python_code
stringlengths
0
1.8M
repo_name
stringclasses
7 values
file_path
stringlengths
5
99
// SPDX-License-Identifier: GPL-2.0 OR MIT /************************************************************************** * * Copyright 2014-2022 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "vmwgfx_drv.h" #include "vmwgfx_resource_priv.h" #include <linux/hashtable.h> #define VMW_CMDBUF_RES_MAN_HT_ORDER 12 /** * struct vmw_cmdbuf_res - Command buffer managed resource entry. * * @res: Refcounted pointer to a struct vmw_resource. * @hash: Hash entry for the manager hash table. * @head: List head used either by the staging list or the manager list * of committed resources. * @state: Staging state of this resource entry. * @man: Pointer to a resource manager for this entry. */ struct vmw_cmdbuf_res { struct vmw_resource *res; struct vmwgfx_hash_item hash; struct list_head head; enum vmw_cmdbuf_res_state state; struct vmw_cmdbuf_res_manager *man; }; /** * struct vmw_cmdbuf_res_manager - Command buffer resource manager. * * @resources: Hash table containing staged and committed command buffer * resources * @list: List of committed command buffer resources. * @dev_priv: Pointer to a device private structure. * * @resources and @list are protected by the cmdbuf mutex for now. */ struct vmw_cmdbuf_res_manager { DECLARE_HASHTABLE(resources, VMW_CMDBUF_RES_MAN_HT_ORDER); struct list_head list; struct vmw_private *dev_priv; }; /** * vmw_cmdbuf_res_lookup - Look up a command buffer resource * * @man: Pointer to the command buffer resource manager * @res_type: The resource type, that combined with the user key * identifies the resource. * @user_key: The user key. * * Returns a valid refcounted struct vmw_resource pointer on success, * an error pointer on failure. */ struct vmw_resource * vmw_cmdbuf_res_lookup(struct vmw_cmdbuf_res_manager *man, enum vmw_cmdbuf_res_type res_type, u32 user_key) { struct vmwgfx_hash_item *hash; unsigned long key = user_key | (res_type << 24); hash_for_each_possible_rcu(man->resources, hash, head, key) { if (hash->key == key) return hlist_entry(hash, struct vmw_cmdbuf_res, hash)->res; } return ERR_PTR(-EINVAL); } /** * vmw_cmdbuf_res_free - Free a command buffer resource. * * @man: Pointer to the command buffer resource manager * @entry: Pointer to a struct vmw_cmdbuf_res. * * Frees a struct vmw_cmdbuf_res entry and drops its reference to the * struct vmw_resource. */ static void vmw_cmdbuf_res_free(struct vmw_cmdbuf_res_manager *man, struct vmw_cmdbuf_res *entry) { list_del(&entry->head); hash_del_rcu(&entry->hash.head); vmw_resource_unreference(&entry->res); kfree(entry); } /** * vmw_cmdbuf_res_commit - Commit a list of command buffer resource actions * * @list: Caller's list of command buffer resource actions. * * This function commits a list of command buffer resource * additions or removals. * It is typically called when the execbuf ioctl call triggering these * actions has committed the fifo contents to the device. */ void vmw_cmdbuf_res_commit(struct list_head *list) { struct vmw_cmdbuf_res *entry, *next; list_for_each_entry_safe(entry, next, list, head) { list_del(&entry->head); if (entry->res->func->commit_notify) entry->res->func->commit_notify(entry->res, entry->state); switch (entry->state) { case VMW_CMDBUF_RES_ADD: entry->state = VMW_CMDBUF_RES_COMMITTED; list_add_tail(&entry->head, &entry->man->list); break; case VMW_CMDBUF_RES_DEL: vmw_resource_unreference(&entry->res); kfree(entry); break; default: BUG(); break; } } } /** * vmw_cmdbuf_res_revert - Revert a list of command buffer resource actions * * @list: Caller's list of command buffer resource action * * This function reverts a list of command buffer resource * additions or removals. * It is typically called when the execbuf ioctl call triggering these * actions failed for some reason, and the command stream was never * submitted. */ void vmw_cmdbuf_res_revert(struct list_head *list) { struct vmw_cmdbuf_res *entry, *next; list_for_each_entry_safe(entry, next, list, head) { switch (entry->state) { case VMW_CMDBUF_RES_ADD: vmw_cmdbuf_res_free(entry->man, entry); break; case VMW_CMDBUF_RES_DEL: hash_add_rcu(entry->man->resources, &entry->hash.head, entry->hash.key); list_move_tail(&entry->head, &entry->man->list); entry->state = VMW_CMDBUF_RES_COMMITTED; break; default: BUG(); break; } } } /** * vmw_cmdbuf_res_add - Stage a command buffer managed resource for addition. * * @man: Pointer to the command buffer resource manager. * @res_type: The resource type. * @user_key: The user-space id of the resource. * @res: Valid (refcount != 0) pointer to a struct vmw_resource. * @list: The staging list. * * This function allocates a struct vmw_cmdbuf_res entry and adds the * resource to the hash table of the manager identified by @man. The * entry is then put on the staging list identified by @list. */ int vmw_cmdbuf_res_add(struct vmw_cmdbuf_res_manager *man, enum vmw_cmdbuf_res_type res_type, u32 user_key, struct vmw_resource *res, struct list_head *list) { struct vmw_cmdbuf_res *cres; cres = kzalloc(sizeof(*cres), GFP_KERNEL); if (unlikely(!cres)) return -ENOMEM; cres->hash.key = user_key | (res_type << 24); hash_add_rcu(man->resources, &cres->hash.head, cres->hash.key); cres->state = VMW_CMDBUF_RES_ADD; cres->res = vmw_resource_reference(res); cres->man = man; list_add_tail(&cres->head, list); return 0; } /** * vmw_cmdbuf_res_remove - Stage a command buffer managed resource for removal. * * @man: Pointer to the command buffer resource manager. * @res_type: The resource type. * @user_key: The user-space id of the resource. * @list: The staging list. * @res_p: If the resource is in an already committed state, points to the * struct vmw_resource on successful return. The pointer will be * non ref-counted. * * This function looks up the struct vmw_cmdbuf_res entry from the manager * hash table and, if it exists, removes it. Depending on its current staging * state it then either removes the entry from the staging list or adds it * to it with a staging state of removal. */ int vmw_cmdbuf_res_remove(struct vmw_cmdbuf_res_manager *man, enum vmw_cmdbuf_res_type res_type, u32 user_key, struct list_head *list, struct vmw_resource **res_p) { struct vmw_cmdbuf_res *entry = NULL; struct vmwgfx_hash_item *hash; unsigned long key = user_key | (res_type << 24); hash_for_each_possible_rcu(man->resources, hash, head, key) { if (hash->key == key) { entry = hlist_entry(hash, struct vmw_cmdbuf_res, hash); break; } } if (unlikely(!entry)) return -EINVAL; switch (entry->state) { case VMW_CMDBUF_RES_ADD: vmw_cmdbuf_res_free(man, entry); *res_p = NULL; break; case VMW_CMDBUF_RES_COMMITTED: hash_del_rcu(&entry->hash.head); list_del(&entry->head); entry->state = VMW_CMDBUF_RES_DEL; list_add_tail(&entry->head, list); *res_p = entry->res; break; default: BUG(); break; } return 0; } /** * vmw_cmdbuf_res_man_create - Allocate a command buffer managed resource * manager. * * @dev_priv: Pointer to a struct vmw_private * * Allocates and initializes a command buffer managed resource manager. Returns * an error pointer on failure. */ struct vmw_cmdbuf_res_manager * vmw_cmdbuf_res_man_create(struct vmw_private *dev_priv) { struct vmw_cmdbuf_res_manager *man; man = kzalloc(sizeof(*man), GFP_KERNEL); if (!man) return ERR_PTR(-ENOMEM); man->dev_priv = dev_priv; INIT_LIST_HEAD(&man->list); hash_init(man->resources); return man; } /** * vmw_cmdbuf_res_man_destroy - Destroy a command buffer managed resource * manager. * * @man: Pointer to the manager to destroy. * * This function destroys a command buffer managed resource manager and * unreferences / frees all command buffer managed resources and -entries * associated with it. */ void vmw_cmdbuf_res_man_destroy(struct vmw_cmdbuf_res_manager *man) { struct vmw_cmdbuf_res *entry, *next; list_for_each_entry_safe(entry, next, &man->list, head) vmw_cmdbuf_res_free(man, entry); kfree(man); }
linux-master
drivers/gpu/drm/vmwgfx/vmwgfx_cmdbuf_res.c
// SPDX-License-Identifier: GPL-2.0 OR MIT /************************************************************************** * * Copyright 2009-2023 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "vmwgfx_drv.h" #include "vmwgfx_bo.h" #include "vmwgfx_binding.h" #include "vmwgfx_devcaps.h" #include "vmwgfx_mksstat.h" #include "ttm_object.h" #include <drm/drm_aperture.h> #include <drm/drm_drv.h> #include <drm/drm_fbdev_generic.h> #include <drm/drm_gem_ttm_helper.h> #include <drm/drm_ioctl.h> #include <drm/drm_module.h> #include <drm/drm_sysfs.h> #include <drm/ttm/ttm_range_manager.h> #include <drm/ttm/ttm_placement.h> #include <generated/utsrelease.h> #ifdef CONFIG_X86 #include <asm/hypervisor.h> #endif #include <linux/cc_platform.h> #include <linux/dma-mapping.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/version.h> #define VMWGFX_DRIVER_DESC "Linux drm driver for VMware graphics devices" /* * Fully encoded drm commands. Might move to vmw_drm.h */ #define DRM_IOCTL_VMW_GET_PARAM \ DRM_IOWR(DRM_COMMAND_BASE + DRM_VMW_GET_PARAM, \ struct drm_vmw_getparam_arg) #define DRM_IOCTL_VMW_ALLOC_DMABUF \ DRM_IOWR(DRM_COMMAND_BASE + DRM_VMW_ALLOC_DMABUF, \ union drm_vmw_alloc_dmabuf_arg) #define DRM_IOCTL_VMW_UNREF_DMABUF \ DRM_IOW(DRM_COMMAND_BASE + DRM_VMW_UNREF_DMABUF, \ struct drm_vmw_unref_dmabuf_arg) #define DRM_IOCTL_VMW_CURSOR_BYPASS \ DRM_IOW(DRM_COMMAND_BASE + DRM_VMW_CURSOR_BYPASS, \ struct drm_vmw_cursor_bypass_arg) #define DRM_IOCTL_VMW_CONTROL_STREAM \ DRM_IOW(DRM_COMMAND_BASE + DRM_VMW_CONTROL_STREAM, \ struct drm_vmw_control_stream_arg) #define DRM_IOCTL_VMW_CLAIM_STREAM \ DRM_IOR(DRM_COMMAND_BASE + DRM_VMW_CLAIM_STREAM, \ struct drm_vmw_stream_arg) #define DRM_IOCTL_VMW_UNREF_STREAM \ DRM_IOW(DRM_COMMAND_BASE + DRM_VMW_UNREF_STREAM, \ struct drm_vmw_stream_arg) #define DRM_IOCTL_VMW_CREATE_CONTEXT \ DRM_IOR(DRM_COMMAND_BASE + DRM_VMW_CREATE_CONTEXT, \ struct drm_vmw_context_arg) #define DRM_IOCTL_VMW_UNREF_CONTEXT \ DRM_IOW(DRM_COMMAND_BASE + DRM_VMW_UNREF_CONTEXT, \ struct drm_vmw_context_arg) #define DRM_IOCTL_VMW_CREATE_SURFACE \ DRM_IOWR(DRM_COMMAND_BASE + DRM_VMW_CREATE_SURFACE, \ union drm_vmw_surface_create_arg) #define DRM_IOCTL_VMW_UNREF_SURFACE \ DRM_IOW(DRM_COMMAND_BASE + DRM_VMW_UNREF_SURFACE, \ struct drm_vmw_surface_arg) #define DRM_IOCTL_VMW_REF_SURFACE \ DRM_IOWR(DRM_COMMAND_BASE + DRM_VMW_REF_SURFACE, \ union drm_vmw_surface_reference_arg) #define DRM_IOCTL_VMW_EXECBUF \ DRM_IOW(DRM_COMMAND_BASE + DRM_VMW_EXECBUF, \ struct drm_vmw_execbuf_arg) #define DRM_IOCTL_VMW_GET_3D_CAP \ DRM_IOW(DRM_COMMAND_BASE + DRM_VMW_GET_3D_CAP, \ struct drm_vmw_get_3d_cap_arg) #define DRM_IOCTL_VMW_FENCE_WAIT \ DRM_IOWR(DRM_COMMAND_BASE + DRM_VMW_FENCE_WAIT, \ struct drm_vmw_fence_wait_arg) #define DRM_IOCTL_VMW_FENCE_SIGNALED \ DRM_IOWR(DRM_COMMAND_BASE + DRM_VMW_FENCE_SIGNALED, \ struct drm_vmw_fence_signaled_arg) #define DRM_IOCTL_VMW_FENCE_UNREF \ DRM_IOW(DRM_COMMAND_BASE + DRM_VMW_FENCE_UNREF, \ struct drm_vmw_fence_arg) #define DRM_IOCTL_VMW_FENCE_EVENT \ DRM_IOW(DRM_COMMAND_BASE + DRM_VMW_FENCE_EVENT, \ struct drm_vmw_fence_event_arg) #define DRM_IOCTL_VMW_PRESENT \ DRM_IOW(DRM_COMMAND_BASE + DRM_VMW_PRESENT, \ struct drm_vmw_present_arg) #define DRM_IOCTL_VMW_PRESENT_READBACK \ DRM_IOW(DRM_COMMAND_BASE + DRM_VMW_PRESENT_READBACK, \ struct drm_vmw_present_readback_arg) #define DRM_IOCTL_VMW_UPDATE_LAYOUT \ DRM_IOW(DRM_COMMAND_BASE + DRM_VMW_UPDATE_LAYOUT, \ struct drm_vmw_update_layout_arg) #define DRM_IOCTL_VMW_CREATE_SHADER \ DRM_IOWR(DRM_COMMAND_BASE + DRM_VMW_CREATE_SHADER, \ struct drm_vmw_shader_create_arg) #define DRM_IOCTL_VMW_UNREF_SHADER \ DRM_IOW(DRM_COMMAND_BASE + DRM_VMW_UNREF_SHADER, \ struct drm_vmw_shader_arg) #define DRM_IOCTL_VMW_GB_SURFACE_CREATE \ DRM_IOWR(DRM_COMMAND_BASE + DRM_VMW_GB_SURFACE_CREATE, \ union drm_vmw_gb_surface_create_arg) #define DRM_IOCTL_VMW_GB_SURFACE_REF \ DRM_IOWR(DRM_COMMAND_BASE + DRM_VMW_GB_SURFACE_REF, \ union drm_vmw_gb_surface_reference_arg) #define DRM_IOCTL_VMW_SYNCCPU \ DRM_IOW(DRM_COMMAND_BASE + DRM_VMW_SYNCCPU, \ struct drm_vmw_synccpu_arg) #define DRM_IOCTL_VMW_CREATE_EXTENDED_CONTEXT \ DRM_IOWR(DRM_COMMAND_BASE + DRM_VMW_CREATE_EXTENDED_CONTEXT, \ struct drm_vmw_context_arg) #define DRM_IOCTL_VMW_GB_SURFACE_CREATE_EXT \ DRM_IOWR(DRM_COMMAND_BASE + DRM_VMW_GB_SURFACE_CREATE_EXT, \ union drm_vmw_gb_surface_create_ext_arg) #define DRM_IOCTL_VMW_GB_SURFACE_REF_EXT \ DRM_IOWR(DRM_COMMAND_BASE + DRM_VMW_GB_SURFACE_REF_EXT, \ union drm_vmw_gb_surface_reference_ext_arg) #define DRM_IOCTL_VMW_MSG \ DRM_IOWR(DRM_COMMAND_BASE + DRM_VMW_MSG, \ struct drm_vmw_msg_arg) #define DRM_IOCTL_VMW_MKSSTAT_RESET \ DRM_IO(DRM_COMMAND_BASE + DRM_VMW_MKSSTAT_RESET) #define DRM_IOCTL_VMW_MKSSTAT_ADD \ DRM_IOWR(DRM_COMMAND_BASE + DRM_VMW_MKSSTAT_ADD, \ struct drm_vmw_mksstat_add_arg) #define DRM_IOCTL_VMW_MKSSTAT_REMOVE \ DRM_IOW(DRM_COMMAND_BASE + DRM_VMW_MKSSTAT_REMOVE, \ struct drm_vmw_mksstat_remove_arg) /* * Ioctl definitions. */ static const struct drm_ioctl_desc vmw_ioctls[] = { DRM_IOCTL_DEF_DRV(VMW_GET_PARAM, vmw_getparam_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(VMW_ALLOC_DMABUF, vmw_gem_object_create_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(VMW_UNREF_DMABUF, vmw_bo_unref_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(VMW_CURSOR_BYPASS, vmw_kms_cursor_bypass_ioctl, DRM_MASTER), DRM_IOCTL_DEF_DRV(VMW_CONTROL_STREAM, vmw_overlay_ioctl, DRM_MASTER), DRM_IOCTL_DEF_DRV(VMW_CLAIM_STREAM, vmw_stream_claim_ioctl, DRM_MASTER), DRM_IOCTL_DEF_DRV(VMW_UNREF_STREAM, vmw_stream_unref_ioctl, DRM_MASTER), DRM_IOCTL_DEF_DRV(VMW_CREATE_CONTEXT, vmw_context_define_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(VMW_UNREF_CONTEXT, vmw_context_destroy_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(VMW_CREATE_SURFACE, vmw_surface_define_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(VMW_UNREF_SURFACE, vmw_surface_destroy_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(VMW_REF_SURFACE, vmw_surface_reference_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(VMW_EXECBUF, vmw_execbuf_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(VMW_FENCE_WAIT, vmw_fence_obj_wait_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(VMW_FENCE_SIGNALED, vmw_fence_obj_signaled_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(VMW_FENCE_UNREF, vmw_fence_obj_unref_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(VMW_FENCE_EVENT, vmw_fence_event_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(VMW_GET_3D_CAP, vmw_get_cap_3d_ioctl, DRM_RENDER_ALLOW), /* these allow direct access to the framebuffers mark as master only */ DRM_IOCTL_DEF_DRV(VMW_PRESENT, vmw_present_ioctl, DRM_MASTER | DRM_AUTH), DRM_IOCTL_DEF_DRV(VMW_PRESENT_READBACK, vmw_present_readback_ioctl, DRM_MASTER | DRM_AUTH), /* * The permissions of the below ioctl are overridden in * vmw_generic_ioctl(). We require either * DRM_MASTER or capable(CAP_SYS_ADMIN). */ DRM_IOCTL_DEF_DRV(VMW_UPDATE_LAYOUT, vmw_kms_update_layout_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(VMW_CREATE_SHADER, vmw_shader_define_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(VMW_UNREF_SHADER, vmw_shader_destroy_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(VMW_GB_SURFACE_CREATE, vmw_gb_surface_define_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(VMW_GB_SURFACE_REF, vmw_gb_surface_reference_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(VMW_SYNCCPU, vmw_user_bo_synccpu_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(VMW_CREATE_EXTENDED_CONTEXT, vmw_extended_context_define_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(VMW_GB_SURFACE_CREATE_EXT, vmw_gb_surface_define_ext_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(VMW_GB_SURFACE_REF_EXT, vmw_gb_surface_reference_ext_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(VMW_MSG, vmw_msg_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(VMW_MKSSTAT_RESET, vmw_mksstat_reset_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(VMW_MKSSTAT_ADD, vmw_mksstat_add_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(VMW_MKSSTAT_REMOVE, vmw_mksstat_remove_ioctl, DRM_RENDER_ALLOW), }; static const struct pci_device_id vmw_pci_id_list[] = { { PCI_DEVICE(PCI_VENDOR_ID_VMWARE, VMWGFX_PCI_ID_SVGA2) }, { PCI_DEVICE(PCI_VENDOR_ID_VMWARE, VMWGFX_PCI_ID_SVGA3) }, { } }; MODULE_DEVICE_TABLE(pci, vmw_pci_id_list); static int vmw_restrict_iommu; static int vmw_force_coherent; static int vmw_restrict_dma_mask; static int vmw_assume_16bpp; static int vmw_probe(struct pci_dev *, const struct pci_device_id *); static int vmwgfx_pm_notifier(struct notifier_block *nb, unsigned long val, void *ptr); MODULE_PARM_DESC(restrict_iommu, "Try to limit IOMMU usage for TTM pages"); module_param_named(restrict_iommu, vmw_restrict_iommu, int, 0600); MODULE_PARM_DESC(force_coherent, "Force coherent TTM pages"); module_param_named(force_coherent, vmw_force_coherent, int, 0600); MODULE_PARM_DESC(restrict_dma_mask, "Restrict DMA mask to 44 bits with IOMMU"); module_param_named(restrict_dma_mask, vmw_restrict_dma_mask, int, 0600); MODULE_PARM_DESC(assume_16bpp, "Assume 16-bpp when filtering modes"); module_param_named(assume_16bpp, vmw_assume_16bpp, int, 0600); struct bitmap_name { uint32 value; const char *name; }; static const struct bitmap_name cap1_names[] = { { SVGA_CAP_RECT_COPY, "rect copy" }, { SVGA_CAP_CURSOR, "cursor" }, { SVGA_CAP_CURSOR_BYPASS, "cursor bypass" }, { SVGA_CAP_CURSOR_BYPASS_2, "cursor bypass 2" }, { SVGA_CAP_8BIT_EMULATION, "8bit emulation" }, { SVGA_CAP_ALPHA_CURSOR, "alpha cursor" }, { SVGA_CAP_3D, "3D" }, { SVGA_CAP_EXTENDED_FIFO, "extended fifo" }, { SVGA_CAP_MULTIMON, "multimon" }, { SVGA_CAP_PITCHLOCK, "pitchlock" }, { SVGA_CAP_IRQMASK, "irq mask" }, { SVGA_CAP_DISPLAY_TOPOLOGY, "display topology" }, { SVGA_CAP_GMR, "gmr" }, { SVGA_CAP_TRACES, "traces" }, { SVGA_CAP_GMR2, "gmr2" }, { SVGA_CAP_SCREEN_OBJECT_2, "screen object 2" }, { SVGA_CAP_COMMAND_BUFFERS, "command buffers" }, { SVGA_CAP_CMD_BUFFERS_2, "command buffers 2" }, { SVGA_CAP_GBOBJECTS, "gbobject" }, { SVGA_CAP_DX, "dx" }, { SVGA_CAP_HP_CMD_QUEUE, "hp cmd queue" }, { SVGA_CAP_NO_BB_RESTRICTION, "no bb restriction" }, { SVGA_CAP_CAP2_REGISTER, "cap2 register" }, }; static const struct bitmap_name cap2_names[] = { { SVGA_CAP2_GROW_OTABLE, "grow otable" }, { SVGA_CAP2_INTRA_SURFACE_COPY, "intra surface copy" }, { SVGA_CAP2_DX2, "dx2" }, { SVGA_CAP2_GB_MEMSIZE_2, "gb memsize 2" }, { SVGA_CAP2_SCREENDMA_REG, "screendma reg" }, { SVGA_CAP2_OTABLE_PTDEPTH_2, "otable ptdepth2" }, { SVGA_CAP2_NON_MS_TO_MS_STRETCHBLT, "non ms to ms stretchblt" }, { SVGA_CAP2_CURSOR_MOB, "cursor mob" }, { SVGA_CAP2_MSHINT, "mshint" }, { SVGA_CAP2_CB_MAX_SIZE_4MB, "cb max size 4mb" }, { SVGA_CAP2_DX3, "dx3" }, { SVGA_CAP2_FRAME_TYPE, "frame type" }, { SVGA_CAP2_COTABLE_COPY, "cotable copy" }, { SVGA_CAP2_TRACE_FULL_FB, "trace full fb" }, { SVGA_CAP2_EXTRA_REGS, "extra regs" }, { SVGA_CAP2_LO_STAGING, "lo staging" }, }; static void vmw_print_bitmap(struct drm_device *drm, const char *prefix, uint32_t bitmap, const struct bitmap_name *bnames, uint32_t num_names) { char buf[512]; uint32_t i; uint32_t offset = 0; for (i = 0; i < num_names; ++i) { if ((bitmap & bnames[i].value) != 0) { offset += snprintf(buf + offset, ARRAY_SIZE(buf) - offset, "%s, ", bnames[i].name); bitmap &= ~bnames[i].value; } } drm_info(drm, "%s: %s\n", prefix, buf); if (bitmap != 0) drm_dbg(drm, "%s: unknown enums: %x\n", prefix, bitmap); } static void vmw_print_sm_type(struct vmw_private *dev_priv) { static const char *names[] = { [VMW_SM_LEGACY] = "Legacy", [VMW_SM_4] = "SM4", [VMW_SM_4_1] = "SM4_1", [VMW_SM_5] = "SM_5", [VMW_SM_5_1X] = "SM_5_1X", [VMW_SM_MAX] = "Invalid" }; BUILD_BUG_ON(ARRAY_SIZE(names) != (VMW_SM_MAX + 1)); drm_info(&dev_priv->drm, "Available shader model: %s.\n", names[dev_priv->sm_type]); } /** * vmw_dummy_query_bo_create - create a bo to hold a dummy query result * * @dev_priv: A device private structure. * * This function creates a small buffer object that holds the query * result for dummy queries emitted as query barriers. * The function will then map the first page and initialize a pending * occlusion query result structure, Finally it will unmap the buffer. * No interruptible waits are done within this function. * * Returns an error if bo creation or initialization fails. */ static int vmw_dummy_query_bo_create(struct vmw_private *dev_priv) { int ret; struct vmw_bo *vbo; struct ttm_bo_kmap_obj map; volatile SVGA3dQueryResult *result; bool dummy; struct vmw_bo_params bo_params = { .domain = VMW_BO_DOMAIN_SYS, .busy_domain = VMW_BO_DOMAIN_SYS, .bo_type = ttm_bo_type_kernel, .size = PAGE_SIZE, .pin = true }; /* * Create the vbo as pinned, so that a tryreserve will * immediately succeed. This is because we're the only * user of the bo currently. */ ret = vmw_bo_create(dev_priv, &bo_params, &vbo); if (unlikely(ret != 0)) return ret; ret = ttm_bo_reserve(&vbo->tbo, false, true, NULL); BUG_ON(ret != 0); vmw_bo_pin_reserved(vbo, true); ret = ttm_bo_kmap(&vbo->tbo, 0, 1, &map); if (likely(ret == 0)) { result = ttm_kmap_obj_virtual(&map, &dummy); result->totalSize = sizeof(*result); result->state = SVGA3D_QUERYSTATE_PENDING; result->result32 = 0xff; ttm_bo_kunmap(&map); } vmw_bo_pin_reserved(vbo, false); ttm_bo_unreserve(&vbo->tbo); if (unlikely(ret != 0)) { DRM_ERROR("Dummy query buffer map failed.\n"); vmw_bo_unreference(&vbo); } else dev_priv->dummy_query_bo = vbo; return ret; } static int vmw_device_init(struct vmw_private *dev_priv) { bool uses_fb_traces = false; dev_priv->enable_state = vmw_read(dev_priv, SVGA_REG_ENABLE); dev_priv->config_done_state = vmw_read(dev_priv, SVGA_REG_CONFIG_DONE); dev_priv->traces_state = vmw_read(dev_priv, SVGA_REG_TRACES); vmw_write(dev_priv, SVGA_REG_ENABLE, SVGA_REG_ENABLE_ENABLE | SVGA_REG_ENABLE_HIDE); uses_fb_traces = !vmw_cmd_supported(dev_priv) && (dev_priv->capabilities & SVGA_CAP_TRACES) != 0; vmw_write(dev_priv, SVGA_REG_TRACES, uses_fb_traces); dev_priv->fifo = vmw_fifo_create(dev_priv); if (IS_ERR(dev_priv->fifo)) { int err = PTR_ERR(dev_priv->fifo); dev_priv->fifo = NULL; return err; } else if (!dev_priv->fifo) { vmw_write(dev_priv, SVGA_REG_CONFIG_DONE, 1); } dev_priv->last_read_seqno = vmw_fence_read(dev_priv); atomic_set(&dev_priv->marker_seq, dev_priv->last_read_seqno); return 0; } static void vmw_device_fini(struct vmw_private *vmw) { /* * Legacy sync */ vmw_write(vmw, SVGA_REG_SYNC, SVGA_SYNC_GENERIC); while (vmw_read(vmw, SVGA_REG_BUSY) != 0) ; vmw->last_read_seqno = vmw_fence_read(vmw); vmw_write(vmw, SVGA_REG_CONFIG_DONE, vmw->config_done_state); vmw_write(vmw, SVGA_REG_ENABLE, vmw->enable_state); vmw_write(vmw, SVGA_REG_TRACES, vmw->traces_state); vmw_fifo_destroy(vmw); } /** * vmw_request_device_late - Perform late device setup * * @dev_priv: Pointer to device private. * * This function performs setup of otables and enables large command * buffer submission. These tasks are split out to a separate function * because it reverts vmw_release_device_early and is intended to be used * by an error path in the hibernation code. */ static int vmw_request_device_late(struct vmw_private *dev_priv) { int ret; if (dev_priv->has_mob) { ret = vmw_otables_setup(dev_priv); if (unlikely(ret != 0)) { DRM_ERROR("Unable to initialize " "guest Memory OBjects.\n"); return ret; } } if (dev_priv->cman) { ret = vmw_cmdbuf_set_pool_size(dev_priv->cman, 256*4096); if (ret) { struct vmw_cmdbuf_man *man = dev_priv->cman; dev_priv->cman = NULL; vmw_cmdbuf_man_destroy(man); } } return 0; } static int vmw_request_device(struct vmw_private *dev_priv) { int ret; ret = vmw_device_init(dev_priv); if (unlikely(ret != 0)) { DRM_ERROR("Unable to initialize the device.\n"); return ret; } vmw_fence_fifo_up(dev_priv->fman); dev_priv->cman = vmw_cmdbuf_man_create(dev_priv); if (IS_ERR(dev_priv->cman)) { dev_priv->cman = NULL; dev_priv->sm_type = VMW_SM_LEGACY; } ret = vmw_request_device_late(dev_priv); if (ret) goto out_no_mob; ret = vmw_dummy_query_bo_create(dev_priv); if (unlikely(ret != 0)) goto out_no_query_bo; return 0; out_no_query_bo: if (dev_priv->cman) vmw_cmdbuf_remove_pool(dev_priv->cman); if (dev_priv->has_mob) { struct ttm_resource_manager *man; man = ttm_manager_type(&dev_priv->bdev, VMW_PL_MOB); ttm_resource_manager_evict_all(&dev_priv->bdev, man); vmw_otables_takedown(dev_priv); } if (dev_priv->cman) vmw_cmdbuf_man_destroy(dev_priv->cman); out_no_mob: vmw_fence_fifo_down(dev_priv->fman); vmw_device_fini(dev_priv); return ret; } /** * vmw_release_device_early - Early part of fifo takedown. * * @dev_priv: Pointer to device private struct. * * This is the first part of command submission takedown, to be called before * buffer management is taken down. */ static void vmw_release_device_early(struct vmw_private *dev_priv) { /* * Previous destructions should've released * the pinned bo. */ BUG_ON(dev_priv->pinned_bo != NULL); vmw_bo_unreference(&dev_priv->dummy_query_bo); if (dev_priv->cman) vmw_cmdbuf_remove_pool(dev_priv->cman); if (dev_priv->has_mob) { struct ttm_resource_manager *man; man = ttm_manager_type(&dev_priv->bdev, VMW_PL_MOB); ttm_resource_manager_evict_all(&dev_priv->bdev, man); vmw_otables_takedown(dev_priv); } } /** * vmw_release_device_late - Late part of fifo takedown. * * @dev_priv: Pointer to device private struct. * * This is the last part of the command submission takedown, to be called when * command submission is no longer needed. It may wait on pending fences. */ static void vmw_release_device_late(struct vmw_private *dev_priv) { vmw_fence_fifo_down(dev_priv->fman); if (dev_priv->cman) vmw_cmdbuf_man_destroy(dev_priv->cman); vmw_device_fini(dev_priv); } /* * Sets the initial_[width|height] fields on the given vmw_private. * * It does so by reading SVGA_REG_[WIDTH|HEIGHT] regs and then * clamping the value to fb_max_[width|height] fields and the * VMW_MIN_INITIAL_[WIDTH|HEIGHT]. * If the values appear to be invalid, set them to * VMW_MIN_INITIAL_[WIDTH|HEIGHT]. */ static void vmw_get_initial_size(struct vmw_private *dev_priv) { uint32_t width; uint32_t height; width = vmw_read(dev_priv, SVGA_REG_WIDTH); height = vmw_read(dev_priv, SVGA_REG_HEIGHT); width = max_t(uint32_t, width, VMWGFX_MIN_INITIAL_WIDTH); height = max_t(uint32_t, height, VMWGFX_MIN_INITIAL_HEIGHT); if (width > dev_priv->fb_max_width || height > dev_priv->fb_max_height) { /* * This is a host error and shouldn't occur. */ width = VMWGFX_MIN_INITIAL_WIDTH; height = VMWGFX_MIN_INITIAL_HEIGHT; } dev_priv->initial_width = width; dev_priv->initial_height = height; } /** * vmw_dma_select_mode - Determine how DMA mappings should be set up for this * system. * * @dev_priv: Pointer to a struct vmw_private * * This functions tries to determine what actions need to be taken by the * driver to make system pages visible to the device. * If this function decides that DMA is not possible, it returns -EINVAL. * The driver may then try to disable features of the device that require * DMA. */ static int vmw_dma_select_mode(struct vmw_private *dev_priv) { static const char *names[vmw_dma_map_max] = { [vmw_dma_alloc_coherent] = "Using coherent TTM pages.", [vmw_dma_map_populate] = "Caching DMA mappings.", [vmw_dma_map_bind] = "Giving up DMA mappings early."}; /* TTM currently doesn't fully support SEV encryption. */ if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) return -EINVAL; if (vmw_force_coherent) dev_priv->map_mode = vmw_dma_alloc_coherent; else if (vmw_restrict_iommu) dev_priv->map_mode = vmw_dma_map_bind; else dev_priv->map_mode = vmw_dma_map_populate; drm_info(&dev_priv->drm, "DMA map mode: %s\n", names[dev_priv->map_mode]); return 0; } /** * vmw_dma_masks - set required page- and dma masks * * @dev_priv: Pointer to struct drm-device * * With 32-bit we can only handle 32 bit PFNs. Optionally set that * restriction also for 64-bit systems. */ static int vmw_dma_masks(struct vmw_private *dev_priv) { struct drm_device *dev = &dev_priv->drm; int ret = 0; ret = dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)); if (sizeof(unsigned long) == 4 || vmw_restrict_dma_mask) { drm_info(&dev_priv->drm, "Restricting DMA addresses to 44 bits.\n"); return dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(44)); } return ret; } static int vmw_vram_manager_init(struct vmw_private *dev_priv) { int ret; ret = ttm_range_man_init(&dev_priv->bdev, TTM_PL_VRAM, false, dev_priv->vram_size >> PAGE_SHIFT); ttm_resource_manager_set_used(ttm_manager_type(&dev_priv->bdev, TTM_PL_VRAM), false); return ret; } static void vmw_vram_manager_fini(struct vmw_private *dev_priv) { ttm_range_man_fini(&dev_priv->bdev, TTM_PL_VRAM); } static int vmw_setup_pci_resources(struct vmw_private *dev, u32 pci_id) { resource_size_t rmmio_start; resource_size_t rmmio_size; resource_size_t fifo_start; resource_size_t fifo_size; int ret; struct pci_dev *pdev = to_pci_dev(dev->drm.dev); pci_set_master(pdev); ret = pci_request_regions(pdev, "vmwgfx probe"); if (ret) return ret; dev->pci_id = pci_id; if (pci_id == VMWGFX_PCI_ID_SVGA3) { rmmio_start = pci_resource_start(pdev, 0); rmmio_size = pci_resource_len(pdev, 0); dev->vram_start = pci_resource_start(pdev, 2); dev->vram_size = pci_resource_len(pdev, 2); drm_info(&dev->drm, "Register MMIO at 0x%pa size is %llu kiB\n", &rmmio_start, (uint64_t)rmmio_size / 1024); dev->rmmio = devm_ioremap(dev->drm.dev, rmmio_start, rmmio_size); if (!dev->rmmio) { drm_err(&dev->drm, "Failed mapping registers mmio memory.\n"); pci_release_regions(pdev); return -ENOMEM; } } else if (pci_id == VMWGFX_PCI_ID_SVGA2) { dev->io_start = pci_resource_start(pdev, 0); dev->vram_start = pci_resource_start(pdev, 1); dev->vram_size = pci_resource_len(pdev, 1); fifo_start = pci_resource_start(pdev, 2); fifo_size = pci_resource_len(pdev, 2); drm_info(&dev->drm, "FIFO at %pa size is %llu kiB\n", &fifo_start, (uint64_t)fifo_size / 1024); dev->fifo_mem = devm_memremap(dev->drm.dev, fifo_start, fifo_size, MEMREMAP_WB); if (IS_ERR(dev->fifo_mem)) { drm_err(&dev->drm, "Failed mapping FIFO memory.\n"); pci_release_regions(pdev); return PTR_ERR(dev->fifo_mem); } } else { pci_release_regions(pdev); return -EINVAL; } /* * This is approximate size of the vram, the exact size will only * be known after we read SVGA_REG_VRAM_SIZE. The PCI resource * size will be equal to or bigger than the size reported by * SVGA_REG_VRAM_SIZE. */ drm_info(&dev->drm, "VRAM at %pa size is %llu kiB\n", &dev->vram_start, (uint64_t)dev->vram_size / 1024); return 0; } static int vmw_detect_version(struct vmw_private *dev) { uint32_t svga_id; vmw_write(dev, SVGA_REG_ID, vmw_is_svga_v3(dev) ? SVGA_ID_3 : SVGA_ID_2); svga_id = vmw_read(dev, SVGA_REG_ID); if (svga_id != SVGA_ID_2 && svga_id != SVGA_ID_3) { drm_err(&dev->drm, "Unsupported SVGA ID 0x%x on chipset 0x%x\n", svga_id, dev->pci_id); return -ENOSYS; } BUG_ON(vmw_is_svga_v3(dev) && (svga_id != SVGA_ID_3)); drm_info(&dev->drm, "Running on SVGA version %d.\n", (svga_id & 0xff)); return 0; } static void vmw_write_driver_id(struct vmw_private *dev) { if ((dev->capabilities2 & SVGA_CAP2_DX2) != 0) { vmw_write(dev, SVGA_REG_GUEST_DRIVER_ID, SVGA_REG_GUEST_DRIVER_ID_LINUX); vmw_write(dev, SVGA_REG_GUEST_DRIVER_VERSION1, LINUX_VERSION_MAJOR << 24 | LINUX_VERSION_PATCHLEVEL << 16 | LINUX_VERSION_SUBLEVEL); vmw_write(dev, SVGA_REG_GUEST_DRIVER_VERSION2, VMWGFX_DRIVER_MAJOR << 24 | VMWGFX_DRIVER_MINOR << 16 | VMWGFX_DRIVER_PATCHLEVEL); vmw_write(dev, SVGA_REG_GUEST_DRIVER_VERSION3, 0); vmw_write(dev, SVGA_REG_GUEST_DRIVER_ID, SVGA_REG_GUEST_DRIVER_ID_SUBMIT); } } static void vmw_sw_context_init(struct vmw_private *dev_priv) { struct vmw_sw_context *sw_context = &dev_priv->ctx; hash_init(sw_context->res_ht); } static void vmw_sw_context_fini(struct vmw_private *dev_priv) { struct vmw_sw_context *sw_context = &dev_priv->ctx; vfree(sw_context->cmd_bounce); if (sw_context->staged_bindings) vmw_binding_state_free(sw_context->staged_bindings); } static int vmw_driver_load(struct vmw_private *dev_priv, u32 pci_id) { int ret; enum vmw_res_type i; bool refuse_dma = false; struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev); dev_priv->drm.dev_private = dev_priv; vmw_sw_context_init(dev_priv); mutex_init(&dev_priv->cmdbuf_mutex); mutex_init(&dev_priv->binding_mutex); spin_lock_init(&dev_priv->resource_lock); spin_lock_init(&dev_priv->hw_lock); spin_lock_init(&dev_priv->waiter_lock); spin_lock_init(&dev_priv->cursor_lock); ret = vmw_setup_pci_resources(dev_priv, pci_id); if (ret) return ret; ret = vmw_detect_version(dev_priv); if (ret) goto out_no_pci_or_version; for (i = vmw_res_context; i < vmw_res_max; ++i) { idr_init_base(&dev_priv->res_idr[i], 1); INIT_LIST_HEAD(&dev_priv->res_lru[i]); } init_waitqueue_head(&dev_priv->fence_queue); init_waitqueue_head(&dev_priv->fifo_queue); dev_priv->fence_queue_waiters = 0; dev_priv->fifo_queue_waiters = 0; dev_priv->used_memory_size = 0; dev_priv->assume_16bpp = !!vmw_assume_16bpp; dev_priv->capabilities = vmw_read(dev_priv, SVGA_REG_CAPABILITIES); vmw_print_bitmap(&dev_priv->drm, "Capabilities", dev_priv->capabilities, cap1_names, ARRAY_SIZE(cap1_names)); if (dev_priv->capabilities & SVGA_CAP_CAP2_REGISTER) { dev_priv->capabilities2 = vmw_read(dev_priv, SVGA_REG_CAP2); vmw_print_bitmap(&dev_priv->drm, "Capabilities2", dev_priv->capabilities2, cap2_names, ARRAY_SIZE(cap2_names)); } if (!vmwgfx_supported(dev_priv)) { vmw_disable_backdoor(); drm_err_once(&dev_priv->drm, "vmwgfx seems to be running on an unsupported hypervisor."); drm_err_once(&dev_priv->drm, "This configuration is likely broken."); drm_err_once(&dev_priv->drm, "Please switch to a supported graphics device to avoid problems."); } ret = vmw_dma_select_mode(dev_priv); if (unlikely(ret != 0)) { drm_info(&dev_priv->drm, "Restricting capabilities since DMA not available.\n"); refuse_dma = true; if (dev_priv->capabilities & SVGA_CAP_GBOBJECTS) drm_info(&dev_priv->drm, "Disabling 3D acceleration.\n"); } dev_priv->vram_size = vmw_read(dev_priv, SVGA_REG_VRAM_SIZE); dev_priv->fifo_mem_size = vmw_read(dev_priv, SVGA_REG_MEM_SIZE); dev_priv->fb_max_width = vmw_read(dev_priv, SVGA_REG_MAX_WIDTH); dev_priv->fb_max_height = vmw_read(dev_priv, SVGA_REG_MAX_HEIGHT); vmw_get_initial_size(dev_priv); if (dev_priv->capabilities & SVGA_CAP_GMR2) { dev_priv->max_gmr_ids = vmw_read(dev_priv, SVGA_REG_GMR_MAX_IDS); dev_priv->max_gmr_pages = vmw_read(dev_priv, SVGA_REG_GMRS_MAX_PAGES); dev_priv->memory_size = vmw_read(dev_priv, SVGA_REG_MEMORY_SIZE); dev_priv->memory_size -= dev_priv->vram_size; } else { /* * An arbitrary limit of 512MiB on surface * memory. But all HWV8 hardware supports GMR2. */ dev_priv->memory_size = 512*1024*1024; } dev_priv->max_mob_pages = 0; dev_priv->max_mob_size = 0; if (dev_priv->capabilities & SVGA_CAP_GBOBJECTS) { uint64_t mem_size; if (dev_priv->capabilities2 & SVGA_CAP2_GB_MEMSIZE_2) mem_size = vmw_read(dev_priv, SVGA_REG_GBOBJECT_MEM_SIZE_KB); else mem_size = vmw_read(dev_priv, SVGA_REG_SUGGESTED_GBOBJECT_MEM_SIZE_KB); /* * Workaround for low memory 2D VMs to compensate for the * allocation taken by fbdev */ if (!(dev_priv->capabilities & SVGA_CAP_3D)) mem_size *= 3; dev_priv->max_mob_pages = mem_size * 1024 / PAGE_SIZE; dev_priv->max_primary_mem = vmw_read(dev_priv, SVGA_REG_MAX_PRIMARY_MEM); dev_priv->max_mob_size = vmw_read(dev_priv, SVGA_REG_MOB_MAX_SIZE); dev_priv->stdu_max_width = vmw_read(dev_priv, SVGA_REG_SCREENTARGET_MAX_WIDTH); dev_priv->stdu_max_height = vmw_read(dev_priv, SVGA_REG_SCREENTARGET_MAX_HEIGHT); vmw_write(dev_priv, SVGA_REG_DEV_CAP, SVGA3D_DEVCAP_MAX_TEXTURE_WIDTH); dev_priv->texture_max_width = vmw_read(dev_priv, SVGA_REG_DEV_CAP); vmw_write(dev_priv, SVGA_REG_DEV_CAP, SVGA3D_DEVCAP_MAX_TEXTURE_HEIGHT); dev_priv->texture_max_height = vmw_read(dev_priv, SVGA_REG_DEV_CAP); } else { dev_priv->texture_max_width = 8192; dev_priv->texture_max_height = 8192; dev_priv->max_primary_mem = dev_priv->vram_size; } drm_info(&dev_priv->drm, "Legacy memory limits: VRAM = %llu kB, FIFO = %llu kB, surface = %u kB\n", (u64)dev_priv->vram_size / 1024, (u64)dev_priv->fifo_mem_size / 1024, dev_priv->memory_size / 1024); drm_info(&dev_priv->drm, "MOB limits: max mob size = %u kB, max mob pages = %u\n", dev_priv->max_mob_size / 1024, dev_priv->max_mob_pages); ret = vmw_dma_masks(dev_priv); if (unlikely(ret != 0)) goto out_err0; dma_set_max_seg_size(dev_priv->drm.dev, U32_MAX); if (dev_priv->capabilities & SVGA_CAP_GMR2) { drm_info(&dev_priv->drm, "Max GMR ids is %u\n", (unsigned)dev_priv->max_gmr_ids); drm_info(&dev_priv->drm, "Max number of GMR pages is %u\n", (unsigned)dev_priv->max_gmr_pages); } drm_info(&dev_priv->drm, "Maximum display memory size is %llu kiB\n", (uint64_t)dev_priv->max_primary_mem / 1024); /* Need mmio memory to check for fifo pitchlock cap. */ if (!(dev_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY) && !(dev_priv->capabilities & SVGA_CAP_PITCHLOCK) && !vmw_fifo_have_pitchlock(dev_priv)) { ret = -ENOSYS; DRM_ERROR("Hardware has no pitchlock\n"); goto out_err0; } dev_priv->tdev = ttm_object_device_init(&vmw_prime_dmabuf_ops); if (unlikely(dev_priv->tdev == NULL)) { drm_err(&dev_priv->drm, "Unable to initialize TTM object management.\n"); ret = -ENOMEM; goto out_err0; } if (dev_priv->capabilities & SVGA_CAP_IRQMASK) { ret = vmw_irq_install(dev_priv); if (ret != 0) { drm_err(&dev_priv->drm, "Failed installing irq: %d\n", ret); goto out_no_irq; } } dev_priv->fman = vmw_fence_manager_init(dev_priv); if (unlikely(dev_priv->fman == NULL)) { ret = -ENOMEM; goto out_no_fman; } ret = ttm_device_init(&dev_priv->bdev, &vmw_bo_driver, dev_priv->drm.dev, dev_priv->drm.anon_inode->i_mapping, dev_priv->drm.vma_offset_manager, dev_priv->map_mode == vmw_dma_alloc_coherent, false); if (unlikely(ret != 0)) { drm_err(&dev_priv->drm, "Failed initializing TTM buffer object driver.\n"); goto out_no_bdev; } /* * Enable VRAM, but initially don't use it until SVGA is enabled and * unhidden. */ ret = vmw_vram_manager_init(dev_priv); if (unlikely(ret != 0)) { drm_err(&dev_priv->drm, "Failed initializing memory manager for VRAM.\n"); goto out_no_vram; } ret = vmw_devcaps_create(dev_priv); if (unlikely(ret != 0)) { drm_err(&dev_priv->drm, "Failed initializing device caps.\n"); goto out_no_vram; } /* * "Guest Memory Regions" is an aperture like feature with * one slot per bo. There is an upper limit of the number of * slots as well as the bo size. */ dev_priv->has_gmr = true; /* TODO: This is most likely not correct */ if (((dev_priv->capabilities & (SVGA_CAP_GMR | SVGA_CAP_GMR2)) == 0) || refuse_dma || vmw_gmrid_man_init(dev_priv, VMW_PL_GMR) != 0) { drm_info(&dev_priv->drm, "No GMR memory available. " "Graphics memory resources are very limited.\n"); dev_priv->has_gmr = false; } if (dev_priv->capabilities & SVGA_CAP_GBOBJECTS && !refuse_dma) { dev_priv->has_mob = true; if (vmw_gmrid_man_init(dev_priv, VMW_PL_MOB) != 0) { drm_info(&dev_priv->drm, "No MOB memory available. " "3D will be disabled.\n"); dev_priv->has_mob = false; } if (vmw_sys_man_init(dev_priv) != 0) { drm_info(&dev_priv->drm, "No MOB page table memory available. " "3D will be disabled.\n"); dev_priv->has_mob = false; } } if (dev_priv->has_mob && (dev_priv->capabilities & SVGA_CAP_DX)) { if (vmw_devcap_get(dev_priv, SVGA3D_DEVCAP_DXCONTEXT)) dev_priv->sm_type = VMW_SM_4; } /* SVGA_CAP2_DX2 (DefineGBSurface_v3) is needed for SM4_1 support */ if (has_sm4_context(dev_priv) && (dev_priv->capabilities2 & SVGA_CAP2_DX2)) { if (vmw_devcap_get(dev_priv, SVGA3D_DEVCAP_SM41)) dev_priv->sm_type = VMW_SM_4_1; if (has_sm4_1_context(dev_priv) && (dev_priv->capabilities2 & SVGA_CAP2_DX3)) { if (vmw_devcap_get(dev_priv, SVGA3D_DEVCAP_SM5)) { dev_priv->sm_type = VMW_SM_5; if (vmw_devcap_get(dev_priv, SVGA3D_DEVCAP_GL43)) dev_priv->sm_type = VMW_SM_5_1X; } } } ret = vmw_kms_init(dev_priv); if (unlikely(ret != 0)) goto out_no_kms; vmw_overlay_init(dev_priv); ret = vmw_request_device(dev_priv); if (ret) goto out_no_fifo; vmw_print_sm_type(dev_priv); vmw_host_printf("vmwgfx: Module Version: %d.%d.%d (kernel: %s)", VMWGFX_DRIVER_MAJOR, VMWGFX_DRIVER_MINOR, VMWGFX_DRIVER_PATCHLEVEL, UTS_RELEASE); vmw_write_driver_id(dev_priv); dev_priv->pm_nb.notifier_call = vmwgfx_pm_notifier; register_pm_notifier(&dev_priv->pm_nb); return 0; out_no_fifo: vmw_overlay_close(dev_priv); vmw_kms_close(dev_priv); out_no_kms: if (dev_priv->has_mob) { vmw_gmrid_man_fini(dev_priv, VMW_PL_MOB); vmw_sys_man_fini(dev_priv); } if (dev_priv->has_gmr) vmw_gmrid_man_fini(dev_priv, VMW_PL_GMR); vmw_devcaps_destroy(dev_priv); vmw_vram_manager_fini(dev_priv); out_no_vram: ttm_device_fini(&dev_priv->bdev); out_no_bdev: vmw_fence_manager_takedown(dev_priv->fman); out_no_fman: if (dev_priv->capabilities & SVGA_CAP_IRQMASK) vmw_irq_uninstall(&dev_priv->drm); out_no_irq: ttm_object_device_release(&dev_priv->tdev); out_err0: for (i = vmw_res_context; i < vmw_res_max; ++i) idr_destroy(&dev_priv->res_idr[i]); if (dev_priv->ctx.staged_bindings) vmw_binding_state_free(dev_priv->ctx.staged_bindings); out_no_pci_or_version: pci_release_regions(pdev); return ret; } static void vmw_driver_unload(struct drm_device *dev) { struct vmw_private *dev_priv = vmw_priv(dev); struct pci_dev *pdev = to_pci_dev(dev->dev); enum vmw_res_type i; unregister_pm_notifier(&dev_priv->pm_nb); vmw_sw_context_fini(dev_priv); vmw_fifo_resource_dec(dev_priv); vmw_svga_disable(dev_priv); vmw_kms_close(dev_priv); vmw_overlay_close(dev_priv); if (dev_priv->has_gmr) vmw_gmrid_man_fini(dev_priv, VMW_PL_GMR); vmw_release_device_early(dev_priv); if (dev_priv->has_mob) { vmw_gmrid_man_fini(dev_priv, VMW_PL_MOB); vmw_sys_man_fini(dev_priv); } vmw_devcaps_destroy(dev_priv); vmw_vram_manager_fini(dev_priv); ttm_device_fini(&dev_priv->bdev); vmw_release_device_late(dev_priv); vmw_fence_manager_takedown(dev_priv->fman); if (dev_priv->capabilities & SVGA_CAP_IRQMASK) vmw_irq_uninstall(&dev_priv->drm); ttm_object_device_release(&dev_priv->tdev); for (i = vmw_res_context; i < vmw_res_max; ++i) idr_destroy(&dev_priv->res_idr[i]); vmw_mksstat_remove_all(dev_priv); pci_release_regions(pdev); } static void vmw_postclose(struct drm_device *dev, struct drm_file *file_priv) { struct vmw_fpriv *vmw_fp = vmw_fpriv(file_priv); ttm_object_file_release(&vmw_fp->tfile); kfree(vmw_fp); } static int vmw_driver_open(struct drm_device *dev, struct drm_file *file_priv) { struct vmw_private *dev_priv = vmw_priv(dev); struct vmw_fpriv *vmw_fp; int ret = -ENOMEM; vmw_fp = kzalloc(sizeof(*vmw_fp), GFP_KERNEL); if (unlikely(!vmw_fp)) return ret; vmw_fp->tfile = ttm_object_file_init(dev_priv->tdev); if (unlikely(vmw_fp->tfile == NULL)) goto out_no_tfile; file_priv->driver_priv = vmw_fp; return 0; out_no_tfile: kfree(vmw_fp); return ret; } static long vmw_generic_ioctl(struct file *filp, unsigned int cmd, unsigned long arg, long (*ioctl_func)(struct file *, unsigned int, unsigned long)) { struct drm_file *file_priv = filp->private_data; struct drm_device *dev = file_priv->minor->dev; unsigned int nr = DRM_IOCTL_NR(cmd); unsigned int flags; /* * Do extra checking on driver private ioctls. */ if ((nr >= DRM_COMMAND_BASE) && (nr < DRM_COMMAND_END) && (nr < DRM_COMMAND_BASE + dev->driver->num_ioctls)) { const struct drm_ioctl_desc *ioctl = &vmw_ioctls[nr - DRM_COMMAND_BASE]; if (nr == DRM_COMMAND_BASE + DRM_VMW_EXECBUF) { return ioctl_func(filp, cmd, arg); } else if (nr == DRM_COMMAND_BASE + DRM_VMW_UPDATE_LAYOUT) { if (!drm_is_current_master(file_priv) && !capable(CAP_SYS_ADMIN)) return -EACCES; } if (unlikely(ioctl->cmd != cmd)) goto out_io_encoding; flags = ioctl->flags; } else if (!drm_ioctl_flags(nr, &flags)) return -EINVAL; return ioctl_func(filp, cmd, arg); out_io_encoding: DRM_ERROR("Invalid command format, ioctl %d\n", nr - DRM_COMMAND_BASE); return -EINVAL; } static long vmw_unlocked_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { return vmw_generic_ioctl(filp, cmd, arg, &drm_ioctl); } #ifdef CONFIG_COMPAT static long vmw_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { return vmw_generic_ioctl(filp, cmd, arg, &drm_compat_ioctl); } #endif static void vmw_master_set(struct drm_device *dev, struct drm_file *file_priv, bool from_open) { /* * Inform a new master that the layout may have changed while * it was gone. */ if (!from_open) drm_sysfs_hotplug_event(dev); } static void vmw_master_drop(struct drm_device *dev, struct drm_file *file_priv) { struct vmw_private *dev_priv = vmw_priv(dev); vmw_kms_legacy_hotspot_clear(dev_priv); } bool vmwgfx_supported(struct vmw_private *vmw) { #if defined(CONFIG_X86) return hypervisor_is_type(X86_HYPER_VMWARE); #elif defined(CONFIG_ARM64) /* * On aarch64 only svga3 is supported */ return vmw->pci_id == VMWGFX_PCI_ID_SVGA3; #else drm_warn_once(&vmw->drm, "vmwgfx is running on an unknown architecture."); return false; #endif } /** * __vmw_svga_enable - Enable SVGA mode, FIFO and use of VRAM. * * @dev_priv: Pointer to device private struct. * Needs the reservation sem to be held in non-exclusive mode. */ static void __vmw_svga_enable(struct vmw_private *dev_priv) { struct ttm_resource_manager *man = ttm_manager_type(&dev_priv->bdev, TTM_PL_VRAM); if (!ttm_resource_manager_used(man)) { vmw_write(dev_priv, SVGA_REG_ENABLE, SVGA_REG_ENABLE_ENABLE); ttm_resource_manager_set_used(man, true); } } /** * vmw_svga_enable - Enable SVGA mode, FIFO and use of VRAM. * * @dev_priv: Pointer to device private struct. */ void vmw_svga_enable(struct vmw_private *dev_priv) { __vmw_svga_enable(dev_priv); } /** * __vmw_svga_disable - Disable SVGA mode and use of VRAM. * * @dev_priv: Pointer to device private struct. * Needs the reservation sem to be held in exclusive mode. * Will not empty VRAM. VRAM must be emptied by caller. */ static void __vmw_svga_disable(struct vmw_private *dev_priv) { struct ttm_resource_manager *man = ttm_manager_type(&dev_priv->bdev, TTM_PL_VRAM); if (ttm_resource_manager_used(man)) { ttm_resource_manager_set_used(man, false); vmw_write(dev_priv, SVGA_REG_ENABLE, SVGA_REG_ENABLE_HIDE | SVGA_REG_ENABLE_ENABLE); } } /** * vmw_svga_disable - Disable SVGA_MODE, and use of VRAM. Keep the fifo * running. * * @dev_priv: Pointer to device private struct. * Will empty VRAM. */ void vmw_svga_disable(struct vmw_private *dev_priv) { struct ttm_resource_manager *man = ttm_manager_type(&dev_priv->bdev, TTM_PL_VRAM); /* * Disabling SVGA will turn off device modesetting capabilities, so * notify KMS about that so that it doesn't cache atomic state that * isn't valid anymore, for example crtcs turned on. * Strictly we'd want to do this under the SVGA lock (or an SVGA mutex), * but vmw_kms_lost_device() takes the reservation sem and thus we'll * end up with lock order reversal. Thus, a master may actually perform * a new modeset just after we call vmw_kms_lost_device() and race with * vmw_svga_disable(), but that should at worst cause atomic KMS state * to be inconsistent with the device, causing modesetting problems. * */ vmw_kms_lost_device(&dev_priv->drm); if (ttm_resource_manager_used(man)) { if (ttm_resource_manager_evict_all(&dev_priv->bdev, man)) DRM_ERROR("Failed evicting VRAM buffers.\n"); ttm_resource_manager_set_used(man, false); vmw_write(dev_priv, SVGA_REG_ENABLE, SVGA_REG_ENABLE_HIDE | SVGA_REG_ENABLE_ENABLE); } } static void vmw_remove(struct pci_dev *pdev) { struct drm_device *dev = pci_get_drvdata(pdev); drm_dev_unregister(dev); vmw_driver_unload(dev); } static void vmw_debugfs_resource_managers_init(struct vmw_private *vmw) { struct drm_minor *minor = vmw->drm.primary; struct dentry *root = minor->debugfs_root; ttm_resource_manager_create_debugfs(ttm_manager_type(&vmw->bdev, TTM_PL_SYSTEM), root, "system_ttm"); ttm_resource_manager_create_debugfs(ttm_manager_type(&vmw->bdev, TTM_PL_VRAM), root, "vram_ttm"); ttm_resource_manager_create_debugfs(ttm_manager_type(&vmw->bdev, VMW_PL_GMR), root, "gmr_ttm"); ttm_resource_manager_create_debugfs(ttm_manager_type(&vmw->bdev, VMW_PL_MOB), root, "mob_ttm"); ttm_resource_manager_create_debugfs(ttm_manager_type(&vmw->bdev, VMW_PL_SYSTEM), root, "system_mob_ttm"); } static int vmwgfx_pm_notifier(struct notifier_block *nb, unsigned long val, void *ptr) { struct vmw_private *dev_priv = container_of(nb, struct vmw_private, pm_nb); switch (val) { case PM_HIBERNATION_PREPARE: /* * Take the reservation sem in write mode, which will make sure * there are no other processes holding a buffer object * reservation, meaning we should be able to evict all buffer * objects if needed. * Once user-space processes have been frozen, we can release * the lock again. */ dev_priv->suspend_locked = true; break; case PM_POST_HIBERNATION: case PM_POST_RESTORE: if (READ_ONCE(dev_priv->suspend_locked)) { dev_priv->suspend_locked = false; } break; default: break; } return 0; } static int vmw_pci_suspend(struct pci_dev *pdev, pm_message_t state) { struct drm_device *dev = pci_get_drvdata(pdev); struct vmw_private *dev_priv = vmw_priv(dev); if (dev_priv->refuse_hibernation) return -EBUSY; pci_save_state(pdev); pci_disable_device(pdev); pci_set_power_state(pdev, PCI_D3hot); return 0; } static int vmw_pci_resume(struct pci_dev *pdev) { pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); return pci_enable_device(pdev); } static int vmw_pm_suspend(struct device *kdev) { struct pci_dev *pdev = to_pci_dev(kdev); struct pm_message dummy; dummy.event = 0; return vmw_pci_suspend(pdev, dummy); } static int vmw_pm_resume(struct device *kdev) { struct pci_dev *pdev = to_pci_dev(kdev); return vmw_pci_resume(pdev); } static int vmw_pm_freeze(struct device *kdev) { struct pci_dev *pdev = to_pci_dev(kdev); struct drm_device *dev = pci_get_drvdata(pdev); struct vmw_private *dev_priv = vmw_priv(dev); struct ttm_operation_ctx ctx = { .interruptible = false, .no_wait_gpu = false }; int ret; /* * No user-space processes should be running now. */ ret = vmw_kms_suspend(&dev_priv->drm); if (ret) { DRM_ERROR("Failed to freeze modesetting.\n"); return ret; } vmw_execbuf_release_pinned_bo(dev_priv); vmw_resource_evict_all(dev_priv); vmw_release_device_early(dev_priv); while (ttm_device_swapout(&dev_priv->bdev, &ctx, GFP_KERNEL) > 0); vmw_fifo_resource_dec(dev_priv); if (atomic_read(&dev_priv->num_fifo_resources) != 0) { DRM_ERROR("Can't hibernate while 3D resources are active.\n"); vmw_fifo_resource_inc(dev_priv); WARN_ON(vmw_request_device_late(dev_priv)); dev_priv->suspend_locked = false; if (dev_priv->suspend_state) vmw_kms_resume(dev); return -EBUSY; } vmw_fence_fifo_down(dev_priv->fman); __vmw_svga_disable(dev_priv); vmw_release_device_late(dev_priv); return 0; } static int vmw_pm_restore(struct device *kdev) { struct pci_dev *pdev = to_pci_dev(kdev); struct drm_device *dev = pci_get_drvdata(pdev); struct vmw_private *dev_priv = vmw_priv(dev); int ret; vmw_detect_version(dev_priv); vmw_fifo_resource_inc(dev_priv); ret = vmw_request_device(dev_priv); if (ret) return ret; __vmw_svga_enable(dev_priv); vmw_fence_fifo_up(dev_priv->fman); dev_priv->suspend_locked = false; if (dev_priv->suspend_state) vmw_kms_resume(&dev_priv->drm); return 0; } static const struct dev_pm_ops vmw_pm_ops = { .freeze = vmw_pm_freeze, .thaw = vmw_pm_restore, .restore = vmw_pm_restore, .suspend = vmw_pm_suspend, .resume = vmw_pm_resume, }; static const struct file_operations vmwgfx_driver_fops = { .owner = THIS_MODULE, .open = drm_open, .release = drm_release, .unlocked_ioctl = vmw_unlocked_ioctl, .mmap = drm_gem_mmap, .poll = drm_poll, .read = drm_read, #if defined(CONFIG_COMPAT) .compat_ioctl = vmw_compat_ioctl, #endif .llseek = noop_llseek, }; static const struct drm_driver driver = { .driver_features = DRIVER_MODESET | DRIVER_RENDER | DRIVER_ATOMIC | DRIVER_GEM, .ioctls = vmw_ioctls, .num_ioctls = ARRAY_SIZE(vmw_ioctls), .master_set = vmw_master_set, .master_drop = vmw_master_drop, .open = vmw_driver_open, .postclose = vmw_postclose, .dumb_create = vmw_dumb_create, .dumb_map_offset = drm_gem_ttm_dumb_map_offset, .prime_fd_to_handle = vmw_prime_fd_to_handle, .prime_handle_to_fd = vmw_prime_handle_to_fd, .fops = &vmwgfx_driver_fops, .name = VMWGFX_DRIVER_NAME, .desc = VMWGFX_DRIVER_DESC, .date = VMWGFX_DRIVER_DATE, .major = VMWGFX_DRIVER_MAJOR, .minor = VMWGFX_DRIVER_MINOR, .patchlevel = VMWGFX_DRIVER_PATCHLEVEL }; static struct pci_driver vmw_pci_driver = { .name = VMWGFX_DRIVER_NAME, .id_table = vmw_pci_id_list, .probe = vmw_probe, .remove = vmw_remove, .driver = { .pm = &vmw_pm_ops } }; static int vmw_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct vmw_private *vmw; int ret; ret = drm_aperture_remove_conflicting_pci_framebuffers(pdev, &driver); if (ret) goto out_error; ret = pcim_enable_device(pdev); if (ret) goto out_error; vmw = devm_drm_dev_alloc(&pdev->dev, &driver, struct vmw_private, drm); if (IS_ERR(vmw)) { ret = PTR_ERR(vmw); goto out_error; } pci_set_drvdata(pdev, &vmw->drm); ret = vmw_driver_load(vmw, ent->device); if (ret) goto out_error; ret = drm_dev_register(&vmw->drm, 0); if (ret) goto out_unload; vmw_fifo_resource_inc(vmw); vmw_svga_enable(vmw); drm_fbdev_generic_setup(&vmw->drm, 0); vmw_debugfs_gem_init(vmw); vmw_debugfs_resource_managers_init(vmw); return 0; out_unload: vmw_driver_unload(&vmw->drm); out_error: return ret; } drm_module_pci_driver(vmw_pci_driver); MODULE_AUTHOR("VMware Inc. and others"); MODULE_DESCRIPTION("Standalone drm driver for the VMware SVGA device"); MODULE_LICENSE("GPL and additional rights"); MODULE_VERSION(__stringify(VMWGFX_DRIVER_MAJOR) "." __stringify(VMWGFX_DRIVER_MINOR) "." __stringify(VMWGFX_DRIVER_PATCHLEVEL) "." "0");
linux-master
drivers/gpu/drm/vmwgfx/vmwgfx_drv.c
// SPDX-License-Identifier: GPL-2.0 OR MIT /************************************************************************** * * Copyright 2009-2011 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "vmwgfx_drv.h" static int vmw_bo_vm_lookup(struct ttm_device *bdev, struct drm_file *filp, unsigned long offset, unsigned long pages, struct ttm_buffer_object **p_bo) { struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev); struct drm_device *drm = &dev_priv->drm; struct drm_vma_offset_node *node; int ret; *p_bo = NULL; drm_vma_offset_lock_lookup(bdev->vma_manager); node = drm_vma_offset_lookup_locked(bdev->vma_manager, offset, pages); if (likely(node)) { *p_bo = container_of(node, struct ttm_buffer_object, base.vma_node); *p_bo = ttm_bo_get_unless_zero(*p_bo); } drm_vma_offset_unlock_lookup(bdev->vma_manager); if (!*p_bo) { drm_err(drm, "Could not find buffer object to map\n"); return -EINVAL; } if (!drm_vma_node_is_allowed(node, filp)) { ret = -EACCES; goto out_no_access; } return 0; out_no_access: ttm_bo_put(*p_bo); return ret; } int vmw_mmap(struct file *filp, struct vm_area_struct *vma) { static const struct vm_operations_struct vmw_vm_ops = { .pfn_mkwrite = vmw_bo_vm_mkwrite, .page_mkwrite = vmw_bo_vm_mkwrite, .fault = vmw_bo_vm_fault, .open = ttm_bo_vm_open, .close = ttm_bo_vm_close, }; struct drm_file *file_priv = filp->private_data; struct vmw_private *dev_priv = vmw_priv(file_priv->minor->dev); struct ttm_device *bdev = &dev_priv->bdev; struct ttm_buffer_object *bo; int ret; if (unlikely(vma->vm_pgoff < DRM_FILE_PAGE_OFFSET_START)) return -EINVAL; ret = vmw_bo_vm_lookup(bdev, file_priv, vma->vm_pgoff, vma_pages(vma), &bo); if (unlikely(ret != 0)) return ret; ret = ttm_bo_mmap_obj(vma, bo); if (unlikely(ret != 0)) goto out_unref; vma->vm_ops = &vmw_vm_ops; /* Use VM_PFNMAP rather than VM_MIXEDMAP if not a COW mapping */ if (!is_cow_mapping(vma->vm_flags)) vm_flags_mod(vma, VM_PFNMAP, VM_MIXEDMAP); ttm_bo_put(bo); /* release extra ref taken by ttm_bo_mmap_obj() */ return 0; out_unref: ttm_bo_put(bo); return ret; }
linux-master
drivers/gpu/drm/vmwgfx/vmwgfx_ttm_glue.c
// SPDX-License-Identifier: GPL-2.0 OR MIT /************************************************************************** * * Copyright 2009-2023 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include <drm/ttm/ttm_placement.h> #include "vmwgfx_binding.h" #include "vmwgfx_bo.h" #include "vmwgfx_drv.h" #include "vmwgfx_resource_priv.h" struct vmw_shader { struct vmw_resource res; SVGA3dShaderType type; uint32_t size; uint8_t num_input_sig; uint8_t num_output_sig; }; struct vmw_user_shader { struct ttm_base_object base; struct vmw_shader shader; }; struct vmw_dx_shader { struct vmw_resource res; struct vmw_resource *ctx; struct vmw_resource *cotable; u32 id; bool committed; struct list_head cotable_head; }; static void vmw_user_shader_free(struct vmw_resource *res); static struct vmw_resource * vmw_user_shader_base_to_res(struct ttm_base_object *base); static int vmw_gb_shader_create(struct vmw_resource *res); static int vmw_gb_shader_bind(struct vmw_resource *res, struct ttm_validate_buffer *val_buf); static int vmw_gb_shader_unbind(struct vmw_resource *res, bool readback, struct ttm_validate_buffer *val_buf); static int vmw_gb_shader_destroy(struct vmw_resource *res); static int vmw_dx_shader_create(struct vmw_resource *res); static int vmw_dx_shader_bind(struct vmw_resource *res, struct ttm_validate_buffer *val_buf); static int vmw_dx_shader_unbind(struct vmw_resource *res, bool readback, struct ttm_validate_buffer *val_buf); static void vmw_dx_shader_commit_notify(struct vmw_resource *res, enum vmw_cmdbuf_res_state state); static bool vmw_shader_id_ok(u32 user_key, SVGA3dShaderType shader_type); static u32 vmw_shader_key(u32 user_key, SVGA3dShaderType shader_type); static const struct vmw_user_resource_conv user_shader_conv = { .object_type = VMW_RES_SHADER, .base_obj_to_res = vmw_user_shader_base_to_res, .res_free = vmw_user_shader_free }; const struct vmw_user_resource_conv *user_shader_converter = &user_shader_conv; static const struct vmw_res_func vmw_gb_shader_func = { .res_type = vmw_res_shader, .needs_guest_memory = true, .may_evict = true, .prio = 3, .dirty_prio = 3, .type_name = "guest backed shaders", .domain = VMW_BO_DOMAIN_MOB, .busy_domain = VMW_BO_DOMAIN_MOB, .create = vmw_gb_shader_create, .destroy = vmw_gb_shader_destroy, .bind = vmw_gb_shader_bind, .unbind = vmw_gb_shader_unbind }; static const struct vmw_res_func vmw_dx_shader_func = { .res_type = vmw_res_shader, .needs_guest_memory = true, .may_evict = true, .prio = 3, .dirty_prio = 3, .type_name = "dx shaders", .domain = VMW_BO_DOMAIN_MOB, .busy_domain = VMW_BO_DOMAIN_MOB, .create = vmw_dx_shader_create, /* * The destroy callback is only called with a committed resource on * context destroy, in which case we destroy the cotable anyway, * so there's no need to destroy DX shaders separately. */ .destroy = NULL, .bind = vmw_dx_shader_bind, .unbind = vmw_dx_shader_unbind, .commit_notify = vmw_dx_shader_commit_notify, }; /* * Shader management: */ static inline struct vmw_shader * vmw_res_to_shader(struct vmw_resource *res) { return container_of(res, struct vmw_shader, res); } /** * vmw_res_to_dx_shader - typecast a struct vmw_resource to a * struct vmw_dx_shader * * @res: Pointer to the struct vmw_resource. */ static inline struct vmw_dx_shader * vmw_res_to_dx_shader(struct vmw_resource *res) { return container_of(res, struct vmw_dx_shader, res); } static void vmw_hw_shader_destroy(struct vmw_resource *res) { if (likely(res->func->destroy)) (void) res->func->destroy(res); else res->id = -1; } static int vmw_gb_shader_init(struct vmw_private *dev_priv, struct vmw_resource *res, uint32_t size, uint64_t offset, SVGA3dShaderType type, uint8_t num_input_sig, uint8_t num_output_sig, struct vmw_bo *byte_code, void (*res_free) (struct vmw_resource *res)) { struct vmw_shader *shader = vmw_res_to_shader(res); int ret; ret = vmw_resource_init(dev_priv, res, true, res_free, &vmw_gb_shader_func); if (unlikely(ret != 0)) { if (res_free) res_free(res); else kfree(res); return ret; } res->guest_memory_size = size; if (byte_code) { res->guest_memory_bo = vmw_bo_reference(byte_code); res->guest_memory_offset = offset; } shader->size = size; shader->type = type; shader->num_input_sig = num_input_sig; shader->num_output_sig = num_output_sig; res->hw_destroy = vmw_hw_shader_destroy; return 0; } /* * GB shader code: */ static int vmw_gb_shader_create(struct vmw_resource *res) { struct vmw_private *dev_priv = res->dev_priv; struct vmw_shader *shader = vmw_res_to_shader(res); int ret; struct { SVGA3dCmdHeader header; SVGA3dCmdDefineGBShader body; } *cmd; if (likely(res->id != -1)) return 0; ret = vmw_resource_alloc_id(res); if (unlikely(ret != 0)) { DRM_ERROR("Failed to allocate a shader id.\n"); goto out_no_id; } if (unlikely(res->id >= VMWGFX_NUM_GB_SHADER)) { ret = -EBUSY; goto out_no_fifo; } cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd)); if (unlikely(cmd == NULL)) { ret = -ENOMEM; goto out_no_fifo; } cmd->header.id = SVGA_3D_CMD_DEFINE_GB_SHADER; cmd->header.size = sizeof(cmd->body); cmd->body.shid = res->id; cmd->body.type = shader->type; cmd->body.sizeInBytes = shader->size; vmw_cmd_commit(dev_priv, sizeof(*cmd)); vmw_fifo_resource_inc(dev_priv); return 0; out_no_fifo: vmw_resource_release_id(res); out_no_id: return ret; } static int vmw_gb_shader_bind(struct vmw_resource *res, struct ttm_validate_buffer *val_buf) { struct vmw_private *dev_priv = res->dev_priv; struct { SVGA3dCmdHeader header; SVGA3dCmdBindGBShader body; } *cmd; struct ttm_buffer_object *bo = val_buf->bo; BUG_ON(bo->resource->mem_type != VMW_PL_MOB); cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd)); if (unlikely(cmd == NULL)) return -ENOMEM; cmd->header.id = SVGA_3D_CMD_BIND_GB_SHADER; cmd->header.size = sizeof(cmd->body); cmd->body.shid = res->id; cmd->body.mobid = bo->resource->start; cmd->body.offsetInBytes = res->guest_memory_offset; res->guest_memory_dirty = false; vmw_cmd_commit(dev_priv, sizeof(*cmd)); return 0; } static int vmw_gb_shader_unbind(struct vmw_resource *res, bool readback, struct ttm_validate_buffer *val_buf) { struct vmw_private *dev_priv = res->dev_priv; struct { SVGA3dCmdHeader header; SVGA3dCmdBindGBShader body; } *cmd; struct vmw_fence_obj *fence; BUG_ON(res->guest_memory_bo->tbo.resource->mem_type != VMW_PL_MOB); cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd)); if (unlikely(cmd == NULL)) return -ENOMEM; cmd->header.id = SVGA_3D_CMD_BIND_GB_SHADER; cmd->header.size = sizeof(cmd->body); cmd->body.shid = res->id; cmd->body.mobid = SVGA3D_INVALID_ID; cmd->body.offsetInBytes = 0; vmw_cmd_commit(dev_priv, sizeof(*cmd)); /* * Create a fence object and fence the backup buffer. */ (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL); vmw_bo_fence_single(val_buf->bo, fence); if (likely(fence != NULL)) vmw_fence_obj_unreference(&fence); return 0; } static int vmw_gb_shader_destroy(struct vmw_resource *res) { struct vmw_private *dev_priv = res->dev_priv; struct { SVGA3dCmdHeader header; SVGA3dCmdDestroyGBShader body; } *cmd; if (likely(res->id == -1)) return 0; mutex_lock(&dev_priv->binding_mutex); vmw_binding_res_list_scrub(&res->binding_head); cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd)); if (unlikely(cmd == NULL)) { mutex_unlock(&dev_priv->binding_mutex); return -ENOMEM; } cmd->header.id = SVGA_3D_CMD_DESTROY_GB_SHADER; cmd->header.size = sizeof(cmd->body); cmd->body.shid = res->id; vmw_cmd_commit(dev_priv, sizeof(*cmd)); mutex_unlock(&dev_priv->binding_mutex); vmw_resource_release_id(res); vmw_fifo_resource_dec(dev_priv); return 0; } /* * DX shader code: */ /** * vmw_dx_shader_commit_notify - Notify that a shader operation has been * committed to hardware from a user-supplied command stream. * * @res: Pointer to the shader resource. * @state: Indicating whether a creation or removal has been committed. * */ static void vmw_dx_shader_commit_notify(struct vmw_resource *res, enum vmw_cmdbuf_res_state state) { struct vmw_dx_shader *shader = vmw_res_to_dx_shader(res); struct vmw_private *dev_priv = res->dev_priv; if (state == VMW_CMDBUF_RES_ADD) { mutex_lock(&dev_priv->binding_mutex); vmw_cotable_add_resource(shader->cotable, &shader->cotable_head); shader->committed = true; res->id = shader->id; mutex_unlock(&dev_priv->binding_mutex); } else { mutex_lock(&dev_priv->binding_mutex); list_del_init(&shader->cotable_head); shader->committed = false; res->id = -1; mutex_unlock(&dev_priv->binding_mutex); } } /** * vmw_dx_shader_unscrub - Have the device reattach a MOB to a DX shader. * * @res: The shader resource * * This function reverts a scrub operation. */ static int vmw_dx_shader_unscrub(struct vmw_resource *res) { struct vmw_dx_shader *shader = vmw_res_to_dx_shader(res); struct vmw_private *dev_priv = res->dev_priv; struct { SVGA3dCmdHeader header; SVGA3dCmdDXBindShader body; } *cmd; if (!list_empty(&shader->cotable_head) || !shader->committed) return 0; cmd = VMW_CMD_CTX_RESERVE(dev_priv, sizeof(*cmd), shader->ctx->id); if (unlikely(cmd == NULL)) return -ENOMEM; cmd->header.id = SVGA_3D_CMD_DX_BIND_SHADER; cmd->header.size = sizeof(cmd->body); cmd->body.cid = shader->ctx->id; cmd->body.shid = shader->id; cmd->body.mobid = res->guest_memory_bo->tbo.resource->start; cmd->body.offsetInBytes = res->guest_memory_offset; vmw_cmd_commit(dev_priv, sizeof(*cmd)); vmw_cotable_add_resource(shader->cotable, &shader->cotable_head); return 0; } /** * vmw_dx_shader_create - The DX shader create callback * * @res: The DX shader resource * * The create callback is called as part of resource validation and * makes sure that we unscrub the shader if it's previously been scrubbed. */ static int vmw_dx_shader_create(struct vmw_resource *res) { struct vmw_private *dev_priv = res->dev_priv; struct vmw_dx_shader *shader = vmw_res_to_dx_shader(res); int ret = 0; WARN_ON_ONCE(!shader->committed); if (vmw_resource_mob_attached(res)) { mutex_lock(&dev_priv->binding_mutex); ret = vmw_dx_shader_unscrub(res); mutex_unlock(&dev_priv->binding_mutex); } res->id = shader->id; return ret; } /** * vmw_dx_shader_bind - The DX shader bind callback * * @res: The DX shader resource * @val_buf: Pointer to the validate buffer. * */ static int vmw_dx_shader_bind(struct vmw_resource *res, struct ttm_validate_buffer *val_buf) { struct vmw_private *dev_priv = res->dev_priv; struct ttm_buffer_object *bo = val_buf->bo; BUG_ON(bo->resource->mem_type != VMW_PL_MOB); mutex_lock(&dev_priv->binding_mutex); vmw_dx_shader_unscrub(res); mutex_unlock(&dev_priv->binding_mutex); return 0; } /** * vmw_dx_shader_scrub - Have the device unbind a MOB from a DX shader. * * @res: The shader resource * * This function unbinds a MOB from the DX shader without requiring the * MOB dma_buffer to be reserved. The driver still considers the MOB bound. * However, once the driver eventually decides to unbind the MOB, it doesn't * need to access the context. */ static int vmw_dx_shader_scrub(struct vmw_resource *res) { struct vmw_dx_shader *shader = vmw_res_to_dx_shader(res); struct vmw_private *dev_priv = res->dev_priv; struct { SVGA3dCmdHeader header; SVGA3dCmdDXBindShader body; } *cmd; if (list_empty(&shader->cotable_head)) return 0; WARN_ON_ONCE(!shader->committed); cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd)); if (unlikely(cmd == NULL)) return -ENOMEM; cmd->header.id = SVGA_3D_CMD_DX_BIND_SHADER; cmd->header.size = sizeof(cmd->body); cmd->body.cid = shader->ctx->id; cmd->body.shid = res->id; cmd->body.mobid = SVGA3D_INVALID_ID; cmd->body.offsetInBytes = 0; vmw_cmd_commit(dev_priv, sizeof(*cmd)); res->id = -1; list_del_init(&shader->cotable_head); return 0; } /** * vmw_dx_shader_unbind - The dx shader unbind callback. * * @res: The shader resource * @readback: Whether this is a readback unbind. Currently unused. * @val_buf: MOB buffer information. */ static int vmw_dx_shader_unbind(struct vmw_resource *res, bool readback, struct ttm_validate_buffer *val_buf) { struct vmw_private *dev_priv = res->dev_priv; struct vmw_fence_obj *fence; int ret; BUG_ON(res->guest_memory_bo->tbo.resource->mem_type != VMW_PL_MOB); mutex_lock(&dev_priv->binding_mutex); ret = vmw_dx_shader_scrub(res); mutex_unlock(&dev_priv->binding_mutex); if (ret) return ret; (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL); vmw_bo_fence_single(val_buf->bo, fence); if (likely(fence != NULL)) vmw_fence_obj_unreference(&fence); return 0; } /** * vmw_dx_shader_cotable_list_scrub - The cotable unbind_func callback for * DX shaders. * * @dev_priv: Pointer to device private structure. * @list: The list of cotable resources. * @readback: Whether the call was part of a readback unbind. * * Scrubs all shader MOBs so that any subsequent shader unbind or shader * destroy operation won't need to swap in the context. */ void vmw_dx_shader_cotable_list_scrub(struct vmw_private *dev_priv, struct list_head *list, bool readback) { struct vmw_dx_shader *entry, *next; lockdep_assert_held_once(&dev_priv->binding_mutex); list_for_each_entry_safe(entry, next, list, cotable_head) { WARN_ON(vmw_dx_shader_scrub(&entry->res)); if (!readback) entry->committed = false; } } /** * vmw_dx_shader_res_free - The DX shader free callback * * @res: The shader resource * * Frees the DX shader resource. */ static void vmw_dx_shader_res_free(struct vmw_resource *res) { struct vmw_dx_shader *shader = vmw_res_to_dx_shader(res); vmw_resource_unreference(&shader->cotable); kfree(shader); } /** * vmw_dx_shader_add - Add a shader resource as a command buffer managed * resource. * * @man: The command buffer resource manager. * @ctx: Pointer to the context resource. * @user_key: The id used for this shader. * @shader_type: The shader type. * @list: The list of staged command buffer managed resources. */ int vmw_dx_shader_add(struct vmw_cmdbuf_res_manager *man, struct vmw_resource *ctx, u32 user_key, SVGA3dShaderType shader_type, struct list_head *list) { struct vmw_dx_shader *shader; struct vmw_resource *res; struct vmw_private *dev_priv = ctx->dev_priv; int ret; if (!vmw_shader_id_ok(user_key, shader_type)) return -EINVAL; shader = kmalloc(sizeof(*shader), GFP_KERNEL); if (!shader) { return -ENOMEM; } res = &shader->res; shader->ctx = ctx; shader->cotable = vmw_resource_reference (vmw_context_cotable(ctx, SVGA_COTABLE_DXSHADER)); shader->id = user_key; shader->committed = false; INIT_LIST_HEAD(&shader->cotable_head); ret = vmw_resource_init(dev_priv, res, true, vmw_dx_shader_res_free, &vmw_dx_shader_func); if (ret) goto out_resource_init; /* * The user_key name-space is not per shader type for DX shaders, * so when hashing, use a single zero shader type. */ ret = vmw_cmdbuf_res_add(man, vmw_cmdbuf_res_shader, vmw_shader_key(user_key, 0), res, list); if (ret) goto out_resource_init; res->id = shader->id; res->hw_destroy = vmw_hw_shader_destroy; out_resource_init: vmw_resource_unreference(&res); return ret; } /* * User-space shader management: */ static struct vmw_resource * vmw_user_shader_base_to_res(struct ttm_base_object *base) { return &(container_of(base, struct vmw_user_shader, base)-> shader.res); } static void vmw_user_shader_free(struct vmw_resource *res) { struct vmw_user_shader *ushader = container_of(res, struct vmw_user_shader, shader.res); ttm_base_object_kfree(ushader, base); } static void vmw_shader_free(struct vmw_resource *res) { struct vmw_shader *shader = vmw_res_to_shader(res); kfree(shader); } /* * This function is called when user space has no more references on the * base object. It releases the base-object's reference on the resource object. */ static void vmw_user_shader_base_release(struct ttm_base_object **p_base) { struct ttm_base_object *base = *p_base; struct vmw_resource *res = vmw_user_shader_base_to_res(base); *p_base = NULL; vmw_resource_unreference(&res); } int vmw_shader_destroy_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_vmw_shader_arg *arg = (struct drm_vmw_shader_arg *)data; struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; return ttm_ref_object_base_unref(tfile, arg->handle); } static int vmw_user_shader_alloc(struct vmw_private *dev_priv, struct vmw_bo *buffer, size_t shader_size, size_t offset, SVGA3dShaderType shader_type, uint8_t num_input_sig, uint8_t num_output_sig, struct ttm_object_file *tfile, u32 *handle) { struct vmw_user_shader *ushader; struct vmw_resource *res, *tmp; int ret; ushader = kzalloc(sizeof(*ushader), GFP_KERNEL); if (unlikely(!ushader)) { ret = -ENOMEM; goto out; } res = &ushader->shader.res; ushader->base.shareable = false; ushader->base.tfile = NULL; /* * From here on, the destructor takes over resource freeing. */ ret = vmw_gb_shader_init(dev_priv, res, shader_size, offset, shader_type, num_input_sig, num_output_sig, buffer, vmw_user_shader_free); if (unlikely(ret != 0)) goto out; tmp = vmw_resource_reference(res); ret = ttm_base_object_init(tfile, &ushader->base, false, VMW_RES_SHADER, &vmw_user_shader_base_release); if (unlikely(ret != 0)) { vmw_resource_unreference(&tmp); goto out_err; } if (handle) *handle = ushader->base.handle; out_err: vmw_resource_unreference(&res); out: return ret; } static struct vmw_resource *vmw_shader_alloc(struct vmw_private *dev_priv, struct vmw_bo *buffer, size_t shader_size, size_t offset, SVGA3dShaderType shader_type) { struct vmw_shader *shader; struct vmw_resource *res; int ret; shader = kzalloc(sizeof(*shader), GFP_KERNEL); if (unlikely(!shader)) { ret = -ENOMEM; goto out_err; } res = &shader->res; /* * From here on, the destructor takes over resource freeing. */ ret = vmw_gb_shader_init(dev_priv, res, shader_size, offset, shader_type, 0, 0, buffer, vmw_shader_free); out_err: return ret ? ERR_PTR(ret) : res; } static int vmw_shader_define(struct drm_device *dev, struct drm_file *file_priv, enum drm_vmw_shader_type shader_type_drm, u32 buffer_handle, size_t size, size_t offset, uint8_t num_input_sig, uint8_t num_output_sig, uint32_t *shader_handle) { struct vmw_private *dev_priv = vmw_priv(dev); struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; struct vmw_bo *buffer = NULL; SVGA3dShaderType shader_type; int ret; if (buffer_handle != SVGA3D_INVALID_ID) { ret = vmw_user_bo_lookup(file_priv, buffer_handle, &buffer); if (unlikely(ret != 0)) { VMW_DEBUG_USER("Couldn't find buffer for shader creation.\n"); return ret; } if ((u64)buffer->tbo.base.size < (u64)size + (u64)offset) { VMW_DEBUG_USER("Illegal buffer- or shader size.\n"); ret = -EINVAL; goto out_bad_arg; } } switch (shader_type_drm) { case drm_vmw_shader_type_vs: shader_type = SVGA3D_SHADERTYPE_VS; break; case drm_vmw_shader_type_ps: shader_type = SVGA3D_SHADERTYPE_PS; break; default: VMW_DEBUG_USER("Illegal shader type.\n"); ret = -EINVAL; goto out_bad_arg; } ret = vmw_user_shader_alloc(dev_priv, buffer, size, offset, shader_type, num_input_sig, num_output_sig, tfile, shader_handle); out_bad_arg: vmw_user_bo_unref(buffer); return ret; } /** * vmw_shader_id_ok - Check whether a compat shader user key and * shader type are within valid bounds. * * @user_key: User space id of the shader. * @shader_type: Shader type. * * Returns true if valid false if not. */ static bool vmw_shader_id_ok(u32 user_key, SVGA3dShaderType shader_type) { return user_key <= ((1 << 20) - 1) && (unsigned) shader_type < 16; } /** * vmw_shader_key - Compute a hash key suitable for a compat shader. * * @user_key: User space id of the shader. * @shader_type: Shader type. * * Returns a hash key suitable for a command buffer managed resource * manager hash table. */ static u32 vmw_shader_key(u32 user_key, SVGA3dShaderType shader_type) { return user_key | (shader_type << 20); } /** * vmw_shader_remove - Stage a compat shader for removal. * * @man: Pointer to the compat shader manager identifying the shader namespace. * @user_key: The key that is used to identify the shader. The key is * unique to the shader type. * @shader_type: Shader type. * @list: Caller's list of staged command buffer resource actions. */ int vmw_shader_remove(struct vmw_cmdbuf_res_manager *man, u32 user_key, SVGA3dShaderType shader_type, struct list_head *list) { struct vmw_resource *dummy; if (!vmw_shader_id_ok(user_key, shader_type)) return -EINVAL; return vmw_cmdbuf_res_remove(man, vmw_cmdbuf_res_shader, vmw_shader_key(user_key, shader_type), list, &dummy); } /** * vmw_compat_shader_add - Create a compat shader and stage it for addition * as a command buffer managed resource. * * @dev_priv: Pointer to device private structure. * @man: Pointer to the compat shader manager identifying the shader namespace. * @user_key: The key that is used to identify the shader. The key is * unique to the shader type. * @bytecode: Pointer to the bytecode of the shader. * @shader_type: Shader type. * @size: Command size. * @list: Caller's list of staged command buffer resource actions. * */ int vmw_compat_shader_add(struct vmw_private *dev_priv, struct vmw_cmdbuf_res_manager *man, u32 user_key, const void *bytecode, SVGA3dShaderType shader_type, size_t size, struct list_head *list) { struct ttm_operation_ctx ctx = { false, true }; struct vmw_bo *buf; struct ttm_bo_kmap_obj map; bool is_iomem; int ret; struct vmw_resource *res; struct vmw_bo_params bo_params = { .domain = VMW_BO_DOMAIN_SYS, .busy_domain = VMW_BO_DOMAIN_SYS, .bo_type = ttm_bo_type_device, .size = size, .pin = true }; if (!vmw_shader_id_ok(user_key, shader_type)) return -EINVAL; ret = vmw_bo_create(dev_priv, &bo_params, &buf); if (unlikely(ret != 0)) goto out; ret = ttm_bo_reserve(&buf->tbo, false, true, NULL); if (unlikely(ret != 0)) goto no_reserve; /* Map and copy shader bytecode. */ ret = ttm_bo_kmap(&buf->tbo, 0, PFN_UP(size), &map); if (unlikely(ret != 0)) { ttm_bo_unreserve(&buf->tbo); goto no_reserve; } memcpy(ttm_kmap_obj_virtual(&map, &is_iomem), bytecode, size); WARN_ON(is_iomem); ttm_bo_kunmap(&map); ret = ttm_bo_validate(&buf->tbo, &buf->placement, &ctx); WARN_ON(ret != 0); ttm_bo_unreserve(&buf->tbo); res = vmw_shader_alloc(dev_priv, buf, size, 0, shader_type); if (unlikely(ret != 0)) goto no_reserve; ret = vmw_cmdbuf_res_add(man, vmw_cmdbuf_res_shader, vmw_shader_key(user_key, shader_type), res, list); vmw_resource_unreference(&res); no_reserve: vmw_bo_unreference(&buf); out: return ret; } /** * vmw_shader_lookup - Look up a compat shader * * @man: Pointer to the command buffer managed resource manager identifying * the shader namespace. * @user_key: The user space id of the shader. * @shader_type: The shader type. * * Returns a refcounted pointer to a struct vmw_resource if the shader was * found. An error pointer otherwise. */ struct vmw_resource * vmw_shader_lookup(struct vmw_cmdbuf_res_manager *man, u32 user_key, SVGA3dShaderType shader_type) { if (!vmw_shader_id_ok(user_key, shader_type)) return ERR_PTR(-EINVAL); return vmw_cmdbuf_res_lookup(man, vmw_cmdbuf_res_shader, vmw_shader_key(user_key, shader_type)); } int vmw_shader_define_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_vmw_shader_create_arg *arg = (struct drm_vmw_shader_create_arg *)data; return vmw_shader_define(dev, file_priv, arg->shader_type, arg->buffer_handle, arg->size, arg->offset, 0, 0, &arg->shader_handle); }
linux-master
drivers/gpu/drm/vmwgfx/vmwgfx_shader.c
// SPDX-License-Identifier: GPL-2.0 OR MIT /************************************************************************** * Copyright 2014-2015 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "vmwgfx_bo.h" #include "vmwgfx_drv.h" #include "vmwgfx_resource_priv.h" #include "vmwgfx_so.h" #include "vmwgfx_binding.h" /* * The currently only reason we need to keep track of views is that if we * destroy a hardware surface, all views pointing to it must also be destroyed, * otherwise the device will error. * So in particular if a surface is evicted, we must destroy all views pointing * to it, and all context bindings of that view. Similarly we must restore * the view bindings, views and surfaces pointed to by the views when a * context is referenced in the command stream. */ /** * struct vmw_view - view metadata * * @rcu: RCU callback head * @res: The struct vmw_resource we derive from * @ctx: Non-refcounted pointer to the context this view belongs to. * @srf: Refcounted pointer to the surface pointed to by this view. * @cotable: Refcounted pointer to the cotable holding this view. * @srf_head: List head for the surface-to-view list. * @cotable_head: List head for the cotable-to_view list. * @view_type: View type. * @view_id: User-space per context view id. Currently used also as per * context device view id. * @cmd_size: Size of the SVGA3D define view command that we've copied from the * command stream. * @committed: Whether the view is actually created or pending creation at the * device level. * @cmd: The SVGA3D define view command copied from the command stream. */ struct vmw_view { struct rcu_head rcu; struct vmw_resource res; struct vmw_resource *ctx; /* Immutable */ struct vmw_resource *srf; /* Immutable */ struct vmw_resource *cotable; /* Immutable */ struct list_head srf_head; /* Protected by binding_mutex */ struct list_head cotable_head; /* Protected by binding_mutex */ unsigned view_type; /* Immutable */ unsigned view_id; /* Immutable */ u32 cmd_size; /* Immutable */ bool committed; /* Protected by binding_mutex */ u32 cmd[]; /* Immutable */ }; static int vmw_view_create(struct vmw_resource *res); static int vmw_view_destroy(struct vmw_resource *res); static void vmw_hw_view_destroy(struct vmw_resource *res); static void vmw_view_commit_notify(struct vmw_resource *res, enum vmw_cmdbuf_res_state state); static const struct vmw_res_func vmw_view_func = { .res_type = vmw_res_view, .needs_guest_memory = false, .may_evict = false, .type_name = "DX view", .domain = VMW_BO_DOMAIN_SYS, .busy_domain = VMW_BO_DOMAIN_SYS, .create = vmw_view_create, .commit_notify = vmw_view_commit_notify, }; /** * struct vmw_view_define - view define command body stub * * @view_id: The device id of the view being defined * @sid: The surface id of the view being defined * * This generic struct is used by the code to change @view_id and @sid of a * saved view define command. */ struct vmw_view_define { uint32 view_id; uint32 sid; }; /** * vmw_view - Convert a struct vmw_resource to a struct vmw_view * * @res: Pointer to the resource to convert. * * Returns a pointer to a struct vmw_view. */ static struct vmw_view *vmw_view(struct vmw_resource *res) { return container_of(res, struct vmw_view, res); } /** * vmw_view_commit_notify - Notify that a view operation has been committed to * hardware from a user-supplied command stream. * * @res: Pointer to the view resource. * @state: Indicating whether a creation or removal has been committed. * */ static void vmw_view_commit_notify(struct vmw_resource *res, enum vmw_cmdbuf_res_state state) { struct vmw_view *view = vmw_view(res); struct vmw_private *dev_priv = res->dev_priv; mutex_lock(&dev_priv->binding_mutex); if (state == VMW_CMDBUF_RES_ADD) { struct vmw_surface *srf = vmw_res_to_srf(view->srf); list_add_tail(&view->srf_head, &srf->view_list); vmw_cotable_add_resource(view->cotable, &view->cotable_head); view->committed = true; res->id = view->view_id; } else { list_del_init(&view->cotable_head); list_del_init(&view->srf_head); view->committed = false; res->id = -1; } mutex_unlock(&dev_priv->binding_mutex); } /** * vmw_view_create - Create a hardware view. * * @res: Pointer to the view resource. * * Create a hardware view. Typically used if that view has previously been * destroyed by an eviction operation. */ static int vmw_view_create(struct vmw_resource *res) { struct vmw_view *view = vmw_view(res); struct vmw_surface *srf = vmw_res_to_srf(view->srf); struct vmw_private *dev_priv = res->dev_priv; struct { SVGA3dCmdHeader header; struct vmw_view_define body; } *cmd; mutex_lock(&dev_priv->binding_mutex); if (!view->committed) { mutex_unlock(&dev_priv->binding_mutex); return 0; } cmd = VMW_CMD_CTX_RESERVE(res->dev_priv, view->cmd_size, view->ctx->id); if (!cmd) { mutex_unlock(&dev_priv->binding_mutex); return -ENOMEM; } memcpy(cmd, &view->cmd, view->cmd_size); WARN_ON(cmd->body.view_id != view->view_id); /* Sid may have changed due to surface eviction. */ WARN_ON(view->srf->id == SVGA3D_INVALID_ID); cmd->body.sid = view->srf->id; vmw_cmd_commit(res->dev_priv, view->cmd_size); res->id = view->view_id; list_add_tail(&view->srf_head, &srf->view_list); vmw_cotable_add_resource(view->cotable, &view->cotable_head); mutex_unlock(&dev_priv->binding_mutex); return 0; } /** * vmw_view_destroy - Destroy a hardware view. * * @res: Pointer to the view resource. * * Destroy a hardware view. Typically used on unexpected termination of the * owning process or if the surface the view is pointing to is destroyed. */ static int vmw_view_destroy(struct vmw_resource *res) { struct vmw_private *dev_priv = res->dev_priv; struct vmw_view *view = vmw_view(res); struct { SVGA3dCmdHeader header; union vmw_view_destroy body; } *cmd; lockdep_assert_held_once(&dev_priv->binding_mutex); vmw_binding_res_list_scrub(&res->binding_head); if (!view->committed || res->id == -1) return 0; cmd = VMW_CMD_CTX_RESERVE(dev_priv, sizeof(*cmd), view->ctx->id); if (!cmd) return -ENOMEM; cmd->header.id = vmw_view_destroy_cmds[view->view_type]; cmd->header.size = sizeof(cmd->body); cmd->body.view_id = view->view_id; vmw_cmd_commit(dev_priv, sizeof(*cmd)); res->id = -1; list_del_init(&view->cotable_head); list_del_init(&view->srf_head); return 0; } /** * vmw_hw_view_destroy - Destroy a hardware view as part of resource cleanup. * * @res: Pointer to the view resource. * * Destroy a hardware view if it's still present. */ static void vmw_hw_view_destroy(struct vmw_resource *res) { struct vmw_private *dev_priv = res->dev_priv; mutex_lock(&dev_priv->binding_mutex); WARN_ON(vmw_view_destroy(res)); res->id = -1; mutex_unlock(&dev_priv->binding_mutex); } /** * vmw_view_key - Compute a view key suitable for the cmdbuf resource manager * * @user_key: The user-space id used for the view. * @view_type: The view type. * * Destroy a hardware view if it's still present. */ static u32 vmw_view_key(u32 user_key, enum vmw_view_type view_type) { return user_key | (view_type << 20); } /** * vmw_view_id_ok - Basic view id and type range checks. * * @user_key: The user-space id used for the view. * @view_type: The view type. * * Checks that the view id and type (typically provided by user-space) is * valid. */ static bool vmw_view_id_ok(u32 user_key, enum vmw_view_type view_type) { return (user_key < SVGA_COTABLE_MAX_IDS && view_type < vmw_view_max); } /** * vmw_view_res_free - resource res_free callback for view resources * * @res: Pointer to a struct vmw_resource * * Frees memory held by the struct vmw_view. */ static void vmw_view_res_free(struct vmw_resource *res) { struct vmw_view *view = vmw_view(res); vmw_resource_unreference(&view->cotable); vmw_resource_unreference(&view->srf); kfree_rcu(view, rcu); } /** * vmw_view_add - Create a view resource and stage it for addition * as a command buffer managed resource. * * @man: Pointer to the compat shader manager identifying the shader namespace. * @ctx: Pointer to a struct vmw_resource identifying the active context. * @srf: Pointer to a struct vmw_resource identifying the surface the view * points to. * @view_type: The view type deduced from the view create command. * @user_key: The key that is used to identify the shader. The key is * unique to the view type and to the context. * @cmd: Pointer to the view create command in the command stream. * @cmd_size: Size of the view create command in the command stream. * @list: Caller's list of staged command buffer resource actions. */ int vmw_view_add(struct vmw_cmdbuf_res_manager *man, struct vmw_resource *ctx, struct vmw_resource *srf, enum vmw_view_type view_type, u32 user_key, const void *cmd, size_t cmd_size, struct list_head *list) { static const size_t vmw_view_define_sizes[] = { [vmw_view_sr] = sizeof(SVGA3dCmdDXDefineShaderResourceView), [vmw_view_rt] = sizeof(SVGA3dCmdDXDefineRenderTargetView), [vmw_view_ds] = sizeof(SVGA3dCmdDXDefineDepthStencilView), [vmw_view_ua] = sizeof(SVGA3dCmdDXDefineUAView) }; struct vmw_private *dev_priv = ctx->dev_priv; struct vmw_resource *res; struct vmw_view *view; size_t size; int ret; if (cmd_size != vmw_view_define_sizes[view_type] + sizeof(SVGA3dCmdHeader)) { VMW_DEBUG_USER("Illegal view create command size.\n"); return -EINVAL; } if (!vmw_view_id_ok(user_key, view_type)) { VMW_DEBUG_USER("Illegal view add view id.\n"); return -EINVAL; } size = offsetof(struct vmw_view, cmd) + cmd_size; view = kmalloc(size, GFP_KERNEL); if (!view) { return -ENOMEM; } res = &view->res; view->ctx = ctx; view->srf = vmw_resource_reference(srf); view->cotable = vmw_resource_reference (vmw_context_cotable(ctx, vmw_view_cotables[view_type])); view->view_type = view_type; view->view_id = user_key; view->cmd_size = cmd_size; view->committed = false; INIT_LIST_HEAD(&view->srf_head); INIT_LIST_HEAD(&view->cotable_head); memcpy(&view->cmd, cmd, cmd_size); ret = vmw_resource_init(dev_priv, res, true, vmw_view_res_free, &vmw_view_func); if (ret) goto out_resource_init; ret = vmw_cmdbuf_res_add(man, vmw_cmdbuf_res_view, vmw_view_key(user_key, view_type), res, list); if (ret) goto out_resource_init; res->id = view->view_id; res->hw_destroy = vmw_hw_view_destroy; out_resource_init: vmw_resource_unreference(&res); return ret; } /** * vmw_view_remove - Stage a view for removal. * * @man: Pointer to the view manager identifying the shader namespace. * @user_key: The key that is used to identify the view. The key is * unique to the view type. * @view_type: View type * @list: Caller's list of staged command buffer resource actions. * @res_p: If the resource is in an already committed state, points to the * struct vmw_resource on successful return. The pointer will be * non ref-counted. */ int vmw_view_remove(struct vmw_cmdbuf_res_manager *man, u32 user_key, enum vmw_view_type view_type, struct list_head *list, struct vmw_resource **res_p) { if (!vmw_view_id_ok(user_key, view_type)) { VMW_DEBUG_USER("Illegal view remove view id.\n"); return -EINVAL; } return vmw_cmdbuf_res_remove(man, vmw_cmdbuf_res_view, vmw_view_key(user_key, view_type), list, res_p); } /** * vmw_view_cotable_list_destroy - Evict all views belonging to a cotable. * * @dev_priv: Pointer to a device private struct. * @list: List of views belonging to a cotable. * @readback: Unused. Needed for function interface only. * * This function evicts all views belonging to a cotable. * It must be called with the binding_mutex held, and the caller must hold * a reference to the view resource. This is typically called before the * cotable is paged out. */ void vmw_view_cotable_list_destroy(struct vmw_private *dev_priv, struct list_head *list, bool readback) { struct vmw_view *entry, *next; lockdep_assert_held_once(&dev_priv->binding_mutex); list_for_each_entry_safe(entry, next, list, cotable_head) WARN_ON(vmw_view_destroy(&entry->res)); } /** * vmw_view_surface_list_destroy - Evict all views pointing to a surface * * @dev_priv: Pointer to a device private struct. * @list: List of views pointing to a surface. * * This function evicts all views pointing to a surface. This is typically * called before the surface is evicted. */ void vmw_view_surface_list_destroy(struct vmw_private *dev_priv, struct list_head *list) { struct vmw_view *entry, *next; lockdep_assert_held_once(&dev_priv->binding_mutex); list_for_each_entry_safe(entry, next, list, srf_head) WARN_ON(vmw_view_destroy(&entry->res)); } /** * vmw_view_srf - Return a non-refcounted pointer to the surface a view is * pointing to. * * @res: pointer to a view resource. * * Note that the view itself is holding a reference, so as long * the view resource is alive, the surface resource will be. */ struct vmw_resource *vmw_view_srf(struct vmw_resource *res) { return vmw_view(res)->srf; } /** * vmw_view_lookup - Look up a view. * * @man: The context's cmdbuf ref manager. * @view_type: The view type. * @user_key: The view user id. * * returns a refcounted pointer to a view or an error pointer if not found. */ struct vmw_resource *vmw_view_lookup(struct vmw_cmdbuf_res_manager *man, enum vmw_view_type view_type, u32 user_key) { return vmw_cmdbuf_res_lookup(man, vmw_cmdbuf_res_view, vmw_view_key(user_key, view_type)); } /** * vmw_view_dirtying - Return whether a view type is dirtying its resource * @res: Pointer to the view * * Each time a resource is put on the validation list as the result of a * view pointing to it, we need to determine whether that resource will * be dirtied (written to by the GPU) as a result of the corresponding * GPU operation. Currently only rendertarget-, depth-stencil and unordered * access views are capable of dirtying its resource. * * Return: Whether the view type of @res dirties the resource it points to. */ u32 vmw_view_dirtying(struct vmw_resource *res) { static u32 view_is_dirtying[vmw_view_max] = { [vmw_view_rt] = VMW_RES_DIRTY_SET, [vmw_view_ds] = VMW_RES_DIRTY_SET, [vmw_view_ua] = VMW_RES_DIRTY_SET, }; /* Update this function as we add more view types */ BUILD_BUG_ON(vmw_view_max != 4); return view_is_dirtying[vmw_view(res)->view_type]; } const u32 vmw_view_destroy_cmds[] = { [vmw_view_sr] = SVGA_3D_CMD_DX_DESTROY_SHADERRESOURCE_VIEW, [vmw_view_rt] = SVGA_3D_CMD_DX_DESTROY_RENDERTARGET_VIEW, [vmw_view_ds] = SVGA_3D_CMD_DX_DESTROY_DEPTHSTENCIL_VIEW, [vmw_view_ua] = SVGA_3D_CMD_DX_DESTROY_UA_VIEW, }; const SVGACOTableType vmw_view_cotables[] = { [vmw_view_sr] = SVGA_COTABLE_SRVIEW, [vmw_view_rt] = SVGA_COTABLE_RTVIEW, [vmw_view_ds] = SVGA_COTABLE_DSVIEW, [vmw_view_ua] = SVGA_COTABLE_UAVIEW, }; const SVGACOTableType vmw_so_cotables[] = { [vmw_so_el] = SVGA_COTABLE_ELEMENTLAYOUT, [vmw_so_bs] = SVGA_COTABLE_BLENDSTATE, [vmw_so_ds] = SVGA_COTABLE_DEPTHSTENCIL, [vmw_so_rs] = SVGA_COTABLE_RASTERIZERSTATE, [vmw_so_ss] = SVGA_COTABLE_SAMPLER, [vmw_so_so] = SVGA_COTABLE_STREAMOUTPUT, [vmw_so_max]= SVGA_COTABLE_MAX }; /* To remove unused function warning */ static void vmw_so_build_asserts(void) __attribute__((used)); /* * This function is unused at run-time, and only used to dump various build * asserts important for code optimization assumptions. */ static void vmw_so_build_asserts(void) { /* Assert that our vmw_view_cmd_to_type() function is correct. */ BUILD_BUG_ON(SVGA_3D_CMD_DX_DESTROY_SHADERRESOURCE_VIEW != SVGA_3D_CMD_DX_DEFINE_SHADERRESOURCE_VIEW + 1); BUILD_BUG_ON(SVGA_3D_CMD_DX_DEFINE_RENDERTARGET_VIEW != SVGA_3D_CMD_DX_DEFINE_SHADERRESOURCE_VIEW + 2); BUILD_BUG_ON(SVGA_3D_CMD_DX_DESTROY_RENDERTARGET_VIEW != SVGA_3D_CMD_DX_DEFINE_SHADERRESOURCE_VIEW + 3); BUILD_BUG_ON(SVGA_3D_CMD_DX_DEFINE_DEPTHSTENCIL_VIEW != SVGA_3D_CMD_DX_DEFINE_SHADERRESOURCE_VIEW + 4); BUILD_BUG_ON(SVGA_3D_CMD_DX_DESTROY_DEPTHSTENCIL_VIEW != SVGA_3D_CMD_DX_DEFINE_SHADERRESOURCE_VIEW + 5); /* Assert that our "one body fits all" assumption is valid */ BUILD_BUG_ON(sizeof(union vmw_view_destroy) != sizeof(u32)); /* Assert that the view key space can hold all view ids. */ BUILD_BUG_ON(SVGA_COTABLE_MAX_IDS >= ((1 << 20) - 1)); /* * Assert that the offset of sid in all view define commands * is what we assume it to be. */ BUILD_BUG_ON(offsetof(struct vmw_view_define, sid) != offsetof(SVGA3dCmdDXDefineShaderResourceView, sid)); BUILD_BUG_ON(offsetof(struct vmw_view_define, sid) != offsetof(SVGA3dCmdDXDefineRenderTargetView, sid)); BUILD_BUG_ON(offsetof(struct vmw_view_define, sid) != offsetof(SVGA3dCmdDXDefineDepthStencilView, sid)); BUILD_BUG_ON(offsetof(struct vmw_view_define, sid) != offsetof(SVGA3dCmdDXDefineUAView, sid)); BUILD_BUG_ON(offsetof(struct vmw_view_define, sid) != offsetof(SVGA3dCmdDXDefineDepthStencilView_v2, sid)); }
linux-master
drivers/gpu/drm/vmwgfx/vmwgfx_so.c
/* SPDX-License-Identifier: GPL-2.0 OR MIT */ /************************************************************************** * * Copyright 2021 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "vmwgfx_devcaps.h" #include "vmwgfx_drv.h" struct svga_3d_compat_cap { SVGA3dFifoCapsRecordHeader header; SVGA3dFifoCapPair pairs[SVGA3D_DEVCAP_MAX]; }; static u32 vmw_mask_legacy_multisample(unsigned int cap, u32 fmt_value) { /* * A version of user-space exists which use MULTISAMPLE_MASKABLESAMPLES * to check the sample count supported by virtual device. Since there * never was support for multisample count for backing MOB return 0. * * MULTISAMPLE_MASKABLESAMPLES devcap is marked as deprecated by virtual * device. */ if (cap == SVGA3D_DEVCAP_DEAD5) return 0; return fmt_value; } static int vmw_fill_compat_cap(struct vmw_private *dev_priv, void *bounce, size_t size) { struct svga_3d_compat_cap *compat_cap = (struct svga_3d_compat_cap *) bounce; unsigned int i; size_t pair_offset = offsetof(struct svga_3d_compat_cap, pairs); unsigned int max_size; if (size < pair_offset) return -EINVAL; max_size = (size - pair_offset) / sizeof(SVGA3dFifoCapPair); if (max_size > SVGA3D_DEVCAP_MAX) max_size = SVGA3D_DEVCAP_MAX; compat_cap->header.length = (pair_offset + max_size * sizeof(SVGA3dFifoCapPair)) / sizeof(u32); compat_cap->header.type = SVGA3D_FIFO_CAPS_RECORD_DEVCAPS; for (i = 0; i < max_size; ++i) { compat_cap->pairs[i][0] = i; compat_cap->pairs[i][1] = vmw_mask_legacy_multisample (i, dev_priv->devcaps[i]); } return 0; } int vmw_devcaps_create(struct vmw_private *vmw) { bool gb_objects = !!(vmw->capabilities & SVGA_CAP_GBOBJECTS); uint32_t i; if (gb_objects) { vmw->devcaps = vzalloc(sizeof(uint32_t) * SVGA3D_DEVCAP_MAX); if (!vmw->devcaps) return -ENOMEM; for (i = 0; i < SVGA3D_DEVCAP_MAX; ++i) { vmw_write(vmw, SVGA_REG_DEV_CAP, i); vmw->devcaps[i] = vmw_read(vmw, SVGA_REG_DEV_CAP); } } return 0; } void vmw_devcaps_destroy(struct vmw_private *vmw) { vfree(vmw->devcaps); vmw->devcaps = NULL; } uint32 vmw_devcaps_size(const struct vmw_private *vmw, bool gb_aware) { bool gb_objects = !!(vmw->capabilities & SVGA_CAP_GBOBJECTS); if (gb_objects && gb_aware) return SVGA3D_DEVCAP_MAX * sizeof(uint32_t); else if (gb_objects) return sizeof(struct svga_3d_compat_cap) + sizeof(uint32_t); else if (vmw->fifo_mem != NULL) return (SVGA_FIFO_3D_CAPS_LAST - SVGA_FIFO_3D_CAPS + 1) * sizeof(uint32_t); else return 0; } int vmw_devcaps_copy(struct vmw_private *vmw, bool gb_aware, void *dst, uint32_t dst_size) { int ret; bool gb_objects = !!(vmw->capabilities & SVGA_CAP_GBOBJECTS); if (gb_objects && gb_aware) { memcpy(dst, vmw->devcaps, dst_size); } else if (gb_objects) { ret = vmw_fill_compat_cap(vmw, dst, dst_size); if (unlikely(ret != 0)) return ret; } else if (vmw->fifo_mem) { u32 *fifo_mem = vmw->fifo_mem; memcpy(dst, &fifo_mem[SVGA_FIFO_3D_CAPS], dst_size); } else return -EINVAL; return 0; }
linux-master
drivers/gpu/drm/vmwgfx/vmwgfx_devcaps.c
// SPDX-License-Identifier: GPL-2.0 OR MIT /************************************************************************** * * Copyright 2009-2023 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "vmwgfx_bo.h" #include "vmwgfx_kms.h" #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_fourcc.h> #define vmw_crtc_to_ldu(x) \ container_of(x, struct vmw_legacy_display_unit, base.crtc) #define vmw_encoder_to_ldu(x) \ container_of(x, struct vmw_legacy_display_unit, base.encoder) #define vmw_connector_to_ldu(x) \ container_of(x, struct vmw_legacy_display_unit, base.connector) struct vmw_legacy_display { struct list_head active; unsigned num_active; unsigned last_num_active; struct vmw_framebuffer *fb; }; /* * Display unit using the legacy register interface. */ struct vmw_legacy_display_unit { struct vmw_display_unit base; struct list_head active; }; static void vmw_ldu_destroy(struct vmw_legacy_display_unit *ldu) { list_del_init(&ldu->active); vmw_du_cleanup(&ldu->base); kfree(ldu); } /* * Legacy Display Unit CRTC functions */ static void vmw_ldu_crtc_destroy(struct drm_crtc *crtc) { vmw_ldu_destroy(vmw_crtc_to_ldu(crtc)); } static int vmw_ldu_commit_list(struct vmw_private *dev_priv) { struct vmw_legacy_display *lds = dev_priv->ldu_priv; struct vmw_legacy_display_unit *entry; struct drm_framebuffer *fb = NULL; struct drm_crtc *crtc = NULL; int i; /* If there is no display topology the host just assumes * that the guest will set the same layout as the host. */ if (!(dev_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY)) { int w = 0, h = 0; list_for_each_entry(entry, &lds->active, active) { crtc = &entry->base.crtc; w = max(w, crtc->x + crtc->mode.hdisplay); h = max(h, crtc->y + crtc->mode.vdisplay); } if (crtc == NULL) return 0; fb = crtc->primary->state->fb; return vmw_kms_write_svga(dev_priv, w, h, fb->pitches[0], fb->format->cpp[0] * 8, fb->format->depth); } if (!list_empty(&lds->active)) { entry = list_entry(lds->active.next, typeof(*entry), active); fb = entry->base.crtc.primary->state->fb; vmw_kms_write_svga(dev_priv, fb->width, fb->height, fb->pitches[0], fb->format->cpp[0] * 8, fb->format->depth); } /* Make sure we always show something. */ vmw_write(dev_priv, SVGA_REG_NUM_GUEST_DISPLAYS, lds->num_active ? lds->num_active : 1); i = 0; list_for_each_entry(entry, &lds->active, active) { crtc = &entry->base.crtc; vmw_write(dev_priv, SVGA_REG_DISPLAY_ID, i); vmw_write(dev_priv, SVGA_REG_DISPLAY_IS_PRIMARY, !i); vmw_write(dev_priv, SVGA_REG_DISPLAY_POSITION_X, crtc->x); vmw_write(dev_priv, SVGA_REG_DISPLAY_POSITION_Y, crtc->y); vmw_write(dev_priv, SVGA_REG_DISPLAY_WIDTH, crtc->mode.hdisplay); vmw_write(dev_priv, SVGA_REG_DISPLAY_HEIGHT, crtc->mode.vdisplay); i++; } BUG_ON(i != lds->num_active); lds->last_num_active = lds->num_active; return 0; } /* * Pin the buffer in a location suitable for access by the * display system. */ static int vmw_ldu_fb_pin(struct vmw_framebuffer *vfb) { struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); struct vmw_bo *buf; int ret; buf = vfb->bo ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.guest_memory_bo; if (!buf) return 0; WARN_ON(dev_priv->active_display_unit != vmw_du_legacy); if (dev_priv->active_display_unit == vmw_du_legacy) { vmw_overlay_pause_all(dev_priv); ret = vmw_bo_pin_in_start_of_vram(dev_priv, buf, false); vmw_overlay_resume_all(dev_priv); } else ret = -EINVAL; return ret; } static int vmw_ldu_fb_unpin(struct vmw_framebuffer *vfb) { struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); struct vmw_bo *buf; buf = vfb->bo ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.guest_memory_bo; if (WARN_ON(!buf)) return 0; return vmw_bo_unpin(dev_priv, buf, false); } static int vmw_ldu_del_active(struct vmw_private *vmw_priv, struct vmw_legacy_display_unit *ldu) { struct vmw_legacy_display *ld = vmw_priv->ldu_priv; if (list_empty(&ldu->active)) return 0; /* Must init otherwise list_empty(&ldu->active) will not work. */ list_del_init(&ldu->active); if (--(ld->num_active) == 0) { BUG_ON(!ld->fb); WARN_ON(vmw_ldu_fb_unpin(ld->fb)); ld->fb = NULL; } return 0; } static int vmw_ldu_add_active(struct vmw_private *vmw_priv, struct vmw_legacy_display_unit *ldu, struct vmw_framebuffer *vfb) { struct vmw_legacy_display *ld = vmw_priv->ldu_priv; struct vmw_legacy_display_unit *entry; struct list_head *at; BUG_ON(!ld->num_active && ld->fb); if (vfb != ld->fb) { if (ld->fb) WARN_ON(vmw_ldu_fb_unpin(ld->fb)); vmw_svga_enable(vmw_priv); WARN_ON(vmw_ldu_fb_pin(vfb)); ld->fb = vfb; } if (!list_empty(&ldu->active)) return 0; at = &ld->active; list_for_each_entry(entry, &ld->active, active) { if (entry->base.unit > ldu->base.unit) break; at = &entry->active; } list_add(&ldu->active, at); ld->num_active++; return 0; } /** * vmw_ldu_crtc_mode_set_nofb - Enable svga * * @crtc: CRTC associated with the new screen * * For LDU, just enable the svga */ static void vmw_ldu_crtc_mode_set_nofb(struct drm_crtc *crtc) { } /** * vmw_ldu_crtc_atomic_enable - Noop * * @crtc: CRTC associated with the new screen * @state: Unused * * This is called after a mode set has been completed. Here's * usually a good place to call vmw_ldu_add_active/vmw_ldu_del_active * but since for LDU the display plane is closely tied to the * CRTC, it makes more sense to do those at plane update time. */ static void vmw_ldu_crtc_atomic_enable(struct drm_crtc *crtc, struct drm_atomic_state *state) { } /** * vmw_ldu_crtc_atomic_disable - Turns off CRTC * * @crtc: CRTC to be turned off * @state: Unused */ static void vmw_ldu_crtc_atomic_disable(struct drm_crtc *crtc, struct drm_atomic_state *state) { } static const struct drm_crtc_funcs vmw_legacy_crtc_funcs = { .gamma_set = vmw_du_crtc_gamma_set, .destroy = vmw_ldu_crtc_destroy, .reset = vmw_du_crtc_reset, .atomic_duplicate_state = vmw_du_crtc_duplicate_state, .atomic_destroy_state = vmw_du_crtc_destroy_state, .set_config = drm_atomic_helper_set_config, .page_flip = drm_atomic_helper_page_flip, }; /* * Legacy Display Unit encoder functions */ static void vmw_ldu_encoder_destroy(struct drm_encoder *encoder) { vmw_ldu_destroy(vmw_encoder_to_ldu(encoder)); } static const struct drm_encoder_funcs vmw_legacy_encoder_funcs = { .destroy = vmw_ldu_encoder_destroy, }; /* * Legacy Display Unit connector functions */ static void vmw_ldu_connector_destroy(struct drm_connector *connector) { vmw_ldu_destroy(vmw_connector_to_ldu(connector)); } static const struct drm_connector_funcs vmw_legacy_connector_funcs = { .dpms = vmw_du_connector_dpms, .detect = vmw_du_connector_detect, .fill_modes = vmw_du_connector_fill_modes, .destroy = vmw_ldu_connector_destroy, .reset = vmw_du_connector_reset, .atomic_duplicate_state = vmw_du_connector_duplicate_state, .atomic_destroy_state = vmw_du_connector_destroy_state, }; static const struct drm_connector_helper_funcs vmw_ldu_connector_helper_funcs = { }; static int vmw_kms_ldu_do_bo_dirty(struct vmw_private *dev_priv, struct vmw_framebuffer *framebuffer, unsigned int flags, unsigned int color, struct drm_mode_rect *clips, unsigned int num_clips); /* * Legacy Display Plane Functions */ static void vmw_ldu_primary_plane_atomic_update(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, plane); struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane); struct vmw_private *dev_priv; struct vmw_legacy_display_unit *ldu; struct vmw_framebuffer *vfb; struct drm_framebuffer *fb; struct drm_crtc *crtc = new_state->crtc ?: old_state->crtc; ldu = vmw_crtc_to_ldu(crtc); dev_priv = vmw_priv(plane->dev); fb = new_state->fb; vfb = (fb) ? vmw_framebuffer_to_vfb(fb) : NULL; if (vfb) vmw_ldu_add_active(dev_priv, ldu, vfb); else vmw_ldu_del_active(dev_priv, ldu); vmw_ldu_commit_list(dev_priv); if (vfb && vmw_cmd_supported(dev_priv)) { struct drm_mode_rect fb_rect = { .x1 = 0, .y1 = 0, .x2 = vfb->base.width, .y2 = vfb->base.height }; struct drm_mode_rect *damage_rects = drm_plane_get_damage_clips(new_state); u32 rect_count = drm_plane_get_damage_clips_count(new_state); int ret; if (!damage_rects) { damage_rects = &fb_rect; rect_count = 1; } ret = vmw_kms_ldu_do_bo_dirty(dev_priv, vfb, 0, 0, damage_rects, rect_count); drm_WARN_ONCE(plane->dev, ret, "vmw_kms_ldu_do_bo_dirty failed with: ret=%d\n", ret); vmw_cmd_flush(dev_priv, false); } } static const struct drm_plane_funcs vmw_ldu_plane_funcs = { .update_plane = drm_atomic_helper_update_plane, .disable_plane = drm_atomic_helper_disable_plane, .destroy = vmw_du_primary_plane_destroy, .reset = vmw_du_plane_reset, .atomic_duplicate_state = vmw_du_plane_duplicate_state, .atomic_destroy_state = vmw_du_plane_destroy_state, }; static const struct drm_plane_funcs vmw_ldu_cursor_funcs = { .update_plane = drm_atomic_helper_update_plane, .disable_plane = drm_atomic_helper_disable_plane, .destroy = vmw_du_cursor_plane_destroy, .reset = vmw_du_plane_reset, .atomic_duplicate_state = vmw_du_plane_duplicate_state, .atomic_destroy_state = vmw_du_plane_destroy_state, }; /* * Atomic Helpers */ static const struct drm_plane_helper_funcs vmw_ldu_cursor_plane_helper_funcs = { .atomic_check = vmw_du_cursor_plane_atomic_check, .atomic_update = vmw_du_cursor_plane_atomic_update, .prepare_fb = vmw_du_cursor_plane_prepare_fb, .cleanup_fb = vmw_du_cursor_plane_cleanup_fb, }; static const struct drm_plane_helper_funcs vmw_ldu_primary_plane_helper_funcs = { .atomic_check = vmw_du_primary_plane_atomic_check, .atomic_update = vmw_ldu_primary_plane_atomic_update, }; static const struct drm_crtc_helper_funcs vmw_ldu_crtc_helper_funcs = { .mode_set_nofb = vmw_ldu_crtc_mode_set_nofb, .atomic_check = vmw_du_crtc_atomic_check, .atomic_begin = vmw_du_crtc_atomic_begin, .atomic_flush = vmw_du_crtc_atomic_flush, .atomic_enable = vmw_ldu_crtc_atomic_enable, .atomic_disable = vmw_ldu_crtc_atomic_disable, }; static int vmw_ldu_init(struct vmw_private *dev_priv, unsigned unit) { struct vmw_legacy_display_unit *ldu; struct drm_device *dev = &dev_priv->drm; struct drm_connector *connector; struct drm_encoder *encoder; struct drm_plane *primary; struct vmw_cursor_plane *cursor; struct drm_crtc *crtc; int ret; ldu = kzalloc(sizeof(*ldu), GFP_KERNEL); if (!ldu) return -ENOMEM; ldu->base.unit = unit; crtc = &ldu->base.crtc; encoder = &ldu->base.encoder; connector = &ldu->base.connector; primary = &ldu->base.primary; cursor = &ldu->base.cursor; INIT_LIST_HEAD(&ldu->active); ldu->base.pref_active = (unit == 0); ldu->base.pref_width = dev_priv->initial_width; ldu->base.pref_height = dev_priv->initial_height; ldu->base.pref_mode = NULL; /* * Remove this after enabling atomic because property values can * only exist in a state object */ ldu->base.is_implicit = true; /* Initialize primary plane */ ret = drm_universal_plane_init(dev, primary, 0, &vmw_ldu_plane_funcs, vmw_primary_plane_formats, ARRAY_SIZE(vmw_primary_plane_formats), NULL, DRM_PLANE_TYPE_PRIMARY, NULL); if (ret) { DRM_ERROR("Failed to initialize primary plane"); goto err_free; } drm_plane_helper_add(primary, &vmw_ldu_primary_plane_helper_funcs); /* * We're going to be using traces and software cursors */ if (vmw_cmd_supported(dev_priv)) { /* Initialize cursor plane */ ret = drm_universal_plane_init(dev, &cursor->base, 0, &vmw_ldu_cursor_funcs, vmw_cursor_plane_formats, ARRAY_SIZE(vmw_cursor_plane_formats), NULL, DRM_PLANE_TYPE_CURSOR, NULL); if (ret) { DRM_ERROR("Failed to initialize cursor plane"); drm_plane_cleanup(&ldu->base.primary); goto err_free; } drm_plane_helper_add(&cursor->base, &vmw_ldu_cursor_plane_helper_funcs); } ret = drm_connector_init(dev, connector, &vmw_legacy_connector_funcs, DRM_MODE_CONNECTOR_VIRTUAL); if (ret) { DRM_ERROR("Failed to initialize connector\n"); goto err_free; } drm_connector_helper_add(connector, &vmw_ldu_connector_helper_funcs); connector->status = vmw_du_connector_detect(connector, true); ret = drm_encoder_init(dev, encoder, &vmw_legacy_encoder_funcs, DRM_MODE_ENCODER_VIRTUAL, NULL); if (ret) { DRM_ERROR("Failed to initialize encoder\n"); goto err_free_connector; } (void) drm_connector_attach_encoder(connector, encoder); encoder->possible_crtcs = (1 << unit); encoder->possible_clones = 0; ret = drm_connector_register(connector); if (ret) { DRM_ERROR("Failed to register connector\n"); goto err_free_encoder; } ret = drm_crtc_init_with_planes(dev, crtc, primary, vmw_cmd_supported(dev_priv) ? &cursor->base : NULL, &vmw_legacy_crtc_funcs, NULL); if (ret) { DRM_ERROR("Failed to initialize CRTC\n"); goto err_free_unregister; } drm_crtc_helper_add(crtc, &vmw_ldu_crtc_helper_funcs); drm_mode_crtc_set_gamma_size(crtc, 256); drm_object_attach_property(&connector->base, dev_priv->hotplug_mode_update_property, 1); drm_object_attach_property(&connector->base, dev->mode_config.suggested_x_property, 0); drm_object_attach_property(&connector->base, dev->mode_config.suggested_y_property, 0); if (dev_priv->implicit_placement_property) drm_object_attach_property (&connector->base, dev_priv->implicit_placement_property, 1); return 0; err_free_unregister: drm_connector_unregister(connector); err_free_encoder: drm_encoder_cleanup(encoder); err_free_connector: drm_connector_cleanup(connector); err_free: kfree(ldu); return ret; } int vmw_kms_ldu_init_display(struct vmw_private *dev_priv) { struct drm_device *dev = &dev_priv->drm; int i, ret; int num_display_units = (dev_priv->capabilities & SVGA_CAP_MULTIMON) ? VMWGFX_NUM_DISPLAY_UNITS : 1; if (unlikely(dev_priv->ldu_priv)) { return -EINVAL; } dev_priv->ldu_priv = kmalloc(sizeof(*dev_priv->ldu_priv), GFP_KERNEL); if (!dev_priv->ldu_priv) return -ENOMEM; INIT_LIST_HEAD(&dev_priv->ldu_priv->active); dev_priv->ldu_priv->num_active = 0; dev_priv->ldu_priv->last_num_active = 0; dev_priv->ldu_priv->fb = NULL; vmw_kms_create_implicit_placement_property(dev_priv); for (i = 0; i < num_display_units; ++i) { ret = vmw_ldu_init(dev_priv, i); if (ret != 0) goto err_free; } dev_priv->active_display_unit = vmw_du_legacy; drm_mode_config_reset(dev); return 0; err_free: kfree(dev_priv->ldu_priv); dev_priv->ldu_priv = NULL; return ret; } int vmw_kms_ldu_close_display(struct vmw_private *dev_priv) { if (!dev_priv->ldu_priv) return -ENOSYS; BUG_ON(!list_empty(&dev_priv->ldu_priv->active)); kfree(dev_priv->ldu_priv); return 0; } static int vmw_kms_ldu_do_bo_dirty(struct vmw_private *dev_priv, struct vmw_framebuffer *framebuffer, unsigned int flags, unsigned int color, struct drm_mode_rect *clips, unsigned int num_clips) { size_t fifo_size; int i; struct { uint32_t header; SVGAFifoCmdUpdate body; } *cmd; fifo_size = sizeof(*cmd) * num_clips; cmd = VMW_CMD_RESERVE(dev_priv, fifo_size); if (unlikely(cmd == NULL)) return -ENOMEM; memset(cmd, 0, fifo_size); for (i = 0; i < num_clips; i++, clips++) { cmd[i].header = SVGA_CMD_UPDATE; cmd[i].body.x = clips->x1; cmd[i].body.y = clips->y1; cmd[i].body.width = clips->x2 - clips->x1; cmd[i].body.height = clips->y2 - clips->y1; } vmw_cmd_commit(dev_priv, fifo_size); return 0; }
linux-master
drivers/gpu/drm/vmwgfx/vmwgfx_ldu.c
// SPDX-License-Identifier: GPL-2.0 OR MIT /************************************************************************** * * Copyright 2009-2023 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "vmwgfx_kms.h" #include "vmwgfx_bo.h" #include "vmw_surface_cache.h" #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_damage_helper.h> #include <drm/drm_fourcc.h> #include <drm/drm_rect.h> #include <drm/drm_sysfs.h> void vmw_du_cleanup(struct vmw_display_unit *du) { struct vmw_private *dev_priv = vmw_priv(du->primary.dev); drm_plane_cleanup(&du->primary); if (vmw_cmd_supported(dev_priv)) drm_plane_cleanup(&du->cursor.base); drm_connector_unregister(&du->connector); drm_crtc_cleanup(&du->crtc); drm_encoder_cleanup(&du->encoder); drm_connector_cleanup(&du->connector); } /* * Display Unit Cursor functions */ static int vmw_du_cursor_plane_unmap_cm(struct vmw_plane_state *vps); static void vmw_cursor_update_mob(struct vmw_private *dev_priv, struct vmw_plane_state *vps, u32 *image, u32 width, u32 height, u32 hotspotX, u32 hotspotY); struct vmw_svga_fifo_cmd_define_cursor { u32 cmd; SVGAFifoCmdDefineAlphaCursor cursor; }; /** * vmw_send_define_cursor_cmd - queue a define cursor command * @dev_priv: the private driver struct * @image: buffer which holds the cursor image * @width: width of the mouse cursor image * @height: height of the mouse cursor image * @hotspotX: the horizontal position of mouse hotspot * @hotspotY: the vertical position of mouse hotspot */ static void vmw_send_define_cursor_cmd(struct vmw_private *dev_priv, u32 *image, u32 width, u32 height, u32 hotspotX, u32 hotspotY) { struct vmw_svga_fifo_cmd_define_cursor *cmd; const u32 image_size = width * height * sizeof(*image); const u32 cmd_size = sizeof(*cmd) + image_size; /* Try to reserve fifocmd space and swallow any failures; such reservations cannot be left unconsumed for long under the risk of clogging other fifocmd users, so we treat reservations separtely from the way we treat other fallible KMS-atomic resources at prepare_fb */ cmd = VMW_CMD_RESERVE(dev_priv, cmd_size); if (unlikely(!cmd)) return; memset(cmd, 0, sizeof(*cmd)); memcpy(&cmd[1], image, image_size); cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR; cmd->cursor.id = 0; cmd->cursor.width = width; cmd->cursor.height = height; cmd->cursor.hotspotX = hotspotX; cmd->cursor.hotspotY = hotspotY; vmw_cmd_commit_flush(dev_priv, cmd_size); } /** * vmw_cursor_update_image - update the cursor image on the provided plane * @dev_priv: the private driver struct * @vps: the plane state of the cursor plane * @image: buffer which holds the cursor image * @width: width of the mouse cursor image * @height: height of the mouse cursor image * @hotspotX: the horizontal position of mouse hotspot * @hotspotY: the vertical position of mouse hotspot */ static void vmw_cursor_update_image(struct vmw_private *dev_priv, struct vmw_plane_state *vps, u32 *image, u32 width, u32 height, u32 hotspotX, u32 hotspotY) { if (vps->cursor.bo) vmw_cursor_update_mob(dev_priv, vps, image, vps->base.crtc_w, vps->base.crtc_h, hotspotX, hotspotY); else vmw_send_define_cursor_cmd(dev_priv, image, width, height, hotspotX, hotspotY); } /** * vmw_cursor_update_mob - Update cursor vis CursorMob mechanism * * Called from inside vmw_du_cursor_plane_atomic_update to actually * make the cursor-image live. * * @dev_priv: device to work with * @vps: the plane state of the cursor plane * @image: cursor source data to fill the MOB with * @width: source data width * @height: source data height * @hotspotX: cursor hotspot x * @hotspotY: cursor hotspot Y */ static void vmw_cursor_update_mob(struct vmw_private *dev_priv, struct vmw_plane_state *vps, u32 *image, u32 width, u32 height, u32 hotspotX, u32 hotspotY) { SVGAGBCursorHeader *header; SVGAGBAlphaCursorHeader *alpha_header; const u32 image_size = width * height * sizeof(*image); header = vmw_bo_map_and_cache(vps->cursor.bo); alpha_header = &header->header.alphaHeader; memset(header, 0, sizeof(*header)); header->type = SVGA_ALPHA_CURSOR; header->sizeInBytes = image_size; alpha_header->hotspotX = hotspotX; alpha_header->hotspotY = hotspotY; alpha_header->width = width; alpha_header->height = height; memcpy(header + 1, image, image_size); vmw_write(dev_priv, SVGA_REG_CURSOR_MOBID, vps->cursor.bo->tbo.resource->start); } static u32 vmw_du_cursor_mob_size(u32 w, u32 h) { return w * h * sizeof(u32) + sizeof(SVGAGBCursorHeader); } /** * vmw_du_cursor_plane_acquire_image -- Acquire the image data * @vps: cursor plane state */ static u32 *vmw_du_cursor_plane_acquire_image(struct vmw_plane_state *vps) { bool is_iomem; if (vps->surf) { if (vps->surf_mapped) return vmw_bo_map_and_cache(vps->surf->res.guest_memory_bo); return vps->surf->snooper.image; } else if (vps->bo) return ttm_kmap_obj_virtual(&vps->bo->map, &is_iomem); return NULL; } static bool vmw_du_cursor_plane_has_changed(struct vmw_plane_state *old_vps, struct vmw_plane_state *new_vps) { void *old_image; void *new_image; u32 size; bool changed; if (old_vps->base.crtc_w != new_vps->base.crtc_w || old_vps->base.crtc_h != new_vps->base.crtc_h) return true; if (old_vps->cursor.hotspot_x != new_vps->cursor.hotspot_x || old_vps->cursor.hotspot_y != new_vps->cursor.hotspot_y) return true; size = new_vps->base.crtc_w * new_vps->base.crtc_h * sizeof(u32); old_image = vmw_du_cursor_plane_acquire_image(old_vps); new_image = vmw_du_cursor_plane_acquire_image(new_vps); changed = false; if (old_image && new_image) changed = memcmp(old_image, new_image, size) != 0; return changed; } static void vmw_du_destroy_cursor_mob(struct vmw_bo **vbo) { if (!(*vbo)) return; ttm_bo_unpin(&(*vbo)->tbo); vmw_bo_unreference(vbo); } static void vmw_du_put_cursor_mob(struct vmw_cursor_plane *vcp, struct vmw_plane_state *vps) { u32 i; if (!vps->cursor.bo) return; vmw_du_cursor_plane_unmap_cm(vps); /* Look for a free slot to return this mob to the cache. */ for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++) { if (!vcp->cursor_mobs[i]) { vcp->cursor_mobs[i] = vps->cursor.bo; vps->cursor.bo = NULL; return; } } /* Cache is full: See if this mob is bigger than an existing mob. */ for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++) { if (vcp->cursor_mobs[i]->tbo.base.size < vps->cursor.bo->tbo.base.size) { vmw_du_destroy_cursor_mob(&vcp->cursor_mobs[i]); vcp->cursor_mobs[i] = vps->cursor.bo; vps->cursor.bo = NULL; return; } } /* Destroy it if it's not worth caching. */ vmw_du_destroy_cursor_mob(&vps->cursor.bo); } static int vmw_du_get_cursor_mob(struct vmw_cursor_plane *vcp, struct vmw_plane_state *vps) { struct vmw_private *dev_priv = vcp->base.dev->dev_private; u32 size = vmw_du_cursor_mob_size(vps->base.crtc_w, vps->base.crtc_h); u32 i; u32 cursor_max_dim, mob_max_size; int ret; if (!dev_priv->has_mob || (dev_priv->capabilities2 & SVGA_CAP2_CURSOR_MOB) == 0) return -EINVAL; mob_max_size = vmw_read(dev_priv, SVGA_REG_MOB_MAX_SIZE); cursor_max_dim = vmw_read(dev_priv, SVGA_REG_CURSOR_MAX_DIMENSION); if (size > mob_max_size || vps->base.crtc_w > cursor_max_dim || vps->base.crtc_h > cursor_max_dim) return -EINVAL; if (vps->cursor.bo) { if (vps->cursor.bo->tbo.base.size >= size) return 0; vmw_du_put_cursor_mob(vcp, vps); } /* Look for an unused mob in the cache. */ for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++) { if (vcp->cursor_mobs[i] && vcp->cursor_mobs[i]->tbo.base.size >= size) { vps->cursor.bo = vcp->cursor_mobs[i]; vcp->cursor_mobs[i] = NULL; return 0; } } /* Create a new mob if we can't find an existing one. */ ret = vmw_bo_create_and_populate(dev_priv, size, VMW_BO_DOMAIN_MOB, &vps->cursor.bo); if (ret != 0) return ret; /* Fence the mob creation so we are guarateed to have the mob */ ret = ttm_bo_reserve(&vps->cursor.bo->tbo, false, false, NULL); if (ret != 0) goto teardown; vmw_bo_fence_single(&vps->cursor.bo->tbo, NULL); ttm_bo_unreserve(&vps->cursor.bo->tbo); return 0; teardown: vmw_du_destroy_cursor_mob(&vps->cursor.bo); return ret; } static void vmw_cursor_update_position(struct vmw_private *dev_priv, bool show, int x, int y) { const uint32_t svga_cursor_on = show ? SVGA_CURSOR_ON_SHOW : SVGA_CURSOR_ON_HIDE; uint32_t count; spin_lock(&dev_priv->cursor_lock); if (dev_priv->capabilities2 & SVGA_CAP2_EXTRA_REGS) { vmw_write(dev_priv, SVGA_REG_CURSOR4_X, x); vmw_write(dev_priv, SVGA_REG_CURSOR4_Y, y); vmw_write(dev_priv, SVGA_REG_CURSOR4_SCREEN_ID, SVGA3D_INVALID_ID); vmw_write(dev_priv, SVGA_REG_CURSOR4_ON, svga_cursor_on); vmw_write(dev_priv, SVGA_REG_CURSOR4_SUBMIT, 1); } else if (vmw_is_cursor_bypass3_enabled(dev_priv)) { vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_ON, svga_cursor_on); vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_X, x); vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_Y, y); count = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_CURSOR_COUNT); vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_COUNT, ++count); } else { vmw_write(dev_priv, SVGA_REG_CURSOR_X, x); vmw_write(dev_priv, SVGA_REG_CURSOR_Y, y); vmw_write(dev_priv, SVGA_REG_CURSOR_ON, svga_cursor_on); } spin_unlock(&dev_priv->cursor_lock); } void vmw_kms_cursor_snoop(struct vmw_surface *srf, struct ttm_object_file *tfile, struct ttm_buffer_object *bo, SVGA3dCmdHeader *header) { struct ttm_bo_kmap_obj map; unsigned long kmap_offset; unsigned long kmap_num; SVGA3dCopyBox *box; unsigned box_count; void *virtual; bool is_iomem; struct vmw_dma_cmd { SVGA3dCmdHeader header; SVGA3dCmdSurfaceDMA dma; } *cmd; int i, ret; const struct SVGA3dSurfaceDesc *desc = vmw_surface_get_desc(VMW_CURSOR_SNOOP_FORMAT); const u32 image_pitch = VMW_CURSOR_SNOOP_WIDTH * desc->pitchBytesPerBlock; cmd = container_of(header, struct vmw_dma_cmd, header); /* No snooper installed, nothing to copy */ if (!srf->snooper.image) return; if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) { DRM_ERROR("face and mipmap for cursors should never != 0\n"); return; } if (cmd->header.size < 64) { DRM_ERROR("at least one full copy box must be given\n"); return; } box = (SVGA3dCopyBox *)&cmd[1]; box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) / sizeof(SVGA3dCopyBox); if (cmd->dma.guest.ptr.offset % PAGE_SIZE || box->x != 0 || box->y != 0 || box->z != 0 || box->srcx != 0 || box->srcy != 0 || box->srcz != 0 || box->d != 1 || box_count != 1 || box->w > VMW_CURSOR_SNOOP_WIDTH || box->h > VMW_CURSOR_SNOOP_HEIGHT) { /* TODO handle none page aligned offsets */ /* TODO handle more dst & src != 0 */ /* TODO handle more then one copy */ DRM_ERROR("Can't snoop dma request for cursor!\n"); DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n", box->srcx, box->srcy, box->srcz, box->x, box->y, box->z, box->w, box->h, box->d, box_count, cmd->dma.guest.ptr.offset); return; } kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT; kmap_num = (VMW_CURSOR_SNOOP_HEIGHT*image_pitch) >> PAGE_SHIFT; ret = ttm_bo_reserve(bo, true, false, NULL); if (unlikely(ret != 0)) { DRM_ERROR("reserve failed\n"); return; } ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map); if (unlikely(ret != 0)) goto err_unreserve; virtual = ttm_kmap_obj_virtual(&map, &is_iomem); if (box->w == VMW_CURSOR_SNOOP_WIDTH && cmd->dma.guest.pitch == image_pitch) { memcpy(srf->snooper.image, virtual, VMW_CURSOR_SNOOP_HEIGHT*image_pitch); } else { /* Image is unsigned pointer. */ for (i = 0; i < box->h; i++) memcpy(srf->snooper.image + i * image_pitch, virtual + i * cmd->dma.guest.pitch, box->w * desc->pitchBytesPerBlock); } srf->snooper.age++; ttm_bo_kunmap(&map); err_unreserve: ttm_bo_unreserve(bo); } /** * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots * * @dev_priv: Pointer to the device private struct. * * Clears all legacy hotspots. */ void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv) { struct drm_device *dev = &dev_priv->drm; struct vmw_display_unit *du; struct drm_crtc *crtc; drm_modeset_lock_all(dev); drm_for_each_crtc(crtc, dev) { du = vmw_crtc_to_du(crtc); du->hotspot_x = 0; du->hotspot_y = 0; } drm_modeset_unlock_all(dev); } void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv) { struct drm_device *dev = &dev_priv->drm; struct vmw_display_unit *du; struct drm_crtc *crtc; mutex_lock(&dev->mode_config.mutex); list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { du = vmw_crtc_to_du(crtc); if (!du->cursor_surface || du->cursor_age == du->cursor_surface->snooper.age || !du->cursor_surface->snooper.image) continue; du->cursor_age = du->cursor_surface->snooper.age; vmw_send_define_cursor_cmd(dev_priv, du->cursor_surface->snooper.image, VMW_CURSOR_SNOOP_WIDTH, VMW_CURSOR_SNOOP_HEIGHT, du->hotspot_x + du->core_hotspot_x, du->hotspot_y + du->core_hotspot_y); } mutex_unlock(&dev->mode_config.mutex); } void vmw_du_cursor_plane_destroy(struct drm_plane *plane) { struct vmw_cursor_plane *vcp = vmw_plane_to_vcp(plane); u32 i; vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0); for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++) vmw_du_destroy_cursor_mob(&vcp->cursor_mobs[i]); drm_plane_cleanup(plane); } void vmw_du_primary_plane_destroy(struct drm_plane *plane) { drm_plane_cleanup(plane); /* Planes are static in our case so we don't free it */ } /** * vmw_du_plane_unpin_surf - unpins resource associated with a framebuffer surface * * @vps: plane state associated with the display surface * @unreference: true if we also want to unreference the display. */ void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps, bool unreference) { if (vps->surf) { if (vps->pinned) { vmw_resource_unpin(&vps->surf->res); vps->pinned--; } if (unreference) { if (vps->pinned) DRM_ERROR("Surface still pinned\n"); vmw_surface_unreference(&vps->surf); } } } /** * vmw_du_plane_cleanup_fb - Unpins the plane surface * * @plane: display plane * @old_state: Contains the FB to clean up * * Unpins the framebuffer surface * * Returns 0 on success */ void vmw_du_plane_cleanup_fb(struct drm_plane *plane, struct drm_plane_state *old_state) { struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state); vmw_du_plane_unpin_surf(vps, false); } /** * vmw_du_cursor_plane_map_cm - Maps the cursor mobs. * * @vps: plane_state * * Returns 0 on success */ static int vmw_du_cursor_plane_map_cm(struct vmw_plane_state *vps) { int ret; u32 size = vmw_du_cursor_mob_size(vps->base.crtc_w, vps->base.crtc_h); struct ttm_buffer_object *bo; if (!vps->cursor.bo) return -EINVAL; bo = &vps->cursor.bo->tbo; if (bo->base.size < size) return -EINVAL; if (vps->cursor.bo->map.virtual) return 0; ret = ttm_bo_reserve(bo, false, false, NULL); if (unlikely(ret != 0)) return -ENOMEM; vmw_bo_map_and_cache(vps->cursor.bo); ttm_bo_unreserve(bo); if (unlikely(ret != 0)) return -ENOMEM; return 0; } /** * vmw_du_cursor_plane_unmap_cm - Unmaps the cursor mobs. * * @vps: state of the cursor plane * * Returns 0 on success */ static int vmw_du_cursor_plane_unmap_cm(struct vmw_plane_state *vps) { int ret = 0; struct vmw_bo *vbo = vps->cursor.bo; if (!vbo || !vbo->map.virtual) return 0; ret = ttm_bo_reserve(&vbo->tbo, true, false, NULL); if (likely(ret == 0)) { vmw_bo_unmap(vbo); ttm_bo_unreserve(&vbo->tbo); } return ret; } /** * vmw_du_cursor_plane_cleanup_fb - Unpins the plane surface * * @plane: cursor plane * @old_state: contains the state to clean up * * Unmaps all cursor bo mappings and unpins the cursor surface * * Returns 0 on success */ void vmw_du_cursor_plane_cleanup_fb(struct drm_plane *plane, struct drm_plane_state *old_state) { struct vmw_cursor_plane *vcp = vmw_plane_to_vcp(plane); struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state); bool is_iomem; if (vps->surf_mapped) { vmw_bo_unmap(vps->surf->res.guest_memory_bo); vps->surf_mapped = false; } if (vps->bo && ttm_kmap_obj_virtual(&vps->bo->map, &is_iomem)) { const int ret = ttm_bo_reserve(&vps->bo->tbo, true, false, NULL); if (likely(ret == 0)) { ttm_bo_kunmap(&vps->bo->map); ttm_bo_unreserve(&vps->bo->tbo); } } vmw_du_cursor_plane_unmap_cm(vps); vmw_du_put_cursor_mob(vcp, vps); vmw_du_plane_unpin_surf(vps, false); if (vps->surf) { vmw_surface_unreference(&vps->surf); vps->surf = NULL; } if (vps->bo) { vmw_bo_unreference(&vps->bo); vps->bo = NULL; } } /** * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it * * @plane: display plane * @new_state: info on the new plane state, including the FB * * Returns 0 on success */ int vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane, struct drm_plane_state *new_state) { struct drm_framebuffer *fb = new_state->fb; struct vmw_cursor_plane *vcp = vmw_plane_to_vcp(plane); struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state); int ret = 0; if (vps->surf) { vmw_surface_unreference(&vps->surf); vps->surf = NULL; } if (vps->bo) { vmw_bo_unreference(&vps->bo); vps->bo = NULL; } if (fb) { if (vmw_framebuffer_to_vfb(fb)->bo) { vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer; vmw_bo_reference(vps->bo); } else { vps->surf = vmw_framebuffer_to_vfbs(fb)->surface; vmw_surface_reference(vps->surf); } } if (!vps->surf && vps->bo) { const u32 size = new_state->crtc_w * new_state->crtc_h * sizeof(u32); /* * Not using vmw_bo_map_and_cache() helper here as we need to * reserve the ttm_buffer_object first which * vmw_bo_map_and_cache() omits. */ ret = ttm_bo_reserve(&vps->bo->tbo, true, false, NULL); if (unlikely(ret != 0)) return -ENOMEM; ret = ttm_bo_kmap(&vps->bo->tbo, 0, PFN_UP(size), &vps->bo->map); ttm_bo_unreserve(&vps->bo->tbo); if (unlikely(ret != 0)) return -ENOMEM; } else if (vps->surf && !vps->bo && vps->surf->res.guest_memory_bo) { WARN_ON(vps->surf->snooper.image); ret = ttm_bo_reserve(&vps->surf->res.guest_memory_bo->tbo, true, false, NULL); if (unlikely(ret != 0)) return -ENOMEM; vmw_bo_map_and_cache(vps->surf->res.guest_memory_bo); ttm_bo_unreserve(&vps->surf->res.guest_memory_bo->tbo); vps->surf_mapped = true; } if (vps->surf || vps->bo) { vmw_du_get_cursor_mob(vcp, vps); vmw_du_cursor_plane_map_cm(vps); } return 0; } void vmw_du_cursor_plane_atomic_update(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane); struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, plane); struct drm_crtc *crtc = new_state->crtc ?: old_state->crtc; struct vmw_private *dev_priv = vmw_priv(crtc->dev); struct vmw_display_unit *du = vmw_crtc_to_du(crtc); struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state); struct vmw_plane_state *old_vps = vmw_plane_state_to_vps(old_state); s32 hotspot_x, hotspot_y; hotspot_x = du->hotspot_x; hotspot_y = du->hotspot_y; if (new_state->fb) { hotspot_x += new_state->fb->hot_x; hotspot_y += new_state->fb->hot_y; } du->cursor_surface = vps->surf; du->cursor_bo = vps->bo; if (!vps->surf && !vps->bo) { vmw_cursor_update_position(dev_priv, false, 0, 0); return; } vps->cursor.hotspot_x = hotspot_x; vps->cursor.hotspot_y = hotspot_y; if (vps->surf) { du->cursor_age = du->cursor_surface->snooper.age; } if (!vmw_du_cursor_plane_has_changed(old_vps, vps)) { /* * If it hasn't changed, avoid making the device do extra * work by keeping the old cursor active. */ struct vmw_cursor_plane_state tmp = old_vps->cursor; old_vps->cursor = vps->cursor; vps->cursor = tmp; } else { void *image = vmw_du_cursor_plane_acquire_image(vps); if (image) vmw_cursor_update_image(dev_priv, vps, image, new_state->crtc_w, new_state->crtc_h, hotspot_x, hotspot_y); } du->cursor_x = new_state->crtc_x + du->set_gui_x; du->cursor_y = new_state->crtc_y + du->set_gui_y; vmw_cursor_update_position(dev_priv, true, du->cursor_x + hotspot_x, du->cursor_y + hotspot_y); du->core_hotspot_x = hotspot_x - du->hotspot_x; du->core_hotspot_y = hotspot_y - du->hotspot_y; } /** * vmw_du_primary_plane_atomic_check - check if the new state is okay * * @plane: display plane * @state: info on the new plane state, including the FB * * Check if the new state is settable given the current state. Other * than what the atomic helper checks, we care about crtc fitting * the FB and maintaining one active framebuffer. * * Returns 0 on success */ int vmw_du_primary_plane_atomic_check(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane); struct drm_crtc_state *crtc_state = NULL; struct drm_framebuffer *new_fb = new_state->fb; int ret; if (new_state->crtc) crtc_state = drm_atomic_get_new_crtc_state(state, new_state->crtc); ret = drm_atomic_helper_check_plane_state(new_state, crtc_state, DRM_PLANE_NO_SCALING, DRM_PLANE_NO_SCALING, false, true); if (!ret && new_fb) { struct drm_crtc *crtc = new_state->crtc; struct vmw_display_unit *du = vmw_crtc_to_du(crtc); vmw_connector_state_to_vcs(du->connector.state); } return ret; } /** * vmw_du_cursor_plane_atomic_check - check if the new state is okay * * @plane: cursor plane * @state: info on the new plane state * * This is a chance to fail if the new cursor state does not fit * our requirements. * * Returns 0 on success */ int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane); int ret = 0; struct drm_crtc_state *crtc_state = NULL; struct vmw_surface *surface = NULL; struct drm_framebuffer *fb = new_state->fb; if (new_state->crtc) crtc_state = drm_atomic_get_new_crtc_state(new_state->state, new_state->crtc); ret = drm_atomic_helper_check_plane_state(new_state, crtc_state, DRM_PLANE_NO_SCALING, DRM_PLANE_NO_SCALING, true, true); if (ret) return ret; /* Turning off */ if (!fb) return 0; /* A lot of the code assumes this */ if (new_state->crtc_w != 64 || new_state->crtc_h != 64) { DRM_ERROR("Invalid cursor dimensions (%d, %d)\n", new_state->crtc_w, new_state->crtc_h); return -EINVAL; } if (!vmw_framebuffer_to_vfb(fb)->bo) { surface = vmw_framebuffer_to_vfbs(fb)->surface; WARN_ON(!surface); if (!surface || (!surface->snooper.image && !surface->res.guest_memory_bo)) { DRM_ERROR("surface not suitable for cursor\n"); return -EINVAL; } } return 0; } int vmw_du_crtc_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state, crtc); struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc); int connector_mask = drm_connector_mask(&du->connector); bool has_primary = new_state->plane_mask & drm_plane_mask(crtc->primary); /* We always want to have an active plane with an active CRTC */ if (has_primary != new_state->enable) return -EINVAL; if (new_state->connector_mask != connector_mask && new_state->connector_mask != 0) { DRM_ERROR("Invalid connectors configuration\n"); return -EINVAL; } /* * Our virtual device does not have a dot clock, so use the logical * clock value as the dot clock. */ if (new_state->mode.crtc_clock == 0) new_state->adjusted_mode.crtc_clock = new_state->mode.clock; return 0; } void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc, struct drm_atomic_state *state) { } void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc, struct drm_atomic_state *state) { } /** * vmw_du_crtc_duplicate_state - duplicate crtc state * @crtc: DRM crtc * * Allocates and returns a copy of the crtc state (both common and * vmw-specific) for the specified crtc. * * Returns: The newly allocated crtc state, or NULL on failure. */ struct drm_crtc_state * vmw_du_crtc_duplicate_state(struct drm_crtc *crtc) { struct drm_crtc_state *state; struct vmw_crtc_state *vcs; if (WARN_ON(!crtc->state)) return NULL; vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL); if (!vcs) return NULL; state = &vcs->base; __drm_atomic_helper_crtc_duplicate_state(crtc, state); return state; } /** * vmw_du_crtc_reset - creates a blank vmw crtc state * @crtc: DRM crtc * * Resets the atomic state for @crtc by freeing the state pointer (which * might be NULL, e.g. at driver load time) and allocating a new empty state * object. */ void vmw_du_crtc_reset(struct drm_crtc *crtc) { struct vmw_crtc_state *vcs; if (crtc->state) { __drm_atomic_helper_crtc_destroy_state(crtc->state); kfree(vmw_crtc_state_to_vcs(crtc->state)); } vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); if (!vcs) { DRM_ERROR("Cannot allocate vmw_crtc_state\n"); return; } __drm_atomic_helper_crtc_reset(crtc, &vcs->base); } /** * vmw_du_crtc_destroy_state - destroy crtc state * @crtc: DRM crtc * @state: state object to destroy * * Destroys the crtc state (both common and vmw-specific) for the * specified plane. */ void vmw_du_crtc_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *state) { drm_atomic_helper_crtc_destroy_state(crtc, state); } /** * vmw_du_plane_duplicate_state - duplicate plane state * @plane: drm plane * * Allocates and returns a copy of the plane state (both common and * vmw-specific) for the specified plane. * * Returns: The newly allocated plane state, or NULL on failure. */ struct drm_plane_state * vmw_du_plane_duplicate_state(struct drm_plane *plane) { struct drm_plane_state *state; struct vmw_plane_state *vps; vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL); if (!vps) return NULL; vps->pinned = 0; vps->cpp = 0; memset(&vps->cursor, 0, sizeof(vps->cursor)); /* Each ref counted resource needs to be acquired again */ if (vps->surf) (void) vmw_surface_reference(vps->surf); if (vps->bo) (void) vmw_bo_reference(vps->bo); state = &vps->base; __drm_atomic_helper_plane_duplicate_state(plane, state); return state; } /** * vmw_du_plane_reset - creates a blank vmw plane state * @plane: drm plane * * Resets the atomic state for @plane by freeing the state pointer (which might * be NULL, e.g. at driver load time) and allocating a new empty state object. */ void vmw_du_plane_reset(struct drm_plane *plane) { struct vmw_plane_state *vps; if (plane->state) vmw_du_plane_destroy_state(plane, plane->state); vps = kzalloc(sizeof(*vps), GFP_KERNEL); if (!vps) { DRM_ERROR("Cannot allocate vmw_plane_state\n"); return; } __drm_atomic_helper_plane_reset(plane, &vps->base); } /** * vmw_du_plane_destroy_state - destroy plane state * @plane: DRM plane * @state: state object to destroy * * Destroys the plane state (both common and vmw-specific) for the * specified plane. */ void vmw_du_plane_destroy_state(struct drm_plane *plane, struct drm_plane_state *state) { struct vmw_plane_state *vps = vmw_plane_state_to_vps(state); /* Should have been freed by cleanup_fb */ if (vps->surf) vmw_surface_unreference(&vps->surf); if (vps->bo) vmw_bo_unreference(&vps->bo); drm_atomic_helper_plane_destroy_state(plane, state); } /** * vmw_du_connector_duplicate_state - duplicate connector state * @connector: DRM connector * * Allocates and returns a copy of the connector state (both common and * vmw-specific) for the specified connector. * * Returns: The newly allocated connector state, or NULL on failure. */ struct drm_connector_state * vmw_du_connector_duplicate_state(struct drm_connector *connector) { struct drm_connector_state *state; struct vmw_connector_state *vcs; if (WARN_ON(!connector->state)) return NULL; vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL); if (!vcs) return NULL; state = &vcs->base; __drm_atomic_helper_connector_duplicate_state(connector, state); return state; } /** * vmw_du_connector_reset - creates a blank vmw connector state * @connector: DRM connector * * Resets the atomic state for @connector by freeing the state pointer (which * might be NULL, e.g. at driver load time) and allocating a new empty state * object. */ void vmw_du_connector_reset(struct drm_connector *connector) { struct vmw_connector_state *vcs; if (connector->state) { __drm_atomic_helper_connector_destroy_state(connector->state); kfree(vmw_connector_state_to_vcs(connector->state)); } vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); if (!vcs) { DRM_ERROR("Cannot allocate vmw_connector_state\n"); return; } __drm_atomic_helper_connector_reset(connector, &vcs->base); } /** * vmw_du_connector_destroy_state - destroy connector state * @connector: DRM connector * @state: state object to destroy * * Destroys the connector state (both common and vmw-specific) for the * specified plane. */ void vmw_du_connector_destroy_state(struct drm_connector *connector, struct drm_connector_state *state) { drm_atomic_helper_connector_destroy_state(connector, state); } /* * Generic framebuffer code */ /* * Surface framebuffer code */ static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer) { struct vmw_framebuffer_surface *vfbs = vmw_framebuffer_to_vfbs(framebuffer); drm_framebuffer_cleanup(framebuffer); vmw_surface_unreference(&vfbs->surface); kfree(vfbs); } /** * vmw_kms_readback - Perform a readback from the screen system to * a buffer-object backed framebuffer. * * @dev_priv: Pointer to the device private structure. * @file_priv: Pointer to a struct drm_file identifying the caller. * Must be set to NULL if @user_fence_rep is NULL. * @vfb: Pointer to the buffer-object backed framebuffer. * @user_fence_rep: User-space provided structure for fence information. * Must be set to non-NULL if @file_priv is non-NULL. * @vclips: Array of clip rects. * @num_clips: Number of clip rects in @vclips. * * Returns 0 on success, negative error code on failure. -ERESTARTSYS if * interrupted. */ int vmw_kms_readback(struct vmw_private *dev_priv, struct drm_file *file_priv, struct vmw_framebuffer *vfb, struct drm_vmw_fence_rep __user *user_fence_rep, struct drm_vmw_rect *vclips, uint32_t num_clips) { switch (dev_priv->active_display_unit) { case vmw_du_screen_object: return vmw_kms_sou_readback(dev_priv, file_priv, vfb, user_fence_rep, vclips, num_clips, NULL); case vmw_du_screen_target: return vmw_kms_stdu_readback(dev_priv, file_priv, vfb, user_fence_rep, NULL, vclips, num_clips, 1, NULL); default: WARN_ONCE(true, "Readback called with invalid display system.\n"); } return -ENOSYS; } static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = { .destroy = vmw_framebuffer_surface_destroy, .dirty = drm_atomic_helper_dirtyfb, }; static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv, struct vmw_surface *surface, struct vmw_framebuffer **out, const struct drm_mode_fb_cmd2 *mode_cmd, bool is_bo_proxy) { struct drm_device *dev = &dev_priv->drm; struct vmw_framebuffer_surface *vfbs; enum SVGA3dSurfaceFormat format; int ret; /* 3D is only supported on HWv8 and newer hosts */ if (dev_priv->active_display_unit == vmw_du_legacy) return -ENOSYS; /* * Sanity checks. */ if (!drm_any_plane_has_format(&dev_priv->drm, mode_cmd->pixel_format, mode_cmd->modifier[0])) { drm_dbg(&dev_priv->drm, "unsupported pixel format %p4cc / modifier 0x%llx\n", &mode_cmd->pixel_format, mode_cmd->modifier[0]); return -EINVAL; } /* Surface must be marked as a scanout. */ if (unlikely(!surface->metadata.scanout)) return -EINVAL; if (unlikely(surface->metadata.mip_levels[0] != 1 || surface->metadata.num_sizes != 1 || surface->metadata.base_size.width < mode_cmd->width || surface->metadata.base_size.height < mode_cmd->height || surface->metadata.base_size.depth != 1)) { DRM_ERROR("Incompatible surface dimensions " "for requested mode.\n"); return -EINVAL; } switch (mode_cmd->pixel_format) { case DRM_FORMAT_ARGB8888: format = SVGA3D_A8R8G8B8; break; case DRM_FORMAT_XRGB8888: format = SVGA3D_X8R8G8B8; break; case DRM_FORMAT_RGB565: format = SVGA3D_R5G6B5; break; case DRM_FORMAT_XRGB1555: format = SVGA3D_A1R5G5B5; break; default: DRM_ERROR("Invalid pixel format: %p4cc\n", &mode_cmd->pixel_format); return -EINVAL; } /* * For DX, surface format validation is done when surface->scanout * is set. */ if (!has_sm4_context(dev_priv) && format != surface->metadata.format) { DRM_ERROR("Invalid surface format for requested mode.\n"); return -EINVAL; } vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL); if (!vfbs) { ret = -ENOMEM; goto out_err1; } drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd); vfbs->surface = vmw_surface_reference(surface); vfbs->base.user_handle = mode_cmd->handles[0]; vfbs->is_bo_proxy = is_bo_proxy; *out = &vfbs->base; ret = drm_framebuffer_init(dev, &vfbs->base.base, &vmw_framebuffer_surface_funcs); if (ret) goto out_err2; return 0; out_err2: vmw_surface_unreference(&surface); kfree(vfbs); out_err1: return ret; } /* * Buffer-object framebuffer code */ static int vmw_framebuffer_bo_create_handle(struct drm_framebuffer *fb, struct drm_file *file_priv, unsigned int *handle) { struct vmw_framebuffer_bo *vfbd = vmw_framebuffer_to_vfbd(fb); return drm_gem_handle_create(file_priv, &vfbd->buffer->tbo.base, handle); } static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer) { struct vmw_framebuffer_bo *vfbd = vmw_framebuffer_to_vfbd(framebuffer); drm_framebuffer_cleanup(framebuffer); vmw_bo_unreference(&vfbd->buffer); kfree(vfbd); } static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = { .create_handle = vmw_framebuffer_bo_create_handle, .destroy = vmw_framebuffer_bo_destroy, .dirty = drm_atomic_helper_dirtyfb, }; /** * vmw_create_bo_proxy - create a proxy surface for the buffer object * * @dev: DRM device * @mode_cmd: parameters for the new surface * @bo_mob: MOB backing the buffer object * @srf_out: newly created surface * * When the content FB is a buffer object, we create a surface as a proxy to the * same buffer. This way we can do a surface copy rather than a surface DMA. * This is a more efficient approach * * RETURNS: * 0 on success, error code otherwise */ static int vmw_create_bo_proxy(struct drm_device *dev, const struct drm_mode_fb_cmd2 *mode_cmd, struct vmw_bo *bo_mob, struct vmw_surface **srf_out) { struct vmw_surface_metadata metadata = {0}; uint32_t format; struct vmw_resource *res; unsigned int bytes_pp; int ret; switch (mode_cmd->pixel_format) { case DRM_FORMAT_ARGB8888: case DRM_FORMAT_XRGB8888: format = SVGA3D_X8R8G8B8; bytes_pp = 4; break; case DRM_FORMAT_RGB565: case DRM_FORMAT_XRGB1555: format = SVGA3D_R5G6B5; bytes_pp = 2; break; case 8: format = SVGA3D_P8; bytes_pp = 1; break; default: DRM_ERROR("Invalid framebuffer format %p4cc\n", &mode_cmd->pixel_format); return -EINVAL; } metadata.format = format; metadata.mip_levels[0] = 1; metadata.num_sizes = 1; metadata.base_size.width = mode_cmd->pitches[0] / bytes_pp; metadata.base_size.height = mode_cmd->height; metadata.base_size.depth = 1; metadata.scanout = true; ret = vmw_gb_surface_define(vmw_priv(dev), &metadata, srf_out); if (ret) { DRM_ERROR("Failed to allocate proxy content buffer\n"); return ret; } res = &(*srf_out)->res; /* Reserve and switch the backing mob. */ mutex_lock(&res->dev_priv->cmdbuf_mutex); (void) vmw_resource_reserve(res, false, true); vmw_bo_unreference(&res->guest_memory_bo); res->guest_memory_bo = vmw_bo_reference(bo_mob); res->guest_memory_offset = 0; vmw_resource_unreserve(res, false, false, false, NULL, 0); mutex_unlock(&res->dev_priv->cmdbuf_mutex); return 0; } static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv, struct vmw_bo *bo, struct vmw_framebuffer **out, const struct drm_mode_fb_cmd2 *mode_cmd) { struct drm_device *dev = &dev_priv->drm; struct vmw_framebuffer_bo *vfbd; unsigned int requested_size; int ret; requested_size = mode_cmd->height * mode_cmd->pitches[0]; if (unlikely(requested_size > bo->tbo.base.size)) { DRM_ERROR("Screen buffer object size is too small " "for requested mode.\n"); return -EINVAL; } if (!drm_any_plane_has_format(&dev_priv->drm, mode_cmd->pixel_format, mode_cmd->modifier[0])) { drm_dbg(&dev_priv->drm, "unsupported pixel format %p4cc / modifier 0x%llx\n", &mode_cmd->pixel_format, mode_cmd->modifier[0]); return -EINVAL; } vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL); if (!vfbd) { ret = -ENOMEM; goto out_err1; } vfbd->base.base.obj[0] = &bo->tbo.base; drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd); vfbd->base.bo = true; vfbd->buffer = vmw_bo_reference(bo); vfbd->base.user_handle = mode_cmd->handles[0]; *out = &vfbd->base; ret = drm_framebuffer_init(dev, &vfbd->base.base, &vmw_framebuffer_bo_funcs); if (ret) goto out_err2; return 0; out_err2: vmw_bo_unreference(&bo); kfree(vfbd); out_err1: return ret; } /** * vmw_kms_srf_ok - check if a surface can be created * * @dev_priv: Pointer to device private struct. * @width: requested width * @height: requested height * * Surfaces need to be less than texture size */ static bool vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height) { if (width > dev_priv->texture_max_width || height > dev_priv->texture_max_height) return false; return true; } /** * vmw_kms_new_framebuffer - Create a new framebuffer. * * @dev_priv: Pointer to device private struct. * @bo: Pointer to buffer object to wrap the kms framebuffer around. * Either @bo or @surface must be NULL. * @surface: Pointer to a surface to wrap the kms framebuffer around. * Either @bo or @surface must be NULL. * @only_2d: No presents will occur to this buffer object based framebuffer. * This helps the code to do some important optimizations. * @mode_cmd: Frame-buffer metadata. */ struct vmw_framebuffer * vmw_kms_new_framebuffer(struct vmw_private *dev_priv, struct vmw_bo *bo, struct vmw_surface *surface, bool only_2d, const struct drm_mode_fb_cmd2 *mode_cmd) { struct vmw_framebuffer *vfb = NULL; bool is_bo_proxy = false; int ret; /* * We cannot use the SurfaceDMA command in an non-accelerated VM, * therefore, wrap the buffer object in a surface so we can use the * SurfaceCopy command. */ if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height) && bo && only_2d && mode_cmd->width > 64 && /* Don't create a proxy for cursor */ dev_priv->active_display_unit == vmw_du_screen_target) { ret = vmw_create_bo_proxy(&dev_priv->drm, mode_cmd, bo, &surface); if (ret) return ERR_PTR(ret); is_bo_proxy = true; } /* Create the new framebuffer depending one what we have */ if (surface) { ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb, mode_cmd, is_bo_proxy); /* * vmw_create_bo_proxy() adds a reference that is no longer * needed */ if (is_bo_proxy) vmw_surface_unreference(&surface); } else if (bo) { ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb, mode_cmd); } else { BUG(); } if (ret) return ERR_PTR(ret); return vfb; } /* * Generic Kernel modesetting functions */ static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev, struct drm_file *file_priv, const struct drm_mode_fb_cmd2 *mode_cmd) { struct vmw_private *dev_priv = vmw_priv(dev); struct vmw_framebuffer *vfb = NULL; struct vmw_surface *surface = NULL; struct vmw_bo *bo = NULL; int ret; /* returns either a bo or surface */ ret = vmw_user_lookup_handle(dev_priv, file_priv, mode_cmd->handles[0], &surface, &bo); if (ret) { DRM_ERROR("Invalid buffer object handle %u (0x%x).\n", mode_cmd->handles[0], mode_cmd->handles[0]); goto err_out; } if (!bo && !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) { DRM_ERROR("Surface size cannot exceed %dx%d\n", dev_priv->texture_max_width, dev_priv->texture_max_height); goto err_out; } vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface, !(dev_priv->capabilities & SVGA_CAP_3D), mode_cmd); if (IS_ERR(vfb)) { ret = PTR_ERR(vfb); goto err_out; } err_out: /* vmw_user_lookup_handle takes one ref so does new_fb */ if (bo) vmw_user_bo_unref(bo); if (surface) vmw_surface_unreference(&surface); if (ret) { DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret); return ERR_PTR(ret); } return &vfb->base; } /** * vmw_kms_check_display_memory - Validates display memory required for a * topology * @dev: DRM device * @num_rects: number of drm_rect in rects * @rects: array of drm_rect representing the topology to validate indexed by * crtc index. * * Returns: * 0 on success otherwise negative error code */ static int vmw_kms_check_display_memory(struct drm_device *dev, uint32_t num_rects, struct drm_rect *rects) { struct vmw_private *dev_priv = vmw_priv(dev); struct drm_rect bounding_box = {0}; u64 total_pixels = 0, pixel_mem, bb_mem; int i; for (i = 0; i < num_rects; i++) { /* * For STDU only individual screen (screen target) is limited by * SCREENTARGET_MAX_WIDTH/HEIGHT registers. */ if (dev_priv->active_display_unit == vmw_du_screen_target && (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width || drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) { VMW_DEBUG_KMS("Screen size not supported.\n"); return -EINVAL; } /* Bounding box upper left is at (0,0). */ if (rects[i].x2 > bounding_box.x2) bounding_box.x2 = rects[i].x2; if (rects[i].y2 > bounding_box.y2) bounding_box.y2 = rects[i].y2; total_pixels += (u64) drm_rect_width(&rects[i]) * (u64) drm_rect_height(&rects[i]); } /* Virtual svga device primary limits are always in 32-bpp. */ pixel_mem = total_pixels * 4; /* * For HV10 and below prim_bb_mem is vram size. When * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is * limit on primary bounding box */ if (pixel_mem > dev_priv->max_primary_mem) { VMW_DEBUG_KMS("Combined output size too large.\n"); return -EINVAL; } /* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */ if (dev_priv->active_display_unit != vmw_du_screen_target || !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) { bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4; if (bb_mem > dev_priv->max_primary_mem) { VMW_DEBUG_KMS("Topology is beyond supported limits.\n"); return -EINVAL; } } return 0; } /** * vmw_crtc_state_and_lock - Return new or current crtc state with locked * crtc mutex * @state: The atomic state pointer containing the new atomic state * @crtc: The crtc * * This function returns the new crtc state if it's part of the state update. * Otherwise returns the current crtc state. It also makes sure that the * crtc mutex is locked. * * Returns: A valid crtc state pointer or NULL. It may also return a * pointer error, in particular -EDEADLK if locking needs to be rerun. */ static struct drm_crtc_state * vmw_crtc_state_and_lock(struct drm_atomic_state *state, struct drm_crtc *crtc) { struct drm_crtc_state *crtc_state; crtc_state = drm_atomic_get_new_crtc_state(state, crtc); if (crtc_state) { lockdep_assert_held(&crtc->mutex.mutex.base); } else { int ret = drm_modeset_lock(&crtc->mutex, state->acquire_ctx); if (ret != 0 && ret != -EALREADY) return ERR_PTR(ret); crtc_state = crtc->state; } return crtc_state; } /** * vmw_kms_check_implicit - Verify that all implicit display units scan out * from the same fb after the new state is committed. * @dev: The drm_device. * @state: The new state to be checked. * * Returns: * Zero on success, * -EINVAL on invalid state, * -EDEADLK if modeset locking needs to be rerun. */ static int vmw_kms_check_implicit(struct drm_device *dev, struct drm_atomic_state *state) { struct drm_framebuffer *implicit_fb = NULL; struct drm_crtc *crtc; struct drm_crtc_state *crtc_state; struct drm_plane_state *plane_state; drm_for_each_crtc(crtc, dev) { struct vmw_display_unit *du = vmw_crtc_to_du(crtc); if (!du->is_implicit) continue; crtc_state = vmw_crtc_state_and_lock(state, crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); if (!crtc_state || !crtc_state->enable) continue; /* * Can't move primary planes across crtcs, so this is OK. * It also means we don't need to take the plane mutex. */ plane_state = du->primary.state; if (plane_state->crtc != crtc) continue; if (!implicit_fb) implicit_fb = plane_state->fb; else if (implicit_fb != plane_state->fb) return -EINVAL; } return 0; } /** * vmw_kms_check_topology - Validates topology in drm_atomic_state * @dev: DRM device * @state: the driver state object * * Returns: * 0 on success otherwise negative error code */ static int vmw_kms_check_topology(struct drm_device *dev, struct drm_atomic_state *state) { struct drm_crtc_state *old_crtc_state, *new_crtc_state; struct drm_rect *rects; struct drm_crtc *crtc; uint32_t i; int ret = 0; rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect), GFP_KERNEL); if (!rects) return -ENOMEM; drm_for_each_crtc(crtc, dev) { struct vmw_display_unit *du = vmw_crtc_to_du(crtc); struct drm_crtc_state *crtc_state; i = drm_crtc_index(crtc); crtc_state = vmw_crtc_state_and_lock(state, crtc); if (IS_ERR(crtc_state)) { ret = PTR_ERR(crtc_state); goto clean; } if (!crtc_state) continue; if (crtc_state->enable) { rects[i].x1 = du->gui_x; rects[i].y1 = du->gui_y; rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay; rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay; } else { rects[i].x1 = 0; rects[i].y1 = 0; rects[i].x2 = 0; rects[i].y2 = 0; } } /* Determine change to topology due to new atomic state */ for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { struct vmw_display_unit *du = vmw_crtc_to_du(crtc); struct drm_connector *connector; struct drm_connector_state *conn_state; struct vmw_connector_state *vmw_conn_state; if (!du->pref_active && new_crtc_state->enable) { VMW_DEBUG_KMS("Enabling a disabled display unit\n"); ret = -EINVAL; goto clean; } /* * For vmwgfx each crtc has only one connector attached and it * is not changed so don't really need to check the * crtc->connector_mask and iterate over it. */ connector = &du->connector; conn_state = drm_atomic_get_connector_state(state, connector); if (IS_ERR(conn_state)) { ret = PTR_ERR(conn_state); goto clean; } vmw_conn_state = vmw_connector_state_to_vcs(conn_state); vmw_conn_state->gui_x = du->gui_x; vmw_conn_state->gui_y = du->gui_y; } ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc, rects); clean: kfree(rects); return ret; } /** * vmw_kms_atomic_check_modeset- validate state object for modeset changes * * @dev: DRM device * @state: the driver state object * * This is a simple wrapper around drm_atomic_helper_check_modeset() for * us to assign a value to mode->crtc_clock so that * drm_calc_timestamping_constants() won't throw an error message * * Returns: * Zero for success or -errno */ static int vmw_kms_atomic_check_modeset(struct drm_device *dev, struct drm_atomic_state *state) { struct drm_crtc *crtc; struct drm_crtc_state *crtc_state; bool need_modeset = false; int i, ret; ret = drm_atomic_helper_check(dev, state); if (ret) return ret; ret = vmw_kms_check_implicit(dev, state); if (ret) { VMW_DEBUG_KMS("Invalid implicit state\n"); return ret; } for_each_new_crtc_in_state(state, crtc, crtc_state, i) { if (drm_atomic_crtc_needs_modeset(crtc_state)) need_modeset = true; } if (need_modeset) return vmw_kms_check_topology(dev, state); return ret; } static const struct drm_mode_config_funcs vmw_kms_funcs = { .fb_create = vmw_kms_fb_create, .atomic_check = vmw_kms_atomic_check_modeset, .atomic_commit = drm_atomic_helper_commit, }; static int vmw_kms_generic_present(struct vmw_private *dev_priv, struct drm_file *file_priv, struct vmw_framebuffer *vfb, struct vmw_surface *surface, uint32_t sid, int32_t destX, int32_t destY, struct drm_vmw_rect *clips, uint32_t num_clips) { return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips, &surface->res, destX, destY, num_clips, 1, NULL, NULL); } int vmw_kms_present(struct vmw_private *dev_priv, struct drm_file *file_priv, struct vmw_framebuffer *vfb, struct vmw_surface *surface, uint32_t sid, int32_t destX, int32_t destY, struct drm_vmw_rect *clips, uint32_t num_clips) { int ret; switch (dev_priv->active_display_unit) { case vmw_du_screen_target: ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips, &surface->res, destX, destY, num_clips, 1, NULL, NULL); break; case vmw_du_screen_object: ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface, sid, destX, destY, clips, num_clips); break; default: WARN_ONCE(true, "Present called with invalid display system.\n"); ret = -ENOSYS; break; } if (ret) return ret; vmw_cmd_flush(dev_priv, false); return 0; } static void vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv) { if (dev_priv->hotplug_mode_update_property) return; dev_priv->hotplug_mode_update_property = drm_property_create_range(&dev_priv->drm, DRM_MODE_PROP_IMMUTABLE, "hotplug_mode_update", 0, 1); } int vmw_kms_init(struct vmw_private *dev_priv) { struct drm_device *dev = &dev_priv->drm; int ret; static const char *display_unit_names[] = { "Invalid", "Legacy", "Screen Object", "Screen Target", "Invalid (max)" }; drm_mode_config_init(dev); dev->mode_config.funcs = &vmw_kms_funcs; dev->mode_config.min_width = 1; dev->mode_config.min_height = 1; dev->mode_config.max_width = dev_priv->texture_max_width; dev->mode_config.max_height = dev_priv->texture_max_height; dev->mode_config.preferred_depth = dev_priv->assume_16bpp ? 16 : 32; drm_mode_create_suggested_offset_properties(dev); vmw_kms_create_hotplug_mode_update_property(dev_priv); ret = vmw_kms_stdu_init_display(dev_priv); if (ret) { ret = vmw_kms_sou_init_display(dev_priv); if (ret) /* Fallback */ ret = vmw_kms_ldu_init_display(dev_priv); } BUILD_BUG_ON(ARRAY_SIZE(display_unit_names) != (vmw_du_max + 1)); drm_info(&dev_priv->drm, "%s display unit initialized\n", display_unit_names[dev_priv->active_display_unit]); return ret; } int vmw_kms_close(struct vmw_private *dev_priv) { int ret = 0; /* * Docs says we should take the lock before calling this function * but since it destroys encoders and our destructor calls * drm_encoder_cleanup which takes the lock we deadlock. */ drm_mode_config_cleanup(&dev_priv->drm); if (dev_priv->active_display_unit == vmw_du_legacy) ret = vmw_kms_ldu_close_display(dev_priv); return ret; } int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_vmw_cursor_bypass_arg *arg = data; struct vmw_display_unit *du; struct drm_crtc *crtc; int ret = 0; mutex_lock(&dev->mode_config.mutex); if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) { list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { du = vmw_crtc_to_du(crtc); du->hotspot_x = arg->xhot; du->hotspot_y = arg->yhot; } mutex_unlock(&dev->mode_config.mutex); return 0; } crtc = drm_crtc_find(dev, file_priv, arg->crtc_id); if (!crtc) { ret = -ENOENT; goto out; } du = vmw_crtc_to_du(crtc); du->hotspot_x = arg->xhot; du->hotspot_y = arg->yhot; out: mutex_unlock(&dev->mode_config.mutex); return ret; } int vmw_kms_write_svga(struct vmw_private *vmw_priv, unsigned width, unsigned height, unsigned pitch, unsigned bpp, unsigned depth) { if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch); else if (vmw_fifo_have_pitchlock(vmw_priv)) vmw_fifo_mem_write(vmw_priv, SVGA_FIFO_PITCHLOCK, pitch); vmw_write(vmw_priv, SVGA_REG_WIDTH, width); vmw_write(vmw_priv, SVGA_REG_HEIGHT, height); if ((vmw_priv->capabilities & SVGA_CAP_8BIT_EMULATION) != 0) vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp); if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) { DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n", depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH)); return -EINVAL; } return 0; } bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv, uint32_t pitch, uint32_t height) { return ((u64) pitch * (u64) height) < (u64) ((dev_priv->active_display_unit == vmw_du_screen_target) ? dev_priv->max_primary_mem : dev_priv->vram_size); } /** * vmw_du_update_layout - Update the display unit with topology from resolution * plugin and generate DRM uevent * @dev_priv: device private * @num_rects: number of drm_rect in rects * @rects: toplogy to update */ static int vmw_du_update_layout(struct vmw_private *dev_priv, unsigned int num_rects, struct drm_rect *rects) { struct drm_device *dev = &dev_priv->drm; struct vmw_display_unit *du; struct drm_connector *con; struct drm_connector_list_iter conn_iter; struct drm_modeset_acquire_ctx ctx; struct drm_crtc *crtc; int ret; /* Currently gui_x/y is protected with the crtc mutex */ mutex_lock(&dev->mode_config.mutex); drm_modeset_acquire_init(&ctx, 0); retry: drm_for_each_crtc(crtc, dev) { ret = drm_modeset_lock(&crtc->mutex, &ctx); if (ret < 0) { if (ret == -EDEADLK) { drm_modeset_backoff(&ctx); goto retry; } goto out_fini; } } drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(con, &conn_iter) { du = vmw_connector_to_du(con); if (num_rects > du->unit) { du->pref_width = drm_rect_width(&rects[du->unit]); du->pref_height = drm_rect_height(&rects[du->unit]); du->pref_active = true; du->gui_x = rects[du->unit].x1; du->gui_y = rects[du->unit].y1; } else { du->pref_width = VMWGFX_MIN_INITIAL_WIDTH; du->pref_height = VMWGFX_MIN_INITIAL_HEIGHT; du->pref_active = false; du->gui_x = 0; du->gui_y = 0; } } drm_connector_list_iter_end(&conn_iter); list_for_each_entry(con, &dev->mode_config.connector_list, head) { du = vmw_connector_to_du(con); if (num_rects > du->unit) { drm_object_property_set_value (&con->base, dev->mode_config.suggested_x_property, du->gui_x); drm_object_property_set_value (&con->base, dev->mode_config.suggested_y_property, du->gui_y); } else { drm_object_property_set_value (&con->base, dev->mode_config.suggested_x_property, 0); drm_object_property_set_value (&con->base, dev->mode_config.suggested_y_property, 0); } con->status = vmw_du_connector_detect(con, true); } out_fini: drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); mutex_unlock(&dev->mode_config.mutex); drm_sysfs_hotplug_event(dev); return 0; } int vmw_du_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, uint32_t size, struct drm_modeset_acquire_ctx *ctx) { struct vmw_private *dev_priv = vmw_priv(crtc->dev); int i; for (i = 0; i < size; i++) { DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i, r[i], g[i], b[i]); vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8); vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8); vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8); } return 0; } int vmw_du_connector_dpms(struct drm_connector *connector, int mode) { return 0; } enum drm_connector_status vmw_du_connector_detect(struct drm_connector *connector, bool force) { uint32_t num_displays; struct drm_device *dev = connector->dev; struct vmw_private *dev_priv = vmw_priv(dev); struct vmw_display_unit *du = vmw_connector_to_du(connector); num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS); return ((vmw_connector_to_du(connector)->unit < num_displays && du->pref_active) ? connector_status_connected : connector_status_disconnected); } static struct drm_display_mode vmw_kms_connector_builtin[] = { /* 640x480@60Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 752, 800, 0, 480, 489, 492, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 800x600@60Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 968, 1056, 0, 600, 601, 605, 628, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@60Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 1184, 1344, 0, 768, 771, 777, 806, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1152x864@75Hz */ { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 1344, 1600, 0, 864, 865, 868, 900, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x720@60Hz */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74500, 1280, 1344, 1472, 1664, 0, 720, 723, 728, 748, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x768@60Hz */ { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344, 1472, 1664, 0, 768, 771, 778, 798, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x800@60Hz */ { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352, 1480, 1680, 0, 800, 803, 809, 831, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1280x960@60Hz */ { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376, 1488, 1800, 0, 960, 961, 964, 1000, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@60Hz */ { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328, 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1360x768@60Hz */ { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424, 1536, 1792, 0, 768, 771, 777, 795, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1440x1050@60Hz */ { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488, 1632, 1864, 0, 1050, 1053, 1057, 1089, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1440x900@60Hz */ { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520, 1672, 1904, 0, 900, 903, 909, 934, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1600x1200@60Hz */ { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664, 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1680x1050@60Hz */ { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784, 1960, 2240, 0, 1050, 1053, 1059, 1089, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1792x1344@60Hz */ { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920, 2120, 2448, 0, 1344, 1345, 1348, 1394, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1853x1392@60Hz */ { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952, 2176, 2528, 0, 1392, 1393, 1396, 1439, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1920x1080@60Hz */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 173000, 1920, 2048, 2248, 2576, 0, 1080, 1083, 1088, 1120, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1920x1200@60Hz */ { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056, 2256, 2592, 0, 1200, 1203, 1209, 1245, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1920x1440@60Hz */ { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048, 2256, 2600, 0, 1440, 1441, 1444, 1500, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 2560x1440@60Hz */ { DRM_MODE("2560x1440", DRM_MODE_TYPE_DRIVER, 241500, 2560, 2608, 2640, 2720, 0, 1440, 1443, 1448, 1481, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 2560x1600@60Hz */ { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752, 3032, 3504, 0, 1600, 1603, 1609, 1658, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 2880x1800@60Hz */ { DRM_MODE("2880x1800", DRM_MODE_TYPE_DRIVER, 337500, 2880, 2928, 2960, 3040, 0, 1800, 1803, 1809, 1852, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 3840x2160@60Hz */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 533000, 3840, 3888, 3920, 4000, 0, 2160, 2163, 2168, 2222, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 3840x2400@60Hz */ { DRM_MODE("3840x2400", DRM_MODE_TYPE_DRIVER, 592250, 3840, 3888, 3920, 4000, 0, 2400, 2403, 2409, 2469, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* Terminate */ { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) }, }; /** * vmw_guess_mode_timing - Provide fake timings for a * 60Hz vrefresh mode. * * @mode: Pointer to a struct drm_display_mode with hdisplay and vdisplay * members filled in. */ void vmw_guess_mode_timing(struct drm_display_mode *mode) { mode->hsync_start = mode->hdisplay + 50; mode->hsync_end = mode->hsync_start + 50; mode->htotal = mode->hsync_end + 50; mode->vsync_start = mode->vdisplay + 50; mode->vsync_end = mode->vsync_start + 50; mode->vtotal = mode->vsync_end + 50; mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6; } int vmw_du_connector_fill_modes(struct drm_connector *connector, uint32_t max_width, uint32_t max_height) { struct vmw_display_unit *du = vmw_connector_to_du(connector); struct drm_device *dev = connector->dev; struct vmw_private *dev_priv = vmw_priv(dev); struct drm_display_mode *mode = NULL; struct drm_display_mode *bmode; struct drm_display_mode prefmode = { DRM_MODE("preferred", DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }; int i; u32 assumed_bpp = 4; if (dev_priv->assume_16bpp) assumed_bpp = 2; max_width = min(max_width, dev_priv->texture_max_width); max_height = min(max_height, dev_priv->texture_max_height); /* * For STDU extra limit for a mode on SVGA_REG_SCREENTARGET_MAX_WIDTH/ * HEIGHT registers. */ if (dev_priv->active_display_unit == vmw_du_screen_target) { max_width = min(max_width, dev_priv->stdu_max_width); max_height = min(max_height, dev_priv->stdu_max_height); } /* Add preferred mode */ mode = drm_mode_duplicate(dev, &prefmode); if (!mode) return 0; mode->hdisplay = du->pref_width; mode->vdisplay = du->pref_height; vmw_guess_mode_timing(mode); drm_mode_set_name(mode); if (vmw_kms_validate_mode_vram(dev_priv, mode->hdisplay * assumed_bpp, mode->vdisplay)) { drm_mode_probed_add(connector, mode); } else { drm_mode_destroy(dev, mode); mode = NULL; } if (du->pref_mode) { list_del_init(&du->pref_mode->head); drm_mode_destroy(dev, du->pref_mode); } /* mode might be null here, this is intended */ du->pref_mode = mode; for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) { bmode = &vmw_kms_connector_builtin[i]; if (bmode->hdisplay > max_width || bmode->vdisplay > max_height) continue; if (!vmw_kms_validate_mode_vram(dev_priv, bmode->hdisplay * assumed_bpp, bmode->vdisplay)) continue; mode = drm_mode_duplicate(dev, bmode); if (!mode) return 0; drm_mode_probed_add(connector, mode); } drm_connector_list_update(connector); /* Move the prefered mode first, help apps pick the right mode. */ drm_mode_sort(&connector->modes); return 1; } /** * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl * @dev: drm device for the ioctl * @data: data pointer for the ioctl * @file_priv: drm file for the ioctl call * * Update preferred topology of display unit as per ioctl request. The topology * is expressed as array of drm_vmw_rect. * e.g. * [0 0 640 480] [640 0 800 600] [0 480 640 480] * * NOTE: * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside * device limit on topology, x + w and y + h (lower right) cannot be greater * than INT_MAX. So topology beyond these limits will return with error. * * Returns: * Zero on success, negative errno on failure. */ int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct vmw_private *dev_priv = vmw_priv(dev); struct drm_mode_config *mode_config = &dev->mode_config; struct drm_vmw_update_layout_arg *arg = (struct drm_vmw_update_layout_arg *)data; void __user *user_rects; struct drm_vmw_rect *rects; struct drm_rect *drm_rects; unsigned rects_size; int ret, i; if (!arg->num_outputs) { struct drm_rect def_rect = {0, 0, VMWGFX_MIN_INITIAL_WIDTH, VMWGFX_MIN_INITIAL_HEIGHT}; vmw_du_update_layout(dev_priv, 1, &def_rect); return 0; } rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect); rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect), GFP_KERNEL); if (unlikely(!rects)) return -ENOMEM; user_rects = (void __user *)(unsigned long)arg->rects; ret = copy_from_user(rects, user_rects, rects_size); if (unlikely(ret != 0)) { DRM_ERROR("Failed to get rects.\n"); ret = -EFAULT; goto out_free; } drm_rects = (struct drm_rect *)rects; VMW_DEBUG_KMS("Layout count = %u\n", arg->num_outputs); for (i = 0; i < arg->num_outputs; i++) { struct drm_vmw_rect curr_rect; /* Verify user-space for overflow as kernel use drm_rect */ if ((rects[i].x + rects[i].w > INT_MAX) || (rects[i].y + rects[i].h > INT_MAX)) { ret = -ERANGE; goto out_free; } curr_rect = rects[i]; drm_rects[i].x1 = curr_rect.x; drm_rects[i].y1 = curr_rect.y; drm_rects[i].x2 = curr_rect.x + curr_rect.w; drm_rects[i].y2 = curr_rect.y + curr_rect.h; VMW_DEBUG_KMS(" x1 = %d y1 = %d x2 = %d y2 = %d\n", drm_rects[i].x1, drm_rects[i].y1, drm_rects[i].x2, drm_rects[i].y2); /* * Currently this check is limiting the topology within * mode_config->max (which actually is max texture size * supported by virtual device). This limit is here to address * window managers that create a big framebuffer for whole * topology. */ if (drm_rects[i].x1 < 0 || drm_rects[i].y1 < 0 || drm_rects[i].x2 > mode_config->max_width || drm_rects[i].y2 > mode_config->max_height) { VMW_DEBUG_KMS("Invalid layout %d %d %d %d\n", drm_rects[i].x1, drm_rects[i].y1, drm_rects[i].x2, drm_rects[i].y2); ret = -EINVAL; goto out_free; } } ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects); if (ret == 0) vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects); out_free: kfree(rects); return ret; } /** * vmw_kms_helper_dirty - Helper to build commands and perform actions based * on a set of cliprects and a set of display units. * * @dev_priv: Pointer to a device private structure. * @framebuffer: Pointer to the framebuffer on which to perform the actions. * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL. * Cliprects are given in framebuffer coordinates. * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must * be NULL. Cliprects are given in source coordinates. * @dest_x: X coordinate offset for the crtc / destination clip rects. * @dest_y: Y coordinate offset for the crtc / destination clip rects. * @num_clips: Number of cliprects in the @clips or @vclips array. * @increment: Integer with which to increment the clip counter when looping. * Used to skip a predetermined number of clip rects. * @dirty: Closure structure. See the description of struct vmw_kms_dirty. */ int vmw_kms_helper_dirty(struct vmw_private *dev_priv, struct vmw_framebuffer *framebuffer, const struct drm_clip_rect *clips, const struct drm_vmw_rect *vclips, s32 dest_x, s32 dest_y, int num_clips, int increment, struct vmw_kms_dirty *dirty) { struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS]; struct drm_crtc *crtc; u32 num_units = 0; u32 i, k; dirty->dev_priv = dev_priv; /* If crtc is passed, no need to iterate over other display units */ if (dirty->crtc) { units[num_units++] = vmw_crtc_to_du(dirty->crtc); } else { list_for_each_entry(crtc, &dev_priv->drm.mode_config.crtc_list, head) { struct drm_plane *plane = crtc->primary; if (plane->state->fb == &framebuffer->base) units[num_units++] = vmw_crtc_to_du(crtc); } } for (k = 0; k < num_units; k++) { struct vmw_display_unit *unit = units[k]; s32 crtc_x = unit->crtc.x; s32 crtc_y = unit->crtc.y; s32 crtc_width = unit->crtc.mode.hdisplay; s32 crtc_height = unit->crtc.mode.vdisplay; const struct drm_clip_rect *clips_ptr = clips; const struct drm_vmw_rect *vclips_ptr = vclips; dirty->unit = unit; if (dirty->fifo_reserve_size > 0) { dirty->cmd = VMW_CMD_RESERVE(dev_priv, dirty->fifo_reserve_size); if (!dirty->cmd) return -ENOMEM; memset(dirty->cmd, 0, dirty->fifo_reserve_size); } dirty->num_hits = 0; for (i = 0; i < num_clips; i++, clips_ptr += increment, vclips_ptr += increment) { s32 clip_left; s32 clip_top; /* * Select clip array type. Note that integer type * in @clips is unsigned short, whereas in @vclips * it's 32-bit. */ if (clips) { dirty->fb_x = (s32) clips_ptr->x1; dirty->fb_y = (s32) clips_ptr->y1; dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x - crtc_x; dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y - crtc_y; } else { dirty->fb_x = vclips_ptr->x; dirty->fb_y = vclips_ptr->y; dirty->unit_x2 = dirty->fb_x + vclips_ptr->w + dest_x - crtc_x; dirty->unit_y2 = dirty->fb_y + vclips_ptr->h + dest_y - crtc_y; } dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x; dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y; /* Skip this clip if it's outside the crtc region */ if (dirty->unit_x1 >= crtc_width || dirty->unit_y1 >= crtc_height || dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0) continue; /* Clip right and bottom to crtc limits */ dirty->unit_x2 = min_t(s32, dirty->unit_x2, crtc_width); dirty->unit_y2 = min_t(s32, dirty->unit_y2, crtc_height); /* Clip left and top to crtc limits */ clip_left = min_t(s32, dirty->unit_x1, 0); clip_top = min_t(s32, dirty->unit_y1, 0); dirty->unit_x1 -= clip_left; dirty->unit_y1 -= clip_top; dirty->fb_x -= clip_left; dirty->fb_y -= clip_top; dirty->clip(dirty); } dirty->fifo_commit(dirty); } return 0; } /** * vmw_kms_helper_validation_finish - Helper for post KMS command submission * cleanup and fencing * @dev_priv: Pointer to the device-private struct * @file_priv: Pointer identifying the client when user-space fencing is used * @ctx: Pointer to the validation context * @out_fence: If non-NULL, returned refcounted fence-pointer * @user_fence_rep: If non-NULL, pointer to user-space address area * in which to copy user-space fence info */ void vmw_kms_helper_validation_finish(struct vmw_private *dev_priv, struct drm_file *file_priv, struct vmw_validation_context *ctx, struct vmw_fence_obj **out_fence, struct drm_vmw_fence_rep __user * user_fence_rep) { struct vmw_fence_obj *fence = NULL; uint32_t handle = 0; int ret = 0; if (file_priv || user_fence_rep || vmw_validation_has_bos(ctx) || out_fence) ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence, file_priv ? &handle : NULL); vmw_validation_done(ctx, fence); if (file_priv) vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv), ret, user_fence_rep, fence, handle, -1); if (out_fence) *out_fence = fence; else vmw_fence_obj_unreference(&fence); } /** * vmw_kms_update_proxy - Helper function to update a proxy surface from * its backing MOB. * * @res: Pointer to the surface resource * @clips: Clip rects in framebuffer (surface) space. * @num_clips: Number of clips in @clips. * @increment: Integer with which to increment the clip counter when looping. * Used to skip a predetermined number of clip rects. * * This function makes sure the proxy surface is updated from its backing MOB * using the region given by @clips. The surface resource @res and its backing * MOB needs to be reserved and validated on call. */ int vmw_kms_update_proxy(struct vmw_resource *res, const struct drm_clip_rect *clips, unsigned num_clips, int increment) { struct vmw_private *dev_priv = res->dev_priv; struct drm_vmw_size *size = &vmw_res_to_srf(res)->metadata.base_size; struct { SVGA3dCmdHeader header; SVGA3dCmdUpdateGBImage body; } *cmd; SVGA3dBox *box; size_t copy_size = 0; int i; if (!clips) return 0; cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd) * num_clips); if (!cmd) return -ENOMEM; for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) { box = &cmd->body.box; cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE; cmd->header.size = sizeof(cmd->body); cmd->body.image.sid = res->id; cmd->body.image.face = 0; cmd->body.image.mipmap = 0; if (clips->x1 > size->width || clips->x2 > size->width || clips->y1 > size->height || clips->y2 > size->height) { DRM_ERROR("Invalid clips outsize of framebuffer.\n"); return -EINVAL; } box->x = clips->x1; box->y = clips->y1; box->z = 0; box->w = clips->x2 - clips->x1; box->h = clips->y2 - clips->y1; box->d = 1; copy_size += sizeof(*cmd); } vmw_cmd_commit(dev_priv, copy_size); return 0; } /** * vmw_kms_create_implicit_placement_property - Set up the implicit placement * property. * * @dev_priv: Pointer to a device private struct. * * Sets up the implicit placement property unless it's already set up. */ void vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv) { if (dev_priv->implicit_placement_property) return; dev_priv->implicit_placement_property = drm_property_create_range(&dev_priv->drm, DRM_MODE_PROP_IMMUTABLE, "implicit_placement", 0, 1); } /** * vmw_kms_suspend - Save modesetting state and turn modesetting off. * * @dev: Pointer to the drm device * Return: 0 on success. Negative error code on failure. */ int vmw_kms_suspend(struct drm_device *dev) { struct vmw_private *dev_priv = vmw_priv(dev); dev_priv->suspend_state = drm_atomic_helper_suspend(dev); if (IS_ERR(dev_priv->suspend_state)) { int ret = PTR_ERR(dev_priv->suspend_state); DRM_ERROR("Failed kms suspend: %d\n", ret); dev_priv->suspend_state = NULL; return ret; } return 0; } /** * vmw_kms_resume - Re-enable modesetting and restore state * * @dev: Pointer to the drm device * Return: 0 on success. Negative error code on failure. * * State is resumed from a previous vmw_kms_suspend(). It's illegal * to call this function without a previous vmw_kms_suspend(). */ int vmw_kms_resume(struct drm_device *dev) { struct vmw_private *dev_priv = vmw_priv(dev); int ret; if (WARN_ON(!dev_priv->suspend_state)) return 0; ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state); dev_priv->suspend_state = NULL; return ret; } /** * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost * * @dev: Pointer to the drm device */ void vmw_kms_lost_device(struct drm_device *dev) { drm_atomic_helper_shutdown(dev); } /** * vmw_du_helper_plane_update - Helper to do plane update on a display unit. * @update: The closure structure. * * Call this helper after setting callbacks in &vmw_du_update_plane to do plane * update on display unit. * * Return: 0 on success or a negative error code on failure. */ int vmw_du_helper_plane_update(struct vmw_du_update_plane *update) { struct drm_plane_state *state = update->plane->state; struct drm_plane_state *old_state = update->old_state; struct drm_atomic_helper_damage_iter iter; struct drm_rect clip; struct drm_rect bb; DECLARE_VAL_CONTEXT(val_ctx, NULL, 0); uint32_t reserved_size = 0; uint32_t submit_size = 0; uint32_t curr_size = 0; uint32_t num_hits = 0; void *cmd_start; char *cmd_next; int ret; /* * Iterate in advance to check if really need plane update and find the * number of clips that actually are in plane src for fifo allocation. */ drm_atomic_helper_damage_iter_init(&iter, old_state, state); drm_atomic_for_each_plane_damage(&iter, &clip) num_hits++; if (num_hits == 0) return 0; if (update->vfb->bo) { struct vmw_framebuffer_bo *vfbbo = container_of(update->vfb, typeof(*vfbbo), base); /* * For screen targets we want a mappable bo, for everything else we want * accelerated i.e. host backed (vram or gmr) bo. If the display unit * is not screen target then mob's shouldn't be available. */ if (update->dev_priv->active_display_unit == vmw_du_screen_target) { vmw_bo_placement_set(vfbbo->buffer, VMW_BO_DOMAIN_SYS | VMW_BO_DOMAIN_MOB | VMW_BO_DOMAIN_GMR, VMW_BO_DOMAIN_SYS | VMW_BO_DOMAIN_MOB | VMW_BO_DOMAIN_GMR); } else { WARN_ON(update->dev_priv->has_mob); vmw_bo_placement_set_default_accelerated(vfbbo->buffer); } ret = vmw_validation_add_bo(&val_ctx, vfbbo->buffer); } else { struct vmw_framebuffer_surface *vfbs = container_of(update->vfb, typeof(*vfbs), base); ret = vmw_validation_add_resource(&val_ctx, &vfbs->surface->res, 0, VMW_RES_DIRTY_NONE, NULL, NULL); } if (ret) return ret; ret = vmw_validation_prepare(&val_ctx, update->mutex, update->intr); if (ret) goto out_unref; reserved_size = update->calc_fifo_size(update, num_hits); cmd_start = VMW_CMD_RESERVE(update->dev_priv, reserved_size); if (!cmd_start) { ret = -ENOMEM; goto out_revert; } cmd_next = cmd_start; if (update->post_prepare) { curr_size = update->post_prepare(update, cmd_next); cmd_next += curr_size; submit_size += curr_size; } if (update->pre_clip) { curr_size = update->pre_clip(update, cmd_next, num_hits); cmd_next += curr_size; submit_size += curr_size; } bb.x1 = INT_MAX; bb.y1 = INT_MAX; bb.x2 = INT_MIN; bb.y2 = INT_MIN; drm_atomic_helper_damage_iter_init(&iter, old_state, state); drm_atomic_for_each_plane_damage(&iter, &clip) { uint32_t fb_x = clip.x1; uint32_t fb_y = clip.y1; vmw_du_translate_to_crtc(state, &clip); if (update->clip) { curr_size = update->clip(update, cmd_next, &clip, fb_x, fb_y); cmd_next += curr_size; submit_size += curr_size; } bb.x1 = min_t(int, bb.x1, clip.x1); bb.y1 = min_t(int, bb.y1, clip.y1); bb.x2 = max_t(int, bb.x2, clip.x2); bb.y2 = max_t(int, bb.y2, clip.y2); } curr_size = update->post_clip(update, cmd_next, &bb); submit_size += curr_size; if (reserved_size < submit_size) submit_size = 0; vmw_cmd_commit(update->dev_priv, submit_size); vmw_kms_helper_validation_finish(update->dev_priv, NULL, &val_ctx, update->out_fence, NULL); return ret; out_revert: vmw_validation_revert(&val_ctx); out_unref: vmw_validation_unref_lists(&val_ctx); return ret; }
