dev->mt76)) { struct mt76_reg_pair pair = { .reg = offset, }; WARN_ON_ONCE(!test_bit(MT76_STATE_MCU_RUNNING, &dev->mphy.state)); ret = mt76_rd_rp(dev, MT_MCU_MEMMAP_RF, &pair, 1); val = pair.value; } else { ret = val = mt76x0_rf_csr_rr(dev, offset); } return (ret < 0) ? ret : val; } static int mt76x0_rf_rmw(struct mt76x02_dev *dev, u32 offset, u8 mask, u8 val) { int ret; ret = mt76x0_rf_rr(dev, offset); if (ret < 0) return ret; val |= ret & ~mask; ret = mt76x0_rf_wr(dev, offset, val); return ret ? ret : val; } static int mt76x0_rf_set(struct mt76x02_dev *dev, u32 offset, u8 val) { return mt76x0_rf_rmw(dev, offset, 0, val); } static int mt76x0_rf_clear(struct mt76x02_dev *dev, u32 offset, u8 mask) { return mt76x0_rf_rmw(dev, offset, mask, 0); } static void mt76x0_phy_rf_csr_wr_rp(struct mt76x02_dev *dev, const struct mt76_reg_pair *data, int n) { while (n-- > 0) { mt76x0_rf_csr_wr(dev, data->reg, data->value); data++; } } #define RF_RANDOM_WRITE(dev, tab) do { \ if (mt76_is_mmio(&dev->mt76)) \ mt76x0_phy_rf_csr_wr_rp(dev, tab, ARRAY_SIZE(tab)); \ else \ mt76_wr_rp(dev, MT_MCU_MEMMAP_RF, tab, ARRAY_SIZE(tab));\ } while (0) int mt76x0_phy_wait_bbp_ready(struct mt76x02_dev *dev) { int i = 20; u32 val; do { val = mt76_rr(dev, MT_BBP(CORE, 0)); if (val && ~val) break; } while (--i); if (!i) { dev_err(dev->mt76.dev, "Error: BBP is not ready\n"); return -EIO; } dev_dbg(dev->mt76.dev, "BBP version %08x\n", val); return 0; } static void mt76x0_phy_set_band(struct mt76x02_dev *dev, enum nl80211_band band) { switch (band) { case NL80211_BAND_2GHZ: RF_RANDOM_WRITE(dev, mt76x0_rf_2g_channel_0_tab); mt76x0_rf_wr(dev, MT_RF(5, 0), 0x45); mt76x0_rf_wr(dev, MT_RF(6, 0), 0x44); mt76_wr(dev, MT_TX_ALC_VGA3, 0x00050007); mt76_wr(dev, MT_TX0_RF_GAIN_CORR, 0x003E0002); break; case NL80211_BAND_5GHZ: RF_RANDOM_WRITE(dev, mt76x0_rf_5g_channel_0_tab); mt76x0_rf_wr(dev, MT_RF(5, 0), 0x44); mt76x0_rf_wr(dev, MT_RF(6, 0), 0x45); mt76_wr(dev, MT_TX_ALC_VGA3, 0x00000005); mt76_wr(dev, MT_TX0_RF_GAIN_CORR, 0x01010102); break; default: break; } } static void mt76x0_phy_set_chan_rf_params(struct mt76x02_dev *dev, u8 channel, u16 rf_bw_band) { const struct mt76x0_freq_item *freq_item; u16 rf_band = rf_bw_band & 0xff00; u16 rf_bw = rf_bw_band & 0x00ff; enum nl80211_band band; bool b_sdm = false; u32 mac_reg; int i; for (i = 0; i < ARRAY_SIZE(mt76x0_sdm_channel); i++) { if (channel == mt76x0_sdm_channel[i]) { b_sdm = true; break; } } for (i = 0; i < ARRAY_SIZE(mt76x0_frequency_plan); i++) { if (channel == mt76x0_frequency_plan[i].channel) { rf_band = mt76x0_frequency_plan[i].band; if (b_sdm) freq_item = &mt76x0_sdm_frequency_plan[i]; else freq_item = &mt76x0_frequency_plan[i]; mt76x0_rf_wr(dev, MT_RF(0, 37), freq_item->pllR37); mt76x0_rf_wr(dev, MT_RF(0, 36), freq_item->pllR36); mt76x0_rf_wr(dev, MT_RF(0, 35), freq_item->pllR35); mt76x0_rf_wr(dev, MT_RF(0, 34), freq_item->pllR34); mt76x0_rf_wr(dev, MT_RF(0, 33), freq_item->pllR33); mt76x0_rf_rmw(dev, MT_RF(0, 32), 0xe0, freq_item->pllR32_b7b5); /* R32<4:0> pll_den: (Denomina - 8) */ mt76x0_rf_rmw(dev, MT_RF(0, 32), MT_RF_PLL_DEN_MASK, freq_item->pllR32_b4b0); /* R31<7:5> */ mt76x0_rf_rmw(dev, MT_RF(0, 31), 0xe0, freq_item->pllR31_b7b5); /* R31<4:0> pll_k(Nominator) */ mt76x0_rf_rmw(dev, MT_RF(0, 31), MT_RF_PLL_K_MASK, freq_item->pllR31_b4b0); /* R30<7> sdm_reset_n */ if (b_sdm) { mt76x0_rf_clear(dev, MT_RF(0, 30), MT_RF_SDM_RESET_MASK); mt76x0_rf_set(dev, MT_RF(0, 30), MT_RF_SDM_RESET_MASK); } else { mt76x0_rf_rmw(dev, MT_RF(0, 30), MT_RF_SDM_RESET_MASK, freq_item->pllR30_b7); } /* R30<6:2> sdmmash_prbs,sin */ mt76x0_rf_rmw(dev, MT_RF(0, 30), MT_RF_SDM_MASH_PRBS_MASK, freq_item->pllR30_b6b2); /* R30<1> sdm_bp */ mt76x0_rf_rmw(dev, MT_RF(0, 30), MT_RF_SDM_BP_MASK, freq_item->pllR30_b1 << 1); /* R30<0> R29<7:0> (hex) pll_n */ mt76x0_rf_wr(dev, MT_RF(0, 29), freq_item->pll_n & 0xff); mt76x0_rf_rmw(dev, MT_RF(0, 30), 0x1, (freq_item->pll_n >> 8) & 0x1); /* R28<7:6> isi_iso */ mt76x0_rf_rmw(dev, MT_RF(0, 28), MT_RF_ISI_ISO_MASK, freq_item->pllR28_b7b6); /* R28<5:4> pfd_dly */ mt76x0_rf_rmw(dev, MT_RF(0, 28), MT_RF_PFD_DLY_MASK, freq_item->pllR28_b5b4); /* R28<3:2> clksel option */ mt76x0_rf_rmw(dev, MT_RF(0, 28), MT_RF_CLK_SEL_MASK, freq_item->pllR28_b3b2); /* R28<1:0> R27<7:0> R26<7:0> (hex) sdm_k */ mt76x0_rf_wr(dev, MT_RF(0, 26), freq_item->pll_sdm_k & 0xff); mt76x0_rf_wr(dev, MT_RF(0, 27), (freq_item->pll_sdm_k >> 8) & 0xff); mt76x0_rf_rmw(dev, MT_RF(0, 28), 0x3, (freq_item->pll_sdm_k >> 16) & 0x3); /* R24<1:0> xo_div */ mt76x0_rf_rmw(dev, MT_RF(0, 24), MT_RF_XO_DIV_MASK, freq_item->pllR24_b1b0); break; } } for (i = 0; i < ARRAY_SIZE(mt76x0_rf_bw_switch_tab); i++) { if (rf_bw == mt76x0_rf_bw_switch_tab[i].bw_band) { mt76x0_rf_wr(dev, mt76x0_rf_bw_switch_tab[i].rf_bank_reg, mt76x0_rf_bw_switch_tab[i].value); } else if ((rf_bw == (mt76x0_rf_bw_switch_tab[i].bw_band & 0xFF)) && (rf_band & mt76x0_rf_bw_switch_tab[i].bw_band)) { mt76x0_rf_wr(dev, mt76x0_rf_bw_switch_tab[i].rf_bank_reg, mt76x0_rf_bw_switch_tab[i].value); } } for (i = 0; i < ARRAY_SIZE(mt76x0_rf_band_switch_tab); i++) { if (mt76x0_rf_band_switch_tab[i].bw_band & rf_band) { mt76x0_rf_wr(dev, mt76x0_rf_band_switch_tab[i].rf_bank_reg, mt76x0_rf_band_switch_tab[i].value); } } mt76_clear(dev, MT_RF_MISC, 0xc); band = (rf_band & RF_G_BAND) ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; if (mt76x02_ext_pa_enabled(dev, band)) { /* MT_RF_MISC (offset: 0x0518) * [2]1'b1: enable external A band PA * 1'b0: disable external A band PA * [3]1'b1: enable external G band PA * 1'b0: disable external G band PA */ if (rf_band & RF_A_BAND) mt76_set(dev, MT_RF_MISC, BIT(2)); else mt76_set(dev, MT_RF_MISC, BIT(3)); /* External PA */ for (i = 0; i < ARRAY_SIZE(mt76x0_rf_ext_pa_tab); i++) if (mt76x0_rf_ext_pa_tab[i].bw_band & rf_band) mt76x0_rf_wr(dev, mt76x0_rf_ext_pa_tab[i].rf_bank_reg, mt76x0_rf_ext_pa_tab[i].value); } if (rf_band & RF_G_BAND) { mt76_wr(dev, MT_TX0_RF_GAIN_ATTEN, 0x63707400); /* Set Atten mode = 2 For G band, Disable Tx Inc dcoc. */ mac_reg = mt76_rr(dev, MT_TX_ALC_CFG_1); mac_reg &= 0x896400FF; mt76_wr(dev, MT_TX_ALC_CFG_1, mac_reg); } else { mt76_wr(dev, MT_TX0_RF_GAIN_ATTEN, 0x686A7800); /* Set Atten mode = 0 * For Ext A band, Disable Tx Inc dcoc Cal. */ mac_reg = mt76_rr(dev, MT_TX_ALC_CFG_1); mac_reg &= 0x890400FF; mt76_wr(dev, MT_TX_ALC_CFG_1, mac_reg); } } static void mt76x0_phy_set_chan_bbp_params(struct mt76x02_dev *dev, u16 rf_bw_band) { int i; for (i = 0; i < ARRAY_SIZE(mt76x0_bbp_switch_tab); i++) { const struct mt76x0_bbp_switch_item *item = &mt76x0_bbp_switch_tab[i]; const struct mt76_reg_pair *pair = &item->reg_pair; if ((rf_bw_band & item->bw_band) != rf_bw_band) continue; if (pair->reg == MT_BBP(AGC, 8)) { u32 val = pair->value; u8 gain; gain = FIELD_GET(MT_BBP_AGC_GAIN, val); gain -= dev->cal.rx.lna_gain * 2; val &= ~MT_BBP_AGC_GAIN; val |= FIELD_PREP(MT_BBP_AGC_GAIN, gain); mt76_wr(dev, pair->reg, val); } else { mt76_wr(dev, pair->reg, pair->value); } } } static void mt76x0_phy_ant_select(struct mt76x02_dev *dev) { u16 ee_ant = mt76x02_eeprom_get(dev, MT_EE_ANTENNA); u16 ee_cfg1 = mt76x02_eeprom_get(dev, MT_EE_CFG1_INIT); u16 nic_conf2 = mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_2); u32 wlan, coex3; bool ant_div; wlan = mt76_rr(dev, MT_WLAN_FUN_CTRL); coex3 = mt76_rr(dev, MT_COEXCFG3); ee_ant &= ~(BIT(14) | BIT(12)); wlan &= ~(BIT(6) | BIT(5)); coex3 &= ~GENMASK(5, 2); if (ee_ant & MT_EE_ANTENNA_DUAL) { /* dual antenna mode */ ant_div = !(nic_conf2 & MT_EE_NIC_CONF_2_ANT_OPT) && (nic_conf2 & MT_EE_NIC_CONF_2_ANT_DIV); if (ant_div) ee_ant |= BIT(12); else coex3 |= BIT(4); coex3 |= BIT(3); if (dev->mphy.cap.has_2ghz) wlan |= BIT(6); } else { /* sigle antenna mode */ if (dev->mphy.cap.has_5ghz) { coex3 |= BIT(3) | BIT(4); } else { wlan |= BIT(6); coex3 |= BIT(1); } } if (is_mt7630(dev)) ee_ant |= BIT(14) | BIT(11); mt76_wr(dev, MT_WLAN_FUN_CTRL, wlan); mt76_rmw(dev, MT_CMB_CTRL, GENMASK(15, 0), ee_ant); mt76_rmw(dev, MT_CSR_EE_CFG1, GENMASK(15, 0), ee_cfg1); mt76_clear(dev, MT_COEXCFG0, BIT(2)); mt76_wr(dev, MT_COEXCFG3, coex3); } static void mt76x0_phy_bbp_set_bw(struct mt76x02_dev *dev, enum nl80211_chan_width width) { enum { BW_20 = 0, BW_40 = 1, BW_80 = 2, BW_10 = 4}; int bw; switch (width) { default: case NL80211_CHAN_WIDTH_20_NOHT: case NL80211_CHAN_WIDTH_20: bw = BW_20; break; case NL80211_CHAN_WIDTH_40: bw = BW_40; break; case NL80211_CHAN_WIDTH_80: bw = BW_80; break; case NL80211_CHAN_WIDTH_10: bw = BW_10; break; case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_160: case NL80211_CHAN_WIDTH_5: /* TODO error */ return; } mt76x02_mcu_function_select(dev, BW_SETTING, bw); } static void mt76x0_phy_tssi_dc_calibrate(struct mt76x02_dev *dev) { struct ieee80211_channel *chan = dev->mphy.chandef.chan; u32 val; if (chan->band == NL80211_BAND_5GHZ) mt76x0_rf_clear(dev, MT_RF(0, 67), 0xf); /* bypass ADDA control */ mt76_wr(dev, MT_RF_SETTING_0, 0x60002237); mt76_wr(dev, MT_RF_BYPASS_0, 0xffffffff); /* bbp sw reset */ mt76_set(dev, MT_BBP(CORE, 4), BIT(0)); usleep_range(500, 1000); mt76_clear(dev, MT_BBP(CORE, 4), BIT(0)); val = (chan->band == NL80211_BAND_5GHZ) ? 0x80055 : 0x80050; mt76_wr(dev, MT_BBP(CORE, 34), val); /* enable TX with DAC0 input */ mt76_wr(dev, MT_BBP(TXBE, 6), BIT(31)); mt76_poll_msec(dev, MT_BBP(CORE, 34), BIT(4), 0, 200); dev->cal.tssi_dc = mt76_rr(dev, MT_BBP(CORE, 35)) & 0xff; /* stop bypass ADDA */ mt76_wr(dev, MT_RF_BYPASS_0, 0); /* stop TX */ mt76_wr(dev, MT_BBP(TXBE, 6), 0); /* bbp sw reset */ mt76_set(dev, MT_BBP(CORE, 4), BIT(0)); usleep_range(500, 1000); mt76_clear(dev, MT_BBP(CORE, 4), BIT(0)); if (chan->band == NL80211_BAND_5GHZ) mt76x0_rf_rmw(dev, MT_RF(0, 67), 0xf, 0x4); } static int mt76x0_phy_tssi_adc_calibrate(struct mt76x02_dev *dev, s16 *ltssi, u8 *info) { struct ieee80211_channel *chan = dev->mphy.chandef.chan; u32 val; val = (chan->band == NL80211_BAND_5GHZ) ? 0x80055 : 0x80050; mt76_wr(dev, MT_BBP(CORE, 34), val); if (!mt76_poll_msec(dev, MT_BBP(CORE, 34), BIT(4), 0, 200)) { mt76_clear(dev, MT_BBP(CORE, 34), BIT(4)); return -ETIMEDOUT; } *ltssi = mt76_rr(dev, MT_BBP(CORE, 35)) & 0xff; if (chan->band == NL80211_BAND_5GHZ) *ltssi += 128; /* set packet info#1 mode */ mt76_wr(dev, MT_BBP(CORE, 34), 0x80041); info[0] = mt76_rr(dev, MT_BBP(CORE, 35)) & 0xff; /* set packet info#2 mode */ mt76_wr(dev, MT_BBP(CORE, 34), 0x80042); info[1] = mt76_rr(dev, MT_BBP(CORE, 35)) & 0xff; /* set packet info#3 mode */ mt76_wr(dev, MT_BBP(CORE, 34), 0x80043); info[2] = mt76_rr(dev, MT_BBP(CORE, 35)) & 0xff; return 0; } static u8 mt76x0_phy_get_rf_pa_mode(struct mt76x02_dev *dev, int index, u8 tx_rate) { u32 val, reg; reg = (index == 1) ? MT_RF_PA_MODE_CFG1 : MT_RF_PA_MODE_CFG0; val = mt76_rr(dev, reg); return (val & (3 << (tx_rate * 2))) >> (tx_rate * 2); } static int mt76x0_phy_get_target_power(struct mt76x02_dev *dev, u8 tx_mode, u8 *info, s8 *target_power, s8 *target_pa_power) { u8 tx_rate, cur_power; cur_power = mt76_rr(dev, MT_TX_ALC_CFG_0) & MT_TX_ALC_CFG_0_CH_INIT_0; switch (tx_mode) { case 0: /* cck rates */ tx_rate = (info[0] & 0x60) >> 5; *target_power = cur_power + dev->rate_power.cck[tx_rate]; *target_pa_power = mt76x0_phy_get_rf_pa_mode(dev, 0, tx_rate); break; case 1: { u8 index; /* ofdm rates */ tx_rate = (info[0] & 0xf0) >> 4; switch (tx_rate) { case 0xb: index = 0; break; case 0xf: index = 1; break; case 0xa: index = 2; break; case 0xe: index = 3; break; case 0x9: index = 4; break; case 0xd: index = 5; break; case 0x8: index = 6; break; case 0xc: index = 7; break; default: return -EINVAL; } *target_power = cur_power + dev->rate_power.ofdm[index]; *target_pa_power = mt76x0_phy_get_rf_pa_mode(dev, 0, index + 4); break; } case 4: /* vht rates */ tx_rate = info[1] & 0xf; if (tx_rate > 9) return -EINVAL; *target_power = cur_power; if (tx_rate > 7) *target_power += dev->rate_power.vht[tx_rate - 8]; else *target_power += dev->rate_power.ht[tx_rate]; *target_pa_power = mt76x0_phy_get_rf_pa_mode(dev, 1, tx_rate); break; default: /* ht rates */ tx_rate = info[1] & 0x7f; if (tx_rate > 9) return -EINVAL; *target_power = cur_power + dev->rate_power.ht[tx_rate]; *target_pa_power = mt76x0_phy_get_rf_pa_mode(dev, 1, tx_rate); break; } return 0; } static s16 mt76x0_phy_lin2db(u16 val) { u32 mantissa = val << 4; int ret, data; s16 exp = -4; while (mantissa < BIT(15)) { mantissa <<= 1; if (--exp < -20) return -10000; } while (mantissa > 0xffff) { mantissa >>= 1; if (++exp > 20) return -10000; } /* s(15,0) */ if (mantissa <= 47104) data = mantissa + (mantissa >> 3) + (mantissa >> 4) - 38400; else data = mantissa - (mantissa >> 3) - (mantissa >> 6) - 23040; data = max_t(int, 0, data); ret = ((15 + exp) << 15) + data; ret = (ret << 2) + (ret << 1) + (ret >> 6) + (ret >> 7); return ret >> 10; } static int mt76x0_phy_get_delta_power(struct mt76x02_dev *dev, u8 tx_mode, s8 target_power, s8 target_pa_power, s16 ltssi) { struct ieee80211_channel *chan = dev->mphy.chandef.chan; int tssi_target = target_power << 12, tssi_slope; int tssi_offset, tssi_db, ret; u32 data; u16 val; if (chan->band == NL80211_BAND_5GHZ) { u8 bound[7]; int i, err; err = mt76x02_eeprom_copy(dev, MT_EE_TSSI_BOUND1, bound, sizeof(bound)); if (err < 0) return err; for (i = 0; i < ARRAY_SIZE(bound); i++) { if (chan->hw_value <= bound[i] || !bound[i]) break; } val = mt76x02_eeprom_get(dev, MT_EE_TSSI_SLOPE_5G + i * 2); tssi_offset = val >> 8; if ((tssi_offset >= 64 && tssi_offset <= 127) || (tssi_offset & BIT(7))) tssi_offset -= BIT(8); } else { val = mt76x02_eeprom_get(dev, MT_EE_TSSI_SLOPE_2G); tssi_offset = val >> 8; if (tssi_offset & BIT(7)) tssi_offset -= BIT(8); } tssi_slope = val & 0xff; switch (target_pa_power) { case 1: if (chan->band == NL80211_BAND_2GHZ) tssi_target += 29491; /* 3.6 * 8192 */ fallthrough; case 0: break; default: tssi_target += 4424; /* 0.54 * 8192 */ break; } if (!tx_mode) { data = mt76_rr(dev, MT_BBP(CORE, 1)); if (is_mt7630(dev) && mt76_is_mmio(&dev->mt76)) { int offset; /* 2.3 * 8192 or 1.5 * 8192 */ offset = (data & BIT(5)) ? 18841 : 12288; tssi_target += offset; } else if (data & BIT(5)) { /* 0.8 * 8192 */ tssi_target += 6554; } } data = mt76_rr(dev, MT_BBP(TXBE, 4)); switch (data & 0x3) { case 1: tssi_target -= 49152; /* -6db * 8192 */ break; case 2: tssi_target -= 98304; /* -12db * 8192 */ break; case 3: tssi_target += 49152; /* 6db * 8192 */ break; default: break; } tssi_db = mt76x0_phy_lin2db(ltssi - dev->cal.tssi_dc) * tssi_slope; if (chan->band == NL80211_BAND_5GHZ) { tssi_db += ((tssi_offset - 50) << 10); /* offset s4.3 */ tssi_target -= tssi_db; if (ltssi > 254 && tssi_target > 0) { /* upper saturate */ tssi_target = 0; } } else { tssi_db += (tssi_offset << 9); /* offset s3.4 */ tssi_target -= tssi_db; /* upper-lower saturate */ if ((ltssi > 126 && tssi_target > 0) || ((ltssi - dev->cal.tssi_dc) < 1 && tssi_target < 0)) { tssi_target = 0; } } if ((dev->cal.tssi_target ^ tssi_target) < 0 && dev->cal.tssi_target > -4096 && dev->cal.tssi_target < 4096 && tssi_target > -4096 && tssi_target < 4096) { if ((tssi_target < 0 && tssi_target + dev->cal.tssi_target > 0) || (tssi_target > 0 && tssi_target + dev->cal.tssi_target <= 0)) tssi_target = 0; else dev->cal.tssi_target = tssi_target; } else { dev->cal.tssi_target = tssi_target; } /* make the compensate value to the nearest compensate code */ if (tssi_target > 0) tssi_target += 2048; else tssi_target -= 2048; tssi_target >>= 12; ret = mt76_get_field(dev, MT_TX_ALC_CFG_1, MT_TX_ALC_CFG_1_TEMP_COMP); if (ret & BIT(5)) ret -= BIT(6); ret += tssi_target; ret = min_t(int, 31, ret); return max_t(int, -32, ret); } static void mt76x0_phy_tssi_calibrate(struct mt76x02_dev *dev) { s8 target_power, target_pa_power; u8 tssi_info[3], tx_mode; s16 ltssi; s8 val; if (mt76x0_phy_tssi_adc_calibrate(dev, &ltssi, tssi_info) < 0) return; tx_mode = tssi_info[0] & 0x7; if (mt76x0_phy_get_target_power(dev, tx_mode, tssi_info, &target_power, &target_pa_power) < 0) return; val = mt76x0_phy_get_delta_power(dev, tx_mode, target_power, target_pa_power, ltssi); mt76_rmw_field(dev, MT_TX_ALC_CFG_1, MT_TX_ALC_CFG_1_TEMP_COMP, val); } void mt76x0_phy_set_txpower(struct mt76x02_dev *dev) { struct mt76x02_rate_power *t = &dev->rate_power; s8 info; mt76x0_get_tx_power_per_rate(dev, dev->mphy.chandef.chan, t); mt76x0_get_power_info(dev, dev->mphy.chandef.chan, &info); mt76x02_add_rate_power_offset(t, info); mt76x02_limit_rate_power(t, dev->txpower_conf); dev->mphy.txpower_cur = mt76x02_get_max_rate_power(t); mt76x02_add_rate_power_offset(t, -info); dev->target_power = info; mt76x02_phy_set_txpower(dev, info, info); } void mt76x0_phy_calibrate(struct mt76x02_dev *dev, bool power_on) { struct ieee80211_channel *chan = dev->mphy.chandef.chan; int is_5ghz = (chan->band == NL80211_BAND_5GHZ) ? 1 : 0; u32 val, tx_alc, reg_val; if (is_mt7630(dev)) return; if (power_on) { mt76x02_mcu_calibrate(dev, MCU_CAL_R, 0); mt76x02_mcu_calibrate(dev, MCU_CAL_VCO, chan->hw_value); usleep_range(10, 20); if (mt76x0_tssi_enabled(dev)) { mt76_wr(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_ENABLE_RX); mt76x0_phy_tssi_dc_calibrate(dev); mt76_wr(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_ENABLE_TX | MT_MAC_SYS_CTRL_ENABLE_RX); } } tx_alc = mt76_rr(dev, MT_TX_ALC_CFG_0); mt76_wr(dev, MT_TX_ALC_CFG_0, 0); usleep_range(500, 700); reg_val = mt76_rr(dev, MT_BBP(IBI, 9)); mt76_wr(dev, MT_BBP(IBI, 9), 0xffffff7e); if (is_5ghz) { if (chan->hw_value < 100) val = 0x701; else if (chan->hw_value < 140) val = 0x801; else val = 0x901; } else { val = 0x600; } mt76x02_mcu_calibrate(dev, MCU_CAL_FULL, val); mt76x02_mcu_calibrate(dev, MCU_CAL_LC, is_5ghz); usleep_range(15000, 20000); mt76_wr(dev, MT_BBP(IBI, 9), reg_val); mt76_wr(dev, MT_TX_ALC_CFG_0, tx_alc); mt76x02_mcu_calibrate(dev, MCU_CAL_RXDCOC, 1); } EXPORT_SYMBOL_GPL(mt76x0_phy_calibrate); void mt76x0_phy_set_channel(struct mt76x02_dev *dev, struct cfg80211_chan_def *chandef) { u32 ext_cca_chan[4] = { [0] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 0) | FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 1) | FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 2) | FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 3) | FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(0)), [1] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 1) | FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 0) | FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 2) | FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 3) | FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(1)), [2] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 2) | FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 3) | FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 1) | FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 0) | FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(2)), [3] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 3) | FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 2) | FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 1) | FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 0) | FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(3)), }; bool scan = test_bit(MT76_SCANNING, &dev->mphy.state); int ch_group_index, freq, freq1; u8 channel; u32 val; u16 rf_bw_band; freq = chandef->chan->center_freq; freq1 = chandef->center_freq1; channel = chandef->chan->hw_value; rf_bw_band = (channel <= 14) ? RF_G_BAND : RF_A_BAND; switch (chandef->width) { case NL80211_CHAN_WIDTH_40: if (freq1 > freq) ch_group_index = 0; else ch_group_index = 1; channel += 2 - ch_group_index * 4; rf_bw_band |= RF_BW_40; break; case NL80211_CHAN_WIDTH_80: ch_group_index = (freq - freq1 + 30) / 20; if (WARN_ON(ch_group_index < 0 || ch_group_index > 3)) ch_group_index = 0; channel += 6 - ch_group_index * 4; rf_bw_band |= RF_BW_80; break; default: ch_group_index = 0; rf_bw_band |= RF_BW_20; break; } if (mt76_is_usb(&dev->mt76)) { mt76x0_phy_bbp_set_bw(dev, chandef->width); } else { if (chandef->width == NL80211_CHAN_WIDTH_80 || chandef->width == NL80211_CHAN_WIDTH_40) val = 0x201; else val = 0x601; mt76_wr(dev, MT_TX_SW_CFG0, val); } mt76x02_phy_set_bw(dev, chandef->width, ch_group_index); mt76x02_phy_set_band(dev, chandef->chan->band, ch_group_index & 1); mt76_rmw(dev, MT_EXT_CCA_CFG, (MT_EXT_CCA_CFG_CCA0 | MT_EXT_CCA_CFG_CCA1 | MT_EXT_CCA_CFG_CCA2 | MT_EXT_CCA_CFG_CCA3 | MT_EXT_CCA_CFG_CCA_MASK), ext_cca_chan[ch_group_index]); mt76x0_phy_set_band(dev, chandef->chan->band); mt76x0_phy_set_chan_rf_params(dev, channel, rf_bw_band); /* set Japan Tx filter at channel 14 */ if (channel == 14) mt76_set(dev, MT_BBP(CORE, 1), 0x20); else mt76_clear(dev, MT_BBP(CORE, 1), 0x20); mt76x0_read_rx_gain(dev); mt76x0_phy_set_chan_bbp_params(dev, rf_bw_band); /* enable vco */ mt76x0_rf_set(dev, MT_RF(0, 4), BIT(7)); if (scan) return; mt76x02_init_agc_gain(dev); mt76x0_phy_calibrate(dev, false); mt76x0_phy_set_txpower(dev); ieee80211_queue_delayed_work(dev->mt76.hw, &dev->cal_work, MT_CALIBRATE_INTERVAL); } static void mt76x0_phy_temp_sensor(struct mt76x02_dev *dev) { u8 rf_b7_73, rf_b0_66, rf_b0_67; s8 val; rf_b7_73 = mt76x0_rf_rr(dev, MT_RF(7, 73)); rf_b0_66 = mt76x0_rf_rr(dev, MT_RF(0, 66)); rf_b0_67 = mt76x0_rf_rr(dev, MT_RF(0, 67)); mt76x0_rf_wr(dev, MT_RF(7, 73), 0x02); mt76x0_rf_wr(dev, MT_RF(0, 66), 0x23); mt76x0_rf_wr(dev, MT_RF(0, 67), 0x01); mt76_wr(dev, MT_BBP(CORE, 34), 0x00080055); if (!mt76_poll_msec(dev, MT_BBP(CORE, 34), BIT(4), 0, 200)) { mt76_clear(dev, MT_BBP(CORE, 34), BIT(4)); goto done; } val = mt76_rr(dev, MT_BBP(CORE, 35)); val = (35 * (val - dev->cal.rx.temp_offset)) / 10 + 25; if (abs(val - dev->cal.temp_vco) > 20) { mt76x02_mcu_calibrate(dev, MCU_CAL_VCO, dev->mphy.chandef.chan->hw_value); dev->cal.temp_vco = val; } if (abs(val - dev->cal.temp) > 30) { mt76x0_phy_calibrate(dev, false); dev->cal.temp = val; } done: mt76x0_rf_wr(dev, MT_RF(7, 73), rf_b7_73); mt76x0_rf_wr(dev, MT_RF(0, 66), rf_b0_66); mt76x0_rf_wr(dev, MT_RF(0, 67), rf_b0_67); } static void mt76x0_phy_set_gain_val(struct mt76x02_dev *dev) { u8 gain = dev->cal.agc_gain_cur[0] - dev->cal.agc_gain_adjust; mt76_rmw_field(dev, MT_BBP(AGC, 8), MT_BBP_AGC_GAIN, gain); if ((dev->mphy.chandef.chan->flags & IEEE80211_CHAN_RADAR) && !is_mt7630(dev)) mt76x02_phy_dfs_adjust_agc(dev); } static void mt76x0_phy_update_channel_gain(struct mt76x02_dev *dev) { bool gain_change; u8 gain_delta; int low_gain; dev->cal.avg_rssi_all = mt76_get_min_avg_rssi(&dev->mt76, false); if (!dev->cal.avg_rssi_all) dev->cal.avg_rssi_all = -75; low_gain = (dev->cal.avg_rssi_all > mt76x02_get_rssi_gain_thresh(dev)) + (dev->cal.avg_rssi_all > mt76x02_get_low_rssi_gain_thresh(dev)); gain_change = dev->cal.low_gain < 0 || (dev->cal.low_gain & 2) ^ (low_gain & 2); dev->cal.low_gain = low_gain; if (!gain_change) { if (mt76x02_phy_adjust_vga_gain(dev)) mt76x0_phy_set_gain_val(dev); return; } dev->cal.agc_gain_adjust = (low_gain == 2) ? 0 : 10; gain_delta = (low_gain == 2) ? 10 : 0; dev->cal.agc_gain_cur[0] = dev->cal.agc_gain_init[0] - gain_delta; mt76x0_phy_set_gain_val(dev); /* clear false CCA counters */ mt76_rr(dev, MT_RX_STAT_1); } static void mt76x0_phy_calibration_work(struct work_struct *work) { struct mt76x02_dev *dev = container_of(work, struct mt76x02_dev, cal_work.work); mt76x0_phy_update_channel_gain(dev); if (mt76x0_tssi_enabled(dev)) mt76x0_phy_tssi_calibrate(dev); else mt76x0_phy_temp_sensor(dev); ieee80211_queue_delayed_work(dev->mt76.hw, &dev->cal_work, 4 * MT_CALIBRATE_INTERVAL); } static void mt76x0_rf_patch_reg_array(struct mt76x02_dev *dev, const struct mt76_reg_pair *rp, int len) { int i; for (i = 0; i < len; i++) { u32 reg = rp[i].reg; u8 val = rp[i].value; switch (reg) { case MT_RF(0, 3): if (mt76_is_mmio(&dev->mt76)) { if (is_mt7630(dev)) val = 0x70; else val = 0x63; } else { val = 0x73; } break; case MT_RF(0, 21): if (is_mt7610e(dev)) val = 0x10; else val = 0x12; break; case MT_RF(5, 2): if (is_mt7630(dev)) val = 0x1d; else if (is_mt7610e(dev)) val = 0x00; else val = 0x0c; break; default: break; } mt76x0_rf_wr(dev, reg, val); } } static void mt76x0_phy_rf_init(struct mt76x02_dev *dev) { int i; mt76x0_rf_patch_reg_array(dev, mt76x0_rf_central_tab, ARRAY_SIZE(mt76x0_rf_central_tab)); mt76x0_rf_patch_reg_array(dev, mt76x0_rf_2g_channel_0_tab, ARRAY_SIZE(mt76x0_rf_2g_channel_0_tab)); RF_RANDOM_WRITE(dev, mt76x0_rf_5g_channel_0_tab); RF_RANDOM_WRITE(dev, mt76x0_rf_vga_channel_0_tab); for (i = 0; i < ARRAY_SIZE(mt76x0_rf_bw_switch_tab); i++) { const struct mt76x0_rf_switch_item *item = &mt76x0_rf_bw_switch_tab[i]; if (item->bw_band == RF_BW_20) mt76x0_rf_wr(dev, item->rf_bank_reg, item->value); else if (((RF_G_BAND | RF_BW_20) & item->bw_band) == (RF_G_BAND | RF_BW_20)) mt76x0_rf_wr(dev, item->rf_bank_reg, item->value); } for (i = 0; i < ARRAY_SIZE(mt76x0_rf_band_switch_tab); i++) { if (mt76x0_rf_band_switch_tab[i].bw_band & RF_G_BAND) { mt76x0_rf_wr(dev, mt76x0_rf_band_switch_tab[i].rf_bank_reg, mt76x0_rf_band_switch_tab[i].value); } } /* Frequency calibration * E1: B0.R22<6:0>: xo_cxo<6:0> * E2: B0.R21<0>: xo_cxo<0>, B0.R22<7:0>: xo_cxo<8:1> */ mt76x0_rf_wr(dev, MT_RF(0, 22), min_t(u8, dev->cal.rx.freq_offset, 0xbf)); mt76x0_rf_rr(dev, MT_RF(0, 22)); /* Reset procedure DAC during power-up: * - set B0.R73<7> * - clear B0.R73<7> * - set B0.R73<7> */ mt76x0_rf_set(dev, MT_RF(0, 73), BIT(7)); mt76x0_rf_clear(dev, MT_RF(0, 73), BIT(7)); mt76x0_rf_set(dev, MT_RF(0, 73), BIT(7)); /* vcocal_en: initiate VCO calibration (reset after completion)) */ mt76x0_rf_set(dev, MT_RF(0, 4), 0x80); } void mt76x0_phy_init(struct mt76x02_dev *dev) { INIT_DELAYED_WORK(&dev->cal_work, mt76x0_phy_calibration_work); mt76x0_phy_ant_select(dev); mt76x0_phy_rf_init(dev); mt76x02_phy_set_rxpath(dev); mt76x02_phy_set_txdac(dev); }
linux-master
drivers/net/wireless/mediatek/mt76/mt76x0/phy.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2014 Felix Fietkau <[email protected]> * Copyright (C) 2015 Jakub Kicinski <[email protected]> * Copyright (C) 2018 Stanislaw Gruszka <[email protected]> */ #include <linux/etherdevice.h> #include "mt76x0.h" static void mt76x0_set_channel(struct mt76x02_dev *dev, struct cfg80211_chan_def *chandef) { cancel_delayed_work_sync(&dev->cal_work); mt76x02_pre_tbtt_enable(dev, false); if (mt76_is_mmio(&dev->mt76)) tasklet_disable(&dev->dfs_pd.dfs_tasklet); mt76_set_channel(&dev->mphy); mt76x0_phy_set_channel(dev, chandef); mt76x02_mac_cc_reset(dev); mt76x02_edcca_init(dev); if (mt76_is_mmio(&dev->mt76)) { mt76x02_dfs_init_params(dev); tasklet_enable(&dev->dfs_pd.dfs_tasklet); } mt76x02_pre_tbtt_enable(dev, true); mt76_txq_schedule_all(&dev->mphy); } int mt76x0_set_sar_specs(struct ieee80211_hw *hw, const struct cfg80211_sar_specs *sar) { int err = -EINVAL, power = hw->conf.power_level * 2; struct mt76x02_dev *dev = hw->priv; struct mt76_phy *mphy = &dev->mphy; mutex_lock(&dev->mt76.mutex); if (!cfg80211_chandef_valid(&mphy->chandef)) goto out; err = mt76_init_sar_power(hw, sar); if (err) goto out; dev->txpower_conf = mt76_get_sar_power(mphy, mphy->chandef.chan, power); if (test_bit(MT76_STATE_RUNNING, &mphy->state)) mt76x0_phy_set_txpower(dev); out: mutex_unlock(&dev->mt76.mutex); return err; } EXPORT_SYMBOL_GPL(mt76x0_set_sar_specs); int mt76x0_config(struct ieee80211_hw *hw, u32 changed) { struct mt76x02_dev *dev = hw->priv; mutex_lock(&dev->mt76.mutex); if (changed & IEEE80211_CONF_CHANGE_CHANNEL) { ieee80211_stop_queues(hw); mt76x0_set_channel(dev, &hw->conf.chandef); ieee80211_wake_queues(hw); } if (changed & IEEE80211_CONF_CHANGE_POWER) { struct mt76_phy *mphy = &dev->mphy; dev->txpower_conf = hw->conf.power_level * 2; dev->txpower_conf = mt76_get_sar_power(mphy, mphy->chandef.chan, dev->txpower_conf); if (test_bit(MT76_STATE_RUNNING, &mphy->state)) mt76x0_phy_set_txpower(dev); } if (changed & IEEE80211_CONF_CHANGE_MONITOR) { if (!(hw->conf.flags & IEEE80211_CONF_MONITOR)) dev->mt76.rxfilter |= MT_RX_FILTR_CFG_PROMISC; else dev->mt76.rxfilter &= ~MT_RX_FILTR_CFG_PROMISC; mt76_wr(dev, MT_RX_FILTR_CFG, dev->mt76.rxfilter); } mutex_unlock(&dev->mt76.mutex); return 0; } EXPORT_SYMBOL_GPL(mt76x0_config);
linux-master
drivers/net/wireless/mediatek/mt76/mt76x0/main.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2022 MediaTek Inc. */ #include <linux/relay.h> #include "mt7996.h" #include "eeprom.h" #include "mcu.h" #include "mac.h" #define FW_BIN_LOG_MAGIC 0x44d9c99a /** global debugfs **/ struct hw_queue_map { const char *name; u8 index; u8 pid; u8 qid; }; static int mt7996_implicit_txbf_set(void *data, u64 val) { struct mt7996_dev *dev = data; /* The existing connected stations shall reconnect to apply * new implicit txbf configuration. */ dev->ibf = !!val; return mt7996_mcu_set_txbf(dev, BF_HW_EN_UPDATE); } static int mt7996_implicit_txbf_get(void *data, u64 *val) { struct mt7996_dev *dev = data; *val = dev->ibf; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_implicit_txbf, mt7996_implicit_txbf_get, mt7996_implicit_txbf_set, "%lld\n"); /* test knob of system error recovery */ static ssize_t mt7996_sys_recovery_set(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct mt7996_phy *phy = file->private_data; struct mt7996_dev *dev = phy->dev; bool band = phy->mt76->band_idx; char buf[16]; int ret = 0; u16 val; if (count >= sizeof(buf)) return -EINVAL; if (copy_from_user(buf, user_buf, count)) return -EFAULT; if (count && buf[count - 1] == '\n') buf[count - 1] = '\0'; else buf[count] = '\0'; if (kstrtou16(buf, 0, &val)) return -EINVAL; switch (val) { /* * 0: grab firmware current SER state. * 1: trigger & enable system error L1 recovery. * 2: trigger & enable system error L2 recovery. * 3: trigger & enable system error L3 rx abort. * 4: trigger & enable system error L3 tx abort * 5: trigger & enable system error L3 tx disable. * 6: trigger & enable system error L3 bf recovery. * 7: trigger & enable system error L4 mdp recovery. * 8: trigger & enable system error full recovery. * 9: trigger firmware crash. */ case UNI_CMD_SER_QUERY: ret = mt7996_mcu_set_ser(dev, UNI_CMD_SER_QUERY, 0, band); break; case UNI_CMD_SER_SET_RECOVER_L1: case UNI_CMD_SER_SET_RECOVER_L2: case UNI_CMD_SER_SET_RECOVER_L3_RX_ABORT: case UNI_CMD_SER_SET_RECOVER_L3_TX_ABORT: case UNI_CMD_SER_SET_RECOVER_L3_TX_DISABLE: case UNI_CMD_SER_SET_RECOVER_L3_BF: case UNI_CMD_SER_SET_RECOVER_L4_MDP: ret = mt7996_mcu_set_ser(dev, UNI_CMD_SER_SET, BIT(val), band); if (ret) return ret; ret = mt7996_mcu_set_ser(dev, UNI_CMD_SER_TRIGGER, val, band); break; /* enable full chip reset */ case UNI_CMD_SER_SET_RECOVER_FULL: mt76_set(dev, MT_WFDMA0_MCU_HOST_INT_ENA, MT_MCU_CMD_WDT_MASK); dev->recovery.state |= MT_MCU_CMD_WDT_MASK; mt7996_reset(dev); break; /* WARNING: trigger firmware crash */ case UNI_CMD_SER_SET_SYSTEM_ASSERT: ret = mt7996_mcu_trigger_assert(dev); if (ret) return ret; break; default: break; } return ret ? ret : count; } static ssize_t mt7996_sys_recovery_get(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct mt7996_phy *phy = file->private_data; struct mt7996_dev *dev = phy->dev; char *buff; int desc = 0; ssize_t ret; static const size_t bufsz = 1024; buff = kmalloc(bufsz, GFP_KERNEL); if (!buff) return -ENOMEM; /* HELP */ desc += scnprintf(buff + desc, bufsz - desc, "Please echo the correct value ...\n"); desc += scnprintf(buff + desc, bufsz - desc, "0: grab firmware transient SER state\n"); desc += scnprintf(buff + desc, bufsz - desc, "1: trigger system error L1 recovery\n"); desc += scnprintf(buff + desc, bufsz - desc, "2: trigger system error L2 recovery\n"); desc += scnprintf(buff + desc, bufsz - desc, "3: trigger system error L3 rx abort\n"); desc += scnprintf(buff + desc, bufsz - desc, "4: trigger system error L3 tx abort\n"); desc += scnprintf(buff + desc, bufsz - desc, "5: trigger system error L3 tx disable\n"); desc += scnprintf(buff + desc, bufsz - desc, "6: trigger system error L3 bf recovery\n"); desc += scnprintf(buff + desc, bufsz - desc, "7: trigger system error L4 mdp recovery\n"); desc += scnprintf(buff + desc, bufsz - desc, "8: trigger system error full recovery\n"); desc += scnprintf(buff + desc, bufsz - desc, "9: trigger firmware crash\n"); /* SER statistics */ desc += scnprintf(buff + desc, bufsz - desc, "\nlet's dump firmware SER statistics...\n"); desc += scnprintf(buff + desc, bufsz - desc, "::E R , SER_STATUS = 0x%08x\n", mt76_rr(dev, MT_SWDEF_SER_STATS)); desc += scnprintf(buff + desc, bufsz - desc, "::E R , SER_PLE_ERR = 0x%08x\n", mt76_rr(dev, MT_SWDEF_PLE_STATS)); desc += scnprintf(buff + desc, bufsz - desc, "::E R , SER_PLE_ERR_1 = 0x%08x\n", mt76_rr(dev, MT_SWDEF_PLE1_STATS)); desc += scnprintf(buff + desc, bufsz - desc, "::E R , SER_PLE_ERR_AMSDU = 0x%08x\n", mt76_rr(dev, MT_SWDEF_PLE_AMSDU_STATS)); desc += scnprintf(buff + desc, bufsz - desc, "::E R , SER_PSE_ERR = 0x%08x\n", mt76_rr(dev, MT_SWDEF_PSE_STATS)); desc += scnprintf(buff + desc, bufsz - desc, "::E R , SER_PSE_ERR_1 = 0x%08x\n", mt76_rr(dev, MT_SWDEF_PSE1_STATS)); desc += scnprintf(buff + desc, bufsz - desc, "::E R , SER_LMAC_WISR6_B0 = 0x%08x\n", mt76_rr(dev, MT_SWDEF_LAMC_WISR6_BN0_STATS)); desc += scnprintf(buff + desc, bufsz - desc, "::E R , SER_LMAC_WISR6_B1 = 0x%08x\n", mt76_rr(dev, MT_SWDEF_LAMC_WISR6_BN1_STATS)); desc += scnprintf(buff + desc, bufsz - desc, "::E R , SER_LMAC_WISR6_B2 = 0x%08x\n", mt76_rr(dev, MT_SWDEF_LAMC_WISR6_BN2_STATS)); desc += scnprintf(buff + desc, bufsz - desc, "::E R , SER_LMAC_WISR7_B0 = 0x%08x\n", mt76_rr(dev, MT_SWDEF_LAMC_WISR7_BN0_STATS)); desc += scnprintf(buff + desc, bufsz - desc, "::E R , SER_LMAC_WISR7_B1 = 0x%08x\n", mt76_rr(dev, MT_SWDEF_LAMC_WISR7_BN1_STATS)); desc += scnprintf(buff + desc, bufsz - desc, "::E R , SER_LMAC_WISR7_B2 = 0x%08x\n", mt76_rr(dev, MT_SWDEF_LAMC_WISR7_BN2_STATS)); desc += scnprintf(buff + desc, bufsz - desc, "\nSYS_RESET_COUNT: WM %d, WA %d\n", dev->recovery.wm_reset_count, dev->recovery.wa_reset_count); ret = simple_read_from_buffer(user_buf, count, ppos, buff, desc); kfree(buff); return ret; } static const struct file_operations mt7996_sys_recovery_ops = { .write = mt7996_sys_recovery_set, .read = mt7996_sys_recovery_get, .open = simple_open, .llseek = default_llseek, }; static int mt7996_radar_trigger(void *data, u64 val) { struct mt7996_dev *dev = data; if (val > MT_RX_SEL2) return -EINVAL; return mt7996_mcu_rdd_cmd(dev, RDD_RADAR_EMULATE, val, 0, 0); } DEFINE_DEBUGFS_ATTRIBUTE(fops_radar_trigger, NULL, mt7996_radar_trigger, "%lld\n"); static int mt7996_rdd_monitor(struct seq_file *s, void *data) { struct mt7996_dev *dev = dev_get_drvdata(s->private); struct cfg80211_chan_def *chandef = &dev->rdd2_chandef; const char *bw; int ret = 0; mutex_lock(&dev->mt76.mutex); if (!cfg80211_chandef_valid(chandef)) { ret = -EINVAL; goto out; } if (!dev->rdd2_phy) { seq_puts(s, "not running\n"); goto out; } switch (chandef->width) { case NL80211_CHAN_WIDTH_40: bw = "40"; break; case NL80211_CHAN_WIDTH_80: bw = "80"; break; case NL80211_CHAN_WIDTH_160: bw = "160"; break; case NL80211_CHAN_WIDTH_80P80: bw = "80P80"; break; default: bw = "20"; break; } seq_printf(s, "channel %d (%d MHz) width %s MHz center1: %d MHz\n", chandef->chan->hw_value, chandef->chan->center_freq, bw, chandef->center_freq1); out: mutex_unlock(&dev->mt76.mutex); return ret; } static int mt7996_fw_debug_wm_set(void *data, u64 val) { struct mt7996_dev *dev = data; enum { DEBUG_TXCMD = 62, DEBUG_CMD_RPT_TX, DEBUG_CMD_RPT_TRIG, DEBUG_SPL, DEBUG_RPT_RX, DEBUG_RPT_RA = 68, } debug; bool tx, rx, en; int ret; dev->fw_debug_wm = val ? MCU_FW_LOG_TO_HOST : 0; if (dev->fw_debug_bin) val = MCU_FW_LOG_RELAY; else val = dev->fw_debug_wm; tx = dev->fw_debug_wm || (dev->fw_debug_bin & BIT(1)); rx = dev->fw_debug_wm || (dev->fw_debug_bin & BIT(2)); en = dev->fw_debug_wm || (dev->fw_debug_bin & BIT(0)); ret = mt7996_mcu_fw_log_2_host(dev, MCU_FW_LOG_WM, val); if (ret) return ret; for (debug = DEBUG_TXCMD; debug <= DEBUG_RPT_RA; debug++) { if (debug == 67) continue; if (debug == DEBUG_RPT_RX) val = en && rx; else val = en && tx; ret = mt7996_mcu_fw_dbg_ctrl(dev, debug, val); if (ret) return ret; } return 0; } static int mt7996_fw_debug_wm_get(void *data, u64 *val) { struct mt7996_dev *dev = data; *val = dev->fw_debug_wm; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_fw_debug_wm, mt7996_fw_debug_wm_get, mt7996_fw_debug_wm_set, "%lld\n"); static int mt7996_fw_debug_wa_set(void *data, u64 val) { struct mt7996_dev *dev = data; int ret; dev->fw_debug_wa = val ? MCU_FW_LOG_TO_HOST : 0; ret = mt7996_mcu_fw_log_2_host(dev, MCU_FW_LOG_WA, dev->fw_debug_wa); if (ret) return ret; return mt7996_mcu_wa_cmd(dev, MCU_WA_PARAM_CMD(SET), MCU_WA_PARAM_PDMA_RX, !!dev->fw_debug_wa, 0); } static int mt7996_fw_debug_wa_get(void *data, u64 *val) { struct mt7996_dev *dev = data; *val = dev->fw_debug_wa; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_fw_debug_wa, mt7996_fw_debug_wa_get, mt7996_fw_debug_wa_set, "%lld\n"); static struct dentry * create_buf_file_cb(const char *filename, struct dentry *parent, umode_t mode, struct rchan_buf *buf, int *is_global) { struct dentry *f; f = debugfs_create_file("fwlog_data", mode, parent, buf, &relay_file_operations); if (IS_ERR(f)) return NULL; *is_global = 1; return f; } static int remove_buf_file_cb(struct dentry *f) { debugfs_remove(f); return 0; } static int mt7996_fw_debug_bin_set(void *data, u64 val) { static struct rchan_callbacks relay_cb = { .create_buf_file = create_buf_file_cb, .remove_buf_file = remove_buf_file_cb, }; struct mt7996_dev *dev = data; if (!dev->relay_fwlog) dev->relay_fwlog = relay_open("fwlog_data", dev->debugfs_dir, 1500, 512, &relay_cb, NULL); if (!dev->relay_fwlog) return -ENOMEM; dev->fw_debug_bin = val; relay_reset(dev->relay_fwlog); return mt7996_fw_debug_wm_set(dev, dev->fw_debug_wm); } static int mt7996_fw_debug_bin_get(void *data, u64 *val) { struct mt7996_dev *dev = data; *val = dev->fw_debug_bin; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_fw_debug_bin, mt7996_fw_debug_bin_get, mt7996_fw_debug_bin_set, "%lld\n"); static int mt7996_fw_util_wa_show(struct seq_file *file, void *data) { struct mt7996_dev *dev = file->private; if (dev->fw_debug_wa) return mt7996_mcu_wa_cmd(dev, MCU_WA_PARAM_CMD(QUERY), MCU_WA_PARAM_CPU_UTIL, 0, 0); return 0; } DEFINE_SHOW_ATTRIBUTE(mt7996_fw_util_wa); static void mt7996_ampdu_stat_read_phy(struct mt7996_phy *phy, struct seq_file *file) { struct mt7996_dev *dev = phy->dev; int bound[15], range[8], i; u8 band_idx = phy->mt76->band_idx; /* Tx ampdu stat */ for (i = 0; i < ARRAY_SIZE(range); i++) range[i] = mt76_rr(dev, MT_MIB_ARNG(band_idx, i)); for (i = 0; i < ARRAY_SIZE(bound); i++) bound[i] = MT_MIB_ARNCR_RANGE(range[i / 2], i % 2) + 1; seq_printf(file, "\nPhy %s, Phy band %d\n", wiphy_name(phy->mt76->hw->wiphy), band_idx); seq_printf(file, "Length: %8d | ", bound[0]); for (i = 0; i < ARRAY_SIZE(bound) - 1; i++) seq_printf(file, "%3d -%3d | ", bound[i] + 1, bound[i + 1]); seq_puts(file, "\nCount: "); for (i = 0; i < ARRAY_SIZE(bound); i++) seq_printf(file, "%8d | ", phy->mt76->aggr_stats[i]); seq_puts(file, "\n"); seq_printf(file, "BA miss count: %d\n", phy->mib.ba_miss_cnt); } static void mt7996_txbf_stat_read_phy(struct mt7996_phy *phy, struct seq_file *s) { struct mt76_mib_stats *mib = &phy->mib; static const char * const bw[] = { "BW20", "BW40", "BW80", "BW160" }; /* Tx Beamformer monitor */ seq_puts(s, "\nTx Beamformer applied PPDU counts: "); seq_printf(s, "iBF: %d, eBF: %d\n", mib->tx_bf_ibf_ppdu_cnt, mib->tx_bf_ebf_ppdu_cnt); /* Tx Beamformer Rx feedback monitor */ seq_puts(s, "Tx Beamformer Rx feedback statistics: "); seq_printf(s, "All: %d, HE: %d, VHT: %d, HT: %d, ", mib->tx_bf_rx_fb_all_cnt, mib->tx_bf_rx_fb_he_cnt, mib->tx_bf_rx_fb_vht_cnt, mib->tx_bf_rx_fb_ht_cnt); seq_printf(s, "%s, NC: %d, NR: %d\n", bw[mib->tx_bf_rx_fb_bw], mib->tx_bf_rx_fb_nc_cnt, mib->tx_bf_rx_fb_nr_cnt); /* Tx Beamformee Rx NDPA & Tx feedback report */ seq_printf(s, "Tx Beamformee successful feedback frames: %d\n", mib->tx_bf_fb_cpl_cnt); seq_printf(s, "Tx Beamformee feedback triggered counts: %d\n", mib->tx_bf_fb_trig_cnt); /* Tx SU & MU counters */ seq_printf(s, "Tx multi-user Beamforming counts: %d\n", mib->tx_mu_bf_cnt); seq_printf(s, "Tx multi-user MPDU counts: %d\n", mib->tx_mu_mpdu_cnt); seq_printf(s, "Tx multi-user successful MPDU counts: %d\n", mib->tx_mu_acked_mpdu_cnt); seq_printf(s, "Tx single-user successful MPDU counts: %d\n", mib->tx_su_acked_mpdu_cnt); seq_puts(s, "\n"); } static int mt7996_tx_stats_show(struct seq_file *file, void *data) { struct mt7996_phy *phy = file->private; struct mt7996_dev *dev = phy->dev; struct mt76_mib_stats *mib = &phy->mib; int i; u32 attempts, success, per; mutex_lock(&dev->mt76.mutex); mt7996_mac_update_stats(phy); mt7996_ampdu_stat_read_phy(phy, file); attempts = mib->tx_mpdu_attempts_cnt; success = mib->tx_mpdu_success_cnt; per = attempts ? 100 - success * 100 / attempts : 100; seq_printf(file, "Tx attempts: %8u (MPDUs)\n", attempts); seq_printf(file, "Tx success: %8u (MPDUs)\n", success); seq_printf(file, "Tx PER: %u%%\n", per); mt7996_txbf_stat_read_phy(phy, file); /* Tx amsdu info */ seq_puts(file, "Tx MSDU statistics:\n"); for (i = 0; i < ARRAY_SIZE(mib->tx_amsdu); i++) { seq_printf(file, "AMSDU pack count of %d MSDU in TXD: %8d ", i + 1, mib->tx_amsdu[i]); if (mib->tx_amsdu_cnt) seq_printf(file, "(%3d%%)\n", mib->tx_amsdu[i] * 100 / mib->tx_amsdu_cnt); else seq_puts(file, "\n"); } mutex_unlock(&dev->mt76.mutex); return 0; } DEFINE_SHOW_ATTRIBUTE(mt7996_tx_stats); static void mt7996_hw_queue_read(struct seq_file *s, u32 size, const struct hw_queue_map *map) { struct mt7996_phy *phy = s->private; struct mt7996_dev *dev = phy->dev; u32 i, val; val = mt76_rr(dev, MT_FL_Q_EMPTY); for (i = 0; i < size; i++) { u32 ctrl, head, tail, queued; if (val & BIT(map[i].index)) continue; ctrl = BIT(31) | (map[i].pid << 10) | ((u32)map[i].qid << 24); mt76_wr(dev, MT_FL_Q0_CTRL, ctrl); head = mt76_get_field(dev, MT_FL_Q2_CTRL, GENMASK(11, 0)); tail = mt76_get_field(dev, MT_FL_Q2_CTRL, GENMASK(27, 16)); queued = mt76_get_field(dev, MT_FL_Q3_CTRL, GENMASK(11, 0)); seq_printf(s, "\t%s: ", map[i].name); seq_printf(s, "queued:0x%03x head:0x%03x tail:0x%03x\n", queued, head, tail); } } static void mt7996_sta_hw_queue_read(void *data, struct ieee80211_sta *sta) { struct mt7996_sta *msta = (struct mt7996_sta *)sta->drv_priv; struct mt7996_dev *dev = msta->vif->phy->dev; struct seq_file *s = data; u8 ac; for (ac = 0; ac < 4; ac++) { u32 qlen, ctrl, val; u32 idx = msta->wcid.idx >> 5; u8 offs = msta->wcid.idx & GENMASK(4, 0); ctrl = BIT(31) | BIT(11) | (ac << 24); val = mt76_rr(dev, MT_PLE_AC_QEMPTY(ac, idx)); if (val & BIT(offs)) continue; mt76_wr(dev, MT_FL_Q0_CTRL, ctrl | msta->wcid.idx); qlen = mt76_get_field(dev, MT_FL_Q3_CTRL, GENMASK(11, 0)); seq_printf(s, "\tSTA %pM wcid %d: AC%d%d queued:%d\n", sta->addr, msta->wcid.idx, msta->vif->mt76.wmm_idx, ac, qlen); } } static int mt7996_hw_queues_show(struct seq_file *file, void *data) { struct mt7996_phy *phy = file->private; struct mt7996_dev *dev = phy->dev; static const struct hw_queue_map ple_queue_map[] = { { "CPU_Q0", 0, 1, MT_CTX0 }, { "CPU_Q1", 1, 1, MT_CTX0 + 1 }, { "CPU_Q2", 2, 1, MT_CTX0 + 2 }, { "CPU_Q3", 3, 1, MT_CTX0 + 3 }, { "ALTX_Q0", 8, 2, MT_LMAC_ALTX0 }, { "BMC_Q0", 9, 2, MT_LMAC_BMC0 }, { "BCN_Q0", 10, 2, MT_LMAC_BCN0 }, { "PSMP_Q0", 11, 2, MT_LMAC_PSMP0 }, { "ALTX_Q1", 12, 2, MT_LMAC_ALTX0 + 4 }, { "BMC_Q1", 13, 2, MT_LMAC_BMC0 + 4 }, { "BCN_Q1", 14, 2, MT_LMAC_BCN0 + 4 }, { "PSMP_Q1", 15, 2, MT_LMAC_PSMP0 + 4 }, }; static const struct hw_queue_map pse_queue_map[] = { { "CPU Q0", 0, 1, MT_CTX0 }, { "CPU Q1", 1, 1, MT_CTX0 + 1 }, { "CPU Q2", 2, 1, MT_CTX0 + 2 }, { "CPU Q3", 3, 1, MT_CTX0 + 3 }, { "HIF_Q0", 8, 0, MT_HIF0 }, { "HIF_Q1", 9, 0, MT_HIF0 + 1 }, { "HIF_Q2", 10, 0, MT_HIF0 + 2 }, { "HIF_Q3", 11, 0, MT_HIF0 + 3 }, { "HIF_Q4", 12, 0, MT_HIF0 + 4 }, { "HIF_Q5", 13, 0, MT_HIF0 + 5 }, { "LMAC_Q", 16, 2, 0 }, { "MDP_TXQ", 17, 2, 1 }, { "MDP_RXQ", 18, 2, 2 }, { "SEC_TXQ", 19, 2, 3 }, { "SEC_RXQ", 20, 2, 4 }, }; u32 val, head, tail; /* ple queue */ val = mt76_rr(dev, MT_PLE_FREEPG_CNT); head = mt76_get_field(dev, MT_PLE_FREEPG_HEAD_TAIL, GENMASK(11, 0)); tail = mt76_get_field(dev, MT_PLE_FREEPG_HEAD_TAIL, GENMASK(27, 16)); seq_puts(file, "PLE page info:\n"); seq_printf(file, "\tTotal free page: 0x%08x head: 0x%03x tail: 0x%03x\n", val, head, tail); val = mt76_rr(dev, MT_PLE_PG_HIF_GROUP); head = mt76_get_field(dev, MT_PLE_HIF_PG_INFO, GENMASK(11, 0)); tail = mt76_get_field(dev, MT_PLE_HIF_PG_INFO, GENMASK(27, 16)); seq_printf(file, "\tHIF free page: 0x%03x res: 0x%03x used: 0x%03x\n", val, head, tail); seq_puts(file, "PLE non-empty queue info:\n"); mt7996_hw_queue_read(file, ARRAY_SIZE(ple_queue_map), &ple_queue_map[0]); /* iterate per-sta ple queue */ ieee80211_iterate_stations_atomic(phy->mt76->hw, mt7996_sta_hw_queue_read, file); /* pse queue */ seq_puts(file, "PSE non-empty queue info:\n"); mt7996_hw_queue_read(file, ARRAY_SIZE(pse_queue_map), &pse_queue_map[0]); return 0; } DEFINE_SHOW_ATTRIBUTE(mt7996_hw_queues); static int mt7996_xmit_queues_show(struct seq_file *file, void *data) { struct mt7996_phy *phy = file->private; struct mt7996_dev *dev = phy->dev; struct { struct mt76_queue *q; char *queue; } queue_map[] = { { phy->mt76->q_tx[MT_TXQ_BE], " MAIN" }, { dev->mt76.q_mcu[MT_MCUQ_WM], " MCUWM" }, { dev->mt76.q_mcu[MT_MCUQ_WA], " MCUWA" }, { dev->mt76.q_mcu[MT_MCUQ_FWDL], "MCUFWDL" }, }; int i; seq_puts(file, " queue | hw-queued | head | tail |\n"); for (i = 0; i < ARRAY_SIZE(queue_map); i++) { struct mt76_queue *q = queue_map[i].q; if (!q) continue; seq_printf(file, " %s | %9d | %9d | %9d |\n", queue_map[i].queue, q->queued, q->head, q->tail); } return 0; } DEFINE_SHOW_ATTRIBUTE(mt7996_xmit_queues); static int mt7996_twt_stats(struct seq_file *s, void *data) { struct mt7996_dev *dev = dev_get_drvdata(s->private); struct mt7996_twt_flow *iter; rcu_read_lock(); seq_puts(s, " wcid | id | flags | exp | mantissa"); seq_puts(s, " | duration | tsf |\n"); list_for_each_entry_rcu(iter, &dev->twt_list, list) seq_printf(s, "%9d | %8d | %5c%c%c%c | %8d | %8d | %8d | %14lld |\n", iter->wcid, iter->id, iter->sched ? 's' : 'u', iter->protection ? 'p' : '-', iter->trigger ? 't' : '-', iter->flowtype ? '-' : 'a', iter->exp, iter->mantissa, iter->duration, iter->tsf); rcu_read_unlock(); return 0; } /* The index of RF registers use the generic regidx, combined with two parts: * WF selection [31:24] and offset [23:0]. */ static int mt7996_rf_regval_get(void *data, u64 *val) { struct mt7996_dev *dev = data; u32 regval; int ret; ret = mt7996_mcu_rf_regval(dev, dev->mt76.debugfs_reg, &regval, false); if (ret) return ret; *val = regval; return 0; } static int mt7996_rf_regval_set(void *data, u64 val) { struct mt7996_dev *dev = data; u32 val32 = val; return mt7996_mcu_rf_regval(dev, dev->mt76.debugfs_reg, &val32, true); } DEFINE_DEBUGFS_ATTRIBUTE(fops_rf_regval, mt7996_rf_regval_get, mt7996_rf_regval_set, "0x%08llx\n"); int mt7996_init_debugfs(struct mt7996_phy *phy) { struct mt7996_dev *dev = phy->dev; struct dentry *dir; dir = mt76_register_debugfs_fops(phy->mt76, NULL); if (!dir) return -ENOMEM; debugfs_create_file("hw-queues", 0400, dir, phy, &mt7996_hw_queues_fops); debugfs_create_file("xmit-queues", 0400, dir, phy, &mt7996_xmit_queues_fops); debugfs_create_file("tx_stats", 0400, dir, phy, &mt7996_tx_stats_fops); debugfs_create_file("sys_recovery", 0600, dir, phy, &mt7996_sys_recovery_ops); debugfs_create_file("fw_debug_wm", 0600, dir, dev, &fops_fw_debug_wm); debugfs_create_file("fw_debug_wa", 0600, dir, dev, &fops_fw_debug_wa); debugfs_create_file("fw_debug_bin", 0600, dir, dev, &fops_fw_debug_bin); /* TODO: wm fw cpu utilization */ debugfs_create_file("fw_util_wa", 0400, dir, dev, &mt7996_fw_util_wa_fops); debugfs_create_file("implicit_txbf", 0600, dir, dev, &fops_implicit_txbf); debugfs_create_devm_seqfile(dev->mt76.dev, "twt_stats", dir, mt7996_twt_stats); debugfs_create_file("rf_regval", 0600, dir, dev, &fops_rf_regval); if (phy->mt76->cap.has_5ghz) { debugfs_create_u32("dfs_hw_pattern", 0400, dir, &dev->hw_pattern); debugfs_create_file("radar_trigger", 0200, dir, dev, &fops_radar_trigger); debugfs_create_devm_seqfile(dev->mt76.dev, "rdd_monitor", dir, mt7996_rdd_monitor); } if (phy == &dev->phy) dev->debugfs_dir = dir; return 0; } static void mt7996_debugfs_write_fwlog(struct mt7996_dev *dev, const void *hdr, int hdrlen, const void *data, int len) { static DEFINE_SPINLOCK(lock); unsigned long flags; void *dest; spin_lock_irqsave(&lock, flags); dest = relay_reserve(dev->relay_fwlog, hdrlen + len + 4); if (dest) { *(u32 *)dest = hdrlen + len; dest += 4; if (hdrlen) { memcpy(dest, hdr, hdrlen); dest += hdrlen; } memcpy(dest, data, len); relay_flush(dev->relay_fwlog); } spin_unlock_irqrestore(&lock, flags); } void mt7996_debugfs_rx_fw_monitor(struct mt7996_dev *dev, const void *data, int len) { struct { __le32 magic; u8 version; u8 _rsv; __le16 serial_id; __le32 timestamp; __le16 msg_type; __le16 len; } hdr = { .version = 0x1, .magic = cpu_to_le32(FW_BIN_LOG_MAGIC), .msg_type = cpu_to_le16(PKT_TYPE_RX_FW_MONITOR), }; if (!dev->relay_fwlog) return; hdr.serial_id = cpu_to_le16(dev->fw_debug_seq++); hdr.timestamp = cpu_to_le32(mt76_rr(dev, MT_LPON_FRCR(0))); hdr.len = *(__le16 *)data; mt7996_debugfs_write_fwlog(dev, &hdr, sizeof(hdr), data, len); } bool mt7996_debugfs_rx_log(struct mt7996_dev *dev, const void *data, int len) { if (get_unaligned_le32(data) != FW_BIN_LOG_MAGIC) return false; if (dev->relay_fwlog) mt7996_debugfs_write_fwlog(dev, NULL, 0, data, len); return true; } #ifdef CONFIG_MAC80211_DEBUGFS /** per-station debugfs **/ static ssize_t mt7996_sta_fixed_rate_set(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { #define SHORT_PREAMBLE 0 #define LONG_PREAMBLE 1 struct ieee80211_sta *sta = file->private_data; struct mt7996_sta *msta = (struct mt7996_sta *)sta->drv_priv; struct mt7996_dev *dev = msta->vif->phy->dev; struct ra_rate phy = {}; char buf[100]; int ret; u16 gi, ltf; if (count >= sizeof(buf)) return -EINVAL; if (copy_from_user(buf, user_buf, count)) return -EFAULT; if (count && buf[count - 1] == '\n') buf[count - 1] = '\0'; else buf[count] = '\0'; /* mode - cck: 0, ofdm: 1, ht: 2, gf: 3, vht: 4, he_su: 8, he_er: 9 EHT: 15 * bw - bw20: 0, bw40: 1, bw80: 2, bw160: 3, BW320: 4 * nss - vht: 1~4, he: 1~4, eht: 1~4, others: ignore * mcs - cck: 0~4, ofdm: 0~7, ht: 0~32, vht: 0~9, he_su: 0~11, he_er: 0~2, eht: 0~13 * gi - (ht/vht) lgi: 0, sgi: 1; (he) 0.8us: 0, 1.6us: 1, 3.2us: 2 * preamble - short: 1, long: 0 * ldpc - off: 0, on: 1 * stbc - off: 0, on: 1 * ltf - 1xltf: 0, 2xltf: 1, 4xltf: 2 */ if (sscanf(buf, "%hhu %hhu %hhu %hhu %hu %hhu %hhu %hhu %hhu %hu", &phy.mode, &phy.bw, &phy.mcs, &phy.nss, &gi, &phy.preamble, &phy.stbc, &phy.ldpc, &phy.spe, &ltf) != 10) { dev_warn(dev->mt76.dev, "format: Mode BW MCS NSS GI Preamble STBC LDPC SPE ltf\n"); goto out; } phy.wlan_idx = cpu_to_le16(msta->wcid.idx); phy.gi = cpu_to_le16(gi); phy.ltf = cpu_to_le16(ltf); phy.ldpc = phy.ldpc ? 7 : 0; phy.preamble = phy.preamble ? SHORT_PREAMBLE : LONG_PREAMBLE; ret = mt7996_mcu_set_fixed_rate_ctrl(dev, &phy, 0); if (ret) return -EFAULT; out: return count; } static const struct file_operations fops_fixed_rate = { .write = mt7996_sta_fixed_rate_set, .open = simple_open, .owner = THIS_MODULE, .llseek = default_llseek, }; static int mt7996_queues_show(struct seq_file *s, void *data) { struct ieee80211_sta *sta = s->private; mt7996_sta_hw_queue_read(s, sta); return 0; } DEFINE_SHOW_ATTRIBUTE(mt7996_queues); void mt7996_sta_add_debugfs(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct dentry *dir) { debugfs_create_file("fixed_rate", 0600, dir, sta, &fops_fixed_rate); debugfs_create_file("hw-queues", 0400, dir, sta, &mt7996_queues_fops); } #endif
linux-master
drivers/net/wireless/mediatek/mt76/mt7996/debugfs.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2023 MediaTek Inc. */ #include <linux/devcoredump.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/utsname.h> #include "coredump.h" static bool coredump_memdump; module_param(coredump_memdump, bool, 0644); MODULE_PARM_DESC(coredump_memdump, "Optional ability to dump firmware memory"); static const struct mt7996_mem_region mt7996_mem_regions[] = { { .start = 0x00800000, .len = 0x0004ffff, .name = "ULM0", }, { .start = 0x00900000, .len = 0x00037fff, .name = "ULM1", }, { .start = 0x02200000, .len = 0x0003ffff, .name = "ULM2", }, { .start = 0x00400000, .len = 0x00067fff, .name = "SRAM", }, { .start = 0xe0000000, .len = 0x0015ffff, .name = "CRAM0", }, { .start = 0xe0160000, .len = 0x0011bfff, .name = "CRAM1", }, }; const struct mt7996_mem_region* mt7996_coredump_get_mem_layout(struct mt7996_dev *dev, u32 *num) { switch (mt76_chip(&dev->mt76)) { case 0x7990: case 0x7991: *num = ARRAY_SIZE(mt7996_mem_regions); return &mt7996_mem_regions[0]; default: return NULL; } } static int mt7996_coredump_get_mem_size(struct mt7996_dev *dev) { const struct mt7996_mem_region *mem_region; size_t size = 0; u32 num; int i; mem_region = mt7996_coredump_get_mem_layout(dev, &num); if (!mem_region) return 0; for (i = 0; i < num; i++) { size += mem_region->len; mem_region++; } /* reserve space for the headers */ size += num * sizeof(struct mt7996_mem_hdr); /* make sure it is aligned 4 bytes for debug message print out */ size = ALIGN(size, 4); return size; } struct mt7996_crash_data *mt7996_coredump_new(struct mt7996_dev *dev) { struct mt7996_crash_data *crash_data = dev->coredump.crash_data; lockdep_assert_held(&dev->dump_mutex); if (coredump_memdump && !mt76_poll_msec(dev, MT_FW_DUMP_STATE, 0x3, 0x2, 500)) return NULL; guid_gen(&crash_data->guid); ktime_get_real_ts64(&crash_data->timestamp); return crash_data; } static void mt7996_coredump_fw_state(struct mt7996_dev *dev, struct mt7996_coredump *dump, bool *exception) { u32 count; count = mt76_rr(dev, MT_FW_ASSERT_CNT); /* normal mode: driver can manually trigger assert for detail info */ if (!count) strscpy(dump->fw_state, "normal", sizeof(dump->fw_state)); else strscpy(dump->fw_state, "exception", sizeof(dump->fw_state)); *exception = !!count; } static void mt7996_coredump_fw_stack(struct mt7996_dev *dev, struct mt7996_coredump *dump, bool exception) { u32 oldest, i, idx; strscpy(dump->pc_current, "program counter", sizeof(dump->pc_current)); /* 0: WM PC log output */ mt76_wr(dev, MT_CONN_DBG_CTL_OUT_SEL, 0); /* choose 33th PC log buffer to read current PC index */ mt76_wr(dev, MT_CONN_DBG_CTL_PC_LOG_SEL, 0x3f); /* read current PC */ dump->pc_stack[0] = mt76_rr(dev, MT_CONN_DBG_CTL_PC_LOG); /* stop call stack record */ if (!exception) { mt76_clear(dev, MT_MCU_WM_EXCP_PC_CTRL, BIT(0)); mt76_clear(dev, MT_MCU_WM_EXCP_LR_CTRL, BIT(0)); } oldest = (u32)mt76_get_field(dev, MT_MCU_WM_EXCP_PC_CTRL, GENMASK(20, 16)) + 2; for (i = 0; i < 16; i++) { idx = ((oldest + 2 * i + 1) % 32); dump->pc_stack[i + 1] = mt76_rr(dev, MT_MCU_WM_EXCP_PC_LOG + idx * 4); } oldest = (u32)mt76_get_field(dev, MT_MCU_WM_EXCP_LR_CTRL, GENMASK(20, 16)) + 2; for (i = 0; i < 16; i++) { idx = ((oldest + 2 * i + 1) % 32); dump->lr_stack[i] = mt76_rr(dev, MT_MCU_WM_EXCP_LR_LOG + idx * 4); } /* start call stack record */ if (!exception) { mt76_set(dev, MT_MCU_WM_EXCP_PC_CTRL, BIT(0)); mt76_set(dev, MT_MCU_WM_EXCP_LR_CTRL, BIT(0)); } } static struct mt7996_coredump *mt7996_coredump_build(struct mt7996_dev *dev) { struct mt7996_crash_data *crash_data = dev->coredump.crash_data; struct mt7996_coredump *dump; struct mt7996_coredump_mem *dump_mem; size_t len, sofar = 0, hdr_len = sizeof(*dump); unsigned char *buf; bool exception; len = hdr_len; if (coredump_memdump && crash_data->memdump_buf_len) len += sizeof(*dump_mem) + crash_data->memdump_buf_len; sofar += hdr_len; /* this is going to get big when we start dumping memory and such, * so go ahead and use vmalloc. */ buf = vzalloc(len); if (!buf) return NULL; mutex_lock(&dev->dump_mutex); dump = (struct mt7996_coredump *)(buf); dump->len = len; /* plain text */ strscpy(dump->magic, "mt76-crash-dump", sizeof(dump->magic)); strscpy(dump->kernel, init_utsname()->release, sizeof(dump->kernel)); strscpy(dump->fw_ver, dev->mt76.hw->wiphy->fw_version, sizeof(dump->fw_ver)); guid_copy(&dump->guid, &crash_data->guid); dump->tv_sec = crash_data->timestamp.tv_sec; dump->tv_nsec = crash_data->timestamp.tv_nsec; dump->device_id = mt76_chip(&dev->mt76); mt7996_coredump_fw_state(dev, dump, &exception); mt7996_coredump_fw_stack(dev, dump, exception); /* gather memory content */ dump_mem = (struct mt7996_coredump_mem *)(buf + sofar); dump_mem->len = crash_data->memdump_buf_len; if (coredump_memdump && crash_data->memdump_buf_len) memcpy(dump_mem->data, crash_data->memdump_buf, crash_data->memdump_buf_len); mutex_unlock(&dev->dump_mutex); return dump; } int mt7996_coredump_submit(struct mt7996_dev *dev) { struct mt7996_coredump *dump; dump = mt7996_coredump_build(dev); if (!dump) { dev_warn(dev->mt76.dev, "no crash dump data found\n"); return -ENODATA; } dev_coredumpv(dev->mt76.dev, dump, dump->len, GFP_KERNEL); return 0; } int mt7996_coredump_register(struct mt7996_dev *dev) { struct mt7996_crash_data *crash_data; crash_data = vzalloc(sizeof(*dev->coredump.crash_data)); if (!crash_data) return -ENOMEM; dev->coredump.crash_data = crash_data; if (coredump_memdump) { crash_data->memdump_buf_len = mt7996_coredump_get_mem_size(dev); if (!crash_data->memdump_buf_len) /* no memory content */ return 0; crash_data->memdump_buf = vzalloc(crash_data->memdump_buf_len); if (!crash_data->memdump_buf) { vfree(crash_data); return -ENOMEM; } } return 0; } void mt7996_coredump_unregister(struct mt7996_dev *dev) { if (dev->coredump.crash_data->memdump_buf) { vfree(dev->coredump.crash_data->memdump_buf); dev->coredump.crash_data->memdump_buf = NULL; dev->coredump.crash_data->memdump_buf_len = 0; } vfree(dev->coredump.crash_data); dev->coredump.crash_data = NULL; }
linux-master
drivers/net/wireless/mediatek/mt76/mt7996/coredump.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2022 MediaTek Inc. */ #include <linux/etherdevice.h> #include <linux/timekeeping.h> #include "coredump.h" #include "mt7996.h" #include "../dma.h" #include "mac.h" #include "mcu.h" #define to_rssi(field, rcpi) ((FIELD_GET(field, rcpi) - 220) / 2) static const struct mt7996_dfs_radar_spec etsi_radar_specs = { .pulse_th = { 110, -10, -80, 40, 5200, 128, 5200 }, .radar_pattern = { [5] = { 1, 0, 6, 32, 28, 0, 990, 5010, 17, 1, 1 }, [6] = { 1, 0, 9, 32, 28, 0, 615, 5010, 27, 1, 1 }, [7] = { 1, 0, 15, 32, 28, 0, 240, 445, 27, 1, 1 }, [8] = { 1, 0, 12, 32, 28, 0, 240, 510, 42, 1, 1 }, [9] = { 1, 1, 0, 0, 0, 0, 2490, 3343, 14, 0, 0, 12, 32, 28, { }, 126 }, [10] = { 1, 1, 0, 0, 0, 0, 2490, 3343, 14, 0, 0, 15, 32, 24, { }, 126 }, [11] = { 1, 1, 0, 0, 0, 0, 823, 2510, 14, 0, 0, 18, 32, 28, { }, 54 }, [12] = { 1, 1, 0, 0, 0, 0, 823, 2510, 14, 0, 0, 27, 32, 24, { }, 54 }, }, }; static const struct mt7996_dfs_radar_spec fcc_radar_specs = { .pulse_th = { 110, -10, -80, 40, 5200, 128, 5200 }, .radar_pattern = { [0] = { 1, 0, 8, 32, 28, 0, 508, 3076, 13, 1, 1 }, [1] = { 1, 0, 12, 32, 28, 0, 140, 240, 17, 1, 1 }, [2] = { 1, 0, 8, 32, 28, 0, 190, 510, 22, 1, 1 }, [3] = { 1, 0, 6, 32, 28, 0, 190, 510, 32, 1, 1 }, [4] = { 1, 0, 9, 255, 28, 0, 323, 343, 13, 1, 32 }, }, }; static const struct mt7996_dfs_radar_spec jp_radar_specs = { .pulse_th = { 110, -10, -80, 40, 5200, 128, 5200 }, .radar_pattern = { [0] = { 1, 0, 8, 32, 28, 0, 508, 3076, 13, 1, 1 }, [1] = { 1, 0, 12, 32, 28, 0, 140, 240, 17, 1, 1 }, [2] = { 1, 0, 8, 32, 28, 0, 190, 510, 22, 1, 1 }, [3] = { 1, 0, 6, 32, 28, 0, 190, 510, 32, 1, 1 }, [4] = { 1, 0, 9, 255, 28, 0, 323, 343, 13, 1, 32 }, [13] = { 1, 0, 7, 32, 28, 0, 3836, 3856, 14, 1, 1 }, [14] = { 1, 0, 6, 32, 28, 0, 615, 5010, 110, 1, 1 }, [15] = { 1, 1, 0, 0, 0, 0, 15, 5010, 110, 0, 0, 12, 32, 28 }, }, }; static struct mt76_wcid *mt7996_rx_get_wcid(struct mt7996_dev *dev, u16 idx, bool unicast) { struct mt7996_sta *sta; struct mt76_wcid *wcid; if (idx >= ARRAY_SIZE(dev->mt76.wcid)) return NULL; wcid = rcu_dereference(dev->mt76.wcid[idx]); if (unicast || !wcid) return wcid; if (!wcid->sta) return NULL; sta = container_of(wcid, struct mt7996_sta, wcid); if (!sta->vif) return NULL; return &sta->vif->sta.wcid; } bool mt7996_mac_wtbl_update(struct mt7996_dev *dev, int idx, u32 mask) { mt76_rmw(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_WLAN_IDX, FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, idx) | mask); return mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000); } u32 mt7996_mac_wtbl_lmac_addr(struct mt7996_dev *dev, u16 wcid, u8 dw) { mt76_wr(dev, MT_WTBLON_TOP_WDUCR, FIELD_PREP(MT_WTBLON_TOP_WDUCR_GROUP, (wcid >> 7))); return MT_WTBL_LMAC_OFFS(wcid, dw); } static void mt7996_mac_sta_poll(struct mt7996_dev *dev) { static const u8 ac_to_tid[] = { [IEEE80211_AC_BE] = 0, [IEEE80211_AC_BK] = 1, [IEEE80211_AC_VI] = 4, [IEEE80211_AC_VO] = 6 }; struct ieee80211_sta *sta; struct mt7996_sta *msta; struct rate_info *rate; u32 tx_time[IEEE80211_NUM_ACS], rx_time[IEEE80211_NUM_ACS]; LIST_HEAD(sta_poll_list); int i; spin_lock_bh(&dev->mt76.sta_poll_lock); list_splice_init(&dev->mt76.sta_poll_list, &sta_poll_list); spin_unlock_bh(&dev->mt76.sta_poll_lock); rcu_read_lock(); while (true) { bool clear = false; u32 addr, val; u16 idx; s8 rssi[4]; u8 bw; spin_lock_bh(&dev->mt76.sta_poll_lock); if (list_empty(&sta_poll_list)) { spin_unlock_bh(&dev->mt76.sta_poll_lock); break; } msta = list_first_entry(&sta_poll_list, struct mt7996_sta, wcid.poll_list); list_del_init(&msta->wcid.poll_list); spin_unlock_bh(&dev->mt76.sta_poll_lock); idx = msta->wcid.idx; /* refresh peer's airtime reporting */ addr = mt7996_mac_wtbl_lmac_addr(dev, idx, 20); for (i = 0; i < IEEE80211_NUM_ACS; i++) { u32 tx_last = msta->airtime_ac[i]; u32 rx_last = msta->airtime_ac[i + 4]; msta->airtime_ac[i] = mt76_rr(dev, addr); msta->airtime_ac[i + 4] = mt76_rr(dev, addr + 4); tx_time[i] = msta->airtime_ac[i] - tx_last; rx_time[i] = msta->airtime_ac[i + 4] - rx_last; if ((tx_last | rx_last) & BIT(30)) clear = true; addr += 8; } if (clear) { mt7996_mac_wtbl_update(dev, idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); memset(msta->airtime_ac, 0, sizeof(msta->airtime_ac)); } if (!msta->wcid.sta) continue; sta = container_of((void *)msta, struct ieee80211_sta, drv_priv); for (i = 0; i < IEEE80211_NUM_ACS; i++) { u8 q = mt76_connac_lmac_mapping(i); u32 tx_cur = tx_time[q]; u32 rx_cur = rx_time[q]; u8 tid = ac_to_tid[i]; if (!tx_cur && !rx_cur) continue; ieee80211_sta_register_airtime(sta, tid, tx_cur, rx_cur); } /* We don't support reading GI info from txs packets. * For accurate tx status reporting and AQL improvement, * we need to make sure that flags match so polling GI * from per-sta counters directly. */ rate = &msta->wcid.rate; switch (rate->bw) { case RATE_INFO_BW_320: bw = IEEE80211_STA_RX_BW_320; break; case RATE_INFO_BW_160: bw = IEEE80211_STA_RX_BW_160; break; case RATE_INFO_BW_80: bw = IEEE80211_STA_RX_BW_80; break; case RATE_INFO_BW_40: bw = IEEE80211_STA_RX_BW_40; break; default: bw = IEEE80211_STA_RX_BW_20; break; } addr = mt7996_mac_wtbl_lmac_addr(dev, idx, 6); val = mt76_rr(dev, addr); if (rate->flags & RATE_INFO_FLAGS_EHT_MCS) { addr = mt7996_mac_wtbl_lmac_addr(dev, idx, 5); val = mt76_rr(dev, addr); rate->eht_gi = FIELD_GET(GENMASK(25, 24), val); } else if (rate->flags & RATE_INFO_FLAGS_HE_MCS) { u8 offs = 24 + 2 * bw; rate->he_gi = (val & (0x3 << offs)) >> offs; } else if (rate->flags & (RATE_INFO_FLAGS_VHT_MCS | RATE_INFO_FLAGS_MCS)) { if (val & BIT(12 + bw)) rate->flags |= RATE_INFO_FLAGS_SHORT_GI; else rate->flags &= ~RATE_INFO_FLAGS_SHORT_GI; } /* get signal strength of resp frames (CTS/BA/ACK) */ addr = mt7996_mac_wtbl_lmac_addr(dev, idx, 34); val = mt76_rr(dev, addr); rssi[0] = to_rssi(GENMASK(7, 0), val); rssi[1] = to_rssi(GENMASK(15, 8), val); rssi[2] = to_rssi(GENMASK(23, 16), val); rssi[3] = to_rssi(GENMASK(31, 14), val); msta->ack_signal = mt76_rx_signal(msta->vif->phy->mt76->antenna_mask, rssi); ewma_avg_signal_add(&msta->avg_ack_signal, -msta->ack_signal); } rcu_read_unlock(); } void mt7996_mac_enable_rtscts(struct mt7996_dev *dev, struct ieee80211_vif *vif, bool enable) { struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; u32 addr; addr = mt7996_mac_wtbl_lmac_addr(dev, mvif->sta.wcid.idx, 5); if (enable) mt76_set(dev, addr, BIT(5)); else mt76_clear(dev, addr, BIT(5)); } void mt7996_mac_set_fixed_rate_table(struct mt7996_dev *dev, u8 tbl_idx, u16 rate_idx) { u32 ctrl = MT_WTBL_ITCR_WR | MT_WTBL_ITCR_EXEC | tbl_idx; mt76_wr(dev, MT_WTBL_ITDR0, rate_idx); /* use wtbl spe idx */ mt76_wr(dev, MT_WTBL_ITDR1, MT_WTBL_SPE_IDX_SEL); mt76_wr(dev, MT_WTBL_ITCR, ctrl); } /* The HW does not translate the mac header to 802.3 for mesh point */ static int mt7996_reverse_frag0_hdr_trans(struct sk_buff *skb, u16 hdr_gap) { struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; struct ethhdr *eth_hdr = (struct ethhdr *)(skb->data + hdr_gap); struct mt7996_sta *msta = (struct mt7996_sta *)status->wcid; __le32 *rxd = (__le32 *)skb->data; struct ieee80211_sta *sta; struct ieee80211_vif *vif; struct ieee80211_hdr hdr; u16 frame_control; if (le32_get_bits(rxd[3], MT_RXD3_NORMAL_ADDR_TYPE) != MT_RXD3_NORMAL_U2M) return -EINVAL; if (!(le32_to_cpu(rxd[1]) & MT_RXD1_NORMAL_GROUP_4)) return -EINVAL; if (!msta || !msta->vif) return -EINVAL; sta = container_of((void *)msta, struct ieee80211_sta, drv_priv); vif = container_of((void *)msta->vif, struct ieee80211_vif, drv_priv); /* store the info from RXD and ethhdr to avoid being overridden */ frame_control = le32_get_bits(rxd[8], MT_RXD8_FRAME_CONTROL); hdr.frame_control = cpu_to_le16(frame_control); hdr.seq_ctrl = cpu_to_le16(le32_get_bits(rxd[10], MT_RXD10_SEQ_CTRL)); hdr.duration_id = 0; ether_addr_copy(hdr.addr1, vif->addr); ether_addr_copy(hdr.addr2, sta->addr); switch (frame_control & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { case 0: ether_addr_copy(hdr.addr3, vif->bss_conf.bssid); break; case IEEE80211_FCTL_FROMDS: ether_addr_copy(hdr.addr3, eth_hdr->h_source); break; case IEEE80211_FCTL_TODS: ether_addr_copy(hdr.addr3, eth_hdr->h_dest); break; case IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS: ether_addr_copy(hdr.addr3, eth_hdr->h_dest); ether_addr_copy(hdr.addr4, eth_hdr->h_source); break; default: return -EINVAL; } skb_pull(skb, hdr_gap + sizeof(struct ethhdr) - 2); if (eth_hdr->h_proto == cpu_to_be16(ETH_P_AARP) || eth_hdr->h_proto == cpu_to_be16(ETH_P_IPX)) ether_addr_copy(skb_push(skb, ETH_ALEN), bridge_tunnel_header); else if (be16_to_cpu(eth_hdr->h_proto) >= ETH_P_802_3_MIN) ether_addr_copy(skb_push(skb, ETH_ALEN), rfc1042_header); else skb_pull(skb, 2); if (ieee80211_has_order(hdr.frame_control)) memcpy(skb_push(skb, IEEE80211_HT_CTL_LEN), &rxd[11], IEEE80211_HT_CTL_LEN); if (ieee80211_is_data_qos(hdr.frame_control)) { __le16 qos_ctrl; qos_ctrl = cpu_to_le16(le32_get_bits(rxd[10], MT_RXD10_QOS_CTL)); memcpy(skb_push(skb, IEEE80211_QOS_CTL_LEN), &qos_ctrl, IEEE80211_QOS_CTL_LEN); } if (ieee80211_has_a4(hdr.frame_control)) memcpy(skb_push(skb, sizeof(hdr)), &hdr, sizeof(hdr)); else memcpy(skb_push(skb, sizeof(hdr) - 6), &hdr, sizeof(hdr) - 6); return 0; } static int mt7996_mac_fill_rx_rate(struct mt7996_dev *dev, struct mt76_rx_status *status, struct ieee80211_supported_band *sband, __le32 *rxv, u8 *mode) { u32 v0, v2; u8 stbc, gi, bw, dcm, nss; int i, idx; bool cck = false; v0 = le32_to_cpu(rxv[0]); v2 = le32_to_cpu(rxv[2]); idx = FIELD_GET(MT_PRXV_TX_RATE, v0); i = idx; nss = FIELD_GET(MT_PRXV_NSTS, v0) + 1; stbc = FIELD_GET(MT_PRXV_HT_STBC, v2); gi = FIELD_GET(MT_PRXV_HT_SHORT_GI, v2); *mode = FIELD_GET(MT_PRXV_TX_MODE, v2); dcm = FIELD_GET(MT_PRXV_DCM, v2); bw = FIELD_GET(MT_PRXV_FRAME_MODE, v2); switch (*mode) { case MT_PHY_TYPE_CCK: cck = true; fallthrough; case MT_PHY_TYPE_OFDM: i = mt76_get_rate(&dev->mt76, sband, i, cck); break; case MT_PHY_TYPE_HT_GF: case MT_PHY_TYPE_HT: status->encoding = RX_ENC_HT; if (gi) status->enc_flags |= RX_ENC_FLAG_SHORT_GI; if (i > 31) return -EINVAL; break; case MT_PHY_TYPE_VHT: status->nss = nss; status->encoding = RX_ENC_VHT; if (gi) status->enc_flags |= RX_ENC_FLAG_SHORT_GI; if (i > 11) return -EINVAL; break; case MT_PHY_TYPE_HE_MU: case MT_PHY_TYPE_HE_SU: case MT_PHY_TYPE_HE_EXT_SU: case MT_PHY_TYPE_HE_TB: status->nss = nss; status->encoding = RX_ENC_HE; i &= GENMASK(3, 0); if (gi <= NL80211_RATE_INFO_HE_GI_3_2) status->he_gi = gi; status->he_dcm = dcm; break; case MT_PHY_TYPE_EHT_SU: case MT_PHY_TYPE_EHT_TRIG: case MT_PHY_TYPE_EHT_MU: status->nss = nss; status->encoding = RX_ENC_EHT; i &= GENMASK(3, 0); if (gi <= NL80211_RATE_INFO_EHT_GI_3_2) status->eht.gi = gi; break; default: return -EINVAL; } status->rate_idx = i; switch (bw) { case IEEE80211_STA_RX_BW_20: break; case IEEE80211_STA_RX_BW_40: if (*mode & MT_PHY_TYPE_HE_EXT_SU && (idx & MT_PRXV_TX_ER_SU_106T)) { status->bw = RATE_INFO_BW_HE_RU; status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; } else { status->bw = RATE_INFO_BW_40; } break; case IEEE80211_STA_RX_BW_80: status->bw = RATE_INFO_BW_80; break; case IEEE80211_STA_RX_BW_160: status->bw = RATE_INFO_BW_160; break; case IEEE80211_STA_RX_BW_320: status->bw = RATE_INFO_BW_320; break; default: return -EINVAL; } status->enc_flags |= RX_ENC_FLAG_STBC_MASK * stbc; if (*mode < MT_PHY_TYPE_HE_SU && gi) status->enc_flags |= RX_ENC_FLAG_SHORT_GI; return 0; } static int mt7996_mac_fill_rx(struct mt7996_dev *dev, struct sk_buff *skb) { struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; struct mt76_phy *mphy = &dev->mt76.phy; struct mt7996_phy *phy = &dev->phy; struct ieee80211_supported_band *sband; __le32 *rxd = (__le32 *)skb->data; __le32 *rxv = NULL; u32 rxd0 = le32_to_cpu(rxd[0]); u32 rxd1 = le32_to_cpu(rxd[1]); u32 rxd2 = le32_to_cpu(rxd[2]); u32 rxd3 = le32_to_cpu(rxd[3]); u32 rxd4 = le32_to_cpu(rxd[4]); u32 csum_mask = MT_RXD0_NORMAL_IP_SUM | MT_RXD0_NORMAL_UDP_TCP_SUM; u32 csum_status = *(u32 *)skb->cb; u32 mesh_mask = MT_RXD0_MESH | MT_RXD0_MHCP; bool is_mesh = (rxd0 & mesh_mask) == mesh_mask; bool unicast, insert_ccmp_hdr = false; u8 remove_pad, amsdu_info, band_idx; u8 mode = 0, qos_ctl = 0; bool hdr_trans; u16 hdr_gap; u16 seq_ctrl = 0; __le16 fc = 0; int idx; memset(status, 0, sizeof(*status)); band_idx = FIELD_GET(MT_RXD1_NORMAL_BAND_IDX, rxd1); mphy = dev->mt76.phys[band_idx]; phy = mphy->priv; status->phy_idx = mphy->band_idx; if (!test_bit(MT76_STATE_RUNNING, &mphy->state)) return -EINVAL; if (rxd2 & MT_RXD2_NORMAL_AMSDU_ERR) return -EINVAL; hdr_trans = rxd2 & MT_RXD2_NORMAL_HDR_TRANS; if (hdr_trans && (rxd1 & MT_RXD1_NORMAL_CM)) return -EINVAL; /* ICV error or CCMP/BIP/WPI MIC error */ if (rxd1 & MT_RXD1_NORMAL_ICV_ERR) status->flag |= RX_FLAG_ONLY_MONITOR; unicast = FIELD_GET(MT_RXD3_NORMAL_ADDR_TYPE, rxd3) == MT_RXD3_NORMAL_U2M; idx = FIELD_GET(MT_RXD1_NORMAL_WLAN_IDX, rxd1); status->wcid = mt7996_rx_get_wcid(dev, idx, unicast); if (status->wcid) { struct mt7996_sta *msta; msta = container_of(status->wcid, struct mt7996_sta, wcid); spin_lock_bh(&dev->mt76.sta_poll_lock); if (list_empty(&msta->wcid.poll_list)) list_add_tail(&msta->wcid.poll_list, &dev->mt76.sta_poll_list); spin_unlock_bh(&dev->mt76.sta_poll_lock); } status->freq = mphy->chandef.chan->center_freq; status->band = mphy->chandef.chan->band; if (status->band == NL80211_BAND_5GHZ) sband = &mphy->sband_5g.sband; else if (status->band == NL80211_BAND_6GHZ) sband = &mphy->sband_6g.sband; else sband = &mphy->sband_2g.sband; if (!sband->channels) return -EINVAL; if ((rxd0 & csum_mask) == csum_mask && !(csum_status & (BIT(0) | BIT(2) | BIT(3)))) skb->ip_summed = CHECKSUM_UNNECESSARY; if (rxd1 & MT_RXD3_NORMAL_FCS_ERR) status->flag |= RX_FLAG_FAILED_FCS_CRC; if (rxd1 & MT_RXD1_NORMAL_TKIP_MIC_ERR) status->flag |= RX_FLAG_MMIC_ERROR; if (FIELD_GET(MT_RXD2_NORMAL_SEC_MODE, rxd2) != 0 && !(rxd1 & (MT_RXD1_NORMAL_CLM | MT_RXD1_NORMAL_CM))) { status->flag |= RX_FLAG_DECRYPTED; status->flag |= RX_FLAG_IV_STRIPPED; status->flag |= RX_FLAG_MMIC_STRIPPED | RX_FLAG_MIC_STRIPPED; } remove_pad = FIELD_GET(MT_RXD2_NORMAL_HDR_OFFSET, rxd2); if (rxd2 & MT_RXD2_NORMAL_MAX_LEN_ERROR) return -EINVAL; rxd += 8; if (rxd1 & MT_RXD1_NORMAL_GROUP_4) { u32 v0 = le32_to_cpu(rxd[0]); u32 v2 = le32_to_cpu(rxd[2]); fc = cpu_to_le16(FIELD_GET(MT_RXD8_FRAME_CONTROL, v0)); qos_ctl = FIELD_GET(MT_RXD10_QOS_CTL, v2); seq_ctrl = FIELD_GET(MT_RXD10_SEQ_CTRL, v2); rxd += 4; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; } if (rxd1 & MT_RXD1_NORMAL_GROUP_1) { u8 *data = (u8 *)rxd; if (status->flag & RX_FLAG_DECRYPTED) { switch (FIELD_GET(MT_RXD2_NORMAL_SEC_MODE, rxd2)) { case MT_CIPHER_AES_CCMP: case MT_CIPHER_CCMP_CCX: case MT_CIPHER_CCMP_256: insert_ccmp_hdr = FIELD_GET(MT_RXD2_NORMAL_FRAG, rxd2); fallthrough; case MT_CIPHER_TKIP: case MT_CIPHER_TKIP_NO_MIC: case MT_CIPHER_GCMP: case MT_CIPHER_GCMP_256: status->iv[0] = data[5]; status->iv[1] = data[4]; status->iv[2] = data[3]; status->iv[3] = data[2]; status->iv[4] = data[1]; status->iv[5] = data[0]; break; default: break; } } rxd += 4; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; } if (rxd1 & MT_RXD1_NORMAL_GROUP_2) { status->timestamp = le32_to_cpu(rxd[0]); status->flag |= RX_FLAG_MACTIME_START; if (!(rxd2 & MT_RXD2_NORMAL_NON_AMPDU)) { status->flag |= RX_FLAG_AMPDU_DETAILS; /* all subframes of an A-MPDU have the same timestamp */ if (phy->rx_ampdu_ts != status->timestamp) { if (!++phy->ampdu_ref) phy->ampdu_ref++; } phy->rx_ampdu_ts = status->timestamp; status->ampdu_ref = phy->ampdu_ref; } rxd += 4; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; } /* RXD Group 3 - P-RXV */ if (rxd1 & MT_RXD1_NORMAL_GROUP_3) { u32 v3; int ret; rxv = rxd; rxd += 4; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; v3 = le32_to_cpu(rxv[3]); status->chains = mphy->antenna_mask; status->chain_signal[0] = to_rssi(MT_PRXV_RCPI0, v3); status->chain_signal[1] = to_rssi(MT_PRXV_RCPI1, v3); status->chain_signal[2] = to_rssi(MT_PRXV_RCPI2, v3); status->chain_signal[3] = to_rssi(MT_PRXV_RCPI3, v3); /* RXD Group 5 - C-RXV */ if (rxd1 & MT_RXD1_NORMAL_GROUP_5) { rxd += 24; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; } ret = mt7996_mac_fill_rx_rate(dev, status, sband, rxv, &mode); if (ret < 0) return ret; } amsdu_info = FIELD_GET(MT_RXD4_NORMAL_PAYLOAD_FORMAT, rxd4); status->amsdu = !!amsdu_info; if (status->amsdu) { status->first_amsdu = amsdu_info == MT_RXD4_FIRST_AMSDU_FRAME; status->last_amsdu = amsdu_info == MT_RXD4_LAST_AMSDU_FRAME; } hdr_gap = (u8 *)rxd - skb->data + 2 * remove_pad; if (hdr_trans && ieee80211_has_morefrags(fc)) { if (mt7996_reverse_frag0_hdr_trans(skb, hdr_gap)) return -EINVAL; hdr_trans = false; } else { int pad_start = 0; skb_pull(skb, hdr_gap); if (!hdr_trans && status->amsdu && !(ieee80211_has_a4(fc) && is_mesh)) { pad_start = ieee80211_get_hdrlen_from_skb(skb); } else if (hdr_trans && (rxd2 & MT_RXD2_NORMAL_HDR_TRANS_ERROR)) { /* When header translation failure is indicated, * the hardware will insert an extra 2-byte field * containing the data length after the protocol * type field. This happens either when the LLC-SNAP * pattern did not match, or if a VLAN header was * detected. */ pad_start = 12; if (get_unaligned_be16(skb->data + pad_start) == ETH_P_8021Q) pad_start += 4; else pad_start = 0; } if (pad_start) { memmove(skb->data + 2, skb->data, pad_start); skb_pull(skb, 2); } } if (!hdr_trans) { struct ieee80211_hdr *hdr; if (insert_ccmp_hdr) { u8 key_id = FIELD_GET(MT_RXD1_NORMAL_KEY_ID, rxd1); mt76_insert_ccmp_hdr(skb, key_id); } hdr = mt76_skb_get_hdr(skb); fc = hdr->frame_control; if (ieee80211_is_data_qos(fc)) { u8 *qos = ieee80211_get_qos_ctl(hdr); seq_ctrl = le16_to_cpu(hdr->seq_ctrl); qos_ctl = *qos; /* Mesh DA/SA/Length will be stripped after hardware * de-amsdu, so here needs to clear amsdu present bit * to mark it as a normal mesh frame. */ if (ieee80211_has_a4(fc) && is_mesh && status->amsdu) *qos &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; } } else { status->flag |= RX_FLAG_8023; } if (rxv && mode >= MT_PHY_TYPE_HE_SU && !(status->flag & RX_FLAG_8023)) mt76_connac3_mac_decode_he_radiotap(skb, rxv, mode); if (!status->wcid || !ieee80211_is_data_qos(fc)) return 0; status->aggr = unicast && !ieee80211_is_qos_nullfunc(fc); status->qos_ctl = qos_ctl; status->seqno = IEEE80211_SEQ_TO_SN(seq_ctrl); return 0; } static void mt7996_mac_write_txwi_8023(struct mt7996_dev *dev, __le32 *txwi, struct sk_buff *skb, struct mt76_wcid *wcid) { u8 tid = skb->priority & IEEE80211_QOS_CTL_TID_MASK; u8 fc_type, fc_stype; u16 ethertype; bool wmm = false; u32 val; if (wcid->sta) { struct ieee80211_sta *sta; sta = container_of((void *)wcid, struct ieee80211_sta, drv_priv); wmm = sta->wme; } val = FIELD_PREP(MT_TXD1_HDR_FORMAT, MT_HDR_FORMAT_802_3) | FIELD_PREP(MT_TXD1_TID, tid); ethertype = get_unaligned_be16(&skb->data[12]); if (ethertype >= ETH_P_802_3_MIN) val |= MT_TXD1_ETH_802_3; txwi[1] |= cpu_to_le32(val); fc_type = IEEE80211_FTYPE_DATA >> 2; fc_stype = wmm ? IEEE80211_STYPE_QOS_DATA >> 4 : 0; val = FIELD_PREP(MT_TXD2_FRAME_TYPE, fc_type) | FIELD_PREP(MT_TXD2_SUB_TYPE, fc_stype); txwi[2] |= cpu_to_le32(val); } static void mt7996_mac_write_txwi_80211(struct mt7996_dev *dev, __le32 *txwi, struct sk_buff *skb, struct ieee80211_key_conf *key) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); bool multicast = is_multicast_ether_addr(hdr->addr1); u8 tid = skb->priority & IEEE80211_QOS_CTL_TID_MASK; __le16 fc = hdr->frame_control; u8 fc_type, fc_stype; u32 val; if (ieee80211_is_action(fc) && mgmt->u.action.category == WLAN_CATEGORY_BACK && mgmt->u.action.u.addba_req.action_code == WLAN_ACTION_ADDBA_REQ) tid = MT_TX_ADDBA; else if (ieee80211_is_mgmt(hdr->frame_control)) tid = MT_TX_NORMAL; val = FIELD_PREP(MT_TXD1_HDR_FORMAT, MT_HDR_FORMAT_802_11) | FIELD_PREP(MT_TXD1_HDR_INFO, ieee80211_get_hdrlen_from_skb(skb) / 2) | FIELD_PREP(MT_TXD1_TID, tid); if (!ieee80211_is_data(fc) || multicast || info->flags & IEEE80211_TX_CTL_USE_MINRATE) val |= MT_TXD1_FIXED_RATE; if (key && multicast && ieee80211_is_robust_mgmt_frame(skb) && key->cipher == WLAN_CIPHER_SUITE_AES_CMAC) { val |= MT_TXD1_BIP; txwi[3] &= ~cpu_to_le32(MT_TXD3_PROTECT_FRAME); } txwi[1] |= cpu_to_le32(val); fc_type = (le16_to_cpu(fc) & IEEE80211_FCTL_FTYPE) >> 2; fc_stype = (le16_to_cpu(fc) & IEEE80211_FCTL_STYPE) >> 4; val = FIELD_PREP(MT_TXD2_FRAME_TYPE, fc_type) | FIELD_PREP(MT_TXD2_SUB_TYPE, fc_stype); txwi[2] |= cpu_to_le32(val); txwi[3] |= cpu_to_le32(FIELD_PREP(MT_TXD3_BCM, multicast)); if (ieee80211_is_beacon(fc)) { txwi[3] &= ~cpu_to_le32(MT_TXD3_SW_POWER_MGMT); txwi[3] |= cpu_to_le32(MT_TXD3_REM_TX_COUNT); } if (info->flags & IEEE80211_TX_CTL_INJECTED) { u16 seqno = le16_to_cpu(hdr->seq_ctrl); if (ieee80211_is_back_req(hdr->frame_control)) { struct ieee80211_bar *bar; bar = (struct ieee80211_bar *)skb->data; seqno = le16_to_cpu(bar->start_seq_num); } val = MT_TXD3_SN_VALID | FIELD_PREP(MT_TXD3_SEQ, IEEE80211_SEQ_TO_SN(seqno)); txwi[3] |= cpu_to_le32(val); txwi[3] &= ~cpu_to_le32(MT_TXD3_HW_AMSDU); } } void mt7996_mac_write_txwi(struct mt7996_dev *dev, __le32 *txwi, struct sk_buff *skb, struct mt76_wcid *wcid, struct ieee80211_key_conf *key, int pid, enum mt76_txq_id qid, u32 changed) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_vif *vif = info->control.vif; u8 band_idx = (info->hw_queue & MT_TX_HW_QUEUE_PHY) >> 2; u8 p_fmt, q_idx, omac_idx = 0, wmm_idx = 0; bool is_8023 = info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP; struct mt76_vif *mvif; u16 tx_count = 15; u32 val; bool beacon = !!(changed & (BSS_CHANGED_BEACON | BSS_CHANGED_BEACON_ENABLED)); bool inband_disc = !!(changed & (BSS_CHANGED_UNSOL_BCAST_PROBE_RESP | BSS_CHANGED_FILS_DISCOVERY)); mvif = vif ? (struct mt76_vif *)vif->drv_priv : NULL; if (mvif) { omac_idx = mvif->omac_idx; wmm_idx = mvif->wmm_idx; band_idx = mvif->band_idx; } if (inband_disc) { p_fmt = MT_TX_TYPE_FW; q_idx = MT_LMAC_ALTX0; } else if (beacon) { p_fmt = MT_TX_TYPE_FW; q_idx = MT_LMAC_BCN0; } else if (qid >= MT_TXQ_PSD) { p_fmt = MT_TX_TYPE_CT; q_idx = MT_LMAC_ALTX0; } else { p_fmt = MT_TX_TYPE_CT; q_idx = wmm_idx * MT7996_MAX_WMM_SETS + mt76_connac_lmac_mapping(skb_get_queue_mapping(skb)); } val = FIELD_PREP(MT_TXD0_TX_BYTES, skb->len + MT_TXD_SIZE) | FIELD_PREP(MT_TXD0_PKT_FMT, p_fmt) | FIELD_PREP(MT_TXD0_Q_IDX, q_idx); txwi[0] = cpu_to_le32(val); val = FIELD_PREP(MT_TXD1_WLAN_IDX, wcid->idx) | FIELD_PREP(MT_TXD1_OWN_MAC, omac_idx); if (band_idx) val |= FIELD_PREP(MT_TXD1_TGID, band_idx); txwi[1] = cpu_to_le32(val); txwi[2] = 0; val = MT_TXD3_SW_POWER_MGMT | FIELD_PREP(MT_TXD3_REM_TX_COUNT, tx_count); if (key) val |= MT_TXD3_PROTECT_FRAME; if (info->flags & IEEE80211_TX_CTL_NO_ACK) val |= MT_TXD3_NO_ACK; if (wcid->amsdu) val |= MT_TXD3_HW_AMSDU; txwi[3] = cpu_to_le32(val); txwi[4] = 0; val = FIELD_PREP(MT_TXD5_PID, pid); if (pid >= MT_PACKET_ID_FIRST) val |= MT_TXD5_TX_STATUS_HOST; txwi[5] = cpu_to_le32(val); val = MT_TXD6_DIS_MAT | MT_TXD6_DAS | FIELD_PREP(MT_TXD6_MSDU_CNT, 1); txwi[6] = cpu_to_le32(val); txwi[7] = 0; if (is_8023) mt7996_mac_write_txwi_8023(dev, txwi, skb, wcid); else mt7996_mac_write_txwi_80211(dev, txwi, skb, key); if (txwi[1] & cpu_to_le32(MT_TXD1_FIXED_RATE)) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; bool mcast = ieee80211_is_data(hdr->frame_control) && is_multicast_ether_addr(hdr->addr1); u8 idx = MT7996_BASIC_RATES_TBL; if (mvif) { if (mcast && mvif->mcast_rates_idx) idx = mvif->mcast_rates_idx; else if (beacon && mvif->beacon_rates_idx) idx = mvif->beacon_rates_idx; else idx = mvif->basic_rates_idx; } txwi[6] |= cpu_to_le32(FIELD_PREP(MT_TXD6_TX_RATE, idx)); txwi[3] |= cpu_to_le32(MT_TXD3_BA_DISABLE); } } int mt7996_tx_prepare_skb(struct mt76_dev *mdev, void *txwi_ptr, enum mt76_txq_id qid, struct mt76_wcid *wcid, struct ieee80211_sta *sta, struct mt76_tx_info *tx_info) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx_info->skb->data; struct mt7996_dev *dev = container_of(mdev, struct mt7996_dev, mt76); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx_info->skb); struct ieee80211_key_conf *key = info->control.hw_key; struct ieee80211_vif *vif = info->control.vif; struct mt76_connac_txp_common *txp; struct mt76_txwi_cache *t; int id, i, pid, nbuf = tx_info->nbuf - 1; bool is_8023 = info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP; u8 *txwi = (u8 *)txwi_ptr; if (unlikely(tx_info->skb->len <= ETH_HLEN)) return -EINVAL; if (!wcid) wcid = &dev->mt76.global_wcid; if (sta) { struct mt7996_sta *msta = (struct mt7996_sta *)sta->drv_priv; if (time_after(jiffies, msta->jiffies + HZ / 4)) { info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; msta->jiffies = jiffies; } } t = (struct mt76_txwi_cache *)(txwi + mdev->drv->txwi_size); t->skb = tx_info->skb; id = mt76_token_consume(mdev, &t); if (id < 0) return id; pid = mt76_tx_status_skb_add(mdev, wcid, tx_info->skb); mt7996_mac_write_txwi(dev, txwi_ptr, tx_info->skb, wcid, key, pid, qid, 0); txp = (struct mt76_connac_txp_common *)(txwi + MT_TXD_SIZE); for (i = 0; i < nbuf; i++) { txp->fw.buf[i] = cpu_to_le32(tx_info->buf[i + 1].addr); txp->fw.len[i] = cpu_to_le16(tx_info->buf[i + 1].len); } txp->fw.nbuf = nbuf; txp->fw.flags = cpu_to_le16(MT_CT_INFO_FROM_HOST | MT_CT_INFO_APPLY_TXD); if (!key) txp->fw.flags |= cpu_to_le16(MT_CT_INFO_NONE_CIPHER_FRAME); if (!is_8023 && ieee80211_is_mgmt(hdr->frame_control)) txp->fw.flags |= cpu_to_le16(MT_CT_INFO_MGMT_FRAME); if (vif) { struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; txp->fw.bss_idx = mvif->mt76.idx; } txp->fw.token = cpu_to_le16(id); if (test_bit(MT_WCID_FLAG_4ADDR, &wcid->flags)) txp->fw.rept_wds_wcid = cpu_to_le16(wcid->idx); else txp->fw.rept_wds_wcid = cpu_to_le16(0xfff); tx_info->skb = DMA_DUMMY_DATA; /* pass partial skb header to fw */ tx_info->buf[1].len = MT_CT_PARSE_LEN; tx_info->buf[1].skip_unmap = true; tx_info->nbuf = MT_CT_DMA_BUF_NUM; return 0; } static void mt7996_tx_check_aggr(struct ieee80211_sta *sta, __le32 *txwi) { struct mt7996_sta *msta; u16 fc, tid; u32 val; if (!sta || !(sta->deflink.ht_cap.ht_supported || sta->deflink.he_cap.has_he)) return; tid = le32_get_bits(txwi[1], MT_TXD1_TID); if (tid >= 6) /* skip VO queue */ return; val = le32_to_cpu(txwi[2]); fc = FIELD_GET(MT_TXD2_FRAME_TYPE, val) << 2 | FIELD_GET(MT_TXD2_SUB_TYPE, val) << 4; if (unlikely(fc != (IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA))) return; msta = (struct mt7996_sta *)sta->drv_priv; if (!test_and_set_bit(tid, &msta->wcid.ampdu_state)) ieee80211_start_tx_ba_session(sta, tid, 0); } static void mt7996_txwi_free(struct mt7996_dev *dev, struct mt76_txwi_cache *t, struct ieee80211_sta *sta, struct list_head *free_list) { struct mt76_dev *mdev = &dev->mt76; struct mt76_wcid *wcid; __le32 *txwi; u16 wcid_idx; mt76_connac_txp_skb_unmap(mdev, t); if (!t->skb) goto out; txwi = (__le32 *)mt76_get_txwi_ptr(mdev, t); if (sta) { wcid = (struct mt76_wcid *)sta->drv_priv; wcid_idx = wcid->idx; if (likely(t->skb->protocol != cpu_to_be16(ETH_P_PAE))) mt7996_tx_check_aggr(sta, txwi); } else { wcid_idx = le32_get_bits(txwi[1], MT_TXD1_WLAN_IDX); } __mt76_tx_complete_skb(mdev, wcid_idx, t->skb, free_list); out: t->skb = NULL; mt76_put_txwi(mdev, t); } static void mt7996_mac_tx_free(struct mt7996_dev *dev, void *data, int len) { __le32 *tx_free = (__le32 *)data, *cur_info; struct mt76_dev *mdev = &dev->mt76; struct mt76_phy *phy2 = mdev->phys[MT_BAND1]; struct mt76_phy *phy3 = mdev->phys[MT_BAND2]; struct mt76_txwi_cache *txwi; struct ieee80211_sta *sta = NULL; LIST_HEAD(free_list); struct sk_buff *skb, *tmp; void *end = data + len; bool wake = false; u16 total, count = 0; /* clean DMA queues and unmap buffers first */ mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[MT_TXQ_PSD], false); mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[MT_TXQ_BE], false); if (phy2) { mt76_queue_tx_cleanup(dev, phy2->q_tx[MT_TXQ_PSD], false); mt76_queue_tx_cleanup(dev, phy2->q_tx[MT_TXQ_BE], false); } if (phy3) { mt76_queue_tx_cleanup(dev, phy3->q_tx[MT_TXQ_PSD], false); mt76_queue_tx_cleanup(dev, phy3->q_tx[MT_TXQ_BE], false); } if (WARN_ON_ONCE(le32_get_bits(tx_free[1], MT_TXFREE1_VER) < 4)) return; total = le32_get_bits(tx_free[0], MT_TXFREE0_MSDU_CNT); for (cur_info = &tx_free[2]; count < total; cur_info++) { u32 msdu, info; u8 i; if (WARN_ON_ONCE((void *)cur_info >= end)) return; /* 1'b1: new wcid pair. * 1'b0: msdu_id with the same 'wcid pair' as above. */ info = le32_to_cpu(*cur_info); if (info & MT_TXFREE_INFO_PAIR) { struct mt7996_sta *msta; struct mt76_wcid *wcid; u16 idx; idx = FIELD_GET(MT_TXFREE_INFO_WLAN_ID, info); wcid = rcu_dereference(dev->mt76.wcid[idx]); sta = wcid_to_sta(wcid); if (!sta) continue; msta = container_of(wcid, struct mt7996_sta, wcid); spin_lock_bh(&mdev->sta_poll_lock); if (list_empty(&msta->wcid.poll_list)) list_add_tail(&msta->wcid.poll_list, &mdev->sta_poll_list); spin_unlock_bh(&mdev->sta_poll_lock); continue; } if (info & MT_TXFREE_INFO_HEADER) continue; for (i = 0; i < 2; i++) { msdu = (info >> (15 * i)) & MT_TXFREE_INFO_MSDU_ID; if (msdu == MT_TXFREE_INFO_MSDU_ID) continue; count++; txwi = mt76_token_release(mdev, msdu, &wake); if (!txwi) continue; mt7996_txwi_free(dev, txwi, sta, &free_list); } } mt7996_mac_sta_poll(dev); if (wake) mt76_set_tx_blocked(&dev->mt76, false); mt76_worker_schedule(&dev->mt76.tx_worker); list_for_each_entry_safe(skb, tmp, &free_list, list) { skb_list_del_init(skb); napi_consume_skb(skb, 1); } } static bool mt7996_mac_add_txs_skb(struct mt7996_dev *dev, struct mt76_wcid *wcid, int pid, __le32 *txs_data) { struct mt76_sta_stats *stats = &wcid->stats; struct ieee80211_supported_band *sband; struct mt76_dev *mdev = &dev->mt76; struct mt76_phy *mphy; struct ieee80211_tx_info *info; struct sk_buff_head list; struct rate_info rate = {}; struct sk_buff *skb; bool cck = false; u32 txrate, txs, mode, stbc; mt76_tx_status_lock(mdev, &list); skb = mt76_tx_status_skb_get(mdev, wcid, pid, &list); if (!skb) goto out_no_skb; txs = le32_to_cpu(txs_data[0]); info = IEEE80211_SKB_CB(skb); if (!(txs & MT_TXS0_ACK_ERROR_MASK)) info->flags |= IEEE80211_TX_STAT_ACK; info->status.ampdu_len = 1; info->status.ampdu_ack_len = !!(info->flags & IEEE80211_TX_STAT_ACK); info->status.rates[0].idx = -1; txrate = FIELD_GET(MT_TXS0_TX_RATE, txs); rate.mcs = FIELD_GET(MT_TX_RATE_IDX, txrate); rate.nss = FIELD_GET(MT_TX_RATE_NSS, txrate) + 1; stbc = le32_get_bits(txs_data[3], MT_TXS3_RATE_STBC); if (stbc && rate.nss > 1) rate.nss >>= 1; if (rate.nss - 1 < ARRAY_SIZE(stats->tx_nss)) stats->tx_nss[rate.nss - 1]++; if (rate.mcs < ARRAY_SIZE(stats->tx_mcs)) stats->tx_mcs[rate.mcs]++; mode = FIELD_GET(MT_TX_RATE_MODE, txrate); switch (mode) { case MT_PHY_TYPE_CCK: cck = true; fallthrough; case MT_PHY_TYPE_OFDM: mphy = mt76_dev_phy(mdev, wcid->phy_idx); if (mphy->chandef.chan->band == NL80211_BAND_5GHZ) sband = &mphy->sband_5g.sband; else if (mphy->chandef.chan->band == NL80211_BAND_6GHZ) sband = &mphy->sband_6g.sband; else sband = &mphy->sband_2g.sband; rate.mcs = mt76_get_rate(mphy->dev, sband, rate.mcs, cck); rate.legacy = sband->bitrates[rate.mcs].bitrate; break; case MT_PHY_TYPE_HT: case MT_PHY_TYPE_HT_GF: if (rate.mcs > 31) goto out; rate.flags = RATE_INFO_FLAGS_MCS; if (wcid->rate.flags & RATE_INFO_FLAGS_SHORT_GI) rate.flags |= RATE_INFO_FLAGS_SHORT_GI; break; case MT_PHY_TYPE_VHT: if (rate.mcs > 9) goto out; rate.flags = RATE_INFO_FLAGS_VHT_MCS; break; case MT_PHY_TYPE_HE_SU: case MT_PHY_TYPE_HE_EXT_SU: case MT_PHY_TYPE_HE_TB: case MT_PHY_TYPE_HE_MU: if (rate.mcs > 11) goto out; rate.he_gi = wcid->rate.he_gi; rate.he_dcm = FIELD_GET(MT_TX_RATE_DCM, txrate); rate.flags = RATE_INFO_FLAGS_HE_MCS; break; case MT_PHY_TYPE_EHT_SU: case MT_PHY_TYPE_EHT_TRIG: case MT_PHY_TYPE_EHT_MU: if (rate.mcs > 13) goto out; rate.eht_gi = wcid->rate.eht_gi; rate.flags = RATE_INFO_FLAGS_EHT_MCS; break; default: goto out; } stats->tx_mode[mode]++; switch (FIELD_GET(MT_TXS0_BW, txs)) { case IEEE80211_STA_RX_BW_320: rate.bw = RATE_INFO_BW_320; stats->tx_bw[4]++; break; case IEEE80211_STA_RX_BW_160: rate.bw = RATE_INFO_BW_160; stats->tx_bw[3]++; break; case IEEE80211_STA_RX_BW_80: rate.bw = RATE_INFO_BW_80; stats->tx_bw[2]++; break; case IEEE80211_STA_RX_BW_40: rate.bw = RATE_INFO_BW_40; stats->tx_bw[1]++; break; default: rate.bw = RATE_INFO_BW_20; stats->tx_bw[0]++; break; } wcid->rate = rate; out: mt76_tx_status_skb_done(mdev, skb, &list); out_no_skb: mt76_tx_status_unlock(mdev, &list); return !!skb; } static void mt7996_mac_add_txs(struct mt7996_dev *dev, void *data) { struct mt7996_sta *msta = NULL; struct mt76_wcid *wcid; __le32 *txs_data = data; u16 wcidx; u8 pid; if (le32_get_bits(txs_data[0], MT_TXS0_TXS_FORMAT) > 1) return; wcidx = le32_get_bits(txs_data[2], MT_TXS2_WCID); pid = le32_get_bits(txs_data[3], MT_TXS3_PID); if (pid < MT_PACKET_ID_FIRST) return; if (wcidx >= mt7996_wtbl_size(dev)) return; rcu_read_lock(); wcid = rcu_dereference(dev->mt76.wcid[wcidx]); if (!wcid) goto out; msta = container_of(wcid, struct mt7996_sta, wcid); mt7996_mac_add_txs_skb(dev, wcid, pid, txs_data); if (!wcid->sta) goto out; spin_lock_bh(&dev->mt76.sta_poll_lock); if (list_empty(&msta->wcid.poll_list)) list_add_tail(&msta->wcid.poll_list, &dev->mt76.sta_poll_list); spin_unlock_bh(&dev->mt76.sta_poll_lock); out: rcu_read_unlock(); } bool mt7996_rx_check(struct mt76_dev *mdev, void *data, int len) { struct mt7996_dev *dev = container_of(mdev, struct mt7996_dev, mt76); __le32 *rxd = (__le32 *)data; __le32 *end = (__le32 *)&rxd[len / 4]; enum rx_pkt_type type; type = le32_get_bits(rxd[0], MT_RXD0_PKT_TYPE); if (type != PKT_TYPE_NORMAL) { u32 sw_type = le32_get_bits(rxd[0], MT_RXD0_SW_PKT_TYPE_MASK); if (unlikely((sw_type & MT_RXD0_SW_PKT_TYPE_MAP) == MT_RXD0_SW_PKT_TYPE_FRAME)) return true; } switch (type) { case PKT_TYPE_TXRX_NOTIFY: mt7996_mac_tx_free(dev, data, len); return false; case PKT_TYPE_TXS: for (rxd += 4; rxd + 8 <= end; rxd += 8) mt7996_mac_add_txs(dev, rxd); return false; case PKT_TYPE_RX_FW_MONITOR: mt7996_debugfs_rx_fw_monitor(dev, data, len); return false; default: return true; } } void mt7996_queue_rx_skb(struct mt76_dev *mdev, enum mt76_rxq_id q, struct sk_buff *skb, u32 *info) { struct mt7996_dev *dev = container_of(mdev, struct mt7996_dev, mt76); __le32 *rxd = (__le32 *)skb->data; __le32 *end = (__le32 *)&skb->data[skb->len]; enum rx_pkt_type type; type = le32_get_bits(rxd[0], MT_RXD0_PKT_TYPE); if (type != PKT_TYPE_NORMAL) { u32 sw_type = le32_get_bits(rxd[0], MT_RXD0_SW_PKT_TYPE_MASK); if (unlikely((sw_type & MT_RXD0_SW_PKT_TYPE_MAP) == MT_RXD0_SW_PKT_TYPE_FRAME)) type = PKT_TYPE_NORMAL; } switch (type) { case PKT_TYPE_TXRX_NOTIFY: mt7996_mac_tx_free(dev, skb->data, skb->len); napi_consume_skb(skb, 1); break; case PKT_TYPE_RX_EVENT: mt7996_mcu_rx_event(dev, skb); break; case PKT_TYPE_TXS: for (rxd += 4; rxd + 8 <= end; rxd += 8) mt7996_mac_add_txs(dev, rxd); dev_kfree_skb(skb); break; case PKT_TYPE_RX_FW_MONITOR: mt7996_debugfs_rx_fw_monitor(dev, skb->data, skb->len); dev_kfree_skb(skb); break; case PKT_TYPE_NORMAL: if (!mt7996_mac_fill_rx(dev, skb)) { mt76_rx(&dev->mt76, q, skb); return; } fallthrough; default: dev_kfree_skb(skb); break; } } void mt7996_mac_cca_stats_reset(struct mt7996_phy *phy) { struct mt7996_dev *dev = phy->dev; u32 reg = MT_WF_PHYRX_BAND_RX_CTRL1(phy->mt76->band_idx); mt76_clear(dev, reg, MT_WF_PHYRX_BAND_RX_CTRL1_STSCNT_EN); mt76_set(dev, reg, BIT(11) | BIT(9)); } void mt7996_mac_reset_counters(struct mt7996_phy *phy) { struct mt7996_dev *dev = phy->dev; u8 band_idx = phy->mt76->band_idx; int i; for (i = 0; i < 16; i++) mt76_rr(dev, MT_TX_AGG_CNT(band_idx, i)); phy->mt76->survey_time = ktime_get_boottime(); memset(phy->mt76->aggr_stats, 0, sizeof(phy->mt76->aggr_stats)); /* reset airtime counters */ mt76_set(dev, MT_WF_RMAC_MIB_AIRTIME0(band_idx), MT_WF_RMAC_MIB_RXTIME_CLR); mt7996_mcu_get_chan_mib_info(phy, true); } void mt7996_mac_set_coverage_class(struct mt7996_phy *phy) { s16 coverage_class = phy->coverage_class; struct mt7996_dev *dev = phy->dev; struct mt7996_phy *phy2 = mt7996_phy2(dev); struct mt7996_phy *phy3 = mt7996_phy3(dev); u32 reg_offset; u32 cck = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 231) | FIELD_PREP(MT_TIMEOUT_VAL_CCA, 48); u32 ofdm = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 60) | FIELD_PREP(MT_TIMEOUT_VAL_CCA, 28); u8 band_idx = phy->mt76->band_idx; int offset; if (!test_bit(MT76_STATE_RUNNING, &phy->mt76->state)) return; if (phy2) coverage_class = max_t(s16, dev->phy.coverage_class, phy2->coverage_class); if (phy3) coverage_class = max_t(s16, coverage_class, phy3->coverage_class); offset = 3 * coverage_class; reg_offset = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, offset) | FIELD_PREP(MT_TIMEOUT_VAL_CCA, offset); mt76_wr(dev, MT_TMAC_CDTR(band_idx), cck + reg_offset); mt76_wr(dev, MT_TMAC_ODTR(band_idx), ofdm + reg_offset); } void mt7996_mac_enable_nf(struct mt7996_dev *dev, u8 band) { mt76_set(dev, MT_WF_PHYRX_CSD_BAND_RXTD12(band), MT_WF_PHYRX_CSD_BAND_RXTD12_IRPI_SW_CLR_ONLY | MT_WF_PHYRX_CSD_BAND_RXTD12_IRPI_SW_CLR); mt76_set(dev, MT_WF_PHYRX_BAND_RX_CTRL1(band), FIELD_PREP(MT_WF_PHYRX_BAND_RX_CTRL1_IPI_EN, 0x5)); } static u8 mt7996_phy_get_nf(struct mt7996_phy *phy, u8 band_idx) { static const u8 nf_power[] = { 92, 89, 86, 83, 80, 75, 70, 65, 60, 55, 52 }; struct mt7996_dev *dev = phy->dev; u32 val, sum = 0, n = 0; int ant, i; for (ant = 0; ant < hweight8(phy->mt76->antenna_mask); ant++) { u32 reg = MT_WF_PHYRX_CSD_IRPI(band_idx, ant); for (i = 0; i < ARRAY_SIZE(nf_power); i++, reg += 4) { val = mt76_rr(dev, reg); sum += val * nf_power[i]; n += val; } } return n ? sum / n : 0; } void mt7996_update_channel(struct mt76_phy *mphy) { struct mt7996_phy *phy = (struct mt7996_phy *)mphy->priv; struct mt76_channel_state *state = mphy->chan_state; int nf; mt7996_mcu_get_chan_mib_info(phy, false); nf = mt7996_phy_get_nf(phy, mphy->band_idx); if (!phy->noise) phy->noise = nf << 4; else if (nf) phy->noise += nf - (phy->noise >> 4); state->noise = -(phy->noise >> 4); } static bool mt7996_wait_reset_state(struct mt7996_dev *dev, u32 state) { bool ret; ret = wait_event_timeout(dev->reset_wait, (READ_ONCE(dev->recovery.state) & state), MT7996_RESET_TIMEOUT); WARN(!ret, "Timeout waiting for MCU reset state %x\n", state); return ret; } static void mt7996_update_vif_beacon(void *priv, u8 *mac, struct ieee80211_vif *vif) { struct ieee80211_hw *hw = priv; switch (vif->type) { case NL80211_IFTYPE_MESH_POINT: case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_AP: mt7996_mcu_add_beacon(hw, vif, vif->bss_conf.enable_beacon); break; default: break; } } static void mt7996_update_beacons(struct mt7996_dev *dev) { struct mt76_phy *phy2, *phy3; ieee80211_iterate_active_interfaces(dev->mt76.hw, IEEE80211_IFACE_ITER_RESUME_ALL, mt7996_update_vif_beacon, dev->mt76.hw); phy2 = dev->mt76.phys[MT_BAND1]; if (!phy2) return; ieee80211_iterate_active_interfaces(phy2->hw, IEEE80211_IFACE_ITER_RESUME_ALL, mt7996_update_vif_beacon, phy2->hw); phy3 = dev->mt76.phys[MT_BAND2]; if (!phy3) return; ieee80211_iterate_active_interfaces(phy3->hw, IEEE80211_IFACE_ITER_RESUME_ALL, mt7996_update_vif_beacon, phy3->hw); } void mt7996_tx_token_put(struct mt7996_dev *dev) { struct mt76_txwi_cache *txwi; int id; spin_lock_bh(&dev->mt76.token_lock); idr_for_each_entry(&dev->mt76.token, txwi, id) { mt7996_txwi_free(dev, txwi, NULL, NULL); dev->mt76.token_count--; } spin_unlock_bh(&dev->mt76.token_lock); idr_destroy(&dev->mt76.token); } static int mt7996_mac_restart(struct mt7996_dev *dev) { struct mt7996_phy *phy2, *phy3; struct mt76_dev *mdev = &dev->mt76; int i, ret; phy2 = mt7996_phy2(dev); phy3 = mt7996_phy3(dev); if (dev->hif2) { mt76_wr(dev, MT_INT1_MASK_CSR, 0x0); mt76_wr(dev, MT_INT1_SOURCE_CSR, ~0); } if (dev_is_pci(mdev->dev)) { mt76_wr(dev, MT_PCIE_MAC_INT_ENABLE, 0x0); if (dev->hif2) mt76_wr(dev, MT_PCIE1_MAC_INT_ENABLE, 0x0); } set_bit(MT76_RESET, &dev->mphy.state); set_bit(MT76_MCU_RESET, &dev->mphy.state); wake_up(&dev->mt76.mcu.wait); if (phy2) { set_bit(MT76_RESET, &phy2->mt76->state); set_bit(MT76_MCU_RESET, &phy2->mt76->state); } if (phy3) { set_bit(MT76_RESET, &phy3->mt76->state); set_bit(MT76_MCU_RESET, &phy3->mt76->state); } /* lock/unlock all queues to ensure that no tx is pending */ mt76_txq_schedule_all(&dev->mphy); if (phy2) mt76_txq_schedule_all(phy2->mt76); if (phy3) mt76_txq_schedule_all(phy3->mt76); /* disable all tx/rx napi */ mt76_worker_disable(&dev->mt76.tx_worker); mt76_for_each_q_rx(mdev, i) { if (mdev->q_rx[i].ndesc) napi_disable(&dev->mt76.napi[i]); } napi_disable(&dev->mt76.tx_napi); /* token reinit */ mt7996_tx_token_put(dev); idr_init(&dev->mt76.token); mt7996_dma_reset(dev, true); local_bh_disable(); mt76_for_each_q_rx(mdev, i) { if (mdev->q_rx[i].ndesc) { napi_enable(&dev->mt76.napi[i]); napi_schedule(&dev->mt76.napi[i]); } } local_bh_enable(); clear_bit(MT76_MCU_RESET, &dev->mphy.state); clear_bit(MT76_STATE_MCU_RUNNING, &dev->mphy.state); mt76_wr(dev, MT_INT_MASK_CSR, dev->mt76.mmio.irqmask); mt76_wr(dev, MT_INT_SOURCE_CSR, ~0); if (dev->hif2) { mt76_wr(dev, MT_INT1_MASK_CSR, dev->mt76.mmio.irqmask); mt76_wr(dev, MT_INT1_SOURCE_CSR, ~0); } if (dev_is_pci(mdev->dev)) { mt76_wr(dev, MT_PCIE_MAC_INT_ENABLE, 0xff); if (dev->hif2) mt76_wr(dev, MT_PCIE1_MAC_INT_ENABLE, 0xff); } /* load firmware */ ret = mt7996_mcu_init_firmware(dev); if (ret) goto out; /* set the necessary init items */ ret = mt7996_mcu_set_eeprom(dev); if (ret) goto out; mt7996_mac_init(dev); mt7996_init_txpower(dev, &dev->mphy.sband_2g.sband); mt7996_init_txpower(dev, &dev->mphy.sband_5g.sband); mt7996_init_txpower(dev, &dev->mphy.sband_6g.sband); ret = mt7996_txbf_init(dev); if (test_bit(MT76_STATE_RUNNING, &dev->mphy.state)) { ret = mt7996_run(dev->mphy.hw); if (ret) goto out; } if (phy2 && test_bit(MT76_STATE_RUNNING, &phy2->mt76->state)) { ret = mt7996_run(phy2->mt76->hw); if (ret) goto out; } if (phy3 && test_bit(MT76_STATE_RUNNING, &phy3->mt76->state)) { ret = mt7996_run(phy3->mt76->hw); if (ret) goto out; } out: /* reset done */ clear_bit(MT76_RESET, &dev->mphy.state); if (phy2) clear_bit(MT76_RESET, &phy2->mt76->state); if (phy3) clear_bit(MT76_RESET, &phy3->mt76->state); local_bh_disable(); napi_enable(&dev->mt76.tx_napi); napi_schedule(&dev->mt76.tx_napi); local_bh_enable(); mt76_worker_enable(&dev->mt76.tx_worker); return ret; } static void mt7996_mac_full_reset(struct mt7996_dev *dev) { struct mt7996_phy *phy2, *phy3; int i; phy2 = mt7996_phy2(dev); phy3 = mt7996_phy3(dev); dev->recovery.hw_full_reset = true; wake_up(&dev->mt76.mcu.wait); ieee80211_stop_queues(mt76_hw(dev)); if (phy2) ieee80211_stop_queues(phy2->mt76->hw); if (phy3) ieee80211_stop_queues(phy3->mt76->hw); cancel_delayed_work_sync(&dev->mphy.mac_work); if (phy2) cancel_delayed_work_sync(&phy2->mt76->mac_work); if (phy3) cancel_delayed_work_sync(&phy3->mt76->mac_work); mutex_lock(&dev->mt76.mutex); for (i = 0; i < 10; i++) { if (!mt7996_mac_restart(dev)) break; } mutex_unlock(&dev->mt76.mutex); if (i == 10) dev_err(dev->mt76.dev, "chip full reset failed\n"); ieee80211_restart_hw(mt76_hw(dev)); if (phy2) ieee80211_restart_hw(phy2->mt76->hw); if (phy3) ieee80211_restart_hw(phy3->mt76->hw); ieee80211_wake_queues(mt76_hw(dev)); if (phy2) ieee80211_wake_queues(phy2->mt76->hw); if (phy3) ieee80211_wake_queues(phy3->mt76->hw); dev->recovery.hw_full_reset = false; ieee80211_queue_delayed_work(mt76_hw(dev), &dev->mphy.mac_work, MT7996_WATCHDOG_TIME); if (phy2) ieee80211_queue_delayed_work(phy2->mt76->hw, &phy2->mt76->mac_work, MT7996_WATCHDOG_TIME); if (phy3) ieee80211_queue_delayed_work(phy3->mt76->hw, &phy3->mt76->mac_work, MT7996_WATCHDOG_TIME); } void mt7996_mac_reset_work(struct work_struct *work) { struct mt7996_phy *phy2, *phy3; struct mt7996_dev *dev; int i; dev = container_of(work, struct mt7996_dev, reset_work); phy2 = mt7996_phy2(dev); phy3 = mt7996_phy3(dev); /* chip full reset */ if (dev->recovery.restart) { /* disable WA/WM WDT */ mt76_clear(dev, MT_WFDMA0_MCU_HOST_INT_ENA, MT_MCU_CMD_WDT_MASK); if (READ_ONCE(dev->recovery.state) & MT_MCU_CMD_WA_WDT) dev->recovery.wa_reset_count++; else dev->recovery.wm_reset_count++; mt7996_mac_full_reset(dev); /* enable mcu irq */ mt7996_irq_enable(dev, MT_INT_MCU_CMD); mt7996_irq_disable(dev, 0); /* enable WA/WM WDT */ mt76_set(dev, MT_WFDMA0_MCU_HOST_INT_ENA, MT_MCU_CMD_WDT_MASK); dev->recovery.state = MT_MCU_CMD_NORMAL_STATE; dev->recovery.restart = false; return; } if (!