python_code
stringlengths
0
1.8M
repo_name
stringclasses
7 values
file_path
stringlengths
5
99
// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include "gt/intel_engine_pm.h" #include "gt/intel_gpu_commands.h" #include "i915_selftest.h" #include "gem/selftests/igt_gem_utils.h" #include "gem/selftests/mock_context.h" #include "selftests/igt_reset.h" #include "selftests/igt_spinner.h" #include "selftests/intel_scheduler_helpers.h" struct live_mocs { struct drm_i915_mocs_table table; struct drm_i915_mocs_table *mocs; struct drm_i915_mocs_table *l3cc; struct i915_vma *scratch; void *vaddr; }; static struct intel_context *mocs_context_create(struct intel_engine_cs *engine) { struct intel_context *ce; ce = intel_context_create(engine); if (IS_ERR(ce)) return ce; /* We build large requests to read the registers from the ring */ ce->ring_size = SZ_16K; return ce; } static int request_add_sync(struct i915_request *rq, int err) { i915_request_get(rq); i915_request_add(rq); if (i915_request_wait(rq, 0, HZ / 5) < 0) err = -ETIME; i915_request_put(rq); return err; } static int request_add_spin(struct i915_request *rq, struct igt_spinner *spin) { int err = 0; i915_request_get(rq); i915_request_add(rq); if (spin && !igt_wait_for_spinner(spin, rq)) err = -ETIME; i915_request_put(rq); return err; } static int live_mocs_init(struct live_mocs *arg, struct intel_gt *gt) { unsigned int flags; int err; memset(arg, 0, sizeof(*arg)); flags = get_mocs_settings(gt->i915, &arg->table); if (!flags) return -EINVAL; if (flags & HAS_RENDER_L3CC) arg->l3cc = &arg->table; if (flags & (HAS_GLOBAL_MOCS | HAS_ENGINE_MOCS)) arg->mocs = &arg->table; arg->scratch = __vm_create_scratch_for_read_pinned(&gt->ggtt->vm, PAGE_SIZE); if (IS_ERR(arg->scratch)) return PTR_ERR(arg->scratch); arg->vaddr = i915_gem_object_pin_map_unlocked(arg->scratch->obj, I915_MAP_WB); if (IS_ERR(arg->vaddr)) { err = PTR_ERR(arg->vaddr); goto err_scratch; } return 0; err_scratch: i915_vma_unpin_and_release(&arg->scratch, 0); return err; } static void live_mocs_fini(struct live_mocs *arg) { i915_vma_unpin_and_release(&arg->scratch, I915_VMA_RELEASE_MAP); } static int read_regs(struct i915_request *rq, u32 addr, unsigned int count, u32 *offset) { unsigned int i; u32 *cs; GEM_BUG_ON(!IS_ALIGNED(*offset, sizeof(u32))); cs = intel_ring_begin(rq, 4 * count); if (IS_ERR(cs)) return PTR_ERR(cs); for (i = 0; i < count; i++) { *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT; *cs++ = addr; *cs++ = *offset; *cs++ = 0; addr += sizeof(u32); *offset += sizeof(u32); } intel_ring_advance(rq, cs); return 0; } static int read_mocs_table(struct i915_request *rq, const struct drm_i915_mocs_table *table, u32 *offset) { struct intel_gt *gt = rq->engine->gt; u32 addr; if (!table) return 0; if (HAS_GLOBAL_MOCS_REGISTERS(rq->i915)) addr = global_mocs_offset() + gt->uncore->gsi_offset; else addr = mocs_offset(rq->engine); return read_regs(rq, addr, table->n_entries, offset); } static int read_l3cc_table(struct i915_request *rq, const struct drm_i915_mocs_table *table, u32 *offset) { u32 addr = i915_mmio_reg_offset(GEN9_LNCFCMOCS(0)); if (!table) return 0; return read_regs(rq, addr, (table->n_entries + 1) / 2, offset); } static int check_mocs_table(struct intel_engine_cs *engine, const struct drm_i915_mocs_table *table, u32 **vaddr) { unsigned int i; u32 expect; if (!table) return 0; for_each_mocs(expect, table, i) { if (**vaddr != expect) { pr_err("%s: Invalid MOCS[%d] entry, found %08x, expected %08x\n", engine->name, i, **vaddr, expect); return -EINVAL; } ++*vaddr; } return 0; } static bool mcr_range(struct drm_i915_private *i915, u32 offset) { /* * Registers in this range are affected by the MCR selector * which only controls CPU initiated MMIO. Routing does not * work for CS access so we cannot verify them on this path. */ return GRAPHICS_VER(i915) >= 8 && offset >= 0xb000 && offset <= 0xb4ff; } static int check_l3cc_table(struct intel_engine_cs *engine, const struct drm_i915_mocs_table *table, u32 **vaddr) { /* Can we read the MCR range 0xb00 directly? See intel_workarounds! */ u32 reg = i915_mmio_reg_offset(GEN9_LNCFCMOCS(0)); unsigned int i; u32 expect; if (!table) return 0; for_each_l3cc(expect, table, i) { if (!mcr_range(engine->i915, reg) && **vaddr != expect) { pr_err("%s: Invalid L3CC[%d] entry, found %08x, expected %08x\n", engine->name, i, **vaddr, expect); return -EINVAL; } ++*vaddr; reg += 4; } return 0; } static int check_mocs_engine(struct live_mocs *arg, struct intel_context *ce) { struct i915_vma *vma = arg->scratch; struct i915_request *rq; u32 offset; u32 *vaddr; int err; memset32(arg->vaddr, STACK_MAGIC, PAGE_SIZE / sizeof(u32)); rq = intel_context_create_request(ce); if (IS_ERR(rq)) return PTR_ERR(rq); err = igt_vma_move_to_active_unlocked(vma, rq, EXEC_OBJECT_WRITE); /* Read the mocs tables back using SRM */ offset = i915_ggtt_offset(vma); if (!err) err = read_mocs_table(rq, arg->mocs, &offset); if (!err && ce->engine->class == RENDER_CLASS) err = read_l3cc_table(rq, arg->l3cc, &offset); offset -= i915_ggtt_offset(vma); GEM_BUG_ON(offset > PAGE_SIZE); err = request_add_sync(rq, err); if (err) return err; /* Compare the results against the expected tables */ vaddr = arg->vaddr; if (!err) err = check_mocs_table(ce->engine, arg->mocs, &vaddr); if (!err && ce->engine->class == RENDER_CLASS) err = check_l3cc_table(ce->engine, arg->l3cc, &vaddr); if (err) return err; GEM_BUG_ON(arg->vaddr + offset != vaddr); return 0; } static int live_mocs_kernel(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; struct live_mocs mocs; int err; /* Basic check the system is configured with the expected mocs table */ err = live_mocs_init(&mocs, gt); if (err) return err; for_each_engine(engine, gt, id) { intel_engine_pm_get(engine); err = check_mocs_engine(&mocs, engine->kernel_context); intel_engine_pm_put(engine); if (err) break; } live_mocs_fini(&mocs); return err; } static int live_mocs_clean(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; struct live_mocs mocs; int err; /* Every new context should see the same mocs table */ err = live_mocs_init(&mocs, gt); if (err) return err; for_each_engine(engine, gt, id) { struct intel_context *ce; ce = mocs_context_create(engine); if (IS_ERR(ce)) { err = PTR_ERR(ce); break; } err = check_mocs_engine(&mocs, ce); intel_context_put(ce); if (err) break; } live_mocs_fini(&mocs); return err; } static int active_engine_reset(struct intel_context *ce, const char *reason, bool using_guc) { struct igt_spinner spin; struct i915_request *rq; int err; err = igt_spinner_init(&spin, ce->engine->gt); if (err) return err; rq = igt_spinner_create_request(&spin, ce, MI_NOOP); if (IS_ERR(rq)) { igt_spinner_fini(&spin); return PTR_ERR(rq); } err = request_add_spin(rq, &spin); if (err == 0 && !using_guc) err = intel_engine_reset(ce->engine, reason); /* Ensure the reset happens and kills the engine */ if (err == 0) err = intel_selftest_wait_for_rq(rq); igt_spinner_end(&spin); igt_spinner_fini(&spin); return err; } static int __live_mocs_reset(struct live_mocs *mocs, struct intel_context *ce, bool using_guc) { struct intel_gt *gt = ce->engine->gt; int err; if (intel_has_reset_engine(gt)) { if (!using_guc) { err = intel_engine_reset(ce->engine, "mocs"); if (err) return err; err = check_mocs_engine(mocs, ce); if (err) return err; } err = active_engine_reset(ce, "mocs", using_guc); if (err) return err; err = check_mocs_engine(mocs, ce); if (err) return err; } if (intel_has_gpu_reset(gt)) { intel_gt_reset(gt, ce->engine->mask, "mocs"); err = check_mocs_engine(mocs, ce); if (err) return err; } return 0; } static int live_mocs_reset(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; struct live_mocs mocs; int err = 0; /* Check the mocs setup is retained over per-engine and global resets */ err = live_mocs_init(&mocs, gt); if (err) return err; igt_global_reset_lock(gt); for_each_engine(engine, gt, id) { bool using_guc = intel_engine_uses_guc(engine); struct intel_selftest_saved_policy saved; struct intel_context *ce; int err2; err = intel_selftest_modify_policy(engine, &saved, SELFTEST_SCHEDULER_MODIFY_FAST_RESET); if (err) break; ce = mocs_context_create(engine); if (IS_ERR(ce)) { err = PTR_ERR(ce); goto restore; } intel_engine_pm_get(engine); err = __live_mocs_reset(&mocs, ce, using_guc); intel_engine_pm_put(engine); intel_context_put(ce); restore: err2 = intel_selftest_restore_policy(engine, &saved); if (err == 0) err = err2; if (err) break; } igt_global_reset_unlock(gt); live_mocs_fini(&mocs); return err; } int intel_mocs_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(live_mocs_kernel), SUBTEST(live_mocs_clean), SUBTEST(live_mocs_reset), }; struct drm_i915_mocs_table table; if (!get_mocs_settings(i915, &table)) return 0; return intel_gt_live_subtests(tests, to_gt(i915)); }
linux-master
drivers/gpu/drm/i915/gt/selftest_mocs.c
// SPDX-License-Identifier: MIT /* * Copyright © 2018 Intel Corporation */ #include <linux/prime_numbers.h> #include "gem/i915_gem_internal.h" #include "gem/i915_gem_pm.h" #include "gt/intel_engine_heartbeat.h" #include "gt/intel_reset.h" #include "gt/selftest_engine_heartbeat.h" #include "i915_selftest.h" #include "selftests/i915_random.h" #include "selftests/igt_flush_test.h" #include "selftests/igt_live_test.h" #include "selftests/igt_spinner.h" #include "selftests/lib_sw_fence.h" #include "gem/selftests/igt_gem_utils.h" #include "gem/selftests/mock_context.h" #define CS_GPR(engine, n) ((engine)->mmio_base + 0x600 + (n) * 4) #define NUM_GPR 16 #define NUM_GPR_DW (NUM_GPR * 2) /* each GPR is 2 dwords */ static bool is_active(struct i915_request *rq) { if (i915_request_is_active(rq)) return true; if (i915_request_on_hold(rq)) return true; if (i915_request_has_initial_breadcrumb(rq) && i915_request_started(rq)) return true; return false; } static int wait_for_submit(struct intel_engine_cs *engine, struct i915_request *rq, unsigned long timeout) { /* Ignore our own attempts to suppress excess tasklets */ tasklet_hi_schedule(&engine->sched_engine->tasklet); timeout += jiffies; do { bool done = time_after(jiffies, timeout); if (i915_request_completed(rq)) /* that was quick! */ return 0; /* Wait until the HW has acknowleged the submission (or err) */ intel_engine_flush_submission(engine); if (!READ_ONCE(engine->execlists.pending[0]) && is_active(rq)) return 0; if (done) return -ETIME; cond_resched(); } while (1); } static int wait_for_reset(struct intel_engine_cs *engine, struct i915_request *rq, unsigned long timeout) { timeout += jiffies; do { cond_resched(); intel_engine_flush_submission(engine); if (READ_ONCE(engine->execlists.pending[0])) continue; if (i915_request_completed(rq)) break; if (READ_ONCE(rq->fence.error)) break; } while (time_before(jiffies, timeout)); if (rq->fence.error != -EIO) { pr_err("%s: hanging request %llx:%lld not reset\n", engine->name, rq->fence.context, rq->fence.seqno); return -EINVAL; } /* Give the request a jiffie to complete after flushing the worker */ if (i915_request_wait(rq, 0, max(0l, (long)(timeout - jiffies)) + 1) < 0) { pr_err("%s: hanging request %llx:%lld did not complete\n", engine->name, rq->fence.context, rq->fence.seqno); return -ETIME; } return 0; } static int live_sanitycheck(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; struct igt_spinner spin; int err = 0; if (!HAS_LOGICAL_RING_CONTEXTS(gt->i915)) return 0; if (igt_spinner_init(&spin, gt)) return -ENOMEM; for_each_engine(engine, gt, id) { struct intel_context *ce; struct i915_request *rq; ce = intel_context_create(engine); if (IS_ERR(ce)) { err = PTR_ERR(ce); break; } rq = igt_spinner_create_request(&spin, ce, MI_NOOP); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out_ctx; } i915_request_add(rq); if (!igt_wait_for_spinner(&spin, rq)) { GEM_TRACE("spinner failed to start\n"); GEM_TRACE_DUMP(); intel_gt_set_wedged(gt); err = -EIO; goto out_ctx; } igt_spinner_end(&spin); if (igt_flush_test(gt->i915)) { err = -EIO; goto out_ctx; } out_ctx: intel_context_put(ce); if (err) break; } igt_spinner_fini(&spin); return err; } static int live_unlite_restore(struct intel_gt *gt, int prio) { struct intel_engine_cs *engine; enum intel_engine_id id; struct igt_spinner spin; int err = -ENOMEM; /* * Check that we can correctly context switch between 2 instances * on the same engine from the same parent context. */ if (igt_spinner_init(&spin, gt)) return err; err = 0; for_each_engine(engine, gt, id) { struct intel_context *ce[2] = {}; struct i915_request *rq[2]; struct igt_live_test t; int n; if (prio && !intel_engine_has_preemption(engine)) continue; if (!intel_engine_can_store_dword(engine)) continue; if (igt_live_test_begin(&t, gt->i915, __func__, engine->name)) { err = -EIO; break; } st_engine_heartbeat_disable(engine); for (n = 0; n < ARRAY_SIZE(ce); n++) { struct intel_context *tmp; tmp = intel_context_create(engine); if (IS_ERR(tmp)) { err = PTR_ERR(tmp); goto err_ce; } err = intel_context_pin(tmp); if (err) { intel_context_put(tmp); goto err_ce; } /* * Setup the pair of contexts such that if we * lite-restore using the RING_TAIL from ce[1] it * will execute garbage from ce[0]->ring. */ memset(tmp->ring->vaddr, POISON_INUSE, /* IPEHR: 0x5a5a5a5a [hung!] */ tmp->ring->vma->size); ce[n] = tmp; } GEM_BUG_ON(!ce[1]->ring->size); intel_ring_reset(ce[1]->ring, ce[1]->ring->size / 2); lrc_update_regs(ce[1], engine, ce[1]->ring->head); rq[0] = igt_spinner_create_request(&spin, ce[0], MI_ARB_CHECK); if (IS_ERR(rq[0])) { err = PTR_ERR(rq[0]); goto err_ce; } i915_request_get(rq[0]); i915_request_add(rq[0]); GEM_BUG_ON(rq[0]->postfix > ce[1]->ring->emit); if (!igt_wait_for_spinner(&spin, rq[0])) { i915_request_put(rq[0]); goto err_ce; } rq[1] = i915_request_create(ce[1]); if (IS_ERR(rq[1])) { err = PTR_ERR(rq[1]); i915_request_put(rq[0]); goto err_ce; } if (!prio) { /* * Ensure we do the switch to ce[1] on completion. * * rq[0] is already submitted, so this should reduce * to a no-op (a wait on a request on the same engine * uses the submit fence, not the completion fence), * but it will install a dependency on rq[1] for rq[0] * that will prevent the pair being reordered by * timeslicing. */ i915_request_await_dma_fence(rq[1], &rq[0]->fence); } i915_request_get(rq[1]); i915_request_add(rq[1]); GEM_BUG_ON(rq[1]->postfix <= rq[0]->postfix); i915_request_put(rq[0]); if (prio) { struct i915_sched_attr attr = { .priority = prio, }; /* Alternatively preempt the spinner with ce[1] */ engine->sched_engine->schedule(rq[1], &attr); } /* And switch back to ce[0] for good measure */ rq[0] = i915_request_create(ce[0]); if (IS_ERR(rq[0])) { err = PTR_ERR(rq[0]); i915_request_put(rq[1]); goto err_ce; } i915_request_await_dma_fence(rq[0], &rq[1]->fence); i915_request_get(rq[0]); i915_request_add(rq[0]); GEM_BUG_ON(rq[0]->postfix > rq[1]->postfix); i915_request_put(rq[1]); i915_request_put(rq[0]); err_ce: intel_engine_flush_submission(engine); igt_spinner_end(&spin); for (n = 0; n < ARRAY_SIZE(ce); n++) { if (IS_ERR_OR_NULL(ce[n])) break; intel_context_unpin(ce[n]); intel_context_put(ce[n]); } st_engine_heartbeat_enable(engine); if (igt_live_test_end(&t)) err = -EIO; if (err) break; } igt_spinner_fini(&spin); return err; } static int live_unlite_switch(void *arg) { return live_unlite_restore(arg, 0); } static int live_unlite_preempt(void *arg) { return live_unlite_restore(arg, I915_PRIORITY_MAX); } static int live_unlite_ring(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; struct igt_spinner spin; enum intel_engine_id id; int err = 0; /* * Setup a preemption event that will cause almost the entire ring * to be unwound, potentially fooling our intel_ring_direction() * into emitting a forward lite-restore instead of the rollback. */ if (igt_spinner_init(&spin, gt)) return -ENOMEM; for_each_engine(engine, gt, id) { struct intel_context *ce[2] = {}; struct i915_request *rq; struct igt_live_test t; int n; if (!intel_engine_has_preemption(engine)) continue; if (!intel_engine_can_store_dword(engine)) continue; if (igt_live_test_begin(&t, gt->i915, __func__, engine->name)) { err = -EIO; break; } st_engine_heartbeat_disable(engine); for (n = 0; n < ARRAY_SIZE(ce); n++) { struct intel_context *tmp; tmp = intel_context_create(engine); if (IS_ERR(tmp)) { err = PTR_ERR(tmp); goto err_ce; } err = intel_context_pin(tmp); if (err) { intel_context_put(tmp); goto err_ce; } memset32(tmp->ring->vaddr, 0xdeadbeef, /* trigger a hang if executed */ tmp->ring->vma->size / sizeof(u32)); ce[n] = tmp; } /* Create max prio spinner, followed by N low prio nops */ rq = igt_spinner_create_request(&spin, ce[0], MI_ARB_CHECK); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_ce; } i915_request_get(rq); rq->sched.attr.priority = I915_PRIORITY_BARRIER; i915_request_add(rq); if (!igt_wait_for_spinner(&spin, rq)) { intel_gt_set_wedged(gt); i915_request_put(rq); err = -ETIME; goto err_ce; } /* Fill the ring, until we will cause a wrap */ n = 0; while (intel_ring_direction(ce[0]->ring, rq->wa_tail, ce[0]->ring->tail) <= 0) { struct i915_request *tmp; tmp = intel_context_create_request(ce[0]); if (IS_ERR(tmp)) { err = PTR_ERR(tmp); i915_request_put(rq); goto err_ce; } i915_request_add(tmp); intel_engine_flush_submission(engine); n++; } intel_engine_flush_submission(engine); pr_debug("%s: Filled ring with %d nop tails {size:%x, tail:%x, emit:%x, rq.tail:%x}\n", engine->name, n, ce[0]->ring->size, ce[0]->ring->tail, ce[0]->ring->emit, rq->tail); GEM_BUG_ON(intel_ring_direction(ce[0]->ring, rq->tail, ce[0]->ring->tail) <= 0); i915_request_put(rq); /* Create a second ring to preempt the first ring after rq[0] */ rq = intel_context_create_request(ce[1]); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_ce; } rq->sched.attr.priority = I915_PRIORITY_BARRIER; i915_request_get(rq); i915_request_add(rq); err = wait_for_submit(engine, rq, HZ / 2); i915_request_put(rq); if (err) { pr_err("%s: preemption request was not submitted\n", engine->name); err = -ETIME; } pr_debug("%s: ring[0]:{ tail:%x, emit:%x }, ring[1]:{ tail:%x, emit:%x }\n", engine->name, ce[0]->ring->tail, ce[0]->ring->emit, ce[1]->ring->tail, ce[1]->ring->emit); err_ce: intel_engine_flush_submission(engine); igt_spinner_end(&spin); for (n = 0; n < ARRAY_SIZE(ce); n++) { if (IS_ERR_OR_NULL(ce[n])) break; intel_context_unpin(ce[n]); intel_context_put(ce[n]); } st_engine_heartbeat_enable(engine); if (igt_live_test_end(&t)) err = -EIO; if (err) break; } igt_spinner_fini(&spin); return err; } static int live_pin_rewind(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; /* * We have to be careful not to trust intel_ring too much, for example * ring->head is updated upon retire which is out of sync with pinning * the context. Thus we cannot use ring->head to set CTX_RING_HEAD, * or else we risk writing an older, stale value. * * To simulate this, let's apply a bit of deliberate sabotague. */ for_each_engine(engine, gt, id) { struct intel_context *ce; struct i915_request *rq; struct intel_ring *ring; struct igt_live_test t; if (igt_live_test_begin(&t, gt->i915, __func__, engine->name)) { err = -EIO; break; } ce = intel_context_create(engine); if (IS_ERR(ce)) { err = PTR_ERR(ce); break; } err = intel_context_pin(ce); if (err) { intel_context_put(ce); break; } /* Keep the context awake while we play games */ err = i915_active_acquire(&ce->active); if (err) { intel_context_unpin(ce); intel_context_put(ce); break; } ring = ce->ring; /* Poison the ring, and offset the next request from HEAD */ memset32(ring->vaddr, STACK_MAGIC, ring->size / sizeof(u32)); ring->emit = ring->size / 2; ring->tail = ring->emit; GEM_BUG_ON(ring->head); intel_context_unpin(ce); /* Submit a simple nop request */ GEM_BUG_ON(intel_context_is_pinned(ce)); rq = intel_context_create_request(ce); i915_active_release(&ce->active); /* e.g. async retire */ intel_context_put(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); break; } GEM_BUG_ON(!rq->head); i915_request_add(rq); /* Expect not to hang! */ if (igt_live_test_end(&t)) { err = -EIO; break; } } return err; } static int engine_lock_reset_tasklet(struct intel_engine_cs *engine) { tasklet_disable(&engine->sched_engine->tasklet); local_bh_disable(); if (test_and_set_bit(I915_RESET_ENGINE + engine->id, &engine->gt->reset.flags)) { local_bh_enable(); tasklet_enable(&engine->sched_engine->tasklet); intel_gt_set_wedged(engine->gt); return -EBUSY; } return 0; } static void engine_unlock_reset_tasklet(struct intel_engine_cs *engine) { clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id, &engine->gt->reset.flags); local_bh_enable(); tasklet_enable(&engine->sched_engine->tasklet); } static int live_hold_reset(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; struct igt_spinner spin; int err = 0; /* * In order to support offline error capture for fast preempt reset, * we need to decouple the guilty request and ensure that it and its * descendents are not executed while the capture is in progress. */ if (!intel_has_reset_engine(gt)) return 0; if (igt_spinner_init(&spin, gt)) return -ENOMEM; for_each_engine(engine, gt, id) { struct intel_context *ce; struct i915_request *rq; ce = intel_context_create(engine); if (IS_ERR(ce)) { err = PTR_ERR(ce); break; } st_engine_heartbeat_disable(engine); rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out; } i915_request_add(rq); if (!igt_wait_for_spinner(&spin, rq)) { intel_gt_set_wedged(gt); err = -ETIME; goto out; } /* We have our request executing, now remove it and reset */ err = engine_lock_reset_tasklet(engine); if (err) goto out; engine->sched_engine->tasklet.callback(&engine->sched_engine->tasklet); GEM_BUG_ON(execlists_active(&engine->execlists) != rq); i915_request_get(rq); execlists_hold(engine, rq); GEM_BUG_ON(!i915_request_on_hold(rq)); __intel_engine_reset_bh(engine, NULL); GEM_BUG_ON(rq->fence.error != -EIO); engine_unlock_reset_tasklet(engine); /* Check that we do not resubmit the held request */ if (!i915_request_wait(rq, 0, HZ / 5)) { pr_err("%s: on hold request completed!\n", engine->name); i915_request_put(rq); err = -EIO; goto out; } GEM_BUG_ON(!i915_request_on_hold(rq)); /* But is resubmitted on release */ execlists_unhold(engine, rq); if (i915_request_wait(rq, 0, HZ / 5) < 0) { pr_err("%s: held request did not complete!\n", engine->name); intel_gt_set_wedged(gt); err = -ETIME; } i915_request_put(rq); out: st_engine_heartbeat_enable(engine); intel_context_put(ce); if (err) break; } igt_spinner_fini(&spin); return err; } static const char *error_repr(int err) { return err ? "bad" : "good"; } static int live_error_interrupt(void *arg) { static const struct error_phase { enum { GOOD = 0, BAD = -EIO } error[2]; } phases[] = { { { BAD, GOOD } }, { { BAD, BAD } }, { { BAD, GOOD } }, { { GOOD, GOOD } }, /* sentinel */ }; struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; /* * We hook up the CS_MASTER_ERROR_INTERRUPT to have forewarning * of invalid commands in user batches that will cause a GPU hang. * This is a faster mechanism than using hangcheck/heartbeats, but * only detects problems the HW knows about -- it will not warn when * we kill the HW! * * To verify our detection and reset, we throw some invalid commands * at the HW and wait for the interrupt. */ if (!intel_has_reset_engine(gt)) return 0; for_each_engine(engine, gt, id) { const struct error_phase *p; int err = 0; st_engine_heartbeat_disable(engine); for (p = phases; p->error[0] != GOOD; p++) { struct i915_request *client[ARRAY_SIZE(phases->error)]; u32 *cs; int i; memset(client, 0, sizeof(*client)); for (i = 0; i < ARRAY_SIZE(client); i++) { struct intel_context *ce; struct i915_request *rq; ce = intel_context_create(engine); if (IS_ERR(ce)) { err = PTR_ERR(ce); goto out; } rq = intel_context_create_request(ce); intel_context_put(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out; } if (rq->engine->emit_init_breadcrumb) { err = rq->engine->emit_init_breadcrumb(rq); if (err) { i915_request_add(rq); goto out; } } cs = intel_ring_begin(rq, 2); if (IS_ERR(cs)) { i915_request_add(rq); err = PTR_ERR(cs); goto out; } if (p->error[i]) { *cs++ = 0xdeadbeef; *cs++ = 0xdeadbeef; } else { *cs++ = MI_NOOP; *cs++ = MI_NOOP; } client[i] = i915_request_get(rq); i915_request_add(rq); } err = wait_for_submit(engine, client[0], HZ / 2); if (err) { pr_err("%s: first request did not start within time!\n", engine->name); err = -ETIME; goto out; } for (i = 0; i < ARRAY_SIZE(client); i++) { if (i915_request_wait(client[i], 0, HZ / 5) < 0) pr_debug("%s: %s request incomplete!\n", engine->name, error_repr(p->error[i])); if (!i915_request_started(client[i])) { pr_err("%s: %s request not started!\n", engine->name, error_repr(p->error[i])); err = -ETIME; goto out; } /* Kick the tasklet to process the error */ intel_engine_flush_submission(engine); if (client[i]->fence.error != p->error[i]) { pr_err("%s: %s request (%s) with wrong error code: %d\n", engine->name, error_repr(p->error[i]), i915_request_completed(client[i]) ? "completed" : "running", client[i]->fence.error); err = -EINVAL; goto out; } } out: for (i = 0; i < ARRAY_SIZE(client); i++) if (client[i]) i915_request_put(client[i]); if (err) { pr_err("%s: failed at phase[%zd] { %d, %d }\n", engine->name, p - phases, p->error[0], p->error[1]); break; } } st_engine_heartbeat_enable(engine); if (err) { intel_gt_set_wedged(gt); return err; } } return 0; } static int emit_semaphore_chain(struct i915_request *rq, struct i915_vma *vma, int idx) { u32 *cs; cs = intel_ring_begin(rq, 10); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; *cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT | MI_SEMAPHORE_POLL | MI_SEMAPHORE_SAD_NEQ_SDD; *cs++ = 0; *cs++ = i915_ggtt_offset(vma) + 4 * idx; *cs++ = 0; if (idx > 0) { *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; *cs++ = i915_ggtt_offset(vma) + 4 * (idx - 1); *cs++ = 0; *cs++ = 1; } else { *cs++ = MI_NOOP; *cs++ = MI_NOOP; *cs++ = MI_NOOP; *cs++ = MI_NOOP; } *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; intel_ring_advance(rq, cs); return 0; } static struct i915_request * semaphore_queue(struct intel_engine_cs *engine, struct i915_vma *vma, int idx) { struct intel_context *ce; struct i915_request *rq; int err; ce = intel_context_create(engine); if (IS_ERR(ce)) return ERR_CAST(ce); rq = intel_context_create_request(ce); if (IS_ERR(rq)) goto out_ce; err = 0; if (rq->engine->emit_init_breadcrumb) err = rq->engine->emit_init_breadcrumb(rq); if (err == 0) err = emit_semaphore_chain(rq, vma, idx); if (err == 0) i915_request_get(rq); i915_request_add(rq); if (err) rq = ERR_PTR(err); out_ce: intel_context_put(ce); return rq; } static int release_queue(struct intel_engine_cs *engine, struct i915_vma *vma, int idx, int prio) { struct i915_sched_attr attr = { .priority = prio, }; struct i915_request *rq; u32 *cs; rq = intel_engine_create_kernel_request(engine); if (IS_ERR(rq)) return PTR_ERR(rq); cs = intel_ring_begin(rq, 4); if (IS_ERR(cs)) { i915_request_add(rq); return PTR_ERR(cs); } *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; *cs++ = i915_ggtt_offset(vma) + 4 * (idx - 1); *cs++ = 0; *cs++ = 1; intel_ring_advance(rq, cs); i915_request_get(rq); i915_request_add(rq); local_bh_disable(); engine->sched_engine->schedule(rq, &attr); local_bh_enable(); /* kick tasklet */ i915_request_put(rq); return 0; } static int slice_semaphore_queue(struct intel_engine_cs *outer, struct i915_vma *vma, int count) { struct intel_engine_cs *engine; struct i915_request *head; enum intel_engine_id id; int err, i, n = 0; head = semaphore_queue(outer, vma, n++); if (IS_ERR(head)) return PTR_ERR(head); for_each_engine(engine, outer->gt, id) { if (!intel_engine_has_preemption(engine)) continue; for (i = 0; i < count; i++) { struct i915_request *rq; rq = semaphore_queue(engine, vma, n++); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out; } i915_request_put(rq); } } err = release_queue(outer, vma, n, I915_PRIORITY_BARRIER); if (err) goto out; if (i915_request_wait(head, 0, 2 * outer->gt->info.num_engines * (count + 2) * (count + 3)) < 0) { pr_err("%s: Failed to slice along semaphore chain of length (%d, %d)!\n", outer->name, count, n); GEM_TRACE_DUMP(); intel_gt_set_wedged(outer->gt); err = -EIO; } out: i915_request_put(head); return err; } static int live_timeslice_preempt(void *arg) { struct intel_gt *gt = arg; struct drm_i915_gem_object *obj; struct intel_engine_cs *engine; enum intel_engine_id id; struct i915_vma *vma; void *vaddr; int err = 0; /* * If a request takes too long, we would like to give other users * a fair go on the GPU. In particular, users may create batches * that wait upon external input, where that input may even be * supplied by another GPU job. To avoid blocking forever, we * need to preempt the current task and replace it with another * ready task. */ if (!CONFIG_DRM_I915_TIMESLICE_DURATION) return 0; obj = i915_gem_object_create_internal(gt->i915, PAGE_SIZE); if (IS_ERR(obj)) return PTR_ERR(obj); vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto err_obj; } vaddr = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC); if (IS_ERR(vaddr)) { err = PTR_ERR(vaddr); goto err_obj; } err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL); if (err) goto err_map; err = i915_vma_sync(vma); if (err) goto err_pin; for_each_engine(engine, gt, id) { if (!intel_engine_has_preemption(engine)) continue; memset(vaddr, 0, PAGE_SIZE); st_engine_heartbeat_disable(engine); err = slice_semaphore_queue(engine, vma, 5); st_engine_heartbeat_enable(engine); if (err) goto err_pin; if (igt_flush_test(gt->i915)) { err = -EIO; goto err_pin; } } err_pin: i915_vma_unpin(vma); err_map: i915_gem_object_unpin_map(obj); err_obj: i915_gem_object_put(obj); return err; } static struct i915_request * create_rewinder(struct intel_context *ce, struct i915_request *wait, void *slot, int idx) { const u32 offset = i915_ggtt_offset(ce->engine->status_page.vma) + offset_in_page(slot); struct i915_request *rq; u32 *cs; int err; rq = intel_context_create_request(ce); if (IS_ERR(rq)) return rq; if (wait) { err = i915_request_await_dma_fence(rq, &wait->fence); if (err) goto err; } cs = intel_ring_begin(rq, 14); if (IS_ERR(cs)) { err = PTR_ERR(cs); goto err; } *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; *cs++ = MI_NOOP; *cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT | MI_SEMAPHORE_POLL | MI_SEMAPHORE_SAD_GTE_SDD; *cs++ = idx; *cs++ = offset; *cs++ = 0; *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT; *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(rq->engine->mmio_base)); *cs++ = offset + idx * sizeof(u32); *cs++ = 0; *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; *cs++ = offset; *cs++ = 0; *cs++ = idx + 1; intel_ring_advance(rq, cs); err = 0; err: i915_request_get(rq); i915_request_add(rq); if (err) { i915_request_put(rq); return ERR_PTR(err); } return rq; } static int live_timeslice_rewind(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; /* * The usual presumption on timeslice expiration is that we replace * the active context with another. However, given a chain of * dependencies we may end up with replacing the context with itself, * but only a few of those requests, forcing us to rewind the * RING_TAIL of the original request. */ if (!CONFIG_DRM_I915_TIMESLICE_DURATION) return 0; for_each_engine(engine, gt, id) { enum { A1, A2, B1 }; enum { X = 1, Z, Y }; struct i915_request *rq[3] = {}; struct intel_context *ce; unsigned long timeslice; int i, err = 0; u32 *slot; if (!intel_engine_has_timeslices(engine)) continue; /* * A:rq1 -- semaphore wait, timestamp X * A:rq2 -- write timestamp Y * * B:rq1 [await A:rq1] -- write timestamp Z * * Force timeslice, release semaphore. * * Expect execution/evaluation order XZY */ st_engine_heartbeat_disable(engine); timeslice = xchg(&engine->props.timeslice_duration_ms, 1); slot = memset32(engine->status_page.addr + 1000, 0, 4); ce = intel_context_create(engine); if (IS_ERR(ce)) { err = PTR_ERR(ce); goto err; } rq[A1] = create_rewinder(ce, NULL, slot, X); if (IS_ERR(rq[A1])) { intel_context_put(ce); goto err; } rq[A2] = create_rewinder(ce, NULL, slot, Y); intel_context_put(ce); if (IS_ERR(rq[A2])) goto err; err = wait_for_submit(engine, rq[A2], HZ / 2); if (err) { pr_err("%s: failed to submit first context\n", engine->name); goto err; } ce = intel_context_create(engine); if (IS_ERR(ce)) { err = PTR_ERR(ce); goto err; } rq[B1] = create_rewinder(ce, rq[A1], slot, Z); intel_context_put(ce); if (IS_ERR(rq[2])) goto err; err = wait_for_submit(engine, rq[B1], HZ / 2); if (err) { pr_err("%s: failed to submit second context\n", engine->name); goto err; } /* ELSP[] = { { A:rq1, A:rq2 }, { B:rq1 } } */ ENGINE_TRACE(engine, "forcing tasklet for rewind\n"); while (i915_request_is_active(rq[A2])) { /* semaphore yield! */ /* Wait for the timeslice to kick in */ del_timer(&engine->execlists.timer); tasklet_hi_schedule(&engine->sched_engine->tasklet); intel_engine_flush_submission(engine); } /* -> ELSP[] = { { A:rq1 }, { B:rq1 } } */ GEM_BUG_ON(!i915_request_is_active(rq[A1])); GEM_BUG_ON(!i915_request_is_active(rq[B1])); GEM_BUG_ON(i915_request_is_active(rq[A2])); /* Release the hounds! */ slot[0] = 1; wmb(); /* "pairs" with GPU; paranoid kick of internal CPU$ */ for (i = 1; i <= 3; i++) { unsigned long timeout = jiffies + HZ / 2; while (!READ_ONCE(slot[i]) && time_before(jiffies, timeout)) ; if (!time_before(jiffies, timeout)) { pr_err("%s: rq[%d] timed out\n", engine->name, i - 1); err = -ETIME; goto err; } pr_debug("%s: slot[%d]:%x\n", engine->name, i, slot[i]); } /* XZY: XZ < XY */ if (slot[Z] - slot[X] >= slot[Y] - slot[X]) { pr_err("%s: timeslicing did not run context B [%u] before A [%u]!