linux-master
drivers/gpu/drm/vmwgfx/vmwgfx_kms.c
/* SPDX-License-Identifier: GPL-2.0 OR MIT */ /* * Copyright 2021 VMware, Inc. * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, copy, * modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include "vmwgfx_drv.h" #include <drm/ttm/ttm_device.h> #include <drm/ttm/ttm_placement.h> #include <drm/ttm/ttm_resource.h> #include <linux/slab.h> static int vmw_sys_man_alloc(struct ttm_resource_manager *man, struct ttm_buffer_object *bo, const struct ttm_place *place, struct ttm_resource **res) { *res = kzalloc(sizeof(**res), GFP_KERNEL); if (!*res) return -ENOMEM; ttm_resource_init(bo, place, *res); return 0; } static void vmw_sys_man_free(struct ttm_resource_manager *man, struct ttm_resource *res) { ttm_resource_fini(man, res); kfree(res); } static const struct ttm_resource_manager_func vmw_sys_manager_func = { .alloc = vmw_sys_man_alloc, .free = vmw_sys_man_free, }; int vmw_sys_man_init(struct vmw_private *dev_priv) { struct ttm_device *bdev = &dev_priv->bdev; struct ttm_resource_manager *man = kzalloc(sizeof(*man), GFP_KERNEL); if (!man) return -ENOMEM; man->use_tt = true; man->func = &vmw_sys_manager_func; ttm_resource_manager_init(man, bdev, 0); ttm_set_driver_manager(bdev, VMW_PL_SYSTEM, man); ttm_resource_manager_set_used(man, true); return 0; } void vmw_sys_man_fini(struct vmw_private *dev_priv) { struct ttm_resource_manager *man = ttm_manager_type(&dev_priv->bdev, VMW_PL_SYSTEM); ttm_resource_manager_evict_all(&dev_priv->bdev, man); ttm_resource_manager_set_used(man, false); ttm_resource_manager_cleanup(man); ttm_set_driver_manager(&dev_priv->bdev, VMW_PL_SYSTEM, NULL); kfree(man); }
linux-master
drivers/gpu/drm/vmwgfx/vmwgfx_system_manager.c
// SPDX-License-Identifier: GPL-2.0 OR MIT /************************************************************************** * * Copyright 2009-2023 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "vmwgfx_bo.h" #include "vmwgfx_drv.h" #include "vmwgfx_devcaps.h" #include <drm/ttm/ttm_placement.h> #include <linux/sched/signal.h> bool vmw_supports_3d(struct vmw_private *dev_priv) { uint32_t fifo_min, hwversion; const struct vmw_fifo_state *fifo = dev_priv->fifo; if (!(dev_priv->capabilities & SVGA_CAP_3D)) return false; if (dev_priv->capabilities & SVGA_CAP_GBOBJECTS) { uint32_t result; if (!dev_priv->has_mob) return false; result = vmw_devcap_get(dev_priv, SVGA3D_DEVCAP_3D); return (result != 0); } if (!(dev_priv->capabilities & SVGA_CAP_EXTENDED_FIFO)) return false; BUG_ON(vmw_is_svga_v3(dev_priv)); fifo_min = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MIN); if (fifo_min <= SVGA_FIFO_3D_HWVERSION * sizeof(unsigned int)) return false; hwversion = vmw_fifo_mem_read(dev_priv, ((fifo->capabilities & SVGA_FIFO_CAP_3D_HWVERSION_REVISED) ? SVGA_FIFO_3D_HWVERSION_REVISED : SVGA_FIFO_3D_HWVERSION)); if (hwversion == 0) return false; if (hwversion < SVGA3D_HWVERSION_WS8_B1) return false; /* Legacy Display Unit does not support surfaces */ if (dev_priv->active_display_unit == vmw_du_legacy) return false; return true; } bool vmw_fifo_have_pitchlock(struct vmw_private *dev_priv) { uint32_t caps; if (!(dev_priv->capabilities & SVGA_CAP_EXTENDED_FIFO)) return false; caps = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_CAPABILITIES); if (caps & SVGA_FIFO_CAP_PITCHLOCK) return true; return false; } struct vmw_fifo_state *vmw_fifo_create(struct vmw_private *dev_priv) { struct vmw_fifo_state *fifo; uint32_t max; uint32_t min; if (!dev_priv->fifo_mem) return NULL; fifo = kzalloc(sizeof(*fifo), GFP_KERNEL); if (!fifo) return ERR_PTR(-ENOMEM); fifo->static_buffer_size = VMWGFX_FIFO_STATIC_SIZE; fifo->static_buffer = vmalloc(fifo->static_buffer_size); if (unlikely(fifo->static_buffer == NULL)) { kfree(fifo); return ERR_PTR(-ENOMEM); } fifo->dynamic_buffer = NULL; fifo->reserved_size = 0; fifo->using_bounce_buffer = false; mutex_init(&fifo->fifo_mutex); init_rwsem(&fifo->rwsem); min = 4; if (dev_priv->capabilities & SVGA_CAP_EXTENDED_FIFO) min = vmw_read(dev_priv, SVGA_REG_MEM_REGS); min <<= 2; if (min < PAGE_SIZE) min = PAGE_SIZE; vmw_fifo_mem_write(dev_priv, SVGA_FIFO_MIN, min); vmw_fifo_mem_write(dev_priv, SVGA_FIFO_MAX, dev_priv->fifo_mem_size); wmb(); vmw_fifo_mem_write(dev_priv, SVGA_FIFO_NEXT_CMD, min); vmw_fifo_mem_write(dev_priv, SVGA_FIFO_STOP, min); vmw_fifo_mem_write(dev_priv, SVGA_FIFO_BUSY, 0); mb(); vmw_write(dev_priv, SVGA_REG_CONFIG_DONE, 1); max = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MAX); min = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MIN); fifo->capabilities = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_CAPABILITIES); drm_info(&dev_priv->drm, "Fifo max 0x%08x min 0x%08x cap 0x%08x\n", (unsigned int) max, (unsigned int) min, (unsigned int) fifo->capabilities); if (unlikely(min >= max)) { drm_warn(&dev_priv->drm, "FIFO memory is not usable. Driver failed to initialize."); return ERR_PTR(-ENXIO); } return fifo; } void vmw_fifo_ping_host(struct vmw_private *dev_priv, uint32_t reason) { u32 *fifo_mem = dev_priv->fifo_mem; if (fifo_mem && cmpxchg(fifo_mem + SVGA_FIFO_BUSY, 0, 1) == 0) vmw_write(dev_priv, SVGA_REG_SYNC, reason); } void vmw_fifo_destroy(struct vmw_private *dev_priv) { struct vmw_fifo_state *fifo = dev_priv->fifo; if (!fifo) return; if (likely(fifo->static_buffer != NULL)) { vfree(fifo->static_buffer); fifo->static_buffer = NULL; } if (likely(fifo->dynamic_buffer != NULL)) { vfree(fifo->dynamic_buffer); fifo->dynamic_buffer = NULL; } kfree(fifo); dev_priv->fifo = NULL; } static bool vmw_fifo_is_full(struct vmw_private *dev_priv, uint32_t bytes) { uint32_t max = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MAX); uint32_t next_cmd = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_NEXT_CMD); uint32_t min = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MIN); uint32_t stop = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_STOP); return ((max - next_cmd) + (stop - min) <= bytes); } static int vmw_fifo_wait_noirq(struct vmw_private *dev_priv, uint32_t bytes, bool interruptible, unsigned long timeout) { int ret = 0; unsigned long end_jiffies = jiffies + timeout; DEFINE_WAIT(__wait); DRM_INFO("Fifo wait noirq.\n"); for (;;) { prepare_to_wait(&dev_priv->fifo_queue, &__wait, (interruptible) ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); if (!vmw_fifo_is_full(dev_priv, bytes)) break; if (time_after_eq(jiffies, end_jiffies)) { ret = -EBUSY; DRM_ERROR("SVGA device lockup.\n"); break; } schedule_timeout(1); if (interruptible && signal_pending(current)) { ret = -ERESTARTSYS; break; } } finish_wait(&dev_priv->fifo_queue, &__wait); wake_up_all(&dev_priv->fifo_queue); DRM_INFO("Fifo noirq exit.\n"); return ret; } static int vmw_fifo_wait(struct vmw_private *dev_priv, uint32_t bytes, bool interruptible, unsigned long timeout) { long ret = 1L; if (likely(!vmw_fifo_is_full(dev_priv, bytes))) return 0; vmw_fifo_ping_host(dev_priv, SVGA_SYNC_FIFOFULL); if (!(dev_priv->capabilities & SVGA_CAP_IRQMASK)) return vmw_fifo_wait_noirq(dev_priv, bytes, interruptible, timeout); vmw_generic_waiter_add(dev_priv, SVGA_IRQFLAG_FIFO_PROGRESS, &dev_priv->fifo_queue_waiters); if (interruptible) ret = wait_event_interruptible_timeout (dev_priv->fifo_queue, !vmw_fifo_is_full(dev_priv, bytes), timeout); else ret = wait_event_timeout (dev_priv->fifo_queue, !vmw_fifo_is_full(dev_priv, bytes), timeout); if (unlikely(ret == 0)) ret = -EBUSY; else if (likely(ret > 0)) ret = 0; vmw_generic_waiter_remove(dev_priv, SVGA_IRQFLAG_FIFO_PROGRESS, &dev_priv->fifo_queue_waiters); return ret; } /* * Reserve @bytes number of bytes in the fifo. * * This function will return NULL (error) on two conditions: * If it timeouts waiting for fifo space, or if @bytes is larger than the * available fifo space. * * Returns: * Pointer to the fifo, or null on error (possible hardware hang). */ static void *vmw_local_fifo_reserve(struct vmw_private *dev_priv, uint32_t bytes) { struct vmw_fifo_state *fifo_state = dev_priv->fifo; u32 *fifo_mem = dev_priv->fifo_mem; uint32_t max; uint32_t min; uint32_t next_cmd; uint32_t reserveable = fifo_state->capabilities & SVGA_FIFO_CAP_RESERVE; int ret; mutex_lock(&fifo_state->fifo_mutex); max = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MAX); min = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MIN); next_cmd = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_NEXT_CMD); if (unlikely(bytes >= (max - min))) goto out_err; BUG_ON(fifo_state->reserved_size != 0); BUG_ON(fifo_state->dynamic_buffer != NULL); fifo_state->reserved_size = bytes; while (1) { uint32_t stop = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_STOP); bool need_bounce = false; bool reserve_in_place = false; if (next_cmd >= stop) { if (likely((next_cmd + bytes < max || (next_cmd + bytes == max && stop > min)))) reserve_in_place = true; else if (vmw_fifo_is_full(dev_priv, bytes)) { ret = vmw_fifo_wait(dev_priv, bytes, false, 3 * HZ); if (unlikely(ret != 0)) goto out_err; } else need_bounce = true; } else { if (likely((next_cmd + bytes < stop))) reserve_in_place = true; else { ret = vmw_fifo_wait(dev_priv, bytes, false, 3 * HZ); if (unlikely(ret != 0)) goto out_err; } } if (reserve_in_place) { if (reserveable || bytes <= sizeof(uint32_t)) { fifo_state->using_bounce_buffer = false; if (reserveable) vmw_fifo_mem_write(dev_priv, SVGA_FIFO_RESERVED, bytes); return (void __force *) (fifo_mem + (next_cmd >> 2)); } else { need_bounce = true; } } if (need_bounce) { fifo_state->using_bounce_buffer = true; if (bytes < fifo_state->static_buffer_size) return fifo_state->static_buffer; else { fifo_state->dynamic_buffer = vmalloc(bytes); if (!fifo_state->dynamic_buffer) goto out_err; return fifo_state->dynamic_buffer; } } } out_err: fifo_state->reserved_size = 0; mutex_unlock(&fifo_state->fifo_mutex); return NULL; } void *vmw_cmd_ctx_reserve(struct vmw_private *dev_priv, uint32_t bytes, int ctx_id) { void *ret; if (dev_priv->cman) ret = vmw_cmdbuf_reserve(dev_priv->cman, bytes, ctx_id, false, NULL); else if (ctx_id == SVGA3D_INVALID_ID) ret = vmw_local_fifo_reserve(dev_priv, bytes); else { WARN(1, "Command buffer has not been allocated.\n"); ret = NULL; } if (IS_ERR_OR_NULL(ret)) return NULL; return ret; } static void vmw_fifo_res_copy(struct vmw_fifo_state *fifo_state, struct vmw_private *vmw, uint32_t next_cmd, uint32_t max, uint32_t min, uint32_t bytes) { u32 *fifo_mem = vmw->fifo_mem; uint32_t chunk_size = max - next_cmd; uint32_t rest; uint32_t *buffer = (fifo_state->dynamic_buffer != NULL) ? fifo_state->dynamic_buffer : fifo_state->static_buffer; if (bytes < chunk_size) chunk_size = bytes; vmw_fifo_mem_write(vmw, SVGA_FIFO_RESERVED, bytes); mb(); memcpy(fifo_mem + (next_cmd >> 2), buffer, chunk_size); rest = bytes - chunk_size; if (rest) memcpy(fifo_mem + (min >> 2), buffer + (chunk_size >> 2), rest); } static void vmw_fifo_slow_copy(struct vmw_fifo_state *fifo_state, struct vmw_private *vmw, uint32_t next_cmd, uint32_t max, uint32_t min, uint32_t bytes) { uint32_t *buffer = (fifo_state->dynamic_buffer != NULL) ? fifo_state->dynamic_buffer : fifo_state->static_buffer; while (bytes > 0) { vmw_fifo_mem_write(vmw, (next_cmd >> 2), *buffer++); next_cmd += sizeof(uint32_t); if (unlikely(next_cmd == max)) next_cmd = min; mb(); vmw_fifo_mem_write(vmw, SVGA_FIFO_NEXT_CMD, next_cmd); mb(); bytes -= sizeof(uint32_t); } } static void vmw_local_fifo_commit(struct vmw_private *dev_priv, uint32_t bytes) { struct vmw_fifo_state *fifo_state = dev_priv->fifo; uint32_t next_cmd = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_NEXT_CMD); uint32_t max = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MAX); uint32_t min = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MIN); bool reserveable = fifo_state->capabilities & SVGA_FIFO_CAP_RESERVE; BUG_ON((bytes & 3) != 0); BUG_ON(bytes > fifo_state->reserved_size); fifo_state->reserved_size = 0; if (fifo_state->using_bounce_buffer) { if (reserveable) vmw_fifo_res_copy(fifo_state, dev_priv, next_cmd, max, min, bytes); else vmw_fifo_slow_copy(fifo_state, dev_priv, next_cmd, max, min, bytes); if (fifo_state->dynamic_buffer) { vfree(fifo_state->dynamic_buffer); fifo_state->dynamic_buffer = NULL; } } down_write(&fifo_state->rwsem); if (fifo_state->using_bounce_buffer || reserveable) { next_cmd += bytes; if (next_cmd >= max) next_cmd -= max - min; mb(); vmw_fifo_mem_write(dev_priv, SVGA_FIFO_NEXT_CMD, next_cmd); } if (reserveable) vmw_fifo_mem_write(dev_priv, SVGA_FIFO_RESERVED, 0); mb(); up_write(&fifo_state->rwsem); vmw_fifo_ping_host(dev_priv, SVGA_SYNC_GENERIC); mutex_unlock(&fifo_state->fifo_mutex); } void vmw_cmd_commit(struct vmw_private *dev_priv, uint32_t bytes) { if (dev_priv->cman) vmw_cmdbuf_commit(dev_priv->cman, bytes, NULL, false); else vmw_local_fifo_commit(dev_priv, bytes); } /** * vmw_cmd_commit_flush - Commit fifo space and flush any buffered commands. * * @dev_priv: Pointer to device private structure. * @bytes: Number of bytes to commit. */ void vmw_cmd_commit_flush(struct vmw_private *dev_priv, uint32_t bytes) { if (dev_priv->cman) vmw_cmdbuf_commit(dev_priv->cman, bytes, NULL, true); else vmw_local_fifo_commit(dev_priv, bytes); } /** * vmw_cmd_flush - Flush any buffered commands and make sure command processing * starts. * * @dev_priv: Pointer to device private structure. * @interruptible: Whether to wait interruptible if function needs to sleep. */ int vmw_cmd_flush(struct vmw_private *dev_priv, bool interruptible) { might_sleep(); if (dev_priv->cman) return vmw_cmdbuf_cur_flush(dev_priv->cman, interruptible); else return 0; } int vmw_cmd_send_fence(struct vmw_private *dev_priv, uint32_t *seqno) { struct svga_fifo_cmd_fence *cmd_fence; u32 *fm; int ret = 0; uint32_t bytes = sizeof(u32) + sizeof(*cmd_fence); fm = VMW_CMD_RESERVE(dev_priv, bytes); if (unlikely(fm == NULL)) { *seqno = atomic_read(&dev_priv->marker_seq); ret = -ENOMEM; (void)vmw_fallback_wait(dev_priv, false, true, *seqno, false, 3*HZ); goto out_err; } do { *seqno = atomic_add_return(1, &dev_priv->marker_seq); } while (*seqno == 0); if (!vmw_has_fences(dev_priv)) { /* * Don't request hardware to send a fence. The * waiting code in vmwgfx_irq.c will emulate this. */ vmw_cmd_commit(dev_priv, 0); return 0; } *fm++ = SVGA_CMD_FENCE; cmd_fence = (struct svga_fifo_cmd_fence *) fm; cmd_fence->fence = *seqno; vmw_cmd_commit_flush(dev_priv, bytes); vmw_update_seqno(dev_priv); out_err: return ret; } /** * vmw_cmd_emit_dummy_legacy_query - emits a dummy query to the fifo using * legacy query commands. * * @dev_priv: The device private structure. * @cid: The hardware context id used for the query. * * See the vmw_cmd_emit_dummy_query documentation. */ static int vmw_cmd_emit_dummy_legacy_query(struct vmw_private *dev_priv, uint32_t cid) { /* * A query wait without a preceding query end will * actually finish all queries for this cid * without writing to the query result structure. */ struct ttm_buffer_object *bo = &dev_priv->dummy_query_bo->tbo; struct { SVGA3dCmdHeader header; SVGA3dCmdWaitForQuery body; } *cmd; cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd)); if (unlikely(cmd == NULL)) return -ENOMEM; cmd->header.id = SVGA_3D_CMD_WAIT_FOR_QUERY; cmd->header.size = sizeof(cmd->body); cmd->body.cid = cid; cmd->body.type = SVGA3D_QUERYTYPE_OCCLUSION; if (bo->resource->mem_type == TTM_PL_VRAM) { cmd->body.guestResult.gmrId = SVGA_GMR_FRAMEBUFFER; cmd->body.guestResult.offset = bo->resource->start << PAGE_SHIFT; } else { cmd->body.guestResult.gmrId = bo->resource->start; cmd->body.guestResult.offset = 0; } vmw_cmd_commit(dev_priv, sizeof(*cmd)); return 0; } /** * vmw_cmd_emit_dummy_gb_query - emits a dummy query to the fifo using * guest-backed resource query commands. * * @dev_priv: The device private structure. * @cid: The hardware context id used for the query. * * See the vmw_cmd_emit_dummy_query documentation. */ static int vmw_cmd_emit_dummy_gb_query(struct vmw_private *dev_priv, uint32_t cid) { /* * A query wait without a preceding query end will * actually finish all queries for this cid * without writing to the query result structure. */ struct ttm_buffer_object *bo = &dev_priv->dummy_query_bo->tbo; struct { SVGA3dCmdHeader header; SVGA3dCmdWaitForGBQuery body; } *cmd; cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd)); if (unlikely(cmd == NULL)) return -ENOMEM; cmd->header.id = SVGA_3D_CMD_WAIT_FOR_GB_QUERY; cmd->header.size = sizeof(cmd->body); cmd->body.cid = cid; cmd->body.type = SVGA3D_QUERYTYPE_OCCLUSION; BUG_ON(bo->resource->mem_type != VMW_PL_MOB); cmd->body.mobid = bo->resource->start; cmd->body.offset = 0; vmw_cmd_commit(dev_priv, sizeof(*cmd)); return 0; } /** * vmw_cmd_emit_dummy_query - emits a dummy query to the fifo using * appropriate resource query commands. * * @dev_priv: The device private structure. * @cid: The hardware context id used for the query. * * This function is used to emit a dummy occlusion query with * no primitives rendered between query begin and query end. * It's used to provide a query barrier, in order to know that when * this query is finished, all preceding queries are also finished. * * A Query results structure should have been initialized at the start * of the dev_priv->dummy_query_bo buffer object. And that buffer object * must also be either reserved or pinned when this function is called. * * Returns -ENOMEM on failure to reserve fifo space. */ int vmw_cmd_emit_dummy_query(struct vmw_private *dev_priv, uint32_t cid) { if (dev_priv->has_mob) return vmw_cmd_emit_dummy_gb_query(dev_priv, cid); return vmw_cmd_emit_dummy_legacy_query(dev_priv, cid); } /** * vmw_cmd_supported - returns true if the given device supports * command queues. * * @vmw: The device private structure. * * Returns true if we can issue commands. */ bool vmw_cmd_supported(struct vmw_private *vmw) { bool has_cmdbufs = (vmw->capabilities & (SVGA_CAP_COMMAND_BUFFERS | SVGA_CAP_CMD_BUFFERS_2)) != 0; if (vmw_is_svga_v3(vmw)) return (has_cmdbufs && (vmw->capabilities & SVGA_CAP_GBOBJECTS) != 0); /* * We have FIFO cmd's */ return has_cmdbufs || vmw->fifo_mem != NULL; }
linux-master
drivers/gpu/drm/vmwgfx/vmwgfx_cmd.c
// SPDX-License-Identifier: GPL-2.0 OR MIT /************************************************************************** * * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "vmwgfx_drv.h" #define VMW_PPN_SIZE (sizeof(unsigned long)) /* A future safe maximum remap size. */ #define VMW_PPN_PER_REMAP ((31 * 1024) / VMW_PPN_SIZE) #define DMA_ADDR_INVALID ((dma_addr_t) 0) #define DMA_PAGE_INVALID 0UL static int vmw_gmr2_bind(struct vmw_private *dev_priv, struct vmw_piter *iter, unsigned long num_pages, int gmr_id) { SVGAFifoCmdDefineGMR2 define_cmd; SVGAFifoCmdRemapGMR2 remap_cmd; uint32_t *cmd; uint32_t *cmd_orig; uint32_t define_size = sizeof(define_cmd) + sizeof(*cmd); uint32_t remap_num = num_pages / VMW_PPN_PER_REMAP + ((num_pages % VMW_PPN_PER_REMAP) > 0); uint32_t remap_size = VMW_PPN_SIZE * num_pages + (sizeof(remap_cmd) + sizeof(*cmd)) * remap_num; uint32_t remap_pos = 0; uint32_t cmd_size = define_size + remap_size; uint32_t i; cmd_orig = cmd = VMW_CMD_RESERVE(dev_priv, cmd_size); if (unlikely(cmd == NULL)) return -ENOMEM; define_cmd.gmrId = gmr_id; define_cmd.numPages = num_pages; *cmd++ = SVGA_CMD_DEFINE_GMR2; memcpy(cmd, &define_cmd, sizeof(define_cmd)); cmd += sizeof(define_cmd) / sizeof(*cmd); /* * Need to split the command if there are too many * pages that goes into the gmr. */ remap_cmd.gmrId = gmr_id; remap_cmd.flags = (VMW_PPN_SIZE > sizeof(*cmd)) ? SVGA_REMAP_GMR2_PPN64 : SVGA_REMAP_GMR2_PPN32; while (num_pages > 0) { unsigned long nr = min_t(unsigned long, num_pages, VMW_PPN_PER_REMAP); remap_cmd.offsetPages = remap_pos; remap_cmd.numPages = nr; *cmd++ = SVGA_CMD_REMAP_GMR2; memcpy(cmd, &remap_cmd, sizeof(remap_cmd)); cmd += sizeof(remap_cmd) / sizeof(*cmd); for (i = 0; i < nr; ++i) { if (VMW_PPN_SIZE <= 4) *cmd = vmw_piter_dma_addr(iter) >> PAGE_SHIFT; else *((uint64_t *)cmd) = vmw_piter_dma_addr(iter) >> PAGE_SHIFT; cmd += VMW_PPN_SIZE / sizeof(*cmd); vmw_piter_next(iter); } num_pages -= nr; remap_pos += nr; } BUG_ON(cmd != cmd_orig + cmd_size / sizeof(*cmd)); vmw_cmd_commit(dev_priv, cmd_size); return 0; } static void vmw_gmr2_unbind(struct vmw_private *dev_priv, int gmr_id) { SVGAFifoCmdDefineGMR2 define_cmd; uint32_t define_size = sizeof(define_cmd) + 4; uint32_t *cmd; cmd = VMW_CMD_RESERVE(dev_priv, define_size); if (unlikely(cmd == NULL)) return; define_cmd.gmrId = gmr_id; define_cmd.numPages = 0; *cmd++ = SVGA_CMD_DEFINE_GMR2; memcpy(cmd, &define_cmd, sizeof(define_cmd)); vmw_cmd_commit(dev_priv, define_size); } int vmw_gmr_bind(struct vmw_private *dev_priv, const struct vmw_sg_table *vsgt, unsigned long num_pages, int gmr_id) { struct vmw_piter data_iter; vmw_piter_start(&data_iter, vsgt, 0); if (unlikely(!vmw_piter_next(&data_iter))) return 0; if (unlikely(!(dev_priv->capabilities & SVGA_CAP_GMR2))) return -EINVAL; return vmw_gmr2_bind(dev_priv, &data_iter, num_pages, gmr_id); } void vmw_gmr_unbind(struct vmw_private *dev_priv, int gmr_id) { if (likely(dev_priv->capabilities & SVGA_CAP_GMR2)) vmw_gmr2_unbind(dev_priv, gmr_id); }
linux-master
drivers/gpu/drm/vmwgfx/vmwgfx_gmr.c
// SPDX-License-Identifier: GPL-2.0 OR MIT /************************************************************************** * * Copyright 2009-2023 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "vmwgfx_bo.h" #include "vmwgfx_drv.h" #include "vmwgfx_resource_priv.h" #include "vmwgfx_so.h" #include "vmwgfx_binding.h" #include "vmw_surface_cache.h" #include "device_include/svga3d_surfacedefs.h" #include <drm/ttm/ttm_placement.h> #define SVGA3D_FLAGS_64(upper32, lower32) (((uint64_t)upper32 << 32) | lower32) #define SVGA3D_FLAGS_UPPER_32(svga3d_flags) (svga3d_flags >> 32) #define SVGA3D_FLAGS_LOWER_32(svga3d_flags) \ (svga3d_flags & ((uint64_t)U32_MAX)) /** * struct vmw_user_surface - User-space visible surface resource * * @prime: The TTM prime object. * @base: The TTM base object handling user-space visibility. * @srf: The surface metadata. * @master: Master of the creating client. Used for security check. */ struct vmw_user_surface { struct ttm_prime_object prime; struct vmw_surface srf; struct drm_master *master; }; /** * struct vmw_surface_offset - Backing store mip level offset info * * @face: Surface face. * @mip: Mip level. * @bo_offset: Offset into backing store of this mip level. * */ struct vmw_surface_offset { uint32_t face; uint32_t mip; uint32_t bo_offset; }; /** * struct vmw_surface_dirty - Surface dirty-tracker * @cache: Cached layout information of the surface. * @num_subres: Number of subresources. * @boxes: Array of SVGA3dBoxes indicating dirty regions. One per subresource. */ struct vmw_surface_dirty { struct vmw_surface_cache cache; u32 num_subres; SVGA3dBox boxes[]; }; static void vmw_user_surface_free(struct vmw_resource *res); static struct vmw_resource * vmw_user_surface_base_to_res(struct ttm_base_object *base); static int vmw_legacy_srf_bind(struct vmw_resource *res, struct ttm_validate_buffer *val_buf); static int vmw_legacy_srf_unbind(struct vmw_resource *res, bool readback, struct ttm_validate_buffer *val_buf); static int vmw_legacy_srf_create(struct vmw_resource *res); static int vmw_legacy_srf_destroy(struct vmw_resource *res); static int vmw_gb_surface_create(struct vmw_resource *res); static int vmw_gb_surface_bind(struct vmw_resource *res, struct ttm_validate_buffer *val_buf); static int vmw_gb_surface_unbind(struct vmw_resource *res, bool readback, struct ttm_validate_buffer *val_buf); static int vmw_gb_surface_destroy(struct vmw_resource *res); static int vmw_gb_surface_define_internal(struct drm_device *dev, struct drm_vmw_gb_surface_create_ext_req *req, struct drm_vmw_gb_surface_create_rep *rep, struct drm_file *file_priv); static int vmw_gb_surface_reference_internal(struct drm_device *dev, struct drm_vmw_surface_arg *req, struct drm_vmw_gb_surface_ref_ext_rep *rep, struct drm_file *file_priv); static void vmw_surface_dirty_free(struct vmw_resource *res); static int vmw_surface_dirty_alloc(struct vmw_resource *res); static int vmw_surface_dirty_sync(struct vmw_resource *res); static void vmw_surface_dirty_range_add(struct vmw_resource *res, size_t start, size_t end); static int vmw_surface_clean(struct vmw_resource *res); static const struct vmw_user_resource_conv user_surface_conv = { .object_type = VMW_RES_SURFACE, .base_obj_to_res = vmw_user_surface_base_to_res, .res_free = vmw_user_surface_free }; const struct vmw_user_resource_conv *user_surface_converter = &user_surface_conv; static const struct vmw_res_func vmw_legacy_surface_func = { .res_type = vmw_res_surface, .needs_guest_memory = false, .may_evict = true, .prio = 1, .dirty_prio = 1, .type_name = "legacy surfaces", .domain = VMW_BO_DOMAIN_GMR, .busy_domain = VMW_BO_DOMAIN_GMR | VMW_BO_DOMAIN_VRAM, .create = &vmw_legacy_srf_create, .destroy = &vmw_legacy_srf_destroy, .bind = &vmw_legacy_srf_bind, .unbind = &vmw_legacy_srf_unbind }; static const struct vmw_res_func vmw_gb_surface_func = { .res_type = vmw_res_surface, .needs_guest_memory = true, .may_evict = true, .prio = 1, .dirty_prio = 2, .type_name = "guest backed surfaces", .domain = VMW_BO_DOMAIN_MOB, .busy_domain = VMW_BO_DOMAIN_MOB, .create = vmw_gb_surface_create, .destroy = vmw_gb_surface_destroy, .bind = vmw_gb_surface_bind, .unbind = vmw_gb_surface_unbind, .dirty_alloc = vmw_surface_dirty_alloc, .dirty_free = vmw_surface_dirty_free, .dirty_sync = vmw_surface_dirty_sync, .dirty_range_add = vmw_surface_dirty_range_add, .clean = vmw_surface_clean, }; /* * struct vmw_surface_dma - SVGA3D DMA command */ struct vmw_surface_dma { SVGA3dCmdHeader header; SVGA3dCmdSurfaceDMA body; SVGA3dCopyBox cb; SVGA3dCmdSurfaceDMASuffix suffix; }; /* * struct vmw_surface_define - SVGA3D Surface Define command */ struct vmw_surface_define { SVGA3dCmdHeader header; SVGA3dCmdDefineSurface body; }; /* * struct vmw_surface_destroy - SVGA3D Surface Destroy command */ struct vmw_surface_destroy { SVGA3dCmdHeader header; SVGA3dCmdDestroySurface body; }; /** * vmw_surface_dma_size - Compute fifo size for a dma command. * * @srf: Pointer to a struct vmw_surface * * Computes the required size for a surface dma command for backup or * restoration of the surface represented by @srf. */ static inline uint32_t vmw_surface_dma_size(const struct vmw_surface *srf) { return srf->metadata.num_sizes * sizeof(struct vmw_surface_dma); } /** * vmw_surface_define_size - Compute fifo size for a surface define command. * * @srf: Pointer to a struct vmw_surface * * Computes the required size for a surface define command for the definition * of the surface represented by @srf. */ static inline uint32_t vmw_surface_define_size(const struct vmw_surface *srf) { return sizeof(struct vmw_surface_define) + srf->metadata.num_sizes * sizeof(SVGA3dSize); } /** * vmw_surface_destroy_size - Compute fifo size for a surface destroy command. * * Computes the required size for a surface destroy command for the destruction * of a hw surface. */ static inline uint32_t vmw_surface_destroy_size(void) { return sizeof(struct vmw_surface_destroy); } /** * vmw_surface_destroy_encode - Encode a surface_destroy command. * * @id: The surface id * @cmd_space: Pointer to memory area in which the commands should be encoded. */ static void vmw_surface_destroy_encode(uint32_t id, void *cmd_space) { struct vmw_surface_destroy *cmd = (struct vmw_surface_destroy *) cmd_space; cmd->header.id = SVGA_3D_CMD_SURFACE_DESTROY; cmd->header.size = sizeof(cmd->body); cmd->body.sid = id; } /** * vmw_surface_define_encode - Encode a surface_define command. * * @srf: Pointer to a struct vmw_surface object. * @cmd_space: Pointer to memory area in which the commands should be encoded. */ static void vmw_surface_define_encode(const struct vmw_surface *srf, void *cmd_space) { struct vmw_surface_define *cmd = (struct vmw_surface_define *) cmd_space; struct drm_vmw_size *src_size; SVGA3dSize *cmd_size; uint32_t cmd_len; int i; cmd_len = sizeof(cmd->body) + srf->metadata.num_sizes * sizeof(SVGA3dSize); cmd->header.id = SVGA_3D_CMD_SURFACE_DEFINE; cmd->header.size = cmd_len; cmd->body.sid = srf->res.id; /* * Downcast of surfaceFlags, was upcasted when received from user-space, * since driver internally stores as 64 bit. * For legacy surface define only 32 bit flag is supported. */ cmd->body.surfaceFlags = (SVGA3dSurface1Flags)srf->metadata.flags; cmd->body.format = srf->metadata.format; for (i = 0; i < DRM_VMW_MAX_SURFACE_FACES; ++i) cmd->body.face[i].numMipLevels = srf->metadata.mip_levels[i]; cmd += 1; cmd_size = (SVGA3dSize *) cmd; src_size = srf->metadata.sizes; for (i = 0; i < srf->metadata.num_sizes; ++i, cmd_size++, src_size++) { cmd_size->width = src_size->width; cmd_size->height = src_size->height; cmd_size->depth = src_size->depth; } } /** * vmw_surface_dma_encode - Encode a surface_dma command. * * @srf: Pointer to a struct vmw_surface object. * @cmd_space: Pointer to memory area in which the commands should be encoded. * @ptr: Pointer to an SVGAGuestPtr indicating where the surface contents * should be placed or read from. * @to_surface: Boolean whether to DMA to the surface or from the surface. */ static void vmw_surface_dma_encode(struct vmw_surface *srf, void *cmd_space, const SVGAGuestPtr *ptr, bool to_surface) { uint32_t i; struct vmw_surface_dma *cmd = (struct vmw_surface_dma *)cmd_space; const struct SVGA3dSurfaceDesc *desc = vmw_surface_get_desc(srf->metadata.format); for (i = 0; i < srf->metadata.num_sizes; ++i) { SVGA3dCmdHeader *header = &cmd->header; SVGA3dCmdSurfaceDMA *body = &cmd->body; SVGA3dCopyBox *cb = &cmd->cb; SVGA3dCmdSurfaceDMASuffix *suffix = &cmd->suffix; const struct vmw_surface_offset *cur_offset = &srf->offsets[i]; const struct drm_vmw_size *cur_size = &srf->metadata.sizes[i]; header->id = SVGA_3D_CMD_SURFACE_DMA; header->size = sizeof(*body) + sizeof(*cb) + sizeof(*suffix); body->guest.ptr = *ptr; body->guest.ptr.offset += cur_offset->bo_offset; body->guest.pitch = vmw_surface_calculate_pitch(desc, cur_size); body->host.sid = srf->res.id; body->host.face = cur_offset->face; body->host.mipmap = cur_offset->mip; body->transfer = ((to_surface) ? SVGA3D_WRITE_HOST_VRAM : SVGA3D_READ_HOST_VRAM); cb->x = 0; cb->y = 0; cb->z = 0; cb->srcx = 0; cb->srcy = 0; cb->srcz = 0; cb->w = cur_size->width; cb->h = cur_size->height; cb->d = cur_size->depth; suffix->suffixSize = sizeof(*suffix); suffix->maximumOffset = vmw_surface_get_image_buffer_size(desc, cur_size, body->guest.pitch); suffix->flags.discard = 0; suffix->flags.unsynchronized = 0; suffix->flags.reserved = 0; ++cmd; } }; /** * vmw_hw_surface_destroy - destroy a Device surface * * @res: Pointer to a struct vmw_resource embedded in a struct * vmw_surface. * * Destroys a the device surface associated with a struct vmw_surface if * any, and adjusts resource count accordingly. */ static void vmw_hw_surface_destroy(struct vmw_resource *res) { struct vmw_private *dev_priv = res->dev_priv; void *cmd; if (res->func->destroy == vmw_gb_surface_destroy) { (void) vmw_gb_surface_destroy(res); return; } if (res->id != -1) { cmd = VMW_CMD_RESERVE(dev_priv, vmw_surface_destroy_size()); if (unlikely(!cmd)) return; vmw_surface_destroy_encode(res->id, cmd); vmw_cmd_commit(dev_priv, vmw_surface_destroy_size()); /* * used_memory_size_atomic, or separate lock * to avoid taking dev_priv::cmdbuf_mutex in * the destroy path. */ mutex_lock(&dev_priv->cmdbuf_mutex); dev_priv->used_memory_size -= res->guest_memory_size; mutex_unlock(&dev_priv->cmdbuf_mutex); } } /** * vmw_legacy_srf_create - Create a device surface as part of the * resource validation process. * * @res: Pointer to a struct vmw_surface. * * If the surface doesn't have a hw id. * * Returns -EBUSY if there wasn't sufficient device resources to * complete the validation. Retry after freeing up resources. * * May return other errors if the kernel is out of guest resources. */ static int vmw_legacy_srf_create(struct vmw_resource *res) { struct vmw_private *dev_priv = res->dev_priv; struct vmw_surface *srf; uint32_t submit_size; uint8_t *cmd; int ret; if (likely(res->id != -1)) return 0; srf = vmw_res_to_srf(res); if (unlikely(dev_priv->used_memory_size + res->guest_memory_size >= dev_priv->memory_size)) return -EBUSY; /* * Alloc id for the resource. */ ret = vmw_resource_alloc_id(res); if (unlikely(ret != 0)) { DRM_ERROR("Failed to allocate a surface id.\n"); goto out_no_id; } if (unlikely(res->id >= SVGA3D_HB_MAX_SURFACE_IDS)) { ret = -EBUSY; goto out_no_fifo; } /* * Encode surface define- commands. */ submit_size = vmw_surface_define_size(srf); cmd = VMW_CMD_RESERVE(dev_priv, submit_size); if (unlikely(!cmd)) { ret = -ENOMEM; goto out_no_fifo; } vmw_surface_define_encode(srf, cmd); vmw_cmd_commit(dev_priv, submit_size); vmw_fifo_resource_inc(dev_priv); /* * Surface memory usage accounting. */ dev_priv->used_memory_size += res->guest_memory_size; return 0; out_no_fifo: vmw_resource_release_id(res); out_no_id: return ret; } /** * vmw_legacy_srf_dma - Copy backup data to or from a legacy surface. * * @res: Pointer to a struct vmw_res embedded in a struct * vmw_surface. * @val_buf: Pointer to a struct ttm_validate_buffer containing * information about the backup buffer. * @bind: Boolean wether to DMA to the surface. * * Transfer backup data to or from a legacy surface as part of the * validation process. * May return other errors if the kernel is out of guest resources. * The backup buffer will be fenced or idle upon successful completion, * and if the surface needs persistent backup storage, the backup buffer * will also be returned reserved iff @bind is true. */ static int vmw_legacy_srf_dma(struct vmw_resource *res, struct ttm_validate_buffer *val_buf, bool bind) { SVGAGuestPtr ptr; struct vmw_fence_obj *fence; uint32_t submit_size; struct vmw_surface *srf = vmw_res_to_srf(res); uint8_t *cmd; struct vmw_private *dev_priv = res->dev_priv; BUG_ON(!val_buf->bo); submit_size = vmw_surface_dma_size(srf); cmd = VMW_CMD_RESERVE(dev_priv, submit_size); if (unlikely(!cmd)) return -ENOMEM; vmw_bo_get_guest_ptr(val_buf->bo, &ptr); vmw_surface_dma_encode(srf, cmd, &ptr, bind); vmw_cmd_commit(dev_priv, submit_size); /* * Create a fence object and fence the backup buffer. */ (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL); vmw_bo_fence_single(val_buf->bo, fence); if (likely(fence != NULL)) vmw_fence_obj_unreference(&fence); return 0; } /** * vmw_legacy_srf_bind - Perform a legacy surface bind as part of the * surface validation process. * * @res: Pointer to a struct vmw_res embedded in a struct * vmw_surface. * @val_buf: Pointer to a struct ttm_validate_buffer containing * information about the backup buffer. * * This function will copy backup data to the surface if the * backup buffer is dirty. */ static int vmw_legacy_srf_bind(struct vmw_resource *res, struct ttm_validate_buffer *val_buf) { if (!res->guest_memory_dirty) return 0; return vmw_legacy_srf_dma(res, val_buf, true); } /** * vmw_legacy_srf_unbind - Perform a legacy surface unbind as part of the * surface eviction process. * * @res: Pointer to a struct vmw_res embedded in a struct * vmw_surface. * @readback: Readback - only true if dirty * @val_buf: Pointer to a struct ttm_validate_buffer containing * information about the backup buffer. * * This function will copy backup data from the surface. */ static int vmw_legacy_srf_unbind(struct vmw_resource *res, bool readback, struct ttm_validate_buffer *val_buf) { if (unlikely(readback)) return vmw_legacy_srf_dma(res, val_buf, false); return 0; } /** * vmw_legacy_srf_destroy - Destroy a device surface as part of a * resource eviction process. * * @res: Pointer to a struct vmw_res embedded in a struct * vmw_surface. */ static int vmw_legacy_srf_destroy(struct vmw_resource *res) { struct vmw_private *dev_priv = res->dev_priv; uint32_t submit_size; uint8_t *cmd; BUG_ON(res->id == -1); /* * Encode the dma- and surface destroy commands. */ submit_size = vmw_surface_destroy_size(); cmd = VMW_CMD_RESERVE(dev_priv, submit_size); if (unlikely(!cmd)) return -ENOMEM; vmw_surface_destroy_encode(res->id, cmd); vmw_cmd_commit(dev_priv, submit_size); /* * Surface memory usage accounting. */ dev_priv->used_memory_size -= res->guest_memory_size; /* * Release the surface ID. */ vmw_resource_release_id(res); vmw_fifo_resource_dec(dev_priv); return 0; } /** * vmw_surface_init - initialize a struct vmw_surface * * @dev_priv: Pointer to a device private struct. * @srf: Pointer to the struct vmw_surface to initialize. * @res_free: Pointer to a resource destructor used to free * the object. */ static int vmw_surface_init(struct vmw_private *dev_priv, struct vmw_surface *srf, void (*res_free) (struct vmw_resource *res)) { int ret; struct vmw_resource *res = &srf->res; BUG_ON(!res_free); ret = vmw_resource_init(dev_priv, res, true, res_free, (dev_priv->has_mob) ? &vmw_gb_surface_func : &vmw_legacy_surface_func); if (unlikely(ret != 0)) { res_free(res); return ret; } /* * The surface won't be visible to hardware until a * surface validate. */ INIT_LIST_HEAD(&srf->view_list); res->hw_destroy = vmw_hw_surface_destroy; return ret; } /** * vmw_user_surface_base_to_res - TTM base object to resource converter for * user visible surfaces * * @base: Pointer to a TTM base object * * Returns the struct vmw_resource embedded in a struct vmw_surface * for the user-visible object identified by the TTM base object @base. */ static struct vmw_resource * vmw_user_surface_base_to_res(struct ttm_base_object *base) { return &(container_of(base, struct vmw_user_surface, prime.base)->srf.res); } /** * vmw_user_surface_free - User visible surface resource destructor * * @res: A struct vmw_resource embedded in a struct vmw_surface. */ static void vmw_user_surface_free(struct vmw_resource *res) { struct vmw_surface *srf = vmw_res_to_srf(res); struct vmw_user_surface *user_srf = container_of(srf, struct vmw_user_surface, srf); WARN_ON_ONCE(res->dirty); if (user_srf->master) drm_master_put(&user_srf->master); kfree(srf->offsets); kfree(srf->metadata.sizes); kfree(srf->snooper.image); ttm_prime_object_kfree(user_srf, prime); } /** * vmw_user_surface_base_release - User visible surface TTM base object destructor * * @p_base: Pointer to a pointer to a TTM base object * embedded in a struct vmw_user_surface. * * Drops the base object's reference on its resource, and the * pointer pointed to by *p_base is set to NULL. */ static void vmw_user_surface_base_release(struct ttm_base_object **p_base) { struct ttm_base_object *base = *p_base; struct vmw_user_surface *user_srf = container_of(base, struct vmw_user_surface, prime.base); struct vmw_resource *res = &user_srf->srf.res; if (res->guest_memory_bo) drm_gem_object_put(&res->guest_memory_bo->tbo.base); *p_base = NULL; vmw_resource_unreference(&res); } /** * vmw_surface_destroy_ioctl - Ioctl function implementing * the user surface destroy functionality. * * @dev: Pointer to a struct drm_device. * @data: Pointer to data copied from / to user-space. * @file_priv: Pointer to a drm file private structure. */ int vmw_surface_destroy_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_vmw_surface_arg *arg = (struct drm_vmw_surface_arg *)data; struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; return ttm_ref_object_base_unref(tfile, arg->sid); } /** * vmw_surface_define_ioctl - Ioctl function implementing * the user surface define functionality. * * @dev: Pointer to a struct drm_device. * @data: Pointer to data copied from / to user-space. * @file_priv: Pointer to a drm file private structure. */ int vmw_surface_define_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct vmw_private *dev_priv = vmw_priv(dev); struct vmw_user_surface *user_srf; struct vmw_surface *srf; struct vmw_surface_metadata *metadata; struct vmw_resource *res; struct vmw_resource *tmp; union drm_vmw_surface_create_arg *arg = (union drm_vmw_surface_create_arg *)data; struct drm_vmw_surface_create_req *req = &arg->req; struct drm_vmw_surface_arg *rep = &arg->rep; struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; int ret; int i, j; uint32_t cur_bo_offset; struct drm_vmw_size *cur_size; struct vmw_surface_offset *cur_offset; uint32_t num_sizes; const SVGA3dSurfaceDesc *desc; num_sizes = 0; for (i = 0; i < DRM_VMW_MAX_SURFACE_FACES; ++i) { if (req->mip_levels[i] > DRM_VMW_MAX_MIP_LEVELS) return -EINVAL; num_sizes += req->mip_levels[i]; } if (num_sizes > DRM_VMW_MAX_SURFACE_FACES * DRM_VMW_MAX_MIP_LEVELS || num_sizes == 0) return -EINVAL; desc = vmw_surface_get_desc(req->format); if (unlikely(desc->blockDesc == SVGA3DBLOCKDESC_NONE)) { VMW_DEBUG_USER("Invalid format %d for surface creation.\n", req->format); return -EINVAL; } user_srf = kzalloc(sizeof(*user_srf), GFP_KERNEL); if (unlikely(!user_srf)) { ret = -ENOMEM; goto out_unlock; } srf = &user_srf->srf; metadata = &srf->metadata; res = &srf->res; /* Driver internally stores as 64-bit flags */ metadata->flags = (SVGA3dSurfaceAllFlags)req->flags; metadata->format = req->format; metadata->scanout = req->scanout; memcpy(metadata->mip_levels, req->mip_levels, sizeof(metadata->mip_levels)); metadata->num_sizes = num_sizes; metadata->sizes = memdup_user((struct drm_vmw_size __user *)(unsigned long) req->size_addr, sizeof(*metadata->sizes) * metadata->num_sizes); if (IS_ERR(metadata->sizes)) { ret = PTR_ERR(metadata->sizes); goto out_no_sizes; } srf->offsets = kmalloc_array(metadata->num_sizes, sizeof(*srf->offsets), GFP_KERNEL); if (unlikely(!srf->offsets)) { ret = -ENOMEM; goto out_no_offsets; } metadata->base_size = *srf->metadata.sizes; metadata->autogen_filter = SVGA3D_TEX_FILTER_NONE; metadata->multisample_count = 0; metadata->multisample_pattern = SVGA3D_MS_PATTERN_NONE; metadata->quality_level = SVGA3D_MS_QUALITY_NONE; cur_bo_offset = 0; cur_offset = srf->offsets; cur_size = metadata->sizes; for (i = 0; i < DRM_VMW_MAX_SURFACE_FACES; ++i) { for (j = 0; j < metadata->mip_levels[i]; ++j) { uint32_t stride = vmw_surface_calculate_pitch( desc, cur_size); cur_offset->face = i; cur_offset->mip = j; cur_offset->bo_offset = cur_bo_offset; cur_bo_offset += vmw_surface_get_image_buffer_size (desc, cur_size, stride); ++cur_offset; ++cur_size; } } res->guest_memory_size = cur_bo_offset; if (metadata->scanout && metadata->num_sizes == 1 && metadata->sizes[0].width == VMW_CURSOR_SNOOP_WIDTH && metadata->sizes[0].height == VMW_CURSOR_SNOOP_HEIGHT && metadata->format == VMW_CURSOR_SNOOP_FORMAT) { const struct SVGA3dSurfaceDesc *desc = vmw_surface_get_desc(VMW_CURSOR_SNOOP_FORMAT); const u32 cursor_size_bytes = VMW_CURSOR_SNOOP_WIDTH * VMW_CURSOR_SNOOP_HEIGHT * desc->pitchBytesPerBlock; srf->snooper.image = kzalloc(cursor_size_bytes, GFP_KERNEL); if (!srf->snooper.image) { DRM_ERROR("Failed to allocate cursor_image\n"); ret = -ENOMEM; goto out_no_copy; } } else { srf->snooper.image = NULL; } user_srf->prime.base.shareable = false; user_srf->prime.base.tfile = NULL; if (drm_is_primary_client(file_priv)) user_srf->master = drm_file_get_master(file_priv); /** * From this point, the generic resource management functions * destroy the object on failure. */ ret = vmw_surface_init(dev_priv, srf, vmw_user_surface_free); if (unlikely(ret != 0)) goto out_unlock; /* * A gb-aware client referencing a shared surface will * expect a backup buffer to be present. */ if (dev_priv->has_mob && req->shareable) { uint32_t backup_handle; ret = vmw_gem_object_create_with_handle(dev_priv, file_priv, res->guest_memory_size, &backup_handle, &res->guest_memory_bo); if (unlikely(ret != 0)) { vmw_resource_unreference(&res); goto out_unlock; } vmw_bo_reference(res->guest_memory_bo); /* * We don't expose the handle to the userspace and surface * already holds a gem reference */ drm_gem_handle_delete(file_priv, backup_handle); } tmp = vmw_resource_reference(&srf->res); ret = ttm_prime_object_init(tfile, res->guest_memory_size, &user_srf->prime, req->shareable, VMW_RES_SURFACE, &vmw_user_surface_base_release); if (unlikely(ret != 0)) { vmw_resource_unreference(&tmp); vmw_resource_unreference(&res); goto out_unlock; } rep->sid = user_srf->prime.base.handle; vmw_resource_unreference(&res); return 0; out_no_copy: kfree(srf->offsets); out_no_offsets: kfree(metadata->sizes); out_no_sizes: ttm_prime_object_kfree(user_srf, prime); out_unlock: return ret; } static int vmw_surface_handle_reference(struct vmw_private *dev_priv, struct drm_file *file_priv, uint32_t u_handle, enum drm_vmw_handle_type handle_type, struct ttm_base_object **base_p) { struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; struct vmw_user_surface *user_srf; uint32_t handle; struct ttm_base_object *base; int ret; if (handle_type == DRM_VMW_HANDLE_PRIME) { ret = ttm_prime_fd_to_handle(tfile, u_handle, &handle); if (unlikely(ret != 0)) return ret; } else { handle = u_handle; } ret = -EINVAL; base = ttm_base_object_lookup_for_ref(dev_priv->tdev, handle); if (unlikely(!base)) { VMW_DEBUG_USER("Could not find surface to reference.\n"); goto out_no_lookup; } if (unlikely(ttm_base_object_type(base) != VMW_RES_SURFACE)) { VMW_DEBUG_USER("Referenced object is not a surface.\n"); goto out_bad_resource; } if (handle_type != DRM_VMW_HANDLE_PRIME) { bool require_exist = false; user_srf = container_of(base, struct vmw_user_surface, prime.base); /* Error out if we are unauthenticated primary */ if (drm_is_primary_client(file_priv) && !file_priv->authenticated) { ret = -EACCES; goto out_bad_resource; } /* * Make sure the surface creator has the same * authenticating master, or is already registered with us. */ if (drm_is_primary_client(file_priv) && user_srf->master != file_priv->master) require_exist = true; if (unlikely(drm_is_render_client(file_priv))) require_exist = true; ret = ttm_ref_object_add(tfile, base, NULL, require_exist); if (unlikely(ret != 0)) { DRM_ERROR("Could not add a reference to a surface.\n"); goto out_bad_resource; } } *base_p = base; return 0; out_bad_resource: ttm_base_object_unref(&base); out_no_lookup: if (handle_type == DRM_VMW_HANDLE_PRIME) (void) ttm_ref_object_base_unref(tfile, handle); return ret; } /** * vmw_surface_reference_ioctl - Ioctl function implementing * the user surface reference functionality. * * @dev: Pointer to a struct drm_device. * @data: Pointer to data copied from / to user-space. * @file_priv: Pointer to a drm file private structure. */ int vmw_surface_reference_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct vmw_private *dev_priv = vmw_priv(dev); union drm_vmw_surface_reference_arg *arg = (union drm_vmw_surface_reference_arg *)data; struct drm_vmw_surface_arg *req = &arg->req; struct drm_vmw_surface_create_req *rep = &arg->rep; struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; struct vmw_surface *srf; struct vmw_user_surface *user_srf; struct drm_vmw_size __user *user_sizes; struct ttm_base_object *base; int ret; ret = vmw_surface_handle_reference(dev_priv, file_priv, req->sid, req->handle_type, &base); if (unlikely(ret != 0)) return ret; user_srf = container_of(base, struct vmw_user_surface, prime.base); srf = &user_srf->srf; /* Downcast of flags when sending back to user space */ rep->flags = (uint32_t)srf->metadata.flags; rep->format = srf->metadata.format; memcpy(rep->mip_levels, srf->metadata.mip_levels, sizeof(srf->metadata.mip_levels)); user_sizes = (struct drm_vmw_size __user *)(unsigned long) rep->size_addr; if (user_sizes) ret = copy_to_user(user_sizes, &srf->metadata.base_size, sizeof(srf->metadata.base_size)); if (unlikely(ret != 0)) { VMW_DEBUG_USER("copy_to_user failed %p %u\n", user_sizes, srf->metadata.num_sizes); ttm_ref_object_base_unref(tfile, base->handle); ret = -EFAULT; } ttm_base_object_unref(&base); return ret; } /** * vmw_gb_surface_create - Encode a surface_define command. * * @res: Pointer to a struct vmw_resource embedded in a struct * vmw_surface. */ static int vmw_gb_surface_create(struct vmw_resource *res) { struct vmw_private *dev_priv = res->dev_priv; struct vmw_surface *srf = vmw_res_to_srf(res); struct vmw_surface_metadata *metadata = &srf->metadata; uint32_t cmd_len, cmd_id, submit_len; int ret; struct { SVGA3dCmdHeader header; SVGA3dCmdDefineGBSurface body; } *cmd; struct { SVGA3dCmdHeader header; SVGA3dCmdDefineGBSurface_v2 body; } *cmd2; struct { SVGA3dCmdHeader header; SVGA3dCmdDefineGBSurface_v3 body; } *cmd3; struct { SVGA3dCmdHeader header; SVGA3dCmdDefineGBSurface_v4 body; } *cmd4; if (likely(res->id != -1)) return 0; vmw_fifo_resource_inc(dev_priv); ret = vmw_resource_alloc_id(res); if (unlikely(ret != 0)) { DRM_ERROR("Failed to allocate a surface id.\n"); goto out_no_id; } if (unlikely(res->id >= VMWGFX_NUM_GB_SURFACE)) { ret = -EBUSY; goto out_no_fifo; } if (has_sm5_context(dev_priv) && metadata->array_size > 0) { cmd_id = SVGA_3D_CMD_DEFINE_GB_SURFACE_V4; cmd_len = sizeof(cmd4->body); submit_len = sizeof(*cmd4); } else if (has_sm4_1_context(dev_priv) && metadata->array_size > 0) { cmd_id = SVGA_3D_CMD_DEFINE_GB_SURFACE_V3; cmd_len = sizeof(cmd3->body); submit_len = sizeof(*cmd3); } else if (metadata->array_size > 0) { /* VMW_SM_4 support verified at creation time. */ cmd_id = SVGA_3D_CMD_DEFINE_GB_SURFACE_V2; cmd_len = sizeof(cmd2->body); submit_len = sizeof(*cmd2); } else { cmd_id = SVGA_3D_CMD_DEFINE_GB_SURFACE; cmd_len = sizeof(cmd->body); submit_len = sizeof(*cmd); } cmd = VMW_CMD_RESERVE(dev_priv, submit_len); cmd2 = (typeof(cmd2))cmd; cmd3 = (typeof(cmd3))cmd; cmd4 = (typeof(cmd4))cmd; if (unlikely(!cmd)) { ret = -ENOMEM; goto out_no_fifo; } if (has_sm5_context(dev_priv) && metadata->array_size > 0) { cmd4->header.id = cmd_id; cmd4->header.size = cmd_len; cmd4->body.sid = srf->res.id; cmd4->body.surfaceFlags = metadata->flags; cmd4->body.format = metadata->format; cmd4->body.numMipLevels = metadata->mip_levels[0]; cmd4->body.multisampleCount = metadata->multisample_count; cmd4->body.multisamplePattern = metadata->multisample_pattern; cmd4->body.qualityLevel = metadata->quality_level; cmd4->body.autogenFilter = metadata->autogen_filter; cmd4->body.size.width = metadata->base_size.width; cmd4->body.size.height = metadata->base_size.height; cmd4->body.size.depth = metadata->base_size.depth; cmd4->body.arraySize = metadata->array_size; cmd4->body.bufferByteStride = metadata->buffer_byte_stride; } else if (has_sm4_1_context(dev_priv) && metadata->array_size > 0) { cmd3->header.id = cmd_id; cmd3->header.size = cmd_len; cmd3->body.sid = srf->res.id; cmd3->body.surfaceFlags = metadata->flags; cmd3->body.format = metadata->format; cmd3->body.numMipLevels = metadata->mip_levels[0]; cmd3->body.multisampleCount = metadata->multisample_count; cmd3->body.multisamplePattern = metadata->multisample_pattern; cmd3->body.qualityLevel = metadata->quality_level; cmd3->body.autogenFilter = metadata->autogen_filter; cmd3->body.size.width = metadata->base_size.width; cmd3->body.size.height = metadata->base_size.height; cmd3->body.size.depth = metadata->base_size.depth; cmd3->body.arraySize = metadata->array_size; } else if (metadata->array_size > 0) { cmd2->header.id = cmd_id; cmd2->header.size = cmd_len; cmd2->body.sid = srf->res.id; cmd2->body.surfaceFlags = metadata->flags; cmd2->body.format = metadata->format; cmd2->body.numMipLevels = metadata->mip_levels[0]; cmd2->body.multisampleCount = metadata->multisample_count; cmd2->body.autogenFilter = metadata->autogen_filter; cmd2->body.size.width = metadata->base_size.width; cmd2->body.size.height = metadata->base_size.height; cmd2->body.size.depth = metadata->base_size.depth; cmd2->body.arraySize = metadata->array_size; } else { cmd->header.id = cmd_id; cmd->header.size = cmd_len; cmd->body.sid = srf->res.id; cmd->body.surfaceFlags = metadata->flags; cmd->body.format = metadata->format; cmd->body.numMipLevels = metadata->mip_levels[0]; cmd->body.multisampleCount = metadata->multisample_count; cmd->body.autogenFilter = metadata->autogen_filter; cmd->body.size.width = metadata->base_size.width; cmd->body.size.height = metadata->base_size.height; cmd->body.size.depth = metadata->base_size.depth; } vmw_cmd_commit(dev_priv, submit_len); return 0; out_no_fifo: vmw_resource_release_id(res); out_no_id: vmw_fifo_resource_dec(dev_priv); return ret; } static int vmw_gb_surface_bind(struct vmw_resource *res, struct ttm_validate_buffer *val_buf) { struct vmw_private *dev_priv = res->dev_priv; struct { SVGA3dCmdHeader header; SVGA3dCmdBindGBSurface body; } *cmd1; struct { SVGA3dCmdHeader header; SVGA3dCmdUpdateGBSurface body; } *cmd2; uint32_t submit_size; struct ttm_buffer_object *bo = val_buf->bo; BUG_ON(bo->resource->mem_type != VMW_PL_MOB); submit_size = sizeof(*cmd1) + (res->guest_memory_dirty ? sizeof(*cmd2) : 0); cmd1 = VMW_CMD_RESERVE(dev_priv, submit_size); if (unlikely(!cmd1)) return -ENOMEM; cmd1->header.id = SVGA_3D_CMD_BIND_GB_SURFACE; cmd1->header.size = sizeof(cmd1->body); cmd1->body.sid = res->id; cmd1->body.mobid = bo->resource->start; if (res->guest_memory_dirty) { cmd2 = (void *) &cmd1[1]; cmd2->header.id = SVGA_3D_CMD_UPDATE_GB_SURFACE; cmd2->header.size = sizeof(cmd2->body); cmd2->body.sid = res->id; } vmw_cmd_commit(dev_priv, submit_size); if (res->guest_memory_bo->dirty && res->guest_memory_dirty) { /* We've just made a full upload. Cear dirty regions. */ vmw_bo_dirty_clear_res(res); } res->guest_memory_dirty = false; return 0; } static int vmw_gb_surface_unbind(struct vmw_resource *res, bool readback, struct ttm_validate_buffer *val_buf) { struct vmw_private *dev_priv = res->dev_priv; struct ttm_buffer_object *bo = val_buf->bo; struct vmw_fence_obj *fence; struct { SVGA3dCmdHeader header; SVGA3dCmdReadbackGBSurface body; } *cmd1; struct { SVGA3dCmdHeader header; SVGA3dCmdInvalidateGBSurface body; } *cmd2; struct { SVGA3dCmdHeader header; SVGA3dCmdBindGBSurface body; } *cmd3; uint32_t submit_size; uint8_t *cmd; BUG_ON(bo->resource->mem_type != VMW_PL_MOB); submit_size = sizeof(*cmd3) + (readback ? sizeof(*cmd1) : sizeof(*cmd2)); cmd = VMW_CMD_RESERVE(dev_priv, submit_size); if (unlikely(!cmd)) return -ENOMEM; if (readback) { cmd1 = (void *) cmd; cmd1->header.id = SVGA_3D_CMD_READBACK_GB_SURFACE; cmd1->header.size = sizeof(cmd1->body); cmd1->body.sid = res->id; cmd3 = (void *) &cmd1[1]; } else { cmd2 = (void *) cmd; cmd2->header.id = SVGA_3D_CMD_INVALIDATE_GB_SURFACE; cmd2->header.size = sizeof(cmd2->body); cmd2->body.sid = res->id; cmd3 = (void *) &cmd2[1]; } cmd3->header.id = SVGA_3D_CMD_BIND_GB_SURFACE; cmd3->header.size = sizeof(cmd3->body); cmd3->body.sid = res->id; cmd3->body.mobid = SVGA3D_INVALID_ID; vmw_cmd_commit(dev_priv, submit_size); /* * Create a fence object and fence the backup buffer. */ (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL); vmw_bo_fence_single(val_buf->bo, fence); if (likely(fence != NULL)) vmw_fence_obj_unreference(&fence); return 0; } static int vmw_gb_surface_destroy(struct vmw_resource *res) { struct vmw_private *dev_priv = res->dev_priv; struct vmw_surface *srf = vmw_res_to_srf(res); struct { SVGA3dCmdHeader header; SVGA3dCmdDestroyGBSurface body; } *cmd; if (likely(res->id == -1)) return 0; mutex_lock(&dev_priv->binding_mutex); vmw_view_surface_list_destroy(dev_priv, &srf->view_list); vmw_binding_res_list_scrub(&res->binding_head); cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd)); if (unlikely(!cmd)) { mutex_unlock(&dev_priv->binding_mutex); return -ENOMEM; } cmd->header.id = SVGA_3D_CMD_DESTROY_GB_SURFACE; cmd->header.size = sizeof(cmd->body); cmd->body.sid = res->id; vmw_cmd_commit(dev_priv, sizeof(*cmd)); mutex_unlock(&dev_priv->binding_mutex); vmw_resource_release_id(res); vmw_fifo_resource_dec(dev_priv); return 0; } /** * vmw_gb_surface_define_ioctl - Ioctl function implementing * the user surface define functionality. * * @dev: Pointer to a struct drm_device. * @data: Pointer to data copied from / to user-space. * @file_priv: Pointer to a drm file private structure. */ int vmw_gb_surface_define_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { union drm_vmw_gb_surface_create_arg *arg = (union drm_vmw_gb_surface_create_arg *)data; struct drm_vmw_gb_surface_create_rep *rep = &arg->rep; struct drm_vmw_gb_surface_create_ext_req req_ext; req_ext.base = arg->req; req_ext.version = drm_vmw_gb_surface_v1; req_ext.svga3d_flags_upper_32_bits = 0; req_ext.multisample_pattern = SVGA3D_MS_PATTERN_NONE; req_ext.quality_level = SVGA3D_MS_QUALITY_NONE; req_ext.buffer_byte_stride = 0; req_ext.must_be_zero = 0; return vmw_gb_surface_define_internal(dev, &req_ext, rep, file_priv); } /** * vmw_gb_surface_reference_ioctl - Ioctl function implementing * the user surface reference functionality. * * @dev: Pointer to a struct drm_device. * @data: Pointer to data copied from / to user-space. * @file_priv: Pointer to a drm file private structure. */ int vmw_gb_surface_reference_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { union drm_vmw_gb_surface_reference_arg *arg = (union drm_vmw_gb_surface_reference_arg *)data; struct drm_vmw_surface_arg *req = &arg->req; struct drm_vmw_gb_surface_ref_rep *rep = &arg->rep; struct drm_vmw_gb_surface_ref_ext_rep rep_ext; int ret; ret = vmw_gb_surface_reference_internal(dev, req, &rep_ext, file_priv); if (unlikely(ret != 0)) return ret; rep->creq = rep_ext.creq.base; rep->crep = rep_ext.crep; return ret; } /** * vmw_gb_surface_define_ext_ioctl - Ioctl function implementing * the user surface define functionality. * * @dev: Pointer to a struct drm_device. * @data: Pointer to data copied from / to user-space. * @file_priv: Pointer to a drm file private structure. */ int vmw_gb_surface_define_ext_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { union drm_vmw_gb_surface_create_ext_arg *arg = (union drm_vmw_gb_surface_create_ext_arg *)data; struct drm_vmw_gb_surface_create_ext_req *req = &arg->req; struct drm_vmw_gb_surface_create_rep *rep = &arg->rep; return vmw_gb_surface_define_internal(dev, req, rep, file_priv); } /** * vmw_gb_surface_reference_ext_ioctl - Ioctl function implementing * the user surface reference functionality. * * @dev: Pointer to a struct drm_device. * @data: Pointer to data copied from / to user-space. * @file_priv: Pointer to a drm file private structure. */ int vmw_gb_surface_reference_ext_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { union drm_vmw_gb_surface_reference_ext_arg *arg = (union drm_vmw_gb_surface_reference_ext_arg *)data; struct drm_vmw_surface_arg *req = &arg->req; struct drm_vmw_gb_surface_ref_ext_rep *rep = &arg->rep; return vmw_gb_surface_reference_internal(dev, req, rep, file_priv); } /** * vmw_gb_surface_define_internal - Ioctl function implementing * the user surface define functionality. * * @dev: Pointer to a struct drm_device. * @req: Request argument from user-space. * @rep: Response argument to user-space. * @file_priv: Pointer to a drm file private structure. */ static int vmw_gb_surface_define_internal(struct drm_device *dev, struct drm_vmw_gb_surface_create_ext_req *req, struct drm_vmw_gb_surface_create_rep *rep, struct drm_file *file_priv) { struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; struct vmw_private *dev_priv = vmw_priv(dev); struct vmw_user_surface *user_srf; struct vmw_surface_metadata metadata = {0}; struct vmw_surface *srf; struct vmw_resource *res; struct vmw_resource *tmp; int ret = 0; uint32_t backup_handle = 0; SVGA3dSurfaceAllFlags svga3d_flags_64 = SVGA3D_FLAGS_64(req->svga3d_flags_upper_32_bits, req->base.svga3d_flags); /* array_size must be null for non-GL3 host. */ if (req->base.array_size > 0 && !has_sm4_context(dev_priv)) { VMW_DEBUG_USER("SM4 surface not supported.\n"); return -EINVAL; } if (!has_sm4_1_context(dev_priv)) { if (req->svga3d_flags_upper_32_bits != 0) ret = -EINVAL; if (req->base.multisample_count != 0) ret = -EINVAL; if (req->multisample_pattern != SVGA3D_MS_PATTERN_NONE) ret = -EINVAL; if (req->quality_level != SVGA3D_MS_QUALITY_NONE) ret = -EINVAL; if (ret) { VMW_DEBUG_USER("SM4.1 surface not supported.\n"); return ret; } } if (req->buffer_byte_stride > 0 && !has_sm5_context(dev_priv)) { VMW_DEBUG_USER("SM5 surface not supported.\n"); return -EINVAL; } if ((svga3d_flags_64 & SVGA3D_SURFACE_MULTISAMPLE) && req->base.multisample_count == 0) { VMW_DEBUG_USER("Invalid sample count.\n"); return -EINVAL; } if (req->base.mip_levels > DRM_VMW_MAX_MIP_LEVELS) { VMW_DEBUG_USER("Invalid mip level.\n"); return -EINVAL; } metadata.flags = svga3d_flags_64; metadata.format = req->base.format; metadata.mip_levels[0] = req->base.mip_levels; metadata.multisample_count = req->base.multisample_count; metadata.multisample_pattern = req->multisample_pattern; metadata.quality_level = req->quality_level; metadata.array_size = req->base.array_size; metadata.buffer_byte_stride = req->buffer_byte_stride; metadata.num_sizes = 1; metadata.base_size = req->base.base_size; metadata.scanout = req->base.drm_surface_flags & drm_vmw_surface_flag_scanout; /* Define a surface based on the parameters. */ ret = vmw_gb_surface_define(dev_priv, &metadata, &srf); if (ret != 0) { VMW_DEBUG_USER("Failed to define surface.\n"); return ret; } user_srf = container_of(srf, struct vmw_user_surface, srf); if (drm_is_primary_client(file_priv)) user_srf->master = drm_file_get_master(file_priv); res = &user_srf->srf.res; if (req->base.buffer_handle != SVGA3D_INVALID_ID) { ret = vmw_user_bo_lookup(file_priv, req->base.buffer_handle, &res->guest_memory_bo); if (ret == 0) { if (res->guest_memory_bo->tbo.base.size < res->guest_memory_size) { VMW_DEBUG_USER("Surface backup buffer too small.\n"); vmw_bo_unreference(&res->guest_memory_bo); ret = -EINVAL; goto out_unlock; } else { backup_handle = req->base.buffer_handle; } } } else if (req->base.drm_surface_flags & (drm_vmw_surface_flag_create_buffer | drm_vmw_surface_flag_coherent)) { ret = vmw_gem_object_create_with_handle(dev_priv, file_priv, res->guest_memory_size, &backup_handle, &res->guest_memory_bo); if (ret == 0) vmw_bo_reference(res->guest_memory_bo); } if (unlikely(ret != 0)) { vmw_resource_unreference(&res); goto out_unlock; } if (req->base.drm_surface_flags & drm_vmw_surface_flag_coherent) { struct vmw_bo *backup = res->guest_memory_bo; ttm_bo_reserve(&backup->tbo, false, false, NULL); if (!res->func->dirty_alloc) ret = -EINVAL; if (!ret) ret = vmw_bo_dirty_add(backup); if (!ret) { res->coherent = true; ret = res->func->dirty_alloc(res); } ttm_bo_unreserve(&backup->tbo); if (ret) { vmw_resource_unreference(&res); goto out_unlock; } } tmp = vmw_resource_reference(res); ret = ttm_prime_object_init(tfile, res->guest_memory_size, &user_srf->prime, req->base.drm_surface_flags & drm_vmw_surface_flag_shareable, VMW_RES_SURFACE, &vmw_user_surface_base_release); if (unlikely(ret != 0)) { vmw_resource_unreference(&tmp); vmw_resource_unreference(&res); goto out_unlock; } rep->handle = user_srf->prime.base.handle; rep->backup_size = res->guest_memory_size; if (res->guest_memory_bo) { rep->buffer_map_handle = drm_vma_node_offset_addr(&res->guest_memory_bo->tbo.base.vma_node); rep->buffer_size = res->guest_memory_bo->tbo.base.size; rep->buffer_handle = backup_handle; } else { rep->buffer_map_handle = 0; rep->buffer_size = 0; rep->buffer_handle = SVGA3D_INVALID_ID; } vmw_resource_unreference(&res); out_unlock: return ret; } /** * vmw_gb_surface_reference_internal - Ioctl function implementing * the user surface reference functionality. * * @dev: Pointer to a struct drm_device. * @req: Pointer to user-space request surface arg. * @rep: Pointer to response to user-space. * @file_priv: Pointer to a drm file private structure. */ static int vmw_gb_surface_reference_internal(struct drm_device *dev, struct drm_vmw_surface_arg *req, struct drm_vmw_gb_surface_ref_ext_rep *rep, struct drm_file *file_priv) { struct vmw_private *dev_priv = vmw_priv(dev); struct vmw_surface *srf; struct vmw_user_surface *user_srf; struct vmw_surface_metadata *metadata; struct ttm_base_object *base; u32 backup_handle; int ret; ret = vmw_surface_handle_reference(dev_priv, file_priv, req->sid, req->handle_type, &base); if (unlikely(ret != 0)) return ret; user_srf = container_of(base, struct vmw_user_surface, prime.base); srf = &user_srf->srf; if (!srf->res.guest_memory_bo) { DRM_ERROR("Shared GB surface is missing a backup buffer.\n"); goto out_bad_resource; } metadata = &srf->metadata; mutex_lock(&dev_priv->cmdbuf_mutex); /* Protect res->backup */ ret = drm_gem_handle_create(file_priv, &srf->res.guest_memory_bo->tbo.base, &backup_handle); mutex_unlock(&dev_priv->cmdbuf_mutex); if (ret != 0) { drm_err(dev, "Wasn't able to create a backing handle for surface sid = %u.\n", req->sid); goto out_bad_resource; } rep->creq.base.svga3d_flags = SVGA3D_FLAGS_LOWER_32(metadata->flags); rep->creq.base.format = metadata->format; rep->creq.base.mip_levels = metadata->mip_levels[0]; rep->creq.base.drm_surface_flags = 0; rep->creq.base.multisample_count = metadata->multisample_count; rep->creq.base.autogen_filter = metadata->autogen_filter; rep->creq.base.array_size = metadata->array_size; rep->creq.base.buffer_handle = backup_handle; rep->creq.base.base_size = metadata->base_size; rep->crep.handle = user_srf->prime.base.handle; rep->crep.backup_size = srf->res.guest_memory_size; rep->crep.buffer_handle = backup_handle; rep->crep.buffer_map_handle = drm_vma_node_offset_addr(&srf->res.guest_memory_bo->tbo.base.vma_node); rep->crep.buffer_size = srf->res.guest_memory_bo->tbo.base.size; rep->creq.version = drm_vmw_gb_surface_v1; rep->creq.svga3d_flags_upper_32_bits = SVGA3D_FLAGS_UPPER_32(metadata->flags); rep->creq.multisample_pattern = metadata->multisample_pattern; rep->creq.quality_level = metadata->quality_level; rep->creq.must_be_zero = 0; out_bad_resource: ttm_base_object_unref(&base); return ret; } /** * vmw_subres_dirty_add - Add a dirty region to a subresource * @dirty: The surfaces's dirty tracker. * @loc_start: The location corresponding to the start of the region. * @loc_end: The location corresponding to the end of the region. * * As we are assuming that @loc_start and @loc_end represent a sequential * range of backing store memory, if the region spans multiple lines then * regardless of the x coordinate, the full lines are dirtied. * Correspondingly if the region spans multiple z slices, then full rather * than partial z slices are dirtied. */ static void vmw_subres_dirty_add(struct vmw_surface_dirty *dirty, const struct vmw_surface_loc *loc_start, const struct vmw_surface_loc *loc_end) { const struct vmw_surface_cache *cache = &dirty->cache; SVGA3dBox *box = &dirty->boxes[loc_start->sub_resource]; u32 mip = loc_start->sub_resource % cache->num_mip_levels; const struct drm_vmw_size *size = &cache->mip[mip].size; u32 box_c2 = box->z + box->d; if (WARN_ON(loc_start->sub_resource >= dirty->num_subres)) return; if (box->d == 0 || box->z > loc_start->z) box->z = loc_start->z; if (box_c2 < loc_end->z) box->d = loc_end->z - box->z; if (loc_start->z + 1 == loc_end->z) { box_c2 = box->y + box->h; if (box->h == 0 || box->y > loc_start->y) box->y = loc_start->y; if (box_c2 < loc_end->y) box->h = loc_end->y - box->y; if (loc_start->y + 1 == loc_end->y) { box_c2 = box->x + box->w; if (box->w == 0 || box->x > loc_start->x) box->x = loc_start->x; if (box_c2 < loc_end->x) box->w = loc_end->x - box->x; } else { box->x = 0; box->w = size->width; } } else { box->y = 0; box->h = size->height; box->x = 0; box->w = size->width; } } /** * vmw_subres_dirty_full - Mark a full subresource as dirty * @dirty: The surface's dirty tracker. * @subres: The subresource */ static void vmw_subres_dirty_full(struct vmw_surface_dirty *dirty, u32 subres) { const struct vmw_surface_cache *cache = &dirty->cache; u32 mip = subres % cache->num_mip_levels; const struct drm_vmw_size *size = &cache->mip[mip].size; SVGA3dBox *box = &dirty->boxes[subres]; box->x = 0; box->y = 0; box->z = 0; box->w = size->width; box->h = size->height; box->d = size->depth; } /* * vmw_surface_tex_dirty_add_range - The dirty_add_range callback for texture * surfaces. */ static void vmw_surface_tex_dirty_range_add(struct vmw_resource *res, size_t start, size_t end) { struct vmw_surface_dirty *dirty = (struct vmw_surface_dirty *) res->dirty; size_t backup_end = res->guest_memory_offset + res->guest_memory_size; struct vmw_surface_loc loc1, loc2; const struct vmw_surface_cache *cache; start = max_t(size_t, start, res->guest_memory_offset) - res->guest_memory_offset; end = min(end, backup_end) - res->guest_memory_offset; cache = &dirty->cache; vmw_surface_get_loc(cache, &loc1, start); vmw_surface_get_loc(cache, &loc2, end - 1); vmw_surface_inc_loc(cache, &loc2); if (loc1.sheet != loc2.sheet) { u32 sub_res; /* * Multiple multisample sheets. To do this in an optimized * fashion, compute the dirty region for each sheet and the * resulting union. Since this is not a common case, just dirty * the whole surface. */ for (sub_res = 0; sub_res < dirty->num_subres; ++sub_res) vmw_subres_dirty_full(dirty, sub_res); return; } if (loc1.sub_resource + 1 == loc2.sub_resource) { /* Dirty range covers a single sub-resource */ vmw_subres_dirty_add(dirty, &loc1, &loc2); } else { /* Dirty range covers multiple sub-resources */ struct vmw_surface_loc loc_min, loc_max; u32 sub_res; vmw_surface_max_loc(cache, loc1.sub_resource, &loc_max); vmw_subres_dirty_add(dirty, &loc1, &loc_max); vmw_surface_min_loc(cache, loc2.sub_resource - 1, &loc_min); vmw_subres_dirty_add(dirty, &loc_min, &loc2); for (sub_res = loc1.sub_resource + 1; sub_res < loc2.sub_resource - 1; ++sub_res) vmw_subres_dirty_full(dirty, sub_res); } } /* * vmw_surface_tex_dirty_add_range - The dirty_add_range callback for buffer * surfaces. */ static void vmw_surface_buf_dirty_range_add(struct vmw_resource *res, size_t start, size_t end) { struct vmw_surface_dirty *dirty = (struct vmw_surface_dirty *) res->dirty; const struct vmw_surface_cache *cache = &dirty->cache; size_t backup_end = res->guest_memory_offset + cache->mip_chain_bytes; SVGA3dBox *box = &dirty->boxes[0]; u32 box_c2; box->h = box->d = 1; start = max_t(size_t, start, res->guest_memory_offset) - res->guest_memory_offset; end = min(end, backup_end) - res->guest_memory_offset; box_c2 = box->x + box->w; if (box->w == 0 || box->x > start) box->x = start; if (box_c2 < end) box->w = end - box->x; } /* * vmw_surface_tex_dirty_add_range - The dirty_add_range callback for surfaces */ static void vmw_surface_dirty_range_add(struct vmw_resource *res, size_t start, size_t end) { struct vmw_surface *srf = vmw_res_to_srf(res); if (WARN_ON(end <= res->guest_memory_offset || start >= res->guest_memory_offset + res->guest_memory_size)) return; if (srf->metadata.format == SVGA3D_BUFFER) vmw_surface_buf_dirty_range_add(res, start, end); else vmw_surface_tex_dirty_range_add(res, start, end); } /* * vmw_surface_dirty_sync - The surface's dirty_sync callback. */ static int vmw_surface_dirty_sync(struct vmw_resource *res) { struct vmw_private *dev_priv = res->dev_priv; u32 i, num_dirty; struct vmw_surface_dirty *dirty = (struct vmw_surface_dirty *) res->dirty; size_t alloc_size; const struct vmw_surface_cache *cache = &dirty->cache; struct { SVGA3dCmdHeader header; SVGA3dCmdDXUpdateSubResource body; } *cmd1; struct { SVGA3dCmdHeader header; SVGA3dCmdUpdateGBImage body; } *cmd2; void *cmd; num_dirty = 0; for (i = 0; i < dirty->num_subres; ++i) { const SVGA3dBox *box = &dirty->boxes[i]; if (box->d) num_dirty++; } if (!num_dirty) goto out; alloc_size = num_dirty * ((has_sm4_context(dev_priv)) ? sizeof(*cmd1) : sizeof(*cmd2)); cmd = VMW_CMD_RESERVE(dev_priv, alloc_size); if (!cmd) return -ENOMEM; cmd1 = cmd; cmd2 = cmd; for (i = 0; i < dirty->num_subres; ++i) { const SVGA3dBox *box = &dirty->boxes[i]; if (!box->d) continue; /* * DX_UPDATE_SUBRESOURCE is aware of array surfaces. * UPDATE_GB_IMAGE is not. */ if (has_sm4_context(dev_priv)) { cmd1->header.id = SVGA_3D_CMD_DX_UPDATE_SUBRESOURCE; cmd1->header.size = sizeof(cmd1->body); cmd1->body.sid = res->id; cmd1->body.subResource = i; cmd1->body.box = *box; cmd1++; } else { cmd2->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE; cmd2->header.size = sizeof(cmd2->body); cmd2->body.image.sid = res->id; cmd2->body.image.face = i / cache->num_mip_levels; cmd2->body.image.mipmap = i - (cache->num_mip_levels * cmd2->body.image.face); cmd2->body.box = *box; cmd2++; } } vmw_cmd_commit(dev_priv, alloc_size); out: memset(&dirty->boxes[0], 0, sizeof(dirty->boxes[0]) * dirty->num_subres); return 0; } /* * vmw_surface_dirty_alloc - The surface's dirty_alloc callback. */ static int vmw_surface_dirty_alloc(struct vmw_resource *res) { struct vmw_surface *srf = vmw_res_to_srf(res); const struct vmw_surface_metadata *metadata = &srf->metadata; struct vmw_surface_dirty *dirty; u32 num_layers = 1; u32 num_mip; u32 num_subres; u32 num_samples; size_t dirty_size; int ret; if (metadata->array_size) num_layers = metadata->array_size; else if (metadata->flags & SVGA3D_SURFACE_CUBEMAP) num_layers *= SVGA3D_MAX_SURFACE_FACES; num_mip = metadata->mip_levels[0]; if (!num_mip) num_mip = 1; num_subres = num_layers * num_mip; dirty_size = struct_size(dirty, boxes, num_subres); dirty = kvzalloc(dirty_size, GFP_KERNEL); if (!dirty) { ret = -ENOMEM; goto out_no_dirty; } num_samples = max_t(u32, 1, metadata->multisample_count); ret = vmw_surface_setup_cache(&metadata->base_size, metadata->format, num_mip, num_layers, num_samples, &dirty->cache); if (ret) goto out_no_cache; dirty->num_subres = num_subres; res->dirty = (struct vmw_resource_dirty *) dirty; return 0; out_no_cache: kvfree(dirty); out_no_dirty: return ret; } /* * vmw_surface_dirty_free - The surface's dirty_free callback */ static void vmw_surface_dirty_free(struct vmw_resource *res) { struct vmw_surface_dirty *dirty = (struct vmw_surface_dirty *) res->dirty; kvfree(dirty); res->dirty = NULL; } /* * vmw_surface_clean - The surface's clean callback */ static int vmw_surface_clean(struct vmw_resource *res) { struct vmw_private *dev_priv = res->dev_priv; size_t alloc_size; struct { SVGA3dCmdHeader header; SVGA3dCmdReadbackGBSurface body; } *cmd; alloc_size = sizeof(*cmd); cmd = VMW_CMD_RESERVE(dev_priv, alloc_size); if (!cmd) return -ENOMEM; cmd->header.id = SVGA_3D_CMD_READBACK_GB_SURFACE; cmd->header.size = sizeof(cmd->body); cmd->body.sid = res->id; vmw_cmd_commit(dev_priv, alloc_size); return 0; } /* * vmw_gb_surface_define - Define a private GB surface * * @dev_priv: Pointer to a device private. * @metadata: Metadata representing the surface to create. * @user_srf_out: allocated user_srf. Set to NULL on failure. * * GB surfaces allocated by this function will not have a user mode handle, and * thus will only be visible to vmwgfx. For optimization reasons the * surface may later be given a user mode handle by another function to make * it available to user mode drivers. */ int vmw_gb_surface_define(struct vmw_private *dev_priv, const struct vmw_surface_metadata *req, struct vmw_surface **srf_out) { struct vmw_surface_metadata *metadata; struct vmw_user_surface *user_srf; struct vmw_surface *srf; u32 sample_count = 1; u32 num_layers = 1; int ret; *srf_out = NULL; if (req->scanout) { if (!vmw_surface_is_screen_target_format(req->format)) { VMW_DEBUG_USER("Invalid Screen Target surface format."); return -EINVAL; } if (req->base_size.width > dev_priv->texture_max_width || req->base_size.height > dev_priv->texture_max_height) { VMW_DEBUG_USER("%ux%u\n, exceed max surface size %ux%u", req->base_size.width, req->base_size.height, dev_priv->texture_max_width, dev_priv->texture_max_height); return -EINVAL; } } else { const SVGA3dSurfaceDesc *desc = vmw_surface_get_desc(req->format); if (desc->blockDesc == SVGA3DBLOCKDESC_NONE) { VMW_DEBUG_USER("Invalid surface format.\n"); return -EINVAL; } } if (req->autogen_filter != SVGA3D_TEX_FILTER_NONE) return -EINVAL; if (req->num_sizes != 1) return -EINVAL; if (req->sizes != NULL) return -EINVAL; user_srf = kzalloc(sizeof(*user_srf), GFP_KERNEL); if (unlikely(!user_srf)) { ret = -ENOMEM; goto out_unlock; } *srf_out = &user_srf->srf; user_srf->prime.base.shareable = false; user_srf->prime.base.tfile = NULL; srf = &user_srf->srf; srf->metadata = *req; srf->offsets = NULL; metadata = &srf->metadata; if (metadata->array_size) num_layers = req->array_size; else if (metadata->flags & SVGA3D_SURFACE_CUBEMAP) num_layers = SVGA3D_MAX_SURFACE_FACES; if (metadata->flags & SVGA3D_SURFACE_MULTISAMPLE) sample_count = metadata->multisample_count; srf->res.guest_memory_size = vmw_surface_get_serialized_size_extended( metadata->format, metadata->base_size, metadata->mip_levels[0], num_layers, sample_count); if (metadata->flags & SVGA3D_SURFACE_BIND_STREAM_OUTPUT) srf->res.guest_memory_size += sizeof(SVGA3dDXSOState); /* * Don't set SVGA3D_SURFACE_SCREENTARGET flag for a scanout surface with * size greater than STDU max width/height. This is really a workaround * to support creation of big framebuffer requested by some user-space * for whole topology. That big framebuffer won't really be used for * binding with screen target as during prepare_fb a separate surface is * created so it's safe to ignore SVGA3D_SURFACE_SCREENTARGET flag. */ if (dev_priv->active_display_unit == vmw_du_screen_target && metadata->scanout && metadata->base_size.width <= dev_priv->stdu_max_width && metadata->base_size.height <= dev_priv->stdu_max_height) metadata->flags |= SVGA3D_SURFACE_SCREENTARGET; /* * From this point, the generic resource management functions * destroy the object on failure. */ ret = vmw_surface_init(dev_priv, srf, vmw_user_surface_free); return ret; out_unlock: return ret; }
linux-master
drivers/gpu/drm/vmwgfx/vmwgfx_surface.c
// SPDX-License-Identifier: GPL-2.0 OR MIT /************************************************************************** * * Copyright 2009-2023 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "vmwgfx_bo.h" #include "vmwgfx_drv.h" #include <drm/ttm/ttm_placement.h> static const struct ttm_place vram_placement_flags = { .fpfn = 0, .lpfn = 0, .mem_type = TTM_PL_VRAM, .flags = 0 }; static const struct ttm_place sys_placement_flags = { .fpfn = 0, .lpfn = 0, .mem_type = TTM_PL_SYSTEM, .flags = 0 }; static const struct ttm_place gmr_placement_flags = { .fpfn = 0, .lpfn = 0, .mem_type = VMW_PL_GMR, .flags = 0 }; struct ttm_placement vmw_vram_placement = { .num_placement = 1, .placement = &vram_placement_flags, .num_busy_placement = 1, .busy_placement = &vram_placement_flags }; static const struct ttm_place vram_gmr_placement_flags[] = { { .fpfn = 0, .lpfn = 0, .mem_type = TTM_PL_VRAM, .flags = 0 }, { .fpfn = 0, .lpfn = 0, .mem_type = VMW_PL_GMR, .flags = 0 } }; struct ttm_placement vmw_vram_gmr_placement = { .num_placement = 2, .placement = vram_gmr_placement_flags, .num_busy_placement = 1, .busy_placement = &gmr_placement_flags }; struct ttm_placement vmw_sys_placement = { .num_placement = 1, .placement = &sys_placement_flags, .num_busy_placement = 1, .busy_placement = &sys_placement_flags }; const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt); /** * __vmw_piter_non_sg_next: Helper functions to advance * a struct vmw_piter iterator. * * @viter: Pointer to the iterator. * * These functions return false if past the end of the list, * true otherwise. Functions are selected depending on the current * DMA mapping mode. */ static bool __vmw_piter_non_sg_next(struct vmw_piter *viter) { return ++(viter->i) < viter->num_pages; } static bool __vmw_piter_sg_next(struct vmw_piter *viter) { bool ret = __vmw_piter_non_sg_next(viter); return __sg_page_iter_dma_next(&viter->iter) && ret; } static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter) { return viter->addrs[viter->i]; } static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter) { return sg_page_iter_dma_address(&viter->iter); } /** * vmw_piter_start - Initialize a struct vmw_piter. * * @viter: Pointer to the iterator to initialize * @vsgt: Pointer to a struct vmw_sg_table to initialize from * @p_offset: Pointer offset used to update current array position * * Note that we're following the convention of __sg_page_iter_start, so that * the iterator doesn't point to a valid page after initialization; it has * to be advanced one step first. */ void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt, unsigned long p_offset) { viter->i = p_offset - 1; viter->num_pages = vsgt->num_pages; viter->pages = vsgt->pages; switch (vsgt->mode) { case vmw_dma_alloc_coherent: viter->next = &__vmw_piter_non_sg_next; viter->dma_address = &__vmw_piter_dma_addr; viter->addrs = vsgt->addrs; break; case vmw_dma_map_populate: case vmw_dma_map_bind: viter->next = &__vmw_piter_sg_next; viter->dma_address = &__vmw_piter_sg_addr; __sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl, vsgt->sgt->orig_nents, p_offset); break; default: BUG(); } } /** * vmw_ttm_unmap_from_dma - unmap device addresses previsouly mapped for * TTM pages * * @vmw_tt: Pointer to a struct vmw_ttm_backend * * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma. */ static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt) { struct device *dev = vmw_tt->dev_priv->drm.dev; dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0); vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents; } /** * vmw_ttm_map_for_dma - map TTM pages to get device addresses * * @vmw_tt: Pointer to a struct vmw_ttm_backend * * This function is used to get device addresses from the kernel DMA layer. * However, it's violating the DMA API in that when this operation has been * performed, it's illegal for the CPU to write to the pages without first * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is * therefore only legal to call this function if we know that the function * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most * a CPU write buffer flush. */ static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt) { struct device *dev = vmw_tt->dev_priv->drm.dev; return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0); } /** * vmw_ttm_map_dma - Make sure TTM pages are visible to the device * * @vmw_tt: Pointer to a struct vmw_ttm_tt * * Select the correct function for and make sure the TTM pages are * visible to the device. Allocate storage for the device mappings. * If a mapping has already been performed, indicated by the storage * pointer being non NULL, the function returns success. */ static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt) { struct vmw_private *dev_priv = vmw_tt->dev_priv; struct vmw_sg_table *vsgt = &vmw_tt->vsgt; int ret = 0; if (vmw_tt->mapped) return 0; vsgt->mode = dev_priv->map_mode; vsgt->pages = vmw_tt->dma_ttm.pages; vsgt->num_pages = vmw_tt->dma_ttm.num_pages; vsgt->addrs = vmw_tt->dma_ttm.dma_address; vsgt->sgt = NULL; switch (dev_priv->map_mode) { case vmw_dma_map_bind: case vmw_dma_map_populate: vsgt->sgt = &vmw_tt->sgt; ret = sg_alloc_table_from_pages_segment( &vmw_tt->sgt, vsgt->pages, vsgt->num_pages, 0, (unsigned long)vsgt->num_pages << PAGE_SHIFT, dma_get_max_seg_size(dev_priv->drm.dev), GFP_KERNEL); if (ret) goto out_sg_alloc_fail; ret = vmw_ttm_map_for_dma(vmw_tt); if (unlikely(ret != 0)) goto out_map_fail; break; default: break; } vmw_tt->mapped = true; return 0; out_map_fail: sg_free_table(vmw_tt->vsgt.sgt); vmw_tt->vsgt.sgt = NULL; out_sg_alloc_fail: return ret; } /** * vmw_ttm_unmap_dma - Tear down any TTM page device mappings * * @vmw_tt: Pointer to a struct vmw_ttm_tt * * Tear down any previously set up device DMA mappings and free * any storage space allocated for them. If there are no mappings set up, * this function is a NOP. */ static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt) { struct vmw_private *dev_priv = vmw_tt->dev_priv; if (!vmw_tt->vsgt.sgt) return; switch (dev_priv->map_mode) { case vmw_dma_map_bind: case vmw_dma_map_populate: vmw_ttm_unmap_from_dma(vmw_tt); sg_free_table(vmw_tt->vsgt.sgt); vmw_tt->vsgt.sgt = NULL; break; default: break; } vmw_tt->mapped = false; } /** * vmw_bo_sg_table - Return a struct vmw_sg_table object for a * TTM buffer object * * @bo: Pointer to a struct ttm_buffer_object * * Returns a pointer to a struct vmw_sg_table object. The object should * not be freed after use. * Note that for the device addresses to be valid, the buffer object must * either be reserved or pinned. */ const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo) { struct vmw_ttm_tt *vmw_tt = container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm); return &vmw_tt->vsgt; } static int vmw_ttm_bind(struct ttm_device *bdev, struct ttm_tt *ttm, struct ttm_resource *bo_mem) { struct vmw_ttm_tt *vmw_be = container_of(ttm, struct vmw_ttm_tt, dma_ttm); int ret = 0; if (!bo_mem) return -EINVAL; if (vmw_be->bound) return 0; ret = vmw_ttm_map_dma(vmw_be); if (unlikely(ret != 0)) return ret; vmw_be->gmr_id = bo_mem->start; vmw_be->mem_type = bo_mem->mem_type; switch (bo_mem->mem_type) { case VMW_PL_GMR: ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt, ttm->num_pages, vmw_be->gmr_id); break; case VMW_PL_MOB: if (unlikely(vmw_be->mob == NULL)) { vmw_be->mob = vmw_mob_create(ttm->num_pages); if (unlikely(vmw_be->mob == NULL)) return -ENOMEM; } ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob, &vmw_be->vsgt, ttm->num_pages, vmw_be->gmr_id); break; case VMW_PL_SYSTEM: /* Nothing to be done for a system bind */ break; default: BUG(); } vmw_be->bound = true; return ret; } static void vmw_ttm_unbind(struct ttm_device *bdev, struct ttm_tt *ttm) { struct vmw_ttm_tt *vmw_be = container_of(ttm, struct vmw_ttm_tt, dma_ttm); if (!vmw_be->bound) return; switch (vmw_be->mem_type) { case VMW_PL_GMR: vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id); break; case VMW_PL_MOB: vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob); break; case VMW_PL_SYSTEM: break; default: BUG(); } if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind) vmw_ttm_unmap_dma(vmw_be); vmw_be->bound = false; } static void vmw_ttm_destroy(struct ttm_device *bdev, struct ttm_tt *ttm) { struct vmw_ttm_tt *vmw_be = container_of(ttm, struct vmw_ttm_tt, dma_ttm); vmw_ttm_unmap_dma(vmw_be); ttm_tt_fini(ttm); if (vmw_be->mob) vmw_mob_destroy(vmw_be->mob); kfree(vmw_be); } static int vmw_ttm_populate(struct ttm_device *bdev, struct ttm_tt *ttm, struct ttm_operation_ctx *ctx) { int ret; /* TODO: maybe completely drop this ? */ if (ttm_tt_is_populated(ttm)) return 0; ret = ttm_pool_alloc(&bdev->pool, ttm, ctx); return ret; } static void vmw_ttm_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm) { struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt, dma_ttm); vmw_ttm_unbind(bdev, ttm); if (vmw_tt->mob) { vmw_mob_destroy(vmw_tt->mob); vmw_tt->mob = NULL; } vmw_ttm_unmap_dma(vmw_tt); ttm_pool_free(&bdev->pool, ttm); } static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo, uint32_t page_flags) { struct vmw_ttm_tt *vmw_be; int ret; vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL); if (!vmw_be) return NULL; vmw_be->dev_priv = vmw_priv_from_ttm(bo->bdev); vmw_be->mob = NULL; if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent) ret = ttm_sg_tt_init(&vmw_be->dma_ttm, bo, page_flags, ttm_cached); else ret = ttm_tt_init(&vmw_be->dma_ttm, bo, page_flags, ttm_cached, 0); if (unlikely(ret != 0)) goto out_no_init; return &vmw_be->dma_ttm; out_no_init: kfree(vmw_be); return NULL; } static void vmw_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *placement) { *placement = vmw_sys_placement; } static int vmw_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem) { struct vmw_private *dev_priv = vmw_priv_from_ttm(bdev); switch (mem->mem_type) { case TTM_PL_SYSTEM: case VMW_PL_SYSTEM: case VMW_PL_GMR: case VMW_PL_MOB: return 0; case TTM_PL_VRAM: mem->bus.offset = (mem->start << PAGE_SHIFT) + dev_priv->vram_start; mem->bus.is_iomem = true; mem->bus.caching = ttm_cached; break; default: return -EINVAL; } return 0; } /** * vmw_move_notify - TTM move_notify_callback * * @bo: The TTM buffer object about to move. * @old_mem: The old memory where we move from * @new_mem: The struct ttm_resource indicating to what memory * region the move is taking place. * * Calls move_notify for all subsystems needing it. * (currently only resources). */ static void vmw_move_notify(struct ttm_buffer_object *bo, struct ttm_resource *old_mem, struct ttm_resource *new_mem) { vmw_bo_move_notify(bo, new_mem); vmw_query_move_notify(bo, old_mem, new_mem); } /** * vmw_swap_notify - TTM move_notify_callback * * @bo: The TTM buffer object about to be swapped out. */ static void vmw_swap_notify(struct ttm_buffer_object *bo) { vmw_bo_swap_notify(bo); (void) ttm_bo_wait(bo, false, false); } static bool vmw_memtype_is_system(uint32_t mem_type) { return mem_type == TTM_PL_SYSTEM || mem_type == VMW_PL_SYSTEM; } static int vmw_move(struct ttm_buffer_object *bo, bool evict, struct ttm_operation_ctx *ctx, struct ttm_resource *new_mem, struct ttm_place *hop) { struct ttm_resource_manager *new_man; struct ttm_resource_manager *old_man = NULL; int ret = 0; new_man = ttm_manager_type(bo->bdev, new_mem->mem_type); if (bo->resource) old_man = ttm_manager_type(bo->bdev, bo->resource->mem_type); if (new_man->use_tt && !vmw_memtype_is_system(new_mem->mem_type)) { ret = vmw_ttm_bind(bo->bdev, bo->ttm, new_mem); if (ret) return ret; } if (!bo->resource || (bo->resource->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL)) { ttm_bo_move_null(bo, new_mem); return 0; } vmw_move_notify(bo, bo->resource, new_mem); if (old_man && old_man->use_tt && new_man->use_tt) { if (vmw_memtype_is_system(bo->resource->mem_type)) { ttm_bo_move_null(bo, new_mem); return 0; } ret = ttm_bo_wait_ctx(bo, ctx); if (ret) goto fail; vmw_ttm_unbind(bo->bdev, bo->ttm); ttm_resource_free(bo, &bo->resource); ttm_bo_assign_mem(bo, new_mem); return 0; } else { ret = ttm_bo_move_memcpy(bo, ctx, new_mem); if (ret) goto fail; } return 0; fail: vmw_move_notify(bo, new_mem, bo->resource); return ret; } struct ttm_device_funcs vmw_bo_driver = { .ttm_tt_create = &vmw_ttm_tt_create, .ttm_tt_populate = &vmw_ttm_populate, .ttm_tt_unpopulate = &vmw_ttm_unpopulate, .ttm_tt_destroy = &vmw_ttm_destroy, .eviction_valuable = ttm_bo_eviction_valuable, .evict_flags = vmw_evict_flags, .move = vmw_move, .swap_notify = vmw_swap_notify, .io_mem_reserve = &vmw_ttm_io_mem_reserve, }; int vmw_bo_create_and_populate(struct vmw_private *dev_priv, size_t bo_size, u32 domain, struct vmw_bo **bo_p) { struct ttm_operation_ctx ctx = { .interruptible = false, .no_wait_gpu = false }; struct vmw_bo *vbo; int ret; struct vmw_bo_params bo_params = { .domain = domain, .busy_domain = domain, .bo_type = ttm_bo_type_kernel, .size = bo_size, .pin = true }; ret = vmw_bo_create(dev_priv, &bo_params, &vbo); if (unlikely(ret != 0)) return ret; ret = ttm_bo_reserve(&vbo->tbo, false, true, NULL); BUG_ON(ret != 0); ret = vmw_ttm_populate(vbo->tbo.bdev, vbo->tbo.ttm, &ctx); if (likely(ret == 0)) { struct vmw_ttm_tt *vmw_tt = container_of(vbo->tbo.ttm, struct vmw_ttm_tt, dma_ttm); ret = vmw_ttm_map_dma(vmw_tt); } ttm_bo_unreserve(&vbo->tbo); if (likely(ret == 0)) *bo_p = vbo; return ret; }
linux-master
drivers/gpu/drm/vmwgfx/vmwgfx_ttm_buffer.c
// SPDX-License-Identifier: GPL-2.0 OR MIT /************************************************************************** * * Copyright 2019-2023 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "vmwgfx_bo.h" #include "vmwgfx_drv.h" /* * Different methods for tracking dirty: * VMW_BO_DIRTY_PAGETABLE - Scan the pagetable for hardware dirty bits * VMW_BO_DIRTY_MKWRITE - Write-protect page table entries and record write- * accesses in the VM mkwrite() callback */ enum vmw_bo_dirty_method { VMW_BO_DIRTY_PAGETABLE, VMW_BO_DIRTY_MKWRITE, }; /* * No dirtied pages at scan trigger a transition to the _MKWRITE method, * similarly a certain percentage of dirty pages trigger a transition to * the _PAGETABLE method. How many triggers should we wait for before * changing method? */ #define VMW_DIRTY_NUM_CHANGE_TRIGGERS 2 /* Percentage to trigger a transition to the _PAGETABLE method */ #define VMW_DIRTY_PERCENTAGE 10 /** * struct vmw_bo_dirty - Dirty information for buffer objects * @start: First currently dirty bit * @end: Last currently dirty bit + 1 * @method: The currently used dirty method * @change_count: Number of consecutive method change triggers * @ref_count: Reference count for this structure * @bitmap_size: The size of the bitmap in bits. Typically equal to the * nuber of pages in the bo. * @bitmap: A bitmap where each bit represents a page. A set bit means a * dirty page. */ struct vmw_bo_dirty { unsigned long start; unsigned long end; enum vmw_bo_dirty_method method; unsigned int change_count; unsigned int ref_count; unsigned long bitmap_size; unsigned long bitmap[]; }; /** * vmw_bo_dirty_scan_pagetable - Perform a pagetable scan for dirty bits * @vbo: The buffer object to scan * * Scans the pagetable for dirty bits. Clear those bits and modify the * dirty structure with the results. This function may change the * dirty-tracking method. */ static void vmw_bo_dirty_scan_pagetable(struct vmw_bo *vbo) { struct vmw_bo_dirty *dirty = vbo->dirty; pgoff_t offset = drm_vma_node_start(&vbo->tbo.base.vma_node); struct address_space *mapping = vbo->tbo.bdev->dev_mapping; pgoff_t num_marked; num_marked = clean_record_shared_mapping_range (mapping, offset, dirty->bitmap_size, offset, &dirty->bitmap[0], &dirty->start, &dirty->end); if (num_marked == 0) dirty->change_count++; else dirty->change_count = 0; if (dirty->change_count > VMW_DIRTY_NUM_CHANGE_TRIGGERS) { dirty->change_count = 0; dirty->method = VMW_BO_DIRTY_MKWRITE; wp_shared_mapping_range(mapping, offset, dirty->bitmap_size); clean_record_shared_mapping_range(mapping, offset, dirty->bitmap_size, offset, &dirty->bitmap[0], &dirty->start, &dirty->end); } } /** * vmw_bo_dirty_scan_mkwrite - Reset the mkwrite dirty-tracking method * @vbo: The buffer object to scan * * Write-protect pages written to so that consecutive write accesses will * trigger a call to mkwrite. * * This function may change the dirty-tracking method. */ static void vmw_bo_dirty_scan_mkwrite(struct vmw_bo *vbo) { struct vmw_bo_dirty *dirty = vbo->dirty; unsigned long offset = drm_vma_node_start(&vbo->tbo.base.vma_node); struct address_space *mapping = vbo->tbo.bdev->dev_mapping; pgoff_t num_marked; if (dirty->end <= dirty->start) return; num_marked = wp_shared_mapping_range(vbo->tbo.bdev->dev_mapping, dirty->start + offset, dirty->end - dirty->start); if (100UL * num_marked / dirty->bitmap_size > VMW_DIRTY_PERCENTAGE) dirty->change_count++; else dirty->change_count = 0; if (dirty->change_count > VMW_DIRTY_NUM_CHANGE_TRIGGERS) { pgoff_t start = 0; pgoff_t end = dirty->bitmap_size; dirty->method = VMW_BO_DIRTY_PAGETABLE; clean_record_shared_mapping_range(mapping, offset, end, offset, &dirty->bitmap[0], &start, &end); bitmap_clear(&dirty->bitmap[0], 0, dirty->bitmap_size); if (dirty->start < dirty->end) bitmap_set(&dirty->bitmap[0], dirty->start, dirty->end - dirty->start); dirty->change_count = 0; } } /** * vmw_bo_dirty_scan - Scan for dirty pages and add them to the dirty * tracking structure * @vbo: The buffer object to scan * * This function may change the dirty tracking method. */ void vmw_bo_dirty_scan(struct vmw_bo *vbo) { struct vmw_bo_dirty *dirty = vbo->dirty; if (dirty->method == VMW_BO_DIRTY_PAGETABLE) vmw_bo_dirty_scan_pagetable(vbo); else vmw_bo_dirty_scan_mkwrite(vbo); } /** * vmw_bo_dirty_pre_unmap - write-protect and pick up dirty pages before * an unmap_mapping_range operation. * @vbo: The buffer object, * @start: First page of the range within the buffer object. * @end: Last page of the range within the buffer object + 1. * * If we're using the _PAGETABLE scan method, we may leak dirty pages * when calling unmap_mapping_range(). This function makes sure we pick * up all dirty pages. */ static void vmw_bo_dirty_pre_unmap(struct vmw_bo *vbo, pgoff_t start, pgoff_t end) { struct vmw_bo_dirty *dirty = vbo->dirty; unsigned long offset = drm_vma_node_start(&vbo->tbo.base.vma_node); struct address_space *mapping = vbo->tbo.bdev->dev_mapping; if (dirty->method != VMW_BO_DIRTY_PAGETABLE || start >= end) return; wp_shared_mapping_range(mapping, start + offset, end - start); clean_record_shared_mapping_range(mapping, start + offset, end - start, offset, &dirty->bitmap[0], &dirty->start, &dirty->end); } /** * vmw_bo_dirty_unmap - Clear all ptes pointing to a range within a bo * @vbo: The buffer object, * @start: First page of the range within the buffer object. * @end: Last page of the range within the buffer object + 1. * * This is similar to ttm_bo_unmap_virtual() except it takes a subrange. */ void vmw_bo_dirty_unmap(struct vmw_bo *vbo, pgoff_t start, pgoff_t end) { unsigned long offset = drm_vma_node_start(&vbo->tbo.base.vma_node); struct address_space *mapping = vbo->tbo.bdev->dev_mapping; vmw_bo_dirty_pre_unmap(vbo, start, end); unmap_shared_mapping_range(mapping, (offset + start) << PAGE_SHIFT, (loff_t) (end - start) << PAGE_SHIFT); } /** * vmw_bo_dirty_add - Add a dirty-tracking user to a buffer object * @vbo: The buffer object * * This function registers a dirty-tracking user to a buffer object. * A user can be for example a resource or a vma in a special user-space * mapping. * * Return: Zero on success, -ENOMEM on memory allocation failure. */ int vmw_bo_dirty_add(struct vmw_bo *vbo) { struct vmw_bo_dirty *dirty = vbo->dirty; pgoff_t num_pages = PFN_UP(vbo->tbo.resource->size); size_t size; int ret; if (dirty) { dirty->ref_count++; return 0; } size = sizeof(*dirty) + BITS_TO_LONGS(num_pages) * sizeof(long); dirty = kvzalloc(size, GFP_KERNEL); if (!dirty) { ret = -ENOMEM; goto out_no_dirty; } dirty->bitmap_size = num_pages; dirty->start = dirty->bitmap_size; dirty->end = 0; dirty->ref_count = 1; if (num_pages < PAGE_SIZE / sizeof(pte_t)) { dirty->method = VMW_BO_DIRTY_PAGETABLE; } else { struct address_space *mapping = vbo->tbo.bdev->dev_mapping; pgoff_t offset = drm_vma_node_start(&vbo->tbo.base.vma_node); dirty->method = VMW_BO_DIRTY_MKWRITE; /* Write-protect and then pick up already dirty bits */ wp_shared_mapping_range(mapping, offset, num_pages); clean_record_shared_mapping_range(mapping, offset, num_pages, offset, &dirty->bitmap[0], &dirty->start, &dirty->end); } vbo->dirty = dirty; return 0; out_no_dirty: return ret; } /** * vmw_bo_dirty_release - Release a dirty-tracking user from a buffer object * @vbo: The buffer object * * This function releases a dirty-tracking user from a buffer object. * If the reference count reaches zero, then the dirty-tracking object is * freed and the pointer to it cleared. * * Return: Zero on success, -ENOMEM on memory allocation failure. */ void vmw_bo_dirty_release(struct vmw_bo *vbo) { struct vmw_bo_dirty *dirty = vbo->dirty; if (dirty && --dirty->ref_count == 0) { kvfree(dirty); vbo->dirty = NULL; } } /** * vmw_bo_dirty_transfer_to_res - Pick up a resource's dirty region from * its backing mob. * @res: The resource * * This function will pick up all dirty ranges affecting the resource from * it's backup mob, and call vmw_resource_dirty_update() once for each * range. The transferred ranges will be cleared from the backing mob's * dirty tracking. */ void vmw_bo_dirty_transfer_to_res(struct vmw_resource *res) { struct vmw_bo *vbo = res->guest_memory_bo; struct vmw_bo_dirty *dirty = vbo->dirty; pgoff_t start, cur, end; unsigned long res_start = res->guest_memory_offset; unsigned long res_end = res->guest_memory_offset + res->guest_memory_size; WARN_ON_ONCE(res_start & ~PAGE_MASK); res_start >>= PAGE_SHIFT; res_end = DIV_ROUND_UP(res_end, PAGE_SIZE); if (res_start >= dirty->end || res_end <= dirty->start) return; cur = max(res_start, dirty->start); res_end = max(res_end, dirty->end); while (cur < res_end) { unsigned long num; start = find_next_bit(&dirty->bitmap[0], res_end, cur); if (start >= res_end) break; end = find_next_zero_bit(&dirty->bitmap[0], res_end, start + 1); cur = end + 1; num = end - start; bitmap_clear(&dirty->bitmap[0], start, num); vmw_resource_dirty_update(res, start, end); } if (res_start <= dirty->start && res_end > dirty->start) dirty->start = res_end; if (res_start < dirty->end && res_end >= dirty->end) dirty->end = res_start; } /** * vmw_bo_dirty_clear_res - Clear a resource's dirty region from * its backing mob. * @res: The resource * * This function will clear all dirty ranges affecting the resource from * it's backup mob's dirty tracking. */ void vmw_bo_dirty_clear_res(struct vmw_resource *res) { unsigned long res_start = res->guest_memory_offset; unsigned long res_end = res->guest_memory_offset + res->guest_memory_size; struct vmw_bo *vbo = res->guest_memory_bo; struct vmw_bo_dirty *dirty = vbo->dirty; res_start >>= PAGE_SHIFT; res_end = DIV_ROUND_UP(res_end, PAGE_SIZE); if (res_start >= dirty->end || res_end <= dirty->start) return; res_start = max(res_start, dirty->start); res_end = min(res_end, dirty->end); bitmap_clear(&dirty->bitmap[0], res_start, res_end - res_start); if (res_start <= dirty->start && res_end > dirty->start) dirty->start = res_end; if (res_start < dirty->end && res_end >= dirty->end) dirty->end = res_start; } vm_fault_t vmw_bo_vm_mkwrite(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct ttm_buffer_object *bo = (struct ttm_buffer_object *) vma->vm_private_data; vm_fault_t ret; unsigned long page_offset; unsigned int save_flags; struct vmw_bo *vbo = to_vmw_bo(&bo->base); /* * mkwrite() doesn't handle the VM_FAULT_RETRY return value correctly. * So make sure the TTM helpers are aware. */ save_flags = vmf->flags; vmf->flags &= ~FAULT_FLAG_ALLOW_RETRY; ret = ttm_bo_vm_reserve(bo, vmf); vmf->flags = save_flags; if (ret) return ret; page_offset = vmf->pgoff - drm_vma_node_start(&bo->base.vma_node); if (unlikely(page_offset >= PFN_UP(bo->resource->size))) { ret = VM_FAULT_SIGBUS; goto out_unlock; } if (vbo->dirty && vbo->dirty->method == VMW_BO_DIRTY_MKWRITE && !test_bit(page_offset, &vbo->dirty->bitmap[0])) { struct vmw_bo_dirty *dirty = vbo->dirty; __set_bit(page_offset, &dirty->bitmap[0]); dirty->start = min(dirty->start, page_offset); dirty->end = max(dirty->end, page_offset + 1); } out_unlock: dma_resv_unlock(bo->base.resv); return ret; } vm_fault_t vmw_bo_vm_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct ttm_buffer_object *bo = (struct ttm_buffer_object *) vma->vm_private_data; struct vmw_bo *vbo = to_vmw_bo(&bo->base); pgoff_t num_prefault; pgprot_t prot; vm_fault_t ret; ret = ttm_bo_vm_reserve(bo, vmf); if (ret) return ret; num_prefault = (vma->vm_flags & VM_RAND_READ) ? 1 : TTM_BO_VM_NUM_PREFAULT; if (vbo->dirty) { pgoff_t allowed_prefault; unsigned long page_offset; page_offset = vmf->pgoff - drm_vma_node_start(&bo->base.vma_node); if (page_offset >= PFN_UP(bo->resource->size) || vmw_resources_clean(vbo, page_offset, page_offset + PAGE_SIZE, &allowed_prefault)) { ret = VM_FAULT_SIGBUS; goto out_unlock; } num_prefault = min(num_prefault, allowed_prefault); } /* * If we don't track dirty using the MKWRITE method, make sure * sure the page protection is write-enabled so we don't get * a lot of unnecessary write faults. */ if (vbo->dirty && vbo->dirty->method == VMW_BO_DIRTY_MKWRITE) prot = vm_get_page_prot(vma->vm_flags & ~VM_SHARED); else prot = vm_get_page_prot(vma->vm_flags); ret = ttm_bo_vm_fault_reserved(vmf, prot, num_prefault); if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) return ret; out_unlock: dma_resv_unlock(bo->base.resv); return ret; }
linux-master
drivers/gpu/drm/vmwgfx/vmwgfx_page_dirty.c
// SPDX-License-Identifier: GPL-2.0 OR MIT /************************************************************************** * * Copyright 2009-2023 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "vmwgfx_bo.h" #include "vmwgfx_drv.h" #include "device_include/svga_overlay.h" #include "device_include/svga_escape.h" #include <drm/ttm/ttm_placement.h> #define VMW_MAX_NUM_STREAMS 1 #define VMW_OVERLAY_CAP_MASK (SVGA_FIFO_CAP_VIDEO | SVGA_FIFO_CAP_ESCAPE) struct vmw_stream { struct vmw_bo *buf; bool claimed; bool paused; struct drm_vmw_control_stream_arg saved; }; /* * Overlay control */ struct vmw_overlay { /* * Each stream is a single overlay. In Xv these are called ports. */ struct mutex mutex; struct vmw_stream stream[VMW_MAX_NUM_STREAMS]; }; struct vmw_escape_header { uint32_t cmd; SVGAFifoCmdEscape body; }; struct vmw_escape_video_flush { struct vmw_escape_header escape; SVGAEscapeVideoFlush flush; }; static inline void fill_escape(struct vmw_escape_header *header, uint32_t size) { header->cmd = SVGA_CMD_ESCAPE; header->body.nsid = SVGA_ESCAPE_NSID_VMWARE; header->body.size = size; } static inline void fill_flush(struct vmw_escape_video_flush *cmd, uint32_t stream_id) { fill_escape(&cmd->escape, sizeof(cmd->flush)); cmd->flush.cmdType = SVGA_ESCAPE_VMWARE_VIDEO_FLUSH; cmd->flush.streamId = stream_id; } /* * Send put command to hw. * * Returns * -ERESTARTSYS if interrupted by a signal. */ static int vmw_overlay_send_put(struct vmw_private *dev_priv, struct vmw_bo *buf, struct drm_vmw_control_stream_arg *arg, bool interruptible) { struct vmw_escape_video_flush *flush; size_t fifo_size; bool have_so = (dev_priv->active_display_unit == vmw_du_screen_object); int i, num_items; SVGAGuestPtr ptr; struct { struct vmw_escape_header escape; struct { uint32_t cmdType; uint32_t streamId; } header; } *cmds; struct { uint32_t registerId; uint32_t value; } *items; /* defines are a index needs + 1 */ if (have_so) num_items = SVGA_VIDEO_DST_SCREEN_ID + 1; else num_items = SVGA_VIDEO_PITCH_3 + 1; fifo_size = sizeof(*cmds) + sizeof(*flush) + sizeof(*items) * num_items; cmds = VMW_CMD_RESERVE(dev_priv, fifo_size); /* hardware has hung, can't do anything here */ if (!cmds) return -ENOMEM; items = (typeof(items))&cmds[1]; flush = (struct vmw_escape_video_flush *)&items[num_items]; /* the size is header + number of items */ fill_escape(&cmds->escape, sizeof(*items) * (num_items + 1)); cmds->header.cmdType = SVGA_ESCAPE_VMWARE_VIDEO_SET_REGS; cmds->header.streamId = arg->stream_id; /* the IDs are neatly numbered */ for (i = 0; i < num_items; i++) items[i].registerId = i; vmw_bo_get_guest_ptr(&buf->tbo, &ptr); ptr.offset += arg->offset; items[SVGA_VIDEO_ENABLED].value = true; items[SVGA_VIDEO_FLAGS].value = arg->flags; items[SVGA_VIDEO_DATA_OFFSET].value = ptr.offset; items[SVGA_VIDEO_FORMAT].value = arg->format; items[SVGA_VIDEO_COLORKEY].value = arg->color_key; items[SVGA_VIDEO_SIZE].value = arg->size; items[SVGA_VIDEO_WIDTH].value = arg->width; items[SVGA_VIDEO_HEIGHT].value = arg->height; items[SVGA_VIDEO_SRC_X].value = arg->src.x; items[SVGA_VIDEO_SRC_Y].value = arg->src.y; items[SVGA_VIDEO_SRC_WIDTH].value = arg->src.w; items[SVGA_VIDEO_SRC_HEIGHT].value = arg->src.h; items[SVGA_VIDEO_DST_X].value = arg->dst.x; items[SVGA_VIDEO_DST_Y].value = arg->dst.y; items[SVGA_VIDEO_DST_WIDTH].value = arg->dst.w; items[SVGA_VIDEO_DST_HEIGHT].value = arg->dst.h; items[SVGA_VIDEO_PITCH_1].value = arg->pitch[0]; items[SVGA_VIDEO_PITCH_2].value = arg->pitch[1]; items[SVGA_VIDEO_PITCH_3].value = arg->pitch[2]; if (have_so) { items[SVGA_VIDEO_DATA_GMRID].value = ptr.gmrId; items[SVGA_VIDEO_DST_SCREEN_ID].value = SVGA_ID_INVALID; } fill_flush(flush, arg->stream_id); vmw_cmd_commit(dev_priv, fifo_size); return 0; } /* * Send stop command to hw. * * Returns * -ERESTARTSYS if interrupted by a signal. */ static int vmw_overlay_send_stop(struct vmw_private *dev_priv, uint32_t stream_id, bool interruptible) { struct { struct vmw_escape_header escape; SVGAEscapeVideoSetRegs body; struct vmw_escape_video_flush flush; } *cmds; int ret; for (;;) { cmds = VMW_CMD_RESERVE(dev_priv, sizeof(*cmds)); if (cmds) break; ret = vmw_fallback_wait(dev_priv, false, true, 0, interruptible, 3*HZ); if (interruptible && ret == -ERESTARTSYS) return ret; else BUG_ON(ret != 0); } fill_escape(&cmds->escape, sizeof(cmds->body)); cmds->body.header.cmdType = SVGA_ESCAPE_VMWARE_VIDEO_SET_REGS; cmds->body.header.streamId = stream_id; cmds->body.items[0].registerId = SVGA_VIDEO_ENABLED; cmds->body.items[0].value = false; fill_flush(&cmds->flush, stream_id); vmw_cmd_commit(dev_priv, sizeof(*cmds)); return 0; } /* * Move a buffer to vram or gmr if @pin is set, else unpin the buffer. * * With the introduction of screen objects buffers could now be * used with GMRs instead of being locked to vram. */ static int vmw_overlay_move_buffer(struct vmw_private *dev_priv, struct vmw_bo *buf, bool pin, bool inter) { if (!pin) return vmw_bo_unpin(dev_priv, buf, inter); if (dev_priv->active_display_unit == vmw_du_legacy) return vmw_bo_pin_in_vram(dev_priv, buf, inter); return vmw_bo_pin_in_vram_or_gmr(dev_priv, buf, inter); } /* * Stop or pause a stream. * * If the stream is paused the no evict flag is removed from the buffer * but left in vram. This allows for instance mode_set to evict it * should it need to. * * The caller must hold the overlay lock. * * @stream_id which stream to stop/pause. * @pause true to pause, false to stop completely. */ static int vmw_overlay_stop(struct vmw_private *dev_priv, uint32_t stream_id, bool pause, bool interruptible) { struct vmw_overlay *overlay = dev_priv->overlay_priv; struct vmw_stream *stream = &overlay->stream[stream_id]; int ret; /* no buffer attached the stream is completely stopped */ if (!stream->buf) return 0; /* If the stream is paused this is already done */ if (!stream->paused) { ret = vmw_overlay_send_stop(dev_priv, stream_id, interruptible); if (ret) return ret; /* We just remove the NO_EVICT flag so no -ENOMEM */ ret = vmw_overlay_move_buffer(dev_priv, stream->buf, false, interruptible); if (interruptible && ret == -ERESTARTSYS) return ret; else BUG_ON(ret != 0); } if (!pause) { vmw_bo_unreference(&stream->buf); stream->paused = false; } else { stream->paused = true; } return 0; } /* * Update a stream and send any put or stop fifo commands needed. * * The caller must hold the overlay lock. * * Returns * -ENOMEM if buffer doesn't fit in vram. * -ERESTARTSYS if interrupted. */ static int vmw_overlay_update_stream(struct vmw_private *dev_priv, struct vmw_bo *buf, struct drm_vmw_control_stream_arg *arg, bool interruptible) { struct vmw_overlay *overlay = dev_priv->overlay_priv; struct vmw_stream *stream = &overlay->stream[arg->stream_id]; int ret = 0; if (!buf) return -EINVAL; DRM_DEBUG(" %s: old %p, new %p, %spaused\n", __func__, stream->buf, buf, stream->paused ? "" : "not "); if (stream->buf != buf) { ret = vmw_overlay_stop(dev_priv, arg->stream_id, false, interruptible); if (ret) return ret; } else if (!stream->paused) { /* If the buffers match and not paused then just send * the put command, no need to do anything else. */ ret = vmw_overlay_send_put(dev_priv, buf, arg, interruptible); if (ret == 0) stream->saved = *arg; else BUG_ON(!interruptible); return ret; } /* We don't start the old stream if we are interrupted. * Might return -ENOMEM if it can't fit the buffer in vram. */ ret = vmw_overlay_move_buffer(dev_priv, buf, true, interruptible); if (ret) return ret; ret = vmw_overlay_send_put(dev_priv, buf, arg, interruptible); if (ret) { /* This one needs to happen no matter what. We only remove * the NO_EVICT flag so this is safe from -ENOMEM. */ BUG_ON(vmw_overlay_move_buffer(dev_priv, buf, false, false) != 0); return ret; } if (stream->buf != buf) stream->buf = vmw_bo_reference(buf); stream->saved = *arg; /* stream is no longer stopped/paused */ stream->paused = false; return 0; } /* * Try to resume all paused streams. * * Used by the kms code after moving a new scanout buffer to vram. * * Takes the overlay lock. */ int vmw_overlay_resume_all(struct vmw_private *dev_priv) { struct vmw_overlay *overlay = dev_priv->overlay_priv; int i, ret; if (!overlay) return 0; mutex_lock(&overlay->mutex); for (i = 0; i < VMW_MAX_NUM_STREAMS; i++) { struct vmw_stream *stream = &overlay->stream[i]; if (!stream->paused) continue; ret = vmw_overlay_update_stream(dev_priv, stream->buf, &stream->saved, false); if (ret != 0) DRM_INFO("%s: *warning* failed to resume stream %i\n", __func__, i); } mutex_unlock(&overlay->mutex); return 0; } /* * Pauses all active streams. * * Used by the kms code when moving a new scanout buffer to vram. * * Takes the overlay lock. */ int vmw_overlay_pause_all(struct vmw_private *dev_priv) { struct vmw_overlay *overlay = dev_priv->overlay_priv; int i, ret; if (!overlay) return 0; mutex_lock(&overlay->mutex); for (i = 0; i < VMW_MAX_NUM_STREAMS; i++) { if (overlay->stream[i].paused) DRM_INFO("%s: *warning* stream %i already paused\n", __func__, i); ret = vmw_overlay_stop(dev_priv, i, true, false); WARN_ON(ret != 0); } mutex_unlock(&overlay->mutex); return 0; } static bool vmw_overlay_available(const struct vmw_private *dev_priv) { return (dev_priv->overlay_priv != NULL && ((vmw_fifo_caps(dev_priv) & VMW_OVERLAY_CAP_MASK) == VMW_OVERLAY_CAP_MASK)); } int vmw_overlay_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; struct vmw_private *dev_priv = vmw_priv(dev); struct vmw_overlay *overlay = dev_priv->overlay_priv; struct drm_vmw_control_stream_arg *arg = (struct drm_vmw_control_stream_arg *)data; struct vmw_bo *buf; struct vmw_resource *res; int ret; if (!vmw_overlay_available(dev_priv)) return -ENOSYS; ret = vmw_user_stream_lookup(dev_priv, tfile, &arg->stream_id, &res); if (ret) return ret; mutex_lock(&overlay->mutex); if (!arg->enabled) { ret = vmw_overlay_stop(dev_priv, arg->stream_id, false, true); goto out_unlock; } ret = vmw_user_bo_lookup(file_priv, arg->handle, &buf); if (ret) goto out_unlock; ret = vmw_overlay_update_stream(dev_priv, buf, arg, true); vmw_user_bo_unref(buf); out_unlock: mutex_unlock(&overlay->mutex); vmw_resource_unreference(&res); return ret; } int vmw_overlay_num_overlays(struct vmw_private *dev_priv) { if (!vmw_overlay_available(dev_priv)) return 0; return VMW_MAX_NUM_STREAMS; } int vmw_overlay_num_free_overlays(struct vmw_private *dev_priv) { struct vmw_overlay *overlay = dev_priv->overlay_priv; int i, k; if (!vmw_overlay_available(dev_priv)) return 0; mutex_lock(&overlay->mutex); for (i = 0, k = 0; i < VMW_MAX_NUM_STREAMS; i++) if (!overlay->stream[i].claimed) k++; mutex_unlock(&overlay->mutex); return k; } int vmw_overlay_claim(struct vmw_private *dev_priv, uint32_t *out) { struct vmw_overlay *overlay = dev_priv->overlay_priv; int i; if (!overlay) return -ENOSYS; mutex_lock(&overlay->mutex); for (i = 0; i < VMW_MAX_NUM_STREAMS; i++) { if (overlay->stream[i].claimed) continue; overlay->stream[i].claimed = true; *out = i; mutex_unlock(&overlay->mutex); return 0; } mutex_unlock(&overlay->mutex); return -ESRCH; } int vmw_overlay_unref(struct vmw_private *dev_priv, uint32_t stream_id) { struct vmw_overlay *overlay = dev_priv->overlay_priv; BUG_ON(stream_id >= VMW_MAX_NUM_STREAMS); if (!overlay) return -ENOSYS; mutex_lock(&overlay->mutex); WARN_ON(!overlay->stream[stream_id].claimed); vmw_overlay_stop(dev_priv, stream_id, false, false); overlay->stream[stream_id].claimed = false; mutex_unlock(&overlay->mutex); return 0; } int vmw_overlay_init(struct vmw_private *dev_priv) { struct vmw_overlay *overlay; int i; if (dev_priv->overlay_priv) return -EINVAL; overlay = kzalloc(sizeof(*overlay), GFP_KERNEL); if (!overlay) return -ENOMEM; mutex_init(&overlay->mutex); for (i = 0; i < VMW_MAX_NUM_STREAMS; i++) { overlay->stream[i].buf = NULL; overlay->stream[i].paused = false; overlay->stream[i].claimed = false; } dev_priv->overlay_priv = overlay; return 0; } int vmw_overlay_close(struct vmw_private *dev_priv) { struct vmw_overlay *overlay = dev_priv->overlay_priv; bool forgotten_buffer = false; int i; if (!overlay) return -ENOSYS; for (i = 0; i < VMW_MAX_NUM_STREAMS; i++) { if (overlay->stream[i].buf) { forgotten_buffer = true; vmw_overlay_stop(dev_priv, i, false, false); } } WARN_ON(forgotten_buffer); dev_priv->overlay_priv = NULL; kfree(overlay); return 0; }
linux-master
drivers/gpu/drm/vmwgfx/vmwgfx_overlay.c
// SPDX-License-Identifier: GPL-2.0 OR MIT /************************************************************************** * * Copyright 2009-2023 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include <drm/ttm/ttm_placement.h> #include "vmwgfx_binding.h" #include "vmwgfx_bo.h" #include "vmwgfx_drv.h" #include "vmwgfx_resource_priv.h" struct vmw_user_context { struct ttm_base_object base; struct vmw_resource res; struct vmw_ctx_binding_state *cbs; struct vmw_cmdbuf_res_manager *man; struct vmw_resource *cotables[SVGA_COTABLE_MAX]; spinlock_t cotable_lock; struct vmw_bo *dx_query_mob; }; static void vmw_user_context_free(struct vmw_resource *res); static struct vmw_resource * vmw_user_context_base_to_res(struct ttm_base_object *base); static int vmw_gb_context_create(struct vmw_resource *res); static int vmw_gb_context_bind(struct vmw_resource *res, struct ttm_validate_buffer *val_buf); static int vmw_gb_context_unbind(struct vmw_resource *res, bool readback, struct ttm_validate_buffer *val_buf); static int vmw_gb_context_destroy(struct vmw_resource *res); static int vmw_dx_context_create(struct vmw_resource *res); static int vmw_dx_context_bind(struct vmw_resource *res, struct ttm_validate_buffer *val_buf); static int vmw_dx_context_unbind(struct vmw_resource *res, bool readback, struct ttm_validate_buffer *val_buf); static int vmw_dx_context_destroy(struct vmw_resource *res); static const struct vmw_user_resource_conv user_context_conv = { .object_type = VMW_RES_CONTEXT, .base_obj_to_res = vmw_user_context_base_to_res, .res_free = vmw_user_context_free }; const struct vmw_user_resource_conv *user_context_converter = &user_context_conv; static const struct vmw_res_func vmw_legacy_context_func = { .res_type = vmw_res_context, .needs_guest_memory = false, .may_evict = false, .type_name = "legacy contexts", .domain = VMW_BO_DOMAIN_SYS, .busy_domain = VMW_BO_DOMAIN_SYS, .create = NULL, .destroy = NULL, .bind = NULL, .unbind = NULL }; static const struct vmw_res_func vmw_gb_context_func = { .res_type = vmw_res_context, .needs_guest_memory = true, .may_evict = true, .prio = 3, .dirty_prio = 3, .type_name = "guest backed contexts", .domain = VMW_BO_DOMAIN_MOB, .busy_domain = VMW_BO_DOMAIN_MOB, .create = vmw_gb_context_create, .destroy = vmw_gb_context_destroy, .bind = vmw_gb_context_bind, .unbind = vmw_gb_context_unbind }; static const struct vmw_res_func vmw_dx_context_func = { .res_type = vmw_res_dx_context, .needs_guest_memory = true, .may_evict = true, .prio = 3, .dirty_prio = 3, .type_name = "dx contexts", .domain = VMW_BO_DOMAIN_MOB, .busy_domain = VMW_BO_DOMAIN_MOB, .create = vmw_dx_context_create, .destroy = vmw_dx_context_destroy, .bind = vmw_dx_context_bind, .unbind = vmw_dx_context_unbind }; /* * Context management: */ static void vmw_context_cotables_unref(struct vmw_private *dev_priv, struct vmw_user_context *uctx) { struct vmw_resource *res; int i; u32 cotable_max = has_sm5_context(dev_priv) ? SVGA_COTABLE_MAX : SVGA_COTABLE_DX10_MAX; for (i = 0; i < cotable_max; ++i) { spin_lock(&uctx->cotable_lock); res = uctx->cotables[i]; uctx->cotables[i] = NULL; spin_unlock(&uctx->cotable_lock); if (res) vmw_resource_unreference(&res); } } static void vmw_hw_context_destroy(struct vmw_resource *res) { struct vmw_user_context *uctx = container_of(res, struct vmw_user_context, res); struct vmw_private *dev_priv = res->dev_priv; struct { SVGA3dCmdHeader header; SVGA3dCmdDestroyContext body; } *cmd; if (res->func->destroy == vmw_gb_context_destroy || res->func->destroy == vmw_dx_context_destroy) { mutex_lock(&dev_priv->cmdbuf_mutex); vmw_cmdbuf_res_man_destroy(uctx->man); mutex_lock(&dev_priv->binding_mutex); vmw_binding_state_kill(uctx->cbs); (void) res->func->destroy(res); mutex_unlock(&dev_priv->binding_mutex); if (dev_priv->pinned_bo != NULL && !dev_priv->query_cid_valid) __vmw_execbuf_release_pinned_bo(dev_priv, NULL); mutex_unlock(&dev_priv->cmdbuf_mutex); vmw_context_cotables_unref(dev_priv, uctx); return; } vmw_execbuf_release_pinned_bo(dev_priv); cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd)); if (unlikely(cmd == NULL)) return; cmd->header.id = SVGA_3D_CMD_CONTEXT_DESTROY; cmd->header.size = sizeof(cmd->body); cmd->body.cid = res->id; vmw_cmd_commit(dev_priv, sizeof(*cmd)); vmw_fifo_resource_dec(dev_priv); } static int vmw_gb_context_init(struct vmw_private *dev_priv, bool dx, struct vmw_resource *res, void (*res_free)(struct vmw_resource *res)) { int ret, i; struct vmw_user_context *uctx = container_of(res, struct vmw_user_context, res); res->guest_memory_size = (dx ? sizeof(SVGADXContextMobFormat) : sizeof(SVGAGBContextData)); ret = vmw_resource_init(dev_priv, res, true, res_free, dx ? &vmw_dx_context_func : &vmw_gb_context_func); if (unlikely(ret != 0)) goto out_err; if (dev_priv->has_mob) { uctx->man = vmw_cmdbuf_res_man_create(dev_priv); if (IS_ERR(uctx->man)) { ret = PTR_ERR(uctx->man); uctx->man = NULL; goto out_err; } } uctx->cbs = vmw_binding_state_alloc(dev_priv); if (IS_ERR(uctx->cbs)) { ret = PTR_ERR(uctx->cbs); goto out_err; } spin_lock_init(&uctx->cotable_lock); if (dx) { u32 cotable_max = has_sm5_context(dev_priv) ? SVGA_COTABLE_MAX : SVGA_COTABLE_DX10_MAX; for (i = 0; i < cotable_max; ++i) { uctx->cotables[i] = vmw_cotable_alloc(dev_priv, &uctx->res, i); if (IS_ERR(uctx->cotables[i])) { ret = PTR_ERR(uctx->cotables[i]); goto out_cotables; } } } res->hw_destroy = vmw_hw_context_destroy; return 0; out_cotables: vmw_context_cotables_unref(dev_priv, uctx); out_err: if (res_free) res_free(res); else kfree(res); return ret; } static int vmw_context_init(struct vmw_private *dev_priv, struct vmw_resource *res, void (*res_free)(struct vmw_resource *res), bool dx) { int ret; struct { SVGA3dCmdHeader header; SVGA3dCmdDefineContext body; } *cmd; if (dev_priv->has_mob) return vmw_gb_context_init(dev_priv, dx, res, res_free); ret = vmw_resource_init(dev_priv, res, false, res_free, &vmw_legacy_context_func); if (unlikely(ret != 0)) { DRM_ERROR("Failed to allocate a resource id.\n"); goto out_early; } if (unlikely(res->id >= SVGA3D_HB_MAX_CONTEXT_IDS)) { DRM_ERROR("Out of hw context ids.\n"); vmw_resource_unreference(&res); return -ENOMEM; } cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd)); if (unlikely(cmd == NULL)) { vmw_resource_unreference(&res); return -ENOMEM; } cmd->header.id = SVGA_3D_CMD_CONTEXT_DEFINE; cmd->header.size = sizeof(cmd->body); cmd->body.cid = res->id; vmw_cmd_commit(dev_priv, sizeof(*cmd)); vmw_fifo_resource_inc(dev_priv); res->hw_destroy = vmw_hw_context_destroy; return 0; out_early: if (res_free == NULL) kfree(res); else res_free(res); return ret; } /* * GB context. */ static int vmw_gb_context_create(struct vmw_resource *res) { struct vmw_private *dev_priv = res->dev_priv; int ret; struct { SVGA3dCmdHeader header; SVGA3dCmdDefineGBContext body; } *cmd; if (likely(res->id != -1)) return 0; ret = vmw_resource_alloc_id(res); if (unlikely(ret != 0)) { DRM_ERROR("Failed to allocate a context id.\n"); goto out_no_id; } if (unlikely(res->id >= VMWGFX_NUM_GB_CONTEXT)) { ret = -EBUSY; goto out_no_fifo; } cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd)); if (unlikely(cmd == NULL)) { ret = -ENOMEM; goto out_no_fifo; } cmd->header.id = SVGA_3D_CMD_DEFINE_GB_CONTEXT; cmd->header.size = sizeof(cmd->body); cmd->body.cid = res->id; vmw_cmd_commit(dev_priv, sizeof(*cmd)); vmw_fifo_resource_inc(dev_priv); return 0; out_no_fifo: vmw_resource_release_id(res); out_no_id: return ret; } static int vmw_gb_context_bind(struct vmw_resource *res, struct ttm_validate_buffer *val_buf) { struct vmw_private *dev_priv = res->dev_priv; struct { SVGA3dCmdHeader header; SVGA3dCmdBindGBContext body; } *cmd; struct ttm_buffer_object *bo = val_buf->bo; BUG_ON(bo->resource->mem_type != VMW_PL_MOB); cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd)); if (unlikely(cmd == NULL)) return -ENOMEM; cmd->header.id = SVGA_3D_CMD_BIND_GB_CONTEXT; cmd->header.size = sizeof(cmd->body); cmd->body.cid = res->id; cmd->body.mobid = bo->resource->start; cmd->body.validContents = res->guest_memory_dirty; res->guest_memory_dirty = false; vmw_cmd_commit(dev_priv, sizeof(*cmd)); return 0; } static int vmw_gb_context_unbind(struct vmw_resource *res, bool readback, struct ttm_validate_buffer *val_buf) { struct vmw_private *dev_priv = res->dev_priv; struct ttm_buffer_object *bo = val_buf->bo; struct vmw_fence_obj *fence; struct vmw_user_context *uctx = container_of(res, struct vmw_user_context, res); struct { SVGA3dCmdHeader header; SVGA3dCmdReadbackGBContext body; } *cmd1; struct { SVGA3dCmdHeader header; SVGA3dCmdBindGBContext body; } *cmd2; uint32_t submit_size; uint8_t *cmd; BUG_ON(bo->resource->mem_type != VMW_PL_MOB); mutex_lock(&dev_priv->binding_mutex); vmw_binding_state_scrub(uctx->cbs); submit_size = sizeof(*cmd2) + (readback ? sizeof(*cmd1) : 0); cmd = VMW_CMD_RESERVE(dev_priv, submit_size); if (unlikely(cmd == NULL)) { mutex_unlock(&dev_priv->binding_mutex); return -ENOMEM; } cmd2 = (void *) cmd; if (readback) { cmd1 = (void *) cmd; cmd1->header.id = SVGA_3D_CMD_READBACK_GB_CONTEXT; cmd1->header.size = sizeof(cmd1->body); cmd1->body.cid = res->id; cmd2 = (void *) (&cmd1[1]); } cmd2->header.id = SVGA_3D_CMD_BIND_GB_CONTEXT; cmd2->header.size = sizeof(cmd2->body); cmd2->body.cid = res->id; cmd2->body.mobid = SVGA3D_INVALID_ID; vmw_cmd_commit(dev_priv, submit_size); mutex_unlock(&dev_priv->binding_mutex); /* * Create a fence object and fence the backup buffer. */ (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL); vmw_bo_fence_single(bo, fence); if (likely(fence != NULL)) vmw_fence_obj_unreference(&fence); return 0; } static int vmw_gb_context_destroy(struct vmw_resource *res) { struct vmw_private *dev_priv = res->dev_priv; struct { SVGA3dCmdHeader header; SVGA3dCmdDestroyGBContext body; } *cmd; if (likely(res->id == -1)) return 0; cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd)); if (unlikely(cmd == NULL)) return -ENOMEM; cmd->header.id = SVGA_3D_CMD_DESTROY_GB_CONTEXT; cmd->header.size = sizeof(cmd->body); cmd->body.cid = res->id; vmw_cmd_commit(dev_priv, sizeof(*cmd)); if (dev_priv->query_cid == res->id) dev_priv->query_cid_valid = false; vmw_resource_release_id(res); vmw_fifo_resource_dec(dev_priv); return 0; } /* * DX context. */ static int vmw_dx_context_create(struct vmw_resource *res) { struct vmw_private *dev_priv = res->dev_priv; int ret; struct { SVGA3dCmdHeader header; SVGA3dCmdDXDefineContext body; } *cmd; if (likely(res->id != -1)) return 0; ret = vmw_resource_alloc_id(res); if (unlikely(ret != 0)) { DRM_ERROR("Failed to allocate a context id.\n"); goto out_no_id; } if (unlikely(res->id >= VMWGFX_NUM_DXCONTEXT)) { ret = -EBUSY; goto out_no_fifo; } cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd)); if (unlikely(cmd == NULL)) { ret = -ENOMEM; goto out_no_fifo; } cmd->header.id = SVGA_3D_CMD_DX_DEFINE_CONTEXT; cmd->header.size = sizeof(cmd->body); cmd->body.cid = res->id; vmw_cmd_commit(dev_priv, sizeof(*cmd)); vmw_fifo_resource_inc(dev_priv); return 0; out_no_fifo: vmw_resource_release_id(res); out_no_id: return ret; } static int vmw_dx_context_bind(struct vmw_resource *res, struct ttm_validate_buffer *val_buf) { struct vmw_private *dev_priv = res->dev_priv; struct { SVGA3dCmdHeader header; SVGA3dCmdDXBindContext body; } *cmd; struct ttm_buffer_object *bo = val_buf->bo; BUG_ON(bo->resource->mem_type != VMW_PL_MOB); cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd)); if (unlikely(cmd == NULL)) return -ENOMEM; cmd->header.id = SVGA_3D_CMD_DX_BIND_CONTEXT; cmd->header.size = sizeof(cmd->body); cmd->body.cid = res->id; cmd->body.mobid = bo->resource->start; cmd->body.validContents = res->guest_memory_dirty; res->guest_memory_dirty = false; vmw_cmd_commit(dev_priv, sizeof(*cmd)); return 0; } /** * vmw_dx_context_scrub_cotables - Scrub all bindings and * cotables from a context * * @ctx: Pointer to the context resource * @readback: Whether to save the otable contents on scrubbing. * * COtables must be unbound before their context, but unbinding requires * the backup buffer being reserved, whereas scrubbing does not. * This function scrubs all cotables of a context, potentially reading back * the contents into their backup buffers. However, scrubbing cotables * also makes the device context invalid, so scrub all bindings first so * that doesn't have to be done later with an invalid context. */ void vmw_dx_context_scrub_cotables(struct vmw_resource *ctx, bool readback) { struct vmw_user_context *uctx = container_of(ctx, struct vmw_user_context, res); u32 cotable_max = has_sm5_context(ctx->dev_priv) ? SVGA_COTABLE_MAX : SVGA_COTABLE_DX10_MAX; int i; vmw_binding_state_scrub(uctx->cbs); for (i = 0; i < cotable_max; ++i) { struct vmw_resource *res; /* Avoid racing with ongoing cotable destruction. */ spin_lock(&uctx->cotable_lock); res = uctx->cotables[vmw_cotable_scrub_order[i]]; if (res) res = vmw_resource_reference_unless_doomed(res); spin_unlock(&uctx->cotable_lock); if (!res) continue; WARN_ON(vmw_cotable_scrub(res, readback)); vmw_resource_unreference(&res); } } static int vmw_dx_context_unbind(struct vmw_resource *res, bool readback, struct ttm_validate_buffer *val_buf) { struct vmw_private *dev_priv = res->dev_priv; struct ttm_buffer_object *bo = val_buf->bo; struct vmw_fence_obj *fence; struct vmw_user_context *uctx = container_of(res, struct vmw_user_context, res); struct { SVGA3dCmdHeader header; SVGA3dCmdDXReadbackContext body; } *cmd1; struct { SVGA3dCmdHeader header; SVGA3dCmdDXBindContext body; } *cmd2; uint32_t submit_size; uint8_t *cmd; BUG_ON(bo->resource->mem_type != VMW_PL_MOB); mutex_lock(&dev_priv->binding_mutex); vmw_dx_context_scrub_cotables(res, readback); if (uctx->dx_query_mob && uctx->dx_query_mob->dx_query_ctx && readback) { WARN_ON(uctx->dx_query_mob->dx_query_ctx != res); if (vmw_query_readback_all(uctx->dx_query_mob)) DRM_ERROR("Failed to read back query states\n"); } submit_size = sizeof(*cmd2) + (readback ? sizeof(*cmd1) : 0); cmd = VMW_CMD_RESERVE(dev_priv, submit_size); if (unlikely(cmd == NULL)) { mutex_unlock(&dev_priv->binding_mutex); return -ENOMEM; } cmd2 = (void *) cmd; if (readback) { cmd1 = (void *) cmd; cmd1->header.id = SVGA_3D_CMD_DX_READBACK_CONTEXT; cmd1->header.size = sizeof(cmd1->body); cmd1->body.cid = res->id; cmd2 = (void *) (&cmd1[1]); } cmd2->header.id = SVGA_3D_CMD_DX_BIND_CONTEXT; cmd2->header.size = sizeof(cmd2->body); cmd2->body.cid = res->id; cmd2->body.mobid = SVGA3D_INVALID_ID; vmw_cmd_commit(dev_priv, submit_size); mutex_unlock(&dev_priv->binding_mutex); /* * Create a fence object and fence the backup buffer. */ (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL); vmw_bo_fence_single(bo, fence); if (likely(fence != NULL)) vmw_fence_obj_unreference(&fence); return 0; } static int vmw_dx_context_destroy(struct vmw_resource *res) { struct vmw_private *dev_priv = res->dev_priv; struct { SVGA3dCmdHeader header; SVGA3dCmdDXDestroyContext body; } *cmd; if (likely(res->id == -1)) return 0; cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd)); if (unlikely(cmd == NULL)) return -ENOMEM; cmd->header.id = SVGA_3D_CMD_DX_DESTROY_CONTEXT; cmd->header.size = sizeof(cmd->body); cmd->body.cid = res->id; vmw_cmd_commit(dev_priv, sizeof(*cmd)); if (dev_priv->query_cid == res->id) dev_priv->query_cid_valid = false; vmw_resource_release_id(res); vmw_fifo_resource_dec(dev_priv); return 0; } /* * User-space context management: */ static struct vmw_resource * vmw_user_context_base_to_res(struct ttm_base_object *base) { return &(container_of(base, struct vmw_user_context, base)->res); } static void vmw_user_context_free(struct vmw_resource *res) { struct vmw_user_context *ctx = container_of(res, struct vmw_user_context, res); if (ctx->cbs) vmw_binding_state_free(ctx->cbs); (void) vmw_context_bind_dx_query(res, NULL); ttm_base_object_kfree(ctx, base); } /* * This function is called when user space has no more references on the * base object. It releases the base-object's reference on the resource object. */ static void vmw_user_context_base_release(struct ttm_base_object **p_base) { struct ttm_base_object *base = *p_base; struct vmw_user_context *ctx = container_of(base, struct vmw_user_context, base); struct vmw_resource *res = &ctx->res; *p_base = NULL; vmw_resource_unreference(&res); } int vmw_context_destroy_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_vmw_context_arg *arg = (struct drm_vmw_context_arg *)data; struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; return ttm_ref_object_base_unref(tfile, arg->cid); } static int vmw_context_define(struct drm_device *dev, void *data, struct drm_file *file_priv, bool dx) { struct vmw_private *dev_priv = vmw_priv(dev); struct vmw_user_context *ctx; struct vmw_resource *res; struct vmw_resource *tmp; struct drm_vmw_context_arg *arg = (struct drm_vmw_context_arg *)data; struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; int ret; if (!has_sm4_context(dev_priv) && dx) { VMW_DEBUG_USER("DX contexts not supported by device.\n"); return -EINVAL; } ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (unlikely(!ctx)) { ret = -ENOMEM; goto out_ret; } res = &ctx->res; ctx->base.shareable = false; ctx->base.tfile = NULL; /* * From here on, the destructor takes over resource freeing. */ ret = vmw_context_init(dev_priv, res, vmw_user_context_free, dx); if (unlikely(ret != 0)) goto out_ret; tmp = vmw_resource_reference(&ctx->res); ret = ttm_base_object_init(tfile, &ctx->base, false, VMW_RES_CONTEXT, &vmw_user_context_base_release); if (unlikely(ret != 0)) { vmw_resource_unreference(&tmp); goto out_err; } arg->cid = ctx->base.handle; out_err: vmw_resource_unreference(&res); out_ret: return ret; } int vmw_context_define_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { return vmw_context_define(dev, data, file_priv, false); } int vmw_extended_context_define_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { union drm_vmw_extended_context_arg *arg = (typeof(arg)) data; struct drm_vmw_context_arg *rep = &arg->rep; switch (arg->req) { case drm_vmw_context_legacy: return vmw_context_define(dev, rep, file_priv, false); case drm_vmw_context_dx: return vmw_context_define(dev, rep, file_priv, true); default: break; } return -EINVAL; } /** * vmw_context_binding_list - Return a list of context bindings * * @ctx: The context resource * * Returns the current list of bindings of the given context. Note that * this list becomes stale as soon as the dev_priv::binding_mutex is unlocked. */ struct list_head *vmw_context_binding_list(struct vmw_resource *ctx) { struct vmw_user_context *uctx = container_of(ctx, struct vmw_user_context, res); return vmw_binding_state_list(uctx->cbs); } struct vmw_cmdbuf_res_manager *vmw_context_res_man(struct vmw_resource *ctx) { return container_of(ctx, struct vmw_user_context, res)->man; } struct vmw_resource *vmw_context_cotable(struct vmw_resource *ctx, SVGACOTableType cotable_type) { u32 cotable_max = has_sm5_context(ctx->dev_priv) ? SVGA_COTABLE_MAX : SVGA_COTABLE_DX10_MAX; if (cotable_type >= cotable_max) return ERR_PTR(-EINVAL); return container_of(ctx, struct vmw_user_context, res)-> cotables[cotable_type]; } /** * vmw_context_binding_state - * Return a pointer to a context binding state structure * * @ctx: The context resource * * Returns the current state of bindings of the given context. Note that * this state becomes stale as soon as the dev_priv::binding_mutex is unlocked. */ struct vmw_ctx_binding_state * vmw_context_binding_state(struct vmw_resource *ctx) { return container_of(ctx, struct vmw_user_context, res)->cbs; } /** * vmw_context_bind_dx_query - * Sets query MOB for the context. If @mob is NULL, then this function will * remove the association between the MOB and the context. This function * assumes the binding_mutex is held. * * @ctx_res: The context resource * @mob: a reference to the query MOB * * Returns -EINVAL if a MOB has already been set and does not match the one * specified in the parameter. 0 otherwise. */ int vmw_context_bind_dx_query(struct vmw_resource *ctx_res, struct vmw_bo *mob) { struct vmw_user_context *uctx = container_of(ctx_res, struct vmw_user_context, res); if (mob == NULL) { if (uctx->dx_query_mob) { uctx->dx_query_mob->dx_query_ctx = NULL; vmw_bo_unreference(&uctx->dx_query_mob); uctx->dx_query_mob = NULL; } return 0; } /* Can only have one MOB per context for queries */ if (uctx->dx_query_mob && uctx->dx_query_mob != mob) return -EINVAL; mob->dx_query_ctx = ctx_res; if (!uctx->dx_query_mob) uctx->dx_query_mob = vmw_bo_reference(mob); return 0; } /** * vmw_context_get_dx_query_mob - Returns non-counted reference to DX query mob * * @ctx_res: The context resource */ struct vmw_bo * vmw_context_get_dx_query_mob(struct vmw_resource *ctx_res) { struct vmw_user_context *uctx = container_of(ctx_res, struct vmw_user_context, res); return uctx->dx_query_mob; }
linux-master
drivers/gpu/drm/vmwgfx/vmwgfx_context.c
// SPDX-License-Identifier: GPL-2.0 OR MIT /* * Copyright 2016 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include <linux/objtool.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/cc_platform.h> #include <asm/hypervisor.h> #include <drm/drm_ioctl.h> #include "vmwgfx_drv.h" #include "vmwgfx_msg_x86.h" #include "vmwgfx_msg_arm64.h" #include "vmwgfx_mksstat.h" #define MESSAGE_STATUS_SUCCESS 0x0001 #define MESSAGE_STATUS_DORECV 0x0002 #define MESSAGE_STATUS_CPT 0x0010 #define MESSAGE_STATUS_HB 0x0080 #define RPCI_PROTOCOL_NUM 0x49435052 #define GUESTMSG_FLAG_COOKIE 0x80000000 #define RETRIES 3 #define VMW_HYPERVISOR_MAGIC 0x564D5868 #define VMW_PORT_CMD_MSG 30 #define VMW_PORT_CMD_HB_MSG 0 #define VMW_PORT_CMD_OPEN_CHANNEL (MSG_TYPE_OPEN << 16 | VMW_PORT_CMD_MSG) #define VMW_PORT_CMD_CLOSE_CHANNEL (MSG_TYPE_CLOSE << 16 | VMW_PORT_CMD_MSG) #define VMW_PORT_CMD_SENDSIZE (MSG_TYPE_SENDSIZE << 16 | VMW_PORT_CMD_MSG) #define VMW_PORT_CMD_RECVSIZE (MSG_TYPE_RECVSIZE << 16 | VMW_PORT_CMD_MSG) #define VMW_PORT_CMD_RECVSTATUS (MSG_TYPE_RECVSTATUS << 16 | VMW_PORT_CMD_MSG) #define VMW_PORT_CMD_MKS_GUEST_STATS 85 #define VMW_PORT_CMD_MKSGS_RESET (0 << 16 | VMW_PORT_CMD_MKS_GUEST_STATS) #define VMW_PORT_CMD_MKSGS_ADD_PPN (1 << 16 | VMW_PORT_CMD_MKS_GUEST_STATS) #define VMW_PORT_CMD_MKSGS_REMOVE_PPN (2 << 16 | VMW_PORT_CMD_MKS_GUEST_STATS) #define HIGH_WORD(X) ((X & 0xFFFF0000) >> 16) #define MAX_USER_MSG_LENGTH PAGE_SIZE static u32 vmw_msg_enabled = 1; enum rpc_msg_type { MSG_TYPE_OPEN, MSG_TYPE_SENDSIZE, MSG_TYPE_SENDPAYLOAD, MSG_TYPE_RECVSIZE, MSG_TYPE_RECVPAYLOAD, MSG_TYPE_RECVSTATUS, MSG_TYPE_CLOSE, }; struct rpc_channel { u16 channel_id; u32 cookie_high; u32 cookie_low; }; #if IS_ENABLED(CONFIG_DRM_VMWGFX_MKSSTATS) /* Kernel mksGuestStats counter names and desciptions; same order as enum mksstat_kern_stats_t */ static const char* const mksstat_kern_name_desc[MKSSTAT_KERN_COUNT][2] = { { "vmw_execbuf_ioctl", "vmw_execbuf_ioctl" }, { "vmw_cotable_resize", "vmw_cotable_resize" }, }; #endif /** * vmw_open_channel * * @channel: RPC channel * @protocol: * * Returns: 0 on success */ static int vmw_open_channel(struct rpc_channel *channel, unsigned int protocol) { unsigned long eax, ebx, ecx, edx, si = 0, di = 0; VMW_PORT(VMW_PORT_CMD_OPEN_CHANNEL, (protocol | GUESTMSG_FLAG_COOKIE), si, di, 0, VMW_HYPERVISOR_MAGIC, eax, ebx, ecx, edx, si, di); if ((HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS) == 0) return -EINVAL; channel->channel_id = HIGH_WORD(edx); channel->cookie_high = si; channel->cookie_low = di; return 0; } /** * vmw_close_channel * * @channel: RPC channel * * Returns: 0 on success */ static int vmw_close_channel(struct rpc_channel *channel) { unsigned long eax, ebx, ecx, edx, si, di; /* Set up additional parameters */ si = channel->cookie_high; di = channel->cookie_low; VMW_PORT(VMW_PORT_CMD_CLOSE_CHANNEL, 0, si, di, channel->channel_id << 16, VMW_HYPERVISOR_MAGIC, eax, ebx, ecx, edx, si, di); if ((HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS) == 0) return -EINVAL; return 0; } /** * vmw_port_hb_out - Send the message payload either through the * high-bandwidth port if available, or through the backdoor otherwise. * @channel: The rpc channel. * @msg: NULL-terminated message. * @hb: Whether the high-bandwidth port is available. * * Return: The port status. */ static unsigned long vmw_port_hb_out(struct rpc_channel *channel, const char *msg, bool hb) { unsigned long si, di, eax, ebx, ecx, edx; unsigned long msg_len = strlen(msg); /* HB port can't access encrypted memory. */ if (hb && !cc_platform_has(CC_ATTR_MEM_ENCRYPT)) { unsigned long bp = channel->cookie_high; u32 channel_id = (channel->channel_id << 16); si = (uintptr_t) msg; di = channel->cookie_low; VMW_PORT_HB_OUT( (MESSAGE_STATUS_SUCCESS << 16) | VMW_PORT_CMD_HB_MSG, msg_len, si, di, VMWARE_HYPERVISOR_HB | channel_id | VMWARE_HYPERVISOR_OUT, VMW_HYPERVISOR_MAGIC, bp, eax, ebx, ecx, edx, si, di); return ebx; } /* HB port not available. Send the message 4 bytes at a time. */ ecx = MESSAGE_STATUS_SUCCESS << 16; while (msg_len && (HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS)) { unsigned int bytes = min_t(size_t, msg_len, 4); unsigned long word = 0; memcpy(&word, msg, bytes); msg_len -= bytes; msg += bytes; si = channel->cookie_high; di = channel->cookie_low; VMW_PORT(VMW_PORT_CMD_MSG | (MSG_TYPE_SENDPAYLOAD << 16), word, si, di, channel->channel_id << 16, VMW_HYPERVISOR_MAGIC, eax, ebx, ecx, edx, si, di); } return ecx; } /** * vmw_port_hb_in - Receive the message payload either through the * high-bandwidth port if available, or through the backdoor otherwise. * @channel: The rpc channel. * @reply: Pointer to buffer holding reply. * @reply_len: Length of the reply. * @hb: Whether the high-bandwidth port is available. * * Return: The port status. */ static unsigned long vmw_port_hb_in(struct rpc_channel *channel, char *reply, unsigned long reply_len, bool hb) { unsigned long si, di, eax, ebx, ecx, edx; /* HB port can't access encrypted memory */ if (hb && !cc_platform_has(CC_ATTR_MEM_ENCRYPT)) { unsigned long bp = channel->cookie_low; u32 channel_id = (channel->channel_id << 16); si = channel->cookie_high; di = (uintptr_t) reply; VMW_PORT_HB_IN( (MESSAGE_STATUS_SUCCESS << 16) | VMW_PORT_CMD_HB_MSG, reply_len, si, di, VMWARE_HYPERVISOR_HB | channel_id, VMW_HYPERVISOR_MAGIC, bp, eax, ebx, ecx, edx, si, di); return ebx; } /* HB port not available. Retrieve the message 4 bytes at a time. */ ecx = MESSAGE_STATUS_SUCCESS << 16; while (reply_len) { unsigned int bytes = min_t(unsigned long, reply_len, 4); si = channel->cookie_high; di = channel->cookie_low; VMW_PORT(VMW_PORT_CMD_MSG | (MSG_TYPE_RECVPAYLOAD << 16), MESSAGE_STATUS_SUCCESS, si, di, channel->channel_id << 16, VMW_HYPERVISOR_MAGIC, eax, ebx, ecx, edx, si, di); if ((HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS) == 0) break; memcpy(reply, &ebx, bytes); reply_len -= bytes; reply += bytes; } return ecx; } /** * vmw_send_msg: Sends a message to the host * * @channel: RPC channel * @msg: NULL terminated string * * Returns: 0 on success */ static int vmw_send_msg(struct rpc_channel *channel, const char *msg) { unsigned long eax, ebx, ecx, edx, si, di; size_t msg_len = strlen(msg); int retries = 0; while (retries < RETRIES) { retries++; /* Set up additional parameters */ si = channel->cookie_high; di = channel->cookie_low; VMW_PORT(VMW_PORT_CMD_SENDSIZE, msg_len, si, di, channel->channel_id << 16, VMW_HYPERVISOR_MAGIC, eax, ebx, ecx, edx, si, di); if ((HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS) == 0) { /* Expected success. Give up. */ return -EINVAL; } /* Send msg */ ebx = vmw_port_hb_out(channel, msg, !!(HIGH_WORD(ecx) & MESSAGE_STATUS_HB)); if ((HIGH_WORD(ebx) & MESSAGE_STATUS_SUCCESS) != 0) { return 0; } else if ((HIGH_WORD(ebx) & MESSAGE_STATUS_CPT) != 0) { /* A checkpoint occurred. Retry. */ continue; } else { break; } } return -EINVAL; } STACK_FRAME_NON_STANDARD(vmw_send_msg); /** * vmw_recv_msg: Receives a message from the host * * Note: It is the caller's responsibility to call kfree() on msg. * * @channel: channel opened by vmw_open_channel * @msg: [OUT] message received from the host * @msg_len: message length */ static int vmw_recv_msg(struct rpc_channel *channel, void **msg, size_t *msg_len) { unsigned long eax, ebx, ecx, edx, si, di; char *reply; size_t reply_len; int retries = 0; *msg_len = 0; *msg = NULL; while (retries < RETRIES) { retries++; /* Set up additional parameters */ si = channel->cookie_high; di = channel->cookie_low; VMW_PORT(VMW_PORT_CMD_RECVSIZE, 0, si, di, channel->channel_id << 16, VMW_HYPERVISOR_MAGIC, eax, ebx, ecx, edx, si, di); if ((HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS) == 0) { DRM_ERROR("Failed to get reply size for host message.\n"); return -EINVAL; } /* No reply available. This is okay. */ if ((HIGH_WORD(ecx) & MESSAGE_STATUS_DORECV) == 0) return 0; reply_len = ebx; reply = kzalloc(reply_len + 1, GFP_KERNEL); if (!reply) { DRM_ERROR("Cannot allocate memory for host message reply.\n"); return -ENOMEM; } /* Receive buffer */ ebx = vmw_port_hb_in(channel, reply, reply_len, !!(HIGH_WORD(ecx) & MESSAGE_STATUS_HB)); if ((HIGH_WORD(ebx) & MESSAGE_STATUS_SUCCESS) == 0) { kfree(reply); reply = NULL; if ((HIGH_WORD(ebx) & MESSAGE_STATUS_CPT) != 0) { /* A checkpoint occurred. Retry. */ continue; } return -EINVAL; } reply[reply_len] = '\0'; /* Ack buffer */ si = channel->cookie_high; di = channel->cookie_low; VMW_PORT(VMW_PORT_CMD_RECVSTATUS, MESSAGE_STATUS_SUCCESS, si, di, channel->channel_id << 16, VMW_HYPERVISOR_MAGIC, eax, ebx, ecx, edx, si, di); if ((HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS) == 0) { kfree(reply); reply = NULL; if ((HIGH_WORD(ecx) & MESSAGE_STATUS_CPT) != 0) { /* A checkpoint occurred. Retry. */ continue; } return -EINVAL; } break; } if (!reply) return -EINVAL; *msg_len = reply_len; *msg = reply; return 0; } STACK_FRAME_NON_STANDARD(vmw_recv_msg); /** * vmw_host_get_guestinfo: Gets a GuestInfo parameter * * Gets the value of a GuestInfo.* parameter. The value returned will be in * a string, and it is up to the caller to post-process. * * @guest_info_param: Parameter to get, e.g. GuestInfo.svga.gl3 * @buffer: if NULL, *reply_len will contain reply size. * @length: size of the reply_buf. Set to size of reply upon return * * Returns: 0 on success */ int vmw_host_get_guestinfo(const char *guest_info_param, char *buffer, size_t *length) { struct rpc_channel channel; char *msg, *reply = NULL; size_t reply_len = 0; if (!vmw_msg_enabled) return -ENODEV; if (!guest_info_param || !length) return -EINVAL; msg = kasprintf(GFP_KERNEL, "info-get %s", guest_info_param); if (!msg) { DRM_ERROR("Cannot allocate memory to get guest info \"%s\".", guest_info_param); return -ENOMEM; } if (vmw_open_channel(&channel, RPCI_PROTOCOL_NUM)) goto out_open; if (vmw_send_msg(&channel, msg) || vmw_recv_msg(&channel, (void *) &reply, &reply_len)) goto out_msg; vmw_close_channel(&channel); if (buffer && reply && reply_len > 0) { /* Remove reply code, which are the first 2 characters of * the reply */ reply_len = max(reply_len - 2, (size_t) 0); reply_len = min(reply_len, *length); if (reply_len > 0) memcpy(buffer, reply + 2, reply_len); } *length = reply_len; kfree(reply); kfree(msg); return 0; out_msg: vmw_close_channel(&channel); kfree(reply); out_open: *length = 0; kfree(msg); DRM_ERROR("Failed to get guest info \"%s\".", guest_info_param); return -EINVAL; } /** * vmw_host_printf: Sends a log message to the host * * @fmt: Regular printf format string and arguments * * Returns: 0 on success */ __printf(1, 2) int vmw_host_printf(const char *fmt, ...) { va_list ap; struct rpc_channel channel; char *msg; char *log; int ret = 0; if (!vmw_msg_enabled) return -ENODEV; if (!fmt) return ret; va_start(ap, fmt); log = kvasprintf(GFP_KERNEL, fmt, ap); va_end(ap); if (!log) { DRM_ERROR("Cannot allocate memory for the log message.\n"); return -ENOMEM; } msg = kasprintf(GFP_KERNEL, "log %s", log); if (!msg) { DRM_ERROR("Cannot allocate memory for host log message.\n"); kfree(log); return -ENOMEM; } if (vmw_open_channel(&channel, RPCI_PROTOCOL_NUM)) goto out_open; if (vmw_send_msg(&channel, msg)) goto out_msg; vmw_close_channel(&channel); kfree(msg); kfree(log); return 0; out_msg: vmw_close_channel(&channel); out_open: kfree(msg); kfree(log); DRM_ERROR("Failed to send host log message.\n"); return -EINVAL; } /** * vmw_msg_ioctl: Sends and receveives a message to/from host from/to user-space * * Sends a message from user-space to host. * Can also receive a result from host and return that to user-space. * * @dev: Identifies the drm device. * @data: Pointer to the ioctl argument. * @file_priv: Identifies the caller. * Return: Zero on success, negative error code on error. */ int vmw_msg_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_vmw_msg_arg *arg = (struct drm_vmw_msg_arg *)data; struct rpc_channel channel; char *msg; int length; msg = kmalloc(MAX_USER_MSG_LENGTH, GFP_KERNEL); if (!msg) { DRM_ERROR("Cannot allocate memory for log message.\n"); return -ENOMEM; } length = strncpy_from_user(msg, (void __user *)((unsigned long)arg->send), MAX_USER_MSG_LENGTH); if (length < 0 || length >= MAX_USER_MSG_LENGTH) { DRM_ERROR("Userspace message access failure.\n"); kfree(msg); return -EINVAL; } if (vmw_open_channel(&channel, RPCI_PROTOCOL_NUM)) { DRM_ERROR("Failed to open channel.\n"); goto out_open; } if (vmw_send_msg(&channel, msg)) { DRM_ERROR("Failed to send message to host.\n"); goto out_msg; } if (!arg->send_only) { char *reply = NULL; size_t reply_len = 0; if (vmw_recv_msg(&channel, (void *) &reply, &reply_len)) { DRM_ERROR("Failed to receive message from host.\n"); goto out_msg; } if (reply && reply_len > 0) { if (copy_to_user((void __user *)((unsigned long)arg->receive), reply, reply_len)) { DRM_ERROR("Failed to copy message to userspace.\n"); kfree(reply); goto out_msg; } arg->receive_len = (__u32)reply_len; } kfree(reply); } vmw_close_channel(&channel); kfree(msg); return 0; out_msg: vmw_close_channel(&channel); out_open: kfree(msg); return -EINVAL; } /** * reset_ppn_array: Resets a PPN64 array to INVALID_PPN64 content * * @arr: Array to reset. * @size: Array length. */ static inline void reset_ppn_array(PPN64 *arr, size_t size) { size_t i; BUG_ON(!arr || size == 0); for (i = 0; i < size; ++i) arr[i] = INVALID_PPN64; } /** * hypervisor_ppn_reset_all: Removes all mksGuestStat instance descriptors from * the hypervisor. All related pages should be subsequently unpinned or freed. * */ static inline void hypervisor_ppn_reset_all(void) { unsigned long eax, ebx, ecx, edx, si = 0, di = 0; VMW_PORT(VMW_PORT_CMD_MKSGS_RESET, 0, si, di, 0, VMW_HYPERVISOR_MAGIC, eax, ebx, ecx, edx, si, di); } /** * hypervisor_ppn_add: Adds a single mksGuestStat instance descriptor to the * hypervisor. Any related userspace pages should be pinned in advance. * * @pfn: Physical page number of the instance descriptor */ static inline void hypervisor_ppn_add(PPN64 pfn) { unsigned long eax, ebx, ecx, edx, si = 0, di = 0; VMW_PORT(VMW_PORT_CMD_MKSGS_ADD_PPN, (unsigned long)pfn, si, di, 0, VMW_HYPERVISOR_MAGIC, eax, ebx, ecx, edx, si, di); } /** * hypervisor_ppn_remove: Removes a single mksGuestStat instance descriptor from * the hypervisor. All related pages should be subsequently unpinned or freed. * * @pfn: Physical page number of the instance descriptor */ static inline void hypervisor_ppn_remove(PPN64 pfn) { unsigned long eax, ebx, ecx, edx, si = 0, di = 0; VMW_PORT(VMW_PORT_CMD_MKSGS_REMOVE_PPN, (unsigned long)pfn, si, di, 0, VMW_HYPERVISOR_MAGIC, eax, ebx, ecx, edx, si, di); } #if IS_ENABLED(CONFIG_DRM_VMWGFX_MKSSTATS) /* Order of the total number of pages used for kernel-internal mksGuestStat; at least 2 */ #define MKSSTAT_KERNEL_PAGES_ORDER 2 /* Header to the text description of mksGuestStat instance descriptor */ #define MKSSTAT_KERNEL_DESCRIPTION "vmwgfx" /** * mksstat_init_record_time: Initializes an MKSGuestStatCounterTime-based record * for the respective mksGuestStat index. * * @stat_idx: Index of the MKSGuestStatCounterTime-based mksGuestStat record. * @pstat: Pointer to array of MKSGuestStatCounterTime. * @pinfo: Pointer to array of MKSGuestStatInfoEntry. * @pstrs: Pointer to current end of the name/description sequence. * Return: Pointer to the new end of the names/description sequence. */ static inline char *mksstat_init_record_time(mksstat_kern_stats_t stat_idx, MKSGuestStatCounterTime *pstat, MKSGuestStatInfoEntry *pinfo, char *pstrs) { char *const pstrd = pstrs + strlen(mksstat_kern_name_desc[stat_idx][0]) + 1; strcpy(pstrs, mksstat_kern_name_desc[stat_idx][0]); strcpy(pstrd, mksstat_kern_name_desc[stat_idx][1]); pinfo[stat_idx].name.s = pstrs; pinfo[stat_idx].description.s = pstrd; pinfo[stat_idx].flags = MKS_GUEST_STAT_FLAG_TIME; pinfo[stat_idx].stat.counterTime = &pstat[stat_idx]; return pstrd + strlen(mksstat_kern_name_desc[stat_idx][1]) + 1; } /** * mksstat_init_kern_id: Creates a single mksGuestStat instance descriptor and * kernel-internal counters. Adds PFN mapping to the hypervisor. * * Create a single mksGuestStat instance descriptor and corresponding structures * for all kernel-internal counters. The corresponding PFNs are mapped with the * hypervisor. * * @ppage: Output pointer to page containing the instance descriptor. * Return: Zero on success, negative error code on error. */ static int mksstat_init_kern_id(struct page **ppage) { MKSGuestStatInstanceDescriptor *pdesc; MKSGuestStatCounterTime *pstat; MKSGuestStatInfoEntry *pinfo; char *pstrs, *pstrs_acc; /* Allocate pages for the kernel-internal instance descriptor */ struct page *page = alloc_pages(GFP_KERNEL | __GFP_ZERO, MKSSTAT_KERNEL_PAGES_ORDER); if (!page) return -ENOMEM; pdesc = page_address(page); pstat = vmw_mksstat_get_kern_pstat(pdesc); pinfo = vmw_mksstat_get_kern_pinfo(pdesc); pstrs = vmw_mksstat_get_kern_pstrs(pdesc); /* Set up all kernel-internal counters and corresponding structures */ pstrs_acc = pstrs; pstrs_acc = mksstat_init_record_time(MKSSTAT_KERN_EXECBUF, pstat, pinfo, pstrs_acc); pstrs_acc = mksstat_init_record_time(MKSSTAT_KERN_COTABLE_RESIZE, pstat, pinfo, pstrs_acc); /* Add new counters above, in their order of appearance in mksstat_kern_stats_t */ BUG_ON(pstrs_acc - pstrs > PAGE_SIZE); /* Set up the kernel-internal instance descriptor */ pdesc->reservedMBZ = 0; pdesc->statStartVA = (uintptr_t)pstat; pdesc->strsStartVA = (uintptr_t)pstrs; pdesc->statLength = sizeof(*pstat) * MKSSTAT_KERN_COUNT; pdesc->infoLength = sizeof(*pinfo) * MKSSTAT_KERN_COUNT; pdesc->strsLength = pstrs_acc - pstrs; snprintf(pdesc->description, ARRAY_SIZE(pdesc->description) - 1, "%s pid=%d", MKSSTAT_KERNEL_DESCRIPTION, current->pid); pdesc->statPPNs[0] = page_to_pfn(virt_to_page(pstat)); reset_ppn_array(pdesc->statPPNs + 1, ARRAY_SIZE(pdesc->statPPNs) - 1); pdesc->infoPPNs[0] = page_to_pfn(virt_to_page(pinfo)); reset_ppn_array(pdesc->infoPPNs + 1, ARRAY_SIZE(pdesc->infoPPNs) - 1); pdesc->strsPPNs[0] = page_to_pfn(virt_to_page(pstrs)); reset_ppn_array(pdesc->strsPPNs + 1, ARRAY_SIZE(pdesc->strsPPNs) - 1); *ppage = page; hypervisor_ppn_add((PPN64)page_to_pfn(page)); return 0; } /** * vmw_mksstat_get_kern_slot: Acquires a slot for a single kernel-internal * mksGuestStat instance descriptor. * * Find a slot for a single kernel-internal mksGuestStat instance descriptor. * In case no such was already present, allocate a new one and set up a kernel- * internal mksGuestStat instance descriptor for the former. * * @pid: Process for which a slot is sought. * @dev_priv: Identifies the drm private device. * Return: Non-negative slot on success, negative error code on error. */ int vmw_mksstat_get_kern_slot(pid_t pid, struct vmw_private *dev_priv) { const size_t base = (u32)hash_32(pid, MKSSTAT_CAPACITY_LOG2); size_t i; for (i = 0; i < ARRAY_SIZE(dev_priv->mksstat_kern_pids); ++i) { const size_t slot = (i + base) % ARRAY_SIZE(dev_priv->mksstat_kern_pids); /* Check if an instance descriptor for this pid is already present */ if (pid == (pid_t)atomic_read(&dev_priv->mksstat_kern_pids[slot])) return (int)slot; /* Set up a new instance descriptor for this pid */ if (!atomic_cmpxchg(&dev_priv->mksstat_kern_pids[slot], 0, MKSSTAT_PID_RESERVED)) { const int ret = mksstat_init_kern_id(&dev_priv->mksstat_kern_pages[slot]); if (!ret) { /* Reset top-timer tracking for this slot */ dev_priv->mksstat_kern_top_timer[slot] = MKSSTAT_KERN_COUNT; atomic_set(&dev_priv->mksstat_kern_pids[slot], pid); return (int)slot; } atomic_set(&dev_priv->mksstat_kern_pids[slot], 0); return ret; } } return -ENOSPC; } #endif /** * vmw_mksstat_cleanup_descriptor: Frees a single userspace-originating * mksGuestStat instance-descriptor page and unpins all related user pages. * * Unpin all user pages realated to this instance descriptor and free * the instance-descriptor page itself. * * @page: Page of the instance descriptor. */ static void vmw_mksstat_cleanup_descriptor(struct page *page) { MKSGuestStatInstanceDescriptor *pdesc = page_address(page); size_t i; for (i = 0; i < ARRAY_SIZE(pdesc->statPPNs) && pdesc->statPPNs[i] != INVALID_PPN64; ++i) unpin_user_page(pfn_to_page(pdesc->statPPNs[i])); for (i = 0; i < ARRAY_SIZE(pdesc->infoPPNs) && pdesc->infoPPNs[i] != INVALID_PPN64; ++i) unpin_user_page(pfn_to_page(pdesc->infoPPNs[i])); for (i = 0; i < ARRAY_SIZE(pdesc->strsPPNs) && pdesc->strsPPNs[i] != INVALID_PPN64; ++i) unpin_user_page(pfn_to_page(pdesc->strsPPNs[i])); __free_page(page); } /** * vmw_mksstat_remove_all: Resets all mksGuestStat instance descriptors * from the hypervisor. * * Discard all hypervisor PFN mappings, containing active mksGuestState instance * descriptors, unpin the related userspace pages and free the related kernel pages. * * @dev_priv: Identifies the drm private device. * Return: Zero on success, negative error code on error. */ int vmw_mksstat_remove_all(struct vmw_private *dev_priv) { int ret = 0; size_t i; /* Discard all PFN mappings with the hypervisor */ hypervisor_ppn_reset_all(); /* Discard all userspace-originating instance descriptors and unpin all related pages */ for (i = 0; i < ARRAY_SIZE(dev_priv->mksstat_user_pids); ++i) { const pid_t pid0 = (pid_t)atomic_read(&dev_priv->mksstat_user_pids[i]); if (!pid0) continue; if (pid0 != MKSSTAT_PID_RESERVED) { const pid_t pid1 = atomic_cmpxchg(&dev_priv->mksstat_user_pids[i], pid0, MKSSTAT_PID_RESERVED); if (!pid1) continue; if (pid1 == pid0) { struct page *const page = dev_priv->mksstat_user_pages[i]; BUG_ON(!page); dev_priv->mksstat_user_pages[i] = NULL; atomic_set(&dev_priv->mksstat_user_pids[i], 0); vmw_mksstat_cleanup_descriptor(page); continue; } } ret = -EAGAIN; } #if IS_ENABLED(CONFIG_DRM_VMWGFX_MKSSTATS) /* Discard all kernel-internal instance descriptors and free all related pages */ for (i = 0; i < ARRAY_SIZE(dev_priv->mksstat_kern_pids); ++i) { const pid_t pid0 = (pid_t)atomic_read(&dev_priv->mksstat_kern_pids[i]); if (!pid0) continue; if (pid0 != MKSSTAT_PID_RESERVED) { const pid_t pid1 = atomic_cmpxchg(&dev_priv->mksstat_kern_pids[i], pid0, MKSSTAT_PID_RESERVED); if (!pid1) continue; if (pid1 == pid0) { struct page *const page = dev_priv->mksstat_kern_pages[i]; BUG_ON(!page); dev_priv->mksstat_kern_pages[i] = NULL; atomic_set(&dev_priv->mksstat_kern_pids[i], 0); __free_pages(page, MKSSTAT_KERNEL_PAGES_ORDER); continue; } } ret = -EAGAIN; } #endif return ret; } /** * vmw_mksstat_reset_ioctl: Resets all mksGuestStat instance descriptors * from the hypervisor. * * Discard all hypervisor PFN mappings, containing active mksGuestStat instance * descriptors, unpin the related userspace pages and free the related kernel pages. * * @dev: Identifies the drm device. * @data: Pointer to the ioctl argument. * @file_priv: Identifies the caller; unused. * Return: Zero on success, negative error code on error. */ int vmw_mksstat_reset_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct vmw_private *const dev_priv = vmw_priv(dev); return vmw_mksstat_remove_all(dev_priv); } /** * vmw_mksstat_add_ioctl: Creates a single userspace-originating mksGuestStat * instance descriptor and registers that with the hypervisor. * * Create a hypervisor PFN mapping, containing a single mksGuestStat instance * descriptor and pin the corresponding userspace pages. * * @dev: Identifies the drm device. * @data: Pointer to the ioctl argument. * @file_priv: Identifies the caller; unused. * Return: Zero on success, negative error code on error. */ int vmw_mksstat_add_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_vmw_mksstat_add_arg *arg = (struct drm_vmw_mksstat_add_arg *) data; struct vmw_private *const dev_priv = vmw_priv(dev); const size_t num_pages_stat = PFN_UP(arg->stat_len); const size_t num_pages_info = PFN_UP(arg->info_len); const size_t num_pages_strs = PFN_UP(arg->strs_len); long desc_len; long nr_pinned_stat; long nr_pinned_info; long nr_pinned_strs; MKSGuestStatInstanceDescriptor *pdesc; struct page *page = NULL; struct page **pages_stat = NULL; struct page **pages_info = NULL; struct page **pages_strs = NULL; size_t i, slot; int ret_err = -ENOMEM; arg->id = -1; if (!arg->stat || !arg->info || !arg->strs) return -EINVAL; if (!arg->stat_len || !arg->info_len || !arg->strs_len) return -EINVAL; if (!arg->description) return -EINVAL; if (num_pages_stat > ARRAY_SIZE(pdesc->statPPNs) || num_pages_info > ARRAY_SIZE(pdesc->infoPPNs) || num_pages_strs > ARRAY_SIZE(pdesc->strsPPNs)) return -EINVAL; /* Find an available slot in the mksGuestStats user array and reserve it */ for (slot = 0; slot < ARRAY_SIZE(dev_priv->mksstat_user_pids); ++slot) if (!atomic_cmpxchg(&dev_priv->mksstat_user_pids[slot], 0, MKSSTAT_PID_RESERVED)) break; if (slot == ARRAY_SIZE(dev_priv->mksstat_user_pids)) return -ENOSPC; BUG_ON(dev_priv->mksstat_user_pages[slot]); /* Allocate statically-sized temp arrays for pages -- too big to keep in frame */ pages_stat = (struct page **)kmalloc_array( ARRAY_SIZE(pdesc->statPPNs) + ARRAY_SIZE(pdesc->infoPPNs) + ARRAY_SIZE(pdesc->strsPPNs), sizeof(*pages_stat), GFP_KERNEL); if (!pages_stat) goto err_nomem; pages_info = pages_stat + ARRAY_SIZE(pdesc->statPPNs); pages_strs = pages_info + ARRAY_SIZE(pdesc->infoPPNs); /* Allocate a page for the instance descriptor */ page = alloc_page(GFP_KERNEL | __GFP_ZERO); if (!page) goto err_nomem; /* Set up the instance descriptor */ pdesc = page_address(page); pdesc->reservedMBZ = 0; pdesc->statStartVA = arg->stat; pdesc->strsStartVA = arg->strs; pdesc->statLength = arg->stat_len; pdesc->infoLength = arg->info_len; pdesc->strsLength = arg->strs_len; desc_len = strncpy_from_user(pdesc->description, u64_to_user_ptr(arg->description), ARRAY_SIZE(pdesc->description) - 1); if (desc_len < 0) { ret_err = -EFAULT; goto err_nomem; } reset_ppn_array(pdesc->statPPNs, ARRAY_SIZE(pdesc->statPPNs)); reset_ppn_array(pdesc->infoPPNs, ARRAY_SIZE(pdesc->infoPPNs)); reset_ppn_array(pdesc->strsPPNs, ARRAY_SIZE(pdesc->strsPPNs)); /* Pin mksGuestStat user pages and store those in the instance descriptor */ nr_pinned_stat = pin_user_pages_fast(arg->stat, num_pages_stat, FOLL_LONGTERM, pages_stat); if (num_pages_stat != nr_pinned_stat) goto err_pin_stat; for (i = 0; i < num_pages_stat; ++i) pdesc->statPPNs[i] = page_to_pfn(pages_stat[i]); nr_pinned_info = pin_user_pages_fast(arg->info, num_pages_info, FOLL_LONGTERM, pages_info); if (num_pages_info != nr_pinned_info) goto err_pin_info; for (i = 0; i < num_pages_info; ++i) pdesc->infoPPNs[i] = page_to_pfn(pages_info[i]); nr_pinned_strs = pin_user_pages_fast(arg->strs, num_pages_strs, FOLL_LONGTERM, pages_strs); if (num_pages_strs != nr_pinned_strs) goto err_pin_strs; for (i = 0; i < num_pages_strs; ++i) pdesc->strsPPNs[i] = page_to_pfn(pages_strs[i]); /* Send the descriptor to the host via a hypervisor call. The mksGuestStat pages will remain in use until the user requests a matching remove stats or a stats reset occurs. */ hypervisor_ppn_add((PPN64)page_to_pfn(page)); dev_priv->mksstat_user_pages[slot] = page; atomic_set(&dev_priv->mksstat_user_pids[slot], task_pgrp_vnr(current)); arg->id = slot; DRM_DEV_INFO(dev->dev, "pid=%d arg.description='%.*s' id=%zu\n", current->pid, (int)desc_len, pdesc->description, slot); kfree(pages_stat); return 0; err_pin_strs: if (nr_pinned_strs > 0) unpin_user_pages(pages_strs, nr_pinned_strs); err_pin_info: if (nr_pinned_info > 0) unpin_user_pages(pages_info, nr_pinned_info); err_pin_stat: if (nr_pinned_stat > 0) unpin_user_pages(pages_stat, nr_pinned_stat); err_nomem: atomic_set(&dev_priv->mksstat_user_pids[slot], 0); if (page) __free_page(page); kfree(pages_stat); return ret_err; } /** * vmw_mksstat_remove_ioctl: Removes a single userspace-originating mksGuestStat * instance descriptor from the hypervisor. * * Discard a hypervisor PFN mapping, containing a single mksGuestStat instance * descriptor and unpin the corresponding userspace pages. * * @dev: Identifies the drm device. * @data: Pointer to the ioctl argument. * @file_priv: Identifies the caller; unused. * Return: Zero on success, negative error code on error. */ int vmw_mksstat_remove_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_vmw_mksstat_remove_arg *arg = (struct drm_vmw_mksstat_remove_arg *) data; struct vmw_private *const dev_priv = vmw_priv(dev); const size_t slot = arg->id; pid_t pgid, pid; if (slot >= ARRAY_SIZE(dev_priv->mksstat_user_pids)) return -EINVAL; DRM_DEV_INFO(dev->dev, "pid=%d arg.id=%zu\n", current->pid, slot); pgid = task_pgrp_vnr(current); pid = atomic_cmpxchg(&dev_priv->mksstat_user_pids[slot], pgid, MKSSTAT_PID_RESERVED); if (!pid) return 0; if (pid == pgid) { struct page *const page = dev_priv->mksstat_user_pages[slot]; BUG_ON(!page); dev_priv->mksstat_user_pages[slot] = NULL; atomic_set(&dev_priv->mksstat_user_pids[slot], 0); hypervisor_ppn_remove((PPN64)page_to_pfn(page)); vmw_mksstat_cleanup_descriptor(page); return 0; } return -EAGAIN; } /** * vmw_disable_backdoor: Disables all backdoor communication * with the hypervisor. */ void vmw_disable_backdoor(void) { vmw_msg_enabled = 0; }
linux-master
drivers/gpu/drm/vmwgfx/vmwgfx_msg.c