(READ_ONCE(dev->recovery.state) & MT_MCU_CMD_STOP_DMA)) return; dev_info(dev->mt76.dev,"\n%s L1 SER recovery start.", wiphy_name(dev->mt76.hw->wiphy)); ieee80211_stop_queues(mt76_hw(dev)); if (phy2) ieee80211_stop_queues(phy2->mt76->hw); if (phy3) ieee80211_stop_queues(phy3->mt76->hw); set_bit(MT76_RESET, &dev->mphy.state); set_bit(MT76_MCU_RESET, &dev->mphy.state); wake_up(&dev->mt76.mcu.wait); cancel_delayed_work_sync(&dev->mphy.mac_work); if (phy2) { set_bit(MT76_RESET, &phy2->mt76->state); cancel_delayed_work_sync(&phy2->mt76->mac_work); } if (phy3) { set_bit(MT76_RESET, &phy3->mt76->state); cancel_delayed_work_sync(&phy3->mt76->mac_work); } mt76_worker_disable(&dev->mt76.tx_worker); mt76_for_each_q_rx(&dev->mt76, i) napi_disable(&dev->mt76.napi[i]); napi_disable(&dev->mt76.tx_napi); mutex_lock(&dev->mt76.mutex); mt76_wr(dev, MT_MCU_INT_EVENT, MT_MCU_INT_EVENT_DMA_STOPPED); if (mt7996_wait_reset_state(dev, MT_MCU_CMD_RESET_DONE)) { mt7996_dma_reset(dev, false); mt7996_tx_token_put(dev); idr_init(&dev->mt76.token); mt76_wr(dev, MT_MCU_INT_EVENT, MT_MCU_INT_EVENT_DMA_INIT); mt7996_wait_reset_state(dev, MT_MCU_CMD_RECOVERY_DONE); } mt76_wr(dev, MT_MCU_INT_EVENT, MT_MCU_INT_EVENT_RESET_DONE); mt7996_wait_reset_state(dev, MT_MCU_CMD_NORMAL_STATE); /* enable DMA Tx/Tx and interrupt */ mt7996_dma_start(dev, false); clear_bit(MT76_MCU_RESET, &dev->mphy.state); clear_bit(MT76_RESET, &dev->mphy.state); if (phy2) clear_bit(MT76_RESET, &phy2->mt76->state); if (phy3) clear_bit(MT76_RESET, &phy3->mt76->state); local_bh_disable(); mt76_for_each_q_rx(&dev->mt76, i) { napi_enable(&dev->mt76.napi[i]); napi_schedule(&dev->mt76.napi[i]); } local_bh_enable(); tasklet_schedule(&dev->mt76.irq_tasklet); mt76_worker_enable(&dev->mt76.tx_worker); local_bh_disable(); napi_enable(&dev->mt76.tx_napi); napi_schedule(&dev->mt76.tx_napi); local_bh_enable(); ieee80211_wake_queues(mt76_hw(dev)); if (phy2) ieee80211_wake_queues(phy2->mt76->hw); if (phy3) ieee80211_wake_queues(phy3->mt76->hw); mutex_unlock(&dev->mt76.mutex); mt7996_update_beacons(dev); ieee80211_queue_delayed_work(mt76_hw(dev), &dev->mphy.mac_work, MT7996_WATCHDOG_TIME); if (phy2) ieee80211_queue_delayed_work(phy2->mt76->hw, &phy2->mt76->mac_work, MT7996_WATCHDOG_TIME); if (phy3) ieee80211_queue_delayed_work(phy3->mt76->hw, &phy3->mt76->mac_work, MT7996_WATCHDOG_TIME); dev_info(dev->mt76.dev,"\n%s L1 SER recovery completed.", wiphy_name(dev->mt76.hw->wiphy)); } /* firmware coredump */ void mt7996_mac_dump_work(struct work_struct *work) { const struct mt7996_mem_region *mem_region; struct mt7996_crash_data *crash_data; struct mt7996_dev *dev; struct mt7996_mem_hdr *hdr; size_t buf_len; int i; u32 num; u8 *buf; dev = container_of(work, struct mt7996_dev, dump_work); mutex_lock(&dev->dump_mutex); crash_data = mt7996_coredump_new(dev); if (!crash_data) { mutex_unlock(&dev->dump_mutex); goto skip_coredump; } mem_region = mt7996_coredump_get_mem_layout(dev, &num); if (!mem_region || !crash_data->memdump_buf_len) { mutex_unlock(&dev->dump_mutex); goto skip_memdump; } buf = crash_data->memdump_buf; buf_len = crash_data->memdump_buf_len; /* dumping memory content... */ memset(buf, 0, buf_len); for (i = 0; i < num; i++) { if (mem_region->len > buf_len) { dev_warn(dev->mt76.dev, "%s len %zu is too large\n", mem_region->name, mem_region->len); break; } /* reserve space for the header */ hdr = (void *)buf; buf += sizeof(*hdr); buf_len -= sizeof(*hdr); mt7996_memcpy_fromio(dev, buf, mem_region->start, mem_region->len); hdr->start = mem_region->start; hdr->len = mem_region->len; if (!mem_region->len) /* note: the header remains, just with zero length */ break; buf += mem_region->len; buf_len -= mem_region->len; mem_region++; } mutex_unlock(&dev->dump_mutex); skip_memdump: mt7996_coredump_submit(dev); skip_coredump: queue_work(dev->mt76.wq, &dev->reset_work); } void mt7996_reset(struct mt7996_dev *dev) { if (!dev->recovery.hw_init_done) return; if (dev->recovery.hw_full_reset) return; /* wm/wa exception: do full recovery */ if (READ_ONCE(dev->recovery.state) & MT_MCU_CMD_WDT_MASK) { dev->recovery.restart = true; dev_info(dev->mt76.dev, "%s indicated firmware crash, attempting recovery\n", wiphy_name(dev->mt76.hw->wiphy)); mt7996_irq_disable(dev, MT_INT_MCU_CMD); queue_work(dev->mt76.wq, &dev->dump_work); return; } queue_work(dev->mt76.wq, &dev->reset_work); wake_up(&dev->reset_wait); } void mt7996_mac_update_stats(struct mt7996_phy *phy) { struct mt76_mib_stats *mib = &phy->mib; struct mt7996_dev *dev = phy->dev; u8 band_idx = phy->mt76->band_idx; u32 cnt; int i; cnt = mt76_rr(dev, MT_MIB_RSCR1(band_idx)); mib->fcs_err_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_RSCR33(band_idx)); mib->rx_fifo_full_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_RSCR31(band_idx)); mib->rx_mpdu_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_SDR6(band_idx)); mib->channel_idle_cnt += FIELD_GET(MT_MIB_SDR6_CHANNEL_IDL_CNT_MASK, cnt); cnt = mt76_rr(dev, MT_MIB_RVSR0(band_idx)); mib->rx_vector_mismatch_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_RSCR35(band_idx)); mib->rx_delimiter_fail_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_RSCR36(band_idx)); mib->rx_len_mismatch_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_TSCR0(band_idx)); mib->tx_ampdu_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_TSCR2(band_idx)); mib->tx_stop_q_empty_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_TSCR3(band_idx)); mib->tx_mpdu_attempts_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_TSCR4(band_idx)); mib->tx_mpdu_success_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_RSCR27(band_idx)); mib->rx_ampdu_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_RSCR28(band_idx)); mib->rx_ampdu_bytes_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_RSCR29(band_idx)); mib->rx_ampdu_valid_subframe_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_RSCR30(band_idx)); mib->rx_ampdu_valid_subframe_bytes_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_SDR27(band_idx)); mib->tx_rwp_fail_cnt += FIELD_GET(MT_MIB_SDR27_TX_RWP_FAIL_CNT, cnt); cnt = mt76_rr(dev, MT_MIB_SDR28(band_idx)); mib->tx_rwp_need_cnt += FIELD_GET(MT_MIB_SDR28_TX_RWP_NEED_CNT, cnt); cnt = mt76_rr(dev, MT_UMIB_RPDCR(band_idx)); mib->rx_pfdrop_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_RVSR1(band_idx)); mib->rx_vec_queue_overflow_drop_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_TSCR1(band_idx)); mib->rx_ba_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_BSCR0(band_idx)); mib->tx_bf_ebf_ppdu_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_BSCR1(band_idx)); mib->tx_bf_ibf_ppdu_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_BSCR2(band_idx)); mib->tx_mu_bf_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_TSCR5(band_idx)); mib->tx_mu_mpdu_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_TSCR6(band_idx)); mib->tx_mu_acked_mpdu_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_TSCR7(band_idx)); mib->tx_su_acked_mpdu_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_BSCR3(band_idx)); mib->tx_bf_rx_fb_ht_cnt += cnt; mib->tx_bf_rx_fb_all_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_BSCR4(band_idx)); mib->tx_bf_rx_fb_vht_cnt += cnt; mib->tx_bf_rx_fb_all_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_BSCR5(band_idx)); mib->tx_bf_rx_fb_he_cnt += cnt; mib->tx_bf_rx_fb_all_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_BSCR6(band_idx)); mib->tx_bf_rx_fb_eht_cnt += cnt; mib->tx_bf_rx_fb_all_cnt += cnt; cnt = mt76_rr(dev, MT_ETBF_RX_FB_CONT(band_idx)); mib->tx_bf_rx_fb_bw = FIELD_GET(MT_ETBF_RX_FB_BW, cnt); mib->tx_bf_rx_fb_nc_cnt += FIELD_GET(MT_ETBF_RX_FB_NC, cnt); mib->tx_bf_rx_fb_nr_cnt += FIELD_GET(MT_ETBF_RX_FB_NR, cnt); cnt = mt76_rr(dev, MT_MIB_BSCR7(band_idx)); mib->tx_bf_fb_trig_cnt += cnt; cnt = mt76_rr(dev, MT_MIB_BSCR17(band_idx)); mib->tx_bf_fb_cpl_cnt += cnt; for (i = 0; i < ARRAY_SIZE(mib->tx_amsdu); i++) { cnt = mt76_rr(dev, MT_PLE_AMSDU_PACK_MSDU_CNT(i)); mib->tx_amsdu[i] += cnt; mib->tx_amsdu_cnt += cnt; } /* rts count */ cnt = mt76_rr(dev, MT_MIB_BTSCR5(band_idx)); mib->rts_cnt += cnt; /* rts retry count */ cnt = mt76_rr(dev, MT_MIB_BTSCR6(band_idx)); mib->rts_retries_cnt += cnt; /* ba miss count */ cnt = mt76_rr(dev, MT_MIB_BTSCR0(band_idx)); mib->ba_miss_cnt += cnt; /* ack fail count */ cnt = mt76_rr(dev, MT_MIB_BFTFCR(band_idx)); mib->ack_fail_cnt += cnt; for (i = 0; i < 16; i++) { cnt = mt76_rr(dev, MT_TX_AGG_CNT(band_idx, i)); phy->mt76->aggr_stats[i] += cnt; } } void mt7996_mac_sta_rc_work(struct work_struct *work) { struct mt7996_dev *dev = container_of(work, struct mt7996_dev, rc_work); struct ieee80211_sta *sta; struct ieee80211_vif *vif; struct mt7996_sta *msta; u32 changed; LIST_HEAD(list); spin_lock_bh(&dev->mt76.sta_poll_lock); list_splice_init(&dev->sta_rc_list, &list); while (!list_empty(&list)) { msta = list_first_entry(&list, struct mt7996_sta, rc_list); list_del_init(&msta->rc_list); changed = msta->changed; msta->changed = 0; spin_unlock_bh(&dev->mt76.sta_poll_lock); sta = container_of((void *)msta, struct ieee80211_sta, drv_priv); vif = container_of((void *)msta->vif, struct ieee80211_vif, drv_priv); if (changed & (IEEE80211_RC_SUPP_RATES_CHANGED | IEEE80211_RC_NSS_CHANGED | IEEE80211_RC_BW_CHANGED)) mt7996_mcu_add_rate_ctrl(dev, vif, sta, true); /* TODO: smps change */ spin_lock_bh(&dev->mt76.sta_poll_lock); } spin_unlock_bh(&dev->mt76.sta_poll_lock); } void mt7996_mac_work(struct work_struct *work) { struct mt7996_phy *phy; struct mt76_phy *mphy; mphy = (struct mt76_phy *)container_of(work, struct mt76_phy, mac_work.work); phy = mphy->priv; mutex_lock(&mphy->dev->mutex); mt76_update_survey(mphy); if (++mphy->mac_work_count == 5) { mphy->mac_work_count = 0; mt7996_mac_update_stats(phy); } mutex_unlock(&mphy->dev->mutex); mt76_tx_status_check(mphy->dev, false); ieee80211_queue_delayed_work(mphy->hw, &mphy->mac_work, MT7996_WATCHDOG_TIME); } static void mt7996_dfs_stop_radar_detector(struct mt7996_phy *phy) { struct mt7996_dev *dev = phy->dev; if (phy->rdd_state & BIT(0)) mt7996_mcu_rdd_cmd(dev, RDD_STOP, 0, MT_RX_SEL0, 0); if (phy->rdd_state & BIT(1)) mt7996_mcu_rdd_cmd(dev, RDD_STOP, 1, MT_RX_SEL0, 0); } static int mt7996_dfs_start_rdd(struct mt7996_dev *dev, int chain) { int err, region; switch (dev->mt76.region) { case NL80211_DFS_ETSI: region = 0; break; case NL80211_DFS_JP: region = 2; break; case NL80211_DFS_FCC: default: region = 1; break; } err = mt7996_mcu_rdd_cmd(dev, RDD_START, chain, MT_RX_SEL0, region); if (err < 0) return err; return mt7996_mcu_rdd_cmd(dev, RDD_DET_MODE, chain, MT_RX_SEL0, 1); } static int mt7996_dfs_start_radar_detector(struct mt7996_phy *phy) { struct cfg80211_chan_def *chandef = &phy->mt76->chandef; struct mt7996_dev *dev = phy->dev; u8 band_idx = phy->mt76->band_idx; int err; /* start CAC */ err = mt7996_mcu_rdd_cmd(dev, RDD_CAC_START, band_idx, MT_RX_SEL0, 0); if (err < 0) return err; err = mt7996_dfs_start_rdd(dev, band_idx); if (err < 0) return err; phy->rdd_state |= BIT(band_idx); if (chandef->width == NL80211_CHAN_WIDTH_160 || chandef->width == NL80211_CHAN_WIDTH_80P80) { err = mt7996_dfs_start_rdd(dev, 1); if (err < 0) return err; phy->rdd_state |= BIT(1); } return 0; } static int mt7996_dfs_init_radar_specs(struct mt7996_phy *phy) { const struct mt7996_dfs_radar_spec *radar_specs; struct mt7996_dev *dev = phy->dev; int err, i; switch (dev->mt76.region) { case NL80211_DFS_FCC: radar_specs = &fcc_radar_specs; err = mt7996_mcu_set_fcc5_lpn(dev, 8); if (err < 0) return err; break; case NL80211_DFS_ETSI: radar_specs = &etsi_radar_specs; break; case NL80211_DFS_JP: radar_specs = &jp_radar_specs; break; default: return -EINVAL; } for (i = 0; i < ARRAY_SIZE(radar_specs->radar_pattern); i++) { err = mt7996_mcu_set_radar_th(dev, i, &radar_specs->radar_pattern[i]); if (err < 0) return err; } return mt7996_mcu_set_pulse_th(dev, &radar_specs->pulse_th); } int mt7996_dfs_init_radar_detector(struct mt7996_phy *phy) { struct mt7996_dev *dev = phy->dev; enum mt76_dfs_state dfs_state, prev_state; int err; prev_state = phy->mt76->dfs_state; dfs_state = mt76_phy_dfs_state(phy->mt76); if (prev_state == dfs_state) return 0; if (prev_state == MT_DFS_STATE_UNKNOWN) mt7996_dfs_stop_radar_detector(phy); if (dfs_state == MT_DFS_STATE_DISABLED) goto stop; if (prev_state <= MT_DFS_STATE_DISABLED) { err = mt7996_dfs_init_radar_specs(phy); if (err < 0) return err; err = mt7996_dfs_start_radar_detector(phy); if (err < 0) return err; phy->mt76->dfs_state = MT_DFS_STATE_CAC; } if (dfs_state == MT_DFS_STATE_CAC) return 0; err = mt7996_mcu_rdd_cmd(dev, RDD_CAC_END, phy->mt76->band_idx, MT_RX_SEL0, 0); if (err < 0) { phy->mt76->dfs_state = MT_DFS_STATE_UNKNOWN; return err; } phy->mt76->dfs_state = MT_DFS_STATE_ACTIVE; return 0; stop: err = mt7996_mcu_rdd_cmd(dev, RDD_NORMAL_START, phy->mt76->band_idx, MT_RX_SEL0, 0); if (err < 0) return err; mt7996_dfs_stop_radar_detector(phy); phy->mt76->dfs_state = MT_DFS_STATE_DISABLED; return 0; } static int mt7996_mac_twt_duration_align(int duration) { return duration << 8; } static u64 mt7996_mac_twt_sched_list_add(struct mt7996_dev *dev, struct mt7996_twt_flow *flow) { struct mt7996_twt_flow *iter, *iter_next; u32 duration = flow->duration << 8; u64 start_tsf; iter = list_first_entry_or_null(&dev->twt_list, struct mt7996_twt_flow, list); if (!iter || !iter->sched || iter->start_tsf > duration) { /* add flow as first entry in the list */ list_add(&flow->list, &dev->twt_list); return 0; } list_for_each_entry_safe(iter, iter_next, &dev->twt_list, list) { start_tsf = iter->start_tsf + mt7996_mac_twt_duration_align(iter->duration); if (list_is_last(&iter->list, &dev->twt_list)) break; if (!iter_next->sched || iter_next->start_tsf > start_tsf + duration) { list_add(&flow->list, &iter->list); goto out; } } /* add flow as last entry in the list */ list_add_tail(&flow->list, &dev->twt_list); out: return start_tsf; } static int mt7996_mac_check_twt_req(struct ieee80211_twt_setup *twt) { struct ieee80211_twt_params *twt_agrt; u64 interval, duration; u16 mantissa; u8 exp; /* only individual agreement supported */ if (twt->control & IEEE80211_TWT_CONTROL_NEG_TYPE_BROADCAST) return -EOPNOTSUPP; /* only 256us unit supported */ if (twt->control & IEEE80211_TWT_CONTROL_WAKE_DUR_UNIT) return -EOPNOTSUPP; twt_agrt = (struct ieee80211_twt_params *)twt->params; /* explicit agreement not supported */ if (!(twt_agrt->req_type & cpu_to_le16(IEEE80211_TWT_REQTYPE_IMPLICIT))) return -EOPNOTSUPP; exp = FIELD_GET(IEEE80211_TWT_REQTYPE_WAKE_INT_EXP, le16_to_cpu(twt_agrt->req_type)); mantissa = le16_to_cpu(twt_agrt->mantissa); duration = twt_agrt->min_twt_dur << 8; interval = (u64)mantissa << exp; if (interval < duration) return -EOPNOTSUPP; return 0; } void mt7996_mac_add_twt_setup(struct ieee80211_hw *hw, struct ieee80211_sta *sta, struct ieee80211_twt_setup *twt) { enum ieee80211_twt_setup_cmd setup_cmd = TWT_SETUP_CMD_REJECT; struct mt7996_sta *msta = (struct mt7996_sta *)sta->drv_priv; struct ieee80211_twt_params *twt_agrt = (void *)twt->params; u16 req_type = le16_to_cpu(twt_agrt->req_type); enum ieee80211_twt_setup_cmd sta_setup_cmd; struct mt7996_dev *dev = mt7996_hw_dev(hw); struct mt7996_twt_flow *flow; int flowid, table_id; u8 exp; if (mt7996_mac_check_twt_req(twt)) goto out; mutex_lock(&dev->mt76.mutex); if (dev->twt.n_agrt == MT7996_MAX_TWT_AGRT) goto unlock; if (hweight8(msta->twt.flowid_mask) == ARRAY_SIZE(msta->twt.flow)) goto unlock; flowid = ffs(~msta->twt.flowid_mask) - 1; le16p_replace_bits(&twt_agrt->req_type, flowid, IEEE80211_TWT_REQTYPE_FLOWID); table_id = ffs(~dev->twt.table_mask) - 1; exp = FIELD_GET(IEEE80211_TWT_REQTYPE_WAKE_INT_EXP, req_type); sta_setup_cmd = FIELD_GET(IEEE80211_TWT_REQTYPE_SETUP_CMD, req_type); flow = &msta->twt.flow[flowid]; memset(flow, 0, sizeof(*flow)); INIT_LIST_HEAD(&flow->list); flow->wcid = msta->wcid.idx; flow->table_id = table_id; flow->id = flowid; flow->duration = twt_agrt->min_twt_dur; flow->mantissa = twt_agrt->mantissa; flow->exp = exp; flow->protection = !!(req_type & IEEE80211_TWT_REQTYPE_PROTECTION); flow->flowtype = !!(req_type & IEEE80211_TWT_REQTYPE_FLOWTYPE); flow->trigger = !!(req_type & IEEE80211_TWT_REQTYPE_TRIGGER); if (sta_setup_cmd == TWT_SETUP_CMD_REQUEST || sta_setup_cmd == TWT_SETUP_CMD_SUGGEST) { u64 interval = (u64)le16_to_cpu(twt_agrt->mantissa) << exp; u64 flow_tsf, curr_tsf; u32 rem; flow->sched = true; flow->start_tsf = mt7996_mac_twt_sched_list_add(dev, flow); curr_tsf = __mt7996_get_tsf(hw, msta->vif); div_u64_rem(curr_tsf - flow->start_tsf, interval, &rem); flow_tsf = curr_tsf + interval - rem; twt_agrt->twt = cpu_to_le64(flow_tsf); } else { list_add_tail(&flow->list, &dev->twt_list); } flow->tsf = le64_to_cpu(twt_agrt->twt); if (mt7996_mcu_twt_agrt_update(dev, msta->vif, flow, MCU_TWT_AGRT_ADD)) goto unlock; setup_cmd = TWT_SETUP_CMD_ACCEPT; dev->twt.table_mask |= BIT(table_id); msta->twt.flowid_mask |= BIT(flowid); dev->twt.n_agrt++; unlock: mutex_unlock(&dev->mt76.mutex); out: le16p_replace_bits(&twt_agrt->req_type, setup_cmd, IEEE80211_TWT_REQTYPE_SETUP_CMD); twt->control = (twt->control & IEEE80211_TWT_CONTROL_WAKE_DUR_UNIT) | (twt->control & IEEE80211_TWT_CONTROL_RX_DISABLED); } void mt7996_mac_twt_teardown_flow(struct mt7996_dev *dev, struct mt7996_sta *msta, u8 flowid) { struct mt7996_twt_flow *flow; lockdep_assert_held(&dev->mt76.mutex); if (flowid >= ARRAY_SIZE(msta->twt.flow)) return; if (!(msta->twt.flowid_mask & BIT(flowid))) return; flow = &msta->twt.flow[flowid]; if (mt7996_mcu_twt_agrt_update(dev, msta->vif, flow, MCU_TWT_AGRT_DELETE)) return; list_del_init(&flow->list); msta->twt.flowid_mask &= ~BIT(flowid); dev->twt.table_mask &= ~BIT(flow->table_id); dev->twt.n_agrt--; }
linux-master
drivers/net/wireless/mediatek/mt76/mt7996/mac.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2022 MediaTek Inc. */ #include <linux/etherdevice.h> #include <linux/of.h> #include <linux/thermal.h> #include "mt7996.h" #include "mac.h" #include "mcu.h" #include "coredump.h" #include "eeprom.h" static const struct ieee80211_iface_limit if_limits[] = { { .max = 1, .types = BIT(NL80211_IFTYPE_ADHOC) }, { .max = 16, .types = BIT(NL80211_IFTYPE_AP) #ifdef CONFIG_MAC80211_MESH | BIT(NL80211_IFTYPE_MESH_POINT) #endif }, { .max = MT7996_MAX_INTERFACES, .types = BIT(NL80211_IFTYPE_STATION) } }; static const struct ieee80211_iface_combination if_comb[] = { { .limits = if_limits, .n_limits = ARRAY_SIZE(if_limits), .max_interfaces = MT7996_MAX_INTERFACES, .num_different_channels = 1, .beacon_int_infra_match = true, .radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) | BIT(NL80211_CHAN_WIDTH_20) | BIT(NL80211_CHAN_WIDTH_40) | BIT(NL80211_CHAN_WIDTH_80) | BIT(NL80211_CHAN_WIDTH_160), } }; static void mt7996_led_set_config(struct led_classdev *led_cdev, u8 delay_on, u8 delay_off) { struct mt7996_dev *dev; struct mt76_phy *mphy; u32 val; mphy = container_of(led_cdev, struct mt76_phy, leds.cdev); dev = container_of(mphy->dev, struct mt7996_dev, mt76); /* select TX blink mode, 2: only data frames */ mt76_rmw_field(dev, MT_TMAC_TCR0(0), MT_TMAC_TCR0_TX_BLINK, 2); /* enable LED */ mt76_wr(dev, MT_LED_EN(0), 1); /* set LED Tx blink on/off time */ val = FIELD_PREP(MT_LED_TX_BLINK_ON_MASK, delay_on) | FIELD_PREP(MT_LED_TX_BLINK_OFF_MASK, delay_off); mt76_wr(dev, MT_LED_TX_BLINK(0), val); /* control LED */ val = MT_LED_CTRL_BLINK_MODE | MT_LED_CTRL_KICK; if (mphy->leds.al) val |= MT_LED_CTRL_POLARITY; mt76_wr(dev, MT_LED_CTRL(0), val); mt76_clear(dev, MT_LED_CTRL(0), MT_LED_CTRL_KICK); } static int mt7996_led_set_blink(struct led_classdev *led_cdev, unsigned long *delay_on, unsigned long *delay_off) { u16 delta_on = 0, delta_off = 0; #define HW_TICK 10 #define TO_HW_TICK(_t) (((_t) > HW_TICK) ? ((_t) / HW_TICK) : HW_TICK) if (*delay_on) delta_on = TO_HW_TICK(*delay_on); if (*delay_off) delta_off = TO_HW_TICK(*delay_off); mt7996_led_set_config(led_cdev, delta_on, delta_off); return 0; } static void mt7996_led_set_brightness(struct led_classdev *led_cdev, enum led_brightness brightness) { if (!brightness) mt7996_led_set_config(led_cdev, 0, 0xff); else mt7996_led_set_config(led_cdev, 0xff, 0); } void mt7996_init_txpower(struct mt7996_dev *dev, struct ieee80211_supported_band *sband) { int i, nss = hweight8(dev->mphy.antenna_mask); int nss_delta = mt76_tx_power_nss_delta(nss); int pwr_delta = mt7996_eeprom_get_power_delta(dev, sband->band); struct mt76_power_limits limits; for (i = 0; i < sband->n_channels; i++) { struct ieee80211_channel *chan = &sband->channels[i]; int target_power = mt7996_eeprom_get_target_power(dev, chan); target_power += pwr_delta; target_power = mt76_get_rate_power_limits(&dev->mphy, chan, &limits, target_power); target_power += nss_delta; target_power = DIV_ROUND_UP(target_power, 2); chan->max_power = min_t(int, chan->max_reg_power, target_power); chan->orig_mpwr = target_power; } } static void mt7996_regd_notifier(struct wiphy *wiphy, struct regulatory_request *request) { struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); struct mt7996_dev *dev = mt7996_hw_dev(hw); struct mt7996_phy *phy = mt7996_hw_phy(hw); memcpy(dev->mt76.alpha2, request->alpha2, sizeof(dev->mt76.alpha2)); dev->mt76.region = request->dfs_region; if (dev->mt76.region == NL80211_DFS_UNSET) mt7996_mcu_rdd_background_enable(phy, NULL); mt7996_init_txpower(dev, &phy->mt76->sband_2g.sband); mt7996_init_txpower(dev, &phy->mt76->sband_5g.sband); mt7996_init_txpower(dev, &phy->mt76->sband_6g.sband); phy->mt76->dfs_state = MT_DFS_STATE_UNKNOWN; mt7996_dfs_init_radar_detector(phy); } static void mt7996_init_wiphy(struct ieee80211_hw *hw) { struct mt7996_phy *phy = mt7996_hw_phy(hw); struct mt76_dev *mdev = &phy->dev->mt76; struct wiphy *wiphy = hw->wiphy; u16 max_subframes = phy->dev->has_eht ? IEEE80211_MAX_AMPDU_BUF_EHT : IEEE80211_MAX_AMPDU_BUF_HE; hw->queues = 4; hw->max_rx_aggregation_subframes = max_subframes; hw->max_tx_aggregation_subframes = max_subframes; hw->netdev_features = NETIF_F_RXCSUM; hw->radiotap_timestamp.units_pos = IEEE80211_RADIOTAP_TIMESTAMP_UNIT_US; phy->slottime = 9; hw->sta_data_size = sizeof(struct mt7996_sta); hw->vif_data_size = sizeof(struct mt7996_vif); wiphy->iface_combinations = if_comb; wiphy->n_iface_combinations = ARRAY_SIZE(if_comb); wiphy->reg_notifier = mt7996_regd_notifier; wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH; wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BSS_COLOR); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_VHT_IBSS); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_LEGACY); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_HT); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_VHT); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_HE); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_UNSOL_BCAST_PROBE_RESP); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_FILS_DISCOVERY); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_ACK_SIGNAL_SUPPORT); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_MU_MIMO_AIR_SNIFFER); if (!mdev->dev->of_node || !of_property_read_bool(mdev->dev->of_node, "mediatek,disable-radar-background")) wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_RADAR_BACKGROUND); ieee80211_hw_set(hw, HAS_RATE_CONTROL); ieee80211_hw_set(hw, SUPPORTS_TX_ENCAP_OFFLOAD); ieee80211_hw_set(hw, SUPPORTS_RX_DECAP_OFFLOAD); ieee80211_hw_set(hw, WANT_MONITOR_VIF); hw->max_tx_fragments = 4; if (phy->mt76->cap.has_2ghz) { phy->mt76->sband_2g.sband.ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING | IEEE80211_HT_CAP_MAX_AMSDU; phy->mt76->sband_2g.sband.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2; } if (phy->mt76->cap.has_5ghz) { phy->mt76->sband_5g.sband.ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING | IEEE80211_HT_CAP_MAX_AMSDU; phy->mt76->sband_5g.sband.vht_cap.cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 | IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK | IEEE80211_VHT_CAP_SHORT_GI_160 | IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ; phy->mt76->sband_5g.sband.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_1; ieee80211_hw_set(hw, SUPPORTS_VHT_EXT_NSS_BW); } mt76_set_stream_caps(phy->mt76, true); mt7996_set_stream_vht_txbf_caps(phy); mt7996_set_stream_he_eht_caps(phy); wiphy->available_antennas_rx = phy->mt76->antenna_mask; wiphy->available_antennas_tx = phy->mt76->antenna_mask; } static void mt7996_mac_init_band(struct mt7996_dev *dev, u8 band) { u32 mask, set; /* clear estimated value of EIFS for Rx duration & OBSS time */ mt76_wr(dev, MT_WF_RMAC_RSVD0(band), MT_WF_RMAC_RSVD0_EIFS_CLR); /* clear backoff time for Rx duration */ mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME1(band), MT_WF_RMAC_MIB_NONQOSD_BACKOFF); mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME3(band), MT_WF_RMAC_MIB_QOS01_BACKOFF); mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME4(band), MT_WF_RMAC_MIB_QOS23_BACKOFF); /* clear backoff time and set software compensation for OBSS time */ mask = MT_WF_RMAC_MIB_OBSS_BACKOFF | MT_WF_RMAC_MIB_ED_OFFSET; set = FIELD_PREP(MT_WF_RMAC_MIB_OBSS_BACKOFF, 0) | FIELD_PREP(MT_WF_RMAC_MIB_ED_OFFSET, 4); mt76_rmw(dev, MT_WF_RMAC_MIB_AIRTIME0(band), mask, set); /* filter out non-resp frames and get instanstaeous signal reporting */ mask = MT_WTBLOFF_RSCR_RCPI_MODE | MT_WTBLOFF_RSCR_RCPI_PARAM; set = FIELD_PREP(MT_WTBLOFF_RSCR_RCPI_MODE, 0) | FIELD_PREP(MT_WTBLOFF_RSCR_RCPI_PARAM, 0x3); mt76_rmw(dev, MT_WTBLOFF_RSCR(band), mask, set); } static void mt7996_mac_init_basic_rates(struct mt7996_dev *dev) { int i; for (i = 0; i < ARRAY_SIZE(mt76_rates); i++) { u16 rate = mt76_rates[i].hw_value; u16 idx = MT7996_BASIC_RATES_TBL + i; rate = FIELD_PREP(MT_TX_RATE_MODE, rate >> 8) | FIELD_PREP(MT_TX_RATE_IDX, rate & GENMASK(7, 0)); mt7996_mac_set_fixed_rate_table(dev, idx, rate); } } void mt7996_mac_init(struct mt7996_dev *dev) { #define HIF_TXD_V2_1 4 int i; mt76_clear(dev, MT_MDP_DCR2, MT_MDP_DCR2_RX_TRANS_SHORT); for (i = 0; i < mt7996_wtbl_size(dev); i++) mt7996_mac_wtbl_update(dev, i, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); if (IS_ENABLED(CONFIG_MT76_LEDS)) { i = dev->mphy.leds.pin ? MT_LED_GPIO_MUX3 : MT_LED_GPIO_MUX2; mt76_rmw_field(dev, i, MT_LED_GPIO_SEL_MASK, 4); } /* txs report queue */ mt76_rmw_field(dev, MT_DMA_TCRF1(0), MT_DMA_TCRF1_QIDX, 0); mt76_rmw_field(dev, MT_DMA_TCRF1(1), MT_DMA_TCRF1_QIDX, 6); mt76_rmw_field(dev, MT_DMA_TCRF1(2), MT_DMA_TCRF1_QIDX, 0); /* rro module init */ mt7996_mcu_set_rro(dev, UNI_RRO_SET_PLATFORM_TYPE, 2); mt7996_mcu_set_rro(dev, UNI_RRO_SET_BYPASS_MODE, 3); mt7996_mcu_set_rro(dev, UNI_RRO_SET_TXFREE_PATH, 1); mt7996_mcu_wa_cmd(dev, MCU_WA_PARAM_CMD(SET), MCU_WA_PARAM_HW_PATH_HIF_VER, HIF_TXD_V2_1, 0); for (i = MT_BAND0; i <= MT_BAND2; i++) mt7996_mac_init_band(dev, i); mt7996_mac_init_basic_rates(dev); } int mt7996_txbf_init(struct mt7996_dev *dev) { int ret; if (dev->dbdc_support) { ret = mt7996_mcu_set_txbf(dev, BF_MOD_EN_CTRL); if (ret) return ret; } /* trigger sounding packets */ ret = mt7996_mcu_set_txbf(dev, BF_SOUNDING_ON); if (ret) return ret; /* enable eBF */ return mt7996_mcu_set_txbf(dev, BF_HW_EN_UPDATE); } static int mt7996_register_phy(struct mt7996_dev *dev, struct mt7996_phy *phy, enum mt76_band_id band) { struct mt76_phy *mphy; u32 mac_ofs, hif1_ofs = 0; int ret; if (band != MT_BAND1 && band != MT_BAND2) return 0; if ((band == MT_BAND1 && !dev->dbdc_support) || (band == MT_BAND2 && !dev->tbtc_support)) return 0; if (phy) return 0; if (band == MT_BAND2 && dev->hif2) hif1_ofs = MT_WFDMA0_PCIE1(0) - MT_WFDMA0(0); mphy = mt76_alloc_phy(&dev->mt76, sizeof(*phy), &mt7996_ops, band); if (!mphy) return -ENOMEM; phy = mphy->priv; phy->dev = dev; phy->mt76 = mphy; mphy->dev->phys[band] = mphy; INIT_DELAYED_WORK(&mphy->mac_work, mt7996_mac_work); ret = mt7996_eeprom_parse_hw_cap(dev, phy); if (ret) goto error; mac_ofs = band == MT_BAND2 ? MT_EE_MAC_ADDR3 : MT_EE_MAC_ADDR2; memcpy(mphy->macaddr, dev->mt76.eeprom.data + mac_ofs, ETH_ALEN); /* Make the extra PHY MAC address local without overlapping with * the usual MAC address allocation scheme on multiple virtual interfaces */ if (!is_valid_ether_addr(mphy->macaddr)) { memcpy(mphy->macaddr, dev->mt76.eeprom.data + MT_EE_MAC_ADDR, ETH_ALEN); mphy->macaddr[0] |= 2; mphy->macaddr[0] ^= BIT(7); if (band == MT_BAND2) mphy->macaddr[0] ^= BIT(6); } mt76_eeprom_override(mphy); /* init wiphy according to mphy and phy */ mt7996_init_wiphy(mphy->hw); ret = mt76_connac_init_tx_queues(phy->mt76, MT_TXQ_ID(band), MT7996_TX_RING_SIZE, MT_TXQ_RING_BASE(band) + hif1_ofs, 0); if (ret) goto error; ret = mt76_register_phy(mphy, true, mt76_rates, ARRAY_SIZE(mt76_rates)); if (ret) goto error; ret = mt7996_init_debugfs(phy); if (ret) goto error; return 0; error: mphy->dev->phys[band] = NULL; ieee80211_free_hw(mphy->hw); return ret; } static void mt7996_unregister_phy(struct mt7996_phy *phy, enum mt76_band_id band) { struct mt76_phy *mphy; if (!phy) return; mphy = phy->dev->mt76.phys[band]; mt76_unregister_phy(mphy); ieee80211_free_hw(mphy->hw); phy->dev->mt76.phys[band] = NULL; } static void mt7996_init_work(struct work_struct *work) { struct mt7996_dev *dev = container_of(work, struct mt7996_dev, init_work); mt7996_mcu_set_eeprom(dev); mt7996_mac_init(dev); mt7996_init_txpower(dev, &dev->mphy.sband_2g.sband); mt7996_init_txpower(dev, &dev->mphy.sband_5g.sband); mt7996_init_txpower(dev, &dev->mphy.sband_6g.sband); mt7996_txbf_init(dev); } void mt7996_wfsys_reset(struct mt7996_dev *dev) { mt76_set(dev, MT_WF_SUBSYS_RST, 0x1); msleep(20); mt76_clear(dev, MT_WF_SUBSYS_RST, 0x1); msleep(20); } static int mt7996_init_hardware(struct mt7996_dev *dev) { int ret, idx; mt76_wr(dev, MT_INT_SOURCE_CSR, ~0); INIT_WORK(&dev->init_work, mt7996_init_work); dev->dbdc_support = true; dev->tbtc_support = true; ret = mt7996_dma_init(dev); if (ret) return ret; set_bit(MT76_STATE_INITIALIZED, &dev->mphy.state); ret = mt7996_mcu_init(dev); if (ret) return ret; ret = mt7996_eeprom_init(dev); if (ret < 0) return ret; /* Beacon and mgmt frames should occupy wcid 0 */ idx = mt76_wcid_alloc(dev->mt76.wcid_mask, MT7996_WTBL_STA); if (idx) return -ENOSPC; dev->mt76.global_wcid.idx = idx; dev->mt76.global_wcid.hw_key_idx = -1; dev->mt76.global_wcid.tx_info |= MT_WCID_TX_INFO_SET; rcu_assign_pointer(dev->mt76.wcid[idx], &dev->mt76.global_wcid); return 0; } void mt7996_set_stream_vht_txbf_caps(struct mt7996_phy *phy) { int sts; u32 *cap; if (!phy->mt76->cap.has_5ghz) return; sts = hweight16(phy->mt76->chainmask); cap = &phy->mt76->sband_5g.sband.vht_cap.cap; *cap |= IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE | FIELD_PREP(IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK, sts - 1); *cap &= ~(IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK | IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE | IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE); if (sts < 2) return; *cap |= IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE | IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE | FIELD_PREP(IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK, sts - 1); } static void mt7996_set_stream_he_txbf_caps(struct mt7996_phy *phy, struct ieee80211_sta_he_cap *he_cap, int vif) { struct ieee80211_he_cap_elem *elem = &he_cap->he_cap_elem; int sts = hweight16(phy->mt76->chainmask); u8 c; #ifdef CONFIG_MAC80211_MESH if (vif == NL80211_IFTYPE_MESH_POINT) return; #endif elem->phy_cap_info[3] &= ~IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER; elem->phy_cap_info[4] &= ~IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER; c = IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK | IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK; elem->phy_cap_info[5] &= ~c; c = IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB | IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB; elem->phy_cap_info[6] &= ~c; elem->phy_cap_info[7] &= ~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK; c = IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US | IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO | IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO; elem->phy_cap_info[2] |= c; c = IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE | IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4 | IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4; elem->phy_cap_info[4] |= c; /* do not support NG16 due to spec D4.0 changes subcarrier idx */ c = IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU | IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU; if (vif == NL80211_IFTYPE_STATION) c |= IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO; elem->phy_cap_info[6] |= c; if (sts < 2) return; /* the maximum cap is 4 x 3, (Nr, Nc) = (3, 2) */ elem->phy_cap_info[7] |= min_t(int, sts - 1, 2) << 3; if (vif != NL80211_IFTYPE_AP) return; elem->phy_cap_info[3] |= IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER; elem->phy_cap_info[4] |= IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER; c = FIELD_PREP(IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK, sts - 1) | FIELD_PREP(IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK, sts - 1); elem->phy_cap_info[5] |= c; c = IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB | IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB; elem->phy_cap_info[6] |= c; c = IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ | IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ; elem->phy_cap_info[7] |= c; } static void mt7996_init_he_caps(struct mt7996_phy *phy, enum nl80211_band band, struct ieee80211_sband_iftype_data *data, enum nl80211_iftype iftype) { struct ieee80211_sta_he_cap *he_cap = &data->he_cap; struct ieee80211_he_cap_elem *he_cap_elem = &he_cap->he_cap_elem; struct ieee80211_he_mcs_nss_supp *he_mcs = &he_cap->he_mcs_nss_supp; int i, nss = hweight8(phy->mt76->antenna_mask); u16 mcs_map = 0; for (i = 0; i < 8; i++) { if (i < nss) mcs_map |= (IEEE80211_HE_MCS_SUPPORT_0_11 << (i * 2)); else mcs_map |= (IEEE80211_HE_MCS_NOT_SUPPORTED << (i * 2)); } he_cap->has_he = true; he_cap_elem->mac_cap_info[0] = IEEE80211_HE_MAC_CAP0_HTC_HE; he_cap_elem->mac_cap_info[3] = IEEE80211_HE_MAC_CAP3_OMI_CONTROL | IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3; he_cap_elem->mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU; if (band == NL80211_BAND_2GHZ) he_cap_elem->phy_cap_info[0] = IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G; else he_cap_elem->phy_cap_info[0] = IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; he_cap_elem->phy_cap_info[1] = IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD; he_cap_elem->phy_cap_info[2] = IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ | IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ; switch (iftype) { case NL80211_IFTYPE_AP: he_cap_elem->mac_cap_info[0] |= IEEE80211_HE_MAC_CAP0_TWT_RES; he_cap_elem->mac_cap_info[2] |= IEEE80211_HE_MAC_CAP2_BSR; he_cap_elem->mac_cap_info[4] |= IEEE80211_HE_MAC_CAP4_BQR; he_cap_elem->mac_cap_info[5] |= IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX; he_cap_elem->phy_cap_info[3] |= IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK | IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK; he_cap_elem->phy_cap_info[6] |= IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE | IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT; he_cap_elem->phy_cap_info[9] |= IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU | IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU; break; case NL80211_IFTYPE_STATION: he_cap_elem->mac_cap_info[1] |= IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US; if (band == NL80211_BAND_2GHZ) he_cap_elem->phy_cap_info[0] |= IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G; else he_cap_elem->phy_cap_info[0] |= IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G; he_cap_elem->phy_cap_info[1] |= IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A | IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US; he_cap_elem->phy_cap_info[3] |= IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK | IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK; he_cap_elem->phy_cap_info[6] |= IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB | IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE | IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT; he_cap_elem->phy_cap_info[7] |= IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP | IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI; he_cap_elem->phy_cap_info[8] |= IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G | IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU | IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU | IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484; he_cap_elem->phy_cap_info[9] |= IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM | IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK | IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU | IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU | IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB | IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB; break; default: break; } he_mcs->rx_mcs_80 = cpu_to_le16(mcs_map); he_mcs->tx_mcs_80 = cpu_to_le16(mcs_map); he_mcs->rx_mcs_160 = cpu_to_le16(mcs_map); he_mcs->tx_mcs_160 = cpu_to_le16(mcs_map); mt7996_set_stream_he_txbf_caps(phy, he_cap, iftype); memset(he_cap->ppe_thres, 0, sizeof(he_cap->ppe_thres)); if (he_cap_elem->phy_cap_info[6] & IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) { mt76_connac_gen_ppe_thresh(he_cap->ppe_thres, nss); } else { he_cap_elem->phy_cap_info[9] |= u8_encode_bits(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US, IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK); } if (band == NL80211_BAND_6GHZ) { u16 cap = IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS | IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS; cap |= u16_encode_bits(IEEE80211_HT_MPDU_DENSITY_0_5, IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START) | u16_encode_bits(IEEE80211_VHT_MAX_AMPDU_1024K, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP) | u16_encode_bits(IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN); data->he_6ghz_capa.capa = cpu_to_le16(cap); } } static void mt7996_init_eht_caps(struct mt7996_phy *phy, enum nl80211_band band, struct ieee80211_sband_iftype_data *data, enum nl80211_iftype iftype) { struct ieee80211_sta_eht_cap *eht_cap = &data->eht_cap; struct ieee80211_eht_cap_elem_fixed *eht_cap_elem = &eht_cap->eht_cap_elem; struct ieee80211_eht_mcs_nss_supp *eht_nss = &eht_cap->eht_mcs_nss_supp; enum nl80211_chan_width width = phy->mt76->chandef.width; int nss = hweight8(phy->mt76->antenna_mask); int sts = hweight16(phy->mt76->chainmask); u8 val; if (!phy->dev->has_eht) return; eht_cap->has_eht = true; eht_cap_elem->mac_cap_info[0] = IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS | IEEE80211_EHT_MAC_CAP0_OM_CONTROL; eht_cap_elem->phy_cap_info[0] = IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ | IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI | IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER | IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE; eht_cap_elem->phy_cap_info[0] |= u8_encode_bits(u8_get_bits(sts - 1, BIT(0)), IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK); eht_cap_elem->phy_cap_info[1] = u8_encode_bits(u8_get_bits(sts - 1, GENMASK(2, 1)), IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK) | u8_encode_bits(sts - 1, IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK) | u8_encode_bits(sts - 1, IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK); eht_cap_elem->phy_cap_info[2] = u8_encode_bits(sts - 1, IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK) | u8_encode_bits(sts - 1, IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK) | u8_encode_bits(sts - 1, IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK); eht_cap_elem->phy_cap_info[3] = IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK | IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK | IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK | IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK | IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK | IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK | IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK; eht_cap_elem->phy_cap_info[4] = u8_encode_bits(min_t(int, sts - 1, 2), IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK); eht_cap_elem->phy_cap_info[5] = IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK | u8_encode_bits(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US, IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK) | u8_encode_bits(u8_get_bits(0x11, GENMASK(1, 0)), IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK); val = width == NL80211_CHAN_WIDTH_320 ? 0xf : width == NL80211_CHAN_WIDTH_160 ? 0x7 : width == NL80211_CHAN_WIDTH_80 ? 0x3 : 0x1; eht_cap_elem->phy_cap_info[6] = u8_encode_bits(u8_get_bits(0x11, GENMASK(4, 2)), IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK) | u8_encode_bits(val, IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK); eht_cap_elem->phy_cap_info[7] = IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ | IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ | IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ | IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ | IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ | IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ; val = u8_encode_bits(nss, IEEE80211_EHT_MCS_NSS_RX) | u8_encode_bits(nss, IEEE80211_EHT_MCS_NSS_TX); #define SET_EHT_MAX_NSS(_bw, _val) do { \ eht_nss->bw._##_bw.rx_tx_mcs9_max_nss = _val; \ eht_nss->bw._##_bw.rx_tx_mcs11_max_nss = _val; \ eht_nss->bw._##_bw.rx_tx_mcs13_max_nss = _val; \ } while (0) SET_EHT_MAX_NSS(80, val); SET_EHT_MAX_NSS(160, val); SET_EHT_MAX_NSS(320, val); #undef SET_EHT_MAX_NSS } static void __mt7996_set_stream_he_eht_caps(struct mt7996_phy *phy, struct ieee80211_supported_band *sband, enum nl80211_band band) { struct ieee80211_sband_iftype_data *data = phy->iftype[band]; int i, n = 0; for (i = 0; i < NUM_NL80211_IFTYPES; i++) { switch (i) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_AP: #ifdef CONFIG_MAC80211_MESH case NL80211_IFTYPE_MESH_POINT: #endif break; default: continue; } data[n].types_mask = BIT(i); mt7996_init_he_caps(phy, band, &data[n], i); mt7996_init_eht_caps(phy, band, &data[n], i); n++; } sband->iftype_data = data; sband->n_iftype_data = n; } void mt7996_set_stream_he_eht_caps(struct mt7996_phy *phy) { if (phy->mt76->cap.has_2ghz) __mt7996_set_stream_he_eht_caps(phy, &phy->mt76->sband_2g.sband, NL80211_BAND_2GHZ); if (phy->mt76->cap.has_5ghz) __mt7996_set_stream_he_eht_caps(phy, &phy->mt76->sband_5g.sband, NL80211_BAND_5GHZ); if (phy->mt76->cap.has_6ghz) __mt7996_set_stream_he_eht_caps(phy, &phy->mt76->sband_6g.sband, NL80211_BAND_6GHZ); } int mt7996_register_device(struct mt7996_dev *dev) { struct ieee80211_hw *hw = mt76_hw(dev); int ret; dev->phy.dev = dev; dev->phy.mt76 = &dev->mt76.phy; dev->mt76.phy.priv = &dev->phy; INIT_WORK(&dev->rc_work, mt7996_mac_sta_rc_work); INIT_DELAYED_WORK(&dev->mphy.mac_work, mt7996_mac_work); INIT_LIST_HEAD(&dev->sta_rc_list); INIT_LIST_HEAD(&dev->twt_list); init_waitqueue_head(&dev->reset_wait); INIT_WORK(&dev->reset_work, mt7996_mac_reset_work); INIT_WORK(&dev->dump_work, mt7996_mac_dump_work); mutex_init(&dev->dump_mutex); ret = mt7996_init_hardware(dev); if (ret) return ret; mt7996_init_wiphy(hw); /* init led callbacks */ if (IS_ENABLED(CONFIG_MT76_LEDS)) { dev->mphy.leds.cdev.brightness_set = mt7996_led_set_brightness; dev->mphy.leds.cdev.blink_set = mt7996_led_set_blink; } ret = mt76_register_device(&dev->mt76, true, mt76_rates, ARRAY_SIZE(mt76_rates)); if (ret) return ret; ieee80211_queue_work(mt76_hw(dev), &dev->init_work); ret = mt7996_register_phy(dev, mt7996_phy2(dev), MT_BAND1); if (ret) return ret; ret = mt7996_register_phy(dev, mt7996_phy3(dev), MT_BAND2); if (ret) return ret; dev->recovery.hw_init_done = true; ret = mt7996_init_debugfs(&dev->phy); if (ret) return ret; return mt7996_coredump_register(dev); } void mt7996_unregister_device(struct mt7996_dev *dev) { mt7996_unregister_phy(mt7996_phy3(dev), MT_BAND2); mt7996_unregister_phy(mt7996_phy2(dev), MT_BAND1); mt7996_coredump_unregister(dev); mt76_unregister_device(&dev->mt76); mt7996_mcu_exit(dev); mt7996_tx_token_put(dev); mt7996_dma_cleanup(dev); tasklet_disable(&dev->mt76.irq_tasklet); mt76_free_device(&dev->mt76); }
linux-master
drivers/net/wireless/mediatek/mt76/mt7996/init.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2022 MediaTek Inc. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include "mt7996.h" #include "mac.h" #include "../trace.h" static LIST_HEAD(hif_list); static DEFINE_SPINLOCK(hif_lock); static u32 hif_idx; static const struct pci_device_id mt7996_pci_device_table[] = { { PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7990) }, { }, }; static const struct pci_device_id mt7996_hif_device_table[] = { { PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7991) }, { }, }; static struct mt7996_hif *mt7996_pci_get_hif2(u32 idx) { struct mt7996_hif *hif; u32 val; spin_lock_bh(&hif_lock); list_for_each_entry(hif, &hif_list, list) { val = readl(hif->regs + MT_PCIE_RECOG_ID); val &= MT_PCIE_RECOG_ID_MASK; if (val != idx) continue; get_device(hif->dev); goto out; } hif = NULL; out: spin_unlock_bh(&hif_lock); return hif; } static void mt7996_put_hif2(struct mt7996_hif *hif) { if (!hif) return; put_device(hif->dev); } static struct mt7996_hif *mt7996_pci_init_hif2(struct pci_dev *pdev) { hif_idx++; if (!pci_get_device(PCI_VENDOR_ID_MEDIATEK, 0x7991, NULL)) return NULL; writel(hif_idx | MT_PCIE_RECOG_ID_SEM, pcim_iomap_table(pdev)[0] + MT_PCIE_RECOG_ID); return mt7996_pci_get_hif2(hif_idx); } static int mt7996_pci_hif2_probe(struct pci_dev *pdev) { struct mt7996_hif *hif; hif = devm_kzalloc(&pdev->dev, sizeof(*hif), GFP_KERNEL); if (!hif) return -ENOMEM; hif->dev = &pdev->dev; hif->regs = pcim_iomap_table(pdev)[0]; hif->irq = pdev->irq; spin_lock_bh(&hif_lock); list_add(&hif->list, &hif_list); spin_unlock_bh(&hif_lock); pci_set_drvdata(pdev, hif); return 0; } static int mt7996_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct pci_dev *hif2_dev; struct mt7996_dev *dev; struct mt76_dev *mdev; struct mt7996_hif *hif2; int irq, ret; ret = pcim_enable_device(pdev); if (ret) return ret; ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev)); if (ret) return ret; pci_set_master(pdev); ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); if (ret) return ret; mt76_pci_disable_aspm(pdev); if (id->device == 0x7991) return mt7996_pci_hif2_probe(pdev); dev = mt7996_mmio_probe(&pdev->dev, pcim_iomap_table(pdev)[0], id->device); if (IS_ERR(dev)) return PTR_ERR(dev); mdev = &dev->mt76; mt7996_wfsys_reset(dev); hif2 = mt7996_pci_init_hif2(pdev); ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); if (ret < 0) goto free_device; irq = pdev->irq; ret = devm_request_irq(mdev->dev, irq, mt7996_irq_handler, IRQF_SHARED, KBUILD_MODNAME, dev); if (ret) goto free_irq_vector; mt76_wr(dev, MT_INT_MASK_CSR, 0); /* master switch of PCIe tnterrupt enable */ mt76_wr(dev, MT_PCIE_MAC_INT_ENABLE, 0xff); if (hif2) { hif2_dev = container_of(hif2->dev, struct pci_dev, dev); dev->hif2 = hif2; ret = pci_alloc_irq_vectors(hif2_dev, 1, 1, PCI_IRQ_ALL_TYPES); if (ret < 0) goto free_hif2; dev->hif2->irq = hif2_dev->irq; ret = devm_request_irq(mdev->dev, dev->hif2->irq, mt7996_irq_handler, IRQF_SHARED, KBUILD_MODNAME "-hif", dev); if (ret) goto free_hif2_irq_vector; mt76_wr(dev, MT_INT1_MASK_CSR, 0); /* master switch of PCIe tnterrupt enable */ mt76_wr(dev, MT_PCIE1_MAC_INT_ENABLE, 0xff); } ret = mt7996_register_device(dev); if (ret) goto free_hif2_irq; return 0; free_hif2_irq: if (dev->hif2) devm_free_irq(mdev->dev, dev->hif2->irq, dev); free_hif2_irq_vector: if (dev->hif2) pci_free_irq_vectors(hif2_dev); free_hif2: if (dev->hif2) put_device(dev->hif2->dev); devm_free_irq(mdev->dev, irq, dev); free_irq_vector: pci_free_irq_vectors(pdev); free_device: mt76_free_device(&dev->mt76); return ret; } static void mt7996_hif_remove(struct pci_dev *pdev) { struct mt7996_hif *hif = pci_get_drvdata(pdev); list_del(&hif->list); } static void mt7996_pci_remove(struct pci_dev *pdev) { struct mt76_dev *mdev; struct mt7996_dev *dev; mdev = pci_get_drvdata(pdev); dev = container_of(mdev, struct mt7996_dev, mt76); mt7996_put_hif2(dev->hif2); mt7996_unregister_device(dev); } struct pci_driver mt7996_hif_driver = { .name = KBUILD_MODNAME "_hif", .id_table = mt7996_hif_device_table, .probe = mt7996_pci_probe, .remove = mt7996_hif_remove, }; struct pci_driver mt7996_pci_driver = { .name = KBUILD_MODNAME, .id_table = mt7996_pci_device_table, .probe = mt7996_pci_probe, .remove = mt7996_pci_remove, }; MODULE_DEVICE_TABLE(pci, mt7996_pci_device_table); MODULE_DEVICE_TABLE(pci, mt7996_hif_device_table); MODULE_FIRMWARE(MT7996_FIRMWARE_WA); MODULE_FIRMWARE(MT7996_FIRMWARE_WM); MODULE_FIRMWARE(MT7996_FIRMWARE_DSP); MODULE_FIRMWARE(MT7996_ROM_PATCH);
linux-master
drivers/net/wireless/mediatek/mt76/mt7996/pci.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2022 MediaTek Inc. */ #include <linux/firmware.h> #include "mt7996.h" #include "eeprom.h" static int mt7996_check_eeprom(struct mt7996_dev *dev) { u8 *eeprom = dev->mt76.eeprom.data; u16 val = get_unaligned_le16(eeprom); switch (val) { case 0x7990: return 0; default: return -EINVAL; } } static char *mt7996_eeprom_name(struct mt7996_dev *dev) { /* reserve for future variants */ return MT7996_EEPROM_DEFAULT; } static int mt7996_eeprom_load_default(struct mt7996_dev *dev) { u8 *eeprom = dev->mt76.eeprom.data; const struct firmware *fw = NULL; int ret; ret = request_firmware(&fw, mt7996_eeprom_name(dev), dev->mt76.dev); if (ret) return ret; if (!fw || !fw->data) { dev_err(dev->mt76.dev, "Invalid default bin\n"); ret = -EINVAL; goto out; } memcpy(eeprom, fw->data, MT7996_EEPROM_SIZE); dev->flash_mode = true; out: release_firmware(fw); return ret; } static int mt7996_eeprom_load(struct mt7996_dev *dev) { int ret; ret = mt76_eeprom_init(&dev->mt76, MT7996_EEPROM_SIZE); if (ret < 0) return ret; if (ret) { dev->flash_mode = true; } else { u8 free_block_num; u32 block_num, i; u32 eeprom_blk_size = MT7996_EEPROM_BLOCK_SIZE; ret = mt7996_mcu_get_eeprom_free_block(dev, &free_block_num); if (ret < 0) return ret; /* efuse info isn't enough */ if (free_block_num >= 59) return -EINVAL; /* read eeprom data from efuse */ block_num = DIV_ROUND_UP(MT7996_EEPROM_SIZE, eeprom_blk_size); for (i = 0; i < block_num; i++) { ret = mt7996_mcu_get_eeprom(dev, i * eeprom_blk_size); if (ret < 0) return ret; } } return mt7996_check_eeprom(dev); } static int mt7996_eeprom_parse_efuse_hw_cap(struct mt7996_dev *dev) { #define MODE_HE_ONLY BIT(0) #define WTBL_SIZE_GROUP GENMASK(31, 28) u32 cap = 0; int ret; ret = mt7996_mcu_get_chip_config(dev, &cap); if (ret) return ret; if (cap) { dev->has_eht = !(cap & MODE_HE_ONLY); dev->wtbl_size_group = u32_get_bits(cap, WTBL_SIZE_GROUP); } if (dev->wtbl_size_group < 2 || dev->wtbl_size_group > 4) dev->wtbl_size_group = 2; /* set default */ return 0; } static int mt7996_eeprom_parse_band_config(struct mt7996_phy *phy) { u8 *eeprom = phy->dev->mt76.eeprom.data; u32 val = eeprom[MT_EE_WIFI_CONF]; int ret = 0; switch (phy->mt76->band_idx) { case MT_BAND1: val = FIELD_GET(MT_EE_WIFI_CONF1_BAND_SEL, val); break; case MT_BAND2: val = eeprom[MT_EE_WIFI_CONF + 1]; val = FIELD_GET(MT_EE_WIFI_CONF2_BAND_SEL, val); break; default: val = FIELD_GET(MT_EE_WIFI_CONF0_BAND_SEL, val); break; } switch (val) { case MT_EE_BAND_SEL_2GHZ: phy->mt76->cap.has_2ghz = true; break; case MT_EE_BAND_SEL_5GHZ: phy->mt76->cap.has_5ghz = true; break; case MT_EE_BAND_SEL_6GHZ: phy->mt76->cap.has_6ghz = true; break; default: ret = -EINVAL; break; } return ret; } int mt7996_eeprom_parse_hw_cap(struct mt7996_dev *dev, struct mt7996_phy *phy) { u8 path, nss, band_idx = phy->mt76->band_idx; u8 *eeprom = dev->mt76.eeprom.data; struct mt76_phy *mphy = phy->mt76; int ret; switch (band_idx) { case MT_BAND1: path = FIELD_GET(MT_EE_WIFI_CONF2_TX_PATH_BAND1, eeprom[MT_EE_WIFI_CONF + 2]); nss = FIELD_GET(MT_EE_WIFI_CONF5_STREAM_NUM_BAND1, eeprom[MT_EE_WIFI_CONF + 5]); break; case MT_BAND2: path = FIELD_GET(MT_EE_WIFI_CONF2_TX_PATH_BAND2, eeprom[MT_EE_WIFI_CONF + 2]); nss = FIELD_GET(MT_EE_WIFI_CONF5_STREAM_NUM_BAND2, eeprom[MT_EE_WIFI_CONF + 5]); break; default: path = FIELD_GET(MT_EE_WIFI_CONF1_TX_PATH_BAND0, eeprom[MT_EE_WIFI_CONF + 1]); nss = FIELD_GET(MT_EE_WIFI_CONF4_STREAM_NUM_BAND0, eeprom[MT_EE_WIFI_CONF + 4]); break; } if (!path || path > 4) path = 4; nss = min_t(u8, min_t(u8, 4, nss), path); mphy->antenna_mask = BIT(nss) - 1; mphy->chainmask = (BIT(path) - 1) << dev->chainshift[band_idx]; dev->chainmask |= mphy->chainmask; if (band_idx < MT_BAND2) dev->chainshift[band_idx + 1] = dev->chainshift[band_idx] + hweight16(mphy->chainmask); ret = mt7996_eeprom_parse_efuse_hw_cap(dev); if (ret) return ret; return mt7996_eeprom_parse_band_config(phy); } int mt7996_eeprom_init(struct mt7996_dev *dev) { int ret; ret = mt7996_eeprom_load(dev); if (ret < 0) { if (ret != -EINVAL) return ret; dev_warn(dev->mt76.dev, "eeprom load fail, use default bin\n"); ret = mt7996_eeprom_load_default(dev); if (ret) return ret; } ret = mt7996_eeprom_parse_hw_cap(dev, &dev->phy); if (ret < 0) return ret; memcpy(dev->mphy.macaddr, dev->mt76.eeprom.data + MT_EE_MAC_ADDR, ETH_ALEN); mt76_eeprom_override(&dev->mphy); return 0; } int mt7996_eeprom_get_target_power(struct mt7996_dev *dev, struct ieee80211_channel *chan) { u8 *eeprom = dev->mt76.eeprom.data; int target_power; if (chan->band == NL80211_BAND_5GHZ) target_power = eeprom[MT_EE_TX0_POWER_5G + mt7996_get_channel_group_5g(chan->hw_value)]; else if (chan->band == NL80211_BAND_6GHZ) target_power = eeprom[MT_EE_TX0_POWER_6G + mt7996_get_channel_group_6g(chan->hw_value)]; else target_power = eeprom[MT_EE_TX0_POWER_2G]; return target_power; } s8 mt7996_eeprom_get_power_delta(struct mt7996_dev *dev, int band) { u8 *eeprom = dev->mt76.eeprom.data; u32 val; s8 delta; if (band == NL80211_BAND_5GHZ) val = eeprom[MT_EE_RATE_DELTA_5G]; else if (band == NL80211_BAND_6GHZ) val = eeprom[MT_EE_RATE_DELTA_6G]; else val = eeprom[MT_EE_RATE_DELTA_2G]; if (!(val & MT_EE_RATE_DELTA_EN)) return 0; delta = FIELD_GET(MT_EE_RATE_DELTA_MASK, val); return val & MT_EE_RATE_DELTA_SIGN ? delta : -delta; }
linux-master
drivers/net/wireless/mediatek/mt76/mt7996/eeprom.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2022 MediaTek Inc. */ #include "mt7996.h" #include "../dma.h" #include "mac.h" static int mt7996_poll_tx(struct napi_struct *napi, int budget) { struct mt7996_dev *dev; dev = container_of(napi, struct mt7996_dev, mt76.tx_napi); mt76_connac_tx_cleanup(&dev->mt76); if (napi_complete_done(napi, 0)) mt7996_irq_enable(dev, MT_INT_TX_DONE_MCU); return 0; } static void mt7996_dma_config(struct mt7996_dev *dev) { #define Q_CONFIG(q, wfdma, int, id) do { \ if (wfdma) \ dev->q_wfdma_mask |= (1 << (q)); \ dev->q_int_mask[(q)] = int; \ dev->q_id[(q)] = id; \ } while (0) #define MCUQ_CONFIG(q, wfdma, int, id) Q_CONFIG(q, (wfdma), (int), (id)) #define RXQ_CONFIG(q, wfdma, int, id) Q_CONFIG(__RXQ(q), (wfdma), (int), (id)) #define TXQ_CONFIG(q, wfdma, int, id) Q_CONFIG(__TXQ(q), (wfdma), (int), (id)) /* rx queue */ RXQ_CONFIG(MT_RXQ_MCU, WFDMA0, MT_INT_RX_DONE_WM, MT7996_RXQ_MCU_WM); RXQ_CONFIG(MT_RXQ_MCU_WA, WFDMA0, MT_INT_RX_DONE_WA, MT7996_RXQ_MCU_WA); /* band0/band1 */ RXQ_CONFIG(MT_RXQ_MAIN, WFDMA0, MT_INT_RX_DONE_BAND0, MT7996_RXQ_BAND0); RXQ_CONFIG(MT_RXQ_MAIN_WA, WFDMA0, MT_INT_RX_DONE_WA_MAIN, MT7996_RXQ_MCU_WA_MAIN); /* band2 */ RXQ_CONFIG(MT_RXQ_BAND2, WFDMA0, MT_INT_RX_DONE_BAND2, MT7996_RXQ_BAND2); RXQ_CONFIG(MT_RXQ_BAND2_WA, WFDMA0, MT_INT_RX_DONE_WA_TRI, MT7996_RXQ_MCU_WA_TRI); /* data tx queue */ TXQ_CONFIG(0, WFDMA0, MT_INT_TX_DONE_BAND0, MT7996_TXQ_BAND0); TXQ_CONFIG(1, WFDMA0, MT_INT_TX_DONE_BAND1, MT7996_TXQ_BAND1); TXQ_CONFIG(2, WFDMA0, MT_INT_TX_DONE_BAND2, MT7996_TXQ_BAND2); /* mcu tx queue */ MCUQ_CONFIG(MT_MCUQ_WM, WFDMA0, MT_INT_TX_DONE_MCU_WM, MT7996_TXQ_MCU_WM); MCUQ_CONFIG(MT_MCUQ_WA, WFDMA0, MT_INT_TX_DONE_MCU_WA, MT7996_TXQ_MCU_WA); MCUQ_CONFIG(MT_MCUQ_FWDL, WFDMA0, MT_INT_TX_DONE_FWDL, MT7996_TXQ_FWDL); } static void __mt7996_dma_prefetch(struct mt7996_dev *dev, u32 ofs) { #define PREFETCH(_base, _depth) ((_base) << 16 | (_depth)) /* prefetch SRAM wrapping boundary for tx/rx ring. */ mt76_wr(dev, MT_MCUQ_EXT_CTRL(MT_MCUQ_FWDL) + ofs, PREFETCH(0x0, 0x2)); mt76_wr(dev, MT_MCUQ_EXT_CTRL(MT_MCUQ_WM) + ofs, PREFETCH(0x20, 0x2)); mt76_wr(dev, MT_TXQ_EXT_CTRL(0) + ofs, PREFETCH(0x40, 0x4)); mt76_wr(dev, MT_TXQ_EXT_CTRL(1) + ofs, PREFETCH(0x80, 0x4)); mt76_wr(dev, MT_MCUQ_EXT_CTRL(MT_MCUQ_WA) + ofs, PREFETCH(0xc0, 0x2)); mt76_wr(dev, MT_TXQ_EXT_CTRL(2) + ofs, PREFETCH(0xe0, 0x4)); mt76_wr(dev, MT_RXQ_BAND1_CTRL(MT_RXQ_MCU) + ofs, PREFETCH(0x120, 0x2)); mt76_wr(dev, MT_RXQ_BAND1_CTRL(MT_RXQ_MCU_WA) + ofs, PREFETCH(0x140, 0x2)); mt76_wr(dev, MT_RXQ_BAND1_CTRL(MT_RXQ_MAIN_WA) + ofs, PREFETCH(0x160, 0x2)); mt76_wr(dev, MT_RXQ_BAND1_CTRL(MT_RXQ_BAND2_WA) + ofs, PREFETCH(0x180, 0x2)); mt76_wr(dev, MT_RXQ_BAND1_CTRL(MT_RXQ_MAIN) + ofs, PREFETCH(0x1a0, 0x10)); mt76_wr(dev, MT_RXQ_BAND1_CTRL(MT_RXQ_BAND2) + ofs, PREFETCH(0x2a0, 0x10)); mt76_set(dev, WF_WFDMA0_GLO_CFG_EXT1 + ofs, WF_WFDMA0_GLO_CFG_EXT1_CALC_MODE); } void mt7996_dma_prefetch(struct mt7996_dev *dev) { __mt7996_dma_prefetch(dev, 0); if (dev->hif2) __mt7996_dma_prefetch(dev, MT_WFDMA0_PCIE1(0) - MT_WFDMA0(0)); } static void mt7996_dma_disable(struct mt7996_dev *dev, bool reset) { u32 hif1_ofs = 0; if (dev->hif2) hif1_ofs = MT_WFDMA0_PCIE1(0) - MT_WFDMA0(0); if (reset) { mt76_clear(dev, MT_WFDMA0_RST, MT_WFDMA0_RST_DMASHDL_ALL_RST | MT_WFDMA0_RST_LOGIC_RST); mt76_set(dev, MT_WFDMA0_RST, MT_WFDMA0_RST_DMASHDL_ALL_RST | MT_WFDMA0_RST_LOGIC_RST); if (dev->hif2) { mt76_clear(dev, MT_WFDMA0_RST + hif1_ofs, MT_WFDMA0_RST_DMASHDL_ALL_RST | MT_WFDMA0_RST_LOGIC_RST); mt76_set(dev, MT_WFDMA0_RST + hif1_ofs, MT_WFDMA0_RST_DMASHDL_ALL_RST | MT_WFDMA0_RST_LOGIC_RST); } } /* disable */ mt76_clear(dev, MT_WFDMA0_GLO_CFG, MT_WFDMA0_GLO_CFG_TX_DMA_EN | MT_WFDMA0_GLO_CFG_RX_DMA_EN | MT_WFDMA0_GLO_CFG_OMIT_TX_INFO | MT_WFDMA0_GLO_CFG_OMIT_RX_INFO | MT_WFDMA0_GLO_CFG_OMIT_RX_INFO_PFET2); if (dev->hif2) { mt76_clear(dev, MT_WFDMA0_GLO_CFG + hif1_ofs, MT_WFDMA0_GLO_CFG_TX_DMA_EN | MT_WFDMA0_GLO_CFG_RX_DMA_EN | MT_WFDMA0_GLO_CFG_OMIT_TX_INFO | MT_WFDMA0_GLO_CFG_OMIT_RX_INFO | MT_WFDMA0_GLO_CFG_OMIT_RX_INFO_PFET2); } } void mt7996_dma_start(struct mt7996_dev *dev, bool reset) { u32 hif1_ofs = 0; u32 irq_mask; if (dev->hif2) hif1_ofs = MT_WFDMA0_PCIE1(0) - MT_WFDMA0(0); /* enable WFDMA Tx/Rx */ if (!reset) { mt76_set(dev, MT_WFDMA0_GLO_CFG, MT_WFDMA0_GLO_CFG_TX_DMA_EN | MT_WFDMA0_GLO_CFG_RX_DMA_EN | MT_WFDMA0_GLO_CFG_OMIT_TX_INFO | MT_WFDMA0_GLO_CFG_OMIT_RX_INFO_PFET2); if (dev->hif2) mt76_set(dev, MT_WFDMA0_GLO_CFG + hif1_ofs, MT_WFDMA0_GLO_CFG_TX_DMA_EN | MT_WFDMA0_GLO_CFG_RX_DMA_EN | MT_WFDMA0_GLO_CFG_OMIT_TX_INFO | MT_WFDMA0_GLO_CFG_OMIT_RX_INFO_PFET2); } /* enable interrupts for TX/RX rings */ irq_mask = MT_INT_MCU_CMD; if (reset) goto done; irq_mask = MT_INT_RX_DONE_MCU | MT_INT_TX_DONE_MCU; if (!dev->mphy.band_idx) irq_mask |= MT_INT_BAND0_RX_DONE; if (dev->dbdc_support) irq_mask |= MT_INT_BAND1_RX_DONE; if (dev->tbtc_support) irq_mask |= MT_INT_BAND2_RX_DONE; done: mt7996_irq_enable(dev, irq_mask); mt7996_irq_disable(dev, 0); } static void mt7996_dma_enable(struct mt7996_dev *dev, bool reset) { u32 hif1_ofs = 0; if (dev->hif2) hif1_ofs = MT_WFDMA0_PCIE1(0) - MT_WFDMA0(0); /* reset dma idx */ mt76_wr(dev, MT_WFDMA0_RST_DTX_PTR, ~0); if (dev->hif2) mt76_wr(dev, MT_WFDMA0_RST_DTX_PTR + hif1_ofs, ~0); /* configure delay interrupt off */ mt76_wr(dev, MT_WFDMA0_PRI_DLY_INT_CFG0, 0); mt76_wr(dev, MT_WFDMA0_PRI_DLY_INT_CFG1, 0); mt76_wr(dev, MT_WFDMA0_PRI_DLY_INT_CFG2, 0); if (dev->hif2) { mt76_wr(dev, MT_WFDMA0_PRI_DLY_INT_CFG0 + hif1_ofs, 0); mt76_wr(dev, MT_WFDMA0_PRI_DLY_INT_CFG1 + hif1_ofs, 0); mt76_wr(dev, MT_WFDMA0_PRI_DLY_INT_CFG2 + hif1_ofs, 0); } /* configure perfetch settings */ mt7996_dma_prefetch(dev); /* hif wait WFDMA idle */ mt76_set(dev, MT_WFDMA0_BUSY_ENA, MT_WFDMA0_BUSY_ENA_TX_FIFO0 | MT_WFDMA0_BUSY_ENA_TX_FIFO1 | MT_WFDMA0_BUSY_ENA_RX_FIFO); if (dev->hif2) mt76_set(dev, MT_WFDMA0_BUSY_ENA + hif1_ofs, MT_WFDMA0_PCIE1_BUSY_ENA_TX_FIFO0 | MT_WFDMA0_PCIE1_BUSY_ENA_TX_FIFO1 | MT_WFDMA0_PCIE1_BUSY_ENA_RX_FIFO); mt76_poll(dev, MT_WFDMA_EXT_CSR_HIF_MISC, MT_WFDMA_EXT_CSR_HIF_MISC_BUSY, 0, 1000); /* GLO_CFG_EXT0 */ mt76_set(dev, WF_WFDMA0_GLO_CFG_EXT0, WF_WFDMA0_GLO_CFG_EXT0_RX_WB_RXD | WF_WFDMA0_GLO_CFG_EXT0_WED_MERGE_MODE); /* GLO_CFG_EXT1 */ mt76_set(dev, WF_WFDMA0_GLO_CFG_EXT1, WF_WFDMA0_GLO_CFG_EXT1_TX_FCTRL_MODE); if (dev->hif2) { /* GLO_CFG_EXT0 */ mt76_set(dev, WF_WFDMA0_GLO_CFG_EXT0 + hif1_ofs, WF_WFDMA0_GLO_CFG_EXT0_RX_WB_RXD | WF_WFDMA0_GLO_CFG_EXT0_WED_MERGE_MODE); /* GLO_CFG_EXT1 */ mt76_set(dev, WF_WFDMA0_GLO_CFG_EXT1 + hif1_ofs, WF_WFDMA0_GLO_CFG_EXT1_TX_FCTRL_MODE); mt76_set(dev, MT_WFDMA_HOST_CONFIG, MT_WFDMA_HOST_CONFIG_PDMA_BAND); } if (dev->hif2) { /* fix hardware limitation, pcie1's rx ring3 is not available * so, redirect pcie0 rx ring3 interrupt to pcie1 */ mt76_set(dev, MT_WFDMA0_RX_INT_PCIE_SEL, MT_WFDMA0_RX_INT_SEL_RING3); /* TODO: redirect rx ring6 interrupt to pcie0 for wed function */ } mt7996_dma_start(dev, reset); } int mt7996_dma_init(struct mt7996_dev *dev) { u32 hif1_ofs = 0; int ret; mt7996_dma_config(dev); mt76_dma_attach(&dev->mt76); if (dev->hif2) hif1_ofs = MT_WFDMA0_PCIE1(0) - MT_WFDMA0(0); mt7996_dma_disable(dev, true); /* init tx queue */ ret = mt76_connac_init_tx_queues(dev->phy.mt76, MT_TXQ_ID(dev->mphy.band_idx), MT7996_TX_RING_SIZE, MT_TXQ_RING_BASE(0), 0); if (ret) return ret; /* command to WM */ ret = mt76_init_mcu_queue(&dev->mt76, MT_MCUQ_WM, MT_MCUQ_ID(MT_MCUQ_WM), MT7996_TX_MCU_RING_SIZE, MT_MCUQ_RING_BASE(MT_MCUQ_WM)); if (ret) return ret; /* command to WA */ ret = mt76_init_mcu_queue(&dev->mt76, MT_MCUQ_WA, MT_MCUQ_ID(MT_MCUQ_WA), MT7996_TX_MCU_RING_SIZE, MT_MCUQ_RING_BASE(MT_MCUQ_WA)); if (ret) return ret; /* firmware download */ ret = mt76_init_mcu_queue(&dev->mt76, MT_MCUQ_FWDL, MT_MCUQ_ID(MT_MCUQ_FWDL), MT7996_TX_FWDL_RING_SIZE, MT_MCUQ_RING_BASE(MT_MCUQ_FWDL)); if (ret) return ret; /* event from WM */ ret = mt76_queue_alloc(dev, &dev->mt76.q_rx[MT_RXQ_MCU], MT_RXQ_ID(MT_RXQ_MCU), MT7996_RX_MCU_RING_SIZE, MT_RX_BUF_SIZE, MT_RXQ_RING_BASE(MT_RXQ_MCU)); if (ret) return ret; /* event from WA */ ret = mt76_queue_alloc(dev, &dev->mt76.q_rx[MT_RXQ_MCU_WA], MT_RXQ_ID(MT_RXQ_MCU_WA), MT7996_RX_MCU_RING_SIZE_WA, MT_RX_BUF_SIZE, MT_RXQ_RING_BASE(MT_RXQ_MCU_WA)); if (ret) return ret; /* rx data queue for band0 and band1 */ ret = mt76_queue_alloc(dev, &dev->mt76.q_rx[MT_RXQ_MAIN], MT_RXQ_ID(MT_RXQ_MAIN), MT7996_RX_RING_SIZE, MT_RX_BUF_SIZE, MT_RXQ_RING_BASE(MT_RXQ_MAIN)); if (ret) return ret; /* tx free notify event from WA for band0 */ ret = mt76_queue_alloc(dev, &dev->mt76.q_rx[MT_RXQ_MAIN_WA], MT_RXQ_ID(MT_RXQ_MAIN_WA), MT7996_RX_MCU_RING_SIZE, MT_RX_BUF_SIZE, MT_RXQ_RING_BASE(MT_RXQ_MAIN_WA)); if (ret) return ret; if (dev->tbtc_support || dev->mphy.band_idx == MT_BAND2) { /* rx data queue for band2 */ ret = mt76_queue_alloc(dev, &dev->mt76.q_rx[MT_RXQ_BAND2], MT_RXQ_ID(MT_RXQ_BAND2), MT7996_RX_RING_SIZE, MT_RX_BUF_SIZE, MT_RXQ_RING_BASE(MT_RXQ_BAND2) + hif1_ofs); if (ret) return ret; /* tx free notify event from WA for band2 * use pcie0's rx ring3, but, redirect pcie0 rx ring3 interrupt to pcie1 */ ret = mt76_queue_alloc(dev, &dev->mt76.q_rx[MT_RXQ_BAND2_WA], MT_RXQ_ID(MT_RXQ_BAND2_WA), MT7996_RX_MCU_RING_SIZE, MT_RX_BUF_SIZE, MT_RXQ_RING_BASE(MT_RXQ_BAND2_WA)); if (ret) return ret; } ret = mt76_init_queues(dev, mt76_dma_rx_poll); if (ret < 0) return ret; netif_napi_add_tx(&dev->mt76.tx_napi_dev, &dev->mt76.tx_napi, mt7996_poll_tx); napi_enable(&dev->mt76.tx_napi); mt7996_dma_enable(dev, false); return 0; } void mt7996_dma_reset(struct mt7996_dev *dev, bool force) { struct mt76_phy *phy2 = dev->mt76.phys[MT_BAND1]; struct mt76_phy *phy3 = dev->mt76.phys[MT_BAND2]; u32 hif1_ofs = MT_WFDMA0_PCIE1(0) - MT_WFDMA0(0); int i; mt76_clear(dev, MT_WFDMA0_GLO_CFG, MT_WFDMA0_GLO_CFG_TX_DMA_EN | MT_WFDMA0_GLO_CFG_RX_DMA_EN); if (dev->hif2) mt76_clear(dev, MT_WFDMA0_GLO_CFG + hif1_ofs, MT_WFDMA0_GLO_CFG_TX_DMA_EN | MT_WFDMA0_GLO_CFG_RX_DMA_EN); usleep_range(1000, 2000); for (i = 0; i < __MT_TXQ_MAX; i++) { mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[i], true); if (phy2) mt76_queue_tx_cleanup(dev, phy2->q_tx[i], true); if (phy3) mt76_queue_tx_cleanup(dev, phy3->q_tx[i], true); } for (i = 0; i < __MT_MCUQ_MAX; i++) mt76_queue_tx_cleanup(dev, dev->mt76.q_mcu[i], true); mt76_for_each_q_rx(&dev->mt76, i) mt76_queue_rx_cleanup(dev, &dev->mt76.q_rx[i]); mt76_tx_status_check(&dev->mt76, true); /* reset wfsys */ if (force) mt7996_wfsys_reset(dev); mt7996_dma_disable(dev, force); /* reset hw queues */ for (i = 0; i < __MT_TXQ_MAX; i++) { mt76_queue_reset(dev, dev->mphy.q_tx[i]); if (phy2) mt76_queue_reset(dev, phy2->q_tx[i]); if (phy3) mt76_queue_reset(dev, phy3->q_tx[i]); } for (i = 0; i < __MT_MCUQ_MAX; i++) mt76_queue_reset(dev, dev->mt76.q_mcu[i]); mt76_for_each_q_rx(&dev->mt76, i) { mt76_queue_reset(dev, &dev->mt76.q_rx[i]); } mt76_tx_status_check(&dev->mt76, true); mt76_for_each_q_rx(&dev->mt76, i) mt76_queue_rx_reset(dev, i); mt7996_dma_enable(dev, !force); } void mt7996_dma_cleanup(struct mt7996_dev *dev) { mt7996_dma_disable(dev, true); mt76_dma_cleanup(&dev->mt76); }
linux-master
drivers/net/wireless/mediatek/mt76/mt7996/dma.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2022 MediaTek Inc. */ #include "mt7996.h" #include "mcu.h" #include "mac.h" static bool mt7996_dev_running(struct mt7996_dev *dev) { struct mt7996_phy *phy; if (test_bit(MT76_STATE_RUNNING, &dev->mphy.state)) return true; phy = mt7996_phy2(dev); if (phy && test_bit(MT76_STATE_RUNNING, &phy->mt76->state)) return true; phy = mt7996_phy3(dev); return phy && test_bit(MT76_STATE_RUNNING, &phy->mt76->state); } int mt7996_run(struct ieee80211_hw *hw) { struct mt7996_dev *dev = mt7996_hw_dev(hw); struct mt7996_phy *phy = mt7996_hw_phy(hw); bool running; int ret; running = mt7996_dev_running(dev); if (!running) { ret = mt7996_mcu_set_hdr_trans(dev, true); if (ret) goto out; } mt7996_mac_enable_nf(dev, phy->mt76->band_idx); ret = mt7996_mcu_set_rts_thresh(phy, 0x92b); if (ret) goto out; ret = mt7996_mcu_set_radio_en(phy, true); if (ret) goto out; ret = mt7996_mcu_set_chan_info(phy, UNI_CHANNEL_RX_PATH); if (ret) goto out; set_bit(MT76_STATE_RUNNING, &phy->mt76->state); ieee80211_queue_delayed_work(hw, &phy->mt76->mac_work, MT7996_WATCHDOG_TIME); if (!running) mt7996_mac_reset_counters(phy); out: return ret; } static int mt7996_start(struct ieee80211_hw *hw) { struct mt7996_dev *dev = mt7996_hw_dev(hw); int ret; flush_work(&dev->init_work); mutex_lock(&dev->mt76.mutex); ret = mt7996_run(hw); mutex_unlock(&dev->mt76.mutex); return ret; } static void mt7996_stop(struct ieee80211_hw *hw) { struct mt7996_dev *dev = mt7996_hw_dev(hw); struct mt7996_phy *phy = mt7996_hw_phy(hw); cancel_delayed_work_sync(&phy->mt76->mac_work); mutex_lock(&dev->mt76.mutex); mt7996_mcu_set_radio_en(phy, false); clear_bit(MT76_STATE_RUNNING, &phy->mt76->state); mutex_unlock(&dev->mt76.mutex); } static inline int get_free_idx(u32 mask, u8 start, u8 end) { return ffs(~mask & GENMASK(end, start)); } static int get_omac_idx(enum nl80211_iftype type, u64 mask) { int i; switch (type) { case NL80211_IFTYPE_MESH_POINT: case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_STATION: /* prefer hw bssid slot 1-3 */ i = get_free_idx(mask, HW_BSSID_1, HW_BSSID_3); if (i) return i - 1; if (type != NL80211_IFTYPE_STATION) break; i = get_free_idx(mask, EXT_BSSID_1, EXT_BSSID_MAX); if (i) return i - 1; if (~mask & BIT(HW_BSSID_0)) return HW_BSSID_0; break; case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_AP: /* ap uses hw bssid 0 and ext bssid */ if (~mask & BIT(HW_BSSID_0)) return HW_BSSID_0; i = get_free_idx(mask, EXT_BSSID_1, EXT_BSSID_MAX); if (i) return i - 1; break; default: WARN_ON(1); break; } return -1; } static void mt7996_init_bitrate_mask(struct ieee80211_vif *vif) { struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; int i; for (i = 0; i < ARRAY_SIZE(mvif->bitrate_mask.control); i++) { mvif->bitrate_mask.control[i].gi = NL80211_TXRATE_DEFAULT_GI; mvif->bitrate_mask.control[i].he_gi = 0xff; mvif->bitrate_mask.control[i].he_ltf = 0xff; mvif->bitrate_mask.control[i].legacy = GENMASK(31, 0); memset(mvif->bitrate_mask.control[i].ht_mcs, 0xff, sizeof(mvif->bitrate_mask.control[i].ht_mcs)); memset(mvif->bitrate_mask.control[i].vht_mcs, 0xff, sizeof(mvif->bitrate_mask.control[i].vht_mcs)); memset(mvif->bitrate_mask.control[i].he_mcs, 0xff, sizeof(mvif->bitrate_mask.control[i].he_mcs)); } } static int mt7996_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct mt7996_dev *dev = mt7996_hw_dev(hw); struct mt7996_phy *phy = mt7996_hw_phy(hw); struct mt76_txq *mtxq; u8 band_idx = phy->mt76->band_idx; int idx, ret = 0; mutex_lock(&dev->mt76.mutex); if (vif->type == NL80211_IFTYPE_MONITOR && is_zero_ether_addr(vif->addr)) phy->monitor_vif = vif; mvif->mt76.idx = __ffs64(~dev->mt76.vif_mask); if (mvif->mt76.idx >= mt7996_max_interface_num(dev)) { ret = -ENOSPC; goto out; } idx = get_omac_idx(vif->type, phy->omac_mask); if (idx < 0) { ret = -ENOSPC; goto out; } mvif->mt76.omac_idx = idx; mvif->phy = phy; mvif->mt76.band_idx = band_idx; mvif->mt76.wmm_idx = band_idx; ret = mt7996_mcu_add_dev_info(phy, vif, true); if (ret) goto out; dev->mt76.vif_mask |= BIT_ULL(mvif->mt76.idx); phy->omac_mask |= BIT_ULL(mvif->mt76.omac_idx); idx = MT7996_WTBL_RESERVED - mvif->mt76.idx; INIT_LIST_HEAD(&mvif->sta.rc_list); INIT_LIST_HEAD(&mvif->sta.wcid.poll_list); mvif->sta.wcid.idx = idx; mvif->sta.wcid.phy_idx = band_idx; mvif->sta.wcid.hw_key_idx = -1; mvif->sta.wcid.tx_info |= MT_WCID_TX_INFO_SET; mt76_packet_id_init(&mvif->sta.wcid); mt7996_mac_wtbl_update(dev, idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); if (vif->txq) { mtxq = (struct mt76_txq *)vif->txq->drv_priv; mtxq->wcid = idx; } if (vif->type != NL80211_IFTYPE_AP && (!mvif->mt76.omac_idx || mvif->mt76.omac_idx > 3)) vif->offload_flags = 0; vif->offload_flags |= IEEE80211_OFFLOAD_ENCAP_4ADDR; if (phy->mt76->chandef.chan->band != NL80211_BAND_2GHZ) mvif->mt76.basic_rates_idx = MT7996_BASIC_RATES_TBL + 4; else mvif->mt76.basic_rates_idx = MT7996_BASIC_RATES_TBL; mt7996_init_bitrate_mask(vif); mt7996_mcu_add_bss_info(phy, vif, true); mt7996_mcu_add_sta(dev, vif, NULL, true); rcu_assign_pointer(dev->mt76.wcid[idx], &mvif->sta.wcid); out: mutex_unlock(&dev->mt76.mutex); return ret; } static void mt7996_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct mt7996_sta *msta = &mvif->sta; struct mt7996_dev *dev = mt7996_hw_dev(hw); struct mt7996_phy *phy = mt7996_hw_phy(hw); int idx = msta->wcid.idx; mt7996_mcu_add_bss_info(phy, vif, false); mt7996_mcu_add_sta(dev, vif, NULL, false); if (vif == phy->monitor_vif) phy->monitor_vif = NULL; mt7996_mcu_add_dev_info(phy, vif, false); rcu_assign_pointer(dev->mt76.wcid[idx], NULL); mutex_lock(&dev->mt76.mutex); dev->mt76.vif_mask &= ~BIT_ULL(mvif->mt76.idx); phy->omac_mask &= ~BIT_ULL(mvif->mt76.omac_idx); mutex_unlock(&dev->mt76.mutex); spin_lock_bh(&dev->mt76.sta_poll_lock); if (!list_empty(&msta->wcid.poll_list)) list_del_init(&msta->wcid.poll_list); spin_unlock_bh(&dev->mt76.sta_poll_lock); mt76_packet_id_flush(&dev->mt76, &msta->wcid); } int mt7996_set_channel(struct mt7996_phy *phy) { struct mt7996_dev *dev = phy->dev; int ret; cancel_delayed_work_sync(&phy->mt76->mac_work); mutex_lock(&dev->mt76.mutex); set_bit(MT76_RESET, &phy->mt76->state); mt76_set_channel(phy->mt76); ret = mt7996_mcu_set_chan_info(phy, UNI_CHANNEL_SWITCH); if (ret) goto out; ret = mt7996_dfs_init_radar_detector(phy); mt7996_mac_cca_stats_reset(phy); mt7996_mac_reset_counters(phy); phy->noise = 0; out: clear_bit(MT76_RESET, &phy->mt76->state); mutex_unlock(&dev->mt76.mutex); mt76_txq_schedule_all(phy->mt76); ieee80211_queue_delayed_work(phy->mt76->hw, &phy->mt76->mac_work, MT7996_WATCHDOG_TIME); return ret; } static int mt7996_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { struct mt7996_dev *dev = mt7996_hw_dev(hw); struct mt7996_phy *phy = mt7996_hw_phy(hw); struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct mt7996_sta *msta = sta ? (struct mt7996_sta *)sta->drv_priv : &mvif->sta; struct mt76_wcid *wcid = &msta->wcid; u8 *wcid_keyidx = &wcid->hw_key_idx; int idx = key->keyidx; int err = 0; /* The hardware does not support per-STA RX GTK, fallback * to software mode for these. */ if ((vif->type == NL80211_IFTYPE_ADHOC || vif->type == NL80211_IFTYPE_MESH_POINT) && (key->cipher == WLAN_CIPHER_SUITE_TKIP || key->cipher == WLAN_CIPHER_SUITE_CCMP) && !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) return -EOPNOTSUPP; /* fall back to sw encryption for unsupported ciphers */ switch (key->cipher) { case WLAN_CIPHER_SUITE_AES_CMAC: wcid_keyidx = &wcid->hw_key_idx2; key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIE; break; case WLAN_CIPHER_SUITE_TKIP: case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: case WLAN_CIPHER_SUITE_SMS4: break; case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: default: return -EOPNOTSUPP; } mutex_lock(&dev->mt76.mutex); if (cmd == SET_KEY && !sta && !mvif->mt76.cipher) { mvif->mt76.cipher = mt76_connac_mcu_get_cipher(key->cipher); mt7996_mcu_add_bss_info(phy, vif, true); } if (cmd == SET_KEY) { *wcid_keyidx = idx; } else { if (idx == *wcid_keyidx) *wcid_keyidx = -1; goto out; } mt76_wcid_key_setup(&dev->mt76, wcid, key); err = mt7996_mcu_add_key(&dev->mt76, vif, &msta->bip, key, MCU_WMWA_UNI_CMD(STA_REC_UPDATE), &msta->wcid, cmd); out: mutex_unlock(&dev->mt76.mutex); return err; } static int mt7996_config(struct ieee80211_hw *hw, u32 changed) { struct mt7996_dev *dev = mt7996_hw_dev(hw); struct mt7996_phy *phy = mt7996_hw_phy(hw); int ret; if (changed & IEEE80211_CONF_CHANGE_CHANNEL) { ieee80211_stop_queues(hw); ret = mt7996_set_channel(phy); if (ret) return ret; ieee80211_wake_queues(hw); } mutex_lock(&dev->mt76.mutex); if (changed & IEEE80211_CONF_CHANGE_MONITOR) { bool enabled = !!(hw->conf.flags & IEEE80211_CONF_MONITOR); if (!enabled) phy->rxfilter |= MT_WF_RFCR_DROP_OTHER_UC; else phy->rxfilter &= ~MT_WF_RFCR_DROP_OTHER_UC; mt76_rmw_field(dev, MT_DMA_DCR0(phy->mt76->band_idx), MT_DMA_DCR0_RXD_G5_EN, enabled); mt76_wr(dev, MT_WF_RFCR(phy->mt76->band_idx), phy->rxfilter); } mutex_unlock(&dev->mt76.mutex); return 0; } static int mt7996_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, unsigned int link_id, u16 queue, const struct ieee80211_tx_queue_params *params) { struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; /* no need to update right away, we'll get BSS_CHANGED_QOS */ queue = mt76_connac_lmac_mapping(queue); mvif->queue_params[queue] = *params; return 0; } static void mt7996_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags, u64 multicast) { struct mt7996_dev *dev = mt7996_hw_dev(hw); struct mt7996_phy *phy = mt7996_hw_phy(hw); u32 ctl_flags = MT_WF_RFCR1_DROP_ACK | MT_WF_RFCR1_DROP_BF_POLL | MT_WF_RFCR1_DROP_BA | MT_WF_RFCR1_DROP_CFEND | MT_WF_RFCR1_DROP_CFACK; u32 flags = 0; #define MT76_FILTER(_flag, _hw) do { \ flags |= *total_flags & FIF_##_flag; \ phy->rxfilter &= ~(_hw); \ phy->rxfilter |= !(flags & FIF_##_flag) * (_hw); \ } while (0) mutex_lock(&dev->mt76.mutex); phy->rxfilter &= ~(MT_WF_RFCR_DROP_OTHER_BSS | MT_WF_RFCR_DROP_OTHER_BEACON | MT_WF_RFCR_DROP_FRAME_REPORT | MT_WF_RFCR_DROP_PROBEREQ | MT_WF_RFCR_DROP_MCAST_FILTERED | MT_WF_RFCR_DROP_MCAST | MT_WF_RFCR_DROP_BCAST | MT_WF_RFCR_DROP_DUPLICATE | MT_WF_RFCR_DROP_A2_BSSID | MT_WF_RFCR_DROP_UNWANTED_CTL | MT_WF_RFCR_DROP_STBC_MULTI); MT76_FILTER(OTHER_BSS, MT_WF_RFCR_DROP_OTHER_TIM | MT_WF_RFCR_DROP_A3_MAC | MT_WF_RFCR_DROP_A3_BSSID); MT76_FILTER(FCSFAIL, MT_WF_RFCR_DROP_FCSFAIL); MT76_FILTER(CONTROL, MT_WF_RFCR_DROP_CTS | MT_WF_RFCR_DROP_RTS | MT_WF_RFCR_DROP_CTL_RSV | MT_WF_RFCR_DROP_NDPA); *total_flags = flags; mt76_wr(dev, MT_WF_RFCR(phy->mt76->band_idx), phy->rxfilter); if (*total_flags & FIF_CONTROL) mt76_clear(dev, MT_WF_RFCR1(phy->mt76->band_idx), ctl_flags); else mt76_set(dev, MT_WF_RFCR1(phy->mt76->band_idx), ctl_flags); mutex_unlock(&dev->mt76.mutex); } static void mt7996_update_bss_color(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct cfg80211_he_bss_color *bss_color) { struct mt7996_dev *dev = mt7996_hw_dev(hw); switch (vif->type) { case NL80211_IFTYPE_AP: { struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; if (mvif->mt76.omac_idx > HW_BSSID_MAX) return; fallthrough; } case NL80211_IFTYPE_STATION: mt7996_mcu_update_bss_color(dev, vif, bss_color); break; default: break; } } static u8 mt7996_get_rates_table(struct ieee80211_hw *hw, struct ieee80211_vif *vif, bool beacon, bool mcast) { struct mt76_vif *mvif = (struct mt76_vif *)vif->drv_priv; struct mt76_phy *mphy = hw->priv; u16 rate; u8 i, idx, ht; rate = mt76_connac2_mac_tx_rate_val(mphy, vif, beacon, mcast); ht = FIELD_GET(MT_TX_RATE_MODE, rate) > MT_PHY_TYPE_OFDM; if (beacon && ht) { struct mt7996_dev *dev = mt7996_hw_dev(hw); /* must odd index */ idx = MT7996_BEACON_RATES_TBL + 2 * (mvif->idx % 20); mt7996_mac_set_fixed_rate_table(dev, idx, rate); return idx; } idx = FIELD_GET(MT_TX_RATE_IDX, rate); for (i = 0; i < ARRAY_SIZE(mt76_rates); i++) if ((mt76_rates[i].hw_value & GENMASK(7, 0)) == idx) return MT7996_BASIC_RATES_TBL + i; return mvif->basic_rates_idx; } static void mt7996_update_mu_group(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *info) { struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct mt7996_dev *dev = mt7996_hw_dev(hw); u8 band = mvif->mt76.band_idx; u32 *mu; mu = (u32 *)info->mu_group.membership; mt76_wr(dev, MT_WF_PHYRX_BAND_GID_TAB_VLD0(band), mu[0]); mt76_wr(dev, MT_WF_PHYRX_BAND_GID_TAB_VLD1(band), mu[1]); mu = (u32 *)info->mu_group.position; mt76_wr(dev, MT_WF_PHYRX_BAND_GID_TAB_POS0(band), mu[0]); mt76_wr(dev, MT_WF_PHYRX_BAND_GID_TAB_POS1(band), mu[1]); mt76_wr(dev, MT_WF_PHYRX_BAND_GID_TAB_POS2(band), mu[2]); mt76_wr(dev, MT_WF_PHYRX_BAND_GID_TAB_POS3(band), mu[3]); } static void mt7996_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *info, u64 changed) { struct mt76_vif *mvif = (struct mt76_vif *)vif->drv_priv; struct mt7996_phy *phy = mt7996_hw_phy(hw); struct mt7996_dev *dev = mt7996_hw_dev(hw); mutex_lock(&dev->mt76.mutex); /* station mode uses BSSID to map the wlan entry to a peer, * and then peer references bss_info_rfch to set bandwidth cap. */ if (changed & BSS_CHANGED_BSSID && vif->type == NL80211_IFTYPE_STATION) { bool join = !is_zero_ether_addr(info->bssid); mt7996_mcu_add_bss_info(phy, vif, join); mt7996_mcu_add_sta(dev, vif, NULL, join); } if (changed & BSS_CHANGED_ASSOC) mt7996_mcu_add_bss_info(phy, vif, vif->cfg.assoc); if (changed & BSS_CHANGED_ERP_CTS_PROT) mt7996_mac_enable_rtscts(dev, vif, info->use_cts_prot); if (changed & BSS_CHANGED_ERP_SLOT) { int slottime = info->use_short_slot ? 9 : 20; if (slottime != phy->slottime) { phy->slottime = slottime; mt7996_mcu_set_timing(phy, vif); } } if (changed & BSS_CHANGED_MCAST_RATE) mvif->mcast_rates_idx = mt7996_get_rates_table(hw, vif, false, true); if (changed & BSS_CHANGED_BASIC_RATES) mvif->basic_rates_idx = mt7996_get_rates_table(hw, vif, false, false); if (changed & BSS_CHANGED_BEACON_ENABLED && info->enable_beacon) { mt7996_mcu_add_bss_info(phy, vif, true); mt7996_mcu_add_sta(dev, vif, NULL, true); } /* ensure that enable txcmd_mode after bss_info */ if (changed & (BSS_CHANGED_QOS | BSS_CHANGED_BEACON_ENABLED)) mt7996_mcu_set_tx(dev, vif); if (changed & BSS_CHANGED_HE_OBSS_PD) mt7996_mcu_add_obss_spr(phy, vif, &info->he_obss_pd); if (changed & BSS_CHANGED_HE_BSS_COLOR) mt7996_update_bss_color(hw, vif, &info->he_bss_color); if (changed & (BSS_CHANGED_BEACON | BSS_CHANGED_BEACON_ENABLED)) { mvif->beacon_rates_idx = mt7996_get_rates_table(hw, vif, true, false); mt7996_mcu_add_beacon(hw, vif, info->enable_beacon); } if (changed & BSS_CHANGED_UNSOL_BCAST_PROBE_RESP || changed & BSS_CHANGED_FILS_DISCOVERY) mt7996_mcu_beacon_inband_discov(dev, vif, changed); if (changed & BSS_CHANGED_MU_GROUPS) mt7996_update_mu_group(hw, vif, info); mutex_unlock(&dev->mt76.mutex); } static void mt7996_channel_switch_beacon(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct cfg80211_chan_def *chandef) { struct mt7996_dev *dev = mt7996_hw_dev(hw); mutex_lock(&dev->mt76.mutex); mt7996_mcu_add_beacon(hw, vif, true); mutex_unlock(&dev->mt76.mutex); } int mt7996_mac_sta_add(struct mt76_dev *mdev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7996_dev *dev = container_of(mdev, struct mt7996_dev, mt76); struct mt7996_sta *msta = (struct mt7996_sta *)sta->drv_priv; struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; u8 band_idx = mvif->phy->mt76->band_idx; int ret, idx; idx = mt76_wcid_alloc(dev->mt76.wcid_mask, MT7996_WTBL_STA); if (idx < 0) return -ENOSPC; INIT_LIST_HEAD(&msta->rc_list); INIT_LIST_HEAD(&msta->wcid.poll_list); msta->vif = mvif; msta->wcid.sta = 1; msta->wcid.idx = idx; msta->wcid.phy_idx = band_idx; msta->wcid.tx_info |= MT_WCID_TX_INFO_SET; msta->jiffies = jiffies; ewma_avg_signal_init(&msta->avg_ack_signal); mt7996_mac_wtbl_update(dev, idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); ret = mt7996_mcu_add_sta(dev, vif, sta, true); if (ret) return ret; return mt7996_mcu_add_rate_ctrl(dev, vif, sta, false); } void mt7996_mac_sta_remove(struct mt76_dev *mdev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7996_dev *dev = container_of(mdev, struct mt7996_dev, mt76); struct mt7996_sta *msta = (struct mt7996_sta *)sta->drv_priv; int i; mt7996_mcu_add_sta(dev, vif, sta, false); mt7996_mac_wtbl_update(dev, msta->wcid.idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); for (i = 0; i < ARRAY_SIZE(msta->twt.flow); i++) mt7996_mac_twt_teardown_flow(dev, msta, i); spin_lock_bh(&mdev->sta_poll_lock); if (!list_empty(&msta->wcid.poll_list)) list_del_init(&msta->wcid.poll_list); if (!list_empty(&msta->rc_list)) list_del_init(&msta->rc_list); spin_unlock_bh(&mdev->sta_poll_lock); } static void mt7996_tx(struct ieee80211_hw *hw, struct ieee80211_tx_control *control, struct sk_buff *skb) { struct mt7996_dev *dev = mt7996_hw_dev(hw); struct mt76_phy *mphy = hw->priv; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_vif *vif = info->control.vif; struct mt76_wcid *wcid = &dev->mt76.global_wcid; if (control->sta) { struct mt7996_sta *sta; sta = (struct mt7996_sta *)control->sta->drv_priv; wcid = &sta->wcid; } if (vif && !control->sta) { struct mt7996_vif *mvif; mvif = (struct mt7996_vif *)vif->drv_priv; wcid = &mvif->sta.wcid; } mt76_tx(mphy, control->sta, wcid, skb); } static int mt7996_set_rts_threshold(struct ieee80211_hw *hw, u32 val) { struct mt7996_phy *phy = mt7996_hw_phy(hw); int ret; mutex_lock(&phy->dev->mt76.mutex); ret = mt7996_mcu_set_rts_thresh(phy, val); mutex_unlock(&phy->dev->mt76.mutex); return ret; } static int mt7996_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params) { enum ieee80211_ampdu_mlme_action action = params->action; struct mt7996_dev *dev = mt7996_hw_dev(hw); struct ieee80211_sta *sta = params->sta; struct ieee80211_txq *txq = sta->txq[params->tid]; struct mt7996_sta *msta = (struct mt7996_sta *)sta->drv_priv; u16 tid = params->tid; u16 ssn = params->ssn; struct mt76_txq *mtxq; int ret = 0; if (!txq) return -EINVAL; mtxq = (struct mt76_txq *)txq->drv_priv; mutex_lock(&dev->mt76.mutex); switch (action) { case IEEE80211_AMPDU_RX_START: mt76_rx_aggr_start(&dev->mt76, &msta->wcid, tid, ssn, params->buf_size); ret = mt7996_mcu_add_rx_ba(dev, params, true); break; case IEEE80211_AMPDU_RX_STOP: mt76_rx_aggr_stop(&dev->mt76, &msta->wcid, tid); ret = mt7996_mcu_add_rx_ba(dev, params, false); break; case IEEE80211_AMPDU_TX_OPERATIONAL: mtxq->aggr = true; mtxq->send_bar = false; ret = mt7996_mcu_add_tx_ba(dev, params, true); break; case IEEE80211_AMPDU_TX_STOP_FLUSH: case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: mtxq->aggr = false; clear_bit(tid, &msta->wcid.ampdu_state); ret = mt7996_mcu_add_tx_ba(dev, params, false); break; case IEEE80211_AMPDU_TX_START: set_bit(tid, &msta->wcid.ampdu_state); ret = IEEE80211_AMPDU_TX_START_IMMEDIATE; break; case IEEE80211_AMPDU_TX_STOP_CONT: mtxq->aggr = false; clear_bit(tid, &msta->wcid.ampdu_state); ret = mt7996_mcu_add_tx_ba(dev, params, false); ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid); break; } mutex_unlock(&dev->mt76.mutex); return ret; } static int mt7996_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { return mt76_sta_state(hw, vif, sta, IEEE80211_STA_NOTEXIST, IEEE80211_STA_NONE); } static int mt7996_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { return mt76_sta_state(hw, vif, sta, IEEE80211_STA_NONE, IEEE80211_STA_NOTEXIST); } static int mt7996_get_stats(struct ieee80211_hw *hw, struct ieee80211_low_level_stats *stats) { struct mt7996_phy *phy = mt7996_hw_phy(hw); struct mt7996_dev *dev = mt7996_hw_dev(hw); struct mt76_mib_stats *mib = &phy->mib; mutex_lock(&dev->mt76.mutex); stats->dot11RTSSuccessCount = mib->rts_cnt; stats->dot11RTSFailureCount = mib->rts_retries_cnt; stats->dot11FCSErrorCount = mib->fcs_err_cnt; stats->dot11ACKFailureCount = mib->ack_fail_cnt; mutex_unlock(&dev->mt76.mutex); return 0; } u64 __mt7996_get_tsf(struct ieee80211_hw *hw, struct mt7996_vif *mvif) { struct mt7996_dev *dev = mt7996_hw_dev(hw); struct mt7996_phy *phy = mt7996_hw_phy(hw); union { u64 t64; u32 t32[2]; } tsf; u16 n; lockdep_assert_held(&dev->mt76.mutex); n = mvif->mt76.omac_idx > HW_BSSID_MAX ? HW_BSSID_0 : mvif->mt76.omac_idx; /* TSF software read */ mt76_rmw(dev, MT_LPON_TCR(phy->mt76->band_idx, n), MT_LPON_TCR_SW_MODE, MT_LPON_TCR_SW_READ); tsf.t32[0] = mt76_rr(dev, MT_LPON_UTTR0(phy->mt76->band_idx)); tsf.t32[1] = mt76_rr(dev, MT_LPON_UTTR1(phy->mt76->band_idx)); return tsf.t64; } static u64 mt7996_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct mt7996_dev *dev = mt7996_hw_dev(hw); u64 ret; mutex_lock(&dev->mt76.mutex); ret = __mt7996_get_tsf(hw, mvif); mutex_unlock(&dev->mt76.mutex); return ret; } static void mt7996_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 timestamp) { struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct mt7996_dev *dev = mt7996_hw_dev(hw); struct mt7996_phy *phy = mt7996_hw_phy(hw); union { u64 t64; u32 t32[2]; } tsf = { .t64 = timestamp, }; u16 n; mutex_lock(&dev->mt76.mutex); n = mvif->mt76.omac_idx > HW_BSSID_MAX ? HW_BSSID_0 : mvif->mt76.omac_idx; mt76_wr(dev, MT_LPON_UTTR0(phy->mt76->band_idx), tsf.t32[0]); mt76_wr(dev, MT_LPON_UTTR1(phy->mt76->band_idx), tsf.t32[1]); /* TSF software overwrite */ mt76_rmw(dev, MT_LPON_TCR(phy->mt76->band_idx, n), MT_LPON_TCR_SW_MODE, MT_LPON_TCR_SW_WRITE); mutex_unlock(&dev->mt76.mutex); } static void mt7996_offset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, s64 timestamp) { struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct mt7996_dev *dev = mt7996_hw_dev(hw); struct mt7996_phy *phy = mt7996_hw_phy(hw); union { u64 t64; u32 t32[2]; } tsf = { .t64 = timestamp, }; u16 n; mutex_lock(&dev->mt76.mutex); n = mvif->mt76.omac_idx > HW_BSSID_MAX ? HW_BSSID_0 : mvif->mt76.omac_idx; mt76_wr(dev, MT_LPON_UTTR0(phy->mt76->band_idx), tsf.t32[0]); mt76_wr(dev, MT_LPON_UTTR1(phy->mt76->band_idx), tsf.t32[1]); /* TSF software adjust*/ mt76_rmw(dev, MT_LPON_TCR(phy->mt76->band_idx, n), MT_LPON_TCR_SW_MODE, MT_LPON_TCR_SW_ADJUST); mutex_unlock(&dev->mt76.mutex); } static void mt7996_set_coverage_class(struct ieee80211_hw *hw, s16 coverage_class) { struct mt7996_phy *phy = mt7996_hw_phy(hw); struct mt7996_dev *dev = phy->dev; mutex_lock(&dev->mt76.mutex); phy->coverage_class = max_t(s16, coverage_class, 0); mt7996_mac_set_coverage_class(phy); mutex_unlock(&dev->mt76.mutex); } static int mt7996_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant) { struct mt7996_dev *dev = mt7996_hw_dev(hw); struct mt7996_phy *phy = mt7996_hw_phy(hw); int max_nss = hweight8(hw->wiphy->available_antennas_tx); u8 band_idx = phy->mt76->band_idx, shift = dev->chainshift[band_idx]; if (!tx_ant || tx_ant != rx_ant || ffs(tx_ant) > max_nss) return -EINVAL; if ((BIT(hweight8(tx_ant)) - 1) != tx_ant) tx_ant = BIT(ffs(tx_ant) - 1) - 1; mutex_lock(&dev->mt76.mutex); phy->mt76->antenna_mask = tx_ant; /* restore to the origin chainmask which might have auxiliary path */ if (hweight8(tx_ant) == max_nss && band_idx < MT_BAND2) phy->mt76->chainmask = ((dev->chainmask >> shift) & (BIT(dev->chainshift[band_idx + 1] - shift) - 1)) << shift; else if (hweight8(tx_ant) == max_nss) phy->mt76->chainmask = (dev->chainmask >> shift) << shift; else phy->mt76->chainmask = tx_ant << shift; mt76_set_stream_caps(phy->mt76, true); mt7996_set_stream_vht_txbf_caps(phy); mt7996_set_stream_he_eht_caps(phy); /* TODO: update bmc_wtbl spe_idx when antenna changes */ mutex_unlock(&dev->mt76.mutex); return 0; } static void mt7996_sta_statistics(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct station_info *sinfo) { struct mt7996_sta *msta = (struct mt7996_sta *)sta->drv_priv; struct rate_info *txrate = &msta->wcid.rate; if (txrate->legacy || txrate->flags) { if (txrate->legacy) { sinfo->txrate.legacy = txrate->legacy; } else { sinfo->txrate.mcs = txrate->mcs; sinfo->txrate.nss = txrate->nss; sinfo->txrate.bw = txrate->bw; sinfo->txrate.he_gi = txrate->he_gi; sinfo->txrate.he_dcm = txrate->he_dcm; sinfo->txrate.he_ru_alloc = txrate->he_ru_alloc; } sinfo->txrate.flags = txrate->flags; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); } sinfo->txrate.flags = txrate->flags; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); sinfo->ack_signal = (s8)msta->ack_signal; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL); sinfo->avg_ack_signal = -(s8)ewma_avg_signal_read(&msta->avg_ack_signal); sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG); } static void mt7996_sta_rc_work(void *data, struct ieee80211_sta *sta) { struct mt7996_sta *msta = (struct mt7996_sta *)sta->drv_priv; struct mt7996_dev *dev = msta->vif->phy->dev; u32 *changed = data; spin_lock_bh(&dev->mt76.sta_poll_lock); msta->changed |= *changed; if (list_empty(&msta->rc_list)) list_add_tail(&msta->rc_list, &dev->sta_rc_list); spin_unlock_bh(&dev->mt76.sta_poll_lock); } static void mt7996_sta_rc_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, u32 changed) { struct mt7996_phy *phy = mt7996_hw_phy(hw); struct mt7996_dev *dev = phy->dev; mt7996_sta_rc_work(&changed, sta); ieee80211_queue_work(hw, &dev->rc_work); } static int mt7996_set_bitrate_mask(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const struct cfg80211_bitrate_mask *mask) { struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct mt7996_phy *phy = mt7996_hw_phy(hw); struct mt7996_dev *dev = phy->dev; u32 changed = IEEE80211_RC_SUPP_RATES_CHANGED; mvif->bitrate_mask = *mask; /* if multiple rates across different preambles are given we can * reconfigure this info with all peers using sta_rec command with * the below exception cases. * - single rate : if a rate is passed along with different preambles, * we select the highest one as fixed rate. i.e VHT MCS for VHT peers. * - multiple rates: if it's not in range format i.e 0-{7,8,9} for VHT * then multiple MCS setting (MCS 4,5,6) is not supported. */ ieee80211_iterate_stations_atomic(hw, mt7996_sta_rc_work, &changed); ieee80211_queue_work(hw, &dev->rc_work); return 0; } static void mt7996_sta_set_4addr(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, bool enabled) { struct mt7996_dev *dev = mt7996_hw_dev(hw); struct mt7996_sta *msta = (struct mt7996_sta *)sta->drv_priv; if (enabled) set_bit(MT_WCID_FLAG_4ADDR, &msta->wcid.flags); else clear_bit(MT_WCID_FLAG_4ADDR, &msta->wcid.flags); mt7996_mcu_wtbl_update_hdr_trans(dev, vif, sta); } static void mt7996_sta_set_decap_offload(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, bool enabled) { struct mt7996_dev *dev = mt7996_hw_dev(hw); struct mt7996_sta *msta = (struct mt7996_sta *)sta->drv_priv; if (enabled) set_bit(MT_WCID_FLAG_HDR_TRANS, &msta->wcid.flags); else clear_bit(MT_WCID_FLAG_HDR_TRANS, &msta->wcid.flags); mt7996_mcu_wtbl_update_hdr_trans(dev, vif, sta); } static const char mt7996_gstrings_stats[][ETH_GSTRING_LEN] = { "tx_ampdu_cnt", "tx_stop_q_empty_cnt", "tx_mpdu_attempts", "tx_mpdu_success", "tx_rwp_fail_cnt", "tx_rwp_need_cnt", "tx_pkt_ebf_cnt", "tx_pkt_ibf_cnt", "tx_ampdu_len:0-1", "tx_ampdu_len:2-10", "tx_ampdu_len:11-19", "tx_ampdu_len:20-28", "tx_ampdu_len:29-37", "tx_ampdu_len:38-46", "tx_ampdu_len:47-55", "tx_ampdu_len:56-79", "tx_ampdu_len:80-103", "tx_ampdu_len:104-127", "tx_ampdu_len:128-151", "tx_ampdu_len:152-175", "tx_ampdu_len:176-199", "tx_ampdu_len:200-223", "tx_ampdu_len:224-247", "ba_miss_count", "tx_beamformer_ppdu_iBF", "tx_beamformer_ppdu_eBF", "tx_beamformer_rx_feedback_all", "tx_beamformer_rx_feedback_he", "tx_beamformer_rx_feedback_vht", "tx_beamformer_rx_feedback_ht", "tx_beamformer_rx_feedback_bw", /* zero based idx: 20, 40, 80, 160 */ "tx_beamformer_rx_feedback_nc", "tx_beamformer_rx_feedback_nr", "tx_beamformee_ok_feedback_pkts", "tx_beamformee_feedback_trig", "tx_mu_beamforming", "tx_mu_mpdu", "tx_mu_successful_mpdu", "tx_su_successful_mpdu", "tx_msdu_pack_1", "tx_msdu_pack_2", "tx_msdu_pack_3", "tx_msdu_pack_4", "tx_msdu_pack_5", "tx_msdu_pack_6", "tx_msdu_pack_7", "tx_msdu_pack_8", /* rx counters */ "rx_fifo_full_cnt", "rx_mpdu_cnt", "channel_idle_cnt", "rx_vector_mismatch_cnt", "rx_delimiter_fail_cnt", "rx_len_mismatch_cnt", "rx_ampdu_cnt", "rx_ampdu_bytes_cnt", "rx_ampdu_valid_subframe_cnt", "rx_ampdu_valid_subframe_b_cnt", "rx_pfdrop_cnt", "rx_vec_queue_overflow_drop_cnt", "rx_ba_cnt", /* per vif counters */ "v_tx_mode_cck", "v_tx_mode_ofdm", "v_tx_mode_ht", "v_tx_mode_ht_gf", "v_tx_mode_vht", "v_tx_mode_he_su", "v_tx_mode_he_ext_su", "v_tx_mode_he_tb", "v_tx_mode_he_mu", "v_tx_mode_eht_su", "v_tx_mode_eht_trig", "v_tx_mode_eht_mu", "v_tx_bw_20", "v_tx_bw_40", "v_tx_bw_80", "v_tx_bw_160", "v_tx_bw_320", "v_tx_mcs_0", "v_tx_mcs_1", "v_tx_mcs_2", "v_tx_mcs_3", "v_tx_mcs_4", "v_tx_mcs_5", "v_tx_mcs_6", "v_tx_mcs_7", "v_tx_mcs_8", "v_tx_mcs_9", "v_tx_mcs_10", "v_tx_mcs_11", "v_tx_mcs_12", "v_tx_mcs_13", "v_tx_nss_1", "v_tx_nss_2", "v_tx_nss_3", "v_tx_nss_4", }; #define MT7996_SSTATS_LEN ARRAY_SIZE(mt7996_gstrings_stats) /* Ethtool related API */ static void mt7996_get_et_strings(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u32 sset, u8 *data) { if (sset == ETH_SS_STATS) memcpy(data, *mt7996_gstrings_stats, sizeof(mt7996_gstrings_stats)); } static int mt7996_get_et_sset_count(struct ieee80211_hw *hw, struct ieee80211_vif *vif, int sset) { if (sset == ETH_SS_STATS) return MT7996_SSTATS_LEN; return 0; } static void mt7996_ethtool_worker(void *wi_data, struct ieee80211_sta *sta) { struct mt76_ethtool_worker_info *wi = wi_data; struct mt7996_sta *msta = (struct mt7996_sta *)sta->drv_priv; if (msta->vif->mt76.idx != wi->idx) return; mt76_ethtool_worker(wi, &msta->wcid.stats, true); } static void mt7996_get_et_stats(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ethtool_stats *stats, u64 *data) { struct mt7996_dev *dev = mt7996_hw_dev(hw); struct mt7996_phy *phy = mt7996_hw_phy(hw); struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct mt76_mib_stats *mib = &phy->mib; struct mt76_ethtool_worker_info wi = { .data = data, .idx = mvif->mt76.idx, }; /* See mt7996_ampdu_stat_read_phy, etc */ int i, ei = 0; mutex_lock(&dev->mt76.mutex); mt7996_mac_update_stats(phy); data[ei++] = mib->tx_ampdu_cnt; data[ei++] = mib->tx_stop_q_empty_cnt; data[ei++] = mib->tx_mpdu_attempts_cnt; data[ei++] = mib->tx_mpdu_success_cnt; data[ei++] = mib->tx_rwp_fail_cnt; data[ei++] = mib->tx_rwp_need_cnt; data[ei++] = mib->tx_bf_ebf_ppdu_cnt; data[ei++] = mib->tx_bf_ibf_ppdu_cnt; /* Tx ampdu stat */ for (i = 0; i < 15 /*ARRAY_SIZE(bound)*/; i++) data[ei++] = phy->mt76->aggr_stats[i]; data[ei++] = phy->mib.ba_miss_cnt; /* Tx Beamformer monitor */ data[ei++] = mib->tx_bf_ibf_ppdu_cnt; data[ei++] = mib->tx_bf_ebf_ppdu_cnt; /* Tx Beamformer Rx feedback monitor */ data[ei++] = mib->tx_bf_rx_fb_all_cnt; data[ei++] = mib->tx_bf_rx_fb_he_cnt; data[ei++] = mib->tx_bf_rx_fb_vht_cnt; data[ei++] = mib->tx_bf_rx_fb_ht_cnt; data[ei++] = mib->tx_bf_rx_fb_bw; data[ei++] = mib->tx_bf_rx_fb_nc_cnt; data[ei++] = mib->tx_bf_rx_fb_nr_cnt; /* Tx Beamformee Rx NDPA & Tx feedback report */ data[ei++] = mib->tx_bf_fb_cpl_cnt; data[ei++] = mib->tx_bf_fb_trig_cnt; /* Tx SU & MU counters */ data[ei++] = mib->tx_mu_bf_cnt; data[ei++] = mib->tx_mu_mpdu_cnt; data[ei++] = mib->tx_mu_acked_mpdu_cnt; data[ei++] = mib->tx_su_acked_mpdu_cnt; /* Tx amsdu info (pack-count histogram) */ for (i = 0; i < ARRAY_SIZE(mib->tx_amsdu); i++) data[ei++] = mib->tx_amsdu[i]; /* rx counters */ data[ei++] = mib->rx_fifo_full_cnt; data[ei++] = mib->rx_mpdu_cnt; data[ei++] = mib->channel_idle_cnt; data[ei++] = mib->rx_vector_mismatch_cnt; data[ei++] = mib->rx_delimiter_fail_cnt; data[ei++] = mib->rx_len_mismatch_cnt; data[ei++] = mib->rx_ampdu_cnt; data[ei++] = mib->rx_ampdu_bytes_cnt; data[ei++] = mib->rx_ampdu_valid_subframe_cnt; data[ei++] = mib->rx_ampdu_valid_subframe_bytes_cnt; data[ei++] = mib->rx_pfdrop_cnt; data[ei++] = mib->rx_vec_queue_overflow_drop_cnt; data[ei++] = mib->rx_ba_cnt; /* Add values for all stations owned by this vif */ wi.initial_stat_idx = ei; ieee80211_iterate_stations_atomic(hw, mt7996_ethtool_worker, &wi); mutex_unlock(&dev->mt76.mutex); if (wi.sta_count == 0) return; ei += wi.worker_stat_count; if (ei != MT7996_SSTATS_LEN) dev_err(dev->mt76.dev, "ei: %d MT7996_SSTATS_LEN: %d", ei, (int)MT7996_SSTATS_LEN); } static void mt7996_twt_teardown_request(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u8 flowid) { struct mt7996_sta *msta = (struct mt7996_sta *)sta->drv_priv; struct mt7996_dev *dev = mt7996_hw_dev(hw); mutex_lock(&dev->mt76.mutex); mt7996_mac_twt_teardown_flow(dev, msta, flowid); mutex_unlock(&dev->mt76.mutex); } static int mt7996_set_radar_background(struct ieee80211_hw *hw, struct cfg80211_chan_def *chandef) { struct mt7996_phy *phy = mt7996_hw_phy(hw); struct mt7996_dev *dev = phy->dev; int ret = -EINVAL; bool running; mutex_lock(&dev->mt76.mutex); if (dev->mt76.region == NL80211_DFS_UNSET) goto out; if (dev->rdd2_phy && dev->rdd2_phy != phy) { /* rdd2 is already locked */ ret = -EBUSY; goto out; } /* rdd2 already configured on a radar channel */ running = dev->rdd2_phy && cfg80211_chandef_valid(&dev->rdd2_chandef) && !!(dev->rdd2_chandef.chan->flags & IEEE80211_CHAN_RADAR); if (!chandef || running || !(chandef->chan->flags & IEEE80211_CHAN_RADAR)) { ret = mt7996_mcu_rdd_background_enable(phy, NULL); if (ret) goto out; if (!running) goto update_phy; } ret = mt7996_mcu_rdd_background_enable(phy, chandef); if (ret) goto out; update_phy: dev->rdd2_phy = chandef ? phy : NULL; if (chandef) dev->rdd2_chandef = *chandef; out: mutex_unlock(&dev->mt76.mutex); return ret; } const struct ieee80211_ops mt7996_ops = { .tx = mt7996_tx, .start = mt7996_start, .stop = mt7996_stop, .add_interface = mt7996_add_interface, .remove_interface = mt7996_remove_interface, .config = mt7996_config, .conf_tx = mt7996_conf_tx, .configure_filter = mt7996_configure_filter, .bss_info_changed = mt7996_bss_info_changed, .sta_add = mt7996_sta_add, .sta_remove = mt7996_sta_remove, .sta_pre_rcu_remove = mt76_sta_pre_rcu_remove, .sta_rc_update = mt7996_sta_rc_update, .set_key = mt7996_set_key, .ampdu_action = mt7996_ampdu_action, .set_rts_threshold = mt7996_set_rts_threshold, .wake_tx_queue = mt76_wake_tx_queue, .sw_scan_start = mt76_sw_scan, .sw_scan_complete = mt76_sw_scan_complete, .release_buffered_frames = mt76_release_buffered_frames, .get_txpower = mt76_get_txpower, .channel_switch_beacon = mt7996_channel_switch_beacon, .get_stats = mt7996_get_stats, .get_et_sset_count = mt7996_get_et_sset_count, .get_et_stats = mt7996_get_et_stats, .get_et_strings = mt7996_get_et_strings, .get_tsf = mt7996_get_tsf, .set_tsf = mt7996_set_tsf, .offset_tsf = mt7996_offset_tsf, .get_survey = mt76_get_survey, .get_antenna = mt76_get_antenna, .set_antenna = mt7996_set_antenna, .set_bitrate_mask = mt7996_set_bitrate_mask, .set_coverage_class = mt7996_set_coverage_class, .sta_statistics = mt7996_sta_statistics, .sta_set_4addr = mt7996_sta_set_4addr, .sta_set_decap_offload = mt7996_sta_set_decap_offload, .add_twt_setup = mt7996_mac_add_twt_setup, .twt_teardown_request = mt7996_twt_teardown_request, #ifdef CONFIG_MAC80211_DEBUGFS .sta_add_debugfs = mt7996_sta_add_debugfs, #endif .set_radar_background = mt7996_set_radar_background, };