\n", engine->name, slot[Z] - slot[X], slot[Y] - slot[X]); err = -EINVAL; } err: memset32(&slot[0], -1, 4); wmb(); engine->props.timeslice_duration_ms = timeslice; st_engine_heartbeat_enable(engine); for (i = 0; i < 3; i++) i915_request_put(rq[i]); if (igt_flush_test(gt->i915)) err = -EIO; if (err) return err; } return 0; } static struct i915_request *nop_request(struct intel_engine_cs *engine) { struct i915_request *rq; rq = intel_engine_create_kernel_request(engine); if (IS_ERR(rq)) return rq; i915_request_get(rq); i915_request_add(rq); return rq; } static long slice_timeout(struct intel_engine_cs *engine) { long timeout; /* Enough time for a timeslice to kick in, and kick out */ timeout = 2 * msecs_to_jiffies_timeout(timeslice(engine)); /* Enough time for the nop request to complete */ timeout += HZ / 5; return timeout + 1; } static int live_timeslice_queue(void *arg) { struct intel_gt *gt = arg; struct drm_i915_gem_object *obj; struct intel_engine_cs *engine; enum intel_engine_id id; struct i915_vma *vma; void *vaddr; int err = 0; /* * Make sure that even if ELSP[0] and ELSP[1] are filled with * timeslicing between them disabled, we *do* enable timeslicing * if the queue demands it. (Normally, we do not submit if * ELSP[1] is already occupied, so must rely on timeslicing to * eject ELSP[0] in favour of the queue.) */ if (!CONFIG_DRM_I915_TIMESLICE_DURATION) return 0; obj = i915_gem_object_create_internal(gt->i915, PAGE_SIZE); if (IS_ERR(obj)) return PTR_ERR(obj); vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto err_obj; } vaddr = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC); if (IS_ERR(vaddr)) { err = PTR_ERR(vaddr); goto err_obj; } err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL); if (err) goto err_map; err = i915_vma_sync(vma); if (err) goto err_pin; for_each_engine(engine, gt, id) { struct i915_sched_attr attr = { .priority = I915_PRIORITY_MAX }; struct i915_request *rq, *nop; if (!intel_engine_has_preemption(engine)) continue; st_engine_heartbeat_disable(engine); memset(vaddr, 0, PAGE_SIZE); /* ELSP[0]: semaphore wait */ rq = semaphore_queue(engine, vma, 0); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_heartbeat; } engine->sched_engine->schedule(rq, &attr); err = wait_for_submit(engine, rq, HZ / 2); if (err) { pr_err("%s: Timed out trying to submit semaphores\n", engine->name); goto err_rq; } /* ELSP[1]: nop request */ nop = nop_request(engine); if (IS_ERR(nop)) { err = PTR_ERR(nop); goto err_rq; } err = wait_for_submit(engine, nop, HZ / 2); i915_request_put(nop); if (err) { pr_err("%s: Timed out trying to submit nop\n", engine->name); goto err_rq; } GEM_BUG_ON(i915_request_completed(rq)); GEM_BUG_ON(execlists_active(&engine->execlists) != rq); /* Queue: semaphore signal, matching priority as semaphore */ err = release_queue(engine, vma, 1, effective_prio(rq)); if (err) goto err_rq; /* Wait until we ack the release_queue and start timeslicing */ do { cond_resched(); intel_engine_flush_submission(engine); } while (READ_ONCE(engine->execlists.pending[0])); /* Timeslice every jiffy, so within 2 we should signal */ if (i915_request_wait(rq, 0, slice_timeout(engine)) < 0) { struct drm_printer p = drm_info_printer(gt->i915->drm.dev); pr_err("%s: Failed to timeslice into queue\n", engine->name); intel_engine_dump(engine, &p, "%s\n", engine->name); memset(vaddr, 0xff, PAGE_SIZE); err = -EIO; } err_rq: i915_request_put(rq); err_heartbeat: st_engine_heartbeat_enable(engine); if (err) break; } err_pin: i915_vma_unpin(vma); err_map: i915_gem_object_unpin_map(obj); err_obj: i915_gem_object_put(obj); return err; } static int live_timeslice_nopreempt(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; struct igt_spinner spin; int err = 0; /* * We should not timeslice into a request that is marked with * I915_REQUEST_NOPREEMPT. */ if (!CONFIG_DRM_I915_TIMESLICE_DURATION) return 0; if (igt_spinner_init(&spin, gt)) return -ENOMEM; for_each_engine(engine, gt, id) { struct intel_context *ce; struct i915_request *rq; unsigned long timeslice; if (!intel_engine_has_preemption(engine)) continue; ce = intel_context_create(engine); if (IS_ERR(ce)) { err = PTR_ERR(ce); break; } st_engine_heartbeat_disable(engine); timeslice = xchg(&engine->props.timeslice_duration_ms, 1); /* Create an unpreemptible spinner */ rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK); intel_context_put(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out_heartbeat; } i915_request_get(rq); i915_request_add(rq); if (!igt_wait_for_spinner(&spin, rq)) { i915_request_put(rq); err = -ETIME; goto out_spin; } set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags); i915_request_put(rq); /* Followed by a maximum priority barrier (heartbeat) */ ce = intel_context_create(engine); if (IS_ERR(ce)) { err = PTR_ERR(ce); goto out_spin; } rq = intel_context_create_request(ce); intel_context_put(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out_spin; } rq->sched.attr.priority = I915_PRIORITY_BARRIER; i915_request_get(rq); i915_request_add(rq); /* * Wait until the barrier is in ELSP, and we know timeslicing * will have been activated. */ if (wait_for_submit(engine, rq, HZ / 2)) { i915_request_put(rq); err = -ETIME; goto out_spin; } /* * Since the ELSP[0] request is unpreemptible, it should not * allow the maximum priority barrier through. Wait long * enough to see if it is timesliced in by mistake. */ if (i915_request_wait(rq, 0, slice_timeout(engine)) >= 0) { pr_err("%s: I915_PRIORITY_BARRIER request completed, bypassing no-preempt request\n", engine->name); err = -EINVAL; } i915_request_put(rq); out_spin: igt_spinner_end(&spin); out_heartbeat: xchg(&engine->props.timeslice_duration_ms, timeslice); st_engine_heartbeat_enable(engine); if (err) break; if (igt_flush_test(gt->i915)) { err = -EIO; break; } } igt_spinner_fini(&spin); return err; } static int live_busywait_preempt(void *arg) { struct intel_gt *gt = arg; struct i915_gem_context *ctx_hi, *ctx_lo; struct intel_engine_cs *engine; struct drm_i915_gem_object *obj; struct i915_vma *vma; enum intel_engine_id id; u32 *map; int err; /* * Verify that even without HAS_LOGICAL_RING_PREEMPTION, we can * preempt the busywaits used to synchronise between rings. */ ctx_hi = kernel_context(gt->i915, NULL); if (IS_ERR(ctx_hi)) return PTR_ERR(ctx_hi); ctx_hi->sched.priority = I915_CONTEXT_MAX_USER_PRIORITY; ctx_lo = kernel_context(gt->i915, NULL); if (IS_ERR(ctx_lo)) { err = PTR_ERR(ctx_lo); goto err_ctx_hi; } ctx_lo->sched.priority = I915_CONTEXT_MIN_USER_PRIORITY; obj = i915_gem_object_create_internal(gt->i915, PAGE_SIZE); if (IS_ERR(obj)) { err = PTR_ERR(obj); goto err_ctx_lo; } map = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC); if (IS_ERR(map)) { err = PTR_ERR(map); goto err_obj; } vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto err_map; } err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL); if (err) goto err_map; err = i915_vma_sync(vma); if (err) goto err_vma; for_each_engine(engine, gt, id) { struct i915_request *lo, *hi; struct igt_live_test t; u32 *cs; if (!intel_engine_has_preemption(engine)) continue; if (!intel_engine_can_store_dword(engine)) continue; if (igt_live_test_begin(&t, gt->i915, __func__, engine->name)) { err = -EIO; goto err_vma; } /* * We create two requests. The low priority request * busywaits on a semaphore (inside the ringbuffer where * is should be preemptible) and the high priority requests * uses a MI_STORE_DWORD_IMM to update the semaphore value * allowing the first request to complete. If preemption * fails, we hang instead. */ lo = igt_request_alloc(ctx_lo, engine); if (IS_ERR(lo)) { err = PTR_ERR(lo); goto err_vma; } cs = intel_ring_begin(lo, 8); if (IS_ERR(cs)) { err = PTR_ERR(cs); i915_request_add(lo); goto err_vma; } *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; *cs++ = i915_ggtt_offset(vma); *cs++ = 0; *cs++ = 1; /* XXX Do we need a flush + invalidate here? */ *cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT | MI_SEMAPHORE_POLL | MI_SEMAPHORE_SAD_EQ_SDD; *cs++ = 0; *cs++ = i915_ggtt_offset(vma); *cs++ = 0; intel_ring_advance(lo, cs); i915_request_get(lo); i915_request_add(lo); if (wait_for(READ_ONCE(*map), 10)) { i915_request_put(lo); err = -ETIMEDOUT; goto err_vma; } /* Low priority request should be busywaiting now */ if (i915_request_wait(lo, 0, 1) != -ETIME) { i915_request_put(lo); pr_err("%s: Busywaiting request did not!\n", engine->name); err = -EIO; goto err_vma; } hi = igt_request_alloc(ctx_hi, engine); if (IS_ERR(hi)) { err = PTR_ERR(hi); i915_request_put(lo); goto err_vma; } cs = intel_ring_begin(hi, 4); if (IS_ERR(cs)) { err = PTR_ERR(cs); i915_request_add(hi); i915_request_put(lo); goto err_vma; } *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; *cs++ = i915_ggtt_offset(vma); *cs++ = 0; *cs++ = 0; intel_ring_advance(hi, cs); i915_request_add(hi); if (i915_request_wait(lo, 0, HZ / 5) < 0) { struct drm_printer p = drm_info_printer(gt->i915->drm.dev); pr_err("%s: Failed to preempt semaphore busywait!\n", engine->name); intel_engine_dump(engine, &p, "%s\n", engine->name); GEM_TRACE_DUMP(); i915_request_put(lo); intel_gt_set_wedged(gt); err = -EIO; goto err_vma; } GEM_BUG_ON(READ_ONCE(*map)); i915_request_put(lo); if (igt_live_test_end(&t)) { err = -EIO; goto err_vma; } } err = 0; err_vma: i915_vma_unpin(vma); err_map: i915_gem_object_unpin_map(obj); err_obj: i915_gem_object_put(obj); err_ctx_lo: kernel_context_close(ctx_lo); err_ctx_hi: kernel_context_close(ctx_hi); return err; } static struct i915_request * spinner_create_request(struct igt_spinner *spin, struct i915_gem_context *ctx, struct intel_engine_cs *engine, u32 arb) { struct intel_context *ce; struct i915_request *rq; ce = i915_gem_context_get_engine(ctx, engine->legacy_idx); if (IS_ERR(ce)) return ERR_CAST(ce); rq = igt_spinner_create_request(spin, ce, arb); intel_context_put(ce); return rq; } static int live_preempt(void *arg) { struct intel_gt *gt = arg; struct i915_gem_context *ctx_hi, *ctx_lo; struct igt_spinner spin_hi, spin_lo; struct intel_engine_cs *engine; enum intel_engine_id id; int err = -ENOMEM; ctx_hi = kernel_context(gt->i915, NULL); if (!ctx_hi) return -ENOMEM; ctx_hi->sched.priority = I915_CONTEXT_MAX_USER_PRIORITY; ctx_lo = kernel_context(gt->i915, NULL); if (!ctx_lo) goto err_ctx_hi; ctx_lo->sched.priority = I915_CONTEXT_MIN_USER_PRIORITY; if (igt_spinner_init(&spin_hi, gt)) goto err_ctx_lo; if (igt_spinner_init(&spin_lo, gt)) goto err_spin_hi; for_each_engine(engine, gt, id) { struct igt_live_test t; struct i915_request *rq; if (!intel_engine_has_preemption(engine)) continue; if (igt_live_test_begin(&t, gt->i915, __func__, engine->name)) { err = -EIO; goto err_spin_lo; } rq = spinner_create_request(&spin_lo, ctx_lo, engine, MI_ARB_CHECK); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_spin_lo; } i915_request_add(rq); if (!igt_wait_for_spinner(&spin_lo, rq)) { GEM_TRACE("lo spinner failed to start\n"); GEM_TRACE_DUMP(); intel_gt_set_wedged(gt); err = -EIO; goto err_spin_lo; } rq = spinner_create_request(&spin_hi, ctx_hi, engine, MI_ARB_CHECK); if (IS_ERR(rq)) { igt_spinner_end(&spin_lo); err = PTR_ERR(rq); goto err_spin_lo; } i915_request_add(rq); if (!igt_wait_for_spinner(&spin_hi, rq)) { GEM_TRACE("hi spinner failed to start\n"); GEM_TRACE_DUMP(); intel_gt_set_wedged(gt); err = -EIO; goto err_spin_lo; } igt_spinner_end(&spin_hi); igt_spinner_end(&spin_lo); if (igt_live_test_end(&t)) { err = -EIO; goto err_spin_lo; } } err = 0; err_spin_lo: igt_spinner_fini(&spin_lo); err_spin_hi: igt_spinner_fini(&spin_hi); err_ctx_lo: kernel_context_close(ctx_lo); err_ctx_hi: kernel_context_close(ctx_hi); return err; } static int live_late_preempt(void *arg) { struct intel_gt *gt = arg; struct i915_gem_context *ctx_hi, *ctx_lo; struct igt_spinner spin_hi, spin_lo; struct intel_engine_cs *engine; struct i915_sched_attr attr = {}; enum intel_engine_id id; int err = -ENOMEM; ctx_hi = kernel_context(gt->i915, NULL); if (!ctx_hi) return -ENOMEM; ctx_lo = kernel_context(gt->i915, NULL); if (!ctx_lo) goto err_ctx_hi; if (igt_spinner_init(&spin_hi, gt)) goto err_ctx_lo; if (igt_spinner_init(&spin_lo, gt)) goto err_spin_hi; /* Make sure ctx_lo stays before ctx_hi until we trigger preemption. */ ctx_lo->sched.priority = 1; for_each_engine(engine, gt, id) { struct igt_live_test t; struct i915_request *rq; if (!intel_engine_has_preemption(engine)) continue; if (igt_live_test_begin(&t, gt->i915, __func__, engine->name)) { err = -EIO; goto err_spin_lo; } rq = spinner_create_request(&spin_lo, ctx_lo, engine, MI_ARB_CHECK); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_spin_lo; } i915_request_add(rq); if (!igt_wait_for_spinner(&spin_lo, rq)) { pr_err("First context failed to start\n"); goto err_wedged; } rq = spinner_create_request(&spin_hi, ctx_hi, engine, MI_NOOP); if (IS_ERR(rq)) { igt_spinner_end(&spin_lo); err = PTR_ERR(rq); goto err_spin_lo; } i915_request_add(rq); if (igt_wait_for_spinner(&spin_hi, rq)) { pr_err("Second context overtook first?\n"); goto err_wedged; } attr.priority = I915_PRIORITY_MAX; engine->sched_engine->schedule(rq, &attr); if (!igt_wait_for_spinner(&spin_hi, rq)) { pr_err("High priority context failed to preempt the low priority context\n"); GEM_TRACE_DUMP(); goto err_wedged; } igt_spinner_end(&spin_hi); igt_spinner_end(&spin_lo); if (igt_live_test_end(&t)) { err = -EIO; goto err_spin_lo; } } err = 0; err_spin_lo: igt_spinner_fini(&spin_lo); err_spin_hi: igt_spinner_fini(&spin_hi); err_ctx_lo: kernel_context_close(ctx_lo); err_ctx_hi: kernel_context_close(ctx_hi); return err; err_wedged: igt_spinner_end(&spin_hi); igt_spinner_end(&spin_lo); intel_gt_set_wedged(gt); err = -EIO; goto err_spin_lo; } struct preempt_client { struct igt_spinner spin; struct i915_gem_context *ctx; }; static int preempt_client_init(struct intel_gt *gt, struct preempt_client *c) { c->ctx = kernel_context(gt->i915, NULL); if (!c->ctx) return -ENOMEM; if (igt_spinner_init(&c->spin, gt)) goto err_ctx; return 0; err_ctx: kernel_context_close(c->ctx); return -ENOMEM; } static void preempt_client_fini(struct preempt_client *c) { igt_spinner_fini(&c->spin); kernel_context_close(c->ctx); } static int live_nopreempt(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; struct preempt_client a, b; enum intel_engine_id id; int err = -ENOMEM; /* * Verify that we can disable preemption for an individual request * that may be being observed and not want to be interrupted. */ if (preempt_client_init(gt, &a)) return -ENOMEM; if (preempt_client_init(gt, &b)) goto err_client_a; b.ctx->sched.priority = I915_PRIORITY_MAX; for_each_engine(engine, gt, id) { struct i915_request *rq_a, *rq_b; if (!intel_engine_has_preemption(engine)) continue; engine->execlists.preempt_hang.count = 0; rq_a = spinner_create_request(&a.spin, a.ctx, engine, MI_ARB_CHECK); if (IS_ERR(rq_a)) { err = PTR_ERR(rq_a); goto err_client_b; } /* Low priority client, but unpreemptable! */ __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq_a->fence.flags); i915_request_add(rq_a); if (!igt_wait_for_spinner(&a.spin, rq_a)) { pr_err("First client failed to start\n"); goto err_wedged; } rq_b = spinner_create_request(&b.spin, b.ctx, engine, MI_ARB_CHECK); if (IS_ERR(rq_b)) { err = PTR_ERR(rq_b); goto err_client_b; } i915_request_add(rq_b); /* B is much more important than A! (But A is unpreemptable.) */ GEM_BUG_ON(rq_prio(rq_b) <= rq_prio(rq_a)); /* Wait long enough for preemption and timeslicing */ if (igt_wait_for_spinner(&b.spin, rq_b)) { pr_err("Second client started too early!\n"); goto err_wedged; } igt_spinner_end(&a.spin); if (!igt_wait_for_spinner(&b.spin, rq_b)) { pr_err("Second client failed to start\n"); goto err_wedged; } igt_spinner_end(&b.spin); if (engine->execlists.preempt_hang.count) { pr_err("Preemption recorded x%d; should have been suppressed!\n", engine->execlists.preempt_hang.count); err = -EINVAL; goto err_wedged; } if (igt_flush_test(gt->i915)) goto err_wedged; } err = 0; err_client_b: preempt_client_fini(&b); err_client_a: preempt_client_fini(&a); return err; err_wedged: igt_spinner_end(&b.spin); igt_spinner_end(&a.spin); intel_gt_set_wedged(gt); err = -EIO; goto err_client_b; } struct live_preempt_cancel { struct intel_engine_cs *engine; struct preempt_client a, b; }; static int __cancel_active0(struct live_preempt_cancel *arg) { struct i915_request *rq; struct igt_live_test t; int err; /* Preempt cancel of ELSP0 */ GEM_TRACE("%s(%s)\n", __func__, arg->engine->name); if (igt_live_test_begin(&t, arg->engine->i915, __func__, arg->engine->name)) return -EIO; rq = spinner_create_request(&arg->a.spin, arg->a.ctx, arg->engine, MI_ARB_CHECK); if (IS_ERR(rq)) return PTR_ERR(rq); clear_bit(CONTEXT_BANNED, &rq->context->flags); i915_request_get(rq); i915_request_add(rq); if (!igt_wait_for_spinner(&arg->a.spin, rq)) { err = -EIO; goto out; } intel_context_ban(rq->context, rq); err = intel_engine_pulse(arg->engine); if (err) goto out; err = wait_for_reset(arg->engine, rq, HZ / 2); if (err) { pr_err("Cancelled inflight0 request did not reset\n"); goto out; } out: i915_request_put(rq); if (igt_live_test_end(&t)) err = -EIO; return err; } static int __cancel_active1(struct live_preempt_cancel *arg) { struct i915_request *rq[2] = {}; struct igt_live_test t; int err; /* Preempt cancel of ELSP1 */ GEM_TRACE("%s(%s)\n", __func__, arg->engine->name); if (igt_live_test_begin(&t, arg->engine->i915, __func__, arg->engine->name)) return -EIO; rq[0] = spinner_create_request(&arg->a.spin, arg->a.ctx, arg->engine, MI_NOOP); /* no preemption */ if (IS_ERR(rq[0])) return PTR_ERR(rq[0]); clear_bit(CONTEXT_BANNED, &rq[0]->context->flags); i915_request_get(rq[0]); i915_request_add(rq[0]); if (!igt_wait_for_spinner(&arg->a.spin, rq[0])) { err = -EIO; goto out; } rq[1] = spinner_create_request(&arg->b.spin, arg->b.ctx, arg->engine, MI_ARB_CHECK); if (IS_ERR(rq[1])) { err = PTR_ERR(rq[1]); goto out; } clear_bit(CONTEXT_BANNED, &rq[1]->context->flags); i915_request_get(rq[1]); err = i915_request_await_dma_fence(rq[1], &rq[0]->fence); i915_request_add(rq[1]); if (err) goto out; intel_context_ban(rq[1]->context, rq[1]); err = intel_engine_pulse(arg->engine); if (err) goto out; igt_spinner_end(&arg->a.spin); err = wait_for_reset(arg->engine, rq[1], HZ / 2); if (err) goto out; if (rq[0]->fence.error != 0) { pr_err("Normal inflight0 request did not complete\n"); err = -EINVAL; goto out; } if (rq[1]->fence.error != -EIO) { pr_err("Cancelled inflight1 request did not report -EIO\n"); err = -EINVAL; goto out; } out: i915_request_put(rq[1]); i915_request_put(rq[0]); if (igt_live_test_end(&t)) err = -EIO; return err; } static int __cancel_queued(struct live_preempt_cancel *arg) { struct i915_request *rq[3] = {}; struct igt_live_test t; int err; /* Full ELSP and one in the wings */ GEM_TRACE("%s(%s)\n", __func__, arg->engine->name); if (igt_live_test_begin(&t, arg->engine->i915, __func__, arg->engine->name)) return -EIO; rq[0] = spinner_create_request(&arg->a.spin, arg->a.ctx, arg->engine, MI_ARB_CHECK); if (IS_ERR(rq[0])) return PTR_ERR(rq[0]); clear_bit(CONTEXT_BANNED, &rq[0]->context->flags); i915_request_get(rq[0]); i915_request_add(rq[0]); if (!igt_wait_for_spinner(&arg->a.spin, rq[0])) { err = -EIO; goto out; } rq[1] = igt_request_alloc(arg->b.ctx, arg->engine); if (IS_ERR(rq[1])) { err = PTR_ERR(rq[1]); goto out; } clear_bit(CONTEXT_BANNED, &rq[1]->context->flags); i915_request_get(rq[1]); err = i915_request_await_dma_fence(rq[1], &rq[0]->fence); i915_request_add(rq[1]); if (err) goto out; rq[2] = spinner_create_request(&arg->b.spin, arg->a.ctx, arg->engine, MI_ARB_CHECK); if (IS_ERR(rq[2])) { err = PTR_ERR(rq[2]); goto out; } i915_request_get(rq[2]); err = i915_request_await_dma_fence(rq[2], &rq[1]->fence); i915_request_add(rq[2]); if (err) goto out; intel_context_ban(rq[2]->context, rq[2]); err = intel_engine_pulse(arg->engine); if (err) goto out; err = wait_for_reset(arg->engine, rq[2], HZ / 2); if (err) goto out; if (rq[0]->fence.error != -EIO) { pr_err("Cancelled inflight0 request did not report -EIO\n"); err = -EINVAL; goto out; } /* * The behavior between having semaphores and not is different. With * semaphores the subsequent request is on the hardware and not cancelled * while without the request is held in the driver and cancelled. */ if (intel_engine_has_semaphores(rq[1]->engine) && rq[1]->fence.error != 0) { pr_err("Normal inflight1 request did not complete\n"); err = -EINVAL; goto out; } if (rq[2]->fence.error != -EIO) { pr_err("Cancelled queued request did not report -EIO\n"); err = -EINVAL; goto out; } out: i915_request_put(rq[2]); i915_request_put(rq[1]); i915_request_put(rq[0]); if (igt_live_test_end(&t)) err = -EIO; return err; } static int __cancel_hostile(struct live_preempt_cancel *arg) { struct i915_request *rq; int err; /* Preempt cancel non-preemptible spinner in ELSP0 */ if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT) return 0; if (!intel_has_reset_engine(arg->engine->gt)) return 0; GEM_TRACE("%s(%s)\n", __func__, arg->engine->name); rq = spinner_create_request(&arg->a.spin, arg->a.ctx, arg->engine, MI_NOOP); /* preemption disabled */ if (IS_ERR(rq)) return PTR_ERR(rq); clear_bit(CONTEXT_BANNED, &rq->context->flags); i915_request_get(rq); i915_request_add(rq); if (!igt_wait_for_spinner(&arg->a.spin, rq)) { err = -EIO; goto out; } intel_context_ban(rq->context, rq); err = intel_engine_pulse(arg->engine); /* force reset */ if (err) goto out; err = wait_for_reset(arg->engine, rq, HZ / 2); if (err) { pr_err("Cancelled inflight0 request did not reset\n"); goto out; } out: i915_request_put(rq); if (igt_flush_test(arg->engine->i915)) err = -EIO; return err; } static void force_reset_timeout(struct intel_engine_cs *engine) { engine->reset_timeout.probability = 999; atomic_set(&engine->reset_timeout.times, -1); } static void cancel_reset_timeout(struct intel_engine_cs *engine) { memset(&engine->reset_timeout, 0, sizeof(engine->reset_timeout)); } static int __cancel_fail(struct live_preempt_cancel *arg) { struct intel_engine_cs *engine = arg->engine; struct i915_request *rq; int err; if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT) return 0; if (!intel_has_reset_engine(engine->gt)) return 0; GEM_TRACE("%s(%s)\n", __func__, engine->name); rq = spinner_create_request(&arg->a.spin, arg->a.ctx, engine, MI_NOOP); /* preemption disabled */ if (IS_ERR(rq)) return PTR_ERR(rq); clear_bit(CONTEXT_BANNED, &rq->context->flags); i915_request_get(rq); i915_request_add(rq); if (!igt_wait_for_spinner(&arg->a.spin, rq)) { err = -EIO; goto out; } intel_context_set_banned(rq->context); err = intel_engine_pulse(engine); if (err) goto out; force_reset_timeout(engine); /* force preempt reset [failure] */ while (!engine->execlists.pending[0]) intel_engine_flush_submission(engine); del_timer_sync(&engine->execlists.preempt); intel_engine_flush_submission(engine); cancel_reset_timeout(engine); /* after failure, require heartbeats to reset device */ intel_engine_set_heartbeat(engine, 1); err = wait_for_reset(engine, rq, HZ / 2); intel_engine_set_heartbeat(engine, engine->defaults.heartbeat_interval_ms); if (err) { pr_err("Cancelled inflight0 request did not reset\n"); goto out; } out: i915_request_put(rq); if (igt_flush_test(engine->i915)) err = -EIO; return err; } static int live_preempt_cancel(void *arg) { struct intel_gt *gt = arg; struct live_preempt_cancel data; enum intel_engine_id id; int err = -ENOMEM; /* * To cancel an inflight context, we need to first remove it from the * GPU. That sounds like preemption! Plus a little bit of bookkeeping. */ if (preempt_client_init(gt, &data.a)) return -ENOMEM; if (preempt_client_init(gt, &data.b)) goto err_client_a; for_each_engine(data.engine, gt, id) { if (!intel_engine_has_preemption(data.engine)) continue; err = __cancel_active0(&data); if (err) goto err_wedged; err = __cancel_active1(&data); if (err) goto err_wedged; err = __cancel_queued(&data); if (err) goto err_wedged; err = __cancel_hostile(&data); if (err) goto err_wedged; err = __cancel_fail(&data); if (err) goto err_wedged; } err = 0; err_client_b: preempt_client_fini(&data.b); err_client_a: preempt_client_fini(&data.a); return err; err_wedged: GEM_TRACE_DUMP(); igt_spinner_end(&data.b.spin); igt_spinner_end(&data.a.spin); intel_gt_set_wedged(gt); goto err_client_b; } static int live_suppress_self_preempt(void *arg) { struct i915_sched_attr attr = { .priority = I915_PRIORITY_MAX }; struct intel_gt *gt = arg; struct intel_engine_cs *engine; struct preempt_client a, b; enum intel_engine_id id; int err = -ENOMEM; /* * Verify that if a preemption request does not cause a change in * the current execution order, the preempt-to-idle injection is * skipped and that we do not accidentally apply it after the CS * completion event. */ if (intel_uc_uses_guc_submission(&gt->uc)) return 0; /* presume black blox */ if (intel_vgpu_active(gt->i915)) return 0; /* GVT forces single port & request submission */ if (preempt_client_init(gt, &a)) return -ENOMEM; if (preempt_client_init(gt, &b)) goto err_client_a; for_each_engine(engine, gt, id) { struct i915_request *rq_a, *rq_b; int depth; if (!intel_engine_has_preemption(engine)) continue; if (igt_flush_test(gt->i915)) goto err_wedged; st_engine_heartbeat_disable(engine); engine->execlists.preempt_hang.count = 0; rq_a = spinner_create_request(&a.spin, a.ctx, engine, MI_NOOP); if (IS_ERR(rq_a)) { err = PTR_ERR(rq_a); st_engine_heartbeat_enable(engine); goto err_client_b; } i915_request_add(rq_a); if (!igt_wait_for_spinner(&a.spin, rq_a)) { pr_err("First client failed to start\n"); st_engine_heartbeat_enable(engine); goto err_wedged; } /* Keep postponing the timer to avoid premature slicing */ mod_timer(&engine->execlists.timer, jiffies + HZ); for (depth = 0; depth < 8; depth++) { rq_b = spinner_create_request(&b.spin, b.ctx, engine, MI_NOOP); if (IS_ERR(rq_b)) { err = PTR_ERR(rq_b); st_engine_heartbeat_enable(engine); goto err_client_b; } i915_request_add(rq_b); GEM_BUG_ON(i915_request_completed(rq_a)); engine->sched_engine->schedule(rq_a, &attr); igt_spinner_end(&a.spin); if (!igt_wait_for_spinner(&b.spin, rq_b)) { pr_err("Second client failed to start\n"); st_engine_heartbeat_enable(engine); goto err_wedged; } swap(a, b); rq_a = rq_b; } igt_spinner_end(&a.spin); if (engine->execlists.preempt_hang.count) { pr_err("Preemption on %s recorded x%d, depth %d; should have been suppressed!