// SPDX-License-Identifier: GPL-2.0 OR MIT /************************************************************************** * * Copyright © 2011-2023 VMware, Inc., Palo Alto, CA., USA * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "vmwgfx_bo.h" #include "vmwgfx_drv.h" #include <drm/ttm/ttm_placement.h> static void vmw_bo_release(struct vmw_bo *vbo) { vmw_bo_unmap(vbo); drm_gem_object_release(&vbo->tbo.base); } /** * vmw_bo_free - vmw_bo destructor * * @bo: Pointer to the embedded struct ttm_buffer_object */ static void vmw_bo_free(struct ttm_buffer_object *bo) { struct vmw_bo *vbo = to_vmw_bo(&bo->base); WARN_ON(vbo->dirty); WARN_ON(!RB_EMPTY_ROOT(&vbo->res_tree)); vmw_bo_release(vbo); kfree(vbo); } /** * vmw_bo_pin_in_placement - Validate a buffer to placement. * * @dev_priv: Driver private. * @buf: DMA buffer to move. * @placement: The placement to pin it. * @interruptible: Use interruptible wait. * Return: Zero on success, Negative error code on failure. In particular * -ERESTARTSYS if interrupted by a signal */ static int vmw_bo_pin_in_placement(struct vmw_private *dev_priv, struct vmw_bo *buf, struct ttm_placement *placement, bool interruptible) { struct ttm_operation_ctx ctx = {interruptible, false }; struct ttm_buffer_object *bo = &buf->tbo; int ret; vmw_execbuf_release_pinned_bo(dev_priv); ret = ttm_bo_reserve(bo, interruptible, false, NULL); if (unlikely(ret != 0)) goto err; ret = ttm_bo_validate(bo, placement, &ctx); if (!ret) vmw_bo_pin_reserved(buf, true); ttm_bo_unreserve(bo); err: return ret; } /** * vmw_bo_pin_in_vram_or_gmr - Move a buffer to vram or gmr. * * This function takes the reservation_sem in write mode. * Flushes and unpins the query bo to avoid failures. * * @dev_priv: Driver private. * @buf: DMA buffer to move. * @interruptible: Use interruptible wait. * Return: Zero on success, Negative error code on failure. In particular * -ERESTARTSYS if interrupted by a signal */ int vmw_bo_pin_in_vram_or_gmr(struct vmw_private *dev_priv, struct vmw_bo *buf, bool interruptible) { struct ttm_operation_ctx ctx = {interruptible, false }; struct ttm_buffer_object *bo = &buf->tbo; int ret; vmw_execbuf_release_pinned_bo(dev_priv); ret = ttm_bo_reserve(bo, interruptible, false, NULL); if (unlikely(ret != 0)) goto err; vmw_bo_placement_set(buf, VMW_BO_DOMAIN_GMR | VMW_BO_DOMAIN_VRAM, VMW_BO_DOMAIN_GMR); ret = ttm_bo_validate(bo, &buf->placement, &ctx); if (likely(ret == 0) || ret == -ERESTARTSYS) goto out_unreserve; vmw_bo_placement_set(buf, VMW_BO_DOMAIN_VRAM, VMW_BO_DOMAIN_VRAM); ret = ttm_bo_validate(bo, &buf->placement, &ctx); out_unreserve: if (!ret) vmw_bo_pin_reserved(buf, true); ttm_bo_unreserve(bo); err: return ret; } /** * vmw_bo_pin_in_vram - Move a buffer to vram. * * This function takes the reservation_sem in write mode. * Flushes and unpins the query bo to avoid failures. * * @dev_priv: Driver private. * @buf: DMA buffer to move. * @interruptible: Use interruptible wait. * Return: Zero on success, Negative error code on failure. In particular * -ERESTARTSYS if interrupted by a signal */ int vmw_bo_pin_in_vram(struct vmw_private *dev_priv, struct vmw_bo *buf, bool interruptible) { return vmw_bo_pin_in_placement(dev_priv, buf, &vmw_vram_placement, interruptible); } /** * vmw_bo_pin_in_start_of_vram - Move a buffer to start of vram. * * This function takes the reservation_sem in write mode. * Flushes and unpins the query bo to avoid failures. * * @dev_priv: Driver private. * @buf: DMA buffer to pin. * @interruptible: Use interruptible wait. * Return: Zero on success, Negative error code on failure. In particular * -ERESTARTSYS if interrupted by a signal */ int vmw_bo_pin_in_start_of_vram(struct vmw_private *dev_priv, struct vmw_bo *buf, bool interruptible) { struct ttm_operation_ctx ctx = {interruptible, false }; struct ttm_buffer_object *bo = &buf->tbo; int ret = 0; vmw_execbuf_release_pinned_bo(dev_priv); ret = ttm_bo_reserve(bo, interruptible, false, NULL); if (unlikely(ret != 0)) goto err_unlock; /* * Is this buffer already in vram but not at the start of it? * In that case, evict it first because TTM isn't good at handling * that situation. */ if (bo->resource->mem_type == TTM_PL_VRAM && bo->resource->start < PFN_UP(bo->resource->size) && bo->resource->start > 0 && buf->tbo.pin_count == 0) { ctx.interruptible = false; vmw_bo_placement_set(buf, VMW_BO_DOMAIN_SYS, VMW_BO_DOMAIN_SYS); (void)ttm_bo_validate(bo, &buf->placement, &ctx); } vmw_bo_placement_set(buf, VMW_BO_DOMAIN_VRAM, VMW_BO_DOMAIN_VRAM); buf->places[0].lpfn = PFN_UP(bo->resource->size); ret = ttm_bo_validate(bo, &buf->placement, &ctx); /* For some reason we didn't end up at the start of vram */ WARN_ON(ret == 0 && bo->resource->start != 0); if (!ret) vmw_bo_pin_reserved(buf, true); ttm_bo_unreserve(bo); err_unlock: return ret; } /** * vmw_bo_unpin - Unpin the buffer given buffer, does not move the buffer. * * This function takes the reservation_sem in write mode. * * @dev_priv: Driver private. * @buf: DMA buffer to unpin. * @interruptible: Use interruptible wait. * Return: Zero on success, Negative error code on failure. In particular * -ERESTARTSYS if interrupted by a signal */ int vmw_bo_unpin(struct vmw_private *dev_priv, struct vmw_bo *buf, bool interruptible) { struct ttm_buffer_object *bo = &buf->tbo; int ret; ret = ttm_bo_reserve(bo, interruptible, false, NULL); if (unlikely(ret != 0)) goto err; vmw_bo_pin_reserved(buf, false); ttm_bo_unreserve(bo); err: return ret; } /** * vmw_bo_get_guest_ptr - Get the guest ptr representing the current placement * of a buffer. * * @bo: Pointer to a struct ttm_buffer_object. Must be pinned or reserved. * @ptr: SVGAGuestPtr returning the result. */ void vmw_bo_get_guest_ptr(const struct ttm_buffer_object *bo, SVGAGuestPtr *ptr) { if (bo->resource->mem_type == TTM_PL_VRAM) { ptr->gmrId = SVGA_GMR_FRAMEBUFFER; ptr->offset = bo->resource->start << PAGE_SHIFT; } else { ptr->gmrId = bo->resource->start; ptr->offset = 0; } } /** * vmw_bo_pin_reserved - Pin or unpin a buffer object without moving it. * * @vbo: The buffer object. Must be reserved. * @pin: Whether to pin or unpin. * */ void vmw_bo_pin_reserved(struct vmw_bo *vbo, bool pin) { struct ttm_operation_ctx ctx = { false, true }; struct ttm_place pl; struct ttm_placement placement; struct ttm_buffer_object *bo = &vbo->tbo; uint32_t old_mem_type = bo->resource->mem_type; int ret; dma_resv_assert_held(bo->base.resv); if (pin == !!bo->pin_count) return; pl.fpfn = 0; pl.lpfn = 0; pl.mem_type = bo->resource->mem_type; pl.flags = bo->resource->placement; memset(&placement, 0, sizeof(placement)); placement.num_placement = 1; placement.placement = &pl; ret = ttm_bo_validate(bo, &placement, &ctx); BUG_ON(ret != 0 || bo->resource->mem_type != old_mem_type); if (pin) ttm_bo_pin(bo); else ttm_bo_unpin(bo); } /** * vmw_bo_map_and_cache - Map a buffer object and cache the map * * @vbo: The buffer object to map * Return: A kernel virtual address or NULL if mapping failed. * * This function maps a buffer object into the kernel address space, or * returns the virtual kernel address of an already existing map. The virtual * address remains valid as long as the buffer object is pinned or reserved. * The cached map is torn down on either * 1) Buffer object move * 2) Buffer object swapout * 3) Buffer object destruction * */ void *vmw_bo_map_and_cache(struct vmw_bo *vbo) { struct ttm_buffer_object *bo = &vbo->tbo; bool not_used; void *virtual; int ret; virtual = ttm_kmap_obj_virtual(&vbo->map, &not_used); if (virtual) return virtual; ret = ttm_bo_kmap(bo, 0, PFN_UP(bo->base.size), &vbo->map); if (ret) DRM_ERROR("Buffer object map failed: %d.\n", ret); return ttm_kmap_obj_virtual(&vbo->map, &not_used); } /** * vmw_bo_unmap - Tear down a cached buffer object map. * * @vbo: The buffer object whose map we are tearing down. * * This function tears down a cached map set up using * vmw_bo_map_and_cache(). */ void vmw_bo_unmap(struct vmw_bo *vbo) { if (vbo->map.bo == NULL) return; ttm_bo_kunmap(&vbo->map); vbo->map.bo = NULL; } /** * vmw_bo_init - Initialize a vmw buffer object * * @dev_priv: Pointer to the device private struct * @vmw_bo: Buffer object to initialize * @params: Parameters used to initialize the buffer object * @destroy: The function used to delete the buffer object * Returns: Zero on success, negative error code on error. * */ static int vmw_bo_init(struct vmw_private *dev_priv, struct vmw_bo *vmw_bo, struct vmw_bo_params *params, void (*destroy)(struct ttm_buffer_object *)) { struct ttm_operation_ctx ctx = { .interruptible = params->bo_type != ttm_bo_type_kernel, .no_wait_gpu = false }; struct ttm_device *bdev = &dev_priv->bdev; struct drm_device *vdev = &dev_priv->drm; int ret; memset(vmw_bo, 0, sizeof(*vmw_bo)); BUILD_BUG_ON(TTM_MAX_BO_PRIORITY <= 3); vmw_bo->tbo.priority = 3; vmw_bo->res_tree = RB_ROOT; params->size = ALIGN(params->size, PAGE_SIZE); drm_gem_private_object_init(vdev, &vmw_bo->tbo.base, params->size); vmw_bo_placement_set(vmw_bo, params->domain, params->busy_domain); ret = ttm_bo_init_reserved(bdev, &vmw_bo->tbo, params->bo_type, &vmw_bo->placement, 0, &ctx, NULL, NULL, destroy); if (unlikely(ret)) return ret; if (params->pin) ttm_bo_pin(&vmw_bo->tbo); ttm_bo_unreserve(&vmw_bo->tbo); return 0; } int vmw_bo_create(struct vmw_private *vmw, struct vmw_bo_params *params, struct vmw_bo **p_bo) { int ret; *p_bo = kmalloc(sizeof(**p_bo), GFP_KERNEL); if (unlikely(!*p_bo)) { DRM_ERROR("Failed to allocate a buffer.\n"); return -ENOMEM; } /* * vmw_bo_init will delete the *p_bo object if it fails */ ret = vmw_bo_init(vmw, *p_bo, params, vmw_bo_free); if (unlikely(ret != 0)) goto out_error; return ret; out_error: *p_bo = NULL; return ret; } /** * vmw_user_bo_synccpu_grab - Grab a struct vmw_bo for cpu * access, idling previous GPU operations on the buffer and optionally * blocking it for further command submissions. * * @vmw_bo: Pointer to the buffer object being grabbed for CPU access * @flags: Flags indicating how the grab should be performed. * Return: Zero on success, Negative error code on error. In particular, * -EBUSY will be returned if a dontblock operation is requested and the * buffer object is busy, and -ERESTARTSYS will be returned if a wait is * interrupted by a signal. * * A blocking grab will be automatically released when @tfile is closed. */ static int vmw_user_bo_synccpu_grab(struct vmw_bo *vmw_bo, uint32_t flags) { bool nonblock = !!(flags & drm_vmw_synccpu_dontblock); struct ttm_buffer_object *bo = &vmw_bo->tbo; int ret; if (flags & drm_vmw_synccpu_allow_cs) { long lret; lret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_READ, true, nonblock ? 0 : MAX_SCHEDULE_TIMEOUT); if (!lret) return -EBUSY; else if (lret < 0) return lret; return 0; } ret = ttm_bo_reserve(bo, true, nonblock, NULL); if (unlikely(ret != 0)) return ret; ret = ttm_bo_wait(bo, true, nonblock); if (likely(ret == 0)) atomic_inc(&vmw_bo->cpu_writers); ttm_bo_unreserve(bo); if (unlikely(ret != 0)) return ret; return ret; } /** * vmw_user_bo_synccpu_release - Release a previous grab for CPU access, * and unblock command submission on the buffer if blocked. * * @filp: Identifying the caller. * @handle: Handle identifying the buffer object. * @flags: Flags indicating the type of release. */ static int vmw_user_bo_synccpu_release(struct drm_file *filp, uint32_t handle, uint32_t flags) { struct vmw_bo *vmw_bo; int ret = vmw_user_bo_lookup(filp, handle, &vmw_bo); if (!ret) { if (!(flags & drm_vmw_synccpu_allow_cs)) { atomic_dec(&vmw_bo->cpu_writers); } vmw_user_bo_unref(vmw_bo); } return ret; } /** * vmw_user_bo_synccpu_ioctl - ioctl function implementing the synccpu * functionality. * * @dev: Identifies the drm device. * @data: Pointer to the ioctl argument. * @file_priv: Identifies the caller. * Return: Zero on success, negative error code on error. * * This function checks the ioctl arguments for validity and calls the * relevant synccpu functions. */ int vmw_user_bo_synccpu_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_vmw_synccpu_arg *arg = (struct drm_vmw_synccpu_arg *) data; struct vmw_bo *vbo; int ret; if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0 || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write | drm_vmw_synccpu_dontblock | drm_vmw_synccpu_allow_cs)) != 0) { DRM_ERROR("Illegal synccpu flags.\n"); return -EINVAL; } switch (arg->op) { case drm_vmw_synccpu_grab: ret = vmw_user_bo_lookup(file_priv, arg->handle, &vbo); if (unlikely(ret != 0)) return ret; ret = vmw_user_bo_synccpu_grab(vbo, arg->flags); vmw_user_bo_unref(vbo); if (unlikely(ret != 0)) { if (ret == -ERESTARTSYS || ret == -EBUSY) return -EBUSY; DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n", (unsigned int) arg->handle); return ret; } break; case drm_vmw_synccpu_release: ret = vmw_user_bo_synccpu_release(file_priv, arg->handle, arg->flags); if (unlikely(ret != 0)) { DRM_ERROR("Failed synccpu release on handle 0x%08x.\n", (unsigned int) arg->handle); return ret; } break; default: DRM_ERROR("Invalid synccpu operation.\n"); return -EINVAL; } return 0; } /** * vmw_bo_unref_ioctl - Generic handle close ioctl. * * @dev: Identifies the drm device. * @data: Pointer to the ioctl argument. * @file_priv: Identifies the caller. * Return: Zero on success, negative error code on error. * * This function checks the ioctl arguments for validity and closes a * handle to a TTM base object, optionally freeing the object. */ int vmw_bo_unref_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_vmw_unref_dmabuf_arg *arg = (struct drm_vmw_unref_dmabuf_arg *)data; return drm_gem_handle_delete(file_priv, arg->handle); } /** * vmw_user_bo_lookup - Look up a vmw user buffer object from a handle. * * @filp: The file the handle is registered with. * @handle: The user buffer object handle * @out: Pointer to a where a pointer to the embedded * struct vmw_bo should be placed. * Return: Zero on success, Negative error code on error. * * The vmw buffer object pointer will be refcounted (both ttm and gem) */ int vmw_user_bo_lookup(struct drm_file *filp, u32 handle, struct vmw_bo **out) { struct drm_gem_object *gobj; gobj = drm_gem_object_lookup(filp, handle); if (!gobj) { DRM_ERROR("Invalid buffer object handle 0x%08lx.\n", (unsigned long)handle); return -ESRCH; } *out = to_vmw_bo(gobj); ttm_bo_get(&(*out)->tbo); return 0; } /** * vmw_bo_fence_single - Utility function to fence a single TTM buffer * object without unreserving it. * * @bo: Pointer to the struct ttm_buffer_object to fence. * @fence: Pointer to the fence. If NULL, this function will * insert a fence into the command stream.. * * Contrary to the ttm_eu version of this function, it takes only * a single buffer object instead of a list, and it also doesn't * unreserve the buffer object, which needs to be done separately. */ void vmw_bo_fence_single(struct ttm_buffer_object *bo, struct vmw_fence_obj *fence) { struct ttm_device *bdev = bo->bdev; struct vmw_private *dev_priv = vmw_priv_from_ttm(bdev); int ret; if (fence == NULL) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL); else dma_fence_get(&fence->base); ret = dma_resv_reserve_fences(bo->base.resv, 1); if (!ret) dma_resv_add_fence(bo->base.resv, &fence->base, DMA_RESV_USAGE_KERNEL); else /* Last resort fallback when we are OOM */ dma_fence_wait(&fence->base, false); dma_fence_put(&fence->base); } /** * vmw_dumb_create - Create a dumb kms buffer * * @file_priv: Pointer to a struct drm_file identifying the caller. * @dev: Pointer to the drm device. * @args: Pointer to a struct drm_mode_create_dumb structure * Return: Zero on success, negative error code on failure. * * This is a driver callback for the core drm create_dumb functionality. * Note that this is very similar to the vmw_bo_alloc ioctl, except * that the arguments have a different format. */ int vmw_dumb_create(struct drm_file *file_priv, struct drm_device *dev, struct drm_mode_create_dumb *args) { struct vmw_private *dev_priv = vmw_priv(dev); struct vmw_bo *vbo; int cpp = DIV_ROUND_UP(args->bpp, 8); int ret; switch (cpp) { case 1: /* DRM_FORMAT_C8 */ case 2: /* DRM_FORMAT_RGB565 */ case 4: /* DRM_FORMAT_XRGB8888 */ break; default: /* * Dumb buffers don't allow anything else. * This is tested via IGT's dumb_buffers */ return -EINVAL; } args->pitch = args->width * cpp; args->size = ALIGN(args->pitch * args->height, PAGE_SIZE); ret = vmw_gem_object_create_with_handle(dev_priv, file_priv, args->size, &args->handle, &vbo); /* drop reference from allocate - handle holds it now */ drm_gem_object_put(&vbo->tbo.base); return ret; } /** * vmw_bo_swap_notify - swapout notify callback. * * @bo: The buffer object to be swapped out. */ void vmw_bo_swap_notify(struct ttm_buffer_object *bo) { /* Kill any cached kernel maps before swapout */ vmw_bo_unmap(to_vmw_bo(&bo->base)); } /** * vmw_bo_move_notify - TTM move_notify_callback * * @bo: The TTM buffer object about to move. * @mem: The struct ttm_resource indicating to what memory * region the move is taking place. * * Detaches cached maps and device bindings that require that the * buffer doesn't move. */ void vmw_bo_move_notify(struct ttm_buffer_object *bo, struct ttm_resource *mem) { struct vmw_bo *vbo = to_vmw_bo(&bo->base); /* * Kill any cached kernel maps before move to or from VRAM. * With other types of moves, the underlying pages stay the same, * and the map can be kept. */ if (mem->mem_type == TTM_PL_VRAM || bo->resource->mem_type == TTM_PL_VRAM) vmw_bo_unmap(vbo); /* * If we're moving a backup MOB out of MOB placement, then make sure we * read back all resource content first, and unbind the MOB from * the resource. */ if (mem->mem_type != VMW_PL_MOB && bo->resource->mem_type == VMW_PL_MOB) vmw_resource_unbind_list(vbo); } static u32 set_placement_list(struct ttm_place *pl, u32 domain) { u32 n = 0; /* * The placements are ordered according to our preferences */ if (domain & VMW_BO_DOMAIN_MOB) { pl[n].mem_type = VMW_PL_MOB; pl[n].flags = 0; pl[n].fpfn = 0; pl[n].lpfn = 0; n++; } if (domain & VMW_BO_DOMAIN_GMR) { pl[n].mem_type = VMW_PL_GMR; pl[n].flags = 0; pl[n].fpfn = 0; pl[n].lpfn = 0; n++; } if (domain & VMW_BO_DOMAIN_VRAM) { pl[n].mem_type = TTM_PL_VRAM; pl[n].flags = 0; pl[n].fpfn = 0; pl[n].lpfn = 0; n++; } if (domain & VMW_BO_DOMAIN_WAITABLE_SYS) { pl[n].mem_type = VMW_PL_SYSTEM; pl[n].flags = 0; pl[n].fpfn = 0; pl[n].lpfn = 0; n++; } if (domain & VMW_BO_DOMAIN_SYS) { pl[n].mem_type = TTM_PL_SYSTEM; pl[n].flags = 0; pl[n].fpfn = 0; pl[n].lpfn = 0; n++; } WARN_ON(!n); if (!n) { pl[n].mem_type = TTM_PL_SYSTEM; pl[n].flags = 0; pl[n].fpfn = 0; pl[n].lpfn = 0; n++; } return n; } void vmw_bo_placement_set(struct vmw_bo *bo, u32 domain, u32 busy_domain) { struct ttm_device *bdev = bo->tbo.bdev; struct vmw_private *vmw = vmw_priv_from_ttm(bdev); struct ttm_placement *pl = &bo->placement; bool mem_compatible = false; u32 i; pl->placement = bo->places; pl->num_placement = set_placement_list(bo->places, domain); if (drm_debug_enabled(DRM_UT_DRIVER) && bo->tbo.resource) { for (i = 0; i < pl->num_placement; ++i) { if (bo->tbo.resource->mem_type == TTM_PL_SYSTEM || bo->tbo.resource->mem_type == pl->placement[i].mem_type) mem_compatible = true; } if (!mem_compatible) drm_warn(&vmw->drm, "%s: Incompatible transition from " "bo->base.resource->mem_type = %u to domain = %u\n", __func__, bo->tbo.resource->mem_type, domain); } pl->busy_placement = bo->busy_places; pl->num_busy_placement = set_placement_list(bo->busy_places, busy_domain); } void vmw_bo_placement_set_default_accelerated(struct vmw_bo *bo) { struct ttm_device *bdev = bo->tbo.bdev; struct vmw_private *vmw = vmw_priv_from_ttm(bdev); u32 domain = VMW_BO_DOMAIN_GMR | VMW_BO_DOMAIN_VRAM; if (vmw->has_mob) domain = VMW_BO_DOMAIN_MOB; vmw_bo_placement_set(bo, domain, domain); }
linux-master
drivers/gpu/drm/vmwgfx/vmwgfx_bo.c
// SPDX-License-Identifier: GPL-2.0 OR MIT /************************************************************************** * * Copyright 2015-2023 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "vmwgfx_bo.h" #include "vmwgfx_drv.h" #include <drm/ttm/ttm_bo.h> #include <linux/dmapool.h> #include <linux/pci.h> /* * Size of inline command buffers. Try to make sure that a page size is a * multiple of the DMA pool allocation size. */ #define VMW_CMDBUF_INLINE_ALIGN 64 #define VMW_CMDBUF_INLINE_SIZE \ (1024 - ALIGN(sizeof(SVGACBHeader), VMW_CMDBUF_INLINE_ALIGN)) /** * struct vmw_cmdbuf_context - Command buffer context queues * * @submitted: List of command buffers that have been submitted to the * manager but not yet submitted to hardware. * @hw_submitted: List of command buffers submitted to hardware. * @preempted: List of preempted command buffers. * @num_hw_submitted: Number of buffers currently being processed by hardware * @block_submission: Identifies a block command submission. */ struct vmw_cmdbuf_context { struct list_head submitted; struct list_head hw_submitted; struct list_head preempted; unsigned num_hw_submitted; bool block_submission; }; /** * struct vmw_cmdbuf_man - Command buffer manager * * @cur_mutex: Mutex protecting the command buffer used for incremental small * kernel command submissions, @cur. * @space_mutex: Mutex to protect against starvation when we allocate * main pool buffer space. * @error_mutex: Mutex to serialize the work queue error handling. * Note this is not needed if the same workqueue handler * can't race with itself... * @work: A struct work_struct implementeing command buffer error handling. * Immutable. * @dev_priv: Pointer to the device private struct. Immutable. * @ctx: Array of command buffer context queues. The queues and the context * data is protected by @lock. * @error: List of command buffers that have caused device errors. * Protected by @lock. * @mm: Range manager for the command buffer space. Manager allocations and * frees are protected by @lock. * @cmd_space: Buffer object for the command buffer space, unless we were * able to make a contigous coherent DMA memory allocation, @handle. Immutable. * @map: Pointer to command buffer space. May be a mapped buffer object or * a contigous coherent DMA memory allocation. Immutable. * @cur: Command buffer for small kernel command submissions. Protected by * the @cur_mutex. * @cur_pos: Space already used in @cur. Protected by @cur_mutex. * @default_size: Default size for the @cur command buffer. Immutable. * @max_hw_submitted: Max number of in-flight command buffers the device can * handle. Immutable. * @lock: Spinlock protecting command submission queues. * @headers: Pool of DMA memory for device command buffer headers. * Internal protection. * @dheaders: Pool of DMA memory for device command buffer headers with trailing * space for inline data. Internal protection. * @alloc_queue: Wait queue for processes waiting to allocate command buffer * space. * @idle_queue: Wait queue for processes waiting for command buffer idle. * @irq_on: Whether the process function has requested irq to be turned on. * Protected by @lock. * @using_mob: Whether the command buffer space is a MOB or a contigous DMA * allocation. Immutable. * @has_pool: Has a large pool of DMA memory which allows larger allocations. * Typically this is false only during bootstrap. * @handle: DMA address handle for the command buffer space if @using_mob is * false. Immutable. * @size: The size of the command buffer space. Immutable. * @num_contexts: Number of contexts actually enabled. */ struct vmw_cmdbuf_man { struct mutex cur_mutex; struct mutex space_mutex; struct mutex error_mutex; struct work_struct work; struct vmw_private *dev_priv; struct vmw_cmdbuf_context ctx[SVGA_CB_CONTEXT_MAX]; struct list_head error; struct drm_mm mm; struct vmw_bo *cmd_space; u8 *map; struct vmw_cmdbuf_header *cur; size_t cur_pos; size_t default_size; unsigned max_hw_submitted; spinlock_t lock; struct dma_pool *headers; struct dma_pool *dheaders; wait_queue_head_t alloc_queue; wait_queue_head_t idle_queue; bool irq_on; bool using_mob; bool has_pool; dma_addr_t handle; size_t size; u32 num_contexts; }; /** * struct vmw_cmdbuf_header - Command buffer metadata * * @man: The command buffer manager. * @cb_header: Device command buffer header, allocated from a DMA pool. * @cb_context: The device command buffer context. * @list: List head for attaching to the manager lists. * @node: The range manager node. * @handle: The DMA address of @cb_header. Handed to the device on command * buffer submission. * @cmd: Pointer to the command buffer space of this buffer. * @size: Size of the command buffer space of this buffer. * @reserved: Reserved space of this buffer. * @inline_space: Whether inline command buffer space is used. */ struct vmw_cmdbuf_header { struct vmw_cmdbuf_man *man; SVGACBHeader *cb_header; SVGACBContext cb_context; struct list_head list; struct drm_mm_node node; dma_addr_t handle; u8 *cmd; size_t size; size_t reserved; bool inline_space; }; /** * struct vmw_cmdbuf_dheader - Device command buffer header with inline * command buffer space. * * @cb_header: Device command buffer header. * @cmd: Inline command buffer space. */ struct vmw_cmdbuf_dheader { SVGACBHeader cb_header; u8 cmd[VMW_CMDBUF_INLINE_SIZE] __aligned(VMW_CMDBUF_INLINE_ALIGN); }; /** * struct vmw_cmdbuf_alloc_info - Command buffer space allocation metadata * * @page_size: Size of requested command buffer space in pages. * @node: Pointer to the range manager node. * @done: True if this allocation has succeeded. */ struct vmw_cmdbuf_alloc_info { size_t page_size; struct drm_mm_node *node; bool done; }; /* Loop over each context in the command buffer manager. */ #define for_each_cmdbuf_ctx(_man, _i, _ctx) \ for (_i = 0, _ctx = &(_man)->ctx[0]; (_i) < (_man)->num_contexts; \ ++(_i), ++(_ctx)) static int vmw_cmdbuf_startstop(struct vmw_cmdbuf_man *man, u32 context, bool enable); static int vmw_cmdbuf_preempt(struct vmw_cmdbuf_man *man, u32 context); /** * vmw_cmdbuf_cur_lock - Helper to lock the cur_mutex. * * @man: The range manager. * @interruptible: Whether to wait interruptible when locking. */ static int vmw_cmdbuf_cur_lock(struct vmw_cmdbuf_man *man, bool interruptible) { if (interruptible) { if (mutex_lock_interruptible(&man->cur_mutex)) return -ERESTARTSYS; } else { mutex_lock(&man->cur_mutex); } return 0; } /** * vmw_cmdbuf_cur_unlock - Helper to unlock the cur_mutex. * * @man: The range manager. */ static void vmw_cmdbuf_cur_unlock(struct vmw_cmdbuf_man *man) { mutex_unlock(&man->cur_mutex); } /** * vmw_cmdbuf_header_inline_free - Free a struct vmw_cmdbuf_header that has * been used for the device context with inline command buffers. * Need not be called locked. * * @header: Pointer to the header to free. */ static void vmw_cmdbuf_header_inline_free(struct vmw_cmdbuf_header *header) { struct vmw_cmdbuf_dheader *dheader; if (WARN_ON_ONCE(!header->inline_space)) return; dheader = container_of(header->cb_header, struct vmw_cmdbuf_dheader, cb_header); dma_pool_free(header->man->dheaders, dheader, header->handle); kfree(header); } /** * __vmw_cmdbuf_header_free - Free a struct vmw_cmdbuf_header and its * associated structures. * * @header: Pointer to the header to free. * * For internal use. Must be called with man::lock held. */ static void __vmw_cmdbuf_header_free(struct vmw_cmdbuf_header *header) { struct vmw_cmdbuf_man *man = header->man; lockdep_assert_held_once(&man->lock); if (header->inline_space) { vmw_cmdbuf_header_inline_free(header); return; } drm_mm_remove_node(&header->node); wake_up_all(&man->alloc_queue); if (header->cb_header) dma_pool_free(man->headers, header->cb_header, header->handle); kfree(header); } /** * vmw_cmdbuf_header_free - Free a struct vmw_cmdbuf_header and its * associated structures. * * @header: Pointer to the header to free. */ void vmw_cmdbuf_header_free(struct vmw_cmdbuf_header *header) { struct vmw_cmdbuf_man *man = header->man; /* Avoid locking if inline_space */ if (header->inline_space) { vmw_cmdbuf_header_inline_free(header); return; } spin_lock(&man->lock); __vmw_cmdbuf_header_free(header); spin_unlock(&man->lock); } /** * vmw_cmdbuf_header_submit: Submit a command buffer to hardware. * * @header: The header of the buffer to submit. */ static int vmw_cmdbuf_header_submit(struct vmw_cmdbuf_header *header) { struct vmw_cmdbuf_man *man = header->man; u32 val; val = upper_32_bits(header->handle); vmw_write(man->dev_priv, SVGA_REG_COMMAND_HIGH, val); val = lower_32_bits(header->handle); val |= header->cb_context & SVGA_CB_CONTEXT_MASK; vmw_write(man->dev_priv, SVGA_REG_COMMAND_LOW, val); return header->cb_header->status; } /** * vmw_cmdbuf_ctx_init: Initialize a command buffer context. * * @ctx: The command buffer context to initialize */ static void vmw_cmdbuf_ctx_init(struct vmw_cmdbuf_context *ctx) { INIT_LIST_HEAD(&ctx->hw_submitted); INIT_LIST_HEAD(&ctx->submitted); INIT_LIST_HEAD(&ctx->preempted); ctx->num_hw_submitted = 0; } /** * vmw_cmdbuf_ctx_submit: Submit command buffers from a command buffer * context. * * @man: The command buffer manager. * @ctx: The command buffer context. * * Submits command buffers to hardware until there are no more command * buffers to submit or the hardware can't handle more command buffers. */ static void vmw_cmdbuf_ctx_submit(struct vmw_cmdbuf_man *man, struct vmw_cmdbuf_context *ctx) { while (ctx->num_hw_submitted < man->max_hw_submitted && !list_empty(&ctx->submitted) && !ctx->block_submission) { struct vmw_cmdbuf_header *entry; SVGACBStatus status; entry = list_first_entry(&ctx->submitted, struct vmw_cmdbuf_header, list); status = vmw_cmdbuf_header_submit(entry); /* This should never happen */ if (WARN_ON_ONCE(status == SVGA_CB_STATUS_QUEUE_FULL)) { entry->cb_header->status = SVGA_CB_STATUS_NONE; break; } list_move_tail(&entry->list, &ctx->hw_submitted); ctx->num_hw_submitted++; } } /** * vmw_cmdbuf_ctx_process - Process a command buffer context. * * @man: The command buffer manager. * @ctx: The command buffer context. * @notempty: Pass back count of non-empty command submitted lists. * * Submit command buffers to hardware if possible, and process finished * buffers. Typically freeing them, but on preemption or error take * appropriate action. Wake up waiters if appropriate. */ static void vmw_cmdbuf_ctx_process(struct vmw_cmdbuf_man *man, struct vmw_cmdbuf_context *ctx, int *notempty) { struct vmw_cmdbuf_header *entry, *next; vmw_cmdbuf_ctx_submit(man, ctx); list_for_each_entry_safe(entry, next, &ctx->hw_submitted, list) { SVGACBStatus status = entry->cb_header->status; if (status == SVGA_CB_STATUS_NONE) break; list_del(&entry->list); wake_up_all(&man->idle_queue); ctx->num_hw_submitted--; switch (status) { case SVGA_CB_STATUS_COMPLETED: __vmw_cmdbuf_header_free(entry); break; case SVGA_CB_STATUS_COMMAND_ERROR: WARN_ONCE(true, "Command buffer error.\n"); entry->cb_header->status = SVGA_CB_STATUS_NONE; list_add_tail(&entry->list, &man->error); schedule_work(&man->work); break; case SVGA_CB_STATUS_PREEMPTED: entry->cb_header->status = SVGA_CB_STATUS_NONE; list_add_tail(&entry->list, &ctx->preempted); break; case SVGA_CB_STATUS_CB_HEADER_ERROR: WARN_ONCE(true, "Command buffer header error.\n"); __vmw_cmdbuf_header_free(entry); break; default: WARN_ONCE(true, "Undefined command buffer status.\n"); __vmw_cmdbuf_header_free(entry); break; } } vmw_cmdbuf_ctx_submit(man, ctx); if (!list_empty(&ctx->submitted)) (*notempty)++; } /** * vmw_cmdbuf_man_process - Process all command buffer contexts and * switch on and off irqs as appropriate. * * @man: The command buffer manager. * * Calls vmw_cmdbuf_ctx_process() on all contexts. If any context has * command buffers left that are not submitted to hardware, Make sure * IRQ handling is turned on. Otherwise, make sure it's turned off. */ static void vmw_cmdbuf_man_process(struct vmw_cmdbuf_man *man) { int notempty; struct vmw_cmdbuf_context *ctx; int i; retry: notempty = 0; for_each_cmdbuf_ctx(man, i, ctx) vmw_cmdbuf_ctx_process(man, ctx, &notempty); if (man->irq_on && !notempty) { vmw_generic_waiter_remove(man->dev_priv, SVGA_IRQFLAG_COMMAND_BUFFER, &man->dev_priv->cmdbuf_waiters); man->irq_on = false; } else if (!man->irq_on && notempty) { vmw_generic_waiter_add(man->dev_priv, SVGA_IRQFLAG_COMMAND_BUFFER, &man->dev_priv->cmdbuf_waiters); man->irq_on = true; /* Rerun in case we just missed an irq. */ goto retry; } } /** * vmw_cmdbuf_ctx_add - Schedule a command buffer for submission on a * command buffer context * * @man: The command buffer manager. * @header: The header of the buffer to submit. * @cb_context: The command buffer context to use. * * This function adds @header to the "submitted" queue of the command * buffer context identified by @cb_context. It then calls the command buffer * manager processing to potentially submit the buffer to hardware. * @man->lock needs to be held when calling this function. */ static void vmw_cmdbuf_ctx_add(struct vmw_cmdbuf_man *man, struct vmw_cmdbuf_header *header, SVGACBContext cb_context) { if (!(header->cb_header->flags & SVGA_CB_FLAG_DX_CONTEXT)) header->cb_header->dxContext = 0; header->cb_context = cb_context; list_add_tail(&header->list, &man->ctx[cb_context].submitted); vmw_cmdbuf_man_process(man); } /** * vmw_cmdbuf_irqthread - The main part of the command buffer interrupt * handler implemented as a threaded irq task. * * @man: Pointer to the command buffer manager. * * The bottom half of the interrupt handler simply calls into the * command buffer processor to free finished buffers and submit any * queued buffers to hardware. */ void vmw_cmdbuf_irqthread(struct vmw_cmdbuf_man *man) { spin_lock(&man->lock); vmw_cmdbuf_man_process(man); spin_unlock(&man->lock); } /** * vmw_cmdbuf_work_func - The deferred work function that handles * command buffer errors. * * @work: The work func closure argument. * * Restarting the command buffer context after an error requires process * context, so it is deferred to this work function. */ static void vmw_cmdbuf_work_func(struct work_struct *work) { struct vmw_cmdbuf_man *man = container_of(work, struct vmw_cmdbuf_man, work); struct vmw_cmdbuf_header *entry, *next; uint32_t dummy = 0; bool send_fence = false; struct list_head restart_head[SVGA_CB_CONTEXT_MAX]; int i; struct vmw_cmdbuf_context *ctx; bool global_block = false; for_each_cmdbuf_ctx(man, i, ctx) INIT_LIST_HEAD(&restart_head[i]); mutex_lock(&man->error_mutex); spin_lock(&man->lock); list_for_each_entry_safe(entry, next, &man->error, list) { SVGACBHeader *cb_hdr = entry->cb_header; SVGA3dCmdHeader *header = (SVGA3dCmdHeader *) (entry->cmd + cb_hdr->errorOffset); u32 error_cmd_size, new_start_offset; const char *cmd_name; list_del_init(&entry->list); global_block = true; if (!vmw_cmd_describe(header, &error_cmd_size, &cmd_name)) { VMW_DEBUG_USER("Unknown command causing device error.\n"); VMW_DEBUG_USER("Command buffer offset is %lu\n", (unsigned long) cb_hdr->errorOffset); __vmw_cmdbuf_header_free(entry); send_fence = true; continue; } VMW_DEBUG_USER("Command \"%s\" causing device error.\n", cmd_name); VMW_DEBUG_USER("Command buffer offset is %lu\n", (unsigned long) cb_hdr->errorOffset); VMW_DEBUG_USER("Command size is %lu\n", (unsigned long) error_cmd_size); new_start_offset = cb_hdr->errorOffset + error_cmd_size; if (new_start_offset >= cb_hdr->length) { __vmw_cmdbuf_header_free(entry); send_fence = true; continue; } if (man->using_mob) cb_hdr->ptr.mob.mobOffset += new_start_offset; else cb_hdr->ptr.pa += (u64) new_start_offset; entry->cmd += new_start_offset; cb_hdr->length -= new_start_offset; cb_hdr->errorOffset = 0; cb_hdr->offset = 0; list_add_tail(&entry->list, &restart_head[entry->cb_context]); } for_each_cmdbuf_ctx(man, i, ctx) man->ctx[i].block_submission = true; spin_unlock(&man->lock); /* Preempt all contexts */ if (global_block && vmw_cmdbuf_preempt(man, 0)) DRM_ERROR("Failed preempting command buffer contexts\n"); spin_lock(&man->lock); for_each_cmdbuf_ctx(man, i, ctx) { /* Move preempted command buffers to the preempted queue. */ vmw_cmdbuf_ctx_process(man, ctx, &dummy); /* * Add the preempted queue after the command buffer * that caused an error. */ list_splice_init(&ctx->preempted, restart_head[i].prev); /* * Finally add all command buffers first in the submitted * queue, to rerun them. */ ctx->block_submission = false; list_splice_init(&restart_head[i], &ctx->submitted); } vmw_cmdbuf_man_process(man); spin_unlock(&man->lock); if (global_block && vmw_cmdbuf_startstop(man, 0, true)) DRM_ERROR("Failed restarting command buffer contexts\n"); /* Send a new fence in case one was removed */ if (send_fence) { vmw_cmd_send_fence(man->dev_priv, &dummy); wake_up_all(&man->idle_queue); } mutex_unlock(&man->error_mutex); } /** * vmw_cmdbuf_man_idle - Check whether the command buffer manager is idle. * * @man: The command buffer manager. * @check_preempted: Check also the preempted queue for pending command buffers. * */ static bool vmw_cmdbuf_man_idle(struct vmw_cmdbuf_man *man, bool check_preempted) { struct vmw_cmdbuf_context *ctx; bool idle = false; int i; spin_lock(&man->lock); vmw_cmdbuf_man_process(man); for_each_cmdbuf_ctx(man, i, ctx) { if (!list_empty(&ctx->submitted) || !list_empty(&ctx->hw_submitted) || (check_preempted && !list_empty(&ctx->preempted))) goto out_unlock; } idle = list_empty(&man->error); out_unlock: spin_unlock(&man->lock); return idle; } /** * __vmw_cmdbuf_cur_flush - Flush the current command buffer for small kernel * command submissions * * @man: The command buffer manager. * * Flushes the current command buffer without allocating a new one. A new one * is automatically allocated when needed. Call with @man->cur_mutex held. */ static void __vmw_cmdbuf_cur_flush(struct vmw_cmdbuf_man *man) { struct vmw_cmdbuf_header *cur = man->cur; lockdep_assert_held_once(&man->cur_mutex); if (!cur) return; spin_lock(&man->lock); if (man->cur_pos == 0) { __vmw_cmdbuf_header_free(cur); goto out_unlock; } man->cur->cb_header->length = man->cur_pos; vmw_cmdbuf_ctx_add(man, man->cur, SVGA_CB_CONTEXT_0); out_unlock: spin_unlock(&man->lock); man->cur = NULL; man->cur_pos = 0; } /** * vmw_cmdbuf_cur_flush - Flush the current command buffer for small kernel * command submissions * * @man: The command buffer manager. * @interruptible: Whether to sleep interruptible when sleeping. * * Flushes the current command buffer without allocating a new one. A new one * is automatically allocated when needed. */ int vmw_cmdbuf_cur_flush(struct vmw_cmdbuf_man *man, bool interruptible) { int ret = vmw_cmdbuf_cur_lock(man, interruptible); if (ret) return ret; __vmw_cmdbuf_cur_flush(man); vmw_cmdbuf_cur_unlock(man); return 0; } /** * vmw_cmdbuf_idle - Wait for command buffer manager idle. * * @man: The command buffer manager. * @interruptible: Sleep interruptible while waiting. * @timeout: Time out after this many ticks. * * Wait until the command buffer manager has processed all command buffers, * or until a timeout occurs. If a timeout occurs, the function will return * -EBUSY. */ int vmw_cmdbuf_idle(struct vmw_cmdbuf_man *man, bool interruptible, unsigned long timeout) { int ret; ret = vmw_cmdbuf_cur_flush(man, interruptible); vmw_generic_waiter_add(man->dev_priv, SVGA_IRQFLAG_COMMAND_BUFFER, &man->dev_priv->cmdbuf_waiters); if (interruptible) { ret = wait_event_interruptible_timeout (man->idle_queue, vmw_cmdbuf_man_idle(man, true), timeout); } else { ret = wait_event_timeout (man->idle_queue, vmw_cmdbuf_man_idle(man, true), timeout); } vmw_generic_waiter_remove(man->dev_priv, SVGA_IRQFLAG_COMMAND_BUFFER, &man->dev_priv->cmdbuf_waiters); if (ret == 0) { if (!vmw_cmdbuf_man_idle(man, true)) ret = -EBUSY; else ret = 0; } if (ret > 0) ret = 0; return ret; } /** * vmw_cmdbuf_try_alloc - Try to allocate buffer space from the main pool. * * @man: The command buffer manager. * @info: Allocation info. Will hold the size on entry and allocated mm node * on successful return. * * Try to allocate buffer space from the main pool. Returns true if succeeded. * If a fatal error was hit, the error code is returned in @info->ret. */ static bool vmw_cmdbuf_try_alloc(struct vmw_cmdbuf_man *man, struct vmw_cmdbuf_alloc_info *info) { int ret; if (info->done) return true; memset(info->node, 0, sizeof(*info->node)); spin_lock(&man->lock); ret = drm_mm_insert_node(&man->mm, info->node, info->page_size); if (ret) { vmw_cmdbuf_man_process(man); ret = drm_mm_insert_node(&man->mm, info->node, info->page_size); } spin_unlock(&man->lock); info->done = !ret; return info->done; } /** * vmw_cmdbuf_alloc_space - Allocate buffer space from the main pool. * * @man: The command buffer manager. * @node: Pointer to pre-allocated range-manager node. * @size: The size of the allocation. * @interruptible: Whether to sleep interruptible while waiting for space. * * This function allocates buffer space from the main pool, and if there is * no space available ATM, it turns on IRQ handling and sleeps waiting for it to * become available. */ static int vmw_cmdbuf_alloc_space(struct vmw_cmdbuf_man *man, struct drm_mm_node *node, size_t size, bool interruptible) { struct vmw_cmdbuf_alloc_info info; info.page_size = PFN_UP(size); info.node = node; info.done = false; /* * To prevent starvation of large requests, only one allocating call * at a time waiting for space. */ if (interruptible) { if (mutex_lock_interruptible(&man->space_mutex)) return -ERESTARTSYS; } else { mutex_lock(&man->space_mutex); } /* Try to allocate space without waiting. */ if (vmw_cmdbuf_try_alloc(man, &info)) goto out_unlock; vmw_generic_waiter_add(man->dev_priv, SVGA_IRQFLAG_COMMAND_BUFFER, &man->dev_priv->cmdbuf_waiters); if (interruptible) { int ret; ret = wait_event_interruptible (man->alloc_queue, vmw_cmdbuf_try_alloc(man, &info)); if (ret) { vmw_generic_waiter_remove (man->dev_priv, SVGA_IRQFLAG_COMMAND_BUFFER, &man->dev_priv->cmdbuf_waiters); mutex_unlock(&man->space_mutex); return ret; } } else { wait_event(man->alloc_queue, vmw_cmdbuf_try_alloc(man, &info)); } vmw_generic_waiter_remove(man->dev_priv, SVGA_IRQFLAG_COMMAND_BUFFER, &man->dev_priv->cmdbuf_waiters); out_unlock: mutex_unlock(&man->space_mutex); return 0; } /** * vmw_cmdbuf_space_pool - Set up a command buffer header with command buffer * space from the main pool. * * @man: The command buffer manager. * @header: Pointer to the header to set up. * @size: The requested size of the buffer space. * @interruptible: Whether to sleep interruptible while waiting for space. */ static int vmw_cmdbuf_space_pool(struct vmw_cmdbuf_man *man, struct vmw_cmdbuf_header *header, size_t size, bool interruptible) { SVGACBHeader *cb_hdr; size_t offset; int ret; if (!man->has_pool) return -ENOMEM; ret = vmw_cmdbuf_alloc_space(man, &header->node, size, interruptible); if (ret) return ret; header->cb_header = dma_pool_zalloc(man->headers, GFP_KERNEL, &header->handle); if (!header->cb_header) { ret = -ENOMEM; goto out_no_cb_header; } header->size = header->node.size << PAGE_SHIFT; cb_hdr = header->cb_header; offset = header->node.start << PAGE_SHIFT; header->cmd = man->map + offset; if (man->using_mob) { cb_hdr->flags = SVGA_CB_FLAG_MOB; cb_hdr->ptr.mob.mobid = man->cmd_space->tbo.resource->start; cb_hdr->ptr.mob.mobOffset = offset; } else { cb_hdr->ptr.pa = (u64)man->handle + (u64)offset; } return 0; out_no_cb_header: spin_lock(&man->lock); drm_mm_remove_node(&header->node); spin_unlock(&man->lock); return ret; } /** * vmw_cmdbuf_space_inline - Set up a command buffer header with * inline command buffer space. * * @man: The command buffer manager. * @header: Pointer to the header to set up. * @size: The requested size of the buffer space. */ static int vmw_cmdbuf_space_inline(struct vmw_cmdbuf_man *man, struct vmw_cmdbuf_header *header, int size) { struct vmw_cmdbuf_dheader *dheader; SVGACBHeader *cb_hdr; if (WARN_ON_ONCE(size > VMW_CMDBUF_INLINE_SIZE)) return -ENOMEM; dheader = dma_pool_zalloc(man->dheaders, GFP_KERNEL, &header->handle); if (!dheader) return -ENOMEM; header->inline_space = true; header->size = VMW_CMDBUF_INLINE_SIZE; cb_hdr = &dheader->cb_header; header->cb_header = cb_hdr; header->cmd = dheader->cmd; cb_hdr->status = SVGA_CB_STATUS_NONE; cb_hdr->flags = SVGA_CB_FLAG_NONE; cb_hdr->ptr.pa = (u64)header->handle + (u64)offsetof(struct vmw_cmdbuf_dheader, cmd); return 0; } /** * vmw_cmdbuf_alloc - Allocate a command buffer header complete with * command buffer space. * * @man: The command buffer manager. * @size: The requested size of the buffer space. * @interruptible: Whether to sleep interruptible while waiting for space. * @p_header: points to a header pointer to populate on successful return. * * Returns a pointer to command buffer space if successful. Otherwise * returns an error pointer. The header pointer returned in @p_header should * be used for upcoming calls to vmw_cmdbuf_reserve() and vmw_cmdbuf_commit(). */ void *vmw_cmdbuf_alloc(struct vmw_cmdbuf_man *man, size_t size, bool interruptible, struct vmw_cmdbuf_header **p_header) { struct vmw_cmdbuf_header *header; int ret = 0; *p_header = NULL; header = kzalloc(sizeof(*header), GFP_KERNEL); if (!header) return ERR_PTR(-ENOMEM); if (size <= VMW_CMDBUF_INLINE_SIZE) ret = vmw_cmdbuf_space_inline(man, header, size); else ret = vmw_cmdbuf_space_pool(man, header, size, interruptible); if (ret) { kfree(header); return ERR_PTR(ret); } header->man = man; INIT_LIST_HEAD(&header->list); header->cb_header->status = SVGA_CB_STATUS_NONE; *p_header = header; return header->cmd; } /** * vmw_cmdbuf_reserve_cur - Reserve space for commands in the current * command buffer. * * @man: The command buffer manager. * @size: The requested size of the commands. * @ctx_id: The context id if any. Otherwise set to SVGA3D_REG_INVALID. * @interruptible: Whether to sleep interruptible while waiting for space. * * Returns a pointer to command buffer space if successful. Otherwise * returns an error pointer. */ static void *vmw_cmdbuf_reserve_cur(struct vmw_cmdbuf_man *man, size_t size, int ctx_id, bool interruptible) { struct vmw_cmdbuf_header *cur; void *ret; if (vmw_cmdbuf_cur_lock(man, interruptible)) return ERR_PTR(-ERESTARTSYS); cur = man->cur; if (cur && (size + man->cur_pos > cur->size || ((cur->cb_header->flags & SVGA_CB_FLAG_DX_CONTEXT) && ctx_id != cur->cb_header->dxContext))) __vmw_cmdbuf_cur_flush(man); if (!man->cur) { ret = vmw_cmdbuf_alloc(man, max_t(size_t, size, man->default_size), interruptible, &man->cur); if (IS_ERR(ret)) { vmw_cmdbuf_cur_unlock(man); return ret; } cur = man->cur; } if (ctx_id != SVGA3D_INVALID_ID) { cur->cb_header->flags |= SVGA_CB_FLAG_DX_CONTEXT; cur->cb_header->dxContext = ctx_id; } cur->reserved = size; return (void *) (man->cur->cmd + man->cur_pos); } /** * vmw_cmdbuf_commit_cur - Commit commands in the current command buffer. * * @man: The command buffer manager. * @size: The size of the commands actually written. * @flush: Whether to flush the command buffer immediately. */ static void vmw_cmdbuf_commit_cur(struct vmw_cmdbuf_man *man, size_t size, bool flush) { struct vmw_cmdbuf_header *cur = man->cur; lockdep_assert_held_once(&man->cur_mutex); WARN_ON(size > cur->reserved); man->cur_pos += size; if (!size) cur->cb_header->flags &= ~SVGA_CB_FLAG_DX_CONTEXT; if (flush) __vmw_cmdbuf_cur_flush(man); vmw_cmdbuf_cur_unlock(man); } /** * vmw_cmdbuf_reserve - Reserve space for commands in a command buffer. * * @man: The command buffer manager. * @size: The requested size of the commands. * @ctx_id: The context id if any. Otherwise set to SVGA3D_REG_INVALID. * @interruptible: Whether to sleep interruptible while waiting for space. * @header: Header of the command buffer. NULL if the current command buffer * should be used. * * Returns a pointer to command buffer space if successful. Otherwise * returns an error pointer. */ void *vmw_cmdbuf_reserve(struct vmw_cmdbuf_man *man, size_t size, int ctx_id, bool interruptible, struct vmw_cmdbuf_header *header) { if (!header) return vmw_cmdbuf_reserve_cur(man, size, ctx_id, interruptible); if (size > header->size) return ERR_PTR(-EINVAL); if (ctx_id != SVGA3D_INVALID_ID) { header->cb_header->flags |= SVGA_CB_FLAG_DX_CONTEXT; header->cb_header->dxContext = ctx_id; } header->reserved = size; return header->cmd; } /** * vmw_cmdbuf_commit - Commit commands in a command buffer. * * @man: The command buffer manager. * @size: The size of the commands actually written. * @header: Header of the command buffer. NULL if the current command buffer * should be used. * @flush: Whether to flush the command buffer immediately. */ void vmw_cmdbuf_commit(struct vmw_cmdbuf_man *man, size_t size, struct vmw_cmdbuf_header *header, bool flush) { if (!header) { vmw_cmdbuf_commit_cur(man, size, flush); return; } (void) vmw_cmdbuf_cur_lock(man, false); __vmw_cmdbuf_cur_flush(man); WARN_ON(size > header->reserved); man->cur = header; man->cur_pos = size; if (!size) header->cb_header->flags &= ~SVGA_CB_FLAG_DX_CONTEXT; if (flush) __vmw_cmdbuf_cur_flush(man); vmw_cmdbuf_cur_unlock(man); } /** * vmw_cmdbuf_send_device_command - Send a command through the device context. * * @man: The command buffer manager. * @command: Pointer to the command to send. * @size: Size of the command. * * Synchronously sends a device context command. */ static int vmw_cmdbuf_send_device_command(struct vmw_cmdbuf_man *man, const void *command, size_t size) { struct vmw_cmdbuf_header *header; int status; void *cmd = vmw_cmdbuf_alloc(man, size, false, &header); if (IS_ERR(cmd)) return PTR_ERR(cmd); memcpy(cmd, command, size); header->cb_header->length = size; header->cb_context = SVGA_CB_CONTEXT_DEVICE; spin_lock(&man->lock); status = vmw_cmdbuf_header_submit(header); spin_unlock(&man->lock); vmw_cmdbuf_header_free(header); if (status != SVGA_CB_STATUS_COMPLETED) { DRM_ERROR("Device context command failed with status %d\n", status); return -EINVAL; } return 0; } /** * vmw_cmdbuf_preempt - Send a preempt command through the device * context. * * @man: The command buffer manager. * @context: Device context to pass command through. * * Synchronously sends a preempt command. */ static int vmw_cmdbuf_preempt(struct vmw_cmdbuf_man *man, u32 context) { struct { uint32 id; SVGADCCmdPreempt body; } __packed cmd; cmd.id = SVGA_DC_CMD_PREEMPT; cmd.body.context = SVGA_CB_CONTEXT_0 + context; cmd.body.ignoreIDZero = 0; return vmw_cmdbuf_send_device_command(man, &cmd, sizeof(cmd)); } /** * vmw_cmdbuf_startstop - Send a start / stop command through the device * context. * * @man: The command buffer manager. * @context: Device context to start/stop. * @enable: Whether to enable or disable the context. * * Synchronously sends a device start / stop context command. */ static int vmw_cmdbuf_startstop(struct vmw_cmdbuf_man *man, u32 context, bool enable) { struct { uint32 id; SVGADCCmdStartStop body; } __packed cmd; cmd.id = SVGA_DC_CMD_START_STOP_CONTEXT; cmd.body.enable = (enable) ? 1 : 0; cmd.body.context = SVGA_CB_CONTEXT_0 + context; return vmw_cmdbuf_send_device_command(man, &cmd, sizeof(cmd)); } /** * vmw_cmdbuf_set_pool_size - Set command buffer manager sizes * * @man: The command buffer manager. * @size: The size of the main space pool. * * Set the size and allocate the main command buffer space pool. * If successful, this enables large command submissions. * Note that this function requires that rudimentary command * submission is already available and that the MOB memory manager is alive. * Returns 0 on success. Negative error code on failure. */ int vmw_cmdbuf_set_pool_size(struct vmw_cmdbuf_man *man, size_t size) { struct vmw_private *dev_priv = man->dev_priv; int ret; if (man->has_pool) return -EINVAL; /* First, try to allocate a huge chunk of DMA memory */ size = PAGE_ALIGN(size); man->map = dma_alloc_coherent(dev_priv->drm.dev, size, &man->handle, GFP_KERNEL); if (man->map) { man->using_mob = false; } else { struct vmw_bo_params bo_params = { .domain = VMW_BO_DOMAIN_MOB, .busy_domain = VMW_BO_DOMAIN_MOB, .bo_type = ttm_bo_type_kernel, .size = size, .pin = true }; /* * DMA memory failed. If we can have command buffers in a * MOB, try to use that instead. Note that this will * actually call into the already enabled manager, when * binding the MOB. */ if (!(dev_priv->capabilities & SVGA_CAP_DX) || !dev_priv->has_mob) return -ENOMEM; ret = vmw_bo_create(dev_priv, &bo_params, &man->cmd_space); if (ret) return ret; man->map = vmw_bo_map_and_cache(man->cmd_space); man->using_mob = man->map; } man->size = size; drm_mm_init(&man->mm, 0, size >> PAGE_SHIFT); man->has_pool = true; /* * For now, set the default size to VMW_CMDBUF_INLINE_SIZE to * prevent deadlocks from happening when vmw_cmdbuf_space_pool() * needs to wait for space and we block on further command * submissions to be able to free up space. */ man->default_size = VMW_CMDBUF_INLINE_SIZE; drm_info(&dev_priv->drm, "Using command buffers with %s pool.\n", (man->using_mob) ? "MOB" : "DMA"); return 0; } /** * vmw_cmdbuf_man_create: Create a command buffer manager and enable it for * inline command buffer submissions only. * * @dev_priv: Pointer to device private structure. * * Returns a pointer to a cummand buffer manager to success or error pointer * on failure. The command buffer manager will be enabled for submissions of * size VMW_CMDBUF_INLINE_SIZE only. */ struct vmw_cmdbuf_man *vmw_cmdbuf_man_create(struct vmw_private *dev_priv) { struct vmw_cmdbuf_man *man; struct vmw_cmdbuf_context *ctx; unsigned int i; int ret; if (!(dev_priv->capabilities & SVGA_CAP_COMMAND_BUFFERS)) return ERR_PTR(-ENOSYS); man = kzalloc(sizeof(*man), GFP_KERNEL); if (!man) return ERR_PTR(-ENOMEM); man->num_contexts = (dev_priv->capabilities & SVGA_CAP_HP_CMD_QUEUE) ? 2 : 1; man->headers = dma_pool_create("vmwgfx cmdbuf", dev_priv->drm.dev, sizeof(SVGACBHeader), 64, PAGE_SIZE); if (!man->headers) { ret = -ENOMEM; goto out_no_pool; } man->dheaders = dma_pool_create("vmwgfx inline cmdbuf", dev_priv->drm.dev, sizeof(struct vmw_cmdbuf_dheader), 64, PAGE_SIZE); if (!man->dheaders) { ret = -ENOMEM; goto out_no_dpool; } for_each_cmdbuf_ctx(man, i, ctx) vmw_cmdbuf_ctx_init(ctx); INIT_LIST_HEAD(&man->error); spin_lock_init(&man->lock); mutex_init(&man->cur_mutex); mutex_init(&man->space_mutex); mutex_init(&man->error_mutex); man->default_size = VMW_CMDBUF_INLINE_SIZE; init_waitqueue_head(&man->alloc_queue); init_waitqueue_head(&man->idle_queue); man->dev_priv = dev_priv; man->max_hw_submitted = SVGA_CB_MAX_QUEUED_PER_CONTEXT - 1; INIT_WORK(&man->work, &vmw_cmdbuf_work_func); vmw_generic_waiter_add(dev_priv, SVGA_IRQFLAG_ERROR, &dev_priv->error_waiters); ret = vmw_cmdbuf_startstop(man, 0, true); if (ret) { DRM_ERROR("Failed starting command buffer contexts\n"); vmw_cmdbuf_man_destroy(man); return ERR_PTR(ret); } return man; out_no_dpool: dma_pool_destroy(man->headers); out_no_pool: kfree(man); return ERR_PTR(ret); } /** * vmw_cmdbuf_remove_pool - Take down the main buffer space pool. * * @man: Pointer to a command buffer manager. * * This function removes the main buffer space pool, and should be called * before MOB memory management is removed. When this function has been called, * only small command buffer submissions of size VMW_CMDBUF_INLINE_SIZE or * less are allowed, and the default size of the command buffer for small kernel * submissions is also set to this size. */ void vmw_cmdbuf_remove_pool(struct vmw_cmdbuf_man *man) { if (!man->has_pool) return; man->has_pool = false; man->default_size = VMW_CMDBUF_INLINE_SIZE; (void) vmw_cmdbuf_idle(man, false, 10*HZ); if (man->using_mob) vmw_bo_unreference(&man->cmd_space); else dma_free_coherent(man->dev_priv->drm.dev, man->size, man->map, man->handle); } /** * vmw_cmdbuf_man_destroy - Take down a command buffer manager. * * @man: Pointer to a command buffer manager. * * This function idles and then destroys a command buffer manager. */ void vmw_cmdbuf_man_destroy(struct vmw_cmdbuf_man *man) { WARN_ON_ONCE(man->has_pool); (void) vmw_cmdbuf_idle(man, false, 10*HZ); if (vmw_cmdbuf_startstop(man, 0, false)) DRM_ERROR("Failed stopping command buffer contexts.\n"); vmw_generic_waiter_remove(man->dev_priv, SVGA_IRQFLAG_ERROR, &man->dev_priv->error_waiters); (void) cancel_work_sync(&man->work); dma_pool_destroy(man->dheaders); dma_pool_destroy(man->headers); mutex_destroy(&man->cur_mutex); mutex_destroy(&man->space_mutex); mutex_destroy(&man->error_mutex); kfree(man); }
linux-master
drivers/gpu/drm/vmwgfx/vmwgfx_cmdbuf.c
/* SPDX-License-Identifier: GPL-2.0 OR MIT */ /************************************************************************** * * Copyright (c) 2009-2022 VMware, Inc., Palo Alto, CA., USA * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /* * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> * * While no substantial code is shared, the prime code is inspired by * drm_prime.c, with * Authors: * Dave Airlie <[email protected]> * Rob Clark <[email protected]> */ /** @file ttm_ref_object.c * * Base- and reference object implementation for the various * ttm objects. Implements reference counting, minimal security checks * and release on file close. */ #define pr_fmt(fmt) "[TTM] " fmt #include "ttm_object.h" #include "vmwgfx_drv.h" #include <linux/list.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/atomic.h> #include <linux/module.h> #include <linux/hashtable.h> MODULE_IMPORT_NS(DMA_BUF); #define VMW_TTM_OBJECT_REF_HT_ORDER 10 /** * struct ttm_object_file * * @tdev: Pointer to the ttm_object_device. * * @lock: Lock that protects the ref_list list and the * ref_hash hash tables. * * @ref_list: List of ttm_ref_objects to be destroyed at * file release. * * @ref_hash: Hash tables of ref objects, one per ttm_ref_type, * for fast lookup of ref objects given a base object. * * @refcount: reference/usage count */ struct ttm_object_file { struct ttm_object_device *tdev; spinlock_t lock; struct list_head ref_list; DECLARE_HASHTABLE(ref_hash, VMW_TTM_OBJECT_REF_HT_ORDER); struct kref refcount; }; /* * struct ttm_object_device * * @object_lock: lock that protects idr. * * @object_count: Per device object count. * * This is the per-device data structure needed for ttm object management. */ struct ttm_object_device { spinlock_t object_lock; atomic_t object_count; struct dma_buf_ops ops; void (*dmabuf_release)(struct dma_buf *dma_buf); struct idr idr; }; /* * struct ttm_ref_object * * @hash: Hash entry for the per-file object reference hash. * * @head: List entry for the per-file list of ref-objects. * * @kref: Ref count. * * @obj: Base object this ref object is referencing. * * @ref_type: Type of ref object. * * This is similar to an idr object, but it also has a hash table entry * that allows lookup with a pointer to the referenced object as a key. In * that way, one can easily detect whether a base object is referenced by * a particular ttm_object_file. It also carries a ref count to avoid creating * multiple ref objects if a ttm_object_file references the same base * object more than once. */ struct ttm_ref_object { struct rcu_head rcu_head; struct vmwgfx_hash_item hash; struct list_head head; struct kref kref; struct ttm_base_object *obj; struct ttm_object_file *tfile; }; static void ttm_prime_dmabuf_release(struct dma_buf *dma_buf); static inline struct ttm_object_file * ttm_object_file_ref(struct ttm_object_file *tfile) { kref_get(&tfile->refcount); return tfile; } static int ttm_tfile_find_ref_rcu(struct ttm_object_file *tfile, uint64_t key, struct vmwgfx_hash_item **p_hash) { struct vmwgfx_hash_item *hash; hash_for_each_possible_rcu(tfile->ref_hash, hash, head, key) { if (hash->key == key) { *p_hash = hash; return 0; } } return -EINVAL; } static int ttm_tfile_find_ref(struct ttm_object_file *tfile, uint64_t key, struct vmwgfx_hash_item **p_hash) { struct vmwgfx_hash_item *hash; hash_for_each_possible(tfile->ref_hash, hash, head, key) { if (hash->key == key) { *p_hash = hash; return 0; } } return -EINVAL; } static void ttm_object_file_destroy(struct kref *kref) { struct ttm_object_file *tfile = container_of(kref, struct ttm_object_file, refcount); kfree(tfile); } static inline void ttm_object_file_unref(struct ttm_object_file **p_tfile) { struct ttm_object_file *tfile = *p_tfile; *p_tfile = NULL; kref_put(&tfile->refcount, ttm_object_file_destroy); } int ttm_base_object_init(struct ttm_object_file *tfile, struct ttm_base_object *base, bool shareable, enum ttm_object_type object_type, void (*refcount_release) (struct ttm_base_object **)) { struct ttm_object_device *tdev = tfile->tdev; int ret; base->shareable = shareable; base->tfile = ttm_object_file_ref(tfile); base->refcount_release = refcount_release; base->object_type = object_type; kref_init(&base->refcount); idr_preload(GFP_KERNEL); spin_lock(&tdev->object_lock); ret = idr_alloc(&tdev->idr, base, 1, 0, GFP_NOWAIT); spin_unlock(&tdev->object_lock); idr_preload_end(); if (ret < 0) return ret; base->handle = ret; ret = ttm_ref_object_add(tfile, base, NULL, false); if (unlikely(ret != 0)) goto out_err1; ttm_base_object_unref(&base); return 0; out_err1: spin_lock(&tdev->object_lock); idr_remove(&tdev->idr, base->handle); spin_unlock(&tdev->object_lock); return ret; } static void ttm_release_base(struct kref *kref) { struct ttm_base_object *base = container_of(kref, struct ttm_base_object, refcount); struct ttm_object_device *tdev = base->tfile->tdev; spin_lock(&tdev->object_lock); idr_remove(&tdev->idr, base->handle); spin_unlock(&tdev->object_lock); /* * Note: We don't use synchronize_rcu() here because it's far * too slow. It's up to the user to free the object using * call_rcu() or ttm_base_object_kfree(). */ ttm_object_file_unref(&base->tfile); if (base->refcount_release) base->refcount_release(&base); } void ttm_base_object_unref(struct ttm_base_object **p_base) { struct ttm_base_object *base = *p_base; *p_base = NULL; kref_put(&base->refcount, ttm_release_base); } struct ttm_base_object *ttm_base_object_lookup(struct ttm_object_file *tfile, uint64_t key) { struct ttm_base_object *base = NULL; struct vmwgfx_hash_item *hash; int ret; spin_lock(&tfile->lock); ret = ttm_tfile_find_ref(tfile, key, &hash); if (likely(ret == 0)) { base = hlist_entry(hash, struct ttm_ref_object, hash)->obj; if (!kref_get_unless_zero(&base->refcount)) base = NULL; } spin_unlock(&tfile->lock); return base; } struct ttm_base_object * ttm_base_object_lookup_for_ref(struct ttm_object_device *tdev, uint64_t key) { struct ttm_base_object *base; rcu_read_lock(); base = idr_find(&tdev->idr, key); if (base && !kref_get_unless_zero(&base->refcount)) base = NULL; rcu_read_unlock(); return base; } int ttm_ref_object_add(struct ttm_object_file *tfile, struct ttm_base_object *base, bool *existed, bool require_existed) { struct ttm_ref_object *ref; struct vmwgfx_hash_item *hash; int ret = -EINVAL; if (base->tfile != tfile && !base->shareable) return -EPERM; if (existed != NULL) *existed = true; while (ret == -EINVAL) { rcu_read_lock(); ret = ttm_tfile_find_ref_rcu(tfile, base->handle, &hash); if (ret == 0) { ref = hlist_entry(hash, struct ttm_ref_object, hash); if (kref_get_unless_zero(&ref->kref)) { rcu_read_unlock(); break; } } rcu_read_unlock(); if (require_existed) return -EPERM; ref = kmalloc(sizeof(*ref), GFP_KERNEL); if (unlikely(ref == NULL)) { return -ENOMEM; } ref->hash.key = base->handle; ref->obj = base; ref->tfile = tfile; kref_init(&ref->kref); spin_lock(&tfile->lock); hash_add_rcu(tfile->ref_hash, &ref->hash.head, ref->hash.key); ret = 0; list_add_tail(&ref->head, &tfile->ref_list); kref_get(&base->refcount); spin_unlock(&tfile->lock); if (existed != NULL) *existed = false; } return ret; } static void __releases(tfile->lock) __acquires(tfile->lock) ttm_ref_object_release(struct kref *kref) { struct ttm_ref_object *ref = container_of(kref, struct ttm_ref_object, kref); struct ttm_object_file *tfile = ref->tfile; hash_del_rcu(&ref->hash.head); list_del(&ref->head); spin_unlock(&tfile->lock); ttm_base_object_unref(&ref->obj); kfree_rcu(ref, rcu_head); spin_lock(&tfile->lock); } int ttm_ref_object_base_unref(struct ttm_object_file *tfile, unsigned long key) { struct ttm_ref_object *ref; struct vmwgfx_hash_item *hash; int ret; spin_lock(&tfile->lock); ret = ttm_tfile_find_ref(tfile, key, &hash); if (unlikely(ret != 0)) { spin_unlock(&tfile->lock); return -EINVAL; } ref = hlist_entry(hash, struct ttm_ref_object, hash); kref_put(&ref->kref, ttm_ref_object_release); spin_unlock(&tfile->lock); return 0; } void ttm_object_file_release(struct ttm_object_file **p_tfile) { struct ttm_ref_object *ref; struct list_head *list; struct ttm_object_file *tfile = *p_tfile; *p_tfile = NULL; spin_lock(&tfile->lock); /* * Since we release the lock within the loop, we have to * restart it from the beginning each time. */ while (!list_empty(&tfile->ref_list)) { list = tfile->ref_list.next; ref = list_entry(list, struct ttm_ref_object, head); ttm_ref_object_release(&ref->kref); } spin_unlock(&tfile->lock); ttm_object_file_unref(&tfile); } struct ttm_object_file *ttm_object_file_init(struct ttm_object_device *tdev) { struct ttm_object_file *tfile = kmalloc(sizeof(*tfile), GFP_KERNEL); if (unlikely(tfile == NULL)) return NULL; spin_lock_init(&tfile->lock); tfile->tdev = tdev; kref_init(&tfile->refcount); INIT_LIST_HEAD(&tfile->ref_list); hash_init(tfile->ref_hash); return tfile; } struct ttm_object_device * ttm_object_device_init(const struct dma_buf_ops *ops) { struct ttm_object_device *tdev = kmalloc(sizeof(*tdev), GFP_KERNEL); if (unlikely(tdev == NULL)) return NULL; spin_lock_init(&tdev->object_lock); atomic_set(&tdev->object_count, 0); /* * Our base is at VMWGFX_NUM_MOB + 1 because we want to create * a seperate namespace for GEM handles (which are * 1..VMWGFX_NUM_MOB) and the surface handles. Some ioctl's * can take either handle as an argument so we want to * easily be able to tell whether the handle refers to a * GEM buffer or a surface. */ idr_init_base(&tdev->idr, VMWGFX_NUM_MOB + 1); tdev->ops = *ops; tdev->dmabuf_release = tdev->ops.release; tdev->ops.release = ttm_prime_dmabuf_release; return tdev; } void ttm_object_device_release(struct ttm_object_device **p_tdev) { struct ttm_object_device *tdev = *p_tdev; *p_tdev = NULL; WARN_ON_ONCE(!idr_is_empty(&tdev->idr)); idr_destroy(&tdev->idr); kfree(tdev); } /** * get_dma_buf_unless_doomed - get a dma_buf reference if possible. * * @dmabuf: Non-refcounted pointer to a struct dma-buf. * * Obtain a file reference from a lookup structure that doesn't refcount * the file, but synchronizes with its release method to make sure it has * not been freed yet. See for example kref_get_unless_zero documentation. * Returns true if refcounting succeeds, false otherwise. * * Nobody really wants this as a public API yet, so let it mature here * for some time... */ static bool __must_check get_dma_buf_unless_doomed(struct dma_buf *dmabuf) { return atomic_long_inc_not_zero(&dmabuf->file->f_count) != 0L; } /** * ttm_prime_refcount_release - refcount release method for a prime object. * * @p_base: Pointer to ttm_base_object pointer. * * This is a wrapper that calls the refcount_release founction of the * underlying object. At the same time it cleans up the prime object. * This function is called when all references to the base object we * derive from are gone. */ static void ttm_prime_refcount_release(struct ttm_base_object **p_base) { struct ttm_base_object *base = *p_base; struct ttm_prime_object *prime; *p_base = NULL; prime = container_of(base, struct ttm_prime_object, base); BUG_ON(prime->dma_buf != NULL); mutex_destroy(&prime->mutex); if (prime->refcount_release) prime->refcount_release(&base); } /** * ttm_prime_dmabuf_release - Release method for the dma-bufs we export * * @dma_buf: * * This function first calls the dma_buf release method the driver * provides. Then it cleans up our dma_buf pointer used for lookup, * and finally releases the reference the dma_buf has on our base * object. */ static void ttm_prime_dmabuf_release(struct dma_buf *dma_buf) { struct ttm_prime_object *prime = (struct ttm_prime_object *) dma_buf->priv; struct ttm_base_object *base = &prime->base; struct ttm_object_device *tdev = base->tfile->tdev; if (tdev->dmabuf_release) tdev->dmabuf_release(dma_buf); mutex_lock(&prime->mutex); if (prime->dma_buf == dma_buf) prime->dma_buf = NULL; mutex_unlock(&prime->mutex); ttm_base_object_unref(&base); } /** * ttm_prime_fd_to_handle - Get a base object handle from a prime fd * * @tfile: A struct ttm_object_file identifying the caller. * @fd: The prime / dmabuf fd. * @handle: The returned handle. * * This function returns a handle to an object that previously exported * a dma-buf. Note that we don't handle imports yet, because we simply * have no consumers of that implementation. */ int ttm_prime_fd_to_handle(struct ttm_object_file *tfile, int fd, u32 *handle) { struct ttm_object_device *tdev = tfile->tdev; struct dma_buf *dma_buf; struct ttm_prime_object *prime; struct ttm_base_object *base; int ret; dma_buf = dma_buf_get(fd); if (IS_ERR(dma_buf)) return PTR_ERR(dma_buf); if (dma_buf->ops != &tdev->ops) return -ENOSYS; prime = (struct ttm_prime_object *) dma_buf->priv; base = &prime->base; *handle = base->handle; ret = ttm_ref_object_add(tfile, base, NULL, false); dma_buf_put(dma_buf); return ret; } /** * ttm_prime_handle_to_fd - Return a dma_buf fd from a ttm prime object * * @tfile: Struct ttm_object_file identifying the caller. * @handle: Handle to the object we're exporting from. * @flags: flags for dma-buf creation. We just pass them on. * @prime_fd: The returned file descriptor. * */ int ttm_prime_handle_to_fd(struct ttm_object_file *tfile, uint32_t handle, uint32_t flags, int *prime_fd) { struct ttm_object_device *tdev = tfile->tdev; struct ttm_base_object *base; struct dma_buf *dma_buf; struct ttm_prime_object *prime; int ret; base = ttm_base_object_lookup(tfile, handle); if (unlikely(base == NULL || base->object_type != ttm_prime_type)) { ret = -ENOENT; goto out_unref; } prime = container_of(base, struct ttm_prime_object, base); if (unlikely(!base->shareable)) { ret = -EPERM; goto out_unref; } ret = mutex_lock_interruptible(&prime->mutex); if (unlikely(ret != 0)) { ret = -ERESTARTSYS; goto out_unref; } dma_buf = prime->dma_buf; if (!dma_buf || !get_dma_buf_unless_doomed(dma_buf)) { DEFINE_DMA_BUF_EXPORT_INFO(exp_info); exp_info.ops = &tdev->ops; exp_info.size = prime->size; exp_info.flags = flags; exp_info.priv = prime; /* * Need to create a new dma_buf */ dma_buf = dma_buf_export(&exp_info); if (IS_ERR(dma_buf)) { ret = PTR_ERR(dma_buf); mutex_unlock(&prime->mutex); goto out_unref; } /* * dma_buf has taken the base object reference */ base = NULL; prime->dma_buf = dma_buf; } mutex_unlock(&prime->mutex); ret = dma_buf_fd(dma_buf, flags); if (ret >= 0) { *prime_fd = ret; ret = 0; } else dma_buf_put(dma_buf); out_unref: if (base) ttm_base_object_unref(&base); return ret; } /** * ttm_prime_object_init - Initialize a ttm_prime_object * * @tfile: struct ttm_object_file identifying the caller * @size: The size of the dma_bufs we export. * @prime: The object to be initialized. * @shareable: See ttm_base_object_init * @type: See ttm_base_object_init * @refcount_release: See ttm_base_object_init * * Initializes an object which is compatible with the drm_prime model * for data sharing between processes and devices. */ int ttm_prime_object_init(struct ttm_object_file *tfile, size_t size, struct ttm_prime_object *prime, bool shareable, enum ttm_object_type type, void (*refcount_release) (struct ttm_base_object **)) { mutex_init(&prime->mutex); prime->size = PAGE_ALIGN(size); prime->real_type = type; prime->dma_buf = NULL; prime->refcount_release = refcount_release; return ttm_base_object_init(tfile, &prime->base, shareable, ttm_prime_type, ttm_prime_refcount_release); }
linux-master
drivers/gpu/drm/vmwgfx/ttm_object.c
// SPDX-License-Identifier: GPL-2.0 OR MIT /************************************************************************** * * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include <linux/pci.h> #include <linux/sched/signal.h> #include "vmwgfx_drv.h" #define VMW_FENCE_WRAP (1 << 24) static u32 vmw_irqflag_fence_goal(struct vmw_private *vmw) { if ((vmw->capabilities2 & SVGA_CAP2_EXTRA_REGS) != 0) return SVGA_IRQFLAG_REG_FENCE_GOAL; else return SVGA_IRQFLAG_FENCE_GOAL; } /** * vmw_thread_fn - Deferred (process context) irq handler * * @irq: irq number * @arg: Closure argument. Pointer to a struct drm_device cast to void * * * This function implements the deferred part of irq processing. * The function is guaranteed to run at least once after the * vmw_irq_handler has returned with IRQ_WAKE_THREAD. * */ static irqreturn_t vmw_thread_fn(int irq, void *arg) { struct drm_device *dev = (struct drm_device *)arg; struct vmw_private *dev_priv = vmw_priv(dev); irqreturn_t ret = IRQ_NONE; if (test_and_clear_bit(VMW_IRQTHREAD_FENCE, dev_priv->irqthread_pending)) { vmw_fences_update(dev_priv->fman); wake_up_all(&dev_priv->fence_queue); ret = IRQ_HANDLED; } if (test_and_clear_bit(VMW_IRQTHREAD_CMDBUF, dev_priv->irqthread_pending)) { vmw_cmdbuf_irqthread(dev_priv->cman); ret = IRQ_HANDLED; } return ret; } /** * vmw_irq_handler: irq handler * * @irq: irq number * @arg: Closure argument. Pointer to a struct drm_device cast to void * * * This function implements the quick part of irq processing. * The function performs fast actions like clearing the device interrupt * flags and also reasonably quick actions like waking processes waiting for * FIFO space. Other IRQ actions are deferred to the IRQ thread. */ static irqreturn_t vmw_irq_handler(int irq, void *arg) { struct drm_device *dev = (struct drm_device *)arg; struct vmw_private *dev_priv = vmw_priv(dev); uint32_t status, masked_status; irqreturn_t ret = IRQ_HANDLED; status = vmw_irq_status_read(dev_priv); masked_status = status & READ_ONCE(dev_priv->irq_mask); if (likely(status)) vmw_irq_status_write(dev_priv, status); if (!status) return IRQ_NONE; if (masked_status & SVGA_IRQFLAG_FIFO_PROGRESS) wake_up_all(&dev_priv->fifo_queue); if ((masked_status & (SVGA_IRQFLAG_ANY_FENCE | vmw_irqflag_fence_goal(dev_priv))) && !test_and_set_bit(VMW_IRQTHREAD_FENCE, dev_priv->irqthread_pending)) ret = IRQ_WAKE_THREAD; if ((masked_status & (SVGA_IRQFLAG_COMMAND_BUFFER | SVGA_IRQFLAG_ERROR)) && !test_and_set_bit(VMW_IRQTHREAD_CMDBUF, dev_priv->irqthread_pending)) ret = IRQ_WAKE_THREAD; return ret; } static bool vmw_fifo_idle(struct vmw_private *dev_priv, uint32_t seqno) { return (vmw_read(dev_priv, SVGA_REG_BUSY) == 0); } void vmw_update_seqno(struct vmw_private *dev_priv) { uint32_t seqno = vmw_fence_read(dev_priv); if (dev_priv->last_read_seqno != seqno) { dev_priv->last_read_seqno = seqno; vmw_fences_update(dev_priv->fman); } } bool vmw_seqno_passed(struct vmw_private *dev_priv, uint32_t seqno) { bool ret; if (likely(dev_priv->last_read_seqno - seqno < VMW_FENCE_WRAP)) return true; vmw_update_seqno(dev_priv); if (likely(dev_priv->last_read_seqno - seqno < VMW_FENCE_WRAP)) return true; if (!vmw_has_fences(dev_priv) && vmw_fifo_idle(dev_priv, seqno)) return true; /** * Then check if the seqno is higher than what we've actually * emitted. Then the fence is stale and signaled. */ ret = ((atomic_read(&dev_priv->marker_seq) - seqno) > VMW_FENCE_WRAP); return ret; } int vmw_fallback_wait(struct vmw_private *dev_priv, bool lazy, bool fifo_idle, uint32_t seqno, bool interruptible, unsigned long timeout) { struct vmw_fifo_state *fifo_state = dev_priv->fifo; bool fifo_down = false; uint32_t count = 0; uint32_t signal_seq; int ret; unsigned long end_jiffies = jiffies + timeout; bool (*wait_condition)(struct vmw_private *, uint32_t); DEFINE_WAIT(__wait); wait_condition = (fifo_idle) ? &vmw_fifo_idle : &vmw_seqno_passed; /** * Block command submission while waiting for idle. */ if (fifo_idle) { if (dev_priv->cman) { ret = vmw_cmdbuf_idle(dev_priv->cman, interruptible, 10*HZ); if (ret) goto out_err; } else if (fifo_state) { down_read(&fifo_state->rwsem); fifo_down = true; } } signal_seq = atomic_read(&dev_priv->marker_seq); ret = 0; for (;;) { prepare_to_wait(&dev_priv->fence_queue, &__wait, (interruptible) ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); if (wait_condition(dev_priv, seqno)) break; if (time_after_eq(jiffies, end_jiffies)) { DRM_ERROR("SVGA device lockup.\n"); break; } if (lazy) schedule_timeout(1); else if ((++count & 0x0F) == 0) { /** * FIXME: Use schedule_hr_timeout here for * newer kernels and lower CPU utilization. */ __set_current_state(TASK_RUNNING); schedule(); __set_current_state((interruptible) ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); } if (interruptible && signal_pending(current)) { ret = -ERESTARTSYS; break; } } finish_wait(&dev_priv->fence_queue, &__wait); if (ret == 0 && fifo_idle && fifo_state) vmw_fence_write(dev_priv, signal_seq); wake_up_all(&dev_priv->fence_queue); out_err: if (fifo_down) up_read(&fifo_state->rwsem); return ret; } void vmw_generic_waiter_add(struct vmw_private *dev_priv, u32 flag, int *waiter_count) { spin_lock_bh(&dev_priv->waiter_lock); if ((*waiter_count)++ == 0) { vmw_irq_status_write(dev_priv, flag); dev_priv->irq_mask |= flag; vmw_write(dev_priv, SVGA_REG_IRQMASK, dev_priv->irq_mask); } spin_unlock_bh(&dev_priv->waiter_lock); } void vmw_generic_waiter_remove(struct vmw_private *dev_priv, u32 flag, int *waiter_count) { spin_lock_bh(&dev_priv->waiter_lock); if (--(*waiter_count) == 0) { dev_priv->irq_mask &= ~flag; vmw_write(dev_priv, SVGA_REG_IRQMASK, dev_priv->irq_mask); } spin_unlock_bh(&dev_priv->waiter_lock); } void vmw_seqno_waiter_add(struct vmw_private *dev_priv) { vmw_generic_waiter_add(dev_priv, SVGA_IRQFLAG_ANY_FENCE, &dev_priv->fence_queue_waiters); } void vmw_seqno_waiter_remove(struct vmw_private *dev_priv) { vmw_generic_waiter_remove(dev_priv, SVGA_IRQFLAG_ANY_FENCE, &dev_priv->fence_queue_waiters); } void vmw_goal_waiter_add(struct vmw_private *dev_priv) { vmw_generic_waiter_add(dev_priv, vmw_irqflag_fence_goal(dev_priv), &dev_priv->goal_queue_waiters); } void vmw_goal_waiter_remove(struct vmw_private *dev_priv) { vmw_generic_waiter_remove(dev_priv, vmw_irqflag_fence_goal(dev_priv), &dev_priv->goal_queue_waiters); } static void vmw_irq_preinstall(struct drm_device *dev) { struct vmw_private *dev_priv = vmw_priv(dev); uint32_t status; status = vmw_irq_status_read(dev_priv); vmw_irq_status_write(dev_priv, status); } void vmw_irq_uninstall(struct drm_device *dev) { struct vmw_private *dev_priv = vmw_priv(dev); struct pci_dev *pdev = to_pci_dev(dev->dev); uint32_t status; u32 i; if (!(dev_priv->capabilities & SVGA_CAP_IRQMASK)) return; vmw_write(dev_priv, SVGA_REG_IRQMASK, 0); status = vmw_irq_status_read(dev_priv); vmw_irq_status_write(dev_priv, status); for (i = 0; i < dev_priv->num_irq_vectors; ++i) free_irq(dev_priv->irqs[i], dev); pci_free_irq_vectors(pdev); dev_priv->num_irq_vectors = 0; } /** * vmw_irq_install - Install the irq handlers * * @dev_priv: Pointer to the vmw_private device. * Return: Zero if successful. Negative number otherwise. */ int vmw_irq_install(struct vmw_private *dev_priv) { struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev); struct drm_device *dev = &dev_priv->drm; int ret; int nvec; int i = 0; BUILD_BUG_ON((SVGA_IRQFLAG_MAX >> VMWGFX_MAX_NUM_IRQS) != 1); BUG_ON(VMWGFX_MAX_NUM_IRQS != get_count_order(SVGA_IRQFLAG_MAX)); nvec = pci_alloc_irq_vectors(pdev, 1, VMWGFX_MAX_NUM_IRQS, PCI_IRQ_ALL_TYPES); if (nvec <= 0) { drm_err(&dev_priv->drm, "IRQ's are unavailable, nvec: %d\n", nvec); ret = nvec; goto done; } vmw_irq_preinstall(dev); for (i = 0; i < nvec; ++i) { ret = pci_irq_vector(pdev, i); if (ret < 0) { drm_err(&dev_priv->drm, "failed getting irq vector: %d\n", ret); goto done; } dev_priv->irqs[i] = ret; ret = request_threaded_irq(dev_priv->irqs[i], vmw_irq_handler, vmw_thread_fn, IRQF_SHARED, VMWGFX_DRIVER_NAME, dev); if (ret != 0) { drm_err(&dev_priv->drm, "Failed installing irq(%d): %d\n", dev_priv->irqs[i], ret); goto done; } } done: dev_priv->num_irq_vectors = i; return ret; }
linux-master
drivers/gpu/drm/vmwgfx/vmwgfx_irq.c
// SPDX-License-Identifier: GPL-2.0 OR MIT /************************************************************************** * * Copyright 2009-2023 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include <drm/ttm/ttm_placement.h> #include "vmwgfx_binding.h" #include "vmwgfx_bo.h" #include "vmwgfx_drv.h" #include "vmwgfx_resource_priv.h" #define VMW_RES_EVICT_ERR_COUNT 10 /** * vmw_resource_mob_attach - Mark a resource as attached to its backing mob * @res: The resource */ void vmw_resource_mob_attach(struct vmw_resource *res) { struct vmw_bo *gbo = res->guest_memory_bo; struct rb_node **new = &gbo->res_tree.rb_node, *parent = NULL; dma_resv_assert_held(gbo->tbo.base.resv); res->used_prio = (res->res_dirty) ? res->func->dirty_prio : res->func->prio; while (*new) { struct vmw_resource *this = container_of(*new, struct vmw_resource, mob_node); parent = *new; new = (res->guest_memory_offset < this->guest_memory_offset) ? &((*new)->rb_left) : &((*new)->rb_right); } rb_link_node(&res->mob_node, parent, new); rb_insert_color(&res->mob_node, &gbo->res_tree); vmw_bo_prio_add(gbo, res->used_prio); } /** * vmw_resource_mob_detach - Mark a resource as detached from its backing mob * @res: The resource */ void vmw_resource_mob_detach(struct vmw_resource *res) { struct vmw_bo *gbo = res->guest_memory_bo; dma_resv_assert_held(gbo->tbo.base.resv); if (vmw_resource_mob_attached(res)) { rb_erase(&res->mob_node, &gbo->res_tree); RB_CLEAR_NODE(&res->mob_node); vmw_bo_prio_del(gbo, res->used_prio); } } struct vmw_resource *vmw_resource_reference(struct vmw_resource *res) { kref_get(&res->kref); return res; } struct vmw_resource * vmw_resource_reference_unless_doomed(struct vmw_resource *res) { return kref_get_unless_zero(&res->kref) ? res : NULL; } /** * vmw_resource_release_id - release a resource id to the id manager. * * @res: Pointer to the resource. * * Release the resource id to the resource id manager and set it to -1 */ void vmw_resource_release_id(struct vmw_resource *res) { struct vmw_private *dev_priv = res->dev_priv; struct idr *idr = &dev_priv->res_idr[res->func->res_type]; spin_lock(&dev_priv->resource_lock); if (res->id != -1) idr_remove(idr, res->id); res->id = -1; spin_unlock(&dev_priv->resource_lock); } static void vmw_resource_release(struct kref *kref) { struct vmw_resource *res = container_of(kref, struct vmw_resource, kref); struct vmw_private *dev_priv = res->dev_priv; int id; int ret; struct idr *idr = &dev_priv->res_idr[res->func->res_type]; spin_lock(&dev_priv->resource_lock); list_del_init(&res->lru_head); spin_unlock(&dev_priv->resource_lock); if (res->guest_memory_bo) { struct ttm_buffer_object *bo = &res->guest_memory_bo->tbo; ret = ttm_bo_reserve(bo, false, false, NULL); BUG_ON(ret); if (vmw_resource_mob_attached(res) && res->func->unbind != NULL) { struct ttm_validate_buffer val_buf; val_buf.bo = bo; val_buf.num_shared = 0; res->func->unbind(res, false, &val_buf); } res->guest_memory_size = false; vmw_resource_mob_detach(res); if (res->dirty) res->func->dirty_free(res); if (res->coherent) vmw_bo_dirty_release(res->guest_memory_bo); ttm_bo_unreserve(bo); vmw_bo_unreference(&res->guest_memory_bo); } if (likely(res->hw_destroy != NULL)) { mutex_lock(&dev_priv->binding_mutex); vmw_binding_res_list_kill(&res->binding_head); mutex_unlock(&dev_priv->binding_mutex); res->hw_destroy(res); } id = res->id; if (res->res_free != NULL) res->res_free(res); else kfree(res); spin_lock(&dev_priv->resource_lock); if (id != -1) idr_remove(idr, id); spin_unlock(&dev_priv->resource_lock); } void vmw_resource_unreference(struct vmw_resource **p_res) { struct vmw_resource *res = *p_res; *p_res = NULL; kref_put(&res->kref, vmw_resource_release); } /** * vmw_resource_alloc_id - release a resource id to the id manager. * * @res: Pointer to the resource. * * Allocate the lowest free resource from the resource manager, and set * @res->id to that id. Returns 0 on success and -ENOMEM on failure. */ int vmw_resource_alloc_id(struct vmw_resource *res) { struct vmw_private *dev_priv = res->dev_priv; int ret; struct idr *idr = &dev_priv->res_idr[res->func->res_type]; BUG_ON(res->id != -1); idr_preload(GFP_KERNEL); spin_lock(&dev_priv->resource_lock); ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT); if (ret >= 0) res->id = ret; spin_unlock(&dev_priv->resource_lock); idr_preload_end(); return ret < 0 ? ret : 0; } /** * vmw_resource_init - initialize a struct vmw_resource * * @dev_priv: Pointer to a device private struct. * @res: The struct vmw_resource to initialize. * @delay_id: Boolean whether to defer device id allocation until * the first validation. * @res_free: Resource destructor. * @func: Resource function table. */ int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res, bool delay_id, void (*res_free) (struct vmw_resource *res), const struct vmw_res_func *func) { kref_init(&res->kref); res->hw_destroy = NULL; res->res_free = res_free; res->dev_priv = dev_priv; res->func = func; RB_CLEAR_NODE(&res->mob_node); INIT_LIST_HEAD(&res->lru_head); INIT_LIST_HEAD(&res->binding_head); res->id = -1; res->guest_memory_bo = NULL; res->guest_memory_offset = 0; res->guest_memory_dirty = false; res->res_dirty = false; res->coherent = false; res->used_prio = 3; res->dirty = NULL; if (delay_id) return 0; else return vmw_resource_alloc_id(res); } /** * vmw_user_resource_lookup_handle - lookup a struct resource from a * TTM user-space handle and perform basic type checks * * @dev_priv: Pointer to a device private struct * @tfile: Pointer to a struct ttm_object_file identifying the caller * @handle: The TTM user-space handle * @converter: Pointer to an object describing the resource type * @p_res: On successful return the location pointed to will contain * a pointer to a refcounted struct vmw_resource. * * If the handle can't be found or is associated with an incorrect resource * type, -EINVAL will be returned. */ int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv, struct ttm_object_file *tfile, uint32_t handle, const struct vmw_user_resource_conv *converter, struct vmw_resource **p_res) { struct ttm_base_object *base; struct vmw_resource *res; int ret = -EINVAL; base = ttm_base_object_lookup(tfile, handle); if (unlikely(!base)) return -EINVAL; if (unlikely(ttm_base_object_type(base) != converter->object_type)) goto out_bad_resource; res = converter->base_obj_to_res(base); kref_get(&res->kref); *p_res = res; ret = 0; out_bad_resource: ttm_base_object_unref(&base); return ret; } /* * Helper function that looks either a surface or bo. * * The pointer this pointed at by out_surf and out_buf needs to be null. */ int vmw_user_lookup_handle(struct vmw_private *dev_priv, struct drm_file *filp, uint32_t handle, struct vmw_surface **out_surf, struct vmw_bo **out_buf) { struct ttm_object_file *tfile = vmw_fpriv(filp)->tfile; struct vmw_resource *res; int ret; BUG_ON(*out_surf || *out_buf); ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle, user_surface_converter, &res); if (!ret) { *out_surf = vmw_res_to_srf(res); return 0; } *out_surf = NULL; ret = vmw_user_bo_lookup(filp, handle, out_buf); return ret; } /** * vmw_resource_buf_alloc - Allocate a guest memory buffer for a resource. * * @res: The resource for which to allocate a gbo buffer. * @interruptible: Whether any sleeps during allocation should be * performed while interruptible. */ static int vmw_resource_buf_alloc(struct vmw_resource *res, bool interruptible) { unsigned long size = PFN_ALIGN(res->guest_memory_size); struct vmw_bo *gbo; struct vmw_bo_params bo_params = { .domain = res->func->domain, .busy_domain = res->func->busy_domain, .bo_type = ttm_bo_type_device, .size = res->guest_memory_size, .pin = false }; int ret; if (likely(res->guest_memory_bo)) { BUG_ON(res->guest_memory_bo->tbo.base.size < size); return 0; } ret = vmw_bo_create(res->dev_priv, &bo_params, &gbo); if (unlikely(ret != 0)) goto out_no_bo; res->guest_memory_bo = gbo; out_no_bo: return ret; } /** * vmw_resource_do_validate - Make a resource up-to-date and visible * to the device. * * @res: The resource to make visible to the device. * @val_buf: Information about a buffer possibly * containing backup data if a bind operation is needed. * @dirtying: Transfer dirty regions. * * On hardware resource shortage, this function returns -EBUSY and * should be retried once resources have been freed up. */ static int vmw_resource_do_validate(struct vmw_resource *res, struct ttm_validate_buffer *val_buf, bool dirtying) { int ret = 0; const struct vmw_res_func *func = res->func; if (unlikely(res->id == -1)) { ret = func->create(res); if (unlikely(ret != 0)) return ret; } if (func->bind && ((func->needs_guest_memory && !vmw_resource_mob_attached(res) && val_buf->bo) || (!func->needs_guest_memory && val_buf->bo))) { ret = func->bind(res, val_buf); if (unlikely(ret != 0)) goto out_bind_failed; if (func->needs_guest_memory) vmw_resource_mob_attach(res); } /* * Handle the case where the backup mob is marked coherent but * the resource isn't. */ if (func->dirty_alloc && vmw_resource_mob_attached(res) && !res->coherent) { if (res->guest_memory_bo->dirty && !res->dirty) { ret = func->dirty_alloc(res); if (ret) return ret; } else if (!res->guest_memory_bo->dirty && res->dirty) { func->dirty_free(res); } } /* * Transfer the dirty regions to the resource and update * the resource. */ if (res->dirty) { if (dirtying && !res->res_dirty) { pgoff_t start = res->guest_memory_offset >> PAGE_SHIFT; pgoff_t end = __KERNEL_DIV_ROUND_UP (res->guest_memory_offset + res->guest_memory_size, PAGE_SIZE); vmw_bo_dirty_unmap(res->guest_memory_bo, start, end); } vmw_bo_dirty_transfer_to_res(res); return func->dirty_sync(res); } return 0; out_bind_failed: func->destroy(res); return ret; } /** * vmw_resource_unreserve - Unreserve a resource previously reserved for * command submission. * * @res: Pointer to the struct vmw_resource to unreserve. * @dirty_set: Change dirty status of the resource. * @dirty: When changing dirty status indicates the new status. * @switch_guest_memory: Guest memory buffer has been switched. * @new_guest_memory_bo: Pointer to new guest memory buffer if command submission * switched. May be NULL. * @new_guest_memory_offset: New gbo offset if @switch_guest_memory is true. * * Currently unreserving a resource means putting it back on the device's * resource lru list, so that it can be evicted if necessary. */ void vmw_resource_unreserve(struct vmw_resource *res, bool dirty_set, bool dirty, bool switch_guest_memory, struct vmw_bo *new_guest_memory_bo, unsigned long new_guest_memory_offset) { struct vmw_private *dev_priv = res->dev_priv; if (!list_empty(&res->lru_head)) return; if (switch_guest_memory && new_guest_memory_bo != res->guest_memory_bo) { if (res->guest_memory_bo) { vmw_resource_mob_detach(res); if (res->coherent) vmw_bo_dirty_release(res->guest_memory_bo); vmw_bo_unreference(&res->guest_memory_bo); } if (new_guest_memory_bo) { res->guest_memory_bo = vmw_bo_reference(new_guest_memory_bo); /* * The validation code should already have added a * dirty tracker here. */ WARN_ON(res->coherent && !new_guest_memory_bo->dirty); vmw_resource_mob_attach(res); } else { res->guest_memory_bo = NULL; } } else if (switch_guest_memory && res->coherent) { vmw_bo_dirty_release(res->guest_memory_bo); } if (switch_guest_memory) res->guest_memory_offset = new_guest_memory_offset; if (dirty_set) res->res_dirty = dirty; if (!res->func->may_evict || res->id == -1 || res->pin_count) return; spin_lock(&dev_priv->resource_lock); list_add_tail(&res->lru_head, &res->dev_priv->res_lru[res->func->res_type]); spin_unlock(&dev_priv->resource_lock); } /** * vmw_resource_check_buffer - Check whether a backup buffer is needed * for a resource and in that case, allocate * one, reserve and validate it. * * @ticket: The ww acquire context to use, or NULL if trylocking. * @res: The resource for which to allocate a backup buffer. * @interruptible: Whether any sleeps during allocation should be * performed while interruptible. * @val_buf: On successful return contains data about the * reserved and validated backup buffer. */ static int vmw_resource_check_buffer(struct ww_acquire_ctx *ticket, struct vmw_resource *res, bool interruptible, struct ttm_validate_buffer *val_buf) { struct ttm_operation_ctx ctx = { true, false }; struct list_head val_list; bool guest_memory_dirty = false; int ret; if (unlikely(!res->guest_memory_bo)) { ret = vmw_resource_buf_alloc(res, interruptible); if (unlikely(ret != 0)) return ret; } INIT_LIST_HEAD(&val_list); ttm_bo_get(&res->guest_memory_bo->tbo); val_buf->bo = &res->guest_memory_bo->tbo; val_buf->num_shared = 0; list_add_tail(&val_buf->head, &val_list); ret = ttm_eu_reserve_buffers(ticket, &val_list, interruptible, NULL); if (unlikely(ret != 0)) goto out_no_reserve; if (res->func->needs_guest_memory && !vmw_resource_mob_attached(res)) return 0; guest_memory_dirty = res->guest_memory_dirty; vmw_bo_placement_set(res->guest_memory_bo, res->func->domain, res->func->busy_domain); ret = ttm_bo_validate(&res->guest_memory_bo->tbo, &res->guest_memory_bo->placement, &ctx); if (unlikely(ret != 0)) goto out_no_validate; return 0; out_no_validate: ttm_eu_backoff_reservation(ticket, &val_list); out_no_reserve: ttm_bo_put(val_buf->bo); val_buf->bo = NULL; if (guest_memory_dirty) vmw_bo_unreference(&res->guest_memory_bo); return ret; } /* * vmw_resource_reserve - Reserve a resource for command submission * * @res: The resource to reserve. * * This function takes the resource off the LRU list and make sure * a guest memory buffer is present for guest-backed resources. * However, the buffer may not be bound to the resource at this * point. * */ int vmw_resource_reserve(struct vmw_resource *res, bool interruptible, bool no_guest_memory) { struct vmw_private *dev_priv = res->dev_priv; int ret; spin_lock(&dev_priv->resource_lock); list_del_init(&res->lru_head); spin_unlock(&dev_priv->resource_lock); if (res->func->needs_guest_memory && !res->guest_memory_bo && !no_guest_memory) { ret = vmw_resource_buf_alloc(res, interruptible); if (unlikely(ret != 0)) { DRM_ERROR("Failed to allocate a guest memory buffer " "of size %lu. bytes\n", (unsigned long) res->guest_memory_size); return ret; } } return 0; } /** * vmw_resource_backoff_reservation - Unreserve and unreference a * guest memory buffer *. * @ticket: The ww acquire ctx used for reservation. * @val_buf: Guest memory buffer information. */ static void vmw_resource_backoff_reservation(struct ww_acquire_ctx *ticket, struct ttm_validate_buffer *val_buf) { struct list_head val_list; if (likely(val_buf->bo == NULL)) return; INIT_LIST_HEAD(&val_list); list_add_tail(&val_buf->head, &val_list); ttm_eu_backoff_reservation(ticket, &val_list); ttm_bo_put(val_buf->bo); val_buf->bo = NULL; } /** * vmw_resource_do_evict - Evict a resource, and transfer its data * to a backup buffer. * * @ticket: The ww acquire ticket to use, or NULL if trylocking. * @res: The resource to evict. * @interruptible: Whether to wait interruptible. */ static int vmw_resource_do_evict(struct ww_acquire_ctx *ticket, struct vmw_resource *res, bool interruptible) { struct ttm_validate_buffer val_buf; const struct vmw_res_func *func = res->func; int ret; BUG_ON(!func->may_evict); val_buf.bo = NULL; val_buf.num_shared = 0; ret = vmw_resource_check_buffer(ticket, res, interruptible, &val_buf); if (unlikely(ret != 0)) return ret; if (unlikely(func->unbind != NULL && (!func->needs_guest_memory || vmw_resource_mob_attached(res)))) { ret = func->unbind(res, res->res_dirty, &val_buf); if (unlikely(ret != 0)) goto out_no_unbind; vmw_resource_mob_detach(res); } ret = func->destroy(res); res->guest_memory_dirty = true; res->res_dirty = false; out_no_unbind: vmw_resource_backoff_reservation(ticket, &val_buf); return ret; } /** * vmw_resource_validate - Make a resource up-to-date and visible * to the device. * @res: The resource to make visible to the device. * @intr: Perform waits interruptible if possible. * @dirtying: Pending GPU operation will dirty the resource * * On successful return, any backup DMA buffer pointed to by @res->backup will * be reserved and validated. * On hardware resource shortage, this function will repeatedly evict * resources of the same type until the validation succeeds. * * Return: Zero on success, -ERESTARTSYS if interrupted, negative error code * on failure. */ int vmw_resource_validate(struct vmw_resource *res, bool intr, bool dirtying) { int ret; struct vmw_resource *evict_res; struct vmw_private *dev_priv = res->dev_priv; struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type]; struct ttm_validate_buffer val_buf; unsigned err_count = 0; if (!res->func->create) return 0; val_buf.bo = NULL; val_buf.num_shared = 0; if (res->guest_memory_bo) val_buf.bo = &res->guest_memory_bo->tbo; do { ret = vmw_resource_do_validate(res, &val_buf, dirtying); if (likely(ret != -EBUSY)) break; spin_lock(&dev_priv->resource_lock); if (list_empty(lru_list) || !res->func->may_evict) { DRM_ERROR("Out of device device resources " "for %s.\n", res->func->type_name); ret = -EBUSY; spin_unlock(&dev_priv->resource_lock); break; } evict_res = vmw_resource_reference (list_first_entry(lru_list, struct vmw_resource, lru_head)); list_del_init(&evict_res->lru_head); spin_unlock(&dev_priv->resource_lock); /* Trylock backup buffers with a NULL ticket. */ ret = vmw_resource_do_evict(NULL, evict_res, intr); if (unlikely(ret != 0)) { spin_lock(&dev_priv->resource_lock); list_add_tail(&evict_res->lru_head, lru_list); spin_unlock(&dev_priv->resource_lock); if (ret == -ERESTARTSYS || ++err_count > VMW_RES_EVICT_ERR_COUNT) { vmw_resource_unreference(&evict_res); goto out_no_validate; } } vmw_resource_unreference(&evict_res); } while (1); if (unlikely(ret != 0)) goto out_no_validate; else if (!res->func->needs_guest_memory && res->guest_memory_bo) { WARN_ON_ONCE(vmw_resource_mob_attached(res)); vmw_bo_unreference(&res->guest_memory_bo); } return 0; out_no_validate: return ret; } /** * vmw_resource_unbind_list * * @vbo: Pointer to the current backing MOB. * * Evicts the Guest Backed hardware resource if the backup * buffer is being moved out of MOB memory. * Note that this function will not race with the resource * validation code, since resource validation and eviction * both require the backup buffer to be reserved. */ void vmw_resource_unbind_list(struct vmw_bo *vbo) { struct ttm_validate_buffer val_buf = { .bo = &vbo->tbo, .num_shared = 0 }; dma_resv_assert_held(vbo->tbo.base.resv); while (!RB_EMPTY_ROOT(&vbo->res_tree)) { struct rb_node *node = vbo->res_tree.rb_node; struct vmw_resource *res = container_of(node, struct vmw_resource, mob_node); if (!WARN_ON_ONCE(!res->func->unbind)) (void) res->func->unbind(res, res->res_dirty, &val_buf); res->guest_memory_size = true; res->res_dirty = false; vmw_resource_mob_detach(res); } (void) ttm_bo_wait(&vbo->tbo, false, false); } /** * vmw_query_readback_all - Read back cached query states * * @dx_query_mob: Buffer containing the DX query MOB * * Read back cached states from the device if they exist. This function * assumes binding_mutex is held. */ int vmw_query_readback_all(struct vmw_bo *dx_query_mob) { struct vmw_resource *dx_query_ctx; struct vmw_private *dev_priv; struct { SVGA3dCmdHeader header; SVGA3dCmdDXReadbackAllQuery body; } *cmd; /* No query bound, so do nothing */ if (!dx_query_mob || !dx_query_mob->dx_query_ctx) return 0; dx_query_ctx = dx_query_mob->dx_query_ctx; dev_priv = dx_query_ctx->dev_priv; cmd = VMW_CMD_CTX_RESERVE(dev_priv, sizeof(*cmd), dx_query_ctx->id); if (unlikely(cmd == NULL)) return -ENOMEM; cmd->header.id = SVGA_3D_CMD_DX_READBACK_ALL_QUERY; cmd->header.size = sizeof(cmd->body); cmd->body.cid = dx_query_ctx->id; vmw_cmd_commit(dev_priv, sizeof(*cmd)); /* Triggers a rebind the next time affected context is bound */ dx_query_mob->dx_query_ctx = NULL; return 0; } /** * vmw_query_move_notify - Read back cached query states * * @bo: The TTM buffer object about to move. * @old_mem: The memory region @bo is moving from. * @new_mem: The memory region @bo is moving to. * * Called before the query MOB is swapped out to read back cached query * states from the device. */ void vmw_query_move_notify(struct ttm_buffer_object *bo, struct ttm_resource *old_mem, struct ttm_resource *new_mem) { struct vmw_bo *dx_query_mob; struct ttm_device *bdev = bo->bdev; struct vmw_private *dev_priv = vmw_priv_from_ttm(bdev); mutex_lock(&dev_priv->binding_mutex); /* If BO is being moved from MOB to system memory */ if (old_mem && new_mem->mem_type == TTM_PL_SYSTEM && old_mem->mem_type == VMW_PL_MOB) { struct vmw_fence_obj *fence; dx_query_mob = to_vmw_bo(&bo->base); if (!dx_query_mob || !dx_query_mob->dx_query_ctx) { mutex_unlock(&dev_priv->binding_mutex); return; } (void) vmw_query_readback_all(dx_query_mob); mutex_unlock(&dev_priv->binding_mutex); /* Create a fence and attach the BO to it */ (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL); vmw_bo_fence_single(bo, fence); if (fence != NULL) vmw_fence_obj_unreference(&fence); (void) ttm_bo_wait(bo, false, false); } else mutex_unlock(&dev_priv->binding_mutex); } /** * vmw_resource_needs_backup - Return whether a resource needs a backup buffer. * * @res: The resource being queried. */ bool vmw_resource_needs_backup(const struct vmw_resource *res) { return res->func->needs_guest_memory; } /** * vmw_resource_evict_type - Evict all resources of a specific type * * @dev_priv: Pointer to a device private struct * @type: The resource type to evict * * To avoid thrashing starvation or as part of the hibernation sequence, * try to evict all evictable resources of a specific type. */ static void vmw_resource_evict_type(struct vmw_private *dev_priv, enum vmw_res_type type) { struct list_head *lru_list = &dev_priv->res_lru[type]; struct vmw_resource *evict_res; unsigned err_count = 0; int ret; struct ww_acquire_ctx ticket; do { spin_lock(&dev_priv->resource_lock); if (list_empty(lru_list)) goto out_unlock; evict_res = vmw_resource_reference( list_first_entry(lru_list, struct vmw_resource, lru_head)); list_del_init(&evict_res->lru_head); spin_unlock(&dev_priv->resource_lock); /* Wait lock backup buffers with a ticket. */ ret = vmw_resource_do_evict(&ticket, evict_res, false); if (unlikely(ret != 0)) { spin_lock(&dev_priv->resource_lock); list_add_tail(&evict_res->lru_head, lru_list); spin_unlock(&dev_priv->resource_lock); if (++err_count > VMW_RES_EVICT_ERR_COUNT) { vmw_resource_unreference(&evict_res); return; } } vmw_resource_unreference(&evict_res); } while (1); out_unlock: spin_unlock(&dev_priv->resource_lock); } /** * vmw_resource_evict_all - Evict all evictable resources * * @dev_priv: Pointer to a device private struct * * To avoid thrashing starvation or as part of the hibernation sequence, * evict all evictable resources. In particular this means that all * guest-backed resources that are registered with the device are * evicted and the OTable becomes clean. */ void vmw_resource_evict_all(struct vmw_private *dev_priv) { enum vmw_res_type type; mutex_lock(&dev_priv->cmdbuf_mutex); for (type = 0; type < vmw_res_max; ++type) vmw_resource_evict_type(dev_priv, type); mutex_unlock(&dev_priv->cmdbuf_mutex); } /* * vmw_resource_pin - Add a pin reference on a resource * * @res: The resource to add a pin reference on * * This function adds a pin reference, and if needed validates the resource. * Having a pin reference means that the resource can never be evicted, and * its id will never change as long as there is a pin reference. * This function returns 0 on success and a negative error code on failure. */ int vmw_resource_pin(struct vmw_resource *res, bool interruptible) { struct ttm_operation_ctx ctx = { interruptible, false }; struct vmw_private *dev_priv = res->dev_priv; int ret; mutex_lock(&dev_priv->cmdbuf_mutex); ret = vmw_resource_reserve(res, interruptible, false); if (ret) goto out_no_reserve; if (res->pin_count == 0) { struct vmw_bo *vbo = NULL; if (res->guest_memory_bo) { vbo = res->guest_memory_bo; ret = ttm_bo_reserve(&vbo->tbo, interruptible, false, NULL); if (ret) goto out_no_validate; if (!vbo->tbo.pin_count) { vmw_bo_placement_set(vbo, res->func->domain, res->func->busy_domain); ret = ttm_bo_validate (&vbo->tbo, &vbo->placement, &ctx); if (ret) { ttm_bo_unreserve(&vbo->tbo); goto out_no_validate; } } /* Do we really need to pin the MOB as well? */ vmw_bo_pin_reserved(vbo, true); } ret = vmw_resource_validate(res, interruptible, true); if (vbo) ttm_bo_unreserve(&vbo->tbo); if (ret) goto out_no_validate; } res->pin_count++; out_no_validate: vmw_resource_unreserve(res, false, false, false, NULL, 0UL); out_no_reserve: mutex_unlock(&dev_priv->cmdbuf_mutex); return ret; } /** * vmw_resource_unpin - Remove a pin reference from a resource * * @res: The resource to remove a pin reference from * * Having a pin reference means that the resource can never be evicted, and * its id will never change as long as there is a pin reference. */ void vmw_resource_unpin(struct vmw_resource *res) { struct vmw_private *dev_priv = res->dev_priv; int ret; mutex_lock(&dev_priv->cmdbuf_mutex); ret = vmw_resource_reserve(res, false, true); WARN_ON(ret); WARN_ON(res->pin_count == 0); if (--res->pin_count == 0 && res->guest_memory_bo) { struct vmw_bo *vbo = res->guest_memory_bo; (void) ttm_bo_reserve(&vbo->tbo, false, false, NULL); vmw_bo_pin_reserved(vbo, false); ttm_bo_unreserve(&vbo->tbo); } vmw_resource_unreserve(res, false, false, false, NULL, 0UL); mutex_unlock(&dev_priv->cmdbuf_mutex); } /** * vmw_res_type - Return the resource type * * @res: Pointer to the resource */ enum vmw_res_type vmw_res_type(const struct vmw_resource *res) { return res->func->res_type; } /** * vmw_resource_dirty_update - Update a resource's dirty tracker with a * sequential range of touched backing store memory. * @res: The resource. * @start: The first page touched. * @end: The last page touched + 1. */ void vmw_resource_dirty_update(struct vmw_resource *res, pgoff_t start, pgoff_t end) { if (res->dirty) res->func->dirty_range_add(res, start << PAGE_SHIFT, end << PAGE_SHIFT); } /** * vmw_resources_clean - Clean resources intersecting a mob range * @vbo: The mob buffer object * @start: The mob page offset starting the range * @end: The mob page offset ending the range * @num_prefault: Returns how many pages including the first have been * cleaned and are ok to prefault */ int vmw_resources_clean(struct vmw_bo *vbo, pgoff_t start, pgoff_t end, pgoff_t *num_prefault) { struct rb_node *cur = vbo->res_tree.rb_node; struct vmw_resource *found = NULL; unsigned long res_start = start << PAGE_SHIFT; unsigned long res_end = end << PAGE_SHIFT; unsigned long last_cleaned = 0; /* * Find the resource with lowest backup_offset that intersects the * range. */ while (cur) { struct vmw_resource *cur_res = container_of(cur, struct vmw_resource, mob_node); if (cur_res->guest_memory_offset >= res_end) { cur = cur->rb_left; } else if (cur_res->guest_memory_offset + cur_res->guest_memory_size <= res_start) { cur = cur->rb_right; } else { found = cur_res; cur = cur->rb_left; /* Continue to look for resources with lower offsets */ } } /* * In order of increasing guest_memory_offset, clean dirty resources * intersecting the range. */ while (found) { if (found->res_dirty) { int ret; if (!found->func->clean) return -EINVAL; ret = found->func->clean(found); if (ret) return ret; found->res_dirty = false; } last_cleaned = found->guest_memory_offset + found->guest_memory_size; cur = rb_next(&found->mob_node); if (!cur) break; found = container_of(cur, struct vmw_resource, mob_node); if (found->guest_memory_offset >= res_end) break; } /* * Set number of pages allowed prefaulting and fence the buffer object */ *num_prefault = 1; if (last_cleaned > res_start) { struct ttm_buffer_object *bo = &vbo->tbo; *num_prefault = __KERNEL_DIV_ROUND_UP(last_cleaned - res_start, PAGE_SIZE); vmw_bo_fence_single(bo, NULL); } return 0; }
linux-master
drivers/gpu/drm/vmwgfx/vmwgfx_resource.c
// SPDX-License-Identifier: GPL-2.0+ /* * shmob_drm_crtc.c -- SH Mobile DRM CRTCs * * Copyright (C) 2012 Renesas Electronics Corporation * * Laurent Pinchart ([email protected]) */ #include <linux/backlight.h> #include <linux/clk.h> #include <drm/drm_crtc.h> #include <drm/drm_crtc_helper.h> #include <drm/drm_fb_dma_helper.h> #include <drm/drm_fourcc.h> #include <drm/drm_framebuffer.h> #include <drm/drm_gem_dma_helper.h> #include <drm/drm_modeset_helper.h> #include <drm/drm_modeset_helper_vtables.h> #include <drm/drm_plane_helper.h> #include <drm/drm_probe_helper.h> #include <drm/drm_simple_kms_helper.h> #include <drm/drm_vblank.h> #include "shmob_drm_backlight.h" #include "shmob_drm_crtc.h" #include "shmob_drm_drv.h" #include "shmob_drm_kms.h" #include "shmob_drm_plane.h" #include "shmob_drm_regs.h" /* * TODO: panel support */ /* ----------------------------------------------------------------------------- * Clock management */ static int shmob_drm_clk_on(struct shmob_drm_device *sdev) { int ret; if (sdev->clock) { ret = clk_prepare_enable(sdev->clock); if (ret < 0) return ret; } return 0; } static void shmob_drm_clk_off(struct shmob_drm_device *sdev) { if (sdev->clock) clk_disable_unprepare(sdev->clock); } /* ----------------------------------------------------------------------------- * CRTC */ static void shmob_drm_crtc_setup_geometry(struct shmob_drm_crtc *scrtc) { struct drm_crtc *crtc = &scrtc->crtc; struct shmob_drm_device *sdev = crtc->dev->dev_private; const struct shmob_drm_interface_data *idata = &sdev->pdata->iface; const struct drm_display_mode *mode = &crtc->mode; u32 value; value = sdev->ldmt1r | ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? 0 : LDMT1R_VPOL) | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? 0 : LDMT1R_HPOL) | ((idata->flags & SHMOB_DRM_IFACE_FL_DWPOL) ? LDMT1R_DWPOL : 0) | ((idata->flags & SHMOB_DRM_IFACE_FL_DIPOL) ? LDMT1R_DIPOL : 0) | ((idata->flags & SHMOB_DRM_IFACE_FL_DAPOL) ? LDMT1R_DAPOL : 0) | ((idata->flags & SHMOB_DRM_IFACE_FL_HSCNT) ? LDMT1R_HSCNT : 0) | ((idata->flags & SHMOB_DRM_IFACE_FL_DWCNT) ? LDMT1R_DWCNT : 0); lcdc_write(sdev, LDMT1R, value); if (idata->interface >= SHMOB_DRM_IFACE_SYS8A && idata->interface <= SHMOB_DRM_IFACE_SYS24) { /* Setup SYS bus. */ value = (idata->sys.cs_setup << LDMT2R_CSUP_SHIFT) | (idata->sys.vsync_active_high ? LDMT2R_RSV : 0) | (idata->sys.vsync_dir_input ? LDMT2R_VSEL : 0) | (idata->sys.write_setup << LDMT2R_WCSC_SHIFT) | (idata->sys.write_cycle << LDMT2R_WCEC_SHIFT) | (idata->sys.write_strobe << LDMT2R_WCLW_SHIFT); lcdc_write(sdev, LDMT2R, value); value = (idata->sys.read_latch << LDMT3R_RDLC_SHIFT) | (idata->sys.read_setup << LDMT3R_RCSC_SHIFT) | (idata->sys.read_cycle << LDMT3R_RCEC_SHIFT) | (idata->sys.read_strobe << LDMT3R_RCLW_SHIFT); lcdc_write(sdev, LDMT3R, value); } value = ((mode->hdisplay / 8) << 16) /* HDCN */ | (mode->htotal / 8); /* HTCN */ lcdc_write(sdev, LDHCNR, value); value = (((mode->hsync_end - mode->hsync_start) / 8) << 16) /* HSYNW */ | (mode->hsync_start / 8); /* HSYNP */ lcdc_write(sdev, LDHSYNR, value); value = ((mode->hdisplay & 7) << 24) | ((mode->htotal & 7) << 16) | (((mode->hsync_end - mode->hsync_start) & 7) << 8) | (mode->hsync_start & 7); lcdc_write(sdev, LDHAJR, value); value = ((mode->vdisplay) << 16) /* VDLN */ | mode->vtotal; /* VTLN */ lcdc_write(sdev, LDVLNR, value); value = ((mode->vsync_end - mode->vsync_start) << 16) /* VSYNW */ | mode->vsync_start; /* VSYNP */ lcdc_write(sdev, LDVSYNR, value); } static void shmob_drm_crtc_start_stop(struct shmob_drm_crtc *scrtc, bool start) { struct shmob_drm_device *sdev = scrtc->crtc.dev->dev_private; u32 value; value = lcdc_read(sdev, LDCNT2R); if (start) lcdc_write(sdev, LDCNT2R, value | LDCNT2R_DO); else lcdc_write(sdev, LDCNT2R, value & ~LDCNT2R_DO); /* Wait until power is applied/stopped. */ while (1) { value = lcdc_read(sdev, LDPMR) & LDPMR_LPS; if ((start && value) || (!start && !value)) break; cpu_relax(); } if (!start) { /* Stop the dot clock. */ lcdc_write(sdev, LDDCKSTPR, LDDCKSTPR_DCKSTP); } } /* * shmob_drm_crtc_start - Configure and start the LCDC * @scrtc: the SH Mobile CRTC * * Configure and start the LCDC device. External devices (clocks, MERAM, panels, * ...) are not touched by this function. */ static void shmob_drm_crtc_start(struct shmob_drm_crtc *scrtc) { struct drm_crtc *crtc = &scrtc->crtc; struct shmob_drm_device *sdev = crtc->dev->dev_private; const struct shmob_drm_interface_data *idata = &sdev->pdata->iface; const struct shmob_drm_format_info *format; struct drm_device *dev = sdev->ddev; struct drm_plane *plane; u32 value; int ret; if (scrtc->started) return; format = shmob_drm_format_info(crtc->primary->fb->format->format); if (WARN_ON(format == NULL)) return; /* Enable clocks before accessing the hardware. */ ret = shmob_drm_clk_on(sdev); if (ret < 0) return; /* Reset and enable the LCDC. */ lcdc_write(sdev, LDCNT2R, lcdc_read(sdev, LDCNT2R) | LDCNT2R_BR); lcdc_wait_bit(sdev, LDCNT2R, LDCNT2R_BR, 0); lcdc_write(sdev, LDCNT2R, LDCNT2R_ME); /* Stop the LCDC first and disable all interrupts. */ shmob_drm_crtc_start_stop(scrtc, false); lcdc_write(sdev, LDINTR, 0); /* Configure power supply, dot clocks and start them. */ lcdc_write(sdev, LDPMR, 0); value = sdev->lddckr; if (idata->clk_div) { /* FIXME: sh7724 can only use 42, 48, 54 and 60 for the divider * denominator. */ lcdc_write(sdev, LDDCKPAT1R, 0); lcdc_write(sdev, LDDCKPAT2R, (1 << (idata->clk_div / 2)) - 1); if (idata->clk_div == 1) value |= LDDCKR_MOSEL; else value |= idata->clk_div; } lcdc_write(sdev, LDDCKR, value); lcdc_write(sdev, LDDCKSTPR, 0); lcdc_wait_bit(sdev, LDDCKSTPR, ~0, 0); /* TODO: Setup SYS panel */ /* Setup geometry, format, frame buffer memory and operation mode. */ shmob_drm_crtc_setup_geometry(scrtc); /* TODO: Handle YUV colorspaces. Hardcode REC709 for now. */ lcdc_write(sdev, LDDFR, format->lddfr | LDDFR_CF1); lcdc_write(sdev, LDMLSR, scrtc->line_size); lcdc_write(sdev, LDSA1R, scrtc->dma[0]); if (format->yuv) lcdc_write(sdev, LDSA2R, scrtc->dma[1]); lcdc_write(sdev, LDSM1R, 0); /* Word and long word swap. */ switch (format->fourcc) { case DRM_FORMAT_RGB565: case DRM_FORMAT_NV21: case DRM_FORMAT_NV61: case DRM_FORMAT_NV42: value = LDDDSR_LS | LDDDSR_WS; break; case DRM_FORMAT_RGB888: case DRM_FORMAT_NV12: case DRM_FORMAT_NV16: case DRM_FORMAT_NV24: value = LDDDSR_LS | LDDDSR_WS | LDDDSR_BS; break; case DRM_FORMAT_ARGB8888: case DRM_FORMAT_XRGB8888: default: value = LDDDSR_LS; break; } lcdc_write(sdev, LDDDSR, value); /* Setup planes. */ drm_for_each_legacy_plane(plane, dev) { if (plane->crtc == crtc) shmob_drm_plane_setup(plane); } /* Enable the display output. */ lcdc_write(sdev, LDCNT1R, LDCNT1R_DE); shmob_drm_crtc_start_stop(scrtc, true); scrtc->started = true; } static void shmob_drm_crtc_stop(struct shmob_drm_crtc *scrtc) { struct drm_crtc *crtc = &scrtc->crtc; struct shmob_drm_device *sdev = crtc->dev->dev_private; if (!scrtc->started) return; /* Stop the LCDC. */ shmob_drm_crtc_start_stop(scrtc, false); /* Disable the display output. */ lcdc_write(sdev, LDCNT1R, 0); /* Stop clocks. */ shmob_drm_clk_off(sdev); scrtc->started = false; } void shmob_drm_crtc_suspend(struct shmob_drm_crtc *scrtc) { shmob_drm_crtc_stop(scrtc); } void shmob_drm_crtc_resume(struct shmob_drm_crtc *scrtc) { if (scrtc->dpms != DRM_MODE_DPMS_ON) return; shmob_drm_crtc_start(scrtc); } static void shmob_drm_crtc_compute_base(struct shmob_drm_crtc *scrtc, int x, int y) { struct drm_crtc *crtc = &scrtc->crtc; struct drm_framebuffer *fb = crtc->primary->fb; struct drm_gem_dma_object *gem; unsigned int bpp; bpp = scrtc->format->yuv ? 8 : scrtc->format->bpp; gem = drm_fb_dma_get_gem_obj(fb, 0); scrtc->dma[0] = gem->dma_addr + fb->offsets[0] + y * fb->pitches[0] + x * bpp / 8; if (scrtc->format->yuv) { bpp = scrtc->format->bpp - 8; gem = drm_fb_dma_get_gem_obj(fb, 1); scrtc->dma[1] = gem->dma_addr + fb->offsets[1] + y / (bpp == 4 ? 2 : 1) * fb->pitches[1] + x * (bpp == 16 ? 2 : 1); } } static void shmob_drm_crtc_update_base(struct shmob_drm_crtc *scrtc) { struct drm_crtc *crtc = &scrtc->crtc; struct shmob_drm_device *sdev = crtc->dev->dev_private; shmob_drm_crtc_compute_base(scrtc, crtc->x, crtc->y); lcdc_write_mirror(sdev, LDSA1R, scrtc->dma[0]); if (scrtc->format->yuv) lcdc_write_mirror(sdev, LDSA2R, scrtc->dma[1]); lcdc_write(sdev, LDRCNTR, lcdc_read(sdev, LDRCNTR) ^ LDRCNTR_MRS); } #define to_shmob_crtc(c) container_of(c, struct shmob_drm_crtc, crtc) static void shmob_drm_crtc_dpms(struct drm_crtc *crtc, int mode) { struct shmob_drm_crtc *scrtc = to_shmob_crtc(crtc); if (scrtc->dpms == mode) return; if (mode == DRM_MODE_DPMS_ON) shmob_drm_crtc_start(scrtc); else shmob_drm_crtc_stop(scrtc); scrtc->dpms = mode; } static void shmob_drm_crtc_mode_prepare(struct drm_crtc *crtc) { shmob_drm_crtc_dpms(crtc, DRM_MODE_DPMS_OFF); } static int shmob_drm_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode, int x, int y, struct drm_framebuffer *old_fb) { struct shmob_drm_crtc *scrtc = to_shmob_crtc(crtc); struct shmob_drm_device *sdev = crtc->dev->dev_private; const struct shmob_drm_format_info *format; format = shmob_drm_format_info(crtc->primary->fb->format->format); if (format == NULL) { dev_dbg(sdev->dev, "mode_set: unsupported format %p4cc\n", &crtc->primary->fb->format->format); return -EINVAL; } scrtc->format = format; scrtc->line_size = crtc->primary->fb->pitches[0]; shmob_drm_crtc_compute_base(scrtc, x, y); return 0; } static void shmob_drm_crtc_mode_commit(struct drm_crtc *crtc) { shmob_drm_crtc_dpms(crtc, DRM_MODE_DPMS_ON); } static int shmob_drm_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *old_fb) { shmob_drm_crtc_update_base(to_shmob_crtc(crtc)); return 0; } static const struct drm_crtc_helper_funcs crtc_helper_funcs = { .dpms = shmob_drm_crtc_dpms, .prepare = shmob_drm_crtc_mode_prepare, .commit = shmob_drm_crtc_mode_commit, .mode_set = shmob_drm_crtc_mode_set, .mode_set_base = shmob_drm_crtc_mode_set_base, }; void shmob_drm_crtc_finish_page_flip(struct shmob_drm_crtc *scrtc) { struct drm_pending_vblank_event *event; struct drm_device *dev = scrtc->crtc.dev; unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); event = scrtc->event; scrtc->event = NULL; if (event) { drm_crtc_send_vblank_event(&scrtc->crtc, event); drm_crtc_vblank_put(&scrtc->crtc); } spin_unlock_irqrestore(&dev->event_lock, flags); } static int shmob_drm_crtc_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, uint32_t page_flip_flags, struct drm_modeset_acquire_ctx *ctx) { struct shmob_drm_crtc *scrtc = to_shmob_crtc(crtc); struct drm_device *dev = scrtc->crtc.dev; unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); if (scrtc->event != NULL) { spin_unlock_irqrestore(&dev->event_lock, flags); return -EBUSY; } spin_unlock_irqrestore(&dev->event_lock, flags); crtc->primary->fb = fb; shmob_drm_crtc_update_base(scrtc); if (event) { event->pipe = 0; drm_crtc_vblank_get(&scrtc->crtc); spin_lock_irqsave(&dev->event_lock, flags); scrtc->event = event; spin_unlock_irqrestore(&dev->event_lock, flags); } return 0; } static void shmob_drm_crtc_enable_vblank(struct shmob_drm_device *sdev, bool enable) { unsigned long flags; u32 ldintr; /* Be careful not to acknowledge any pending interrupt. */ spin_lock_irqsave(&sdev->irq_lock, flags); ldintr = lcdc_read(sdev, LDINTR) | LDINTR_STATUS_MASK; if (enable) ldintr |= LDINTR_VEE; else ldintr &= ~LDINTR_VEE; lcdc_write(sdev, LDINTR, ldintr); spin_unlock_irqrestore(&sdev->irq_lock, flags); } static int shmob_drm_enable_vblank(struct drm_crtc *crtc) { struct shmob_drm_device *sdev = crtc->dev->dev_private; shmob_drm_crtc_enable_vblank(sdev, true); return 0; } static void shmob_drm_disable_vblank(struct drm_crtc *crtc) { struct shmob_drm_device *sdev = crtc->dev->dev_private; shmob_drm_crtc_enable_vblank(sdev, false); } static const struct drm_crtc_funcs crtc_funcs = { .destroy = drm_crtc_cleanup, .set_config = drm_crtc_helper_set_config, .page_flip = shmob_drm_crtc_page_flip, .enable_vblank = shmob_drm_enable_vblank, .disable_vblank = shmob_drm_disable_vblank, }; static const uint32_t modeset_formats[] = { DRM_FORMAT_RGB565, DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB8888, }; static const struct drm_plane_funcs primary_plane_funcs = { DRM_PLANE_NON_ATOMIC_FUNCS, }; int shmob_drm_crtc_create(struct shmob_drm_device *sdev) { struct drm_crtc *crtc = &sdev->crtc.crtc; struct drm_plane *primary; int ret; sdev->crtc.dpms = DRM_MODE_DPMS_OFF; primary = __drm_universal_plane_alloc(sdev->ddev, sizeof(*primary), 0, 0, &primary_plane_funcs, modeset_formats, ARRAY_SIZE(modeset_formats), NULL, DRM_PLANE_TYPE_PRIMARY, NULL); if (IS_ERR(primary)) return PTR_ERR(primary); ret = drm_crtc_init_with_planes(sdev->ddev, crtc, primary, NULL, &crtc_funcs, NULL); if (ret < 0) { drm_plane_cleanup(primary); kfree(primary); return ret; } drm_crtc_helper_add(crtc, &crtc_helper_funcs); return 0; } /* ----------------------------------------------------------------------------- * Encoder */ #define to_shmob_encoder(e) \ container_of(e, struct shmob_drm_encoder, encoder) static void shmob_drm_encoder_dpms(struct drm_encoder *encoder, int mode) { struct shmob_drm_encoder *senc = to_shmob_encoder(encoder); struct shmob_drm_device *sdev = encoder->dev->dev_private; struct shmob_drm_connector *scon = &sdev->connector; if (senc->dpms == mode) return; shmob_drm_backlight_dpms(scon, mode); senc->dpms = mode; } static bool shmob_drm_encoder_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = encoder->dev; struct shmob_drm_device *sdev = dev->dev_private; struct drm_connector *connector = &sdev->connector.connector; const struct drm_display_mode *panel_mode; if (list_empty(&connector->modes)) { dev_dbg(dev->dev, "mode_fixup: empty modes list\n"); return false; } /* The flat panel mode is fixed, just copy it to the adjusted mode. */ panel_mode = list_first_entry(&connector->modes, struct drm_display_mode, head); drm_mode_copy(adjusted_mode, panel_mode); return true; } static void shmob_drm_encoder_mode_prepare(struct drm_encoder *encoder) { /* No-op, everything is handled in the CRTC code. */ } static void shmob_drm_encoder_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { /* No-op, everything is handled in the CRTC code. */ } static void shmob_drm_encoder_mode_commit(struct drm_encoder *encoder) { /* No-op, everything is handled in the CRTC code. */ } static const struct drm_encoder_helper_funcs encoder_helper_funcs = { .dpms = shmob_drm_encoder_dpms, .mode_fixup = shmob_drm_encoder_mode_fixup, .prepare = shmob_drm_encoder_mode_prepare, .commit = shmob_drm_encoder_mode_commit, .mode_set = shmob_drm_encoder_mode_set, }; int shmob_drm_encoder_create(struct shmob_drm_device *sdev) { struct drm_encoder *encoder = &sdev->encoder.encoder; int ret; sdev->encoder.dpms = DRM_MODE_DPMS_OFF; encoder->possible_crtcs = 1; ret = drm_simple_encoder_init(sdev->ddev, encoder, DRM_MODE_ENCODER_LVDS); if (ret < 0) return ret; drm_encoder_helper_add(encoder, &encoder_helper_funcs); return 0; } /* ----------------------------------------------------------------------------- * Connector */ #define to_shmob_connector(c) \ container_of(c, struct shmob_drm_connector, connector) static int shmob_drm_connector_get_modes(struct drm_connector *connector) { struct shmob_drm_device *sdev = connector->dev->dev_private; struct drm_display_mode *mode; mode = drm_mode_create(connector->dev); if (mode == NULL) return 0; mode->type = DRM_MODE_TYPE_PREFERRED | DRM_MODE_TYPE_DRIVER; mode->clock = sdev->pdata->panel.mode.clock; mode->hdisplay = sdev->pdata->panel.mode.hdisplay; mode->hsync_start = sdev->pdata->panel.mode.hsync_start; mode->hsync_end = sdev->pdata->panel.mode.hsync_end; mode->htotal = sdev->pdata->panel.mode.htotal; mode->vdisplay = sdev->pdata->panel.mode.vdisplay; mode->vsync_start = sdev->pdata->panel.mode.vsync_start; mode->vsync_end = sdev->pdata->panel.mode.vsync_end; mode->vtotal = sdev->pdata->panel.mode.vtotal; mode->flags = sdev->pdata->panel.mode.flags; drm_mode_set_name(mode); drm_mode_probed_add(connector, mode); connector->display_info.width_mm = sdev->pdata->panel.width_mm; connector->display_info.height_mm = sdev->pdata->panel.height_mm; return 1; } static struct drm_encoder * shmob_drm_connector_best_encoder(struct drm_connector *connector) { struct shmob_drm_connector *scon = to_shmob_connector(connector); return scon->encoder; } static const struct drm_connector_helper_funcs connector_helper_funcs = { .get_modes = shmob_drm_connector_get_modes, .best_encoder = shmob_drm_connector_best_encoder, }; static void shmob_drm_connector_destroy(struct drm_connector *connector) { struct shmob_drm_connector *scon = to_shmob_connector(connector); shmob_drm_backlight_exit(scon); drm_connector_unregister(connector); drm_connector_cleanup(connector); } static const struct drm_connector_funcs connector_funcs = { .dpms = drm_helper_connector_dpms, .fill_modes = drm_helper_probe_single_connector_modes, .destroy = shmob_drm_connector_destroy, }; int shmob_drm_connector_create(struct shmob_drm_device *sdev, struct drm_encoder *encoder) { struct drm_connector *connector = &sdev->connector.connector; int ret; sdev->connector.encoder = encoder; connector->display_info.width_mm = sdev->pdata->panel.width_mm; connector->display_info.height_mm = sdev->pdata->panel.height_mm; ret = drm_connector_init(sdev->ddev, connector, &connector_funcs, DRM_MODE_CONNECTOR_LVDS); if (ret < 0) return ret; drm_connector_helper_add(connector, &connector_helper_funcs); ret = shmob_drm_backlight_init(&sdev->connector); if (ret < 0) goto err_cleanup; ret = drm_connector_attach_encoder(connector, encoder); if (ret < 0) goto err_backlight; drm_helper_connector_dpms(connector, DRM_MODE_DPMS_OFF); drm_object_property_set_value(&connector->base, sdev->ddev->mode_config.dpms_property, DRM_MODE_DPMS_OFF); return 0; err_backlight: shmob_drm_backlight_exit(&sdev->connector); err_cleanup: drm_connector_cleanup(connector); return ret; }
linux-master
drivers/gpu/drm/renesas/shmobile/shmob_drm_crtc.c
// SPDX-License-Identifier: GPL-2.0+ /* * shmob_drm_plane.c -- SH Mobile DRM Planes * * Copyright (C) 2012 Renesas Electronics Corporation * * Laurent Pinchart ([email protected]) */ #include <drm/drm_crtc.h> #include <drm/drm_fb_dma_helper.h> #include <drm/drm_fourcc.h> #include <drm/drm_framebuffer.h> #include <drm/drm_gem_dma_helper.h> #include "shmob_drm_drv.h" #include "shmob_drm_kms.h" #include "shmob_drm_plane.h" #include "shmob_drm_regs.h" struct shmob_drm_plane { struct drm_plane plane; unsigned int index; unsigned int alpha; const struct shmob_drm_format_info *format; unsigned long dma[2]; unsigned int src_x; unsigned int src_y; unsigned int crtc_x; unsigned int crtc_y; unsigned int crtc_w; unsigned int crtc_h; }; #define to_shmob_plane(p) container_of(p, struct shmob_drm_plane, plane) static void shmob_drm_plane_compute_base(struct shmob_drm_plane *splane, struct drm_framebuffer *fb, int x, int y) { struct drm_gem_dma_object *gem; unsigned int bpp; bpp = splane->format->yuv ? 8 : splane->format->bpp; gem = drm_fb_dma_get_gem_obj(fb, 0); splane->dma[0] = gem->dma_addr + fb->offsets[0] + y * fb->pitches[0] + x * bpp / 8; if (splane->format->yuv) { bpp = splane->format->bpp - 8; gem = drm_fb_dma_get_gem_obj(fb, 1); splane->dma[1] = gem->dma_addr + fb->offsets[1] + y / (bpp == 4 ? 2 : 1) * fb->pitches[1] + x * (bpp == 16 ? 2 : 1); } } static void __shmob_drm_plane_setup(struct shmob_drm_plane *splane, struct drm_framebuffer *fb) { struct shmob_drm_device *sdev = splane->plane.dev->dev_private; u32 format; /* TODO: Support ROP3 mode */ format = LDBBSIFR_EN | (splane->alpha << LDBBSIFR_LAY_SHIFT); switch (splane->format->fourcc) { case DRM_FORMAT_RGB565: case DRM_FORMAT_NV21: case DRM_FORMAT_NV61: case DRM_FORMAT_NV42: format |= LDBBSIFR_SWPL | LDBBSIFR_SWPW; break; case DRM_FORMAT_RGB888: case DRM_FORMAT_NV12: case DRM_FORMAT_NV16: case DRM_FORMAT_NV24: format |= LDBBSIFR_SWPL | LDBBSIFR_SWPW | LDBBSIFR_SWPB; break; case DRM_FORMAT_ARGB8888: case DRM_FORMAT_XRGB8888: default: format |= LDBBSIFR_SWPL; break; } switch (splane->format->fourcc) { case DRM_FORMAT_RGB565: format |= LDBBSIFR_AL_1 | LDBBSIFR_RY | LDBBSIFR_RPKF_RGB16; break; case DRM_FORMAT_RGB888: format |= LDBBSIFR_AL_1 | LDBBSIFR_RY | LDBBSIFR_RPKF_RGB24; break; case DRM_FORMAT_ARGB8888: format |= LDBBSIFR_AL_PK | LDBBSIFR_RY | LDDFR_PKF_ARGB32; break; case DRM_FORMAT_XRGB8888: format |= LDBBSIFR_AL_1 | LDBBSIFR_RY | LDDFR_PKF_ARGB32; break; case DRM_FORMAT_NV12: case DRM_FORMAT_NV21: format |= LDBBSIFR_AL_1 | LDBBSIFR_CHRR_420; break; case DRM_FORMAT_NV16: case DRM_FORMAT_NV61: format |= LDBBSIFR_AL_1 | LDBBSIFR_CHRR_422; break; case DRM_FORMAT_NV24: case DRM_FORMAT_NV42: format |= LDBBSIFR_AL_1 | LDBBSIFR_CHRR_444; break; } #define plane_reg_dump(sdev, splane, reg) \ dev_dbg(sdev->ddev->dev, "%s(%u): %s 0x%08x 0x%08x\n", __func__, \ splane->index, #reg, \ lcdc_read(sdev, reg(splane->index)), \ lcdc_read(sdev, reg(splane->index) + LCDC_SIDE_B_OFFSET)) plane_reg_dump(sdev, splane, LDBnBSIFR); plane_reg_dump(sdev, splane, LDBnBSSZR); plane_reg_dump(sdev, splane, LDBnBLOCR); plane_reg_dump(sdev, splane, LDBnBSMWR); plane_reg_dump(sdev, splane, LDBnBSAYR); plane_reg_dump(sdev, splane, LDBnBSACR); lcdc_write(sdev, LDBCR, LDBCR_UPC(splane->index)); dev_dbg(sdev->ddev->dev, "%s(%u): %s 0x%08x\n", __func__, splane->index, "LDBCR", lcdc_read(sdev, LDBCR)); lcdc_write(sdev, LDBnBSIFR(splane->index), format); lcdc_write(sdev, LDBnBSSZR(splane->index), (splane->crtc_h << LDBBSSZR_BVSS_SHIFT) | (splane->crtc_w << LDBBSSZR_BHSS_SHIFT)); lcdc_write(sdev, LDBnBLOCR(splane->index), (splane->crtc_y << LDBBLOCR_CVLC_SHIFT) | (splane->crtc_x << LDBBLOCR_CHLC_SHIFT)); lcdc_write(sdev, LDBnBSMWR(splane->index), fb->pitches[0] << LDBBSMWR_BSMW_SHIFT); shmob_drm_plane_compute_base(splane, fb, splane->src_x, splane->src_y); lcdc_write(sdev, LDBnBSAYR(splane->index), splane->dma[0]); if (splane->format->yuv) lcdc_write(sdev, LDBnBSACR(splane->index), splane->dma[1]); lcdc_write(sdev, LDBCR, LDBCR_UPF(splane->index) | LDBCR_UPD(splane->index)); dev_dbg(sdev->ddev->dev, "%s(%u): %s 0x%08x\n", __func__, splane->index, "LDBCR", lcdc_read(sdev, LDBCR)); plane_reg_dump(sdev, splane, LDBnBSIFR); plane_reg_dump(sdev, splane, LDBnBSSZR); plane_reg_dump(sdev, splane, LDBnBLOCR); plane_reg_dump(sdev, splane, LDBnBSMWR); plane_reg_dump(sdev, splane, LDBnBSAYR); plane_reg_dump(sdev, splane, LDBnBSACR); } void shmob_drm_plane_setup(struct drm_plane *plane) { struct shmob_drm_plane *splane = to_shmob_plane(plane); if (plane->fb == NULL) return; __shmob_drm_plane_setup(splane, plane->fb); } static int shmob_drm_plane_update(struct drm_plane *plane, struct drm_crtc *crtc, struct drm_framebuffer *fb, int crtc_x, int crtc_y, unsigned int crtc_w, unsigned int crtc_h, uint32_t src_x, uint32_t src_y, uint32_t src_w, uint32_t src_h, struct drm_modeset_acquire_ctx *ctx) { struct shmob_drm_plane *splane = to_shmob_plane(plane); struct shmob_drm_device *sdev = plane->dev->dev_private; const struct shmob_drm_format_info *format; format = shmob_drm_format_info(fb->format->format); if (format == NULL) { dev_dbg(sdev->dev, "update_plane: unsupported format %08x\n", fb->format->format); return -EINVAL; } if (src_w >> 16 != crtc_w || src_h >> 16 != crtc_h) { dev_dbg(sdev->dev, "%s: scaling not supported\n", __func__); return -EINVAL; } splane->format = format; splane->src_x = src_x >> 16; splane->src_y = src_y >> 16; splane->crtc_x = crtc_x; splane->crtc_y = crtc_y; splane->crtc_w = crtc_w; splane->crtc_h = crtc_h; __shmob_drm_plane_setup(splane, fb); return 0; } static int shmob_drm_plane_disable(struct drm_plane *plane, struct drm_modeset_acquire_ctx *ctx) { struct shmob_drm_plane *splane = to_shmob_plane(plane); struct shmob_drm_device *sdev = plane->dev->dev_private; splane->format = NULL; lcdc_write(sdev, LDBnBSIFR(splane->index), 0); return 0; } static void shmob_drm_plane_destroy(struct drm_plane *plane) { drm_plane_force_disable(plane); drm_plane_cleanup(plane); } static const struct drm_plane_funcs shmob_drm_plane_funcs = { .update_plane = shmob_drm_plane_update, .disable_plane = shmob_drm_plane_disable, .destroy = shmob_drm_plane_destroy, }; static const uint32_t formats[] = { DRM_FORMAT_RGB565, DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB8888, DRM_FORMAT_NV12, DRM_FORMAT_NV21, DRM_FORMAT_NV16, DRM_FORMAT_NV61, DRM_FORMAT_NV24, DRM_FORMAT_NV42, }; int shmob_drm_plane_create(struct shmob_drm_device *sdev, unsigned int index) { struct shmob_drm_plane *splane; int ret; splane = devm_kzalloc(sdev->dev, sizeof(*splane), GFP_KERNEL); if (splane == NULL) return -ENOMEM; splane->index = index; splane->alpha = 255; ret = drm_universal_plane_init(sdev->ddev, &splane->plane, 1, &shmob_drm_plane_funcs, formats, ARRAY_SIZE(formats), NULL, DRM_PLANE_TYPE_OVERLAY, NULL); return ret; }
linux-master
drivers/gpu/drm/renesas/shmobile/shmob_drm_plane.c
// SPDX-License-Identifier: GPL-2.0+ /* * shmob_drm_kms.c -- SH Mobile DRM Mode Setting * * Copyright (C) 2012 Renesas Electronics Corporation * * Laurent Pinchart ([email protected]) */ #include <drm/drm_crtc.h> #include <drm/drm_crtc_helper.h> #include <drm/drm_fourcc.h> #include <drm/drm_gem_dma_helper.h> #include <drm/drm_gem_framebuffer_helper.h> #include <drm/drm_probe_helper.h> #include "shmob_drm_crtc.h" #include "shmob_drm_drv.h" #include "shmob_drm_kms.h" #include "shmob_drm_regs.h" /* ----------------------------------------------------------------------------- * Format helpers */ static const struct shmob_drm_format_info shmob_drm_format_infos[] = { { .fourcc = DRM_FORMAT_RGB565, .bpp = 16, .yuv = false, .lddfr = LDDFR_PKF_RGB16, }, { .fourcc = DRM_FORMAT_RGB888, .bpp = 24, .yuv = false, .lddfr = LDDFR_PKF_RGB24, }, { .fourcc = DRM_FORMAT_ARGB8888, .bpp = 32, .yuv = false, .lddfr = LDDFR_PKF_ARGB32, }, { .fourcc = DRM_FORMAT_XRGB8888, .bpp = 32, .yuv = false, .lddfr = LDDFR_PKF_ARGB32, }, { .fourcc = DRM_FORMAT_NV12, .bpp = 12, .yuv = true, .lddfr = LDDFR_CC | LDDFR_YF_420, }, { .fourcc = DRM_FORMAT_NV21, .bpp = 12, .yuv = true, .lddfr = LDDFR_CC | LDDFR_YF_420, }, { .fourcc = DRM_FORMAT_NV16, .bpp = 16, .yuv = true, .lddfr = LDDFR_CC | LDDFR_YF_422, }, { .fourcc = DRM_FORMAT_NV61, .bpp = 16, .yuv = true, .lddfr = LDDFR_CC | LDDFR_YF_422, }, { .fourcc = DRM_FORMAT_NV24, .bpp = 24, .yuv = true, .lddfr = LDDFR_CC | LDDFR_YF_444, }, { .fourcc = DRM_FORMAT_NV42, .bpp = 24, .yuv = true, .lddfr = LDDFR_CC | LDDFR_YF_444, }, }; const struct shmob_drm_format_info *shmob_drm_format_info(u32 fourcc) { unsigned int i; for (i = 0; i < ARRAY_SIZE(shmob_drm_format_infos); ++i) { if (shmob_drm_format_infos[i].fourcc == fourcc) return &shmob_drm_format_infos[i]; } return NULL; } /* ----------------------------------------------------------------------------- * Frame buffer */ static struct drm_framebuffer * shmob_drm_fb_create(struct drm_device *dev, struct drm_file *file_priv, const struct drm_mode_fb_cmd2 *mode_cmd) { const struct shmob_drm_format_info *format; format = shmob_drm_format_info(mode_cmd->pixel_format); if (format == NULL) { dev_dbg(dev->dev, "unsupported pixel format %p4cc\n", &mode_cmd->pixel_format); return ERR_PTR(-EINVAL); } if (mode_cmd->pitches[0] & 7 || mode_cmd->pitches[0] >= 65536) { dev_dbg(dev->dev, "invalid pitch value %u\n", mode_cmd->pitches[0]); return ERR_PTR(-EINVAL); } if (format->yuv) { unsigned int chroma_cpp = format->bpp == 24 ? 2 : 1; if (mode_cmd->pitches[1] != mode_cmd->pitches[0] * chroma_cpp) { dev_dbg(dev->dev, "luma and chroma pitches do not match\n"); return ERR_PTR(-EINVAL); } } return drm_gem_fb_create(dev, file_priv, mode_cmd); } static const struct drm_mode_config_funcs shmob_drm_mode_config_funcs = { .fb_create = shmob_drm_fb_create, }; int shmob_drm_modeset_init(struct shmob_drm_device *sdev) { int ret; ret = drmm_mode_config_init(sdev->ddev); if (ret) return ret; shmob_drm_crtc_create(sdev); shmob_drm_encoder_create(sdev); shmob_drm_connector_create(sdev, &sdev->encoder.encoder); drm_kms_helper_poll_init(sdev->ddev); sdev->ddev->mode_config.min_width = 0; sdev->ddev->mode_config.min_height = 0; sdev->ddev->mode_config.max_width = 4095; sdev->ddev->mode_config.max_height = 4095; sdev->ddev->mode_config.funcs = &shmob_drm_mode_config_funcs; drm_helper_disable_unused_functions(sdev->ddev); return 0; }
linux-master
drivers/gpu/drm/renesas/shmobile/shmob_drm_kms.c
// SPDX-License-Identifier: GPL-2.0+ /* * shmob_drm_drv.c -- SH Mobile DRM driver * * Copyright (C) 2012 Renesas Electronics Corporation * * Laurent Pinchart ([email protected]) */ #include <linux/clk.h> #include <linux/io.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pm.h> #include <linux/slab.h> #include <drm/drm_drv.h> #include <drm/drm_fbdev_generic.h> #include <drm/drm_gem_dma_helper.h> #include <drm/drm_module.h> #include <drm/drm_probe_helper.h> #include <drm/drm_vblank.h> #include "shmob_drm_drv.h" #include "shmob_drm_kms.h" #include "shmob_drm_plane.h" #include "shmob_drm_regs.h" /* ----------------------------------------------------------------------------- * Hardware initialization */ static int shmob_drm_init_interface(struct shmob_drm_device *sdev) { static const u32 ldmt1r[] = { [SHMOB_DRM_IFACE_RGB8] = LDMT1R_MIFTYP_RGB8, [SHMOB_DRM_IFACE_RGB9] = LDMT1R_MIFTYP_RGB9, [SHMOB_DRM_IFACE_RGB12A] = LDMT1R_MIFTYP_RGB12A, [SHMOB_DRM_IFACE_RGB12B] = LDMT1R_MIFTYP_RGB12B, [SHMOB_DRM_IFACE_RGB16] = LDMT1R_MIFTYP_RGB16, [SHMOB_DRM_IFACE_RGB18] = LDMT1R_MIFTYP_RGB18, [SHMOB_DRM_IFACE_RGB24] = LDMT1R_MIFTYP_RGB24, [SHMOB_DRM_IFACE_YUV422] = LDMT1R_MIFTYP_YCBCR, [SHMOB_DRM_IFACE_SYS8A] = LDMT1R_IFM | LDMT1R_MIFTYP_SYS8A, [SHMOB_DRM_IFACE_SYS8B] = LDMT1R_IFM | LDMT1R_MIFTYP_SYS8B, [SHMOB_DRM_IFACE_SYS8C] = LDMT1R_IFM | LDMT1R_MIFTYP_SYS8C, [SHMOB_DRM_IFACE_SYS8D] = LDMT1R_IFM | LDMT1R_MIFTYP_SYS8D, [SHMOB_DRM_IFACE_SYS9] = LDMT1R_IFM | LDMT1R_MIFTYP_SYS9, [SHMOB_DRM_IFACE_SYS12] = LDMT1R_IFM | LDMT1R_MIFTYP_SYS12, [SHMOB_DRM_IFACE_SYS16A] = LDMT1R_IFM | LDMT1R_MIFTYP_SYS16A, [SHMOB_DRM_IFACE_SYS16B] = LDMT1R_IFM | LDMT1R_MIFTYP_SYS16B, [SHMOB_DRM_IFACE_SYS16C] = LDMT1R_IFM | LDMT1R_MIFTYP_SYS16C, [SHMOB_DRM_IFACE_SYS18] = LDMT1R_IFM | LDMT1R_MIFTYP_SYS18, [SHMOB_DRM_IFACE_SYS24] = LDMT1R_IFM | LDMT1R_MIFTYP_SYS24, }; if (sdev->pdata->iface.interface >= ARRAY_SIZE(ldmt1r)) { dev_err(sdev->dev, "invalid interface type %u\n", sdev->pdata->iface.interface); return -EINVAL; } sdev->ldmt1r = ldmt1r[sdev->pdata->iface.interface]; return 0; } static int shmob_drm_setup_clocks(struct shmob_drm_device *sdev, enum shmob_drm_clk_source clksrc) { struct clk *clk; char *clkname; switch (clksrc) { case SHMOB_DRM_CLK_BUS: clkname = "bus_clk"; sdev->lddckr = LDDCKR_ICKSEL_BUS; break; case SHMOB_DRM_CLK_PERIPHERAL: clkname = "peripheral_clk"; sdev->lddckr = LDDCKR_ICKSEL_MIPI; break; case SHMOB_DRM_CLK_EXTERNAL: clkname = NULL; sdev->lddckr = LDDCKR_ICKSEL_HDMI; break; default: return -EINVAL; } clk = devm_clk_get(sdev->dev, clkname); if (IS_ERR(clk)) { dev_err(sdev->dev, "cannot get dot clock %s\n", clkname); return PTR_ERR(clk); } sdev->clock = clk; return 0; } /* ----------------------------------------------------------------------------- * DRM operations */ static irqreturn_t shmob_drm_irq(int irq, void *arg) { struct drm_device *dev = arg; struct shmob_drm_device *sdev = dev->dev_private; unsigned long flags; u32 status; /* Acknowledge interrupts. Putting interrupt enable and interrupt flag * bits in the same register is really brain-dead design and requires * taking a spinlock. */ spin_lock_irqsave(&sdev->irq_lock, flags); status = lcdc_read(sdev, LDINTR); lcdc_write(sdev, LDINTR, status ^ LDINTR_STATUS_MASK); spin_unlock_irqrestore(&sdev->irq_lock, flags); if (status & LDINTR_VES) { drm_handle_vblank(dev, 0); shmob_drm_crtc_finish_page_flip(&sdev->crtc); } return IRQ_HANDLED; } DEFINE_DRM_GEM_DMA_FOPS(shmob_drm_fops); static const struct drm_driver shmob_drm_driver = { .driver_features = DRIVER_GEM | DRIVER_MODESET, DRM_GEM_DMA_DRIVER_OPS, .fops = &shmob_drm_fops, .name = "shmob-drm", .desc = "Renesas SH Mobile DRM", .date = "20120424", .major = 1, .minor = 0, }; /* ----------------------------------------------------------------------------- * Power management */ static int shmob_drm_pm_suspend(struct device *dev) { struct shmob_drm_device *sdev = dev_get_drvdata(dev); drm_kms_helper_poll_disable(sdev->ddev); shmob_drm_crtc_suspend(&sdev->crtc); return 0; } static int shmob_drm_pm_resume(struct device *dev) { struct shmob_drm_device *sdev = dev_get_drvdata(dev); drm_modeset_lock_all(sdev->ddev); shmob_drm_crtc_resume(&sdev->crtc); drm_modeset_unlock_all(sdev->ddev); drm_kms_helper_poll_enable(sdev->ddev); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(shmob_drm_pm_ops, shmob_drm_pm_suspend, shmob_drm_pm_resume); /* ----------------------------------------------------------------------------- * Platform driver */ static int shmob_drm_remove(struct platform_device *pdev) { struct shmob_drm_device *sdev = platform_get_drvdata(pdev); struct drm_device *ddev = sdev->ddev; drm_dev_unregister(ddev); drm_kms_helper_poll_fini(ddev); free_irq(sdev->irq, ddev); drm_dev_put(ddev); return 0; } static int shmob_drm_probe(struct platform_device *pdev) { struct shmob_drm_platform_data *pdata = pdev->dev.platform_data; struct shmob_drm_device *sdev; struct drm_device *ddev; unsigned int i; int ret; if (pdata == NULL) { dev_err(&pdev->dev, "no platform data\n"); return -EINVAL; } /* * Allocate and initialize the driver private data, I/O resources and * clocks. */ sdev = devm_kzalloc(&pdev->dev, sizeof(*sdev), GFP_KERNEL); if (sdev == NULL) return -ENOMEM; sdev->dev = &pdev->dev; sdev->pdata = pdata; spin_lock_init(&sdev->irq_lock); platform_set_drvdata(pdev, sdev); sdev->mmio = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(sdev->mmio)) return PTR_ERR(sdev->mmio); ret = shmob_drm_setup_clocks(sdev, pdata->clk_source); if (ret < 0) return ret; ret = shmob_drm_init_interface(sdev); if (ret < 0) return ret; /* Allocate and initialize the DRM device. */ ddev = drm_dev_alloc(&shmob_drm_driver, &pdev->dev); if (IS_ERR(ddev)) return PTR_ERR(ddev); sdev->ddev = ddev; ddev->dev_private = sdev; ret = shmob_drm_modeset_init(sdev); if (ret < 0) { dev_err(&pdev->dev, "failed to initialize mode setting\n"); goto err_free_drm_dev; } for (i = 0; i < 4; ++i) { ret = shmob_drm_plane_create(sdev, i); if (ret < 0) { dev_err(&pdev->dev, "failed to create plane %u\n", i); goto err_modeset_cleanup; } } ret = drm_vblank_init(ddev, 1); if (ret < 0) { dev_err(&pdev->dev, "failed to initialize vblank\n"); goto err_modeset_cleanup; } ret = platform_get_irq(pdev, 0); if (ret < 0) goto err_modeset_cleanup; sdev->irq = ret; ret = request_irq(sdev->irq, shmob_drm_irq, 0, ddev->driver->name, ddev); if (ret < 0) { dev_err(&pdev->dev, "failed to install IRQ handler\n"); goto err_modeset_cleanup; } /* * Register the DRM device with the core and the connectors with * sysfs. */ ret = drm_dev_register(ddev, 0); if (ret < 0) goto err_irq_uninstall; drm_fbdev_generic_setup(ddev, 16); return 0; err_irq_uninstall: free_irq(sdev->irq, ddev); err_modeset_cleanup: drm_kms_helper_poll_fini(ddev); err_free_drm_dev: drm_dev_put(ddev); return ret; } static struct platform_driver shmob_drm_platform_driver = { .probe = shmob_drm_probe, .remove = shmob_drm_remove, .driver = { .name = "shmob-drm", .pm = pm_sleep_ptr(&shmob_drm_pm_ops), }, }; drm_module_platform_driver(shmob_drm_platform_driver); MODULE_AUTHOR("Laurent Pinchart <[email protected]>"); MODULE_DESCRIPTION("Renesas SH Mobile DRM Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/gpu/drm/renesas/shmobile/shmob_drm_drv.c
// SPDX-License-Identifier: GPL-2.0+ /* * shmob_drm_backlight.c -- SH Mobile DRM Backlight * * Copyright (C) 2012 Renesas Electronics Corporation * * Laurent Pinchart ([email protected]) */ #include <linux/backlight.h> #include "shmob_drm_backlight.h" #include "shmob_drm_crtc.h" #include "shmob_drm_drv.h" static int shmob_drm_backlight_update(struct backlight_device *bdev) { struct shmob_drm_connector *scon = bl_get_data(bdev); struct shmob_drm_device *sdev = scon->connector.dev->dev_private; const struct shmob_drm_backlight_data *bdata = &sdev->pdata->backlight; int brightness = backlight_get_brightness(bdev); return bdata->set_brightness(brightness); } static int shmob_drm_backlight_get_brightness(struct backlight_device *bdev) { struct shmob_drm_connector *scon = bl_get_data(bdev); struct shmob_drm_device *sdev = scon->connector.dev->dev_private; const struct shmob_drm_backlight_data *bdata = &sdev->pdata->backlight; return bdata->get_brightness(); } static const struct backlight_ops shmob_drm_backlight_ops = { .options = BL_CORE_SUSPENDRESUME, .update_status = shmob_drm_backlight_update, .get_brightness = shmob_drm_backlight_get_brightness, }; void shmob_drm_backlight_dpms(struct shmob_drm_connector *scon, int mode) { if (scon->backlight == NULL) return; scon->backlight->props.power = mode == DRM_MODE_DPMS_ON ? FB_BLANK_UNBLANK : FB_BLANK_POWERDOWN; backlight_update_status(scon->backlight); } int shmob_drm_backlight_init(struct shmob_drm_connector *scon) { struct shmob_drm_device *sdev = scon->connector.dev->dev_private; const struct shmob_drm_backlight_data *bdata = &sdev->pdata->backlight; struct drm_connector *connector = &scon->connector; struct drm_device *dev = connector->dev; struct backlight_device *backlight; if (!bdata->max_brightness) return 0; backlight = backlight_device_register(bdata->name, dev->dev, scon, &shmob_drm_backlight_ops, NULL); if (IS_ERR(backlight)) { dev_err(dev->dev, "unable to register backlight device: %ld\n", PTR_ERR(backlight)); return PTR_ERR(backlight); } backlight->props.max_brightness = bdata->max_brightness; backlight->props.brightness = bdata->max_brightness; backlight->props.power = FB_BLANK_POWERDOWN; backlight_update_status(backlight); scon->backlight = backlight; return 0; } void shmob_drm_backlight_exit(struct shmob_drm_connector *scon) { backlight_device_unregister(scon->backlight); }
linux-master
drivers/gpu/drm/renesas/shmobile/shmob_drm_backlight.c
// SPDX-License-Identifier: GPL-2.0+ /* * R-Car Display Unit Planes * * Copyright (C) 2013-2015 Renesas Electronics Corporation * * Contact: Laurent Pinchart ([email protected]) */ #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_blend.h> #include <drm/drm_crtc.h> #include <drm/drm_device.h> #include <drm/drm_fb_dma_helper.h> #include <drm/drm_fourcc.h> #include <drm/drm_framebuffer.h> #include <drm/drm_gem_dma_helper.h> #include "rcar_du_drv.h" #include "rcar_du_group.h" #include "rcar_du_kms.h" #include "rcar_du_plane.h" #include "rcar_du_regs.h" /* ----------------------------------------------------------------------------- * Atomic hardware plane allocator * * The hardware plane allocator is solely based on the atomic plane states * without keeping any external state to avoid races between .atomic_check() * and .atomic_commit(). * * The core idea is to avoid using a free planes bitmask that would need to be * shared between check and commit handlers with a collective knowledge based on * the allocated hardware plane(s) for each KMS plane. The allocator then loops * over all plane states to compute the free planes bitmask, allocates hardware * planes based on that bitmask, and stores the result back in the plane states. * * For this to work we need to access the current state of planes not touched by * the atomic update. To ensure that it won't be modified, we need to lock all * planes using drm_atomic_get_plane_state(). This effectively serializes atomic * updates from .atomic_check() up to completion (when swapping the states if * the check step has succeeded) or rollback (when freeing the states if the * check step has failed). * * Allocation is performed in the .atomic_check() handler and applied * automatically when the core swaps the old and new states. */ static bool rcar_du_plane_needs_realloc( const struct rcar_du_plane_state *old_state, const struct rcar_du_plane_state *new_state) { /* * Lowering the number of planes doesn't strictly require reallocation * as the extra hardware plane will be freed when committing, but doing * so could lead to more fragmentation. */ if (!old_state->format || old_state->format->planes != new_state->format->planes) return true; /* Reallocate hardware planes if the source has changed. */ if (old_state->source != new_state->source) return true; return false; } static unsigned int rcar_du_plane_hwmask(struct rcar_du_plane_state *state) { unsigned int mask; if (state->hwindex == -1) return 0; mask = 1 << state->hwindex; if (state->format->planes == 2) mask |= 1 << ((state->hwindex + 1) % 8); return mask; } /* * The R8A7790 DU can source frames directly from the VSP1 devices VSPD0 and * VSPD1. VSPD0 feeds DU0/1 plane 0, and VSPD1 feeds either DU2 plane 0 or * DU0/1 plane 1. * * Allocate the correct fixed plane when sourcing frames from VSPD0 or VSPD1, * and allocate planes in reverse index order otherwise to ensure maximum * availability of planes 0 and 1. * * The caller is responsible for ensuring that the requested source is * compatible with the DU revision. */ static int rcar_du_plane_hwalloc(struct rcar_du_plane *plane, struct rcar_du_plane_state *state, unsigned int free) { unsigned int num_planes = state->format->planes; int fixed = -1; int i; if (state->source == RCAR_DU_PLANE_VSPD0) { /* VSPD0 feeds plane 0 on DU0/1. */ if (plane->group->index != 0) return -EINVAL; fixed = 0; } else if (state->source == RCAR_DU_PLANE_VSPD1) { /* VSPD1 feeds plane 1 on DU0/1 or plane 0 on DU2. */ fixed = plane->group->index == 0 ? 1 : 0; } if (fixed >= 0) return free & (1 << fixed) ? fixed : -EBUSY; for (i = RCAR_DU_NUM_HW_PLANES - 1; i >= 0; --i) { if (!(free & (1 << i))) continue; if (num_planes == 1 || free & (1 << ((i + 1) % 8))) break; } return i < 0 ? -EBUSY : i; } int rcar_du_atomic_check_planes(struct drm_device *dev, struct drm_atomic_state *state) { struct rcar_du_device *rcdu = to_rcar_du_device(dev); unsigned int group_freed_planes[RCAR_DU_MAX_GROUPS] = { 0, }; unsigned int group_free_planes[RCAR_DU_MAX_GROUPS] = { 0, }; bool needs_realloc = false; unsigned int groups = 0; unsigned int i; struct drm_plane *drm_plane; struct drm_plane_state *old_drm_plane_state; struct drm_plane_state *new_drm_plane_state; /* Check if hardware planes need to be reallocated. */ for_each_oldnew_plane_in_state(state, drm_plane, old_drm_plane_state, new_drm_plane_state, i) { struct rcar_du_plane_state *old_plane_state; struct rcar_du_plane_state *new_plane_state; struct rcar_du_plane *plane; unsigned int index; plane = to_rcar_plane(drm_plane); old_plane_state = to_rcar_plane_state(old_drm_plane_state); new_plane_state = to_rcar_plane_state(new_drm_plane_state); dev_dbg(rcdu->dev, "%s: checking plane (%u,%tu)\n", __func__, plane->group->index, plane - plane->group->planes); /* * If the plane is being disabled we don't need to go through * the full reallocation procedure. Just mark the hardware * plane(s) as freed. */ if (!new_plane_state->format) { dev_dbg(rcdu->dev, "%s: plane is being disabled\n", __func__); index = plane - plane->group->planes; group_freed_planes[plane->group->index] |= 1 << index; new_plane_state->hwindex = -1; continue; } /* * If the plane needs to be reallocated mark it as such, and * mark the hardware plane(s) as free. */ if (rcar_du_plane_needs_realloc(old_plane_state, new_plane_state)) { dev_dbg(rcdu->dev, "%s: plane needs reallocation\n", __func__); groups |= 1 << plane->group->index; needs_realloc = true; index = plane - plane->group->planes; group_freed_planes[plane->group->index] |= 1 << index; new_plane_state->hwindex = -1; } } if (!needs_realloc) return 0; /* * Grab all plane states for the groups that need reallocation to ensure * locking and avoid racy updates. This serializes the update operation, * but there's not much we can do about it as that's the hardware * design. * * Compute the used planes mask for each group at the same time to avoid * looping over the planes separately later. */ while (groups) { unsigned int index = ffs(groups) - 1; struct rcar_du_group *group = &rcdu->groups[index]; unsigned int used_planes = 0; dev_dbg(rcdu->dev, "%s: finding free planes for group %u\n", __func__, index); for (i = 0; i < group->num_planes; ++i) { struct rcar_du_plane *plane = &group->planes[i]; struct rcar_du_plane_state *new_plane_state; struct drm_plane_state *s; s = drm_atomic_get_plane_state(state, &plane->plane); if (IS_ERR(s)) return PTR_ERR(s); /* * If the plane has been freed in the above loop its * hardware planes must not be added to the used planes * bitmask. However, the current state doesn't reflect * the free state yet, as we've modified the new state * above. Use the local freed planes list to check for * that condition instead. */ if (group_freed_planes[index] & (1 << i)) { dev_dbg(rcdu->dev, "%s: plane (%u,%tu) has been freed, skipping\n", __func__, plane->group->index, plane - plane->group->planes); continue; } new_plane_state = to_rcar_plane_state(s); used_planes |= rcar_du_plane_hwmask(new_plane_state); dev_dbg(rcdu->dev, "%s: plane (%u,%tu) uses %u hwplanes (index %d)\n", __func__, plane->group->index, plane - plane->group->planes, new_plane_state->format ? new_plane_state->format->planes : 0, new_plane_state->hwindex); } group_free_planes[index] = 0xff & ~used_planes; groups &= ~(1 << index); dev_dbg(rcdu->dev, "%s: group %u free planes mask 0x%02x\n", __func__, index, group_free_planes[index]); } /* Reallocate hardware planes for each plane that needs it. */ for_each_oldnew_plane_in_state(state, drm_plane, old_drm_plane_state, new_drm_plane_state, i) { struct rcar_du_plane_state *old_plane_state; struct rcar_du_plane_state *new_plane_state; struct rcar_du_plane *plane; unsigned int crtc_planes; unsigned int free; int idx; plane = to_rcar_plane(drm_plane); old_plane_state = to_rcar_plane_state(old_drm_plane_state); new_plane_state = to_rcar_plane_state(new_drm_plane_state); dev_dbg(rcdu->dev, "%s: allocating plane (%u,%tu)\n", __func__, plane->group->index, plane - plane->group->planes); /* * Skip planes that are being disabled or don't need to be * reallocated. */ if (!new_plane_state->format || !rcar_du_plane_needs_realloc(old_plane_state, new_plane_state)) continue; /* * Try to allocate the plane from the free planes currently * associated with the target CRTC to avoid restarting the CRTC * group and thus minimize flicker. If it fails fall back to * allocating from all free planes. */ crtc_planes = to_rcar_crtc(new_plane_state->state.crtc)->index % 2 ? plane->group->dptsr_planes : ~plane->group->dptsr_planes; free = group_free_planes[plane->group->index]; idx = rcar_du_plane_hwalloc(plane, new_plane_state, free & crtc_planes); if (idx < 0) idx = rcar_du_plane_hwalloc(plane, new_plane_state, free); if (idx < 0) { dev_dbg(rcdu->dev, "%s: no available hardware plane\n", __func__); return idx; } dev_dbg(rcdu->dev, "%s: allocated %u hwplanes (index %u)\n", __func__, new_plane_state->format->planes, idx); new_plane_state->hwindex = idx; group_free_planes[plane->group->index] &= ~rcar_du_plane_hwmask(new_plane_state); dev_dbg(rcdu->dev, "%s: group %u free planes mask 0x%02x\n", __func__, plane->group->index, group_free_planes[plane->group->index]); } return 0; } /* ----------------------------------------------------------------------------- * Plane Setup */ #define RCAR_DU_COLORKEY_NONE (0 << 24) #define RCAR_DU_COLORKEY_SOURCE (1 << 24) #define RCAR_DU_COLORKEY_MASK (1 << 24) static void rcar_du_plane_write(struct rcar_du_group *rgrp, unsigned int index, u32 reg, u32 data) { rcar_du_write(rgrp->dev, rgrp->mmio_offset + index * PLANE_OFF + reg, data); } static void rcar_du_plane_setup_scanout(struct rcar_du_group *rgrp, const struct rcar_du_plane_state *state) { unsigned int src_x = state->state.src.x1 >> 16; unsigned int src_y = state->state.src.y1 >> 16; unsigned int index = state->hwindex; unsigned int pitch; bool interlaced; u32 dma[2]; interlaced = state->state.crtc->state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE; if (state->source == RCAR_DU_PLANE_MEMORY) { struct drm_framebuffer *fb = state->state.fb; struct drm_gem_dma_object *gem; unsigned int i; if (state->format->planes == 2) pitch = fb->pitches[0]; else pitch = fb->pitches[0] * 8 / state->format->bpp; for (i = 0; i < state->format->planes; ++i) { gem = drm_fb_dma_get_gem_obj(fb, i); dma[i] = gem->dma_addr + fb->offsets[i]; } } else { pitch = drm_rect_width(&state->state.src) >> 16; dma[0] = 0; dma[1] = 0; } /* * Memory pitch (expressed in pixels). Must be doubled for interlaced * operation with 32bpp formats. */ rcar_du_plane_write(rgrp, index, PnMWR, (interlaced && state->format->bpp == 32) ? pitch * 2 : pitch); /* * The Y position is expressed in raster line units and must be doubled * for 32bpp formats, according to the R8A7790 datasheet. No mention of * doubling the Y position is found in the R8A7779 datasheet, but the * rule seems to apply there as well. * * Despite not being documented, doubling seem not to be needed when * operating in interlaced mode. * * Similarly, for the second plane, NV12 and NV21 formats seem to * require a halved Y position value, in both progressive and interlaced * modes. */ rcar_du_plane_write(rgrp, index, PnSPXR, src_x); rcar_du_plane_write(rgrp, index, PnSPYR, src_y * (!interlaced && state->format->bpp == 32 ? 2 : 1)); rcar_du_plane_write(rgrp, index, PnDSA0R, dma[0]); if (state->format->planes == 2) { index = (index + 1) % 8; rcar_du_plane_write(rgrp, index, PnMWR, pitch); rcar_du_plane_write(rgrp, index, PnSPXR, src_x); rcar_du_plane_write(rgrp, index, PnSPYR, src_y * (state->format->bpp == 16 ? 2 : 1) / 2); rcar_du_plane_write(rgrp, index, PnDSA0R, dma[1]); } } static void rcar_du_plane_setup_mode(struct rcar_du_group *rgrp, unsigned int index, const struct rcar_du_plane_state *state) { u32 colorkey; u32 pnmr; /* * The PnALPHAR register controls alpha-blending in 16bpp formats * (ARGB1555 and XRGB1555). * * For ARGB, set the alpha value to 0, and enable alpha-blending when * the A bit is 0. This maps A=0 to alpha=0 and A=1 to alpha=255. * * For XRGB, set the alpha value to the plane-wide alpha value and * enable alpha-blending regardless of the X bit value. */ if (state->format->fourcc != DRM_FORMAT_XRGB1555) rcar_du_plane_write(rgrp, index, PnALPHAR, PnALPHAR_ABIT_0); else rcar_du_plane_write(rgrp, index, PnALPHAR, PnALPHAR_ABIT_X | state->state.alpha >> 8); pnmr = PnMR_BM_MD | state->format->pnmr; /* * Disable color keying when requested. YUV formats have the * PnMR_SPIM_TP_OFF bit set in their pnmr field, disabling color keying * automatically. */ if ((state->colorkey & RCAR_DU_COLORKEY_MASK) == RCAR_DU_COLORKEY_NONE) pnmr |= PnMR_SPIM_TP_OFF; /* For packed YUV formats we need to select the U/V order. */ if (state->format->fourcc == DRM_FORMAT_YUYV) pnmr |= PnMR_YCDF_YUYV; rcar_du_plane_write(rgrp, index, PnMR, pnmr); switch (state->format->fourcc) { case DRM_FORMAT_RGB565: colorkey = ((state->colorkey & 0xf80000) >> 8) | ((state->colorkey & 0x00fc00) >> 5) | ((state->colorkey & 0x0000f8) >> 3); rcar_du_plane_write(rgrp, index, PnTC2R, colorkey); break; case DRM_FORMAT_ARGB1555: case DRM_FORMAT_XRGB1555: colorkey = ((state->colorkey & 0xf80000) >> 9) | ((state->colorkey & 0x00f800) >> 6) | ((state->colorkey & 0x0000f8) >> 3); rcar_du_plane_write(rgrp, index, PnTC2R, colorkey); break; case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ARGB8888: rcar_du_plane_write(rgrp, index, PnTC3R, PnTC3R_CODE | (state->colorkey & 0xffffff)); break; } } static void rcar_du_plane_setup_format_gen2(struct rcar_du_group *rgrp, unsigned int index, const struct rcar_du_plane_state *state) { u32 ddcr2 = PnDDCR2_CODE; u32 ddcr4; /* * Data format * * The data format is selected by the DDDF field in PnMR and the EDF * field in DDCR4. */ rcar_du_plane_setup_mode(rgrp, index, state); if (state->format->planes == 2) { if (state->hwindex != index) { if (state->format->fourcc == DRM_FORMAT_NV12 || state->format->fourcc == DRM_FORMAT_NV21) ddcr2 |= PnDDCR2_Y420; if (state->format->fourcc == DRM_FORMAT_NV21) ddcr2 |= PnDDCR2_NV21; ddcr2 |= PnDDCR2_DIVU; } else { ddcr2 |= PnDDCR2_DIVY; } } rcar_du_plane_write(rgrp, index, PnDDCR2, ddcr2); ddcr4 = state->format->edf | PnDDCR4_CODE; if (state->source != RCAR_DU_PLANE_MEMORY) ddcr4 |= PnDDCR4_VSPS; rcar_du_plane_write(rgrp, index, PnDDCR4, ddcr4); } static void rcar_du_plane_setup_format_gen3(struct rcar_du_group *rgrp, unsigned int index, const struct rcar_du_plane_state *state) { struct rcar_du_device *rcdu = rgrp->dev; u32 pnmr = state->format->pnmr | PnMR_SPIM_TP_OFF; if (rcdu->info->features & RCAR_DU_FEATURE_NO_BLENDING) { /* No blending. ALP and EOR are not supported. */ pnmr &= ~(PnMR_SPIM_ALP | PnMR_SPIM_EOR); } rcar_du_plane_write(rgrp, index, PnMR, pnmr); rcar_du_plane_write(rgrp, index, PnDDCR4, state->format->edf | PnDDCR4_CODE); /* * On Gen3, some DU channels have two planes, each being wired to a * separate VSPD instance. The DU can then blend two planes. While * this feature isn't used by the driver, issues related to alpha * blending (such as incorrect colors or planes being invisible) may * still occur if the PnALPHAR register has a stale value. Set the * register to 0 to avoid this. */ rcar_du_plane_write(rgrp, index, PnALPHAR, 0); } static void rcar_du_plane_setup_format(struct rcar_du_group *rgrp, unsigned int index, const struct rcar_du_plane_state *state) { struct rcar_du_device *rcdu = rgrp->dev; const struct drm_rect *dst = &state->state.dst; if (rcdu->info->gen < 3) rcar_du_plane_setup_format_gen2(rgrp, index, state); else rcar_du_plane_setup_format_gen3(rgrp, index, state); /* Destination position and size */ rcar_du_plane_write(rgrp, index, PnDSXR, drm_rect_width(dst)); rcar_du_plane_write(rgrp, index, PnDSYR, drm_rect_height(dst)); rcar_du_plane_write(rgrp, index, PnDPXR, dst->x1); rcar_du_plane_write(rgrp, index, PnDPYR, dst->y1); if (rcdu->info->gen < 3) { /* Wrap-around and blinking, disabled */ rcar_du_plane_write(rgrp, index, PnWASPR, 0); rcar_du_plane_write(rgrp, index, PnWAMWR, 4095); rcar_du_plane_write(rgrp, index, PnBTR, 0); rcar_du_plane_write(rgrp, index, PnMLR, 0); } } void __rcar_du_plane_setup(struct rcar_du_group *rgrp, const struct rcar_du_plane_state *state) { struct rcar_du_device *rcdu = rgrp->dev; rcar_du_plane_setup_format(rgrp, state->hwindex, state); if (state->format->planes == 2) rcar_du_plane_setup_format(rgrp, (state->hwindex + 1) % 8, state); if (rcdu->info->gen >= 3) return; rcar_du_plane_setup_scanout(rgrp, state); if (state->source == RCAR_DU_PLANE_VSPD1) { unsigned int vspd1_sink = rgrp->index ? 2 : 0; if (rcdu->vspd1_sink != vspd1_sink) { rcdu->vspd1_sink = vspd1_sink; rcar_du_set_dpad0_vsp1_routing(rcdu); /* * Changes to the VSP1 sink take effect on DRES and thus * need a restart of the group. */ rgrp->need_restart = true; } } } int __rcar_du_plane_atomic_check(struct drm_plane *plane, struct drm_plane_state *state, const struct rcar_du_format_info **format) { struct drm_device *dev = plane->dev; struct drm_crtc_state *crtc_state; int ret; if (!state->crtc) { /* * The visible field is not reset by the DRM core but only * updated by drm_atomic_helper_check_plane_state(), set it * manually. */ state->visible = false; *format = NULL; return 0; } crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); ret = drm_atomic_helper_check_plane_state(state, crtc_state, DRM_PLANE_NO_SCALING, DRM_PLANE_NO_SCALING, true, true); if (ret < 0) return ret; if (!state->visible) { *format = NULL; return 0; } *format = rcar_du_format_info(state->fb->format->format); if (*format == NULL) { dev_dbg(dev->dev, "%s: unsupported format %p4cc\n", __func__, &state->fb->format->format); return -EINVAL; } return 0; } static int rcar_du_plane_atomic_check(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, plane); struct rcar_du_plane_state *rstate = to_rcar_plane_state(new_plane_state); return __rcar_du_plane_atomic_check(plane, new_plane_state, &rstate->format); } static void rcar_du_plane_atomic_update(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, plane); struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane); struct rcar_du_plane *rplane = to_rcar_plane(plane); struct rcar_du_plane_state *old_rstate; struct rcar_du_plane_state *new_rstate; if (!new_state->visible) return; rcar_du_plane_setup(rplane); /* * Check whether the source has changed from memory to live source or * from live source to memory. The source has been configured by the * VSPS bit in the PnDDCR4 register. Although the datasheet states that * the bit is updated during vertical blanking, it seems that updates * only occur when the DU group is held in reset through the DSYSR.DRES * bit. We thus need to restart the group if the source changes. */ old_rstate = to_rcar_plane_state(old_state); new_rstate = to_rcar_plane_state(new_state); if ((old_rstate->source == RCAR_DU_PLANE_MEMORY) != (new_rstate->source == RCAR_DU_PLANE_MEMORY)) rplane->group->need_restart = true; } static const struct drm_plane_helper_funcs rcar_du_plane_helper_funcs = { .atomic_check = rcar_du_plane_atomic_check, .atomic_update = rcar_du_plane_atomic_update, }; static struct drm_plane_state * rcar_du_plane_atomic_duplicate_state(struct drm_plane *plane) { struct rcar_du_plane_state *state; struct rcar_du_plane_state *copy; if (WARN_ON(!plane->state)) return NULL; state = to_rcar_plane_state(plane->state); copy = kmemdup(state, sizeof(*state), GFP_KERNEL); if (copy == NULL) return NULL; __drm_atomic_helper_plane_duplicate_state(plane, &copy->state); return &copy->state; } static void rcar_du_plane_atomic_destroy_state(struct drm_plane *plane, struct drm_plane_state *state) { __drm_atomic_helper_plane_destroy_state(state); kfree(to_rcar_plane_state(state)); } static void rcar_du_plane_reset(struct drm_plane *plane) { struct rcar_du_plane_state *state; if (plane->state) { rcar_du_plane_atomic_destroy_state(plane, plane->state); plane->state = NULL; } state = kzalloc(sizeof(*state), GFP_KERNEL); if (state == NULL) return; __drm_atomic_helper_plane_reset(plane, &state->state); state->hwindex = -1; state->source = RCAR_DU_PLANE_MEMORY; state->colorkey = RCAR_DU_COLORKEY_NONE; } static int rcar_du_plane_atomic_set_property(struct drm_plane *plane, struct drm_plane_state *state, struct drm_property *property, uint64_t val) { struct rcar_du_plane_state *rstate = to_rcar_plane_state(state); struct rcar_du_device *rcdu = to_rcar_plane(plane)->group->dev; if (property == rcdu->props.colorkey) rstate->colorkey = val; else return -EINVAL; return 0; } static int rcar_du_plane_atomic_get_property(struct drm_plane *plane, const struct drm_plane_state *state, struct drm_property *property, uint64_t *val) { const struct rcar_du_plane_state *rstate = container_of(state, const struct rcar_du_plane_state, state); struct rcar_du_device *rcdu = to_rcar_plane(plane)->group->dev; if (property == rcdu->props.colorkey) *val = rstate->colorkey; else return -EINVAL; return 0; } static const struct drm_plane_funcs rcar_du_plane_funcs = { .update_plane = drm_atomic_helper_update_plane, .disable_plane = drm_atomic_helper_disable_plane, .reset = rcar_du_plane_reset, .destroy = drm_plane_cleanup, .atomic_duplicate_state = rcar_du_plane_atomic_duplicate_state, .atomic_destroy_state = rcar_du_plane_atomic_destroy_state, .atomic_set_property = rcar_du_plane_atomic_set_property, .atomic_get_property = rcar_du_plane_atomic_get_property, }; static const uint32_t formats[] = { DRM_FORMAT_RGB565, DRM_FORMAT_ARGB1555, DRM_FORMAT_XRGB1555, DRM_FORMAT_XRGB8888, DRM_FORMAT_ARGB8888, DRM_FORMAT_UYVY, DRM_FORMAT_YUYV, DRM_FORMAT_NV12, DRM_FORMAT_NV21, DRM_FORMAT_NV16, }; int rcar_du_planes_init(struct rcar_du_group *rgrp) { struct rcar_du_device *rcdu = rgrp->dev; unsigned int crtcs; unsigned int i; int ret; /* * Create one primary plane per CRTC in this group and seven overlay * planes. */ rgrp->num_planes = rgrp->num_crtcs + 7; crtcs = ((1 << rcdu->num_crtcs) - 1) & (3 << (2 * rgrp->index)); for (i = 0; i < rgrp->num_planes; ++i) { enum drm_plane_type type = i < rgrp->num_crtcs ? DRM_PLANE_TYPE_PRIMARY : DRM_PLANE_TYPE_OVERLAY; struct rcar_du_plane *plane = &rgrp->planes[i]; plane->group = rgrp; ret = drm_universal_plane_init(&rcdu->ddev, &plane->plane, crtcs, &rcar_du_plane_funcs, formats, ARRAY_SIZE(formats), NULL, type, NULL); if (ret < 0) return ret; drm_plane_helper_add(&plane->plane, &rcar_du_plane_helper_funcs); drm_plane_create_alpha_property(&plane->plane); if (type == DRM_PLANE_TYPE_PRIMARY) { drm_plane_create_zpos_immutable_property(&plane->plane, 0); } else { drm_object_attach_property(&plane->plane.base, rcdu->props.colorkey, RCAR_DU_COLORKEY_NONE); drm_plane_create_zpos_property(&plane->plane, 1, 1, 7); } } return 0; }
linux-master
drivers/gpu/drm/renesas/rcar-du/rcar_du_plane.c
// SPDX-License-Identifier: GPL-2.0+ /* * R-Car Display Unit Mode Setting * * Copyright (C) 2013-2015 Renesas Electronics Corporation * * Contact: Laurent Pinchart ([email protected]) */ #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_crtc.h> #include <drm/drm_device.h> #include <drm/drm_framebuffer.h> #include <drm/drm_gem_dma_helper.h> #include <drm/drm_gem_framebuffer_helper.h> #include <drm/drm_managed.h> #include <drm/drm_probe_helper.h> #include <drm/drm_vblank.h> #include <linux/device.h> #include <linux/dma-buf.h> #include <linux/of.h> #include <linux/of_graph.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/wait.h> #include "rcar_du_crtc.h" #include "rcar_du_drv.h" #include "rcar_du_encoder.h" #include "rcar_du_kms.h" #include "rcar_du_regs.h" #include "rcar_du_vsp.h" #include "rcar_du_writeback.h" /* ----------------------------------------------------------------------------- * Format helpers */ static const struct rcar_du_format_info rcar_du_format_infos[] = { { .fourcc = DRM_FORMAT_RGB565, .v4l2 = V4L2_PIX_FMT_RGB565, .bpp = 16, .planes = 1, .hsub = 1, .pnmr = PnMR_SPIM_TP | PnMR_DDDF_16BPP, .edf = PnDDCR4_EDF_NONE, }, { .fourcc = DRM_FORMAT_ARGB1555, .v4l2 = V4L2_PIX_FMT_ARGB555, .bpp = 16, .planes = 1, .hsub = 1, .pnmr = PnMR_SPIM_ALP | PnMR_DDDF_ARGB, .edf = PnDDCR4_EDF_NONE, }, { .fourcc = DRM_FORMAT_XRGB1555, .v4l2 = V4L2_PIX_FMT_XRGB555, .bpp = 16, .planes = 1, .pnmr = PnMR_SPIM_ALP | PnMR_DDDF_ARGB, .edf = PnDDCR4_EDF_NONE, }, { .fourcc = DRM_FORMAT_XRGB8888, .v4l2 = V4L2_PIX_FMT_XBGR32, .bpp = 32, .planes = 1, .hsub = 1, .pnmr = PnMR_SPIM_TP | PnMR_DDDF_16BPP, .edf = PnDDCR4_EDF_RGB888, }, { .fourcc = DRM_FORMAT_ARGB8888, .v4l2 = V4L2_PIX_FMT_ABGR32, .bpp = 32, .planes = 1, .hsub = 1, .pnmr = PnMR_SPIM_ALP | PnMR_DDDF_16BPP, .edf = PnDDCR4_EDF_ARGB8888, }, { .fourcc = DRM_FORMAT_UYVY, .v4l2 = V4L2_PIX_FMT_UYVY, .bpp = 16, .planes = 1, .hsub = 2, .pnmr = PnMR_SPIM_TP_OFF | PnMR_DDDF_YC, .edf = PnDDCR4_EDF_NONE, }, { .fourcc = DRM_FORMAT_YUYV, .v4l2 = V4L2_PIX_FMT_YUYV, .bpp = 16, .planes = 1, .hsub = 2, .pnmr = PnMR_SPIM_TP_OFF | PnMR_DDDF_YC, .edf = PnDDCR4_EDF_NONE, }, { .fourcc = DRM_FORMAT_NV12, .v4l2 = V4L2_PIX_FMT_NV12M, .bpp = 12, .planes = 2, .hsub = 2, .pnmr = PnMR_SPIM_TP_OFF | PnMR_DDDF_YC, .edf = PnDDCR4_EDF_NONE, }, { .fourcc = DRM_FORMAT_NV21, .v4l2 = V4L2_PIX_FMT_NV21M, .bpp = 12, .planes = 2, .hsub = 2, .pnmr = PnMR_SPIM_TP_OFF | PnMR_DDDF_YC, .edf = PnDDCR4_EDF_NONE, }, { .fourcc = DRM_FORMAT_NV16, .v4l2 = V4L2_PIX_FMT_NV16M, .bpp = 16, .planes = 2, .hsub = 2, .pnmr = PnMR_SPIM_TP_OFF | PnMR_DDDF_YC, .edf = PnDDCR4_EDF_NONE, }, /* * The following formats are not supported on Gen2 and thus have no * associated .pnmr or .edf settings. */ { .fourcc = DRM_FORMAT_RGB332, .v4l2 = V4L2_PIX_FMT_RGB332, .bpp = 8, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_ARGB4444, .v4l2 = V4L2_PIX_FMT_ARGB444, .bpp = 16, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_XRGB4444, .v4l2 = V4L2_PIX_FMT_XRGB444, .bpp = 16, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_RGBA4444, .v4l2 = V4L2_PIX_FMT_RGBA444, .bpp = 16, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_RGBX4444, .v4l2 = V4L2_PIX_FMT_RGBX444, .bpp = 16, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_ABGR4444, .v4l2 = V4L2_PIX_FMT_ABGR444, .bpp = 16, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_XBGR4444, .v4l2 = V4L2_PIX_FMT_XBGR444, .bpp = 16, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_BGRA4444, .v4l2 = V4L2_PIX_FMT_BGRA444, .bpp = 16, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_BGRX4444, .v4l2 = V4L2_PIX_FMT_BGRX444, .bpp = 16, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_RGBA5551, .v4l2 = V4L2_PIX_FMT_RGBA555, .bpp = 16, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_RGBX5551, .v4l2 = V4L2_PIX_FMT_RGBX555, .bpp = 16, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_ABGR1555, .v4l2 = V4L2_PIX_FMT_ABGR555, .bpp = 16, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_XBGR1555, .v4l2 = V4L2_PIX_FMT_XBGR555, .bpp = 16, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_BGRA5551, .v4l2 = V4L2_PIX_FMT_BGRA555, .bpp = 16, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_BGRX5551, .v4l2 = V4L2_PIX_FMT_BGRX555, .bpp = 16, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_BGR888, .v4l2 = V4L2_PIX_FMT_RGB24, .bpp = 24, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_RGB888, .v4l2 = V4L2_PIX_FMT_BGR24, .bpp = 24, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_RGBA8888, .v4l2 = V4L2_PIX_FMT_BGRA32, .bpp = 32, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_RGBX8888, .v4l2 = V4L2_PIX_FMT_BGRX32, .bpp = 32, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_ABGR8888, .v4l2 = V4L2_PIX_FMT_RGBA32, .bpp = 32, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_XBGR8888, .v4l2 = V4L2_PIX_FMT_RGBX32, .bpp = 32, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_BGRA8888, .v4l2 = V4L2_PIX_FMT_ARGB32, .bpp = 32, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_BGRX8888, .v4l2 = V4L2_PIX_FMT_XRGB32, .bpp = 32, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_RGBX1010102, .v4l2 = V4L2_PIX_FMT_RGBX1010102, .bpp = 32, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_RGBA1010102, .v4l2 = V4L2_PIX_FMT_RGBA1010102, .bpp = 32, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_ARGB2101010, .v4l2 = V4L2_PIX_FMT_ARGB2101010, .bpp = 32, .planes = 1, .hsub = 1, }, { .fourcc = DRM_FORMAT_YVYU, .v4l2 = V4L2_PIX_FMT_YVYU, .bpp = 16, .planes = 1, .hsub = 2, }, { .fourcc = DRM_FORMAT_NV61, .v4l2 = V4L2_PIX_FMT_NV61M, .bpp = 16, .planes = 2, .hsub = 2, }, { .fourcc = DRM_FORMAT_YUV420, .v4l2 = V4L2_PIX_FMT_YUV420M, .bpp = 12, .planes = 3, .hsub = 2, }, { .fourcc = DRM_FORMAT_YVU420, .v4l2 = V4L2_PIX_FMT_YVU420M, .bpp = 12, .planes = 3, .hsub = 2, }, { .fourcc = DRM_FORMAT_YUV422, .v4l2 = V4L2_PIX_FMT_YUV422M, .bpp = 16, .planes = 3, .hsub = 2, }, { .fourcc = DRM_FORMAT_YVU422, .v4l2 = V4L2_PIX_FMT_YVU422M, .bpp = 16, .planes = 3, .hsub = 2, }, { .fourcc = DRM_FORMAT_YUV444, .v4l2 = V4L2_PIX_FMT_YUV444M, .bpp = 24, .planes = 3, .hsub = 1, }, { .fourcc = DRM_FORMAT_YVU444, .v4l2 = V4L2_PIX_FMT_YVU444M, .bpp = 24, .planes = 3, .hsub = 1, }, { .fourcc = DRM_FORMAT_Y210, .v4l2 = V4L2_PIX_FMT_Y210, .bpp = 32, .planes = 1, .hsub = 2, }, { .fourcc = DRM_FORMAT_Y212, .v4l2 = V4L2_PIX_FMT_Y212, .bpp = 32, .planes = 1, .hsub = 2, }, }; const struct rcar_du_format_info *rcar_du_format_info(u32 fourcc) { unsigned int i; for (i = 0; i < ARRAY_SIZE(rcar_du_format_infos); ++i) { if (rcar_du_format_infos[i].fourcc == fourcc) return &rcar_du_format_infos[i]; } return NULL; } /* ----------------------------------------------------------------------------- * Frame buffer */ static const struct drm_gem_object_funcs rcar_du_gem_funcs = { .free = drm_gem_dma_object_free, .print_info = drm_gem_dma_object_print_info, .get_sg_table = drm_gem_dma_object_get_sg_table, .vmap = drm_gem_dma_object_vmap, .mmap = drm_gem_dma_object_mmap, .vm_ops = &drm_gem_dma_vm_ops, }; struct drm_gem_object *rcar_du_gem_prime_import_sg_table(struct drm_device *dev, struct dma_buf_attachment *attach, struct sg_table *sgt) { struct rcar_du_device *rcdu = to_rcar_du_device(dev); struct drm_gem_dma_object *dma_obj; struct drm_gem_object *gem_obj; int ret; if (!rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) return drm_gem_dma_prime_import_sg_table(dev, attach, sgt); /* Create a DMA GEM buffer. */ dma_obj = kzalloc(sizeof(*dma_obj), GFP_KERNEL); if (!dma_obj) return ERR_PTR(-ENOMEM); gem_obj = &dma_obj->base; gem_obj->funcs = &rcar_du_gem_funcs; drm_gem_private_object_init(dev, gem_obj, attach->dmabuf->size); dma_obj->map_noncoherent = false; ret = drm_gem_create_mmap_offset(gem_obj); if (ret) { drm_gem_object_release(gem_obj); kfree(dma_obj); return ERR_PTR(ret); } dma_obj->dma_addr = 0; dma_obj->sgt = sgt; return gem_obj; } int rcar_du_dumb_create(struct drm_file *file, struct drm_device *dev, struct drm_mode_create_dumb *args) { struct rcar_du_device *rcdu = to_rcar_du_device(dev); unsigned int min_pitch = DIV_ROUND_UP(args->width * args->bpp, 8); unsigned int align; /* * The R8A7779 DU requires a 16 pixels pitch alignment as documented, * but the R8A7790 DU seems to require a 128 bytes pitch alignment. */ if (rcar_du_needs(rcdu, RCAR_DU_QUIRK_ALIGN_128B)) align = 128; else align = 16 * args->bpp / 8; args->pitch = roundup(min_pitch, align); return drm_gem_dma_dumb_create_internal(file, dev, args); } static struct drm_framebuffer * rcar_du_fb_create(struct drm_device *dev, struct drm_file *file_priv, const struct drm_mode_fb_cmd2 *mode_cmd) { struct rcar_du_device *rcdu = to_rcar_du_device(dev); const struct rcar_du_format_info *format; unsigned int chroma_pitch; unsigned int max_pitch; unsigned int align; unsigned int i; format = rcar_du_format_info(mode_cmd->pixel_format); if (format == NULL) { dev_dbg(dev->dev, "unsupported pixel format %p4cc\n", &mode_cmd->pixel_format); return ERR_PTR(-EINVAL); } if (rcdu->info->gen < 3) { /* * On Gen2 the DU limits the pitch to 4095 pixels and requires * buffers to be aligned to a 16 pixels boundary (or 128 bytes * on some platforms). */ unsigned int bpp = format->planes == 1 ? format->bpp / 8 : 1; max_pitch = 4095 * bpp; if (rcar_du_needs(rcdu, RCAR_DU_QUIRK_ALIGN_128B)) align = 128; else align = 16 * bpp; } else { /* * On Gen3 the memory interface is handled by the VSP that * limits the pitch to 65535 bytes and has no alignment * constraint. */ max_pitch = 65535; align = 1; } if (mode_cmd->pitches[0] & (align - 1) || mode_cmd->pitches[0] > max_pitch) { dev_dbg(dev->dev, "invalid pitch value %u\n", mode_cmd->pitches[0]); return ERR_PTR(-EINVAL); } /* * Calculate the chroma plane(s) pitch using the horizontal subsampling * factor. For semi-planar formats, the U and V planes are combined, the * pitch must thus be doubled. */ chroma_pitch = mode_cmd->pitches[0] / format->hsub; if (format->planes == 2) chroma_pitch *= 2; for (i = 1; i < format->planes; ++i) { if (mode_cmd->pitches[i] != chroma_pitch) { dev_dbg(dev->dev, "luma and chroma pitches are not compatible\n"); return ERR_PTR(-EINVAL); } } return drm_gem_fb_create(dev, file_priv, mode_cmd); } /* ----------------------------------------------------------------------------- * Atomic Check and Update */ static int rcar_du_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) { struct rcar_du_device *rcdu = to_rcar_du_device(dev); int ret; ret = drm_atomic_helper_check(dev, state); if (ret) return ret; if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) return 0; return rcar_du_atomic_check_planes(dev, state); } static void rcar_du_atomic_commit_tail(struct drm_atomic_state *old_state) { struct drm_device *dev = old_state->dev; struct rcar_du_device *rcdu = to_rcar_du_device(dev); struct drm_crtc_state *crtc_state; struct drm_crtc *crtc; unsigned int i; /* * Store RGB routing to DPAD0 and DPAD1, the hardware will be configured * when starting the CRTCs. */ rcdu->dpad1_source = -1; for_each_new_crtc_in_state(old_state, crtc, crtc_state, i) { struct rcar_du_crtc_state *rcrtc_state = to_rcar_crtc_state(crtc_state); struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); if (rcrtc_state->outputs & BIT(RCAR_DU_OUTPUT_DPAD0)) rcdu->dpad0_source = rcrtc->index; if (rcrtc_state->outputs & BIT(RCAR_DU_OUTPUT_DPAD1)) rcdu->dpad1_source = rcrtc->index; } /* Apply the atomic update. */ drm_atomic_helper_commit_modeset_disables(dev, old_state); drm_atomic_helper_commit_planes(dev, old_state, DRM_PLANE_COMMIT_ACTIVE_ONLY); drm_atomic_helper_commit_modeset_enables(dev, old_state); drm_atomic_helper_commit_hw_done(old_state); drm_atomic_helper_wait_for_flip_done(dev, old_state); drm_atomic_helper_cleanup_planes(dev, old_state); } /* ----------------------------------------------------------------------------- * Initialization */ static const struct drm_mode_config_helper_funcs rcar_du_mode_config_helper = { .atomic_commit_tail = rcar_du_atomic_commit_tail, }; static const struct drm_mode_config_funcs rcar_du_mode_config_funcs = { .fb_create = rcar_du_fb_create, .atomic_check = rcar_du_atomic_check, .atomic_commit = drm_atomic_helper_commit, }; static int rcar_du_encoders_init_one(struct rcar_du_device *rcdu, enum rcar_du_output output, struct of_endpoint *ep) { struct device_node *entity; int ret; /* Locate the connected entity and initialize the encoder. */ entity = of_graph_get_remote_port_parent(ep->local_node); if (!entity) { dev_dbg(rcdu->dev, "unconnected endpoint %pOF, skipping\n", ep->local_node); return -ENODEV; } if (!of_device_is_available(entity)) { dev_dbg(rcdu->dev, "connected entity %pOF is disabled, skipping\n", entity); of_node_put(entity); return -ENODEV; } ret = rcar_du_encoder_init(rcdu, output, entity); if (ret && ret != -EPROBE_DEFER && ret != -ENOLINK) dev_warn(rcdu->dev, "failed to initialize encoder %pOF on output %s (%d), skipping\n", entity, rcar_du_output_name(output), ret); of_node_put(entity); return ret; } static int rcar_du_encoders_init(struct rcar_du_device *rcdu) { struct device_node *np = rcdu->dev->of_node; struct device_node *ep_node; unsigned int num_encoders = 0; /* * Iterate over the endpoints and create one encoder for each output * pipeline. */ for_each_endpoint_of_node(np, ep_node) { enum rcar_du_output output; struct of_endpoint ep; unsigned int i; int ret; ret = of_graph_parse_endpoint(ep_node, &ep); if (ret < 0) { of_node_put(ep_node); return ret; } /* Find the output route corresponding to the port number. */ for (i = 0; i < RCAR_DU_OUTPUT_MAX; ++i) { if (rcdu->info->routes[i].possible_crtcs && rcdu->info->routes[i].port == ep.port) { output = i; break; } } if (i == RCAR_DU_OUTPUT_MAX) { dev_warn(rcdu->dev, "port %u references unexisting output, skipping\n", ep.port); continue; } /* Process the output pipeline. */ ret = rcar_du_encoders_init_one(rcdu, output, &ep); if (ret < 0) { if (ret == -EPROBE_DEFER) { of_node_put(ep_node); return ret; } continue; } num_encoders++; } return num_encoders; } static int rcar_du_properties_init(struct rcar_du_device *rcdu) { /* * The color key is expressed as an RGB888 triplet stored in a 32-bit * integer in XRGB8888 format. Bit 24 is used as a flag to disable (0) * or enable source color keying (1). */ rcdu->props.colorkey = drm_property_create_range(&rcdu->ddev, 0, "colorkey", 0, 0x01ffffff); if (rcdu->props.colorkey == NULL) return -ENOMEM; return 0; } static int rcar_du_vsps_init(struct rcar_du_device *rcdu) { const struct device_node *np = rcdu->dev->of_node; const char *vsps_prop_name = "renesas,vsps"; struct of_phandle_args args; struct { struct device_node *np; unsigned int crtcs_mask; } vsps[RCAR_DU_MAX_VSPS] = { { NULL, }, }; unsigned int vsps_count = 0; unsigned int cells; unsigned int i; int ret; /* * First parse the DT vsps property to populate the list of VSPs. Each * entry contains a pointer to the VSP DT node and a bitmask of the * connected DU CRTCs. */ ret = of_property_count_u32_elems(np, vsps_prop_name); if (ret < 0) { /* Backward compatibility with old DTBs. */ vsps_prop_name = "vsps"; ret = of_property_count_u32_elems(np, vsps_prop_name); } cells = ret / rcdu->num_crtcs - 1; if (cells > 1) return -EINVAL; for (i = 0; i < rcdu->num_crtcs; ++i) { unsigned int j; ret = of_parse_phandle_with_fixed_args(np, vsps_prop_name, cells, i, &args); if (ret < 0) goto error; /* * Add the VSP to the list or update the corresponding existing * entry if the VSP has already been added. */ for (j = 0; j < vsps_count; ++j) { if (vsps[j].np == args.np) break; } if (j < vsps_count) of_node_put(args.np); else vsps[vsps_count++].np = args.np; vsps[j].crtcs_mask |= BIT(i); /* * Store the VSP pointer and pipe index in the CRTC. If the * second cell of the 'renesas,vsps' specifier isn't present, * default to 0 to remain compatible with older DT bindings. */ rcdu->crtcs[i].vsp = &rcdu->vsps[j]; rcdu->crtcs[i].vsp_pipe = cells >= 1 ? args.args[0] : 0; } /* * Then initialize all the VSPs from the node pointers and CRTCs bitmask * computed previously. */ for (i = 0; i < vsps_count; ++i) { struct rcar_du_vsp *vsp = &rcdu->vsps[i]; vsp->index = i; vsp->dev = rcdu; ret = rcar_du_vsp_init(vsp, vsps[i].np, vsps[i].crtcs_mask); if (ret < 0) goto error; } return 0; error: for (i = 0; i < ARRAY_SIZE(vsps); ++i) of_node_put(vsps[i].np); return ret; } static int rcar_du_cmm_init(struct rcar_du_device *rcdu) { const struct device_node *np = rcdu->dev->of_node; unsigned int i; int cells; cells = of_property_count_u32_elems(np, "renesas,cmms"); if (cells == -EINVAL) return 0; if (cells > rcdu->num_crtcs) { dev_err(rcdu->dev, "Invalid number of entries in 'renesas,cmms'\n"); return -EINVAL; } for (i = 0; i < cells; ++i) { struct platform_device *pdev; struct device_link *link; struct device_node *cmm; int ret; cmm = of_parse_phandle(np, "renesas,cmms", i); if (!cmm) { dev_err(rcdu->dev, "Failed to parse 'renesas,cmms' property\n"); return -EINVAL; } if (!of_device_is_available(cmm)) { /* It's fine to have a phandle to a non-enabled CMM. */ of_node_put(cmm); continue; } pdev = of_find_device_by_node(cmm); if (!pdev) { dev_err(rcdu->dev, "No device found for CMM%u\n", i); of_node_put(cmm); return -EINVAL; } of_node_put(cmm); /* * -ENODEV is used to report that the CMM config option is * disabled: return 0 and let the DU continue probing. */ ret = rcar_cmm_init(pdev); if (ret) { platform_device_put(pdev); return ret == -ENODEV ? 0 : ret; } rcdu->cmms[i] = pdev; /* * Enforce suspend/resume ordering by making the CMM a provider * of the DU: CMM is suspended after and resumed before the DU. */ link = device_link_add(rcdu->dev, &pdev->dev, DL_FLAG_STATELESS); if (!link) { dev_err(rcdu->dev, "Failed to create device link to CMM%u\n", i); return -EINVAL; } } return 0; } static void rcar_du_modeset_cleanup(struct drm_device *dev, void *res) { struct rcar_du_device *rcdu = to_rcar_du_device(dev); unsigned int i; for (i = 0; i < ARRAY_SIZE(rcdu->cmms); ++i) platform_device_put(rcdu->cmms[i]); } int rcar_du_modeset_init(struct rcar_du_device *rcdu) { static const unsigned int mmio_offsets[] = { DU0_REG_OFFSET, DU2_REG_OFFSET }; struct drm_device *dev = &rcdu->ddev; struct drm_encoder *encoder; unsigned int dpad0_sources; unsigned int num_encoders; unsigned int num_groups; unsigned int swindex; unsigned int hwindex; unsigned int i; int ret; ret = drmm_mode_config_init(dev); if (ret) return ret; ret = drmm_add_action(&rcdu->ddev, rcar_du_modeset_cleanup, NULL); if (ret) return ret; dev->mode_config.min_width = 0; dev->mode_config.min_height = 0; dev->mode_config.normalize_zpos = true; dev->mode_config.funcs = &rcar_du_mode_config_funcs; dev->mode_config.helper_private = &rcar_du_mode_config_helper; if (rcdu->info->gen < 3) { dev->mode_config.max_width = 4095; dev->mode_config.max_height = 2047; } else { /* * The Gen3 DU uses the VSP1 for memory access, and is limited * to frame sizes of 8190x8190. */ dev->mode_config.max_width = 8190; dev->mode_config.max_height = 8190; } rcdu->num_crtcs = hweight8(rcdu->info->channels_mask); ret = rcar_du_properties_init(rcdu); if (ret < 0) return ret; /* * Initialize vertical blanking interrupts handling. Start with vblank * disabled for all CRTCs. */ ret = drm_vblank_init(dev, rcdu->num_crtcs); if (ret < 0) return ret; /* Initialize the groups. */ num_groups = DIV_ROUND_UP(rcdu->num_crtcs, 2); for (i = 0; i < num_groups; ++i) { struct rcar_du_group *rgrp = &rcdu->groups[i]; mutex_init(&rgrp->lock); rgrp->dev = rcdu; rgrp->mmio_offset = mmio_offsets[i]; rgrp->index = i; /* Extract the channel mask for this group only. */ rgrp->channels_mask = (rcdu->info->channels_mask >> (2 * i)) & GENMASK(1, 0); rgrp->num_crtcs = hweight8(rgrp->channels_mask); /* * If we have more than one CRTCs in this group pre-associate * the low-order planes with CRTC 0 and the high-order planes * with CRTC 1 to minimize flicker occurring when the * association is changed. */ rgrp->dptsr_planes = rgrp->num_crtcs > 1 ? (rcdu->info->gen >= 3 ? 0x04 : 0xf0) : 0; if (!rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) { ret = rcar_du_planes_init(rgrp); if (ret < 0) return ret; } } /* Initialize the compositors. */ if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) { ret = rcar_du_vsps_init(rcdu); if (ret < 0) return ret; } /* Initialize the Color Management Modules. */ ret = rcar_du_cmm_init(rcdu); if (ret) return dev_err_probe(rcdu->dev, ret, "failed to initialize CMM\n"); /* Create the CRTCs. */ for (swindex = 0, hwindex = 0; swindex < rcdu->num_crtcs; ++hwindex) { struct rcar_du_group *rgrp; /* Skip unpopulated DU channels. */ if (!(rcdu->info->channels_mask & BIT(hwindex))) continue; rgrp = &rcdu->groups[hwindex / 2]; ret = rcar_du_crtc_create(rgrp, swindex++, hwindex); if (ret < 0) return ret; } /* Initialize the encoders. */ ret = rcar_du_encoders_init(rcdu); if (ret < 0) return dev_err_probe(rcdu->dev, ret, "failed to initialize encoders\n"); if (ret == 0) { dev_err(rcdu->dev, "error: no encoder could be initialized\n"); return -EINVAL; } num_encoders = ret; /* * Set the possible CRTCs and possible clones. There's always at least * one way for all encoders to clone each other, set all bits in the * possible clones field. */ list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { struct rcar_du_encoder *renc = to_rcar_encoder(encoder); const struct rcar_du_output_routing *route = &rcdu->info->routes[renc->output]; encoder->possible_crtcs = route->possible_crtcs; encoder->possible_clones = (1 << num_encoders) - 1; } /* Create the writeback connectors. */ if (rcdu->info->gen >= 3) { for (i = 0; i < rcdu->num_crtcs; ++i) { struct rcar_du_crtc *rcrtc = &rcdu->crtcs[i]; ret = rcar_du_writeback_init(rcdu, rcrtc); if (ret < 0) return ret; } } /* * Initialize the default DPAD0 source to the index of the first DU * channel that can be connected to DPAD0. The exact value doesn't * matter as it should be overwritten by mode setting for the RGB * output, but it is nonetheless required to ensure a valid initial * hardware configuration on Gen3 where DU0 can't always be connected to * DPAD0. */ dpad0_sources = rcdu->info->routes[RCAR_DU_OUTPUT_DPAD0].possible_crtcs; rcdu->dpad0_source = ffs(dpad0_sources) - 1; drm_mode_config_reset(dev); drm_kms_helper_poll_init(dev); return 0; }