linux-master
drivers/net/wireless/mediatek/mt76/mt7996/main.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2022 MediaTek Inc. */ #include <linux/firmware.h> #include <linux/fs.h> #include "mt7996.h" #include "mcu.h" #include "mac.h" #include "eeprom.h" struct mt7996_patch_hdr { char build_date[16]; char platform[4]; __be32 hw_sw_ver; __be32 patch_ver; __be16 checksum; u16 reserved; struct { __be32 patch_ver; __be32 subsys; __be32 feature; __be32 n_region; __be32 crc; u32 reserved[11]; } desc; } __packed; struct mt7996_patch_sec { __be32 type; __be32 offs; __be32 size; union { __be32 spec[13]; struct { __be32 addr; __be32 len; __be32 sec_key_idx; __be32 align_len; u32 reserved[9]; } info; }; } __packed; struct mt7996_fw_trailer { u8 chip_id; u8 eco_code; u8 n_region; u8 format_ver; u8 format_flag; u8 reserved[2]; char fw_ver[10]; char build_date[15]; u32 crc; } __packed; struct mt7996_fw_region { __le32 decomp_crc; __le32 decomp_len; __le32 decomp_blk_sz; u8 reserved[4]; __le32 addr; __le32 len; u8 feature_set; u8 reserved1[15]; } __packed; #define MCU_PATCH_ADDRESS 0x200000 #define HE_PHY(p, c) u8_get_bits(c, IEEE80211_HE_PHY_##p) #define HE_MAC(m, c) u8_get_bits(c, IEEE80211_HE_MAC_##m) #define EHT_PHY(p, c) u8_get_bits(c, IEEE80211_EHT_PHY_##p) static bool sr_scene_detect = true; module_param(sr_scene_detect, bool, 0644); MODULE_PARM_DESC(sr_scene_detect, "Enable firmware scene detection algorithm"); static u8 mt7996_mcu_get_sta_nss(u16 mcs_map) { u8 nss; for (nss = 8; nss > 0; nss--) { u8 nss_mcs = (mcs_map >> (2 * (nss - 1))) & 3; if (nss_mcs != IEEE80211_VHT_MCS_NOT_SUPPORTED) break; } return nss - 1; } static void mt7996_mcu_set_sta_he_mcs(struct ieee80211_sta *sta, __le16 *he_mcs, u16 mcs_map) { struct mt7996_sta *msta = (struct mt7996_sta *)sta->drv_priv; enum nl80211_band band = msta->vif->phy->mt76->chandef.chan->band; const u16 *mask = msta->vif->bitrate_mask.control[band].he_mcs; int nss, max_nss = sta->deflink.rx_nss > 3 ? 4 : sta->deflink.rx_nss; for (nss = 0; nss < max_nss; nss++) { int mcs; switch ((mcs_map >> (2 * nss)) & 0x3) { case IEEE80211_HE_MCS_SUPPORT_0_11: mcs = GENMASK(11, 0); break; case IEEE80211_HE_MCS_SUPPORT_0_9: mcs = GENMASK(9, 0); break; case IEEE80211_HE_MCS_SUPPORT_0_7: mcs = GENMASK(7, 0); break; default: mcs = 0; } mcs = mcs ? fls(mcs & mask[nss]) - 1 : -1; switch (mcs) { case 0 ... 7: mcs = IEEE80211_HE_MCS_SUPPORT_0_7; break; case 8 ... 9: mcs = IEEE80211_HE_MCS_SUPPORT_0_9; break; case 10 ... 11: mcs = IEEE80211_HE_MCS_SUPPORT_0_11; break; default: mcs = IEEE80211_HE_MCS_NOT_SUPPORTED; break; } mcs_map &= ~(0x3 << (nss * 2)); mcs_map |= mcs << (nss * 2); } *he_mcs = cpu_to_le16(mcs_map); } static void mt7996_mcu_set_sta_vht_mcs(struct ieee80211_sta *sta, __le16 *vht_mcs, const u16 *mask) { u16 mcs, mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map); int nss, max_nss = sta->deflink.rx_nss > 3 ? 4 : sta->deflink.rx_nss; for (nss = 0; nss < max_nss; nss++, mcs_map >>= 2) { switch (mcs_map & 0x3) { case IEEE80211_VHT_MCS_SUPPORT_0_9: mcs = GENMASK(9, 0); break; case IEEE80211_VHT_MCS_SUPPORT_0_8: mcs = GENMASK(8, 0); break; case IEEE80211_VHT_MCS_SUPPORT_0_7: mcs = GENMASK(7, 0); break; default: mcs = 0; } vht_mcs[nss] = cpu_to_le16(mcs & mask[nss]); } } static void mt7996_mcu_set_sta_ht_mcs(struct ieee80211_sta *sta, u8 *ht_mcs, const u8 *mask) { int nss, max_nss = sta->deflink.rx_nss > 3 ? 4 : sta->deflink.rx_nss; for (nss = 0; nss < max_nss; nss++) ht_mcs[nss] = sta->deflink.ht_cap.mcs.rx_mask[nss] & mask[nss]; } static int mt7996_mcu_parse_response(struct mt76_dev *mdev, int cmd, struct sk_buff *skb, int seq) { struct mt7996_mcu_rxd *rxd; struct mt7996_mcu_uni_event *event; int mcu_cmd = FIELD_GET(__MCU_CMD_FIELD_ID, cmd); int ret = 0; if (!skb) { dev_err(mdev->dev, "Message %08x (seq %d) timeout\n", cmd, seq); return -ETIMEDOUT; } rxd = (struct mt7996_mcu_rxd *)skb->data; if (seq != rxd->seq) return -EAGAIN; if (cmd == MCU_CMD(PATCH_SEM_CONTROL)) { skb_pull(skb, sizeof(*rxd) - 4); ret = *skb->data; } else if ((rxd->option & MCU_UNI_CMD_EVENT) && rxd->eid == MCU_UNI_EVENT_RESULT) { skb_pull(skb, sizeof(*rxd)); event = (struct mt7996_mcu_uni_event *)skb->data; ret = le32_to_cpu(event->status); /* skip invalid event */ if (mcu_cmd != event->cid) ret = -EAGAIN; } else { skb_pull(skb, sizeof(struct mt7996_mcu_rxd)); } return ret; } static int mt7996_mcu_send_message(struct mt76_dev *mdev, struct sk_buff *skb, int cmd, int *wait_seq) { struct mt7996_dev *dev = container_of(mdev, struct mt7996_dev, mt76); int txd_len, mcu_cmd = FIELD_GET(__MCU_CMD_FIELD_ID, cmd); struct mt76_connac2_mcu_uni_txd *uni_txd; struct mt76_connac2_mcu_txd *mcu_txd; enum mt76_mcuq_id qid; __le32 *txd; u32 val; u8 seq; mdev->mcu.timeout = 20 * HZ; seq = ++dev->mt76.mcu.msg_seq & 0xf; if (!seq) seq = ++dev->mt76.mcu.msg_seq & 0xf; if (cmd == MCU_CMD(FW_SCATTER)) { qid = MT_MCUQ_FWDL; goto exit; } txd_len = cmd & __MCU_CMD_FIELD_UNI ? sizeof(*uni_txd) : sizeof(*mcu_txd); txd = (__le32 *)skb_push(skb, txd_len); if (test_bit(MT76_STATE_MCU_RUNNING, &dev->mphy.state)) qid = MT_MCUQ_WA; else qid = MT_MCUQ_WM; val = FIELD_PREP(MT_TXD0_TX_BYTES, skb->len) | FIELD_PREP(MT_TXD0_PKT_FMT, MT_TX_TYPE_CMD) | FIELD_PREP(MT_TXD0_Q_IDX, MT_TX_MCU_PORT_RX_Q0); txd[0] = cpu_to_le32(val); val = FIELD_PREP(MT_TXD1_HDR_FORMAT, MT_HDR_FORMAT_CMD); txd[1] = cpu_to_le32(val); if (cmd & __MCU_CMD_FIELD_UNI) { uni_txd = (struct mt76_connac2_mcu_uni_txd *)txd; uni_txd->len = cpu_to_le16(skb->len - sizeof(uni_txd->txd)); uni_txd->cid = cpu_to_le16(mcu_cmd); uni_txd->s2d_index = MCU_S2D_H2CN; uni_txd->pkt_type = MCU_PKT_ID; uni_txd->seq = seq; if (cmd & __MCU_CMD_FIELD_QUERY) uni_txd->option = MCU_CMD_UNI_QUERY_ACK; else uni_txd->option = MCU_CMD_UNI_EXT_ACK; if ((cmd & __MCU_CMD_FIELD_WA) && (cmd & __MCU_CMD_FIELD_WM)) uni_txd->s2d_index = MCU_S2D_H2CN; else if (cmd & __MCU_CMD_FIELD_WA) uni_txd->s2d_index = MCU_S2D_H2C; else if (cmd & __MCU_CMD_FIELD_WM) uni_txd->s2d_index = MCU_S2D_H2N; goto exit; } mcu_txd = (struct mt76_connac2_mcu_txd *)txd; mcu_txd->len = cpu_to_le16(skb->len - sizeof(mcu_txd->txd)); mcu_txd->pq_id = cpu_to_le16(MCU_PQ_ID(MT_TX_PORT_IDX_MCU, MT_TX_MCU_PORT_RX_Q0)); mcu_txd->pkt_type = MCU_PKT_ID; mcu_txd->seq = seq; mcu_txd->cid = FIELD_GET(__MCU_CMD_FIELD_ID, cmd); mcu_txd->set_query = MCU_Q_NA; mcu_txd->ext_cid = FIELD_GET(__MCU_CMD_FIELD_EXT_ID, cmd); if (mcu_txd->ext_cid) { mcu_txd->ext_cid_ack = 1; if (cmd & __MCU_CMD_FIELD_QUERY) mcu_txd->set_query = MCU_Q_QUERY; else mcu_txd->set_query = MCU_Q_SET; } if (cmd & __MCU_CMD_FIELD_WA) mcu_txd->s2d_index = MCU_S2D_H2C; else mcu_txd->s2d_index = MCU_S2D_H2N; exit: if (wait_seq) *wait_seq = seq; return mt76_tx_queue_skb_raw(dev, mdev->q_mcu[qid], skb, 0); } int mt7996_mcu_wa_cmd(struct mt7996_dev *dev, int cmd, u32 a1, u32 a2, u32 a3) { struct { __le32 args[3]; } req = { .args = { cpu_to_le32(a1), cpu_to_le32(a2), cpu_to_le32(a3), }, }; return mt76_mcu_send_msg(&dev->mt76, cmd, &req, sizeof(req), false); } static void mt7996_mcu_csa_finish(void *priv, u8 *mac, struct ieee80211_vif *vif) { if (vif->bss_conf.csa_active) ieee80211_csa_finish(vif); } static void mt7996_mcu_rx_radar_detected(struct mt7996_dev *dev, struct sk_buff *skb) { struct mt76_phy *mphy = &dev->mt76.phy; struct mt7996_mcu_rdd_report *r; r = (struct mt7996_mcu_rdd_report *)skb->data; if (r->band_idx >= ARRAY_SIZE(dev->mt76.phys)) return; if (dev->rdd2_phy && r->band_idx == MT_RX_SEL2) mphy = dev->rdd2_phy->mt76; else mphy = dev->mt76.phys[r->band_idx]; if (!mphy) return; if (r->band_idx == MT_RX_SEL2) cfg80211_background_radar_event(mphy->hw->wiphy, &dev->rdd2_chandef, GFP_ATOMIC); else ieee80211_radar_detected(mphy->hw); dev->hw_pattern++; } static void mt7996_mcu_rx_log_message(struct mt7996_dev *dev, struct sk_buff *skb) { #define UNI_EVENT_FW_LOG_FORMAT 0 struct mt7996_mcu_rxd *rxd = (struct mt7996_mcu_rxd *)skb->data; const char *data = (char *)&rxd[1] + 4, *type; struct tlv *tlv = (struct tlv *)data; int len; if (!(rxd->option & MCU_UNI_CMD_EVENT)) { len = skb->len - sizeof(*rxd); data = (char *)&rxd[1]; goto out; } if (le16_to_cpu(tlv->tag) != UNI_EVENT_FW_LOG_FORMAT) return; data += sizeof(*tlv) + 4; len = le16_to_cpu(tlv->len) - sizeof(*tlv) - 4; out: switch (rxd->s2d_index) { case 0: if (mt7996_debugfs_rx_log(dev, data, len)) return; type = "WM"; break; case 2: type = "WA"; break; default: type = "unknown"; break; } wiphy_info(mt76_hw(dev)->wiphy, "%s: %.*s", type, len, data); } static void mt7996_mcu_cca_finish(void *priv, u8 *mac, struct ieee80211_vif *vif) { if (!vif->bss_conf.color_change_active) return; ieee80211_color_change_finish(vif); } static void mt7996_mcu_ie_countdown(struct mt7996_dev *dev, struct sk_buff *skb) { #define UNI_EVENT_IE_COUNTDOWN_CSA 0 #define UNI_EVENT_IE_COUNTDOWN_BCC 1 struct header { u8 band; u8 rsv[3]; }; struct mt76_phy *mphy = &dev->mt76.phy; struct mt7996_mcu_rxd *rxd = (struct mt7996_mcu_rxd *)skb->data; const char *data = (char *)&rxd[1], *tail; struct header *hdr = (struct header *)data; struct tlv *tlv = (struct tlv *)(data + 4); if (hdr->band >= ARRAY_SIZE(dev->mt76.phys)) return; if (hdr->band && dev->mt76.phys[hdr->band]) mphy = dev->mt76.phys[hdr->band]; tail = skb->data + skb->len; data += sizeof(struct header); while (data + sizeof(struct tlv) < tail && le16_to_cpu(tlv->len)) { switch (le16_to_cpu(tlv->tag)) { case UNI_EVENT_IE_COUNTDOWN_CSA: ieee80211_iterate_active_interfaces_atomic(mphy->hw, IEEE80211_IFACE_ITER_RESUME_ALL, mt7996_mcu_csa_finish, mphy->hw); break; case UNI_EVENT_IE_COUNTDOWN_BCC: ieee80211_iterate_active_interfaces_atomic(mphy->hw, IEEE80211_IFACE_ITER_RESUME_ALL, mt7996_mcu_cca_finish, mphy->hw); break; } data += le16_to_cpu(tlv->len); tlv = (struct tlv *)data; } } static void mt7996_mcu_rx_ext_event(struct mt7996_dev *dev, struct sk_buff *skb) { struct mt7996_mcu_rxd *rxd = (struct mt7996_mcu_rxd *)skb->data; switch (rxd->ext_eid) { case MCU_EXT_EVENT_FW_LOG_2_HOST: mt7996_mcu_rx_log_message(dev, skb); break; default: break; } } static void mt7996_mcu_rx_unsolicited_event(struct mt7996_dev *dev, struct sk_buff *skb) { struct mt7996_mcu_rxd *rxd = (struct mt7996_mcu_rxd *)skb->data; switch (rxd->eid) { case MCU_EVENT_EXT: mt7996_mcu_rx_ext_event(dev, skb); break; default: break; } dev_kfree_skb(skb); } static void mt7996_mcu_uni_rx_unsolicited_event(struct mt7996_dev *dev, struct sk_buff *skb) { struct mt7996_mcu_rxd *rxd = (struct mt7996_mcu_rxd *)skb->data; switch (rxd->eid) { case MCU_UNI_EVENT_FW_LOG_2_HOST: mt7996_mcu_rx_log_message(dev, skb); break; case MCU_UNI_EVENT_IE_COUNTDOWN: mt7996_mcu_ie_countdown(dev, skb); break; case MCU_UNI_EVENT_RDD_REPORT: mt7996_mcu_rx_radar_detected(dev, skb); break; default: break; } dev_kfree_skb(skb); } void mt7996_mcu_rx_event(struct mt7996_dev *dev, struct sk_buff *skb) { struct mt7996_mcu_rxd *rxd = (struct mt7996_mcu_rxd *)skb->data; if (rxd->option & MCU_UNI_CMD_UNSOLICITED_EVENT) { mt7996_mcu_uni_rx_unsolicited_event(dev, skb); return; } /* WA still uses legacy event*/ if (rxd->ext_eid == MCU_EXT_EVENT_FW_LOG_2_HOST || !rxd->seq) mt7996_mcu_rx_unsolicited_event(dev, skb); else mt76_mcu_rx_event(&dev->mt76, skb); } static struct tlv * mt7996_mcu_add_uni_tlv(struct sk_buff *skb, u16 tag, u16 len) { struct tlv *ptlv, tlv = { .tag = cpu_to_le16(tag), .len = cpu_to_le16(len), }; ptlv = skb_put(skb, len); memcpy(ptlv, &tlv, sizeof(tlv)); return ptlv; } static void mt7996_mcu_bss_rfch_tlv(struct sk_buff *skb, struct ieee80211_vif *vif, struct mt7996_phy *phy) { static const u8 rlm_ch_band[] = { [NL80211_BAND_2GHZ] = 1, [NL80211_BAND_5GHZ] = 2, [NL80211_BAND_6GHZ] = 3, }; struct cfg80211_chan_def *chandef = &phy->mt76->chandef; struct bss_rlm_tlv *ch; struct tlv *tlv; int freq1 = chandef->center_freq1; tlv = mt7996_mcu_add_uni_tlv(skb, UNI_BSS_INFO_RLM, sizeof(*ch)); ch = (struct bss_rlm_tlv *)tlv; ch->control_channel = chandef->chan->hw_value; ch->center_chan = ieee80211_frequency_to_channel(freq1); ch->bw = mt76_connac_chan_bw(chandef); ch->tx_streams = hweight8(phy->mt76->antenna_mask); ch->rx_streams = hweight8(phy->mt76->antenna_mask); ch->band = rlm_ch_band[chandef->chan->band]; if (chandef->width == NL80211_CHAN_WIDTH_80P80) { int freq2 = chandef->center_freq2; ch->center_chan2 = ieee80211_frequency_to_channel(freq2); } } static void mt7996_mcu_bss_ra_tlv(struct sk_buff *skb, struct ieee80211_vif *vif, struct mt7996_phy *phy) { struct bss_ra_tlv *ra; struct tlv *tlv; tlv = mt7996_mcu_add_uni_tlv(skb, UNI_BSS_INFO_RA, sizeof(*ra)); ra = (struct bss_ra_tlv *)tlv; ra->short_preamble = true; } static void mt7996_mcu_bss_he_tlv(struct sk_buff *skb, struct ieee80211_vif *vif, struct mt7996_phy *phy) { #define DEFAULT_HE_PE_DURATION 4 #define DEFAULT_HE_DURATION_RTS_THRES 1023 const struct ieee80211_sta_he_cap *cap; struct bss_info_uni_he *he; struct tlv *tlv; cap = mt76_connac_get_he_phy_cap(phy->mt76, vif); tlv = mt7996_mcu_add_uni_tlv(skb, UNI_BSS_INFO_HE_BASIC, sizeof(*he)); he = (struct bss_info_uni_he *)tlv; he->he_pe_duration = vif->bss_conf.htc_trig_based_pkt_ext; if (!he->he_pe_duration) he->he_pe_duration = DEFAULT_HE_PE_DURATION; he->he_rts_thres = cpu_to_le16(vif->bss_conf.frame_time_rts_th); if (!he->he_rts_thres) he->he_rts_thres = cpu_to_le16(DEFAULT_HE_DURATION_RTS_THRES); he->max_nss_mcs[CMD_HE_MCS_BW80] = cap->he_mcs_nss_supp.tx_mcs_80; he->max_nss_mcs[CMD_HE_MCS_BW160] = cap->he_mcs_nss_supp.tx_mcs_160; he->max_nss_mcs[CMD_HE_MCS_BW8080] = cap->he_mcs_nss_supp.tx_mcs_80p80; } static void mt7996_mcu_bss_bmc_tlv(struct sk_buff *skb, struct ieee80211_vif *vif, struct mt7996_phy *phy) { struct mt76_vif *mvif = (struct mt76_vif *)vif->drv_priv; struct bss_rate_tlv *bmc; struct cfg80211_chan_def *chandef = &phy->mt76->chandef; enum nl80211_band band = chandef->chan->band; struct tlv *tlv; u8 idx = mvif->mcast_rates_idx ? mvif->mcast_rates_idx : mvif->basic_rates_idx; tlv = mt7996_mcu_add_uni_tlv(skb, UNI_BSS_INFO_RATE, sizeof(*bmc)); bmc = (struct bss_rate_tlv *)tlv; bmc->short_preamble = (band == NL80211_BAND_2GHZ); bmc->bc_fixed_rate = idx; bmc->mc_fixed_rate = idx; } static void mt7996_mcu_bss_txcmd_tlv(struct sk_buff *skb, bool en) { struct bss_txcmd_tlv *txcmd; struct tlv *tlv; tlv = mt7996_mcu_add_uni_tlv(skb, UNI_BSS_INFO_TXCMD, sizeof(*txcmd)); txcmd = (struct bss_txcmd_tlv *)tlv; txcmd->txcmd_mode = en; } static void mt7996_mcu_bss_mld_tlv(struct sk_buff *skb, struct ieee80211_vif *vif) { struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct bss_mld_tlv *mld; struct tlv *tlv; tlv = mt7996_mcu_add_uni_tlv(skb, UNI_BSS_INFO_MLD, sizeof(*mld)); mld = (struct bss_mld_tlv *)tlv; mld->group_mld_id = 0xff; mld->own_mld_id = mvif->mt76.idx; mld->remap_idx = 0xff; } static void mt7996_mcu_bss_sec_tlv(struct sk_buff *skb, struct ieee80211_vif *vif) { struct mt76_vif *mvif = (struct mt76_vif *)vif->drv_priv; struct bss_sec_tlv *sec; struct tlv *tlv; tlv = mt7996_mcu_add_uni_tlv(skb, UNI_BSS_INFO_SEC, sizeof(*sec)); sec = (struct bss_sec_tlv *)tlv; sec->cipher = mvif->cipher; } static int mt7996_mcu_muar_config(struct mt7996_phy *phy, struct ieee80211_vif *vif, bool bssid, bool enable) { #define UNI_MUAR_ENTRY 2 struct mt7996_dev *dev = phy->dev; struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; u32 idx = mvif->mt76.omac_idx - REPEATER_BSSID_START; const u8 *addr = vif->addr; struct { struct { u8 band; u8 __rsv[3]; } hdr; __le16 tag; __le16 len; bool smesh; u8 bssid; u8 index; u8 entry_add; u8 addr[ETH_ALEN]; u8 __rsv[2]; } __packed req = { .hdr.band = phy->mt76->band_idx, .tag = cpu_to_le16(UNI_MUAR_ENTRY), .len = cpu_to_le16(sizeof(req) - sizeof(req.hdr)), .smesh = false, .index = idx * 2 + bssid, .entry_add = true, }; if (bssid) addr = vif->bss_conf.bssid; if (enable) memcpy(req.addr, addr, ETH_ALEN); return mt76_mcu_send_msg(&dev->mt76, MCU_WM_UNI_CMD(REPT_MUAR), &req, sizeof(req), true); } static void mt7996_mcu_bss_ifs_timing_tlv(struct sk_buff *skb, struct ieee80211_vif *vif) { struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct mt7996_phy *phy = mvif->phy; struct bss_ifs_time_tlv *ifs_time; struct tlv *tlv; bool is_2ghz = phy->mt76->chandef.chan->band == NL80211_BAND_2GHZ; tlv = mt7996_mcu_add_uni_tlv(skb, UNI_BSS_INFO_IFS_TIME, sizeof(*ifs_time)); ifs_time = (struct bss_ifs_time_tlv *)tlv; ifs_time->slot_valid = true; ifs_time->sifs_valid = true; ifs_time->rifs_valid = true; ifs_time->eifs_valid = true; ifs_time->slot_time = cpu_to_le16(phy->slottime); ifs_time->sifs_time = cpu_to_le16(10); ifs_time->rifs_time = cpu_to_le16(2); ifs_time->eifs_time = cpu_to_le16(is_2ghz ? 78 : 84); if (is_2ghz) { ifs_time->eifs_cck_valid = true; ifs_time->eifs_cck_time = cpu_to_le16(314); } } static int mt7996_mcu_bss_basic_tlv(struct sk_buff *skb, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct mt76_phy *phy, u16 wlan_idx, bool enable) { struct mt76_vif *mvif = (struct mt76_vif *)vif->drv_priv; struct cfg80211_chan_def *chandef = &phy->chandef; struct mt76_connac_bss_basic_tlv *bss; u32 type = CONNECTION_INFRA_AP; u16 sta_wlan_idx = wlan_idx; struct tlv *tlv; int idx; switch (vif->type) { case NL80211_IFTYPE_MESH_POINT: case NL80211_IFTYPE_AP: case NL80211_IFTYPE_MONITOR: break; case NL80211_IFTYPE_STATION: if (enable) { rcu_read_lock(); if (!sta) sta = ieee80211_find_sta(vif, vif->bss_conf.bssid); /* TODO: enable BSS_INFO_UAPSD & BSS_INFO_PM */ if (sta) { struct mt76_wcid *wcid; wcid = (struct mt76_wcid *)sta->drv_priv; sta_wlan_idx = wcid->idx; } rcu_read_unlock(); } type = CONNECTION_INFRA_STA; break; case NL80211_IFTYPE_ADHOC: type = CONNECTION_IBSS_ADHOC; break; default: WARN_ON(1); break; } tlv = mt7996_mcu_add_uni_tlv(skb, UNI_BSS_INFO_BASIC, sizeof(*bss)); bss = (struct mt76_connac_bss_basic_tlv *)tlv; bss->bcn_interval = cpu_to_le16(vif->bss_conf.beacon_int); bss->dtim_period = vif->bss_conf.dtim_period; bss->bmc_tx_wlan_idx = cpu_to_le16(wlan_idx); bss->sta_idx = cpu_to_le16(sta_wlan_idx); bss->conn_type = cpu_to_le32(type); bss->omac_idx = mvif->omac_idx; bss->band_idx = mvif->band_idx; bss->wmm_idx = mvif->wmm_idx; bss->conn_state = !enable; bss->active = enable; idx = mvif->omac_idx > EXT_BSSID_START ? HW_BSSID_0 : mvif->omac_idx; bss->hw_bss_idx = idx; if (vif->type == NL80211_IFTYPE_MONITOR) { memcpy(bss->bssid, phy->macaddr, ETH_ALEN); return 0; } memcpy(bss->bssid, vif->bss_conf.bssid, ETH_ALEN); bss->bcn_interval = cpu_to_le16(vif->bss_conf.beacon_int); bss->dtim_period = vif->bss_conf.dtim_period; bss->phymode = mt76_connac_get_phy_mode(phy, vif, chandef->chan->band, NULL); bss->phymode_ext = mt76_connac_get_phy_mode_ext(phy, vif, chandef->chan->band); return 0; } static struct sk_buff * __mt7996_mcu_alloc_bss_req(struct mt76_dev *dev, struct mt76_vif *mvif, int len) { struct bss_req_hdr hdr = { .bss_idx = mvif->idx, }; struct sk_buff *skb; skb = mt76_mcu_msg_alloc(dev, NULL, len); if (!skb) return ERR_PTR(-ENOMEM); skb_put_data(skb, &hdr, sizeof(hdr)); return skb; } int mt7996_mcu_add_bss_info(struct mt7996_phy *phy, struct ieee80211_vif *vif, int enable) { struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct mt7996_dev *dev = phy->dev; struct sk_buff *skb; if (mvif->mt76.omac_idx >= REPEATER_BSSID_START) { mt7996_mcu_muar_config(phy, vif, false, enable); mt7996_mcu_muar_config(phy, vif, true, enable); } skb = __mt7996_mcu_alloc_bss_req(&dev->mt76, &mvif->mt76, MT7996_BSS_UPDATE_MAX_SIZE); if (IS_ERR(skb)) return PTR_ERR(skb); /* bss_basic must be first */ mt7996_mcu_bss_basic_tlv(skb, vif, NULL, phy->mt76, mvif->sta.wcid.idx, enable); mt7996_mcu_bss_sec_tlv(skb, vif); if (vif->type == NL80211_IFTYPE_MONITOR) goto out; if (enable) { mt7996_mcu_bss_rfch_tlv(skb, vif, phy); mt7996_mcu_bss_bmc_tlv(skb, vif, phy); mt7996_mcu_bss_ra_tlv(skb, vif, phy); mt7996_mcu_bss_txcmd_tlv(skb, true); mt7996_mcu_bss_ifs_timing_tlv(skb, vif); if (vif->bss_conf.he_support) mt7996_mcu_bss_he_tlv(skb, vif, phy); /* this tag is necessary no matter if the vif is MLD */ mt7996_mcu_bss_mld_tlv(skb, vif); } out: return mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_WMWA_UNI_CMD(BSS_INFO_UPDATE), true); } int mt7996_mcu_set_timing(struct mt7996_phy *phy, struct ieee80211_vif *vif) { struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct mt7996_dev *dev = phy->dev; struct sk_buff *skb; skb = __mt7996_mcu_alloc_bss_req(&dev->mt76, &mvif->mt76, MT7996_BSS_UPDATE_MAX_SIZE); if (IS_ERR(skb)) return PTR_ERR(skb); mt7996_mcu_bss_ifs_timing_tlv(skb, vif); return mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_WMWA_UNI_CMD(BSS_INFO_UPDATE), true); } static int mt7996_mcu_sta_ba(struct mt76_dev *dev, struct mt76_vif *mvif, struct ieee80211_ampdu_params *params, bool enable, bool tx) { struct mt76_wcid *wcid = (struct mt76_wcid *)params->sta->drv_priv; struct sta_rec_ba_uni *ba; struct sk_buff *skb; struct tlv *tlv; skb = __mt76_connac_mcu_alloc_sta_req(dev, mvif, wcid, MT7996_STA_UPDATE_MAX_SIZE); if (IS_ERR(skb)) return PTR_ERR(skb); tlv = mt76_connac_mcu_add_tlv(skb, STA_REC_BA, sizeof(*ba)); ba = (struct sta_rec_ba_uni *)tlv; ba->ba_type = tx ? MT_BA_TYPE_ORIGINATOR : MT_BA_TYPE_RECIPIENT; ba->winsize = cpu_to_le16(params->buf_size); ba->ssn = cpu_to_le16(params->ssn); ba->ba_en = enable << params->tid; ba->amsdu = params->amsdu; ba->tid = params->tid; return mt76_mcu_skb_send_msg(dev, skb, MCU_WMWA_UNI_CMD(STA_REC_UPDATE), true); } /** starec & wtbl **/ int mt7996_mcu_add_tx_ba(struct mt7996_dev *dev, struct ieee80211_ampdu_params *params, bool enable) { struct mt7996_sta *msta = (struct mt7996_sta *)params->sta->drv_priv; struct mt7996_vif *mvif = msta->vif; if (enable && !params->amsdu) msta->wcid.amsdu = false; return mt7996_mcu_sta_ba(&dev->mt76, &mvif->mt76, params, enable, true); } int mt7996_mcu_add_rx_ba(struct mt7996_dev *dev, struct ieee80211_ampdu_params *params, bool enable) { struct mt7996_sta *msta = (struct mt7996_sta *)params->sta->drv_priv; struct mt7996_vif *mvif = msta->vif; return mt7996_mcu_sta_ba(&dev->mt76, &mvif->mt76, params, enable, false); } static void mt7996_mcu_sta_he_tlv(struct sk_buff *skb, struct ieee80211_sta *sta) { struct ieee80211_he_cap_elem *elem = &sta->deflink.he_cap.he_cap_elem; struct ieee80211_he_mcs_nss_supp mcs_map; struct sta_rec_he_v2 *he; struct tlv *tlv; int i = 0; if (!sta->deflink.he_cap.has_he) return; tlv = mt76_connac_mcu_add_tlv(skb, STA_REC_HE_V2, sizeof(*he)); he = (struct sta_rec_he_v2 *)tlv; for (i = 0; i < 11; i++) { if (i < 6) he->he_mac_cap[i] = elem->mac_cap_info[i]; he->he_phy_cap[i] = elem->phy_cap_info[i]; } mcs_map = sta->deflink.he_cap.he_mcs_nss_supp; switch (sta->deflink.bandwidth) { case IEEE80211_STA_RX_BW_160: if (elem->phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) mt7996_mcu_set_sta_he_mcs(sta, &he->max_nss_mcs[CMD_HE_MCS_BW8080], le16_to_cpu(mcs_map.rx_mcs_80p80)); mt7996_mcu_set_sta_he_mcs(sta, &he->max_nss_mcs[CMD_HE_MCS_BW160], le16_to_cpu(mcs_map.rx_mcs_160)); fallthrough; default: mt7996_mcu_set_sta_he_mcs(sta, &he->max_nss_mcs[CMD_HE_MCS_BW80], le16_to_cpu(mcs_map.rx_mcs_80)); break; } he->pkt_ext = 2; } static void mt7996_mcu_sta_he_6g_tlv(struct sk_buff *skb, struct ieee80211_sta *sta) { struct sta_rec_he_6g_capa *he_6g; struct tlv *tlv; if (!sta->deflink.he_6ghz_capa.capa) return; tlv = mt76_connac_mcu_add_tlv(skb, STA_REC_HE_6G, sizeof(*he_6g)); he_6g = (struct sta_rec_he_6g_capa *)tlv; he_6g->capa = sta->deflink.he_6ghz_capa.capa; } static void mt7996_mcu_sta_eht_tlv(struct sk_buff *skb, struct ieee80211_sta *sta) { struct ieee80211_eht_mcs_nss_supp *mcs_map; struct ieee80211_eht_cap_elem_fixed *elem; struct sta_rec_eht *eht; struct tlv *tlv; if (!sta->deflink.eht_cap.has_eht) return; mcs_map = &sta->deflink.eht_cap.eht_mcs_nss_supp; elem = &sta->deflink.eht_cap.eht_cap_elem; tlv = mt76_connac_mcu_add_tlv(skb, STA_REC_EHT, sizeof(*eht)); eht = (struct sta_rec_eht *)tlv; eht->tid_bitmap = 0xff; eht->mac_cap = cpu_to_le16(*(u16 *)elem->mac_cap_info); eht->phy_cap = cpu_to_le64(*(u64 *)elem->phy_cap_info); eht->phy_cap_ext = cpu_to_le64(elem->phy_cap_info[8]); if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_20) memcpy(eht->mcs_map_bw20, &mcs_map->only_20mhz, sizeof(eht->mcs_map_bw20)); memcpy(eht->mcs_map_bw80, &mcs_map->bw._80, sizeof(eht->mcs_map_bw80)); memcpy(eht->mcs_map_bw160, &mcs_map->bw._160, sizeof(eht->mcs_map_bw160)); memcpy(eht->mcs_map_bw320, &mcs_map->bw._320, sizeof(eht->mcs_map_bw320)); } static void mt7996_mcu_sta_ht_tlv(struct sk_buff *skb, struct ieee80211_sta *sta) { struct sta_rec_ht *ht; struct tlv *tlv; if (!sta->deflink.ht_cap.ht_supported) return; tlv = mt76_connac_mcu_add_tlv(skb, STA_REC_HT, sizeof(*ht)); ht = (struct sta_rec_ht *)tlv; ht->ht_cap = cpu_to_le16(sta->deflink.ht_cap.cap); } static void mt7996_mcu_sta_vht_tlv(struct sk_buff *skb, struct ieee80211_sta *sta) { struct sta_rec_vht *vht; struct tlv *tlv; /* For 6G band, this tlv is necessary to let hw work normally */ if (!sta->deflink.he_6ghz_capa.capa && !sta->deflink.vht_cap.vht_supported) return; tlv = mt76_connac_mcu_add_tlv(skb, STA_REC_VHT, sizeof(*vht)); vht = (struct sta_rec_vht *)tlv; vht->vht_cap = cpu_to_le32(sta->deflink.vht_cap.cap); vht->vht_rx_mcs_map = sta->deflink.vht_cap.vht_mcs.rx_mcs_map; vht->vht_tx_mcs_map = sta->deflink.vht_cap.vht_mcs.tx_mcs_map; } static void mt7996_mcu_sta_amsdu_tlv(struct mt7996_dev *dev, struct sk_buff *skb, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7996_sta *msta = (struct mt7996_sta *)sta->drv_priv; struct sta_rec_amsdu *amsdu; struct tlv *tlv; if (vif->type != NL80211_IFTYPE_STATION && vif->type != NL80211_IFTYPE_MESH_POINT && vif->type != NL80211_IFTYPE_AP) return; if (!sta->deflink.agg.max_amsdu_len) return; tlv = mt76_connac_mcu_add_tlv(skb, STA_REC_HW_AMSDU, sizeof(*amsdu)); amsdu = (struct sta_rec_amsdu *)tlv; amsdu->max_amsdu_num = 8; amsdu->amsdu_en = true; msta->wcid.amsdu = true; switch (sta->deflink.agg.max_amsdu_len) { case IEEE80211_MAX_MPDU_LEN_VHT_11454: amsdu->max_mpdu_size = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; return; case IEEE80211_MAX_MPDU_LEN_HT_7935: case IEEE80211_MAX_MPDU_LEN_VHT_7991: amsdu->max_mpdu_size = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991; return; default: amsdu->max_mpdu_size = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; return; } } static void mt7996_mcu_sta_muru_tlv(struct mt7996_dev *dev, struct sk_buff *skb, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct ieee80211_he_cap_elem *elem = &sta->deflink.he_cap.he_cap_elem; struct sta_rec_muru *muru; struct tlv *tlv; if (vif->type != NL80211_IFTYPE_STATION && vif->type != NL80211_IFTYPE_AP) return; tlv = mt76_connac_mcu_add_tlv(skb, STA_REC_MURU, sizeof(*muru)); muru = (struct sta_rec_muru *)tlv; muru->cfg.mimo_dl_en = vif->bss_conf.eht_mu_beamformer || vif->bss_conf.he_mu_beamformer || vif->bss_conf.vht_mu_beamformer || vif->bss_conf.vht_mu_beamformee; muru->cfg.ofdma_dl_en = true; if (sta->deflink.vht_cap.vht_supported) muru->mimo_dl.vht_mu_bfee = !!(sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE); if (!sta->deflink.he_cap.has_he) return; muru->mimo_dl.partial_bw_dl_mimo = HE_PHY(CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO, elem->phy_cap_info[6]); muru->mimo_ul.full_ul_mimo = HE_PHY(CAP2_UL_MU_FULL_MU_MIMO, elem->phy_cap_info[2]); muru->mimo_ul.partial_ul_mimo = HE_PHY(CAP2_UL_MU_PARTIAL_MU_MIMO, elem->phy_cap_info[2]); muru->ofdma_dl.punc_pream_rx = HE_PHY(CAP1_PREAMBLE_PUNC_RX_MASK, elem->phy_cap_info[1]); muru->ofdma_dl.he_20m_in_40m_2g = HE_PHY(CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G, elem->phy_cap_info[8]); muru->ofdma_dl.he_20m_in_160m = HE_PHY(CAP8_20MHZ_IN_160MHZ_HE_PPDU, elem->phy_cap_info[8]); muru->ofdma_dl.he_80m_in_160m = HE_PHY(CAP8_80MHZ_IN_160MHZ_HE_PPDU, elem->phy_cap_info[8]); muru->ofdma_ul.t_frame_dur = HE_MAC(CAP1_TF_MAC_PAD_DUR_MASK, elem->mac_cap_info[1]); muru->ofdma_ul.mu_cascading = HE_MAC(CAP2_MU_CASCADING, elem->mac_cap_info[2]); muru->ofdma_ul.uo_ra = HE_MAC(CAP3_OFDMA_RA, elem->mac_cap_info[3]); } static inline bool mt7996_is_ebf_supported(struct mt7996_phy *phy, struct ieee80211_vif *vif, struct ieee80211_sta *sta, bool bfee) { int sts = hweight16(phy->mt76->chainmask); if (vif->type != NL80211_IFTYPE_STATION && vif->type != NL80211_IFTYPE_AP) return false; if (!bfee && sts < 2) return false; if (sta->deflink.eht_cap.has_eht) { struct ieee80211_sta_eht_cap *pc = &sta->deflink.eht_cap; struct ieee80211_eht_cap_elem_fixed *pe = &pc->eht_cap_elem; if (bfee) return vif->bss_conf.eht_su_beamformee && EHT_PHY(CAP0_SU_BEAMFORMEE, pe->phy_cap_info[0]); else return vif->bss_conf.eht_su_beamformer && EHT_PHY(CAP0_SU_BEAMFORMER, pe->phy_cap_info[0]); } if (sta->deflink.he_cap.has_he) { struct ieee80211_he_cap_elem *pe = &sta->deflink.he_cap.he_cap_elem; if (bfee) return vif->bss_conf.he_su_beamformee && HE_PHY(CAP3_SU_BEAMFORMER, pe->phy_cap_info[3]); else return vif->bss_conf.he_su_beamformer && HE_PHY(CAP4_SU_BEAMFORMEE, pe->phy_cap_info[4]); } if (sta->deflink.vht_cap.vht_supported) { u32 cap = sta->deflink.vht_cap.cap; if (bfee) return vif->bss_conf.vht_su_beamformee && (cap & IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE); else return vif->bss_conf.vht_su_beamformer && (cap & IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE); } return false; } static void mt7996_mcu_sta_sounding_rate(struct sta_rec_bf *bf) { bf->sounding_phy = MT_PHY_TYPE_OFDM; bf->ndp_rate = 0; /* mcs0 */ bf->ndpa_rate = MT7996_CFEND_RATE_DEFAULT; /* ofdm 24m */ bf->rept_poll_rate = MT7996_CFEND_RATE_DEFAULT; /* ofdm 24m */ } static void mt7996_mcu_sta_bfer_ht(struct ieee80211_sta *sta, struct mt7996_phy *phy, struct sta_rec_bf *bf) { struct ieee80211_mcs_info *mcs = &sta->deflink.ht_cap.mcs; u8 n = 0; bf->tx_mode = MT_PHY_TYPE_HT; if ((mcs->tx_params & IEEE80211_HT_MCS_TX_RX_DIFF) && (mcs->tx_params & IEEE80211_HT_MCS_TX_DEFINED)) n = FIELD_GET(IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK, mcs->tx_params); else if (mcs->rx_mask[3]) n = 3; else if (mcs->rx_mask[2]) n = 2; else if (mcs->rx_mask[1]) n = 1; bf->nrow = hweight8(phy->mt76->antenna_mask) - 1; bf->ncol = min_t(u8, bf->nrow, n); bf->ibf_ncol = n; } static void mt7996_mcu_sta_bfer_vht(struct ieee80211_sta *sta, struct mt7996_phy *phy, struct sta_rec_bf *bf, bool explicit) { struct ieee80211_sta_vht_cap *pc = &sta->deflink.vht_cap; struct ieee80211_sta_vht_cap *vc = &phy->mt76->sband_5g.sband.vht_cap; u16 mcs_map = le16_to_cpu(pc->vht_mcs.rx_mcs_map); u8 nss_mcs = mt7996_mcu_get_sta_nss(mcs_map); u8 tx_ant = hweight8(phy->mt76->antenna_mask) - 1; bf->tx_mode = MT_PHY_TYPE_VHT; if (explicit) { u8 sts, snd_dim; mt7996_mcu_sta_sounding_rate(bf); sts = FIELD_GET(IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK, pc->cap); snd_dim = FIELD_GET(IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK, vc->cap); bf->nrow = min_t(u8, min_t(u8, snd_dim, sts), tx_ant); bf->ncol = min_t(u8, nss_mcs, bf->nrow); bf->ibf_ncol = bf->ncol; if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) bf->nrow = 1; } else { bf->nrow = tx_ant; bf->ncol = min_t(u8, nss_mcs, bf->nrow); bf->ibf_ncol = nss_mcs; if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) bf->ibf_nrow = 1; } } static void mt7996_mcu_sta_bfer_he(struct ieee80211_sta *sta, struct ieee80211_vif *vif, struct mt7996_phy *phy, struct sta_rec_bf *bf) { struct ieee80211_sta_he_cap *pc = &sta->deflink.he_cap; struct ieee80211_he_cap_elem *pe = &pc->he_cap_elem; const struct ieee80211_sta_he_cap *vc = mt76_connac_get_he_phy_cap(phy->mt76, vif); const struct ieee80211_he_cap_elem *ve = &vc->he_cap_elem; u16 mcs_map = le16_to_cpu(pc->he_mcs_nss_supp.rx_mcs_80); u8 nss_mcs = mt7996_mcu_get_sta_nss(mcs_map); u8 snd_dim, sts; bf->tx_mode = MT_PHY_TYPE_HE_SU; mt7996_mcu_sta_sounding_rate(bf); bf->trigger_su = HE_PHY(CAP6_TRIG_SU_BEAMFORMING_FB, pe->phy_cap_info[6]); bf->trigger_mu = HE_PHY(CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB, pe->phy_cap_info[6]); snd_dim = HE_PHY(CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK, ve->phy_cap_info[5]); sts = HE_PHY(CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_MASK, pe->phy_cap_info[4]); bf->nrow = min_t(u8, snd_dim, sts); bf->ncol = min_t(u8, nss_mcs, bf->nrow); bf->ibf_ncol = bf->ncol; if (sta->deflink.bandwidth != IEEE80211_STA_RX_BW_160) return; /* go over for 160MHz and 80p80 */ if (pe->phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) { mcs_map = le16_to_cpu(pc->he_mcs_nss_supp.rx_mcs_160); nss_mcs = mt7996_mcu_get_sta_nss(mcs_map); bf->ncol_gt_bw80 = nss_mcs; } if (pe->phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) { mcs_map = le16_to_cpu(pc->he_mcs_nss_supp.rx_mcs_80p80); nss_mcs = mt7996_mcu_get_sta_nss(mcs_map); if (bf->ncol_gt_bw80) bf->ncol_gt_bw80 = min_t(u8, bf->ncol_gt_bw80, nss_mcs); else bf->ncol_gt_bw80 = nss_mcs; } snd_dim = HE_PHY(CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK, ve->phy_cap_info[5]); sts = HE_PHY(CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_MASK, pe->phy_cap_info[4]); bf->nrow_gt_bw80 = min_t(int, snd_dim, sts); } static void mt7996_mcu_sta_bfer_eht(struct ieee80211_sta *sta, struct ieee80211_vif *vif, struct mt7996_phy *phy, struct sta_rec_bf *bf) { struct ieee80211_sta_eht_cap *pc = &sta->deflink.eht_cap; struct ieee80211_eht_cap_elem_fixed *pe = &pc->eht_cap_elem; struct ieee80211_eht_mcs_nss_supp *eht_nss = &pc->eht_mcs_nss_supp; const struct ieee80211_sta_eht_cap *vc = mt76_connac_get_eht_phy_cap(phy->mt76, vif); const struct ieee80211_eht_cap_elem_fixed *ve = &vc->eht_cap_elem; u8 nss_mcs = u8_get_bits(eht_nss->bw._80.rx_tx_mcs9_max_nss, IEEE80211_EHT_MCS_NSS_RX) - 1; u8 snd_dim, sts; bf->tx_mode = MT_PHY_TYPE_EHT_MU; mt7996_mcu_sta_sounding_rate(bf); bf->trigger_su = EHT_PHY(CAP3_TRIG_SU_BF_FDBK, pe->phy_cap_info[3]); bf->trigger_mu = EHT_PHY(CAP3_TRIG_MU_BF_PART_BW_FDBK, pe->phy_cap_info[3]); snd_dim = EHT_PHY(CAP2_SOUNDING_DIM_80MHZ_MASK, ve->phy_cap_info[2]); sts = EHT_PHY(CAP0_BEAMFORMEE_SS_80MHZ_MASK, pe->phy_cap_info[0]) + (EHT_PHY(CAP1_BEAMFORMEE_SS_80MHZ_MASK, pe->phy_cap_info[1]) << 1); bf->nrow = min_t(u8, snd_dim, sts); bf->ncol = min_t(u8, nss_mcs, bf->nrow); bf->ibf_ncol = bf->ncol; if (sta->deflink.bandwidth < IEEE80211_STA_RX_BW_160) return; switch (sta->deflink.bandwidth) { case IEEE80211_STA_RX_BW_160: snd_dim = EHT_PHY(CAP2_SOUNDING_DIM_160MHZ_MASK, ve->phy_cap_info[2]); sts = EHT_PHY(CAP1_BEAMFORMEE_SS_160MHZ_MASK, pe->phy_cap_info[1]); nss_mcs = u8_get_bits(eht_nss->bw._160.rx_tx_mcs9_max_nss, IEEE80211_EHT_MCS_NSS_RX) - 1; bf->nrow_gt_bw80 = min_t(u8, snd_dim, sts); bf->ncol_gt_bw80 = nss_mcs; break; case IEEE80211_STA_RX_BW_320: snd_dim = EHT_PHY(CAP2_SOUNDING_DIM_320MHZ_MASK, ve->phy_cap_info[2]) + (EHT_PHY(CAP3_SOUNDING_DIM_320MHZ_MASK, ve->phy_cap_info[3]) << 1); sts = EHT_PHY(CAP1_BEAMFORMEE_SS_320MHZ_MASK, pe->phy_cap_info[1]); nss_mcs = u8_get_bits(eht_nss->bw._320.rx_tx_mcs9_max_nss, IEEE80211_EHT_MCS_NSS_RX) - 1; bf->nrow_gt_bw80 = min_t(u8, snd_dim, sts) << 4; bf->ncol_gt_bw80 = nss_mcs << 4; break; default: break; } } static void mt7996_mcu_sta_bfer_tlv(struct mt7996_dev *dev, struct sk_buff *skb, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct mt7996_phy *phy = mvif->phy; int tx_ant = hweight8(phy->mt76->chainmask) - 1; struct sta_rec_bf *bf; struct tlv *tlv; const u8 matrix[4][4] = { {0, 0, 0, 0}, {1, 1, 0, 0}, /* 2x1, 2x2, 2x3, 2x4 */ {2, 4, 4, 0}, /* 3x1, 3x2, 3x3, 3x4 */ {3, 5, 6, 0} /* 4x1, 4x2, 4x3, 4x4 */ }; bool ebf; if (!(sta->deflink.ht_cap.ht_supported || sta->deflink.he_cap.has_he)) return; ebf = mt7996_is_ebf_supported(phy, vif, sta, false); if (!ebf && !dev->ibf) return; tlv = mt76_connac_mcu_add_tlv(skb, STA_REC_BF, sizeof(*bf)); bf = (struct sta_rec_bf *)tlv; /* he/eht: eBF only, in accordance with spec * vht: support eBF and iBF * ht: iBF only, since mac80211 lacks of eBF support */ if (sta->deflink.eht_cap.has_eht && ebf) mt7996_mcu_sta_bfer_eht(sta, vif, phy, bf); else if (sta->deflink.he_cap.has_he && ebf) mt7996_mcu_sta_bfer_he(sta, vif, phy, bf); else if (sta->deflink.vht_cap.vht_supported) mt7996_mcu_sta_bfer_vht(sta, phy, bf, ebf); else if (sta->deflink.ht_cap.ht_supported) mt7996_mcu_sta_bfer_ht(sta, phy, bf); else return; bf->bf_cap = ebf ? ebf : dev->ibf << 1; bf->bw = sta->deflink.bandwidth; bf->ibf_dbw = sta->deflink.bandwidth; bf->ibf_nrow = tx_ant; if (!ebf && sta->deflink.bandwidth <= IEEE80211_STA_RX_BW_40 && !bf->ncol) bf->ibf_timeout = 0x48; else bf->ibf_timeout = 0x18; if (ebf && bf->nrow != tx_ant) bf->mem_20m = matrix[tx_ant][bf->ncol]; else bf->mem_20m = matrix[bf->nrow][bf->ncol]; switch (sta->deflink.bandwidth) { case IEEE80211_STA_RX_BW_160: case IEEE80211_STA_RX_BW_80: bf->mem_total = bf->mem_20m * 2; break; case IEEE80211_STA_RX_BW_40: bf->mem_total = bf->mem_20m; break; case IEEE80211_STA_RX_BW_20: default: break; } } static void mt7996_mcu_sta_bfee_tlv(struct mt7996_dev *dev, struct sk_buff *skb, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct mt7996_phy *phy = mvif->phy; int tx_ant = hweight8(phy->mt76->antenna_mask) - 1; struct sta_rec_bfee *bfee; struct tlv *tlv; u8 nrow = 0; if (!(sta->deflink.vht_cap.vht_supported || sta->deflink.he_cap.has_he)) return; if (!mt7996_is_ebf_supported(phy, vif, sta, true)) return; tlv = mt76_connac_mcu_add_tlv(skb, STA_REC_BFEE, sizeof(*bfee)); bfee = (struct sta_rec_bfee *)tlv; if (sta->deflink.he_cap.has_he) { struct ieee80211_he_cap_elem *pe = &sta->deflink.he_cap.he_cap_elem; nrow = HE_PHY(CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK, pe->phy_cap_info[5]); } else if (sta->deflink.vht_cap.vht_supported) { struct ieee80211_sta_vht_cap *pc = &sta->deflink.vht_cap; nrow = FIELD_GET(IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK, pc->cap); } /* reply with identity matrix to avoid 2x2 BF negative gain */ bfee->fb_identity_matrix = (nrow == 1 && tx_ant == 2); } static void mt7996_mcu_sta_phy_tlv(struct mt7996_dev *dev, struct sk_buff *skb, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct sta_rec_phy *phy; struct tlv *tlv; u8 af = 0, mm = 0; if (!sta->deflink.ht_cap.ht_supported && !sta->deflink.he_6ghz_capa.capa) return; tlv = mt76_connac_mcu_add_tlv(skb, STA_REC_PHY, sizeof(*phy)); phy = (struct sta_rec_phy *)tlv; if (sta->deflink.ht_cap.ht_supported) { af = sta->deflink.ht_cap.ampdu_factor; mm = sta->deflink.ht_cap.ampdu_density; } if (sta->deflink.vht_cap.vht_supported) { u8 vht_af = FIELD_GET(IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK, sta->deflink.vht_cap.cap); af = max_t(u8, af, vht_af); } if (sta->deflink.he_6ghz_capa.capa) { af = le16_get_bits(sta->deflink.he_6ghz_capa.capa, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP); mm = le16_get_bits(sta->deflink.he_6ghz_capa.capa, IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START); } phy->ampdu = FIELD_PREP(IEEE80211_HT_AMPDU_PARM_FACTOR, af) | FIELD_PREP(IEEE80211_HT_AMPDU_PARM_DENSITY, mm); phy->max_ampdu_len = af; } static void mt7996_mcu_sta_hdrt_tlv(struct mt7996_dev *dev, struct sk_buff *skb) { struct sta_rec_hdrt *hdrt; struct tlv *tlv; tlv = mt76_connac_mcu_add_tlv(skb, STA_REC_HDRT, sizeof(*hdrt)); hdrt = (struct sta_rec_hdrt *)tlv; hdrt->hdrt_mode = 1; } static void mt7996_mcu_sta_hdr_trans_tlv(struct mt7996_dev *dev, struct sk_buff *skb, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct sta_rec_hdr_trans *hdr_trans; struct mt76_wcid *wcid; struct tlv *tlv; tlv = mt76_connac_mcu_add_tlv(skb, STA_REC_HDR_TRANS, sizeof(*hdr_trans)); hdr_trans = (struct sta_rec_hdr_trans *)tlv; hdr_trans->dis_rx_hdr_tran = true; if (vif->type == NL80211_IFTYPE_STATION) hdr_trans->to_ds = true; else hdr_trans->from_ds = true; wcid = (struct mt76_wcid *)sta->drv_priv; if (!wcid) return; hdr_trans->dis_rx_hdr_tran = !test_bit(MT_WCID_FLAG_HDR_TRANS, &wcid->flags); if (test_bit(MT_WCID_FLAG_4ADDR, &wcid->flags)) { hdr_trans->to_ds = true; hdr_trans->from_ds = true; } if (vif->type == NL80211_IFTYPE_MESH_POINT) { hdr_trans->to_ds = true; hdr_trans->from_ds = true; hdr_trans->mesh = true; } } static enum mcu_mmps_mode mt7996_mcu_get_mmps_mode(enum ieee80211_smps_mode smps) { switch (smps) { case IEEE80211_SMPS_OFF: return MCU_MMPS_DISABLE; case IEEE80211_SMPS_STATIC: return MCU_MMPS_STATIC; case IEEE80211_SMPS_DYNAMIC: return MCU_MMPS_DYNAMIC; default: return MCU_MMPS_DISABLE; } } int mt7996_mcu_set_fixed_rate_ctrl(struct mt7996_dev *dev, void *data, u16 version) { struct ra_fixed_rate *req; struct uni_header hdr; struct sk_buff *skb; struct tlv *tlv; int len; len = sizeof(hdr) + sizeof(*req); skb = mt76_mcu_msg_alloc(&dev->mt76, NULL, len); if (!skb) return -ENOMEM; skb_put_data(skb, &hdr, sizeof(hdr)); tlv = mt7996_mcu_add_uni_tlv(skb, UNI_RA_FIXED_RATE, sizeof(*req)); req = (struct ra_fixed_rate *)tlv; req->version = cpu_to_le16(version); memcpy(&req->rate, data, sizeof(req->rate)); return mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_WM_UNI_CMD(RA), true); } static void mt7996_mcu_sta_rate_ctrl_tlv(struct sk_buff *skb, struct mt7996_dev *dev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct mt76_phy *mphy = mvif->phy->mt76; struct cfg80211_chan_def *chandef = &mphy->chandef; struct cfg80211_bitrate_mask *mask = &mvif->bitrate_mask; enum nl80211_band band = chandef->chan->band; struct sta_rec_ra *ra; struct tlv *tlv; u32 supp_rate = sta->deflink.supp_rates[band]; u32 cap = sta->wme ? STA_CAP_WMM : 0; tlv = mt76_connac_mcu_add_tlv(skb, STA_REC_RA, sizeof(*ra)); ra = (struct sta_rec_ra *)tlv; ra->valid = true; ra->auto_rate = true; ra->phy_mode = mt76_connac_get_phy_mode(mphy, vif, band, sta); ra->channel = chandef->chan->hw_value; ra->bw = (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_320) ? CMD_CBW_320MHZ : sta->deflink.bandwidth; ra->phy.bw = ra->bw; ra->mmps_mode = mt7996_mcu_get_mmps_mode(sta->deflink.smps_mode); if (supp_rate) { supp_rate &= mask->control[band].legacy; ra->rate_len = hweight32(supp_rate); if (band == NL80211_BAND_2GHZ) { ra->supp_mode = MODE_CCK; ra->supp_cck_rate = supp_rate & GENMASK(3, 0); if (ra->rate_len > 4) { ra->supp_mode |= MODE_OFDM; ra->supp_ofdm_rate = supp_rate >> 4; } } else { ra->supp_mode = MODE_OFDM; ra->supp_ofdm_rate = supp_rate; } } if (sta->deflink.ht_cap.ht_supported) { ra->supp_mode |= MODE_HT; ra->af = sta->deflink.ht_cap.ampdu_factor; ra->ht_gf = !!(sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_GRN_FLD); cap |= STA_CAP_HT; if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) cap |= STA_CAP_SGI_20; if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40) cap |= STA_CAP_SGI_40; if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_TX_STBC) cap |= STA_CAP_TX_STBC; if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC) cap |= STA_CAP_RX_STBC; if (vif->bss_conf.ht_ldpc && (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)) cap |= STA_CAP_LDPC; mt7996_mcu_set_sta_ht_mcs(sta, ra->ht_mcs, mask->control[band].ht_mcs); ra->supp_ht_mcs = *(__le32 *)ra->ht_mcs; } if (sta->deflink.vht_cap.vht_supported) { u8 af; ra->supp_mode |= MODE_VHT; af = FIELD_GET(IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK, sta->deflink.vht_cap.cap); ra->af = max_t(u8, ra->af, af); cap |= STA_CAP_VHT; if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80) cap |= STA_CAP_VHT_SGI_80; if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_160) cap |= STA_CAP_VHT_SGI_160; if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_TXSTBC) cap |= STA_CAP_VHT_TX_STBC; if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_1) cap |= STA_CAP_VHT_RX_STBC; if (vif->bss_conf.vht_ldpc && (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)) cap |= STA_CAP_VHT_LDPC; mt7996_mcu_set_sta_vht_mcs(sta, ra->supp_vht_mcs, mask->control[band].vht_mcs); } if (sta->deflink.he_cap.has_he) { ra->supp_mode |= MODE_HE; cap |= STA_CAP_HE; if (sta->deflink.he_6ghz_capa.capa) ra->af = le16_get_bits(sta->deflink.he_6ghz_capa.capa, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP); } ra->sta_cap = cpu_to_le32(cap); } int mt7996_mcu_add_rate_ctrl(struct mt7996_dev *dev, struct ieee80211_vif *vif, struct ieee80211_sta *sta, bool changed) { struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct mt7996_sta *msta = (struct mt7996_sta *)sta->drv_priv; struct sk_buff *skb; skb = __mt76_connac_mcu_alloc_sta_req(&dev->mt76, &mvif->mt76, &msta->wcid, MT7996_STA_UPDATE_MAX_SIZE); if (IS_ERR(skb)) return PTR_ERR(skb); /* firmware rc algorithm refers to sta_rec_he for HE control. * once dev->rc_work changes the settings driver should also * update sta_rec_he here. */ if (changed) mt7996_mcu_sta_he_tlv(skb, sta); /* sta_rec_ra accommodates BW, NSS and only MCS range format * i.e 0-{7,8,9} for VHT. */ mt7996_mcu_sta_rate_ctrl_tlv(skb, dev, vif, sta); return mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_WMWA_UNI_CMD(STA_REC_UPDATE), true); } static int mt7996_mcu_add_group(struct mt7996_dev *dev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { #define MT_STA_BSS_GROUP 1 struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct mt7996_sta *msta; struct { u8 __rsv1[4]; __le16 tag; __le16 len; __le16 wlan_idx; u8 __rsv2[2]; __le32 action; __le32 val; u8 __rsv3[8]; } __packed req = { .tag = cpu_to_le16(UNI_VOW_DRR_CTRL), .len = cpu_to_le16(sizeof(req) - 4), .action = cpu_to_le32(MT_STA_BSS_GROUP), .val = cpu_to_le32(mvif->mt76.idx % 16), }; msta = sta ? (struct mt7996_sta *)sta->drv_priv : &mvif->sta; req.wlan_idx = cpu_to_le16(msta->wcid.idx); return mt76_mcu_send_msg(&dev->mt76, MCU_WM_UNI_CMD(VOW), &req, sizeof(req), true); } int mt7996_mcu_add_sta(struct mt7996_dev *dev, struct ieee80211_vif *vif, struct ieee80211_sta *sta, bool enable) { struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct mt7996_sta *msta; struct sk_buff *skb; int ret; msta = sta ? (struct mt7996_sta *)sta->drv_priv : &mvif->sta; skb = __mt76_connac_mcu_alloc_sta_req(&dev->mt76, &mvif->mt76, &msta->wcid, MT7996_STA_UPDATE_MAX_SIZE); if (IS_ERR(skb)) return PTR_ERR(skb); /* starec basic */ mt76_connac_mcu_sta_basic_tlv(&dev->mt76, skb, vif, sta, enable, !rcu_access_pointer(dev->mt76.wcid[msta->wcid.idx])); if (!enable) goto out; /* tag order is in accordance with firmware dependency. */ if (sta) { /* starec phy */ mt7996_mcu_sta_phy_tlv(dev, skb, vif, sta); /* starec hdrt mode */ mt7996_mcu_sta_hdrt_tlv(dev, skb); /* starec bfer */ mt7996_mcu_sta_bfer_tlv(dev, skb, vif, sta); /* starec ht */ mt7996_mcu_sta_ht_tlv(skb, sta); /* starec vht */ mt7996_mcu_sta_vht_tlv(skb, sta); /* starec uapsd */ mt76_connac_mcu_sta_uapsd(skb, vif, sta); /* starec amsdu */ mt7996_mcu_sta_amsdu_tlv(dev, skb, vif, sta); /* starec he */ mt7996_mcu_sta_he_tlv(skb, sta); /* starec he 6g*/ mt7996_mcu_sta_he_6g_tlv(skb, sta); /* starec eht */ mt7996_mcu_sta_eht_tlv(skb, sta); /* starec muru */ mt7996_mcu_sta_muru_tlv(dev, skb, vif, sta); /* starec bfee */ mt7996_mcu_sta_bfee_tlv(dev, skb, vif, sta); /* starec hdr trans */ mt7996_mcu_sta_hdr_trans_tlv(dev, skb, vif, sta); } ret = mt7996_mcu_add_group(dev, vif, sta); if (ret) { dev_kfree_skb(skb); return ret; } out: return mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_WMWA_UNI_CMD(STA_REC_UPDATE), true); } static int mt7996_mcu_sta_key_tlv(struct mt76_wcid *wcid, struct mt76_connac_sta_key_conf *sta_key_conf, struct sk_buff *skb, struct ieee80211_key_conf *key, enum set_key_cmd cmd) { struct sta_rec_sec_uni *sec; struct tlv *tlv; tlv = mt76_connac_mcu_add_tlv(skb, STA_REC_KEY_V2, sizeof(*sec)); sec = (struct sta_rec_sec_uni *)tlv; sec->add = cmd; if (cmd == SET_KEY) { struct sec_key_uni *sec_key; u8 cipher; cipher = mt76_connac_mcu_get_cipher(key->cipher); if (cipher == MCU_CIPHER_NONE) return -EOPNOTSUPP; sec_key = &sec->key[0]; sec_key->cipher_len = sizeof(*sec_key); if (cipher == MCU_CIPHER_BIP_CMAC_128) { sec_key->wlan_idx = cpu_to_le16(wcid->idx); sec_key->cipher_id = MCU_CIPHER_AES_CCMP; sec_key->key_id = sta_key_conf->keyidx; sec_key->key_len = 16; memcpy(sec_key->key, sta_key_conf->key, 16); sec_key = &sec->key[1]; sec_key->wlan_idx = cpu_to_le16(wcid->idx); sec_key->cipher_id = MCU_CIPHER_BIP_CMAC_128; sec_key->cipher_len = sizeof(*sec_key); sec_key->key_len = 16; memcpy(sec_key->key, key->key, 16); sec->n_cipher = 2; } else { sec_key->wlan_idx = cpu_to_le16(wcid->idx); sec_key->cipher_id = cipher; sec_key->key_id = key->keyidx; sec_key->key_len = key->keylen; memcpy(sec_key->key, key->key, key->keylen); if (cipher == MCU_CIPHER_TKIP) { /* Rx/Tx MIC keys are swapped */ memcpy(sec_key->key + 16, key->key + 24, 8); memcpy(sec_key->key + 24, key->key + 16, 8); } /* store key_conf for BIP batch update */ if (cipher == MCU_CIPHER_AES_CCMP) { memcpy(sta_key_conf->key, key->key, key->keylen); sta_key_conf->keyidx = key->keyidx; } sec->n_cipher = 1; } } else { sec->n_cipher = 0; } return 0; } int mt7996_mcu_add_key(struct mt76_dev *dev, struct ieee80211_vif *vif, struct mt76_connac_sta_key_conf *sta_key_conf, struct ieee80211_key_conf *key, int mcu_cmd, struct mt76_wcid *wcid, enum set_key_cmd cmd) { struct mt76_vif *mvif = (struct mt76_vif *)vif->drv_priv; struct sk_buff *skb; int ret; skb = __mt76_connac_mcu_alloc_sta_req(dev, mvif, wcid, MT7996_STA_UPDATE_MAX_SIZE); if (IS_ERR(skb)) return PTR_ERR(skb); ret = mt7996_mcu_sta_key_tlv(wcid, sta_key_conf, skb, key, cmd); if (ret) return ret; return mt76_mcu_skb_send_msg(dev, skb, mcu_cmd, true); } int mt7996_mcu_add_dev_info(struct mt7996_phy *phy, struct ieee80211_vif *vif, bool enable) { struct mt7996_dev *dev = phy->dev; struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct { struct req_hdr { u8 omac_idx; u8 band_idx; u8 __rsv[2]; } __packed hdr; struct req_tlv { __le16 tag; __le16 len; u8 active; u8 __rsv; u8 omac_addr[ETH_ALEN]; } __packed tlv; } data = { .hdr = { .omac_idx = mvif->mt76.omac_idx, .band_idx = mvif->mt76.band_idx, }, .tlv = { .tag = cpu_to_le16(DEV_INFO_ACTIVE), .len = cpu_to_le16(sizeof(struct req_tlv)), .active = enable, }, }; if (mvif->mt76.omac_idx >= REPEATER_BSSID_START) return mt7996_mcu_muar_config(phy, vif, false, enable); memcpy(data.tlv.omac_addr, vif->addr, ETH_ALEN); return mt76_mcu_send_msg(&dev->mt76, MCU_WMWA_UNI_CMD(DEV_INFO_UPDATE), &data, sizeof(data), true); } static void mt7996_mcu_beacon_cntdwn(struct ieee80211_vif *vif, struct sk_buff *rskb, struct sk_buff *skb, struct ieee80211_mutable_offsets *offs) { struct bss_bcn_cntdwn_tlv *info; struct tlv *tlv; u16 tag; if (!offs->cntdwn_counter_offs[0]) return; tag = vif->bss_conf.csa_active ? UNI_BSS_INFO_BCN_CSA : UNI_BSS_INFO_BCN_BCC; tlv = mt7996_mcu_add_uni_tlv(rskb, tag, sizeof(*info)); info = (struct bss_bcn_cntdwn_tlv *)tlv; info->cnt = skb->data[offs->cntdwn_counter_offs[0]]; } static void mt7996_mcu_beacon_cont(struct mt7996_dev *dev, struct ieee80211_vif *vif, struct sk_buff *rskb, struct sk_buff *skb, struct bss_bcn_content_tlv *bcn, struct ieee80211_mutable_offsets *offs) { struct mt76_wcid *wcid = &dev->mt76.global_wcid; u8 *buf; bcn->pkt_len = cpu_to_le16(MT_TXD_SIZE + skb->len); bcn->tim_ie_pos = cpu_to_le16(offs->tim_offset); if (offs->cntdwn_counter_offs[0]) { u16 offset = offs->cntdwn_counter_offs[0]; if (vif->bss_conf.csa_active) bcn->csa_ie_pos = cpu_to_le16(offset - 4); if (vif->bss_conf.color_change_active) bcn->bcc_ie_pos = cpu_to_le16(offset - 3); } buf = (u8 *)bcn + sizeof(*bcn) - MAX_BEACON_SIZE; mt7996_mac_write_txwi(dev, (__le32 *)buf, skb, wcid, NULL, 0, 0, BSS_CHANGED_BEACON); memcpy(buf + MT_TXD_SIZE, skb->data, skb->len); } int mt7996_mcu_add_beacon(struct ieee80211_hw *hw, struct ieee80211_vif *vif, int en) { struct mt7996_dev *dev = mt7996_hw_dev(hw); struct mt7996_phy *phy = mt7996_hw_phy(hw); struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct ieee80211_mutable_offsets offs; struct ieee80211_tx_info *info; struct sk_buff *skb, *rskb; struct tlv *tlv; struct bss_bcn_content_tlv *bcn; rskb = __mt7996_mcu_alloc_bss_req(&dev->mt76, &mvif->mt76, MT7996_BEACON_UPDATE_SIZE); if (IS_ERR(rskb)) return PTR_ERR(rskb); tlv = mt7996_mcu_add_uni_tlv(rskb, UNI_BSS_INFO_BCN_CONTENT, sizeof(*bcn)); bcn = (struct bss_bcn_content_tlv *)tlv; bcn->enable = en; if (!en) goto out; skb = ieee80211_beacon_get_template(hw, vif, &offs, 0); if (!skb) return -EINVAL; if (skb->len > MAX_BEACON_SIZE - MT_TXD_SIZE) { dev_err(dev->mt76.dev, "Bcn size limit exceed\n"); dev_kfree_skb(skb); return -EINVAL; } info = IEEE80211_SKB_CB(skb); info->hw_queue |= FIELD_PREP(MT_TX_HW_QUEUE_PHY, phy->mt76->band_idx); mt7996_mcu_beacon_cont(dev, vif, rskb, skb, bcn, &offs); /* TODO: subtag - 11v MBSSID */ mt7996_mcu_beacon_cntdwn(vif, rskb, skb, &offs); dev_kfree_skb(skb); out: return mt76_mcu_skb_send_msg(&phy->dev->mt76, rskb, MCU_WMWA_UNI_CMD(BSS_INFO_UPDATE), true); } int mt7996_mcu_beacon_inband_discov(struct mt7996_dev *dev, struct ieee80211_vif *vif, u32 changed) { #define OFFLOAD_TX_MODE_SU BIT(0) #define OFFLOAD_TX_MODE_MU BIT(1) struct ieee80211_hw *hw = mt76_hw(dev); struct mt7996_phy *phy = mt7996_hw_phy(hw); struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct cfg80211_chan_def *chandef = &mvif->phy->mt76->chandef; enum nl80211_band band = chandef->chan->band; struct mt76_wcid *wcid = &dev->mt76.global_wcid; struct bss_inband_discovery_tlv *discov; struct ieee80211_tx_info *info; struct sk_buff *rskb, *skb = NULL; struct tlv *tlv; u8 *buf, interval; rskb = __mt7996_mcu_alloc_bss_req(&dev->mt76, &mvif->mt76, MT7996_INBAND_FRAME_SIZE); if (IS_ERR(rskb)) return PTR_ERR(rskb); if (changed & BSS_CHANGED_FILS_DISCOVERY && vif->bss_conf.fils_discovery.max_interval) { interval = vif->bss_conf.fils_discovery.max_interval; skb = ieee80211_get_fils_discovery_tmpl(hw, vif); } else if (changed & BSS_CHANGED_UNSOL_BCAST_PROBE_RESP && vif->bss_conf.unsol_bcast_probe_resp_interval) { interval = vif->bss_conf.unsol_bcast_probe_resp_interval; skb = ieee80211_get_unsol_bcast_probe_resp_tmpl(hw, vif); } if (!skb) return -EINVAL; if (skb->len > MAX_INBAND_FRAME_SIZE - MT_TXD_SIZE) { dev_err(dev->mt76.dev, "inband discovery size limit exceed\n"); dev_kfree_skb(skb); return -EINVAL; } info = IEEE80211_SKB_CB(skb); info->control.vif = vif; info->band = band; info->hw_queue |= FIELD_PREP(MT_TX_HW_QUEUE_PHY, phy->mt76->band_idx); tlv = mt7996_mcu_add_uni_tlv(rskb, UNI_BSS_INFO_OFFLOAD, sizeof(*discov)); discov = (struct bss_inband_discovery_tlv *)tlv; discov->tx_mode = OFFLOAD_TX_MODE_SU; /* 0: UNSOL PROBE RESP, 1: FILS DISCOV */ discov->tx_type = !!(changed & BSS_CHANGED_FILS_DISCOVERY); discov->tx_interval = interval; discov->prob_rsp_len = cpu_to_le16(MT_TXD_SIZE + skb->len); discov->enable = true; discov->wcid = cpu_to_le16(MT7996_WTBL_RESERVED); buf = (u8 *)tlv + sizeof(*discov) - MAX_INBAND_FRAME_SIZE; mt7996_mac_write_txwi(dev, (__le32 *)buf, skb, wcid, NULL, 0, 0, changed); memcpy(buf + MT_TXD_SIZE, skb->data, skb->len); dev_kfree_skb(skb); return mt76_mcu_skb_send_msg(&dev->mt76, rskb, MCU_WMWA_UNI_CMD(BSS_INFO_UPDATE), true); } static int mt7996_driver_own(struct mt7996_dev *dev, u8 band) { mt76_wr(dev, MT_TOP_LPCR_HOST_BAND(band), MT_TOP_LPCR_HOST_DRV_OWN); if (!mt76_poll_msec(dev, MT_TOP_LPCR_HOST_BAND(band), MT_TOP_LPCR_HOST_FW_OWN_STAT, 0, 500)) { dev_err(dev->mt76.dev, "Timeout for driver own\n"); return -EIO; } /* clear irq when the driver own success */ mt76_wr(dev, MT_TOP_LPCR_HOST_BAND_IRQ_STAT(band), MT_TOP_LPCR_HOST_BAND_STAT); return 0; } static u32 mt7996_patch_sec_mode(u32 key_info) { u32 sec = u32_get_bits(key_info, MT7996_PATCH_SEC), key = 0; if (key_info == GENMASK(31, 0) || sec == MT7996_SEC_MODE_PLAIN) return 0; if (sec == MT7996_SEC_MODE_AES) key = u32_get_bits(key_info, MT7996_PATCH_AES_KEY); else key = u32_get_bits(key_info, MT7996_PATCH_SCRAMBLE_KEY); return MT7996_SEC_ENCRYPT | MT7996_SEC_IV | u32_encode_bits(key, MT7996_SEC_KEY_IDX); } static int mt7996_load_patch(struct mt7996_dev *dev) { const struct mt7996_patch_hdr *hdr; const struct firmware *fw = NULL; int i, ret, sem; sem = mt76_connac_mcu_patch_sem_ctrl(&dev->mt76, 1); switch (sem) { case PATCH_IS_DL: return 0; case PATCH_NOT_DL_SEM_SUCCESS: break; default: dev_err(dev->mt76.dev, "Failed to get patch semaphore\n"); return -EAGAIN; } ret = request_firmware(&fw, MT7996_ROM_PATCH, dev->mt76.dev); if (ret) goto out; if (!fw || !fw->data || fw->size < sizeof(*hdr)) { dev_err(dev->mt76.dev, "Invalid firmware\n"); ret = -EINVAL; goto out; } hdr = (const struct mt7996_patch_hdr *)(fw->data); dev_info(dev->mt76.dev, "HW/SW Version: 0x%x, Build Time: %.16s\n", be32_to_cpu(hdr->hw_sw_ver), hdr->build_date); for (i = 0; i < be32_to_cpu(hdr->desc.n_region); i++) { struct mt7996_patch_sec *sec; const u8 *dl; u32 len, addr, sec_key_idx, mode = DL_MODE_NEED_RSP; sec = (struct mt7996_patch_sec *)(fw->data + sizeof(*hdr) + i * sizeof(*sec)); if ((be32_to_cpu(sec->type) & PATCH_SEC_TYPE_MASK) != PATCH_SEC_TYPE_INFO) { ret = -EINVAL; goto out; } addr = be32_to_cpu(sec->info.addr); len = be32_to_cpu(sec->info.len); sec_key_idx = be32_to_cpu(sec->info.sec_key_idx); dl = fw->data + be32_to_cpu(sec->offs); mode |= mt7996_patch_sec_mode(sec_key_idx); ret = mt76_connac_mcu_init_download(&dev->mt76, addr, len, mode); if (ret) { dev_err(dev->mt76.dev, "Download request failed\n"); goto out; } ret = __mt76_mcu_send_firmware(&dev->mt76, MCU_CMD(FW_SCATTER), dl, len, 4096); if (ret) { dev_err(dev->mt76.dev, "Failed to send patch\n"); goto out; } } ret = mt76_connac_mcu_start_patch(&dev->mt76); if (ret) dev_err(dev->mt76.dev, "Failed to start patch\n"); out: sem = mt76_connac_mcu_patch_sem_ctrl(&dev->mt76, 0); switch (sem) { case PATCH_REL_SEM_SUCCESS: break; default: ret = -EAGAIN; dev_err(dev->mt76.dev, "Failed to release patch semaphore\n"); break; } release_firmware(fw); return ret; } static int mt7996_mcu_send_ram_firmware(struct mt7996_dev *dev, const struct mt7996_fw_trailer *hdr, const u8 *data, enum mt7996_ram_type type) { int i, offset = 0; u32 override = 0, option = 0; for (i = 0; i < hdr->n_region; i++) { const struct mt7996_fw_region *region; int err; u32 len, addr, mode; region = (const struct mt7996_fw_region *)((const u8 *)hdr - (hdr->n_region - i) * sizeof(*region)); /* DSP and WA use same mode */ mode = mt76_connac_mcu_gen_dl_mode(&dev->mt76, region->feature_set, type != MT7996_RAM_TYPE_WM); len = le32_to_cpu(region->len); addr = le32_to_cpu(region->addr); if (region->feature_set & FW_FEATURE_OVERRIDE_ADDR) override = addr; err = mt76_connac_mcu_init_download(&dev->mt76, addr, len, mode); if (err) { dev_err(dev->mt76.dev, "Download request failed\n"); return err; } err = __mt76_mcu_send_firmware(&dev->mt76, MCU_CMD(FW_SCATTER), data + offset, len, 4096); if (err) { dev_err(dev->mt76.dev, "Failed to send firmware.\n"); return err; } offset += len; } if (override) option |= FW_START_OVERRIDE; if (type == MT7996_RAM_TYPE_WA) option |= FW_START_WORKING_PDA_CR4; else if (type == MT7996_RAM_TYPE_DSP) option |= FW_START_WORKING_PDA_DSP; return mt76_connac_mcu_start_firmware(&dev->mt76, override, option); } static int __mt7996_load_ram(struct mt7996_dev *dev, const char *fw_type, const char *fw_file, enum mt7996_ram_type ram_type) { const struct mt7996_fw_trailer *hdr; const struct firmware *fw; int ret; ret = request_firmware(&fw, fw_file, dev->mt76.dev); if (ret) return ret; if (!fw || !fw->data || fw->size < sizeof(*hdr)) { dev_err(dev->mt76.dev, "Invalid firmware\n"); ret = -EINVAL; goto out; } hdr = (const void *)(fw->data + fw->size - sizeof(*hdr)); dev_info(dev->mt76.dev, "%s Firmware Version: %.10s, Build Time: %.15s\n", fw_type, hdr->fw_ver, hdr->build_date); ret = mt7996_mcu_send_ram_firmware(dev, hdr, fw->data, ram_type); if (ret) { dev_err(dev->mt76.dev, "Failed to start %s firmware\n", fw_type); goto out; } snprintf(dev->mt76.hw->wiphy->fw_version, sizeof(dev->mt76.hw->wiphy->fw_version), "%.10s-%.15s", hdr->fw_ver, hdr->build_date); out: release_firmware(fw); return ret; } static int mt7996_load_ram(struct mt7996_dev *dev) { int ret; ret = __mt7996_load_ram(dev, "WM", MT7996_FIRMWARE_WM, MT7996_RAM_TYPE_WM); if (ret) return ret; ret = __mt7996_load_ram(dev, "DSP", MT7996_FIRMWARE_DSP, MT7996_RAM_TYPE_DSP); if (ret) return ret; return __mt7996_load_ram(dev, "WA", MT7996_FIRMWARE_WA, MT7996_RAM_TYPE_WA); } static int mt7996_firmware_state(struct mt7996_dev *dev, bool wa) { u32 state = FIELD_PREP(MT_TOP_MISC_FW_STATE, wa ? FW_STATE_RDY : FW_STATE_FW_DOWNLOAD); if (!mt76_poll_msec(dev, MT_TOP_MISC, MT_TOP_MISC_FW_STATE, state, 1000)) { dev_err(dev->mt76.dev, "Timeout for initializing firmware\n"); return -EIO; } return 0; } static int mt7996_mcu_restart(struct mt76_dev *dev) { struct { u8 __rsv1[4]; __le16 tag; __le16 len; u8 power_mode; u8 __rsv2[3]; } __packed req = { .tag = cpu_to_le16(UNI_POWER_OFF), .len = cpu_to_le16(sizeof(req) - 4), .power_mode = 1, }; return mt76_mcu_send_msg(dev, MCU_WM_UNI_CMD(POWER_CTRL), &req, sizeof(req), false); } static int mt7996_load_firmware(struct mt7996_dev *dev) { int ret; /* make sure fw is download state */ if (mt7996_firmware_state(dev, false)) { /* restart firmware once */ mt7996_mcu_restart(&dev->mt76); ret = mt7996_firmware_state(dev, false); if (ret) { dev_err(dev->mt76.dev, "Firmware is not ready for download\n"); return ret; } } ret = mt7996_load_patch(dev); if (ret) return ret; ret = mt7996_load_ram(dev); if (ret) return ret; ret = mt7996_firmware_state(dev, true); if (ret) return ret; mt76_queue_tx_cleanup(dev, dev->mt76.q_mcu[MT_MCUQ_FWDL], false); dev_dbg(dev->mt76.dev, "Firmware init done\n"); return 0; } int mt7996_mcu_fw_log_2_host(struct mt7996_dev *dev, u8 type, u8 ctrl) { struct { u8 _rsv[4]; __le16 tag; __le16 len; u8 ctrl; u8 interval; u8 _rsv2[2]; } __packed data = { .tag = cpu_to_le16(UNI_WSYS_CONFIG_FW_LOG_CTRL), .len = cpu_to_le16(sizeof(data) - 4), .ctrl = ctrl, }; if (type == MCU_FW_LOG_WA) return mt76_mcu_send_msg(&dev->mt76, MCU_WA_UNI_CMD(WSYS_CONFIG), &data, sizeof(data), true); return mt76_mcu_send_msg(&dev->mt76, MCU_WM_UNI_CMD(WSYS_CONFIG), &data, sizeof(data), true); } int mt7996_mcu_fw_dbg_ctrl(struct mt7996_dev *dev, u32 module, u8 level) { struct { u8 _rsv[4]; __le16 tag; __le16 len; __le32 module_idx; u8 level; u8 _rsv2[3]; } data = { .tag = cpu_to_le16(UNI_WSYS_CONFIG_FW_DBG_CTRL), .len = cpu_to_le16(sizeof(data) - 4), .module_idx = cpu_to_le32(module), .level = level, }; return mt76_mcu_send_msg(&dev->mt76, MCU_WM_UNI_CMD(WSYS_CONFIG), &data, sizeof(data), false); } static int mt7996_mcu_set_mwds(struct mt7996_dev *dev, bool enabled) { struct { u8 enable; u8 _rsv[3]; } __packed req = { .enable = enabled }; return mt76_mcu_send_msg(&dev->mt76, MCU_WA_EXT_CMD(MWDS_SUPPORT), &req, sizeof(req), false); } static void mt7996_add_rx_airtime_tlv(struct sk_buff *skb, u8 band_idx) { struct vow_rx_airtime *req; struct tlv *tlv; tlv = mt7996_mcu_add_uni_tlv(skb, UNI_VOW_RX_AT_AIRTIME_CLR_EN, sizeof(*req)); req = (struct vow_rx_airtime *)tlv; req->enable = true; req->band = band_idx; tlv = mt7996_mcu_add_uni_tlv(skb, UNI_VOW_RX_AT_AIRTIME_EN, sizeof(*req)); req = (struct vow_rx_airtime *)tlv; req->enable = true; req->band = band_idx; } static int mt7996_mcu_init_rx_airtime(struct mt7996_dev *dev) { struct uni_header hdr = {}; struct sk_buff *skb; int len, num; num = 2 + 2 * (dev->dbdc_support + dev->tbtc_support); len = sizeof(hdr) + num * sizeof(struct vow_rx_airtime); skb = mt76_mcu_msg_alloc(&dev->mt76, NULL, len); if (!skb) return -ENOMEM; skb_put_data(skb, &hdr, sizeof(hdr)); mt7996_add_rx_airtime_tlv(skb, dev->mt76.phy.band_idx); if (dev->dbdc_support) mt7996_add_rx_airtime_tlv(skb, MT_BAND1); if (dev->tbtc_support) mt7996_add_rx_airtime_tlv(skb, MT_BAND2); return mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_WM_UNI_CMD(VOW), true); } int mt7996_mcu_init_firmware(struct mt7996_dev *dev) { int ret; /* force firmware operation mode into normal state, * which should be set before firmware download stage. */ mt76_wr(dev, MT_SWDEF_MODE, MT_SWDEF_NORMAL_MODE); ret = mt7996_driver_own(dev, 0); if (ret) return ret; /* set driver own for band1 when two hif exist */ if (dev->hif2) { ret = mt7996_driver_own(dev, 1); if (ret) return ret; } ret = mt7996_load_firmware(dev); if (ret) return ret; set_bit(MT76_STATE_MCU_RUNNING, &dev->mphy.state); ret = mt7996_mcu_fw_log_2_host(dev, MCU_FW_LOG_WM, 0); if (ret) return ret; ret = mt7996_mcu_fw_log_2_host(dev, MCU_FW_LOG_WA, 0); if (ret) return ret; ret = mt7996_mcu_set_mwds(dev, 1); if (ret) return ret; ret = mt7996_mcu_init_rx_airtime(dev); if (ret) return ret; return mt7996_mcu_wa_cmd(dev, MCU_WA_PARAM_CMD(SET), MCU_WA_PARAM_RED, 0, 0); } int mt7996_mcu_init(struct mt7996_dev *dev) { static const struct mt76_mcu_ops mt7996_mcu_ops = { .headroom = sizeof(struct mt76_connac2_mcu_txd), /* reuse */ .mcu_skb_send_msg = mt7996_mcu_send_message, .mcu_parse_response = mt7996_mcu_parse_response, }; dev->mt76.mcu_ops = &mt7996_mcu_ops; return mt7996_mcu_init_firmware(dev); } void mt7996_mcu_exit(struct mt7996_dev *dev) { mt7996_mcu_restart(&dev->mt76); if (mt7996_firmware_state(dev, false)) { dev_err(dev->mt76.dev, "Failed to exit mcu\n"); goto out; } mt76_wr(dev, MT_TOP_LPCR_HOST_BAND(0), MT_TOP_LPCR_HOST_FW_OWN); if (dev->hif2) mt76_wr(dev, MT_TOP_LPCR_HOST_BAND(1), MT_TOP_LPCR_HOST_FW_OWN); out: skb_queue_purge(&dev->mt76.mcu.res_q); } int mt7996_mcu_set_hdr_trans(struct mt7996_dev *dev, bool hdr_trans) { struct { u8 __rsv[4]; } __packed hdr; struct hdr_trans_blacklist *req_blacklist; struct hdr_trans_en *req_en; struct sk_buff *skb; struct tlv *tlv; int len = MT7996_HDR_TRANS_MAX_SIZE + sizeof(hdr); skb = mt76_mcu_msg_alloc(&dev->mt76, NULL, len); if (!skb) return -ENOMEM; skb_put_data(skb, &hdr, sizeof(hdr)); tlv = mt7996_mcu_add_uni_tlv(skb, UNI_HDR_TRANS_EN, sizeof(*req_en)); req_en = (struct hdr_trans_en *)tlv; req_en->enable = hdr_trans; tlv = mt7996_mcu_add_uni_tlv(skb, UNI_HDR_TRANS_VLAN, sizeof(struct hdr_trans_vlan)); if (hdr_trans) { tlv = mt7996_mcu_add_uni_tlv(skb, UNI_HDR_TRANS_BLACKLIST, sizeof(*req_blacklist)); req_blacklist = (struct hdr_trans_blacklist *)tlv; req_blacklist->enable = 1; req_blacklist->type = cpu_to_le16(ETH_P_PAE); } return mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_WM_UNI_CMD(RX_HDR_TRANS), true); } int mt7996_mcu_set_tx(struct mt7996_dev *dev, struct ieee80211_vif *vif) { #define MCU_EDCA_AC_PARAM 0 #define WMM_AIFS_SET BIT(0) #define WMM_CW_MIN_SET BIT(1) #define WMM_CW_MAX_SET BIT(2) #define WMM_TXOP_SET BIT(3) #define WMM_PARAM_SET (WMM_AIFS_SET | WMM_CW_MIN_SET | \ WMM_CW_MAX_SET | WMM_TXOP_SET) struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct { u8 bss_idx; u8 __rsv[3]; } __packed hdr = { .bss_idx = mvif->mt76.idx, }; struct sk_buff *skb; int len = sizeof(hdr) + IEEE80211_NUM_ACS * sizeof(struct edca); int ac; skb = mt76_mcu_msg_alloc(&dev->mt76, NULL, len); if (!skb) return -ENOMEM; skb_put_data(skb, &hdr, sizeof(hdr)); for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { struct ieee80211_tx_queue_params *q = &mvif->queue_params[ac]; struct edca *e; struct tlv *tlv; tlv = mt7996_mcu_add_uni_tlv(skb, MCU_EDCA_AC_PARAM, sizeof(*e)); e = (struct edca *)tlv; e->set = WMM_PARAM_SET; e->queue = ac + mvif->mt76.wmm_idx * MT7996_MAX_WMM_SETS; e->aifs = q->aifs; e->txop = cpu_to_le16(q->txop); if (q->cw_min) e->cw_min = fls(q->cw_min); else e->cw_min = 5; if (q->cw_max) e->cw_max = fls(q->cw_max); else e->cw_max = 10; } return mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_WM_UNI_CMD(EDCA_UPDATE), true); } int mt7996_mcu_set_fcc5_lpn(struct mt7996_dev *dev, int val) { struct { u8 _rsv[4]; __le16 tag; __le16 len; __le32 ctrl; __le16 min_lpn; u8 rsv[2]; } __packed req = { .tag = cpu_to_le16(UNI_RDD_CTRL_SET_TH), .len = cpu_to_le16(sizeof(req) - 4), .ctrl = cpu_to_le32(0x1), .min_lpn = cpu_to_le16(val), }; return mt76_mcu_send_msg(&dev->mt76, MCU_WM_UNI_CMD(RDD_CTRL), &req, sizeof(req), true); } int mt7996_mcu_set_pulse_th(struct mt7996_dev *dev, const struct mt7996_dfs_pulse *pulse) { struct { u8 _rsv[4]; __le16 tag; __le16 len; __le32 ctrl; __le32 max_width; /* us */ __le32 max_pwr; /* dbm */ __le32 min_pwr; /* dbm */ __le32 min_stgr_pri; /* us */ __le32 max_stgr_pri; /* us */ __le32 min_cr_pri; /* us */ __le32 max_cr_pri; /* us */ } __packed req = { .tag = cpu_to_le16(UNI_RDD_CTRL_SET_TH), .len = cpu_to_le16(sizeof(req) - 4), .ctrl = cpu_to_le32(0x3), #define __req_field(field) .field = cpu_to_le32(pulse->field) __req_field(max_width), __req_field(max_pwr), __req_field(min_pwr), __req_field(min_stgr_pri), __req_field(max_stgr_pri), __req_field(min_cr_pri), __req_field(max_cr_pri), #undef __req_field }; return mt76_mcu_send_msg(&dev->mt76, MCU_WM_UNI_CMD(RDD_CTRL), &req, sizeof(req), true); } int mt7996_mcu_set_radar_th(struct mt7996_dev *dev, int index, const struct mt7996_dfs_pattern *pattern) { struct { u8 _rsv[4]; __le16 tag; __le16 len; __le32 ctrl; __le16 radar_type; u8 enb; u8 stgr; u8 min_crpn; u8 max_crpn; u8 min_crpr; u8 min_pw; __le32 min_pri; __le32 max_pri; u8 max_pw; u8 min_crbn; u8 max_crbn; u8 min_stgpn; u8 max_stgpn; u8 min_stgpr; u8 rsv[2]; __le32 min_stgpr_diff; } __packed req = { .tag = cpu_to_le16(UNI_RDD_CTRL_SET_TH), .len = cpu_to_le16(sizeof(req) - 4), .ctrl = cpu_to_le32(0x2), .radar_type = cpu_to_le16(index), #define __req_field_u8(field) .field = pattern->field #define __req_field_u32(field) .field = cpu_to_le32(pattern->field) __req_field_u8(enb), __req_field_u8(stgr), __req_field_u8(min_crpn), __req_field_u8(max_crpn), __req_field_u8(min_crpr), __req_field_u8(min_pw), __req_field_u32(min_pri), __req_field_u32(max_pri), __req_field_u8(max_pw), __req_field_u8(min_crbn), __req_field_u8(max_crbn), __req_field_u8(min_stgpn), __req_field_u8(max_stgpn), __req_field_u8(min_stgpr), __req_field_u32(min_stgpr_diff), #undef __req_field_u8 #undef __req_field_u32 }; return mt76_mcu_send_msg(&dev->mt76, MCU_WM_UNI_CMD(RDD_CTRL), &req, sizeof(req), true); } static int mt7996_mcu_background_chain_ctrl(struct mt7996_phy *phy, struct cfg80211_chan_def *chandef, int cmd) { struct mt7996_dev *dev = phy->dev; struct mt76_phy *mphy = phy->mt76; struct ieee80211_channel *chan = mphy->chandef.chan; int freq = mphy->chandef.center_freq1; struct mt7996_mcu_background_chain_ctrl req = { .tag = cpu_to_le16(0), .len = cpu_to_le16(sizeof(req) - 4), .monitor_scan_type = 2, /* simple rx */ }; if (!chandef && cmd != CH_SWITCH_BACKGROUND_SCAN_STOP) return -EINVAL; if (!cfg80211_chandef_valid(&mphy->chandef)) return -EINVAL; switch (cmd) { case CH_SWITCH_BACKGROUND_SCAN_START: { req.chan = chan->hw_value; req.central_chan = ieee80211_frequency_to_channel(freq); req.bw = mt76_connac_chan_bw(&mphy->chandef); req.monitor_chan = chandef->chan->hw_value; req.monitor_central_chan = ieee80211_frequency_to_channel(chandef->center_freq1); req.monitor_bw = mt76_connac_chan_bw(chandef); req.band_idx = phy->mt76->band_idx; req.scan_mode = 1; break; } case CH_SWITCH_BACKGROUND_SCAN_RUNNING: req.monitor_chan = chandef->chan->hw_value; req.monitor_central_chan = ieee80211_frequency_to_channel(chandef->center_freq1); req.band_idx = phy->mt76->band_idx; req.scan_mode = 2; break; case CH_SWITCH_BACKGROUND_SCAN_STOP: req.chan = chan->hw_value; req.central_chan = ieee80211_frequency_to_channel(freq); req.bw = mt76_connac_chan_bw(&mphy->chandef); req.tx_stream = hweight8(mphy->antenna_mask); req.rx_stream = mphy->antenna_mask; break; default: return -EINVAL; } req.band = chandef ? chandef->chan->band == NL80211_BAND_5GHZ : 1; return mt76_mcu_send_msg(&dev->mt76, MCU_WM_UNI_CMD(OFFCH_SCAN_CTRL), &req, sizeof(req), false); } int mt7996_mcu_rdd_background_enable(struct mt7996_phy *phy, struct cfg80211_chan_def *chandef) { struct mt7996_dev *dev = phy->dev; int err, region; if (!chandef) { /* disable offchain */ err = mt7996_mcu_rdd_cmd(dev, RDD_STOP, MT_RX_SEL2, 0, 0); if (err) return err; return mt7996_mcu_background_chain_ctrl(phy, NULL, CH_SWITCH_BACKGROUND_SCAN_STOP); } err = mt7996_mcu_background_chain_ctrl(phy, chandef, CH_SWITCH_BACKGROUND_SCAN_START); if (err) return err; switch (dev->mt76.region) { case NL80211_DFS_ETSI: region = 0; break; case NL80211_DFS_JP: region = 2; break; case NL80211_DFS_FCC: default: region = 1; break; } return mt7996_mcu_rdd_cmd(dev, RDD_START, MT_RX_SEL2, 0, region); } int mt7996_mcu_set_chan_info(struct mt7996_phy *phy, u16 tag) { static const u8 ch_band[] = { [NL80211_BAND_2GHZ] = 0, [NL80211_BAND_5GHZ] = 1, [NL80211_BAND_6GHZ] = 2, }; struct mt7996_dev *dev = phy->dev; struct cfg80211_chan_def *chandef = &phy->mt76->chandef; int freq1 = chandef->center_freq1; u8 band_idx = phy->mt76->band_idx; struct { /* fixed field */ u8 __rsv[4]; __le16 tag; __le16 len; u8 control_ch; u8 center_ch; u8 bw; u8 tx_path_num; u8 rx_path; /* mask or num */ u8 switch_reason; u8 band_idx; u8 center_ch2; /* for 80+80 only */ __le16 cac_case; u8 channel_band; u8 rsv0; __le32 outband_freq; u8 txpower_drop; u8 ap_bw; u8 ap_center_ch; u8 rsv1[53]; } __packed req = { .tag = cpu_to_le16(tag), .len = cpu_to_le16(sizeof(req) - 4), .control_ch = chandef->chan->hw_value, .center_ch = ieee80211_frequency_to_channel(freq1), .bw = mt76_connac_chan_bw(chandef), .tx_path_num = hweight16(phy->mt76->chainmask), .rx_path = phy->mt76->chainmask >> dev->chainshift[band_idx], .band_idx = band_idx, .channel_band = ch_band[chandef->chan->band], }; if (tag == UNI_CHANNEL_RX_PATH || dev->mt76.hw->conf.flags & IEEE80211_CONF_MONITOR) req.switch_reason = CH_SWITCH_NORMAL; else if (phy->mt76->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL) req.switch_reason = CH_SWITCH_SCAN_BYPASS_DPD; else if (!cfg80211_reg_can_beacon(phy->mt76->hw->wiphy, chandef, NL80211_IFTYPE_AP)) req.switch_reason = CH_SWITCH_DFS; else req.switch_reason = CH_SWITCH_NORMAL; if (tag == UNI_CHANNEL_SWITCH) req.rx_path = hweight8(req.rx_path); if (chandef->width == NL80211_CHAN_WIDTH_80P80) { int freq2 = chandef->center_freq2; req.center_ch2 = ieee80211_frequency_to_channel(freq2); } return mt76_mcu_send_msg(&dev->mt76, MCU_WMWA_UNI_CMD(CHANNEL_SWITCH), &req, sizeof(req), true); } static int mt7996_mcu_set_eeprom_flash(struct mt7996_dev *dev) { #define MAX_PAGE_IDX_MASK GENMASK(7, 5) #define PAGE_IDX_MASK GENMASK(4, 2) #define PER_PAGE_SIZE 0x400 struct mt7996_mcu_eeprom req = { .tag = cpu_to_le16(UNI_EFUSE_BUFFER_MODE), .buffer_mode = EE_MODE_BUFFER }; u16 eeprom_size = MT7996_EEPROM_SIZE; u8 total = DIV_ROUND_UP(eeprom_size, PER_PAGE_SIZE); u8 *eep = (u8 *)dev->mt76.eeprom.data; int eep_len, i; for (i = 0; i < total; i++, eep += eep_len) { struct sk_buff *skb; int ret, msg_len; if (i == total - 1 && !!(eeprom_size % PER_PAGE_SIZE)) eep_len = eeprom_size % PER_PAGE_SIZE; else eep_len = PER_PAGE_SIZE; msg_len = sizeof(req) + eep_len; skb = mt76_mcu_msg_alloc(&dev->mt76, NULL, msg_len); if (!skb) return -ENOMEM; req.len = cpu_to_le16(msg_len - 4); req.format = FIELD_PREP(MAX_PAGE_IDX_MASK, total - 1) | FIELD_PREP(PAGE_IDX_MASK, i) | EE_FORMAT_WHOLE; req.buf_len = cpu_to_le16(eep_len); skb_put_data(skb, &req, sizeof(req)); skb_put_data(skb, eep, eep_len); ret = mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_WM_UNI_CMD(EFUSE_CTRL), true); if (ret) return ret; } return 0; } int mt7996_mcu_set_eeprom(struct mt7996_dev *dev) { struct mt7996_mcu_eeprom req = { .tag = cpu_to_le16(UNI_EFUSE_BUFFER_MODE), .len = cpu_to_le16(sizeof(req) - 4), .buffer_mode = EE_MODE_EFUSE, .format = EE_FORMAT_WHOLE }; if (dev->flash_mode) return mt7996_mcu_set_eeprom_flash(dev); return mt76_mcu_send_msg(&dev->mt76, MCU_WM_UNI_CMD(EFUSE_CTRL), &req, sizeof(req), true); } int mt7996_mcu_get_eeprom(struct mt7996_dev *dev, u32 offset) { struct { u8 _rsv[4]; __le16 tag; __le16 len; __le32 addr; __le32 valid; u8 data[16]; } __packed req = { .tag = cpu_to_le16(UNI_EFUSE_ACCESS), .len = cpu_to_le16(sizeof(req) - 4), .addr = cpu_to_le32(round_down(offset, MT7996_EEPROM_BLOCK_SIZE)), }; struct sk_buff *skb; bool valid; int ret; ret = mt76_mcu_send_and_get_msg(&dev->mt76, MCU_WM_UNI_CMD_QUERY(EFUSE_CTRL), &req, sizeof(req), true, &skb); if (ret) return ret; valid = le32_to_cpu(*(__le32 *)(skb->data + 16)); if (valid) { u32 addr = le32_to_cpu(*(__le32 *)(skb->data + 12)); u8 *buf = (u8 *)dev->mt76.eeprom.data + addr; skb_pull(skb, 64); memcpy(buf, skb->data, MT7996_EEPROM_BLOCK_SIZE); } dev_kfree_skb(skb); return 0; } int mt7996_mcu_get_eeprom_free_block(struct mt7996_dev *dev, u8 *block_num) { struct { u8 _rsv[4]; __le16 tag; __le16 len; u8 num; u8 version; u8 die_idx; u8 _rsv2; } __packed req = { .tag = cpu_to_le16(UNI_EFUSE_FREE_BLOCK), .len = cpu_to_le16(sizeof(req) - 4), .version = 2, }; struct sk_buff *skb; int ret; ret = mt76_mcu_send_and_get_msg(&dev->mt76, MCU_WM_UNI_CMD_QUERY(EFUSE_CTRL), &req, sizeof(req), true, &skb); if (ret) return ret; *block_num = *(u8 *)(skb->data + 8); dev_kfree_skb(skb); return 0; } int mt7996_mcu_get_chip_config(struct mt7996_dev *dev, u32 *cap) { #define NIC_CAP 3 #define UNI_EVENT_CHIP_CONFIG_EFUSE_VERSION 0x21 struct { u8 _rsv[4]; __le16 tag; __le16 len; } __packed req = { .tag = cpu_to_le16(NIC_CAP), .len = cpu_to_le16(sizeof(req) - 4), }; struct sk_buff *skb; u8 *buf; int ret; ret = mt76_mcu_send_and_get_msg(&dev->mt76, MCU_WM_UNI_CMD_QUERY(CHIP_CONFIG), &req, sizeof(req), true, &skb); if (ret) return ret; /* fixed field */ skb_pull(skb, 4); buf = skb->data; while (buf - skb->data < skb->len) { struct tlv *tlv = (struct tlv *)buf; switch (le16_to_cpu(tlv->tag)) { case UNI_EVENT_CHIP_CONFIG_EFUSE_VERSION: *cap = le32_to_cpu(*(__le32 *)(buf + sizeof(*tlv))); break; default: break; } buf += le16_to_cpu(tlv->len); } dev_kfree_skb(skb); return 0; } int mt7996_mcu_get_chan_mib_info(struct mt7996_phy *phy, bool chan_switch) { struct { struct { u8 band; u8 __rsv[3]; } hdr; struct { __le16 tag; __le16 len; __le32 offs; } data[4]; } __packed req = { .hdr.band = phy->mt76->band_idx, }; /* strict order */ static const u32 offs[] = { UNI_MIB_TX_TIME, UNI_MIB_RX_TIME, UNI_MIB_OBSS_AIRTIME, UNI_MIB_NON_WIFI_TIME, }; struct mt76_channel_state *state = phy->mt76->chan_state; struct mt76_channel_state *state_ts = &phy->state_ts; struct mt7996_dev *dev = phy->dev; struct mt7996_mcu_mib *res; struct sk_buff *skb; int i, ret; for (i = 0; i < 4; i++) { req.data[i].tag = cpu_to_le16(UNI_CMD_MIB_DATA); req.data[i].len = cpu_to_le16(sizeof(req.data[i])); req.data[i].offs = cpu_to_le32(offs[i]); } ret = mt76_mcu_send_and_get_msg(&dev->mt76, MCU_WM_UNI_CMD_QUERY(GET_MIB_INFO), &req, sizeof(req), true, &skb); if (ret) return ret; skb_pull(skb, sizeof(req.hdr)); res = (struct mt7996_mcu_mib *)(skb->data); if (chan_switch) goto out; #define __res_u64(s) le64_to_cpu(res[s].data) state->cc_tx += __res_u64(1) - state_ts->cc_tx; state->cc_bss_rx += __res_u64(2) - state_ts->cc_bss_rx; state->cc_rx += __res_u64(2) + __res_u64(3) - state_ts->cc_rx; state->cc_busy += __res_u64(0) + __res_u64(1) + __res_u64(2) + __res_u64(3) - state_ts->cc_busy; out: state_ts->cc_tx = __res_u64(1); state_ts->cc_bss_rx = __res_u64(2); state_ts->cc_rx = __res_u64(2) + __res_u64(3); state_ts->cc_busy = __res_u64(0) + __res_u64(1) + __res_u64(2) + __res_u64(3); #undef __res_u64 dev_kfree_skb(skb); return 0; } int mt7996_mcu_set_ser(struct mt7996_dev *dev, u8 action, u8 val, u8 band) { struct { u8 rsv[4]; __le16 tag; __le16 len; union { struct { __le32 mask; } __packed set; struct { u8 method; u8 band; u8 rsv2[2]; } __packed trigger; }; } __packed req = { .tag = cpu_to_le16(action), .len = cpu_to_le16(sizeof(req) - 4), }; switch (action) { case UNI_CMD_SER_SET: req.set.mask = cpu_to_le32(val); break; case UNI_CMD_SER_TRIGGER: req.trigger.method = val; req.trigger.band = band; break; default: return -EINVAL; } return mt76_mcu_send_msg(&dev->mt76, MCU_WM_UNI_CMD(SER), &req, sizeof(req), false); } int mt7996_mcu_set_txbf(struct mt7996_dev *dev, u8 action) { #define MT7996_BF_MAX_SIZE sizeof(union bf_tag_tlv) #define BF_PROCESSING 4 struct uni_header hdr; struct sk_buff *skb; struct tlv *tlv; int len = sizeof(hdr) + MT7996_BF_MAX_SIZE; memset(&hdr, 0, sizeof(hdr)); skb = mt76_mcu_msg_alloc(&dev->mt76, NULL, len); if (!skb) return -ENOMEM; skb_put_data(skb, &hdr, sizeof(hdr)); switch (action) { case BF_SOUNDING_ON: { struct bf_sounding_on *req_snd_on; tlv = mt7996_mcu_add_uni_tlv(skb, action, sizeof(*req_snd_on)); req_snd_on = (struct bf_sounding_on *)tlv; req_snd_on->snd_mode = BF_PROCESSING; break; } case BF_HW_EN_UPDATE: { struct bf_hw_en_status_update *req_hw_en; tlv = mt7996_mcu_add_uni_tlv(skb, action, sizeof(*req_hw_en)); req_hw_en = (struct bf_hw_en_status_update *)tlv; req_hw_en->ebf = true; req_hw_en->ibf = dev->ibf; break; } case BF_MOD_EN_CTRL: { struct bf_mod_en_ctrl *req_mod_en; tlv = mt7996_mcu_add_uni_tlv(skb, action, sizeof(*req_mod_en)); req_mod_en = (struct bf_mod_en_ctrl *)tlv; req_mod_en->bf_num = 2; req_mod_en->bf_bitmap = GENMASK(0, 0); break; } default: return -EINVAL; } return mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_WM_UNI_CMD(BF), true); } static int mt7996_mcu_enable_obss_spr(struct mt7996_phy *phy, u16 action, u8 val) { struct mt7996_dev *dev = phy->dev; struct { u8 band_idx; u8 __rsv[3]; __le16 tag; __le16 len; __le32 val; } __packed req = { .band_idx = phy->mt76->band_idx, .tag = cpu_to_le16(action), .len = cpu_to_le16(sizeof(req) - 4), .val = cpu_to_le32(val), }; return mt76_mcu_send_msg(&dev->mt76, MCU_WM_UNI_CMD(SR), &req, sizeof(req), true); } static int mt7996_mcu_set_obss_spr_pd(struct mt7996_phy *phy, struct ieee80211_he_obss_pd *he_obss_pd) { struct mt7996_dev *dev = phy->dev; u8 max_th = 82, non_srg_max_th = 62; struct { u8 band_idx; u8 __rsv[3]; __le16 tag; __le16 len; u8 pd_th_non_srg; u8 pd_th_srg; u8 period_offs; u8 rcpi_src; __le16 obss_pd_min; __le16 obss_pd_min_srg; u8 resp_txpwr_mode; u8 txpwr_restrict_mode; u8 txpwr_ref; u8 __rsv2[3]; } __packed req = { .band_idx = phy->mt76->band_idx, .tag = cpu_to_le16(UNI_CMD_SR_SET_PARAM), .len = cpu_to_le16(sizeof(req) - 4), .obss_pd_min = cpu_to_le16(max_th), .obss_pd_min_srg = cpu_to_le16(max_th), .txpwr_restrict_mode = 2, .txpwr_ref = 21 }; int ret; /* disable firmware dynamical PD asjustment */ ret = mt7996_mcu_enable_obss_spr(phy, UNI_CMD_SR_ENABLE_DPD, false); if (ret) return ret; if (he_obss_pd->sr_ctrl & IEEE80211_HE_SPR_NON_SRG_OBSS_PD_SR_DISALLOWED) req.pd_th_non_srg = max_th; else if (he_obss_pd->sr_ctrl & IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT) req.pd_th_non_srg = max_th - he_obss_pd->non_srg_max_offset; else req.pd_th_non_srg = non_srg_max_th; if (he_obss_pd->sr_ctrl & IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT) req.pd_th_srg = max_th - he_obss_pd->max_offset; return mt76_mcu_send_msg(&dev->mt76, MCU_WM_UNI_CMD(SR), &req, sizeof(req), true); } static int mt7996_mcu_set_obss_spr_siga(struct mt7996_phy *phy, struct ieee80211_vif *vif, struct ieee80211_he_obss_pd *he_obss_pd) { struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct mt7996_dev *dev = phy->dev; u8 omac = mvif->mt76.omac_idx; struct { u8 band_idx; u8 __rsv[3]; __le16 tag; __le16 len; u8 omac; u8 __rsv2[3]; u8 flag[20]; } __packed req = { .band_idx = phy->mt76->band_idx, .tag = cpu_to_le16(UNI_CMD_SR_SET_SIGA), .len = cpu_to_le16(sizeof(req) - 4), .omac = omac > HW_BSSID_MAX ? omac - 12 : omac, }; int ret; if (he_obss_pd->sr_ctrl & IEEE80211_HE_SPR_HESIGA_SR_VAL15_ALLOWED) req.flag[req.omac] = 0xf; else return 0; /* switch to normal AP mode */ ret = mt7996_mcu_enable_obss_spr(phy, UNI_CMD_SR_ENABLE_MODE, 0); if (ret) return ret; return mt76_mcu_send_msg(&dev->mt76, MCU_WM_UNI_CMD(SR), &req, sizeof(req), true); } static int mt7996_mcu_set_obss_spr_bitmap(struct mt7996_phy *phy, struct ieee80211_he_obss_pd *he_obss_pd) { struct mt7996_dev *dev = phy->dev; struct { u8 band_idx; u8 __rsv[3]; __le16 tag; __le16 len; __le32 color_l[2]; __le32 color_h[2]; __le32 bssid_l[2]; __le32 bssid_h[2]; } __packed req = { .band_idx = phy->mt76->band_idx, .tag = cpu_to_le16(UNI_CMD_SR_SET_SRG_BITMAP), .len = cpu_to_le16(sizeof(req) - 4), }; u32 bitmap; memcpy(&bitmap, he_obss_pd->bss_color_bitmap, sizeof(bitmap)); req.color_l[req.band_idx] = cpu_to_le32(bitmap); memcpy(&bitmap, he_obss_pd->bss_color_bitmap + 4, sizeof(bitmap)); req.color_h[req.band_idx] = cpu_to_le32(bitmap); memcpy(&bitmap, he_obss_pd->partial_bssid_bitmap, sizeof(bitmap)); req.bssid_l[req.band_idx] = cpu_to_le32(bitmap); memcpy(&bitmap, he_obss_pd->partial_bssid_bitmap + 4, sizeof(bitmap)); req.bssid_h[req.band_idx] = cpu_to_le32(bitmap); return mt76_mcu_send_msg(&dev->mt76, MCU_WM_UNI_CMD(SR), &req, sizeof(req), true); } int mt7996_mcu_add_obss_spr(struct mt7996_phy *phy, struct ieee80211_vif *vif, struct ieee80211_he_obss_pd *he_obss_pd) { int ret; /* enable firmware scene detection algorithms */ ret = mt7996_mcu_enable_obss_spr(phy, UNI_CMD_SR_ENABLE_SD, sr_scene_detect); if (ret) return ret; /* firmware dynamically adjusts PD threshold so skip manual control */ if (sr_scene_detect && !he_obss_pd->enable) return 0; /* enable spatial reuse */ ret = mt7996_mcu_enable_obss_spr(phy, UNI_CMD_SR_ENABLE, he_obss_pd->enable); if (ret) return ret; if (sr_scene_detect || !he_obss_pd->enable) return 0; ret = mt7996_mcu_enable_obss_spr(phy, UNI_CMD_SR_ENABLE_TX, true); if (ret) return ret; /* set SRG/non-SRG OBSS PD threshold */ ret = mt7996_mcu_set_obss_spr_pd(phy, he_obss_pd); if (ret) return ret; /* Set SR prohibit */ ret = mt7996_mcu_set_obss_spr_siga(phy, vif, he_obss_pd); if (ret) return ret; /* set SRG BSS color/BSSID bitmap */ return mt7996_mcu_set_obss_spr_bitmap(phy, he_obss_pd); } int mt7996_mcu_update_bss_color(struct mt7996_dev *dev, struct ieee80211_vif *vif, struct cfg80211_he_bss_color *he_bss_color) { int len = sizeof(struct bss_req_hdr) + sizeof(struct bss_color_tlv); struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct bss_color_tlv *bss_color; struct sk_buff *skb; struct tlv *tlv; skb = __mt7996_mcu_alloc_bss_req(&dev->mt76, &mvif->mt76, len); if (IS_ERR(skb)) return PTR_ERR(skb); tlv = mt76_connac_mcu_add_tlv(skb, UNI_BSS_INFO_BSS_COLOR, sizeof(*bss_color)); bss_color = (struct bss_color_tlv *)tlv; bss_color->enable = he_bss_color->enabled; bss_color->color = he_bss_color->color; return mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_WMWA_UNI_CMD(BSS_INFO_UPDATE), true); } #define TWT_AGRT_TRIGGER BIT(0) #define TWT_AGRT_ANNOUNCE BIT(1) #define TWT_AGRT_PROTECT BIT(2) int mt7996_mcu_twt_agrt_update(struct mt7996_dev *dev, struct mt7996_vif *mvif, struct mt7996_twt_flow *flow, int cmd) { struct { u8 _rsv[4]; __le16 tag; __le16 len; u8 tbl_idx; u8 cmd; u8 own_mac_idx; u8 flowid; /* 0xff for group id */ __le16 peer_id; /* specify the peer_id (msb=0) * or group_id (msb=1) */ u8 duration; /* 256 us */ u8 bss_idx; __le64 start_tsf; __le16 mantissa; u8 exponent; u8 is_ap; u8 agrt_params; u8 __rsv2[135]; } __packed req = { .tag = cpu_to_le16(UNI_CMD_TWT_ARGT_UPDATE), .len = cpu_to_le16(sizeof(req) - 4), .tbl_idx = flow->table_id, .cmd = cmd, .own_mac_idx = mvif->mt76.omac_idx, .flowid = flow->id, .peer_id = cpu_to_le16(flow->wcid), .duration = flow->duration, .bss_idx = mvif->mt76.idx, .start_tsf = cpu_to_le64(flow->tsf), .mantissa = flow->mantissa, .exponent = flow->exp, .is_ap = true, }; if (flow->protection) req.agrt_params |= TWT_AGRT_PROTECT; if (!flow->flowtype) req.agrt_params |= TWT_AGRT_ANNOUNCE; if (flow->trigger) req.agrt_params |= TWT_AGRT_TRIGGER; return mt76_mcu_send_msg(&dev->mt76, MCU_WM_UNI_CMD(TWT), &req, sizeof(req), true); } int mt7996_mcu_set_rts_thresh(struct mt7996_phy *phy, u32 val) { struct { u8 band_idx; u8 _rsv[3]; __le16 tag; __le16 len; __le32 len_thresh; __le32 pkt_thresh; } __packed req = { .band_idx = phy->mt76->band_idx, .tag = cpu_to_le16(UNI_BAND_CONFIG_RTS_THRESHOLD), .len = cpu_to_le16(sizeof(req) - 4), .len_thresh = cpu_to_le32(val), .pkt_thresh = cpu_to_le32(0x2), }; return mt76_mcu_send_msg(&phy->dev->mt76, MCU_WM_UNI_CMD(BAND_CONFIG), &req, sizeof(req), true); } int mt7996_mcu_set_radio_en(struct mt7996_phy *phy, bool enable) { struct { u8 band_idx; u8 _rsv[3]; __le16 tag; __le16 len; u8 enable; u8 _rsv2[3]; } __packed req = { .band_idx = phy->mt76->band_idx, .tag = cpu_to_le16(UNI_BAND_CONFIG_RADIO_ENABLE), .len = cpu_to_le16(sizeof(req) - 4), .enable = enable, }; return mt76_mcu_send_msg(&phy->dev->mt76, MCU_WM_UNI_CMD(BAND_CONFIG), &req, sizeof(req), true); } int mt7996_mcu_rdd_cmd(struct mt7996_dev *dev, int cmd, u8 index, u8 rx_sel, u8 val) { struct { u8 _rsv[4]; __le16 tag; __le16 len; u8 ctrl; u8 rdd_idx; u8 rdd_rx_sel; u8 val; u8 rsv[4]; } __packed req = { .tag = cpu_to_le16(UNI_RDD_CTRL_PARM), .len = cpu_to_le16(sizeof(req) - 4), .ctrl = cmd, .rdd_idx = index, .rdd_rx_sel = rx_sel, .val = val, }; return mt76_mcu_send_msg(&dev->mt76, MCU_WM_UNI_CMD(RDD_CTRL), &req, sizeof(req), true); } int mt7996_mcu_wtbl_update_hdr_trans(struct mt7996_dev *dev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7996_vif *mvif = (struct mt7996_vif *)vif->drv_priv; struct mt7996_sta *msta; struct sk_buff *skb; msta = sta ? (struct mt7996_sta *)sta->drv_priv : &mvif->sta; skb = __mt76_connac_mcu_alloc_sta_req(&dev->mt76, &mvif->mt76, &msta->wcid, MT7996_STA_UPDATE_MAX_SIZE); if (IS_ERR(skb)) return PTR_ERR(skb); /* starec hdr trans */ mt7996_mcu_sta_hdr_trans_tlv(dev, skb, vif, sta); return mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_WMWA_UNI_CMD(STA_REC_UPDATE), true); } int mt7996_mcu_rf_regval(struct mt7996_dev *dev, u32 regidx, u32 *val, bool set) { struct { u8 __rsv1[4]; __le16 tag; __le16 len; __le16 idx; u8 __rsv2[2]; __le32 ofs; __le32 data; } __packed *res, req = { .tag = cpu_to_le16(UNI_CMD_ACCESS_RF_REG_BASIC), .len = cpu_to_le16(sizeof(req) - 4), .idx = cpu_to_le16(u32_get_bits(regidx, GENMASK(31, 24))), .ofs = cpu_to_le32(u32_get_bits(regidx, GENMASK(23, 0))), .data = set ? cpu_to_le32(*val) : 0, }; struct sk_buff *skb; int ret; if (set) return mt76_mcu_send_msg(&dev->mt76, MCU_WM_UNI_CMD(REG_ACCESS), &req, sizeof(req), true); ret = mt76_mcu_send_and_get_msg(&dev->mt76, MCU_WM_UNI_CMD_QUERY(REG_ACCESS), &req, sizeof(req), true, &skb); if (ret) return ret; res = (void *)skb->data; *val = le32_to_cpu(res->data); dev_kfree_skb(skb); return 0; } int mt7996_mcu_trigger_assert(struct mt7996_dev *dev) { struct { __le16 tag; __le16 len; u8 enable; u8 rsv[3]; } __packed req = { .len = cpu_to_le16(sizeof(req) - 4), .enable = true, }; return mt76_mcu_send_msg(&dev->mt76, MCU_WM_UNI_CMD(ASSERT_DUMP), &req, sizeof(req), false); } int mt7996_mcu_set_rro(struct mt7996_dev *dev, u16 tag, u8 val) { struct { u8 __rsv1[4]; __le16 tag; __le16 len; union { struct { u8 type; u8 __rsv2[3]; } __packed platform_type; struct { u8 type; u8 dest; u8 __rsv2[2]; } __packed bypass_mode; struct { u8 path; u8 __rsv2[3]; } __packed txfree_path; }; } __packed req = { .tag = cpu_to_le16(tag), .len = cpu_to_le16(sizeof(req) - 4), }; switch (tag) { case UNI_RRO_SET_PLATFORM_TYPE: req.platform_type.type = val; break; case UNI_RRO_SET_BYPASS_MODE: req.bypass_mode.type = val; break; case UNI_RRO_SET_TXFREE_PATH: req.txfree_path.path = val; break; default: return -EINVAL; } return mt76_mcu_send_msg(&dev->mt76, MCU_WM_UNI_CMD(RRO), &req, sizeof(req), true); }
linux-master