\n", engine->name, engine->execlists.preempt_hang.count, depth); st_engine_heartbeat_enable(engine); err = -EINVAL; goto err_client_b; } st_engine_heartbeat_enable(engine); if (igt_flush_test(gt->i915)) goto err_wedged; } err = 0; err_client_b: preempt_client_fini(&b); err_client_a: preempt_client_fini(&a); return err; err_wedged: igt_spinner_end(&b.spin); igt_spinner_end(&a.spin); intel_gt_set_wedged(gt); err = -EIO; goto err_client_b; } static int live_chain_preempt(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; struct preempt_client hi, lo; enum intel_engine_id id; int err = -ENOMEM; /* * Build a chain AB...BA between two contexts (A, B) and request * preemption of the last request. It should then complete before * the previously submitted spinner in B. */ if (preempt_client_init(gt, &hi)) return -ENOMEM; if (preempt_client_init(gt, &lo)) goto err_client_hi; for_each_engine(engine, gt, id) { struct i915_sched_attr attr = { .priority = I915_PRIORITY_MAX }; struct igt_live_test t; struct i915_request *rq; int ring_size, count, i; if (!intel_engine_has_preemption(engine)) continue; rq = spinner_create_request(&lo.spin, lo.ctx, engine, MI_ARB_CHECK); if (IS_ERR(rq)) goto err_wedged; i915_request_get(rq); i915_request_add(rq); ring_size = rq->wa_tail - rq->head; if (ring_size < 0) ring_size += rq->ring->size; ring_size = rq->ring->size / ring_size; pr_debug("%s(%s): Using maximum of %d requests\n", __func__, engine->name, ring_size); igt_spinner_end(&lo.spin); if (i915_request_wait(rq, 0, HZ / 2) < 0) { pr_err("Timed out waiting to flush %s\n", engine->name); i915_request_put(rq); goto err_wedged; } i915_request_put(rq); if (igt_live_test_begin(&t, gt->i915, __func__, engine->name)) { err = -EIO; goto err_wedged; } for_each_prime_number_from(count, 1, ring_size) { rq = spinner_create_request(&hi.spin, hi.ctx, engine, MI_ARB_CHECK); if (IS_ERR(rq)) goto err_wedged; i915_request_add(rq); if (!igt_wait_for_spinner(&hi.spin, rq)) goto err_wedged; rq = spinner_create_request(&lo.spin, lo.ctx, engine, MI_ARB_CHECK); if (IS_ERR(rq)) goto err_wedged; i915_request_add(rq); for (i = 0; i < count; i++) { rq = igt_request_alloc(lo.ctx, engine); if (IS_ERR(rq)) goto err_wedged; i915_request_add(rq); } rq = igt_request_alloc(hi.ctx, engine); if (IS_ERR(rq)) goto err_wedged; i915_request_get(rq); i915_request_add(rq); engine->sched_engine->schedule(rq, &attr); igt_spinner_end(&hi.spin); if (i915_request_wait(rq, 0, HZ / 5) < 0) { struct drm_printer p = drm_info_printer(gt->i915->drm.dev); pr_err("Failed to preempt over chain of %d\n", count); intel_engine_dump(engine, &p, "%s\n", engine->name); i915_request_put(rq); goto err_wedged; } igt_spinner_end(&lo.spin); i915_request_put(rq); rq = igt_request_alloc(lo.ctx, engine); if (IS_ERR(rq)) goto err_wedged; i915_request_get(rq); i915_request_add(rq); if (i915_request_wait(rq, 0, HZ / 5) < 0) { struct drm_printer p = drm_info_printer(gt->i915->drm.dev); pr_err("Failed to flush low priority chain of %d requests\n", count); intel_engine_dump(engine, &p, "%s\n", engine->name); i915_request_put(rq); goto err_wedged; } i915_request_put(rq); } if (igt_live_test_end(&t)) { err = -EIO; goto err_wedged; } } err = 0; err_client_lo: preempt_client_fini(&lo); err_client_hi: preempt_client_fini(&hi); return err; err_wedged: igt_spinner_end(&hi.spin); igt_spinner_end(&lo.spin); intel_gt_set_wedged(gt); err = -EIO; goto err_client_lo; } static int create_gang(struct intel_engine_cs *engine, struct i915_request **prev) { struct drm_i915_gem_object *obj; struct intel_context *ce; struct i915_request *rq; struct i915_vma *vma; u32 *cs; int err; ce = intel_context_create(engine); if (IS_ERR(ce)) return PTR_ERR(ce); obj = i915_gem_object_create_internal(engine->i915, 4096); if (IS_ERR(obj)) { err = PTR_ERR(obj); goto err_ce; } vma = i915_vma_instance(obj, ce->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto err_obj; } err = i915_vma_pin(vma, 0, 0, PIN_USER); if (err) goto err_obj; cs = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC); if (IS_ERR(cs)) { err = PTR_ERR(cs); goto err_obj; } /* Semaphore target: spin until zero */ *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; *cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_POLL | MI_SEMAPHORE_SAD_EQ_SDD; *cs++ = 0; *cs++ = lower_32_bits(i915_vma_offset(vma)); *cs++ = upper_32_bits(i915_vma_offset(vma)); if (*prev) { u64 offset = i915_vma_offset((*prev)->batch); /* Terminate the spinner in the next lower priority batch. */ *cs++ = MI_STORE_DWORD_IMM_GEN4; *cs++ = lower_32_bits(offset); *cs++ = upper_32_bits(offset); *cs++ = 0; } *cs++ = MI_BATCH_BUFFER_END; i915_gem_object_flush_map(obj); i915_gem_object_unpin_map(obj); rq = intel_context_create_request(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_obj; } rq->batch = i915_vma_get(vma); i915_request_get(rq); err = igt_vma_move_to_active_unlocked(vma, rq, 0); if (!err) err = rq->engine->emit_bb_start(rq, i915_vma_offset(vma), PAGE_SIZE, 0); i915_request_add(rq); if (err) goto err_rq; i915_gem_object_put(obj); intel_context_put(ce); rq->mock.link.next = &(*prev)->mock.link; *prev = rq; return 0; err_rq: i915_vma_put(rq->batch); i915_request_put(rq); err_obj: i915_gem_object_put(obj); err_ce: intel_context_put(ce); return err; } static int __live_preempt_ring(struct intel_engine_cs *engine, struct igt_spinner *spin, int queue_sz, int ring_sz) { struct intel_context *ce[2] = {}; struct i915_request *rq; struct igt_live_test t; int err = 0; int n; if (igt_live_test_begin(&t, engine->i915, __func__, engine->name)) return -EIO; for (n = 0; n < ARRAY_SIZE(ce); n++) { struct intel_context *tmp; tmp = intel_context_create(engine); if (IS_ERR(tmp)) { err = PTR_ERR(tmp); goto err_ce; } tmp->ring_size = ring_sz; err = intel_context_pin(tmp); if (err) { intel_context_put(tmp); goto err_ce; } memset32(tmp->ring->vaddr, 0xdeadbeef, /* trigger a hang if executed */ tmp->ring->vma->size / sizeof(u32)); ce[n] = tmp; } rq = igt_spinner_create_request(spin, ce[0], MI_ARB_CHECK); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_ce; } i915_request_get(rq); rq->sched.attr.priority = I915_PRIORITY_BARRIER; i915_request_add(rq); if (!igt_wait_for_spinner(spin, rq)) { intel_gt_set_wedged(engine->gt); i915_request_put(rq); err = -ETIME; goto err_ce; } /* Fill the ring, until we will cause a wrap */ n = 0; while (ce[0]->ring->tail - rq->wa_tail <= queue_sz) { struct i915_request *tmp; tmp = intel_context_create_request(ce[0]); if (IS_ERR(tmp)) { err = PTR_ERR(tmp); i915_request_put(rq); goto err_ce; } i915_request_add(tmp); intel_engine_flush_submission(engine); n++; } intel_engine_flush_submission(engine); pr_debug("%s: Filled %d with %d nop tails {size:%x, tail:%x, emit:%x, rq.tail:%x}\n", engine->name, queue_sz, n, ce[0]->ring->size, ce[0]->ring->tail, ce[0]->ring->emit, rq->tail); i915_request_put(rq); /* Create a second request to preempt the first ring */ rq = intel_context_create_request(ce[1]); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_ce; } rq->sched.attr.priority = I915_PRIORITY_BARRIER; i915_request_get(rq); i915_request_add(rq); err = wait_for_submit(engine, rq, HZ / 2); i915_request_put(rq); if (err) { pr_err("%s: preemption request was not submitted\n", engine->name); err = -ETIME; } pr_debug("%s: ring[0]:{ tail:%x, emit:%x }, ring[1]:{ tail:%x, emit:%x }\n", engine->name, ce[0]->ring->tail, ce[0]->ring->emit, ce[1]->ring->tail, ce[1]->ring->emit); err_ce: intel_engine_flush_submission(engine); igt_spinner_end(spin); for (n = 0; n < ARRAY_SIZE(ce); n++) { if (IS_ERR_OR_NULL(ce[n])) break; intel_context_unpin(ce[n]); intel_context_put(ce[n]); } if (igt_live_test_end(&t)) err = -EIO; return err; } static int live_preempt_ring(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; struct igt_spinner spin; enum intel_engine_id id; int err = 0; /* * Check that we rollback large chunks of a ring in order to do a * preemption event. Similar to live_unlite_ring, but looking at * ring size rather than the impact of intel_ring_direction(). */ if (igt_spinner_init(&spin, gt)) return -ENOMEM; for_each_engine(engine, gt, id) { int n; if (!intel_engine_has_preemption(engine)) continue; if (!intel_engine_can_store_dword(engine)) continue; st_engine_heartbeat_disable(engine); for (n = 0; n <= 3; n++) { err = __live_preempt_ring(engine, &spin, n * SZ_4K / 4, SZ_4K); if (err) break; } st_engine_heartbeat_enable(engine); if (err) break; } igt_spinner_fini(&spin); return err; } static int live_preempt_gang(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; /* * Build as long a chain of preempters as we can, with each * request higher priority than the last. Once we are ready, we release * the last batch which then precolates down the chain, each releasing * the next oldest in turn. The intent is to simply push as hard as we * can with the number of preemptions, trying to exceed narrow HW * limits. At a minimum, we insist that we can sort all the user * high priority levels into execution order. */ for_each_engine(engine, gt, id) { struct i915_request *rq = NULL; struct igt_live_test t; IGT_TIMEOUT(end_time); int prio = 0; int err = 0; u32 *cs; if (!intel_engine_has_preemption(engine)) continue; if (igt_live_test_begin(&t, gt->i915, __func__, engine->name)) return -EIO; do { struct i915_sched_attr attr = { .priority = prio++ }; err = create_gang(engine, &rq); if (err) break; /* Submit each spinner at increasing priority */ engine->sched_engine->schedule(rq, &attr); } while (prio <= I915_PRIORITY_MAX && !__igt_timeout(end_time, NULL)); pr_debug("%s: Preempt chain of %d requests\n", engine->name, prio); /* * Such that the last spinner is the highest priority and * should execute first. When that spinner completes, * it will terminate the next lowest spinner until there * are no more spinners and the gang is complete. */ cs = i915_gem_object_pin_map_unlocked(rq->batch->obj, I915_MAP_WC); if (!IS_ERR(cs)) { *cs = 0; i915_gem_object_unpin_map(rq->batch->obj); } else { err = PTR_ERR(cs); intel_gt_set_wedged(gt); } while (rq) { /* wait for each rq from highest to lowest prio */ struct i915_request *n = list_next_entry(rq, mock.link); if (err == 0 && i915_request_wait(rq, 0, HZ / 5) < 0) { struct drm_printer p = drm_info_printer(engine->i915->drm.dev); pr_err("Failed to flush chain of %d requests, at %d\n", prio, rq_prio(rq)); intel_engine_dump(engine, &p, "%s\n", engine->name); err = -ETIME; } i915_vma_put(rq->batch); i915_request_put(rq); rq = n; } if (igt_live_test_end(&t)) err = -EIO; if (err) return err; } return 0; } static struct i915_vma * create_gpr_user(struct intel_engine_cs *engine, struct i915_vma *result, unsigned int offset) { struct drm_i915_gem_object *obj; struct i915_vma *vma; u32 *cs; int err; int i; obj = i915_gem_object_create_internal(engine->i915, 4096); if (IS_ERR(obj)) return ERR_CAST(obj); vma = i915_vma_instance(obj, result->vm, NULL); if (IS_ERR(vma)) { i915_gem_object_put(obj); return vma; } err = i915_vma_pin(vma, 0, 0, PIN_USER); if (err) { i915_vma_put(vma); return ERR_PTR(err); } cs = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC); if (IS_ERR(cs)) { i915_vma_put(vma); return ERR_CAST(cs); } /* All GPR are clear for new contexts. We use GPR(0) as a constant */ *cs++ = MI_LOAD_REGISTER_IMM(1); *cs++ = CS_GPR(engine, 0); *cs++ = 1; for (i = 1; i < NUM_GPR; i++) { u64 addr; /* * Perform: GPR[i]++ * * As we read and write into the context saved GPR[i], if * we restart this batch buffer from an earlier point, we * will repeat the increment and store a value > 1. */ *cs++ = MI_MATH(4); *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(i)); *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(0)); *cs++ = MI_MATH_ADD; *cs++ = MI_MATH_STORE(MI_MATH_REG(i), MI_MATH_REG_ACCU); addr = i915_vma_offset(result) + offset + i * sizeof(*cs); *cs++ = MI_STORE_REGISTER_MEM_GEN8; *cs++ = CS_GPR(engine, 2 * i); *cs++ = lower_32_bits(addr); *cs++ = upper_32_bits(addr); *cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_POLL | MI_SEMAPHORE_SAD_GTE_SDD; *cs++ = i; *cs++ = lower_32_bits(i915_vma_offset(result)); *cs++ = upper_32_bits(i915_vma_offset(result)); } *cs++ = MI_BATCH_BUFFER_END; i915_gem_object_flush_map(obj); i915_gem_object_unpin_map(obj); return vma; } static struct i915_vma *create_global(struct intel_gt *gt, size_t sz) { struct drm_i915_gem_object *obj; struct i915_vma *vma; int err; obj = i915_gem_object_create_internal(gt->i915, sz); if (IS_ERR(obj)) return ERR_CAST(obj); vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL); if (IS_ERR(vma)) { i915_gem_object_put(obj); return vma; } err = i915_ggtt_pin(vma, NULL, 0, 0); if (err) { i915_vma_put(vma); return ERR_PTR(err); } return vma; } static struct i915_request * create_gpr_client(struct intel_engine_cs *engine, struct i915_vma *global, unsigned int offset) { struct i915_vma *batch, *vma; struct intel_context *ce; struct i915_request *rq; int err; ce = intel_context_create(engine); if (IS_ERR(ce)) return ERR_CAST(ce); vma = i915_vma_instance(global->obj, ce->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto out_ce; } err = i915_vma_pin(vma, 0, 0, PIN_USER); if (err) goto out_ce; batch = create_gpr_user(engine, vma, offset); if (IS_ERR(batch)) { err = PTR_ERR(batch); goto out_vma; } rq = intel_context_create_request(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out_batch; } err = igt_vma_move_to_active_unlocked(vma, rq, 0); i915_vma_lock(batch); if (!err) err = i915_vma_move_to_active(batch, rq, 0); if (!err) err = rq->engine->emit_bb_start(rq, i915_vma_offset(batch), PAGE_SIZE, 0); i915_vma_unlock(batch); i915_vma_unpin(batch); if (!err) i915_request_get(rq); i915_request_add(rq); out_batch: i915_vma_put(batch); out_vma: i915_vma_unpin(vma); out_ce: intel_context_put(ce); return err ? ERR_PTR(err) : rq; } static int preempt_user(struct intel_engine_cs *engine, struct i915_vma *global, int id) { struct i915_sched_attr attr = { .priority = I915_PRIORITY_MAX }; struct i915_request *rq; int err = 0; u32 *cs; rq = intel_engine_create_kernel_request(engine); if (IS_ERR(rq)) return PTR_ERR(rq); cs = intel_ring_begin(rq, 4); if (IS_ERR(cs)) { i915_request_add(rq); return PTR_ERR(cs); } *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; *cs++ = i915_ggtt_offset(global); *cs++ = 0; *cs++ = id; intel_ring_advance(rq, cs); i915_request_get(rq); i915_request_add(rq); engine->sched_engine->schedule(rq, &attr); if (i915_request_wait(rq, 0, HZ / 2) < 0) err = -ETIME; i915_request_put(rq); return err; } static int live_preempt_user(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; struct i915_vma *global; enum intel_engine_id id; u32 *result; int err = 0; /* * In our other tests, we look at preemption in carefully * controlled conditions in the ringbuffer. Since most of the * time is spent in user batches, most of our preemptions naturally * occur there. We want to verify that when we preempt inside a batch * we continue on from the current instruction and do not roll back * to the start, or another earlier arbitration point. * * To verify this, we create a batch which is a mixture of * MI_MATH (gpr++) MI_SRM (gpr) and preemption points. Then with * a few preempting contexts thrown into the mix, we look for any * repeated instructions (which show up as incorrect values). */ global = create_global(gt, 4096); if (IS_ERR(global)) return PTR_ERR(global); result = i915_gem_object_pin_map_unlocked(global->obj, I915_MAP_WC); if (IS_ERR(result)) { i915_vma_unpin_and_release(&global, 0); return PTR_ERR(result); } for_each_engine(engine, gt, id) { struct i915_request *client[3] = {}; struct igt_live_test t; int i; if (!intel_engine_has_preemption(engine)) continue; if (GRAPHICS_VER(gt->i915) == 8 && engine->class != RENDER_CLASS) continue; /* we need per-context GPR */ if (igt_live_test_begin(&t, gt->i915, __func__, engine->name)) { err = -EIO; break; } memset(result, 0, 4096); for (i = 0; i < ARRAY_SIZE(client); i++) { struct i915_request *rq; rq = create_gpr_client(engine, global, NUM_GPR * i * sizeof(u32)); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto end_test; } client[i] = rq; } /* Continuously preempt the set of 3 running contexts */ for (i = 1; i <= NUM_GPR; i++) { err = preempt_user(engine, global, i); if (err) goto end_test; } if (READ_ONCE(result[0]) != NUM_GPR) { pr_err("%s: Failed to release semaphore\n", engine->name); err = -EIO; goto end_test; } for (i = 0; i < ARRAY_SIZE(client); i++) { int gpr; if (i915_request_wait(client[i], 0, HZ / 2) < 0) { err = -ETIME; goto end_test; } for (gpr = 1; gpr < NUM_GPR; gpr++) { if (result[NUM_GPR * i + gpr] != 1) { pr_err("%s: Invalid result, client %d, gpr %d, result: %d\n", engine->name, i, gpr, result[NUM_GPR * i + gpr]); err = -EINVAL; goto end_test; } } } end_test: for (i = 0; i < ARRAY_SIZE(client); i++) { if (!client[i]) break; i915_request_put(client[i]); } /* Flush the semaphores on error */ smp_store_mb(result[0], -1); if (igt_live_test_end(&t)) err = -EIO; if (err) break; } i915_vma_unpin_and_release(&global, I915_VMA_RELEASE_MAP); return err; } static int live_preempt_timeout(void *arg) { struct intel_gt *gt = arg; struct i915_gem_context *ctx_hi, *ctx_lo; struct igt_spinner spin_lo; struct intel_engine_cs *engine; enum intel_engine_id id; int err = -ENOMEM; /* * Check that we force preemption to occur by cancelling the previous * context if it refuses to yield the GPU. */ if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT) return 0; if (!intel_has_reset_engine(gt)) return 0; ctx_hi = kernel_context(gt->i915, NULL); if (!ctx_hi) return -ENOMEM; ctx_hi->sched.priority = I915_CONTEXT_MAX_USER_PRIORITY; ctx_lo = kernel_context(gt->i915, NULL); if (!ctx_lo) goto err_ctx_hi; ctx_lo->sched.priority = I915_CONTEXT_MIN_USER_PRIORITY; if (igt_spinner_init(&spin_lo, gt)) goto err_ctx_lo; for_each_engine(engine, gt, id) { unsigned long saved_timeout; struct i915_request *rq; if (!intel_engine_has_preemption(engine)) continue; rq = spinner_create_request(&spin_lo, ctx_lo, engine, MI_NOOP); /* preemption disabled */ if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_spin_lo; } i915_request_add(rq); if (!igt_wait_for_spinner(&spin_lo, rq)) { intel_gt_set_wedged(gt); err = -EIO; goto err_spin_lo; } rq = igt_request_alloc(ctx_hi, engine); if (IS_ERR(rq)) { igt_spinner_end(&spin_lo); err = PTR_ERR(rq); goto err_spin_lo; } /* Flush the previous CS ack before changing timeouts */ while (READ_ONCE(engine->execlists.pending[0])) cpu_relax(); saved_timeout = engine->props.preempt_timeout_ms; engine->props.preempt_timeout_ms = 1; /* in ms, -> 1 jiffie */ i915_request_get(rq); i915_request_add(rq); intel_engine_flush_submission(engine); engine->props.preempt_timeout_ms = saved_timeout; if (i915_request_wait(rq, 0, HZ / 10) < 0) { intel_gt_set_wedged(gt); i915_request_put(rq); err = -ETIME; goto err_spin_lo; } igt_spinner_end(&spin_lo); i915_request_put(rq); } err = 0; err_spin_lo: igt_spinner_fini(&spin_lo); err_ctx_lo: kernel_context_close(ctx_lo); err_ctx_hi: kernel_context_close(ctx_hi); return err; } static int random_range(struct rnd_state *rnd, int min, int max) { return i915_prandom_u32_max_state(max - min, rnd) + min; } static int random_priority(struct rnd_state *rnd) { return random_range(rnd, I915_PRIORITY_MIN, I915_PRIORITY_MAX); } struct preempt_smoke { struct intel_gt *gt; struct kthread_work work; struct i915_gem_context **contexts; struct intel_engine_cs *engine; struct drm_i915_gem_object *batch; unsigned int ncontext; struct rnd_state prng; unsigned long count; int result; }; static struct i915_gem_context *smoke_context(struct preempt_smoke *smoke) { return smoke->contexts[i915_prandom_u32_max_state(smoke->ncontext, &smoke->prng)]; } static int smoke_submit(struct preempt_smoke *smoke, struct i915_gem_context *ctx, int prio, struct drm_i915_gem_object *batch) { struct i915_request *rq; struct i915_vma *vma = NULL; int err = 0; if (batch) { struct i915_address_space *vm; vm = i915_gem_context_get_eb_vm(ctx); vma = i915_vma_instance(batch, vm, NULL); i915_vm_put(vm); if (IS_ERR(vma)) return PTR_ERR(vma); err = i915_vma_pin(vma, 0, 0, PIN_USER); if (err) return err; } ctx->sched.priority = prio; rq = igt_request_alloc(ctx, smoke->engine); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto unpin; } if (vma) { err = igt_vma_move_to_active_unlocked(vma, rq, 0); if (!err) err = rq->engine->emit_bb_start(rq, i915_vma_offset(vma), PAGE_SIZE, 0); } i915_request_add(rq); unpin: if (vma) i915_vma_unpin(vma); return err; } static void smoke_crescendo_work(struct kthread_work *work) { struct preempt_smoke *smoke = container_of(work, typeof(*smoke), work); IGT_TIMEOUT(end_time); unsigned long count; count = 0; do { struct i915_gem_context *ctx = smoke_context(smoke); smoke->result = smoke_submit(smoke, ctx, count % I915_PRIORITY_MAX, smoke->batch); count++; } while (!smoke->result && count < smoke->ncontext && !__igt_timeout(end_time, NULL)); smoke->count = count; } static int smoke_crescendo(struct preempt_smoke *smoke, unsigned int flags) #define BATCH BIT(0) { struct kthread_worker *worker[I915_NUM_ENGINES] = {}; struct preempt_smoke *arg; struct intel_engine_cs *engine; enum intel_engine_id id; unsigned long count; int err = 0; arg = kmalloc_array(I915_NUM_ENGINES, sizeof(*arg), GFP_KERNEL); if (!arg) return -ENOMEM; memset(arg, 0, I915_NUM_ENGINES * sizeof(*arg)); for_each_engine(engine, smoke->gt, id) { arg[id] = *smoke; arg[id].engine = engine; if (!(flags & BATCH)) arg[id].batch = NULL; arg[id].count = 0; worker[id] = kthread_create_worker(0, "igt/smoke:%d", id); if (IS_ERR(worker[id])) { err = PTR_ERR(worker[id]); break; } kthread_init_work(&arg[id].work, smoke_crescendo_work); kthread_queue_work(worker[id], &arg[id].work); } count = 0; for_each_engine(engine, smoke->gt, id) { if (IS_ERR_OR_NULL(worker[id])) continue; kthread_flush_work(&arg[id].work); if (arg[id].result && !err) err = arg[id].result; count += arg[id].count; kthread_destroy_worker(worker[id]); } pr_info("Submitted %lu crescendo:%x requests across %d engines and %d contexts\n", count, flags, smoke->gt->info.num_engines, smoke->ncontext); kfree(arg); return 0; } static int smoke_random(struct preempt_smoke *smoke, unsigned int flags) { enum intel_engine_id id; IGT_TIMEOUT(end_time); unsigned long count; count = 0; do { for_each_engine(smoke->engine, smoke->gt, id) { struct i915_gem_context *ctx = smoke_context(smoke); int err; err = smoke_submit(smoke, ctx, random_priority(&smoke->prng), flags & BATCH ? smoke->batch : NULL); if (err) return err; count++; } } while (count < smoke->ncontext && !__igt_timeout(end_time, NULL)); pr_info("Submitted %lu random:%x requests across %d engines and %d contexts\n", count, flags, smoke->gt->info.num_engines, smoke->ncontext); return 0; } static int live_preempt_smoke(void *arg) { struct preempt_smoke smoke = { .gt = arg, .prng = I915_RND_STATE_INITIALIZER(i915_selftest.random_seed), .ncontext = 256, }; const unsigned int phase[] = { 0, BATCH }; struct igt_live_test t; int err = -ENOMEM; u32 *cs; int n; smoke.contexts = kmalloc_array(smoke.ncontext, sizeof(*smoke.contexts), GFP_KERNEL); if (!smoke.contexts) return -ENOMEM; smoke.batch = i915_gem_object_create_internal(smoke.gt->i915, PAGE_SIZE); if (IS_ERR(smoke.batch)) { err = PTR_ERR(smoke.batch); goto err_free; } cs = i915_gem_object_pin_map_unlocked(smoke.batch, I915_MAP_WB); if (IS_ERR(cs)) { err = PTR_ERR(cs); goto err_batch; } for (n = 0; n < PAGE_SIZE / sizeof(*cs) - 1; n++) cs[n] = MI_ARB_CHECK; cs[n] = MI_BATCH_BUFFER_END; i915_gem_object_flush_map(smoke.batch); i915_gem_object_unpin_map(smoke.batch); if (igt_live_test_begin(&t, smoke.gt->i915, __func__, "all")) { err = -EIO; goto err_batch; } for (n = 0; n < smoke.ncontext; n++) { smoke.contexts[n] = kernel_context(smoke.gt->i915, NULL); if (!smoke.contexts[n]) goto err_ctx; } for (n = 0; n < ARRAY_SIZE(phase); n++) { err = smoke_crescendo(&smoke, phase[n]); if (err) goto err_ctx; err = smoke_random(&smoke, phase[n]); if (err) goto err_ctx; } err_ctx: if (igt_live_test_end(&t)) err = -EIO; for (n = 0; n < smoke.ncontext; n++) { if (!smoke.contexts[n]) break; kernel_context_close(smoke.contexts[n]); } err_batch: i915_gem_object_put(smoke.batch); err_free: kfree(smoke.contexts); return err; } static int nop_virtual_engine(struct intel_gt *gt, struct intel_engine_cs **siblings, unsigned int nsibling, unsigned int nctx, unsigned int flags) #define CHAIN BIT(0) { IGT_TIMEOUT(end_time); struct i915_request *request[16] = {}; struct intel_context *ve[16]; unsigned long n, prime, nc; struct igt_live_test t; ktime_t times[2] = {}; int err; GEM_BUG_ON(!nctx || nctx > ARRAY_SIZE(ve)); for (n = 0; n < nctx; n++) { ve[n] = intel_engine_create_virtual(siblings, nsibling, 0); if (IS_ERR(ve[n])) { err = PTR_ERR(ve[n]); nctx = n; goto out; } err = intel_context_pin(ve[n]); if (err) { intel_context_put(ve[n]); nctx = n; goto out; } } err = igt_live_test_begin(&t, gt->i915, __func__, ve[0]->engine->name); if (err) goto out; for_each_prime_number_from(prime, 1, 8192) { times[1] = ktime_get_raw(); if (flags & CHAIN) { for (nc = 0; nc < nctx; nc++) { for (n = 0; n < prime; n++) { struct i915_request *rq; rq = i915_request_create(ve[nc]); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out; } if (request[nc]) i915_request_put(request[nc]); request[nc] = i915_request_get(rq); i915_request_add(rq); } } } else { for (n = 0; n < prime; n++) { for (nc = 0; nc < nctx; nc++) { struct i915_request *rq; rq = i915_request_create(ve[nc]); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out; } if (request[nc]) i915_request_put(request[nc]); request[nc] = i915_request_get(rq); i915_request_add(rq); } } } for (nc = 0; nc < nctx; nc++) { if (i915_request_wait(request[nc], 0, HZ / 10) < 0) { pr_err("%s(%s): wait for %llx:%lld timed out\n", __func__, ve[0]->engine->name, request[nc]->fence.context, request[nc]->fence.seqno); GEM_TRACE("%s(%s) failed at request %llx:%lld\n", __func__, ve[0]->engine->name, request[nc]->fence.context, request[nc]->fence.seqno); GEM_TRACE_DUMP(); intel_gt_set_wedged(gt); break; } } times[1] = ktime_sub(ktime_get_raw(), times[1]); if (prime == 1) times[0] = times[1]; for (nc = 0; nc < nctx; nc++) { i915_request_put(request[nc]); request[nc] = NULL; } if (__igt_timeout(end_time, NULL)) break; } err = igt_live_test_end(&t); if (err) goto out; pr_info("Requestx%d latencies on %s: 1 = %lluns, %lu = %lluns\n", nctx, ve[0]->engine->name, ktime_to_ns(times[0]), prime, div64_u64(ktime_to_ns(times[1]), prime)); out: if (igt_flush_test(gt->i915)) err = -EIO; for (nc = 0; nc < nctx; nc++) { i915_request_put(request[nc]); intel_context_unpin(ve[nc]); intel_context_put(ve[nc]); } return err; } static unsigned int __select_siblings(struct intel_gt *gt, unsigned int class, struct intel_engine_cs **siblings, bool (*filter)(const struct intel_engine_cs *)) { unsigned int n = 0; unsigned int inst; for (inst = 0; inst <= MAX_ENGINE_INSTANCE; inst++) { if (!gt->engine_class[class][inst]) continue; if (filter && !filter(gt->engine_class[class][inst])) continue; siblings[n++] = gt->engine_class[class][inst]; } return n; } static unsigned int select_siblings(struct intel_gt *gt, unsigned int class, struct intel_engine_cs **siblings) { return __select_siblings(gt, class, siblings, NULL); } static int live_virtual_engine(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *siblings[MAX_ENGINE_INSTANCE + 1]; struct intel_engine_cs *engine; enum intel_engine_id id; unsigned int class; int err; if (intel_uc_uses_guc_submission(&gt->uc)) return 0; for_each_engine(engine, gt, id) { err = nop_virtual_engine(gt, &engine, 1, 1, 0); if (err) { pr_err("Failed to wrap engine %s: err=%d\n", engine->name, err); return err; } } for (class = 0; class <= MAX_ENGINE_CLASS; class++) { int nsibling, n; nsibling = select_siblings(gt, class, siblings); if (nsibling < 2) continue; for (n = 1; n <= nsibling + 1; n++) { err = nop_virtual_engine(gt, siblings, nsibling, n, 0); if (err) return err; } err = nop_virtual_engine(gt, siblings, nsibling, n, CHAIN); if (err) return err; } return 0; } static int mask_virtual_engine(struct intel_gt *gt, struct intel_engine_cs **siblings, unsigned int nsibling) { struct i915_request *request[MAX_ENGINE_INSTANCE + 1]; struct intel_context *ve; struct igt_live_test t; unsigned int n; int err; /* * Check that by setting the execution mask on a request, we can * restrict it to our desired engine within the virtual engine. */ ve = intel_engine_create_virtual(siblings, nsibling, 0); if (IS_ERR(ve)) { err = PTR_ERR(ve); goto out_close; } err = intel_context_pin(ve); if (err) goto out_put; err = igt_live_test_begin(&t, gt->i915, __func__, ve->engine->name); if (err) goto out_unpin; for (n = 0; n < nsibling; n++) { request[n] = i915_request_create(ve); if (IS_ERR(request[n])) { err = PTR_ERR(request[n]); nsibling = n; goto out; } /* Reverse order as it's more likely to be unnatural */ request[n]->execution_mask = siblings[nsibling - n - 1]->mask; i915_request_get(request[n]); i915_request_add(request[n]); } for (n = 0; n < nsibling; n++) { if (i915_request_wait(request[n], 0, HZ / 10) < 0) { pr_err("%s(%s): wait for %llx:%lld timed out\n", __func__, ve->engine->name, request[n]->fence.context, request[n]->fence.seqno); GEM_TRACE("%s(%s) failed at request %llx:%lld\n", __func__, ve->engine->name, request[n]->fence.context, request[n]->fence.seqno); GEM_TRACE_DUMP(); intel_gt_set_wedged(gt); err = -EIO; goto out; } if (request[n]->engine != siblings[nsibling - n - 1]) { pr_err("Executed on wrong sibling '%s', expected '%s'\n", request[n]->engine->name, siblings[nsibling - n - 1]->name); err = -EINVAL; goto out; } } err = igt_live_test_end(&t); out: if (igt_flush_test(gt->i915)) err = -EIO; for (n = 0; n < nsibling; n++) i915_request_put(request[n]); out_unpin: intel_context_unpin(ve); out_put: intel_context_put(ve); out_close: return err; } static int live_virtual_mask(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *siblings[MAX_ENGINE_INSTANCE + 1]; unsigned int class; int err; if (intel_uc_uses_guc_submission(&gt->uc)) return 0; for (class = 0; class <= MAX_ENGINE_CLASS; class++) { unsigned int nsibling; nsibling = select_siblings(gt, class, siblings); if (nsibling < 2) continue; err = mask_virtual_engine(gt, siblings, nsibling); if (err) return err; } return 0; } static int slicein_virtual_engine(struct intel_gt *gt, struct intel_engine_cs **siblings, unsigned int nsibling) { const long timeout = slice_timeout(siblings[0]); struct intel_context *ce; struct i915_request *rq; struct igt_spinner spin; unsigned int n; int err = 0; /* * Virtual requests must take part in timeslicing on the target engines. */ if (igt_spinner_init(&spin, gt)) return -ENOMEM; for (n = 0; n < nsibling; n++) { ce = intel_context_create(siblings[n]); if (IS_ERR(ce)) { err = PTR_ERR(ce); goto out; } rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK); intel_context_put(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out; } i915_request_add(rq); } ce = intel_engine_create_virtual(siblings, nsibling, 0); if (IS_ERR(ce)) { err = PTR_ERR(ce); goto out; } rq = intel_context_create_request(ce); intel_context_put(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out; } i915_request_get(rq); i915_request_add(rq); if (i915_request_wait(rq, 0, timeout) < 0) { GEM_TRACE_ERR("%s(%s) failed to slice in virtual request\n", __func__, rq->engine->name); GEM_TRACE_DUMP(); intel_gt_set_wedged(gt); err = -EIO; } i915_request_put(rq); out: igt_spinner_end(&spin); if (igt_flush_test(gt->i915)) err = -EIO; igt_spinner_fini(&spin); return err; } static int sliceout_virtual_engine(struct intel_gt *gt, struct intel_engine_cs **siblings, unsigned int nsibling) { const long timeout = slice_timeout(siblings[0]); struct intel_context *ce; struct i915_request *rq; struct igt_spinner spin; unsigned int n; int err = 0; /* * Virtual requests must allow others a fair timeslice. */ if (igt_spinner_init(&spin, gt)) return -ENOMEM; /* XXX We do not handle oversubscription and fairness with normal rq */ for (n = 0; n < nsibling; n++) { ce = intel_engine_create_virtual(siblings, nsibling, 0); if (IS_ERR(ce)) { err = PTR_ERR(ce); goto out; } rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK); intel_context_put(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out; } i915_request_add(rq); } for (n = 0; !err && n < nsibling; n++) { ce = intel_context_create(siblings[n]); if (IS_ERR(ce)) { err = PTR_ERR(ce); goto out; } rq = intel_context_create_request(ce); intel_context_put(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out; } i915_request_get(rq); i915_request_add(rq); if (i915_request_wait(rq, 0, timeout) < 0) { GEM_TRACE_ERR("%s(%s) failed to slice out virtual request\n", __func__, siblings[n]->name); GEM_TRACE_DUMP(); intel_gt_set_wedged(gt); err = -EIO; } i915_request_put(rq); } out: igt_spinner_end(&spin); if (igt_flush_test(gt->i915)) err = -EIO; igt_spinner_fini(&spin); return err; } static int live_virtual_slice(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *siblings[MAX_ENGINE_INSTANCE + 1]; unsigned int class; int err; if (intel_uc_uses_guc_submission(&gt->uc)) return 0; for (class = 0; class <= MAX_ENGINE_CLASS; class++) { unsigned int nsibling; nsibling = __select_siblings(gt, class, siblings, intel_engine_has_timeslices); if (nsibling < 2) continue; err = slicein_virtual_engine(gt, siblings, nsibling); if (err) return err; err = sliceout_virtual_engine(gt, siblings, nsibling); if (err) return err; } return 0; } static int preserved_virtual_engine(struct intel_gt *gt, struct intel_engine_cs **siblings, unsigned int nsibling) { struct i915_request *last = NULL; struct intel_context *ve; struct i915_vma *scratch; struct igt_live_test t; unsigned int n; int err = 0; u32 *cs; scratch = __vm_create_scratch_for_read_pinned(&siblings[0]->gt->ggtt->vm, PAGE_SIZE); if (IS_ERR(scratch)) return PTR_ERR(scratch); err = i915_vma_sync(scratch); if (err) goto out_scratch; ve = intel_engine_create_virtual(siblings, nsibling, 0); if (IS_ERR(ve)) { err = PTR_ERR(ve); goto out_scratch; } err = intel_context_pin(ve); if (err) goto out_put; err = igt_live_test_begin(&t, gt->i915, __func__, ve->engine->name); if (err) goto out_unpin; for (n = 0; n < NUM_GPR_DW; n++) { struct intel_engine_cs *engine = siblings[n % nsibling]; struct i915_request *rq; rq = i915_request_create(ve); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out_end; } i915_request_put(last); last = i915_request_get(rq); cs = intel_ring_begin(rq, 8); if (IS_ERR(cs)) { i915_request_add(rq); err = PTR_ERR(cs); goto out_end; } *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT; *cs++ = CS_GPR(engine, n); *cs++ = i915_ggtt_offset(scratch) + n * sizeof(u32); *cs++ = 0; *cs++ = MI_LOAD_REGISTER_IMM(1); *cs++ = CS_GPR(engine, (n + 1) % NUM_GPR_DW); *cs++ = n + 1; *cs++ = MI_NOOP; intel_ring_advance(rq, cs); /* Restrict this request to run on a particular engine */ rq->execution_mask = engine->mask; i915_request_add(rq); } if (i915_request_wait(last, 0, HZ / 5) < 0) { err = -ETIME; goto out_end; } cs = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB); if (IS_ERR(cs)) { err = PTR_ERR(cs); goto out_end; } for (n = 0; n < NUM_GPR_DW; n++) { if (cs[n] != n) { pr_err("Incorrect value[%d] found for GPR[%d]\n", cs[n], n); err = -EINVAL; break; } } i915_gem_object_unpin_map(scratch->obj); out_end: if (igt_live_test_end(&t)) err = -EIO; i915_request_put(last); out_unpin: intel_context_unpin(ve); out_put: intel_context_put(ve); out_scratch: i915_vma_unpin_and_release(&scratch, 0); return err; } static int live_virtual_preserved(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *siblings[MAX_ENGINE_INSTANCE + 1]; unsigned int class; /* * Check that the context image retains non-privileged (user) registers * from one engine to the next. For this we check that the CS_GPR * are preserved. */ if (intel_uc_uses_guc_submission(&gt->uc)) return 0; /* As we use CS_GPR we cannot run before they existed on all engines. */ if (GRAPHICS_VER(gt->i915) < 9) return 0; for (class = 0; class <= MAX_ENGINE_CLASS; class++) { int nsibling, err; nsibling = select_siblings(gt, class, siblings); if (nsibling < 2) continue; err = preserved_virtual_engine(gt, siblings, nsibling); if (err) return err; } return 0; } static int reset_virtual_engine(struct intel_gt *gt, struct intel_engine_cs **siblings, unsigned int nsibling) { struct intel_engine_cs *engine; struct intel_context *ve; struct igt_spinner spin; struct i915_request *rq; unsigned int n; int err = 0; /* * In order to support offline error capture for fast preempt reset, * we need to decouple the guilty request and ensure that it and its * descendents are not executed while the capture is in progress. */ if (igt_spinner_init(&spin, gt)) return -ENOMEM; ve = intel_engine_create_virtual(siblings, nsibling, 0); if (IS_ERR(ve)) { err = PTR_ERR(ve); goto out_spin; } for (n = 0; n < nsibling; n++) st_engine_heartbeat_disable(siblings[n]); rq = igt_spinner_create_request(&spin, ve, MI_ARB_CHECK); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out_heartbeat; } i915_request_add(rq); if (!igt_wait_for_spinner(&spin, rq)) { intel_gt_set_wedged(gt); err = -ETIME; goto out_heartbeat; } engine = rq->engine; GEM_BUG_ON(engine == ve->engine); /* Take ownership of the reset and tasklet */ err = engine_lock_reset_tasklet(engine); if (err) goto out_heartbeat; engine->sched_engine->tasklet.callback(&engine->sched_engine->tasklet); GEM_BUG_ON(execlists_active(&engine->execlists) != rq); /* Fake a preemption event; failed of course */ spin_lock_irq(&engine->sched_engine->lock); __unwind_incomplete_requests(engine); spin_unlock_irq(&engine->sched_engine->lock); GEM_BUG_ON(rq->engine != engine); /* Reset the engine while keeping our active request on hold */ execlists_hold(engine, rq); GEM_BUG_ON(!i915_request_on_hold(rq)); __intel_engine_reset_bh(engine, NULL); GEM_BUG_ON(rq->fence.error != -EIO); /* Release our grasp on the engine, letting CS flow again */ engine_unlock_reset_tasklet(engine); /* Check that we do not resubmit the held request */ i915_request_get(rq); if (!i915_request_wait(rq, 0, HZ / 5)) { pr_err("%s: on hold request completed!