linux-master
drivers/gpu/drm/renesas/rcar-du/rcar_du_kms.c
// SPDX-License-Identifier: GPL-2.0+ /* * R-Car Gen3 HDMI PHY * * Copyright (C) 2016 Renesas Electronics Corporation * * Contact: Laurent Pinchart ([email protected]) */ #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <drm/bridge/dw_hdmi.h> #include <drm/drm_modes.h> #define RCAR_HDMI_PHY_OPMODE_PLLCFG 0x06 /* Mode of operation and PLL dividers */ #define RCAR_HDMI_PHY_PLLCURRGMPCTRL 0x10 /* PLL current and Gmp (conductance) */ #define RCAR_HDMI_PHY_PLLDIVCTRL 0x11 /* PLL dividers */ struct rcar_hdmi_phy_params { unsigned long mpixelclock; u16 opmode_div; /* Mode of operation and PLL dividers */ u16 curr_gmp; /* PLL current and Gmp (conductance) */ u16 div; /* PLL dividers */ }; static const struct rcar_hdmi_phy_params rcar_hdmi_phy_params[] = { { 35500000, 0x0003, 0x0344, 0x0328 }, { 44900000, 0x0003, 0x0285, 0x0128 }, { 71000000, 0x0002, 0x1184, 0x0314 }, { 90000000, 0x0002, 0x1144, 0x0114 }, { 140250000, 0x0001, 0x20c4, 0x030a }, { 182750000, 0x0001, 0x2084, 0x010a }, { 281250000, 0x0000, 0x0084, 0x0305 }, { 297000000, 0x0000, 0x0084, 0x0105 }, { ~0UL, 0x0000, 0x0000, 0x0000 }, }; static enum drm_mode_status rcar_hdmi_mode_valid(struct dw_hdmi *hdmi, void *data, const struct drm_display_info *info, const struct drm_display_mode *mode) { /* * The maximum supported clock frequency is 297 MHz, as shown in the PHY * parameters table. */ if (mode->clock > 297000) return MODE_CLOCK_HIGH; return MODE_OK; } static int rcar_hdmi_phy_configure(struct dw_hdmi *hdmi, void *data, unsigned long mpixelclock) { const struct rcar_hdmi_phy_params *params = rcar_hdmi_phy_params; for (; params->mpixelclock != ~0UL; ++params) { if (mpixelclock <= params->mpixelclock) break; } if (params->mpixelclock == ~0UL) return -EINVAL; dw_hdmi_phy_i2c_write(hdmi, params->opmode_div, RCAR_HDMI_PHY_OPMODE_PLLCFG); dw_hdmi_phy_i2c_write(hdmi, params->curr_gmp, RCAR_HDMI_PHY_PLLCURRGMPCTRL); dw_hdmi_phy_i2c_write(hdmi, params->div, RCAR_HDMI_PHY_PLLDIVCTRL); return 0; } static const struct dw_hdmi_plat_data rcar_dw_hdmi_plat_data = { .output_port = 1, .mode_valid = rcar_hdmi_mode_valid, .configure_phy = rcar_hdmi_phy_configure, }; static int rcar_dw_hdmi_probe(struct platform_device *pdev) { struct dw_hdmi *hdmi; hdmi = dw_hdmi_probe(pdev, &rcar_dw_hdmi_plat_data); if (IS_ERR(hdmi)) return PTR_ERR(hdmi); platform_set_drvdata(pdev, hdmi); return 0; } static void rcar_dw_hdmi_remove(struct platform_device *pdev) { struct dw_hdmi *hdmi = platform_get_drvdata(pdev); dw_hdmi_remove(hdmi); } static const struct of_device_id rcar_dw_hdmi_of_table[] = { { .compatible = "renesas,rcar-gen3-hdmi" }, { /* Sentinel */ }, }; MODULE_DEVICE_TABLE(of, rcar_dw_hdmi_of_table); static struct platform_driver rcar_dw_hdmi_platform_driver = { .probe = rcar_dw_hdmi_probe, .remove_new = rcar_dw_hdmi_remove, .driver = { .name = "rcar-dw-hdmi", .of_match_table = rcar_dw_hdmi_of_table, }, }; module_platform_driver(rcar_dw_hdmi_platform_driver); MODULE_AUTHOR("Laurent Pinchart <[email protected]>"); MODULE_DESCRIPTION("Renesas R-Car Gen3 HDMI Encoder Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/gpu/drm/renesas/rcar-du/rcar_dw_hdmi.c
// SPDX-License-Identifier: GPL-2.0 /* * R-Car LVDS Encoder * * Copyright (C) 2013-2018 Renesas Electronics Corporation * * Contact: Laurent Pinchart ([email protected]) */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/media-bus-format.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/of_graph.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/reset.h> #include <linux/slab.h> #include <linux/sys_soc.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_bridge.h> #include <drm/drm_of.h> #include <drm/drm_panel.h> #include <drm/drm_print.h> #include <drm/drm_probe_helper.h> #include "rcar_lvds.h" #include "rcar_lvds_regs.h" struct rcar_lvds; /* Keep in sync with the LVDCR0.LVMD hardware register values. */ enum rcar_lvds_mode { RCAR_LVDS_MODE_JEIDA = 0, RCAR_LVDS_MODE_MIRROR = 1, RCAR_LVDS_MODE_VESA = 4, }; enum rcar_lvds_link_type { RCAR_LVDS_SINGLE_LINK = 0, RCAR_LVDS_DUAL_LINK_EVEN_ODD_PIXELS = 1, RCAR_LVDS_DUAL_LINK_ODD_EVEN_PIXELS = 2, }; #define RCAR_LVDS_QUIRK_LANES BIT(0) /* LVDS lanes 1 and 3 inverted */ #define RCAR_LVDS_QUIRK_GEN3_LVEN BIT(1) /* LVEN bit needs to be set on R8A77970/R8A7799x */ #define RCAR_LVDS_QUIRK_PWD BIT(2) /* PWD bit available (all of Gen3 but E3) */ #define RCAR_LVDS_QUIRK_EXT_PLL BIT(3) /* Has extended PLL */ #define RCAR_LVDS_QUIRK_DUAL_LINK BIT(4) /* Supports dual-link operation */ struct rcar_lvds_device_info { unsigned int gen; unsigned int quirks; void (*pll_setup)(struct rcar_lvds *lvds, unsigned int freq); }; struct rcar_lvds { struct device *dev; const struct rcar_lvds_device_info *info; struct reset_control *rstc; struct drm_bridge bridge; struct drm_bridge *next_bridge; struct drm_panel *panel; void __iomem *mmio; struct { struct clk *mod; /* CPG module clock */ struct clk *extal; /* External clock */ struct clk *dotclkin[2]; /* External DU clocks */ } clocks; struct drm_bridge *companion; enum rcar_lvds_link_type link_type; }; #define bridge_to_rcar_lvds(b) \ container_of(b, struct rcar_lvds, bridge) static u32 rcar_lvds_read(struct rcar_lvds *lvds, u32 reg) { return ioread32(lvds->mmio + reg); } static void rcar_lvds_write(struct rcar_lvds *lvds, u32 reg, u32 data) { iowrite32(data, lvds->mmio + reg); } /* ----------------------------------------------------------------------------- * PLL Setup */ static void rcar_lvds_pll_setup_gen2(struct rcar_lvds *lvds, unsigned int freq) { u32 val; if (freq < 39000000) val = LVDPLLCR_CEEN | LVDPLLCR_COSEL | LVDPLLCR_PLLDLYCNT_38M; else if (freq < 61000000) val = LVDPLLCR_CEEN | LVDPLLCR_COSEL | LVDPLLCR_PLLDLYCNT_60M; else if (freq < 121000000) val = LVDPLLCR_CEEN | LVDPLLCR_COSEL | LVDPLLCR_PLLDLYCNT_121M; else val = LVDPLLCR_PLLDLYCNT_150M; rcar_lvds_write(lvds, LVDPLLCR, val); } static void rcar_lvds_pll_setup_gen3(struct rcar_lvds *lvds, unsigned int freq) { u32 val; if (freq < 42000000) val = LVDPLLCR_PLLDIVCNT_42M; else if (freq < 85000000) val = LVDPLLCR_PLLDIVCNT_85M; else if (freq < 128000000) val = LVDPLLCR_PLLDIVCNT_128M; else val = LVDPLLCR_PLLDIVCNT_148M; rcar_lvds_write(lvds, LVDPLLCR, val); } struct pll_info { unsigned long diff; unsigned int pll_m; unsigned int pll_n; unsigned int pll_e; unsigned int div; u32 clksel; }; static void rcar_lvds_d3_e3_pll_calc(struct rcar_lvds *lvds, struct clk *clk, unsigned long target, struct pll_info *pll, u32 clksel, bool dot_clock_only) { unsigned int div7 = dot_clock_only ? 1 : 7; unsigned long output; unsigned long fin; unsigned int m_min; unsigned int m_max; unsigned int m; int error; if (!clk) return; /* * The LVDS PLL is made of a pre-divider and a multiplier (strangely * enough called M and N respectively), followed by a post-divider E. * * ,-----. ,-----. ,-----. ,-----. * Fin --> | 1/M | -Fpdf-> | PFD | --> | VCO | -Fvco-> | 1/E | --> Fout * `-----' ,-> | | `-----' | `-----' * | `-----' | * | ,-----. | * `-------- | 1/N | <-------' * `-----' * * The clock output by the PLL is then further divided by a programmable * divider DIV to achieve the desired target frequency. Finally, an * optional fixed /7 divider is used to convert the bit clock to a pixel * clock (as LVDS transmits 7 bits per lane per clock sample). * * ,-------. ,-----. |\ * Fout --> | 1/DIV | --> | 1/7 | --> | | * `-------' | `-----' | | --> dot clock * `------------> | | * |/ * * The /7 divider is optional, it is enabled when the LVDS PLL is used * to drive the LVDS encoder, and disabled when used to generate a dot * clock for the DU RGB output, without using the LVDS encoder. * * The PLL allowed input frequency range is 12 MHz to 192 MHz. */ fin = clk_get_rate(clk); if (fin < 12000000 || fin > 192000000) return; /* * The comparison frequency range is 12 MHz to 24 MHz, which limits the * allowed values for the pre-divider M (normal range 1-8). * * Fpfd = Fin / M */ m_min = max_t(unsigned int, 1, DIV_ROUND_UP(fin, 24000000)); m_max = min_t(unsigned int, 8, fin / 12000000); for (m = m_min; m <= m_max; ++m) { unsigned long fpfd; unsigned int n_min; unsigned int n_max; unsigned int n; /* * The VCO operating range is 900 Mhz to 1800 MHz, which limits * the allowed values for the multiplier N (normal range * 60-120). * * Fvco = Fin * N / M */ fpfd = fin / m; n_min = max_t(unsigned int, 60, DIV_ROUND_UP(900000000, fpfd)); n_max = min_t(unsigned int, 120, 1800000000 / fpfd); for (n = n_min; n < n_max; ++n) { unsigned long fvco; unsigned int e_min; unsigned int e; /* * The output frequency is limited to 1039.5 MHz, * limiting again the allowed values for the * post-divider E (normal value 1, 2 or 4). * * Fout = Fvco / E */ fvco = fpfd * n; e_min = fvco > 1039500000 ? 1 : 0; for (e = e_min; e < 3; ++e) { unsigned long fout; unsigned long diff; unsigned int div; /* * Finally we have a programable divider after * the PLL, followed by a an optional fixed /7 * divider. */ fout = fvco / (1 << e) / div7; div = max(1UL, DIV_ROUND_CLOSEST(fout, target)); diff = abs(fout / div - target); if (diff < pll->diff) { pll->diff = diff; pll->pll_m = m; pll->pll_n = n; pll->pll_e = e; pll->div = div; pll->clksel = clksel; if (diff == 0) goto done; } } } } done: output = fin * pll->pll_n / pll->pll_m / (1 << pll->pll_e) / div7 / pll->div; error = (long)(output - target) * 10000 / (long)target; dev_dbg(lvds->dev, "%pC %lu Hz -> Fout %lu Hz (target %lu Hz, error %d.%02u%%), PLL M/N/E/DIV %u/%u/%u/%u\n", clk, fin, output, target, error / 100, error < 0 ? -error % 100 : error % 100, pll->pll_m, pll->pll_n, pll->pll_e, pll->div); } static void rcar_lvds_pll_setup_d3_e3(struct rcar_lvds *lvds, unsigned int freq, bool dot_clock_only) { struct pll_info pll = { .diff = (unsigned long)-1 }; u32 lvdpllcr; rcar_lvds_d3_e3_pll_calc(lvds, lvds->clocks.dotclkin[0], freq, &pll, LVDPLLCR_CKSEL_DU_DOTCLKIN(0), dot_clock_only); rcar_lvds_d3_e3_pll_calc(lvds, lvds->clocks.dotclkin[1], freq, &pll, LVDPLLCR_CKSEL_DU_DOTCLKIN(1), dot_clock_only); rcar_lvds_d3_e3_pll_calc(lvds, lvds->clocks.extal, freq, &pll, LVDPLLCR_CKSEL_EXTAL, dot_clock_only); lvdpllcr = LVDPLLCR_PLLON | pll.clksel | LVDPLLCR_CLKOUT | LVDPLLCR_PLLN(pll.pll_n - 1) | LVDPLLCR_PLLM(pll.pll_m - 1); if (pll.pll_e > 0) lvdpllcr |= LVDPLLCR_STP_CLKOUTE | LVDPLLCR_OUTCLKSEL | LVDPLLCR_PLLE(pll.pll_e - 1); if (dot_clock_only) lvdpllcr |= LVDPLLCR_OCKSEL; rcar_lvds_write(lvds, LVDPLLCR, lvdpllcr); if (pll.div > 1) /* * The DIVRESET bit is a misnomer, setting it to 1 deasserts the * divisor reset. */ rcar_lvds_write(lvds, LVDDIV, LVDDIV_DIVSEL | LVDDIV_DIVRESET | LVDDIV_DIV(pll.div - 1)); else rcar_lvds_write(lvds, LVDDIV, 0); } /* ----------------------------------------------------------------------------- * Enable/disable */ static enum rcar_lvds_mode rcar_lvds_get_lvds_mode(struct rcar_lvds *lvds, const struct drm_connector *connector) { const struct drm_display_info *info; enum rcar_lvds_mode mode; /* * There is no API yet to retrieve LVDS mode from a bridge, only panels * are supported. */ if (!lvds->panel) return RCAR_LVDS_MODE_JEIDA; info = &connector->display_info; if (!info->num_bus_formats || !info->bus_formats) { dev_warn(lvds->dev, "no LVDS bus format reported, using JEIDA\n"); return RCAR_LVDS_MODE_JEIDA; } switch (info->bus_formats[0]) { case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG: case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA: mode = RCAR_LVDS_MODE_JEIDA; break; case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG: mode = RCAR_LVDS_MODE_VESA; break; default: dev_warn(lvds->dev, "unsupported LVDS bus format 0x%04x, using JEIDA\n", info->bus_formats[0]); return RCAR_LVDS_MODE_JEIDA; } if (info->bus_flags & DRM_BUS_FLAG_DATA_LSB_TO_MSB) mode |= RCAR_LVDS_MODE_MIRROR; return mode; } static void rcar_lvds_enable(struct drm_bridge *bridge, struct drm_atomic_state *state, struct drm_crtc *crtc, struct drm_connector *connector) { struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge); u32 lvdhcr; u32 lvdcr0; int ret; ret = pm_runtime_resume_and_get(lvds->dev); if (ret) return; /* Enable the companion LVDS encoder in dual-link mode. */ if (lvds->link_type != RCAR_LVDS_SINGLE_LINK && lvds->companion) rcar_lvds_enable(lvds->companion, state, crtc, connector); /* * Hardcode the channels and control signals routing for now. * * HSYNC -> CTRL0 * VSYNC -> CTRL1 * DISP -> CTRL2 * 0 -> CTRL3 */ rcar_lvds_write(lvds, LVDCTRCR, LVDCTRCR_CTR3SEL_ZERO | LVDCTRCR_CTR2SEL_DISP | LVDCTRCR_CTR1SEL_VSYNC | LVDCTRCR_CTR0SEL_HSYNC); if (lvds->info->quirks & RCAR_LVDS_QUIRK_LANES) lvdhcr = LVDCHCR_CHSEL_CH(0, 0) | LVDCHCR_CHSEL_CH(1, 3) | LVDCHCR_CHSEL_CH(2, 2) | LVDCHCR_CHSEL_CH(3, 1); else lvdhcr = LVDCHCR_CHSEL_CH(0, 0) | LVDCHCR_CHSEL_CH(1, 1) | LVDCHCR_CHSEL_CH(2, 2) | LVDCHCR_CHSEL_CH(3, 3); rcar_lvds_write(lvds, LVDCHCR, lvdhcr); if (lvds->info->quirks & RCAR_LVDS_QUIRK_DUAL_LINK) { u32 lvdstripe = 0; if (lvds->link_type != RCAR_LVDS_SINGLE_LINK) { /* * By default we generate even pixels from the primary * encoder and odd pixels from the companion encoder. * Swap pixels around if the sink requires odd pixels * from the primary encoder and even pixels from the * companion encoder. */ bool swap_pixels = lvds->link_type == RCAR_LVDS_DUAL_LINK_ODD_EVEN_PIXELS; /* * Configure vertical stripe since we are dealing with * an LVDS dual-link connection. * * ST_SWAP is reserved for the companion encoder, only * set it in the primary encoder. */ lvdstripe = LVDSTRIPE_ST_ON | (lvds->companion && swap_pixels ? LVDSTRIPE_ST_SWAP : 0); } rcar_lvds_write(lvds, LVDSTRIPE, lvdstripe); } /* * PLL clock configuration on all instances but the companion in * dual-link mode. * * The extended PLL has been turned on by an explicit call to * rcar_lvds_pclk_enable() from the DU driver. */ if ((lvds->link_type == RCAR_LVDS_SINGLE_LINK || lvds->companion) && !(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL)) { const struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc); const struct drm_display_mode *mode = &crtc_state->adjusted_mode; lvds->info->pll_setup(lvds, mode->clock * 1000); } /* Set the LVDS mode and select the input. */ lvdcr0 = rcar_lvds_get_lvds_mode(lvds, connector) << LVDCR0_LVMD_SHIFT; if (lvds->bridge.encoder) { if (drm_crtc_index(crtc) == 2) lvdcr0 |= LVDCR0_DUSEL; } rcar_lvds_write(lvds, LVDCR0, lvdcr0); /* Turn all the channels on. */ rcar_lvds_write(lvds, LVDCR1, LVDCR1_CHSTBY(3) | LVDCR1_CHSTBY(2) | LVDCR1_CHSTBY(1) | LVDCR1_CHSTBY(0) | LVDCR1_CLKSTBY); if (lvds->info->gen < 3) { /* Enable LVDS operation and turn the bias circuitry on. */ lvdcr0 |= LVDCR0_BEN | LVDCR0_LVEN; rcar_lvds_write(lvds, LVDCR0, lvdcr0); } if (!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL)) { /* * Turn the PLL on (simple PLL only, extended PLL is fully * controlled through LVDPLLCR). */ lvdcr0 |= LVDCR0_PLLON; rcar_lvds_write(lvds, LVDCR0, lvdcr0); } if (lvds->info->quirks & RCAR_LVDS_QUIRK_PWD) { /* Set LVDS normal mode. */ lvdcr0 |= LVDCR0_PWD; rcar_lvds_write(lvds, LVDCR0, lvdcr0); } if (lvds->info->quirks & RCAR_LVDS_QUIRK_GEN3_LVEN) { /* * Turn on the LVDS PHY. On D3, the LVEN and LVRES bit must be * set at the same time, so don't write the register yet. */ lvdcr0 |= LVDCR0_LVEN; if (!(lvds->info->quirks & RCAR_LVDS_QUIRK_PWD)) rcar_lvds_write(lvds, LVDCR0, lvdcr0); } if (!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL)) { /* Wait for the PLL startup delay (simple PLL only). */ usleep_range(100, 150); } /* Turn the output on. */ lvdcr0 |= LVDCR0_LVRES; rcar_lvds_write(lvds, LVDCR0, lvdcr0); } static void rcar_lvds_disable(struct drm_bridge *bridge) { struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge); u32 lvdcr0; /* * Clear the LVDCR0 bits in the order specified by the hardware * documentation, ending with a write of 0 to the full register to * clear all remaining bits. */ lvdcr0 = rcar_lvds_read(lvds, LVDCR0); lvdcr0 &= ~LVDCR0_LVRES; rcar_lvds_write(lvds, LVDCR0, lvdcr0); if (lvds->info->quirks & RCAR_LVDS_QUIRK_GEN3_LVEN) { lvdcr0 &= ~LVDCR0_LVEN; rcar_lvds_write(lvds, LVDCR0, lvdcr0); } if (lvds->info->quirks & RCAR_LVDS_QUIRK_PWD) { lvdcr0 &= ~LVDCR0_PWD; rcar_lvds_write(lvds, LVDCR0, lvdcr0); } if (!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL)) { lvdcr0 &= ~LVDCR0_PLLON; rcar_lvds_write(lvds, LVDCR0, lvdcr0); } rcar_lvds_write(lvds, LVDCR0, 0); rcar_lvds_write(lvds, LVDCR1, 0); /* The extended PLL is turned off in rcar_lvds_pclk_disable(). */ if (!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL)) rcar_lvds_write(lvds, LVDPLLCR, 0); /* Disable the companion LVDS encoder in dual-link mode. */ if (lvds->link_type != RCAR_LVDS_SINGLE_LINK && lvds->companion) rcar_lvds_disable(lvds->companion); pm_runtime_put_sync(lvds->dev); } /* ----------------------------------------------------------------------------- * Clock - D3/E3 only */ int rcar_lvds_pclk_enable(struct drm_bridge *bridge, unsigned long freq, bool dot_clk_only) { struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge); int ret; if (WARN_ON(!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL))) return -ENODEV; dev_dbg(lvds->dev, "enabling LVDS PLL, freq=%luHz\n", freq); ret = pm_runtime_resume_and_get(lvds->dev); if (ret) return ret; rcar_lvds_pll_setup_d3_e3(lvds, freq, dot_clk_only); return 0; } EXPORT_SYMBOL_GPL(rcar_lvds_pclk_enable); void rcar_lvds_pclk_disable(struct drm_bridge *bridge, bool dot_clk_only) { struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge); if (WARN_ON(!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL))) return; dev_dbg(lvds->dev, "disabling LVDS PLL\n"); if (!dot_clk_only) rcar_lvds_disable(bridge); rcar_lvds_write(lvds, LVDPLLCR, 0); pm_runtime_put_sync(lvds->dev); } EXPORT_SYMBOL_GPL(rcar_lvds_pclk_disable); /* ----------------------------------------------------------------------------- * Bridge */ static void rcar_lvds_atomic_enable(struct drm_bridge *bridge, struct drm_bridge_state *old_bridge_state) { struct drm_atomic_state *state = old_bridge_state->base.state; struct drm_connector *connector; struct drm_crtc *crtc; connector = drm_atomic_get_new_connector_for_encoder(state, bridge->encoder); crtc = drm_atomic_get_new_connector_state(state, connector)->crtc; rcar_lvds_enable(bridge, state, crtc, connector); } static void rcar_lvds_atomic_disable(struct drm_bridge *bridge, struct drm_bridge_state *old_bridge_state) { struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge); /* * For D3 and E3, disabling the LVDS encoder before the DU would stall * the DU, causing a vblank wait timeout when stopping the DU. This has * been traced to clearing the LVEN bit, but the exact reason is * unknown. Keep the encoder enabled, it will be disabled by an explicit * call to rcar_lvds_pclk_disable() from the DU driver. * * We could clear the LVRES bit already to disable the LVDS output, but * that's likely pointless. */ if (lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL) return; rcar_lvds_disable(bridge); } static bool rcar_lvds_mode_fixup(struct drm_bridge *bridge, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge); int min_freq; /* * The internal LVDS encoder has a restricted clock frequency operating * range, from 5MHz to 148.5MHz on D3 and E3, and from 31MHz to * 148.5MHz on all other platforms. Clamp the clock accordingly. */ min_freq = lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL ? 5000 : 31000; adjusted_mode->clock = clamp(adjusted_mode->clock, min_freq, 148500); return true; } static int rcar_lvds_attach(struct drm_bridge *bridge, enum drm_bridge_attach_flags flags) { struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge); if (!lvds->next_bridge) return 0; return drm_bridge_attach(bridge->encoder, lvds->next_bridge, bridge, flags); } static const struct drm_bridge_funcs rcar_lvds_bridge_ops = { .attach = rcar_lvds_attach, .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state, .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state, .atomic_reset = drm_atomic_helper_bridge_reset, .atomic_enable = rcar_lvds_atomic_enable, .atomic_disable = rcar_lvds_atomic_disable, .mode_fixup = rcar_lvds_mode_fixup, }; bool rcar_lvds_dual_link(struct drm_bridge *bridge) { struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge); return lvds->link_type != RCAR_LVDS_SINGLE_LINK; } EXPORT_SYMBOL_GPL(rcar_lvds_dual_link); bool rcar_lvds_is_connected(struct drm_bridge *bridge) { struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge); return lvds->next_bridge != NULL; } EXPORT_SYMBOL_GPL(rcar_lvds_is_connected); /* ----------------------------------------------------------------------------- * Probe & Remove */ static int rcar_lvds_parse_dt_companion(struct rcar_lvds *lvds) { const struct of_device_id *match; struct device_node *companion; struct device_node *port0, *port1; struct rcar_lvds *companion_lvds; struct device *dev = lvds->dev; int dual_link; int ret = 0; /* Locate the companion LVDS encoder for dual-link operation, if any. */ companion = of_parse_phandle(dev->of_node, "renesas,companion", 0); if (!companion) return 0; /* * Sanity check: the companion encoder must have the same compatible * string. */ match = of_match_device(dev->driver->of_match_table, dev); if (!of_device_is_compatible(companion, match->compatible)) { dev_err(dev, "Companion LVDS encoder is invalid\n"); ret = -ENXIO; goto done; } /* * We need to work out if the sink is expecting us to function in * dual-link mode. We do this by looking at the DT port nodes we are * connected to, if they are marked as expecting even pixels and * odd pixels than we need to enable vertical stripe output. */ port0 = of_graph_get_port_by_id(dev->of_node, 1); port1 = of_graph_get_port_by_id(companion, 1); dual_link = drm_of_lvds_get_dual_link_pixel_order(port0, port1); of_node_put(port0); of_node_put(port1); switch (dual_link) { case DRM_LVDS_DUAL_LINK_ODD_EVEN_PIXELS: lvds->link_type = RCAR_LVDS_DUAL_LINK_ODD_EVEN_PIXELS; break; case DRM_LVDS_DUAL_LINK_EVEN_ODD_PIXELS: lvds->link_type = RCAR_LVDS_DUAL_LINK_EVEN_ODD_PIXELS; break; default: /* * Early dual-link bridge specific implementations populate the * timings field of drm_bridge. If the flag is set, we assume * that we are expected to generate even pixels from the primary * encoder, and odd pixels from the companion encoder. */ if (lvds->next_bridge->timings && lvds->next_bridge->timings->dual_link) lvds->link_type = RCAR_LVDS_DUAL_LINK_EVEN_ODD_PIXELS; else lvds->link_type = RCAR_LVDS_SINGLE_LINK; } if (lvds->link_type == RCAR_LVDS_SINGLE_LINK) { dev_dbg(dev, "Single-link configuration detected\n"); goto done; } lvds->companion = of_drm_find_bridge(companion); if (!lvds->companion) { ret = -EPROBE_DEFER; goto done; } dev_dbg(dev, "Dual-link configuration detected (companion encoder %pOF)\n", companion); if (lvds->link_type == RCAR_LVDS_DUAL_LINK_ODD_EVEN_PIXELS) dev_dbg(dev, "Data swapping required\n"); /* * FIXME: We should not be messing with the companion encoder private * data from the primary encoder, we should rather let the companion * encoder work things out on its own. However, the companion encoder * doesn't hold a reference to the primary encoder, and * drm_of_lvds_get_dual_link_pixel_order needs to be given references * to the output ports of both encoders, therefore leave it like this * for the time being. */ companion_lvds = bridge_to_rcar_lvds(lvds->companion); companion_lvds->link_type = lvds->link_type; done: of_node_put(companion); return ret; } static int rcar_lvds_parse_dt(struct rcar_lvds *lvds) { int ret; ret = drm_of_find_panel_or_bridge(lvds->dev->of_node, 1, 0, &lvds->panel, &lvds->next_bridge); if (ret) goto done; if (lvds->panel) { lvds->next_bridge = devm_drm_panel_bridge_add(lvds->dev, lvds->panel); if (IS_ERR_OR_NULL(lvds->next_bridge)) { ret = -EINVAL; goto done; } } if (lvds->info->quirks & RCAR_LVDS_QUIRK_DUAL_LINK) ret = rcar_lvds_parse_dt_companion(lvds); done: /* * On D3/E3 the LVDS encoder provides a clock to the DU, which can be * used for the DPAD output even when the LVDS output is not connected. * Don't fail probe in that case as the DU will need the bridge to * control the clock. */ if (lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL) return ret == -ENODEV ? 0 : ret; return ret; } static struct clk *rcar_lvds_get_clock(struct rcar_lvds *lvds, const char *name, bool optional) { struct clk *clk; clk = devm_clk_get(lvds->dev, name); if (!IS_ERR(clk)) return clk; if (PTR_ERR(clk) == -ENOENT && optional) return NULL; dev_err_probe(lvds->dev, PTR_ERR(clk), "failed to get %s clock\n", name ? name : "module"); return clk; } static int rcar_lvds_get_clocks(struct rcar_lvds *lvds) { lvds->clocks.mod = rcar_lvds_get_clock(lvds, NULL, false); if (IS_ERR(lvds->clocks.mod)) return PTR_ERR(lvds->clocks.mod); /* * LVDS encoders without an extended PLL have no external clock inputs. */ if (!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL)) return 0; lvds->clocks.extal = rcar_lvds_get_clock(lvds, "extal", true); if (IS_ERR(lvds->clocks.extal)) return PTR_ERR(lvds->clocks.extal); lvds->clocks.dotclkin[0] = rcar_lvds_get_clock(lvds, "dclkin.0", true); if (IS_ERR(lvds->clocks.dotclkin[0])) return PTR_ERR(lvds->clocks.dotclkin[0]); lvds->clocks.dotclkin[1] = rcar_lvds_get_clock(lvds, "dclkin.1", true); if (IS_ERR(lvds->clocks.dotclkin[1])) return PTR_ERR(lvds->clocks.dotclkin[1]); /* At least one input to the PLL must be available. */ if (!lvds->clocks.extal && !lvds->clocks.dotclkin[0] && !lvds->clocks.dotclkin[1]) { dev_err(lvds->dev, "no input clock (extal, dclkin.0 or dclkin.1)\n"); return -EINVAL; } return 0; } static const struct rcar_lvds_device_info rcar_lvds_r8a7790es1_info = { .gen = 2, .quirks = RCAR_LVDS_QUIRK_LANES, .pll_setup = rcar_lvds_pll_setup_gen2, }; static const struct soc_device_attribute lvds_quirk_matches[] = { { .soc_id = "r8a7790", .revision = "ES1.*", .data = &rcar_lvds_r8a7790es1_info, }, { /* sentinel */ } }; static int rcar_lvds_probe(struct platform_device *pdev) { const struct soc_device_attribute *attr; struct rcar_lvds *lvds; int ret; lvds = devm_kzalloc(&pdev->dev, sizeof(*lvds), GFP_KERNEL); if (lvds == NULL) return -ENOMEM; platform_set_drvdata(pdev, lvds); lvds->dev = &pdev->dev; lvds->info = of_device_get_match_data(&pdev->dev); attr = soc_device_match(lvds_quirk_matches); if (attr) lvds->info = attr->data; ret = rcar_lvds_parse_dt(lvds); if (ret < 0) return ret; lvds->bridge.funcs = &rcar_lvds_bridge_ops; lvds->bridge.of_node = pdev->dev.of_node; lvds->mmio = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(lvds->mmio)) return PTR_ERR(lvds->mmio); ret = rcar_lvds_get_clocks(lvds); if (ret < 0) return ret; lvds->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL); if (IS_ERR(lvds->rstc)) return dev_err_probe(&pdev->dev, PTR_ERR(lvds->rstc), "failed to get cpg reset\n"); pm_runtime_enable(&pdev->dev); drm_bridge_add(&lvds->bridge); return 0; } static void rcar_lvds_remove(struct platform_device *pdev) { struct rcar_lvds *lvds = platform_get_drvdata(pdev); drm_bridge_remove(&lvds->bridge); pm_runtime_disable(&pdev->dev); } static const struct rcar_lvds_device_info rcar_lvds_gen2_info = { .gen = 2, .pll_setup = rcar_lvds_pll_setup_gen2, }; static const struct rcar_lvds_device_info rcar_lvds_gen3_info = { .gen = 3, .quirks = RCAR_LVDS_QUIRK_PWD, .pll_setup = rcar_lvds_pll_setup_gen3, }; static const struct rcar_lvds_device_info rcar_lvds_r8a77970_info = { .gen = 3, .quirks = RCAR_LVDS_QUIRK_PWD | RCAR_LVDS_QUIRK_GEN3_LVEN, .pll_setup = rcar_lvds_pll_setup_gen2, }; static const struct rcar_lvds_device_info rcar_lvds_r8a77990_info = { .gen = 3, .quirks = RCAR_LVDS_QUIRK_GEN3_LVEN | RCAR_LVDS_QUIRK_EXT_PLL | RCAR_LVDS_QUIRK_DUAL_LINK, }; static const struct rcar_lvds_device_info rcar_lvds_r8a77995_info = { .gen = 3, .quirks = RCAR_LVDS_QUIRK_GEN3_LVEN | RCAR_LVDS_QUIRK_PWD | RCAR_LVDS_QUIRK_EXT_PLL | RCAR_LVDS_QUIRK_DUAL_LINK, }; static const struct of_device_id rcar_lvds_of_table[] = { { .compatible = "renesas,r8a7742-lvds", .data = &rcar_lvds_gen2_info }, { .compatible = "renesas,r8a7743-lvds", .data = &rcar_lvds_gen2_info }, { .compatible = "renesas,r8a7744-lvds", .data = &rcar_lvds_gen2_info }, { .compatible = "renesas,r8a774a1-lvds", .data = &rcar_lvds_gen3_info }, { .compatible = "renesas,r8a774b1-lvds", .data = &rcar_lvds_gen3_info }, { .compatible = "renesas,r8a774c0-lvds", .data = &rcar_lvds_r8a77990_info }, { .compatible = "renesas,r8a774e1-lvds", .data = &rcar_lvds_gen3_info }, { .compatible = "renesas,r8a7790-lvds", .data = &rcar_lvds_gen2_info }, { .compatible = "renesas,r8a7791-lvds", .data = &rcar_lvds_gen2_info }, { .compatible = "renesas,r8a7793-lvds", .data = &rcar_lvds_gen2_info }, { .compatible = "renesas,r8a7795-lvds", .data = &rcar_lvds_gen3_info }, { .compatible = "renesas,r8a7796-lvds", .data = &rcar_lvds_gen3_info }, { .compatible = "renesas,r8a77961-lvds", .data = &rcar_lvds_gen3_info }, { .compatible = "renesas,r8a77965-lvds", .data = &rcar_lvds_gen3_info }, { .compatible = "renesas,r8a77970-lvds", .data = &rcar_lvds_r8a77970_info }, { .compatible = "renesas,r8a77980-lvds", .data = &rcar_lvds_gen3_info }, { .compatible = "renesas,r8a77990-lvds", .data = &rcar_lvds_r8a77990_info }, { .compatible = "renesas,r8a77995-lvds", .data = &rcar_lvds_r8a77995_info }, { } }; MODULE_DEVICE_TABLE(of, rcar_lvds_of_table); static int rcar_lvds_runtime_suspend(struct device *dev) { struct rcar_lvds *lvds = dev_get_drvdata(dev); clk_disable_unprepare(lvds->clocks.mod); reset_control_assert(lvds->rstc); return 0; } static int rcar_lvds_runtime_resume(struct device *dev) { struct rcar_lvds *lvds = dev_get_drvdata(dev); int ret; ret = reset_control_deassert(lvds->rstc); if (ret) return ret; ret = clk_prepare_enable(lvds->clocks.mod); if (ret < 0) goto err_reset_assert; return 0; err_reset_assert: reset_control_assert(lvds->rstc); return ret; } static const struct dev_pm_ops rcar_lvds_pm_ops = { SET_RUNTIME_PM_OPS(rcar_lvds_runtime_suspend, rcar_lvds_runtime_resume, NULL) }; static struct platform_driver rcar_lvds_platform_driver = { .probe = rcar_lvds_probe, .remove_new = rcar_lvds_remove, .driver = { .name = "rcar-lvds", .pm = &rcar_lvds_pm_ops, .of_match_table = rcar_lvds_of_table, }, }; module_platform_driver(rcar_lvds_platform_driver); MODULE_AUTHOR("Laurent Pinchart <[email protected]>"); MODULE_DESCRIPTION("Renesas R-Car LVDS Encoder Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/gpu/drm/renesas/rcar-du/rcar_lvds.c
// SPDX-License-Identifier: GPL-2.0 /* * R-Car Display Unit Writeback Support * * Copyright (C) 2019 Laurent Pinchart <[email protected]> */ #include <drm/drm_atomic_helper.h> #include <drm/drm_device.h> #include <drm/drm_edid.h> #include <drm/drm_fourcc.h> #include <drm/drm_framebuffer.h> #include <drm/drm_probe_helper.h> #include <drm/drm_writeback.h> #include "rcar_du_crtc.h" #include "rcar_du_drv.h" #include "rcar_du_kms.h" #include "rcar_du_writeback.h" /** * struct rcar_du_wb_conn_state - Driver-specific writeback connector state * @state: base DRM connector state * @format: format of the writeback framebuffer */ struct rcar_du_wb_conn_state { struct drm_connector_state state; const struct rcar_du_format_info *format; }; #define to_rcar_wb_conn_state(s) \ container_of(s, struct rcar_du_wb_conn_state, state) /** * struct rcar_du_wb_job - Driver-private data for writeback jobs * @sg_tables: scatter-gather tables for the framebuffer memory */ struct rcar_du_wb_job { struct sg_table sg_tables[3]; }; static int rcar_du_wb_conn_get_modes(struct drm_connector *connector) { struct drm_device *dev = connector->dev; return drm_add_modes_noedid(connector, dev->mode_config.max_width, dev->mode_config.max_height); } static int rcar_du_wb_prepare_job(struct drm_writeback_connector *connector, struct drm_writeback_job *job) { struct rcar_du_crtc *rcrtc = wb_to_rcar_crtc(connector); struct rcar_du_wb_job *rjob; int ret; if (!job->fb) return 0; rjob = kzalloc(sizeof(*rjob), GFP_KERNEL); if (!rjob) return -ENOMEM; /* Map the framebuffer to the VSP. */ ret = rcar_du_vsp_map_fb(rcrtc->vsp, job->fb, rjob->sg_tables); if (ret < 0) { kfree(rjob); return ret; } job->priv = rjob; return 0; } static void rcar_du_wb_cleanup_job(struct drm_writeback_connector *connector, struct drm_writeback_job *job) { struct rcar_du_crtc *rcrtc = wb_to_rcar_crtc(connector); struct rcar_du_wb_job *rjob = job->priv; if (!job->fb) return; rcar_du_vsp_unmap_fb(rcrtc->vsp, job->fb, rjob->sg_tables); kfree(rjob); } static const struct drm_connector_helper_funcs rcar_du_wb_conn_helper_funcs = { .get_modes = rcar_du_wb_conn_get_modes, .prepare_writeback_job = rcar_du_wb_prepare_job, .cleanup_writeback_job = rcar_du_wb_cleanup_job, }; static struct drm_connector_state * rcar_du_wb_conn_duplicate_state(struct drm_connector *connector) { struct rcar_du_wb_conn_state *copy; if (WARN_ON(!connector->state)) return NULL; copy = kzalloc(sizeof(*copy), GFP_KERNEL); if (!copy) return NULL; __drm_atomic_helper_connector_duplicate_state(connector, &copy->state); return &copy->state; } static void rcar_du_wb_conn_destroy_state(struct drm_connector *connector, struct drm_connector_state *state) { __drm_atomic_helper_connector_destroy_state(state); kfree(to_rcar_wb_conn_state(state)); } static void rcar_du_wb_conn_reset(struct drm_connector *connector) { struct rcar_du_wb_conn_state *state; if (connector->state) { rcar_du_wb_conn_destroy_state(connector, connector->state); connector->state = NULL; } state = kzalloc(sizeof(*state), GFP_KERNEL); if (state == NULL) return; __drm_atomic_helper_connector_reset(connector, &state->state); } static const struct drm_connector_funcs rcar_du_wb_conn_funcs = { .reset = rcar_du_wb_conn_reset, .fill_modes = drm_helper_probe_single_connector_modes, .destroy = drm_connector_cleanup, .atomic_duplicate_state = rcar_du_wb_conn_duplicate_state, .atomic_destroy_state = rcar_du_wb_conn_destroy_state, }; static int rcar_du_wb_enc_atomic_check(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct rcar_du_wb_conn_state *wb_state = to_rcar_wb_conn_state(conn_state); const struct drm_display_mode *mode = &crtc_state->mode; struct drm_device *dev = encoder->dev; struct drm_framebuffer *fb; if (!conn_state->writeback_job) return 0; fb = conn_state->writeback_job->fb; /* * Verify that the framebuffer format is supported and that its size * matches the current mode. */ if (fb->width != mode->hdisplay || fb->height != mode->vdisplay) { dev_dbg(dev->dev, "%s: invalid framebuffer size %ux%u\n", __func__, fb->width, fb->height); return -EINVAL; } wb_state->format = rcar_du_format_info(fb->format->format); if (wb_state->format == NULL) { dev_dbg(dev->dev, "%s: unsupported format %p4cc\n", __func__, &fb->format->format); return -EINVAL; } return 0; } static const struct drm_encoder_helper_funcs rcar_du_wb_enc_helper_funcs = { .atomic_check = rcar_du_wb_enc_atomic_check, }; /* * Only RGB formats are currently supported as the VSP outputs RGB to the DU * and can't convert to YUV separately for writeback. */ static const u32 writeback_formats[] = { DRM_FORMAT_RGB332, DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB4444, DRM_FORMAT_ARGB1555, DRM_FORMAT_XRGB1555, DRM_FORMAT_RGB565, DRM_FORMAT_BGR888, DRM_FORMAT_RGB888, DRM_FORMAT_BGRA8888, DRM_FORMAT_BGRX8888, DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB8888, }; int rcar_du_writeback_init(struct rcar_du_device *rcdu, struct rcar_du_crtc *rcrtc) { struct drm_writeback_connector *wb_conn = &rcrtc->writeback; drm_connector_helper_add(&wb_conn->base, &rcar_du_wb_conn_helper_funcs); return drm_writeback_connector_init(&rcdu->ddev, wb_conn, &rcar_du_wb_conn_funcs, &rcar_du_wb_enc_helper_funcs, writeback_formats, ARRAY_SIZE(writeback_formats), 1 << drm_crtc_index(&rcrtc->crtc)); } void rcar_du_writeback_setup(struct rcar_du_crtc *rcrtc, struct vsp1_du_writeback_config *cfg) { struct rcar_du_wb_conn_state *wb_state; struct drm_connector_state *state; struct rcar_du_wb_job *rjob; struct drm_framebuffer *fb; unsigned int i; state = rcrtc->writeback.base.state; if (!state || !state->writeback_job) return; fb = state->writeback_job->fb; rjob = state->writeback_job->priv; wb_state = to_rcar_wb_conn_state(state); cfg->pixelformat = wb_state->format->v4l2; cfg->pitch = fb->pitches[0]; for (i = 0; i < wb_state->format->planes; ++i) cfg->mem[i] = sg_dma_address(rjob->sg_tables[i].sgl) + fb->offsets[i]; drm_writeback_queue_job(&rcrtc->writeback, state); } void rcar_du_writeback_complete(struct rcar_du_crtc *rcrtc) { drm_writeback_signal_completion(&rcrtc->writeback, 0); }
linux-master
drivers/gpu/drm/renesas/rcar-du/rcar_du_writeback.c
// SPDX-License-Identifier: GPL-2.0 /* * R-Car MIPI DSI Encoder * * Copyright (C) 2020 Renesas Electronics Corporation */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/math64.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_graph.h> #include <linux/platform_device.h> #include <linux/reset.h> #include <linux/slab.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_bridge.h> #include <drm/drm_mipi_dsi.h> #include <drm/drm_of.h> #include <drm/drm_panel.h> #include <drm/drm_probe_helper.h> #include "rcar_mipi_dsi.h" #include "rcar_mipi_dsi_regs.h" #define MHZ(v) ((u32)((v) * 1000000U)) enum rcar_mipi_dsi_hw_model { RCAR_DSI_V3U, RCAR_DSI_V4H, }; struct rcar_mipi_dsi_device_info { enum rcar_mipi_dsi_hw_model model; const struct dsi_clk_config *clk_cfg; u8 clockset2_m_offset; u8 n_min; u8 n_max; u8 n_mul; unsigned long fpfd_min; unsigned long fpfd_max; u16 m_min; u16 m_max; unsigned long fout_min; unsigned long fout_max; }; struct rcar_mipi_dsi { struct device *dev; const struct rcar_mipi_dsi_device_info *info; struct reset_control *rstc; struct mipi_dsi_host host; struct drm_bridge bridge; struct drm_bridge *next_bridge; struct drm_connector connector; void __iomem *mmio; struct { struct clk *mod; struct clk *pll; struct clk *dsi; } clocks; enum mipi_dsi_pixel_format format; unsigned int num_data_lanes; unsigned int lanes; }; struct dsi_setup_info { unsigned long hsfreq; u16 hsfreqrange; unsigned long fout; u16 m; u16 n; u16 vclk_divider; const struct dsi_clk_config *clkset; }; static inline struct rcar_mipi_dsi * bridge_to_rcar_mipi_dsi(struct drm_bridge *bridge) { return container_of(bridge, struct rcar_mipi_dsi, bridge); } static inline struct rcar_mipi_dsi * host_to_rcar_mipi_dsi(struct mipi_dsi_host *host) { return container_of(host, struct rcar_mipi_dsi, host); } static const u32 hsfreqrange_table[][2] = { { MHZ(80), 0x00 }, { MHZ(90), 0x10 }, { MHZ(100), 0x20 }, { MHZ(110), 0x30 }, { MHZ(120), 0x01 }, { MHZ(130), 0x11 }, { MHZ(140), 0x21 }, { MHZ(150), 0x31 }, { MHZ(160), 0x02 }, { MHZ(170), 0x12 }, { MHZ(180), 0x22 }, { MHZ(190), 0x32 }, { MHZ(205), 0x03 }, { MHZ(220), 0x13 }, { MHZ(235), 0x23 }, { MHZ(250), 0x33 }, { MHZ(275), 0x04 }, { MHZ(300), 0x14 }, { MHZ(325), 0x25 }, { MHZ(350), 0x35 }, { MHZ(400), 0x05 }, { MHZ(450), 0x16 }, { MHZ(500), 0x26 }, { MHZ(550), 0x37 }, { MHZ(600), 0x07 }, { MHZ(650), 0x18 }, { MHZ(700), 0x28 }, { MHZ(750), 0x39 }, { MHZ(800), 0x09 }, { MHZ(850), 0x19 }, { MHZ(900), 0x29 }, { MHZ(950), 0x3a }, { MHZ(1000), 0x0a }, { MHZ(1050), 0x1a }, { MHZ(1100), 0x2a }, { MHZ(1150), 0x3b }, { MHZ(1200), 0x0b }, { MHZ(1250), 0x1b }, { MHZ(1300), 0x2b }, { MHZ(1350), 0x3c }, { MHZ(1400), 0x0c }, { MHZ(1450), 0x1c }, { MHZ(1500), 0x2c }, { MHZ(1550), 0x3d }, { MHZ(1600), 0x0d }, { MHZ(1650), 0x1d }, { MHZ(1700), 0x2e }, { MHZ(1750), 0x3e }, { MHZ(1800), 0x0e }, { MHZ(1850), 0x1e }, { MHZ(1900), 0x2f }, { MHZ(1950), 0x3f }, { MHZ(2000), 0x0f }, { MHZ(2050), 0x40 }, { MHZ(2100), 0x41 }, { MHZ(2150), 0x42 }, { MHZ(2200), 0x43 }, { MHZ(2250), 0x44 }, { MHZ(2300), 0x45 }, { MHZ(2350), 0x46 }, { MHZ(2400), 0x47 }, { MHZ(2450), 0x48 }, { MHZ(2500), 0x49 }, { /* sentinel */ }, }; struct dsi_clk_config { u32 min_freq; u32 max_freq; u8 vco_cntrl; u8 cpbias_cntrl; u8 gmp_cntrl; u8 int_cntrl; u8 prop_cntrl; }; static const struct dsi_clk_config dsi_clk_cfg_v3u[] = { { MHZ(40), MHZ(55), 0x3f, 0x10, 0x01, 0x00, 0x0b }, { MHZ(52.5), MHZ(80), 0x39, 0x10, 0x01, 0x00, 0x0b }, { MHZ(80), MHZ(110), 0x2f, 0x10, 0x01, 0x00, 0x0b }, { MHZ(105), MHZ(160), 0x29, 0x10, 0x01, 0x00, 0x0b }, { MHZ(160), MHZ(220), 0x1f, 0x10, 0x01, 0x00, 0x0b }, { MHZ(210), MHZ(320), 0x19, 0x10, 0x01, 0x00, 0x0b }, { MHZ(320), MHZ(440), 0x0f, 0x10, 0x01, 0x00, 0x0b }, { MHZ(420), MHZ(660), 0x09, 0x10, 0x01, 0x00, 0x0b }, { MHZ(630), MHZ(1149), 0x03, 0x10, 0x01, 0x00, 0x0b }, { MHZ(1100), MHZ(1152), 0x01, 0x10, 0x01, 0x00, 0x0b }, { MHZ(1150), MHZ(1250), 0x01, 0x10, 0x01, 0x00, 0x0c }, { /* sentinel */ }, }; static const struct dsi_clk_config dsi_clk_cfg_v4h[] = { { MHZ(40), MHZ(45.31), 0x2b, 0x00, 0x00, 0x08, 0x0a }, { MHZ(45.31), MHZ(54.66), 0x28, 0x00, 0x00, 0x08, 0x0a }, { MHZ(54.66), MHZ(62.5), 0x28, 0x00, 0x00, 0x08, 0x0a }, { MHZ(62.5), MHZ(75), 0x27, 0x00, 0x00, 0x08, 0x0a }, { MHZ(75), MHZ(90.63), 0x23, 0x00, 0x00, 0x08, 0x0a }, { MHZ(90.63), MHZ(109.37), 0x20, 0x00, 0x00, 0x08, 0x0a }, { MHZ(109.37), MHZ(125), 0x20, 0x00, 0x00, 0x08, 0x0a }, { MHZ(125), MHZ(150), 0x1f, 0x00, 0x00, 0x08, 0x0a }, { MHZ(150), MHZ(181.25), 0x1b, 0x00, 0x00, 0x08, 0x0a }, { MHZ(181.25), MHZ(218.75), 0x18, 0x00, 0x00, 0x08, 0x0a }, { MHZ(218.75), MHZ(250), 0x18, 0x00, 0x00, 0x08, 0x0a }, { MHZ(250), MHZ(300), 0x17, 0x00, 0x00, 0x08, 0x0a }, { MHZ(300), MHZ(362.5), 0x13, 0x00, 0x00, 0x08, 0x0a }, { MHZ(362.5), MHZ(455.48), 0x10, 0x00, 0x00, 0x08, 0x0a }, { MHZ(455.48), MHZ(500), 0x10, 0x00, 0x00, 0x08, 0x0a }, { MHZ(500), MHZ(600), 0x0f, 0x00, 0x00, 0x08, 0x0a }, { MHZ(600), MHZ(725), 0x0b, 0x00, 0x00, 0x08, 0x0a }, { MHZ(725), MHZ(875), 0x08, 0x00, 0x00, 0x08, 0x0a }, { MHZ(875), MHZ(1000), 0x08, 0x00, 0x00, 0x08, 0x0a }, { MHZ(1000), MHZ(1200), 0x07, 0x00, 0x00, 0x08, 0x0a }, { MHZ(1200), MHZ(1250), 0x03, 0x00, 0x00, 0x08, 0x0a }, { /* sentinel */ }, }; static void rcar_mipi_dsi_write(struct rcar_mipi_dsi *dsi, u32 reg, u32 data) { iowrite32(data, dsi->mmio + reg); } static u32 rcar_mipi_dsi_read(struct rcar_mipi_dsi *dsi, u32 reg) { return ioread32(dsi->mmio + reg); } static void rcar_mipi_dsi_clr(struct rcar_mipi_dsi *dsi, u32 reg, u32 clr) { rcar_mipi_dsi_write(dsi, reg, rcar_mipi_dsi_read(dsi, reg) & ~clr); } static void rcar_mipi_dsi_set(struct rcar_mipi_dsi *dsi, u32 reg, u32 set) { rcar_mipi_dsi_write(dsi, reg, rcar_mipi_dsi_read(dsi, reg) | set); } static int rcar_mipi_dsi_write_phtw(struct rcar_mipi_dsi *dsi, u32 phtw) { u32 status; int ret; rcar_mipi_dsi_write(dsi, PHTW, phtw); ret = read_poll_timeout(rcar_mipi_dsi_read, status, !(status & (PHTW_DWEN | PHTW_CWEN)), 2000, 10000, false, dsi, PHTW); if (ret < 0) { dev_err(dsi->dev, "PHY test interface write timeout (0x%08x)\n", phtw); return ret; } return ret; } static int rcar_mipi_dsi_write_phtw_arr(struct rcar_mipi_dsi *dsi, const u32 *phtw, unsigned int size) { for (unsigned int i = 0; i < size; i++) { int ret = rcar_mipi_dsi_write_phtw(dsi, phtw[i]); if (ret < 0) return ret; } return 0; } #define WRITE_PHTW(...) \ ({ \ static const u32 phtw[] = { __VA_ARGS__ }; \ int ret; \ ret = rcar_mipi_dsi_write_phtw_arr(dsi, phtw, \ ARRAY_SIZE(phtw)); \ ret; \ }) static int rcar_mipi_dsi_init_phtw_v3u(struct rcar_mipi_dsi *dsi) { return WRITE_PHTW(0x01020114, 0x01600115, 0x01030116, 0x0102011d, 0x011101a4, 0x018601a4, 0x014201a0, 0x010001a3, 0x0101011f); } static int rcar_mipi_dsi_post_init_phtw_v3u(struct rcar_mipi_dsi *dsi) { return WRITE_PHTW(0x010c0130, 0x010c0140, 0x010c0150, 0x010c0180, 0x010c0190, 0x010a0160, 0x010a0170, 0x01800164, 0x01800174); } static int rcar_mipi_dsi_init_phtw_v4h(struct rcar_mipi_dsi *dsi, const struct dsi_setup_info *setup_info) { int ret; if (setup_info->hsfreq < MHZ(450)) { ret = WRITE_PHTW(0x01010100, 0x011b01ac); if (ret) return ret; } ret = WRITE_PHTW(0x01010100, 0x01030173, 0x01000174, 0x01500175, 0x01030176, 0x01040166, 0x010201ad); if (ret) return ret; if (setup_info->hsfreq <= MHZ(1000)) ret = WRITE_PHTW(0x01020100, 0x01910170, 0x01020171, 0x01110172); else if (setup_info->hsfreq <= MHZ(1500)) ret = WRITE_PHTW(0x01020100, 0x01980170, 0x01030171, 0x01100172); else if (setup_info->hsfreq <= MHZ(2500)) ret = WRITE_PHTW(0x01020100, 0x0144016b, 0x01000172); else return -EINVAL; if (ret) return ret; if (dsi->lanes <= 1) { ret = WRITE_PHTW(0x01070100, 0x010e010b); if (ret) return ret; } if (dsi->lanes <= 2) { ret = WRITE_PHTW(0x01090100, 0x010e010b); if (ret) return ret; } if (dsi->lanes <= 3) { ret = WRITE_PHTW(0x010b0100, 0x010e010b); if (ret) return ret; } if (setup_info->hsfreq <= MHZ(1500)) { ret = WRITE_PHTW(0x01010100, 0x01c0016e); if (ret) return ret; } return 0; } static int rcar_mipi_dsi_post_init_phtw_v4h(struct rcar_mipi_dsi *dsi, const struct dsi_setup_info *setup_info) { u32 status; int ret; if (setup_info->hsfreq <= MHZ(1500)) { WRITE_PHTW(0x01020100, 0x00000180); ret = read_poll_timeout(rcar_mipi_dsi_read, status, status & PHTR_TEST, 2000, 10000, false, dsi, PHTR); if (ret < 0) { dev_err(dsi->dev, "failed to test PHTR\n"); return ret; } WRITE_PHTW(0x01010100, 0x0100016e); } return 0; } /* ----------------------------------------------------------------------------- * Hardware Setup */ static void rcar_mipi_dsi_pll_calc(struct rcar_mipi_dsi *dsi, unsigned long fin_rate, unsigned long fout_target, struct dsi_setup_info *setup_info) { unsigned int best_err = -1; const struct rcar_mipi_dsi_device_info *info = dsi->info; for (unsigned int n = info->n_min; n <= info->n_max; n++) { unsigned long fpfd; fpfd = fin_rate / n; if (fpfd < info->fpfd_min || fpfd > info->fpfd_max) continue; for (unsigned int m = info->m_min; m <= info->m_max; m++) { unsigned int err; u64 fout; fout = div64_u64((u64)fpfd * m, dsi->info->n_mul); if (fout < info->fout_min || fout > info->fout_max) continue; fout = div64_u64(fout, setup_info->vclk_divider); if (fout < setup_info->clkset->min_freq || fout > setup_info->clkset->max_freq) continue; err = abs((long)(fout - fout_target) * 10000 / (long)fout_target); if (err < best_err) { setup_info->m = m; setup_info->n = n; setup_info->fout = (unsigned long)fout; best_err = err; if (err == 0) return; } } } } static void rcar_mipi_dsi_parameters_calc(struct rcar_mipi_dsi *dsi, struct clk *clk, unsigned long target, struct dsi_setup_info *setup_info) { const struct dsi_clk_config *clk_cfg; unsigned long fout_target; unsigned long fin_rate; unsigned int i; unsigned int err; /* * Calculate Fout = dot clock * ColorDepth / (2 * Lane Count) * The range out Fout is [40 - 1250] Mhz */ fout_target = target * mipi_dsi_pixel_format_to_bpp(dsi->format) / (2 * dsi->lanes); if (fout_target < MHZ(40) || fout_target > MHZ(1250)) return; /* Find PLL settings */ for (clk_cfg = dsi->info->clk_cfg; clk_cfg->min_freq != 0; clk_cfg++) { if (fout_target > clk_cfg->min_freq && fout_target <= clk_cfg->max_freq) { setup_info->clkset = clk_cfg; break; } } fin_rate = clk_get_rate(clk); switch (dsi->info->model) { case RCAR_DSI_V3U: default: setup_info->vclk_divider = 1 << ((clk_cfg->vco_cntrl >> 4) & 0x3); break; case RCAR_DSI_V4H: setup_info->vclk_divider = 1 << (((clk_cfg->vco_cntrl >> 3) & 0x7) + 1); break; } rcar_mipi_dsi_pll_calc(dsi, fin_rate, fout_target, setup_info); /* Find hsfreqrange */ setup_info->hsfreq = setup_info->fout * 2; for (i = 0; i < ARRAY_SIZE(hsfreqrange_table); i++) { if (hsfreqrange_table[i][0] >= setup_info->hsfreq) { setup_info->hsfreqrange = hsfreqrange_table[i][1]; break; } } err = abs((long)(setup_info->fout - fout_target) * 10000 / (long)fout_target); dev_dbg(dsi->dev, "Fout = %u * %lu / (%u * %u * %u) = %lu (target %lu Hz, error %d.%02u%%)\n", setup_info->m, fin_rate, dsi->info->n_mul, setup_info->n, setup_info->vclk_divider, setup_info->fout, fout_target, err / 100, err % 100); dev_dbg(dsi->dev, "vco_cntrl = 0x%x\tprop_cntrl = 0x%x\thsfreqrange = 0x%x\n", clk_cfg->vco_cntrl, clk_cfg->prop_cntrl, setup_info->hsfreqrange); } static void rcar_mipi_dsi_set_display_timing(struct rcar_mipi_dsi *dsi, const struct drm_display_mode *mode) { u32 setr; u32 vprmset0r; u32 vprmset1r; u32 vprmset2r; u32 vprmset3r; u32 vprmset4r; /* Configuration for Pixel Stream and Packet Header */ if (mipi_dsi_pixel_format_to_bpp(dsi->format) == 24) rcar_mipi_dsi_write(dsi, TXVMPSPHSETR, TXVMPSPHSETR_DT_RGB24); else if (mipi_dsi_pixel_format_to_bpp(dsi->format) == 18) rcar_mipi_dsi_write(dsi, TXVMPSPHSETR, TXVMPSPHSETR_DT_RGB18); else if (mipi_dsi_pixel_format_to_bpp(dsi->format) == 16) rcar_mipi_dsi_write(dsi, TXVMPSPHSETR, TXVMPSPHSETR_DT_RGB16); else { dev_warn(dsi->dev, "unsupported format"); return; } /* Configuration for Blanking sequence and Input Pixel */ setr = TXVMSETR_HSABPEN_EN | TXVMSETR_HBPBPEN_EN | TXVMSETR_HFPBPEN_EN | TXVMSETR_SYNSEQ_PULSES | TXVMSETR_PIXWDTH | TXVMSETR_VSTPM; rcar_mipi_dsi_write(dsi, TXVMSETR, setr); /* Configuration for Video Parameters */ vprmset0r = (mode->flags & DRM_MODE_FLAG_PVSYNC ? TXVMVPRMSET0R_VSPOL_HIG : TXVMVPRMSET0R_VSPOL_LOW) | (mode->flags & DRM_MODE_FLAG_PHSYNC ? TXVMVPRMSET0R_HSPOL_HIG : TXVMVPRMSET0R_HSPOL_LOW) | TXVMVPRMSET0R_CSPC_RGB | TXVMVPRMSET0R_BPP_24; vprmset1r = TXVMVPRMSET1R_VACTIVE(mode->vdisplay) | TXVMVPRMSET1R_VSA(mode->vsync_end - mode->vsync_start); vprmset2r = TXVMVPRMSET2R_VFP(mode->vsync_start - mode->vdisplay) | TXVMVPRMSET2R_VBP(mode->vtotal - mode->vsync_end); vprmset3r = TXVMVPRMSET3R_HACTIVE(mode->hdisplay) | TXVMVPRMSET3R_HSA(mode->hsync_end - mode->hsync_start); vprmset4r = TXVMVPRMSET4R_HFP(mode->hsync_start - mode->hdisplay) | TXVMVPRMSET4R_HBP(mode->htotal - mode->hsync_end); rcar_mipi_dsi_write(dsi, TXVMVPRMSET0R, vprmset0r); rcar_mipi_dsi_write(dsi, TXVMVPRMSET1R, vprmset1r); rcar_mipi_dsi_write(dsi, TXVMVPRMSET2R, vprmset2r); rcar_mipi_dsi_write(dsi, TXVMVPRMSET3R, vprmset3r); rcar_mipi_dsi_write(dsi, TXVMVPRMSET4R, vprmset4r); } static int rcar_mipi_dsi_startup(struct rcar_mipi_dsi *dsi, const struct drm_display_mode *mode) { struct dsi_setup_info setup_info = {}; unsigned int timeout; int ret; int dsi_format; u32 phy_setup; u32 clockset2, clockset3; u32 ppisetr; u32 vclkset; /* Checking valid format */ dsi_format = mipi_dsi_pixel_format_to_bpp(dsi->format); if (dsi_format < 0) { dev_warn(dsi->dev, "invalid format"); return -EINVAL; } /* Parameters Calculation */ rcar_mipi_dsi_parameters_calc(dsi, dsi->clocks.pll, mode->clock * 1000, &setup_info); /* LPCLK enable */ rcar_mipi_dsi_set(dsi, LPCLKSET, LPCLKSET_CKEN); /* CFGCLK enabled */ rcar_mipi_dsi_set(dsi, CFGCLKSET, CFGCLKSET_CKEN); rcar_mipi_dsi_clr(dsi, PHYSETUP, PHYSETUP_RSTZ); rcar_mipi_dsi_clr(dsi, PHYSETUP, PHYSETUP_SHUTDOWNZ); rcar_mipi_dsi_set(dsi, PHTC, PHTC_TESTCLR); rcar_mipi_dsi_clr(dsi, PHTC, PHTC_TESTCLR); /* PHY setting */ phy_setup = rcar_mipi_dsi_read(dsi, PHYSETUP); phy_setup &= ~PHYSETUP_HSFREQRANGE_MASK; phy_setup |= PHYSETUP_HSFREQRANGE(setup_info.hsfreqrange); rcar_mipi_dsi_write(dsi, PHYSETUP, phy_setup); switch (dsi->info->model) { case RCAR_DSI_V3U: default: ret = rcar_mipi_dsi_init_phtw_v3u(dsi); if (ret < 0) return ret; break; case RCAR_DSI_V4H: ret = rcar_mipi_dsi_init_phtw_v4h(dsi, &setup_info); if (ret < 0) return ret; break; } /* PLL Clock Setting */ rcar_mipi_dsi_clr(dsi, CLOCKSET1, CLOCKSET1_SHADOW_CLEAR); rcar_mipi_dsi_set(dsi, CLOCKSET1, CLOCKSET1_SHADOW_CLEAR); rcar_mipi_dsi_clr(dsi, CLOCKSET1, CLOCKSET1_SHADOW_CLEAR); clockset2 = CLOCKSET2_M(setup_info.m - dsi->info->clockset2_m_offset) | CLOCKSET2_N(setup_info.n - 1) | CLOCKSET2_VCO_CNTRL(setup_info.clkset->vco_cntrl); clockset3 = CLOCKSET3_PROP_CNTRL(setup_info.clkset->prop_cntrl) | CLOCKSET3_INT_CNTRL(setup_info.clkset->int_cntrl) | CLOCKSET3_CPBIAS_CNTRL(setup_info.clkset->cpbias_cntrl) | CLOCKSET3_GMP_CNTRL(setup_info.clkset->gmp_cntrl); rcar_mipi_dsi_write(dsi, CLOCKSET2, clockset2); rcar_mipi_dsi_write(dsi, CLOCKSET3, clockset3); rcar_mipi_dsi_clr(dsi, CLOCKSET1, CLOCKSET1_UPDATEPLL); rcar_mipi_dsi_set(dsi, CLOCKSET1, CLOCKSET1_UPDATEPLL); udelay(10); rcar_mipi_dsi_clr(dsi, CLOCKSET1, CLOCKSET1_UPDATEPLL); ppisetr = PPISETR_DLEN_3 | PPISETR_CLEN; rcar_mipi_dsi_write(dsi, PPISETR, ppisetr); rcar_mipi_dsi_set(dsi, PHYSETUP, PHYSETUP_SHUTDOWNZ); rcar_mipi_dsi_set(dsi, PHYSETUP, PHYSETUP_RSTZ); usleep_range(400, 500); /* Checking PPI clock status register */ for (timeout = 10; timeout > 0; --timeout) { if ((rcar_mipi_dsi_read(dsi, PPICLSR) & PPICLSR_STPST) && (rcar_mipi_dsi_read(dsi, PPIDLSR) & PPIDLSR_STPST) && (rcar_mipi_dsi_read(dsi, CLOCKSET1) & CLOCKSET1_LOCK)) break; usleep_range(1000, 2000); } if (!timeout) { dev_err(dsi->dev, "failed to enable PPI clock\n"); return -ETIMEDOUT; } switch (dsi->info->model) { case RCAR_DSI_V3U: default: ret = rcar_mipi_dsi_post_init_phtw_v3u(dsi); if (ret < 0) return ret; break; case RCAR_DSI_V4H: ret = rcar_mipi_dsi_post_init_phtw_v4h(dsi, &setup_info); if (ret < 0) return ret; break; } /* Enable DOT clock */ vclkset = VCLKSET_CKEN; rcar_mipi_dsi_write(dsi, VCLKSET, vclkset); if (dsi_format == 24) vclkset |= VCLKSET_BPP_24; else if (dsi_format == 18) vclkset |= VCLKSET_BPP_18; else if (dsi_format == 16) vclkset |= VCLKSET_BPP_16; else { dev_warn(dsi->dev, "unsupported format"); return -EINVAL; } vclkset |= VCLKSET_COLOR_RGB | VCLKSET_LANE(dsi->lanes - 1); switch (dsi->info->model) { case RCAR_DSI_V3U: default: vclkset |= VCLKSET_DIV_V3U(__ffs(setup_info.vclk_divider)); break; case RCAR_DSI_V4H: vclkset |= VCLKSET_DIV_V4H(__ffs(setup_info.vclk_divider) - 1); break; } rcar_mipi_dsi_write(dsi, VCLKSET, vclkset); /* After setting VCLKSET register, enable VCLKEN */ rcar_mipi_dsi_set(dsi, VCLKEN, VCLKEN_CKEN); dev_dbg(dsi->dev, "DSI device is started\n"); return 0; } static void rcar_mipi_dsi_shutdown(struct rcar_mipi_dsi *dsi) { /* Disable VCLKEN */ rcar_mipi_dsi_write(dsi, VCLKSET, 0); /* Disable DOT clock */ rcar_mipi_dsi_write(dsi, VCLKSET, 0); rcar_mipi_dsi_clr(dsi, PHYSETUP, PHYSETUP_RSTZ); rcar_mipi_dsi_clr(dsi, PHYSETUP, PHYSETUP_SHUTDOWNZ); /* CFGCLK disable */ rcar_mipi_dsi_clr(dsi, CFGCLKSET, CFGCLKSET_CKEN); /* LPCLK disable */ rcar_mipi_dsi_clr(dsi, LPCLKSET, LPCLKSET_CKEN); dev_dbg(dsi->dev, "DSI device is shutdown\n"); } static int rcar_mipi_dsi_clk_enable(struct rcar_mipi_dsi *dsi) { int ret; reset_control_deassert(dsi->rstc); ret = clk_prepare_enable(dsi->clocks.mod); if (ret < 0) goto err_reset; ret = clk_prepare_enable(dsi->clocks.dsi); if (ret < 0) goto err_clock; return 0; err_clock: clk_disable_unprepare(dsi->clocks.mod); err_reset: reset_control_assert(dsi->rstc); return ret; } static void rcar_mipi_dsi_clk_disable(struct rcar_mipi_dsi *dsi) { clk_disable_unprepare(dsi->clocks.dsi); clk_disable_unprepare(dsi->clocks.mod); reset_control_assert(dsi->rstc); } static int rcar_mipi_dsi_start_hs_clock(struct rcar_mipi_dsi *dsi) { /* * In HW manual, we need to check TxDDRClkHS-Q Stable? but it dont * write how to check. So we skip this check in this patch */ u32 status; int ret; /* Start HS clock. */ rcar_mipi_dsi_set(dsi, PPICLCR, PPICLCR_TXREQHS); ret = read_poll_timeout(rcar_mipi_dsi_read, status, status & PPICLSR_TOHS, 2000, 10000, false, dsi, PPICLSR); if (ret < 0) { dev_err(dsi->dev, "failed to enable HS clock\n"); return ret; } rcar_mipi_dsi_set(dsi, PPICLSCR, PPICLSCR_TOHS); return 0; } static int rcar_mipi_dsi_start_video(struct rcar_mipi_dsi *dsi) { u32 status; int ret; /* Wait for the link to be ready. */ ret = read_poll_timeout(rcar_mipi_dsi_read, status, !(status & (LINKSR_LPBUSY | LINKSR_HSBUSY)), 2000, 10000, false, dsi, LINKSR); if (ret < 0) { dev_err(dsi->dev, "Link failed to become ready\n"); return ret; } /* De-assert video FIFO clear. */ rcar_mipi_dsi_clr(dsi, TXVMCR, TXVMCR_VFCLR); ret = read_poll_timeout(rcar_mipi_dsi_read, status, status & TXVMSR_VFRDY, 2000, 10000, false, dsi, TXVMSR); if (ret < 0) { dev_err(dsi->dev, "Failed to de-assert video FIFO clear\n"); return ret; } /* Enable transmission in video mode. */ rcar_mipi_dsi_set(dsi, TXVMCR, TXVMCR_EN_VIDEO); ret = read_poll_timeout(rcar_mipi_dsi_read, status, status & TXVMSR_RDY, 2000, 10000, false, dsi, TXVMSR); if (ret < 0) { dev_err(dsi->dev, "Failed to enable video transmission\n"); return ret; } return 0; } static void rcar_mipi_dsi_stop_video(struct rcar_mipi_dsi *dsi) { u32 status; int ret; /* Disable transmission in video mode. */ rcar_mipi_dsi_clr(dsi, TXVMCR, TXVMCR_EN_VIDEO); ret = read_poll_timeout(rcar_mipi_dsi_read, status, !(status & TXVMSR_ACT), 2000, 100000, false, dsi, TXVMSR); if (ret < 0) { dev_err(dsi->dev, "Failed to disable video transmission\n"); return; } /* Assert video FIFO clear. */ rcar_mipi_dsi_set(dsi, TXVMCR, TXVMCR_VFCLR); ret = read_poll_timeout(rcar_mipi_dsi_read, status, !(status & TXVMSR_VFRDY), 2000, 100000, false, dsi, TXVMSR); if (ret < 0) { dev_err(dsi->dev, "Failed to assert video FIFO clear\n"); return; } } /* ----------------------------------------------------------------------------- * Bridge */ static int rcar_mipi_dsi_attach(struct drm_bridge *bridge, enum drm_bridge_attach_flags flags) { struct rcar_mipi_dsi *dsi = bridge_to_rcar_mipi_dsi(bridge); return drm_bridge_attach(bridge->encoder, dsi->next_bridge, bridge, flags); } static void rcar_mipi_dsi_atomic_enable(struct drm_bridge *bridge, struct drm_bridge_state *old_bridge_state) { struct rcar_mipi_dsi *dsi = bridge_to_rcar_mipi_dsi(bridge); rcar_mipi_dsi_start_video(dsi); } static void rcar_mipi_dsi_atomic_disable(struct drm_bridge *bridge, struct drm_bridge_state *old_bridge_state) { struct rcar_mipi_dsi *dsi = bridge_to_rcar_mipi_dsi(bridge); rcar_mipi_dsi_stop_video(dsi); } void rcar_mipi_dsi_pclk_enable(struct drm_bridge *bridge, struct drm_atomic_state *state) { struct rcar_mipi_dsi *dsi = bridge_to_rcar_mipi_dsi(bridge); const struct drm_display_mode *mode; struct drm_connector *connector; struct drm_crtc *crtc; int ret; connector = drm_atomic_get_new_connector_for_encoder(state, bridge->encoder); crtc = drm_atomic_get_new_connector_state(state, connector)->crtc; mode = &drm_atomic_get_new_crtc_state(state, crtc)->adjusted_mode; ret = rcar_mipi_dsi_clk_enable(dsi); if (ret < 0) { dev_err(dsi->dev, "failed to enable DSI clocks\n"); return; } ret = rcar_mipi_dsi_startup(dsi, mode); if (ret < 0) goto err_dsi_startup; rcar_mipi_dsi_set_display_timing(dsi, mode); ret = rcar_mipi_dsi_start_hs_clock(dsi); if (ret < 0) goto err_dsi_start_hs; return; err_dsi_start_hs: rcar_mipi_dsi_shutdown(dsi); err_dsi_startup: rcar_mipi_dsi_clk_disable(dsi); } EXPORT_SYMBOL_GPL(rcar_mipi_dsi_pclk_enable); void rcar_mipi_dsi_pclk_disable(struct drm_bridge *bridge) { struct rcar_mipi_dsi *dsi = bridge_to_rcar_mipi_dsi(bridge); rcar_mipi_dsi_shutdown(dsi); rcar_mipi_dsi_clk_disable(dsi); } EXPORT_SYMBOL_GPL(rcar_mipi_dsi_pclk_disable); static enum drm_mode_status rcar_mipi_dsi_bridge_mode_valid(struct drm_bridge *bridge, const struct drm_display_info *info, const struct drm_display_mode *mode) { if (mode->clock > 297000) return MODE_CLOCK_HIGH; return MODE_OK; } static const struct drm_bridge_funcs rcar_mipi_dsi_bridge_ops = { .attach = rcar_mipi_dsi_attach, .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state, .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state, .atomic_reset = drm_atomic_helper_bridge_reset, .atomic_enable = rcar_mipi_dsi_atomic_enable, .atomic_disable = rcar_mipi_dsi_atomic_disable, .mode_valid = rcar_mipi_dsi_bridge_mode_valid, }; /* ----------------------------------------------------------------------------- * Host setting */ static int rcar_mipi_dsi_host_attach(struct mipi_dsi_host *host, struct mipi_dsi_device *device) { struct rcar_mipi_dsi *dsi = host_to_rcar_mipi_dsi(host); int ret; if (device->lanes > dsi->num_data_lanes) return -EINVAL; dsi->lanes = device->lanes; dsi->format = device->format; dsi->next_bridge = devm_drm_of_get_bridge(dsi->dev, dsi->dev->of_node, 1, 0); if (IS_ERR(dsi->next_bridge)) { ret = PTR_ERR(dsi->next_bridge); dev_err(dsi->dev, "failed to get next bridge: %d\n", ret); return ret; } /* Initialize the DRM bridge. */ dsi->bridge.funcs = &rcar_mipi_dsi_bridge_ops; dsi->bridge.of_node = dsi->dev->of_node; drm_bridge_add(&dsi->bridge); return 0; } static int rcar_mipi_dsi_host_detach(struct mipi_dsi_host *host, struct mipi_dsi_device *device) { struct rcar_mipi_dsi *dsi = host_to_rcar_mipi_dsi(host); drm_bridge_remove(&dsi->bridge); return 0; } static const struct mipi_dsi_host_ops rcar_mipi_dsi_host_ops = { .attach = rcar_mipi_dsi_host_attach, .detach = rcar_mipi_dsi_host_detach, }; /* ----------------------------------------------------------------------------- * Probe & Remove */ static int rcar_mipi_dsi_parse_dt(struct rcar_mipi_dsi *dsi) { int ret; ret = drm_of_get_data_lanes_count_ep(dsi->dev->of_node, 1, 0, 1, 4); if (ret < 0) { dev_err(dsi->dev, "missing or invalid data-lanes property\n"); return ret; } dsi->num_data_lanes = ret; return 0; } static struct clk *rcar_mipi_dsi_get_clock(struct rcar_mipi_dsi *dsi, const char *name, bool optional) { struct clk *clk; clk = devm_clk_get(dsi->dev, name); if (!IS_ERR(clk)) return clk; if (PTR_ERR(clk) == -ENOENT && optional) return NULL; dev_err_probe(dsi->dev, PTR_ERR(clk), "failed to get %s clock\n", name ? name : "module"); return clk; } static int rcar_mipi_dsi_get_clocks(struct rcar_mipi_dsi *dsi) { dsi->clocks.mod = rcar_mipi_dsi_get_clock(dsi, NULL, false); if (IS_ERR(dsi->clocks.mod)) return PTR_ERR(dsi->clocks.mod); dsi->clocks.pll = rcar_mipi_dsi_get_clock(dsi, "pll", true); if (IS_ERR(dsi->clocks.pll)) return PTR_ERR(dsi->clocks.pll); dsi->clocks.dsi = rcar_mipi_dsi_get_clock(dsi, "dsi", true); if (IS_ERR(dsi->clocks.dsi)) return PTR_ERR(dsi->clocks.dsi); if (!dsi->clocks.pll && !dsi->clocks.dsi) { dev_err(dsi->dev, "no input clock (pll, dsi)\n"); return -EINVAL; } return 0; } static int rcar_mipi_dsi_probe(struct platform_device *pdev) { struct rcar_mipi_dsi *dsi; int ret; dsi = devm_kzalloc(&pdev->dev, sizeof(*dsi), GFP_KERNEL); if (dsi == NULL) return -ENOMEM; platform_set_drvdata(pdev, dsi); dsi->dev = &pdev->dev; dsi->info = of_device_get_match_data(&pdev->dev); ret = rcar_mipi_dsi_parse_dt(dsi); if (ret < 0) return ret; /* Acquire resources. */ dsi->mmio = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(dsi->mmio)) return PTR_ERR(dsi->mmio); ret = rcar_mipi_dsi_get_clocks(dsi); if (ret < 0) return ret; dsi->rstc = devm_reset_control_get(dsi->dev, NULL); if (IS_ERR(dsi->rstc)) { dev_err(dsi->dev, "failed to get cpg reset\n"); return PTR_ERR(dsi->rstc); } /* Initialize the DSI host. */ dsi->host.dev = dsi->dev; dsi->host.ops = &rcar_mipi_dsi_host_ops; ret = mipi_dsi_host_register(&dsi->host); if (ret < 0) return ret; return 0; } static void rcar_mipi_dsi_remove(struct platform_device *pdev) { struct rcar_mipi_dsi *dsi = platform_get_drvdata(pdev); mipi_dsi_host_unregister(&dsi->host); } static const struct rcar_mipi_dsi_device_info v3u_data = { .model = RCAR_DSI_V3U, .clk_cfg = dsi_clk_cfg_v3u, .clockset2_m_offset = 2, .n_min = 3, .n_max = 8, .n_mul = 1, .fpfd_min = MHZ(2), .fpfd_max = MHZ(8), .m_min = 64, .m_max = 625, .fout_min = MHZ(320), .fout_max = MHZ(1250), }; static const struct rcar_mipi_dsi_device_info v4h_data = { .model = RCAR_DSI_V4H, .clk_cfg = dsi_clk_cfg_v4h, .clockset2_m_offset = 0, .n_min = 1, .n_max = 8, .n_mul = 2, .fpfd_min = MHZ(8), .fpfd_max = MHZ(24), .m_min = 167, .m_max = 1000, .fout_min = MHZ(2000), .fout_max = MHZ(4000), }; static const struct of_device_id rcar_mipi_dsi_of_table[] = { { .compatible = "renesas,r8a779a0-dsi-csi2-tx", .data = &v3u_data }, { .compatible = "renesas,r8a779g0-dsi-csi2-tx", .data = &v4h_data }, { } }; MODULE_DEVICE_TABLE(of, rcar_mipi_dsi_of_table); static struct platform_driver rcar_mipi_dsi_platform_driver = { .probe = rcar_mipi_dsi_probe, .remove_new = rcar_mipi_dsi_remove, .driver = { .name = "rcar-mipi-dsi", .of_match_table = rcar_mipi_dsi_of_table, }, }; module_platform_driver(rcar_mipi_dsi_platform_driver); MODULE_DESCRIPTION("Renesas R-Car MIPI DSI Encoder Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/gpu/drm/renesas/rcar-du/rcar_mipi_dsi.c
// SPDX-License-Identifier: GPL-2.0+ /* * R-Car Display Unit VSP-Based Compositor * * Copyright (C) 2015 Renesas Electronics Corporation * * Contact: Laurent Pinchart ([email protected]) */ #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_blend.h> #include <drm/drm_crtc.h> #include <drm/drm_fb_dma_helper.h> #include <drm/drm_fourcc.h> #include <drm/drm_framebuffer.h> #include <drm/drm_gem_atomic_helper.h> #include <drm/drm_gem_dma_helper.h> #include <drm/drm_managed.h> #include <drm/drm_vblank.h> #include <linux/bitops.h> #include <linux/dma-mapping.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include <linux/videodev2.h> #include <media/vsp1.h> #include "rcar_du_drv.h" #include "rcar_du_kms.h" #include "rcar_du_vsp.h" #include "rcar_du_writeback.h" static void rcar_du_vsp_complete(void *private, unsigned int status, u32 crc) { struct rcar_du_crtc *crtc = private; if (crtc->vblank_enable) drm_crtc_handle_vblank(&crtc->crtc); if (status & VSP1_DU_STATUS_COMPLETE) rcar_du_crtc_finish_page_flip(crtc); if (status & VSP1_DU_STATUS_WRITEBACK) rcar_du_writeback_complete(crtc); drm_crtc_add_crc_entry(&crtc->crtc, false, 0, &crc); } void rcar_du_vsp_enable(struct rcar_du_crtc *crtc) { const struct drm_display_mode *mode = &crtc->crtc.state->adjusted_mode; struct rcar_du_device *rcdu = crtc->dev; struct vsp1_du_lif_config cfg = { .width = mode->hdisplay, .height = mode->vdisplay, .interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE, .callback = rcar_du_vsp_complete, .callback_data = crtc, }; struct rcar_du_plane_state state = { .state = { .alpha = DRM_BLEND_ALPHA_OPAQUE, .crtc = &crtc->crtc, .dst.x1 = 0, .dst.y1 = 0, .dst.x2 = mode->hdisplay, .dst.y2 = mode->vdisplay, .src.x1 = 0, .src.y1 = 0, .src.x2 = mode->hdisplay << 16, .src.y2 = mode->vdisplay << 16, .zpos = 0, }, .format = rcar_du_format_info(DRM_FORMAT_XRGB8888), .source = RCAR_DU_PLANE_VSPD1, .colorkey = 0, }; if (rcdu->info->gen >= 3) state.hwindex = (crtc->index % 2) ? 2 : 0; else state.hwindex = crtc->index % 2; __rcar_du_plane_setup(crtc->group, &state); vsp1_du_setup_lif(crtc->vsp->vsp, crtc->vsp_pipe, &cfg); } void rcar_du_vsp_disable(struct rcar_du_crtc *crtc) { vsp1_du_setup_lif(crtc->vsp->vsp, crtc->vsp_pipe, NULL); } void rcar_du_vsp_atomic_begin(struct rcar_du_crtc *crtc) { vsp1_du_atomic_begin(crtc->vsp->vsp, crtc->vsp_pipe); } void rcar_du_vsp_atomic_flush(struct rcar_du_crtc *crtc) { struct vsp1_du_atomic_pipe_config cfg = { { 0, } }; struct rcar_du_crtc_state *state; state = to_rcar_crtc_state(crtc->crtc.state); cfg.crc = state->crc; rcar_du_writeback_setup(crtc, &cfg.writeback); vsp1_du_atomic_flush(crtc->vsp->vsp, crtc->vsp_pipe, &cfg); } static const u32 rcar_du_vsp_formats[] = { DRM_FORMAT_RGB332, DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB4444, DRM_FORMAT_ARGB1555, DRM_FORMAT_XRGB1555, DRM_FORMAT_RGB565, DRM_FORMAT_BGR888, DRM_FORMAT_RGB888, DRM_FORMAT_BGRA8888, DRM_FORMAT_BGRX8888, DRM_FORMAT_ABGR8888, DRM_FORMAT_XBGR8888, DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB8888, DRM_FORMAT_UYVY, DRM_FORMAT_YUYV, DRM_FORMAT_YVYU, DRM_FORMAT_NV12, DRM_FORMAT_NV21, DRM_FORMAT_NV16, DRM_FORMAT_NV61, DRM_FORMAT_YUV420, DRM_FORMAT_YVU420, DRM_FORMAT_YUV422, DRM_FORMAT_YVU422, DRM_FORMAT_YUV444, DRM_FORMAT_YVU444, }; /* * Gen4 supports the same formats as above, and additionally 2-10-10-10 RGB * formats and Y210 & Y212 formats. */ static const u32 rcar_du_vsp_formats_gen4[] = { DRM_FORMAT_RGB332, DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB4444, DRM_FORMAT_ARGB1555, DRM_FORMAT_XRGB1555, DRM_FORMAT_RGB565, DRM_FORMAT_BGR888, DRM_FORMAT_RGB888, DRM_FORMAT_BGRA8888, DRM_FORMAT_BGRX8888, DRM_FORMAT_ABGR8888, DRM_FORMAT_XBGR8888, DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB8888, DRM_FORMAT_RGBX1010102, DRM_FORMAT_RGBA1010102, DRM_FORMAT_ARGB2101010, DRM_FORMAT_UYVY, DRM_FORMAT_YUYV, DRM_FORMAT_YVYU, DRM_FORMAT_NV12, DRM_FORMAT_NV21, DRM_FORMAT_NV16, DRM_FORMAT_NV61, DRM_FORMAT_YUV420, DRM_FORMAT_YVU420, DRM_FORMAT_YUV422, DRM_FORMAT_YVU422, DRM_FORMAT_YUV444, DRM_FORMAT_YVU444, DRM_FORMAT_Y210, DRM_FORMAT_Y212, }; static u32 rcar_du_vsp_state_get_format(struct rcar_du_vsp_plane_state *state) { u32 fourcc = state->format->fourcc; if (state->state.pixel_blend_mode == DRM_MODE_BLEND_PIXEL_NONE) { switch (fourcc) { case DRM_FORMAT_ARGB1555: fourcc = DRM_FORMAT_XRGB1555; break; case DRM_FORMAT_ARGB4444: fourcc = DRM_FORMAT_XRGB4444; break; case DRM_FORMAT_ARGB8888: fourcc = DRM_FORMAT_XRGB8888; break; case DRM_FORMAT_ABGR8888: fourcc = DRM_FORMAT_XBGR8888; break; case DRM_FORMAT_BGRA8888: fourcc = DRM_FORMAT_BGRX8888; break; case DRM_FORMAT_RGBA1010102: fourcc = DRM_FORMAT_RGBX1010102; break; } } return fourcc; } static void rcar_du_vsp_plane_setup(struct rcar_du_vsp_plane *plane) { struct rcar_du_vsp_plane_state *state = to_rcar_vsp_plane_state(plane->plane.state); struct rcar_du_crtc *crtc = to_rcar_crtc(state->state.crtc); struct drm_framebuffer *fb = plane->plane.state->fb; const struct rcar_du_format_info *format; struct vsp1_du_atomic_config cfg = { .pixelformat = 0, .pitch = fb->pitches[0], .alpha = state->state.alpha >> 8, .zpos = state->state.zpos, }; u32 fourcc = rcar_du_vsp_state_get_format(state); unsigned int i; cfg.src.left = state->state.src.x1 >> 16; cfg.src.top = state->state.src.y1 >> 16; cfg.src.width = drm_rect_width(&state->state.src) >> 16; cfg.src.height = drm_rect_height(&state->state.src) >> 16; cfg.dst.left = state->state.dst.x1; cfg.dst.top = state->state.dst.y1; cfg.dst.width = drm_rect_width(&state->state.dst); cfg.dst.height = drm_rect_height(&state->state.dst); for (i = 0; i < state->format->planes; ++i) cfg.mem[i] = sg_dma_address(state->sg_tables[i].sgl) + fb->offsets[i]; format = rcar_du_format_info(fourcc); cfg.pixelformat = format->v4l2; cfg.premult = state->state.pixel_blend_mode == DRM_MODE_BLEND_PREMULTI; vsp1_du_atomic_update(plane->vsp->vsp, crtc->vsp_pipe, plane->index, &cfg); } int rcar_du_vsp_map_fb(struct rcar_du_vsp *vsp, struct drm_framebuffer *fb, struct sg_table sg_tables[3]) { struct rcar_du_device *rcdu = vsp->dev; unsigned int i, j; int ret; for (i = 0; i < fb->format->num_planes; ++i) { struct drm_gem_dma_object *gem = drm_fb_dma_get_gem_obj(fb, i); struct sg_table *sgt = &sg_tables[i]; if (gem->sgt) { struct scatterlist *src; struct scatterlist *dst; /* * If the GEM buffer has a scatter gather table, it has * been imported from a dma-buf and has no physical * address as it might not be physically contiguous. * Copy the original scatter gather table to map it to * the VSP. */ ret = sg_alloc_table(sgt, gem->sgt->orig_nents, GFP_KERNEL); if (ret) goto fail; src = gem->sgt->sgl; dst = sgt->sgl; for (j = 0; j < gem->sgt->orig_nents; ++j) { sg_set_page(dst, sg_page(src), src->length, src->offset); src = sg_next(src); dst = sg_next(dst); } } else { ret = dma_get_sgtable(rcdu->dev, sgt, gem->vaddr, gem->dma_addr, gem->base.size); if (ret) goto fail; } ret = vsp1_du_map_sg(vsp->vsp, sgt); if (ret) { sg_free_table(sgt); goto fail; } } return 0; fail: while (i--) { struct sg_table *sgt = &sg_tables[i]; vsp1_du_unmap_sg(vsp->vsp, sgt); sg_free_table(sgt); } return ret; } static int rcar_du_vsp_plane_prepare_fb(struct drm_plane *plane, struct drm_plane_state *state) { struct rcar_du_vsp_plane_state *rstate = to_rcar_vsp_plane_state(state); struct rcar_du_vsp *vsp = to_rcar_vsp_plane(plane)->vsp; int ret; /* * There's no need to prepare (and unprepare) the framebuffer when the * plane is not visible, as it will not be displayed. */ if (!state->visible) return 0; ret = rcar_du_vsp_map_fb(vsp, state->fb, rstate->sg_tables); if (ret < 0) return ret; return drm_gem_plane_helper_prepare_fb(plane, state); } void rcar_du_vsp_unmap_fb(struct rcar_du_vsp *vsp, struct drm_framebuffer *fb, struct sg_table sg_tables[3]) { unsigned int i; for (i = 0; i < fb->format->num_planes; ++i) { struct sg_table *sgt = &sg_tables[i]; vsp1_du_unmap_sg(vsp->vsp, sgt); sg_free_table(sgt); } } static void rcar_du_vsp_plane_cleanup_fb(struct drm_plane *plane, struct drm_plane_state *state) { struct rcar_du_vsp_plane_state *rstate = to_rcar_vsp_plane_state(state); struct rcar_du_vsp *vsp = to_rcar_vsp_plane(plane)->vsp; if (!state->visible) return; rcar_du_vsp_unmap_fb(vsp, state->fb, rstate->sg_tables); } static int rcar_du_vsp_plane_atomic_check(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, plane); struct rcar_du_vsp_plane_state *rstate = to_rcar_vsp_plane_state(new_plane_state); return __rcar_du_plane_atomic_check(plane, new_plane_state, &rstate->format); } static void rcar_du_vsp_plane_atomic_update(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, plane); struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane); struct rcar_du_vsp_plane *rplane = to_rcar_vsp_plane(plane); struct rcar_du_crtc *crtc = to_rcar_crtc(old_state->crtc); if (new_state->visible) rcar_du_vsp_plane_setup(rplane); else if (old_state->crtc) vsp1_du_atomic_update(rplane->vsp->vsp, crtc->vsp_pipe, rplane->index, NULL); } static const struct drm_plane_helper_funcs rcar_du_vsp_plane_helper_funcs = { .prepare_fb = rcar_du_vsp_plane_prepare_fb, .cleanup_fb = rcar_du_vsp_plane_cleanup_fb, .atomic_check = rcar_du_vsp_plane_atomic_check, .atomic_update = rcar_du_vsp_plane_atomic_update, }; static struct drm_plane_state * rcar_du_vsp_plane_atomic_duplicate_state(struct drm_plane *plane) { struct rcar_du_vsp_plane_state *copy; if (WARN_ON(!plane->state)) return NULL; copy = kzalloc(sizeof(*copy), GFP_KERNEL); if (copy == NULL) return NULL; __drm_atomic_helper_plane_duplicate_state(plane, &copy->state); return &copy->state; } static void rcar_du_vsp_plane_atomic_destroy_state(struct drm_plane *plane, struct drm_plane_state *state) { __drm_atomic_helper_plane_destroy_state(state); kfree(to_rcar_vsp_plane_state(state)); } static void rcar_du_vsp_plane_reset(struct drm_plane *plane) { struct rcar_du_vsp_plane_state *state; if (plane->state) { rcar_du_vsp_plane_atomic_destroy_state(plane, plane->state); plane->state = NULL; } state = kzalloc(sizeof(*state), GFP_KERNEL); if (state == NULL) return; __drm_atomic_helper_plane_reset(plane, &state->state); } static const struct drm_plane_funcs rcar_du_vsp_plane_funcs = { .update_plane = drm_atomic_helper_update_plane, .disable_plane = drm_atomic_helper_disable_plane, .reset = rcar_du_vsp_plane_reset, .destroy = drm_plane_cleanup, .atomic_duplicate_state = rcar_du_vsp_plane_atomic_duplicate_state, .atomic_destroy_state = rcar_du_vsp_plane_atomic_destroy_state, }; static void rcar_du_vsp_cleanup(struct drm_device *dev, void *res) { struct rcar_du_vsp *vsp = res; unsigned int i; for (i = 0; i < vsp->num_planes; ++i) { struct rcar_du_vsp_plane *plane = &vsp->planes[i]; drm_plane_cleanup(&plane->plane); } kfree(vsp->planes); put_device(vsp->vsp); } int rcar_du_vsp_init(struct rcar_du_vsp *vsp, struct device_node *np, unsigned int crtcs) { struct rcar_du_device *rcdu = vsp->dev; struct platform_device *pdev; unsigned int num_crtcs = hweight32(crtcs); unsigned int num_planes; unsigned int i; int ret; /* Find the VSP device and initialize it. */ pdev = of_find_device_by_node(np); if (!pdev) return -ENXIO; vsp->vsp = &pdev->dev; ret = drmm_add_action_or_reset(&rcdu->ddev, rcar_du_vsp_cleanup, vsp); if (ret < 0) return ret; ret = vsp1_du_init(vsp->vsp); if (ret < 0) return ret; num_planes = rcdu->info->num_rpf; vsp->planes = kcalloc(num_planes, sizeof(*vsp->planes), GFP_KERNEL); if (!vsp->planes) return -ENOMEM; for (i = 0; i < num_planes; ++i) { enum drm_plane_type type = i < num_crtcs ? DRM_PLANE_TYPE_PRIMARY : DRM_PLANE_TYPE_OVERLAY; struct rcar_du_vsp_plane *plane = &vsp->planes[i]; unsigned int num_formats; const u32 *formats; if (rcdu->info->gen < 4) { num_formats = ARRAY_SIZE(rcar_du_vsp_formats); formats = rcar_du_vsp_formats; } else { num_formats = ARRAY_SIZE(rcar_du_vsp_formats_gen4); formats = rcar_du_vsp_formats_gen4; } plane->vsp = vsp; plane->index = i; ret = drm_universal_plane_init(&rcdu->ddev, &plane->plane, crtcs, &rcar_du_vsp_plane_funcs, formats, num_formats, NULL, type, NULL); if (ret < 0) return ret; drm_plane_helper_add(&plane->plane, &rcar_du_vsp_plane_helper_funcs); drm_plane_create_alpha_property(&plane->plane); drm_plane_create_zpos_property(&plane->plane, i, 0, num_planes - 1); drm_plane_create_blend_mode_property(&plane->plane, BIT(DRM_MODE_BLEND_PIXEL_NONE) | BIT(DRM_MODE_BLEND_PREMULTI) | BIT(DRM_MODE_BLEND_COVERAGE)); vsp->num_planes++; } return 0; }
linux-master
drivers/gpu/drm/renesas/rcar-du/rcar_du_vsp.c
// SPDX-License-Identifier: GPL-2.0+ /* * R-Car Display Unit CRTCs * * Copyright (C) 2013-2015 Renesas Electronics Corporation * * Contact: Laurent Pinchart ([email protected]) */ #include <linux/clk.h> #include <linux/mutex.h> #include <linux/platform_device.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_bridge.h> #include <drm/drm_crtc.h> #include <drm/drm_device.h> #include <drm/drm_gem_dma_helper.h> #include <drm/drm_vblank.h> #include "rcar_cmm.h" #include "rcar_du_crtc.h" #include "rcar_du_drv.h" #include "rcar_du_encoder.h" #include "rcar_du_kms.h" #include "rcar_du_plane.h" #include "rcar_du_regs.h" #include "rcar_du_vsp.h" #include "rcar_lvds.h" #include "rcar_mipi_dsi.h" static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg) { struct rcar_du_device *rcdu = rcrtc->dev; return rcar_du_read(rcdu, rcrtc->mmio_offset + reg); } static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data) { struct rcar_du_device *rcdu = rcrtc->dev; rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data); } static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr) { struct rcar_du_device *rcdu = rcrtc->dev; rcar_du_write(rcdu, rcrtc->mmio_offset + reg, rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr); } static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set) { struct rcar_du_device *rcdu = rcrtc->dev; rcar_du_write(rcdu, rcrtc->mmio_offset + reg, rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set); } void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set) { struct rcar_du_device *rcdu = rcrtc->dev; rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set; rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr); } /* ----------------------------------------------------------------------------- * Hardware Setup */ struct dpll_info { unsigned int output; unsigned int fdpll; unsigned int n; unsigned int m; }; static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc, struct dpll_info *dpll, unsigned long input, unsigned long target) { unsigned long best_diff = (unsigned long)-1; unsigned long diff; unsigned int fdpll; unsigned int m; unsigned int n; /* * fin fvco fout fclkout * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out * +-> | | | * | | * +---------------- [1/N] <------------+ * * fclkout = fvco / P / FDPLL -- (1) * * fin/M = fvco/P/N * * fvco = fin * P * N / M -- (2) * * (1) + (2) indicates * * fclkout = fin * N / M / FDPLL * * NOTES * N : (n + 1) * M : (m + 1) * FDPLL : (fdpll + 1) * P : 2 * 2kHz < fvco < 4096MHz * * To minimize the jitter, * N : as large as possible * M : as small as possible */ for (m = 0; m < 4; m++) { for (n = 119; n > 38; n--) { /* * This code only runs on 64-bit architectures, the * unsigned long type can thus be used for 64-bit * computation. It will still compile without any * warning on 32-bit architectures. * * To optimize calculations, use fout instead of fvco * to verify the VCO frequency constraint. */ unsigned long fout = input * (n + 1) / (m + 1); if (fout < 1000 || fout > 2048 * 1000 * 1000U) continue; for (fdpll = 1; fdpll < 32; fdpll++) { unsigned long output; output = fout / (fdpll + 1); if (output >= 400 * 1000 * 1000) continue; diff = abs((long)output - (long)target); if (best_diff > diff) { best_diff = diff; dpll->n = n; dpll->m = m; dpll->fdpll = fdpll; dpll->output = output; } if (diff == 0) goto done; } } } done: dev_dbg(rcrtc->dev->dev, "output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n", dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff); } struct du_clk_params { struct clk *clk; unsigned long rate; unsigned long diff; u32 escr; }; static void rcar_du_escr_divider(struct clk *clk, unsigned long target, u32 escr, struct du_clk_params *params) { unsigned long rate; unsigned long diff; u32 div; /* * If the target rate has already been achieved perfectly we can't do * better. */ if (params->diff == 0) return; /* * Compute the input clock rate and internal divisor values to obtain * the clock rate closest to the target frequency. */ rate = clk_round_rate(clk, target); div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1; diff = abs(rate / (div + 1) - target); /* * Store the parameters if the resulting frequency is better than any * previously calculated value. */ if (diff < params->diff) { params->clk = clk; params->rate = rate; params->diff = diff; params->escr = escr | div; } } static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc) { const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode; struct rcar_du_device *rcdu = rcrtc->dev; unsigned long mode_clock = mode->clock * 1000; unsigned int hdse_offset; u32 dsmr; u32 escr; if (rcdu->info->dpll_mask & (1 << rcrtc->index)) { unsigned long target = mode_clock; struct dpll_info dpll = { 0 }; unsigned long extclk; u32 dpllcr; u32 div = 0; /* * DU channels that have a display PLL can't use the internal * system clock, and have no internal clock divider. */ extclk = clk_get_rate(rcrtc->extclock); rcar_du_dpll_divider(rcrtc, &dpll, extclk, target); dpllcr = DPLLCR_CODE | DPLLCR_CLKE | DPLLCR_FDPLL(dpll.fdpll) | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m) | DPLLCR_STBY; if (rcrtc->index == 1) dpllcr |= DPLLCR_PLCS1 | DPLLCR_INCS_DOTCLKIN1; else dpllcr |= DPLLCR_PLCS0 | DPLLCR_INCS_DOTCLKIN0; rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr); escr = ESCR_DCLKSEL_DCLKIN | div; } else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) || rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) { /* * Use the external LVDS or DSI PLL output as the dot clock when * outputting to the LVDS or DSI encoder on an SoC that supports * this clock routing option. We use the clock directly in that * case, without any additional divider. */ escr = ESCR_DCLKSEL_DCLKIN; } else { struct du_clk_params params = { .diff = (unsigned long)-1 }; rcar_du_escr_divider(rcrtc->clock, mode_clock, ESCR_DCLKSEL_CLKS, &params); if (rcrtc->extclock) rcar_du_escr_divider(rcrtc->extclock, mode_clock, ESCR_DCLKSEL_DCLKIN, &params); dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n", mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext", params.rate); clk_set_rate(params.clk, params.rate); escr = params.escr; } /* * The ESCR register only exists in DU channels that can output to an * LVDS or DPAT, and the OTAR register in DU channels that can output * to a DPAD. */ if ((rcdu->info->routes[RCAR_DU_OUTPUT_DPAD0].possible_crtcs | rcdu->info->routes[RCAR_DU_OUTPUT_DPAD1].possible_crtcs | rcdu->info->routes[RCAR_DU_OUTPUT_LVDS0].possible_crtcs | rcdu->info->routes[RCAR_DU_OUTPUT_LVDS1].possible_crtcs) & BIT(rcrtc->index)) { dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr); rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr); } if ((rcdu->info->routes[RCAR_DU_OUTPUT_DPAD0].possible_crtcs | rcdu->info->routes[RCAR_DU_OUTPUT_DPAD1].possible_crtcs) & BIT(rcrtc->index)) rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0); /* Signal polarities */ dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0) | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0) | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0) | DSMR_DIPM_DISP | DSMR_CSPM; rcar_du_crtc_write(rcrtc, DSMR, dsmr); /* * When the CMM is enabled, an additional offset of 25 pixels must be * subtracted from the HDS (horizontal display start) and HDE * (horizontal display end) registers. */ hdse_offset = 19; if (rcrtc->group->cmms_mask & BIT(rcrtc->index % 2)) hdse_offset += 25; /* Display timings */ rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - hdse_offset); rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start + mode->hdisplay - hdse_offset); rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end - mode->hsync_start - 1); rcar_du_crtc_write(rcrtc, HCR, mode->htotal - 1); rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal - mode->crtc_vsync_end - 2); rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal - mode->crtc_vsync_end + mode->crtc_vdisplay - 2); rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal - mode->crtc_vsync_end + mode->crtc_vsync_start - 1); rcar_du_crtc_write(rcrtc, VCR, mode->crtc_vtotal - 1); rcar_du_crtc_write(rcrtc, DESR, mode->htotal - mode->hsync_start - 1); rcar_du_crtc_write(rcrtc, DEWR, mode->hdisplay); } static unsigned int plane_zpos(struct rcar_du_plane *plane) { return plane->plane.state->normalized_zpos; } static const struct rcar_du_format_info * plane_format(struct rcar_du_plane *plane) { return to_rcar_plane_state(plane->plane.state)->format; } static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc) { struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES]; struct rcar_du_device *rcdu = rcrtc->dev; unsigned int num_planes = 0; unsigned int dptsr_planes; unsigned int hwplanes = 0; unsigned int prio = 0; unsigned int i; u32 dspr = 0; for (i = 0; i < rcrtc->group->num_planes; ++i) { struct rcar_du_plane *plane = &rcrtc->group->planes[i]; unsigned int j; if (plane->plane.state->crtc != &rcrtc->crtc || !plane->plane.state->visible) continue; /* Insert the plane in the sorted planes array. */ for (j = num_planes++; j > 0; --j) { if (plane_zpos(planes[j-1]) <= plane_zpos(plane)) break; planes[j] = planes[j-1]; } planes[j] = plane; prio += plane_format(plane)->planes * 4; } for (i = 0; i < num_planes; ++i) { struct rcar_du_plane *plane = planes[i]; struct drm_plane_state *state = plane->plane.state; unsigned int index = to_rcar_plane_state(state)->hwindex; prio -= 4; dspr |= (index + 1) << prio; hwplanes |= 1 << index; if (plane_format(plane)->planes == 2) { index = (index + 1) % 8; prio -= 4; dspr |= (index + 1) << prio; hwplanes |= 1 << index; } } /* If VSP+DU integration is enabled the plane assignment is fixed. */ if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) { if (rcdu->info->gen < 3) { dspr = (rcrtc->index % 2) + 1; hwplanes = 1 << (rcrtc->index % 2); } else { dspr = (rcrtc->index % 2) ? 3 : 1; hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0); } } /* * Update the planes to display timing and dot clock generator * associations. * * Updating the DPTSR register requires restarting the CRTC group, * resulting in visible flicker. To mitigate the issue only update the * association if needed by enabled planes. Planes being disabled will * keep their current association. */ mutex_lock(&rcrtc->group->lock); dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes : rcrtc->group->dptsr_planes & ~hwplanes; if (dptsr_planes != rcrtc->group->dptsr_planes) { rcar_du_group_write(rcrtc->group, DPTSR, (dptsr_planes << 16) | dptsr_planes); rcrtc->group->dptsr_planes = dptsr_planes; if (rcrtc->group->used_crtcs) rcar_du_group_restart(rcrtc->group); } /* Restart the group if plane sources have changed. */ if (rcrtc->group->need_restart) rcar_du_group_restart(rcrtc->group); mutex_unlock(&rcrtc->group->lock); rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, dspr); } /* ----------------------------------------------------------------------------- * Page Flip */ void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc) { struct drm_pending_vblank_event *event; struct drm_device *dev = rcrtc->crtc.dev; unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); event = rcrtc->event; rcrtc->event = NULL; spin_unlock_irqrestore(&dev->event_lock, flags); if (event == NULL) return; spin_lock_irqsave(&dev->event_lock, flags); drm_crtc_send_vblank_event(&rcrtc->crtc, event); wake_up(&rcrtc->flip_wait); spin_unlock_irqrestore(&dev->event_lock, flags); drm_crtc_vblank_put(&rcrtc->crtc); } static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc) { struct drm_device *dev = rcrtc->crtc.dev; unsigned long flags; bool pending; spin_lock_irqsave(&dev->event_lock, flags); pending = rcrtc->event != NULL; spin_unlock_irqrestore(&dev->event_lock, flags); return pending; } static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc) { struct rcar_du_device *rcdu = rcrtc->dev; if (wait_event_timeout(rcrtc->flip_wait, !rcar_du_crtc_page_flip_pending(rcrtc), msecs_to_jiffies(50))) return; dev_warn(rcdu->dev, "page flip timeout\n"); rcar_du_crtc_finish_page_flip(rcrtc); } /* ----------------------------------------------------------------------------- * Color Management Module (CMM) */ static int rcar_du_cmm_check(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct drm_property_blob *drm_lut = state->gamma_lut; struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); struct device *dev = rcrtc->dev->dev; if (!drm_lut) return 0; /* We only accept fully populated LUT tables. */ if (drm_color_lut_size(drm_lut) != CM2_LUT_SIZE) { dev_err(dev, "invalid gamma lut size: %zu bytes\n", drm_lut->length); return -EINVAL; } return 0; } static void rcar_du_cmm_setup(struct drm_crtc *crtc) { struct drm_property_blob *drm_lut = crtc->state->gamma_lut; struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); struct rcar_cmm_config cmm_config = {}; if (!rcrtc->cmm) return; if (drm_lut) cmm_config.lut.table = (struct drm_color_lut *)drm_lut->data; rcar_cmm_setup(rcrtc->cmm, &cmm_config); } /* ----------------------------------------------------------------------------- * Start/Stop and Suspend/Resume */ static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc) { /* Set display off and background to black */ rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0)); rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0)); /* Configure display timings and output routing */ rcar_du_crtc_set_display_timing(rcrtc); rcar_du_group_set_routing(rcrtc->group); /* Start with all planes disabled. */ rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0); /* Enable the VSP compositor. */ if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE)) rcar_du_vsp_enable(rcrtc); /* Turn vertical blanking interrupt reporting on. */ drm_crtc_vblank_on(&rcrtc->crtc); } static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc) { int ret; /* * Guard against double-get, as the function is called from both the * .atomic_enable() and .atomic_begin() handlers. */ if (rcrtc->initialized) return 0; ret = clk_prepare_enable(rcrtc->clock); if (ret < 0) return ret; ret = clk_prepare_enable(rcrtc->extclock); if (ret < 0) goto error_clock; ret = rcar_du_group_get(rcrtc->group); if (ret < 0) goto error_group; rcar_du_crtc_setup(rcrtc); rcrtc->initialized = true; return 0; error_group: clk_disable_unprepare(rcrtc->extclock); error_clock: clk_disable_unprepare(rcrtc->clock); return ret; } static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc) { rcar_du_group_put(rcrtc->group); clk_disable_unprepare(rcrtc->extclock); clk_disable_unprepare(rcrtc->clock); rcrtc->initialized = false; } static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc) { bool interlaced; /* * Select master sync mode. This enables display operation in master * sync mode (with the HSYNC and VSYNC signals configured as outputs and * actively driven). */ interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE; rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK, (interlaced ? DSYSR_SCM_INT_VIDEO : 0) | DSYSR_TVM_MASTER); rcar_du_group_start_stop(rcrtc->group, true); } static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc) { struct rcar_du_device *rcdu = rcrtc->dev; struct drm_crtc *crtc = &rcrtc->crtc; u32 status; /* Make sure vblank interrupts are enabled. */ drm_crtc_vblank_get(crtc); /* * Disable planes and calculate how many vertical blanking interrupts we * have to wait for. If a vertical blanking interrupt has been triggered * but not processed yet, we don't know whether it occurred before or * after the planes got disabled. We thus have to wait for two vblank * interrupts in that case. */ spin_lock_irq(&rcrtc->vblank_lock); rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0); status = rcar_du_crtc_read(rcrtc, DSSR); rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1; spin_unlock_irq(&rcrtc->vblank_lock); if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0, msecs_to_jiffies(100))) dev_warn(rcdu->dev, "vertical blanking timeout\n"); drm_crtc_vblank_put(crtc); } static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc) { struct drm_crtc *crtc = &rcrtc->crtc; /* * Disable all planes and wait for the change to take effect. This is * required as the plane enable registers are updated on vblank, and no * vblank will occur once the CRTC is stopped. Disabling planes when * starting the CRTC thus wouldn't be enough as it would start scanning * out immediately from old frame buffers until the next vblank. * * This increases the CRTC stop delay, especially when multiple CRTCs * are stopped in one operation as we now wait for one vblank per CRTC. * Whether this can be improved needs to be researched. */ rcar_du_crtc_disable_planes(rcrtc); /* * Disable vertical blanking interrupt reporting. We first need to wait * for page flip completion before stopping the CRTC as userspace * expects page flips to eventually complete. */ rcar_du_crtc_wait_page_flip(rcrtc); drm_crtc_vblank_off(crtc); /* Disable the VSP compositor. */ if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE)) rcar_du_vsp_disable(rcrtc); if (rcrtc->cmm) rcar_cmm_disable(rcrtc->cmm); /* * Select switch sync mode. This stops display operation and configures * the HSYNC and VSYNC signals as inputs. * * TODO: Find another way to stop the display for DUs that don't support * TVM sync. */ if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC)) rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK, DSYSR_TVM_SWITCH); rcar_du_group_start_stop(rcrtc->group, false); } /* ----------------------------------------------------------------------------- * CRTC Functions */ static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc); struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc_state); struct drm_encoder *encoder; int ret; ret = rcar_du_cmm_check(crtc, crtc_state); if (ret) return ret; /* Store the routes from the CRTC output to the DU outputs. */ rstate->outputs = 0; drm_for_each_encoder_mask(encoder, crtc->dev, crtc_state->encoder_mask) { struct rcar_du_encoder *renc; /* Skip the writeback encoder. */ if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) continue; renc = to_rcar_encoder(encoder); rstate->outputs |= BIT(renc->output); } return 0; } static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state); struct rcar_du_device *rcdu = rcrtc->dev; if (rcrtc->cmm) rcar_cmm_enable(rcrtc->cmm); rcar_du_crtc_get(rcrtc); /* * On D3/E3 the dot clock is provided by the LVDS encoder attached to * the DU channel. We need to enable its clock output explicitly before * starting the CRTC, as the bridge hasn't been enabled by the atomic * helpers yet. */ if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) { bool dot_clk_only = rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0); struct drm_bridge *bridge = rcdu->lvds[rcrtc->index]; const struct drm_display_mode *mode = &crtc->state->adjusted_mode; rcar_lvds_pclk_enable(bridge, mode->clock * 1000, dot_clk_only); } /* * Similarly to LVDS, on V3U the dot clock is provided by the DSI * encoder, and we need to enable the DSI clocks before enabling the CRTC. */ if ((rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) && (rstate->outputs & (BIT(RCAR_DU_OUTPUT_DSI0) | BIT(RCAR_DU_OUTPUT_DSI1)))) { struct drm_bridge *bridge = rcdu->dsi[rcrtc->index]; rcar_mipi_dsi_pclk_enable(bridge, state); } rcar_du_crtc_start(rcrtc); /* * TODO: The chip manual indicates that CMM tables should be written * after the DU channel has been activated. Investigate the impact * of this restriction on the first displayed frame. */ rcar_du_cmm_setup(crtc); } static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc); struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state); struct rcar_du_device *rcdu = rcrtc->dev; rcar_du_crtc_stop(rcrtc); rcar_du_crtc_put(rcrtc); if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) { bool dot_clk_only = rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0); struct drm_bridge *bridge = rcdu->lvds[rcrtc->index]; /* * Disable the LVDS clock output, see * rcar_du_crtc_atomic_enable(). When the LVDS output is used, * this also disables the LVDS encoder. */ rcar_lvds_pclk_disable(bridge, dot_clk_only); } if ((rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) && (rstate->outputs & (BIT(RCAR_DU_OUTPUT_DSI0) | BIT(RCAR_DU_OUTPUT_DSI1)))) { struct drm_bridge *bridge = rcdu->dsi[rcrtc->index]; /* * Disable the DSI clock output, see * rcar_du_crtc_atomic_enable(). */ rcar_mipi_dsi_pclk_disable(bridge); } spin_lock_irq(&crtc->dev->event_lock); if (crtc->state->event) { drm_crtc_send_vblank_event(crtc, crtc->state->event); crtc->state->event = NULL; } spin_unlock_irq(&crtc->dev->event_lock); } static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); WARN_ON(!crtc->state->enable); /* * If a mode set is in progress we can be called with the CRTC disabled. * We thus need to first get and setup the CRTC in order to configure * planes. We must *not* put the CRTC in .atomic_flush(), as it must be * kept awake until the .atomic_enable() call that will follow. The get * operation in .atomic_enable() will in that case be a no-op, and the * CRTC will be put later in .atomic_disable(). * * If a mode set is not in progress the CRTC is enabled, and the * following get call will be a no-op. There is thus no need to balance * it in .atomic_flush() either. */ rcar_du_crtc_get(rcrtc); /* If the active state changed, we let .atomic_enable handle CMM. */ if (crtc->state->color_mgmt_changed && !crtc->state->active_changed) rcar_du_cmm_setup(crtc); if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE)) rcar_du_vsp_atomic_begin(rcrtc); } static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); struct drm_device *dev = rcrtc->crtc.dev; unsigned long flags; rcar_du_crtc_update_planes(rcrtc); if (crtc->state->event) { WARN_ON(drm_crtc_vblank_get(crtc) != 0); spin_lock_irqsave(&dev->event_lock, flags); rcrtc->event = crtc->state->event; crtc->state->event = NULL; spin_unlock_irqrestore(&dev->event_lock, flags); } if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE)) rcar_du_vsp_atomic_flush(rcrtc); } static enum drm_mode_status rcar_du_crtc_mode_valid(struct drm_crtc *crtc, const struct drm_display_mode *mode) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); struct rcar_du_device *rcdu = rcrtc->dev; bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE; unsigned int min_sync_porch; unsigned int vbp; if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED)) return MODE_NO_INTERLACE; /* * The hardware requires a minimum combined horizontal sync and back * porch of 20 pixels (when CMM isn't used) or 45 pixels (when CMM is * used), and a minimum vertical back porch of 3 lines. */ min_sync_porch = 20; if (rcrtc->group->cmms_mask & BIT(rcrtc->index % 2)) min_sync_porch += 25; if (mode->htotal - mode->hsync_start < min_sync_porch) return MODE_HBLANK_NARROW; vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1); if (vbp < 3) return MODE_VBLANK_NARROW; return MODE_OK; } static const struct drm_crtc_helper_funcs crtc_helper_funcs = { .atomic_check = rcar_du_crtc_atomic_check, .atomic_begin = rcar_du_crtc_atomic_begin, .atomic_flush = rcar_du_crtc_atomic_flush, .atomic_enable = rcar_du_crtc_atomic_enable, .atomic_disable = rcar_du_crtc_atomic_disable, .mode_valid = rcar_du_crtc_mode_valid, }; static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc) { struct rcar_du_device *rcdu = rcrtc->dev; const char **sources; unsigned int count; int i = -1; /* CRC available only on Gen3 HW. */ if (rcdu->info->gen < 3) return; /* Reserve 1 for "auto" source. */ count = rcrtc->vsp->num_planes + 1; sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL); if (!sources) return; sources[0] = kstrdup("auto", GFP_KERNEL); if (!sources[0]) goto error; for (i = 0; i < rcrtc->vsp->num_planes; ++i) { struct drm_plane *plane = &rcrtc->vsp->planes[i].plane; char name[16]; sprintf(name, "plane%u", plane->base.id); sources[i + 1] = kstrdup(name, GFP_KERNEL); if (!sources[i + 1]) goto error; } rcrtc->sources = sources; rcrtc->sources_count = count; return; error: while (i >= 0) { kfree(sources[i]); i--; } kfree(sources); } static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc) { unsigned int i; if (!rcrtc->sources) return; for (i = 0; i < rcrtc->sources_count; i++) kfree(rcrtc->sources[i]); kfree(rcrtc->sources); rcrtc->sources = NULL; rcrtc->sources_count = 0; } static struct drm_crtc_state * rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc) { struct rcar_du_crtc_state *state; struct rcar_du_crtc_state *copy; if (WARN_ON(!crtc->state)) return NULL; state = to_rcar_crtc_state(crtc->state); copy = kmemdup(state, sizeof(*state), GFP_KERNEL); if (copy == NULL) return NULL; __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->state); return &copy->state; } static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *state) { __drm_atomic_helper_crtc_destroy_state(state); kfree(to_rcar_crtc_state(state)); } static void rcar_du_crtc_cleanup(struct drm_crtc *crtc) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); rcar_du_crtc_crc_cleanup(rcrtc); return drm_crtc_cleanup(crtc); } static void rcar_du_crtc_reset(struct drm_crtc *crtc) { struct rcar_du_crtc_state *state; if (crtc->state) { rcar_du_crtc_atomic_destroy_state(crtc, crtc->state); crtc->state = NULL; } state = kzalloc(sizeof(*state), GFP_KERNEL); if (state == NULL) return; state->crc.source = VSP1_DU_CRC_NONE; state->crc.index = 0; __drm_atomic_helper_crtc_reset(crtc, &state->state); } static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL); rcar_du_crtc_set(rcrtc, DIER, DIER_VBE); rcrtc->vblank_enable = true; return 0; } static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE); rcrtc->vblank_enable = false; } static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc, const char *source_name, enum vsp1_du_crc_source *source) { unsigned int index; int ret; /* * Parse the source name. Supported values are "plane%u" to compute the * CRC on an input plane (%u is the plane ID), and "auto" to compute the * CRC on the composer (VSP) output. */ if (!source_name) { *source = VSP1_DU_CRC_NONE; return 0; } else if (!strcmp(source_name, "auto")) { *source = VSP1_DU_CRC_OUTPUT; return 0; } else if (strstarts(source_name, "plane")) { unsigned int i; *source = VSP1_DU_CRC_PLANE; ret = kstrtouint(source_name + strlen("plane"), 10, &index); if (ret < 0) return ret; for (i = 0; i < rcrtc->vsp->num_planes; ++i) { if (index == rcrtc->vsp->planes[i].plane.base.id) return i; } } return -EINVAL; } static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name, size_t *values_cnt) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); enum vsp1_du_crc_source source; if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) { DRM_DEBUG_DRIVER("unknown source %s\n", source_name); return -EINVAL; } *values_cnt = 1; return 0; } static const char *const * rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); *count = rcrtc->sources_count; return rcrtc->sources; } static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc, const char *source_name) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); struct drm_modeset_acquire_ctx ctx; struct drm_crtc_state *crtc_state; struct drm_atomic_state *state; enum vsp1_du_crc_source source; unsigned int index; int ret; ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source); if (ret < 0) return ret; index = ret; /* Perform an atomic commit to set the CRC source. */ drm_modeset_acquire_init(&ctx, 0); state = drm_atomic_state_alloc(crtc->dev); if (!state) { ret = -ENOMEM; goto unlock; } state->acquire_ctx = &ctx; retry: crtc_state = drm_atomic_get_crtc_state(state, crtc); if (!IS_ERR(crtc_state)) { struct rcar_du_crtc_state *rcrtc_state; rcrtc_state = to_rcar_crtc_state(crtc_state); rcrtc_state->crc.source = source; rcrtc_state->crc.index = index; ret = drm_atomic_commit(state); } else { ret = PTR_ERR(crtc_state); } if (ret == -EDEADLK) { drm_atomic_state_clear(state); drm_modeset_backoff(&ctx); goto retry; } drm_atomic_state_put(state); unlock: drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); return ret; } static const struct drm_crtc_funcs crtc_funcs_gen2 = { .reset = rcar_du_crtc_reset, .destroy = drm_crtc_cleanup, .set_config = drm_atomic_helper_set_config, .page_flip = drm_atomic_helper_page_flip, .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state, .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state, .enable_vblank = rcar_du_crtc_enable_vblank, .disable_vblank = rcar_du_crtc_disable_vblank, }; static const struct drm_crtc_funcs crtc_funcs_gen3 = { .reset = rcar_du_crtc_reset, .destroy = rcar_du_crtc_cleanup, .set_config = drm_atomic_helper_set_config, .page_flip = drm_atomic_helper_page_flip, .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state, .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state, .enable_vblank = rcar_du_crtc_enable_vblank, .disable_vblank = rcar_du_crtc_disable_vblank, .set_crc_source = rcar_du_crtc_set_crc_source, .verify_crc_source = rcar_du_crtc_verify_crc_source, .get_crc_sources = rcar_du_crtc_get_crc_sources, }; /* ----------------------------------------------------------------------------- * Interrupt Handling */ static irqreturn_t rcar_du_crtc_irq(int irq, void *arg) { struct rcar_du_crtc *rcrtc = arg; struct rcar_du_device *rcdu = rcrtc->dev; irqreturn_t ret = IRQ_NONE; u32 status; spin_lock(&rcrtc->vblank_lock); status = rcar_du_crtc_read(rcrtc, DSSR); rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK); if (status & DSSR_VBK) { /* * Wake up the vblank wait if the counter reaches 0. This must * be protected by the vblank_lock to avoid races in * rcar_du_crtc_disable_planes(). */ if (rcrtc->vblank_count) { if (--rcrtc->vblank_count == 0) wake_up(&rcrtc->vblank_wait); } } spin_unlock(&rcrtc->vblank_lock); if (status & DSSR_VBK) { if (rcdu->info->gen < 3) { drm_crtc_handle_vblank(&rcrtc->crtc); rcar_du_crtc_finish_page_flip(rcrtc); } ret = IRQ_HANDLED; } return ret; } /* ----------------------------------------------------------------------------- * Initialization */ int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex, unsigned int hwindex) { static const unsigned int mmio_offsets[] = { DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET }; struct rcar_du_device *rcdu = rgrp->dev; struct platform_device *pdev = to_platform_device(rcdu->dev); struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex]; struct drm_crtc *crtc = &rcrtc->crtc; struct drm_plane *primary; unsigned int irqflags; struct clk *clk; char clk_name[9]; char *name; int irq; int ret; /* Get the CRTC clock and the optional external clock. */ if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_CLOCK)) { sprintf(clk_name, "du.%u", hwindex); name = clk_name; } else { name = NULL; } rcrtc->clock = devm_clk_get(rcdu->dev, name); if (IS_ERR(rcrtc->clock)) { dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex); return PTR_ERR(rcrtc->clock); } sprintf(clk_name, "dclkin.%u", hwindex); clk = devm_clk_get(rcdu->dev, clk_name); if (!IS_ERR(clk)) { rcrtc->extclock = clk; } else if (PTR_ERR(clk) == -EPROBE_DEFER) { return -EPROBE_DEFER; } else if (rcdu->info->dpll_mask & BIT(hwindex)) { /* * DU channels that have a display PLL can't use the internal * system clock and thus require an external clock. */ ret = PTR_ERR(clk); dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret); return ret; } init_waitqueue_head(&rcrtc->flip_wait); init_waitqueue_head(&rcrtc->vblank_wait); spin_lock_init(&rcrtc->vblank_lock); rcrtc->dev = rcdu; rcrtc->group = rgrp; rcrtc->mmio_offset = mmio_offsets[hwindex]; rcrtc->index = hwindex; rcrtc->dsysr = rcrtc->index % 2 ? 0 : DSYSR_DRES; if (rcar_du_has(rcdu, RCAR_DU_FEATURE_TVM_SYNC)) rcrtc->dsysr |= DSYSR_TVM_TVSYNC; if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane; else primary = &rgrp->planes[swindex % 2].plane; ret = drm_crtc_init_with_planes(&rcdu->ddev, crtc, primary, NULL, rcdu->info->gen <= 2 ? &crtc_funcs_gen2 : &crtc_funcs_gen3, NULL); if (ret < 0) return ret; /* CMM might be disabled for this CRTC. */ if (rcdu->cmms[swindex]) { rcrtc->cmm = rcdu->cmms[swindex]; rgrp->cmms_mask |= BIT(hwindex % 2); drm_mode_crtc_set_gamma_size(crtc, CM2_LUT_SIZE); drm_crtc_enable_color_mgmt(crtc, 0, false, CM2_LUT_SIZE); } drm_crtc_helper_add(crtc, &crtc_helper_funcs); /* Register the interrupt handler. */ if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ)) { /* The IRQ's are associated with the CRTC (sw)index. */ irq = platform_get_irq(pdev, swindex); irqflags = 0; } else { irq = platform_get_irq(pdev, 0); irqflags = IRQF_SHARED; } if (irq < 0) { dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex); return irq; } ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags, dev_name(rcdu->dev), rcrtc); if (ret < 0) { dev_err(rcdu->dev, "failed to register IRQ for CRTC %u\n", swindex); return ret; } rcar_du_crtc_crc_init(rcrtc); return 0; }
linux-master
drivers/gpu/drm/renesas/rcar-du/rcar_du_crtc.c
// SPDX-License-Identifier: GPL-2.0 /* * RZ/G2L MIPI DSI Encoder Driver * * Copyright (C) 2022 Renesas Electronics Corporation */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_graph.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/reset.h> #include <linux/slab.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_bridge.h> #include <drm/drm_mipi_dsi.h> #include <drm/drm_of.h> #include <drm/drm_panel.h> #include <drm/drm_probe_helper.h> #include "rzg2l_mipi_dsi_regs.h" struct rzg2l_mipi_dsi { struct device *dev; void __iomem *mmio; struct reset_control *rstc; struct reset_control *arstc; struct reset_control *prstc; struct mipi_dsi_host host; struct drm_bridge bridge; struct drm_bridge *next_bridge; struct clk *vclk; enum mipi_dsi_pixel_format format; unsigned int num_data_lanes; unsigned int lanes; unsigned long mode_flags; }; static inline struct rzg2l_mipi_dsi * bridge_to_rzg2l_mipi_dsi(struct drm_bridge *bridge) { return container_of(bridge, struct rzg2l_mipi_dsi, bridge); } static inline struct rzg2l_mipi_dsi * host_to_rzg2l_mipi_dsi(struct mipi_dsi_host *host) { return container_of(host, struct rzg2l_mipi_dsi, host); } struct rzg2l_mipi_dsi_timings { unsigned long hsfreq_max; u32 t_init; u32 tclk_prepare; u32 ths_prepare; u32 tclk_zero; u32 tclk_pre; u32 tclk_post; u32 tclk_trail; u32 ths_zero; u32 ths_trail; u32 ths_exit; u32 tlpx; }; static const struct rzg2l_mipi_dsi_timings rzg2l_mipi_dsi_global_timings[] = { { .hsfreq_max = 80000, .t_init = 79801, .tclk_prepare = 8, .ths_prepare = 13, .tclk_zero = 33, .tclk_pre = 24, .tclk_post = 94, .tclk_trail = 10, .ths_zero = 23, .ths_trail = 17, .ths_exit = 13, .tlpx = 6, }, { .hsfreq_max = 125000, .t_init = 79801, .tclk_prepare = 8, .ths_prepare = 12, .tclk_zero = 33, .tclk_pre = 15, .tclk_post = 94, .tclk_trail = 10, .ths_zero = 23, .ths_trail = 17, .ths_exit = 13, .tlpx = 6, }, { .hsfreq_max = 250000, .t_init = 79801, .tclk_prepare = 8, .ths_prepare = 12, .tclk_zero = 33, .tclk_pre = 13, .tclk_post = 94, .tclk_trail = 10, .ths_zero = 23, .ths_trail = 16, .ths_exit = 13, .tlpx = 6, }, { .hsfreq_max = 360000, .t_init = 79801, .tclk_prepare = 8, .ths_prepare = 10, .tclk_zero = 33, .tclk_pre = 4, .tclk_post = 35, .tclk_trail = 7, .ths_zero = 16, .ths_trail = 9, .ths_exit = 13, .tlpx = 6, }, { .hsfreq_max = 720000, .t_init = 79801, .tclk_prepare = 8, .ths_prepare = 9, .tclk_zero = 33, .tclk_pre = 4, .tclk_post = 35, .tclk_trail = 7, .ths_zero = 16, .ths_trail = 9, .ths_exit = 13, .tlpx = 6, }, { .hsfreq_max = 1500000, .t_init = 79801, .tclk_prepare = 8, .ths_prepare = 9, .tclk_zero = 33, .tclk_pre = 4, .tclk_post = 35, .tclk_trail = 7, .ths_zero = 16, .ths_trail = 9, .ths_exit = 13, .tlpx = 6, }, }; static void rzg2l_mipi_dsi_phy_write(struct rzg2l_mipi_dsi *dsi, u32 reg, u32 data) { iowrite32(data, dsi->mmio + reg); } static void rzg2l_mipi_dsi_link_write(struct rzg2l_mipi_dsi *dsi, u32 reg, u32 data) { iowrite32(data, dsi->mmio + LINK_REG_OFFSET + reg); } static u32 rzg2l_mipi_dsi_phy_read(struct rzg2l_mipi_dsi *dsi, u32 reg) { return ioread32(dsi->mmio + reg); } static u32 rzg2l_mipi_dsi_link_read(struct rzg2l_mipi_dsi *dsi, u32 reg) { return ioread32(dsi->mmio + LINK_REG_OFFSET + reg); } /* ----------------------------------------------------------------------------- * Hardware Setup */ static int rzg2l_mipi_dsi_dphy_init(struct rzg2l_mipi_dsi *dsi, unsigned long hsfreq) { const struct rzg2l_mipi_dsi_timings *dphy_timings; unsigned int i; u32 dphyctrl0; u32 dphytim0; u32 dphytim1; u32 dphytim2; u32 dphytim3; int ret; /* All DSI global operation timings are set with recommended setting */ for (i = 0; i < ARRAY_SIZE(rzg2l_mipi_dsi_global_timings); ++i) { dphy_timings = &rzg2l_mipi_dsi_global_timings[i]; if (hsfreq <= dphy_timings->hsfreq_max) break; } /* Initializing DPHY before accessing LINK */ dphyctrl0 = DSIDPHYCTRL0_CAL_EN_HSRX_OFS | DSIDPHYCTRL0_CMN_MASTER_EN | DSIDPHYCTRL0_RE_VDD_DETVCCQLV18 | DSIDPHYCTRL0_EN_BGR; rzg2l_mipi_dsi_phy_write(dsi, DSIDPHYCTRL0, dphyctrl0); usleep_range(20, 30); dphyctrl0 |= DSIDPHYCTRL0_EN_LDO1200; rzg2l_mipi_dsi_phy_write(dsi, DSIDPHYCTRL0, dphyctrl0); usleep_range(10, 20); dphytim0 = DSIDPHYTIM0_TCLK_MISS(0) | DSIDPHYTIM0_T_INIT(dphy_timings->t_init); dphytim1 = DSIDPHYTIM1_THS_PREPARE(dphy_timings->ths_prepare) | DSIDPHYTIM1_TCLK_PREPARE(dphy_timings->tclk_prepare) | DSIDPHYTIM1_THS_SETTLE(0) | DSIDPHYTIM1_TCLK_SETTLE(0); dphytim2 = DSIDPHYTIM2_TCLK_TRAIL(dphy_timings->tclk_trail) | DSIDPHYTIM2_TCLK_POST(dphy_timings->tclk_post) | DSIDPHYTIM2_TCLK_PRE(dphy_timings->tclk_pre) | DSIDPHYTIM2_TCLK_ZERO(dphy_timings->tclk_zero); dphytim3 = DSIDPHYTIM3_TLPX(dphy_timings->tlpx) | DSIDPHYTIM3_THS_EXIT(dphy_timings->ths_exit) | DSIDPHYTIM3_THS_TRAIL(dphy_timings->ths_trail) | DSIDPHYTIM3_THS_ZERO(dphy_timings->ths_zero); rzg2l_mipi_dsi_phy_write(dsi, DSIDPHYTIM0, dphytim0); rzg2l_mipi_dsi_phy_write(dsi, DSIDPHYTIM1, dphytim1); rzg2l_mipi_dsi_phy_write(dsi, DSIDPHYTIM2, dphytim2); rzg2l_mipi_dsi_phy_write(dsi, DSIDPHYTIM3, dphytim3); ret = reset_control_deassert(dsi->rstc); if (ret < 0) return ret; udelay(1); return 0; } static void rzg2l_mipi_dsi_dphy_exit(struct rzg2l_mipi_dsi *dsi) { u32 dphyctrl0; dphyctrl0 = rzg2l_mipi_dsi_phy_read(dsi, DSIDPHYCTRL0); dphyctrl0 &= ~(DSIDPHYCTRL0_EN_LDO1200 | DSIDPHYCTRL0_EN_BGR); rzg2l_mipi_dsi_phy_write(dsi, DSIDPHYCTRL0, dphyctrl0); reset_control_assert(dsi->rstc); } static int rzg2l_mipi_dsi_startup(struct rzg2l_mipi_dsi *dsi, const struct drm_display_mode *mode) { unsigned long hsfreq; unsigned int bpp; u32 txsetr; u32 clstptsetr; u32 lptrnstsetr; u32 clkkpt; u32 clkbfht; u32 clkstpt; u32 golpbkt; int ret; /* * Relationship between hsclk and vclk must follow * vclk * bpp = hsclk * 8 * lanes * where vclk: video clock (Hz) * bpp: video pixel bit depth * hsclk: DSI HS Byte clock frequency (Hz) * lanes: number of data lanes * * hsclk(bit) = hsclk(byte) * 8 */ bpp = mipi_dsi_pixel_format_to_bpp(dsi->format); hsfreq = (mode->clock * bpp * 8) / (8 * dsi->lanes); ret = pm_runtime_resume_and_get(dsi->dev); if (ret < 0) return ret; clk_set_rate(dsi->vclk, mode->clock * 1000); ret = rzg2l_mipi_dsi_dphy_init(dsi, hsfreq); if (ret < 0) goto err_phy; /* Enable Data lanes and Clock lanes */ txsetr = TXSETR_DLEN | TXSETR_NUMLANEUSE(dsi->lanes - 1) | TXSETR_CLEN; rzg2l_mipi_dsi_link_write(dsi, TXSETR, txsetr); /* * Global timings characteristic depends on high speed Clock Frequency * Currently MIPI DSI-IF just supports maximum FHD@60 with: * - videoclock = 148.5 (MHz) * - bpp: maximum 24bpp * - data lanes: maximum 4 lanes * Therefore maximum hsclk will be 891 Mbps. */ if (hsfreq > 445500) { clkkpt = 12; clkbfht = 15; clkstpt = 48; golpbkt = 75; } else if (hsfreq > 250000) { clkkpt = 7; clkbfht = 8; clkstpt = 27; golpbkt = 40; } else { clkkpt = 8; clkbfht = 6; clkstpt = 24; golpbkt = 29; } clstptsetr = CLSTPTSETR_CLKKPT(clkkpt) | CLSTPTSETR_CLKBFHT(clkbfht) | CLSTPTSETR_CLKSTPT(clkstpt); rzg2l_mipi_dsi_link_write(dsi, CLSTPTSETR, clstptsetr); lptrnstsetr = LPTRNSTSETR_GOLPBKT(golpbkt); rzg2l_mipi_dsi_link_write(dsi, LPTRNSTSETR, lptrnstsetr); return 0; err_phy: rzg2l_mipi_dsi_dphy_exit(dsi); pm_runtime_put(dsi->dev); return ret; } static void rzg2l_mipi_dsi_stop(struct rzg2l_mipi_dsi *dsi) { rzg2l_mipi_dsi_dphy_exit(dsi); pm_runtime_put(dsi->dev); } static void rzg2l_mipi_dsi_set_display_timing(struct rzg2l_mipi_dsi *dsi, const struct drm_display_mode *mode) { u32 vich1ppsetr; u32 vich1vssetr; u32 vich1vpsetr; u32 vich1hssetr; u32 vich1hpsetr; int dsi_format; u32 delay[2]; u8 index; /* Configuration for Pixel Packet */ dsi_format = mipi_dsi_pixel_format_to_bpp(dsi->format); switch (dsi_format) { case 24: vich1ppsetr = VICH1PPSETR_DT_RGB24; break; case 18: vich1ppsetr = VICH1PPSETR_DT_RGB18; break; } if ((dsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) && !(dsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST)) vich1ppsetr |= VICH1PPSETR_TXESYNC_PULSE; rzg2l_mipi_dsi_link_write(dsi, VICH1PPSETR, vich1ppsetr); /* Configuration for Video Parameters */ vich1vssetr = VICH1VSSETR_VACTIVE(mode->vdisplay) | VICH1VSSETR_VSA(mode->vsync_end - mode->vsync_start); vich1vssetr |= (mode->flags & DRM_MODE_FLAG_PVSYNC) ? VICH1VSSETR_VSPOL_HIGH : VICH1VSSETR_VSPOL_LOW; vich1vpsetr = VICH1VPSETR_VFP(mode->vsync_start - mode->vdisplay) | VICH1VPSETR_VBP(mode->vtotal - mode->vsync_end); vich1hssetr = VICH1HSSETR_HACTIVE(mode->hdisplay) | VICH1HSSETR_HSA(mode->hsync_end - mode->hsync_start); vich1hssetr |= (mode->flags & DRM_MODE_FLAG_PHSYNC) ? VICH1HSSETR_HSPOL_HIGH : VICH1HSSETR_HSPOL_LOW; vich1hpsetr = VICH1HPSETR_HFP(mode->hsync_start - mode->hdisplay) | VICH1HPSETR_HBP(mode->htotal - mode->hsync_end); rzg2l_mipi_dsi_link_write(dsi, VICH1VSSETR, vich1vssetr); rzg2l_mipi_dsi_link_write(dsi, VICH1VPSETR, vich1vpsetr); rzg2l_mipi_dsi_link_write(dsi, VICH1HSSETR, vich1hssetr); rzg2l_mipi_dsi_link_write(dsi, VICH1HPSETR, vich1hpsetr); /* * Configuration for Delay Value * Delay value based on 2 ranges of video clock. * 74.25MHz is videoclock of HD@60p or FHD@30p */ if (mode->clock > 74250) { delay[0] = 231; delay[1] = 216; } else { delay[0] = 220; delay[1] = 212; } if (dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) index = 0; else index = 1; rzg2l_mipi_dsi_link_write(dsi, VICH1SET1R, VICH1SET1R_DLY(delay[index])); } static int rzg2l_mipi_dsi_start_hs_clock(struct rzg2l_mipi_dsi *dsi) { bool is_clk_cont; u32 hsclksetr; u32 status; int ret; is_clk_cont = !(dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS); /* Start HS clock */ hsclksetr = HSCLKSETR_HSCLKRUN_HS | (is_clk_cont ? HSCLKSETR_HSCLKMODE_CONT : HSCLKSETR_HSCLKMODE_NON_CONT); rzg2l_mipi_dsi_link_write(dsi, HSCLKSETR, hsclksetr); if (is_clk_cont) { ret = read_poll_timeout(rzg2l_mipi_dsi_link_read, status, status & PLSR_CLLP2HS, 2000, 20000, false, dsi, PLSR); if (ret < 0) { dev_err(dsi->dev, "failed to start HS clock\n"); return ret; } } dev_dbg(dsi->dev, "Start High Speed Clock with %s clock mode", is_clk_cont ? "continuous" : "non-continuous"); return 0; } static int rzg2l_mipi_dsi_stop_hs_clock(struct rzg2l_mipi_dsi *dsi) { bool is_clk_cont; u32 status; int ret; is_clk_cont = !(dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS); /* Stop HS clock */ rzg2l_mipi_dsi_link_write(dsi, HSCLKSETR, is_clk_cont ? HSCLKSETR_HSCLKMODE_CONT : HSCLKSETR_HSCLKMODE_NON_CONT); if (is_clk_cont) { ret = read_poll_timeout(rzg2l_mipi_dsi_link_read, status, status & PLSR_CLHS2LP, 2000, 20000, false, dsi, PLSR); if (ret < 0) { dev_err(dsi->dev, "failed to stop HS clock\n"); return ret; } } return 0; } static int rzg2l_mipi_dsi_start_video(struct rzg2l_mipi_dsi *dsi) { u32 vich1set0r; u32 status; int ret; /* Configuration for Blanking sequence and start video input*/ vich1set0r = VICH1SET0R_HFPNOLP | VICH1SET0R_HBPNOLP | VICH1SET0R_HSANOLP | VICH1SET0R_VSTART; rzg2l_mipi_dsi_link_write(dsi, VICH1SET0R, vich1set0r); ret = read_poll_timeout(rzg2l_mipi_dsi_link_read, status, status & VICH1SR_VIRDY, 2000, 20000, false, dsi, VICH1SR); if (ret < 0) dev_err(dsi->dev, "Failed to start video signal input\n"); return ret; } static int rzg2l_mipi_dsi_stop_video(struct rzg2l_mipi_dsi *dsi) { u32 status; int ret; rzg2l_mipi_dsi_link_write(dsi, VICH1SET0R, VICH1SET0R_VSTPAFT); ret = read_poll_timeout(rzg2l_mipi_dsi_link_read, status, (status & VICH1SR_STOP) && (!(status & VICH1SR_RUNNING)), 2000, 20000, false, dsi, VICH1SR); if (ret < 0) goto err; ret = read_poll_timeout(rzg2l_mipi_dsi_link_read, status, !(status & LINKSR_HSBUSY), 2000, 20000, false, dsi, LINKSR); if (ret < 0) goto err; return 0; err: dev_err(dsi->dev, "Failed to stop video signal input\n"); return ret; } /* ----------------------------------------------------------------------------- * Bridge */ static int rzg2l_mipi_dsi_attach(struct drm_bridge *bridge, enum drm_bridge_attach_flags flags) { struct rzg2l_mipi_dsi *dsi = bridge_to_rzg2l_mipi_dsi(bridge); return drm_bridge_attach(bridge->encoder, dsi->next_bridge, bridge, flags); } static void rzg2l_mipi_dsi_atomic_enable(struct drm_bridge *bridge, struct drm_bridge_state *old_bridge_state) { struct drm_atomic_state *state = old_bridge_state->base.state; struct rzg2l_mipi_dsi *dsi = bridge_to_rzg2l_mipi_dsi(bridge); const struct drm_display_mode *mode; struct drm_connector *connector; struct drm_crtc *crtc; int ret; connector = drm_atomic_get_new_connector_for_encoder(state, bridge->encoder); crtc = drm_atomic_get_new_connector_state(state, connector)->crtc; mode = &drm_atomic_get_new_crtc_state(state, crtc)->adjusted_mode; ret = rzg2l_mipi_dsi_startup(dsi, mode); if (ret < 0) return; rzg2l_mipi_dsi_set_display_timing(dsi, mode); ret = rzg2l_mipi_dsi_start_hs_clock(dsi); if (ret < 0) goto err_stop; ret = rzg2l_mipi_dsi_start_video(dsi); if (ret < 0) goto err_stop_clock; return; err_stop_clock: rzg2l_mipi_dsi_stop_hs_clock(dsi); err_stop: rzg2l_mipi_dsi_stop(dsi); } static void rzg2l_mipi_dsi_atomic_disable(struct drm_bridge *bridge, struct drm_bridge_state *old_bridge_state) { struct rzg2l_mipi_dsi *dsi = bridge_to_rzg2l_mipi_dsi(bridge); rzg2l_mipi_dsi_stop_video(dsi); rzg2l_mipi_dsi_stop_hs_clock(dsi); rzg2l_mipi_dsi_stop(dsi); } static enum drm_mode_status rzg2l_mipi_dsi_bridge_mode_valid(struct drm_bridge *bridge, const struct drm_display_info *info, const struct drm_display_mode *mode) { if (mode->clock > 148500) return MODE_CLOCK_HIGH; return MODE_OK; } static const struct drm_bridge_funcs rzg2l_mipi_dsi_bridge_ops = { .attach = rzg2l_mipi_dsi_attach, .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state, .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state, .atomic_reset = drm_atomic_helper_bridge_reset, .atomic_enable = rzg2l_mipi_dsi_atomic_enable, .atomic_disable = rzg2l_mipi_dsi_atomic_disable, .mode_valid = rzg2l_mipi_dsi_bridge_mode_valid, }; /* ----------------------------------------------------------------------------- * Host setting */ static int rzg2l_mipi_dsi_host_attach(struct mipi_dsi_host *host, struct mipi_dsi_device *device) { struct rzg2l_mipi_dsi *dsi = host_to_rzg2l_mipi_dsi(host); int ret; if (device->lanes > dsi->num_data_lanes) { dev_err(dsi->dev, "Number of lines of device (%u) exceeds host (%u)\n", device->lanes, dsi->num_data_lanes); return -EINVAL; } switch (mipi_dsi_pixel_format_to_bpp(device->format)) { case 24: case 18: break; default: dev_err(dsi->dev, "Unsupported format 0x%04x\n", device->format); return -EINVAL; } dsi->lanes = device->lanes; dsi->format = device->format; dsi->mode_flags = device->mode_flags; dsi->next_bridge = devm_drm_of_get_bridge(dsi->dev, dsi->dev->of_node, 1, 0); if (IS_ERR(dsi->next_bridge)) { ret = PTR_ERR(dsi->next_bridge); dev_err(dsi->dev, "failed to get next bridge: %d\n", ret); return ret; } drm_bridge_add(&dsi->bridge); return 0; } static int rzg2l_mipi_dsi_host_detach(struct mipi_dsi_host *host, struct mipi_dsi_device *device) { struct rzg2l_mipi_dsi *dsi = host_to_rzg2l_mipi_dsi(host); drm_bridge_remove(&dsi->bridge); return 0; } static const struct mipi_dsi_host_ops rzg2l_mipi_dsi_host_ops = { .attach = rzg2l_mipi_dsi_host_attach, .detach = rzg2l_mipi_dsi_host_detach, }; /* ----------------------------------------------------------------------------- * Power Management */ static int __maybe_unused rzg2l_mipi_pm_runtime_suspend(struct device *dev) { struct rzg2l_mipi_dsi *dsi = dev_get_drvdata(dev); reset_control_assert(dsi->prstc); reset_control_assert(dsi->arstc); return 0; } static int __maybe_unused rzg2l_mipi_pm_runtime_resume(struct device *dev) { struct rzg2l_mipi_dsi *dsi = dev_get_drvdata(dev); int ret; ret = reset_control_deassert(dsi->arstc); if (ret < 0) return ret; ret = reset_control_deassert(dsi->prstc); if (ret < 0) reset_control_assert(dsi->arstc); return ret; } static const struct dev_pm_ops rzg2l_mipi_pm_ops = { SET_RUNTIME_PM_OPS(rzg2l_mipi_pm_runtime_suspend, rzg2l_mipi_pm_runtime_resume, NULL) }; /* ----------------------------------------------------------------------------- * Probe & Remove */ static int rzg2l_mipi_dsi_probe(struct platform_device *pdev) { unsigned int num_data_lanes; struct rzg2l_mipi_dsi *dsi; u32 txsetr; int ret; dsi = devm_kzalloc(&pdev->dev, sizeof(*dsi), GFP_KERNEL); if (!dsi) return -ENOMEM; platform_set_drvdata(pdev, dsi); dsi->dev = &pdev->dev; ret = drm_of_get_data_lanes_count_ep(dsi->dev->of_node, 1, 0, 1, 4); if (ret < 0) return dev_err_probe(dsi->dev, ret, "missing or invalid data-lanes property\n"); num_data_lanes = ret; dsi->mmio = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(dsi->mmio)) return PTR_ERR(dsi->mmio); dsi->vclk = devm_clk_get(dsi->dev, "vclk"); if (IS_ERR(dsi->vclk)) return PTR_ERR(dsi->vclk); dsi->rstc = devm_reset_control_get_exclusive(dsi->dev, "rst"); if (IS_ERR(dsi->rstc)) return dev_err_probe(dsi->dev, PTR_ERR(dsi->rstc), "failed to get rst\n"); dsi->arstc = devm_reset_control_get_exclusive(dsi->dev, "arst"); if (IS_ERR(dsi->arstc)) return dev_err_probe(&pdev->dev, PTR_ERR(dsi->arstc), "failed to get arst\n"); dsi->prstc = devm_reset_control_get_exclusive(dsi->dev, "prst"); if (IS_ERR(dsi->prstc)) return dev_err_probe(dsi->dev, PTR_ERR(dsi->prstc), "failed to get prst\n"); platform_set_drvdata(pdev, dsi); pm_runtime_enable(dsi->dev); ret = pm_runtime_resume_and_get(dsi->dev); if (ret < 0) goto err_pm_disable; /* * TXSETR register can be read only after DPHY init. But during probe * mode->clock and format are not available. So initialize DPHY with * timing parameters for 80Mbps. */ ret = rzg2l_mipi_dsi_dphy_init(dsi, 80000); if (ret < 0) goto err_phy; txsetr = rzg2l_mipi_dsi_link_read(dsi, TXSETR); dsi->num_data_lanes = min(((txsetr >> 16) & 3) + 1, num_data_lanes); rzg2l_mipi_dsi_dphy_exit(dsi); pm_runtime_put(dsi->dev); /* Initialize the DRM bridge. */ dsi->bridge.funcs = &rzg2l_mipi_dsi_bridge_ops; dsi->bridge.of_node = dsi->dev->of_node; /* Init host device */ dsi->host.dev = dsi->dev; dsi->host.ops = &rzg2l_mipi_dsi_host_ops; ret = mipi_dsi_host_register(&dsi->host); if (ret < 0) goto err_pm_disable; return 0; err_phy: rzg2l_mipi_dsi_dphy_exit(dsi); pm_runtime_put(dsi->dev); err_pm_disable: pm_runtime_disable(dsi->dev); return ret; } static void rzg2l_mipi_dsi_remove(struct platform_device *pdev) { struct rzg2l_mipi_dsi *dsi = platform_get_drvdata(pdev); mipi_dsi_host_unregister(&dsi->host); pm_runtime_disable(&pdev->dev); } static const struct of_device_id rzg2l_mipi_dsi_of_table[] = { { .compatible = "renesas,rzg2l-mipi-dsi" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, rzg2l_mipi_dsi_of_table); static struct platform_driver rzg2l_mipi_dsi_platform_driver = { .probe = rzg2l_mipi_dsi_probe, .remove_new = rzg2l_mipi_dsi_remove, .driver = { .name = "rzg2l-mipi-dsi", .pm = &rzg2l_mipi_pm_ops, .of_match_table = rzg2l_mipi_dsi_of_table, }, }; module_platform_driver(rzg2l_mipi_dsi_platform_driver); MODULE_AUTHOR("Biju Das <[email protected]>"); MODULE_DESCRIPTION("Renesas RZ/G2L MIPI DSI Encoder Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/gpu/drm/renesas/rcar-du/rzg2l_mipi_dsi.c
// SPDX-License-Identifier: GPL-2.0+ /* * R-Car Display Unit Color Management Module * * Copyright (C) 2019 Jacopo Mondi <[email protected]> */ #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <drm/drm_color_mgmt.h> #include "rcar_cmm.h" #define CM2_LUT_CTRL 0x0000 #define CM2_LUT_CTRL_LUT_EN BIT(0) #define CM2_LUT_TBL_BASE 0x0600 #define CM2_LUT_TBL(__i) (CM2_LUT_TBL_BASE + (__i) * 4) struct rcar_cmm { void __iomem *base; /* * @lut: 1D-LUT state * @lut.enabled: 1D-LUT enabled flag */ struct { bool enabled; } lut; }; static inline int rcar_cmm_read(struct rcar_cmm *rcmm, u32 reg) { return ioread32(rcmm->base + reg); } static inline void rcar_cmm_write(struct rcar_cmm *rcmm, u32 reg, u32 data) { iowrite32(data, rcmm->base + reg); } /* * rcar_cmm_lut_write() - Scale the DRM LUT table entries to hardware precision * and write to the CMM registers * @rcmm: Pointer to the CMM device * @drm_lut: Pointer to the DRM LUT table */ static void rcar_cmm_lut_write(struct rcar_cmm *rcmm, const struct drm_color_lut *drm_lut) { unsigned int i; for (i = 0; i < CM2_LUT_SIZE; ++i) { u32 entry = drm_color_lut_extract(drm_lut[i].red, 8) << 16 | drm_color_lut_extract(drm_lut[i].green, 8) << 8 | drm_color_lut_extract(drm_lut[i].blue, 8); rcar_cmm_write(rcmm, CM2_LUT_TBL(i), entry); } } /* * rcar_cmm_setup() - Configure the CMM unit * @pdev: The platform device associated with the CMM instance * @config: The CMM unit configuration * * Configure the CMM unit with the given configuration. Currently enabling, * disabling and programming of the 1-D LUT unit is supported. * * As rcar_cmm_setup() accesses the CMM registers the unit should be powered * and its functional clock enabled. To guarantee this, before any call to * this function is made, the CMM unit has to be enabled by calling * rcar_cmm_enable() first. * * TODO: Add support for LUT double buffer operations to avoid updating the * LUT table entries while a frame is being displayed. */ int rcar_cmm_setup(struct platform_device *pdev, const struct rcar_cmm_config *config) { struct rcar_cmm *rcmm = platform_get_drvdata(pdev); /* Disable LUT if no table is provided. */ if (!config->lut.table) { if (rcmm->lut.enabled) { rcar_cmm_write(rcmm, CM2_LUT_CTRL, 0); rcmm->lut.enabled = false; } return 0; } /* Enable LUT and program the new gamma table values. */ if (!rcmm->lut.enabled) { rcar_cmm_write(rcmm, CM2_LUT_CTRL, CM2_LUT_CTRL_LUT_EN); rcmm->lut.enabled = true; } rcar_cmm_lut_write(rcmm, config->lut.table); return 0; } EXPORT_SYMBOL_GPL(rcar_cmm_setup); /* * rcar_cmm_enable() - Enable the CMM unit * @pdev: The platform device associated with the CMM instance * * When the output of the corresponding DU channel is routed to the CMM unit, * the unit shall be enabled before the DU channel is started, and remain * enabled until the channel is stopped. The CMM unit shall be disabled with * rcar_cmm_disable(). * * Calls to rcar_cmm_enable() and rcar_cmm_disable() are not reference-counted. * It is an error to attempt to enable an already enabled CMM unit, or to * attempt to disable a disabled unit. */ int rcar_cmm_enable(struct platform_device *pdev) { int ret; ret = pm_runtime_resume_and_get(&pdev->dev); if (ret < 0) return ret; return 0; } EXPORT_SYMBOL_GPL(rcar_cmm_enable); /* * rcar_cmm_disable() - Disable the CMM unit * @pdev: The platform device associated with the CMM instance * * See rcar_cmm_enable() for usage information. * * Disabling the CMM unit disable all the internal processing blocks. The CMM * state shall thus be restored with rcar_cmm_setup() when re-enabling the CMM * unit after the next rcar_cmm_enable() call. */ void rcar_cmm_disable(struct platform_device *pdev) { struct rcar_cmm *rcmm = platform_get_drvdata(pdev); rcar_cmm_write(rcmm, CM2_LUT_CTRL, 0); rcmm->lut.enabled = false; pm_runtime_put(&pdev->dev); } EXPORT_SYMBOL_GPL(rcar_cmm_disable); /* * rcar_cmm_init() - Initialize the CMM unit * @pdev: The platform device associated with the CMM instance * * Return: 0 on success, -EPROBE_DEFER if the CMM is not available yet, * -ENODEV if the DRM_RCAR_CMM config option is disabled */ int rcar_cmm_init(struct platform_device *pdev) { struct rcar_cmm *rcmm = platform_get_drvdata(pdev); if (!rcmm) return -EPROBE_DEFER; return 0; } EXPORT_SYMBOL_GPL(rcar_cmm_init); static int rcar_cmm_probe(struct platform_device *pdev) { struct rcar_cmm *rcmm; rcmm = devm_kzalloc(&pdev->dev, sizeof(*rcmm), GFP_KERNEL); if (!rcmm) return -ENOMEM; platform_set_drvdata(pdev, rcmm); rcmm->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(rcmm->base)) return PTR_ERR(rcmm->base); pm_runtime_enable(&pdev->dev); return 0; } static void rcar_cmm_remove(struct platform_device *pdev) { pm_runtime_disable(&pdev->dev); } static const struct of_device_id rcar_cmm_of_table[] = { { .compatible = "renesas,rcar-gen3-cmm", }, { .compatible = "renesas,rcar-gen2-cmm", }, { }, }; MODULE_DEVICE_TABLE(of, rcar_cmm_of_table); static struct platform_driver rcar_cmm_platform_driver = { .probe = rcar_cmm_probe, .remove_new = rcar_cmm_remove, .driver = { .name = "rcar-cmm", .of_match_table = rcar_cmm_of_table, }, }; module_platform_driver(rcar_cmm_platform_driver); MODULE_AUTHOR("Jacopo Mondi <[email protected]>"); MODULE_DESCRIPTION("Renesas R-Car CMM Driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/gpu/drm/renesas/rcar-du/rcar_cmm.c
// SPDX-License-Identifier: GPL-2.0+ /* * R-Car Display Unit DRM driver * * Copyright (C) 2013-2015 Renesas Electronics Corporation * * Contact: Laurent Pinchart ([email protected]) */ #include <linux/clk.h> #include <linux/dma-mapping.h> #include <linux/io.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm.h> #include <linux/slab.h> #include <linux/wait.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_drv.h> #include <drm/drm_fbdev_generic.h> #include <drm/drm_gem_dma_helper.h> #include <drm/drm_managed.h> #include <drm/drm_probe_helper.h> #include "rcar_du_drv.h" #include "rcar_du_kms.h" /* ----------------------------------------------------------------------------- * Device Information */ static const struct rcar_du_device_info rzg1_du_r8a7743_info = { .gen = 2, .features = RCAR_DU_FEATURE_CRTC_IRQ | RCAR_DU_FEATURE_CRTC_CLOCK | RCAR_DU_FEATURE_INTERLACED | RCAR_DU_FEATURE_TVM_SYNC, .channels_mask = BIT(1) | BIT(0), .routes = { /* * R8A774[34] has one RGB output and one LVDS output */ [RCAR_DU_OUTPUT_DPAD0] = { .possible_crtcs = BIT(1) | BIT(0), .port = 0, }, [RCAR_DU_OUTPUT_LVDS0] = { .possible_crtcs = BIT(0), .port = 1, }, }, .num_lvds = 1, .num_rpf = 4, }; static const struct rcar_du_device_info rzg1_du_r8a7745_info = { .gen = 2, .features = RCAR_DU_FEATURE_CRTC_IRQ | RCAR_DU_FEATURE_CRTC_CLOCK | RCAR_DU_FEATURE_INTERLACED | RCAR_DU_FEATURE_TVM_SYNC, .channels_mask = BIT(1) | BIT(0), .routes = { /* * R8A7745 has two RGB outputs */ [RCAR_DU_OUTPUT_DPAD0] = { .possible_crtcs = BIT(0), .port = 0, }, [RCAR_DU_OUTPUT_DPAD1] = { .possible_crtcs = BIT(1), .port = 1, }, }, .num_rpf = 4, }; static const struct rcar_du_device_info rzg1_du_r8a77470_info = { .gen = 2, .features = RCAR_DU_FEATURE_CRTC_IRQ | RCAR_DU_FEATURE_CRTC_CLOCK | RCAR_DU_FEATURE_INTERLACED | RCAR_DU_FEATURE_TVM_SYNC, .channels_mask = BIT(1) | BIT(0), .routes = { /* * R8A77470 has two RGB outputs, one LVDS output, and * one (currently unsupported) analog video output */ [RCAR_DU_OUTPUT_DPAD0] = { .possible_crtcs = BIT(0), .port = 0, }, [RCAR_DU_OUTPUT_DPAD1] = { .possible_crtcs = BIT(1), .port = 1, }, [RCAR_DU_OUTPUT_LVDS0] = { .possible_crtcs = BIT(0) | BIT(1), .port = 2, }, }, .num_rpf = 4, }; static const struct rcar_du_device_info rcar_du_r8a774a1_info = { .gen = 3, .features = RCAR_DU_FEATURE_CRTC_IRQ | RCAR_DU_FEATURE_CRTC_CLOCK | RCAR_DU_FEATURE_VSP1_SOURCE | RCAR_DU_FEATURE_INTERLACED | RCAR_DU_FEATURE_TVM_SYNC, .channels_mask = BIT(2) | BIT(1) | BIT(0), .routes = { /* * R8A774A1 has one RGB output, one LVDS output and one HDMI * output. */ [RCAR_DU_OUTPUT_DPAD0] = { .possible_crtcs = BIT(2), .port = 0, }, [RCAR_DU_OUTPUT_HDMI0] = { .possible_crtcs = BIT(1), .port = 1, }, [RCAR_DU_OUTPUT_LVDS0] = { .possible_crtcs = BIT(0), .port = 2, }, }, .num_lvds = 1, .num_rpf = 5, .dpll_mask = BIT(1), }; static const struct rcar_du_device_info rcar_du_r8a774b1_info = { .gen = 3, .features = RCAR_DU_FEATURE_CRTC_IRQ | RCAR_DU_FEATURE_CRTC_CLOCK | RCAR_DU_FEATURE_VSP1_SOURCE | RCAR_DU_FEATURE_INTERLACED | RCAR_DU_FEATURE_TVM_SYNC, .channels_mask = BIT(3) | BIT(1) | BIT(0), .routes = { /* * R8A774B1 has one RGB output, one LVDS output and one HDMI * output. */ [RCAR_DU_OUTPUT_DPAD0] = { .possible_crtcs = BIT(2), .port = 0, }, [RCAR_DU_OUTPUT_HDMI0] = { .possible_crtcs = BIT(1), .port = 1, }, [RCAR_DU_OUTPUT_LVDS0] = { .possible_crtcs = BIT(0), .port = 2, }, }, .num_lvds = 1, .num_rpf = 5, .dpll_mask = BIT(1), }; static const struct rcar_du_device_info rcar_du_r8a774c0_info = { .gen = 3, .features = RCAR_DU_FEATURE_CRTC_IRQ | RCAR_DU_FEATURE_CRTC_CLOCK | RCAR_DU_FEATURE_VSP1_SOURCE, .channels_mask = BIT(1) | BIT(0), .routes = { /* * R8A774C0 has one RGB output and two LVDS outputs */ [RCAR_DU_OUTPUT_DPAD0] = { .possible_crtcs = BIT(0) | BIT(1), .port = 0, }, [RCAR_DU_OUTPUT_LVDS0] = { .possible_crtcs = BIT(0), .port = 1, }, [RCAR_DU_OUTPUT_LVDS1] = { .possible_crtcs = BIT(1), .port = 2, }, }, .num_lvds = 2, .num_rpf = 4, .lvds_clk_mask = BIT(1) | BIT(0), }; static const struct rcar_du_device_info rcar_du_r8a774e1_info = { .gen = 3, .features = RCAR_DU_FEATURE_CRTC_IRQ | RCAR_DU_FEATURE_CRTC_CLOCK | RCAR_DU_FEATURE_VSP1_SOURCE | RCAR_DU_FEATURE_INTERLACED | RCAR_DU_FEATURE_TVM_SYNC, .channels_mask = BIT(3) | BIT(1) | BIT(0), .routes = { /* * R8A774E1 has one RGB output, one LVDS output and one HDMI * output. */ [RCAR_DU_OUTPUT_DPAD0] = { .possible_crtcs = BIT(2), .port = 0, }, [RCAR_DU_OUTPUT_HDMI0] = { .possible_crtcs = BIT(1), .port = 1, }, [RCAR_DU_OUTPUT_LVDS0] = { .possible_crtcs = BIT(0), .port = 2, }, }, .num_lvds = 1, .num_rpf = 5, .dpll_mask = BIT(1), }; static const struct rcar_du_device_info rcar_du_r8a7779_info = { .gen = 1, .features = RCAR_DU_FEATURE_INTERLACED | RCAR_DU_FEATURE_TVM_SYNC, .channels_mask = BIT(1) | BIT(0), .routes = { /* * R8A7779 has two RGB outputs and one (currently unsupported) * TCON output. */ [RCAR_DU_OUTPUT_DPAD0] = { .possible_crtcs = BIT(0), .port = 0, }, [RCAR_DU_OUTPUT_DPAD1] = { .possible_crtcs = BIT(1) | BIT(0), .port = 1, }, }, }; static const struct rcar_du_device_info rcar_du_r8a7790_info = { .gen = 2, .features = RCAR_DU_FEATURE_CRTC_IRQ | RCAR_DU_FEATURE_CRTC_CLOCK | RCAR_DU_FEATURE_INTERLACED | RCAR_DU_FEATURE_TVM_SYNC, .quirks = RCAR_DU_QUIRK_ALIGN_128B, .channels_mask = BIT(2) | BIT(1) | BIT(0), .routes = { /* * R8A7742 and R8A7790 each have one RGB output and two LVDS * outputs. Additionally R8A7790 supports one TCON output * (currently unsupported by the driver). */ [RCAR_DU_OUTPUT_DPAD0] = { .possible_crtcs = BIT(2) | BIT(1) | BIT(0), .port = 0, }, [RCAR_DU_OUTPUT_LVDS0] = { .possible_crtcs = BIT(0), .port = 1, }, [RCAR_DU_OUTPUT_LVDS1] = { .possible_crtcs = BIT(2) | BIT(1), .port = 2, }, }, .num_lvds = 2, .num_rpf = 4, }; /* M2-W (r8a7791) and M2-N (r8a7793) are identical */ static const struct rcar_du_device_info rcar_du_r8a7791_info = { .gen = 2, .features = RCAR_DU_FEATURE_CRTC_IRQ | RCAR_DU_FEATURE_CRTC_CLOCK | RCAR_DU_FEATURE_INTERLACED | RCAR_DU_FEATURE_TVM_SYNC, .channels_mask = BIT(1) | BIT(0), .routes = { /* * R8A779[13] has one RGB output, one LVDS output and one * (currently unsupported) TCON output. */ [RCAR_DU_OUTPUT_DPAD0] = { .possible_crtcs = BIT(1) | BIT(0), .port = 0, }, [RCAR_DU_OUTPUT_LVDS0] = { .possible_crtcs = BIT(0), .port = 1, }, }, .num_lvds = 1, .num_rpf = 4, }; static const struct rcar_du_device_info rcar_du_r8a7792_info = { .gen = 2, .features = RCAR_DU_FEATURE_CRTC_IRQ | RCAR_DU_FEATURE_CRTC_CLOCK | RCAR_DU_FEATURE_INTERLACED | RCAR_DU_FEATURE_TVM_SYNC, .channels_mask = BIT(1) | BIT(0), .routes = { /* R8A7792 has two RGB outputs. */ [RCAR_DU_OUTPUT_DPAD0] = { .possible_crtcs = BIT(0), .port = 0, }, [RCAR_DU_OUTPUT_DPAD1] = { .possible_crtcs = BIT(1), .port = 1, }, }, .num_rpf = 4, }; static const struct rcar_du_device_info rcar_du_r8a7794_info = { .gen = 2, .features = RCAR_DU_FEATURE_CRTC_IRQ | RCAR_DU_FEATURE_CRTC_CLOCK | RCAR_DU_FEATURE_INTERLACED | RCAR_DU_FEATURE_TVM_SYNC, .channels_mask = BIT(1) | BIT(0), .routes = { /* * R8A7794 has two RGB outputs and one (currently unsupported) * TCON output. */ [RCAR_DU_OUTPUT_DPAD0] = { .possible_crtcs = BIT(0), .port = 0, }, [RCAR_DU_OUTPUT_DPAD1] = { .possible_crtcs = BIT(1), .port = 1, }, }, .num_rpf = 4, }; static const struct rcar_du_device_info rcar_du_r8a7795_info = { .gen = 3, .features = RCAR_DU_FEATURE_CRTC_IRQ | RCAR_DU_FEATURE_CRTC_CLOCK | RCAR_DU_FEATURE_VSP1_SOURCE | RCAR_DU_FEATURE_INTERLACED | RCAR_DU_FEATURE_TVM_SYNC, .channels_mask = BIT(3) | BIT(2) | BIT(1) | BIT(0), .routes = { /* * R8A7795 has one RGB output, two HDMI outputs and one * LVDS output. */ [RCAR_DU_OUTPUT_DPAD0] = { .possible_crtcs = BIT(3), .port = 0, }, [RCAR_DU_OUTPUT_HDMI0] = { .possible_crtcs = BIT(1), .port = 1, }, [RCAR_DU_OUTPUT_HDMI1] = { .possible_crtcs = BIT(2), .port = 2, }, [RCAR_DU_OUTPUT_LVDS0] = { .possible_crtcs = BIT(0), .port = 3, }, }, .num_lvds = 1, .num_rpf = 5, .dpll_mask = BIT(2) | BIT(1), }; static const struct rcar_du_device_info rcar_du_r8a7796_info = { .gen = 3, .features = RCAR_DU_FEATURE_CRTC_IRQ | RCAR_DU_FEATURE_CRTC_CLOCK | RCAR_DU_FEATURE_VSP1_SOURCE | RCAR_DU_FEATURE_INTERLACED | RCAR_DU_FEATURE_TVM_SYNC, .channels_mask = BIT(2) | BIT(1) | BIT(0), .routes = { /* * R8A7796 has one RGB output, one LVDS output and one HDMI * output. */ [RCAR_DU_OUTPUT_DPAD0] = { .possible_crtcs = BIT(2), .port = 0, }, [RCAR_DU_OUTPUT_HDMI0] = { .possible_crtcs = BIT(1), .port = 1, }, [RCAR_DU_OUTPUT_LVDS0] = { .possible_crtcs = BIT(0), .port = 2, }, }, .num_lvds = 1, .num_rpf = 5, .dpll_mask = BIT(1), }; static const struct rcar_du_device_info rcar_du_r8a77965_info = { .gen = 3, .features = RCAR_DU_FEATURE_CRTC_IRQ | RCAR_DU_FEATURE_CRTC_CLOCK | RCAR_DU_FEATURE_VSP1_SOURCE | RCAR_DU_FEATURE_INTERLACED | RCAR_DU_FEATURE_TVM_SYNC, .channels_mask = BIT(3) | BIT(1) | BIT(0), .routes = { /* * R8A77965 has one RGB output, one LVDS output and one HDMI * output. */ [RCAR_DU_OUTPUT_DPAD0] = { .possible_crtcs = BIT(2), .port = 0, }, [RCAR_DU_OUTPUT_HDMI0] = { .possible_crtcs = BIT(1), .port = 1, }, [RCAR_DU_OUTPUT_LVDS0] = { .possible_crtcs = BIT(0), .port = 2, }, }, .num_lvds = 1, .num_rpf = 5, .dpll_mask = BIT(1), }; static const struct rcar_du_device_info rcar_du_r8a77970_info = { .gen = 3, .features = RCAR_DU_FEATURE_CRTC_IRQ | RCAR_DU_FEATURE_CRTC_CLOCK | RCAR_DU_FEATURE_VSP1_SOURCE | RCAR_DU_FEATURE_INTERLACED | RCAR_DU_FEATURE_TVM_SYNC, .channels_mask = BIT(0), .routes = { /* * R8A77970 and R8A77980 have one RGB output and one LVDS * output. */ [RCAR_DU_OUTPUT_DPAD0] = { .possible_crtcs = BIT(0), .port = 0, }, [RCAR_DU_OUTPUT_LVDS0] = { .possible_crtcs = BIT(0), .port = 1, }, }, .num_lvds = 1, .num_rpf = 5, }; static const struct rcar_du_device_info rcar_du_r8a7799x_info = { .gen = 3, .features = RCAR_DU_FEATURE_CRTC_IRQ | RCAR_DU_FEATURE_CRTC_CLOCK | RCAR_DU_FEATURE_VSP1_SOURCE, .channels_mask = BIT(1) | BIT(0), .routes = { /* * R8A77990 and R8A77995 have one RGB output and two LVDS * outputs. */ [RCAR_DU_OUTPUT_DPAD0] = { .possible_crtcs = BIT(0) | BIT(1), .port = 0, }, [RCAR_DU_OUTPUT_LVDS0] = { .possible_crtcs = BIT(0), .port = 1, }, [RCAR_DU_OUTPUT_LVDS1] = { .possible_crtcs = BIT(1), .port = 2, }, }, .num_lvds = 2, .num_rpf = 5, .lvds_clk_mask = BIT(1) | BIT(0), }; static const struct rcar_du_device_info rcar_du_r8a779a0_info = { .gen = 4, .features = RCAR_DU_FEATURE_CRTC_IRQ | RCAR_DU_FEATURE_VSP1_SOURCE | RCAR_DU_FEATURE_NO_BLENDING, .channels_mask = BIT(1) | BIT(0), .routes = { /* R8A779A0 has two MIPI DSI outputs. */ [RCAR_DU_OUTPUT_DSI0] = { .possible_crtcs = BIT(0), .port = 0, }, [RCAR_DU_OUTPUT_DSI1] = { .possible_crtcs = BIT(1), .port = 1, }, }, .num_rpf = 5, .dsi_clk_mask = BIT(1) | BIT(0), }; static const struct rcar_du_device_info rcar_du_r8a779g0_info = { .gen = 4, .features = RCAR_DU_FEATURE_CRTC_IRQ | RCAR_DU_FEATURE_VSP1_SOURCE | RCAR_DU_FEATURE_NO_BLENDING, .channels_mask = BIT(1) | BIT(0), .routes = { /* R8A779G0 has two MIPI DSI outputs. */ [RCAR_DU_OUTPUT_DSI0] = { .possible_crtcs = BIT(0), .port = 0, }, [RCAR_DU_OUTPUT_DSI1] = { .possible_crtcs = BIT(1), .port = 1, }, }, .num_rpf = 5, .dsi_clk_mask = BIT(1) | BIT(0), }; static const struct of_device_id rcar_du_of_table[] = { { .compatible = "renesas,du-r8a7742", .data = &rcar_du_r8a7790_info }, { .compatible = "renesas,du-r8a7743", .data = &rzg1_du_r8a7743_info }, { .compatible = "renesas,du-r8a7744", .data = &rzg1_du_r8a7743_info }, { .compatible = "renesas,du-r8a7745", .data = &rzg1_du_r8a7745_info }, { .compatible = "renesas,du-r8a77470", .data = &rzg1_du_r8a77470_info }, { .compatible = "renesas,du-r8a774a1", .data = &rcar_du_r8a774a1_info }, { .compatible = "renesas,du-r8a774b1", .data = &rcar_du_r8a774b1_info }, { .compatible = "renesas,du-r8a774c0", .data = &rcar_du_r8a774c0_info }, { .compatible = "renesas,du-r8a774e1", .data = &rcar_du_r8a774e1_info }, { .compatible = "renesas,du-r8a7779", .data = &rcar_du_r8a7779_info }, { .compatible = "renesas,du-r8a7790", .data = &rcar_du_r8a7790_info }, { .compatible = "renesas,du-r8a7791", .data = &rcar_du_r8a7791_info }, { .compatible = "renesas,du-r8a7792", .data = &rcar_du_r8a7792_info }, { .compatible = "renesas,du-r8a7793", .data = &rcar_du_r8a7791_info }, { .compatible = "renesas,du-r8a7794", .data = &rcar_du_r8a7794_info }, { .compatible = "renesas,du-r8a7795", .data = &rcar_du_r8a7795_info }, { .compatible = "renesas,du-r8a7796", .data = &rcar_du_r8a7796_info }, { .compatible = "renesas,du-r8a77961", .data = &rcar_du_r8a7796_info }, { .compatible = "renesas,du-r8a77965", .data = &rcar_du_r8a77965_info }, { .compatible = "renesas,du-r8a77970", .data = &rcar_du_r8a77970_info }, { .compatible = "renesas,du-r8a77980", .data = &rcar_du_r8a77970_info }, { .compatible = "renesas,du-r8a77990", .data = &rcar_du_r8a7799x_info }, { .compatible = "renesas,du-r8a77995", .data = &rcar_du_r8a7799x_info }, { .compatible = "renesas,du-r8a779a0", .data = &rcar_du_r8a779a0_info }, { .compatible = "renesas,du-r8a779g0", .data = &rcar_du_r8a779g0_info }, { } }; MODULE_DEVICE_TABLE(of, rcar_du_of_table); const char *rcar_du_output_name(enum rcar_du_output output) { static const char * const names[] = { [RCAR_DU_OUTPUT_DPAD0] = "DPAD0", [RCAR_DU_OUTPUT_DPAD1] = "DPAD1", [RCAR_DU_OUTPUT_DSI0] = "DSI0", [RCAR_DU_OUTPUT_DSI1] = "DSI1", [RCAR_DU_OUTPUT_HDMI0] = "HDMI0", [RCAR_DU_OUTPUT_HDMI1] = "HDMI1", [RCAR_DU_OUTPUT_LVDS0] = "LVDS0", [RCAR_DU_OUTPUT_LVDS1] = "LVDS1", [RCAR_DU_OUTPUT_TCON] = "TCON", }; if (output >= ARRAY_SIZE(names) || !names[output]) return "UNKNOWN"; return names[output]; } /* ----------------------------------------------------------------------------- * DRM operations */ DEFINE_DRM_GEM_DMA_FOPS(rcar_du_fops); static const struct drm_driver rcar_du_driver = { .driver_features = DRIVER_GEM | DRIVER_MODESET | DRIVER_ATOMIC, .dumb_create = rcar_du_dumb_create, .gem_prime_import_sg_table = rcar_du_gem_prime_import_sg_table, .fops = &rcar_du_fops, .name = "rcar-du", .desc = "Renesas R-Car Display Unit", .date = "20130110", .major = 1, .minor = 0, }; /* ----------------------------------------------------------------------------- * Power management */ static int rcar_du_pm_suspend(struct device *dev) { struct rcar_du_device *rcdu = dev_get_drvdata(dev); return drm_mode_config_helper_suspend(&rcdu->ddev); } static int rcar_du_pm_resume(struct device *dev) { struct rcar_du_device *rcdu = dev_get_drvdata(dev); return drm_mode_config_helper_resume(&rcdu->ddev); } static DEFINE_SIMPLE_DEV_PM_OPS(rcar_du_pm_ops, rcar_du_pm_suspend, rcar_du_pm_resume); /* ----------------------------------------------------------------------------- * Platform driver */ static void rcar_du_remove(struct platform_device *pdev) { struct rcar_du_device *rcdu = platform_get_drvdata(pdev); struct drm_device *ddev = &rcdu->ddev; drm_dev_unregister(ddev); drm_atomic_helper_shutdown(ddev); drm_kms_helper_poll_fini(ddev); } static void rcar_du_shutdown(struct platform_device *pdev) { struct rcar_du_device *rcdu = platform_get_drvdata(pdev); drm_atomic_helper_shutdown(&rcdu->ddev); } static int rcar_du_probe(struct platform_device *pdev) { struct rcar_du_device *rcdu; unsigned int mask; int ret; if (drm_firmware_drivers_only()) return -ENODEV; /* Allocate and initialize the R-Car device structure. */ rcdu = devm_drm_dev_alloc(&pdev->dev, &rcar_du_driver, struct rcar_du_device, ddev); if (IS_ERR(rcdu)) return PTR_ERR(rcdu); rcdu->dev = &pdev->dev; rcdu->info = of_device_get_match_data(rcdu->dev); platform_set_drvdata(pdev, rcdu); /* I/O resources */ rcdu->mmio = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(rcdu->mmio)) return PTR_ERR(rcdu->mmio); /* * Set the DMA coherent mask to reflect the DU 32-bit DMA address space * limitations. When sourcing frames from a VSP the DU doesn't perform * any memory access so set the mask to 40 bits to accept all buffers. */ mask = rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE) ? 40 : 32; ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(mask)); if (ret) return ret; /* DRM/KMS objects */ ret = rcar_du_modeset_init(rcdu); if (ret < 0) { /* * Don't use dev_err_probe(), as it would overwrite the probe * deferral reason recorded in rcar_du_modeset_init(). */ if (ret != -EPROBE_DEFER) dev_err(&pdev->dev, "failed to initialize DRM/KMS (%d)\n", ret); goto error; } /* * Register the DRM device with the core and the connectors with * sysfs. */ ret = drm_dev_register(&rcdu->ddev, 0); if (ret) goto error; drm_info(&rcdu->ddev, "Device %s probed\n", dev_name(&pdev->dev)); drm_fbdev_generic_setup(&rcdu->ddev, 32); return 0; error: drm_kms_helper_poll_fini(&rcdu->ddev); return ret; } static struct platform_driver rcar_du_platform_driver = { .probe = rcar_du_probe, .remove_new = rcar_du_remove, .shutdown = rcar_du_shutdown, .driver = { .name = "rcar-du", .pm = pm_sleep_ptr(&rcar_du_pm_ops), .of_match_table = rcar_du_of_table, }, }; module_platform_driver(rcar_du_platform_driver); MODULE_AUTHOR("Laurent Pinchart <[email protected]>"); MODULE_DESCRIPTION("Renesas R-Car Display Unit DRM Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/gpu/drm/renesas/rcar-du/rcar_du_drv.c
// SPDX-License-Identifier: GPL-2.0+ /* * R-Car Display Unit Encoder * * Copyright (C) 2013-2014 Renesas Electronics Corporation * * Contact: Laurent Pinchart ([email protected]) */ #include <linux/export.h> #include <linux/of.h> #include <drm/drm_bridge.h> #include <drm/drm_bridge_connector.h> #include <drm/drm_panel.h> #include "rcar_du_drv.h" #include "rcar_du_encoder.h" #include "rcar_lvds.h" /* ----------------------------------------------------------------------------- * Encoder */ static unsigned int rcar_du_encoder_count_ports(struct device_node *node) { struct device_node *ports; struct device_node *port; unsigned int num_ports = 0; ports = of_get_child_by_name(node, "ports"); if (!ports) ports = of_node_get(node); for_each_child_of_node(ports, port) { if (of_node_name_eq(port, "port")) num_ports++; } of_node_put(ports); return num_ports; } static const struct drm_encoder_funcs rcar_du_encoder_funcs = { }; int rcar_du_encoder_init(struct rcar_du_device *rcdu, enum rcar_du_output output, struct device_node *enc_node) { struct rcar_du_encoder *renc; struct drm_connector *connector; struct drm_bridge *bridge; int ret; /* * Locate the DRM bridge from the DT node. For the DPAD outputs, if the * DT node has a single port, assume that it describes a panel and * create a panel bridge. */ if ((output == RCAR_DU_OUTPUT_DPAD0 || output == RCAR_DU_OUTPUT_DPAD1) && rcar_du_encoder_count_ports(enc_node) == 1) { struct drm_panel *panel = of_drm_find_panel(enc_node); if (IS_ERR(panel)) return PTR_ERR(panel); bridge = devm_drm_panel_bridge_add_typed(rcdu->dev, panel, DRM_MODE_CONNECTOR_DPI); if (IS_ERR(bridge)) return PTR_ERR(bridge); } else { bridge = of_drm_find_bridge(enc_node); if (!bridge) return -EPROBE_DEFER; if (output == RCAR_DU_OUTPUT_LVDS0 || output == RCAR_DU_OUTPUT_LVDS1) rcdu->lvds[output - RCAR_DU_OUTPUT_LVDS0] = bridge; if (output == RCAR_DU_OUTPUT_DSI0 || output == RCAR_DU_OUTPUT_DSI1) rcdu->dsi[output - RCAR_DU_OUTPUT_DSI0] = bridge; } /* * Create and initialize the encoder. On Gen3, skip the LVDS1 output if * the LVDS1 encoder is used as a companion for LVDS0 in dual-link * mode, or any LVDS output if it isn't connected. The latter may happen * on D3 or E3 as the LVDS encoders are needed to provide the pixel * clock to the DU, even when the LVDS outputs are not used. */ if (rcdu->info->gen >= 3) { if (output == RCAR_DU_OUTPUT_LVDS1 && rcar_lvds_dual_link(bridge)) return -ENOLINK; if ((output == RCAR_DU_OUTPUT_LVDS0 || output == RCAR_DU_OUTPUT_LVDS1) && !rcar_lvds_is_connected(bridge)) return -ENOLINK; } dev_dbg(rcdu->dev, "initializing encoder %pOF for output %s\n", enc_node, rcar_du_output_name(output)); renc = drmm_encoder_alloc(&rcdu->ddev, struct rcar_du_encoder, base, &rcar_du_encoder_funcs, DRM_MODE_ENCODER_NONE, NULL); if (IS_ERR(renc)) return PTR_ERR(renc); renc->output = output; /* Attach the bridge to the encoder. */ ret = drm_bridge_attach(&renc->base, bridge, NULL, DRM_BRIDGE_ATTACH_NO_CONNECTOR); if (ret) { dev_err(rcdu->dev, "failed to attach bridge %pOF for output %s (%d)\n", bridge->of_node, rcar_du_output_name(output), ret); return ret; } /* Create the connector for the chain of bridges. */ connector = drm_bridge_connector_init(&rcdu->ddev, &renc->base); if (IS_ERR(connector)) { dev_err(rcdu->dev, "failed to created connector for output %s (%ld)\n", rcar_du_output_name(output), PTR_ERR(connector)); return PTR_ERR(connector); } return drm_connector_attach_encoder(connector, &renc->base); }
linux-master
drivers/gpu/drm/renesas/rcar-du/rcar_du_encoder.c
// SPDX-License-Identifier: GPL-2.0+ /* * R-Car Display Unit Channels Pair * * Copyright (C) 2013-2015 Renesas Electronics Corporation * * Contact: Laurent Pinchart ([email protected]) */ /* * The R8A7779 DU is split in per-CRTC resources (scan-out engine, blending * unit, timings generator, ...) and device-global resources (start/stop * control, planes, ...) shared between the two CRTCs. * * The R8A7790 introduced a third CRTC with its own set of global resources. * This would be modeled as two separate DU device instances if it wasn't for * a handful or resources that are shared between the three CRTCs (mostly * related to input and output routing). For this reason the R8A7790 DU must be * modeled as a single device with three CRTCs, two sets of "semi-global" * resources, and a few device-global resources. * * The rcar_du_group object is a driver specific object, without any real * counterpart in the DU documentation, that models those semi-global resources. */ #include <linux/clk.h> #include <linux/io.h> #include "rcar_du_drv.h" #include "rcar_du_group.h" #include "rcar_du_regs.h" u32 rcar_du_group_read(struct rcar_du_group *rgrp, u32 reg) { return rcar_du_read(rgrp->dev, rgrp->mmio_offset + reg); } void rcar_du_group_write(struct rcar_du_group *rgrp, u32 reg, u32 data) { rcar_du_write(rgrp->dev, rgrp->mmio_offset + reg, data); } static void rcar_du_group_setup_pins(struct rcar_du_group *rgrp) { u32 defr6 = DEFR6_CODE; if (rgrp->channels_mask & BIT(0)) defr6 |= DEFR6_ODPM02_DISP; if (rgrp->channels_mask & BIT(1)) defr6 |= DEFR6_ODPM12_DISP; rcar_du_group_write(rgrp, DEFR6, defr6); } static void rcar_du_group_setup_defr8(struct rcar_du_group *rgrp) { struct rcar_du_device *rcdu = rgrp->dev; u32 defr8 = DEFR8_CODE; if (rcdu->info->gen < 3) { defr8 |= DEFR8_DEFE8; /* * On Gen2 the DEFR8 register for the first group also controls * RGB output routing to DPAD0 and VSPD1 routing to DU0/1/2 for * DU instances that support it. */ if (rgrp->index == 0) { defr8 |= DEFR8_DRGBS_DU(rcdu->dpad0_source); if (rgrp->dev->vspd1_sink == 2) defr8 |= DEFR8_VSCS; } } else { /* * On Gen3 VSPD routing can't be configured, and DPAD routing * is set in the group corresponding to the DPAD output (no Gen3 * SoC has multiple DPAD sources belonging to separate groups). */ if (rgrp->index == rcdu->dpad0_source / 2) defr8 |= DEFR8_DRGBS_DU(rcdu->dpad0_source); } rcar_du_group_write(rgrp, DEFR8, defr8); } static void rcar_du_group_setup_didsr(struct rcar_du_group *rgrp) { struct rcar_du_device *rcdu = rgrp->dev; struct rcar_du_crtc *rcrtc; unsigned int num_crtcs = 0; unsigned int i; u32 didsr; /* * Configure input dot clock routing with a hardcoded configuration. If * the DU channel can use the LVDS encoder output clock as the dot * clock, do so. Otherwise route DU_DOTCLKINn signal to DUn. * * Each channel can then select between the dot clock configured here * and the clock provided by the CPG through the ESCR register. */ if (rcdu->info->gen < 3 && rgrp->index == 0) { /* * On Gen2 a single register in the first group controls dot * clock selection for all channels. */ rcrtc = rcdu->crtcs; num_crtcs = rcdu->num_crtcs; } else if (rcdu->info->gen >= 3 && rgrp->num_crtcs > 1) { /* * On Gen3 dot clocks are setup through per-group registers, * only available when the group has two channels. */ rcrtc = &rcdu->crtcs[rgrp->index * 2]; num_crtcs = rgrp->num_crtcs; } if (!num_crtcs) return; didsr = DIDSR_CODE; for (i = 0; i < num_crtcs; ++i, ++rcrtc) { if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) didsr |= DIDSR_LDCS_LVDS0(i) | DIDSR_PDCS_CLK(i, 0); else if (rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) didsr |= DIDSR_LDCS_DSI(i); else didsr |= DIDSR_LDCS_DCLKIN(i) | DIDSR_PDCS_CLK(i, 0); } rcar_du_group_write(rgrp, DIDSR, didsr); } static void rcar_du_group_setup(struct rcar_du_group *rgrp) { struct rcar_du_device *rcdu = rgrp->dev; u32 defr7 = DEFR7_CODE; u32 dorcr; /* Enable extended features */ rcar_du_group_write(rgrp, DEFR, DEFR_CODE | DEFR_DEFE); if (rcdu->info->gen < 3) { rcar_du_group_write(rgrp, DEFR2, DEFR2_CODE | DEFR2_DEFE2G); rcar_du_group_write(rgrp, DEFR3, DEFR3_CODE | DEFR3_DEFE3); rcar_du_group_write(rgrp, DEFR4, DEFR4_CODE); } rcar_du_group_write(rgrp, DEFR5, DEFR5_CODE | DEFR5_DEFE5); if (rcdu->info->gen < 4) rcar_du_group_setup_pins(rgrp); if (rcdu->info->gen < 4) { /* * TODO: Handle routing of the DU output to CMM dynamically, as * we should bypass CMM completely when no color management * feature is used. */ defr7 |= (rgrp->cmms_mask & BIT(1) ? DEFR7_CMME1 : 0) | (rgrp->cmms_mask & BIT(0) ? DEFR7_CMME0 : 0); rcar_du_group_write(rgrp, DEFR7, defr7); } if (rcdu->info->gen >= 2) { if (rcdu->info->gen < 4) rcar_du_group_setup_defr8(rgrp); rcar_du_group_setup_didsr(rgrp); } if (rcdu->info->gen >= 3) rcar_du_group_write(rgrp, DEFR10, DEFR10_CODE | DEFR10_DEFE10); /* * Use DS1PR and DS2PR to configure planes priorities and connects the * superposition 0 to DU0 pins. DU1 pins will be configured dynamically. * * Groups that have a single channel have a hardcoded configuration. On * Gen3 and newer, the documentation requires PG1T, DK1S and PG1D_DS1 to * always be set in this case. */ dorcr = DORCR_PG0D_DS0 | DORCR_DPRS; if (rcdu->info->gen >= 3 && rgrp->num_crtcs == 1) dorcr |= DORCR_PG1T | DORCR_DK1S | DORCR_PG1D_DS1; rcar_du_group_write(rgrp, DORCR, dorcr); /* Apply planes to CRTCs association. */ mutex_lock(&rgrp->lock); rcar_du_group_write(rgrp, DPTSR, (rgrp->dptsr_planes << 16) | rgrp->dptsr_planes); mutex_unlock(&rgrp->lock); } /* * rcar_du_group_get - Acquire a reference to the DU channels group * * Acquiring the first reference setups core registers. A reference must be held * before accessing any hardware registers. * * This function must be called with the DRM mode_config lock held. * * Return 0 in case of success or a negative error code otherwise. */ int rcar_du_group_get(struct rcar_du_group *rgrp) { if (rgrp->use_count) goto done; rcar_du_group_setup(rgrp); done: rgrp->use_count++; return 0; } /* * rcar_du_group_put - Release a reference to the DU * * This function must be called with the DRM mode_config lock held. */ void rcar_du_group_put(struct rcar_du_group *rgrp) { --rgrp->use_count; } static void __rcar_du_group_start_stop(struct rcar_du_group *rgrp, bool start) { struct rcar_du_device *rcdu = rgrp->dev; /* * Group start/stop is controlled by the DRES and DEN bits of DSYSR0 * for the first group and DSYSR2 for the second group. On most DU * instances, this maps to the first CRTC of the group, and we can just * use rcar_du_crtc_dsysr_clr_set() to access the correct DSYSR. On * M3-N, however, DU2 doesn't exist, but DSYSR2 does. We thus need to * access the register directly using group read/write. */ if (rcdu->info->channels_mask & BIT(rgrp->index * 2)) { struct rcar_du_crtc *rcrtc = &rgrp->dev->crtcs[rgrp->index * 2]; rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_DRES | DSYSR_DEN, start ? DSYSR_DEN : DSYSR_DRES); } else { rcar_du_group_write(rgrp, DSYSR, start ? DSYSR_DEN : DSYSR_DRES); } } void rcar_du_group_start_stop(struct rcar_du_group *rgrp, bool start) { /* * Many of the configuration bits are only updated when the display * reset (DRES) bit in DSYSR is set to 1, disabling *both* CRTCs. Some * of those bits could be pre-configured, but others (especially the * bits related to plane assignment to display timing controllers) need * to be modified at runtime. * * Restart the display controller if a start is requested. Sorry for the * flicker. It should be possible to move most of the "DRES-update" bits * setup to driver initialization time and minimize the number of cases * when the display controller will have to be restarted. */ if (start) { if (rgrp->used_crtcs++ != 0) __rcar_du_group_start_stop(rgrp, false); __rcar_du_group_start_stop(rgrp, true); } else { if (--rgrp->used_crtcs == 0) __rcar_du_group_start_stop(rgrp, false); } } void rcar_du_group_restart(struct rcar_du_group *rgrp) { rgrp->need_restart = false; __rcar_du_group_start_stop(rgrp, false); __rcar_du_group_start_stop(rgrp, true); } int rcar_du_set_dpad0_vsp1_routing(struct rcar_du_device *rcdu) { struct rcar_du_group *rgrp; struct rcar_du_crtc *crtc; unsigned int index; int ret; if (rcdu->info->gen < 2) return 0; /* * RGB output routing to DPAD0 and VSP1D routing to DU0/1/2 are * configured in the DEFR8 register of the first group on Gen2 and the * last group on Gen3. As this function can be called with the DU * channels of the corresponding CRTCs disabled, we need to enable the * group clock before accessing the register. */ index = rcdu->info->gen < 3 ? 0 : DIV_ROUND_UP(rcdu->num_crtcs, 2) - 1; rgrp = &rcdu->groups[index]; crtc = &rcdu->crtcs[index * 2]; ret = clk_prepare_enable(crtc->clock); if (ret < 0) return ret; rcar_du_group_setup_defr8(rgrp); clk_disable_unprepare(crtc->clock); return 0; } static void rcar_du_group_set_dpad_levels(struct rcar_du_group *rgrp) { static const u32 doflr_values[2] = { DOFLR_HSYCFL0 | DOFLR_VSYCFL0 | DOFLR_ODDFL0 | DOFLR_DISPFL0 | DOFLR_CDEFL0 | DOFLR_RGBFL0, DOFLR_HSYCFL1 | DOFLR_VSYCFL1 | DOFLR_ODDFL1 | DOFLR_DISPFL1 | DOFLR_CDEFL1 | DOFLR_RGBFL1, }; static const u32 dpad_mask = BIT(RCAR_DU_OUTPUT_DPAD1) | BIT(RCAR_DU_OUTPUT_DPAD0); struct rcar_du_device *rcdu = rgrp->dev; u32 doflr = DOFLR_CODE; unsigned int i; if (rcdu->info->gen < 2) return; /* * The DPAD outputs can't be controlled directly. However, the parallel * output of the DU channels routed to DPAD can be set to fixed levels * through the DOFLR group register. Use this to turn the DPAD on or off * by driving fixed low-level signals at the output of any DU channel * not routed to a DPAD output. This doesn't affect the DU output * signals going to other outputs, such as the internal LVDS and HDMI * encoders. */ for (i = 0; i < rgrp->num_crtcs; ++i) { struct rcar_du_crtc_state *rstate; struct rcar_du_crtc *rcrtc; rcrtc = &rcdu->crtcs[rgrp->index * 2 + i]; rstate = to_rcar_crtc_state(rcrtc->crtc.state); if (!(rstate->outputs & dpad_mask)) doflr |= doflr_values[i]; } rcar_du_group_write(rgrp, DOFLR, doflr); } int rcar_du_group_set_routing(struct rcar_du_group *rgrp) { struct rcar_du_device *rcdu = rgrp->dev; u32 dorcr = rcar_du_group_read(rgrp, DORCR); dorcr &= ~(DORCR_PG1T | DORCR_DK1S | DORCR_PG1D_MASK); /* * Set the DPAD1 pins sources. Select CRTC 0 if explicitly requested and * CRTC 1 in all other cases to avoid cloning CRTC 0 to DPAD0 and DPAD1 * by default. */ if (rcdu->dpad1_source == rgrp->index * 2) dorcr |= DORCR_PG1D_DS0; else dorcr |= DORCR_PG1T | DORCR_DK1S | DORCR_PG1D_DS1; rcar_du_group_write(rgrp, DORCR, dorcr); rcar_du_group_set_dpad_levels(rgrp); return rcar_du_set_dpad0_vsp1_routing(rgrp->dev); }
linux-master
drivers/gpu/drm/renesas/rcar-du/rcar_du_group.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics SA 2014 * Authors: Benjamin Gaignard <[email protected]> * Fabien Dessenne <[email protected]> * for STMicroelectronics. */ #include <linux/moduleparam.h> #include <linux/seq_file.h> #include <drm/drm_print.h> #include "sti_compositor.h" #include "sti_mixer.h" #include "sti_vtg.h" /* Module parameter to set the background color of the mixer */ static unsigned int bkg_color = 0x000000; MODULE_PARM_DESC(bkgcolor, "Value of the background color 0xRRGGBB"); module_param_named(bkgcolor, bkg_color, int, 0644); /* regs offset */ #define GAM_MIXER_CTL 0x00 #define GAM_MIXER_BKC 0x04 #define GAM_MIXER_BCO 0x0C #define GAM_MIXER_BCS 0x10 #define GAM_MIXER_AVO 0x28 #define GAM_MIXER_AVS 0x2C #define GAM_MIXER_CRB 0x34 #define GAM_MIXER_ACT 0x38 #define GAM_MIXER_MBP 0x3C #define GAM_MIXER_MX0 0x80 /* id for depth of CRB reg */ #define GAM_DEPTH_VID0_ID 1 #define GAM_DEPTH_VID1_ID 2 #define GAM_DEPTH_GDP0_ID 3 #define GAM_DEPTH_GDP1_ID 4 #define GAM_DEPTH_GDP2_ID 5 #define GAM_DEPTH_GDP3_ID 6 #define GAM_DEPTH_MASK_ID 7 /* mask in CTL reg */ #define GAM_CTL_BACK_MASK BIT(0) #define GAM_CTL_VID0_MASK BIT(1) #define GAM_CTL_VID1_MASK BIT(2) #define GAM_CTL_GDP0_MASK BIT(3) #define GAM_CTL_GDP1_MASK BIT(4) #define GAM_CTL_GDP2_MASK BIT(5) #define GAM_CTL_GDP3_MASK BIT(6) #define GAM_CTL_CURSOR_MASK BIT(9) const char *sti_mixer_to_str(struct sti_mixer *mixer) { switch (mixer->id) { case STI_MIXER_MAIN: return "MAIN_MIXER"; case STI_MIXER_AUX: return "AUX_MIXER"; default: return "<UNKNOWN MIXER>"; } } static inline u32 sti_mixer_reg_read(struct sti_mixer *mixer, u32 reg_id) { return readl(mixer->regs + reg_id); } static inline void sti_mixer_reg_write(struct sti_mixer *mixer, u32 reg_id, u32 val) { writel(val, mixer->regs + reg_id); } #define DBGFS_DUMP(reg) seq_printf(s, "\n %-25s 0x%08X", #reg, \ sti_mixer_reg_read(mixer, reg)) static void mixer_dbg_ctl(struct seq_file *s, int val) { unsigned int i; int count = 0; char *const disp_layer[] = {"BKG", "VID0", "VID1", "GDP0", "GDP1", "GDP2", "GDP3"}; seq_puts(s, "\tEnabled: "); for (i = 0; i < 7; i++) { if (val & 1) { seq_printf(s, "%s ", disp_layer[i]); count++; } val = val >> 1; } val = val >> 2; if (val & 1) { seq_puts(s, "CURS "); count++; } if (!count) seq_puts(s, "Nothing"); } static void mixer_dbg_crb(struct seq_file *s, int val) { int i; seq_puts(s, "\tDepth: "); for (i = 0; i < GAM_MIXER_NB_DEPTH_LEVEL; i++) { switch (val & GAM_DEPTH_MASK_ID) { case GAM_DEPTH_VID0_ID: seq_puts(s, "VID0"); break; case GAM_DEPTH_VID1_ID: seq_puts(s, "VID1"); break; case GAM_DEPTH_GDP0_ID: seq_puts(s, "GDP0"); break; case GAM_DEPTH_GDP1_ID: seq_puts(s, "GDP1"); break; case GAM_DEPTH_GDP2_ID: seq_puts(s, "GDP2"); break; case GAM_DEPTH_GDP3_ID: seq_puts(s, "GDP3"); break; default: seq_puts(s, "---"); } if (i < GAM_MIXER_NB_DEPTH_LEVEL - 1) seq_puts(s, " < "); val = val >> 3; } } static void mixer_dbg_mxn(struct seq_file *s, void *addr) { int i; for (i = 1; i < 8; i++) seq_printf(s, "-0x%08X", (int)readl(addr + i * 4)); } static int mixer_dbg_show(struct seq_file *s, void *arg) { struct drm_info_node *node = s->private; struct sti_mixer *mixer = (struct sti_mixer *)node->info_ent->data; seq_printf(s, "%s: (vaddr = 0x%p)", sti_mixer_to_str(mixer), mixer->regs); DBGFS_DUMP(GAM_MIXER_CTL); mixer_dbg_ctl(s, sti_mixer_reg_read(mixer, GAM_MIXER_CTL)); DBGFS_DUMP(GAM_MIXER_BKC); DBGFS_DUMP(GAM_MIXER_BCO); DBGFS_DUMP(GAM_MIXER_BCS); DBGFS_DUMP(GAM_MIXER_AVO); DBGFS_DUMP(GAM_MIXER_AVS); DBGFS_DUMP(GAM_MIXER_CRB); mixer_dbg_crb(s, sti_mixer_reg_read(mixer, GAM_MIXER_CRB)); DBGFS_DUMP(GAM_MIXER_ACT); DBGFS_DUMP(GAM_MIXER_MBP); DBGFS_DUMP(GAM_MIXER_MX0); mixer_dbg_mxn(s, mixer->regs + GAM_MIXER_MX0); seq_putc(s, '\n'); return 0; } static struct drm_info_list mixer0_debugfs_files[] = { { "mixer_main", mixer_dbg_show, 0, NULL }, }; static struct drm_info_list mixer1_debugfs_files[] = { { "mixer_aux", mixer_dbg_show, 0, NULL }, }; void sti_mixer_debugfs_init(struct sti_mixer *mixer, struct drm_minor *minor) { unsigned int i; struct drm_info_list *mixer_debugfs_files; int nb_files; switch (mixer->id) { case STI_MIXER_MAIN: mixer_debugfs_files = mixer0_debugfs_files; nb_files = ARRAY_SIZE(mixer0_debugfs_files); break; case STI_MIXER_AUX: mixer_debugfs_files = mixer1_debugfs_files; nb_files = ARRAY_SIZE(mixer1_debugfs_files); break; default: return; } for (i = 0; i < nb_files; i++) mixer_debugfs_files[i].data = mixer; drm_debugfs_create_files(mixer_debugfs_files, nb_files, minor->debugfs_root, minor); } void sti_mixer_set_background_status(struct sti_mixer *mixer, bool enable) { u32 val = sti_mixer_reg_read(mixer, GAM_MIXER_CTL); val &= ~GAM_CTL_BACK_MASK; val |= enable; sti_mixer_reg_write(mixer, GAM_MIXER_CTL, val); } static void sti_mixer_set_background_color(struct sti_mixer *mixer, unsigned int rgb) { sti_mixer_reg_write(mixer, GAM_MIXER_BKC, rgb); } static void sti_mixer_set_background_area(struct sti_mixer *mixer, struct drm_display_mode *mode) { u32 ydo, xdo, yds, xds; ydo = sti_vtg_get_line_number(*mode, 0); yds = sti_vtg_get_line_number(*mode, mode->vdisplay - 1); xdo = sti_vtg_get_pixel_number(*mode, 0); xds = sti_vtg_get_pixel_number(*mode, mode->hdisplay - 1); sti_mixer_reg_write(mixer, GAM_MIXER_BCO, ydo << 16 | xdo); sti_mixer_reg_write(mixer, GAM_MIXER_BCS, yds << 16 | xds); } int sti_mixer_set_plane_depth(struct sti_mixer *mixer, struct sti_plane *plane) { int plane_id, depth = plane->drm_plane.state->normalized_zpos; unsigned int i; u32 mask, val; switch (plane->desc) { case STI_GDP_0: plane_id = GAM_DEPTH_GDP0_ID; break; case STI_GDP_1: plane_id = GAM_DEPTH_GDP1_ID; break; case STI_GDP_2: plane_id = GAM_DEPTH_GDP2_ID; break; case STI_GDP_3: plane_id = GAM_DEPTH_GDP3_ID; break; case STI_HQVDP_0: plane_id = GAM_DEPTH_VID0_ID; break; case STI_CURSOR: /* no need to set depth for cursor */ return 0; default: DRM_ERROR("Unknown plane %d\n", plane->desc); return 1; } /* Search if a previous depth was already assigned to the plane */ val = sti_mixer_reg_read(mixer, GAM_MIXER_CRB); for (i = 0; i < GAM_MIXER_NB_DEPTH_LEVEL; i++) { mask = GAM_DEPTH_MASK_ID << (3 * i); if ((val & mask) == plane_id << (3 * i)) break; } mask |= GAM_DEPTH_MASK_ID << (3 * depth); plane_id = plane_id << (3 * depth); DRM_DEBUG_DRIVER("%s %s depth=%d\n", sti_mixer_to_str(mixer), sti_plane_to_str(plane), depth); dev_dbg(mixer->dev, "GAM_MIXER_CRB val 0x%x mask 0x%x\n", plane_id, mask); val &= ~mask; val |= plane_id; sti_mixer_reg_write(mixer, GAM_MIXER_CRB, val); dev_dbg(mixer->dev, "Read GAM_MIXER_CRB 0x%x\n", sti_mixer_reg_read(mixer, GAM_MIXER_CRB)); return 0; } int sti_mixer_active_video_area(struct sti_mixer *mixer, struct drm_display_mode *mode) { u32 ydo, xdo, yds, xds; ydo = sti_vtg_get_line_number(*mode, 0); yds = sti_vtg_get_line_number(*mode, mode->vdisplay - 1); xdo = sti_vtg_get_pixel_number(*mode, 0); xds = sti_vtg_get_pixel_number(*mode, mode->hdisplay - 1); DRM_DEBUG_DRIVER("%s active video area xdo:%d ydo:%d xds:%d yds:%d\n", sti_mixer_to_str(mixer), xdo, ydo, xds, yds); sti_mixer_reg_write(mixer, GAM_MIXER_AVO, ydo << 16 | xdo); sti_mixer_reg_write(mixer, GAM_MIXER_AVS, yds << 16 | xds); sti_mixer_set_background_color(mixer, bkg_color); sti_mixer_set_background_area(mixer, mode); sti_mixer_set_background_status(mixer, true); return 0; } static u32 sti_mixer_get_plane_mask(struct sti_plane *plane) { switch (plane->desc) { case STI_BACK: return GAM_CTL_BACK_MASK; case STI_GDP_0: return GAM_CTL_GDP0_MASK; case STI_GDP_1: return GAM_CTL_GDP1_MASK; case STI_GDP_2: return GAM_CTL_GDP2_MASK; case STI_GDP_3: return GAM_CTL_GDP3_MASK; case STI_HQVDP_0: return GAM_CTL_VID0_MASK; case STI_CURSOR: return GAM_CTL_CURSOR_MASK; default: return 0; } } int sti_mixer_set_plane_status(struct sti_mixer *mixer, struct sti_plane *plane, bool status) { u32 mask, val; DRM_DEBUG_DRIVER("%s %s %s\n", status ? "enable" : "disable", sti_mixer_to_str(mixer), sti_plane_to_str(plane)); mask = sti_mixer_get_plane_mask(plane); if (!mask) { DRM_ERROR("Can't find layer mask\n"); return -EINVAL; } val = sti_mixer_reg_read(mixer, GAM_MIXER_CTL); val &= ~mask; val |= status ? mask : 0; sti_mixer_reg_write(mixer, GAM_MIXER_CTL, val); return 0; } struct sti_mixer *sti_mixer_create(struct device *dev, struct drm_device *drm_dev, int id, void __iomem *baseaddr) { struct sti_mixer *mixer = devm_kzalloc(dev, sizeof(*mixer), GFP_KERNEL); dev_dbg(dev, "%s\n", __func__); if (!mixer) { DRM_ERROR("Failed to allocated memory for mixer\n"); return NULL; } mixer->regs = baseaddr; mixer->dev = dev; mixer->id = id; DRM_DEBUG_DRIVER("%s created. Regs=%p\n", sti_mixer_to_str(mixer), mixer->regs); return mixer; }
linux-master