drivers/net/wireless/mediatek/mt76/mt7996/mcu.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2022 MediaTek Inc. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include "mt7996.h" #include "mac.h" #include "../trace.h" static const struct __base mt7996_reg_base[] = { [WF_AGG_BASE] = { { 0x820e2000, 0x820f2000, 0x830e2000 } }, [WF_ARB_BASE] = { { 0x820e3000, 0x820f3000, 0x830e3000 } }, [WF_TMAC_BASE] = { { 0x820e4000, 0x820f4000, 0x830e4000 } }, [WF_RMAC_BASE] = { { 0x820e5000, 0x820f5000, 0x830e5000 } }, [WF_DMA_BASE] = { { 0x820e7000, 0x820f7000, 0x830e7000 } }, [WF_WTBLOFF_BASE] = { { 0x820e9000, 0x820f9000, 0x830e9000 } }, [WF_ETBF_BASE] = { { 0x820ea000, 0x820fa000, 0x830ea000 } }, [WF_LPON_BASE] = { { 0x820eb000, 0x820fb000, 0x830eb000 } }, [WF_MIB_BASE] = { { 0x820ed000, 0x820fd000, 0x830ed000 } }, [WF_RATE_BASE] = { { 0x820ee000, 0x820fe000, 0x830ee000 } }, }; static const struct __map mt7996_reg_map[] = { { 0x54000000, 0x02000, 0x1000 }, /* WFDMA_0 (PCIE0 MCU DMA0) */ { 0x55000000, 0x03000, 0x1000 }, /* WFDMA_1 (PCIE0 MCU DMA1) */ { 0x56000000, 0x04000, 0x1000 }, /* WFDMA reserved */ { 0x57000000, 0x05000, 0x1000 }, /* WFDMA MCU wrap CR */ { 0x58000000, 0x06000, 0x1000 }, /* WFDMA PCIE1 MCU DMA0 (MEM_DMA) */ { 0x59000000, 0x07000, 0x1000 }, /* WFDMA PCIE1 MCU DMA1 */ { 0x820c0000, 0x08000, 0x4000 }, /* WF_UMAC_TOP (PLE) */ { 0x820c8000, 0x0c000, 0x2000 }, /* WF_UMAC_TOP (PSE) */ { 0x820cc000, 0x0e000, 0x1000 }, /* WF_UMAC_TOP (PP) */ { 0x74030000, 0x10000, 0x1000 }, /* PCIe MAC */ { 0x820e0000, 0x20000, 0x0400 }, /* WF_LMAC_TOP BN0 (WF_CFG) */ { 0x820e1000, 0x20400, 0x0200 }, /* WF_LMAC_TOP BN0 (WF_TRB) */ { 0x820e2000, 0x20800, 0x0400 }, /* WF_LMAC_TOP BN0 (WF_AGG) */ { 0x820e3000, 0x20c00, 0x0400 }, /* WF_LMAC_TOP BN0 (WF_ARB) */ { 0x820e4000, 0x21000, 0x0400 }, /* WF_LMAC_TOP BN0 (WF_TMAC) */ { 0x820e5000, 0x21400, 0x0800 }, /* WF_LMAC_TOP BN0 (WF_RMAC) */ { 0x820ce000, 0x21c00, 0x0200 }, /* WF_LMAC_TOP (WF_SEC) */ { 0x820e7000, 0x21e00, 0x0200 }, /* WF_LMAC_TOP BN0 (WF_DMA) */ { 0x820cf000, 0x22000, 0x1000 }, /* WF_LMAC_TOP (WF_PF) */ { 0x820e9000, 0x23400, 0x0200 }, /* WF_LMAC_TOP BN0 (WF_WTBLOFF) */ { 0x820ea000, 0x24000, 0x0200 }, /* WF_LMAC_TOP BN0 (WF_ETBF) */ { 0x820eb000, 0x24200, 0x0400 }, /* WF_LMAC_TOP BN0 (WF_LPON) */ { 0x820ec000, 0x24600, 0x0200 }, /* WF_LMAC_TOP BN0 (WF_INT) */ { 0x820ed000, 0x24800, 0x0800 }, /* WF_LMAC_TOP BN0 (WF_MIB) */ { 0x820ca000, 0x26000, 0x2000 }, /* WF_LMAC_TOP BN0 (WF_MUCOP) */ { 0x820d0000, 0x30000, 0x10000 }, /* WF_LMAC_TOP (WF_WTBLON) */ { 0x40000000, 0x70000, 0x10000 }, /* WF_UMAC_SYSRAM */ { 0x00400000, 0x80000, 0x10000 }, /* WF_MCU_SYSRAM */ { 0x00410000, 0x90000, 0x10000 }, /* WF_MCU_SYSRAM (configure register) */ { 0x820f0000, 0xa0000, 0x0400 }, /* WF_LMAC_TOP BN1 (WF_CFG) */ { 0x820f1000, 0xa0600, 0x0200 }, /* WF_LMAC_TOP BN1 (WF_TRB) */ { 0x820f2000, 0xa0800, 0x0400 }, /* WF_LMAC_TOP BN1 (WF_AGG) */ { 0x820f3000, 0xa0c00, 0x0400 }, /* WF_LMAC_TOP BN1 (WF_ARB) */ { 0x820f4000, 0xa1000, 0x0400 }, /* WF_LMAC_TOP BN1 (WF_TMAC) */ { 0x820f5000, 0xa1400, 0x0800 }, /* WF_LMAC_TOP BN1 (WF_RMAC) */ { 0x820f7000, 0xa1e00, 0x0200 }, /* WF_LMAC_TOP BN1 (WF_DMA) */ { 0x820f9000, 0xa3400, 0x0200 }, /* WF_LMAC_TOP BN1 (WF_WTBLOFF) */ { 0x820fa000, 0xa4000, 0x0200 }, /* WF_LMAC_TOP BN1 (WF_ETBF) */ { 0x820fb000, 0xa4200, 0x0400 }, /* WF_LMAC_TOP BN1 (WF_LPON) */ { 0x820fc000, 0xa4600, 0x0200 }, /* WF_LMAC_TOP BN1 (WF_INT) */ { 0x820fd000, 0xa4800, 0x0800 }, /* WF_LMAC_TOP BN1 (WF_MIB) */ { 0x820cc000, 0xa5000, 0x2000 }, /* WF_LMAC_TOP BN1 (WF_MUCOP) */ { 0x820c4000, 0xa8000, 0x4000 }, /* WF_LMAC_TOP BN1 (WF_MUCOP) */ { 0x820b0000, 0xae000, 0x1000 }, /* [APB2] WFSYS_ON */ { 0x80020000, 0xb0000, 0x10000 }, /* WF_TOP_MISC_OFF */ { 0x81020000, 0xc0000, 0x10000 }, /* WF_TOP_MISC_ON */ { 0x7c020000, 0xd0000, 0x10000 }, /* CONN_INFRA, wfdma */ { 0x7c060000, 0xe0000, 0x10000 }, /* CONN_INFRA, conn_host_csr_top */ { 0x7c000000, 0xf0000, 0x10000 }, /* CONN_INFRA */ { 0x0, 0x0, 0x0 }, /* imply end of search */ }; static u32 mt7996_reg_map_l1(struct mt7996_dev *dev, u32 addr) { u32 offset = FIELD_GET(MT_HIF_REMAP_L1_OFFSET, addr); u32 base = FIELD_GET(MT_HIF_REMAP_L1_BASE, addr); dev->reg_l1_backup = dev->bus_ops->rr(&dev->mt76, MT_HIF_REMAP_L1); dev->bus_ops->rmw(&dev->mt76, MT_HIF_REMAP_L1, MT_HIF_REMAP_L1_MASK, FIELD_PREP(MT_HIF_REMAP_L1_MASK, base)); /* use read to push write */ dev->bus_ops->rr(&dev->mt76, MT_HIF_REMAP_L1); return MT_HIF_REMAP_BASE_L1 + offset; } static u32 mt7996_reg_map_l2(struct mt7996_dev *dev, u32 addr) { u32 offset = FIELD_GET(MT_HIF_REMAP_L2_OFFSET, addr); u32 base = FIELD_GET(MT_HIF_REMAP_L2_BASE, addr); dev->reg_l2_backup = dev->bus_ops->rr(&dev->mt76, MT_HIF_REMAP_L2); dev->bus_ops->rmw(&dev->mt76, MT_HIF_REMAP_L2, MT_HIF_REMAP_L2_MASK, FIELD_PREP(MT_HIF_REMAP_L2_MASK, base)); /* use read to push write */ dev->bus_ops->rr(&dev->mt76, MT_HIF_REMAP_L2); return MT_HIF_REMAP_BASE_L2 + offset; } static void mt7996_reg_remap_restore(struct mt7996_dev *dev) { /* remap to ori status */ if (unlikely(dev->reg_l1_backup)) { dev->bus_ops->wr(&dev->mt76, MT_HIF_REMAP_L1, dev->reg_l1_backup); dev->reg_l1_backup = 0; } if (dev->reg_l2_backup) { dev->bus_ops->wr(&dev->mt76, MT_HIF_REMAP_L2, dev->reg_l2_backup); dev->reg_l2_backup = 0; } } static u32 __mt7996_reg_addr(struct mt7996_dev *dev, u32 addr) { int i; mt7996_reg_remap_restore(dev); if (addr < 0x100000) return addr; for (i = 0; i < dev->reg.map_size; i++) { u32 ofs; if (addr < dev->reg.map[i].phys) continue; ofs = addr - dev->reg.map[i].phys; if (ofs > dev->reg.map[i].size) continue; return dev->reg.map[i].mapped + ofs; } if ((addr >= MT_INFRA_BASE && addr < MT_WFSYS0_PHY_START) || (addr >= MT_WFSYS0_PHY_START && addr < MT_WFSYS1_PHY_START) || (addr >= MT_WFSYS1_PHY_START && addr <= MT_WFSYS1_PHY_END)) return mt7996_reg_map_l1(dev, addr); if (dev_is_pci(dev->mt76.dev) && ((addr >= MT_CBTOP1_PHY_START && addr <= MT_CBTOP1_PHY_END) || addr >= MT_CBTOP2_PHY_START)) return mt7996_reg_map_l1(dev, addr); /* CONN_INFRA: covert to phyiscal addr and use layer 1 remap */ if (addr >= MT_INFRA_MCU_START && addr <= MT_INFRA_MCU_END) { addr = addr - MT_INFRA_MCU_START + MT_INFRA_BASE; return mt7996_reg_map_l1(dev, addr); } return mt7996_reg_map_l2(dev, addr); } void mt7996_memcpy_fromio(struct mt7996_dev *dev, void *buf, u32 offset, size_t len) { u32 addr = __mt7996_reg_addr(dev, offset); memcpy_fromio(buf, dev->mt76.mmio.regs + addr, len); } static u32 mt7996_rr(struct mt76_dev *mdev, u32 offset) { struct mt7996_dev *dev = container_of(mdev, struct mt7996_dev, mt76); return dev->bus_ops->rr(mdev, __mt7996_reg_addr(dev, offset)); } static void mt7996_wr(struct mt76_dev *mdev, u32 offset, u32 val) { struct mt7996_dev *dev = container_of(mdev, struct mt7996_dev, mt76); dev->bus_ops->wr(mdev, __mt7996_reg_addr(dev, offset), val); } static u32 mt7996_rmw(struct mt76_dev *mdev, u32 offset, u32 mask, u32 val) { struct mt7996_dev *dev = container_of(mdev, struct mt7996_dev, mt76); return dev->bus_ops->rmw(mdev, __mt7996_reg_addr(dev, offset), mask, val); } static int mt7996_mmio_init(struct mt76_dev *mdev, void __iomem *mem_base, u32 device_id) { struct mt76_bus_ops *bus_ops; struct mt7996_dev *dev; dev = container_of(mdev, struct mt7996_dev, mt76); mt76_mmio_init(&dev->mt76, mem_base); switch (device_id) { case 0x7990: dev->reg.base = mt7996_reg_base; dev->reg.map = mt7996_reg_map; dev->reg.map_size = ARRAY_SIZE(mt7996_reg_map); break; default: return -EINVAL; } dev->bus_ops = dev->mt76.bus; bus_ops = devm_kmemdup(dev->mt76.dev, dev->bus_ops, sizeof(*bus_ops), GFP_KERNEL); if (!bus_ops) return -ENOMEM; bus_ops->rr = mt7996_rr; bus_ops->wr = mt7996_wr; bus_ops->rmw = mt7996_rmw; dev->mt76.bus = bus_ops; mdev->rev = (device_id << 16) | (mt76_rr(dev, MT_HW_REV) & 0xff); dev_dbg(mdev->dev, "ASIC revision: %04x\n", mdev->rev); return 0; } void mt7996_dual_hif_set_irq_mask(struct mt7996_dev *dev, bool write_reg, u32 clear, u32 set) { struct mt76_dev *mdev = &dev->mt76; unsigned long flags; spin_lock_irqsave(&mdev->mmio.irq_lock, flags); mdev->mmio.irqmask &= ~clear; mdev->mmio.irqmask |= set; if (write_reg) { mt76_wr(dev, MT_INT_MASK_CSR, mdev->mmio.irqmask); mt76_wr(dev, MT_INT1_MASK_CSR, mdev->mmio.irqmask); } spin_unlock_irqrestore(&mdev->mmio.irq_lock, flags); } static void mt7996_rx_poll_complete(struct mt76_dev *mdev, enum mt76_rxq_id q) { struct mt7996_dev *dev = container_of(mdev, struct mt7996_dev, mt76); mt7996_irq_enable(dev, MT_INT_RX(q)); } /* TODO: support 2/4/6/8 MSI-X vectors */ static void mt7996_irq_tasklet(struct tasklet_struct *t) { struct mt7996_dev *dev = from_tasklet(dev, t, mt76.irq_tasklet); u32 i, intr, mask, intr1; mt76_wr(dev, MT_INT_MASK_CSR, 0); if (dev->hif2) mt76_wr(dev, MT_INT1_MASK_CSR, 0); intr = mt76_rr(dev, MT_INT_SOURCE_CSR); intr &= dev->mt76.mmio.irqmask; mt76_wr(dev, MT_INT_SOURCE_CSR, intr); if (dev->hif2) { intr1 = mt76_rr(dev, MT_INT1_SOURCE_CSR); intr1 &= dev->mt76.mmio.irqmask; mt76_wr(dev, MT_INT1_SOURCE_CSR, intr1); intr |= intr1; } trace_dev_irq(&dev->mt76, intr, dev->mt76.mmio.irqmask); mask = intr & MT_INT_RX_DONE_ALL; if (intr & MT_INT_TX_DONE_MCU) mask |= MT_INT_TX_DONE_MCU; mt7996_irq_disable(dev, mask); if (intr & MT_INT_TX_DONE_MCU) napi_schedule(&dev->mt76.tx_napi); for (i = 0; i < __MT_RXQ_MAX; i++) { if ((intr & MT_INT_RX(i))) napi_schedule(&dev->mt76.napi[i]); } if (intr & MT_INT_MCU_CMD) { u32 val = mt76_rr(dev, MT_MCU_CMD); mt76_wr(dev, MT_MCU_CMD, val); if (val & (MT_MCU_CMD_ERROR_MASK | MT_MCU_CMD_WDT_MASK)) { dev->recovery.state = val; mt7996_reset(dev); } } } irqreturn_t mt7996_irq_handler(int irq, void *dev_instance) { struct mt7996_dev *dev = dev_instance; mt76_wr(dev, MT_INT_MASK_CSR, 0); if (dev->hif2) mt76_wr(dev, MT_INT1_MASK_CSR, 0); if (!test_bit(MT76_STATE_INITIALIZED, &dev->mphy.state)) return IRQ_NONE; tasklet_schedule(&dev->mt76.irq_tasklet); return IRQ_HANDLED; } struct mt7996_dev *mt7996_mmio_probe(struct device *pdev, void __iomem *mem_base, u32 device_id) { static const struct mt76_driver_ops drv_ops = { /* txwi_size = txd size + txp size */ .txwi_size = MT_TXD_SIZE + sizeof(struct mt76_connac_fw_txp), .drv_flags = MT_DRV_TXWI_NO_FREE | MT_DRV_AMSDU_OFFLOAD | MT_DRV_HW_MGMT_TXQ, .survey_flags = SURVEY_INFO_TIME_TX | SURVEY_INFO_TIME_RX | SURVEY_INFO_TIME_BSS_RX, .token_size = MT7996_TOKEN_SIZE, .tx_prepare_skb = mt7996_tx_prepare_skb, .tx_complete_skb = mt76_connac_tx_complete_skb, .rx_skb = mt7996_queue_rx_skb, .rx_check = mt7996_rx_check, .rx_poll_complete = mt7996_rx_poll_complete, .sta_add = mt7996_mac_sta_add, .sta_remove = mt7996_mac_sta_remove, .update_survey = mt7996_update_channel, }; struct mt7996_dev *dev; struct mt76_dev *mdev; int ret; mdev = mt76_alloc_device(pdev, sizeof(*dev), &mt7996_ops, &drv_ops); if (!mdev) return ERR_PTR(-ENOMEM); dev = container_of(mdev, struct mt7996_dev, mt76); ret = mt7996_mmio_init(mdev, mem_base, device_id); if (ret) goto error; tasklet_setup(&mdev->irq_tasklet, mt7996_irq_tasklet); mt76_wr(dev, MT_INT_MASK_CSR, 0); return dev; error: mt76_free_device(&dev->mt76); return ERR_PTR(ret); } static int __init mt7996_init(void) { int ret; ret = pci_register_driver(&mt7996_hif_driver); if (ret) return ret; ret = pci_register_driver(&mt7996_pci_driver); if (ret) pci_unregister_driver(&mt7996_hif_driver); return ret; } static void __exit mt7996_exit(void) { pci_unregister_driver(&mt7996_pci_driver); pci_unregister_driver(&mt7996_hif_driver); } module_init(mt7996_init); module_exit(mt7996_exit); MODULE_LICENSE("Dual BSD/GPL");
linux-master
drivers/net/wireless/mediatek/mt76/mt7996/mmio.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2021 MediaTek Inc. */ #include <linux/iopoll.h> #include <linux/mmc/sdio_func.h> #include "mt7921.h" #include "../mt76_connac2_mac.h" #include "../sdio.h" static void mt7921s_enable_irq(struct mt76_dev *dev) { struct mt76_sdio *sdio = &dev->sdio; sdio_claim_host(sdio->func); sdio_writel(sdio->func, WHLPCR_INT_EN_SET, MCR_WHLPCR, NULL); sdio_release_host(sdio->func); } static void mt7921s_disable_irq(struct mt76_dev *dev) { struct mt76_sdio *sdio = &dev->sdio; sdio_claim_host(sdio->func); sdio_writel(sdio->func, WHLPCR_INT_EN_CLR, MCR_WHLPCR, NULL); sdio_release_host(sdio->func); } static u32 mt7921s_read_whcr(struct mt76_dev *dev) { return sdio_readl(dev->sdio.func, MCR_WHCR, NULL); } int mt7921s_wfsys_reset(struct mt792x_dev *dev) { struct mt76_sdio *sdio = &dev->mt76.sdio; u32 val, status; mt7921s_mcu_drv_pmctrl(dev); sdio_claim_host(sdio->func); val = sdio_readl(sdio->func, MCR_WHCR, NULL); val &= ~WF_WHOLE_PATH_RSTB; sdio_writel(sdio->func, val, MCR_WHCR, NULL); msleep(50); val = sdio_readl(sdio->func, MCR_WHCR, NULL); val &= ~WF_SDIO_WF_PATH_RSTB; sdio_writel(sdio->func, val, MCR_WHCR, NULL); usleep_range(1000, 2000); val = sdio_readl(sdio->func, MCR_WHCR, NULL); val |= WF_WHOLE_PATH_RSTB; sdio_writel(sdio->func, val, MCR_WHCR, NULL); readx_poll_timeout(mt7921s_read_whcr, &dev->mt76, status, status & WF_RST_DONE, 50000, 2000000); sdio_release_host(sdio->func); clear_bit(MT76_STATE_MCU_RUNNING, &dev->mphy.state); /* activate mt7921s again */ mt7921s_mcu_drv_pmctrl(dev); mt76_clear(dev, MT_CONN_STATUS, MT_WIFI_PATCH_DL_STATE); mt7921s_mcu_fw_pmctrl(dev); mt7921s_mcu_drv_pmctrl(dev); return 0; } int mt7921s_init_reset(struct mt792x_dev *dev) { set_bit(MT76_MCU_RESET, &dev->mphy.state); wake_up(&dev->mt76.mcu.wait); skb_queue_purge(&dev->mt76.mcu.res_q); wait_event_timeout(dev->mt76.sdio.wait, mt76s_txqs_empty(&dev->mt76), 5 * HZ); mt76_worker_disable(&dev->mt76.sdio.txrx_worker); mt7921s_disable_irq(&dev->mt76); mt7921s_wfsys_reset(dev); mt76_worker_enable(&dev->mt76.sdio.txrx_worker); clear_bit(MT76_MCU_RESET, &dev->mphy.state); mt7921s_enable_irq(&dev->mt76); return 0; } int mt7921s_mac_reset(struct mt792x_dev *dev) { int err; mt76_connac_free_pending_tx_skbs(&dev->pm, NULL); mt76_txq_schedule_all(&dev->mphy); mt76_worker_disable(&dev->mt76.tx_worker); set_bit(MT76_RESET, &dev->mphy.state); set_bit(MT76_MCU_RESET, &dev->mphy.state); wake_up(&dev->mt76.mcu.wait); skb_queue_purge(&dev->mt76.mcu.res_q); wait_event_timeout(dev->mt76.sdio.wait, mt76s_txqs_empty(&dev->mt76), 5 * HZ); mt76_worker_disable(&dev->mt76.sdio.txrx_worker); mt76_worker_disable(&dev->mt76.sdio.status_worker); mt76_worker_disable(&dev->mt76.sdio.net_worker); cancel_work_sync(&dev->mt76.sdio.stat_work); mt7921s_disable_irq(&dev->mt76); mt7921s_wfsys_reset(dev); mt76_worker_enable(&dev->mt76.sdio.txrx_worker); mt76_worker_enable(&dev->mt76.sdio.status_worker); mt76_worker_enable(&dev->mt76.sdio.net_worker); dev->fw_assert = false; clear_bit(MT76_MCU_RESET, &dev->mphy.state); mt7921s_enable_irq(&dev->mt76); err = mt7921_run_firmware(dev); if (err) goto out; err = mt7921_mcu_set_eeprom(dev); if (err) goto out; err = mt7921_mac_init(dev); if (err) goto out; err = __mt7921_start(&dev->phy); out: clear_bit(MT76_RESET, &dev->mphy.state); mt76_worker_enable(&dev->mt76.tx_worker); return err; }
linux-master
drivers/net/wireless/mediatek/mt76/mt7921/sdio_mac.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2021 MediaTek Inc. * */ #include <linux/kernel.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/mmc/host.h> #include <linux/mmc/sdio_ids.h> #include <linux/mmc/sdio_func.h> #include "mt7921.h" #include "../sdio.h" #include "../mt76_connac2_mac.h" #include "mcu.h" static const struct sdio_device_id mt7921s_table[] = { { SDIO_DEVICE(SDIO_VENDOR_ID_MEDIATEK, 0x7901), .driver_data = (kernel_ulong_t)MT7921_FIRMWARE_WM }, { } /* Terminating entry */ }; static void mt7921s_txrx_worker(struct mt76_worker *w) { struct mt76_sdio *sdio = container_of(w, struct mt76_sdio, txrx_worker); struct mt76_dev *mdev = container_of(sdio, struct mt76_dev, sdio); struct mt792x_dev *dev = container_of(mdev, struct mt792x_dev, mt76); if (!mt76_connac_pm_ref(&dev->mphy, &dev->pm)) { queue_work(mdev->wq, &dev->pm.wake_work); return; } mt76s_txrx_worker(sdio); mt76_connac_pm_unref(&dev->mphy, &dev->pm); } static void mt7921s_unregister_device(struct mt792x_dev *dev) { struct mt76_connac_pm *pm = &dev->pm; cancel_work_sync(&dev->init_work); mt76_unregister_device(&dev->mt76); cancel_delayed_work_sync(&pm->ps_work); cancel_work_sync(&pm->wake_work); mt76s_deinit(&dev->mt76); mt7921s_wfsys_reset(dev); skb_queue_purge(&dev->mt76.mcu.res_q); mt76_free_device(&dev->mt76); } static int mt7921s_parse_intr(struct mt76_dev *dev, struct mt76s_intr *intr) { struct mt76_sdio *sdio = &dev->sdio; struct mt7921_sdio_intr *irq_data = sdio->intr_data; int i, err; sdio_claim_host(sdio->func); err = sdio_readsb(sdio->func, irq_data, MCR_WHISR, sizeof(*irq_data)); sdio_release_host(sdio->func); if (err < 0) return err; if (irq_data->rx.num[0] > 16 || irq_data->rx.num[1] > 128) return -EINVAL; intr->isr = irq_data->isr; intr->rec_mb = irq_data->rec_mb; intr->tx.wtqcr = irq_data->tx.wtqcr; intr->rx.num = irq_data->rx.num; for (i = 0; i < 2 ; i++) { if (!i) intr->rx.len[0] = irq_data->rx.len0; else intr->rx.len[1] = irq_data->rx.len1; } return 0; } static int mt7921s_probe(struct sdio_func *func, const struct sdio_device_id *id) { static const struct mt76_driver_ops drv_ops = { .txwi_size = MT_SDIO_TXD_SIZE, .drv_flags = MT_DRV_AMSDU_OFFLOAD, .survey_flags = SURVEY_INFO_TIME_TX | SURVEY_INFO_TIME_RX | SURVEY_INFO_TIME_BSS_RX, .tx_prepare_skb = mt7921_usb_sdio_tx_prepare_skb, .tx_complete_skb = mt7921_usb_sdio_tx_complete_skb, .tx_status_data = mt7921_usb_sdio_tx_status_data, .rx_skb = mt7921_queue_rx_skb, .rx_check = mt7921_rx_check, .sta_add = mt7921_mac_sta_add, .sta_assoc = mt7921_mac_sta_assoc, .sta_remove = mt7921_mac_sta_remove, .update_survey = mt792x_update_channel, }; static const struct mt76_bus_ops mt7921s_ops = { .rr = mt76s_rr, .rmw = mt76s_rmw, .wr = mt76s_wr, .write_copy = mt76s_write_copy, .read_copy = mt76s_read_copy, .wr_rp = mt76s_wr_rp, .rd_rp = mt76s_rd_rp, .type = MT76_BUS_SDIO, }; static const struct mt792x_hif_ops mt7921_sdio_ops = { .init_reset = mt7921s_init_reset, .reset = mt7921s_mac_reset, .mcu_init = mt7921s_mcu_init, .drv_own = mt7921s_mcu_drv_pmctrl, .fw_own = mt7921s_mcu_fw_pmctrl, }; struct ieee80211_ops *ops; struct mt792x_dev *dev; struct mt76_dev *mdev; u8 features; int ret; ops = mt792x_get_mac80211_ops(&func->dev, &mt7921_ops, (void *)id->driver_data, &features); if (!ops) return -ENOMEM; mdev = mt76_alloc_device(&func->dev, sizeof(*dev), ops, &drv_ops); if (!mdev) return -ENOMEM; dev = container_of(mdev, struct mt792x_dev, mt76); dev->fw_features = features; dev->hif_ops = &mt7921_sdio_ops; sdio_set_drvdata(func, dev); ret = mt76s_init(mdev, func, &mt7921s_ops); if (ret < 0) goto error; ret = mt76s_hw_init(mdev, func, MT76_CONNAC2_SDIO); if (ret) goto error; mdev->rev = (mt76_rr(dev, MT_HW_CHIPID) << 16) | (mt76_rr(dev, MT_HW_REV) & 0xff); dev_dbg(mdev->dev, "ASIC revision: %04x\n", mdev->rev); mdev->sdio.parse_irq = mt7921s_parse_intr; mdev->sdio.intr_data = devm_kmalloc(mdev->dev, sizeof(struct mt7921_sdio_intr), GFP_KERNEL); if (!mdev->sdio.intr_data) { ret = -ENOMEM; goto error; } ret = mt76s_alloc_rx_queue(mdev, MT_RXQ_MAIN); if (ret) goto error; ret = mt76s_alloc_rx_queue(mdev, MT_RXQ_MCU); if (ret) goto error; ret = mt76s_alloc_tx(mdev); if (ret) goto error; ret = mt76_worker_setup(mt76_hw(dev), &mdev->sdio.txrx_worker, mt7921s_txrx_worker, "sdio-txrx"); if (ret) goto error; sched_set_fifo_low(mdev->sdio.txrx_worker.task); ret = mt7921_register_device(dev); if (ret) goto error; return 0; error: mt76s_deinit(&dev->mt76); mt76_free_device(&dev->mt76); return ret; } static void mt7921s_remove(struct sdio_func *func) { struct mt792x_dev *dev = sdio_get_drvdata(func); mt7921s_unregister_device(dev); } static int mt7921s_suspend(struct device *__dev) { struct sdio_func *func = dev_to_sdio_func(__dev); struct mt792x_dev *dev = sdio_get_drvdata(func); struct mt76_connac_pm *pm = &dev->pm; struct mt76_dev *mdev = &dev->mt76; int err; pm->suspended = true; set_bit(MT76_STATE_SUSPEND, &mdev->phy.state); flush_work(&dev->reset_work); cancel_delayed_work_sync(&pm->ps_work); cancel_work_sync(&pm->wake_work); err = mt792x_mcu_drv_pmctrl(dev); if (err < 0) goto restore_suspend; /* always enable deep sleep during suspend to reduce * power consumption */ mt76_connac_mcu_set_deep_sleep(mdev, true); mt76_txq_schedule_all(&dev->mphy); mt76_worker_disable(&mdev->tx_worker); mt76_worker_disable(&mdev->sdio.status_worker); cancel_work_sync(&mdev->sdio.stat_work); clear_bit(MT76_READING_STATS, &dev->mphy.state); mt76_tx_status_check(mdev, true); mt76_worker_schedule(&mdev->sdio.txrx_worker); wait_event_timeout(dev->mt76.sdio.wait, mt76s_txqs_empty(&dev->mt76), 5 * HZ); /* It is supposed that SDIO bus is idle at the point */ err = mt76_connac_mcu_set_hif_suspend(mdev, true); if (err) goto restore_worker; mt76_worker_disable(&mdev->sdio.txrx_worker); mt76_worker_disable(&mdev->sdio.net_worker); err = mt792x_mcu_fw_pmctrl(dev); if (err) goto restore_txrx_worker; sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER); return 0; restore_txrx_worker: mt76_worker_enable(&mdev->sdio.net_worker); mt76_worker_enable(&mdev->sdio.txrx_worker); mt76_connac_mcu_set_hif_suspend(mdev, false); restore_worker: mt76_worker_enable(&mdev->tx_worker); mt76_worker_enable(&mdev->sdio.status_worker); if (!pm->ds_enable) mt76_connac_mcu_set_deep_sleep(mdev, false); restore_suspend: clear_bit(MT76_STATE_SUSPEND, &mdev->phy.state); pm->suspended = false; if (err < 0) mt792x_reset(&dev->mt76); return err; } static int mt7921s_resume(struct device *__dev) { struct sdio_func *func = dev_to_sdio_func(__dev); struct mt792x_dev *dev = sdio_get_drvdata(func); struct mt76_connac_pm *pm = &dev->pm; struct mt76_dev *mdev = &dev->mt76; int err; clear_bit(MT76_STATE_SUSPEND, &mdev->phy.state); err = mt792x_mcu_drv_pmctrl(dev); if (err < 0) goto failed; mt76_worker_enable(&mdev->tx_worker); mt76_worker_enable(&mdev->sdio.txrx_worker); mt76_worker_enable(&mdev->sdio.status_worker); mt76_worker_enable(&mdev->sdio.net_worker); /* restore previous ds setting */ if (!pm->ds_enable) mt76_connac_mcu_set_deep_sleep(mdev, false); err = mt76_connac_mcu_set_hif_suspend(mdev, false); failed: pm->suspended = false; if (err < 0) mt792x_reset(&dev->mt76); return err; } MODULE_DEVICE_TABLE(sdio, mt7921s_table); MODULE_FIRMWARE(MT7921_FIRMWARE_WM); MODULE_FIRMWARE(MT7921_ROM_PATCH); static DEFINE_SIMPLE_DEV_PM_OPS(mt7921s_pm_ops, mt7921s_suspend, mt7921s_resume); static struct sdio_driver mt7921s_driver = { .name = KBUILD_MODNAME, .probe = mt7921s_probe, .remove = mt7921s_remove, .id_table = mt7921s_table, .drv.pm = pm_sleep_ptr(&mt7921s_pm_ops), }; module_sdio_driver(mt7921s_driver); MODULE_AUTHOR("Sean Wang <[email protected]>"); MODULE_LICENSE("Dual BSD/GPL");
linux-master
drivers/net/wireless/mediatek/mt76/mt7921/sdio.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2022 MediaTek Inc. * * Author: Lorenzo Bianconi <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/usb.h> #include "mt7921.h" #include "mcu.h" #include "../mt76_connac2_mac.h" static const struct usb_device_id mt7921u_device_table[] = { { USB_DEVICE_AND_INTERFACE_INFO(0x0e8d, 0x7961, 0xff, 0xff, 0xff), .driver_info = (kernel_ulong_t)MT7921_FIRMWARE_WM }, /* Comfast CF-952AX */ { USB_DEVICE_AND_INTERFACE_INFO(0x3574, 0x6211, 0xff, 0xff, 0xff), .driver_info = (kernel_ulong_t)MT7921_FIRMWARE_WM }, /* Netgear, Inc. [A8000,AXE3000] */ { USB_DEVICE_AND_INTERFACE_INFO(0x0846, 0x9060, 0xff, 0xff, 0xff), .driver_info = (kernel_ulong_t)MT7921_FIRMWARE_WM }, { }, }; static int mt7921u_mcu_send_message(struct mt76_dev *mdev, struct sk_buff *skb, int cmd, int *seq) { struct mt792x_dev *dev = container_of(mdev, struct mt792x_dev, mt76); u32 pad, ep; int ret; ret = mt76_connac2_mcu_fill_message(mdev, skb, cmd, seq); if (ret) return ret; mdev->mcu.timeout = 3 * HZ; if (cmd != MCU_CMD(FW_SCATTER)) ep = MT_EP_OUT_INBAND_CMD; else ep = MT_EP_OUT_AC_BE; mt7921_skb_add_usb_sdio_hdr(dev, skb, 0); pad = round_up(skb->len, 4) + 4 - skb->len; __skb_put_zero(skb, pad); ret = mt76u_bulk_msg(&dev->mt76, skb->data, skb->len, NULL, 1000, ep); dev_kfree_skb(skb); return ret; } static int mt7921u_mcu_init(struct mt792x_dev *dev) { static const struct mt76_mcu_ops mcu_ops = { .headroom = MT_SDIO_HDR_SIZE + sizeof(struct mt76_connac2_mcu_txd), .tailroom = MT_USB_TAIL_SIZE, .mcu_skb_send_msg = mt7921u_mcu_send_message, .mcu_parse_response = mt7921_mcu_parse_response, }; int ret; dev->mt76.mcu_ops = &mcu_ops; mt76_set(dev, MT_UDMA_TX_QSEL, MT_FW_DL_EN); ret = mt7921_run_firmware(dev); if (ret) return ret; set_bit(MT76_STATE_MCU_RUNNING, &dev->mphy.state); mt76_clear(dev, MT_UDMA_TX_QSEL, MT_FW_DL_EN); return 0; } static int mt7921u_mac_reset(struct mt792x_dev *dev) { int err; mt76_txq_schedule_all(&dev->mphy); mt76_worker_disable(&dev->mt76.tx_worker); set_bit(MT76_RESET, &dev->mphy.state); set_bit(MT76_MCU_RESET, &dev->mphy.state); wake_up(&dev->mt76.mcu.wait); skb_queue_purge(&dev->mt76.mcu.res_q); mt76u_stop_rx(&dev->mt76); mt76u_stop_tx(&dev->mt76); mt792xu_wfsys_reset(dev); clear_bit(MT76_MCU_RESET, &dev->mphy.state); err = mt76u_resume_rx(&dev->mt76); if (err) goto out; err = mt792xu_mcu_power_on(dev); if (err) goto out; err = mt792xu_dma_init(dev, false); if (err) goto out; mt76_wr(dev, MT_SWDEF_MODE, MT_SWDEF_NORMAL_MODE); mt76_set(dev, MT_UDMA_TX_QSEL, MT_FW_DL_EN); err = mt7921_run_firmware(dev); if (err) goto out; mt76_clear(dev, MT_UDMA_TX_QSEL, MT_FW_DL_EN); err = mt7921_mcu_set_eeprom(dev); if (err) goto out; err = mt7921_mac_init(dev); if (err) goto out; err = __mt7921_start(&dev->phy); out: clear_bit(MT76_RESET, &dev->mphy.state); mt76_worker_enable(&dev->mt76.tx_worker); return err; } static void mt7921u_stop(struct ieee80211_hw *hw) { struct mt792x_dev *dev = mt792x_hw_dev(hw); mt76u_stop_tx(&dev->mt76); mt7921_stop(hw); } static int mt7921u_probe(struct usb_interface *usb_intf, const struct usb_device_id *id) { static const struct mt76_driver_ops drv_ops = { .txwi_size = MT_SDIO_TXD_SIZE, .drv_flags = MT_DRV_RX_DMA_HDR | MT_DRV_HW_MGMT_TXQ | MT_DRV_AMSDU_OFFLOAD, .survey_flags = SURVEY_INFO_TIME_TX | SURVEY_INFO_TIME_RX | SURVEY_INFO_TIME_BSS_RX, .tx_prepare_skb = mt7921_usb_sdio_tx_prepare_skb, .tx_complete_skb = mt7921_usb_sdio_tx_complete_skb, .tx_status_data = mt7921_usb_sdio_tx_status_data, .rx_skb = mt7921_queue_rx_skb, .rx_check = mt7921_rx_check, .sta_add = mt7921_mac_sta_add, .sta_assoc = mt7921_mac_sta_assoc, .sta_remove = mt7921_mac_sta_remove, .update_survey = mt792x_update_channel, }; static const struct mt792x_hif_ops hif_ops = { .mcu_init = mt7921u_mcu_init, .init_reset = mt792xu_init_reset, .reset = mt7921u_mac_reset, }; static struct mt76_bus_ops bus_ops = { .rr = mt792xu_rr, .wr = mt792xu_wr, .rmw = mt792xu_rmw, .read_copy = mt76u_read_copy, .write_copy = mt792xu_copy, .type = MT76_BUS_USB, }; struct usb_device *udev = interface_to_usbdev(usb_intf); struct ieee80211_ops *ops; struct ieee80211_hw *hw; struct mt792x_dev *dev; struct mt76_dev *mdev; u8 features; int ret; ops = mt792x_get_mac80211_ops(&usb_intf->dev, &mt7921_ops, (void *)id->driver_info, &features); if (!ops) return -ENOMEM; ops->stop = mt7921u_stop; mdev = mt76_alloc_device(&usb_intf->dev, sizeof(*dev), ops, &drv_ops); if (!mdev) return -ENOMEM; dev = container_of(mdev, struct mt792x_dev, mt76); dev->fw_features = features; dev->hif_ops = &hif_ops; udev = usb_get_dev(udev); usb_reset_device(udev); usb_set_intfdata(usb_intf, dev); ret = __mt76u_init(mdev, usb_intf, &bus_ops); if (ret < 0) goto error; mdev->rev = (mt76_rr(dev, MT_HW_CHIPID) << 16) | (mt76_rr(dev, MT_HW_REV) & 0xff); dev_dbg(mdev->dev, "ASIC revision: %04x\n", mdev->rev); if (mt76_get_field(dev, MT_CONN_ON_MISC, MT_TOP_MISC2_FW_N9_RDY)) { ret = mt792xu_wfsys_reset(dev); if (ret) goto error; } ret = mt792xu_mcu_power_on(dev); if (ret) goto error; ret = mt76u_alloc_mcu_queue(&dev->mt76); if (ret) goto error; ret = mt76u_alloc_queues(&dev->mt76); if (ret) goto error; ret = mt792xu_dma_init(dev, false); if (ret) goto error; hw = mt76_hw(dev); /* check hw sg support in order to enable AMSDU */ hw->max_tx_fragments = mdev->usb.sg_en ? MT_HW_TXP_MAX_BUF_NUM : 1; ret = mt7921_register_device(dev); if (ret) goto error; return 0; error: mt76u_queues_deinit(&dev->mt76); usb_set_intfdata(usb_intf, NULL); usb_put_dev(interface_to_usbdev(usb_intf)); mt76_free_device(&dev->mt76); return ret; } #ifdef CONFIG_PM static int mt7921u_suspend(struct usb_interface *intf, pm_message_t state) { struct mt792x_dev *dev = usb_get_intfdata(intf); struct mt76_connac_pm *pm = &dev->pm; int err; pm->suspended = true; flush_work(&dev->reset_work); err = mt76_connac_mcu_set_hif_suspend(&dev->mt76, true); if (err) goto failed; mt76u_stop_rx(&dev->mt76); mt76u_stop_tx(&dev->mt76); return 0; failed: pm->suspended = false; if (err < 0) mt792x_reset(&dev->mt76); return err; } static int mt7921u_resume(struct usb_interface *intf) { struct mt792x_dev *dev = usb_get_intfdata(intf); struct mt76_connac_pm *pm = &dev->pm; bool reinit = true; int err, i; for (i = 0; i < 10; i++) { u32 val = mt76_rr(dev, MT_WF_SW_DEF_CR_USB_MCU_EVENT); if (!(val & MT_WF_SW_SER_TRIGGER_SUSPEND)) { reinit = false; break; } if (val & MT_WF_SW_SER_DONE_SUSPEND) { mt76_wr(dev, MT_WF_SW_DEF_CR_USB_MCU_EVENT, 0); break; } msleep(20); } if (reinit || mt792x_dma_need_reinit(dev)) { err = mt792xu_dma_init(dev, true); if (err) goto failed; } err = mt76u_resume_rx(&dev->mt76); if (err < 0) goto failed; err = mt76_connac_mcu_set_hif_suspend(&dev->mt76, false); failed: pm->suspended = false; if (err < 0) mt792x_reset(&dev->mt76); return err; } #endif /* CONFIG_PM */ MODULE_DEVICE_TABLE(usb, mt7921u_device_table); MODULE_FIRMWARE(MT7921_FIRMWARE_WM); MODULE_FIRMWARE(MT7921_ROM_PATCH); static struct usb_driver mt7921u_driver = { .name = KBUILD_MODNAME, .id_table = mt7921u_device_table, .probe = mt7921u_probe, .disconnect = mt792xu_disconnect, #ifdef CONFIG_PM .suspend = mt7921u_suspend, .resume = mt7921u_resume, .reset_resume = mt7921u_resume, #endif /* CONFIG_PM */ .soft_unbind = 1, .disable_hub_initiated_lpm = 1, }; module_usb_driver(mt7921u_driver); MODULE_AUTHOR("Lorenzo Bianconi <[email protected]>"); MODULE_LICENSE("Dual BSD/GPL");
linux-master
drivers/net/wireless/mediatek/mt76/mt7921/usb.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2020 MediaTek Inc. */ #include "mt7921.h" static int mt7921_reg_set(void *data, u64 val) { struct mt792x_dev *dev = data; mt792x_mutex_acquire(dev); mt76_wr(dev, dev->mt76.debugfs_reg, val); mt792x_mutex_release(dev); return 0; } static int mt7921_reg_get(void *data, u64 *val) { struct mt792x_dev *dev = data; mt792x_mutex_acquire(dev); *val = mt76_rr(dev, dev->mt76.debugfs_reg); mt792x_mutex_release(dev); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_regval, mt7921_reg_get, mt7921_reg_set, "0x%08llx\n"); static int mt7921_fw_debug_set(void *data, u64 val) { struct mt792x_dev *dev = data; mt792x_mutex_acquire(dev); dev->fw_debug = (u8)val; mt7921_mcu_fw_log_2_host(dev, dev->fw_debug); mt792x_mutex_release(dev); return 0; } static int mt7921_fw_debug_get(void *data, u64 *val) { struct mt792x_dev *dev = data; *val = dev->fw_debug; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_fw_debug, mt7921_fw_debug_get, mt7921_fw_debug_set, "%lld\n"); DEFINE_SHOW_ATTRIBUTE(mt792x_tx_stats); static void mt7921_seq_puts_array(struct seq_file *file, const char *str, s8 *val, int len) { int i; seq_printf(file, "%-16s:", str); for (i = 0; i < len; i++) if (val[i] == 127) seq_printf(file, " %6s", "N.A"); else seq_printf(file, " %6d", val[i]); seq_puts(file, "\n"); } #define mt7921_print_txpwr_entry(prefix, rate) \ ({ \ mt7921_seq_puts_array(s, #prefix " (user)", \ txpwr.data[TXPWR_USER].rate, \ ARRAY_SIZE(txpwr.data[TXPWR_USER].rate)); \ mt7921_seq_puts_array(s, #prefix " (eeprom)", \ txpwr.data[TXPWR_EEPROM].rate, \ ARRAY_SIZE(txpwr.data[TXPWR_EEPROM].rate)); \ mt7921_seq_puts_array(s, #prefix " (tmac)", \ txpwr.data[TXPWR_MAC].rate, \ ARRAY_SIZE(txpwr.data[TXPWR_MAC].rate)); \ }) static int mt7921_txpwr(struct seq_file *s, void *data) { struct mt792x_dev *dev = dev_get_drvdata(s->private); struct mt7921_txpwr txpwr; int ret; mt792x_mutex_acquire(dev); ret = mt7921_get_txpwr_info(dev, &txpwr); mt792x_mutex_release(dev); if (ret) return ret; seq_printf(s, "Tx power table (channel %d)\n", txpwr.ch); seq_printf(s, "%-16s %6s %6s %6s %6s\n", " ", "1m", "2m", "5m", "11m"); mt7921_print_txpwr_entry(CCK, cck); seq_printf(s, "%-16s %6s %6s %6s %6s %6s %6s %6s %6s\n", " ", "6m", "9m", "12m", "18m", "24m", "36m", "48m", "54m"); mt7921_print_txpwr_entry(OFDM, ofdm); seq_printf(s, "%-16s %6s %6s %6s %6s %6s %6s %6s %6s\n", " ", "mcs0", "mcs1", "mcs2", "mcs3", "mcs4", "mcs5", "mcs6", "mcs7"); mt7921_print_txpwr_entry(HT20, ht20); seq_printf(s, "%-16s %6s %6s %6s %6s %6s %6s %6s %6s %6s\n", " ", "mcs0", "mcs1", "mcs2", "mcs3", "mcs4", "mcs5", "mcs6", "mcs7", "mcs32"); mt7921_print_txpwr_entry(HT40, ht40); seq_printf(s, "%-16s %6s %6s %6s %6s %6s %6s %6s %6s %6s %6s %6s %6s\n", " ", "mcs0", "mcs1", "mcs2", "mcs3", "mcs4", "mcs5", "mcs6", "mcs7", "mcs8", "mcs9", "mcs10", "mcs11"); mt7921_print_txpwr_entry(VHT20, vht20); mt7921_print_txpwr_entry(VHT40, vht40); mt7921_print_txpwr_entry(VHT80, vht80); mt7921_print_txpwr_entry(VHT160, vht160); mt7921_print_txpwr_entry(HE26, he26); mt7921_print_txpwr_entry(HE52, he52); mt7921_print_txpwr_entry(HE106, he106); mt7921_print_txpwr_entry(HE242, he242); mt7921_print_txpwr_entry(HE484, he484); mt7921_print_txpwr_entry(HE996, he996); mt7921_print_txpwr_entry(HE996x2, he996x2); return 0; } static int mt7921_pm_set(void *data, u64 val) { struct mt792x_dev *dev = data; struct mt76_connac_pm *pm = &dev->pm; if (mt76_is_usb(&dev->mt76)) return -EOPNOTSUPP; mutex_lock(&dev->mt76.mutex); if (val == pm->enable_user) goto out; if (!pm->enable_user) { pm->stats.last_wake_event = jiffies; pm->stats.last_doze_event = jiffies; } /* make sure the chip is awake here and ps_work is scheduled * just at end of the this routine. */ pm->enable = false; mt76_connac_pm_wake(&dev->mphy, pm); pm->enable_user = val; mt7921_set_runtime_pm(dev); mt76_connac_power_save_sched(&dev->mphy, pm); out: mutex_unlock(&dev->mt76.mutex); return 0; } static int mt7921_pm_get(void *data, u64 *val) { struct mt792x_dev *dev = data; *val = dev->pm.enable_user; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_pm, mt7921_pm_get, mt7921_pm_set, "%lld\n"); static int mt7921_deep_sleep_set(void *data, u64 val) { struct mt792x_dev *dev = data; struct mt76_connac_pm *pm = &dev->pm; bool monitor = !!(dev->mphy.hw->conf.flags & IEEE80211_CONF_MONITOR); bool enable = !!val; if (mt76_is_usb(&dev->mt76)) return -EOPNOTSUPP; mt792x_mutex_acquire(dev); if (pm->ds_enable_user == enable) goto out; pm->ds_enable_user = enable; pm->ds_enable = enable && !monitor; mt76_connac_mcu_set_deep_sleep(&dev->mt76, pm->ds_enable); out: mt792x_mutex_release(dev); return 0; } static int mt7921_deep_sleep_get(void *data, u64 *val) { struct mt792x_dev *dev = data; *val = dev->pm.ds_enable_user; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_ds, mt7921_deep_sleep_get, mt7921_deep_sleep_set, "%lld\n"); DEFINE_DEBUGFS_ATTRIBUTE(fops_pm_idle_timeout, mt792x_pm_idle_timeout_get, mt792x_pm_idle_timeout_set, "%lld\n"); static int mt7921_chip_reset(void *data, u64 val) { struct mt792x_dev *dev = data; int ret = 0; switch (val) { case 1: /* Reset wifisys directly. */ mt792x_reset(&dev->mt76); break; default: /* Collect the core dump before reset wifisys. */ mt792x_mutex_acquire(dev); ret = mt76_connac_mcu_chip_config(&dev->mt76); mt792x_mutex_release(dev); break; } return ret; } DEFINE_DEBUGFS_ATTRIBUTE(fops_reset, NULL, mt7921_chip_reset, "%lld\n"); static int mt7921s_sched_quota_read(struct seq_file *s, void *data) { struct mt792x_dev *dev = dev_get_drvdata(s->private); struct mt76_sdio *sdio = &dev->mt76.sdio; seq_printf(s, "pse_data_quota\t%d\n", sdio->sched.pse_data_quota); seq_printf(s, "ple_data_quota\t%d\n", sdio->sched.ple_data_quota); seq_printf(s, "pse_mcu_quota\t%d\n", sdio->sched.pse_mcu_quota); seq_printf(s, "sched_deficit\t%d\n", sdio->sched.deficit); return 0; } int mt7921_init_debugfs(struct mt792x_dev *dev) { struct dentry *dir; dir = mt76_register_debugfs_fops(&dev->mphy, &fops_regval); if (!dir) return -ENOMEM; if (mt76_is_mmio(&dev->mt76)) debugfs_create_devm_seqfile(dev->mt76.dev, "xmit-queues", dir, mt792x_queues_read); else debugfs_create_devm_seqfile(dev->mt76.dev, "xmit-queues", dir, mt76_queues_read); debugfs_create_devm_seqfile(dev->mt76.dev, "acq", dir, mt792x_queues_acq); debugfs_create_devm_seqfile(dev->mt76.dev, "txpower_sku", dir, mt7921_txpwr); debugfs_create_file("tx_stats", 0400, dir, dev, &mt792x_tx_stats_fops); debugfs_create_file("fw_debug", 0600, dir, dev, &fops_fw_debug); debugfs_create_file("runtime-pm", 0600, dir, dev, &fops_pm); debugfs_create_file("idle-timeout", 0600, dir, dev, &fops_pm_idle_timeout); debugfs_create_file("chip_reset", 0600, dir, dev, &fops_reset); debugfs_create_devm_seqfile(dev->mt76.dev, "runtime_pm_stats", dir, mt792x_pm_stats); debugfs_create_file("deep-sleep", 0600, dir, dev, &fops_ds); if (mt76_is_sdio(&dev->mt76)) debugfs_create_devm_seqfile(dev->mt76.dev, "sched-quota", dir, mt7921s_sched_quota_read); return 0; }
linux-master
drivers/net/wireless/mediatek/mt76/mt7921/debugfs.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2020 MediaTek Inc. */ #include <linux/devcoredump.h> #include <linux/etherdevice.h> #include <linux/timekeeping.h> #include "mt7921.h" #include "../dma.h" #include "../mt76_connac2_mac.h" #include "mcu.h" #define MT_WTBL_TXRX_CAP_RATE_OFFSET 7 #define MT_WTBL_TXRX_RATE_G2_HE 24 #define MT_WTBL_TXRX_RATE_G2 12 #define MT_WTBL_AC0_CTT_OFFSET 20 bool mt7921_mac_wtbl_update(struct mt792x_dev *dev, int idx, u32 mask) { mt76_rmw(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_WLAN_IDX, FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, idx) | mask); return mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000); } static u32 mt7921_mac_wtbl_lmac_addr(int idx, u8 offset) { return MT_WTBL_LMAC_OFFS(idx, 0) + offset * 4; } static void mt7921_mac_sta_poll(struct mt792x_dev *dev) { static const u8 ac_to_tid[] = { [IEEE80211_AC_BE] = 0, [IEEE80211_AC_BK] = 1, [IEEE80211_AC_VI] = 4, [IEEE80211_AC_VO] = 6 }; struct ieee80211_sta *sta; struct mt792x_sta *msta; u32 tx_time[IEEE80211_NUM_ACS], rx_time[IEEE80211_NUM_ACS]; LIST_HEAD(sta_poll_list); struct rate_info *rate; s8 rssi[4]; int i; spin_lock_bh(&dev->mt76.sta_poll_lock); list_splice_init(&dev->mt76.sta_poll_list, &sta_poll_list); spin_unlock_bh(&dev->mt76.sta_poll_lock); while (true) { bool clear = false; u32 addr, val; u16 idx; u8 bw; spin_lock_bh(&dev->mt76.sta_poll_lock); if (list_empty(&sta_poll_list)) { spin_unlock_bh(&dev->mt76.sta_poll_lock); break; } msta = list_first_entry(&sta_poll_list, struct mt792x_sta, wcid.poll_list); list_del_init(&msta->wcid.poll_list); spin_unlock_bh(&dev->mt76.sta_poll_lock); idx = msta->wcid.idx; addr = mt7921_mac_wtbl_lmac_addr(idx, MT_WTBL_AC0_CTT_OFFSET); for (i = 0; i < IEEE80211_NUM_ACS; i++) { u32 tx_last = msta->airtime_ac[i]; u32 rx_last = msta->airtime_ac[i + 4]; msta->airtime_ac[i] = mt76_rr(dev, addr); msta->airtime_ac[i + 4] = mt76_rr(dev, addr + 4); tx_time[i] = msta->airtime_ac[i] - tx_last; rx_time[i] = msta->airtime_ac[i + 4] - rx_last; if ((tx_last | rx_last) & BIT(30)) clear = true; addr += 8; } if (clear) { mt7921_mac_wtbl_update(dev, idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); memset(msta->airtime_ac, 0, sizeof(msta->airtime_ac)); } if (!msta->wcid.sta) continue; sta = container_of((void *)msta, struct ieee80211_sta, drv_priv); for (i = 0; i < IEEE80211_NUM_ACS; i++) { u8 q = mt76_connac_lmac_mapping(i); u32 tx_cur = tx_time[q]; u32 rx_cur = rx_time[q]; u8 tid = ac_to_tid[i]; if (!tx_cur && !rx_cur) continue; ieee80211_sta_register_airtime(sta, tid, tx_cur, rx_cur); } /* We don't support reading GI info from txs packets. * For accurate tx status reporting and AQL improvement, * we need to make sure that flags match so polling GI * from per-sta counters directly. */ rate = &msta->wcid.rate; addr = mt7921_mac_wtbl_lmac_addr(idx, MT_WTBL_TXRX_CAP_RATE_OFFSET); val = mt76_rr(dev, addr); switch (rate->bw) { case RATE_INFO_BW_160: bw = IEEE80211_STA_RX_BW_160; break; case RATE_INFO_BW_80: bw = IEEE80211_STA_RX_BW_80; break; case RATE_INFO_BW_40: bw = IEEE80211_STA_RX_BW_40; break; default: bw = IEEE80211_STA_RX_BW_20; break; } if (rate->flags & RATE_INFO_FLAGS_HE_MCS) { u8 offs = MT_WTBL_TXRX_RATE_G2_HE + 2 * bw; rate->he_gi = (val & (0x3 << offs)) >> offs; } else if (rate->flags & (RATE_INFO_FLAGS_VHT_MCS | RATE_INFO_FLAGS_MCS)) { if (val & BIT(MT_WTBL_TXRX_RATE_G2 + bw)) rate->flags |= RATE_INFO_FLAGS_SHORT_GI; else rate->flags &= ~RATE_INFO_FLAGS_SHORT_GI; } /* get signal strength of resp frames (CTS/BA/ACK) */ addr = mt7921_mac_wtbl_lmac_addr(idx, 30); val = mt76_rr(dev, addr); rssi[0] = to_rssi(GENMASK(7, 0), val); rssi[1] = to_rssi(GENMASK(15, 8), val); rssi[2] = to_rssi(GENMASK(23, 16), val); rssi[3] = to_rssi(GENMASK(31, 14), val); msta->ack_signal = mt76_rx_signal(msta->vif->phy->mt76->antenna_mask, rssi); ewma_avg_signal_add(&msta->avg_ack_signal, -msta->ack_signal); } } static int mt7921_mac_fill_rx(struct mt792x_dev *dev, struct sk_buff *skb) { u32 csum_mask = MT_RXD0_NORMAL_IP_SUM | MT_RXD0_NORMAL_UDP_TCP_SUM; struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; bool hdr_trans, unicast, insert_ccmp_hdr = false; u8 chfreq, qos_ctl = 0, remove_pad, amsdu_info; u16 hdr_gap; __le32 *rxv = NULL, *rxd = (__le32 *)skb->data; struct mt76_phy *mphy = &dev->mt76.phy; struct mt792x_phy *phy = &dev->phy; struct ieee80211_supported_band *sband; u32 csum_status = *(u32 *)skb->cb; u32 rxd0 = le32_to_cpu(rxd[0]); u32 rxd1 = le32_to_cpu(rxd[1]); u32 rxd2 = le32_to_cpu(rxd[2]); u32 rxd3 = le32_to_cpu(rxd[3]); u32 rxd4 = le32_to_cpu(rxd[4]); struct mt792x_sta *msta = NULL; u16 seq_ctrl = 0; __le16 fc = 0; u8 mode = 0; int i, idx; memset(status, 0, sizeof(*status)); if (rxd1 & MT_RXD1_NORMAL_BAND_IDX) return -EINVAL; if (!test_bit(MT76_STATE_RUNNING, &mphy->state)) return -EINVAL; if (rxd2 & MT_RXD2_NORMAL_AMSDU_ERR) return -EINVAL; hdr_trans = rxd2 & MT_RXD2_NORMAL_HDR_TRANS; if (hdr_trans && (rxd1 & MT_RXD1_NORMAL_CM)) return -EINVAL; /* ICV error or CCMP/BIP/WPI MIC error */ if (rxd1 & MT_RXD1_NORMAL_ICV_ERR) status->flag |= RX_FLAG_ONLY_MONITOR; chfreq = FIELD_GET(MT_RXD3_NORMAL_CH_FREQ, rxd3); unicast = FIELD_GET(MT_RXD3_NORMAL_ADDR_TYPE, rxd3) == MT_RXD3_NORMAL_U2M; idx = FIELD_GET(MT_RXD1_NORMAL_WLAN_IDX, rxd1); status->wcid = mt792x_rx_get_wcid(dev, idx, unicast); if (status->wcid) { msta = container_of(status->wcid, struct mt792x_sta, wcid); spin_lock_bh(&dev->mt76.sta_poll_lock); if (list_empty(&msta->wcid.poll_list)) list_add_tail(&msta->wcid.poll_list, &dev->mt76.sta_poll_list); spin_unlock_bh(&dev->mt76.sta_poll_lock); } mt792x_get_status_freq_info(status, chfreq); switch (status->band) { case NL80211_BAND_5GHZ: sband = &mphy->sband_5g.sband; break; case NL80211_BAND_6GHZ: sband = &mphy->sband_6g.sband; break; default: sband = &mphy->sband_2g.sband; break; } if (!sband->channels) return -EINVAL; if (mt76_is_mmio(&dev->mt76) && (rxd0 & csum_mask) == csum_mask && !(csum_status & (BIT(0) | BIT(2) | BIT(3)))) skb->ip_summed = CHECKSUM_UNNECESSARY; if (rxd1 & MT_RXD1_NORMAL_FCS_ERR) status->flag |= RX_FLAG_FAILED_FCS_CRC; if (rxd1 & MT_RXD1_NORMAL_TKIP_MIC_ERR) status->flag |= RX_FLAG_MMIC_ERROR; if (FIELD_GET(MT_RXD1_NORMAL_SEC_MODE, rxd1) != 0 && !(rxd1 & (MT_RXD1_NORMAL_CLM | MT_RXD1_NORMAL_CM))) { status->flag |= RX_FLAG_DECRYPTED; status->flag |= RX_FLAG_IV_STRIPPED; status->flag |= RX_FLAG_MMIC_STRIPPED | RX_FLAG_MIC_STRIPPED; } remove_pad = FIELD_GET(MT_RXD2_NORMAL_HDR_OFFSET, rxd2); if (rxd2 & MT_RXD2_NORMAL_MAX_LEN_ERROR) return -EINVAL; rxd += 6; if (rxd1 & MT_RXD1_NORMAL_GROUP_4) { u32 v0 = le32_to_cpu(rxd[0]); u32 v2 = le32_to_cpu(rxd[2]); fc = cpu_to_le16(FIELD_GET(MT_RXD6_FRAME_CONTROL, v0)); seq_ctrl = FIELD_GET(MT_RXD8_SEQ_CTRL, v2); qos_ctl = FIELD_GET(MT_RXD8_QOS_CTL, v2); rxd += 4; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; } if (rxd1 & MT_RXD1_NORMAL_GROUP_1) { u8 *data = (u8 *)rxd; if (status->flag & RX_FLAG_DECRYPTED) { switch (FIELD_GET(MT_RXD1_NORMAL_SEC_MODE, rxd1)) { case MT_CIPHER_AES_CCMP: case MT_CIPHER_CCMP_CCX: case MT_CIPHER_CCMP_256: insert_ccmp_hdr = FIELD_GET(MT_RXD2_NORMAL_FRAG, rxd2); fallthrough; case MT_CIPHER_TKIP: case MT_CIPHER_TKIP_NO_MIC: case MT_CIPHER_GCMP: case MT_CIPHER_GCMP_256: status->iv[0] = data[5]; status->iv[1] = data[4]; status->iv[2] = data[3]; status->iv[3] = data[2]; status->iv[4] = data[1]; status->iv[5] = data[0]; break; default: break; } } rxd += 4; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; } if (rxd1 & MT_RXD1_NORMAL_GROUP_2) { status->timestamp = le32_to_cpu(rxd[0]); status->flag |= RX_FLAG_MACTIME_START; if (!(rxd2 & MT_RXD2_NORMAL_NON_AMPDU)) { status->flag |= RX_FLAG_AMPDU_DETAILS; /* all subframes of an A-MPDU have the same timestamp */ if (phy->rx_ampdu_ts != status->timestamp) { if (!++phy->ampdu_ref) phy->ampdu_ref++; } phy->rx_ampdu_ts = status->timestamp; status->ampdu_ref = phy->ampdu_ref; } rxd += 2; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; } /* RXD Group 3 - P-RXV */ if (rxd1 & MT_RXD1_NORMAL_GROUP_3) { u32 v0, v1; int ret; rxv = rxd; rxd += 2; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; v0 = le32_to_cpu(rxv[0]); v1 = le32_to_cpu(rxv[1]); if (v0 & MT_PRXV_HT_AD_CODE) status->enc_flags |= RX_ENC_FLAG_LDPC; ret = mt76_connac2_mac_fill_rx_rate(&dev->mt76, status, sband, rxv, &mode); if (ret < 0) return ret; if (rxd1 & MT_RXD1_NORMAL_GROUP_5) { rxd += 6; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; rxv = rxd; /* Monitor mode would use RCPI described in GROUP 5 * instead. */ v1 = le32_to_cpu(rxv[0]); rxd += 12; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; } status->chains = mphy->antenna_mask; status->chain_signal[0] = to_rssi(MT_PRXV_RCPI0, v1); status->chain_signal[1] = to_rssi(MT_PRXV_RCPI1, v1); status->chain_signal[2] = to_rssi(MT_PRXV_RCPI2, v1); status->chain_signal[3] = to_rssi(MT_PRXV_RCPI3, v1); status->signal = -128; for (i = 0; i < hweight8(mphy->antenna_mask); i++) { if (!(status->chains & BIT(i)) || status->chain_signal[i] >= 0) continue; status->signal = max(status->signal, status->chain_signal[i]); } } amsdu_info = FIELD_GET(MT_RXD4_NORMAL_PAYLOAD_FORMAT, rxd4); status->amsdu = !!amsdu_info; if (status->amsdu) { status->first_amsdu = amsdu_info == MT_RXD4_FIRST_AMSDU_FRAME; status->last_amsdu = amsdu_info == MT_RXD4_LAST_AMSDU_FRAME; } hdr_gap = (u8 *)rxd - skb->data + 2 * remove_pad; if (hdr_trans && ieee80211_has_morefrags(fc)) { struct ieee80211_vif *vif; int err; if (!msta || !msta->vif) return -EINVAL; vif = container_of((void *)msta->vif, struct ieee80211_vif, drv_priv); err = mt76_connac2_reverse_frag0_hdr_trans(vif, skb, hdr_gap); if (err) return err; hdr_trans = false; } else { skb_pull(skb, hdr_gap); if (!hdr_trans && status->amsdu) { memmove(skb->data + 2, skb->data, ieee80211_get_hdrlen_from_skb(skb)); skb_pull(skb, 2); } } if (!hdr_trans) { struct ieee80211_hdr *hdr; if (insert_ccmp_hdr) { u8 key_id = FIELD_GET(MT_RXD1_NORMAL_KEY_ID, rxd1); mt76_insert_ccmp_hdr(skb, key_id); } hdr = mt76_skb_get_hdr(skb); fc = hdr->frame_control; if (ieee80211_is_data_qos(fc)) { seq_ctrl = le16_to_cpu(hdr->seq_ctrl); qos_ctl = *ieee80211_get_qos_ctl(hdr); } } else { status->flag |= RX_FLAG_8023; } mt792x_mac_assoc_rssi(dev, skb); if (rxv && mode >= MT_PHY_TYPE_HE_SU && !(status->flag & RX_FLAG_8023)) mt76_connac2_mac_decode_he_radiotap(&dev->mt76, skb, rxv, mode); if (!status->wcid || !ieee80211_is_data_qos(fc)) return 0; status->aggr = unicast && !ieee80211_is_qos_nullfunc(fc); status->seqno = IEEE80211_SEQ_TO_SN(seq_ctrl); status->qos_ctl = qos_ctl; return 0; } void mt7921_mac_add_txs(struct mt792x_dev *dev, void *data) { struct mt792x_sta *msta = NULL; struct mt76_wcid *wcid; __le32 *txs_data = data; u16 wcidx; u8 pid; if (le32_get_bits(txs_data[0], MT_TXS0_TXS_FORMAT) > 1) return; wcidx = le32_get_bits(txs_data[2], MT_TXS2_WCID); pid = le32_get_bits(txs_data[3], MT_TXS3_PID); if (pid < MT_PACKET_ID_FIRST) return; if (wcidx >= MT792x_WTBL_SIZE) return; rcu_read_lock(); wcid = rcu_dereference(dev->mt76.wcid[wcidx]); if (!wcid) goto out; msta = container_of(wcid, struct mt792x_sta, wcid); mt76_connac2_mac_add_txs_skb(&dev->mt76, wcid, pid, txs_data); if (!wcid->sta) goto out; spin_lock_bh(&dev->mt76.sta_poll_lock); if (list_empty(&msta->wcid.poll_list)) list_add_tail(&msta->wcid.poll_list, &dev->mt76.sta_poll_list); spin_unlock_bh(&dev->mt76.sta_poll_lock); out: rcu_read_unlock(); } static void mt7921_mac_tx_free(struct mt792x_dev *dev, void *data, int len) { struct mt76_connac_tx_free *free = data; __le32 *tx_info = (__le32 *)(data + sizeof(*free)); struct mt76_dev *mdev = &dev->mt76; struct mt76_txwi_cache *txwi; struct ieee80211_sta *sta = NULL; struct mt76_wcid *wcid = NULL; struct sk_buff *skb, *tmp; void *end = data + len; LIST_HEAD(free_list); bool wake = false; u8 i, count; /* clean DMA queues and unmap buffers first */ mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[MT_TXQ_PSD], false); mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[MT_TXQ_BE], false); count = le16_get_bits(free->ctrl, MT_TX_FREE_MSDU_CNT); if (WARN_ON_ONCE((void *)&tx_info[count] > end)) return; for (i = 0; i < count; i++) { u32 msdu, info = le32_to_cpu(tx_info[i]); u8 stat; /* 1'b1: new wcid pair. * 1'b0: msdu_id with the same 'wcid pair' as above. */ if (info & MT_TX_FREE_PAIR) { struct mt792x_sta *msta; u16 idx; count++; idx = FIELD_GET(MT_TX_FREE_WLAN_ID, info); wcid = rcu_dereference(dev->mt76.wcid[idx]); sta = wcid_to_sta(wcid); if (!sta) continue; msta = container_of(wcid, struct mt792x_sta, wcid); spin_lock_bh(&mdev->sta_poll_lock); if (list_empty(&msta->wcid.poll_list)) list_add_tail(&msta->wcid.poll_list, &mdev->sta_poll_list); spin_unlock_bh(&mdev->sta_poll_lock); continue; } msdu = FIELD_GET(MT_TX_FREE_MSDU_ID, info); stat = FIELD_GET(MT_TX_FREE_STATUS, info); if (wcid) { wcid->stats.tx_retries += FIELD_GET(MT_TX_FREE_COUNT, info) - 1; wcid->stats.tx_failed += !!stat; } txwi = mt76_token_release(mdev, msdu, &wake); if (!txwi) continue; mt76_connac2_txwi_free(mdev, txwi, sta, &free_list); } if (wake) mt76_set_tx_blocked(&dev->mt76, false); list_for_each_entry_safe(skb, tmp, &free_list, list) { skb_list_del_init(skb); napi_consume_skb(skb, 1); } rcu_read_lock(); mt7921_mac_sta_poll(dev); rcu_read_unlock(); mt76_worker_schedule(&dev->mt76.tx_worker); } bool mt7921_rx_check(struct mt76_dev *mdev, void *data, int len) { struct mt792x_dev *dev = container_of(mdev, struct mt792x_dev, mt76); __le32 *rxd = (__le32 *)data; __le32 *end = (__le32 *)&rxd[len / 4]; enum rx_pkt_type type; type = le32_get_bits(rxd[0], MT_RXD0_PKT_TYPE); switch (type) { case PKT_TYPE_TXRX_NOTIFY: /* PKT_TYPE_TXRX_NOTIFY can be received only by mmio devices */ mt7921_mac_tx_free(dev, data, len); /* mmio */ return false; case PKT_TYPE_TXS: for (rxd += 2; rxd + 8 <= end; rxd += 8) mt7921_mac_add_txs(dev, rxd); return false; default: return true; } } EXPORT_SYMBOL_GPL(mt7921_rx_check); void mt7921_queue_rx_skb(struct mt76_dev *mdev, enum mt76_rxq_id q, struct sk_buff *skb, u32 *info) { struct mt792x_dev *dev = container_of(mdev, struct mt792x_dev, mt76); __le32 *rxd = (__le32 *)skb->data; __le32 *end = (__le32 *)&skb->data[skb->len]; enum rx_pkt_type type; u16 flag; type = le32_get_bits(rxd[0], MT_RXD0_PKT_TYPE); flag = le32_get_bits(rxd[0], MT_RXD0_PKT_FLAG); if (type == PKT_TYPE_RX_EVENT && flag == 0x1) type = PKT_TYPE_NORMAL_MCU; switch (type) { case PKT_TYPE_TXRX_NOTIFY: /* PKT_TYPE_TXRX_NOTIFY can be received only by mmio devices */ mt7921_mac_tx_free(dev, skb->data, skb->len); napi_consume_skb(skb, 1); break; case PKT_TYPE_RX_EVENT: mt7921_mcu_rx_event(dev, skb); break; case PKT_TYPE_TXS: for (rxd += 2; rxd + 8 <= end; rxd += 8) mt7921_mac_add_txs(dev, rxd); dev_kfree_skb(skb); break; case PKT_TYPE_NORMAL_MCU: case PKT_TYPE_NORMAL: if (!mt7921_mac_fill_rx(dev, skb)) { mt76_rx(&dev->mt76, q, skb); return; } fallthrough; default: dev_kfree_skb(skb); break; } } EXPORT_SYMBOL_GPL(mt7921_queue_rx_skb); static void mt7921_vif_connect_iter(void *priv, u8 *mac, struct ieee80211_vif *vif) { struct mt792x_vif *mvif = (struct mt792x_vif *)vif->drv_priv; struct mt792x_dev *dev = mvif->phy->dev; struct ieee80211_hw *hw = mt76_hw(dev); if (vif->type == NL80211_IFTYPE_STATION) ieee80211_disconnect(vif, true); mt76_connac_mcu_uni_add_dev(&dev->mphy, vif, &mvif->sta.wcid, true); mt7921_mcu_set_tx(dev, vif); if (vif->type == NL80211_IFTYPE_AP) { mt76_connac_mcu_uni_add_bss(dev->phy.mt76, vif, &mvif->sta.wcid, true, NULL); mt7921_mcu_sta_update(dev, NULL, vif, true, MT76_STA_INFO_STATE_NONE); mt7921_mcu_uni_add_beacon_offload(dev, hw, vif, true); } } /* system error recovery */ void mt7921_mac_reset_work(struct work_struct *work) { struct mt792x_dev *dev = container_of(work, struct mt792x_dev, reset_work); struct ieee80211_hw *hw = mt76_hw(dev); struct mt76_connac_pm *pm = &dev->pm; int i, ret; dev_dbg(dev->mt76.dev, "chip reset\n"); dev->hw_full_reset = true; ieee80211_stop_queues(hw); cancel_delayed_work_sync(&dev->mphy.mac_work); cancel_delayed_work_sync(&pm->ps_work); cancel_work_sync(&pm->wake_work); for (i = 0; i < 10; i++) { mutex_lock(&dev->mt76.mutex); ret = mt792x_dev_reset(dev); mutex_unlock(&dev->mt76.mutex); if (!ret) break; } if (i == 10) dev_err(dev->mt76.dev, "chip reset failed\n"); if (test_and_clear_bit(MT76_HW_SCANNING, &dev->mphy.state)) { struct cfg80211_scan_info info = { .aborted = true, }; ieee80211_scan_completed(dev->mphy.hw, &info); } dev->hw_full_reset = false; pm->suspended = false; ieee80211_wake_queues(hw); ieee80211_iterate_active_interfaces(hw, IEEE80211_IFACE_ITER_RESUME_ALL, mt7921_vif_connect_iter, NULL); mt76_connac_power_save_sched(&dev->mt76.phy, pm); } void mt7921_coredump_work(struct work_struct *work) { struct mt792x_dev *dev; char *dump, *data; dev = (struct mt792x_dev *)container_of(work, struct mt792x_dev, coredump.work.work); if (time_is_after_jiffies(dev->coredump.last_activity + 4 * MT76_CONNAC_COREDUMP_TIMEOUT)) { queue_delayed_work(dev->mt76.wq, &dev->coredump.work, MT76_CONNAC_COREDUMP_TIMEOUT); return; } dump = vzalloc(MT76_CONNAC_COREDUMP_SZ); data = dump; while (true) { struct sk_buff *skb; spin_lock_bh(&dev->mt76.lock); skb = __skb_dequeue(&dev->coredump.msg_list); spin_unlock_bh(&dev->mt76.lock); if (!skb) break; skb_pull(skb, sizeof(struct mt76_connac2_mcu_rxd)); if (!dump || data + skb->len - dump > MT76_CONNAC_COREDUMP_SZ) { dev_kfree_skb(skb); continue; } memcpy(data, skb->data, skb->len); data += skb->len; dev_kfree_skb(skb); } if (dump) dev_coredumpv(dev->mt76.dev, dump, MT76_CONNAC_COREDUMP_SZ, GFP_KERNEL); mt792x_reset(&dev->mt76); } /* usb_sdio */ static void mt7921_usb_sdio_write_txwi(struct mt792x_dev *dev, struct mt76_wcid *wcid, enum mt76_txq_id qid, struct ieee80211_sta *sta, struct ieee80211_key_conf *key, int pid, struct sk_buff *skb) { __le32 *txwi = (__le32 *)(skb->data - MT_SDIO_TXD_SIZE); memset(txwi, 0, MT_SDIO_TXD_SIZE); mt76_connac2_mac_write_txwi(&dev->mt76, txwi, skb, wcid, key, pid, qid, 0); skb_push(skb, MT_SDIO_TXD_SIZE); } int mt7921_usb_sdio_tx_prepare_skb(struct mt76_dev *mdev, void *txwi_ptr, enum mt76_txq_id qid, struct mt76_wcid *wcid, struct ieee80211_sta *sta, struct mt76_tx_info *tx_info) { struct mt792x_dev *dev = container_of(mdev, struct mt792x_dev, mt76); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx_info->skb); struct ieee80211_key_conf *key = info->control.hw_key; struct sk_buff *skb = tx_info->skb; int err, pad, pktid, type; if (unlikely(tx_info->skb->len <= ETH_HLEN)) return -EINVAL; err = skb_cow_head(skb, MT_SDIO_TXD_SIZE + MT_SDIO_HDR_SIZE); if (err) return err; if (!wcid) wcid = &dev->mt76.global_wcid; if (sta) { struct mt792x_sta *msta = (struct mt792x_sta *)sta->drv_priv; if (time_after(jiffies, msta->last_txs + HZ / 4)) { info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; msta->last_txs = jiffies; } } pktid = mt76_tx_status_skb_add(&dev->mt76, wcid, skb); mt7921_usb_sdio_write_txwi(dev, wcid, qid, sta, key, pktid, skb); type = mt76_is_sdio(mdev) ? MT7921_SDIO_DATA : 0; mt7921_skb_add_usb_sdio_hdr(dev, skb, type); pad = round_up(skb->len, 4) - skb->len; if (mt76_is_usb(mdev)) pad += 4; err = mt76_skb_adjust_pad(skb, pad); if (err) /* Release pktid in case of error. */ idr_remove(&wcid->pktid, pktid); return err; } EXPORT_SYMBOL_GPL(mt7921_usb_sdio_tx_prepare_skb); void mt7921_usb_sdio_tx_complete_skb(struct mt76_dev *mdev, struct mt76_queue_entry *e) { __le32 *txwi = (__le32 *)(e->skb->data + MT_SDIO_HDR_SIZE); unsigned int headroom = MT_SDIO_TXD_SIZE + MT_SDIO_HDR_SIZE; struct ieee80211_sta *sta; struct mt76_wcid *wcid; u16 idx; idx = le32_get_bits(txwi[1], MT_TXD1_WLAN_IDX); wcid = rcu_dereference(mdev->wcid[idx]); sta = wcid_to_sta(wcid); if (sta && likely(e->skb->protocol != cpu_to_be16(ETH_P_PAE))) mt76_connac2_tx_check_aggr(sta, txwi); skb_pull(e->skb, headroom); mt76_tx_complete_skb(mdev, e->wcid, e->skb); } EXPORT_SYMBOL_GPL(mt7921_usb_sdio_tx_complete_skb); bool mt7921_usb_sdio_tx_status_data(struct mt76_dev *mdev, u8 *update) { struct mt792x_dev *dev = container_of(mdev, struct mt792x_dev, mt76); mt792x_mutex_acquire(dev); mt7921_mac_sta_poll(dev); mt792x_mutex_release(dev); return false; } EXPORT_SYMBOL_GPL(mt7921_usb_sdio_tx_status_data); #if IS_ENABLED(CONFIG_IPV6) void mt7921_set_ipv6_ns_work(struct work_struct *work) { struct mt792x_dev *dev = container_of(work, struct mt792x_dev, ipv6_ns_work); struct sk_buff *skb; int ret = 0; do { skb = skb_dequeue(&dev->ipv6_ns_list); if (!skb) break; mt792x_mutex_acquire(dev); ret = mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_UNI_CMD(OFFLOAD), true); mt792x_mutex_release(dev); } while (!ret); if (ret) skb_queue_purge(&dev->ipv6_ns_list); } #endif
linux-master
drivers/net/wireless/mediatek/mt76/mt7921/mac.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2020 MediaTek Inc. */ #include <linux/etherdevice.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/thermal.h> #include <linux/firmware.h> #include "mt7921.h" #include "../mt76_connac2_mac.h" #include "mcu.h" static ssize_t mt7921_thermal_temp_show(struct device *dev, struct device_attribute *attr, char *buf) { switch (to_sensor_dev_attr(attr)->index) { case 0: { struct mt792x_phy *phy = dev_get_drvdata(dev); struct mt792x_dev *mdev = phy->dev; int temperature; mt792x_mutex_acquire(mdev); temperature = mt7921_mcu_get_temperature(phy); mt792x_mutex_release(mdev); if (temperature < 0) return temperature; /* display in millidegree Celsius */ return sprintf(buf, "%u\n", temperature * 1000); } default: return -EINVAL; } } static SENSOR_DEVICE_ATTR_RO(temp1_input, mt7921_thermal_temp, 0); static struct attribute *mt7921_hwmon_attrs[] = { &sensor_dev_attr_temp1_input.dev_attr.attr, NULL, }; ATTRIBUTE_GROUPS(mt7921_hwmon); static int mt7921_thermal_init(struct mt792x_phy *phy) { struct wiphy *wiphy = phy->mt76->hw->wiphy; struct device *hwmon; const char *name; if (!IS_REACHABLE(CONFIG_HWMON)) return 0; name = devm_kasprintf(&wiphy->dev, GFP_KERNEL, "mt7921_%s", wiphy_name(wiphy)); hwmon = devm_hwmon_device_register_with_groups(&wiphy->dev, name, phy, mt7921_hwmon_groups); if (IS_ERR(hwmon)) return PTR_ERR(hwmon); return 0; } static void mt7921_regd_notifier(struct wiphy *wiphy, struct regulatory_request *request) { struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); struct mt792x_dev *dev = mt792x_hw_dev(hw); memcpy(dev->mt76.alpha2, request->alpha2, sizeof(dev->mt76.alpha2)); dev->mt76.region = request->dfs_region; dev->country_ie_env = request->country_ie_env; mt792x_mutex_acquire(dev); mt7921_mcu_set_clc(dev, request->alpha2, request->country_ie_env); mt76_connac_mcu_set_channel_domain(hw->priv); mt7921_set_tx_sar_pwr(hw, NULL); mt792x_mutex_release(dev); } int mt7921_mac_init(struct mt792x_dev *dev) { int i; mt76_rmw_field(dev, MT_MDP_DCR1, MT_MDP_DCR1_MAX_RX_LEN, 1536); /* enable hardware de-agg */ mt76_set(dev, MT_MDP_DCR0, MT_MDP_DCR0_DAMSDU_EN); /* enable hardware rx header translation */ mt76_set(dev, MT_MDP_DCR0, MT_MDP_DCR0_RX_HDR_TRANS_EN); for (i = 0; i < MT792x_WTBL_SIZE; i++) mt7921_mac_wtbl_update(dev, i, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); for (i = 0; i < 2; i++) mt792x_mac_init_band(dev, i); return mt76_connac_mcu_set_rts_thresh(&dev->mt76, 0x92b, 0); } EXPORT_SYMBOL_GPL(mt7921_mac_init); static int __mt7921_init_hardware(struct mt792x_dev *dev) { int ret; /* force firmware operation mode into normal state, * which should be set before firmware download stage. */ mt76_wr(dev, MT_SWDEF_MODE, MT_SWDEF_NORMAL_MODE); ret = mt792x_mcu_init(dev); if (ret) goto out; mt76_eeprom_override(&dev->mphy); ret = mt7921_mcu_set_eeprom(dev); if (ret) goto out; ret = mt7921_mac_init(dev); out: return ret; } static int mt7921_init_hardware(struct mt792x_dev *dev) { int ret, i; set_bit(MT76_STATE_INITIALIZED, &dev->mphy.state); for (i = 0; i < MT792x_MCU_INIT_RETRY_COUNT; i++) { ret = __mt7921_init_hardware(dev); if (!ret) break; mt792x_init_reset(dev); } if (i == MT792x_MCU_INIT_RETRY_COUNT) { dev_err(dev->mt76.dev, "hardware init failed\n"); return ret; } return 0; } static void mt7921_init_work(struct work_struct *work) { struct mt792x_dev *dev = container_of(work, struct mt792x_dev, init_work); int ret; ret = mt7921_init_hardware(dev); if (ret) return; mt76_set_stream_caps(&dev->mphy, true); mt7921_set_stream_he_caps(&dev->phy); ret = mt76_register_device(&dev->mt76, true, mt76_rates, ARRAY_SIZE(mt76_rates)); if (ret) { dev_err(dev->mt76.dev, "register device failed\n"); return; } ret = mt7921_init_debugfs(dev); if (ret) { dev_err(dev->mt76.dev, "register debugfs failed\n"); return; } ret = mt7921_thermal_init(&dev->phy); if (ret) { dev_err(dev->mt76.dev, "thermal init failed\n"); return; } /* we support chip reset now */ dev->hw_init_done = true; mt76_connac_mcu_set_deep_sleep(&dev->mt76, dev->pm.ds_enable); } int mt7921_register_device(struct mt792x_dev *dev) { struct ieee80211_hw *hw = mt76_hw(dev); int ret; dev->phy.dev = dev; dev->phy.mt76 = &dev->mt76.phy; dev->mt76.phy.priv = &dev->phy; dev->mt76.tx_worker.fn = mt792x_tx_worker; INIT_DELAYED_WORK(&dev->pm.ps_work, mt792x_pm_power_save_work); INIT_WORK(&dev->pm.wake_work, mt792x_pm_wake_work); spin_lock_init(&dev->pm.wake.lock); mutex_init(&dev->pm.mutex); init_waitqueue_head(&dev->pm.wait); if (mt76_is_sdio(&dev->mt76)) init_waitqueue_head(&dev->mt76.sdio.wait); spin_lock_init(&dev->pm.txq_lock); INIT_DELAYED_WORK(&dev->mphy.mac_work, mt792x_mac_work); INIT_DELAYED_WORK(&dev->phy.scan_work, mt7921_scan_work); INIT_DELAYED_WORK(&dev->coredump.work, mt7921_coredump_work); #if IS_ENABLED(CONFIG_IPV6) INIT_WORK(&dev->ipv6_ns_work, mt7921_set_ipv6_ns_work); skb_queue_head_init(&dev->ipv6_ns_list); #endif skb_queue_head_init(&dev->phy.scan_event_list); skb_queue_head_init(&dev->coredump.msg_list); INIT_WORK(&dev->reset_work, mt7921_mac_reset_work); INIT_WORK(&dev->init_work, mt7921_init_work); INIT_WORK(&dev->phy.roc_work, mt7921_roc_work); timer_setup(&dev->phy.roc_timer, mt792x_roc_timer, 0); init_waitqueue_head(&dev->phy.roc_wait); dev->pm.idle_timeout = MT792x_PM_TIMEOUT; dev->pm.stats.last_wake_event = jiffies; dev->pm.stats.last_doze_event = jiffies; if (!mt76_is_usb(&dev->mt76)) { dev->pm.enable_user = true; dev->pm.enable = true; dev->pm.ds_enable_user = true; dev->pm.ds_enable = true; } if (!mt76_is_mmio(&dev->mt76)) hw->extra_tx_headroom += MT_SDIO_TXD_SIZE + MT_SDIO_HDR_SIZE; mt792x_init_acpi_sar(dev); ret = mt792x_init_wcid(dev); if (ret) return ret; ret = mt792x_init_wiphy(hw); if (ret) return ret; hw->wiphy->reg_notifier = mt7921_regd_notifier; dev->mphy.sband_2g.sband.ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING | IEEE80211_HT_CAP_MAX_AMSDU; dev->mphy.sband_5g.sband.ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING | IEEE80211_HT_CAP_MAX_AMSDU; dev->mphy.sband_5g.sband.vht_cap.cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 | IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK | IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE | (3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT); if (is_mt7922(&dev->mt76)) dev->mphy.sband_5g.sband.vht_cap.cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ | IEEE80211_VHT_CAP_SHORT_GI_160; dev->mphy.hw->wiphy->available_antennas_rx = dev->mphy.chainmask; dev->mphy.hw->wiphy->available_antennas_tx = dev->mphy.chainmask; queue_work(system_wq, &dev->init_work); return 0; } EXPORT_SYMBOL_GPL(mt7921_register_device);
linux-master
drivers/net/wireless/mediatek/mt76/mt7921/init.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2020 MediaTek Inc. * */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include "mt7921.h" #include "../mt76_connac2_mac.h" #include "../dma.h" #include "mcu.h" static const struct pci_device_id mt7921_pci_device_table[] = { { PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7961), .driver_data = (kernel_ulong_t)MT7921_FIRMWARE_WM }, { PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7922), .driver_data = (kernel_ulong_t)MT7922_FIRMWARE_WM }, { PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x0608), .driver_data = (kernel_ulong_t)MT7921_FIRMWARE_WM }, { PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x0616), .driver_data = (kernel_ulong_t)MT7922_FIRMWARE_WM }, { }, }; static bool mt7921_disable_aspm; module_param_named(disable_aspm, mt7921_disable_aspm, bool, 0644); MODULE_PARM_DESC(disable_aspm, "disable PCI ASPM support"); static int mt7921e_init_reset(struct mt792x_dev *dev) { return mt792x_wpdma_reset(dev, true); } static void mt7921e_unregister_device(struct mt792x_dev *dev) { int i; struct mt76_connac_pm *pm = &dev->pm; cancel_work_sync(&dev->init_work); mt76_unregister_device(&dev->mt76); mt76_for_each_q_rx(&dev->mt76, i) napi_disable(&dev->mt76.napi[i]); cancel_delayed_work_sync(&pm->ps_work); cancel_work_sync(&pm->wake_work); cancel_work_sync(&dev->reset_work); mt76_connac2_tx_token_put(&dev->mt76); __mt792x_mcu_drv_pmctrl(dev); mt792x_dma_cleanup(dev); mt792x_wfsys_reset(dev); skb_queue_purge(&dev->mt76.mcu.res_q); tasklet_disable(&dev->mt76.irq_tasklet); } static u32 __mt7921_reg_addr(struct mt792x_dev *dev, u32 addr) { static const struct mt76_connac_reg_map fixed_map[] = { { 0x820d0000, 0x30000, 0x10000 }, /* WF_LMAC_TOP (WF_WTBLON) */ { 0x820ed000, 0x24800, 0x00800 }, /* WF_LMAC_TOP BN0 (WF_MIB) */ { 0x820e4000, 0x21000, 0x00400 }, /* WF_LMAC_TOP BN0 (WF_TMAC) */ { 0x820e7000, 0x21e00, 0x00200 }, /* WF_LMAC_TOP BN0 (WF_DMA) */ { 0x820eb000, 0x24200, 0x00400 }, /* WF_LMAC_TOP BN0 (WF_LPON) */ { 0x820e2000, 0x20800, 0x00400 }, /* WF_LMAC_TOP BN0 (WF_AGG) */ { 0x820e3000, 0x20c00, 0x00400 }, /* WF_LMAC_TOP BN0 (WF_ARB) */ { 0x820e5000, 0x21400, 0x00800 }, /* WF_LMAC_TOP BN0 (WF_RMAC) */ { 0x00400000, 0x80000, 0x10000 }, /* WF_MCU_SYSRAM */ { 0x00410000, 0x90000, 0x10000 }, /* WF_MCU_SYSRAM (configure register) */ { 0x40000000, 0x70000, 0x10000 }, /* WF_UMAC_SYSRAM */ { 0x54000000, 0x02000, 0x01000 }, /* WFDMA PCIE0 MCU DMA0 */ { 0x55000000, 0x03000, 0x01000 }, /* WFDMA PCIE0 MCU DMA1 */ { 0x58000000, 0x06000, 0x01000 }, /* WFDMA PCIE1 MCU DMA0 (MEM_DMA) */ { 0x59000000, 0x07000, 0x01000 }, /* WFDMA PCIE1 MCU DMA1 */ { 0x7c000000, 0xf0000, 0x10000 }, /* CONN_INFRA */ { 0x7c020000, 0xd0000, 0x10000 }, /* CONN_INFRA, WFDMA */ { 0x7c060000, 0xe0000, 0x10000 }, /* CONN_INFRA, conn_host_csr_top */ { 0x80020000, 0xb0000, 0x10000 }, /* WF_TOP_MISC_OFF */ { 0x81020000, 0xc0000, 0x10000 }, /* WF_TOP_MISC_ON */ { 0x820c0000, 0x08000, 0x04000 }, /* WF_UMAC_TOP (PLE) */ { 0x820c8000, 0x0c000, 0x02000 }, /* WF_UMAC_TOP (PSE) */ { 0x820cc000, 0x0e000, 0x01000 }, /* WF_UMAC_TOP (PP) */ { 0x820cd000, 0x0f000, 0x01000 }, /* WF_MDP_TOP */ { 0x74030000, 0x10000, 0x10000 }, /* PCIE_MAC_IREG */ { 0x820ce000, 0x21c00, 0x00200 }, /* WF_LMAC_TOP (WF_SEC) */ { 0x820cf000, 0x22000, 0x01000 }, /* WF_LMAC_TOP (WF_PF) */ { 0x820e0000, 0x20000, 0x00400 }, /* WF_LMAC_TOP BN0 (WF_CFG) */ { 0x820e1000, 0x20400, 0x00200 }, /* WF_LMAC_TOP BN0 (WF_TRB) */ { 0x820e9000, 0x23400, 0x00200 }, /* WF_LMAC_TOP BN0 (WF_WTBLOFF) */ { 0x820ea000, 0x24000, 0x00200 }, /* WF_LMAC_TOP BN0 (WF_ETBF) */ { 0x820ec000, 0x24600, 0x00200 }, /* WF_LMAC_TOP BN0 (WF_INT) */ { 0x820f0000, 0xa0000, 0x00400 }, /* WF_LMAC_TOP BN1 (WF_CFG) */ { 0x820f1000, 0xa0600, 0x00200 }, /* WF_LMAC_TOP BN1 (WF_TRB) */ { 0x820f2000, 0xa0800, 0x00400 }, /* WF_LMAC_TOP BN1 (WF_AGG) */ { 0x820f3000, 0xa0c00, 0x00400 }, /* WF_LMAC_TOP BN1 (WF_ARB) */ { 0x820f4000, 0xa1000, 0x00400 }, /* WF_LMAC_TOP BN1 (WF_TMAC) */ { 0x820f5000, 0xa1400, 0x00800 }, /* WF_LMAC_TOP BN1 (WF_RMAC) */ { 0x820f7000, 0xa1e00, 0x00200 }, /* WF_LMAC_TOP BN1 (WF_DMA) */ { 0x820f9000, 0xa3400, 0x00200 }, /* WF_LMAC_TOP BN1 (WF_WTBLOFF) */ { 0x820fa000, 0xa4000, 0x00200 }, /* WF_LMAC_TOP BN1 (WF_ETBF) */ { 0x820fb000, 0xa4200, 0x00400 }, /* WF_LMAC_TOP BN1 (WF_LPON) */ { 0x820fc000, 0xa4600, 0x00200 }, /* WF_LMAC_TOP BN1 (WF_INT) */ { 0x820fd000, 0xa4800, 0x00800 }, /* WF_LMAC_TOP BN1 (WF_MIB) */ }; int i; if (addr < 0x100000) return addr; for (i = 0; i < ARRAY_SIZE(fixed_map); i++) { u32 ofs; if (addr < fixed_map[i].phys) continue; ofs = addr - fixed_map[i].phys; if (ofs > fixed_map[i].size) continue; return fixed_map[i].maps + ofs; } if ((addr >= 0x18000000 && addr < 0x18c00000) || (addr >= 0x70000000 && addr < 0x78000000) || (addr >= 0x7c000000 && addr < 0x7c400000)) return mt7921_reg_map_l1(dev, addr); dev_err(dev->mt76.dev, "Access currently unsupported address %08x\n", addr); return 0; } static u32 mt7921_rr(struct mt76_dev *mdev, u32 offset) { struct mt792x_dev *dev = container_of(mdev, struct mt792x_dev, mt76); u32 addr = __mt7921_reg_addr(dev, offset); return dev->bus_ops->rr(mdev, addr); } static void mt7921_wr(struct mt76_dev *mdev, u32 offset, u32 val) { struct mt792x_dev *dev = container_of(mdev, struct mt792x_dev, mt76); u32 addr = __mt7921_reg_addr(dev, offset); dev->bus_ops->wr(mdev, addr, val); } static u32 mt7921_rmw(struct mt76_dev *mdev, u32 offset, u32 mask, u32 val) { struct mt792x_dev *dev = container_of(mdev, struct mt792x_dev, mt76); u32 addr = __mt7921_reg_addr(dev, offset); return dev->bus_ops->rmw(mdev, addr, mask, val); } static int mt7921_dma_init(struct mt792x_dev *dev) { int ret; mt76_dma_attach(&dev->mt76); ret = mt792x_dma_disable(dev, true); if (ret) return ret; /* init tx queue */ ret = mt76_connac_init_tx_queues(dev->phy.mt76, MT7921_TXQ_BAND0, MT7921_TX_RING_SIZE, MT_TX_RING_BASE, 0); if (ret) return ret; mt76_wr(dev, MT_WFDMA0_TX_RING0_EXT_CTRL, 0x4); /* command to WM */ ret = mt76_init_mcu_queue(&dev->mt76, MT_MCUQ_WM, MT7921_TXQ_MCU_WM, MT7921_TX_MCU_RING_SIZE, MT_TX_RING_BASE); if (ret) return ret; /* firmware download */ ret = mt76_init_mcu_queue(&dev->mt76, MT_MCUQ_FWDL, MT7921_TXQ_FWDL, MT7921_TX_FWDL_RING_SIZE, MT_TX_RING_BASE); if (ret) return ret; /* event from WM before firmware download */ ret = mt76_queue_alloc(dev, &dev->mt76.q_rx[MT_RXQ_MCU], MT7921_RXQ_MCU_WM, MT7921_RX_MCU_RING_SIZE, MT_RX_BUF_SIZE, MT_RX_EVENT_RING_BASE); if (ret) return ret; /* Change mcu queue after firmware download */ ret = mt76_queue_alloc(dev, &dev->mt76.q_rx[MT_RXQ_MCU_WA], MT7921_RXQ_MCU_WM, MT7921_RX_MCU_RING_SIZE, MT_RX_BUF_SIZE, MT_WFDMA0(0x540)); if (ret) return ret; /* rx data */ ret = mt76_queue_alloc(dev, &dev->mt76.q_rx[MT_RXQ_MAIN], MT7921_RXQ_BAND0, MT7921_RX_RING_SIZE, MT_RX_BUF_SIZE, MT_RX_DATA_RING_BASE); if (ret) return ret; ret = mt76_init_queues(dev, mt792x_poll_rx); if (ret < 0) return ret; netif_napi_add_tx(&dev->mt76.tx_napi_dev, &dev->mt76.tx_napi, mt792x_poll_tx); napi_enable(&dev->mt76.tx_napi); return mt792x_dma_enable(dev); } static int mt7921_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { static const struct mt76_driver_ops drv_ops = { /* txwi_size = txd size + txp size */ .txwi_size = MT_TXD_SIZE + sizeof(struct mt76_connac_hw_txp), .drv_flags = MT_DRV_TXWI_NO_FREE | MT_DRV_HW_MGMT_TXQ | MT_DRV_AMSDU_OFFLOAD, .survey_flags = SURVEY_INFO_TIME_TX | SURVEY_INFO_TIME_RX | SURVEY_INFO_TIME_BSS_RX, .token_size = MT7921_TOKEN_SIZE, .tx_prepare_skb = mt7921e_tx_prepare_skb, .tx_complete_skb = mt76_connac_tx_complete_skb, .rx_check = mt7921_rx_check, .rx_skb = mt7921_queue_rx_skb, .rx_poll_complete = mt792x_rx_poll_complete, .sta_add = mt7921_mac_sta_add, .sta_assoc = mt7921_mac_sta_assoc, .sta_remove = mt7921_mac_sta_remove, .update_survey = mt792x_update_channel, }; static const struct mt792x_hif_ops mt7921_pcie_ops = { .init_reset = mt7921e_init_reset, .reset = mt7921e_mac_reset, .mcu_init = mt7921e_mcu_init, .drv_own = mt792xe_mcu_drv_pmctrl, .fw_own = mt792xe_mcu_fw_pmctrl, }; static const struct mt792x_irq_map irq_map = { .host_irq_enable = MT_WFDMA0_HOST_INT_ENA, .tx = { .all_complete_mask = MT_INT_TX_DONE_ALL, .mcu_complete_mask = MT_INT_TX_DONE_MCU, }, .rx = { .data_complete_mask = MT_INT_RX_DONE_DATA, .wm_complete_mask = MT_INT_RX_DONE_WM, .wm2_complete_mask = MT_INT_RX_DONE_WM2, }, }; struct ieee80211_ops *ops; struct mt76_bus_ops *bus_ops; struct mt792x_dev *dev; struct mt76_dev *mdev; u8 features; int ret; u16 cmd; ret = pcim_enable_device(pdev); if (ret) return ret; ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev)); if (ret) return ret; pci_read_config_word(pdev, PCI_COMMAND, &cmd); if (!(cmd & PCI_COMMAND_MEMORY)) { cmd |= PCI_COMMAND_MEMORY; pci_write_config_word(pdev, PCI_COMMAND, cmd); } pci_set_master(pdev); ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); if (ret < 0) return ret; ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); if (ret) goto err_free_pci_vec; if (mt7921_disable_aspm) mt76_pci_disable_aspm(pdev); ops = mt792x_get_mac80211_ops(&pdev->dev, &mt7921_ops, (void *)id->driver_data, &features); if (!ops) { ret = -ENOMEM; goto err_free_pci_vec; } mdev = mt76_alloc_device(&pdev->dev, sizeof(*dev), ops, &drv_ops); if (!mdev) { ret = -ENOMEM; goto err_free_pci_vec; } pci_set_drvdata(pdev, mdev); dev = container_of(mdev, struct mt792x_dev, mt76); dev->fw_features = features; dev->hif_ops = &mt7921_pcie_ops; dev->irq_map = &irq_map; mt76_mmio_init(&dev->mt76, pcim_iomap_table(pdev)[0]); tasklet_init(&mdev->irq_tasklet, mt792x_irq_tasklet, (unsigned long)dev); dev->phy.dev = dev; dev->phy.mt76 = &dev->mt76.phy; dev->mt76.phy.priv = &dev->phy; dev->bus_ops = dev->mt76.bus; bus_ops = devm_kmemdup(dev->mt76.dev, dev->bus_ops, sizeof(*bus_ops), GFP_KERNEL); if (!bus_ops) { ret = -ENOMEM; goto err_free_dev; } bus_ops->rr = mt7921_rr; bus_ops->wr = mt7921_wr; bus_ops->rmw = mt7921_rmw; dev->mt76.bus = bus_ops; ret = mt792xe_mcu_fw_pmctrl(dev); if (ret) goto err_free_dev; ret = __mt792xe_mcu_drv_pmctrl(dev); if (ret) goto err_free_dev; mdev->rev = (mt7921_l1_rr(dev, MT_HW_CHIPID) << 16) | (mt7921_l1_rr(dev, MT_HW_REV) & 0xff); dev_info(mdev->dev, "ASIC revision: %04x\n", mdev->rev); ret = mt792x_wfsys_reset(dev); if (ret) goto err_free_dev; mt76_wr(dev, irq_map.host_irq_enable, 0); mt76_wr(dev, MT_PCIE_MAC_INT_ENABLE, 0xff); ret = devm_request_irq(mdev->dev, pdev->irq, mt792x_irq_handler, IRQF_SHARED, KBUILD_MODNAME, dev); if (ret) goto err_free_dev; ret = mt7921_dma_init(dev); if (ret) goto err_free_irq; ret = mt7921_register_device(dev); if (ret) goto err_free_irq; return 0; err_free_irq: devm_free_irq(&pdev->dev, pdev->irq, dev); err_free_dev: mt76_free_device(&dev->mt76); err_free_pci_vec: pci_free_irq_vectors(pdev); return ret; } static void mt7921_pci_remove(struct pci_dev *pdev) { struct mt76_dev *mdev = pci_get_drvdata(pdev); struct mt792x_dev *dev = container_of(mdev, struct mt792x_dev, mt76); mt7921e_unregister_device(dev); devm_free_irq(&pdev->dev, pdev->irq, dev); mt76_free_device(&dev->mt76); pci_free_irq_vectors(pdev); } static int mt7921_pci_suspend(struct device *device) { struct pci_dev *pdev = to_pci_dev(device); struct mt76_dev *mdev = pci_get_drvdata(pdev); struct mt792x_dev *dev = container_of(mdev, struct mt792x_dev, mt76); struct mt76_connac_pm *pm = &dev->pm; int i, err; pm->suspended = true; flush_work(&dev->reset_work); cancel_delayed_work_sync(&pm->ps_work); cancel_work_sync(&pm->wake_work); err = mt792x_mcu_drv_pmctrl(dev); if (err < 0) goto restore_suspend; err = mt76_connac_mcu_set_hif_suspend(mdev, true); if (err) goto restore_suspend; /* always enable deep sleep during suspend to reduce * power consumption */ mt76_connac_mcu_set_deep_sleep(&dev->mt76, true); napi_disable(&mdev->tx_napi); mt76_worker_disable(&mdev->tx_worker); mt76_for_each_q_rx(mdev, i) { napi_disable(&mdev->napi[i]); } /* wait until dma is idle */ mt76_poll(dev, MT_WFDMA0_GLO_CFG, MT_WFDMA0_GLO_CFG_TX_DMA_BUSY | MT_WFDMA0_GLO_CFG_RX_DMA_BUSY, 0, 1000); /* put dma disabled */ mt76_clear(dev, MT_WFDMA0_GLO_CFG, MT_WFDMA0_GLO_CFG_TX_DMA_EN | MT_WFDMA0_GLO_CFG_RX_DMA_EN); /* disable interrupt */ mt76_wr(dev, dev->irq_map->host_irq_enable, 0); mt76_wr(dev, MT_PCIE_MAC_INT_ENABLE, 0x0); synchronize_irq(pdev->irq); tasklet_kill(&mdev->irq_tasklet); err = mt792x_mcu_fw_pmctrl(dev); if (err) goto restore_napi; return 0; restore_napi: mt76_for_each_q_rx(mdev, i) { napi_enable(&mdev->napi[i]); } napi_enable(&mdev->tx_napi); if (!pm->ds_enable) mt76_connac_mcu_set_deep_sleep(&dev->mt76, false); mt76_connac_mcu_set_hif_suspend(mdev, false); restore_suspend: pm->suspended = false; if (err < 0) mt792x_reset(&dev->mt76); return err; } static int mt7921_pci_resume(struct device *device) { struct pci_dev *pdev = to_pci_dev(device); struct mt76_dev *mdev = pci_get_drvdata(pdev); struct mt792x_dev *dev = container_of(mdev, struct mt792x_dev, mt76); struct mt76_connac_pm *pm = &dev->pm; int i, err; err = mt792x_mcu_drv_pmctrl(dev); if (err < 0) goto failed; mt792x_wpdma_reinit_cond(dev); /* enable interrupt */ mt76_wr(dev, MT_PCIE_MAC_INT_ENABLE, 0xff); mt76_connac_irq_enable(&dev->mt76, dev->irq_map->tx.all_complete_mask | MT_INT_RX_DONE_ALL | MT_INT_MCU_CMD); mt76_set(dev, MT_MCU2HOST_SW_INT_ENA, MT_MCU_CMD_WAKE_RX_PCIE); /* put dma enabled */ mt76_set(dev, MT_WFDMA0_GLO_CFG, MT_WFDMA0_GLO_CFG_TX_DMA_EN | MT_WFDMA0_GLO_CFG_RX_DMA_EN); mt76_worker_enable(&mdev->tx_worker); local_bh_disable(); mt76_for_each_q_rx(mdev, i) { napi_enable(&mdev->napi[i]); napi_schedule(&mdev->napi[i]); } napi_enable(&mdev->tx_napi); napi_schedule(&mdev->tx_napi); local_bh_enable(); /* restore previous ds setting */ if (!pm->ds_enable) mt76_connac_mcu_set_deep_sleep(&dev->mt76, false); err = mt76_connac_mcu_set_hif_suspend(mdev, false); failed: pm->suspended = false; if (err < 0) mt792x_reset(&dev->mt76); return err; } static void mt7921_pci_shutdown(struct pci_dev *pdev) { mt7921_pci_remove(pdev); } static DEFINE_SIMPLE_DEV_PM_OPS(mt7921_pm_ops, mt7921_pci_suspend, mt7921_pci_resume); static struct pci_driver mt7921_pci_driver = { .name = KBUILD_MODNAME, .id_table = mt7921_pci_device_table, .probe = mt7921_pci_probe, .remove = mt7921_pci_remove, .shutdown = mt7921_pci_shutdown, .driver.pm = pm_sleep_ptr(&mt7921_pm_ops), }; module_pci_driver(mt7921_pci_driver); MODULE_DEVICE_TABLE(pci, mt7921_pci_device_table); MODULE_FIRMWARE(MT7921_FIRMWARE_WM); MODULE_FIRMWARE(MT7921_ROM_PATCH); MODULE_FIRMWARE(MT7922_FIRMWARE_WM); MODULE_FIRMWARE(MT7922_ROM_PATCH); MODULE_AUTHOR("Sean Wang <[email protected]>"); MODULE_AUTHOR("Lorenzo Bianconi <[email protected]>"); MODULE_LICENSE("Dual BSD/GPL");
linux-master
drivers/net/wireless/mediatek/mt76/mt7921/pci.c
// SPDX-License-Identifier: ISC #include "mt7921.h" #include "mcu.h" enum mt7921_testmode_attr { MT7921_TM_ATTR_UNSPEC, MT7921_TM_ATTR_SET, MT7921_TM_ATTR_QUERY, MT7921_TM_ATTR_RSP, /* keep last */ NUM_MT7921_TM_ATTRS, MT7921_TM_ATTR_MAX = NUM_MT7921_TM_ATTRS - 1, }; struct mt7921_tm_cmd { u8 action; u32 param0; u32 param1; }; struct mt7921_tm_evt { u32 param0; u32 param1; }; static const struct nla_policy mt7921_tm_policy[NUM_MT7921_TM_ATTRS] = { [MT7921_TM_ATTR_SET] = NLA_POLICY_EXACT_LEN(sizeof(struct mt7921_tm_cmd)), [MT7921_TM_ATTR_QUERY] = NLA_POLICY_EXACT_LEN(sizeof(struct mt7921_tm_cmd)), }; static int mt7921_tm_set(struct mt792x_dev *dev, struct mt7921_tm_cmd *req) { struct mt7921_rftest_cmd cmd = { .action = req->action, .param0 = cpu_to_le32(req->param0), .param1 = cpu_to_le32(req->param1), }; bool testmode = false, normal = false; struct mt76_connac_pm *pm = &dev->pm; struct mt76_phy *phy = &dev->mphy; int ret = -ENOTCONN; mutex_lock(&dev->mt76.mutex); if (req->action == TM_SWITCH_MODE) { if (req->param0 == MT7921_TM_NORMAL) normal = true; else testmode = true; } if (testmode) { /* Make sure testmode running on full power mode */ pm->enable = false; cancel_delayed_work_sync(&pm->ps_work); cancel_work_sync(&pm->wake_work); __mt792x_mcu_drv_pmctrl(dev); phy->test.state = MT76_TM_STATE_ON; } if (!mt76_testmode_enabled(phy)) goto out; ret = mt76_mcu_send_msg(&dev->mt76, MCU_CE_CMD(TEST_CTRL), &cmd, sizeof(cmd), false); if (ret) goto out; if (normal) { /* Switch back to the normal world */ phy->test.state = MT76_TM_STATE_OFF; pm->enable = true; } out: mutex_unlock(&dev->mt76.mutex); return ret; } static int mt7921_tm_query(struct mt792x_dev *dev, struct mt7921_tm_cmd *req, struct mt7921_tm_evt *evt_resp) { struct mt7921_rftest_cmd cmd = { .action = req->action, .param0 = cpu_to_le32(req->param0), .param1 = cpu_to_le32(req->param1), }; struct mt7921_rftest_evt *evt; struct sk_buff *skb; int ret; ret = mt76_mcu_send_and_get_msg(&dev->mt76, MCU_CE_CMD(TEST_CTRL), &cmd, sizeof(cmd), true, &skb); if (ret) goto out; evt = (struct mt7921_rftest_evt *)skb->data; evt_resp->param0 = le32_to_cpu(evt->param0); evt_resp->param1 = le32_to_cpu(evt->param1); out: dev_kfree_skb(skb); return ret; } int mt7921_testmode_cmd(struct ieee80211_hw *hw, struct ieee80211_vif *vif, void *data, int len) { struct nlattr *tb[NUM_MT76_TM_ATTRS]; struct mt76_phy *mphy = hw->priv; struct mt792x_phy *phy = mphy->priv; int err; if (!test_bit(MT76_STATE_RUNNING, &mphy->state) || !(hw->conf.flags & IEEE80211_CONF_MONITOR)) return -ENOTCONN; err = nla_parse_deprecated(tb, MT76_TM_ATTR_MAX, data, len, mt76_tm_policy, NULL); if (err) return err; if (tb[MT76_TM_ATTR_DRV_DATA]) { struct nlattr *drv_tb[NUM_MT7921_TM_ATTRS], *data; int ret; data = tb[MT76_TM_ATTR_DRV_DATA]; ret = nla_parse_nested_deprecated(drv_tb, MT7921_TM_ATTR_MAX, data, mt7921_tm_policy, NULL); if (ret) return ret; data = drv_tb[MT7921_TM_ATTR_SET]; if (data) return mt7921_tm_set(phy->dev, nla_data(data)); } return -EINVAL; } int mt7921_testmode_dump(struct ieee80211_hw *hw, struct sk_buff *msg, struct netlink_callback *cb, void *data, int len) { struct nlattr *tb[NUM_MT76_TM_ATTRS]; struct mt76_phy *mphy = hw->priv; struct mt792x_phy *phy = mphy->priv; int err; if (!test_bit(MT76_STATE_RUNNING, &mphy->state) || !(hw->conf.flags & IEEE80211_CONF_MONITOR) || !mt76_testmode_enabled(mphy)) return -ENOTCONN; if (cb->args[2]++ > 0) return -ENOENT; err = nla_parse_deprecated(tb, MT76_TM_ATTR_MAX, data, len, mt76_tm_policy, NULL); if (err) return err; if (tb[MT76_TM_ATTR_DRV_DATA]) { struct nlattr *drv_tb[NUM_MT7921_TM_ATTRS], *data; int ret; data = tb[MT76_TM_ATTR_DRV_DATA]; ret = nla_parse_nested_deprecated(drv_tb, MT7921_TM_ATTR_MAX, data, mt7921_tm_policy, NULL); if (ret) return ret; data = drv_tb[MT7921_TM_ATTR_QUERY]; if (data) { struct mt7921_tm_evt evt_resp; err = mt7921_tm_query(phy->dev, nla_data(data), &evt_resp); if (err) return err; return nla_put(msg, MT7921_TM_ATTR_RSP, sizeof(evt_resp), &evt_resp); } } return -EINVAL; }
linux-master
drivers/net/wireless/mediatek/mt76/mt7921/testmode.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2021 MediaTek Inc. */ #include "mt7921.h" #include "mcu.h" int mt7921e_driver_own(struct mt792x_dev *dev) { u32 reg = mt7921_reg_map_l1(dev, MT_TOP_LPCR_HOST_BAND0); mt76_wr(dev, reg, MT_TOP_LPCR_HOST_DRV_OWN); if (!mt76_poll_msec(dev, reg, MT_TOP_LPCR_HOST_FW_OWN, 0, 500)) { dev_err(dev->mt76.dev, "Timeout for driver own\n"); return -EIO; } return 0; } static int mt7921_mcu_send_message(struct mt76_dev *mdev, struct sk_buff *skb, int cmd, int *seq) { struct mt792x_dev *dev = container_of(mdev, struct mt792x_dev, mt76); enum mt76_mcuq_id txq = MT_MCUQ_WM; int ret; ret = mt76_connac2_mcu_fill_message(mdev, skb, cmd, seq); if (ret) return ret; mdev->mcu.timeout = 3 * HZ; if (cmd == MCU_CMD(FW_SCATTER)) txq = MT_MCUQ_FWDL; return mt76_tx_queue_skb_raw(dev, mdev->q_mcu[txq], skb, 0); } int mt7921e_mcu_init(struct mt792x_dev *dev) { static const struct mt76_mcu_ops mt7921_mcu_ops = { .headroom = sizeof(struct mt76_connac2_mcu_txd), .mcu_skb_send_msg = mt7921_mcu_send_message, .mcu_parse_response = mt7921_mcu_parse_response, }; int err; dev->mt76.mcu_ops = &mt7921_mcu_ops; err = mt7921e_driver_own(dev); if (err) return err; mt76_rmw_field(dev, MT_PCIE_MAC_PM, MT_PCIE_MAC_PM_L0S_DIS, 1); err = mt7921_run_firmware(dev); mt76_queue_tx_cleanup(dev, dev->mt76.q_mcu[MT_MCUQ_FWDL], false); return err; }
linux-master
drivers/net/wireless/mediatek/mt76/mt7921/pci_mcu.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2021 MediaTek Inc. */ #include "mt7921.h" #include "../dma.h" #include "../mt76_connac2_mac.h" int mt7921e_tx_prepare_skb(struct mt76_dev *mdev, void *txwi_ptr, enum mt76_txq_id qid, struct mt76_wcid *wcid, struct ieee80211_sta *sta, struct mt76_tx_info *tx_info) { struct mt792x_dev *dev = container_of(mdev, struct mt792x_dev, mt76); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx_info->skb); struct ieee80211_key_conf *key = info->control.hw_key; struct mt76_connac_hw_txp *txp; struct mt76_txwi_cache *t; int id, pid; u8 *txwi = (u8 *)txwi_ptr; if (unlikely(tx_info->skb->len <= ETH_HLEN)) return -EINVAL; if (!wcid) wcid = &dev->mt76.global_wcid; t = (struct mt76_txwi_cache *)(txwi + mdev->drv->txwi_size); t->skb = tx_info->skb; id = mt76_token_consume(mdev, &t); if (id < 0) return id; if (sta) { struct mt792x_sta *msta = (struct mt792x_sta *)sta->drv_priv; if (time_after(jiffies, msta->last_txs + HZ / 4)) { info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; msta->last_txs = jiffies; } } pid = mt76_tx_status_skb_add(mdev, wcid, tx_info->skb); mt76_connac2_mac_write_txwi(mdev, txwi_ptr, tx_info->skb, wcid, key, pid, qid, 0); txp = (struct mt76_connac_hw_txp *)(txwi + MT_TXD_SIZE); memset(txp, 0, sizeof(struct mt76_connac_hw_txp)); mt76_connac_write_hw_txp(mdev, tx_info, txp, id); tx_info->skb = DMA_DUMMY_DATA; return 0; } int mt7921e_mac_reset(struct mt792x_dev *dev) { int i, err; mt792xe_mcu_drv_pmctrl(dev); mt76_connac_free_pending_tx_skbs(&dev->pm, NULL); mt76_wr(dev, dev->irq_map->host_irq_enable, 0); mt76_wr(dev, MT_PCIE_MAC_INT_ENABLE, 0x0); set_bit(MT76_RESET, &dev->mphy.state); set_bit(MT76_MCU_RESET, &dev->mphy.state); wake_up(&dev->mt76.mcu.wait); skb_queue_purge(&dev->mt76.mcu.res_q); mt76_txq_schedule_all(&dev->mphy); mt76_worker_disable(&dev->mt76.tx_worker); napi_disable(&dev->mt76.napi[MT_RXQ_MAIN]); napi_disable(&dev->mt76.napi[MT_RXQ_MCU]); napi_disable(&dev->mt76.napi[MT_RXQ_MCU_WA]); napi_disable(&dev->mt76.tx_napi); mt76_connac2_tx_token_put(&dev->mt76); idr_init(&dev->mt76.token); mt792x_wpdma_reset(dev, true); local_bh_disable(); mt76_for_each_q_rx(&dev->mt76, i) { napi_enable(&dev->mt76.napi[i]); napi_schedule(&dev->mt76.napi[i]); } local_bh_enable(); dev->fw_assert = false; clear_bit(MT76_MCU_RESET, &dev->mphy.state); mt76_wr(dev, dev->irq_map->host_irq_enable, dev->irq_map->tx.all_complete_mask | MT_INT_RX_DONE_ALL | MT_INT_MCU_CMD); mt76_wr(dev, MT_PCIE_MAC_INT_ENABLE, 0xff); err = mt7921e_driver_own(dev); if (err) goto out; err = mt7921_run_firmware(dev); if (err) goto out; err = mt7921_mcu_set_eeprom(dev); if (err) goto out; err = mt7921_mac_init(dev); if (err) goto out; err = __mt7921_start(&dev->phy); out: clear_bit(MT76_RESET, &dev->mphy.state); local_bh_disable(); napi_enable(&dev->mt76.tx_napi); napi_schedule(&dev->mt76.tx_napi); local_bh_enable(); mt76_worker_enable(&dev->mt76.tx_worker); return err; }
linux-master