\n", engine->name); intel_gt_set_wedged(gt); err = -EIO; goto out_rq; } GEM_BUG_ON(!i915_request_on_hold(rq)); /* But is resubmitted on release */ execlists_unhold(engine, rq); if (i915_request_wait(rq, 0, HZ / 5) < 0) { pr_err("%s: held request did not complete!\n", engine->name); intel_gt_set_wedged(gt); err = -ETIME; } out_rq: i915_request_put(rq); out_heartbeat: for (n = 0; n < nsibling; n++) st_engine_heartbeat_enable(siblings[n]); intel_context_put(ve); out_spin: igt_spinner_fini(&spin); return err; } static int live_virtual_reset(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *siblings[MAX_ENGINE_INSTANCE + 1]; unsigned int class; /* * Check that we handle a reset event within a virtual engine. * Only the physical engine is reset, but we have to check the flow * of the virtual requests around the reset, and make sure it is not * forgotten. */ if (intel_uc_uses_guc_submission(&gt->uc)) return 0; if (!intel_has_reset_engine(gt)) return 0; for (class = 0; class <= MAX_ENGINE_CLASS; class++) { int nsibling, err; nsibling = select_siblings(gt, class, siblings); if (nsibling < 2) continue; err = reset_virtual_engine(gt, siblings, nsibling); if (err) return err; } return 0; } int intel_execlists_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(live_sanitycheck), SUBTEST(live_unlite_switch), SUBTEST(live_unlite_preempt), SUBTEST(live_unlite_ring), SUBTEST(live_pin_rewind), SUBTEST(live_hold_reset), SUBTEST(live_error_interrupt), SUBTEST(live_timeslice_preempt), SUBTEST(live_timeslice_rewind), SUBTEST(live_timeslice_queue), SUBTEST(live_timeslice_nopreempt), SUBTEST(live_busywait_preempt), SUBTEST(live_preempt), SUBTEST(live_late_preempt), SUBTEST(live_nopreempt), SUBTEST(live_preempt_cancel), SUBTEST(live_suppress_self_preempt), SUBTEST(live_chain_preempt), SUBTEST(live_preempt_ring), SUBTEST(live_preempt_gang), SUBTEST(live_preempt_timeout), SUBTEST(live_preempt_user), SUBTEST(live_preempt_smoke), SUBTEST(live_virtual_engine), SUBTEST(live_virtual_mask), SUBTEST(live_virtual_preserved), SUBTEST(live_virtual_slice), SUBTEST(live_virtual_reset), }; if (to_gt(i915)->submission_method != INTEL_SUBMISSION_ELSP) return 0; if (intel_gt_is_wedged(to_gt(i915))) return 0; return intel_gt_live_subtests(tests, to_gt(i915)); }
linux-master
drivers/gpu/drm/i915/gt/selftest_execlists.c
// SPDX-License-Identifier: MIT /* * Copyright © 2016 Intel Corporation */ #include <linux/string_helpers.h> #include <drm/drm_print.h> #include "gem/i915_gem_context.h" #include "gem/i915_gem_internal.h" #include "gt/intel_gt_print.h" #include "gt/intel_gt_regs.h" #include "i915_cmd_parser.h" #include "i915_drv.h" #include "i915_irq.h" #include "i915_reg.h" #include "intel_breadcrumbs.h" #include "intel_context.h" #include "intel_engine.h" #include "intel_engine_pm.h" #include "intel_engine_regs.h" #include "intel_engine_user.h" #include "intel_execlists_submission.h" #include "intel_gt.h" #include "intel_gt_mcr.h" #include "intel_gt_pm.h" #include "intel_gt_requests.h" #include "intel_lrc.h" #include "intel_lrc_reg.h" #include "intel_reset.h" #include "intel_ring.h" #include "uc/intel_guc_submission.h" /* Haswell does have the CXT_SIZE register however it does not appear to be * valid. Now, docs explain in dwords what is in the context object. The full * size is 70720 bytes, however, the power context and execlist context will * never be saved (power context is stored elsewhere, and execlists don't work * on HSW) - so the final size, including the extra state required for the * Resource Streamer, is 66944 bytes, which rounds to 17 pages. */ #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE) #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE) #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE) #define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE) #define MAX_MMIO_BASES 3 struct engine_info { u8 class; u8 instance; /* mmio bases table *must* be sorted in reverse graphics_ver order */ struct engine_mmio_base { u32 graphics_ver : 8; u32 base : 24; } mmio_bases[MAX_MMIO_BASES]; }; static const struct engine_info intel_engines[] = { [RCS0] = { .class = RENDER_CLASS, .instance = 0, .mmio_bases = { { .graphics_ver = 1, .base = RENDER_RING_BASE } }, }, [BCS0] = { .class = COPY_ENGINE_CLASS, .instance = 0, .mmio_bases = { { .graphics_ver = 6, .base = BLT_RING_BASE } }, }, [BCS1] = { .class = COPY_ENGINE_CLASS, .instance = 1, .mmio_bases = { { .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE } }, }, [BCS2] = { .class = COPY_ENGINE_CLASS, .instance = 2, .mmio_bases = { { .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE } }, }, [BCS3] = { .class = COPY_ENGINE_CLASS, .instance = 3, .mmio_bases = { { .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE } }, }, [BCS4] = { .class = COPY_ENGINE_CLASS, .instance = 4, .mmio_bases = { { .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE } }, }, [BCS5] = { .class = COPY_ENGINE_CLASS, .instance = 5, .mmio_bases = { { .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE } }, }, [BCS6] = { .class = COPY_ENGINE_CLASS, .instance = 6, .mmio_bases = { { .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE } }, }, [BCS7] = { .class = COPY_ENGINE_CLASS, .instance = 7, .mmio_bases = { { .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE } }, }, [BCS8] = { .class = COPY_ENGINE_CLASS, .instance = 8, .mmio_bases = { { .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE } }, }, [VCS0] = { .class = VIDEO_DECODE_CLASS, .instance = 0, .mmio_bases = { { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE }, { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE }, { .graphics_ver = 4, .base = BSD_RING_BASE } }, }, [VCS1] = { .class = VIDEO_DECODE_CLASS, .instance = 1, .mmio_bases = { { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE }, { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE } }, }, [VCS2] = { .class = VIDEO_DECODE_CLASS, .instance = 2, .mmio_bases = { { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE } }, }, [VCS3] = { .class = VIDEO_DECODE_CLASS, .instance = 3, .mmio_bases = { { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE } }, }, [VCS4] = { .class = VIDEO_DECODE_CLASS, .instance = 4, .mmio_bases = { { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE } }, }, [VCS5] = { .class = VIDEO_DECODE_CLASS, .instance = 5, .mmio_bases = { { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE } }, }, [VCS6] = { .class = VIDEO_DECODE_CLASS, .instance = 6, .mmio_bases = { { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE } }, }, [VCS7] = { .class = VIDEO_DECODE_CLASS, .instance = 7, .mmio_bases = { { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE } }, }, [VECS0] = { .class = VIDEO_ENHANCEMENT_CLASS, .instance = 0, .mmio_bases = { { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE }, { .graphics_ver = 7, .base = VEBOX_RING_BASE } }, }, [VECS1] = { .class = VIDEO_ENHANCEMENT_CLASS, .instance = 1, .mmio_bases = { { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE } }, }, [VECS2] = { .class = VIDEO_ENHANCEMENT_CLASS, .instance = 2, .mmio_bases = { { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE } }, }, [VECS3] = { .class = VIDEO_ENHANCEMENT_CLASS, .instance = 3, .mmio_bases = { { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE } }, }, [CCS0] = { .class = COMPUTE_CLASS, .instance = 0, .mmio_bases = { { .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE } } }, [CCS1] = { .class = COMPUTE_CLASS, .instance = 1, .mmio_bases = { { .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE } } }, [CCS2] = { .class = COMPUTE_CLASS, .instance = 2, .mmio_bases = { { .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE } } }, [CCS3] = { .class = COMPUTE_CLASS, .instance = 3, .mmio_bases = { { .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE } } }, [GSC0] = { .class = OTHER_CLASS, .instance = OTHER_GSC_INSTANCE, .mmio_bases = { { .graphics_ver = 12, .base = MTL_GSC_RING_BASE } } }, }; /** * intel_engine_context_size() - return the size of the context for an engine * @gt: the gt * @class: engine class * * Each engine class may require a different amount of space for a context * image. * * Return: size (in bytes) of an engine class specific context image * * Note: this size includes the HWSP, which is part of the context image * in LRC mode, but does not include the "shared data page" used with * GuC submission. The caller should account for this if using the GuC. */ u32 intel_engine_context_size(struct intel_gt *gt, u8 class) { struct intel_uncore *uncore = gt->uncore; u32 cxt_size; BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE); switch (class) { case COMPUTE_CLASS: fallthrough; case RENDER_CLASS: switch (GRAPHICS_VER(gt->i915)) { default: MISSING_CASE(GRAPHICS_VER(gt->i915)); return DEFAULT_LR_CONTEXT_RENDER_SIZE; case 12: case 11: return GEN11_LR_CONTEXT_RENDER_SIZE; case 9: return GEN9_LR_CONTEXT_RENDER_SIZE; case 8: return GEN8_LR_CONTEXT_RENDER_SIZE; case 7: if (IS_HASWELL(gt->i915)) return HSW_CXT_TOTAL_SIZE; cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE); return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64, PAGE_SIZE); case 6: cxt_size = intel_uncore_read(uncore, CXT_SIZE); return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64, PAGE_SIZE); case 5: case 4: /* * There is a discrepancy here between the size reported * by the register and the size of the context layout * in the docs. Both are described as authorative! * * The discrepancy is on the order of a few cachelines, * but the total is under one page (4k), which is our * minimum allocation anyway so it should all come * out in the wash. */ cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1; drm_dbg(&gt->i915->drm, "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n", GRAPHICS_VER(gt->i915), cxt_size * 64, cxt_size - 1); return round_up(cxt_size * 64, PAGE_SIZE); case 3: case 2: /* For the special day when i810 gets merged. */ case 1: return 0; } break; default: MISSING_CASE(class); fallthrough; case VIDEO_DECODE_CLASS: case VIDEO_ENHANCEMENT_CLASS: case COPY_ENGINE_CLASS: case OTHER_CLASS: if (GRAPHICS_VER(gt->i915) < 8) return 0; return GEN8_LR_CONTEXT_OTHER_SIZE; } } static u32 __engine_mmio_base(struct drm_i915_private *i915, const struct engine_mmio_base *bases) { int i; for (i = 0; i < MAX_MMIO_BASES; i++) if (GRAPHICS_VER(i915) >= bases[i].graphics_ver) break; GEM_BUG_ON(i == MAX_MMIO_BASES); GEM_BUG_ON(!bases[i].base); return bases[i].base; } static void __sprint_engine_name(struct intel_engine_cs *engine) { /* * Before we know what the uABI name for this engine will be, * we still would like to keep track of this engine in the debug logs. * We throw in a ' here as a reminder that this isn't its final name. */ GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u", intel_engine_class_repr(engine->class), engine->instance) >= sizeof(engine->name)); } void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask) { /* * Though they added more rings on g4x/ilk, they did not add * per-engine HWSTAM until gen6. */ if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS) return; if (GRAPHICS_VER(engine->i915) >= 3) ENGINE_WRITE(engine, RING_HWSTAM, mask); else ENGINE_WRITE16(engine, RING_HWSTAM, mask); } static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine) { /* Mask off all writes into the unknown HWSP */ intel_engine_set_hwsp_writemask(engine, ~0u); } static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir) { GEM_DEBUG_WARN_ON(iir); } static u32 get_reset_domain(u8 ver, enum intel_engine_id id) { u32 reset_domain; if (ver >= 11) { static const u32 engine_reset_domains[] = { [RCS0] = GEN11_GRDOM_RENDER, [BCS0] = GEN11_GRDOM_BLT, [BCS1] = XEHPC_GRDOM_BLT1, [BCS2] = XEHPC_GRDOM_BLT2, [BCS3] = XEHPC_GRDOM_BLT3, [BCS4] = XEHPC_GRDOM_BLT4, [BCS5] = XEHPC_GRDOM_BLT5, [BCS6] = XEHPC_GRDOM_BLT6, [BCS7] = XEHPC_GRDOM_BLT7, [BCS8] = XEHPC_GRDOM_BLT8, [VCS0] = GEN11_GRDOM_MEDIA, [VCS1] = GEN11_GRDOM_MEDIA2, [VCS2] = GEN11_GRDOM_MEDIA3, [VCS3] = GEN11_GRDOM_MEDIA4, [VCS4] = GEN11_GRDOM_MEDIA5, [VCS5] = GEN11_GRDOM_MEDIA6, [VCS6] = GEN11_GRDOM_MEDIA7, [VCS7] = GEN11_GRDOM_MEDIA8, [VECS0] = GEN11_GRDOM_VECS, [VECS1] = GEN11_GRDOM_VECS2, [VECS2] = GEN11_GRDOM_VECS3, [VECS3] = GEN11_GRDOM_VECS4, [CCS0] = GEN11_GRDOM_RENDER, [CCS1] = GEN11_GRDOM_RENDER, [CCS2] = GEN11_GRDOM_RENDER, [CCS3] = GEN11_GRDOM_RENDER, [GSC0] = GEN12_GRDOM_GSC, }; GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) || !engine_reset_domains[id]); reset_domain = engine_reset_domains[id]; } else { static const u32 engine_reset_domains[] = { [RCS0] = GEN6_GRDOM_RENDER, [BCS0] = GEN6_GRDOM_BLT, [VCS0] = GEN6_GRDOM_MEDIA, [VCS1] = GEN8_GRDOM_MEDIA2, [VECS0] = GEN6_GRDOM_VECS, }; GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) || !engine_reset_domains[id]); reset_domain = engine_reset_domains[id]; } return reset_domain; } static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id, u8 logical_instance) { const struct engine_info *info = &intel_engines[id]; struct drm_i915_private *i915 = gt->i915; struct intel_engine_cs *engine; u8 guc_class; BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH)); BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH)); BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1)); BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1)); if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine))) return -EINVAL; if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS)) return -EINVAL; if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE)) return -EINVAL; if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance])) return -EINVAL; engine = kzalloc(sizeof(*engine), GFP_KERNEL); if (!engine) return -ENOMEM; BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES); INIT_LIST_HEAD(&engine->pinned_contexts_list); engine->id = id; engine->legacy_idx = INVALID_ENGINE; engine->mask = BIT(id); engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915), id); engine->i915 = i915; engine->gt = gt; engine->uncore = gt->uncore; guc_class = engine_class_to_guc_class(info->class); engine->guc_id = MAKE_GUC_ID(guc_class, info->instance); engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases); engine->irq_handler = nop_irq_handler; engine->class = info->class; engine->instance = info->instance; engine->logical_mask = BIT(logical_instance); __sprint_engine_name(engine); if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) && __ffs(CCS_MASK(engine->gt)) == engine->instance) || engine->class == RENDER_CLASS) engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE; /* features common between engines sharing EUs */ if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) { engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE; engine->flags |= I915_ENGINE_HAS_EU_PRIORITY; } engine->props.heartbeat_interval_ms = CONFIG_DRM_I915_HEARTBEAT_INTERVAL; engine->props.max_busywait_duration_ns = CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT; engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT; engine->props.stop_timeout_ms = CONFIG_DRM_I915_STOP_TIMEOUT; engine->props.timeslice_duration_ms = CONFIG_DRM_I915_TIMESLICE_DURATION; /* * Mid-thread pre-emption is not available in Gen12. Unfortunately, * some compute workloads run quite long threads. That means they get * reset due to not pre-empting in a timely manner. So, bump the * pre-emption timeout value to be much higher for compute engines. */ if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)) engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE; /* Cap properties according to any system limits */ #define CLAMP_PROP(field) \ do { \ u64 clamp = intel_clamp_##field(engine, engine->props.field); \ if (clamp != engine->props.field) { \ drm_notice(&engine->i915->drm, \ "Warning, clamping %s to %lld to prevent overflow\n", \ #field, clamp); \ engine->props.field = clamp; \ } \ } while (0) CLAMP_PROP(heartbeat_interval_ms); CLAMP_PROP(max_busywait_duration_ns); CLAMP_PROP(preempt_timeout_ms); CLAMP_PROP(stop_timeout_ms); CLAMP_PROP(timeslice_duration_ms); #undef CLAMP_PROP engine->defaults = engine->props; /* never to change again */ engine->context_size = intel_engine_context_size(gt, engine->class); if (WARN_ON(engine->context_size > BIT(20))) engine->context_size = 0; if (engine->context_size) DRIVER_CAPS(i915)->has_logical_contexts = true; ewma__engine_latency_init(&engine->latency); ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier); /* Scrub mmio state on takeover */ intel_engine_sanitize_mmio(engine); gt->engine_class[info->class][info->instance] = engine; gt->engine[id] = engine; return 0; } u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value) { value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); return value; } u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value) { value = min(value, jiffies_to_nsecs(2)); return value; } u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value) { /* * NB: The GuC API only supports 32bit values. However, the limit is further * reduced due to internal calculations which would otherwise overflow. */ if (intel_guc_submission_is_wanted(&engine->gt->uc.guc)) value = min_t(u64, value, guc_policy_max_preempt_timeout_ms()); value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); return value; } u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value) { value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); return value; } u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value) { /* * NB: The GuC API only supports 32bit values. However, the limit is further * reduced due to internal calculations which would otherwise overflow. */ if (intel_guc_submission_is_wanted(&engine->gt->uc.guc)) value = min_t(u64, value, guc_policy_max_exec_quantum_ms()); value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); return value; } static void __setup_engine_capabilities(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; if (engine->class == VIDEO_DECODE_CLASS) { /* * HEVC support is present on first engine instance * before Gen11 and on all instances afterwards. */ if (GRAPHICS_VER(i915) >= 11 || (GRAPHICS_VER(i915) >= 9 && engine->instance == 0)) engine->uabi_capabilities |= I915_VIDEO_CLASS_CAPABILITY_HEVC; /* * SFC block is present only on even logical engine * instances. */ if ((GRAPHICS_VER(i915) >= 11 && (engine->gt->info.vdbox_sfc_access & BIT(engine->instance))) || (GRAPHICS_VER(i915) >= 9 && engine->instance == 0)) engine->uabi_capabilities |= I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) { if (GRAPHICS_VER(i915) >= 9 && engine->gt->info.sfc_mask & BIT(engine->instance)) engine->uabi_capabilities |= I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; } } static void intel_setup_engine_capabilities(struct intel_gt *gt) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, gt, id) __setup_engine_capabilities(engine); } /** * intel_engines_release() - free the resources allocated for Command Streamers * @gt: pointer to struct intel_gt */ void intel_engines_release(struct intel_gt *gt) { struct intel_engine_cs *engine; enum intel_engine_id id; /* * Before we release the resources held by engine, we must be certain * that the HW is no longer accessing them -- having the GPU scribble * to or read from a page being used for something else causes no end * of fun. * * The GPU should be reset by this point, but assume the worst just * in case we aborted before completely initialising the engines. */ GEM_BUG_ON(intel_gt_pm_is_awake(gt)); if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) __intel_gt_reset(gt, ALL_ENGINES); /* Decouple the backend; but keep the layout for late GPU resets */ for_each_engine(engine, gt, id) { if (!engine->release) continue; intel_wakeref_wait_for_idle(&engine->wakeref); GEM_BUG_ON(intel_engine_pm_is_awake(engine)); engine->release(engine); engine->release = NULL; memset(&engine->reset, 0, sizeof(engine->reset)); } } void intel_engine_free_request_pool(struct intel_engine_cs *engine) { if (!engine->request_pool) return; kmem_cache_free(i915_request_slab_cache(), engine->request_pool); } void intel_engines_free(struct intel_gt *gt) { struct intel_engine_cs *engine; enum intel_engine_id id; /* Free the requests! dma-resv keeps fences around for an eternity */ rcu_barrier(); for_each_engine(engine, gt, id) { intel_engine_free_request_pool(engine); kfree(engine); gt->engine[id] = NULL; } } static bool gen11_vdbox_has_sfc(struct intel_gt *gt, unsigned int physical_vdbox, unsigned int logical_vdbox, u16 vdbox_mask) { struct drm_i915_private *i915 = gt->i915; /* * In Gen11, only even numbered logical VDBOXes are hooked * up to an SFC (Scaler & Format Converter) unit. * In Gen12, Even numbered physical instance always are connected * to an SFC. Odd numbered physical instances have SFC only if * previous even instance is fused off. * * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field * in the fuse register that tells us whether a specific SFC is present. */ if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0) return false; else if (MEDIA_VER(i915) >= 12) return (physical_vdbox % 2 == 0) || !(BIT(physical_vdbox - 1) & vdbox_mask); else if (MEDIA_VER(i915) == 11) return logical_vdbox % 2 == 0; return false; } static void engine_mask_apply_media_fuses(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; unsigned int logical_vdbox = 0; unsigned int i; u32 media_fuse, fuse1; u16 vdbox_mask; u16 vebox_mask; if (MEDIA_VER(gt->i915) < 11) return; /* * On newer platforms the fusing register is called 'enable' and has * enable semantics, while on older platforms it is called 'disable' * and bits have disable semantices. */ media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE); if (MEDIA_VER_FULL(i915) < IP_VER(12, 50)) media_fuse = ~media_fuse; vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK; vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >> GEN11_GT_VEBOX_DISABLE_SHIFT; if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) { fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1); gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1); } else { gt->info.sfc_mask = ~0; } for (i = 0; i < I915_MAX_VCS; i++) { if (!HAS_ENGINE(gt, _VCS(i))) { vdbox_mask &= ~BIT(i); continue; } if (!(BIT(i) & vdbox_mask)) { gt->info.engine_mask &= ~BIT(_VCS(i)); drm_dbg(&i915->drm, "vcs%u fused off\n", i); continue; } if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask)) gt->info.vdbox_sfc_access |= BIT(i); logical_vdbox++; } drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n", vdbox_mask, VDBOX_MASK(gt)); GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt)); for (i = 0; i < I915_MAX_VECS; i++) { if (!HAS_ENGINE(gt, _VECS(i))) { vebox_mask &= ~BIT(i); continue; } if (!(BIT(i) & vebox_mask)) { gt->info.engine_mask &= ~BIT(_VECS(i)); drm_dbg(&i915->drm, "vecs%u fused off\n", i); } } drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n", vebox_mask, VEBOX_MASK(gt)); GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt)); } static void engine_mask_apply_compute_fuses(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; struct intel_gt_info *info = &gt->info; int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS; unsigned long ccs_mask; unsigned int i; if (GRAPHICS_VER(i915) < 11) return; if (hweight32(CCS_MASK(gt)) <= 1) return; ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask, ss_per_ccs); /* * If all DSS in a quadrant are fused off, the corresponding CCS * engine is not available for use. */ for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) { info->engine_mask &= ~BIT(_CCS(i)); drm_dbg(&i915->drm, "ccs%u fused off\n", i); } } static void engine_mask_apply_copy_fuses(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; struct intel_gt_info *info = &gt->info; unsigned long meml3_mask; unsigned long quad; if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) && GRAPHICS_VER_FULL(i915) < IP_VER(12, 70))) return; meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3); meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask); /* * Link Copy engines may be fused off according to meml3_mask. Each * bit is a quad that houses 2 Link Copy and two Sub Copy engines. */ for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) { unsigned int instance = quad * 2 + 1; intel_engine_mask_t mask = GENMASK(_BCS(instance + 1), _BCS(instance)); if (mask & info->engine_mask) { drm_dbg(&i915->drm, "bcs%u fused off\n", instance); drm_dbg(&i915->drm, "bcs%u fused off\n", instance + 1); info->engine_mask &= ~mask; } } } /* * Determine which engines are fused off in our particular hardware. * Note that we have a catch-22 situation where we need to be able to access * the blitter forcewake domain to read the engine fuses, but at the same time * we need to know which engines are available on the system to know which * forcewake domains are present. We solve this by intializing the forcewake * domains based on the full engine mask in the platform capabilities before * calling this function and pruning the domains for fused-off engines * afterwards. */ static intel_engine_mask_t init_engine_mask(struct intel_gt *gt) { struct intel_gt_info *info = &gt->info; GEM_BUG_ON(!info->engine_mask); engine_mask_apply_media_fuses(gt); engine_mask_apply_compute_fuses(gt); engine_mask_apply_copy_fuses(gt); /* * The only use of the GSC CS is to load and communicate with the GSC * FW, so we have no use for it if we don't have the FW. * * IMPORTANT: in cases where we don't have the GSC FW, we have a * catch-22 situation that breaks media C6 due to 2 requirements: * 1) once turned on, the GSC power well will not go to sleep unless the * GSC FW is loaded. * 2) to enable idling (which is required for media C6) we need to * initialize the IDLE_MSG register for the GSC CS and do at least 1 * submission, which will wake up the GSC power well. */ if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(&gt->uc)) { drm_notice(&gt->i915->drm, "No GSC FW selected, disabling GSC CS and media C6\n"); info->engine_mask &= ~BIT(GSC0); } return info->engine_mask; } static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class, const u8 *map, u8 num_instances) { int i, j; u8 current_logical_id = 0; for (j = 0; j < num_instances; ++j) { for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) { if (!HAS_ENGINE(gt, i) || intel_engines[i].class != class) continue; if (intel_engines[i].instance == map[j]) { logical_ids[intel_engines[i].instance] = current_logical_id++; break; } } } } static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class) { /* * Logical to physical mapping is needed for proper support * to split-frame feature. */ if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) { const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 }; populate_logical_ids(gt, logical_ids, class, map, ARRAY_SIZE(map)); } else { int i; u8 map[MAX_ENGINE_INSTANCE + 1]; for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i) map[i] = i; populate_logical_ids(gt, logical_ids, class, map, ARRAY_SIZE(map)); } } /** * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers * @gt: pointer to struct intel_gt * * Return: non-zero if the initialization failed. */ int intel_engines_init_mmio(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; const unsigned int engine_mask = init_engine_mask(gt); unsigned int mask = 0; unsigned int i, class; u8 logical_ids[MAX_ENGINE_INSTANCE + 1]; int err; drm_WARN_ON(&i915->drm, engine_mask == 0); drm_WARN_ON(&i915->drm, engine_mask & GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES)); if (i915_inject_probe_failure(i915)) return -ENODEV; for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) { setup_logical_ids(gt, logical_ids, class); for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) { u8 instance = intel_engines[i].instance; if (intel_engines[i].class != class || !HAS_ENGINE(gt, i)) continue; err = intel_engine_setup(gt, i, logical_ids[instance]); if (err) goto cleanup; mask |= BIT(i); } } /* * Catch failures to update intel_engines table when the new engines * are added to the driver by a warning and disabling the forgotten * engines. */ if (drm_WARN_ON(&i915->drm, mask != engine_mask)) gt->info.engine_mask = mask; gt->info.num_engines = hweight32(mask); intel_gt_check_and_clear_faults(gt); intel_setup_engine_capabilities(gt); intel_uncore_prune_engine_fw_domains(gt->uncore, gt); return 0; cleanup: intel_engines_free(gt); return err; } void intel_engine_init_execlists(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; execlists->port_mask = 1; GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists))); GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS); memset(execlists->pending, 0, sizeof(execlists->pending)); execlists->active = memset(execlists->inflight, 0, sizeof(execlists->inflight)); } static void cleanup_status_page(struct