drivers/gpu/drm/sti/sti_mixer.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics SA 2014 * Author: Vincent Abriou <[email protected]> for STMicroelectronics. */ #include <linux/clk.h> #include <linux/component.h> #include <linux/debugfs.h> #include <linux/hdmi.h> #include <linux/i2c.h> #include <linux/module.h> #include <linux/io.h> #include <linux/platform_device.h> #include <linux/reset.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_bridge.h> #include <drm/drm_debugfs.h> #include <drm/drm_drv.h> #include <drm/drm_edid.h> #include <drm/drm_file.h> #include <drm/drm_print.h> #include <drm/drm_probe_helper.h> #include <sound/hdmi-codec.h> #include "sti_hdmi.h" #include "sti_hdmi_tx3g4c28phy.h" #include "sti_vtg.h" #define HDMI_CFG 0x0000 #define HDMI_INT_EN 0x0004 #define HDMI_INT_STA 0x0008 #define HDMI_INT_CLR 0x000C #define HDMI_STA 0x0010 #define HDMI_ACTIVE_VID_XMIN 0x0100 #define HDMI_ACTIVE_VID_XMAX 0x0104 #define HDMI_ACTIVE_VID_YMIN 0x0108 #define HDMI_ACTIVE_VID_YMAX 0x010C #define HDMI_DFLT_CHL0_DAT 0x0110 #define HDMI_DFLT_CHL1_DAT 0x0114 #define HDMI_DFLT_CHL2_DAT 0x0118 #define HDMI_AUDIO_CFG 0x0200 #define HDMI_SPDIF_FIFO_STATUS 0x0204 #define HDMI_SW_DI_1_HEAD_WORD 0x0210 #define HDMI_SW_DI_1_PKT_WORD0 0x0214 #define HDMI_SW_DI_1_PKT_WORD1 0x0218 #define HDMI_SW_DI_1_PKT_WORD2 0x021C #define HDMI_SW_DI_1_PKT_WORD3 0x0220 #define HDMI_SW_DI_1_PKT_WORD4 0x0224 #define HDMI_SW_DI_1_PKT_WORD5 0x0228 #define HDMI_SW_DI_1_PKT_WORD6 0x022C #define HDMI_SW_DI_CFG 0x0230 #define HDMI_SAMPLE_FLAT_MASK 0x0244 #define HDMI_AUDN 0x0400 #define HDMI_AUD_CTS 0x0404 #define HDMI_SW_DI_2_HEAD_WORD 0x0600 #define HDMI_SW_DI_2_PKT_WORD0 0x0604 #define HDMI_SW_DI_2_PKT_WORD1 0x0608 #define HDMI_SW_DI_2_PKT_WORD2 0x060C #define HDMI_SW_DI_2_PKT_WORD3 0x0610 #define HDMI_SW_DI_2_PKT_WORD4 0x0614 #define HDMI_SW_DI_2_PKT_WORD5 0x0618 #define HDMI_SW_DI_2_PKT_WORD6 0x061C #define HDMI_SW_DI_3_HEAD_WORD 0x0620 #define HDMI_SW_DI_3_PKT_WORD0 0x0624 #define HDMI_SW_DI_3_PKT_WORD1 0x0628 #define HDMI_SW_DI_3_PKT_WORD2 0x062C #define HDMI_SW_DI_3_PKT_WORD3 0x0630 #define HDMI_SW_DI_3_PKT_WORD4 0x0634 #define HDMI_SW_DI_3_PKT_WORD5 0x0638 #define HDMI_SW_DI_3_PKT_WORD6 0x063C #define HDMI_IFRAME_SLOT_AVI 1 #define HDMI_IFRAME_SLOT_AUDIO 2 #define HDMI_IFRAME_SLOT_VENDOR 3 #define XCAT(prefix, x, suffix) prefix ## x ## suffix #define HDMI_SW_DI_N_HEAD_WORD(x) XCAT(HDMI_SW_DI_, x, _HEAD_WORD) #define HDMI_SW_DI_N_PKT_WORD0(x) XCAT(HDMI_SW_DI_, x, _PKT_WORD0) #define HDMI_SW_DI_N_PKT_WORD1(x) XCAT(HDMI_SW_DI_, x, _PKT_WORD1) #define HDMI_SW_DI_N_PKT_WORD2(x) XCAT(HDMI_SW_DI_, x, _PKT_WORD2) #define HDMI_SW_DI_N_PKT_WORD3(x) XCAT(HDMI_SW_DI_, x, _PKT_WORD3) #define HDMI_SW_DI_N_PKT_WORD4(x) XCAT(HDMI_SW_DI_, x, _PKT_WORD4) #define HDMI_SW_DI_N_PKT_WORD5(x) XCAT(HDMI_SW_DI_, x, _PKT_WORD5) #define HDMI_SW_DI_N_PKT_WORD6(x) XCAT(HDMI_SW_DI_, x, _PKT_WORD6) #define HDMI_SW_DI_MAX_WORD 7 #define HDMI_IFRAME_DISABLED 0x0 #define HDMI_IFRAME_SINGLE_SHOT 0x1 #define HDMI_IFRAME_FIELD 0x2 #define HDMI_IFRAME_FRAME 0x3 #define HDMI_IFRAME_MASK 0x3 #define HDMI_IFRAME_CFG_DI_N(x, n) ((x) << ((n-1)*4)) /* n from 1 to 6 */ #define HDMI_CFG_DEVICE_EN BIT(0) #define HDMI_CFG_HDMI_NOT_DVI BIT(1) #define HDMI_CFG_HDCP_EN BIT(2) #define HDMI_CFG_ESS_NOT_OESS BIT(3) #define HDMI_CFG_H_SYNC_POL_NEG BIT(4) #define HDMI_CFG_V_SYNC_POL_NEG BIT(6) #define HDMI_CFG_422_EN BIT(8) #define HDMI_CFG_FIFO_OVERRUN_CLR BIT(12) #define HDMI_CFG_FIFO_UNDERRUN_CLR BIT(13) #define HDMI_CFG_SW_RST_EN BIT(31) #define HDMI_INT_GLOBAL BIT(0) #define HDMI_INT_SW_RST BIT(1) #define HDMI_INT_PIX_CAP BIT(3) #define HDMI_INT_HOT_PLUG BIT(4) #define HDMI_INT_DLL_LCK BIT(5) #define HDMI_INT_NEW_FRAME BIT(6) #define HDMI_INT_GENCTRL_PKT BIT(7) #define HDMI_INT_AUDIO_FIFO_XRUN BIT(8) #define HDMI_INT_SINK_TERM_PRESENT BIT(11) #define HDMI_DEFAULT_INT (HDMI_INT_SINK_TERM_PRESENT \ | HDMI_INT_DLL_LCK \ | HDMI_INT_HOT_PLUG \ | HDMI_INT_GLOBAL) #define HDMI_WORKING_INT (HDMI_INT_SINK_TERM_PRESENT \ | HDMI_INT_AUDIO_FIFO_XRUN \ | HDMI_INT_GENCTRL_PKT \ | HDMI_INT_NEW_FRAME \ | HDMI_INT_DLL_LCK \ | HDMI_INT_HOT_PLUG \ | HDMI_INT_PIX_CAP \ | HDMI_INT_SW_RST \ | HDMI_INT_GLOBAL) #define HDMI_STA_SW_RST BIT(1) #define HDMI_AUD_CFG_8CH BIT(0) #define HDMI_AUD_CFG_SPDIF_DIV_2 BIT(1) #define HDMI_AUD_CFG_SPDIF_DIV_3 BIT(2) #define HDMI_AUD_CFG_SPDIF_CLK_DIV_4 (BIT(1) | BIT(2)) #define HDMI_AUD_CFG_CTS_CLK_256FS BIT(12) #define HDMI_AUD_CFG_DTS_INVALID BIT(16) #define HDMI_AUD_CFG_ONE_BIT_INVALID (BIT(18) | BIT(19) | BIT(20) | BIT(21)) #define HDMI_AUD_CFG_CH12_VALID BIT(28) #define HDMI_AUD_CFG_CH34_VALID BIT(29) #define HDMI_AUD_CFG_CH56_VALID BIT(30) #define HDMI_AUD_CFG_CH78_VALID BIT(31) /* sample flat mask */ #define HDMI_SAMPLE_FLAT_NO 0 #define HDMI_SAMPLE_FLAT_SP0 BIT(0) #define HDMI_SAMPLE_FLAT_SP1 BIT(1) #define HDMI_SAMPLE_FLAT_SP2 BIT(2) #define HDMI_SAMPLE_FLAT_SP3 BIT(3) #define HDMI_SAMPLE_FLAT_ALL (HDMI_SAMPLE_FLAT_SP0 | HDMI_SAMPLE_FLAT_SP1 |\ HDMI_SAMPLE_FLAT_SP2 | HDMI_SAMPLE_FLAT_SP3) #define HDMI_INFOFRAME_HEADER_TYPE(x) (((x) & 0xff) << 0) #define HDMI_INFOFRAME_HEADER_VERSION(x) (((x) & 0xff) << 8) #define HDMI_INFOFRAME_HEADER_LEN(x) (((x) & 0x0f) << 16) struct sti_hdmi_connector { struct drm_connector drm_connector; struct drm_encoder *encoder; struct sti_hdmi *hdmi; struct drm_property *colorspace_property; }; #define to_sti_hdmi_connector(x) \ container_of(x, struct sti_hdmi_connector, drm_connector) static const struct drm_prop_enum_list colorspace_mode_names[] = { { HDMI_COLORSPACE_RGB, "rgb" }, { HDMI_COLORSPACE_YUV422, "yuv422" }, { HDMI_COLORSPACE_YUV444, "yuv444" }, }; u32 hdmi_read(struct sti_hdmi *hdmi, int offset) { return readl(hdmi->regs + offset); } void hdmi_write(struct sti_hdmi *hdmi, u32 val, int offset) { writel(val, hdmi->regs + offset); } /* * HDMI interrupt handler threaded * * @irq: irq number * @arg: connector structure */ static irqreturn_t hdmi_irq_thread(int irq, void *arg) { struct sti_hdmi *hdmi = arg; /* Hot plug/unplug IRQ */ if (hdmi->irq_status & HDMI_INT_HOT_PLUG) { hdmi->hpd = readl(hdmi->regs + HDMI_STA) & HDMI_STA_HOT_PLUG; if (hdmi->drm_dev) drm_helper_hpd_irq_event(hdmi->drm_dev); } /* Sw reset and PLL lock are exclusive so we can use the same * event to signal them */ if (hdmi->irq_status & (HDMI_INT_SW_RST | HDMI_INT_DLL_LCK)) { hdmi->event_received = true; wake_up_interruptible(&hdmi->wait_event); } /* Audio FIFO underrun IRQ */ if (hdmi->irq_status & HDMI_INT_AUDIO_FIFO_XRUN) DRM_INFO("Warning: audio FIFO underrun occurs!\n"); return IRQ_HANDLED; } /* * HDMI interrupt handler * * @irq: irq number * @arg: connector structure */ static irqreturn_t hdmi_irq(int irq, void *arg) { struct sti_hdmi *hdmi = arg; /* read interrupt status */ hdmi->irq_status = hdmi_read(hdmi, HDMI_INT_STA); /* clear interrupt status */ hdmi_write(hdmi, hdmi->irq_status, HDMI_INT_CLR); /* force sync bus write */ hdmi_read(hdmi, HDMI_INT_STA); return IRQ_WAKE_THREAD; } /* * Set hdmi active area depending on the drm display mode selected * * @hdmi: pointer on the hdmi internal structure */ static void hdmi_active_area(struct sti_hdmi *hdmi) { u32 xmin, xmax; u32 ymin, ymax; xmin = sti_vtg_get_pixel_number(hdmi->mode, 1); xmax = sti_vtg_get_pixel_number(hdmi->mode, hdmi->mode.hdisplay); ymin = sti_vtg_get_line_number(hdmi->mode, 0); ymax = sti_vtg_get_line_number(hdmi->mode, hdmi->mode.vdisplay - 1); hdmi_write(hdmi, xmin, HDMI_ACTIVE_VID_XMIN); hdmi_write(hdmi, xmax, HDMI_ACTIVE_VID_XMAX); hdmi_write(hdmi, ymin, HDMI_ACTIVE_VID_YMIN); hdmi_write(hdmi, ymax, HDMI_ACTIVE_VID_YMAX); } /* * Overall hdmi configuration * * @hdmi: pointer on the hdmi internal structure */ static void hdmi_config(struct sti_hdmi *hdmi) { struct drm_connector *connector = hdmi->drm_connector; u32 conf; DRM_DEBUG_DRIVER("\n"); /* Clear overrun and underrun fifo */ conf = HDMI_CFG_FIFO_OVERRUN_CLR | HDMI_CFG_FIFO_UNDERRUN_CLR; /* Select encryption type and the framing mode */ conf |= HDMI_CFG_ESS_NOT_OESS; if (connector->display_info.is_hdmi) conf |= HDMI_CFG_HDMI_NOT_DVI; /* Set Hsync polarity */ if (hdmi->mode.flags & DRM_MODE_FLAG_NHSYNC) { DRM_DEBUG_DRIVER("H Sync Negative\n"); conf |= HDMI_CFG_H_SYNC_POL_NEG; } /* Set Vsync polarity */ if (hdmi->mode.flags & DRM_MODE_FLAG_NVSYNC) { DRM_DEBUG_DRIVER("V Sync Negative\n"); conf |= HDMI_CFG_V_SYNC_POL_NEG; } /* Enable HDMI */ conf |= HDMI_CFG_DEVICE_EN; hdmi_write(hdmi, conf, HDMI_CFG); } /* * Helper to reset info frame * * @hdmi: pointer on the hdmi internal structure * @slot: infoframe to reset */ static void hdmi_infoframe_reset(struct sti_hdmi *hdmi, u32 slot) { u32 val, i; u32 head_offset, pack_offset; switch (slot) { case HDMI_IFRAME_SLOT_AVI: head_offset = HDMI_SW_DI_N_HEAD_WORD(HDMI_IFRAME_SLOT_AVI); pack_offset = HDMI_SW_DI_N_PKT_WORD0(HDMI_IFRAME_SLOT_AVI); break; case HDMI_IFRAME_SLOT_AUDIO: head_offset = HDMI_SW_DI_N_HEAD_WORD(HDMI_IFRAME_SLOT_AUDIO); pack_offset = HDMI_SW_DI_N_PKT_WORD0(HDMI_IFRAME_SLOT_AUDIO); break; case HDMI_IFRAME_SLOT_VENDOR: head_offset = HDMI_SW_DI_N_HEAD_WORD(HDMI_IFRAME_SLOT_VENDOR); pack_offset = HDMI_SW_DI_N_PKT_WORD0(HDMI_IFRAME_SLOT_VENDOR); break; default: DRM_ERROR("unsupported infoframe slot: %#x\n", slot); return; } /* Disable transmission for the selected slot */ val = hdmi_read(hdmi, HDMI_SW_DI_CFG); val &= ~HDMI_IFRAME_CFG_DI_N(HDMI_IFRAME_MASK, slot); hdmi_write(hdmi, val, HDMI_SW_DI_CFG); /* Reset info frame registers */ hdmi_write(hdmi, 0x0, head_offset); for (i = 0; i < HDMI_SW_DI_MAX_WORD; i += sizeof(u32)) hdmi_write(hdmi, 0x0, pack_offset + i); } /* * Helper to concatenate infoframe in 32 bits word * * @ptr: pointer on the hdmi internal structure * @size: size to write */ static inline unsigned int hdmi_infoframe_subpack(const u8 *ptr, size_t size) { unsigned long value = 0; size_t i; for (i = size; i > 0; i--) value = (value << 8) | ptr[i - 1]; return value; } /* * Helper to write info frame * * @hdmi: pointer on the hdmi internal structure * @data: infoframe to write * @size: size to write */ static void hdmi_infoframe_write_infopack(struct sti_hdmi *hdmi, const u8 *data, size_t size) { const u8 *ptr = data; u32 val, slot, mode, i; u32 head_offset, pack_offset; switch (*ptr) { case HDMI_INFOFRAME_TYPE_AVI: slot = HDMI_IFRAME_SLOT_AVI; mode = HDMI_IFRAME_FIELD; head_offset = HDMI_SW_DI_N_HEAD_WORD(HDMI_IFRAME_SLOT_AVI); pack_offset = HDMI_SW_DI_N_PKT_WORD0(HDMI_IFRAME_SLOT_AVI); break; case HDMI_INFOFRAME_TYPE_AUDIO: slot = HDMI_IFRAME_SLOT_AUDIO; mode = HDMI_IFRAME_FRAME; head_offset = HDMI_SW_DI_N_HEAD_WORD(HDMI_IFRAME_SLOT_AUDIO); pack_offset = HDMI_SW_DI_N_PKT_WORD0(HDMI_IFRAME_SLOT_AUDIO); break; case HDMI_INFOFRAME_TYPE_VENDOR: slot = HDMI_IFRAME_SLOT_VENDOR; mode = HDMI_IFRAME_FRAME; head_offset = HDMI_SW_DI_N_HEAD_WORD(HDMI_IFRAME_SLOT_VENDOR); pack_offset = HDMI_SW_DI_N_PKT_WORD0(HDMI_IFRAME_SLOT_VENDOR); break; default: DRM_ERROR("unsupported infoframe type: %#x\n", *ptr); return; } /* Disable transmission slot for updated infoframe */ val = hdmi_read(hdmi, HDMI_SW_DI_CFG); val &= ~HDMI_IFRAME_CFG_DI_N(HDMI_IFRAME_MASK, slot); hdmi_write(hdmi, val, HDMI_SW_DI_CFG); val = HDMI_INFOFRAME_HEADER_TYPE(*ptr++); val |= HDMI_INFOFRAME_HEADER_VERSION(*ptr++); val |= HDMI_INFOFRAME_HEADER_LEN(*ptr++); writel(val, hdmi->regs + head_offset); /* * Each subpack contains 4 bytes * The First Bytes of the first subpacket must contain the checksum * Packet size is increase by one. */ size = size - HDMI_INFOFRAME_HEADER_SIZE + 1; for (i = 0; i < size; i += sizeof(u32)) { size_t num; num = min_t(size_t, size - i, sizeof(u32)); val = hdmi_infoframe_subpack(ptr, num); ptr += sizeof(u32); writel(val, hdmi->regs + pack_offset + i); } /* Enable transmission slot for updated infoframe */ val = hdmi_read(hdmi, HDMI_SW_DI_CFG); val |= HDMI_IFRAME_CFG_DI_N(mode, slot); hdmi_write(hdmi, val, HDMI_SW_DI_CFG); } /* * Prepare and configure the AVI infoframe * * AVI infoframe are transmitted at least once per two video field and * contains information about HDMI transmission mode such as color space, * colorimetry, ... * * @hdmi: pointer on the hdmi internal structure * * Return negative value if error occurs */ static int hdmi_avi_infoframe_config(struct sti_hdmi *hdmi) { struct drm_display_mode *mode = &hdmi->mode; struct hdmi_avi_infoframe infoframe; u8 buffer[HDMI_INFOFRAME_SIZE(AVI)]; int ret; DRM_DEBUG_DRIVER("\n"); ret = drm_hdmi_avi_infoframe_from_display_mode(&infoframe, hdmi->drm_connector, mode); if (ret < 0) { DRM_ERROR("failed to setup AVI infoframe: %d\n", ret); return ret; } /* fixed infoframe configuration not linked to the mode */ infoframe.colorspace = hdmi->colorspace; infoframe.quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT; infoframe.colorimetry = HDMI_COLORIMETRY_NONE; ret = hdmi_avi_infoframe_pack(&infoframe, buffer, sizeof(buffer)); if (ret < 0) { DRM_ERROR("failed to pack AVI infoframe: %d\n", ret); return ret; } hdmi_infoframe_write_infopack(hdmi, buffer, ret); return 0; } /* * Prepare and configure the AUDIO infoframe * * AUDIO infoframe are transmitted once per frame and * contains information about HDMI transmission mode such as audio codec, * sample size, ... * * @hdmi: pointer on the hdmi internal structure * * Return negative value if error occurs */ static int hdmi_audio_infoframe_config(struct sti_hdmi *hdmi) { struct hdmi_audio_params *audio = &hdmi->audio; u8 buffer[HDMI_INFOFRAME_SIZE(AUDIO)]; int ret, val; DRM_DEBUG_DRIVER("enter %s, AIF %s\n", __func__, audio->enabled ? "enable" : "disable"); if (audio->enabled) { /* set audio parameters stored*/ ret = hdmi_audio_infoframe_pack(&audio->cea, buffer, sizeof(buffer)); if (ret < 0) { DRM_ERROR("failed to pack audio infoframe: %d\n", ret); return ret; } hdmi_infoframe_write_infopack(hdmi, buffer, ret); } else { /*disable audio info frame transmission */ val = hdmi_read(hdmi, HDMI_SW_DI_CFG); val &= ~HDMI_IFRAME_CFG_DI_N(HDMI_IFRAME_MASK, HDMI_IFRAME_SLOT_AUDIO); hdmi_write(hdmi, val, HDMI_SW_DI_CFG); } return 0; } /* * Prepare and configure the VS infoframe * * Vendor Specific infoframe are transmitted once per frame and * contains vendor specific information. * * @hdmi: pointer on the hdmi internal structure * * Return negative value if error occurs */ #define HDMI_VENDOR_INFOFRAME_MAX_SIZE 6 static int hdmi_vendor_infoframe_config(struct sti_hdmi *hdmi) { struct drm_display_mode *mode = &hdmi->mode; struct hdmi_vendor_infoframe infoframe; u8 buffer[HDMI_INFOFRAME_HEADER_SIZE + HDMI_VENDOR_INFOFRAME_MAX_SIZE]; int ret; DRM_DEBUG_DRIVER("\n"); ret = drm_hdmi_vendor_infoframe_from_display_mode(&infoframe, hdmi->drm_connector, mode); if (ret < 0) { /* * Going into that statement does not means vendor infoframe * fails. It just informed us that vendor infoframe is not * needed for the selected mode. Only 4k or stereoscopic 3D * mode requires vendor infoframe. So just simply return 0. */ return 0; } ret = hdmi_vendor_infoframe_pack(&infoframe, buffer, sizeof(buffer)); if (ret < 0) { DRM_ERROR("failed to pack VS infoframe: %d\n", ret); return ret; } hdmi_infoframe_write_infopack(hdmi, buffer, ret); return 0; } #define HDMI_TIMEOUT_SWRESET 100 /*milliseconds */ /* * Software reset of the hdmi subsystem * * @hdmi: pointer on the hdmi internal structure * */ static void hdmi_swreset(struct sti_hdmi *hdmi) { u32 val; DRM_DEBUG_DRIVER("\n"); /* Enable hdmi_audio clock only during hdmi reset */ if (clk_prepare_enable(hdmi->clk_audio)) DRM_INFO("Failed to prepare/enable hdmi_audio clk\n"); /* Sw reset */ hdmi->event_received = false; val = hdmi_read(hdmi, HDMI_CFG); val |= HDMI_CFG_SW_RST_EN; hdmi_write(hdmi, val, HDMI_CFG); /* Wait reset completed */ wait_event_interruptible_timeout(hdmi->wait_event, hdmi->event_received, msecs_to_jiffies (HDMI_TIMEOUT_SWRESET)); /* * HDMI_STA_SW_RST bit is set to '1' when SW_RST bit in HDMI_CFG is * set to '1' and clk_audio is running. */ if ((hdmi_read(hdmi, HDMI_STA) & HDMI_STA_SW_RST) == 0) DRM_DEBUG_DRIVER("Warning: HDMI sw reset timeout occurs\n"); val = hdmi_read(hdmi, HDMI_CFG); val &= ~HDMI_CFG_SW_RST_EN; hdmi_write(hdmi, val, HDMI_CFG); /* Disable hdmi_audio clock. Not used anymore for drm purpose */ clk_disable_unprepare(hdmi->clk_audio); } #define DBGFS_PRINT_STR(str1, str2) seq_printf(s, "%-24s %s\n", str1, str2) #define DBGFS_PRINT_INT(str1, int2) seq_printf(s, "%-24s %d\n", str1, int2) #define DBGFS_DUMP(str, reg) seq_printf(s, "%s %-25s 0x%08X", str, #reg, \ hdmi_read(hdmi, reg)) #define DBGFS_DUMP_DI(reg, slot) DBGFS_DUMP("\n", reg(slot)) static void hdmi_dbg_cfg(struct seq_file *s, int val) { int tmp; seq_putc(s, '\t'); tmp = val & HDMI_CFG_HDMI_NOT_DVI; DBGFS_PRINT_STR("mode:", tmp ? "HDMI" : "DVI"); seq_puts(s, "\t\t\t\t\t"); tmp = val & HDMI_CFG_HDCP_EN; DBGFS_PRINT_STR("HDCP:", tmp ? "enable" : "disable"); seq_puts(s, "\t\t\t\t\t"); tmp = val & HDMI_CFG_ESS_NOT_OESS; DBGFS_PRINT_STR("HDCP mode:", tmp ? "ESS enable" : "OESS enable"); seq_puts(s, "\t\t\t\t\t"); tmp = val & HDMI_CFG_H_SYNC_POL_NEG; DBGFS_PRINT_STR("Hsync polarity:", tmp ? "inverted" : "normal"); seq_puts(s, "\t\t\t\t\t"); tmp = val & HDMI_CFG_V_SYNC_POL_NEG; DBGFS_PRINT_STR("Vsync polarity:", tmp ? "inverted" : "normal"); seq_puts(s, "\t\t\t\t\t"); tmp = val & HDMI_CFG_422_EN; DBGFS_PRINT_STR("YUV422 format:", tmp ? "enable" : "disable"); } static void hdmi_dbg_sta(struct seq_file *s, int val) { int tmp; seq_putc(s, '\t'); tmp = (val & HDMI_STA_DLL_LCK); DBGFS_PRINT_STR("pll:", tmp ? "locked" : "not locked"); seq_puts(s, "\t\t\t\t\t"); tmp = (val & HDMI_STA_HOT_PLUG); DBGFS_PRINT_STR("hdmi cable:", tmp ? "connected" : "not connected"); } static void hdmi_dbg_sw_di_cfg(struct seq_file *s, int val) { int tmp; char *const en_di[] = {"no transmission", "single transmission", "once every field", "once every frame"}; seq_putc(s, '\t'); tmp = (val & HDMI_IFRAME_CFG_DI_N(HDMI_IFRAME_MASK, 1)); DBGFS_PRINT_STR("Data island 1:", en_di[tmp]); seq_puts(s, "\t\t\t\t\t"); tmp = (val & HDMI_IFRAME_CFG_DI_N(HDMI_IFRAME_MASK, 2)) >> 4; DBGFS_PRINT_STR("Data island 2:", en_di[tmp]); seq_puts(s, "\t\t\t\t\t"); tmp = (val & HDMI_IFRAME_CFG_DI_N(HDMI_IFRAME_MASK, 3)) >> 8; DBGFS_PRINT_STR("Data island 3:", en_di[tmp]); seq_puts(s, "\t\t\t\t\t"); tmp = (val & HDMI_IFRAME_CFG_DI_N(HDMI_IFRAME_MASK, 4)) >> 12; DBGFS_PRINT_STR("Data island 4:", en_di[tmp]); seq_puts(s, "\t\t\t\t\t"); tmp = (val & HDMI_IFRAME_CFG_DI_N(HDMI_IFRAME_MASK, 5)) >> 16; DBGFS_PRINT_STR("Data island 5:", en_di[tmp]); seq_puts(s, "\t\t\t\t\t"); tmp = (val & HDMI_IFRAME_CFG_DI_N(HDMI_IFRAME_MASK, 6)) >> 20; DBGFS_PRINT_STR("Data island 6:", en_di[tmp]); } static int hdmi_dbg_show(struct seq_file *s, void *data) { struct drm_info_node *node = s->private; struct sti_hdmi *hdmi = (struct sti_hdmi *)node->info_ent->data; seq_printf(s, "HDMI: (vaddr = 0x%p)", hdmi->regs); DBGFS_DUMP("\n", HDMI_CFG); hdmi_dbg_cfg(s, hdmi_read(hdmi, HDMI_CFG)); DBGFS_DUMP("", HDMI_INT_EN); DBGFS_DUMP("\n", HDMI_STA); hdmi_dbg_sta(s, hdmi_read(hdmi, HDMI_STA)); DBGFS_DUMP("", HDMI_ACTIVE_VID_XMIN); seq_putc(s, '\t'); DBGFS_PRINT_INT("Xmin:", hdmi_read(hdmi, HDMI_ACTIVE_VID_XMIN)); DBGFS_DUMP("", HDMI_ACTIVE_VID_XMAX); seq_putc(s, '\t'); DBGFS_PRINT_INT("Xmax:", hdmi_read(hdmi, HDMI_ACTIVE_VID_XMAX)); DBGFS_DUMP("", HDMI_ACTIVE_VID_YMIN); seq_putc(s, '\t'); DBGFS_PRINT_INT("Ymin:", hdmi_read(hdmi, HDMI_ACTIVE_VID_YMIN)); DBGFS_DUMP("", HDMI_ACTIVE_VID_YMAX); seq_putc(s, '\t'); DBGFS_PRINT_INT("Ymax:", hdmi_read(hdmi, HDMI_ACTIVE_VID_YMAX)); DBGFS_DUMP("", HDMI_SW_DI_CFG); hdmi_dbg_sw_di_cfg(s, hdmi_read(hdmi, HDMI_SW_DI_CFG)); DBGFS_DUMP("\n", HDMI_AUDIO_CFG); DBGFS_DUMP("\n", HDMI_SPDIF_FIFO_STATUS); DBGFS_DUMP("\n", HDMI_AUDN); seq_printf(s, "\n AVI Infoframe (Data Island slot N=%d):", HDMI_IFRAME_SLOT_AVI); DBGFS_DUMP_DI(HDMI_SW_DI_N_HEAD_WORD, HDMI_IFRAME_SLOT_AVI); DBGFS_DUMP_DI(HDMI_SW_DI_N_PKT_WORD0, HDMI_IFRAME_SLOT_AVI); DBGFS_DUMP_DI(HDMI_SW_DI_N_PKT_WORD1, HDMI_IFRAME_SLOT_AVI); DBGFS_DUMP_DI(HDMI_SW_DI_N_PKT_WORD2, HDMI_IFRAME_SLOT_AVI); DBGFS_DUMP_DI(HDMI_SW_DI_N_PKT_WORD3, HDMI_IFRAME_SLOT_AVI); DBGFS_DUMP_DI(HDMI_SW_DI_N_PKT_WORD4, HDMI_IFRAME_SLOT_AVI); DBGFS_DUMP_DI(HDMI_SW_DI_N_PKT_WORD5, HDMI_IFRAME_SLOT_AVI); DBGFS_DUMP_DI(HDMI_SW_DI_N_PKT_WORD6, HDMI_IFRAME_SLOT_AVI); seq_printf(s, "\n\n AUDIO Infoframe (Data Island slot N=%d):", HDMI_IFRAME_SLOT_AUDIO); DBGFS_DUMP_DI(HDMI_SW_DI_N_HEAD_WORD, HDMI_IFRAME_SLOT_AUDIO); DBGFS_DUMP_DI(HDMI_SW_DI_N_PKT_WORD0, HDMI_IFRAME_SLOT_AUDIO); DBGFS_DUMP_DI(HDMI_SW_DI_N_PKT_WORD1, HDMI_IFRAME_SLOT_AUDIO); DBGFS_DUMP_DI(HDMI_SW_DI_N_PKT_WORD2, HDMI_IFRAME_SLOT_AUDIO); DBGFS_DUMP_DI(HDMI_SW_DI_N_PKT_WORD3, HDMI_IFRAME_SLOT_AUDIO); DBGFS_DUMP_DI(HDMI_SW_DI_N_PKT_WORD4, HDMI_IFRAME_SLOT_AUDIO); DBGFS_DUMP_DI(HDMI_SW_DI_N_PKT_WORD5, HDMI_IFRAME_SLOT_AUDIO); DBGFS_DUMP_DI(HDMI_SW_DI_N_PKT_WORD6, HDMI_IFRAME_SLOT_AUDIO); seq_printf(s, "\n\n VENDOR SPECIFIC Infoframe (Data Island slot N=%d):", HDMI_IFRAME_SLOT_VENDOR); DBGFS_DUMP_DI(HDMI_SW_DI_N_HEAD_WORD, HDMI_IFRAME_SLOT_VENDOR); DBGFS_DUMP_DI(HDMI_SW_DI_N_PKT_WORD0, HDMI_IFRAME_SLOT_VENDOR); DBGFS_DUMP_DI(HDMI_SW_DI_N_PKT_WORD1, HDMI_IFRAME_SLOT_VENDOR); DBGFS_DUMP_DI(HDMI_SW_DI_N_PKT_WORD2, HDMI_IFRAME_SLOT_VENDOR); DBGFS_DUMP_DI(HDMI_SW_DI_N_PKT_WORD3, HDMI_IFRAME_SLOT_VENDOR); DBGFS_DUMP_DI(HDMI_SW_DI_N_PKT_WORD4, HDMI_IFRAME_SLOT_VENDOR); DBGFS_DUMP_DI(HDMI_SW_DI_N_PKT_WORD5, HDMI_IFRAME_SLOT_VENDOR); DBGFS_DUMP_DI(HDMI_SW_DI_N_PKT_WORD6, HDMI_IFRAME_SLOT_VENDOR); seq_putc(s, '\n'); return 0; } static struct drm_info_list hdmi_debugfs_files[] = { { "hdmi", hdmi_dbg_show, 0, NULL }, }; static void hdmi_debugfs_init(struct sti_hdmi *hdmi, struct drm_minor *minor) { unsigned int i; for (i = 0; i < ARRAY_SIZE(hdmi_debugfs_files); i++) hdmi_debugfs_files[i].data = hdmi; drm_debugfs_create_files(hdmi_debugfs_files, ARRAY_SIZE(hdmi_debugfs_files), minor->debugfs_root, minor); } static void sti_hdmi_disable(struct drm_bridge *bridge) { struct sti_hdmi *hdmi = bridge->driver_private; u32 val = hdmi_read(hdmi, HDMI_CFG); if (!hdmi->enabled) return; DRM_DEBUG_DRIVER("\n"); /* Disable HDMI */ val &= ~HDMI_CFG_DEVICE_EN; hdmi_write(hdmi, val, HDMI_CFG); hdmi_write(hdmi, 0xffffffff, HDMI_INT_CLR); /* Stop the phy */ hdmi->phy_ops->stop(hdmi); /* Reset info frame transmission */ hdmi_infoframe_reset(hdmi, HDMI_IFRAME_SLOT_AVI); hdmi_infoframe_reset(hdmi, HDMI_IFRAME_SLOT_AUDIO); hdmi_infoframe_reset(hdmi, HDMI_IFRAME_SLOT_VENDOR); /* Set the default channel data to be a dark red */ hdmi_write(hdmi, 0x0000, HDMI_DFLT_CHL0_DAT); hdmi_write(hdmi, 0x0000, HDMI_DFLT_CHL1_DAT); hdmi_write(hdmi, 0x0060, HDMI_DFLT_CHL2_DAT); /* Disable/unprepare hdmi clock */ clk_disable_unprepare(hdmi->clk_phy); clk_disable_unprepare(hdmi->clk_tmds); clk_disable_unprepare(hdmi->clk_pix); hdmi->enabled = false; cec_notifier_set_phys_addr(hdmi->notifier, CEC_PHYS_ADDR_INVALID); } /* * sti_hdmi_audio_get_non_coherent_n() - get N parameter for non-coherent * clocks. None-coherent clocks means that audio and TMDS clocks have not the * same source (drifts between clocks). In this case assumption is that CTS is * automatically calculated by hardware. * * @audio_fs: audio frame clock frequency in Hz * * Values computed are based on table described in HDMI specification 1.4b * * Returns n value. */ static int sti_hdmi_audio_get_non_coherent_n(unsigned int audio_fs) { unsigned int n; switch (audio_fs) { case 32000: n = 4096; break; case 44100: n = 6272; break; case 48000: n = 6144; break; case 88200: n = 6272 * 2; break; case 96000: n = 6144 * 2; break; case 176400: n = 6272 * 4; break; case 192000: n = 6144 * 4; break; default: /* Not pre-defined, recommended value: 128 * fs / 1000 */ n = (audio_fs * 128) / 1000; } return n; } static int hdmi_audio_configure(struct sti_hdmi *hdmi) { int audio_cfg, n; struct hdmi_audio_params *params = &hdmi->audio; struct hdmi_audio_infoframe *info = &params->cea; DRM_DEBUG_DRIVER("\n"); if (!hdmi->enabled) return 0; /* update N parameter */ n = sti_hdmi_audio_get_non_coherent_n(params->sample_rate); DRM_DEBUG_DRIVER("Audio rate = %d Hz, TMDS clock = %d Hz, n = %d\n", params->sample_rate, hdmi->mode.clock * 1000, n); hdmi_write(hdmi, n, HDMI_AUDN); /* update HDMI registers according to configuration */ audio_cfg = HDMI_AUD_CFG_SPDIF_DIV_2 | HDMI_AUD_CFG_DTS_INVALID | HDMI_AUD_CFG_ONE_BIT_INVALID; switch (info->channels) { case 8: audio_cfg |= HDMI_AUD_CFG_CH78_VALID; fallthrough; case 6: audio_cfg |= HDMI_AUD_CFG_CH56_VALID; fallthrough; case 4: audio_cfg |= HDMI_AUD_CFG_CH34_VALID | HDMI_AUD_CFG_8CH; fallthrough; case 2: audio_cfg |= HDMI_AUD_CFG_CH12_VALID; break; default: DRM_ERROR("ERROR: Unsupported number of channels (%d)!\n", info->channels); return -EINVAL; } hdmi_write(hdmi, audio_cfg, HDMI_AUDIO_CFG); return hdmi_audio_infoframe_config(hdmi); } static void sti_hdmi_pre_enable(struct drm_bridge *bridge) { struct sti_hdmi *hdmi = bridge->driver_private; DRM_DEBUG_DRIVER("\n"); if (hdmi->enabled) return; /* Prepare/enable clocks */ if (clk_prepare_enable(hdmi->clk_pix)) DRM_ERROR("Failed to prepare/enable hdmi_pix clk\n"); if (clk_prepare_enable(hdmi->clk_tmds)) DRM_ERROR("Failed to prepare/enable hdmi_tmds clk\n"); if (clk_prepare_enable(hdmi->clk_phy)) DRM_ERROR("Failed to prepare/enable hdmi_rejection_pll clk\n"); hdmi->enabled = true; /* Program hdmi serializer and start phy */ if (!hdmi->phy_ops->start(hdmi)) { DRM_ERROR("Unable to start hdmi phy\n"); return; } /* Program hdmi active area */ hdmi_active_area(hdmi); /* Enable working interrupts */ hdmi_write(hdmi, HDMI_WORKING_INT, HDMI_INT_EN); /* Program hdmi config */ hdmi_config(hdmi); /* Program AVI infoframe */ if (hdmi_avi_infoframe_config(hdmi)) DRM_ERROR("Unable to configure AVI infoframe\n"); if (hdmi->audio.enabled) { if (hdmi_audio_configure(hdmi)) DRM_ERROR("Unable to configure audio\n"); } else { hdmi_audio_infoframe_config(hdmi); } /* Program VS infoframe */ if (hdmi_vendor_infoframe_config(hdmi)) DRM_ERROR("Unable to configure VS infoframe\n"); /* Sw reset */ hdmi_swreset(hdmi); } static void sti_hdmi_set_mode(struct drm_bridge *bridge, const struct drm_display_mode *mode, const struct drm_display_mode *adjusted_mode) { struct sti_hdmi *hdmi = bridge->driver_private; int ret; DRM_DEBUG_DRIVER("\n"); /* Copy the drm display mode in the connector local structure */ drm_mode_copy(&hdmi->mode, mode); /* Update clock framerate according to the selected mode */ ret = clk_set_rate(hdmi->clk_pix, mode->clock * 1000); if (ret < 0) { DRM_ERROR("Cannot set rate (%dHz) for hdmi_pix clk\n", mode->clock * 1000); return; } ret = clk_set_rate(hdmi->clk_phy, mode->clock * 1000); if (ret < 0) { DRM_ERROR("Cannot set rate (%dHz) for hdmi_rejection_pll clk\n", mode->clock * 1000); return; } } static void sti_hdmi_bridge_nope(struct drm_bridge *bridge) { /* do nothing */ } static const struct drm_bridge_funcs sti_hdmi_bridge_funcs = { .pre_enable = sti_hdmi_pre_enable, .enable = sti_hdmi_bridge_nope, .disable = sti_hdmi_disable, .post_disable = sti_hdmi_bridge_nope, .mode_set = sti_hdmi_set_mode, }; static int sti_hdmi_connector_get_modes(struct drm_connector *connector) { struct sti_hdmi_connector *hdmi_connector = to_sti_hdmi_connector(connector); struct sti_hdmi *hdmi = hdmi_connector->hdmi; struct edid *edid; int count; DRM_DEBUG_DRIVER("\n"); edid = drm_get_edid(connector, hdmi->ddc_adapt); if (!edid) goto fail; cec_notifier_set_phys_addr_from_edid(hdmi->notifier, edid); count = drm_add_edid_modes(connector, edid); drm_connector_update_edid_property(connector, edid); DRM_DEBUG_KMS("%s : %dx%d cm\n", (connector->display_info.is_hdmi ? "hdmi monitor" : "dvi monitor"), edid->width_cm, edid->height_cm); kfree(edid); return count; fail: DRM_ERROR("Can't read HDMI EDID\n"); return 0; } #define CLK_TOLERANCE_HZ 50 static enum drm_mode_status sti_hdmi_connector_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { int target = mode->clock * 1000; int target_min = target - CLK_TOLERANCE_HZ; int target_max = target + CLK_TOLERANCE_HZ; int result; struct sti_hdmi_connector *hdmi_connector = to_sti_hdmi_connector(connector); struct sti_hdmi *hdmi = hdmi_connector->hdmi; result = clk_round_rate(hdmi->clk_pix, target); DRM_DEBUG_DRIVER("target rate = %d => available rate = %d\n", target, result); if ((result < target_min) || (result > target_max)) { DRM_DEBUG_DRIVER("hdmi pixclk=%d not supported\n", target); return MODE_BAD; } return MODE_OK; } static const struct drm_connector_helper_funcs sti_hdmi_connector_helper_funcs = { .get_modes = sti_hdmi_connector_get_modes, .mode_valid = sti_hdmi_connector_mode_valid, }; /* get detection status of display device */ static enum drm_connector_status sti_hdmi_connector_detect(struct drm_connector *connector, bool force) { struct sti_hdmi_connector *hdmi_connector = to_sti_hdmi_connector(connector); struct sti_hdmi *hdmi = hdmi_connector->hdmi; DRM_DEBUG_DRIVER("\n"); if (hdmi->hpd) { DRM_DEBUG_DRIVER("hdmi cable connected\n"); return connector_status_connected; } DRM_DEBUG_DRIVER("hdmi cable disconnected\n"); cec_notifier_set_phys_addr(hdmi->notifier, CEC_PHYS_ADDR_INVALID); return connector_status_disconnected; } static void sti_hdmi_connector_init_property(struct drm_device *drm_dev, struct drm_connector *connector) { struct sti_hdmi_connector *hdmi_connector = to_sti_hdmi_connector(connector); struct sti_hdmi *hdmi = hdmi_connector->hdmi; struct drm_property *prop; /* colorspace property */ hdmi->colorspace = DEFAULT_COLORSPACE_MODE; prop = drm_property_create_enum(drm_dev, 0, "colorspace", colorspace_mode_names, ARRAY_SIZE(colorspace_mode_names)); if (!prop) { DRM_ERROR("fails to create colorspace property\n"); return; } hdmi_connector->colorspace_property = prop; drm_object_attach_property(&connector->base, prop, hdmi->colorspace); } static int sti_hdmi_connector_set_property(struct drm_connector *connector, struct drm_connector_state *state, struct drm_property *property, uint64_t val) { struct sti_hdmi_connector *hdmi_connector = to_sti_hdmi_connector(connector); struct sti_hdmi *hdmi = hdmi_connector->hdmi; if (property == hdmi_connector->colorspace_property) { hdmi->colorspace = val; return 0; } DRM_ERROR("failed to set hdmi connector property\n"); return -EINVAL; } static int sti_hdmi_connector_get_property(struct drm_connector *connector, const struct drm_connector_state *state, struct drm_property *property, uint64_t *val) { struct sti_hdmi_connector *hdmi_connector = to_sti_hdmi_connector(connector); struct sti_hdmi *hdmi = hdmi_connector->hdmi; if (property == hdmi_connector->colorspace_property) { *val = hdmi->colorspace; return 0; } DRM_ERROR("failed to get hdmi connector property\n"); return -EINVAL; } static int sti_hdmi_late_register(struct drm_connector *connector) { struct sti_hdmi_connector *hdmi_connector = to_sti_hdmi_connector(connector); struct sti_hdmi *hdmi = hdmi_connector->hdmi; hdmi_debugfs_init(hdmi, hdmi->drm_dev->primary); return 0; } static const struct drm_connector_funcs sti_hdmi_connector_funcs = { .fill_modes = drm_helper_probe_single_connector_modes, .detect = sti_hdmi_connector_detect, .destroy = drm_connector_cleanup, .reset = drm_atomic_helper_connector_reset, .atomic_set_property = sti_hdmi_connector_set_property, .atomic_get_property = sti_hdmi_connector_get_property, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, .late_register = sti_hdmi_late_register, }; static struct drm_encoder *sti_hdmi_find_encoder(struct drm_device *dev) { struct drm_encoder *encoder; list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { if (encoder->encoder_type == DRM_MODE_ENCODER_TMDS) return encoder; } return NULL; } static void hdmi_audio_shutdown(struct device *dev, void *data) { struct sti_hdmi *hdmi = dev_get_drvdata(dev); int audio_cfg; DRM_DEBUG_DRIVER("\n"); /* disable audio */ audio_cfg = HDMI_AUD_CFG_SPDIF_DIV_2 | HDMI_AUD_CFG_DTS_INVALID | HDMI_AUD_CFG_ONE_BIT_INVALID; hdmi_write(hdmi, audio_cfg, HDMI_AUDIO_CFG); hdmi->audio.enabled = false; hdmi_audio_infoframe_config(hdmi); } static int hdmi_audio_hw_params(struct device *dev, void *data, struct hdmi_codec_daifmt *daifmt, struct hdmi_codec_params *params) { struct sti_hdmi *hdmi = dev_get_drvdata(dev); int ret; DRM_DEBUG_DRIVER("\n"); if ((daifmt->fmt != HDMI_I2S) || daifmt->bit_clk_inv || daifmt->frame_clk_inv || daifmt->bit_clk_provider || daifmt->frame_clk_provider) { dev_err(dev, "%s: Bad flags %d %d %d %d\n", __func__, daifmt->bit_clk_inv, daifmt->frame_clk_inv, daifmt->bit_clk_provider, daifmt->frame_clk_provider); return -EINVAL; } hdmi->audio.sample_width = params->sample_width; hdmi->audio.sample_rate = params->sample_rate; hdmi->audio.cea = params->cea; hdmi->audio.enabled = true; ret = hdmi_audio_configure(hdmi); if (ret < 0) return ret; return 0; } static int hdmi_audio_mute(struct device *dev, void *data, bool enable, int direction) { struct sti_hdmi *hdmi = dev_get_drvdata(dev); DRM_DEBUG_DRIVER("%s\n", enable ? "enable" : "disable"); if (enable) hdmi_write(hdmi, HDMI_SAMPLE_FLAT_ALL, HDMI_SAMPLE_FLAT_MASK); else hdmi_write(hdmi, HDMI_SAMPLE_FLAT_NO, HDMI_SAMPLE_FLAT_MASK); return 0; } static int hdmi_audio_get_eld(struct device *dev, void *data, uint8_t *buf, size_t len) { struct sti_hdmi *hdmi = dev_get_drvdata(dev); struct drm_connector *connector = hdmi->drm_connector; DRM_DEBUG_DRIVER("\n"); memcpy(buf, connector->eld, min(sizeof(connector->eld), len)); return 0; } static const struct hdmi_codec_ops audio_codec_ops = { .hw_params = hdmi_audio_hw_params, .audio_shutdown = hdmi_audio_shutdown, .mute_stream = hdmi_audio_mute, .get_eld = hdmi_audio_get_eld, .no_capture_mute = 1, }; static int sti_hdmi_register_audio_driver(struct device *dev, struct sti_hdmi *hdmi) { struct hdmi_codec_pdata codec_data = { .ops = &audio_codec_ops, .max_i2s_channels = 8, .i2s = 1, }; DRM_DEBUG_DRIVER("\n"); hdmi->audio.enabled = false; hdmi->audio_pdev = platform_device_register_data( dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO, &codec_data, sizeof(codec_data)); if (IS_ERR(hdmi->audio_pdev)) return PTR_ERR(hdmi->audio_pdev); DRM_INFO("%s Driver bound %s\n", HDMI_CODEC_DRV_NAME, dev_name(dev)); return 0; } static int sti_hdmi_bind(struct device *dev, struct device *master, void *data) { struct sti_hdmi *hdmi = dev_get_drvdata(dev); struct drm_device *drm_dev = data; struct drm_encoder *encoder; struct sti_hdmi_connector *connector; struct cec_connector_info conn_info; struct drm_connector *drm_connector; struct drm_bridge *bridge; int err; /* Set the drm device handle */ hdmi->drm_dev = drm_dev; encoder = sti_hdmi_find_encoder(drm_dev); if (!encoder) return -EINVAL; connector = devm_kzalloc(dev, sizeof(*connector), GFP_KERNEL); if (!connector) return -EINVAL; connector->hdmi = hdmi; bridge = devm_kzalloc(dev, sizeof(*bridge), GFP_KERNEL); if (!bridge) return -EINVAL; bridge->driver_private = hdmi; bridge->funcs = &sti_hdmi_bridge_funcs; drm_bridge_attach(encoder, bridge, NULL, 0); connector->encoder = encoder; drm_connector = (struct drm_connector *)connector; drm_connector->polled = DRM_CONNECTOR_POLL_HPD; drm_connector_init_with_ddc(drm_dev, drm_connector, &sti_hdmi_connector_funcs, DRM_MODE_CONNECTOR_HDMIA, hdmi->ddc_adapt); drm_connector_helper_add(drm_connector, &sti_hdmi_connector_helper_funcs); /* initialise property */ sti_hdmi_connector_init_property(drm_dev, drm_connector); hdmi->drm_connector = drm_connector; err = drm_connector_attach_encoder(drm_connector, encoder); if (err) { DRM_ERROR("Failed to attach a connector to a encoder\n"); goto err_sysfs; } err = sti_hdmi_register_audio_driver(dev, hdmi); if (err) { DRM_ERROR("Failed to attach an audio codec\n"); goto err_sysfs; } /* Initialize audio infoframe */ err = hdmi_audio_infoframe_init(&hdmi->audio.cea); if (err) { DRM_ERROR("Failed to init audio infoframe\n"); goto err_sysfs; } cec_fill_conn_info_from_drm(&conn_info, drm_connector); hdmi->notifier = cec_notifier_conn_register(&hdmi->dev, NULL, &conn_info); if (!hdmi->notifier) { hdmi->drm_connector = NULL; return -ENOMEM; } /* Enable default interrupts */ hdmi_write(hdmi, HDMI_DEFAULT_INT, HDMI_INT_EN); return 0; err_sysfs: hdmi->drm_connector = NULL; return -EINVAL; } static void sti_hdmi_unbind(struct device *dev, struct device *master, void *data) { struct sti_hdmi *hdmi = dev_get_drvdata(dev); cec_notifier_conn_unregister(hdmi->notifier); } static const struct component_ops sti_hdmi_ops = { .bind = sti_hdmi_bind, .unbind = sti_hdmi_unbind, }; static const struct of_device_id hdmi_of_match[] = { { .compatible = "st,stih407-hdmi", .data = &tx3g4c28phy_ops, }, { /* end node */ } }; MODULE_DEVICE_TABLE(of, hdmi_of_match); static int sti_hdmi_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct sti_hdmi *hdmi; struct device_node *np = dev->of_node; struct resource *res; struct device_node *ddc; int ret; DRM_INFO("%s\n", __func__); hdmi = devm_kzalloc(dev, sizeof(*hdmi), GFP_KERNEL); if (!hdmi) return -ENOMEM; ddc = of_parse_phandle(pdev->dev.of_node, "ddc", 0); if (ddc) { hdmi->ddc_adapt = of_get_i2c_adapter_by_node(ddc); of_node_put(ddc); if (!hdmi->ddc_adapt) return -EPROBE_DEFER; } hdmi->dev = pdev->dev; /* Get resources */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hdmi-reg"); if (!res) { DRM_ERROR("Invalid hdmi resource\n"); ret = -ENOMEM; goto release_adapter; } hdmi->regs = devm_ioremap(dev, res->start, resource_size(res)); if (!hdmi->regs) { ret = -ENOMEM; goto release_adapter; } hdmi->phy_ops = (struct hdmi_phy_ops *) of_match_node(hdmi_of_match, np)->data; /* Get clock resources */ hdmi->clk_pix = devm_clk_get(dev, "pix"); if (IS_ERR(hdmi->clk_pix)) { DRM_ERROR("Cannot get hdmi_pix clock\n"); ret = PTR_ERR(hdmi->clk_pix); goto release_adapter; } hdmi->clk_tmds = devm_clk_get(dev, "tmds"); if (IS_ERR(hdmi->clk_tmds)) { DRM_ERROR("Cannot get hdmi_tmds clock\n"); ret = PTR_ERR(hdmi->clk_tmds); goto release_adapter; } hdmi->clk_phy = devm_clk_get(dev, "phy"); if (IS_ERR(hdmi->clk_phy)) { DRM_ERROR("Cannot get hdmi_phy clock\n"); ret = PTR_ERR(hdmi->clk_phy); goto release_adapter; } hdmi->clk_audio = devm_clk_get(dev, "audio"); if (IS_ERR(hdmi->clk_audio)) { DRM_ERROR("Cannot get hdmi_audio clock\n"); ret = PTR_ERR(hdmi->clk_audio); goto release_adapter; } hdmi->hpd = readl(hdmi->regs + HDMI_STA) & HDMI_STA_HOT_PLUG; init_waitqueue_head(&hdmi->wait_event); hdmi->irq = platform_get_irq_byname(pdev, "irq"); if (hdmi->irq < 0) { DRM_ERROR("Cannot get HDMI irq\n"); ret = hdmi->irq; goto release_adapter; } ret = devm_request_threaded_irq(dev, hdmi->irq, hdmi_irq, hdmi_irq_thread, IRQF_ONESHOT, dev_name(dev), hdmi); if (ret) { DRM_ERROR("Failed to register HDMI interrupt\n"); goto release_adapter; } hdmi->reset = devm_reset_control_get(dev, "hdmi"); /* Take hdmi out of reset */ if (!IS_ERR(hdmi->reset)) reset_control_deassert(hdmi->reset); platform_set_drvdata(pdev, hdmi); return component_add(&pdev->dev, &sti_hdmi_ops); release_adapter: i2c_put_adapter(hdmi->ddc_adapt); return ret; } static void sti_hdmi_remove(struct platform_device *pdev) { struct sti_hdmi *hdmi = dev_get_drvdata(&pdev->dev); i2c_put_adapter(hdmi->ddc_adapt); if (hdmi->audio_pdev) platform_device_unregister(hdmi->audio_pdev); component_del(&pdev->dev, &sti_hdmi_ops); } struct platform_driver sti_hdmi_driver = { .driver = { .name = "sti-hdmi", .owner = THIS_MODULE, .of_match_table = hdmi_of_match, }, .probe = sti_hdmi_probe, .remove_new = sti_hdmi_remove, }; MODULE_AUTHOR("Benjamin Gaignard <[email protected]>"); MODULE_DESCRIPTION("STMicroelectronics SoC DRM driver"); MODULE_LICENSE("GPL");
linux-master
drivers/gpu/drm/sti/sti_hdmi.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics SA 2014 * Authors: Benjamin Gaignard <[email protected]> * Fabien Dessenne <[email protected]> * for STMicroelectronics. */ #include <linux/component.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/reset.h> #include <drm/drm_device.h> #include <drm/drm_print.h> #include <drm/drm_vblank.h> #include "sti_compositor.h" #include "sti_crtc.h" #include "sti_cursor.h" #include "sti_drv.h" #include "sti_gdp.h" #include "sti_plane.h" #include "sti_vid.h" #include "sti_vtg.h" /* * stiH407 compositor properties */ static const struct sti_compositor_data stih407_compositor_data = { .nb_subdev = 8, .subdev_desc = { {STI_CURSOR_SUBDEV, (int)STI_CURSOR, 0x000}, {STI_GPD_SUBDEV, (int)STI_GDP_0, 0x100}, {STI_GPD_SUBDEV, (int)STI_GDP_1, 0x200}, {STI_GPD_SUBDEV, (int)STI_GDP_2, 0x300}, {STI_GPD_SUBDEV, (int)STI_GDP_3, 0x400}, {STI_VID_SUBDEV, (int)STI_HQVDP_0, 0x700}, {STI_MIXER_MAIN_SUBDEV, STI_MIXER_MAIN, 0xC00}, {STI_MIXER_AUX_SUBDEV, STI_MIXER_AUX, 0xD00}, }, }; void sti_compositor_debugfs_init(struct sti_compositor *compo, struct drm_minor *minor) { unsigned int i; for (i = 0; i < STI_MAX_VID; i++) if (compo->vid[i]) vid_debugfs_init(compo->vid[i], minor); for (i = 0; i < STI_MAX_MIXER; i++) if (compo->mixer[i]) sti_mixer_debugfs_init(compo->mixer[i], minor); } static int sti_compositor_bind(struct device *dev, struct device *master, void *data) { struct sti_compositor *compo = dev_get_drvdata(dev); struct drm_device *drm_dev = data; unsigned int i, mixer_id = 0, vid_id = 0, crtc_id = 0; struct sti_private *dev_priv = drm_dev->dev_private; struct drm_plane *cursor = NULL; struct drm_plane *primary = NULL; struct sti_compositor_subdev_descriptor *desc = compo->data.subdev_desc; unsigned int array_size = compo->data.nb_subdev; dev_priv->compo = compo; /* Register mixer subdev and video subdev first */ for (i = 0; i < array_size; i++) { switch (desc[i].type) { case STI_VID_SUBDEV: compo->vid[vid_id++] = sti_vid_create(compo->dev, drm_dev, desc[i].id, compo->regs + desc[i].offset); break; case STI_MIXER_MAIN_SUBDEV: case STI_MIXER_AUX_SUBDEV: compo->mixer[mixer_id++] = sti_mixer_create(compo->dev, drm_dev, desc[i].id, compo->regs + desc[i].offset); break; case STI_GPD_SUBDEV: case STI_CURSOR_SUBDEV: /* Nothing to do, wait for the second round */ break; default: DRM_ERROR("Unknown subdev component type\n"); return 1; } } /* Register the other subdevs, create crtc and planes */ for (i = 0; i < array_size; i++) { enum drm_plane_type plane_type = DRM_PLANE_TYPE_OVERLAY; if (crtc_id < mixer_id) plane_type = DRM_PLANE_TYPE_PRIMARY; switch (desc[i].type) { case STI_MIXER_MAIN_SUBDEV: case STI_MIXER_AUX_SUBDEV: case STI_VID_SUBDEV: /* Nothing to do, already done at the first round */ break; case STI_CURSOR_SUBDEV: cursor = sti_cursor_create(drm_dev, compo->dev, desc[i].id, compo->regs + desc[i].offset, 1); if (!cursor) { DRM_ERROR("Can't create CURSOR plane\n"); break; } break; case STI_GPD_SUBDEV: primary = sti_gdp_create(drm_dev, compo->dev, desc[i].id, compo->regs + desc[i].offset, (1 << mixer_id) - 1, plane_type); if (!primary) { DRM_ERROR("Can't create GDP plane\n"); break; } break; default: DRM_ERROR("Unknown subdev component type\n"); return 1; } /* The first planes are reserved for primary planes*/ if (crtc_id < mixer_id && primary) { sti_crtc_init(drm_dev, compo->mixer[crtc_id], primary, cursor); crtc_id++; cursor = NULL; primary = NULL; } } drm_vblank_init(drm_dev, crtc_id); return 0; } static void sti_compositor_unbind(struct device *dev, struct device *master, void *data) { /* do nothing */ } static const struct component_ops sti_compositor_ops = { .bind = sti_compositor_bind, .unbind = sti_compositor_unbind, }; static const struct of_device_id compositor_of_match[] = { { .compatible = "st,stih407-compositor", .data = &stih407_compositor_data, }, { /* end node */ } }; MODULE_DEVICE_TABLE(of, compositor_of_match); static int sti_compositor_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct device_node *vtg_np; struct sti_compositor *compo; struct resource *res; unsigned int i; compo = devm_kzalloc(dev, sizeof(*compo), GFP_KERNEL); if (!compo) { DRM_ERROR("Failed to allocate compositor context\n"); return -ENOMEM; } compo->dev = dev; for (i = 0; i < STI_MAX_MIXER; i++) compo->vtg_vblank_nb[i].notifier_call = sti_crtc_vblank_cb; /* populate data structure depending on compatibility */ BUG_ON(!of_match_node(compositor_of_match, np)->data); memcpy(&compo->data, of_match_node(compositor_of_match, np)->data, sizeof(struct sti_compositor_data)); /* Get Memory ressources */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (res == NULL) { DRM_ERROR("Get memory resource failed\n"); return -ENXIO; } compo->regs = devm_ioremap(dev, res->start, resource_size(res)); if (compo->regs == NULL) { DRM_ERROR("Register mapping failed\n"); return -ENXIO; } /* Get clock resources */ compo->clk_compo_main = devm_clk_get(dev, "compo_main"); if (IS_ERR(compo->clk_compo_main)) { DRM_ERROR("Cannot get compo_main clock\n"); return PTR_ERR(compo->clk_compo_main); } compo->clk_compo_aux = devm_clk_get(dev, "compo_aux"); if (IS_ERR(compo->clk_compo_aux)) { DRM_ERROR("Cannot get compo_aux clock\n"); return PTR_ERR(compo->clk_compo_aux); } compo->clk_pix_main = devm_clk_get(dev, "pix_main"); if (IS_ERR(compo->clk_pix_main)) { DRM_ERROR("Cannot get pix_main clock\n"); return PTR_ERR(compo->clk_pix_main); } compo->clk_pix_aux = devm_clk_get(dev, "pix_aux"); if (IS_ERR(compo->clk_pix_aux)) { DRM_ERROR("Cannot get pix_aux clock\n"); return PTR_ERR(compo->clk_pix_aux); } /* Get reset resources */ compo->rst_main = devm_reset_control_get_shared(dev, "compo-main"); /* Take compo main out of reset */ if (!IS_ERR(compo->rst_main)) reset_control_deassert(compo->rst_main); compo->rst_aux = devm_reset_control_get_shared(dev, "compo-aux"); /* Take compo aux out of reset */ if (!IS_ERR(compo->rst_aux)) reset_control_deassert(compo->rst_aux); vtg_np = of_parse_phandle(pdev->dev.of_node, "st,vtg", 0); if (vtg_np) compo->vtg[STI_MIXER_MAIN] = of_vtg_find(vtg_np); of_node_put(vtg_np); vtg_np = of_parse_phandle(pdev->dev.of_node, "st,vtg", 1); if (vtg_np) compo->vtg[STI_MIXER_AUX] = of_vtg_find(vtg_np); of_node_put(vtg_np); platform_set_drvdata(pdev, compo); return component_add(&pdev->dev, &sti_compositor_ops); } static void sti_compositor_remove(struct platform_device *pdev) { component_del(&pdev->dev, &sti_compositor_ops); } struct platform_driver sti_compositor_driver = { .driver = { .name = "sti-compositor", .of_match_table = compositor_of_match, }, .probe = sti_compositor_probe, .remove_new = sti_compositor_remove, }; MODULE_AUTHOR("Benjamin Gaignard <[email protected]>"); MODULE_DESCRIPTION("STMicroelectronics SoC DRM driver"); MODULE_LICENSE("GPL");
linux-master
drivers/gpu/drm/sti/sti_compositor.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics SA 2014 * Authors: Fabien Dessenne <[email protected]> for STMicroelectronics. */ #include <linux/component.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/firmware.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/reset.h> #include <linux/seq_file.h> #include <drm/drm_atomic.h> #include <drm/drm_device.h> #include <drm/drm_fb_dma_helper.h> #include <drm/drm_fourcc.h> #include <drm/drm_framebuffer.h> #include <drm/drm_gem_dma_helper.h> #include "sti_compositor.h" #include "sti_drv.h" #include "sti_hqvdp_lut.h" #include "sti_plane.h" #include "sti_vtg.h" /* Firmware name */ #define HQVDP_FMW_NAME "hqvdp-stih407.bin" /* Regs address */ #define HQVDP_DMEM 0x00000000 /* 0x00000000 */ #define HQVDP_PMEM 0x00040000 /* 0x00040000 */ #define HQVDP_RD_PLUG 0x000E0000 /* 0x000E0000 */ #define HQVDP_RD_PLUG_CONTROL (HQVDP_RD_PLUG + 0x1000) /* 0x000E1000 */ #define HQVDP_RD_PLUG_PAGE_SIZE (HQVDP_RD_PLUG + 0x1004) /* 0x000E1004 */ #define HQVDP_RD_PLUG_MIN_OPC (HQVDP_RD_PLUG + 0x1008) /* 0x000E1008 */ #define HQVDP_RD_PLUG_MAX_OPC (HQVDP_RD_PLUG + 0x100C) /* 0x000E100C */ #define HQVDP_RD_PLUG_MAX_CHK (HQVDP_RD_PLUG + 0x1010) /* 0x000E1010 */ #define HQVDP_RD_PLUG_MAX_MSG (HQVDP_RD_PLUG + 0x1014) /* 0x000E1014 */ #define HQVDP_RD_PLUG_MIN_SPACE (HQVDP_RD_PLUG + 0x1018) /* 0x000E1018 */ #define HQVDP_WR_PLUG 0x000E2000 /* 0x000E2000 */ #define HQVDP_WR_PLUG_CONTROL (HQVDP_WR_PLUG + 0x1000) /* 0x000E3000 */ #define HQVDP_WR_PLUG_PAGE_SIZE (HQVDP_WR_PLUG + 0x1004) /* 0x000E3004 */ #define HQVDP_WR_PLUG_MIN_OPC (HQVDP_WR_PLUG + 0x1008) /* 0x000E3008 */ #define HQVDP_WR_PLUG_MAX_OPC (HQVDP_WR_PLUG + 0x100C) /* 0x000E300C */ #define HQVDP_WR_PLUG_MAX_CHK (HQVDP_WR_PLUG + 0x1010) /* 0x000E3010 */ #define HQVDP_WR_PLUG_MAX_MSG (HQVDP_WR_PLUG + 0x1014) /* 0x000E3014 */ #define HQVDP_WR_PLUG_MIN_SPACE (HQVDP_WR_PLUG + 0x1018) /* 0x000E3018 */ #define HQVDP_MBX 0x000E4000 /* 0x000E4000 */ #define HQVDP_MBX_IRQ_TO_XP70 (HQVDP_MBX + 0x0000) /* 0x000E4000 */ #define HQVDP_MBX_INFO_HOST (HQVDP_MBX + 0x0004) /* 0x000E4004 */ #define HQVDP_MBX_IRQ_TO_HOST (HQVDP_MBX + 0x0008) /* 0x000E4008 */ #define HQVDP_MBX_INFO_XP70 (HQVDP_MBX + 0x000C) /* 0x000E400C */ #define HQVDP_MBX_SW_RESET_CTRL (HQVDP_MBX + 0x0010) /* 0x000E4010 */ #define HQVDP_MBX_STARTUP_CTRL1 (HQVDP_MBX + 0x0014) /* 0x000E4014 */ #define HQVDP_MBX_STARTUP_CTRL2 (HQVDP_MBX + 0x0018) /* 0x000E4018 */ #define HQVDP_MBX_GP_STATUS (HQVDP_MBX + 0x001C) /* 0x000E401C */ #define HQVDP_MBX_NEXT_CMD (HQVDP_MBX + 0x0020) /* 0x000E4020 */ #define HQVDP_MBX_CURRENT_CMD (HQVDP_MBX + 0x0024) /* 0x000E4024 */ #define HQVDP_MBX_SOFT_VSYNC (HQVDP_MBX + 0x0028) /* 0x000E4028 */ /* Plugs config */ #define PLUG_CONTROL_ENABLE 0x00000001 #define PLUG_PAGE_SIZE_256 0x00000002 #define PLUG_MIN_OPC_8 0x00000003 #define PLUG_MAX_OPC_64 0x00000006 #define PLUG_MAX_CHK_2X 0x00000001 #define PLUG_MAX_MSG_1X 0x00000000 #define PLUG_MIN_SPACE_1 0x00000000 /* SW reset CTRL */ #define SW_RESET_CTRL_FULL BIT(0) #define SW_RESET_CTRL_CORE BIT(1) /* Startup ctrl 1 */ #define STARTUP_CTRL1_RST_DONE BIT(0) #define STARTUP_CTRL1_AUTH_IDLE BIT(2) /* Startup ctrl 2 */ #define STARTUP_CTRL2_FETCH_EN BIT(1) /* Info xP70 */ #define INFO_XP70_FW_READY BIT(15) #define INFO_XP70_FW_PROCESSING BIT(14) #define INFO_XP70_FW_INITQUEUES BIT(13) /* SOFT_VSYNC */ #define SOFT_VSYNC_HW 0x00000000 #define SOFT_VSYNC_SW_CMD 0x00000001 #define SOFT_VSYNC_SW_CTRL_IRQ 0x00000003 /* Reset & boot poll config */ #define POLL_MAX_ATTEMPT 50 #define POLL_DELAY_MS 20 #define SCALE_FACTOR 8192 #define SCALE_MAX_FOR_LEG_LUT_F 4096 #define SCALE_MAX_FOR_LEG_LUT_E 4915 #define SCALE_MAX_FOR_LEG_LUT_D 6654 #define SCALE_MAX_FOR_LEG_LUT_C 8192 enum sti_hvsrc_orient { HVSRC_HORI, HVSRC_VERT }; /* Command structures */ struct sti_hqvdp_top { u32 config; u32 mem_format; u32 current_luma; u32 current_enh_luma; u32 current_right_luma; u32 current_enh_right_luma; u32 current_chroma; u32 current_enh_chroma; u32 current_right_chroma; u32 current_enh_right_chroma; u32 output_luma; u32 output_chroma; u32 luma_src_pitch; u32 luma_enh_src_pitch; u32 luma_right_src_pitch; u32 luma_enh_right_src_pitch; u32 chroma_src_pitch; u32 chroma_enh_src_pitch; u32 chroma_right_src_pitch; u32 chroma_enh_right_src_pitch; u32 luma_processed_pitch; u32 chroma_processed_pitch; u32 input_frame_size; u32 input_viewport_ori; u32 input_viewport_ori_right; u32 input_viewport_size; u32 left_view_border_width; u32 right_view_border_width; u32 left_view_3d_offset_width; u32 right_view_3d_offset_width; u32 side_stripe_color; u32 crc_reset_ctrl; }; /* Configs for interlaced : no IT, no pass thru, 3 fields */ #define TOP_CONFIG_INTER_BTM 0x00000000 #define TOP_CONFIG_INTER_TOP 0x00000002 /* Config for progressive : no IT, no pass thru, 3 fields */ #define TOP_CONFIG_PROGRESSIVE 0x00000001 /* Default MemFormat: in=420_raster_dual out=444_raster;opaque Mem2Tv mode */ #define TOP_MEM_FORMAT_DFLT 0x00018060 /* Min/Max size */ #define MAX_WIDTH 0x1FFF #define MAX_HEIGHT 0x0FFF #define MIN_WIDTH 0x0030 #define MIN_HEIGHT 0x0010 struct sti_hqvdp_vc1re { u32 ctrl_prv_csdi; u32 ctrl_cur_csdi; u32 ctrl_nxt_csdi; u32 ctrl_cur_fmd; u32 ctrl_nxt_fmd; }; struct sti_hqvdp_fmd { u32 config; u32 viewport_ori; u32 viewport_size; u32 next_next_luma; u32 next_next_right_luma; u32 next_next_next_luma; u32 next_next_next_right_luma; u32 threshold_scd; u32 threshold_rfd; u32 threshold_move; u32 threshold_cfd; }; struct sti_hqvdp_csdi { u32 config; u32 config2; u32 dcdi_config; u32 prev_luma; u32 prev_enh_luma; u32 prev_right_luma; u32 prev_enh_right_luma; u32 next_luma; u32 next_enh_luma; u32 next_right_luma; u32 next_enh_right_luma; u32 prev_chroma; u32 prev_enh_chroma; u32 prev_right_chroma; u32 prev_enh_right_chroma; u32 next_chroma; u32 next_enh_chroma; u32 next_right_chroma; u32 next_enh_right_chroma; u32 prev_motion; u32 prev_right_motion; u32 cur_motion; u32 cur_right_motion; u32 next_motion; u32 next_right_motion; }; /* Config for progressive: by pass */ #define CSDI_CONFIG_PROG 0x00000000 /* Config for directional deinterlacing without motion */ #define CSDI_CONFIG_INTER_DIR 0x00000016 /* Additional configs for fader, blender, motion,... deinterlace algorithms */ #define CSDI_CONFIG2_DFLT 0x000001B3 #define CSDI_DCDI_CONFIG_DFLT 0x00203803 struct sti_hqvdp_hvsrc { u32 hor_panoramic_ctrl; u32 output_picture_size; u32 init_horizontal; u32 init_vertical; u32 param_ctrl; u32 yh_coef[NB_COEF]; u32 ch_coef[NB_COEF]; u32 yv_coef[NB_COEF]; u32 cv_coef[NB_COEF]; u32 hori_shift; u32 vert_shift; }; /* Default ParamCtrl: all controls enabled */ #define HVSRC_PARAM_CTRL_DFLT 0xFFFFFFFF struct sti_hqvdp_iqi { u32 config; u32 demo_wind_size; u32 pk_config; u32 coeff0_coeff1; u32 coeff2_coeff3; u32 coeff4; u32 pk_lut; u32 pk_gain; u32 pk_coring_level; u32 cti_config; u32 le_config; u32 le_lut[64]; u32 con_bri; u32 sat_gain; u32 pxf_conf; u32 default_color; }; /* Default Config : IQI bypassed */ #define IQI_CONFIG_DFLT 0x00000001 /* Default Contrast & Brightness gain = 256 */ #define IQI_CON_BRI_DFLT 0x00000100 /* Default Saturation gain = 256 */ #define IQI_SAT_GAIN_DFLT 0x00000100 /* Default PxfConf : P2I bypassed */ #define IQI_PXF_CONF_DFLT 0x00000001 struct sti_hqvdp_top_status { u32 processing_time; u32 input_y_crc; u32 input_uv_crc; }; struct sti_hqvdp_fmd_status { u32 fmd_repeat_move_status; u32 fmd_scene_count_status; u32 cfd_sum; u32 field_sum; u32 next_y_fmd_crc; u32 next_next_y_fmd_crc; u32 next_next_next_y_fmd_crc; }; struct sti_hqvdp_csdi_status { u32 prev_y_csdi_crc; u32 cur_y_csdi_crc; u32 next_y_csdi_crc; u32 prev_uv_csdi_crc; u32 cur_uv_csdi_crc; u32 next_uv_csdi_crc; u32 y_csdi_crc; u32 uv_csdi_crc; u32 uv_cup_crc; u32 mot_csdi_crc; u32 mot_cur_csdi_crc; u32 mot_prev_csdi_crc; }; struct sti_hqvdp_hvsrc_status { u32 y_hvsrc_crc; u32 u_hvsrc_crc; u32 v_hvsrc_crc; }; struct sti_hqvdp_iqi_status { u32 pxf_it_status; u32 y_iqi_crc; u32 u_iqi_crc; u32 v_iqi_crc; }; /* Main commands. We use 2 commands one being processed by the firmware, one * ready to be fetched upon next Vsync*/ #define NB_VDP_CMD 2 struct sti_hqvdp_cmd { struct sti_hqvdp_top top; struct sti_hqvdp_vc1re vc1re; struct sti_hqvdp_fmd fmd; struct sti_hqvdp_csdi csdi; struct sti_hqvdp_hvsrc hvsrc; struct sti_hqvdp_iqi iqi; struct sti_hqvdp_top_status top_status; struct sti_hqvdp_fmd_status fmd_status; struct sti_hqvdp_csdi_status csdi_status; struct sti_hqvdp_hvsrc_status hvsrc_status; struct sti_hqvdp_iqi_status iqi_status; }; /* * STI HQVDP structure * * @dev: driver device * @drm_dev: the drm device * @regs: registers * @plane: plane structure for hqvdp it self * @clk: IP clock * @clk_pix_main: pix main clock * @reset: reset control * @vtg_nb: notifier to handle VTG Vsync * @btm_field_pending: is there any bottom field (interlaced frame) to display * @hqvdp_cmd: buffer of commands * @hqvdp_cmd_paddr: physical address of hqvdp_cmd * @vtg: vtg for main data path * @xp70_initialized: true if xp70 is already initialized * @vtg_registered: true if registered to VTG */ struct sti_hqvdp { struct device *dev; struct drm_device *drm_dev; void __iomem *regs; struct sti_plane plane; struct clk *clk; struct clk *clk_pix_main; struct reset_control *reset; struct notifier_block vtg_nb; bool btm_field_pending; void *hqvdp_cmd; u32 hqvdp_cmd_paddr; struct sti_vtg *vtg; bool xp70_initialized; bool vtg_registered; }; #define to_sti_hqvdp(x) container_of(x, struct sti_hqvdp, plane) static const uint32_t hqvdp_supported_formats[] = { DRM_FORMAT_NV12, }; /** * sti_hqvdp_get_free_cmd * @hqvdp: hqvdp structure * * Look for a hqvdp_cmd that is not being used (or about to be used) by the FW. * * RETURNS: * the offset of the command to be used. * -1 in error cases */ static int sti_hqvdp_get_free_cmd(struct sti_hqvdp *hqvdp) { u32 curr_cmd, next_cmd; u32 cmd = hqvdp->hqvdp_cmd_paddr; int i; curr_cmd = readl(hqvdp->regs + HQVDP_MBX_CURRENT_CMD); next_cmd = readl(hqvdp->regs + HQVDP_MBX_NEXT_CMD); for (i = 0; i < NB_VDP_CMD; i++) { if ((cmd != curr_cmd) && (cmd != next_cmd)) return i * sizeof(struct sti_hqvdp_cmd); cmd += sizeof(struct sti_hqvdp_cmd); } return -1; } /** * sti_hqvdp_get_curr_cmd * @hqvdp: hqvdp structure * * Look for the hqvdp_cmd that is being used by the FW. * * RETURNS: * the offset of the command to be used. * -1 in error cases */ static int sti_hqvdp_get_curr_cmd(struct sti_hqvdp *hqvdp) { u32 curr_cmd; u32 cmd = hqvdp->hqvdp_cmd_paddr; unsigned int i; curr_cmd = readl(hqvdp->regs + HQVDP_MBX_CURRENT_CMD); for (i = 0; i < NB_VDP_CMD; i++) { if (cmd == curr_cmd) return i * sizeof(struct sti_hqvdp_cmd); cmd += sizeof(struct sti_hqvdp_cmd); } return -1; } /** * sti_hqvdp_get_next_cmd * @hqvdp: hqvdp structure * * Look for the next hqvdp_cmd that will be used by the FW. * * RETURNS: * the offset of the next command that will be used. * -1 in error cases */ static int sti_hqvdp_get_next_cmd(struct sti_hqvdp *hqvdp) { int next_cmd; dma_addr_t cmd = hqvdp->hqvdp_cmd_paddr; unsigned int i; next_cmd = readl(hqvdp->regs + HQVDP_MBX_NEXT_CMD); for (i = 0; i < NB_VDP_CMD; i++) { if (cmd == next_cmd) return i * sizeof(struct sti_hqvdp_cmd); cmd += sizeof(struct sti_hqvdp_cmd); } return -1; } #define DBGFS_DUMP(reg) seq_printf(s, "\n %-25s 0x%08X", #reg, \ readl(hqvdp->regs + reg)) static const char *hqvdp_dbg_get_lut(u32 *coef) { if (!memcmp(coef, coef_lut_a_legacy, 16)) return "LUT A"; if (!memcmp(coef, coef_lut_b, 16)) return "LUT B"; if (!memcmp(coef, coef_lut_c_y_legacy, 16)) return "LUT C Y"; if (!memcmp(coef, coef_lut_c_c_legacy, 16)) return "LUT C C"; if (!memcmp(coef, coef_lut_d_y_legacy, 16)) return "LUT D Y"; if (!memcmp(coef, coef_lut_d_c_legacy, 16)) return "LUT D C"; if (!memcmp(coef, coef_lut_e_y_legacy, 16)) return "LUT E Y"; if (!memcmp(coef, coef_lut_e_c_legacy, 16)) return "LUT E C"; if (!memcmp(coef, coef_lut_f_y_legacy, 16)) return "LUT F Y"; if (!memcmp(coef, coef_lut_f_c_legacy, 16)) return "LUT F C"; return "<UNKNOWN>"; } static void hqvdp_dbg_dump_cmd(struct seq_file *s, struct sti_hqvdp_cmd *c) { int src_w, src_h, dst_w, dst_h; seq_puts(s, "\n\tTOP:"); seq_printf(s, "\n\t %-20s 0x%08X", "Config", c->top.config); switch (c->top.config) { case TOP_CONFIG_PROGRESSIVE: seq_puts(s, "\tProgressive"); break; case TOP_CONFIG_INTER_TOP: seq_puts(s, "\tInterlaced, top field"); break; case TOP_CONFIG_INTER_BTM: seq_puts(s, "\tInterlaced, bottom field"); break; default: seq_puts(s, "\t<UNKNOWN>"); break; } seq_printf(s, "\n\t %-20s 0x%08X", "MemFormat", c->top.mem_format); seq_printf(s, "\n\t %-20s 0x%08X", "CurrentY", c->top.current_luma); seq_printf(s, "\n\t %-20s 0x%08X", "CurrentC", c->top.current_chroma); seq_printf(s, "\n\t %-20s 0x%08X", "YSrcPitch", c->top.luma_src_pitch); seq_printf(s, "\n\t %-20s 0x%08X", "CSrcPitch", c->top.chroma_src_pitch); seq_printf(s, "\n\t %-20s 0x%08X", "InputFrameSize", c->top.input_frame_size); seq_printf(s, "\t%dx%d", c->top.input_frame_size & 0x0000FFFF, c->top.input_frame_size >> 16); seq_printf(s, "\n\t %-20s 0x%08X", "InputViewportSize", c->top.input_viewport_size); src_w = c->top.input_viewport_size & 0x0000FFFF; src_h = c->top.input_viewport_size >> 16; seq_printf(s, "\t%dx%d", src_w, src_h); seq_puts(s, "\n\tHVSRC:"); seq_printf(s, "\n\t %-20s 0x%08X", "OutputPictureSize", c->hvsrc.output_picture_size); dst_w = c->hvsrc.output_picture_size & 0x0000FFFF; dst_h = c->hvsrc.output_picture_size >> 16; seq_printf(s, "\t%dx%d", dst_w, dst_h); seq_printf(s, "\n\t %-20s 0x%08X", "ParamCtrl", c->hvsrc.param_ctrl); seq_printf(s, "\n\t %-20s %s", "yh_coef", hqvdp_dbg_get_lut(c->hvsrc.yh_coef)); seq_printf(s, "\n\t %-20s %s", "ch_coef", hqvdp_dbg_get_lut(c->hvsrc.ch_coef)); seq_printf(s, "\n\t %-20s %s", "yv_coef", hqvdp_dbg_get_lut(c->hvsrc.yv_coef)); seq_printf(s, "\n\t %-20s %s", "cv_coef", hqvdp_dbg_get_lut(c->hvsrc.cv_coef)); seq_printf(s, "\n\t %-20s", "ScaleH"); if (dst_w > src_w) seq_printf(s, " %d/1", dst_w / src_w); else seq_printf(s, " 1/%d", src_w / dst_w); seq_printf(s, "\n\t %-20s", "tScaleV"); if (dst_h > src_h) seq_printf(s, " %d/1", dst_h / src_h); else seq_printf(s, " 1/%d", src_h / dst_h); seq_puts(s, "\n\tCSDI:"); seq_printf(s, "\n\t %-20s 0x%08X\t", "Config", c->csdi.config); switch (c->csdi.config) { case CSDI_CONFIG_PROG: seq_puts(s, "Bypass"); break; case CSDI_CONFIG_INTER_DIR: seq_puts(s, "Deinterlace, directional"); break; default: seq_puts(s, "<UNKNOWN>"); break; } seq_printf(s, "\n\t %-20s 0x%08X", "Config2", c->csdi.config2); seq_printf(s, "\n\t %-20s 0x%08X", "DcdiConfig", c->csdi.dcdi_config); } static int hqvdp_dbg_show(struct seq_file *s, void *data) { struct drm_info_node *node = s->private; struct sti_hqvdp *hqvdp = (struct sti_hqvdp *)node->info_ent->data; int cmd, cmd_offset, infoxp70; void *virt; seq_printf(s, "%s: (vaddr = 0x%p)", sti_plane_to_str(&hqvdp->plane), hqvdp->regs); DBGFS_DUMP(HQVDP_MBX_IRQ_TO_XP70); DBGFS_DUMP(HQVDP_MBX_INFO_HOST); DBGFS_DUMP(HQVDP_MBX_IRQ_TO_HOST); DBGFS_DUMP(HQVDP_MBX_INFO_XP70); infoxp70 = readl(hqvdp->regs + HQVDP_MBX_INFO_XP70); seq_puts(s, "\tFirmware state: "); if (infoxp70 & INFO_XP70_FW_READY) seq_puts(s, "idle and ready"); else if (infoxp70 & INFO_XP70_FW_PROCESSING) seq_puts(s, "processing a picture"); else if (infoxp70 & INFO_XP70_FW_INITQUEUES) seq_puts(s, "programming queues"); else seq_puts(s, "NOT READY"); DBGFS_DUMP(HQVDP_MBX_SW_RESET_CTRL); DBGFS_DUMP(HQVDP_MBX_STARTUP_CTRL1); if (readl(hqvdp->regs + HQVDP_MBX_STARTUP_CTRL1) & STARTUP_CTRL1_RST_DONE) seq_puts(s, "\tReset is done"); else seq_puts(s, "\tReset is NOT done"); DBGFS_DUMP(HQVDP_MBX_STARTUP_CTRL2); if (readl(hqvdp->regs + HQVDP_MBX_STARTUP_CTRL2) & STARTUP_CTRL2_FETCH_EN) seq_puts(s, "\tFetch is enabled"); else seq_puts(s, "\tFetch is NOT enabled"); DBGFS_DUMP(HQVDP_MBX_GP_STATUS); DBGFS_DUMP(HQVDP_MBX_NEXT_CMD); DBGFS_DUMP(HQVDP_MBX_CURRENT_CMD); DBGFS_DUMP(HQVDP_MBX_SOFT_VSYNC); if (!(readl(hqvdp->regs + HQVDP_MBX_SOFT_VSYNC) & 3)) seq_puts(s, "\tHW Vsync"); else seq_puts(s, "\tSW Vsync ?!?!"); /* Last command */ cmd = readl(hqvdp->regs + HQVDP_MBX_CURRENT_CMD); cmd_offset = sti_hqvdp_get_curr_cmd(hqvdp); if (cmd_offset == -1) { seq_puts(s, "\n\n Last command: unknown"); } else { virt = hqvdp->hqvdp_cmd + cmd_offset; seq_printf(s, "\n\n Last command: address @ 0x%x (0x%p)", cmd, virt); hqvdp_dbg_dump_cmd(s, (struct sti_hqvdp_cmd *)virt); } /* Next command */ cmd = readl(hqvdp->regs + HQVDP_MBX_NEXT_CMD); cmd_offset = sti_hqvdp_get_next_cmd(hqvdp); if (cmd_offset == -1) { seq_puts(s, "\n\n Next command: unknown"); } else { virt = hqvdp->hqvdp_cmd + cmd_offset; seq_printf(s, "\n\n Next command address: @ 0x%x (0x%p)", cmd, virt); hqvdp_dbg_dump_cmd(s, (struct sti_hqvdp_cmd *)virt); } seq_putc(s, '\n'); return 0; } static struct drm_info_list hqvdp_debugfs_files[] = { { "hqvdp", hqvdp_dbg_show, 0, NULL }, }; static void hqvdp_debugfs_init(struct sti_hqvdp *hqvdp, struct drm_minor *minor) { unsigned int i; for (i = 0; i < ARRAY_SIZE(hqvdp_debugfs_files); i++) hqvdp_debugfs_files[i].data = hqvdp; drm_debugfs_create_files(hqvdp_debugfs_files, ARRAY_SIZE(hqvdp_debugfs_files), minor->debugfs_root, minor); } /** * sti_hqvdp_update_hvsrc * @orient: horizontal or vertical * @scale: scaling/zoom factor * @hvsrc: the structure containing the LUT coef * * Update the Y and C Lut coef, as well as the shift param * * RETURNS: * None. */ static void sti_hqvdp_update_hvsrc(enum sti_hvsrc_orient orient, int scale, struct sti_hqvdp_hvsrc *hvsrc) { const int *coef_c, *coef_y; int shift_c, shift_y; /* Get the appropriate coef tables */ if (scale < SCALE_MAX_FOR_LEG_LUT_F) { coef_y = coef_lut_f_y_legacy; coef_c = coef_lut_f_c_legacy; shift_y = SHIFT_LUT_F_Y_LEGACY; shift_c = SHIFT_LUT_F_C_LEGACY; } else if (scale < SCALE_MAX_FOR_LEG_LUT_E) { coef_y = coef_lut_e_y_legacy; coef_c = coef_lut_e_c_legacy; shift_y = SHIFT_LUT_E_Y_LEGACY; shift_c = SHIFT_LUT_E_C_LEGACY; } else if (scale < SCALE_MAX_FOR_LEG_LUT_D) { coef_y = coef_lut_d_y_legacy; coef_c = coef_lut_d_c_legacy; shift_y = SHIFT_LUT_D_Y_LEGACY; shift_c = SHIFT_LUT_D_C_LEGACY; } else if (scale < SCALE_MAX_FOR_LEG_LUT_C) { coef_y = coef_lut_c_y_legacy; coef_c = coef_lut_c_c_legacy; shift_y = SHIFT_LUT_C_Y_LEGACY; shift_c = SHIFT_LUT_C_C_LEGACY; } else if (scale == SCALE_MAX_FOR_LEG_LUT_C) { coef_y = coef_c = coef_lut_b; shift_y = shift_c = SHIFT_LUT_B; } else { coef_y = coef_c = coef_lut_a_legacy; shift_y = shift_c = SHIFT_LUT_A_LEGACY; } if (orient == HVSRC_HORI) { hvsrc->hori_shift = (shift_c << 16) | shift_y; memcpy(hvsrc->yh_coef, coef_y, sizeof(hvsrc->yh_coef)); memcpy(hvsrc->ch_coef, coef_c, sizeof(hvsrc->ch_coef)); } else { hvsrc->vert_shift = (shift_c << 16) | shift_y; memcpy(hvsrc->yv_coef, coef_y, sizeof(hvsrc->yv_coef)); memcpy(hvsrc->cv_coef, coef_c, sizeof(hvsrc->cv_coef)); } } /** * sti_hqvdp_check_hw_scaling * @hqvdp: hqvdp pointer * @mode: display mode with timing constraints * @src_w: source width * @src_h: source height * @dst_w: destination width * @dst_h: destination height * * Check if the HW is able to perform the scaling request * The firmware scaling limitation is "CEIL(1/Zy) <= FLOOR(LFW)" where: * Zy = OutputHeight / InputHeight * LFW = (Tx * IPClock) / (MaxNbCycles * Cp) * Tx : Total video mode horizontal resolution * IPClock : HQVDP IP clock (Mhz) * MaxNbCycles: max(InputWidth, OutputWidth) * Cp: Video mode pixel clock (Mhz) * * RETURNS: * True if the HW can scale. */ static bool sti_hqvdp_check_hw_scaling(struct sti_hqvdp *hqvdp, struct drm_display_mode *mode, int src_w, int src_h, int dst_w, int dst_h) { unsigned long lfw; unsigned int inv_zy; lfw = mode->htotal * (clk_get_rate(hqvdp->clk) / 1000000); lfw /= max(src_w, dst_w) * mode->clock / 1000; inv_zy = DIV_ROUND_UP(src_h, dst_h); return (inv_zy <= lfw) ? true : false; } /** * sti_hqvdp_disable * @hqvdp: hqvdp pointer * * Disables the HQVDP plane */ static void sti_hqvdp_disable(struct sti_hqvdp *hqvdp) { int i; DRM_DEBUG_DRIVER("%s\n", sti_plane_to_str(&hqvdp->plane)); /* Unregister VTG Vsync callback */ if (sti_vtg_unregister_client(hqvdp->vtg, &hqvdp->vtg_nb)) DRM_DEBUG_DRIVER("Warning: cannot unregister VTG notifier\n"); /* Set next cmd to NULL */ writel(0, hqvdp->regs + HQVDP_MBX_NEXT_CMD); for (i = 0; i < POLL_MAX_ATTEMPT; i++) { if (readl(hqvdp->regs + HQVDP_MBX_INFO_XP70) & INFO_XP70_FW_READY) break; msleep(POLL_DELAY_MS); } /* VTG can stop now */ clk_disable_unprepare(hqvdp->clk_pix_main); if (i == POLL_MAX_ATTEMPT) DRM_ERROR("XP70 could not revert to idle\n"); hqvdp->plane.status = STI_PLANE_DISABLED; hqvdp->vtg_registered = false; } /** * sti_hqvdp_vtg_cb * @nb: notifier block * @evt: event message * @data: private data * * Handle VTG Vsync event, display pending bottom field * * RETURNS: * 0 on success. */ static int sti_hqvdp_vtg_cb(struct notifier_block *nb, unsigned long evt, void *data) { struct sti_hqvdp *hqvdp = container_of(nb, struct sti_hqvdp, vtg_nb); int btm_cmd_offset, top_cmd_offest; struct sti_hqvdp_cmd *btm_cmd, *top_cmd; if ((evt != VTG_TOP_FIELD_EVENT) && (evt != VTG_BOTTOM_FIELD_EVENT)) { DRM_DEBUG_DRIVER("Unknown event\n"); return 0; } if (hqvdp->plane.status == STI_PLANE_FLUSHING) { /* disable need to be synchronize on vsync event */ DRM_DEBUG_DRIVER("Vsync event received => disable %s\n", sti_plane_to_str(&hqvdp->plane)); sti_hqvdp_disable(hqvdp); } if (hqvdp->btm_field_pending) { /* Create the btm field command from the current one */ btm_cmd_offset = sti_hqvdp_get_free_cmd(hqvdp); top_cmd_offest = sti_hqvdp_get_curr_cmd(hqvdp); if ((btm_cmd_offset == -1) || (top_cmd_offest == -1)) { DRM_DEBUG_DRIVER("Warning: no cmd, will skip field\n"); return -EBUSY; } btm_cmd = hqvdp->hqvdp_cmd + btm_cmd_offset; top_cmd = hqvdp->hqvdp_cmd + top_cmd_offest; memcpy(btm_cmd, top_cmd, sizeof(*btm_cmd)); btm_cmd->top.config = TOP_CONFIG_INTER_BTM; btm_cmd->top.current_luma += btm_cmd->top.luma_src_pitch / 2; btm_cmd->top.current_chroma += btm_cmd->top.chroma_src_pitch / 2; /* Post the command to mailbox */ writel(hqvdp->hqvdp_cmd_paddr + btm_cmd_offset, hqvdp->regs + HQVDP_MBX_NEXT_CMD); hqvdp->btm_field_pending = false; dev_dbg(hqvdp->dev, "%s Posted command:0x%x\n", __func__, hqvdp->hqvdp_cmd_paddr); sti_plane_update_fps(&hqvdp->plane, false, true); } return 0; } static void sti_hqvdp_init(struct sti_hqvdp *hqvdp) { int size; dma_addr_t dma_addr; hqvdp->vtg_nb.notifier_call = sti_hqvdp_vtg_cb; /* Allocate memory for the VDP commands */ size = NB_VDP_CMD * sizeof(struct sti_hqvdp_cmd); hqvdp->hqvdp_cmd = dma_alloc_wc(hqvdp->dev, size, &dma_addr, GFP_KERNEL | GFP_DMA); if (!hqvdp->hqvdp_cmd) { DRM_ERROR("Failed to allocate memory for VDP cmd\n"); return; } hqvdp->hqvdp_cmd_paddr = (u32)dma_addr; memset(hqvdp->hqvdp_cmd, 0, size); } static void sti_hqvdp_init_plugs(struct sti_hqvdp *hqvdp) { /* Configure Plugs (same for RD & WR) */ writel(PLUG_PAGE_SIZE_256, hqvdp->regs + HQVDP_RD_PLUG_PAGE_SIZE); writel(PLUG_MIN_OPC_8, hqvdp->regs + HQVDP_RD_PLUG_MIN_OPC); writel(PLUG_MAX_OPC_64, hqvdp->regs + HQVDP_RD_PLUG_MAX_OPC); writel(PLUG_MAX_CHK_2X, hqvdp->regs + HQVDP_RD_PLUG_MAX_CHK); writel(PLUG_MAX_MSG_1X, hqvdp->regs + HQVDP_RD_PLUG_MAX_MSG); writel(PLUG_MIN_SPACE_1, hqvdp->regs + HQVDP_RD_PLUG_MIN_SPACE); writel(PLUG_CONTROL_ENABLE, hqvdp->regs + HQVDP_RD_PLUG_CONTROL); writel(PLUG_PAGE_SIZE_256, hqvdp->regs + HQVDP_WR_PLUG_PAGE_SIZE); writel(PLUG_MIN_OPC_8, hqvdp->regs + HQVDP_WR_PLUG_MIN_OPC); writel(PLUG_MAX_OPC_64, hqvdp->regs + HQVDP_WR_PLUG_MAX_OPC); writel(PLUG_MAX_CHK_2X, hqvdp->regs + HQVDP_WR_PLUG_MAX_CHK); writel(PLUG_MAX_MSG_1X, hqvdp->regs + HQVDP_WR_PLUG_MAX_MSG); writel(PLUG_MIN_SPACE_1, hqvdp->regs + HQVDP_WR_PLUG_MIN_SPACE); writel(PLUG_CONTROL_ENABLE, hqvdp->regs + HQVDP_WR_PLUG_CONTROL); } /** * sti_hqvdp_start_xp70 * @hqvdp: hqvdp pointer * * Run the xP70 initialization sequence */ static void sti_hqvdp_start_xp70(struct sti_hqvdp *hqvdp) { const struct firmware *firmware; u32 *fw_rd_plug, *fw_wr_plug, *fw_pmem, *fw_dmem; u8 *data; int i; struct fw_header { int rd_size; int wr_size; int pmem_size; int dmem_size; } *header; DRM_DEBUG_DRIVER("\n"); if (hqvdp->xp70_initialized) { DRM_DEBUG_DRIVER("HQVDP XP70 already initialized\n"); return; } /* Request firmware */ if (request_firmware(&firmware, HQVDP_FMW_NAME, hqvdp->dev)) { DRM_ERROR("Can't get HQVDP firmware\n"); return; } /* Check firmware parts */ if (!firmware) { DRM_ERROR("Firmware not available\n"); return; } header = (struct fw_header *)firmware->data; if (firmware->size < sizeof(*header)) { DRM_ERROR("Invalid firmware size (%zu)\n", firmware->size); goto out; } if ((sizeof(*header) + header->rd_size + header->wr_size + header->pmem_size + header->dmem_size) != firmware->size) { DRM_ERROR("Invalid fmw structure (%zu+%d+%d+%d+%d != %zu)\n", sizeof(*header), header->rd_size, header->wr_size, header->pmem_size, header->dmem_size, firmware->size); goto out; } data = (u8 *)firmware->data; data += sizeof(*header); fw_rd_plug = (void *)data; data += header->rd_size; fw_wr_plug = (void *)data; data += header->wr_size; fw_pmem = (void *)data; data += header->pmem_size; fw_dmem = (void *)data; /* Enable clock */ if (clk_prepare_enable(hqvdp->clk)) DRM_ERROR("Failed to prepare/enable HQVDP clk\n"); /* Reset */ writel(SW_RESET_CTRL_FULL, hqvdp->regs + HQVDP_MBX_SW_RESET_CTRL); for (i = 0; i < POLL_MAX_ATTEMPT; i++) { if (readl(hqvdp->regs + HQVDP_MBX_STARTUP_CTRL1) & STARTUP_CTRL1_RST_DONE) break; msleep(POLL_DELAY_MS); } if (i == POLL_MAX_ATTEMPT) { DRM_ERROR("Could not reset\n"); clk_disable_unprepare(hqvdp->clk); goto out; } /* Init Read & Write plugs */ for (i = 0; i < header->rd_size / 4; i++) writel(fw_rd_plug[i], hqvdp->regs + HQVDP_RD_PLUG + i * 4); for (i = 0; i < header->wr_size / 4; i++) writel(fw_wr_plug[i], hqvdp->regs + HQVDP_WR_PLUG + i * 4); sti_hqvdp_init_plugs(hqvdp); /* Authorize Idle Mode */ writel(STARTUP_CTRL1_AUTH_IDLE, hqvdp->regs + HQVDP_MBX_STARTUP_CTRL1); /* Prevent VTG interruption during the boot */ writel(SOFT_VSYNC_SW_CTRL_IRQ, hqvdp->regs + HQVDP_MBX_SOFT_VSYNC); writel(0, hqvdp->regs + HQVDP_MBX_NEXT_CMD); /* Download PMEM & DMEM */ for (i = 0; i < header->pmem_size / 4; i++) writel(fw_pmem[i], hqvdp->regs + HQVDP_PMEM + i * 4); for (i = 0; i < header->dmem_size / 4; i++) writel(fw_dmem[i], hqvdp->regs + HQVDP_DMEM + i * 4); /* Enable fetch */ writel(STARTUP_CTRL2_FETCH_EN, hqvdp->regs + HQVDP_MBX_STARTUP_CTRL2); /* Wait end of boot */ for (i = 0; i < POLL_MAX_ATTEMPT; i++) { if (readl(hqvdp->regs + HQVDP_MBX_INFO_XP70) & INFO_XP70_FW_READY) break; msleep(POLL_DELAY_MS); } if (i == POLL_MAX_ATTEMPT) { DRM_ERROR("Could not boot\n"); clk_disable_unprepare(hqvdp->clk); goto out; } /* Launch Vsync */ writel(SOFT_VSYNC_HW, hqvdp->regs + HQVDP_MBX_SOFT_VSYNC); DRM_INFO("HQVDP XP70 initialized\n"); hqvdp->xp70_initialized = true; out: release_firmware(firmware); } static int sti_hqvdp_atomic_check(struct drm_plane *drm_plane, struct drm_atomic_state *state) { struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, drm_plane); struct sti_plane *plane = to_sti_plane(drm_plane); struct sti_hqvdp *hqvdp = to_sti_hqvdp(plane); struct drm_crtc *crtc = new_plane_state->crtc; struct drm_framebuffer *fb = new_plane_state->fb; struct drm_crtc_state *crtc_state; struct drm_display_mode *mode; int dst_x, dst_y, dst_w, dst_h; int src_x, src_y, src_w, src_h; /* no need for further checks if the plane is being disabled */ if (!crtc || !fb) return 0; crtc_state = drm_atomic_get_crtc_state(state, crtc); mode = &crtc_state->mode; dst_x = new_plane_state->crtc_x; dst_y = new_plane_state->crtc_y; dst_w = clamp_val(new_plane_state->crtc_w, 0, mode->hdisplay - dst_x); dst_h = clamp_val(new_plane_state->crtc_h, 0, mode->vdisplay - dst_y); /* src_x are in 16.16 format */ src_x = new_plane_state->src_x >> 16; src_y = new_plane_state->src_y >> 16; src_w = new_plane_state->src_w >> 16; src_h = new_plane_state->src_h >> 16; if (mode->clock && !sti_hqvdp_check_hw_scaling(hqvdp, mode, src_w, src_h, dst_w, dst_h)) { DRM_ERROR("Scaling beyond HW capabilities\n"); return -EINVAL; } if (!drm_fb_dma_get_gem_obj(fb, 0)) { DRM_ERROR("Can't get DMA GEM object for fb\n"); return -EINVAL; } /* * Input / output size * Align to upper even value */ dst_w = ALIGN(dst_w, 2); dst_h = ALIGN(dst_h, 2); if ((src_w > MAX_WIDTH) || (src_w < MIN_WIDTH) || (src_h > MAX_HEIGHT) || (src_h < MIN_HEIGHT) || (dst_w > MAX_WIDTH) || (dst_w < MIN_WIDTH) || (dst_h > MAX_HEIGHT) || (dst_h < MIN_HEIGHT)) { DRM_ERROR("Invalid in/out size %dx%d -> %dx%d\n", src_w, src_h, dst_w, dst_h); return -EINVAL; } if (!hqvdp->xp70_initialized) /* Start HQVDP XP70 coprocessor */ sti_hqvdp_start_xp70(hqvdp); if (!hqvdp->vtg_registered) { /* Prevent VTG shutdown */ if (clk_prepare_enable(hqvdp->clk_pix_main)) { DRM_ERROR("Failed to prepare/enable pix main clk\n"); return -EINVAL; } /* Register VTG Vsync callback to handle bottom fields */ if (sti_vtg_register_client(hqvdp->vtg, &hqvdp->vtg_nb, crtc)) { DRM_ERROR("Cannot register VTG notifier\n"); clk_disable_unprepare(hqvdp->clk_pix_main); return -EINVAL; } hqvdp->vtg_registered = true; } DRM_DEBUG_KMS("CRTC:%d (%s) drm plane:%d (%s)\n", crtc->base.id, sti_mixer_to_str(to_sti_mixer(crtc)), drm_plane->base.id, sti_plane_to_str(plane)); DRM_DEBUG_KMS("%s dst=(%dx%d)@(%d,%d) - src=(%dx%d)@(%d,%d)\n", sti_plane_to_str(plane), dst_w, dst_h, dst_x, dst_y, src_w, src_h, src_x, src_y); return 0; } static void sti_hqvdp_atomic_update(struct drm_plane *drm_plane, struct drm_atomic_state *state) { struct drm_plane_state *oldstate = drm_atomic_get_old_plane_state(state, drm_plane); struct drm_plane_state *newstate = drm_atomic_get_new_plane_state(state, drm_plane); struct sti_plane *plane = to_sti_plane(drm_plane); struct sti_hqvdp *hqvdp = to_sti_hqvdp(plane); struct drm_crtc *crtc = newstate->crtc; struct drm_framebuffer *fb = newstate->fb; struct drm_display_mode *mode; int dst_x, dst_y, dst_w, dst_h; int src_x, src_y, src_w, src_h; struct drm_gem_dma_object *dma_obj; struct sti_hqvdp_cmd *cmd; int scale_h, scale_v; int cmd_offset; if (!crtc || !fb) return; if ((oldstate->fb == newstate->fb) && (oldstate->crtc_x == newstate->crtc_x) && (oldstate->crtc_y == newstate->crtc_y) && (oldstate->crtc_w == newstate->crtc_w) && (oldstate->crtc_h == newstate->crtc_h) && (oldstate->src_x == newstate->src_x) && (oldstate->src_y == newstate->src_y) && (oldstate->src_w == newstate->src_w) && (oldstate->src_h == newstate->src_h)) { /* No change since last update, do not post cmd */ DRM_DEBUG_DRIVER("No change, not posting cmd\n"); plane->status = STI_PLANE_UPDATED; return; } mode = &crtc->mode; dst_x = newstate->crtc_x; dst_y = newstate->crtc_y; dst_w = clamp_val(newstate->crtc_w, 0, mode->hdisplay - dst_x); dst_h = clamp_val(newstate->crtc_h, 0, mode->vdisplay - dst_y); /* src_x are in 16.16 format */ src_x = newstate->src_x >> 16; src_y = newstate->src_y >> 16; src_w = newstate->src_w >> 16; src_h = newstate->src_h >> 16; cmd_offset = sti_hqvdp_get_free_cmd(hqvdp); if (cmd_offset == -1) { DRM_DEBUG_DRIVER("Warning: no cmd, will skip frame\n"); return; } cmd = hqvdp->hqvdp_cmd + cmd_offset; /* Static parameters, defaulting to progressive mode */ cmd->top.config = TOP_CONFIG_PROGRESSIVE; cmd->top.mem_format = TOP_MEM_FORMAT_DFLT; cmd->hvsrc.param_ctrl = HVSRC_PARAM_CTRL_DFLT; cmd->csdi.config = CSDI_CONFIG_PROG; /* VC1RE, FMD bypassed : keep everything set to 0 * IQI/P2I bypassed */ cmd->iqi.config = IQI_CONFIG_DFLT; cmd->iqi.con_bri = IQI_CON_BRI_DFLT; cmd->iqi.sat_gain = IQI_SAT_GAIN_DFLT; cmd->iqi.pxf_conf = IQI_PXF_CONF_DFLT; dma_obj = drm_fb_dma_get_gem_obj(fb, 0); DRM_DEBUG_DRIVER("drm FB:%d format:%.4s phys@:0x%lx\n", fb->base.id, (char *)&fb->format->format, (unsigned long) dma_obj->dma_addr); /* Buffer planes address */ cmd->top.current_luma = (u32) dma_obj->dma_addr + fb->offsets[0]; cmd->top.current_chroma = (u32) dma_obj->dma_addr + fb->offsets[1]; /* Pitches */ cmd->top.luma_processed_pitch = fb->pitches[0]; cmd->top.luma_src_pitch = fb->pitches[0]; cmd->top.chroma_processed_pitch = fb->pitches[1]; cmd->top.chroma_src_pitch = fb->pitches[1]; /* Input / output size * Align to upper even value */ dst_w = ALIGN(dst_w, 2); dst_h = ALIGN(dst_h, 2); cmd->top.input_viewport_size = src_h << 16 | src_w; cmd->top.input_frame_size = src_h << 16 | src_w; cmd->hvsrc.output_picture_size = dst_h << 16 | dst_w; cmd->top.input_viewport_ori = src_y << 16 | src_x; /* Handle interlaced */ if (fb->flags & DRM_MODE_FB_INTERLACED) { /* Top field to display */ cmd->top.config = TOP_CONFIG_INTER_TOP; /* Update pitches and vert size */ cmd->top.input_frame_size = (src_h / 2) << 16 | src_w; cmd->top.luma_processed_pitch *= 2; cmd->top.luma_src_pitch *= 2; cmd->top.chroma_processed_pitch *= 2; cmd->top.chroma_src_pitch *= 2; /* Enable directional deinterlacing processing */ cmd->csdi.config = CSDI_CONFIG_INTER_DIR; cmd->csdi.config2 = CSDI_CONFIG2_DFLT; cmd->csdi.dcdi_config = CSDI_DCDI_CONFIG_DFLT; } /* Update hvsrc lut coef */ scale_h = SCALE_FACTOR * dst_w / src_w; sti_hqvdp_update_hvsrc(HVSRC_HORI, scale_h, &cmd->hvsrc); scale_v = SCALE_FACTOR * dst_h / src_h; sti_hqvdp_update_hvsrc(HVSRC_VERT, scale_v, &cmd->hvsrc); writel(hqvdp->hqvdp_cmd_paddr + cmd_offset, hqvdp->regs + HQVDP_MBX_NEXT_CMD); /* Interlaced : get ready to display the bottom field at next Vsync */ if (fb->flags & DRM_MODE_FB_INTERLACED) hqvdp->btm_field_pending = true; dev_dbg(hqvdp->dev, "%s Posted command:0x%x\n", __func__, hqvdp->hqvdp_cmd_paddr + cmd_offset); sti_plane_update_fps(plane, true, true); plane->status = STI_PLANE_UPDATED; } static void sti_hqvdp_atomic_disable(struct drm_plane *drm_plane, struct drm_atomic_state *state) { struct drm_plane_state *oldstate = drm_atomic_get_old_plane_state(state, drm_plane); struct sti_plane *plane = to_sti_plane(drm_plane); if (!oldstate->crtc) { DRM_DEBUG_DRIVER("drm plane:%d not enabled\n", drm_plane->base.id); return; } DRM_DEBUG_DRIVER("CRTC:%d (%s) drm plane:%d (%s)\n", oldstate->crtc->base.id, sti_mixer_to_str(to_sti_mixer(oldstate->crtc)), drm_plane->base.id, sti_plane_to_str(plane)); plane->status = STI_PLANE_DISABLING; } static const struct drm_plane_helper_funcs sti_hqvdp_helpers_funcs = { .atomic_check = sti_hqvdp_atomic_check, .atomic_update = sti_hqvdp_atomic_update, .atomic_disable = sti_hqvdp_atomic_disable, }; static int sti_hqvdp_late_register(struct drm_plane *drm_plane) { struct sti_plane *plane = to_sti_plane(drm_plane); struct sti_hqvdp *hqvdp = to_sti_hqvdp(plane); hqvdp_debugfs_init(hqvdp, drm_plane->dev->primary); return 0; } static const struct drm_plane_funcs sti_hqvdp_plane_helpers_funcs = { .update_plane = drm_atomic_helper_update_plane, .disable_plane = drm_atomic_helper_disable_plane, .destroy = drm_plane_cleanup, .reset = drm_atomic_helper_plane_reset, .atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state, .atomic_destroy_state = drm_atomic_helper_plane_destroy_state, .late_register = sti_hqvdp_late_register, }; static struct drm_plane *sti_hqvdp_create(struct drm_device *drm_dev, struct device *dev, int desc) { struct sti_hqvdp *hqvdp = dev_get_drvdata(dev); int res; hqvdp->plane.desc = desc; hqvdp->plane.status = STI_PLANE_DISABLED; sti_hqvdp_init(hqvdp); res = drm_universal_plane_init(drm_dev, &hqvdp->plane.drm_plane, 1, &sti_hqvdp_plane_helpers_funcs, hqvdp_supported_formats, ARRAY_SIZE(hqvdp_supported_formats), NULL, DRM_PLANE_TYPE_OVERLAY, NULL); if (res) { DRM_ERROR("Failed to initialize universal plane\n"); return NULL; } drm_plane_helper_add(&hqvdp->plane.drm_plane, &sti_hqvdp_helpers_funcs); sti_plane_init_property(&hqvdp->plane, DRM_PLANE_TYPE_OVERLAY); return &hqvdp->plane.drm_plane; } static int sti_hqvdp_bind(struct device *dev, struct device *master, void *data) { struct sti_hqvdp *hqvdp = dev_get_drvdata(dev); struct drm_device *drm_dev = data; struct drm_plane *plane; DRM_DEBUG_DRIVER("\n"); hqvdp->drm_dev = drm_dev; /* Create HQVDP plane once xp70 is initialized */ plane = sti_hqvdp_create(drm_dev, hqvdp->dev, STI_HQVDP_0); if (!plane) DRM_ERROR("Can't create HQVDP plane\n"); return 0; } static void sti_hqvdp_unbind(struct device *dev, struct device *master, void *data) { /* do nothing */ } static const struct component_ops sti_hqvdp_ops = { .bind = sti_hqvdp_bind, .unbind = sti_hqvdp_unbind, }; static int sti_hqvdp_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *vtg_np; struct sti_hqvdp *hqvdp; struct resource *res; DRM_DEBUG_DRIVER("\n"); hqvdp = devm_kzalloc(dev, sizeof(*hqvdp), GFP_KERNEL); if (!hqvdp) { DRM_ERROR("Failed to allocate HQVDP context\n"); return -ENOMEM; } hqvdp->dev = dev; /* Get Memory resources */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { DRM_ERROR("Get memory resource failed\n"); return -ENXIO; } hqvdp->regs = devm_ioremap(dev, res->start, resource_size(res)); if (!hqvdp->regs) { DRM_ERROR("Register mapping failed\n"); return -ENXIO; } /* Get clock resources */ hqvdp->clk = devm_clk_get(dev, "hqvdp"); hqvdp->clk_pix_main = devm_clk_get(dev, "pix_main"); if (IS_ERR(hqvdp->clk) || IS_ERR(hqvdp->clk_pix_main)) { DRM_ERROR("Cannot get clocks\n"); return -ENXIO; } /* Get reset resources */ hqvdp->reset = devm_reset_control_get(dev, "hqvdp"); if (!IS_ERR(hqvdp->reset)) reset_control_deassert(hqvdp->reset); vtg_np = of_parse_phandle(pdev->dev.of_node, "st,vtg", 0); if (vtg_np) hqvdp->vtg = of_vtg_find(vtg_np); of_node_put(vtg_np); platform_set_drvdata(pdev, hqvdp); return component_add(&pdev->dev, &sti_hqvdp_ops); } static void sti_hqvdp_remove(struct platform_device *pdev) { component_del(&pdev->dev, &sti_hqvdp_ops); } static const struct of_device_id hqvdp_of_match[] = { { .compatible = "st,stih407-hqvdp", }, { /* end node */ } }; MODULE_DEVICE_TABLE(of, hqvdp_of_match); struct platform_driver sti_hqvdp_driver = { .driver = { .name = "sti-hqvdp", .owner = THIS_MODULE, .of_match_table = hqvdp_of_match, }, .probe = sti_hqvdp_probe, .remove_new = sti_hqvdp_remove, }; MODULE_AUTHOR("Benjamin Gaignard <[email protected]>"); MODULE_DESCRIPTION("STMicroelectronics SoC DRM driver"); MODULE_LICENSE("GPL");
linux-master
drivers/gpu/drm/sti/sti_hqvdp.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics SA 2014 * Authors: Benjamin Gaignard <[email protected]> * Fabien Dessenne <[email protected]> * Vincent Abriou <[email protected]> * for STMicroelectronics. */ #include <linux/module.h> #include <linux/io.h> #include <linux/notifier.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <drm/drm_modes.h> #include <drm/drm_print.h> #include "sti_drv.h" #include "sti_vtg.h" #define VTG_MODE_MASTER 0 /* registers offset */ #define VTG_MODE 0x0000 #define VTG_CLKLN 0x0008 #define VTG_HLFLN 0x000C #define VTG_DRST_AUTOC 0x0010 #define VTG_VID_TFO 0x0040 #define VTG_VID_TFS 0x0044 #define VTG_VID_BFO 0x0048 #define VTG_VID_BFS 0x004C #define VTG_HOST_ITS 0x0078 #define VTG_HOST_ITS_BCLR 0x007C #define VTG_HOST_ITM_BCLR 0x0088 #define VTG_HOST_ITM_BSET 0x008C #define VTG_H_HD_1 0x00C0 #define VTG_TOP_V_VD_1 0x00C4 #define VTG_BOT_V_VD_1 0x00C8 #define VTG_TOP_V_HD_1 0x00CC #define VTG_BOT_V_HD_1 0x00D0 #define VTG_H_HD_2 0x00E0 #define VTG_TOP_V_VD_2 0x00E4 #define VTG_BOT_V_VD_2 0x00E8 #define VTG_TOP_V_HD_2 0x00EC #define VTG_BOT_V_HD_2 0x00F0 #define VTG_H_HD_3 0x0100 #define VTG_TOP_V_VD_3 0x0104 #define VTG_BOT_V_VD_3 0x0108 #define VTG_TOP_V_HD_3 0x010C #define VTG_BOT_V_HD_3 0x0110 #define VTG_H_HD_4 0x0120 #define VTG_TOP_V_VD_4 0x0124 #define VTG_BOT_V_VD_4 0x0128 #define VTG_TOP_V_HD_4 0x012c #define VTG_BOT_V_HD_4 0x0130 #define VTG_IRQ_BOTTOM BIT(0) #define VTG_IRQ_TOP BIT(1) #define VTG_IRQ_MASK (VTG_IRQ_TOP | VTG_IRQ_BOTTOM) /* Delay introduced by the HDMI in nb of pixel */ #define HDMI_DELAY (5) /* Delay introduced by the DVO in nb of pixel */ #define DVO_DELAY (7) /* delay introduced by the Arbitrary Waveform Generator in nb of pixels */ #define AWG_DELAY_HD (-9) #define AWG_DELAY_ED (-8) #define AWG_DELAY_SD (-7) /* * STI VTG register offset structure * *@h_hd: stores the VTG_H_HD_x register offset *@top_v_vd: stores the VTG_TOP_V_VD_x register offset *@bot_v_vd: stores the VTG_BOT_V_VD_x register offset *@top_v_hd: stores the VTG_TOP_V_HD_x register offset *@bot_v_hd: stores the VTG_BOT_V_HD_x register offset */ struct sti_vtg_regs_offs { u32 h_hd; u32 top_v_vd; u32 bot_v_vd; u32 top_v_hd; u32 bot_v_hd; }; #define VTG_MAX_SYNC_OUTPUT 4 static const struct sti_vtg_regs_offs vtg_regs_offs[VTG_MAX_SYNC_OUTPUT] = { { VTG_H_HD_1, VTG_TOP_V_VD_1, VTG_BOT_V_VD_1, VTG_TOP_V_HD_1, VTG_BOT_V_HD_1 }, { VTG_H_HD_2, VTG_TOP_V_VD_2, VTG_BOT_V_VD_2, VTG_TOP_V_HD_2, VTG_BOT_V_HD_2 }, { VTG_H_HD_3, VTG_TOP_V_VD_3, VTG_BOT_V_VD_3, VTG_TOP_V_HD_3, VTG_BOT_V_HD_3 }, { VTG_H_HD_4, VTG_TOP_V_VD_4, VTG_BOT_V_VD_4, VTG_TOP_V_HD_4, VTG_BOT_V_HD_4 } }; /* * STI VTG synchronisation parameters structure * *@hsync: sample number falling and rising edge *@vsync_line_top: vertical top field line number falling and rising edge *@vsync_line_bot: vertical bottom field line number falling and rising edge *@vsync_off_top: vertical top field sample number rising and falling edge *@vsync_off_bot: vertical bottom field sample number rising and falling edge */ struct sti_vtg_sync_params { u32 hsync; u32 vsync_line_top; u32 vsync_line_bot; u32 vsync_off_top; u32 vsync_off_bot; }; /* * STI VTG structure * * @regs: register mapping * @sync_params: synchronisation parameters used to generate timings * @irq: VTG irq * @irq_status: store the IRQ status value * @notifier_list: notifier callback * @crtc: the CRTC for vblank event */ struct sti_vtg { void __iomem *regs; struct sti_vtg_sync_params sync_params[VTG_MAX_SYNC_OUTPUT]; int irq; u32 irq_status; struct raw_notifier_head notifier_list; struct drm_crtc *crtc; }; struct sti_vtg *of_vtg_find(struct device_node *np) { struct platform_device *pdev; pdev = of_find_device_by_node(np); if (!pdev) return NULL; return (struct sti_vtg *)platform_get_drvdata(pdev); } static void vtg_reset(struct sti_vtg *vtg) { writel(1, vtg->regs + VTG_DRST_AUTOC); } static void vtg_set_output_window(void __iomem *regs, const struct drm_display_mode *mode) { u32 video_top_field_start; u32 video_top_field_stop; u32 video_bottom_field_start; u32 video_bottom_field_stop; u32 xstart = sti_vtg_get_pixel_number(*mode, 0); u32 ystart = sti_vtg_get_line_number(*mode, 0); u32 xstop = sti_vtg_get_pixel_number(*mode, mode->hdisplay - 1); u32 ystop = sti_vtg_get_line_number(*mode, mode->vdisplay - 1); /* Set output window to fit the display mode selected */ video_top_field_start = (ystart << 16) | xstart; video_top_field_stop = (ystop << 16) | xstop; /* Only progressive supported for now */ video_bottom_field_start = video_top_field_start; video_bottom_field_stop = video_top_field_stop; writel(video_top_field_start, regs + VTG_VID_TFO); writel(video_top_field_stop, regs + VTG_VID_TFS); writel(video_bottom_field_start, regs + VTG_VID_BFO); writel(video_bottom_field_stop, regs + VTG_VID_BFS); } static void vtg_set_hsync_vsync_pos(struct sti_vtg_sync_params *sync, int delay, const struct drm_display_mode *mode) { long clocksperline, start, stop; u32 risesync_top, fallsync_top; u32 risesync_offs_top, fallsync_offs_top; clocksperline = mode->htotal; /* Get the hsync position */ start = 0; stop = mode->hsync_end - mode->hsync_start; start += delay; stop += delay; if (start < 0) start += clocksperline; else if (start >= clocksperline) start -= clocksperline; if (stop < 0) stop += clocksperline; else if (stop >= clocksperline) stop -= clocksperline; sync->hsync = (stop << 16) | start; /* Get the vsync position */ if (delay >= 0) { risesync_top = 1; fallsync_top = risesync_top; fallsync_top += mode->vsync_end - mode->vsync_start; fallsync_offs_top = (u32)delay; risesync_offs_top = (u32)delay; } else { risesync_top = mode->vtotal; fallsync_top = mode->vsync_end - mode->vsync_start; fallsync_offs_top = clocksperline + delay; risesync_offs_top = clocksperline + delay; } sync->vsync_line_top = (fallsync_top << 16) | risesync_top; sync->vsync_off_top = (fallsync_offs_top << 16) | risesync_offs_top; /* Only progressive supported for now */ sync->vsync_line_bot = sync->vsync_line_top; sync->vsync_off_bot = sync->vsync_off_top; } static void vtg_set_mode(struct sti_vtg *vtg, int type, struct sti_vtg_sync_params *sync, const struct drm_display_mode *mode) { unsigned int i; /* Set the number of clock cycles per line */ writel(mode->htotal, vtg->regs + VTG_CLKLN); /* Set Half Line Per Field (only progressive supported for now) */ writel(mode->vtotal * 2, vtg->regs + VTG_HLFLN); /* Program output window */ vtg_set_output_window(vtg->regs, mode); /* Set hsync and vsync position for HDMI */ vtg_set_hsync_vsync_pos(&sync[VTG_SYNC_ID_HDMI - 1], HDMI_DELAY, mode); /* Set hsync and vsync position for HD DCS */ vtg_set_hsync_vsync_pos(&sync[VTG_SYNC_ID_HDDCS - 1], 0, mode); /* Set hsync and vsync position for HDF */ vtg_set_hsync_vsync_pos(&sync[VTG_SYNC_ID_HDF - 1], AWG_DELAY_HD, mode); /* Set hsync and vsync position for DVO */ vtg_set_hsync_vsync_pos(&sync[VTG_SYNC_ID_DVO - 1], DVO_DELAY, mode); /* Progam the syncs outputs */ for (i = 0; i < VTG_MAX_SYNC_OUTPUT ; i++) { writel(sync[i].hsync, vtg->regs + vtg_regs_offs[i].h_hd); writel(sync[i].vsync_line_top, vtg->regs + vtg_regs_offs[i].top_v_vd); writel(sync[i].vsync_line_bot, vtg->regs + vtg_regs_offs[i].bot_v_vd); writel(sync[i].vsync_off_top, vtg->regs + vtg_regs_offs[i].top_v_hd); writel(sync[i].vsync_off_bot, vtg->regs + vtg_regs_offs[i].bot_v_hd); } /* mode */ writel(type, vtg->regs + VTG_MODE); } static void vtg_enable_irq(struct sti_vtg *vtg) { /* clear interrupt status and mask */ writel(0xFFFF, vtg->regs + VTG_HOST_ITS_BCLR); writel(0xFFFF, vtg->regs + VTG_HOST_ITM_BCLR); writel(VTG_IRQ_MASK, vtg->regs + VTG_HOST_ITM_BSET); } void sti_vtg_set_config(struct sti_vtg *vtg, const struct drm_display_mode *mode) { /* write configuration */ vtg_set_mode(vtg, VTG_MODE_MASTER, vtg->sync_params, mode); vtg_reset(vtg); vtg_enable_irq(vtg); } /** * sti_vtg_get_line_number * * @mode: display mode to be used * @y: line * * Return the line number according to the display mode taking * into account the Sync and Back Porch information. * Video frame line numbers start at 1, y starts at 0. * In interlaced modes the start line is the field line number of the odd * field, but y is still defined as a progressive frame. */ u32 sti_vtg_get_line_number(struct drm_display_mode mode, int y) { u32 start_line = mode.vtotal - mode.vsync_start + 1; if (mode.flags & DRM_MODE_FLAG_INTERLACE) start_line *= 2; return start_line + y; } /** * sti_vtg_get_pixel_number * * @mode: display mode to be used * @x: row * * Return the pixel number according to the display mode taking * into account the Sync and Back Porch information. * Pixels are counted from 0. */ u32 sti_vtg_get_pixel_number(struct drm_display_mode mode, int x) { return mode.htotal - mode.hsync_start + x; } int sti_vtg_register_client(struct sti_vtg *vtg, struct notifier_block *nb, struct drm_crtc *crtc) { vtg->crtc = crtc; return raw_notifier_chain_register(&vtg->notifier_list, nb); } int sti_vtg_unregister_client(struct sti_vtg *vtg, struct notifier_block *nb) { return raw_notifier_chain_unregister(&vtg->notifier_list, nb); } static irqreturn_t vtg_irq_thread(int irq, void *arg) { struct sti_vtg *vtg = arg; u32 event; event = (vtg->irq_status & VTG_IRQ_TOP) ? VTG_TOP_FIELD_EVENT : VTG_BOTTOM_FIELD_EVENT; raw_notifier_call_chain(&vtg->notifier_list, event, vtg->crtc); return IRQ_HANDLED; } static irqreturn_t vtg_irq(int irq, void *arg) { struct sti_vtg *vtg = arg; vtg->irq_status = readl(vtg->regs + VTG_HOST_ITS); writel(vtg->irq_status, vtg->regs + VTG_HOST_ITS_BCLR); /* force sync bus write */ readl(vtg->regs + VTG_HOST_ITS); return IRQ_WAKE_THREAD; } static int vtg_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct sti_vtg *vtg; struct resource *res; int ret; vtg = devm_kzalloc(dev, sizeof(*vtg), GFP_KERNEL); if (!vtg) return -ENOMEM; /* Get Memory ressources */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { DRM_ERROR("Get memory resource failed\n"); return -ENOMEM; } vtg->regs = devm_ioremap(dev, res->start, resource_size(res)); if (!vtg->regs) { DRM_ERROR("failed to remap I/O memory\n"); return -ENOMEM; } vtg->irq = platform_get_irq(pdev, 0); if (vtg->irq < 0) { DRM_ERROR("Failed to get VTG interrupt\n"); return vtg->irq; } RAW_INIT_NOTIFIER_HEAD(&vtg->notifier_list); ret = devm_request_threaded_irq(dev, vtg->irq, vtg_irq, vtg_irq_thread, IRQF_ONESHOT, dev_name(dev), vtg); if (ret < 0) { DRM_ERROR("Failed to register VTG interrupt\n"); return ret; } platform_set_drvdata(pdev, vtg); DRM_INFO("%s %s\n", __func__, dev_name(dev)); return 0; } static const struct of_device_id vtg_of_match[] = { { .compatible = "st,vtg", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, vtg_of_match); struct platform_driver sti_vtg_driver = { .driver = { .name = "sti-vtg", .owner = THIS_MODULE, .of_match_table = vtg_of_match, }, .probe = vtg_probe, }; MODULE_AUTHOR("Benjamin Gaignard <[email protected]>"); MODULE_DESCRIPTION("STMicroelectronics SoC DRM driver"); MODULE_LICENSE("GPL");
linux-master
drivers/gpu/drm/sti/sti_vtg.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics SA 2014 * Author: Vincent Abriou <[email protected]> for STMicroelectronics. */ #include <linux/clk.h> #include <linux/component.h> #include <linux/debugfs.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_bridge.h> #include <drm/drm_device.h> #include <drm/drm_panel.h> #include <drm/drm_print.h> #include <drm/drm_probe_helper.h> #include "sti_awg_utils.h" #include "sti_drv.h" #include "sti_mixer.h" /* DVO registers */ #define DVO_AWG_DIGSYNC_CTRL 0x0000 #define DVO_DOF_CFG 0x0004 #define DVO_LUT_PROG_LOW 0x0008 #define DVO_LUT_PROG_MID 0x000C #define DVO_LUT_PROG_HIGH 0x0010 #define DVO_DIGSYNC_INSTR_I 0x0100 #define DVO_AWG_CTRL_EN BIT(0) #define DVO_AWG_FRAME_BASED_SYNC BIT(2) #define DVO_DOF_EN_LOWBYTE BIT(0) #define DVO_DOF_EN_MIDBYTE BIT(1) #define DVO_DOF_EN_HIGHBYTE BIT(2) #define DVO_DOF_EN BIT(6) #define DVO_DOF_MOD_COUNT_SHIFT 8 #define DVO_LUT_ZERO 0 #define DVO_LUT_Y_G 1 #define DVO_LUT_Y_G_DEL 2 #define DVO_LUT_CB_B 3 #define DVO_LUT_CB_B_DEL 4 #define DVO_LUT_CR_R 5 #define DVO_LUT_CR_R_DEL 6 #define DVO_LUT_HOLD 7 struct dvo_config { u32 flags; u32 lowbyte; u32 midbyte; u32 highbyte; int (*awg_fwgen_fct)( struct awg_code_generation_params *fw_gen_params, struct awg_timing *timing); }; static struct dvo_config rgb_24bit_de_cfg = { .flags = (0L << DVO_DOF_MOD_COUNT_SHIFT), .lowbyte = DVO_LUT_CR_R, .midbyte = DVO_LUT_Y_G, .highbyte = DVO_LUT_CB_B, .awg_fwgen_fct = sti_awg_generate_code_data_enable_mode, }; /* * STI digital video output structure * * @dev: driver device * @drm_dev: pointer to drm device * @mode: current display mode selected * @regs: dvo registers * @clk_pix: pixel clock for dvo * @clk: clock for dvo * @clk_main_parent: dvo parent clock if main path used * @clk_aux_parent: dvo parent clock if aux path used * @panel_node: panel node reference from device tree * @panel: reference to the panel connected to the dvo * @enabled: true if dvo is enabled else false * @encoder: drm_encoder it is bound */ struct sti_dvo { struct device dev; struct drm_device *drm_dev; struct drm_display_mode mode; void __iomem *regs; struct clk *clk_pix; struct clk *clk; struct clk *clk_main_parent; struct clk *clk_aux_parent; struct device_node *panel_node; struct drm_panel *panel; struct dvo_config *config; bool enabled; struct drm_encoder *encoder; struct drm_bridge *bridge; }; struct sti_dvo_connector { struct drm_connector drm_connector; struct drm_encoder *encoder; struct sti_dvo *dvo; }; #define to_sti_dvo_connector(x) \ container_of(x, struct sti_dvo_connector, drm_connector) #define BLANKING_LEVEL 16 static int dvo_awg_generate_code(struct sti_dvo *dvo, u8 *ram_size, u32 *ram_code) { struct drm_display_mode *mode = &dvo->mode; struct dvo_config *config = dvo->config; struct awg_code_generation_params fw_gen_params; struct awg_timing timing; fw_gen_params.ram_code = ram_code; fw_gen_params.instruction_offset = 0; timing.total_lines = mode->vtotal; timing.active_lines = mode->vdisplay; timing.blanking_lines = mode->vsync_start - mode->vdisplay; timing.trailing_lines = mode->vtotal - mode->vsync_start; timing.total_pixels = mode->htotal; timing.active_pixels = mode->hdisplay; timing.blanking_pixels = mode->hsync_start - mode->hdisplay; timing.trailing_pixels = mode->htotal - mode->hsync_start; timing.blanking_level = BLANKING_LEVEL; if (config->awg_fwgen_fct(&fw_gen_params, &timing)) { DRM_ERROR("AWG firmware not properly generated\n"); return -EINVAL; } *ram_size = fw_gen_params.instruction_offset; return 0; } /* Configure AWG, writing instructions * * @dvo: pointer to DVO structure * @awg_ram_code: pointer to AWG instructions table * @nb: nb of AWG instructions */ static void dvo_awg_configure(struct sti_dvo *dvo, u32 *awg_ram_code, int nb) { int i; DRM_DEBUG_DRIVER("\n"); for (i = 0; i < nb; i++) writel(awg_ram_code[i], dvo->regs + DVO_DIGSYNC_INSTR_I + i * 4); for (i = nb; i < AWG_MAX_INST; i++) writel(0, dvo->regs + DVO_DIGSYNC_INSTR_I + i * 4); writel(DVO_AWG_CTRL_EN, dvo->regs + DVO_AWG_DIGSYNC_CTRL); } #define DBGFS_DUMP(reg) seq_printf(s, "\n %-25s 0x%08X", #reg, \ readl(dvo->regs + reg)) static void dvo_dbg_awg_microcode(struct seq_file *s, void __iomem *reg) { unsigned int i; seq_puts(s, "\n\n"); seq_puts(s, " DVO AWG microcode:"); for (i = 0; i < AWG_MAX_INST; i++) { if (i % 8 == 0) seq_printf(s, "\n %04X:", i); seq_printf(s, " %04X", readl(reg + i * 4)); } } static int dvo_dbg_show(struct seq_file *s, void *data) { struct drm_info_node *node = s->private; struct sti_dvo *dvo = (struct sti_dvo *)node->info_ent->data; seq_printf(s, "DVO: (vaddr = 0x%p)", dvo->regs); DBGFS_DUMP(DVO_AWG_DIGSYNC_CTRL); DBGFS_DUMP(DVO_DOF_CFG); DBGFS_DUMP(DVO_LUT_PROG_LOW); DBGFS_DUMP(DVO_LUT_PROG_MID); DBGFS_DUMP(DVO_LUT_PROG_HIGH); dvo_dbg_awg_microcode(s, dvo->regs + DVO_DIGSYNC_INSTR_I); seq_putc(s, '\n'); return 0; } static struct drm_info_list dvo_debugfs_files[] = { { "dvo", dvo_dbg_show, 0, NULL }, }; static void dvo_debugfs_init(struct sti_dvo *dvo, struct drm_minor *minor) { unsigned int i; for (i = 0; i < ARRAY_SIZE(dvo_debugfs_files); i++) dvo_debugfs_files[i].data = dvo; drm_debugfs_create_files(dvo_debugfs_files, ARRAY_SIZE(dvo_debugfs_files), minor->debugfs_root, minor); } static void sti_dvo_disable(struct drm_bridge *bridge) { struct sti_dvo *dvo = bridge->driver_private; if (!dvo->enabled) return; DRM_DEBUG_DRIVER("\n"); if (dvo->config->awg_fwgen_fct) writel(0x00000000, dvo->regs + DVO_AWG_DIGSYNC_CTRL); writel(0x00000000, dvo->regs + DVO_DOF_CFG); drm_panel_disable(dvo->panel); /* Disable/unprepare dvo clock */ clk_disable_unprepare(dvo->clk_pix); clk_disable_unprepare(dvo->clk); dvo->enabled = false; } static void sti_dvo_pre_enable(struct drm_bridge *bridge) { struct sti_dvo *dvo = bridge->driver_private; struct dvo_config *config = dvo->config; u32 val; DRM_DEBUG_DRIVER("\n"); if (dvo->enabled) return; /* Make sure DVO is disabled */ writel(0x00000000, dvo->regs + DVO_DOF_CFG); writel(0x00000000, dvo->regs + DVO_AWG_DIGSYNC_CTRL); if (config->awg_fwgen_fct) { u8 nb_instr; u32 awg_ram_code[AWG_MAX_INST]; /* Configure AWG */ if (!dvo_awg_generate_code(dvo, &nb_instr, awg_ram_code)) dvo_awg_configure(dvo, awg_ram_code, nb_instr); else return; } /* Prepare/enable clocks */ if (clk_prepare_enable(dvo->clk_pix)) DRM_ERROR("Failed to prepare/enable dvo_pix clk\n"); if (clk_prepare_enable(dvo->clk)) DRM_ERROR("Failed to prepare/enable dvo clk\n"); drm_panel_enable(dvo->panel); /* Set LUT */ writel(config->lowbyte, dvo->regs + DVO_LUT_PROG_LOW); writel(config->midbyte, dvo->regs + DVO_LUT_PROG_MID); writel(config->highbyte, dvo->regs + DVO_LUT_PROG_HIGH); /* Digital output formatter config */ val = (config->flags | DVO_DOF_EN); writel(val, dvo->regs + DVO_DOF_CFG); dvo->enabled = true; } static void sti_dvo_set_mode(struct drm_bridge *bridge, const struct drm_display_mode *mode, const struct drm_display_mode *adjusted_mode) { struct sti_dvo *dvo = bridge->driver_private; struct sti_mixer *mixer = to_sti_mixer(dvo->encoder->crtc); int rate = mode->clock * 1000; struct clk *clkp; int ret; DRM_DEBUG_DRIVER("\n"); drm_mode_copy(&dvo->mode, mode); /* According to the path used (main or aux), the dvo clocks should * have a different parent clock. */ if (mixer->id == STI_MIXER_MAIN) clkp = dvo->clk_main_parent; else clkp = dvo->clk_aux_parent; if (clkp) { clk_set_parent(dvo->clk_pix, clkp); clk_set_parent(dvo->clk, clkp); } /* DVO clocks = compositor clock */ ret = clk_set_rate(dvo->clk_pix, rate); if (ret < 0) { DRM_ERROR("Cannot set rate (%dHz) for dvo_pix clk\n", rate); return; } ret = clk_set_rate(dvo->clk, rate); if (ret < 0) { DRM_ERROR("Cannot set rate (%dHz) for dvo clk\n", rate); return; } /* For now, we only support 24bit data enable (DE) synchro format */ dvo->config = &rgb_24bit_de_cfg; } static void sti_dvo_bridge_nope(struct drm_bridge *bridge) { /* do nothing */ } static const struct drm_bridge_funcs sti_dvo_bridge_funcs = { .pre_enable = sti_dvo_pre_enable, .enable = sti_dvo_bridge_nope, .disable = sti_dvo_disable, .post_disable = sti_dvo_bridge_nope, .mode_set = sti_dvo_set_mode, }; static int sti_dvo_connector_get_modes(struct drm_connector *connector) { struct sti_dvo_connector *dvo_connector = to_sti_dvo_connector(connector); struct sti_dvo *dvo = dvo_connector->dvo; if (dvo->panel) return drm_panel_get_modes(dvo->panel, connector); return 0; } #define CLK_TOLERANCE_HZ 50 static enum drm_mode_status sti_dvo_connector_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { int target = mode->clock * 1000; int target_min = target - CLK_TOLERANCE_HZ; int target_max = target + CLK_TOLERANCE_HZ; int result; struct sti_dvo_connector *dvo_connector = to_sti_dvo_connector(connector); struct sti_dvo *dvo = dvo_connector->dvo; result = clk_round_rate(dvo->clk_pix, target); DRM_DEBUG_DRIVER("target rate = %d => available rate = %d\n", target, result); if ((result < target_min) || (result > target_max)) { DRM_DEBUG_DRIVER("dvo pixclk=%d not supported\n", target); return MODE_BAD; } return MODE_OK; } static const struct drm_connector_helper_funcs sti_dvo_connector_helper_funcs = { .get_modes = sti_dvo_connector_get_modes, .mode_valid = sti_dvo_connector_mode_valid, }; static enum drm_connector_status sti_dvo_connector_detect(struct drm_connector *connector, bool force) { struct sti_dvo_connector *dvo_connector = to_sti_dvo_connector(connector); struct sti_dvo *dvo = dvo_connector->dvo; DRM_DEBUG_DRIVER("\n"); if (!dvo->panel) { dvo->panel = of_drm_find_panel(dvo->panel_node); if (IS_ERR(dvo->panel)) dvo->panel = NULL; } if (dvo->panel) return connector_status_connected; return connector_status_disconnected; } static int sti_dvo_late_register(struct drm_connector *connector) { struct sti_dvo_connector *dvo_connector = to_sti_dvo_connector(connector); struct sti_dvo *dvo = dvo_connector->dvo; dvo_debugfs_init(dvo, dvo->drm_dev->primary); return 0; } static const struct drm_connector_funcs sti_dvo_connector_funcs = { .fill_modes = drm_helper_probe_single_connector_modes, .detect = sti_dvo_connector_detect, .destroy = drm_connector_cleanup, .reset = drm_atomic_helper_connector_reset, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, .late_register = sti_dvo_late_register, }; static struct drm_encoder *sti_dvo_find_encoder(struct drm_device *dev) { struct drm_encoder *encoder; list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { if (encoder->encoder_type == DRM_MODE_ENCODER_LVDS) return encoder; } return NULL; } static int sti_dvo_bind(struct device *dev, struct device *master, void *data) { struct sti_dvo *dvo = dev_get_drvdata(dev); struct drm_device *drm_dev = data; struct drm_encoder *encoder; struct sti_dvo_connector *connector; struct drm_connector *drm_connector; struct drm_bridge *bridge; int err; /* Set the drm device handle */ dvo->drm_dev = drm_dev; encoder = sti_dvo_find_encoder(drm_dev); if (!encoder) return -ENOMEM; connector = devm_kzalloc(dev, sizeof(*connector), GFP_KERNEL); if (!connector) return -ENOMEM; connector->dvo = dvo; bridge = devm_kzalloc(dev, sizeof(*bridge), GFP_KERNEL); if (!bridge) return -ENOMEM; bridge->driver_private = dvo; bridge->funcs = &sti_dvo_bridge_funcs; bridge->of_node = dvo->dev.of_node; drm_bridge_add(bridge); err = drm_bridge_attach(encoder, bridge, NULL, 0); if (err) return err; dvo->bridge = bridge; connector->encoder = encoder; dvo->encoder = encoder; drm_connector = (struct drm_connector *)connector; drm_connector->polled = DRM_CONNECTOR_POLL_HPD; drm_connector_init(drm_dev, drm_connector, &sti_dvo_connector_funcs, DRM_MODE_CONNECTOR_LVDS); drm_connector_helper_add(drm_connector, &sti_dvo_connector_helper_funcs); err = drm_connector_attach_encoder(drm_connector, encoder); if (err) { DRM_ERROR("Failed to attach a connector to a encoder\n"); goto err_sysfs; } return 0; err_sysfs: drm_bridge_remove(bridge); return -EINVAL; } static void sti_dvo_unbind(struct device *dev, struct device *master, void *data) { struct sti_dvo *dvo = dev_get_drvdata(dev); drm_bridge_remove(dvo->bridge); } static const struct component_ops sti_dvo_ops = { .bind = sti_dvo_bind, .unbind = sti_dvo_unbind, }; static int sti_dvo_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct sti_dvo *dvo; struct resource *res; struct device_node *np = dev->of_node; DRM_INFO("%s\n", __func__); dvo = devm_kzalloc(dev, sizeof(*dvo), GFP_KERNEL); if (!dvo) { DRM_ERROR("Failed to allocate memory for DVO\n"); return -ENOMEM; } dvo->dev = pdev->dev; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dvo-reg"); if (!res) { DRM_ERROR("Invalid dvo resource\n"); return -ENOMEM; } dvo->regs = devm_ioremap(dev, res->start, resource_size(res)); if (!dvo->regs) return -ENOMEM; dvo->clk_pix = devm_clk_get(dev, "dvo_pix"); if (IS_ERR(dvo->clk_pix)) { DRM_ERROR("Cannot get dvo_pix clock\n"); return PTR_ERR(dvo->clk_pix); } dvo->clk = devm_clk_get(dev, "dvo"); if (IS_ERR(dvo->clk)) { DRM_ERROR("Cannot get dvo clock\n"); return PTR_ERR(dvo->clk); } dvo->clk_main_parent = devm_clk_get(dev, "main_parent"); if (IS_ERR(dvo->clk_main_parent)) { DRM_DEBUG_DRIVER("Cannot get main_parent clock\n"); dvo->clk_main_parent = NULL; } dvo->clk_aux_parent = devm_clk_get(dev, "aux_parent"); if (IS_ERR(dvo->clk_aux_parent)) { DRM_DEBUG_DRIVER("Cannot get aux_parent clock\n"); dvo->clk_aux_parent = NULL; } dvo->panel_node = of_parse_phandle(np, "sti,panel", 0); if (!dvo->panel_node) DRM_ERROR("No panel associated to the dvo output\n"); of_node_put(dvo->panel_node); platform_set_drvdata(pdev, dvo); return component_add(&pdev->dev, &sti_dvo_ops); } static void sti_dvo_remove(struct platform_device *pdev) { component_del(&pdev->dev, &sti_dvo_ops); } static const struct of_device_id dvo_of_match[] = { { .compatible = "st,stih407-dvo", }, { /* end node */ } }; MODULE_DEVICE_TABLE(of, dvo_of_match); struct platform_driver sti_dvo_driver = { .driver = { .name = "sti-dvo", .owner = THIS_MODULE, .of_match_table = dvo_of_match, }, .probe = sti_dvo_probe, .remove_new = sti_dvo_remove, }; MODULE_AUTHOR("Benjamin Gaignard <[email protected]>"); MODULE_DESCRIPTION("STMicroelectronics SoC DRM driver"); MODULE_LICENSE("GPL");
linux-master
drivers/gpu/drm/sti/sti_dvo.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics SA 2014 * Authors: Benjamin Gaignard <[email protected]> * Fabien Dessenne <[email protected]> * for STMicroelectronics. */ #include <linux/clk.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_device.h> #include <drm/drm_print.h> #include <drm/drm_probe_helper.h> #include <drm/drm_vblank.h> #include "sti_compositor.h" #include "sti_crtc.h" #include "sti_drv.h" #include "sti_vid.h" #include "sti_vtg.h" static void sti_crtc_atomic_enable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct sti_mixer *mixer = to_sti_mixer(crtc); DRM_DEBUG_DRIVER("\n"); mixer->status = STI_MIXER_READY; drm_crtc_vblank_on(crtc); } static void sti_crtc_atomic_disable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct sti_mixer *mixer = to_sti_mixer(crtc); DRM_DEBUG_DRIVER("\n"); mixer->status = STI_MIXER_DISABLING; drm_crtc_wait_one_vblank(crtc); } static int sti_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode) { struct sti_mixer *mixer = to_sti_mixer(crtc); struct device *dev = mixer->dev; struct sti_compositor *compo = dev_get_drvdata(dev); struct clk *compo_clk, *pix_clk; int rate = mode->clock * 1000; DRM_DEBUG_KMS("CRTC:%d (%s) mode: (%s)\n", crtc->base.id, sti_mixer_to_str(mixer), mode->name); DRM_DEBUG_KMS(DRM_MODE_FMT "\n", DRM_MODE_ARG(mode)); if (mixer->id == STI_MIXER_MAIN) { compo_clk = compo->clk_compo_main; pix_clk = compo->clk_pix_main; } else { compo_clk = compo->clk_compo_aux; pix_clk = compo->clk_pix_aux; } /* Prepare and enable the compo IP clock */ if (clk_prepare_enable(compo_clk)) { DRM_INFO("Failed to prepare/enable compositor clk\n"); goto compo_error; } /* Set rate and prepare/enable pixel clock */ if (clk_set_rate(pix_clk, rate) < 0) { DRM_ERROR("Cannot set rate (%dHz) for pix clk\n", rate); goto pix_error; } if (clk_prepare_enable(pix_clk)) { DRM_ERROR("Failed to prepare/enable pix clk\n"); goto pix_error; } sti_vtg_set_config(compo->vtg[mixer->id], &crtc->mode); if (sti_mixer_active_video_area(mixer, &crtc->mode)) { DRM_ERROR("Can't set active video area\n"); goto mixer_error; } return 0; mixer_error: clk_disable_unprepare(pix_clk); pix_error: clk_disable_unprepare(compo_clk); compo_error: return -EINVAL; } static void sti_crtc_disable(struct drm_crtc *crtc) { struct sti_mixer *mixer = to_sti_mixer(crtc); struct device *dev = mixer->dev; struct sti_compositor *compo = dev_get_drvdata(dev); DRM_DEBUG_KMS("CRTC:%d (%s)\n", crtc->base.id, sti_mixer_to_str(mixer)); /* Disable Background */ sti_mixer_set_background_status(mixer, false); drm_crtc_vblank_off(crtc); /* Disable pixel clock and compo IP clocks */ if (mixer->id == STI_MIXER_MAIN) { clk_disable_unprepare(compo->clk_pix_main); clk_disable_unprepare(compo->clk_compo_main); } else { clk_disable_unprepare(compo->clk_pix_aux); clk_disable_unprepare(compo->clk_compo_aux); } mixer->status = STI_MIXER_DISABLED; } static void sti_crtc_mode_set_nofb(struct drm_crtc *crtc) { sti_crtc_mode_set(crtc, &crtc->state->adjusted_mode); } static void sti_crtc_atomic_flush(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_device *drm_dev = crtc->dev; struct sti_mixer *mixer = to_sti_mixer(crtc); struct sti_compositor *compo = dev_get_drvdata(mixer->dev); struct drm_plane *p; struct drm_pending_vblank_event *event; unsigned long flags; DRM_DEBUG_DRIVER("\n"); /* perform plane actions */ list_for_each_entry(p, &drm_dev->mode_config.plane_list, head) { struct sti_plane *plane = to_sti_plane(p); switch (plane->status) { case STI_PLANE_UPDATED: /* ignore update for other CRTC */ if (p->state->crtc != crtc) continue; /* update planes tag as updated */ DRM_DEBUG_DRIVER("update plane %s\n", sti_plane_to_str(plane)); if (sti_mixer_set_plane_depth(mixer, plane)) { DRM_ERROR("Cannot set plane %s depth\n", sti_plane_to_str(plane)); break; } if (sti_mixer_set_plane_status(mixer, plane, true)) { DRM_ERROR("Cannot enable plane %s at mixer\n", sti_plane_to_str(plane)); break; } /* if plane is HQVDP_0 then commit the vid[0] */ if (plane->desc == STI_HQVDP_0) sti_vid_commit(compo->vid[0], p->state); plane->status = STI_PLANE_READY; break; case STI_PLANE_DISABLING: /* disabling sequence for planes tag as disabling */ DRM_DEBUG_DRIVER("disable plane %s from mixer\n", sti_plane_to_str(plane)); if (sti_mixer_set_plane_status(mixer, plane, false)) { DRM_ERROR("Cannot disable plane %s at mixer\n", sti_plane_to_str(plane)); continue; } if (plane->desc == STI_CURSOR) /* tag plane status for disabled */ plane->status = STI_PLANE_DISABLED; else /* tag plane status for flushing */ plane->status = STI_PLANE_FLUSHING; /* if plane is HQVDP_0 then disable the vid[0] */ if (plane->desc == STI_HQVDP_0) sti_vid_disable(compo->vid[0]); break; default: /* Other status case are not handled */ break; } } event = crtc->state->event; if (event) { crtc->state->event = NULL; spin_lock_irqsave(&crtc->dev->event_lock, flags); if (drm_crtc_vblank_get(crtc) == 0) drm_crtc_arm_vblank_event(crtc, event); else drm_crtc_send_vblank_event(crtc, event); spin_unlock_irqrestore(&crtc->dev->event_lock, flags); } } static const struct drm_crtc_helper_funcs sti_crtc_helper_funcs = { .mode_set_nofb = sti_crtc_mode_set_nofb, .atomic_flush = sti_crtc_atomic_flush, .atomic_enable = sti_crtc_atomic_enable, .atomic_disable = sti_crtc_atomic_disable, }; static void sti_crtc_destroy(struct drm_crtc *crtc) { DRM_DEBUG_KMS("\n"); drm_crtc_cleanup(crtc); } static int sti_crtc_set_property(struct drm_crtc *crtc, struct drm_property *property, uint64_t val) { DRM_DEBUG_KMS("\n"); return 0; } int sti_crtc_vblank_cb(struct notifier_block *nb, unsigned long event, void *data) { struct sti_compositor *compo; struct drm_crtc *crtc = data; struct sti_mixer *mixer; unsigned int pipe; pipe = drm_crtc_index(crtc); compo = container_of(nb, struct sti_compositor, vtg_vblank_nb[pipe]); mixer = compo->mixer[pipe]; if ((event != VTG_TOP_FIELD_EVENT) && (event != VTG_BOTTOM_FIELD_EVENT)) { DRM_ERROR("unknown event: %lu\n", event); return -EINVAL; } drm_crtc_handle_vblank(crtc); if (mixer->status == STI_MIXER_DISABLING) { struct drm_plane *p; /* Disable mixer only if all overlay planes (GDP and VDP) * are disabled */ list_for_each_entry(p, &crtc->dev->mode_config.plane_list, head) { struct sti_plane *plane = to_sti_plane(p); if ((plane->desc & STI_PLANE_TYPE_MASK) <= STI_VDP) if (plane->status != STI_PLANE_DISABLED) return 0; } sti_crtc_disable(crtc); } return 0; } static int sti_crtc_enable_vblank(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; unsigned int pipe = crtc->index; struct sti_private *dev_priv = dev->dev_private; struct sti_compositor *compo = dev_priv->compo; struct notifier_block *vtg_vblank_nb = &compo->vtg_vblank_nb[pipe]; struct sti_vtg *vtg = compo->vtg[pipe]; DRM_DEBUG_DRIVER("\n"); if (sti_vtg_register_client(vtg, vtg_vblank_nb, crtc)) { DRM_ERROR("Cannot register VTG notifier\n"); return -EINVAL; } return 0; } static void sti_crtc_disable_vblank(struct drm_crtc *crtc) { struct drm_device *drm_dev = crtc->dev; unsigned int pipe = crtc->index; struct sti_private *priv = drm_dev->dev_private; struct sti_compositor *compo = priv->compo; struct notifier_block *vtg_vblank_nb = &compo->vtg_vblank_nb[pipe]; struct sti_vtg *vtg = compo->vtg[pipe]; DRM_DEBUG_DRIVER("\n"); if (sti_vtg_unregister_client(vtg, vtg_vblank_nb)) DRM_DEBUG_DRIVER("Warning: cannot unregister VTG notifier\n"); } static int sti_crtc_late_register(struct drm_crtc *crtc) { struct sti_mixer *mixer = to_sti_mixer(crtc); struct sti_compositor *compo = dev_get_drvdata(mixer->dev); if (drm_crtc_index(crtc) == 0) sti_compositor_debugfs_init(compo, crtc->dev->primary); return 0; } static const struct drm_crtc_funcs sti_crtc_funcs = { .set_config = drm_atomic_helper_set_config, .page_flip = drm_atomic_helper_page_flip, .destroy = sti_crtc_destroy, .set_property = sti_crtc_set_property, .reset = drm_atomic_helper_crtc_reset, .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state, .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state, .late_register = sti_crtc_late_register, .enable_vblank = sti_crtc_enable_vblank, .disable_vblank = sti_crtc_disable_vblank, }; bool sti_crtc_is_main(struct drm_crtc *crtc) { struct sti_mixer *mixer = to_sti_mixer(crtc); if (mixer->id == STI_MIXER_MAIN) return true; return false; } int sti_crtc_init(struct drm_device *drm_dev, struct sti_mixer *mixer, struct drm_plane *primary, struct drm_plane *cursor) { struct drm_crtc *crtc = &mixer->drm_crtc; int res; res = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor, &sti_crtc_funcs, NULL); if (res) { DRM_ERROR("Can't initialize CRTC\n"); return -EINVAL; } drm_crtc_helper_add(crtc, &sti_crtc_helper_funcs); DRM_DEBUG_DRIVER("drm CRTC:%d mapped to %s\n", crtc->base.id, sti_mixer_to_str(mixer)); return 0; }
linux-master
drivers/gpu/drm/sti/sti_crtc.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics SA 2014 * Author: Fabien Dessenne <[email protected]> for STMicroelectronics. */ #include <linux/seq_file.h> #include <drm/drm_debugfs.h> #include <drm/drm_file.h> #include <drm/drm_print.h> #include "sti_plane.h" #include "sti_vid.h" #include "sti_vtg.h" /* Registers */ #define VID_CTL 0x00 #define VID_ALP 0x04 #define VID_CLF 0x08 #define VID_VPO 0x0C #define VID_VPS 0x10 #define VID_KEY1 0x28 #define VID_KEY2 0x2C #define VID_MPR0 0x30 #define VID_MPR1 0x34 #define VID_MPR2 0x38 #define VID_MPR3 0x3C #define VID_MST 0x68 #define VID_BC 0x70 #define VID_TINT 0x74 #define VID_CSAT 0x78 /* Registers values */ #define VID_CTL_IGNORE (BIT(31) | BIT(30)) #define VID_CTL_PSI_ENABLE (BIT(2) | BIT(1) | BIT(0)) #define VID_ALP_OPAQUE 0x00000080 #define VID_BC_DFLT 0x00008000 #define VID_TINT_DFLT 0x00000000 #define VID_CSAT_DFLT 0x00000080 /* YCbCr to RGB BT709: * R = Y+1.5391Cr * G = Y-0.4590Cr-0.1826Cb * B = Y+1.8125Cb */ #define VID_MPR0_BT709 0x0A800000 #define VID_MPR1_BT709 0x0AC50000 #define VID_MPR2_BT709 0x07150545 #define VID_MPR3_BT709 0x00000AE8 /* YCbCr to RGB BT709: * R = Y+1.3711Cr * G = Y-0.6992Cr-0.3359Cb * B = Y+1.7344Cb */ #define VID_MPR0_BT601 0x0A800000 #define VID_MPR1_BT601 0x0AAF0000 #define VID_MPR2_BT601 0x094E0754 #define VID_MPR3_BT601 0x00000ADD #define VID_MIN_HD_HEIGHT 720 #define DBGFS_DUMP(reg) seq_printf(s, "\n %-25s 0x%08X", #reg, \ readl(vid->regs + reg)) static void vid_dbg_ctl(struct seq_file *s, int val) { val = val >> 30; seq_putc(s, '\t'); if (!(val & 1)) seq_puts(s, "NOT "); seq_puts(s, "ignored on main mixer - "); if (!(val & 2)) seq_puts(s, "NOT "); seq_puts(s, "ignored on aux mixer"); } static void vid_dbg_vpo(struct seq_file *s, int val) { seq_printf(s, "\txdo:%4d\tydo:%4d", val & 0x0FFF, (val >> 16) & 0x0FFF); } static void vid_dbg_vps(struct seq_file *s, int val) { seq_printf(s, "\txds:%4d\tyds:%4d", val & 0x0FFF, (val >> 16) & 0x0FFF); } static void vid_dbg_mst(struct seq_file *s, int val) { if (val & 1) seq_puts(s, "\tBUFFER UNDERFLOW!"); } static int vid_dbg_show(struct seq_file *s, void *arg) { struct drm_info_node *node = s->private; struct sti_vid *vid = (struct sti_vid *)node->info_ent->data; seq_printf(s, "VID: (vaddr= 0x%p)", vid->regs); DBGFS_DUMP(VID_CTL); vid_dbg_ctl(s, readl(vid->regs + VID_CTL)); DBGFS_DUMP(VID_ALP); DBGFS_DUMP(VID_CLF); DBGFS_DUMP(VID_VPO); vid_dbg_vpo(s, readl(vid->regs + VID_VPO)); DBGFS_DUMP(VID_VPS); vid_dbg_vps(s, readl(vid->regs + VID_VPS)); DBGFS_DUMP(VID_KEY1); DBGFS_DUMP(VID_KEY2); DBGFS_DUMP(VID_MPR0); DBGFS_DUMP(VID_MPR1); DBGFS_DUMP(VID_MPR2); DBGFS_DUMP(VID_MPR3); DBGFS_DUMP(VID_MST); vid_dbg_mst(s, readl(vid->regs + VID_MST)); DBGFS_DUMP(VID_BC); DBGFS_DUMP(VID_TINT); DBGFS_DUMP(VID_CSAT); seq_putc(s, '\n'); return 0; } static struct drm_info_list vid_debugfs_files[] = { { "vid", vid_dbg_show, 0, NULL }, }; void vid_debugfs_init(struct sti_vid *vid, struct drm_minor *minor) { unsigned int i; for (i = 0; i < ARRAY_SIZE(vid_debugfs_files); i++) vid_debugfs_files[i].data = vid; drm_debugfs_create_files(vid_debugfs_files, ARRAY_SIZE(vid_debugfs_files), minor->debugfs_root, minor); } void sti_vid_commit(struct sti_vid *vid, struct drm_plane_state *state) { struct drm_crtc *crtc = state->crtc; struct drm_display_mode *mode = &crtc->mode; int dst_x = state->crtc_x; int dst_y = state->crtc_y; int dst_w = clamp_val(state->crtc_w, 0, mode->hdisplay - dst_x); int dst_h = clamp_val(state->crtc_h, 0, mode->vdisplay - dst_y); int src_h = state->src_h >> 16; u32 val, ydo, xdo, yds, xds; /* Input / output size * Align to upper even value */ dst_w = ALIGN(dst_w, 2); dst_h = ALIGN(dst_h, 2); /* Unmask */ val = readl(vid->regs + VID_CTL); val &= ~VID_CTL_IGNORE; writel(val, vid->regs + VID_CTL); ydo = sti_vtg_get_line_number(*mode, dst_y); yds = sti_vtg_get_line_number(*mode, dst_y + dst_h - 1); xdo = sti_vtg_get_pixel_number(*mode, dst_x); xds = sti_vtg_get_pixel_number(*mode, dst_x + dst_w - 1); writel((ydo << 16) | xdo, vid->regs + VID_VPO); writel((yds << 16) | xds, vid->regs + VID_VPS); /* Color conversion parameters */ if (src_h >= VID_MIN_HD_HEIGHT) { writel(VID_MPR0_BT709, vid->regs + VID_MPR0); writel(VID_MPR1_BT709, vid->regs + VID_MPR1); writel(VID_MPR2_BT709, vid->regs + VID_MPR2); writel(VID_MPR3_BT709, vid->regs + VID_MPR3); } else { writel(VID_MPR0_BT601, vid->regs + VID_MPR0); writel(VID_MPR1_BT601, vid->regs + VID_MPR1); writel(VID_MPR2_BT601, vid->regs + VID_MPR2); writel(VID_MPR3_BT601, vid->regs + VID_MPR3); } } void sti_vid_disable(struct sti_vid *vid) { u32 val; /* Mask */ val = readl(vid->regs + VID_CTL); val |= VID_CTL_IGNORE; writel(val, vid->regs + VID_CTL); } static void sti_vid_init(struct sti_vid *vid) { /* Enable PSI, Mask layer */ writel(VID_CTL_PSI_ENABLE | VID_CTL_IGNORE, vid->regs + VID_CTL); /* Opaque */ writel(VID_ALP_OPAQUE, vid->regs + VID_ALP); /* Brightness, contrast, tint, saturation */ writel(VID_BC_DFLT, vid->regs + VID_BC); writel(VID_TINT_DFLT, vid->regs + VID_TINT); writel(VID_CSAT_DFLT, vid->regs + VID_CSAT); } struct sti_vid *sti_vid_create(struct device *dev, struct drm_device *drm_dev, int id, void __iomem *baseaddr) { struct sti_vid *vid; vid = devm_kzalloc(dev, sizeof(*vid), GFP_KERNEL); if (!vid) { DRM_ERROR("Failed to allocate memory for VID\n"); return NULL; } vid->dev = dev; vid->regs = baseaddr; vid->id = id; sti_vid_init(vid); return vid; }
linux-master
drivers/gpu/drm/sti/sti_vid.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics SA 2014 * Authors: Benjamin Gaignard <[email protected]> * Vincent Abriou <[email protected]> * for STMicroelectronics. */ #include <linux/clk.h> #include <linux/component.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/reset.h> #include <linux/seq_file.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_debugfs.h> #include <drm/drm_device.h> #include <drm/drm_file.h> #include <drm/drm_print.h> #include "sti_crtc.h" #include "sti_drv.h" #include "sti_vtg.h" /* glue registers */ #define TVO_CSC_MAIN_M0 0x000 #define TVO_CSC_MAIN_M1 0x004 #define TVO_CSC_MAIN_M2 0x008 #define TVO_CSC_MAIN_M3 0x00c #define TVO_CSC_MAIN_M4 0x010 #define TVO_CSC_MAIN_M5 0x014 #define TVO_CSC_MAIN_M6 0x018 #define TVO_CSC_MAIN_M7 0x01c #define TVO_MAIN_IN_VID_FORMAT 0x030 #define TVO_CSC_AUX_M0 0x100 #define TVO_CSC_AUX_M1 0x104 #define TVO_CSC_AUX_M2 0x108 #define TVO_CSC_AUX_M3 0x10c #define TVO_CSC_AUX_M4 0x110 #define TVO_CSC_AUX_M5 0x114 #define TVO_CSC_AUX_M6 0x118 #define TVO_CSC_AUX_M7 0x11c #define TVO_AUX_IN_VID_FORMAT 0x130 #define TVO_VIP_HDF 0x400 #define TVO_HD_SYNC_SEL 0x418 #define TVO_HD_DAC_CFG_OFF 0x420 #define TVO_VIP_HDMI 0x500 #define TVO_HDMI_FORCE_COLOR_0 0x504 #define TVO_HDMI_FORCE_COLOR_1 0x508 #define TVO_HDMI_CLIP_VALUE_B_CB 0x50c #define TVO_HDMI_CLIP_VALUE_Y_G 0x510 #define TVO_HDMI_CLIP_VALUE_R_CR 0x514 #define TVO_HDMI_SYNC_SEL 0x518 #define TVO_HDMI_DFV_OBS 0x540 #define TVO_VIP_DVO 0x600 #define TVO_DVO_SYNC_SEL 0x618 #define TVO_DVO_CONFIG 0x620 #define TVO_IN_FMT_SIGNED BIT(0) #define TVO_SYNC_EXT BIT(4) #define TVO_VIP_REORDER_R_SHIFT 24 #define TVO_VIP_REORDER_G_SHIFT 20 #define TVO_VIP_REORDER_B_SHIFT 16 #define TVO_VIP_REORDER_MASK 0x3 #define TVO_VIP_REORDER_Y_G_SEL 0 #define TVO_VIP_REORDER_CB_B_SEL 1 #define TVO_VIP_REORDER_CR_R_SEL 2 #define TVO_VIP_CLIP_SHIFT 8 #define TVO_VIP_CLIP_MASK 0x7 #define TVO_VIP_CLIP_DISABLED 0 #define TVO_VIP_CLIP_EAV_SAV 1 #define TVO_VIP_CLIP_LIMITED_RANGE_RGB_Y 2 #define TVO_VIP_CLIP_LIMITED_RANGE_CB_CR 3 #define TVO_VIP_CLIP_PROG_RANGE 4 #define TVO_VIP_RND_SHIFT 4 #define TVO_VIP_RND_MASK 0x3 #define TVO_VIP_RND_8BIT_ROUNDED 0 #define TVO_VIP_RND_10BIT_ROUNDED 1 #define TVO_VIP_RND_12BIT_ROUNDED 2 #define TVO_VIP_SEL_INPUT_MASK 0xf #define TVO_VIP_SEL_INPUT_MAIN 0x0 #define TVO_VIP_SEL_INPUT_AUX 0x8 #define TVO_VIP_SEL_INPUT_FORCE_COLOR 0xf #define TVO_VIP_SEL_INPUT_BYPASS_MASK 0x1 #define TVO_VIP_SEL_INPUT_BYPASSED 1 #define TVO_SYNC_MAIN_VTG_SET_REF 0x00 #define TVO_SYNC_AUX_VTG_SET_REF 0x10 #define TVO_SYNC_HD_DCS_SHIFT 8 #define TVO_SYNC_DVO_PAD_HSYNC_SHIFT 8 #define TVO_SYNC_DVO_PAD_VSYNC_SHIFT 16 #define ENCODER_CRTC_MASK (BIT(0) | BIT(1)) #define TVO_MIN_HD_HEIGHT 720 /* enum listing the supported output data format */ enum sti_tvout_video_out_type { STI_TVOUT_VIDEO_OUT_RGB, STI_TVOUT_VIDEO_OUT_YUV, }; struct sti_tvout { struct device *dev; struct drm_device *drm_dev; void __iomem *regs; struct reset_control *reset; struct drm_encoder *hdmi; struct drm_encoder *hda; struct drm_encoder *dvo; bool debugfs_registered; }; struct sti_tvout_encoder { struct drm_encoder encoder; struct sti_tvout *tvout; }; #define to_sti_tvout_encoder(x) \ container_of(x, struct sti_tvout_encoder, encoder) #define to_sti_tvout(x) to_sti_tvout_encoder(x)->tvout /* preformatter conversion matrix */ static const u32 rgb_to_ycbcr_601[8] = { 0xF927082E, 0x04C9FEAB, 0x01D30964, 0xFA95FD3D, 0x0000082E, 0x00002000, 0x00002000, 0x00000000 }; /* 709 RGB to YCbCr */ static const u32 rgb_to_ycbcr_709[8] = { 0xF891082F, 0x0367FF40, 0x01280B71, 0xF9B1FE20, 0x0000082F, 0x00002000, 0x00002000, 0x00000000 }; static u32 tvout_read(struct sti_tvout *tvout, int offset) { return readl(tvout->regs + offset); } static void tvout_write(struct sti_tvout *tvout, u32 val, int offset) { writel(val, tvout->regs + offset); } /** * tvout_vip_set_color_order - Set the clipping mode of a VIP * * @tvout: tvout structure * @reg: register to set * @cr_r: red chroma or red order * @y_g: y or green order * @cb_b: blue chroma or blue order */ static void tvout_vip_set_color_order(struct sti_tvout *tvout, int reg, u32 cr_r, u32 y_g, u32 cb_b) { u32 val = tvout_read(tvout, reg); val &= ~(TVO_VIP_REORDER_MASK << TVO_VIP_REORDER_R_SHIFT); val &= ~(TVO_VIP_REORDER_MASK << TVO_VIP_REORDER_G_SHIFT); val &= ~(TVO_VIP_REORDER_MASK << TVO_VIP_REORDER_B_SHIFT); val |= cr_r << TVO_VIP_REORDER_R_SHIFT; val |= y_g << TVO_VIP_REORDER_G_SHIFT; val |= cb_b << TVO_VIP_REORDER_B_SHIFT; tvout_write(tvout, val, reg); } /** * tvout_vip_set_clip_mode - Set the clipping mode of a VIP * * @tvout: tvout structure * @reg: register to set * @range: clipping range */ static void tvout_vip_set_clip_mode(struct sti_tvout *tvout, int reg, u32 range) { u32 val = tvout_read(tvout, reg); val &= ~(TVO_VIP_CLIP_MASK << TVO_VIP_CLIP_SHIFT); val |= range << TVO_VIP_CLIP_SHIFT; tvout_write(tvout, val, reg); } /** * tvout_vip_set_rnd - Set the rounded value of a VIP * * @tvout: tvout structure * @reg: register to set * @rnd: rounded val per component */ static void tvout_vip_set_rnd(struct sti_tvout *tvout, int reg, u32 rnd) { u32 val = tvout_read(tvout, reg); val &= ~(TVO_VIP_RND_MASK << TVO_VIP_RND_SHIFT); val |= rnd << TVO_VIP_RND_SHIFT; tvout_write(tvout, val, reg); } /** * tvout_vip_set_sel_input - Select the VIP input * * @tvout: tvout structure * @reg: register to set * @main_path: main or auxiliary path * @video_out: selected_input (main/aux + conv) */ static void tvout_vip_set_sel_input(struct sti_tvout *tvout, int reg, bool main_path, enum sti_tvout_video_out_type video_out) { u32 sel_input; u32 val = tvout_read(tvout, reg); if (main_path) sel_input = TVO_VIP_SEL_INPUT_MAIN; else sel_input = TVO_VIP_SEL_INPUT_AUX; switch (video_out) { case STI_TVOUT_VIDEO_OUT_RGB: sel_input |= TVO_VIP_SEL_INPUT_BYPASSED; break; case STI_TVOUT_VIDEO_OUT_YUV: sel_input &= ~TVO_VIP_SEL_INPUT_BYPASSED; break; } /* on stih407 chip the sel_input bypass mode logic is inverted */ sel_input = sel_input ^ TVO_VIP_SEL_INPUT_BYPASS_MASK; val &= ~TVO_VIP_SEL_INPUT_MASK; val |= sel_input; tvout_write(tvout, val, reg); } /** * tvout_vip_set_in_vid_fmt - Select the input video signed or unsigned * * @tvout: tvout structure * @reg: register to set * @in_vid_fmt: used video input format */ static void tvout_vip_set_in_vid_fmt(struct sti_tvout *tvout, int reg, u32 in_vid_fmt) { u32 val = tvout_read(tvout, reg); val &= ~TVO_IN_FMT_SIGNED; val |= in_vid_fmt; tvout_write(tvout, val, reg); } /** * tvout_preformatter_set_matrix - Set preformatter matrix * * @tvout: tvout structure * @mode: display mode structure */ static void tvout_preformatter_set_matrix(struct sti_tvout *tvout, struct drm_display_mode *mode) { unsigned int i; const u32 *pf_matrix; if (mode->vdisplay >= TVO_MIN_HD_HEIGHT) pf_matrix = rgb_to_ycbcr_709; else pf_matrix = rgb_to_ycbcr_601; for (i = 0; i < 8; i++) { tvout_write(tvout, *(pf_matrix + i), TVO_CSC_MAIN_M0 + (i * 4)); tvout_write(tvout, *(pf_matrix + i), TVO_CSC_AUX_M0 + (i * 4)); } } /** * tvout_dvo_start - Start VIP block for DVO output * * @tvout: pointer on tvout structure * @main_path: true if main path has to be used in the vip configuration * else aux path is used. */ static void tvout_dvo_start(struct sti_tvout *tvout, bool main_path) { u32 tvo_in_vid_format; int val, tmp; dev_dbg(tvout->dev, "%s\n", __func__); if (main_path) { DRM_DEBUG_DRIVER("main vip for DVO\n"); /* Select the input sync for dvo */ tmp = TVO_SYNC_MAIN_VTG_SET_REF | VTG_SYNC_ID_DVO; val = tmp << TVO_SYNC_DVO_PAD_VSYNC_SHIFT; val |= tmp << TVO_SYNC_DVO_PAD_HSYNC_SHIFT; val |= tmp; tvout_write(tvout, val, TVO_DVO_SYNC_SEL); tvo_in_vid_format = TVO_MAIN_IN_VID_FORMAT; } else { DRM_DEBUG_DRIVER("aux vip for DVO\n"); /* Select the input sync for dvo */ tmp = TVO_SYNC_AUX_VTG_SET_REF | VTG_SYNC_ID_DVO; val = tmp << TVO_SYNC_DVO_PAD_VSYNC_SHIFT; val |= tmp << TVO_SYNC_DVO_PAD_HSYNC_SHIFT; val |= tmp; tvout_write(tvout, val, TVO_DVO_SYNC_SEL); tvo_in_vid_format = TVO_AUX_IN_VID_FORMAT; } /* Set color channel order */ tvout_vip_set_color_order(tvout, TVO_VIP_DVO, TVO_VIP_REORDER_CR_R_SEL, TVO_VIP_REORDER_Y_G_SEL, TVO_VIP_REORDER_CB_B_SEL); /* Set clipping mode */ tvout_vip_set_clip_mode(tvout, TVO_VIP_DVO, TVO_VIP_CLIP_DISABLED); /* Set round mode (rounded to 8-bit per component) */ tvout_vip_set_rnd(tvout, TVO_VIP_DVO, TVO_VIP_RND_8BIT_ROUNDED); /* Set input video format */ tvout_vip_set_in_vid_fmt(tvout, tvo_in_vid_format, TVO_IN_FMT_SIGNED); /* Input selection */ tvout_vip_set_sel_input(tvout, TVO_VIP_DVO, main_path, STI_TVOUT_VIDEO_OUT_RGB); } /** * tvout_hdmi_start - Start VIP block for HDMI output * * @tvout: pointer on tvout structure * @main_path: true if main path has to be used in the vip configuration * else aux path is used. */ static void tvout_hdmi_start(struct sti_tvout *tvout, bool main_path) { u32 tvo_in_vid_format; dev_dbg(tvout->dev, "%s\n", __func__); if (main_path) { DRM_DEBUG_DRIVER("main vip for hdmi\n"); /* select the input sync for hdmi */ tvout_write(tvout, TVO_SYNC_MAIN_VTG_SET_REF | VTG_SYNC_ID_HDMI, TVO_HDMI_SYNC_SEL); tvo_in_vid_format = TVO_MAIN_IN_VID_FORMAT; } else { DRM_DEBUG_DRIVER("aux vip for hdmi\n"); /* select the input sync for hdmi */ tvout_write(tvout, TVO_SYNC_AUX_VTG_SET_REF | VTG_SYNC_ID_HDMI, TVO_HDMI_SYNC_SEL); tvo_in_vid_format = TVO_AUX_IN_VID_FORMAT; } /* set color channel order */ tvout_vip_set_color_order(tvout, TVO_VIP_HDMI, TVO_VIP_REORDER_CR_R_SEL, TVO_VIP_REORDER_Y_G_SEL, TVO_VIP_REORDER_CB_B_SEL); /* set clipping mode */ tvout_vip_set_clip_mode(tvout, TVO_VIP_HDMI, TVO_VIP_CLIP_DISABLED); /* set round mode (rounded to 8-bit per component) */ tvout_vip_set_rnd(tvout, TVO_VIP_HDMI, TVO_VIP_RND_8BIT_ROUNDED); /* set input video format */ tvout_vip_set_in_vid_fmt(tvout, tvo_in_vid_format, TVO_IN_FMT_SIGNED); /* input selection */ tvout_vip_set_sel_input(tvout, TVO_VIP_HDMI, main_path, STI_TVOUT_VIDEO_OUT_RGB); } /** * tvout_hda_start - Start HDF VIP and HD DAC * * @tvout: pointer on tvout structure * @main_path: true if main path has to be used in the vip configuration * else aux path is used. */ static void tvout_hda_start(struct sti_tvout *tvout, bool main_path) { u32 tvo_in_vid_format; int val; dev_dbg(tvout->dev, "%s\n", __func__); if (main_path) { DRM_DEBUG_DRIVER("main vip for HDF\n"); /* Select the input sync for HD analog and HD DCS */ val = TVO_SYNC_MAIN_VTG_SET_REF | VTG_SYNC_ID_HDDCS; val = val << TVO_SYNC_HD_DCS_SHIFT; val |= TVO_SYNC_MAIN_VTG_SET_REF | VTG_SYNC_ID_HDF; tvout_write(tvout, val, TVO_HD_SYNC_SEL); tvo_in_vid_format = TVO_MAIN_IN_VID_FORMAT; } else { DRM_DEBUG_DRIVER("aux vip for HDF\n"); /* Select the input sync for HD analog and HD DCS */ val = TVO_SYNC_AUX_VTG_SET_REF | VTG_SYNC_ID_HDDCS; val = val << TVO_SYNC_HD_DCS_SHIFT; val |= TVO_SYNC_AUX_VTG_SET_REF | VTG_SYNC_ID_HDF; tvout_write(tvout, val, TVO_HD_SYNC_SEL); tvo_in_vid_format = TVO_AUX_IN_VID_FORMAT; } /* set color channel order */ tvout_vip_set_color_order(tvout, TVO_VIP_HDF, TVO_VIP_REORDER_CR_R_SEL, TVO_VIP_REORDER_Y_G_SEL, TVO_VIP_REORDER_CB_B_SEL); /* set clipping mode */ tvout_vip_set_clip_mode(tvout, TVO_VIP_HDF, TVO_VIP_CLIP_DISABLED); /* set round mode (rounded to 10-bit per component) */ tvout_vip_set_rnd(tvout, TVO_VIP_HDF, TVO_VIP_RND_10BIT_ROUNDED); /* Set input video format */ tvout_vip_set_in_vid_fmt(tvout, tvo_in_vid_format, TVO_IN_FMT_SIGNED); /* Input selection */ tvout_vip_set_sel_input(tvout, TVO_VIP_HDF, main_path, STI_TVOUT_VIDEO_OUT_YUV); /* power up HD DAC */ tvout_write(tvout, 0, TVO_HD_DAC_CFG_OFF); } #define DBGFS_DUMP(reg) seq_printf(s, "\n %-25s 0x%08X", #reg, \ readl(tvout->regs + reg)) static void tvout_dbg_vip(struct seq_file *s, int val) { int r, g, b, tmp, mask; char *const reorder[] = {"Y_G", "Cb_B", "Cr_R"}; char *const clipping[] = {"No", "EAV/SAV", "Limited range RGB/Y", "Limited range Cb/Cr", "decided by register"}; char *const round[] = {"8-bit", "10-bit", "12-bit"}; char *const input_sel[] = {"Main (color matrix enabled)", "Main (color matrix by-passed)", "", "", "", "", "", "", "Aux (color matrix enabled)", "Aux (color matrix by-passed)", "", "", "", "", "", "Force value"}; seq_putc(s, '\t'); mask = TVO_VIP_REORDER_MASK << TVO_VIP_REORDER_R_SHIFT; r = (val & mask) >> TVO_VIP_REORDER_R_SHIFT; mask = TVO_VIP_REORDER_MASK << TVO_VIP_REORDER_G_SHIFT; g = (val & mask) >> TVO_VIP_REORDER_G_SHIFT; mask = TVO_VIP_REORDER_MASK << TVO_VIP_REORDER_B_SHIFT; b = (val & mask) >> TVO_VIP_REORDER_B_SHIFT; seq_printf(s, "%-24s %s->%s %s->%s %s->%s\n", "Reorder:", reorder[r], reorder[TVO_VIP_REORDER_CR_R_SEL], reorder[g], reorder[TVO_VIP_REORDER_Y_G_SEL], reorder[b], reorder[TVO_VIP_REORDER_CB_B_SEL]); seq_puts(s, "\t\t\t\t\t"); mask = TVO_VIP_CLIP_MASK << TVO_VIP_CLIP_SHIFT; tmp = (val & mask) >> TVO_VIP_CLIP_SHIFT; seq_printf(s, "%-24s %s\n", "Clipping:", clipping[tmp]); seq_puts(s, "\t\t\t\t\t"); mask = TVO_VIP_RND_MASK << TVO_VIP_RND_SHIFT; tmp = (val & mask) >> TVO_VIP_RND_SHIFT; seq_printf(s, "%-24s input data rounded to %s per component\n", "Round:", round[tmp]); seq_puts(s, "\t\t\t\t\t"); tmp = (val & TVO_VIP_SEL_INPUT_MASK); seq_printf(s, "%-24s %s", "Input selection:", input_sel[tmp]); } static void tvout_dbg_hd_dac_cfg(struct seq_file *s, int val) { seq_printf(s, "\t%-24s %s", "HD DAC:", val & 1 ? "disabled" : "enabled"); } static int tvout_dbg_show(struct seq_file *s, void *data) { struct drm_info_node *node = s->private; struct sti_tvout *tvout = (struct sti_tvout *)node->info_ent->data; struct drm_crtc *crtc; seq_printf(s, "TVOUT: (vaddr = 0x%p)", tvout->regs); seq_puts(s, "\n\n HDMI encoder: "); crtc = tvout->hdmi->crtc; if (crtc) { seq_printf(s, "connected to %s path", sti_crtc_is_main(crtc) ? "main" : "aux"); DBGFS_DUMP(TVO_HDMI_SYNC_SEL); DBGFS_DUMP(TVO_VIP_HDMI); tvout_dbg_vip(s, readl(tvout->regs + TVO_VIP_HDMI)); } else { seq_puts(s, "disabled"); } seq_puts(s, "\n\n DVO encoder: "); crtc = tvout->dvo->crtc; if (crtc) { seq_printf(s, "connected to %s path", sti_crtc_is_main(crtc) ? "main" : "aux"); DBGFS_DUMP(TVO_DVO_SYNC_SEL); DBGFS_DUMP(TVO_DVO_CONFIG); DBGFS_DUMP(TVO_VIP_DVO); tvout_dbg_vip(s, readl(tvout->regs + TVO_VIP_DVO)); } else { seq_puts(s, "disabled"); } seq_puts(s, "\n\n HDA encoder: "); crtc = tvout->hda->crtc; if (crtc) { seq_printf(s, "connected to %s path", sti_crtc_is_main(crtc) ? "main" : "aux"); DBGFS_DUMP(TVO_HD_SYNC_SEL); DBGFS_DUMP(TVO_HD_DAC_CFG_OFF); tvout_dbg_hd_dac_cfg(s, readl(tvout->regs + TVO_HD_DAC_CFG_OFF)); DBGFS_DUMP(TVO_VIP_HDF); tvout_dbg_vip(s, readl(tvout->regs + TVO_VIP_HDF)); } else { seq_puts(s, "disabled"); } seq_puts(s, "\n\n main path configuration"); DBGFS_DUMP(TVO_CSC_MAIN_M0); DBGFS_DUMP(TVO_CSC_MAIN_M1); DBGFS_DUMP(TVO_CSC_MAIN_M2); DBGFS_DUMP(TVO_CSC_MAIN_M3); DBGFS_DUMP(TVO_CSC_MAIN_M4); DBGFS_DUMP(TVO_CSC_MAIN_M5); DBGFS_DUMP(TVO_CSC_MAIN_M6); DBGFS_DUMP(TVO_CSC_MAIN_M7); DBGFS_DUMP(TVO_MAIN_IN_VID_FORMAT); seq_puts(s, "\n\n auxiliary path configuration"); DBGFS_DUMP(TVO_CSC_AUX_M0); DBGFS_DUMP(TVO_CSC_AUX_M2); DBGFS_DUMP(TVO_CSC_AUX_M3); DBGFS_DUMP(TVO_CSC_AUX_M4); DBGFS_DUMP(TVO_CSC_AUX_M5); DBGFS_DUMP(TVO_CSC_AUX_M6); DBGFS_DUMP(TVO_CSC_AUX_M7); DBGFS_DUMP(TVO_AUX_IN_VID_FORMAT); seq_putc(s, '\n'); return 0; } static struct drm_info_list tvout_debugfs_files[] = { { "tvout", tvout_dbg_show, 0, NULL }, }; static void tvout_debugfs_init(struct sti_tvout *tvout, struct drm_minor *minor) { unsigned int i; for (i = 0; i < ARRAY_SIZE(tvout_debugfs_files); i++) tvout_debugfs_files[i].data = tvout; drm_debugfs_create_files(tvout_debugfs_files, ARRAY_SIZE(tvout_debugfs_files), minor->debugfs_root, minor); } static void sti_tvout_encoder_dpms(struct drm_encoder *encoder, int mode) { } static void sti_tvout_encoder_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { } static void sti_tvout_encoder_destroy(struct drm_encoder *encoder) { struct sti_tvout_encoder *sti_encoder = to_sti_tvout_encoder(encoder); drm_encoder_cleanup(encoder); kfree(sti_encoder); } static int sti_tvout_late_register(struct drm_encoder *encoder) { struct sti_tvout *tvout = to_sti_tvout(encoder); if (tvout->debugfs_registered) return 0; tvout_debugfs_init(tvout, encoder->dev->primary); tvout->debugfs_registered = true; return 0; } static void sti_tvout_early_unregister(struct drm_encoder *encoder) { struct sti_tvout *tvout = to_sti_tvout(encoder); if (!tvout->debugfs_registered) return; tvout->debugfs_registered = false; } static const struct drm_encoder_funcs sti_tvout_encoder_funcs = { .destroy = sti_tvout_encoder_destroy, .late_register = sti_tvout_late_register, .early_unregister = sti_tvout_early_unregister, }; static void sti_dvo_encoder_enable(struct drm_encoder *encoder) { struct sti_tvout *tvout = to_sti_tvout(encoder); tvout_preformatter_set_matrix(tvout, &encoder->crtc->mode); tvout_dvo_start(tvout, sti_crtc_is_main(encoder->crtc)); } static void sti_dvo_encoder_disable(struct drm_encoder *encoder) { struct sti_tvout *tvout = to_sti_tvout(encoder); /* Reset VIP register */ tvout_write(tvout, 0x0, TVO_VIP_DVO); } static const struct drm_encoder_helper_funcs sti_dvo_encoder_helper_funcs = { .dpms = sti_tvout_encoder_dpms, .mode_set = sti_tvout_encoder_mode_set, .enable = sti_dvo_encoder_enable, .disable = sti_dvo_encoder_disable, }; static struct drm_encoder * sti_tvout_create_dvo_encoder(struct drm_device *dev, struct sti_tvout *tvout) { struct sti_tvout_encoder *encoder; struct drm_encoder *drm_encoder; encoder = devm_kzalloc(tvout->dev, sizeof(*encoder), GFP_KERNEL); if (!encoder) return NULL; encoder->tvout = tvout; drm_encoder = &encoder->encoder; drm_encoder->possible_crtcs = ENCODER_CRTC_MASK; drm_encoder_init(dev, drm_encoder, &sti_tvout_encoder_funcs, DRM_MODE_ENCODER_LVDS, NULL); drm_encoder_helper_add(drm_encoder, &sti_dvo_encoder_helper_funcs); return drm_encoder; } static void sti_hda_encoder_enable(struct drm_encoder *encoder) { struct sti_tvout *tvout = to_sti_tvout(encoder); tvout_preformatter_set_matrix(tvout, &encoder->crtc->mode); tvout_hda_start(tvout, sti_crtc_is_main(encoder->crtc)); } static void sti_hda_encoder_disable(struct drm_encoder *encoder) { struct sti_tvout *tvout = to_sti_tvout(encoder); /* reset VIP register */ tvout_write(tvout, 0x0, TVO_VIP_HDF); /* power down HD DAC */ tvout_write(tvout, 1, TVO_HD_DAC_CFG_OFF); } static const struct drm_encoder_helper_funcs sti_hda_encoder_helper_funcs = { .dpms = sti_tvout_encoder_dpms, .mode_set = sti_tvout_encoder_mode_set, .commit = sti_hda_encoder_enable, .disable = sti_hda_encoder_disable, }; static struct drm_encoder *sti_tvout_create_hda_encoder(struct drm_device *dev, struct sti_tvout *tvout) { struct sti_tvout_encoder *encoder; struct drm_encoder *drm_encoder; encoder = devm_kzalloc(tvout->dev, sizeof(*encoder), GFP_KERNEL); if (!encoder) return NULL; encoder->tvout = tvout; drm_encoder = &encoder->encoder; drm_encoder->possible_crtcs = ENCODER_CRTC_MASK; drm_encoder_init(dev, drm_encoder, &sti_tvout_encoder_funcs, DRM_MODE_ENCODER_DAC, NULL); drm_encoder_helper_add(drm_encoder, &sti_hda_encoder_helper_funcs); return drm_encoder; } static void sti_hdmi_encoder_enable(struct drm_encoder *encoder) { struct sti_tvout *tvout = to_sti_tvout(encoder); tvout_preformatter_set_matrix(tvout, &encoder->crtc->mode); tvout_hdmi_start(tvout, sti_crtc_is_main(encoder->crtc)); } static void sti_hdmi_encoder_disable(struct drm_encoder *encoder) { struct sti_tvout *tvout = to_sti_tvout(encoder); /* reset VIP register */ tvout_write(tvout, 0x0, TVO_VIP_HDMI); } static const struct drm_encoder_helper_funcs sti_hdmi_encoder_helper_funcs = { .dpms = sti_tvout_encoder_dpms, .mode_set = sti_tvout_encoder_mode_set, .commit = sti_hdmi_encoder_enable, .disable = sti_hdmi_encoder_disable, }; static struct drm_encoder *sti_tvout_create_hdmi_encoder(struct drm_device *dev, struct sti_tvout *tvout) { struct sti_tvout_encoder *encoder; struct drm_encoder *drm_encoder; encoder = devm_kzalloc(tvout->dev, sizeof(*encoder), GFP_KERNEL); if (!encoder) return NULL; encoder->tvout = tvout; drm_encoder = &encoder->encoder; drm_encoder->possible_crtcs = ENCODER_CRTC_MASK; drm_encoder_init(dev, drm_encoder, &sti_tvout_encoder_funcs, DRM_MODE_ENCODER_TMDS, NULL); drm_encoder_helper_add(drm_encoder, &sti_hdmi_encoder_helper_funcs); return drm_encoder; } static void sti_tvout_create_encoders(struct drm_device *dev, struct sti_tvout *tvout) { tvout->hdmi = sti_tvout_create_hdmi_encoder(dev, tvout); tvout->hda = sti_tvout_create_hda_encoder(dev, tvout); tvout->dvo = sti_tvout_create_dvo_encoder(dev, tvout); tvout->hdmi->possible_clones = drm_encoder_mask(tvout->hdmi) | drm_encoder_mask(tvout->hda) | drm_encoder_mask(tvout->dvo); tvout->hda->possible_clones = drm_encoder_mask(tvout->hdmi) | drm_encoder_mask(tvout->hda) | drm_encoder_mask(tvout->dvo); tvout->dvo->possible_clones = drm_encoder_mask(tvout->hdmi) | drm_encoder_mask(tvout->hda) | drm_encoder_mask(tvout->dvo); } static void sti_tvout_destroy_encoders(struct sti_tvout *tvout) { if (tvout->hdmi) drm_encoder_cleanup(tvout->hdmi); tvout->hdmi = NULL; if (tvout->hda) drm_encoder_cleanup(tvout->hda); tvout->hda = NULL; if (tvout->dvo) drm_encoder_cleanup(tvout->dvo); tvout->dvo = NULL; } static int sti_tvout_bind(struct device *dev, struct device *master, void *data) { struct sti_tvout *tvout = dev_get_drvdata(dev); struct drm_device *drm_dev = data; tvout->drm_dev = drm_dev; sti_tvout_create_encoders(drm_dev, tvout); return 0; } static void sti_tvout_unbind(struct device *dev, struct device *master, void *data) { struct sti_tvout *tvout = dev_get_drvdata(dev); sti_tvout_destroy_encoders(tvout); } static const struct component_ops sti_tvout_ops = { .bind = sti_tvout_bind, .unbind = sti_tvout_unbind, }; static int sti_tvout_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *node = dev->of_node; struct sti_tvout *tvout; struct resource *res; DRM_INFO("%s\n", __func__); if (!node) return -ENODEV; tvout = devm_kzalloc(dev, sizeof(*tvout), GFP_KERNEL); if (!tvout) return -ENOMEM; tvout->dev = dev; /* get memory resources */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "tvout-reg"); if (!res) { DRM_ERROR("Invalid glue resource\n"); return -ENOMEM; } tvout->regs = devm_ioremap(dev, res->start, resource_size(res)); if (!tvout->regs) return -ENOMEM; /* get reset resources */ tvout->reset = devm_reset_control_get(dev, "tvout"); /* take tvout out of reset */ if (!IS_ERR(tvout->reset)) reset_control_deassert(tvout->reset); platform_set_drvdata(pdev, tvout); return component_add(dev, &sti_tvout_ops); } static void sti_tvout_remove(struct platform_device *pdev) { component_del(&pdev->dev, &sti_tvout_ops); } static const struct of_device_id tvout_of_match[] = { { .compatible = "st,stih407-tvout", }, { /* end node */ } }; MODULE_DEVICE_TABLE(of, tvout_of_match); struct platform_driver sti_tvout_driver = { .driver = { .name = "sti-tvout", .owner = THIS_MODULE, .of_match_table = tvout_of_match, }, .probe = sti_tvout_probe, .remove_new = sti_tvout_remove, }; MODULE_AUTHOR("Benjamin Gaignard <[email protected]>"); MODULE_DESCRIPTION("STMicroelectronics SoC DRM driver"); MODULE_LICENSE("GPL");
linux-master
drivers/gpu/drm/sti/sti_tvout.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics SA 2014 * Authors: Benjamin Gaignard <[email protected]> * Fabien Dessenne <[email protected]> * for STMicroelectronics. */ #include <linux/dma-mapping.h> #include <linux/of.h> #include <linux/seq_file.h> #include <drm/drm_atomic.h> #include <drm/drm_device.h> #include <drm/drm_fb_dma_helper.h> #include <drm/drm_fourcc.h> #include <drm/drm_framebuffer.h> #include <drm/drm_gem_dma_helper.h> #include "sti_compositor.h" #include "sti_gdp.h" #include "sti_plane.h" #include "sti_vtg.h" #define ALPHASWITCH BIT(6) #define ENA_COLOR_FILL BIT(8) #define BIGNOTLITTLE BIT(23) #define WAIT_NEXT_VSYNC BIT(31) /* GDP color formats */ #define GDP_RGB565 0x00 #define GDP_RGB888 0x01 #define GDP_RGB888_32 0x02 #define GDP_XBGR8888 (GDP_RGB888_32 | BIGNOTLITTLE | ALPHASWITCH) #define GDP_ARGB8565 0x04 #define GDP_ARGB8888 0x05 #define GDP_ABGR8888 (GDP_ARGB8888 | BIGNOTLITTLE | ALPHASWITCH) #define GDP_ARGB1555 0x06 #define GDP_ARGB4444 0x07 #define GDP2STR(fmt) { GDP_ ## fmt, #fmt } static struct gdp_format_to_str { int format; char name[20]; } gdp_format_to_str[] = { GDP2STR(RGB565), GDP2STR(RGB888), GDP2STR(RGB888_32), GDP2STR(XBGR8888), GDP2STR(ARGB8565), GDP2STR(ARGB8888), GDP2STR(ABGR8888), GDP2STR(ARGB1555), GDP2STR(ARGB4444) }; #define GAM_GDP_CTL_OFFSET 0x00 #define GAM_GDP_AGC_OFFSET 0x04 #define GAM_GDP_VPO_OFFSET 0x0C #define GAM_GDP_VPS_OFFSET 0x10 #define GAM_GDP_PML_OFFSET 0x14 #define GAM_GDP_PMP_OFFSET 0x18 #define GAM_GDP_SIZE_OFFSET 0x1C #define GAM_GDP_NVN_OFFSET 0x24 #define GAM_GDP_KEY1_OFFSET 0x28 #define GAM_GDP_KEY2_OFFSET 0x2C #define GAM_GDP_PPT_OFFSET 0x34 #define GAM_GDP_CML_OFFSET 0x3C #define GAM_GDP_MST_OFFSET 0x68 #define GAM_GDP_ALPHARANGE_255 BIT(5) #define GAM_GDP_AGC_FULL_RANGE 0x00808080 #define GAM_GDP_PPT_IGNORE (BIT(1) | BIT(0)) #define GAM_GDP_SIZE_MAX_WIDTH 3840 #define GAM_GDP_SIZE_MAX_HEIGHT 2160 #define GDP_NODE_NB_BANK 2 #define GDP_NODE_PER_FIELD 2 struct sti_gdp_node { u32 gam_gdp_ctl; u32 gam_gdp_agc; u32 reserved1; u32 gam_gdp_vpo; u32 gam_gdp_vps; u32 gam_gdp_pml; u32 gam_gdp_pmp; u32 gam_gdp_size; u32 reserved2; u32 gam_gdp_nvn; u32 gam_gdp_key1; u32 gam_gdp_key2; u32 reserved3; u32 gam_gdp_ppt; u32 reserved4; u32 gam_gdp_cml; }; struct sti_gdp_node_list { struct sti_gdp_node *top_field; dma_addr_t top_field_paddr; struct sti_gdp_node *btm_field; dma_addr_t btm_field_paddr; }; /* * STI GDP structure * * @sti_plane: sti_plane structure * @dev: driver device * @regs: gdp registers * @clk_pix: pixel clock for the current gdp * @clk_main_parent: gdp parent clock if main path used * @clk_aux_parent: gdp parent clock if aux path used * @vtg_field_nb: callback for VTG FIELD (top or bottom) notification * @is_curr_top: true if the current node processed is the top field * @node_list: array of node list * @vtg: registered vtg */ struct sti_gdp { struct sti_plane plane; struct device *dev; void __iomem *regs; struct clk *clk_pix; struct clk *clk_main_parent; struct clk *clk_aux_parent; struct notifier_block vtg_field_nb; bool is_curr_top; struct sti_gdp_node_list node_list[GDP_NODE_NB_BANK]; struct sti_vtg *vtg; }; #define to_sti_gdp(x) container_of(x, struct sti_gdp, plane) static const uint32_t gdp_supported_formats[] = { DRM_FORMAT_XRGB8888, DRM_FORMAT_XBGR8888, DRM_FORMAT_ARGB8888, DRM_FORMAT_ABGR8888, DRM_FORMAT_ARGB4444, DRM_FORMAT_ARGB1555, DRM_FORMAT_RGB565, DRM_FORMAT_RGB888, }; #define DBGFS_DUMP(reg) seq_printf(s, "\n %-25s 0x%08X", #reg, \ readl(gdp->regs + reg ## _OFFSET)) static void gdp_dbg_ctl(struct seq_file *s, int val) { int i; seq_puts(s, "\tColor:"); for (i = 0; i < ARRAY_SIZE(gdp_format_to_str); i++) { if (gdp_format_to_str[i].format == (val & 0x1F)) { seq_puts(s, gdp_format_to_str[i].name); break; } } if (i == ARRAY_SIZE(gdp_format_to_str)) seq_puts(s, "<UNKNOWN>"); seq_printf(s, "\tWaitNextVsync:%d", val & WAIT_NEXT_VSYNC ? 1 : 0); } static void gdp_dbg_vpo(struct seq_file *s, int val) { seq_printf(s, "\txdo:%4d\tydo:%4d", val & 0xFFFF, (val >> 16) & 0xFFFF); } static void gdp_dbg_vps(struct seq_file *s, int val) { seq_printf(s, "\txds:%4d\tyds:%4d", val & 0xFFFF, (val >> 16) & 0xFFFF); } static void gdp_dbg_size(struct seq_file *s, int val) { seq_printf(s, "\t%d x %d", val & 0xFFFF, (val >> 16) & 0xFFFF); } static void gdp_dbg_nvn(struct seq_file *s, struct sti_gdp *gdp, int val) { void *base = NULL; unsigned int i; for (i = 0; i < GDP_NODE_NB_BANK; i++) { if (gdp->node_list[i].top_field_paddr == val) { base = gdp->node_list[i].top_field; break; } if (gdp->node_list[i].btm_field_paddr == val) { base = gdp->node_list[i].btm_field; break; } } if (base) seq_printf(s, "\tVirt @: %p", base); } static void gdp_dbg_ppt(struct seq_file *s, int val) { if (val & GAM_GDP_PPT_IGNORE) seq_puts(s, "\tNot displayed on mixer!"); } static void gdp_dbg_mst(struct seq_file *s, int val) { if (val & 1) seq_puts(s, "\tBUFFER UNDERFLOW!"); } static int gdp_dbg_show(struct seq_file *s, void *data) { struct drm_info_node *node = s->private; struct sti_gdp *gdp = (struct sti_gdp *)node->info_ent->data; struct drm_plane *drm_plane = &gdp->plane.drm_plane; struct drm_crtc *crtc; drm_modeset_lock(&drm_plane->mutex, NULL); crtc = drm_plane->state->crtc; drm_modeset_unlock(&drm_plane->mutex); seq_printf(s, "%s: (vaddr = 0x%p)", sti_plane_to_str(&gdp->plane), gdp->regs); DBGFS_DUMP(GAM_GDP_CTL); gdp_dbg_ctl(s, readl(gdp->regs + GAM_GDP_CTL_OFFSET)); DBGFS_DUMP(GAM_GDP_AGC); DBGFS_DUMP(GAM_GDP_VPO); gdp_dbg_vpo(s, readl(gdp->regs + GAM_GDP_VPO_OFFSET)); DBGFS_DUMP(GAM_GDP_VPS); gdp_dbg_vps(s, readl(gdp->regs + GAM_GDP_VPS_OFFSET)); DBGFS_DUMP(GAM_GDP_PML); DBGFS_DUMP(GAM_GDP_PMP); DBGFS_DUMP(GAM_GDP_SIZE); gdp_dbg_size(s, readl(gdp->regs + GAM_GDP_SIZE_OFFSET)); DBGFS_DUMP(GAM_GDP_NVN); gdp_dbg_nvn(s, gdp, readl(gdp->regs + GAM_GDP_NVN_OFFSET)); DBGFS_DUMP(GAM_GDP_KEY1); DBGFS_DUMP(GAM_GDP_KEY2); DBGFS_DUMP(GAM_GDP_PPT); gdp_dbg_ppt(s, readl(gdp->regs + GAM_GDP_PPT_OFFSET)); DBGFS_DUMP(GAM_GDP_CML); DBGFS_DUMP(GAM_GDP_MST); gdp_dbg_mst(s, readl(gdp->regs + GAM_GDP_MST_OFFSET)); seq_puts(s, "\n\n"); if (!crtc) seq_puts(s, " Not connected to any DRM CRTC\n"); else seq_printf(s, " Connected to DRM CRTC #%d (%s)\n", crtc->base.id, sti_mixer_to_str(to_sti_mixer(crtc))); return 0; } static void gdp_node_dump_node(struct seq_file *s, struct sti_gdp_node *node) { seq_printf(s, "\t@:0x%p", node); seq_printf(s, "\n\tCTL 0x%08X", node->gam_gdp_ctl); gdp_dbg_ctl(s, node->gam_gdp_ctl); seq_printf(s, "\n\tAGC 0x%08X", node->gam_gdp_agc); seq_printf(s, "\n\tVPO 0x%08X", node->gam_gdp_vpo); gdp_dbg_vpo(s, node->gam_gdp_vpo); seq_printf(s, "\n\tVPS 0x%08X", node->gam_gdp_vps); gdp_dbg_vps(s, node->gam_gdp_vps); seq_printf(s, "\n\tPML 0x%08X", node->gam_gdp_pml); seq_printf(s, "\n\tPMP 0x%08X", node->gam_gdp_pmp); seq_printf(s, "\n\tSIZE 0x%08X", node->gam_gdp_size); gdp_dbg_size(s, node->gam_gdp_size); seq_printf(s, "\n\tNVN 0x%08X", node->gam_gdp_nvn); seq_printf(s, "\n\tKEY1 0x%08X", node->gam_gdp_key1); seq_printf(s, "\n\tKEY2 0x%08X", node->gam_gdp_key2); seq_printf(s, "\n\tPPT 0x%08X", node->gam_gdp_ppt); gdp_dbg_ppt(s, node->gam_gdp_ppt); seq_printf(s, "\n\tCML 0x%08X\n", node->gam_gdp_cml); } static int gdp_node_dbg_show(struct seq_file *s, void *arg) { struct drm_info_node *node = s->private; struct sti_gdp *gdp = (struct sti_gdp *)node->info_ent->data; unsigned int b; for (b = 0; b < GDP_NODE_NB_BANK; b++) { seq_printf(s, "\n%s[%d].top", sti_plane_to_str(&gdp->plane), b); gdp_node_dump_node(s, gdp->node_list[b].top_field); seq_printf(s, "\n%s[%d].btm", sti_plane_to_str(&gdp->plane), b); gdp_node_dump_node(s, gdp->node_list[b].btm_field); } return 0; } static struct drm_info_list gdp0_debugfs_files[] = { { "gdp0", gdp_dbg_show, 0, NULL }, { "gdp0_node", gdp_node_dbg_show, 0, NULL }, }; static struct drm_info_list gdp1_debugfs_files[] = { { "gdp1", gdp_dbg_show, 0, NULL }, { "gdp1_node", gdp_node_dbg_show, 0, NULL }, }; static struct drm_info_list gdp2_debugfs_files[] = { { "gdp2", gdp_dbg_show, 0, NULL }, { "gdp2_node", gdp_node_dbg_show, 0, NULL }, }; static struct drm_info_list gdp3_debugfs_files[] = { { "gdp3", gdp_dbg_show, 0, NULL }, { "gdp3_node", gdp_node_dbg_show, 0, NULL }, }; static int gdp_debugfs_init(struct sti_gdp *gdp, struct drm_minor *minor) { unsigned int i; struct drm_info_list *gdp_debugfs_files; int nb_files; switch (gdp->plane.desc) { case STI_GDP_0: gdp_debugfs_files = gdp0_debugfs_files; nb_files = ARRAY_SIZE(gdp0_debugfs_files); break; case STI_GDP_1: gdp_debugfs_files = gdp1_debugfs_files; nb_files = ARRAY_SIZE(gdp1_debugfs_files); break; case STI_GDP_2: gdp_debugfs_files = gdp2_debugfs_files; nb_files = ARRAY_SIZE(gdp2_debugfs_files); break; case STI_GDP_3: gdp_debugfs_files = gdp3_debugfs_files; nb_files = ARRAY_SIZE(gdp3_debugfs_files); break; default: return -EINVAL; } for (i = 0; i < nb_files; i++) gdp_debugfs_files[i].data = gdp; drm_debugfs_create_files(gdp_debugfs_files, nb_files, minor->debugfs_root, minor); return 0; } static int sti_gdp_fourcc2format(int fourcc) { switch (fourcc) { case DRM_FORMAT_XRGB8888: return GDP_RGB888_32; case DRM_FORMAT_XBGR8888: return GDP_XBGR8888; case DRM_FORMAT_ARGB8888: return GDP_ARGB8888; case DRM_FORMAT_ABGR8888: return GDP_ABGR8888; case DRM_FORMAT_ARGB4444: return GDP_ARGB4444; case DRM_FORMAT_ARGB1555: return GDP_ARGB1555; case DRM_FORMAT_RGB565: return GDP_RGB565; case DRM_FORMAT_RGB888: return GDP_RGB888; } return -1; } static int sti_gdp_get_alpharange(int format) { switch (format) { case GDP_ARGB8565: case GDP_ARGB8888: case GDP_ABGR8888: return GAM_GDP_ALPHARANGE_255; } return 0; } /** * sti_gdp_get_free_nodes * @gdp: gdp pointer * * Look for a GDP node list that is not currently read by the HW. * * RETURNS: * Pointer to the free GDP node list */ static struct sti_gdp_node_list *sti_gdp_get_free_nodes(struct sti_gdp *gdp) { int hw_nvn; unsigned int i; hw_nvn = readl(gdp->regs + GAM_GDP_NVN_OFFSET); if (!hw_nvn) goto end; for (i = 0; i < GDP_NODE_NB_BANK; i++) if ((hw_nvn != gdp->node_list[i].btm_field_paddr) && (hw_nvn != gdp->node_list[i].top_field_paddr)) return &gdp->node_list[i]; /* in hazardous cases restart with the first node */ DRM_ERROR("inconsistent NVN for %s: 0x%08X\n", sti_plane_to_str(&gdp->plane), hw_nvn); end: return &gdp->node_list[0]; } /** * sti_gdp_get_current_nodes * @gdp: gdp pointer * * Look for GDP nodes that are currently read by the HW. * * RETURNS: * Pointer to the current GDP node list */ static struct sti_gdp_node_list *sti_gdp_get_current_nodes(struct sti_gdp *gdp) { int hw_nvn; unsigned int i; hw_nvn = readl(gdp->regs + GAM_GDP_NVN_OFFSET); if (!hw_nvn) goto end; for (i = 0; i < GDP_NODE_NB_BANK; i++) if ((hw_nvn == gdp->node_list[i].btm_field_paddr) || (hw_nvn == gdp->node_list[i].top_field_paddr)) return &gdp->node_list[i]; end: DRM_DEBUG_DRIVER("Warning, NVN 0x%08X for %s does not match any node\n", hw_nvn, sti_plane_to_str(&gdp->plane)); return NULL; } /** * sti_gdp_disable * @gdp: gdp pointer * * Disable a GDP. */ static void sti_gdp_disable(struct sti_gdp *gdp) { unsigned int i; DRM_DEBUG_DRIVER("%s\n", sti_plane_to_str(&gdp->plane)); /* Set the nodes as 'to be ignored on mixer' */ for (i = 0; i < GDP_NODE_NB_BANK; i++) { gdp->node_list[i].top_field->gam_gdp_ppt |= GAM_GDP_PPT_IGNORE; gdp->node_list[i].btm_field->gam_gdp_ppt |= GAM_GDP_PPT_IGNORE; } if (sti_vtg_unregister_client(gdp->vtg, &gdp->vtg_field_nb)) DRM_DEBUG_DRIVER("Warning: cannot unregister VTG notifier\n"); if (gdp->clk_pix) clk_disable_unprepare(gdp->clk_pix); gdp->plane.status = STI_PLANE_DISABLED; gdp->vtg = NULL; } /** * sti_gdp_field_cb * @nb: notifier block * @event: event message * @data: private data * * Handle VTG top field and bottom field event. * * RETURNS: * 0 on success. */ static int sti_gdp_field_cb(struct notifier_block *nb, unsigned long event, void *data) { struct sti_gdp *gdp = container_of(nb, struct sti_gdp, vtg_field_nb); if (gdp->plane.status == STI_PLANE_FLUSHING) { /* disable need to be synchronize on vsync event */ DRM_DEBUG_DRIVER("Vsync event received => disable %s\n", sti_plane_to_str(&gdp->plane)); sti_gdp_disable(gdp); } switch (event) { case VTG_TOP_FIELD_EVENT: gdp->is_curr_top = true; break; case VTG_BOTTOM_FIELD_EVENT: gdp->is_curr_top = false; break; default: DRM_ERROR("unsupported event: %lu\n", event); break; } return 0; } static void sti_gdp_init(struct sti_gdp *gdp) { struct device_node *np = gdp->dev->of_node; dma_addr_t dma_addr; void *base; unsigned int i, size; /* Allocate all the nodes within a single memory page */ size = sizeof(struct sti_gdp_node) * GDP_NODE_PER_FIELD * GDP_NODE_NB_BANK; base = dma_alloc_wc(gdp->dev, size, &dma_addr, GFP_KERNEL); if (!base) { DRM_ERROR("Failed to allocate memory for GDP node\n"); return; } memset(base, 0, size); for (i = 0; i < GDP_NODE_NB_BANK; i++) { if (dma_addr & 0xF) { DRM_ERROR("Mem alignment failed\n"); return; } gdp->node_list[i].top_field = base; gdp->node_list[i].top_field_paddr = dma_addr; DRM_DEBUG_DRIVER("node[%d].top_field=%p\n", i, base); base += sizeof(struct sti_gdp_node); dma_addr += sizeof(struct sti_gdp_node); if (dma_addr & 0xF) { DRM_ERROR("Mem alignment failed\n"); return; } gdp->node_list[i].btm_field = base; gdp->node_list[i].btm_field_paddr = dma_addr; DRM_DEBUG_DRIVER("node[%d].btm_field=%p\n", i, base); base += sizeof(struct sti_gdp_node); dma_addr += sizeof(struct sti_gdp_node); } if (of_device_is_compatible(np, "st,stih407-compositor")) { /* GDP of STiH407 chip have its own pixel clock */ char *clk_name; switch (gdp->plane.desc) { case STI_GDP_0: clk_name = "pix_gdp1"; break; case STI_GDP_1: clk_name = "pix_gdp2"; break; case STI_GDP_2: clk_name = "pix_gdp3"; break; case STI_GDP_3: clk_name = "pix_gdp4"; break; default: DRM_ERROR("GDP id not recognized\n"); return; } gdp->clk_pix = devm_clk_get(gdp->dev, clk_name); if (IS_ERR(gdp->clk_pix)) DRM_ERROR("Cannot get %s clock\n", clk_name); gdp->clk_main_parent = devm_clk_get(gdp->dev, "main_parent"); if (IS_ERR(gdp->clk_main_parent)) DRM_ERROR("Cannot get main_parent clock\n"); gdp->clk_aux_parent = devm_clk_get(gdp->dev, "aux_parent"); if (IS_ERR(gdp->clk_aux_parent)) DRM_ERROR("Cannot get aux_parent clock\n"); } } /** * sti_gdp_get_dst * @dev: device * @dst: requested destination size * @src: source size * * Return the cropped / clamped destination size * * RETURNS: * cropped / clamped destination size */ static int sti_gdp_get_dst(struct device *dev, int dst, int src) { if (dst == src) return dst; if (dst < src) { dev_dbg(dev, "WARNING: GDP scale not supported, will crop\n"); return dst; } dev_dbg(dev, "WARNING: GDP scale not supported, will clamp\n"); return src; } static int sti_gdp_atomic_check(struct drm_plane *drm_plane, struct drm_atomic_state *state) { struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, drm_plane); struct sti_plane *plane = to_sti_plane(drm_plane); struct sti_gdp *gdp = to_sti_gdp(plane); struct drm_crtc *crtc = new_plane_state->crtc; struct drm_framebuffer *fb = new_plane_state->fb; struct drm_crtc_state *crtc_state; struct sti_mixer *mixer; struct drm_display_mode *mode; int dst_x, dst_y, dst_w, dst_h; int src_x, src_y, src_w, src_h; int format; /* no need for further checks if the plane is being disabled */ if (!crtc || !fb) return 0; mixer = to_sti_mixer(crtc); crtc_state = drm_atomic_get_crtc_state(state, crtc); mode = &crtc_state->mode; dst_x = new_plane_state->crtc_x; dst_y = new_plane_state->crtc_y; dst_w = clamp_val(new_plane_state->crtc_w, 0, mode->hdisplay - dst_x); dst_h = clamp_val(new_plane_state->crtc_h, 0, mode->vdisplay - dst_y); /* src_x are in 16.16 format */ src_x = new_plane_state->src_x >> 16; src_y = new_plane_state->src_y >> 16; src_w = clamp_val(new_plane_state->src_w >> 16, 0, GAM_GDP_SIZE_MAX_WIDTH); src_h = clamp_val(new_plane_state->src_h >> 16, 0, GAM_GDP_SIZE_MAX_HEIGHT); format = sti_gdp_fourcc2format(fb->format->format); if (format == -1) { DRM_ERROR("Format not supported by GDP %.4s\n", (char *)&fb->format->format); return -EINVAL; } if (!drm_fb_dma_get_gem_obj(fb, 0)) { DRM_ERROR("Can't get DMA GEM object for fb\n"); return -EINVAL; } /* Set gdp clock */ if (mode->clock && gdp->clk_pix) { struct clk *clkp; int rate = mode->clock * 1000; int res; /* * According to the mixer used, the gdp pixel clock * should have a different parent clock. */ if (mixer->id == STI_MIXER_MAIN) clkp = gdp->clk_main_parent; else clkp = gdp->clk_aux_parent; if (clkp) clk_set_parent(gdp->clk_pix, clkp); res = clk_set_rate(gdp->clk_pix, rate); if (res < 0) { DRM_ERROR("Cannot set rate (%dHz) for gdp\n", rate); return -EINVAL; } } DRM_DEBUG_KMS("CRTC:%d (%s) drm plane:%d (%s)\n", crtc->base.id, sti_mixer_to_str(mixer), drm_plane->base.id, sti_plane_to_str(plane)); DRM_DEBUG_KMS("%s dst=(%dx%d)@(%d,%d) - src=(%dx%d)@(%d,%d)\n", sti_plane_to_str(plane), dst_w, dst_h, dst_x, dst_y, src_w, src_h, src_x, src_y); return 0; } static void sti_gdp_atomic_update(struct drm_plane *drm_plane, struct drm_atomic_state *state) { struct drm_plane_state *oldstate = drm_atomic_get_old_plane_state(state, drm_plane); struct drm_plane_state *newstate = drm_atomic_get_new_plane_state(state, drm_plane); struct sti_plane *plane = to_sti_plane(drm_plane); struct sti_gdp *gdp = to_sti_gdp(plane); struct drm_crtc *crtc = newstate->crtc; struct drm_framebuffer *fb = newstate->fb; struct drm_display_mode *mode; int dst_x, dst_y, dst_w, dst_h; int src_x, src_y, src_w, src_h; struct drm_gem_dma_object *dma_obj; struct sti_gdp_node_list *list; struct sti_gdp_node_list *curr_list; struct sti_gdp_node *top_field, *btm_field; u32 dma_updated_top; u32 dma_updated_btm; int format; unsigned int bpp; u32 ydo, xdo, yds, xds; if (!crtc || !fb) return; if ((oldstate->fb == newstate->fb) && (oldstate->crtc_x == newstate->crtc_x) && (oldstate->crtc_y == newstate->crtc_y) && (oldstate->crtc_w == newstate->crtc_w) && (oldstate->crtc_h == newstate->crtc_h) && (oldstate->src_x == newstate->src_x) && (oldstate->src_y == newstate->src_y) && (oldstate->src_w == newstate->src_w) && (oldstate->src_h == newstate->src_h)) { /* No change since last update, do not post cmd */ DRM_DEBUG_DRIVER("No change, not posting cmd\n"); plane->status = STI_PLANE_UPDATED; return; } if (!gdp->vtg) { struct sti_compositor *compo = dev_get_drvdata(gdp->dev); struct sti_mixer *mixer = to_sti_mixer(crtc); /* Register gdp callback */ gdp->vtg = compo->vtg[mixer->id]; sti_vtg_register_client(gdp->vtg, &gdp->vtg_field_nb, crtc); clk_prepare_enable(gdp->clk_pix); } mode = &crtc->mode; dst_x = newstate->crtc_x; dst_y = newstate->crtc_y; dst_w = clamp_val(newstate->crtc_w, 0, mode->hdisplay - dst_x); dst_h = clamp_val(newstate->crtc_h, 0, mode->vdisplay - dst_y); /* src_x are in 16.16 format */ src_x = newstate->src_x >> 16; src_y = newstate->src_y >> 16; src_w = clamp_val(newstate->src_w >> 16, 0, GAM_GDP_SIZE_MAX_WIDTH); src_h = clamp_val(newstate->src_h >> 16, 0, GAM_GDP_SIZE_MAX_HEIGHT); list = sti_gdp_get_free_nodes(gdp); top_field = list->top_field; btm_field = list->btm_field; dev_dbg(gdp->dev, "%s %s top_node:0x%p btm_node:0x%p\n", __func__, sti_plane_to_str(plane), top_field, btm_field); /* build the top field */ top_field->gam_gdp_agc = GAM_GDP_AGC_FULL_RANGE; top_field->gam_gdp_ctl = WAIT_NEXT_VSYNC; format = sti_gdp_fourcc2format(fb->format->format); top_field->gam_gdp_ctl |= format; top_field->gam_gdp_ctl |= sti_gdp_get_alpharange(format); top_field->gam_gdp_ppt &= ~GAM_GDP_PPT_IGNORE; dma_obj = drm_fb_dma_get_gem_obj(fb, 0); DRM_DEBUG_DRIVER("drm FB:%d format:%.4s phys@:0x%lx\n", fb->base.id, (char *)&fb->format->format, (unsigned long) dma_obj->dma_addr); /* pixel memory location */ bpp = fb->format->cpp[0]; top_field->gam_gdp_pml = (u32) dma_obj->dma_addr + fb->offsets[0]; top_field->gam_gdp_pml += src_x * bpp; top_field->gam_gdp_pml += src_y * fb->pitches[0]; /* output parameters (clamped / cropped) */ dst_w = sti_gdp_get_dst(gdp->dev, dst_w, src_w); dst_h = sti_gdp_get_dst(gdp->dev, dst_h, src_h); ydo = sti_vtg_get_line_number(*mode, dst_y); yds = sti_vtg_get_line_number(*mode, dst_y + dst_h - 1); xdo = sti_vtg_get_pixel_number(*mode, dst_x); xds = sti_vtg_get_pixel_number(*mode, dst_x + dst_w - 1); top_field->gam_gdp_vpo = (ydo << 16) | xdo; top_field->gam_gdp_vps = (yds << 16) | xds; /* input parameters */ src_w = dst_w; top_field->gam_gdp_pmp = fb->pitches[0]; top_field->gam_gdp_size = src_h << 16 | src_w; /* Same content and chained together */ memcpy(btm_field, top_field, sizeof(*btm_field)); top_field->gam_gdp_nvn = list->btm_field_paddr; btm_field->gam_gdp_nvn = list->top_field_paddr; /* Interlaced mode */ if (mode->flags & DRM_MODE_FLAG_INTERLACE) btm_field->gam_gdp_pml = top_field->gam_gdp_pml + fb->pitches[0]; /* Update the NVN field of the 'right' field of the current GDP node * (being used by the HW) with the address of the updated ('free') top * field GDP node. * - In interlaced mode the 'right' field is the bottom field as we * update frames starting from their top field * - In progressive mode, we update both bottom and top fields which * are equal nodes. * At the next VSYNC, the updated node list will be used by the HW. */ curr_list = sti_gdp_get_current_nodes(gdp); dma_updated_top = list->top_field_paddr; dma_updated_btm = list->btm_field_paddr; dev_dbg(gdp->dev, "Current NVN:0x%X\n", readl(gdp->regs + GAM_GDP_NVN_OFFSET)); dev_dbg(gdp->dev, "Posted buff: %lx current buff: %x\n", (unsigned long) dma_obj->dma_addr, readl(gdp->regs + GAM_GDP_PML_OFFSET)); if (!curr_list) { /* First update or invalid node should directly write in the * hw register */ DRM_DEBUG_DRIVER("%s first update (or invalid node)\n", sti_plane_to_str(plane)); writel(gdp->is_curr_top ? dma_updated_btm : dma_updated_top, gdp->regs + GAM_GDP_NVN_OFFSET); goto end; } if (mode->flags & DRM_MODE_FLAG_INTERLACE) { if (gdp->is_curr_top) { /* Do not update in the middle of the frame, but * postpone the update after the bottom field has * been displayed */ curr_list->btm_field->gam_gdp_nvn = dma_updated_top; } else { /* Direct update to avoid one frame delay */ writel(dma_updated_top, gdp->regs + GAM_GDP_NVN_OFFSET); } } else { /* Direct update for progressive to avoid one frame delay */ writel(dma_updated_top, gdp->regs + GAM_GDP_NVN_OFFSET); } end: sti_plane_update_fps(plane, true, false); plane->status = STI_PLANE_UPDATED; } static void sti_gdp_atomic_disable(struct drm_plane *drm_plane, struct drm_atomic_state *state) { struct drm_plane_state *oldstate = drm_atomic_get_old_plane_state(state, drm_plane); struct sti_plane *plane = to_sti_plane(drm_plane); if (!oldstate->crtc) { DRM_DEBUG_DRIVER("drm plane:%d not enabled\n", drm_plane->base.id); return; } DRM_DEBUG_DRIVER("CRTC:%d (%s) drm plane:%d (%s)\n", oldstate->crtc->base.id, sti_mixer_to_str(to_sti_mixer(oldstate->crtc)), drm_plane->base.id, sti_plane_to_str(plane)); plane->status = STI_PLANE_DISABLING; } static const struct drm_plane_helper_funcs sti_gdp_helpers_funcs = { .atomic_check = sti_gdp_atomic_check, .atomic_update = sti_gdp_atomic_update, .atomic_disable = sti_gdp_atomic_disable, }; static int sti_gdp_late_register(struct drm_plane *drm_plane) { struct sti_plane *plane = to_sti_plane(drm_plane); struct sti_gdp *gdp = to_sti_gdp(plane); return gdp_debugfs_init(gdp, drm_plane->dev->primary); } static const struct drm_plane_funcs sti_gdp_plane_helpers_funcs = { .update_plane = drm_atomic_helper_update_plane, .disable_plane = drm_atomic_helper_disable_plane, .destroy = drm_plane_cleanup, .reset = drm_atomic_helper_plane_reset, .atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state, .atomic_destroy_state = drm_atomic_helper_plane_destroy_state, .late_register = sti_gdp_late_register, }; struct drm_plane *sti_gdp_create(struct drm_device *drm_dev, struct device *dev, int desc, void __iomem *baseaddr, unsigned int possible_crtcs, enum drm_plane_type type) { struct sti_gdp *gdp; int res; gdp = devm_kzalloc(dev, sizeof(*gdp), GFP_KERNEL); if (!gdp) { DRM_ERROR("Failed to allocate memory for GDP\n"); return NULL; } gdp->dev = dev; gdp->regs = baseaddr; gdp->plane.desc = desc; gdp->plane.status = STI_PLANE_DISABLED; gdp->vtg_field_nb.notifier_call = sti_gdp_field_cb; sti_gdp_init(gdp); res = drm_universal_plane_init(drm_dev, &gdp->plane.drm_plane, possible_crtcs, &sti_gdp_plane_helpers_funcs, gdp_supported_formats, ARRAY_SIZE(gdp_supported_formats), NULL, type, NULL); if (res) { DRM_ERROR("Failed to initialize universal plane\n"); goto err; } drm_plane_helper_add(&gdp->plane.drm_plane, &sti_gdp_helpers_funcs); sti_plane_init_property(&gdp->plane, type); return &gdp->plane.drm_plane; err: devm_kfree(dev, gdp); return NULL; }
linux-master
drivers/gpu/drm/sti/sti_gdp.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics SA 2014 * Authors: Vincent Abriou <[email protected]> * Fabien Dessenne <[email protected]> * for STMicroelectronics. */ #include <linux/dma-mapping.h> #include <linux/seq_file.h> #include <drm/drm_atomic.h> #include <drm/drm_device.h> #include <drm/drm_fb_dma_helper.h> #include <drm/drm_framebuffer.h> #include <drm/drm_gem_dma_helper.h> #include "sti_compositor.h" #include "sti_cursor.h" #include "sti_plane.h" #include "sti_vtg.h" /* Registers */ #define CUR_CTL 0x00 #define CUR_VPO 0x0C #define CUR_PML 0x14 #define CUR_PMP 0x18 #define CUR_SIZE 0x1C #define CUR_CML 0x20 #define CUR_AWS 0x28 #define CUR_AWE 0x2C #define CUR_CTL_CLUT_UPDATE BIT(1) #define STI_CURS_MIN_SIZE 1 #define STI_CURS_MAX_SIZE 128 /* * pixmap dma buffer structure * * @paddr: physical address * @size: buffer size * @base: virtual address */ struct dma_pixmap { dma_addr_t paddr; size_t size; void *base; }; /* * STI Cursor structure * * @sti_plane: sti_plane structure * @dev: driver device * @regs: cursor registers * @width: cursor width * @height: cursor height * @clut: color look up table * @clut_paddr: color look up table physical address * @pixmap: pixmap dma buffer (clut8-format cursor) */ struct sti_cursor { struct sti_plane plane; struct device *dev; void __iomem *regs; unsigned int width; unsigned int height; unsigned short *clut; dma_addr_t clut_paddr; struct dma_pixmap pixmap; }; static const uint32_t cursor_supported_formats[] = { DRM_FORMAT_ARGB8888, }; #define to_sti_cursor(x) container_of(x, struct sti_cursor, plane) #define DBGFS_DUMP(reg) seq_printf(s, "\n %-25s 0x%08X", #reg, \ readl(cursor->regs + reg)) static void cursor_dbg_vpo(struct seq_file *s, u32 val) { seq_printf(s, "\txdo:%4d\tydo:%4d", val & 0x0FFF, (val >> 16) & 0x0FFF); } static void cursor_dbg_size(struct seq_file *s, u32 val) { seq_printf(s, "\t%d x %d", val & 0x07FF, (val >> 16) & 0x07FF); } static void cursor_dbg_pml(struct seq_file *s, struct sti_cursor *cursor, u32 val) { if (cursor->pixmap.paddr == val) seq_printf(s, "\tVirt @: %p", cursor->pixmap.base); } static void cursor_dbg_cml(struct seq_file *s, struct sti_cursor *cursor, u32 val) { if (cursor->clut_paddr == val) seq_printf(s, "\tVirt @: %p", cursor->clut); } static int cursor_dbg_show(struct seq_file *s, void *data) { struct drm_info_node *node = s->private; struct sti_cursor *cursor = (struct sti_cursor *)node->info_ent->data; seq_printf(s, "%s: (vaddr = 0x%p)", sti_plane_to_str(&cursor->plane), cursor->regs); DBGFS_DUMP(CUR_CTL); DBGFS_DUMP(CUR_VPO); cursor_dbg_vpo(s, readl(cursor->regs + CUR_VPO)); DBGFS_DUMP(CUR_PML); cursor_dbg_pml(s, cursor, readl(cursor->regs + CUR_PML)); DBGFS_DUMP(CUR_PMP); DBGFS_DUMP(CUR_SIZE); cursor_dbg_size(s, readl(cursor->regs + CUR_SIZE)); DBGFS_DUMP(CUR_CML); cursor_dbg_cml(s, cursor, readl(cursor->regs + CUR_CML)); DBGFS_DUMP(CUR_AWS); DBGFS_DUMP(CUR_AWE); seq_putc(s, '\n'); return 0; } static struct drm_info_list cursor_debugfs_files[] = { { "cursor", cursor_dbg_show, 0, NULL }, }; static void cursor_debugfs_init(struct sti_cursor *cursor, struct drm_minor *minor) { unsigned int i; for (i = 0; i < ARRAY_SIZE(cursor_debugfs_files); i++) cursor_debugfs_files[i].data = cursor; drm_debugfs_create_files(cursor_debugfs_files, ARRAY_SIZE(cursor_debugfs_files), minor->debugfs_root, minor); } static void sti_cursor_argb8888_to_clut8(struct sti_cursor *cursor, u32 *src) { u8 *dst = cursor->pixmap.base; unsigned int i, j; u32 a, r, g, b; for (i = 0; i < cursor->height; i++) { for (j = 0; j < cursor->width; j++) { /* Pick the 2 higher bits of each component */ a = (*src >> 30) & 3; r = (*src >> 22) & 3; g = (*src >> 14) & 3; b = (*src >> 6) & 3; *dst = a << 6 | r << 4 | g << 2 | b; src++; dst++; } } } static void sti_cursor_init(struct sti_cursor *cursor) { unsigned short *base = cursor->clut; unsigned int a, r, g, b; /* Assign CLUT values, ARGB444 format */ for (a = 0; a < 4; a++) for (r = 0; r < 4; r++) for (g = 0; g < 4; g++) for (b = 0; b < 4; b++) *base++ = (a * 5) << 12 | (r * 5) << 8 | (g * 5) << 4 | (b * 5); } static int sti_cursor_atomic_check(struct drm_plane *drm_plane, struct drm_atomic_state *state) { struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, drm_plane); struct sti_plane *plane = to_sti_plane(drm_plane); struct sti_cursor *cursor = to_sti_cursor(plane); struct drm_crtc *crtc = new_plane_state->crtc; struct drm_framebuffer *fb = new_plane_state->fb; struct drm_crtc_state *crtc_state; struct drm_display_mode *mode; int dst_x, dst_y, dst_w, dst_h; int src_w, src_h; /* no need for further checks if the plane is being disabled */ if (!crtc || !fb) return 0; crtc_state = drm_atomic_get_crtc_state(state, crtc); mode = &crtc_state->mode; dst_x = new_plane_state->crtc_x; dst_y = new_plane_state->crtc_y; dst_w = clamp_val(new_plane_state->crtc_w, 0, mode->crtc_hdisplay - dst_x); dst_h = clamp_val(new_plane_state->crtc_h, 0, mode->crtc_vdisplay - dst_y); /* src_x are in 16.16 format */ src_w = new_plane_state->src_w >> 16; src_h = new_plane_state->src_h >> 16; if (src_w < STI_CURS_MIN_SIZE || src_h < STI_CURS_MIN_SIZE || src_w > STI_CURS_MAX_SIZE || src_h > STI_CURS_MAX_SIZE) { DRM_ERROR("Invalid cursor size (%dx%d)\n", src_w, src_h); return -EINVAL; } /* If the cursor size has changed, re-allocated the pixmap */ if (!cursor->pixmap.base || (cursor->width != src_w) || (cursor->height != src_h)) { cursor->width = src_w; cursor->height = src_h; if (cursor->pixmap.base) dma_free_wc(cursor->dev, cursor->pixmap.size, cursor->pixmap.base, cursor->pixmap.paddr); cursor->pixmap.size = cursor->width * cursor->height; cursor->pixmap.base = dma_alloc_wc(cursor->dev, cursor->pixmap.size, &cursor->pixmap.paddr, GFP_KERNEL | GFP_DMA); if (!cursor->pixmap.base) { DRM_ERROR("Failed to allocate memory for pixmap\n"); return -EINVAL; } } if (!drm_fb_dma_get_gem_obj(fb, 0)) { DRM_ERROR("Can't get DMA GEM object for fb\n"); return -EINVAL; } DRM_DEBUG_KMS("CRTC:%d (%s) drm plane:%d (%s)\n", crtc->base.id, sti_mixer_to_str(to_sti_mixer(crtc)), drm_plane->base.id, sti_plane_to_str(plane)); DRM_DEBUG_KMS("(%dx%d)@(%d,%d)\n", dst_w, dst_h, dst_x, dst_y); return 0; } static void sti_cursor_atomic_update(struct drm_plane *drm_plane, struct drm_atomic_state *state) { struct drm_plane_state *newstate = drm_atomic_get_new_plane_state(state, drm_plane); struct sti_plane *plane = to_sti_plane(drm_plane); struct sti_cursor *cursor = to_sti_cursor(plane); struct drm_crtc *crtc = newstate->crtc; struct drm_framebuffer *fb = newstate->fb; struct drm_display_mode *mode; int dst_x, dst_y; struct drm_gem_dma_object *dma_obj; u32 y, x; u32 val; if (!crtc || !fb) return; mode = &crtc->mode; dst_x = newstate->crtc_x; dst_y = newstate->crtc_y; dma_obj = drm_fb_dma_get_gem_obj(fb, 0); /* Convert ARGB8888 to CLUT8 */ sti_cursor_argb8888_to_clut8(cursor, (u32 *)dma_obj->vaddr); /* AWS and AWE depend on the mode */ y = sti_vtg_get_line_number(*mode, 0); x = sti_vtg_get_pixel_number(*mode, 0); val = y << 16 | x; writel(val, cursor->regs + CUR_AWS); y = sti_vtg_get_line_number(*mode, mode->vdisplay - 1); x = sti_vtg_get_pixel_number(*mode, mode->hdisplay - 1); val = y << 16 | x; writel(val, cursor->regs + CUR_AWE); /* Set memory location, size, and position */ writel(cursor->pixmap.paddr, cursor->regs + CUR_PML); writel(cursor->width, cursor->regs + CUR_PMP); writel(cursor->height << 16 | cursor->width, cursor->regs + CUR_SIZE); y = sti_vtg_get_line_number(*mode, dst_y); x = sti_vtg_get_pixel_number(*mode, dst_x); writel((y << 16) | x, cursor->regs + CUR_VPO); /* Set and fetch CLUT */ writel(cursor->clut_paddr, cursor->regs + CUR_CML); writel(CUR_CTL_CLUT_UPDATE, cursor->regs + CUR_CTL); sti_plane_update_fps(plane, true, false); plane->status = STI_PLANE_UPDATED; } static void sti_cursor_atomic_disable(struct drm_plane *drm_plane, struct drm_atomic_state *state) { struct drm_plane_state *oldstate = drm_atomic_get_old_plane_state(state, drm_plane); struct sti_plane *plane = to_sti_plane(drm_plane); if (!oldstate->crtc) { DRM_DEBUG_DRIVER("drm plane:%d not enabled\n", drm_plane->base.id); return; } DRM_DEBUG_DRIVER("CRTC:%d (%s) drm plane:%d (%s)\n", oldstate->crtc->base.id, sti_mixer_to_str(to_sti_mixer(oldstate->crtc)), drm_plane->base.id, sti_plane_to_str(plane)); plane->status = STI_PLANE_DISABLING; } static const struct drm_plane_helper_funcs sti_cursor_helpers_funcs = { .atomic_check = sti_cursor_atomic_check, .atomic_update = sti_cursor_atomic_update, .atomic_disable = sti_cursor_atomic_disable, }; static int sti_cursor_late_register(struct drm_plane *drm_plane) { struct sti_plane *plane = to_sti_plane(drm_plane); struct sti_cursor *cursor = to_sti_cursor(plane); cursor_debugfs_init(cursor, drm_plane->dev->primary); return 0; } static const struct drm_plane_funcs sti_cursor_plane_helpers_funcs = { .update_plane = drm_atomic_helper_update_plane, .disable_plane = drm_atomic_helper_disable_plane, .destroy = drm_plane_cleanup, .reset = drm_atomic_helper_plane_reset, .atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state, .atomic_destroy_state = drm_atomic_helper_plane_destroy_state, .late_register = sti_cursor_late_register, }; struct drm_plane *sti_cursor_create(struct drm_device *drm_dev, struct device *dev, int desc, void __iomem *baseaddr, unsigned int possible_crtcs) { struct sti_cursor *cursor; size_t size; int res; cursor = devm_kzalloc(dev, sizeof(*cursor), GFP_KERNEL); if (!cursor) { DRM_ERROR("Failed to allocate memory for cursor\n"); return NULL; } /* Allocate clut buffer */ size = 0x100 * sizeof(unsigned short); cursor->clut = dma_alloc_wc(dev, size, &cursor->clut_paddr, GFP_KERNEL | GFP_DMA); if (!cursor->clut) { DRM_ERROR("Failed to allocate memory for cursor clut\n"); goto err_clut; } cursor->dev = dev; cursor->regs = baseaddr; cursor->plane.desc = desc; cursor->plane.status = STI_PLANE_DISABLED; sti_cursor_init(cursor); res = drm_universal_plane_init(drm_dev, &cursor->plane.drm_plane, possible_crtcs, &sti_cursor_plane_helpers_funcs, cursor_supported_formats, ARRAY_SIZE(cursor_supported_formats), NULL, DRM_PLANE_TYPE_CURSOR, NULL); if (res) { DRM_ERROR("Failed to initialize universal plane\n"); goto err_plane; } drm_plane_helper_add(&cursor->plane.drm_plane, &sti_cursor_helpers_funcs); sti_plane_init_property(&cursor->plane, DRM_PLANE_TYPE_CURSOR); return &cursor->plane.drm_plane; err_plane: dma_free_wc(dev, size, cursor->clut, cursor->clut_paddr); err_clut: devm_kfree(dev, cursor); return NULL; }
linux-master