drivers/net/wireless/mediatek/mt76/mt7921/pci_mac.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2020 MediaTek Inc. */ #include <linux/etherdevice.h> #include <linux/platform_device.h> #include <linux/pci.h> #include <linux/module.h> #include <net/ipv6.h> #include "mt7921.h" #include "mcu.h" static int mt7921_init_he_caps(struct mt792x_phy *phy, enum nl80211_band band, struct ieee80211_sband_iftype_data *data) { int i, idx = 0; int nss = hweight8(phy->mt76->chainmask); u16 mcs_map = 0; for (i = 0; i < 8; i++) { if (i < nss) mcs_map |= (IEEE80211_HE_MCS_SUPPORT_0_11 << (i * 2)); else mcs_map |= (IEEE80211_HE_MCS_NOT_SUPPORTED << (i * 2)); } for (i = 0; i < NUM_NL80211_IFTYPES; i++) { struct ieee80211_sta_he_cap *he_cap = &data[idx].he_cap; struct ieee80211_he_cap_elem *he_cap_elem = &he_cap->he_cap_elem; struct ieee80211_he_mcs_nss_supp *he_mcs = &he_cap->he_mcs_nss_supp; switch (i) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_AP: break; default: continue; } data[idx].types_mask = BIT(i); he_cap->has_he = true; he_cap_elem->mac_cap_info[0] = IEEE80211_HE_MAC_CAP0_HTC_HE; he_cap_elem->mac_cap_info[3] = IEEE80211_HE_MAC_CAP3_OMI_CONTROL | IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3; he_cap_elem->mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU; if (band == NL80211_BAND_2GHZ) he_cap_elem->phy_cap_info[0] = IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G; else he_cap_elem->phy_cap_info[0] = IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G; he_cap_elem->phy_cap_info[1] = IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD; he_cap_elem->phy_cap_info[2] = IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US | IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ | IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ | IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO | IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO; switch (i) { case NL80211_IFTYPE_AP: he_cap_elem->mac_cap_info[2] |= IEEE80211_HE_MAC_CAP2_BSR; he_cap_elem->mac_cap_info[4] |= IEEE80211_HE_MAC_CAP4_BQR; he_cap_elem->mac_cap_info[5] |= IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX; he_cap_elem->phy_cap_info[3] |= IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK | IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK; he_cap_elem->phy_cap_info[6] |= IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE | IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT; he_cap_elem->phy_cap_info[9] |= IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU | IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU; break; case NL80211_IFTYPE_STATION: he_cap_elem->mac_cap_info[1] |= IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US; if (band == NL80211_BAND_2GHZ) he_cap_elem->phy_cap_info[0] |= IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G; else he_cap_elem->phy_cap_info[0] |= IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G; he_cap_elem->phy_cap_info[1] |= IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A | IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US; he_cap_elem->phy_cap_info[3] |= IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK | IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK; he_cap_elem->phy_cap_info[4] |= IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE | IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4; he_cap_elem->phy_cap_info[5] |= IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK | IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK; he_cap_elem->phy_cap_info[6] |= IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU | IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU | IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB | IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE | IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT; he_cap_elem->phy_cap_info[7] |= IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP | IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI; he_cap_elem->phy_cap_info[8] |= IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G | IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484; he_cap_elem->phy_cap_info[9] |= IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM | IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK | IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU | IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU | IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB | IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB; if (is_mt7922(phy->mt76->dev)) { he_cap_elem->phy_cap_info[0] |= IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; he_cap_elem->phy_cap_info[8] |= IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU | IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU; } break; } he_mcs->rx_mcs_80 = cpu_to_le16(mcs_map); he_mcs->tx_mcs_80 = cpu_to_le16(mcs_map); if (is_mt7922(phy->mt76->dev)) { he_mcs->rx_mcs_160 = cpu_to_le16(mcs_map); he_mcs->tx_mcs_160 = cpu_to_le16(mcs_map); } memset(he_cap->ppe_thres, 0, sizeof(he_cap->ppe_thres)); if (he_cap_elem->phy_cap_info[6] & IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) { mt76_connac_gen_ppe_thresh(he_cap->ppe_thres, nss); } else { he_cap_elem->phy_cap_info[9] |= u8_encode_bits(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US, IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK); } if (band == NL80211_BAND_6GHZ) { struct ieee80211_supported_band *sband = &phy->mt76->sband_5g.sband; struct ieee80211_sta_vht_cap *vht_cap = &sband->vht_cap; struct ieee80211_sta_ht_cap *ht_cap = &sband->ht_cap; u32 exp; u16 cap; cap = u16_encode_bits(ht_cap->ampdu_density, IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START); exp = u32_get_bits(vht_cap->cap, IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK); cap |= u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP); exp = u32_get_bits(vht_cap->cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK); cap |= u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN); if (vht_cap->cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN) cap |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS; if (vht_cap->cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN) cap |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS; data[idx].he_6ghz_capa.capa = cpu_to_le16(cap); } idx++; } return idx; } void mt7921_set_stream_he_caps(struct mt792x_phy *phy) { struct ieee80211_sband_iftype_data *data; struct ieee80211_supported_band *band; int n; if (phy->mt76->cap.has_2ghz) { data = phy->iftype[NL80211_BAND_2GHZ]; n = mt7921_init_he_caps(phy, NL80211_BAND_2GHZ, data); band = &phy->mt76->sband_2g.sband; band->iftype_data = data; band->n_iftype_data = n; } if (phy->mt76->cap.has_5ghz) { data = phy->iftype[NL80211_BAND_5GHZ]; n = mt7921_init_he_caps(phy, NL80211_BAND_5GHZ, data); band = &phy->mt76->sband_5g.sband; band->iftype_data = data; band->n_iftype_data = n; if (phy->mt76->cap.has_6ghz) { data = phy->iftype[NL80211_BAND_6GHZ]; n = mt7921_init_he_caps(phy, NL80211_BAND_6GHZ, data); band = &phy->mt76->sband_6g.sband; band->iftype_data = data; band->n_iftype_data = n; } } } int __mt7921_start(struct mt792x_phy *phy) { struct mt76_phy *mphy = phy->mt76; int err; err = mt76_connac_mcu_set_mac_enable(mphy->dev, 0, true, false); if (err) return err; err = mt76_connac_mcu_set_channel_domain(mphy); if (err) return err; err = mt7921_mcu_set_chan_info(phy, MCU_EXT_CMD(SET_RX_PATH)); if (err) return err; err = mt7921_set_tx_sar_pwr(mphy->hw, NULL); if (err) return err; mt792x_mac_reset_counters(phy); set_bit(MT76_STATE_RUNNING, &mphy->state); ieee80211_queue_delayed_work(mphy->hw, &mphy->mac_work, MT792x_WATCHDOG_TIME); return 0; } EXPORT_SYMBOL_GPL(__mt7921_start); static int mt7921_start(struct ieee80211_hw *hw) { struct mt792x_phy *phy = mt792x_hw_phy(hw); int err; mt792x_mutex_acquire(phy->dev); err = __mt7921_start(phy); mt792x_mutex_release(phy->dev); return err; } void mt7921_stop(struct ieee80211_hw *hw) { struct mt792x_dev *dev = mt792x_hw_dev(hw); struct mt792x_phy *phy = mt792x_hw_phy(hw); cancel_delayed_work_sync(&phy->mt76->mac_work); cancel_delayed_work_sync(&dev->pm.ps_work); cancel_work_sync(&dev->pm.wake_work); cancel_work_sync(&dev->reset_work); mt76_connac_free_pending_tx_skbs(&dev->pm, NULL); mt792x_mutex_acquire(dev); clear_bit(MT76_STATE_RUNNING, &phy->mt76->state); mt76_connac_mcu_set_mac_enable(&dev->mt76, 0, false, false); mt792x_mutex_release(dev); } EXPORT_SYMBOL_GPL(mt7921_stop); static int mt7921_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mt792x_vif *mvif = (struct mt792x_vif *)vif->drv_priv; struct mt792x_dev *dev = mt792x_hw_dev(hw); struct mt792x_phy *phy = mt792x_hw_phy(hw); struct mt76_txq *mtxq; int idx, ret = 0; mt792x_mutex_acquire(dev); mvif->mt76.idx = __ffs64(~dev->mt76.vif_mask); if (mvif->mt76.idx >= MT792x_MAX_INTERFACES) { ret = -ENOSPC; goto out; } mvif->mt76.omac_idx = mvif->mt76.idx; mvif->phy = phy; mvif->mt76.band_idx = 0; mvif->mt76.wmm_idx = mvif->mt76.idx % MT76_CONNAC_MAX_WMM_SETS; ret = mt76_connac_mcu_uni_add_dev(&dev->mphy, vif, &mvif->sta.wcid, true); if (ret) goto out; dev->mt76.vif_mask |= BIT_ULL(mvif->mt76.idx); phy->omac_mask |= BIT_ULL(mvif->mt76.omac_idx); idx = MT792x_WTBL_RESERVED - mvif->mt76.idx; INIT_LIST_HEAD(&mvif->sta.wcid.poll_list); mvif->sta.wcid.idx = idx; mvif->sta.wcid.phy_idx = mvif->mt76.band_idx; mvif->sta.wcid.hw_key_idx = -1; mvif->sta.wcid.tx_info |= MT_WCID_TX_INFO_SET; mt76_packet_id_init(&mvif->sta.wcid); mt7921_mac_wtbl_update(dev, idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); ewma_rssi_init(&mvif->rssi); rcu_assign_pointer(dev->mt76.wcid[idx], &mvif->sta.wcid); if (vif->txq) { mtxq = (struct mt76_txq *)vif->txq->drv_priv; mtxq->wcid = idx; } vif->driver_flags |= IEEE80211_VIF_BEACON_FILTER; out: mt792x_mutex_release(dev); return ret; } static void mt7921_roc_iter(void *priv, u8 *mac, struct ieee80211_vif *vif) { struct mt792x_vif *mvif = (struct mt792x_vif *)vif->drv_priv; struct mt792x_phy *phy = priv; mt7921_mcu_abort_roc(phy, mvif, phy->roc_token_id); } void mt7921_roc_work(struct work_struct *work) { struct mt792x_phy *phy; phy = (struct mt792x_phy *)container_of(work, struct mt792x_phy, roc_work); if (!test_and_clear_bit(MT76_STATE_ROC, &phy->mt76->state)) return; mt792x_mutex_acquire(phy->dev); ieee80211_iterate_active_interfaces(phy->mt76->hw, IEEE80211_IFACE_ITER_RESUME_ALL, mt7921_roc_iter, phy); mt792x_mutex_release(phy->dev); ieee80211_remain_on_channel_expired(phy->mt76->hw); } static int mt7921_abort_roc(struct mt792x_phy *phy, struct mt792x_vif *vif) { int err = 0; del_timer_sync(&phy->roc_timer); cancel_work_sync(&phy->roc_work); mt792x_mutex_acquire(phy->dev); if (test_and_clear_bit(MT76_STATE_ROC, &phy->mt76->state)) err = mt7921_mcu_abort_roc(phy, vif, phy->roc_token_id); mt792x_mutex_release(phy->dev); return err; } static int mt7921_set_roc(struct mt792x_phy *phy, struct mt792x_vif *vif, struct ieee80211_channel *chan, int duration, enum mt7921_roc_req type) { int err; if (test_and_set_bit(MT76_STATE_ROC, &phy->mt76->state)) return -EBUSY; phy->roc_grant = false; err = mt7921_mcu_set_roc(phy, vif, chan, duration, type, ++phy->roc_token_id); if (err < 0) { clear_bit(MT76_STATE_ROC, &phy->mt76->state); goto out; } if (!wait_event_timeout(phy->roc_wait, phy->roc_grant, HZ)) { mt7921_mcu_abort_roc(phy, vif, phy->roc_token_id); clear_bit(MT76_STATE_ROC, &phy->mt76->state); err = -ETIMEDOUT; } out: return err; } static int mt7921_remain_on_channel(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_channel *chan, int duration, enum ieee80211_roc_type type) { struct mt792x_vif *mvif = (struct mt792x_vif *)vif->drv_priv; struct mt792x_phy *phy = mt792x_hw_phy(hw); int err; mt792x_mutex_acquire(phy->dev); err = mt7921_set_roc(phy, mvif, chan, duration, MT7921_ROC_REQ_ROC); mt792x_mutex_release(phy->dev); return err; } static int mt7921_cancel_remain_on_channel(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mt792x_vif *mvif = (struct mt792x_vif *)vif->drv_priv; struct mt792x_phy *phy = mt792x_hw_phy(hw); return mt7921_abort_roc(phy, mvif); } static int mt7921_set_channel(struct mt792x_phy *phy) { struct mt792x_dev *dev = phy->dev; int ret; cancel_delayed_work_sync(&phy->mt76->mac_work); mt792x_mutex_acquire(dev); set_bit(MT76_RESET, &phy->mt76->state); mt76_set_channel(phy->mt76); ret = mt7921_mcu_set_chan_info(phy, MCU_EXT_CMD(CHANNEL_SWITCH)); if (ret) goto out; mt792x_mac_set_timeing(phy); mt792x_mac_reset_counters(phy); phy->noise = 0; out: clear_bit(MT76_RESET, &phy->mt76->state); mt792x_mutex_release(dev); mt76_worker_schedule(&dev->mt76.tx_worker); ieee80211_queue_delayed_work(phy->mt76->hw, &phy->mt76->mac_work, MT792x_WATCHDOG_TIME); return ret; } static int mt7921_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { struct mt792x_dev *dev = mt792x_hw_dev(hw); struct mt792x_vif *mvif = (struct mt792x_vif *)vif->drv_priv; struct mt792x_sta *msta = sta ? (struct mt792x_sta *)sta->drv_priv : &mvif->sta; struct mt76_wcid *wcid = &msta->wcid; u8 *wcid_keyidx = &wcid->hw_key_idx; int idx = key->keyidx, err = 0; /* The hardware does not support per-STA RX GTK, fallback * to software mode for these. */ if ((vif->type == NL80211_IFTYPE_ADHOC || vif->type == NL80211_IFTYPE_MESH_POINT) && (key->cipher == WLAN_CIPHER_SUITE_TKIP || key->cipher == WLAN_CIPHER_SUITE_CCMP) && !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) return -EOPNOTSUPP; /* fall back to sw encryption for unsupported ciphers */ switch (key->cipher) { case WLAN_CIPHER_SUITE_AES_CMAC: key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIE; wcid_keyidx = &wcid->hw_key_idx2; break; case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: if (!mvif->wep_sta) return -EOPNOTSUPP; break; case WLAN_CIPHER_SUITE_TKIP: case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: case WLAN_CIPHER_SUITE_SMS4: break; default: return -EOPNOTSUPP; } mt792x_mutex_acquire(dev); if (cmd == SET_KEY) { *wcid_keyidx = idx; } else { if (idx == *wcid_keyidx) *wcid_keyidx = -1; goto out; } mt76_wcid_key_setup(&dev->mt76, wcid, key); err = mt76_connac_mcu_add_key(&dev->mt76, vif, &msta->bip, key, MCU_UNI_CMD(STA_REC_UPDATE), &msta->wcid, cmd); if (err) goto out; if (key->cipher == WLAN_CIPHER_SUITE_WEP104 || key->cipher == WLAN_CIPHER_SUITE_WEP40) err = mt76_connac_mcu_add_key(&dev->mt76, vif, &mvif->wep_sta->bip, key, MCU_UNI_CMD(STA_REC_UPDATE), &mvif->wep_sta->wcid, cmd); out: mt792x_mutex_release(dev); return err; } static void mt7921_pm_interface_iter(void *priv, u8 *mac, struct ieee80211_vif *vif) { struct mt792x_dev *dev = priv; struct ieee80211_hw *hw = mt76_hw(dev); bool pm_enable = dev->pm.enable; int err; err = mt7921_mcu_set_beacon_filter(dev, vif, pm_enable); if (err < 0) return; if (pm_enable) { vif->driver_flags |= IEEE80211_VIF_BEACON_FILTER; ieee80211_hw_set(hw, CONNECTION_MONITOR); } else { vif->driver_flags &= ~IEEE80211_VIF_BEACON_FILTER; __clear_bit(IEEE80211_HW_CONNECTION_MONITOR, hw->flags); } } static void mt7921_sniffer_interface_iter(void *priv, u8 *mac, struct ieee80211_vif *vif) { struct mt792x_dev *dev = priv; struct ieee80211_hw *hw = mt76_hw(dev); struct mt76_connac_pm *pm = &dev->pm; bool monitor = !!(hw->conf.flags & IEEE80211_CONF_MONITOR); mt7921_mcu_set_sniffer(dev, vif, monitor); pm->enable = pm->enable_user && !monitor; pm->ds_enable = pm->ds_enable_user && !monitor; mt76_connac_mcu_set_deep_sleep(&dev->mt76, pm->ds_enable); if (monitor) mt7921_mcu_set_beacon_filter(dev, vif, false); } void mt7921_set_runtime_pm(struct mt792x_dev *dev) { struct ieee80211_hw *hw = mt76_hw(dev); struct mt76_connac_pm *pm = &dev->pm; bool monitor = !!(hw->conf.flags & IEEE80211_CONF_MONITOR); pm->enable = pm->enable_user && !monitor; ieee80211_iterate_active_interfaces(hw, IEEE80211_IFACE_ITER_RESUME_ALL, mt7921_pm_interface_iter, dev); pm->ds_enable = pm->ds_enable_user && !monitor; mt76_connac_mcu_set_deep_sleep(&dev->mt76, pm->ds_enable); } static int mt7921_config(struct ieee80211_hw *hw, u32 changed) { struct mt792x_dev *dev = mt792x_hw_dev(hw); struct mt792x_phy *phy = mt792x_hw_phy(hw); int ret = 0; if (changed & IEEE80211_CONF_CHANGE_CHANNEL) { ieee80211_stop_queues(hw); ret = mt7921_set_channel(phy); if (ret) return ret; ieee80211_wake_queues(hw); } mt792x_mutex_acquire(dev); if (changed & IEEE80211_CONF_CHANGE_POWER) { ret = mt7921_set_tx_sar_pwr(hw, NULL); if (ret) goto out; } if (changed & IEEE80211_CONF_CHANGE_MONITOR) { ieee80211_iterate_active_interfaces(hw, IEEE80211_IFACE_ITER_RESUME_ALL, mt7921_sniffer_interface_iter, dev); } out: mt792x_mutex_release(dev); return ret; } static void mt7921_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags, u64 multicast) { #define MT7921_FILTER_FCSFAIL BIT(2) #define MT7921_FILTER_CONTROL BIT(5) #define MT7921_FILTER_OTHER_BSS BIT(6) #define MT7921_FILTER_ENABLE BIT(31) struct mt792x_dev *dev = mt792x_hw_dev(hw); u32 flags = MT7921_FILTER_ENABLE; #define MT7921_FILTER(_fif, _type) do { \ if (*total_flags & (_fif)) \ flags |= MT7921_FILTER_##_type; \ } while (0) MT7921_FILTER(FIF_FCSFAIL, FCSFAIL); MT7921_FILTER(FIF_CONTROL, CONTROL); MT7921_FILTER(FIF_OTHER_BSS, OTHER_BSS); mt792x_mutex_acquire(dev); mt7921_mcu_set_rxfilter(dev, flags, 0, 0); mt792x_mutex_release(dev); *total_flags &= (FIF_OTHER_BSS | FIF_FCSFAIL | FIF_CONTROL); } static void mt7921_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *info, u64 changed) { struct mt792x_phy *phy = mt792x_hw_phy(hw); struct mt792x_dev *dev = mt792x_hw_dev(hw); mt792x_mutex_acquire(dev); if (changed & BSS_CHANGED_ERP_SLOT) { int slottime = info->use_short_slot ? 9 : 20; if (slottime != phy->slottime) { phy->slottime = slottime; mt792x_mac_set_timeing(phy); } } if (changed & (BSS_CHANGED_BEACON | BSS_CHANGED_BEACON_ENABLED)) mt7921_mcu_uni_add_beacon_offload(dev, hw, vif, info->enable_beacon); /* ensure that enable txcmd_mode after bss_info */ if (changed & (BSS_CHANGED_QOS | BSS_CHANGED_BEACON_ENABLED)) mt7921_mcu_set_tx(dev, vif); if (changed & BSS_CHANGED_PS) mt7921_mcu_uni_bss_ps(dev, vif); if (changed & BSS_CHANGED_ASSOC) { mt7921_mcu_sta_update(dev, NULL, vif, true, MT76_STA_INFO_STATE_ASSOC); mt7921_mcu_set_beacon_filter(dev, vif, vif->cfg.assoc); } if (changed & BSS_CHANGED_ARP_FILTER) { struct mt792x_vif *mvif = (struct mt792x_vif *)vif->drv_priv; mt76_connac_mcu_update_arp_filter(&dev->mt76, &mvif->mt76, info); } mt792x_mutex_release(dev); } int mt7921_mac_sta_add(struct mt76_dev *mdev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt792x_dev *dev = container_of(mdev, struct mt792x_dev, mt76); struct mt792x_sta *msta = (struct mt792x_sta *)sta->drv_priv; struct mt792x_vif *mvif = (struct mt792x_vif *)vif->drv_priv; int ret, idx; idx = mt76_wcid_alloc(dev->mt76.wcid_mask, MT792x_WTBL_STA - 1); if (idx < 0) return -ENOSPC; INIT_LIST_HEAD(&msta->wcid.poll_list); msta->vif = mvif; msta->wcid.sta = 1; msta->wcid.idx = idx; msta->wcid.phy_idx = mvif->mt76.band_idx; msta->wcid.tx_info |= MT_WCID_TX_INFO_SET; msta->last_txs = jiffies; ret = mt76_connac_pm_wake(&dev->mphy, &dev->pm); if (ret) return ret; if (vif->type == NL80211_IFTYPE_STATION) mvif->wep_sta = msta; mt7921_mac_wtbl_update(dev, idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); ret = mt7921_mcu_sta_update(dev, sta, vif, true, MT76_STA_INFO_STATE_NONE); if (ret) return ret; mt76_connac_power_save_sched(&dev->mphy, &dev->pm); return 0; } EXPORT_SYMBOL_GPL(mt7921_mac_sta_add); void mt7921_mac_sta_assoc(struct mt76_dev *mdev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt792x_dev *dev = container_of(mdev, struct mt792x_dev, mt76); struct mt792x_sta *msta = (struct mt792x_sta *)sta->drv_priv; struct mt792x_vif *mvif = (struct mt792x_vif *)vif->drv_priv; mt792x_mutex_acquire(dev); if (vif->type == NL80211_IFTYPE_STATION && !sta->tdls) mt76_connac_mcu_uni_add_bss(&dev->mphy, vif, &mvif->sta.wcid, true, mvif->ctx); ewma_avg_signal_init(&msta->avg_ack_signal); mt7921_mac_wtbl_update(dev, msta->wcid.idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); memset(msta->airtime_ac, 0, sizeof(msta->airtime_ac)); mt7921_mcu_sta_update(dev, sta, vif, true, MT76_STA_INFO_STATE_ASSOC); mt792x_mutex_release(dev); } EXPORT_SYMBOL_GPL(mt7921_mac_sta_assoc); void mt7921_mac_sta_remove(struct mt76_dev *mdev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt792x_dev *dev = container_of(mdev, struct mt792x_dev, mt76); struct mt792x_sta *msta = (struct mt792x_sta *)sta->drv_priv; mt76_connac_free_pending_tx_skbs(&dev->pm, &msta->wcid); mt76_connac_pm_wake(&dev->mphy, &dev->pm); mt7921_mcu_sta_update(dev, sta, vif, false, MT76_STA_INFO_STATE_NONE); mt7921_mac_wtbl_update(dev, msta->wcid.idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); if (vif->type == NL80211_IFTYPE_STATION) { struct mt792x_vif *mvif = (struct mt792x_vif *)vif->drv_priv; mvif->wep_sta = NULL; ewma_rssi_init(&mvif->rssi); if (!sta->tdls) mt76_connac_mcu_uni_add_bss(&dev->mphy, vif, &mvif->sta.wcid, false, mvif->ctx); } spin_lock_bh(&dev->mt76.sta_poll_lock); if (!list_empty(&msta->wcid.poll_list)) list_del_init(&msta->wcid.poll_list); spin_unlock_bh(&dev->mt76.sta_poll_lock); mt76_connac_power_save_sched(&dev->mphy, &dev->pm); } EXPORT_SYMBOL_GPL(mt7921_mac_sta_remove); static int mt7921_set_rts_threshold(struct ieee80211_hw *hw, u32 val) { struct mt792x_dev *dev = mt792x_hw_dev(hw); mt792x_mutex_acquire(dev); mt76_connac_mcu_set_rts_thresh(&dev->mt76, val, 0); mt792x_mutex_release(dev); return 0; } static int mt7921_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params) { enum ieee80211_ampdu_mlme_action action = params->action; struct mt792x_dev *dev = mt792x_hw_dev(hw); struct ieee80211_sta *sta = params->sta; struct ieee80211_txq *txq = sta->txq[params->tid]; struct mt792x_sta *msta = (struct mt792x_sta *)sta->drv_priv; u16 tid = params->tid; u16 ssn = params->ssn; struct mt76_txq *mtxq; int ret = 0; if (!txq) return -EINVAL; mtxq = (struct mt76_txq *)txq->drv_priv; mt792x_mutex_acquire(dev); switch (action) { case IEEE80211_AMPDU_RX_START: mt76_rx_aggr_start(&dev->mt76, &msta->wcid, tid, ssn, params->buf_size); mt7921_mcu_uni_rx_ba(dev, params, true); break; case IEEE80211_AMPDU_RX_STOP: mt76_rx_aggr_stop(&dev->mt76, &msta->wcid, tid); mt7921_mcu_uni_rx_ba(dev, params, false); break; case IEEE80211_AMPDU_TX_OPERATIONAL: mtxq->aggr = true; mtxq->send_bar = false; mt7921_mcu_uni_tx_ba(dev, params, true); break; case IEEE80211_AMPDU_TX_STOP_FLUSH: case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: mtxq->aggr = false; clear_bit(tid, &msta->wcid.ampdu_state); mt7921_mcu_uni_tx_ba(dev, params, false); break; case IEEE80211_AMPDU_TX_START: set_bit(tid, &msta->wcid.ampdu_state); ret = IEEE80211_AMPDU_TX_START_IMMEDIATE; break; case IEEE80211_AMPDU_TX_STOP_CONT: mtxq->aggr = false; clear_bit(tid, &msta->wcid.ampdu_state); mt7921_mcu_uni_tx_ba(dev, params, false); ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid); break; } mt792x_mutex_release(dev); return ret; } static int mt7921_sta_state(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, enum ieee80211_sta_state old_state, enum ieee80211_sta_state new_state) { struct mt792x_dev *dev = mt792x_hw_dev(hw); if (dev->pm.ds_enable) { mt792x_mutex_acquire(dev); mt76_connac_sta_state_dp(&dev->mt76, old_state, new_state); mt792x_mutex_release(dev); } return mt76_sta_state(hw, vif, sta, old_state, new_state); } void mt7921_scan_work(struct work_struct *work) { struct mt792x_phy *phy; phy = (struct mt792x_phy *)container_of(work, struct mt792x_phy, scan_work.work); while (true) { struct mt76_connac2_mcu_rxd *rxd; struct sk_buff *skb; spin_lock_bh(&phy->dev->mt76.lock); skb = __skb_dequeue(&phy->scan_event_list); spin_unlock_bh(&phy->dev->mt76.lock); if (!skb) break; rxd = (struct mt76_connac2_mcu_rxd *)skb->data; if (rxd->eid == MCU_EVENT_SCHED_SCAN_DONE) { ieee80211_sched_scan_results(phy->mt76->hw); } else if (test_and_clear_bit(MT76_HW_SCANNING, &phy->mt76->state)) { struct cfg80211_scan_info info = { .aborted = false, }; ieee80211_scan_completed(phy->mt76->hw, &info); } dev_kfree_skb(skb); } } static int mt7921_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_scan_request *req) { struct mt792x_dev *dev = mt792x_hw_dev(hw); struct mt76_phy *mphy = hw->priv; int err; mt792x_mutex_acquire(dev); err = mt76_connac_mcu_hw_scan(mphy, vif, req); mt792x_mutex_release(dev); return err; } static void mt7921_cancel_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mt792x_dev *dev = mt792x_hw_dev(hw); struct mt76_phy *mphy = hw->priv; mt792x_mutex_acquire(dev); mt76_connac_mcu_cancel_hw_scan(mphy, vif); mt792x_mutex_release(dev); } static int mt7921_start_sched_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct cfg80211_sched_scan_request *req, struct ieee80211_scan_ies *ies) { struct mt792x_dev *dev = mt792x_hw_dev(hw); struct mt76_phy *mphy = hw->priv; int err; mt792x_mutex_acquire(dev); err = mt76_connac_mcu_sched_scan_req(mphy, vif, req); if (err < 0) goto out; err = mt76_connac_mcu_sched_scan_enable(mphy, vif, true); out: mt792x_mutex_release(dev); return err; } static int mt7921_stop_sched_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mt792x_dev *dev = mt792x_hw_dev(hw); struct mt76_phy *mphy = hw->priv; int err; mt792x_mutex_acquire(dev); err = mt76_connac_mcu_sched_scan_enable(mphy, vif, false); mt792x_mutex_release(dev); return err; } static int mt7921_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant) { struct mt792x_dev *dev = mt792x_hw_dev(hw); struct mt792x_phy *phy = mt792x_hw_phy(hw); int max_nss = hweight8(hw->wiphy->available_antennas_tx); if (!tx_ant || tx_ant != rx_ant || ffs(tx_ant) > max_nss) return -EINVAL; if ((BIT(hweight8(tx_ant)) - 1) != tx_ant) return -EINVAL; mt792x_mutex_acquire(dev); phy->mt76->antenna_mask = tx_ant; phy->mt76->chainmask = tx_ant; mt76_set_stream_caps(phy->mt76, true); mt7921_set_stream_he_caps(phy); mt792x_mutex_release(dev); return 0; } #ifdef CONFIG_PM static int mt7921_suspend(struct ieee80211_hw *hw, struct cfg80211_wowlan *wowlan) { struct mt792x_dev *dev = mt792x_hw_dev(hw); struct mt792x_phy *phy = mt792x_hw_phy(hw); cancel_delayed_work_sync(&phy->scan_work); cancel_delayed_work_sync(&phy->mt76->mac_work); cancel_delayed_work_sync(&dev->pm.ps_work); mt76_connac_free_pending_tx_skbs(&dev->pm, NULL); mt792x_mutex_acquire(dev); clear_bit(MT76_STATE_RUNNING, &phy->mt76->state); ieee80211_iterate_active_interfaces(hw, IEEE80211_IFACE_ITER_RESUME_ALL, mt7921_mcu_set_suspend_iter, &dev->mphy); mt792x_mutex_release(dev); return 0; } static int mt7921_resume(struct ieee80211_hw *hw) { struct mt792x_dev *dev = mt792x_hw_dev(hw); struct mt792x_phy *phy = mt792x_hw_phy(hw); mt792x_mutex_acquire(dev); set_bit(MT76_STATE_RUNNING, &phy->mt76->state); ieee80211_iterate_active_interfaces(hw, IEEE80211_IFACE_ITER_RESUME_ALL, mt76_connac_mcu_set_suspend_iter, &dev->mphy); ieee80211_queue_delayed_work(hw, &phy->mt76->mac_work, MT792x_WATCHDOG_TIME); mt792x_mutex_release(dev); return 0; } static void mt7921_set_rekey_data(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct cfg80211_gtk_rekey_data *data) { struct mt792x_dev *dev = mt792x_hw_dev(hw); mt792x_mutex_acquire(dev); mt76_connac_mcu_update_gtk_rekey(hw, vif, data); mt792x_mutex_release(dev); } #endif /* CONFIG_PM */ static void mt7921_sta_set_decap_offload(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, bool enabled) { struct mt792x_sta *msta = (struct mt792x_sta *)sta->drv_priv; struct mt792x_dev *dev = mt792x_hw_dev(hw); mt792x_mutex_acquire(dev); if (enabled) set_bit(MT_WCID_FLAG_HDR_TRANS, &msta->wcid.flags); else clear_bit(MT_WCID_FLAG_HDR_TRANS, &msta->wcid.flags); mt76_connac_mcu_sta_update_hdr_trans(&dev->mt76, vif, &msta->wcid, MCU_UNI_CMD(STA_REC_UPDATE)); mt792x_mutex_release(dev); } #if IS_ENABLED(CONFIG_IPV6) static void mt7921_ipv6_addr_change(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct inet6_dev *idev) { struct mt792x_vif *mvif = (struct mt792x_vif *)vif->drv_priv; struct mt792x_dev *dev = mvif->phy->dev; struct inet6_ifaddr *ifa; struct in6_addr ns_addrs[IEEE80211_BSS_ARP_ADDR_LIST_LEN]; struct sk_buff *skb; u8 i, idx = 0; struct { struct { u8 bss_idx; u8 pad[3]; } __packed hdr; struct mt76_connac_arpns_tlv arpns; } req_hdr = { .hdr = { .bss_idx = mvif->mt76.idx, }, .arpns = { .tag = cpu_to_le16(UNI_OFFLOAD_OFFLOAD_ND), .mode = 2, /* update */ .option = 1, /* update only */ }, }; read_lock_bh(&idev->lock); list_for_each_entry(ifa, &idev->addr_list, if_list) { if (ifa->flags & IFA_F_TENTATIVE) continue; ns_addrs[idx] = ifa->addr; if (++idx >= IEEE80211_BSS_ARP_ADDR_LIST_LEN) break; } read_unlock_bh(&idev->lock); if (!idx) return; req_hdr.arpns.ips_num = idx; req_hdr.arpns.len = cpu_to_le16(sizeof(struct mt76_connac_arpns_tlv) + idx * sizeof(struct in6_addr)); skb = __mt76_mcu_msg_alloc(&dev->mt76, &req_hdr, sizeof(req_hdr) + idx * sizeof(struct in6_addr), sizeof(req_hdr), GFP_ATOMIC); if (!skb) return; for (i = 0; i < idx; i++) skb_put_data(skb, &ns_addrs[i].in6_u, sizeof(struct in6_addr)); skb_queue_tail(&dev->ipv6_ns_list, skb); ieee80211_queue_work(dev->mt76.hw, &dev->ipv6_ns_work); } #endif int mt7921_set_tx_sar_pwr(struct ieee80211_hw *hw, const struct cfg80211_sar_specs *sar) { struct mt76_phy *mphy = hw->priv; if (sar) { int err = mt76_init_sar_power(hw, sar); if (err) return err; } mt792x_init_acpi_sar_power(mt792x_hw_phy(hw), !sar); return mt76_connac_mcu_set_rate_txpower(mphy); } static int mt7921_set_sar_specs(struct ieee80211_hw *hw, const struct cfg80211_sar_specs *sar) { struct mt792x_dev *dev = mt792x_hw_dev(hw); int err; mt792x_mutex_acquire(dev); err = mt7921_mcu_set_clc(dev, dev->mt76.alpha2, dev->country_ie_env); if (err < 0) goto out; err = mt7921_set_tx_sar_pwr(hw, sar); out: mt792x_mutex_release(dev); return err; } static void mt7921_channel_switch_beacon(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct cfg80211_chan_def *chandef) { struct mt792x_dev *dev = mt792x_hw_dev(hw); mt792x_mutex_acquire(dev); mt7921_mcu_uni_add_beacon_offload(dev, hw, vif, true); mt792x_mutex_release(dev); } static int mt7921_start_ap(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *link_conf) { struct mt792x_vif *mvif = (struct mt792x_vif *)vif->drv_priv; struct mt792x_phy *phy = mt792x_hw_phy(hw); struct mt792x_dev *dev = mt792x_hw_dev(hw); int err; mt792x_mutex_acquire(dev); err = mt76_connac_mcu_uni_add_bss(phy->mt76, vif, &mvif->sta.wcid, true, mvif->ctx); if (err) goto out; err = mt7921_mcu_set_bss_pm(dev, vif, true); if (err) goto out; err = mt7921_mcu_sta_update(dev, NULL, vif, true, MT76_STA_INFO_STATE_NONE); out: mt792x_mutex_release(dev); return err; } static void mt7921_stop_ap(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *link_conf) { struct mt792x_vif *mvif = (struct mt792x_vif *)vif->drv_priv; struct mt792x_phy *phy = mt792x_hw_phy(hw); struct mt792x_dev *dev = mt792x_hw_dev(hw); int err; mt792x_mutex_acquire(dev); err = mt7921_mcu_set_bss_pm(dev, vif, false); if (err) goto out; mt76_connac_mcu_uni_add_bss(phy->mt76, vif, &mvif->sta.wcid, false, mvif->ctx); out: mt792x_mutex_release(dev); } static int mt7921_add_chanctx(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *ctx) { return 0; } static void mt7921_remove_chanctx(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *ctx) { } static void mt7921_ctx_iter(void *priv, u8 *mac, struct ieee80211_vif *vif) { struct mt792x_vif *mvif = (struct mt792x_vif *)vif->drv_priv; struct ieee80211_chanctx_conf *ctx = priv; if (ctx != mvif->ctx) return; if (vif->type == NL80211_IFTYPE_MONITOR) mt7921_mcu_config_sniffer(mvif, ctx); else mt76_connac_mcu_uni_set_chctx(mvif->phy->mt76, &mvif->mt76, ctx); } static void mt7921_change_chanctx(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *ctx, u32 changed) { struct mt792x_phy *phy = mt792x_hw_phy(hw); mt792x_mutex_acquire(phy->dev); ieee80211_iterate_active_interfaces(phy->mt76->hw, IEEE80211_IFACE_ITER_ACTIVE, mt7921_ctx_iter, ctx); mt792x_mutex_release(phy->dev); } static void mt7921_mgd_prepare_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_prep_tx_info *info) { struct mt792x_vif *mvif = (struct mt792x_vif *)vif->drv_priv; struct mt792x_dev *dev = mt792x_hw_dev(hw); u16 duration = info->duration ? info->duration : jiffies_to_msecs(HZ); mt792x_mutex_acquire(dev); mt7921_set_roc(mvif->phy, mvif, mvif->ctx->def.chan, duration, MT7921_ROC_REQ_JOIN); mt792x_mutex_release(dev); } static void mt7921_mgd_complete_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_prep_tx_info *info) { struct mt792x_vif *mvif = (struct mt792x_vif *)vif->drv_priv; mt7921_abort_roc(mvif->phy, mvif); } const struct ieee80211_ops mt7921_ops = { .tx = mt792x_tx, .start = mt7921_start, .stop = mt7921_stop, .add_interface = mt7921_add_interface, .remove_interface = mt792x_remove_interface, .config = mt7921_config, .conf_tx = mt792x_conf_tx, .configure_filter = mt7921_configure_filter, .bss_info_changed = mt7921_bss_info_changed, .start_ap = mt7921_start_ap, .stop_ap = mt7921_stop_ap, .sta_state = mt7921_sta_state, .sta_pre_rcu_remove = mt76_sta_pre_rcu_remove, .set_key = mt7921_set_key, .sta_set_decap_offload = mt7921_sta_set_decap_offload, #if IS_ENABLED(CONFIG_IPV6) .ipv6_addr_change = mt7921_ipv6_addr_change, #endif /* CONFIG_IPV6 */ .ampdu_action = mt7921_ampdu_action, .set_rts_threshold = mt7921_set_rts_threshold, .wake_tx_queue = mt76_wake_tx_queue, .release_buffered_frames = mt76_release_buffered_frames, .channel_switch_beacon = mt7921_channel_switch_beacon, .get_txpower = mt76_get_txpower, .get_stats = mt792x_get_stats, .get_et_sset_count = mt792x_get_et_sset_count, .get_et_strings = mt792x_get_et_strings, .get_et_stats = mt792x_get_et_stats, .get_tsf = mt792x_get_tsf, .set_tsf = mt792x_set_tsf, .get_survey = mt76_get_survey, .get_antenna = mt76_get_antenna, .set_antenna = mt7921_set_antenna, .set_coverage_class = mt792x_set_coverage_class, .hw_scan = mt7921_hw_scan, .cancel_hw_scan = mt7921_cancel_hw_scan, .sta_statistics = mt792x_sta_statistics, .sched_scan_start = mt7921_start_sched_scan, .sched_scan_stop = mt7921_stop_sched_scan, CFG80211_TESTMODE_CMD(mt7921_testmode_cmd) CFG80211_TESTMODE_DUMP(mt7921_testmode_dump) #ifdef CONFIG_PM .suspend = mt7921_suspend, .resume = mt7921_resume, .set_wakeup = mt792x_set_wakeup, .set_rekey_data = mt7921_set_rekey_data, #endif /* CONFIG_PM */ .flush = mt792x_flush, .set_sar_specs = mt7921_set_sar_specs, .remain_on_channel = mt7921_remain_on_channel, .cancel_remain_on_channel = mt7921_cancel_remain_on_channel, .add_chanctx = mt7921_add_chanctx, .remove_chanctx = mt7921_remove_chanctx, .change_chanctx = mt7921_change_chanctx, .assign_vif_chanctx = mt792x_assign_vif_chanctx, .unassign_vif_chanctx = mt792x_unassign_vif_chanctx, .mgd_prepare_tx = mt7921_mgd_prepare_tx, .mgd_complete_tx = mt7921_mgd_complete_tx, }; EXPORT_SYMBOL_GPL(mt7921_ops); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Sean Wang <[email protected]>");
linux-master
drivers/net/wireless/mediatek/mt76/mt7921/main.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2020 MediaTek Inc. */ #include <linux/fs.h> #include <linux/firmware.h> #include "mt7921.h" #include "mcu.h" #include "../mt76_connac2_mac.h" #include "../mt792x_trace.h" #define MT_STA_BFER BIT(0) #define MT_STA_BFEE BIT(1) static bool mt7921_disable_clc; module_param_named(disable_clc, mt7921_disable_clc, bool, 0644); MODULE_PARM_DESC(disable_clc, "disable CLC support"); int mt7921_mcu_parse_response(struct mt76_dev *mdev, int cmd, struct sk_buff *skb, int seq) { int mcu_cmd = FIELD_GET(__MCU_CMD_FIELD_ID, cmd); struct mt76_connac2_mcu_rxd *rxd; int ret = 0; if (!skb) { dev_err(mdev->dev, "Message %08x (seq %d) timeout\n", cmd, seq); mt792x_reset(mdev); return -ETIMEDOUT; } rxd = (struct mt76_connac2_mcu_rxd *)skb->data; if (seq != rxd->seq) return -EAGAIN; if (cmd == MCU_CMD(PATCH_SEM_CONTROL) || cmd == MCU_CMD(PATCH_FINISH_REQ)) { skb_pull(skb, sizeof(*rxd) - 4); ret = *skb->data; } else if (cmd == MCU_EXT_CMD(THERMAL_CTRL)) { skb_pull(skb, sizeof(*rxd) + 4); ret = le32_to_cpu(*(__le32 *)skb->data); } else if (cmd == MCU_UNI_CMD(DEV_INFO_UPDATE) || cmd == MCU_UNI_CMD(BSS_INFO_UPDATE) || cmd == MCU_UNI_CMD(STA_REC_UPDATE) || cmd == MCU_UNI_CMD(HIF_CTRL) || cmd == MCU_UNI_CMD(OFFLOAD) || cmd == MCU_UNI_CMD(SUSPEND)) { struct mt76_connac_mcu_uni_event *event; skb_pull(skb, sizeof(*rxd)); event = (struct mt76_connac_mcu_uni_event *)skb->data; ret = le32_to_cpu(event->status); /* skip invalid event */ if (mcu_cmd != event->cid) ret = -EAGAIN; } else if (cmd == MCU_CE_QUERY(REG_READ)) { struct mt76_connac_mcu_reg_event *event; skb_pull(skb, sizeof(*rxd)); event = (struct mt76_connac_mcu_reg_event *)skb->data; ret = (int)le32_to_cpu(event->val); } else { skb_pull(skb, sizeof(struct mt76_connac2_mcu_rxd)); } return ret; } EXPORT_SYMBOL_GPL(mt7921_mcu_parse_response); static int mt7921_mcu_read_eeprom(struct mt792x_dev *dev, u32 offset, u8 *val) { struct mt7921_mcu_eeprom_info *res, req = { .addr = cpu_to_le32(round_down(offset, MT7921_EEPROM_BLOCK_SIZE)), }; struct sk_buff *skb; int ret; ret = mt76_mcu_send_and_get_msg(&dev->mt76, MCU_EXT_QUERY(EFUSE_ACCESS), &req, sizeof(req), true, &skb); if (ret) return ret; res = (struct mt7921_mcu_eeprom_info *)skb->data; *val = res->data[offset % MT7921_EEPROM_BLOCK_SIZE]; dev_kfree_skb(skb); return 0; } #ifdef CONFIG_PM static int mt7921_mcu_set_ipv6_ns_filter(struct mt76_dev *dev, struct ieee80211_vif *vif, bool suspend) { struct mt792x_vif *mvif = (struct mt792x_vif *)vif->drv_priv; struct { struct { u8 bss_idx; u8 pad[3]; } __packed hdr; struct mt76_connac_arpns_tlv arpns; } req = { .hdr = { .bss_idx = mvif->mt76.idx, }, .arpns = { .tag = cpu_to_le16(UNI_OFFLOAD_OFFLOAD_ND), .len = cpu_to_le16(sizeof(struct mt76_connac_arpns_tlv)), .mode = suspend, }, }; return mt76_mcu_send_msg(dev, MCU_UNI_CMD_OFFLOAD, &req, sizeof(req), true); } void mt7921_mcu_set_suspend_iter(void *priv, u8 *mac, struct ieee80211_vif *vif) { if (IS_ENABLED(CONFIG_IPV6)) { struct mt76_phy *phy = priv; mt7921_mcu_set_ipv6_ns_filter(phy->dev, vif, !test_bit(MT76_STATE_RUNNING, &phy->state)); } mt76_connac_mcu_set_suspend_iter(priv, mac, vif); } #endif /* CONFIG_PM */ static void mt7921_mcu_uni_roc_event(struct mt792x_dev *dev, struct sk_buff *skb) { struct mt7921_roc_grant_tlv *grant; struct mt76_connac2_mcu_rxd *rxd; int duration; rxd = (struct mt76_connac2_mcu_rxd *)skb->data; grant = (struct mt7921_roc_grant_tlv *)(rxd->tlv + 4); /* should never happen */ WARN_ON_ONCE((le16_to_cpu(grant->tag) != UNI_EVENT_ROC_GRANT)); if (grant->reqtype == MT7921_ROC_REQ_ROC) ieee80211_ready_on_channel(dev->mt76.phy.hw); dev->phy.roc_grant = true; wake_up(&dev->phy.roc_wait); duration = le32_to_cpu(grant->max_interval); mod_timer(&dev->phy.roc_timer, jiffies + msecs_to_jiffies(duration)); } static void mt7921_mcu_scan_event(struct mt792x_dev *dev, struct sk_buff *skb) { struct mt76_phy *mphy = &dev->mt76.phy; struct mt792x_phy *phy = (struct mt792x_phy *)mphy->priv; spin_lock_bh(&dev->mt76.lock); __skb_queue_tail(&phy->scan_event_list, skb); spin_unlock_bh(&dev->mt76.lock); ieee80211_queue_delayed_work(mphy->hw, &phy->scan_work, MT792x_HW_SCAN_TIMEOUT); } static void mt7921_mcu_connection_loss_iter(void *priv, u8 *mac, struct ieee80211_vif *vif) { struct mt76_vif *mvif = (struct mt76_vif *)vif->drv_priv; struct mt76_connac_beacon_loss_event *event = priv; if (mvif->idx != event->bss_idx) return; if (!(vif->driver_flags & IEEE80211_VIF_BEACON_FILTER) || vif->type != NL80211_IFTYPE_STATION) return; ieee80211_connection_loss(vif); } static void mt7921_mcu_connection_loss_event(struct mt792x_dev *dev, struct sk_buff *skb) { struct mt76_connac_beacon_loss_event *event; struct mt76_phy *mphy = &dev->mt76.phy; skb_pull(skb, sizeof(struct mt76_connac2_mcu_rxd)); event = (struct mt76_connac_beacon_loss_event *)skb->data; ieee80211_iterate_active_interfaces_atomic(mphy->hw, IEEE80211_IFACE_ITER_RESUME_ALL, mt7921_mcu_connection_loss_iter, event); } static void mt7921_mcu_debug_msg_event(struct mt792x_dev *dev, struct sk_buff *skb) { struct mt7921_debug_msg { __le16 id; u8 type; u8 flag; __le32 value; __le16 len; u8 content[512]; } __packed * msg; skb_pull(skb, sizeof(struct mt76_connac2_mcu_rxd)); msg = (struct mt7921_debug_msg *)skb->data; if (msg->type == 3) { /* fw log */ u16 len = min_t(u16, le16_to_cpu(msg->len), 512); int i; for (i = 0 ; i < len; i++) { if (!msg->content[i]) msg->content[i] = ' '; } wiphy_info(mt76_hw(dev)->wiphy, "%.*s", len, msg->content); } } static void mt7921_mcu_low_power_event(struct mt792x_dev *dev, struct sk_buff *skb) { struct mt7921_mcu_lp_event { u8 state; u8 reserved[3]; } __packed * event; skb_pull(skb, sizeof(struct mt76_connac2_mcu_rxd)); event = (struct mt7921_mcu_lp_event *)skb->data; trace_lp_event(dev, event->state); } static void mt7921_mcu_tx_done_event(struct mt792x_dev *dev, struct sk_buff *skb) { struct mt7921_mcu_tx_done_event *event; skb_pull(skb, sizeof(struct mt76_connac2_mcu_rxd)); event = (struct mt7921_mcu_tx_done_event *)skb->data; mt7921_mac_add_txs(dev, event->txs); } static void mt7921_mcu_rx_unsolicited_event(struct mt792x_dev *dev, struct sk_buff *skb) { struct mt76_connac2_mcu_rxd *rxd; rxd = (struct mt76_connac2_mcu_rxd *)skb->data; switch (rxd->eid) { case MCU_EVENT_BSS_BEACON_LOSS: mt7921_mcu_connection_loss_event(dev, skb); break; case MCU_EVENT_SCHED_SCAN_DONE: case MCU_EVENT_SCAN_DONE: mt7921_mcu_scan_event(dev, skb); return; case MCU_EVENT_DBG_MSG: mt7921_mcu_debug_msg_event(dev, skb); break; case MCU_EVENT_COREDUMP: dev->fw_assert = true; mt76_connac_mcu_coredump_event(&dev->mt76, skb, &dev->coredump); return; case MCU_EVENT_LP_INFO: mt7921_mcu_low_power_event(dev, skb); break; case MCU_EVENT_TX_DONE: mt7921_mcu_tx_done_event(dev, skb); break; default: break; } dev_kfree_skb(skb); } static void mt7921_mcu_uni_rx_unsolicited_event(struct mt792x_dev *dev, struct sk_buff *skb) { struct mt76_connac2_mcu_rxd *rxd; rxd = (struct mt76_connac2_mcu_rxd *)skb->data; switch (rxd->eid) { case MCU_UNI_EVENT_ROC: mt7921_mcu_uni_roc_event(dev, skb); break; default: break; } dev_kfree_skb(skb); } void mt7921_mcu_rx_event(struct mt792x_dev *dev, struct sk_buff *skb) { struct mt76_connac2_mcu_rxd *rxd; if (skb_linearize(skb)) return; rxd = (struct mt76_connac2_mcu_rxd *)skb->data; if (rxd->option & MCU_UNI_CMD_UNSOLICITED_EVENT) { mt7921_mcu_uni_rx_unsolicited_event(dev, skb); return; } if (rxd->eid == 0x6) { mt76_mcu_rx_event(&dev->mt76, skb); return; } if (rxd->ext_eid == MCU_EXT_EVENT_RATE_REPORT || rxd->eid == MCU_EVENT_BSS_BEACON_LOSS || rxd->eid == MCU_EVENT_SCHED_SCAN_DONE || rxd->eid == MCU_EVENT_SCAN_DONE || rxd->eid == MCU_EVENT_TX_DONE || rxd->eid == MCU_EVENT_DBG_MSG || rxd->eid == MCU_EVENT_COREDUMP || rxd->eid == MCU_EVENT_LP_INFO || !rxd->seq) mt7921_mcu_rx_unsolicited_event(dev, skb); else mt76_mcu_rx_event(&dev->mt76, skb); } /** starec & wtbl **/ int mt7921_mcu_uni_tx_ba(struct mt792x_dev *dev, struct ieee80211_ampdu_params *params, bool enable) { struct mt792x_sta *msta = (struct mt792x_sta *)params->sta->drv_priv; if (enable && !params->amsdu) msta->wcid.amsdu = false; return mt76_connac_mcu_sta_ba(&dev->mt76, &msta->vif->mt76, params, MCU_UNI_CMD(STA_REC_UPDATE), enable, true); } int mt7921_mcu_uni_rx_ba(struct mt792x_dev *dev, struct ieee80211_ampdu_params *params, bool enable) { struct mt792x_sta *msta = (struct mt792x_sta *)params->sta->drv_priv; return mt76_connac_mcu_sta_ba(&dev->mt76, &msta->vif->mt76, params, MCU_UNI_CMD(STA_REC_UPDATE), enable, false); } static int mt7921_load_clc(struct mt792x_dev *dev, const char *fw_name) { const struct mt76_connac2_fw_trailer *hdr; const struct mt76_connac2_fw_region *region; const struct mt7921_clc *clc; struct mt76_dev *mdev = &dev->mt76; struct mt792x_phy *phy = &dev->phy; const struct firmware *fw; int ret, i, len, offset = 0; u8 *clc_base = NULL, hw_encap = 0; if (mt7921_disable_clc || mt76_is_usb(&dev->mt76)) return 0; if (mt76_is_mmio(&dev->mt76)) { ret = mt7921_mcu_read_eeprom(dev, MT_EE_HW_TYPE, &hw_encap); if (ret) return ret; hw_encap = u8_get_bits(hw_encap, MT_EE_HW_TYPE_ENCAP); } ret = request_firmware(&fw, fw_name, mdev->dev); if (ret) return ret; if (!fw || !fw->data || fw->size < sizeof(*hdr)) { dev_err(mdev->dev, "Invalid firmware\n"); ret = -EINVAL; goto out; } hdr = (const void *)(fw->data + fw->size - sizeof(*hdr)); for (i = 0; i < hdr->n_region; i++) { region = (const void *)((const u8 *)hdr - (hdr->n_region - i) * sizeof(*region)); len = le32_to_cpu(region->len); /* check if we have valid buffer size */ if (offset + len > fw->size) { dev_err(mdev->dev, "Invalid firmware region\n"); ret = -EINVAL; goto out; } if ((region->feature_set & FW_FEATURE_NON_DL) && region->type == FW_TYPE_CLC) { clc_base = (u8 *)(fw->data + offset); break; } offset += len; } if (!clc_base) goto out; for (offset = 0; offset < len; offset += le32_to_cpu(clc->len)) { clc = (const struct mt7921_clc *)(clc_base + offset); /* do not init buf again if chip reset triggered */ if (phy->clc[clc->idx]) continue; /* header content sanity */ if (clc->idx == MT7921_CLC_POWER && u8_get_bits(clc->type, MT_EE_HW_TYPE_ENCAP) != hw_encap) continue; phy->clc[clc->idx] = devm_kmemdup(mdev->dev, clc, le32_to_cpu(clc->len), GFP_KERNEL); if (!phy->clc[clc->idx]) { ret = -ENOMEM; goto out; } } ret = mt7921_mcu_set_clc(dev, "00", ENVIRON_INDOOR); out: release_firmware(fw); return ret; } int mt7921_mcu_fw_log_2_host(struct mt792x_dev *dev, u8 ctrl) { struct { u8 ctrl_val; u8 pad[3]; } data = { .ctrl_val = ctrl }; return mt76_mcu_send_msg(&dev->mt76, MCU_CE_CMD(FWLOG_2_HOST), &data, sizeof(data), false); } int mt7921_run_firmware(struct mt792x_dev *dev) { int err; err = mt792x_load_firmware(dev); if (err) return err; err = mt76_connac_mcu_get_nic_capability(&dev->mphy); if (err) return err; set_bit(MT76_STATE_MCU_RUNNING, &dev->mphy.state); err = mt7921_load_clc(dev, mt792x_ram_name(dev)); if (err) return err; return mt7921_mcu_fw_log_2_host(dev, 1); } EXPORT_SYMBOL_GPL(mt7921_run_firmware); int mt7921_mcu_set_tx(struct mt792x_dev *dev, struct ieee80211_vif *vif) { struct mt792x_vif *mvif = (struct mt792x_vif *)vif->drv_priv; struct edca { __le16 cw_min; __le16 cw_max; __le16 txop; __le16 aifs; u8 guardtime; u8 acm; } __packed; struct mt7921_mcu_tx { struct edca edca[IEEE80211_NUM_ACS]; u8 bss_idx; u8 qos; u8 wmm_idx; u8 pad; } __packed req = { .bss_idx = mvif->mt76.idx, .qos = vif->bss_conf.qos, .wmm_idx = mvif->mt76.wmm_idx, }; struct mu_edca { u8 cw_min; u8 cw_max; u8 aifsn; u8 acm; u8 timer; u8 padding[3]; }; struct mt7921_mcu_mu_tx { u8 ver; u8 pad0; __le16 len; u8 bss_idx; u8 qos; u8 wmm_idx; u8 pad1; struct mu_edca edca[IEEE80211_NUM_ACS]; u8 pad3[32]; } __packed req_mu = { .bss_idx = mvif->mt76.idx, .qos = vif->bss_conf.qos, .wmm_idx = mvif->mt76.wmm_idx, }; static const int to_aci[] = { 1, 0, 2, 3 }; int ac, ret; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { struct ieee80211_tx_queue_params *q = &mvif->queue_params[ac]; struct edca *e = &req.edca[to_aci[ac]]; e->aifs = cpu_to_le16(q->aifs); e->txop = cpu_to_le16(q->txop); if (q->cw_min) e->cw_min = cpu_to_le16(q->cw_min); else e->cw_min = cpu_to_le16(5); if (q->cw_max) e->cw_max = cpu_to_le16(q->cw_max); else e->cw_max = cpu_to_le16(10); } ret = mt76_mcu_send_msg(&dev->mt76, MCU_CE_CMD(SET_EDCA_PARMS), &req, sizeof(req), false); if (ret) return ret; if (!vif->bss_conf.he_support) return 0; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { struct ieee80211_he_mu_edca_param_ac_rec *q; struct mu_edca *e; if (!mvif->queue_params[ac].mu_edca) break; q = &mvif->queue_params[ac].mu_edca_param_rec; e = &(req_mu.edca[to_aci[ac]]); e->cw_min = q->ecw_min_max & 0xf; e->cw_max = (q->ecw_min_max & 0xf0) >> 4; e->aifsn = q->aifsn; e->timer = q->mu_edca_timer; } return mt76_mcu_send_msg(&dev->mt76, MCU_CE_CMD(SET_MU_EDCA_PARMS), &req_mu, sizeof(req_mu), false); } int mt7921_mcu_set_roc(struct mt792x_phy *phy, struct mt792x_vif *vif, struct ieee80211_channel *chan, int duration, enum mt7921_roc_req type, u8 token_id) { int center_ch = ieee80211_frequency_to_channel(chan->center_freq); struct mt792x_dev *dev = phy->dev; struct { struct { u8 rsv[4]; } __packed hdr; struct roc_acquire_tlv { __le16 tag; __le16 len; u8 bss_idx; u8 tokenid; u8 control_channel; u8 sco; u8 band; u8 bw; u8 center_chan; u8 center_chan2; u8 bw_from_ap; u8 center_chan_from_ap; u8 center_chan2_from_ap; u8 reqtype; __le32 maxinterval; u8 dbdcband; u8 rsv[3]; } __packed roc; } __packed req = { .roc = { .tag = cpu_to_le16(UNI_ROC_ACQUIRE), .len = cpu_to_le16(sizeof(struct roc_acquire_tlv)), .tokenid = token_id, .reqtype = type, .maxinterval = cpu_to_le32(duration), .bss_idx = vif->mt76.idx, .control_channel = chan->hw_value, .bw = CMD_CBW_20MHZ, .bw_from_ap = CMD_CBW_20MHZ, .center_chan = center_ch, .center_chan_from_ap = center_ch, .dbdcband = 0xff, /* auto */ }, }; if (chan->hw_value < center_ch) req.roc.sco = 1; /* SCA */ else if (chan->hw_value > center_ch) req.roc.sco = 3; /* SCB */ switch (chan->band) { case NL80211_BAND_6GHZ: req.roc.band = 3; break; case NL80211_BAND_5GHZ: req.roc.band = 2; break; default: req.roc.band = 1; break; } return mt76_mcu_send_msg(&dev->mt76, MCU_UNI_CMD(ROC), &req, sizeof(req), false); } int mt7921_mcu_abort_roc(struct mt792x_phy *phy, struct mt792x_vif *vif, u8 token_id) { struct mt792x_dev *dev = phy->dev; struct { struct { u8 rsv[4]; } __packed hdr; struct roc_abort_tlv { __le16 tag; __le16 len; u8 bss_idx; u8 tokenid; u8 dbdcband; u8 rsv[5]; } __packed abort; } __packed req = { .abort = { .tag = cpu_to_le16(UNI_ROC_ABORT), .len = cpu_to_le16(sizeof(struct roc_abort_tlv)), .tokenid = token_id, .bss_idx = vif->mt76.idx, .dbdcband = 0xff, /* auto*/ }, }; return mt76_mcu_send_msg(&dev->mt76, MCU_UNI_CMD(ROC), &req, sizeof(req), false); } int mt7921_mcu_set_chan_info(struct mt792x_phy *phy, int cmd) { struct mt792x_dev *dev = phy->dev; struct cfg80211_chan_def *chandef = &phy->mt76->chandef; int freq1 = chandef->center_freq1; struct { u8 control_ch; u8 center_ch; u8 bw; u8 tx_streams_num; u8 rx_streams; /* mask or num */ u8 switch_reason; u8 band_idx; u8 center_ch2; /* for 80+80 only */ __le16 cac_case; u8 channel_band; u8 rsv0; __le32 outband_freq; u8 txpower_drop; u8 ap_bw; u8 ap_center_ch; u8 rsv1[57]; } __packed req = { .control_ch = chandef->chan->hw_value, .center_ch = ieee80211_frequency_to_channel(freq1), .bw = mt76_connac_chan_bw(chandef), .tx_streams_num = hweight8(phy->mt76->antenna_mask), .rx_streams = phy->mt76->antenna_mask, .band_idx = phy != &dev->phy, }; if (chandef->chan->band == NL80211_BAND_6GHZ) req.channel_band = 2; else req.channel_band = chandef->chan->band; if (cmd == MCU_EXT_CMD(SET_RX_PATH) || dev->mt76.hw->conf.flags & IEEE80211_CONF_MONITOR) req.switch_reason = CH_SWITCH_NORMAL; else if (dev->mt76.hw->conf.flags & IEEE80211_CONF_OFFCHANNEL) req.switch_reason = CH_SWITCH_SCAN_BYPASS_DPD; else if (!cfg80211_reg_can_beacon(dev->mt76.hw->wiphy, chandef, NL80211_IFTYPE_AP)) req.switch_reason = CH_SWITCH_DFS; else req.switch_reason = CH_SWITCH_NORMAL; if (cmd == MCU_EXT_CMD(CHANNEL_SWITCH)) req.rx_streams = hweight8(req.rx_streams); if (chandef->width == NL80211_CHAN_WIDTH_80P80) { int freq2 = chandef->center_freq2; req.center_ch2 = ieee80211_frequency_to_channel(freq2); } return mt76_mcu_send_msg(&dev->mt76, cmd, &req, sizeof(req), true); } int mt7921_mcu_set_eeprom(struct mt792x_dev *dev) { struct req_hdr { u8 buffer_mode; u8 format; __le16 len; } __packed req = { .buffer_mode = EE_MODE_EFUSE, .format = EE_FORMAT_WHOLE, }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(EFUSE_BUFFER_MODE), &req, sizeof(req), true); } EXPORT_SYMBOL_GPL(mt7921_mcu_set_eeprom); int mt7921_mcu_uni_bss_ps(struct mt792x_dev *dev, struct ieee80211_vif *vif) { struct mt792x_vif *mvif = (struct mt792x_vif *)vif->drv_priv; struct { struct { u8 bss_idx; u8 pad[3]; } __packed hdr; struct ps_tlv { __le16 tag; __le16 len; u8 ps_state; /* 0: device awake * 1: static power save * 2: dynamic power saving * 3: enter TWT power saving * 4: leave TWT power saving */ u8 pad[3]; } __packed ps; } __packed ps_req = { .hdr = { .bss_idx = mvif->mt76.idx, }, .ps = { .tag = cpu_to_le16(UNI_BSS_INFO_PS), .len = cpu_to_le16(sizeof(struct ps_tlv)), .ps_state = vif->cfg.ps ? 2 : 0, }, }; if (vif->type != NL80211_IFTYPE_STATION) return -EOPNOTSUPP; return mt76_mcu_send_msg(&dev->mt76, MCU_UNI_CMD(BSS_INFO_UPDATE), &ps_req, sizeof(ps_req), true); } static int mt7921_mcu_uni_bss_bcnft(struct mt792x_dev *dev, struct ieee80211_vif *vif, bool enable) { struct mt792x_vif *mvif = (struct mt792x_vif *)vif->drv_priv; struct { struct { u8 bss_idx; u8 pad[3]; } __packed hdr; struct bcnft_tlv { __le16 tag; __le16 len; __le16 bcn_interval; u8 dtim_period; u8 pad; } __packed bcnft; } __packed bcnft_req = { .hdr = { .bss_idx = mvif->mt76.idx, }, .bcnft = { .tag = cpu_to_le16(UNI_BSS_INFO_BCNFT), .len = cpu_to_le16(sizeof(struct bcnft_tlv)), .bcn_interval = cpu_to_le16(vif->bss_conf.beacon_int), .dtim_period = vif->bss_conf.dtim_period, }, }; if (vif->type != NL80211_IFTYPE_STATION) return 0; return mt76_mcu_send_msg(&dev->mt76, MCU_UNI_CMD(BSS_INFO_UPDATE), &bcnft_req, sizeof(bcnft_req), true); } int mt7921_mcu_set_bss_pm(struct mt792x_dev *dev, struct ieee80211_vif *vif, bool enable) { struct mt792x_vif *mvif = (struct mt792x_vif *)vif->drv_priv; struct { u8 bss_idx; u8 dtim_period; __le16 aid; __le16 bcn_interval; __le16 atim_window; u8 uapsd; u8 bmc_delivered_ac; u8 bmc_triggered_ac; u8 pad; } req = { .bss_idx = mvif->mt76.idx, .aid = cpu_to_le16(vif->cfg.aid), .dtim_period = vif->bss_conf.dtim_period, .bcn_interval = cpu_to_le16(vif->bss_conf.beacon_int), }; struct { u8 bss_idx; u8 pad[3]; } req_hdr = { .bss_idx = mvif->mt76.idx, }; int err; err = mt76_mcu_send_msg(&dev->mt76, MCU_CE_CMD(SET_BSS_ABORT), &req_hdr, sizeof(req_hdr), false); if (err < 0 || !enable) return err; return mt76_mcu_send_msg(&dev->mt76, MCU_CE_CMD(SET_BSS_CONNECTED), &req, sizeof(req), false); } int mt7921_mcu_sta_update(struct mt792x_dev *dev, struct ieee80211_sta *sta, struct ieee80211_vif *vif, bool enable, enum mt76_sta_info_state state) { struct mt792x_vif *mvif = (struct mt792x_vif *)vif->drv_priv; int rssi = -ewma_rssi_read(&mvif->rssi); struct mt76_sta_cmd_info info = { .sta = sta, .vif = vif, .enable = enable, .cmd = MCU_UNI_CMD(STA_REC_UPDATE), .state = state, .offload_fw = true, .rcpi = to_rcpi(rssi), }; struct mt792x_sta *msta; msta = sta ? (struct mt792x_sta *)sta->drv_priv : NULL; info.wcid = msta ? &msta->wcid : &mvif->sta.wcid; info.newly = msta ? state != MT76_STA_INFO_STATE_ASSOC : true; return mt76_connac_mcu_sta_cmd(&dev->mphy, &info); } int mt7921_mcu_set_beacon_filter(struct mt792x_dev *dev, struct ieee80211_vif *vif, bool enable) { #define MT7921_FIF_BIT_CLR BIT(1) #define MT7921_FIF_BIT_SET BIT(0) int err; if (enable) { err = mt7921_mcu_uni_bss_bcnft(dev, vif, true); if (err) return err; err = mt7921_mcu_set_rxfilter(dev, 0, MT7921_FIF_BIT_SET, MT_WF_RFCR_DROP_OTHER_BEACON); if (err) return err; return 0; } err = mt7921_mcu_set_bss_pm(dev, vif, false); if (err) return err; err = mt7921_mcu_set_rxfilter(dev, 0, MT7921_FIF_BIT_CLR, MT_WF_RFCR_DROP_OTHER_BEACON); if (err) return err; return 0; } int mt7921_get_txpwr_info(struct mt792x_dev *dev, struct mt7921_txpwr *txpwr) { struct mt7921_txpwr_event *event; struct mt7921_txpwr_req req = { .dbdc_idx = 0, }; struct sk_buff *skb; int ret; ret = mt76_mcu_send_and_get_msg(&dev->mt76, MCU_CE_CMD(GET_TXPWR), &req, sizeof(req), true, &skb); if (ret) return ret; event = (struct mt7921_txpwr_event *)skb->data; WARN_ON(skb->len != le16_to_cpu(event->len)); memcpy(txpwr, &event->txpwr, sizeof(event->txpwr)); dev_kfree_skb(skb); return 0; } int mt7921_mcu_set_sniffer(struct mt792x_dev *dev, struct ieee80211_vif *vif, bool enable) { struct mt76_vif *mvif = (struct mt76_vif *)vif->drv_priv; struct { struct { u8 band_idx; u8 pad[3]; } __packed hdr; struct sniffer_enable_tlv { __le16 tag; __le16 len; u8 enable; u8 pad[3]; } __packed enable; } req = { .hdr = { .band_idx = mvif->band_idx, }, .enable = { .tag = cpu_to_le16(0), .len = cpu_to_le16(sizeof(struct sniffer_enable_tlv)), .enable = enable, }, }; return mt76_mcu_send_msg(&dev->mt76, MCU_UNI_CMD(SNIFFER), &req, sizeof(req), true); } int mt7921_mcu_config_sniffer(struct mt792x_vif *vif, struct ieee80211_chanctx_conf *ctx) { struct cfg80211_chan_def *chandef = &ctx->def; int freq1 = chandef->center_freq1, freq2 = chandef->center_freq2; const u8 ch_band[] = { [NL80211_BAND_2GHZ] = 1, [NL80211_BAND_5GHZ] = 2, [NL80211_BAND_6GHZ] = 3, }; const u8 ch_width[] = { [NL80211_CHAN_WIDTH_20_NOHT] = 0, [NL80211_CHAN_WIDTH_20] = 0, [NL80211_CHAN_WIDTH_40] = 0, [NL80211_CHAN_WIDTH_80] = 1, [NL80211_CHAN_WIDTH_160] = 2, [NL80211_CHAN_WIDTH_80P80] = 3, [NL80211_CHAN_WIDTH_5] = 4, [NL80211_CHAN_WIDTH_10] = 5, [NL80211_CHAN_WIDTH_320] = 6, }; struct { struct { u8 band_idx; u8 pad[3]; } __packed hdr; struct config_tlv { __le16 tag; __le16 len; u16 aid; u8 ch_band; u8 bw; u8 control_ch; u8 sco; u8 center_ch; u8 center_ch2; u8 drop_err; u8 pad[3]; } __packed tlv; } __packed req = { .hdr = { .band_idx = vif->mt76.band_idx, }, .tlv = { .tag = cpu_to_le16(1), .len = cpu_to_le16(sizeof(req.tlv)), .control_ch = chandef->chan->hw_value, .center_ch = ieee80211_frequency_to_channel(freq1), .drop_err = 1, }, }; if (chandef->chan->band < ARRAY_SIZE(ch_band)) req.tlv.ch_band = ch_band[chandef->chan->band]; if (chandef->width < ARRAY_SIZE(ch_width)) req.tlv.bw = ch_width[chandef->width]; if (freq2) req.tlv.center_ch2 = ieee80211_frequency_to_channel(freq2); if (req.tlv.control_ch < req.tlv.center_ch) req.tlv.sco = 1; /* SCA */ else if (req.tlv.control_ch > req.tlv.center_ch) req.tlv.sco = 3; /* SCB */ return mt76_mcu_send_msg(vif->phy->mt76->dev, MCU_UNI_CMD(SNIFFER), &req, sizeof(req), true); } int mt7921_mcu_uni_add_beacon_offload(struct mt792x_dev *dev, struct ieee80211_hw *hw, struct ieee80211_vif *vif, bool enable) { struct mt792x_vif *mvif = (struct mt792x_vif *)vif->drv_priv; struct mt76_wcid *wcid = &dev->mt76.global_wcid; struct ieee80211_mutable_offsets offs; struct { struct req_hdr { u8 bss_idx; u8 pad[3]; } __packed hdr; struct bcn_content_tlv { __le16 tag; __le16 len; __le16 tim_ie_pos; __le16 csa_ie_pos; __le16 bcc_ie_pos; /* 0: disable beacon offload * 1: enable beacon offload * 2: update probe respond offload */ u8 enable; /* 0: legacy format (TXD + payload) * 1: only cap field IE */ u8 type; __le16 pkt_len; u8 pkt[512]; } __packed beacon_tlv; } req = { .hdr = { .bss_idx = mvif->mt76.idx, }, .beacon_tlv = { .tag = cpu_to_le16(UNI_BSS_INFO_BCN_CONTENT), .len = cpu_to_le16(sizeof(struct bcn_content_tlv)), .enable = enable, }, }; struct sk_buff *skb; /* support enable/update process only * disable flow would be handled in bss stop handler automatically */ if (!enable) return -EOPNOTSUPP; skb = ieee80211_beacon_get_template(mt76_hw(dev), vif, &offs, 0); if (!skb) return -EINVAL; if (skb->len > 512 - MT_TXD_SIZE) { dev_err(dev->mt76.dev, "beacon size limit exceed\n"); dev_kfree_skb(skb); return -EINVAL; } mt76_connac2_mac_write_txwi(&dev->mt76, (__le32 *)(req.beacon_tlv.pkt), skb, wcid, NULL, 0, 0, BSS_CHANGED_BEACON); memcpy(req.beacon_tlv.pkt + MT_TXD_SIZE, skb->data, skb->len); req.beacon_tlv.pkt_len = cpu_to_le16(MT_TXD_SIZE + skb->len); req.beacon_tlv.tim_ie_pos = cpu_to_le16(MT_TXD_SIZE + offs.tim_offset); if (offs.cntdwn_counter_offs[0]) { u16 csa_offs; csa_offs = MT_TXD_SIZE + offs.cntdwn_counter_offs[0] - 4; req.beacon_tlv.csa_ie_pos = cpu_to_le16(csa_offs); } dev_kfree_skb(skb); return mt76_mcu_send_msg(&dev->mt76, MCU_UNI_CMD(BSS_INFO_UPDATE), &req, sizeof(req), true); } static int __mt7921_mcu_set_clc(struct mt792x_dev *dev, u8 *alpha2, enum environment_cap env_cap, struct mt7921_clc *clc, u8 idx) { struct sk_buff *skb; struct { u8 ver; u8 pad0; __le16 len; u8 idx; u8 env; u8 acpi_conf; u8 pad1; u8 alpha2[2]; u8 type[2]; u8 rsvd[64]; } __packed req = { .idx = idx, .env = env_cap, .acpi_conf = mt792x_acpi_get_flags(&dev->phy), }; int ret, valid_cnt = 0; u8 i, *pos; if (!clc) return 0; pos = clc->data; for (i = 0; i < clc->nr_country; i++) { struct mt7921_clc_rule *rule = (struct mt7921_clc_rule *)pos; u16 len = le16_to_cpu(rule->len); pos += len + sizeof(*rule); if (rule->alpha2[0] != alpha2[0] || rule->alpha2[1] != alpha2[1]) continue; memcpy(req.alpha2, rule->alpha2, 2); memcpy(req.type, rule->type, 2); req.len = cpu_to_le16(sizeof(req) + len); skb = __mt76_mcu_msg_alloc(&dev->mt76, &req, le16_to_cpu(req.len), sizeof(req), GFP_KERNEL); if (!skb) return -ENOMEM; skb_put_data(skb, rule->data, len); ret = mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_CE_CMD(SET_CLC), false); if (ret < 0) return ret; valid_cnt++; } if (!valid_cnt) return -ENOENT; return 0; } int mt7921_mcu_set_clc(struct mt792x_dev *dev, u8 *alpha2, enum environment_cap env_cap) { struct mt792x_phy *phy = (struct mt792x_phy *)&dev->phy; int i, ret; /* submit all clc config */ for (i = 0; i < ARRAY_SIZE(phy->clc); i++) { ret = __mt7921_mcu_set_clc(dev, alpha2, env_cap, phy->clc[i], i); /* If no country found, set "00" as default */ if (ret == -ENOENT) ret = __mt7921_mcu_set_clc(dev, "00", ENVIRON_INDOOR, phy->clc[i], i); if (ret < 0) return ret; } return 0; } int mt7921_mcu_get_temperature(struct mt792x_phy *phy) { struct mt792x_dev *dev = phy->dev; struct { u8 ctrl_id; u8 action; u8 band_idx; u8 rsv[5]; } req = { .ctrl_id = THERMAL_SENSOR_TEMP_QUERY, .band_idx = phy->mt76->band_idx, }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(THERMAL_CTRL), &req, sizeof(req), true); } int mt7921_mcu_set_rxfilter(struct mt792x_dev *dev, u32 fif, u8 bit_op, u32 bit_map) { struct { u8 rsv[4]; u8 mode; u8 rsv2[3]; __le32 fif; __le32 bit_map; /* bit_* for bitmap update */ u8 bit_op; u8 pad[51]; } __packed data = { .mode = fif ? 1 : 2, .fif = cpu_to_le32(fif), .bit_map = cpu_to_le32(bit_map), .bit_op = bit_op, }; return mt76_mcu_send_msg(&dev->mt76, MCU_CE_CMD(SET_RX_FILTER), &data, sizeof(data), false); }
linux-master
drivers/net/wireless/mediatek/mt76/mt7921/mcu.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2021 MediaTek Inc. */ #include <linux/kernel.h> #include <linux/mmc/sdio_func.h> #include <linux/module.h> #include <linux/iopoll.h> #include "mt7921.h" #include "../sdio.h" #include "../mt76_connac2_mac.h" #include "mcu.h" #include "regs.h" static int mt7921s_mcu_send_message(struct mt76_dev *mdev, struct sk_buff *skb, int cmd, int *seq) { struct mt792x_dev *dev = container_of(mdev, struct mt792x_dev, mt76); enum mt7921_sdio_pkt_type type = MT7921_SDIO_CMD; enum mt76_mcuq_id txq = MT_MCUQ_WM; int ret, pad; /* We just return in case firmware assertion to avoid blocking the * common workqueue to run, for example, the coredump work might be * blocked by mt792x_mac_work that is excuting register access via sdio * bus. */ if (dev->fw_assert) return -EBUSY; ret = mt76_connac2_mcu_fill_message(mdev, skb, cmd, seq); if (ret) return ret; mdev->mcu.timeout = 3 * HZ; if (cmd == MCU_CMD(FW_SCATTER)) type = MT7921_SDIO_FWDL; mt7921_skb_add_usb_sdio_hdr(dev, skb, type); pad = round_up(skb->len, 4) - skb->len; __skb_put_zero(skb, pad); ret = mt76_tx_queue_skb_raw(dev, mdev->q_mcu[txq], skb, 0); if (ret) return ret; mt76_queue_kick(dev, mdev->q_mcu[txq]); return ret; } static u32 mt7921s_read_rm3r(struct mt792x_dev *dev) { struct mt76_sdio *sdio = &dev->mt76.sdio; return sdio_readl(sdio->func, MCR_D2HRM3R, NULL); } static u32 mt7921s_clear_rm3r_drv_own(struct mt792x_dev *dev) { struct mt76_sdio *sdio = &dev->mt76.sdio; u32 val; val = sdio_readl(sdio->func, MCR_D2HRM3R, NULL); if (val) sdio_writel(sdio->func, H2D_SW_INT_CLEAR_MAILBOX_ACK, MCR_WSICR, NULL); return val; } int mt7921s_mcu_init(struct mt792x_dev *dev) { static const struct mt76_mcu_ops mt7921s_mcu_ops = { .headroom = MT_SDIO_HDR_SIZE + sizeof(struct mt76_connac2_mcu_txd), .tailroom = MT_SDIO_TAIL_SIZE, .mcu_skb_send_msg = mt7921s_mcu_send_message, .mcu_parse_response = mt7921_mcu_parse_response, .mcu_rr = mt76_connac_mcu_reg_rr, .mcu_wr = mt76_connac_mcu_reg_wr, }; int ret; mt7921s_mcu_drv_pmctrl(dev); dev->mt76.mcu_ops = &mt7921s_mcu_ops; ret = mt7921_run_firmware(dev); if (ret) return ret; set_bit(MT76_STATE_MCU_RUNNING, &dev->mphy.state); return 0; } int mt7921s_mcu_drv_pmctrl(struct mt792x_dev *dev) { struct sdio_func *func = dev->mt76.sdio.func; struct mt76_phy *mphy = &dev->mt76.phy; struct mt76_connac_pm *pm = &dev->pm; u32 status; int err; sdio_claim_host(func); sdio_writel(func, WHLPCR_FW_OWN_REQ_CLR, MCR_WHLPCR, NULL); err = readx_poll_timeout(mt76s_read_pcr, &dev->mt76, status, status & WHLPCR_IS_DRIVER_OWN, 2000, 1000000); if (!err && test_bit(MT76_STATE_MCU_RUNNING, &dev->mphy.state)) err = readx_poll_timeout(mt7921s_read_rm3r, dev, status, status & D2HRM3R_IS_DRIVER_OWN, 2000, 1000000); sdio_release_host(func); if (err < 0) { dev_err(dev->mt76.dev, "driver own failed\n"); return -EIO; } clear_bit(MT76_STATE_PM, &mphy->state); pm->stats.last_wake_event = jiffies; pm->stats.doze_time += pm->stats.last_wake_event - pm->stats.last_doze_event; return 0; } int mt7921s_mcu_fw_pmctrl(struct mt792x_dev *dev) { struct sdio_func *func = dev->mt76.sdio.func; struct mt76_phy *mphy = &dev->mt76.phy; struct mt76_connac_pm *pm = &dev->pm; u32 status; int err; sdio_claim_host(func); if (test_bit(MT76_STATE_MCU_RUNNING, &dev->mphy.state)) { err = readx_poll_timeout(mt7921s_clear_rm3r_drv_own, dev, status, !(status & D2HRM3R_IS_DRIVER_OWN), 2000, 1000000); if (err < 0) { dev_err(dev->mt76.dev, "mailbox ACK not cleared\n"); goto out; } } sdio_writel(func, WHLPCR_FW_OWN_REQ_SET, MCR_WHLPCR, NULL); err = readx_poll_timeout(mt76s_read_pcr, &dev->mt76, status, !(status & WHLPCR_IS_DRIVER_OWN), 2000, 1000000); out: sdio_release_host(func); if (err < 0) { dev_err(dev->mt76.dev, "firmware own failed\n"); clear_bit(MT76_STATE_PM, &mphy->state); return -EIO; } pm->stats.last_doze_event = jiffies; pm->stats.awake_time += pm->stats.last_doze_event - pm->stats.last_wake_event; return 0; }
linux-master
drivers/net/wireless/mediatek/mt76/mt7921/sdio_mcu.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2016 Felix Fietkau <[email protected]> */ #include "mt76x2.h" #include "../mt76x02_mac.h" static int mt76x2_start(struct ieee80211_hw *hw) { struct mt76x02_dev *dev = hw->priv; mt76x02_mac_start(dev); mt76x2_phy_start(dev); ieee80211_queue_delayed_work(mt76_hw(dev), &dev->mphy.mac_work, MT_MAC_WORK_INTERVAL); ieee80211_queue_delayed_work(mt76_hw(dev), &dev->wdt_work, MT_WATCHDOG_TIME); set_bit(MT76_STATE_RUNNING, &dev->mphy.state); return 0; } static void mt76x2_stop(struct ieee80211_hw *hw) { struct mt76x02_dev *dev = hw->priv; clear_bit(MT76_STATE_RUNNING, &dev->mphy.state); mt76x2_stop_hardware(dev); } static void mt76x2_set_channel(struct mt76x02_dev *dev, struct cfg80211_chan_def *chandef) { cancel_delayed_work_sync(&dev->cal_work); tasklet_disable(&dev->mt76.pre_tbtt_tasklet); tasklet_disable(&dev->dfs_pd.dfs_tasklet); mutex_lock(&dev->mt76.mutex); set_bit(MT76_RESET, &dev->mphy.state); mt76_set_channel(&dev->mphy); mt76x2_mac_stop(dev, true); mt76x2_phy_set_channel(dev, chandef); mt76x02_mac_cc_reset(dev); mt76x02_dfs_init_params(dev); mt76x2_mac_resume(dev); clear_bit(MT76_RESET, &dev->mphy.state); mutex_unlock(&dev->mt76.mutex); tasklet_enable(&dev->dfs_pd.dfs_tasklet); tasklet_enable(&dev->mt76.pre_tbtt_tasklet); mt76_txq_schedule_all(&dev->mphy); } static int mt76x2_config(struct ieee80211_hw *hw, u32 changed) { struct mt76x02_dev *dev = hw->priv; mutex_lock(&dev->mt76.mutex); if (changed & IEEE80211_CONF_CHANGE_MONITOR) { if (!(hw->conf.flags & IEEE80211_CONF_MONITOR)) dev->mt76.rxfilter |= MT_RX_FILTR_CFG_PROMISC; else dev->mt76.rxfilter &= ~MT_RX_FILTR_CFG_PROMISC; mt76_wr(dev, MT_RX_FILTR_CFG, dev->mt76.rxfilter); } if (changed & IEEE80211_CONF_CHANGE_POWER) { struct mt76_phy *mphy = &dev->mphy; dev->txpower_conf = hw->conf.power_level * 2; dev->txpower_conf = mt76_get_sar_power(mphy, mphy->chandef.chan, dev->txpower_conf); /* convert to per-chain power for 2x2 devices */ dev->txpower_conf -= 6; if (test_bit(MT76_STATE_RUNNING, &dev->mphy.state)) { mt76x2_phy_set_txpower(dev); mt76x02_tx_set_txpwr_auto(dev, dev->txpower_conf); } } mutex_unlock(&dev->mt76.mutex); if (changed & IEEE80211_CONF_CHANGE_CHANNEL) { ieee80211_stop_queues(hw); mt76x2_set_channel(dev, &hw->conf.chandef); ieee80211_wake_queues(hw); } return 0; } static void mt76x2_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u32 queues, bool drop) { } static int mt76x2_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant) { struct mt76x02_dev *dev = hw->priv; if (!tx_ant || tx_ant > 3 || tx_ant != rx_ant) return -EINVAL; mutex_lock(&dev->mt76.mutex); dev->mphy.chainmask = (tx_ant == 3) ? 0x202 : 0x101; dev->mphy.antenna_mask = tx_ant; mt76_set_stream_caps(&dev->mphy, true); mt76x2_phy_set_antenna(dev); mutex_unlock(&dev->mt76.mutex); return 0; } const struct ieee80211_ops mt76x2_ops = { .tx = mt76x02_tx, .start = mt76x2_start, .stop = mt76x2_stop, .add_interface = mt76x02_add_interface, .remove_interface = mt76x02_remove_interface, .config = mt76x2_config, .configure_filter = mt76x02_configure_filter, .bss_info_changed = mt76x02_bss_info_changed, .sta_state = mt76_sta_state, .sta_pre_rcu_remove = mt76_sta_pre_rcu_remove, .set_key = mt76x02_set_key, .conf_tx = mt76x02_conf_tx, .sw_scan_start = mt76_sw_scan, .sw_scan_complete = mt76x02_sw_scan_complete, .flush = mt76x2_flush, .ampdu_action = mt76x02_ampdu_action, .get_txpower = mt76_get_txpower, .wake_tx_queue = mt76_wake_tx_queue, .sta_rate_tbl_update = mt76x02_sta_rate_tbl_update, .release_buffered_frames = mt76_release_buffered_frames, .set_coverage_class = mt76x02_set_coverage_class, .get_survey = mt76_get_survey, .set_tim = mt76_set_tim, .set_antenna = mt76x2_set_antenna, .get_antenna = mt76_get_antenna, .set_rts_threshold = mt76x02_set_rts_threshold, .reconfig_complete = mt76x02_reconfig_complete, .set_sar_specs = mt76x2_set_sar_specs, };
linux-master
drivers/net/wireless/mediatek/mt76/mt76x2/pci_main.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2018 Lorenzo Bianconi <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include "../mt76x02_usb.h" #include "mt76x2u.h" static const struct usb_device_id mt76x2u_device_table[] = { { USB_DEVICE(0x0b05, 0x1833) }, /* Asus USB-AC54 */ { USB_DEVICE(0x0b05, 0x17eb) }, /* Asus USB-AC55 */ { USB_DEVICE(0x0b05, 0x180b) }, /* Asus USB-N53 B1 */ { USB_DEVICE(0x0e8d, 0x7612) }, /* Aukey USBAC1200 - Alfa AWUS036ACM */ { USB_DEVICE(0x057c, 0x8503) }, /* Avm FRITZ!WLAN AC860 */ { USB_DEVICE(0x7392, 0xb711) }, /* Edimax EW 7722 UAC */ { USB_DEVICE(0x0e8d, 0x7632) }, /* HC-M7662BU1 */ { USB_DEVICE(0x2c4e, 0x0103) }, /* Mercury UD13 */ { USB_DEVICE(0x0846, 0x9053) }, /* Netgear A6210 */ { USB_DEVICE(0x045e, 0x02e6) }, /* XBox One Wireless Adapter */ { USB_DEVICE(0x045e, 0x02fe) }, /* XBox One Wireless Adapter */ { }, }; static int mt76x2u_probe(struct usb_interface *intf, const struct usb_device_id *id) { static const struct mt76_driver_ops drv_ops = { .drv_flags = MT_DRV_SW_RX_AIRTIME, .survey_flags = SURVEY_INFO_TIME_TX, .update_survey = mt76x02_update_channel, .tx_prepare_skb = mt76x02u_tx_prepare_skb, .tx_complete_skb = mt76x02u_tx_complete_skb, .tx_status_data = mt76x02_tx_status_data, .rx_skb = mt76x02_queue_rx_skb, .sta_ps = mt76x02_sta_ps, .sta_add = mt76x02_sta_add, .sta_remove = mt76x02_sta_remove, }; struct usb_device *udev = interface_to_usbdev(intf); struct mt76x02_dev *dev; struct mt76_dev *mdev; int err; mdev = mt76_alloc_device(&intf->dev, sizeof(*dev), &mt76x2u_ops, &drv_ops); if (!mdev) return -ENOMEM; dev = container_of(mdev, struct mt76x02_dev, mt76); udev = usb_get_dev(udev); usb_reset_device(udev); usb_set_intfdata(intf, dev); mt76x02u_init_mcu(mdev); err = mt76u_init(mdev, intf); if (err < 0) goto err; mdev->rev = mt76_rr(dev, MT_ASIC_VERSION); dev_info(mdev->dev, "ASIC revision: %08x\n", mdev->rev); if (!is_mt76x2(dev)) { err = -ENODEV; goto err; } err = mt76x2u_register_device(dev); if (err < 0) goto err; return 0; err: mt76u_queues_deinit(&dev->mt76); mt76_free_device(&dev->mt76); usb_set_intfdata(intf, NULL); usb_put_dev(udev); return err; } static void mt76x2u_disconnect(struct usb_interface *intf) { struct usb_device *udev = interface_to_usbdev(intf); struct mt76x02_dev *dev = usb_get_intfdata(intf); struct ieee80211_hw *hw = mt76_hw(dev); set_bit(MT76_REMOVED, &dev->mphy.state); ieee80211_unregister_hw(hw); mt76x2u_cleanup(dev); mt76_free_device(&dev->mt76); usb_set_intfdata(intf, NULL); usb_put_dev(udev); } static int __maybe_unused mt76x2u_suspend(struct usb_interface *intf, pm_message_t state) { struct mt76x02_dev *dev = usb_get_intfdata(intf); mt76u_stop_rx(&dev->mt76); return 0; } static int __maybe_unused mt76x2u_resume(struct usb_interface *intf) { struct mt76x02_dev *dev = usb_get_intfdata(intf); int err; err = mt76u_resume_rx(&dev->mt76); if (err < 0) goto err; err = mt76x2u_init_hardware(dev); if (err < 0) goto err; return 0; err: mt76x2u_cleanup(dev); return err; } MODULE_DEVICE_TABLE(usb, mt76x2u_device_table); MODULE_FIRMWARE(MT7662_FIRMWARE); MODULE_FIRMWARE(MT7662_ROM_PATCH); static struct usb_driver mt76x2u_driver = { .name = KBUILD_MODNAME, .id_table = mt76x2u_device_table, .probe = mt76x2u_probe, .disconnect = mt76x2u_disconnect, #ifdef CONFIG_PM .suspend = mt76x2u_suspend, .resume = mt76x2u_resume, .reset_resume = mt76x2u_resume, #endif /* CONFIG_PM */ .soft_unbind = 1, .disable_hub_initiated_lpm = 1, }; module_usb_driver(mt76x2u_driver); MODULE_AUTHOR("Lorenzo Bianconi <[email protected]>"); MODULE_LICENSE("Dual BSD/GPL");
linux-master
drivers/net/wireless/mediatek/mt76/mt76x2/usb.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2018 Lorenzo Bianconi <[email protected]> */ #include <linux/delay.h> #include "mt76x2u.h" #include "eeprom.h" #include "../mt76x02_phy.h" #include "../mt76x02_usb.h" static void mt76x2u_init_dma(struct mt76x02_dev *dev) { u32 val = mt76_rr(dev, MT_VEND_ADDR(CFG, MT_USB_U3DMA_CFG)); val |= MT_USB_DMA_CFG_RX_DROP_OR_PAD | MT_USB_DMA_CFG_RX_BULK_EN | MT_USB_DMA_CFG_TX_BULK_EN; /* disable AGGR_BULK_RX in order to receive one * frame in each rx urb and avoid copies */ val &= ~MT_USB_DMA_CFG_RX_BULK_AGG_EN; mt76_wr(dev, MT_VEND_ADDR(CFG, MT_USB_U3DMA_CFG), val); } static void mt76x2u_power_on_rf_patch(struct mt76x02_dev *dev) { mt76_set(dev, MT_VEND_ADDR(CFG, 0x130), BIT(0) | BIT(16)); udelay(1); mt76_clear(dev, MT_VEND_ADDR(CFG, 0x1c), 0xff); mt76_set(dev, MT_VEND_ADDR(CFG, 0x1c), 0x30); mt76_wr(dev, MT_VEND_ADDR(CFG, 0x14), 0x484f); udelay(1); mt76_set(dev, MT_VEND_ADDR(CFG, 0x130), BIT(17)); usleep_range(150, 200); mt76_clear(dev, MT_VEND_ADDR(CFG, 0x130), BIT(16)); usleep_range(50, 100); mt76_set(dev, MT_VEND_ADDR(CFG, 0x14c), BIT(19) | BIT(20)); } static void mt76x2u_power_on_rf(struct mt76x02_dev *dev, int unit) { int shift = unit ? 8 : 0; u32 val = (BIT(1) | BIT(3) | BIT(4) | BIT(5)) << shift; /* Enable RF BG */ mt76_set(dev, MT_VEND_ADDR(CFG, 0x130), BIT(0) << shift); usleep_range(10, 20); /* Enable RFDIG LDO/AFE/ABB/ADDA */ mt76_set(dev, MT_VEND_ADDR(CFG, 0x130), val); usleep_range(10, 20); /* Switch RFDIG power to internal LDO */ mt76_clear(dev, MT_VEND_ADDR(CFG, 0x130), BIT(2) << shift); usleep_range(10, 20); mt76x2u_power_on_rf_patch(dev); mt76_set(dev, 0x530, 0xf); } static void mt76x2u_power_on(struct mt76x02_dev *dev) { u32 val; /* Turn on WL MTCMOS */ mt76_set(dev, MT_VEND_ADDR(CFG, 0x148), MT_WLAN_MTC_CTRL_MTCMOS_PWR_UP); val = MT_WLAN_MTC_CTRL_STATE_UP | MT_WLAN_MTC_CTRL_PWR_ACK | MT_WLAN_MTC_CTRL_PWR_ACK_S; mt76_poll(dev, MT_VEND_ADDR(CFG, 0x148), val, val, 1000); mt76_clear(dev, MT_VEND_ADDR(CFG, 0x148), 0x7f << 16); usleep_range(10, 20); mt76_clear(dev, MT_VEND_ADDR(CFG, 0x148), 0xf << 24); usleep_range(10, 20); mt76_set(dev, MT_VEND_ADDR(CFG, 0x148), 0xf << 24); mt76_clear(dev, MT_VEND_ADDR(CFG, 0x148), 0xfff); /* Turn on AD/DA power down */ mt76_clear(dev, MT_VEND_ADDR(CFG, 0x1204), BIT(3)); /* WLAN function enable */ mt76_set(dev, MT_VEND_ADDR(CFG, 0x80), BIT(0)); /* Release BBP software reset */ mt76_clear(dev, MT_VEND_ADDR(CFG, 0x64), BIT(18)); mt76x2u_power_on_rf(dev, 0); mt76x2u_power_on_rf(dev, 1); } static int mt76x2u_init_eeprom(struct mt76x02_dev *dev) { u32 val, i; dev->mt76.eeprom.data = devm_kzalloc(dev->mt76.dev, MT7612U_EEPROM_SIZE, GFP_KERNEL); dev->mt76.eeprom.size = MT7612U_EEPROM_SIZE; if (!dev->mt76.eeprom.data) return -ENOMEM; for (i = 0; i + 4 <= MT7612U_EEPROM_SIZE; i += 4) { val = mt76_rr(dev, MT_VEND_ADDR(EEPROM, i)); put_unaligned_le32(val, dev->mt76.eeprom.data + i); } mt76x02_eeprom_parse_hw_cap(dev); return 0; } int mt76x2u_init_hardware(struct mt76x02_dev *dev) { int i, k, err; mt76x2_reset_wlan(dev, true); mt76x2u_power_on(dev); if (!mt76x02_wait_for_mac(&dev->mt76)) return -ETIMEDOUT; err = mt76x2u_mcu_fw_init(dev); if (err < 0) return err; if (!mt76_poll_msec(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_DMA_BUSY | MT_WPDMA_GLO_CFG_RX_DMA_BUSY, 0, 100)) return -EIO; /* wait for asic ready after fw load. */ if (!mt76x02_wait_for_mac(&dev->mt76)) return -ETIMEDOUT; mt76x2u_init_dma(dev); err = mt76x2u_mcu_init(dev); if (err < 0) return err; err = mt76x2u_mac_reset(dev); if (err < 0) return err; mt76x02_mac_setaddr(dev, dev->mt76.eeprom.data + MT_EE_MAC_ADDR); dev->mt76.rxfilter = mt76_rr(dev, MT_RX_FILTR_CFG); if (!mt76x02_wait_for_txrx_idle(&dev->mt76)) return -ETIMEDOUT; /* reset wcid table */ for (i = 0; i < 256; i++) mt76x02_mac_wcid_setup(dev, i, 0, NULL); /* reset shared key table and pairwise key table */ for (i = 0; i < 16; i++) { for (k = 0; k < 4; k++) mt76x02_mac_shared_key_setup(dev, i, k, NULL); } mt76x02u_init_beacon_config(dev); mt76_rmw(dev, MT_US_CYC_CFG, MT_US_CYC_CNT, 0x1e); mt76_wr(dev, MT_TXOP_CTRL_CFG, 0x583f); err = mt76x2_mcu_load_cr(dev, MT_RF_BBP_CR, 0, 0); if (err < 0) return err; mt76x02_phy_set_rxpath(dev); mt76x02_phy_set_txdac(dev); return mt76x2u_mac_stop(dev); } int mt76x2u_register_device(struct mt76x02_dev *dev) { struct ieee80211_hw *hw = mt76_hw(dev); struct mt76_usb *usb = &dev->mt76.usb; int err; INIT_DELAYED_WORK(&dev->cal_work, mt76x2u_phy_calibrate); err = mt76x02_init_device(dev); if (err) return err; err = mt76x2u_init_eeprom(dev); if (err < 0) return err; usb->mcu.data = devm_kmalloc(dev->mt76.dev, MCU_RESP_URB_SIZE, GFP_KERNEL); if (!usb->mcu.data) return -ENOMEM; err = mt76u_alloc_queues(&dev->mt76); if (err < 0) goto fail; err = mt76x2u_init_hardware(dev); if (err < 0) goto fail; /* check hw sg support in order to enable AMSDU */ hw->max_tx_fragments = dev->mt76.usb.sg_en ? MT_TX_SG_MAX_SIZE : 1; err = mt76_register_device(&dev->mt76, true, mt76x02_rates, ARRAY_SIZE(mt76x02_rates)); if (err) goto fail; set_bit(MT76_STATE_INITIALIZED, &dev->mphy.state); mt76x02_init_debugfs(dev); mt76x2_init_txpower(dev, &dev->mphy.sband_2g.sband); mt76x2_init_txpower(dev, &dev->mphy.sband_5g.sband); return 0; fail: mt76x2u_cleanup(dev); return err; } void mt76x2u_stop_hw(struct mt76x02_dev *dev) { cancel_delayed_work_sync(&dev->cal_work); cancel_delayed_work_sync(&dev->mphy.mac_work); mt76x2u_mac_stop(dev); } void mt76x2u_cleanup(struct mt76x02_dev *dev) { mt76x02_mcu_set_radio_state(dev, false); mt76x2u_stop_hw(dev); mt76u_queues_deinit(&dev->mt76); }
linux-master
drivers/net/wireless/mediatek/mt76/mt76x2/usb_init.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2016 Felix Fietkau <[email protected]> * Copyright (C) 2018 Lorenzo Bianconi <[email protected]> */ #include "mt76x2.h" void mt76x2_mac_stop(struct mt76x02_dev *dev, bool force) { bool stopped = false; u32 rts_cfg; int i; mt76_clear(dev, MT_TXOP_CTRL_CFG, MT_TXOP_ED_CCA_EN); mt76_clear(dev, MT_TXOP_HLDR_ET, MT_TXOP_HLDR_TX40M_BLK_EN); mt76_wr(dev, MT_MAC_SYS_CTRL, 0); rts_cfg = mt76_rr(dev, MT_TX_RTS_CFG); mt76_wr(dev, MT_TX_RTS_CFG, rts_cfg & ~MT_TX_RTS_CFG_RETRY_LIMIT); /* Wait for MAC to become idle */ for (i = 0; i < 300; i++) { if ((mt76_rr(dev, MT_MAC_STATUS) & (MT_MAC_STATUS_RX | MT_MAC_STATUS_TX)) || mt76_rr(dev, MT_BBP(IBI, 12))) { udelay(1); continue; } stopped = true; break; } if (force && !stopped) { mt76_set(dev, MT_BBP(CORE, 4), BIT(1)); mt76_clear(dev, MT_BBP(CORE, 4), BIT(1)); mt76_set(dev, MT_BBP(CORE, 4), BIT(0)); mt76_clear(dev, MT_BBP(CORE, 4), BIT(0)); } mt76_wr(dev, MT_TX_RTS_CFG, rts_cfg); } EXPORT_SYMBOL_GPL(mt76x2_mac_stop);
linux-master
drivers/net/wireless/mediatek/mt76/mt76x2/mac.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2016 Felix Fietkau <[email protected]> * Copyright (C) 2018 Lorenzo Bianconi <[email protected]> */ #include "mt76x2.h" #include "eeprom.h" #include "../mt76x02_phy.h" int mt76x2_set_sar_specs(struct ieee80211_hw *hw, const struct cfg80211_sar_specs *sar) { int err = -EINVAL, power = hw->conf.power_level * 2; struct mt76x02_dev *dev = hw->priv; struct mt76_phy *mphy = &dev->mphy; mutex_lock(&dev->mt76.mutex); if (!cfg80211_chandef_valid(&mphy->chandef)) goto out; err = mt76_init_sar_power(hw, sar); if (err) goto out; dev->txpower_conf = mt76_get_sar_power(mphy, mphy->chandef.chan, power); /* convert to per-chain power for 2x2 devices */ dev->txpower_conf -= 6; if (test_bit(MT76_STATE_RUNNING, &mphy->state)) mt76x2_phy_set_txpower(dev); out: mutex_unlock(&dev->mt76.mutex); return err; } EXPORT_SYMBOL_GPL(mt76x2_set_sar_specs); static void mt76x2_set_wlan_state(struct mt76x02_dev *dev, bool enable) { u32 val = mt76_rr(dev, MT_WLAN_FUN_CTRL); if (enable) val |= (MT_WLAN_FUN_CTRL_WLAN_EN | MT_WLAN_FUN_CTRL_WLAN_CLK_EN); else val &= ~(MT_WLAN_FUN_CTRL_WLAN_EN | MT_WLAN_FUN_CTRL_WLAN_CLK_EN); mt76_wr(dev, MT_WLAN_FUN_CTRL, val); udelay(20); } void mt76x2_reset_wlan(struct mt76x02_dev *dev, bool enable) { u32 val; if (!enable) goto out; val = mt76_rr(dev, MT_WLAN_FUN_CTRL); val &= ~MT_WLAN_FUN_CTRL_FRC_WL_ANT_SEL; if (val & MT_WLAN_FUN_CTRL_WLAN_EN) { val |= MT_WLAN_FUN_CTRL_WLAN_RESET_RF; mt76_wr(dev, MT_WLAN_FUN_CTRL, val); udelay(20); val &= ~MT_WLAN_FUN_CTRL_WLAN_RESET_RF; } mt76_wr(dev, MT_WLAN_FUN_CTRL, val); udelay(20); out: mt76x2_set_wlan_state(dev, enable); } EXPORT_SYMBOL_GPL(mt76x2_reset_wlan); void mt76_write_mac_initvals(struct mt76x02_dev *dev) { #define DEFAULT_PROT_CFG_CCK \ (FIELD_PREP(MT_PROT_CFG_RATE, 0x3) | \ FIELD_PREP(MT_PROT_CFG_NAV, 1) | \ FIELD_PREP(MT_PROT_CFG_TXOP_ALLOW, 0x3f) | \ MT_PROT_CFG_RTS_THRESH) #define DEFAULT_PROT_CFG_OFDM \ (FIELD_PREP(MT_PROT_CFG_RATE, 0x2004) | \ FIELD_PREP(MT_PROT_CFG_NAV, 1) | \ FIELD_PREP(MT_PROT_CFG_TXOP_ALLOW, 0x3f) | \ MT_PROT_CFG_RTS_THRESH) #define DEFAULT_PROT_CFG_20 \ (FIELD_PREP(MT_PROT_CFG_RATE, 0x2004) | \ FIELD_PREP(MT_PROT_CFG_CTRL, 1) | \ FIELD_PREP(MT_PROT_CFG_NAV, 1) | \ FIELD_PREP(MT_PROT_CFG_TXOP_ALLOW, 0x17)) #define DEFAULT_PROT_CFG_40 \ (FIELD_PREP(MT_PROT_CFG_RATE, 0x2084) | \ FIELD_PREP(MT_PROT_CFG_CTRL, 1) | \ FIELD_PREP(MT_PROT_CFG_NAV, 1) | \ FIELD_PREP(MT_PROT_CFG_TXOP_ALLOW, 0x3f)) static const struct mt76_reg_pair vals[] = { /* Copied from MediaTek reference source */ { MT_PBF_SYS_CTRL, 0x00080c00 }, { MT_PBF_CFG, 0x1efebcff }, { MT_FCE_PSE_CTRL, 0x00000001 }, { MT_MAC_SYS_CTRL, 0x00000000 }, { MT_MAX_LEN_CFG, 0x003e3f00 }, { MT_AMPDU_MAX_LEN_20M1S, 0xaaa99887 }, { MT_AMPDU_MAX_LEN_20M2S, 0x000000aa }, { MT_XIFS_TIME_CFG, 0x33a40d0a }, { MT_BKOFF_SLOT_CFG, 0x00000209 }, { MT_TBTT_SYNC_CFG, 0x00422010 }, { MT_PWR_PIN_CFG, 0x00000000 }, { 0x1238, 0x001700c8 }, { MT_TX_SW_CFG0, 0x00101001 }, { MT_TX_SW_CFG1, 0x00010000 }, { MT_TX_SW_CFG2, 0x00000000 }, { MT_TXOP_CTRL_CFG, 0x0400583f }, { MT_TX_RTS_CFG, 0x00ffff20 }, { MT_TX_TIMEOUT_CFG, 0x000a2290 }, { MT_TX_RETRY_CFG, 0x47f01f0f }, { MT_EXP_ACK_TIME, 0x002c00dc }, { MT_TX_PROT_CFG6, 0xe3f42004 }, { MT_TX_PROT_CFG7, 0xe3f42084 }, { MT_TX_PROT_CFG8, 0xe3f42104 }, { MT_PIFS_TX_CFG, 0x00060fff }, { MT_RX_FILTR_CFG, 0x00015f97 }, { MT_LEGACY_BASIC_RATE, 0x0000017f }, { MT_HT_BASIC_RATE, 0x00004003 }, { MT_PN_PAD_MODE, 0x00000003 }, { MT_TXOP_HLDR_ET, 0x00000002 }, { 0xa44, 0x00000000 }, { MT_HEADER_TRANS_CTRL_REG, 0x00000000 }, { MT_TSO_CTRL, 0x00000000 }, { MT_AUX_CLK_CFG, 0x00000000 }, { MT_DACCLK_EN_DLY_CFG, 0x00000000 }, { MT_TX_ALC_CFG_4, 0x00000000 }, { MT_TX_ALC_VGA3, 0x00000000 }, { MT_TX_PWR_CFG_0, 0x3a3a3a3a }, { MT_TX_PWR_CFG_1, 0x3a3a3a3a }, { MT_TX_PWR_CFG_2, 0x3a3a3a3a }, { MT_TX_PWR_CFG_3, 0x3a3a3a3a }, { MT_TX_PWR_CFG_4, 0x3a3a3a3a }, { MT_TX_PWR_CFG_7, 0x3a3a3a3a }, { MT_TX_PWR_CFG_8, 0x0000003a }, { MT_TX_PWR_CFG_9, 0x0000003a }, { MT_EFUSE_CTRL, 0x0000d000 }, { MT_PAUSE_ENABLE_CONTROL1, 0x0000000a }, { MT_FCE_WLAN_FLOW_CONTROL1, 0x60401c18 }, { MT_WPDMA_DELAY_INT_CFG, 0x94ff0000 }, { MT_TX_SW_CFG3, 0x00000004 }, { MT_HT_FBK_TO_LEGACY, 0x00001818 }, { MT_VHT_HT_FBK_CFG1, 0xedcba980 }, { MT_PROT_AUTO_TX_CFG, 0x00830083 }, { MT_HT_CTRL_CFG, 0x000001ff }, { MT_TX_LINK_CFG, 0x00001020 }, }; struct mt76_reg_pair prot_vals[] = { { MT_CCK_PROT_CFG, DEFAULT_PROT_CFG_CCK }, { MT_OFDM_PROT_CFG, DEFAULT_PROT_CFG_OFDM }, { MT_MM20_PROT_CFG, DEFAULT_PROT_CFG_20 }, { MT_MM40_PROT_CFG, DEFAULT_PROT_CFG_40 }, { MT_GF20_PROT_CFG, DEFAULT_PROT_CFG_20 }, { MT_GF40_PROT_CFG, DEFAULT_PROT_CFG_40 }, }; mt76_wr_rp(dev, 0, vals, ARRAY_SIZE(vals)); mt76_wr_rp(dev, 0, prot_vals, ARRAY_SIZE(prot_vals)); } EXPORT_SYMBOL_GPL(mt76_write_mac_initvals); void mt76x2_init_txpower(struct mt76x02_dev *dev, struct ieee80211_supported_band *sband) { struct ieee80211_channel *chan; struct mt76x2_tx_power_info txp; struct mt76x02_rate_power t = {}; int i; for (i = 0; i < sband->n_channels; i++) { chan = &sband->channels[i]; mt76x2_get_power_info(dev, &txp, chan); mt76x2_get_rate_power(dev, &t, chan); chan->orig_mpwr = mt76x02_get_max_rate_power(&t) + txp.target_power; chan->orig_mpwr = DIV_ROUND_UP(chan->orig_mpwr, 2); /* convert to combined output power on 2x2 devices */ chan->orig_mpwr += 3; chan->max_power = min_t(int, chan->max_reg_power, chan->orig_mpwr); } } EXPORT_SYMBOL_GPL(mt76x2_init_txpower);
linux-master
drivers/net/wireless/mediatek/mt76/mt76x2/init.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2016 Felix Fietkau <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include "mt76x2.h" static const struct pci_device_id mt76x2e_device_table[] = { { PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7662) }, { PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7612) }, { PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7602) }, { }, }; static int mt76x2e_probe(struct pci_dev *pdev, const struct pci_device_id *id) { static const struct mt76_driver_ops drv_ops = { .txwi_size = sizeof(struct mt76x02_txwi), .drv_flags = MT_DRV_TX_ALIGNED4_SKBS | MT_DRV_SW_RX_AIRTIME, .survey_flags = SURVEY_INFO_TIME_TX, .update_survey = mt76x02_update_channel, .tx_prepare_skb = mt76x02_tx_prepare_skb, .tx_complete_skb = mt76x02_tx_complete_skb, .rx_skb = mt76x02_queue_rx_skb, .rx_poll_complete = mt76x02_rx_poll_complete, .sta_ps = mt76x02_sta_ps, .sta_add = mt76x02_sta_add, .sta_remove = mt76x02_sta_remove, }; struct mt76x02_dev *dev; struct mt76_dev *mdev; int ret; ret = pcim_enable_device(pdev); if (ret) return ret; ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev)); if (ret) return ret; pci_set_master(pdev); ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); if (ret) return ret; mdev = mt76_alloc_device(&pdev->dev, sizeof(*dev), &mt76x2_ops, &drv_ops); if (!mdev) return -ENOMEM; dev = container_of(mdev, struct mt76x02_dev, mt76); mt76_mmio_init(mdev, pcim_iomap_table(pdev)[0]); mt76x2_reset_wlan(dev, false); mdev->rev = mt76_rr(dev, MT_ASIC_VERSION); dev_info(mdev->dev, "ASIC revision: %08x\n", mdev->rev); mt76_wr(dev, MT_INT_MASK_CSR, 0); ret = devm_request_irq(mdev->dev, pdev->irq, mt76x02_irq_handler, IRQF_SHARED, KBUILD_MODNAME, dev); if (ret) goto error; ret = mt76x2_register_device(dev); if (ret) goto error; /* Fix up ASPM configuration */ /* RG_SSUSB_G1_CDR_BIR_LTR = 0x9 */ mt76_rmw_field(dev, 0x15a10, 0x1f << 16, 0x9); /* RG_SSUSB_G1_CDR_BIC_LTR = 0xf */ mt76_rmw_field(dev, 0x15a0c, 0xfU << 28, 0xf); /* RG_SSUSB_CDR_BR_PE1D = 0x3 */ mt76_rmw_field(dev, 0x15c58, 0x3 << 6, 0x3); mt76_pci_disable_aspm(pdev); return 0; error: mt76_free_device(&dev->mt76); return ret; } static void mt76x2e_remove(struct pci_dev *pdev) { struct mt76_dev *mdev = pci_get_drvdata(pdev); struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76); mt76_unregister_device(mdev); mt76x2_cleanup(dev); mt76_free_device(mdev); } static int __maybe_unused mt76x2e_suspend(struct pci_dev *pdev, pm_message_t state) { struct mt76_dev *mdev = pci_get_drvdata(pdev); int i, err; napi_disable(&mdev->tx_napi); tasklet_kill(&mdev->pre_tbtt_tasklet); mt76_worker_disable(&mdev->tx_worker); mt76_for_each_q_rx(mdev, i) napi_disable(&mdev->napi[i]); pci_enable_wake(pdev, pci_choose_state(pdev, state), true); pci_save_state(pdev); err = pci_set_power_state(pdev, pci_choose_state(pdev, state)); if (err) goto restore; return 0; restore: mt76_for_each_q_rx(mdev, i) napi_enable(&mdev->napi[i]); napi_enable(&mdev->tx_napi); return err; } static int __maybe_unused mt76x2e_resume(struct pci_dev *pdev) { struct mt76_dev *mdev = pci_get_drvdata(pdev); struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76); int i, err; err = pci_set_power_state(pdev, PCI_D0); if (err) return err; pci_restore_state(pdev); mt76_worker_enable(&mdev->tx_worker); local_bh_disable(); mt76_for_each_q_rx(mdev, i) { napi_enable(&mdev->napi[i]); napi_schedule(&mdev->napi[i]); } napi_enable(&mdev->tx_napi); napi_schedule(&mdev->tx_napi); local_bh_enable(); return mt76x2_resume_device(dev); } MODULE_DEVICE_TABLE(pci, mt76x2e_device_table); MODULE_FIRMWARE(MT7662_FIRMWARE); MODULE_FIRMWARE(MT7662_ROM_PATCH); MODULE_LICENSE("Dual BSD/GPL"); static struct pci_driver mt76pci_driver = { .name = KBUILD_MODNAME, .id_table = mt76x2e_device_table, .probe = mt76x2e_probe, .remove = mt76x2e_remove, #ifdef CONFIG_PM .suspend = mt76x2e_suspend, .resume = mt76x2e_resume, #endif /* CONFIG_PM */ }; module_pci_driver(mt76pci_driver);
linux-master
drivers/net/wireless/mediatek/mt76/mt76x2/pci.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2018 Lorenzo Bianconi <[email protected]> */ #include "mt76x2u.h" #include "eeprom.h" #include "../mt76x02_phy.h" static void mt76x2u_phy_channel_calibrate(struct mt76x02_dev *dev, bool mac_stopped) { struct ieee80211_channel *chan = dev->mphy.chandef.chan; bool is_5ghz = chan->band == NL80211_BAND_5GHZ; if (dev->cal.channel_cal_done) return; if (mt76x2_channel_silent(dev)) return; if (!mac_stopped) mt76x2u_mac_stop(dev); if (is_5ghz) mt76x02_mcu_calibrate(dev, MCU_CAL_LC, 0); mt76x02_mcu_calibrate(dev, MCU_CAL_TX_LOFT, is_5ghz); mt76x02_mcu_calibrate(dev, MCU_CAL_TXIQ, is_5ghz); mt76x02_mcu_calibrate(dev, MCU_CAL_RXIQC_FI, is_5ghz); mt76x02_mcu_calibrate(dev, MCU_CAL_TEMP_SENSOR, 0); mt76x02_mcu_calibrate(dev, MCU_CAL_TX_SHAPING, 0); if (!mac_stopped) mt76x2_mac_resume(dev); mt76x2_apply_gain_adj(dev); mt76x02_edcca_init(dev); dev->cal.channel_cal_done = true; } void mt76x2u_phy_calibrate(struct work_struct *work) { struct mt76x02_dev *dev; dev = container_of(work, struct mt76x02_dev, cal_work.work); mutex_lock(&dev->mt76.mutex); mt76x2u_phy_channel_calibrate(dev, false); mt76x2_phy_tssi_compensate(dev); mt76x2_phy_update_channel_gain(dev); mutex_unlock(&dev->mt76.mutex); ieee80211_queue_delayed_work(mt76_hw(dev), &dev->cal_work, MT_CALIBRATE_INTERVAL); } int mt76x2u_phy_set_channel(struct mt76x02_dev *dev, struct cfg80211_chan_def *chandef) { u32 ext_cca_chan[4] = { [0] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 0) | FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 1) | FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 2) | FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 3) | FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(0)), [1] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 1) | FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 0) | FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 2) | FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 3) | FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(1)), [2] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 2) | FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 3) | FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 1) | FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 0) | FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(2)), [3] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 3) | FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 2) | FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 1) | FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 0) | FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(3)), }; bool scan = test_bit(MT76_SCANNING, &dev->mphy.state); struct ieee80211_channel *chan = chandef->chan; u8 channel = chan->hw_value, bw, bw_index; int ch_group_index, freq, freq1, ret; dev->cal.channel_cal_done = false; freq = chandef->chan->center_freq; freq1 = chandef->center_freq1; switch (chandef->width) { case NL80211_CHAN_WIDTH_40: bw = 1; if (freq1 > freq) { bw_index = 1; ch_group_index = 0; } else { bw_index = 3; ch_group_index = 1; } channel += 2 - ch_group_index * 4; break; case NL80211_CHAN_WIDTH_80: ch_group_index = (freq - freq1 + 30) / 20; if (WARN_ON(ch_group_index < 0 || ch_group_index > 3)) ch_group_index = 0; bw = 2; bw_index = ch_group_index; channel += 6 - ch_group_index * 4; break; default: bw = 0; bw_index = 0; ch_group_index = 0; break; } mt76x2_read_rx_gain(dev); mt76x2_phy_set_txpower_regs(dev, chan->band); mt76x2_configure_tx_delay(dev, chan->band, bw); mt76x2_phy_set_txpower(dev); mt76x02_phy_set_band(dev, chan->band, ch_group_index & 1); mt76x02_phy_set_bw(dev, chandef->width, ch_group_index); mt76_rmw(dev, MT_EXT_CCA_CFG, (MT_EXT_CCA_CFG_CCA0 | MT_EXT_CCA_CFG_CCA1 | MT_EXT_CCA_CFG_CCA2 | MT_EXT_CCA_CFG_CCA3 | MT_EXT_CCA_CFG_CCA_MASK), ext_cca_chan[ch_group_index]); ret = mt76x2_mcu_set_channel(dev, channel, bw, bw_index, scan); if (ret) return ret; mt76x2_mcu_init_gain(dev, channel, dev->cal.rx.mcu_gain, true); /* Enable LDPC Rx */ if (mt76xx_rev(dev) >= MT76XX_REV_E3) mt76_set(dev, MT_BBP(RXO, 13), BIT(10)); if (!dev->cal.init_cal_done) { u8 val = mt76x02_eeprom_get(dev, MT_EE_BT_RCAL_RESULT); if (val != 0xff) mt76x02_mcu_calibrate(dev, MCU_CAL_R, 0); } mt76x02_mcu_calibrate(dev, MCU_CAL_RXDCOC, channel); /* Rx LPF calibration */ if (!dev->cal.init_cal_done) mt76x02_mcu_calibrate(dev, MCU_CAL_RC, 0); dev->cal.init_cal_done = true; mt76_wr(dev, MT_BBP(AGC, 61), 0xff64a4e2); mt76_wr(dev, MT_BBP(AGC, 7), 0x08081010); mt76_wr(dev, MT_BBP(AGC, 11), 0x00000404); mt76_wr(dev, MT_BBP(AGC, 2), 0x00007070); mt76_wr(dev, MT_TXOP_CTRL_CFG, 0X04101b3f); mt76_set(dev, MT_BBP(TXO, 4), BIT(25)); mt76_set(dev, MT_BBP(RXO, 13), BIT(8)); if (scan) return 0; mt76x2u_phy_channel_calibrate(dev, true); mt76x02_init_agc_gain(dev); if (mt76x2_tssi_enabled(dev)) { /* init default values for temp compensation */ mt76_rmw_field(dev, MT_TX_ALC_CFG_1, MT_TX_ALC_CFG_1_TEMP_COMP, 0x38); mt76_rmw_field(dev, MT_TX_ALC_CFG_2, MT_TX_ALC_CFG_2_TEMP_COMP, 0x38); /* init tssi calibration */ if (!mt76x2_channel_silent(dev)) { struct ieee80211_channel *chan; u32 flag = 0; chan = dev->mphy.chandef.chan; if (chan->band == NL80211_BAND_5GHZ) flag |= BIT(0); if (mt76x02_ext_pa_enabled(dev, chan->band)) flag |= BIT(8); mt76x02_mcu_calibrate(dev, MCU_CAL_TSSI, flag); dev->cal.tssi_cal_done = true; } } ieee80211_queue_delayed_work(mt76_hw(dev), &dev->cal_work, MT_CALIBRATE_INTERVAL); return 0; }
linux-master
drivers/net/wireless/mediatek/mt76/mt76x2/usb_phy.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2016 Felix Fietkau <[email protected]> */ #include <linux/delay.h> #include "mt76x2.h" #include "mcu.h" #include "eeprom.h" #include "../mt76x02_phy.h" static bool mt76x2_phy_tssi_init_cal(struct mt76x02_dev *dev) { struct ieee80211_channel *chan = dev->mphy.chandef.chan; u32 flag = 0; if (!mt76x2_tssi_enabled(dev)) return false; if (mt76x2_channel_silent(dev)) return false; if (chan->band == NL80211_BAND_5GHZ) flag |= BIT(0); if (mt76x02_ext_pa_enabled(dev, chan->band)) flag |= BIT(8); mt76x02_mcu_calibrate(dev, MCU_CAL_TSSI, flag); dev->cal.tssi_cal_done = true; return true; } static void mt76x2_phy_channel_calibrate(struct mt76x02_dev *dev, bool mac_stopped) { struct ieee80211_channel *chan = dev->mphy.chandef.chan; bool is_5ghz = chan->band == NL80211_BAND_5GHZ; if (dev->cal.channel_cal_done) return; if (mt76x2_channel_silent(dev)) return; if (!dev->cal.tssi_cal_done) mt76x2_phy_tssi_init_cal(dev); if (!mac_stopped) mt76x2_mac_stop(dev, false); if (is_5ghz) mt76x02_mcu_calibrate(dev, MCU_CAL_LC, 0); mt76x02_mcu_calibrate(dev, MCU_CAL_TX_LOFT, is_5ghz); mt76x02_mcu_calibrate(dev, MCU_CAL_TXIQ, is_5ghz); mt76x02_mcu_calibrate(dev, MCU_CAL_RXIQC_FI, is_5ghz); mt76x02_mcu_calibrate(dev, MCU_CAL_TEMP_SENSOR, 0); mt76x02_mcu_calibrate(dev, MCU_CAL_TX_SHAPING, 0); if (!mac_stopped) mt76x2_mac_resume(dev); mt76x2_apply_gain_adj(dev); mt76x02_edcca_init(dev); dev->cal.channel_cal_done = true; } void mt76x2_phy_set_antenna(struct mt76x02_dev *dev) { u32 val; val = mt76_rr(dev, MT_BBP(AGC, 0)); val &= ~(BIT(4) | BIT(1)); switch (dev->mphy.antenna_mask) { case 1: /* disable mac DAC control */ mt76_clear(dev, MT_BBP(IBI, 9), BIT(11)); mt76_clear(dev, MT_BBP(TXBE, 5), 3); mt76_rmw_field(dev, MT_TX_PIN_CFG, MT_TX_PIN_CFG_TXANT, 0x3); mt76_rmw_field(dev, MT_BBP(CORE, 32), GENMASK(21, 20), 2); /* disable DAC 1 */ mt76_rmw_field(dev, MT_BBP(CORE, 33), GENMASK(12, 9), 4); val &= ~(BIT(3) | BIT(0)); break; case 2: /* disable mac DAC control */ mt76_clear(dev, MT_BBP(IBI, 9), BIT(11)); mt76_rmw_field(dev, MT_BBP(TXBE, 5), 3, 1); mt76_rmw_field(dev, MT_TX_PIN_CFG, MT_TX_PIN_CFG_TXANT, 0xc); mt76_rmw_field(dev, MT_BBP(CORE, 32), GENMASK(21, 20), 1); /* disable DAC 0 */ mt76_rmw_field(dev, MT_BBP(CORE, 33), GENMASK(12, 9), 1); val &= ~BIT(3); val |= BIT(0); break; case 3: default: /* enable mac DAC control */ mt76_set(dev, MT_BBP(IBI, 9), BIT(11)); mt76_set(dev, MT_BBP(TXBE, 5), 3); mt76_rmw_field(dev, MT_TX_PIN_CFG, MT_TX_PIN_CFG_TXANT, 0xf); mt76_clear(dev, MT_BBP(CORE, 32), GENMASK(21, 20)); mt76_clear(dev, MT_BBP(CORE, 33), GENMASK(12, 9)); val &= ~BIT(0); val |= BIT(3); break; } mt76_wr(dev, MT_BBP(AGC, 0), val); } int mt76x2_phy_set_channel(struct mt76x02_dev *dev, struct cfg80211_chan_def *chandef) { struct ieee80211_channel *chan = chandef->chan; bool scan = test_bit(MT76_SCANNING, &dev->mphy.state); enum nl80211_band band = chan->band; u8 channel; u32 ext_cca_chan[4] = { [0] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 0) | FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 1) | FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 2) | FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 3) | FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(0)), [1] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 1) | FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 0) | FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 2) | FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 3) | FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(1)), [2] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 2) | FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 3) | FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 1) | FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 0) | FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(2)), [3] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 3) | FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 2) | FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 1) | FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 0) | FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(3)), }; int ch_group_index; u8 bw, bw_index; int freq, freq1; int ret; dev->cal.channel_cal_done = false; freq = chandef->chan->center_freq; freq1 = chandef->center_freq1; channel = chan->hw_value; switch (chandef->width) { case NL80211_CHAN_WIDTH_40: bw = 1; if (freq1 > freq) { bw_index = 1; ch_group_index = 0; } else { bw_index = 3; ch_group_index = 1; } channel += 2 - ch_group_index * 4; break; case NL80211_CHAN_WIDTH_80: ch_group_index = (freq - freq1 + 30) / 20; if (WARN_ON(ch_group_index < 0 || ch_group_index > 3)) ch_group_index = 0; bw = 2; bw_index = ch_group_index; channel += 6 - ch_group_index * 4; break; default: bw = 0; bw_index = 0; ch_group_index = 0; break; } mt76x2_read_rx_gain(dev); mt76x2_phy_set_txpower_regs(dev, band); mt76x2_configure_tx_delay(dev, band, bw); mt76x2_phy_set_txpower(dev); mt76x02_phy_set_band(dev, chan->band, ch_group_index & 1); mt76x02_phy_set_bw(dev, chandef->width, ch_group_index); mt76_rmw(dev, MT_EXT_CCA_CFG, (MT_EXT_CCA_CFG_CCA0 | MT_EXT_CCA_CFG_CCA1 | MT_EXT_CCA_CFG_CCA2 | MT_EXT_CCA_CFG_CCA3 | MT_EXT_CCA_CFG_CCA_MASK), ext_cca_chan[ch_group_index]); ret = mt76x2_mcu_set_channel(dev, channel, bw, bw_index, scan); if (ret) return ret; mt76x2_mcu_init_gain(dev, channel, dev->cal.rx.mcu_gain, true); mt76x2_phy_set_antenna(dev); /* Enable LDPC Rx */ if (mt76xx_rev(dev) >= MT76XX_REV_E3) mt76_set(dev, MT_BBP(RXO, 13), BIT(10)); if (!dev->cal.init_cal_done) { u8 val = mt76x02_eeprom_get(dev, MT_EE_BT_RCAL_RESULT); if (val != 0xff) mt76x02_mcu_calibrate(dev, MCU_CAL_R, 0); } mt76x02_mcu_calibrate(dev, MCU_CAL_RXDCOC, channel); /* Rx LPF calibration */ if (!dev->cal.init_cal_done) mt76x02_mcu_calibrate(dev, MCU_CAL_RC, 0); dev->cal.init_cal_done = true; mt76_wr(dev, MT_BBP(AGC, 61), 0xFF64A4E2); mt76_wr(dev, MT_BBP(AGC, 7), 0x08081010); mt76_wr(dev, MT_BBP(AGC, 11), 0x00000404); mt76_wr(dev, MT_BBP(AGC, 2), 0x00007070); mt76_wr(dev, MT_TXOP_CTRL_CFG, 0x04101B3F); if (scan) return 0; mt76x2_phy_channel_calibrate(dev, true); mt76x02_init_agc_gain(dev); /* init default values for temp compensation */ if (mt76x2_tssi_enabled(dev)) { mt76_rmw_field(dev, MT_TX_ALC_CFG_1, MT_TX_ALC_CFG_1_TEMP_COMP, 0x38); mt76_rmw_field(dev, MT_TX_ALC_CFG_2, MT_TX_ALC_CFG_2_TEMP_COMP, 0x38); } ieee80211_queue_delayed_work(mt76_hw(dev), &dev->cal_work, MT_CALIBRATE_INTERVAL); return 0; } static void mt76x2_phy_temp_compensate(struct mt76x02_dev *dev) { struct mt76x2_temp_comp t; int temp, db_diff; if (mt76x2_get_temp_comp(dev, &t)) return; temp = mt76_get_field(dev, MT_TEMP_SENSOR, MT_TEMP_SENSOR_VAL); temp -= t.temp_25_ref; temp = (temp * 1789) / 1000 + 25; dev->cal.temp = temp; if (temp > 25) db_diff = (temp - 25) / t.high_slope; else db_diff = (25 - temp) / t.low_slope; db_diff = min(db_diff, t.upper_bound); db_diff = max(db_diff, t.lower_bound); mt76_rmw_field(dev, MT_TX_ALC_CFG_1, MT_TX_ALC_CFG_1_TEMP_COMP, db_diff * 2); mt76_rmw_field(dev, MT_TX_ALC_CFG_2, MT_TX_ALC_CFG_2_TEMP_COMP, db_diff * 2); } void mt76x2_phy_calibrate(struct work_struct *work) { struct mt76x02_dev *dev; dev = container_of(work, struct mt76x02_dev, cal_work.work); mutex_lock(&dev->mt76.mutex); mt76x2_phy_channel_calibrate(dev, false); mt76x2_phy_tssi_compensate(dev); mt76x2_phy_temp_compensate(dev); mt76x2_phy_update_channel_gain(dev); mutex_unlock(&dev->mt76.mutex); ieee80211_queue_delayed_work(mt76_hw(dev), &dev->cal_work, MT_CALIBRATE_INTERVAL); } int mt76x2_phy_start(struct mt76x02_dev *dev) { int ret; ret = mt76x02_mcu_set_radio_state(dev, true); if (ret) return ret; mt76x2_mcu_load_cr(dev, MT_RF_BBP_CR, 0, 0); return ret; }
linux-master
drivers/net/wireless/mediatek/mt76/mt76x2/pci_phy.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2016 Felix Fietkau <[email protected]> */ #include <linux/kernel.h> #include <linux/firmware.h> #include <linux/delay.h> #include "mt76x2.h" #include "mcu.h" #include "eeprom.h" static int mt76pci_load_rom_patch(struct mt76x02_dev *dev) { const struct firmware *fw = NULL; struct mt76x02_patch_header *hdr; bool rom_protect = !is_mt7612(dev); int len, ret = 0; __le32 *cur; u32 patch_mask, patch_reg; if (rom_protect && !mt76_poll(dev, MT_MCU_SEMAPHORE_03, 1, 1, 600)) { dev_err(dev->mt76.dev, "Could not get hardware semaphore for ROM PATCH\n"); return -ETIMEDOUT; } if (mt76xx_rev(dev) >= MT76XX_REV_E3) { patch_mask = BIT(0); patch_reg = MT_MCU_CLOCK_CTL; } else { patch_mask = BIT(1); patch_reg = MT_MCU_COM_REG0; } if (rom_protect && (mt76_rr(dev, patch_reg) & patch_mask)) { dev_info(dev->mt76.dev, "ROM patch already applied\n"); goto out; } ret = request_firmware(&fw, MT7662_ROM_PATCH, dev->mt76.dev); if (ret) goto out; if (!fw || !fw->data || fw->size <= sizeof(*hdr)) { ret = -EIO; dev_err(dev->mt76.dev, "Failed to load firmware\n"); goto out; } hdr = (struct mt76x02_patch_header *)fw->data; dev_info(dev->mt76.dev, "ROM patch build: %.15s\n", hdr->build_time); mt76_wr(dev, MT_MCU_PCIE_REMAP_BASE4, MT_MCU_ROM_PATCH_OFFSET); cur = (__le32 *)(fw->data + sizeof(*hdr)); len = fw->size - sizeof(*hdr); mt76_wr_copy(dev, MT_MCU_ROM_PATCH_ADDR, cur, len); mt76_wr(dev, MT_MCU_PCIE_REMAP_BASE4, 0); /* Trigger ROM */ mt76_wr(dev, MT_MCU_INT_LEVEL, 4); if (!mt76_poll_msec(dev, patch_reg, patch_mask, patch_mask, 2000)) { dev_err(dev->mt76.dev, "Failed to load ROM patch\n"); ret = -ETIMEDOUT; } out: /* release semaphore */ if (rom_protect) mt76_wr(dev, MT_MCU_SEMAPHORE_03, 1); release_firmware(fw); return ret; } static int mt76pci_load_firmware(struct mt76x02_dev *dev) { const struct firmware *fw; const struct mt76x02_fw_header *hdr; int len, ret; __le32 *cur; u32 offset, val; ret = request_firmware(&fw, MT7662_FIRMWARE, dev->mt76.dev); if (ret) return ret; if (!fw || !fw->data || fw->size < sizeof(*hdr)) goto error; hdr = (const struct mt76x02_fw_header *)fw->data; len = sizeof(*hdr); len += le32_to_cpu(hdr->ilm_len); len += le32_to_cpu(hdr->dlm_len); if (fw->size != len) goto error; val = le16_to_cpu(hdr->fw_ver); dev_info(dev->mt76.dev, "Firmware Version: %d.%d.%02d\n", (val >> 12) & 0xf, (val >> 8) & 0xf, val & 0xf); val = le16_to_cpu(hdr->build_ver); dev_info(dev->mt76.dev, "Build: %x\n", val); dev_info(dev->mt76.dev, "Build Time: %.16s\n", hdr->build_time); cur = (__le32 *)(fw->data + sizeof(*hdr)); len = le32_to_cpu(hdr->ilm_len); mt76_wr(dev, MT_MCU_PCIE_REMAP_BASE4, MT_MCU_ILM_OFFSET); mt76_wr_copy(dev, MT_MCU_ILM_ADDR, cur, len); cur += len / sizeof(*cur); len = le32_to_cpu(hdr->dlm_len); if (mt76xx_rev(dev) >= MT76XX_REV_E3) offset = MT_MCU_DLM_ADDR_E3; else offset = MT_MCU_DLM_ADDR; mt76_wr(dev, MT_MCU_PCIE_REMAP_BASE4, MT_MCU_DLM_OFFSET); mt76_wr_copy(dev, offset, cur, len); mt76_wr(dev, MT_MCU_PCIE_REMAP_BASE4, 0); val = mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_2); if (FIELD_GET(MT_EE_NIC_CONF_2_XTAL_OPTION, val) == 1) mt76_set(dev, MT_MCU_COM_REG0, BIT(30)); /* trigger firmware */ mt76_wr(dev, MT_MCU_INT_LEVEL, 2); if (!mt76_poll_msec(dev, MT_MCU_COM_REG0, 1, 1, 200)) { dev_err(dev->mt76.dev, "Firmware failed to start\n"); release_firmware(fw); return -ETIMEDOUT; } mt76x02_set_ethtool_fwver(dev, hdr); dev_info(dev->mt76.dev, "Firmware running!\n"); release_firmware(fw); return ret; error: dev_err(dev->mt76.dev, "Invalid firmware\n"); release_firmware(fw); return -ENOENT; } static int mt76pci_mcu_restart(struct mt76_dev *mdev) { struct mt76x02_dev *dev; int ret; dev = container_of(mdev, struct mt76x02_dev, mt76); mt76x02_mcu_cleanup(dev); mt76x2_mac_reset(dev, true); ret = mt76pci_load_firmware(dev); if (ret) return ret; mt76_wr(dev, MT_WPDMA_RST_IDX, ~0); return 0; } int mt76x2_mcu_init(struct mt76x02_dev *dev) { static const struct mt76_mcu_ops mt76x2_mcu_ops = { .mcu_restart = mt76pci_mcu_restart, .mcu_send_msg = mt76x02_mcu_msg_send, .mcu_parse_response = mt76x02_mcu_parse_response, }; int ret; dev->mt76.mcu_ops = &mt76x2_mcu_ops; ret = mt76pci_load_rom_patch(dev); if (ret) return ret; ret = mt76pci_load_firmware(dev); if (ret) return ret; mt76x02_mcu_function_select(dev, Q_SELECT, 1); return 0; }
linux-master
drivers/net/wireless/mediatek/mt76/mt76x2/pci_mcu.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2018 Lorenzo Bianconi <[email protected]> */ #include <linux/firmware.h> #include "mt76x2u.h" #include "eeprom.h" #include "../mt76x02_usb.h" #define MT_CMD_HDR_LEN 4 #define MCU_FW_URB_MAX_PAYLOAD 0x3900 #define MCU_ROM_PATCH_MAX_PAYLOAD 2048 #define MT76U_MCU_ILM_OFFSET 0x80000 #define MT76U_MCU_DLM_OFFSET 0x110000 #define MT76U_MCU_ROM_PATCH_OFFSET 0x90000 static void mt76x2u_mcu_load_ivb(struct mt76x02_dev *dev) { mt76u_vendor_request(&dev->mt76, MT_VEND_DEV_MODE, USB_DIR_OUT | USB_TYPE_VENDOR, 0x12, 0, NULL, 0); } static void mt76x2u_mcu_enable_patch(struct mt76x02_dev *dev) { struct mt76_usb *usb = &dev->mt76.usb; static const u8 data[] = { 0x6f, 0xfc, 0x08, 0x01, 0x20, 0x04, 0x00, 0x00, 0x00, 0x09, 0x00, }; memcpy(usb->data, data, sizeof(data)); mt76u_vendor_request(&dev->mt76, MT_VEND_DEV_MODE, USB_DIR_OUT | USB_TYPE_CLASS, 0x12, 0, usb->data, sizeof(data)); } static void mt76x2u_mcu_reset_wmt(struct mt76x02_dev *dev) { struct mt76_usb *usb = &dev->mt76.usb; u8 data[] = { 0x6f, 0xfc, 0x05, 0x01, 0x07, 0x01, 0x00, 0x04 }; memcpy(usb->data, data, sizeof(data)); mt76u_vendor_request(&dev->mt76, MT_VEND_DEV_MODE, USB_DIR_OUT | USB_TYPE_CLASS, 0x12, 0, usb->data, sizeof(data)); } static int mt76x2u_mcu_load_rom_patch(struct mt76x02_dev *dev) { bool rom_protect = !is_mt7612(dev); struct mt76x02_patch_header *hdr; u32 val, patch_mask, patch_reg; const struct firmware *fw; int err; if (rom_protect && !mt76_poll_msec(dev, MT_MCU_SEMAPHORE_03, 1, 1, 600)) { dev_err(dev->mt76.dev, "could not get hardware semaphore for ROM PATCH\n"); return -ETIMEDOUT; } if (mt76xx_rev(dev) >= MT76XX_REV_E3) { patch_mask = BIT(0); patch_reg = MT_MCU_CLOCK_CTL; } else { patch_mask = BIT(1); patch_reg = MT_MCU_COM_REG0; } if (rom_protect && (mt76_rr(dev, patch_reg) & patch_mask)) { dev_info(dev->mt76.dev, "ROM patch already applied\n"); return 0; } err = request_firmware(&fw, MT7662_ROM_PATCH, dev->mt76.dev); if (err < 0) return err; if (!fw || !fw->data || fw->size <= sizeof(*hdr)) { dev_err(dev->mt76.dev, "failed to load firmware\n"); err = -EIO; goto out; } hdr = (struct mt76x02_patch_header *)fw->data; dev_info(dev->mt76.dev, "ROM patch build: %.15s\n", hdr->build_time); /* enable USB_DMA_CFG */ val = MT_USB_DMA_CFG_RX_BULK_EN | MT_USB_DMA_CFG_TX_BULK_EN | FIELD_PREP(MT_USB_DMA_CFG_RX_BULK_AGG_TOUT, 0x20); mt76_wr(dev, MT_VEND_ADDR(CFG, MT_USB_U3DMA_CFG), val); /* vendor reset */ mt76x02u_mcu_fw_reset(dev); usleep_range(5000, 10000); /* enable FCE to send in-band cmd */ mt76_wr(dev, MT_FCE_PSE_CTRL, 0x1); /* FCE tx_fs_base_ptr */ mt76_wr(dev, MT_TX_CPU_FROM_FCE_BASE_PTR, 0x400230); /* FCE tx_fs_max_cnt */ mt76_wr(dev, MT_TX_CPU_FROM_FCE_MAX_COUNT, 0x1); /* FCE pdma enable */ mt76_wr(dev, MT_FCE_PDMA_GLOBAL_CONF, 0x44); /* FCE skip_fs_en */ mt76_wr(dev, MT_FCE_SKIP_FS, 0x3); err = mt76x02u_mcu_fw_send_data(dev, fw->data + sizeof(*hdr), fw->size - sizeof(*hdr), MCU_ROM_PATCH_MAX_PAYLOAD, MT76U_MCU_ROM_PATCH_OFFSET); if (err < 0) { err = -EIO; goto out; } mt76x2u_mcu_enable_patch(dev); mt76x2u_mcu_reset_wmt(dev); mdelay(20); if (!mt76_poll_msec(dev, patch_reg, patch_mask, patch_mask, 100)) { dev_err(dev->mt76.dev, "failed to load ROM patch\n"); err = -ETIMEDOUT; } out: if (rom_protect) mt76_wr(dev, MT_MCU_SEMAPHORE_03, 1); release_firmware(fw); return err; } static int mt76x2u_mcu_load_firmware(struct mt76x02_dev *dev) { u32 val, dlm_offset = MT76U_MCU_DLM_OFFSET; const struct mt76x02_fw_header *hdr; int err, len, ilm_len, dlm_len; const struct firmware *fw; err = request_firmware(&fw, MT7662_FIRMWARE, dev->mt76.dev); if (err < 0) return err; if (!fw || !fw->data || fw->size < sizeof(*hdr)) { err = -EINVAL; goto out; } hdr = (const struct mt76x02_fw_header *)fw->data; ilm_len = le32_to_cpu(hdr->ilm_len); dlm_len = le32_to_cpu(hdr->dlm_len); len = sizeof(*hdr) + ilm_len + dlm_len; if (fw->size != len) { err = -EINVAL; goto out; } val = le16_to_cpu(hdr->fw_ver); dev_info(dev->mt76.dev, "Firmware Version: %d.%d.%02d\n", (val >> 12) & 0xf, (val >> 8) & 0xf, val & 0xf); val = le16_to_cpu(hdr->build_ver); dev_info(dev->mt76.dev, "Build: %x\n", val); dev_info(dev->mt76.dev, "Build Time: %.16s\n", hdr->build_time); /* vendor reset */ mt76x02u_mcu_fw_reset(dev); usleep_range(5000, 10000); /* enable USB_DMA_CFG */ val = MT_USB_DMA_CFG_RX_BULK_EN | MT_USB_DMA_CFG_TX_BULK_EN | FIELD_PREP(MT_USB_DMA_CFG_RX_BULK_AGG_TOUT, 0x20); mt76_wr(dev, MT_VEND_ADDR(CFG, MT_USB_U3DMA_CFG), val); /* enable FCE to send in-band cmd */ mt76_wr(dev, MT_FCE_PSE_CTRL, 0x1); /* FCE tx_fs_base_ptr */ mt76_wr(dev, MT_TX_CPU_FROM_FCE_BASE_PTR, 0x400230); /* FCE tx_fs_max_cnt */ mt76_wr(dev, MT_TX_CPU_FROM_FCE_MAX_COUNT, 0x1); /* FCE pdma enable */ mt76_wr(dev, MT_FCE_PDMA_GLOBAL_CONF, 0x44); /* FCE skip_fs_en */ mt76_wr(dev, MT_FCE_SKIP_FS, 0x3); /* load ILM */ err = mt76x02u_mcu_fw_send_data(dev, fw->data + sizeof(*hdr), ilm_len, MCU_FW_URB_MAX_PAYLOAD, MT76U_MCU_ILM_OFFSET); if (err < 0) { err = -EIO; goto out; } /* load DLM */ if (mt76xx_rev(dev) >= MT76XX_REV_E3) dlm_offset += 0x800; err = mt76x02u_mcu_fw_send_data(dev, fw->data + sizeof(*hdr) + ilm_len, dlm_len, MCU_FW_URB_MAX_PAYLOAD, dlm_offset); if (err < 0) { err = -EIO; goto out; } mt76x2u_mcu_load_ivb(dev); if (!mt76_poll_msec(dev, MT_MCU_COM_REG0, 1, 1, 100)) { dev_err(dev->mt76.dev, "firmware failed to start\n"); err = -ETIMEDOUT; goto out; } mt76_set(dev, MT_MCU_COM_REG0, BIT(1)); /* enable FCE to send in-band cmd */ mt76_wr(dev, MT_FCE_PSE_CTRL, 0x1); mt76x02_set_ethtool_fwver(dev, hdr); dev_dbg(dev->mt76.dev, "firmware running\n"); out: release_firmware(fw); return err; } int mt76x2u_mcu_fw_init(struct mt76x02_dev *dev) { int err; err = mt76x2u_mcu_load_rom_patch(dev); if (err < 0) return err; return mt76x2u_mcu_load_firmware(dev); } int mt76x2u_mcu_init(struct mt76x02_dev *dev) { int err; err = mt76x02_mcu_function_select(dev, Q_SELECT, 1); if (err < 0) return err; return mt76x02_mcu_set_radio_state(dev, true); }