intel_engine_cs *engine) { struct i915_vma *vma; /* Prevent writes into HWSP after returning the page to the system */ intel_engine_set_hwsp_writemask(engine, ~0u); vma = fetch_and_zero(&engine->status_page.vma); if (!vma) return; if (!HWS_NEEDS_PHYSICAL(engine->i915)) i915_vma_unpin(vma); i915_gem_object_unpin_map(vma->obj); i915_gem_object_put(vma->obj); } static int pin_ggtt_status_page(struct intel_engine_cs *engine, struct i915_gem_ww_ctx *ww, struct i915_vma *vma) { unsigned int flags; if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt)) /* * On g33, we cannot place HWS above 256MiB, so * restrict its pinning to the low mappable arena. * Though this restriction is not documented for * gen4, gen5, or byt, they also behave similarly * and hang if the HWS is placed at the top of the * GTT. To generalise, it appears that all !llc * platforms have issues with us placing the HWS * above the mappable region (even though we never * actually map it). */ flags = PIN_MAPPABLE; else flags = PIN_HIGH; return i915_ggtt_pin(vma, ww, 0, flags); } static int init_status_page(struct intel_engine_cs *engine) { struct drm_i915_gem_object *obj; struct i915_gem_ww_ctx ww; struct i915_vma *vma; void *vaddr; int ret; INIT_LIST_HEAD(&engine->status_page.timelines); /* * Though the HWS register does support 36bit addresses, historically * we have had hangs and corruption reported due to wild writes if * the HWS is placed above 4G. We only allow objects to be allocated * in GFP_DMA32 for i965, and no earlier physical address users had * access to more than 4G. */ obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE); if (IS_ERR(obj)) { drm_err(&engine->i915->drm, "Failed to allocate status page\n"); return PTR_ERR(obj); } i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto err_put; } i915_gem_ww_ctx_init(&ww, true); retry: ret = i915_gem_object_lock(obj, &ww); if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915)) ret = pin_ggtt_status_page(engine, &ww, vma); if (ret) goto err; vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); if (IS_ERR(vaddr)) { ret = PTR_ERR(vaddr); goto err_unpin; } engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE); engine->status_page.vma = vma; err_unpin: if (ret) i915_vma_unpin(vma); err: if (ret == -EDEADLK) { ret = i915_gem_ww_ctx_backoff(&ww); if (!ret) goto retry; } i915_gem_ww_ctx_fini(&ww); err_put: if (ret) i915_gem_object_put(obj); return ret; } static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine) { static const union intel_engine_tlb_inv_reg gen8_regs[] = { [RENDER_CLASS].reg = GEN8_RTCR, [VIDEO_DECODE_CLASS].reg = GEN8_M1TCR, /* , GEN8_M2TCR */ [VIDEO_ENHANCEMENT_CLASS].reg = GEN8_VTCR, [COPY_ENGINE_CLASS].reg = GEN8_BTCR, }; static const union intel_engine_tlb_inv_reg gen12_regs[] = { [RENDER_CLASS].reg = GEN12_GFX_TLB_INV_CR, [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR, [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR, [COPY_ENGINE_CLASS].reg = GEN12_BLT_TLB_INV_CR, [COMPUTE_CLASS].reg = GEN12_COMPCTX_TLB_INV_CR, }; static const union intel_engine_tlb_inv_reg xehp_regs[] = { [RENDER_CLASS].mcr_reg = XEHP_GFX_TLB_INV_CR, [VIDEO_DECODE_CLASS].mcr_reg = XEHP_VD_TLB_INV_CR, [VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR, [COPY_ENGINE_CLASS].mcr_reg = XEHP_BLT_TLB_INV_CR, [COMPUTE_CLASS].mcr_reg = XEHP_COMPCTX_TLB_INV_CR, }; static const union intel_engine_tlb_inv_reg xelpmp_regs[] = { [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR, [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR, [OTHER_CLASS].reg = XELPMP_GSC_TLB_INV_CR, }; struct drm_i915_private *i915 = engine->i915; const unsigned int instance = engine->instance; const unsigned int class = engine->class; const union intel_engine_tlb_inv_reg *regs; union intel_engine_tlb_inv_reg reg; unsigned int num = 0; u32 val; /* * New platforms should not be added with catch-all-newer (>=) * condition so that any later platform added triggers the below warning * and in turn mandates a human cross-check of whether the invalidation * flows have compatible semantics. * * For instance with the 11.00 -> 12.00 transition three out of five * respective engine registers were moved to masked type. Then after the * 12.00 -> 12.50 transition multi cast handling is required too. */ if (engine->gt->type == GT_MEDIA) { if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) { regs = xelpmp_regs; num = ARRAY_SIZE(xelpmp_regs); } } else { if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) || GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) || GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) || GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) { regs = xehp_regs; num = ARRAY_SIZE(xehp_regs); } else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) || GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) { regs = gen12_regs; num = ARRAY_SIZE(gen12_regs); } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) { regs = gen8_regs; num = ARRAY_SIZE(gen8_regs); } else if (GRAPHICS_VER(i915) < 8) { return 0; } } if (gt_WARN_ONCE(engine->gt, !num, "Platform does not implement TLB invalidation!")) return -ENODEV; if (gt_WARN_ON_ONCE(engine->gt, class >= num || (!regs[class].reg.reg && !regs[class].mcr_reg.reg))) return -ERANGE; reg = regs[class]; if (regs == xelpmp_regs && class == OTHER_CLASS) { /* * There's only a single GSC instance, but it uses register bit * 1 instead of either 0 or OTHER_GSC_INSTANCE. */ GEM_WARN_ON(instance != OTHER_GSC_INSTANCE); val = 1; } else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) { reg.reg = GEN8_M2TCR; val = 0; } else { val = instance; } val = BIT(val); engine->tlb_inv.mcr = regs == xehp_regs; engine->tlb_inv.reg = reg; engine->tlb_inv.done = val; if (GRAPHICS_VER(i915) >= 12 && (engine->class == VIDEO_DECODE_CLASS || engine->class == VIDEO_ENHANCEMENT_CLASS || engine->class == COMPUTE_CLASS || engine->class == OTHER_CLASS)) engine->tlb_inv.request = _MASKED_BIT_ENABLE(val); else engine->tlb_inv.request = val; return 0; } static int engine_setup_common(struct intel_engine_cs *engine) { int err; init_llist_head(&engine->barrier_tasks); err = intel_engine_init_tlb_invalidation(engine); if (err) return err; err = init_status_page(engine); if (err) return err; engine->breadcrumbs = intel_breadcrumbs_create(engine); if (!engine->breadcrumbs) { err = -ENOMEM; goto err_status; } engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL); if (!engine->sched_engine) { err = -ENOMEM; goto err_sched_engine; } engine->sched_engine->private_data = engine; err = intel_engine_init_cmd_parser(engine); if (err) goto err_cmd_parser; intel_engine_init_execlists(engine); intel_engine_init__pm(engine); intel_engine_init_retire(engine); /* Use the whole device by default */ engine->sseu = intel_sseu_from_device_info(&engine->gt->info.sseu); intel_engine_init_workarounds(engine); intel_engine_init_whitelist(engine); intel_engine_init_ctx_wa(engine); if (GRAPHICS_VER(engine->i915) >= 12) engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO; return 0; err_cmd_parser: i915_sched_engine_put(engine->sched_engine); err_sched_engine: intel_breadcrumbs_put(engine->breadcrumbs); err_status: cleanup_status_page(engine); return err; } struct measure_breadcrumb { struct i915_request rq; struct intel_ring ring; u32 cs[2048]; }; static int measure_breadcrumb_dw(struct intel_context *ce) { struct intel_engine_cs *engine = ce->engine; struct measure_breadcrumb *frame; int dw; GEM_BUG_ON(!engine->gt->scratch); frame = kzalloc(sizeof(*frame), GFP_KERNEL); if (!frame) return -ENOMEM; frame->rq.i915 = engine->i915; frame->rq.engine = engine; frame->rq.context = ce; rcu_assign_pointer(frame->rq.timeline, ce->timeline); frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno; frame->ring.vaddr = frame->cs; frame->ring.size = sizeof(frame->cs); frame->ring.wrap = BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size); frame->ring.effective_size = frame->ring.size; intel_ring_update_space(&frame->ring); frame->rq.ring = &frame->ring; mutex_lock(&ce->timeline->mutex); spin_lock_irq(&engine->sched_engine->lock); dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs; spin_unlock_irq(&engine->sched_engine->lock); mutex_unlock(&ce->timeline->mutex); GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */ kfree(frame); return dw; } struct intel_context * intel_engine_create_pinned_context(struct intel_engine_cs *engine, struct i915_address_space *vm, unsigned int ring_size, unsigned int hwsp, struct lock_class_key *key, const char *name) { struct intel_context *ce; int err; ce = intel_context_create(engine); if (IS_ERR(ce)) return ce; __set_bit(CONTEXT_BARRIER_BIT, &ce->flags); ce->timeline = page_pack_bits(NULL, hwsp); ce->ring = NULL; ce->ring_size = ring_size; i915_vm_put(ce->vm); ce->vm = i915_vm_get(vm); err = intel_context_pin(ce); /* perma-pin so it is always available */ if (err) { intel_context_put(ce); return ERR_PTR(err); } list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list); /* * Give our perma-pinned kernel timelines a separate lockdep class, * so that we can use them from within the normal user timelines * should we need to inject GPU operations during their request * construction. */ lockdep_set_class_and_name(&ce->timeline->mutex, key, name); return ce; } void intel_engine_destroy_pinned_context(struct intel_context *ce) { struct intel_engine_cs *engine = ce->engine; struct i915_vma *hwsp = engine->status_page.vma; GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp); mutex_lock(&hwsp->vm->mutex); list_del(&ce->timeline->engine_link); mutex_unlock(&hwsp->vm->mutex); list_del(&ce->pinned_contexts_link); intel_context_unpin(ce); intel_context_put(ce); } static struct intel_context * create_kernel_context(struct intel_engine_cs *engine) { static struct lock_class_key kernel; return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K, I915_GEM_HWS_SEQNO_ADDR, &kernel, "kernel_context"); } /* * engine_init_common - initialize engine state which might require hw access * @engine: Engine to initialize. * * Initializes @engine@ structure members shared between legacy and execlists * submission modes which do require hardware access. * * Typcally done at later stages of submission mode specific engine setup. * * Returns zero on success or an error code on failure. */ static int engine_init_common(struct intel_engine_cs *engine) { struct intel_context *ce; int ret; engine->set_default_submission(engine); /* * We may need to do things with the shrinker which * require us to immediately switch back to the default * context. This can cause a problem as pinning the * default context also requires GTT space which may not * be available. To avoid this we always pin the default * context. */ ce = create_kernel_context(engine); if (IS_ERR(ce)) return PTR_ERR(ce); ret = measure_breadcrumb_dw(ce); if (ret < 0) goto err_context; engine->emit_fini_breadcrumb_dw = ret; engine->kernel_context = ce; return 0; err_context: intel_engine_destroy_pinned_context(ce); return ret; } int intel_engines_init(struct intel_gt *gt) { int (*setup)(struct intel_engine_cs *engine); struct intel_engine_cs *engine; enum intel_engine_id id; int err; if (intel_uc_uses_guc_submission(&gt->uc)) { gt->submission_method = INTEL_SUBMISSION_GUC; setup = intel_guc_submission_setup; } else if (HAS_EXECLISTS(gt->i915)) { gt->submission_method = INTEL_SUBMISSION_ELSP; setup = intel_execlists_submission_setup; } else { gt->submission_method = INTEL_SUBMISSION_RING; setup = intel_ring_submission_setup; } for_each_engine(engine, gt, id) { err = engine_setup_common(engine); if (err) return err; err = setup(engine); if (err) { intel_engine_cleanup_common(engine); return err; } /* The backend should now be responsible for cleanup */ GEM_BUG_ON(engine->release == NULL); err = engine_init_common(engine); if (err) return err; intel_engine_add_user(engine); } return 0; } /** * intel_engine_cleanup_common - cleans up the engine state created by * the common initiailizers. * @engine: Engine to cleanup. * * This cleans up everything created by the common helpers. */ void intel_engine_cleanup_common(struct intel_engine_cs *engine) { GEM_BUG_ON(!list_empty(&engine->sched_engine->requests)); i915_sched_engine_put(engine->sched_engine); intel_breadcrumbs_put(engine->breadcrumbs); intel_engine_fini_retire(engine); intel_engine_cleanup_cmd_parser(engine); if (engine->default_state) fput(engine->default_state); if (engine->kernel_context) intel_engine_destroy_pinned_context(engine->kernel_context); GEM_BUG_ON(!llist_empty(&engine->barrier_tasks)); cleanup_status_page(engine); intel_wa_list_free(&engine->ctx_wa_list); intel_wa_list_free(&engine->wa_list); intel_wa_list_free(&engine->whitelist); } /** * intel_engine_resume - re-initializes the HW state of the engine * @engine: Engine to resume. * * Returns zero on success or an error code on failure. */ int intel_engine_resume(struct intel_engine_cs *engine) { intel_engine_apply_workarounds(engine); intel_engine_apply_whitelist(engine); return engine->resume(engine); } u64 intel_engine_get_active_head(const struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; u64 acthd; if (GRAPHICS_VER(i915) >= 8) acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW); else if (GRAPHICS_VER(i915) >= 4) acthd = ENGINE_READ(engine, RING_ACTHD); else acthd = ENGINE_READ(engine, ACTHD); return acthd; } u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine) { u64 bbaddr; if (GRAPHICS_VER(engine->i915) >= 8) bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW); else bbaddr = ENGINE_READ(engine, RING_BBADDR); return bbaddr; } static unsigned long stop_timeout(const struct intel_engine_cs *engine) { if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */ return 0; /* * If we are doing a normal GPU reset, we can take our time and allow * the engine to quiesce. We've stopped submission to the engine, and * if we wait long enough an innocent context should complete and * leave the engine idle. So they should not be caught unaware by * the forthcoming GPU reset (which usually follows the stop_cs)! */ return READ_ONCE(engine->props.stop_timeout_ms); } static int __intel_engine_stop_cs(struct intel_engine_cs *engine, int fast_timeout_us, int slow_timeout_ms) { struct intel_uncore *uncore = engine->uncore; const i915_reg_t mode = RING_MI_MODE(engine->mmio_base); int err; intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING)); /* * Wa_22011802037: Prior to doing a reset, ensure CS is * stopped, set ring stop bit and prefetch disable bit to halt CS */ if (IS_MTL_GRAPHICS_STEP(engine->i915, M, STEP_A0, STEP_B0) || (GRAPHICS_VER(engine->i915) >= 11 && GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 70))) intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base), _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE)); err = __intel_wait_for_register_fw(engine->uncore, mode, MODE_IDLE, MODE_IDLE, fast_timeout_us, slow_timeout_ms, NULL); /* A final mmio read to let GPU writes be hopefully flushed to memory */ intel_uncore_posting_read_fw(uncore, mode); return err; } int intel_engine_stop_cs(struct intel_engine_cs *engine) { int err = 0; if (GRAPHICS_VER(engine->i915) < 3) return -ENODEV; ENGINE_TRACE(engine, "\n"); /* * TODO: Find out why occasionally stopping the CS times out. Seen * especially with gem_eio tests. * * Occasionally trying to stop the cs times out, but does not adversely * affect functionality. The timeout is set as a config parameter that * defaults to 100ms. In most cases the follow up operation is to wait * for pending MI_FORCE_WAKES. The assumption is that this timeout is * sufficient for any pending MI_FORCEWAKEs to complete. Once root * caused, the caller must check and handle the return from this * function. */ if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) { ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n", ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR, ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR); /* * Sometimes we observe that the idle flag is not * set even though the ring is empty. So double * check before giving up. */ if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) != (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR)) err = -ETIMEDOUT; } return err; } void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine) { ENGINE_TRACE(engine, "\n"); ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); } static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine) { static const i915_reg_t _reg[I915_NUM_ENGINES] = { [RCS0] = MSG_IDLE_CS, [BCS0] = MSG_IDLE_BCS, [VCS0] = MSG_IDLE_VCS0, [VCS1] = MSG_IDLE_VCS1, [VCS2] = MSG_IDLE_VCS2, [VCS3] = MSG_IDLE_VCS3, [VCS4] = MSG_IDLE_VCS4, [VCS5] = MSG_IDLE_VCS5, [VCS6] = MSG_IDLE_VCS6, [VCS7] = MSG_IDLE_VCS7, [VECS0] = MSG_IDLE_VECS0, [VECS1] = MSG_IDLE_VECS1, [VECS2] = MSG_IDLE_VECS2, [VECS3] = MSG_IDLE_VECS3, [CCS0] = MSG_IDLE_CS, [CCS1] = MSG_IDLE_CS, [CCS2] = MSG_IDLE_CS, [CCS3] = MSG_IDLE_CS, }; u32 val; if (!_reg[engine->id].reg) return 0; val = intel_uncore_read(engine->uncore, _reg[engine->id]); /* bits[29:25] & bits[13:9] >> shift */ return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT; } static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask) { int ret; /* Ensure GPM receives fw up/down after CS is stopped */ udelay(1); /* Wait for forcewake request to complete in GPM */ ret = __intel_wait_for_register_fw(gt->uncore, GEN9_PWRGT_DOMAIN_STATUS, fw_mask, fw_mask, 5000, 0, NULL); /* Ensure CS receives fw ack from GPM */ udelay(1); if (ret) GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret); } /* * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we * are concerned only with the gt reset here, we use a logical OR of pending * forcewakeups from all reset domains and then wait for them to complete by * querying PWRGT_DOMAIN_STATUS. */ void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine) { u32 fw_pending = __cs_pending_mi_force_wakes(engine); if (fw_pending) __gpm_wait_for_fw_complete(engine->gt, fw_pending); } /* NB: please notice the memset */ void intel_engine_get_instdone(const struct intel_engine_cs *engine, struct intel_instdone *instdone) { struct drm_i915_private *i915 = engine->i915; struct intel_uncore *uncore = engine->uncore; u32 mmio_base = engine->mmio_base; int slice; int subslice; int iter; memset(instdone, 0, sizeof(*instdone)); if (GRAPHICS_VER(i915) >= 8) { instdone->instdone = intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); if (engine->id != RCS0) return; instdone->slice_common = intel_uncore_read(uncore, GEN7_SC_INSTDONE); if (GRAPHICS_VER(i915) >= 12) { instdone->slice_common_extra[0] = intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA); instdone->slice_common_extra[1] = intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2); } for_each_ss_steering(iter, engine->gt, slice, subslice) { instdone->sampler[slice][subslice] = intel_gt_mcr_read(engine->gt, GEN8_SAMPLER_INSTDONE, slice, subslice); instdone->row[slice][subslice] = intel_gt_mcr_read(engine->gt, GEN8_ROW_INSTDONE, slice, subslice); } if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) { for_each_ss_steering(iter, engine->gt, slice, subslice) instdone->geom_svg[slice][subslice] = intel_gt_mcr_read(engine->gt, XEHPG_INSTDONE_GEOM_SVG, slice, subslice); } } else if (GRAPHICS_VER(i915) >= 7) { instdone->instdone = intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); if (engine->id != RCS0) return; instdone->slice_common = intel_uncore_read(uncore, GEN7_SC_INSTDONE); instdone->sampler[0][0] = intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE); instdone->row[0][0] = intel_uncore_read(uncore, GEN7_ROW_INSTDONE); } else if (GRAPHICS_VER(i915) >= 4) { instdone->instdone = intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); if (engine->id == RCS0) /* HACK: Using the wrong struct member */ instdone->slice_common = intel_uncore_read(uncore, GEN4_INSTDONE1); } else { instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE); } } static bool ring_is_idle(struct intel_engine_cs *engine) { bool idle = true; if (I915_SELFTEST_ONLY(!engine->mmio_base)) return true; if (!intel_engine_pm_get_if_awake(engine)) return true; /* First check that no commands are left in the ring */ if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) != (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR)) idle = false; /* No bit for gen2, so assume the CS parser is idle */ if (GRAPHICS_VER(engine->i915) > 2 && !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE)) idle = false; intel_engine_pm_put(engine); return idle; } void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync) { struct tasklet_struct *t = &engine->sched_engine->tasklet; if (!t->callback) return; local_bh_disable(); if (tasklet_trylock(t)) { /* Must wait for any GPU reset in progress. */ if (__tasklet_is_enabled(t)) t->callback(t); tasklet_unlock(t); } local_bh_enable(); /* Synchronise and wait for the tasklet on another CPU */ if (sync) tasklet_unlock_wait(t); } /** * intel_engine_is_idle() - Report if the engine has finished process all work * @engine: the intel_engine_cs * * Return true if there are no requests pending, nothing left to be submitted * to hardware, and that the engine is idle. */ bool intel_engine_is_idle(struct intel_engine_cs *engine) { /* More white lies, if wedged, hw state is inconsistent */ if (intel_gt_is_wedged(engine->gt)) return true; if (!intel_engine_pm_is_awake(engine)) return true; /* Waiting to drain ELSP? */ intel_synchronize_hardirq(engine->i915); intel_engine_flush_submission(engine); /* ELSP is empty, but there are ready requests? E.g. after reset */ if (!i915_sched_engine_is_empty(engine->sched_engine)) return false; /* Ring stopped? */ return ring_is_idle(engine); } bool intel_engines_are_idle(struct intel_gt *gt) { struct intel_engine_cs *engine; enum intel_engine_id id; /* * If the driver is wedged, HW state may be very inconsistent and * report that it is still busy, even though we have stopped using it. */ if (intel_gt_is_wedged(gt)) return true; /* Already parked (and passed an idleness test); must still be idle */ if (!READ_ONCE(gt->awake)) return true; for_each_engine(engine, gt, id) { if (!intel_engine_is_idle(engine)) return false; } return true; } bool intel_engine_irq_enable(struct intel_engine_cs *engine) { if (!engine->irq_enable) return false; /* Caller disables interrupts */ spin_lock(engine->gt->irq_lock); engine->irq_enable(engine); spin_unlock(engine->gt->irq_lock); return true; } void intel_engine_irq_disable(struct intel_engine_cs *engine) { if (!engine->irq_disable) return; /* Caller disables interrupts */ spin_lock(engine->gt->irq_lock); engine->irq_disable(engine); spin_unlock(engine->gt->irq_lock); } void intel_engines_reset_default_submission(struct intel_gt *gt) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, gt, id) { if (engine->sanitize) engine->sanitize(engine); engine->set_default_submission(engine); } } bool intel_engine_can_store_dword(struct intel_engine_cs *engine) { switch (GRAPHICS_VER(engine->i915)) { case 2: return false; /* uses physical not virtual addresses */ case 3: /* maybe only uses physical not virtual addresses */ return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915)); case 4: return !IS_I965G(engine->i915); /* who knows! */ case 6: return engine->class != VIDEO_DECODE_CLASS; /* b0rked */ default: return true; } } static struct intel_timeline *get_timeline(struct i915_request *rq) { struct intel_timeline *tl; /* * Even though we are holding the engine->sched_engine->lock here, there * is no control over the submission queue per-se and we are * inspecting the active state at a random point in time, with an * unknown queue. Play safe and make sure the timeline remains valid. * (Only being used for pretty printing, one extra kref shouldn't * cause a camel stampede!) */ rcu_read_lock(); tl = rcu_dereference(rq->timeline); if (!kref_get_unless_zero(&tl->kref)) tl = NULL; rcu_read_unlock(); return tl; } static int print_ring(char *buf, int sz, struct i915_request *rq) { int len = 0; if (!i915_request_signaled(rq)) { struct intel_timeline *tl = get_timeline(rq); len = scnprintf(buf, sz, "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ", i915_ggtt_offset(rq->ring->vma), tl ? tl->hwsp_offset : 0, hwsp_seqno(rq), DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context), 1000 * 1000)); if (tl) intel_timeline_put(tl); } return len; } static void hexdump(struct drm_printer *m, const void *buf, size_t len) { const size_t rowsize = 8 * sizeof(u32); const void *prev = NULL; bool skip = false; size_t pos; for (pos = 0; pos < len; pos += rowsize) { char line[128]; if (prev && !memcmp(prev, buf + pos, rowsize)) { if (!skip) { drm_printf(m, "*\n"); skip = true; } continue; } WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos, rowsize, sizeof(u32), line, sizeof(line), false) >= sizeof(line)); drm_printf(m, "[%04zx] %s\n", pos, line); prev = buf + pos; skip = false; } } static const char *repr_timer(const struct timer_list *t) { if (!READ_ONCE(t->expires)) return "inactive"; if (timer_pending(t)) return "active"; return "expired"; } static void intel_engine_print_registers(struct intel_engine_cs *engine, struct drm_printer *m) { struct drm_i915_private *i915 = engine->i915; struct intel_engine_execlists * const execlists = &engine->execlists; u64 addr; if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7)) drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID)); if (HAS_EXECLISTS(i915)) { drm_printf(m, "\tEL_STAT_HI: 0x%08x\n", ENGINE_READ(engine, RING_EXECLIST_STATUS_HI)); drm_printf(m, "\tEL_STAT_LO: 0x%08x\n", ENGINE_READ(engine, RING_EXECLIST_STATUS_LO)); } drm_printf(m, "\tRING_START: 0x%08x\n", ENGINE_READ(engine, RING_START)); drm_printf(m, "\tRING_HEAD: 0x%08x\n", ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR); drm_printf(m, "\tRING_TAIL: 0x%08x\n", ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR); drm_printf(m, "\tRING_CTL: 0x%08x%s\n", ENGINE_READ(engine, RING_CTL), ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : ""); if (GRAPHICS_VER(engine->i915) > 2) { drm_printf(m, "\tRING_MODE: 0x%08x%s\n", ENGINE_READ(engine, RING_MI_MODE), ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : ""); } if (GRAPHICS_VER(i915) >= 6) { drm_printf(m, "\tRING_IMR: 0x%08x\n", ENGINE_READ(engine, RING_IMR)); drm_printf(m, "\tRING_ESR: 0x%08x\n", ENGINE_READ(engine, RING_ESR)); drm_printf(m, "\tRING_EMR: 0x%08x\n", ENGINE_READ(engine, RING_EMR)); drm_printf(m, "\tRING_EIR: 0x%08x\n", ENGINE_READ(engine, RING_EIR)); } addr = intel_engine_get_active_head(engine); drm_printf(m, "\tACTHD: 0x%08x_%08x\n", upper_32_bits(addr), lower_32_bits(addr)); addr = intel_engine_get_last_batch_head(engine); drm_printf(m, "\tBBADDR: 0x%08x_%08x\n", upper_32_bits(addr), lower_32_bits(addr)); if (GRAPHICS_VER(i915) >= 8) addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW); else if (GRAPHICS_VER(i915) >= 4) addr = ENGINE_READ(engine, RING_DMA_FADD); else addr = ENGINE_READ(engine, DMA_FADD_I8XX); drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n", upper_32_bits(addr), lower_32_bits(addr)); if (GRAPHICS_VER(i915) >= 4) { drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, RING_IPEIR)); drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, RING_IPEHR)); } else { drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR)); drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR)); } if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) { struct i915_request * const *port, *rq; const u32 *hws = &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; const u8 num_entries = execlists->csb_size; unsigned int idx; u8 read, write; drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n", str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)), str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)), repr_timer(&engine->execlists.preempt), repr_timer(&engine->execlists.timer)); read = execlists->csb_head; write = READ_ONCE(*execlists->csb_write); drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n", ENGINE_READ(engine, RING_EXECLIST_STATUS_LO), ENGINE_READ(engine, RING_EXECLIST_STATUS_HI), read, write, num_entries); if (read >= num_entries) read = 0; if (write >= num_entries) write = 0; if (read > write) write += num_entries; while (read < write) { idx = ++read % num_entries; drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n", idx, hws[idx * 2], hws[idx * 2 + 1]); } i915_sched_engine_active_lock_bh(engine->sched_engine); rcu_read_lock(); for (port = execlists->active; (rq = *port); port++) { char hdr[160]; int len; len = scnprintf(hdr, sizeof(hdr), "\t\tActive[%d]: ccid:%08x%s%s, ", (int)(port - execlists->active), rq->context->lrc.ccid, intel_context_is_closed(rq->context) ? "!" : "", intel_context_is_banned(rq->context) ? "*" : ""); len += print_ring(hdr + len, sizeof(hdr) - len, rq); scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); i915_request_show(m, rq, hdr, 0); } for (port = execlists->pending; (rq = *port); port++) { char hdr[160]; int len; len = scnprintf(hdr, sizeof(hdr), "\t\tPending[%d]: ccid:%08x%s%s, ", (int)(port - execlists->pending), rq->context->lrc.ccid, intel_context_is_closed(rq->context) ? "!" : "", intel_context_is_banned(rq->context) ? "*" : ""); len += print_ring(hdr + len, sizeof(hdr) - len, rq); scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); i915_request_show(m, rq, hdr, 0); } rcu_read_unlock(); i915_sched_engine_active_unlock_bh(engine->sched_engine); } else if (GRAPHICS_VER(i915) > 6) { drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n", ENGINE_READ(engine, RING_PP_DIR_BASE)); drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n", ENGINE_READ(engine, RING_PP_DIR_BASE_READ)); drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n", ENGINE_READ(engine, RING_PP_DIR_DCLV)); } } static void print_request_ring(struct drm_printer *m, struct i915_request *rq) { struct i915_vma_resource *vma_res = rq->batch_res; void *ring; int size; drm_printf(m, "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n", rq->head, rq->postfix, rq->tail, vma_res ? upper_32_bits(vma_res->start) : ~0u, vma_res ? lower_32_bits(vma_res->start) : ~0u); size = rq->tail - rq->head; if (rq->tail < rq->head) size += rq->ring->size; ring = kmalloc(size, GFP_ATOMIC); if (ring) { const void *vaddr = rq->ring->vaddr; unsigned int head = rq->head; unsigned int len = 0; if (rq->tail < head) { len = rq->ring->size - head; memcpy(ring, vaddr + head, len); head = 0; } memcpy(ring + len, vaddr + head, size - len); hexdump(m, ring, size); kfree(ring); } } static unsigned long read_ul(void *p, size_t x) { return *(unsigned long *)(p + x); } static void print_properties(struct intel_engine_cs *engine, struct drm_printer *m) { static const struct pmap { size_t offset; const char *name; } props[] = { #define P(x) { \ .offset = offsetof(typeof(engine->props), x), \ .name = #x \ } P(heartbeat_interval_ms), P(max_busywait_duration_ns), P(preempt_timeout_ms), P(stop_timeout_ms), P(timeslice_duration_ms), {}, #undef P }; const struct pmap *p; drm_printf(m, "\tProperties:\n"); for (p = props; p->name; p++) drm_printf(m, "\t\t%s: %lu [default %lu]\n", p->name, read_ul(&engine->props, p->offset), read_ul(&engine->defaults, p->offset)); } static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg) { struct intel_timeline *tl = get_timeline(rq); i915_request_show(m, rq, msg, 0); drm_printf(m, "\t\tring->start: 0x%08x\n", i915_ggtt_offset(rq->ring->vma)); drm_printf(m, "\t\tring->head: 0x%08x\n", rq->ring->head); drm_printf(m, "\t\tring->tail: 0x%08x\n", rq->ring->tail); drm_printf(m, "\t\tring->emit: 0x%08x\n", rq->ring->emit); drm_printf(m, "\t\tring->space: 0x%08x\n", rq->ring->space); if (tl) { drm_printf(m, "\t\tring->hwsp: 0x%08x\n", tl->hwsp_offset); intel_timeline_put(tl); } print_request_ring(m, rq); if (rq->context->lrc_reg_state) { drm_printf(m, "Logical Ring Context:\n"); hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE); } } void intel_engine_dump_active_requests(struct list_head *requests, struct i915_request *hung_rq, struct drm_printer *m) { struct i915_request *rq; const char *msg; enum i915_request_state state; list_for_each_entry(rq, requests, sched.link) { if (rq == hung_rq) continue; state = i915_test_request_state(rq); if (state < I915_REQUEST_QUEUED) continue; if (state == I915_REQUEST_ACTIVE) msg = "\t\tactive on engine"; else msg = "\t\tactive in queue"; engine_dump_request(rq, m, msg); } } static void engine_dump_active_requests(struct intel_engine_cs *engine, struct drm_printer *m) { struct intel_context *hung_ce = NULL; struct i915_request *hung_rq = NULL; /* * No need for an engine->irq_seqno_barrier() before the seqno reads. * The GPU is still running so requests are still executing and any * hardware reads will be out of date by the time they are reported. * But the intention here is just to report an instantaneous snapshot * so that's fine. */ intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq); drm_printf(m, "\tRequests:\n"); if (hung_rq) engine_dump_request(hung_rq, m, "\t\thung"); else if (hung_ce) drm_printf(m, "\t\tGot hung ce but no hung rq!