drivers/gpu/drm/sti/sti_cursor.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics SA 2014 * Author: Vincent Abriou <[email protected]> for STMicroelectronics. */ #include <drm/drm_print.h> #include "sti_hdmi_tx3g4c28phy.h" #define HDMI_SRZ_CFG 0x504 #define HDMI_SRZ_PLL_CFG 0x510 #define HDMI_SRZ_ICNTL 0x518 #define HDMI_SRZ_CALCODE_EXT 0x520 #define HDMI_SRZ_CFG_EN BIT(0) #define HDMI_SRZ_CFG_DISABLE_BYPASS_SINK_CURRENT BIT(1) #define HDMI_SRZ_CFG_EXTERNAL_DATA BIT(16) #define HDMI_SRZ_CFG_RBIAS_EXT BIT(17) #define HDMI_SRZ_CFG_EN_SINK_TERM_DETECTION BIT(18) #define HDMI_SRZ_CFG_EN_BIASRES_DETECTION BIT(19) #define HDMI_SRZ_CFG_EN_SRC_TERMINATION BIT(24) #define HDMI_SRZ_CFG_INTERNAL_MASK (HDMI_SRZ_CFG_EN | \ HDMI_SRZ_CFG_DISABLE_BYPASS_SINK_CURRENT | \ HDMI_SRZ_CFG_EXTERNAL_DATA | \ HDMI_SRZ_CFG_RBIAS_EXT | \ HDMI_SRZ_CFG_EN_SINK_TERM_DETECTION | \ HDMI_SRZ_CFG_EN_BIASRES_DETECTION | \ HDMI_SRZ_CFG_EN_SRC_TERMINATION) #define PLL_CFG_EN BIT(0) #define PLL_CFG_NDIV_SHIFT (8) #define PLL_CFG_IDF_SHIFT (16) #define PLL_CFG_ODF_SHIFT (24) #define ODF_DIV_1 (0) #define ODF_DIV_2 (1) #define ODF_DIV_4 (2) #define ODF_DIV_8 (3) #define HDMI_TIMEOUT_PLL_LOCK 50 /*milliseconds */ struct plldividers_s { uint32_t min; uint32_t max; uint32_t idf; uint32_t odf; }; /* * Functional specification recommended values */ #define NB_PLL_MODE 5 static struct plldividers_s plldividers[NB_PLL_MODE] = { {0, 20000000, 1, ODF_DIV_8}, {20000000, 42500000, 2, ODF_DIV_8}, {42500000, 85000000, 4, ODF_DIV_4}, {85000000, 170000000, 8, ODF_DIV_2}, {170000000, 340000000, 16, ODF_DIV_1} }; #define NB_HDMI_PHY_CONFIG 2 static struct hdmi_phy_config hdmiphy_config[NB_HDMI_PHY_CONFIG] = { {0, 250000000, {0x0, 0x0, 0x0, 0x0} }, {250000000, 300000000, {0x1110, 0x0, 0x0, 0x0} }, }; /** * sti_hdmi_tx3g4c28phy_start - Start hdmi phy macro cell tx3g4c28 * * @hdmi: pointer on the hdmi internal structure * * Return false if an error occur */ static bool sti_hdmi_tx3g4c28phy_start(struct sti_hdmi *hdmi) { u32 ckpxpll = hdmi->mode.clock * 1000; u32 val, tmdsck, idf, odf, pllctrl = 0; bool foundplldivides = false; int i; DRM_DEBUG_DRIVER("ckpxpll = %dHz\n", ckpxpll); for (i = 0; i < NB_PLL_MODE; i++) { if (ckpxpll >= plldividers[i].min && ckpxpll < plldividers[i].max) { idf = plldividers[i].idf; odf = plldividers[i].odf; foundplldivides = true; break; } } if (!foundplldivides) { DRM_ERROR("input TMDS clock speed (%d) not supported\n", ckpxpll); goto err; } /* Assuming no pixel repetition and 24bits color */ tmdsck = ckpxpll; pllctrl |= 40 << PLL_CFG_NDIV_SHIFT; if (tmdsck > 340000000) { DRM_ERROR("output TMDS clock (%d) out of range\n", tmdsck); goto err; } pllctrl |= idf << PLL_CFG_IDF_SHIFT; pllctrl |= odf << PLL_CFG_ODF_SHIFT; /* * Configure and power up the PHY PLL */ hdmi->event_received = false; DRM_DEBUG_DRIVER("pllctrl = 0x%x\n", pllctrl); hdmi_write(hdmi, (pllctrl | PLL_CFG_EN), HDMI_SRZ_PLL_CFG); /* wait PLL interrupt */ wait_event_interruptible_timeout(hdmi->wait_event, hdmi->event_received == true, msecs_to_jiffies (HDMI_TIMEOUT_PLL_LOCK)); if ((hdmi_read(hdmi, HDMI_STA) & HDMI_STA_DLL_LCK) == 0) { DRM_ERROR("hdmi phy pll not locked\n"); goto err; } DRM_DEBUG_DRIVER("got PHY PLL Lock\n"); val = (HDMI_SRZ_CFG_EN | HDMI_SRZ_CFG_EXTERNAL_DATA | HDMI_SRZ_CFG_EN_BIASRES_DETECTION | HDMI_SRZ_CFG_EN_SINK_TERM_DETECTION); if (tmdsck > 165000000) val |= HDMI_SRZ_CFG_EN_SRC_TERMINATION; /* * To configure the source termination and pre-emphasis appropriately * for different high speed TMDS clock frequencies a phy configuration * table must be provided, tailored to the SoC and board combination. */ for (i = 0; i < NB_HDMI_PHY_CONFIG; i++) { if ((hdmiphy_config[i].min_tmds_freq <= tmdsck) && (hdmiphy_config[i].max_tmds_freq >= tmdsck)) { val |= (hdmiphy_config[i].config[0] & ~HDMI_SRZ_CFG_INTERNAL_MASK); hdmi_write(hdmi, val, HDMI_SRZ_CFG); val = hdmiphy_config[i].config[1]; hdmi_write(hdmi, val, HDMI_SRZ_ICNTL); val = hdmiphy_config[i].config[2]; hdmi_write(hdmi, val, HDMI_SRZ_CALCODE_EXT); DRM_DEBUG_DRIVER("serializer cfg 0x%x 0x%x 0x%x\n", hdmiphy_config[i].config[0], hdmiphy_config[i].config[1], hdmiphy_config[i].config[2]); return true; } } /* * Default, power up the serializer with no pre-emphasis or * output swing correction */ hdmi_write(hdmi, val, HDMI_SRZ_CFG); hdmi_write(hdmi, 0x0, HDMI_SRZ_ICNTL); hdmi_write(hdmi, 0x0, HDMI_SRZ_CALCODE_EXT); return true; err: return false; } /** * sti_hdmi_tx3g4c28phy_stop - Stop hdmi phy macro cell tx3g4c28 * * @hdmi: pointer on the hdmi internal structure */ static void sti_hdmi_tx3g4c28phy_stop(struct sti_hdmi *hdmi) { int val = 0; DRM_DEBUG_DRIVER("\n"); hdmi->event_received = false; val = HDMI_SRZ_CFG_EN_SINK_TERM_DETECTION; val |= HDMI_SRZ_CFG_EN_BIASRES_DETECTION; hdmi_write(hdmi, val, HDMI_SRZ_CFG); hdmi_write(hdmi, 0, HDMI_SRZ_PLL_CFG); /* wait PLL interrupt */ wait_event_interruptible_timeout(hdmi->wait_event, hdmi->event_received == true, msecs_to_jiffies (HDMI_TIMEOUT_PLL_LOCK)); if (hdmi_read(hdmi, HDMI_STA) & HDMI_STA_DLL_LCK) DRM_ERROR("hdmi phy pll not well disabled\n"); } struct hdmi_phy_ops tx3g4c28phy_ops = { .start = sti_hdmi_tx3g4c28phy_start, .stop = sti_hdmi_tx3g4c28phy_stop, };
linux-master
drivers/gpu/drm/sti/sti_hdmi_tx3g4c28phy.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics SA 2014 * Author: Benjamin Gaignard <[email protected]> for STMicroelectronics. */ #include <linux/component.h> #include <linux/dma-mapping.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_debugfs.h> #include <drm/drm_drv.h> #include <drm/drm_fbdev_dma.h> #include <drm/drm_gem_dma_helper.h> #include <drm/drm_gem_framebuffer_helper.h> #include <drm/drm_of.h> #include <drm/drm_probe_helper.h> #include "sti_drv.h" #include "sti_plane.h" #define DRIVER_NAME "sti" #define DRIVER_DESC "STMicroelectronics SoC DRM" #define DRIVER_DATE "20140601" #define DRIVER_MAJOR 1 #define DRIVER_MINOR 0 #define STI_MAX_FB_HEIGHT 4096 #define STI_MAX_FB_WIDTH 4096 static int sti_drm_fps_get(void *data, u64 *val) { struct drm_device *drm_dev = data; struct drm_plane *p; unsigned int i = 0; *val = 0; list_for_each_entry(p, &drm_dev->mode_config.plane_list, head) { struct sti_plane *plane = to_sti_plane(p); *val |= plane->fps_info.output << i; i++; } return 0; } static int sti_drm_fps_set(void *data, u64 val) { struct drm_device *drm_dev = data; struct drm_plane *p; unsigned int i = 0; list_for_each_entry(p, &drm_dev->mode_config.plane_list, head) { struct sti_plane *plane = to_sti_plane(p); memset(&plane->fps_info, 0, sizeof(plane->fps_info)); plane->fps_info.output = (val >> i) & 1; i++; } return 0; } DEFINE_SIMPLE_ATTRIBUTE(sti_drm_fps_fops, sti_drm_fps_get, sti_drm_fps_set, "%llu\n"); static int sti_drm_fps_dbg_show(struct seq_file *s, void *data) { struct drm_info_node *node = s->private; struct drm_device *dev = node->minor->dev; struct drm_plane *p; list_for_each_entry(p, &dev->mode_config.plane_list, head) { struct sti_plane *plane = to_sti_plane(p); seq_printf(s, "%s%s\n", plane->fps_info.fps_str, plane->fps_info.fips_str); } return 0; } static struct drm_info_list sti_drm_dbg_list[] = { {"fps_get", sti_drm_fps_dbg_show, 0}, }; static void sti_drm_dbg_init(struct drm_minor *minor) { drm_debugfs_create_files(sti_drm_dbg_list, ARRAY_SIZE(sti_drm_dbg_list), minor->debugfs_root, minor); debugfs_create_file("fps_show", S_IRUGO | S_IWUSR, minor->debugfs_root, minor->dev, &sti_drm_fps_fops); DRM_INFO("%s: debugfs installed\n", DRIVER_NAME); } static const struct drm_mode_config_funcs sti_mode_config_funcs = { .fb_create = drm_gem_fb_create, .atomic_check = drm_atomic_helper_check, .atomic_commit = drm_atomic_helper_commit, }; static void sti_mode_config_init(struct drm_device *dev) { dev->mode_config.min_width = 0; dev->mode_config.min_height = 0; /* * set max width and height as default value. * this value would be used to check framebuffer size limitation * at drm_mode_addfb(). */ dev->mode_config.max_width = STI_MAX_FB_WIDTH; dev->mode_config.max_height = STI_MAX_FB_HEIGHT; dev->mode_config.funcs = &sti_mode_config_funcs; dev->mode_config.normalize_zpos = true; } DEFINE_DRM_GEM_DMA_FOPS(sti_driver_fops); static const struct drm_driver sti_driver = { .driver_features = DRIVER_MODESET | DRIVER_GEM | DRIVER_ATOMIC, .fops = &sti_driver_fops, DRM_GEM_DMA_DRIVER_OPS, .debugfs_init = sti_drm_dbg_init, .name = DRIVER_NAME, .desc = DRIVER_DESC, .date = DRIVER_DATE, .major = DRIVER_MAJOR, .minor = DRIVER_MINOR, }; static int sti_init(struct drm_device *ddev) { struct sti_private *private; private = kzalloc(sizeof(*private), GFP_KERNEL); if (!private) return -ENOMEM; ddev->dev_private = (void *)private; dev_set_drvdata(ddev->dev, ddev); private->drm_dev = ddev; drm_mode_config_init(ddev); sti_mode_config_init(ddev); drm_kms_helper_poll_init(ddev); return 0; } static void sti_cleanup(struct drm_device *ddev) { struct sti_private *private = ddev->dev_private; drm_kms_helper_poll_fini(ddev); drm_atomic_helper_shutdown(ddev); drm_mode_config_cleanup(ddev); component_unbind_all(ddev->dev, ddev); kfree(private); ddev->dev_private = NULL; } static int sti_bind(struct device *dev) { struct drm_device *ddev; int ret; ddev = drm_dev_alloc(&sti_driver, dev); if (IS_ERR(ddev)) return PTR_ERR(ddev); ret = sti_init(ddev); if (ret) goto err_drm_dev_put; ret = component_bind_all(ddev->dev, ddev); if (ret) goto err_cleanup; ret = drm_dev_register(ddev, 0); if (ret) goto err_cleanup; drm_mode_config_reset(ddev); drm_fbdev_dma_setup(ddev, 32); return 0; err_cleanup: sti_cleanup(ddev); err_drm_dev_put: drm_dev_put(ddev); return ret; } static void sti_unbind(struct device *dev) { struct drm_device *ddev = dev_get_drvdata(dev); drm_dev_unregister(ddev); sti_cleanup(ddev); drm_dev_put(ddev); } static const struct component_master_ops sti_ops = { .bind = sti_bind, .unbind = sti_unbind, }; static int sti_platform_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *node = dev->of_node; struct device_node *child_np; struct component_match *match = NULL; dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); devm_of_platform_populate(dev); child_np = of_get_next_available_child(node, NULL); while (child_np) { drm_of_component_match_add(dev, &match, component_compare_of, child_np); child_np = of_get_next_available_child(node, child_np); } return component_master_add_with_match(dev, &sti_ops, match); } static void sti_platform_remove(struct platform_device *pdev) { component_master_del(&pdev->dev, &sti_ops); } static const struct of_device_id sti_dt_ids[] = { { .compatible = "st,sti-display-subsystem", }, { /* end node */ }, }; MODULE_DEVICE_TABLE(of, sti_dt_ids); static struct platform_driver sti_platform_driver = { .probe = sti_platform_probe, .remove_new = sti_platform_remove, .driver = { .name = DRIVER_NAME, .of_match_table = sti_dt_ids, }, }; static struct platform_driver * const drivers[] = { &sti_tvout_driver, &sti_hqvdp_driver, &sti_hdmi_driver, &sti_hda_driver, &sti_dvo_driver, &sti_vtg_driver, &sti_compositor_driver, &sti_platform_driver, }; static int sti_drm_init(void) { if (drm_firmware_drivers_only()) return -ENODEV; return platform_register_drivers(drivers, ARRAY_SIZE(drivers)); } module_init(sti_drm_init); static void sti_drm_exit(void) { platform_unregister_drivers(drivers, ARRAY_SIZE(drivers)); } module_exit(sti_drm_exit); MODULE_AUTHOR("Benjamin Gaignard <[email protected]>"); MODULE_DESCRIPTION("STMicroelectronics SoC DRM driver"); MODULE_LICENSE("GPL");
linux-master
drivers/gpu/drm/sti/sti_drv.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics SA 2014 * Author: Vincent Abriou <[email protected]> for STMicroelectronics. */ #include <drm/drm_print.h> #include "sti_awg_utils.h" #define AWG_DELAY (-5) #define AWG_OPCODE_OFFSET 10 #define AWG_MAX_ARG 0x3ff enum opcode { SET, RPTSET, RPLSET, SKIP, STOP, REPEAT, REPLAY, JUMP, HOLD, }; static int awg_generate_instr(enum opcode opcode, long int arg, long int mux_sel, long int data_en, struct awg_code_generation_params *fwparams) { u32 instruction = 0; u32 mux = (mux_sel << 8) & 0x1ff; u32 data_enable = (data_en << 9) & 0x2ff; long int arg_tmp = arg; /* skip, repeat and replay arg should not exceed 1023. * If user wants to exceed this value, the instruction should be * duplicate and arg should be adjust for each duplicated instruction. * * mux_sel is used in case of SAV/EAV synchronization. */ while (arg_tmp > 0) { arg = arg_tmp; if (fwparams->instruction_offset >= AWG_MAX_INST) { DRM_ERROR("too many number of instructions\n"); return -EINVAL; } switch (opcode) { case SKIP: /* leave 'arg' + 1 pixel elapsing without changing * output bus */ arg--; /* pixel adjustment */ arg_tmp--; if (arg < 0) { /* SKIP instruction not needed */ return 0; } if (arg == 0) { /* SKIP 0 not permitted but we want to skip 1 * pixel. So we transform SKIP into SET * instruction */ opcode = SET; break; } mux = 0; data_enable = 0; arg &= AWG_MAX_ARG; break; case REPEAT: case REPLAY: if (arg == 0) { /* REPEAT or REPLAY instruction not needed */ return 0; } mux = 0; data_enable = 0; arg &= AWG_MAX_ARG; break; case JUMP: mux = 0; data_enable = 0; arg |= 0x40; /* for jump instruction 7th bit is 1 */ arg &= AWG_MAX_ARG; break; case STOP: arg = 0; break; case SET: case RPTSET: case RPLSET: case HOLD: arg &= (0x0ff); break; default: DRM_ERROR("instruction %d does not exist\n", opcode); return -EINVAL; } arg_tmp = arg_tmp - arg; arg = ((arg + mux) + data_enable); instruction = ((opcode) << AWG_OPCODE_OFFSET) | arg; fwparams->ram_code[fwparams->instruction_offset] = instruction & (0x3fff); fwparams->instruction_offset++; } return 0; } static int awg_generate_line_signal( struct awg_code_generation_params *fwparams, struct awg_timing *timing) { long int val; int ret = 0; if (timing->trailing_pixels > 0) { /* skip trailing pixel */ val = timing->blanking_level; ret |= awg_generate_instr(RPLSET, val, 0, 0, fwparams); val = timing->trailing_pixels - 1 + AWG_DELAY; ret |= awg_generate_instr(SKIP, val, 0, 0, fwparams); } /* set DE signal high */ val = timing->blanking_level; ret |= awg_generate_instr((timing->trailing_pixels > 0) ? SET : RPLSET, val, 0, 1, fwparams); if (timing->blanking_pixels > 0) { /* skip the number of active pixel */ val = timing->active_pixels - 1; ret |= awg_generate_instr(SKIP, val, 0, 1, fwparams); /* set DE signal low */ val = timing->blanking_level; ret |= awg_generate_instr(SET, val, 0, 0, fwparams); } return ret; } int sti_awg_generate_code_data_enable_mode( struct awg_code_generation_params *fwparams, struct awg_timing *timing) { long int val, tmp_val; int ret = 0; if (timing->trailing_lines > 0) { /* skip trailing lines */ val = timing->blanking_level; ret |= awg_generate_instr(RPLSET, val, 0, 0, fwparams); val = timing->trailing_lines - 1; ret |= awg_generate_instr(REPLAY, val, 0, 0, fwparams); } tmp_val = timing->active_lines - 1; while (tmp_val > 0) { /* generate DE signal for each line */ ret |= awg_generate_line_signal(fwparams, timing); /* replay the sequence as many active lines defined */ ret |= awg_generate_instr(REPLAY, min_t(int, AWG_MAX_ARG, tmp_val), 0, 0, fwparams); tmp_val -= AWG_MAX_ARG; } if (timing->blanking_lines > 0) { /* skip blanking lines */ val = timing->blanking_level; ret |= awg_generate_instr(RPLSET, val, 0, 0, fwparams); val = timing->blanking_lines - 1; ret |= awg_generate_instr(REPLAY, val, 0, 0, fwparams); } return ret; }
linux-master
drivers/gpu/drm/sti/sti_awg_utils.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics SA 2014 * Author: Fabien Dessenne <[email protected]> for STMicroelectronics. */ #include <linux/clk.h> #include <linux/component.h> #include <linux/io.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/seq_file.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_bridge.h> #include <drm/drm_debugfs.h> #include <drm/drm_device.h> #include <drm/drm_file.h> #include <drm/drm_print.h> #include <drm/drm_probe_helper.h> /* HDformatter registers */ #define HDA_ANA_CFG 0x0000 #define HDA_ANA_SCALE_CTRL_Y 0x0004 #define HDA_ANA_SCALE_CTRL_CB 0x0008 #define HDA_ANA_SCALE_CTRL_CR 0x000C #define HDA_ANA_ANC_CTRL 0x0010 #define HDA_ANA_SRC_Y_CFG 0x0014 #define HDA_COEFF_Y_PH1_TAP123 0x0018 #define HDA_COEFF_Y_PH1_TAP456 0x001C #define HDA_COEFF_Y_PH2_TAP123 0x0020 #define HDA_COEFF_Y_PH2_TAP456 0x0024 #define HDA_COEFF_Y_PH3_TAP123 0x0028 #define HDA_COEFF_Y_PH3_TAP456 0x002C #define HDA_COEFF_Y_PH4_TAP123 0x0030 #define HDA_COEFF_Y_PH4_TAP456 0x0034 #define HDA_ANA_SRC_C_CFG 0x0040 #define HDA_COEFF_C_PH1_TAP123 0x0044 #define HDA_COEFF_C_PH1_TAP456 0x0048 #define HDA_COEFF_C_PH2_TAP123 0x004C #define HDA_COEFF_C_PH2_TAP456 0x0050 #define HDA_COEFF_C_PH3_TAP123 0x0054 #define HDA_COEFF_C_PH3_TAP456 0x0058 #define HDA_COEFF_C_PH4_TAP123 0x005C #define HDA_COEFF_C_PH4_TAP456 0x0060 #define HDA_SYNC_AWGI 0x0300 /* HDA_ANA_CFG */ #define CFG_AWG_ASYNC_EN BIT(0) #define CFG_AWG_ASYNC_HSYNC_MTD BIT(1) #define CFG_AWG_ASYNC_VSYNC_MTD BIT(2) #define CFG_AWG_SYNC_DEL BIT(3) #define CFG_AWG_FLTR_MODE_SHIFT 4 #define CFG_AWG_FLTR_MODE_MASK (0xF << CFG_AWG_FLTR_MODE_SHIFT) #define CFG_AWG_FLTR_MODE_SD (0 << CFG_AWG_FLTR_MODE_SHIFT) #define CFG_AWG_FLTR_MODE_ED (1 << CFG_AWG_FLTR_MODE_SHIFT) #define CFG_AWG_FLTR_MODE_HD (2 << CFG_AWG_FLTR_MODE_SHIFT) #define CFG_SYNC_ON_PBPR_MASK BIT(8) #define CFG_PREFILTER_EN_MASK BIT(9) #define CFG_PBPR_SYNC_OFF_SHIFT 16 #define CFG_PBPR_SYNC_OFF_MASK (0x7FF << CFG_PBPR_SYNC_OFF_SHIFT) #define CFG_PBPR_SYNC_OFF_VAL 0x117 /* Voltage dependent. stiH416 */ /* Default scaling values */ #define SCALE_CTRL_Y_DFLT 0x00C50256 #define SCALE_CTRL_CB_DFLT 0x00DB0249 #define SCALE_CTRL_CR_DFLT 0x00DB0249 /* Video DACs control */ #define DAC_CFG_HD_HZUVW_OFF_MASK BIT(1) /* Upsampler values for the alternative 2X Filter */ #define SAMPLER_COEF_NB 8 #define HDA_ANA_SRC_Y_CFG_ALT_2X 0x01130000 static u32 coef_y_alt_2x[] = { 0x00FE83FB, 0x1F900401, 0x00000000, 0x00000000, 0x00F408F9, 0x055F7C25, 0x00000000, 0x00000000 }; #define HDA_ANA_SRC_C_CFG_ALT_2X 0x01750004 static u32 coef_c_alt_2x[] = { 0x001305F7, 0x05274BD0, 0x00000000, 0x00000000, 0x0004907C, 0x09C80B9D, 0x00000000, 0x00000000 }; /* Upsampler values for the 4X Filter */ #define HDA_ANA_SRC_Y_CFG_4X 0x01ED0005 #define HDA_ANA_SRC_C_CFG_4X 0x01ED0004 static u32 coef_yc_4x[] = { 0x00FC827F, 0x008FE20B, 0x00F684FC, 0x050F7C24, 0x00F4857C, 0x0A1F402E, 0x00FA027F, 0x0E076E1D }; /* AWG instructions for some video modes */ #define AWG_MAX_INST 64 /* 720p@50 */ static u32 AWGi_720p_50[] = { 0x00000971, 0x00000C26, 0x0000013B, 0x00000CDA, 0x00000104, 0x00000E7E, 0x00000E7F, 0x0000013B, 0x00000D8E, 0x00000104, 0x00001804, 0x00000971, 0x00000C26, 0x0000003B, 0x00000FB4, 0x00000FB5, 0x00000104, 0x00001AE8 }; #define NN_720p_50 ARRAY_SIZE(AWGi_720p_50) /* 720p@60 */ static u32 AWGi_720p_60[] = { 0x00000971, 0x00000C26, 0x0000013B, 0x00000CDA, 0x00000104, 0x00000E7E, 0x00000E7F, 0x0000013B, 0x00000C44, 0x00000104, 0x00001804, 0x00000971, 0x00000C26, 0x0000003B, 0x00000F0F, 0x00000F10, 0x00000104, 0x00001AE8 }; #define NN_720p_60 ARRAY_SIZE(AWGi_720p_60) /* 1080p@30 */ static u32 AWGi_1080p_30[] = { 0x00000971, 0x00000C2A, 0x0000013B, 0x00000C56, 0x00000104, 0x00000FDC, 0x00000FDD, 0x0000013B, 0x00000C2A, 0x00000104, 0x00001804, 0x00000971, 0x00000C2A, 0x0000003B, 0x00000EBE, 0x00000EBF, 0x00000EBF, 0x00000104, 0x00001A2F, 0x00001C4B, 0x00001C52 }; #define NN_1080p_30 ARRAY_SIZE(AWGi_1080p_30) /* 1080p@25 */ static u32 AWGi_1080p_25[] = { 0x00000971, 0x00000C2A, 0x0000013B, 0x00000C56, 0x00000104, 0x00000FDC, 0x00000FDD, 0x0000013B, 0x00000DE2, 0x00000104, 0x00001804, 0x00000971, 0x00000C2A, 0x0000003B, 0x00000F51, 0x00000F51, 0x00000F52, 0x00000104, 0x00001A2F, 0x00001C4B, 0x00001C52 }; #define NN_1080p_25 ARRAY_SIZE(AWGi_1080p_25) /* 1080p@24 */ static u32 AWGi_1080p_24[] = { 0x00000971, 0x00000C2A, 0x0000013B, 0x00000C56, 0x00000104, 0x00000FDC, 0x00000FDD, 0x0000013B, 0x00000E50, 0x00000104, 0x00001804, 0x00000971, 0x00000C2A, 0x0000003B, 0x00000F76, 0x00000F76, 0x00000F76, 0x00000104, 0x00001A2F, 0x00001C4B, 0x00001C52 }; #define NN_1080p_24 ARRAY_SIZE(AWGi_1080p_24) /* 720x480p@60 */ static u32 AWGi_720x480p_60[] = { 0x00000904, 0x00000F18, 0x0000013B, 0x00001805, 0x00000904, 0x00000C3D, 0x0000003B, 0x00001A06 }; #define NN_720x480p_60 ARRAY_SIZE(AWGi_720x480p_60) /* Video mode category */ enum sti_hda_vid_cat { VID_SD, VID_ED, VID_HD_74M, VID_HD_148M }; struct sti_hda_video_config { struct drm_display_mode mode; u32 *awg_instr; int nb_instr; enum sti_hda_vid_cat vid_cat; }; /* HD analog supported modes * Interlaced modes may be added when supported by the whole display chain */ static const struct sti_hda_video_config hda_supported_modes[] = { /* 1080p30 74.250Mhz */ {{DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008, 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)}, AWGi_1080p_30, NN_1080p_30, VID_HD_74M}, /* 1080p30 74.176Mhz */ {{DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74176, 1920, 2008, 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)}, AWGi_1080p_30, NN_1080p_30, VID_HD_74M}, /* 1080p24 74.250Mhz */ {{DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558, 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)}, AWGi_1080p_24, NN_1080p_24, VID_HD_74M}, /* 1080p24 74.176Mhz */ {{DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74176, 1920, 2558, 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)}, AWGi_1080p_24, NN_1080p_24, VID_HD_74M}, /* 1080p25 74.250Mhz */ {{DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448, 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)}, AWGi_1080p_25, NN_1080p_25, VID_HD_74M}, /* 720p60 74.250Mhz */ {{DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390, 1430, 1650, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)}, AWGi_720p_60, NN_720p_60, VID_HD_74M}, /* 720p60 74.176Mhz */ {{DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74176, 1280, 1390, 1430, 1650, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)}, AWGi_720p_60, NN_720p_60, VID_HD_74M}, /* 720p50 74.250Mhz */ {{DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720, 1760, 1980, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC)}, AWGi_720p_50, NN_720p_50, VID_HD_74M}, /* 720x480p60 27.027Mhz */ {{DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27027, 720, 736, 798, 858, 0, 480, 489, 495, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC)}, AWGi_720x480p_60, NN_720x480p_60, VID_ED}, /* 720x480p60 27.000Mhz */ {{DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736, 798, 858, 0, 480, 489, 495, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC)}, AWGi_720x480p_60, NN_720x480p_60, VID_ED} }; /* * STI hd analog structure * * @dev: driver device * @drm_dev: pointer to drm device * @mode: current display mode selected * @regs: HD analog register * @video_dacs_ctrl: video DACS control register * @enabled: true if HD analog is enabled else false */ struct sti_hda { struct device dev; struct drm_device *drm_dev; struct drm_display_mode mode; void __iomem *regs; void __iomem *video_dacs_ctrl; struct clk *clk_pix; struct clk *clk_hddac; bool enabled; }; struct sti_hda_connector { struct drm_connector drm_connector; struct drm_encoder *encoder; struct sti_hda *hda; }; #define to_sti_hda_connector(x) \ container_of(x, struct sti_hda_connector, drm_connector) static u32 hda_read(struct sti_hda *hda, int offset) { return readl(hda->regs + offset); } static void hda_write(struct sti_hda *hda, u32 val, int offset) { writel(val, hda->regs + offset); } /** * hda_get_mode_idx - Search for a video mode in the supported modes table * * @mode: mode being searched * @idx: index of the found mode * * Return true if mode is found */ static bool hda_get_mode_idx(struct drm_display_mode mode, int *idx) { unsigned int i; for (i = 0; i < ARRAY_SIZE(hda_supported_modes); i++) if (drm_mode_equal(&hda_supported_modes[i].mode, &mode)) { *idx = i; return true; } return false; } /** * hda_enable_hd_dacs - Enable the HD DACS * * @hda: pointer to HD analog structure * @enable: true if HD DACS need to be enabled, else false */ static void hda_enable_hd_dacs(struct sti_hda *hda, bool enable) { if (hda->video_dacs_ctrl) { u32 val; val = readl(hda->video_dacs_ctrl); if (enable) val &= ~DAC_CFG_HD_HZUVW_OFF_MASK; else val |= DAC_CFG_HD_HZUVW_OFF_MASK; writel(val, hda->video_dacs_ctrl); } } #define DBGFS_DUMP(reg) seq_printf(s, "\n %-25s 0x%08X", #reg, \ readl(hda->regs + reg)) static void hda_dbg_cfg(struct seq_file *s, int val) { seq_puts(s, "\tAWG "); seq_puts(s, val & CFG_AWG_ASYNC_EN ? "enabled" : "disabled"); } static void hda_dbg_awg_microcode(struct seq_file *s, void __iomem *reg) { unsigned int i; seq_puts(s, "\n\n HDA AWG microcode:"); for (i = 0; i < AWG_MAX_INST; i++) { if (i % 8 == 0) seq_printf(s, "\n %04X:", i); seq_printf(s, " %04X", readl(reg + i * 4)); } } static void hda_dbg_video_dacs_ctrl(struct seq_file *s, void __iomem *reg) { u32 val = readl(reg); seq_printf(s, "\n\n %-25s 0x%08X", "VIDEO_DACS_CONTROL", val); seq_puts(s, "\tHD DACs "); seq_puts(s, val & DAC_CFG_HD_HZUVW_OFF_MASK ? "disabled" : "enabled"); } static int hda_dbg_show(struct seq_file *s, void *data) { struct drm_info_node *node = s->private; struct sti_hda *hda = (struct sti_hda *)node->info_ent->data; seq_printf(s, "HD Analog: (vaddr = 0x%p)", hda->regs); DBGFS_DUMP(HDA_ANA_CFG); hda_dbg_cfg(s, readl(hda->regs + HDA_ANA_CFG)); DBGFS_DUMP(HDA_ANA_SCALE_CTRL_Y); DBGFS_DUMP(HDA_ANA_SCALE_CTRL_CB); DBGFS_DUMP(HDA_ANA_SCALE_CTRL_CR); DBGFS_DUMP(HDA_ANA_ANC_CTRL); DBGFS_DUMP(HDA_ANA_SRC_Y_CFG); DBGFS_DUMP(HDA_ANA_SRC_C_CFG); hda_dbg_awg_microcode(s, hda->regs + HDA_SYNC_AWGI); if (hda->video_dacs_ctrl) hda_dbg_video_dacs_ctrl(s, hda->video_dacs_ctrl); seq_putc(s, '\n'); return 0; } static struct drm_info_list hda_debugfs_files[] = { { "hda", hda_dbg_show, 0, NULL }, }; static void hda_debugfs_init(struct sti_hda *hda, struct drm_minor *minor) { unsigned int i; for (i = 0; i < ARRAY_SIZE(hda_debugfs_files); i++) hda_debugfs_files[i].data = hda; drm_debugfs_create_files(hda_debugfs_files, ARRAY_SIZE(hda_debugfs_files), minor->debugfs_root, minor); } /** * sti_hda_configure_awg - Configure AWG, writing instructions * * @hda: pointer to HD analog structure * @awg_instr: pointer to AWG instructions table * @nb: nb of AWG instructions */ static void sti_hda_configure_awg(struct sti_hda *hda, u32 *awg_instr, int nb) { unsigned int i; DRM_DEBUG_DRIVER("\n"); for (i = 0; i < nb; i++) hda_write(hda, awg_instr[i], HDA_SYNC_AWGI + i * 4); for (i = nb; i < AWG_MAX_INST; i++) hda_write(hda, 0, HDA_SYNC_AWGI + i * 4); } static void sti_hda_disable(struct drm_bridge *bridge) { struct sti_hda *hda = bridge->driver_private; u32 val; if (!hda->enabled) return; DRM_DEBUG_DRIVER("\n"); /* Disable HD DAC and AWG */ val = hda_read(hda, HDA_ANA_CFG); val &= ~CFG_AWG_ASYNC_EN; hda_write(hda, val, HDA_ANA_CFG); hda_write(hda, 0, HDA_ANA_ANC_CTRL); hda_enable_hd_dacs(hda, false); /* Disable/unprepare hda clock */ clk_disable_unprepare(hda->clk_hddac); clk_disable_unprepare(hda->clk_pix); hda->enabled = false; } static void sti_hda_pre_enable(struct drm_bridge *bridge) { struct sti_hda *hda = bridge->driver_private; u32 val, i, mode_idx; u32 src_filter_y, src_filter_c; u32 *coef_y, *coef_c; u32 filter_mode; DRM_DEBUG_DRIVER("\n"); if (hda->enabled) return; /* Prepare/enable clocks */ if (clk_prepare_enable(hda->clk_pix)) DRM_ERROR("Failed to prepare/enable hda_pix clk\n"); if (clk_prepare_enable(hda->clk_hddac)) DRM_ERROR("Failed to prepare/enable hda_hddac clk\n"); if (!hda_get_mode_idx(hda->mode, &mode_idx)) { DRM_ERROR("Undefined mode\n"); return; } switch (hda_supported_modes[mode_idx].vid_cat) { case VID_HD_148M: DRM_ERROR("Beyond HD analog capabilities\n"); return; case VID_HD_74M: /* HD use alternate 2x filter */ filter_mode = CFG_AWG_FLTR_MODE_HD; src_filter_y = HDA_ANA_SRC_Y_CFG_ALT_2X; src_filter_c = HDA_ANA_SRC_C_CFG_ALT_2X; coef_y = coef_y_alt_2x; coef_c = coef_c_alt_2x; break; case VID_ED: /* ED uses 4x filter */ filter_mode = CFG_AWG_FLTR_MODE_ED; src_filter_y = HDA_ANA_SRC_Y_CFG_4X; src_filter_c = HDA_ANA_SRC_C_CFG_4X; coef_y = coef_yc_4x; coef_c = coef_yc_4x; break; case VID_SD: DRM_ERROR("Not supported\n"); return; default: DRM_ERROR("Undefined resolution\n"); return; } DRM_DEBUG_DRIVER("Using HDA mode #%d\n", mode_idx); /* Enable HD Video DACs */ hda_enable_hd_dacs(hda, true); /* Configure scaler */ hda_write(hda, SCALE_CTRL_Y_DFLT, HDA_ANA_SCALE_CTRL_Y); hda_write(hda, SCALE_CTRL_CB_DFLT, HDA_ANA_SCALE_CTRL_CB); hda_write(hda, SCALE_CTRL_CR_DFLT, HDA_ANA_SCALE_CTRL_CR); /* Configure sampler */ hda_write(hda , src_filter_y, HDA_ANA_SRC_Y_CFG); hda_write(hda, src_filter_c, HDA_ANA_SRC_C_CFG); for (i = 0; i < SAMPLER_COEF_NB; i++) { hda_write(hda, coef_y[i], HDA_COEFF_Y_PH1_TAP123 + i * 4); hda_write(hda, coef_c[i], HDA_COEFF_C_PH1_TAP123 + i * 4); } /* Configure main HDFormatter */ val = 0; val |= (hda->mode.flags & DRM_MODE_FLAG_INTERLACE) ? 0 : CFG_AWG_ASYNC_VSYNC_MTD; val |= (CFG_PBPR_SYNC_OFF_VAL << CFG_PBPR_SYNC_OFF_SHIFT); val |= filter_mode; hda_write(hda, val, HDA_ANA_CFG); /* Configure AWG */ sti_hda_configure_awg(hda, hda_supported_modes[mode_idx].awg_instr, hda_supported_modes[mode_idx].nb_instr); /* Enable AWG */ val = hda_read(hda, HDA_ANA_CFG); val |= CFG_AWG_ASYNC_EN; hda_write(hda, val, HDA_ANA_CFG); hda->enabled = true; } static void sti_hda_set_mode(struct drm_bridge *bridge, const struct drm_display_mode *mode, const struct drm_display_mode *adjusted_mode) { struct sti_hda *hda = bridge->driver_private; u32 mode_idx; int hddac_rate; int ret; DRM_DEBUG_DRIVER("\n"); drm_mode_copy(&hda->mode, mode); if (!hda_get_mode_idx(hda->mode, &mode_idx)) { DRM_ERROR("Undefined mode\n"); return; } switch (hda_supported_modes[mode_idx].vid_cat) { case VID_HD_74M: /* HD use alternate 2x filter */ hddac_rate = mode->clock * 1000 * 2; break; case VID_ED: /* ED uses 4x filter */ hddac_rate = mode->clock * 1000 * 4; break; default: DRM_ERROR("Undefined mode\n"); return; } /* HD DAC = 148.5Mhz or 108 Mhz */ ret = clk_set_rate(hda->clk_hddac, hddac_rate); if (ret < 0) DRM_ERROR("Cannot set rate (%dHz) for hda_hddac clk\n", hddac_rate); /* HDformatter clock = compositor clock */ ret = clk_set_rate(hda->clk_pix, mode->clock * 1000); if (ret < 0) DRM_ERROR("Cannot set rate (%dHz) for hda_pix clk\n", mode->clock * 1000); } static void sti_hda_bridge_nope(struct drm_bridge *bridge) { /* do nothing */ } static const struct drm_bridge_funcs sti_hda_bridge_funcs = { .pre_enable = sti_hda_pre_enable, .enable = sti_hda_bridge_nope, .disable = sti_hda_disable, .post_disable = sti_hda_bridge_nope, .mode_set = sti_hda_set_mode, }; static int sti_hda_connector_get_modes(struct drm_connector *connector) { unsigned int i; int count = 0; struct sti_hda_connector *hda_connector = to_sti_hda_connector(connector); struct sti_hda *hda = hda_connector->hda; DRM_DEBUG_DRIVER("\n"); for (i = 0; i < ARRAY_SIZE(hda_supported_modes); i++) { struct drm_display_mode *mode = drm_mode_duplicate(hda->drm_dev, &hda_supported_modes[i].mode); if (!mode) continue; /* the first mode is the preferred mode */ if (i == 0) mode->type |= DRM_MODE_TYPE_PREFERRED; drm_mode_probed_add(connector, mode); count++; } return count; } #define CLK_TOLERANCE_HZ 50 static enum drm_mode_status sti_hda_connector_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { int target = mode->clock * 1000; int target_min = target - CLK_TOLERANCE_HZ; int target_max = target + CLK_TOLERANCE_HZ; int result; int idx; struct sti_hda_connector *hda_connector = to_sti_hda_connector(connector); struct sti_hda *hda = hda_connector->hda; if (!hda_get_mode_idx(*mode, &idx)) { return MODE_BAD; } else { result = clk_round_rate(hda->clk_pix, target); DRM_DEBUG_DRIVER("target rate = %d => available rate = %d\n", target, result); if ((result < target_min) || (result > target_max)) { DRM_DEBUG_DRIVER("hda pixclk=%d not supported\n", target); return MODE_BAD; } } return MODE_OK; } static const struct drm_connector_helper_funcs sti_hda_connector_helper_funcs = { .get_modes = sti_hda_connector_get_modes, .mode_valid = sti_hda_connector_mode_valid, }; static int sti_hda_late_register(struct drm_connector *connector) { struct sti_hda_connector *hda_connector = to_sti_hda_connector(connector); struct sti_hda *hda = hda_connector->hda; hda_debugfs_init(hda, hda->drm_dev->primary); return 0; } static const struct drm_connector_funcs sti_hda_connector_funcs = { .fill_modes = drm_helper_probe_single_connector_modes, .destroy = drm_connector_cleanup, .reset = drm_atomic_helper_connector_reset, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, .late_register = sti_hda_late_register, }; static struct drm_encoder *sti_hda_find_encoder(struct drm_device *dev) { struct drm_encoder *encoder; list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { if (encoder->encoder_type == DRM_MODE_ENCODER_DAC) return encoder; } return NULL; } static int sti_hda_bind(struct device *dev, struct device *master, void *data) { struct sti_hda *hda = dev_get_drvdata(dev); struct drm_device *drm_dev = data; struct drm_encoder *encoder; struct sti_hda_connector *connector; struct drm_connector *drm_connector; struct drm_bridge *bridge; int err; /* Set the drm device handle */ hda->drm_dev = drm_dev; encoder = sti_hda_find_encoder(drm_dev); if (!encoder) return -ENOMEM; connector = devm_kzalloc(dev, sizeof(*connector), GFP_KERNEL); if (!connector) return -ENOMEM; connector->hda = hda; bridge = devm_kzalloc(dev, sizeof(*bridge), GFP_KERNEL); if (!bridge) return -ENOMEM; bridge->driver_private = hda; bridge->funcs = &sti_hda_bridge_funcs; drm_bridge_attach(encoder, bridge, NULL, 0); connector->encoder = encoder; drm_connector = (struct drm_connector *)connector; drm_connector->polled = DRM_CONNECTOR_POLL_HPD; drm_connector_init(drm_dev, drm_connector, &sti_hda_connector_funcs, DRM_MODE_CONNECTOR_Component); drm_connector_helper_add(drm_connector, &sti_hda_connector_helper_funcs); err = drm_connector_attach_encoder(drm_connector, encoder); if (err) { DRM_ERROR("Failed to attach a connector to a encoder\n"); goto err_sysfs; } /* force to disable hd dacs at startup */ hda_enable_hd_dacs(hda, false); return 0; err_sysfs: return -EINVAL; } static void sti_hda_unbind(struct device *dev, struct device *master, void *data) { } static const struct component_ops sti_hda_ops = { .bind = sti_hda_bind, .unbind = sti_hda_unbind, }; static int sti_hda_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct sti_hda *hda; struct resource *res; DRM_INFO("%s\n", __func__); hda = devm_kzalloc(dev, sizeof(*hda), GFP_KERNEL); if (!hda) return -ENOMEM; hda->dev = pdev->dev; /* Get resources */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hda-reg"); if (!res) { DRM_ERROR("Invalid hda resource\n"); return -ENOMEM; } hda->regs = devm_ioremap(dev, res->start, resource_size(res)); if (!hda->regs) return -ENOMEM; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "video-dacs-ctrl"); if (res) { hda->video_dacs_ctrl = devm_ioremap(dev, res->start, resource_size(res)); if (!hda->video_dacs_ctrl) return -ENOMEM; } else { /* If no existing video-dacs-ctrl resource continue the probe */ DRM_DEBUG_DRIVER("No video-dacs-ctrl resource\n"); hda->video_dacs_ctrl = NULL; } /* Get clock resources */ hda->clk_pix = devm_clk_get(dev, "pix"); if (IS_ERR(hda->clk_pix)) { DRM_ERROR("Cannot get hda_pix clock\n"); return PTR_ERR(hda->clk_pix); } hda->clk_hddac = devm_clk_get(dev, "hddac"); if (IS_ERR(hda->clk_hddac)) { DRM_ERROR("Cannot get hda_hddac clock\n"); return PTR_ERR(hda->clk_hddac); } platform_set_drvdata(pdev, hda); return component_add(&pdev->dev, &sti_hda_ops); } static void sti_hda_remove(struct platform_device *pdev) { component_del(&pdev->dev, &sti_hda_ops); } static const struct of_device_id hda_of_match[] = { { .compatible = "st,stih416-hda", }, { .compatible = "st,stih407-hda", }, { /* end node */ } }; MODULE_DEVICE_TABLE(of, hda_of_match); struct platform_driver sti_hda_driver = { .driver = { .name = "sti-hda", .owner = THIS_MODULE, .of_match_table = hda_of_match, }, .probe = sti_hda_probe, .remove_new = sti_hda_remove, }; MODULE_AUTHOR("Benjamin Gaignard <[email protected]>"); MODULE_DESCRIPTION("STMicroelectronics SoC DRM driver"); MODULE_LICENSE("GPL");
linux-master
drivers/gpu/drm/sti/sti_hda.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics SA 2014 * Authors: Benjamin Gaignard <[email protected]> * Fabien Dessenne <[email protected]> * for STMicroelectronics. */ #include <linux/types.h> #include <drm/drm_blend.h> #include <drm/drm_fourcc.h> #include <drm/drm_framebuffer.h> #include <drm/drm_gem_dma_helper.h> #include "sti_compositor.h" #include "sti_drv.h" #include "sti_plane.h" const char *sti_plane_to_str(struct sti_plane *plane) { switch (plane->desc) { case STI_GDP_0: return "GDP0"; case STI_GDP_1: return "GDP1"; case STI_GDP_2: return "GDP2"; case STI_GDP_3: return "GDP3"; case STI_HQVDP_0: return "HQVDP0"; case STI_CURSOR: return "CURSOR"; default: return "<UNKNOWN PLANE>"; } } #define STI_FPS_INTERVAL_MS 3000 void sti_plane_update_fps(struct sti_plane *plane, bool new_frame, bool new_field) { struct drm_plane_state *state = plane->drm_plane.state; ktime_t now; struct sti_fps_info *fps; int fpks, fipks, ms_since_last, num_frames, num_fields; now = ktime_get(); /* Compute number of frame updates */ fps = &plane->fps_info; if (new_field) fps->curr_field_counter++; /* do not perform fps calcul if new_frame is false */ if (!new_frame) return; fps->curr_frame_counter++; ms_since_last = ktime_to_ms(ktime_sub(now, fps->last_timestamp)); num_frames = fps->curr_frame_counter - fps->last_frame_counter; if (num_frames <= 0 || ms_since_last < STI_FPS_INTERVAL_MS) return; fps->last_timestamp = now; fps->last_frame_counter = fps->curr_frame_counter; if (state->fb) { fpks = (num_frames * 1000000) / ms_since_last; snprintf(plane->fps_info.fps_str, FPS_LENGTH, "%-8s %4dx%-4d %.4s @ %3d.%-3.3d fps (%s)", plane->drm_plane.name, state->fb->width, state->fb->height, (char *)&state->fb->format->format, fpks / 1000, fpks % 1000, sti_plane_to_str(plane)); } if (fps->curr_field_counter) { /* Compute number of field updates */ num_fields = fps->curr_field_counter - fps->last_field_counter; fps->last_field_counter = fps->curr_field_counter; fipks = (num_fields * 1000000) / ms_since_last; snprintf(plane->fps_info.fips_str, FPS_LENGTH, " - %3d.%-3.3d field/sec", fipks / 1000, fipks % 1000); } else { plane->fps_info.fips_str[0] = '\0'; } if (fps->output) DRM_INFO("%s%s\n", plane->fps_info.fps_str, plane->fps_info.fips_str); } static int sti_plane_get_default_zpos(enum drm_plane_type type) { switch (type) { case DRM_PLANE_TYPE_PRIMARY: return 0; case DRM_PLANE_TYPE_OVERLAY: return 1; case DRM_PLANE_TYPE_CURSOR: return 7; } return 0; } static void sti_plane_attach_zorder_property(struct drm_plane *drm_plane, enum drm_plane_type type) { int zpos = sti_plane_get_default_zpos(type); switch (type) { case DRM_PLANE_TYPE_PRIMARY: case DRM_PLANE_TYPE_OVERLAY: drm_plane_create_zpos_property(drm_plane, zpos, 0, 6); break; case DRM_PLANE_TYPE_CURSOR: drm_plane_create_zpos_immutable_property(drm_plane, zpos); break; } } void sti_plane_init_property(struct sti_plane *plane, enum drm_plane_type type) { sti_plane_attach_zorder_property(&plane->drm_plane, type); DRM_DEBUG_DRIVER("drm plane:%d mapped to %s\n", plane->drm_plane.base.id, sti_plane_to_str(plane)); }
linux-master
drivers/gpu/drm/sti/sti_plane.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 Russell King * Rewritten from the dovefb driver, and Armada510 manuals. */ #include <linux/clk.h> #include <linux/component.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_probe_helper.h> #include <drm/drm_vblank.h> #include "armada_crtc.h" #include "armada_drm.h" #include "armada_fb.h" #include "armada_gem.h" #include "armada_hw.h" #include "armada_plane.h" #include "armada_trace.h" /* * A note about interlacing. Let's consider HDMI 1920x1080i. * The timing parameters we have from X are: * Hact HsyA HsyI Htot Vact VsyA VsyI Vtot * 1920 2448 2492 2640 1080 1084 1094 1125 * Which get translated to: * Hact HsyA HsyI Htot Vact VsyA VsyI Vtot * 1920 2448 2492 2640 540 542 547 562 * * This is how it is defined by CEA-861-D - line and pixel numbers are * referenced to the rising edge of VSYNC and HSYNC. Total clocks per * line: 2640. The odd frame, the first active line is at line 21, and * the even frame, the first active line is 584. * * LN: 560 561 562 563 567 568 569 * DE: ~~~|____________________________//__________________________ * HSYNC: ____|~|_____|~|_____|~|_____|~|_//__|~|_____|~|_____|~|_____ * VSYNC: _________________________|~~~~~~//~~~~~~~~~~~~~~~|__________ * 22 blanking lines. VSYNC at 1320 (referenced to the HSYNC rising edge). * * LN: 1123 1124 1125 1 5 6 7 * DE: ~~~|____________________________//__________________________ * HSYNC: ____|~|_____|~|_____|~|_____|~|_//__|~|_____|~|_____|~|_____ * VSYNC: ____________________|~~~~~~~~~~~//~~~~~~~~~~|_______________ * 23 blanking lines * * The Armada LCD Controller line and pixel numbers are, like X timings, * referenced to the top left of the active frame. * * So, translating these to our LCD controller: * Odd frame, 563 total lines, VSYNC at line 543-548, pixel 1128. * Even frame, 562 total lines, VSYNC at line 542-547, pixel 2448. * Note: Vsync front porch remains constant! * * if (odd_frame) { * vtotal = mode->crtc_vtotal + 1; * vbackporch = mode->crtc_vsync_start - mode->crtc_vdisplay + 1; * vhorizpos = mode->crtc_hsync_start - mode->crtc_htotal / 2 * } else { * vtotal = mode->crtc_vtotal; * vbackporch = mode->crtc_vsync_start - mode->crtc_vdisplay; * vhorizpos = mode->crtc_hsync_start; * } * vfrontporch = mode->crtc_vtotal - mode->crtc_vsync_end; * * So, we need to reprogram these registers on each vsync event: * LCD_SPU_V_PORCH, LCD_SPU_ADV_REG, LCD_SPUT_V_H_TOTAL * * Note: we do not use the frame done interrupts because these appear * to happen too early, and lead to jitter on the display (presumably * they occur at the end of the last active line, before the vsync back * porch, which we're reprogramming.) */ void armada_drm_crtc_update_regs(struct armada_crtc *dcrtc, struct armada_regs *regs) { while (regs->offset != ~0) { void __iomem *reg = dcrtc->base + regs->offset; uint32_t val; val = regs->mask; if (val != 0) val &= readl_relaxed(reg); writel_relaxed(val | regs->val, reg); ++regs; } } static void armada_drm_crtc_update(struct armada_crtc *dcrtc, bool enable) { uint32_t dumb_ctrl; dumb_ctrl = dcrtc->cfg_dumb_ctrl; if (enable) dumb_ctrl |= CFG_DUMB_ENA; /* * When the dumb interface isn't in DUMB24_RGB888_0 mode, it might * be using SPI or GPIO. If we set this to DUMB_BLANK, we will * force LCD_D[23:0] to output blank color, overriding the GPIO or * SPI usage. So leave it as-is unless in DUMB24_RGB888_0 mode. */ if (!enable && (dumb_ctrl & DUMB_MASK) == DUMB24_RGB888_0) { dumb_ctrl &= ~DUMB_MASK; dumb_ctrl |= DUMB_BLANK; } armada_updatel(dumb_ctrl, ~(CFG_INV_CSYNC | CFG_INV_HSYNC | CFG_INV_VSYNC), dcrtc->base + LCD_SPU_DUMB_CTRL); } static void armada_drm_crtc_queue_state_event(struct drm_crtc *crtc) { struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); struct drm_pending_vblank_event *event; /* If we have an event, we need vblank events enabled */ event = xchg(&crtc->state->event, NULL); if (event) { WARN_ON(drm_crtc_vblank_get(crtc) != 0); dcrtc->event = event; } } static void armada_drm_update_gamma(struct drm_crtc *crtc) { struct drm_property_blob *blob = crtc->state->gamma_lut; void __iomem *base = drm_to_armada_crtc(crtc)->base; int i; if (blob) { struct drm_color_lut *lut = blob->data; armada_updatel(CFG_CSB_256x8, CFG_CSB_256x8 | CFG_PDWN256x8, base + LCD_SPU_SRAM_PARA1); for (i = 0; i < 256; i++) { writel_relaxed(drm_color_lut_extract(lut[i].red, 8), base + LCD_SPU_SRAM_WRDAT); writel_relaxed(i | SRAM_WRITE | SRAM_GAMMA_YR, base + LCD_SPU_SRAM_CTRL); readl_relaxed(base + LCD_SPU_HWC_OVSA_HPXL_VLN); writel_relaxed(drm_color_lut_extract(lut[i].green, 8), base + LCD_SPU_SRAM_WRDAT); writel_relaxed(i | SRAM_WRITE | SRAM_GAMMA_UG, base + LCD_SPU_SRAM_CTRL); readl_relaxed(base + LCD_SPU_HWC_OVSA_HPXL_VLN); writel_relaxed(drm_color_lut_extract(lut[i].blue, 8), base + LCD_SPU_SRAM_WRDAT); writel_relaxed(i | SRAM_WRITE | SRAM_GAMMA_VB, base + LCD_SPU_SRAM_CTRL); readl_relaxed(base + LCD_SPU_HWC_OVSA_HPXL_VLN); } armada_updatel(CFG_GAMMA_ENA, CFG_GAMMA_ENA, base + LCD_SPU_DMA_CTRL0); } else { armada_updatel(0, CFG_GAMMA_ENA, base + LCD_SPU_DMA_CTRL0); armada_updatel(CFG_PDWN256x8, CFG_CSB_256x8 | CFG_PDWN256x8, base + LCD_SPU_SRAM_PARA1); } } static enum drm_mode_status armada_drm_crtc_mode_valid(struct drm_crtc *crtc, const struct drm_display_mode *mode) { struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); if (mode->vscan > 1) return MODE_NO_VSCAN; if (mode->flags & DRM_MODE_FLAG_DBLSCAN) return MODE_NO_DBLESCAN; if (mode->flags & DRM_MODE_FLAG_HSKEW) return MODE_H_ILLEGAL; /* We can't do interlaced modes if we don't have the SPU_ADV_REG */ if (!dcrtc->variant->has_spu_adv_reg && mode->flags & DRM_MODE_FLAG_INTERLACE) return MODE_NO_INTERLACE; if (mode->flags & (DRM_MODE_FLAG_BCAST | DRM_MODE_FLAG_PIXMUX | DRM_MODE_FLAG_CLKDIV2)) return MODE_BAD; return MODE_OK; } /* The mode_config.mutex will be held for this call */ static bool armada_drm_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode, struct drm_display_mode *adj) { struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); int ret; /* * Set CRTC modesetting parameters for the adjusted mode. This is * applied after the connectors, bridges, and encoders have fixed up * this mode, as described above drm_atomic_helper_check_modeset(). */ drm_mode_set_crtcinfo(adj, CRTC_INTERLACE_HALVE_V); /* * Validate the adjusted mode in case an encoder/bridge has set * something we don't support. */ if (armada_drm_crtc_mode_valid(crtc, adj) != MODE_OK) return false; /* Check whether the display mode is possible */ ret = dcrtc->variant->compute_clock(dcrtc, adj, NULL); if (ret) return false; return true; } /* These are locked by dev->vbl_lock */ static void armada_drm_crtc_disable_irq(struct armada_crtc *dcrtc, u32 mask) { if (dcrtc->irq_ena & mask) { dcrtc->irq_ena &= ~mask; writel(dcrtc->irq_ena, dcrtc->base + LCD_SPU_IRQ_ENA); } } static void armada_drm_crtc_enable_irq(struct armada_crtc *dcrtc, u32 mask) { if ((dcrtc->irq_ena & mask) != mask) { dcrtc->irq_ena |= mask; writel(dcrtc->irq_ena, dcrtc->base + LCD_SPU_IRQ_ENA); if (readl_relaxed(dcrtc->base + LCD_SPU_IRQ_ISR) & mask) writel(0, dcrtc->base + LCD_SPU_IRQ_ISR); } } static void armada_drm_crtc_irq(struct armada_crtc *dcrtc, u32 stat) { struct drm_pending_vblank_event *event; void __iomem *base = dcrtc->base; if (stat & DMA_FF_UNDERFLOW) DRM_ERROR("video underflow on crtc %u\n", dcrtc->num); if (stat & GRA_FF_UNDERFLOW) DRM_ERROR("graphics underflow on crtc %u\n", dcrtc->num); if (stat & VSYNC_IRQ) drm_crtc_handle_vblank(&dcrtc->crtc); spin_lock(&dcrtc->irq_lock); if (stat & GRA_FRAME_IRQ && dcrtc->interlaced) { int i = stat & GRA_FRAME_IRQ0 ? 0 : 1; uint32_t val; writel_relaxed(dcrtc->v[i].spu_v_porch, base + LCD_SPU_V_PORCH); writel_relaxed(dcrtc->v[i].spu_v_h_total, base + LCD_SPUT_V_H_TOTAL); val = readl_relaxed(base + LCD_SPU_ADV_REG); val &= ~(ADV_VSYNC_L_OFF | ADV_VSYNC_H_OFF | ADV_VSYNCOFFEN); val |= dcrtc->v[i].spu_adv_reg; writel_relaxed(val, base + LCD_SPU_ADV_REG); } if (stat & dcrtc->irq_ena & DUMB_FRAMEDONE) { if (dcrtc->update_pending) { armada_drm_crtc_update_regs(dcrtc, dcrtc->regs); dcrtc->update_pending = false; } if (dcrtc->cursor_update) { writel_relaxed(dcrtc->cursor_hw_pos, base + LCD_SPU_HWC_OVSA_HPXL_VLN); writel_relaxed(dcrtc->cursor_hw_sz, base + LCD_SPU_HWC_HPXL_VLN); armada_updatel(CFG_HWC_ENA, CFG_HWC_ENA | CFG_HWC_1BITMOD | CFG_HWC_1BITENA, base + LCD_SPU_DMA_CTRL0); dcrtc->cursor_update = false; } armada_drm_crtc_disable_irq(dcrtc, DUMB_FRAMEDONE_ENA); } spin_unlock(&dcrtc->irq_lock); if (stat & VSYNC_IRQ && !dcrtc->update_pending) { event = xchg(&dcrtc->event, NULL); if (event) { spin_lock(&dcrtc->crtc.dev->event_lock); drm_crtc_send_vblank_event(&dcrtc->crtc, event); spin_unlock(&dcrtc->crtc.dev->event_lock); drm_crtc_vblank_put(&dcrtc->crtc); } } } static irqreturn_t armada_drm_irq(int irq, void *arg) { struct armada_crtc *dcrtc = arg; u32 v, stat = readl_relaxed(dcrtc->base + LCD_SPU_IRQ_ISR); /* * Reading the ISR appears to clear bits provided CLEAN_SPU_IRQ_ISR * is set. Writing has some other effect to acknowledge the IRQ - * without this, we only get a single IRQ. */ writel_relaxed(0, dcrtc->base + LCD_SPU_IRQ_ISR); trace_armada_drm_irq(&dcrtc->crtc, stat); /* Mask out those interrupts we haven't enabled */ v = stat & dcrtc->irq_ena; if (v & (VSYNC_IRQ|GRA_FRAME_IRQ|DUMB_FRAMEDONE)) { armada_drm_crtc_irq(dcrtc, stat); return IRQ_HANDLED; } return IRQ_NONE; } /* The mode_config.mutex will be held for this call */ static void armada_drm_crtc_mode_set_nofb(struct drm_crtc *crtc) { struct drm_display_mode *adj = &crtc->state->adjusted_mode; struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); struct armada_regs regs[17]; uint32_t lm, rm, tm, bm, val, sclk; unsigned long flags; unsigned i; bool interlaced = !!(adj->flags & DRM_MODE_FLAG_INTERLACE); i = 0; rm = adj->crtc_hsync_start - adj->crtc_hdisplay; lm = adj->crtc_htotal - adj->crtc_hsync_end; bm = adj->crtc_vsync_start - adj->crtc_vdisplay; tm = adj->crtc_vtotal - adj->crtc_vsync_end; DRM_DEBUG_KMS("[CRTC:%d:%s] mode " DRM_MODE_FMT "\n", crtc->base.id, crtc->name, DRM_MODE_ARG(adj)); DRM_DEBUG_KMS("lm %d rm %d tm %d bm %d\n", lm, rm, tm, bm); /* Now compute the divider for real */ dcrtc->variant->compute_clock(dcrtc, adj, &sclk); armada_reg_queue_set(regs, i, sclk, LCD_CFG_SCLK_DIV); spin_lock_irqsave(&dcrtc->irq_lock, flags); dcrtc->interlaced = interlaced; /* Even interlaced/progressive frame */ dcrtc->v[1].spu_v_h_total = adj->crtc_vtotal << 16 | adj->crtc_htotal; dcrtc->v[1].spu_v_porch = tm << 16 | bm; val = adj->crtc_hsync_start; dcrtc->v[1].spu_adv_reg = val << 20 | val | ADV_VSYNCOFFEN; if (interlaced) { /* Odd interlaced frame */ val -= adj->crtc_htotal / 2; dcrtc->v[0].spu_adv_reg = val << 20 | val | ADV_VSYNCOFFEN; dcrtc->v[0].spu_v_h_total = dcrtc->v[1].spu_v_h_total + (1 << 16); dcrtc->v[0].spu_v_porch = dcrtc->v[1].spu_v_porch + 1; } else { dcrtc->v[0] = dcrtc->v[1]; } val = adj->crtc_vdisplay << 16 | adj->crtc_hdisplay; armada_reg_queue_set(regs, i, val, LCD_SPU_V_H_ACTIVE); armada_reg_queue_set(regs, i, (lm << 16) | rm, LCD_SPU_H_PORCH); armada_reg_queue_set(regs, i, dcrtc->v[0].spu_v_porch, LCD_SPU_V_PORCH); armada_reg_queue_set(regs, i, dcrtc->v[0].spu_v_h_total, LCD_SPUT_V_H_TOTAL); if (dcrtc->variant->has_spu_adv_reg) armada_reg_queue_mod(regs, i, dcrtc->v[0].spu_adv_reg, ADV_VSYNC_L_OFF | ADV_VSYNC_H_OFF | ADV_VSYNCOFFEN, LCD_SPU_ADV_REG); val = adj->flags & DRM_MODE_FLAG_NVSYNC ? CFG_VSYNC_INV : 0; armada_reg_queue_mod(regs, i, val, CFG_VSYNC_INV, LCD_SPU_DMA_CTRL1); /* * The documentation doesn't indicate what the normal state of * the sync signals are. Sebastian Hesselbart kindly probed * these signals on his board to determine their state. * * The non-inverted state of the sync signals is active high. * Setting these bits makes the appropriate signal active low. */ val = 0; if (adj->flags & DRM_MODE_FLAG_NCSYNC) val |= CFG_INV_CSYNC; if (adj->flags & DRM_MODE_FLAG_NHSYNC) val |= CFG_INV_HSYNC; if (adj->flags & DRM_MODE_FLAG_NVSYNC) val |= CFG_INV_VSYNC; armada_reg_queue_mod(regs, i, val, CFG_INV_CSYNC | CFG_INV_HSYNC | CFG_INV_VSYNC, LCD_SPU_DUMB_CTRL); armada_reg_queue_end(regs, i); armada_drm_crtc_update_regs(dcrtc, regs); spin_unlock_irqrestore(&dcrtc->irq_lock, flags); } static int armada_drm_crtc_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc); DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name); if (crtc_state->gamma_lut && drm_color_lut_size(crtc_state->gamma_lut) != 256) return -EINVAL; if (crtc_state->color_mgmt_changed) crtc_state->planes_changed = true; return 0; } static void armada_drm_crtc_atomic_begin(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc); struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name); if (crtc_state->color_mgmt_changed) armada_drm_update_gamma(crtc); dcrtc->regs_idx = 0; dcrtc->regs = dcrtc->atomic_regs; } static void armada_drm_crtc_atomic_flush(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc); struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name); armada_reg_queue_end(dcrtc->regs, dcrtc->regs_idx); /* * If we aren't doing a full modeset, then we need to queue * the event here. */ if (!drm_atomic_crtc_needs_modeset(crtc_state)) { dcrtc->update_pending = true; armada_drm_crtc_queue_state_event(crtc); spin_lock_irq(&dcrtc->irq_lock); armada_drm_crtc_enable_irq(dcrtc, DUMB_FRAMEDONE_ENA); spin_unlock_irq(&dcrtc->irq_lock); } else { spin_lock_irq(&dcrtc->irq_lock); armada_drm_crtc_update_regs(dcrtc, dcrtc->regs); spin_unlock_irq(&dcrtc->irq_lock); } } static void armada_drm_crtc_atomic_disable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc); struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); struct drm_pending_vblank_event *event; DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name); if (old_state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) drm_crtc_vblank_put(crtc); drm_crtc_vblank_off(crtc); armada_drm_crtc_update(dcrtc, false); if (!crtc->state->active) { /* * This modeset will be leaving the CRTC disabled, so * call the backend to disable upstream clocks etc. */ if (dcrtc->variant->disable) dcrtc->variant->disable(dcrtc); /* * We will not receive any further vblank events. * Send the flip_done event manually. */ event = crtc->state->event; crtc->state->event = NULL; if (event) { spin_lock_irq(&crtc->dev->event_lock); drm_crtc_send_vblank_event(crtc, event); spin_unlock_irq(&crtc->dev->event_lock); } } } static void armada_drm_crtc_atomic_enable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc); struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name); if (!old_state->active) { /* * This modeset is enabling the CRTC after it having * been disabled. Reverse the call to ->disable in * the atomic_disable(). */ if (dcrtc->variant->enable) dcrtc->variant->enable(dcrtc, &crtc->state->adjusted_mode); } armada_drm_crtc_update(dcrtc, true); drm_crtc_vblank_on(crtc); if (crtc->state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) WARN_ON(drm_crtc_vblank_get(crtc)); armada_drm_crtc_queue_state_event(crtc); } static const struct drm_crtc_helper_funcs armada_crtc_helper_funcs = { .mode_valid = armada_drm_crtc_mode_valid, .mode_fixup = armada_drm_crtc_mode_fixup, .mode_set_nofb = armada_drm_crtc_mode_set_nofb, .atomic_check = armada_drm_crtc_atomic_check, .atomic_begin = armada_drm_crtc_atomic_begin, .atomic_flush = armada_drm_crtc_atomic_flush, .atomic_disable = armada_drm_crtc_atomic_disable, .atomic_enable = armada_drm_crtc_atomic_enable, }; static void armada_load_cursor_argb(void __iomem *base, uint32_t *pix, unsigned stride, unsigned width, unsigned height) { uint32_t addr; unsigned y; addr = SRAM_HWC32_RAM1; for (y = 0; y < height; y++) { uint32_t *p = &pix[y * stride]; unsigned x; for (x = 0; x < width; x++, p++) { uint32_t val = *p; /* * In "ARGB888" (HWC32) mode, writing to the SRAM * requires these bits to contain: * 31:24 = alpha 23:16 = blue 15:8 = green 7:0 = red * So, it's actually ABGR8888. This is independent * of the SWAPRB bits in DMA control register 0. */ val = (val & 0xff00ff00) | (val & 0x000000ff) << 16 | (val & 0x00ff0000) >> 16; writel_relaxed(val, base + LCD_SPU_SRAM_WRDAT); writel_relaxed(addr | SRAM_WRITE, base + LCD_SPU_SRAM_CTRL); readl_relaxed(base + LCD_SPU_HWC_OVSA_HPXL_VLN); addr += 1; if ((addr & 0x00ff) == 0) addr += 0xf00; if ((addr & 0x30ff) == 0) addr = SRAM_HWC32_RAM2; } } } static void armada_drm_crtc_cursor_tran(void __iomem *base) { unsigned addr; for (addr = 0; addr < 256; addr++) { /* write the default value */ writel_relaxed(0x55555555, base + LCD_SPU_SRAM_WRDAT); writel_relaxed(addr | SRAM_WRITE | SRAM_HWC32_TRAN, base + LCD_SPU_SRAM_CTRL); } } static int armada_drm_crtc_cursor_update(struct armada_crtc *dcrtc, bool reload) { uint32_t xoff, xscr, w = dcrtc->cursor_w, s; uint32_t yoff, yscr, h = dcrtc->cursor_h; uint32_t para1; /* * Calculate the visible width and height of the cursor, * screen position, and the position in the cursor bitmap. */ if (dcrtc->cursor_x < 0) { xoff = -dcrtc->cursor_x; xscr = 0; w -= min(xoff, w); } else if (dcrtc->cursor_x + w > dcrtc->crtc.mode.hdisplay) { xoff = 0; xscr = dcrtc->cursor_x; w = max_t(int, dcrtc->crtc.mode.hdisplay - dcrtc->cursor_x, 0); } else { xoff = 0; xscr = dcrtc->cursor_x; } if (dcrtc->cursor_y < 0) { yoff = -dcrtc->cursor_y; yscr = 0; h -= min(yoff, h); } else if (dcrtc->cursor_y + h > dcrtc->crtc.mode.vdisplay) { yoff = 0; yscr = dcrtc->cursor_y; h = max_t(int, dcrtc->crtc.mode.vdisplay - dcrtc->cursor_y, 0); } else { yoff = 0; yscr = dcrtc->cursor_y; } /* On interlaced modes, the vertical cursor size must be halved */ s = dcrtc->cursor_w; if (dcrtc->interlaced) { s *= 2; yscr /= 2; h /= 2; } if (!dcrtc->cursor_obj || !h || !w) { spin_lock_irq(&dcrtc->irq_lock); dcrtc->cursor_update = false; armada_updatel(0, CFG_HWC_ENA, dcrtc->base + LCD_SPU_DMA_CTRL0); spin_unlock_irq(&dcrtc->irq_lock); return 0; } spin_lock_irq(&dcrtc->irq_lock); para1 = readl_relaxed(dcrtc->base + LCD_SPU_SRAM_PARA1); armada_updatel(CFG_CSB_256x32, CFG_CSB_256x32 | CFG_PDWN256x32, dcrtc->base + LCD_SPU_SRAM_PARA1); spin_unlock_irq(&dcrtc->irq_lock); /* * Initialize the transparency if the SRAM was powered down. * We must also reload the cursor data as well. */ if (!(para1 & CFG_CSB_256x32)) { armada_drm_crtc_cursor_tran(dcrtc->base); reload = true; } if (dcrtc->cursor_hw_sz != (h << 16 | w)) { spin_lock_irq(&dcrtc->irq_lock); dcrtc->cursor_update = false; armada_updatel(0, CFG_HWC_ENA, dcrtc->base + LCD_SPU_DMA_CTRL0); spin_unlock_irq(&dcrtc->irq_lock); reload = true; } if (reload) { struct armada_gem_object *obj = dcrtc->cursor_obj; uint32_t *pix; /* Set the top-left corner of the cursor image */ pix = obj->addr; pix += yoff * s + xoff; armada_load_cursor_argb(dcrtc->base, pix, s, w, h); } /* Reload the cursor position, size and enable in the IRQ handler */ spin_lock_irq(&dcrtc->irq_lock); dcrtc->cursor_hw_pos = yscr << 16 | xscr; dcrtc->cursor_hw_sz = h << 16 | w; dcrtc->cursor_update = true; armada_drm_crtc_enable_irq(dcrtc, DUMB_FRAMEDONE_ENA); spin_unlock_irq(&dcrtc->irq_lock); return 0; } static void cursor_update(void *data) { armada_drm_crtc_cursor_update(data, true); } static int armada_drm_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file, uint32_t handle, uint32_t w, uint32_t h) { struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); struct armada_gem_object *obj = NULL; int ret; /* If no cursor support, replicate drm's return value */ if (!dcrtc->variant->has_spu_adv_reg) return -ENXIO; if (handle && w > 0 && h > 0) { /* maximum size is 64x32 or 32x64 */ if (w > 64 || h > 64 || (w > 32 && h > 32)) return -ENOMEM; obj = armada_gem_object_lookup(file, handle); if (!obj) return -ENOENT; /* Must be a kernel-mapped object */ if (!obj->addr) { drm_gem_object_put(&obj->obj); return -EINVAL; } if (obj->obj.size < w * h * 4) { DRM_ERROR("buffer is too small\n"); drm_gem_object_put(&obj->obj); return -ENOMEM; } } if (dcrtc->cursor_obj) { dcrtc->cursor_obj->update = NULL; dcrtc->cursor_obj->update_data = NULL; drm_gem_object_put(&dcrtc->cursor_obj->obj); } dcrtc->cursor_obj = obj; dcrtc->cursor_w = w; dcrtc->cursor_h = h; ret = armada_drm_crtc_cursor_update(dcrtc, true); if (obj) { obj->update_data = dcrtc; obj->update = cursor_update; } return ret; } static int armada_drm_crtc_cursor_move(struct drm_crtc *crtc, int x, int y) { struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); int ret; /* If no cursor support, replicate drm's return value */ if (!dcrtc->variant->has_spu_adv_reg) return -EFAULT; dcrtc->cursor_x = x; dcrtc->cursor_y = y; ret = armada_drm_crtc_cursor_update(dcrtc, false); return ret; } static void armada_drm_crtc_destroy(struct drm_crtc *crtc) { struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); struct armada_private *priv = drm_to_armada_dev(crtc->dev); if (dcrtc->cursor_obj) drm_gem_object_put(&dcrtc->cursor_obj->obj); priv->dcrtc[dcrtc->num] = NULL; drm_crtc_cleanup(&dcrtc->crtc); if (dcrtc->variant->disable) dcrtc->variant->disable(dcrtc); writel_relaxed(0, dcrtc->base + LCD_SPU_IRQ_ENA); of_node_put(dcrtc->crtc.port); kfree(dcrtc); } static int armada_drm_crtc_late_register(struct drm_crtc *crtc) { if (IS_ENABLED(CONFIG_DEBUG_FS)) armada_drm_crtc_debugfs_init(drm_to_armada_crtc(crtc)); return 0; } /* These are called under the vbl_lock. */ static int armada_drm_crtc_enable_vblank(struct drm_crtc *crtc) { struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); unsigned long flags; spin_lock_irqsave(&dcrtc->irq_lock, flags); armada_drm_crtc_enable_irq(dcrtc, VSYNC_IRQ_ENA); spin_unlock_irqrestore(&dcrtc->irq_lock, flags); return 0; } static void armada_drm_crtc_disable_vblank(struct drm_crtc *crtc) { struct armada_crtc *dcrtc = drm_to_armada_crtc(crtc); unsigned long flags; spin_lock_irqsave(&dcrtc->irq_lock, flags); armada_drm_crtc_disable_irq(dcrtc, VSYNC_IRQ_ENA); spin_unlock_irqrestore(&dcrtc->irq_lock, flags); } static const struct drm_crtc_funcs armada_crtc_funcs = { .reset = drm_atomic_helper_crtc_reset, .cursor_set = armada_drm_crtc_cursor_set, .cursor_move = armada_drm_crtc_cursor_move, .destroy = armada_drm_crtc_destroy, .set_config = drm_atomic_helper_set_config, .page_flip = drm_atomic_helper_page_flip, .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state, .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state, .late_register = armada_drm_crtc_late_register, .enable_vblank = armada_drm_crtc_enable_vblank, .disable_vblank = armada_drm_crtc_disable_vblank, }; int armada_crtc_select_clock(struct armada_crtc *dcrtc, struct armada_clk_result *res, const struct armada_clocking_params *params, struct clk *clks[], size_t num_clks, unsigned long desired_khz) { unsigned long desired_hz = desired_khz * 1000; unsigned long desired_clk_hz; // requested clk input unsigned long real_clk_hz; // actual clk input unsigned long real_hz; // actual pixel clk unsigned long permillage; struct clk *clk; u32 div; int i; DRM_DEBUG_KMS("[CRTC:%u:%s] desired clock=%luHz\n", dcrtc->crtc.base.id, dcrtc->crtc.name, desired_hz); for (i = 0; i < num_clks; i++) { clk = clks[i]; if (!clk) continue; if (params->settable & BIT(i)) { real_clk_hz = clk_round_rate(clk, desired_hz); desired_clk_hz = desired_hz; } else { real_clk_hz = clk_get_rate(clk); desired_clk_hz = real_clk_hz; } /* If the clock can do exactly the desired rate, we're done */ if (real_clk_hz == desired_hz) { real_hz = real_clk_hz; div = 1; goto found; } /* Calculate the divider - if invalid, we can't do this rate */ div = DIV_ROUND_CLOSEST(real_clk_hz, desired_hz); if (div == 0 || div > params->div_max) continue; /* Calculate the actual rate - HDMI requires -0.6%..+0.5% */ real_hz = DIV_ROUND_CLOSEST(real_clk_hz, div); DRM_DEBUG_KMS("[CRTC:%u:%s] clk=%u %luHz div=%u real=%luHz\n", dcrtc->crtc.base.id, dcrtc->crtc.name, i, real_clk_hz, div, real_hz); /* Avoid repeated division */ if (real_hz < desired_hz) { permillage = real_hz / desired_khz; if (permillage < params->permillage_min) continue; } else { permillage = DIV_ROUND_UP(real_hz, desired_khz); if (permillage > params->permillage_max) continue; } goto found; } return -ERANGE; found: DRM_DEBUG_KMS("[CRTC:%u:%s] selected clk=%u %luHz div=%u real=%luHz\n", dcrtc->crtc.base.id, dcrtc->crtc.name, i, real_clk_hz, div, real_hz); res->desired_clk_hz = desired_clk_hz; res->clk = clk; res->div = div; return i; } static int armada_drm_crtc_create(struct drm_device *drm, struct device *dev, struct resource *res, int irq, const struct armada_variant *variant, struct device_node *port) { struct armada_private *priv = drm_to_armada_dev(drm); struct armada_crtc *dcrtc; struct drm_plane *primary; void __iomem *base; int ret; base = devm_ioremap_resource(dev, res); if (IS_ERR(base)) return PTR_ERR(base); dcrtc = kzalloc(sizeof(*dcrtc), GFP_KERNEL); if (!dcrtc) { DRM_ERROR("failed to allocate Armada crtc\n"); return -ENOMEM; } if (dev != drm->dev) dev_set_drvdata(dev, dcrtc); dcrtc->variant = variant; dcrtc->base = base; dcrtc->num = drm->mode_config.num_crtc; dcrtc->cfg_dumb_ctrl = DUMB24_RGB888_0; dcrtc->spu_iopad_ctrl = CFG_VSCALE_LN_EN | CFG_IOPAD_DUMB24; spin_lock_init(&dcrtc->irq_lock); dcrtc->irq_ena = CLEAN_SPU_IRQ_ISR; /* Initialize some registers which we don't otherwise set */ writel_relaxed(0x00000001, dcrtc->base + LCD_CFG_SCLK_DIV); writel_relaxed(0x00000000, dcrtc->base + LCD_SPU_BLANKCOLOR); writel_relaxed(dcrtc->spu_iopad_ctrl, dcrtc->base + LCD_SPU_IOPAD_CONTROL); writel_relaxed(0x00000000, dcrtc->base + LCD_SPU_SRAM_PARA0); writel_relaxed(CFG_PDWN256x32 | CFG_PDWN256x24 | CFG_PDWN256x8 | CFG_PDWN32x32 | CFG_PDWN16x66 | CFG_PDWN32x66 | CFG_PDWN64x66, dcrtc->base + LCD_SPU_SRAM_PARA1); writel_relaxed(0x2032ff81, dcrtc->base + LCD_SPU_DMA_CTRL1); writel_relaxed(dcrtc->irq_ena, dcrtc->base + LCD_SPU_IRQ_ENA); readl_relaxed(dcrtc->base + LCD_SPU_IRQ_ISR); writel_relaxed(0, dcrtc->base + LCD_SPU_IRQ_ISR); ret = devm_request_irq(dev, irq, armada_drm_irq, 0, "armada_drm_crtc", dcrtc); if (ret < 0) goto err_crtc; if (dcrtc->variant->init) { ret = dcrtc->variant->init(dcrtc, dev); if (ret) goto err_crtc; } /* Ensure AXI pipeline is enabled */ armada_updatel(CFG_ARBFAST_ENA, 0, dcrtc->base + LCD_SPU_DMA_CTRL0); priv->dcrtc[dcrtc->num] = dcrtc; dcrtc->crtc.port = port; primary = kzalloc(sizeof(*primary), GFP_KERNEL); if (!primary) { ret = -ENOMEM; goto err_crtc; } ret = armada_drm_primary_plane_init(drm, primary); if (ret) { kfree(primary); goto err_crtc; } ret = drm_crtc_init_with_planes(drm, &dcrtc->crtc, primary, NULL, &armada_crtc_funcs, NULL); if (ret) goto err_crtc_init; drm_crtc_helper_add(&dcrtc->crtc, &armada_crtc_helper_funcs); ret = drm_mode_crtc_set_gamma_size(&dcrtc->crtc, 256); if (ret) return ret; drm_crtc_enable_color_mgmt(&dcrtc->crtc, 0, false, 256); return armada_overlay_plane_create(drm, 1 << dcrtc->num); err_crtc_init: primary->funcs->destroy(primary); err_crtc: kfree(dcrtc); return ret; } static int armada_lcd_bind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); struct drm_device *drm = data; struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); int irq = platform_get_irq(pdev, 0); const struct armada_variant *variant; struct device_node *port = NULL; if (irq < 0) return irq; if (!dev->of_node) { const struct platform_device_id *id; id = platform_get_device_id(pdev); if (!id) return -ENXIO; variant = (const struct armada_variant *)id->driver_data; } else { const struct of_device_id *match; struct device_node *np, *parent = dev->of_node; match = of_match_device(dev->driver->of_match_table, dev); if (!match) return -ENXIO; np = of_get_child_by_name(parent, "ports"); if (np) parent = np; port = of_get_child_by_name(parent, "port"); of_node_put(np); if (!port) { dev_err(dev, "no port node found in %pOF\n", parent); return -ENXIO; } variant = match->data; } return armada_drm_crtc_create(drm, dev, res, irq, variant, port); } static void armada_lcd_unbind(struct device *dev, struct device *master, void *data) { struct armada_crtc *dcrtc = dev_get_drvdata(dev); armada_drm_crtc_destroy(&dcrtc->crtc); } static const struct component_ops armada_lcd_ops = { .bind = armada_lcd_bind, .unbind = armada_lcd_unbind, }; static int armada_lcd_probe(struct platform_device *pdev) { return component_add(&pdev->dev, &armada_lcd_ops); } static int armada_lcd_remove(struct platform_device *pdev) { component_del(&pdev->dev, &armada_lcd_ops); return 0; } static const struct of_device_id armada_lcd_of_match[] = { { .compatible = "marvell,dove-lcd", .data = &armada510_ops, }, {} }; MODULE_DEVICE_TABLE(of, armada_lcd_of_match); static const struct platform_device_id armada_lcd_platform_ids[] = { { .name = "armada-lcd", .driver_data = (unsigned long)&armada510_ops, }, { .name = "armada-510-lcd", .driver_data = (unsigned long)&armada510_ops, }, { }, }; MODULE_DEVICE_TABLE(platform, armada_lcd_platform_ids); struct platform_driver armada_lcd_platform_driver = { .probe = armada_lcd_probe, .remove = armada_lcd_remove, .driver = { .name = "armada-lcd", .owner = THIS_MODULE, .of_match_table = armada_lcd_of_match, }, .id_table = armada_lcd_platform_ids, };
linux-master
drivers/gpu/drm/armada/armada_crtc.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 Russell King * Rewritten from the dovefb driver, and Armada510 manuals. */ #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_fourcc.h> #include <drm/drm_plane_helper.h> #include "armada_crtc.h" #include "armada_drm.h" #include "armada_fb.h" #include "armada_gem.h" #include "armada_hw.h" #include "armada_plane.h" #include "armada_trace.h" static const uint32_t armada_primary_formats[] = { DRM_FORMAT_UYVY, DRM_FORMAT_YUYV, DRM_FORMAT_VYUY, DRM_FORMAT_YVYU, DRM_FORMAT_ARGB8888, DRM_FORMAT_ABGR8888, DRM_FORMAT_XRGB8888, DRM_FORMAT_XBGR8888, DRM_FORMAT_RGB888, DRM_FORMAT_BGR888, DRM_FORMAT_ARGB1555, DRM_FORMAT_ABGR1555, DRM_FORMAT_RGB565, DRM_FORMAT_BGR565, }; void armada_drm_plane_calc(struct drm_plane_state *state, u32 addrs[2][3], u16 pitches[3], bool interlaced) { struct drm_framebuffer *fb = state->fb; const struct drm_format_info *format = fb->format; unsigned int num_planes = format->num_planes; unsigned int x = state->src.x1 >> 16; unsigned int y = state->src.y1 >> 16; u32 addr = drm_fb_obj(fb)->dev_addr; int i; DRM_DEBUG_KMS("pitch %u x %d y %d bpp %d\n", fb->pitches[0], x, y, format->cpp[0] * 8); if (num_planes > 3) num_planes = 3; addrs[0][0] = addr + fb->offsets[0] + y * fb->pitches[0] + x * format->cpp[0]; pitches[0] = fb->pitches[0]; y /= format->vsub; x /= format->hsub; for (i = 1; i < num_planes; i++) { addrs[0][i] = addr + fb->offsets[i] + y * fb->pitches[i] + x * format->cpp[i]; pitches[i] = fb->pitches[i]; } for (; i < 3; i++) { addrs[0][i] = 0; pitches[i] = 0; } if (interlaced) { for (i = 0; i < 3; i++) { addrs[1][i] = addrs[0][i] + pitches[i]; pitches[i] *= 2; } } else { for (i = 0; i < 3; i++) addrs[1][i] = addrs[0][i]; } } int armada_drm_plane_atomic_check(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, plane); struct armada_plane_state *st = to_armada_plane_state(new_plane_state); struct drm_crtc *crtc = new_plane_state->crtc; struct drm_crtc_state *crtc_state; bool interlace; int ret; if (!new_plane_state->fb || WARN_ON(!new_plane_state->crtc)) { new_plane_state->visible = false; return 0; } if (state) crtc_state = drm_atomic_get_existing_crtc_state(state, crtc); else crtc_state = crtc->state; ret = drm_atomic_helper_check_plane_state(new_plane_state, crtc_state, 0, INT_MAX, true, false); if (ret) return ret; interlace = crtc_state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE; if (interlace) { if ((new_plane_state->dst.y1 | new_plane_state->dst.y2) & 1) return -EINVAL; st->src_hw = drm_rect_height(&new_plane_state->src) >> 17; st->dst_yx = new_plane_state->dst.y1 >> 1; st->dst_hw = drm_rect_height(&new_plane_state->dst) >> 1; } else { st->src_hw = drm_rect_height(&new_plane_state->src) >> 16; st->dst_yx = new_plane_state->dst.y1; st->dst_hw = drm_rect_height(&new_plane_state->dst); } st->src_hw <<= 16; st->src_hw |= drm_rect_width(&new_plane_state->src) >> 16; st->dst_yx <<= 16; st->dst_yx |= new_plane_state->dst.x1 & 0x0000ffff; st->dst_hw <<= 16; st->dst_hw |= drm_rect_width(&new_plane_state->dst) & 0x0000ffff; armada_drm_plane_calc(new_plane_state, st->addrs, st->pitches, interlace); st->interlace = interlace; return 0; } static void armada_drm_primary_plane_atomic_update(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, plane); struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane); struct armada_crtc *dcrtc; struct armada_regs *regs; u32 cfg, cfg_mask, val; unsigned int idx; DRM_DEBUG_KMS("[PLANE:%d:%s]\n", plane->base.id, plane->name); if (!new_state->fb || WARN_ON(!new_state->crtc)) return; DRM_DEBUG_KMS("[PLANE:%d:%s] is on [CRTC:%d:%s] with [FB:%d] visible %u->%u\n", plane->base.id, plane->name, new_state->crtc->base.id, new_state->crtc->name, new_state->fb->base.id, old_state->visible, new_state->visible); dcrtc = drm_to_armada_crtc(new_state->crtc); regs = dcrtc->regs + dcrtc->regs_idx; idx = 0; if (!old_state->visible && new_state->visible) { val = CFG_PDWN64x66; if (drm_fb_to_armada_fb(new_state->fb)->fmt > CFG_420) val |= CFG_PDWN256x24; armada_reg_queue_mod(regs, idx, 0, val, LCD_SPU_SRAM_PARA1); } val = armada_src_hw(new_state); if (armada_src_hw(old_state) != val) armada_reg_queue_set(regs, idx, val, LCD_SPU_GRA_HPXL_VLN); val = armada_dst_yx(new_state); if (armada_dst_yx(old_state) != val) armada_reg_queue_set(regs, idx, val, LCD_SPU_GRA_OVSA_HPXL_VLN); val = armada_dst_hw(new_state); if (armada_dst_hw(old_state) != val) armada_reg_queue_set(regs, idx, val, LCD_SPU_GZM_HPXL_VLN); if (old_state->src.x1 != new_state->src.x1 || old_state->src.y1 != new_state->src.y1 || old_state->fb != new_state->fb || new_state->crtc->state->mode_changed) { armada_reg_queue_set(regs, idx, armada_addr(new_state, 0, 0), LCD_CFG_GRA_START_ADDR0); armada_reg_queue_set(regs, idx, armada_addr(new_state, 1, 0), LCD_CFG_GRA_START_ADDR1); armada_reg_queue_mod(regs, idx, armada_pitch(new_state, 0), 0xffff, LCD_CFG_GRA_PITCH); } if (old_state->fb != new_state->fb || new_state->crtc->state->mode_changed) { cfg = CFG_GRA_FMT(drm_fb_to_armada_fb(new_state->fb)->fmt) | CFG_GRA_MOD(drm_fb_to_armada_fb(new_state->fb)->mod); if (drm_fb_to_armada_fb(new_state->fb)->fmt > CFG_420) cfg |= CFG_PALETTE_ENA; if (new_state->visible) cfg |= CFG_GRA_ENA; if (to_armada_plane_state(new_state)->interlace) cfg |= CFG_GRA_FTOGGLE; cfg_mask = CFG_GRAFORMAT | CFG_GRA_MOD(CFG_SWAPRB | CFG_SWAPUV | CFG_SWAPYU | CFG_YUV2RGB) | CFG_PALETTE_ENA | CFG_GRA_FTOGGLE | CFG_GRA_ENA; } else if (old_state->visible != new_state->visible) { cfg = new_state->visible ? CFG_GRA_ENA : 0; cfg_mask = CFG_GRA_ENA; } else { cfg = cfg_mask = 0; } if (drm_rect_width(&old_state->src) != drm_rect_width(&new_state->src) || drm_rect_width(&old_state->dst) != drm_rect_width(&new_state->dst)) { cfg_mask |= CFG_GRA_HSMOOTH; if (drm_rect_width(&new_state->src) >> 16 != drm_rect_width(&new_state->dst)) cfg |= CFG_GRA_HSMOOTH; } if (cfg_mask) armada_reg_queue_mod(regs, idx, cfg, cfg_mask, LCD_SPU_DMA_CTRL0); dcrtc->regs_idx += idx; } static void armada_drm_primary_plane_atomic_disable(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, plane); struct armada_crtc *dcrtc; struct armada_regs *regs; unsigned int idx = 0; DRM_DEBUG_KMS("[PLANE:%d:%s]\n", plane->base.id, plane->name); if (!old_state->crtc) return; DRM_DEBUG_KMS("[PLANE:%d:%s] was on [CRTC:%d:%s] with [FB:%d]\n", plane->base.id, plane->name, old_state->crtc->base.id, old_state->crtc->name, old_state->fb->base.id); dcrtc = drm_to_armada_crtc(old_state->crtc); regs = dcrtc->regs + dcrtc->regs_idx; /* Disable plane and power down most RAMs and FIFOs */ armada_reg_queue_mod(regs, idx, 0, CFG_GRA_ENA, LCD_SPU_DMA_CTRL0); armada_reg_queue_mod(regs, idx, CFG_PDWN256x32 | CFG_PDWN256x24 | CFG_PDWN32x32 | CFG_PDWN64x66, 0, LCD_SPU_SRAM_PARA1); dcrtc->regs_idx += idx; } static const struct drm_plane_helper_funcs armada_primary_plane_helper_funcs = { .atomic_check = armada_drm_plane_atomic_check, .atomic_update = armada_drm_primary_plane_atomic_update, .atomic_disable = armada_drm_primary_plane_atomic_disable, }; void armada_plane_reset(struct drm_plane *plane) { struct armada_plane_state *st; if (plane->state) __drm_atomic_helper_plane_destroy_state(plane->state); kfree(plane->state); st = kzalloc(sizeof(*st), GFP_KERNEL); if (st) __drm_atomic_helper_plane_reset(plane, &st->base); } struct drm_plane_state *armada_plane_duplicate_state(struct drm_plane *plane) { struct armada_plane_state *st; if (WARN_ON(!plane->state)) return NULL; st = kmemdup(plane->state, sizeof(*st), GFP_KERNEL); if (st) __drm_atomic_helper_plane_duplicate_state(plane, &st->base); return &st->base; } static const struct drm_plane_funcs armada_primary_plane_funcs = { .update_plane = drm_atomic_helper_update_plane, .disable_plane = drm_atomic_helper_disable_plane, .destroy = drm_plane_helper_destroy, .reset = armada_plane_reset, .atomic_duplicate_state = armada_plane_duplicate_state, .atomic_destroy_state = drm_atomic_helper_plane_destroy_state, }; int armada_drm_primary_plane_init(struct drm_device *drm, struct drm_plane *primary) { int ret; drm_plane_helper_add(primary, &armada_primary_plane_helper_funcs); ret = drm_universal_plane_init(drm, primary, 0, &armada_primary_plane_funcs, armada_primary_formats, ARRAY_SIZE(armada_primary_formats), NULL, DRM_PLANE_TYPE_PRIMARY, NULL); return ret; }
linux-master
drivers/gpu/drm/armada/armada_plane.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 Russell King * Rewritten from the dovefb driver, and Armada510 manuals. */ #include <linux/ctype.h> #include <linux/module.h> #include <linux/seq_file.h> #include <linux/uaccess.h> #include <drm/drm_debugfs.h> #include <drm/drm_file.h> #include "armada_crtc.h" #include "armada_drm.h" static int armada_debugfs_gem_linear_show(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct armada_private *priv = drm_to_armada_dev(dev); struct drm_printer p = drm_seq_file_printer(m); mutex_lock(&priv->linear_lock); drm_mm_print(&priv->linear, &p); mutex_unlock(&priv->linear_lock); return 0; } static int armada_debugfs_crtc_reg_show(struct seq_file *m, void *data) { struct armada_crtc *dcrtc = m->private; int i; for (i = 0x84; i <= 0x1c4; i += 4) { u32 v = readl_relaxed(dcrtc->base + i); seq_printf(m, "0x%04x: 0x%08x\n", i, v); } return 0; } static int armada_debugfs_crtc_reg_open(struct inode *inode, struct file *file) { return single_open(file, armada_debugfs_crtc_reg_show, inode->i_private); } static int armada_debugfs_crtc_reg_write(struct file *file, const char __user *ptr, size_t len, loff_t *off) { struct armada_crtc *dcrtc; unsigned long reg, mask, val; char buf[32]; int ret; u32 v; if (*off != 0) return 0; if (len > sizeof(buf) - 1) len = sizeof(buf) - 1; ret = strncpy_from_user(buf, ptr, len); if (ret < 0) return ret; buf[len] = '\0'; if (sscanf(buf, "%lx %lx %lx", &reg, &mask, &val) != 3) return -EINVAL; if (reg < 0x84 || reg > 0x1c4 || reg & 3) return -ERANGE; dcrtc = ((struct seq_file *)file->private_data)->private; v = readl(dcrtc->base + reg); v &= ~mask; v |= val & mask; writel(v, dcrtc->base + reg); return len; } static const struct file_operations armada_debugfs_crtc_reg_fops = { .owner = THIS_MODULE, .open = armada_debugfs_crtc_reg_open, .read = seq_read, .write = armada_debugfs_crtc_reg_write, .llseek = seq_lseek, .release = single_release, }; void armada_drm_crtc_debugfs_init(struct armada_crtc *dcrtc) { debugfs_create_file("armada-regs", 0600, dcrtc->crtc.debugfs_entry, dcrtc, &armada_debugfs_crtc_reg_fops); } static struct drm_info_list armada_debugfs_list[] = { { "gem_linear", armada_debugfs_gem_linear_show, 0 }, }; #define ARMADA_DEBUGFS_ENTRIES ARRAY_SIZE(armada_debugfs_list) int armada_drm_debugfs_init(struct drm_minor *minor) { drm_debugfs_create_files(armada_debugfs_list, ARMADA_DEBUGFS_ENTRIES, minor->debugfs_root, minor); return 0; }
linux-master
drivers/gpu/drm/armada/armada_debugfs.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 Russell King * * Armada 510 (aka Dove) variant support */ #include <linux/clk.h> #include <linux/io.h> #include <linux/of.h> #include <drm/drm_probe_helper.h> #include "armada_crtc.h" #include "armada_drm.h" #include "armada_hw.h" struct armada510_variant_data { struct clk *clks[4]; struct clk *sel_clk; }; static int armada510_crtc_init(struct armada_crtc *dcrtc, struct device *dev) { struct armada510_variant_data *v; struct clk *clk; int idx; v = devm_kzalloc(dev, sizeof(*v), GFP_KERNEL); if (!v) return -ENOMEM; dcrtc->variant_data = v; if (dev->of_node) { struct property *prop; const char *s; of_property_for_each_string(dev->of_node, "clock-names", prop, s) { if (!strcmp(s, "ext_ref_clk0")) idx = 0; else if (!strcmp(s, "ext_ref_clk1")) idx = 1; else if (!strcmp(s, "plldivider")) idx = 2; else if (!strcmp(s, "axibus")) idx = 3; else continue; clk = devm_clk_get(dev, s); if (IS_ERR(clk)) return PTR_ERR(clk) == -ENOENT ? -EPROBE_DEFER : PTR_ERR(clk); v->clks[idx] = clk; } } else { clk = devm_clk_get(dev, "ext_ref_clk1"); if (IS_ERR(clk)) return PTR_ERR(clk) == -ENOENT ? -EPROBE_DEFER : PTR_ERR(clk); v->clks[1] = clk; } /* * Lower the watermark so to eliminate jitter at higher bandwidths. * Disable SRAM read wait state to avoid system hang with external * clock. */ armada_updatel(CFG_DMA_WM(0x20), CFG_SRAM_WAIT | CFG_DMA_WM_MASK, dcrtc->base + LCD_CFG_RDREG4F); /* Initialise SPU register */ writel_relaxed(ADV_HWC32ENABLE | ADV_HWC32ARGB | ADV_HWC32BLEND, dcrtc->base + LCD_SPU_ADV_REG); return 0; } static const u32 armada510_clk_sels[] = { SCLK_510_EXTCLK0, SCLK_510_EXTCLK1, SCLK_510_PLL, SCLK_510_AXI, }; static const struct armada_clocking_params armada510_clocking = { /* HDMI requires -0.6%..+0.5% */ .permillage_min = 994, .permillage_max = 1005, .settable = BIT(0) | BIT(1), .div_max = SCLK_510_INT_DIV_MASK, }; /* * Armada510 specific SCLK register selection. * This gets called with sclk = NULL to test whether the mode is * supportable, and again with sclk != NULL to set the clocks up for * that. The former can return an error, but the latter is expected * not to. */ static int armada510_crtc_compute_clock(struct armada_crtc *dcrtc, const struct drm_display_mode *mode, uint32_t *sclk) { struct armada510_variant_data *v = dcrtc->variant_data; unsigned long desired_khz = mode->crtc_clock; struct armada_clk_result res; int ret, idx; idx = armada_crtc_select_clock(dcrtc, &res, &armada510_clocking, v->clks, ARRAY_SIZE(v->clks), desired_khz); if (idx < 0) return idx; ret = clk_prepare_enable(res.clk); if (ret) return ret; if (sclk) { clk_set_rate(res.clk, res.desired_clk_hz); *sclk = res.div | armada510_clk_sels[idx]; /* We are now using this clock */ v->sel_clk = res.clk; swap(dcrtc->clk, res.clk); } clk_disable_unprepare(res.clk); return 0; } static void armada510_crtc_disable(struct armada_crtc *dcrtc) { if (dcrtc->clk) { clk_disable_unprepare(dcrtc->clk); dcrtc->clk = NULL; } } static void armada510_crtc_enable(struct armada_crtc *dcrtc, const struct drm_display_mode *mode) { struct armada510_variant_data *v = dcrtc->variant_data; if (!dcrtc->clk && v->sel_clk) { if (!WARN_ON(clk_prepare_enable(v->sel_clk))) dcrtc->clk = v->sel_clk; } } const struct armada_variant armada510_ops = { .has_spu_adv_reg = true, .init = armada510_crtc_init, .compute_clock = armada510_crtc_compute_clock, .disable = armada510_crtc_disable, .enable = armada510_crtc_enable, };
linux-master
drivers/gpu/drm/armada/armada_510.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 Russell King * Rewritten from the dovefb driver, and Armada510 manuals. */ #include <linux/bitfield.h> #include <drm/armada_drm.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_atomic_uapi.h> #include <drm/drm_fourcc.h> #include <drm/drm_plane_helper.h> #include "armada_crtc.h" #include "armada_drm.h" #include "armada_fb.h" #include "armada_gem.h" #include "armada_hw.h" #include "armada_ioctlP.h" #include "armada_plane.h" #include "armada_trace.h" #define DEFAULT_BRIGHTNESS 0 #define DEFAULT_CONTRAST 0x4000 #define DEFAULT_SATURATION 0x4000 #define DEFAULT_ENCODING DRM_COLOR_YCBCR_BT601 struct armada_overlay_state { struct armada_plane_state base; u32 colorkey_yr; u32 colorkey_ug; u32 colorkey_vb; u32 colorkey_mode; u32 colorkey_enable; s16 brightness; u16 contrast; u16 saturation; }; #define drm_to_overlay_state(s) \ container_of(s, struct armada_overlay_state, base.base) static inline u32 armada_spu_contrast(struct drm_plane_state *state) { return drm_to_overlay_state(state)->brightness << 16 | drm_to_overlay_state(state)->contrast; } static inline u32 armada_spu_saturation(struct drm_plane_state *state) { /* Docs say 15:0, but it seems to actually be 31:16 on Armada 510 */ return drm_to_overlay_state(state)->saturation << 16; } static inline u32 armada_csc(struct drm_plane_state *state) { /* * The CFG_CSC_RGB_* settings control the output of the colour space * converter, setting the range of output values it produces. Since * we will be blending with the full-range graphics, we need to * produce full-range RGB output from the conversion. */ return CFG_CSC_RGB_COMPUTER | (state->color_encoding == DRM_COLOR_YCBCR_BT709 ? CFG_CSC_YUV_CCIR709 : CFG_CSC_YUV_CCIR601); } /* === Plane support === */ static void armada_drm_overlay_plane_atomic_update(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, plane); struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane); struct armada_crtc *dcrtc; struct armada_regs *regs; unsigned int idx; u32 cfg, cfg_mask, val; DRM_DEBUG_KMS("[PLANE:%d:%s]\n", plane->base.id, plane->name); if (!new_state->fb || WARN_ON(!new_state->crtc)) return; DRM_DEBUG_KMS("[PLANE:%d:%s] is on [CRTC:%d:%s] with [FB:%d] visible %u->%u\n", plane->base.id, plane->name, new_state->crtc->base.id, new_state->crtc->name, new_state->fb->base.id, old_state->visible, new_state->visible); dcrtc = drm_to_armada_crtc(new_state->crtc); regs = dcrtc->regs + dcrtc->regs_idx; idx = 0; if (!old_state->visible && new_state->visible) armada_reg_queue_mod(regs, idx, 0, CFG_PDWN16x66 | CFG_PDWN32x66, LCD_SPU_SRAM_PARA1); val = armada_src_hw(new_state); if (armada_src_hw(old_state) != val) armada_reg_queue_set(regs, idx, val, LCD_SPU_DMA_HPXL_VLN); val = armada_dst_yx(new_state); if (armada_dst_yx(old_state) != val) armada_reg_queue_set(regs, idx, val, LCD_SPU_DMA_OVSA_HPXL_VLN); val = armada_dst_hw(new_state); if (armada_dst_hw(old_state) != val) armada_reg_queue_set(regs, idx, val, LCD_SPU_DZM_HPXL_VLN); /* FIXME: overlay on an interlaced display */ if (old_state->src.x1 != new_state->src.x1 || old_state->src.y1 != new_state->src.y1 || old_state->fb != new_state->fb || new_state->crtc->state->mode_changed) { const struct drm_format_info *format; u16 src_x; armada_reg_queue_set(regs, idx, armada_addr(new_state, 0, 0), LCD_SPU_DMA_START_ADDR_Y0); armada_reg_queue_set(regs, idx, armada_addr(new_state, 0, 1), LCD_SPU_DMA_START_ADDR_U0); armada_reg_queue_set(regs, idx, armada_addr(new_state, 0, 2), LCD_SPU_DMA_START_ADDR_V0); armada_reg_queue_set(regs, idx, armada_addr(new_state, 1, 0), LCD_SPU_DMA_START_ADDR_Y1); armada_reg_queue_set(regs, idx, armada_addr(new_state, 1, 1), LCD_SPU_DMA_START_ADDR_U1); armada_reg_queue_set(regs, idx, armada_addr(new_state, 1, 2), LCD_SPU_DMA_START_ADDR_V1); val = armada_pitch(new_state, 0) << 16 | armada_pitch(new_state, 0); armada_reg_queue_set(regs, idx, val, LCD_SPU_DMA_PITCH_YC); val = armada_pitch(new_state, 1) << 16 | armada_pitch(new_state, 2); armada_reg_queue_set(regs, idx, val, LCD_SPU_DMA_PITCH_UV); cfg = CFG_DMA_FMT(drm_fb_to_armada_fb(new_state->fb)->fmt) | CFG_DMA_MOD(drm_fb_to_armada_fb(new_state->fb)->mod) | CFG_CBSH_ENA; if (new_state->visible) cfg |= CFG_DMA_ENA; /* * Shifting a YUV packed format image by one pixel causes the * U/V planes to swap. Compensate for it by also toggling * the UV swap. */ format = new_state->fb->format; src_x = new_state->src.x1 >> 16; if (format->num_planes == 1 && src_x & (format->hsub - 1)) cfg ^= CFG_DMA_MOD(CFG_SWAPUV); if (to_armada_plane_state(new_state)->interlace) cfg |= CFG_DMA_FTOGGLE; cfg_mask = CFG_CBSH_ENA | CFG_DMAFORMAT | CFG_DMA_MOD(CFG_SWAPRB | CFG_SWAPUV | CFG_SWAPYU | CFG_YUV2RGB) | CFG_DMA_FTOGGLE | CFG_DMA_TSTMODE | CFG_DMA_ENA; } else if (old_state->visible != new_state->visible) { cfg = new_state->visible ? CFG_DMA_ENA : 0; cfg_mask = CFG_DMA_ENA; } else { cfg = cfg_mask = 0; } if (drm_rect_width(&old_state->src) != drm_rect_width(&new_state->src) || drm_rect_width(&old_state->dst) != drm_rect_width(&new_state->dst)) { cfg_mask |= CFG_DMA_HSMOOTH; if (drm_rect_width(&new_state->src) >> 16 != drm_rect_width(&new_state->dst)) cfg |= CFG_DMA_HSMOOTH; } if (cfg_mask) armada_reg_queue_mod(regs, idx, cfg, cfg_mask, LCD_SPU_DMA_CTRL0); val = armada_spu_contrast(new_state); if ((!old_state->visible && new_state->visible) || armada_spu_contrast(old_state) != val) armada_reg_queue_set(regs, idx, val, LCD_SPU_CONTRAST); val = armada_spu_saturation(new_state); if ((!old_state->visible && new_state->visible) || armada_spu_saturation(old_state) != val) armada_reg_queue_set(regs, idx, val, LCD_SPU_SATURATION); if (!old_state->visible && new_state->visible) armada_reg_queue_set(regs, idx, 0x00002000, LCD_SPU_CBSH_HUE); val = armada_csc(new_state); if ((!old_state->visible && new_state->visible) || armada_csc(old_state) != val) armada_reg_queue_mod(regs, idx, val, CFG_CSC_MASK, LCD_SPU_IOPAD_CONTROL); val = drm_to_overlay_state(new_state)->colorkey_yr; if ((!old_state->visible && new_state->visible) || drm_to_overlay_state(old_state)->colorkey_yr != val) armada_reg_queue_set(regs, idx, val, LCD_SPU_COLORKEY_Y); val = drm_to_overlay_state(new_state)->colorkey_ug; if ((!old_state->visible && new_state->visible) || drm_to_overlay_state(old_state)->colorkey_ug != val) armada_reg_queue_set(regs, idx, val, LCD_SPU_COLORKEY_U); val = drm_to_overlay_state(new_state)->colorkey_vb; if ((!old_state->visible && new_state->visible) || drm_to_overlay_state(old_state)->colorkey_vb != val) armada_reg_queue_set(regs, idx, val, LCD_SPU_COLORKEY_V); val = drm_to_overlay_state(new_state)->colorkey_mode; if ((!old_state->visible && new_state->visible) || drm_to_overlay_state(old_state)->colorkey_mode != val) armada_reg_queue_mod(regs, idx, val, CFG_CKMODE_MASK | CFG_ALPHAM_MASK | CFG_ALPHA_MASK, LCD_SPU_DMA_CTRL1); val = drm_to_overlay_state(new_state)->colorkey_enable; if (((!old_state->visible && new_state->visible) || drm_to_overlay_state(old_state)->colorkey_enable != val) && dcrtc->variant->has_spu_adv_reg) armada_reg_queue_mod(regs, idx, val, ADV_GRACOLORKEY | ADV_VIDCOLORKEY, LCD_SPU_ADV_REG); dcrtc->regs_idx += idx; } static void armada_drm_overlay_plane_atomic_disable(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, plane); struct armada_crtc *dcrtc; struct armada_regs *regs; unsigned int idx = 0; DRM_DEBUG_KMS("[PLANE:%d:%s]\n", plane->base.id, plane->name); if (!old_state->crtc) return; DRM_DEBUG_KMS("[PLANE:%d:%s] was on [CRTC:%d:%s] with [FB:%d]\n", plane->base.id, plane->name, old_state->crtc->base.id, old_state->crtc->name, old_state->fb->base.id); dcrtc = drm_to_armada_crtc(old_state->crtc); regs = dcrtc->regs + dcrtc->regs_idx; /* Disable plane and power down the YUV FIFOs */ armada_reg_queue_mod(regs, idx, 0, CFG_DMA_ENA, LCD_SPU_DMA_CTRL0); armada_reg_queue_mod(regs, idx, CFG_PDWN16x66 | CFG_PDWN32x66, 0, LCD_SPU_SRAM_PARA1); dcrtc->regs_idx += idx; } static const struct drm_plane_helper_funcs armada_overlay_plane_helper_funcs = { .atomic_check = armada_drm_plane_atomic_check, .atomic_update = armada_drm_overlay_plane_atomic_update, .atomic_disable = armada_drm_overlay_plane_atomic_disable, }; static int armada_overlay_plane_update(struct drm_plane *plane, struct drm_crtc *crtc, struct drm_framebuffer *fb, int crtc_x, int crtc_y, unsigned crtc_w, unsigned crtc_h, uint32_t src_x, uint32_t src_y, uint32_t src_w, uint32_t src_h, struct drm_modeset_acquire_ctx *ctx) { struct drm_atomic_state *state; struct drm_plane_state *plane_state; int ret = 0; trace_armada_ovl_plane_update(plane, crtc, fb, crtc_x, crtc_y, crtc_w, crtc_h, src_x, src_y, src_w, src_h); state = drm_atomic_state_alloc(plane->dev); if (!state) return -ENOMEM; state->acquire_ctx = ctx; plane_state = drm_atomic_get_plane_state(state, plane); if (IS_ERR(plane_state)) { ret = PTR_ERR(plane_state); goto fail; } ret = drm_atomic_set_crtc_for_plane(plane_state, crtc); if (ret != 0) goto fail; drm_atomic_set_fb_for_plane(plane_state, fb); plane_state->crtc_x = crtc_x; plane_state->crtc_y = crtc_y; plane_state->crtc_h = crtc_h; plane_state->crtc_w = crtc_w; plane_state->src_x = src_x; plane_state->src_y = src_y; plane_state->src_h = src_h; plane_state->src_w = src_w; ret = drm_atomic_nonblocking_commit(state); fail: drm_atomic_state_put(state); return ret; } static void armada_overlay_reset(struct drm_plane *plane) { struct armada_overlay_state *state; if (plane->state) __drm_atomic_helper_plane_destroy_state(plane->state); kfree(plane->state); plane->state = NULL; state = kzalloc(sizeof(*state), GFP_KERNEL); if (state) { state->colorkey_yr = 0xfefefe00; state->colorkey_ug = 0x01010100; state->colorkey_vb = 0x01010100; state->colorkey_mode = CFG_CKMODE(CKMODE_RGB) | CFG_ALPHAM_GRA | CFG_ALPHA(0); state->colorkey_enable = ADV_GRACOLORKEY; state->brightness = DEFAULT_BRIGHTNESS; state->contrast = DEFAULT_CONTRAST; state->saturation = DEFAULT_SATURATION; __drm_atomic_helper_plane_reset(plane, &state->base.base); state->base.base.color_encoding = DEFAULT_ENCODING; state->base.base.color_range = DRM_COLOR_YCBCR_LIMITED_RANGE; } } static struct drm_plane_state * armada_overlay_duplicate_state(struct drm_plane *plane) { struct armada_overlay_state *state; if (WARN_ON(!plane->state)) return NULL; state = kmemdup(plane->state, sizeof(*state), GFP_KERNEL); if (state) __drm_atomic_helper_plane_duplicate_state(plane, &state->base.base); return &state->base.base; } static int armada_overlay_set_property(struct drm_plane *plane, struct drm_plane_state *state, struct drm_property *property, uint64_t val) { struct armada_private *priv = drm_to_armada_dev(plane->dev); #define K2R(val) (((val) >> 0) & 0xff) #define K2G(val) (((val) >> 8) & 0xff) #define K2B(val) (((val) >> 16) & 0xff) if (property == priv->colorkey_prop) { #define CCC(v) ((v) << 24 | (v) << 16 | (v) << 8) drm_to_overlay_state(state)->colorkey_yr = CCC(K2R(val)); drm_to_overlay_state(state)->colorkey_ug = CCC(K2G(val)); drm_to_overlay_state(state)->colorkey_vb = CCC(K2B(val)); #undef CCC } else if (property == priv->colorkey_min_prop) { drm_to_overlay_state(state)->colorkey_yr &= ~0x00ff0000; drm_to_overlay_state(state)->colorkey_yr |= K2R(val) << 16; drm_to_overlay_state(state)->colorkey_ug &= ~0x00ff0000; drm_to_overlay_state(state)->colorkey_ug |= K2G(val) << 16; drm_to_overlay_state(state)->colorkey_vb &= ~0x00ff0000; drm_to_overlay_state(state)->colorkey_vb |= K2B(val) << 16; } else if (property == priv->colorkey_max_prop) { drm_to_overlay_state(state)->colorkey_yr &= ~0xff000000; drm_to_overlay_state(state)->colorkey_yr |= K2R(val) << 24; drm_to_overlay_state(state)->colorkey_ug &= ~0xff000000; drm_to_overlay_state(state)->colorkey_ug |= K2G(val) << 24; drm_to_overlay_state(state)->colorkey_vb &= ~0xff000000; drm_to_overlay_state(state)->colorkey_vb |= K2B(val) << 24; } else if (property == priv->colorkey_val_prop) { drm_to_overlay_state(state)->colorkey_yr &= ~0x0000ff00; drm_to_overlay_state(state)->colorkey_yr |= K2R(val) << 8; drm_to_overlay_state(state)->colorkey_ug &= ~0x0000ff00; drm_to_overlay_state(state)->colorkey_ug |= K2G(val) << 8; drm_to_overlay_state(state)->colorkey_vb &= ~0x0000ff00; drm_to_overlay_state(state)->colorkey_vb |= K2B(val) << 8; } else if (property == priv->colorkey_alpha_prop) { drm_to_overlay_state(state)->colorkey_yr &= ~0x000000ff; drm_to_overlay_state(state)->colorkey_yr |= K2R(val); drm_to_overlay_state(state)->colorkey_ug &= ~0x000000ff; drm_to_overlay_state(state)->colorkey_ug |= K2G(val); drm_to_overlay_state(state)->colorkey_vb &= ~0x000000ff; drm_to_overlay_state(state)->colorkey_vb |= K2B(val); } else if (property == priv->colorkey_mode_prop) { if (val == CKMODE_DISABLE) { drm_to_overlay_state(state)->colorkey_mode = CFG_CKMODE(CKMODE_DISABLE) | CFG_ALPHAM_CFG | CFG_ALPHA(255); drm_to_overlay_state(state)->colorkey_enable = 0; } else { drm_to_overlay_state(state)->colorkey_mode = CFG_CKMODE(val) | CFG_ALPHAM_GRA | CFG_ALPHA(0); drm_to_overlay_state(state)->colorkey_enable = ADV_GRACOLORKEY; } } else if (property == priv->brightness_prop) { drm_to_overlay_state(state)->brightness = val - 256; } else if (property == priv->contrast_prop) { drm_to_overlay_state(state)->contrast = val; } else if (property == priv->saturation_prop) { drm_to_overlay_state(state)->saturation = val; } else { return -EINVAL; } return 0; } static int armada_overlay_get_property(struct drm_plane *plane, const struct drm_plane_state *state, struct drm_property *property, uint64_t *val) { struct armada_private *priv = drm_to_armada_dev(plane->dev); #define C2K(c,s) (((c) >> (s)) & 0xff) #define R2BGR(r,g,b,s) (C2K(r,s) << 0 | C2K(g,s) << 8 | C2K(b,s) << 16) if (property == priv->colorkey_prop) { /* Do best-efforts here for this property */ *val = R2BGR(drm_to_overlay_state(state)->colorkey_yr, drm_to_overlay_state(state)->colorkey_ug, drm_to_overlay_state(state)->colorkey_vb, 16); /* If min != max, or min != val, error out */ if (*val != R2BGR(drm_to_overlay_state(state)->colorkey_yr, drm_to_overlay_state(state)->colorkey_ug, drm_to_overlay_state(state)->colorkey_vb, 24) || *val != R2BGR(drm_to_overlay_state(state)->colorkey_yr, drm_to_overlay_state(state)->colorkey_ug, drm_to_overlay_state(state)->colorkey_vb, 8)) return -EINVAL; } else if (property == priv->colorkey_min_prop) { *val = R2BGR(drm_to_overlay_state(state)->colorkey_yr, drm_to_overlay_state(state)->colorkey_ug, drm_to_overlay_state(state)->colorkey_vb, 16); } else if (property == priv->colorkey_max_prop) { *val = R2BGR(drm_to_overlay_state(state)->colorkey_yr, drm_to_overlay_state(state)->colorkey_ug, drm_to_overlay_state(state)->colorkey_vb, 24); } else if (property == priv->colorkey_val_prop) { *val = R2BGR(drm_to_overlay_state(state)->colorkey_yr, drm_to_overlay_state(state)->colorkey_ug, drm_to_overlay_state(state)->colorkey_vb, 8); } else if (property == priv->colorkey_alpha_prop) { *val = R2BGR(drm_to_overlay_state(state)->colorkey_yr, drm_to_overlay_state(state)->colorkey_ug, drm_to_overlay_state(state)->colorkey_vb, 0); } else if (property == priv->colorkey_mode_prop) { *val = FIELD_GET(CFG_CKMODE_MASK, drm_to_overlay_state(state)->colorkey_mode); } else if (property == priv->brightness_prop) { *val = drm_to_overlay_state(state)->brightness + 256; } else if (property == priv->contrast_prop) { *val = drm_to_overlay_state(state)->contrast; } else if (property == priv->saturation_prop) { *val = drm_to_overlay_state(state)->saturation; } else { return -EINVAL; } return 0; } static const struct drm_plane_funcs armada_ovl_plane_funcs = { .update_plane = armada_overlay_plane_update, .disable_plane = drm_atomic_helper_disable_plane, .destroy = drm_plane_helper_destroy, .reset = armada_overlay_reset, .atomic_duplicate_state = armada_overlay_duplicate_state, .atomic_destroy_state = drm_atomic_helper_plane_destroy_state, .atomic_set_property = armada_overlay_set_property, .atomic_get_property = armada_overlay_get_property, }; static const uint32_t armada_ovl_formats[] = { DRM_FORMAT_UYVY, DRM_FORMAT_YUYV, DRM_FORMAT_YUV420, DRM_FORMAT_YVU420, DRM_FORMAT_YUV422, DRM_FORMAT_YVU422, DRM_FORMAT_VYUY, DRM_FORMAT_YVYU, DRM_FORMAT_ARGB8888, DRM_FORMAT_ABGR8888, DRM_FORMAT_XRGB8888, DRM_FORMAT_XBGR8888, DRM_FORMAT_RGB888, DRM_FORMAT_BGR888, DRM_FORMAT_ARGB1555, DRM_FORMAT_ABGR1555, DRM_FORMAT_RGB565, DRM_FORMAT_BGR565, }; static const struct drm_prop_enum_list armada_drm_colorkey_enum_list[] = { { CKMODE_DISABLE, "disabled" }, { CKMODE_Y, "Y component" }, { CKMODE_U, "U component" }, { CKMODE_V, "V component" }, { CKMODE_RGB, "RGB" }, { CKMODE_R, "R component" }, { CKMODE_G, "G component" }, { CKMODE_B, "B component" }, }; static int armada_overlay_create_properties(struct drm_device *dev) { struct armada_private *priv = drm_to_armada_dev(dev); if (priv->colorkey_prop) return 0; priv->colorkey_prop = drm_property_create_range(dev, 0, "colorkey", 0, 0xffffff); priv->colorkey_min_prop = drm_property_create_range(dev, 0, "colorkey_min", 0, 0xffffff); priv->colorkey_max_prop = drm_property_create_range(dev, 0, "colorkey_max", 0, 0xffffff); priv->colorkey_val_prop = drm_property_create_range(dev, 0, "colorkey_val", 0, 0xffffff); priv->colorkey_alpha_prop = drm_property_create_range(dev, 0, "colorkey_alpha", 0, 0xffffff); priv->colorkey_mode_prop = drm_property_create_enum(dev, 0, "colorkey_mode", armada_drm_colorkey_enum_list, ARRAY_SIZE(armada_drm_colorkey_enum_list)); priv->brightness_prop = drm_property_create_range(dev, 0, "brightness", 0, 256 + 255); priv->contrast_prop = drm_property_create_range(dev, 0, "contrast", 0, 0x7fff); priv->saturation_prop = drm_property_create_range(dev, 0, "saturation", 0, 0x7fff); if (!priv->colorkey_prop) return -ENOMEM; return 0; } int armada_overlay_plane_create(struct drm_device *dev, unsigned long crtcs) { struct armada_private *priv = drm_to_armada_dev(dev); struct drm_mode_object *mobj; struct drm_plane *overlay; int ret; ret = armada_overlay_create_properties(dev); if (ret) return ret; overlay = kzalloc(sizeof(*overlay), GFP_KERNEL); if (!overlay) return -ENOMEM; drm_plane_helper_add(overlay, &armada_overlay_plane_helper_funcs); ret = drm_universal_plane_init(dev, overlay, crtcs, &armada_ovl_plane_funcs, armada_ovl_formats, ARRAY_SIZE(armada_ovl_formats), NULL, DRM_PLANE_TYPE_OVERLAY, NULL); if (ret) { kfree(overlay); return ret; } mobj = &overlay->base; drm_object_attach_property(mobj, priv->colorkey_prop, 0x0101fe); drm_object_attach_property(mobj, priv->colorkey_min_prop, 0x0101fe); drm_object_attach_property(mobj, priv->colorkey_max_prop, 0x0101fe); drm_object_attach_property(mobj, priv->colorkey_val_prop, 0x0101fe); drm_object_attach_property(mobj, priv->colorkey_alpha_prop, 0x000000); drm_object_attach_property(mobj, priv->colorkey_mode_prop, CKMODE_RGB); drm_object_attach_property(mobj, priv->brightness_prop, 256 + DEFAULT_BRIGHTNESS); drm_object_attach_property(mobj, priv->contrast_prop, DEFAULT_CONTRAST); drm_object_attach_property(mobj, priv->saturation_prop, DEFAULT_SATURATION); ret = drm_plane_create_color_properties(overlay, BIT(DRM_COLOR_YCBCR_BT601) | BIT(DRM_COLOR_YCBCR_BT709), BIT(DRM_COLOR_YCBCR_LIMITED_RANGE), DEFAULT_ENCODING, DRM_COLOR_YCBCR_LIMITED_RANGE); return ret; }
linux-master
drivers/gpu/drm/armada/armada_overlay.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 Russell King * Written from the i915 driver. */ #include <linux/errno.h> #include <linux/fb.h> #include <linux/kernel.h> #include <linux/module.h> #include <drm/drm_crtc_helper.h> #include <drm/drm_drv.h> #include <drm/drm_fb_helper.h> #include <drm/drm_fourcc.h> #include "armada_crtc.h" #include "armada_drm.h" #include "armada_fb.h" #include "armada_gem.h" static void armada_fbdev_fb_destroy(struct fb_info *info) { struct drm_fb_helper *fbh = info->par; drm_fb_helper_fini(fbh); fbh->fb->funcs->destroy(fbh->fb); drm_client_release(&fbh->client); drm_fb_helper_unprepare(fbh); kfree(fbh); } static const struct fb_ops armada_fb_ops = { .owner = THIS_MODULE, FB_DEFAULT_IOMEM_OPS, DRM_FB_HELPER_DEFAULT_OPS, .fb_destroy = armada_fbdev_fb_destroy, }; static int armada_fbdev_create(struct drm_fb_helper *fbh, struct drm_fb_helper_surface_size *sizes) { struct drm_device *dev = fbh->dev; struct drm_mode_fb_cmd2 mode; struct armada_framebuffer *dfb; struct armada_gem_object *obj; struct fb_info *info; int size, ret; void *ptr; memset(&mode, 0, sizeof(mode)); mode.width = sizes->surface_width; mode.height = sizes->surface_height; mode.pitches[0] = armada_pitch(mode.width, sizes->surface_bpp); mode.pixel_format = drm_mode_legacy_fb_format(sizes->surface_bpp, sizes->surface_depth); size = mode.pitches[0] * mode.height; obj = armada_gem_alloc_private_object(dev, size); if (!obj) { DRM_ERROR("failed to allocate fb memory\n"); return -ENOMEM; } ret = armada_gem_linear_back(dev, obj); if (ret) { drm_gem_object_put(&obj->obj); return ret; } ptr = armada_gem_map_object(dev, obj); if (!ptr) { drm_gem_object_put(&obj->obj); return -ENOMEM; } dfb = armada_framebuffer_create(dev, &mode, obj); /* * A reference is now held by the framebuffer object if * successful, otherwise this drops the ref for the error path. */ drm_gem_object_put(&obj->obj); if (IS_ERR(dfb)) return PTR_ERR(dfb); info = drm_fb_helper_alloc_info(fbh); if (IS_ERR(info)) { ret = PTR_ERR(info); goto err_fballoc; } info->fbops = &armada_fb_ops; info->fix.smem_start = obj->phys_addr; info->fix.smem_len = obj->obj.size; info->screen_size = obj->obj.size; info->screen_base = ptr; fbh->fb = &dfb->fb; drm_fb_helper_fill_info(info, fbh, sizes); DRM_DEBUG_KMS("allocated %dx%d %dbpp fb: 0x%08llx\n", dfb->fb.width, dfb->fb.height, dfb->fb.format->cpp[0] * 8, (unsigned long long)obj->phys_addr); return 0; err_fballoc: dfb->fb.funcs->destroy(&dfb->fb); return ret; } static int armada_fb_probe(struct drm_fb_helper *fbh, struct drm_fb_helper_surface_size *sizes) { int ret = 0; if (!fbh->fb) { ret = armada_fbdev_create(fbh, sizes); if (ret == 0) ret = 1; } return ret; } static const struct drm_fb_helper_funcs armada_fb_helper_funcs = { .fb_probe = armada_fb_probe, }; /* * Fbdev client and struct drm_client_funcs */ static void armada_fbdev_client_unregister(struct drm_client_dev *client) { struct drm_fb_helper *fbh = drm_fb_helper_from_client(client); if (fbh->info) { drm_fb_helper_unregister_info(fbh); } else { drm_client_release(&fbh->client); drm_fb_helper_unprepare(fbh); kfree(fbh); } } static int armada_fbdev_client_restore(struct drm_client_dev *client) { drm_fb_helper_lastclose(client->dev); return 0; } static int armada_fbdev_client_hotplug(struct drm_client_dev *client) { struct drm_fb_helper *fbh = drm_fb_helper_from_client(client); struct drm_device *dev = client->dev; int ret; if (dev->fb_helper) return drm_fb_helper_hotplug_event(dev->fb_helper); ret = drm_fb_helper_init(dev, fbh); if (ret) goto err_drm_err; if (!drm_drv_uses_atomic_modeset(dev)) drm_helper_disable_unused_functions(dev); ret = drm_fb_helper_initial_config(fbh); if (ret) goto err_drm_fb_helper_fini; return 0; err_drm_fb_helper_fini: drm_fb_helper_fini(fbh); err_drm_err: drm_err(dev, "armada: Failed to setup fbdev emulation (ret=%d)\n", ret); return ret; } static const struct drm_client_funcs armada_fbdev_client_funcs = { .owner = THIS_MODULE, .unregister = armada_fbdev_client_unregister, .restore = armada_fbdev_client_restore, .hotplug = armada_fbdev_client_hotplug, }; void armada_fbdev_setup(struct drm_device *dev) { struct drm_fb_helper *fbh; int ret; drm_WARN(dev, !dev->registered, "Device has not been registered.\n"); drm_WARN(dev, dev->fb_helper, "fb_helper is already set!\n"); fbh = kzalloc(sizeof(*fbh), GFP_KERNEL); if (!fbh) return; drm_fb_helper_prepare(dev, fbh, 32, &armada_fb_helper_funcs); ret = drm_client_init(dev, &fbh->client, "fbdev", &armada_fbdev_client_funcs); if (ret) { drm_err(dev, "Failed to register client: %d\n", ret); goto err_drm_client_init; } drm_client_register(&fbh->client); return; err_drm_client_init: drm_fb_helper_unprepare(fbh); kfree(fbh); return; }
linux-master
drivers/gpu/drm/armada/armada_fbdev.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 Russell King */ #include <linux/clk.h> #include <linux/component.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_graph.h> #include <linux/platform_device.h> #include <drm/drm_aperture.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_drv.h> #include <drm/drm_ioctl.h> #include <drm/drm_managed.h> #include <drm/drm_prime.h> #include <drm/drm_probe_helper.h> #include <drm/drm_of.h> #include <drm/drm_vblank.h> #include "armada_crtc.h" #include "armada_drm.h" #include "armada_gem.h" #include "armada_fb.h" #include "armada_hw.h" #include <drm/armada_drm.h> #include "armada_ioctlP.h" static const struct drm_ioctl_desc armada_ioctls[] = { DRM_IOCTL_DEF_DRV(ARMADA_GEM_CREATE, armada_gem_create_ioctl,0), DRM_IOCTL_DEF_DRV(ARMADA_GEM_MMAP, armada_gem_mmap_ioctl, 0), DRM_IOCTL_DEF_DRV(ARMADA_GEM_PWRITE, armada_gem_pwrite_ioctl, 0), }; DEFINE_DRM_GEM_FOPS(armada_drm_fops); static const struct drm_driver armada_drm_driver = { .gem_prime_import = armada_gem_prime_import, .dumb_create = armada_gem_dumb_create, .major = 1, .minor = 0, .name = "armada-drm", .desc = "Armada SoC DRM", .date = "20120730", .driver_features = DRIVER_GEM | DRIVER_MODESET | DRIVER_ATOMIC, .ioctls = armada_ioctls, .num_ioctls = ARRAY_SIZE(armada_ioctls), .fops = &armada_drm_fops, }; static const struct drm_mode_config_funcs armada_drm_mode_config_funcs = { .fb_create = armada_fb_create, .atomic_check = drm_atomic_helper_check, .atomic_commit = drm_atomic_helper_commit, }; static int armada_drm_bind(struct device *dev) { struct armada_private *priv; struct resource *mem = NULL; int ret, n; for (n = 0; ; n++) { struct resource *r = platform_get_resource(to_platform_device(dev), IORESOURCE_MEM, n); if (!r) break; /* Resources above 64K are graphics memory */ if (resource_size(r) > SZ_64K) mem = r; else return -EINVAL; } if (!mem) return -ENXIO; if (!devm_request_mem_region(dev, mem->start, resource_size(mem), "armada-drm")) return -EBUSY; priv = devm_drm_dev_alloc(dev, &armada_drm_driver, struct armada_private, drm); if (IS_ERR(priv)) { dev_err(dev, "[" DRM_NAME ":%s] devm_drm_dev_alloc failed: %li\n", __func__, PTR_ERR(priv)); return PTR_ERR(priv); } /* Remove early framebuffers */ ret = drm_aperture_remove_framebuffers(&armada_drm_driver); if (ret) { dev_err(dev, "[" DRM_NAME ":%s] can't kick out simple-fb: %d\n", __func__, ret); return ret; } dev_set_drvdata(dev, &priv->drm); /* Mode setting support */ drm_mode_config_init(&priv->drm); priv->drm.mode_config.min_width = 320; priv->drm.mode_config.min_height = 200; /* * With vscale enabled, the maximum width is 1920 due to the * 1920 by 3 lines RAM */ priv->drm.mode_config.max_width = 1920; priv->drm.mode_config.max_height = 2048; priv->drm.mode_config.preferred_depth = 24; priv->drm.mode_config.funcs = &armada_drm_mode_config_funcs; drm_mm_init(&priv->linear, mem->start, resource_size(mem)); mutex_init(&priv->linear_lock); ret = component_bind_all(dev, &priv->drm); if (ret) goto err_kms; ret = drm_vblank_init(&priv->drm, priv->drm.mode_config.num_crtc); if (ret) goto err_comp; drm_mode_config_reset(&priv->drm); drm_kms_helper_poll_init(&priv->drm); ret = drm_dev_register(&priv->drm, 0); if (ret) goto err_poll; #ifdef CONFIG_DEBUG_FS armada_drm_debugfs_init(priv->drm.primary); #endif armada_fbdev_setup(&priv->drm); return 0; err_poll: drm_kms_helper_poll_fini(&priv->drm); err_comp: component_unbind_all(dev, &priv->drm); err_kms: drm_mode_config_cleanup(&priv->drm); drm_mm_takedown(&priv->linear); return ret; } static void armada_drm_unbind(struct device *dev) { struct drm_device *drm = dev_get_drvdata(dev); struct armada_private *priv = drm_to_armada_dev(drm); drm_kms_helper_poll_fini(&priv->drm); drm_dev_unregister(&priv->drm); drm_atomic_helper_shutdown(&priv->drm); component_unbind_all(dev, &priv->drm); drm_mode_config_cleanup(&priv->drm); drm_mm_takedown(&priv->linear); } static void armada_add_endpoints(struct device *dev, struct component_match **match, struct device_node *dev_node) { struct device_node *ep, *remote; for_each_endpoint_of_node(dev_node, ep) { remote = of_graph_get_remote_port_parent(ep); if (remote && of_device_is_available(remote)) drm_of_component_match_add(dev, match, component_compare_of, remote); of_node_put(remote); } } static const struct component_master_ops armada_master_ops = { .bind = armada_drm_bind, .unbind = armada_drm_unbind, }; static int armada_drm_probe(struct platform_device *pdev) { struct component_match *match = NULL; struct device *dev = &pdev->dev; int ret; ret = drm_of_component_probe(dev, component_compare_dev_name, &armada_master_ops); if (ret != -EINVAL) return ret; if (dev->platform_data) { char **devices = dev->platform_data; struct device *d; int i; for (i = 0; devices[i]; i++) component_match_add(dev, &match, component_compare_dev_name, devices[i]); if (i == 0) { dev_err(dev, "missing 'ports' property\n"); return -ENODEV; } for (i = 0; devices[i]; i++) { d = bus_find_device_by_name(&platform_bus_type, NULL, devices[i]); if (d && d->of_node) armada_add_endpoints(dev, &match, d->of_node); put_device(d); } } return component_master_add_with_match(&pdev->dev, &armada_master_ops, match); } static int armada_drm_remove(struct platform_device *pdev) { component_master_del(&pdev->dev, &armada_master_ops); return 0; } static const struct platform_device_id armada_drm_platform_ids[] = { { .name = "armada-drm", }, { .name = "armada-510-drm", }, { }, }; MODULE_DEVICE_TABLE(platform, armada_drm_platform_ids); static struct platform_driver armada_drm_platform_driver = { .probe = armada_drm_probe, .remove = armada_drm_remove, .driver = { .name = "armada-drm", }, .id_table = armada_drm_platform_ids, }; static int __init armada_drm_init(void) { int ret; if (drm_firmware_drivers_only()) return -ENODEV; ret = platform_driver_register(&armada_lcd_platform_driver); if (ret) return ret; ret = platform_driver_register(&armada_drm_platform_driver); if (ret) platform_driver_unregister(&armada_lcd_platform_driver); return ret; } module_init(armada_drm_init); static void __exit armada_drm_exit(void) { platform_driver_unregister(&armada_drm_platform_driver); platform_driver_unregister(&armada_lcd_platform_driver); } module_exit(armada_drm_exit); MODULE_AUTHOR("Russell King <[email protected]>"); MODULE_DESCRIPTION("Armada DRM Driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:armada-drm");
linux-master
drivers/gpu/drm/armada/armada_drv.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 Russell King */ #include <drm/drm_modeset_helper.h> #include <drm/drm_fourcc.h> #include <drm/drm_gem_framebuffer_helper.h> #include "armada_drm.h" #include "armada_fb.h" #include "armada_gem.h" #include "armada_hw.h" static const struct drm_framebuffer_funcs armada_fb_funcs = { .destroy = drm_gem_fb_destroy, .create_handle = drm_gem_fb_create_handle, }; struct armada_framebuffer *armada_framebuffer_create(struct drm_device *dev, const struct drm_mode_fb_cmd2 *mode, struct armada_gem_object *obj) { struct armada_framebuffer *dfb; uint8_t format, config; int ret; switch (mode->pixel_format) { #define FMT(drm, fmt, mod) \ case DRM_FORMAT_##drm: \ format = CFG_##fmt; \ config = mod; \ break FMT(RGB565, 565, CFG_SWAPRB); FMT(BGR565, 565, 0); FMT(ARGB1555, 1555, CFG_SWAPRB); FMT(ABGR1555, 1555, 0); FMT(RGB888, 888PACK, CFG_SWAPRB); FMT(BGR888, 888PACK, 0); FMT(XRGB8888, X888, CFG_SWAPRB); FMT(XBGR8888, X888, 0); FMT(ARGB8888, 8888, CFG_SWAPRB); FMT(ABGR8888, 8888, 0); FMT(YUYV, 422PACK, CFG_YUV2RGB | CFG_SWAPYU | CFG_SWAPUV); FMT(UYVY, 422PACK, CFG_YUV2RGB); FMT(VYUY, 422PACK, CFG_YUV2RGB | CFG_SWAPUV); FMT(YVYU, 422PACK, CFG_YUV2RGB | CFG_SWAPYU); FMT(YUV422, 422, CFG_YUV2RGB); FMT(YVU422, 422, CFG_YUV2RGB | CFG_SWAPUV); FMT(YUV420, 420, CFG_YUV2RGB); FMT(YVU420, 420, CFG_YUV2RGB | CFG_SWAPUV); FMT(C8, PSEUDO8, 0); #undef FMT default: return ERR_PTR(-EINVAL); } dfb = kzalloc(sizeof(*dfb), GFP_KERNEL); if (!dfb) { DRM_ERROR("failed to allocate Armada fb object\n"); return ERR_PTR(-ENOMEM); } dfb->fmt = format; dfb->mod = config; dfb->fb.obj[0] = &obj->obj; drm_helper_mode_fill_fb_struct(dev, &dfb->fb, mode); ret = drm_framebuffer_init(dev, &dfb->fb, &armada_fb_funcs); if (ret) { kfree(dfb); return ERR_PTR(ret); } /* * Take a reference on our object as we're successful - the * caller already holds a reference, which keeps us safe for * the above call, but the caller will drop their reference * to it. Hence we need to take our own reference. */ drm_gem_object_get(&obj->obj); return dfb; } struct drm_framebuffer *armada_fb_create(struct drm_device *dev, struct drm_file *dfile, const struct drm_mode_fb_cmd2 *mode) { const struct drm_format_info *info = drm_get_format_info(dev, mode); struct armada_gem_object *obj; struct armada_framebuffer *dfb; int ret; DRM_DEBUG_DRIVER("w%u h%u pf%08x f%u p%u,%u,%u\n", mode->width, mode->height, mode->pixel_format, mode->flags, mode->pitches[0], mode->pitches[1], mode->pitches[2]); /* We can only handle a single plane at the moment */ if (info->num_planes > 1 && (mode->handles[0] != mode->handles[1] || mode->handles[0] != mode->handles[2])) { ret = -EINVAL; goto err; } obj = armada_gem_object_lookup(dfile, mode->handles[0]); if (!obj) { ret = -ENOENT; goto err; } if (obj->obj.import_attach && !obj->sgt) { ret = armada_gem_map_import(obj); if (ret) goto err_unref; } /* Framebuffer objects must have a valid device address for scanout */ if (!obj->mapped) { ret = -EINVAL; goto err_unref; } dfb = armada_framebuffer_create(dev, mode, obj); if (IS_ERR(dfb)) { ret = PTR_ERR(dfb); goto err; } drm_gem_object_put(&obj->obj); return &dfb->fb; err_unref: drm_gem_object_put(&obj->obj); err: DRM_ERROR("failed to initialize framebuffer: %d\n", ret); return ERR_PTR(ret); }
linux-master
drivers/gpu/drm/armada/armada_fb.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 Russell King */ #include <linux/dma-buf.h> #include <linux/dma-mapping.h> #include <linux/mman.h> #include <linux/shmem_fs.h> #include <drm/armada_drm.h> #include <drm/drm_prime.h> #include "armada_drm.h" #include "armada_gem.h" #include "armada_ioctlP.h" MODULE_IMPORT_NS(DMA_BUF); static vm_fault_t armada_gem_vm_fault(struct vm_fault *vmf) { struct drm_gem_object *gobj = vmf->vma->vm_private_data; struct armada_gem_object *obj = drm_to_armada_gem(gobj); unsigned long pfn = obj->phys_addr >> PAGE_SHIFT; pfn += (vmf->address - vmf->vma->vm_start) >> PAGE_SHIFT; return vmf_insert_pfn(vmf->vma, vmf->address, pfn); } static const struct vm_operations_struct armada_gem_vm_ops = { .fault = armada_gem_vm_fault, .open = drm_gem_vm_open, .close = drm_gem_vm_close, }; static size_t roundup_gem_size(size_t size) { return roundup(size, PAGE_SIZE); } void armada_gem_free_object(struct drm_gem_object *obj) { struct armada_gem_object *dobj = drm_to_armada_gem(obj); struct armada_private *priv = drm_to_armada_dev(obj->dev); DRM_DEBUG_DRIVER("release obj %p\n", dobj); drm_gem_free_mmap_offset(&dobj->obj); might_lock(&priv->linear_lock); if (dobj->page) { /* page backed memory */ unsigned int order = get_order(dobj->obj.size); __free_pages(dobj->page, order); } else if (dobj->linear) { /* linear backed memory */ mutex_lock(&priv->linear_lock); drm_mm_remove_node(dobj->linear); mutex_unlock(&priv->linear_lock); kfree(dobj->linear); if (dobj->addr) iounmap(dobj->addr); } if (dobj->obj.import_attach) { /* We only ever display imported data */ if (dobj->sgt) dma_buf_unmap_attachment_unlocked(dobj->obj.import_attach, dobj->sgt, DMA_TO_DEVICE); drm_prime_gem_destroy(&dobj->obj, NULL); } drm_gem_object_release(&dobj->obj); kfree(dobj); } int armada_gem_linear_back(struct drm_device *dev, struct armada_gem_object *obj) { struct armada_private *priv = drm_to_armada_dev(dev); size_t size = obj->obj.size; if (obj->page || obj->linear) return 0; /* * If it is a small allocation (typically cursor, which will * be 32x64 or 64x32 ARGB pixels) try to get it from the system. * Framebuffers will never be this small (our minimum size for * framebuffers is larger than this anyway.) Such objects are * only accessed by the CPU so we don't need any special handing * here. */ if (size <= 8192) { unsigned int order = get_order(size); struct page *p = alloc_pages(GFP_KERNEL, order); if (p) { obj->addr = page_address(p); obj->phys_addr = page_to_phys(p); obj->page = p; memset(obj->addr, 0, PAGE_ALIGN(size)); } } /* * We could grab something from DMA if it's enabled, but that * involves building in a problem: * * GEM DMA helper interface uses dma_alloc_coherent(), which provides * us with an CPU virtual address and a device address. * * The CPU virtual address may be either an address in the kernel * direct mapped region (for example, as it would be on x86) or * it may be remapped into another part of kernel memory space * (eg, as it would be on ARM.) This means virt_to_phys() on the * returned virtual address is invalid depending on the architecture * implementation. * * The device address may also not be a physical address; it may * be that there is some kind of remapping between the device and * system RAM, which makes the use of the device address also * unsafe to re-use as a physical address. * * This makes DRM usage of dma_alloc_coherent() in a generic way * at best very questionable and unsafe. */ /* Otherwise, grab it from our linear allocation */ if (!obj->page) { struct drm_mm_node *node; unsigned align = min_t(unsigned, size, SZ_2M); void __iomem *ptr; int ret; node = kzalloc(sizeof(*node), GFP_KERNEL); if (!node) return -ENOSPC; mutex_lock(&priv->linear_lock); ret = drm_mm_insert_node_generic(&priv->linear, node, size, align, 0, 0); mutex_unlock(&priv->linear_lock); if (ret) { kfree(node); return ret; } obj->linear = node; /* Ensure that the memory we're returning is cleared. */ ptr = ioremap_wc(obj->linear->start, size); if (!ptr) { mutex_lock(&priv->linear_lock); drm_mm_remove_node(obj->linear); mutex_unlock(&priv->linear_lock); kfree(obj->linear); obj->linear = NULL; return -ENOMEM; } memset_io(ptr, 0, size); iounmap(ptr); obj->phys_addr = obj->linear->start; obj->dev_addr = obj->linear->start; obj->mapped = true; } DRM_DEBUG_DRIVER("obj %p phys %#llx dev %#llx\n", obj, (unsigned long long)obj->phys_addr, (unsigned long long)obj->dev_addr); return 0; } void * armada_gem_map_object(struct drm_device *dev, struct armada_gem_object *dobj) { /* only linear objects need to be ioremap'd */ if (!dobj->addr && dobj->linear) dobj->addr = ioremap_wc(dobj->phys_addr, dobj->obj.size); return dobj->addr; } static const struct drm_gem_object_funcs armada_gem_object_funcs = { .free = armada_gem_free_object, .export = armada_gem_prime_export, .vm_ops = &armada_gem_vm_ops, }; struct armada_gem_object * armada_gem_alloc_private_object(struct drm_device *dev, size_t size) { struct armada_gem_object *obj; size = roundup_gem_size(size); obj = kzalloc(sizeof(*obj), GFP_KERNEL); if (!obj) return NULL; obj->obj.funcs = &armada_gem_object_funcs; drm_gem_private_object_init(dev, &obj->obj, size); DRM_DEBUG_DRIVER("alloc private obj %p size %zu\n", obj, size); return obj; } static struct armada_gem_object *armada_gem_alloc_object(struct drm_device *dev, size_t size) { struct armada_gem_object *obj; struct address_space *mapping; size = roundup_gem_size(size); obj = kzalloc(sizeof(*obj), GFP_KERNEL); if (!obj) return NULL; obj->obj.funcs = &armada_gem_object_funcs; if (drm_gem_object_init(dev, &obj->obj, size)) { kfree(obj); return NULL; } mapping = obj->obj.filp->f_mapping; mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE); DRM_DEBUG_DRIVER("alloc obj %p size %zu\n", obj, size); return obj; } /* Dumb alloc support */ int armada_gem_dumb_create(struct drm_file *file, struct drm_device *dev, struct drm_mode_create_dumb *args) { struct armada_gem_object *dobj; u32 handle; size_t size; int ret; args->pitch = armada_pitch(args->width, args->bpp); args->size = size = args->pitch * args->height; dobj = armada_gem_alloc_private_object(dev, size); if (dobj == NULL) return -ENOMEM; ret = armada_gem_linear_back(dev, dobj); if (ret) goto err; ret = drm_gem_handle_create(file, &dobj->obj, &handle); if (ret) goto err; args->handle = handle; /* drop reference from allocate - handle holds it now */ DRM_DEBUG_DRIVER("obj %p size %zu handle %#x\n", dobj, size, handle); err: drm_gem_object_put(&dobj->obj); return ret; } /* Private driver gem ioctls */ int armada_gem_create_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_armada_gem_create *args = data; struct armada_gem_object *dobj; size_t size; u32 handle; int ret; if (args->size == 0) return -ENOMEM; size = args->size; dobj = armada_gem_alloc_object(dev, size); if (dobj == NULL) return -ENOMEM; ret = drm_gem_handle_create(file, &dobj->obj, &handle); if (ret) goto err; args->handle = handle; /* drop reference from allocate - handle holds it now */ DRM_DEBUG_DRIVER("obj %p size %zu handle %#x\n", dobj, size, handle); err: drm_gem_object_put(&dobj->obj); return ret; } /* Map a shmem-backed object into process memory space */ int armada_gem_mmap_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_armada_gem_mmap *args = data; struct armada_gem_object *dobj; unsigned long addr; dobj = armada_gem_object_lookup(file, args->handle); if (dobj == NULL) return -ENOENT; if (!dobj->obj.filp) { drm_gem_object_put(&dobj->obj); return -EINVAL; } addr = vm_mmap(dobj->obj.filp, 0, args->size, PROT_READ | PROT_WRITE, MAP_SHARED, args->offset); drm_gem_object_put(&dobj->obj); if (IS_ERR_VALUE(addr)) return addr; args->addr = addr; return 0; } int armada_gem_pwrite_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_armada_gem_pwrite *args = data; struct armada_gem_object *dobj; char __user *ptr; int ret = 0; DRM_DEBUG_DRIVER("handle %u off %u size %u ptr 0x%llx\n", args->handle, args->offset, args->size, args->ptr); if (args->size == 0) return 0; ptr = (char __user *)(uintptr_t)args->ptr; if (!access_ok(ptr, args->size)) return -EFAULT; if (fault_in_readable(ptr, args->size)) return -EFAULT; dobj = armada_gem_object_lookup(file, args->handle); if (dobj == NULL) return -ENOENT; /* Must be a kernel-mapped object */ if (!dobj->addr) return -EINVAL; if (args->offset > dobj->obj.size || args->size > dobj->obj.size - args->offset) { DRM_ERROR("invalid size: object size %u\n", dobj->obj.size); ret = -EINVAL; goto unref; } if (copy_from_user(dobj->addr + args->offset, ptr, args->size)) { ret = -EFAULT; } else if (dobj->update) { dobj->update(dobj->update_data); ret = 0; } unref: drm_gem_object_put(&dobj->obj); return ret; } /* Prime support */ static struct sg_table * armada_gem_prime_map_dma_buf(struct dma_buf_attachment *attach, enum dma_data_direction dir) { struct drm_gem_object *obj = attach->dmabuf->priv; struct armada_gem_object *dobj = drm_to_armada_gem(obj); struct scatterlist *sg; struct sg_table *sgt; int i; sgt = kmalloc(sizeof(*sgt), GFP_KERNEL); if (!sgt) return NULL; if (dobj->obj.filp) { struct address_space *mapping; int count; count = dobj->obj.size / PAGE_SIZE; if (sg_alloc_table(sgt, count, GFP_KERNEL)) goto free_sgt; mapping = dobj->obj.filp->f_mapping; for_each_sgtable_sg(sgt, sg, i) { struct page *page; page = shmem_read_mapping_page(mapping, i); if (IS_ERR(page)) goto release; sg_set_page(sg, page, PAGE_SIZE, 0); } if (dma_map_sgtable(attach->dev, sgt, dir, 0)) goto release; } else if (dobj->page) { /* Single contiguous page */ if (sg_alloc_table(sgt, 1, GFP_KERNEL)) goto free_sgt; sg_set_page(sgt->sgl, dobj->page, dobj->obj.size, 0); if (dma_map_sgtable(attach->dev, sgt, dir, 0)) goto free_table; } else if (dobj->linear) { /* Single contiguous physical region - no struct page */ if (sg_alloc_table(sgt, 1, GFP_KERNEL)) goto free_sgt; sg_dma_address(sgt->sgl) = dobj->dev_addr; sg_dma_len(sgt->sgl) = dobj->obj.size; } else { goto free_sgt; } return sgt; release: for_each_sgtable_sg(sgt, sg, i) if (sg_page(sg)) put_page(sg_page(sg)); free_table: sg_free_table(sgt); free_sgt: kfree(sgt); return NULL; } static void armada_gem_prime_unmap_dma_buf(struct dma_buf_attachment *attach, struct sg_table *sgt, enum dma_data_direction dir) { struct drm_gem_object *obj = attach->dmabuf->priv; struct armada_gem_object *dobj = drm_to_armada_gem(obj); int i; if (!dobj->linear) dma_unmap_sgtable(attach->dev, sgt, dir, 0); if (dobj->obj.filp) { struct scatterlist *sg; for_each_sgtable_sg(sgt, sg, i) put_page(sg_page(sg)); } sg_free_table(sgt); kfree(sgt); } static int armada_gem_dmabuf_mmap(struct dma_buf *buf, struct vm_area_struct *vma) { return -EINVAL; } static const struct dma_buf_ops armada_gem_prime_dmabuf_ops = { .map_dma_buf = armada_gem_prime_map_dma_buf, .unmap_dma_buf = armada_gem_prime_unmap_dma_buf, .release = drm_gem_dmabuf_release, .mmap = armada_gem_dmabuf_mmap, }; struct dma_buf * armada_gem_prime_export(struct drm_gem_object *obj, int flags) { DEFINE_DMA_BUF_EXPORT_INFO(exp_info); exp_info.ops = &armada_gem_prime_dmabuf_ops; exp_info.size = obj->size; exp_info.flags = O_RDWR; exp_info.priv = obj; return drm_gem_dmabuf_export(obj->dev, &exp_info); } struct drm_gem_object * armada_gem_prime_import(struct drm_device *dev, struct dma_buf *buf) { struct dma_buf_attachment *attach; struct armada_gem_object *dobj; if (buf->ops == &armada_gem_prime_dmabuf_ops) { struct drm_gem_object *obj = buf->priv; if (obj->dev == dev) { /* * Importing our own dmabuf(s) increases the * refcount on the gem object itself. */ drm_gem_object_get(obj); return obj; } } attach = dma_buf_attach(buf, dev->dev); if (IS_ERR(attach)) return ERR_CAST(attach); dobj = armada_gem_alloc_private_object(dev, buf->size); if (!dobj) { dma_buf_detach(buf, attach); return ERR_PTR(-ENOMEM); } dobj->obj.import_attach = attach; get_dma_buf(buf); /* * Don't call dma_buf_map_attachment() here - it maps the * scatterlist immediately for DMA, and this is not always * an appropriate thing to do. */ return &dobj->obj; } int armada_gem_map_import(struct armada_gem_object *dobj) { int ret; dobj->sgt = dma_buf_map_attachment_unlocked(dobj->obj.import_attach, DMA_TO_DEVICE); if (IS_ERR(dobj->sgt)) { ret = PTR_ERR(dobj->sgt); dobj->sgt = NULL; DRM_ERROR("dma_buf_map_attachment() error: %d\n", ret); return ret; } if (dobj->sgt->nents > 1) { DRM_ERROR("dma_buf_map_attachment() returned an (unsupported) scattered list\n"); return -EINVAL; } if (sg_dma_len(dobj->sgt->sgl) < dobj->obj.size) { DRM_ERROR("dma_buf_map_attachment() returned a small buffer\n"); return -EINVAL; } dobj->dev_addr = sg_dma_address(dobj->sgt->sgl); dobj->mapped = true; return 0; }
linux-master
drivers/gpu/drm/armada/armada_gem.c
// SPDX-License-Identifier: GPL-2.0 #ifndef __CHECKER__ #define CREATE_TRACE_POINTS #include "armada_trace.h" #endif
linux-master
drivers/gpu/drm/armada/armada_trace.c
// SPDX-License-Identifier: GPL-2.0 /* * GPU memory trace points * * Copyright (C) 2020 Google, Inc. */ #include <linux/module.h> #define CREATE_TRACE_POINTS #include <trace/events/gpu_mem.h> EXPORT_TRACEPOINT_SYMBOL(gpu_mem_total);
linux-master
drivers/gpu/trace/trace_gpu_mem.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2012-2014 Mentor Graphics Inc. * Copyright (C) 2005-2009 Freescale Semiconductor, Inc. */ #include <linux/export.h> #include <linux/module.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/err.h> #include <linux/platform_device.h> #include <linux/videodev2.h> #include <uapi/linux/v4l2-mediabus.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/clkdev.h> #include "ipu-prv.h" struct ipu_csi { void __iomem *base; int id; u32 module; struct clk *clk_ipu; /* IPU bus clock */ spinlock_t lock; bool inuse; struct ipu_soc *ipu; }; /* CSI Register Offsets */ #define CSI_SENS_CONF 0x0000 #define CSI_SENS_FRM_SIZE 0x0004 #define CSI_ACT_FRM_SIZE 0x0008 #define CSI_OUT_FRM_CTRL 0x000c #define CSI_TST_CTRL 0x0010 #define CSI_CCIR_CODE_1 0x0014 #define CSI_CCIR_CODE_2 0x0018 #define CSI_CCIR_CODE_3 0x001c #define CSI_MIPI_DI 0x0020 #define CSI_SKIP 0x0024 #define CSI_CPD_CTRL 0x0028 #define CSI_CPD_RC(n) (0x002c + ((n)*4)) #define CSI_CPD_RS(n) (0x004c + ((n)*4)) #define CSI_CPD_GRC(n) (0x005c + ((n)*4)) #define CSI_CPD_GRS(n) (0x007c + ((n)*4)) #define CSI_CPD_GBC(n) (0x008c + ((n)*4)) #define CSI_CPD_GBS(n) (0x00Ac + ((n)*4)) #define CSI_CPD_BC(n) (0x00Bc + ((n)*4)) #define CSI_CPD_BS(n) (0x00Dc + ((n)*4)) #define CSI_CPD_OFFSET1 0x00ec #define CSI_CPD_OFFSET2 0x00f0 /* CSI Register Fields */ #define CSI_SENS_CONF_DATA_FMT_SHIFT 8 #define CSI_SENS_CONF_DATA_FMT_MASK 0x00000700 #define CSI_SENS_CONF_DATA_FMT_RGB_YUV444 0L #define CSI_SENS_CONF_DATA_FMT_YUV422_YUYV 1L #define CSI_SENS_CONF_DATA_FMT_YUV422_UYVY 2L #define CSI_SENS_CONF_DATA_FMT_BAYER 3L #define CSI_SENS_CONF_DATA_FMT_RGB565 4L #define CSI_SENS_CONF_DATA_FMT_RGB555 5L #define CSI_SENS_CONF_DATA_FMT_RGB444 6L #define CSI_SENS_CONF_DATA_FMT_JPEG 7L #define CSI_SENS_CONF_VSYNC_POL_SHIFT 0 #define CSI_SENS_CONF_HSYNC_POL_SHIFT 1 #define CSI_SENS_CONF_DATA_POL_SHIFT 2 #define CSI_SENS_CONF_PIX_CLK_POL_SHIFT 3 #define CSI_SENS_CONF_SENS_PRTCL_MASK 0x00000070 #define CSI_SENS_CONF_SENS_PRTCL_SHIFT 4 #define CSI_SENS_CONF_PACK_TIGHT_SHIFT 7 #define CSI_SENS_CONF_DATA_WIDTH_SHIFT 11 #define CSI_SENS_CONF_EXT_VSYNC_SHIFT 15 #define CSI_SENS_CONF_DIVRATIO_SHIFT 16 #define CSI_SENS_CONF_DIVRATIO_MASK 0x00ff0000 #define CSI_SENS_CONF_DATA_DEST_SHIFT 24 #define CSI_SENS_CONF_DATA_DEST_MASK 0x07000000 #define CSI_SENS_CONF_JPEG8_EN_SHIFT 27 #define CSI_SENS_CONF_JPEG_EN_SHIFT 28 #define CSI_SENS_CONF_FORCE_EOF_SHIFT 29 #define CSI_SENS_CONF_DATA_EN_POL_SHIFT 31 #define CSI_DATA_DEST_IC 2 #define CSI_DATA_DEST_IDMAC 4 #define CSI_CCIR_ERR_DET_EN 0x01000000 #define CSI_HORI_DOWNSIZE_EN 0x80000000 #define CSI_VERT_DOWNSIZE_EN 0x40000000 #define CSI_TEST_GEN_MODE_EN 0x01000000 #define CSI_HSC_MASK 0x1fff0000 #define CSI_HSC_SHIFT 16 #define CSI_VSC_MASK 0x00000fff #define CSI_VSC_SHIFT 0 #define CSI_TEST_GEN_R_MASK 0x000000ff #define CSI_TEST_GEN_R_SHIFT 0 #define CSI_TEST_GEN_G_MASK 0x0000ff00 #define CSI_TEST_GEN_G_SHIFT 8 #define CSI_TEST_GEN_B_MASK 0x00ff0000 #define CSI_TEST_GEN_B_SHIFT 16 #define CSI_MAX_RATIO_SKIP_SMFC_MASK 0x00000007 #define CSI_MAX_RATIO_SKIP_SMFC_SHIFT 0 #define CSI_SKIP_SMFC_MASK 0x000000f8 #define CSI_SKIP_SMFC_SHIFT 3 #define CSI_ID_2_SKIP_MASK 0x00000300 #define CSI_ID_2_SKIP_SHIFT 8 #define CSI_COLOR_FIRST_ROW_MASK 0x00000002 #define CSI_COLOR_FIRST_COMP_MASK 0x00000001 /* MIPI CSI-2 data types */ #define MIPI_DT_YUV420 0x18 /* YYY.../UYVY.... */ #define MIPI_DT_YUV420_LEGACY 0x1a /* UYY.../VYY... */ #define MIPI_DT_YUV422 0x1e /* UYVY... */ #define MIPI_DT_RGB444 0x20 #define MIPI_DT_RGB555 0x21 #define MIPI_DT_RGB565 0x22 #define MIPI_DT_RGB666 0x23 #define MIPI_DT_RGB888 0x24 #define MIPI_DT_RAW6 0x28 #define MIPI_DT_RAW7 0x29 #define MIPI_DT_RAW8 0x2a #define MIPI_DT_RAW10 0x2b #define MIPI_DT_RAW12 0x2c #define MIPI_DT_RAW14 0x2d /* * Bitfield of CSI bus signal polarities and modes. */ struct ipu_csi_bus_config { unsigned data_width:4; unsigned clk_mode:3; unsigned ext_vsync:1; unsigned vsync_pol:1; unsigned hsync_pol:1; unsigned pixclk_pol:1; unsigned data_pol:1; unsigned sens_clksrc:1; unsigned pack_tight:1; unsigned force_eof:1; unsigned data_en_pol:1; unsigned data_fmt; unsigned mipi_dt; }; /* * Enumeration of CSI data bus widths. */ enum ipu_csi_data_width { IPU_CSI_DATA_WIDTH_4 = 0, IPU_CSI_DATA_WIDTH_8 = 1, IPU_CSI_DATA_WIDTH_10 = 3, IPU_CSI_DATA_WIDTH_12 = 5, IPU_CSI_DATA_WIDTH_16 = 9, }; /* * Enumeration of CSI clock modes. */ enum ipu_csi_clk_mode { IPU_CSI_CLK_MODE_GATED_CLK, IPU_CSI_CLK_MODE_NONGATED_CLK, IPU_CSI_CLK_MODE_CCIR656_PROGRESSIVE, IPU_CSI_CLK_MODE_CCIR656_INTERLACED, IPU_CSI_CLK_MODE_CCIR1120_PROGRESSIVE_DDR, IPU_CSI_CLK_MODE_CCIR1120_PROGRESSIVE_SDR, IPU_CSI_CLK_MODE_CCIR1120_INTERLACED_DDR, IPU_CSI_CLK_MODE_CCIR1120_INTERLACED_SDR, }; static inline u32 ipu_csi_read(struct ipu_csi *csi, unsigned offset) { return readl(csi->base + offset); } static inline void ipu_csi_write(struct ipu_csi *csi, u32 value, unsigned offset) { writel(value, csi->base + offset); } /* * Set mclk division ratio for generating test mode mclk. Only used * for test generator. */ static int ipu_csi_set_testgen_mclk(struct ipu_csi *csi, u32 pixel_clk, u32 ipu_clk) { u32 temp; int div_ratio; div_ratio = (ipu_clk / pixel_clk) - 1; if (div_ratio > 0xFF || div_ratio < 0) { dev_err(csi->ipu->dev, "value of pixel_clk extends normal range\n"); return -EINVAL; } temp = ipu_csi_read(csi, CSI_SENS_CONF); temp &= ~CSI_SENS_CONF_DIVRATIO_MASK; ipu_csi_write(csi, temp | (div_ratio << CSI_SENS_CONF_DIVRATIO_SHIFT), CSI_SENS_CONF); return 0; } /* * Find the CSI data format and data width for the given V4L2 media * bus pixel format code. */ static int mbus_code_to_bus_cfg(struct ipu_csi_bus_config *cfg, u32 mbus_code, enum v4l2_mbus_type mbus_type) { switch (mbus_code) { case MEDIA_BUS_FMT_BGR565_2X8_BE: case MEDIA_BUS_FMT_BGR565_2X8_LE: case MEDIA_BUS_FMT_RGB565_2X8_BE: case MEDIA_BUS_FMT_RGB565_2X8_LE: if (mbus_type == V4L2_MBUS_CSI2_DPHY) cfg->data_fmt = CSI_SENS_CONF_DATA_FMT_RGB565; else cfg->data_fmt = CSI_SENS_CONF_DATA_FMT_BAYER; cfg->mipi_dt = MIPI_DT_RGB565; cfg->data_width = IPU_CSI_DATA_WIDTH_8; break; case MEDIA_BUS_FMT_RGB444_2X8_PADHI_BE: case MEDIA_BUS_FMT_RGB444_2X8_PADHI_LE: cfg->data_fmt = CSI_SENS_CONF_DATA_FMT_RGB444; cfg->mipi_dt = MIPI_DT_RGB444; cfg->data_width = IPU_CSI_DATA_WIDTH_8; break; case MEDIA_BUS_FMT_RGB555_2X8_PADHI_BE: case MEDIA_BUS_FMT_RGB555_2X8_PADHI_LE: cfg->data_fmt = CSI_SENS_CONF_DATA_FMT_RGB555; cfg->mipi_dt = MIPI_DT_RGB555; cfg->data_width = IPU_CSI_DATA_WIDTH_8; break; case MEDIA_BUS_FMT_RGB888_1X24: case MEDIA_BUS_FMT_BGR888_1X24: cfg->data_fmt = CSI_SENS_CONF_DATA_FMT_RGB_YUV444; cfg->mipi_dt = MIPI_DT_RGB888; cfg->data_width = IPU_CSI_DATA_WIDTH_8; break; case MEDIA_BUS_FMT_UYVY8_2X8: cfg->data_fmt = CSI_SENS_CONF_DATA_FMT_YUV422_UYVY; cfg->mipi_dt = MIPI_DT_YUV422; cfg->data_width = IPU_CSI_DATA_WIDTH_8; break; case MEDIA_BUS_FMT_YUYV8_2X8: cfg->data_fmt = CSI_SENS_CONF_DATA_FMT_YUV422_YUYV; cfg->mipi_dt = MIPI_DT_YUV422; cfg->data_width = IPU_CSI_DATA_WIDTH_8; break; case MEDIA_BUS_FMT_UYVY8_1X16: if (mbus_type == V4L2_MBUS_BT656) { cfg->data_fmt = CSI_SENS_CONF_DATA_FMT_YUV422_UYVY; cfg->data_width = IPU_CSI_DATA_WIDTH_8; } else { cfg->data_fmt = CSI_SENS_CONF_DATA_FMT_BAYER; cfg->data_width = IPU_CSI_DATA_WIDTH_16; } cfg->mipi_dt = MIPI_DT_YUV422; break; case MEDIA_BUS_FMT_YUYV8_1X16: if (mbus_type == V4L2_MBUS_BT656) { cfg->data_fmt = CSI_SENS_CONF_DATA_FMT_YUV422_YUYV; cfg->data_width = IPU_CSI_DATA_WIDTH_8; } else { cfg->data_fmt = CSI_SENS_CONF_DATA_FMT_BAYER; cfg->data_width = IPU_CSI_DATA_WIDTH_16; } cfg->mipi_dt = MIPI_DT_YUV422; break; case MEDIA_BUS_FMT_SBGGR8_1X8: case MEDIA_BUS_FMT_SGBRG8_1X8: case MEDIA_BUS_FMT_SGRBG8_1X8: case MEDIA_BUS_FMT_SRGGB8_1X8: case MEDIA_BUS_FMT_Y8_1X8: cfg->data_fmt = CSI_SENS_CONF_DATA_FMT_BAYER; cfg->mipi_dt = MIPI_DT_RAW8; cfg->data_width = IPU_CSI_DATA_WIDTH_8; break; case MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8: case MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8: case MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8: case MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8: case MEDIA_BUS_FMT_SBGGR10_2X8_PADHI_BE: case MEDIA_BUS_FMT_SBGGR10_2X8_PADHI_LE: case MEDIA_BUS_FMT_SBGGR10_2X8_PADLO_BE: case MEDIA_BUS_FMT_SBGGR10_2X8_PADLO_LE: cfg->data_fmt = CSI_SENS_CONF_DATA_FMT_BAYER; cfg->mipi_dt = MIPI_DT_RAW10; cfg->data_width = IPU_CSI_DATA_WIDTH_8; break; case MEDIA_BUS_FMT_SBGGR10_1X10: case MEDIA_BUS_FMT_SGBRG10_1X10: case MEDIA_BUS_FMT_SGRBG10_1X10: case MEDIA_BUS_FMT_SRGGB10_1X10: case MEDIA_BUS_FMT_Y10_1X10: cfg->data_fmt = CSI_SENS_CONF_DATA_FMT_BAYER; cfg->mipi_dt = MIPI_DT_RAW10; cfg->data_width = IPU_CSI_DATA_WIDTH_10; break; case MEDIA_BUS_FMT_SBGGR12_1X12: case MEDIA_BUS_FMT_SGBRG12_1X12: case MEDIA_BUS_FMT_SGRBG12_1X12: case MEDIA_BUS_FMT_SRGGB12_1X12: case MEDIA_BUS_FMT_Y12_1X12: cfg->data_fmt = CSI_SENS_CONF_DATA_FMT_BAYER; cfg->mipi_dt = MIPI_DT_RAW12; cfg->data_width = IPU_CSI_DATA_WIDTH_12; break; case MEDIA_BUS_FMT_JPEG_1X8: /* TODO */ cfg->data_fmt = CSI_SENS_CONF_DATA_FMT_JPEG; cfg->mipi_dt = MIPI_DT_RAW8; cfg->data_width = IPU_CSI_DATA_WIDTH_8; break; default: return -EINVAL; } return 0; } /* translate alternate field mode based on given standard */ static inline enum v4l2_field ipu_csi_translate_field(enum v4l2_field field, v4l2_std_id std) { return (field != V4L2_FIELD_ALTERNATE) ? field : ((std & V4L2_STD_525_60) ? V4L2_FIELD_SEQ_BT : V4L2_FIELD_SEQ_TB); } /* * Fill a CSI bus config struct from mbus_config and mbus_framefmt. */ static int fill_csi_bus_cfg(struct ipu_csi_bus_config *csicfg, const struct v4l2_mbus_config *mbus_cfg, const struct v4l2_mbus_framefmt *mbus_fmt) { int ret, is_bt1120; memset(csicfg, 0, sizeof(*csicfg)); ret = mbus_code_to_bus_cfg(csicfg, mbus_fmt->code, mbus_cfg->type); if (ret < 0) return ret; switch (mbus_cfg->type) { case V4L2_MBUS_PARALLEL: csicfg->ext_vsync = 1; csicfg->vsync_pol = (mbus_cfg->bus.parallel.flags & V4L2_MBUS_VSYNC_ACTIVE_LOW) ? 1 : 0; csicfg->hsync_pol = (mbus_cfg->bus.parallel.flags & V4L2_MBUS_HSYNC_ACTIVE_LOW) ? 1 : 0; csicfg->pixclk_pol = (mbus_cfg->bus.parallel.flags & V4L2_MBUS_PCLK_SAMPLE_FALLING) ? 1 : 0; csicfg->clk_mode = IPU_CSI_CLK_MODE_GATED_CLK; break; case V4L2_MBUS_BT656: csicfg->ext_vsync = 0; /* UYVY10_1X20 etc. should be supported as well */ is_bt1120 = mbus_fmt->code == MEDIA_BUS_FMT_UYVY8_1X16 || mbus_fmt->code == MEDIA_BUS_FMT_YUYV8_1X16; if (V4L2_FIELD_HAS_BOTH(mbus_fmt->field) || mbus_fmt->field == V4L2_FIELD_ALTERNATE) csicfg->clk_mode = is_bt1120 ? IPU_CSI_CLK_MODE_CCIR1120_INTERLACED_SDR : IPU_CSI_CLK_MODE_CCIR656_INTERLACED; else csicfg->clk_mode = is_bt1120 ? IPU_CSI_CLK_MODE_CCIR1120_PROGRESSIVE_SDR : IPU_CSI_CLK_MODE_CCIR656_PROGRESSIVE; break; case V4L2_MBUS_CSI2_DPHY: /* * MIPI CSI-2 requires non gated clock mode, all other * parameters are not applicable for MIPI CSI-2 bus. */ csicfg->clk_mode = IPU_CSI_CLK_MODE_NONGATED_CLK; break; default: /* will never get here, keep compiler quiet */ break; } return 0; } static int ipu_csi_set_bt_interlaced_codes(struct ipu_csi *csi, const struct v4l2_mbus_framefmt *infmt, const struct v4l2_mbus_framefmt *outfmt, v4l2_std_id std) { enum v4l2_field infield, outfield; bool swap_fields; /* get translated field type of input and output */ infield = ipu_csi_translate_field(infmt->field, std); outfield = ipu_csi_translate_field(outfmt->field, std); /* * Write the H-V-F codes the CSI will match against the * incoming data for start/end of active and blanking * field intervals. If input and output field types are * sequential but not the same (one is SEQ_BT and the other * is SEQ_TB), swap the F-bit so that the CSI will capture * field 1 lines before field 0 lines. */ swap_fields = (V4L2_FIELD_IS_SEQUENTIAL(infield) && V4L2_FIELD_IS_SEQUENTIAL(outfield) && infield != outfield); if (!swap_fields) { /* * Field0BlankEnd = 110, Field0BlankStart = 010 * Field0ActiveEnd = 100, Field0ActiveStart = 000 * Field1BlankEnd = 111, Field1BlankStart = 011 * Field1ActiveEnd = 101, Field1ActiveStart = 001 */ ipu_csi_write(csi, 0x40596 | CSI_CCIR_ERR_DET_EN, CSI_CCIR_CODE_1); ipu_csi_write(csi, 0xD07DF, CSI_CCIR_CODE_2); } else { dev_dbg(csi->ipu->dev, "capture field swap\n"); /* same as above but with F-bit inverted */ ipu_csi_write(csi, 0xD07DF | CSI_CCIR_ERR_DET_EN, CSI_CCIR_CODE_1); ipu_csi_write(csi, 0x40596, CSI_CCIR_CODE_2); } ipu_csi_write(csi, 0xFF0000, CSI_CCIR_CODE_3); return 0; } int ipu_csi_init_interface(struct ipu_csi *csi, const struct v4l2_mbus_config *mbus_cfg, const struct v4l2_mbus_framefmt *infmt, const struct v4l2_mbus_framefmt *outfmt) { struct ipu_csi_bus_config cfg; unsigned long flags; u32 width, height, data = 0; v4l2_std_id std; int ret; ret = fill_csi_bus_cfg(&cfg, mbus_cfg, infmt); if (ret < 0) return ret; /* set default sensor frame width and height */ width = infmt->width; height = infmt->height; if (infmt->field == V4L2_FIELD_ALTERNATE) height *= 2; /* Set the CSI_SENS_CONF register remaining fields */ data |= cfg.data_width << CSI_SENS_CONF_DATA_WIDTH_SHIFT | cfg.data_fmt << CSI_SENS_CONF_DATA_FMT_SHIFT | cfg.data_pol << CSI_SENS_CONF_DATA_POL_SHIFT | cfg.vsync_pol << CSI_SENS_CONF_VSYNC_POL_SHIFT | cfg.hsync_pol << CSI_SENS_CONF_HSYNC_POL_SHIFT | cfg.pixclk_pol << CSI_SENS_CONF_PIX_CLK_POL_SHIFT | cfg.ext_vsync << CSI_SENS_CONF_EXT_VSYNC_SHIFT | cfg.clk_mode << CSI_SENS_CONF_SENS_PRTCL_SHIFT | cfg.pack_tight << CSI_SENS_CONF_PACK_TIGHT_SHIFT | cfg.force_eof << CSI_SENS_CONF_FORCE_EOF_SHIFT | cfg.data_en_pol << CSI_SENS_CONF_DATA_EN_POL_SHIFT; spin_lock_irqsave(&csi->lock, flags); ipu_csi_write(csi, data, CSI_SENS_CONF); /* Set CCIR registers */ switch (cfg.clk_mode) { case IPU_CSI_CLK_MODE_CCIR656_PROGRESSIVE: ipu_csi_write(csi, 0x40030, CSI_CCIR_CODE_1); ipu_csi_write(csi, 0xFF0000, CSI_CCIR_CODE_3); break; case IPU_CSI_CLK_MODE_CCIR656_INTERLACED: if (width == 720 && height == 480) { std = V4L2_STD_NTSC; height = 525; } else if (width == 720 && height == 576) { std = V4L2_STD_PAL; height = 625; } else { dev_err(csi->ipu->dev, "Unsupported interlaced video mode\n"); ret = -EINVAL; goto out_unlock; } ret = ipu_csi_set_bt_interlaced_codes(csi, infmt, outfmt, std); if (ret) goto out_unlock; break; case IPU_CSI_CLK_MODE_CCIR1120_PROGRESSIVE_DDR: case IPU_CSI_CLK_MODE_CCIR1120_PROGRESSIVE_SDR: case IPU_CSI_CLK_MODE_CCIR1120_INTERLACED_DDR: case IPU_CSI_CLK_MODE_CCIR1120_INTERLACED_SDR: ipu_csi_write(csi, 0x40030 | CSI_CCIR_ERR_DET_EN, CSI_CCIR_CODE_1); ipu_csi_write(csi, 0xFF0000, CSI_CCIR_CODE_3); break; case IPU_CSI_CLK_MODE_GATED_CLK: case IPU_CSI_CLK_MODE_NONGATED_CLK: ipu_csi_write(csi, 0, CSI_CCIR_CODE_1); break; } /* Setup sensor frame size */ ipu_csi_write(csi, (width - 1) | ((height - 1) << 16), CSI_SENS_FRM_SIZE); dev_dbg(csi->ipu->dev, "CSI_SENS_CONF = 0x%08X\n", ipu_csi_read(csi, CSI_SENS_CONF)); dev_dbg(csi->ipu->dev, "CSI_ACT_FRM_SIZE = 0x%08X\n", ipu_csi_read(csi, CSI_ACT_FRM_SIZE)); out_unlock: spin_unlock_irqrestore(&csi->lock, flags); return ret; } EXPORT_SYMBOL_GPL(ipu_csi_init_interface); bool ipu_csi_is_interlaced(struct ipu_csi *csi) { unsigned long flags; u32 sensor_protocol; spin_lock_irqsave(&csi->lock, flags); sensor_protocol = (ipu_csi_read(csi, CSI_SENS_CONF) & CSI_SENS_CONF_SENS_PRTCL_MASK) >> CSI_SENS_CONF_SENS_PRTCL_SHIFT; spin_unlock_irqrestore(&csi->lock, flags); switch (sensor_protocol) { case IPU_CSI_CLK_MODE_GATED_CLK: case IPU_CSI_CLK_MODE_NONGATED_CLK: case IPU_CSI_CLK_MODE_CCIR656_PROGRESSIVE: case IPU_CSI_CLK_MODE_CCIR1120_PROGRESSIVE_DDR: case IPU_CSI_CLK_MODE_CCIR1120_PROGRESSIVE_SDR: return false; case IPU_CSI_CLK_MODE_CCIR656_INTERLACED: case IPU_CSI_CLK_MODE_CCIR1120_INTERLACED_DDR: case IPU_CSI_CLK_MODE_CCIR1120_INTERLACED_SDR: return true; default: dev_err(csi->ipu->dev, "CSI %d sensor protocol unsupported\n", csi->id); return false; } } EXPORT_SYMBOL_GPL(ipu_csi_is_interlaced); void ipu_csi_get_window(struct ipu_csi *csi, struct v4l2_rect *w) { unsigned long flags; u32 reg; spin_lock_irqsave(&csi->lock, flags); reg = ipu_csi_read(csi, CSI_ACT_FRM_SIZE); w->width = (reg & 0xFFFF) + 1; w->height = (reg >> 16 & 0xFFFF) + 1; reg = ipu_csi_read(csi, CSI_OUT_FRM_CTRL); w->left = (reg & CSI_HSC_MASK) >> CSI_HSC_SHIFT; w->top = (reg & CSI_VSC_MASK) >> CSI_VSC_SHIFT; spin_unlock_irqrestore(&csi->lock, flags); } EXPORT_SYMBOL_GPL(ipu_csi_get_window); void ipu_csi_set_window(struct ipu_csi *csi, struct v4l2_rect *w) { unsigned long flags; u32 reg; spin_lock_irqsave(&csi->lock, flags); ipu_csi_write(csi, (w->width - 1) | ((w->height - 1) << 16), CSI_ACT_FRM_SIZE); reg = ipu_csi_read(csi, CSI_OUT_FRM_CTRL); reg &= ~(CSI_HSC_MASK | CSI_VSC_MASK); reg |= ((w->top << CSI_VSC_SHIFT) | (w->left << CSI_HSC_SHIFT)); ipu_csi_write(csi, reg, CSI_OUT_FRM_CTRL); spin_unlock_irqrestore(&csi->lock, flags); } EXPORT_SYMBOL_GPL(ipu_csi_set_window); void ipu_csi_set_downsize(struct ipu_csi *csi, bool horiz, bool vert) { unsigned long flags; u32 reg; spin_lock_irqsave(&csi->lock, flags); reg = ipu_csi_read(csi, CSI_OUT_FRM_CTRL); reg &= ~(CSI_HORI_DOWNSIZE_EN | CSI_VERT_DOWNSIZE_EN); reg |= (horiz ? CSI_HORI_DOWNSIZE_EN : 0) | (vert ? CSI_VERT_DOWNSIZE_EN : 0); ipu_csi_write(csi, reg, CSI_OUT_FRM_CTRL); spin_unlock_irqrestore(&csi->lock, flags); } EXPORT_SYMBOL_GPL(ipu_csi_set_downsize); void ipu_csi_set_test_generator(struct ipu_csi *csi, bool active, u32 r_value, u32 g_value, u32 b_value, u32 pix_clk) { unsigned long flags; u32 ipu_clk = clk_get_rate(csi->clk_ipu); u32 temp; spin_lock_irqsave(&csi->lock, flags); temp = ipu_csi_read(csi, CSI_TST_CTRL); if (!active) { temp &= ~CSI_TEST_GEN_MODE_EN; ipu_csi_write(csi, temp, CSI_TST_CTRL); } else { /* Set sensb_mclk div_ratio */ ipu_csi_set_testgen_mclk(csi, pix_clk, ipu_clk); temp &= ~(CSI_TEST_GEN_R_MASK | CSI_TEST_GEN_G_MASK | CSI_TEST_GEN_B_MASK); temp |= CSI_TEST_GEN_MODE_EN; temp |= (r_value << CSI_TEST_GEN_R_SHIFT) | (g_value << CSI_TEST_GEN_G_SHIFT) | (b_value << CSI_TEST_GEN_B_SHIFT); ipu_csi_write(csi, temp, CSI_TST_CTRL); } spin_unlock_irqrestore(&csi->lock, flags); } EXPORT_SYMBOL_GPL(ipu_csi_set_test_generator); int ipu_csi_set_mipi_datatype(struct ipu_csi *csi, u32 vc, struct v4l2_mbus_framefmt *mbus_fmt) { struct ipu_csi_bus_config cfg; unsigned long flags; u32 temp; int ret; if (vc > 3) return -EINVAL; ret = mbus_code_to_bus_cfg(&cfg, mbus_fmt->code, V4L2_MBUS_CSI2_DPHY); if (ret < 0) return ret; spin_lock_irqsave(&csi->lock, flags); temp = ipu_csi_read(csi, CSI_MIPI_DI); temp &= ~(0xff << (vc * 8)); temp |= (cfg.mipi_dt << (vc * 8)); ipu_csi_write(csi, temp, CSI_MIPI_DI); spin_unlock_irqrestore(&csi->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ipu_csi_set_mipi_datatype); int ipu_csi_set_skip_smfc(struct ipu_csi *csi, u32 skip, u32 max_ratio, u32 id) { unsigned long flags; u32 temp; if (max_ratio > 5 || id > 3) return -EINVAL; spin_lock_irqsave(&csi->lock, flags); temp = ipu_csi_read(csi, CSI_SKIP); temp &= ~(CSI_MAX_RATIO_SKIP_SMFC_MASK | CSI_ID_2_SKIP_MASK | CSI_SKIP_SMFC_MASK); temp |= (max_ratio << CSI_MAX_RATIO_SKIP_SMFC_SHIFT) | (id << CSI_ID_2_SKIP_SHIFT) | (skip << CSI_SKIP_SMFC_SHIFT); ipu_csi_write(csi, temp, CSI_SKIP); spin_unlock_irqrestore(&csi->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ipu_csi_set_skip_smfc); int ipu_csi_set_dest(struct ipu_csi *csi, enum ipu_csi_dest csi_dest) { unsigned long flags; u32 csi_sens_conf, dest; if (csi_dest == IPU_CSI_DEST_IDMAC) dest = CSI_DATA_DEST_IDMAC; else dest = CSI_DATA_DEST_IC; /* IC or VDIC */ spin_lock_irqsave(&csi->lock, flags); csi_sens_conf = ipu_csi_read(csi, CSI_SENS_CONF); csi_sens_conf &= ~CSI_SENS_CONF_DATA_DEST_MASK; csi_sens_conf |= (dest << CSI_SENS_CONF_DATA_DEST_SHIFT); ipu_csi_write(csi, csi_sens_conf, CSI_SENS_CONF); spin_unlock_irqrestore(&csi->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ipu_csi_set_dest); int ipu_csi_enable(struct ipu_csi *csi) { ipu_module_enable(csi->ipu, csi->module); return 0; } EXPORT_SYMBOL_GPL(ipu_csi_enable); int ipu_csi_disable(struct ipu_csi *csi) { ipu_module_disable(csi->ipu, csi->module); return 0; } EXPORT_SYMBOL_GPL(ipu_csi_disable); struct ipu_csi *ipu_csi_get(struct ipu_soc *ipu, int id) { unsigned long flags; struct ipu_csi *csi, *ret; if (id > 1) return ERR_PTR(-EINVAL); csi = ipu->csi_priv[id]; ret = csi; spin_lock_irqsave(&csi->lock, flags); if (csi->inuse) { ret = ERR_PTR(-EBUSY); goto unlock; } csi->inuse = true; unlock: spin_unlock_irqrestore(&csi->lock, flags); return ret; } EXPORT_SYMBOL_GPL(ipu_csi_get); void ipu_csi_put(struct ipu_csi *csi) { unsigned long flags; spin_lock_irqsave(&csi->lock, flags); csi->inuse = false; spin_unlock_irqrestore(&csi->lock, flags); } EXPORT_SYMBOL_GPL(ipu_csi_put); int ipu_csi_init(struct ipu_soc *ipu, struct device *dev, int id, unsigned long base, u32 module, struct clk *clk_ipu) { struct ipu_csi *csi; if (id > 1) return -ENODEV; csi = devm_kzalloc(dev, sizeof(*csi), GFP_KERNEL); if (!csi) return -ENOMEM; ipu->csi_priv[id] = csi; spin_lock_init(&csi->lock); csi->module = module; csi->id = id; csi->clk_ipu = clk_ipu; csi->base = devm_ioremap(dev, base, PAGE_SIZE); if (!csi->base) return -ENOMEM; dev_dbg(dev, "CSI%d base: 0x%08lx remapped to %p\n", id, base, csi->base); csi->ipu = ipu; return 0; } void ipu_csi_exit(struct ipu_soc *ipu, int id) { } void ipu_csi_dump(struct ipu_csi *csi) { dev_dbg(csi->ipu->dev, "CSI_SENS_CONF: %08x\n", ipu_csi_read(csi, CSI_SENS_CONF)); dev_dbg(csi->ipu->dev, "CSI_SENS_FRM_SIZE: %08x\n", ipu_csi_read(csi, CSI_SENS_FRM_SIZE)); dev_dbg(csi->ipu->dev, "CSI_ACT_FRM_SIZE: %08x\n", ipu_csi_read(csi, CSI_ACT_FRM_SIZE)); dev_dbg(csi->ipu->dev, "CSI_OUT_FRM_CTRL: %08x\n", ipu_csi_read(csi, CSI_OUT_FRM_CTRL)); dev_dbg(csi->ipu->dev, "CSI_TST_CTRL: %08x\n", ipu_csi_read(csi, CSI_TST_CTRL)); dev_dbg(csi->ipu->dev, "CSI_CCIR_CODE_1: %08x\n", ipu_csi_read(csi, CSI_CCIR_CODE_1)); dev_dbg(csi->ipu->dev, "CSI_CCIR_CODE_2: %08x\n", ipu_csi_read(csi, CSI_CCIR_CODE_2)); dev_dbg(csi->ipu->dev, "CSI_CCIR_CODE_3: %08x\n", ipu_csi_read(csi, CSI_CCIR_CODE_3)); dev_dbg(csi->ipu->dev, "CSI_MIPI_DI: %08x\n", ipu_csi_read(csi, CSI_MIPI_DI)); dev_dbg(csi->ipu->dev, "CSI_SKIP: %08x\n", ipu_csi_read(csi, CSI_SKIP)); } EXPORT_SYMBOL_GPL(ipu_csi_dump);
linux-master
drivers/gpu/ipu-v3/ipu-csi.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2016-2017 Lucas Stach, Pengutronix */ #include <drm/drm_fourcc.h> #include <linux/clk.h> #include <linux/err.h> #include <linux/iopoll.h> #include <linux/mfd/syscon.h> #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <video/imx-ipu-v3.h> #include "ipu-prv.h" #define IPU_PRG_CTL 0x00 #define IPU_PRG_CTL_BYPASS(i) (1 << (0 + i)) #define IPU_PRG_CTL_SOFT_ARID_MASK 0x3 #define IPU_PRG_CTL_SOFT_ARID_SHIFT(i) (8 + i * 2) #define IPU_PRG_CTL_SOFT_ARID(i, v) ((v & 0x3) << (8 + 2 * i)) #define IPU_PRG_CTL_SO(i) (1 << (16 + i)) #define IPU_PRG_CTL_VFLIP(i) (1 << (19 + i)) #define IPU_PRG_CTL_BLOCK_MODE(i) (1 << (22 + i)) #define IPU_PRG_CTL_CNT_LOAD_EN(i) (1 << (25 + i)) #define IPU_PRG_CTL_SOFTRST (1 << 30) #define IPU_PRG_CTL_SHADOW_EN (1 << 31) #define IPU_PRG_STATUS 0x04 #define IPU_PRG_STATUS_BUFFER0_READY(i) (1 << (0 + i * 2)) #define IPU_PRG_STATUS_BUFFER1_READY(i) (1 << (1 + i * 2)) #define IPU_PRG_QOS 0x08 #define IPU_PRG_QOS_ARID_MASK 0xf #define IPU_PRG_QOS_ARID_SHIFT(i) (0 + i * 4) #define IPU_PRG_REG_UPDATE 0x0c #define IPU_PRG_REG_UPDATE_REG_UPDATE (1 << 0) #define IPU_PRG_STRIDE(i) (0x10 + i * 0x4) #define IPU_PRG_STRIDE_STRIDE_MASK 0x3fff #define IPU_PRG_CROP_LINE 0x1c #define IPU_PRG_THD 0x20 #define IPU_PRG_BADDR(i) (0x24 + i * 0x4) #define IPU_PRG_OFFSET(i) (0x30 + i * 0x4) #define IPU_PRG_ILO(i) (0x3c + i * 0x4) #define IPU_PRG_HEIGHT(i) (0x48 + i * 0x4) #define IPU_PRG_HEIGHT_PRE_HEIGHT_MASK 0xfff #define IPU_PRG_HEIGHT_PRE_HEIGHT_SHIFT 0 #define IPU_PRG_HEIGHT_IPU_HEIGHT_MASK 0xfff #define IPU_PRG_HEIGHT_IPU_HEIGHT_SHIFT 16 struct ipu_prg_channel { bool enabled; int used_pre; }; struct ipu_prg { struct list_head list; struct device *dev; int id; void __iomem *regs; struct clk *clk_ipg, *clk_axi; struct regmap *iomuxc_gpr; struct ipu_pre *pres[3]; struct ipu_prg_channel chan[3]; }; static DEFINE_MUTEX(ipu_prg_list_mutex); static LIST_HEAD(ipu_prg_list); struct ipu_prg * ipu_prg_lookup_by_phandle(struct device *dev, const char *name, int ipu_id) { struct device_node *prg_node = of_parse_phandle(dev->of_node, name, 0); struct ipu_prg *prg; mutex_lock(&ipu_prg_list_mutex); list_for_each_entry(prg, &ipu_prg_list, list) { if (prg_node == prg->dev->of_node) { mutex_unlock(&ipu_prg_list_mutex); device_link_add(dev, prg->dev, DL_FLAG_AUTOREMOVE_CONSUMER); prg->id = ipu_id; of_node_put(prg_node); return prg; } } mutex_unlock(&ipu_prg_list_mutex); of_node_put(prg_node); return NULL; } int ipu_prg_max_active_channels(void) { return ipu_pre_get_available_count(); } EXPORT_SYMBOL_GPL(ipu_prg_max_active_channels); bool ipu_prg_present(struct ipu_soc *ipu) { if (ipu->prg_priv) return true; return false; } EXPORT_SYMBOL_GPL(ipu_prg_present); bool ipu_prg_format_supported(struct ipu_soc *ipu, uint32_t format, uint64_t modifier) { const struct drm_format_info *info = drm_format_info(format); if (info->num_planes != 1) return false; switch (modifier) { case DRM_FORMAT_MOD_LINEAR: case DRM_FORMAT_MOD_VIVANTE_TILED: case DRM_FORMAT_MOD_VIVANTE_SUPER_TILED: return true; default: return false; } } EXPORT_SYMBOL_GPL(ipu_prg_format_supported); int ipu_prg_enable(struct ipu_soc *ipu) { struct ipu_prg *prg = ipu->prg_priv; if (!prg) return 0; return pm_runtime_get_sync(prg->dev); } EXPORT_SYMBOL_GPL(ipu_prg_enable); void ipu_prg_disable(struct ipu_soc *ipu) { struct ipu_prg *prg = ipu->prg_priv; if (!prg) return; pm_runtime_put(prg->dev); } EXPORT_SYMBOL_GPL(ipu_prg_disable); /* * The channel configuartion functions below are not thread safe, as they * must be only called from the atomic commit path in the DRM driver, which * is properly serialized. */ static int ipu_prg_ipu_to_prg_chan(int ipu_chan) { /* * This isn't clearly documented in the RM, but IPU to PRG channel * assignment is fixed, as only with this mapping the control signals * match up. */ switch (ipu_chan) { case IPUV3_CHANNEL_MEM_BG_SYNC: return 0; case IPUV3_CHANNEL_MEM_FG_SYNC: return 1; case IPUV3_CHANNEL_MEM_DC_SYNC: return 2; default: return -EINVAL; } } static int ipu_prg_get_pre(struct ipu_prg *prg, int prg_chan) { int i, ret; /* channel 0 is special as it is hardwired to one of the PREs */ if (prg_chan == 0) { ret = ipu_pre_get(prg->pres[0]); if (ret) goto fail; prg->chan[prg_chan].used_pre = 0; return 0; } for (i = 1; i < 3; i++) { ret = ipu_pre_get(prg->pres[i]); if (!ret) { u32 val, mux; int shift; prg->chan[prg_chan].used_pre = i; /* configure the PRE to PRG channel mux */ shift = (i == 1) ? 12 : 14; mux = (prg->id << 1) | (prg_chan - 1); regmap_update_bits(prg->iomuxc_gpr, IOMUXC_GPR5, 0x3 << shift, mux << shift); /* check other mux, must not point to same channel */ shift = (i == 1) ? 14 : 12; regmap_read(prg->iomuxc_gpr, IOMUXC_GPR5, &val); if (((val >> shift) & 0x3) == mux) { regmap_update_bits(prg->iomuxc_gpr, IOMUXC_GPR5, 0x3 << shift, (mux ^ 0x1) << shift); } return 0; } } fail: dev_err(prg->dev, "could not get PRE for PRG chan %d", prg_chan); return ret; } static void ipu_prg_put_pre(struct ipu_prg *prg, int prg_chan) { struct ipu_prg_channel *chan = &prg->chan[prg_chan]; ipu_pre_put(prg->pres[chan->used_pre]); chan->used_pre = -1; } void ipu_prg_channel_disable(struct ipuv3_channel *ipu_chan) { int prg_chan = ipu_prg_ipu_to_prg_chan(ipu_chan->num); struct ipu_prg *prg = ipu_chan->ipu->prg_priv; struct ipu_prg_channel *chan; u32 val; if (prg_chan < 0) return; chan = &prg->chan[prg_chan]; if (!chan->enabled) return; pm_runtime_get_sync(prg->dev); val = readl(prg->regs + IPU_PRG_CTL); val |= IPU_PRG_CTL_BYPASS(prg_chan); writel(val, prg->regs + IPU_PRG_CTL); val = IPU_PRG_REG_UPDATE_REG_UPDATE; writel(val, prg->regs + IPU_PRG_REG_UPDATE); pm_runtime_put(prg->dev); ipu_prg_put_pre(prg, prg_chan); chan->enabled = false; } EXPORT_SYMBOL_GPL(ipu_prg_channel_disable); int ipu_prg_channel_configure(struct ipuv3_channel *ipu_chan, unsigned int axi_id, unsigned int width, unsigned int height, unsigned int stride, u32 format, uint64_t modifier, unsigned long *eba) { int prg_chan = ipu_prg_ipu_to_prg_chan(ipu_chan->num); struct ipu_prg *prg = ipu_chan->ipu->prg_priv; struct ipu_prg_channel *chan; u32 val; int ret; if (prg_chan < 0) return prg_chan; chan = &prg->chan[prg_chan]; if (chan->enabled) { ipu_pre_update(prg->pres[chan->used_pre], *eba); return 0; } ret = ipu_prg_get_pre(prg, prg_chan); if (ret) return ret; ipu_pre_configure(prg->pres[chan->used_pre], width, height, stride, format, modifier, *eba); pm_runtime_get_sync(prg->dev); val = (stride - 1) & IPU_PRG_STRIDE_STRIDE_MASK; writel(val, prg->regs + IPU_PRG_STRIDE(prg_chan)); val = ((height & IPU_PRG_HEIGHT_PRE_HEIGHT_MASK) << IPU_PRG_HEIGHT_PRE_HEIGHT_SHIFT) | ((height & IPU_PRG_HEIGHT_IPU_HEIGHT_MASK) << IPU_PRG_HEIGHT_IPU_HEIGHT_SHIFT); writel(val, prg->regs + IPU_PRG_HEIGHT(prg_chan)); val = ipu_pre_get_baddr(prg->pres[chan->used_pre]); *eba = val; writel(val, prg->regs + IPU_PRG_BADDR(prg_chan)); val = readl(prg->regs + IPU_PRG_CTL); /* config AXI ID */ val &= ~(IPU_PRG_CTL_SOFT_ARID_MASK << IPU_PRG_CTL_SOFT_ARID_SHIFT(prg_chan)); val |= IPU_PRG_CTL_SOFT_ARID(prg_chan, axi_id); /* enable channel */ val &= ~IPU_PRG_CTL_BYPASS(prg_chan); writel(val, prg->regs + IPU_PRG_CTL); val = IPU_PRG_REG_UPDATE_REG_UPDATE; writel(val, prg->regs + IPU_PRG_REG_UPDATE); /* wait for both double buffers to be filled */ readl_poll_timeout(prg->regs + IPU_PRG_STATUS, val, (val & IPU_PRG_STATUS_BUFFER0_READY(prg_chan)) && (val & IPU_PRG_STATUS_BUFFER1_READY(prg_chan)), 5, 1000); pm_runtime_put(prg->dev); chan->enabled = true; return 0; } EXPORT_SYMBOL_GPL(ipu_prg_channel_configure); bool ipu_prg_channel_configure_pending(struct ipuv3_channel *ipu_chan) { int prg_chan = ipu_prg_ipu_to_prg_chan(ipu_chan->num); struct ipu_prg *prg = ipu_chan->ipu->prg_priv; struct ipu_prg_channel *chan; if (prg_chan < 0) return false; chan = &prg->chan[prg_chan]; WARN_ON(!chan->enabled); return ipu_pre_update_pending(prg->pres[chan->used_pre]); } EXPORT_SYMBOL_GPL(ipu_prg_channel_configure_pending); static int ipu_prg_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct ipu_prg *prg; u32 val; int i, ret; prg = devm_kzalloc(dev, sizeof(*prg), GFP_KERNEL); if (!prg) return -ENOMEM; prg->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(prg->regs)) return PTR_ERR(prg->regs); prg->clk_ipg = devm_clk_get(dev, "ipg"); if (IS_ERR(prg->clk_ipg)) return PTR_ERR(prg->clk_ipg); prg->clk_axi = devm_clk_get(dev, "axi"); if (IS_ERR(prg->clk_axi)) return PTR_ERR(prg->clk_axi); prg->iomuxc_gpr = syscon_regmap_lookup_by_compatible("fsl,imx6q-iomuxc-gpr"); if (IS_ERR(prg->iomuxc_gpr)) return PTR_ERR(prg->iomuxc_gpr); for (i = 0; i < 3; i++) { prg->pres[i] = ipu_pre_lookup_by_phandle(dev, "fsl,pres", i); if (!prg->pres[i]) return -EPROBE_DEFER; } ret = clk_prepare_enable(prg->clk_ipg); if (ret) return ret; ret = clk_prepare_enable(prg->clk_axi); if (ret) { clk_disable_unprepare(prg->clk_ipg); return ret; } /* init to free running mode */ val = readl(prg->regs + IPU_PRG_CTL); val |= IPU_PRG_CTL_SHADOW_EN; writel(val, prg->regs + IPU_PRG_CTL); /* disable address threshold */ writel(0xffffffff, prg->regs + IPU_PRG_THD); pm_runtime_set_active(dev); pm_runtime_enable(dev); prg->dev = dev; platform_set_drvdata(pdev, prg); mutex_lock(&ipu_prg_list_mutex); list_add(&prg->list, &ipu_prg_list); mutex_unlock(&ipu_prg_list_mutex); return 0; } static int ipu_prg_remove(struct platform_device *pdev) { struct ipu_prg *prg = platform_get_drvdata(pdev); mutex_lock(&ipu_prg_list_mutex); list_del(&prg->list); mutex_unlock(&ipu_prg_list_mutex); return 0; } #ifdef CONFIG_PM static int prg_suspend(struct device *dev) { struct ipu_prg *prg = dev_get_drvdata(dev); clk_disable_unprepare(prg->clk_axi); clk_disable_unprepare(prg->clk_ipg); return 0; } static int prg_resume(struct device *dev) { struct ipu_prg *prg = dev_get_drvdata(dev); int ret; ret = clk_prepare_enable(prg->clk_ipg); if (ret) return ret; ret = clk_prepare_enable(prg->clk_axi); if (ret) { clk_disable_unprepare(prg->clk_ipg); return ret; } return 0; } #endif static const struct dev_pm_ops prg_pm_ops = { SET_RUNTIME_PM_OPS(prg_suspend, prg_resume, NULL) }; static const struct of_device_id ipu_prg_dt_ids[] = { { .compatible = "fsl,imx6qp-prg", }, { /* sentinel */ }, }; struct platform_driver ipu_prg_drv = { .probe = ipu_prg_probe, .remove = ipu_prg_remove, .driver = { .name = "imx-ipu-prg", .pm = &prg_pm_ops, .of_match_table = ipu_prg_dt_ids, }, };
linux-master