linux-master
drivers/net/wireless/mediatek/mt76/mt76x2/usb_mcu.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2016 Felix Fietkau <[email protected]> */ #include <linux/module.h> #include <linux/of.h> #include <asm/unaligned.h> #include "mt76x2.h" #include "eeprom.h" #define EE_FIELD(_name, _value) [MT_EE_##_name] = (_value) | 1 static int mt76x2_eeprom_get_macaddr(struct mt76x02_dev *dev) { void *src = dev->mt76.eeprom.data + MT_EE_MAC_ADDR; memcpy(dev->mphy.macaddr, src, ETH_ALEN); return 0; } static bool mt76x2_has_cal_free_data(struct mt76x02_dev *dev, u8 *efuse) { u16 *efuse_w = (u16 *)efuse; if (efuse_w[MT_EE_NIC_CONF_0] != 0) return false; if (efuse_w[MT_EE_XTAL_TRIM_1] == 0xffff) return false; if (efuse_w[MT_EE_TX_POWER_DELTA_BW40] != 0) return false; if (efuse_w[MT_EE_TX_POWER_0_START_2G] == 0xffff) return false; if (efuse_w[MT_EE_TX_POWER_0_GRP3_TX_POWER_DELTA] != 0) return false; if (efuse_w[MT_EE_TX_POWER_0_GRP4_TSSI_SLOPE] == 0xffff) return false; return true; } static void mt76x2_apply_cal_free_data(struct mt76x02_dev *dev, u8 *efuse) { #define GROUP_5G(_id) \ MT_EE_TX_POWER_0_START_5G + MT_TX_POWER_GROUP_SIZE_5G * (_id), \ MT_EE_TX_POWER_0_START_5G + MT_TX_POWER_GROUP_SIZE_5G * (_id) + 1, \ MT_EE_TX_POWER_1_START_5G + MT_TX_POWER_GROUP_SIZE_5G * (_id), \ MT_EE_TX_POWER_1_START_5G + MT_TX_POWER_GROUP_SIZE_5G * (_id) + 1 static const u8 cal_free_bytes[] = { MT_EE_XTAL_TRIM_1, MT_EE_TX_POWER_EXT_PA_5G + 1, MT_EE_TX_POWER_0_START_2G, MT_EE_TX_POWER_0_START_2G + 1, MT_EE_TX_POWER_1_START_2G, MT_EE_TX_POWER_1_START_2G + 1, GROUP_5G(0), GROUP_5G(1), GROUP_5G(2), GROUP_5G(3), GROUP_5G(4), GROUP_5G(5), MT_EE_RF_2G_TSSI_OFF_TXPOWER, MT_EE_RF_2G_RX_HIGH_GAIN + 1, MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN, MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN + 1, MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN, MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN + 1, MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN, MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN + 1, }; struct device_node *np = dev->mt76.dev->of_node; u8 *eeprom = dev->mt76.eeprom.data; u8 prev_grp0[4] = { eeprom[MT_EE_TX_POWER_0_START_5G], eeprom[MT_EE_TX_POWER_0_START_5G + 1], eeprom[MT_EE_TX_POWER_1_START_5G], eeprom[MT_EE_TX_POWER_1_START_5G + 1] }; u16 val; int i; if (!np || !of_property_read_bool(np, "mediatek,eeprom-merge-otp")) return; if (!mt76x2_has_cal_free_data(dev, efuse)) return; for (i = 0; i < ARRAY_SIZE(cal_free_bytes); i++) { int offset = cal_free_bytes[i]; eeprom[offset] = efuse[offset]; } if (!(efuse[MT_EE_TX_POWER_0_START_5G] | efuse[MT_EE_TX_POWER_0_START_5G + 1])) memcpy(eeprom + MT_EE_TX_POWER_0_START_5G, prev_grp0, 2); if (!(efuse[MT_EE_TX_POWER_1_START_5G] | efuse[MT_EE_TX_POWER_1_START_5G + 1])) memcpy(eeprom + MT_EE_TX_POWER_1_START_5G, prev_grp0 + 2, 2); val = get_unaligned_le16(efuse + MT_EE_BT_RCAL_RESULT); if (val != 0xffff) eeprom[MT_EE_BT_RCAL_RESULT] = val & 0xff; val = get_unaligned_le16(efuse + MT_EE_BT_VCDL_CALIBRATION); if (val != 0xffff) eeprom[MT_EE_BT_VCDL_CALIBRATION + 1] = val >> 8; val = get_unaligned_le16(efuse + MT_EE_BT_PMUCFG); if (val != 0xffff) eeprom[MT_EE_BT_PMUCFG] = val & 0xff; } static int mt76x2_check_eeprom(struct mt76x02_dev *dev) { u16 val = get_unaligned_le16(dev->mt76.eeprom.data); if (!val) val = get_unaligned_le16(dev->mt76.eeprom.data + MT_EE_PCI_ID); switch (val) { case 0x7662: case 0x7612: return 0; default: dev_err(dev->mt76.dev, "EEPROM data check failed: %04x\n", val); return -EINVAL; } } static int mt76x2_eeprom_load(struct mt76x02_dev *dev) { void *efuse; bool found; int ret; ret = mt76_eeprom_init(&dev->mt76, MT7662_EEPROM_SIZE); if (ret < 0) return ret; found = ret; if (found) found = !mt76x2_check_eeprom(dev); dev->mt76.otp.data = devm_kzalloc(dev->mt76.dev, MT7662_EEPROM_SIZE, GFP_KERNEL); dev->mt76.otp.size = MT7662_EEPROM_SIZE; if (!dev->mt76.otp.data) return -ENOMEM; efuse = dev->mt76.otp.data; if (mt76x02_get_efuse_data(dev, 0, efuse, MT7662_EEPROM_SIZE, MT_EE_READ)) goto out; if (found) { mt76x2_apply_cal_free_data(dev, efuse); } else { /* FIXME: check if efuse data is complete */ found = true; memcpy(dev->mt76.eeprom.data, efuse, MT7662_EEPROM_SIZE); } out: if (!found) return -ENOENT; return 0; } static void mt76x2_set_rx_gain_group(struct mt76x02_dev *dev, u8 val) { s8 *dest = dev->cal.rx.high_gain; if (!mt76x02_field_valid(val)) { dest[0] = 0; dest[1] = 0; return; } dest[0] = mt76x02_sign_extend(val, 4); dest[1] = mt76x02_sign_extend(val >> 4, 4); } static void mt76x2_set_rssi_offset(struct mt76x02_dev *dev, int chain, u8 val) { s8 *dest = dev->cal.rx.rssi_offset; if (!mt76x02_field_valid(val)) { dest[chain] = 0; return; } dest[chain] = mt76x02_sign_extend_optional(val, 7); } static enum mt76x2_cal_channel_group mt76x2_get_cal_channel_group(int channel) { if (channel >= 184 && channel <= 196) return MT_CH_5G_JAPAN; if (channel <= 48) return MT_CH_5G_UNII_1; if (channel <= 64) return MT_CH_5G_UNII_2; if (channel <= 114) return MT_CH_5G_UNII_2E_1; if (channel <= 144) return MT_CH_5G_UNII_2E_2; return MT_CH_5G_UNII_3; } static u8 mt76x2_get_5g_rx_gain(struct mt76x02_dev *dev, u8 channel) { enum mt76x2_cal_channel_group group; group = mt76x2_get_cal_channel_group(channel); switch (group) { case MT_CH_5G_JAPAN: return mt76x02_eeprom_get(dev, MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN); case MT_CH_5G_UNII_1: return mt76x02_eeprom_get(dev, MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN) >> 8; case MT_CH_5G_UNII_2: return mt76x02_eeprom_get(dev, MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN); case MT_CH_5G_UNII_2E_1: return mt76x02_eeprom_get(dev, MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN) >> 8; case MT_CH_5G_UNII_2E_2: return mt76x02_eeprom_get(dev, MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN); default: return mt76x02_eeprom_get(dev, MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN) >> 8; } } void mt76x2_read_rx_gain(struct mt76x02_dev *dev) { struct ieee80211_channel *chan = dev->mphy.chandef.chan; int channel = chan->hw_value; s8 lna_5g[3], lna_2g; u8 lna; u16 val; if (chan->band == NL80211_BAND_2GHZ) val = mt76x02_eeprom_get(dev, MT_EE_RF_2G_RX_HIGH_GAIN) >> 8; else val = mt76x2_get_5g_rx_gain(dev, channel); mt76x2_set_rx_gain_group(dev, val); mt76x02_get_rx_gain(dev, chan->band, &val, &lna_2g, lna_5g); mt76x2_set_rssi_offset(dev, 0, val); mt76x2_set_rssi_offset(dev, 1, val >> 8); dev->cal.rx.mcu_gain = (lna_2g & 0xff); dev->cal.rx.mcu_gain |= (lna_5g[0] & 0xff) << 8; dev->cal.rx.mcu_gain |= (lna_5g[1] & 0xff) << 16; dev->cal.rx.mcu_gain |= (lna_5g[2] & 0xff) << 24; lna = mt76x02_get_lna_gain(dev, &lna_2g, lna_5g, chan); dev->cal.rx.lna_gain = mt76x02_sign_extend(lna, 8); } EXPORT_SYMBOL_GPL(mt76x2_read_rx_gain); void mt76x2_get_rate_power(struct mt76x02_dev *dev, struct mt76x02_rate_power *t, struct ieee80211_channel *chan) { bool is_5ghz; u16 val; is_5ghz = chan->band == NL80211_BAND_5GHZ; memset(t, 0, sizeof(*t)); val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_CCK); t->cck[0] = t->cck[1] = mt76x02_rate_power_val(val); t->cck[2] = t->cck[3] = mt76x02_rate_power_val(val >> 8); if (is_5ghz) val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_OFDM_5G_6M); else val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_OFDM_2G_6M); t->ofdm[0] = t->ofdm[1] = mt76x02_rate_power_val(val); t->ofdm[2] = t->ofdm[3] = mt76x02_rate_power_val(val >> 8); if (is_5ghz) val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_OFDM_5G_24M); else val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_OFDM_2G_24M); t->ofdm[4] = t->ofdm[5] = mt76x02_rate_power_val(val); t->ofdm[6] = t->ofdm[7] = mt76x02_rate_power_val(val >> 8); val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_HT_MCS0); t->ht[0] = t->ht[1] = mt76x02_rate_power_val(val); t->ht[2] = t->ht[3] = mt76x02_rate_power_val(val >> 8); val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_HT_MCS4); t->ht[4] = t->ht[5] = mt76x02_rate_power_val(val); t->ht[6] = t->ht[7] = mt76x02_rate_power_val(val >> 8); val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_HT_MCS8); t->ht[8] = t->ht[9] = mt76x02_rate_power_val(val); t->ht[10] = t->ht[11] = mt76x02_rate_power_val(val >> 8); val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_HT_MCS12); t->ht[12] = t->ht[13] = mt76x02_rate_power_val(val); t->ht[14] = t->ht[15] = mt76x02_rate_power_val(val >> 8); val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_VHT_MCS8); if (!is_5ghz) val >>= 8; t->vht[0] = t->vht[1] = mt76x02_rate_power_val(val >> 8); } EXPORT_SYMBOL_GPL(mt76x2_get_rate_power); static void mt76x2_get_power_info_2g(struct mt76x02_dev *dev, struct mt76x2_tx_power_info *t, struct ieee80211_channel *chan, int chain, int offset) { int channel = chan->hw_value; int delta_idx; u8 data[6]; u16 val; if (channel < 6) delta_idx = 3; else if (channel < 11) delta_idx = 4; else delta_idx = 5; mt76x02_eeprom_copy(dev, offset, data, sizeof(data)); t->chain[chain].tssi_slope = data[0]; t->chain[chain].tssi_offset = data[1]; t->chain[chain].target_power = data[2]; t->chain[chain].delta = mt76x02_sign_extend_optional(data[delta_idx], 7); val = mt76x02_eeprom_get(dev, MT_EE_RF_2G_TSSI_OFF_TXPOWER); t->target_power = val >> 8; } static void mt76x2_get_power_info_5g(struct mt76x02_dev *dev, struct mt76x2_tx_power_info *t, struct ieee80211_channel *chan, int chain, int offset) { int channel = chan->hw_value; enum mt76x2_cal_channel_group group; int delta_idx; u16 val; u8 data[5]; group = mt76x2_get_cal_channel_group(channel); offset += group * MT_TX_POWER_GROUP_SIZE_5G; if (channel >= 192) delta_idx = 4; else if (channel >= 184) delta_idx = 3; else if (channel < 44) delta_idx = 3; else if (channel < 52) delta_idx = 4; else if (channel < 58) delta_idx = 3; else if (channel < 98) delta_idx = 4; else if (channel < 106) delta_idx = 3; else if (channel < 116) delta_idx = 4; else if (channel < 130) delta_idx = 3; else if (channel < 149) delta_idx = 4; else if (channel < 157) delta_idx = 3; else delta_idx = 4; mt76x02_eeprom_copy(dev, offset, data, sizeof(data)); t->chain[chain].tssi_slope = data[0]; t->chain[chain].tssi_offset = data[1]; t->chain[chain].target_power = data[2]; t->chain[chain].delta = mt76x02_sign_extend_optional(data[delta_idx], 7); val = mt76x02_eeprom_get(dev, MT_EE_RF_2G_RX_HIGH_GAIN); t->target_power = val & 0xff; } void mt76x2_get_power_info(struct mt76x02_dev *dev, struct mt76x2_tx_power_info *t, struct ieee80211_channel *chan) { u16 bw40, bw80; memset(t, 0, sizeof(*t)); bw40 = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_DELTA_BW40); bw80 = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_DELTA_BW80); if (chan->band == NL80211_BAND_5GHZ) { bw40 >>= 8; mt76x2_get_power_info_5g(dev, t, chan, 0, MT_EE_TX_POWER_0_START_5G); mt76x2_get_power_info_5g(dev, t, chan, 1, MT_EE_TX_POWER_1_START_5G); } else { mt76x2_get_power_info_2g(dev, t, chan, 0, MT_EE_TX_POWER_0_START_2G); mt76x2_get_power_info_2g(dev, t, chan, 1, MT_EE_TX_POWER_1_START_2G); } if (mt76x2_tssi_enabled(dev) || !mt76x02_field_valid(t->target_power)) t->target_power = t->chain[0].target_power; t->delta_bw40 = mt76x02_rate_power_val(bw40); t->delta_bw80 = mt76x02_rate_power_val(bw80); } EXPORT_SYMBOL_GPL(mt76x2_get_power_info); int mt76x2_get_temp_comp(struct mt76x02_dev *dev, struct mt76x2_temp_comp *t) { enum nl80211_band band = dev->mphy.chandef.chan->band; u16 val, slope; u8 bounds; memset(t, 0, sizeof(*t)); if (!mt76x2_temp_tx_alc_enabled(dev)) return -EINVAL; if (!mt76x02_ext_pa_enabled(dev, band)) return -EINVAL; val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_EXT_PA_5G) >> 8; t->temp_25_ref = val & 0x7f; if (band == NL80211_BAND_5GHZ) { slope = mt76x02_eeprom_get(dev, MT_EE_RF_TEMP_COMP_SLOPE_5G); bounds = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_EXT_PA_5G); } else { slope = mt76x02_eeprom_get(dev, MT_EE_RF_TEMP_COMP_SLOPE_2G); bounds = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_DELTA_BW80) >> 8; } t->high_slope = slope & 0xff; t->low_slope = slope >> 8; t->lower_bound = 0 - (bounds & 0xf); t->upper_bound = (bounds >> 4) & 0xf; return 0; } EXPORT_SYMBOL_GPL(mt76x2_get_temp_comp); int mt76x2_eeprom_init(struct mt76x02_dev *dev) { int ret; ret = mt76x2_eeprom_load(dev); if (ret) return ret; mt76x02_eeprom_parse_hw_cap(dev); mt76x2_eeprom_get_macaddr(dev); mt76_eeprom_override(&dev->mphy); dev->mphy.macaddr[0] &= ~BIT(1); return 0; } EXPORT_SYMBOL_GPL(mt76x2_eeprom_init); MODULE_LICENSE("Dual BSD/GPL");
linux-master
drivers/net/wireless/mediatek/mt76/mt76x2/eeprom.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2016 Felix Fietkau <[email protected]> * Copyright (C) 2018 Lorenzo Bianconi <[email protected]> */ #include "mt76x2.h" #include "eeprom.h" #include "mcu.h" #include "../mt76x02_phy.h" static void mt76x2_adjust_high_lna_gain(struct mt76x02_dev *dev, int reg, s8 offset) { s8 gain; gain = FIELD_GET(MT_BBP_AGC_LNA_HIGH_GAIN, mt76_rr(dev, MT_BBP(AGC, reg))); gain -= offset / 2; mt76_rmw_field(dev, MT_BBP(AGC, reg), MT_BBP_AGC_LNA_HIGH_GAIN, gain); } static void mt76x2_adjust_agc_gain(struct mt76x02_dev *dev, int reg, s8 offset) { s8 gain; gain = FIELD_GET(MT_BBP_AGC_GAIN, mt76_rr(dev, MT_BBP(AGC, reg))); gain += offset; mt76_rmw_field(dev, MT_BBP(AGC, reg), MT_BBP_AGC_GAIN, gain); } void mt76x2_apply_gain_adj(struct mt76x02_dev *dev) { s8 *gain_adj = dev->cal.rx.high_gain; mt76x2_adjust_high_lna_gain(dev, 4, gain_adj[0]); mt76x2_adjust_high_lna_gain(dev, 5, gain_adj[1]); mt76x2_adjust_agc_gain(dev, 8, gain_adj[0]); mt76x2_adjust_agc_gain(dev, 9, gain_adj[1]); } EXPORT_SYMBOL_GPL(mt76x2_apply_gain_adj); void mt76x2_phy_set_txpower_regs(struct mt76x02_dev *dev, enum nl80211_band band) { u32 pa_mode[2]; u32 pa_mode_adj; if (band == NL80211_BAND_2GHZ) { pa_mode[0] = 0x010055ff; pa_mode[1] = 0x00550055; mt76_wr(dev, MT_TX_ALC_CFG_2, 0x35160a00); mt76_wr(dev, MT_TX_ALC_CFG_3, 0x35160a06); if (mt76x02_ext_pa_enabled(dev, band)) { mt76_wr(dev, MT_RF_PA_MODE_ADJ0, 0x0000ec00); mt76_wr(dev, MT_RF_PA_MODE_ADJ1, 0x0000ec00); } else { mt76_wr(dev, MT_RF_PA_MODE_ADJ0, 0xf4000200); mt76_wr(dev, MT_RF_PA_MODE_ADJ1, 0xfa000200); } } else { pa_mode[0] = 0x0000ffff; pa_mode[1] = 0x00ff00ff; if (mt76x02_ext_pa_enabled(dev, band)) { mt76_wr(dev, MT_TX_ALC_CFG_2, 0x2f0f0400); mt76_wr(dev, MT_TX_ALC_CFG_3, 0x2f0f0476); } else { mt76_wr(dev, MT_TX_ALC_CFG_2, 0x1b0f0400); mt76_wr(dev, MT_TX_ALC_CFG_3, 0x1b0f0476); } if (mt76x02_ext_pa_enabled(dev, band)) pa_mode_adj = 0x04000000; else pa_mode_adj = 0; mt76_wr(dev, MT_RF_PA_MODE_ADJ0, pa_mode_adj); mt76_wr(dev, MT_RF_PA_MODE_ADJ1, pa_mode_adj); } mt76_wr(dev, MT_BB_PA_MODE_CFG0, pa_mode[0]); mt76_wr(dev, MT_BB_PA_MODE_CFG1, pa_mode[1]); mt76_wr(dev, MT_RF_PA_MODE_CFG0, pa_mode[0]); mt76_wr(dev, MT_RF_PA_MODE_CFG1, pa_mode[1]); if (mt76x02_ext_pa_enabled(dev, band)) { u32 val; if (band == NL80211_BAND_2GHZ) val = 0x3c3c023c; else val = 0x363c023c; mt76_wr(dev, MT_TX0_RF_GAIN_CORR, val); mt76_wr(dev, MT_TX1_RF_GAIN_CORR, val); mt76_wr(dev, MT_TX_ALC_CFG_4, 0x00001818); } else { if (band == NL80211_BAND_2GHZ) { u32 val = 0x0f3c3c3c; mt76_wr(dev, MT_TX0_RF_GAIN_CORR, val); mt76_wr(dev, MT_TX1_RF_GAIN_CORR, val); mt76_wr(dev, MT_TX_ALC_CFG_4, 0x00000606); } else { mt76_wr(dev, MT_TX0_RF_GAIN_CORR, 0x383c023c); mt76_wr(dev, MT_TX1_RF_GAIN_CORR, 0x24282e28); mt76_wr(dev, MT_TX_ALC_CFG_4, 0); } } } EXPORT_SYMBOL_GPL(mt76x2_phy_set_txpower_regs); static int mt76x2_get_min_rate_power(struct mt76x02_rate_power *r) { int i; s8 ret = 0; for (i = 0; i < sizeof(r->all); i++) { if (!r->all[i]) continue; if (ret) ret = min(ret, r->all[i]); else ret = r->all[i]; } return ret; } void mt76x2_phy_set_txpower(struct mt76x02_dev *dev) { enum nl80211_chan_width width = dev->mphy.chandef.width; struct ieee80211_channel *chan = dev->mphy.chandef.chan; struct mt76x2_tx_power_info txp; int txp_0, txp_1, delta = 0; struct mt76x02_rate_power t = {}; int base_power, gain; mt76x2_get_power_info(dev, &txp, chan); if (width == NL80211_CHAN_WIDTH_40) delta = txp.delta_bw40; else if (width == NL80211_CHAN_WIDTH_80) delta = txp.delta_bw80; mt76x2_get_rate_power(dev, &t, chan); mt76x02_add_rate_power_offset(&t, txp.target_power + delta); mt76x02_limit_rate_power(&t, dev->txpower_conf); dev->mphy.txpower_cur = mt76x02_get_max_rate_power(&t); base_power = mt76x2_get_min_rate_power(&t); delta = base_power - txp.target_power; txp_0 = txp.chain[0].target_power + txp.chain[0].delta + delta; txp_1 = txp.chain[1].target_power + txp.chain[1].delta + delta; gain = min(txp_0, txp_1); if (gain < 0) { base_power -= gain; txp_0 -= gain; txp_1 -= gain; } else if (gain > 0x2f) { base_power -= gain - 0x2f; txp_0 = 0x2f; txp_1 = 0x2f; } mt76x02_add_rate_power_offset(&t, -base_power); dev->target_power = txp.target_power; dev->target_power_delta[0] = txp_0 - txp.chain[0].target_power; dev->target_power_delta[1] = txp_1 - txp.chain[0].target_power; dev->rate_power = t; mt76x02_phy_set_txpower(dev, txp_0, txp_1); } EXPORT_SYMBOL_GPL(mt76x2_phy_set_txpower); void mt76x2_configure_tx_delay(struct mt76x02_dev *dev, enum nl80211_band band, u8 bw) { u32 cfg0, cfg1; if (mt76x02_ext_pa_enabled(dev, band)) { cfg0 = bw ? 0x000b0c01 : 0x00101101; cfg1 = 0x00011414; } else { cfg0 = bw ? 0x000b0b01 : 0x00101001; cfg1 = 0x00021414; } mt76_wr(dev, MT_TX_SW_CFG0, cfg0); mt76_wr(dev, MT_TX_SW_CFG1, cfg1); mt76_rmw_field(dev, MT_XIFS_TIME_CFG, MT_XIFS_TIME_CFG_OFDM_SIFS, 15); } EXPORT_SYMBOL_GPL(mt76x2_configure_tx_delay); void mt76x2_phy_tssi_compensate(struct mt76x02_dev *dev) { struct ieee80211_channel *chan = dev->mphy.chandef.chan; struct mt76x2_tx_power_info txp; struct mt76x2_tssi_comp t = {}; if (!dev->cal.tssi_cal_done) return; if (!dev->cal.tssi_comp_pending) { /* TSSI trigger */ t.cal_mode = BIT(0); mt76x2_mcu_tssi_comp(dev, &t); dev->cal.tssi_comp_pending = true; } else { if (mt76_rr(dev, MT_BBP(CORE, 34)) & BIT(4)) return; dev->cal.tssi_comp_pending = false; mt76x2_get_power_info(dev, &txp, chan); if (mt76x02_ext_pa_enabled(dev, chan->band)) t.pa_mode = 1; t.cal_mode = BIT(1); t.slope0 = txp.chain[0].tssi_slope; t.offset0 = txp.chain[0].tssi_offset; t.slope1 = txp.chain[1].tssi_slope; t.offset1 = txp.chain[1].tssi_offset; mt76x2_mcu_tssi_comp(dev, &t); if (t.pa_mode || dev->cal.dpd_cal_done || dev->ed_tx_blocked) return; usleep_range(10000, 20000); mt76x02_mcu_calibrate(dev, MCU_CAL_DPD, chan->hw_value); dev->cal.dpd_cal_done = true; } } EXPORT_SYMBOL_GPL(mt76x2_phy_tssi_compensate); static void mt76x2_phy_set_gain_val(struct mt76x02_dev *dev) { u32 val; u8 gain_val[2]; gain_val[0] = dev->cal.agc_gain_cur[0] - dev->cal.agc_gain_adjust; gain_val[1] = dev->cal.agc_gain_cur[1] - dev->cal.agc_gain_adjust; val = 0x1836 << 16; if (!mt76x2_has_ext_lna(dev) && dev->mphy.chandef.width >= NL80211_CHAN_WIDTH_40) val = 0x1e42 << 16; if (mt76x2_has_ext_lna(dev) && dev->mphy.chandef.chan->band == NL80211_BAND_2GHZ && dev->mphy.chandef.width < NL80211_CHAN_WIDTH_40) val = 0x0f36 << 16; val |= 0xf8; mt76_wr(dev, MT_BBP(AGC, 8), val | FIELD_PREP(MT_BBP_AGC_GAIN, gain_val[0])); mt76_wr(dev, MT_BBP(AGC, 9), val | FIELD_PREP(MT_BBP_AGC_GAIN, gain_val[1])); if (dev->mphy.chandef.chan->flags & IEEE80211_CHAN_RADAR) mt76x02_phy_dfs_adjust_agc(dev); } void mt76x2_phy_update_channel_gain(struct mt76x02_dev *dev) { u8 *gain = dev->cal.agc_gain_init; u8 low_gain_delta, gain_delta; u32 agc_35, agc_37; bool gain_change; int low_gain; u32 val; dev->cal.avg_rssi_all = mt76_get_min_avg_rssi(&dev->mt76, false); if (!dev->cal.avg_rssi_all) dev->cal.avg_rssi_all = -75; low_gain = (dev->cal.avg_rssi_all > mt76x02_get_rssi_gain_thresh(dev)) + (dev->cal.avg_rssi_all > mt76x02_get_low_rssi_gain_thresh(dev)); gain_change = dev->cal.low_gain < 0 || (dev->cal.low_gain & 2) ^ (low_gain & 2); dev->cal.low_gain = low_gain; if (!gain_change) { if (mt76x02_phy_adjust_vga_gain(dev)) mt76x2_phy_set_gain_val(dev); return; } if (dev->mphy.chandef.width == NL80211_CHAN_WIDTH_80) { mt76_wr(dev, MT_BBP(RXO, 14), 0x00560211); val = mt76_rr(dev, MT_BBP(AGC, 26)) & ~0xf; if (low_gain == 2) val |= 0x3; else val |= 0x5; mt76_wr(dev, MT_BBP(AGC, 26), val); } else { mt76_wr(dev, MT_BBP(RXO, 14), 0x00560423); } if (mt76x2_has_ext_lna(dev)) low_gain_delta = 10; else low_gain_delta = 14; agc_37 = 0x2121262c; if (dev->mphy.chandef.chan->band == NL80211_BAND_2GHZ) agc_35 = 0x11111516; else if (low_gain == 2) agc_35 = agc_37 = 0x08080808; else if (dev->mphy.chandef.width == NL80211_CHAN_WIDTH_80) agc_35 = 0x10101014; else agc_35 = 0x11111116; if (low_gain == 2) { mt76_wr(dev, MT_BBP(RXO, 18), 0xf000a990); mt76_wr(dev, MT_BBP(AGC, 35), 0x08080808); mt76_wr(dev, MT_BBP(AGC, 37), 0x08080808); gain_delta = low_gain_delta; dev->cal.agc_gain_adjust = 0; } else { mt76_wr(dev, MT_BBP(RXO, 18), 0xf000a991); gain_delta = 0; dev->cal.agc_gain_adjust = low_gain_delta; } mt76_wr(dev, MT_BBP(AGC, 35), agc_35); mt76_wr(dev, MT_BBP(AGC, 37), agc_37); dev->cal.agc_gain_cur[0] = gain[0] - gain_delta; dev->cal.agc_gain_cur[1] = gain[1] - gain_delta; mt76x2_phy_set_gain_val(dev); /* clear false CCA counters */ mt76_rr(dev, MT_RX_STAT_1); } EXPORT_SYMBOL_GPL(mt76x2_phy_update_channel_gain);
linux-master
drivers/net/wireless/mediatek/mt76/mt76x2/phy.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2018 Lorenzo Bianconi <[email protected]> */ #include "mt76x2u.h" #include "eeprom.h" static void mt76x2u_mac_fixup_xtal(struct mt76x02_dev *dev) { s8 offset = 0; u16 eep_val; eep_val = mt76x02_eeprom_get(dev, MT_EE_XTAL_TRIM_2); offset = eep_val & 0x7f; if ((eep_val & 0xff) == 0xff) offset = 0; else if (eep_val & 0x80) offset = 0 - offset; eep_val >>= 8; if (eep_val == 0x00 || eep_val == 0xff) { eep_val = mt76x02_eeprom_get(dev, MT_EE_XTAL_TRIM_1); eep_val &= 0xff; if (eep_val == 0x00 || eep_val == 0xff) eep_val = 0x14; } eep_val &= 0x7f; mt76_rmw_field(dev, MT_VEND_ADDR(CFG, MT_XO_CTRL5), MT_XO_CTRL5_C2_VAL, eep_val + offset); mt76_set(dev, MT_VEND_ADDR(CFG, MT_XO_CTRL6), MT_XO_CTRL6_C2_CTRL); mt76_wr(dev, 0x504, 0x06000000); mt76_wr(dev, 0x50c, 0x08800000); mdelay(5); mt76_wr(dev, 0x504, 0x0); /* decrease SIFS from 16us to 13us */ mt76_rmw_field(dev, MT_XIFS_TIME_CFG, MT_XIFS_TIME_CFG_OFDM_SIFS, 0xd); mt76_rmw_field(dev, MT_BKOFF_SLOT_CFG, MT_BKOFF_SLOT_CFG_CC_DELAY, 1); /* init fce */ mt76_clear(dev, MT_FCE_L2_STUFF, MT_FCE_L2_STUFF_WR_MPDU_LEN_EN); eep_val = mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_2); switch (FIELD_GET(MT_EE_NIC_CONF_2_XTAL_OPTION, eep_val)) { case 0: mt76_wr(dev, MT_XO_CTRL7, 0x5c1fee80); break; case 1: mt76_wr(dev, MT_XO_CTRL7, 0x5c1feed0); break; default: break; } } int mt76x2u_mac_reset(struct mt76x02_dev *dev) { mt76_wr(dev, MT_WPDMA_GLO_CFG, BIT(4) | BIT(5)); /* init pbf regs */ mt76_wr(dev, MT_PBF_TX_MAX_PCNT, 0xefef3f1f); mt76_wr(dev, MT_PBF_RX_MAX_PCNT, 0xfebf); mt76_write_mac_initvals(dev); mt76_wr(dev, MT_TX_LINK_CFG, 0x1020); mt76_wr(dev, MT_AUTO_RSP_CFG, 0x13); mt76_wr(dev, MT_MAX_LEN_CFG, 0x2f00); mt76_wr(dev, MT_WMM_AIFSN, 0x2273); mt76_wr(dev, MT_WMM_CWMIN, 0x2344); mt76_wr(dev, MT_WMM_CWMAX, 0x34aa); mt76_clear(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_RESET_CSR | MT_MAC_SYS_CTRL_RESET_BBP); if (is_mt7612(dev)) mt76_clear(dev, MT_COEXCFG0, MT_COEXCFG0_COEX_EN); mt76_set(dev, MT_EXT_CCA_CFG, 0xf000); mt76_clear(dev, MT_TX_ALC_CFG_4, BIT(31)); mt76x2u_mac_fixup_xtal(dev); return 0; } int mt76x2u_mac_stop(struct mt76x02_dev *dev) { int i, count = 0, val; bool stopped = false; u32 rts_cfg; if (test_bit(MT76_REMOVED, &dev->mphy.state)) return -EIO; rts_cfg = mt76_rr(dev, MT_TX_RTS_CFG); mt76_wr(dev, MT_TX_RTS_CFG, rts_cfg & ~MT_TX_RTS_CFG_RETRY_LIMIT); mt76_clear(dev, MT_TXOP_CTRL_CFG, MT_TXOP_ED_CCA_EN); mt76_clear(dev, MT_TXOP_HLDR_ET, MT_TXOP_HLDR_TX40M_BLK_EN); /* wait tx dma to stop */ for (i = 0; i < 2000; i++) { val = mt76_rr(dev, MT_VEND_ADDR(CFG, MT_USB_U3DMA_CFG)); if (!(val & MT_USB_DMA_CFG_TX_BUSY) && i > 10) break; usleep_range(50, 100); } /* page count on TxQ */ for (i = 0; i < 200; i++) { if (!(mt76_rr(dev, 0x0438) & 0xffffffff) && !(mt76_rr(dev, 0x0a30) & 0x000000ff) && !(mt76_rr(dev, 0x0a34) & 0xff00ff00)) break; usleep_range(10, 20); } /* disable tx-rx */ mt76_clear(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_ENABLE_RX | MT_MAC_SYS_CTRL_ENABLE_TX); /* Wait for MAC to become idle */ for (i = 0; i < 1000; i++) { if (!(mt76_rr(dev, MT_MAC_STATUS) & MT_MAC_STATUS_TX) && !mt76_rr(dev, MT_BBP(IBI, 12))) { stopped = true; break; } usleep_range(10, 20); } if (!stopped) { mt76_set(dev, MT_BBP(CORE, 4), BIT(1)); mt76_clear(dev, MT_BBP(CORE, 4), BIT(1)); mt76_set(dev, MT_BBP(CORE, 4), BIT(0)); mt76_clear(dev, MT_BBP(CORE, 4), BIT(0)); } /* page count on RxQ */ for (i = 0; i < 200; i++) { if (!(mt76_rr(dev, 0x0430) & 0x00ff0000) && !(mt76_rr(dev, 0x0a30) & 0xffffffff) && !(mt76_rr(dev, 0x0a34) & 0xffffffff) && ++count > 10) break; msleep(50); } if (!mt76_poll(dev, MT_MAC_STATUS, MT_MAC_STATUS_RX, 0, 2000)) dev_warn(dev->mt76.dev, "MAC RX failed to stop\n"); /* wait rx dma to stop */ for (i = 0; i < 2000; i++) { val = mt76_rr(dev, MT_VEND_ADDR(CFG, MT_USB_U3DMA_CFG)); if (!(val & MT_USB_DMA_CFG_RX_BUSY) && i > 10) break; usleep_range(50, 100); } mt76_wr(dev, MT_TX_RTS_CFG, rts_cfg); return 0; }
linux-master
drivers/net/wireless/mediatek/mt76/mt76x2/usb_mac.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2016 Felix Fietkau <[email protected]> * Copyright (C) 2018 Lorenzo Bianconi <[email protected]> */ #include <linux/kernel.h> #include <linux/firmware.h> #include <linux/delay.h> #include "mt76x2.h" #include "mcu.h" #include "eeprom.h" int mt76x2_mcu_set_channel(struct mt76x02_dev *dev, u8 channel, u8 bw, u8 bw_index, bool scan) { struct { u8 idx; u8 scan; u8 bw; u8 _pad0; __le16 chainmask; u8 ext_chan; u8 _pad1; } __packed __aligned(4) msg = { .idx = channel, .scan = scan, .bw = bw, .chainmask = cpu_to_le16(dev->mphy.chainmask), }; /* first set the channel without the extension channel info */ mt76_mcu_send_msg(&dev->mt76, CMD_SWITCH_CHANNEL_OP, &msg, sizeof(msg), true); usleep_range(5000, 10000); msg.ext_chan = 0xe0 + bw_index; return mt76_mcu_send_msg(&dev->mt76, CMD_SWITCH_CHANNEL_OP, &msg, sizeof(msg), true); } EXPORT_SYMBOL_GPL(mt76x2_mcu_set_channel); int mt76x2_mcu_load_cr(struct mt76x02_dev *dev, u8 type, u8 temp_level, u8 channel) { struct { u8 cr_mode; u8 temp; u8 ch; u8 _pad0; __le32 cfg; } __packed __aligned(4) msg = { .cr_mode = type, .temp = temp_level, .ch = channel, }; u32 val; val = BIT(31); val |= (mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_0) >> 8) & 0x00ff; val |= (mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_1) << 8) & 0xff00; msg.cfg = cpu_to_le32(val); /* first set the channel without the extension channel info */ return mt76_mcu_send_msg(&dev->mt76, CMD_LOAD_CR, &msg, sizeof(msg), true); } EXPORT_SYMBOL_GPL(mt76x2_mcu_load_cr); int mt76x2_mcu_init_gain(struct mt76x02_dev *dev, u8 channel, u32 gain, bool force) { struct { __le32 channel; __le32 gain_val; } __packed __aligned(4) msg = { .channel = cpu_to_le32(channel), .gain_val = cpu_to_le32(gain), }; if (force) msg.channel |= cpu_to_le32(BIT(31)); return mt76_mcu_send_msg(&dev->mt76, CMD_INIT_GAIN_OP, &msg, sizeof(msg), true); } EXPORT_SYMBOL_GPL(mt76x2_mcu_init_gain); int mt76x2_mcu_tssi_comp(struct mt76x02_dev *dev, struct mt76x2_tssi_comp *tssi_data) { struct { __le32 id; struct mt76x2_tssi_comp data; } __packed __aligned(4) msg = { .id = cpu_to_le32(MCU_CAL_TSSI_COMP), .data = *tssi_data, }; return mt76_mcu_send_msg(&dev->mt76, CMD_CALIBRATION_OP, &msg, sizeof(msg), true); } EXPORT_SYMBOL_GPL(mt76x2_mcu_tssi_comp);
linux-master
drivers/net/wireless/mediatek/mt76/mt76x2/mcu.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2016 Felix Fietkau <[email protected]> */ #include <linux/delay.h> #include "mt76x2.h" #include "eeprom.h" #include "mcu.h" #include "../mt76x02_mac.h" static void mt76x2_mac_pbf_init(struct mt76x02_dev *dev) { u32 val; val = MT_PBF_SYS_CTRL_MCU_RESET | MT_PBF_SYS_CTRL_DMA_RESET | MT_PBF_SYS_CTRL_MAC_RESET | MT_PBF_SYS_CTRL_PBF_RESET | MT_PBF_SYS_CTRL_ASY_RESET; mt76_set(dev, MT_PBF_SYS_CTRL, val); mt76_clear(dev, MT_PBF_SYS_CTRL, val); mt76_wr(dev, MT_PBF_TX_MAX_PCNT, 0xefef3f1f); mt76_wr(dev, MT_PBF_RX_MAX_PCNT, 0xfebf); } static void mt76x2_fixup_xtal(struct mt76x02_dev *dev) { u16 eep_val; s8 offset = 0; eep_val = mt76x02_eeprom_get(dev, MT_EE_XTAL_TRIM_2); offset = eep_val & 0x7f; if ((eep_val & 0xff) == 0xff) offset = 0; else if (eep_val & 0x80) offset = 0 - offset; eep_val >>= 8; if (eep_val == 0x00 || eep_val == 0xff) { eep_val = mt76x02_eeprom_get(dev, MT_EE_XTAL_TRIM_1); eep_val &= 0xff; if (eep_val == 0x00 || eep_val == 0xff) eep_val = 0x14; } eep_val &= 0x7f; mt76_rmw_field(dev, MT_XO_CTRL5, MT_XO_CTRL5_C2_VAL, eep_val + offset); mt76_set(dev, MT_XO_CTRL6, MT_XO_CTRL6_C2_CTRL); eep_val = mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_2); switch (FIELD_GET(MT_EE_NIC_CONF_2_XTAL_OPTION, eep_val)) { case 0: mt76_wr(dev, MT_XO_CTRL7, 0x5c1fee80); break; case 1: mt76_wr(dev, MT_XO_CTRL7, 0x5c1feed0); break; default: break; } } int mt76x2_mac_reset(struct mt76x02_dev *dev, bool hard) { const u8 *macaddr = dev->mphy.macaddr; u32 val; int i, k; if (!mt76x02_wait_for_mac(&dev->mt76)) return -ETIMEDOUT; val = mt76_rr(dev, MT_WPDMA_GLO_CFG); val &= ~(MT_WPDMA_GLO_CFG_TX_DMA_EN | MT_WPDMA_GLO_CFG_TX_DMA_BUSY | MT_WPDMA_GLO_CFG_RX_DMA_EN | MT_WPDMA_GLO_CFG_RX_DMA_BUSY | MT_WPDMA_GLO_CFG_DMA_BURST_SIZE); val |= FIELD_PREP(MT_WPDMA_GLO_CFG_DMA_BURST_SIZE, 3); mt76_wr(dev, MT_WPDMA_GLO_CFG, val); mt76x2_mac_pbf_init(dev); mt76_write_mac_initvals(dev); mt76x2_fixup_xtal(dev); mt76_clear(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_RESET_CSR | MT_MAC_SYS_CTRL_RESET_BBP); if (is_mt7612(dev)) mt76_clear(dev, MT_COEXCFG0, MT_COEXCFG0_COEX_EN); mt76_set(dev, MT_EXT_CCA_CFG, 0x0000f000); mt76_clear(dev, MT_TX_ALC_CFG_4, BIT(31)); mt76_wr(dev, MT_RF_BYPASS_0, 0x06000000); mt76_wr(dev, MT_RF_SETTING_0, 0x08800000); usleep_range(5000, 10000); mt76_wr(dev, MT_RF_BYPASS_0, 0x00000000); mt76_wr(dev, MT_MCU_CLOCK_CTL, 0x1401); mt76_clear(dev, MT_FCE_L2_STUFF, MT_FCE_L2_STUFF_WR_MPDU_LEN_EN); mt76x02_mac_setaddr(dev, macaddr); mt76x02e_init_beacon_config(dev); if (!hard) return 0; for (i = 0; i < 256 / 32; i++) mt76_wr(dev, MT_WCID_DROP_BASE + i * 4, 0); for (i = 0; i < 256; i++) { mt76x02_mac_wcid_setup(dev, i, 0, NULL); mt76_wr(dev, MT_WCID_TX_RATE(i), 0); mt76_wr(dev, MT_WCID_TX_RATE(i) + 4, 0); } for (i = 0; i < MT_MAX_VIFS; i++) mt76x02_mac_wcid_setup(dev, MT_VIF_WCID(i), i, NULL); for (i = 0; i < 16; i++) for (k = 0; k < 4; k++) mt76x02_mac_shared_key_setup(dev, i, k, NULL); for (i = 0; i < 16; i++) mt76_rr(dev, MT_TX_STAT_FIFO); mt76x02_set_tx_ackto(dev); return 0; } static void mt76x2_power_on_rf_patch(struct mt76x02_dev *dev) { mt76_set(dev, 0x10130, BIT(0) | BIT(16)); udelay(1); mt76_clear(dev, 0x1001c, 0xff); mt76_set(dev, 0x1001c, 0x30); mt76_wr(dev, 0x10014, 0x484f); udelay(1); mt76_set(dev, 0x10130, BIT(17)); udelay(125); mt76_clear(dev, 0x10130, BIT(16)); udelay(50); mt76_set(dev, 0x1014c, BIT(19) | BIT(20)); } static void mt76x2_power_on_rf(struct mt76x02_dev *dev, int unit) { int shift = unit ? 8 : 0; /* Enable RF BG */ mt76_set(dev, 0x10130, BIT(0) << shift); udelay(10); /* Enable RFDIG LDO/AFE/ABB/ADDA */ mt76_set(dev, 0x10130, (BIT(1) | BIT(3) | BIT(4) | BIT(5)) << shift); udelay(10); /* Switch RFDIG power to internal LDO */ mt76_clear(dev, 0x10130, BIT(2) << shift); udelay(10); mt76x2_power_on_rf_patch(dev); mt76_set(dev, 0x530, 0xf); } static void mt76x2_power_on(struct mt76x02_dev *dev) { u32 val; /* Turn on WL MTCMOS */ mt76_set(dev, MT_WLAN_MTC_CTRL, MT_WLAN_MTC_CTRL_MTCMOS_PWR_UP); val = MT_WLAN_MTC_CTRL_STATE_UP | MT_WLAN_MTC_CTRL_PWR_ACK | MT_WLAN_MTC_CTRL_PWR_ACK_S; mt76_poll(dev, MT_WLAN_MTC_CTRL, val, val, 1000); mt76_clear(dev, MT_WLAN_MTC_CTRL, 0x7f << 16); udelay(10); mt76_clear(dev, MT_WLAN_MTC_CTRL, 0xf << 24); udelay(10); mt76_set(dev, MT_WLAN_MTC_CTRL, 0xf << 24); mt76_clear(dev, MT_WLAN_MTC_CTRL, 0xfff); /* Turn on AD/DA power down */ mt76_clear(dev, 0x11204, BIT(3)); /* WLAN function enable */ mt76_set(dev, 0x10080, BIT(0)); /* Release BBP software reset */ mt76_clear(dev, 0x10064, BIT(18)); mt76x2_power_on_rf(dev, 0); mt76x2_power_on_rf(dev, 1); } int mt76x2_resume_device(struct mt76x02_dev *dev) { int err; mt76x02_dma_disable(dev); mt76x2_reset_wlan(dev, true); mt76x2_power_on(dev); err = mt76x2_mac_reset(dev, true); if (err) return err; mt76x02_mac_start(dev); return mt76x2_mcu_init(dev); } static int mt76x2_init_hardware(struct mt76x02_dev *dev) { int ret; mt76x02_dma_disable(dev); mt76x2_reset_wlan(dev, true); mt76x2_power_on(dev); ret = mt76x2_eeprom_init(dev); if (ret) return ret; ret = mt76x2_mac_reset(dev, true); if (ret) return ret; dev->mt76.rxfilter = mt76_rr(dev, MT_RX_FILTR_CFG); ret = mt76x02_dma_init(dev); if (ret) return ret; set_bit(MT76_STATE_INITIALIZED, &dev->mphy.state); mt76x02_mac_start(dev); ret = mt76x2_mcu_init(dev); if (ret) return ret; mt76x2_mac_stop(dev, false); return 0; } void mt76x2_stop_hardware(struct mt76x02_dev *dev) { cancel_delayed_work_sync(&dev->cal_work); cancel_delayed_work_sync(&dev->mphy.mac_work); cancel_delayed_work_sync(&dev->wdt_work); clear_bit(MT76_RESTART, &dev->mphy.state); mt76x02_mcu_set_radio_state(dev, false); mt76x2_mac_stop(dev, false); } void mt76x2_cleanup(struct mt76x02_dev *dev) { tasklet_disable(&dev->dfs_pd.dfs_tasklet); tasklet_disable(&dev->mt76.pre_tbtt_tasklet); mt76x2_stop_hardware(dev); mt76_dma_cleanup(&dev->mt76); mt76x02_mcu_cleanup(dev); } int mt76x2_register_device(struct mt76x02_dev *dev) { int ret; INIT_DELAYED_WORK(&dev->cal_work, mt76x2_phy_calibrate); ret = mt76x02_init_device(dev); if (ret) return ret; ret = mt76x2_init_hardware(dev); if (ret) return ret; mt76x02_config_mac_addr_list(dev); ret = mt76_register_device(&dev->mt76, true, mt76x02_rates, ARRAY_SIZE(mt76x02_rates)); if (ret) goto fail; mt76x02_init_debugfs(dev); mt76x2_init_txpower(dev, &dev->mphy.sband_2g.sband); mt76x2_init_txpower(dev, &dev->mphy.sband_5g.sband); return 0; fail: mt76x2_stop_hardware(dev); return ret; }
linux-master
drivers/net/wireless/mediatek/mt76/mt76x2/pci_init.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2018 Lorenzo Bianconi <[email protected]> */ #include "mt76x2u.h" #include "../mt76x02_usb.h" static int mt76x2u_start(struct ieee80211_hw *hw) { struct mt76x02_dev *dev = hw->priv; int ret; ret = mt76x02u_mac_start(dev); if (ret) return ret; ieee80211_queue_delayed_work(mt76_hw(dev), &dev->mphy.mac_work, MT_MAC_WORK_INTERVAL); set_bit(MT76_STATE_RUNNING, &dev->mphy.state); return 0; } static void mt76x2u_stop(struct ieee80211_hw *hw) { struct mt76x02_dev *dev = hw->priv; clear_bit(MT76_STATE_RUNNING, &dev->mphy.state); mt76u_stop_tx(&dev->mt76); mt76x2u_stop_hw(dev); } static int mt76x2u_set_channel(struct mt76x02_dev *dev, struct cfg80211_chan_def *chandef) { int err; cancel_delayed_work_sync(&dev->cal_work); mt76x02_pre_tbtt_enable(dev, false); mutex_lock(&dev->mt76.mutex); set_bit(MT76_RESET, &dev->mphy.state); mt76_set_channel(&dev->mphy); mt76x2_mac_stop(dev, false); err = mt76x2u_phy_set_channel(dev, chandef); mt76x02_mac_cc_reset(dev); mt76x2_mac_resume(dev); clear_bit(MT76_RESET, &dev->mphy.state); mutex_unlock(&dev->mt76.mutex); mt76x02_pre_tbtt_enable(dev, true); mt76_txq_schedule_all(&dev->mphy); return err; } static int mt76x2u_config(struct ieee80211_hw *hw, u32 changed) { struct mt76x02_dev *dev = hw->priv; int err = 0; mutex_lock(&dev->mt76.mutex); if (changed & IEEE80211_CONF_CHANGE_MONITOR) { if (!(hw->conf.flags & IEEE80211_CONF_MONITOR)) dev->mt76.rxfilter |= MT_RX_FILTR_CFG_PROMISC; else dev->mt76.rxfilter &= ~MT_RX_FILTR_CFG_PROMISC; mt76_wr(dev, MT_RX_FILTR_CFG, dev->mt76.rxfilter); } if (changed & IEEE80211_CONF_CHANGE_POWER) { struct mt76_phy *mphy = &dev->mphy; dev->txpower_conf = hw->conf.power_level * 2; dev->txpower_conf = mt76_get_sar_power(mphy, mphy->chandef.chan, dev->txpower_conf); /* convert to per-chain power for 2x2 devices */ dev->txpower_conf -= 6; if (test_bit(MT76_STATE_RUNNING, &mphy->state)) mt76x2_phy_set_txpower(dev); } mutex_unlock(&dev->mt76.mutex); if (changed & IEEE80211_CONF_CHANGE_CHANNEL) { ieee80211_stop_queues(hw); err = mt76x2u_set_channel(dev, &hw->conf.chandef); ieee80211_wake_queues(hw); } return err; } const struct ieee80211_ops mt76x2u_ops = { .tx = mt76x02_tx, .start = mt76x2u_start, .stop = mt76x2u_stop, .add_interface = mt76x02_add_interface, .remove_interface = mt76x02_remove_interface, .sta_state = mt76_sta_state, .sta_pre_rcu_remove = mt76_sta_pre_rcu_remove, .set_key = mt76x02_set_key, .ampdu_action = mt76x02_ampdu_action, .config = mt76x2u_config, .wake_tx_queue = mt76_wake_tx_queue, .bss_info_changed = mt76x02_bss_info_changed, .configure_filter = mt76x02_configure_filter, .conf_tx = mt76x02_conf_tx, .sw_scan_start = mt76_sw_scan, .sw_scan_complete = mt76x02_sw_scan_complete, .sta_rate_tbl_update = mt76x02_sta_rate_tbl_update, .get_txpower = mt76_get_txpower, .get_survey = mt76_get_survey, .set_tim = mt76_set_tim, .release_buffered_frames = mt76_release_buffered_frames, .get_antenna = mt76_get_antenna, .set_sar_specs = mt76x2_set_sar_specs, };
linux-master
drivers/net/wireless/mediatek/mt76/mt76x2/usb_main.c
// SPDX-License-Identifier: ISC /* * Copyright (C) 2019 Lorenzo Bianconi <[email protected]> */ #include <linux/module.h> #ifndef __CHECKER__ #define CREATE_TRACE_POINTS #include "mt7615_trace.h" #endif
linux-master
drivers/net/wireless/mediatek/mt76/mt7615/trace.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2020 MediaTek Inc. * * Author: Felix Fietkau <[email protected]> * Lorenzo Bianconi <[email protected]> * Sean Wang <[email protected]> */ #include <linux/kernel.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/mmc/host.h> #include <linux/mmc/sdio_ids.h> #include <linux/mmc/sdio_func.h> #include "../sdio.h" #include "mt7615.h" #include "mac.h" #include "mcu.h" static const struct sdio_device_id mt7663s_table[] = { { SDIO_DEVICE(SDIO_VENDOR_ID_MEDIATEK, 0x7603) }, { } /* Terminating entry */ }; static void mt7663s_txrx_worker(struct mt76_worker *w) { struct mt76_sdio *sdio = container_of(w, struct mt76_sdio, txrx_worker); struct mt76_dev *mdev = container_of(sdio, struct mt76_dev, sdio); struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76); if (!mt76_connac_pm_ref(&dev->mphy, &dev->pm)) { queue_work(mdev->wq, &dev->pm.wake_work); return; } mt76s_txrx_worker(sdio); mt76_connac_pm_unref(&dev->mphy, &dev->pm); } static void mt7663s_init_work(struct work_struct *work) { struct mt7615_dev *dev; dev = container_of(work, struct mt7615_dev, mcu_work); if (mt7663s_mcu_init(dev)) return; mt7615_init_work(dev); } static int mt7663s_parse_intr(struct mt76_dev *dev, struct mt76s_intr *intr) { struct mt76_sdio *sdio = &dev->sdio; struct mt7663s_intr *irq_data = sdio->intr_data; int i, err; sdio_claim_host(sdio->func); err = sdio_readsb(sdio->func, irq_data, MCR_WHISR, sizeof(*irq_data)); sdio_release_host(sdio->func); if (err) return err; intr->isr = irq_data->isr; intr->rec_mb = irq_data->rec_mb; intr->tx.wtqcr = irq_data->tx.wtqcr; intr->rx.num = irq_data->rx.num; for (i = 0; i < 2 ; i++) intr->rx.len[i] = irq_data->rx.len[i]; return 0; } static int mt7663s_probe(struct sdio_func *func, const struct sdio_device_id *id) { static const struct mt76_driver_ops drv_ops = { .txwi_size = MT_USB_TXD_SIZE, .drv_flags = MT_DRV_RX_DMA_HDR, .tx_prepare_skb = mt7663_usb_sdio_tx_prepare_skb, .tx_complete_skb = mt7663_usb_sdio_tx_complete_skb, .tx_status_data = mt7663_usb_sdio_tx_status_data, .rx_skb = mt7615_queue_rx_skb, .rx_check = mt7615_rx_check, .sta_add = mt7615_mac_sta_add, .sta_remove = mt7615_mac_sta_remove, .update_survey = mt7615_update_channel, }; static const struct mt76_bus_ops mt7663s_ops = { .rr = mt76s_rr, .rmw = mt76s_rmw, .wr = mt76s_wr, .write_copy = mt76s_write_copy, .read_copy = mt76s_read_copy, .wr_rp = mt76s_wr_rp, .rd_rp = mt76s_rd_rp, .type = MT76_BUS_SDIO, }; struct ieee80211_ops *ops; struct mt7615_dev *dev; struct mt76_dev *mdev; int ret; ops = devm_kmemdup(&func->dev, &mt7615_ops, sizeof(mt7615_ops), GFP_KERNEL); if (!ops) return -ENOMEM; mdev = mt76_alloc_device(&func->dev, sizeof(*dev), ops, &drv_ops); if (!mdev) return -ENOMEM; dev = container_of(mdev, struct mt7615_dev, mt76); INIT_WORK(&dev->mcu_work, mt7663s_init_work); dev->reg_map = mt7663_usb_sdio_reg_map; dev->ops = ops; sdio_set_drvdata(func, dev); ret = mt76s_init(mdev, func, &mt7663s_ops); if (ret < 0) goto error; ret = mt76s_hw_init(mdev, func, MT76_CONNAC_SDIO); if (ret) goto error; mdev->rev = (mt76_rr(dev, MT_HW_CHIPID) << 16) | (mt76_rr(dev, MT_HW_REV) & 0xff); dev_dbg(mdev->dev, "ASIC revision: %04x\n", mdev->rev); mdev->sdio.parse_irq = mt7663s_parse_intr; mdev->sdio.intr_data = devm_kmalloc(mdev->dev, sizeof(struct mt7663s_intr), GFP_KERNEL); if (!mdev->sdio.intr_data) { ret = -ENOMEM; goto error; } ret = mt76s_alloc_rx_queue(mdev, MT_RXQ_MAIN); if (ret) goto error; ret = mt76s_alloc_tx(mdev); if (ret) goto error; ret = mt76_worker_setup(mt76_hw(dev), &mdev->sdio.txrx_worker, mt7663s_txrx_worker, "sdio-txrx"); if (ret) goto error; sched_set_fifo_low(mdev->sdio.txrx_worker.task); ret = mt7663_usb_sdio_register_device(dev); if (ret) goto error; return 0; error: mt76s_deinit(&dev->mt76); mt76_free_device(&dev->mt76); return ret; } static void mt7663s_remove(struct sdio_func *func) { struct mt7615_dev *dev = sdio_get_drvdata(func); if (!test_and_clear_bit(MT76_STATE_INITIALIZED, &dev->mphy.state)) return; ieee80211_unregister_hw(dev->mt76.hw); mt76s_deinit(&dev->mt76); mt76_free_device(&dev->mt76); } static int mt7663s_suspend(struct device *dev) { struct sdio_func *func = dev_to_sdio_func(dev); struct mt7615_dev *mdev = sdio_get_drvdata(func); int err; if (!test_bit(MT76_STATE_SUSPEND, &mdev->mphy.state) && mt7615_firmware_offload(mdev)) { int err; err = mt76_connac_mcu_set_hif_suspend(&mdev->mt76, true); if (err < 0) return err; } sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER); err = mt7615_mcu_set_fw_ctrl(mdev); if (err) return err; mt76_worker_disable(&mdev->mt76.sdio.txrx_worker); mt76_worker_disable(&mdev->mt76.sdio.status_worker); mt76_worker_disable(&mdev->mt76.sdio.net_worker); cancel_work_sync(&mdev->mt76.sdio.stat_work); clear_bit(MT76_READING_STATS, &mdev->mphy.state); mt76_tx_status_check(&mdev->mt76, true); return 0; } static int mt7663s_resume(struct device *dev) { struct sdio_func *func = dev_to_sdio_func(dev); struct mt7615_dev *mdev = sdio_get_drvdata(func); int err; mt76_worker_enable(&mdev->mt76.sdio.txrx_worker); mt76_worker_enable(&mdev->mt76.sdio.status_worker); mt76_worker_enable(&mdev->mt76.sdio.net_worker); err = mt7615_mcu_set_drv_ctrl(mdev); if (err) return err; if (!test_bit(MT76_STATE_SUSPEND, &mdev->mphy.state) && mt7615_firmware_offload(mdev)) err = mt76_connac_mcu_set_hif_suspend(&mdev->mt76, false); return err; } MODULE_DEVICE_TABLE(sdio, mt7663s_table); MODULE_FIRMWARE(MT7663_OFFLOAD_FIRMWARE_N9); MODULE_FIRMWARE(MT7663_OFFLOAD_ROM_PATCH); MODULE_FIRMWARE(MT7663_FIRMWARE_N9); MODULE_FIRMWARE(MT7663_ROM_PATCH); static DEFINE_SIMPLE_DEV_PM_OPS(mt7663s_pm_ops, mt7663s_suspend, mt7663s_resume); static struct sdio_driver mt7663s_driver = { .name = KBUILD_MODNAME, .probe = mt7663s_probe, .remove = mt7663s_remove, .id_table = mt7663s_table, .drv.pm = pm_sleep_ptr(&mt7663s_pm_ops), }; module_sdio_driver(mt7663s_driver); MODULE_AUTHOR("Sean Wang <[email protected]>"); MODULE_AUTHOR("Lorenzo Bianconi <[email protected]>"); MODULE_LICENSE("Dual BSD/GPL");
linux-master
drivers/net/wireless/mediatek/mt76/mt7615/sdio.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2019 MediaTek Inc. * * Author: Felix Fietkau <[email protected]> * Lorenzo Bianconi <[email protected]> * Sean Wang <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/usb.h> #include "mt7615.h" #include "mac.h" #include "mcu.h" #include "regs.h" static const struct usb_device_id mt7615_device_table[] = { { USB_DEVICE_AND_INTERFACE_INFO(0x0e8d, 0x7663, 0xff, 0xff, 0xff) }, { USB_DEVICE_AND_INTERFACE_INFO(0x043e, 0x310c, 0xff, 0xff, 0xff) }, { }, }; static u32 mt7663u_rr(struct mt76_dev *dev, u32 addr) { u32 ret; mutex_lock(&dev->usb.usb_ctrl_mtx); ret = ___mt76u_rr(dev, MT_VEND_READ_EXT, USB_DIR_IN | USB_TYPE_VENDOR, addr); mutex_unlock(&dev->usb.usb_ctrl_mtx); return ret; } static void mt7663u_wr(struct mt76_dev *dev, u32 addr, u32 val) { mutex_lock(&dev->usb.usb_ctrl_mtx); ___mt76u_wr(dev, MT_VEND_WRITE_EXT, USB_DIR_OUT | USB_TYPE_VENDOR, addr, val); mutex_unlock(&dev->usb.usb_ctrl_mtx); } static u32 mt7663u_rmw(struct mt76_dev *dev, u32 addr, u32 mask, u32 val) { mutex_lock(&dev->usb.usb_ctrl_mtx); val |= ___mt76u_rr(dev, MT_VEND_READ_EXT, USB_DIR_IN | USB_TYPE_VENDOR, addr) & ~mask; ___mt76u_wr(dev, MT_VEND_WRITE_EXT, USB_DIR_OUT | USB_TYPE_VENDOR, addr, val); mutex_unlock(&dev->usb.usb_ctrl_mtx); return val; } static void mt7663u_copy(struct mt76_dev *dev, u32 offset, const void *data, int len) { struct mt76_usb *usb = &dev->usb; int ret, i = 0, batch_len; const u8 *val = data; len = round_up(len, 4); mutex_lock(&usb->usb_ctrl_mtx); while (i < len) { batch_len = min_t(int, usb->data_len, len - i); memcpy(usb->data, val + i, batch_len); ret = __mt76u_vendor_request(dev, MT_VEND_WRITE_EXT, USB_DIR_OUT | USB_TYPE_VENDOR, (offset + i) >> 16, offset + i, usb->data, batch_len); if (ret < 0) break; i += batch_len; } mutex_unlock(&usb->usb_ctrl_mtx); } static void mt7663u_stop(struct ieee80211_hw *hw) { struct mt7615_phy *phy = mt7615_hw_phy(hw); struct mt7615_dev *dev = hw->priv; clear_bit(MT76_STATE_RUNNING, &dev->mphy.state); del_timer_sync(&phy->roc_timer); cancel_work_sync(&phy->roc_work); cancel_delayed_work_sync(&phy->scan_work); cancel_delayed_work_sync(&phy->mt76->mac_work); mt76u_stop_tx(&dev->mt76); } static void mt7663u_cleanup(struct mt7615_dev *dev) { clear_bit(MT76_STATE_INITIALIZED, &dev->mphy.state); mt76u_queues_deinit(&dev->mt76); } static void mt7663u_init_work(struct work_struct *work) { struct mt7615_dev *dev; dev = container_of(work, struct mt7615_dev, mcu_work); if (mt7663u_mcu_init(dev)) return; mt7615_init_work(dev); } static int mt7663u_probe(struct usb_interface *usb_intf, const struct usb_device_id *id) { static const struct mt76_driver_ops drv_ops = { .txwi_size = MT_USB_TXD_SIZE, .drv_flags = MT_DRV_RX_DMA_HDR | MT_DRV_HW_MGMT_TXQ, .tx_prepare_skb = mt7663_usb_sdio_tx_prepare_skb, .tx_complete_skb = mt7663_usb_sdio_tx_complete_skb, .tx_status_data = mt7663_usb_sdio_tx_status_data, .rx_skb = mt7615_queue_rx_skb, .rx_check = mt7615_rx_check, .sta_add = mt7615_mac_sta_add, .sta_remove = mt7615_mac_sta_remove, .update_survey = mt7615_update_channel, }; static struct mt76_bus_ops bus_ops = { .rr = mt7663u_rr, .wr = mt7663u_wr, .rmw = mt7663u_rmw, .read_copy = mt76u_read_copy, .write_copy = mt7663u_copy, .type = MT76_BUS_USB, }; struct usb_device *udev = interface_to_usbdev(usb_intf); struct ieee80211_ops *ops; struct mt7615_dev *dev; struct mt76_dev *mdev; int ret; ops = devm_kmemdup(&usb_intf->dev, &mt7615_ops, sizeof(mt7615_ops), GFP_KERNEL); if (!ops) return -ENOMEM; ops->stop = mt7663u_stop; mdev = mt76_alloc_device(&usb_intf->dev, sizeof(*dev), ops, &drv_ops); if (!mdev) return -ENOMEM; dev = container_of(mdev, struct mt7615_dev, mt76); udev = usb_get_dev(udev); usb_reset_device(udev); usb_set_intfdata(usb_intf, dev); INIT_WORK(&dev->mcu_work, mt7663u_init_work); dev->reg_map = mt7663_usb_sdio_reg_map; dev->ops = ops; ret = __mt76u_init(mdev, usb_intf, &bus_ops); if (ret < 0) goto error; mdev->rev = (mt76_rr(dev, MT_HW_CHIPID) << 16) | (mt76_rr(dev, MT_HW_REV) & 0xff); dev_dbg(mdev->dev, "ASIC revision: %04x\n", mdev->rev); if (!mt76_poll_msec(dev, MT_CONN_ON_MISC, MT_TOP_MISC2_FW_PWR_ON, FW_STATE_PWR_ON << 1, 500)) { ret = mt7663u_mcu_power_on(dev); if (ret) goto error; } else { set_bit(MT76_STATE_POWER_OFF, &dev->mphy.state); } ret = mt76u_alloc_mcu_queue(&dev->mt76); if (ret) goto error; ret = mt76u_alloc_queues(&dev->mt76); if (ret) goto error; ret = mt7663_usb_sdio_register_device(dev); if (ret) goto error; return 0; error: mt76u_queues_deinit(&dev->mt76); usb_set_intfdata(usb_intf, NULL); usb_put_dev(interface_to_usbdev(usb_intf)); mt76_free_device(&dev->mt76); return ret; } static void mt7663u_disconnect(struct usb_interface *usb_intf) { struct mt7615_dev *dev = usb_get_intfdata(usb_intf); if (!test_bit(MT76_STATE_INITIALIZED, &dev->mphy.state)) return; ieee80211_unregister_hw(dev->mt76.hw); mt7663u_cleanup(dev); usb_set_intfdata(usb_intf, NULL); usb_put_dev(interface_to_usbdev(usb_intf)); mt76_free_device(&dev->mt76); } #ifdef CONFIG_PM static int mt7663u_suspend(struct usb_interface *intf, pm_message_t state) { struct mt7615_dev *dev = usb_get_intfdata(intf); if (!test_bit(MT76_STATE_SUSPEND, &dev->mphy.state) && mt7615_firmware_offload(dev)) { int err; err = mt76_connac_mcu_set_hif_suspend(&dev->mt76, true); if (err < 0) return err; } mt76u_stop_rx(&dev->mt76); mt76u_stop_tx(&dev->mt76); return 0; } static int mt7663u_resume(struct usb_interface *intf) { struct mt7615_dev *dev = usb_get_intfdata(intf); int err; err = mt76u_vendor_request(&dev->mt76, MT_VEND_FEATURE_SET, USB_DIR_OUT | USB_TYPE_VENDOR, 0x5, 0x0, NULL, 0); if (err) return err; err = mt76u_resume_rx(&dev->mt76); if (err < 0) return err; if (!test_bit(MT76_STATE_SUSPEND, &dev->mphy.state) && mt7615_firmware_offload(dev)) err = mt76_connac_mcu_set_hif_suspend(&dev->mt76, false); return err; } #endif /* CONFIG_PM */ MODULE_DEVICE_TABLE(usb, mt7615_device_table); MODULE_FIRMWARE(MT7663_OFFLOAD_FIRMWARE_N9); MODULE_FIRMWARE(MT7663_OFFLOAD_ROM_PATCH); MODULE_FIRMWARE(MT7663_FIRMWARE_N9); MODULE_FIRMWARE(MT7663_ROM_PATCH); static struct usb_driver mt7663u_driver = { .name = KBUILD_MODNAME, .id_table = mt7615_device_table, .probe = mt7663u_probe, .disconnect = mt7663u_disconnect, #ifdef CONFIG_PM .suspend = mt7663u_suspend, .resume = mt7663u_resume, .reset_resume = mt7663u_resume, #endif /* CONFIG_PM */ .soft_unbind = 1, .disable_hub_initiated_lpm = 1, }; module_usb_driver(mt7663u_driver); MODULE_AUTHOR("Sean Wang <[email protected]>"); MODULE_AUTHOR("Lorenzo Bianconi <[email protected]>"); MODULE_LICENSE("Dual BSD/GPL");
linux-master
drivers/net/wireless/mediatek/mt76/mt7615/usb.c
// SPDX-License-Identifier: ISC #include "mt7615.h" static int mt7615_reg_set(void *data, u64 val) { struct mt7615_dev *dev = data; mt7615_mutex_acquire(dev); mt76_wr(dev, dev->mt76.debugfs_reg, val); mt7615_mutex_release(dev); return 0; } static int mt7615_reg_get(void *data, u64 *val) { struct mt7615_dev *dev = data; mt7615_mutex_acquire(dev); *val = mt76_rr(dev, dev->mt76.debugfs_reg); mt7615_mutex_release(dev); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_regval, mt7615_reg_get, mt7615_reg_set, "0x%08llx\n"); static int mt7615_radar_pattern_set(void *data, u64 val) { struct mt7615_dev *dev = data; int err; if (!mt7615_wait_for_mcu_init(dev)) return 0; mt7615_mutex_acquire(dev); err = mt7615_mcu_rdd_send_pattern(dev); mt7615_mutex_release(dev); return err; } DEFINE_DEBUGFS_ATTRIBUTE(fops_radar_pattern, NULL, mt7615_radar_pattern_set, "%lld\n"); static int mt7615_config(void *data, u64 val) { struct mt7615_dev *dev = data; int ret; mt7615_mutex_acquire(dev); ret = mt76_connac_mcu_chip_config(&dev->mt76); mt7615_mutex_release(dev); return ret; } DEFINE_DEBUGFS_ATTRIBUTE(fops_config, NULL, mt7615_config, "%lld\n"); static int mt7615_scs_set(void *data, u64 val) { struct mt7615_dev *dev = data; struct mt7615_phy *ext_phy; if (!mt7615_wait_for_mcu_init(dev)) return 0; mt7615_mac_set_scs(&dev->phy, val); ext_phy = mt7615_ext_phy(dev); if (ext_phy) mt7615_mac_set_scs(ext_phy, val); return 0; } static int mt7615_scs_get(void *data, u64 *val) { struct mt7615_dev *dev = data; *val = dev->phy.scs_en; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_scs, mt7615_scs_get, mt7615_scs_set, "%lld\n"); static int mt7615_pm_set(void *data, u64 val) { struct mt7615_dev *dev = data; struct mt76_connac_pm *pm = &dev->pm; int ret = 0; if (!mt7615_wait_for_mcu_init(dev)) return 0; if (!mt7615_firmware_offload(dev) || mt76_is_usb(&dev->mt76)) return -EOPNOTSUPP; mutex_lock(&dev->mt76.mutex); if (val == pm->enable) goto out; if (dev->phy.n_beacon_vif) { ret = -EBUSY; goto out; } if (!pm->enable) { pm->stats.last_wake_event = jiffies; pm->stats.last_doze_event = jiffies; } /* make sure the chip is awake here and ps_work is scheduled * just at end of the this routine. */ pm->enable = false; mt76_connac_pm_wake(&dev->mphy, pm); pm->enable = val; mt76_connac_power_save_sched(&dev->mphy, pm); out: mutex_unlock(&dev->mt76.mutex); return ret; } static int mt7615_pm_get(void *data, u64 *val) { struct mt7615_dev *dev = data; *val = dev->pm.enable; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_pm, mt7615_pm_get, mt7615_pm_set, "%lld\n"); static int mt7615_pm_stats(struct seq_file *s, void *data) { struct mt7615_dev *dev = dev_get_drvdata(s->private); struct mt76_connac_pm *pm = &dev->pm; unsigned long awake_time = pm->stats.awake_time; unsigned long doze_time = pm->stats.doze_time; if (!test_bit(MT76_STATE_PM, &dev->mphy.state)) awake_time += jiffies - pm->stats.last_wake_event; else doze_time += jiffies - pm->stats.last_doze_event; seq_printf(s, "awake time: %14u\ndoze time: %15u\n", jiffies_to_msecs(awake_time), jiffies_to_msecs(doze_time)); return 0; } static int mt7615_pm_idle_timeout_set(void *data, u64 val) { struct mt7615_dev *dev = data; dev->pm.idle_timeout = msecs_to_jiffies(val); return 0; } static int mt7615_pm_idle_timeout_get(void *data, u64 *val) { struct mt7615_dev *dev = data; *val = jiffies_to_msecs(dev->pm.idle_timeout); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_pm_idle_timeout, mt7615_pm_idle_timeout_get, mt7615_pm_idle_timeout_set, "%lld\n"); static int mt7615_dbdc_set(void *data, u64 val) { struct mt7615_dev *dev = data; if (!mt7615_wait_for_mcu_init(dev)) return 0; if (val) mt7615_register_ext_phy(dev); else mt7615_unregister_ext_phy(dev); return 0; } static int mt7615_dbdc_get(void *data, u64 *val) { struct mt7615_dev *dev = data; *val = !!mt7615_ext_phy(dev); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_dbdc, mt7615_dbdc_get, mt7615_dbdc_set, "%lld\n"); static int mt7615_fw_debug_set(void *data, u64 val) { struct mt7615_dev *dev = data; if (!mt7615_wait_for_mcu_init(dev)) return 0; dev->fw_debug = val; mt7615_mutex_acquire(dev); mt7615_mcu_fw_log_2_host(dev, dev->fw_debug ? 2 : 0); mt7615_mutex_release(dev); return 0; } static int mt7615_fw_debug_get(void *data, u64 *val) { struct mt7615_dev *dev = data; *val = dev->fw_debug; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_fw_debug, mt7615_fw_debug_get, mt7615_fw_debug_set, "%lld\n"); static int mt7615_reset_test_set(void *data, u64 val) { struct mt7615_dev *dev = data; struct sk_buff *skb; if (!mt7615_wait_for_mcu_init(dev)) return 0; skb = alloc_skb(1, GFP_KERNEL); if (!skb) return -ENOMEM; skb_put(skb, 1); mt7615_mutex_acquire(dev); mt76_tx_queue_skb_raw(dev, dev->mphy.q_tx[0], skb, 0); mt7615_mutex_release(dev); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_reset_test, NULL, mt7615_reset_test_set, "%lld\n"); static void mt7615_ampdu_stat_read_phy(struct mt7615_phy *phy, struct seq_file *file) { struct mt7615_dev *dev = file->private; u32 reg = is_mt7663(&dev->mt76) ? MT_MIB_ARNG(0) : MT_AGG_ASRCR0; int bound[7], i, range; if (!phy) return; range = mt76_rr(dev, reg); for (i = 0; i < 4; i++) bound[i] = MT_AGG_ASRCR_RANGE(range, i) + 1; range = mt76_rr(dev, reg + 4); for (i = 0; i < 3; i++) bound[i + 4] = MT_AGG_ASRCR_RANGE(range, i) + 1; seq_printf(file, "\nPhy %d\n", phy != &dev->phy); seq_printf(file, "Length: %8d | ", bound[0]); for (i = 0; i < ARRAY_SIZE(bound) - 1; i++) seq_printf(file, "%3d -%3d | ", bound[i], bound[i + 1]); seq_puts(file, "\nCount: "); for (i = 0; i < ARRAY_SIZE(bound); i++) seq_printf(file, "%8d | ", phy->mt76->aggr_stats[i]); seq_puts(file, "\n"); seq_printf(file, "BA miss count: %d\n", phy->mib.ba_miss_cnt); seq_printf(file, "PER: %ld.%1ld%%\n", phy->mib.aggr_per / 10, phy->mib.aggr_per % 10); } static int mt7615_ampdu_stat_show(struct seq_file *file, void *data) { struct mt7615_dev *dev = file->private; mt7615_mutex_acquire(dev); mt7615_ampdu_stat_read_phy(&dev->phy, file); mt7615_ampdu_stat_read_phy(mt7615_ext_phy(dev), file); mt7615_mutex_release(dev); return 0; } DEFINE_SHOW_ATTRIBUTE(mt7615_ampdu_stat); static void mt7615_radio_read_phy(struct mt7615_phy *phy, struct seq_file *s) { struct mt7615_dev *dev = dev_get_drvdata(s->private); bool ext_phy = phy != &dev->phy; if (!phy) return; seq_printf(s, "Radio %d sensitivity: ofdm=%d cck=%d\n", ext_phy, phy->ofdm_sensitivity, phy->cck_sensitivity); seq_printf(s, "Radio %d false CCA: ofdm=%d cck=%d\n", ext_phy, phy->false_cca_ofdm, phy->false_cca_cck); } static int mt7615_radio_read(struct seq_file *s, void *data) { struct mt7615_dev *dev = dev_get_drvdata(s->private); mt7615_radio_read_phy(&dev->phy, s); mt7615_radio_read_phy(mt7615_ext_phy(dev), s); return 0; } static int mt7615_queues_acq(struct seq_file *s, void *data) { struct mt7615_dev *dev = dev_get_drvdata(s->private); int i; mt7615_mutex_acquire(dev); for (i = 0; i < 16; i++) { int j, wmm_idx = i % MT7615_MAX_WMM_SETS; int acs = i / MT7615_MAX_WMM_SETS; u32 ctrl, val, qlen = 0; if (wmm_idx == 3 && is_mt7663(&dev->mt76)) continue; val = mt76_rr(dev, MT_PLE_AC_QEMPTY(acs, wmm_idx)); ctrl = BIT(31) | BIT(15) | (acs << 8); for (j = 0; j < 32; j++) { if (val & BIT(j)) continue; mt76_wr(dev, MT_PLE_FL_Q0_CTRL, ctrl | (j + (wmm_idx << 5))); qlen += mt76_get_field(dev, MT_PLE_FL_Q3_CTRL, GENMASK(11, 0)); } seq_printf(s, "AC%d%d: queued=%d\n", wmm_idx, acs, qlen); } mt7615_mutex_release(dev); return 0; } static int mt7615_queues_read(struct seq_file *s, void *data) { struct mt7615_dev *dev = dev_get_drvdata(s->private); struct { struct mt76_queue *q; char *queue; } queue_map[] = { { dev->mphy.q_tx[MT_TXQ_BE], "PDMA0" }, { dev->mt76.q_mcu[MT_MCUQ_WM], "MCUQ" }, { dev->mt76.q_mcu[MT_MCUQ_FWDL], "MCUFWQ" }, }; int i; for (i = 0; i < ARRAY_SIZE(queue_map); i++) { struct mt76_queue *q = queue_map[i].q; seq_printf(s, "%s: queued=%d head=%d tail=%d\n", queue_map[i].queue, q->queued, q->head, q->tail); } return 0; } static int mt7615_rf_reg_set(void *data, u64 val) { struct mt7615_dev *dev = data; mt7615_rf_wr(dev, dev->debugfs_rf_wf, dev->debugfs_rf_reg, val); return 0; } static int mt7615_rf_reg_get(void *data, u64 *val) { struct mt7615_dev *dev = data; *val = mt7615_rf_rr(dev, dev->debugfs_rf_wf, dev->debugfs_rf_reg); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_rf_reg, mt7615_rf_reg_get, mt7615_rf_reg_set, "0x%08llx\n"); static ssize_t mt7615_ext_mac_addr_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct mt7615_dev *dev = file->private_data; u32 len = 32 * ((ETH_ALEN * 3) + 4) + 1; u8 addr[ETH_ALEN]; char *buf; int ofs = 0; int i; buf = kzalloc(len, GFP_KERNEL); if (!buf) return -ENOMEM; for (i = 0; i < 32; i++) { if (!(dev->muar_mask & BIT(i))) continue; mt76_wr(dev, MT_WF_RMAC_MAR1, FIELD_PREP(MT_WF_RMAC_MAR1_IDX, i * 2) | MT_WF_RMAC_MAR1_START); put_unaligned_le32(mt76_rr(dev, MT_WF_RMAC_MAR0), addr); put_unaligned_le16((mt76_rr(dev, MT_WF_RMAC_MAR1) & MT_WF_RMAC_MAR1_ADDR), addr + 4); ofs += snprintf(buf + ofs, len - ofs, "%d=%pM\n", i, addr); } ofs = simple_read_from_buffer(userbuf, count, ppos, buf, ofs); kfree(buf); return ofs; } static ssize_t mt7615_ext_mac_addr_write(struct file *file, const char __user *userbuf, size_t count, loff_t *ppos) { struct mt7615_dev *dev = file->private_data; unsigned long idx = 0; u8 addr[ETH_ALEN]; char buf[32]; char *p; if (count > sizeof(buf)) return -EINVAL; if (copy_from_user(buf, userbuf, count)) return -EFAULT; buf[sizeof(buf) - 1] = '\0'; p = strchr(buf, '='); if (p) { *p = 0; p++; if (kstrtoul(buf, 0, &idx) || idx > 31) return -EINVAL; } else { idx = 0; p = buf; } if (!mac_pton(p, addr)) return -EINVAL; if (is_valid_ether_addr(addr)) { dev->muar_mask |= BIT(idx); } else { memset(addr, 0, sizeof(addr)); dev->muar_mask &= ~BIT(idx); } mt76_rmw_field(dev, MT_WF_RMAC_MORE(0), MT_WF_RMAC_MORE_MUAR_MODE, 1); mt76_wr(dev, MT_WF_RMAC_MAR0, get_unaligned_le32(addr)); mt76_wr(dev, MT_WF_RMAC_MAR1, get_unaligned_le16(addr + 4) | FIELD_PREP(MT_WF_RMAC_MAR1_IDX, idx * 2) | MT_WF_RMAC_MAR1_START | MT_WF_RMAC_MAR1_WRITE); mt76_rmw_field(dev, MT_WF_RMAC_MORE(0), MT_WF_RMAC_MORE_MUAR_MODE, !!dev->muar_mask); return count; } static const struct file_operations fops_ext_mac_addr = { .open = simple_open, .llseek = generic_file_llseek, .read = mt7615_ext_mac_addr_read, .write = mt7615_ext_mac_addr_write, .owner = THIS_MODULE, }; static int mt7663s_sched_quota_read(struct seq_file *s, void *data) { struct mt7615_dev *dev = dev_get_drvdata(s->private); struct mt76_sdio *sdio = &dev->mt76.sdio; seq_printf(s, "pse_data_quota\t%d\n", sdio->sched.pse_data_quota); seq_printf(s, "ple_data_quota\t%d\n", sdio->sched.ple_data_quota); seq_printf(s, "pse_mcu_quota\t%d\n", sdio->sched.pse_mcu_quota); seq_printf(s, "sched_deficit\t%d\n", sdio->sched.deficit); return 0; } int mt7615_init_debugfs(struct mt7615_dev *dev) { struct dentry *dir; dir = mt76_register_debugfs_fops(&dev->mphy, &fops_regval); if (!dir) return -ENOMEM; if (is_mt7615(&dev->mt76)) debugfs_create_devm_seqfile(dev->mt76.dev, "xmit-queues", dir, mt7615_queues_read); else debugfs_create_devm_seqfile(dev->mt76.dev, "xmit-queues", dir, mt76_queues_read); debugfs_create_devm_seqfile(dev->mt76.dev, "acq", dir, mt7615_queues_acq); debugfs_create_file("ampdu_stat", 0400, dir, dev, &mt7615_ampdu_stat_fops); debugfs_create_file("scs", 0600, dir, dev, &fops_scs); debugfs_create_file("dbdc", 0600, dir, dev, &fops_dbdc); debugfs_create_file("fw_debug", 0600, dir, dev, &fops_fw_debug); debugfs_create_file("runtime-pm", 0600, dir, dev, &fops_pm); debugfs_create_file("idle-timeout", 0600, dir, dev, &fops_pm_idle_timeout); debugfs_create_devm_seqfile(dev->mt76.dev, "runtime_pm_stats", dir, mt7615_pm_stats); debugfs_create_devm_seqfile(dev->mt76.dev, "radio", dir, mt7615_radio_read); if (is_mt7615(&dev->mt76)) { debugfs_create_u32("dfs_hw_pattern", 0400, dir, &dev->hw_pattern); /* test pattern knobs */ debugfs_create_u8("pattern_len", 0600, dir, &dev->radar_pattern.n_pulses); debugfs_create_u32("pulse_period", 0600, dir, &dev->radar_pattern.period); debugfs_create_u16("pulse_width", 0600, dir, &dev->radar_pattern.width); debugfs_create_u16("pulse_power", 0600, dir, &dev->radar_pattern.power); debugfs_create_file("radar_trigger", 0200, dir, dev, &fops_radar_pattern); } debugfs_create_file("reset_test", 0200, dir, dev, &fops_reset_test); debugfs_create_file("ext_mac_addr", 0600, dir, dev, &fops_ext_mac_addr); debugfs_create_u32("rf_wfidx", 0600, dir, &dev->debugfs_rf_wf); debugfs_create_u32("rf_regidx", 0600, dir, &dev->debugfs_rf_reg); debugfs_create_file_unsafe("rf_regval", 0600, dir, dev, &fops_rf_reg); if (is_mt7663(&dev->mt76)) debugfs_create_file("chip_config", 0600, dir, dev, &fops_config); if (mt76_is_sdio(&dev->mt76)) debugfs_create_devm_seqfile(dev->mt76.dev, "sched-quota", dir, mt7663s_sched_quota_read); return 0; } EXPORT_SYMBOL_GPL(mt7615_init_debugfs);
linux-master
drivers/net/wireless/mediatek/mt76/mt7615/debugfs.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2019 MediaTek Inc. * * Author: Ryder Lee <[email protected]> * Roy Luo <[email protected]> * Felix Fietkau <[email protected]> * Lorenzo Bianconi <[email protected]> */ #include <linux/devcoredump.h> #include <linux/etherdevice.h> #include <linux/timekeeping.h> #include "mt7615.h" #include "../trace.h" #include "../dma.h" #include "mt7615_trace.h" #include "mac.h" #include "mcu.h" #define to_rssi(field, rxv) ((FIELD_GET(field, rxv) - 220) / 2) static const struct mt7615_dfs_radar_spec etsi_radar_specs = { .pulse_th = { 110, -10, -80, 40, 5200, 128, 5200 }, .radar_pattern = { [5] = { 1, 0, 6, 32, 28, 0, 17, 990, 5010, 1, 1 }, [6] = { 1, 0, 9, 32, 28, 0, 27, 615, 5010, 1, 1 }, [7] = { 1, 0, 15, 32, 28, 0, 27, 240, 445, 1, 1 }, [8] = { 1, 0, 12, 32, 28, 0, 42, 240, 510, 1, 1 }, [9] = { 1, 1, 0, 0, 0, 0, 14, 2490, 3343, 0, 0, 12, 32, 28 }, [10] = { 1, 1, 0, 0, 0, 0, 14, 2490, 3343, 0, 0, 15, 32, 24 }, [11] = { 1, 1, 0, 0, 0, 0, 14, 823, 2510, 0, 0, 18, 32, 28 }, [12] = { 1, 1, 0, 0, 0, 0, 14, 823, 2510, 0, 0, 27, 32, 24 }, }, }; static const struct mt7615_dfs_radar_spec fcc_radar_specs = { .pulse_th = { 110, -10, -80, 40, 5200, 128, 5200 }, .radar_pattern = { [0] = { 1, 0, 9, 32, 28, 0, 13, 508, 3076, 1, 1 }, [1] = { 1, 0, 12, 32, 28, 0, 17, 140, 240, 1, 1 }, [2] = { 1, 0, 8, 32, 28, 0, 22, 190, 510, 1, 1 }, [3] = { 1, 0, 6, 32, 28, 0, 32, 190, 510, 1, 1 }, [4] = { 1, 0, 9, 255, 28, 0, 13, 323, 343, 1, 32 }, }, }; static const struct mt7615_dfs_radar_spec jp_radar_specs = { .pulse_th = { 110, -10, -80, 40, 5200, 128, 5200 }, .radar_pattern = { [0] = { 1, 0, 8, 32, 28, 0, 13, 508, 3076, 1, 1 }, [1] = { 1, 0, 12, 32, 28, 0, 17, 140, 240, 1, 1 }, [2] = { 1, 0, 8, 32, 28, 0, 22, 190, 510, 1, 1 }, [3] = { 1, 0, 6, 32, 28, 0, 32, 190, 510, 1, 1 }, [4] = { 1, 0, 9, 32, 28, 0, 13, 323, 343, 1, 32 }, [13] = { 1, 0, 8, 32, 28, 0, 14, 3836, 3856, 1, 1 }, [14] = { 1, 0, 8, 32, 28, 0, 14, 3990, 4010, 1, 1 }, }, }; static enum mt76_cipher_type mt7615_mac_get_cipher(int cipher) { switch (cipher) { case WLAN_CIPHER_SUITE_WEP40: return MT_CIPHER_WEP40; case WLAN_CIPHER_SUITE_WEP104: return MT_CIPHER_WEP104; case WLAN_CIPHER_SUITE_TKIP: return MT_CIPHER_TKIP; case WLAN_CIPHER_SUITE_AES_CMAC: return MT_CIPHER_BIP_CMAC_128; case WLAN_CIPHER_SUITE_CCMP: return MT_CIPHER_AES_CCMP; case WLAN_CIPHER_SUITE_CCMP_256: return MT_CIPHER_CCMP_256; case WLAN_CIPHER_SUITE_GCMP: return MT_CIPHER_GCMP; case WLAN_CIPHER_SUITE_GCMP_256: return MT_CIPHER_GCMP_256; case WLAN_CIPHER_SUITE_SMS4: return MT_CIPHER_WAPI; default: return MT_CIPHER_NONE; } } static struct mt76_wcid *mt7615_rx_get_wcid(struct mt7615_dev *dev, u8 idx, bool unicast) { struct mt7615_sta *sta; struct mt76_wcid *wcid; if (idx >= MT7615_WTBL_SIZE) return NULL; wcid = rcu_dereference(dev->mt76.wcid[idx]); if (unicast || !wcid) return wcid; if (!wcid->sta) return NULL; sta = container_of(wcid, struct mt7615_sta, wcid); if (!sta->vif) return NULL; return &sta->vif->sta.wcid; } void mt7615_mac_reset_counters(struct mt7615_phy *phy) { struct mt7615_dev *dev = phy->dev; int i; for (i = 0; i < 4; i++) { mt76_rr(dev, MT_TX_AGG_CNT(0, i)); mt76_rr(dev, MT_TX_AGG_CNT(1, i)); } memset(phy->mt76->aggr_stats, 0, sizeof(phy->mt76->aggr_stats)); phy->mt76->survey_time = ktime_get_boottime(); /* reset airtime counters */ mt76_rr(dev, MT_MIB_SDR9(0)); mt76_rr(dev, MT_MIB_SDR9(1)); mt76_rr(dev, MT_MIB_SDR36(0)); mt76_rr(dev, MT_MIB_SDR36(1)); mt76_rr(dev, MT_MIB_SDR37(0)); mt76_rr(dev, MT_MIB_SDR37(1)); mt76_set(dev, MT_WF_RMAC_MIB_TIME0, MT_WF_RMAC_MIB_RXTIME_CLR); mt76_set(dev, MT_WF_RMAC_MIB_AIRTIME0, MT_WF_RMAC_MIB_RXTIME_CLR); } void mt7615_mac_set_timing(struct mt7615_phy *phy) { s16 coverage_class = phy->coverage_class; struct mt7615_dev *dev = phy->dev; bool ext_phy = phy != &dev->phy; u32 val, reg_offset; u32 cck = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 231) | FIELD_PREP(MT_TIMEOUT_VAL_CCA, 48); u32 ofdm = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 60) | FIELD_PREP(MT_TIMEOUT_VAL_CCA, 28); int sifs, offset; bool is_5ghz = phy->mt76->chandef.chan->band == NL80211_BAND_5GHZ; if (!test_bit(MT76_STATE_RUNNING, &phy->mt76->state)) return; if (is_5ghz) sifs = 16; else sifs = 10; if (ext_phy) { coverage_class = max_t(s16, dev->phy.coverage_class, coverage_class); mt76_set(dev, MT_ARB_SCR, MT_ARB_SCR_TX1_DISABLE | MT_ARB_SCR_RX1_DISABLE); } else { struct mt7615_phy *phy_ext = mt7615_ext_phy(dev); if (phy_ext) coverage_class = max_t(s16, phy_ext->coverage_class, coverage_class); mt76_set(dev, MT_ARB_SCR, MT_ARB_SCR_TX0_DISABLE | MT_ARB_SCR_RX0_DISABLE); } udelay(1); offset = 3 * coverage_class; reg_offset = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, offset) | FIELD_PREP(MT_TIMEOUT_VAL_CCA, offset); mt76_wr(dev, MT_TMAC_CDTR, cck + reg_offset); mt76_wr(dev, MT_TMAC_ODTR, ofdm + reg_offset); mt76_wr(dev, MT_TMAC_ICR(ext_phy), FIELD_PREP(MT_IFS_EIFS, 360) | FIELD_PREP(MT_IFS_RIFS, 2) | FIELD_PREP(MT_IFS_SIFS, sifs) | FIELD_PREP(MT_IFS_SLOT, phy->slottime)); if (phy->slottime < 20 || is_5ghz) val = MT7615_CFEND_RATE_DEFAULT; else val = MT7615_CFEND_RATE_11B; mt76_rmw_field(dev, MT_AGG_ACR(ext_phy), MT_AGG_ACR_CFEND_RATE, val); if (ext_phy) mt76_clear(dev, MT_ARB_SCR, MT_ARB_SCR_TX1_DISABLE | MT_ARB_SCR_RX1_DISABLE); else mt76_clear(dev, MT_ARB_SCR, MT_ARB_SCR_TX0_DISABLE | MT_ARB_SCR_RX0_DISABLE); } static void mt7615_get_status_freq_info(struct mt7615_dev *dev, struct mt76_phy *mphy, struct mt76_rx_status *status, u8 chfreq) { if (!test_bit(MT76_HW_SCANNING, &mphy->state) && !test_bit(MT76_HW_SCHED_SCANNING, &mphy->state) && !test_bit(MT76_STATE_ROC, &mphy->state)) { status->freq = mphy->chandef.chan->center_freq; status->band = mphy->chandef.chan->band; return; } status->band = chfreq <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; status->freq = ieee80211_channel_to_frequency(chfreq, status->band); } static void mt7615_mac_fill_tm_rx(struct mt7615_phy *phy, __le32 *rxv) { #ifdef CONFIG_NL80211_TESTMODE u32 rxv1 = le32_to_cpu(rxv[0]); u32 rxv3 = le32_to_cpu(rxv[2]); u32 rxv4 = le32_to_cpu(rxv[3]); u32 rxv5 = le32_to_cpu(rxv[4]); u8 cbw = FIELD_GET(MT_RXV1_FRAME_MODE, rxv1); u8 mode = FIELD_GET(MT_RXV1_TX_MODE, rxv1); s16 foe = FIELD_GET(MT_RXV5_FOE, rxv5); u32 foe_const = (BIT(cbw + 1) & 0xf) * 10000; if (!mode) { /* CCK */ foe &= ~BIT(11); foe *= 1000; foe >>= 11; } else { if (foe > 2048) foe -= 4096; foe = (foe * foe_const) >> 15; } phy->test.last_freq_offset = foe; phy->test.last_rcpi[0] = FIELD_GET(MT_RXV4_RCPI0, rxv4); phy->test.last_rcpi[1] = FIELD_GET(MT_RXV4_RCPI1, rxv4); phy->test.last_rcpi[2] = FIELD_GET(MT_RXV4_RCPI2, rxv4); phy->test.last_rcpi[3] = FIELD_GET(MT_RXV4_RCPI3, rxv4); phy->test.last_ib_rssi[0] = FIELD_GET(MT_RXV3_IB_RSSI, rxv3); phy->test.last_wb_rssi[0] = FIELD_GET(MT_RXV3_WB_RSSI, rxv3); #endif } /* The HW does not translate the mac header to 802.3 for mesh point */ static int mt7615_reverse_frag0_hdr_trans(struct sk_buff *skb, u16 hdr_gap) { struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; struct ethhdr *eth_hdr = (struct ethhdr *)(skb->data + hdr_gap); struct mt7615_sta *msta = (struct mt7615_sta *)status->wcid; __le32 *rxd = (__le32 *)skb->data; struct ieee80211_sta *sta; struct ieee80211_vif *vif; struct ieee80211_hdr hdr; u16 frame_control; if (le32_get_bits(rxd[1], MT_RXD1_NORMAL_ADDR_TYPE) != MT_RXD1_NORMAL_U2M) return -EINVAL; if (!(le32_to_cpu(rxd[0]) & MT_RXD0_NORMAL_GROUP_4)) return -EINVAL; if (!msta || !msta->vif) return -EINVAL; sta = container_of((void *)msta, struct ieee80211_sta, drv_priv); vif = container_of((void *)msta->vif, struct ieee80211_vif, drv_priv); /* store the info from RXD and ethhdr to avoid being overridden */ frame_control = le32_get_bits(rxd[4], MT_RXD4_FRAME_CONTROL); hdr.frame_control = cpu_to_le16(frame_control); hdr.seq_ctrl = cpu_to_le16(le32_get_bits(rxd[6], MT_RXD6_SEQ_CTRL)); hdr.duration_id = 0; ether_addr_copy(hdr.addr1, vif->addr); ether_addr_copy(hdr.addr2, sta->addr); switch (frame_control & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { case 0: ether_addr_copy(hdr.addr3, vif->bss_conf.bssid); break; case IEEE80211_FCTL_FROMDS: ether_addr_copy(hdr.addr3, eth_hdr->h_source); break; case IEEE80211_FCTL_TODS: ether_addr_copy(hdr.addr3, eth_hdr->h_dest); break; case IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS: ether_addr_copy(hdr.addr3, eth_hdr->h_dest); ether_addr_copy(hdr.addr4, eth_hdr->h_source); break; default: break; } skb_pull(skb, hdr_gap + sizeof(struct ethhdr) - 2); if (eth_hdr->h_proto == cpu_to_be16(ETH_P_AARP) || eth_hdr->h_proto == cpu_to_be16(ETH_P_IPX)) ether_addr_copy(skb_push(skb, ETH_ALEN), bridge_tunnel_header); else if (be16_to_cpu(eth_hdr->h_proto) >= ETH_P_802_3_MIN) ether_addr_copy(skb_push(skb, ETH_ALEN), rfc1042_header); else skb_pull(skb, 2); if (ieee80211_has_order(hdr.frame_control)) memcpy(skb_push(skb, IEEE80211_HT_CTL_LEN), &rxd[7], IEEE80211_HT_CTL_LEN); if (ieee80211_is_data_qos(hdr.frame_control)) { __le16 qos_ctrl; qos_ctrl = cpu_to_le16(le32_get_bits(rxd[6], MT_RXD6_QOS_CTL)); memcpy(skb_push(skb, IEEE80211_QOS_CTL_LEN), &qos_ctrl, IEEE80211_QOS_CTL_LEN); } if (ieee80211_has_a4(hdr.frame_control)) memcpy(skb_push(skb, sizeof(hdr)), &hdr, sizeof(hdr)); else memcpy(skb_push(skb, sizeof(hdr) - 6), &hdr, sizeof(hdr) - 6); status->flag &= ~(RX_FLAG_RADIOTAP_HE | RX_FLAG_RADIOTAP_HE_MU); return 0; } static int mt7615_mac_fill_rx(struct mt7615_dev *dev, struct sk_buff *skb) { struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; struct mt76_phy *mphy = &dev->mt76.phy; struct mt7615_phy *phy = &dev->phy; struct ieee80211_supported_band *sband; struct ieee80211_hdr *hdr; struct mt7615_phy *phy2; __le32 *rxd = (__le32 *)skb->data; u32 rxd0 = le32_to_cpu(rxd[0]); u32 rxd1 = le32_to_cpu(rxd[1]); u32 rxd2 = le32_to_cpu(rxd[2]); u32 csum_mask = MT_RXD0_NORMAL_IP_SUM | MT_RXD0_NORMAL_UDP_TCP_SUM; u32 csum_status = *(u32 *)skb->cb; bool unicast, hdr_trans, remove_pad, insert_ccmp_hdr = false; u16 hdr_gap; int phy_idx; int i, idx; u8 chfreq, amsdu_info, qos_ctl = 0; u16 seq_ctrl = 0; __le16 fc = 0; memset(status, 0, sizeof(*status)); chfreq = FIELD_GET(MT_RXD1_NORMAL_CH_FREQ, rxd1); phy2 = dev->mt76.phys[MT_BAND1] ? dev->mt76.phys[MT_BAND1]->priv : NULL; if (!phy2) phy_idx = 0; else if (phy2->chfreq == phy->chfreq) phy_idx = -1; else if (phy->chfreq == chfreq) phy_idx = 0; else if (phy2->chfreq == chfreq) phy_idx = 1; else phy_idx = -1; if (rxd2 & MT_RXD2_NORMAL_AMSDU_ERR) return -EINVAL; hdr_trans = rxd1 & MT_RXD1_NORMAL_HDR_TRANS; if (hdr_trans && (rxd2 & MT_RXD2_NORMAL_CM)) return -EINVAL; /* ICV error or CCMP/BIP/WPI MIC error */ if (rxd2 & MT_RXD2_NORMAL_ICV_ERR) status->flag |= RX_FLAG_ONLY_MONITOR; unicast = (rxd1 & MT_RXD1_NORMAL_ADDR_TYPE) == MT_RXD1_NORMAL_U2M; idx = FIELD_GET(MT_RXD2_NORMAL_WLAN_IDX, rxd2); status->wcid = mt7615_rx_get_wcid(dev, idx, unicast); if (status->wcid) { struct mt7615_sta *msta; msta = container_of(status->wcid, struct mt7615_sta, wcid); spin_lock_bh(&dev->mt76.sta_poll_lock); if (list_empty(&msta->wcid.poll_list)) list_add_tail(&msta->wcid.poll_list, &dev->mt76.sta_poll_list); spin_unlock_bh(&dev->mt76.sta_poll_lock); } if (mt76_is_mmio(&dev->mt76) && (rxd0 & csum_mask) == csum_mask && !(csum_status & (BIT(0) | BIT(2) | BIT(3)))) skb->ip_summed = CHECKSUM_UNNECESSARY; if (rxd2 & MT_RXD2_NORMAL_FCS_ERR) status->flag |= RX_FLAG_FAILED_FCS_CRC; if (rxd2 & MT_RXD2_NORMAL_TKIP_MIC_ERR) status->flag |= RX_FLAG_MMIC_ERROR; if (FIELD_GET(MT_RXD2_NORMAL_SEC_MODE, rxd2) != 0 && !(rxd2 & (MT_RXD2_NORMAL_CLM | MT_RXD2_NORMAL_CM))) { status->flag |= RX_FLAG_DECRYPTED; status->flag |= RX_FLAG_IV_STRIPPED; status->flag |= RX_FLAG_MMIC_STRIPPED | RX_FLAG_MIC_STRIPPED; } remove_pad = rxd1 & MT_RXD1_NORMAL_HDR_OFFSET; if (rxd2 & MT_RXD2_NORMAL_MAX_LEN_ERROR) return -EINVAL; rxd += 4; if (rxd0 & MT_RXD0_NORMAL_GROUP_4) { u32 v0 = le32_to_cpu(rxd[0]); u32 v2 = le32_to_cpu(rxd[2]); fc = cpu_to_le16(FIELD_GET(MT_RXD4_FRAME_CONTROL, v0)); qos_ctl = FIELD_GET(MT_RXD6_QOS_CTL, v2); seq_ctrl = FIELD_GET(MT_RXD6_SEQ_CTRL, v2); rxd += 4; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; } if (rxd0 & MT_RXD0_NORMAL_GROUP_1) { u8 *data = (u8 *)rxd; if (status->flag & RX_FLAG_DECRYPTED) { switch (FIELD_GET(MT_RXD2_NORMAL_SEC_MODE, rxd2)) { case MT_CIPHER_AES_CCMP: case MT_CIPHER_CCMP_CCX: case MT_CIPHER_CCMP_256: insert_ccmp_hdr = FIELD_GET(MT_RXD2_NORMAL_FRAG, rxd2); fallthrough; case MT_CIPHER_TKIP: case MT_CIPHER_TKIP_NO_MIC: case MT_CIPHER_GCMP: case MT_CIPHER_GCMP_256: status->iv[0] = data[5]; status->iv[1] = data[4]; status->iv[2] = data[3]; status->iv[3] = data[2]; status->iv[4] = data[1]; status->iv[5] = data[0]; break; default: break; } } rxd += 4; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; } if (rxd0 & MT_RXD0_NORMAL_GROUP_2) { status->timestamp = le32_to_cpu(rxd[0]); status->flag |= RX_FLAG_MACTIME_START; if (!(rxd2 & (MT_RXD2_NORMAL_NON_AMPDU_SUB | MT_RXD2_NORMAL_NON_AMPDU))) { status->flag |= RX_FLAG_AMPDU_DETAILS; /* all subframes of an A-MPDU have the same timestamp */ if (phy->rx_ampdu_ts != status->timestamp) { if (!++phy->ampdu_ref) phy->ampdu_ref++; } phy->rx_ampdu_ts = status->timestamp; status->ampdu_ref = phy->ampdu_ref; } rxd += 2; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; } if (rxd0 & MT_RXD0_NORMAL_GROUP_3) { u32 rxdg5 = le32_to_cpu(rxd[5]); /* * If both PHYs are on the same channel and we don't have a WCID, * we need to figure out which PHY this packet was received on. * On the primary PHY, the noise value for the chains belonging to the * second PHY will be set to the noise value of the last packet from * that PHY. */ if (phy_idx < 0) { int first_chain = ffs(phy2->mt76->chainmask) - 1; phy_idx = ((rxdg5 >> (first_chain * 8)) & 0xff) == 0; } } if (phy_idx == 1 && phy2) { mphy = dev->mt76.phys[MT_BAND1]; phy = phy2; status->phy_idx = phy_idx; } if (!mt7615_firmware_offload(dev) && chfreq != phy->chfreq) return -EINVAL; mt7615_get_status_freq_info(dev, mphy, status, chfreq); if (status->band == NL80211_BAND_5GHZ) sband = &mphy->sband_5g.sband; else sband = &mphy->sband_2g.sband; if (!test_bit(MT76_STATE_RUNNING, &mphy->state)) return -EINVAL; if (!sband->channels) return -EINVAL; if (rxd0 & MT_RXD0_NORMAL_GROUP_3) { u32 rxdg0 = le32_to_cpu(rxd[0]); u32 rxdg1 = le32_to_cpu(rxd[1]); u32 rxdg3 = le32_to_cpu(rxd[3]); u8 stbc = FIELD_GET(MT_RXV1_HT_STBC, rxdg0); bool cck = false; i = FIELD_GET(MT_RXV1_TX_RATE, rxdg0); switch (FIELD_GET(MT_RXV1_TX_MODE, rxdg0)) { case MT_PHY_TYPE_CCK: cck = true; fallthrough; case MT_PHY_TYPE_OFDM: i = mt76_get_rate(&dev->mt76, sband, i, cck); break; case MT_PHY_TYPE_HT_GF: case MT_PHY_TYPE_HT: status->encoding = RX_ENC_HT; if (i > 31) return -EINVAL; break; case MT_PHY_TYPE_VHT: status->nss = FIELD_GET(MT_RXV2_NSTS, rxdg1) + 1; status->encoding = RX_ENC_VHT; break; default: return -EINVAL; } status->rate_idx = i; switch (FIELD_GET(MT_RXV1_FRAME_MODE, rxdg0)) { case MT_PHY_BW_20: break; case MT_PHY_BW_40: status->bw = RATE_INFO_BW_40; break; case MT_PHY_BW_80: status->bw = RATE_INFO_BW_80; break; case MT_PHY_BW_160: status->bw = RATE_INFO_BW_160; break; default: return -EINVAL; } if (rxdg0 & MT_RXV1_HT_SHORT_GI) status->enc_flags |= RX_ENC_FLAG_SHORT_GI; if (rxdg0 & MT_RXV1_HT_AD_CODE) status->enc_flags |= RX_ENC_FLAG_LDPC; status->enc_flags |= RX_ENC_FLAG_STBC_MASK * stbc; status->chains = mphy->antenna_mask; status->chain_signal[0] = to_rssi(MT_RXV4_RCPI0, rxdg3); status->chain_signal[1] = to_rssi(MT_RXV4_RCPI1, rxdg3); status->chain_signal[2] = to_rssi(MT_RXV4_RCPI2, rxdg3); status->chain_signal[3] = to_rssi(MT_RXV4_RCPI3, rxdg3); mt7615_mac_fill_tm_rx(mphy->priv, rxd); rxd += 6; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; } amsdu_info = FIELD_GET(MT_RXD1_NORMAL_PAYLOAD_FORMAT, rxd1); status->amsdu = !!amsdu_info; if (status->amsdu) { status->first_amsdu = amsdu_info == MT_RXD1_FIRST_AMSDU_FRAME; status->last_amsdu = amsdu_info == MT_RXD1_LAST_AMSDU_FRAME; } hdr_gap = (u8 *)rxd - skb->data + 2 * remove_pad; if (hdr_trans && ieee80211_has_morefrags(fc)) { if (mt7615_reverse_frag0_hdr_trans(skb, hdr_gap)) return -EINVAL; hdr_trans = false; } else { int pad_start = 0; skb_pull(skb, hdr_gap); if (!hdr_trans && status->amsdu) { pad_start = ieee80211_get_hdrlen_from_skb(skb); } else if (hdr_trans && (rxd2 & MT_RXD2_NORMAL_HDR_TRANS_ERROR)) { /* * When header translation failure is indicated, * the hardware will insert an extra 2-byte field * containing the data length after the protocol * type field. This happens either when the LLC-SNAP * pattern did not match, or if a VLAN header was * detected. */ pad_start = 12; if (get_unaligned_be16(skb->data + pad_start) == ETH_P_8021Q) pad_start += 4; else pad_start = 0; } if (pad_start) { memmove(skb->data + 2, skb->data, pad_start); skb_pull(skb, 2); } } if (insert_ccmp_hdr && !hdr_trans) { u8 key_id = FIELD_GET(MT_RXD1_NORMAL_KEY_ID, rxd1); mt76_insert_ccmp_hdr(skb, key_id); } if (!hdr_trans) { hdr = (struct ieee80211_hdr *)skb->data; fc = hdr->frame_control; if (ieee80211_is_data_qos(fc)) { seq_ctrl = le16_to_cpu(hdr->seq_ctrl); qos_ctl = *ieee80211_get_qos_ctl(hdr); } } else { status->flag |= RX_FLAG_8023; } if (!status->wcid || !ieee80211_is_data_qos(fc)) return 0; status->aggr = unicast && !ieee80211_is_qos_nullfunc(fc); status->qos_ctl = qos_ctl; status->seqno = IEEE80211_SEQ_TO_SN(seq_ctrl); return 0; } static u16 mt7615_mac_tx_rate_val(struct mt7615_dev *dev, struct mt76_phy *mphy, const struct ieee80211_tx_rate *rate, bool stbc, u8 *bw) { u8 phy, nss, rate_idx; u16 rateval = 0; *bw = 0; if (rate->flags & IEEE80211_TX_RC_VHT_MCS) { rate_idx = ieee80211_rate_get_vht_mcs(rate); nss = ieee80211_rate_get_vht_nss(rate); phy = MT_PHY_TYPE_VHT; if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) *bw = 1; else if (rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH) *bw = 2; else if (rate->flags & IEEE80211_TX_RC_160_MHZ_WIDTH) *bw = 3; } else if (rate->flags & IEEE80211_TX_RC_MCS) { rate_idx = rate->idx; nss = 1 + (rate->idx >> 3); phy = MT_PHY_TYPE_HT; if (rate->flags & IEEE80211_TX_RC_GREEN_FIELD) phy = MT_PHY_TYPE_HT_GF; if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) *bw = 1; } else { const struct ieee80211_rate *r; int band = mphy->chandef.chan->band; u16 val; nss = 1; r = &mphy->hw->wiphy->bands[band]->bitrates[rate->idx]; if (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) val = r->hw_value_short; else val = r->hw_value; phy = val >> 8; rate_idx = val & 0xff; } if (stbc && nss == 1) { nss++; rateval |= MT_TX_RATE_STBC; } rateval |= (FIELD_PREP(MT_TX_RATE_IDX, rate_idx) | FIELD_PREP(MT_TX_RATE_MODE, phy) | FIELD_PREP(MT_TX_RATE_NSS, nss - 1)); return rateval; } int mt7615_mac_write_txwi(struct mt7615_dev *dev, __le32 *txwi, struct sk_buff *skb, struct mt76_wcid *wcid, struct ieee80211_sta *sta, int pid, struct ieee80211_key_conf *key, enum mt76_txq_id qid, bool beacon) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; u8 fc_type, fc_stype, p_fmt, q_idx, omac_idx = 0, wmm_idx = 0; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_tx_rate *rate = &info->control.rates[0]; u8 phy_idx = (info->hw_queue & MT_TX_HW_QUEUE_PHY) >> 2; bool multicast = is_multicast_ether_addr(hdr->addr1); struct ieee80211_vif *vif = info->control.vif; bool is_mmio = mt76_is_mmio(&dev->mt76); u32 val, sz_txd = is_mmio ? MT_TXD_SIZE : MT_USB_TXD_SIZE; struct mt76_phy *mphy = &dev->mphy; __le16 fc = hdr->frame_control; int tx_count = 8; u16 seqno = 0; if (vif) { struct mt76_vif *mvif = (struct mt76_vif *)vif->drv_priv; omac_idx = mvif->omac_idx; wmm_idx = mvif->wmm_idx; } if (sta) { struct mt7615_sta *msta = (struct mt7615_sta *)sta->drv_priv; tx_count = msta->rate_count; } if (phy_idx && dev->mt76.phys[MT_BAND1]) mphy = dev->mt76.phys[MT_BAND1]; fc_type = (le16_to_cpu(fc) & IEEE80211_FCTL_FTYPE) >> 2; fc_stype = (le16_to_cpu(fc) & IEEE80211_FCTL_STYPE) >> 4; if (beacon) { p_fmt = MT_TX_TYPE_FW; q_idx = phy_idx ? MT_LMAC_BCN1 : MT_LMAC_BCN0; } else if (qid >= MT_TXQ_PSD) { p_fmt = is_mmio ? MT_TX_TYPE_CT : MT_TX_TYPE_SF; q_idx = phy_idx ? MT_LMAC_ALTX1 : MT_LMAC_ALTX0; } else { p_fmt = is_mmio ? MT_TX_TYPE_CT : MT_TX_TYPE_SF; q_idx = wmm_idx * MT7615_MAX_WMM_SETS + mt7615_lmac_mapping(dev, skb_get_queue_mapping(skb)); } val = FIELD_PREP(MT_TXD0_TX_BYTES, skb->len + sz_txd) | FIELD_PREP(MT_TXD0_P_IDX, MT_TX_PORT_IDX_LMAC) | FIELD_PREP(MT_TXD0_Q_IDX, q_idx); txwi[0] = cpu_to_le32(val); val = MT_TXD1_LONG_FORMAT | FIELD_PREP(MT_TXD1_WLAN_IDX, wcid->idx) | FIELD_PREP(MT_TXD1_HDR_FORMAT, MT_HDR_FORMAT_802_11) | FIELD_PREP(MT_TXD1_HDR_INFO, ieee80211_get_hdrlen_from_skb(skb) / 2) | FIELD_PREP(MT_TXD1_TID, skb->priority & IEEE80211_QOS_CTL_TID_MASK) | FIELD_PREP(MT_TXD1_PKT_FMT, p_fmt) | FIELD_PREP(MT_TXD1_OWN_MAC, omac_idx); txwi[1] = cpu_to_le32(val); val = FIELD_PREP(MT_TXD2_FRAME_TYPE, fc_type) | FIELD_PREP(MT_TXD2_SUB_TYPE, fc_stype) | FIELD_PREP(MT_TXD2_MULTICAST, multicast); if (key) { if (multicast && ieee80211_is_robust_mgmt_frame(skb) && key->cipher == WLAN_CIPHER_SUITE_AES_CMAC) { val |= MT_TXD2_BIP; txwi[3] = 0; } else { txwi[3] = cpu_to_le32(MT_TXD3_PROTECT_FRAME); } } else { txwi[3] = 0; } txwi[2] = cpu_to_le32(val); if (!(info->flags & IEEE80211_TX_CTL_AMPDU)) txwi[2] |= cpu_to_le32(MT_TXD2_BA_DISABLE); txwi[4] = 0; txwi[6] = 0; if (rate->idx >= 0 && rate->count && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) { bool stbc = info->flags & IEEE80211_TX_CTL_STBC; u8 bw; u16 rateval = mt7615_mac_tx_rate_val(dev, mphy, rate, stbc, &bw); txwi[2] |= cpu_to_le32(MT_TXD2_FIX_RATE); val = MT_TXD6_FIXED_BW | FIELD_PREP(MT_TXD6_BW, bw) | FIELD_PREP(MT_TXD6_TX_RATE, rateval); txwi[6] |= cpu_to_le32(val); if (rate->flags & IEEE80211_TX_RC_SHORT_GI) txwi[6] |= cpu_to_le32(MT_TXD6_SGI); if (info->flags & IEEE80211_TX_CTL_LDPC) txwi[6] |= cpu_to_le32(MT_TXD6_LDPC); if (!(rate->flags & (IEEE80211_TX_RC_MCS | IEEE80211_TX_RC_VHT_MCS))) txwi[2] |= cpu_to_le32(MT_TXD2_BA_DISABLE); tx_count = rate->count; } if (!ieee80211_is_beacon(fc)) { struct ieee80211_hw *hw = mt76_hw(dev); val = MT_TXD5_TX_STATUS_HOST | FIELD_PREP(MT_TXD5_PID, pid); if (!ieee80211_hw_check(hw, SUPPORTS_PS)) val |= MT_TXD5_SW_POWER_MGMT; txwi[5] = cpu_to_le32(val); } else { txwi[5] = 0; /* use maximum tx count for beacons */ tx_count = 0x1f; } val = FIELD_PREP(MT_TXD3_REM_TX_COUNT, tx_count); if (info->flags & IEEE80211_TX_CTL_INJECTED) { seqno = le16_to_cpu(hdr->seq_ctrl); if (ieee80211_is_back_req(hdr->frame_control)) { struct ieee80211_bar *bar; bar = (struct ieee80211_bar *)skb->data; seqno = le16_to_cpu(bar->start_seq_num); } val |= MT_TXD3_SN_VALID | FIELD_PREP(MT_TXD3_SEQ, IEEE80211_SEQ_TO_SN(seqno)); } txwi[3] |= cpu_to_le32(val); if (info->flags & IEEE80211_TX_CTL_NO_ACK) txwi[3] |= cpu_to_le32(MT_TXD3_NO_ACK); val = FIELD_PREP(MT_TXD7_TYPE, fc_type) | FIELD_PREP(MT_TXD7_SUB_TYPE, fc_stype) | FIELD_PREP(MT_TXD7_SPE_IDX, 0x18); txwi[7] = cpu_to_le32(val); if (!is_mmio) { val = FIELD_PREP(MT_TXD8_L_TYPE, fc_type) | FIELD_PREP(MT_TXD8_L_SUB_TYPE, fc_stype); txwi[8] = cpu_to_le32(val); } return 0; } EXPORT_SYMBOL_GPL(mt7615_mac_write_txwi); bool mt7615_mac_wtbl_update(struct mt7615_dev *dev, int idx, u32 mask) { mt76_rmw(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_WLAN_IDX, FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, idx) | mask); return mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000); } void mt7615_mac_sta_poll(struct mt7615_dev *dev) { static const u8 ac_to_tid[4] = { [IEEE80211_AC_BE] = 0, [IEEE80211_AC_BK] = 1, [IEEE80211_AC_VI] = 4, [IEEE80211_AC_VO] = 6 }; static const u8 hw_queue_map[] = { [IEEE80211_AC_BK] = 0, [IEEE80211_AC_BE] = 1, [IEEE80211_AC_VI] = 2, [IEEE80211_AC_VO] = 3, }; struct ieee80211_sta *sta; struct mt7615_sta *msta; u32 addr, tx_time[4], rx_time[4]; struct list_head sta_poll_list; int i; INIT_LIST_HEAD(&sta_poll_list); spin_lock_bh(&dev->mt76.sta_poll_lock); list_splice_init(&dev->mt76.sta_poll_list, &sta_poll_list); spin_unlock_bh(&dev->mt76.sta_poll_lock); while (!list_empty(&sta_poll_list)) { bool clear = false; msta = list_first_entry(&sta_poll_list, struct mt7615_sta, wcid.poll_list); spin_lock_bh(&dev->mt76.sta_poll_lock); list_del_init(&msta->wcid.poll_list); spin_unlock_bh(&dev->mt76.sta_poll_lock); addr = mt7615_mac_wtbl_addr(dev, msta->wcid.idx) + 19 * 4; for (i = 0; i < 4; i++, addr += 8) { u32 tx_last = msta->airtime_ac[i]; u32 rx_last = msta->airtime_ac[i + 4]; msta->airtime_ac[i] = mt76_rr(dev, addr); msta->airtime_ac[i + 4] = mt76_rr(dev, addr + 4); tx_time[i] = msta->airtime_ac[i] - tx_last; rx_time[i] = msta->airtime_ac[i + 4] - rx_last; if ((tx_last | rx_last) & BIT(30)) clear = true; } if (clear) { mt7615_mac_wtbl_update(dev, msta->wcid.idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); memset(msta->airtime_ac, 0, sizeof(msta->airtime_ac)); } if (!msta->wcid.sta) continue; sta = container_of((void *)msta, struct ieee80211_sta, drv_priv); for (i = 0; i < 4; i++) { u32 tx_cur = tx_time[i]; u32 rx_cur = rx_time[hw_queue_map[i]]; u8 tid = ac_to_tid[i]; if (!tx_cur && !rx_cur) continue; ieee80211_sta_register_airtime(sta, tid, tx_cur, rx_cur); } } } EXPORT_SYMBOL_GPL(mt7615_mac_sta_poll); static void mt7615_mac_update_rate_desc(struct mt7615_phy *phy, struct mt7615_sta *sta, struct ieee80211_tx_rate *probe_rate, struct ieee80211_tx_rate *rates, struct mt7615_rate_desc *rd) { struct mt7615_dev *dev = phy->dev; struct mt76_phy *mphy = phy->mt76; struct ieee80211_tx_rate *ref; bool rateset, stbc = false; int n_rates = sta->n_rates; u8 bw, bw_prev; int i, j; for (i = n_rates; i < 4; i++) rates[i] = rates[n_rates - 1]; rateset = !(sta->rate_set_tsf & BIT(0)); memcpy(sta->rateset[rateset].rates, rates, sizeof(sta->rateset[rateset].rates)); if (probe_rate) { sta->rateset[rateset].probe_rate = *probe_rate; ref = &sta->rateset[rateset].probe_rate; } else { sta->rateset[rateset].probe_rate.idx = -1; ref = &sta->rateset[rateset].rates[0]; } rates = sta->rateset[rateset].rates; for (i = 0; i < ARRAY_SIZE(sta->rateset[rateset].rates); i++) { /* * We don't support switching between short and long GI * within the rate set. For accurate tx status reporting, we * need to make sure that flags match. * For improved performance, avoid duplicate entries by * decrementing the MCS index if necessary */ if ((ref->flags ^ rates[i].flags) & IEEE80211_TX_RC_SHORT_GI) rates[i].flags ^= IEEE80211_TX_RC_SHORT_GI; for (j = 0; j < i; j++) { if (rates[i].idx != rates[j].idx) continue; if ((rates[i].flags ^ rates[j].flags) & (IEEE80211_TX_RC_40_MHZ_WIDTH | IEEE80211_TX_RC_80_MHZ_WIDTH | IEEE80211_TX_RC_160_MHZ_WIDTH)) continue; if (!rates[i].idx) continue; rates[i].idx--; } } rd->val[0] = mt7615_mac_tx_rate_val(dev, mphy, &rates[0], stbc, &bw); bw_prev = bw; if (probe_rate) { rd->probe_val = mt7615_mac_tx_rate_val(dev, mphy, probe_rate, stbc, &bw); if (bw) rd->bw_idx = 1; else bw_prev = 0; } else { rd->probe_val = rd->val[0]; } rd->val[1] = mt7615_mac_tx_rate_val(dev, mphy, &rates[1], stbc, &bw); if (bw_prev) { rd->bw_idx = 3; bw_prev = bw; } rd->val[2] = mt7615_mac_tx_rate_val(dev, mphy, &rates[2], stbc, &bw); if (bw_prev) { rd->bw_idx = 5; bw_prev = bw; } rd->val[3] = mt7615_mac_tx_rate_val(dev, mphy, &rates[3], stbc, &bw); if (bw_prev) rd->bw_idx = 7; rd->rateset = rateset; rd->bw = bw; } static int mt7615_mac_queue_rate_update(struct mt7615_phy *phy, struct mt7615_sta *sta, struct ieee80211_tx_rate *probe_rate, struct ieee80211_tx_rate *rates) { struct mt7615_dev *dev = phy->dev; struct mt7615_wtbl_rate_desc *wrd; if (work_pending(&dev->rate_work)) return -EBUSY; wrd = kzalloc(sizeof(*wrd), GFP_ATOMIC); if (!wrd) return -ENOMEM; wrd->sta = sta; mt7615_mac_update_rate_desc(phy, sta, probe_rate, rates, &wrd->rate); list_add_tail(&wrd->node, &dev->wrd_head); queue_work(dev->mt76.wq, &dev->rate_work); return 0; } u32 mt7615_mac_get_sta_tid_sn(struct mt7615_dev *dev, int wcid, u8 tid) { u32 addr, val, val2; u8 offset; addr = mt7615_mac_wtbl_addr(dev, wcid) + 11 * 4; offset = tid * 12; addr += 4 * (offset / 32); offset %= 32; val = mt76_rr(dev, addr); val >>= offset; if (offset > 20) { addr += 4; val2 = mt76_rr(dev, addr); val |= val2 << (32 - offset); } return val & GENMASK(11, 0); } void mt7615_mac_set_rates(struct mt7615_phy *phy, struct mt7615_sta *sta, struct ieee80211_tx_rate *probe_rate, struct ieee80211_tx_rate *rates) { int wcid = sta->wcid.idx, n_rates = sta->n_rates; struct mt7615_dev *dev = phy->dev; struct mt7615_rate_desc rd; u32 w5, w27, addr; u16 idx = sta->vif->mt76.omac_idx; if (!mt76_is_mmio(&dev->mt76)) { mt7615_mac_queue_rate_update(phy, sta, probe_rate, rates); return; } if (!mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000)) return; memset(&rd, 0, sizeof(struct mt7615_rate_desc)); mt7615_mac_update_rate_desc(phy, sta, probe_rate, rates, &rd); addr = mt7615_mac_wtbl_addr(dev, wcid); w27 = mt76_rr(dev, addr + 27 * 4); w27 &= ~MT_WTBL_W27_CC_BW_SEL; w27 |= FIELD_PREP(MT_WTBL_W27_CC_BW_SEL, rd.bw); w5 = mt76_rr(dev, addr + 5 * 4); w5 &= ~(MT_WTBL_W5_BW_CAP | MT_WTBL_W5_CHANGE_BW_RATE | MT_WTBL_W5_MPDU_OK_COUNT | MT_WTBL_W5_MPDU_FAIL_COUNT | MT_WTBL_W5_RATE_IDX); w5 |= FIELD_PREP(MT_WTBL_W5_BW_CAP, rd.bw) | FIELD_PREP(MT_WTBL_W5_CHANGE_BW_RATE, rd.bw_idx ? rd.bw_idx - 1 : 7); mt76_wr(dev, MT_WTBL_RIUCR0, w5); mt76_wr(dev, MT_WTBL_RIUCR1, FIELD_PREP(MT_WTBL_RIUCR1_RATE0, rd.probe_val) | FIELD_PREP(MT_WTBL_RIUCR1_RATE1, rd.val[0]) | FIELD_PREP(MT_WTBL_RIUCR1_RATE2_LO, rd.val[1])); mt76_wr(dev, MT_WTBL_RIUCR2, FIELD_PREP(MT_WTBL_RIUCR2_RATE2_HI, rd.val[1] >> 8) | FIELD_PREP(MT_WTBL_RIUCR2_RATE3, rd.val[1]) | FIELD_PREP(MT_WTBL_RIUCR2_RATE4, rd.val[2]) | FIELD_PREP(MT_WTBL_RIUCR2_RATE5_LO, rd.val[2])); mt76_wr(dev, MT_WTBL_RIUCR3, FIELD_PREP(MT_WTBL_RIUCR3_RATE5_HI, rd.val[2] >> 4) | FIELD_PREP(MT_WTBL_RIUCR3_RATE6, rd.val[3]) | FIELD_PREP(MT_WTBL_RIUCR3_RATE7, rd.val[3])); mt76_wr(dev, MT_WTBL_UPDATE, FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, wcid) | MT_WTBL_UPDATE_RATE_UPDATE | MT_WTBL_UPDATE_TX_COUNT_CLEAR); mt76_wr(dev, addr + 27 * 4, w27); idx = idx > HW_BSSID_MAX ? HW_BSSID_0 : idx; addr = idx > 1 ? MT_LPON_TCR2(idx): MT_LPON_TCR0(idx); mt76_rmw(dev, addr, MT_LPON_TCR_MODE, MT_LPON_TCR_READ); /* TSF read */ sta->rate_set_tsf = mt76_rr(dev, MT_LPON_UTTR0) & ~BIT(0); sta->rate_set_tsf |= rd.rateset; if (!(sta->wcid.tx_info & MT_WCID_TX_INFO_SET)) mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000); sta->rate_count = 2 * MT7615_RATE_RETRY * n_rates; sta->wcid.tx_info |= MT_WCID_TX_INFO_SET; sta->rate_probe = !!probe_rate; } EXPORT_SYMBOL_GPL(mt7615_mac_set_rates); void mt7615_mac_enable_rtscts(struct mt7615_dev *dev, struct ieee80211_vif *vif, bool enable) { struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv; u32 addr; addr = mt7615_mac_wtbl_addr(dev, mvif->sta.wcid.idx) + 3 * 4; if (enable) mt76_set(dev, addr, MT_WTBL_W3_RTS); else mt76_clear(dev, addr, MT_WTBL_W3_RTS); } EXPORT_SYMBOL_GPL(mt7615_mac_enable_rtscts); static int mt7615_mac_wtbl_update_key(struct mt7615_dev *dev, struct mt76_wcid *wcid, struct ieee80211_key_conf *key, enum mt76_cipher_type cipher, u16 cipher_mask) { u32 addr = mt7615_mac_wtbl_addr(dev, wcid->idx) + 30 * 4; u8 data[32] = {}; if (key->keylen > sizeof(data)) return -EINVAL; mt76_rr_copy(dev, addr, data, sizeof(data)); if (cipher == MT_CIPHER_TKIP) { /* Rx/Tx MIC keys are swapped */ memcpy(data, key->key, 16); memcpy(data + 16, key->key + 24, 8); memcpy(data + 24, key->key + 16, 8); } else { if (cipher_mask == BIT(cipher)) memcpy(data, key->key, key->keylen); else if (cipher != MT_CIPHER_BIP_CMAC_128) memcpy(data, key->key, 16); if (cipher == MT_CIPHER_BIP_CMAC_128) memcpy(data + 16, key->key, 16); } mt76_wr_copy(dev, addr, data, sizeof(data)); return 0; } static int mt7615_mac_wtbl_update_pk(struct mt7615_dev *dev, struct mt76_wcid *wcid, enum mt76_cipher_type cipher, u16 cipher_mask, int keyidx) { u32 addr = mt7615_mac_wtbl_addr(dev, wcid->idx), w0, w1; if (!mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000)) return -ETIMEDOUT; w0 = mt76_rr(dev, addr); w1 = mt76_rr(dev, addr + 4); if (cipher_mask) w0 |= MT_WTBL_W0_RX_KEY_VALID; else w0 &= ~(MT_WTBL_W0_RX_KEY_VALID | MT_WTBL_W0_KEY_IDX); if (cipher_mask & BIT(MT_CIPHER_BIP_CMAC_128)) w0 |= MT_WTBL_W0_RX_IK_VALID; else w0 &= ~MT_WTBL_W0_RX_IK_VALID; if (cipher != MT_CIPHER_BIP_CMAC_128 || cipher_mask == BIT(cipher)) { w0 &= ~MT_WTBL_W0_KEY_IDX; w0 |= FIELD_PREP(MT_WTBL_W0_KEY_IDX, keyidx); } mt76_wr(dev, MT_WTBL_RICR0, w0); mt76_wr(dev, MT_WTBL_RICR1, w1); if (!mt7615_mac_wtbl_update(dev, wcid->idx, MT_WTBL_UPDATE_RXINFO_UPDATE)) return -ETIMEDOUT; return 0; } static void mt7615_mac_wtbl_update_cipher(struct mt7615_dev *dev, struct mt76_wcid *wcid, enum mt76_cipher_type cipher, u16 cipher_mask) { u32 addr = mt7615_mac_wtbl_addr(dev, wcid->idx); if (cipher == MT_CIPHER_BIP_CMAC_128 && cipher_mask & ~BIT(MT_CIPHER_BIP_CMAC_128)) return; mt76_rmw(dev, addr + 2 * 4, MT_WTBL_W2_KEY_TYPE, FIELD_PREP(MT_WTBL_W2_KEY_TYPE, cipher)); } int __mt7615_mac_wtbl_set_key(struct mt7615_dev *dev, struct mt76_wcid *wcid, struct ieee80211_key_conf *key) { enum mt76_cipher_type cipher; u16 cipher_mask = wcid->cipher; int err; cipher = mt7615_mac_get_cipher(key->cipher); if (cipher == MT_CIPHER_NONE) return -EOPNOTSUPP; cipher_mask |= BIT(cipher); mt7615_mac_wtbl_update_cipher(dev, wcid, cipher, cipher_mask); err = mt7615_mac_wtbl_update_key(dev, wcid, key, cipher, cipher_mask); if (err < 0) return err; err = mt7615_mac_wtbl_update_pk(dev, wcid, cipher, cipher_mask, key->keyidx); if (err < 0) return err; wcid->cipher = cipher_mask; return 0; } int mt7615_mac_wtbl_set_key(struct mt7615_dev *dev, struct mt76_wcid *wcid, struct ieee80211_key_conf *key) { int err; spin_lock_bh(&dev->mt76.lock); err = __mt7615_mac_wtbl_set_key(dev, wcid, key); spin_unlock_bh(&dev->mt76.lock); return err; } static bool mt7615_fill_txs(struct mt7615_dev *dev, struct mt7615_sta *sta, struct ieee80211_tx_info *info, __le32 *txs_data) { struct ieee80211_supported_band *sband; struct mt7615_rate_set *rs; struct mt76_phy *mphy; int first_idx = 0, last_idx; int i, idx, count; bool fixed_rate, ack_timeout; bool ampdu, cck = false; bool rs_idx; u32 rate_set_tsf; u32 final_rate, final_rate_flags, final_nss, txs; txs = le32_to_cpu(txs_data[1]); ampdu = txs & MT_TXS1_AMPDU; txs = le32_to_cpu(txs_data[3]); count = FIELD_GET(MT_TXS3_TX_COUNT, txs); last_idx = FIELD_GET(MT_TXS3_LAST_TX_RATE, txs); txs = le32_to_cpu(txs_data[0]); fixed_rate = txs & MT_TXS0_FIXED_RATE; final_rate = FIELD_GET(MT_TXS0_TX_RATE, txs); ack_timeout = txs & MT_TXS0_ACK_TIMEOUT; if (!ampdu && (txs & MT_TXS0_RTS_TIMEOUT)) return false; if (txs & MT_TXS0_QUEUE_TIMEOUT) return false; if (!ack_timeout) info->flags |= IEEE80211_TX_STAT_ACK; info->status.ampdu_len = 1; info->status.ampdu_ack_len = !!