\n"); if (intel_uc_uses_guc_submission(&engine->gt->uc)) intel_guc_dump_active_requests(engine, hung_rq, m); else intel_execlists_dump_active_requests(engine, hung_rq, m); if (hung_rq) i915_request_put(hung_rq); } void intel_engine_dump(struct intel_engine_cs *engine, struct drm_printer *m, const char *header, ...) { struct i915_gpu_error * const error = &engine->i915->gpu_error; struct i915_request *rq; intel_wakeref_t wakeref; ktime_t dummy; if (header) { va_list ap; va_start(ap, header); drm_vprintf(m, header, &ap); va_end(ap); } if (intel_gt_is_wedged(engine->gt)) drm_printf(m, "*** WEDGED ***\n"); drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count)); drm_printf(m, "\tBarriers?: %s\n", str_yes_no(!llist_empty(&engine->barrier_tasks))); drm_printf(m, "\tLatency: %luus\n", ewma__engine_latency_read(&engine->latency)); if (intel_engine_supports_stats(engine)) drm_printf(m, "\tRuntime: %llums\n", ktime_to_ms(intel_engine_get_busy_time(engine, &dummy))); drm_printf(m, "\tForcewake: %x domains, %d active\n", engine->fw_domain, READ_ONCE(engine->fw_active)); rcu_read_lock(); rq = READ_ONCE(engine->heartbeat.systole); if (rq) drm_printf(m, "\tHeartbeat: %d ms ago\n", jiffies_to_msecs(jiffies - rq->emitted_jiffies)); rcu_read_unlock(); drm_printf(m, "\tReset count: %d (global %d)\n", i915_reset_engine_count(error, engine), i915_reset_count(error)); print_properties(engine, m); engine_dump_active_requests(engine, m); drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base); wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm); if (wakeref) { intel_engine_print_registers(engine, m); intel_runtime_pm_put(engine->uncore->rpm, wakeref); } else { drm_printf(m, "\tDevice is asleep; skipping register dump\n"); } intel_execlists_show_requests(engine, m, i915_request_show, 8); drm_printf(m, "HWSP:\n"); hexdump(m, engine->status_page.addr, PAGE_SIZE); drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine))); intel_engine_print_breadcrumbs(engine, m); } /** * intel_engine_get_busy_time() - Return current accumulated engine busyness * @engine: engine to report on * @now: monotonic timestamp of sampling * * Returns accumulated time @engine was busy since engine stats were enabled. */ ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now) { return engine->busyness(engine, now); } struct intel_context * intel_engine_create_virtual(struct intel_engine_cs **siblings, unsigned int count, unsigned long flags) { if (count == 0) return ERR_PTR(-EINVAL); if (count == 1 && !(flags & FORCE_VIRTUAL)) return intel_context_create(siblings[0]); GEM_BUG_ON(!siblings[0]->cops->create_virtual); return siblings[0]->cops->create_virtual(siblings, count, flags); } static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine) { struct i915_request *request, *active = NULL; /* * This search does not work in GuC submission mode. However, the GuC * will report the hanging context directly to the driver itself. So * the driver should never get here when in GuC mode. */ GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc)); /* * We are called by the error capture, reset and to dump engine * state at random points in time. In particular, note that neither is * crucially ordered with an interrupt. After a hang, the GPU is dead * and we assume that no more writes can happen (we waited long enough * for all writes that were in transaction to be flushed) - adding an * extra delay for a recent interrupt is pointless. Hence, we do * not need an engine->irq_seqno_barrier() before the seqno reads. * At all other times, we must assume the GPU is still running, but * we only care about the snapshot of this moment. */ lockdep_assert_held(&engine->sched_engine->lock); rcu_read_lock(); request = execlists_active(&engine->execlists); if (request) { struct intel_timeline *tl = request->context->timeline; list_for_each_entry_from_reverse(request, &tl->requests, link) { if (__i915_request_is_complete(request)) break; active = request; } } rcu_read_unlock(); if (active) return active; list_for_each_entry(request, &engine->sched_engine->requests, sched.link) { if (i915_test_request_state(request) != I915_REQUEST_ACTIVE) continue; active = request; break; } return active; } void intel_engine_get_hung_entity(struct intel_engine_cs *engine, struct intel_context **ce, struct i915_request **rq) { unsigned long flags; *ce = intel_engine_get_hung_context(engine); if (*ce) { intel_engine_clear_hung_context(engine); *rq = intel_context_get_active_request(*ce); return; } /* * Getting here with GuC enabled means it is a forced error capture * with no actual hang. So, no need to attempt the execlist search. */ if (intel_uc_uses_guc_submission(&engine->gt->uc)) return; spin_lock_irqsave(&engine->sched_engine->lock, flags); *rq = engine_execlist_find_hung_request(engine); if (*rq) *rq = i915_request_get_rcu(*rq); spin_unlock_irqrestore(&engine->sched_engine->lock, flags); } void xehp_enable_ccs_engines(struct intel_engine_cs *engine) { /* * If there are any non-fused-off CCS engines, we need to enable CCS * support in the RCU_MODE register. This only needs to be done once, * so for simplicity we'll take care of this in the RCS engine's * resume handler; since the RCS and all CCS engines belong to the * same reset domain and are reset together, this will also take care * of re-applying the setting after i915-triggered resets. */ if (!CCS_MASK(engine->gt)) return; intel_uncore_write(engine->uncore, GEN12_RCU_MODE, _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE)); } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "mock_engine.c" #include "selftest_engine.c" #include "selftest_engine_cs.c" #endif
linux-master
drivers/gpu/drm/i915/gt/intel_engine_cs.c
// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include "i915_selftest.h" #include "gem/i915_gem_internal.h" #include "gem/i915_gem_lmem.h" #include "gem/i915_gem_region.h" #include "gen8_engine_cs.h" #include "i915_gem_ww.h" #include "intel_engine_regs.h" #include "intel_gpu_commands.h" #include "intel_context.h" #include "intel_gt.h" #include "intel_ring.h" #include "selftests/igt_flush_test.h" #include "selftests/i915_random.h" static void vma_set_qw(struct i915_vma *vma, u64 addr, u64 val) { GEM_BUG_ON(addr < i915_vma_offset(vma)); GEM_BUG_ON(addr >= i915_vma_offset(vma) + i915_vma_size(vma) + sizeof(val)); memset64(page_mask_bits(vma->obj->mm.mapping) + (addr - i915_vma_offset(vma)), val, 1); } static int pte_tlbinv(struct intel_context *ce, struct i915_vma *va, struct i915_vma *vb, u64 align, void (*tlbinv)(struct i915_address_space *vm, u64 addr, u64 length), u64 length, struct rnd_state *prng) { const unsigned int pat_index = i915_gem_get_pat_index(ce->vm->i915, I915_CACHE_NONE); struct drm_i915_gem_object *batch; struct drm_mm_node vb_node; struct i915_request *rq; struct i915_vma *vma; u64 addr; int err; u32 *cs; batch = i915_gem_object_create_internal(ce->vm->i915, 4096); if (IS_ERR(batch)) return PTR_ERR(batch); vma = i915_vma_instance(batch, ce->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto out; } err = i915_vma_pin(vma, 0, 0, PIN_USER); if (err) goto out; /* Pin va at random but aligned offset after vma */ addr = round_up(vma->node.start + vma->node.size, align); /* MI_CONDITIONAL_BATCH_BUFFER_END limits address to 48b */ addr = igt_random_offset(prng, addr, min(ce->vm->total, BIT_ULL(48)), va->size, align); err = i915_vma_pin(va, 0, 0, addr | PIN_OFFSET_FIXED | PIN_USER); if (err) { pr_err("Cannot pin at %llx+%llx\n", addr, va->size); goto out; } GEM_BUG_ON(i915_vma_offset(va) != addr); if (vb != va) { vb_node = vb->node; vb->node = va->node; /* overwrites the _same_ PTE */ } /* * Now choose random dword at the 1st pinned page. * * SZ_64K pages on dg1 require that the whole PT be marked * containing 64KiB entries. So we make sure that vma * covers the whole PT, despite being randomly aligned to 64KiB * and restrict our sampling to the 2MiB PT within where * we know that we will be using 64KiB pages. */ if (align == SZ_64K) addr = round_up(addr, SZ_2M); addr = igt_random_offset(prng, addr, addr + align, 8, 8); if (va != vb) pr_info("%s(%s): Sampling %llx, with alignment %llx, using PTE size %x (phys %x, sg %x), invalidate:%llx+%llx\n", ce->engine->name, va->obj->mm.region->name ?: "smem", addr, align, va->resource->page_sizes_gtt, va->page_sizes.phys, va->page_sizes.sg, addr & -length, length); cs = i915_gem_object_pin_map_unlocked(batch, I915_MAP_WC); *cs++ = MI_NOOP; /* for later termination */ /* * Sample the target to see if we spot the updated backing store. * Gen8 VCS compares immediate value with bitwise-and of two * consecutive DWORDS pointed by addr, other gen/engines compare value * with DWORD pointed by addr. Moreover we want to exercise DWORD size * invalidations. To fulfill all these requirements below values * have been chosen. */ *cs++ = MI_CONDITIONAL_BATCH_BUFFER_END | MI_DO_COMPARE | 2; *cs++ = 0; /* break if *addr == 0 */ *cs++ = lower_32_bits(addr); *cs++ = upper_32_bits(addr); vma_set_qw(va, addr, -1); vma_set_qw(vb, addr, 0); /* Keep sampling until we get bored */ *cs++ = MI_BATCH_BUFFER_START | BIT(8) | 1; *cs++ = lower_32_bits(i915_vma_offset(vma)); *cs++ = upper_32_bits(i915_vma_offset(vma)); i915_gem_object_flush_map(batch); rq = i915_request_create(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out_va; } err = rq->engine->emit_bb_start(rq, i915_vma_offset(vma), 0, 0); if (err) { i915_request_add(rq); goto out_va; } i915_request_get(rq); i915_request_add(rq); /* Short sleep to sanitycheck the batch is spinning before we begin */ msleep(10); if (va == vb) { if (!i915_request_completed(rq)) { pr_err("%s(%s): Semaphore sanitycheck failed %llx, with alignment %llx, using PTE size %x (phys %x, sg %x)\n", ce->engine->name, va->obj->mm.region->name ?: "smem", addr, align, va->resource->page_sizes_gtt, va->page_sizes.phys, va->page_sizes.sg); err = -EIO; } } else if (!i915_request_completed(rq)) { struct i915_vma_resource vb_res = { .bi.pages = vb->obj->mm.pages, .bi.page_sizes = vb->obj->mm.page_sizes, .start = i915_vma_offset(vb), .vma_size = i915_vma_size(vb) }; unsigned int pte_flags = 0; /* Flip the PTE between A and B */ if (i915_gem_object_is_lmem(vb->obj)) pte_flags |= PTE_LM; ce->vm->insert_entries(ce->vm, &vb_res, pat_index, pte_flags); /* Flush the PTE update to concurrent HW */ tlbinv(ce->vm, addr & -length, length); if (wait_for(i915_request_completed(rq), HZ / 2)) { pr_err("%s: Request did not complete; the COND_BBE did not read the updated PTE\n", ce->engine->name); err = -EINVAL; } } else { pr_err("Spinner ended unexpectedly\n"); err = -EIO; } i915_request_put(rq); cs = page_mask_bits(batch->mm.mapping); *cs = MI_BATCH_BUFFER_END; wmb(); out_va: if (vb != va) vb->node = vb_node; i915_vma_unpin(va); if (i915_vma_unbind_unlocked(va)) err = -EIO; out: i915_gem_object_put(batch); return err; } static struct drm_i915_gem_object *create_lmem(struct intel_gt *gt) { struct intel_memory_region *mr = gt->i915->mm.regions[INTEL_REGION_LMEM_0]; resource_size_t size = SZ_1G; /* * Allocation of largest possible page size allows to test all types * of pages. To succeed with both allocations, especially in case of Small * BAR, try to allocate no more than quarter of mappable memory. */ if (mr && size > mr->io_size / 4) size = mr->io_size / 4; return i915_gem_object_create_lmem(gt->i915, size, I915_BO_ALLOC_CONTIGUOUS); } static struct drm_i915_gem_object *create_smem(struct intel_gt *gt) { /* * SZ_64K pages require covering the whole 2M PT (gen8 to tgl/dg1). * While that does not require the whole 2M block to be contiguous * it is easier to make it so, since we need that for SZ_2M pagees. * Since we randomly offset the start of the vma, we need a 4M object * so that there is a 2M range within it is suitable for SZ_64K PTE. */ return i915_gem_object_create_internal(gt->i915, SZ_4M); } static int mem_tlbinv(struct intel_gt *gt, struct drm_i915_gem_object *(*create_fn)(struct intel_gt *), void (*tlbinv)(struct i915_address_space *vm, u64 addr, u64 length)) { unsigned int ppgtt_size = RUNTIME_INFO(gt->i915)->ppgtt_size; struct intel_engine_cs *engine; struct drm_i915_gem_object *A, *B; struct i915_ppgtt *ppgtt; struct i915_vma *va, *vb; enum intel_engine_id id; I915_RND_STATE(prng); void *vaddr; int err; /* * Check that the TLB invalidate is able to revoke an active * page. We load a page into a spinning COND_BBE loop and then * remap that page to a new physical address. The old address, and * so the loop keeps spinning, is retained in the TLB cache until * we issue an invalidate. */ A = create_fn(gt); if (IS_ERR(A)) return PTR_ERR(A); vaddr = i915_gem_object_pin_map_unlocked(A, I915_MAP_WC); if (IS_ERR(vaddr)) { err = PTR_ERR(vaddr); goto out_a; } B = create_fn(gt); if (IS_ERR(B)) { err = PTR_ERR(B); goto out_a; } vaddr = i915_gem_object_pin_map_unlocked(B, I915_MAP_WC); if (IS_ERR(vaddr)) { err = PTR_ERR(vaddr); goto out_b; } GEM_BUG_ON(A->base.size != B->base.size); if ((A->mm.page_sizes.phys | B->mm.page_sizes.phys) & (A->base.size - 1)) pr_warn("Failed to allocate contiguous pages for size %zx\n", A->base.size); ppgtt = i915_ppgtt_create(gt, 0); if (IS_ERR(ppgtt)) { err = PTR_ERR(ppgtt); goto out_b; } va = i915_vma_instance(A, &ppgtt->vm, NULL); if (IS_ERR(va)) { err = PTR_ERR(va); goto out_vm; } vb = i915_vma_instance(B, &ppgtt->vm, NULL); if (IS_ERR(vb)) { err = PTR_ERR(vb); goto out_vm; } err = 0; for_each_engine(engine, gt, id) { struct i915_gem_ww_ctx ww; struct intel_context *ce; int bit; ce = intel_context_create(engine); if (IS_ERR(ce)) { err = PTR_ERR(ce); break; } i915_vm_put(ce->vm); ce->vm = i915_vm_get(&ppgtt->vm); for_i915_gem_ww(&ww, err, true) err = intel_context_pin_ww(ce, &ww); if (err) goto err_put; for_each_set_bit(bit, (unsigned long *)&RUNTIME_INFO(gt->i915)->page_sizes, BITS_PER_TYPE(RUNTIME_INFO(gt->i915)->page_sizes)) { unsigned int len; if (BIT_ULL(bit) < i915_vm_obj_min_alignment(va->vm, va->obj)) continue; /* sanitycheck the semaphore wake up */ err = pte_tlbinv(ce, va, va, BIT_ULL(bit), NULL, SZ_4K, &prng); if (err) goto err_unpin; for (len = 2; len <= ppgtt_size; len = min(2 * len, ppgtt_size)) { err = pte_tlbinv(ce, va, vb, BIT_ULL(bit), tlbinv, BIT_ULL(len), &prng); if (err) goto err_unpin; if (len == ppgtt_size) break; } } err_unpin: intel_context_unpin(ce); err_put: intel_context_put(ce); if (err) break; } if (igt_flush_test(gt->i915)) err = -EIO; out_vm: i915_vm_put(&ppgtt->vm); out_b: i915_gem_object_put(B); out_a: i915_gem_object_put(A); return err; } static void tlbinv_full(struct i915_address_space *vm, u64 addr, u64 length) { intel_gt_invalidate_tlb_full(vm->gt, intel_gt_tlb_seqno(vm->gt) | 1); } static int invalidate_full(void *arg) { struct intel_gt *gt = arg; int err; if (GRAPHICS_VER(gt->i915) < 8) return 0; /* TLB invalidate not implemented */ err = mem_tlbinv(gt, create_smem, tlbinv_full); if (err == 0) err = mem_tlbinv(gt, create_lmem, tlbinv_full); if (err == -ENODEV || err == -ENXIO) err = 0; return err; } int intel_tlb_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(invalidate_full), }; struct intel_gt *gt; unsigned int i; for_each_gt(gt, i915, i) { int err; if (intel_gt_is_wedged(gt)) continue; err = intel_gt_live_subtests(tests, gt); if (err) return err; } return 0; }
linux-master
drivers/gpu/drm/i915/gt/selftest_tlb.c
// SPDX-License-Identifier: MIT /* * Copyright © 2014 Intel Corporation */ #include "gen8_engine_cs.h" #include "i915_drv.h" #include "intel_engine_regs.h" #include "intel_gpu_commands.h" #include "intel_lrc.h" #include "intel_ring.h" int gen8_emit_flush_rcs(struct i915_request *rq, u32 mode) { bool vf_flush_wa = false, dc_flush_wa = false; u32 *cs, flags = 0; int len; flags |= PIPE_CONTROL_CS_STALL; if (mode & EMIT_FLUSH) { flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; flags |= PIPE_CONTROL_FLUSH_ENABLE; } if (mode & EMIT_INVALIDATE) { flags |= PIPE_CONTROL_TLB_INVALIDATE; flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_QW_WRITE; flags |= PIPE_CONTROL_STORE_DATA_INDEX; /* * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL * pipe control. */ if (GRAPHICS_VER(rq->i915) == 9) vf_flush_wa = true; /* WaForGAMHang:kbl */ if (IS_KABYLAKE(rq->i915) && IS_GRAPHICS_STEP(rq->i915, 0, STEP_C0)) dc_flush_wa = true; } len = 6; if (vf_flush_wa) len += 6; if (dc_flush_wa) len += 12; cs = intel_ring_begin(rq, len); if (IS_ERR(cs)) return PTR_ERR(cs); if (vf_flush_wa) cs = gen8_emit_pipe_control(cs, 0, 0); if (dc_flush_wa) cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE, 0); cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); if (dc_flush_wa) cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0); intel_ring_advance(rq, cs); return 0; } int gen8_emit_flush_xcs(struct i915_request *rq, u32 mode) { u32 cmd, *cs; cs = intel_ring_begin(rq, 4); if (IS_ERR(cs)) return PTR_ERR(cs); cmd = MI_FLUSH_DW + 1; /* * We always require a command barrier so that subsequent * commands, such as breadcrumb interrupts, are strictly ordered * wrt the contents of the write cache being flushed to memory * (and thus being coherent from the CPU). */ cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; if (mode & EMIT_INVALIDATE) { cmd |= MI_INVALIDATE_TLB; if (rq->engine->class == VIDEO_DECODE_CLASS) cmd |= MI_INVALIDATE_BSD; } *cs++ = cmd; *cs++ = LRC_PPHWSP_SCRATCH_ADDR; *cs++ = 0; /* upper addr */ *cs++ = 0; /* value */ intel_ring_advance(rq, cs); return 0; } int gen11_emit_flush_rcs(struct i915_request *rq, u32 mode) { if (mode & EMIT_FLUSH) { u32 *cs; u32 flags = 0; flags |= PIPE_CONTROL_CS_STALL; flags |= PIPE_CONTROL_TILE_CACHE_FLUSH; flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; flags |= PIPE_CONTROL_FLUSH_ENABLE; flags |= PIPE_CONTROL_QW_WRITE; flags |= PIPE_CONTROL_STORE_DATA_INDEX; cs = intel_ring_begin(rq, 6); if (IS_ERR(cs)) return PTR_ERR(cs); cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); intel_ring_advance(rq, cs); } if (mode & EMIT_INVALIDATE) { u32 *cs; u32 flags = 0; flags |= PIPE_CONTROL_CS_STALL; flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE; flags |= PIPE_CONTROL_TLB_INVALIDATE; flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_QW_WRITE; flags |= PIPE_CONTROL_STORE_DATA_INDEX; cs = intel_ring_begin(rq, 6); if (IS_ERR(cs)) return PTR_ERR(cs); cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); intel_ring_advance(rq, cs); } return 0; } static u32 preparser_disable(bool state) { return MI_ARB_CHECK | 1 << 8 | state; } static i915_reg_t gen12_get_aux_inv_reg(struct intel_engine_cs *engine) { switch (engine->id) { case RCS0: return GEN12_CCS_AUX_INV; case BCS0: return GEN12_BCS0_AUX_INV; case VCS0: return GEN12_VD0_AUX_INV; case VCS2: return GEN12_VD2_AUX_INV; case VECS0: return GEN12_VE0_AUX_INV; case CCS0: return GEN12_CCS0_AUX_INV; default: return INVALID_MMIO_REG; } } static bool gen12_needs_ccs_aux_inv(struct intel_engine_cs *engine) { i915_reg_t reg = gen12_get_aux_inv_reg(engine); if (IS_PONTEVECCHIO(engine->i915)) return false; /* * So far platforms supported by i915 having flat ccs do not require * AUX invalidation. Check also whether the engine requires it. */ return i915_mmio_reg_valid(reg) && !HAS_FLAT_CCS(engine->i915); } u32 *gen12_emit_aux_table_inv(struct intel_engine_cs *engine, u32 *cs) { i915_reg_t inv_reg = gen12_get_aux_inv_reg(engine); u32 gsi_offset = engine->gt->uncore->gsi_offset; if (!gen12_needs_ccs_aux_inv(engine)) return cs; *cs++ = MI_LOAD_REGISTER_IMM(1) | MI_LRI_MMIO_REMAP_EN; *cs++ = i915_mmio_reg_offset(inv_reg) + gsi_offset; *cs++ = AUX_INV; *cs++ = MI_SEMAPHORE_WAIT_TOKEN | MI_SEMAPHORE_REGISTER_POLL | MI_SEMAPHORE_POLL | MI_SEMAPHORE_SAD_EQ_SDD; *cs++ = 0; *cs++ = i915_mmio_reg_offset(inv_reg) + gsi_offset; *cs++ = 0; *cs++ = 0; return cs; } static int mtl_dummy_pipe_control(struct i915_request *rq) { /* Wa_14016712196 */ if (IS_MTL_GRAPHICS_STEP(rq->i915, M, STEP_A0, STEP_B0) || IS_MTL_GRAPHICS_STEP(rq->i915, P, STEP_A0, STEP_B0)) { u32 *cs; /* dummy PIPE_CONTROL + depth flush */ cs = intel_ring_begin(rq, 6); if (IS_ERR(cs)) return PTR_ERR(cs); cs = gen12_emit_pipe_control(cs, 0, PIPE_CONTROL_DEPTH_CACHE_FLUSH, LRC_PPHWSP_SCRATCH_ADDR); intel_ring_advance(rq, cs); } return 0; } int gen12_emit_flush_rcs(struct i915_request *rq, u32 mode) { struct intel_engine_cs *engine = rq->engine; /* * On Aux CCS platforms the invalidation of the Aux * table requires quiescing memory traffic beforehand */ if (mode & EMIT_FLUSH || gen12_needs_ccs_aux_inv(engine)) { u32 bit_group_0 = 0; u32 bit_group_1 = 0; int err; u32 *cs; err = mtl_dummy_pipe_control(rq); if (err) return err; bit_group_0 |= PIPE_CONTROL0_HDC_PIPELINE_FLUSH; /* * When required, in MTL and beyond platforms we * need to set the CCS_FLUSH bit in the pipe control */ if (GRAPHICS_VER_FULL(rq->i915) >= IP_VER(12, 70)) bit_group_0 |= PIPE_CONTROL_CCS_FLUSH; bit_group_1 |= PIPE_CONTROL_TILE_CACHE_FLUSH; bit_group_1 |= PIPE_CONTROL_FLUSH_L3; bit_group_1 |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; bit_group_1 |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; /* Wa_1409600907:tgl,adl-p */ bit_group_1 |= PIPE_CONTROL_DEPTH_STALL; bit_group_1 |= PIPE_CONTROL_DC_FLUSH_ENABLE; bit_group_1 |= PIPE_CONTROL_FLUSH_ENABLE; bit_group_1 |= PIPE_CONTROL_STORE_DATA_INDEX; bit_group_1 |= PIPE_CONTROL_QW_WRITE; bit_group_1 |= PIPE_CONTROL_CS_STALL; if (!HAS_3D_PIPELINE(engine->i915)) bit_group_1 &= ~PIPE_CONTROL_3D_ARCH_FLAGS; else if (engine->class == COMPUTE_CLASS) bit_group_1 &= ~PIPE_CONTROL_3D_ENGINE_FLAGS; cs = intel_ring_begin(rq, 6); if (IS_ERR(cs)) return PTR_ERR(cs); cs = gen12_emit_pipe_control(cs, bit_group_0, bit_group_1, LRC_PPHWSP_SCRATCH_ADDR); intel_ring_advance(rq, cs); } if (mode & EMIT_INVALIDATE) { u32 flags = 0; u32 *cs, count; int err; err = mtl_dummy_pipe_control(rq); if (err) return err; flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE; flags |= PIPE_CONTROL_TLB_INVALIDATE; flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_STORE_DATA_INDEX; flags |= PIPE_CONTROL_QW_WRITE; flags |= PIPE_CONTROL_CS_STALL; if (!HAS_3D_PIPELINE(engine->i915)) flags &= ~PIPE_CONTROL_3D_ARCH_FLAGS; else if (engine->class == COMPUTE_CLASS) flags &= ~PIPE_CONTROL_3D_ENGINE_FLAGS; count = 8; if (gen12_needs_ccs_aux_inv(rq->engine)) count += 8; cs = intel_ring_begin(rq, count); if (IS_ERR(cs)) return PTR_ERR(cs); /* * Prevent the pre-parser from skipping past the TLB * invalidate and loading a stale page for the batch * buffer / request payload. */ *cs++ = preparser_disable(true); cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); cs = gen12_emit_aux_table_inv(engine, cs); *cs++ = preparser_disable(false); intel_ring_advance(rq, cs); } return 0; } int gen12_emit_flush_xcs(struct i915_request *rq, u32 mode) { u32 cmd = 4; u32 *cs; if (mode & EMIT_INVALIDATE) { cmd += 2; if (gen12_needs_ccs_aux_inv(rq->engine)) cmd += 8; } cs = intel_ring_begin(rq, cmd); if (IS_ERR(cs)) return PTR_ERR(cs); if (mode & EMIT_INVALIDATE) *cs++ = preparser_disable(true); cmd = MI_FLUSH_DW + 1; /* * We always require a command barrier so that subsequent * commands, such as breadcrumb interrupts, are strictly ordered * wrt the contents of the write cache being flushed to memory * (and thus being coherent from the CPU). */ cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; if (mode & EMIT_INVALIDATE) { cmd |= MI_INVALIDATE_TLB; if (rq->engine->class == VIDEO_DECODE_CLASS) cmd |= MI_INVALIDATE_BSD; if (gen12_needs_ccs_aux_inv(rq->engine) && rq->engine->class == COPY_ENGINE_CLASS) cmd |= MI_FLUSH_DW_CCS; } *cs++ = cmd; *cs++ = LRC_PPHWSP_SCRATCH_ADDR; *cs++ = 0; /* upper addr */ *cs++ = 0; /* value */ cs = gen12_emit_aux_table_inv(rq->engine, cs); if (mode & EMIT_INVALIDATE) *cs++ = preparser_disable(false); intel_ring_advance(rq, cs); return 0; } static u32 preempt_address(struct intel_engine_cs *engine) { return (i915_ggtt_offset(engine->status_page.vma) + I915_GEM_HWS_PREEMPT_ADDR); } static u32 hwsp_offset(const struct i915_request *rq) { const struct intel_timeline *tl; /* Before the request is executed, the timeline is fixed */ tl = rcu_dereference_protected(rq->timeline, !i915_request_signaled(rq)); /* See the comment in i915_request_active_seqno(). */ return page_mask_bits(tl->hwsp_offset) + offset_in_page(rq->hwsp_seqno); } int gen8_emit_init_breadcrumb(struct i915_request *rq) { u32 *cs; GEM_BUG_ON(i915_request_has_initial_breadcrumb(rq)); if (!i915_request_timeline(rq)->has_initial_breadcrumb) return 0; cs = intel_ring_begin(rq, 6); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; *cs++ = hwsp_offset(rq); *cs++ = 0; *cs++ = rq->fence.seqno - 1; /* * Check if we have been preempted before we even get started. * * After this point i915_request_started() reports true, even if * we get preempted and so are no longer running. * * i915_request_started() is used during preemption processing * to decide if the request is currently inside the user payload * or spinning on a kernel semaphore (or earlier). For no-preemption * requests, we do allow preemption on the semaphore before the user * payload, but do not allow preemption once the request is started. * * i915_request_started() is similarly used during GPU hangs to * determine if the user's payload was guilty, and if so, the * request is banned. Before the request is started, it is assumed * to be unharmed and an innocent victim of another's hang. */ *cs++ = MI_NOOP; *cs++ = MI_ARB_CHECK; intel_ring_advance(rq, cs); /* Record the updated position of the request's payload */ rq->infix = intel_ring_offset(rq, cs); __set_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags); return 0; } static int __xehp_emit_bb_start(struct i915_request *rq, u64 offset, u32 len, const unsigned int flags, u32 arb) { struct intel_context *ce = rq->context; u32 wa_offset = lrc_indirect_bb(ce); u32 *cs; GEM_BUG_ON(!ce->wa_bb_page); cs = intel_ring_begin(rq, 12); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = MI_ARB_ON_OFF | arb; *cs++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT | MI_LRI_LRM_CS_MMIO; *cs++ = i915_mmio_reg_offset(RING_PREDICATE_RESULT(0)); *cs++ = wa_offset + DG2_PREDICATE_RESULT_WA; *cs++ = 0; *cs++ = MI_BATCH_BUFFER_START_GEN8 | (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); *cs++ = lower_32_bits(offset); *cs++ = upper_32_bits(offset); /* Fixup stray MI_SET_PREDICATE as it prevents us executing the ring */ *cs++ = MI_BATCH_BUFFER_START_GEN8; *cs++ = wa_offset + DG2_PREDICATE_RESULT_BB; *cs++ = 0; *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; intel_ring_advance(rq, cs); return 0; } int xehp_emit_bb_start_noarb(struct i915_request *rq, u64 offset, u32 len, const unsigned int flags) { return __xehp_emit_bb_start(rq, offset, len, flags, MI_ARB_DISABLE); } int xehp_emit_bb_start(struct i915_request *rq, u64 offset, u32 len, const unsigned int flags) { return __xehp_emit_bb_start(rq, offset, len, flags, MI_ARB_ENABLE); } int gen8_emit_bb_start_noarb(struct i915_request *rq, u64 offset, u32 len, const unsigned int flags) { u32 *cs; cs = intel_ring_begin(rq, 4); if (IS_ERR(cs)) return PTR_ERR(cs); /* * WaDisableCtxRestoreArbitration:bdw,chv * * We don't need to perform MI_ARB_ENABLE as often as we do (in * particular all the gen that do not need the w/a at all!), if we * took care to make sure that on every switch into this context * (both ordinary and for preemption) that arbitrartion was enabled * we would be fine. However, for gen8 there is another w/a that * requires us to not preempt inside GPGPU execution, so we keep * arbitration disabled for gen8 batches. Arbitration will be * re-enabled before we close the request * (engine->emit_fini_breadcrumb). */ *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; /* FIXME(BDW+): Address space and security selectors. */ *cs++ = MI_BATCH_BUFFER_START_GEN8 | (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); *cs++ = lower_32_bits(offset); *cs++ = upper_32_bits(offset); intel_ring_advance(rq, cs); return 0; } int gen8_emit_bb_start(struct i915_request *rq, u64 offset, u32 len, const unsigned int flags) { u32 *cs; if (unlikely(i915_request_has_nopreempt(rq))) return gen8_emit_bb_start_noarb(rq, offset, len, flags); cs = intel_ring_begin(rq, 6); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; *cs++ = MI_BATCH_BUFFER_START_GEN8 | (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); *cs++ = lower_32_bits(offset); *cs++ = upper_32_bits(offset); *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; *cs++ = MI_NOOP; intel_ring_advance(rq, cs); return 0; } static void assert_request_valid(struct i915_request *rq) { struct intel_ring *ring __maybe_unused = rq->ring; /* Can we unwind this request without appearing to go forwards? */ GEM_BUG_ON(intel_ring_direction(ring, rq->wa_tail, rq->head) <= 0); } /* * Reserve space for 2 NOOPs at the end of each request to be * used as a workaround for not being allowed to do lite * restore with HEAD==TAIL (WaIdleLiteRestore). */ static u32 *gen8_emit_wa_tail(struct i915_request *rq, u32 *cs) { /* Ensure there's always at least one preemption point per-request. */ *cs++ = MI_ARB_CHECK; *cs++ = MI_NOOP; rq->wa_tail = intel_ring_offset(rq, cs); /* Check that entire request is less than half the ring */ assert_request_valid(rq); return cs; } static u32 *emit_preempt_busywait(struct i915_request *rq, u32 *cs) { *cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */ *cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT | MI_SEMAPHORE_POLL | MI_SEMAPHORE_SAD_EQ_SDD; *cs++ = 0; *cs++ = preempt_address(rq->engine); *cs++ = 0; *cs++ = MI_NOOP; return cs; } static __always_inline u32* gen8_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs) { *cs++ = MI_USER_INTERRUPT; *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; if (intel_engine_has_semaphores(rq->engine) && !intel_uc_uses_guc_submission(&rq->engine->gt->uc)) cs = emit_preempt_busywait(rq, cs); rq->tail = intel_ring_offset(rq, cs); assert_ring_tail_valid(rq->ring, rq->tail); return gen8_emit_wa_tail(rq, cs); } static u32 *emit_xcs_breadcrumb(struct i915_request *rq, u32 *cs) { return gen8_emit_ggtt_write(cs, rq->fence.seqno, hwsp_offset(rq), 0); } u32 *gen8_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs) { return gen8_emit_fini_breadcrumb_tail(rq, emit_xcs_breadcrumb(rq, cs)); } u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs) { cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL | PIPE_CONTROL_TLB_INVALIDATE | PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | PIPE_CONTROL_DEPTH_CACHE_FLUSH | PIPE_CONTROL_DC_FLUSH_ENABLE, 0); /* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */ cs = gen8_emit_ggtt_write_rcs(cs, rq->fence.seqno, hwsp_offset(rq), PIPE_CONTROL_FLUSH_ENABLE | PIPE_CONTROL_CS_STALL); return gen8_emit_fini_breadcrumb_tail(rq, cs); } u32 *gen11_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs) { cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL | PIPE_CONTROL_TLB_INVALIDATE | PIPE_CONTROL_TILE_CACHE_FLUSH | PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | PIPE_CONTROL_DEPTH_CACHE_FLUSH | PIPE_CONTROL_DC_FLUSH_ENABLE, 0); /*XXX: Look at gen8_emit_fini_breadcrumb_rcs */ cs = gen8_emit_ggtt_write_rcs(cs, rq->fence.seqno, hwsp_offset(rq), PIPE_CONTROL_FLUSH_ENABLE | PIPE_CONTROL_CS_STALL); return gen8_emit_fini_breadcrumb_tail(rq, cs); } /* * Note that the CS instruction pre-parser will not stall on the breadcrumb * flush and will continue pre-fetching the instructions after it before the * memory sync is completed. On pre-gen12 HW, the pre-parser will stop at * BB_START/END instructions, so, even though we might pre-fetch the pre-amble * of the next request before the memory has been flushed, we're guaranteed that * we won't access the batch itself too early. * However, on gen12+ the parser can pre-fetch across the BB_START/END commands, * so, if the current request is modifying an instruction in the next request on * the same intel_context, we might pre-fetch and then execute the pre-update * instruction. To avoid this, the users of self-modifying code should either * disable the parser around the code emitting the memory writes, via a new flag * added to MI_ARB_CHECK, or emit the writes from a different intel_context. For * the in-kernel use-cases we've opted to use a separate context, see * reloc_gpu() as an example. * All the above applies only to the instructions themselves. Non-inline data * used by the instructions is not pre-fetched. */ static u32 *gen12_emit_preempt_busywait(struct i915_request *rq, u32 *cs) { *cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */ *cs++ = MI_SEMAPHORE_WAIT_TOKEN | MI_SEMAPHORE_GLOBAL_GTT | MI_SEMAPHORE_POLL | MI_SEMAPHORE_SAD_EQ_SDD; *cs++ = 0; *cs++ = preempt_address(rq->engine); *cs++ = 0; *cs++ = 0; return cs; } /* Wa_14014475959:dg2 */ #define CCS_SEMAPHORE_PPHWSP_OFFSET 0x540 static u32 ccs_semaphore_offset(struct i915_request *rq) { return i915_ggtt_offset(rq->context->state) + (LRC_PPHWSP_PN * PAGE_SIZE) + CCS_SEMAPHORE_PPHWSP_OFFSET; } /* Wa_14014475959:dg2 */ static u32 *ccs_emit_wa_busywait(struct i915_request *rq, u32 *cs) { int i; *cs++ = MI_ATOMIC_INLINE | MI_ATOMIC_GLOBAL_GTT | MI_ATOMIC_CS_STALL | MI_ATOMIC_MOVE; *cs++ = ccs_semaphore_offset(rq); *cs++ = 0; *cs++ = 1; /* * When MI_ATOMIC_INLINE_DATA set this command must be 11 DW + (1 NOP) * to align. 