drivers/gpu/ipu-v3/ipu-prg.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2010 Sascha Hauer <[email protected]> * Copyright (C) 2005-2009 Freescale Semiconductor, Inc. */ #include <linux/module.h> #include <linux/export.h> #include <linux/types.h> #include <linux/reset.h> #include <linux/platform_device.h> #include <linux/err.h> #include <linux/spinlock.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/clk.h> #include <linux/list.h> #include <linux/irq.h> #include <linux/irqchip/chained_irq.h> #include <linux/irqdomain.h> #include <linux/of.h> #include <linux/of_graph.h> #include <drm/drm_fourcc.h> #include <video/imx-ipu-v3.h> #include "ipu-prv.h" static inline u32 ipu_cm_read(struct ipu_soc *ipu, unsigned offset) { return readl(ipu->cm_reg + offset); } static inline void ipu_cm_write(struct ipu_soc *ipu, u32 value, unsigned offset) { writel(value, ipu->cm_reg + offset); } int ipu_get_num(struct ipu_soc *ipu) { return ipu->id; } EXPORT_SYMBOL_GPL(ipu_get_num); void ipu_srm_dp_update(struct ipu_soc *ipu, bool sync) { u32 val; val = ipu_cm_read(ipu, IPU_SRM_PRI2); val &= ~DP_S_SRM_MODE_MASK; val |= sync ? DP_S_SRM_MODE_NEXT_FRAME : DP_S_SRM_MODE_NOW; ipu_cm_write(ipu, val, IPU_SRM_PRI2); } EXPORT_SYMBOL_GPL(ipu_srm_dp_update); enum ipu_color_space ipu_drm_fourcc_to_colorspace(u32 drm_fourcc) { switch (drm_fourcc) { case DRM_FORMAT_ARGB1555: case DRM_FORMAT_ABGR1555: case DRM_FORMAT_RGBA5551: case DRM_FORMAT_BGRA5551: case DRM_FORMAT_RGB565: case DRM_FORMAT_BGR565: case DRM_FORMAT_RGB888: case DRM_FORMAT_BGR888: case DRM_FORMAT_ARGB4444: case DRM_FORMAT_XRGB8888: case DRM_FORMAT_XBGR8888: case DRM_FORMAT_RGBX8888: case DRM_FORMAT_BGRX8888: case DRM_FORMAT_ARGB8888: case DRM_FORMAT_ABGR8888: case DRM_FORMAT_RGBA8888: case DRM_FORMAT_BGRA8888: case DRM_FORMAT_RGB565_A8: case DRM_FORMAT_BGR565_A8: case DRM_FORMAT_RGB888_A8: case DRM_FORMAT_BGR888_A8: case DRM_FORMAT_RGBX8888_A8: case DRM_FORMAT_BGRX8888_A8: return IPUV3_COLORSPACE_RGB; case DRM_FORMAT_YUYV: case DRM_FORMAT_UYVY: case DRM_FORMAT_YUV420: case DRM_FORMAT_YVU420: case DRM_FORMAT_YUV422: case DRM_FORMAT_YVU422: case DRM_FORMAT_YUV444: case DRM_FORMAT_YVU444: case DRM_FORMAT_NV12: case DRM_FORMAT_NV21: case DRM_FORMAT_NV16: case DRM_FORMAT_NV61: return IPUV3_COLORSPACE_YUV; default: return IPUV3_COLORSPACE_UNKNOWN; } } EXPORT_SYMBOL_GPL(ipu_drm_fourcc_to_colorspace); enum ipu_color_space ipu_pixelformat_to_colorspace(u32 pixelformat) { switch (pixelformat) { case V4L2_PIX_FMT_YUV420: case V4L2_PIX_FMT_YVU420: case V4L2_PIX_FMT_YUV422P: case V4L2_PIX_FMT_UYVY: case V4L2_PIX_FMT_YUYV: case V4L2_PIX_FMT_NV12: case V4L2_PIX_FMT_NV21: case V4L2_PIX_FMT_NV16: case V4L2_PIX_FMT_NV61: return IPUV3_COLORSPACE_YUV; case V4L2_PIX_FMT_RGB565: case V4L2_PIX_FMT_BGR24: case V4L2_PIX_FMT_RGB24: case V4L2_PIX_FMT_ABGR32: case V4L2_PIX_FMT_XBGR32: case V4L2_PIX_FMT_BGRA32: case V4L2_PIX_FMT_BGRX32: case V4L2_PIX_FMT_RGBA32: case V4L2_PIX_FMT_RGBX32: case V4L2_PIX_FMT_ARGB32: case V4L2_PIX_FMT_XRGB32: case V4L2_PIX_FMT_RGB32: case V4L2_PIX_FMT_BGR32: return IPUV3_COLORSPACE_RGB; default: return IPUV3_COLORSPACE_UNKNOWN; } } EXPORT_SYMBOL_GPL(ipu_pixelformat_to_colorspace); int ipu_degrees_to_rot_mode(enum ipu_rotate_mode *mode, int degrees, bool hflip, bool vflip) { u32 r90, vf, hf; switch (degrees) { case 0: vf = hf = r90 = 0; break; case 90: vf = hf = 0; r90 = 1; break; case 180: vf = hf = 1; r90 = 0; break; case 270: vf = hf = r90 = 1; break; default: return -EINVAL; } hf ^= (u32)hflip; vf ^= (u32)vflip; *mode = (enum ipu_rotate_mode)((r90 << 2) | (hf << 1) | vf); return 0; } EXPORT_SYMBOL_GPL(ipu_degrees_to_rot_mode); int ipu_rot_mode_to_degrees(int *degrees, enum ipu_rotate_mode mode, bool hflip, bool vflip) { u32 r90, vf, hf; r90 = ((u32)mode >> 2) & 0x1; hf = ((u32)mode >> 1) & 0x1; vf = ((u32)mode >> 0) & 0x1; hf ^= (u32)hflip; vf ^= (u32)vflip; switch ((enum ipu_rotate_mode)((r90 << 2) | (hf << 1) | vf)) { case IPU_ROTATE_NONE: *degrees = 0; break; case IPU_ROTATE_90_RIGHT: *degrees = 90; break; case IPU_ROTATE_180: *degrees = 180; break; case IPU_ROTATE_90_LEFT: *degrees = 270; break; default: return -EINVAL; } return 0; } EXPORT_SYMBOL_GPL(ipu_rot_mode_to_degrees); struct ipuv3_channel *ipu_idmac_get(struct ipu_soc *ipu, unsigned num) { struct ipuv3_channel *channel; dev_dbg(ipu->dev, "%s %d\n", __func__, num); if (num > 63) return ERR_PTR(-ENODEV); mutex_lock(&ipu->channel_lock); list_for_each_entry(channel, &ipu->channels, list) { if (channel->num == num) { channel = ERR_PTR(-EBUSY); goto out; } } channel = kzalloc(sizeof(*channel), GFP_KERNEL); if (!channel) { channel = ERR_PTR(-ENOMEM); goto out; } channel->num = num; channel->ipu = ipu; list_add(&channel->list, &ipu->channels); out: mutex_unlock(&ipu->channel_lock); return channel; } EXPORT_SYMBOL_GPL(ipu_idmac_get); void ipu_idmac_put(struct ipuv3_channel *channel) { struct ipu_soc *ipu = channel->ipu; dev_dbg(ipu->dev, "%s %d\n", __func__, channel->num); mutex_lock(&ipu->channel_lock); list_del(&channel->list); kfree(channel); mutex_unlock(&ipu->channel_lock); } EXPORT_SYMBOL_GPL(ipu_idmac_put); #define idma_mask(ch) (1 << ((ch) & 0x1f)) /* * This is an undocumented feature, a write one to a channel bit in * IPU_CHA_CUR_BUF and IPU_CHA_TRIPLE_CUR_BUF will reset the channel's * internal current buffer pointer so that transfers start from buffer * 0 on the next channel enable (that's the theory anyway, the imx6 TRM * only says these are read-only registers). This operation is required * for channel linking to work correctly, for instance video capture * pipelines that carry out image rotations will fail after the first * streaming unless this function is called for each channel before * re-enabling the channels. */ static void __ipu_idmac_reset_current_buffer(struct ipuv3_channel *channel) { struct ipu_soc *ipu = channel->ipu; unsigned int chno = channel->num; ipu_cm_write(ipu, idma_mask(chno), IPU_CHA_CUR_BUF(chno)); } void ipu_idmac_set_double_buffer(struct ipuv3_channel *channel, bool doublebuffer) { struct ipu_soc *ipu = channel->ipu; unsigned long flags; u32 reg; spin_lock_irqsave(&ipu->lock, flags); reg = ipu_cm_read(ipu, IPU_CHA_DB_MODE_SEL(channel->num)); if (doublebuffer) reg |= idma_mask(channel->num); else reg &= ~idma_mask(channel->num); ipu_cm_write(ipu, reg, IPU_CHA_DB_MODE_SEL(channel->num)); __ipu_idmac_reset_current_buffer(channel); spin_unlock_irqrestore(&ipu->lock, flags); } EXPORT_SYMBOL_GPL(ipu_idmac_set_double_buffer); static const struct { int chnum; u32 reg; int shift; } idmac_lock_en_info[] = { { .chnum = 5, .reg = IDMAC_CH_LOCK_EN_1, .shift = 0, }, { .chnum = 11, .reg = IDMAC_CH_LOCK_EN_1, .shift = 2, }, { .chnum = 12, .reg = IDMAC_CH_LOCK_EN_1, .shift = 4, }, { .chnum = 14, .reg = IDMAC_CH_LOCK_EN_1, .shift = 6, }, { .chnum = 15, .reg = IDMAC_CH_LOCK_EN_1, .shift = 8, }, { .chnum = 20, .reg = IDMAC_CH_LOCK_EN_1, .shift = 10, }, { .chnum = 21, .reg = IDMAC_CH_LOCK_EN_1, .shift = 12, }, { .chnum = 22, .reg = IDMAC_CH_LOCK_EN_1, .shift = 14, }, { .chnum = 23, .reg = IDMAC_CH_LOCK_EN_1, .shift = 16, }, { .chnum = 27, .reg = IDMAC_CH_LOCK_EN_1, .shift = 18, }, { .chnum = 28, .reg = IDMAC_CH_LOCK_EN_1, .shift = 20, }, { .chnum = 45, .reg = IDMAC_CH_LOCK_EN_2, .shift = 0, }, { .chnum = 46, .reg = IDMAC_CH_LOCK_EN_2, .shift = 2, }, { .chnum = 47, .reg = IDMAC_CH_LOCK_EN_2, .shift = 4, }, { .chnum = 48, .reg = IDMAC_CH_LOCK_EN_2, .shift = 6, }, { .chnum = 49, .reg = IDMAC_CH_LOCK_EN_2, .shift = 8, }, { .chnum = 50, .reg = IDMAC_CH_LOCK_EN_2, .shift = 10, }, }; int ipu_idmac_lock_enable(struct ipuv3_channel *channel, int num_bursts) { struct ipu_soc *ipu = channel->ipu; unsigned long flags; u32 bursts, regval; int i; switch (num_bursts) { case 0: case 1: bursts = 0x00; /* locking disabled */ break; case 2: bursts = 0x01; break; case 4: bursts = 0x02; break; case 8: bursts = 0x03; break; default: return -EINVAL; } /* * IPUv3EX / i.MX51 has a different register layout, and on IPUv3M / * i.MX53 channel arbitration locking doesn't seem to work properly. * Allow enabling the lock feature on IPUv3H / i.MX6 only. */ if (bursts && ipu->ipu_type != IPUV3H) return -EINVAL; for (i = 0; i < ARRAY_SIZE(idmac_lock_en_info); i++) { if (channel->num == idmac_lock_en_info[i].chnum) break; } if (i >= ARRAY_SIZE(idmac_lock_en_info)) return -EINVAL; spin_lock_irqsave(&ipu->lock, flags); regval = ipu_idmac_read(ipu, idmac_lock_en_info[i].reg); regval &= ~(0x03 << idmac_lock_en_info[i].shift); regval |= (bursts << idmac_lock_en_info[i].shift); ipu_idmac_write(ipu, regval, idmac_lock_en_info[i].reg); spin_unlock_irqrestore(&ipu->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ipu_idmac_lock_enable); int ipu_module_enable(struct ipu_soc *ipu, u32 mask) { unsigned long lock_flags; u32 val; spin_lock_irqsave(&ipu->lock, lock_flags); val = ipu_cm_read(ipu, IPU_DISP_GEN); if (mask & IPU_CONF_DI0_EN) val |= IPU_DI0_COUNTER_RELEASE; if (mask & IPU_CONF_DI1_EN) val |= IPU_DI1_COUNTER_RELEASE; ipu_cm_write(ipu, val, IPU_DISP_GEN); val = ipu_cm_read(ipu, IPU_CONF); val |= mask; ipu_cm_write(ipu, val, IPU_CONF); spin_unlock_irqrestore(&ipu->lock, lock_flags); return 0; } EXPORT_SYMBOL_GPL(ipu_module_enable); int ipu_module_disable(struct ipu_soc *ipu, u32 mask) { unsigned long lock_flags; u32 val; spin_lock_irqsave(&ipu->lock, lock_flags); val = ipu_cm_read(ipu, IPU_CONF); val &= ~mask; ipu_cm_write(ipu, val, IPU_CONF); val = ipu_cm_read(ipu, IPU_DISP_GEN); if (mask & IPU_CONF_DI0_EN) val &= ~IPU_DI0_COUNTER_RELEASE; if (mask & IPU_CONF_DI1_EN) val &= ~IPU_DI1_COUNTER_RELEASE; ipu_cm_write(ipu, val, IPU_DISP_GEN); spin_unlock_irqrestore(&ipu->lock, lock_flags); return 0; } EXPORT_SYMBOL_GPL(ipu_module_disable); int ipu_idmac_get_current_buffer(struct ipuv3_channel *channel) { struct ipu_soc *ipu = channel->ipu; unsigned int chno = channel->num; return (ipu_cm_read(ipu, IPU_CHA_CUR_BUF(chno)) & idma_mask(chno)) ? 1 : 0; } EXPORT_SYMBOL_GPL(ipu_idmac_get_current_buffer); bool ipu_idmac_buffer_is_ready(struct ipuv3_channel *channel, u32 buf_num) { struct ipu_soc *ipu = channel->ipu; unsigned long flags; u32 reg = 0; spin_lock_irqsave(&ipu->lock, flags); switch (buf_num) { case 0: reg = ipu_cm_read(ipu, IPU_CHA_BUF0_RDY(channel->num)); break; case 1: reg = ipu_cm_read(ipu, IPU_CHA_BUF1_RDY(channel->num)); break; case 2: reg = ipu_cm_read(ipu, IPU_CHA_BUF2_RDY(channel->num)); break; } spin_unlock_irqrestore(&ipu->lock, flags); return ((reg & idma_mask(channel->num)) != 0); } EXPORT_SYMBOL_GPL(ipu_idmac_buffer_is_ready); void ipu_idmac_select_buffer(struct ipuv3_channel *channel, u32 buf_num) { struct ipu_soc *ipu = channel->ipu; unsigned int chno = channel->num; unsigned long flags; spin_lock_irqsave(&ipu->lock, flags); /* Mark buffer as ready. */ if (buf_num == 0) ipu_cm_write(ipu, idma_mask(chno), IPU_CHA_BUF0_RDY(chno)); else ipu_cm_write(ipu, idma_mask(chno), IPU_CHA_BUF1_RDY(chno)); spin_unlock_irqrestore(&ipu->lock, flags); } EXPORT_SYMBOL_GPL(ipu_idmac_select_buffer); void ipu_idmac_clear_buffer(struct ipuv3_channel *channel, u32 buf_num) { struct ipu_soc *ipu = channel->ipu; unsigned int chno = channel->num; unsigned long flags; spin_lock_irqsave(&ipu->lock, flags); ipu_cm_write(ipu, 0xF0300000, IPU_GPR); /* write one to clear */ switch (buf_num) { case 0: ipu_cm_write(ipu, idma_mask(chno), IPU_CHA_BUF0_RDY(chno)); break; case 1: ipu_cm_write(ipu, idma_mask(chno), IPU_CHA_BUF1_RDY(chno)); break; case 2: ipu_cm_write(ipu, idma_mask(chno), IPU_CHA_BUF2_RDY(chno)); break; default: break; } ipu_cm_write(ipu, 0x0, IPU_GPR); /* write one to set */ spin_unlock_irqrestore(&ipu->lock, flags); } EXPORT_SYMBOL_GPL(ipu_idmac_clear_buffer); int ipu_idmac_enable_channel(struct ipuv3_channel *channel) { struct ipu_soc *ipu = channel->ipu; u32 val; unsigned long flags; spin_lock_irqsave(&ipu->lock, flags); val = ipu_idmac_read(ipu, IDMAC_CHA_EN(channel->num)); val |= idma_mask(channel->num); ipu_idmac_write(ipu, val, IDMAC_CHA_EN(channel->num)); spin_unlock_irqrestore(&ipu->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ipu_idmac_enable_channel); bool ipu_idmac_channel_busy(struct ipu_soc *ipu, unsigned int chno) { return (ipu_idmac_read(ipu, IDMAC_CHA_BUSY(chno)) & idma_mask(chno)); } EXPORT_SYMBOL_GPL(ipu_idmac_channel_busy); int ipu_idmac_wait_busy(struct ipuv3_channel *channel, int ms) { struct ipu_soc *ipu = channel->ipu; unsigned long timeout; timeout = jiffies + msecs_to_jiffies(ms); while (ipu_idmac_read(ipu, IDMAC_CHA_BUSY(channel->num)) & idma_mask(channel->num)) { if (time_after(jiffies, timeout)) return -ETIMEDOUT; cpu_relax(); } return 0; } EXPORT_SYMBOL_GPL(ipu_idmac_wait_busy); int ipu_idmac_disable_channel(struct ipuv3_channel *channel) { struct ipu_soc *ipu = channel->ipu; u32 val; unsigned long flags; spin_lock_irqsave(&ipu->lock, flags); /* Disable DMA channel(s) */ val = ipu_idmac_read(ipu, IDMAC_CHA_EN(channel->num)); val &= ~idma_mask(channel->num); ipu_idmac_write(ipu, val, IDMAC_CHA_EN(channel->num)); __ipu_idmac_reset_current_buffer(channel); /* Set channel buffers NOT to be ready */ ipu_cm_write(ipu, 0xf0000000, IPU_GPR); /* write one to clear */ if (ipu_cm_read(ipu, IPU_CHA_BUF0_RDY(channel->num)) & idma_mask(channel->num)) { ipu_cm_write(ipu, idma_mask(channel->num), IPU_CHA_BUF0_RDY(channel->num)); } if (ipu_cm_read(ipu, IPU_CHA_BUF1_RDY(channel->num)) & idma_mask(channel->num)) { ipu_cm_write(ipu, idma_mask(channel->num), IPU_CHA_BUF1_RDY(channel->num)); } ipu_cm_write(ipu, 0x0, IPU_GPR); /* write one to set */ /* Reset the double buffer */ val = ipu_cm_read(ipu, IPU_CHA_DB_MODE_SEL(channel->num)); val &= ~idma_mask(channel->num); ipu_cm_write(ipu, val, IPU_CHA_DB_MODE_SEL(channel->num)); spin_unlock_irqrestore(&ipu->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ipu_idmac_disable_channel); /* * The imx6 rev. D TRM says that enabling the WM feature will increase * a channel's priority. Refer to Table 36-8 Calculated priority value. * The sub-module that is the sink or source for the channel must enable * watermark signal for this to take effect (SMFC_WM for instance). */ void ipu_idmac_enable_watermark(struct ipuv3_channel *channel, bool enable) { struct ipu_soc *ipu = channel->ipu; unsigned long flags; u32 val; spin_lock_irqsave(&ipu->lock, flags); val = ipu_idmac_read(ipu, IDMAC_WM_EN(channel->num)); if (enable) val |= 1 << (channel->num % 32); else val &= ~(1 << (channel->num % 32)); ipu_idmac_write(ipu, val, IDMAC_WM_EN(channel->num)); spin_unlock_irqrestore(&ipu->lock, flags); } EXPORT_SYMBOL_GPL(ipu_idmac_enable_watermark); static int ipu_memory_reset(struct ipu_soc *ipu) { unsigned long timeout; ipu_cm_write(ipu, 0x807FFFFF, IPU_MEM_RST); timeout = jiffies + msecs_to_jiffies(1000); while (ipu_cm_read(ipu, IPU_MEM_RST) & 0x80000000) { if (time_after(jiffies, timeout)) return -ETIME; cpu_relax(); } return 0; } /* * Set the source mux for the given CSI. Selects either parallel or * MIPI CSI2 sources. */ void ipu_set_csi_src_mux(struct ipu_soc *ipu, int csi_id, bool mipi_csi2) { unsigned long flags; u32 val, mask; mask = (csi_id == 1) ? IPU_CONF_CSI1_DATA_SOURCE : IPU_CONF_CSI0_DATA_SOURCE; spin_lock_irqsave(&ipu->lock, flags); val = ipu_cm_read(ipu, IPU_CONF); if (mipi_csi2) val |= mask; else val &= ~mask; ipu_cm_write(ipu, val, IPU_CONF); spin_unlock_irqrestore(&ipu->lock, flags); } EXPORT_SYMBOL_GPL(ipu_set_csi_src_mux); /* * Set the source mux for the IC. Selects either CSI[01] or the VDI. */ void ipu_set_ic_src_mux(struct ipu_soc *ipu, int csi_id, bool vdi) { unsigned long flags; u32 val; spin_lock_irqsave(&ipu->lock, flags); val = ipu_cm_read(ipu, IPU_CONF); if (vdi) val |= IPU_CONF_IC_INPUT; else val &= ~IPU_CONF_IC_INPUT; if (csi_id == 1) val |= IPU_CONF_CSI_SEL; else val &= ~IPU_CONF_CSI_SEL; ipu_cm_write(ipu, val, IPU_CONF); spin_unlock_irqrestore(&ipu->lock, flags); } EXPORT_SYMBOL_GPL(ipu_set_ic_src_mux); /* Frame Synchronization Unit Channel Linking */ struct fsu_link_reg_info { int chno; u32 reg; u32 mask; u32 val; }; struct fsu_link_info { struct fsu_link_reg_info src; struct fsu_link_reg_info sink; }; static const struct fsu_link_info fsu_link_info[] = { { .src = { IPUV3_CHANNEL_IC_PRP_ENC_MEM, IPU_FS_PROC_FLOW2, FS_PRP_ENC_DEST_SEL_MASK, FS_PRP_ENC_DEST_SEL_IRT_ENC }, .sink = { IPUV3_CHANNEL_MEM_ROT_ENC, IPU_FS_PROC_FLOW1, FS_PRPENC_ROT_SRC_SEL_MASK, FS_PRPENC_ROT_SRC_SEL_ENC }, }, { .src = { IPUV3_CHANNEL_IC_PRP_VF_MEM, IPU_FS_PROC_FLOW2, FS_PRPVF_DEST_SEL_MASK, FS_PRPVF_DEST_SEL_IRT_VF }, .sink = { IPUV3_CHANNEL_MEM_ROT_VF, IPU_FS_PROC_FLOW1, FS_PRPVF_ROT_SRC_SEL_MASK, FS_PRPVF_ROT_SRC_SEL_VF }, }, { .src = { IPUV3_CHANNEL_IC_PP_MEM, IPU_FS_PROC_FLOW2, FS_PP_DEST_SEL_MASK, FS_PP_DEST_SEL_IRT_PP }, .sink = { IPUV3_CHANNEL_MEM_ROT_PP, IPU_FS_PROC_FLOW1, FS_PP_ROT_SRC_SEL_MASK, FS_PP_ROT_SRC_SEL_PP }, }, { .src = { IPUV3_CHANNEL_CSI_DIRECT, 0 }, .sink = { IPUV3_CHANNEL_CSI_VDI_PREV, IPU_FS_PROC_FLOW1, FS_VDI_SRC_SEL_MASK, FS_VDI_SRC_SEL_CSI_DIRECT }, }, }; static const struct fsu_link_info *find_fsu_link_info(int src, int sink) { int i; for (i = 0; i < ARRAY_SIZE(fsu_link_info); i++) { if (src == fsu_link_info[i].src.chno && sink == fsu_link_info[i].sink.chno) return &fsu_link_info[i]; } return NULL; } /* * Links a source channel to a sink channel in the FSU. */ int ipu_fsu_link(struct ipu_soc *ipu, int src_ch, int sink_ch) { const struct fsu_link_info *link; u32 src_reg, sink_reg; unsigned long flags; link = find_fsu_link_info(src_ch, sink_ch); if (!link) return -EINVAL; spin_lock_irqsave(&ipu->lock, flags); if (link->src.mask) { src_reg = ipu_cm_read(ipu, link->src.reg); src_reg &= ~link->src.mask; src_reg |= link->src.val; ipu_cm_write(ipu, src_reg, link->src.reg); } if (link->sink.mask) { sink_reg = ipu_cm_read(ipu, link->sink.reg); sink_reg &= ~link->sink.mask; sink_reg |= link->sink.val; ipu_cm_write(ipu, sink_reg, link->sink.reg); } spin_unlock_irqrestore(&ipu->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ipu_fsu_link); /* * Unlinks source and sink channels in the FSU. */ int ipu_fsu_unlink(struct ipu_soc *ipu, int src_ch, int sink_ch) { const struct fsu_link_info *link; u32 src_reg, sink_reg; unsigned long flags; link = find_fsu_link_info(src_ch, sink_ch); if (!link) return -EINVAL; spin_lock_irqsave(&ipu->lock, flags); if (link->src.mask) { src_reg = ipu_cm_read(ipu, link->src.reg); src_reg &= ~link->src.mask; ipu_cm_write(ipu, src_reg, link->src.reg); } if (link->sink.mask) { sink_reg = ipu_cm_read(ipu, link->sink.reg); sink_reg &= ~link->sink.mask; ipu_cm_write(ipu, sink_reg, link->sink.reg); } spin_unlock_irqrestore(&ipu->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ipu_fsu_unlink); /* Link IDMAC channels in the FSU */ int ipu_idmac_link(struct ipuv3_channel *src, struct ipuv3_channel *sink) { return ipu_fsu_link(src->ipu, src->num, sink->num); } EXPORT_SYMBOL_GPL(ipu_idmac_link); /* Unlink IDMAC channels in the FSU */ int ipu_idmac_unlink(struct ipuv3_channel *src, struct ipuv3_channel *sink) { return ipu_fsu_unlink(src->ipu, src->num, sink->num); } EXPORT_SYMBOL_GPL(ipu_idmac_unlink); struct ipu_devtype { const char *name; unsigned long cm_ofs; unsigned long cpmem_ofs; unsigned long srm_ofs; unsigned long tpm_ofs; unsigned long csi0_ofs; unsigned long csi1_ofs; unsigned long ic_ofs; unsigned long disp0_ofs; unsigned long disp1_ofs; unsigned long dc_tmpl_ofs; unsigned long vdi_ofs; enum ipuv3_type type; }; static struct ipu_devtype ipu_type_imx51 = { .name = "IPUv3EX", .cm_ofs = 0x1e000000, .cpmem_ofs = 0x1f000000, .srm_ofs = 0x1f040000, .tpm_ofs = 0x1f060000, .csi0_ofs = 0x1e030000, .csi1_ofs = 0x1e038000, .ic_ofs = 0x1e020000, .disp0_ofs = 0x1e040000, .disp1_ofs = 0x1e048000, .dc_tmpl_ofs = 0x1f080000, .vdi_ofs = 0x1e068000, .type = IPUV3EX, }; static struct ipu_devtype ipu_type_imx53 = { .name = "IPUv3M", .cm_ofs = 0x06000000, .cpmem_ofs = 0x07000000, .srm_ofs = 0x07040000, .tpm_ofs = 0x07060000, .csi0_ofs = 0x06030000, .csi1_ofs = 0x06038000, .ic_ofs = 0x06020000, .disp0_ofs = 0x06040000, .disp1_ofs = 0x06048000, .dc_tmpl_ofs = 0x07080000, .vdi_ofs = 0x06068000, .type = IPUV3M, }; static struct ipu_devtype ipu_type_imx6q = { .name = "IPUv3H", .cm_ofs = 0x00200000, .cpmem_ofs = 0x00300000, .srm_ofs = 0x00340000, .tpm_ofs = 0x00360000, .csi0_ofs = 0x00230000, .csi1_ofs = 0x00238000, .ic_ofs = 0x00220000, .disp0_ofs = 0x00240000, .disp1_ofs = 0x00248000, .dc_tmpl_ofs = 0x00380000, .vdi_ofs = 0x00268000, .type = IPUV3H, }; static const struct of_device_id imx_ipu_dt_ids[] = { { .compatible = "fsl,imx51-ipu", .data = &ipu_type_imx51, }, { .compatible = "fsl,imx53-ipu", .data = &ipu_type_imx53, }, { .compatible = "fsl,imx6q-ipu", .data = &ipu_type_imx6q, }, { .compatible = "fsl,imx6qp-ipu", .data = &ipu_type_imx6q, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, imx_ipu_dt_ids); static int ipu_submodules_init(struct ipu_soc *ipu, struct platform_device *pdev, unsigned long ipu_base, struct clk *ipu_clk) { char *unit; int ret; struct device *dev = &pdev->dev; const struct ipu_devtype *devtype = ipu->devtype; ret = ipu_cpmem_init(ipu, dev, ipu_base + devtype->cpmem_ofs); if (ret) { unit = "cpmem"; goto err_cpmem; } ret = ipu_csi_init(ipu, dev, 0, ipu_base + devtype->csi0_ofs, IPU_CONF_CSI0_EN, ipu_clk); if (ret) { unit = "csi0"; goto err_csi_0; } ret = ipu_csi_init(ipu, dev, 1, ipu_base + devtype->csi1_ofs, IPU_CONF_CSI1_EN, ipu_clk); if (ret) { unit = "csi1"; goto err_csi_1; } ret = ipu_ic_init(ipu, dev, ipu_base + devtype->ic_ofs, ipu_base + devtype->tpm_ofs); if (ret) { unit = "ic"; goto err_ic; } ret = ipu_vdi_init(ipu, dev, ipu_base + devtype->vdi_ofs, IPU_CONF_VDI_EN | IPU_CONF_ISP_EN | IPU_CONF_IC_INPUT); if (ret) { unit = "vdi"; goto err_vdi; } ret = ipu_image_convert_init(ipu, dev); if (ret) { unit = "image_convert"; goto err_image_convert; } ret = ipu_di_init(ipu, dev, 0, ipu_base + devtype->disp0_ofs, IPU_CONF_DI0_EN, ipu_clk); if (ret) { unit = "di0"; goto err_di_0; } ret = ipu_di_init(ipu, dev, 1, ipu_base + devtype->disp1_ofs, IPU_CONF_DI1_EN, ipu_clk); if (ret) { unit = "di1"; goto err_di_1; } ret = ipu_dc_init(ipu, dev, ipu_base + devtype->cm_ofs + IPU_CM_DC_REG_OFS, ipu_base + devtype->dc_tmpl_ofs); if (ret) { unit = "dc_template"; goto err_dc; } ret = ipu_dmfc_init(ipu, dev, ipu_base + devtype->cm_ofs + IPU_CM_DMFC_REG_OFS, ipu_clk); if (ret) { unit = "dmfc"; goto err_dmfc; } ret = ipu_dp_init(ipu, dev, ipu_base + devtype->srm_ofs); if (ret) { unit = "dp"; goto err_dp; } ret = ipu_smfc_init(ipu, dev, ipu_base + devtype->cm_ofs + IPU_CM_SMFC_REG_OFS); if (ret) { unit = "smfc"; goto err_smfc; } return 0; err_smfc: ipu_dp_exit(ipu); err_dp: ipu_dmfc_exit(ipu); err_dmfc: ipu_dc_exit(ipu); err_dc: ipu_di_exit(ipu, 1); err_di_1: ipu_di_exit(ipu, 0); err_di_0: ipu_image_convert_exit(ipu); err_image_convert: ipu_vdi_exit(ipu); err_vdi: ipu_ic_exit(ipu); err_ic: ipu_csi_exit(ipu, 1); err_csi_1: ipu_csi_exit(ipu, 0); err_csi_0: ipu_cpmem_exit(ipu); err_cpmem: dev_err(&pdev->dev, "init %s failed with %d\n", unit, ret); return ret; } static void ipu_irq_handle(struct ipu_soc *ipu, const int *regs, int num_regs) { unsigned long status; int i, bit; for (i = 0; i < num_regs; i++) { status = ipu_cm_read(ipu, IPU_INT_STAT(regs[i])); status &= ipu_cm_read(ipu, IPU_INT_CTRL(regs[i])); for_each_set_bit(bit, &status, 32) generic_handle_domain_irq(ipu->domain, regs[i] * 32 + bit); } } static void ipu_irq_handler(struct irq_desc *desc) { struct ipu_soc *ipu = irq_desc_get_handler_data(desc); struct irq_chip *chip = irq_desc_get_chip(desc); static const int int_reg[] = { 0, 1, 2, 3, 10, 11, 12, 13, 14}; chained_irq_enter(chip, desc); ipu_irq_handle(ipu, int_reg, ARRAY_SIZE(int_reg)); chained_irq_exit(chip, desc); } static void ipu_err_irq_handler(struct irq_desc *desc) { struct ipu_soc *ipu = irq_desc_get_handler_data(desc); struct irq_chip *chip = irq_desc_get_chip(desc); static const int int_reg[] = { 4, 5, 8, 9}; chained_irq_enter(chip, desc); ipu_irq_handle(ipu, int_reg, ARRAY_SIZE(int_reg)); chained_irq_exit(chip, desc); } int ipu_map_irq(struct ipu_soc *ipu, int irq) { int virq; virq = irq_linear_revmap(ipu->domain, irq); if (!virq) virq = irq_create_mapping(ipu->domain, irq); return virq; } EXPORT_SYMBOL_GPL(ipu_map_irq); int ipu_idmac_channel_irq(struct ipu_soc *ipu, struct ipuv3_channel *channel, enum ipu_channel_irq irq_type) { return ipu_map_irq(ipu, irq_type + channel->num); } EXPORT_SYMBOL_GPL(ipu_idmac_channel_irq); static void ipu_submodules_exit(struct ipu_soc *ipu) { ipu_smfc_exit(ipu); ipu_dp_exit(ipu); ipu_dmfc_exit(ipu); ipu_dc_exit(ipu); ipu_di_exit(ipu, 1); ipu_di_exit(ipu, 0); ipu_image_convert_exit(ipu); ipu_vdi_exit(ipu); ipu_ic_exit(ipu); ipu_csi_exit(ipu, 1); ipu_csi_exit(ipu, 0); ipu_cpmem_exit(ipu); } static int platform_remove_devices_fn(struct device *dev, void *unused) { struct platform_device *pdev = to_platform_device(dev); platform_device_unregister(pdev); return 0; } static void platform_device_unregister_children(struct platform_device *pdev) { device_for_each_child(&pdev->dev, NULL, platform_remove_devices_fn); } struct ipu_platform_reg { struct ipu_client_platformdata pdata; const char *name; }; /* These must be in the order of the corresponding device tree port nodes */ static struct ipu_platform_reg client_reg[] = { { .pdata = { .csi = 0, .dma[0] = IPUV3_CHANNEL_CSI0, .dma[1] = -EINVAL, }, .name = "imx-ipuv3-csi", }, { .pdata = { .csi = 1, .dma[0] = IPUV3_CHANNEL_CSI1, .dma[1] = -EINVAL, }, .name = "imx-ipuv3-csi", }, { .pdata = { .di = 0, .dc = 5, .dp = IPU_DP_FLOW_SYNC_BG, .dma[0] = IPUV3_CHANNEL_MEM_BG_SYNC, .dma[1] = IPUV3_CHANNEL_MEM_FG_SYNC, }, .name = "imx-ipuv3-crtc", }, { .pdata = { .di = 1, .dc = 1, .dp = -EINVAL, .dma[0] = IPUV3_CHANNEL_MEM_DC_SYNC, .dma[1] = -EINVAL, }, .name = "imx-ipuv3-crtc", }, }; static DEFINE_MUTEX(ipu_client_id_mutex); static int ipu_client_id; static int ipu_add_client_devices(struct ipu_soc *ipu, unsigned long ipu_base) { struct device *dev = ipu->dev; unsigned i; int id, ret; mutex_lock(&ipu_client_id_mutex); id = ipu_client_id; ipu_client_id += ARRAY_SIZE(client_reg); mutex_unlock(&ipu_client_id_mutex); for (i = 0; i < ARRAY_SIZE(client_reg); i++) { struct ipu_platform_reg *reg = &client_reg[i]; struct platform_device *pdev; struct device_node *of_node; /* Associate subdevice with the corresponding port node */ of_node = of_graph_get_port_by_id(dev->of_node, i); if (!of_node) { dev_info(dev, "no port@%d node in %pOF, not using %s%d\n", i, dev->of_node, (i / 2) ? "DI" : "CSI", i % 2); continue; } pdev = platform_device_alloc(reg->name, id++); if (!pdev) { ret = -ENOMEM; of_node_put(of_node); goto err_register; } pdev->dev.parent = dev; reg->pdata.of_node = of_node; ret = platform_device_add_data(pdev, &reg->pdata, sizeof(reg->pdata)); if (!ret) ret = platform_device_add(pdev); if (ret) { platform_device_put(pdev); goto err_register; } } return 0; err_register: platform_device_unregister_children(to_platform_device(dev)); return ret; } static int ipu_irq_init(struct ipu_soc *ipu) { struct irq_chip_generic *gc; struct irq_chip_type *ct; unsigned long unused[IPU_NUM_IRQS / 32] = { 0x400100d0, 0xffe000fd, 0x400100d0, 0xffe000fd, 0x400100d0, 0xffe000fd, 0x4077ffff, 0xffe7e1fd, 0x23fffffe, 0x8880fff0, 0xf98fe7d0, 0xfff81fff, 0x400100d0, 0xffe000fd, 0x00000000, }; int ret, i; ipu->domain = irq_domain_add_linear(ipu->dev->of_node, IPU_NUM_IRQS, &irq_generic_chip_ops, ipu); if (!ipu->domain) { dev_err(ipu->dev, "failed to add irq domain\n"); return -ENODEV; } ret = irq_alloc_domain_generic_chips(ipu->domain, 32, 1, "IPU", handle_level_irq, 0, 0, 0); if (ret < 0) { dev_err(ipu->dev, "failed to alloc generic irq chips\n"); irq_domain_remove(ipu->domain); return ret; } /* Mask and clear all interrupts */ for (i = 0; i < IPU_NUM_IRQS; i += 32) { ipu_cm_write(ipu, 0, IPU_INT_CTRL(i / 32)); ipu_cm_write(ipu, ~unused[i / 32], IPU_INT_STAT(i / 32)); } for (i = 0; i < IPU_NUM_IRQS; i += 32) { gc = irq_get_domain_generic_chip(ipu->domain, i); gc->reg_base = ipu->cm_reg; gc->unused = unused[i / 32]; ct = gc->chip_types; ct->chip.irq_ack = irq_gc_ack_set_bit; ct->chip.irq_mask = irq_gc_mask_clr_bit; ct->chip.irq_unmask = irq_gc_mask_set_bit; ct->regs.ack = IPU_INT_STAT(i / 32); ct->regs.mask = IPU_INT_CTRL(i / 32); } irq_set_chained_handler_and_data(ipu->irq_sync, ipu_irq_handler, ipu); irq_set_chained_handler_and_data(ipu->irq_err, ipu_err_irq_handler, ipu); return 0; } static void ipu_irq_exit(struct ipu_soc *ipu) { int i, irq; irq_set_chained_handler_and_data(ipu->irq_err, NULL, NULL); irq_set_chained_handler_and_data(ipu->irq_sync, NULL, NULL); /* TODO: remove irq_domain_generic_chips */ for (i = 0; i < IPU_NUM_IRQS; i++) { irq = irq_linear_revmap(ipu->domain, i); if (irq) irq_dispose_mapping(irq); } irq_domain_remove(ipu->domain); } void ipu_dump(struct ipu_soc *ipu) { int i; dev_dbg(ipu->dev, "IPU_CONF = \t0x%08X\n", ipu_cm_read(ipu, IPU_CONF)); dev_dbg(ipu->dev, "IDMAC_CONF = \t0x%08X\n", ipu_idmac_read(ipu, IDMAC_CONF)); dev_dbg(ipu->dev, "IDMAC_CHA_EN1 = \t0x%08X\n", ipu_idmac_read(ipu, IDMAC_CHA_EN(0))); dev_dbg(ipu->dev, "IDMAC_CHA_EN2 = \t0x%08X\n", ipu_idmac_read(ipu, IDMAC_CHA_EN(32))); dev_dbg(ipu->dev, "IDMAC_CHA_PRI1 = \t0x%08X\n", ipu_idmac_read(ipu, IDMAC_CHA_PRI(0))); dev_dbg(ipu->dev, "IDMAC_CHA_PRI2 = \t0x%08X\n", ipu_idmac_read(ipu, IDMAC_CHA_PRI(32))); dev_dbg(ipu->dev, "IDMAC_BAND_EN1 = \t0x%08X\n", ipu_idmac_read(ipu, IDMAC_BAND_EN(0))); dev_dbg(ipu->dev, "IDMAC_BAND_EN2 = \t0x%08X\n", ipu_idmac_read(ipu, IDMAC_BAND_EN(32))); dev_dbg(ipu->dev, "IPU_CHA_DB_MODE_SEL0 = \t0x%08X\n", ipu_cm_read(ipu, IPU_CHA_DB_MODE_SEL(0))); dev_dbg(ipu->dev, "IPU_CHA_DB_MODE_SEL1 = \t0x%08X\n", ipu_cm_read(ipu, IPU_CHA_DB_MODE_SEL(32))); dev_dbg(ipu->dev, "IPU_FS_PROC_FLOW1 = \t0x%08X\n", ipu_cm_read(ipu, IPU_FS_PROC_FLOW1)); dev_dbg(ipu->dev, "IPU_FS_PROC_FLOW2 = \t0x%08X\n", ipu_cm_read(ipu, IPU_FS_PROC_FLOW2)); dev_dbg(ipu->dev, "IPU_FS_PROC_FLOW3 = \t0x%08X\n", ipu_cm_read(ipu, IPU_FS_PROC_FLOW3)); dev_dbg(ipu->dev, "IPU_FS_DISP_FLOW1 = \t0x%08X\n", ipu_cm_read(ipu, IPU_FS_DISP_FLOW1)); for (i = 0; i < 15; i++) dev_dbg(ipu->dev, "IPU_INT_CTRL(%d) = \t%08X\n", i, ipu_cm_read(ipu, IPU_INT_CTRL(i))); } EXPORT_SYMBOL_GPL(ipu_dump); static int ipu_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct ipu_soc *ipu; struct resource *res; unsigned long ipu_base; int ret, irq_sync, irq_err; const struct ipu_devtype *devtype; devtype = of_device_get_match_data(&pdev->dev); if (!devtype) return -EINVAL; irq_sync = platform_get_irq(pdev, 0); irq_err = platform_get_irq(pdev, 1); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); dev_dbg(&pdev->dev, "irq_sync: %d irq_err: %d\n", irq_sync, irq_err); if (!res || irq_sync < 0 || irq_err < 0) return -ENODEV; ipu_base = res->start; ipu = devm_kzalloc(&pdev->dev, sizeof(*ipu), GFP_KERNEL); if (!ipu) return -ENODEV; ipu->id = of_alias_get_id(np, "ipu"); if (ipu->id < 0) ipu->id = 0; if (of_device_is_compatible(np, "fsl,imx6qp-ipu") && IS_ENABLED(CONFIG_DRM)) { ipu->prg_priv = ipu_prg_lookup_by_phandle(&pdev->dev, "fsl,prg", ipu->id); if (!ipu->prg_priv) return -EPROBE_DEFER; } ipu->devtype = devtype; ipu->ipu_type = devtype->type; spin_lock_init(&ipu->lock); mutex_init(&ipu->channel_lock); INIT_LIST_HEAD(&ipu->channels); dev_dbg(&pdev->dev, "cm_reg: 0x%08lx\n", ipu_base + devtype->cm_ofs); dev_dbg(&pdev->dev, "idmac: 0x%08lx\n", ipu_base + devtype->cm_ofs + IPU_CM_IDMAC_REG_OFS); dev_dbg(&pdev->dev, "cpmem: 0x%08lx\n", ipu_base + devtype->cpmem_ofs); dev_dbg(&pdev->dev, "csi0: 0x%08lx\n", ipu_base + devtype->csi0_ofs); dev_dbg(&pdev->dev, "csi1: 0x%08lx\n", ipu_base + devtype->csi1_ofs); dev_dbg(&pdev->dev, "ic: 0x%08lx\n", ipu_base + devtype->ic_ofs); dev_dbg(&pdev->dev, "disp0: 0x%08lx\n", ipu_base + devtype->disp0_ofs); dev_dbg(&pdev->dev, "disp1: 0x%08lx\n", ipu_base + devtype->disp1_ofs); dev_dbg(&pdev->dev, "srm: 0x%08lx\n", ipu_base + devtype->srm_ofs); dev_dbg(&pdev->dev, "tpm: 0x%08lx\n", ipu_base + devtype->tpm_ofs); dev_dbg(&pdev->dev, "dc: 0x%08lx\n", ipu_base + devtype->cm_ofs + IPU_CM_DC_REG_OFS); dev_dbg(&pdev->dev, "ic: 0x%08lx\n", ipu_base + devtype->cm_ofs + IPU_CM_IC_REG_OFS); dev_dbg(&pdev->dev, "dmfc: 0x%08lx\n", ipu_base + devtype->cm_ofs + IPU_CM_DMFC_REG_OFS); dev_dbg(&pdev->dev, "vdi: 0x%08lx\n", ipu_base + devtype->vdi_ofs); ipu->cm_reg = devm_ioremap(&pdev->dev, ipu_base + devtype->cm_ofs, PAGE_SIZE); ipu->idmac_reg = devm_ioremap(&pdev->dev, ipu_base + devtype->cm_ofs + IPU_CM_IDMAC_REG_OFS, PAGE_SIZE); if (!ipu->cm_reg || !ipu->idmac_reg) return -ENOMEM; ipu->clk = devm_clk_get(&pdev->dev, "bus"); if (IS_ERR(ipu->clk)) { ret = PTR_ERR(ipu->clk); dev_err(&pdev->dev, "clk_get failed with %d", ret); return ret; } platform_set_drvdata(pdev, ipu); ret = clk_prepare_enable(ipu->clk); if (ret) { dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret); return ret; } ipu->dev = &pdev->dev; ipu->irq_sync = irq_sync; ipu->irq_err = irq_err; ret = device_reset(&pdev->dev); if (ret) { dev_err(&pdev->dev, "failed to reset: %d\n", ret); goto out_failed_reset; } ret = ipu_memory_reset(ipu); if (ret) goto out_failed_reset; ret = ipu_irq_init(ipu); if (ret) goto out_failed_irq; /* Set MCU_T to divide MCU access window into 2 */ ipu_cm_write(ipu, 0x00400000L | (IPU_MCU_T_DEFAULT << 18), IPU_DISP_GEN); ret = ipu_submodules_init(ipu, pdev, ipu_base, ipu->clk); if (ret) goto failed_submodules_init; ret = ipu_add_client_devices(ipu, ipu_base); if (ret) { dev_err(&pdev->dev, "adding client devices failed with %d\n", ret); goto failed_add_clients; } dev_info(&pdev->dev, "%s probed\n", devtype->name); return 0; failed_add_clients: ipu_submodules_exit(ipu); failed_submodules_init: ipu_irq_exit(ipu); out_failed_irq: out_failed_reset: clk_disable_unprepare(ipu->clk); return ret; } static int ipu_remove(struct platform_device *pdev) { struct ipu_soc *ipu = platform_get_drvdata(pdev); platform_device_unregister_children(pdev); ipu_submodules_exit(ipu); ipu_irq_exit(ipu); clk_disable_unprepare(ipu->clk); return 0; } static struct platform_driver imx_ipu_driver = { .driver = { .name = "imx-ipuv3", .of_match_table = imx_ipu_dt_ids, }, .probe = ipu_probe, .remove = ipu_remove, }; static struct platform_driver * const drivers[] = { #if IS_ENABLED(CONFIG_DRM) &ipu_pre_drv, &ipu_prg_drv, #endif &imx_ipu_driver, }; static int __init imx_ipu_init(void) { return platform_register_drivers(drivers, ARRAY_SIZE(drivers)); } module_init(imx_ipu_init); static void __exit imx_ipu_exit(void) { platform_unregister_drivers(drivers, ARRAY_SIZE(drivers)); } module_exit(imx_ipu_exit); MODULE_ALIAS("platform:imx-ipuv3"); MODULE_DESCRIPTION("i.MX IPU v3 driver"); MODULE_AUTHOR("Sascha Hauer <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/gpu/ipu-v3/ipu-common.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2010 Sascha Hauer <[email protected]> * Copyright (C) 2005-2009 Freescale Semiconductor, Inc. */ #include <linux/export.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/io.h> #include <video/imx-ipu-v3.h> #include "ipu-prv.h" #define DMFC_RD_CHAN 0x0000 #define DMFC_WR_CHAN 0x0004 #define DMFC_WR_CHAN_DEF 0x0008 #define DMFC_DP_CHAN 0x000c #define DMFC_DP_CHAN_DEF 0x0010 #define DMFC_GENERAL1 0x0014 #define DMFC_GENERAL2 0x0018 #define DMFC_IC_CTRL 0x001c #define DMFC_WR_CHAN_ALT 0x0020 #define DMFC_WR_CHAN_DEF_ALT 0x0024 #define DMFC_DP_CHAN_ALT 0x0028 #define DMFC_DP_CHAN_DEF_ALT 0x002c #define DMFC_GENERAL1_ALT 0x0030 #define DMFC_STAT 0x0034 #define DMFC_WR_CHAN_1_28 0 #define DMFC_WR_CHAN_2_41 8 #define DMFC_WR_CHAN_1C_42 16 #define DMFC_WR_CHAN_2C_43 24 #define DMFC_DP_CHAN_5B_23 0 #define DMFC_DP_CHAN_5F_27 8 #define DMFC_DP_CHAN_6B_24 16 #define DMFC_DP_CHAN_6F_29 24 struct dmfc_channel_data { int ipu_channel; unsigned long channel_reg; unsigned long shift; unsigned eot_shift; unsigned max_fifo_lines; }; static const struct dmfc_channel_data dmfcdata[] = { { .ipu_channel = IPUV3_CHANNEL_MEM_BG_SYNC, .channel_reg = DMFC_DP_CHAN, .shift = DMFC_DP_CHAN_5B_23, .eot_shift = 20, .max_fifo_lines = 3, }, { .ipu_channel = 24, .channel_reg = DMFC_DP_CHAN, .shift = DMFC_DP_CHAN_6B_24, .eot_shift = 22, .max_fifo_lines = 1, }, { .ipu_channel = IPUV3_CHANNEL_MEM_FG_SYNC, .channel_reg = DMFC_DP_CHAN, .shift = DMFC_DP_CHAN_5F_27, .eot_shift = 21, .max_fifo_lines = 2, }, { .ipu_channel = IPUV3_CHANNEL_MEM_DC_SYNC, .channel_reg = DMFC_WR_CHAN, .shift = DMFC_WR_CHAN_1_28, .eot_shift = 16, .max_fifo_lines = 2, }, { .ipu_channel = 29, .channel_reg = DMFC_DP_CHAN, .shift = DMFC_DP_CHAN_6F_29, .eot_shift = 23, .max_fifo_lines = 1, }, }; #define DMFC_NUM_CHANNELS ARRAY_SIZE(dmfcdata) struct ipu_dmfc_priv; struct dmfc_channel { unsigned slots; struct ipu_soc *ipu; struct ipu_dmfc_priv *priv; const struct dmfc_channel_data *data; }; struct ipu_dmfc_priv { struct ipu_soc *ipu; struct device *dev; struct dmfc_channel channels[DMFC_NUM_CHANNELS]; struct mutex mutex; void __iomem *base; int use_count; }; int ipu_dmfc_enable_channel(struct dmfc_channel *dmfc) { struct ipu_dmfc_priv *priv = dmfc->priv; mutex_lock(&priv->mutex); if (!priv->use_count) ipu_module_enable(priv->ipu, IPU_CONF_DMFC_EN); priv->use_count++; mutex_unlock(&priv->mutex); return 0; } EXPORT_SYMBOL_GPL(ipu_dmfc_enable_channel); void ipu_dmfc_disable_channel(struct dmfc_channel *dmfc) { struct ipu_dmfc_priv *priv = dmfc->priv; mutex_lock(&priv->mutex); priv->use_count--; if (!priv->use_count) ipu_module_disable(priv->ipu, IPU_CONF_DMFC_EN); if (priv->use_count < 0) priv->use_count = 0; mutex_unlock(&priv->mutex); } EXPORT_SYMBOL_GPL(ipu_dmfc_disable_channel); void ipu_dmfc_config_wait4eot(struct dmfc_channel *dmfc, int width) { struct ipu_dmfc_priv *priv = dmfc->priv; u32 dmfc_gen1; mutex_lock(&priv->mutex); dmfc_gen1 = readl(priv->base + DMFC_GENERAL1); if ((dmfc->slots * 64 * 4) / width > dmfc->data->max_fifo_lines) dmfc_gen1 |= 1 << dmfc->data->eot_shift; else dmfc_gen1 &= ~(1 << dmfc->data->eot_shift); writel(dmfc_gen1, priv->base + DMFC_GENERAL1); mutex_unlock(&priv->mutex); } EXPORT_SYMBOL_GPL(ipu_dmfc_config_wait4eot); struct dmfc_channel *ipu_dmfc_get(struct ipu_soc *ipu, int ipu_channel) { struct ipu_dmfc_priv *priv = ipu->dmfc_priv; int i; for (i = 0; i < DMFC_NUM_CHANNELS; i++) if (dmfcdata[i].ipu_channel == ipu_channel) return &priv->channels[i]; return ERR_PTR(-ENODEV); } EXPORT_SYMBOL_GPL(ipu_dmfc_get); void ipu_dmfc_put(struct dmfc_channel *dmfc) { } EXPORT_SYMBOL_GPL(ipu_dmfc_put); int ipu_dmfc_init(struct ipu_soc *ipu, struct device *dev, unsigned long base, struct clk *ipu_clk) { struct ipu_dmfc_priv *priv; int i; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->base = devm_ioremap(dev, base, PAGE_SIZE); if (!priv->base) return -ENOMEM; priv->dev = dev; priv->ipu = ipu; mutex_init(&priv->mutex); ipu->dmfc_priv = priv; for (i = 0; i < DMFC_NUM_CHANNELS; i++) { priv->channels[i].priv = priv; priv->channels[i].ipu = ipu; priv->channels[i].data = &dmfcdata[i]; if (dmfcdata[i].ipu_channel == IPUV3_CHANNEL_MEM_BG_SYNC || dmfcdata[i].ipu_channel == IPUV3_CHANNEL_MEM_FG_SYNC || dmfcdata[i].ipu_channel == IPUV3_CHANNEL_MEM_DC_SYNC) priv->channels[i].slots = 2; } writel(0x00000050, priv->base + DMFC_WR_CHAN); writel(0x00005654, priv->base + DMFC_DP_CHAN); writel(0x202020f6, priv->base + DMFC_WR_CHAN_DEF); writel(0x2020f6f6, priv->base + DMFC_DP_CHAN_DEF); writel(0x00000003, priv->base + DMFC_GENERAL1); return 0; } void ipu_dmfc_exit(struct ipu_soc *ipu) { }
linux-master
drivers/gpu/ipu-v3/ipu-dmfc.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2012-2016 Mentor Graphics Inc. * Copyright (C) 2005-2009 Freescale Semiconductor, Inc. */ #include <linux/io.h> #include "ipu-prv.h" struct ipu_vdi { void __iomem *base; u32 module; spinlock_t lock; int use_count; struct ipu_soc *ipu; }; /* VDI Register Offsets */ #define VDI_FSIZE 0x0000 #define VDI_C 0x0004 /* VDI Register Fields */ #define VDI_C_CH_420 (0 << 1) #define VDI_C_CH_422 (1 << 1) #define VDI_C_MOT_SEL_MASK (0x3 << 2) #define VDI_C_MOT_SEL_FULL (2 << 2) #define VDI_C_MOT_SEL_LOW (1 << 2) #define VDI_C_MOT_SEL_MED (0 << 2) #define VDI_C_BURST_SIZE1_4 (3 << 4) #define VDI_C_BURST_SIZE2_4 (3 << 8) #define VDI_C_BURST_SIZE3_4 (3 << 12) #define VDI_C_BURST_SIZE_MASK 0xF #define VDI_C_BURST_SIZE1_OFFSET 4 #define VDI_C_BURST_SIZE2_OFFSET 8 #define VDI_C_BURST_SIZE3_OFFSET 12 #define VDI_C_VWM1_SET_1 (0 << 16) #define VDI_C_VWM1_SET_2 (1 << 16) #define VDI_C_VWM1_CLR_2 (1 << 19) #define VDI_C_VWM3_SET_1 (0 << 22) #define VDI_C_VWM3_SET_2 (1 << 22) #define VDI_C_VWM3_CLR_2 (1 << 25) #define VDI_C_TOP_FIELD_MAN_1 (1 << 30) #define VDI_C_TOP_FIELD_AUTO_1 (1 << 31) static inline u32 ipu_vdi_read(struct ipu_vdi *vdi, unsigned int offset) { return readl(vdi->base + offset); } static inline void ipu_vdi_write(struct ipu_vdi *vdi, u32 value, unsigned int offset) { writel(value, vdi->base + offset); } void ipu_vdi_set_field_order(struct ipu_vdi *vdi, v4l2_std_id std, u32 field) { bool top_field_0 = false; unsigned long flags; u32 reg; switch (field) { case V4L2_FIELD_INTERLACED_TB: case V4L2_FIELD_SEQ_TB: case V4L2_FIELD_TOP: top_field_0 = true; break; case V4L2_FIELD_INTERLACED_BT: case V4L2_FIELD_SEQ_BT: case V4L2_FIELD_BOTTOM: top_field_0 = false; break; default: top_field_0 = (std & V4L2_STD_525_60) ? true : false; break; } spin_lock_irqsave(&vdi->lock, flags); reg = ipu_vdi_read(vdi, VDI_C); if (top_field_0) reg &= ~(VDI_C_TOP_FIELD_MAN_1 | VDI_C_TOP_FIELD_AUTO_1); else reg |= VDI_C_TOP_FIELD_MAN_1 | VDI_C_TOP_FIELD_AUTO_1; ipu_vdi_write(vdi, reg, VDI_C); spin_unlock_irqrestore(&vdi->lock, flags); } EXPORT_SYMBOL_GPL(ipu_vdi_set_field_order); void ipu_vdi_set_motion(struct ipu_vdi *vdi, enum ipu_motion_sel motion_sel) { unsigned long flags; u32 reg; spin_lock_irqsave(&vdi->lock, flags); reg = ipu_vdi_read(vdi, VDI_C); reg &= ~VDI_C_MOT_SEL_MASK; switch (motion_sel) { case MED_MOTION: reg |= VDI_C_MOT_SEL_MED; break; case HIGH_MOTION: reg |= VDI_C_MOT_SEL_FULL; break; default: reg |= VDI_C_MOT_SEL_LOW; break; } ipu_vdi_write(vdi, reg, VDI_C); spin_unlock_irqrestore(&vdi->lock, flags); } EXPORT_SYMBOL_GPL(ipu_vdi_set_motion); void ipu_vdi_setup(struct ipu_vdi *vdi, u32 code, int xres, int yres) { unsigned long flags; u32 pixel_fmt, reg; spin_lock_irqsave(&vdi->lock, flags); reg = ((yres - 1) << 16) | (xres - 1); ipu_vdi_write(vdi, reg, VDI_FSIZE); /* * Full motion, only vertical filter is used. * Burst size is 4 accesses */ if (code == MEDIA_BUS_FMT_UYVY8_2X8 || code == MEDIA_BUS_FMT_UYVY8_1X16 || code == MEDIA_BUS_FMT_YUYV8_2X8 || code == MEDIA_BUS_FMT_YUYV8_1X16) pixel_fmt = VDI_C_CH_422; else pixel_fmt = VDI_C_CH_420; reg = ipu_vdi_read(vdi, VDI_C); reg |= pixel_fmt; reg |= VDI_C_BURST_SIZE2_4; reg |= VDI_C_BURST_SIZE1_4 | VDI_C_VWM1_CLR_2; reg |= VDI_C_BURST_SIZE3_4 | VDI_C_VWM3_CLR_2; ipu_vdi_write(vdi, reg, VDI_C); spin_unlock_irqrestore(&vdi->lock, flags); } EXPORT_SYMBOL_GPL(ipu_vdi_setup); void ipu_vdi_unsetup(struct ipu_vdi *vdi) { unsigned long flags; spin_lock_irqsave(&vdi->lock, flags); ipu_vdi_write(vdi, 0, VDI_FSIZE); ipu_vdi_write(vdi, 0, VDI_C); spin_unlock_irqrestore(&vdi->lock, flags); } EXPORT_SYMBOL_GPL(ipu_vdi_unsetup); int ipu_vdi_enable(struct ipu_vdi *vdi) { unsigned long flags; spin_lock_irqsave(&vdi->lock, flags); if (!vdi->use_count) ipu_module_enable(vdi->ipu, vdi->module); vdi->use_count++; spin_unlock_irqrestore(&vdi->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ipu_vdi_enable); int ipu_vdi_disable(struct ipu_vdi *vdi) { unsigned long flags; spin_lock_irqsave(&vdi->lock, flags); if (vdi->use_count) { if (!--vdi->use_count) ipu_module_disable(vdi->ipu, vdi->module); } spin_unlock_irqrestore(&vdi->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ipu_vdi_disable); struct ipu_vdi *ipu_vdi_get(struct ipu_soc *ipu) { return ipu->vdi_priv; } EXPORT_SYMBOL_GPL(ipu_vdi_get); void ipu_vdi_put(struct ipu_vdi *vdi) { } EXPORT_SYMBOL_GPL(ipu_vdi_put); int ipu_vdi_init(struct ipu_soc *ipu, struct device *dev, unsigned long base, u32 module) { struct ipu_vdi *vdi; vdi = devm_kzalloc(dev, sizeof(*vdi), GFP_KERNEL); if (!vdi) return -ENOMEM; ipu->vdi_priv = vdi; spin_lock_init(&vdi->lock); vdi->module = module; vdi->base = devm_ioremap(dev, base, PAGE_SIZE); if (!vdi->base) return -ENOMEM; dev_dbg(dev, "VDI base: 0x%08lx remapped to %p\n", base, vdi->base); vdi->ipu = ipu; return 0; } void ipu_vdi_exit(struct ipu_soc *ipu) { }
linux-master
drivers/gpu/ipu-v3/ipu-vdi.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2010 Sascha Hauer <[email protected]> * Copyright (C) 2005-2009 Freescale Semiconductor, Inc. */ #include <linux/export.h> #include <linux/module.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/io.h> #include <video/imx-ipu-v3.h> #include "ipu-prv.h" #define DC_MAP_CONF_PTR(n) (0x108 + ((n) & ~0x1) * 2) #define DC_MAP_CONF_VAL(n) (0x144 + ((n) & ~0x1) * 2) #define DC_EVT_NF 0 #define DC_EVT_NL 1 #define DC_EVT_EOF 2 #define DC_EVT_NFIELD 3 #define DC_EVT_EOL 4 #define DC_EVT_EOFIELD 5 #define DC_EVT_NEW_ADDR 6 #define DC_EVT_NEW_CHAN 7 #define DC_EVT_NEW_DATA 8 #define DC_EVT_NEW_ADDR_W_0 0 #define DC_EVT_NEW_ADDR_W_1 1 #define DC_EVT_NEW_CHAN_W_0 2 #define DC_EVT_NEW_CHAN_W_1 3 #define DC_EVT_NEW_DATA_W_0 4 #define DC_EVT_NEW_DATA_W_1 5 #define DC_EVT_NEW_ADDR_R_0 6 #define DC_EVT_NEW_ADDR_R_1 7 #define DC_EVT_NEW_CHAN_R_0 8 #define DC_EVT_NEW_CHAN_R_1 9 #define DC_EVT_NEW_DATA_R_0 10 #define DC_EVT_NEW_DATA_R_1 11 #define DC_WR_CH_CONF 0x0 #define DC_WR_CH_ADDR 0x4 #define DC_RL_CH(evt) (8 + ((evt) & ~0x1) * 2) #define DC_GEN 0xd4 #define DC_DISP_CONF1(disp) (0xd8 + (disp) * 4) #define DC_DISP_CONF2(disp) (0xe8 + (disp) * 4) #define DC_STAT 0x1c8 #define WROD(lf) (0x18 | ((lf) << 1)) #define WRG 0x01 #define WCLK 0xc9 #define SYNC_WAVE 0 #define NULL_WAVE (-1) #define DC_GEN_SYNC_1_6_SYNC (2 << 1) #define DC_GEN_SYNC_PRIORITY_1 (1 << 7) #define DC_WR_CH_CONF_WORD_SIZE_8 (0 << 0) #define DC_WR_CH_CONF_WORD_SIZE_16 (1 << 0) #define DC_WR_CH_CONF_WORD_SIZE_24 (2 << 0) #define DC_WR_CH_CONF_WORD_SIZE_32 (3 << 0) #define DC_WR_CH_CONF_DISP_ID_PARALLEL(i) (((i) & 0x1) << 3) #define DC_WR_CH_CONF_DISP_ID_SERIAL (2 << 3) #define DC_WR_CH_CONF_DISP_ID_ASYNC (3 << 4) #define DC_WR_CH_CONF_FIELD_MODE (1 << 9) #define DC_WR_CH_CONF_PROG_TYPE_NORMAL (4 << 5) #define DC_WR_CH_CONF_PROG_TYPE_MASK (7 << 5) #define DC_WR_CH_CONF_PROG_DI_ID (1 << 2) #define DC_WR_CH_CONF_PROG_DISP_ID(i) (((i) & 0x1) << 3) #define IPU_DC_NUM_CHANNELS 10 struct ipu_dc_priv; enum ipu_dc_map { IPU_DC_MAP_RGB24, IPU_DC_MAP_RGB565, IPU_DC_MAP_GBR24, /* TVEv2 */ IPU_DC_MAP_BGR666, IPU_DC_MAP_LVDS666, IPU_DC_MAP_BGR24, }; struct ipu_dc { /* The display interface number assigned to this dc channel */ unsigned int di; void __iomem *base; struct ipu_dc_priv *priv; int chno; bool in_use; }; struct ipu_dc_priv { void __iomem *dc_reg; void __iomem *dc_tmpl_reg; struct ipu_soc *ipu; struct device *dev; struct ipu_dc channels[IPU_DC_NUM_CHANNELS]; struct mutex mutex; struct completion comp; int use_count; }; static void dc_link_event(struct ipu_dc *dc, int event, int addr, int priority) { u32 reg; reg = readl(dc->base + DC_RL_CH(event)); reg &= ~(0xffff << (16 * (event & 0x1))); reg |= ((addr << 8) | priority) << (16 * (event & 0x1)); writel(reg, dc->base + DC_RL_CH(event)); } static void dc_write_tmpl(struct ipu_dc *dc, int word, u32 opcode, u32 operand, int map, int wave, int glue, int sync, int stop) { struct ipu_dc_priv *priv = dc->priv; u32 reg1, reg2; if (opcode == WCLK) { reg1 = (operand << 20) & 0xfff00000; reg2 = operand >> 12 | opcode << 1 | stop << 9; } else if (opcode == WRG) { reg1 = sync | glue << 4 | ++wave << 11 | ((operand << 15) & 0xffff8000); reg2 = operand >> 17 | opcode << 7 | stop << 9; } else { reg1 = sync | glue << 4 | ++wave << 11 | ++map << 15 | ((operand << 20) & 0xfff00000); reg2 = operand >> 12 | opcode << 4 | stop << 9; } writel(reg1, priv->dc_tmpl_reg + word * 8); writel(reg2, priv->dc_tmpl_reg + word * 8 + 4); } static int ipu_bus_format_to_map(u32 fmt) { switch (fmt) { default: WARN_ON(1); fallthrough; case MEDIA_BUS_FMT_RGB888_1X24: return IPU_DC_MAP_RGB24; case MEDIA_BUS_FMT_RGB565_1X16: return IPU_DC_MAP_RGB565; case MEDIA_BUS_FMT_GBR888_1X24: return IPU_DC_MAP_GBR24; case MEDIA_BUS_FMT_RGB666_1X18: return IPU_DC_MAP_BGR666; case MEDIA_BUS_FMT_RGB666_1X24_CPADHI: return IPU_DC_MAP_LVDS666; case MEDIA_BUS_FMT_BGR888_1X24: return IPU_DC_MAP_BGR24; } } int ipu_dc_init_sync(struct ipu_dc *dc, struct ipu_di *di, bool interlaced, u32 bus_format, u32 width) { struct ipu_dc_priv *priv = dc->priv; int addr, sync; u32 reg = 0; int map; dc->di = ipu_di_get_num(di); if (!IS_ALIGNED(width, 8)) { dev_warn(priv->dev, "%s: hactive does not align to 8 byte\n", __func__); } map = ipu_bus_format_to_map(bus_format); /* * In interlaced mode we need more counters to create the asymmetric * per-field VSYNC signals. The pixel active signal synchronising DC * to DI moves to signal generator #6 (see ipu-di.c). In progressive * mode counter #5 is used. */ sync = interlaced ? 6 : 5; /* Reserve 5 microcode template words for each DI */ if (dc->di) addr = 5; else addr = 0; if (interlaced) { dc_link_event(dc, DC_EVT_NL, addr, 3); dc_link_event(dc, DC_EVT_EOL, addr, 2); dc_link_event(dc, DC_EVT_NEW_DATA, addr, 1); /* Init template microcode */ dc_write_tmpl(dc, addr, WROD(0), 0, map, SYNC_WAVE, 0, sync, 1); } else { dc_link_event(dc, DC_EVT_NL, addr + 2, 3); dc_link_event(dc, DC_EVT_EOL, addr + 3, 2); dc_link_event(dc, DC_EVT_NEW_DATA, addr + 1, 1); /* Init template microcode */ dc_write_tmpl(dc, addr + 2, WROD(0), 0, map, SYNC_WAVE, 8, sync, 1); dc_write_tmpl(dc, addr + 3, WROD(0), 0, map, SYNC_WAVE, 4, sync, 0); dc_write_tmpl(dc, addr + 4, WRG, 0, map, NULL_WAVE, 0, 0, 1); dc_write_tmpl(dc, addr + 1, WROD(0), 0, map, SYNC_WAVE, 0, sync, 1); } dc_link_event(dc, DC_EVT_NF, 0, 0); dc_link_event(dc, DC_EVT_NFIELD, 0, 0); dc_link_event(dc, DC_EVT_EOF, 0, 0); dc_link_event(dc, DC_EVT_EOFIELD, 0, 0); dc_link_event(dc, DC_EVT_NEW_CHAN, 0, 0); dc_link_event(dc, DC_EVT_NEW_ADDR, 0, 0); reg = readl(dc->base + DC_WR_CH_CONF); if (interlaced) reg |= DC_WR_CH_CONF_FIELD_MODE; else reg &= ~DC_WR_CH_CONF_FIELD_MODE; writel(reg, dc->base + DC_WR_CH_CONF); writel(0x0, dc->base + DC_WR_CH_ADDR); writel(width, priv->dc_reg + DC_DISP_CONF2(dc->di)); return 0; } EXPORT_SYMBOL_GPL(ipu_dc_init_sync); void ipu_dc_enable(struct ipu_soc *ipu) { struct ipu_dc_priv *priv = ipu->dc_priv; mutex_lock(&priv->mutex); if (!priv->use_count) ipu_module_enable(priv->ipu, IPU_CONF_DC_EN); priv->use_count++; mutex_unlock(&priv->mutex); } EXPORT_SYMBOL_GPL(ipu_dc_enable); void ipu_dc_enable_channel(struct ipu_dc *dc) { u32 reg; reg = readl(dc->base + DC_WR_CH_CONF); reg |= DC_WR_CH_CONF_PROG_TYPE_NORMAL; writel(reg, dc->base + DC_WR_CH_CONF); } EXPORT_SYMBOL_GPL(ipu_dc_enable_channel); void ipu_dc_disable_channel(struct ipu_dc *dc) { u32 val; val = readl(dc->base + DC_WR_CH_CONF); val &= ~DC_WR_CH_CONF_PROG_TYPE_MASK; writel(val, dc->base + DC_WR_CH_CONF); } EXPORT_SYMBOL_GPL(ipu_dc_disable_channel); void ipu_dc_disable(struct ipu_soc *ipu) { struct ipu_dc_priv *priv = ipu->dc_priv; mutex_lock(&priv->mutex); priv->use_count--; if (!priv->use_count) ipu_module_disable(priv->ipu, IPU_CONF_DC_EN); if (priv->use_count < 0) priv->use_count = 0; mutex_unlock(&priv->mutex); } EXPORT_SYMBOL_GPL(ipu_dc_disable); static void ipu_dc_map_config(struct ipu_dc_priv *priv, enum ipu_dc_map map, int byte_num, int offset, int mask) { int ptr = map * 3 + byte_num; u32 reg; reg = readl(priv->dc_reg + DC_MAP_CONF_VAL(ptr)); reg &= ~(0xffff << (16 * (ptr & 0x1))); reg |= ((offset << 8) | mask) << (16 * (ptr & 0x1)); writel(reg, priv->dc_reg + DC_MAP_CONF_VAL(ptr)); reg = readl(priv->dc_reg + DC_MAP_CONF_PTR(map)); reg &= ~(0x1f << ((16 * (map & 0x1)) + (5 * byte_num))); reg |= ptr << ((16 * (map & 0x1)) + (5 * byte_num)); writel(reg, priv->dc_reg + DC_MAP_CONF_PTR(map)); } static void ipu_dc_map_clear(struct ipu_dc_priv *priv, int map) { u32 reg = readl(priv->dc_reg + DC_MAP_CONF_PTR(map)); writel(reg & ~(0xffff << (16 * (map & 0x1))), priv->dc_reg + DC_MAP_CONF_PTR(map)); } struct ipu_dc *ipu_dc_get(struct ipu_soc *ipu, int channel) { struct ipu_dc_priv *priv = ipu->dc_priv; struct ipu_dc *dc; if (channel >= IPU_DC_NUM_CHANNELS) return ERR_PTR(-ENODEV); dc = &priv->channels[channel]; mutex_lock(&priv->mutex); if (dc->in_use) { mutex_unlock(&priv->mutex); return ERR_PTR(-EBUSY); } dc->in_use = true; mutex_unlock(&priv->mutex); return dc; } EXPORT_SYMBOL_GPL(ipu_dc_get); void ipu_dc_put(struct ipu_dc *dc) { struct ipu_dc_priv *priv = dc->priv; mutex_lock(&priv->mutex); dc->in_use = false; mutex_unlock(&priv->mutex); } EXPORT_SYMBOL_GPL(ipu_dc_put); int ipu_dc_init(struct ipu_soc *ipu, struct device *dev, unsigned long base, unsigned long template_base) { struct ipu_dc_priv *priv; static const int channel_offsets[] = { 0, 0x1c, 0x38, 0x54, 0x58, 0x5c, 0x78, 0, 0x94, 0xb4 }; int i; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; mutex_init(&priv->mutex); priv->dev = dev; priv->ipu = ipu; priv->dc_reg = devm_ioremap(dev, base, PAGE_SIZE); priv->dc_tmpl_reg = devm_ioremap(dev, template_base, PAGE_SIZE); if (!priv->dc_reg || !priv->dc_tmpl_reg) return -ENOMEM; for (i = 0; i < IPU_DC_NUM_CHANNELS; i++) { priv->channels[i].chno = i; priv->channels[i].priv = priv; priv->channels[i].base = priv->dc_reg + channel_offsets[i]; } writel(DC_WR_CH_CONF_WORD_SIZE_24 | DC_WR_CH_CONF_DISP_ID_PARALLEL(1) | DC_WR_CH_CONF_PROG_DI_ID, priv->channels[1].base + DC_WR_CH_CONF); writel(DC_WR_CH_CONF_WORD_SIZE_24 | DC_WR_CH_CONF_DISP_ID_PARALLEL(0), priv->channels[5].base + DC_WR_CH_CONF); writel(DC_GEN_SYNC_1_6_SYNC | DC_GEN_SYNC_PRIORITY_1, priv->dc_reg + DC_GEN); ipu->dc_priv = priv; dev_dbg(dev, "DC base: 0x%08lx template base: 0x%08lx\n", base, template_base); /* rgb24 */ ipu_dc_map_clear(priv, IPU_DC_MAP_RGB24); ipu_dc_map_config(priv, IPU_DC_MAP_RGB24, 0, 7, 0xff); /* blue */ ipu_dc_map_config(priv, IPU_DC_MAP_RGB24, 1, 15, 0xff); /* green */ ipu_dc_map_config(priv, IPU_DC_MAP_RGB24, 2, 23, 0xff); /* red */ /* rgb565 */ ipu_dc_map_clear(priv, IPU_DC_MAP_RGB565); ipu_dc_map_config(priv, IPU_DC_MAP_RGB565, 0, 4, 0xf8); /* blue */ ipu_dc_map_config(priv, IPU_DC_MAP_RGB565, 1, 10, 0xfc); /* green */ ipu_dc_map_config(priv, IPU_DC_MAP_RGB565, 2, 15, 0xf8); /* red */ /* gbr24 */ ipu_dc_map_clear(priv, IPU_DC_MAP_GBR24); ipu_dc_map_config(priv, IPU_DC_MAP_GBR24, 2, 15, 0xff); /* green */ ipu_dc_map_config(priv, IPU_DC_MAP_GBR24, 1, 7, 0xff); /* blue */ ipu_dc_map_config(priv, IPU_DC_MAP_GBR24, 0, 23, 0xff); /* red */ /* bgr666 */ ipu_dc_map_clear(priv, IPU_DC_MAP_BGR666); ipu_dc_map_config(priv, IPU_DC_MAP_BGR666, 0, 5, 0xfc); /* blue */ ipu_dc_map_config(priv, IPU_DC_MAP_BGR666, 1, 11, 0xfc); /* green */ ipu_dc_map_config(priv, IPU_DC_MAP_BGR666, 2, 17, 0xfc); /* red */ /* lvds666 */ ipu_dc_map_clear(priv, IPU_DC_MAP_LVDS666); ipu_dc_map_config(priv, IPU_DC_MAP_LVDS666, 0, 5, 0xfc); /* blue */ ipu_dc_map_config(priv, IPU_DC_MAP_LVDS666, 1, 13, 0xfc); /* green */ ipu_dc_map_config(priv, IPU_DC_MAP_LVDS666, 2, 21, 0xfc); /* red */ /* bgr24 */ ipu_dc_map_clear(priv, IPU_DC_MAP_BGR24); ipu_dc_map_config(priv, IPU_DC_MAP_BGR24, 2, 7, 0xff); /* red */ ipu_dc_map_config(priv, IPU_DC_MAP_BGR24, 1, 15, 0xff); /* green */ ipu_dc_map_config(priv, IPU_DC_MAP_BGR24, 0, 23, 0xff); /* blue */ return 0; } void ipu_dc_exit(struct ipu_soc *ipu) { }
linux-master
drivers/gpu/ipu-v3/ipu-dc.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2010 Sascha Hauer <[email protected]> * Copyright (C) 2005-2009 Freescale Semiconductor, Inc. */ #include <linux/export.h> #include <linux/module.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/io.h> #include <linux/err.h> #include <linux/platform_device.h> #include <video/imx-ipu-v3.h> #include "ipu-prv.h" struct ipu_di { void __iomem *base; int id; u32 module; struct clk *clk_di; /* display input clock */ struct clk *clk_ipu; /* IPU bus clock */ struct clk *clk_di_pixel; /* resulting pixel clock */ bool inuse; struct ipu_soc *ipu; }; static DEFINE_MUTEX(di_mutex); struct di_sync_config { int run_count; int run_src; int offset_count; int offset_src; int repeat_count; int cnt_clr_src; int cnt_polarity_gen_en; int cnt_polarity_clr_src; int cnt_polarity_trigger_src; int cnt_up; int cnt_down; }; enum di_pins { DI_PIN11 = 0, DI_PIN12 = 1, DI_PIN13 = 2, DI_PIN14 = 3, DI_PIN15 = 4, DI_PIN16 = 5, DI_PIN17 = 6, DI_PIN_CS = 7, DI_PIN_SER_CLK = 0, DI_PIN_SER_RS = 1, }; enum di_sync_wave { DI_SYNC_NONE = 0, DI_SYNC_CLK = 1, DI_SYNC_INT_HSYNC = 2, DI_SYNC_HSYNC = 3, DI_SYNC_VSYNC = 4, DI_SYNC_DE = 6, DI_SYNC_CNT1 = 2, /* counter >= 2 only */ DI_SYNC_CNT4 = 5, /* counter >= 5 only */ DI_SYNC_CNT5 = 6, /* counter >= 6 only */ }; #define SYNC_WAVE 0 #define DI_GENERAL 0x0000 #define DI_BS_CLKGEN0 0x0004 #define DI_BS_CLKGEN1 0x0008 #define DI_SW_GEN0(gen) (0x000c + 4 * ((gen) - 1)) #define DI_SW_GEN1(gen) (0x0030 + 4 * ((gen) - 1)) #define DI_STP_REP(gen) (0x0148 + 4 * (((gen) - 1)/2)) #define DI_SYNC_AS_GEN 0x0054 #define DI_DW_GEN(gen) (0x0058 + 4 * (gen)) #define DI_DW_SET(gen, set) (0x0088 + 4 * ((gen) + 0xc * (set))) #define DI_SER_CONF 0x015c #define DI_SSC 0x0160 #define DI_POL 0x0164 #define DI_AW0 0x0168 #define DI_AW1 0x016c #define DI_SCR_CONF 0x0170 #define DI_STAT 0x0174 #define DI_SW_GEN0_RUN_COUNT(x) ((x) << 19) #define DI_SW_GEN0_RUN_SRC(x) ((x) << 16) #define DI_SW_GEN0_OFFSET_COUNT(x) ((x) << 3) #define DI_SW_GEN0_OFFSET_SRC(x) ((x) << 0) #define DI_SW_GEN1_CNT_POL_GEN_EN(x) ((x) << 29) #define DI_SW_GEN1_CNT_CLR_SRC(x) ((x) << 25) #define DI_SW_GEN1_CNT_POL_TRIGGER_SRC(x) ((x) << 12) #define DI_SW_GEN1_CNT_POL_CLR_SRC(x) ((x) << 9) #define DI_SW_GEN1_CNT_DOWN(x) ((x) << 16) #define DI_SW_GEN1_CNT_UP(x) (x) #define DI_SW_GEN1_AUTO_RELOAD (0x10000000) #define DI_DW_GEN_ACCESS_SIZE_OFFSET 24 #define DI_DW_GEN_COMPONENT_SIZE_OFFSET 16 #define DI_GEN_POLARITY_1 (1 << 0) #define DI_GEN_POLARITY_2 (1 << 1) #define DI_GEN_POLARITY_3 (1 << 2) #define DI_GEN_POLARITY_4 (1 << 3) #define DI_GEN_POLARITY_5 (1 << 4) #define DI_GEN_POLARITY_6 (1 << 5) #define DI_GEN_POLARITY_7 (1 << 6) #define DI_GEN_POLARITY_8 (1 << 7) #define DI_GEN_POLARITY_DISP_CLK (1 << 17) #define DI_GEN_DI_CLK_EXT (1 << 20) #define DI_GEN_DI_VSYNC_EXT (1 << 21) #define DI_POL_DRDY_DATA_POLARITY (1 << 7) #define DI_POL_DRDY_POLARITY_15 (1 << 4) #define DI_VSYNC_SEL_OFFSET 13 static inline u32 ipu_di_read(struct ipu_di *di, unsigned offset) { return readl(di->base + offset); } static inline void ipu_di_write(struct ipu_di *di, u32 value, unsigned offset) { writel(value, di->base + offset); } static void ipu_di_data_wave_config(struct ipu_di *di, int wave_gen, int access_size, int component_size) { u32 reg; reg = (access_size << DI_DW_GEN_ACCESS_SIZE_OFFSET) | (component_size << DI_DW_GEN_COMPONENT_SIZE_OFFSET); ipu_di_write(di, reg, DI_DW_GEN(wave_gen)); } static void ipu_di_data_pin_config(struct ipu_di *di, int wave_gen, int di_pin, int set, int up, int down) { u32 reg; reg = ipu_di_read(di, DI_DW_GEN(wave_gen)); reg &= ~(0x3 << (di_pin * 2)); reg |= set << (di_pin * 2); ipu_di_write(di, reg, DI_DW_GEN(wave_gen)); ipu_di_write(di, (down << 16) | up, DI_DW_SET(wave_gen, set)); } static void ipu_di_sync_config(struct ipu_di *di, struct di_sync_config *config, int start, int count) { u32 reg; int i; for (i = 0; i < count; i++) { struct di_sync_config *c = &config[i]; int wave_gen = start + i + 1; if ((c->run_count >= 0x1000) || (c->offset_count >= 0x1000) || (c->repeat_count >= 0x1000) || (c->cnt_up >= 0x400) || (c->cnt_down >= 0x400)) { dev_err(di->ipu->dev, "DI%d counters out of range.\n", di->id); return; } reg = DI_SW_GEN0_RUN_COUNT(c->run_count) | DI_SW_GEN0_RUN_SRC(c->run_src) | DI_SW_GEN0_OFFSET_COUNT(c->offset_count) | DI_SW_GEN0_OFFSET_SRC(c->offset_src); ipu_di_write(di, reg, DI_SW_GEN0(wave_gen)); reg = DI_SW_GEN1_CNT_POL_GEN_EN(c->cnt_polarity_gen_en) | DI_SW_GEN1_CNT_CLR_SRC(c->cnt_clr_src) | DI_SW_GEN1_CNT_POL_TRIGGER_SRC( c->cnt_polarity_trigger_src) | DI_SW_GEN1_CNT_POL_CLR_SRC(c->cnt_polarity_clr_src) | DI_SW_GEN1_CNT_DOWN(c->cnt_down) | DI_SW_GEN1_CNT_UP(c->cnt_up); /* Enable auto reload */ if (c->repeat_count == 0) reg |= DI_SW_GEN1_AUTO_RELOAD; ipu_di_write(di, reg, DI_SW_GEN1(wave_gen)); reg = ipu_di_read(di, DI_STP_REP(wave_gen)); reg &= ~(0xffff << (16 * ((wave_gen - 1) & 0x1))); reg |= c->repeat_count << (16 * ((wave_gen - 1) & 0x1)); ipu_di_write(di, reg, DI_STP_REP(wave_gen)); } } static void ipu_di_sync_config_interlaced(struct ipu_di *di, struct ipu_di_signal_cfg *sig) { u32 h_total = sig->mode.hactive + sig->mode.hsync_len + sig->mode.hback_porch + sig->mode.hfront_porch; u32 v_total = sig->mode.vactive + sig->mode.vsync_len + sig->mode.vback_porch + sig->mode.vfront_porch; struct di_sync_config cfg[] = { { /* 1: internal VSYNC for each frame */ .run_count = v_total * 2 - 1, .run_src = 3, /* == counter 7 */ }, { /* PIN2: HSYNC waveform */ .run_count = h_total - 1, .run_src = DI_SYNC_CLK, .cnt_polarity_gen_en = 1, .cnt_polarity_trigger_src = DI_SYNC_CLK, .cnt_down = sig->mode.hsync_len * 2, }, { /* PIN3: VSYNC waveform */ .run_count = v_total - 1, .run_src = 4, /* == counter 7 */ .cnt_polarity_gen_en = 1, .cnt_polarity_trigger_src = 4, /* == counter 7 */ .cnt_down = sig->mode.vsync_len * 2, .cnt_clr_src = DI_SYNC_CNT1, }, { /* 4: Field */ .run_count = v_total / 2, .run_src = DI_SYNC_HSYNC, .offset_count = h_total / 2, .offset_src = DI_SYNC_CLK, .repeat_count = 2, .cnt_clr_src = DI_SYNC_CNT1, }, { /* 5: Active lines */ .run_src = DI_SYNC_HSYNC, .offset_count = (sig->mode.vsync_len + sig->mode.vback_porch) / 2, .offset_src = DI_SYNC_HSYNC, .repeat_count = sig->mode.vactive / 2, .cnt_clr_src = DI_SYNC_CNT4, }, { /* 6: Active pixel, referenced by DC */ .run_src = DI_SYNC_CLK, .offset_count = sig->mode.hsync_len + sig->mode.hback_porch, .offset_src = DI_SYNC_CLK, .repeat_count = sig->mode.hactive, .cnt_clr_src = DI_SYNC_CNT5, }, { /* 7: Half line HSYNC */ .run_count = h_total / 2 - 1, .run_src = DI_SYNC_CLK, } }; ipu_di_sync_config(di, cfg, 0, ARRAY_SIZE(cfg)); ipu_di_write(di, v_total / 2 - 1, DI_SCR_CONF); } static void ipu_di_sync_config_noninterlaced(struct ipu_di *di, struct ipu_di_signal_cfg *sig, int div) { u32 h_total = sig->mode.hactive + sig->mode.hsync_len + sig->mode.hback_porch + sig->mode.hfront_porch; u32 v_total = sig->mode.vactive + sig->mode.vsync_len + sig->mode.vback_porch + sig->mode.vfront_porch; struct di_sync_config cfg[] = { { /* 1: INT_HSYNC */ .run_count = h_total - 1, .run_src = DI_SYNC_CLK, } , { /* PIN2: HSYNC */ .run_count = h_total - 1, .run_src = DI_SYNC_CLK, .offset_count = div * sig->v_to_h_sync, .offset_src = DI_SYNC_CLK, .cnt_polarity_gen_en = 1, .cnt_polarity_trigger_src = DI_SYNC_CLK, .cnt_down = sig->mode.hsync_len * 2, } , { /* PIN3: VSYNC */ .run_count = v_total - 1, .run_src = DI_SYNC_INT_HSYNC, .cnt_polarity_gen_en = 1, .cnt_polarity_trigger_src = DI_SYNC_INT_HSYNC, .cnt_down = sig->mode.vsync_len * 2, } , { /* 4: Line Active */ .run_src = DI_SYNC_HSYNC, .offset_count = sig->mode.vsync_len + sig->mode.vback_porch, .offset_src = DI_SYNC_HSYNC, .repeat_count = sig->mode.vactive, .cnt_clr_src = DI_SYNC_VSYNC, } , { /* 5: Pixel Active, referenced by DC */ .run_src = DI_SYNC_CLK, .offset_count = sig->mode.hsync_len + sig->mode.hback_porch, .offset_src = DI_SYNC_CLK, .repeat_count = sig->mode.hactive, .cnt_clr_src = 5, /* Line Active */ } , { /* unused */ } , { /* unused */ }, }; /* can't use #7 and #8 for line active and pixel active counters */ struct di_sync_config cfg_vga[] = { { /* 1: INT_HSYNC */ .run_count = h_total - 1, .run_src = DI_SYNC_CLK, } , { /* 2: VSYNC */ .run_count = v_total - 1, .run_src = DI_SYNC_INT_HSYNC, } , { /* 3: Line Active */ .run_src = DI_SYNC_INT_HSYNC, .offset_count = sig->mode.vsync_len + sig->mode.vback_porch, .offset_src = DI_SYNC_INT_HSYNC, .repeat_count = sig->mode.vactive, .cnt_clr_src = 3 /* VSYNC */, } , { /* PIN4: HSYNC for VGA via TVEv2 on TQ MBa53 */ .run_count = h_total - 1, .run_src = DI_SYNC_CLK, .offset_count = div * sig->v_to_h_sync + 18, /* magic value from Freescale TVE driver */ .offset_src = DI_SYNC_CLK, .cnt_polarity_gen_en = 1, .cnt_polarity_trigger_src = DI_SYNC_CLK, .cnt_down = sig->mode.hsync_len * 2, } , { /* 5: Pixel Active signal to DC */ .run_src = DI_SYNC_CLK, .offset_count = sig->mode.hsync_len + sig->mode.hback_porch, .offset_src = DI_SYNC_CLK, .repeat_count = sig->mode.hactive, .cnt_clr_src = 4, /* Line Active */ } , { /* PIN6: VSYNC for VGA via TVEv2 on TQ MBa53 */ .run_count = v_total - 1, .run_src = DI_SYNC_INT_HSYNC, .offset_count = 1, /* magic value from Freescale TVE driver */ .offset_src = DI_SYNC_INT_HSYNC, .cnt_polarity_gen_en = 1, .cnt_polarity_trigger_src = DI_SYNC_INT_HSYNC, .cnt_down = sig->mode.vsync_len * 2, } , { /* PIN4: HSYNC for VGA via TVEv2 on i.MX53-QSB */ .run_count = h_total - 1, .run_src = DI_SYNC_CLK, .offset_count = div * sig->v_to_h_sync + 18, /* magic value from Freescale TVE driver */ .offset_src = DI_SYNC_CLK, .cnt_polarity_gen_en = 1, .cnt_polarity_trigger_src = DI_SYNC_CLK, .cnt_down = sig->mode.hsync_len * 2, } , { /* PIN6: VSYNC for VGA via TVEv2 on i.MX53-QSB */ .run_count = v_total - 1, .run_src = DI_SYNC_INT_HSYNC, .offset_count = 1, /* magic value from Freescale TVE driver */ .offset_src = DI_SYNC_INT_HSYNC, .cnt_polarity_gen_en = 1, .cnt_polarity_trigger_src = DI_SYNC_INT_HSYNC, .cnt_down = sig->mode.vsync_len * 2, } , { /* unused */ }, }; ipu_di_write(di, v_total - 1, DI_SCR_CONF); if (sig->hsync_pin == 2 && sig->vsync_pin == 3) ipu_di_sync_config(di, cfg, 0, ARRAY_SIZE(cfg)); else ipu_di_sync_config(di, cfg_vga, 0, ARRAY_SIZE(cfg_vga)); } static void ipu_di_config_clock(struct ipu_di *di, const struct ipu_di_signal_cfg *sig) { struct clk *clk; unsigned clkgen0; uint32_t val; if (sig->clkflags & IPU_DI_CLKMODE_EXT) { /* * CLKMODE_EXT means we must use the DI clock: this is * needed for things like LVDS which needs to feed the * DI and LDB with the same pixel clock. */ clk = di->clk_di; if (sig->clkflags & IPU_DI_CLKMODE_SYNC) { /* * CLKMODE_SYNC means that we want the DI to be * clocked at the same rate as the parent clock. * This is needed (eg) for LDB which needs to be * fed with the same pixel clock. We assume that * the LDB clock has already been set correctly. */ clkgen0 = 1 << 4; } else { /* * We can use the divider. We should really have * a flag here indicating whether the bridge can * cope with a fractional divider or not. For the * time being, let's go for simplicitly and * reliability. */ unsigned long in_rate; unsigned div; clk_set_rate(clk, sig->mode.pixelclock); in_rate = clk_get_rate(clk); div = DIV_ROUND_CLOSEST(in_rate, sig->mode.pixelclock); div = clamp(div, 1U, 255U); clkgen0 = div << 4; } } else { /* * For other interfaces, we can arbitarily select between * the DI specific clock and the internal IPU clock. See * DI_GENERAL bit 20. We select the IPU clock if it can * give us a clock rate within 1% of the requested frequency, * otherwise we use the DI clock. */ unsigned long rate, clkrate; unsigned div, error; clkrate = clk_get_rate(di->clk_ipu); div = DIV_ROUND_CLOSEST(clkrate, sig->mode.pixelclock); div = clamp(div, 1U, 255U); rate = clkrate / div; error = rate / (sig->mode.pixelclock / 1000); dev_dbg(di->ipu->dev, " IPU clock can give %lu with divider %u, error %c%d.%d%%\n", rate, div, error < 1000 ? '-' : '+', abs(error - 1000) / 10, abs(error - 1000) % 10); /* Allow a 1% error */ if (error < 1010 && error >= 990) { clk = di->clk_ipu; clkgen0 = div << 4; } else { unsigned long in_rate; unsigned div; clk = di->clk_di; clk_set_rate(clk, sig->mode.pixelclock); in_rate = clk_get_rate(clk); div = DIV_ROUND_CLOSEST(in_rate, sig->mode.pixelclock); div = clamp(div, 1U, 255U); clkgen0 = div << 4; } } di->clk_di_pixel = clk; /* Set the divider */ ipu_di_write(di, clkgen0, DI_BS_CLKGEN0); /* * Set the high/low periods. Bits 24:16 give us the falling edge, * and bits 8:0 give the rising edge. LSB is fraction, and is * based on the divider above. We want a 50% duty cycle, so set * the falling edge to be half the divider. */ ipu_di_write(di, (clkgen0 >> 4) << 16, DI_BS_CLKGEN1); /* Finally select the input clock */ val = ipu_di_read(di, DI_GENERAL) & ~DI_GEN_DI_CLK_EXT; if (clk == di->clk_di) val |= DI_GEN_DI_CLK_EXT; ipu_di_write(di, val, DI_GENERAL); dev_dbg(di->ipu->dev, "Want %luHz IPU %luHz DI %luHz using %s, %luHz\n", sig->mode.pixelclock, clk_get_rate(di->clk_ipu), clk_get_rate(di->clk_di), clk == di->clk_di ? "DI" : "IPU", clk_get_rate(di->clk_di_pixel) / (clkgen0 >> 4)); } /* * This function is called to adjust a video mode to IPU restrictions. * It is meant to be called from drm crtc mode_fixup() methods. */ int ipu_di_adjust_videomode(struct ipu_di *di, struct videomode *mode) { u32 diff; if (!IS_ALIGNED(mode->hactive, 8) && mode->hfront_porch < ALIGN(mode->hactive, 8) - mode->hactive) { dev_err(di->ipu->dev, "hactive %d is not aligned to 8 and front porch is too small to compensate\n", mode->hactive); return -EINVAL; } if (mode->vfront_porch >= 2) return 0; diff = 2 - mode->vfront_porch; if (mode->vback_porch >= diff) { mode->vfront_porch = 2; mode->vback_porch -= diff; } else if (mode->vsync_len > diff) { mode->vfront_porch = 2; mode->vsync_len = mode->vsync_len - diff; } else { dev_warn(di->ipu->dev, "failed to adjust videomode\n"); return -EINVAL; } dev_dbg(di->ipu->dev, "videomode adapted for IPU restrictions\n"); return 0; } EXPORT_SYMBOL_GPL(ipu_di_adjust_videomode); static u32 ipu_di_gen_polarity(int pin) { switch (pin) { case 1: return DI_GEN_POLARITY_1; case 2: return DI_GEN_POLARITY_2; case 3: return DI_GEN_POLARITY_3; case 4: return DI_GEN_POLARITY_4; case 5: return DI_GEN_POLARITY_5; case 6: return DI_GEN_POLARITY_6; case 7: return DI_GEN_POLARITY_7; case 8: return DI_GEN_POLARITY_8; } return 0; } int ipu_di_init_sync_panel(struct ipu_di *di, struct ipu_di_signal_cfg *sig) { u32 reg; u32 di_gen, vsync_cnt; u32 div; dev_dbg(di->ipu->dev, "disp %d: panel size = %d x %d\n", di->id, sig->mode.hactive, sig->mode.vactive); dev_dbg(di->ipu->dev, "Clocks: IPU %luHz DI %luHz Needed %luHz\n", clk_get_rate(di->clk_ipu), clk_get_rate(di->clk_di), sig->mode.pixelclock); mutex_lock(&di_mutex); ipu_di_config_clock(di, sig); div = ipu_di_read(di, DI_BS_CLKGEN0) & 0xfff; div = div / 16; /* Now divider is integer portion */ /* Setup pixel clock timing */ /* Down time is half of period */ ipu_di_write(di, (div << 16), DI_BS_CLKGEN1); ipu_di_data_wave_config(di, SYNC_WAVE, div - 1, div - 1); ipu_di_data_pin_config(di, SYNC_WAVE, DI_PIN15, 3, 0, div * 2); di_gen = ipu_di_read(di, DI_GENERAL) & DI_GEN_DI_CLK_EXT; di_gen |= DI_GEN_DI_VSYNC_EXT; if (sig->mode.flags & DISPLAY_FLAGS_INTERLACED) { ipu_di_sync_config_interlaced(di, sig); /* set y_sel = 1 */ di_gen |= 0x10000000; vsync_cnt = 3; } else { ipu_di_sync_config_noninterlaced(di, sig, div); vsync_cnt = 3; if (di->id == 1) /* * TODO: change only for TVEv2, parallel display * uses pin 2 / 3 */ if (!(sig->hsync_pin == 2 && sig->vsync_pin == 3)) vsync_cnt = 6; } if (sig->mode.flags & DISPLAY_FLAGS_HSYNC_HIGH) di_gen |= ipu_di_gen_polarity(sig->hsync_pin); if (sig->mode.flags & DISPLAY_FLAGS_VSYNC_HIGH) di_gen |= ipu_di_gen_polarity(sig->vsync_pin); if (sig->clk_pol) di_gen |= DI_GEN_POLARITY_DISP_CLK; ipu_di_write(di, di_gen, DI_GENERAL); ipu_di_write(di, (--vsync_cnt << DI_VSYNC_SEL_OFFSET) | 0x00000002, DI_SYNC_AS_GEN); reg = ipu_di_read(di, DI_POL); reg &= ~(DI_POL_DRDY_DATA_POLARITY | DI_POL_DRDY_POLARITY_15); if (sig->enable_pol) reg |= DI_POL_DRDY_POLARITY_15; if (sig->data_pol) reg |= DI_POL_DRDY_DATA_POLARITY; ipu_di_write(di, reg, DI_POL); mutex_unlock(&di_mutex); return 0; } EXPORT_SYMBOL_GPL(ipu_di_init_sync_panel); int ipu_di_enable(struct ipu_di *di) { int ret; WARN_ON(IS_ERR(di->clk_di_pixel)); ret = clk_prepare_enable(di->clk_di_pixel); if (ret) return ret; ipu_module_enable(di->ipu, di->module); return 0; } EXPORT_SYMBOL_GPL(ipu_di_enable); int ipu_di_disable(struct ipu_di *di) { WARN_ON(IS_ERR(di->clk_di_pixel)); ipu_module_disable(di->ipu, di->module); clk_disable_unprepare(di->clk_di_pixel); return 0; } EXPORT_SYMBOL_GPL(ipu_di_disable); int ipu_di_get_num(struct ipu_di *di) { return di->id; } EXPORT_SYMBOL_GPL(ipu_di_get_num); static DEFINE_MUTEX(ipu_di_lock); struct ipu_di *ipu_di_get(struct ipu_soc *ipu, int disp) { struct ipu_di *di; if (disp > 1) return ERR_PTR(-EINVAL); di = ipu->di_priv[disp]; mutex_lock(&ipu_di_lock); if (di->inuse) { di = ERR_PTR(-EBUSY); goto out; } di->inuse = true; out: mutex_unlock(&ipu_di_lock); return di; } EXPORT_SYMBOL_GPL(ipu_di_get); void ipu_di_put(struct ipu_di *di) { mutex_lock(&ipu_di_lock); di->inuse = false; mutex_unlock(&ipu_di_lock); } EXPORT_SYMBOL_GPL(ipu_di_put); int ipu_di_init(struct ipu_soc *ipu, struct device *dev, int id, unsigned long base, u32 module, struct clk *clk_ipu) { struct ipu_di *di; if (id > 1) return -ENODEV; di = devm_kzalloc(dev, sizeof(*di), GFP_KERNEL); if (!di) return -ENOMEM; ipu->di_priv[id] = di; di->clk_di = devm_clk_get(dev, id ? "di1" : "di0"); if (IS_ERR(di->clk_di)) return PTR_ERR(di->clk_di); di->module = module; di->id = id; di->clk_ipu = clk_ipu; di->base = devm_ioremap(dev, base, PAGE_SIZE); if (!di->base) return -ENOMEM; ipu_di_write(di, 0x10, DI_BS_CLKGEN0); dev_dbg(dev, "DI%d base: 0x%08lx remapped to %p\n", id, base, di->base); di->inuse = false; di->ipu = ipu; return 0; } void ipu_di_exit(struct ipu_soc *ipu, int id) { }
linux-master
drivers/gpu/ipu-v3/ipu-di.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2010 Sascha Hauer <[email protected]> * Copyright (C) 2005-2009 Freescale Semiconductor, Inc. */ #include <linux/export.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/io.h> #include <linux/err.h> #include <drm/drm_color_mgmt.h> #include <video/imx-ipu-v3.h> #include "ipu-prv.h" #define DP_SYNC 0 #define DP_ASYNC0 0x60 #define DP_ASYNC1 0xBC #define DP_COM_CONF 0x0 #define DP_GRAPH_WIND_CTRL 0x0004 #define DP_FG_POS 0x0008 #define DP_CSC_A_0 0x0044 #define DP_CSC_A_1 0x0048 #define DP_CSC_A_2 0x004C #define DP_CSC_A_3 0x0050 #define DP_CSC_0 0x0054 #define DP_CSC_1 0x0058 #define DP_COM_CONF_FG_EN (1 << 0) #define DP_COM_CONF_GWSEL (1 << 1) #define DP_COM_CONF_GWAM (1 << 2) #define DP_COM_CONF_GWCKE (1 << 3) #define DP_COM_CONF_CSC_DEF_MASK (3 << 8) #define DP_COM_CONF_CSC_DEF_OFFSET 8 #define DP_COM_CONF_CSC_DEF_FG (3 << 8) #define DP_COM_CONF_CSC_DEF_BG (2 << 8) #define DP_COM_CONF_CSC_DEF_BOTH (1 << 8) #define IPUV3_NUM_FLOWS 3 struct ipu_dp_priv; struct ipu_dp { u32 flow; bool in_use; bool foreground; enum ipu_color_space in_cs; }; struct ipu_flow { struct ipu_dp foreground; struct ipu_dp background; enum ipu_color_space out_cs; void __iomem *base; struct ipu_dp_priv *priv; }; struct ipu_dp_priv { struct ipu_soc *ipu; struct device *dev; void __iomem *base; struct ipu_flow flow[IPUV3_NUM_FLOWS]; struct mutex mutex; int use_count; }; static u32 ipu_dp_flow_base[] = {DP_SYNC, DP_ASYNC0, DP_ASYNC1}; static inline struct ipu_flow *to_flow(struct ipu_dp *dp) { if (dp->foreground) return container_of(dp, struct ipu_flow, foreground); else return container_of(dp, struct ipu_flow, background); } int ipu_dp_set_global_alpha(struct ipu_dp *dp, bool enable, u8 alpha, bool bg_chan) { struct ipu_flow *flow = to_flow(dp); struct ipu_dp_priv *priv = flow->priv; u32 reg; mutex_lock(&priv->mutex); reg = readl(flow->base + DP_COM_CONF); if (bg_chan) reg &= ~DP_COM_CONF_GWSEL; else reg |= DP_COM_CONF_GWSEL; writel(reg, flow->base + DP_COM_CONF); if (enable) { reg = readl(flow->base + DP_GRAPH_WIND_CTRL) & 0x00FFFFFFL; writel(reg | ((u32) alpha << 24), flow->base + DP_GRAPH_WIND_CTRL); reg = readl(flow->base + DP_COM_CONF); writel(reg | DP_COM_CONF_GWAM, flow->base + DP_COM_CONF); } else { reg = readl(flow->base + DP_COM_CONF); writel(reg & ~DP_COM_CONF_GWAM, flow->base + DP_COM_CONF); } ipu_srm_dp_update(priv->ipu, true); mutex_unlock(&priv->mutex); return 0; } EXPORT_SYMBOL_GPL(ipu_dp_set_global_alpha); int ipu_dp_set_window_pos(struct ipu_dp *dp, u16 x_pos, u16 y_pos) { struct ipu_flow *flow = to_flow(dp); struct ipu_dp_priv *priv = flow->priv; writel((x_pos << 16) | y_pos, flow->base + DP_FG_POS); ipu_srm_dp_update(priv->ipu, true); return 0; } EXPORT_SYMBOL_GPL(ipu_dp_set_window_pos); static void ipu_dp_csc_init(struct ipu_flow *flow, enum drm_color_encoding ycbcr_enc, enum drm_color_range range, enum ipu_color_space in, enum ipu_color_space out, u32 place) { u32 reg; reg = readl(flow->base + DP_COM_CONF); reg &= ~DP_COM_CONF_CSC_DEF_MASK; if (in == out) { writel(reg, flow->base + DP_COM_CONF); return; } if (in == IPUV3_COLORSPACE_RGB && out == IPUV3_COLORSPACE_YUV) { writel(0x099 | (0x12d << 16), flow->base + DP_CSC_A_0); writel(0x03a | (0x3a9 << 16), flow->base + DP_CSC_A_1); writel(0x356 | (0x100 << 16), flow->base + DP_CSC_A_2); writel(0x100 | (0x329 << 16), flow->base + DP_CSC_A_3); writel(0x3d6 | (0x0000 << 16) | (2 << 30), flow->base + DP_CSC_0); writel(0x200 | (2 << 14) | (0x200 << 16) | (2 << 30), flow->base + DP_CSC_1); } else if (ycbcr_enc == DRM_COLOR_YCBCR_BT709) { /* Rec.709 limited range */ writel(0x095 | (0x000 << 16), flow->base + DP_CSC_A_0); writel(0x0e5 | (0x095 << 16), flow->base + DP_CSC_A_1); writel(0x3e5 | (0x3bc << 16), flow->base + DP_CSC_A_2); writel(0x095 | (0x10e << 16), flow->base + DP_CSC_A_3); writel(0x000 | (0x3e10 << 16) | (1 << 30), flow->base + DP_CSC_0); writel(0x09a | (1 << 14) | (0x3dbe << 16) | (1 << 30), flow->base + DP_CSC_1); } else { /* BT.601 limited range */ writel(0x095 | (0x000 << 16), flow->base + DP_CSC_A_0); writel(0x0cc | (0x095 << 16), flow->base + DP_CSC_A_1); writel(0x3ce | (0x398 << 16), flow->base + DP_CSC_A_2); writel(0x095 | (0x0ff << 16), flow->base + DP_CSC_A_3); writel(0x000 | (0x3e42 << 16) | (1 << 30), flow->base + DP_CSC_0); writel(0x10a | (1 << 14) | (0x3dd6 << 16) | (1 << 30), flow->base + DP_CSC_1); } reg |= place; writel(reg, flow->base + DP_COM_CONF); } int ipu_dp_setup_channel(struct ipu_dp *dp, enum drm_color_encoding ycbcr_enc, enum drm_color_range range, enum ipu_color_space in, enum ipu_color_space out) { struct ipu_flow *flow = to_flow(dp); struct ipu_dp_priv *priv = flow->priv; mutex_lock(&priv->mutex); dp->in_cs = in; if (!dp->foreground) flow->out_cs = out; if (flow->foreground.in_cs == flow->background.in_cs) { /* * foreground and background are of same colorspace, put * colorspace converter after combining unit. */ ipu_dp_csc_init(flow, ycbcr_enc, range, flow->foreground.in_cs, flow->out_cs, DP_COM_CONF_CSC_DEF_BOTH); } else { if (flow->foreground.in_cs == IPUV3_COLORSPACE_UNKNOWN || flow->foreground.in_cs == flow->out_cs) /* * foreground identical to output, apply color * conversion on background */ ipu_dp_csc_init(flow, ycbcr_enc, range, flow->background.in_cs, flow->out_cs, DP_COM_CONF_CSC_DEF_BG); else ipu_dp_csc_init(flow, ycbcr_enc, range, flow->foreground.in_cs, flow->out_cs, DP_COM_CONF_CSC_DEF_FG); } ipu_srm_dp_update(priv->ipu, true); mutex_unlock(&priv->mutex); return 0; } EXPORT_SYMBOL_GPL(ipu_dp_setup_channel); int ipu_dp_enable(struct ipu_soc *ipu) { struct ipu_dp_priv *priv = ipu->dp_priv; mutex_lock(&priv->mutex); if (!priv->use_count) ipu_module_enable(priv->ipu, IPU_CONF_DP_EN); priv->use_count++; mutex_unlock(&priv->mutex); return 0; } EXPORT_SYMBOL_GPL(ipu_dp_enable); int ipu_dp_enable_channel(struct ipu_dp *dp) { struct ipu_flow *flow = to_flow(dp); struct ipu_dp_priv *priv = flow->priv; u32 reg; if (!dp->foreground) return 0; mutex_lock(&priv->mutex); reg = readl(flow->base + DP_COM_CONF); reg |= DP_COM_CONF_FG_EN; writel(reg, flow->base + DP_COM_CONF); ipu_srm_dp_update(priv->ipu, true); mutex_unlock(&priv->mutex); return 0; } EXPORT_SYMBOL_GPL(ipu_dp_enable_channel); void ipu_dp_disable_channel(struct ipu_dp *dp, bool sync) { struct ipu_flow *flow = to_flow(dp); struct ipu_dp_priv *priv = flow->priv; u32 reg, csc; dp->in_cs = IPUV3_COLORSPACE_UNKNOWN; if (!dp->foreground) return; mutex_lock(&priv->mutex); reg = readl(flow->base + DP_COM_CONF); csc = reg & DP_COM_CONF_CSC_DEF_MASK; reg &= ~DP_COM_CONF_CSC_DEF_MASK; if (csc == DP_COM_CONF_CSC_DEF_BOTH || csc == DP_COM_CONF_CSC_DEF_BG) reg |= DP_COM_CONF_CSC_DEF_BG; reg &= ~DP_COM_CONF_FG_EN; writel(reg, flow->base + DP_COM_CONF); writel(0, flow->base + DP_FG_POS); ipu_srm_dp_update(priv->ipu, sync); mutex_unlock(&priv->mutex); } EXPORT_SYMBOL_GPL(ipu_dp_disable_channel); void ipu_dp_disable(struct ipu_soc *ipu) { struct ipu_dp_priv *priv = ipu->dp_priv; mutex_lock(&priv->mutex); priv->use_count--; if (!priv->use_count) ipu_module_disable(priv->ipu, IPU_CONF_DP_EN); if (priv->use_count < 0) priv->use_count = 0; mutex_unlock(&priv->mutex); } EXPORT_SYMBOL_GPL(ipu_dp_disable); struct ipu_dp *ipu_dp_get(struct ipu_soc *ipu, unsigned int flow) { struct ipu_dp_priv *priv = ipu->dp_priv; struct ipu_dp *dp; if ((flow >> 1) >= IPUV3_NUM_FLOWS) return ERR_PTR(-EINVAL); if (flow & 1) dp = &priv->flow[flow >> 1].foreground; else dp = &priv->flow[flow >> 1].background; if (dp->in_use) return ERR_PTR(-EBUSY); dp->in_use = true; return dp; } EXPORT_SYMBOL_GPL(ipu_dp_get); void ipu_dp_put(struct ipu_dp *dp) { dp->in_use = false; } EXPORT_SYMBOL_GPL(ipu_dp_put); int ipu_dp_init(struct ipu_soc *ipu, struct device *dev, unsigned long base) { struct ipu_dp_priv *priv; int i; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = dev; priv->ipu = ipu; ipu->dp_priv = priv; priv->base = devm_ioremap(dev, base, PAGE_SIZE); if (!priv->base) return -ENOMEM; mutex_init(&priv->mutex); for (i = 0; i < IPUV3_NUM_FLOWS; i++) { priv->flow[i].background.in_cs = IPUV3_COLORSPACE_UNKNOWN; priv->flow[i].foreground.in_cs = IPUV3_COLORSPACE_UNKNOWN; priv->flow[i].foreground.foreground = true; priv->flow[i].base = priv->base + ipu_dp_flow_base[i]; priv->flow[i].priv = priv; } return 0; } void ipu_dp_exit(struct ipu_soc *ipu) { }
linux-master
drivers/gpu/ipu-v3/ipu-dp.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2008-2010 Freescale Semiconductor, Inc. All Rights Reserved. */ #include <linux/export.h> #include <linux/types.h> #include <linux/init.h> #include <linux/io.h> #include <linux/errno.h> #include <linux/spinlock.h> #include <linux/delay.h> #include <linux/clk.h> #include <video/imx-ipu-v3.h> #include "ipu-prv.h" struct ipu_smfc { struct ipu_smfc_priv *priv; int chno; bool inuse; }; struct ipu_smfc_priv { void __iomem *base; spinlock_t lock; struct ipu_soc *ipu; struct ipu_smfc channel[4]; int use_count; }; /*SMFC Registers */ #define SMFC_MAP 0x0000 #define SMFC_WMC 0x0004 #define SMFC_BS 0x0008 int ipu_smfc_set_burstsize(struct ipu_smfc *smfc, int burstsize) { struct ipu_smfc_priv *priv = smfc->priv; unsigned long flags; u32 val, shift; spin_lock_irqsave(&priv->lock, flags); shift = smfc->chno * 4; val = readl(priv->base + SMFC_BS); val &= ~(0xf << shift); val |= burstsize << shift; writel(val, priv->base + SMFC_BS); spin_unlock_irqrestore(&priv->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ipu_smfc_set_burstsize); int ipu_smfc_map_channel(struct ipu_smfc *smfc, int csi_id, int mipi_id) { struct ipu_smfc_priv *priv = smfc->priv; unsigned long flags; u32 val, shift; spin_lock_irqsave(&priv->lock, flags); shift = smfc->chno * 3; val = readl(priv->base + SMFC_MAP); val &= ~(0x7 << shift); val |= ((csi_id << 2) | mipi_id) << shift; writel(val, priv->base + SMFC_MAP); spin_unlock_irqrestore(&priv->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ipu_smfc_map_channel); int ipu_smfc_set_watermark(struct ipu_smfc *smfc, u32 set_level, u32 clr_level) { struct ipu_smfc_priv *priv = smfc->priv; unsigned long flags; u32 val, shift; spin_lock_irqsave(&priv->lock, flags); shift = smfc->chno * 6 + (smfc->chno > 1 ? 4 : 0); val = readl(priv->base + SMFC_WMC); val &= ~(0x3f << shift); val |= ((clr_level << 3) | set_level) << shift; writel(val, priv->base + SMFC_WMC); spin_unlock_irqrestore(&priv->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ipu_smfc_set_watermark); int ipu_smfc_enable(struct ipu_smfc *smfc) { struct ipu_smfc_priv *priv = smfc->priv; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); if (!priv->use_count) ipu_module_enable(priv->ipu, IPU_CONF_SMFC_EN); priv->use_count++; spin_unlock_irqrestore(&priv->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ipu_smfc_enable); int ipu_smfc_disable(struct ipu_smfc *smfc) { struct ipu_smfc_priv *priv = smfc->priv; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); priv->use_count--; if (!priv->use_count) ipu_module_disable(priv->ipu, IPU_CONF_SMFC_EN); if (priv->use_count < 0) priv->use_count = 0; spin_unlock_irqrestore(&priv->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ipu_smfc_disable); struct ipu_smfc *ipu_smfc_get(struct ipu_soc *ipu, unsigned int chno) { struct ipu_smfc_priv *priv = ipu->smfc_priv; struct ipu_smfc *smfc, *ret; unsigned long flags; if (chno >= 4) return ERR_PTR(-EINVAL); smfc = &priv->channel[chno]; ret = smfc; spin_lock_irqsave(&priv->lock, flags); if (smfc->inuse) { ret = ERR_PTR(-EBUSY); goto unlock; } smfc->inuse = true; unlock: spin_unlock_irqrestore(&priv->lock, flags); return ret; } EXPORT_SYMBOL_GPL(ipu_smfc_get); void ipu_smfc_put(struct ipu_smfc *smfc) { struct ipu_smfc_priv *priv = smfc->priv; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); smfc->inuse = false; spin_unlock_irqrestore(&priv->lock, flags); } EXPORT_SYMBOL_GPL(ipu_smfc_put); int ipu_smfc_init(struct ipu_soc *ipu, struct device *dev, unsigned long base) { struct ipu_smfc_priv *priv; int i; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; ipu->smfc_priv = priv; spin_lock_init(&priv->lock); priv->ipu = ipu; priv->base = devm_ioremap(dev, base, PAGE_SIZE); if (!priv->base) return -ENOMEM; for (i = 0; i < 4; i++) { priv->channel[i].priv = priv; priv->channel[i].chno = i; } pr_debug("%s: ioremap 0x%08lx -> %p\n", __func__, base, priv->base); return 0; } void ipu_smfc_exit(struct ipu_soc *ipu) { }
linux-master
drivers/gpu/ipu-v3/ipu-smfc.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2019 Mentor Graphics Inc. */ #include <linux/types.h> #include <linux/init.h> #include <linux/errno.h> #include <linux/err.h> #include <linux/sizes.h> #include "ipu-prv.h" #define QUANT_MAP(q) \ ((q) == V4L2_QUANTIZATION_FULL_RANGE || \ (q) == V4L2_QUANTIZATION_DEFAULT ? 0 : 1) /* identity matrix */ static const struct ipu_ic_csc_params identity = { .coeff = { { 128, 0, 0, }, { 0, 128, 0, }, { 0, 0, 128, }, }, .offset = { 0, 0, 0, }, .scale = 2, }; /* * RGB full-range to RGB limited-range * * R_lim = 0.8588 * R_full + 16 * G_lim = 0.8588 * G_full + 16 * B_lim = 0.8588 * B_full + 16 */ static const struct ipu_ic_csc_params rgbf2rgbl = { .coeff = { { 220, 0, 0, }, { 0, 220, 0, }, { 0, 0, 220, }, }, .offset = { 64, 64, 64, }, .scale = 1, }; /* * RGB limited-range to RGB full-range * * R_full = 1.1644 * (R_lim - 16) * G_full = 1.1644 * (G_lim - 16) * B_full = 1.1644 * (B_lim - 16) */ static const struct ipu_ic_csc_params rgbl2rgbf = { .coeff = { { 149, 0, 0, }, { 0, 149, 0, }, { 0, 0, 149, }, }, .offset = { -37, -37, -37, }, .scale = 2, }; /* * YUV full-range to YUV limited-range * * Y_lim = 0.8588 * Y_full + 16 * Cb_lim = 0.8784 * (Cb_full - 128) + 128 * Cr_lim = 0.8784 * (Cr_full - 128) + 128 */ static const struct ipu_ic_csc_params yuvf2yuvl = { .coeff = { { 220, 0, 0, }, { 0, 225, 0, }, { 0, 0, 225, }, }, .offset = { 64, 62, 62, }, .scale = 1, .sat = true, }; /* * YUV limited-range to YUV full-range * * Y_full = 1.1644 * (Y_lim - 16) * Cb_full = 1.1384 * (Cb_lim - 128) + 128 * Cr_full = 1.1384 * (Cr_lim - 128) + 128 */ static const struct ipu_ic_csc_params yuvl2yuvf = { .coeff = { { 149, 0, 0, }, { 0, 146, 0, }, { 0, 0, 146, }, }, .offset = { -37, -35, -35, }, .scale = 2, }; static const struct ipu_ic_csc_params *rgb2rgb[] = { &identity, &rgbf2rgbl, &rgbl2rgbf, &identity, }; static const struct ipu_ic_csc_params *yuv2yuv[] = { &identity, &yuvf2yuvl, &yuvl2yuvf, &identity, }; /* * BT.601 RGB full-range to YUV full-range * * Y = .2990 * R + .5870 * G + .1140 * B * U = -.1687 * R - .3313 * G + .5000 * B + 128 * V = .5000 * R - .4187 * G - .0813 * B + 128 */ static const struct ipu_ic_csc_params rgbf2yuvf_601 = { .coeff = { { 77, 150, 29, }, { -43, -85, 128, }, { 128, -107, -21, }, }, .offset = { 0, 512, 512, }, .scale = 1, }; /* BT.601 RGB full-range to YUV limited-range */ static const struct ipu_ic_csc_params rgbf2yuvl_601 = { .coeff = { { 66, 129, 25, }, { -38, -74, 112, }, { 112, -94, -18, }, }, .offset = { 64, 512, 512, }, .scale = 1, .sat = true, }; /* BT.601 RGB limited-range to YUV full-range */ static const struct ipu_ic_csc_params rgbl2yuvf_601 = { .coeff = { { 89, 175, 34, }, { -50, -99, 149, }, { 149, -125, -24, }, }, .offset = { -75, 512, 512, }, .scale = 1, }; /* BT.601 RGB limited-range to YUV limited-range */ static const struct ipu_ic_csc_params rgbl2yuvl_601 = { .coeff = { { 77, 150, 29, }, { -44, -87, 131, }, { 131, -110, -21, }, }, .offset = { 0, 512, 512, }, .scale = 1, .sat = true, }; /* * BT.601 YUV full-range to RGB full-range * * R = 1. * Y + 0 * (Cb - 128) + 1.4020 * (Cr - 128) * G = 1. * Y - .3441 * (Cb - 128) - .7141 * (Cr - 128) * B = 1. * Y + 1.7720 * (Cb - 128) + 0 * (Cr - 128) * * equivalently (factoring out the offsets): * * R = 1. * Y + 0 * Cb + 1.4020 * Cr - 179.456 * G = 1. * Y - .3441 * Cb - .7141 * Cr + 135.450 * B = 1. * Y + 1.7720 * Cb + 0 * Cr - 226.816 */ static const struct ipu_ic_csc_params yuvf2rgbf_601 = { .coeff = { { 128, 0, 179, }, { 128, -44, -91, }, { 128, 227, 0, }, }, .offset = { -359, 271, -454, }, .scale = 2, }; /* BT.601 YUV full-range to RGB limited-range */ static const struct ipu_ic_csc_params yuvf2rgbl_601 = { .coeff = { { 110, 0, 154, }, { 110, -38, -78, }, { 110, 195, 0, }, }, .offset = { -276, 265, -358, }, .scale = 2, }; /* BT.601 YUV limited-range to RGB full-range */ static const struct ipu_ic_csc_params yuvl2rgbf_601 = { .coeff = { { 75, 0, 102, }, { 75, -25, -52, }, { 75, 129, 0, }, }, .offset = { -223, 136, -277, }, .scale = 3, }; /* BT.601 YUV limited-range to RGB limited-range */ static const struct ipu_ic_csc_params yuvl2rgbl_601 = { .coeff = { { 128, 0, 175, }, { 128, -43, -89, }, { 128, 222, 0, }, }, .offset = { -351, 265, -443, }, .scale = 2, }; static const struct ipu_ic_csc_params *rgb2yuv_601[] = { &rgbf2yuvf_601, &rgbf2yuvl_601, &rgbl2yuvf_601, &rgbl2yuvl_601, }; static const struct ipu_ic_csc_params *yuv2rgb_601[] = { &yuvf2rgbf_601, &yuvf2rgbl_601, &yuvl2rgbf_601, &yuvl2rgbl_601, }; /* * REC.709 encoding from RGB full range to YUV full range: * * Y = .2126 * R + .7152 * G + .0722 * B * U = -.1146 * R - .3854 * G + .5000 * B + 128 * V = .5000 * R - .4542 * G - .0458 * B + 128 */ static const struct ipu_ic_csc_params rgbf2yuvf_709 = { .coeff = { { 54, 183, 19 }, { -29, -99, 128 }, { 128, -116, -12 }, }, .offset = { 0, 512, 512 }, .scale = 1, }; /* Rec.709 RGB full-range to YUV limited-range */ static const struct ipu_ic_csc_params rgbf2yuvl_709 = { .coeff = { { 47, 157, 16, }, { -26, -87, 112, }, { 112, -102, -10, }, }, .offset = { 64, 512, 512, }, .scale = 1, .sat = true, }; /* Rec.709 RGB limited-range to YUV full-range */ static const struct ipu_ic_csc_params rgbl2yuvf_709 = { .coeff = { { 63, 213, 22, }, { -34, -115, 149, }, { 149, -135, -14, }, }, .offset = { -75, 512, 512, }, .scale = 1, }; /* Rec.709 RGB limited-range to YUV limited-range */ static const struct ipu_ic_csc_params rgbl2yuvl_709 = { .coeff = { { 54, 183, 18, }, { -30, -101, 131, }, { 131, -119, -12, }, }, .offset = { 0, 512, 512, }, .scale = 1, .sat = true, }; /* * Inverse REC.709 encoding from YUV full range to RGB full range: * * R = 1. * Y + 0 * (Cb - 128) + 1.5748 * (Cr - 128) * G = 1. * Y - .1873 * (Cb - 128) - .4681 * (Cr - 128) * B = 1. * Y + 1.8556 * (Cb - 128) + 0 * (Cr - 128) * * equivalently (factoring out the offsets): * * R = 1. * Y + 0 * Cb + 1.5748 * Cr - 201.574 * G = 1. * Y - .1873 * Cb - .4681 * Cr + 83.891 * B = 1. * Y + 1.8556 * Cb + 0 * Cr - 237.517 */ static const struct ipu_ic_csc_params yuvf2rgbf_709 = { .coeff = { { 128, 0, 202 }, { 128, -24, -60 }, { 128, 238, 0 }, }, .offset = { -403, 168, -475 }, .scale = 2, }; /* Rec.709 YUV full-range to RGB limited-range */ static const struct ipu_ic_csc_params yuvf2rgbl_709 = { .coeff = { { 110, 0, 173, }, { 110, -21, -51, }, { 110, 204, 0, }, }, .offset = { -314, 176, -376, }, .scale = 2, }; /* Rec.709 YUV limited-range to RGB full-range */ static const struct ipu_ic_csc_params yuvl2rgbf_709 = { .coeff = { { 75, 0, 115, }, { 75, -14, -34, }, { 75, 135, 0, }, }, .offset = { -248, 77, -289, }, .scale = 3, }; /* Rec.709 YUV limited-range to RGB limited-range */ static const struct ipu_ic_csc_params yuvl2rgbl_709 = { .coeff = { { 128, 0, 197, }, { 128, -23, -59, }, { 128, 232, 0, }, }, .offset = { -394, 164, -464, }, .scale = 2, }; static const struct ipu_ic_csc_params *rgb2yuv_709[] = { &rgbf2yuvf_709, &rgbf2yuvl_709, &rgbl2yuvf_709, &rgbl2yuvl_709, }; static const struct ipu_ic_csc_params *yuv2rgb_709[] = { &yuvf2rgbf_709, &yuvf2rgbl_709, &yuvl2rgbf_709, &yuvl2rgbl_709, }; static int calc_csc_coeffs(struct ipu_ic_csc *csc) { const struct ipu_ic_csc_params **params_tbl; int tbl_idx; tbl_idx = (QUANT_MAP(csc->in_cs.quant) << 1) | QUANT_MAP(csc->out_cs.quant); if (csc->in_cs.cs == csc->out_cs.cs) { csc->params = (csc->in_cs.cs == IPUV3_COLORSPACE_YUV) ? *yuv2yuv[tbl_idx] : *rgb2rgb[tbl_idx]; return 0; } /* YUV <-> RGB encoding is required */ switch (csc->out_cs.enc) { case V4L2_YCBCR_ENC_601: params_tbl = (csc->in_cs.cs == IPUV3_COLORSPACE_YUV) ? yuv2rgb_601 : rgb2yuv_601; break; case V4L2_YCBCR_ENC_709: params_tbl = (csc->in_cs.cs == IPUV3_COLORSPACE_YUV) ? yuv2rgb_709 : rgb2yuv_709; break; default: return -ENOTSUPP; } csc->params = *params_tbl[tbl_idx]; return 0; } int __ipu_ic_calc_csc(struct ipu_ic_csc *csc) { return calc_csc_coeffs(csc); } EXPORT_SYMBOL_GPL(__ipu_ic_calc_csc); int ipu_ic_calc_csc(struct ipu_ic_csc *csc, enum v4l2_ycbcr_encoding in_enc, enum v4l2_quantization in_quant, enum ipu_color_space in_cs, enum v4l2_ycbcr_encoding out_enc, enum v4l2_quantization out_quant, enum ipu_color_space out_cs) { ipu_ic_fill_colorspace(&csc->in_cs, in_enc, in_quant, in_cs); ipu_ic_fill_colorspace(&csc->out_cs, out_enc, out_quant, out_cs); return __ipu_ic_calc_csc(csc); } EXPORT_SYMBOL_GPL(ipu_ic_calc_csc);
linux-master
drivers/gpu/ipu-v3/ipu-ic-csc.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2012 Mentor Graphics Inc. * Copyright 2005-2012 Freescale Semiconductor, Inc. All Rights Reserved. */ #include <linux/types.h> #include <linux/bitrev.h> #include <linux/io.h> #include <linux/sizes.h> #include <drm/drm_fourcc.h> #include "ipu-prv.h" struct ipu_cpmem_word { u32 data[5]; u32 res[3]; }; struct ipu_ch_param { struct ipu_cpmem_word word[2]; }; struct ipu_cpmem { struct ipu_ch_param __iomem *base; u32 module; spinlock_t lock; int use_count; struct ipu_soc *ipu; }; #define IPU_CPMEM_WORD(word, ofs, size) ((((word) * 160 + (ofs)) << 8) | (size)) #define IPU_FIELD_UBO IPU_CPMEM_WORD(0, 46, 22) #define IPU_FIELD_VBO IPU_CPMEM_WORD(0, 68, 22) #define IPU_FIELD_IOX IPU_CPMEM_WORD(0, 90, 4) #define IPU_FIELD_RDRW IPU_CPMEM_WORD(0, 94, 1) #define IPU_FIELD_SO IPU_CPMEM_WORD(0, 113, 1) #define IPU_FIELD_SLY IPU_CPMEM_WORD(1, 102, 14) #define IPU_FIELD_SLUV IPU_CPMEM_WORD(1, 128, 14) #define IPU_FIELD_XV IPU_CPMEM_WORD(0, 0, 10) #define IPU_FIELD_YV IPU_CPMEM_WORD(0, 10, 9) #define IPU_FIELD_XB IPU_CPMEM_WORD(0, 19, 13) #define IPU_FIELD_YB IPU_CPMEM_WORD(0, 32, 12) #define IPU_FIELD_NSB_B IPU_CPMEM_WORD(0, 44, 1) #define IPU_FIELD_CF IPU_CPMEM_WORD(0, 45, 1) #define IPU_FIELD_SX IPU_CPMEM_WORD(0, 46, 12) #define IPU_FIELD_SY IPU_CPMEM_WORD(0, 58, 11) #define IPU_FIELD_NS IPU_CPMEM_WORD(0, 69, 10) #define IPU_FIELD_SDX IPU_CPMEM_WORD(0, 79, 7) #define IPU_FIELD_SM IPU_CPMEM_WORD(0, 86, 10) #define IPU_FIELD_SCC IPU_CPMEM_WORD(0, 96, 1) #define IPU_FIELD_SCE IPU_CPMEM_WORD(0, 97, 1) #define IPU_FIELD_SDY IPU_CPMEM_WORD(0, 98, 7) #define IPU_FIELD_SDRX IPU_CPMEM_WORD(0, 105, 1) #define IPU_FIELD_SDRY IPU_CPMEM_WORD(0, 106, 1) #define IPU_FIELD_BPP IPU_CPMEM_WORD(0, 107, 3) #define IPU_FIELD_DEC_SEL IPU_CPMEM_WORD(0, 110, 2) #define IPU_FIELD_DIM IPU_CPMEM_WORD(0, 112, 1) #define IPU_FIELD_BNDM IPU_CPMEM_WORD(0, 114, 3) #define IPU_FIELD_BM IPU_CPMEM_WORD(0, 117, 2) #define IPU_FIELD_ROT IPU_CPMEM_WORD(0, 119, 1) #define IPU_FIELD_ROT_HF_VF IPU_CPMEM_WORD(0, 119, 3) #define IPU_FIELD_HF IPU_CPMEM_WORD(0, 120, 1) #define IPU_FIELD_VF IPU_CPMEM_WORD(0, 121, 1) #define IPU_FIELD_THE IPU_CPMEM_WORD(0, 122, 1) #define IPU_FIELD_CAP IPU_CPMEM_WORD(0, 123, 1) #define IPU_FIELD_CAE IPU_CPMEM_WORD(0, 124, 1) #define IPU_FIELD_FW IPU_CPMEM_WORD(0, 125, 13) #define IPU_FIELD_FH IPU_CPMEM_WORD(0, 138, 12) #define IPU_FIELD_EBA0 IPU_CPMEM_WORD(1, 0, 29) #define IPU_FIELD_EBA1 IPU_CPMEM_WORD(1, 29, 29) #define IPU_FIELD_ILO IPU_CPMEM_WORD(1, 58, 20) #define IPU_FIELD_NPB IPU_CPMEM_WORD(1, 78, 7) #define IPU_FIELD_PFS IPU_CPMEM_WORD(1, 85, 4) #define IPU_FIELD_ALU IPU_CPMEM_WORD(1, 89, 1) #define IPU_FIELD_ALBM IPU_CPMEM_WORD(1, 90, 3) #define IPU_FIELD_ID IPU_CPMEM_WORD(1, 93, 2) #define IPU_FIELD_TH IPU_CPMEM_WORD(1, 95, 7) #define IPU_FIELD_SL IPU_CPMEM_WORD(1, 102, 14) #define IPU_FIELD_WID0 IPU_CPMEM_WORD(1, 116, 3) #define IPU_FIELD_WID1 IPU_CPMEM_WORD(1, 119, 3) #define IPU_FIELD_WID2 IPU_CPMEM_WORD(1, 122, 3) #define IPU_FIELD_WID3 IPU_CPMEM_WORD(1, 125, 3) #define IPU_FIELD_OFS0 IPU_CPMEM_WORD(1, 128, 5) #define IPU_FIELD_OFS1 IPU_CPMEM_WORD(1, 133, 5) #define IPU_FIELD_OFS2 IPU_CPMEM_WORD(1, 138, 5) #define IPU_FIELD_OFS3 IPU_CPMEM_WORD(1, 143, 5) #define IPU_FIELD_SXYS IPU_CPMEM_WORD(1, 148, 1) #define IPU_FIELD_CRE IPU_CPMEM_WORD(1, 149, 1) #define IPU_FIELD_DEC_SEL2 IPU_CPMEM_WORD(1, 150, 1) static inline struct ipu_ch_param __iomem * ipu_get_cpmem(struct ipuv3_channel *ch) { struct ipu_cpmem *cpmem = ch->ipu->cpmem_priv; return cpmem->base + ch->num; } static void ipu_ch_param_write_field(struct ipuv3_channel *ch, u32 wbs, u32 v) { struct ipu_ch_param __iomem *base = ipu_get_cpmem(ch); u32 bit = (wbs >> 8) % 160; u32 size = wbs & 0xff; u32 word = (wbs >> 8) / 160; u32 i = bit / 32; u32 ofs = bit % 32; u32 mask = (1 << size) - 1; u32 val; pr_debug("%s %d %d %d\n", __func__, word, bit , size); val = readl(&base->word[word].data[i]); val &= ~(mask << ofs); val |= v << ofs; writel(val, &base->word[word].data[i]); if ((bit + size - 1) / 32 > i) { val = readl(&base->word[word].data[i + 1]); val &= ~(mask >> (ofs ? (32 - ofs) : 0)); val |= v >> (ofs ? (32 - ofs) : 0); writel(val, &base->word[word].data[i + 1]); } } static u32 ipu_ch_param_read_field(struct ipuv3_channel *ch, u32 wbs) { struct ipu_ch_param __iomem *base = ipu_get_cpmem(ch); u32 bit = (wbs >> 8) % 160; u32 size = wbs & 0xff; u32 word = (wbs >> 8) / 160; u32 i = bit / 32; u32 ofs = bit % 32; u32 mask = (1 << size) - 1; u32 val = 0; pr_debug("%s %d %d %d\n", __func__, word, bit , size); val = (readl(&base->word[word].data[i]) >> ofs) & mask; if ((bit + size - 1) / 32 > i) { u32 tmp; tmp = readl(&base->word[word].data[i + 1]); tmp &= mask >> (ofs ? (32 - ofs) : 0); val |= tmp << (ofs ? (32 - ofs) : 0); } return val; } /* * The V4L2 spec defines packed RGB formats in memory byte order, which from * point of view of the IPU corresponds to little-endian words with the first * component in the least significant bits. * The DRM pixel formats and IPU internal representation are ordered the other * way around, with the first named component ordered at the most significant * bits. Further, V4L2 formats are not well defined: * https://linuxtv.org/downloads/v4l-dvb-apis/packed-rgb.html * We choose the interpretation which matches GStreamer behavior. */ static int v4l2_pix_fmt_to_drm_fourcc(u32 pixelformat) { switch (pixelformat) { case V4L2_PIX_FMT_RGB565: /* * Here we choose the 'corrected' interpretation of RGBP, a * little-endian 16-bit word with the red component at the most * significant bits: * g[2:0]b[4:0] r[4:0]g[5:3] <=> [16:0] R:G:B */ return DRM_FORMAT_RGB565; case V4L2_PIX_FMT_BGR24: /* B G R <=> [24:0] R:G:B */ return DRM_FORMAT_RGB888; case V4L2_PIX_FMT_RGB24: /* R G B <=> [24:0] B:G:R */ return DRM_FORMAT_BGR888; case V4L2_PIX_FMT_BGR32: /* B G R A <=> [32:0] A:B:G:R */ return DRM_FORMAT_XRGB8888; case V4L2_PIX_FMT_RGB32: /* R G B A <=> [32:0] A:B:G:R */ return DRM_FORMAT_XBGR8888; case V4L2_PIX_FMT_ABGR32: /* B G R A <=> [32:0] A:R:G:B */ return DRM_FORMAT_ARGB8888; case V4L2_PIX_FMT_XBGR32: /* B G R X <=> [32:0] X:R:G:B */ return DRM_FORMAT_XRGB8888; case V4L2_PIX_FMT_BGRA32: /* A B G R <=> [32:0] R:G:B:A */ return DRM_FORMAT_RGBA8888; case V4L2_PIX_FMT_BGRX32: /* X B G R <=> [32:0] R:G:B:X */ return DRM_FORMAT_RGBX8888; case V4L2_PIX_FMT_RGBA32: /* R G B A <=> [32:0] A:B:G:R */ return DRM_FORMAT_ABGR8888; case V4L2_PIX_FMT_RGBX32: /* R G B X <=> [32:0] X:B:G:R */ return DRM_FORMAT_XBGR8888; case V4L2_PIX_FMT_ARGB32: /* A R G B <=> [32:0] B:G:R:A */ return DRM_FORMAT_BGRA8888; case V4L2_PIX_FMT_XRGB32: /* X R G B <=> [32:0] B:G:R:X */ return DRM_FORMAT_BGRX8888; case V4L2_PIX_FMT_UYVY: return DRM_FORMAT_UYVY; case V4L2_PIX_FMT_YUYV: return DRM_FORMAT_YUYV; case V4L2_PIX_FMT_YUV420: return DRM_FORMAT_YUV420; case V4L2_PIX_FMT_YUV422P: return DRM_FORMAT_YUV422; case V4L2_PIX_FMT_YVU420: return DRM_FORMAT_YVU420; case V4L2_PIX_FMT_NV12: return DRM_FORMAT_NV12; case V4L2_PIX_FMT_NV16: return DRM_FORMAT_NV16; } return -EINVAL; } void ipu_cpmem_zero(struct ipuv3_channel *ch) { struct ipu_ch_param __iomem *p = ipu_get_cpmem(ch); void __iomem *base = p; int i; for (i = 0; i < sizeof(*p) / sizeof(u32); i++) writel(0, base + i * sizeof(u32)); } EXPORT_SYMBOL_GPL(ipu_cpmem_zero); void ipu_cpmem_set_resolution(struct ipuv3_channel *ch, int xres, int yres) { ipu_ch_param_write_field(ch, IPU_FIELD_FW, xres - 1); ipu_ch_param_write_field(ch, IPU_FIELD_FH, yres - 1); } EXPORT_SYMBOL_GPL(ipu_cpmem_set_resolution); void ipu_cpmem_skip_odd_chroma_rows(struct ipuv3_channel *ch) { ipu_ch_param_write_field(ch, IPU_FIELD_RDRW, 1); } EXPORT_SYMBOL_GPL(ipu_cpmem_skip_odd_chroma_rows); void ipu_cpmem_set_stride(struct ipuv3_channel *ch, int stride) { ipu_ch_param_write_field(ch, IPU_FIELD_SLY, stride - 1); } EXPORT_SYMBOL_GPL(ipu_cpmem_set_stride); void ipu_cpmem_set_high_priority(struct ipuv3_channel *ch) { struct ipu_soc *ipu = ch->ipu; u32 val; if (ipu->ipu_type == IPUV3EX) ipu_ch_param_write_field(ch, IPU_FIELD_ID, 1); val = ipu_idmac_read(ipu, IDMAC_CHA_PRI(ch->num)); val |= 1 << (ch->num % 32); ipu_idmac_write(ipu, val, IDMAC_CHA_PRI(ch->num)); }; EXPORT_SYMBOL_GPL(ipu_cpmem_set_high_priority); void ipu_cpmem_set_buffer(struct ipuv3_channel *ch, int bufnum, dma_addr_t buf) { WARN_ON_ONCE(buf & 0x7); if (bufnum) ipu_ch_param_write_field(ch, IPU_FIELD_EBA1, buf >> 3); else ipu_ch_param_write_field(ch, IPU_FIELD_EBA0, buf >> 3); } EXPORT_SYMBOL_GPL(ipu_cpmem_set_buffer); void ipu_cpmem_set_uv_offset(struct ipuv3_channel *ch, u32 u_off, u32 v_off) { WARN_ON_ONCE((u_off & 0x7) || (v_off & 0x7)); ipu_ch_param_write_field(ch, IPU_FIELD_UBO, u_off / 8); ipu_ch_param_write_field(ch, IPU_FIELD_VBO, v_off / 8); } EXPORT_SYMBOL_GPL(ipu_cpmem_set_uv_offset); void ipu_cpmem_interlaced_scan(struct ipuv3_channel *ch, int stride, u32 pixelformat) { u32 ilo, sly, sluv; if (stride < 0) { stride = -stride; ilo = 0x100000 - (stride / 8); } else { ilo = stride / 8; } sly = (stride * 2) - 1; switch (pixelformat) { case V4L2_PIX_FMT_YUV420: case V4L2_PIX_FMT_YVU420: sluv = stride / 2 - 1; break; case V4L2_PIX_FMT_NV12: sluv = stride - 1; break; case V4L2_PIX_FMT_YUV422P: sluv = stride - 1; break; case V4L2_PIX_FMT_NV16: sluv = stride * 2 - 1; break; default: sluv = 0; break; } ipu_ch_param_write_field(ch, IPU_FIELD_SO, 1); ipu_ch_param_write_field(ch, IPU_FIELD_ILO, ilo); ipu_ch_param_write_field(ch, IPU_FIELD_SLY, sly); if (sluv) ipu_ch_param_write_field(ch, IPU_FIELD_SLUV, sluv); }; EXPORT_SYMBOL_GPL(ipu_cpmem_interlaced_scan); void ipu_cpmem_set_axi_id(struct ipuv3_channel *ch, u32 id) { id &= 0x3; ipu_ch_param_write_field(ch, IPU_FIELD_ID, id); } EXPORT_SYMBOL_GPL(ipu_cpmem_set_axi_id); int ipu_cpmem_get_burstsize(struct ipuv3_channel *ch) { return ipu_ch_param_read_field(ch, IPU_FIELD_NPB) + 1; } EXPORT_SYMBOL_GPL(ipu_cpmem_get_burstsize); void ipu_cpmem_set_burstsize(struct ipuv3_channel *ch, int burstsize) { ipu_ch_param_write_field(ch, IPU_FIELD_NPB, burstsize - 1); }; EXPORT_SYMBOL_GPL(ipu_cpmem_set_burstsize); void ipu_cpmem_set_block_mode(struct ipuv3_channel *ch) { ipu_ch_param_write_field(ch, IPU_FIELD_BM, 1); } EXPORT_SYMBOL_GPL(ipu_cpmem_set_block_mode); void ipu_cpmem_set_rotation(struct ipuv3_channel *ch, enum ipu_rotate_mode rot) { u32 temp_rot = bitrev8(rot) >> 5; ipu_ch_param_write_field(ch, IPU_FIELD_ROT_HF_VF, temp_rot); } EXPORT_SYMBOL_GPL(ipu_cpmem_set_rotation); int ipu_cpmem_set_format_rgb(struct ipuv3_channel *ch, const struct ipu_rgb *rgb) { int bpp = 0, npb = 0, ro, go, bo, to; ro = rgb->bits_per_pixel - rgb->red.length - rgb->red.offset; go = rgb->bits_per_pixel - rgb->green.length - rgb->green.offset; bo = rgb->bits_per_pixel - rgb->blue.length - rgb->blue.offset; to = rgb->bits_per_pixel - rgb->transp.length - rgb->transp.offset; ipu_ch_param_write_field(ch, IPU_FIELD_WID0, rgb->red.length - 1); ipu_ch_param_write_field(ch, IPU_FIELD_OFS0, ro); ipu_ch_param_write_field(ch, IPU_FIELD_WID1, rgb->green.length - 1); ipu_ch_param_write_field(ch, IPU_FIELD_OFS1, go); ipu_ch_param_write_field(ch, IPU_FIELD_WID2, rgb->blue.length - 1); ipu_ch_param_write_field(ch, IPU_FIELD_OFS2, bo); if (rgb->transp.length) { ipu_ch_param_write_field(ch, IPU_FIELD_WID3, rgb->transp.length - 1); ipu_ch_param_write_field(ch, IPU_FIELD_OFS3, to); } else { ipu_ch_param_write_field(ch, IPU_FIELD_WID3, 7); ipu_ch_param_write_field(ch, IPU_FIELD_OFS3, rgb->bits_per_pixel); } switch (rgb->bits_per_pixel) { case 32: bpp = 0; npb = 15; break; case 24: bpp = 1; npb = 19; break; case 16: bpp = 3; npb = 31; break; case 8: bpp = 5; npb = 63; break; default: return -EINVAL; } ipu_ch_param_write_field(ch, IPU_FIELD_BPP, bpp); ipu_ch_param_write_field(ch, IPU_FIELD_NPB, npb); ipu_ch_param_write_field(ch, IPU_FIELD_PFS, 7); /* rgb mode */ return 0; } EXPORT_SYMBOL_GPL(ipu_cpmem_set_format_rgb); int ipu_cpmem_set_format_passthrough(struct ipuv3_channel *ch, int width) { int bpp = 0, npb = 0; switch (width) { case 32: bpp = 0; npb = 15; break; case 24: bpp = 1; npb = 19; break; case 16: bpp = 3; npb = 31; break; case 8: bpp = 5; npb = 63; break; default: return -EINVAL; } ipu_ch_param_write_field(ch, IPU_FIELD_BPP, bpp); ipu_ch_param_write_field(ch, IPU_FIELD_NPB, npb); ipu_ch_param_write_field(ch, IPU_FIELD_PFS, 6); /* raw mode */ return 0; } EXPORT_SYMBOL_GPL(ipu_cpmem_set_format_passthrough); void ipu_cpmem_set_yuv_interleaved(struct ipuv3_channel *ch, u32 pixel_format) { switch (pixel_format) { case V4L2_PIX_FMT_UYVY: ipu_ch_param_write_field(ch, IPU_FIELD_BPP, 3); /* bits/pixel */ ipu_ch_param_write_field(ch, IPU_FIELD_PFS, 0xA);/* pix fmt */ ipu_ch_param_write_field(ch, IPU_FIELD_NPB, 31);/* burst size */ break; case V4L2_PIX_FMT_YUYV: ipu_ch_param_write_field(ch, IPU_FIELD_BPP, 3); /* bits/pixel */ ipu_ch_param_write_field(ch, IPU_FIELD_PFS, 0x8);/* pix fmt */ ipu_ch_param_write_field(ch, IPU_FIELD_NPB, 31);/* burst size */ break; } } EXPORT_SYMBOL_GPL(ipu_cpmem_set_yuv_interleaved); void ipu_cpmem_set_yuv_planar_full(struct ipuv3_channel *ch, unsigned int uv_stride, unsigned int u_offset, unsigned int v_offset) { WARN_ON_ONCE((u_offset & 0x7) || (v_offset & 0x7)); ipu_ch_param_write_field(ch, IPU_FIELD_SLUV, uv_stride - 1); ipu_ch_param_write_field(ch, IPU_FIELD_UBO, u_offset / 8); ipu_ch_param_write_field(ch, IPU_FIELD_VBO, v_offset / 8); } EXPORT_SYMBOL_GPL(ipu_cpmem_set_yuv_planar_full); static const struct ipu_rgb def_xrgb_32 = { .red = { .offset = 16, .length = 8, }, .green = { .offset = 8, .length = 8, }, .blue = { .offset = 0, .length = 8, }, .transp = { .offset = 24, .length = 8, }, .bits_per_pixel = 32, }; static const struct ipu_rgb def_xbgr_32 = { .red = { .offset = 0, .length = 8, }, .green = { .offset = 8, .length = 8, }, .blue = { .offset = 16, .length = 8, }, .transp = { .offset = 24, .length = 8, }, .bits_per_pixel = 32, }; static const struct ipu_rgb def_rgbx_32 = { .red = { .offset = 24, .length = 8, }, .green = { .offset = 16, .length = 8, }, .blue = { .offset = 8, .length = 8, }, .transp = { .offset = 0, .length = 8, }, .bits_per_pixel = 32, }; static const struct ipu_rgb def_bgrx_32 = { .red = { .offset = 8, .length = 8, }, .green = { .offset = 16, .length = 8, }, .blue = { .offset = 24, .length = 8, }, .transp = { .offset = 0, .length = 8, }, .bits_per_pixel = 32, }; static const struct ipu_rgb def_rgb_24 = { .red = { .offset = 16, .length = 8, }, .green = { .offset = 8, .length = 8, }, .blue = { .offset = 0, .length = 8, }, .transp = { .offset = 0, .length = 0, }, .bits_per_pixel = 24, }; static const struct ipu_rgb def_bgr_24 = { .red = { .offset = 0, .length = 8, }, .green = { .offset = 8, .length = 8, }, .blue = { .offset = 16, .length = 8, }, .transp = { .offset = 0, .length = 0, }, .bits_per_pixel = 24, }; static const struct ipu_rgb def_rgb_16 = { .red = { .offset = 11, .length = 5, }, .green = { .offset = 5, .length = 6, }, .blue = { .offset = 0, .length = 5, }, .transp = { .offset = 0, .length = 0, }, .bits_per_pixel = 16, }; static const struct ipu_rgb def_bgr_16 = { .red = { .offset = 0, .length = 5, }, .green = { .offset = 5, .length = 6, }, .blue = { .offset = 11, .length = 5, }, .transp = { .offset = 0, .length = 0, }, .bits_per_pixel = 16, }; static const struct ipu_rgb def_argb_16 = { .red = { .offset = 10, .length = 5, }, .green = { .offset = 5, .length = 5, }, .blue = { .offset = 0, .length = 5, }, .transp = { .offset = 15, .length = 1, }, .bits_per_pixel = 16, }; static const struct ipu_rgb def_argb_16_4444 = { .red = { .offset = 8, .length = 4, }, .green = { .offset = 4, .length = 4, }, .blue = { .offset = 0, .length = 4, }, .transp = { .offset = 12, .length = 4, }, .bits_per_pixel = 16, }; static const struct ipu_rgb def_abgr_16 = { .red = { .offset = 0, .length = 5, }, .green = { .offset = 5, .length = 5, }, .blue = { .offset = 10, .length = 5, }, .transp = { .offset = 15, .length = 1, }, .bits_per_pixel = 16, }; static const struct ipu_rgb def_rgba_16 = { .red = { .offset = 11, .length = 5, }, .green = { .offset = 6, .length = 5, }, .blue = { .offset = 1, .length = 5, }, .transp = { .offset = 0, .length = 1, }, .bits_per_pixel = 16, }; static const struct ipu_rgb def_bgra_16 = { .red = { .offset = 1, .length = 5, }, .green = { .offset = 6, .length = 5, }, .blue = { .offset = 11, .length = 5, }, .transp = { .offset = 0, .length = 1, }, .bits_per_pixel = 16, }; #define Y_OFFSET(pix, x, y) ((x) + pix->bytesperline * (y)) #define U_OFFSET(pix, x, y) ((pix->bytesperline * pix->height) + \ (pix->bytesperline * ((y) / 2) / 2) + (x) / 2) #define V_OFFSET(pix, x, y) ((pix->bytesperline * pix->height) + \ (pix->bytesperline * pix->height / 4) + \ (pix->bytesperline * ((y) / 2) / 2) + (x) / 2) #define U2_OFFSET(pix, x, y) ((pix->bytesperline * pix->height) + \ (pix->bytesperline * (y) / 2) + (x) / 2) #define V2_OFFSET(pix, x, y) ((pix->bytesperline * pix->height) + \ (pix->bytesperline * pix->height / 2) + \ (pix->bytesperline * (y) / 2) + (x) / 2) #define UV_OFFSET(pix, x, y) ((pix->bytesperline * pix->height) + \ (pix->bytesperline * ((y) / 2)) + (x)) #define UV2_OFFSET(pix, x, y) ((pix->bytesperline * pix->height) + \ (pix->bytesperline * y) + (x)) #define NUM_ALPHA_CHANNELS 7 /* See Table 37-12. Alpha channels mapping. */ static int ipu_channel_albm(int ch_num) { switch (ch_num) { case IPUV3_CHANNEL_G_MEM_IC_PRP_VF: return 0; case IPUV3_CHANNEL_G_MEM_IC_PP: return 1; case IPUV3_CHANNEL_MEM_FG_SYNC: return 2; case IPUV3_CHANNEL_MEM_FG_ASYNC: return 3; case IPUV3_CHANNEL_MEM_BG_SYNC: return 4; case IPUV3_CHANNEL_MEM_BG_ASYNC: return 5; case IPUV3_CHANNEL_MEM_VDI_PLANE1_COMB: return 6; default: return -EINVAL; } } static void ipu_cpmem_set_separate_alpha(struct ipuv3_channel *ch) { struct ipu_soc *ipu = ch->ipu; int albm; u32 val; albm = ipu_channel_albm(ch->num); if (albm < 0) return; ipu_ch_param_write_field(ch, IPU_FIELD_ALU, 1); ipu_ch_param_write_field(ch, IPU_FIELD_ALBM, albm); ipu_ch_param_write_field(ch, IPU_FIELD_CRE, 1); val = ipu_idmac_read(ipu, IDMAC_SEP_ALPHA); val |= BIT(ch->num); ipu_idmac_write(ipu, val, IDMAC_SEP_ALPHA); } int ipu_cpmem_set_fmt(struct ipuv3_channel *ch, u32 drm_fourcc) { switch (drm_fourcc) { case DRM_FORMAT_YUV420: case DRM_FORMAT_YVU420: /* pix format */ ipu_ch_param_write_field(ch, IPU_FIELD_PFS, 2); /* burst size */ ipu_ch_param_write_field(ch, IPU_FIELD_NPB, 31); break; case DRM_FORMAT_YUV422: case DRM_FORMAT_YVU422: /* pix format */ ipu_ch_param_write_field(ch, IPU_FIELD_PFS, 1); /* burst size */ ipu_ch_param_write_field(ch, IPU_FIELD_NPB, 31); break; case DRM_FORMAT_YUV444: case DRM_FORMAT_YVU444: /* pix format */ ipu_ch_param_write_field(ch, IPU_FIELD_PFS, 0); /* burst size */ ipu_ch_param_write_field(ch, IPU_FIELD_NPB, 31); break; case DRM_FORMAT_NV12: /* pix format */ ipu_ch_param_write_field(ch, IPU_FIELD_PFS, 4); /* burst size */ ipu_ch_param_write_field(ch, IPU_FIELD_NPB, 31); break; case DRM_FORMAT_NV16: /* pix format */ ipu_ch_param_write_field(ch, IPU_FIELD_PFS, 3); /* burst size */ ipu_ch_param_write_field(ch, IPU_FIELD_NPB, 31); break; case DRM_FORMAT_UYVY: /* bits/pixel */ ipu_ch_param_write_field(ch, IPU_FIELD_BPP, 3); /* pix format */ ipu_ch_param_write_field(ch, IPU_FIELD_PFS, 0xA); /* burst size */ ipu_ch_param_write_field(ch, IPU_FIELD_NPB, 31); break; case DRM_FORMAT_YUYV: /* bits/pixel */ ipu_ch_param_write_field(ch, IPU_FIELD_BPP, 3); /* pix format */ ipu_ch_param_write_field(ch, IPU_FIELD_PFS, 0x8); /* burst size */ ipu_ch_param_write_field(ch, IPU_FIELD_NPB, 31); break; case DRM_FORMAT_ABGR8888: case DRM_FORMAT_XBGR8888: ipu_cpmem_set_format_rgb(ch, &def_xbgr_32); break; case DRM_FORMAT_ARGB8888: case DRM_FORMAT_XRGB8888: ipu_cpmem_set_format_rgb(ch, &def_xrgb_32); break; case DRM_FORMAT_RGBA8888: case DRM_FORMAT_RGBX8888: case DRM_FORMAT_RGBX8888_A8: ipu_cpmem_set_format_rgb(ch, &def_rgbx_32); break; case DRM_FORMAT_BGRA8888: case DRM_FORMAT_BGRX8888: case DRM_FORMAT_BGRX8888_A8: ipu_cpmem_set_format_rgb(ch, &def_bgrx_32); break; case DRM_FORMAT_BGR888: case DRM_FORMAT_BGR888_A8: ipu_cpmem_set_format_rgb(ch, &def_bgr_24); break; case DRM_FORMAT_RGB888: case DRM_FORMAT_RGB888_A8: ipu_cpmem_set_format_rgb(ch, &def_rgb_24); break; case DRM_FORMAT_RGB565: case DRM_FORMAT_RGB565_A8: ipu_cpmem_set_format_rgb(ch, &def_rgb_16); break; case DRM_FORMAT_BGR565: case DRM_FORMAT_BGR565_A8: ipu_cpmem_set_format_rgb(ch, &def_bgr_16); break; case DRM_FORMAT_ARGB1555: ipu_cpmem_set_format_rgb(ch, &def_argb_16); break; case DRM_FORMAT_ABGR1555: ipu_cpmem_set_format_rgb(ch, &def_abgr_16); break; case DRM_FORMAT_RGBA5551: ipu_cpmem_set_format_rgb(ch, &def_rgba_16); break; case DRM_FORMAT_BGRA5551: ipu_cpmem_set_format_rgb(ch, &def_bgra_16); break; case DRM_FORMAT_ARGB4444: ipu_cpmem_set_format_rgb(ch, &def_argb_16_4444); break; default: return -EINVAL; } switch (drm_fourcc) { case DRM_FORMAT_RGB565_A8: case DRM_FORMAT_BGR565_A8: case DRM_FORMAT_RGB888_A8: case DRM_FORMAT_BGR888_A8: case DRM_FORMAT_RGBX8888_A8: case DRM_FORMAT_BGRX8888_A8: ipu_ch_param_write_field(ch, IPU_FIELD_WID3, 7); ipu_cpmem_set_separate_alpha(ch); break; default: break; } return 0; } EXPORT_SYMBOL_GPL(ipu_cpmem_set_fmt); int ipu_cpmem_set_image(struct ipuv3_channel *ch, struct ipu_image *image) { struct v4l2_pix_format *pix = &image->pix; int offset, u_offset, v_offset; int ret = 0; pr_debug("%s: resolution: %dx%d stride: %d\n", __func__, pix->width, pix->height, pix->bytesperline); ipu_cpmem_set_resolution(ch, image->rect.width, image->rect.height); ipu_cpmem_set_stride(ch, pix->bytesperline); ipu_cpmem_set_fmt(ch, v4l2_pix_fmt_to_drm_fourcc(pix->pixelformat)); switch (pix->pixelformat) { case V4L2_PIX_FMT_YUV420: offset = Y_OFFSET(pix, image->rect.left, image->rect.top); u_offset = image->u_offset ? image->u_offset : U_OFFSET(pix, image->rect.left, image->rect.top) - offset; v_offset = image->v_offset ? image->v_offset : V_OFFSET(pix, image->rect.left, image->rect.top) - offset; ipu_cpmem_set_yuv_planar_full(ch, pix->bytesperline / 2, u_offset, v_offset); break; case V4L2_PIX_FMT_YVU420: offset = Y_OFFSET(pix, image->rect.left, image->rect.top); u_offset = image->u_offset ? image->u_offset : V_OFFSET(pix, image->rect.left, image->rect.top) - offset; v_offset = image->v_offset ? image->v_offset : U_OFFSET(pix, image->rect.left, image->rect.top) - offset; ipu_cpmem_set_yuv_planar_full(ch, pix->bytesperline / 2, u_offset, v_offset); break; case V4L2_PIX_FMT_YUV422P: offset = Y_OFFSET(pix, image->rect.left, image->rect.top); u_offset = image->u_offset ? image->u_offset : U2_OFFSET(pix, image->rect.left, image->rect.top) - offset; v_offset = image->v_offset ? image->v_offset : V2_OFFSET(pix, image->rect.left, image->rect.top) - offset; ipu_cpmem_set_yuv_planar_full(ch, pix->bytesperline / 2, u_offset, v_offset); break; case V4L2_PIX_FMT_NV12: offset = Y_OFFSET(pix, image->rect.left, image->rect.top); u_offset = image->u_offset ? image->u_offset : UV_OFFSET(pix, image->rect.left, image->rect.top) - offset; v_offset = image->v_offset ? image->v_offset : 0; ipu_cpmem_set_yuv_planar_full(ch, pix->bytesperline, u_offset, v_offset); break; case V4L2_PIX_FMT_NV16: offset = Y_OFFSET(pix, image->rect.left, image->rect.top); u_offset = image->u_offset ? image->u_offset : UV2_OFFSET(pix, image->rect.left, image->rect.top) - offset; v_offset = image->v_offset ? image->v_offset : 0; ipu_cpmem_set_yuv_planar_full(ch, pix->bytesperline, u_offset, v_offset); break; case V4L2_PIX_FMT_UYVY: case V4L2_PIX_FMT_YUYV: case V4L2_PIX_FMT_RGB565: offset = image->rect.left * 2 + image->rect.top * pix->bytesperline; break; case V4L2_PIX_FMT_RGB32: case V4L2_PIX_FMT_BGR32: case V4L2_PIX_FMT_ABGR32: case V4L2_PIX_FMT_XBGR32: case V4L2_PIX_FMT_BGRA32: case V4L2_PIX_FMT_BGRX32: case V4L2_PIX_FMT_RGBA32: case V4L2_PIX_FMT_RGBX32: case V4L2_PIX_FMT_ARGB32: case V4L2_PIX_FMT_XRGB32: offset = image->rect.left * 4 + image->rect.top * pix->bytesperline; break; case V4L2_PIX_FMT_RGB24: case V4L2_PIX_FMT_BGR24: offset = image->rect.left * 3 + image->rect.top * pix->bytesperline; break; case V4L2_PIX_FMT_SBGGR8: case V4L2_PIX_FMT_SGBRG8: case V4L2_PIX_FMT_SGRBG8: case V4L2_PIX_FMT_SRGGB8: case V4L2_PIX_FMT_GREY: offset = image->rect.left + image->rect.top * pix->bytesperline; break; case V4L2_PIX_FMT_SBGGR16: case V4L2_PIX_FMT_SGBRG16: case V4L2_PIX_FMT_SGRBG16: case V4L2_PIX_FMT_SRGGB16: case V4L2_PIX_FMT_Y16: offset = image->rect.left * 2 + image->rect.top * pix->bytesperline; break; default: /* This should not happen */ WARN_ON(1); offset = 0; ret = -EINVAL; } ipu_cpmem_set_buffer(ch, 0, image->phys0 + offset); ipu_cpmem_set_buffer(ch, 1, image->phys1 + offset); return ret; } EXPORT_SYMBOL_GPL(ipu_cpmem_set_image); void ipu_cpmem_dump(struct ipuv3_channel *ch) { struct ipu_ch_param __iomem *p = ipu_get_cpmem(ch); struct ipu_soc *ipu = ch->ipu; int chno = ch->num; dev_dbg(ipu->dev, "ch %d word 0 - %08X %08X %08X %08X %08X\n", chno, readl(&p->word[0].data[0]), readl(&p->word[0].data[1]), readl(&p->word[0].data[2]), readl(&p->word[0].data[3]), readl(&p->word[0].data[4])); dev_dbg(ipu->dev, "ch %d word 1 - %08X %08X %08X %08X %08X\n", chno, readl(&p->word[1].data[0]), readl(&p->word[1].data[1]), readl(&p->word[1].data[2]), readl(&p->word[1].data[3]), readl(&p->word[1].data[4])); dev_dbg(ipu->dev, "PFS 0x%x, ", ipu_ch_param_read_field(ch, IPU_FIELD_PFS)); dev_dbg(ipu->dev, "BPP 0x%x, ", ipu_ch_param_read_field(ch, IPU_FIELD_BPP)); dev_dbg(ipu->dev, "NPB 0x%x\n", ipu_ch_param_read_field(ch, IPU_FIELD_NPB)); dev_dbg(ipu->dev, "FW %d, ", ipu_ch_param_read_field(ch, IPU_FIELD_FW)); dev_dbg(ipu->dev, "FH %d, ", ipu_ch_param_read_field(ch, IPU_FIELD_FH)); dev_dbg(ipu->dev, "EBA0 0x%x\n", ipu_ch_param_read_field(ch, IPU_FIELD_EBA0) << 3); dev_dbg(ipu->dev, "EBA1 0x%x\n", ipu_ch_param_read_field(ch, IPU_FIELD_EBA1) << 3); dev_dbg(ipu->dev, "Stride %d\n", ipu_ch_param_read_field(ch, IPU_FIELD_SL)); dev_dbg(ipu->dev, "scan_order %d\n", ipu_ch_param_read_field(ch, IPU_FIELD_SO)); dev_dbg(ipu->dev, "uv_stride %d\n", ipu_ch_param_read_field(ch, IPU_FIELD_SLUV)); dev_dbg(ipu->dev, "u_offset 0x%x\n", ipu_ch_param_read_field(ch, IPU_FIELD_UBO) << 3); dev_dbg(ipu->dev, "v_offset 0x%x\n", ipu_ch_param_read_field(ch, IPU_FIELD_VBO) << 3); dev_dbg(ipu->dev, "Width0 %d+1, ", ipu_ch_param_read_field(ch, IPU_FIELD_WID0)); dev_dbg(ipu->dev, "Width1 %d+1, ", ipu_ch_param_read_field(ch, IPU_FIELD_WID1)); dev_dbg(ipu->dev, "Width2 %d+1, ", ipu_ch_param_read_field(ch, IPU_FIELD_WID2)); dev_dbg(ipu->dev, "Width3 %d+1, ", ipu_ch_param_read_field(ch, IPU_FIELD_WID3)); dev_dbg(ipu->dev, "Offset0 %d, ", ipu_ch_param_read_field(ch, IPU_FIELD_OFS0)); dev_dbg(ipu->dev, "Offset1 %d, ", ipu_ch_param_read_field(ch, IPU_FIELD_OFS1)); dev_dbg(ipu->dev, "Offset2 %d, ", ipu_ch_param_read_field(ch, IPU_FIELD_OFS2)); dev_dbg(ipu->dev, "Offset3 %d\n", ipu_ch_param_read_field(ch, IPU_FIELD_OFS3)); } EXPORT_SYMBOL_GPL(ipu_cpmem_dump); int ipu_cpmem_init(struct ipu_soc *ipu, struct device *dev, unsigned long base) { struct ipu_cpmem *cpmem; cpmem = devm_kzalloc(dev, sizeof(*cpmem), GFP_KERNEL); if (!cpmem) return -ENOMEM; ipu->cpmem_priv = cpmem; spin_lock_init(&cpmem->lock); cpmem->base = devm_ioremap(dev, base, SZ_128K); if (!cpmem->base) return -ENOMEM; dev_dbg(dev, "CPMEM base: 0x%08lx remapped to %p\n", base, cpmem->base); cpmem->ipu = ipu; return 0; } void ipu_cpmem_exit(struct ipu_soc *ipu) { }
linux-master
drivers/gpu/ipu-v3/ipu-cpmem.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2017 Lucas Stach, Pengutronix */ #include <drm/drm_fourcc.h> #include <linux/clk.h> #include <linux/err.h> #include <linux/genalloc.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <video/imx-ipu-v3.h> #include "ipu-prv.h" #define IPU_PRE_MAX_WIDTH 2048 #define IPU_PRE_NUM_SCANLINES 8 #define IPU_PRE_CTRL 0x000 #define IPU_PRE_CTRL_SET 0x004 #define IPU_PRE_CTRL_ENABLE (1 << 0) #define IPU_PRE_CTRL_BLOCK_EN (1 << 1) #define IPU_PRE_CTRL_BLOCK_16 (1 << 2) #define IPU_PRE_CTRL_SDW_UPDATE (1 << 4) #define IPU_PRE_CTRL_VFLIP (1 << 5) #define IPU_PRE_CTRL_SO (1 << 6) #define IPU_PRE_CTRL_INTERLACED_FIELD (1 << 7) #define IPU_PRE_CTRL_HANDSHAKE_EN (1 << 8) #define IPU_PRE_CTRL_HANDSHAKE_LINE_NUM(v) ((v & 0x3) << 9) #define IPU_PRE_CTRL_HANDSHAKE_ABORT_SKIP_EN (1 << 11) #define IPU_PRE_CTRL_EN_REPEAT (1 << 28) #define IPU_PRE_CTRL_TPR_REST_SEL (1 << 29) #define IPU_PRE_CTRL_CLKGATE (1 << 30) #define IPU_PRE_CTRL_SFTRST (1 << 31) #define IPU_PRE_CUR_BUF 0x030 #define IPU_PRE_NEXT_BUF 0x040 #define IPU_PRE_TPR_CTRL 0x070 #define IPU_PRE_TPR_CTRL_TILE_FORMAT(v) ((v & 0xff) << 0) #define IPU_PRE_TPR_CTRL_TILE_FORMAT_MASK 0xff #define IPU_PRE_TPR_CTRL_TILE_FORMAT_16_BIT (1 << 0) #define IPU_PRE_TPR_CTRL_TILE_FORMAT_SPLIT_BUF (1 << 4) #define IPU_PRE_TPR_CTRL_TILE_FORMAT_SINGLE_BUF (1 << 5) #define IPU_PRE_TPR_CTRL_TILE_FORMAT_SUPER_TILED (1 << 6) #define IPU_PRE_PREFETCH_ENG_CTRL 0x080 #define IPU_PRE_PREF_ENG_CTRL_PREFETCH_EN (1 << 0) #define IPU_PRE_PREF_ENG_CTRL_RD_NUM_BYTES(v) ((v & 0x7) << 1) #define IPU_PRE_PREF_ENG_CTRL_INPUT_ACTIVE_BPP(v) ((v & 0x3) << 4) #define IPU_PRE_PREF_ENG_CTRL_INPUT_PIXEL_FORMAT(v) ((v & 0x7) << 8) #define IPU_PRE_PREF_ENG_CTRL_SHIFT_BYPASS (1 << 11) #define IPU_PRE_PREF_ENG_CTRL_FIELD_INVERSE (1 << 12) #define IPU_PRE_PREF_ENG_CTRL_PARTIAL_UV_SWAP (1 << 14) #define IPU_PRE_PREF_ENG_CTRL_TPR_COOR_OFFSET_EN (1 << 15) #define IPU_PRE_PREFETCH_ENG_INPUT_SIZE 0x0a0 #define IPU_PRE_PREFETCH_ENG_INPUT_SIZE_WIDTH(v) ((v & 0xffff) << 0) #define IPU_PRE_PREFETCH_ENG_INPUT_SIZE_HEIGHT(v) ((v & 0xffff) << 16) #define IPU_PRE_PREFETCH_ENG_PITCH 0x0d0 #define IPU_PRE_PREFETCH_ENG_PITCH_Y(v) ((v & 0xffff) << 0) #define IPU_PRE_PREFETCH_ENG_PITCH_UV(v) ((v & 0xffff) << 16) #define IPU_PRE_STORE_ENG_CTRL 0x110 #define IPU_PRE_STORE_ENG_CTRL_STORE_EN (1 << 0) #define IPU_PRE_STORE_ENG_CTRL_WR_NUM_BYTES(v) ((v & 0x7) << 1) #define IPU_PRE_STORE_ENG_CTRL_OUTPUT_ACTIVE_BPP(v) ((v & 0x3) << 4) #define IPU_PRE_STORE_ENG_STATUS 0x120 #define IPU_PRE_STORE_ENG_STATUS_STORE_BLOCK_X_MASK 0xffff #define IPU_PRE_STORE_ENG_STATUS_STORE_BLOCK_X_SHIFT 0 #define IPU_PRE_STORE_ENG_STATUS_STORE_BLOCK_Y_MASK 0x3fff #define IPU_PRE_STORE_ENG_STATUS_STORE_BLOCK_Y_SHIFT 16 #define IPU_PRE_STORE_ENG_STATUS_STORE_FIFO_FULL (1 << 30) #define IPU_PRE_STORE_ENG_STATUS_STORE_FIELD (1 << 31) #define IPU_PRE_STORE_ENG_SIZE 0x130 #define IPU_PRE_STORE_ENG_SIZE_INPUT_WIDTH(v) ((v & 0xffff) << 0) #define IPU_PRE_STORE_ENG_SIZE_INPUT_HEIGHT(v) ((v & 0xffff) << 16) #define IPU_PRE_STORE_ENG_PITCH 0x140 #define IPU_PRE_STORE_ENG_PITCH_OUT_PITCH(v) ((v & 0xffff) << 0) #define IPU_PRE_STORE_ENG_ADDR 0x150 struct ipu_pre { struct list_head list; struct device *dev; void __iomem *regs; struct clk *clk_axi; struct gen_pool *iram; dma_addr_t buffer_paddr; void *buffer_virt; bool in_use; unsigned int safe_window_end; unsigned int last_bufaddr; }; static DEFINE_MUTEX(ipu_pre_list_mutex); static LIST_HEAD(ipu_pre_list); static int available_pres; int ipu_pre_get_available_count(void) { return available_pres; } struct ipu_pre * ipu_pre_lookup_by_phandle(struct device *dev, const char *name, int index) { struct device_node *pre_node = of_parse_phandle(dev->of_node, name, index); struct ipu_pre *pre; mutex_lock(&ipu_pre_list_mutex); list_for_each_entry(pre, &ipu_pre_list, list) { if (pre_node == pre->dev->of_node) { mutex_unlock(&ipu_pre_list_mutex); device_link_add(dev, pre->dev, DL_FLAG_AUTOREMOVE_CONSUMER); of_node_put(pre_node); return pre; } } mutex_unlock(&ipu_pre_list_mutex); of_node_put(pre_node); return NULL; } int ipu_pre_get(struct ipu_pre *pre) { u32 val; if (pre->in_use) return -EBUSY; /* first get the engine out of reset and remove clock gating */ writel(0, pre->regs + IPU_PRE_CTRL); /* init defaults that should be applied to all streams */ val = IPU_PRE_CTRL_HANDSHAKE_ABORT_SKIP_EN | IPU_PRE_CTRL_HANDSHAKE_EN | IPU_PRE_CTRL_TPR_REST_SEL | IPU_PRE_CTRL_SDW_UPDATE; writel(val, pre->regs + IPU_PRE_CTRL); pre->in_use = true; return 0; } void ipu_pre_put(struct ipu_pre *pre) { writel(IPU_PRE_CTRL_SFTRST, pre->regs + IPU_PRE_CTRL); pre->in_use = false; } void ipu_pre_configure(struct ipu_pre *pre, unsigned int width, unsigned int height, unsigned int stride, u32 format, uint64_t modifier, unsigned int bufaddr) { const struct drm_format_info *info = drm_format_info(format); u32 active_bpp = info->cpp[0] >> 1; u32 val; /* calculate safe window for ctrl register updates */ if (modifier == DRM_FORMAT_MOD_LINEAR) pre->safe_window_end = height - 2; else pre->safe_window_end = DIV_ROUND_UP(height, 4) - 1; writel(bufaddr, pre->regs + IPU_PRE_CUR_BUF); writel(bufaddr, pre->regs + IPU_PRE_NEXT_BUF); pre->last_bufaddr = bufaddr; val = IPU_PRE_PREF_ENG_CTRL_INPUT_PIXEL_FORMAT(0) | IPU_PRE_PREF_ENG_CTRL_INPUT_ACTIVE_BPP(active_bpp) | IPU_PRE_PREF_ENG_CTRL_RD_NUM_BYTES(4) | IPU_PRE_PREF_ENG_CTRL_SHIFT_BYPASS | IPU_PRE_PREF_ENG_CTRL_PREFETCH_EN; writel(val, pre->regs + IPU_PRE_PREFETCH_ENG_CTRL); val = IPU_PRE_PREFETCH_ENG_INPUT_SIZE_WIDTH(width) | IPU_PRE_PREFETCH_ENG_INPUT_SIZE_HEIGHT(height); writel(val, pre->regs + IPU_PRE_PREFETCH_ENG_INPUT_SIZE); val = IPU_PRE_PREFETCH_ENG_PITCH_Y(stride); writel(val, pre->regs + IPU_PRE_PREFETCH_ENG_PITCH); val = IPU_PRE_STORE_ENG_CTRL_OUTPUT_ACTIVE_BPP(active_bpp) | IPU_PRE_STORE_ENG_CTRL_WR_NUM_BYTES(4) | IPU_PRE_STORE_ENG_CTRL_STORE_EN; writel(val, pre->regs + IPU_PRE_STORE_ENG_CTRL); val = IPU_PRE_STORE_ENG_SIZE_INPUT_WIDTH(width) | IPU_PRE_STORE_ENG_SIZE_INPUT_HEIGHT(height); writel(val, pre->regs + IPU_PRE_STORE_ENG_SIZE); val = IPU_PRE_STORE_ENG_PITCH_OUT_PITCH(stride); writel(val, pre->regs + IPU_PRE_STORE_ENG_PITCH); writel(pre->buffer_paddr, pre->regs + IPU_PRE_STORE_ENG_ADDR); val = readl(pre->regs + IPU_PRE_TPR_CTRL); val &= ~IPU_PRE_TPR_CTRL_TILE_FORMAT_MASK; if (modifier != DRM_FORMAT_MOD_LINEAR) { /* only support single buffer formats for now */ val |= IPU_PRE_TPR_CTRL_TILE_FORMAT_SINGLE_BUF; if (modifier == DRM_FORMAT_MOD_VIVANTE_SUPER_TILED) val |= IPU_PRE_TPR_CTRL_TILE_FORMAT_SUPER_TILED; if (info->cpp[0] == 2) val |= IPU_PRE_TPR_CTRL_TILE_FORMAT_16_BIT; } writel(val, pre->regs + IPU_PRE_TPR_CTRL); val = readl(pre->regs + IPU_PRE_CTRL); val |= IPU_PRE_CTRL_EN_REPEAT | IPU_PRE_CTRL_ENABLE | IPU_PRE_CTRL_SDW_UPDATE; if (modifier == DRM_FORMAT_MOD_LINEAR) val &= ~IPU_PRE_CTRL_BLOCK_EN; else val |= IPU_PRE_CTRL_BLOCK_EN; writel(val, pre->regs + IPU_PRE_CTRL); } void ipu_pre_update(struct ipu_pre *pre, unsigned int bufaddr) { unsigned long timeout = jiffies + msecs_to_jiffies(5); unsigned short current_yblock; u32 val; if (bufaddr == pre->last_bufaddr) return; writel(bufaddr, pre->regs + IPU_PRE_NEXT_BUF); pre->last_bufaddr = bufaddr; do { if (time_after(jiffies, timeout)) { dev_warn(pre->dev, "timeout waiting for PRE safe window\n"); return; } val = readl(pre->regs + IPU_PRE_STORE_ENG_STATUS); current_yblock = (val >> IPU_PRE_STORE_ENG_STATUS_STORE_BLOCK_Y_SHIFT) & IPU_PRE_STORE_ENG_STATUS_STORE_BLOCK_Y_MASK; } while (current_yblock == 0 || current_yblock >= pre->safe_window_end); writel(IPU_PRE_CTRL_SDW_UPDATE, pre->regs + IPU_PRE_CTRL_SET); } bool ipu_pre_update_pending(struct ipu_pre *pre) { return !!(readl_relaxed(pre->regs + IPU_PRE_CTRL) & IPU_PRE_CTRL_SDW_UPDATE); } u32 ipu_pre_get_baddr(struct ipu_pre *pre) { return (u32)pre->buffer_paddr; } static int ipu_pre_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct ipu_pre *pre; pre = devm_kzalloc(dev, sizeof(*pre), GFP_KERNEL); if (!pre) return -ENOMEM; pre->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(pre->regs)) return PTR_ERR(pre->regs); pre->clk_axi = devm_clk_get(dev, "axi"); if (IS_ERR(pre->clk_axi)) return PTR_ERR(pre->clk_axi); pre->iram = of_gen_pool_get(dev->of_node, "fsl,iram", 0); if (!pre->iram) return -EPROBE_DEFER; /* * Allocate IRAM buffer with maximum size. This could be made dynamic, * but as there is no other user of this IRAM region and we can fit all * max sized buffers into it, there is no need yet. */ pre->buffer_virt = gen_pool_dma_alloc(pre->iram, IPU_PRE_MAX_WIDTH * IPU_PRE_NUM_SCANLINES * 4, &pre->buffer_paddr); if (!pre->buffer_virt) return -ENOMEM; clk_prepare_enable(pre->clk_axi); pre->dev = dev; platform_set_drvdata(pdev, pre); mutex_lock(&ipu_pre_list_mutex); list_add(&pre->list, &ipu_pre_list); available_pres++; mutex_unlock(&ipu_pre_list_mutex); return 0; } static int ipu_pre_remove(struct platform_device *pdev) { struct ipu_pre *pre = platform_get_drvdata(pdev); mutex_lock(&ipu_pre_list_mutex); list_del(&pre->list); available_pres--; mutex_unlock(&ipu_pre_list_mutex); clk_disable_unprepare(pre->clk_axi); if (pre->buffer_virt) gen_pool_free(pre->iram, (unsigned long)pre->buffer_virt, IPU_PRE_MAX_WIDTH * IPU_PRE_NUM_SCANLINES * 4); return 0; } static const struct of_device_id ipu_pre_dt_ids[] = { { .compatible = "fsl,imx6qp-pre", }, { /* sentinel */ }, }; struct platform_driver ipu_pre_drv = { .probe = ipu_pre_probe, .remove = ipu_pre_remove, .driver = { .name = "imx-ipu-pre", .of_match_table = ipu_pre_dt_ids, }, };
linux-master
drivers/gpu/ipu-v3/ipu-pre.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2012-2014 Mentor Graphics Inc. * Copyright 2005-2012 Freescale Semiconductor, Inc. All Rights Reserved. */ #include <linux/types.h> #include <linux/init.h> #include <linux/errno.h> #include <linux/spinlock.h> #include <linux/bitrev.h> #include <linux/io.h> #include <linux/err.h> #include <linux/sizes.h> #include "ipu-prv.h" /* IC Register Offsets */ #define IC_CONF 0x0000 #define IC_PRP_ENC_RSC 0x0004 #define IC_PRP_VF_RSC 0x0008 #define IC_PP_RSC 0x000C #define IC_CMBP_1 0x0010 #define IC_CMBP_2 0x0014 #define IC_IDMAC_1 0x0018 #define IC_IDMAC_2 0x001C #define IC_IDMAC_3 0x0020 #define IC_IDMAC_4 0x0024 /* IC Register Fields */ #define IC_CONF_PRPENC_EN (1 << 0) #define IC_CONF_PRPENC_CSC1 (1 << 1) #define IC_CONF_PRPENC_ROT_EN (1 << 2) #define IC_CONF_PRPVF_EN (1 << 8) #define IC_CONF_PRPVF_CSC1 (1 << 9) #define IC_CONF_PRPVF_CSC2 (1 << 10) #define IC_CONF_PRPVF_CMB (1 << 11) #define IC_CONF_PRPVF_ROT_EN (1 << 12) #define IC_CONF_PP_EN (1 << 16) #define IC_CONF_PP_CSC1 (1 << 17) #define IC_CONF_PP_CSC2 (1 << 18) #define IC_CONF_PP_CMB (1 << 19) #define IC_CONF_PP_ROT_EN (1 << 20) #define IC_CONF_IC_GLB_LOC_A (1 << 28) #define IC_CONF_KEY_COLOR_EN (1 << 29) #define IC_CONF_RWS_EN (1 << 30) #define IC_CONF_CSI_MEM_WR_EN (1 << 31) #define IC_IDMAC_1_CB0_BURST_16 (1 << 0) #define IC_IDMAC_1_CB1_BURST_16 (1 << 1) #define IC_IDMAC_1_CB2_BURST_16 (1 << 2) #define IC_IDMAC_1_CB3_BURST_16 (1 << 3) #define IC_IDMAC_1_CB4_BURST_16 (1 << 4) #define IC_IDMAC_1_CB5_BURST_16 (1 << 5) #define IC_IDMAC_1_CB6_BURST_16 (1 << 6) #define IC_IDMAC_1_CB7_BURST_16 (1 << 7) #define IC_IDMAC_1_PRPENC_ROT_MASK (0x7 << 11) #define IC_IDMAC_1_PRPENC_ROT_OFFSET 11 #define IC_IDMAC_1_PRPVF_ROT_MASK (0x7 << 14) #define IC_IDMAC_1_PRPVF_ROT_OFFSET 14 #define IC_IDMAC_1_PP_ROT_MASK (0x7 << 17) #define IC_IDMAC_1_PP_ROT_OFFSET 17 #define IC_IDMAC_1_PP_FLIP_RS (1 << 22) #define IC_IDMAC_1_PRPVF_FLIP_RS (1 << 21) #define IC_IDMAC_1_PRPENC_FLIP_RS (1 << 20) #define IC_IDMAC_2_PRPENC_HEIGHT_MASK (0x3ff << 0) #define IC_IDMAC_2_PRPENC_HEIGHT_OFFSET 0 #define IC_IDMAC_2_PRPVF_HEIGHT_MASK (0x3ff << 10) #define IC_IDMAC_2_PRPVF_HEIGHT_OFFSET 10 #define IC_IDMAC_2_PP_HEIGHT_MASK (0x3ff << 20) #define IC_IDMAC_2_PP_HEIGHT_OFFSET 20 #define IC_IDMAC_3_PRPENC_WIDTH_MASK (0x3ff << 0) #define IC_IDMAC_3_PRPENC_WIDTH_OFFSET 0 #define IC_IDMAC_3_PRPVF_WIDTH_MASK (0x3ff << 10) #define IC_IDMAC_3_PRPVF_WIDTH_OFFSET 10 #define IC_IDMAC_3_PP_WIDTH_MASK (0x3ff << 20) #define IC_IDMAC_3_PP_WIDTH_OFFSET 20 struct ic_task_regoffs { u32 rsc; u32 tpmem_csc[2]; }; struct ic_task_bitfields { u32 ic_conf_en; u32 ic_conf_rot_en; u32 ic_conf_cmb_en; u32 ic_conf_csc1_en; u32 ic_conf_csc2_en; u32 ic_cmb_galpha_bit; }; static const struct ic_task_regoffs ic_task_reg[IC_NUM_TASKS] = { [IC_TASK_ENCODER] = { .rsc = IC_PRP_ENC_RSC, .tpmem_csc = {0x2008, 0}, }, [IC_TASK_VIEWFINDER] = { .rsc = IC_PRP_VF_RSC, .tpmem_csc = {0x4028, 0x4040}, }, [IC_TASK_POST_PROCESSOR] = { .rsc = IC_PP_RSC, .tpmem_csc = {0x6060, 0x6078}, }, }; static const struct ic_task_bitfields ic_task_bit[IC_NUM_TASKS] = { [IC_TASK_ENCODER] = { .ic_conf_en = IC_CONF_PRPENC_EN, .ic_conf_rot_en = IC_CONF_PRPENC_ROT_EN, .ic_conf_cmb_en = 0, /* NA */ .ic_conf_csc1_en = IC_CONF_PRPENC_CSC1, .ic_conf_csc2_en = 0, /* NA */ .ic_cmb_galpha_bit = 0, /* NA */ }, [IC_TASK_VIEWFINDER] = { .ic_conf_en = IC_CONF_PRPVF_EN, .ic_conf_rot_en = IC_CONF_PRPVF_ROT_EN, .ic_conf_cmb_en = IC_CONF_PRPVF_CMB, .ic_conf_csc1_en = IC_CONF_PRPVF_CSC1, .ic_conf_csc2_en = IC_CONF_PRPVF_CSC2, .ic_cmb_galpha_bit = 0, }, [IC_TASK_POST_PROCESSOR] = { .ic_conf_en = IC_CONF_PP_EN, .ic_conf_rot_en = IC_CONF_PP_ROT_EN, .ic_conf_cmb_en = IC_CONF_PP_CMB, .ic_conf_csc1_en = IC_CONF_PP_CSC1, .ic_conf_csc2_en = IC_CONF_PP_CSC2, .ic_cmb_galpha_bit = 8, }, }; struct ipu_ic_priv; struct ipu_ic { enum ipu_ic_task task; const struct ic_task_regoffs *reg; const struct ic_task_bitfields *bit; struct ipu_ic_colorspace in_cs; struct ipu_ic_colorspace g_in_cs; struct ipu_ic_colorspace out_cs; bool graphics; bool rotation; bool in_use; struct ipu_ic_priv *priv; }; struct ipu_ic_priv { void __iomem *base; void __iomem *tpmem_base; spinlock_t lock; struct ipu_soc *ipu; int use_count; int irt_use_count; struct ipu_ic task[IC_NUM_TASKS]; }; static inline u32 ipu_ic_read(struct ipu_ic *ic, unsigned offset) { return readl(ic->priv->base + offset); } static inline void ipu_ic_write(struct ipu_ic *ic, u32 value, unsigned offset) { writel(value, ic->priv->base + offset); } static int init_csc(struct ipu_ic *ic, const struct ipu_ic_csc *csc, int csc_index) { struct ipu_ic_priv *priv = ic->priv; u32 __iomem *base; const u16 (*c)[3]; const u16 *a; u32 param; base = (u32 __iomem *) (priv->tpmem_base + ic->reg->tpmem_csc[csc_index]); /* Cast to unsigned */ c = (const u16 (*)[3])csc->params.coeff; a = (const u16 *)csc->params.offset; param = ((a[0] & 0x1f) << 27) | ((c[0][0] & 0x1ff) << 18) | ((c[1][1] & 0x1ff) << 9) | (c[2][2] & 0x1ff); writel(param, base++); param = ((a[0] & 0x1fe0) >> 5) | (csc->params.scale << 8) | (csc->params.sat << 10); writel(param, base++); param = ((a[1] & 0x1f) << 27) | ((c[0][1] & 0x1ff) << 18) | ((c[1][0] & 0x1ff) << 9) | (c[2][0] & 0x1ff); writel(param, base++); param = ((a[1] & 0x1fe0) >> 5); writel(param, base++); param = ((a[2] & 0x1f) << 27) | ((c[0][2] & 0x1ff) << 18) | ((c[1][2] & 0x1ff) << 9) | (c[2][1] & 0x1ff); writel(param, base++); param = ((a[2] & 0x1fe0) >> 5); writel(param, base++); return 0; } static int calc_resize_coeffs(struct ipu_ic *ic, u32 in_size, u32 out_size, u32 *resize_coeff, u32 *downsize_coeff) { struct ipu_ic_priv *priv = ic->priv; struct ipu_soc *ipu = priv->ipu; u32 temp_size, temp_downsize; /* * Input size cannot be more than 4096, and output size cannot * be more than 1024 */ if (in_size > 4096) { dev_err(ipu->dev, "Unsupported resize (in_size > 4096)\n"); return -EINVAL; } if (out_size > 1024) { dev_err(ipu->dev, "Unsupported resize (out_size > 1024)\n"); return -EINVAL; } /* Cannot downsize more than 4:1 */ if ((out_size << 2) < in_size) { dev_err(ipu->dev, "Unsupported downsize\n"); return -EINVAL; } /* Compute downsizing coefficient */ temp_downsize = 0; temp_size = in_size; while (((temp_size > 1024) || (temp_size >= out_size * 2)) && (temp_downsize < 2)) { temp_size >>= 1; temp_downsize++; } *downsize_coeff = temp_downsize; /* * compute resizing coefficient using the following equation: * resize_coeff = M * (SI - 1) / (SO - 1) * where M = 2^13, SI = input size, SO = output size */ *resize_coeff = (8192L * (temp_size - 1)) / (out_size - 1); if (*resize_coeff >= 16384L) { dev_err(ipu->dev, "Warning! Overflow on resize coeff.\n"); *resize_coeff = 0x3FFF; } return 0; } void ipu_ic_task_enable(struct ipu_ic *ic) { struct ipu_ic_priv *priv = ic->priv; unsigned long flags; u32 ic_conf; spin_lock_irqsave(&priv->lock, flags); ic_conf = ipu_ic_read(ic, IC_CONF); ic_conf |= ic->bit->ic_conf_en; if (ic->rotation) ic_conf |= ic->bit->ic_conf_rot_en; if (ic->in_cs.cs != ic->out_cs.cs) ic_conf |= ic->bit->ic_conf_csc1_en; if (ic->graphics) { ic_conf |= ic->bit->ic_conf_cmb_en; ic_conf |= ic->bit->ic_conf_csc1_en; if (ic->g_in_cs.cs != ic->out_cs.cs) ic_conf |= ic->bit->ic_conf_csc2_en; } ipu_ic_write(ic, ic_conf, IC_CONF); spin_unlock_irqrestore(&priv->lock, flags); } EXPORT_SYMBOL_GPL(ipu_ic_task_enable); void ipu_ic_task_disable(struct ipu_ic *ic) { struct ipu_ic_priv *priv = ic->priv; unsigned long flags; u32 ic_conf; spin_lock_irqsave(&priv->lock, flags); ic_conf = ipu_ic_read(ic, IC_CONF); ic_conf &= ~(ic->bit->ic_conf_en | ic->bit->ic_conf_csc1_en | ic->bit->ic_conf_rot_en); if (ic->bit->ic_conf_csc2_en) ic_conf &= ~ic->bit->ic_conf_csc2_en; if (ic->bit->ic_conf_cmb_en) ic_conf &= ~ic->bit->ic_conf_cmb_en; ipu_ic_write(ic, ic_conf, IC_CONF); spin_unlock_irqrestore(&priv->lock, flags); } EXPORT_SYMBOL_GPL(ipu_ic_task_disable); int ipu_ic_task_graphics_init(struct ipu_ic *ic, const struct ipu_ic_colorspace *g_in_cs, bool galpha_en, u32 galpha, bool colorkey_en, u32 colorkey) { struct ipu_ic_priv *priv = ic->priv; struct ipu_ic_csc csc2; unsigned long flags; u32 reg, ic_conf; int ret = 0; if (ic->task == IC_TASK_ENCODER) return -EINVAL; spin_lock_irqsave(&priv->lock, flags); ic_conf = ipu_ic_read(ic, IC_CONF); if (!(ic_conf & ic->bit->ic_conf_csc1_en)) { struct ipu_ic_csc csc1; ret = ipu_ic_calc_csc(&csc1, V4L2_YCBCR_ENC_601, V4L2_QUANTIZATION_FULL_RANGE, IPUV3_COLORSPACE_RGB, V4L2_YCBCR_ENC_601, V4L2_QUANTIZATION_FULL_RANGE, IPUV3_COLORSPACE_RGB); if (ret) goto unlock; /* need transparent CSC1 conversion */ ret = init_csc(ic, &csc1, 0); if (ret) goto unlock; } ic->g_in_cs = *g_in_cs; csc2.in_cs = ic->g_in_cs; csc2.out_cs = ic->out_cs; ret = __ipu_ic_calc_csc(&csc2); if (ret) goto unlock; ret = init_csc(ic, &csc2, 1); if (ret) goto unlock; if (galpha_en) { ic_conf |= IC_CONF_IC_GLB_LOC_A; reg = ipu_ic_read(ic, IC_CMBP_1); reg &= ~(0xff << ic->bit->ic_cmb_galpha_bit); reg |= (galpha << ic->bit->ic_cmb_galpha_bit); ipu_ic_write(ic, reg, IC_CMBP_1); } else ic_conf &= ~IC_CONF_IC_GLB_LOC_A; if (colorkey_en) { ic_conf |= IC_CONF_KEY_COLOR_EN; ipu_ic_write(ic, colorkey, IC_CMBP_2); } else ic_conf &= ~IC_CONF_KEY_COLOR_EN; ipu_ic_write(ic, ic_conf, IC_CONF); ic->graphics = true; unlock: spin_unlock_irqrestore(&priv->lock, flags); return ret; } EXPORT_SYMBOL_GPL(ipu_ic_task_graphics_init); int ipu_ic_task_init_rsc(struct ipu_ic *ic, const struct ipu_ic_csc *csc, int in_width, int in_height, int out_width, int out_height, u32 rsc) { struct ipu_ic_priv *priv = ic->priv; u32 downsize_coeff, resize_coeff; unsigned long flags; int ret = 0; if (!rsc) { /* Setup vertical resizing */ ret = calc_resize_coeffs(ic, in_height, out_height, &resize_coeff, &downsize_coeff); if (ret) return ret; rsc = (downsize_coeff << 30) | (resize_coeff << 16); /* Setup horizontal resizing */ ret = calc_resize_coeffs(ic, in_width, out_width, &resize_coeff, &downsize_coeff); if (ret) return ret; rsc |= (downsize_coeff << 14) | resize_coeff; } spin_lock_irqsave(&priv->lock, flags); ipu_ic_write(ic, rsc, ic->reg->rsc); /* Setup color space conversion */ ic->in_cs = csc->in_cs; ic->out_cs = csc->out_cs; ret = init_csc(ic, csc, 0); spin_unlock_irqrestore(&priv->lock, flags); return ret; } int ipu_ic_task_init(struct ipu_ic *ic, const struct ipu_ic_csc *csc, int in_width, int in_height, int out_width, int out_height) { return ipu_ic_task_init_rsc(ic, csc, in_width, in_height, out_width, out_height, 0); } EXPORT_SYMBOL_GPL(ipu_ic_task_init); int ipu_ic_task_idma_init(struct ipu_ic *ic, struct ipuv3_channel *channel, u32 width, u32 height, int burst_size, enum ipu_rotate_mode rot) { struct ipu_ic_priv *priv = ic->priv; struct ipu_soc *ipu = priv->ipu; u32 ic_idmac_1, ic_idmac_2, ic_idmac_3; u32 temp_rot = bitrev8(rot) >> 5; bool need_hor_flip = false; unsigned long flags; int ret = 0; if ((burst_size != 8) && (burst_size != 16)) { dev_err(ipu->dev, "Illegal burst length for IC\n"); return -EINVAL; } width--; height--; if (temp_rot & 0x2) /* Need horizontal flip */ need_hor_flip = true; spin_lock_irqsave(&priv->lock, flags); ic_idmac_1 = ipu_ic_read(ic, IC_IDMAC_1); ic_idmac_2 = ipu_ic_read(ic, IC_IDMAC_2); ic_idmac_3 = ipu_ic_read(ic, IC_IDMAC_3); switch (channel->num) { case IPUV3_CHANNEL_IC_PP_MEM: if (burst_size == 16) ic_idmac_1 |= IC_IDMAC_1_CB2_BURST_16; else ic_idmac_1 &= ~IC_IDMAC_1_CB2_BURST_16; if (need_hor_flip) ic_idmac_1 |= IC_IDMAC_1_PP_FLIP_RS; else ic_idmac_1 &= ~IC_IDMAC_1_PP_FLIP_RS; ic_idmac_2 &= ~IC_IDMAC_2_PP_HEIGHT_MASK; ic_idmac_2 |= height << IC_IDMAC_2_PP_HEIGHT_OFFSET; ic_idmac_3 &= ~IC_IDMAC_3_PP_WIDTH_MASK; ic_idmac_3 |= width << IC_IDMAC_3_PP_WIDTH_OFFSET; break; case IPUV3_CHANNEL_MEM_IC_PP: if (burst_size == 16) ic_idmac_1 |= IC_IDMAC_1_CB5_BURST_16; else ic_idmac_1 &= ~IC_IDMAC_1_CB5_BURST_16; break; case IPUV3_CHANNEL_MEM_ROT_PP: ic_idmac_1 &= ~IC_IDMAC_1_PP_ROT_MASK; ic_idmac_1 |= temp_rot << IC_IDMAC_1_PP_ROT_OFFSET; break; case IPUV3_CHANNEL_MEM_IC_PRP_VF: if (burst_size == 16) ic_idmac_1 |= IC_IDMAC_1_CB6_BURST_16; else ic_idmac_1 &= ~IC_IDMAC_1_CB6_BURST_16; break; case IPUV3_CHANNEL_IC_PRP_ENC_MEM: if (burst_size == 16) ic_idmac_1 |= IC_IDMAC_1_CB0_BURST_16; else ic_idmac_1 &= ~IC_IDMAC_1_CB0_BURST_16; if (need_hor_flip) ic_idmac_1 |= IC_IDMAC_1_PRPENC_FLIP_RS; else ic_idmac_1 &= ~IC_IDMAC_1_PRPENC_FLIP_RS; ic_idmac_2 &= ~IC_IDMAC_2_PRPENC_HEIGHT_MASK; ic_idmac_2 |= height << IC_IDMAC_2_PRPENC_HEIGHT_OFFSET; ic_idmac_3 &= ~IC_IDMAC_3_PRPENC_WIDTH_MASK; ic_idmac_3 |= width << IC_IDMAC_3_PRPENC_WIDTH_OFFSET; break; case IPUV3_CHANNEL_MEM_ROT_ENC: ic_idmac_1 &= ~IC_IDMAC_1_PRPENC_ROT_MASK; ic_idmac_1 |= temp_rot << IC_IDMAC_1_PRPENC_ROT_OFFSET; break; case IPUV3_CHANNEL_IC_PRP_VF_MEM: if (burst_size == 16) ic_idmac_1 |= IC_IDMAC_1_CB1_BURST_16; else ic_idmac_1 &= ~IC_IDMAC_1_CB1_BURST_16; if (need_hor_flip) ic_idmac_1 |= IC_IDMAC_1_PRPVF_FLIP_RS; else ic_idmac_1 &= ~IC_IDMAC_1_PRPVF_FLIP_RS; ic_idmac_2 &= ~IC_IDMAC_2_PRPVF_HEIGHT_MASK; ic_idmac_2 |= height << IC_IDMAC_2_PRPVF_HEIGHT_OFFSET; ic_idmac_3 &= ~IC_IDMAC_3_PRPVF_WIDTH_MASK; ic_idmac_3 |= width << IC_IDMAC_3_PRPVF_WIDTH_OFFSET; break; case IPUV3_CHANNEL_MEM_ROT_VF: ic_idmac_1 &= ~IC_IDMAC_1_PRPVF_ROT_MASK; ic_idmac_1 |= temp_rot << IC_IDMAC_1_PRPVF_ROT_OFFSET; break; case IPUV3_CHANNEL_G_MEM_IC_PRP_VF: if (burst_size == 16) ic_idmac_1 |= IC_IDMAC_1_CB3_BURST_16; else ic_idmac_1 &= ~IC_IDMAC_1_CB3_BURST_16; break; case IPUV3_CHANNEL_G_MEM_IC_PP: if (burst_size == 16) ic_idmac_1 |= IC_IDMAC_1_CB4_BURST_16; else ic_idmac_1 &= ~IC_IDMAC_1_CB4_BURST_16; break; case IPUV3_CHANNEL_VDI_MEM_IC_VF: if (burst_size == 16) ic_idmac_1 |= IC_IDMAC_1_CB7_BURST_16; else ic_idmac_1 &= ~IC_IDMAC_1_CB7_BURST_16; break; default: goto unlock; } ipu_ic_write(ic, ic_idmac_1, IC_IDMAC_1); ipu_ic_write(ic, ic_idmac_2, IC_IDMAC_2); ipu_ic_write(ic, ic_idmac_3, IC_IDMAC_3); if (ipu_rot_mode_is_irt(rot)) ic->rotation = true; unlock: spin_unlock_irqrestore(&priv->lock, flags); return ret; } EXPORT_SYMBOL_GPL(ipu_ic_task_idma_init); static void ipu_irt_enable(struct ipu_ic *ic) { struct ipu_ic_priv *priv = ic->priv; if (!priv->irt_use_count) ipu_module_enable(priv->ipu, IPU_CONF_ROT_EN); priv->irt_use_count++; } static void ipu_irt_disable(struct ipu_ic *ic) { struct ipu_ic_priv *priv = ic->priv; if (priv->irt_use_count) { if (!--priv->irt_use_count) ipu_module_disable(priv->ipu, IPU_CONF_ROT_EN); } } int ipu_ic_enable(struct ipu_ic *ic) { struct ipu_ic_priv *priv = ic->priv; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); if (!priv->use_count) ipu_module_enable(priv->ipu, IPU_CONF_IC_EN); priv->use_count++; if (ic->rotation) ipu_irt_enable(ic); spin_unlock_irqrestore(&priv->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ipu_ic_enable); int ipu_ic_disable(struct ipu_ic *ic) { struct ipu_ic_priv *priv = ic->priv; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); priv->use_count--; if (!priv->use_count) ipu_module_disable(priv->ipu, IPU_CONF_IC_EN); if (priv->use_count < 0) priv->use_count = 0; if (ic->rotation) ipu_irt_disable(ic); ic->rotation = ic->graphics = false; spin_unlock_irqrestore(&priv->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ipu_ic_disable); struct ipu_ic *ipu_ic_get(struct ipu_soc *ipu, enum ipu_ic_task task) { struct ipu_ic_priv *priv = ipu->ic_priv; unsigned long flags; struct ipu_ic *ic, *ret; if (task >= IC_NUM_TASKS) return ERR_PTR(-EINVAL); ic = &priv->task[task]; spin_lock_irqsave(&priv->lock, flags); if (ic->in_use) { ret = ERR_PTR(-EBUSY); goto unlock; } ic->in_use = true; ret = ic; unlock: spin_unlock_irqrestore(&priv->lock, flags); return ret; } EXPORT_SYMBOL_GPL(ipu_ic_get); void ipu_ic_put(struct ipu_ic *ic) { struct ipu_ic_priv *priv = ic->priv; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); ic->in_use = false; spin_unlock_irqrestore(&priv->lock, flags); } EXPORT_SYMBOL_GPL(ipu_ic_put); int ipu_ic_init(struct ipu_soc *ipu, struct device *dev, unsigned long base, unsigned long tpmem_base) { struct ipu_ic_priv *priv; int i; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; ipu->ic_priv = priv; spin_lock_init(&priv->lock); priv->base = devm_ioremap(dev, base, PAGE_SIZE); if (!priv->base) return -ENOMEM; priv->tpmem_base = devm_ioremap(dev, tpmem_base, SZ_64K); if (!priv->tpmem_base) return -ENOMEM; dev_dbg(dev, "IC base: 0x%08lx remapped to %p\n", base, priv->base); priv->ipu = ipu; for (i = 0; i < IC_NUM_TASKS; i++) { priv->task[i].task = i; priv->task[i].priv = priv; priv->task[i].reg = &ic_task_reg[i]; priv->task[i].bit = &ic_task_bit[i]; } return 0; } void ipu_ic_exit(struct ipu_soc *ipu) { } void ipu_ic_dump(struct ipu_ic *ic) { struct ipu_ic_priv *priv = ic->priv; struct ipu_soc *ipu = priv->ipu; dev_dbg(ipu->dev, "IC_CONF = \t0x%08X\n", ipu_ic_read(ic, IC_CONF)); dev_dbg(ipu->dev, "IC_PRP_ENC_RSC = \t0x%08X\n", ipu_ic_read(ic, IC_PRP_ENC_RSC)); dev_dbg(ipu->dev, "IC_PRP_VF_RSC = \t0x%08X\n", ipu_ic_read(ic, IC_PRP_VF_RSC)); dev_dbg(ipu->dev, "IC_PP_RSC = \t0x%08X\n", ipu_ic_read(ic, IC_PP_RSC)); dev_dbg(ipu->dev, "IC_CMBP_1 = \t0x%08X\n", ipu_ic_read(ic, IC_CMBP_1)); dev_dbg(ipu->dev, "IC_CMBP_2 = \t0x%08X\n", ipu_ic_read(ic, IC_CMBP_2)); dev_dbg(ipu->dev, "IC_IDMAC_1 = \t0x%08X\n", ipu_ic_read(ic, IC_IDMAC_1)); dev_dbg(ipu->dev, "IC_IDMAC_2 = \t0x%08X\n", ipu_ic_read(ic, IC_IDMAC_2)); dev_dbg(ipu->dev, "IC_IDMAC_3 = \t0x%08X\n", ipu_ic_read(ic, IC_IDMAC_3)); dev_dbg(ipu->dev, "IC_IDMAC_4 = \t0x%08X\n", ipu_ic_read(ic, IC_IDMAC_4)); } EXPORT_SYMBOL_GPL(ipu_ic_dump);
linux-master
drivers/gpu/ipu-v3/ipu-ic.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2012-2016 Mentor Graphics Inc. * * Queued image conversion support, with tiling and rotation. */ #include <linux/interrupt.h> #include <linux/dma-mapping.h> #include <linux/math.h> #include <video/imx-ipu-image-convert.h> #include "ipu-prv.h" /* * The IC Resizer has a restriction that the output frame from the * resizer must be 1024 or less in both width (pixels) and height * (lines). * * The image converter attempts to split up a conversion when * the desired output (converted) frame resolution exceeds the * IC resizer limit of 1024 in either dimension. * * If either dimension of the output frame exceeds the limit, the * dimension is split into 1, 2, or 4 equal stripes, for a maximum * of 4*4 or 16 tiles. A conversion is then carried out for each * tile (but taking care to pass the full frame stride length to * the DMA channel's parameter memory!). IDMA double-buffering is used * to convert each tile back-to-back when possible (see note below * when double_buffering boolean is set). * * Note that the input frame must be split up into the same number * of tiles as the output frame: * * +---------+-----+ * +-----+---+ | A | B | * | A | B | | | | * +-----+---+ --> +---------+-----+ * | C | D | | C | D | * +-----+---+ | | | * +---------+-----+ * * Clockwise 90° rotations are handled by first rescaling into a * reusable temporary tile buffer and then rotating with the 8x8 * block rotator, writing to the correct destination: * * +-----+-----+ * | | | * +-----+---+ +---------+ | C | A | * | A | B | | A,B, | | | | | * +-----+---+ --> | C,D | | --> | | | * | C | D | +---------+ +-----+-----+ * +-----+---+ | D | B | * | | | * +-----+-----+ * * If the 8x8 block rotator is used, horizontal or vertical flipping * is done during the rotation step, otherwise flipping is done * during the scaling step. * With rotation or flipping, tile order changes between input and * output image. Tiles are numbered row major from top left to bottom * right for both input and output image. */ #define MAX_STRIPES_W 4 #define MAX_STRIPES_H 4 #define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H) #define MIN_W 16 #define MIN_H 8 #define MAX_W 4096 #define MAX_H 4096 enum ipu_image_convert_type { IMAGE_CONVERT_IN = 0, IMAGE_CONVERT_OUT, }; struct ipu_image_convert_dma_buf { void *virt; dma_addr_t phys; unsigned long len; }; struct ipu_image_convert_dma_chan { int in; int out; int rot_in; int rot_out; int vdi_in_p; int vdi_in; int vdi_in_n; }; /* dimensions of one tile */ struct ipu_image_tile { u32 width; u32 height; u32 left; u32 top; /* size and strides are in bytes */ u32 size; u32 stride; u32 rot_stride; /* start Y or packed offset of this tile */ u32 offset; /* offset from start to tile in U plane, for planar formats */ u32 u_off; /* offset from start to tile in V plane, for planar formats */ u32 v_off; }; struct ipu_image_convert_image { struct ipu_image base; enum ipu_image_convert_type type; const struct ipu_image_pixfmt *fmt; unsigned int stride; /* # of rows (horizontal stripes) if dest height is > 1024 */ unsigned int num_rows; /* # of columns (vertical stripes) if dest width is > 1024 */ unsigned int num_cols; struct ipu_image_tile tile[MAX_TILES]; }; struct ipu_image_pixfmt { u32 fourcc; /* V4L2 fourcc */ int bpp; /* total bpp */ int uv_width_dec; /* decimation in width for U/V planes */ int uv_height_dec; /* decimation in height for U/V planes */ bool planar; /* planar format */ bool uv_swapped; /* U and V planes are swapped */ bool uv_packed; /* partial planar (U and V in same plane) */ }; struct ipu_image_convert_ctx; struct ipu_image_convert_chan; struct ipu_image_convert_priv; enum eof_irq_mask { EOF_IRQ_IN = BIT(0), EOF_IRQ_ROT_IN = BIT(1), EOF_IRQ_OUT = BIT(2), EOF_IRQ_ROT_OUT = BIT(3), }; #define EOF_IRQ_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT) #define EOF_IRQ_ROT_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT | \ EOF_IRQ_ROT_IN | EOF_IRQ_ROT_OUT) struct ipu_image_convert_ctx { struct ipu_image_convert_chan *chan; ipu_image_convert_cb_t complete; void *complete_context; /* Source/destination image data and rotation mode */ struct ipu_image_convert_image in; struct ipu_image_convert_image out; struct ipu_ic_csc csc; enum ipu_rotate_mode rot_mode; u32 downsize_coeff_h; u32 downsize_coeff_v; u32 image_resize_coeff_h; u32 image_resize_coeff_v; u32 resize_coeffs_h[MAX_STRIPES_W]; u32 resize_coeffs_v[MAX_STRIPES_H]; /* intermediate buffer for rotation */ struct ipu_image_convert_dma_buf rot_intermediate[2]; /* current buffer number for double buffering */ int cur_buf_num; bool aborting; struct completion aborted; /* can we use double-buffering for this conversion operation? */ bool double_buffering; /* num_rows * num_cols */ unsigned int num_tiles; /* next tile to process */ unsigned int next_tile; /* where to place converted tile in dest image */ unsigned int out_tile_map[MAX_TILES]; /* mask of completed EOF irqs at every tile conversion */ enum eof_irq_mask eof_mask; struct list_head list; }; struct ipu_image_convert_chan { struct ipu_image_convert_priv *priv; enum ipu_ic_task ic_task; const struct ipu_image_convert_dma_chan *dma_ch; struct ipu_ic *ic; struct ipuv3_channel *in_chan; struct ipuv3_channel *out_chan; struct ipuv3_channel *rotation_in_chan; struct ipuv3_channel *rotation_out_chan; /* the IPU end-of-frame irqs */ int in_eof_irq; int rot_in_eof_irq; int out_eof_irq; int rot_out_eof_irq; spinlock_t irqlock; /* list of convert contexts */ struct list_head ctx_list; /* queue of conversion runs */ struct list_head pending_q; /* queue of completed runs */ struct list_head done_q; /* the current conversion run */ struct ipu_image_convert_run *current_run; }; struct ipu_image_convert_priv { struct ipu_image_convert_chan chan[IC_NUM_TASKS]; struct ipu_soc *ipu; }; static const struct ipu_image_convert_dma_chan image_convert_dma_chan[IC_NUM_TASKS] = { [IC_TASK_VIEWFINDER] = { .in = IPUV3_CHANNEL_MEM_IC_PRP_VF, .out = IPUV3_CHANNEL_IC_PRP_VF_MEM, .rot_in = IPUV3_CHANNEL_MEM_ROT_VF, .rot_out = IPUV3_CHANNEL_ROT_VF_MEM, .vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV, .vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR, .vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT, }, [IC_TASK_POST_PROCESSOR] = { .in = IPUV3_CHANNEL_MEM_IC_PP, .out = IPUV3_CHANNEL_IC_PP_MEM, .rot_in = IPUV3_CHANNEL_MEM_ROT_PP, .rot_out = IPUV3_CHANNEL_ROT_PP_MEM, }, }; static const struct ipu_image_pixfmt image_convert_formats[] = { { .fourcc = V4L2_PIX_FMT_RGB565, .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_RGB24, .bpp = 24, }, { .fourcc = V4L2_PIX_FMT_BGR24, .bpp = 24, }, { .fourcc = V4L2_PIX_FMT_RGB32, .bpp = 32, }, { .fourcc = V4L2_PIX_FMT_BGR32, .bpp = 32, }, { .fourcc = V4L2_PIX_FMT_XRGB32, .bpp = 32, }, { .fourcc = V4L2_PIX_FMT_XBGR32, .bpp = 32, }, { .fourcc = V4L2_PIX_FMT_BGRX32, .bpp = 32, }, { .fourcc = V4L2_PIX_FMT_RGBX32, .bpp = 32, }, { .fourcc = V4L2_PIX_FMT_YUYV, .bpp = 16, .uv_width_dec = 2, .uv_height_dec = 1, }, { .fourcc = V4L2_PIX_FMT_UYVY, .bpp = 16, .uv_width_dec = 2, .uv_height_dec = 1, }, { .fourcc = V4L2_PIX_FMT_YUV420, .bpp = 12, .planar = true, .uv_width_dec = 2, .uv_height_dec = 2, }, { .fourcc = V4L2_PIX_FMT_YVU420, .bpp = 12, .planar = true, .uv_width_dec = 2, .uv_height_dec = 2, .uv_swapped = true, }, { .fourcc = V4L2_PIX_FMT_NV12, .bpp = 12, .planar = true, .uv_width_dec = 2, .uv_height_dec = 2, .uv_packed = true, }, { .fourcc = V4L2_PIX_FMT_YUV422P, .bpp = 16, .planar = true, .uv_width_dec = 2, .uv_height_dec = 1, }, { .fourcc = V4L2_PIX_FMT_NV16, .bpp = 16, .planar = true, .uv_width_dec = 2, .uv_height_dec = 1, .uv_packed = true, }, }; static const struct ipu_image_pixfmt *get_format(u32 fourcc) { const struct ipu_image_pixfmt *ret = NULL; unsigned int i; for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) { if (image_convert_formats[i].fourcc == fourcc) { ret = &image_convert_formats[i]; break; } } return ret; } static void dump_format(struct ipu_image_convert_ctx *ctx, struct ipu_image_convert_image *ic_image) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; dev_dbg(priv->ipu->dev, "task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n", chan->ic_task, ctx, ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input", ic_image->base.pix.width, ic_image->base.pix.height, ic_image->num_cols, ic_image->num_rows, ic_image->fmt->fourcc & 0xff, (ic_image->fmt->fourcc >> 8) & 0xff, (ic_image->fmt->fourcc >> 16) & 0xff, (ic_image->fmt->fourcc >> 24) & 0xff); } int ipu_image_convert_enum_format(int index, u32 *fourcc) { const struct ipu_image_pixfmt *fmt; if (index >= (int)ARRAY_SIZE(image_convert_formats)) return -EINVAL; /* Format found */ fmt = &image_convert_formats[index]; *fourcc = fmt->fourcc; return 0; } EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format); static void free_dma_buf(struct ipu_image_convert_priv *priv, struct ipu_image_convert_dma_buf *buf) { if (buf->virt) dma_free_coherent(priv->ipu->dev, buf->len, buf->virt, buf->phys); buf->virt = NULL; buf->phys = 0; } static int alloc_dma_buf(struct ipu_image_convert_priv *priv, struct ipu_image_convert_dma_buf *buf, int size) { buf->len = PAGE_ALIGN(size); buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys, GFP_DMA | GFP_KERNEL); if (!buf->virt) { dev_err(priv->ipu->dev, "failed to alloc dma buffer\n"); return -ENOMEM; } return 0; } static inline int num_stripes(int dim) { return (dim - 1) / 1024 + 1; } /* * Calculate downsizing coefficients, which are the same for all tiles, * and initial bilinear resizing coefficients, which are used to find the * best seam positions. * Also determine the number of tiles necessary to guarantee that no tile * is larger than 1024 pixels in either dimension at the output and between * IC downsizing and main processing sections. */ static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx, struct ipu_image *in, struct ipu_image *out) { u32 downsized_width = in->rect.width; u32 downsized_height = in->rect.height; u32 downsize_coeff_v = 0; u32 downsize_coeff_h = 0; u32 resized_width = out->rect.width; u32 resized_height = out->rect.height; u32 resize_coeff_h; u32 resize_coeff_v; u32 cols; u32 rows; if (ipu_rot_mode_is_irt(ctx->rot_mode)) { resized_width = out->rect.height; resized_height = out->rect.width; } /* Do not let invalid input lead to an endless loop below */ if (WARN_ON(resized_width == 0 || resized_height == 0)) return -EINVAL; while (downsized_width >= resized_width * 2) { downsized_width >>= 1; downsize_coeff_h++; } while (downsized_height >= resized_height * 2) { downsized_height >>= 1; downsize_coeff_v++; } /* * Calculate the bilinear resizing coefficients that could be used if * we were converting with a single tile. The bottom right output pixel * should sample as close as possible to the bottom right input pixel * out of the decimator, but not overshoot it: */ resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1); resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1); /* * Both the output of the IC downsizing section before being passed to * the IC main processing section and the final output of the IC main * processing section must be <= 1024 pixels in both dimensions. */ cols = num_stripes(max_t(u32, downsized_width, resized_width)); rows = num_stripes(max_t(u32, downsized_height, resized_height)); dev_dbg(ctx->chan->priv->ipu->dev, "%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n", __func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v, resize_coeff_v, cols, rows); if (downsize_coeff_h > 2 || downsize_coeff_v > 2 || resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff) return -EINVAL; ctx->downsize_coeff_h = downsize_coeff_h; ctx->downsize_coeff_v = downsize_coeff_v; ctx->image_resize_coeff_h = resize_coeff_h; ctx->image_resize_coeff_v = resize_coeff_v; ctx->in.num_cols = cols; ctx->in.num_rows = rows; return 0; } #define round_closest(x, y) round_down((x) + (y)/2, (y)) /* * Find the best aligned seam position for the given column / row index. * Rotation and image offsets are out of scope. * * @index: column / row index, used to calculate valid interval * @in_edge: input right / bottom edge * @out_edge: output right / bottom edge * @in_align: input alignment, either horizontal 8-byte line start address * alignment, or pixel alignment due to image format * @out_align: output alignment, either horizontal 8-byte line start address * alignment, or pixel alignment due to image format or rotator * block size * @in_burst: horizontal input burst size in case of horizontal flip * @out_burst: horizontal output burst size or rotator block size * @downsize_coeff: downsizing section coefficient * @resize_coeff: main processing section resizing coefficient * @_in_seam: aligned input seam position return value * @_out_seam: aligned output seam position return value */ static void find_best_seam(struct ipu_image_convert_ctx *ctx, unsigned int index, unsigned int in_edge, unsigned int out_edge, unsigned int in_align, unsigned int out_align, unsigned int in_burst, unsigned int out_burst, unsigned int downsize_coeff, unsigned int resize_coeff, u32 *_in_seam, u32 *_out_seam) { struct device *dev = ctx->chan->priv->ipu->dev; unsigned int out_pos; /* Input / output seam position candidates */ unsigned int out_seam = 0; unsigned int in_seam = 0; unsigned int min_diff = UINT_MAX; unsigned int out_start; unsigned int out_end; unsigned int in_start; unsigned int in_end; /* Start within 1024 pixels of the right / bottom edge */ out_start = max_t(int, index * out_align, out_edge - 1024); /* End before having to add more columns to the left / rows above */ out_end = min_t(unsigned int, out_edge, index * 1024 + 1); /* * Limit input seam position to make sure that the downsized input tile * to the right or bottom does not exceed 1024 pixels. */ in_start = max_t(int, index * in_align, in_edge - (1024 << downsize_coeff)); in_end = min_t(unsigned int, in_edge, index * (1024 << downsize_coeff) + 1); /* * Output tiles must start at a multiple of 8 bytes horizontally and * possibly at an even line horizontally depending on the pixel format. * Only consider output aligned positions for the seam. */ out_start = round_up(out_start, out_align); for (out_pos = out_start; out_pos < out_end; out_pos += out_align) { unsigned int in_pos; unsigned int in_pos_aligned; unsigned int in_pos_rounded; unsigned int diff; /* * Tiles in the right row / bottom column may not be allowed to * overshoot horizontally / vertically. out_burst may be the * actual DMA burst size, or the rotator block size. */ if ((out_burst > 1) && (out_edge - out_pos) % out_burst) continue; /* * Input sample position, corresponding to out_pos, 19.13 fixed * point. */ in_pos = (out_pos * resize_coeff) << downsize_coeff; /* * The closest input sample position that we could actually * start the input tile at, 19.13 fixed point. */ in_pos_aligned = round_closest(in_pos, 8192U * in_align); /* Convert 19.13 fixed point to integer */ in_pos_rounded = in_pos_aligned / 8192U; if (in_pos_rounded < in_start) continue; if (in_pos_rounded >= in_end) break; if ((in_burst > 1) && (in_edge - in_pos_rounded) % in_burst) continue; diff = abs_diff(in_pos, in_pos_aligned); if (diff < min_diff) { in_seam = in_pos_rounded; out_seam = out_pos; min_diff = diff; } } *_out_seam = out_seam; *_in_seam = in_seam; dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) in [%u, %u] diff %u.%03u\n", __func__, out_seam, out_align, out_start, out_end, in_seam, in_align, in_start, in_end, min_diff / 8192, DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192)); } /* * Tile left edges are required to be aligned to multiples of 8 bytes * by the IDMAC. */ static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt) { if (fmt->planar) return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec; else return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8; } /* * Tile top edge alignment is only limited by chroma subsampling. */ static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt) { return fmt->uv_height_dec > 1 ? 2 : 1; } static inline u32 tile_width_align(enum ipu_image_convert_type type, const struct ipu_image_pixfmt *fmt, enum ipu_rotate_mode rot_mode) { if (type == IMAGE_CONVERT_IN) { /* * The IC burst reads 8 pixels at a time. Reading beyond the * end of the line is usually acceptable. Those pixels are * ignored, unless the IC has to write the scaled line in * reverse. */ return (!ipu_rot_mode_is_irt(rot_mode) && (rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2; } /* * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled * formats to guarantee 8-byte aligned line start addresses in the * chroma planes when IRT is used. Align to 8x8 pixel IRT block size * for all other formats. */ return (ipu_rot_mode_is_irt(rot_mode) && fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8; } static inline u32 tile_height_align(enum ipu_image_convert_type type, const struct ipu_image_pixfmt *fmt, enum ipu_rotate_mode rot_mode) { if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode)) return 2; /* * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled * formats to guarantee 8-byte aligned line start addresses in the * chroma planes when IRT is used. Align to 8x8 pixel IRT block size * for all other formats. */ return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8; } /* * Fill in left position and width and for all tiles in an input column, and * for all corresponding output tiles. If the 90° rotator is used, the output * tiles are in a row, and output tile top position and height are set. */ static void fill_tile_column(struct ipu_image_convert_ctx *ctx, unsigned int col, struct ipu_image_convert_image *in, unsigned int in_left, unsigned int in_width, struct ipu_image_convert_image *out, unsigned int out_left, unsigned int out_width) { unsigned int row, tile_idx; struct ipu_image_tile *in_tile, *out_tile; for (row = 0; row < in->num_rows; row++) { tile_idx = in->num_cols * row + col; in_tile = &in->tile[tile_idx]; out_tile = &out->tile[ctx->out_tile_map[tile_idx]]; in_tile->left = in_left; in_tile->width = in_width; if (ipu_rot_mode_is_irt(ctx->rot_mode)) { out_tile->top = out_left; out_tile->height = out_width; } else { out_tile->left = out_left; out_tile->width = out_width; } } } /* * Fill in top position and height and for all tiles in an input row, and * for all corresponding output tiles. If the 90° rotator is used, the output * tiles are in a column, and output tile left position and width are set. */ static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row, struct ipu_image_convert_image *in, unsigned int in_top, unsigned int in_height, struct ipu_image_convert_image *out, unsigned int out_top, unsigned int out_height) { unsigned int col, tile_idx; struct ipu_image_tile *in_tile, *out_tile; for (col = 0; col < in->num_cols; col++) { tile_idx = in->num_cols * row + col; in_tile = &in->tile[tile_idx]; out_tile = &out->tile[ctx->out_tile_map[tile_idx]]; in_tile->top = in_top; in_tile->height = in_height; if (ipu_rot_mode_is_irt(ctx->rot_mode)) { out_tile->left = out_top; out_tile->width = out_height; } else { out_tile->top = out_top; out_tile->height = out_height; } } } /* * Find the best horizontal and vertical seam positions to split into tiles. * Minimize the fractional part of the input sampling position for the * top / left pixels of each tile. */ static void find_seams(struct ipu_image_convert_ctx *ctx, struct ipu_image_convert_image *in, struct ipu_image_convert_image *out) { struct device *dev = ctx->chan->priv->ipu->dev; unsigned int resized_width = out->base.rect.width; unsigned int resized_height = out->base.rect.height; unsigned int col; unsigned int row; unsigned int in_left_align = tile_left_align(in->fmt); unsigned int in_top_align = tile_top_align(in->fmt); unsigned int out_left_align = tile_left_align(out->fmt); unsigned int out_top_align = tile_top_align(out->fmt); unsigned int out_width_align = tile_width_align(out->type, out->fmt, ctx->rot_mode); unsigned int out_height_align = tile_height_align(out->type, out->fmt, ctx->rot_mode); unsigned int in_right = in->base.rect.width; unsigned int in_bottom = in->base.rect.height; unsigned int out_right = out->base.rect.width; unsigned int out_bottom = out->base.rect.height; unsigned int flipped_out_left; unsigned int flipped_out_top; if (ipu_rot_mode_is_irt(ctx->rot_mode)) { /* Switch width/height and align top left to IRT block size */ resized_width = out->base.rect.height; resized_height = out->base.rect.width; out_left_align = out_height_align; out_top_align = out_width_align; out_width_align = out_left_align; out_height_align = out_top_align; out_right = out->base.rect.height; out_bottom = out->base.rect.width; } for (col = in->num_cols - 1; col > 0; col--) { bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) || !(ctx->rot_mode & IPU_ROT_BIT_HFLIP); bool allow_out_overshoot = (col < in->num_cols - 1) && !(ctx->rot_mode & IPU_ROT_BIT_HFLIP); unsigned int in_left; unsigned int out_left; /* * Align input width to burst length if the scaling step flips * horizontally. */ find_best_seam(ctx, col, in_right, out_right, in_left_align, out_left_align, allow_in_overshoot ? 1 : 8 /* burst length */, allow_out_overshoot ? 1 : out_width_align, ctx->downsize_coeff_h, ctx->image_resize_coeff_h, &in_left, &out_left); if (ctx->rot_mode & IPU_ROT_BIT_HFLIP) flipped_out_left = resized_width - out_right; else flipped_out_left = out_left; fill_tile_column(ctx, col, in, in_left, in_right - in_left, out, flipped_out_left, out_right - out_left); dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col, in_left, in_right - in_left, flipped_out_left, out_right - out_left); in_right = in_left; out_right = out_left; } flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ? resized_width - out_right : 0; fill_tile_column(ctx, 0, in, 0, in_right, out, flipped_out_left, out_right); dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__, in_right, flipped_out_left, out_right); for (row = in->num_rows - 1; row > 0; row--) { bool allow_overshoot = row < in->num_rows - 1; unsigned int in_top; unsigned int out_top; find_best_seam(ctx, row, in_bottom, out_bottom, in_top_align, out_top_align, 1, allow_overshoot ? 1 : out_height_align, ctx->downsize_coeff_v, ctx->image_resize_coeff_v, &in_top, &out_top); if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^ ipu_rot_mode_is_irt(ctx->rot_mode)) flipped_out_top = resized_height - out_bottom; else flipped_out_top = out_top; fill_tile_row(ctx, row, in, in_top, in_bottom - in_top, out, flipped_out_top, out_bottom - out_top); dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row, in_top, in_bottom - in_top, flipped_out_top, out_bottom - out_top); in_bottom = in_top; out_bottom = out_top; } if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^ ipu_rot_mode_is_irt(ctx->rot_mode)) flipped_out_top = resized_height - out_bottom; else flipped_out_top = 0; fill_tile_row(ctx, 0, in, 0, in_bottom, out, flipped_out_top, out_bottom); dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__, in_bottom, flipped_out_top, out_bottom); } static int calc_tile_dimensions(struct ipu_image_convert_ctx *ctx, struct ipu_image_convert_image *image) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; unsigned int max_width = 1024; unsigned int max_height = 1024; unsigned int i; if (image->type == IMAGE_CONVERT_IN) { /* Up to 4096x4096 input tile size */ max_width <<= ctx->downsize_coeff_h; max_height <<= ctx->downsize_coeff_v; } for (i = 0; i < ctx->num_tiles; i++) { struct ipu_image_tile *tile; const unsigned int row = i / image->num_cols; const unsigned int col = i % image->num_cols; if (image->type == IMAGE_CONVERT_OUT) tile = &image->tile[ctx->out_tile_map[i]]; else tile = &image->tile[i]; tile->size = ((tile->height * image->fmt->bpp) >> 3) * tile->width; if (image->fmt->planar) { tile->stride = tile->width; tile->rot_stride = tile->height; } else { tile->stride = (image->fmt->bpp * tile->width) >> 3; tile->rot_stride = (image->fmt->bpp * tile->height) >> 3; } dev_dbg(priv->ipu->dev, "task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n", chan->ic_task, ctx, image->type == IMAGE_CONVERT_IN ? "Input" : "Output", row, col, tile->width, tile->height, tile->left, tile->top); if (!tile->width || tile->width > max_width || !tile->height || tile->height > max_height) { dev_err(priv->ipu->dev, "invalid %s tile size: %ux%u\n", image->type == IMAGE_CONVERT_IN ? "input" : "output", tile->width, tile->height); return -EINVAL; } } return 0; } /* * Use the rotation transformation to find the tile coordinates * (row, col) of a tile in the destination frame that corresponds * to the given tile coordinates of a source frame. The destination * coordinate is then converted to a tile index. */ static int transform_tile_index(struct ipu_image_convert_ctx *ctx, int src_row, int src_col) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; struct ipu_image_convert_image *s_image = &ctx->in; struct ipu_image_convert_image *d_image = &ctx->out; int dst_row, dst_col; /* with no rotation it's a 1:1 mapping */ if (ctx->rot_mode == IPU_ROTATE_NONE) return src_row * s_image->num_cols + src_col; /* * before doing the transform, first we have to translate * source row,col for an origin in the center of s_image */ src_row = src_row * 2 - (s_image->num_rows - 1); src_col = src_col * 2 - (s_image->num_cols - 1); /* do the rotation transform */ if (ctx->rot_mode & IPU_ROT_BIT_90) { dst_col = -src_row; dst_row = src_col; } else { dst_col = src_col; dst_row = src_row; } /* apply flip */ if (ctx->rot_mode & IPU_ROT_BIT_HFLIP) dst_col = -dst_col; if (ctx->rot_mode & IPU_ROT_BIT_VFLIP) dst_row = -dst_row; dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n", chan->ic_task, ctx, src_col, src_row, dst_col, dst_row); /* * finally translate dest row,col using an origin in upper * left of d_image */ dst_row += d_image->num_rows - 1; dst_col += d_image->num_cols - 1; dst_row /= 2; dst_col /= 2; return dst_row * d_image->num_cols + dst_col; } /* * Fill the out_tile_map[] with transformed destination tile indeces. */ static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx) { struct ipu_image_convert_image *s_image = &ctx->in; unsigned int row, col, tile = 0; for (row = 0; row < s_image->num_rows; row++) { for (col = 0; col < s_image->num_cols; col++) { ctx->out_tile_map[tile] = transform_tile_index(ctx, row, col); tile++; } } } static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx, struct ipu_image_convert_image *image) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; const struct ipu_image_pixfmt *fmt = image->fmt; unsigned int row, col, tile = 0; u32 H, top, y_stride, uv_stride; u32 uv_row_off, uv_col_off, uv_off, u_off, v_off; u32 y_row_off, y_col_off, y_off; u32 y_size, uv_size; /* setup some convenience vars */ H = image->base.pix.height; y_stride = image->stride; uv_stride = y_stride / fmt->uv_width_dec; if (fmt->uv_packed) uv_stride *= 2; y_size = H * y_stride; uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec); for (row = 0; row < image->num_rows; row++) { top = image->tile[tile].top; y_row_off = top * y_stride; uv_row_off = (top * uv_stride) / fmt->uv_height_dec; for (col = 0; col < image->num_cols; col++) { y_col_off = image->tile[tile].left; uv_col_off = y_col_off / fmt->uv_width_dec; if (fmt->uv_packed) uv_col_off *= 2; y_off = y_row_off + y_col_off; uv_off = uv_row_off + uv_col_off; u_off = y_size - y_off + uv_off; v_off = (fmt->uv_packed) ? 0 : u_off + uv_size; if (fmt->uv_swapped) swap(u_off, v_off); image->tile[tile].offset = y_off; image->tile[tile].u_off = u_off; image->tile[tile++].v_off = v_off; if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) { dev_err(priv->ipu->dev, "task %u: ctx %p: %s@[%d,%d]: " "y_off %08x, u_off %08x, v_off %08x\n", chan->ic_task, ctx, image->type == IMAGE_CONVERT_IN ? "Input" : "Output", row, col, y_off, u_off, v_off); return -EINVAL; } } } return 0; } static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx, struct ipu_image_convert_image *image) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; const struct ipu_image_pixfmt *fmt = image->fmt; unsigned int row, col, tile = 0; u32 bpp, stride, offset; u32 row_off, col_off; /* setup some convenience vars */ stride = image->stride; bpp = fmt->bpp; for (row = 0; row < image->num_rows; row++) { row_off = image->tile[tile].top * stride; for (col = 0; col < image->num_cols; col++) { col_off = (image->tile[tile].left * bpp) >> 3; offset = row_off + col_off; image->tile[tile].offset = offset; image->tile[tile].u_off = 0; image->tile[tile++].v_off = 0; if (offset & 0x7) { dev_err(priv->ipu->dev, "task %u: ctx %p: %s@[%d,%d]: " "phys %08x\n", chan->ic_task, ctx, image->type == IMAGE_CONVERT_IN ? "Input" : "Output", row, col, row_off + col_off); return -EINVAL; } } } return 0; } static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx, struct ipu_image_convert_image *image) { if (image->fmt->planar) return calc_tile_offsets_planar(ctx, image); return calc_tile_offsets_packed(ctx, image); } /* * Calculate the resizing ratio for the IC main processing section given input * size, fixed downsizing coefficient, and output size. * Either round to closest for the next tile's first pixel to minimize seams * and distortion (for all but right column / bottom row), or round down to * avoid sampling beyond the edges of the input image for this tile's last * pixel. * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff. */ static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff, u32 output_size, bool allow_overshoot) { u32 downsized = input_size >> downsize_coeff; if (allow_overshoot) return DIV_ROUND_CLOSEST(8192 * downsized, output_size); else return 8192 * (downsized - 1) / (output_size - 1); } /* * Slightly modify resize coefficients per tile to hide the bilinear * interpolator reset at tile borders, shifting the right / bottom edge * by up to a half input pixel. This removes noticeable seams between * tiles at higher upscaling factors. */ static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; struct ipu_image_tile *in_tile, *out_tile; unsigned int col, row, tile_idx; unsigned int last_output; for (col = 0; col < ctx->in.num_cols; col++) { bool closest = (col < ctx->in.num_cols - 1) && !(ctx->rot_mode & IPU_ROT_BIT_HFLIP); u32 resized_width; u32 resize_coeff_h; u32 in_width; tile_idx = col; in_tile = &ctx->in.tile[tile_idx]; out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]]; if (ipu_rot_mode_is_irt(ctx->rot_mode)) resized_width = out_tile->height; else resized_width = out_tile->width; resize_coeff_h = calc_resize_coeff(in_tile->width, ctx->downsize_coeff_h, resized_width, closest); dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n", __func__, col, resize_coeff_h); /* * With the horizontal scaling factor known, round up resized * width (output width or height) to burst size. */ resized_width = round_up(resized_width, 8); /* * Calculate input width from the last accessed input pixel * given resized width and scaling coefficients. Round up to * burst size. */ last_output = resized_width - 1; if (closest && ((last_output * resize_coeff_h) % 8192)) last_output++; in_width = round_up( (DIV_ROUND_UP(last_output * resize_coeff_h, 8192) + 1) << ctx->downsize_coeff_h, 8); for (row = 0; row < ctx->in.num_rows; row++) { tile_idx = row * ctx->in.num_cols + col; in_tile = &ctx->in.tile[tile_idx]; out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]]; if (ipu_rot_mode_is_irt(ctx->rot_mode)) out_tile->height = resized_width; else out_tile->width = resized_width; in_tile->width = in_width; } ctx->resize_coeffs_h[col] = resize_coeff_h; } for (row = 0; row < ctx->in.num_rows; row++) { bool closest = (row < ctx->in.num_rows - 1) && !(ctx->rot_mode & IPU_ROT_BIT_VFLIP); u32 resized_height; u32 resize_coeff_v; u32 in_height; tile_idx = row * ctx->in.num_cols; in_tile = &ctx->in.tile[tile_idx]; out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]]; if (ipu_rot_mode_is_irt(ctx->rot_mode)) resized_height = out_tile->width; else resized_height = out_tile->height; resize_coeff_v = calc_resize_coeff(in_tile->height, ctx->downsize_coeff_v, resized_height, closest); dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n", __func__, row, resize_coeff_v); /* * With the vertical scaling factor known, round up resized * height (output width or height) to IDMAC limitations. */ resized_height = round_up(resized_height, 2); /* * Calculate input width from the last accessed input pixel * given resized height and scaling coefficients. Align to * IDMAC restrictions. */ last_output = resized_height - 1; if (closest && ((last_output * resize_coeff_v) % 8192)) last_output++; in_height = round_up( (DIV_ROUND_UP(last_output * resize_coeff_v, 8192) + 1) << ctx->downsize_coeff_v, 2); for (col = 0; col < ctx->in.num_cols; col++) { tile_idx = row * ctx->in.num_cols + col; in_tile = &ctx->in.tile[tile_idx]; out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]]; if (ipu_rot_mode_is_irt(ctx->rot_mode)) out_tile->width = resized_height; else out_tile->height = resized_height; in_tile->height = in_height; } ctx->resize_coeffs_v[row] = resize_coeff_v; } } /* * return the number of runs in given queue (pending_q or done_q) * for this context. hold irqlock when calling. */ static int get_run_count(struct ipu_image_convert_ctx *ctx, struct list_head *q) { struct ipu_image_convert_run *run; int count = 0; lockdep_assert_held(&ctx->chan->irqlock); list_for_each_entry(run, q, list) { if (run->ctx == ctx) count++; } return count; } static void convert_stop(struct ipu_image_convert_run *run) { struct ipu_image_convert_ctx *ctx = run->ctx; struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n", __func__, chan->ic_task, ctx, run); /* disable IC tasks and the channels */ ipu_ic_task_disable(chan->ic); ipu_idmac_disable_channel(chan->in_chan); ipu_idmac_disable_channel(chan->out_chan); if (ipu_rot_mode_is_irt(ctx->rot_mode)) { ipu_idmac_disable_channel(chan->rotation_in_chan); ipu_idmac_disable_channel(chan->rotation_out_chan); ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan); } ipu_ic_disable(chan->ic); } static void init_idmac_channel(struct ipu_image_convert_ctx *ctx, struct ipuv3_channel *channel, struct ipu_image_convert_image *image, enum ipu_rotate_mode rot_mode, bool rot_swap_width_height, unsigned int tile) { struct ipu_image_convert_chan *chan = ctx->chan; unsigned int burst_size; u32 width, height, stride; dma_addr_t addr0, addr1 = 0; struct ipu_image tile_image; unsigned int tile_idx[2]; if (image->type == IMAGE_CONVERT_OUT) { tile_idx[0] = ctx->out_tile_map[tile]; tile_idx[1] = ctx->out_tile_map[1]; } else { tile_idx[0] = tile; tile_idx[1] = 1; } if (rot_swap_width_height) { width = image->tile[tile_idx[0]].height; height = image->tile[tile_idx[0]].width; stride = image->tile[tile_idx[0]].rot_stride; addr0 = ctx->rot_intermediate[0].phys; if (ctx->double_buffering) addr1 = ctx->rot_intermediate[1].phys; } else { width = image->tile[tile_idx[0]].width; height = image->tile[tile_idx[0]].height; stride = image->stride; addr0 = image->base.phys0 + image->tile[tile_idx[0]].offset; if (ctx->double_buffering) addr1 = image->base.phys0 + image->tile[tile_idx[1]].offset; } ipu_cpmem_zero(channel); memset(&tile_image, 0, sizeof(tile_image)); tile_image.pix.width = tile_image.rect.width = width; tile_image.pix.height = tile_image.rect.height = height; tile_image.pix.bytesperline = stride; tile_image.pix.pixelformat = image->fmt->fourcc; tile_image.phys0 = addr0; tile_image.phys1 = addr1; if (image->fmt->planar && !rot_swap_width_height) { tile_image.u_offset = image->tile[tile_idx[0]].u_off; tile_image.v_offset = image->tile[tile_idx[0]].v_off; } ipu_cpmem_set_image(channel, &tile_image); if (rot_mode) ipu_cpmem_set_rotation(channel, rot_mode); /* * Skip writing U and V components to odd rows in the output * channels for planar 4:2:0. */ if ((channel == chan->out_chan || channel == chan->rotation_out_chan) && image->fmt->planar && image->fmt->uv_height_dec == 2) ipu_cpmem_skip_odd_chroma_rows(channel); if (channel == chan->rotation_in_chan || channel == chan->rotation_out_chan) { burst_size = 8; ipu_cpmem_set_block_mode(channel); } else burst_size = (width % 16) ? 8 : 16; ipu_cpmem_set_burstsize(channel, burst_size); ipu_ic_task_idma_init(chan->ic, channel, width, height, burst_size, rot_mode); /* * Setting a non-zero AXI ID collides with the PRG AXI snooping, so * only do this when there is no PRG present. */ if (!channel->ipu->prg_priv) ipu_cpmem_set_axi_id(channel, 1); ipu_idmac_set_double_buffer(channel, ctx->double_buffering); } static int convert_start(struct ipu_image_convert_run *run, unsigned int tile) { struct ipu_image_convert_ctx *ctx = run->ctx; struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; struct ipu_image_convert_image *s_image = &ctx->in; struct ipu_image_convert_image *d_image = &ctx->out; unsigned int dst_tile = ctx->out_tile_map[tile]; unsigned int dest_width, dest_height; unsigned int col, row; u32 rsc; int ret; dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n", __func__, chan->ic_task, ctx, run, tile, dst_tile); /* clear EOF irq mask */ ctx->eof_mask = 0; if (ipu_rot_mode_is_irt(ctx->rot_mode)) { /* swap width/height for resizer */ dest_width = d_image->tile[dst_tile].height; dest_height = d_image->tile[dst_tile].width; } else { dest_width = d_image->tile[dst_tile].width; dest_height = d_image->tile[dst_tile].height; } row = tile / s_image->num_cols; col = tile % s_image->num_cols; rsc = (ctx->downsize_coeff_v << 30) | (ctx->resize_coeffs_v[row] << 16) | (ctx->downsize_coeff_h << 14) | (ctx->resize_coeffs_h[col]); dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n", __func__, s_image->tile[tile].width, s_image->tile[tile].height, dest_width, dest_height, rsc); /* setup the IC resizer and CSC */ ret = ipu_ic_task_init_rsc(chan->ic, &ctx->csc, s_image->tile[tile].width, s_image->tile[tile].height, dest_width, dest_height, rsc); if (ret) { dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret); return ret; } /* init the source MEM-->IC PP IDMAC channel */ init_idmac_channel(ctx, chan->in_chan, s_image, IPU_ROTATE_NONE, false, tile); if (ipu_rot_mode_is_irt(ctx->rot_mode)) { /* init the IC PP-->MEM IDMAC channel */ init_idmac_channel(ctx, chan->out_chan, d_image, IPU_ROTATE_NONE, true, tile); /* init the MEM-->IC PP ROT IDMAC channel */ init_idmac_channel(ctx, chan->rotation_in_chan, d_image, ctx->rot_mode, true, tile); /* init the destination IC PP ROT-->MEM IDMAC channel */ init_idmac_channel(ctx, chan->rotation_out_chan, d_image, IPU_ROTATE_NONE, false, tile); /* now link IC PP-->MEM to MEM-->IC PP ROT */ ipu_idmac_link(chan->out_chan, chan->rotation_in_chan); } else { /* init the destination IC PP-->MEM IDMAC channel */ init_idmac_channel(ctx, chan->out_chan, d_image, ctx->rot_mode, false, tile); } /* enable the IC */ ipu_ic_enable(chan->ic); /* set buffers ready */ ipu_idmac_select_buffer(chan->in_chan, 0); ipu_idmac_select_buffer(chan->out_chan, 0); if (ipu_rot_mode_is_irt(ctx->rot_mode)) ipu_idmac_select_buffer(chan->rotation_out_chan, 0); if (ctx->double_buffering) { ipu_idmac_select_buffer(chan->in_chan, 1); ipu_idmac_select_buffer(chan->out_chan, 1); if (ipu_rot_mode_is_irt(ctx->rot_mode)) ipu_idmac_select_buffer(chan->rotation_out_chan, 1); } /* enable the channels! */ ipu_idmac_enable_channel(chan->in_chan); ipu_idmac_enable_channel(chan->out_chan); if (ipu_rot_mode_is_irt(ctx->rot_mode)) { ipu_idmac_enable_channel(chan->rotation_in_chan); ipu_idmac_enable_channel(chan->rotation_out_chan); } ipu_ic_task_enable(chan->ic); ipu_cpmem_dump(chan->in_chan); ipu_cpmem_dump(chan->out_chan); if (ipu_rot_mode_is_irt(ctx->rot_mode)) { ipu_cpmem_dump(chan->rotation_in_chan); ipu_cpmem_dump(chan->rotation_out_chan); } ipu_dump(priv->ipu); return 0; } /* hold irqlock when calling */ static int do_run(struct ipu_image_convert_run *run) { struct ipu_image_convert_ctx *ctx = run->ctx; struct ipu_image_convert_chan *chan = ctx->chan; lockdep_assert_held(&chan->irqlock); ctx->in.base.phys0 = run->in_phys; ctx->out.base.phys0 = run->out_phys; ctx->cur_buf_num = 0; ctx->next_tile = 1; /* remove run from pending_q and set as current */ list_del(&run->list); chan->current_run = run; return convert_start(run, 0); } /* hold irqlock when calling */ static void run_next(struct ipu_image_convert_chan *chan) { struct ipu_image_convert_priv *priv = chan->priv; struct ipu_image_convert_run *run, *tmp; int ret; lockdep_assert_held(&chan->irqlock); list_for_each_entry_safe(run, tmp, &chan->pending_q, list) { /* skip contexts that are aborting */ if (run->ctx->aborting) { dev_dbg(priv->ipu->dev, "%s: task %u: skipping aborting ctx %p run %p\n", __func__, chan->ic_task, run->ctx, run); continue; } ret = do_run(run); if (!ret) break; /* * something went wrong with start, add the run * to done q and continue to the next run in the * pending q. */ run->status = ret; list_add_tail(&run->list, &chan->done_q); chan->current_run = NULL; } } static void empty_done_q(struct ipu_image_convert_chan *chan) { struct ipu_image_convert_priv *priv = chan->priv; struct ipu_image_convert_run *run; unsigned long flags; spin_lock_irqsave(&chan->irqlock, flags); while (!list_empty(&chan->done_q)) { run = list_entry(chan->done_q.next, struct ipu_image_convert_run, list); list_del(&run->list); dev_dbg(priv->ipu->dev, "%s: task %u: completing ctx %p run %p with %d\n", __func__, chan->ic_task, run->ctx, run, run->status); /* call the completion callback and free the run */ spin_unlock_irqrestore(&chan->irqlock, flags); run->ctx->complete(run, run->ctx->complete_context); spin_lock_irqsave(&chan->irqlock, flags); } spin_unlock_irqrestore(&chan->irqlock, flags); } /* * the bottom half thread clears out the done_q, calling the * completion handler for each. */ static irqreturn_t do_bh(int irq, void *dev_id) { struct ipu_image_convert_chan *chan = dev_id; struct ipu_image_convert_priv *priv = chan->priv; struct ipu_image_convert_ctx *ctx; unsigned long flags; dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__, chan->ic_task); empty_done_q(chan); spin_lock_irqsave(&chan->irqlock, flags); /* * the done_q is cleared out, signal any contexts * that are aborting that abort can complete. */ list_for_each_entry(ctx, &chan->ctx_list, list) { if (ctx->aborting) { dev_dbg(priv->ipu->dev, "%s: task %u: signaling abort for ctx %p\n", __func__, chan->ic_task, ctx); complete_all(&ctx->aborted); } } spin_unlock_irqrestore(&chan->irqlock, flags); dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__, chan->ic_task); return IRQ_HANDLED; } static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx) { unsigned int cur_tile = ctx->next_tile - 1; unsigned int next_tile = ctx->next_tile; if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] != ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] || ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] != ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] || ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width || ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height || ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width || ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height) return true; return false; } /* hold irqlock when calling */ static irqreturn_t do_tile_complete(struct ipu_image_convert_run *run) { struct ipu_image_convert_ctx *ctx = run->ctx; struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_tile *src_tile, *dst_tile; struct ipu_image_convert_image *s_image = &ctx->in; struct ipu_image_convert_image *d_image = &ctx->out; struct ipuv3_channel *outch; unsigned int dst_idx; lockdep_assert_held(&chan->irqlock); outch = ipu_rot_mode_is_irt(ctx->rot_mode) ? chan->rotation_out_chan : chan->out_chan; /* * It is difficult to stop the channel DMA before the channels * enter the paused state. Without double-buffering the channels * are always in a paused state when the EOF irq occurs, so it * is safe to stop the channels now. For double-buffering we * just ignore the abort until the operation completes, when it * is safe to shut down. */ if (ctx->aborting && !ctx->double_buffering) { convert_stop(run); run->status = -EIO; goto done; } if (ctx->next_tile == ctx->num_tiles) { /* * the conversion is complete */ convert_stop(run); run->status = 0; goto done; } /* * not done, place the next tile buffers. */ if (!ctx->double_buffering) { if (ic_settings_changed(ctx)) { convert_stop(run); convert_start(run, ctx->next_tile); } else { src_tile = &s_image->tile[ctx->next_tile]; dst_idx = ctx->out_tile_map[ctx->next_tile]; dst_tile = &d_image->tile[dst_idx]; ipu_cpmem_set_buffer(chan->in_chan, 0, s_image->base.phys0 + src_tile->offset); ipu_cpmem_set_buffer(outch, 0, d_image->base.phys0 + dst_tile->offset); if (s_image->fmt->planar) ipu_cpmem_set_uv_offset(chan->in_chan, src_tile->u_off, src_tile->v_off); if (d_image->fmt->planar) ipu_cpmem_set_uv_offset(outch, dst_tile->u_off, dst_tile->v_off); ipu_idmac_select_buffer(chan->in_chan, 0); ipu_idmac_select_buffer(outch, 0); } } else if (ctx->next_tile < ctx->num_tiles - 1) { src_tile = &s_image->tile[ctx->next_tile + 1]; dst_idx = ctx->out_tile_map[ctx->next_tile + 1]; dst_tile = &d_image->tile[dst_idx]; ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num, s_image->base.phys0 + src_tile->offset); ipu_cpmem_set_buffer(outch, ctx->cur_buf_num, d_image->base.phys0 + dst_tile->offset); ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num); ipu_idmac_select_buffer(outch, ctx->cur_buf_num); ctx->cur_buf_num ^= 1; } ctx->eof_mask = 0; /* clear EOF irq mask for next tile */ ctx->next_tile++; return IRQ_HANDLED; done: list_add_tail(&run->list, &chan->done_q); chan->current_run = NULL; run_next(chan); return IRQ_WAKE_THREAD; } static irqreturn_t eof_irq(int irq, void *data) { struct ipu_image_convert_chan *chan = data; struct ipu_image_convert_priv *priv = chan->priv; struct ipu_image_convert_ctx *ctx; struct ipu_image_convert_run *run; irqreturn_t ret = IRQ_HANDLED; bool tile_complete = false; unsigned long flags; spin_lock_irqsave(&chan->irqlock, flags); /* get current run and its context */ run = chan->current_run; if (!run) { ret = IRQ_NONE; goto out; } ctx = run->ctx; if (irq == chan->in_eof_irq) { ctx->eof_mask |= EOF_IRQ_IN; } else if (irq == chan->out_eof_irq) { ctx->eof_mask |= EOF_IRQ_OUT; } else if (irq == chan->rot_in_eof_irq || irq == chan->rot_out_eof_irq) { if (!ipu_rot_mode_is_irt(ctx->rot_mode)) { /* this was NOT a rotation op, shouldn't happen */ dev_err(priv->ipu->dev, "Unexpected rotation interrupt\n"); goto out; } ctx->eof_mask |= (irq == chan->rot_in_eof_irq) ? EOF_IRQ_ROT_IN : EOF_IRQ_ROT_OUT; } else { dev_err(priv->ipu->dev, "Received unknown irq %d\n", irq); ret = IRQ_NONE; goto out; } if (ipu_rot_mode_is_irt(ctx->rot_mode)) tile_complete = (ctx->eof_mask == EOF_IRQ_ROT_COMPLETE); else tile_complete = (ctx->eof_mask == EOF_IRQ_COMPLETE); if (tile_complete) ret = do_tile_complete(run); out: spin_unlock_irqrestore(&chan->irqlock, flags); return ret; } /* * try to force the completion of runs for this ctx. Called when * abort wait times out in ipu_image_convert_abort(). */ static void force_abort(struct ipu_image_convert_ctx *ctx) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_run *run; unsigned long flags; spin_lock_irqsave(&chan->irqlock, flags); run = chan->current_run; if (run && run->ctx == ctx) { convert_stop(run); run->status = -EIO; list_add_tail(&run->list, &chan->done_q); chan->current_run = NULL; run_next(chan); } spin_unlock_irqrestore(&chan->irqlock, flags); empty_done_q(chan); } static void release_ipu_resources(struct ipu_image_convert_chan *chan) { if (chan->in_eof_irq >= 0) free_irq(chan->in_eof_irq, chan); if (chan->rot_in_eof_irq >= 0) free_irq(chan->rot_in_eof_irq, chan); if (chan->out_eof_irq >= 0) free_irq(chan->out_eof_irq, chan); if (chan->rot_out_eof_irq >= 0) free_irq(chan->rot_out_eof_irq, chan); if (!IS_ERR_OR_NULL(chan->in_chan)) ipu_idmac_put(chan->in_chan); if (!IS_ERR_OR_NULL(chan->out_chan)) ipu_idmac_put(chan->out_chan); if (!IS_ERR_OR_NULL(chan->rotation_in_chan)) ipu_idmac_put(chan->rotation_in_chan); if (!IS_ERR_OR_NULL(chan->rotation_out_chan)) ipu_idmac_put(chan->rotation_out_chan); if (!IS_ERR_OR_NULL(chan->ic)) ipu_ic_put(chan->ic); chan->in_chan = chan->out_chan = chan->rotation_in_chan = chan->rotation_out_chan = NULL; chan->in_eof_irq = -1; chan->rot_in_eof_irq = -1; chan->out_eof_irq = -1; chan->rot_out_eof_irq = -1; } static int get_eof_irq(struct ipu_image_convert_chan *chan, struct ipuv3_channel *channel) { struct ipu_image_convert_priv *priv = chan->priv; int ret, irq; irq = ipu_idmac_channel_irq(priv->ipu, channel, IPU_IRQ_EOF); ret = request_threaded_irq(irq, eof_irq, do_bh, 0, "ipu-ic", chan); if (ret < 0) { dev_err(priv->ipu->dev, "could not acquire irq %d\n", irq); return ret; } return irq; } static int get_ipu_resources(struct ipu_image_convert_chan *chan) { const struct ipu_image_convert_dma_chan *dma = chan->dma_ch; struct ipu_image_convert_priv *priv = chan->priv; int ret; /* get IC */ chan->ic = ipu_ic_get(priv->ipu, chan->ic_task); if (IS_ERR(chan->ic)) { dev_err(priv->ipu->dev, "could not acquire IC\n"); ret = PTR_ERR(chan->ic); goto err; } /* get IDMAC channels */ chan->in_chan = ipu_idmac_get(priv->ipu, dma->in); chan->out_chan = ipu_idmac_get(priv->ipu, dma->out); if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) { dev_err(priv->ipu->dev, "could not acquire idmac channels\n"); ret = -EBUSY; goto err; } chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in); chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out); if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) { dev_err(priv->ipu->dev, "could not acquire idmac rotation channels\n"); ret = -EBUSY; goto err; } /* acquire the EOF interrupts */ ret = get_eof_irq(chan, chan->in_chan); if (ret < 0) { chan->in_eof_irq = -1; goto err; } chan->in_eof_irq = ret; ret = get_eof_irq(chan, chan->rotation_in_chan); if (ret < 0) { chan->rot_in_eof_irq = -1; goto err; } chan->rot_in_eof_irq = ret; ret = get_eof_irq(chan, chan->out_chan); if (ret < 0) { chan->out_eof_irq = -1; goto err; } chan->out_eof_irq = ret; ret = get_eof_irq(chan, chan->rotation_out_chan); if (ret < 0) { chan->rot_out_eof_irq = -1; goto err; } chan->rot_out_eof_irq = ret; return 0; err: release_ipu_resources(chan); return ret; } static int fill_image(struct ipu_image_convert_ctx *ctx, struct ipu_image_convert_image *ic_image, struct ipu_image *image, enum ipu_image_convert_type type) { struct ipu_image_convert_priv *priv = ctx->chan->priv; ic_image->base = *image; ic_image->type = type; ic_image->fmt = get_format(image->pix.pixelformat); if (!ic_image->fmt) { dev_err(priv->ipu->dev, "pixelformat not supported for %s\n", type == IMAGE_CONVERT_OUT ? "Output" : "Input"); return -EINVAL; } if (ic_image->fmt->planar) ic_image->stride = ic_image->base.pix.width; else ic_image->stride = ic_image->base.pix.bytesperline; return 0; } /* borrowed from drivers/media/v4l2-core/v4l2-common.c */ static unsigned int clamp_align(unsigned int x, unsigned int min, unsigned int max, unsigned int align) { /* Bits that must be zero to be aligned */ unsigned int mask = ~((1 << align) - 1); /* Clamp to aligned min and max */ x = clamp(x, (min + ~mask) & mask, max & mask); /* Round to nearest aligned value */ if (align) x = (x + (1 << (align - 1))) & mask; return x; } /* Adjusts input/output images to IPU restrictions */ void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out, enum ipu_rotate_mode rot_mode) { const struct ipu_image_pixfmt *infmt, *outfmt; u32 w_align_out, h_align_out; u32 w_align_in, h_align_in; infmt = get_format(in->pix.pixelformat); outfmt = get_format(out->pix.pixelformat); /* set some default pixel formats if needed */ if (!infmt) { in->pix.pixelformat = V4L2_PIX_FMT_RGB24; infmt = get_format(V4L2_PIX_FMT_RGB24); } if (!outfmt) { out->pix.pixelformat = V4L2_PIX_FMT_RGB24; outfmt = get_format(V4L2_PIX_FMT_RGB24); } /* image converter does not handle fields */ in->pix.field = out->pix.field = V4L2_FIELD_NONE; /* resizer cannot downsize more than 4:1 */ if (ipu_rot_mode_is_irt(rot_mode)) { out->pix.height = max_t(__u32, out->pix.height, in->pix.width / 4); out->pix.width = max_t(__u32, out->pix.width, in->pix.height / 4); } else { out->pix.width = max_t(__u32, out->pix.width, in->pix.width / 4); out->pix.height = max_t(__u32, out->pix.height, in->pix.height / 4); } /* align input width/height */ w_align_in = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt, rot_mode)); h_align_in = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt, rot_mode)); in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W, w_align_in); in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H, h_align_in); /* align output width/height */ w_align_out = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt, rot_mode)); h_align_out = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt, rot_mode)); out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W, w_align_out); out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H, h_align_out); /* set input/output strides and image sizes */ in->pix.bytesperline = infmt->planar ? clamp_align(in->pix.width, 2 << w_align_in, MAX_W, w_align_in) : clamp_align((in->pix.width * infmt->bpp) >> 3, ((2 << w_align_in) * infmt->bpp) >> 3, (MAX_W * infmt->bpp) >> 3, w_align_in); in->pix.sizeimage = infmt->planar ? (in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 : in->pix.height * in->pix.bytesperline; out->pix.bytesperline = outfmt->planar ? out->pix.width : (out->pix.width * outfmt->bpp) >> 3; out->pix.sizeimage = outfmt->planar ? (out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 : out->pix.height * out->pix.bytesperline; } EXPORT_SYMBOL_GPL(ipu_image_convert_adjust); /* * this is used by ipu_image_convert_prepare() to verify set input and * output images are valid before starting the conversion. Clients can * also call it before calling ipu_image_convert_prepare(). */ int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out, enum ipu_rotate_mode rot_mode) { struct ipu_image testin, testout; testin = *in; testout = *out; ipu_image_convert_adjust(&testin, &testout, rot_mode); if (testin.pix.width != in->pix.width || testin.pix.height != in->pix.height || testout.pix.width != out->pix.width || testout.pix.height != out->pix.height) return -EINVAL; return 0; } EXPORT_SYMBOL_GPL(ipu_image_convert_verify); /* * Call ipu_image_convert_prepare() to prepare for the conversion of * given images and rotation mode. Returns a new conversion context. */ struct ipu_image_convert_ctx * ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task, struct ipu_image *in, struct ipu_image *out, enum ipu_rotate_mode rot_mode, ipu_image_convert_cb_t complete, void *complete_context) { struct ipu_image_convert_priv *priv = ipu->image_convert_priv; struct ipu_image_convert_image *s_image, *d_image; struct ipu_image_convert_chan *chan; struct ipu_image_convert_ctx *ctx; unsigned long flags; unsigned int i; bool get_res; int ret; if (!in || !out || !complete || (ic_task != IC_TASK_VIEWFINDER && ic_task != IC_TASK_POST_PROCESSOR)) return ERR_PTR(-EINVAL); /* verify the in/out images before continuing */ ret = ipu_image_convert_verify(in, out, rot_mode); if (ret) { dev_err(priv->ipu->dev, "%s: in/out formats invalid\n", __func__); return ERR_PTR(ret); } chan = &priv->chan[ic_task]; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return ERR_PTR(-ENOMEM); dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__, chan->ic_task, ctx); ctx->chan = chan; init_completion(&ctx->aborted); ctx->rot_mode = rot_mode; /* Sets ctx->in.num_rows/cols as well */ ret = calc_image_resize_coefficients(ctx, in, out); if (ret) goto out_free; s_image = &ctx->in; d_image = &ctx->out; /* set tiling and rotation */ if (ipu_rot_mode_is_irt(rot_mode)) { d_image->num_rows = s_image->num_cols; d_image->num_cols = s_image->num_rows; } else { d_image->num_rows = s_image->num_rows; d_image->num_cols = s_image->num_cols; } ctx->num_tiles = d_image->num_cols * d_image->num_rows; ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN); if (ret) goto out_free; ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT); if (ret) goto out_free; calc_out_tile_map(ctx); find_seams(ctx, s_image, d_image); ret = calc_tile_dimensions(ctx, s_image); if (ret) goto out_free; ret = calc_tile_offsets(ctx, s_image); if (ret) goto out_free; calc_tile_dimensions(ctx, d_image); ret = calc_tile_offsets(ctx, d_image); if (ret) goto out_free; calc_tile_resize_coefficients(ctx); ret = ipu_ic_calc_csc(&ctx->csc, s_image->base.pix.ycbcr_enc, s_image->base.pix.quantization, ipu_pixelformat_to_colorspace(s_image->fmt->fourcc), d_image->base.pix.ycbcr_enc, d_image->base.pix.quantization, ipu_pixelformat_to_colorspace(d_image->fmt->fourcc)); if (ret) goto out_free; dump_format(ctx, s_image); dump_format(ctx, d_image); ctx->complete = complete; ctx->complete_context = complete_context; /* * Can we use double-buffering for this operation? If there is * only one tile (the whole image can be converted in a single * operation) there's no point in using double-buffering. Also, * the IPU's IDMAC channels allow only a single U and V plane * offset shared between both buffers, but these offsets change * for every tile, and therefore would have to be updated for * each buffer which is not possible. So double-buffering is * impossible when either the source or destination images are * a planar format (YUV420, YUV422P, etc.). Further, differently * sized tiles or different resizing coefficients per tile * prevent double-buffering as well. */ ctx->double_buffering = (ctx->num_tiles > 1 && !s_image->fmt->planar && !d_image->fmt->planar); for (i = 1; i < ctx->num_tiles; i++) { if (ctx->in.tile[i].width != ctx->in.tile[0].width || ctx->in.tile[i].height != ctx->in.tile[0].height || ctx->out.tile[i].width != ctx->out.tile[0].width || ctx->out.tile[i].height != ctx->out.tile[0].height) { ctx->double_buffering = false; break; } } for (i = 1; i < ctx->in.num_cols; i++) { if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) { ctx->double_buffering = false; break; } } for (i = 1; i < ctx->in.num_rows; i++) { if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) { ctx->double_buffering = false; break; } } if (ipu_rot_mode_is_irt(ctx->rot_mode)) { unsigned long intermediate_size = d_image->tile[0].size; for (i = 1; i < ctx->num_tiles; i++) { if (d_image->tile[i].size > intermediate_size) intermediate_size = d_image->tile[i].size; } ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0], intermediate_size); if (ret) goto out_free; if (ctx->double_buffering) { ret = alloc_dma_buf(priv, &ctx->rot_intermediate[1], intermediate_size); if (ret) goto out_free_dmabuf0; } } spin_lock_irqsave(&chan->irqlock, flags); get_res = list_empty(&chan->ctx_list); list_add_tail(&ctx->list, &chan->ctx_list); spin_unlock_irqrestore(&chan->irqlock, flags); if (get_res) { ret = get_ipu_resources(chan); if (ret) goto out_free_dmabuf1; } return ctx; out_free_dmabuf1: free_dma_buf(priv, &ctx->rot_intermediate[1]); spin_lock_irqsave(&chan->irqlock, flags); list_del(&ctx->list); spin_unlock_irqrestore(&chan->irqlock, flags); out_free_dmabuf0: free_dma_buf(priv, &ctx->rot_intermediate[0]); out_free: kfree(ctx); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(ipu_image_convert_prepare); /* * Carry out a single image conversion run. Only the physaddr's of the input * and output image buffers are needed. The conversion context must have * been created previously with ipu_image_convert_prepare(). */ int ipu_image_convert_queue(struct ipu_image_convert_run *run) { struct ipu_image_convert_chan *chan; struct ipu_image_convert_priv *priv; struct ipu_image_convert_ctx *ctx; unsigned long flags; int ret = 0; if (!run || !run->ctx || !run->in_phys || !run->out_phys) return -EINVAL; ctx = run->ctx; chan = ctx->chan; priv = chan->priv; dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__, chan->ic_task, ctx, run); INIT_LIST_HEAD(&run->list); spin_lock_irqsave(&chan->irqlock, flags); if (ctx->aborting) { ret = -EIO; goto unlock; } list_add_tail(&run->list, &chan->pending_q); if (!chan->current_run) { ret = do_run(run); if (ret) chan->current_run = NULL; } unlock: spin_unlock_irqrestore(&chan->irqlock, flags); return ret; } EXPORT_SYMBOL_GPL(ipu_image_convert_queue); /* Abort any active or pending conversions for this context */ static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; struct ipu_image_convert_run *run, *active_run, *tmp; unsigned long flags; int run_count, ret; spin_lock_irqsave(&chan->irqlock, flags); /* move all remaining pending runs in this context to done_q */ list_for_each_entry_safe(run, tmp, &chan->pending_q, list) { if (run->ctx != ctx) continue; run->status = -EIO; list_move_tail(&run->list, &chan->done_q); } run_count = get_run_count(ctx, &chan->done_q); active_run = (chan->current_run && chan->current_run->ctx == ctx) ? chan->current_run : NULL; if (active_run) reinit_completion(&ctx->aborted); ctx->aborting = true; spin_unlock_irqrestore(&chan->irqlock, flags); if (!run_count && !active_run) { dev_dbg(priv->ipu->dev, "%s: task %u: no abort needed for ctx %p\n", __func__, chan->ic_task, ctx); return; } if (!active_run) { empty_done_q(chan); return; } dev_dbg(priv->ipu->dev, "%s: task %u: wait for completion: %d runs\n", __func__, chan->ic_task, run_count); ret = wait_for_completion_timeout(&ctx->aborted, msecs_to_jiffies(10000)); if (ret == 0) { dev_warn(priv->ipu->dev, "%s: timeout\n", __func__); force_abort(ctx); } } void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx) { __ipu_image_convert_abort(ctx); ctx->aborting = false; } EXPORT_SYMBOL_GPL(ipu_image_convert_abort); /* Unprepare image conversion context */ void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; unsigned long flags; bool put_res; /* make sure no runs are hanging around */ __ipu_image_convert_abort(ctx); dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__, chan->ic_task, ctx); spin_lock_irqsave(&chan->irqlock, flags); list_del(&ctx->list); put_res = list_empty(&chan->ctx_list); spin_unlock_irqrestore(&chan->irqlock, flags); if (put_res) release_ipu_resources(chan); free_dma_buf(priv, &ctx->rot_intermediate[1]); free_dma_buf(priv, &ctx->rot_intermediate[0]); kfree(ctx); } EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare); /* * "Canned" asynchronous single image conversion. Allocates and returns * a new conversion run. On successful return the caller must free the * run and call ipu_image_convert_unprepare() after conversion completes. */ struct ipu_image_convert_run * ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task, struct ipu_image *in, struct ipu_image *out, enum ipu_rotate_mode rot_mode, ipu_image_convert_cb_t complete, void *complete_context) { struct ipu_image_convert_ctx *ctx; struct ipu_image_convert_run *run; int ret; ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode, complete, complete_context); if (IS_ERR(ctx)) return ERR_CAST(ctx); run = kzalloc(sizeof(*run), GFP_KERNEL); if (!run) { ipu_image_convert_unprepare(ctx); return ERR_PTR(-ENOMEM); } run->ctx = ctx; run->in_phys = in->phys0; run->out_phys = out->phys0; ret = ipu_image_convert_queue(run); if (ret) { ipu_image_convert_unprepare(ctx); kfree(run); return ERR_PTR(ret); } return run; } EXPORT_SYMBOL_GPL(ipu_image_convert); /* "Canned" synchronous single image conversion */ static void image_convert_sync_complete(struct ipu_image_convert_run *run, void *data) { struct completion *comp = data; complete(comp); } int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task, struct ipu_image *in, struct ipu_image *out, enum ipu_rotate_mode rot_mode) { struct ipu_image_convert_run *run; struct completion comp; int ret; init_completion(&comp); run = ipu_image_convert(ipu, ic_task, in, out, rot_mode, image_convert_sync_complete, &comp); if (IS_ERR(run)) return PTR_ERR(run); ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000)); ret = (ret == 0) ? -ETIMEDOUT : 0; ipu_image_convert_unprepare(run->ctx); kfree(run); return ret; } EXPORT_SYMBOL_GPL(ipu_image_convert_sync); int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev) { struct ipu_image_convert_priv *priv; int i; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; ipu->image_convert_priv = priv; priv->ipu = ipu; for (i = 0; i < IC_NUM_TASKS; i++) { struct ipu_image_convert_chan *chan = &priv->chan[i]; chan->ic_task = i; chan->priv = priv; chan->dma_ch = &image_convert_dma_chan[i]; chan->in_eof_irq = -1; chan->rot_in_eof_irq = -1; chan->out_eof_irq = -1; chan->rot_out_eof_irq = -1; spin_lock_init(&chan->irqlock); INIT_LIST_HEAD(&chan->ctx_list); INIT_LIST_HEAD(&chan->pending_q); INIT_LIST_HEAD(&chan->done_q); } return 0; } void ipu_image_convert_exit(struct ipu_soc *ipu) { }