(info->flags & IEEE80211_TX_STAT_ACK); if (ampdu || (info->flags & IEEE80211_TX_CTL_AMPDU)) info->flags |= IEEE80211_TX_STAT_AMPDU | IEEE80211_TX_CTL_AMPDU; first_idx = max_t(int, 0, last_idx - (count - 1) / MT7615_RATE_RETRY); if (fixed_rate) { info->status.rates[0].count = count; i = 0; goto out; } rate_set_tsf = READ_ONCE(sta->rate_set_tsf); rs_idx = !((u32)(le32_get_bits(txs_data[4], MT_TXS4_F0_TIMESTAMP) - rate_set_tsf) < 1000000); rs_idx ^= rate_set_tsf & BIT(0); rs = &sta->rateset[rs_idx]; if (!first_idx && rs->probe_rate.idx >= 0) { info->status.rates[0] = rs->probe_rate; spin_lock_bh(&dev->mt76.lock); if (sta->rate_probe) { struct mt7615_phy *phy = &dev->phy; if (sta->wcid.phy_idx && dev->mt76.phys[MT_BAND1]) phy = dev->mt76.phys[MT_BAND1]->priv; mt7615_mac_set_rates(phy, sta, NULL, sta->rates); } spin_unlock_bh(&dev->mt76.lock); } else { info->status.rates[0] = rs->rates[first_idx / 2]; } info->status.rates[0].count = 0; for (i = 0, idx = first_idx; count && idx <= last_idx; idx++) { struct ieee80211_tx_rate *cur_rate; int cur_count; cur_rate = &rs->rates[idx / 2]; cur_count = min_t(int, MT7615_RATE_RETRY, count); count -= cur_count; if (idx && (cur_rate->idx != info->status.rates[i].idx || cur_rate->flags != info->status.rates[i].flags)) { i++; if (i == ARRAY_SIZE(info->status.rates)) { i--; break; } info->status.rates[i] = *cur_rate; info->status.rates[i].count = 0; } info->status.rates[i].count += cur_count; } out: final_rate_flags = info->status.rates[i].flags; switch (FIELD_GET(MT_TX_RATE_MODE, final_rate)) { case MT_PHY_TYPE_CCK: cck = true; fallthrough; case MT_PHY_TYPE_OFDM: mphy = &dev->mphy; if (sta->wcid.phy_idx && dev->mt76.phys[MT_BAND1]) mphy = dev->mt76.phys[MT_BAND1]; if (mphy->chandef.chan->band == NL80211_BAND_5GHZ) sband = &mphy->sband_5g.sband; else sband = &mphy->sband_2g.sband; final_rate &= MT_TX_RATE_IDX; final_rate = mt76_get_rate(&dev->mt76, sband, final_rate, cck); final_rate_flags = 0; break; case MT_PHY_TYPE_HT_GF: case MT_PHY_TYPE_HT: final_rate_flags |= IEEE80211_TX_RC_MCS; final_rate &= MT_TX_RATE_IDX; if (final_rate > 31) return false; break; case MT_PHY_TYPE_VHT: final_nss = FIELD_GET(MT_TX_RATE_NSS, final_rate); if ((final_rate & MT_TX_RATE_STBC) && final_nss) final_nss--; final_rate_flags |= IEEE80211_TX_RC_VHT_MCS; final_rate = (final_rate & MT_TX_RATE_IDX) | (final_nss << 4); break; default: return false; } info->status.rates[i].idx = final_rate; info->status.rates[i].flags = final_rate_flags; return true; } static bool mt7615_mac_add_txs_skb(struct mt7615_dev *dev, struct mt7615_sta *sta, int pid, __le32 *txs_data) { struct mt76_dev *mdev = &dev->mt76; struct sk_buff_head list; struct sk_buff *skb; if (pid < MT_PACKET_ID_FIRST) return false; trace_mac_txdone(mdev, sta->wcid.idx, pid); mt76_tx_status_lock(mdev, &list); skb = mt76_tx_status_skb_get(mdev, &sta->wcid, pid, &list); if (skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); if (!mt7615_fill_txs(dev, sta, info, txs_data)) { info->status.rates[0].count = 0; info->status.rates[0].idx = -1; } mt76_tx_status_skb_done(mdev, skb, &list); } mt76_tx_status_unlock(mdev, &list); return !!skb; } static void mt7615_mac_add_txs(struct mt7615_dev *dev, void *data) { struct ieee80211_tx_info info = {}; struct ieee80211_sta *sta = NULL; struct mt7615_sta *msta = NULL; struct mt76_wcid *wcid; struct mt76_phy *mphy = &dev->mt76.phy; __le32 *txs_data = data; u8 wcidx; u8 pid; pid = le32_get_bits(txs_data[0], MT_TXS0_PID); wcidx = le32_get_bits(txs_data[2], MT_TXS2_WCID); if (pid == MT_PACKET_ID_NO_ACK) return; if (wcidx >= MT7615_WTBL_SIZE) return; rcu_read_lock(); wcid = rcu_dereference(dev->mt76.wcid[wcidx]); if (!wcid) goto out; msta = container_of(wcid, struct mt7615_sta, wcid); sta = wcid_to_sta(wcid); spin_lock_bh(&dev->mt76.sta_poll_lock); if (list_empty(&msta->wcid.poll_list)) list_add_tail(&msta->wcid.poll_list, &dev->mt76.sta_poll_list); spin_unlock_bh(&dev->mt76.sta_poll_lock); if (mt7615_mac_add_txs_skb(dev, msta, pid, txs_data)) goto out; if (wcidx >= MT7615_WTBL_STA || !sta) goto out; if (wcid->phy_idx && dev->mt76.phys[MT_BAND1]) mphy = dev->mt76.phys[MT_BAND1]; if (mt7615_fill_txs(dev, msta, &info, txs_data)) { spin_lock_bh(&dev->mt76.rx_lock); ieee80211_tx_status_noskb(mphy->hw, sta, &info); spin_unlock_bh(&dev->mt76.rx_lock); } out: rcu_read_unlock(); } static void mt7615_txwi_free(struct mt7615_dev *dev, struct mt76_txwi_cache *txwi) { struct mt76_dev *mdev = &dev->mt76; __le32 *txwi_data; u32 val; u8 wcid; mt76_connac_txp_skb_unmap(mdev, txwi); if (!txwi->skb) goto out; txwi_data = (__le32 *)mt76_get_txwi_ptr(mdev, txwi); val = le32_to_cpu(txwi_data[1]); wcid = FIELD_GET(MT_TXD1_WLAN_IDX, val); mt76_tx_complete_skb(mdev, wcid, txwi->skb); out: txwi->skb = NULL; mt76_put_txwi(mdev, txwi); } static void mt7615_mac_tx_free_token(struct mt7615_dev *dev, u16 token) { struct mt76_dev *mdev = &dev->mt76; struct mt76_txwi_cache *txwi; trace_mac_tx_free(dev, token); txwi = mt76_token_put(mdev, token); if (!txwi) return; mt7615_txwi_free(dev, txwi); } static void mt7615_mac_tx_free(struct mt7615_dev *dev, void *data, int len) { struct mt76_connac_tx_free *free = data; void *tx_token = data + sizeof(*free); void *end = data + len; u8 i, count; mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[MT_TXQ_PSD], false); if (is_mt7615(&dev->mt76)) { mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[MT_TXQ_BE], false); } else { for (i = 0; i < IEEE80211_NUM_ACS; i++) mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[i], false); } count = le16_get_bits(free->ctrl, MT_TX_FREE_MSDU_ID_CNT); if (is_mt7615(&dev->mt76)) { __le16 *token = tx_token; if (WARN_ON_ONCE((void *)&token[count] > end)) return; for (i = 0; i < count; i++) mt7615_mac_tx_free_token(dev, le16_to_cpu(token[i])); } else { __le32 *token = tx_token; if (WARN_ON_ONCE((void *)&token[count] > end)) return; for (i = 0; i < count; i++) mt7615_mac_tx_free_token(dev, le32_to_cpu(token[i])); } rcu_read_lock(); mt7615_mac_sta_poll(dev); rcu_read_unlock(); mt76_worker_schedule(&dev->mt76.tx_worker); } bool mt7615_rx_check(struct mt76_dev *mdev, void *data, int len) { struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76); __le32 *rxd = (__le32 *)data; __le32 *end = (__le32 *)&rxd[len / 4]; enum rx_pkt_type type; type = le32_get_bits(rxd[0], MT_RXD0_PKT_TYPE); switch (type) { case PKT_TYPE_TXRX_NOTIFY: mt7615_mac_tx_free(dev, data, len); return false; case PKT_TYPE_TXS: for (rxd++; rxd + 7 <= end; rxd += 7) mt7615_mac_add_txs(dev, rxd); return false; default: return true; } } EXPORT_SYMBOL_GPL(mt7615_rx_check); void mt7615_queue_rx_skb(struct mt76_dev *mdev, enum mt76_rxq_id q, struct sk_buff *skb, u32 *info) { struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76); __le32 *rxd = (__le32 *)skb->data; __le32 *end = (__le32 *)&skb->data[skb->len]; enum rx_pkt_type type; u16 flag; type = le32_get_bits(rxd[0], MT_RXD0_PKT_TYPE); flag = le32_get_bits(rxd[0], MT_RXD0_PKT_FLAG); if (type == PKT_TYPE_RX_EVENT && flag == 0x1) type = PKT_TYPE_NORMAL_MCU; switch (type) { case PKT_TYPE_TXS: for (rxd++; rxd + 7 <= end; rxd += 7) mt7615_mac_add_txs(dev, rxd); dev_kfree_skb(skb); break; case PKT_TYPE_TXRX_NOTIFY: mt7615_mac_tx_free(dev, skb->data, skb->len); dev_kfree_skb(skb); break; case PKT_TYPE_RX_EVENT: mt7615_mcu_rx_event(dev, skb); break; case PKT_TYPE_NORMAL_MCU: case PKT_TYPE_NORMAL: if (!mt7615_mac_fill_rx(dev, skb)) { mt76_rx(&dev->mt76, q, skb); return; } fallthrough; default: dev_kfree_skb(skb); break; } } EXPORT_SYMBOL_GPL(mt7615_queue_rx_skb); static void mt7615_mac_set_sensitivity(struct mt7615_phy *phy, int val, bool ofdm) { struct mt7615_dev *dev = phy->dev; bool ext_phy = phy != &dev->phy; if (is_mt7663(&dev->mt76)) { if (ofdm) mt76_rmw(dev, MT7663_WF_PHY_MIN_PRI_PWR(ext_phy), MT_WF_PHY_PD_OFDM_MASK(0), MT_WF_PHY_PD_OFDM(0, val)); else mt76_rmw(dev, MT7663_WF_PHY_RXTD_CCK_PD(ext_phy), MT_WF_PHY_PD_CCK_MASK(ext_phy), MT_WF_PHY_PD_CCK(ext_phy, val)); return; } if (ofdm) mt76_rmw(dev, MT_WF_PHY_MIN_PRI_PWR(ext_phy), MT_WF_PHY_PD_OFDM_MASK(ext_phy), MT_WF_PHY_PD_OFDM(ext_phy, val)); else mt76_rmw(dev, MT_WF_PHY_RXTD_CCK_PD(ext_phy), MT_WF_PHY_PD_CCK_MASK(ext_phy), MT_WF_PHY_PD_CCK(ext_phy, val)); } static void mt7615_mac_set_default_sensitivity(struct mt7615_phy *phy) { /* ofdm */ mt7615_mac_set_sensitivity(phy, 0x13c, true); /* cck */ mt7615_mac_set_sensitivity(phy, 0x92, false); phy->ofdm_sensitivity = -98; phy->cck_sensitivity = -110; phy->last_cca_adj = jiffies; } void mt7615_mac_set_scs(struct mt7615_phy *phy, bool enable) { struct mt7615_dev *dev = phy->dev; bool ext_phy = phy != &dev->phy; u32 reg, mask; mt7615_mutex_acquire(dev); if (phy->scs_en == enable) goto out; if (is_mt7663(&dev->mt76)) { reg = MT7663_WF_PHY_MIN_PRI_PWR(ext_phy); mask = MT_WF_PHY_PD_BLK(0); } else { reg = MT_WF_PHY_MIN_PRI_PWR(ext_phy); mask = MT_WF_PHY_PD_BLK(ext_phy); } if (enable) { mt76_set(dev, reg, mask); if (is_mt7622(&dev->mt76)) { mt76_set(dev, MT_MIB_M0_MISC_CR(0), 0x7 << 8); mt76_set(dev, MT_MIB_M0_MISC_CR(0), 0x7); } } else { mt76_clear(dev, reg, mask); } mt7615_mac_set_default_sensitivity(phy); phy->scs_en = enable; out: mt7615_mutex_release(dev); } void mt7615_mac_enable_nf(struct mt7615_dev *dev, bool ext_phy) { u32 rxtd, reg; if (is_mt7663(&dev->mt76)) reg = MT7663_WF_PHY_R0_PHYMUX_5; else reg = MT_WF_PHY_R0_PHYMUX_5(ext_phy); if (ext_phy) rxtd = MT_WF_PHY_RXTD2(10); else rxtd = MT_WF_PHY_RXTD(12); mt76_set(dev, rxtd, BIT(18) | BIT(29)); mt76_set(dev, reg, 0x5 << 12); } void mt7615_mac_cca_stats_reset(struct mt7615_phy *phy) { struct mt7615_dev *dev = phy->dev; bool ext_phy = phy != &dev->phy; u32 reg; if (is_mt7663(&dev->mt76)) reg = MT7663_WF_PHY_R0_PHYMUX_5; else reg = MT_WF_PHY_R0_PHYMUX_5(ext_phy); /* reset PD and MDRDY counters */ mt76_clear(dev, reg, GENMASK(22, 20)); mt76_set(dev, reg, BIT(22) | BIT(20)); } static void mt7615_mac_adjust_sensitivity(struct mt7615_phy *phy, u32 rts_err_rate, bool ofdm) { struct mt7615_dev *dev = phy->dev; int false_cca = ofdm ? phy->false_cca_ofdm : phy->false_cca_cck; bool ext_phy = phy != &dev->phy; s16 def_th = ofdm ? -98 : -110; bool update = false; s8 *sensitivity; int signal; sensitivity = ofdm ? &phy->ofdm_sensitivity : &phy->cck_sensitivity; signal = mt76_get_min_avg_rssi(&dev->mt76, ext_phy); if (!signal) { mt7615_mac_set_default_sensitivity(phy); return; } signal = min(signal, -72); if (false_cca > 500) { if (rts_err_rate > MT_FRAC(40, 100)) return; /* decrease coverage */ if (*sensitivity == def_th && signal > -90) { *sensitivity = -90; update = true; } else if (*sensitivity + 2 < signal) { *sensitivity += 2; update = true; } } else if ((false_cca > 0 && false_cca < 50) || rts_err_rate > MT_FRAC(60, 100)) { /* increase coverage */ if (*sensitivity - 2 >= def_th) { *sensitivity -= 2; update = true; } } if (*sensitivity > signal) { *sensitivity = signal; update = true; } if (update) { u16 val = ofdm ? *sensitivity * 2 + 512 : *sensitivity + 256; mt7615_mac_set_sensitivity(phy, val, ofdm); phy->last_cca_adj = jiffies; } } static void mt7615_mac_scs_check(struct mt7615_phy *phy) { struct mt7615_dev *dev = phy->dev; struct mib_stats *mib = &phy->mib; u32 val, rts_err_rate = 0; u32 mdrdy_cck, mdrdy_ofdm, pd_cck, pd_ofdm; bool ext_phy = phy != &dev->phy; if (!phy->scs_en) return; if (is_mt7663(&dev->mt76)) val = mt76_rr(dev, MT7663_WF_PHY_R0_PHYCTRL_STS0(ext_phy)); else val = mt76_rr(dev, MT_WF_PHY_R0_PHYCTRL_STS0(ext_phy)); pd_cck = FIELD_GET(MT_WF_PHYCTRL_STAT_PD_CCK, val); pd_ofdm = FIELD_GET(MT_WF_PHYCTRL_STAT_PD_OFDM, val); if (is_mt7663(&dev->mt76)) val = mt76_rr(dev, MT7663_WF_PHY_R0_PHYCTRL_STS5(ext_phy)); else val = mt76_rr(dev, MT_WF_PHY_R0_PHYCTRL_STS5(ext_phy)); mdrdy_cck = FIELD_GET(MT_WF_PHYCTRL_STAT_MDRDY_CCK, val); mdrdy_ofdm = FIELD_GET(MT_WF_PHYCTRL_STAT_MDRDY_OFDM, val); phy->false_cca_ofdm = pd_ofdm - mdrdy_ofdm; phy->false_cca_cck = pd_cck - mdrdy_cck; mt7615_mac_cca_stats_reset(phy); if (mib->rts_cnt + mib->rts_retries_cnt) rts_err_rate = MT_FRAC(mib->rts_retries_cnt, mib->rts_cnt + mib->rts_retries_cnt); /* cck */ mt7615_mac_adjust_sensitivity(phy, rts_err_rate, false); /* ofdm */ mt7615_mac_adjust_sensitivity(phy, rts_err_rate, true); if (time_after(jiffies, phy->last_cca_adj + 10 * HZ)) mt7615_mac_set_default_sensitivity(phy); } static u8 mt7615_phy_get_nf(struct mt7615_dev *dev, int idx) { static const u8 nf_power[] = { 92, 89, 86, 83, 80, 75, 70, 65, 60, 55, 52 }; u32 reg, val, sum = 0, n = 0; int i; if (is_mt7663(&dev->mt76)) reg = MT7663_WF_PHY_RXTD(20); else reg = idx ? MT_WF_PHY_RXTD2(17) : MT_WF_PHY_RXTD(20); for (i = 0; i < ARRAY_SIZE(nf_power); i++, reg += 4) { val = mt76_rr(dev, reg); sum += val * nf_power[i]; n += val; } if (!n) return 0; return sum / n; } static void mt7615_phy_update_channel(struct mt76_phy *mphy, int idx) { struct mt7615_dev *dev = container_of(mphy->dev, struct mt7615_dev, mt76); struct mt7615_phy *phy = mphy->priv; struct mt76_channel_state *state; u64 busy_time, tx_time, rx_time, obss_time; u32 obss_reg = idx ? MT_WF_RMAC_MIB_TIME6 : MT_WF_RMAC_MIB_TIME5; int nf; busy_time = mt76_get_field(dev, MT_MIB_SDR9(idx), MT_MIB_SDR9_BUSY_MASK); tx_time = mt76_get_field(dev, MT_MIB_SDR36(idx), MT_MIB_SDR36_TXTIME_MASK); rx_time = mt76_get_field(dev, MT_MIB_SDR37(idx), MT_MIB_SDR37_RXTIME_MASK); obss_time = mt76_get_field(dev, obss_reg, MT_MIB_OBSSTIME_MASK); nf = mt7615_phy_get_nf(dev, idx); if (!phy->noise) phy->noise = nf << 4; else if (nf) phy->noise += nf - (phy->noise >> 4); state = mphy->chan_state; state->cc_busy += busy_time; state->cc_tx += tx_time; state->cc_rx += rx_time + obss_time; state->cc_bss_rx += rx_time; state->noise = -(phy->noise >> 4); } static void mt7615_update_survey(struct mt7615_dev *dev) { struct mt76_dev *mdev = &dev->mt76; struct mt76_phy *mphy_ext = mdev->phys[MT_BAND1]; ktime_t cur_time; /* MT7615 can only update both phys simultaneously * since some reisters are shared across bands. */ mt7615_phy_update_channel(&mdev->phy, 0); if (mphy_ext) mt7615_phy_update_channel(mphy_ext, 1); cur_time = ktime_get_boottime(); mt76_update_survey_active_time(&mdev->phy, cur_time); if (mphy_ext) mt76_update_survey_active_time(mphy_ext, cur_time); /* reset obss airtime */ mt76_set(dev, MT_WF_RMAC_MIB_TIME0, MT_WF_RMAC_MIB_RXTIME_CLR); } void mt7615_update_channel(struct mt76_phy *mphy) { struct mt7615_dev *dev = container_of(mphy->dev, struct mt7615_dev, mt76); if (mt76_connac_pm_wake(&dev->mphy, &dev->pm)) return; mt7615_update_survey(dev); mt76_connac_power_save_sched(&dev->mphy, &dev->pm); } EXPORT_SYMBOL_GPL(mt7615_update_channel); static void mt7615_mac_update_mib_stats(struct mt7615_phy *phy) { struct mt7615_dev *dev = phy->dev; struct mib_stats *mib = &phy->mib; bool ext_phy = phy != &dev->phy; int i, aggr = 0; u32 val, val2; mib->fcs_err_cnt += mt76_get_field(dev, MT_MIB_SDR3(ext_phy), MT_MIB_SDR3_FCS_ERR_MASK); val = mt76_get_field(dev, MT_MIB_SDR14(ext_phy), MT_MIB_AMPDU_MPDU_COUNT); if (val) { val2 = mt76_get_field(dev, MT_MIB_SDR15(ext_phy), MT_MIB_AMPDU_ACK_COUNT); mib->aggr_per = 1000 * (val - val2) / val; } for (i = 0; i < 4; i++) { val = mt76_rr(dev, MT_MIB_MB_SDR1(ext_phy, i)); mib->ba_miss_cnt += FIELD_GET(MT_MIB_BA_MISS_COUNT_MASK, val); mib->ack_fail_cnt += FIELD_GET(MT_MIB_ACK_FAIL_COUNT_MASK, val); val = mt76_rr(dev, MT_MIB_MB_SDR0(ext_phy, i)); mib->rts_cnt += FIELD_GET(MT_MIB_RTS_COUNT_MASK, val); mib->rts_retries_cnt += FIELD_GET(MT_MIB_RTS_RETRIES_COUNT_MASK, val); val = mt76_rr(dev, MT_TX_AGG_CNT(ext_phy, i)); phy->mt76->aggr_stats[aggr++] += val & 0xffff; phy->mt76->aggr_stats[aggr++] += val >> 16; } } void mt7615_pm_wake_work(struct work_struct *work) { struct mt7615_dev *dev; struct mt76_phy *mphy; dev = (struct mt7615_dev *)container_of(work, struct mt7615_dev, pm.wake_work); mphy = dev->phy.mt76; if (!mt7615_mcu_set_drv_ctrl(dev)) { struct mt76_dev *mdev = &dev->mt76; int i; if (mt76_is_sdio(mdev)) { mt76_connac_pm_dequeue_skbs(mphy, &dev->pm); mt76_worker_schedule(&mdev->sdio.txrx_worker); } else { local_bh_disable(); mt76_for_each_q_rx(mdev, i) napi_schedule(&mdev->napi[i]); local_bh_enable(); mt76_connac_pm_dequeue_skbs(mphy, &dev->pm); mt76_queue_tx_cleanup(dev, mdev->q_mcu[MT_MCUQ_WM], false); } if (test_bit(MT76_STATE_RUNNING, &mphy->state)) { unsigned long timeout; timeout = mt7615_get_macwork_timeout(dev); ieee80211_queue_delayed_work(mphy->hw, &mphy->mac_work, timeout); } } ieee80211_wake_queues(mphy->hw); wake_up(&dev->pm.wait); } void mt7615_pm_power_save_work(struct work_struct *work) { struct mt7615_dev *dev; unsigned long delta; dev = (struct mt7615_dev *)container_of(work, struct mt7615_dev, pm.ps_work.work); delta = dev->pm.idle_timeout; if (test_bit(MT76_HW_SCANNING, &dev->mphy.state) || test_bit(MT76_HW_SCHED_SCANNING, &dev->mphy.state)) goto out; if (mutex_is_locked(&dev->mt76.mutex)) /* if mt76 mutex is held we should not put the device * to sleep since we are currently accessing device * register map. We need to wait for the next power_save * trigger. */ goto out; if (time_is_after_jiffies(dev->pm.last_activity + delta)) { delta = dev->pm.last_activity + delta - jiffies; goto out; } if (!mt7615_mcu_set_fw_ctrl(dev)) return; out: queue_delayed_work(dev->mt76.wq, &dev->pm.ps_work, delta); } void mt7615_mac_work(struct work_struct *work) { struct mt7615_phy *phy; struct mt76_phy *mphy; unsigned long timeout; mphy = (struct mt76_phy *)container_of(work, struct mt76_phy, mac_work.work); phy = mphy->priv; mt7615_mutex_acquire(phy->dev); mt7615_update_survey(phy->dev); if (++mphy->mac_work_count == 5) { mphy->mac_work_count = 0; mt7615_mac_update_mib_stats(phy); mt7615_mac_scs_check(phy); } mt7615_mutex_release(phy->dev); mt76_tx_status_check(mphy->dev, false); timeout = mt7615_get_macwork_timeout(phy->dev); ieee80211_queue_delayed_work(mphy->hw, &mphy->mac_work, timeout); } void mt7615_tx_token_put(struct mt7615_dev *dev) { struct mt76_txwi_cache *txwi; int id; spin_lock_bh(&dev->mt76.token_lock); idr_for_each_entry(&dev->mt76.token, txwi, id) mt7615_txwi_free(dev, txwi); spin_unlock_bh(&dev->mt76.token_lock); idr_destroy(&dev->mt76.token); } EXPORT_SYMBOL_GPL(mt7615_tx_token_put); static void mt7615_dfs_stop_radar_detector(struct mt7615_phy *phy) { struct mt7615_dev *dev = phy->dev; if (phy->rdd_state & BIT(0)) mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_STOP, 0, MT_RX_SEL0, 0); if (phy->rdd_state & BIT(1)) mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_STOP, 1, MT_RX_SEL0, 0); } static int mt7615_dfs_start_rdd(struct mt7615_dev *dev, int chain) { int err; err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_START, chain, MT_RX_SEL0, 0); if (err < 0) return err; return mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_DET_MODE, chain, MT_RX_SEL0, 1); } static int mt7615_dfs_start_radar_detector(struct mt7615_phy *phy) { struct cfg80211_chan_def *chandef = &phy->mt76->chandef; struct mt7615_dev *dev = phy->dev; bool ext_phy = phy != &dev->phy; int err; /* start CAC */ err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_CAC_START, ext_phy, MT_RX_SEL0, 0); if (err < 0) return err; err = mt7615_dfs_start_rdd(dev, ext_phy); if (err < 0) return err; phy->rdd_state |= BIT(ext_phy); if (chandef->width == NL80211_CHAN_WIDTH_160 || chandef->width == NL80211_CHAN_WIDTH_80P80) { err = mt7615_dfs_start_rdd(dev, 1); if (err < 0) return err; phy->rdd_state |= BIT(1); } return 0; } static int mt7615_dfs_init_radar_specs(struct mt7615_phy *phy) { const struct mt7615_dfs_radar_spec *radar_specs; struct mt7615_dev *dev = phy->dev; int err, i, lpn = 500; switch (dev->mt76.region) { case NL80211_DFS_FCC: radar_specs = &fcc_radar_specs; lpn = 8; break; case NL80211_DFS_ETSI: radar_specs = &etsi_radar_specs; break; case NL80211_DFS_JP: radar_specs = &jp_radar_specs; break; default: return -EINVAL; } /* avoid FCC radar detection in non-FCC region */ err = mt7615_mcu_set_fcc5_lpn(dev, lpn); if (err < 0) return err; for (i = 0; i < ARRAY_SIZE(radar_specs->radar_pattern); i++) { err = mt7615_mcu_set_radar_th(dev, i, &radar_specs->radar_pattern[i]); if (err < 0) return err; } return mt7615_mcu_set_pulse_th(dev, &radar_specs->pulse_th); } int mt7615_dfs_init_radar_detector(struct mt7615_phy *phy) { struct cfg80211_chan_def *chandef = &phy->mt76->chandef; struct mt7615_dev *dev = phy->dev; bool ext_phy = phy != &dev->phy; enum mt76_dfs_state dfs_state, prev_state; int err; if (is_mt7663(&dev->mt76)) return 0; prev_state = phy->mt76->dfs_state; dfs_state = mt76_phy_dfs_state(phy->mt76); if ((chandef->chan->flags & IEEE80211_CHAN_RADAR) && dfs_state < MT_DFS_STATE_CAC) dfs_state = MT_DFS_STATE_ACTIVE; if (prev_state == dfs_state) return 0; if (dfs_state == MT_DFS_STATE_DISABLED) goto stop; if (prev_state <= MT_DFS_STATE_DISABLED) { err = mt7615_dfs_init_radar_specs(phy); if (err < 0) return err; err = mt7615_dfs_start_radar_detector(phy); if (err < 0) return err; phy->mt76->dfs_state = MT_DFS_STATE_CAC; } if (dfs_state == MT_DFS_STATE_CAC) return 0; err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_CAC_END, ext_phy, MT_RX_SEL0, 0); if (err < 0) { phy->mt76->dfs_state = MT_DFS_STATE_UNKNOWN; return err; } phy->mt76->dfs_state = MT_DFS_STATE_ACTIVE; return 0; stop: err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_NORMAL_START, ext_phy, MT_RX_SEL0, 0); if (err < 0) return err; mt7615_dfs_stop_radar_detector(phy); phy->mt76->dfs_state = MT_DFS_STATE_DISABLED; return 0; } int mt7615_mac_set_beacon_filter(struct mt7615_phy *phy, struct ieee80211_vif *vif, bool enable) { struct mt7615_dev *dev = phy->dev; bool ext_phy = phy != &dev->phy; int err; if (!mt7615_firmware_offload(dev)) return -EOPNOTSUPP; switch (vif->type) { case NL80211_IFTYPE_MONITOR: return 0; case NL80211_IFTYPE_MESH_POINT: case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_AP: if (enable) phy->n_beacon_vif++; else phy->n_beacon_vif--; fallthrough; default: break; } err = mt7615_mcu_set_bss_pm(dev, vif, !phy->n_beacon_vif); if (err) return err; if (phy->n_beacon_vif) { vif->driver_flags &= ~IEEE80211_VIF_BEACON_FILTER; mt76_clear(dev, MT_WF_RFCR(ext_phy), MT_WF_RFCR_DROP_OTHER_BEACON); } else { vif->driver_flags |= IEEE80211_VIF_BEACON_FILTER; mt76_set(dev, MT_WF_RFCR(ext_phy), MT_WF_RFCR_DROP_OTHER_BEACON); } return 0; } void mt7615_coredump_work(struct work_struct *work) { struct mt7615_dev *dev; char *dump, *data; dev = (struct mt7615_dev *)container_of(work, struct mt7615_dev, coredump.work.work); if (time_is_after_jiffies(dev->coredump.last_activity + 4 * MT76_CONNAC_COREDUMP_TIMEOUT)) { queue_delayed_work(dev->mt76.wq, &dev->coredump.work, MT76_CONNAC_COREDUMP_TIMEOUT); return; } dump = vzalloc(MT76_CONNAC_COREDUMP_SZ); data = dump; while (true) { struct sk_buff *skb; spin_lock_bh(&dev->mt76.lock); skb = __skb_dequeue(&dev->coredump.msg_list); spin_unlock_bh(&dev->mt76.lock); if (!skb) break; skb_pull(skb, sizeof(struct mt7615_mcu_rxd)); if (!dump || data + skb->len - dump > MT76_CONNAC_COREDUMP_SZ) { dev_kfree_skb(skb); continue; } memcpy(data, skb->data, skb->len); data += skb->len; dev_kfree_skb(skb); } if (dump) dev_coredumpv(dev->mt76.dev, dump, MT76_CONNAC_COREDUMP_SZ, GFP_KERNEL); }
linux-master
drivers/net/wireless/mediatek/mt76/mt7615/mac.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2019 MediaTek Inc. * * Author: Roy Luo <[email protected]> * Ryder Lee <[email protected]> * Felix Fietkau <[email protected]> * Lorenzo Bianconi <[email protected]> */ #include <linux/etherdevice.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include "mt7615.h" #include "mac.h" #include "mcu.h" #include "eeprom.h" static ssize_t mt7615_thermal_show_temp(struct device *dev, struct device_attribute *attr, char *buf) { struct mt7615_dev *mdev = dev_get_drvdata(dev); int temperature; if (!mt7615_wait_for_mcu_init(mdev)) return 0; mt7615_mutex_acquire(mdev); temperature = mt7615_mcu_get_temperature(mdev); mt7615_mutex_release(mdev); if (temperature < 0) return temperature; /* display in millidegree celcius */ return sprintf(buf, "%u\n", temperature * 1000); } static SENSOR_DEVICE_ATTR(temp1_input, 0444, mt7615_thermal_show_temp, NULL, 0); static struct attribute *mt7615_hwmon_attrs[] = { &sensor_dev_attr_temp1_input.dev_attr.attr, NULL, }; ATTRIBUTE_GROUPS(mt7615_hwmon); int mt7615_thermal_init(struct mt7615_dev *dev) { struct wiphy *wiphy = mt76_hw(dev)->wiphy; struct device *hwmon; const char *name; if (!IS_REACHABLE(CONFIG_HWMON)) return 0; name = devm_kasprintf(&wiphy->dev, GFP_KERNEL, "mt7615_%s", wiphy_name(wiphy)); hwmon = devm_hwmon_device_register_with_groups(&wiphy->dev, name, dev, mt7615_hwmon_groups); if (IS_ERR(hwmon)) return PTR_ERR(hwmon); return 0; } EXPORT_SYMBOL_GPL(mt7615_thermal_init); static void mt7615_phy_init(struct mt7615_dev *dev) { /* disable rf low power beacon mode */ mt76_set(dev, MT_WF_PHY_WF2_RFCTRL0(0), MT_WF_PHY_WF2_RFCTRL0_LPBCN_EN); mt76_set(dev, MT_WF_PHY_WF2_RFCTRL0(1), MT_WF_PHY_WF2_RFCTRL0_LPBCN_EN); } static void mt7615_init_mac_chain(struct mt7615_dev *dev, int chain) { u32 val; if (!chain) val = MT_CFG_CCR_MAC_D0_1X_GC_EN | MT_CFG_CCR_MAC_D0_2X_GC_EN; else val = MT_CFG_CCR_MAC_D1_1X_GC_EN | MT_CFG_CCR_MAC_D1_2X_GC_EN; /* enable band 0/1 clk */ mt76_set(dev, MT_CFG_CCR, val); mt76_rmw(dev, MT_TMAC_TRCR(chain), MT_TMAC_TRCR_CCA_SEL | MT_TMAC_TRCR_SEC_CCA_SEL, FIELD_PREP(MT_TMAC_TRCR_CCA_SEL, 2) | FIELD_PREP(MT_TMAC_TRCR_SEC_CCA_SEL, 0)); mt76_wr(dev, MT_AGG_ACR(chain), MT_AGG_ACR_PKT_TIME_EN | MT_AGG_ACR_NO_BA_AR_RULE | FIELD_PREP(MT_AGG_ACR_CFEND_RATE, MT7615_CFEND_RATE_DEFAULT) | FIELD_PREP(MT_AGG_ACR_BAR_RATE, MT7615_BAR_RATE_DEFAULT)); mt76_wr(dev, MT_AGG_ARUCR(chain), FIELD_PREP(MT_AGG_ARxCR_LIMIT(0), 7) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(1), 2) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(2), 2) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(3), 2) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(4), 1) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(5), 1) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(6), 1) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(7), 1)); mt76_wr(dev, MT_AGG_ARDCR(chain), FIELD_PREP(MT_AGG_ARxCR_LIMIT(0), MT7615_RATE_RETRY - 1) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(1), MT7615_RATE_RETRY - 1) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(2), MT7615_RATE_RETRY - 1) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(3), MT7615_RATE_RETRY - 1) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(4), MT7615_RATE_RETRY - 1) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(5), MT7615_RATE_RETRY - 1) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(6), MT7615_RATE_RETRY - 1) | FIELD_PREP(MT_AGG_ARxCR_LIMIT(7), MT7615_RATE_RETRY - 1)); mt76_clear(dev, MT_DMA_RCFR0(chain), MT_DMA_RCFR0_MCU_RX_TDLS); if (!mt7615_firmware_offload(dev)) { u32 mask, set; mask = MT_DMA_RCFR0_MCU_RX_MGMT | MT_DMA_RCFR0_MCU_RX_CTL_NON_BAR | MT_DMA_RCFR0_MCU_RX_CTL_BAR | MT_DMA_RCFR0_MCU_RX_BYPASS | MT_DMA_RCFR0_RX_DROPPED_UCAST | MT_DMA_RCFR0_RX_DROPPED_MCAST; set = FIELD_PREP(MT_DMA_RCFR0_RX_DROPPED_UCAST, 2) | FIELD_PREP(MT_DMA_RCFR0_RX_DROPPED_MCAST, 2); mt76_rmw(dev, MT_DMA_RCFR0(chain), mask, set); } } static void mt7615_mac_init(struct mt7615_dev *dev) { int i; mt7615_init_mac_chain(dev, 0); mt76_rmw_field(dev, MT_TMAC_CTCR0, MT_TMAC_CTCR0_INS_DDLMT_REFTIME, 0x3f); mt76_rmw_field(dev, MT_TMAC_CTCR0, MT_TMAC_CTCR0_INS_DDLMT_DENSITY, 0x3); mt76_rmw(dev, MT_TMAC_CTCR0, MT_TMAC_CTCR0_INS_DDLMT_VHT_SMPDU_EN | MT_TMAC_CTCR0_INS_DDLMT_EN, MT_TMAC_CTCR0_INS_DDLMT_VHT_SMPDU_EN | MT_TMAC_CTCR0_INS_DDLMT_EN); mt76_connac_mcu_set_rts_thresh(&dev->mt76, 0x92b, 0); mt7615_mac_set_scs(&dev->phy, true); mt76_rmw(dev, MT_AGG_SCR, MT_AGG_SCR_NLNAV_MID_PTEC_DIS, MT_AGG_SCR_NLNAV_MID_PTEC_DIS); mt76_wr(dev, MT_AGG_ARCR, FIELD_PREP(MT_AGG_ARCR_RTS_RATE_THR, 2) | MT_AGG_ARCR_RATE_DOWN_RATIO_EN | FIELD_PREP(MT_AGG_ARCR_RATE_DOWN_RATIO, 1) | FIELD_PREP(MT_AGG_ARCR_RATE_UP_EXTRA_TH, 4)); for (i = 0; i < MT7615_WTBL_SIZE; i++) mt7615_mac_wtbl_update(dev, i, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); mt76_set(dev, MT_WF_RMAC_MIB_TIME0, MT_WF_RMAC_MIB_RXTIME_EN); mt76_set(dev, MT_WF_RMAC_MIB_AIRTIME0, MT_WF_RMAC_MIB_RXTIME_EN); mt76_wr(dev, MT_DMA_DCR0, FIELD_PREP(MT_DMA_DCR0_MAX_RX_LEN, 3072) | MT_DMA_DCR0_RX_VEC_DROP | MT_DMA_DCR0_DAMSDU_EN | MT_DMA_DCR0_RX_HDR_TRANS_EN); /* disable TDLS filtering */ mt76_clear(dev, MT_WF_PFCR, MT_WF_PFCR_TDLS_EN); mt76_set(dev, MT_WF_MIB_SCR0, MT_MIB_SCR0_AGG_CNT_RANGE_EN); if (is_mt7663(&dev->mt76)) { mt76_wr(dev, MT_WF_AGG(0x160), 0x5c341c02); mt76_wr(dev, MT_WF_AGG(0x164), 0x70708040); } else { mt7615_init_mac_chain(dev, 1); } mt7615_mcu_set_rx_hdr_trans_blacklist(dev); } static void mt7615_check_offload_capability(struct mt7615_dev *dev) { struct ieee80211_hw *hw = mt76_hw(dev); struct wiphy *wiphy = hw->wiphy; if (mt7615_firmware_offload(dev)) { ieee80211_hw_set(hw, SUPPORTS_PS); ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS); wiphy->flags &= ~WIPHY_FLAG_4ADDR_STATION; wiphy->max_remain_on_channel_duration = 5000; wiphy->features |= NL80211_FEATURE_SCHED_SCAN_RANDOM_MAC_ADDR | NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR | WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL | NL80211_FEATURE_P2P_GO_CTWIN | NL80211_FEATURE_P2P_GO_OPPPS; } else { dev->ops->hw_scan = NULL; dev->ops->cancel_hw_scan = NULL; dev->ops->sched_scan_start = NULL; dev->ops->sched_scan_stop = NULL; dev->ops->set_rekey_data = NULL; dev->ops->remain_on_channel = NULL; dev->ops->cancel_remain_on_channel = NULL; wiphy->max_sched_scan_plan_interval = 0; wiphy->max_sched_scan_ie_len = 0; wiphy->max_scan_ie_len = IEEE80211_MAX_DATA_LEN; wiphy->max_sched_scan_ssids = 0; wiphy->max_match_sets = 0; wiphy->max_sched_scan_reqs = 0; } } bool mt7615_wait_for_mcu_init(struct mt7615_dev *dev) { flush_work(&dev->mcu_work); return test_bit(MT76_STATE_MCU_RUNNING, &dev->mphy.state); } EXPORT_SYMBOL_GPL(mt7615_wait_for_mcu_init); static const struct ieee80211_iface_limit if_limits[] = { { .max = 1, .types = BIT(NL80211_IFTYPE_ADHOC) }, { .max = MT7615_MAX_INTERFACES, .types = BIT(NL80211_IFTYPE_AP) | #ifdef CONFIG_MAC80211_MESH BIT(NL80211_IFTYPE_MESH_POINT) | #endif BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_P2P_GO) | BIT(NL80211_IFTYPE_STATION) } }; static const struct ieee80211_iface_combination if_comb_radar[] = { { .limits = if_limits, .n_limits = ARRAY_SIZE(if_limits), .max_interfaces = MT7615_MAX_INTERFACES, .num_different_channels = 1, .beacon_int_infra_match = true, .radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) | BIT(NL80211_CHAN_WIDTH_20) | BIT(NL80211_CHAN_WIDTH_40) | BIT(NL80211_CHAN_WIDTH_80) | BIT(NL80211_CHAN_WIDTH_160) | BIT(NL80211_CHAN_WIDTH_80P80), } }; static const struct ieee80211_iface_combination if_comb[] = { { .limits = if_limits, .n_limits = ARRAY_SIZE(if_limits), .max_interfaces = MT7615_MAX_INTERFACES, .num_different_channels = 1, .beacon_int_infra_match = true, } }; void mt7615_init_txpower(struct mt7615_dev *dev, struct ieee80211_supported_band *sband) { int i, n_chains = hweight8(dev->mphy.antenna_mask), target_chains; int delta_idx, delta = mt76_tx_power_nss_delta(n_chains); u8 *eep = (u8 *)dev->mt76.eeprom.data; enum nl80211_band band = sband->band; struct mt76_power_limits limits; u8 rate_val; delta_idx = mt7615_eeprom_get_power_delta_index(dev, band); rate_val = eep[delta_idx]; if ((rate_val & ~MT_EE_RATE_POWER_MASK) == (MT_EE_RATE_POWER_EN | MT_EE_RATE_POWER_SIGN)) delta += rate_val & MT_EE_RATE_POWER_MASK; if (!is_mt7663(&dev->mt76) && mt7615_ext_pa_enabled(dev, band)) target_chains = 1; else target_chains = n_chains; for (i = 0; i < sband->n_channels; i++) { struct ieee80211_channel *chan = &sband->channels[i]; u8 target_power = 0; int j; for (j = 0; j < target_chains; j++) { int index; index = mt7615_eeprom_get_target_power_index(dev, chan, j); if (index < 0) continue; target_power = max(target_power, eep[index]); } target_power = mt76_get_rate_power_limits(&dev->mphy, chan, &limits, target_power); target_power += delta; target_power = DIV_ROUND_UP(target_power, 2); chan->max_power = min_t(int, chan->max_reg_power, target_power); chan->orig_mpwr = target_power; } } EXPORT_SYMBOL_GPL(mt7615_init_txpower); void mt7615_init_work(struct mt7615_dev *dev) { mt7615_mcu_set_eeprom(dev); mt7615_mac_init(dev); mt7615_phy_init(dev); mt7615_mcu_del_wtbl_all(dev); mt7615_check_offload_capability(dev); } EXPORT_SYMBOL_GPL(mt7615_init_work); static void mt7615_regd_notifier(struct wiphy *wiphy, struct regulatory_request *request) { struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); struct mt7615_dev *dev = mt7615_hw_dev(hw); struct mt76_phy *mphy = hw->priv; struct mt7615_phy *phy = mphy->priv; struct cfg80211_chan_def *chandef = &mphy->chandef; memcpy(dev->mt76.alpha2, request->alpha2, sizeof(dev->mt76.alpha2)); dev->mt76.region = request->dfs_region; mt7615_init_txpower(dev, &mphy->sband_2g.sband); mt7615_init_txpower(dev, &mphy->sband_5g.sband); mt7615_mutex_acquire(dev); if (chandef->chan->flags & IEEE80211_CHAN_RADAR) mt7615_dfs_init_radar_detector(phy); if (mt7615_firmware_offload(phy->dev)) { mt76_connac_mcu_set_channel_domain(mphy); mt76_connac_mcu_set_rate_txpower(mphy); } mt7615_mutex_release(dev); } static void mt7615_init_wiphy(struct ieee80211_hw *hw) { struct mt7615_phy *phy = mt7615_hw_phy(hw); struct wiphy *wiphy = hw->wiphy; hw->queues = 4; hw->max_rates = 3; hw->max_report_rates = 7; hw->max_rate_tries = 11; hw->netdev_features = NETIF_F_RXCSUM; hw->radiotap_timestamp.units_pos = IEEE80211_RADIOTAP_TIMESTAMP_UNIT_US; phy->slottime = 9; hw->sta_data_size = sizeof(struct mt7615_sta); hw->vif_data_size = sizeof(struct mt7615_vif); if (is_mt7663(&phy->dev->mt76)) { wiphy->iface_combinations = if_comb; wiphy->n_iface_combinations = ARRAY_SIZE(if_comb); } else { wiphy->iface_combinations = if_comb_radar; wiphy->n_iface_combinations = ARRAY_SIZE(if_comb_radar); } wiphy->reg_notifier = mt7615_regd_notifier; wiphy->max_sched_scan_plan_interval = MT76_CONNAC_MAX_TIME_SCHED_SCAN_INTERVAL; wiphy->max_sched_scan_ie_len = IEEE80211_MAX_DATA_LEN; wiphy->max_scan_ie_len = MT76_CONNAC_SCAN_IE_LEN; wiphy->max_sched_scan_ssids = MT76_CONNAC_MAX_SCHED_SCAN_SSID; wiphy->max_match_sets = MT76_CONNAC_MAX_SCAN_MATCH; wiphy->max_sched_scan_reqs = 1; wiphy->max_scan_ssids = 4; wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_VHT_IBSS); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0); if (!is_mt7622(&phy->dev->mt76)) wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_MU_MIMO_AIR_SNIFFER); ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS); ieee80211_hw_set(hw, TX_STATUS_NO_AMPDU_LEN); ieee80211_hw_set(hw, WANT_MONITOR_VIF); ieee80211_hw_set(hw, SUPPORTS_RX_DECAP_OFFLOAD); ieee80211_hw_set(hw, SUPPORTS_VHT_EXT_NSS_BW); if (is_mt7615(&phy->dev->mt76)) hw->max_tx_fragments = MT_TXP_MAX_BUF_NUM; else hw->max_tx_fragments = MT_HW_TXP_MAX_BUF_NUM; phy->mt76->sband_2g.sband.ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING; phy->mt76->sband_5g.sband.ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING; phy->mt76->sband_5g.sband.vht_cap.cap |= IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK; } static void mt7615_cap_dbdc_enable(struct mt7615_dev *dev) { dev->mphy.sband_5g.sband.vht_cap.cap &= ~(IEEE80211_VHT_CAP_SHORT_GI_160 | IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ); if (dev->chainmask == 0xf) dev->mphy.antenna_mask = dev->chainmask >> 2; else dev->mphy.antenna_mask = dev->chainmask >> 1; dev->mphy.chainmask = dev->mphy.antenna_mask; dev->mphy.hw->wiphy->available_antennas_rx = dev->mphy.chainmask; dev->mphy.hw->wiphy->available_antennas_tx = dev->mphy.chainmask; mt76_set_stream_caps(&dev->mphy, true); } static void mt7615_cap_dbdc_disable(struct mt7615_dev *dev) { dev->mphy.sband_5g.sband.vht_cap.cap |= IEEE80211_VHT_CAP_SHORT_GI_160 | IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ; dev->mphy.antenna_mask = dev->chainmask; dev->mphy.chainmask = dev->chainmask; dev->mphy.hw->wiphy->available_antennas_rx = dev->chainmask; dev->mphy.hw->wiphy->available_antennas_tx = dev->chainmask; mt76_set_stream_caps(&dev->mphy, true); } u32 mt7615_reg_map(struct mt7615_dev *dev, u32 addr) { u32 base, offset; if (is_mt7663(&dev->mt76)) { base = addr & MT7663_MCU_PCIE_REMAP_2_BASE; offset = addr & MT7663_MCU_PCIE_REMAP_2_OFFSET; } else { base = addr & MT_MCU_PCIE_REMAP_2_BASE; offset = addr & MT_MCU_PCIE_REMAP_2_OFFSET; } mt76_wr(dev, MT_MCU_PCIE_REMAP_2, base); return MT_PCIE_REMAP_BASE_2 + offset; } EXPORT_SYMBOL_GPL(mt7615_reg_map); static void mt7615_led_set_config(struct led_classdev *led_cdev, u8 delay_on, u8 delay_off) { struct mt7615_dev *dev; struct mt76_phy *mphy; u32 val, addr; u8 index; mphy = container_of(led_cdev, struct mt76_phy, leds.cdev); dev = container_of(mphy->dev, struct mt7615_dev, mt76); if (!mt76_connac_pm_ref(mphy, &dev->pm)) return; val = FIELD_PREP(MT_LED_STATUS_DURATION, 0xffff) | FIELD_PREP(MT_LED_STATUS_OFF, delay_off) | FIELD_PREP(MT_LED_STATUS_ON, delay_on); index = dev->dbdc_support ? mphy->band_idx : mphy->leds.pin; addr = mt7615_reg_map(dev, MT_LED_STATUS_0(index)); mt76_wr(dev, addr, val); addr = mt7615_reg_map(dev, MT_LED_STATUS_1(index)); mt76_wr(dev, addr, val); val = MT_LED_CTRL_REPLAY(index) | MT_LED_CTRL_KICK(index); if (dev->mphy.leds.al) val |= MT_LED_CTRL_POLARITY(index); if (mphy->band_idx) val |= MT_LED_CTRL_BAND(index); addr = mt7615_reg_map(dev, MT_LED_CTRL); mt76_wr(dev, addr, val); mt76_connac_pm_unref(mphy, &dev->pm); } int mt7615_led_set_blink(struct led_classdev *led_cdev, unsigned long *delay_on, unsigned long *delay_off) { u8 delta_on, delta_off; delta_off = max_t(u8, *delay_off / 10, 1); delta_on = max_t(u8, *delay_on / 10, 1); mt7615_led_set_config(led_cdev, delta_on, delta_off); return 0; } EXPORT_SYMBOL_GPL(mt7615_led_set_blink); void mt7615_led_set_brightness(struct led_classdev *led_cdev, enum led_brightness brightness) { if (!brightness) mt7615_led_set_config(led_cdev, 0, 0xff); else mt7615_led_set_config(led_cdev, 0xff, 0); } EXPORT_SYMBOL_GPL(mt7615_led_set_brightness); int mt7615_register_ext_phy(struct mt7615_dev *dev) { struct mt7615_phy *phy = mt7615_ext_phy(dev); struct mt76_phy *mphy; int i, ret; if (!is_mt7615(&dev->mt76)) return -EOPNOTSUPP; if (test_bit(MT76_STATE_RUNNING, &dev->mphy.state)) return -EINVAL; if (phy) return 0; mt7615_cap_dbdc_enable(dev); mphy = mt76_alloc_phy(&dev->mt76, sizeof(*phy), &mt7615_ops, MT_BAND1); if (!mphy) return -ENOMEM; phy = mphy->priv; phy->dev = dev; phy->mt76 = mphy; mphy->chainmask = dev->chainmask & ~dev->mphy.chainmask; mphy->antenna_mask = BIT(hweight8(mphy->chainmask)) - 1; mt7615_init_wiphy(mphy->hw); INIT_DELAYED_WORK(&mphy->mac_work, mt7615_mac_work); INIT_DELAYED_WORK(&phy->scan_work, mt7615_scan_work); skb_queue_head_init(&phy->scan_event_list); INIT_WORK(&phy->roc_work, mt7615_roc_work); timer_setup(&phy->roc_timer, mt7615_roc_timer, 0); init_waitqueue_head(&phy->roc_wait); mt7615_mac_set_scs(phy, true); /* * Make the secondary PHY MAC address local without overlapping with * the usual MAC address allocation scheme on multiple virtual interfaces */ memcpy(mphy->macaddr, dev->mt76.eeprom.data + MT_EE_MAC_ADDR, ETH_ALEN); mphy->macaddr[0] |= 2; mphy->macaddr[0] ^= BIT(7); mt76_eeprom_override(mphy); /* second phy can only handle 5 GHz */ mphy->cap.has_5ghz = true; /* mt7615 second phy shares the same hw queues with the primary one */ for (i = 0; i <= MT_TXQ_PSD ; i++) mphy->q_tx[i] = dev->mphy.q_tx[i]; /* init led callbacks */ if (IS_ENABLED(CONFIG_MT76_LEDS)) { mphy->leds.cdev.brightness_set = mt7615_led_set_brightness; mphy->leds.cdev.blink_set = mt7615_led_set_blink; } ret = mt76_register_phy(mphy, true, mt76_rates, ARRAY_SIZE(mt76_rates)); if (ret) ieee80211_free_hw(mphy->hw); return ret; } EXPORT_SYMBOL_GPL(mt7615_register_ext_phy); void mt7615_unregister_ext_phy(struct mt7615_dev *dev) { struct mt7615_phy *phy = mt7615_ext_phy(dev); struct mt76_phy *mphy = dev->mt76.phys[MT_BAND1]; if (!phy) return; mt7615_cap_dbdc_disable(dev); mt76_unregister_phy(mphy); ieee80211_free_hw(mphy->hw); } EXPORT_SYMBOL_GPL(mt7615_unregister_ext_phy); void mt7615_init_device(struct mt7615_dev *dev) { struct ieee80211_hw *hw = mt76_hw(dev); dev->phy.dev = dev; dev->phy.mt76 = &dev->mt76.phy; dev->mt76.phy.priv = &dev->phy; dev->mt76.tx_worker.fn = mt7615_tx_worker; INIT_DELAYED_WORK(&dev->pm.ps_work, mt7615_pm_power_save_work); INIT_WORK(&dev->pm.wake_work, mt7615_pm_wake_work); spin_lock_init(&dev->pm.wake.lock); mutex_init(&dev->pm.mutex); init_waitqueue_head(&dev->pm.wait); spin_lock_init(&dev->pm.txq_lock); INIT_DELAYED_WORK(&dev->mphy.mac_work, mt7615_mac_work); INIT_DELAYED_WORK(&dev->phy.scan_work, mt7615_scan_work); INIT_DELAYED_WORK(&dev->coredump.work, mt7615_coredump_work); skb_queue_head_init(&dev->phy.scan_event_list); skb_queue_head_init(&dev->coredump.msg_list); init_waitqueue_head(&dev->reset_wait); init_waitqueue_head(&dev->phy.roc_wait); INIT_WORK(&dev->phy.roc_work, mt7615_roc_work); timer_setup(&dev->phy.roc_timer, mt7615_roc_timer, 0); mt7615_init_wiphy(hw); dev->pm.idle_timeout = MT7615_PM_TIMEOUT; dev->pm.stats.last_wake_event = jiffies; dev->pm.stats.last_doze_event = jiffies; mt7615_cap_dbdc_disable(dev); #ifdef CONFIG_NL80211_TESTMODE dev->mt76.test_ops = &mt7615_testmode_ops; #endif } EXPORT_SYMBOL_GPL(mt7615_init_device);
linux-master
drivers/net/wireless/mediatek/mt76/mt7615/init.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2019 MediaTek Inc. * * Author: Ryder Lee <[email protected]> * Felix Fietkau <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include "mt7615.h" #include "mcu.h" static const struct pci_device_id mt7615_pci_device_table[] = { { PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7615) }, { PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7663) }, { PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7611) }, { }, }; static int mt7615_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { const u32 *map; int ret; ret = pcim_enable_device(pdev); if (ret) return ret; ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev)); if (ret) return ret; pci_set_master(pdev); ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); if (ret < 0) return ret; ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); if (ret) goto error; mt76_pci_disable_aspm(pdev); map = id->device == 0x7663 ? mt7663e_reg_map : mt7615e_reg_map; ret = mt7615_mmio_probe(&pdev->dev, pcim_iomap_table(pdev)[0], pdev->irq, map); if (ret) goto error; return 0; error: pci_free_irq_vectors(pdev); return ret; } static void mt7615_pci_remove(struct pci_dev *pdev) { struct mt76_dev *mdev = pci_get_drvdata(pdev); struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76); mt7615_unregister_device(dev); devm_free_irq(&pdev->dev, pdev->irq, dev); pci_free_irq_vectors(pdev); } #ifdef CONFIG_PM static int mt7615_pci_suspend(struct pci_dev *pdev, pm_message_t state) { struct mt76_dev *mdev = pci_get_drvdata(pdev); struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76); bool hif_suspend; int i, err; err = mt76_connac_pm_wake(&dev->mphy, &dev->pm); if (err < 0) return err; hif_suspend = !test_bit(MT76_STATE_SUSPEND, &dev->mphy.state) && mt7615_firmware_offload(dev); if (hif_suspend) { err = mt76_connac_mcu_set_hif_suspend(mdev, true); if (err) return err; } napi_disable(&mdev->tx_napi); mt76_worker_disable(&mdev->tx_worker); mt76_for_each_q_rx(mdev, i) { napi_disable(&mdev->napi[i]); } tasklet_kill(&mdev->irq_tasklet); mt7615_dma_reset(dev); err = mt7615_wait_pdma_busy(dev); if (err) goto restore; if (is_mt7663(mdev)) { mt76_set(dev, MT_PDMA_SLP_PROT, MT_PDMA_AXI_SLPPROT_ENABLE); if (!mt76_poll_msec(dev, MT_PDMA_SLP_PROT, MT_PDMA_AXI_SLPPROT_RDY, MT_PDMA_AXI_SLPPROT_RDY, 1000)) { dev_err(mdev->dev, "PDMA sleep protection failed\n"); err = -EIO; goto restore; } } pci_enable_wake(pdev, pci_choose_state(pdev, state), true); pci_save_state(pdev); err = pci_set_power_state(pdev, pci_choose_state(pdev, state)); if (err) goto restore; err = mt7615_mcu_set_fw_ctrl(dev); if (err) goto restore; return 0; restore: mt76_for_each_q_rx(mdev, i) { napi_enable(&mdev->napi[i]); } napi_enable(&mdev->tx_napi); if (hif_suspend) mt76_connac_mcu_set_hif_suspend(mdev, false); return err; } static int mt7615_pci_resume(struct pci_dev *pdev) { struct mt76_dev *mdev = pci_get_drvdata(pdev); struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76); bool pdma_reset; int i, err; err = mt7615_mcu_set_drv_ctrl(dev); if (err < 0) return err; err = pci_set_power_state(pdev, PCI_D0); if (err) return err; pci_restore_state(pdev); if (is_mt7663(&dev->mt76)) { mt76_clear(dev, MT_PDMA_SLP_PROT, MT_PDMA_AXI_SLPPROT_ENABLE); mt76_wr(dev, MT_PCIE_IRQ_ENABLE, 1); } pdma_reset = !mt76_rr(dev, MT_WPDMA_TX_RING0_CTRL0) && !mt76_rr(dev, MT_WPDMA_TX_RING0_CTRL1); if (pdma_reset) dev_err(mdev->dev, "PDMA engine must be reinitialized\n"); mt76_worker_enable(&mdev->tx_worker); local_bh_disable(); mt76_for_each_q_rx(mdev, i) { napi_enable(&mdev->napi[i]); napi_schedule(&mdev->napi[i]); } napi_enable(&mdev->tx_napi); napi_schedule(&mdev->tx_napi); local_bh_enable(); if (!test_bit(MT76_STATE_SUSPEND, &dev->mphy.state) && mt7615_firmware_offload(dev)) err = mt76_connac_mcu_set_hif_suspend(mdev, false); return err; } #endif /* CONFIG_PM */ struct pci_driver mt7615_pci_driver = { .name = KBUILD_MODNAME, .id_table = mt7615_pci_device_table, .probe = mt7615_pci_probe, .remove = mt7615_pci_remove, #ifdef CONFIG_PM .suspend = mt7615_pci_suspend, .resume = mt7615_pci_resume, #endif /* CONFIG_PM */ }; MODULE_DEVICE_TABLE(pci, mt7615_pci_device_table); MODULE_FIRMWARE(MT7615_FIRMWARE_CR4); MODULE_FIRMWARE(MT7615_FIRMWARE_N9); MODULE_FIRMWARE(MT7615_ROM_PATCH); MODULE_FIRMWARE(MT7663_OFFLOAD_FIRMWARE_N9); MODULE_FIRMWARE(MT7663_OFFLOAD_ROM_PATCH); MODULE_FIRMWARE(MT7663_FIRMWARE_N9); MODULE_FIRMWARE(MT7663_ROM_PATCH);
linux-master
drivers/net/wireless/mediatek/mt76/mt7615/pci.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2020 Felix Fietkau <[email protected]> */ #include "mt7615.h" #include "eeprom.h" #include "mcu.h" enum { TM_CHANGED_TXPOWER_CTRL, TM_CHANGED_TXPOWER, TM_CHANGED_FREQ_OFFSET, /* must be last */ NUM_TM_CHANGED }; static const u8 tm_change_map[] = { [TM_CHANGED_TXPOWER_CTRL] = MT76_TM_ATTR_TX_POWER_CONTROL, [TM_CHANGED_TXPOWER] = MT76_TM_ATTR_TX_POWER, [TM_CHANGED_FREQ_OFFSET] = MT76_TM_ATTR_FREQ_OFFSET, }; static const u32 reg_backup_list[] = { MT_WF_PHY_RFINTF3_0(0), MT_WF_PHY_RFINTF3_0(1), MT_WF_PHY_RFINTF3_0(2), MT_WF_PHY_RFINTF3_0(3), MT_ANT_SWITCH_CON(2), MT_ANT_SWITCH_CON(3), MT_ANT_SWITCH_CON(4), MT_ANT_SWITCH_CON(6), MT_ANT_SWITCH_CON(7), MT_ANT_SWITCH_CON(8), }; static const struct { u16 wf; u16 reg; } rf_backup_list[] = { { 0, 0x48 }, { 1, 0x48 }, { 2, 0x48 }, { 3, 0x48 }, }; static int mt7615_tm_set_tx_power(struct mt7615_phy *phy) { struct mt7615_dev *dev = phy->dev; struct mt76_phy *mphy = phy->mt76; int i, ret, n_chains = hweight8(mphy->antenna_mask); struct cfg80211_chan_def *chandef = &mphy->chandef; int freq = chandef->center_freq1, len, target_chains; u8 *data, *eep = (u8 *)dev->mt76.eeprom.data; enum nl80211_band band = chandef->chan->band; struct sk_buff *skb; struct { u8 center_chan; u8 dbdc_idx; u8 band; u8 rsv; } __packed req_hdr = { .center_chan = ieee80211_frequency_to_channel(freq), .band = band, .dbdc_idx = phy != &dev->phy, }; u8 *tx_power = NULL; if (mphy->test.state != MT76_TM_STATE_OFF) tx_power = mphy->test.tx_power; len = MT7615_EE_MAX - MT_EE_NIC_CONF_0; skb = mt76_mcu_msg_alloc(&dev->mt76, NULL, sizeof(req_hdr) + len); if (!skb) return -ENOMEM; skb_put_data(skb, &req_hdr, sizeof(req_hdr)); data = skb_put_data(skb, eep + MT_EE_NIC_CONF_0, len); target_chains = mt7615_ext_pa_enabled(dev, band) ? 1 : n_chains; for (i = 0; i < target_chains; i++) { ret = mt7615_eeprom_get_target_power_index(dev, chandef->chan, i); if (ret < 0) { dev_kfree_skb(skb); return -EINVAL; } if (tx_power && tx_power[i]) data[ret - MT_EE_NIC_CONF_0] = tx_power[i]; } return mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_EXT_CMD(SET_TX_POWER_CTRL), false); } static void mt7615_tm_reg_backup_restore(struct mt7615_phy *phy) { struct mt7615_dev *dev = phy->dev; u32 *b = phy->test.reg_backup; int n_regs = ARRAY_SIZE(reg_backup_list); int n_rf_regs = ARRAY_SIZE(rf_backup_list); int i; if (phy->mt76->test.state == MT76_TM_STATE_OFF) { for (i = 0; i < n_regs; i++) mt76_wr(dev, reg_backup_list[i], b[i]); for (i = 0; i < n_rf_regs; i++) mt7615_rf_wr(dev, rf_backup_list[i].wf, rf_backup_list[i].reg, b[n_regs + i]); return; } if (b) return; b = devm_kzalloc(dev->mt76.dev, 4 * (n_regs + n_rf_regs), GFP_KERNEL); if (!b) return; phy->test.reg_backup = b; for (i = 0; i < n_regs; i++) b[i] = mt76_rr(dev, reg_backup_list[i]); for (i = 0; i < n_rf_regs; i++) b[n_regs + i] = mt7615_rf_rr(dev, rf_backup_list[i].wf, rf_backup_list[i].reg); } static void mt7615_tm_init(struct mt7615_phy *phy) { struct mt7615_dev *dev = phy->dev; unsigned int total_flags = ~0; if (!test_bit(MT76_STATE_RUNNING, &phy->mt76->state)) return; mt7615_mcu_set_sku_en(phy, phy->mt76->test.state == MT76_TM_STATE_OFF); mutex_unlock(&dev->mt76.mutex); mt7615_set_channel(phy); mt7615_ops.configure_filter(phy->mt76->hw, 0, &total_flags, 0); mutex_lock(&dev->mt76.mutex); mt7615_tm_reg_backup_restore(phy); } static void mt7615_tm_set_rx_enable(struct mt7615_dev *dev, bool en) { u32 rqcr_mask = (MT_ARB_RQCR_RX_START | MT_ARB_RQCR_RXV_START | MT_ARB_RQCR_RXV_R_EN | MT_ARB_RQCR_RXV_T_EN) * (BIT(0) | BIT(MT_ARB_RQCR_BAND_SHIFT)); if (en) { mt76_clear(dev, MT_ARB_SCR, MT_ARB_SCR_RX0_DISABLE | MT_ARB_SCR_RX1_DISABLE); mt76_set(dev, MT_ARB_RQCR, rqcr_mask); } else { mt76_set(dev, MT_ARB_SCR, MT_ARB_SCR_RX0_DISABLE | MT_ARB_SCR_RX1_DISABLE); mt76_clear(dev, MT_ARB_RQCR, rqcr_mask); } } static void mt7615_tm_set_tx_antenna(struct mt7615_phy *phy, bool en) { struct mt7615_dev *dev = phy->dev; struct mt76_testmode_data *td = &phy->mt76->test; u8 mask = td->tx_antenna_mask; int i; if (!mask) return; if (!en) mask = phy->mt76->chainmask; for (i = 0; i < 4; i++) { mt76_rmw_field(dev, MT_WF_PHY_RFINTF3_0(i), MT_WF_PHY_RFINTF3_0_ANT, (mask & BIT(i)) ? 0 : 0xa); } /* 2.4 GHz band */ mt76_rmw_field(dev, MT_ANT_SWITCH_CON(3), MT_ANT_SWITCH_CON_MODE(0), (mask & BIT(0)) ? 0x8 : 0x1b); mt76_rmw_field(dev, MT_ANT_SWITCH_CON(4), MT_ANT_SWITCH_CON_MODE(2), (mask & BIT(1)) ? 0xe : 0x1b); mt76_rmw_field(dev, MT_ANT_SWITCH_CON(6), MT_ANT_SWITCH_CON_MODE1(0), (mask & BIT(2)) ? 0x0 : 0xf); mt76_rmw_field(dev, MT_ANT_SWITCH_CON(7), MT_ANT_SWITCH_CON_MODE1(2), (mask & BIT(3)) ? 0x6 : 0xf); /* 5 GHz band */ mt76_rmw_field(dev, MT_ANT_SWITCH_CON(4), MT_ANT_SWITCH_CON_MODE(1), (mask & BIT(0)) ? 0xd : 0x1b); mt76_rmw_field(dev, MT_ANT_SWITCH_CON(2), MT_ANT_SWITCH_CON_MODE(3), (mask & BIT(1)) ? 0x13 : 0x1b); mt76_rmw_field(dev, MT_ANT_SWITCH_CON(7), MT_ANT_SWITCH_CON_MODE1(1), (mask & BIT(2)) ? 0x5 : 0xf); mt76_rmw_field(dev, MT_ANT_SWITCH_CON(8), MT_ANT_SWITCH_CON_MODE1(3), (mask & BIT(3)) ? 0xb : 0xf); for (i = 0; i < 4; i++) { u32 val; val = mt7615_rf_rr(dev, i, 0x48); val &= ~(0x3ff << 20); if (mask & BIT(i)) val |= 3 << 20; else val |= (2 << 28) | (2 << 26) | (8 << 20); mt7615_rf_wr(dev, i, 0x48, val); } } static void mt7615_tm_set_tx_frames(struct mt7615_phy *phy, bool en) { struct mt7615_dev *dev = phy->dev; struct ieee80211_tx_info *info; struct sk_buff *skb = phy->mt76->test.tx_skb; mt7615_mcu_set_chan_info(phy, MCU_EXT_CMD(SET_RX_PATH)); mt7615_tm_set_tx_antenna(phy, en); mt7615_tm_set_rx_enable(dev, !en); if (!en || !skb) return; info = IEEE80211_SKB_CB(skb); info->control.vif = phy->monitor_vif; } static void mt7615_tm_update_params(struct mt7615_phy *phy, u32 changed) { struct mt7615_dev *dev = phy->dev; struct mt76_testmode_data *td = &phy->mt76->test; bool en = phy->mt76->test.state != MT76_TM_STATE_OFF; if (changed & BIT(TM_CHANGED_TXPOWER_CTRL)) mt7615_mcu_set_test_param(dev, MCU_ATE_SET_TX_POWER_CONTROL, en, en && td->tx_power_control); if (changed & BIT(TM_CHANGED_FREQ_OFFSET)) mt7615_mcu_set_test_param(dev, MCU_ATE_SET_FREQ_OFFSET, en, en ? td->freq_offset : 0); if (changed & BIT(TM_CHANGED_TXPOWER)) mt7615_tm_set_tx_power(phy); } static int mt7615_tm_set_state(struct mt76_phy *mphy, enum mt76_testmode_state state) { struct mt7615_phy *phy = mphy->priv; struct mt76_testmode_data *td = &mphy->test; enum mt76_testmode_state prev_state = td->state; mphy->test.state = state; if (prev_state == MT76_TM_STATE_TX_FRAMES) mt7615_tm_set_tx_frames(phy, false); else if (state == MT76_TM_STATE_TX_FRAMES) mt7615_tm_set_tx_frames(phy, true); if (state <= MT76_TM_STATE_IDLE) mt7615_tm_init(phy); if ((state == MT76_TM_STATE_IDLE && prev_state == MT76_TM_STATE_OFF) || (state == MT76_TM_STATE_OFF && prev_state == MT76_TM_STATE_IDLE)) { u32 changed = 0; int i; for (i = 0; i < ARRAY_SIZE(tm_change_map); i++) { u16 cur = tm_change_map[i]; if (td->param_set[cur / 32] & BIT(cur % 32)) changed |= BIT(i); } mt7615_tm_update_params(phy, changed); } return 0; } static int mt7615_tm_set_params(struct mt76_phy *mphy, struct nlattr **tb, enum mt76_testmode_state new_state) { struct mt76_testmode_data *td = &mphy->test; struct mt7615_phy *phy = mphy->priv; u32 changed = 0; int i; BUILD_BUG_ON(NUM_TM_CHANGED >= 32); if (new_state == MT76_TM_STATE_OFF || td->state == MT76_TM_STATE_OFF) return 0; if (td->tx_antenna_mask & ~mphy->chainmask) return -EINVAL; for (i = 0; i < ARRAY_SIZE(tm_change_map); i++) { if (tb[tm_change_map[i]]) changed |= BIT(i); } mt7615_tm_update_params(phy, changed); return 0; } static int mt7615_tm_dump_stats(struct mt76_phy *mphy, struct sk_buff *msg) { struct mt7615_phy *phy = mphy->priv; void *rx, *rssi; int i; rx = nla_nest_start(msg, MT76_TM_STATS_ATTR_LAST_RX); if (!rx) return -ENOMEM; if (nla_put_s32(msg, MT76_TM_RX_ATTR_FREQ_OFFSET, phy->test.last_freq_offset)) return -ENOMEM; rssi = nla_nest_start(msg, MT76_TM_RX_ATTR_RCPI); if (!rssi) return -ENOMEM; for (i = 0; i < ARRAY_SIZE(phy->test.last_rcpi); i++) if (nla_put_u8(msg, i, phy->test.last_rcpi[i])) return -ENOMEM; nla_nest_end(msg, rssi); rssi = nla_nest_start(msg, MT76_TM_RX_ATTR_IB_RSSI); if (!rssi) return -ENOMEM; for (i = 0; i < ARRAY_SIZE(phy->test.last_ib_rssi); i++) if (nla_put_s8(msg, i, phy->test.last_ib_rssi[i])) return -ENOMEM; nla_nest_end(msg, rssi); rssi = nla_nest_start(msg, MT76_TM_RX_ATTR_WB_RSSI); if (!rssi) return -ENOMEM; for (i = 0; i < ARRAY_SIZE(phy->test.last_wb_rssi); i++) if (nla_put_s8(msg, i, phy->test.last_wb_rssi[i])) return -ENOMEM; nla_nest_end(msg, rssi); nla_nest_end(msg, rx); return 0; } const struct mt76_testmode_ops mt7615_testmode_ops = { .set_state = mt7615_tm_set_state, .set_params = mt7615_tm_set_params, .dump_stats = mt7615_tm_dump_stats, };
linux-master
drivers/net/wireless/mediatek/mt76/mt7615/testmode.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2020 MediaTek Inc. * * Author: Lorenzo Bianconi <[email protected]> * Sean Wang <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/usb.h> #include "mt7615.h" #include "mac.h" #include "mcu.h" #include "regs.h" const u32 mt7663_usb_sdio_reg_map[] = { [MT_TOP_CFG_BASE] = 0x80020000, [MT_HW_BASE] = 0x80000000, [MT_DMA_SHDL_BASE] = 0x5000a000, [MT_HIF_BASE] = 0x50000000, [MT_CSR_BASE] = 0x40000000, [MT_EFUSE_ADDR_BASE] = 0x78011000, [MT_TOP_MISC_BASE] = 0x81020000, [MT_PLE_BASE] = 0x82060000, [MT_PSE_BASE] = 0x82068000, [MT_PP_BASE] = 0x8206c000, [MT_WTBL_BASE_ADDR] = 0x820e0000, [MT_CFG_BASE] = 0x820f0000, [MT_AGG_BASE] = 0x820f2000, [MT_ARB_BASE] = 0x820f3000, [MT_TMAC_BASE] = 0x820f4000, [MT_RMAC_BASE] = 0x820f5000, [MT_DMA_BASE] = 0x820f7000, [MT_PF_BASE] = 0x820f8000, [MT_WTBL_BASE_ON] = 0x820f9000, [MT_WTBL_BASE_OFF] = 0x820f9800, [MT_LPON_BASE] = 0x820fb000, [MT_MIB_BASE] = 0x820fd000, }; EXPORT_SYMBOL_GPL(mt7663_usb_sdio_reg_map); static void mt7663_usb_sdio_write_txwi(struct mt7615_dev *dev, struct mt76_wcid *wcid, enum mt76_txq_id qid, struct ieee80211_sta *sta, struct ieee80211_key_conf *key, int pid, struct sk_buff *skb) { __le32 *txwi = (__le32 *)(skb->data - MT_USB_TXD_SIZE); memset(txwi, 0, MT_USB_TXD_SIZE); mt7615_mac_write_txwi(dev, txwi, skb, wcid, sta, pid, key, qid, false); skb_push(skb, MT_USB_TXD_SIZE); } static int mt7663_usb_sdio_set_rates(struct mt7615_dev *dev, struct mt7615_wtbl_rate_desc *wrd) { struct mt7615_rate_desc *rate = &wrd->rate; struct mt7615_sta *sta = wrd->sta; u32 w5, w27, addr, val; u16 idx; lockdep_assert_held(&dev->mt76.mutex); if (!sta) return -EINVAL; if (!mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000)) return -ETIMEDOUT; addr = mt7615_mac_wtbl_addr(dev, sta->wcid.idx); w27 = mt76_rr(dev, addr + 27 * 4); w27 &= ~MT_WTBL_W27_CC_BW_SEL; w27 |= FIELD_PREP(MT_WTBL_W27_CC_BW_SEL, rate->bw); w5 = mt76_rr(dev, addr + 5 * 4); w5 &= ~(MT_WTBL_W5_BW_CAP | MT_WTBL_W5_CHANGE_BW_RATE | MT_WTBL_W5_MPDU_OK_COUNT | MT_WTBL_W5_MPDU_FAIL_COUNT | MT_WTBL_W5_RATE_IDX); w5 |= FIELD_PREP(MT_WTBL_W5_BW_CAP, rate->bw) | FIELD_PREP(MT_WTBL_W5_CHANGE_BW_RATE, rate->bw_idx ? rate->bw_idx - 1 : 7); mt76_wr(dev, MT_WTBL_RIUCR0, w5); mt76_wr(dev, MT_WTBL_RIUCR1, FIELD_PREP(MT_WTBL_RIUCR1_RATE0, rate->probe_val) | FIELD_PREP(MT_WTBL_RIUCR1_RATE1, rate->val[0]) | FIELD_PREP(MT_WTBL_RIUCR1_RATE2_LO, rate->val[1])); mt76_wr(dev, MT_WTBL_RIUCR2, FIELD_PREP(MT_WTBL_RIUCR2_RATE2_HI, rate->val[1] >> 8) | FIELD_PREP(MT_WTBL_RIUCR2_RATE3, rate->val[1]) | FIELD_PREP(MT_WTBL_RIUCR2_RATE4, rate->val[2]) | FIELD_PREP(MT_WTBL_RIUCR2_RATE5_LO, rate->val[2])); mt76_wr(dev, MT_WTBL_RIUCR3, FIELD_PREP(MT_WTBL_RIUCR3_RATE5_HI, rate->val[2] >> 4) | FIELD_PREP(MT_WTBL_RIUCR3_RATE6, rate->val[3]) | FIELD_PREP(MT_WTBL_RIUCR3_RATE7, rate->val[3])); mt76_wr(dev, MT_WTBL_UPDATE, FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, sta->wcid.idx) | MT_WTBL_UPDATE_RATE_UPDATE | MT_WTBL_UPDATE_TX_COUNT_CLEAR); mt76_wr(dev, addr + 27 * 4, w27); sta->rate_probe = sta->rateset[rate->rateset].probe_rate.idx != -1; idx = sta->vif->mt76.omac_idx; idx = idx > HW_BSSID_MAX ? HW_BSSID_0 : idx; addr = idx > 1 ? MT_LPON_TCR2(idx): MT_LPON_TCR0(idx); mt76_rmw(dev, addr, MT_LPON_TCR_MODE, MT_LPON_TCR_READ); /* TSF read */ val = mt76_rr(dev, MT_LPON_UTTR0); sta->rate_set_tsf = (val & ~BIT(0)) | rate->rateset; if (!(sta->wcid.tx_info & MT_WCID_TX_INFO_SET)) mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000); sta->rate_count = 2 * MT7615_RATE_RETRY * sta->n_rates; sta->wcid.tx_info |= MT_WCID_TX_INFO_SET; return 0; } static void mt7663_usb_sdio_rate_work(struct work_struct *work) { struct mt7615_wtbl_rate_desc *wrd, *wrd_next; struct list_head wrd_list; struct mt7615_dev *dev; dev = (struct mt7615_dev *)container_of(work, struct mt7615_dev, rate_work); INIT_LIST_HEAD(&wrd_list); spin_lock_bh(&dev->mt76.lock); list_splice_init(&dev->wrd_head, &wrd_list); spin_unlock_bh(&dev->mt76.lock); list_for_each_entry_safe(wrd, wrd_next, &wrd_list, node) { list_del(&wrd->node); mt7615_mutex_acquire(dev); mt7663_usb_sdio_set_rates(dev, wrd); mt7615_mutex_release(dev); kfree(wrd); } } bool mt7663_usb_sdio_tx_status_data(struct mt76_dev *mdev, u8 *update) { struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76); mt7615_mutex_acquire(dev); mt7615_mac_sta_poll(dev); mt7615_mutex_release(dev); return false; } EXPORT_SYMBOL_GPL(mt7663_usb_sdio_tx_status_data); void mt7663_usb_sdio_tx_complete_skb(struct mt76_dev *mdev, struct mt76_queue_entry *e) { unsigned int headroom = MT_USB_TXD_SIZE; if (mt76_is_usb(mdev)) headroom += MT_USB_HDR_SIZE; skb_pull(e->skb, headroom); mt76_tx_complete_skb(mdev, e->wcid, e->skb); } EXPORT_SYMBOL_GPL(mt7663_usb_sdio_tx_complete_skb); int mt7663_usb_sdio_tx_prepare_skb(struct mt76_dev *mdev, void *txwi_ptr, enum mt76_txq_id qid, struct mt76_wcid *wcid, struct ieee80211_sta *sta, struct mt76_tx_info *tx_info) { struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76); struct sk_buff *skb = tx_info->skb; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_key_conf *key = info->control.hw_key; struct mt7615_sta *msta; int pad, err, pktid; msta = wcid ? container_of(wcid, struct mt7615_sta, wcid) : NULL; if (!wcid) wcid = &dev->mt76.global_wcid; if ((info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) && msta && !msta->rate_probe) { /* request to configure sampling rate */ spin_lock_bh(&dev->mt76.lock); mt7615_mac_set_rates(&dev->phy, msta, &info->control.rates[0], msta->rates); spin_unlock_bh(&dev->mt76.lock); } pktid = mt76_tx_status_skb_add(&dev->mt76, wcid, skb); mt7663_usb_sdio_write_txwi(dev, wcid, qid, sta, key, pktid, skb); if (mt76_is_usb(mdev)) { u32 len = skb->len; put_unaligned_le32(len, skb_push(skb, sizeof(len))); pad = round_up(skb->len, 4) + 4 - skb->len; } else { pad = round_up(skb->len, 4) - skb->len; } err = mt76_skb_adjust_pad(skb, pad); if (err) /* Release pktid in case of error. */ idr_remove(&wcid->pktid, pktid); return err; } EXPORT_SYMBOL_GPL(mt7663_usb_sdio_tx_prepare_skb); static int mt7663u_dma_sched_init(struct mt7615_dev *dev) { int i; mt76_rmw(dev, MT_DMA_SHDL(MT_DMASHDL_PKT_MAX_SIZE), MT_DMASHDL_PKT_MAX_SIZE_PLE | MT_DMASHDL_PKT_MAX_SIZE_PSE, FIELD_PREP(MT_DMASHDL_PKT_MAX_SIZE_PLE, 1) | FIELD_PREP(MT_DMASHDL_PKT_MAX_SIZE_PSE, 8)); /* disable refill group 5 - group 15 and raise group 2 * and 3 as high priority. */ mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_REFILL), 0xffe00006); mt76_clear(dev, MT_DMA_SHDL(MT_DMASHDL_PAGE), BIT(16)); for (i = 0; i < 5; i++) mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_GROUP_QUOTA(i)), FIELD_PREP(MT_DMASHDL_GROUP_QUOTA_MIN, 0x3) | FIELD_PREP(MT_DMASHDL_GROUP_QUOTA_MAX, 0x1ff)); mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_Q_MAP(0)), 0x42104210); mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_Q_MAP(1)), 0x42104210); mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_Q_MAP(2)), 0x4444); /* group pririority from high to low: * 15 (cmd groups) > 4 > 3 > 2 > 1 > 0. */ mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_SCHED_SET0), 0x6501234f); mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_SCHED_SET1), 0xedcba987); mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_OPTIONAL), 0x7004801c); mt76_wr(dev, MT_UDMA_WLCFG_1, FIELD_PREP(MT_WL_TX_TMOUT_LMT, 80000) | FIELD_PREP(MT_WL_RX_AGG_PKT_LMT, 1)); /* setup UDMA Rx Flush */ mt76_clear(dev, MT_UDMA_WLCFG_0, MT_WL_RX_FLUSH); /* hif reset */ mt76_set(dev, MT_HIF_RST, MT_HIF_LOGIC_RST_N); mt76_set(dev, MT_UDMA_WLCFG_0, MT_WL_RX_AGG_EN | MT_WL_RX_EN | MT_WL_TX_EN | MT_WL_RX_MPSZ_PAD0 | MT_TICK_1US_EN | MT_WL_TX_TMOUT_FUNC_EN); mt76_rmw(dev, MT_UDMA_WLCFG_0, MT_WL_RX_AGG_LMT | MT_WL_RX_AGG_TO, FIELD_PREP(MT_WL_RX_AGG_LMT, 32) | FIELD_PREP(MT_WL_RX_AGG_TO, 100)); return 0; } static int mt7663_usb_sdio_init_hardware(struct mt7615_dev *dev) { int ret, idx; ret = mt7615_eeprom_init(dev, MT_EFUSE_BASE); if (ret < 0) return ret; if (mt76_is_usb(&dev->mt76)) { ret = mt7663u_dma_sched_init(dev); if (ret) return ret; } set_bit(MT76_STATE_INITIALIZED, &dev->mphy.state); /* Beacon and mgmt frames should occupy wcid 0 */ idx = mt76_wcid_alloc(dev->mt76.wcid_mask, MT7615_WTBL_STA - 1); if (idx) return -ENOSPC; dev->mt76.global_wcid.idx = idx; dev->mt76.global_wcid.hw_key_idx = -1; rcu_assign_pointer(dev->mt76.wcid[idx], &dev->mt76.global_wcid); return 0; } int mt7663_usb_sdio_register_device(struct mt7615_dev *dev) { struct ieee80211_hw *hw = mt76_hw(dev); int err; INIT_WORK(&dev->rate_work, mt7663_usb_sdio_rate_work); INIT_LIST_HEAD(&dev->wrd_head); mt7615_init_device(dev); err = mt7663_usb_sdio_init_hardware(dev); if (err) return err; hw->extra_tx_headroom += MT_USB_TXD_SIZE; if (mt76_is_usb(&dev->mt76)) { hw->extra_tx_headroom += MT_USB_HDR_SIZE; /* check hw sg support in order to enable AMSDU */ if (dev->mt76.usb.sg_en) hw->max_tx_fragments = MT_HW_TXP_MAX_BUF_NUM; else hw->max_tx_fragments = 1; } err = mt76_register_device(&dev->mt76, true, mt76_rates, ARRAY_SIZE(mt76_rates)); if (err < 0) return err; if (!dev->mt76.usb.sg_en) { struct ieee80211_sta_vht_cap *vht_cap; /* decrease max A-MSDU size if SG is not supported */ vht_cap = &dev->mphy.sband_5g.sband.vht_cap; vht_cap->cap &= ~IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; } ieee80211_queue_work(hw, &dev->mcu_work); mt7615_init_txpower(dev, &dev->mphy.sband_2g.sband); mt7615_init_txpower(dev, &dev->mphy.sband_5g.sband); return mt7615_init_debugfs(dev); } EXPORT_SYMBOL_GPL(mt7663_usb_sdio_register_device); MODULE_AUTHOR("Lorenzo Bianconi <[email protected]>"); MODULE_AUTHOR("Sean Wang <[email protected]>"); MODULE_LICENSE("Dual BSD/GPL");
linux-master
drivers/net/wireless/mediatek/mt76/mt7615/usb_sdio.c
// SPDX-License-Identifier: GPL-2.0 /* Copyright (C) 2019 MediaTek Inc. * * Author: Felix Fietkau <[email protected]> * Lorenzo Bianconi <[email protected]> * Sean Wang <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include "mt7615.h" #include "mac.h" #include "mcu.h" #include "regs.h" static int mt7663u_mcu_send_message(struct mt76_dev *mdev, struct sk_buff *skb, int cmd, int *seq) { struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76); int ret, ep, len, pad; mt7615_mcu_fill_msg(dev, skb, cmd, seq); if (cmd != MCU_CMD(FW_SCATTER)) ep = MT_EP_OUT_INBAND_CMD; else ep = MT_EP_OUT_AC_BE; len = skb->len; put_unaligned_le32(len, skb_push(skb, sizeof(len))); pad = round_up(skb->len, 4) + 4 - skb->len; ret = mt76_skb_adjust_pad(skb, pad); if (ret < 0) goto out; ret = mt76u_bulk_msg(&dev->mt76, skb->data, skb->len, NULL, 1000, ep); out: dev_kfree_skb(skb); return ret; } int mt7663u_mcu_power_on(struct mt7615_dev *dev) { int ret; ret = mt76u_vendor_request(&dev->mt76, MT_VEND_POWER_ON, USB_DIR_OUT | USB_TYPE_VENDOR, 0x0, 0x1, NULL, 0); if (ret) return ret; if (!mt76_poll_msec(dev, MT_CONN_ON_MISC, MT_TOP_MISC2_FW_PWR_ON, FW_STATE_PWR_ON << 1, 500)) { dev_err(dev->mt76.dev, "Timeout for power on\n"); ret = -EIO; } return 0; } int mt7663u_mcu_init(struct mt7615_dev *dev) { static const struct mt76_mcu_ops mt7663u_mcu_ops = { .headroom = MT_USB_HDR_SIZE + sizeof(struct mt7615_mcu_txd), .tailroom = MT_USB_TAIL_SIZE, .mcu_skb_send_msg = mt7663u_mcu_send_message, .mcu_parse_response = mt7615_mcu_parse_response, }; int ret; dev->mt76.mcu_ops = &mt7663u_mcu_ops, mt76_set(dev, MT_UDMA_TX_QSEL, MT_FW_DL_EN); if (test_and_clear_bit(MT76_STATE_POWER_OFF, &dev->mphy.state)) { ret = mt7615_mcu_restart(&dev->mt76); if (ret) return ret; if (!mt76_poll_msec(dev, MT_CONN_ON_MISC, MT_TOP_MISC2_FW_PWR_ON, 0, 500)) return -EIO; ret = mt7663u_mcu_power_on(dev); if (ret) return ret; } ret = __mt7663_load_firmware(dev); if (ret) return ret; mt76_clear(dev, MT_UDMA_TX_QSEL, MT_FW_DL_EN); set_bit(MT76_STATE_MCU_RUNNING, &dev->mphy.state); return 0; }
linux-master
drivers/net/wireless/mediatek/mt76/mt7615/usb_mcu.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2019 MediaTek Inc. * * Author: Ryder Lee <[email protected]> * Felix Fietkau <[email protected]> */ #include <linux/of.h> #include "mt7615.h" #include "eeprom.h" static int mt7615_efuse_read(struct mt7615_dev *dev, u32 base, u16 addr, u8 *data) { u32 val; int i; val = mt76_rr(dev, base + MT_EFUSE_CTRL); val &= ~(MT_EFUSE_CTRL_AIN | MT_EFUSE_CTRL_MODE); val |= FIELD_PREP(MT_EFUSE_CTRL_AIN, addr & ~0xf); val |= MT_EFUSE_CTRL_KICK; mt76_wr(dev, base + MT_EFUSE_CTRL, val); if (!mt76_poll(dev, base + MT_EFUSE_CTRL, MT_EFUSE_CTRL_KICK, 0, 1000)) return -ETIMEDOUT; udelay(2); val = mt76_rr(dev, base + MT_EFUSE_CTRL); if ((val & MT_EFUSE_CTRL_AOUT) == MT_EFUSE_CTRL_AOUT || WARN_ON_ONCE(!(val & MT_EFUSE_CTRL_VALID))) { memset(data, 0x0, 16); return 0; } for (i = 0; i < 4; i++) { val = mt76_rr(dev, base + MT_EFUSE_RDATA(i)); put_unaligned_le32(val, data + 4 * i); } return 0; } static int mt7615_efuse_init(struct mt7615_dev *dev, u32 base) { int i, len = MT7615_EEPROM_SIZE; void *buf; u32 val; if (is_mt7663(&dev->mt76)) len = MT7663_EEPROM_SIZE; val = mt76_rr(dev, base + MT_EFUSE_BASE_CTRL); if (val & MT_EFUSE_BASE_CTRL_EMPTY) return 0; dev->mt76.otp.data = devm_kzalloc(dev->mt76.dev, len, GFP_KERNEL); dev->mt76.otp.size = len; if (!dev->mt76.otp.data) return -ENOMEM; buf = dev->mt76.otp.data; for (i = 0; i + 16 <= len; i += 16) { int ret; ret = mt7615_efuse_read(dev, base, i, buf + i); if (ret) return ret; } return 0; } static int mt7615_eeprom_load(struct mt7615_dev *dev, u32 addr) { int ret; BUILD_BUG_ON(MT7615_EEPROM_FULL_SIZE < MT7663_EEPROM_SIZE); ret = mt76_eeprom_init(&dev->mt76, MT7615_EEPROM_FULL_SIZE); if (ret < 0) return ret; return mt7615_efuse_init(dev, addr); } static int mt7615_check_eeprom(struct mt76_dev *dev) { u16 val = get_unaligned_le16(dev->eeprom.data); switch (val) { case 0x7615: case 0x7622: case 0x7663: return 0; default: return -EINVAL; } } static void mt7615_eeprom_parse_hw_band_cap(struct mt7615_dev *dev) { u8 val, *eeprom = dev->mt76.eeprom.data; if (is_mt7663(&dev->mt76)) { /* dual band */ dev->mphy.cap.has_2ghz = true; dev->mphy.cap.has_5ghz = true; return; } if (is_mt7622(&dev->mt76)) { /* 2GHz only */ dev->mphy.cap.has_2ghz = true; return; } if (is_mt7611(&dev->mt76)) { /* 5GHz only */ dev->mphy.cap.has_5ghz = true; return; } val = FIELD_GET(MT_EE_NIC_WIFI_CONF_BAND_SEL, eeprom[MT_EE_WIFI_CONF]); switch (val) { case MT_EE_5GHZ: dev->mphy.cap.has_5ghz = true; break; case MT_EE_DBDC: dev->dbdc_support = true; fallthrough; case MT_EE_2GHZ: dev->mphy.cap.has_2ghz = true; break; default: dev->mphy.cap.has_2ghz = true; dev->mphy.cap.has_5ghz = true; break; } } static void mt7615_eeprom_parse_hw_cap(struct mt7615_dev *dev) { u8 *eeprom = dev->mt76.eeprom.data; u8 tx_mask, max_nss; mt7615_eeprom_parse_hw_band_cap(dev); if (is_mt7663(&dev->mt76)) { max_nss = 2; tx_mask = FIELD_GET(MT_EE_HW_CONF1_TX_MASK, eeprom[MT7663_EE_HW_CONF1]); } else { u32 val; /* read tx-rx mask from eeprom */ val = mt76_rr(dev, MT_TOP_STRAP_STA); max_nss = val & MT_TOP_3NSS ? 3 : 4; tx_mask = FIELD_GET(MT_EE_NIC_CONF_TX_MASK, eeprom[MT_EE_NIC_CONF_0]); } if (!tx_mask || tx_mask > max_nss) tx_mask = max_nss; dev->chainmask = BIT(tx_mask) - 1; dev->mphy.antenna_mask = dev->chainmask; dev->mphy.chainmask = dev->chainmask; } static int mt7663_eeprom_get_target_power_index(struct mt7615_dev *dev, struct ieee80211_channel *chan, u8 chain_idx) { int index, group; if (chain_idx > 1) return -EINVAL; if (chan->band == NL80211_BAND_2GHZ) return MT7663_EE_TX0_2G_TARGET_POWER + (chain_idx << 4); group = mt7615_get_channel_group(chan->hw_value); if (chain_idx == 1) index = MT7663_EE_TX1_5G_G0_TARGET_POWER; else index = MT7663_EE_TX0_5G_G0_TARGET_POWER; return index + group * 3; } int mt7615_eeprom_get_target_power_index(struct mt7615_dev *dev, struct ieee80211_channel *chan, u8 chain_idx) { int index; if (is_mt7663(&dev->mt76)) return mt7663_eeprom_get_target_power_index(dev, chan, chain_idx); if (chain_idx > 3) return -EINVAL; /* TSSI disabled */ if (mt7615_ext_pa_enabled(dev, chan->band)) { if (chan->band == NL80211_BAND_2GHZ) return MT_EE_EXT_PA_2G_TARGET_POWER; else return MT_EE_EXT_PA_5G_TARGET_POWER; } /* TSSI enabled */ if (chan->band == NL80211_BAND_2GHZ) { index = MT_EE_TX0_2G_TARGET_POWER + chain_idx * 6; } else { int group = mt7615_get_channel_group(chan->hw_value); switch (chain_idx) { case 1: index = MT_EE_TX1_5G_G0_TARGET_POWER; break; case 2: index = MT_EE_TX2_5G_G0_TARGET_POWER; break; case 3: index = MT_EE_TX3_5G_G0_TARGET_POWER; break; case 0: default: index = MT_EE_TX0_5G_G0_TARGET_POWER; break; } index += 5 * group; } return index; } int mt7615_eeprom_get_power_delta_index(struct mt7615_dev *dev, enum nl80211_band band) { /* assume the first rate has the highest power offset */ if (is_mt7663(&dev->mt76)) { if (band == NL80211_BAND_2GHZ) return MT_EE_TX0_5G_G0_TARGET_POWER; else return MT7663_EE_5G_RATE_POWER; } if (band == NL80211_BAND_2GHZ) return MT_EE_2G_RATE_POWER; else return MT_EE_5G_RATE_POWER; } static void mt7615_apply_cal_free_data(struct mt7615_dev *dev) { static const u16 ical[] = { 0x53, 0x54, 0x55, 0x56, 0x57, 0x5c, 0x5d, 0x62, 0x63, 0x68, 0x69, 0x6e, 0x6f, 0x73, 0x74, 0x78, 0x79, 0x82, 0x83, 0x87, 0x88, 0x8c, 0x8d, 0x91, 0x92, 0x96, 0x97, 0x9b, 0x9c, 0xa0, 0xa1, 0xaa, 0xab, 0xaf, 0xb0, 0xb4, 0xb5, 0xb9, 0xba, 0xf4, 0xf7, 0xff, 0x140, 0x141, 0x145, 0x146, 0x14a, 0x14b, 0x154, 0x155, 0x159, 0x15a, 0x15e, 0x15f, 0x163, 0x164, 0x168, 0x169, 0x16d, 0x16e, 0x172, 0x173, 0x17c, 0x17d, 0x181, 0x182, 0x186, 0x187, 0x18b, 0x18c }; static const u16 ical_nocheck[] = { 0x110, 0x111, 0x112, 0x113, 0x114, 0x115, 0x116, 0x117, 0x118, 0x1b5, 0x1b6, 0x1b7, 0x3ac, 0x3ad, 0x3ae, 0x3af, 0x3b0, 0x3b1, 0x3b2 }; u8 *eeprom = dev->mt76.eeprom.data; u8 *otp = dev->mt76.otp.data; int i; if (!otp) return; for (i = 0; i < ARRAY_SIZE(ical); i++) if (!otp[ical[i]]) return; for (i = 0; i < ARRAY_SIZE(ical); i++) eeprom[ical[i]] = otp[ical[i]]; for (i = 0; i < ARRAY_SIZE(ical_nocheck); i++) eeprom[ical_nocheck[i]] = otp[ical_nocheck[i]]; } static void mt7622_apply_cal_free_data(struct mt7615_dev *dev) { static const u16 ical[] = { 0x53, 0x54, 0x55, 0x56, 0xf4, 0xf7, 0x144, 0x156, 0x15b }; u8 *eeprom = dev->mt76.eeprom.data; u8 *otp = dev->mt76.otp.data; int i; if (!otp) return; for (i = 0; i < ARRAY_SIZE(ical); i++) { if (!otp[ical[i]]) continue; eeprom[ical[i]] = otp[ical[i]]; } } static void mt7615_cal_free_data(struct mt7615_dev *dev) { struct device_node *np = dev->mt76.dev->of_node; if (!np || !of_property_read_bool(np, "mediatek,eeprom-merge-otp")) return; switch (mt76_chip(&dev->mt76)) { case 0x7622: mt7622_apply_cal_free_data(dev); break; case 0x7615: case 0x7611: mt7615_apply_cal_free_data(dev); break; } } int mt7615_eeprom_init(struct mt7615_dev *dev, u32 addr) { int ret; ret = mt7615_eeprom_load(dev, addr); if (ret < 0) return ret; ret = mt7615_check_eeprom(&dev->mt76); if (ret && dev->mt76.otp.data) { memcpy(dev->mt76.eeprom.data, dev->mt76.otp.data, dev->mt76.otp.size); } else { dev->flash_eeprom = true; mt7615_cal_free_data(dev); } mt7615_eeprom_parse_hw_cap(dev); memcpy(dev->mphy.macaddr, dev->mt76.eeprom.data + MT_EE_MAC_ADDR, ETH_ALEN); mt76_eeprom_override(&dev->mphy); return 0; } EXPORT_SYMBOL_GPL(mt7615_eeprom_init);
linux-master
drivers/net/wireless/mediatek/mt76/mt7615/eeprom.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2019 MediaTek Inc. * * Author: Ryder Lee <[email protected]> * Roy Luo <[email protected]> * Lorenzo Bianconi <[email protected]> * Felix Fietkau <[email protected]> */ #include "mt7615.h" #include "../dma.h" #include "mac.h" static int mt7622_init_tx_queues_multi(struct mt7615_dev *dev) { static const u8 wmm_queue_map[] = { [IEEE80211_AC_BK] = MT7622_TXQ_AC0, [IEEE80211_AC_BE] = MT7622_TXQ_AC1, [IEEE80211_AC_VI] = MT7622_TXQ_AC2, [IEEE80211_AC_VO] = MT7622_TXQ_AC3, }; int ret; int i; for (i = 0; i < ARRAY_SIZE(wmm_queue_map); i++) { ret = mt76_init_tx_queue(&dev->mphy, i, wmm_queue_map[i], MT7615_TX_RING_SIZE / 2, MT_TX_RING_BASE, 0); if (ret) return ret; } ret = mt76_init_tx_queue(&dev->mphy, MT_TXQ_PSD, MT7622_TXQ_MGMT, MT7615_TX_MGMT_RING_SIZE, MT_TX_RING_BASE, 0); if (ret) return ret; return mt76_init_mcu_queue(&dev->mt76, MT_MCUQ_WM, MT7622_TXQ_MCU, MT7615_TX_MCU_RING_SIZE, MT_TX_RING_BASE); } static int mt7615_init_tx_queues(struct mt7615_dev *dev) { int ret; ret = mt76_init_mcu_queue(&dev->mt76, MT_MCUQ_FWDL, MT7615_TXQ_FWDL, MT7615_TX_FWDL_RING_SIZE, MT_TX_RING_BASE); if (ret) return ret; if (!is_mt7615(&dev->mt76)) return mt7622_init_tx_queues_multi(dev); ret = mt76_connac_init_tx_queues(&dev->mphy, 0, MT7615_TX_RING_SIZE, MT_TX_RING_BASE, 0); if (ret) return ret; return mt76_init_mcu_queue(&dev->mt76, MT_MCUQ_WM, MT7615_TXQ_MCU, MT7615_TX_MCU_RING_SIZE, MT_TX_RING_BASE); } static int mt7615_poll_tx(struct napi_struct *napi, int budget) { struct mt7615_dev *dev; dev = container_of(napi, struct mt7615_dev, mt76.tx_napi); if (!mt76_connac_pm_ref(&dev->mphy, &dev->pm)) { napi_complete(napi); queue_work(dev->mt76.wq, &dev->pm.wake_work); return 0; } mt76_queue_tx_cleanup(dev, dev->mt76.q_mcu[MT_MCUQ_WM], false); if (napi_complete(napi)) mt76_connac_irq_enable(&dev->mt76, mt7615_tx_mcu_int_mask(dev)); mt76_connac_pm_unref(&dev->mphy, &dev->pm); return 0; } static int mt7615_poll_rx(struct napi_struct *napi, int budget) { struct mt7615_dev *dev; int done; dev = container_of(napi->dev, struct mt7615_dev, mt76.napi_dev); if (!mt76_connac_pm_ref(&dev->mphy, &dev->pm)) { napi_complete(napi); queue_work(dev->mt76.wq, &dev->pm.wake_work); return 0; } done = mt76_dma_rx_poll(napi, budget); mt76_connac_pm_unref(&dev->mphy, &dev->pm); return done; } int mt7615_wait_pdma_busy(struct mt7615_dev *dev) { struct mt76_dev *mdev = &dev->mt76; if (!is_mt7663(mdev)) { u32 mask = MT_PDMA_TX_BUSY | MT_PDMA_RX_BUSY; u32 reg = mt7615_reg_map(dev, MT_PDMA_BUSY); if (!mt76_poll_msec(dev, reg, mask, 0, 1000)) { dev_err(mdev->dev, "PDMA engine busy\n"); return -EIO; } return 0; } if (!mt76_poll_msec(dev, MT_PDMA_BUSY_STATUS, MT_PDMA_TX_IDX_BUSY, 0, 1000)) { dev_err(mdev->dev, "PDMA engine tx busy\n"); return -EIO; } if (!mt76_poll_msec(dev, MT_PSE_PG_INFO, MT_PSE_SRC_CNT, 0, 1000)) { dev_err(mdev->dev, "PSE engine busy\n"); return -EIO; } if (!mt76_poll_msec(dev, MT_PDMA_BUSY_STATUS, MT_PDMA_BUSY_IDX, 0, 1000)) { dev_err(mdev->dev, "PDMA engine busy\n"); return -EIO; } return 0; } static void mt7622_dma_sched_init(struct mt7615_dev *dev) { u32 reg = mt7615_reg_map(dev, MT_DMASHDL_BASE); int i; mt76_rmw(dev, reg + MT_DMASHDL_PKT_MAX_SIZE, MT_DMASHDL_PKT_MAX_SIZE_PLE | MT_DMASHDL_PKT_MAX_SIZE_PSE, FIELD_PREP(MT_DMASHDL_PKT_MAX_SIZE_PLE, 1) | FIELD_PREP(MT_DMASHDL_PKT_MAX_SIZE_PSE, 8)); for (i = 0; i <= 5; i++) mt76_wr(dev, reg + MT_DMASHDL_GROUP_QUOTA(i), FIELD_PREP(MT_DMASHDL_GROUP_QUOTA_MIN, 0x10) | FIELD_PREP(MT_DMASHDL_GROUP_QUOTA_MAX, 0x800)); mt76_wr(dev, reg + MT_DMASHDL_Q_MAP(0), 0x42104210); mt76_wr(dev, reg + MT_DMASHDL_Q_MAP(1), 0x42104210); mt76_wr(dev, reg + MT_DMASHDL_Q_MAP(2), 0x5); mt76_wr(dev, reg + MT_DMASHDL_Q_MAP(3), 0); mt76_wr(dev, reg + MT_DMASHDL_SCHED_SET0, 0x6012345f); mt76_wr(dev, reg + MT_DMASHDL_SCHED_SET1, 0xedcba987); } static void mt7663_dma_sched_init(struct mt7615_dev *dev) { int i; mt76_rmw(dev, MT_DMA_SHDL(MT_DMASHDL_PKT_MAX_SIZE), MT_DMASHDL_PKT_MAX_SIZE_PLE | MT_DMASHDL_PKT_MAX_SIZE_PSE, FIELD_PREP(MT_DMASHDL_PKT_MAX_SIZE_PLE, 1) | FIELD_PREP(MT_DMASHDL_PKT_MAX_SIZE_PSE, 8)); /* enable refill control group 0, 1, 2, 4, 5 */ mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_REFILL), 0xffc80000); /* enable group 0, 1, 2, 4, 5, 15 */ mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_OPTIONAL), 0x70068037); /* each group min quota must larger then PLE_PKT_MAX_SIZE_NUM */ for (i = 0; i < 5; i++) mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_GROUP_QUOTA(i)), FIELD_PREP(MT_DMASHDL_GROUP_QUOTA_MIN, 0x40) | FIELD_PREP(MT_DMASHDL_GROUP_QUOTA_MAX, 0x800)); mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_GROUP_QUOTA(5)), FIELD_PREP(MT_DMASHDL_GROUP_QUOTA_MIN, 0x40) | FIELD_PREP(MT_DMASHDL_GROUP_QUOTA_MAX, 0x40)); mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_GROUP_QUOTA(15)), FIELD_PREP(MT_DMASHDL_GROUP_QUOTA_MIN, 0x20) | FIELD_PREP(MT_DMASHDL_GROUP_QUOTA_MAX, 0x20)); mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_Q_MAP(0)), 0x42104210); mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_Q_MAP(1)), 0x42104210); mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_Q_MAP(2)), 0x00050005); mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_Q_MAP(3)), 0); /* ALTX0 and ALTX1 QID mapping to group 5 */ mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_SCHED_SET0), 0x6012345f); mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_SCHED_SET1), 0xedcba987); } void mt7615_dma_start(struct mt7615_dev *dev) { /* start dma engine */ mt76_set(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_DMA_EN | MT_WPDMA_GLO_CFG_RX_DMA_EN | MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE); if (is_mt7622(&dev->mt76)) mt7622_dma_sched_init(dev); if (is_mt7663(&dev->mt76)) { mt7663_dma_sched_init(dev); mt76_wr(dev, MT_MCU2HOST_INT_ENABLE, MT7663_MCU_CMD_ERROR_MASK); } } int mt7615_dma_init(struct mt7615_dev *dev) { int rx_ring_size = MT7615_RX_RING_SIZE; u32 mask; int ret; mt76_dma_attach(&dev->mt76); mt76_wr(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE | MT_WPDMA_GLO_CFG_FIFO_LITTLE_ENDIAN | MT_WPDMA_GLO_CFG_OMIT_TX_INFO); mt76_rmw_field(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_BT_SIZE_BIT0, 0x1); mt76_rmw_field(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_BT_SIZE_BIT21, 0x1); mt76_rmw_field(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_DMA_BURST_SIZE, 0x3); mt76_rmw_field(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_MULTI_DMA_EN, 0x3); if (is_mt7615(&dev->mt76)) { mt76_set(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_FIRST_TOKEN_ONLY); mt76_wr(dev, MT_WPDMA_GLO_CFG1, 0x1); mt76_wr(dev, MT_WPDMA_TX_PRE_CFG, 0xf0000); mt76_wr(dev, MT_WPDMA_RX_PRE_CFG, 0xf7f0000); mt76_wr(dev, MT_WPDMA_ABT_CFG, 0x4000026); mt76_wr(dev, MT_WPDMA_ABT_CFG1, 0x18811881); mt76_set(dev, 0x7158, BIT(16)); mt76_clear(dev, 0x7000, BIT(23)); } mt76_wr(dev, MT_WPDMA_RST_IDX, ~0); ret = mt7615_init_tx_queues(dev); if (ret) return ret; /* init rx queues */ ret = mt76_queue_alloc(dev, &dev->mt76.q_rx[MT_RXQ_MCU], 1, MT7615_RX_MCU_RING_SIZE, MT_RX_BUF_SIZE, MT_RX_RING_BASE); if (ret) return ret; if (!is_mt7615(&dev->mt76)) rx_ring_size /= 2; ret = mt76_queue_alloc(dev, &dev->mt76.q_rx[MT_RXQ_MAIN], 0, rx_ring_size, MT_RX_BUF_SIZE, MT_RX_RING_BASE); if (ret) return ret; mt76_wr(dev, MT_DELAY_INT_CFG, 0); ret = mt76_init_queues(dev, mt7615_poll_rx); if (ret < 0) return ret; netif_napi_add_tx(&dev->mt76.tx_napi_dev, &dev->mt76.tx_napi, mt7615_poll_tx); napi_enable(&dev->mt76.tx_napi); mt76_poll(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_DMA_BUSY | MT_WPDMA_GLO_CFG_RX_DMA_BUSY, 0, 1000); /* enable interrupts for TX/RX rings */ mask = MT_INT_RX_DONE_ALL | mt7615_tx_mcu_int_mask(dev); if (is_mt7663(&dev->mt76)) mask |= MT7663_INT_MCU_CMD; else mask |= MT_INT_MCU_CMD; mt76_connac_irq_enable(&dev->mt76, mask); mt7615_dma_start(dev); return 0; } void mt7615_dma_cleanup(struct mt7615_dev *dev) { mt76_clear(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_DMA_EN | MT_WPDMA_GLO_CFG_RX_DMA_EN); mt76_set(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_SW_RESET); mt76_dma_cleanup(&dev->mt76); }
linux-master
drivers/net/wireless/mediatek/mt76/mt7615/dma.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2020 MediaTek Inc. * * Author: Ryder Lee <[email protected]> * Roy Luo <[email protected]> * Felix Fietkau <[email protected]> * Lorenzo Bianconi <[email protected]> */ #include <linux/etherdevice.h> #include <linux/timekeeping.h> #include "mt7615.h" #include "../dma.h" #include "mac.h" static void mt7615_write_fw_txp(struct mt7615_dev *dev, struct mt76_tx_info *tx_info, void *txp_ptr, u32 id) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx_info->skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx_info->skb); struct ieee80211_key_conf *key = info->control.hw_key; struct ieee80211_vif *vif = info->control.vif; struct mt76_connac_fw_txp *txp = txp_ptr; u8 *rept_wds_wcid = (u8 *)&txp->rept_wds_wcid; int nbuf = tx_info->nbuf - 1; int i; for (i = 0; i < nbuf; i++) { txp->buf[i] = cpu_to_le32(tx_info->buf[i + 1].addr); txp->len[i] = cpu_to_le16(tx_info->buf[i + 1].len); } txp->nbuf = nbuf; /* pass partial skb header to fw */ tx_info->buf[0].len = MT_TXD_SIZE + sizeof(*txp); tx_info->buf[1].len = MT_CT_PARSE_LEN; tx_info->buf[1].skip_unmap = true; tx_info->nbuf = MT_CT_DMA_BUF_NUM; txp->flags = cpu_to_le16(MT_CT_INFO_APPLY_TXD); if (!key) txp->flags |= cpu_to_le16(MT_CT_INFO_NONE_CIPHER_FRAME); if (ieee80211_is_mgmt(hdr->frame_control)) txp->flags |= cpu_to_le16(MT_CT_INFO_MGMT_FRAME); if (vif) { struct mt76_vif *mvif = (struct mt76_vif *)vif->drv_priv; txp->bss_idx = mvif->idx; } txp->token = cpu_to_le16(id); *rept_wds_wcid = 0xff; } int mt7615_tx_prepare_skb(struct mt76_dev *mdev, void *txwi_ptr, enum mt76_txq_id qid, struct mt76_wcid *wcid, struct ieee80211_sta *sta, struct mt76_tx_info *tx_info) { struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx_info->skb); struct ieee80211_key_conf *key = info->control.hw_key; int pid, id; u8 *txwi = (u8 *)txwi_ptr; struct mt76_txwi_cache *t; struct mt7615_sta *msta; void *txp; msta = wcid ? container_of(wcid, struct mt7615_sta, wcid) : NULL; if (!wcid) wcid = &dev->mt76.global_wcid; if ((info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) && msta) { struct mt7615_phy *phy = &dev->phy; u8 phy_idx = (info->hw_queue & MT_TX_HW_QUEUE_PHY) >> 2; if (phy_idx && mdev->phys[MT_BAND1]) phy = mdev->phys[MT_BAND1]->priv; spin_lock_bh(&dev->mt76.lock); mt7615_mac_set_rates(phy, msta, &info->control.rates[0], msta->rates); spin_unlock_bh(&dev->mt76.lock); } t = (struct mt76_txwi_cache *)(txwi + mdev->drv->txwi_size); t->skb = tx_info->skb; id = mt76_token_get(mdev, &t); if (id < 0) return id; pid = mt76_tx_status_skb_add(mdev, wcid, tx_info->skb); mt7615_mac_write_txwi(dev, txwi_ptr, tx_info->skb, wcid, sta, pid, key, qid, false); txp = txwi + MT_TXD_SIZE; memset(txp, 0, sizeof(struct mt76_connac_txp_common)); if (is_mt7615(&dev->mt76)) mt7615_write_fw_txp(dev, tx_info, txp, id); else mt76_connac_write_hw_txp(mdev, tx_info, txp, id); tx_info->skb = DMA_DUMMY_DATA; return 0; } void mt7615_dma_reset(struct mt7615_dev *dev) { int i; mt76_clear(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_RX_DMA_EN | MT_WPDMA_GLO_CFG_TX_DMA_EN | MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE); usleep_range(1000, 2000); for (i = 0; i < __MT_TXQ_MAX; i++) mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[i], true); for (i = 0; i < __MT_MCUQ_MAX; i++) mt76_queue_tx_cleanup(dev, dev->mt76.q_mcu[i], true); mt76_for_each_q_rx(&dev->mt76, i) mt76_queue_rx_reset(dev, i); mt76_tx_status_check(&dev->mt76, true); mt7615_dma_start(dev); } EXPORT_SYMBOL_GPL(mt7615_dma_reset); static void mt7615_hif_int_event_trigger(struct mt7615_dev *dev, u8 event) { u32 reg = MT_MCU_INT_EVENT; if (is_mt7663(&dev->mt76)) reg = MT7663_MCU_INT_EVENT; mt76_wr(dev, reg, event); mt7622_trigger_hif_int(dev, true); mt7622_trigger_hif_int(dev, false); } static bool mt7615_wait_reset_state(struct mt7615_dev *dev, u32 state) { bool ret; ret = wait_event_timeout(dev->reset_wait, (READ_ONCE(dev->reset_state) & state), MT7615_RESET_TIMEOUT); WARN(!ret, "Timeout waiting for MCU reset state %x\n", state); return ret; } static void mt7615_update_vif_beacon(void *priv, u8 *mac, struct ieee80211_vif *vif) { struct ieee80211_hw *hw = priv; struct mt7615_dev *dev = mt7615_hw_dev(hw); switch (vif->type) { case NL80211_IFTYPE_MESH_POINT: case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_AP: mt7615_mcu_add_beacon(dev, hw, vif, vif->bss_conf.enable_beacon); break; default: break; } } static void mt7615_update_beacons(struct mt7615_dev *dev) { struct mt76_phy *mphy_ext = dev->mt76.phys[MT_BAND1]; ieee80211_iterate_active_interfaces(dev->mt76.hw, IEEE80211_IFACE_ITER_RESUME_ALL, mt7615_update_vif_beacon, dev->mt76.hw); if (!mphy_ext) return; ieee80211_iterate_active_interfaces(mphy_ext->hw, IEEE80211_IFACE_ITER_RESUME_ALL, mt7615_update_vif_beacon, mphy_ext->hw); } void mt7615_mac_reset_work(struct work_struct *work) { struct mt7615_phy *phy2; struct mt76_phy *ext_phy; struct mt7615_dev *dev; unsigned long timeout; int i; dev = container_of(work, struct mt7615_dev, reset_work); ext_phy = dev->mt76.phys[MT_BAND1]; phy2 = ext_phy ? ext_phy->priv : NULL; if (!(READ_ONCE(dev->reset_state) & MT_MCU_CMD_STOP_PDMA)) return; ieee80211_stop_queues(mt76_hw(dev)); if (ext_phy) ieee80211_stop_queues(ext_phy->hw); set_bit(MT76_RESET, &dev->mphy.state); set_bit(MT76_MCU_RESET, &dev->mphy.state); wake_up(&dev->mt76.mcu.wait); cancel_delayed_work_sync(&dev->mphy.mac_work); del_timer_sync(&dev->phy.roc_timer); cancel_work_sync(&dev->phy.roc_work); if (phy2) { set_bit(MT76_RESET, &phy2->mt76->state); cancel_delayed_work_sync(&phy2->mt76->mac_work); del_timer_sync(&phy2->roc_timer); cancel_work_sync(&phy2->roc_work); } /* lock/unlock all queues to ensure that no tx is pending */ mt76_txq_schedule_all(&dev->mphy); if (ext_phy) mt76_txq_schedule_all(ext_phy); mt76_worker_disable(&dev->mt76.tx_worker); mt76_for_each_q_rx(&dev->mt76, i) napi_disable(&dev->mt76.napi[i]); napi_disable(&dev->mt76.tx_napi); mt7615_mutex_acquire(dev); mt7615_hif_int_event_trigger(dev, MT_MCU_INT_EVENT_PDMA_STOPPED); if (mt7615_wait_reset_state(dev, MT_MCU_CMD_RESET_DONE)) { mt7615_dma_reset(dev); mt7615_tx_token_put(dev); idr_init(&dev->mt76.token); mt76_wr(dev, MT_WPDMA_MEM_RNG_ERR, 0); mt7615_hif_int_event_trigger(dev, MT_MCU_INT_EVENT_PDMA_INIT); mt7615_wait_reset_state(dev, MT_MCU_CMD_RECOVERY_DONE); } clear_bit(MT76_MCU_RESET, &dev->mphy.state); clear_bit(MT76_RESET, &dev->mphy.state); if (phy2) clear_bit(MT76_RESET, &phy2->mt76->state); mt76_worker_enable(&dev->mt76.tx_worker); local_bh_disable(); napi_enable(&dev->mt76.tx_napi); napi_schedule(&dev->mt76.tx_napi); mt76_for_each_q_rx(&dev->mt76, i) { napi_enable(&dev->mt76.napi[i]); napi_schedule(&dev->mt76.napi[i]); } local_bh_enable(); ieee80211_wake_queues(mt76_hw(dev)); if (ext_phy) ieee80211_wake_queues(ext_phy->hw); mt7615_hif_int_event_trigger(dev, MT_MCU_INT_EVENT_RESET_DONE); mt7615_wait_reset_state(dev, MT_MCU_CMD_NORMAL_STATE); mt7615_update_beacons(dev); mt7615_mutex_release(dev); timeout = mt7615_get_macwork_timeout(dev); ieee80211_queue_delayed_work(mt76_hw(dev), &dev->mphy.mac_work, timeout); if (phy2) ieee80211_queue_delayed_work(ext_phy->hw, &phy2->mt76->mac_work, timeout); }
linux-master
drivers/net/wireless/mediatek/mt76/mt7615/pci_mac.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2019 MediaTek Inc. * * Author: Roy Luo <[email protected]> * Ryder Lee <[email protected]> * Felix Fietkau <[email protected]> * Lorenzo Bianconi <[email protected]> */ #include <linux/etherdevice.h> #include <linux/module.h> #include "mt7615.h" #include "mcu.h" static bool mt7615_dev_running(struct mt7615_dev *dev) { struct mt7615_phy *phy; if (test_bit(MT76_STATE_RUNNING, &dev->mphy.state)) return true; phy = mt7615_ext_phy(dev); return phy && test_bit(MT76_STATE_RUNNING, &phy->mt76->state); } static int mt7615_start(struct ieee80211_hw *hw) { struct mt7615_dev *dev = mt7615_hw_dev(hw); struct mt7615_phy *phy = mt7615_hw_phy(hw); unsigned long timeout; bool running; int ret; if (!mt7615_wait_for_mcu_init(dev)) return -EIO; mt7615_mutex_acquire(dev); running = mt7615_dev_running(dev); if (!running) { ret = mt7615_mcu_set_pm(dev, 0, 0); if (ret) goto out; ret = mt76_connac_mcu_set_mac_enable(&dev->mt76, 0, true, false); if (ret) goto out; mt7615_mac_enable_nf(dev, 0); } if (phy != &dev->phy) { ret = mt7615_mcu_set_pm(dev, 1, 0); if (ret) goto out; ret = mt76_connac_mcu_set_mac_enable(&dev->mt76, 1, true, false); if (ret) goto out; mt7615_mac_enable_nf(dev, 1); } if (mt7615_firmware_offload(dev)) { ret = mt76_connac_mcu_set_channel_domain(phy->mt76); if (ret) goto out; ret = mt76_connac_mcu_set_rate_txpower(phy->mt76); if (ret) goto out; } ret = mt7615_mcu_set_chan_info(phy, MCU_EXT_CMD(SET_RX_PATH)); if (ret) goto out; set_bit(MT76_STATE_RUNNING, &phy->mt76->state); timeout = mt7615_get_macwork_timeout(dev); ieee80211_queue_delayed_work(hw, &phy->mt76->mac_work, timeout); if (!running) mt7615_mac_reset_counters(phy); out: mt7615_mutex_release(dev); return ret; } static void mt7615_stop(struct ieee80211_hw *hw) { struct mt7615_dev *dev = mt7615_hw_dev(hw); struct mt7615_phy *phy = mt7615_hw_phy(hw); cancel_delayed_work_sync(&phy->mt76->mac_work); del_timer_sync(&phy->roc_timer); cancel_work_sync(&phy->roc_work); cancel_delayed_work_sync(&dev->pm.ps_work); cancel_work_sync(&dev->pm.wake_work); mt76_connac_free_pending_tx_skbs(&dev->pm, NULL); mt7615_mutex_acquire(dev); mt76_testmode_reset(phy->mt76, true); clear_bit(MT76_STATE_RUNNING, &phy->mt76->state); cancel_delayed_work_sync(&phy->scan_work); if (phy != &dev->phy) { mt7615_mcu_set_pm(dev, 1, 1); mt76_connac_mcu_set_mac_enable(&dev->mt76, 1, false, false); } if (!mt7615_dev_running(dev)) { mt7615_mcu_set_pm(dev, 0, 1); mt76_connac_mcu_set_mac_enable(&dev->mt76, 0, false, false); } mt7615_mutex_release(dev); } static inline int get_free_idx(u32 mask, u8 start, u8 end) { return ffs(~mask & GENMASK(end, start)); } static int get_omac_idx(enum nl80211_iftype type, u64 mask) { int i; switch (type) { case NL80211_IFTYPE_STATION: /* prefer hw bssid slot 1-3 */ i = get_free_idx(mask, HW_BSSID_1, HW_BSSID_3); if (i) return i - 1; /* next, try to find a free repeater entry for the sta */ i = get_free_idx(mask >> REPEATER_BSSID_START, 0, REPEATER_BSSID_MAX - REPEATER_BSSID_START); if (i) return i + 32 - 1; i = get_free_idx(mask, EXT_BSSID_1, EXT_BSSID_MAX); if (i) return i - 1; if (~mask & BIT(HW_BSSID_0)) return HW_BSSID_0; break; case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_MESH_POINT: case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_AP: /* ap uses hw bssid 0 and ext bssid */ if (~mask & BIT(HW_BSSID_0)) return HW_BSSID_0; i = get_free_idx(mask, EXT_BSSID_1, EXT_BSSID_MAX); if (i) return i - 1; break; default: WARN_ON(1); break; } return -1; } static int mt7615_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv; struct mt7615_dev *dev = mt7615_hw_dev(hw); struct mt7615_phy *phy = mt7615_hw_phy(hw); struct mt76_txq *mtxq; bool ext_phy = phy != &dev->phy; int idx, ret = 0; mt7615_mutex_acquire(dev); mt76_testmode_reset(phy->mt76, true); if (vif->type == NL80211_IFTYPE_MONITOR && is_zero_ether_addr(vif->addr)) phy->monitor_vif = vif; mvif->mt76.idx = __ffs64(~dev->mt76.vif_mask); if (mvif->mt76.idx >= MT7615_MAX_INTERFACES) { ret = -ENOSPC; goto out; } idx = get_omac_idx(vif->type, dev->omac_mask); if (idx < 0) { ret = -ENOSPC; goto out; } mvif->mt76.omac_idx = idx; mvif->mt76.band_idx = ext_phy; mvif->mt76.wmm_idx = vif->type != NL80211_IFTYPE_AP; if (ext_phy) mvif->mt76.wmm_idx += 2; dev->mt76.vif_mask |= BIT_ULL(mvif->mt76.idx); dev->omac_mask |= BIT_ULL(mvif->mt76.omac_idx); phy->omac_mask |= BIT_ULL(mvif->mt76.omac_idx); ret = mt7615_mcu_set_dbdc(dev); if (ret) goto out; idx = MT7615_WTBL_RESERVED - mvif->mt76.idx; INIT_LIST_HEAD(&mvif->sta.wcid.poll_list); mvif->sta.wcid.idx = idx; mvif->sta.wcid.phy_idx = mvif->mt76.band_idx; mvif->sta.wcid.hw_key_idx = -1; mt76_packet_id_init(&mvif->sta.wcid); mt7615_mac_wtbl_update(dev, idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); rcu_assign_pointer(dev->mt76.wcid[idx], &mvif->sta.wcid); if (vif->txq) { mtxq = (struct mt76_txq *)vif->txq->drv_priv; mtxq->wcid = idx; } ret = mt7615_mcu_add_dev_info(phy, vif, true); out: mt7615_mutex_release(dev); return ret; } static void mt7615_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv; struct mt7615_sta *msta = &mvif->sta; struct mt7615_dev *dev = mt7615_hw_dev(hw); struct mt7615_phy *phy = mt7615_hw_phy(hw); int idx = msta->wcid.idx; mt7615_mutex_acquire(dev); mt7615_mcu_add_bss_info(phy, vif, NULL, false); mt7615_mcu_sta_add(phy, vif, NULL, false); mt76_testmode_reset(phy->mt76, true); if (vif == phy->monitor_vif) phy->monitor_vif = NULL; mt76_connac_free_pending_tx_skbs(&dev->pm, &msta->wcid); mt7615_mcu_add_dev_info(phy, vif, false); rcu_assign_pointer(dev->mt76.wcid[idx], NULL); dev->mt76.vif_mask &= ~BIT_ULL(mvif->mt76.idx); dev->omac_mask &= ~BIT_ULL(mvif->mt76.omac_idx); phy->omac_mask &= ~BIT_ULL(mvif->mt76.omac_idx); mt7615_mutex_release(dev); spin_lock_bh(&dev->mt76.sta_poll_lock); if (!list_empty(&msta->wcid.poll_list)) list_del_init(&msta->wcid.poll_list); spin_unlock_bh(&dev->mt76.sta_poll_lock); mt76_packet_id_flush(&dev->mt76, &mvif->sta.wcid); } int mt7615_set_channel(struct mt7615_phy *phy) { struct mt7615_dev *dev = phy->dev; bool ext_phy = phy != &dev->phy; int ret; cancel_delayed_work_sync(&phy->mt76->mac_work); mt7615_mutex_acquire(dev); set_bit(MT76_RESET, &phy->mt76->state); mt76_set_channel(phy->mt76); if (is_mt7615(&dev->mt76) && dev->flash_eeprom) { ret = mt7615_mcu_apply_rx_dcoc(phy); if (ret) goto out; ret = mt7615_mcu_apply_tx_dpd(phy); if (ret) goto out; } ret = mt7615_mcu_set_chan_info(phy, MCU_EXT_CMD(CHANNEL_SWITCH)); if (ret) goto out; mt7615_mac_set_timing(phy); ret = mt7615_dfs_init_radar_detector(phy); if (ret) goto out; mt7615_mac_cca_stats_reset(phy); ret = mt7615_mcu_set_sku_en(phy, true); if (ret) goto out; mt7615_mac_reset_counters(phy); phy->noise = 0; phy->chfreq = mt76_rr(dev, MT_CHFREQ(ext_phy)); out: clear_bit(MT76_RESET, &phy->mt76->state); mt7615_mutex_release(dev); mt76_worker_schedule(&dev->mt76.tx_worker); if (!mt76_testmode_enabled(phy->mt76)) { unsigned long timeout = mt7615_get_macwork_timeout(dev); ieee80211_queue_delayed_work(phy->mt76->hw, &phy->mt76->mac_work, timeout); } return ret; } static int mt7615_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { struct mt7615_dev *dev = mt7615_hw_dev(hw); struct mt7615_phy *phy = mt7615_hw_phy(hw); struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv; struct mt7615_sta *msta = sta ? (struct mt7615_sta *)sta->drv_priv : &mvif->sta; struct mt76_wcid *wcid = &msta->wcid; int idx = key->keyidx, err = 0; u8 *wcid_keyidx = &wcid->hw_key_idx; /* The hardware does not support per-STA RX GTK, fallback * to software mode for these. */ if ((vif->type == NL80211_IFTYPE_ADHOC || vif->type == NL80211_IFTYPE_MESH_POINT) && (key->cipher == WLAN_CIPHER_SUITE_TKIP || key->cipher == WLAN_CIPHER_SUITE_CCMP) && !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) return -EOPNOTSUPP; /* fall back to sw encryption for unsupported ciphers */ switch (key->cipher) { case WLAN_CIPHER_SUITE_AES_CMAC: wcid_keyidx = &wcid->hw_key_idx2; key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIE; break; case WLAN_CIPHER_SUITE_TKIP: case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: case WLAN_CIPHER_SUITE_SMS4: break; case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: default: return -EOPNOTSUPP; } mt7615_mutex_acquire(dev); if (cmd == SET_KEY && !sta && !mvif->mt76.cipher) { mvif->mt76.cipher = mt76_connac_mcu_get_cipher(key->cipher); mt7615_mcu_add_bss_info(phy, vif, NULL, true); } if (cmd == SET_KEY) *wcid_keyidx = idx; else { if (idx == *wcid_keyidx) *wcid_keyidx = -1; goto out; } mt76_wcid_key_setup(&dev->mt76, wcid, key); if (mt76_is_mmio(&dev->mt76)) err = mt7615_mac_wtbl_set_key(dev, wcid, key); else err = __mt7615_mac_wtbl_set_key(dev, wcid, key); out: mt7615_mutex_release(dev); return err; } static int mt7615_set_sar_specs(struct ieee80211_hw *hw, const struct cfg80211_sar_specs *sar) { struct mt7615_phy *phy = mt7615_hw_phy(hw); int err; if (!cfg80211_chandef_valid(&phy->mt76->chandef)) return -EINVAL; err = mt76_init_sar_power(hw, sar); if (err) return err; if (mt7615_firmware_offload(phy->dev)) return mt76_connac_mcu_set_rate_txpower(phy->mt76); ieee80211_stop_queues(hw); err = mt7615_set_channel(phy); ieee80211_wake_queues(hw); return err; } static int mt7615_config(struct ieee80211_hw *hw, u32 changed) { struct mt7615_dev *dev = mt7615_hw_dev(hw); struct mt7615_phy *phy = mt7615_hw_phy(hw); bool band = phy != &dev->phy; int ret = 0; if (changed & (IEEE80211_CONF_CHANGE_CHANNEL | IEEE80211_CONF_CHANGE_POWER)) { #ifdef CONFIG_NL80211_TESTMODE if (phy->mt76->test.state != MT76_TM_STATE_OFF) { mt7615_mutex_acquire(dev); mt76_testmode_reset(phy->mt76, false); mt7615_mutex_release(dev); } #endif ieee80211_stop_queues(hw); ret = mt7615_set_channel(phy); ieee80211_wake_queues(hw); } mt7615_mutex_acquire(dev); if (changed & IEEE80211_CONF_CHANGE_MONITOR) { mt76_testmode_reset(phy->mt76, true); if (!(hw->conf.flags & IEEE80211_CONF_MONITOR)) phy->rxfilter |= MT_WF_RFCR_DROP_OTHER_UC; else phy->rxfilter &= ~MT_WF_RFCR_DROP_OTHER_UC; mt76_wr(dev, MT_WF_RFCR(band), phy->rxfilter); } mt7615_mutex_release(dev); return ret; } static int mt7615_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, unsigned int link_id, u16 queue, const struct ieee80211_tx_queue_params *params) { struct mt76_vif *mvif = (struct mt76_vif *)vif->drv_priv; struct mt7615_dev *dev = mt7615_hw_dev(hw); int err; mt7615_mutex_acquire(dev); queue = mt7615_lmac_mapping(dev, queue); queue += mvif->wmm_idx * MT7615_MAX_WMM_SETS; err = mt7615_mcu_set_wmm(dev, queue, params); mt7615_mutex_release(dev); return err; } static void mt7615_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags, u64 multicast) { struct mt7615_dev *dev = mt7615_hw_dev(hw); struct mt7615_phy *phy = mt7615_hw_phy(hw); bool band = phy != &dev->phy; u32 ctl_flags = MT_WF_RFCR1_DROP_ACK | MT_WF_RFCR1_DROP_BF_POLL | MT_WF_RFCR1_DROP_BA | MT_WF_RFCR1_DROP_CFEND | MT_WF_RFCR1_DROP_CFACK; u32 flags = 0; mt7615_mutex_acquire(dev); #define MT76_FILTER(_flag, _hw) do { \ flags |= *total_flags & FIF_##_flag; \ phy->rxfilter &= ~(_hw); \ if (!mt76_testmode_enabled(phy->mt76)) \ phy->rxfilter |= !(flags & FIF_##_flag) * (_hw);\ } while (0) phy->rxfilter &= ~(MT_WF_RFCR_DROP_OTHER_BSS | MT_WF_RFCR_DROP_FRAME_REPORT | MT_WF_RFCR_DROP_PROBEREQ | MT_WF_RFCR_DROP_MCAST_FILTERED | MT_WF_RFCR_DROP_MCAST | MT_WF_RFCR_DROP_BCAST | MT_WF_RFCR_DROP_DUPLICATE | MT_WF_RFCR_DROP_A2_BSSID | MT_WF_RFCR_DROP_UNWANTED_CTL | MT_WF_RFCR_DROP_STBC_MULTI); if (phy->n_beacon_vif || !mt7615_firmware_offload(dev)) phy->rxfilter &= ~MT_WF_RFCR_DROP_OTHER_BEACON; MT76_FILTER(OTHER_BSS, MT_WF_RFCR_DROP_OTHER_TIM | MT_WF_RFCR_DROP_A3_MAC | MT_WF_RFCR_DROP_A3_BSSID); MT76_FILTER(FCSFAIL, MT_WF_RFCR_DROP_FCSFAIL); MT76_FILTER(CONTROL, MT_WF_RFCR_DROP_CTS | MT_WF_RFCR_DROP_RTS | MT_WF_RFCR_DROP_CTL_RSV | MT_WF_RFCR_DROP_NDPA); *total_flags = flags; mt76_wr(dev, MT_WF_RFCR(band), phy->rxfilter); if (*total_flags & FIF_CONTROL) mt76_clear(dev, MT_WF_RFCR1(band), ctl_flags); else mt76_set(dev, MT_WF_RFCR1(band), ctl_flags); mt7615_mutex_release(dev); } static void mt7615_update_mu_group(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *info) { struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv; struct mt7615_dev *dev = mt7615_hw_dev(hw); u8 i, band = mvif->mt76.band_idx; u32 *mu; mu = (u32 *)info->mu_group.membership; for (i = 0; i < WLAN_MEMBERSHIP_LEN / sizeof(*mu); i++) { if (is_mt7663(&dev->mt76)) mt76_wr(dev, MT7663_WF_PHY_GID_TAB_VLD(band, i), mu[i]); else mt76_wr(dev, MT_WF_PHY_GID_TAB_VLD(band, i), mu[i]); } mu = (u32 *)info->mu_group.position; for (i = 0; i < WLAN_USER_POSITION_LEN / sizeof(*mu); i++) { if (is_mt7663(&dev->mt76)) mt76_wr(dev, MT7663_WF_PHY_GID_TAB_POS(band, i), mu[i]); else mt76_wr(dev, MT_WF_PHY_GID_TAB_POS(band, i), mu[i]); } } static void mt7615_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *info, u64 changed) { struct mt7615_dev *dev = mt7615_hw_dev(hw); struct mt7615_phy *phy = mt7615_hw_phy(hw); mt7615_mutex_acquire(dev); if (changed & BSS_CHANGED_ERP_SLOT) { int slottime = info->use_short_slot ? 9 : 20; if (slottime != phy->slottime) { phy->slottime = slottime; mt7615_mac_set_timing(phy); } } if (changed & BSS_CHANGED_ERP_CTS_PROT) mt7615_mac_enable_rtscts(dev, vif, info->use_cts_prot); if (changed & BSS_CHANGED_BEACON_ENABLED && info->enable_beacon) { mt7615_mcu_add_bss_info(phy, vif, NULL, true); mt7615_mcu_sta_add(phy, vif, NULL, true); if (mt7615_firmware_offload(dev) && vif->p2p) mt76_connac_mcu_set_p2p_oppps(hw, vif); } if (changed & (BSS_CHANGED_BEACON | BSS_CHANGED_BEACON_ENABLED)) mt7615_mcu_add_beacon(dev, hw, vif, info->enable_beacon); if (changed & BSS_CHANGED_PS) mt76_connac_mcu_set_vif_ps(&dev->mt76, vif); if ((changed & BSS_CHANGED_ARP_FILTER) && mt7615_firmware_offload(dev)) { struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv; mt76_connac_mcu_update_arp_filter(&dev->mt76, &mvif->mt76, info); } if (changed & BSS_CHANGED_ASSOC) mt7615_mac_set_beacon_filter(phy, vif, vif->cfg.assoc); if (changed & BSS_CHANGED_MU_GROUPS) mt7615_update_mu_group(hw, vif, info); mt7615_mutex_release(dev); } static void mt7615_channel_switch_beacon(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct cfg80211_chan_def *chandef) { struct mt7615_dev *dev = mt7615_hw_dev(hw); mt7615_mutex_acquire(dev); mt7615_mcu_add_beacon(dev, hw, vif, true); mt7615_mutex_release(dev); } int mt7615_mac_sta_add(struct mt76_dev *mdev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76); struct mt7615_sta *msta = (struct mt7615_sta *)sta->drv_priv; struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv; struct mt7615_phy *phy; int idx, err; idx = mt76_wcid_alloc(dev->mt76.wcid_mask, MT7615_WTBL_STA - 1); if (idx < 0) return -ENOSPC; INIT_LIST_HEAD(&msta->wcid.poll_list); msta->vif = mvif; msta->wcid.sta = 1; msta->wcid.idx = idx; msta->wcid.phy_idx = mvif->mt76.band_idx; phy = mvif->mt76.band_idx ? mt7615_ext_phy(dev) : &dev->phy; err = mt76_connac_pm_wake(phy->mt76, &dev->pm); if (err) return err; if (vif->type == NL80211_IFTYPE_STATION && !sta->tdls) { err = mt7615_mcu_add_bss_info(phy, vif, sta, true); if (err) return err; } mt7615_mac_wtbl_update(dev, idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); err = mt7615_mcu_sta_add(&dev->phy, vif, sta, true); if (err) return err; mt76_connac_power_save_sched(phy->mt76, &dev->pm); return err; } EXPORT_SYMBOL_GPL(mt7615_mac_sta_add); void mt7615_mac_sta_remove(struct mt76_dev *mdev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76); struct mt7615_sta *msta = (struct mt7615_sta *)sta->drv_priv; struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv; struct mt7615_phy *phy; mt76_connac_free_pending_tx_skbs(&dev->pm, &msta->wcid); phy = mvif->mt76.band_idx ? mt7615_ext_phy(dev) : &dev->phy; mt76_connac_pm_wake(phy->mt76, &dev->pm); mt7615_mcu_sta_add(&dev->phy, vif, sta, false); mt7615_mac_wtbl_update(dev, msta->wcid.idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); if (vif->type == NL80211_IFTYPE_STATION && !sta->tdls) mt7615_mcu_add_bss_info(phy, vif, sta, false); spin_lock_bh(&mdev->sta_poll_lock); if (!list_empty(&msta->wcid.poll_list)) list_del_init(&msta->wcid.poll_list); spin_unlock_bh(&mdev->sta_poll_lock); mt76_connac_power_save_sched(phy->mt76, &dev->pm); } EXPORT_SYMBOL_GPL(mt7615_mac_sta_remove); static void mt7615_sta_rate_tbl_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7615_dev *dev = mt7615_hw_dev(hw); struct mt7615_phy *phy = mt7615_hw_phy(hw); struct mt7615_sta *msta = (struct mt7615_sta *)sta->drv_priv; struct ieee80211_sta_rates *sta_rates = rcu_dereference(sta->rates); int i; if (!sta_rates) return; spin_lock_bh(&dev->mt76.lock); for (i = 0; i < ARRAY_SIZE(msta->rates); i++) { msta->rates[i].idx = sta_rates->rate[i].idx; msta->rates[i].count = sta_rates->rate[i].count; msta->rates[i].flags = sta_rates->rate[i].flags; if (msta->rates[i].idx < 0 || !msta->rates[i].count) break; } msta->n_rates = i; if (mt76_connac_pm_ref(phy->mt76, &dev->pm)) { mt7615_mac_set_rates(phy, msta, NULL, msta->rates); mt76_connac_pm_unref(phy->mt76, &dev->pm); } spin_unlock_bh(&dev->mt76.lock); } void mt7615_tx_worker(struct mt76_worker *w) { struct mt7615_dev *dev = container_of(w, struct mt7615_dev, mt76.tx_worker); if (!mt76_connac_pm_ref(&dev->mphy, &dev->pm)) { queue_work(dev->mt76.wq, &dev->pm.wake_work); return; } mt76_tx_worker_run(&dev->mt76); mt76_connac_pm_unref(&dev->mphy, &dev->pm); } static void mt7615_tx(struct ieee80211_hw *hw, struct ieee80211_tx_control *control, struct sk_buff *skb) { struct mt7615_dev *dev = mt7615_hw_dev(hw); struct mt76_phy *mphy = hw->priv; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_vif *vif = info->control.vif; struct mt76_wcid *wcid = &dev->mt76.global_wcid; struct mt7615_sta *msta = NULL; int qid; if (control->sta) { msta = (struct mt7615_sta *)control->sta->drv_priv; wcid = &msta->wcid; } if (vif && !control->sta) { struct mt7615_vif *mvif; mvif = (struct mt7615_vif *)vif->drv_priv; msta = &mvif->sta; wcid = &msta->wcid; } if (mt76_connac_pm_ref(mphy, &dev->pm)) { mt76_tx(mphy, control->sta, wcid, skb); mt76_connac_pm_unref(mphy, &dev->pm); return; } qid = skb_get_queue_mapping(skb); if (qid >= MT_TXQ_PSD) { qid = IEEE80211_AC_BE; skb_set_queue_mapping(skb, qid); } mt76_connac_pm_queue_skb(hw, &dev->pm, wcid, skb); } static int mt7615_set_rts_threshold(struct ieee80211_hw *hw, u32 val) { struct mt7615_dev *dev = mt7615_hw_dev(hw); struct mt7615_phy *phy = mt7615_hw_phy(hw); int err, band = phy != &dev->phy; mt7615_mutex_acquire(dev); err = mt76_connac_mcu_set_rts_thresh(&dev->mt76, val, band); mt7615_mutex_release(dev); return err; } static int mt7615_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params) { enum ieee80211_ampdu_mlme_action action = params->action; struct mt7615_dev *dev = mt7615_hw_dev(hw); struct ieee80211_sta *sta = params->sta; struct ieee80211_txq *txq = sta->txq[params->tid]; struct mt7615_sta *msta = (struct mt7615_sta *)sta->drv_priv; u16 tid = params->tid; u16 ssn = params->ssn; struct mt76_txq *mtxq; int ret = 0; if (!txq) return -EINVAL; mtxq = (struct mt76_txq *)txq->drv_priv; mt7615_mutex_acquire(dev); switch (action) { case IEEE80211_AMPDU_RX_START: mt76_rx_aggr_start(&dev->mt76, &msta->wcid, tid, ssn, params->buf_size); ret = mt7615_mcu_add_rx_ba(dev, params, true); break; case IEEE80211_AMPDU_RX_STOP: mt76_rx_aggr_stop(&dev->mt76, &msta->wcid, tid); ret = mt7615_mcu_add_rx_ba(dev, params, false); break; case IEEE80211_AMPDU_TX_OPERATIONAL: mtxq->aggr = true; mtxq->send_bar = false; ret = mt7615_mcu_add_tx_ba(dev, params, true); ssn = mt7615_mac_get_sta_tid_sn(dev, msta->wcid.idx, tid); ieee80211_send_bar(vif, sta->addr, tid, IEEE80211_SN_TO_SEQ(ssn)); break; case IEEE80211_AMPDU_TX_STOP_FLUSH: case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: mtxq->aggr = false; ret = mt7615_mcu_add_tx_ba(dev, params, false); break; case IEEE80211_AMPDU_TX_START: ssn = mt7615_mac_get_sta_tid_sn(dev, msta->wcid.idx, tid); params->ssn = ssn; ret = IEEE80211_AMPDU_TX_START_IMMEDIATE; break; case IEEE80211_AMPDU_TX_STOP_CONT: mtxq->aggr = false; ret = mt7615_mcu_add_tx_ba(dev, params, false); ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid); break; } mt7615_mutex_release(dev); return ret; } static int mt7615_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { return mt76_sta_state(hw, vif, sta, IEEE80211_STA_NOTEXIST, IEEE80211_STA_NONE); } static int mt7615_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { return mt76_sta_state(hw, vif, sta, IEEE80211_STA_NONE, IEEE80211_STA_NOTEXIST); } static int mt7615_get_stats(struct ieee80211_hw *hw, struct ieee80211_low_level_stats *stats) { struct mt7615_phy *phy = mt7615_hw_phy(hw); struct mib_stats *mib = &phy->mib; mt7615_mutex_acquire(phy->dev); stats->dot11RTSSuccessCount = mib->rts_cnt; stats->dot11RTSFailureCount = mib->rts_retries_cnt; stats->dot11FCSErrorCount = mib->fcs_err_cnt; stats->dot11ACKFailureCount = mib->ack_fail_cnt; mt7615_mutex_release(phy->dev); return 0; } static u64 mt7615_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv; struct mt7615_dev *dev = mt7615_hw_dev(hw); union { u64 t64; u32 t32[2]; } tsf; u16 idx = mvif->mt76.omac_idx; u32 reg; idx = idx > HW_BSSID_MAX ? HW_BSSID_0 : idx; reg = idx > 1 ? MT_LPON_TCR2(idx): MT_LPON_TCR0(idx); mt7615_mutex_acquire(dev); /* TSF read */ mt76_rmw(dev, reg, MT_LPON_TCR_MODE, MT_LPON_TCR_READ); tsf.t32[0] = mt76_rr(dev, MT_LPON_UTTR0); tsf.t32[1] = mt76_rr(dev, MT_LPON_UTTR1); mt7615_mutex_release(dev); return tsf.t64; } static void mt7615_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 timestamp) { struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv; struct mt7615_dev *dev = mt7615_hw_dev(hw); union { u64 t64; u32 t32[2]; } tsf = { .t64 = timestamp, }; u16 idx = mvif->mt76.omac_idx; u32 reg; idx = idx > HW_BSSID_MAX ? HW_BSSID_0 : idx; reg = idx > 1 ? MT_LPON_TCR2(idx): MT_LPON_TCR0(idx); mt7615_mutex_acquire(dev); mt76_wr(dev, MT_LPON_UTTR0, tsf.t32[0]); mt76_wr(dev, MT_LPON_UTTR1, tsf.t32[1]); /* TSF software overwrite */ mt76_rmw(dev, reg, MT_LPON_TCR_MODE, MT_LPON_TCR_WRITE); mt7615_mutex_release(dev); } static void mt7615_offset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, s64 timestamp) { struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv; struct mt7615_dev *dev = mt7615_hw_dev(hw); union { u64 t64; u32 t32[2]; } tsf = { .t64 = timestamp, }; u16 idx = mvif->mt76.omac_idx; u32 reg; idx = idx > HW_BSSID_MAX ? HW_BSSID_0 : idx; reg = idx > 1 ? MT_LPON_TCR2(idx): MT_LPON_TCR0(idx); mt7615_mutex_acquire(dev); mt76_wr(dev, MT_LPON_UTTR0, tsf.t32[0]); mt76_wr(dev, MT_LPON_UTTR1, tsf.t32[1]); /* TSF software adjust*/ mt76_rmw(dev, reg, MT_LPON_TCR_MODE, MT_LPON_TCR_ADJUST); mt7615_mutex_release(dev); } static void mt7615_set_coverage_class(struct ieee80211_hw *hw, s16 coverage_class) { struct mt7615_phy *phy = mt7615_hw_phy(hw); struct mt7615_dev *dev = phy->dev; mt7615_mutex_acquire(dev); phy->coverage_class = max_t(s16, coverage_class, 0); mt7615_mac_set_timing(phy); mt7615_mutex_release(dev); } static int mt7615_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant) { struct mt7615_dev *dev = mt7615_hw_dev(hw); struct mt7615_phy *phy = mt7615_hw_phy(hw); int max_nss = hweight8(hw->wiphy->available_antennas_tx); bool ext_phy = phy != &dev->phy; if (!tx_ant || tx_ant != rx_ant || ffs(tx_ant) > max_nss) return -EINVAL; if ((BIT(hweight8(tx_ant)) - 1) != tx_ant) tx_ant = BIT(ffs(tx_ant) - 1) - 1; mt7615_mutex_acquire(dev); phy->mt76->antenna_mask = tx_ant; if (ext_phy) { if (dev->chainmask == 0xf) tx_ant <<= 2; else tx_ant <<= 1; } phy->mt76->chainmask = tx_ant; mt76_set_stream_caps(phy->mt76, true); mt7615_mutex_release(dev); return 0; } static void mt7615_roc_iter(void *priv, u8 *mac, struct ieee80211_vif *vif) { struct mt7615_phy *phy = priv; mt7615_mcu_set_roc(phy, vif, NULL, 0); } void mt7615_roc_work(struct work_struct *work) { struct mt7615_phy *phy; phy = (struct mt7615_phy *)container_of(work, struct mt7615_phy, roc_work); if (!test_and_clear_bit(MT76_STATE_ROC, &phy->mt76->state)) return; mt7615_mutex_acquire(phy->dev); ieee80211_iterate_active_interfaces(phy->mt76->hw, IEEE80211_IFACE_ITER_RESUME_ALL, mt7615_roc_iter, phy); mt7615_mutex_release(phy->dev); ieee80211_remain_on_channel_expired(phy->mt76->hw); } void mt7615_roc_timer(struct timer_list *timer) { struct mt7615_phy *phy = from_timer(phy, timer, roc_timer); ieee80211_queue_work(phy->mt76->hw, &phy->roc_work); } void mt7615_scan_work(struct work_struct *work) { struct mt7615_phy *phy; phy = (struct mt7615_phy *)container_of(work, struct mt7615_phy, scan_work.work); while (true) { struct mt7615_mcu_rxd *rxd; struct sk_buff *skb; spin_lock_bh(&phy->dev->mt76.lock); skb = __skb_dequeue(&phy->scan_event_list); spin_unlock_bh(&phy->dev->mt76.lock); if (!skb) break; rxd = (struct mt7615_mcu_rxd *)skb->data; if (rxd->eid == MCU_EVENT_SCHED_SCAN_DONE) { ieee80211_sched_scan_results(phy->mt76->hw); } else if (test_and_clear_bit(MT76_HW_SCANNING, &phy->mt76->state)) { struct cfg80211_scan_info info = { .aborted = false, }; ieee80211_scan_completed(phy->mt76->hw, &info); } dev_kfree_skb(skb); } } static int mt7615_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_scan_request *req) { struct mt7615_dev *dev = mt7615_hw_dev(hw); struct mt76_phy *mphy = hw->priv; int err; /* fall-back to sw-scan */ if (!mt7615_firmware_offload(dev)) return 1; mt7615_mutex_acquire(dev); err = mt76_connac_mcu_hw_scan(mphy, vif, req); mt7615_mutex_release(dev); return err; } static void mt7615_cancel_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mt7615_dev *dev = mt7615_hw_dev(hw); struct mt76_phy *mphy = hw->priv; mt7615_mutex_acquire(dev); mt76_connac_mcu_cancel_hw_scan(mphy, vif); mt7615_mutex_release(dev); } static int mt7615_start_sched_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct cfg80211_sched_scan_request *req, struct ieee80211_scan_ies *ies) { struct mt7615_dev *dev = mt7615_hw_dev(hw); struct mt76_phy *mphy = hw->priv; int err; if (!mt7615_firmware_offload(dev)) return -EOPNOTSUPP; mt7615_mutex_acquire(dev); err = mt76_connac_mcu_sched_scan_req(mphy, vif, req); if (err < 0) goto out; err = mt76_connac_mcu_sched_scan_enable(mphy, vif, true); out: mt7615_mutex_release(dev); return err; } static int mt7615_stop_sched_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mt7615_dev *dev = mt7615_hw_dev(hw); struct mt76_phy *mphy = hw->priv; int err; if (!mt7615_firmware_offload(dev)) return -EOPNOTSUPP; mt7615_mutex_acquire(dev); err = mt76_connac_mcu_sched_scan_enable(mphy, vif, false); mt7615_mutex_release(dev); return err; } static int mt7615_remain_on_channel(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_channel *chan, int duration, enum ieee80211_roc_type type) { struct mt7615_phy *phy = mt7615_hw_phy(hw); int err; if (test_and_set_bit(MT76_STATE_ROC, &phy->mt76->state)) return 0; mt7615_mutex_acquire(phy->dev); err = mt7615_mcu_set_roc(phy, vif, chan, duration); if (err < 0) { clear_bit(MT76_STATE_ROC, &phy->mt76->state); goto out; } if (!wait_event_timeout(phy->roc_wait, phy->roc_grant, HZ)) { mt7615_mcu_set_roc(phy, vif, NULL, 0); clear_bit(MT76_STATE_ROC, &phy->mt76->state); err = -ETIMEDOUT; } out: mt7615_mutex_release(phy->dev); return err; } static int mt7615_cancel_remain_on_channel(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mt7615_phy *phy = mt7615_hw_phy(hw); int err; if (!test_and_clear_bit(MT76_STATE_ROC, &phy->mt76->state)) return 0; del_timer_sync(&phy->roc_timer); cancel_work_sync(&phy->roc_work); mt7615_mutex_acquire(phy->dev); err = mt7615_mcu_set_roc(phy, vif, NULL, 0); mt7615_mutex_release(phy->dev); return err; } static void mt7615_sta_set_decap_offload(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, bool enabled) { struct mt7615_dev *dev = mt7615_hw_dev(hw); struct mt7615_sta *msta = (struct mt7615_sta *)sta->drv_priv; mt7615_mutex_acquire(dev); if (enabled) set_bit(MT_WCID_FLAG_HDR_TRANS, &msta->wcid.flags); else clear_bit(MT_WCID_FLAG_HDR_TRANS, &msta->wcid.flags); mt7615_mcu_set_sta_decap_offload(dev, vif, sta); mt7615_mutex_release(dev); } #ifdef CONFIG_PM static int mt7615_suspend(struct ieee80211_hw *hw, struct cfg80211_wowlan *wowlan) { struct mt7615_phy *phy = mt7615_hw_phy(hw); struct mt7615_dev *dev = mt7615_hw_dev(hw); int err = 0; cancel_delayed_work_sync(&dev->pm.ps_work); mt76_connac_free_pending_tx_skbs(&dev->pm, NULL); mt7615_mutex_acquire(dev); clear_bit(MT76_STATE_RUNNING, &phy->mt76->state); cancel_delayed_work_sync(&phy->scan_work); cancel_delayed_work_sync(&phy->mt76->mac_work); set_bit(MT76_STATE_SUSPEND, &phy->mt76->state); ieee80211_iterate_active_interfaces(hw, IEEE80211_IFACE_ITER_RESUME_ALL, mt76_connac_mcu_set_suspend_iter, phy->mt76); if (!mt7615_dev_running(dev)) err = mt76_connac_mcu_set_hif_suspend(&dev->mt76, true); mt7615_mutex_release(dev); return err; } static int mt7615_resume(struct ieee80211_hw *hw) { struct mt7615_phy *phy = mt7615_hw_phy(hw); struct mt7615_dev *dev = mt7615_hw_dev(hw); unsigned long timeout; bool running; mt7615_mutex_acquire(dev); running = mt7615_dev_running(dev); set_bit(MT76_STATE_RUNNING, &phy->mt76->state); if (!running) { int err; err = mt76_connac_mcu_set_hif_suspend(&dev->mt76, false); if (err < 0) { mt7615_mutex_release(dev); return err; } } clear_bit(MT76_STATE_SUSPEND, &phy->mt76->state); ieee80211_iterate_active_interfaces(hw, IEEE80211_IFACE_ITER_RESUME_ALL, mt76_connac_mcu_set_suspend_iter, phy->mt76); timeout = mt7615_get_macwork_timeout(dev); ieee80211_queue_delayed_work(hw, &phy->mt76->mac_work, timeout); mt7615_mutex_release(dev); return 0; } static void mt7615_set_wakeup(struct ieee80211_hw *hw, bool enabled) { struct mt7615_dev *dev = mt7615_hw_dev(hw); struct mt76_dev *mdev = &dev->mt76; device_set_wakeup_enable(mdev->dev, enabled); } static void mt7615_set_rekey_data(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct cfg80211_gtk_rekey_data *data) { struct mt7615_dev *dev = mt7615_hw_dev(hw); mt7615_mutex_acquire(dev); mt76_connac_mcu_update_gtk_rekey(hw, vif, data); mt7615_mutex_release(dev); } #endif /* CONFIG_PM */ const struct ieee80211_ops mt7615_ops = { .tx = mt7615_tx, .start = mt7615_start, .stop = mt7615_stop, .add_interface = mt7615_add_interface, .remove_interface = mt7615_remove_interface, .config = mt7615_config, .conf_tx = mt7615_conf_tx, .configure_filter = mt7615_configure_filter, .bss_info_changed = mt7615_bss_info_changed, .sta_add = mt7615_sta_add, .sta_remove = mt7615_sta_remove, .sta_pre_rcu_remove = mt76_sta_pre_rcu_remove, .set_key = mt7615_set_key, .sta_set_decap_offload = mt7615_sta_set_decap_offload, .ampdu_action = mt7615_ampdu_action, .set_rts_threshold = mt7615_set_rts_threshold, .wake_tx_queue = mt76_wake_tx_queue, .sta_rate_tbl_update = mt7615_sta_rate_tbl_update, .sw_scan_start = mt76_sw_scan, .sw_scan_complete = mt76_sw_scan_complete, .release_buffered_frames = mt76_release_buffered_frames, .get_txpower = mt76_get_txpower, .channel_switch_beacon = mt7615_channel_switch_beacon, .get_stats = mt7615_get_stats, .get_tsf = mt7615_get_tsf, .set_tsf = mt7615_set_tsf, .offset_tsf = mt7615_offset_tsf, .get_survey = mt76_get_survey, .get_antenna = mt76_get_antenna, .set_antenna = mt7615_set_antenna, .set_coverage_class = mt7615_set_coverage_class, .hw_scan = mt7615_hw_scan, .cancel_hw_scan = mt7615_cancel_hw_scan, .sched_scan_start = mt7615_start_sched_scan, .sched_scan_stop = mt7615_stop_sched_scan, .remain_on_channel = mt7615_remain_on_channel, .cancel_remain_on_channel = mt7615_cancel_remain_on_channel, CFG80211_TESTMODE_CMD(mt76_testmode_cmd) CFG80211_TESTMODE_DUMP(mt76_testmode_dump) #ifdef CONFIG_PM .suspend = mt7615_suspend, .resume = mt7615_resume, .set_wakeup = mt7615_set_wakeup, .set_rekey_data = mt7615_set_rekey_data, #endif /* CONFIG_PM */ .set_sar_specs = mt7615_set_sar_specs, }; EXPORT_SYMBOL_GPL(mt7615_ops); MODULE_LICENSE("Dual BSD/GPL");
linux-master
drivers/net/wireless/mediatek/mt76/mt7615/main.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2019 MediaTek Inc. * * Author: Roy Luo <[email protected]> * Ryder Lee <[email protected]> */ #include <linux/firmware.h> #include "mt7615.h" #include "mcu.h" #include "mac.h" #include "eeprom.h" static bool prefer_offload_fw = true; module_param(prefer_offload_fw, bool, 0644); MODULE_PARM_DESC(prefer_offload_fw, "Prefer client mode offload firmware (MT7663)"); struct mt7615_patch_hdr { char build_date[16]; char platform[4]; __be32 hw_sw_ver; __be32 patch_ver; __be16 checksum; } __packed; struct mt7615_fw_trailer { __le32 addr; u8 chip_id; u8 feature_set; u8 eco_code; char fw_ver[10]; char build_date[15]; __le32 len; } __packed; #define FW_V3_COMMON_TAILER_SIZE 36 #define FW_V3_REGION_TAILER_SIZE 40 #define FW_START_OVERRIDE BIT(0) #define FW_START_DLYCAL BIT(1) #define FW_START_WORKING_PDA_CR4 BIT(2) struct mt7663_fw_buf { __le32 crc; __le32 d_img_size; __le32 block_size; u8 rsv[4]; __le32 img_dest_addr; __le32 img_size; u8 feature_set; }; #define MT7615_PATCH_ADDRESS 0x80000 #define MT7622_PATCH_ADDRESS 0x9c000 #define MT7663_PATCH_ADDRESS 0xdc000 #define N9_REGION_NUM 2 #define CR4_REGION_NUM 1 #define IMG_CRC_LEN 4 void mt7615_mcu_fill_msg(struct mt7615_dev *dev, struct sk_buff *skb, int cmd, int *wait_seq) { int txd_len, mcu_cmd = FIELD_GET(__MCU_CMD_FIELD_ID, cmd); struct mt7615_uni_txd *uni_txd; struct mt7615_mcu_txd *mcu_txd; u8 seq, q_idx, pkt_fmt; __le32 *txd; u32 val; /* TODO: make dynamic based on msg type */ dev->mt76.mcu.timeout = 20 * HZ; seq = ++dev->mt76.mcu.msg_seq & 0xf; if (!seq) seq = ++dev->mt76.mcu.msg_seq & 0xf; if (wait_seq) *wait_seq = seq; txd_len = cmd & __MCU_CMD_FIELD_UNI ? sizeof(*uni_txd) : sizeof(*mcu_txd); txd = (__le32 *)skb_push(skb, txd_len); if (cmd != MCU_CMD(FW_SCATTER)) { q_idx = MT_TX_MCU_PORT_RX_Q0; pkt_fmt = MT_TX_TYPE_CMD; } else { q_idx = MT_TX_MCU_PORT_RX_FWDL; pkt_fmt = MT_TX_TYPE_FW; } val = FIELD_PREP(MT_TXD0_TX_BYTES, skb->len) | FIELD_PREP(MT_TXD0_P_IDX, MT_TX_PORT_IDX_MCU) | FIELD_PREP(MT_TXD0_Q_IDX, q_idx); txd[0] = cpu_to_le32(val); val = MT_TXD1_LONG_FORMAT | FIELD_PREP(MT_TXD1_HDR_FORMAT, MT_HDR_FORMAT_CMD) | FIELD_PREP(MT_TXD1_PKT_FMT, pkt_fmt); txd[1] = cpu_to_le32(val); if (cmd & __MCU_CMD_FIELD_UNI) { uni_txd = (struct mt7615_uni_txd *)txd; uni_txd->len = cpu_to_le16(skb->len - sizeof(uni_txd->txd)); uni_txd->option = MCU_CMD_UNI_EXT_ACK; uni_txd->cid = cpu_to_le16(mcu_cmd); uni_txd->s2d_index = MCU_S2D_H2N; uni_txd->pkt_type = MCU_PKT_ID; uni_txd->seq = seq; return; } mcu_txd = (struct mt7615_mcu_txd *)txd; mcu_txd->len = cpu_to_le16(skb->len - sizeof(mcu_txd->txd)); mcu_txd->pq_id = cpu_to_le16(MCU_PQ_ID(MT_TX_PORT_IDX_MCU, q_idx)); mcu_txd->s2d_index = MCU_S2D_H2N; mcu_txd->pkt_type = MCU_PKT_ID; mcu_txd->seq = seq; mcu_txd->cid = mcu_cmd; mcu_txd->ext_cid = FIELD_GET(__MCU_CMD_FIELD_EXT_ID, cmd); if (mcu_txd->ext_cid || (cmd & __MCU_CMD_FIELD_CE)) { if (cmd & __MCU_CMD_FIELD_QUERY) mcu_txd->set_query = MCU_Q_QUERY; else mcu_txd->set_query = MCU_Q_SET; mcu_txd->ext_cid_ack = !!mcu_txd->ext_cid; } else { mcu_txd->set_query = MCU_Q_NA; } } EXPORT_SYMBOL_GPL(mt7615_mcu_fill_msg); int mt7615_mcu_parse_response(struct mt76_dev *mdev, int cmd, struct sk_buff *skb, int seq) { struct mt7615_mcu_rxd *rxd; int ret = 0; if (!skb) { dev_err(mdev->dev, "Message %08x (seq %d) timeout\n", cmd, seq); return -ETIMEDOUT; } rxd = (struct mt7615_mcu_rxd *)skb->data; if (seq != rxd->seq) return -EAGAIN; if (cmd == MCU_CMD(PATCH_SEM_CONTROL)) { skb_pull(skb, sizeof(*rxd) - 4); ret = *skb->data; } else if (cmd == MCU_EXT_CMD(THERMAL_CTRL)) { skb_pull(skb, sizeof(*rxd)); ret = le32_to_cpu(*(__le32 *)skb->data); } else if (cmd == MCU_EXT_QUERY(RF_REG_ACCESS)) { skb_pull(skb, sizeof(*rxd)); ret = le32_to_cpu(*(__le32 *)&skb->data[8]); } else if (cmd == MCU_UNI_CMD(DEV_INFO_UPDATE) || cmd == MCU_UNI_CMD(BSS_INFO_UPDATE) || cmd == MCU_UNI_CMD(STA_REC_UPDATE) || cmd == MCU_UNI_CMD(HIF_CTRL) || cmd == MCU_UNI_CMD(OFFLOAD) || cmd == MCU_UNI_CMD(SUSPEND)) { struct mt76_connac_mcu_uni_event *event; skb_pull(skb, sizeof(*rxd)); event = (struct mt76_connac_mcu_uni_event *)skb->data; ret = le32_to_cpu(event->status); } else if (cmd == MCU_CE_QUERY(REG_READ)) { struct mt76_connac_mcu_reg_event *event; skb_pull(skb, sizeof(*rxd)); event = (struct mt76_connac_mcu_reg_event *)skb->data; ret = (int)le32_to_cpu(event->val); } return ret; } EXPORT_SYMBOL_GPL(mt7615_mcu_parse_response); static int mt7615_mcu_send_message(struct mt76_dev *mdev, struct sk_buff *skb, int cmd, int *seq) { struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76); enum mt76_mcuq_id qid; mt7615_mcu_fill_msg(dev, skb, cmd, seq); if (test_bit(MT76_STATE_MCU_RUNNING, &dev->mphy.state)) qid = MT_MCUQ_WM; else qid = MT_MCUQ_FWDL; return mt76_tx_queue_skb_raw(dev, dev->mt76.q_mcu[qid], skb, 0); } u32 mt7615_rf_rr(struct mt7615_dev *dev, u32 wf, u32 reg) { struct { __le32 wifi_stream; __le32 address; __le32 data; } req = { .wifi_stream = cpu_to_le32(wf), .address = cpu_to_le32(reg), }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_QUERY(RF_REG_ACCESS), &req, sizeof(req), true); } int mt7615_rf_wr(struct mt7615_dev *dev, u32 wf, u32 reg, u32 val) { struct { __le32 wifi_stream; __le32 address; __le32 data; } req = { .wifi_stream = cpu_to_le32(wf), .address = cpu_to_le32(reg), .data = cpu_to_le32(val), }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(RF_REG_ACCESS), &req, sizeof(req), false); } void mt7622_trigger_hif_int(struct mt7615_dev *dev, bool en) { if (!is_mt7622(&dev->mt76)) return; regmap_update_bits(dev->infracfg, MT_INFRACFG_MISC, MT_INFRACFG_MISC_AP2CONN_WAKE, !en * MT_INFRACFG_MISC_AP2CONN_WAKE); } EXPORT_SYMBOL_GPL(mt7622_trigger_hif_int); static int mt7615_mcu_drv_pmctrl(struct mt7615_dev *dev) { struct mt76_phy *mphy = &dev->mt76.phy; struct mt76_connac_pm *pm = &dev->pm; struct mt76_dev *mdev = &dev->mt76; u32 addr; int err; if (is_mt7663(mdev)) { /* Clear firmware own via N9 eint */ mt76_wr(dev, MT_PCIE_DOORBELL_PUSH, MT_CFG_LPCR_HOST_DRV_OWN); mt76_poll(dev, MT_CONN_ON_MISC, MT_CFG_LPCR_HOST_FW_OWN, 0, 3000); addr = MT_CONN_HIF_ON_LPCTL; } else { addr = MT_CFG_LPCR_HOST; } mt76_wr(dev, addr, MT_CFG_LPCR_HOST_DRV_OWN); mt7622_trigger_hif_int(dev, true); err = !mt76_poll_msec(dev, addr, MT_CFG_LPCR_HOST_FW_OWN, 0, 3000); mt7622_trigger_hif_int(dev, false); if (err) { dev_err(mdev->dev, "driver own failed\n"); return -ETIMEDOUT; } clear_bit(MT76_STATE_PM, &mphy->state); pm->stats.last_wake_event = jiffies; pm->stats.doze_time += pm->stats.last_wake_event - pm->stats.last_doze_event; return 0; } static int mt7615_mcu_lp_drv_pmctrl(struct mt7615_dev *dev) { struct mt76_phy *mphy = &dev->mt76.phy; struct mt76_connac_pm *pm = &dev->pm; int i, err = 0; mutex_lock(&pm->mutex); if (!test_bit(MT76_STATE_PM, &mphy->state)) goto out; for (i = 0; i < MT7615_DRV_OWN_RETRY_COUNT; i++) { mt76_wr(dev, MT_PCIE_DOORBELL_PUSH, MT_CFG_LPCR_HOST_DRV_OWN); if (mt76_poll_msec(dev, MT_CONN_HIF_ON_LPCTL, MT_CFG_LPCR_HOST_FW_OWN, 0, 50)) break; } if (i == MT7615_DRV_OWN_RETRY_COUNT) { dev_err(dev->mt76.dev, "driver own failed\n"); err = -EIO; goto out; } clear_bit(MT76_STATE_PM, &mphy->state); pm->stats.last_wake_event = jiffies; pm->stats.doze_time += pm->stats.last_wake_event - pm->stats.last_doze_event; out: mutex_unlock(&pm->mutex); return err; } static int mt7615_mcu_fw_pmctrl(struct mt7615_dev *dev) { struct mt76_phy *mphy = &dev->mt76.phy; struct mt76_connac_pm *pm = &dev->pm; int err = 0; u32 addr; mutex_lock(&pm->mutex); if (mt76_connac_skip_fw_pmctrl(mphy, pm)) goto out; mt7622_trigger_hif_int(dev, true); addr = is_mt7663(&dev->mt76) ? MT_CONN_HIF_ON_LPCTL : MT_CFG_LPCR_HOST; mt76_wr(dev, addr, MT_CFG_LPCR_HOST_FW_OWN); if (is_mt7622(&dev->mt76) && !mt76_poll_msec(dev, addr, MT_CFG_LPCR_HOST_FW_OWN, MT_CFG_LPCR_HOST_FW_OWN, 3000)) { dev_err(dev->mt76.dev, "Timeout for firmware own\n"); clear_bit(MT76_STATE_PM, &mphy->state); err = -EIO; } mt7622_trigger_hif_int(dev, false); if (!err) { pm->stats.last_doze_event = jiffies; pm->stats.awake_time += pm->stats.last_doze_event - pm->stats.last_wake_event; } out: mutex_unlock(&pm->mutex); return err; } static void mt7615_mcu_csa_finish(void *priv, u8 *mac, struct ieee80211_vif *vif) { if (vif->bss_conf.csa_active) ieee80211_csa_finish(vif); } static void mt7615_mcu_rx_csa_notify(struct mt7615_dev *dev, struct sk_buff *skb) { struct mt7615_phy *ext_phy = mt7615_ext_phy(dev); struct mt76_phy *mphy = &dev->mt76.phy; struct mt7615_mcu_csa_notify *c; c = (struct mt7615_mcu_csa_notify *)skb->data; if (c->omac_idx > EXT_BSSID_MAX) return; if (ext_phy && ext_phy->omac_mask & BIT_ULL(c->omac_idx)) mphy = dev->mt76.phys[MT_BAND1]; ieee80211_iterate_active_interfaces_atomic(mphy->hw, IEEE80211_IFACE_ITER_RESUME_ALL, mt7615_mcu_csa_finish, mphy->hw); } static void mt7615_mcu_rx_radar_detected(struct mt7615_dev *dev, struct sk_buff *skb) { struct mt76_phy *mphy = &dev->mt76.phy; struct mt7615_mcu_rdd_report *r; r = (struct mt7615_mcu_rdd_report *)skb->data; if (!dev->radar_pattern.n_pulses && !r->long_detected && !r->constant_prf_detected && !r->staggered_prf_detected) return; if (r->band_idx && dev->mt76.phys[MT_BAND1]) mphy = dev->mt76.phys[MT_BAND1]; if (mt76_phy_dfs_state(mphy) < MT_DFS_STATE_CAC) return; ieee80211_radar_detected(mphy->hw); dev->hw_pattern++; } static void mt7615_mcu_rx_log_message(struct mt7615_dev *dev, struct sk_buff *skb) { struct mt7615_mcu_rxd *rxd = (struct mt7615_mcu_rxd *)skb->data; const char *data = (char *)&rxd[1]; const char *type; switch (rxd->s2d_index) { case 0: type = "N9"; break; case 2: type = "CR4"; break; default: type = "unknown"; break; } wiphy_info(mt76_hw(dev)->wiphy, "%s: %.*s", type, (int)(skb->len - sizeof(*rxd)), data); } static void mt7615_mcu_rx_ext_event(struct mt7615_dev *dev, struct sk_buff *skb) { struct mt7615_mcu_rxd *rxd = (struct mt7615_mcu_rxd *)skb->data; switch (rxd->ext_eid) { case MCU_EXT_EVENT_RDD_REPORT: mt7615_mcu_rx_radar_detected(dev, skb); break; case MCU_EXT_EVENT_CSA_NOTIFY: mt7615_mcu_rx_csa_notify(dev, skb); break; case MCU_EXT_EVENT_FW_LOG_2_HOST: mt7615_mcu_rx_log_message(dev, skb); break; default: break; } } static void mt7615_mcu_scan_event(struct mt7615_dev *dev, struct sk_buff *skb) { u8 *seq_num = skb->data + sizeof(struct mt7615_mcu_rxd); struct mt7615_phy *phy; struct mt76_phy *mphy; if (*seq_num & BIT(7) && dev->mt76.phys[MT_BAND1]) mphy = dev->mt76.phys[MT_BAND1]; else mphy = &dev->mt76.phy; phy = (struct mt7615_phy *)mphy->priv; spin_lock_bh(&dev->mt76.lock); __skb_queue_tail(&phy->scan_event_list, skb); spin_unlock_bh(&dev->mt76.lock); ieee80211_queue_delayed_work(mphy->hw, &phy->scan_work, MT7615_HW_SCAN_TIMEOUT); } static void mt7615_mcu_roc_event(struct mt7615_dev *dev, struct sk_buff *skb) { struct mt7615_roc_tlv *event; struct mt7615_phy *phy; struct mt76_phy *mphy; int duration; skb_pull(skb, sizeof(struct mt7615_mcu_rxd)); event = (struct mt7615_roc_tlv *)skb->data; if (event->dbdc_band && dev->mt76.phys[MT_BAND1]) mphy = dev->mt76.phys[MT_BAND1]; else mphy = &dev->mt76.phy; ieee80211_ready_on_channel(mphy->hw); phy = (struct mt7615_phy *)mphy->priv; phy->roc_grant = true; wake_up(&phy->roc_wait); duration = le32_to_cpu(event->max_interval); mod_timer(&phy->roc_timer, round_jiffies_up(jiffies + msecs_to_jiffies(duration))); } static void mt7615_mcu_beacon_loss_event(struct mt7615_dev *dev, struct sk_buff *skb) { struct mt76_connac_beacon_loss_event *event; struct mt76_phy *mphy; u8 band_idx = 0; /* DBDC support */ skb_pull(skb, sizeof(struct mt7615_mcu_rxd)); event = (struct mt76_connac_beacon_loss_event *)skb->data; if (band_idx && dev->mt76.phys[MT_BAND1]) mphy = dev->mt76.phys[MT_BAND1]; else mphy = &dev->mt76.phy; ieee80211_iterate_active_interfaces_atomic(mphy->hw, IEEE80211_IFACE_ITER_RESUME_ALL, mt76_connac_mcu_beacon_loss_iter, event); } static void mt7615_mcu_bss_event(struct mt7615_dev *dev, struct sk_buff *skb) { struct mt76_connac_mcu_bss_event *event; struct mt76_phy *mphy; u8 band_idx = 0; /* DBDC support */ skb_pull(skb, sizeof(struct mt7615_mcu_rxd)); event = (struct mt76_connac_mcu_bss_event *)skb->data; if (band_idx && dev->mt76.phys[MT_BAND1]) mphy = dev->mt76.phys[MT_BAND1]; else mphy = &dev->mt76.phy; if (event->is_absent) ieee80211_stop_queues(mphy->hw); else ieee80211_wake_queues(mphy->hw); } static void mt7615_mcu_rx_unsolicited_event(struct mt7615_dev *dev, struct sk_buff *skb) { struct mt7615_mcu_rxd *rxd = (struct mt7615_mcu_rxd *)skb->data; switch (rxd->eid) { case MCU_EVENT_EXT: mt7615_mcu_rx_ext_event(dev, skb); break; case MCU_EVENT_BSS_BEACON_LOSS: mt7615_mcu_beacon_loss_event(dev, skb); break; case MCU_EVENT_ROC: mt7615_mcu_roc_event(dev, skb); break; case MCU_EVENT_SCHED_SCAN_DONE: case MCU_EVENT_SCAN_DONE: mt7615_mcu_scan_event(dev, skb); return; case MCU_EVENT_BSS_ABSENCE: mt7615_mcu_bss_event(dev, skb); break; case MCU_EVENT_COREDUMP: mt76_connac_mcu_coredump_event(&dev->mt76, skb, &dev->coredump); return; default: break; } dev_kfree_skb(skb); } void mt7615_mcu_rx_event(struct mt7615_dev *dev, struct sk_buff *skb) { struct mt7615_mcu_rxd *rxd = (struct mt7615_mcu_rxd *)skb->data; if (rxd->ext_eid == MCU_EXT_EVENT_THERMAL_PROTECT || rxd->ext_eid == MCU_EXT_EVENT_FW_LOG_2_HOST || rxd->ext_eid == MCU_EXT_EVENT_ASSERT_DUMP || rxd->ext_eid == MCU_EXT_EVENT_PS_SYNC || rxd->eid == MCU_EVENT_BSS_BEACON_LOSS || rxd->eid == MCU_EVENT_SCHED_SCAN_DONE || rxd->eid == MCU_EVENT_BSS_ABSENCE || rxd->eid == MCU_EVENT_SCAN_DONE || rxd->eid == MCU_EVENT_COREDUMP || rxd->eid == MCU_EVENT_ROC || !rxd->seq) mt7615_mcu_rx_unsolicited_event(dev, skb); else mt76_mcu_rx_event(&dev->mt76, skb); } static int mt7615_mcu_muar_config(struct mt7615_dev *dev, struct ieee80211_vif *vif, bool bssid, bool enable) { struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv; u32 idx = mvif->mt76.omac_idx - REPEATER_BSSID_START; u32 mask = dev->omac_mask >> 32 & ~BIT(idx); const u8 *addr = vif->addr; struct { u8 mode; u8 force_clear; u8 clear_bitmap[8]; u8 entry_count; u8 write; u8 index; u8 bssid; u8 addr[ETH_ALEN]; } __packed req = { .mode = !!mask || enable, .entry_count = 1, .write = 1, .index = idx * 2 + bssid, }; if (bssid) addr = vif->bss_conf.bssid; if (enable) ether_addr_copy(req.addr, addr); return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(MUAR_UPDATE), &req, sizeof(req), true); } static int mt7615_mcu_add_dev(struct mt7615_phy *phy, struct ieee80211_vif *vif, bool enable) { struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv; struct mt7615_dev *dev = phy->dev; struct { struct req_hdr { u8 omac_idx; u8 band_idx; __le16 tlv_num; u8 is_tlv_append; u8 rsv[3]; } __packed hdr; struct req_tlv { __le16 tag; __le16 len; u8 active; u8 band_idx; u8 omac_addr[ETH_ALEN]; } __packed tlv; } data = { .hdr = { .omac_idx = mvif->mt76.omac_idx, .band_idx = mvif->mt76.band_idx, .tlv_num = cpu_to_le16(1), .is_tlv_append = 1, }, .tlv = { .tag = cpu_to_le16(DEV_INFO_ACTIVE), .len = cpu_to_le16(sizeof(struct req_tlv)), .active = enable, .band_idx = mvif->mt76.band_idx, }, }; if (mvif->mt76.omac_idx >= REPEATER_BSSID_START) return mt7615_mcu_muar_config(dev, vif, false, enable); memcpy(data.tlv.omac_addr, vif->addr, ETH_ALEN); return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(DEV_INFO_UPDATE), &data, sizeof(data), true); } static int mt7615_mcu_add_beacon_offload(struct mt7615_dev *dev, struct ieee80211_hw *hw, struct ieee80211_vif *vif, bool enable) { struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv; struct mt76_wcid *wcid = &dev->mt76.global_wcid; struct ieee80211_mutable_offsets offs; struct ieee80211_tx_info *info; struct req { u8 omac_idx; u8 enable; u8 wlan_idx; u8 band_idx; u8 pkt_type; u8 need_pre_tbtt_int; __le16 csa_ie_pos; __le16 pkt_len; __le16 tim_ie_pos; u8 pkt[512]; u8 csa_cnt; /* bss color change */ u8 bcc_cnt; __le16 bcc_ie_pos; } __packed req = { .omac_idx = mvif->mt76.omac_idx, .enable = enable, .wlan_idx = wcid->idx, .band_idx = mvif->mt76.band_idx, }; struct sk_buff *skb; if (!enable) goto out; skb = ieee80211_beacon_get_template(hw, vif, &offs, 0); if (!skb) return -EINVAL; if (skb->len > 512 - MT_TXD_SIZE) { dev_err(dev->mt76.dev, "Bcn size limit exceed\n"); dev_kfree_skb(skb); return -EINVAL; } info = IEEE80211_SKB_CB(skb); info->hw_queue |= FIELD_PREP(MT_TX_HW_QUEUE_PHY, mvif->mt76.band_idx); mt7615_mac_write_txwi(dev, (__le32 *)(req.pkt), skb, wcid, NULL, 0, NULL, 0, true); memcpy(req.pkt + MT_TXD_SIZE, skb->data, skb->len); req.pkt_len = cpu_to_le16(MT_TXD_SIZE + skb->len); req.tim_ie_pos = cpu_to_le16(MT_TXD_SIZE + offs.tim_offset); if (offs.cntdwn_counter_offs[0]) { u16 csa_offs; csa_offs = MT_TXD_SIZE + offs.cntdwn_counter_offs[0] - 4; req.csa_ie_pos = cpu_to_le16(csa_offs); req.csa_cnt = skb->data[offs.cntdwn_counter_offs[0]]; } dev_kfree_skb(skb); out: return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(BCN_OFFLOAD), &req, sizeof(req), true); } static int mt7615_mcu_ctrl_pm_state(struct mt7615_dev *dev, int band, int state) { return mt76_connac_mcu_set_pm(&dev->mt76, band, state); } static int mt7615_mcu_add_bss(struct mt7615_phy *phy, struct ieee80211_vif *vif, struct ieee80211_sta *sta, bool enable) { struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv; struct mt7615_dev *dev = phy->dev; struct sk_buff *skb; if (mvif->mt76.omac_idx >= REPEATER_BSSID_START) mt7615_mcu_muar_config(dev, vif, true, enable); skb = mt76_connac_mcu_alloc_sta_req(&dev->mt76, &mvif->mt76, NULL); if (IS_ERR(skb)) return PTR_ERR(skb); if (enable) mt76_connac_mcu_bss_omac_tlv(skb, vif); mt76_connac_mcu_bss_basic_tlv(skb, vif, sta, phy->mt76, mvif->sta.wcid.idx, enable); if (enable && mvif->mt76.omac_idx >= EXT_BSSID_START && mvif->mt76.omac_idx < REPEATER_BSSID_START) mt76_connac_mcu_bss_ext_tlv(skb, &mvif->mt76); return mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_EXT_CMD(BSS_INFO_UPDATE), true); } static int mt7615_mcu_wtbl_tx_ba(struct mt7615_dev *dev, struct ieee80211_ampdu_params *params, bool enable) { struct mt7615_sta *msta = (struct mt7615_sta *)params->sta->drv_priv; struct mt7615_vif *mvif = msta->vif; struct wtbl_req_hdr *wtbl_hdr; struct sk_buff *skb = NULL; int err; wtbl_hdr = mt76_connac_mcu_alloc_wtbl_req(&dev->mt76, &msta->wcid, WTBL_SET, NULL, &skb); if (IS_ERR(wtbl_hdr)) return PTR_ERR(wtbl_hdr); mt76_connac_mcu_wtbl_ba_tlv(&dev->mt76, skb, params, enable, true, NULL, wtbl_hdr); err = mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_EXT_CMD(WTBL_UPDATE), true); if (err < 0) return err; skb = mt76_connac_mcu_alloc_sta_req(&dev->mt76, &mvif->mt76, &msta->wcid); if (IS_ERR(skb)) return PTR_ERR(skb); mt76_connac_mcu_sta_ba_tlv(skb, params, enable, true); return mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_EXT_CMD(STA_REC_UPDATE), true); } static int mt7615_mcu_wtbl_rx_ba(struct mt7615_dev *dev, struct ieee80211_ampdu_params *params, bool enable) { struct mt7615_sta *msta = (struct mt7615_sta *)params->sta->drv_priv; struct mt7615_vif *mvif = msta->vif; struct wtbl_req_hdr *wtbl_hdr; struct sk_buff *skb; int err; skb = mt76_connac_mcu_alloc_sta_req(&dev->mt76, &mvif->mt76, &msta->wcid); if (IS_ERR(skb)) return PTR_ERR(skb); mt76_connac_mcu_sta_ba_tlv(skb, params, enable, false); err = mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_EXT_CMD(STA_REC_UPDATE), true); if (err < 0 || !enable) return err; skb = NULL; wtbl_hdr = mt76_connac_mcu_alloc_wtbl_req(&dev->mt76, &msta->wcid, WTBL_SET, NULL, &skb); if (IS_ERR(wtbl_hdr)) return PTR_ERR(wtbl_hdr); mt76_connac_mcu_wtbl_ba_tlv(&dev->mt76, skb, params, enable, false, NULL, wtbl_hdr); return mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_EXT_CMD(WTBL_UPDATE), true); } static int mt7615_mcu_wtbl_sta_add(struct mt7615_phy *phy, struct ieee80211_vif *vif, struct ieee80211_sta *sta, bool enable) { struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv; struct sk_buff *skb, *sskb, *wskb = NULL; struct mt7615_dev *dev = phy->dev; struct wtbl_req_hdr *wtbl_hdr; struct mt7615_sta *msta; bool new_entry = true; int cmd, err; msta = sta ? (struct mt7615_sta *)sta->drv_priv : &mvif->sta; sskb = mt76_connac_mcu_alloc_sta_req(&dev->mt76, &mvif->mt76, &msta->wcid); if (IS_ERR(sskb)) return PTR_ERR(sskb); if (!sta) { if (mvif->sta_added) new_entry = false; else mvif->sta_added = true; } mt76_connac_mcu_sta_basic_tlv(&dev->mt76, sskb, vif, sta, enable, new_entry); if (enable && sta) mt76_connac_mcu_sta_tlv(phy->mt76, sskb, sta, vif, 0, MT76_STA_INFO_STATE_ASSOC); wtbl_hdr = mt76_connac_mcu_alloc_wtbl_req(&dev->mt76, &msta->wcid, WTBL_RESET_AND_SET, NULL, &wskb); if (IS_ERR(wtbl_hdr)) return PTR_ERR(wtbl_hdr); if (enable) { mt76_connac_mcu_wtbl_generic_tlv(&dev->mt76, wskb, vif, sta, NULL, wtbl_hdr); if (sta) mt76_connac_mcu_wtbl_ht_tlv(&dev->mt76, wskb, sta, NULL, wtbl_hdr, true, true); mt76_connac_mcu_wtbl_hdr_trans_tlv(wskb, vif, &msta->wcid, NULL, wtbl_hdr); } cmd = enable ? MCU_EXT_CMD(WTBL_UPDATE) : MCU_EXT_CMD(STA_REC_UPDATE); skb = enable ? wskb : sskb; err = mt76_mcu_skb_send_msg(&dev->mt76, skb, cmd, true); if (err < 0) { skb = enable ? sskb : wskb; dev_kfree_skb(skb); return err; } cmd = enable ? MCU_EXT_CMD(STA_REC_UPDATE) : MCU_EXT_CMD(WTBL_UPDATE); skb = enable ? sskb : wskb; return mt76_mcu_skb_send_msg(&dev->mt76, skb, cmd, true); } static int mt7615_mcu_wtbl_update_hdr_trans(struct mt7615_dev *dev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { return mt76_connac_mcu_wtbl_update_hdr_trans(&dev->mt76, vif, sta); } static const struct mt7615_mcu_ops wtbl_update_ops = { .add_beacon_offload = mt7615_mcu_add_beacon_offload, .set_pm_state = mt7615_mcu_ctrl_pm_state, .add_dev_info = mt7615_mcu_add_dev, .add_bss_info = mt7615_mcu_add_bss, .add_tx_ba = mt7615_mcu_wtbl_tx_ba, .add_rx_ba = mt7615_mcu_wtbl_rx_ba, .sta_add = mt7615_mcu_wtbl_sta_add, .set_drv_ctrl = mt7615_mcu_drv_pmctrl, .set_fw_ctrl = mt7615_mcu_fw_pmctrl, .set_sta_decap_offload = mt7615_mcu_wtbl_update_hdr_trans, }; static int mt7615_mcu_sta_ba(struct mt7615_dev *dev, struct ieee80211_ampdu_params *params, bool enable, bool tx) { struct mt7615_sta *msta = (struct mt7615_sta *)params->sta->drv_priv; struct mt7615_vif *mvif = msta->vif; struct wtbl_req_hdr *wtbl_hdr; struct tlv *sta_wtbl; struct sk_buff *skb; skb = mt76_connac_mcu_alloc_sta_req(&dev->mt76, &mvif->mt76, &msta->wcid); if (IS_ERR(skb)) return PTR_ERR(skb); mt76_connac_mcu_sta_ba_tlv(skb, params, enable, tx); sta_wtbl = mt76_connac_mcu_add_tlv(skb, STA_REC_WTBL, sizeof(struct tlv)); wtbl_hdr = mt76_connac_mcu_alloc_wtbl_req(&dev->mt76, &msta->wcid, WTBL_SET, sta_wtbl, &skb); if (IS_ERR(wtbl_hdr)) return PTR_ERR(wtbl_hdr); mt76_connac_mcu_wtbl_ba_tlv(&dev->mt76, skb, params, enable, tx, sta_wtbl, wtbl_hdr); return mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_EXT_CMD(STA_REC_UPDATE), true); } static int mt7615_mcu_sta_tx_ba(struct mt7615_dev *dev, struct ieee80211_ampdu_params *params, bool enable) { return mt7615_mcu_sta_ba(dev, params, enable, true); } static int mt7615_mcu_sta_rx_ba(struct mt7615_dev *dev, struct ieee80211_ampdu_params *params, bool enable) { return mt7615_mcu_sta_ba(dev, params, enable, false); } static int __mt7615_mcu_add_sta(struct mt76_phy *phy, struct ieee80211_vif *vif, struct ieee80211_sta *sta, bool enable, int cmd, bool offload_fw) { struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv; struct mt76_sta_cmd_info info = { .sta = sta, .vif = vif, .offload_fw = offload_fw, .enable = enable, .newly = true, .cmd = cmd, }; info.wcid = sta ? (struct mt76_wcid *)sta->drv_priv : &mvif->sta.wcid; return mt76_connac_mcu_sta_cmd(phy, &info); } static int mt7615_mcu_add_sta(struct mt7615_phy *phy, struct ieee80211_vif *vif, struct ieee80211_sta *sta, bool enable) { return __mt7615_mcu_add_sta(phy->mt76, vif, sta, enable, MCU_EXT_CMD(STA_REC_UPDATE), false); } static int mt7615_mcu_sta_update_hdr_trans(struct mt7615_dev *dev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7615_sta *msta = (struct mt7615_sta *)sta->drv_priv; return mt76_connac_mcu_sta_update_hdr_trans(&dev->mt76, vif, &msta->wcid, MCU_EXT_CMD(STA_REC_UPDATE)); } static const struct mt7615_mcu_ops sta_update_ops = { .add_beacon_offload = mt7615_mcu_add_beacon_offload, .set_pm_state = mt7615_mcu_ctrl_pm_state, .add_dev_info = mt7615_mcu_add_dev, .add_bss_info = mt7615_mcu_add_bss, .add_tx_ba = mt7615_mcu_sta_tx_ba, .add_rx_ba = mt7615_mcu_sta_rx_ba, .sta_add = mt7615_mcu_add_sta, .set_drv_ctrl = mt7615_mcu_drv_pmctrl, .set_fw_ctrl = mt7615_mcu_fw_pmctrl, .set_sta_decap_offload = mt7615_mcu_sta_update_hdr_trans, }; static int mt7615_mcu_uni_ctrl_pm_state(struct mt7615_dev *dev, int band, int state) { return 0; } static int mt7615_mcu_uni_add_beacon_offload(struct mt7615_dev *dev, struct ieee80211_hw *hw, struct ieee80211_vif *vif, bool enable) { struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv; struct mt76_wcid *wcid = &dev->mt76.global_wcid; struct ieee80211_mutable_offsets offs; struct { struct req_hdr { u8 bss_idx; u8 pad[3]; } __packed hdr; struct bcn_content_tlv { __le16 tag; __le16 len; __le16 tim_ie_pos; __le16 csa_ie_pos; __le16 bcc_ie_pos; /* 0: disable beacon offload * 1: enable beacon offload * 2: update probe respond offload */ u8 enable; /* 0: legacy format (TXD + payload) * 1: only cap field IE */ u8 type; __le16 pkt_len; u8 pkt[512]; } __packed beacon_tlv; } req = { .hdr = { .bss_idx = mvif->mt76.idx, }, .beacon_tlv = { .tag = cpu_to_le16(UNI_BSS_INFO_BCN_CONTENT), .len = cpu_to_le16(sizeof(struct bcn_content_tlv)), .enable = enable, }, }; struct sk_buff *skb; if (!enable) goto out; skb = ieee80211_beacon_get_template(mt76_hw(dev), vif, &offs, 0); if (!skb) return -EINVAL; if (skb->len > 512 - MT_TXD_SIZE) { dev_err(dev->mt76.dev, "beacon size limit exceed\n"); dev_kfree_skb(skb); return -EINVAL; } mt7615_mac_write_txwi(dev, (__le32 *)(req.beacon_tlv.pkt), skb, wcid, NULL, 0, NULL, 0, true); memcpy(req.beacon_tlv.pkt + MT_TXD_SIZE, skb->data, skb->len); req.beacon_tlv.pkt_len = cpu_to_le16(MT_TXD_SIZE + skb->len); req.beacon_tlv.tim_ie_pos = cpu_to_le16(MT_TXD_SIZE + offs.tim_offset); if (offs.cntdwn_counter_offs[0]) { u16 csa_offs; csa_offs = MT_TXD_SIZE + offs.cntdwn_counter_offs[0] - 4; req.beacon_tlv.csa_ie_pos = cpu_to_le16(csa_offs); } dev_kfree_skb(skb); out: return mt76_mcu_send_msg(&dev->mt76, MCU_UNI_CMD(BSS_INFO_UPDATE), &req, sizeof(req), true); } static int mt7615_mcu_uni_add_dev(struct mt7615_phy *phy, struct ieee80211_vif *vif, bool enable) { struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv; return mt76_connac_mcu_uni_add_dev(phy->mt76, vif, &mvif->sta.wcid, enable); } static int mt7615_mcu_uni_add_bss(struct mt7615_phy *phy, struct ieee80211_vif *vif, struct ieee80211_sta *sta, bool enable) { struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv; return mt76_connac_mcu_uni_add_bss(phy->mt76, vif, &mvif->sta.wcid, enable, NULL); } static inline int mt7615_mcu_uni_add_sta(struct mt7615_phy *phy, struct ieee80211_vif *vif, struct ieee80211_sta *sta, bool enable) { return __mt7615_mcu_add_sta(phy->mt76, vif, sta, enable, MCU_UNI_CMD(STA_REC_UPDATE), true); } static int mt7615_mcu_uni_tx_ba(struct mt7615_dev *dev, struct ieee80211_ampdu_params *params, bool enable) { struct mt7615_sta *sta = (struct mt7615_sta *)params->sta->drv_priv; return mt76_connac_mcu_sta_ba(&dev->mt76, &sta->vif->mt76, params, MCU_UNI_CMD(STA_REC_UPDATE), enable, true); } static int mt7615_mcu_uni_rx_ba(struct mt7615_dev *dev, struct ieee80211_ampdu_params *params, bool enable) { struct mt7615_sta *msta = (struct mt7615_sta *)params->sta->drv_priv; struct mt7615_vif *mvif = msta->vif; struct wtbl_req_hdr *wtbl_hdr; struct tlv *sta_wtbl; struct sk_buff *skb; int err; skb = mt76_connac_mcu_alloc_sta_req(&dev->mt76, &mvif->mt76, &msta->wcid); if (IS_ERR(skb)) return PTR_ERR(skb); mt76_connac_mcu_sta_ba_tlv(skb, params, enable, false); err = mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_UNI_CMD(STA_REC_UPDATE), true); if (err < 0 || !enable) return err; skb = mt76_connac_mcu_alloc_sta_req(&dev->mt76, &mvif->mt76, &msta->wcid); if (IS_ERR(skb)) return PTR_ERR(skb); sta_wtbl = mt76_connac_mcu_add_tlv(skb, STA_REC_WTBL, sizeof(struct tlv)); wtbl_hdr = mt76_connac_mcu_alloc_wtbl_req(&dev->mt76, &msta->wcid, WTBL_SET, sta_wtbl, &skb); if (IS_ERR(wtbl_hdr)) return PTR_ERR(wtbl_hdr); mt76_connac_mcu_wtbl_ba_tlv(&dev->mt76, skb, params, enable, false, sta_wtbl, wtbl_hdr); return mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_UNI_CMD(STA_REC_UPDATE), true); } static int mt7615_mcu_sta_uni_update_hdr_trans(struct mt7615_dev *dev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt7615_sta *msta = (struct mt7615_sta *)sta->drv_priv; return mt76_connac_mcu_sta_update_hdr_trans(&dev->mt76, vif, &msta->wcid, MCU_UNI_CMD(STA_REC_UPDATE)); } static const struct mt7615_mcu_ops uni_update_ops = { .add_beacon_offload = mt7615_mcu_uni_add_beacon_offload, .set_pm_state = mt7615_mcu_uni_ctrl_pm_state, .add_dev_info = mt7615_mcu_uni_add_dev, .add_bss_info = mt7615_mcu_uni_add_bss, .add_tx_ba = mt7615_mcu_uni_tx_ba, .add_rx_ba = mt7615_mcu_uni_rx_ba, .sta_add = mt7615_mcu_uni_add_sta, .set_drv_ctrl = mt7615_mcu_lp_drv_pmctrl, .set_fw_ctrl = mt7615_mcu_fw_pmctrl, .set_sta_decap_offload = mt7615_mcu_sta_uni_update_hdr_trans, }; int mt7615_mcu_restart(struct mt76_dev *dev) { return mt76_mcu_send_msg(dev, MCU_CMD(RESTART_DL_REQ), NULL, 0, true); } EXPORT_SYMBOL_GPL(mt7615_mcu_restart); static int mt7615_load_patch(struct mt7615_dev *dev, u32 addr, const char *name) { const struct mt7615_patch_hdr *hdr; const struct firmware *fw = NULL; int len, ret, sem; ret = firmware_request_nowarn(&fw, name, dev->mt76.dev); if (ret) return ret; if (!fw || !fw->data || fw->size < sizeof(*hdr)) { dev_err(dev->mt76.dev, "Invalid firmware\n"); ret = -EINVAL; goto release_fw; } sem = mt76_connac_mcu_patch_sem_ctrl(&dev->mt76, true); switch (sem) { case PATCH_IS_DL: goto release_fw; case PATCH_NOT_DL_SEM_SUCCESS: break; default: dev_err(dev->mt76.dev, "Failed to get patch semaphore\n"); ret = -EAGAIN; goto release_fw; } hdr = (const struct mt7615_patch_hdr *)(fw->data); dev_info(dev->mt76.dev, "HW/SW Version: 0x%x, Build Time: %.16s\n", be32_to_cpu(hdr->hw_sw_ver), hdr->build_date); len = fw->size - sizeof(*hdr); ret = mt76_connac_mcu_init_download(&dev->mt76, addr, len, DL_MODE_NEED_RSP); if (ret) { dev_err(dev->mt76.dev, "Download request failed\n"); goto out; } ret = mt76_mcu_send_firmware(&dev->mt76, MCU_CMD(FW_SCATTER), fw->data + sizeof(*hdr), len); if (ret) { dev_err(dev->mt76.dev, "Failed to send firmware to device\n"); goto out; } ret = mt76_connac_mcu_start_patch(&dev->mt76); if (ret) dev_err(dev->mt76.dev, "Failed to start patch\n"); out: sem = mt76_connac_mcu_patch_sem_ctrl(&dev->mt76, false); switch (sem) { case PATCH_REL_SEM_SUCCESS: break; default: ret = -EAGAIN; dev_err(dev->mt76.dev, "Failed to release patch semaphore\n"); break; } release_fw: release_firmware(fw); return ret; } static int mt7615_mcu_send_ram_firmware(struct mt7615_dev *dev, const struct mt7615_fw_trailer *hdr, const u8 *data, bool is_cr4) { int n_region = is_cr4 ? CR4_REGION_NUM : N9_REGION_NUM; int err, i, offset = 0; u32 len, addr, mode; for (i = 0; i < n_region; i++) { mode = mt76_connac_mcu_gen_dl_mode(&dev->mt76, hdr[i].feature_set, is_cr4); len = le32_to_cpu(hdr[i].len) + IMG_CRC_LEN; addr = le32_to_cpu(hdr[i].addr); err = mt76_connac_mcu_init_download(&dev->mt76, addr, len, mode); if (err) { dev_err(dev->mt76.dev, "Download request failed\n"); return err; } err = mt76_mcu_send_firmware(&dev->mt76, MCU_CMD(FW_SCATTER), data + offset, len); if (err) { dev_err(dev->mt76.dev, "Failed to send firmware to device\n"); return err; } offset += len; } return 0; } static int mt7615_load_n9(struct mt7615_dev *dev, const char *name) { const struct mt7615_fw_trailer *hdr; const struct firmware *fw; int ret; ret = request_firmware(&fw, name, dev->mt76.dev); if (ret) return ret; if (!fw || !fw->data || fw->size < N9_REGION_NUM * sizeof(*hdr)) { dev_err(dev->mt76.dev, "Invalid firmware\n"); ret = -EINVAL; goto out; } hdr = (const struct mt7615_fw_trailer *)(fw->data + fw->size - N9_REGION_NUM * sizeof(*hdr)); dev_info(dev->mt76.dev, "N9 Firmware Version: %.10s, Build Time: %.15s\n", hdr->fw_ver, hdr->build_date); ret = mt7615_mcu_send_ram_firmware(dev, hdr, fw->data, false); if (ret) goto out; ret = mt76_connac_mcu_start_firmware(&dev->mt76, le32_to_cpu(hdr->addr), FW_START_OVERRIDE); if (ret) { dev_err(dev->mt76.dev, "Failed to start N9 firmware\n"); goto out; } snprintf(dev->mt76.hw->wiphy->fw_version, sizeof(dev->mt76.hw->wiphy->fw_version), "%.10s-%.15s", hdr->fw_ver, hdr->build_date); if (!is_mt7615(&dev->mt76)) { dev->fw_ver = MT7615_FIRMWARE_V2; dev->mcu_ops = &sta_update_ops; } else { dev->fw_ver = MT7615_FIRMWARE_V1; dev->mcu_ops = &wtbl_update_ops; } out: release_firmware(fw); return ret; } static int mt7615_load_cr4(struct mt7615_dev *dev, const char *name) { const struct mt7615_fw_trailer *hdr; const struct firmware *fw; int ret; ret = request_firmware(&fw, name, dev->mt76.dev); if (ret) return ret; if (!fw || !fw->data || fw->size < CR4_REGION_NUM * sizeof(*hdr)) { dev_err(dev->mt76.dev, "Invalid firmware\n"); ret = -EINVAL; goto out; } hdr = (const struct mt7615_fw_trailer *)(fw->data + fw->size - CR4_REGION_NUM * sizeof(*hdr)); dev_info(dev->mt76.dev, "CR4 Firmware Version: %.10s, Build Time: %.15s\n", hdr->fw_ver, hdr->build_date); ret = mt7615_mcu_send_ram_firmware(dev, hdr, fw->data, true); if (ret) goto out; ret = mt76_connac_mcu_start_firmware(&dev->mt76, 0, FW_START_WORKING_PDA_CR4); if (ret) { dev_err(dev->mt76.dev, "Failed to start CR4 firmware\n"); goto out; } out: release_firmware(fw); return ret; } static int mt7615_load_ram(struct mt7615_dev *dev) { int ret; ret = mt7615_load_n9(dev, MT7615_FIRMWARE_N9); if (ret) return ret; return mt7615_load_cr4(dev, MT7615_FIRMWARE_CR4); } static int mt7615_load_firmware(struct mt7615_dev *dev) { int ret; u32 val; val = mt76_get_field(dev, MT_TOP_MISC2, MT_TOP_MISC2_FW_STATE); if (val != FW_STATE_FW_DOWNLOAD) { dev_err(dev->mt76.dev, "Firmware is not ready for download\n"); return -EIO; } ret = mt7615_load_patch(dev, MT7615_PATCH_ADDRESS, MT7615_ROM_PATCH); if (ret) return ret; ret = mt7615_load_ram(dev); if (ret) return ret; if (!mt76_poll_msec(dev, MT_TOP_MISC2, MT_TOP_MISC2_FW_STATE, FIELD_PREP(MT_TOP_MISC2_FW_STATE, FW_STATE_RDY), 500)) { dev_err(dev->mt76.dev, "Timeout for initializing firmware\n"); return -EIO; } return 0; } static int mt7622_load_firmware(struct mt7615_dev *dev) { int ret; u32 val; mt76_set(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_BYPASS_TX_SCH); val = mt76_get_field(dev, MT_TOP_OFF_RSV, MT_TOP_OFF_RSV_FW_STATE); if (val != FW_STATE_FW_DOWNLOAD) { dev_err(dev->mt76.dev, "Firmware is not ready for download\n"); return -EIO; } ret = mt7615_load_patch(dev, MT7622_PATCH_ADDRESS, MT7622_ROM_PATCH); if (ret) return ret; ret = mt7615_load_n9(dev, MT7622_FIRMWARE_N9); if (ret) return ret; if (!mt76_poll_msec(dev, MT_TOP_OFF_RSV, MT_TOP_OFF_RSV_FW_STATE, FIELD_PREP(MT_TOP_OFF_RSV_FW_STATE, FW_STATE_NORMAL_TRX), 1500)) { dev_err(dev->mt76.dev, "Timeout for initializing firmware\n"); return -EIO; } mt76_clear(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_BYPASS_TX_SCH); return 0; } int mt7615_mcu_fw_log_2_host(struct mt7615_dev *dev, u8 ctrl) { struct { u8 ctrl_val; u8 pad[3]; } data = { .ctrl_val = ctrl }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(FW_LOG_2_HOST), &data, sizeof(data), true); } static int mt7615_mcu_cal_cache_apply(struct mt7615_dev *dev) { struct { bool cache_enable; u8 pad[3]; } data = { .cache_enable = true }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(CAL_CACHE), &data, sizeof(data), false); } static int mt7663_load_n9(struct mt7615_dev *dev, const char *name) { u32 offset = 0, override_addr = 0, flag = FW_START_DLYCAL; const struct mt76_connac2_fw_trailer *hdr; const struct mt7663_fw_buf *buf; const struct firmware *fw; const u8 *base_addr; int i, ret; ret = request_firmware(&fw, name, dev->mt76.dev); if (ret) return ret; if (!fw || !fw->data || fw->size < FW_V3_COMMON_TAILER_SIZE) { dev_err(dev->mt76.dev, "Invalid firmware\n"); ret = -EINVAL; goto out; } hdr = (const void *)(fw->data + fw->size - FW_V3_COMMON_TAILER_SIZE); dev_info(dev->mt76.dev, "N9 Firmware Version: %.10s, Build Time: %.15s\n", hdr->fw_ver, hdr->build_date); dev_info(dev->mt76.dev, "Region number: 0x%x\n", hdr->n_region); base_addr = fw->data + fw->size - FW_V3_COMMON_TAILER_SIZE; for (i = 0; i < hdr->n_region; i++) { u32 shift = (hdr->n_region - i) * FW_V3_REGION_TAILER_SIZE; u32 len, addr, mode; dev_info(dev->mt76.dev, "Parsing tailer Region: %d\n", i); buf = (const struct mt7663_fw_buf *)(base_addr - shift); mode = mt76_connac_mcu_gen_dl_mode(&dev->mt76, buf->feature_set, false); addr = le32_to_cpu(buf->img_dest_addr); len = le32_to_cpu(buf->img_size); ret = mt76_connac_mcu_init_download(&dev->mt76, addr, len, mode); if (ret) { dev_err(dev->mt76.dev, "Download request failed\n"); goto out; } ret = mt76_mcu_send_firmware(&dev->mt76, MCU_CMD(FW_SCATTER), fw->data + offset, len); if (ret) { dev_err(dev->mt76.dev, "Failed to send firmware\n"); goto out; } offset += le32_to_cpu(buf->img_size); if (buf->feature_set & DL_MODE_VALID_RAM_ENTRY) { override_addr = le32_to_cpu(buf->img_dest_addr); dev_info(dev->mt76.dev, "Region %d, override_addr = 0x%08x\n", i, override_addr); } } if (override_addr) flag |= FW_START_OVERRIDE; dev_info(dev->mt76.dev, "override_addr = 0x%08x, option = %d\n", override_addr, flag); ret = mt76_connac_mcu_start_firmware(&dev->mt76, override_addr, flag); if (ret) { dev_err(dev->mt76.dev, "Failed to start N9 firmware\n"); goto out; } snprintf(dev->mt76.hw->wiphy->fw_version, sizeof(dev->mt76.hw->wiphy->fw_version), "%.10s-%.15s", hdr->fw_ver, hdr->build_date); out: release_firmware(fw); return ret; } static int mt7663_load_rom_patch(struct mt7615_dev *dev, const char **n9_firmware) { const char *selected_rom, *secondary_rom = MT7663_ROM_PATCH; const char *primary_rom = MT7663_OFFLOAD_ROM_PATCH; int ret; if (!prefer_offload_fw) { secondary_rom = MT7663_OFFLOAD_ROM_PATCH; primary_rom = MT7663_ROM_PATCH; } selected_rom = primary_rom; ret = mt7615_load_patch(dev, MT7663_PATCH_ADDRESS, primary_rom); if (ret) { dev_info(dev->mt76.dev, "%s not found, switching to %s", primary_rom, secondary_rom); ret = mt7615_load_patch(dev, MT7663_PATCH_ADDRESS, secondary_rom); if (ret) { dev_err(dev->mt76.dev, "failed to load %s", secondary_rom); return ret; } selected_rom = secondary_rom; } if (!strcmp(selected_rom, MT7663_OFFLOAD_ROM_PATCH)) { *n9_firmware = MT7663_OFFLOAD_FIRMWARE_N9; dev->fw_ver = MT7615_FIRMWARE_V3; dev->mcu_ops = &uni_update_ops; } else { *n9_firmware = MT7663_FIRMWARE_N9; dev->fw_ver = MT7615_FIRMWARE_V2; dev->mcu_ops = &sta_update_ops; } return 0; } int __mt7663_load_firmware(struct mt7615_dev *dev) { const char *n9_firmware; int ret; ret = mt76_get_field(dev, MT_CONN_ON_MISC, MT_TOP_MISC2_FW_N9_RDY); if (ret) { dev_dbg(dev->mt76.dev, "Firmware is already download\n"); return -EIO; } ret = mt7663_load_rom_patch(dev, &n9_firmware); if (ret) return ret; ret = mt7663_load_n9(dev, n9_firmware); if (ret) return ret; if (!mt76_poll_msec(dev, MT_CONN_ON_MISC, MT_TOP_MISC2_FW_N9_RDY, MT_TOP_MISC2_FW_N9_RDY, 1500)) { ret = mt76_get_field(dev, MT_CONN_ON_MISC, MT7663_TOP_MISC2_FW_STATE); dev_err(dev->mt76.dev, "Timeout for initializing firmware\n"); return -EIO; } #ifdef CONFIG_PM if (mt7615_firmware_offload(dev)) dev->mt76.hw->wiphy->wowlan = &mt76_connac_wowlan_support; #endif /* CONFIG_PM */ dev_dbg(dev->mt76.dev, "Firmware init done\n"); return 0; } EXPORT_SYMBOL_GPL(__mt7663_load_firmware); static int mt7663_load_firmware(struct mt7615_dev *dev) { int ret; mt76_set(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_BYPASS_TX_SCH); ret = __mt7663_load_firmware(dev); if (ret) return ret; mt76_clear(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_BYPASS_TX_SCH); return 0; } int mt7615_mcu_init(struct mt7615_dev *dev) { static const struct mt76_mcu_ops mt7615_mcu_ops = { .headroom = sizeof(struct mt7615_mcu_txd), .mcu_skb_send_msg = mt7615_mcu_send_message, .mcu_parse_response = mt7615_mcu_parse_response, }; int ret; dev->mt76.mcu_ops = &mt7615_mcu_ops, ret = mt7615_mcu_drv_pmctrl(dev); if (ret) return ret; switch (mt76_chip(&dev->mt76)) { case 0x7622: ret = mt7622_load_firmware(dev); break; case 0x7663: ret = mt7663_load_firmware(dev); break; default: ret = mt7615_load_firmware(dev); break; } if (ret) return ret; mt76_queue_tx_cleanup(dev, dev->mt76.q_mcu[MT_MCUQ_FWDL], false); dev_dbg(dev->mt76.dev, "Firmware init done\n"); set_bit(MT76_STATE_MCU_RUNNING, &dev->mphy.state); if (dev->dbdc_support) { ret = mt7615_mcu_cal_cache_apply(dev); if (ret) return ret; } return mt7615_mcu_fw_log_2_host(dev, 0); } EXPORT_SYMBOL_GPL(mt7615_mcu_init); void mt7615_mcu_exit(struct mt7615_dev *dev) { mt7615_mcu_restart(&dev->mt76); mt7615_mcu_set_fw_ctrl(dev); skb_queue_purge(&dev->mt76.mcu.res_q); } EXPORT_SYMBOL_GPL(mt7615_mcu_exit); int mt7615_mcu_set_eeprom(struct mt7615_dev *dev) { struct { u8 buffer_mode; u8 content_format; __le16 len; } __packed req_hdr = { .buffer_mode = 1, }; u8 *eep = (u8 *)dev->mt76.eeprom.data; struct sk_buff *skb; int eep_len, offset; switch (mt76_chip(&dev->mt76)) { case 0x7622: eep_len = MT7622_EE_MAX - MT_EE_NIC_CONF_0; offset = MT_EE_NIC_CONF_0; break; case 0x7663: eep_len = MT7663_EE_MAX - MT_EE_CHIP_ID; req_hdr.content_format = 1; offset = MT_EE_CHIP_ID; break; default: eep_len = MT7615_EE_MAX - MT_EE_NIC_CONF_0; offset = MT_EE_NIC_CONF_0; break; } req_hdr.len = cpu_to_le16(eep_len); skb = mt76_mcu_msg_alloc(&dev->mt76, NULL, sizeof(req_hdr) + eep_len); if (!skb) return -ENOMEM; skb_put_data(skb, &req_hdr, sizeof(req_hdr)); skb_put_data(skb, eep + offset, eep_len); return mt76_mcu_skb_send_msg(&dev->mt76, skb, MCU_EXT_CMD(EFUSE_BUFFER_MODE), true); } int mt7615_mcu_set_wmm(struct mt7615_dev *dev, u8 queue, const struct ieee80211_tx_queue_params *params) { #define WMM_AIFS_SET BIT(0) #define WMM_CW_MIN_SET BIT(1) #define WMM_CW_MAX_SET BIT(2) #define WMM_TXOP_SET BIT(3) #define WMM_PARAM_SET (WMM_AIFS_SET | WMM_CW_MIN_SET | \ WMM_CW_MAX_SET | WMM_TXOP_SET) struct req_data { u8 number; u8 rsv[3]; u8 queue; u8 valid; u8 aifs; u8 cw_min; __le16 cw_max; __le16 txop; } __packed req = { .number = 1, .queue = queue, .valid = WMM_PARAM_SET, .aifs = params->aifs, .cw_min = 5, .cw_max = cpu_to_le16(10), .txop = cpu_to_le16(params->txop), }; if (params->cw_min) req.cw_min = fls(params->cw_min); if (params->cw_max) req.cw_max = cpu_to_le16(fls(params->cw_max)); return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(EDCA_UPDATE), &req, sizeof(req), true); } int mt7615_mcu_set_dbdc(struct mt7615_dev *dev) { struct mt7615_phy *ext_phy = mt7615_ext_phy(dev); struct dbdc_entry { u8 type; u8 index; u8 band; u8 _rsv; }; struct { u8 enable; u8 num; u8 _rsv[2]; struct dbdc_entry entry[64]; } req = { .enable = !!ext_phy, }; int i; if (!ext_phy) goto out; #define ADD_DBDC_ENTRY(_type, _idx, _band) \ do { \ req.entry[req.num].type = _type; \ req.entry[req.num].index = _idx; \ req.entry[req.num++].band = _band; \ } while (0) for (i = 0; i < 4; i++) { bool band = !!(ext_phy->omac_mask & BIT_ULL(i)); ADD_DBDC_ENTRY(DBDC_TYPE_BSS, i, band); } for (i = 0; i < 14; i++) { bool band = !!(ext_phy->omac_mask & BIT_ULL(0x11 + i)); ADD_DBDC_ENTRY(DBDC_TYPE_MBSS, i, band); } ADD_DBDC_ENTRY(DBDC_TYPE_MU, 0, 1); for (i = 0; i < 3; i++) ADD_DBDC_ENTRY(DBDC_TYPE_BF, i, 1); ADD_DBDC_ENTRY(DBDC_TYPE_WMM, 0, 0); ADD_DBDC_ENTRY(DBDC_TYPE_WMM, 1, 0); ADD_DBDC_ENTRY(DBDC_TYPE_WMM, 2, 1); ADD_DBDC_ENTRY(DBDC_TYPE_WMM, 3, 1); ADD_DBDC_ENTRY(DBDC_TYPE_MGMT, 0, 0); ADD_DBDC_ENTRY(DBDC_TYPE_MGMT, 1, 1); out: return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(DBDC_CTRL), &req, sizeof(req), true); } int mt7615_mcu_del_wtbl_all(struct mt7615_dev *dev) { struct wtbl_req_hdr req = { .operation = WTBL_RESET_ALL, }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(WTBL_UPDATE), &req, sizeof(req), true); } int mt7615_mcu_set_fcc5_lpn(struct mt7615_dev *dev, int val) { struct { __le16 tag; __le16 min_lpn; } req = { .tag = cpu_to_le16(0x1), .min_lpn = cpu_to_le16(val), }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(SET_RADAR_TH), &req, sizeof(req), true); } int mt7615_mcu_set_pulse_th(struct mt7615_dev *dev, const struct mt7615_dfs_pulse *pulse) { struct { __le16 tag; __le32 max_width; /* us */ __le32 max_pwr; /* dbm */ __le32 min_pwr; /* dbm */ __le32 min_stgr_pri; /* us */ __le32 max_stgr_pri; /* us */ __le32 min_cr_pri; /* us */ __le32 max_cr_pri; /* us */ } req = { .tag = cpu_to_le16(0x3), #define __req_field(field) .field = cpu_to_le32(pulse->field) __req_field(max_width), __req_field(max_pwr), __req_field(min_pwr), __req_field(min_stgr_pri), __req_field(max_stgr_pri), __req_field(min_cr_pri), __req_field(max_cr_pri), #undef __req_field }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(SET_RADAR_TH), &req, sizeof(req), true); } int mt7615_mcu_set_radar_th(struct mt7615_dev *dev, int index, const struct mt7615_dfs_pattern *pattern) { struct { __le16 tag; __le16 radar_type; u8 enb; u8 stgr; u8 min_crpn; u8 max_crpn; u8 min_crpr; u8 min_pw; u8 max_pw; __le32 min_pri; __le32 max_pri; u8 min_crbn; u8 max_crbn; u8 min_stgpn; u8 max_stgpn; u8 min_stgpr; } req = { .tag = cpu_to_le16(0x2), .radar_type = cpu_to_le16(index), #define __req_field_u8(field) .field = pattern->field #define __req_field_u32(field) .field = cpu_to_le32(pattern->field) __req_field_u8(enb), __req_field_u8(stgr), __req_field_u8(min_crpn), __req_field_u8(max_crpn), __req_field_u8(min_crpr), __req_field_u8(min_pw), __req_field_u8(max_pw), __req_field_u32(min_pri), __req_field_u32(max_pri), __req_field_u8(min_crbn), __req_field_u8(max_crbn), __req_field_u8(min_stgpn), __req_field_u8(max_stgpn), __req_field_u8(min_stgpr), #undef __req_field_u8 #undef __req_field_u32 }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(SET_RADAR_TH), &req, sizeof(req), true); } int mt7615_mcu_rdd_send_pattern(struct mt7615_dev *dev) { struct { u8 pulse_num; u8 rsv[3]; struct { __le32 start_time; __le16 width; __le16 power; } pattern[32]; } req = { .pulse_num = dev->radar_pattern.n_pulses, }; u32 start_time = ktime_to_ms(ktime_get_boottime()); int i; if (dev->radar_pattern.n_pulses > ARRAY_SIZE(req.pattern)) return -EINVAL; /* TODO: add some noise here */ for (i = 0; i < dev->radar_pattern.n_pulses; i++) { u32 ts = start_time + i * dev->radar_pattern.period; req.pattern[i].width = cpu_to_le16(dev->radar_pattern.width); req.pattern[i].power = cpu_to_le16(dev->radar_pattern.power); req.pattern[i].start_time = cpu_to_le32(ts); } return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(SET_RDD_PATTERN), &req, sizeof(req), false); } static void mt7615_mcu_set_txpower_sku(struct mt7615_phy *phy, u8 *sku) { struct mt76_phy *mphy = phy->mt76; struct ieee80211_hw *hw = mphy->hw; struct mt76_power_limits limits; s8 *limits_array = (s8 *)&limits; int n_chains = hweight8(mphy->antenna_mask); int tx_power = hw->conf.power_level * 2; int i; static const u8 sku_mapping[] = { #define SKU_FIELD(_type, _field) \ [MT_SKU_##_type] = offsetof(struct mt76_power_limits, _field) SKU_FIELD(CCK_1_2, cck[0]), SKU_FIELD(CCK_55_11, cck[2]), SKU_FIELD(OFDM_6_9, ofdm[0]), SKU_FIELD(OFDM_12_18, ofdm[2]), SKU_FIELD(OFDM_24_36, ofdm[4]), SKU_FIELD(OFDM_48, ofdm[6]), SKU_FIELD(OFDM_54, ofdm[7]), SKU_FIELD(HT20_0_8, mcs[0][0]), SKU_FIELD(HT20_32, ofdm[0]), SKU_FIELD(HT20_1_2_9_10, mcs[0][1]), SKU_FIELD(HT20_3_4_11_12, mcs[0][3]), SKU_FIELD(HT20_5_13, mcs[0][5]), SKU_FIELD(HT20_6_14, mcs[0][6]), SKU_FIELD(HT20_7_15, mcs[0][7]), SKU_FIELD(HT40_0_8, mcs[1][0]), SKU_FIELD(HT40_32, ofdm[0]), SKU_FIELD(HT40_1_2_9_10, mcs[1][1]), SKU_FIELD(HT40_3_4_11_12, mcs[1][3]), SKU_FIELD(HT40_5_13, mcs[1][5]), SKU_FIELD(HT40_6_14, mcs[1][6]), SKU_FIELD(HT40_7_15, mcs[1][7]), SKU_FIELD(VHT20_0, mcs[0][0]), SKU_FIELD(VHT20_1_2, mcs[0][1]), SKU_FIELD(VHT20_3_4, mcs[0][3]), SKU_FIELD(VHT20_5_6, mcs[0][5]), SKU_FIELD(VHT20_7, mcs[0][7]), SKU_FIELD(VHT20_8, mcs[0][8]), SKU_FIELD(VHT20_9, mcs[0][9]), SKU_FIELD(VHT40_0, mcs[1][0]), SKU_FIELD(VHT40_1_2, mcs[1][1]), SKU_FIELD(VHT40_3_4, mcs[1][3]), SKU_FIELD(VHT40_5_6, mcs[1][5]), SKU_FIELD(VHT40_7, mcs[1][7]), SKU_FIELD(VHT40_8, mcs[1][8]), SKU_FIELD(VHT40_9, mcs[1][9]), SKU_FIELD(VHT80_0, mcs[2][0]), SKU_FIELD(VHT80_1_2, mcs[2][1]), SKU_FIELD(VHT80_3_4, mcs[2][3]), SKU_FIELD(VHT80_5_6, mcs[2][5]), SKU_FIELD(VHT80_7, mcs[2][7]), SKU_FIELD(VHT80_8, mcs[2][8]), SKU_FIELD(VHT80_9, mcs[2][9]), SKU_FIELD(VHT160_0, mcs[3][0]), SKU_FIELD(VHT160_1_2, mcs[3][1]), SKU_FIELD(VHT160_3_4, mcs[3][3]), SKU_FIELD(VHT160_5_6, mcs[3][5]), SKU_FIELD(VHT160_7, mcs[3][7]), SKU_FIELD(VHT160_8, mcs[3][8]), SKU_FIELD(VHT160_9, mcs[3][9]), #undef SKU_FIELD }; tx_power = mt76_get_sar_power(mphy, mphy->chandef.chan, tx_power); tx_power -= mt76_tx_power_nss_delta(n_chains); tx_power = mt76_get_rate_power_limits(mphy, mphy->chandef.chan, &limits, tx_power); mphy->txpower_cur = tx_power; if (is_mt7663(mphy->dev)) { memset(sku, tx_power, MT_SKU_4SS_DELTA + 1); return; } for (i = 0; i < MT_SKU_1SS_DELTA; i++) sku[i] = limits_array[sku_mapping[i]]; for (i = 0; i < 4; i++) { int delta = 0; if (i < n_chains - 1) delta = mt76_tx_power_nss_delta(n_chains) - mt76_tx_power_nss_delta(i + 1); sku[MT_SKU_1SS_DELTA + i] = delta; } } static u8 mt7615_mcu_chan_bw(struct cfg80211_chan_def *chandef) { static const u8 width_to_bw[] = { [NL80211_CHAN_WIDTH_40] = CMD_CBW_40MHZ, [NL80211_CHAN_WIDTH_80] = CMD_CBW_80MHZ, [NL80211_CHAN_WIDTH_80P80] = CMD_CBW_8080MHZ, [NL80211_CHAN_WIDTH_160] = CMD_CBW_160MHZ, [NL80211_CHAN_WIDTH_5] = CMD_CBW_5MHZ, [NL80211_CHAN_WIDTH_10] = CMD_CBW_10MHZ, [NL80211_CHAN_WIDTH_20] = CMD_CBW_20MHZ, [NL80211_CHAN_WIDTH_20_NOHT] = CMD_CBW_20MHZ, }; if (chandef->width >= ARRAY_SIZE(width_to_bw)) return 0; return width_to_bw[chandef->width]; } int mt7615_mcu_set_chan_info(struct mt7615_phy *phy, int cmd) { struct mt7615_dev *dev = phy->dev; struct cfg80211_chan_def *chandef = &phy->mt76->chandef; int freq1 = chandef->center_freq1, freq2 = chandef->center_freq2; struct { u8 control_chan; u8 center_chan; u8 bw; u8 tx_streams; u8 rx_streams_mask; u8 switch_reason; u8 band_idx; /* for 80+80 only */ u8 center_chan2; __le16 cac_case; u8 channel_band; u8 rsv0; __le32 outband_freq; u8 txpower_drop; u8 rsv1[3]; u8 txpower_sku[53]; u8 rsv2[3]; } req = { .control_chan = chandef->chan->hw_value, .center_chan = ieee80211_frequency_to_channel(freq1), .tx_streams = hweight8(phy->mt76->antenna_mask), .rx_streams_mask = phy->mt76->chainmask, .center_chan2 = ieee80211_frequency_to_channel(freq2), }; if (cmd == MCU_EXT_CMD(SET_RX_PATH) || dev->mt76.hw->conf.flags & IEEE80211_CONF_MONITOR) req.switch_reason = CH_SWITCH_NORMAL; else if (phy->mt76->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL) req.switch_reason = CH_SWITCH_SCAN_BYPASS_DPD; else if (!cfg80211_reg_can_beacon(phy->mt76->hw->wiphy, chandef, NL80211_IFTYPE_AP)) req.switch_reason = CH_SWITCH_DFS; else req.switch_reason = CH_SWITCH_NORMAL; req.band_idx = phy != &dev->phy; req.bw = mt7615_mcu_chan_bw(chandef); if (mt76_testmode_enabled(phy->mt76)) memset(req.txpower_sku, 0x3f, 49); else mt7615_mcu_set_txpower_sku(phy, req.txpower_sku); return mt76_mcu_send_msg(&dev->mt76, cmd, &req, sizeof(req), true); } int mt7615_mcu_get_temperature(struct mt7615_dev *dev) { struct { u8 action; u8 rsv[3]; } req = {}; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(THERMAL_CTRL), &req, sizeof(req), true); } int mt7615_mcu_set_test_param(struct mt7615_dev *dev, u8 param, bool test_mode, u32 val) { struct { u8 test_mode_en; u8 param_idx; u8 _rsv[2]; __le32 value; u8 pad[8]; } req = { .test_mode_en = test_mode, .param_idx = param, .value = cpu_to_le32(val), }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(ATE_CTRL), &req, sizeof(req), false); } int mt7615_mcu_set_sku_en(struct mt7615_phy *phy, bool enable) { struct mt7615_dev *dev = phy->dev; struct { u8 format_id; u8 sku_enable; u8 band_idx; u8 rsv; } req = { .format_id = 0, .band_idx = phy != &dev->phy, .sku_enable = enable, }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(TX_POWER_FEATURE_CTRL), &req, sizeof(req), true); } static int mt7615_find_freq_idx(const u16 *freqs, int n_freqs, u16 cur) { int i; for (i = 0; i < n_freqs; i++) if (cur == freqs[i]) return i; return -1; } static int mt7615_dcoc_freq_idx(u16 freq, u8 bw) { static const u16 freq_list[] = { 4980, 5805, 5905, 5190, 5230, 5270, 5310, 5350, 5390, 5430, 5470, 5510, 5550, 5590, 5630, 5670, 5710, 5755, 5795, 5835, 5875, 5210, 5290, 5370, 5450, 5530, 5610, 5690, 5775, 5855 }; static const u16 freq_bw40[] = { 5190, 5230, 5270, 5310, 5350, 5390, 5430, 5470, 5510, 5550, 5590, 5630, 5670, 5710, 5755, 5795, 5835, 5875 }; int offset_2g = ARRAY_SIZE(freq_list); int idx; if (freq < 4000) { if (freq < 2427) return offset_2g; if (freq < 2442) return offset_2g + 1; if (freq < 2457) return offset_2g + 2; return offset_2g + 3; } switch (bw) { case NL80211_CHAN_WIDTH_80: case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_160: break; default: idx = mt7615_find_freq_idx(freq_bw40, ARRAY_SIZE(freq_bw40), freq + 10); if (idx >= 0) { freq = freq_bw40[idx]; break; } idx = mt7615_find_freq_idx(freq_bw40, ARRAY_SIZE(freq_bw40), freq - 10); if (idx >= 0) { freq = freq_bw40[idx]; break; } fallthrough; case NL80211_CHAN_WIDTH_40: idx = mt7615_find_freq_idx(freq_bw40, ARRAY_SIZE(freq_bw40), freq); if (idx >= 0) break; return -1; } return mt7615_find_freq_idx(freq_list, ARRAY_SIZE(freq_list), freq); } int mt7615_mcu_apply_rx_dcoc(struct mt7615_phy *phy) { struct mt7615_dev *dev = phy->dev; struct cfg80211_chan_def *chandef = &phy->mt76->chandef; int freq2 = chandef->center_freq2; int ret; struct { u8 direction; u8 runtime_calibration; u8 _rsv[2]; __le16 center_freq; u8 bw; u8 band; u8 is_freq2; u8 success; u8 dbdc_en; u8 _rsv2; struct { __le32 sx0_i_lna[4]; __le32 sx0_q_lna[4]; __le32 sx2_i_lna[4]; __le32 sx2_q_lna[4]; } dcoc_data[4]; } req = { .direction = 1, .bw = mt7615_mcu_chan_bw(chandef), .band = chandef->center_freq1 > 4000, .dbdc_en = !!dev->mt76.phys[MT_BAND1], }; u16 center_freq = chandef->center_freq1; int freq_idx; u8 *eep = dev->mt76.eeprom.data; if (!(eep[MT_EE_CALDATA_FLASH] & MT_EE_CALDATA_FLASH_RX_CAL)) return 0; if (chandef->width == NL80211_CHAN_WIDTH_160) { freq2 = center_freq + 40; center_freq -= 40; } again: req.runtime_calibration = 1; freq_idx = mt7615_dcoc_freq_idx(center_freq, chandef->width); if (freq_idx < 0) goto out; memcpy(req.dcoc_data, eep + MT7615_EEPROM_DCOC_OFFSET + freq_idx * MT7615_EEPROM_DCOC_SIZE, sizeof(req.dcoc_data)); req.runtime_calibration = 0; out: req.center_freq = cpu_to_le16(center_freq); ret = mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(RXDCOC_CAL), &req, sizeof(req), true); if ((chandef->width == NL80211_CHAN_WIDTH_80P80 || chandef->width == NL80211_CHAN_WIDTH_160) && !req.is_freq2) { req.is_freq2 = true; center_freq = freq2; goto again; } return ret; } static int mt7615_dpd_freq_idx(u16 freq, u8 bw) { static const u16 freq_list[] = { 4920, 4940, 4960, 4980, 5040, 5060, 5080, 5180, 5200, 5220, 5240, 5260, 5280, 5300, 5320, 5340, 5360, 5380, 5400, 5420, 5440, 5460, 5480, 5500, 5520, 5540, 5560, 5580, 5600, 5620, 5640, 5660, 5680, 5700, 5720, 5745, 5765, 5785, 5805, 5825, 5845, 5865, 5885, 5905 }; int offset_2g = ARRAY_SIZE(freq_list); int idx; if (freq < 4000) { if (freq < 2432) return offset_2g; if (freq < 2457) return offset_2g + 1; return offset_2g + 2; } if (bw != NL80211_CHAN_WIDTH_20) { idx = mt7615_find_freq_idx(freq_list, ARRAY_SIZE(freq_list), freq + 10); if (idx >= 0) return idx; idx = mt7615_find_freq_idx(freq_list, ARRAY_SIZE(freq_list), freq - 10); if (idx >= 0) return idx; } return mt7615_find_freq_idx(freq_list, ARRAY_SIZE(freq_list), freq); } int mt7615_mcu_apply_tx_dpd(struct mt7615_phy *phy) { struct mt7615_dev *dev = phy->dev; struct cfg80211_chan_def *chandef = &phy->mt76->chandef; int freq2 = chandef->center_freq2; int ret; struct { u8 direction; u8 runtime_calibration; u8 _rsv[2]; __le16 center_freq; u8 bw; u8 band; u8 is_freq2; u8 success; u8 dbdc_en; u8 _rsv2; struct { struct { u32 dpd_g0; u8 data[32]; } wf0, wf1; struct { u32 dpd_g0_prim; u32 dpd_g0_sec; u8 data_prim[32]; u8 data_sec[32]; } wf2, wf3; } dpd_data; } req = { .direction = 1, .bw = mt7615_mcu_chan_bw(chandef), .band = chandef->center_freq1 > 4000, .dbdc_en = !!dev->mt76.phys[MT_BAND1], }; u16 center_freq = chandef->center_freq1; int freq_idx; u8 *eep = dev->mt76.eeprom.data; if (!(eep[MT_EE_CALDATA_FLASH] & MT_EE_CALDATA_FLASH_TX_DPD)) return 0; if (chandef->width == NL80211_CHAN_WIDTH_160) { freq2 = center_freq + 40; center_freq -= 40; } again: req.runtime_calibration = 1; freq_idx = mt7615_dpd_freq_idx(center_freq, chandef->width); if (freq_idx < 0) goto out; memcpy(&req.dpd_data, eep + MT7615_EEPROM_TXDPD_OFFSET + freq_idx * MT7615_EEPROM_TXDPD_SIZE, sizeof(req.dpd_data)); req.runtime_calibration = 0; out: req.center_freq = cpu_to_le16(center_freq); ret = mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(TXDPD_CAL), &req, sizeof(req), true); if ((chandef->width == NL80211_CHAN_WIDTH_80P80 || chandef->width == NL80211_CHAN_WIDTH_160) && !req.is_freq2) { req.is_freq2 = true; center_freq = freq2; goto again; } return ret; } int mt7615_mcu_set_rx_hdr_trans_blacklist(struct mt7615_dev *dev) { struct { u8 operation; u8 count; u8 _rsv[2]; u8 index; u8 enable; __le16 etype; } req = { .operation = 1, .count = 1, .enable = 1, .etype = cpu_to_le16(ETH_P_PAE), }; return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD(RX_HDR_TRANS), &req, sizeof(req), false); } int mt7615_mcu_set_bss_pm(struct mt7615_dev *dev, struct ieee80211_vif *vif, bool enable) { struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv; struct { u8 bss_idx; u8 dtim_period; __le16 aid; __le16 bcn_interval; __le16 atim_window; u8 uapsd; u8 bmc_delivered_ac; u8 bmc_triggered_ac; u8 pad; } req = { .bss_idx = mvif->mt76.idx, .aid = cpu_to_le16(vif->cfg.aid), .dtim_period = vif->bss_conf.dtim_period, .bcn_interval = cpu_to_le16(vif->bss_conf.beacon_int), }; struct { u8 bss_idx; u8 pad[3]; } req_hdr = { .bss_idx = mvif->mt76.idx, }; int err; if (vif->type != NL80211_IFTYPE_STATION) return 0; err = mt76_mcu_send_msg(&dev->mt76, MCU_CE_CMD(SET_BSS_ABORT), &req_hdr, sizeof(req_hdr), false); if (err < 0 || !enable) return err; return mt76_mcu_send_msg(&dev->mt76, MCU_CE_CMD(SET_BSS_CONNECTED), &req, sizeof(req), false); } int mt7615_mcu_set_roc(struct mt7615_phy *phy, struct ieee80211_vif *vif, struct ieee80211_channel *chan, int duration) { struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv; struct mt7615_dev *dev = phy->dev; struct mt7615_roc_tlv req = { .bss_idx = mvif->mt76.idx, .active = !chan, .max_interval = cpu_to_le32(duration), .primary_chan = chan ? chan->hw_value : 0, .band = chan ? chan->band : 0, .req_type = 2, }; phy->roc_grant = false; return mt76_mcu_send_msg(&dev->mt76, MCU_CE_CMD(SET_ROC), &req, sizeof(req), false); }
linux-master
drivers/net/wireless/mediatek/mt76/mt7615/mcu.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2020 MediaTek Inc. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pci.h> #include "mt7615.h" #include "regs.h" #include "mac.h" #include "../trace.h" const u32 mt7615e_reg_map[] = { [MT_TOP_CFG_BASE] = 0x01000, [MT_HW_BASE] = 0x01000, [MT_PCIE_REMAP_2] = 0x02504, [MT_ARB_BASE] = 0x20c00, [MT_HIF_BASE] = 0x04000, [MT_CSR_BASE] = 0x07000, [MT_PLE_BASE] = 0x08000, [MT_PSE_BASE] = 0x0c000, [MT_CFG_BASE] = 0x20200, [MT_AGG_BASE] = 0x20a00, [MT_TMAC_BASE] = 0x21000, [MT_RMAC_BASE] = 0x21200, [MT_DMA_BASE] = 0x21800, [MT_PF_BASE] = 0x22000, [MT_WTBL_BASE_ON] = 0x23000, [MT_WTBL_BASE_OFF] = 0x23400, [MT_LPON_BASE] = 0x24200, [MT_MIB_BASE] = 0x24800, [MT_WTBL_BASE_ADDR] = 0x30000, [MT_PCIE_REMAP_BASE2] = 0x80000, [MT_TOP_MISC_BASE] = 0xc0000, [MT_EFUSE_ADDR_BASE] = 0x81070000, }; const u32 mt7663e_reg_map[] = { [MT_TOP_CFG_BASE] = 0x01000, [MT_HW_BASE] = 0x02000, [MT_DMA_SHDL_BASE] = 0x06000, [MT_PCIE_REMAP_2] = 0x0700c, [MT_ARB_BASE] = 0x20c00, [MT_HIF_BASE] = 0x04000, [MT_CSR_BASE] = 0x07000, [MT_PLE_BASE] = 0x08000, [MT_PSE_BASE] = 0x0c000, [MT_PP_BASE] = 0x0e000, [MT_CFG_BASE] = 0x20000, [MT_AGG_BASE] = 0x22000, [MT_TMAC_BASE] = 0x24000, [MT_RMAC_BASE] = 0x25000, [MT_DMA_BASE] = 0x27000, [MT_PF_BASE] = 0x28000, [MT_WTBL_BASE_ON] = 0x29000, [MT_WTBL_BASE_OFF] = 0x29800, [MT_LPON_BASE] = 0x2b000, [MT_MIB_BASE] = 0x2d000, [MT_WTBL_BASE_ADDR] = 0x30000, [MT_PCIE_REMAP_BASE2] = 0x90000, [MT_TOP_MISC_BASE] = 0xc0000, [MT_EFUSE_ADDR_BASE] = 0x78011000, }; static void mt7615_rx_poll_complete(struct mt76_dev *mdev, enum mt76_rxq_id q) { mt76_connac_irq_enable(mdev, MT_INT_RX_DONE(q)); } static irqreturn_t mt7615_irq_handler(int irq, void *dev_instance) { struct mt7615_dev *dev = dev_instance; mt76_wr(dev, MT_INT_MASK_CSR, 0); if (!test_bit(MT76_STATE_INITIALIZED, &dev->mphy.state)) return IRQ_NONE; tasklet_schedule(&dev->mt76.irq_tasklet); return IRQ_HANDLED; } static void mt7615_irq_tasklet(struct tasklet_struct *t) { struct mt7615_dev *dev = from_tasklet(dev, t, mt76.irq_tasklet); u32 intr, mask = 0, tx_mcu_mask = mt7615_tx_mcu_int_mask(dev); u32 mcu_int; mt76_wr(dev, MT_INT_MASK_CSR, 0); intr = mt76_rr(dev, MT_INT_SOURCE_CSR); intr &= dev->mt76.mmio.irqmask; mt76_wr(dev, MT_INT_SOURCE_CSR, intr); trace_dev_irq(&dev->mt76, intr, dev->mt76.mmio.irqmask); mask |= intr & MT_INT_RX_DONE_ALL; if (intr & tx_mcu_mask) mask |= tx_mcu_mask; mt76_set_irq_mask(&dev->mt76, MT_INT_MASK_CSR, mask, 0); if (intr & tx_mcu_mask) napi_schedule(&dev->mt76.tx_napi); if (intr & MT_INT_RX_DONE(0)) napi_schedule(&dev->mt76.napi[0]); if (intr & MT_INT_RX_DONE(1)) napi_schedule(&dev->mt76.napi[1]); if (!(intr & (MT_INT_MCU_CMD | MT7663_INT_MCU_CMD))) return; if (is_mt7663(&dev->mt76)) { mcu_int = mt76_rr(dev, MT_MCU2HOST_INT_STATUS); mcu_int &= MT7663_MCU_CMD_ERROR_MASK; mt76_wr(dev, MT_MCU2HOST_INT_STATUS, mcu_int); } else { mcu_int = mt76_rr(dev, MT_MCU_CMD); mcu_int &= MT_MCU_CMD_ERROR_MASK; } if (!mcu_int) return; dev->reset_state = mcu_int; queue_work(dev->mt76.wq, &dev->reset_work); wake_up(&dev->reset_wait); } static u32 __mt7615_reg_addr(struct mt7615_dev *dev, u32 addr) { if (addr < 0x100000) return addr; return mt7615_reg_map(dev, addr); } static u32 mt7615_rr(struct mt76_dev *mdev, u32 offset) { struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76); u32 addr = __mt7615_reg_addr(dev, offset); return dev->bus_ops->rr(mdev, addr); } static void mt7615_wr(struct mt76_dev *mdev, u32 offset, u32 val) { struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76); u32 addr = __mt7615_reg_addr(dev, offset); dev->bus_ops->wr(mdev, addr, val); } static u32 mt7615_rmw(struct mt76_dev *mdev, u32 offset, u32 mask, u32 val) { struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76); u32 addr = __mt7615_reg_addr(dev, offset); return dev->bus_ops->rmw(mdev, addr, mask, val); } int mt7615_mmio_probe(struct device *pdev, void __iomem *mem_base, int irq, const u32 *map) { static const struct mt76_driver_ops drv_ops = { /* txwi_size = txd size + txp size */ .txwi_size = MT_TXD_SIZE + sizeof(struct mt76_connac_txp_common), .drv_flags = MT_DRV_TXWI_NO_FREE | MT_DRV_HW_MGMT_TXQ, .survey_flags = SURVEY_INFO_TIME_TX | SURVEY_INFO_TIME_RX | SURVEY_INFO_TIME_BSS_RX, .token_size = MT7615_TOKEN_SIZE, .tx_prepare_skb = mt7615_tx_prepare_skb, .tx_complete_skb = mt76_connac_tx_complete_skb, .rx_check = mt7615_rx_check, .rx_skb = mt7615_queue_rx_skb, .rx_poll_complete = mt7615_rx_poll_complete, .sta_add = mt7615_mac_sta_add, .sta_remove = mt7615_mac_sta_remove, .update_survey = mt7615_update_channel, }; struct mt76_bus_ops *bus_ops; struct ieee80211_ops *ops; struct mt7615_dev *dev; struct mt76_dev *mdev; int ret; ops = devm_kmemdup(pdev, &mt7615_ops, sizeof(mt7615_ops), GFP_KERNEL); if (!ops) return -ENOMEM; mdev = mt76_alloc_device(pdev, sizeof(*dev), ops, &drv_ops); if (!mdev) return -ENOMEM; dev = container_of(mdev, struct mt7615_dev, mt76); mt76_mmio_init(&dev->mt76, mem_base); tasklet_setup(&mdev->irq_tasklet, mt7615_irq_tasklet); dev->reg_map = map; dev->ops = ops; mdev->rev = (mt76_rr(dev, MT_HW_CHIPID) << 16) | (mt76_rr(dev, MT_HW_REV) & 0xff); dev_dbg(mdev->dev, "ASIC revision: %04x\n", mdev->rev); dev->bus_ops = dev->mt76.bus; bus_ops = devm_kmemdup(dev->mt76.dev, dev->bus_ops, sizeof(*bus_ops), GFP_KERNEL); if (!bus_ops) { ret = -ENOMEM; goto err_free_dev; } bus_ops->rr = mt7615_rr; bus_ops->wr = mt7615_wr; bus_ops->rmw = mt7615_rmw; dev->mt76.bus = bus_ops; mt76_wr(dev, MT_INT_MASK_CSR, 0); ret = devm_request_irq(mdev->dev, irq, mt7615_irq_handler, IRQF_SHARED, KBUILD_MODNAME, dev); if (ret) goto err_free_dev; if (is_mt7663(mdev)) mt76_wr(dev, MT_PCIE_IRQ_ENABLE, 1); ret = mt7615_register_device(dev); if (ret) goto err_free_irq; return 0; err_free_irq: devm_free_irq(pdev, irq, dev); err_free_dev: mt76_free_device(&dev->mt76); return ret; } static int __init mt7615_init(void) { int ret; ret = pci_register_driver(&mt7615_pci_driver); if (ret) return ret; if (IS_ENABLED(CONFIG_MT7622_WMAC)) { ret = platform_driver_register(&mt7622_wmac_driver); if (ret) pci_unregister_driver(&mt7615_pci_driver); } return ret; } static void __exit mt7615_exit(void) { if (IS_ENABLED(CONFIG_MT7622_WMAC)) platform_driver_unregister(&mt7622_wmac_driver); pci_unregister_driver(&mt7615_pci_driver); } module_init(mt7615_init); module_exit(mt7615_exit); MODULE_LICENSE("Dual BSD/GPL");
linux-master
drivers/net/wireless/mediatek/mt76/mt7615/mmio.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2019 MediaTek Inc. * * Author: Ryder Lee <[email protected]> * Felix Fietkau <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/mfd/syscon.h> #include <linux/of.h> #include "mt7615.h" int mt7622_wmac_init(struct mt7615_dev *dev) { struct device_node *np = dev->mt76.dev->of_node; if (!is_mt7622(&dev->mt76)) return 0; dev->infracfg = syscon_regmap_lookup_by_phandle(np, "mediatek,infracfg"); if (IS_ERR(dev->infracfg)) { dev_err(dev->mt76.dev, "Cannot find infracfg controller\n"); return PTR_ERR(dev->infracfg); } return 0; } static int mt7622_wmac_probe(struct platform_device *pdev) { void __iomem *mem_base; int irq; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; mem_base = devm_platform_get_and_ioremap_resource(pdev, 0, NULL); if (IS_ERR(mem_base)) return PTR_ERR(mem_base); return mt7615_mmio_probe(&pdev->dev, mem_base, irq, mt7615e_reg_map); } static int mt7622_wmac_remove(struct platform_device *pdev) { struct mt7615_dev *dev = platform_get_drvdata(pdev); mt7615_unregister_device(dev); return 0; } static const struct of_device_id mt7622_wmac_of_match[] = { { .compatible = "mediatek,mt7622-wmac" }, {}, }; struct platform_driver mt7622_wmac_driver = { .driver = { .name = "mt7622-wmac", .of_match_table = mt7622_wmac_of_match, }, .probe = mt7622_wmac_probe, .remove = mt7622_wmac_remove, }; MODULE_FIRMWARE(MT7622_FIRMWARE_N9); MODULE_FIRMWARE(MT7622_ROM_PATCH);
linux-master
drivers/net/wireless/mediatek/mt76/mt7615/soc.c
// SPDX-License-Identifier: ISC /* Copyright (C) 2019 MediaTek Inc. * * Author: Roy Luo <[email protected]> * Ryder Lee <[email protected]> * Felix Fietkau <[email protected]> * Lorenzo Bianconi <[email protected]> */ #include <linux/etherdevice.h> #include "mt7615.h" #include "mac.h" #include "eeprom.h" static void mt7615_pci_init_work(struct work_struct *work) { struct mt7615_dev *dev = container_of(work, struct mt7615_dev, mcu_work); int i, ret; ret = mt7615_mcu_init(dev); for (i = 0; (ret == -EAGAIN) && (i < 10); i++) { msleep(200); ret = mt7615_mcu_init(dev); } if (ret) return; mt7615_init_work(dev); } static int mt7615_init_hardware(struct mt7615_dev *dev) { u32 addr = mt7615_reg_map(dev, MT_EFUSE_BASE); int ret, idx; mt76_wr(dev, MT_INT_SOURCE_CSR, ~0); INIT_WORK(&dev->mcu_work, mt7615_pci_init_work); ret = mt7615_eeprom_init(dev, addr); if (ret < 0) return ret; if (is_mt7663(&dev->mt76)) { /* Reset RGU */ mt76_clear(dev, MT_MCU_CIRQ_IRQ_SEL(4), BIT(1)); mt76_set(dev, MT_MCU_CIRQ_IRQ_SEL(4), BIT(1)); } ret = mt7615_dma_init(dev); if (ret) return ret; set_bit(MT76_STATE_INITIALIZED, &dev->mphy.state); /* Beacon and mgmt frames should occupy wcid 0 */ idx = mt76_wcid_alloc(dev->mt76.wcid_mask, MT7615_WTBL_STA - 1); if (idx) return -ENOSPC; dev->mt76.global_wcid.idx = idx; dev->mt76.global_wcid.hw_key_idx = -1; rcu_assign_pointer(dev->mt76.wcid[idx], &dev->mt76.global_wcid); return 0; } int mt7615_register_device(struct mt7615_dev *dev) { int ret; mt7615_init_device(dev); INIT_WORK(&dev->reset_work, mt7615_mac_reset_work); /* init led callbacks */ if (IS_ENABLED(CONFIG_MT76_LEDS)) { dev->mphy.leds.cdev.brightness_set = mt7615_led_set_brightness; dev->mphy.leds.cdev.blink_set = mt7615_led_set_blink; } ret = mt7622_wmac_init(dev); if (ret) return ret; ret = mt7615_init_hardware(dev); if (ret) return ret; ret = mt76_register_device(&dev->mt76, true, mt76_rates, ARRAY_SIZE(mt76_rates)); if (ret) return ret; ret = mt7615_thermal_init(dev); if (ret) return ret; ieee80211_queue_work(mt76_hw(dev), &dev->mcu_work); mt7615_init_txpower(dev, &dev->mphy.sband_2g.sband); mt7615_init_txpower(dev, &dev->mphy.sband_5g.sband); if (dev->dbdc_support) { ret = mt7615_register_ext_phy(dev); if (ret) return ret; } return mt7615_init_debugfs(dev); } void mt7615_unregister_device(struct mt7615_dev *dev) { bool mcu_running; mcu_running = mt7615_wait_for_mcu_init(dev); mt7615_unregister_ext_phy(dev); mt76_unregister_device(&dev->mt76); if (mcu_running) mt7615_mcu_exit(dev); mt7615_tx_token_put(dev); mt7615_dma_cleanup(dev); tasklet_disable(&dev->mt76.irq_tasklet); mt76_free_device(&dev->mt76); }
linux-master
drivers/net/wireless/mediatek/mt76/mt7615/pci_init.c
// SPDX-License-Identifier: GPL-2.0 /* Copyright (C) 2020 MediaTek Inc. * * Author: Felix Fietkau <[email protected]> * Lorenzo Bianconi <[email protected]> * Sean Wang <[email protected]> */ #include <linux/kernel.h> #include <linux/mmc/sdio_func.h> #include <linux/module.h> #include <linux/iopoll.h> #include "../sdio.h" #include "mt7615.h" #include "mac.h" #include "mcu.h" #include "regs.h" static int mt7663s_mcu_init_sched(struct mt7615_dev *dev) { struct mt76_sdio *sdio = &dev->mt76.sdio; u32 txdwcnt; sdio->sched.pse_data_quota = mt76_get_field(dev, MT_PSE_PG_HIF0_GROUP, MT_HIF0_MIN_QUOTA); sdio->sched.pse_mcu_quota = mt76_get_field(dev, MT_PSE_PG_HIF1_GROUP, MT_HIF1_MIN_QUOTA); sdio->sched.ple_data_quota = mt76_get_field(dev, MT_PLE_PG_HIF0_GROUP, MT_HIF0_MIN_QUOTA); sdio->sched.pse_page_size = MT_PSE_PAGE_SZ; txdwcnt = mt76_get_field(dev, MT_PP_TXDWCNT, MT_PP_TXDWCNT_TX1_ADD_DW_CNT); sdio->sched.deficit = txdwcnt << 2; return 0; } static int mt7663s_mcu_send_message(struct mt76_dev *mdev, struct sk_buff *skb, int cmd, int *seq) { struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76); int ret; mt7615_mcu_fill_msg(dev, skb, cmd, seq); ret = mt76_tx_queue_skb_raw(dev, mdev->q_mcu[MT_MCUQ_WM], skb, 0); if (ret) return ret; mt76_queue_kick(dev, mdev->q_mcu[MT_MCUQ_WM]); return ret; } static int __mt7663s_mcu_drv_pmctrl(struct mt7615_dev *dev) { struct sdio_func *func = dev->mt76.sdio.func; struct mt76_phy *mphy = &dev->mt76.phy; struct mt76_connac_pm *pm = &dev->pm; u32 status; int ret; sdio_claim_host(func); sdio_writel(func, WHLPCR_FW_OWN_REQ_CLR, MCR_WHLPCR, NULL); ret = readx_poll_timeout(mt76s_read_pcr, &dev->mt76, status, status & WHLPCR_IS_DRIVER_OWN, 2000, 1000000); if (ret < 0) { dev_err(dev->mt76.dev, "Cannot get ownership from device"); } else { clear_bit(MT76_STATE_PM, &mphy->state); pm->stats.last_wake_event = jiffies; pm->stats.doze_time += pm->stats.last_wake_event - pm->stats.last_doze_event; } sdio_release_host(func); return ret; } static int mt7663s_mcu_drv_pmctrl(struct mt7615_dev *dev) { struct mt76_phy *mphy = &dev->mt76.phy; int ret = 0; mutex_lock(&dev->pm.mutex); if (test_bit(MT76_STATE_PM, &mphy->state)) ret = __mt7663s_mcu_drv_pmctrl(dev); mutex_unlock(&dev->pm.mutex); return ret; } static int mt7663s_mcu_fw_pmctrl(struct mt7615_dev *dev) { struct sdio_func *func = dev->mt76.sdio.func; struct mt76_phy *mphy = &dev->mt76.phy; struct mt76_connac_pm *pm = &dev->pm; int ret = 0; u32 status; mutex_lock(&pm->mutex); if (mt76_connac_skip_fw_pmctrl(mphy, pm)) goto out; sdio_claim_host(func); sdio_writel(func, WHLPCR_FW_OWN_REQ_SET, MCR_WHLPCR, NULL); ret = readx_poll_timeout(mt76s_read_pcr, &dev->mt76, status, !(status & WHLPCR_IS_DRIVER_OWN), 2000, 1000000); if (ret < 0) { dev_err(dev->mt76.dev, "Cannot set ownership to device"); clear_bit(MT76_STATE_PM, &mphy->state); } else { pm->stats.last_doze_event = jiffies; pm->stats.awake_time += pm->stats.last_doze_event - pm->stats.last_wake_event; } sdio_release_host(func); out: mutex_unlock(&pm->mutex); return ret; } int mt7663s_mcu_init(struct mt7615_dev *dev) { static const struct mt76_mcu_ops mt7663s_mcu_ops = { .headroom = sizeof(struct mt7615_mcu_txd), .tailroom = MT_USB_TAIL_SIZE, .mcu_skb_send_msg = mt7663s_mcu_send_message, .mcu_parse_response = mt7615_mcu_parse_response, .mcu_rr = mt76_connac_mcu_reg_rr, .mcu_wr = mt76_connac_mcu_reg_wr, }; struct mt7615_mcu_ops *mcu_ops; int ret; ret = __mt7663s_mcu_drv_pmctrl(dev); if (ret) return ret; dev->mt76.mcu_ops = &mt7663s_mcu_ops, ret = mt76_get_field(dev, MT_CONN_ON_MISC, MT_TOP_MISC2_FW_N9_RDY); if (ret) { mt7615_mcu_restart(&dev->mt76); if (!mt76_poll_msec(dev, MT_CONN_ON_MISC, MT_TOP_MISC2_FW_N9_RDY, 0, 500)) return -EIO; } ret = __mt7663_load_firmware(dev); if (ret) return ret; mcu_ops = devm_kmemdup(dev->mt76.dev, dev->mcu_ops, sizeof(*mcu_ops), GFP_KERNEL); if (!mcu_ops) return -ENOMEM; mcu_ops->set_drv_ctrl = mt7663s_mcu_drv_pmctrl; mcu_ops->set_fw_ctrl = mt7663s_mcu_fw_pmctrl; dev->mcu_ops = mcu_ops; ret = mt7663s_mcu_init_sched(dev); if (ret) return ret; set_bit(MT76_STATE_MCU_RUNNING, &dev->mphy.state); return 0; }
linux-master
drivers/net/wireless/mediatek/mt76/mt7615/sdio_mcu.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2014 Felix Fietkau <[email protected]> * Copyright (C) 2015 Jakub Kicinski <[email protected]> */ #include <linux/module.h> #ifndef __CHECKER__ #define CREATE_TRACE_POINTS #include "trace.h" #endif
linux-master
drivers/net/wireless/mediatek/mt7601u/trace.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2014 Felix Fietkau <[email protected]> */ #include "mt7601u.h" void mt76_remove_hdr_pad(struct sk_buff *skb) { int len = ieee80211_get_hdrlen_from_skb(skb); memmove(skb->data + 2, skb->data, len); skb_pull(skb, 2); } int mt76_insert_hdr_pad(struct sk_buff *skb) { int len = ieee80211_get_hdrlen_from_skb(skb); int ret; if (len % 4 == 0) return 0; ret = skb_cow(skb, 2); if (ret) return ret; skb_push(skb, 2); memmove(skb->data, skb->data + 2, len); skb->data[len] = 0; skb->data[len + 1] = 0; return 0; }
linux-master
drivers/net/wireless/mediatek/mt7601u/util.c