linux-master
drivers/gpu/ipu-v3/ipu-image-convert.c
/* * vga_switcheroo.c - Support for laptop with dual GPU using one set of outputs * * Copyright (c) 2010 Red Hat Inc. * Author : Dave Airlie <[email protected]> * * Copyright (c) 2015 Lukas Wunner <[email protected]> * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS * IN THE SOFTWARE. * */ #define pr_fmt(fmt) "vga_switcheroo: " fmt #include <linux/apple-gmux.h> #include <linux/console.h> #include <linux/debugfs.h> #include <linux/fb.h> #include <linux/fs.h> #include <linux/fbcon.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/pm_domain.h> #include <linux/pm_runtime.h> #include <linux/seq_file.h> #include <linux/uaccess.h> #include <linux/vgaarb.h> #include <linux/vga_switcheroo.h> /** * DOC: Overview * * vga_switcheroo is the Linux subsystem for laptop hybrid graphics. * These come in two flavors: * * * muxed: Dual GPUs with a multiplexer chip to switch outputs between GPUs. * * muxless: Dual GPUs but only one of them is connected to outputs. * The other one is merely used to offload rendering, its results * are copied over PCIe into the framebuffer. On Linux this is * supported with DRI PRIME. * * Hybrid graphics started to appear in the late Naughties and were initially * all muxed. Newer laptops moved to a muxless architecture for cost reasons. * A notable exception is the MacBook Pro which continues to use a mux. * Muxes come with varying capabilities: Some switch only the panel, others * can also switch external displays. Some switch all display pins at once * while others can switch just the DDC lines. (To allow EDID probing * for the inactive GPU.) Also, muxes are often used to cut power to the * discrete GPU while it is not used. * * DRM drivers register GPUs with vga_switcheroo, these are henceforth called * clients. The mux is called the handler. Muxless machines also register a * handler to control the power state of the discrete GPU, its ->switchto * callback is a no-op for obvious reasons. The discrete GPU is often equipped * with an HDA controller for the HDMI/DP audio signal, this will also * register as a client so that vga_switcheroo can take care of the correct * suspend/resume order when changing the discrete GPU's power state. In total * there can thus be up to three clients: Two vga clients (GPUs) and one audio * client (on the discrete GPU). The code is mostly prepared to support * machines with more than two GPUs should they become available. * * The GPU to which the outputs are currently switched is called the * active client in vga_switcheroo parlance. The GPU not in use is the * inactive client. When the inactive client's DRM driver is loaded, * it will be unable to probe the panel's EDID and hence depends on * VBIOS to provide its display modes. If the VBIOS modes are bogus or * if there is no VBIOS at all (which is common on the MacBook Pro), * a client may alternatively request that the DDC lines are temporarily * switched to it, provided that the handler supports this. Switching * only the DDC lines and not the entire output avoids unnecessary * flickering. */ /** * struct vga_switcheroo_client - registered client * @pdev: client pci device * @fb_info: framebuffer to which console is remapped on switching * @pwr_state: current power state if manual power control is used. * For driver power control, call vga_switcheroo_pwr_state(). * @ops: client callbacks * @id: client identifier. Determining the id requires the handler, * so gpus are initially assigned VGA_SWITCHEROO_UNKNOWN_ID * and later given their true id in vga_switcheroo_enable() * @active: whether the outputs are currently switched to this client * @driver_power_control: whether power state is controlled by the driver's * runtime pm. If true, writing ON and OFF to the vga_switcheroo debugfs * interface is a no-op so as not to interfere with runtime pm * @list: client list * @vga_dev: pci device, indicate which GPU is bound to current audio client * * Registered client. A client can be either a GPU or an audio device on a GPU. * For audio clients, the @fb_info and @active members are bogus. For GPU * clients, the @vga_dev is bogus. */ struct vga_switcheroo_client { struct pci_dev *pdev; struct fb_info *fb_info; enum vga_switcheroo_state pwr_state; const struct vga_switcheroo_client_ops *ops; enum vga_switcheroo_client_id id; bool active; bool driver_power_control; struct list_head list; struct pci_dev *vga_dev; }; /* * protects access to struct vgasr_priv */ static DEFINE_MUTEX(vgasr_mutex); /** * struct vgasr_priv - vga_switcheroo private data * @active: whether vga_switcheroo is enabled. * Prerequisite is the registration of two GPUs and a handler * @delayed_switch_active: whether a delayed switch is pending * @delayed_client_id: client to which a delayed switch is pending * @debugfs_root: directory for vga_switcheroo debugfs interface * @registered_clients: number of registered GPUs * (counting only vga clients, not audio clients) * @clients: list of registered clients * @handler: registered handler * @handler_flags: flags of registered handler * @mux_hw_lock: protects mux state * (in particular while DDC lines are temporarily switched) * @old_ddc_owner: client to which DDC lines will be switched back on unlock * * vga_switcheroo private data. Currently only one vga_switcheroo instance * per system is supported. */ struct vgasr_priv { bool active; bool delayed_switch_active; enum vga_switcheroo_client_id delayed_client_id; struct dentry *debugfs_root; int registered_clients; struct list_head clients; const struct vga_switcheroo_handler *handler; enum vga_switcheroo_handler_flags_t handler_flags; struct mutex mux_hw_lock; int old_ddc_owner; }; #define ID_BIT_AUDIO 0x100 #define client_is_audio(c) ((c)->id & ID_BIT_AUDIO) #define client_is_vga(c) (!client_is_audio(c)) #define client_id(c) ((c)->id & ~ID_BIT_AUDIO) static void vga_switcheroo_debugfs_init(struct vgasr_priv *priv); static void vga_switcheroo_debugfs_fini(struct vgasr_priv *priv); /* only one switcheroo per system */ static struct vgasr_priv vgasr_priv = { .clients = LIST_HEAD_INIT(vgasr_priv.clients), .mux_hw_lock = __MUTEX_INITIALIZER(vgasr_priv.mux_hw_lock), }; static bool vga_switcheroo_ready(void) { /* we're ready if we get two clients + handler */ return !vgasr_priv.active && vgasr_priv.registered_clients == 2 && vgasr_priv.handler; } static void vga_switcheroo_enable(void) { int ret; struct vga_switcheroo_client *client; /* call the handler to init */ if (vgasr_priv.handler->init) vgasr_priv.handler->init(); list_for_each_entry(client, &vgasr_priv.clients, list) { if (!client_is_vga(client) || client_id(client) != VGA_SWITCHEROO_UNKNOWN_ID) continue; ret = vgasr_priv.handler->get_client_id(client->pdev); if (ret < 0) return; client->id = ret; } list_for_each_entry(client, &vgasr_priv.clients, list) { if (!client_is_audio(client) || client_id(client) != VGA_SWITCHEROO_UNKNOWN_ID) continue; ret = vgasr_priv.handler->get_client_id(client->vga_dev); if (ret < 0) return; client->id = ret | ID_BIT_AUDIO; if (client->ops->gpu_bound) client->ops->gpu_bound(client->pdev, ret); } vga_switcheroo_debugfs_init(&vgasr_priv); vgasr_priv.active = true; } /** * vga_switcheroo_register_handler() - register handler * @handler: handler callbacks * @handler_flags: handler flags * * Register handler. Enable vga_switcheroo if two vga clients have already * registered. * * Return: 0 on success, -EINVAL if a handler was already registered. */ int vga_switcheroo_register_handler( const struct vga_switcheroo_handler *handler, enum vga_switcheroo_handler_flags_t handler_flags) { mutex_lock(&vgasr_mutex); if (vgasr_priv.handler) { mutex_unlock(&vgasr_mutex); return -EINVAL; } vgasr_priv.handler = handler; vgasr_priv.handler_flags = handler_flags; if (vga_switcheroo_ready()) { pr_info("enabled\n"); vga_switcheroo_enable(); } mutex_unlock(&vgasr_mutex); return 0; } EXPORT_SYMBOL(vga_switcheroo_register_handler); /** * vga_switcheroo_unregister_handler() - unregister handler * * Unregister handler. Disable vga_switcheroo. */ void vga_switcheroo_unregister_handler(void) { mutex_lock(&vgasr_mutex); mutex_lock(&vgasr_priv.mux_hw_lock); vgasr_priv.handler_flags = 0; vgasr_priv.handler = NULL; if (vgasr_priv.active) { pr_info("disabled\n"); vga_switcheroo_debugfs_fini(&vgasr_priv); vgasr_priv.active = false; } mutex_unlock(&vgasr_priv.mux_hw_lock); mutex_unlock(&vgasr_mutex); } EXPORT_SYMBOL(vga_switcheroo_unregister_handler); /** * vga_switcheroo_handler_flags() - obtain handler flags * * Helper for clients to obtain the handler flags bitmask. * * Return: Handler flags. A value of 0 means that no handler is registered * or that the handler has no special capabilities. */ enum vga_switcheroo_handler_flags_t vga_switcheroo_handler_flags(void) { return vgasr_priv.handler_flags; } EXPORT_SYMBOL(vga_switcheroo_handler_flags); static int register_client(struct pci_dev *pdev, const struct vga_switcheroo_client_ops *ops, enum vga_switcheroo_client_id id, struct pci_dev *vga_dev, bool active, bool driver_power_control) { struct vga_switcheroo_client *client; client = kzalloc(sizeof(*client), GFP_KERNEL); if (!client) return -ENOMEM; client->pwr_state = VGA_SWITCHEROO_ON; client->pdev = pdev; client->ops = ops; client->id = id; client->active = active; client->driver_power_control = driver_power_control; client->vga_dev = vga_dev; mutex_lock(&vgasr_mutex); list_add_tail(&client->list, &vgasr_priv.clients); if (client_is_vga(client)) vgasr_priv.registered_clients++; if (vga_switcheroo_ready()) { pr_info("enabled\n"); vga_switcheroo_enable(); } mutex_unlock(&vgasr_mutex); return 0; } /** * vga_switcheroo_register_client - register vga client * @pdev: client pci device * @ops: client callbacks * @driver_power_control: whether power state is controlled by the driver's * runtime pm * * Register vga client (GPU). Enable vga_switcheroo if another GPU and a * handler have already registered. The power state of the client is assumed * to be ON. Beforehand, vga_switcheroo_client_probe_defer() shall be called * to ensure that all prerequisites are met. * * Return: 0 on success, -ENOMEM on memory allocation error. */ int vga_switcheroo_register_client(struct pci_dev *pdev, const struct vga_switcheroo_client_ops *ops, bool driver_power_control) { return register_client(pdev, ops, VGA_SWITCHEROO_UNKNOWN_ID, NULL, pdev == vga_default_device(), driver_power_control); } EXPORT_SYMBOL(vga_switcheroo_register_client); /** * vga_switcheroo_register_audio_client - register audio client * @pdev: client pci device * @ops: client callbacks * @vga_dev: pci device which is bound to current audio client * * Register audio client (audio device on a GPU). The client is assumed * to use runtime PM. Beforehand, vga_switcheroo_client_probe_defer() * shall be called to ensure that all prerequisites are met. * * Return: 0 on success, -ENOMEM on memory allocation error, -EINVAL on getting * client id error. */ int vga_switcheroo_register_audio_client(struct pci_dev *pdev, const struct vga_switcheroo_client_ops *ops, struct pci_dev *vga_dev) { enum vga_switcheroo_client_id id = VGA_SWITCHEROO_UNKNOWN_ID; /* * if vga_switcheroo has enabled, that mean two GPU clients and also * handler are registered. Get audio client id from bound GPU client * id directly, otherwise, set it as VGA_SWITCHEROO_UNKNOWN_ID, * it will set to correct id in later when vga_switcheroo_enable() * is called. */ mutex_lock(&vgasr_mutex); if (vgasr_priv.active) { id = vgasr_priv.handler->get_client_id(vga_dev); if (id < 0) { mutex_unlock(&vgasr_mutex); return -EINVAL; } /* notify if GPU has been already bound */ if (ops->gpu_bound) ops->gpu_bound(pdev, id); } mutex_unlock(&vgasr_mutex); return register_client(pdev, ops, id | ID_BIT_AUDIO, vga_dev, false, true); } EXPORT_SYMBOL(vga_switcheroo_register_audio_client); static struct vga_switcheroo_client * find_client_from_pci(struct list_head *head, struct pci_dev *pdev) { struct vga_switcheroo_client *client; list_for_each_entry(client, head, list) if (client->pdev == pdev) return client; return NULL; } static struct vga_switcheroo_client * find_client_from_id(struct list_head *head, enum vga_switcheroo_client_id client_id) { struct vga_switcheroo_client *client; list_for_each_entry(client, head, list) if (client->id == client_id) return client; return NULL; } static struct vga_switcheroo_client * find_active_client(struct list_head *head) { struct vga_switcheroo_client *client; list_for_each_entry(client, head, list) if (client->active) return client; return NULL; } /** * vga_switcheroo_client_probe_defer() - whether to defer probing a given client * @pdev: client pci device * * Determine whether any prerequisites are not fulfilled to probe a given * client. Drivers shall invoke this early on in their ->probe callback * and return %-EPROBE_DEFER if it evaluates to %true. Thou shalt not * register the client ere thou hast called this. * * Return: %true if probing should be deferred, otherwise %false. */ bool vga_switcheroo_client_probe_defer(struct pci_dev *pdev) { if ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) { /* * apple-gmux is needed on pre-retina MacBook Pro * to probe the panel if pdev is the inactive GPU. */ if (apple_gmux_present() && pdev != vga_default_device() && !vgasr_priv.handler_flags) return true; } return false; } EXPORT_SYMBOL(vga_switcheroo_client_probe_defer); static enum vga_switcheroo_state vga_switcheroo_pwr_state(struct vga_switcheroo_client *client) { if (client->driver_power_control) if (pm_runtime_enabled(&client->pdev->dev) && pm_runtime_active(&client->pdev->dev)) return VGA_SWITCHEROO_ON; else return VGA_SWITCHEROO_OFF; else return client->pwr_state; } /** * vga_switcheroo_get_client_state() - obtain power state of a given client * @pdev: client pci device * * Obtain power state of a given client as seen from vga_switcheroo. * The function is only called from hda_intel.c. * * Return: Power state. */ enum vga_switcheroo_state vga_switcheroo_get_client_state(struct pci_dev *pdev) { struct vga_switcheroo_client *client; enum vga_switcheroo_state ret; mutex_lock(&vgasr_mutex); client = find_client_from_pci(&vgasr_priv.clients, pdev); if (!client) ret = VGA_SWITCHEROO_NOT_FOUND; else ret = vga_switcheroo_pwr_state(client); mutex_unlock(&vgasr_mutex); return ret; } EXPORT_SYMBOL(vga_switcheroo_get_client_state); /** * vga_switcheroo_unregister_client() - unregister client * @pdev: client pci device * * Unregister client. Disable vga_switcheroo if this is a vga client (GPU). */ void vga_switcheroo_unregister_client(struct pci_dev *pdev) { struct vga_switcheroo_client *client; mutex_lock(&vgasr_mutex); client = find_client_from_pci(&vgasr_priv.clients, pdev); if (client) { if (client_is_vga(client)) vgasr_priv.registered_clients--; list_del(&client->list); kfree(client); } if (vgasr_priv.active && vgasr_priv.registered_clients < 2) { pr_info("disabled\n"); vga_switcheroo_debugfs_fini(&vgasr_priv); vgasr_priv.active = false; } mutex_unlock(&vgasr_mutex); } EXPORT_SYMBOL(vga_switcheroo_unregister_client); /** * vga_switcheroo_client_fb_set() - set framebuffer of a given client * @pdev: client pci device * @info: framebuffer * * Set framebuffer of a given client. The console will be remapped to this * on switching. */ void vga_switcheroo_client_fb_set(struct pci_dev *pdev, struct fb_info *info) { struct vga_switcheroo_client *client; mutex_lock(&vgasr_mutex); client = find_client_from_pci(&vgasr_priv.clients, pdev); if (client) client->fb_info = info; mutex_unlock(&vgasr_mutex); } EXPORT_SYMBOL(vga_switcheroo_client_fb_set); /** * vga_switcheroo_lock_ddc() - temporarily switch DDC lines to a given client * @pdev: client pci device * * Temporarily switch DDC lines to the client identified by @pdev * (but leave the outputs otherwise switched to where they are). * This allows the inactive client to probe EDID. The DDC lines must * afterwards be switched back by calling vga_switcheroo_unlock_ddc(), * even if this function returns an error. * * Return: Previous DDC owner on success or a negative int on error. * Specifically, %-ENODEV if no handler has registered or if the handler * does not support switching the DDC lines. Also, a negative value * returned by the handler is propagated back to the caller. * The return value has merely an informational purpose for any caller * which might be interested in it. It is acceptable to ignore the return * value and simply rely on the result of the subsequent EDID probe, * which will be %NULL if DDC switching failed. */ int vga_switcheroo_lock_ddc(struct pci_dev *pdev) { enum vga_switcheroo_client_id id; mutex_lock(&vgasr_priv.mux_hw_lock); if (!vgasr_priv.handler || !vgasr_priv.handler->switch_ddc) { vgasr_priv.old_ddc_owner = -ENODEV; return -ENODEV; } id = vgasr_priv.handler->get_client_id(pdev); vgasr_priv.old_ddc_owner = vgasr_priv.handler->switch_ddc(id); return vgasr_priv.old_ddc_owner; } EXPORT_SYMBOL(vga_switcheroo_lock_ddc); /** * vga_switcheroo_unlock_ddc() - switch DDC lines back to previous owner * @pdev: client pci device * * Switch DDC lines back to the previous owner after calling * vga_switcheroo_lock_ddc(). This must be called even if * vga_switcheroo_lock_ddc() returned an error. * * Return: Previous DDC owner on success (i.e. the client identifier of @pdev) * or a negative int on error. * Specifically, %-ENODEV if no handler has registered or if the handler * does not support switching the DDC lines. Also, a negative value * returned by the handler is propagated back to the caller. * Finally, invoking this function without calling vga_switcheroo_lock_ddc() * first is not allowed and will result in %-EINVAL. */ int vga_switcheroo_unlock_ddc(struct pci_dev *pdev) { enum vga_switcheroo_client_id id; int ret = vgasr_priv.old_ddc_owner; if (WARN_ON_ONCE(!mutex_is_locked(&vgasr_priv.mux_hw_lock))) return -EINVAL; if (vgasr_priv.old_ddc_owner >= 0) { id = vgasr_priv.handler->get_client_id(pdev); if (vgasr_priv.old_ddc_owner != id) ret = vgasr_priv.handler->switch_ddc( vgasr_priv.old_ddc_owner); } mutex_unlock(&vgasr_priv.mux_hw_lock); return ret; } EXPORT_SYMBOL(vga_switcheroo_unlock_ddc); /** * DOC: Manual switching and manual power control * * In this mode of use, the file /sys/kernel/debug/vgaswitcheroo/switch * can be read to retrieve the current vga_switcheroo state and commands * can be written to it to change the state. The file appears as soon as * two GPU drivers and one handler have registered with vga_switcheroo. * The following commands are understood: * * * OFF: Power off the device not in use. * * ON: Power on the device not in use. * * IGD: Switch to the integrated graphics device. * Power on the integrated GPU if necessary, power off the discrete GPU. * Prerequisite is that no user space processes (e.g. Xorg, alsactl) * have opened device files of the GPUs or the audio client. If the * switch fails, the user may invoke lsof(8) or fuser(1) on /dev/dri/ * and /dev/snd/controlC1 to identify processes blocking the switch. * * DIS: Switch to the discrete graphics device. * * DIGD: Delayed switch to the integrated graphics device. * This will perform the switch once the last user space process has * closed the device files of the GPUs and the audio client. * * DDIS: Delayed switch to the discrete graphics device. * * MIGD: Mux-only switch to the integrated graphics device. * Does not remap console or change the power state of either gpu. * If the integrated GPU is currently off, the screen will turn black. * If it is on, the screen will show whatever happens to be in VRAM. * Either way, the user has to blindly enter the command to switch back. * * MDIS: Mux-only switch to the discrete graphics device. * * For GPUs whose power state is controlled by the driver's runtime pm, * the ON and OFF commands are a no-op (see next section). * * For muxless machines, the IGD/DIS, DIGD/DDIS and MIGD/MDIS commands * should not be used. */ static int vga_switcheroo_show(struct seq_file *m, void *v) { struct vga_switcheroo_client *client; int i = 0; mutex_lock(&vgasr_mutex); list_for_each_entry(client, &vgasr_priv.clients, list) { seq_printf(m, "%d:%s%s:%c:%s%s:%s\n", i, client_id(client) == VGA_SWITCHEROO_DIS ? "DIS" : "IGD", client_is_vga(client) ? "" : "-Audio", client->active ? '+' : ' ', client->driver_power_control ? "Dyn" : "", vga_switcheroo_pwr_state(client) ? "Pwr" : "Off", pci_name(client->pdev)); i++; } mutex_unlock(&vgasr_mutex); return 0; } static int vga_switcheroo_debugfs_open(struct inode *inode, struct file *file) { return single_open(file, vga_switcheroo_show, NULL); } static int vga_switchon(struct vga_switcheroo_client *client) { if (client->driver_power_control) return 0; if (vgasr_priv.handler->power_state) vgasr_priv.handler->power_state(client->id, VGA_SWITCHEROO_ON); /* call the driver callback to turn on device */ client->ops->set_gpu_state(client->pdev, VGA_SWITCHEROO_ON); client->pwr_state = VGA_SWITCHEROO_ON; return 0; } static int vga_switchoff(struct vga_switcheroo_client *client) { if (client->driver_power_control) return 0; /* call the driver callback to turn off device */ client->ops->set_gpu_state(client->pdev, VGA_SWITCHEROO_OFF); if (vgasr_priv.handler->power_state) vgasr_priv.handler->power_state(client->id, VGA_SWITCHEROO_OFF); client->pwr_state = VGA_SWITCHEROO_OFF; return 0; } static void set_audio_state(enum vga_switcheroo_client_id id, enum vga_switcheroo_state state) { struct vga_switcheroo_client *client; client = find_client_from_id(&vgasr_priv.clients, id | ID_BIT_AUDIO); if (client) client->ops->set_gpu_state(client->pdev, state); } /* stage one happens before delay */ static int vga_switchto_stage1(struct vga_switcheroo_client *new_client) { struct vga_switcheroo_client *active; active = find_active_client(&vgasr_priv.clients); if (!active) return 0; if (vga_switcheroo_pwr_state(new_client) == VGA_SWITCHEROO_OFF) vga_switchon(new_client); vga_set_default_device(new_client->pdev); return 0; } /* post delay */ static int vga_switchto_stage2(struct vga_switcheroo_client *new_client) { int ret; struct vga_switcheroo_client *active; active = find_active_client(&vgasr_priv.clients); if (!active) return 0; active->active = false; /* let HDA controller autosuspend if GPU uses driver power control */ if (!active->driver_power_control) set_audio_state(active->id, VGA_SWITCHEROO_OFF); if (new_client->fb_info) fbcon_remap_all(new_client->fb_info); mutex_lock(&vgasr_priv.mux_hw_lock); ret = vgasr_priv.handler->switchto(new_client->id); mutex_unlock(&vgasr_priv.mux_hw_lock); if (ret) return ret; if (new_client->ops->reprobe) new_client->ops->reprobe(new_client->pdev); if (vga_switcheroo_pwr_state(active) == VGA_SWITCHEROO_ON) vga_switchoff(active); /* let HDA controller autoresume if GPU uses driver power control */ if (!new_client->driver_power_control) set_audio_state(new_client->id, VGA_SWITCHEROO_ON); new_client->active = true; return 0; } static bool check_can_switch(void) { struct vga_switcheroo_client *client; list_for_each_entry(client, &vgasr_priv.clients, list) { if (!client->ops->can_switch(client->pdev)) { pr_err("client %x refused switch\n", client->id); return false; } } return true; } static ssize_t vga_switcheroo_debugfs_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { char usercmd[64]; int ret; bool delay = false, can_switch; bool just_mux = false; enum vga_switcheroo_client_id client_id = VGA_SWITCHEROO_UNKNOWN_ID; struct vga_switcheroo_client *client = NULL; if (cnt > 63) cnt = 63; if (copy_from_user(usercmd, ubuf, cnt)) return -EFAULT; mutex_lock(&vgasr_mutex); if (!vgasr_priv.active) { cnt = -EINVAL; goto out; } /* pwr off the device not in use */ if (strncmp(usercmd, "OFF", 3) == 0) { list_for_each_entry(client, &vgasr_priv.clients, list) { if (client->active || client_is_audio(client)) continue; if (client->driver_power_control) continue; set_audio_state(client->id, VGA_SWITCHEROO_OFF); if (client->pwr_state == VGA_SWITCHEROO_ON) vga_switchoff(client); } goto out; } /* pwr on the device not in use */ if (strncmp(usercmd, "ON", 2) == 0) { list_for_each_entry(client, &vgasr_priv.clients, list) { if (client->active || client_is_audio(client)) continue; if (client->driver_power_control) continue; if (client->pwr_state == VGA_SWITCHEROO_OFF) vga_switchon(client); set_audio_state(client->id, VGA_SWITCHEROO_ON); } goto out; } /* request a delayed switch - test can we switch now */ if (strncmp(usercmd, "DIGD", 4) == 0) { client_id = VGA_SWITCHEROO_IGD; delay = true; } if (strncmp(usercmd, "DDIS", 4) == 0) { client_id = VGA_SWITCHEROO_DIS; delay = true; } if (strncmp(usercmd, "IGD", 3) == 0) client_id = VGA_SWITCHEROO_IGD; if (strncmp(usercmd, "DIS", 3) == 0) client_id = VGA_SWITCHEROO_DIS; if (strncmp(usercmd, "MIGD", 4) == 0) { just_mux = true; client_id = VGA_SWITCHEROO_IGD; } if (strncmp(usercmd, "MDIS", 4) == 0) { just_mux = true; client_id = VGA_SWITCHEROO_DIS; } if (client_id == VGA_SWITCHEROO_UNKNOWN_ID) goto out; client = find_client_from_id(&vgasr_priv.clients, client_id); if (!client) goto out; vgasr_priv.delayed_switch_active = false; if (just_mux) { mutex_lock(&vgasr_priv.mux_hw_lock); ret = vgasr_priv.handler->switchto(client_id); mutex_unlock(&vgasr_priv.mux_hw_lock); goto out; } if (client->active) goto out; /* okay we want a switch - test if devices are willing to switch */ can_switch = check_can_switch(); if (can_switch == false && delay == false) goto out; if (can_switch) { ret = vga_switchto_stage1(client); if (ret) pr_err("switching failed stage 1 %d\n", ret); ret = vga_switchto_stage2(client); if (ret) pr_err("switching failed stage 2 %d\n", ret); } else { pr_info("setting delayed switch to client %d\n", client->id); vgasr_priv.delayed_switch_active = true; vgasr_priv.delayed_client_id = client_id; ret = vga_switchto_stage1(client); if (ret) pr_err("delayed switching stage 1 failed %d\n", ret); } out: mutex_unlock(&vgasr_mutex); return cnt; } static const struct file_operations vga_switcheroo_debugfs_fops = { .owner = THIS_MODULE, .open = vga_switcheroo_debugfs_open, .write = vga_switcheroo_debugfs_write, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static void vga_switcheroo_debugfs_fini(struct vgasr_priv *priv) { debugfs_remove_recursive(priv->debugfs_root); priv->debugfs_root = NULL; } static void vga_switcheroo_debugfs_init(struct vgasr_priv *priv) { /* already initialised */ if (priv->debugfs_root) return; priv->debugfs_root = debugfs_create_dir("vgaswitcheroo", NULL); debugfs_create_file("switch", 0644, priv->debugfs_root, NULL, &vga_switcheroo_debugfs_fops); } /** * vga_switcheroo_process_delayed_switch() - helper for delayed switching * * Process a delayed switch if one is pending. DRM drivers should call this * from their ->lastclose callback. * * Return: 0 on success. -EINVAL if no delayed switch is pending, if the client * has unregistered in the meantime or if there are other clients blocking the * switch. If the actual switch fails, an error is reported and 0 is returned. */ int vga_switcheroo_process_delayed_switch(void) { struct vga_switcheroo_client *client; int ret; int err = -EINVAL; mutex_lock(&vgasr_mutex); if (!vgasr_priv.delayed_switch_active) goto err; pr_info("processing delayed switch to %d\n", vgasr_priv.delayed_client_id); client = find_client_from_id(&vgasr_priv.clients, vgasr_priv.delayed_client_id); if (!client || !check_can_switch()) goto err; ret = vga_switchto_stage2(client); if (ret) pr_err("delayed switching failed stage 2 %d\n", ret); vgasr_priv.delayed_switch_active = false; err = 0; err: mutex_unlock(&vgasr_mutex); return err; } EXPORT_SYMBOL(vga_switcheroo_process_delayed_switch); /** * DOC: Driver power control * * In this mode of use, the discrete GPU automatically powers up and down at * the discretion of the driver's runtime pm. On muxed machines, the user may * still influence the muxer state by way of the debugfs interface, however * the ON and OFF commands become a no-op for the discrete GPU. * * This mode is the default on Nvidia HybridPower/Optimus and ATI PowerXpress. * Specifying nouveau.runpm=0, radeon.runpm=0 or amdgpu.runpm=0 on the kernel * command line disables it. * * After the GPU has been suspended, the handler needs to be called to cut * power to the GPU. Likewise it needs to reinstate power before the GPU * can resume. This is achieved by vga_switcheroo_init_domain_pm_ops(), * which augments the GPU's suspend/resume functions by the requisite * calls to the handler. * * When the audio device resumes, the GPU needs to be woken. This is achieved * by a PCI quirk which calls device_link_add() to declare a dependency on the * GPU. That way, the GPU is kept awake whenever and as long as the audio * device is in use. * * On muxed machines, if the mux is initially switched to the discrete GPU, * the user ends up with a black screen when the GPU powers down after boot. * As a workaround, the mux is forced to the integrated GPU on runtime suspend, * cf. https://bugs.freedesktop.org/show_bug.cgi?id=75917 */ static void vga_switcheroo_power_switch(struct pci_dev *pdev, enum vga_switcheroo_state state) { struct vga_switcheroo_client *client; if (!vgasr_priv.handler->power_state) return; client = find_client_from_pci(&vgasr_priv.clients, pdev); if (!client) return; if (!client->driver_power_control) return; vgasr_priv.handler->power_state(client->id, state); } /* switcheroo power domain */ static int vga_switcheroo_runtime_suspend(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); int ret; ret = dev->bus->pm->runtime_suspend(dev); if (ret) return ret; mutex_lock(&vgasr_mutex); if (vgasr_priv.handler->switchto) { mutex_lock(&vgasr_priv.mux_hw_lock); vgasr_priv.handler->switchto(VGA_SWITCHEROO_IGD); mutex_unlock(&vgasr_priv.mux_hw_lock); } pci_bus_set_current_state(pdev->bus, PCI_D3cold); vga_switcheroo_power_switch(pdev, VGA_SWITCHEROO_OFF); mutex_unlock(&vgasr_mutex); return 0; } static int vga_switcheroo_runtime_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); mutex_lock(&vgasr_mutex); vga_switcheroo_power_switch(pdev, VGA_SWITCHEROO_ON); mutex_unlock(&vgasr_mutex); pci_resume_bus(pdev->bus); return dev->bus->pm->runtime_resume(dev); } /** * vga_switcheroo_init_domain_pm_ops() - helper for driver power control * @dev: vga client device * @domain: power domain * * Helper for GPUs whose power state is controlled by the driver's runtime pm. * After the GPU has been suspended, the handler needs to be called to cut * power to the GPU. Likewise it needs to reinstate power before the GPU * can resume. To this end, this helper augments the suspend/resume functions * by the requisite calls to the handler. It needs only be called on platforms * where the power switch is separate to the device being powered down. */ int vga_switcheroo_init_domain_pm_ops(struct device *dev, struct dev_pm_domain *domain) { /* copy over all the bus versions */ if (dev->bus && dev->bus->pm) { domain->ops = *dev->bus->pm; domain->ops.runtime_suspend = vga_switcheroo_runtime_suspend; domain->ops.runtime_resume = vga_switcheroo_runtime_resume; dev_pm_domain_set(dev, domain); return 0; } dev_pm_domain_set(dev, NULL); return -EINVAL; } EXPORT_SYMBOL(vga_switcheroo_init_domain_pm_ops); void vga_switcheroo_fini_domain_pm_ops(struct device *dev) { dev_pm_domain_set(dev, NULL); } EXPORT_SYMBOL(vga_switcheroo_fini_domain_pm_ops);
linux-master
drivers/gpu/vga/vga_switcheroo.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2021, NVIDIA Corporation. */ #include <linux/device.h> #include <linux/of.h> struct bus_type host1x_context_device_bus_type = { .name = "host1x-context", }; EXPORT_SYMBOL_GPL(host1x_context_device_bus_type); static int __init host1x_context_device_bus_init(void) { int err; err = bus_register(&host1x_context_device_bus_type); if (err < 0) { pr_err("bus type registration failed: %d\n", err); return err; } return 0; } postcore_initcall(host1x_context_device_bus_init);
linux-master
drivers/gpu/host1x/context_bus.c
/* * Copyright (C) 2013 NVIDIA Corporation * * Permission to use, copy, modify, distribute, and sell this software and its * documentation for any purpose is hereby granted without fee, provided that * the above copyright notice appear in all copies and that both that copyright * notice and this permission notice appear in supporting documentation, and * that the name of the copyright holders not be used in advertising or * publicity pertaining to distribution of the software without specific, * written prior permission. The copyright holders make no representations * about the suitability of this software for any purpose. It is provided "as * is" without express or implied warranty. * * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE * OF THIS SOFTWARE. */ #include <linux/clk.h> #include <linux/host1x.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/slab.h> #include "dev.h" #define MIPI_CAL_CTRL 0x00 #define MIPI_CAL_CTRL_NOISE_FILTER(x) (((x) & 0xf) << 26) #define MIPI_CAL_CTRL_PRESCALE(x) (((x) & 0x3) << 24) #define MIPI_CAL_CTRL_CLKEN_OVR (1 << 4) #define MIPI_CAL_CTRL_START (1 << 0) #define MIPI_CAL_AUTOCAL_CTRL 0x01 #define MIPI_CAL_STATUS 0x02 #define MIPI_CAL_STATUS_DONE (1 << 16) #define MIPI_CAL_STATUS_ACTIVE (1 << 0) #define MIPI_CAL_CONFIG_CSIA 0x05 #define MIPI_CAL_CONFIG_CSIB 0x06 #define MIPI_CAL_CONFIG_CSIC 0x07 #define MIPI_CAL_CONFIG_CSID 0x08 #define MIPI_CAL_CONFIG_CSIE 0x09 #define MIPI_CAL_CONFIG_CSIF 0x0a #define MIPI_CAL_CONFIG_DSIA 0x0e #define MIPI_CAL_CONFIG_DSIB 0x0f #define MIPI_CAL_CONFIG_DSIC 0x10 #define MIPI_CAL_CONFIG_DSID 0x11 #define MIPI_CAL_CONFIG_DSIA_CLK 0x19 #define MIPI_CAL_CONFIG_DSIB_CLK 0x1a #define MIPI_CAL_CONFIG_CSIAB_CLK 0x1b #define MIPI_CAL_CONFIG_DSIC_CLK 0x1c #define MIPI_CAL_CONFIG_CSICD_CLK 0x1c #define MIPI_CAL_CONFIG_DSID_CLK 0x1d #define MIPI_CAL_CONFIG_CSIE_CLK 0x1d /* for data and clock lanes */ #define MIPI_CAL_CONFIG_SELECT (1 << 21) /* for data lanes */ #define MIPI_CAL_CONFIG_HSPDOS(x) (((x) & 0x1f) << 16) #define MIPI_CAL_CONFIG_HSPUOS(x) (((x) & 0x1f) << 8) #define MIPI_CAL_CONFIG_TERMOS(x) (((x) & 0x1f) << 0) /* for clock lanes */ #define MIPI_CAL_CONFIG_HSCLKPDOSD(x) (((x) & 0x1f) << 8) #define MIPI_CAL_CONFIG_HSCLKPUOSD(x) (((x) & 0x1f) << 0) #define MIPI_CAL_BIAS_PAD_CFG0 0x16 #define MIPI_CAL_BIAS_PAD_PDVCLAMP (1 << 1) #define MIPI_CAL_BIAS_PAD_E_VCLAMP_REF (1 << 0) #define MIPI_CAL_BIAS_PAD_CFG1 0x17 #define MIPI_CAL_BIAS_PAD_DRV_DN_REF(x) (((x) & 0x7) << 16) #define MIPI_CAL_BIAS_PAD_DRV_UP_REF(x) (((x) & 0x7) << 8) #define MIPI_CAL_BIAS_PAD_CFG2 0x18 #define MIPI_CAL_BIAS_PAD_VCLAMP(x) (((x) & 0x7) << 16) #define MIPI_CAL_BIAS_PAD_VAUXP(x) (((x) & 0x7) << 4) #define MIPI_CAL_BIAS_PAD_PDVREG (1 << 1) struct tegra_mipi_pad { unsigned long data; unsigned long clk; }; struct tegra_mipi_soc { bool has_clk_lane; const struct tegra_mipi_pad *pads; unsigned int num_pads; bool clock_enable_override; bool needs_vclamp_ref; /* bias pad configuration settings */ u8 pad_drive_down_ref; u8 pad_drive_up_ref; u8 pad_vclamp_level; u8 pad_vauxp_level; /* calibration settings for data lanes */ u8 hspdos; u8 hspuos; u8 termos; /* calibration settings for clock lanes */ u8 hsclkpdos; u8 hsclkpuos; }; struct tegra_mipi { const struct tegra_mipi_soc *soc; struct device *dev; void __iomem *regs; struct mutex lock; struct clk *clk; unsigned long usage_count; }; struct tegra_mipi_device { struct platform_device *pdev; struct tegra_mipi *mipi; struct device *device; unsigned long pads; }; static inline u32 tegra_mipi_readl(struct tegra_mipi *mipi, unsigned long offset) { return readl(mipi->regs + (offset << 2)); } static inline void tegra_mipi_writel(struct tegra_mipi *mipi, u32 value, unsigned long offset) { writel(value, mipi->regs + (offset << 2)); } static int tegra_mipi_power_up(struct tegra_mipi *mipi) { u32 value; int err; err = clk_enable(mipi->clk); if (err < 0) return err; value = tegra_mipi_readl(mipi, MIPI_CAL_BIAS_PAD_CFG0); value &= ~MIPI_CAL_BIAS_PAD_PDVCLAMP; if (mipi->soc->needs_vclamp_ref) value |= MIPI_CAL_BIAS_PAD_E_VCLAMP_REF; tegra_mipi_writel(mipi, value, MIPI_CAL_BIAS_PAD_CFG0); value = tegra_mipi_readl(mipi, MIPI_CAL_BIAS_PAD_CFG2); value &= ~MIPI_CAL_BIAS_PAD_PDVREG; tegra_mipi_writel(mipi, value, MIPI_CAL_BIAS_PAD_CFG2); clk_disable(mipi->clk); return 0; } static int tegra_mipi_power_down(struct tegra_mipi *mipi) { u32 value; int err; err = clk_enable(mipi->clk); if (err < 0) return err; /* * The MIPI_CAL_BIAS_PAD_PDVREG controls a voltage regulator that * supplies the DSI pads. This must be kept enabled until none of the * DSI lanes are used anymore. */ value = tegra_mipi_readl(mipi, MIPI_CAL_BIAS_PAD_CFG2); value |= MIPI_CAL_BIAS_PAD_PDVREG; tegra_mipi_writel(mipi, value, MIPI_CAL_BIAS_PAD_CFG2); /* * MIPI_CAL_BIAS_PAD_PDVCLAMP and MIPI_CAL_BIAS_PAD_E_VCLAMP_REF * control a regulator that supplies current to the pre-driver logic. * Powering down this regulator causes DSI to fail, so it must remain * powered on until none of the DSI lanes are used anymore. */ value = tegra_mipi_readl(mipi, MIPI_CAL_BIAS_PAD_CFG0); if (mipi->soc->needs_vclamp_ref) value &= ~MIPI_CAL_BIAS_PAD_E_VCLAMP_REF; value |= MIPI_CAL_BIAS_PAD_PDVCLAMP; tegra_mipi_writel(mipi, value, MIPI_CAL_BIAS_PAD_CFG0); return 0; } struct tegra_mipi_device *tegra_mipi_request(struct device *device, struct device_node *np) { struct tegra_mipi_device *dev; struct of_phandle_args args; int err; err = of_parse_phandle_with_args(np, "nvidia,mipi-calibrate", "#nvidia,mipi-calibrate-cells", 0, &args); if (err < 0) return ERR_PTR(err); dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) { err = -ENOMEM; goto out; } dev->pdev = of_find_device_by_node(args.np); if (!dev->pdev) { err = -ENODEV; goto free; } dev->mipi = platform_get_drvdata(dev->pdev); if (!dev->mipi) { err = -EPROBE_DEFER; goto put; } of_node_put(args.np); dev->pads = args.args[0]; dev->device = device; return dev; put: platform_device_put(dev->pdev); free: kfree(dev); out: of_node_put(args.np); return ERR_PTR(err); } EXPORT_SYMBOL(tegra_mipi_request); void tegra_mipi_free(struct tegra_mipi_device *device) { platform_device_put(device->pdev); kfree(device); } EXPORT_SYMBOL(tegra_mipi_free); int tegra_mipi_enable(struct tegra_mipi_device *dev) { int err = 0; mutex_lock(&dev->mipi->lock); if (dev->mipi->usage_count++ == 0) err = tegra_mipi_power_up(dev->mipi); mutex_unlock(&dev->mipi->lock); return err; } EXPORT_SYMBOL(tegra_mipi_enable); int tegra_mipi_disable(struct tegra_mipi_device *dev) { int err = 0; mutex_lock(&dev->mipi->lock); if (--dev->mipi->usage_count == 0) err = tegra_mipi_power_down(dev->mipi); mutex_unlock(&dev->mipi->lock); return err; } EXPORT_SYMBOL(tegra_mipi_disable); int tegra_mipi_finish_calibration(struct tegra_mipi_device *device) { struct tegra_mipi *mipi = device->mipi; void __iomem *status_reg = mipi->regs + (MIPI_CAL_STATUS << 2); u32 value; int err; err = readl_relaxed_poll_timeout(status_reg, value, !(value & MIPI_CAL_STATUS_ACTIVE) && (value & MIPI_CAL_STATUS_DONE), 50, 250000); mutex_unlock(&device->mipi->lock); clk_disable(device->mipi->clk); return err; } EXPORT_SYMBOL(tegra_mipi_finish_calibration); int tegra_mipi_start_calibration(struct tegra_mipi_device *device) { const struct tegra_mipi_soc *soc = device->mipi->soc; unsigned int i; u32 value; int err; err = clk_enable(device->mipi->clk); if (err < 0) return err; mutex_lock(&device->mipi->lock); value = MIPI_CAL_BIAS_PAD_DRV_DN_REF(soc->pad_drive_down_ref) | MIPI_CAL_BIAS_PAD_DRV_UP_REF(soc->pad_drive_up_ref); tegra_mipi_writel(device->mipi, value, MIPI_CAL_BIAS_PAD_CFG1); value = tegra_mipi_readl(device->mipi, MIPI_CAL_BIAS_PAD_CFG2); value &= ~MIPI_CAL_BIAS_PAD_VCLAMP(0x7); value &= ~MIPI_CAL_BIAS_PAD_VAUXP(0x7); value |= MIPI_CAL_BIAS_PAD_VCLAMP(soc->pad_vclamp_level); value |= MIPI_CAL_BIAS_PAD_VAUXP(soc->pad_vauxp_level); tegra_mipi_writel(device->mipi, value, MIPI_CAL_BIAS_PAD_CFG2); for (i = 0; i < soc->num_pads; i++) { u32 clk = 0, data = 0; if (device->pads & BIT(i)) { data = MIPI_CAL_CONFIG_SELECT | MIPI_CAL_CONFIG_HSPDOS(soc->hspdos) | MIPI_CAL_CONFIG_HSPUOS(soc->hspuos) | MIPI_CAL_CONFIG_TERMOS(soc->termos); clk = MIPI_CAL_CONFIG_SELECT | MIPI_CAL_CONFIG_HSCLKPDOSD(soc->hsclkpdos) | MIPI_CAL_CONFIG_HSCLKPUOSD(soc->hsclkpuos); } tegra_mipi_writel(device->mipi, data, soc->pads[i].data); if (soc->has_clk_lane && soc->pads[i].clk != 0) tegra_mipi_writel(device->mipi, clk, soc->pads[i].clk); } value = tegra_mipi_readl(device->mipi, MIPI_CAL_CTRL); value &= ~MIPI_CAL_CTRL_NOISE_FILTER(0xf); value &= ~MIPI_CAL_CTRL_PRESCALE(0x3); value |= MIPI_CAL_CTRL_NOISE_FILTER(0xa); value |= MIPI_CAL_CTRL_PRESCALE(0x2); if (!soc->clock_enable_override) value &= ~MIPI_CAL_CTRL_CLKEN_OVR; else value |= MIPI_CAL_CTRL_CLKEN_OVR; tegra_mipi_writel(device->mipi, value, MIPI_CAL_CTRL); /* clear any pending status bits */ value = tegra_mipi_readl(device->mipi, MIPI_CAL_STATUS); tegra_mipi_writel(device->mipi, value, MIPI_CAL_STATUS); value = tegra_mipi_readl(device->mipi, MIPI_CAL_CTRL); value |= MIPI_CAL_CTRL_START; tegra_mipi_writel(device->mipi, value, MIPI_CAL_CTRL); /* * Wait for min 72uS to let calibration logic finish calibration * sequence codes before waiting for pads idle state to apply the * results. */ usleep_range(75, 80); return 0; } EXPORT_SYMBOL(tegra_mipi_start_calibration); static const struct tegra_mipi_pad tegra114_mipi_pads[] = { { .data = MIPI_CAL_CONFIG_CSIA }, { .data = MIPI_CAL_CONFIG_CSIB }, { .data = MIPI_CAL_CONFIG_CSIC }, { .data = MIPI_CAL_CONFIG_CSID }, { .data = MIPI_CAL_CONFIG_CSIE }, { .data = MIPI_CAL_CONFIG_DSIA }, { .data = MIPI_CAL_CONFIG_DSIB }, { .data = MIPI_CAL_CONFIG_DSIC }, { .data = MIPI_CAL_CONFIG_DSID }, }; static const struct tegra_mipi_soc tegra114_mipi_soc = { .has_clk_lane = false, .pads = tegra114_mipi_pads, .num_pads = ARRAY_SIZE(tegra114_mipi_pads), .clock_enable_override = true, .needs_vclamp_ref = true, .pad_drive_down_ref = 0x2, .pad_drive_up_ref = 0x0, .pad_vclamp_level = 0x0, .pad_vauxp_level = 0x0, .hspdos = 0x0, .hspuos = 0x4, .termos = 0x5, .hsclkpdos = 0x0, .hsclkpuos = 0x4, }; static const struct tegra_mipi_pad tegra124_mipi_pads[] = { { .data = MIPI_CAL_CONFIG_CSIA, .clk = MIPI_CAL_CONFIG_CSIAB_CLK }, { .data = MIPI_CAL_CONFIG_CSIB, .clk = MIPI_CAL_CONFIG_CSIAB_CLK }, { .data = MIPI_CAL_CONFIG_CSIC, .clk = MIPI_CAL_CONFIG_CSICD_CLK }, { .data = MIPI_CAL_CONFIG_CSID, .clk = MIPI_CAL_CONFIG_CSICD_CLK }, { .data = MIPI_CAL_CONFIG_CSIE, .clk = MIPI_CAL_CONFIG_CSIE_CLK }, { .data = MIPI_CAL_CONFIG_DSIA, .clk = MIPI_CAL_CONFIG_DSIA_CLK }, { .data = MIPI_CAL_CONFIG_DSIB, .clk = MIPI_CAL_CONFIG_DSIB_CLK }, }; static const struct tegra_mipi_soc tegra124_mipi_soc = { .has_clk_lane = true, .pads = tegra124_mipi_pads, .num_pads = ARRAY_SIZE(tegra124_mipi_pads), .clock_enable_override = true, .needs_vclamp_ref = true, .pad_drive_down_ref = 0x2, .pad_drive_up_ref = 0x0, .pad_vclamp_level = 0x0, .pad_vauxp_level = 0x0, .hspdos = 0x0, .hspuos = 0x0, .termos = 0x0, .hsclkpdos = 0x1, .hsclkpuos = 0x2, }; static const struct tegra_mipi_soc tegra132_mipi_soc = { .has_clk_lane = true, .pads = tegra124_mipi_pads, .num_pads = ARRAY_SIZE(tegra124_mipi_pads), .clock_enable_override = false, .needs_vclamp_ref = false, .pad_drive_down_ref = 0x0, .pad_drive_up_ref = 0x3, .pad_vclamp_level = 0x0, .pad_vauxp_level = 0x0, .hspdos = 0x0, .hspuos = 0x0, .termos = 0x0, .hsclkpdos = 0x3, .hsclkpuos = 0x2, }; static const struct tegra_mipi_pad tegra210_mipi_pads[] = { { .data = MIPI_CAL_CONFIG_CSIA, .clk = 0 }, { .data = MIPI_CAL_CONFIG_CSIB, .clk = 0 }, { .data = MIPI_CAL_CONFIG_CSIC, .clk = 0 }, { .data = MIPI_CAL_CONFIG_CSID, .clk = 0 }, { .data = MIPI_CAL_CONFIG_CSIE, .clk = 0 }, { .data = MIPI_CAL_CONFIG_CSIF, .clk = 0 }, { .data = MIPI_CAL_CONFIG_DSIA, .clk = MIPI_CAL_CONFIG_DSIA_CLK }, { .data = MIPI_CAL_CONFIG_DSIB, .clk = MIPI_CAL_CONFIG_DSIB_CLK }, { .data = MIPI_CAL_CONFIG_DSIC, .clk = MIPI_CAL_CONFIG_DSIC_CLK }, { .data = MIPI_CAL_CONFIG_DSID, .clk = MIPI_CAL_CONFIG_DSID_CLK }, }; static const struct tegra_mipi_soc tegra210_mipi_soc = { .has_clk_lane = true, .pads = tegra210_mipi_pads, .num_pads = ARRAY_SIZE(tegra210_mipi_pads), .clock_enable_override = true, .needs_vclamp_ref = false, .pad_drive_down_ref = 0x0, .pad_drive_up_ref = 0x3, .pad_vclamp_level = 0x1, .pad_vauxp_level = 0x1, .hspdos = 0x0, .hspuos = 0x2, .termos = 0x0, .hsclkpdos = 0x0, .hsclkpuos = 0x2, }; static const struct of_device_id tegra_mipi_of_match[] = { { .compatible = "nvidia,tegra114-mipi", .data = &tegra114_mipi_soc }, { .compatible = "nvidia,tegra124-mipi", .data = &tegra124_mipi_soc }, { .compatible = "nvidia,tegra132-mipi", .data = &tegra132_mipi_soc }, { .compatible = "nvidia,tegra210-mipi", .data = &tegra210_mipi_soc }, { }, }; static int tegra_mipi_probe(struct platform_device *pdev) { const struct of_device_id *match; struct tegra_mipi *mipi; int err; match = of_match_node(tegra_mipi_of_match, pdev->dev.of_node); if (!match) return -ENODEV; mipi = devm_kzalloc(&pdev->dev, sizeof(*mipi), GFP_KERNEL); if (!mipi) return -ENOMEM; mipi->soc = match->data; mipi->dev = &pdev->dev; mipi->regs = devm_platform_get_and_ioremap_resource(pdev, 0, NULL); if (IS_ERR(mipi->regs)) return PTR_ERR(mipi->regs); mutex_init(&mipi->lock); mipi->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(mipi->clk)) { dev_err(&pdev->dev, "failed to get clock\n"); return PTR_ERR(mipi->clk); } err = clk_prepare(mipi->clk); if (err < 0) return err; platform_set_drvdata(pdev, mipi); return 0; } static int tegra_mipi_remove(struct platform_device *pdev) { struct tegra_mipi *mipi = platform_get_drvdata(pdev); clk_unprepare(mipi->clk); return 0; } struct platform_driver tegra_mipi_driver = { .driver = { .name = "tegra-mipi", .of_match_table = tegra_mipi_of_match, }, .probe = tegra_mipi_probe, .remove = tegra_mipi_remove, };
linux-master
drivers/gpu/host1x/mipi.c
// SPDX-License-Identifier: GPL-2.0-only /* * Tegra host1x Syncpoints * * Copyright (c) 2010-2015, NVIDIA Corporation. */ #include <linux/module.h> #include <linux/device.h> #include <linux/dma-fence.h> #include <linux/slab.h> #include <trace/events/host1x.h> #include "syncpt.h" #include "dev.h" #include "intr.h" #include "debug.h" #define SYNCPT_CHECK_PERIOD (2 * HZ) #define MAX_STUCK_CHECK_COUNT 15 static struct host1x_syncpt_base * host1x_syncpt_base_request(struct host1x *host) { struct host1x_syncpt_base *bases = host->bases; unsigned int i; for (i = 0; i < host->info->nb_bases; i++) if (!bases[i].requested) break; if (i >= host->info->nb_bases) return NULL; bases[i].requested = true; return &bases[i]; } static void host1x_syncpt_base_free(struct host1x_syncpt_base *base) { if (base) base->requested = false; } /** * host1x_syncpt_alloc() - allocate a syncpoint * @host: host1x device data * @flags: bitfield of HOST1X_SYNCPT_* flags * @name: name for the syncpoint for use in debug prints * * Allocates a hardware syncpoint for the caller's use. The caller then has * the sole authority to mutate the syncpoint's value until it is freed again. * * If no free syncpoints are available, or a NULL name was specified, returns * NULL. */ struct host1x_syncpt *host1x_syncpt_alloc(struct host1x *host, unsigned long flags, const char *name) { struct host1x_syncpt *sp = host->syncpt; char *full_name; unsigned int i; if (!name) return NULL; mutex_lock(&host->syncpt_mutex); for (i = 0; i < host->info->nb_pts && kref_read(&sp->ref); i++, sp++) ; if (i >= host->info->nb_pts) goto unlock; if (flags & HOST1X_SYNCPT_HAS_BASE) { sp->base = host1x_syncpt_base_request(host); if (!sp->base) goto unlock; } full_name = kasprintf(GFP_KERNEL, "%u-%s", sp->id, name); if (!full_name) goto free_base; sp->name = full_name; if (flags & HOST1X_SYNCPT_CLIENT_MANAGED) sp->client_managed = true; else sp->client_managed = false; kref_init(&sp->ref); mutex_unlock(&host->syncpt_mutex); return sp; free_base: host1x_syncpt_base_free(sp->base); sp->base = NULL; unlock: mutex_unlock(&host->syncpt_mutex); return NULL; } EXPORT_SYMBOL(host1x_syncpt_alloc); /** * host1x_syncpt_id() - retrieve syncpoint ID * @sp: host1x syncpoint * * Given a pointer to a struct host1x_syncpt, retrieves its ID. This ID is * often used as a value to program into registers that control how hardware * blocks interact with syncpoints. */ u32 host1x_syncpt_id(struct host1x_syncpt *sp) { return sp->id; } EXPORT_SYMBOL(host1x_syncpt_id); /** * host1x_syncpt_incr_max() - update the value sent to hardware * @sp: host1x syncpoint * @incrs: number of increments */ u32 host1x_syncpt_incr_max(struct host1x_syncpt *sp, u32 incrs) { return (u32)atomic_add_return(incrs, &sp->max_val); } EXPORT_SYMBOL(host1x_syncpt_incr_max); /* * Write cached syncpoint and waitbase values to hardware. */ void host1x_syncpt_restore(struct host1x *host) { struct host1x_syncpt *sp_base = host->syncpt; unsigned int i; for (i = 0; i < host1x_syncpt_nb_pts(host); i++) { /* * Unassign syncpt from channels for purposes of Tegra186 * syncpoint protection. This prevents any channel from * accessing it until it is reassigned. */ host1x_hw_syncpt_assign_to_channel(host, sp_base + i, NULL); host1x_hw_syncpt_restore(host, sp_base + i); } for (i = 0; i < host1x_syncpt_nb_bases(host); i++) host1x_hw_syncpt_restore_wait_base(host, sp_base + i); host1x_hw_syncpt_enable_protection(host); wmb(); } /* * Update the cached syncpoint and waitbase values by reading them * from the registers. */ void host1x_syncpt_save(struct host1x *host) { struct host1x_syncpt *sp_base = host->syncpt; unsigned int i; for (i = 0; i < host1x_syncpt_nb_pts(host); i++) { if (host1x_syncpt_client_managed(sp_base + i)) host1x_hw_syncpt_load(host, sp_base + i); else WARN_ON(!host1x_syncpt_idle(sp_base + i)); } for (i = 0; i < host1x_syncpt_nb_bases(host); i++) host1x_hw_syncpt_load_wait_base(host, sp_base + i); } /* * Updates the cached syncpoint value by reading a new value from the hardware * register */ u32 host1x_syncpt_load(struct host1x_syncpt *sp) { u32 val; val = host1x_hw_syncpt_load(sp->host, sp); trace_host1x_syncpt_load_min(sp->id, val); return val; } /* * Get the current syncpoint base */ u32 host1x_syncpt_load_wait_base(struct host1x_syncpt *sp) { host1x_hw_syncpt_load_wait_base(sp->host, sp); return sp->base_val; } /** * host1x_syncpt_incr() - increment syncpoint value from CPU, updating cache * @sp: host1x syncpoint */ int host1x_syncpt_incr(struct host1x_syncpt *sp) { return host1x_hw_syncpt_cpu_incr(sp->host, sp); } EXPORT_SYMBOL(host1x_syncpt_incr); /** * host1x_syncpt_wait() - wait for a syncpoint to reach a given value * @sp: host1x syncpoint * @thresh: threshold * @timeout: maximum time to wait for the syncpoint to reach the given value * @value: return location for the syncpoint value */ int host1x_syncpt_wait(struct host1x_syncpt *sp, u32 thresh, long timeout, u32 *value) { struct dma_fence *fence; long wait_err; host1x_hw_syncpt_load(sp->host, sp); if (value) *value = host1x_syncpt_load(sp); if (host1x_syncpt_is_expired(sp, thresh)) return 0; if (timeout < 0) timeout = LONG_MAX; else if (timeout == 0) return -EAGAIN; fence = host1x_fence_create(sp, thresh, false); if (IS_ERR(fence)) return PTR_ERR(fence); wait_err = dma_fence_wait_timeout(fence, true, timeout); if (wait_err == 0) host1x_fence_cancel(fence); dma_fence_put(fence); if (value) *value = host1x_syncpt_load(sp); /* * Don't rely on dma_fence_wait_timeout return value, * since it returns zero both on timeout and if the * wait completed with 0 jiffies left. */ host1x_hw_syncpt_load(sp->host, sp); if (wait_err == 0 && !host1x_syncpt_is_expired(sp, thresh)) return -EAGAIN; else if (wait_err < 0) return wait_err; else return 0; } EXPORT_SYMBOL(host1x_syncpt_wait); /* * Returns true if syncpoint is expired, false if we may need to wait */ bool host1x_syncpt_is_expired(struct host1x_syncpt *sp, u32 thresh) { u32 current_val; smp_rmb(); current_val = (u32)atomic_read(&sp->min_val); return ((current_val - thresh) & 0x80000000U) == 0U; } int host1x_syncpt_init(struct host1x *host) { struct host1x_syncpt_base *bases; struct host1x_syncpt *syncpt; unsigned int i; syncpt = devm_kcalloc(host->dev, host->info->nb_pts, sizeof(*syncpt), GFP_KERNEL); if (!syncpt) return -ENOMEM; bases = devm_kcalloc(host->dev, host->info->nb_bases, sizeof(*bases), GFP_KERNEL); if (!bases) return -ENOMEM; for (i = 0; i < host->info->nb_pts; i++) { syncpt[i].id = i; syncpt[i].host = host; } for (i = 0; i < host->info->nb_bases; i++) bases[i].id = i; mutex_init(&host->syncpt_mutex); host->syncpt = syncpt; host->bases = bases; /* Allocate sync point to use for clearing waits for expired fences */ host->nop_sp = host1x_syncpt_alloc(host, 0, "reserved-nop"); if (!host->nop_sp) return -ENOMEM; if (host->info->reserve_vblank_syncpts) { kref_init(&host->syncpt[26].ref); kref_init(&host->syncpt[27].ref); } return 0; } /** * host1x_syncpt_request() - request a syncpoint * @client: client requesting the syncpoint * @flags: flags * * host1x client drivers can use this function to allocate a syncpoint for * subsequent use. A syncpoint returned by this function will be reserved for * use by the client exclusively. When no longer using a syncpoint, a host1x * client driver needs to release it using host1x_syncpt_put(). */ struct host1x_syncpt *host1x_syncpt_request(struct host1x_client *client, unsigned long flags) { struct host1x *host = dev_get_drvdata(client->host->parent); return host1x_syncpt_alloc(host, flags, dev_name(client->dev)); } EXPORT_SYMBOL(host1x_syncpt_request); static void syncpt_release(struct kref *ref) { struct host1x_syncpt *sp = container_of(ref, struct host1x_syncpt, ref); atomic_set(&sp->max_val, host1x_syncpt_read(sp)); sp->locked = false; mutex_lock(&sp->host->syncpt_mutex); host1x_syncpt_base_free(sp->base); kfree(sp->name); sp->base = NULL; sp->name = NULL; sp->client_managed = false; mutex_unlock(&sp->host->syncpt_mutex); } /** * host1x_syncpt_put() - free a requested syncpoint * @sp: host1x syncpoint * * Release a syncpoint previously allocated using host1x_syncpt_request(). A * host1x client driver should call this when the syncpoint is no longer in * use. */ void host1x_syncpt_put(struct host1x_syncpt *sp) { if (!sp) return; kref_put(&sp->ref, syncpt_release); } EXPORT_SYMBOL(host1x_syncpt_put); void host1x_syncpt_deinit(struct host1x *host) { struct host1x_syncpt *sp = host->syncpt; unsigned int i; for (i = 0; i < host->info->nb_pts; i++, sp++) kfree(sp->name); } /** * host1x_syncpt_read_max() - read maximum syncpoint value * @sp: host1x syncpoint * * The maximum syncpoint value indicates how many operations there are in * queue, either in channel or in a software thread. */ u32 host1x_syncpt_read_max(struct host1x_syncpt *sp) { smp_rmb(); return (u32)atomic_read(&sp->max_val); } EXPORT_SYMBOL(host1x_syncpt_read_max); /** * host1x_syncpt_read_min() - read minimum syncpoint value * @sp: host1x syncpoint * * The minimum syncpoint value is a shadow of the current sync point value in * hardware. */ u32 host1x_syncpt_read_min(struct host1x_syncpt *sp) { smp_rmb(); return (u32)atomic_read(&sp->min_val); } EXPORT_SYMBOL(host1x_syncpt_read_min); /** * host1x_syncpt_read() - read the current syncpoint value * @sp: host1x syncpoint */ u32 host1x_syncpt_read(struct host1x_syncpt *sp) { return host1x_syncpt_load(sp); } EXPORT_SYMBOL(host1x_syncpt_read); unsigned int host1x_syncpt_nb_pts(struct host1x *host) { return host->info->nb_pts; } unsigned int host1x_syncpt_nb_bases(struct host1x *host) { return host->info->nb_bases; } unsigned int host1x_syncpt_nb_mlocks(struct host1x *host) { return host->info->nb_mlocks; } /** * host1x_syncpt_get_by_id() - obtain a syncpoint by ID * @host: host1x controller * @id: syncpoint ID */ struct host1x_syncpt *host1x_syncpt_get_by_id(struct host1x *host, unsigned int id) { if (id >= host->info->nb_pts) return NULL; if (kref_get_unless_zero(&host->syncpt[id].ref)) return &host->syncpt[id]; else return NULL; } EXPORT_SYMBOL(host1x_syncpt_get_by_id); /** * host1x_syncpt_get_by_id_noref() - obtain a syncpoint by ID but don't * increase the refcount. * @host: host1x controller * @id: syncpoint ID */ struct host1x_syncpt *host1x_syncpt_get_by_id_noref(struct host1x *host, unsigned int id) { if (id >= host->info->nb_pts) return NULL; return &host->syncpt[id]; } EXPORT_SYMBOL(host1x_syncpt_get_by_id_noref); /** * host1x_syncpt_get() - increment syncpoint refcount * @sp: syncpoint */ struct host1x_syncpt *host1x_syncpt_get(struct host1x_syncpt *sp) { kref_get(&sp->ref); return sp; } EXPORT_SYMBOL(host1x_syncpt_get); /** * host1x_syncpt_get_base() - obtain the wait base associated with a syncpoint * @sp: host1x syncpoint */ struct host1x_syncpt_base *host1x_syncpt_get_base(struct host1x_syncpt *sp) { return sp ? sp->base : NULL; } EXPORT_SYMBOL(host1x_syncpt_get_base); /** * host1x_syncpt_base_id() - retrieve the ID of a syncpoint wait base * @base: host1x syncpoint wait base */ u32 host1x_syncpt_base_id(struct host1x_syncpt_base *base) { return base->id; } EXPORT_SYMBOL(host1x_syncpt_base_id); static void do_nothing(struct kref *ref) { } /** * host1x_syncpt_release_vblank_reservation() - Make VBLANK syncpoint * available for allocation * * @client: host1x bus client * @syncpt_id: syncpoint ID to make available * * Makes VBLANK<i> syncpoint available for allocatation if it was * reserved at initialization time. This should be called by the display * driver after it has ensured that any VBLANK increment programming configured * by the boot chain has been disabled. */ void host1x_syncpt_release_vblank_reservation(struct host1x_client *client, u32 syncpt_id) { struct host1x *host = dev_get_drvdata(client->host->parent); if (!host->info->reserve_vblank_syncpts) return; kref_put(&host->syncpt[syncpt_id].ref, do_nothing); } EXPORT_SYMBOL(host1x_syncpt_release_vblank_reservation);
linux-master
drivers/gpu/host1x/syncpt.c
// SPDX-License-Identifier: GPL-2.0-only /* * Tegra host1x Channel * * Copyright (c) 2010-2013, NVIDIA Corporation. */ #include <linux/slab.h> #include <linux/module.h> #include "channel.h" #include "dev.h" #include "job.h" /* Constructor for the host1x device list */ int host1x_channel_list_init(struct host1x_channel_list *chlist, unsigned int num_channels) { chlist->channels = kcalloc(num_channels, sizeof(struct host1x_channel), GFP_KERNEL); if (!chlist->channels) return -ENOMEM; chlist->allocated_channels = bitmap_zalloc(num_channels, GFP_KERNEL); if (!chlist->allocated_channels) { kfree(chlist->channels); return -ENOMEM; } return 0; } void host1x_channel_list_free(struct host1x_channel_list *chlist) { bitmap_free(chlist->allocated_channels); kfree(chlist->channels); } int host1x_job_submit(struct host1x_job *job) { struct host1x *host = dev_get_drvdata(job->channel->dev->parent); return host1x_hw_channel_submit(host, job); } EXPORT_SYMBOL(host1x_job_submit); struct host1x_channel *host1x_channel_get(struct host1x_channel *channel) { kref_get(&channel->refcount); return channel; } EXPORT_SYMBOL(host1x_channel_get); /** * host1x_channel_get_index() - Attempt to get channel reference by index * @host: Host1x device object * @index: Index of channel * * If channel number @index is currently allocated, increase its refcount * and return a pointer to it. Otherwise, return NULL. */ struct host1x_channel *host1x_channel_get_index(struct host1x *host, unsigned int index) { struct host1x_channel *ch = &host->channel_list.channels[index]; if (!kref_get_unless_zero(&ch->refcount)) return NULL; return ch; } void host1x_channel_stop(struct host1x_channel *channel) { struct host1x *host = dev_get_drvdata(channel->dev->parent); host1x_hw_cdma_stop(host, &channel->cdma); } EXPORT_SYMBOL(host1x_channel_stop); static void release_channel(struct kref *kref) { struct host1x_channel *channel = container_of(kref, struct host1x_channel, refcount); struct host1x *host = dev_get_drvdata(channel->dev->parent); struct host1x_channel_list *chlist = &host->channel_list; host1x_hw_cdma_stop(host, &channel->cdma); host1x_cdma_deinit(&channel->cdma); clear_bit(channel->id, chlist->allocated_channels); } void host1x_channel_put(struct host1x_channel *channel) { kref_put(&channel->refcount, release_channel); } EXPORT_SYMBOL(host1x_channel_put); static struct host1x_channel *acquire_unused_channel(struct host1x *host) { struct host1x_channel_list *chlist = &host->channel_list; unsigned int max_channels = host->info->nb_channels; unsigned int index; index = find_first_zero_bit(chlist->allocated_channels, max_channels); if (index >= max_channels) { dev_err(host->dev, "failed to find free channel\n"); return NULL; } chlist->channels[index].id = index; set_bit(index, chlist->allocated_channels); return &chlist->channels[index]; } /** * host1x_channel_request() - Allocate a channel * @client: Host1x client this channel will be used to send commands to * * Allocates a new host1x channel for @client. May return NULL if CDMA * initialization fails. */ struct host1x_channel *host1x_channel_request(struct host1x_client *client) { struct host1x *host = dev_get_drvdata(client->dev->parent); struct host1x_channel_list *chlist = &host->channel_list; struct host1x_channel *channel; int err; channel = acquire_unused_channel(host); if (!channel) return NULL; kref_init(&channel->refcount); mutex_init(&channel->submitlock); channel->client = client; channel->dev = client->dev; err = host1x_hw_channel_init(host, channel, channel->id); if (err < 0) goto fail; err = host1x_cdma_init(&channel->cdma); if (err < 0) goto fail; return channel; fail: clear_bit(channel->id, chlist->allocated_channels); dev_err(client->dev, "failed to initialize channel\n"); return NULL; } EXPORT_SYMBOL(host1x_channel_request);
linux-master
drivers/gpu/host1x/channel.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2010 Google, Inc. * Author: Erik Gilling <[email protected]> * * Copyright (C) 2011-2013 NVIDIA Corporation */ #include <linux/debugfs.h> #include <linux/pm_runtime.h> #include <linux/seq_file.h> #include <linux/uaccess.h> #include <linux/io.h> #include "dev.h" #include "debug.h" #include "channel.h" static DEFINE_MUTEX(debug_lock); unsigned int host1x_debug_trace_cmdbuf; static pid_t host1x_debug_force_timeout_pid; static u32 host1x_debug_force_timeout_val; static u32 host1x_debug_force_timeout_channel; void host1x_debug_output(struct output *o, const char *fmt, ...) { va_list args; int len; va_start(args, fmt); len = vsnprintf(o->buf, sizeof(o->buf), fmt, args); va_end(args); o->fn(o->ctx, o->buf, len, false); } void host1x_debug_cont(struct output *o, const char *fmt, ...) { va_list args; int len; va_start(args, fmt); len = vsnprintf(o->buf, sizeof(o->buf), fmt, args); va_end(args); o->fn(o->ctx, o->buf, len, true); } static int show_channel(struct host1x_channel *ch, void *data, bool show_fifo) { struct host1x *m = dev_get_drvdata(ch->dev->parent); struct output *o = data; int err; err = pm_runtime_resume_and_get(m->dev); if (err < 0) return err; mutex_lock(&ch->cdma.lock); mutex_lock(&debug_lock); if (show_fifo) host1x_hw_show_channel_fifo(m, ch, o); host1x_hw_show_channel_cdma(m, ch, o); mutex_unlock(&debug_lock); mutex_unlock(&ch->cdma.lock); pm_runtime_put(m->dev); return 0; } static void show_syncpts(struct host1x *m, struct output *o, bool show_all) { unsigned long irqflags; struct list_head *pos; unsigned int i; int err; host1x_debug_output(o, "---- syncpts ----\n"); err = pm_runtime_resume_and_get(m->dev); if (err < 0) return; for (i = 0; i < host1x_syncpt_nb_pts(m); i++) { u32 max = host1x_syncpt_read_max(m->syncpt + i); u32 min = host1x_syncpt_load(m->syncpt + i); unsigned int waiters = 0; spin_lock_irqsave(&m->syncpt[i].fences.lock, irqflags); list_for_each(pos, &m->syncpt[i].fences.list) waiters++; spin_unlock_irqrestore(&m->syncpt[i].fences.lock, irqflags); if (!kref_read(&m->syncpt[i].ref)) continue; if (!show_all && !min && !max && !waiters) continue; host1x_debug_output(o, "id %u (%s) min %d max %d (%d waiters)\n", i, m->syncpt[i].name, min, max, waiters); } for (i = 0; i < host1x_syncpt_nb_bases(m); i++) { u32 base_val; base_val = host1x_syncpt_load_wait_base(m->syncpt + i); if (base_val) host1x_debug_output(o, "waitbase id %u val %d\n", i, base_val); } pm_runtime_put(m->dev); host1x_debug_output(o, "\n"); } static void show_all(struct host1x *m, struct output *o, bool show_fifo) { unsigned int i; host1x_hw_show_mlocks(m, o); show_syncpts(m, o, true); host1x_debug_output(o, "---- channels ----\n"); for (i = 0; i < m->info->nb_channels; ++i) { struct host1x_channel *ch = host1x_channel_get_index(m, i); if (ch) { show_channel(ch, o, show_fifo); host1x_channel_put(ch); } } } static int host1x_debug_all_show(struct seq_file *s, void *unused) { struct output o = { .fn = write_to_seqfile, .ctx = s }; show_all(s->private, &o, true); return 0; } DEFINE_SHOW_ATTRIBUTE(host1x_debug_all); static int host1x_debug_show(struct seq_file *s, void *unused) { struct output o = { .fn = write_to_seqfile, .ctx = s }; show_all(s->private, &o, false); return 0; } DEFINE_SHOW_ATTRIBUTE(host1x_debug); static void host1x_debugfs_init(struct host1x *host1x) { struct dentry *de = debugfs_create_dir("tegra-host1x", NULL); /* Store the created entry */ host1x->debugfs = de; debugfs_create_file("status", S_IRUGO, de, host1x, &host1x_debug_fops); debugfs_create_file("status_all", S_IRUGO, de, host1x, &host1x_debug_all_fops); debugfs_create_u32("trace_cmdbuf", S_IRUGO|S_IWUSR, de, &host1x_debug_trace_cmdbuf); host1x_hw_debug_init(host1x, de); debugfs_create_u32("force_timeout_pid", S_IRUGO|S_IWUSR, de, &host1x_debug_force_timeout_pid); debugfs_create_u32("force_timeout_val", S_IRUGO|S_IWUSR, de, &host1x_debug_force_timeout_val); debugfs_create_u32("force_timeout_channel", S_IRUGO|S_IWUSR, de, &host1x_debug_force_timeout_channel); } static void host1x_debugfs_exit(struct host1x *host1x) { debugfs_remove_recursive(host1x->debugfs); } void host1x_debug_init(struct host1x *host1x) { if (IS_ENABLED(CONFIG_DEBUG_FS)) host1x_debugfs_init(host1x); } void host1x_debug_deinit(struct host1x *host1x) { if (IS_ENABLED(CONFIG_DEBUG_FS)) host1x_debugfs_exit(host1x); } void host1x_debug_dump(struct host1x *host1x) { struct output o = { .fn = write_to_printk }; show_all(host1x, &o, true); } void host1x_debug_dump_syncpts(struct host1x *host1x) { struct output o = { .fn = write_to_printk }; show_syncpts(host1x, &o, false); }
linux-master
drivers/gpu/host1x/debug.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 Avionic Design GmbH * Copyright (C) 2012-2013, NVIDIA Corporation */ #include <linux/debugfs.h> #include <linux/dma-mapping.h> #include <linux/host1x.h> #include <linux/of.h> #include <linux/seq_file.h> #include <linux/slab.h> #include <linux/of_device.h> #include "bus.h" #include "dev.h" static DEFINE_MUTEX(clients_lock); static LIST_HEAD(clients); static DEFINE_MUTEX(drivers_lock); static LIST_HEAD(drivers); static DEFINE_MUTEX(devices_lock); static LIST_HEAD(devices); struct host1x_subdev { struct host1x_client *client; struct device_node *np; struct list_head list; }; /** * host1x_subdev_add() - add a new subdevice with an associated device node * @device: host1x device to add the subdevice to * @driver: host1x driver containing the subdevices * @np: device node */ static int host1x_subdev_add(struct host1x_device *device, struct host1x_driver *driver, struct device_node *np) { struct host1x_subdev *subdev; struct device_node *child; int err; subdev = kzalloc(sizeof(*subdev), GFP_KERNEL); if (!subdev) return -ENOMEM; INIT_LIST_HEAD(&subdev->list); subdev->np = of_node_get(np); mutex_lock(&device->subdevs_lock); list_add_tail(&subdev->list, &device->subdevs); mutex_unlock(&device->subdevs_lock); /* recursively add children */ for_each_child_of_node(np, child) { if (of_match_node(driver->subdevs, child) && of_device_is_available(child)) { err = host1x_subdev_add(device, driver, child); if (err < 0) { /* XXX cleanup? */ of_node_put(child); return err; } } } return 0; } /** * host1x_subdev_del() - remove subdevice * @subdev: subdevice to remove */ static void host1x_subdev_del(struct host1x_subdev *subdev) { list_del(&subdev->list); of_node_put(subdev->np); kfree(subdev); } /** * host1x_device_parse_dt() - scan device tree and add matching subdevices * @device: host1x logical device * @driver: host1x driver */ static int host1x_device_parse_dt(struct host1x_device *device, struct host1x_driver *driver) { struct device_node *np; int err; for_each_child_of_node(device->dev.parent->of_node, np) { if (of_match_node(driver->subdevs, np) && of_device_is_available(np)) { err = host1x_subdev_add(device, driver, np); if (err < 0) { of_node_put(np); return err; } } } return 0; } static void host1x_subdev_register(struct host1x_device *device, struct host1x_subdev *subdev, struct host1x_client *client) { int err; /* * Move the subdevice to the list of active (registered) subdevices * and associate it with a client. At the same time, associate the * client with its parent device. */ mutex_lock(&device->subdevs_lock); mutex_lock(&device->clients_lock); list_move_tail(&client->list, &device->clients); list_move_tail(&subdev->list, &device->active); client->host = &device->dev; subdev->client = client; mutex_unlock(&device->clients_lock); mutex_unlock(&device->subdevs_lock); if (list_empty(&device->subdevs)) { err = device_add(&device->dev); if (err < 0) dev_err(&device->dev, "failed to add: %d\n", err); else device->registered = true; } } static void __host1x_subdev_unregister(struct host1x_device *device, struct host1x_subdev *subdev) { struct host1x_client *client = subdev->client; /* * If all subdevices have been activated, we're about to remove the * first active subdevice, so unload the driver first. */ if (list_empty(&device->subdevs)) { if (device->registered) { device->registered = false; device_del(&device->dev); } } /* * Move the subdevice back to the list of idle subdevices and remove * it from list of clients. */ mutex_lock(&device->clients_lock); subdev->client = NULL; client->host = NULL; list_move_tail(&subdev->list, &device->subdevs); /* * XXX: Perhaps don't do this here, but rather explicitly remove it * when the device is about to be deleted. * * This is somewhat complicated by the fact that this function is * used to remove the subdevice when a client is unregistered but * also when the composite device is about to be removed. */ list_del_init(&client->list); mutex_unlock(&device->clients_lock); } static void host1x_subdev_unregister(struct host1x_device *device, struct host1x_subdev *subdev) { mutex_lock(&device->subdevs_lock); __host1x_subdev_unregister(device, subdev); mutex_unlock(&device->subdevs_lock); } /** * host1x_device_init() - initialize a host1x logical device * @device: host1x logical device * * The driver for the host1x logical device can call this during execution of * its &host1x_driver.probe implementation to initialize each of its clients. * The client drivers access the subsystem specific driver data using the * &host1x_client.parent field and driver data associated with it (usually by * calling dev_get_drvdata()). */ int host1x_device_init(struct host1x_device *device) { struct host1x_client *client; int err; mutex_lock(&device->clients_lock); list_for_each_entry(client, &device->clients, list) { if (client->ops && client->ops->early_init) { err = client->ops->early_init(client); if (err < 0) { dev_err(&device->dev, "failed to early initialize %s: %d\n", dev_name(client->dev), err); goto teardown_late; } } } list_for_each_entry(client, &device->clients, list) { if (client->ops && client->ops->init) { err = client->ops->init(client); if (err < 0) { dev_err(&device->dev, "failed to initialize %s: %d\n", dev_name(client->dev), err); goto teardown; } } } mutex_unlock(&device->clients_lock); return 0; teardown: list_for_each_entry_continue_reverse(client, &device->clients, list) if (client->ops->exit) client->ops->exit(client); /* reset client to end of list for late teardown */ client = list_entry(&device->clients, struct host1x_client, list); teardown_late: list_for_each_entry_continue_reverse(client, &device->clients, list) if (client->ops->late_exit) client->ops->late_exit(client); mutex_unlock(&device->clients_lock); return err; } EXPORT_SYMBOL(host1x_device_init); /** * host1x_device_exit() - uninitialize host1x logical device * @device: host1x logical device * * When the driver for a host1x logical device is unloaded, it can call this * function to tear down each of its clients. Typically this is done after a * subsystem-specific data structure is removed and the functionality can no * longer be used. */ int host1x_device_exit(struct host1x_device *device) { struct host1x_client *client; int err; mutex_lock(&device->clients_lock); list_for_each_entry_reverse(client, &device->clients, list) { if (client->ops && client->ops->exit) { err = client->ops->exit(client); if (err < 0) { dev_err(&device->dev, "failed to cleanup %s: %d\n", dev_name(client->dev), err); mutex_unlock(&device->clients_lock); return err; } } } list_for_each_entry_reverse(client, &device->clients, list) { if (client->ops && client->ops->late_exit) { err = client->ops->late_exit(client); if (err < 0) { dev_err(&device->dev, "failed to late cleanup %s: %d\n", dev_name(client->dev), err); mutex_unlock(&device->clients_lock); return err; } } } mutex_unlock(&device->clients_lock); return 0; } EXPORT_SYMBOL(host1x_device_exit); static int host1x_add_client(struct host1x *host1x, struct host1x_client *client) { struct host1x_device *device; struct host1x_subdev *subdev; mutex_lock(&host1x->devices_lock); list_for_each_entry(device, &host1x->devices, list) { list_for_each_entry(subdev, &device->subdevs, list) { if (subdev->np == client->dev->of_node) { host1x_subdev_register(device, subdev, client); mutex_unlock(&host1x->devices_lock); return 0; } } } mutex_unlock(&host1x->devices_lock); return -ENODEV; } static int host1x_del_client(struct host1x *host1x, struct host1x_client *client) { struct host1x_device *device, *dt; struct host1x_subdev *subdev; mutex_lock(&host1x->devices_lock); list_for_each_entry_safe(device, dt, &host1x->devices, list) { list_for_each_entry(subdev, &device->active, list) { if (subdev->client == client) { host1x_subdev_unregister(device, subdev); mutex_unlock(&host1x->devices_lock); return 0; } } } mutex_unlock(&host1x->devices_lock); return -ENODEV; } static int host1x_device_match(struct device *dev, struct device_driver *drv) { return strcmp(dev_name(dev), drv->name) == 0; } /* * Note that this is really only needed for backwards compatibility * with libdrm, which parses this information from sysfs and will * fail if it can't find the OF_FULLNAME, specifically. */ static int host1x_device_uevent(const struct device *dev, struct kobj_uevent_env *env) { of_device_uevent(dev->parent, env); return 0; } static int host1x_dma_configure(struct device *dev) { return of_dma_configure(dev, dev->of_node, true); } static const struct dev_pm_ops host1x_device_pm_ops = { .suspend = pm_generic_suspend, .resume = pm_generic_resume, .freeze = pm_generic_freeze, .thaw = pm_generic_thaw, .poweroff = pm_generic_poweroff, .restore = pm_generic_restore, }; struct bus_type host1x_bus_type = { .name = "host1x", .match = host1x_device_match, .uevent = host1x_device_uevent, .dma_configure = host1x_dma_configure, .pm = &host1x_device_pm_ops, }; static void __host1x_device_del(struct host1x_device *device) { struct host1x_subdev *subdev, *sd; struct host1x_client *client, *cl; mutex_lock(&device->subdevs_lock); /* unregister subdevices */ list_for_each_entry_safe(subdev, sd, &device->active, list) { /* * host1x_subdev_unregister() will remove the client from * any lists, so we'll need to manually add it back to the * list of idle clients. * * XXX: Alternatively, perhaps don't remove the client from * any lists in host1x_subdev_unregister() and instead do * that explicitly from host1x_unregister_client()? */ client = subdev->client; __host1x_subdev_unregister(device, subdev); /* add the client to the list of idle clients */ mutex_lock(&clients_lock); list_add_tail(&client->list, &clients); mutex_unlock(&clients_lock); } /* remove subdevices */ list_for_each_entry_safe(subdev, sd, &device->subdevs, list) host1x_subdev_del(subdev); mutex_unlock(&device->subdevs_lock); /* move clients to idle list */ mutex_lock(&clients_lock); mutex_lock(&device->clients_lock); list_for_each_entry_safe(client, cl, &device->clients, list) list_move_tail(&client->list, &clients); mutex_unlock(&device->clients_lock); mutex_unlock(&clients_lock); /* finally remove the device */ list_del_init(&device->list); } static void host1x_device_release(struct device *dev) { struct host1x_device *device = to_host1x_device(dev); __host1x_device_del(device); kfree(device); } static int host1x_device_add(struct host1x *host1x, struct host1x_driver *driver) { struct host1x_client *client, *tmp; struct host1x_subdev *subdev; struct host1x_device *device; int err; device = kzalloc(sizeof(*device), GFP_KERNEL); if (!device) return -ENOMEM; device_initialize(&device->dev); mutex_init(&device->subdevs_lock); INIT_LIST_HEAD(&device->subdevs); INIT_LIST_HEAD(&device->active); mutex_init(&device->clients_lock); INIT_LIST_HEAD(&device->clients); INIT_LIST_HEAD(&device->list); device->driver = driver; device->dev.coherent_dma_mask = host1x->dev->coherent_dma_mask; device->dev.dma_mask = &device->dev.coherent_dma_mask; dev_set_name(&device->dev, "%s", driver->driver.name); device->dev.release = host1x_device_release; device->dev.bus = &host1x_bus_type; device->dev.parent = host1x->dev; of_dma_configure(&device->dev, host1x->dev->of_node, true); device->dev.dma_parms = &device->dma_parms; dma_set_max_seg_size(&device->dev, UINT_MAX); err = host1x_device_parse_dt(device, driver); if (err < 0) { kfree(device); return err; } list_add_tail(&device->list, &host1x->devices); mutex_lock(&clients_lock); list_for_each_entry_safe(client, tmp, &clients, list) { list_for_each_entry(subdev, &device->subdevs, list) { if (subdev->np == client->dev->of_node) { host1x_subdev_register(device, subdev, client); break; } } } mutex_unlock(&clients_lock); return 0; } /* * Removes a device by first unregistering any subdevices and then removing * itself from the list of devices. * * This function must be called with the host1x->devices_lock held. */ static void host1x_device_del(struct host1x *host1x, struct host1x_device *device) { if (device->registered) { device->registered = false; device_del(&device->dev); } put_device(&device->dev); } static void host1x_attach_driver(struct host1x *host1x, struct host1x_driver *driver) { struct host1x_device *device; int err; mutex_lock(&host1x->devices_lock); list_for_each_entry(device, &host1x->devices, list) { if (device->driver == driver) { mutex_unlock(&host1x->devices_lock); return; } } err = host1x_device_add(host1x, driver); if (err < 0) dev_err(host1x->dev, "failed to allocate device: %d\n", err); mutex_unlock(&host1x->devices_lock); } static void host1x_detach_driver(struct host1x *host1x, struct host1x_driver *driver) { struct host1x_device *device, *tmp; mutex_lock(&host1x->devices_lock); list_for_each_entry_safe(device, tmp, &host1x->devices, list) if (device->driver == driver) host1x_device_del(host1x, device); mutex_unlock(&host1x->devices_lock); } static int host1x_devices_show(struct seq_file *s, void *data) { struct host1x *host1x = s->private; struct host1x_device *device; mutex_lock(&host1x->devices_lock); list_for_each_entry(device, &host1x->devices, list) { struct host1x_subdev *subdev; seq_printf(s, "%s\n", dev_name(&device->dev)); mutex_lock(&device->subdevs_lock); list_for_each_entry(subdev, &device->active, list) seq_printf(s, " %pOFf: %s\n", subdev->np, dev_name(subdev->client->dev)); list_for_each_entry(subdev, &device->subdevs, list) seq_printf(s, " %pOFf:\n", subdev->np); mutex_unlock(&device->subdevs_lock); } mutex_unlock(&host1x->devices_lock); return 0; } DEFINE_SHOW_ATTRIBUTE(host1x_devices); /** * host1x_register() - register a host1x controller * @host1x: host1x controller * * The host1x controller driver uses this to register a host1x controller with * the infrastructure. Note that all Tegra SoC generations have only ever come * with a single host1x instance, so this function is somewhat academic. */ int host1x_register(struct host1x *host1x) { struct host1x_driver *driver; mutex_lock(&devices_lock); list_add_tail(&host1x->list, &devices); mutex_unlock(&devices_lock); mutex_lock(&drivers_lock); list_for_each_entry(driver, &drivers, list) host1x_attach_driver(host1x, driver); mutex_unlock(&drivers_lock); debugfs_create_file("devices", S_IRUGO, host1x->debugfs, host1x, &host1x_devices_fops); return 0; } /** * host1x_unregister() - unregister a host1x controller * @host1x: host1x controller * * The host1x controller driver uses this to remove a host1x controller from * the infrastructure. */ int host1x_unregister(struct host1x *host1x) { struct host1x_driver *driver; mutex_lock(&drivers_lock); list_for_each_entry(driver, &drivers, list) host1x_detach_driver(host1x, driver); mutex_unlock(&drivers_lock); mutex_lock(&devices_lock); list_del_init(&host1x->list); mutex_unlock(&devices_lock); return 0; } static int host1x_device_probe(struct device *dev) { struct host1x_driver *driver = to_host1x_driver(dev->driver); struct host1x_device *device = to_host1x_device(dev); if (driver->probe) return driver->probe(device); return 0; } static int host1x_device_remove(struct device *dev) { struct host1x_driver *driver = to_host1x_driver(dev->driver); struct host1x_device *device = to_host1x_device(dev); if (driver->remove) return driver->remove(device); return 0; } static void host1x_device_shutdown(struct device *dev) { struct host1x_driver *driver = to_host1x_driver(dev->driver); struct host1x_device *device = to_host1x_device(dev); if (driver->shutdown) driver->shutdown(device); } /** * host1x_driver_register_full() - register a host1x driver * @driver: host1x driver * @owner: owner module * * Drivers for host1x logical devices call this function to register a driver * with the infrastructure. Note that since these drive logical devices, the * registration of the driver actually triggers tho logical device creation. * A logical device will be created for each host1x instance. */ int host1x_driver_register_full(struct host1x_driver *driver, struct module *owner) { struct host1x *host1x; INIT_LIST_HEAD(&driver->list); mutex_lock(&drivers_lock); list_add_tail(&driver->list, &drivers); mutex_unlock(&drivers_lock); mutex_lock(&devices_lock); list_for_each_entry(host1x, &devices, list) host1x_attach_driver(host1x, driver); mutex_unlock(&devices_lock); driver->driver.bus = &host1x_bus_type; driver->driver.owner = owner; driver->driver.probe = host1x_device_probe; driver->driver.remove = host1x_device_remove; driver->driver.shutdown = host1x_device_shutdown; return driver_register(&driver->driver); } EXPORT_SYMBOL(host1x_driver_register_full); /** * host1x_driver_unregister() - unregister a host1x driver * @driver: host1x driver * * Unbinds the driver from each of the host1x logical devices that it is * bound to, effectively removing the subsystem devices that they represent. */ void host1x_driver_unregister(struct host1x_driver *driver) { struct host1x *host1x; driver_unregister(&driver->driver); mutex_lock(&devices_lock); list_for_each_entry(host1x, &devices, list) host1x_detach_driver(host1x, driver); mutex_unlock(&devices_lock); mutex_lock(&drivers_lock); list_del_init(&driver->list); mutex_unlock(&drivers_lock); } EXPORT_SYMBOL(host1x_driver_unregister); /** * __host1x_client_init() - initialize a host1x client * @client: host1x client * @key: lock class key for the client-specific mutex */ void __host1x_client_init(struct host1x_client *client, struct lock_class_key *key) { host1x_bo_cache_init(&client->cache); INIT_LIST_HEAD(&client->list); __mutex_init(&client->lock, "host1x client lock", key); client->usecount = 0; } EXPORT_SYMBOL(__host1x_client_init); /** * host1x_client_exit() - uninitialize a host1x client * @client: host1x client */ void host1x_client_exit(struct host1x_client *client) { mutex_destroy(&client->lock); } EXPORT_SYMBOL(host1x_client_exit); /** * __host1x_client_register() - register a host1x client * @client: host1x client * * Registers a host1x client with each host1x controller instance. Note that * each client will only match their parent host1x controller and will only be * associated with that instance. Once all clients have been registered with * their parent host1x controller, the infrastructure will set up the logical * device and call host1x_device_init(), which will in turn call each client's * &host1x_client_ops.init implementation. */ int __host1x_client_register(struct host1x_client *client) { struct host1x *host1x; int err; mutex_lock(&devices_lock); list_for_each_entry(host1x, &devices, list) { err = host1x_add_client(host1x, client); if (!err) { mutex_unlock(&devices_lock); return 0; } } mutex_unlock(&devices_lock); mutex_lock(&clients_lock); list_add_tail(&client->list, &clients); mutex_unlock(&clients_lock); return 0; } EXPORT_SYMBOL(__host1x_client_register); /** * host1x_client_unregister() - unregister a host1x client * @client: host1x client * * Removes a host1x client from its host1x controller instance. If a logical * device has already been initialized, it will be torn down. */ void host1x_client_unregister(struct host1x_client *client) { struct host1x_client *c; struct host1x *host1x; int err; mutex_lock(&devices_lock); list_for_each_entry(host1x, &devices, list) { err = host1x_del_client(host1x, client); if (!err) { mutex_unlock(&devices_lock); return; } } mutex_unlock(&devices_lock); mutex_lock(&clients_lock); list_for_each_entry(c, &clients, list) { if (c == client) { list_del_init(&c->list); break; } } mutex_unlock(&clients_lock); host1x_bo_cache_destroy(&client->cache); } EXPORT_SYMBOL(host1x_client_unregister); int host1x_client_suspend(struct host1x_client *client) { int err = 0; mutex_lock(&client->lock); if (client->usecount == 1) { if (client->ops && client->ops->suspend) { err = client->ops->suspend(client); if (err < 0) goto unlock; } } client->usecount--; dev_dbg(client->dev, "use count: %u\n", client->usecount); if (client->parent) { err = host1x_client_suspend(client->parent); if (err < 0) goto resume; } goto unlock; resume: if (client->usecount == 0) if (client->ops && client->ops->resume) client->ops->resume(client); client->usecount++; unlock: mutex_unlock(&client->lock); return err; } EXPORT_SYMBOL(host1x_client_suspend); int host1x_client_resume(struct host1x_client *client) { int err = 0; mutex_lock(&client->lock); if (client->parent) { err = host1x_client_resume(client->parent); if (err < 0) goto unlock; } if (client->usecount == 0) { if (client->ops && client->ops->resume) { err = client->ops->resume(client); if (err < 0) goto suspend; } } client->usecount++; dev_dbg(client->dev, "use count: %u\n", client->usecount); goto unlock; suspend: if (client->parent) host1x_client_suspend(client->parent); unlock: mutex_unlock(&client->lock); return err; } EXPORT_SYMBOL(host1x_client_resume); struct host1x_bo_mapping *host1x_bo_pin(struct device *dev, struct host1x_bo *bo, enum dma_data_direction dir, struct host1x_bo_cache *cache) { struct host1x_bo_mapping *mapping; if (cache) { mutex_lock(&cache->lock); list_for_each_entry(mapping, &cache->mappings, entry) { if (mapping->bo == bo && mapping->direction == dir) { kref_get(&mapping->ref); goto unlock; } } } mapping = bo->ops->pin(dev, bo, dir); if (IS_ERR(mapping)) goto unlock; spin_lock(&mapping->bo->lock); list_add_tail(&mapping->list, &bo->mappings); spin_unlock(&mapping->bo->lock); if (cache) { INIT_LIST_HEAD(&mapping->entry); mapping->cache = cache; list_add_tail(&mapping->entry, &cache->mappings); /* bump reference count to track the copy in the cache */ kref_get(&mapping->ref); } unlock: if (cache) mutex_unlock(&cache->lock); return mapping; } EXPORT_SYMBOL(host1x_bo_pin); static void __host1x_bo_unpin(struct kref *ref) { struct host1x_bo_mapping *mapping = to_host1x_bo_mapping(ref); /* * When the last reference of the mapping goes away, make sure to remove the mapping from * the cache. */ if (mapping->cache) list_del(&mapping->entry); spin_lock(&mapping->bo->lock); list_del(&mapping->list); spin_unlock(&mapping->bo->lock); mapping->bo->ops->unpin(mapping); } void host1x_bo_unpin(struct host1x_bo_mapping *mapping) { struct host1x_bo_cache *cache = mapping->cache; if (cache) mutex_lock(&cache->lock); kref_put(&mapping->ref, __host1x_bo_unpin); if (cache) mutex_unlock(&cache->lock); } EXPORT_SYMBOL(host1x_bo_unpin);
linux-master
drivers/gpu/host1x/bus.c
// SPDX-License-Identifier: GPL-2.0-only /* * Tegra host1x Command DMA * * Copyright (c) 2010-2013, NVIDIA Corporation. */ #include <asm/cacheflush.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/host1x.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/kfifo.h> #include <linux/slab.h> #include <trace/events/host1x.h> #include "cdma.h" #include "channel.h" #include "dev.h" #include "debug.h" #include "job.h" /* * push_buffer * * The push buffer is a circular array of words to be fetched by command DMA. * Note that it works slightly differently to the sync queue; fence == pos * means that the push buffer is full, not empty. */ /* * Typically the commands written into the push buffer are a pair of words. We * use slots to represent each of these pairs and to simplify things. Note the * strange number of slots allocated here. 512 slots will fit exactly within a * single memory page. We also need one additional word at the end of the push * buffer for the RESTART opcode that will instruct the CDMA to jump back to * the beginning of the push buffer. With 512 slots, this means that we'll use * 2 memory pages and waste 4092 bytes of the second page that will never be * used. */ #define HOST1X_PUSHBUFFER_SLOTS 511 /* * Clean up push buffer resources */ static void host1x_pushbuffer_destroy(struct push_buffer *pb) { struct host1x_cdma *cdma = pb_to_cdma(pb); struct host1x *host1x = cdma_to_host1x(cdma); if (!pb->mapped) return; if (host1x->domain) { iommu_unmap(host1x->domain, pb->dma, pb->alloc_size); free_iova(&host1x->iova, iova_pfn(&host1x->iova, pb->dma)); } dma_free_wc(host1x->dev, pb->alloc_size, pb->mapped, pb->phys); pb->mapped = NULL; pb->phys = 0; } /* * Init push buffer resources */ static int host1x_pushbuffer_init(struct push_buffer *pb) { struct host1x_cdma *cdma = pb_to_cdma(pb); struct host1x *host1x = cdma_to_host1x(cdma); struct iova *alloc; u32 size; int err; pb->mapped = NULL; pb->phys = 0; pb->size = HOST1X_PUSHBUFFER_SLOTS * 8; size = pb->size + 4; /* initialize buffer pointers */ pb->fence = pb->size - 8; pb->pos = 0; if (host1x->domain) { unsigned long shift; size = iova_align(&host1x->iova, size); pb->mapped = dma_alloc_wc(host1x->dev, size, &pb->phys, GFP_KERNEL); if (!pb->mapped) return -ENOMEM; shift = iova_shift(&host1x->iova); alloc = alloc_iova(&host1x->iova, size >> shift, host1x->iova_end >> shift, true); if (!alloc) { err = -ENOMEM; goto iommu_free_mem; } pb->dma = iova_dma_addr(&host1x->iova, alloc); err = iommu_map(host1x->domain, pb->dma, pb->phys, size, IOMMU_READ, GFP_KERNEL); if (err) goto iommu_free_iova; } else { pb->mapped = dma_alloc_wc(host1x->dev, size, &pb->phys, GFP_KERNEL); if (!pb->mapped) return -ENOMEM; pb->dma = pb->phys; } pb->alloc_size = size; host1x_hw_pushbuffer_init(host1x, pb); return 0; iommu_free_iova: __free_iova(&host1x->iova, alloc); iommu_free_mem: dma_free_wc(host1x->dev, size, pb->mapped, pb->phys); return err; } /* * Push two words to the push buffer * Caller must ensure push buffer is not full */ static void host1x_pushbuffer_push(struct push_buffer *pb, u32 op1, u32 op2) { u32 *p = (u32 *)((void *)pb->mapped + pb->pos); WARN_ON(pb->pos == pb->fence); *(p++) = op1; *(p++) = op2; pb->pos += 8; if (pb->pos >= pb->size) pb->pos -= pb->size; } /* * Pop a number of two word slots from the push buffer * Caller must ensure push buffer is not empty */ static void host1x_pushbuffer_pop(struct push_buffer *pb, unsigned int slots) { /* Advance the next write position */ pb->fence += slots * 8; if (pb->fence >= pb->size) pb->fence -= pb->size; } /* * Return the number of two word slots free in the push buffer */ static u32 host1x_pushbuffer_space(struct push_buffer *pb) { unsigned int fence = pb->fence; if (pb->fence < pb->pos) fence += pb->size; return (fence - pb->pos) / 8; } /* * Sleep (if necessary) until the requested event happens * - CDMA_EVENT_SYNC_QUEUE_EMPTY : sync queue is completely empty. * - Returns 1 * - CDMA_EVENT_PUSH_BUFFER_SPACE : there is space in the push buffer * - Return the amount of space (> 0) * Must be called with the cdma lock held. */ unsigned int host1x_cdma_wait_locked(struct host1x_cdma *cdma, enum cdma_event event) { for (;;) { struct push_buffer *pb = &cdma->push_buffer; unsigned int space; switch (event) { case CDMA_EVENT_SYNC_QUEUE_EMPTY: space = list_empty(&cdma->sync_queue) ? 1 : 0; break; case CDMA_EVENT_PUSH_BUFFER_SPACE: space = host1x_pushbuffer_space(pb); break; default: WARN_ON(1); return -EINVAL; } if (space) return space; trace_host1x_wait_cdma(dev_name(cdma_to_channel(cdma)->dev), event); /* If somebody has managed to already start waiting, yield */ if (cdma->event != CDMA_EVENT_NONE) { mutex_unlock(&cdma->lock); schedule(); mutex_lock(&cdma->lock); continue; } cdma->event = event; mutex_unlock(&cdma->lock); wait_for_completion(&cdma->complete); mutex_lock(&cdma->lock); } return 0; } /* * Sleep (if necessary) until the push buffer has enough free space. * * Must be called with the cdma lock held. */ static int host1x_cdma_wait_pushbuffer_space(struct host1x *host1x, struct host1x_cdma *cdma, unsigned int needed) { while (true) { struct push_buffer *pb = &cdma->push_buffer; unsigned int space; space = host1x_pushbuffer_space(pb); if (space >= needed) break; trace_host1x_wait_cdma(dev_name(cdma_to_channel(cdma)->dev), CDMA_EVENT_PUSH_BUFFER_SPACE); host1x_hw_cdma_flush(host1x, cdma); /* If somebody has managed to already start waiting, yield */ if (cdma->event != CDMA_EVENT_NONE) { mutex_unlock(&cdma->lock); schedule(); mutex_lock(&cdma->lock); continue; } cdma->event = CDMA_EVENT_PUSH_BUFFER_SPACE; mutex_unlock(&cdma->lock); wait_for_completion(&cdma->complete); mutex_lock(&cdma->lock); } return 0; } /* * Start timer that tracks the time spent by the job. * Must be called with the cdma lock held. */ static void cdma_start_timer_locked(struct host1x_cdma *cdma, struct host1x_job *job) { if (cdma->timeout.client) { /* timer already started */ return; } cdma->timeout.client = job->client; cdma->timeout.syncpt = job->syncpt; cdma->timeout.syncpt_val = job->syncpt_end; cdma->timeout.start_ktime = ktime_get(); schedule_delayed_work(&cdma->timeout.wq, msecs_to_jiffies(job->timeout)); } /* * Stop timer when a buffer submission completes. * Must be called with the cdma lock held. */ static void stop_cdma_timer_locked(struct host1x_cdma *cdma) { cancel_delayed_work(&cdma->timeout.wq); cdma->timeout.client = NULL; } /* * For all sync queue entries that have already finished according to the * current sync point registers: * - unpin & unref their mems * - pop their push buffer slots * - remove them from the sync queue * This is normally called from the host code's worker thread, but can be * called manually if necessary. * Must be called with the cdma lock held. */ static void update_cdma_locked(struct host1x_cdma *cdma) { bool signal = false; struct host1x_job *job, *n; /* * Walk the sync queue, reading the sync point registers as necessary, * to consume as many sync queue entries as possible without blocking */ list_for_each_entry_safe(job, n, &cdma->sync_queue, list) { struct host1x_syncpt *sp = job->syncpt; /* Check whether this syncpt has completed, and bail if not */ if (!host1x_syncpt_is_expired(sp, job->syncpt_end) && !job->cancelled) { /* Start timer on next pending syncpt */ if (job->timeout) cdma_start_timer_locked(cdma, job); break; } /* Cancel timeout, when a buffer completes */ if (cdma->timeout.client) stop_cdma_timer_locked(cdma); /* Unpin the memory */ host1x_job_unpin(job); /* Pop push buffer slots */ if (job->num_slots) { struct push_buffer *pb = &cdma->push_buffer; host1x_pushbuffer_pop(pb, job->num_slots); if (cdma->event == CDMA_EVENT_PUSH_BUFFER_SPACE) signal = true; } list_del(&job->list); host1x_job_put(job); } if (cdma->event == CDMA_EVENT_SYNC_QUEUE_EMPTY && list_empty(&cdma->sync_queue)) signal = true; if (signal) { cdma->event = CDMA_EVENT_NONE; complete(&cdma->complete); } } void host1x_cdma_update_sync_queue(struct host1x_cdma *cdma, struct device *dev) { struct host1x *host1x = cdma_to_host1x(cdma); u32 restart_addr, syncpt_incrs, syncpt_val; struct host1x_job *job, *next_job = NULL; syncpt_val = host1x_syncpt_load(cdma->timeout.syncpt); dev_dbg(dev, "%s: starting cleanup (thresh %d)\n", __func__, syncpt_val); /* * Move the sync_queue read pointer to the first entry that hasn't * completed based on the current HW syncpt value. It's likely there * won't be any (i.e. we're still at the head), but covers the case * where a syncpt incr happens just prior/during the teardown. */ dev_dbg(dev, "%s: skip completed buffers still in sync_queue\n", __func__); list_for_each_entry(job, &cdma->sync_queue, list) { if (syncpt_val < job->syncpt_end) { if (!list_is_last(&job->list, &cdma->sync_queue)) next_job = list_next_entry(job, list); goto syncpt_incr; } host1x_job_dump(dev, job); } /* all jobs have been completed */ job = NULL; syncpt_incr: /* * Increment with CPU the remaining syncpts of a partially executed job. * * CDMA will continue execution starting with the next job or will get * into idle state. */ if (next_job) restart_addr = next_job->first_get; else restart_addr = cdma->last_pos; if (!job) goto resume; /* do CPU increments for the remaining syncpts */ if (job->syncpt_recovery) { dev_dbg(dev, "%s: perform CPU incr on pending buffers\n", __func__); /* won't need a timeout when replayed */ job->timeout = 0; syncpt_incrs = job->syncpt_end - syncpt_val; dev_dbg(dev, "%s: CPU incr (%d)\n", __func__, syncpt_incrs); host1x_job_dump(dev, job); /* safe to use CPU to incr syncpts */ host1x_hw_cdma_timeout_cpu_incr(host1x, cdma, job->first_get, syncpt_incrs, job->syncpt_end, job->num_slots); dev_dbg(dev, "%s: finished sync_queue modification\n", __func__); } else { struct host1x_job *failed_job = job; host1x_job_dump(dev, job); host1x_syncpt_set_locked(job->syncpt); failed_job->cancelled = true; list_for_each_entry_continue(job, &cdma->sync_queue, list) { unsigned int i; if (job->syncpt != failed_job->syncpt) continue; for (i = 0; i < job->num_slots; i++) { unsigned int slot = (job->first_get/8 + i) % HOST1X_PUSHBUFFER_SLOTS; u32 *mapped = cdma->push_buffer.mapped; /* * Overwrite opcodes with 0 word writes * to offset 0xbad. This does nothing but * has a easily detected signature in debug * traces. * * On systems with MLOCK enforcement enabled, * the above 0 word writes would fall foul of * the enforcement. As such, in the first slot * put a RESTART_W opcode to the beginning * of the next job. We don't use this for older * chips since those only support the RESTART * opcode with inconvenient alignment requirements. */ if (i == 0 && host1x->info->has_wide_gather) { unsigned int next_job = (job->first_get/8 + job->num_slots) % HOST1X_PUSHBUFFER_SLOTS; mapped[2*slot+0] = (0xd << 28) | (next_job * 2); mapped[2*slot+1] = 0x0; } else { mapped[2*slot+0] = 0x1bad0000; mapped[2*slot+1] = 0x1bad0000; } } job->cancelled = true; } wmb(); update_cdma_locked(cdma); } resume: /* roll back DMAGET and start up channel again */ host1x_hw_cdma_resume(host1x, cdma, restart_addr); } static void cdma_update_work(struct work_struct *work) { struct host1x_cdma *cdma = container_of(work, struct host1x_cdma, update_work); mutex_lock(&cdma->lock); update_cdma_locked(cdma); mutex_unlock(&cdma->lock); } /* * Create a cdma */ int host1x_cdma_init(struct host1x_cdma *cdma) { int err; mutex_init(&cdma->lock); init_completion(&cdma->complete); INIT_WORK(&cdma->update_work, cdma_update_work); INIT_LIST_HEAD(&cdma->sync_queue); cdma->event = CDMA_EVENT_NONE; cdma->running = false; cdma->torndown = false; err = host1x_pushbuffer_init(&cdma->push_buffer); if (err) return err; return 0; } /* * Destroy a cdma */ int host1x_cdma_deinit(struct host1x_cdma *cdma) { struct push_buffer *pb = &cdma->push_buffer; struct host1x *host1x = cdma_to_host1x(cdma); if (cdma->running) { pr_warn("%s: CDMA still running\n", __func__); return -EBUSY; } host1x_pushbuffer_destroy(pb); host1x_hw_cdma_timeout_destroy(host1x, cdma); return 0; } /* * Begin a cdma submit */ int host1x_cdma_begin(struct host1x_cdma *cdma, struct host1x_job *job) { struct host1x *host1x = cdma_to_host1x(cdma); mutex_lock(&cdma->lock); /* * Check if syncpoint was locked due to previous job timeout. * This needs to be done within the cdma lock to avoid a race * with the timeout handler. */ if (job->syncpt->locked) { mutex_unlock(&cdma->lock); return -EPERM; } if (job->timeout) { /* init state on first submit with timeout value */ if (!cdma->timeout.initialized) { int err; err = host1x_hw_cdma_timeout_init(host1x, cdma); if (err) { mutex_unlock(&cdma->lock); return err; } } } if (!cdma->running) host1x_hw_cdma_start(host1x, cdma); cdma->slots_free = 0; cdma->slots_used = 0; cdma->first_get = cdma->push_buffer.pos; trace_host1x_cdma_begin(dev_name(job->channel->dev)); return 0; } /* * Push two words into a push buffer slot * Blocks as necessary if the push buffer is full. */ void host1x_cdma_push(struct host1x_cdma *cdma, u32 op1, u32 op2) { struct host1x *host1x = cdma_to_host1x(cdma); struct push_buffer *pb = &cdma->push_buffer; u32 slots_free = cdma->slots_free; if (host1x_debug_trace_cmdbuf) trace_host1x_cdma_push(dev_name(cdma_to_channel(cdma)->dev), op1, op2); if (slots_free == 0) { host1x_hw_cdma_flush(host1x, cdma); slots_free = host1x_cdma_wait_locked(cdma, CDMA_EVENT_PUSH_BUFFER_SPACE); } cdma->slots_free = slots_free - 1; cdma->slots_used++; host1x_pushbuffer_push(pb, op1, op2); } /* * Push four words into two consecutive push buffer slots. Note that extra * care needs to be taken not to split the two slots across the end of the * push buffer. Otherwise the RESTART opcode at the end of the push buffer * that ensures processing will restart at the beginning will break up the * four words. * * Blocks as necessary if the push buffer is full. */ void host1x_cdma_push_wide(struct host1x_cdma *cdma, u32 op1, u32 op2, u32 op3, u32 op4) { struct host1x_channel *channel = cdma_to_channel(cdma); struct host1x *host1x = cdma_to_host1x(cdma); struct push_buffer *pb = &cdma->push_buffer; unsigned int space = cdma->slots_free; unsigned int needed = 2, extra = 0; if (host1x_debug_trace_cmdbuf) trace_host1x_cdma_push_wide(dev_name(channel->dev), op1, op2, op3, op4); /* compute number of extra slots needed for padding */ if (pb->pos + 16 > pb->size) { extra = (pb->size - pb->pos) / 8; needed += extra; } host1x_cdma_wait_pushbuffer_space(host1x, cdma, needed); space = host1x_pushbuffer_space(pb); cdma->slots_free = space - needed; cdma->slots_used += needed; if (extra > 0) { /* * If there isn't enough space at the tail of the pushbuffer, * insert a RESTART(0) here to go back to the beginning. * The code above adjusted the indexes appropriately. */ host1x_pushbuffer_push(pb, (0x5 << 28), 0xdead0000); } host1x_pushbuffer_push(pb, op1, op2); host1x_pushbuffer_push(pb, op3, op4); } /* * End a cdma submit * Kick off DMA, add job to the sync queue, and a number of slots to be freed * from the pushbuffer. The handles for a submit must all be pinned at the same * time, but they can be unpinned in smaller chunks. */ void host1x_cdma_end(struct host1x_cdma *cdma, struct host1x_job *job) { struct host1x *host1x = cdma_to_host1x(cdma); bool idle = list_empty(&cdma->sync_queue); host1x_hw_cdma_flush(host1x, cdma); job->first_get = cdma->first_get; job->num_slots = cdma->slots_used; host1x_job_get(job); list_add_tail(&job->list, &cdma->sync_queue); /* start timer on idle -> active transitions */ if (job->timeout && idle) cdma_start_timer_locked(cdma, job); trace_host1x_cdma_end(dev_name(job->channel->dev)); mutex_unlock(&cdma->lock); } /* * Update cdma state according to current sync point values */ void host1x_cdma_update(struct host1x_cdma *cdma) { schedule_work(&cdma->update_work); }
linux-master
drivers/gpu/host1x/cdma.c
// SPDX-License-Identifier: GPL-2.0-only /* * Syncpoint dma_fence implementation * * Copyright (c) 2020, NVIDIA Corporation. */ #include <linux/dma-fence.h> #include <linux/file.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/sync_file.h> #include "fence.h" #include "intr.h" #include "syncpt.h" static const char *host1x_syncpt_fence_get_driver_name(struct dma_fence *f) { return "host1x"; } static const char *host1x_syncpt_fence_get_timeline_name(struct dma_fence *f) { return "syncpoint"; } static struct host1x_syncpt_fence *to_host1x_fence(struct dma_fence *f) { return container_of(f, struct host1x_syncpt_fence, base); } static bool host1x_syncpt_fence_enable_signaling(struct dma_fence *f) { struct host1x_syncpt_fence *sf = to_host1x_fence(f); if (host1x_syncpt_is_expired(sf->sp, sf->threshold)) return false; /* Reference for interrupt path. */ dma_fence_get(f); /* * The dma_fence framework requires the fence driver to keep a * reference to any fences for which 'enable_signaling' has been * called (and that have not been signalled). * * We cannot currently always guarantee that all fences get signalled * or cancelled. As such, for such situations, set up a timeout, so * that long-lasting fences will get reaped eventually. */ if (sf->timeout) { /* Reference for timeout path. */ dma_fence_get(f); schedule_delayed_work(&sf->timeout_work, msecs_to_jiffies(30000)); } host1x_intr_add_fence_locked(sf->sp->host, sf); /* * The fence may get signalled at any time after the above call, * so we need to initialize all state used by signalling * before it. */ return true; } static const struct dma_fence_ops host1x_syncpt_fence_ops = { .get_driver_name = host1x_syncpt_fence_get_driver_name, .get_timeline_name = host1x_syncpt_fence_get_timeline_name, .enable_signaling = host1x_syncpt_fence_enable_signaling, }; void host1x_fence_signal(struct host1x_syncpt_fence *f) { if (atomic_xchg(&f->signaling, 1)) { /* * Already on timeout path, but we removed the fence before * timeout path could, so drop interrupt path reference. */ dma_fence_put(&f->base); return; } if (f->timeout && cancel_delayed_work(&f->timeout_work)) { /* * We know that the timeout path will not be entered. * Safe to drop the timeout path's reference now. */ dma_fence_put(&f->base); } dma_fence_signal_locked(&f->base); dma_fence_put(&f->base); } static void do_fence_timeout(struct work_struct *work) { struct delayed_work *dwork = (struct delayed_work *)work; struct host1x_syncpt_fence *f = container_of(dwork, struct host1x_syncpt_fence, timeout_work); if (atomic_xchg(&f->signaling, 1)) { /* Already on interrupt path, drop timeout path reference if any. */ if (f->timeout) dma_fence_put(&f->base); return; } if (host1x_intr_remove_fence(f->sp->host, f)) { /* * Managed to remove fence from queue, so it's safe to drop * the interrupt path's reference. */ dma_fence_put(&f->base); } dma_fence_set_error(&f->base, -ETIMEDOUT); dma_fence_signal(&f->base); if (f->timeout) dma_fence_put(&f->base); } struct dma_fence *host1x_fence_create(struct host1x_syncpt *sp, u32 threshold, bool timeout) { struct host1x_syncpt_fence *fence; fence = kzalloc(sizeof(*fence), GFP_KERNEL); if (!fence) return ERR_PTR(-ENOMEM); fence->sp = sp; fence->threshold = threshold; fence->timeout = timeout; dma_fence_init(&fence->base, &host1x_syncpt_fence_ops, &sp->fences.lock, dma_fence_context_alloc(1), 0); INIT_DELAYED_WORK(&fence->timeout_work, do_fence_timeout); return &fence->base; } EXPORT_SYMBOL(host1x_fence_create); void host1x_fence_cancel(struct dma_fence *f) { struct host1x_syncpt_fence *sf = to_host1x_fence(f); schedule_delayed_work(&sf->timeout_work, 0); flush_delayed_work(&sf->timeout_work); } EXPORT_SYMBOL(host1x_fence_cancel);
linux-master
drivers/gpu/host1x/fence.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2021, NVIDIA Corporation. */ #include <linux/device.h> #include <linux/kref.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/pid.h> #include <linux/slab.h> #include "context.h" #include "dev.h" static void host1x_memory_context_release(struct device *dev) { /* context device is freed in host1x_memory_context_list_free() */ } int host1x_memory_context_list_init(struct host1x *host1x) { struct host1x_memory_context_list *cdl = &host1x->context_list; struct device_node *node = host1x->dev->of_node; struct host1x_memory_context *ctx; unsigned int i; int err; cdl->devs = NULL; cdl->len = 0; mutex_init(&cdl->lock); err = of_property_count_u32_elems(node, "iommu-map"); if (err < 0) return 0; cdl->devs = kcalloc(err, sizeof(*cdl->devs), GFP_KERNEL); if (!cdl->devs) return -ENOMEM; cdl->len = err / 4; for (i = 0; i < cdl->len; i++) { ctx = &cdl->devs[i]; ctx->host = host1x; device_initialize(&ctx->dev); /* * Due to an issue with T194 NVENC, only 38 bits can be used. * Anyway, 256GiB of IOVA ought to be enough for anyone. */ ctx->dma_mask = DMA_BIT_MASK(38); ctx->dev.dma_mask = &ctx->dma_mask; ctx->dev.coherent_dma_mask = ctx->dma_mask; dev_set_name(&ctx->dev, "host1x-ctx.%d", i); ctx->dev.bus = &host1x_context_device_bus_type; ctx->dev.parent = host1x->dev; ctx->dev.release = host1x_memory_context_release; dma_set_max_seg_size(&ctx->dev, UINT_MAX); err = device_add(&ctx->dev); if (err) { dev_err(host1x->dev, "could not add context device %d: %d\n", i, err); put_device(&ctx->dev); goto unreg_devices; } err = of_dma_configure_id(&ctx->dev, node, true, &i); if (err) { dev_err(host1x->dev, "IOMMU configuration failed for context device %d: %d\n", i, err); device_unregister(&ctx->dev); goto unreg_devices; } if (!tegra_dev_iommu_get_stream_id(&ctx->dev, &ctx->stream_id) || !device_iommu_mapped(&ctx->dev)) { dev_err(host1x->dev, "Context device %d has no IOMMU!\n", i); device_unregister(&ctx->dev); /* * This means that if IOMMU is disabled but context devices * are defined in the device tree, Host1x will fail to probe. * That's probably OK in this time and age. */ err = -EINVAL; goto unreg_devices; } } return 0; unreg_devices: while (i--) device_unregister(&cdl->devs[i].dev); kfree(cdl->devs); cdl->devs = NULL; cdl->len = 0; return err; } void host1x_memory_context_list_free(struct host1x_memory_context_list *cdl) { unsigned int i; for (i = 0; i < cdl->len; i++) device_unregister(&cdl->devs[i].dev); kfree(cdl->devs); cdl->len = 0; } struct host1x_memory_context *host1x_memory_context_alloc(struct host1x *host1x, struct device *dev, struct pid *pid) { struct host1x_memory_context_list *cdl = &host1x->context_list; struct host1x_memory_context *free = NULL; int i; if (!cdl->len) return ERR_PTR(-EOPNOTSUPP); mutex_lock(&cdl->lock); for (i = 0; i < cdl->len; i++) { struct host1x_memory_context *cd = &cdl->devs[i]; if (cd->dev.iommu->iommu_dev != dev->iommu->iommu_dev) continue; if (cd->owner == pid) { refcount_inc(&cd->ref); mutex_unlock(&cdl->lock); return cd; } else if (!cd->owner && !free) { free = cd; } } if (!free) { mutex_unlock(&cdl->lock); return ERR_PTR(-EBUSY); } refcount_set(&free->ref, 1); free->owner = get_pid(pid); mutex_unlock(&cdl->lock); return free; } EXPORT_SYMBOL_GPL(host1x_memory_context_alloc); void host1x_memory_context_get(struct host1x_memory_context *cd) { refcount_inc(&cd->ref); } EXPORT_SYMBOL_GPL(host1x_memory_context_get); void host1x_memory_context_put(struct host1x_memory_context *cd) { struct host1x_memory_context_list *cdl = &cd->host->context_list; if (refcount_dec_and_mutex_lock(&cd->ref, &cdl->lock)) { put_pid(cd->owner); cd->owner = NULL; mutex_unlock(&cdl->lock); } } EXPORT_SYMBOL_GPL(host1x_memory_context_put);
linux-master
drivers/gpu/host1x/context.c
// SPDX-License-Identifier: GPL-2.0-only /* * Tegra host1x driver * * Copyright (c) 2010-2013, NVIDIA Corporation. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/io.h> #include <linux/list.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/slab.h> #include <soc/tegra/common.h> #define CREATE_TRACE_POINTS #include <trace/events/host1x.h> #undef CREATE_TRACE_POINTS #if IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU) #include <asm/dma-iommu.h> #endif #include "bus.h" #include "channel.h" #include "context.h" #include "debug.h" #include "dev.h" #include "intr.h" #include "hw/host1x01.h" #include "hw/host1x02.h" #include "hw/host1x04.h" #include "hw/host1x05.h" #include "hw/host1x06.h" #include "hw/host1x07.h" #include "hw/host1x08.h" void host1x_common_writel(struct host1x *host1x, u32 v, u32 r) { writel(v, host1x->common_regs + r); } void host1x_hypervisor_writel(struct host1x *host1x, u32 v, u32 r) { writel(v, host1x->hv_regs + r); } u32 host1x_hypervisor_readl(struct host1x *host1x, u32 r) { return readl(host1x->hv_regs + r); } void host1x_sync_writel(struct host1x *host1x, u32 v, u32 r) { void __iomem *sync_regs = host1x->regs + host1x->info->sync_offset; writel(v, sync_regs + r); } u32 host1x_sync_readl(struct host1x *host1x, u32 r) { void __iomem *sync_regs = host1x->regs + host1x->info->sync_offset; return readl(sync_regs + r); } void host1x_ch_writel(struct host1x_channel *ch, u32 v, u32 r) { writel(v, ch->regs + r); } u32 host1x_ch_readl(struct host1x_channel *ch, u32 r) { return readl(ch->regs + r); } static const struct host1x_info host1x01_info = { .nb_channels = 8, .nb_pts = 32, .nb_mlocks = 16, .nb_bases = 8, .init = host1x01_init, .sync_offset = 0x3000, .dma_mask = DMA_BIT_MASK(32), .has_wide_gather = false, .has_hypervisor = false, .num_sid_entries = 0, .sid_table = NULL, .reserve_vblank_syncpts = true, }; static const struct host1x_info host1x02_info = { .nb_channels = 9, .nb_pts = 32, .nb_mlocks = 16, .nb_bases = 12, .init = host1x02_init, .sync_offset = 0x3000, .dma_mask = DMA_BIT_MASK(32), .has_wide_gather = false, .has_hypervisor = false, .num_sid_entries = 0, .sid_table = NULL, .reserve_vblank_syncpts = true, }; static const struct host1x_info host1x04_info = { .nb_channels = 12, .nb_pts = 192, .nb_mlocks = 16, .nb_bases = 64, .init = host1x04_init, .sync_offset = 0x2100, .dma_mask = DMA_BIT_MASK(34), .has_wide_gather = false, .has_hypervisor = false, .num_sid_entries = 0, .sid_table = NULL, .reserve_vblank_syncpts = false, }; static const struct host1x_info host1x05_info = { .nb_channels = 14, .nb_pts = 192, .nb_mlocks = 16, .nb_bases = 64, .init = host1x05_init, .sync_offset = 0x2100, .dma_mask = DMA_BIT_MASK(34), .has_wide_gather = false, .has_hypervisor = false, .num_sid_entries = 0, .sid_table = NULL, .reserve_vblank_syncpts = false, }; static const struct host1x_sid_entry tegra186_sid_table[] = { { /* VIC */ .base = 0x1af0, .offset = 0x30, .limit = 0x34 }, { /* NVDEC */ .base = 0x1b00, .offset = 0x30, .limit = 0x34 }, }; static const struct host1x_info host1x06_info = { .nb_channels = 63, .nb_pts = 576, .nb_mlocks = 24, .nb_bases = 16, .init = host1x06_init, .sync_offset = 0x0, .dma_mask = DMA_BIT_MASK(40), .has_wide_gather = true, .has_hypervisor = true, .num_sid_entries = ARRAY_SIZE(tegra186_sid_table), .sid_table = tegra186_sid_table, .reserve_vblank_syncpts = false, }; static const struct host1x_sid_entry tegra194_sid_table[] = { { /* VIC */ .base = 0x1af0, .offset = 0x30, .limit = 0x34 }, { /* NVDEC */ .base = 0x1b00, .offset = 0x30, .limit = 0x34 }, { /* NVDEC1 */ .base = 0x1bc0, .offset = 0x30, .limit = 0x34 }, }; static const struct host1x_info host1x07_info = { .nb_channels = 63, .nb_pts = 704, .nb_mlocks = 32, .nb_bases = 0, .init = host1x07_init, .sync_offset = 0x0, .dma_mask = DMA_BIT_MASK(40), .has_wide_gather = true, .has_hypervisor = true, .num_sid_entries = ARRAY_SIZE(tegra194_sid_table), .sid_table = tegra194_sid_table, .reserve_vblank_syncpts = false, }; /* * Tegra234 has two stream ID protection tables, one for setting stream IDs * through the channel path via SETSTREAMID, and one for setting them via * MMIO. We program each engine's data stream ID in the channel path table * and firmware stream ID in the MMIO path table. */ static const struct host1x_sid_entry tegra234_sid_table[] = { { /* VIC channel */ .base = 0x17b8, .offset = 0x30, .limit = 0x30 }, { /* VIC MMIO */ .base = 0x1688, .offset = 0x34, .limit = 0x34 }, { /* NVDEC channel */ .base = 0x17c8, .offset = 0x30, .limit = 0x30, }, { /* NVDEC MMIO */ .base = 0x1698, .offset = 0x34, .limit = 0x34, }, }; static const struct host1x_info host1x08_info = { .nb_channels = 63, .nb_pts = 1024, .nb_mlocks = 24, .nb_bases = 0, .init = host1x08_init, .sync_offset = 0x0, .dma_mask = DMA_BIT_MASK(40), .has_wide_gather = true, .has_hypervisor = true, .has_common = true, .num_sid_entries = ARRAY_SIZE(tegra234_sid_table), .sid_table = tegra234_sid_table, .streamid_vm_table = { 0x1004, 128 }, .classid_vm_table = { 0x1404, 25 }, .mmio_vm_table = { 0x1504, 25 }, .reserve_vblank_syncpts = false, }; static const struct of_device_id host1x_of_match[] = { { .compatible = "nvidia,tegra234-host1x", .data = &host1x08_info, }, { .compatible = "nvidia,tegra194-host1x", .data = &host1x07_info, }, { .compatible = "nvidia,tegra186-host1x", .data = &host1x06_info, }, { .compatible = "nvidia,tegra210-host1x", .data = &host1x05_info, }, { .compatible = "nvidia,tegra124-host1x", .data = &host1x04_info, }, { .compatible = "nvidia,tegra114-host1x", .data = &host1x02_info, }, { .compatible = "nvidia,tegra30-host1x", .data = &host1x01_info, }, { .compatible = "nvidia,tegra20-host1x", .data = &host1x01_info, }, { }, }; MODULE_DEVICE_TABLE(of, host1x_of_match); static void host1x_setup_virtualization_tables(struct host1x *host) { const struct host1x_info *info = host->info; unsigned int i; if (!info->has_hypervisor) return; for (i = 0; i < info->num_sid_entries; i++) { const struct host1x_sid_entry *entry = &info->sid_table[i]; host1x_hypervisor_writel(host, entry->offset, entry->base); host1x_hypervisor_writel(host, entry->limit, entry->base + 4); } for (i = 0; i < info->streamid_vm_table.count; i++) { /* Allow access to all stream IDs to all VMs. */ host1x_hypervisor_writel(host, 0xff, info->streamid_vm_table.base + 4 * i); } for (i = 0; i < info->classid_vm_table.count; i++) { /* Allow access to all classes to all VMs. */ host1x_hypervisor_writel(host, 0xff, info->classid_vm_table.base + 4 * i); } for (i = 0; i < info->mmio_vm_table.count; i++) { /* Use VM1 (that's us) as originator VMID for engine MMIO accesses. */ host1x_hypervisor_writel(host, 0x1, info->mmio_vm_table.base + 4 * i); } } static bool host1x_wants_iommu(struct host1x *host1x) { /* Our IOMMU usage policy doesn't currently play well with GART */ if (of_machine_is_compatible("nvidia,tegra20")) return false; /* * If we support addressing a maximum of 32 bits of physical memory * and if the host1x firewall is enabled, there's no need to enable * IOMMU support. This can happen for example on Tegra20, Tegra30 * and Tegra114. * * Tegra124 and later can address up to 34 bits of physical memory and * many platforms come equipped with more than 2 GiB of system memory, * which requires crossing the 4 GiB boundary. But there's a catch: on * SoCs before Tegra186 (i.e. Tegra124 and Tegra210), the host1x can * only address up to 32 bits of memory in GATHER opcodes, which means * that command buffers need to either be in the first 2 GiB of system * memory (which could quickly lead to memory exhaustion), or command * buffers need to be treated differently from other buffers (which is * not possible with the current ABI). * * A third option is to use the IOMMU in these cases to make sure all * buffers will be mapped into a 32-bit IOVA space that host1x can * address. This allows all of the system memory to be used and works * within the limitations of the host1x on these SoCs. * * In summary, default to enable IOMMU on Tegra124 and later. For any * of the earlier SoCs, only use the IOMMU for additional safety when * the host1x firewall is disabled. */ if (host1x->info->dma_mask <= DMA_BIT_MASK(32)) { if (IS_ENABLED(CONFIG_TEGRA_HOST1X_FIREWALL)) return false; } return true; } static struct iommu_domain *host1x_iommu_attach(struct host1x *host) { struct iommu_domain *domain = iommu_get_domain_for_dev(host->dev); int err; #if IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU) if (host->dev->archdata.mapping) { struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(host->dev); arm_iommu_detach_device(host->dev); arm_iommu_release_mapping(mapping); domain = iommu_get_domain_for_dev(host->dev); } #endif /* * We may not always want to enable IOMMU support (for example if the * host1x firewall is already enabled and we don't support addressing * more than 32 bits of physical memory), so check for that first. * * Similarly, if host1x is already attached to an IOMMU (via the DMA * API), don't try to attach again. */ if (!host1x_wants_iommu(host) || domain) return domain; host->group = iommu_group_get(host->dev); if (host->group) { struct iommu_domain_geometry *geometry; dma_addr_t start, end; unsigned long order; err = iova_cache_get(); if (err < 0) goto put_group; host->domain = iommu_domain_alloc(&platform_bus_type); if (!host->domain) { err = -ENOMEM; goto put_cache; } err = iommu_attach_group(host->domain, host->group); if (err) { if (err == -ENODEV) err = 0; goto free_domain; } geometry = &host->domain->geometry; start = geometry->aperture_start & host->info->dma_mask; end = geometry->aperture_end & host->info->dma_mask; order = __ffs(host->domain->pgsize_bitmap); init_iova_domain(&host->iova, 1UL << order, start >> order); host->iova_end = end; domain = host->domain; } return domain; free_domain: iommu_domain_free(host->domain); host->domain = NULL; put_cache: iova_cache_put(); put_group: iommu_group_put(host->group); host->group = NULL; return ERR_PTR(err); } static int host1x_iommu_init(struct host1x *host) { u64 mask = host->info->dma_mask; struct iommu_domain *domain; int err; domain = host1x_iommu_attach(host); if (IS_ERR(domain)) { err = PTR_ERR(domain); dev_err(host->dev, "failed to attach to IOMMU: %d\n", err); return err; } /* * If we're not behind an IOMMU make sure we don't get push buffers * that are allocated outside of the range addressable by the GATHER * opcode. * * Newer generations of Tegra (Tegra186 and later) support a wide * variant of the GATHER opcode that allows addressing more bits. */ if (!domain && !host->info->has_wide_gather) mask = DMA_BIT_MASK(32); err = dma_coerce_mask_and_coherent(host->dev, mask); if (err < 0) { dev_err(host->dev, "failed to set DMA mask: %d\n", err); return err; } return 0; } static void host1x_iommu_exit(struct host1x *host) { if (host->domain) { put_iova_domain(&host->iova); iommu_detach_group(host->domain, host->group); iommu_domain_free(host->domain); host->domain = NULL; iova_cache_put(); iommu_group_put(host->group); host->group = NULL; } } static int host1x_get_resets(struct host1x *host) { int err; host->resets[0].id = "mc"; host->resets[1].id = "host1x"; host->nresets = ARRAY_SIZE(host->resets); err = devm_reset_control_bulk_get_optional_exclusive_released( host->dev, host->nresets, host->resets); if (err) { dev_err(host->dev, "failed to get reset: %d\n", err); return err; } return 0; } static int host1x_probe(struct platform_device *pdev) { struct host1x *host; int err; host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); if (!host) return -ENOMEM; host->info = of_device_get_match_data(&pdev->dev); if (host->info->has_hypervisor) { host->regs = devm_platform_ioremap_resource_byname(pdev, "vm"); if (IS_ERR(host->regs)) return PTR_ERR(host->regs); host->hv_regs = devm_platform_ioremap_resource_byname(pdev, "hypervisor"); if (IS_ERR(host->hv_regs)) return PTR_ERR(host->hv_regs); if (host->info->has_common) { host->common_regs = devm_platform_ioremap_resource_byname(pdev, "common"); if (IS_ERR(host->common_regs)) return PTR_ERR(host->common_regs); } } else { host->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(host->regs)) return PTR_ERR(host->regs); } host->syncpt_irq = platform_get_irq(pdev, 0); if (host->syncpt_irq < 0) return host->syncpt_irq; mutex_init(&host->devices_lock); INIT_LIST_HEAD(&host->devices); INIT_LIST_HEAD(&host->list); host->dev = &pdev->dev; /* set common host1x device data */ platform_set_drvdata(pdev, host); host->dev->dma_parms = &host->dma_parms; dma_set_max_seg_size(host->dev, UINT_MAX); if (host->info->init) { err = host->info->init(host); if (err) return err; } host->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(host->clk)) { err = PTR_ERR(host->clk); if (err != -EPROBE_DEFER) dev_err(&pdev->dev, "failed to get clock: %d\n", err); return err; } err = host1x_get_resets(host); if (err) return err; host1x_bo_cache_init(&host->cache); err = host1x_iommu_init(host); if (err < 0) { dev_err(&pdev->dev, "failed to setup IOMMU: %d\n", err); goto destroy_cache; } err = host1x_channel_list_init(&host->channel_list, host->info->nb_channels); if (err) { dev_err(&pdev->dev, "failed to initialize channel list\n"); goto iommu_exit; } err = host1x_memory_context_list_init(host); if (err) { dev_err(&pdev->dev, "failed to initialize context list\n"); goto free_channels; } err = host1x_syncpt_init(host); if (err) { dev_err(&pdev->dev, "failed to initialize syncpts\n"); goto free_contexts; } err = host1x_intr_init(host); if (err) { dev_err(&pdev->dev, "failed to initialize interrupts\n"); goto deinit_syncpt; } pm_runtime_enable(&pdev->dev); err = devm_tegra_core_dev_init_opp_table_common(&pdev->dev); if (err) goto pm_disable; /* the driver's code isn't ready yet for the dynamic RPM */ err = pm_runtime_resume_and_get(&pdev->dev); if (err) goto pm_disable; host1x_debug_init(host); err = host1x_register(host); if (err < 0) goto deinit_debugfs; err = devm_of_platform_populate(&pdev->dev); if (err < 0) goto unregister; return 0; unregister: host1x_unregister(host); deinit_debugfs: host1x_debug_deinit(host); pm_runtime_put_sync_suspend(&pdev->dev); pm_disable: pm_runtime_disable(&pdev->dev); host1x_intr_deinit(host); deinit_syncpt: host1x_syncpt_deinit(host); free_contexts: host1x_memory_context_list_free(&host->context_list); free_channels: host1x_channel_list_free(&host->channel_list); iommu_exit: host1x_iommu_exit(host); destroy_cache: host1x_bo_cache_destroy(&host->cache); return err; } static int host1x_remove(struct platform_device *pdev) { struct host1x *host = platform_get_drvdata(pdev); host1x_unregister(host); host1x_debug_deinit(host); pm_runtime_force_suspend(&pdev->dev); host1x_intr_deinit(host); host1x_syncpt_deinit(host); host1x_memory_context_list_free(&host->context_list); host1x_channel_list_free(&host->channel_list); host1x_iommu_exit(host); host1x_bo_cache_destroy(&host->cache); return 0; } static int __maybe_unused host1x_runtime_suspend(struct device *dev) { struct host1x *host = dev_get_drvdata(dev); int err; host1x_intr_stop(host); host1x_syncpt_save(host); err = reset_control_bulk_assert(host->nresets, host->resets); if (err) { dev_err(dev, "failed to assert reset: %d\n", err); goto resume_host1x; } usleep_range(1000, 2000); clk_disable_unprepare(host->clk); reset_control_bulk_release(host->nresets, host->resets); return 0; resume_host1x: host1x_setup_virtualization_tables(host); host1x_syncpt_restore(host); host1x_intr_start(host); return err; } static int __maybe_unused host1x_runtime_resume(struct device *dev) { struct host1x *host = dev_get_drvdata(dev); int err; err = reset_control_bulk_acquire(host->nresets, host->resets); if (err) { dev_err(dev, "failed to acquire reset: %d\n", err); return err; } err = clk_prepare_enable(host->clk); if (err) { dev_err(dev, "failed to enable clock: %d\n", err); goto release_reset; } err = reset_control_bulk_deassert(host->nresets, host->resets); if (err < 0) { dev_err(dev, "failed to deassert reset: %d\n", err); goto disable_clk; } host1x_setup_virtualization_tables(host); host1x_syncpt_restore(host); host1x_intr_start(host); return 0; disable_clk: clk_disable_unprepare(host->clk); release_reset: reset_control_bulk_release(host->nresets, host->resets); return err; } static const struct dev_pm_ops host1x_pm_ops = { SET_RUNTIME_PM_OPS(host1x_runtime_suspend, host1x_runtime_resume, NULL) /* TODO: add system suspend-resume once driver will be ready for that */ }; static struct platform_driver tegra_host1x_driver = { .driver = { .name = "tegra-host1x", .of_match_table = host1x_of_match, .pm = &host1x_pm_ops, }, .probe = host1x_probe, .remove = host1x_remove, }; static struct platform_driver * const drivers[] = { &tegra_host1x_driver, &tegra_mipi_driver, }; static int __init tegra_host1x_init(void) { int err; err = bus_register(&host1x_bus_type); if (err < 0) return err; err = platform_register_drivers(drivers, ARRAY_SIZE(drivers)); if (err < 0) bus_unregister(&host1x_bus_type); return err; } module_init(tegra_host1x_init); static void __exit tegra_host1x_exit(void) { platform_unregister_drivers(drivers, ARRAY_SIZE(drivers)); bus_unregister(&host1x_bus_type); } module_exit(tegra_host1x_exit); /** * host1x_get_dma_mask() - query the supported DMA mask for host1x * @host1x: host1x instance * * Note that this returns the supported DMA mask for host1x, which can be * different from the applicable DMA mask under certain circumstances. */ u64 host1x_get_dma_mask(struct host1x *host1x) { return host1x->info->dma_mask; } EXPORT_SYMBOL(host1x_get_dma_mask); MODULE_AUTHOR("Thierry Reding <[email protected]>"); MODULE_AUTHOR("Terje Bergstrom <[email protected]>"); MODULE_DESCRIPTION("Host1x driver for Tegra products"); MODULE_LICENSE("GPL");
linux-master
drivers/gpu/host1x/dev.c
// SPDX-License-Identifier: GPL-2.0-only /* * Tegra host1x Interrupt Management * * Copyright (c) 2010-2021, NVIDIA Corporation. */ #include <linux/clk.h> #include "dev.h" #include "fence.h" #include "intr.h" static void host1x_intr_add_fence_to_list(struct host1x_fence_list *list, struct host1x_syncpt_fence *fence) { struct host1x_syncpt_fence *fence_in_list; list_for_each_entry_reverse(fence_in_list, &list->list, list) { if ((s32)(fence_in_list->threshold - fence->threshold) <= 0) { /* Fence in list is before us, we can insert here */ list_add(&fence->list, &fence_in_list->list); return; } } /* Add as first in list */ list_add(&fence->list, &list->list); } static void host1x_intr_update_hw_state(struct host1x *host, struct host1x_syncpt *sp) { struct host1x_syncpt_fence *fence; if (!list_empty(&sp->fences.list)) { fence = list_first_entry(&sp->fences.list, struct host1x_syncpt_fence, list); host1x_hw_intr_set_syncpt_threshold(host, sp->id, fence->threshold); host1x_hw_intr_enable_syncpt_intr(host, sp->id); } else { host1x_hw_intr_disable_syncpt_intr(host, sp->id); } } void host1x_intr_add_fence_locked(struct host1x *host, struct host1x_syncpt_fence *fence) { struct host1x_fence_list *fence_list = &fence->sp->fences; INIT_LIST_HEAD(&fence->list); host1x_intr_add_fence_to_list(fence_list, fence); host1x_intr_update_hw_state(host, fence->sp); } bool host1x_intr_remove_fence(struct host1x *host, struct host1x_syncpt_fence *fence) { struct host1x_fence_list *fence_list = &fence->sp->fences; unsigned long irqflags; spin_lock_irqsave(&fence_list->lock, irqflags); if (list_empty(&fence->list)) { spin_unlock_irqrestore(&fence_list->lock, irqflags); return false; } list_del_init(&fence->list); host1x_intr_update_hw_state(host, fence->sp); spin_unlock_irqrestore(&fence_list->lock, irqflags); return true; } void host1x_intr_handle_interrupt(struct host1x *host, unsigned int id) { struct host1x_syncpt *sp = &host->syncpt[id]; struct host1x_syncpt_fence *fence, *tmp; unsigned int value; value = host1x_syncpt_load(sp); spin_lock(&sp->fences.lock); list_for_each_entry_safe(fence, tmp, &sp->fences.list, list) { if (((value - fence->threshold) & 0x80000000U) != 0U) { /* Fence is not yet expired, we are done */ break; } list_del_init(&fence->list); host1x_fence_signal(fence); } /* Re-enable interrupt if necessary */ host1x_intr_update_hw_state(host, sp); spin_unlock(&sp->fences.lock); } int host1x_intr_init(struct host1x *host) { unsigned int id; mutex_init(&host->intr_mutex); for (id = 0; id < host1x_syncpt_nb_pts(host); ++id) { struct host1x_syncpt *syncpt = &host->syncpt[id]; spin_lock_init(&syncpt->fences.lock); INIT_LIST_HEAD(&syncpt->fences.list); } return 0; } void host1x_intr_deinit(struct host1x *host) { } void host1x_intr_start(struct host1x *host) { u32 hz = clk_get_rate(host->clk); int err; mutex_lock(&host->intr_mutex); err = host1x_hw_intr_init_host_sync(host, DIV_ROUND_UP(hz, 1000000)); if (err) { mutex_unlock(&host->intr_mutex); return; } mutex_unlock(&host->intr_mutex); } void host1x_intr_stop(struct host1x *host) { host1x_hw_intr_disable_all_syncpt_intrs(host); }
linux-master
drivers/gpu/host1x/intr.c
// SPDX-License-Identifier: GPL-2.0-only /* * Tegra host1x Job * * Copyright (c) 2010-2015, NVIDIA Corporation. */ #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/host1x.h> #include <linux/iommu.h> #include <linux/kref.h> #include <linux/module.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <trace/events/host1x.h> #include "channel.h" #include "dev.h" #include "job.h" #include "syncpt.h" #define HOST1X_WAIT_SYNCPT_OFFSET 0x8 struct host1x_job *host1x_job_alloc(struct host1x_channel *ch, u32 num_cmdbufs, u32 num_relocs, bool skip_firewall) { struct host1x_job *job = NULL; unsigned int num_unpins = num_relocs; bool enable_firewall; u64 total; void *mem; enable_firewall = IS_ENABLED(CONFIG_TEGRA_HOST1X_FIREWALL) && !skip_firewall; if (!enable_firewall) num_unpins += num_cmdbufs; /* Check that we're not going to overflow */ total = sizeof(struct host1x_job) + (u64)num_relocs * sizeof(struct host1x_reloc) + (u64)num_unpins * sizeof(struct host1x_job_unpin_data) + (u64)num_cmdbufs * sizeof(struct host1x_job_cmd) + (u64)num_unpins * sizeof(dma_addr_t) + (u64)num_unpins * sizeof(u32 *); if (total > ULONG_MAX) return NULL; mem = job = kzalloc(total, GFP_KERNEL); if (!job) return NULL; job->enable_firewall = enable_firewall; kref_init(&job->ref); job->channel = ch; /* Redistribute memory to the structs */ mem += sizeof(struct host1x_job); job->relocs = num_relocs ? mem : NULL; mem += num_relocs * sizeof(struct host1x_reloc); job->unpins = num_unpins ? mem : NULL; mem += num_unpins * sizeof(struct host1x_job_unpin_data); job->cmds = num_cmdbufs ? mem : NULL; mem += num_cmdbufs * sizeof(struct host1x_job_cmd); job->addr_phys = num_unpins ? mem : NULL; job->reloc_addr_phys = job->addr_phys; job->gather_addr_phys = &job->addr_phys[num_relocs]; return job; } EXPORT_SYMBOL(host1x_job_alloc); struct host1x_job *host1x_job_get(struct host1x_job *job) { kref_get(&job->ref); return job; } EXPORT_SYMBOL(host1x_job_get); static void job_free(struct kref *ref) { struct host1x_job *job = container_of(ref, struct host1x_job, ref); if (job->release) job->release(job); if (job->fence) { /* * remove_callback is atomic w.r.t. fence signaling, so * after the call returns, we know that the callback is not * in execution, and the fence can be safely freed. */ dma_fence_remove_callback(job->fence, &job->fence_cb); dma_fence_put(job->fence); } if (job->syncpt) host1x_syncpt_put(job->syncpt); kfree(job); } void host1x_job_put(struct host1x_job *job) { kref_put(&job->ref, job_free); } EXPORT_SYMBOL(host1x_job_put); void host1x_job_add_gather(struct host1x_job *job, struct host1x_bo *bo, unsigned int words, unsigned int offset) { struct host1x_job_gather *gather = &job->cmds[job->num_cmds].gather; gather->words = words; gather->bo = bo; gather->offset = offset; job->num_cmds++; } EXPORT_SYMBOL(host1x_job_add_gather); void host1x_job_add_wait(struct host1x_job *job, u32 id, u32 thresh, bool relative, u32 next_class) { struct host1x_job_cmd *cmd = &job->cmds[job->num_cmds]; cmd->is_wait = true; cmd->wait.id = id; cmd->wait.threshold = thresh; cmd->wait.next_class = next_class; cmd->wait.relative = relative; job->num_cmds++; } EXPORT_SYMBOL(host1x_job_add_wait); static unsigned int pin_job(struct host1x *host, struct host1x_job *job) { unsigned long mask = HOST1X_RELOC_READ | HOST1X_RELOC_WRITE; struct host1x_client *client = job->client; struct device *dev = client->dev; struct host1x_job_gather *g; unsigned int i; int err; job->num_unpins = 0; for (i = 0; i < job->num_relocs; i++) { struct host1x_reloc *reloc = &job->relocs[i]; enum dma_data_direction direction; struct host1x_bo_mapping *map; struct host1x_bo *bo; reloc->target.bo = host1x_bo_get(reloc->target.bo); if (!reloc->target.bo) { err = -EINVAL; goto unpin; } bo = reloc->target.bo; switch (reloc->flags & mask) { case HOST1X_RELOC_READ: direction = DMA_TO_DEVICE; break; case HOST1X_RELOC_WRITE: direction = DMA_FROM_DEVICE; break; case HOST1X_RELOC_READ | HOST1X_RELOC_WRITE: direction = DMA_BIDIRECTIONAL; break; default: err = -EINVAL; goto unpin; } map = host1x_bo_pin(dev, bo, direction, NULL); if (IS_ERR(map)) { err = PTR_ERR(map); goto unpin; } /* * host1x clients are generally not able to do scatter-gather themselves, so fail * if the buffer is discontiguous and we fail to map its SG table to a single * contiguous chunk of I/O virtual memory. */ if (map->chunks > 1) { err = -EINVAL; goto unpin; } job->addr_phys[job->num_unpins] = map->phys; job->unpins[job->num_unpins].map = map; job->num_unpins++; } /* * We will copy gathers BO content later, so there is no need to * hold and pin them. */ if (job->enable_firewall) return 0; for (i = 0; i < job->num_cmds; i++) { struct host1x_bo_mapping *map; size_t gather_size = 0; struct scatterlist *sg; unsigned long shift; struct iova *alloc; unsigned int j; if (job->cmds[i].is_wait) continue; g = &job->cmds[i].gather; g->bo = host1x_bo_get(g->bo); if (!g->bo) { err = -EINVAL; goto unpin; } map = host1x_bo_pin(host->dev, g->bo, DMA_TO_DEVICE, NULL); if (IS_ERR(map)) { err = PTR_ERR(map); goto unpin; } if (host->domain) { for_each_sgtable_sg(map->sgt, sg, j) gather_size += sg->length; gather_size = iova_align(&host->iova, gather_size); shift = iova_shift(&host->iova); alloc = alloc_iova(&host->iova, gather_size >> shift, host->iova_end >> shift, true); if (!alloc) { err = -ENOMEM; goto put; } err = iommu_map_sgtable(host->domain, iova_dma_addr(&host->iova, alloc), map->sgt, IOMMU_READ); if (err == 0) { __free_iova(&host->iova, alloc); err = -EINVAL; goto put; } map->phys = iova_dma_addr(&host->iova, alloc); map->size = gather_size; } job->addr_phys[job->num_unpins] = map->phys; job->unpins[job->num_unpins].map = map; job->num_unpins++; job->gather_addr_phys[i] = map->phys; } return 0; put: host1x_bo_put(g->bo); unpin: host1x_job_unpin(job); return err; } static int do_relocs(struct host1x_job *job, struct host1x_job_gather *g) { void *cmdbuf_addr = NULL; struct host1x_bo *cmdbuf = g->bo; unsigned int i; /* pin & patch the relocs for one gather */ for (i = 0; i < job->num_relocs; i++) { struct host1x_reloc *reloc = &job->relocs[i]; u32 reloc_addr = (job->reloc_addr_phys[i] + reloc->target.offset) >> reloc->shift; u32 *target; /* skip all other gathers */ if (cmdbuf != reloc->cmdbuf.bo) continue; if (job->enable_firewall) { target = (u32 *)job->gather_copy_mapped + reloc->cmdbuf.offset / sizeof(u32) + g->offset / sizeof(u32); goto patch_reloc; } if (!cmdbuf_addr) { cmdbuf_addr = host1x_bo_mmap(cmdbuf); if (unlikely(!cmdbuf_addr)) { pr_err("Could not map cmdbuf for relocation\n"); return -ENOMEM; } } target = cmdbuf_addr + reloc->cmdbuf.offset; patch_reloc: *target = reloc_addr; } if (cmdbuf_addr) host1x_bo_munmap(cmdbuf, cmdbuf_addr); return 0; } static bool check_reloc(struct host1x_reloc *reloc, struct host1x_bo *cmdbuf, unsigned int offset) { offset *= sizeof(u32); if (reloc->cmdbuf.bo != cmdbuf || reloc->cmdbuf.offset != offset) return false; /* relocation shift value validation isn't implemented yet */ if (reloc->shift) return false; return true; } struct host1x_firewall { struct host1x_job *job; struct device *dev; unsigned int num_relocs; struct host1x_reloc *reloc; struct host1x_bo *cmdbuf; unsigned int offset; u32 words; u32 class; u32 reg; u32 mask; u32 count; }; static int check_register(struct host1x_firewall *fw, unsigned long offset) { if (!fw->job->is_addr_reg) return 0; if (fw->job->is_addr_reg(fw->dev, fw->class, offset)) { if (!fw->num_relocs) return -EINVAL; if (!check_reloc(fw->reloc, fw->cmdbuf, fw->offset)) return -EINVAL; fw->num_relocs--; fw->reloc++; } return 0; } static int check_class(struct host1x_firewall *fw, u32 class) { if (!fw->job->is_valid_class) { if (fw->class != class) return -EINVAL; } else { if (!fw->job->is_valid_class(fw->class)) return -EINVAL; } return 0; } static int check_mask(struct host1x_firewall *fw) { u32 mask = fw->mask; u32 reg = fw->reg; int ret; while (mask) { if (fw->words == 0) return -EINVAL; if (mask & 1) { ret = check_register(fw, reg); if (ret < 0) return ret; fw->words--; fw->offset++; } mask >>= 1; reg++; } return 0; } static int check_incr(struct host1x_firewall *fw) { u32 count = fw->count; u32 reg = fw->reg; int ret; while (count) { if (fw->words == 0) return -EINVAL; ret = check_register(fw, reg); if (ret < 0) return ret; reg++; fw->words--; fw->offset++; count--; } return 0; } static int check_nonincr(struct host1x_firewall *fw) { u32 count = fw->count; int ret; while (count) { if (fw->words == 0) return -EINVAL; ret = check_register(fw, fw->reg); if (ret < 0) return ret; fw->words--; fw->offset++; count--; } return 0; } static int validate(struct host1x_firewall *fw, struct host1x_job_gather *g) { u32 *cmdbuf_base = (u32 *)fw->job->gather_copy_mapped + (g->offset / sizeof(u32)); u32 job_class = fw->class; int err = 0; fw->words = g->words; fw->cmdbuf = g->bo; fw->offset = 0; while (fw->words && !err) { u32 word = cmdbuf_base[fw->offset]; u32 opcode = (word & 0xf0000000) >> 28; fw->mask = 0; fw->reg = 0; fw->count = 0; fw->words--; fw->offset++; switch (opcode) { case 0: fw->class = word >> 6 & 0x3ff; fw->mask = word & 0x3f; fw->reg = word >> 16 & 0xfff; err = check_class(fw, job_class); if (!err) err = check_mask(fw); if (err) goto out; break; case 1: fw->reg = word >> 16 & 0xfff; fw->count = word & 0xffff; err = check_incr(fw); if (err) goto out; break; case 2: fw->reg = word >> 16 & 0xfff; fw->count = word & 0xffff; err = check_nonincr(fw); if (err) goto out; break; case 3: fw->mask = word & 0xffff; fw->reg = word >> 16 & 0xfff; err = check_mask(fw); if (err) goto out; break; case 4: case 14: break; default: err = -EINVAL; break; } } out: return err; } static inline int copy_gathers(struct device *host, struct host1x_job *job, struct device *dev) { struct host1x_firewall fw; size_t size = 0; size_t offset = 0; unsigned int i; fw.job = job; fw.dev = dev; fw.reloc = job->relocs; fw.num_relocs = job->num_relocs; fw.class = job->class; for (i = 0; i < job->num_cmds; i++) { struct host1x_job_gather *g; if (job->cmds[i].is_wait) continue; g = &job->cmds[i].gather; size += g->words * sizeof(u32); } /* * Try a non-blocking allocation from a higher priority pools first, * as awaiting for the allocation here is a major performance hit. */ job->gather_copy_mapped = dma_alloc_wc(host, size, &job->gather_copy, GFP_NOWAIT); /* the higher priority allocation failed, try the generic-blocking */ if (!job->gather_copy_mapped) job->gather_copy_mapped = dma_alloc_wc(host, size, &job->gather_copy, GFP_KERNEL); if (!job->gather_copy_mapped) return -ENOMEM; job->gather_copy_size = size; for (i = 0; i < job->num_cmds; i++) { struct host1x_job_gather *g; void *gather; if (job->cmds[i].is_wait) continue; g = &job->cmds[i].gather; /* Copy the gather */ gather = host1x_bo_mmap(g->bo); memcpy(job->gather_copy_mapped + offset, gather + g->offset, g->words * sizeof(u32)); host1x_bo_munmap(g->bo, gather); /* Store the location in the buffer */ g->base = job->gather_copy; g->offset = offset; /* Validate the job */ if (validate(&fw, g)) return -EINVAL; offset += g->words * sizeof(u32); } /* No relocs should remain at this point */ if (fw.num_relocs) return -EINVAL; return 0; } int host1x_job_pin(struct host1x_job *job, struct device *dev) { int err; unsigned int i, j; struct host1x *host = dev_get_drvdata(dev->parent); /* pin memory */ err = pin_job(host, job); if (err) goto out; if (job->enable_firewall) { err = copy_gathers(host->dev, job, dev); if (err) goto out; } /* patch gathers */ for (i = 0; i < job->num_cmds; i++) { struct host1x_job_gather *g; if (job->cmds[i].is_wait) continue; g = &job->cmds[i].gather; /* process each gather mem only once */ if (g->handled) continue; /* copy_gathers() sets gathers base if firewall is enabled */ if (!job->enable_firewall) g->base = job->gather_addr_phys[i]; for (j = i + 1; j < job->num_cmds; j++) { if (!job->cmds[j].is_wait && job->cmds[j].gather.bo == g->bo) { job->cmds[j].gather.handled = true; job->cmds[j].gather.base = g->base; } } err = do_relocs(job, g); if (err) break; } out: if (err) host1x_job_unpin(job); wmb(); return err; } EXPORT_SYMBOL(host1x_job_pin); void host1x_job_unpin(struct host1x_job *job) { struct host1x *host = dev_get_drvdata(job->channel->dev->parent); unsigned int i; for (i = 0; i < job->num_unpins; i++) { struct host1x_bo_mapping *map = job->unpins[i].map; struct host1x_bo *bo = map->bo; if (!job->enable_firewall && map->size && host->domain) { iommu_unmap(host->domain, job->addr_phys[i], map->size); free_iova(&host->iova, iova_pfn(&host->iova, job->addr_phys[i])); } host1x_bo_unpin(map); host1x_bo_put(bo); } job->num_unpins = 0; if (job->gather_copy_size) dma_free_wc(host->dev, job->gather_copy_size, job->gather_copy_mapped, job->gather_copy); } EXPORT_SYMBOL(host1x_job_unpin); /* * Debug routine used to dump job entries */ void host1x_job_dump(struct device *dev, struct host1x_job *job) { dev_dbg(dev, " SYNCPT_ID %d\n", job->syncpt->id); dev_dbg(dev, " SYNCPT_VAL %d\n", job->syncpt_end); dev_dbg(dev, " FIRST_GET 0x%x\n", job->first_get); dev_dbg(dev, " TIMEOUT %d\n", job->timeout); dev_dbg(dev, " NUM_SLOTS %d\n", job->num_slots); dev_dbg(dev, " NUM_HANDLES %d\n", job->num_unpins); }
linux-master
drivers/gpu/host1x/job.c
// SPDX-License-Identifier: GPL-2.0-only /* * Host1x init for T20 and T30 Architecture Chips * * Copyright (c) 2011-2013, NVIDIA Corporation. */ /* include hw specification */ #include "host1x01.h" #include "host1x01_hardware.h" /* include code */ #define HOST1X_HW 1 #include "cdma_hw.c" #include "channel_hw.c" #include "debug_hw.c" #include "intr_hw.c" #include "syncpt_hw.c" #include "../dev.h" int host1x01_init(struct host1x *host) { host->channel_op = &host1x_channel_ops; host->cdma_op = &host1x_cdma_ops; host->cdma_pb_op = &host1x_pushbuffer_ops; host->syncpt_op = &host1x_syncpt_ops; host->intr_op = &host1x_intr_ops; host->debug_op = &host1x_debug_ops; return 0; }
linux-master
drivers/gpu/host1x/hw/host1x01.c
// SPDX-License-Identifier: GPL-2.0-only /* * Tegra host1x Command DMA * * Copyright (c) 2010-2013, NVIDIA Corporation. */ #include <linux/slab.h> #include <linux/scatterlist.h> #include <linux/dma-mapping.h> #include "../cdma.h" #include "../channel.h" #include "../dev.h" #include "../debug.h" /* * Put the restart at the end of pushbuffer memory */ static void push_buffer_init(struct push_buffer *pb) { *(u32 *)(pb->mapped + pb->size) = host1x_opcode_restart(0); } /* * Increment timedout buffer's syncpt via CPU. */ static void cdma_timeout_cpu_incr(struct host1x_cdma *cdma, u32 getptr, u32 syncpt_incrs, u32 syncval, u32 nr_slots) { unsigned int i; for (i = 0; i < syncpt_incrs; i++) host1x_syncpt_incr(cdma->timeout.syncpt); /* after CPU incr, ensure shadow is up to date */ host1x_syncpt_load(cdma->timeout.syncpt); } /* * Start channel DMA */ static void cdma_start(struct host1x_cdma *cdma) { struct host1x_channel *ch = cdma_to_channel(cdma); u64 start, end; if (cdma->running) return; cdma->last_pos = cdma->push_buffer.pos; start = cdma->push_buffer.dma; end = cdma->push_buffer.size + 4; host1x_ch_writel(ch, HOST1X_CHANNEL_DMACTRL_DMASTOP, HOST1X_CHANNEL_DMACTRL); /* set base, put and end pointer */ host1x_ch_writel(ch, lower_32_bits(start), HOST1X_CHANNEL_DMASTART); #if HOST1X_HW >= 6 host1x_ch_writel(ch, upper_32_bits(start), HOST1X_CHANNEL_DMASTART_HI); #endif host1x_ch_writel(ch, cdma->push_buffer.pos, HOST1X_CHANNEL_DMAPUT); #if HOST1X_HW >= 6 host1x_ch_writel(ch, 0, HOST1X_CHANNEL_DMAPUT_HI); #endif host1x_ch_writel(ch, lower_32_bits(end), HOST1X_CHANNEL_DMAEND); #if HOST1X_HW >= 6 host1x_ch_writel(ch, upper_32_bits(end), HOST1X_CHANNEL_DMAEND_HI); #endif /* reset GET */ host1x_ch_writel(ch, HOST1X_CHANNEL_DMACTRL_DMASTOP | HOST1X_CHANNEL_DMACTRL_DMAGETRST | HOST1X_CHANNEL_DMACTRL_DMAINITGET, HOST1X_CHANNEL_DMACTRL); /* start the command DMA */ host1x_ch_writel(ch, 0, HOST1X_CHANNEL_DMACTRL); cdma->running = true; } /* * Similar to cdma_start(), but rather than starting from an idle * state (where DMA GET is set to DMA PUT), on a timeout we restore * DMA GET from an explicit value (so DMA may again be pending). */ static void cdma_timeout_restart(struct host1x_cdma *cdma, u32 getptr) { struct host1x *host1x = cdma_to_host1x(cdma); struct host1x_channel *ch = cdma_to_channel(cdma); u64 start, end; if (cdma->running) return; cdma->last_pos = cdma->push_buffer.pos; host1x_ch_writel(ch, HOST1X_CHANNEL_DMACTRL_DMASTOP, HOST1X_CHANNEL_DMACTRL); start = cdma->push_buffer.dma; end = cdma->push_buffer.size + 4; /* set base, end pointer (all of memory) */ host1x_ch_writel(ch, lower_32_bits(start), HOST1X_CHANNEL_DMASTART); #if HOST1X_HW >= 6 host1x_ch_writel(ch, upper_32_bits(start), HOST1X_CHANNEL_DMASTART_HI); #endif host1x_ch_writel(ch, lower_32_bits(end), HOST1X_CHANNEL_DMAEND); #if HOST1X_HW >= 6 host1x_ch_writel(ch, upper_32_bits(end), HOST1X_CHANNEL_DMAEND_HI); #endif /* set GET, by loading the value in PUT (then reset GET) */ host1x_ch_writel(ch, getptr, HOST1X_CHANNEL_DMAPUT); host1x_ch_writel(ch, HOST1X_CHANNEL_DMACTRL_DMASTOP | HOST1X_CHANNEL_DMACTRL_DMAGETRST | HOST1X_CHANNEL_DMACTRL_DMAINITGET, HOST1X_CHANNEL_DMACTRL); dev_dbg(host1x->dev, "%s: DMA GET 0x%x, PUT HW 0x%x / shadow 0x%x\n", __func__, host1x_ch_readl(ch, HOST1X_CHANNEL_DMAGET), host1x_ch_readl(ch, HOST1X_CHANNEL_DMAPUT), cdma->last_pos); /* deassert GET reset and set PUT */ host1x_ch_writel(ch, HOST1X_CHANNEL_DMACTRL_DMASTOP, HOST1X_CHANNEL_DMACTRL); host1x_ch_writel(ch, cdma->push_buffer.pos, HOST1X_CHANNEL_DMAPUT); /* start the command DMA */ host1x_ch_writel(ch, 0, HOST1X_CHANNEL_DMACTRL); cdma->running = true; } /* * Kick channel DMA into action by writing its PUT offset (if it has changed) */ static void cdma_flush(struct host1x_cdma *cdma) { struct host1x_channel *ch = cdma_to_channel(cdma); if (cdma->push_buffer.pos != cdma->last_pos) { host1x_ch_writel(ch, cdma->push_buffer.pos, HOST1X_CHANNEL_DMAPUT); cdma->last_pos = cdma->push_buffer.pos; } } static void cdma_stop(struct host1x_cdma *cdma) { struct host1x_channel *ch = cdma_to_channel(cdma); mutex_lock(&cdma->lock); if (cdma->running) { host1x_cdma_wait_locked(cdma, CDMA_EVENT_SYNC_QUEUE_EMPTY); host1x_ch_writel(ch, HOST1X_CHANNEL_DMACTRL_DMASTOP, HOST1X_CHANNEL_DMACTRL); cdma->running = false; } mutex_unlock(&cdma->lock); } static void cdma_hw_cmdproc_stop(struct host1x *host, struct host1x_channel *ch, bool stop) { #if HOST1X_HW >= 6 host1x_ch_writel(ch, stop ? 0x1 : 0x0, HOST1X_CHANNEL_CMDPROC_STOP); #else u32 cmdproc_stop = host1x_sync_readl(host, HOST1X_SYNC_CMDPROC_STOP); if (stop) cmdproc_stop |= BIT(ch->id); else cmdproc_stop &= ~BIT(ch->id); host1x_sync_writel(host, cmdproc_stop, HOST1X_SYNC_CMDPROC_STOP); #endif } static void cdma_hw_teardown(struct host1x *host, struct host1x_channel *ch) { #if HOST1X_HW >= 6 host1x_ch_writel(ch, 0x1, HOST1X_CHANNEL_TEARDOWN); #else host1x_sync_writel(host, BIT(ch->id), HOST1X_SYNC_CH_TEARDOWN); #endif } /* * Stops both channel's command processor and CDMA immediately. * Also, tears down the channel and resets corresponding module. */ static void cdma_freeze(struct host1x_cdma *cdma) { struct host1x *host = cdma_to_host1x(cdma); struct host1x_channel *ch = cdma_to_channel(cdma); if (cdma->torndown && !cdma->running) { dev_warn(host->dev, "Already torn down\n"); return; } dev_dbg(host->dev, "freezing channel (id %d)\n", ch->id); cdma_hw_cmdproc_stop(host, ch, true); dev_dbg(host->dev, "%s: DMA GET 0x%x, PUT HW 0x%x / shadow 0x%x\n", __func__, host1x_ch_readl(ch, HOST1X_CHANNEL_DMAGET), host1x_ch_readl(ch, HOST1X_CHANNEL_DMAPUT), cdma->last_pos); host1x_ch_writel(ch, HOST1X_CHANNEL_DMACTRL_DMASTOP, HOST1X_CHANNEL_DMACTRL); cdma_hw_teardown(host, ch); cdma->running = false; cdma->torndown = true; } static void cdma_resume(struct host1x_cdma *cdma, u32 getptr) { struct host1x *host1x = cdma_to_host1x(cdma); struct host1x_channel *ch = cdma_to_channel(cdma); dev_dbg(host1x->dev, "resuming channel (id %u, DMAGET restart = 0x%x)\n", ch->id, getptr); cdma_hw_cmdproc_stop(host1x, ch, false); cdma->torndown = false; cdma_timeout_restart(cdma, getptr); } static void timeout_release_mlock(struct host1x_cdma *cdma) { #if HOST1X_HW >= 8 /* Tegra186 and Tegra194 require a more complicated MLOCK release * sequence. Furthermore, those chips by default don't enforce MLOCKs, * so it turns out that if we don't /actually/ need MLOCKs, we can just * ignore them. * * As such, for now just implement this on Tegra234 where things are * stricter but also easy to implement. */ struct host1x_channel *ch = cdma_to_channel(cdma); struct host1x *host1x = cdma_to_host1x(cdma); u32 offset; switch (ch->client->class) { case HOST1X_CLASS_VIC: offset = HOST1X_COMMON_VIC_MLOCK; break; case HOST1X_CLASS_NVDEC: offset = HOST1X_COMMON_NVDEC_MLOCK; break; default: WARN(1, "%s was not updated for class %u", __func__, ch->client->class); return; } host1x_common_writel(host1x, 0x0, offset); #endif } /* * If this timeout fires, it indicates the current sync_queue entry has * exceeded its TTL and the userctx should be timed out and remaining * submits already issued cleaned up (future submits return an error). */ static void cdma_timeout_handler(struct work_struct *work) { u32 syncpt_val; struct host1x_cdma *cdma; struct host1x *host1x; struct host1x_channel *ch; cdma = container_of(to_delayed_work(work), struct host1x_cdma, timeout.wq); host1x = cdma_to_host1x(cdma); ch = cdma_to_channel(cdma); host1x_debug_dump(cdma_to_host1x(cdma)); mutex_lock(&cdma->lock); if (!cdma->timeout.client) { dev_dbg(host1x->dev, "cdma_timeout: expired, but has no clientid\n"); mutex_unlock(&cdma->lock); return; } /* stop processing to get a clean snapshot */ cdma_hw_cmdproc_stop(host1x, ch, true); syncpt_val = host1x_syncpt_load(cdma->timeout.syncpt); /* has buffer actually completed? */ if ((s32)(syncpt_val - cdma->timeout.syncpt_val) >= 0) { dev_dbg(host1x->dev, "cdma_timeout: expired, but buffer had completed\n"); /* restore */ cdma_hw_cmdproc_stop(host1x, ch, false); mutex_unlock(&cdma->lock); return; } dev_warn(host1x->dev, "%s: timeout: %u (%s), HW thresh %d, done %d\n", __func__, cdma->timeout.syncpt->id, cdma->timeout.syncpt->name, syncpt_val, cdma->timeout.syncpt_val); /* stop HW, resetting channel/module */ host1x_hw_cdma_freeze(host1x, cdma); /* release any held MLOCK */ timeout_release_mlock(cdma); host1x_cdma_update_sync_queue(cdma, ch->dev); mutex_unlock(&cdma->lock); } /* * Init timeout resources */ static int cdma_timeout_init(struct host1x_cdma *cdma) { INIT_DELAYED_WORK(&cdma->timeout.wq, cdma_timeout_handler); cdma->timeout.initialized = true; return 0; } /* * Clean up timeout resources */ static void cdma_timeout_destroy(struct host1x_cdma *cdma) { if (cdma->timeout.initialized) cancel_delayed_work(&cdma->timeout.wq); cdma->timeout.initialized = false; } static const struct host1x_cdma_ops host1x_cdma_ops = { .start = cdma_start, .stop = cdma_stop, .flush = cdma_flush, .timeout_init = cdma_timeout_init, .timeout_destroy = cdma_timeout_destroy, .freeze = cdma_freeze, .resume = cdma_resume, .timeout_cpu_incr = cdma_timeout_cpu_incr, }; static const struct host1x_pushbuffer_ops host1x_pushbuffer_ops = { .init = push_buffer_init, };
linux-master
drivers/gpu/host1x/hw/cdma_hw.c
// SPDX-License-Identifier: GPL-2.0-only /* * Host1x init for Tegra210 SoCs * * Copyright (c) 2015 NVIDIA Corporation. */ /* include hw specification */ #include "host1x05.h" #include "host1x05_hardware.h" /* include code */ #define HOST1X_HW 5 #include "cdma_hw.c" #include "channel_hw.c" #include "debug_hw.c" #include "intr_hw.c" #include "syncpt_hw.c" #include "../dev.h" int host1x05_init(struct host1x *host) { host->channel_op = &host1x_channel_ops; host->cdma_op = &host1x_cdma_ops; host->cdma_pb_op = &host1x_pushbuffer_ops; host->syncpt_op = &host1x_syncpt_ops; host->intr_op = &host1x_intr_ops; host->debug_op = &host1x_debug_ops; return 0; }
linux-master
drivers/gpu/host1x/hw/host1x05.c
// SPDX-License-Identifier: GPL-2.0-only /* * Tegra host1x Syncpoints * * Copyright (c) 2010-2013, NVIDIA Corporation. */ #include <linux/io.h> #include "../dev.h" #include "../syncpt.h" /* * Write the current syncpoint value back to hw. */ static void syncpt_restore(struct host1x_syncpt *sp) { u32 min = host1x_syncpt_read_min(sp); struct host1x *host = sp->host; host1x_sync_writel(host, min, HOST1X_SYNC_SYNCPT(sp->id)); } /* * Write the current waitbase value back to hw. */ static void syncpt_restore_wait_base(struct host1x_syncpt *sp) { #if HOST1X_HW < 7 struct host1x *host = sp->host; host1x_sync_writel(host, sp->base_val, HOST1X_SYNC_SYNCPT_BASE(sp->id)); #endif } /* * Read waitbase value from hw. */ static void syncpt_read_wait_base(struct host1x_syncpt *sp) { #if HOST1X_HW < 7 struct host1x *host = sp->host; sp->base_val = host1x_sync_readl(host, HOST1X_SYNC_SYNCPT_BASE(sp->id)); #endif } /* * Updates the last value read from hardware. */ static u32 syncpt_load(struct host1x_syncpt *sp) { struct host1x *host = sp->host; u32 old, live; /* Loop in case there's a race writing to min_val */ do { old = host1x_syncpt_read_min(sp); live = host1x_sync_readl(host, HOST1X_SYNC_SYNCPT(sp->id)); } while ((u32)atomic_cmpxchg(&sp->min_val, old, live) != old); if (!host1x_syncpt_check_max(sp, live)) dev_err(host->dev, "%s failed: id=%u, min=%d, max=%d\n", __func__, sp->id, host1x_syncpt_read_min(sp), host1x_syncpt_read_max(sp)); return live; } /* * Write a cpu syncpoint increment to the hardware, without touching * the cache. */ static int syncpt_cpu_incr(struct host1x_syncpt *sp) { struct host1x *host = sp->host; u32 reg_offset = sp->id / 32; if (!host1x_syncpt_client_managed(sp) && host1x_syncpt_idle(sp)) return -EINVAL; host1x_sync_writel(host, BIT(sp->id % 32), HOST1X_SYNC_SYNCPT_CPU_INCR(reg_offset)); wmb(); return 0; } /** * syncpt_assign_to_channel() - Assign syncpoint to channel * @sp: syncpoint * @ch: channel * * On chips with the syncpoint protection feature (Tegra186+), assign @sp to * @ch, preventing other channels from incrementing the syncpoints. If @ch is * NULL, unassigns the syncpoint. * * On older chips, do nothing. */ static void syncpt_assign_to_channel(struct host1x_syncpt *sp, struct host1x_channel *ch) { #if HOST1X_HW >= 6 struct host1x *host = sp->host; host1x_sync_writel(host, HOST1X_SYNC_SYNCPT_CH_APP_CH(ch ? ch->id : 0xff), HOST1X_SYNC_SYNCPT_CH_APP(sp->id)); #endif } /** * syncpt_enable_protection() - Enable syncpoint protection * @host: host1x instance * * On chips with the syncpoint protection feature (Tegra186+), enable this * feature. On older chips, do nothing. */ static void syncpt_enable_protection(struct host1x *host) { #if HOST1X_HW >= 6 if (!host->hv_regs) return; host1x_hypervisor_writel(host, HOST1X_HV_SYNCPT_PROT_EN_CH_EN, HOST1X_HV_SYNCPT_PROT_EN); #endif } static const struct host1x_syncpt_ops host1x_syncpt_ops = { .restore = syncpt_restore, .restore_wait_base = syncpt_restore_wait_base, .load_wait_base = syncpt_read_wait_base, .load = syncpt_load, .cpu_incr = syncpt_cpu_incr, .assign_to_channel = syncpt_assign_to_channel, .enable_protection = syncpt_enable_protection, };
linux-master
drivers/gpu/host1x/hw/syncpt_hw.c
// SPDX-License-Identifier: GPL-2.0-only /* * Host1x init for Tegra114 SoCs * * Copyright (c) 2013 NVIDIA Corporation. */ /* include hw specification */ #include "host1x02.h" #include "host1x02_hardware.h" /* include code */ #define HOST1X_HW 2 #include "cdma_hw.c" #include "channel_hw.c" #include "debug_hw.c" #include "intr_hw.c" #include "syncpt_hw.c" #include "../dev.h" int host1x02_init(struct host1x *host) { host->channel_op = &host1x_channel_ops; host->cdma_op = &host1x_cdma_ops; host->cdma_pb_op = &host1x_pushbuffer_ops; host->syncpt_op = &host1x_syncpt_ops; host->intr_op = &host1x_intr_ops; host->debug_op = &host1x_debug_ops; return 0; }
linux-master
drivers/gpu/host1x/hw/host1x02.c
// SPDX-License-Identifier: GPL-2.0-only /* * Tegra host1x Interrupt Management * * Copyright (C) 2010 Google, Inc. * Copyright (c) 2010-2013, NVIDIA Corporation. */ #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/io.h> #include "../intr.h" #include "../dev.h" static irqreturn_t syncpt_thresh_isr(int irq, void *dev_id) { struct host1x *host = dev_id; unsigned long reg; unsigned int i, id; for (i = 0; i < DIV_ROUND_UP(host->info->nb_pts, 32); i++) { reg = host1x_sync_readl(host, HOST1X_SYNC_SYNCPT_THRESH_CPU0_INT_STATUS(i)); host1x_sync_writel(host, reg, HOST1X_SYNC_SYNCPT_THRESH_INT_DISABLE(i)); host1x_sync_writel(host, reg, HOST1X_SYNC_SYNCPT_THRESH_CPU0_INT_STATUS(i)); for_each_set_bit(id, &reg, 32) host1x_intr_handle_interrupt(host, i * 32 + id); } return IRQ_HANDLED; } static void host1x_intr_disable_all_syncpt_intrs(struct host1x *host) { unsigned int i; for (i = 0; i < DIV_ROUND_UP(host->info->nb_pts, 32); ++i) { host1x_sync_writel(host, 0xffffffffu, HOST1X_SYNC_SYNCPT_THRESH_INT_DISABLE(i)); host1x_sync_writel(host, 0xffffffffu, HOST1X_SYNC_SYNCPT_THRESH_CPU0_INT_STATUS(i)); } } static void intr_hw_init(struct host1x *host, u32 cpm) { #if HOST1X_HW < 6 /* disable the ip_busy_timeout. this prevents write drops */ host1x_sync_writel(host, 0, HOST1X_SYNC_IP_BUSY_TIMEOUT); /* * increase the auto-ack timout to the maximum value. 2d will hang * otherwise on Tegra2. */ host1x_sync_writel(host, 0xff, HOST1X_SYNC_CTXSW_TIMEOUT_CFG); /* update host clocks per usec */ host1x_sync_writel(host, cpm, HOST1X_SYNC_USEC_CLK); #endif #if HOST1X_HW >= 8 u32 id; /* * Program threshold interrupt destination among 8 lines per VM, * per syncpoint. For now, just direct all to the first interrupt * line. */ for (id = 0; id < host->info->nb_pts; id++) host1x_sync_writel(host, 0, HOST1X_SYNC_SYNCPT_INTR_DEST(id)); #endif } static int host1x_intr_init_host_sync(struct host1x *host, u32 cpm) { int err; host1x_hw_intr_disable_all_syncpt_intrs(host); err = devm_request_irq(host->dev, host->syncpt_irq, syncpt_thresh_isr, IRQF_SHARED, "host1x_syncpt", host); if (err < 0) return err; intr_hw_init(host, cpm); return 0; } static void host1x_intr_set_syncpt_threshold(struct host1x *host, unsigned int id, u32 thresh) { host1x_sync_writel(host, thresh, HOST1X_SYNC_SYNCPT_INT_THRESH(id)); } static void host1x_intr_enable_syncpt_intr(struct host1x *host, unsigned int id) { host1x_sync_writel(host, BIT(id % 32), HOST1X_SYNC_SYNCPT_THRESH_INT_ENABLE_CPU0(id / 32)); } static void host1x_intr_disable_syncpt_intr(struct host1x *host, unsigned int id) { host1x_sync_writel(host, BIT(id % 32), HOST1X_SYNC_SYNCPT_THRESH_INT_DISABLE(id / 32)); host1x_sync_writel(host, BIT(id % 32), HOST1X_SYNC_SYNCPT_THRESH_CPU0_INT_STATUS(id / 32)); } static const struct host1x_intr_ops host1x_intr_ops = { .init_host_sync = host1x_intr_init_host_sync, .set_syncpt_threshold = host1x_intr_set_syncpt_threshold, .enable_syncpt_intr = host1x_intr_enable_syncpt_intr, .disable_syncpt_intr = host1x_intr_disable_syncpt_intr, .disable_all_syncpt_intrs = host1x_intr_disable_all_syncpt_intrs, };
linux-master
drivers/gpu/host1x/hw/intr_hw.c