4 DWs above + 8 filler DWs here. */ for (i = 0; i < 8; ++i) *cs++ = 0; *cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT | MI_SEMAPHORE_POLL | MI_SEMAPHORE_SAD_EQ_SDD; *cs++ = 0; *cs++ = ccs_semaphore_offset(rq); *cs++ = 0; return cs; } static __always_inline u32* gen12_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs) { *cs++ = MI_USER_INTERRUPT; *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; if (intel_engine_has_semaphores(rq->engine) && !intel_uc_uses_guc_submission(&rq->engine->gt->uc)) cs = gen12_emit_preempt_busywait(rq, cs); /* Wa_14014475959:dg2 */ if (intel_engine_uses_wa_hold_ccs_switchout(rq->engine)) cs = ccs_emit_wa_busywait(rq, cs); rq->tail = intel_ring_offset(rq, cs); assert_ring_tail_valid(rq->ring, rq->tail); return gen8_emit_wa_tail(rq, cs); } u32 *gen12_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs) { /* XXX Stalling flush before seqno write; post-sync not */ cs = emit_xcs_breadcrumb(rq, __gen8_emit_flush_dw(cs, 0, 0, 0)); return gen12_emit_fini_breadcrumb_tail(rq, cs); } u32 *gen12_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs) { struct drm_i915_private *i915 = rq->i915; u32 flags = (PIPE_CONTROL_CS_STALL | PIPE_CONTROL_TLB_INVALIDATE | PIPE_CONTROL_TILE_CACHE_FLUSH | PIPE_CONTROL_FLUSH_L3 | PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | PIPE_CONTROL_DEPTH_CACHE_FLUSH | PIPE_CONTROL_DC_FLUSH_ENABLE | PIPE_CONTROL_FLUSH_ENABLE); /* Wa_14016712196 */ if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) || IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0)) /* dummy PIPE_CONTROL + depth flush */ cs = gen12_emit_pipe_control(cs, 0, PIPE_CONTROL_DEPTH_CACHE_FLUSH, 0); if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) /* Wa_1409600907 */ flags |= PIPE_CONTROL_DEPTH_STALL; if (!HAS_3D_PIPELINE(rq->i915)) flags &= ~PIPE_CONTROL_3D_ARCH_FLAGS; else if (rq->engine->class == COMPUTE_CLASS) flags &= ~PIPE_CONTROL_3D_ENGINE_FLAGS; cs = gen12_emit_pipe_control(cs, PIPE_CONTROL0_HDC_PIPELINE_FLUSH, flags, 0); /*XXX: Look at gen8_emit_fini_breadcrumb_rcs */ cs = gen12_emit_ggtt_write_rcs(cs, rq->fence.seqno, hwsp_offset(rq), 0, PIPE_CONTROL_FLUSH_ENABLE | PIPE_CONTROL_CS_STALL); return gen12_emit_fini_breadcrumb_tail(rq, cs); }
linux-master
drivers/gpu/drm/i915/gt/gen8_engine_cs.c
// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include "intel_ggtt_gmch.h" #include <drm/intel-gtt.h> #include <linux/agp_backend.h> #include "i915_drv.h" #include "i915_utils.h" #include "intel_gtt.h" #include "intel_gt_regs.h" #include "intel_gt.h" static void gmch_ggtt_insert_page(struct i915_address_space *vm, dma_addr_t addr, u64 offset, unsigned int pat_index, u32 unused) { unsigned int flags = (pat_index == I915_CACHE_NONE) ? AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; intel_gmch_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags); } static void gmch_ggtt_insert_entries(struct i915_address_space *vm, struct i915_vma_resource *vma_res, unsigned int pat_index, u32 unused) { unsigned int flags = (pat_index == I915_CACHE_NONE) ? AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; intel_gmch_gtt_insert_sg_entries(vma_res->bi.pages, vma_res->start >> PAGE_SHIFT, flags); } static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt) { intel_gmch_gtt_flush(); } static void gmch_ggtt_clear_range(struct i915_address_space *vm, u64 start, u64 length) { intel_gmch_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT); } static void gmch_ggtt_remove(struct i915_address_space *vm) { intel_gmch_remove(); } /* * Certain Gen5 chipsets require idling the GPU before unmapping anything from * the GTT when VT-d is enabled. */ static bool needs_idle_maps(struct drm_i915_private *i915) { /* * Query intel_iommu to see if we need the workaround. Presumably that * was loaded first. */ if (!i915_vtd_active(i915)) return false; if (GRAPHICS_VER(i915) == 5 && IS_MOBILE(i915)) return true; return false; } int intel_ggtt_gmch_probe(struct i915_ggtt *ggtt) { struct drm_i915_private *i915 = ggtt->vm.i915; phys_addr_t gmadr_base; int ret; ret = intel_gmch_probe(i915->gmch.pdev, to_pci_dev(i915->drm.dev), NULL); if (!ret) { drm_err(&i915->drm, "failed to set up gmch\n"); return -EIO; } intel_gmch_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end); ggtt->gmadr = DEFINE_RES_MEM(gmadr_base, ggtt->mappable_end); ggtt->vm.alloc_pt_dma = alloc_pt_dma; ggtt->vm.alloc_scratch_dma = alloc_pt_dma; if (needs_idle_maps(i915)) { drm_notice(&i915->drm, "Flushing DMA requests before IOMMU unmaps; performance may be degraded\n"); ggtt->do_idle_maps = true; } ggtt->vm.insert_page = gmch_ggtt_insert_page; ggtt->vm.insert_entries = gmch_ggtt_insert_entries; ggtt->vm.clear_range = gmch_ggtt_clear_range; ggtt->vm.scratch_range = gmch_ggtt_clear_range; ggtt->vm.cleanup = gmch_ggtt_remove; ggtt->invalidate = gmch_ggtt_invalidate; ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; if (unlikely(ggtt->do_idle_maps)) drm_notice(&i915->drm, "Applying Ironlake quirks for intel_iommu\n"); return 0; } int intel_ggtt_gmch_enable_hw(struct drm_i915_private *i915) { if (!intel_gmch_enable_gtt()) return -EIO; return 0; } void intel_ggtt_gmch_flush(void) { intel_gmch_gtt_flush(); }
linux-master
drivers/gpu/drm/i915/gt/intel_ggtt_gmch.c
// SPDX-License-Identifier: MIT /* * Copyright © 2014 Intel Corporation */ #include "gem/i915_gem_lmem.h" #include "gen8_engine_cs.h" #include "i915_drv.h" #include "i915_perf.h" #include "i915_reg.h" #include "intel_context.h" #include "intel_engine.h" #include "intel_engine_regs.h" #include "intel_gpu_commands.h" #include "intel_gt.h" #include "intel_gt_regs.h" #include "intel_lrc.h" #include "intel_lrc_reg.h" #include "intel_ring.h" #include "shmem_utils.h" /* * The per-platform tables are u8-encoded in @data. Decode @data and set the * addresses' offset and commands in @regs. The following encoding is used * for each byte. There are 2 steps: decoding commands and decoding addresses. * * Commands: * [7]: create NOPs - number of NOPs are set in lower bits * [6]: When creating MI_LOAD_REGISTER_IMM command, allow to set * MI_LRI_FORCE_POSTED * [5:0]: Number of NOPs or registers to set values to in case of * MI_LOAD_REGISTER_IMM * * Addresses: these are decoded after a MI_LOAD_REGISTER_IMM command by "count" * number of registers. They are set by using the REG/REG16 macros: the former * is used for offsets smaller than 0x200 while the latter is for values bigger * than that. Those macros already set all the bits documented below correctly: * * [7]: When a register offset needs more than 6 bits, use additional bytes, to * follow, for the lower bits * [6:0]: Register offset, without considering the engine base. * * This function only tweaks the commands and register offsets. Values are not * filled out. */ static void set_offsets(u32 *regs, const u8 *data, const struct intel_engine_cs *engine, bool close) #define NOP(x) (BIT(7) | (x)) #define LRI(count, flags) ((flags) << 6 | (count) | BUILD_BUG_ON_ZERO(count >= BIT(6))) #define POSTED BIT(0) #define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200)) #define REG16(x) \ (((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \ (((x) >> 2) & 0x7f) #define END 0 { const u32 base = engine->mmio_base; while (*data) { u8 count, flags; if (*data & BIT(7)) { /* skip */ count = *data++ & ~BIT(7); regs += count; continue; } count = *data & 0x3f; flags = *data >> 6; data++; *regs = MI_LOAD_REGISTER_IMM(count); if (flags & POSTED) *regs |= MI_LRI_FORCE_POSTED; if (GRAPHICS_VER(engine->i915) >= 11) *regs |= MI_LRI_LRM_CS_MMIO; regs++; GEM_BUG_ON(!count); do { u32 offset = 0; u8 v; do { v = *data++; offset <<= 7; offset |= v & ~BIT(7); } while (v & BIT(7)); regs[0] = base + (offset << 2); regs += 2; } while (--count); } if (close) { /* Close the batch; used mainly by live_lrc_layout() */ *regs = MI_BATCH_BUFFER_END; if (GRAPHICS_VER(engine->i915) >= 11) *regs |= BIT(0); } } static const u8 gen8_xcs_offsets[] = { NOP(1), LRI(11, 0), REG16(0x244), REG(0x034), REG(0x030), REG(0x038), REG(0x03c), REG(0x168), REG(0x140), REG(0x110), REG(0x11c), REG(0x114), REG(0x118), NOP(9), LRI(9, 0), REG16(0x3a8), REG16(0x28c), REG16(0x288), REG16(0x284), REG16(0x280), REG16(0x27c), REG16(0x278), REG16(0x274), REG16(0x270), NOP(13), LRI(2, 0), REG16(0x200), REG(0x028), END }; static const u8 gen9_xcs_offsets[] = { NOP(1), LRI(14, POSTED), REG16(0x244), REG(0x034), REG(0x030), REG(0x038), REG(0x03c), REG(0x168), REG(0x140), REG(0x110), REG(0x11c), REG(0x114), REG(0x118), REG(0x1c0), REG(0x1c4), REG(0x1c8), NOP(3), LRI(9, POSTED), REG16(0x3a8), REG16(0x28c), REG16(0x288), REG16(0x284), REG16(0x280), REG16(0x27c), REG16(0x278), REG16(0x274), REG16(0x270), NOP(13), LRI(1, POSTED), REG16(0x200), NOP(13), LRI(44, POSTED), REG(0x028), REG(0x09c), REG(0x0c0), REG(0x178), REG(0x17c), REG16(0x358), REG(0x170), REG(0x150), REG(0x154), REG(0x158), REG16(0x41c), REG16(0x600), REG16(0x604), REG16(0x608), REG16(0x60c), REG16(0x610), REG16(0x614), REG16(0x618), REG16(0x61c), REG16(0x620), REG16(0x624), REG16(0x628), REG16(0x62c), REG16(0x630), REG16(0x634), REG16(0x638), REG16(0x63c), REG16(0x640), REG16(0x644), REG16(0x648), REG16(0x64c), REG16(0x650), REG16(0x654), REG16(0x658), REG16(0x65c), REG16(0x660), REG16(0x664), REG16(0x668), REG16(0x66c), REG16(0x670), REG16(0x674), REG16(0x678), REG16(0x67c), REG(0x068), END }; static const u8 gen12_xcs_offsets[] = { NOP(1), LRI(13, POSTED), REG16(0x244), REG(0x034), REG(0x030), REG(0x038), REG(0x03c), REG(0x168), REG(0x140), REG(0x110), REG(0x1c0), REG(0x1c4), REG(0x1c8), REG(0x180), REG16(0x2b4), NOP(5), LRI(9, POSTED), REG16(0x3a8), REG16(0x28c), REG16(0x288), REG16(0x284), REG16(0x280), REG16(0x27c), REG16(0x278), REG16(0x274), REG16(0x270), END }; static const u8 dg2_xcs_offsets[] = { NOP(1), LRI(15, POSTED), REG16(0x244), REG(0x034), REG(0x030), REG(0x038), REG(0x03c), REG(0x168), REG(0x140), REG(0x110), REG(0x1c0), REG(0x1c4), REG(0x1c8), REG(0x180), REG16(0x2b4), REG(0x120), REG(0x124), NOP(1), LRI(9, POSTED), REG16(0x3a8), REG16(0x28c), REG16(0x288), REG16(0x284), REG16(0x280), REG16(0x27c), REG16(0x278), REG16(0x274), REG16(0x270), END }; static const u8 gen8_rcs_offsets[] = { NOP(1), LRI(14, POSTED), REG16(0x244), REG(0x034), REG(0x030), REG(0x038), REG(0x03c), REG(0x168), REG(0x140), REG(0x110), REG(0x11c), REG(0x114), REG(0x118), REG(0x1c0), REG(0x1c4), REG(0x1c8), NOP(3), LRI(9, POSTED), REG16(0x3a8), REG16(0x28c), REG16(0x288), REG16(0x284), REG16(0x280), REG16(0x27c), REG16(0x278), REG16(0x274), REG16(0x270), NOP(13), LRI(1, 0), REG(0x0c8), END }; static const u8 gen9_rcs_offsets[] = { NOP(1), LRI(14, POSTED), REG16(0x244), REG(0x34), REG(0x30), REG(0x38), REG(0x3c), REG(0x168), REG(0x140), REG(0x110), REG(0x11c), REG(0x114), REG(0x118), REG(0x1c0), REG(0x1c4), REG(0x1c8), NOP(3), LRI(9, POSTED), REG16(0x3a8), REG16(0x28c), REG16(0x288), REG16(0x284), REG16(0x280), REG16(0x27c), REG16(0x278), REG16(0x274), REG16(0x270), NOP(13), LRI(1, 0), REG(0xc8), NOP(13), LRI(44, POSTED), REG(0x28), REG(0x9c), REG(0xc0), REG(0x178), REG(0x17c), REG16(0x358), REG(0x170), REG(0x150), REG(0x154), REG(0x158), REG16(0x41c), REG16(0x600), REG16(0x604), REG16(0x608), REG16(0x60c), REG16(0x610), REG16(0x614), REG16(0x618), REG16(0x61c), REG16(0x620), REG16(0x624), REG16(0x628), REG16(0x62c), REG16(0x630), REG16(0x634), REG16(0x638), REG16(0x63c), REG16(0x640), REG16(0x644), REG16(0x648), REG16(0x64c), REG16(0x650), REG16(0x654), REG16(0x658), REG16(0x65c), REG16(0x660), REG16(0x664), REG16(0x668), REG16(0x66c), REG16(0x670), REG16(0x674), REG16(0x678), REG16(0x67c), REG(0x68), END }; static const u8 gen11_rcs_offsets[] = { NOP(1), LRI(15, POSTED), REG16(0x244), REG(0x034), REG(0x030), REG(0x038), REG(0x03c), REG(0x168), REG(0x140), REG(0x110), REG(0x11c), REG(0x114), REG(0x118), REG(0x1c0), REG(0x1c4), REG(0x1c8), REG(0x180), NOP(1), LRI(9, POSTED), REG16(0x3a8), REG16(0x28c), REG16(0x288), REG16(0x284), REG16(0x280), REG16(0x27c), REG16(0x278), REG16(0x274), REG16(0x270), LRI(1, POSTED), REG(0x1b0), NOP(10), LRI(1, 0), REG(0x0c8), END }; static const u8 gen12_rcs_offsets[] = { NOP(1), LRI(13, POSTED), REG16(0x244), REG(0x034), REG(0x030), REG(0x038), REG(0x03c), REG(0x168), REG(0x140), REG(0x110), REG(0x1c0), REG(0x1c4), REG(0x1c8), REG(0x180), REG16(0x2b4), NOP(5), LRI(9, POSTED), REG16(0x3a8), REG16(0x28c), REG16(0x288), REG16(0x284), REG16(0x280), REG16(0x27c), REG16(0x278), REG16(0x274), REG16(0x270), LRI(3, POSTED), REG(0x1b0), REG16(0x5a8), REG16(0x5ac), NOP(6), LRI(1, 0), REG(0x0c8), NOP(3 + 9 + 1), LRI(51, POSTED), REG16(0x588), REG16(0x588), REG16(0x588), REG16(0x588), REG16(0x588), REG16(0x588), REG(0x028), REG(0x09c), REG(0x0c0), REG(0x178), REG(0x17c), REG16(0x358), REG(0x170), REG(0x150), REG(0x154), REG(0x158), REG16(0x41c), REG16(0x600), REG16(0x604), REG16(0x608), REG16(0x60c), REG16(0x610), REG16(0x614), REG16(0x618), REG16(0x61c), REG16(0x620), REG16(0x624), REG16(0x628), REG16(0x62c), REG16(0x630), REG16(0x634), REG16(0x638), REG16(0x63c), REG16(0x640), REG16(0x644), REG16(0x648), REG16(0x64c), REG16(0x650), REG16(0x654), REG16(0x658), REG16(0x65c), REG16(0x660), REG16(0x664), REG16(0x668), REG16(0x66c), REG16(0x670), REG16(0x674), REG16(0x678), REG16(0x67c), REG(0x068), REG(0x084), NOP(1), END }; static const u8 xehp_rcs_offsets[] = { NOP(1), LRI(13, POSTED), REG16(0x244), REG(0x034), REG(0x030), REG(0x038), REG(0x03c), REG(0x168), REG(0x140), REG(0x110), REG(0x1c0), REG(0x1c4), REG(0x1c8), REG(0x180), REG16(0x2b4), NOP(5), LRI(9, POSTED), REG16(0x3a8), REG16(0x28c), REG16(0x288), REG16(0x284), REG16(0x280), REG16(0x27c), REG16(0x278), REG16(0x274), REG16(0x270), LRI(3, POSTED), REG(0x1b0), REG16(0x5a8), REG16(0x5ac), NOP(6), LRI(1, 0), REG(0x0c8), END }; static const u8 dg2_rcs_offsets[] = { NOP(1), LRI(15, POSTED), REG16(0x244), REG(0x034), REG(0x030), REG(0x038), REG(0x03c), REG(0x168), REG(0x140), REG(0x110), REG(0x1c0), REG(0x1c4), REG(0x1c8), REG(0x180), REG16(0x2b4), REG(0x120), REG(0x124), NOP(1), LRI(9, POSTED), REG16(0x3a8), REG16(0x28c), REG16(0x288), REG16(0x284), REG16(0x280), REG16(0x27c), REG16(0x278), REG16(0x274), REG16(0x270), LRI(3, POSTED), REG(0x1b0), REG16(0x5a8), REG16(0x5ac), NOP(6), LRI(1, 0), REG(0x0c8), END }; static const u8 mtl_rcs_offsets[] = { NOP(1), LRI(15, POSTED), REG16(0x244), REG(0x034), REG(0x030), REG(0x038), REG(0x03c), REG(0x168), REG(0x140), REG(0x110), REG(0x1c0), REG(0x1c4), REG(0x1c8), REG(0x180), REG16(0x2b4), REG(0x120), REG(0x124), NOP(1), LRI(9, POSTED), REG16(0x3a8), REG16(0x28c), REG16(0x288), REG16(0x284), REG16(0x280), REG16(0x27c), REG16(0x278), REG16(0x274), REG16(0x270), NOP(2), LRI(2, POSTED), REG16(0x5a8), REG16(0x5ac), NOP(6), LRI(1, 0), REG(0x0c8), END }; #undef END #undef REG16 #undef REG #undef LRI #undef NOP static const u8 *reg_offsets(const struct intel_engine_cs *engine) { /* * The gen12+ lists only have the registers we program in the basic * default state. We rely on the context image using relative * addressing to automatic fixup the register state between the * physical engines for virtual engine. */ GEM_BUG_ON(GRAPHICS_VER(engine->i915) >= 12 && !intel_engine_has_relative_mmio(engine)); if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) { if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70)) return mtl_rcs_offsets; else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) return dg2_rcs_offsets; else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) return xehp_rcs_offsets; else if (GRAPHICS_VER(engine->i915) >= 12) return gen12_rcs_offsets; else if (GRAPHICS_VER(engine->i915) >= 11) return gen11_rcs_offsets; else if (GRAPHICS_VER(engine->i915) >= 9) return gen9_rcs_offsets; else return gen8_rcs_offsets; } else { if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) return dg2_xcs_offsets; else if (GRAPHICS_VER(engine->i915) >= 12) return gen12_xcs_offsets; else if (GRAPHICS_VER(engine->i915) >= 9) return gen9_xcs_offsets; else return gen8_xcs_offsets; } } static int lrc_ring_mi_mode(const struct intel_engine_cs *engine) { if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) return 0x70; else if (GRAPHICS_VER(engine->i915) >= 12) return 0x60; else if (GRAPHICS_VER(engine->i915) >= 9) return 0x54; else if (engine->class == RENDER_CLASS) return 0x58; else return -1; } static int lrc_ring_bb_offset(const struct intel_engine_cs *engine) { if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) return 0x80; else if (GRAPHICS_VER(engine->i915) >= 12) return 0x70; else if (GRAPHICS_VER(engine->i915) >= 9) return 0x64; else if (GRAPHICS_VER(engine->i915) >= 8 && engine->class == RENDER_CLASS) return 0xc4; else return -1; } static int lrc_ring_gpr0(const struct intel_engine_cs *engine) { if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) return 0x84; else if (GRAPHICS_VER(engine->i915) >= 12) return 0x74; else if (GRAPHICS_VER(engine->i915) >= 9) return 0x68; else if (engine->class == RENDER_CLASS) return 0xd8; else return -1; } static int lrc_ring_wa_bb_per_ctx(const struct intel_engine_cs *engine) { if (GRAPHICS_VER(engine->i915) >= 12) return 0x12; else if (GRAPHICS_VER(engine->i915) >= 9 || engine->class == RENDER_CLASS) return 0x18; else return -1; } static int lrc_ring_indirect_ptr(const struct intel_engine_cs *engine) { int x; x = lrc_ring_wa_bb_per_ctx(engine); if (x < 0) return x; return x + 2; } static int lrc_ring_indirect_offset(const struct intel_engine_cs *engine) { int x; x = lrc_ring_indirect_ptr(engine); if (x < 0) return x; return x + 2; } static int lrc_ring_cmd_buf_cctl(const struct intel_engine_cs *engine) { if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) /* * Note that the CSFE context has a dummy slot for CMD_BUF_CCTL * simply to match the RCS context image layout. */ return 0xc6; else if (engine->class != RENDER_CLASS) return -1; else if (GRAPHICS_VER(engine->i915) >= 12) return 0xb6; else if (GRAPHICS_VER(engine->i915) >= 11) return 0xaa; else return -1; } static u32 lrc_ring_indirect_offset_default(const struct intel_engine_cs *engine) { if (GRAPHICS_VER(engine->i915) >= 12) return GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; else if (GRAPHICS_VER(engine->i915) >= 11) return GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; else if (GRAPHICS_VER(engine->i915) >= 9) return GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; else if (GRAPHICS_VER(engine->i915) >= 8) return GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; GEM_BUG_ON(GRAPHICS_VER(engine->i915) < 8); return 0; } static void lrc_setup_indirect_ctx(u32 *regs, const struct intel_engine_cs *engine, u32 ctx_bb_ggtt_addr, u32 size) { GEM_BUG_ON(!size); GEM_BUG_ON(!IS_ALIGNED(size, CACHELINE_BYTES)); GEM_BUG_ON(lrc_ring_indirect_ptr(engine) == -1); regs[lrc_ring_indirect_ptr(engine) + 1] = ctx_bb_ggtt_addr | (size / CACHELINE_BYTES); GEM_BUG_ON(lrc_ring_indirect_offset(engine) == -1); regs[lrc_ring_indirect_offset(engine) + 1] = lrc_ring_indirect_offset_default(engine) << 6; } static void init_common_regs(u32 * const regs, const struct intel_context *ce, const struct intel_engine_cs *engine, bool inhibit) { u32 ctl; int loc; ctl = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH); ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT); if (inhibit) ctl |= CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT; if (GRAPHICS_VER(engine->i915) < 11) ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT | CTX_CTRL_RS_CTX_ENABLE); regs[CTX_CONTEXT_CONTROL] = ctl; regs[CTX_TIMESTAMP] = ce->stats.runtime.last; loc = lrc_ring_bb_offset(engine); if (loc != -1) regs[loc + 1] = 0; } static void init_wa_bb_regs(u32 * const regs, const struct intel_engine_cs *engine) { const struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx; if (wa_ctx->per_ctx.size) { const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma); GEM_BUG_ON(lrc_ring_wa_bb_per_ctx(engine) == -1); regs[lrc_ring_wa_bb_per_ctx(engine) + 1] = (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01; } if (wa_ctx->indirect_ctx.size) { lrc_setup_indirect_ctx(regs, engine, i915_ggtt_offset(wa_ctx->vma) + wa_ctx->indirect_ctx.offset, wa_ctx->indirect_ctx.size); } } static void init_ppgtt_regs(u32 *regs, const struct i915_ppgtt *ppgtt) { if (i915_vm_is_4lvl(&ppgtt->vm)) { /* 64b PPGTT (48bit canonical) * PDP0_DESCRIPTOR contains the base address to PML4 and * other PDP Descriptors are ignored. */ ASSIGN_CTX_PML4(ppgtt, regs); } else { ASSIGN_CTX_PDP(ppgtt, regs, 3); ASSIGN_CTX_PDP(ppgtt, regs, 2); ASSIGN_CTX_PDP(ppgtt, regs, 1); ASSIGN_CTX_PDP(ppgtt, regs, 0); } } static struct i915_ppgtt *vm_alias(struct i915_address_space *vm) { if (i915_is_ggtt(vm)) return i915_vm_to_ggtt(vm)->alias; else return i915_vm_to_ppgtt(vm); } static void __reset_stop_ring(u32 *regs, const struct intel_engine_cs *engine) { int x; x = lrc_ring_mi_mode(engine); if (x != -1) { regs[x + 1] &= ~STOP_RING; regs[x + 1] |= STOP_RING << 16; } } static void __lrc_init_regs(u32 *regs, const struct intel_context *ce, const struct intel_engine_cs *engine, bool inhibit) { /* * A context is actually a big batch buffer with several * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The * values we are setting here are only for the first context restore: * on a subsequent save, the GPU will recreate this batchbuffer with new * values (including all the missing MI_LOAD_REGISTER_IMM commands that * we are not initializing here). * * Must keep consistent with virtual_update_register_offsets(). */ if (inhibit) memset(regs, 0, PAGE_SIZE); set_offsets(regs, reg_offsets(engine), engine, inhibit); init_common_regs(regs, ce, engine, inhibit); init_ppgtt_regs(regs, vm_alias(ce->vm)); init_wa_bb_regs(regs, engine); __reset_stop_ring(regs, engine); } void lrc_init_regs(const struct intel_context *ce, const struct intel_engine_cs *engine, bool inhibit) { __lrc_init_regs(ce->lrc_reg_state, ce, engine, inhibit); } void lrc_reset_regs(const struct intel_context *ce, const struct intel_engine_cs *engine) { __reset_stop_ring(ce->lrc_reg_state, engine); } static void set_redzone(void *vaddr, const struct intel_engine_cs *engine) { if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) return; vaddr += engine->context_size; memset(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE); } static void check_redzone(const void *vaddr, const struct intel_engine_cs *engine) { if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) return; vaddr += engine->context_size; if (memchr_inv(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE)) drm_err_once(&engine->i915->drm, "%s context redzone overwritten!\n", engine->name); } static u32 context_wa_bb_offset(const struct intel_context *ce) { return PAGE_SIZE * ce->wa_bb_page; } static u32 *context_indirect_bb(const struct intel_context *ce) { void *ptr; GEM_BUG_ON(!ce->wa_bb_page); ptr = ce->lrc_reg_state; ptr -= LRC_STATE_OFFSET; /* back to start of context image */ ptr += context_wa_bb_offset(ce); return ptr; } void lrc_init_state(struct intel_context *ce, struct intel_engine_cs *engine, void *state) { bool inhibit = true; set_redzone(state, engine); if (engine->default_state) { shmem_read(engine->default_state, 0, state, engine->context_size); __set_bit(CONTEXT_VALID_BIT, &ce->flags); inhibit = false; } /* Clear the ppHWSP (inc. per-context counters) */ memset(state, 0, PAGE_SIZE); /* Clear the indirect wa and storage */ if (ce->wa_bb_page) memset(state + context_wa_bb_offset(ce), 0, PAGE_SIZE); /* * The second page of the context object contains some registers which * must be set up prior to the first execution. */ __lrc_init_regs(state + LRC_STATE_OFFSET, ce, engine, inhibit); } u32 lrc_indirect_bb(const struct intel_context *ce) { return i915_ggtt_offset(ce->state) + context_wa_bb_offset(ce); } static u32 *setup_predicate_disable_wa(const struct intel_context *ce, u32 *cs) { /* If predication is active, this will be noop'ed */ *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT | (4 - 2); *cs++ = lrc_indirect_bb(ce) + DG2_PREDICATE_RESULT_WA; *cs++ = 0; *cs++ = 0; /* No predication */ /* predicated end, only terminates if SET_PREDICATE_RESULT:0 is clear */ *cs++ = MI_BATCH_BUFFER_END | BIT(15); *cs++ = MI_SET_PREDICATE | MI_SET_PREDICATE_DISABLE; /* Instructions are no longer predicated (disabled), we can proceed */ *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT | (4 - 2); *cs++ = lrc_indirect_bb(ce) + DG2_PREDICATE_RESULT_WA; *cs++ = 0; *cs++ = 1; /* enable predication before the next BB */ *cs++ = MI_BATCH_BUFFER_END; GEM_BUG_ON(offset_in_page(cs) > DG2_PREDICATE_RESULT_WA); return cs; } static struct i915_vma * __lrc_alloc_state(struct intel_context *ce, struct intel_engine_cs *engine) { struct drm_i915_gem_object *obj; struct i915_vma *vma; u32 context_size; context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE); if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) context_size += I915_GTT_PAGE_SIZE; /* for redzone */ if (GRAPHICS_VER(engine->i915) >= 12) { ce->wa_bb_page = context_size / PAGE_SIZE; context_size += PAGE_SIZE; } if (intel_context_is_parent(ce) && intel_engine_uses_guc(engine)) { ce->parallel.guc.parent_page = context_size / PAGE_SIZE; context_size += PARENT_SCRATCH_SIZE; } obj = i915_gem_object_create_lmem(engine->i915, context_size, I915_BO_ALLOC_PM_VOLATILE); if (IS_ERR(obj)) { obj = i915_gem_object_create_shmem(engine->i915, context_size); if (IS_ERR(obj)) return ERR_CAST(obj); /* * Wa_22016122933: For Media version 13.0, all Media GT shared * memory needs to be mapped as WC on CPU side and UC (PAT * index 2) on GPU side. */ if (intel_gt_needs_wa_22016122933(engine->gt)) i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE); } vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); if (IS_ERR(vma)) { i915_gem_object_put(obj); return vma; } return vma; } static struct intel_timeline * pinned_timeline(struct intel_context *ce, struct intel_engine_cs *engine) { struct intel_timeline *tl = fetch_and_zero(&ce->timeline); return intel_timeline_create_from_engine(engine, page_unmask_bits(tl)); } int lrc_alloc(struct intel_context *ce, struct intel_engine_cs *engine) { struct intel_ring *ring; struct i915_vma *vma; int err; GEM_BUG_ON(ce->state); vma = __lrc_alloc_state(ce, engine); if (IS_ERR(vma)) return PTR_ERR(vma); ring = intel_engine_create_ring(engine, ce->ring_size); if (IS_ERR(ring)) { err = PTR_ERR(ring); goto err_vma; } if (!page_mask_bits(ce->timeline)) { struct intel_timeline *tl; /* * Use the static global HWSP for the kernel context, and * a dynamically allocated cacheline for everyone else. */ if (unlikely(ce->timeline)) tl = pinned_timeline(ce, engine); else tl = intel_timeline_create(engine->gt); if (IS_ERR(tl)) { err = PTR_ERR(tl); goto err_ring; } ce->timeline = tl; } ce->ring = ring; ce->state = vma; return 0; err_ring: intel_ring_put(ring); err_vma: i915_vma_put(vma); return err; } void lrc_reset(struct intel_context *ce) { GEM_BUG_ON(!intel_context_is_pinned(ce)); intel_ring_reset(ce->ring, ce->ring->emit); /* Scrub away the garbage */ lrc_init_regs(ce, ce->engine, true); ce->lrc.lrca = lrc_update_regs(ce, ce->engine, ce->ring->tail); } int lrc_pre_pin(struct intel_context *ce, struct intel_engine_cs *engine, struct i915_gem_ww_ctx *ww, void **vaddr) { GEM_BUG_ON(!ce->state); GEM_BUG_ON(!i915_vma_is_pinned(ce->state)); *vaddr = i915_gem_object_pin_map(ce->state->obj, intel_gt_coherent_map_type(ce->engine->gt, ce->state->obj, false) | I915_MAP_OVERRIDE); return PTR_ERR_OR_ZERO(*vaddr); } int lrc_pin(struct intel_context *ce, struct intel_engine_cs *engine, void *vaddr) { ce->lrc_reg_state = vaddr + LRC_STATE_OFFSET; if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) lrc_init_state(ce, engine, vaddr); ce->lrc.lrca = lrc_update_regs(ce, engine, ce->ring->tail); return 0; } void lrc_unpin(struct intel_context *ce) { if (unlikely(ce->parallel.last_rq)) { i915_request_put(ce->parallel.last_rq); ce->parallel.last_rq = NULL; } check_redzone((void *)ce->lrc_reg_state - LRC_STATE_OFFSET, ce->engine); } void lrc_post_unpin(struct intel_context *ce) { i915_gem_object_unpin_map(ce->state->obj); } void lrc_fini(struct intel_context *ce) { if (!ce->state) return; intel_ring_put(fetch_and_zero(&ce->ring)); i915_vma_put(fetch_and_zero(&ce->state)); } void lrc_destroy(struct kref *kref) { struct intel_context *ce = container_of(kref, typeof(*ce), ref); GEM_BUG_ON(!i915_active_is_idle(&ce->active)); GEM_BUG_ON(intel_context_is_pinned(ce)); lrc_fini(ce); intel_context_fini(ce); intel_context_free(ce); } static u32 * gen12_emit_timestamp_wa(const struct intel_context *ce, u32 *cs) { *cs++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT | MI_LRI_LRM_CS_MMIO; *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0)); *cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET + CTX_TIMESTAMP * sizeof(u32); *cs++ = 0; *cs++ = MI_LOAD_REGISTER_REG | MI_LRR_SOURCE_CS_MMIO | MI_LRI_LRM_CS_MMIO; *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0)); *cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0)); *cs++ = MI_LOAD_REGISTER_REG | MI_LRR_SOURCE_CS_MMIO | MI_LRI_LRM_CS_MMIO; *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0)); *cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0)); return cs; } static u32 * gen12_emit_restore_scratch(const struct intel_context *ce, u32 *cs) { GEM_BUG_ON(lrc_ring_gpr0(ce->engine) == -1); *cs++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT | MI_LRI_LRM_CS_MMIO; *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0)); *cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET + (lrc_ring_gpr0(ce->engine) + 1) * sizeof(u32); *cs++ = 0; return cs; } static u32 * gen12_emit_cmd_buf_wa(const struct intel_context *ce, u32 *cs) { GEM_BUG_ON(lrc_ring_cmd_buf_cctl(ce->engine) == -1); *cs++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT | MI_LRI_LRM_CS_MMIO; *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0)); *cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET + (lrc_ring_cmd_buf_cctl(ce->engine) + 1) * sizeof(u32); *cs++ = 0; *cs++ = MI_LOAD_REGISTER_REG | MI_LRR_SOURCE_CS_MMIO | MI_LRI_LRM_CS_MMIO; *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0)); *cs++ = i915_mmio_reg_offset(RING_CMD_BUF_CCTL(0)); return cs; } /* * On DG2 during context restore of a preempted context in GPGPU mode, * RCS restore hang is detected. This is extremely timing dependent. * To address this below sw wabb is implemented for DG2 A steppings. */ static u32 * dg2_emit_rcs_hang_wabb(const struct intel_context *ce, u32 *cs) { *cs++ = MI_LOAD_REGISTER_IMM(1); *cs++ = i915_mmio_reg_offset(GEN12_STATE_ACK_DEBUG(ce->engine->mmio_base)); *cs++ = 0x21; *cs++ = MI_LOAD_REGISTER_REG; *cs++ = i915_mmio_reg_offset(RING_NOPID(ce->engine->mmio_base)); *cs++ = i915_mmio_reg_offset(XEHP_CULLBIT1); *cs++ = MI_LOAD_REGISTER_REG; *cs++ = i915_mmio_reg_offset(RING_NOPID(ce->engine->mmio_base)); *cs++ = i915_mmio_reg_offset(XEHP_CULLBIT2); return cs; } /* * The bspec's tuning guide asks us to program a vertical watermark value of * 0x3FF. However this register is not saved/restored properly by the * hardware, so we're required to apply the desired value via INDIRECT_CTX * batch buffer to ensure the value takes effect properly. All other bits * in this register should remain at 0 (the hardware default). */ static u32 * dg2_emit_draw_watermark_setting(u32 *cs) { *cs++ = MI_LOAD_REGISTER_IMM(1); *cs++ = i915_mmio_reg_offset(DRAW_WATERMARK); *cs++ = REG_FIELD_PREP(VERT_WM_VAL, 0x3FF); return cs; } static u32 * gen12_emit_indirect_ctx_rcs(const struct intel_context *ce, u32 *cs) { cs = gen12_emit_timestamp_wa(ce, cs); cs = gen12_emit_cmd_buf_wa(ce, cs); cs = gen12_emit_restore_scratch(ce, cs); /* Wa_22011450934:dg2 */ if (IS_DG2_GRAPHICS_STEP(ce->engine->i915, G10, STEP_A0, STEP_B0) || IS_DG2_GRAPHICS_STEP(ce->engine->i915, G11, STEP_A0, STEP_B0)) cs = dg2_emit_rcs_hang_wabb(ce, cs); /* Wa_16013000631:dg2 */ if (IS_DG2_GRAPHICS_STEP(ce->engine->i915, G10, STEP_B0, STEP_C0) || IS_DG2_G11(ce->engine->i915)) cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE, 0); cs = gen12_emit_aux_table_inv(ce->engine, cs); /* Wa_16014892111 */ if (IS_MTL_GRAPHICS_STEP(ce->engine->i915, M, STEP_A0, STEP_B0) || IS_MTL_GRAPHICS_STEP(ce->engine->i915, P, STEP_A0, STEP_B0) || IS_DG2(ce->engine->i915)) cs = dg2_emit_draw_watermark_setting(cs); return cs; } static u32 * gen12_emit_indirect_ctx_xcs(const struct intel_context *ce, u32 *cs) { cs = gen12_emit_timestamp_wa(ce, cs); cs = gen12_emit_restore_scratch(ce, cs); /* Wa_16013000631:dg2 */ if (IS_DG2_GRAPHICS_STEP(ce->engine->i915, G10, STEP_B0, STEP_C0) || IS_DG2_G11(ce->engine->i915)) if (ce->engine->class == COMPUTE_CLASS) cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE, 0); return gen12_emit_aux_table_inv(ce->engine, cs); } static void setup_indirect_ctx_bb(const struct intel_context *ce, const struct intel_engine_cs *engine, u32 *(*emit)(const struct intel_context *, u32 *)) { u32 * const start = context_indirect_bb(ce); u32 *cs; cs = emit(ce, start); GEM_BUG_ON(cs - start > I915_GTT_PAGE_SIZE / sizeof(*cs)); while ((unsigned long)cs % CACHELINE_BYTES) *cs++ = MI_NOOP; GEM_BUG_ON(cs - start > DG2_PREDICATE_RESULT_BB / sizeof(*start)); setup_predicate_disable_wa(ce, start + DG2_PREDICATE_RESULT_BB / sizeof(*start)); lrc_setup_indirect_ctx(ce->lrc_reg_state, engine, lrc_indirect_bb(ce), (cs - start) * sizeof(*cs)); } /* * The context descriptor encodes various attributes of a context, * including its GTT address and some flags. Because it's fairly * expensive to calculate, we'll just do it once and cache the result, * which remains valid until the context is unpinned. * * This is what a descriptor looks like, from LSB to MSB:: * * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template) * bits 12-31: LRCA, GTT address of (the HWSP of) this context * bits 32-52: ctx ID, a globally unique tag (highest bit used by GuC) * bits 53-54: mbz, reserved for use by hardware * bits 55-63: group ID, currently unused and set to 0 * * Starting from Gen11, the upper dword of the descriptor has a new format: * * bits 32-36: reserved * bits 37-47: SW context ID * bits 48:53: engine instance * bit 54: mbz, reserved for use by hardware * bits 55-60: SW counter * bits 61-63: engine class * * On Xe_HP, the upper dword of the descriptor has a new format: * * bits 32-37: virtual function number * bit 38: mbz, reserved for use by hardware * bits 39-54: SW context ID * bits 55-57: reserved * bits 58-63: SW counter * * engine info, SW context ID and SW counter need to form a unique number * (Context ID) per lrc. */ static u32 lrc_descriptor(const struct intel_context *ce) { u32 desc; desc = INTEL_LEGACY_32B_CONTEXT; if (i915_vm_is_4lvl(ce->vm)) desc = INTEL_LEGACY_64B_CONTEXT; desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT; desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE; if (GRAPHICS_VER(ce->vm->i915) == 8) desc |= GEN8_CTX_L3LLC_COHERENT; return i915_ggtt_offset(ce->state) | desc; } u32 lrc_update_regs(const struct intel_context *ce, const struct intel_engine_cs *engine, u32 head) { struct intel_ring *ring = ce->ring; u32 *regs = ce->lrc_reg_state; GEM_BUG_ON(!intel_ring_offset_valid(ring, head)); GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail)); regs[CTX_RING_START] = i915_ggtt_offset(ring->vma); regs[CTX_RING_HEAD] = head; regs[CTX_RING_TAIL] = ring->tail; regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID; /* RPCS */ if (engine->class == RENDER_CLASS) { regs[CTX_R_PWR_CLK_STATE] = intel_sseu_make_rpcs(engine->gt, &ce->sseu); i915_oa_init_reg_state(ce, engine); } if (ce->wa_bb_page) { u32 *(*fn)(const struct intel_context *ce, u32 *cs); fn = gen12_emit_indirect_ctx_xcs; if (ce->engine->class == RENDER_CLASS) fn = gen12_emit_indirect_ctx_rcs; /* Mutually exclusive wrt to global indirect bb */ GEM_BUG_ON(engine->wa_ctx.indirect_ctx.size); setup_indirect_ctx_bb(ce, engine, fn); } return lrc_descriptor(ce) | CTX_DESC_FORCE_RESTORE; } void lrc_update_offsets(struct intel_context *ce, struct intel_engine_cs *engine) { set_offsets(ce->lrc_reg_state, reg_offsets(engine), engine, false); } void lrc_check_regs(const struct intel_context *ce, const struct intel_engine_cs *engine, const char *when) { const struct intel_ring *ring = ce->ring; u32 *regs = ce->lrc_reg_state; bool valid = true; int x; if (regs[CTX_RING_START] != i915_ggtt_offset(ring->vma)) { pr_err("%s: context submitted with incorrect RING_START [%08x], expected %08x\n", engine->name, regs[CTX_RING_START], i915_ggtt_offset(ring->vma)); regs[CTX_RING_START] = i915_ggtt_offset(ring->vma); valid = false; } if ((regs[CTX_RING_CTL] & ~(RING_WAIT | RING_WAIT_SEMAPHORE)) != (RING_CTL_SIZE(ring->size) | RING_VALID)) { pr_err("%s: context submitted with incorrect RING_CTL [%08x], expected %08x\n", engine->name, regs[CTX_RING_CTL], (u32)(RING_CTL_SIZE(ring->size) | RING_VALID)); regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID; valid = false; } x = lrc_ring_mi_mode(engine); if (x != -1 && regs[x + 1] & (regs[x + 1] >> 16) & STOP_RING) { pr_err("%s: context submitted with STOP_RING [%08x] in RING_MI_MODE\n", engine->name, regs[x + 1]); regs[x + 1] &= ~STOP_RING; regs[x + 1] |= STOP_RING << 16; valid = false; } WARN_ONCE(!valid, "Invalid lrc state found %s submission\n", when); } /* * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after * PIPE_CONTROL instruction. This is required for the flush to happen correctly * but there is a slight complication as this is applied in WA batch where the * values are only initialized once so we cannot take register value at the * beginning and reuse it further; hence we save its value to memory, upload a * constant value with bit21 set and then we restore it back with the saved value. * To simplify the WA, a constant value is formed by using the default value * of this register. This shouldn't be a problem because we are only modifying * it for a short period and this batch in non-premptible. We can ofcourse * use additional instructions that read the actual value of the register * at that time and set our bit of interest but it makes the WA complicated. * * This WA is also required for Gen9 so extracting as a function avoids * code duplication. */ static u32 * gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch) { /* NB no one else is allowed to scribble over scratch + 256! */ *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT; *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); *batch++ = intel_gt_scratch_offset(engine->gt, INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA); *batch++ = 0; *batch++ = MI_LOAD_REGISTER_IMM(1); *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES; batch = gen8_emit_pipe_control(batch, PIPE_CONTROL_CS_STALL | PIPE_CONTROL_DC_FLUSH_ENABLE, 0); *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT; *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); *batch++ = intel_gt_scratch_offset(engine->gt, INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA); *batch++ = 0; return batch; } /* * Typically we only have one indirect_ctx and per_ctx batch buffer which are * initialized at the beginning and shared across all contexts but this field * helps us to have multiple batches at different offsets and select them based * on a criteria. At the moment this batch always start at the beginning of the page * and at this point we don't have multiple wa_ctx batch buffers. * * The number of WA applied are not known at the beginning; we use this field * to return the no of DWORDS written. * * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END * so it adds NOOPs as padding to make it cacheline aligned. * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together * makes a complete batch buffer. */ static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) { /* WaDisableCtxRestoreArbitration:bdw,chv */ *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */ if (IS_BROADWELL(engine->i915)) batch = gen8_emit_flush_coherentl3_wa(engine, batch); /* WaClearSlmSpaceAtContextSwitch:bdw,chv */ /* Actual scratch location is at 128 bytes offset */ batch = gen8_emit_pipe_control(batch, PIPE_CONTROL_FLUSH_L3 | PIPE_CONTROL_STORE_DATA_INDEX | PIPE_CONTROL_CS_STALL | PIPE_CONTROL_QW_WRITE, LRC_PPHWSP_SCRATCH_ADDR); *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; /* Pad to end of cacheline */ while ((unsigned long)batch % CACHELINE_BYTES) *batch++ = MI_NOOP; /* * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because * execution depends on the length specified in terms of cache lines * in the register CTX_RCS_INDIRECT_CTX */ return batch; } struct lri { i915_reg_t reg; u32 value; }; static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count) { GEM_BUG_ON(!count || count > 63); *batch++ = MI_LOAD_REGISTER_IMM(count); do { *batch++ = i915_mmio_reg_offset(lri->reg); *batch++ = lri->value; } while (lri++, --count); *batch++ = MI_NOOP; return batch; } static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) { static const struct lri lri[] = { /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */ { COMMON_SLICE_CHICKEN2, __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE, 0), }, /* BSpec: 11391 */ { FF_SLICE_CHICKEN, __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX, FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX), }, /* BSpec: 11299 */ { _3D_CHICKEN3, __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX, _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX), } }; *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */ batch = gen8_emit_flush_coherentl3_wa(engine, batch); /* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */ batch = gen8_emit_pipe_control(batch, PIPE_CONTROL_FLUSH_L3 | PIPE_CONTROL_STORE_DATA_INDEX | PIPE_CONTROL_CS_STALL | PIPE_CONTROL_QW_WRITE, LRC_PPHWSP_SCRATCH_ADDR); batch = emit_lri(batch, lri, ARRAY_SIZE(lri)); /* WaMediaPoolStateCmdInWABB:bxt,glk */ if (HAS_POOLED_EU(engine->i915)) { /* * EU pool configuration is setup along with golden context * during context initialization. This value depends on * device type (2x6 or 3x6) and needs to be updated based * on which subslice is disabled especially for 2x6 * devices, however it is safe to load default * configuration of 3x6 device instead of masking off * corresponding bits because HW ignores bits of a disabled * subslice and drops down to appropriate config. Please * see render_state_setup() in i915_gem_render_state.c for * possible configurations, to avoid duplication they are * not shown here again. */ *batch++ = GEN9_MEDIA_POOL_STATE; *batch++ = GEN9_MEDIA_POOL_ENABLE; *batch++ = 0x00777000; *batch++ = 0; *batch++ = 0; *batch++ = 0; } *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; /* Pad to end of cacheline */ while ((unsigned long)batch % CACHELINE_BYTES) *batch++ = MI_NOOP; return batch; } #define CTX_WA_BB_SIZE (PAGE_SIZE) static int lrc_create_wa_ctx(struct intel_engine_cs *engine) { struct drm_i915_gem_object *obj; struct i915_vma *vma; int err; obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_SIZE); if (IS_ERR(obj)) return PTR_ERR(obj); vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto err; } engine->wa_ctx.vma = vma; return 0; err: i915_gem_object_put(obj); return err; } void lrc_fini_wa_ctx(struct intel_engine_cs *engine) { i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0); } typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch); void lrc_init_wa_ctx(struct intel_engine_cs *engine) { struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx; struct i915_wa_ctx_bb *wa_bb[] = { &wa_ctx->indirect_ctx, &wa_ctx->per_ctx }; wa_bb_func_t wa_bb_fn[ARRAY_SIZE(wa_bb)]; struct i915_gem_ww_ctx ww; void *batch, *batch_ptr; unsigned int i; int err; if (GRAPHICS_VER(engine->i915) >= 11 || !(engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)) return; if (GRAPHICS_VER(engine->i915) == 9) { wa_bb_fn[0] = gen9_init_indirectctx_bb; wa_bb_fn[1] = NULL; } else if (GRAPHICS_VER(engine->i915) == 8) { wa_bb_fn[0] = gen8_init_indirectctx_bb; wa_bb_fn[1] = NULL; } err = lrc_create_wa_ctx(engine); if (err) { /* * We continue even if we fail to initialize WA batch * because we only expect rare glitches but nothing * critical to prevent us from using GPU */ drm_err(&engine->i915->drm, "Ignoring context switch w/a allocation error:%d\n", err); return; } if (!engine->wa_ctx.vma) return; i915_gem_ww_ctx_init(&ww, true); retry: err = i915_gem_object_lock(wa_ctx->vma->obj, &ww); if (!err) err = i915_ggtt_pin(wa_ctx->vma, &ww, 0, PIN_HIGH); if (err) goto err; batch = i915_gem_object_pin_map(wa_ctx->vma->obj, I915_MAP_WB); if (IS_ERR(batch)) { err = PTR_ERR(batch); goto err_unpin; } /* * Emit the two workaround batch buffers, recording the offset from the * start of the workaround batch buffer object for each and their * respective sizes. */ batch_ptr = batch; for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) { wa_bb[i]->offset = batch_ptr - batch; if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) { err = -EINVAL; break; } if (wa_bb_fn[i]) batch_ptr = wa_bb_fn[i](engine, batch_ptr); wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset); } GEM_BUG_ON(batch_ptr - batch > CTX_WA_BB_SIZE); __i915_gem_object_flush_map(wa_ctx->vma->obj, 0, batch_ptr - batch); __i915_gem_object_release_map(wa_ctx->vma->obj); /* Verify that we can handle failure to setup the wa_ctx */ if (!err) err = i915_inject_probe_error(engine->i915, -ENODEV); err_unpin: if (err) i915_vma_unpin(wa_ctx->vma); err: if (err == -EDEADLK) { err = i915_gem_ww_ctx_backoff(&ww); if (!err) goto retry; } i915_gem_ww_ctx_fini(&ww); if (err) { i915_vma_put(engine->wa_ctx.vma); /* Clear all flags to prevent further use */ memset(wa_ctx, 0, sizeof(*wa_ctx)); } } static void st_runtime_underflow(struct intel_context_stats *stats, s32 dt) { #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) stats->runtime.num_underflow++; stats->runtime.max_underflow = max_t(u32, stats->runtime.max_underflow, -dt); #endif } static u32 lrc_get_runtime(const struct intel_context *ce) { /* * We can use either ppHWSP[16] which is recorded before the context * switch (and so excludes the cost of context switches) or use the * value from the context image itself, which is saved/restored earlier * and so includes the cost of the save. */ return READ_ONCE(ce->lrc_reg_state[CTX_TIMESTAMP]); } void lrc_update_runtime(struct intel_context *ce) { struct intel_context_stats *stats = &ce->stats; u32 old; s32 dt; old = stats->runtime.last; stats->runtime.last = lrc_get_runtime(ce); dt = stats->runtime.last - old; if (!dt) return; if (unlikely(dt < 0)) { CE_TRACE(ce, "runtime underflow: last=%u, new=%u, delta=%d\n", old, stats->runtime.last, dt); st_runtime_underflow(stats, dt); return; } ewma_runtime_add(&stats->runtime.avg, dt); stats->runtime.total += dt; } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_lrc.c" #endif
linux-master
drivers/gpu/drm/i915/gt/intel_lrc.c
// SPDX-License-Identifier: MIT /* * Copyright © 2014 Intel Corporation * * Generated by: intel-gpu-tools-1.8-220-g01153e7 */ #include "intel_renderstate.h" static const u32 gen7_null_state_relocs[] = { 0x0000000c, 0x00000010, 0x00000018, 0x000001ec, -1, }; static const u32 gen7_null_state_batch[] = { 0x69040000, 0x61010008, 0x00000000, 0x00000001, /* reloc */ 0x00000001, /* reloc */ 0x00000000, 0x00000001, /* reloc */ 0x00000000, 0x00000001, 0x00000000, 0x00000001, 0x790d0002, 0x00000000, 0x00000000, 0x00000000, 0x78180000, 0x00000001, 0x79160000, 0x00000008, 0x78300000, 0x02010040, 0x78310000, 0x04000000, 0x78320000, 0x04000000, 0x78330000, 0x02000000, 0x78100004, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x781b0005, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x781c0002, 0x00000000, 0x00000000, 0x00000000, 0x781d0004, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x78110005, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x78120002, 0x00000000, 0x00000000, 0x00000000, 0x78210000, 0x00000000, 0x78130005, 0x00000000, 0x20000000, 0x04000000, 0x00000000, 0x00000000, 0x00000000, 0x78140001, 0x20000800, 0x00000000, 0x781e0001, 0x00000000, 0x00000000, 0x78050005, 0xe0040000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x78040001, 0x00000000, 0x00000000, 0x78240000, 0x00000240, 0x78230000, 0x00000260, 0x782f0000, 0x00000280, 0x781f000c, 0x00400810, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x78200006, 0x000002c0, 0x08080000, 0x00000000, 0x28000402, 0x00060000, 0x00000000, 0x00000000, 0x78090005, 0x02000000, 0x22220000, 0x02f60000, 0x11230000, 0x02f60004, 0x11230000, 0x78080003, 0x00006008, 0x00000340, /* reloc */ 0xffffffff, 0x00000000, 0x782a0000, 0x00000360, 0x79000002, 0xffffffff, 0x00000000, 0x00000000, 0x7b000005, 0x0000000f, 0x00000003, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x05000000, /* cmds end */ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000031, /* state start */ 0x00000003, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xf99a130c, 0x799a130c, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000492, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0080005a, 0x2e2077bd, 0x000000c0, 0x008d0040, 0x0080005a, 0x2e6077bd, 0x000000d0, 0x008d0040, 0x02800031, 0x21801fa9, 0x008d0e20, 0x08840001, 0x00800001, 0x2e2003bd, 0x008d0180, 0x00000000, 0x00800001, 0x2e6003bd, 0x008d01c0, 0x00000000, 0x00800001, 0x2ea003bd, 0x008d0200, 0x00000000, 0x00800001, 0x2ee003bd, 0x008d0240, 0x00000000, 0x05800031, 0x20001fa8, 0x008d0e20, 0x90031000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000380, 0x000003a0, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, /* state end */ }; RO_RENDERSTATE(7);
linux-master
drivers/gpu/drm/i915/gt/gen7_renderstate.c
// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include "i915_drv.h" #include "intel_gt_mcr.h" #include "intel_gt_print.h" #include "intel_gt_regs.h" /** * DOC: GT Multicast/Replicated (MCR) Register Support * * Some GT registers are designed as "multicast" or "replicated" registers: * multiple instances of the same register share a single MMIO offset. MCR * registers are generally used when the hardware needs to potentially track * independent values of a register per hardware unit (e.g., per-subslice, * per-L3bank, etc.). The specific types of replication that exist vary * per-platform. * * MMIO accesses to MCR registers are controlled according to the settings * programmed in the platform's MCR_SELECTOR register(s). MMIO writes to MCR * registers can be done in either a (i.e., a single write updates all * instances of the register to the same value) or unicast (a write updates only * one specific instance). Reads of MCR registers always operate in a unicast * manner regardless of how the multicast/unicast bit is set in MCR_SELECTOR. * Selection of a specific MCR instance for unicast operations is referred to * as "steering." * * If MCR register operations are steered toward a hardware unit that is * fused off or currently powered down due to power gating, the MMIO operation * is "terminated" by the hardware. Terminated read operations will return a * value of zero and terminated unicast write operations will be silently * ignored. */ #define HAS_MSLICE_STEERING(i915) (INTEL_INFO(i915)->has_mslice_steering) static const char * const intel_steering_types[] = { "L3BANK", "MSLICE", "LNCF", "GAM", "DSS", "OADDRM", "INSTANCE 0", }; static const struct intel_mmio_range icl_l3bank_steering_table[] = { { 0x00B100, 0x00B3FF }, {}, }; /* * Although the bspec lists more "MSLICE" ranges than shown here, some of those * are of a "GAM" subclass that has special rules. Thus we use a separate * GAM table farther down for those. */ static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = { { 0x00DD00, 0x00DDFF }, { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */ {}, }; static const struct intel_mmio_range xehpsdv_gam_steering_table[] = { { 0x004000, 0x004AFF }, { 0x00C800, 0x00CFFF }, {}, }; static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = { { 0x00B000, 0x00B0FF }, { 0x00D800, 0x00D8FF }, {}, }; static const struct intel_mmio_range dg2_lncf_steering_table[] = { { 0x00B000, 0x00B0FF }, { 0x00D880, 0x00D8FF }, {}, }; /* * We have several types of MCR registers on PVC where steering to (0,0) * will always provide us with a non-terminated value. We'll stick them * all in the same table for simplicity. */ static const struct intel_mmio_range pvc_instance0_steering_table[] = { { 0x004000, 0x004AFF }, /* HALF-BSLICE */ { 0x008800, 0x00887F }, /* CC */ { 0x008A80, 0x008AFF }, /* TILEPSMI */ { 0x00B000, 0x00B0FF }, /* HALF-BSLICE */ { 0x00B100, 0x00B3FF }, /* L3BANK */ { 0x00C800, 0x00CFFF }, /* HALF-BSLICE */ { 0x00D800, 0x00D8FF }, /* HALF-BSLICE */ { 0x00DD00, 0x00DDFF }, /* BSLICE */ { 0x00E900, 0x00E9FF }, /* HALF-BSLICE */ { 0x00EC00, 0x00EEFF }, /* HALF-BSLICE */ { 0x00F000, 0x00FFFF }, /* HALF-BSLICE */ { 0x024180, 0x0241FF }, /* HALF-BSLICE */ {}, }; static const struct intel_mmio_range xelpg_instance0_steering_table[] = { { 0x000B00, 0x000BFF }, /* SQIDI */ { 0x001000, 0x001FFF }, /* SQIDI */ { 0x004000, 0x0048FF }, /* GAM */ { 0x008700, 0x0087FF }, /* SQIDI */ { 0x00B000, 0x00B0FF }, /* NODE */ { 0x00C800, 0x00CFFF }, /* GAM */ { 0x00D880, 0x00D8FF }, /* NODE */ { 0x00DD00, 0x00DDFF }, /* OAAL2 */ {}, }; static const struct intel_mmio_range xelpg_l3bank_steering_table[] = { { 0x00B100, 0x00B3FF }, {}, }; /* DSS steering is used for SLICE ranges as well */ static const struct intel_mmio_range xelpg_dss_steering_table[] = { { 0x005200, 0x0052FF }, /* SLICE */ { 0x005500, 0x007FFF }, /* SLICE */ { 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ { 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ { 0x009680, 0x0096FF }, /* DSS */ { 0x00D800, 0x00D87F }, /* SLICE */ { 0x00DC00, 0x00DCFF }, /* SLICE */ { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */ {}, }; static const struct intel_mmio_range xelpmp_oaddrm_steering_table[] = { { 0x393200, 0x39323F }, { 0x393400, 0x3934FF }, {}, }; void intel_gt_mcr_init(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; unsigned long fuse; int i; spin_lock_init(&gt->mcr_lock); /* * An mslice is unavailable only if both the meml3 for the slice is * disabled *and* all of the DSS in the slice (quadrant) are disabled. */ if (HAS_MSLICE_STEERING(i915)) { gt->info.mslice_mask = intel_slicemask_from_xehp_dssmask(gt->info.sseu.subslice_mask, GEN_DSS_PER_MSLICE); gt->info.mslice_mask |= (intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & GEN12_MEML3_EN_MASK); if (!gt->info.mslice_mask) /* should be impossible! */ gt_warn(gt, "mslice mask all zero!\n"); } if (MEDIA_VER(i915) >= 13 && gt->type == GT_MEDIA) { gt->steering_table[OADDRM] = xelpmp_oaddrm_steering_table; } else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) { /* Wa_14016747170 */ if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) || IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0)) fuse = REG_FIELD_GET(MTL_GT_L3_EXC_MASK, intel_uncore_read(gt->uncore, MTL_GT_ACTIVITY_FACTOR)); else fuse = REG_FIELD_GET(GT_L3_EXC_MASK, intel_uncore_read(gt->uncore, XEHP_FUSE4)); /* * Despite the register field being named "exclude mask" the * bits actually represent enabled banks (two banks per bit). */ for_each_set_bit(i, &fuse, 3) gt->info.l3bank_mask |= 0x3 << 2 * i; gt->steering_table[INSTANCE0] = xelpg_instance0_steering_table; gt->steering_table[L3BANK] = xelpg_l3bank_steering_table; gt->steering_table[DSS] = xelpg_dss_steering_table; } else if (IS_PONTEVECCHIO(i915)) { gt->steering_table[INSTANCE0] = pvc_instance0_steering_table; } else if (IS_DG2(i915)) { gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; gt->steering_table[LNCF] = dg2_lncf_steering_table; /* * No need to hook up the GAM table since it has a dedicated * steering control register on DG2 and can use implicit * steering. */ } else if (IS_XEHPSDV(i915)) { gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; gt->steering_table[LNCF] = xehpsdv_lncf_steering_table; gt->steering_table[GAM] = xehpsdv_gam_steering_table; } else if (GRAPHICS_VER(i915) >= 11 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) { gt->steering_table[L3BANK] = icl_l3bank_steering_table; gt->info.l3bank_mask = ~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & GEN10_L3BANK_MASK; if (!gt->info.l3bank_mask) /* should be impossible! */ gt_warn(gt, "L3 bank mask is all zero!\n"); } else if (GRAPHICS_VER(i915) >= 11) { /* * We expect all modern platforms to have at least some * type of steering that needs to be initialized. */ MISSING_CASE(INTEL_INFO(i915)->platform); } } /* * Although the rest of the driver should use MCR-specific functions to * read/write MCR registers, we still use the regular intel_uncore_* functions * internally to implement those, so we need a way for the functions in this * file to "cast" an i915_mcr_reg_t into an i915_reg_t. */ static i915_reg_t mcr_reg_cast(const i915_mcr_reg_t mcr) { i915_reg_t r = { .reg = mcr.reg }; return r; } /* * rw_with_mcr_steering_fw - Access a register with specific MCR steering * @gt: GT to read register from * @reg: register being accessed * @rw_flag: FW_REG_READ for read access or FW_REG_WRITE for write access * @group: group number (documented as "sliceid" on older platforms) * @instance: instance number (documented as "subsliceid" on older platforms) * @value: register value to be written (ignored for read) * * Context: The caller must hold the MCR lock * Return: 0 for write access. register value for read access. * * Caller needs to make sure the relevant forcewake wells are up. */ static u32 rw_with_mcr_steering_fw(struct intel_gt *gt, i915_mcr_reg_t reg, u8 rw_flag, int group, int instance, u32 value) { struct intel_uncore *uncore = gt->uncore; u32 mcr_mask, mcr_ss, mcr, old_mcr, val = 0; lockdep_assert_held(&gt->mcr_lock); if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70)) { /* * Always leave the hardware in multicast mode when doing reads * (see comment about Wa_22013088509 below) and only change it * to unicast mode when doing writes of a specific instance. * * No need to save old steering reg value. */ intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR, REG_FIELD_PREP(MTL_MCR_GROUPID, group) | REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance) | (rw_flag == FW_REG_READ ? GEN11_MCR_MULTICAST : 0)); } else if (GRAPHICS_VER(uncore->i915) >= 11) { mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK; mcr_ss = GEN11_MCR_SLICE(group) | GEN11_MCR_SUBSLICE(instance); /* * Wa_22013088509 * * The setting of the multicast/unicast bit usually wouldn't * matter for read operations (which always return the value * from a single register instance regardless of how that bit * is set), but some platforms have a workaround requiring us * to remain in multicast mode for reads. There's no real * downside to this, so we'll just go ahead and do so on all * platforms; we'll only clear the multicast bit from the mask * when exlicitly doing a write operation. */ if (rw_flag == FW_REG_WRITE) mcr_mask |= GEN11_MCR_MULTICAST; mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR); old_mcr = mcr; mcr &= ~mcr_mask; mcr |= mcr_ss; intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); } else { mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK; mcr_ss = GEN8_MCR_SLICE(group) | GEN8_MCR_SUBSLICE(instance); mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR); old_mcr = mcr; mcr &= ~mcr_mask; mcr |= mcr_ss; intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); } if (rw_flag == FW_REG_READ) val = intel_uncore_read_fw(uncore, mcr_reg_cast(reg)); else intel_uncore_write_fw(uncore, mcr_reg_cast(reg), value); /* * For pre-MTL platforms, we need to restore the old value of the * steering control register to ensure that implicit steering continues * to behave as expected. For MTL and beyond, we need only reinstate * the 'multicast' bit (and only if we did a write that cleared it). */ if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70) && rw_flag == FW_REG_WRITE) intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST); else if (GRAPHICS_VER_FULL(uncore->i915) < IP_VER(12, 70)) intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, old_mcr); return val; } static u32 rw_with_mcr_steering(struct intel_gt *gt, i915_mcr_reg_t reg, u8 rw_flag, int group, int instance, u32 value) { struct intel_uncore *uncore = gt->uncore; enum forcewake_domains fw_domains; unsigned long flags; u32 val; fw_domains = intel_uncore_forcewake_for_reg(uncore, mcr_reg_cast(reg), rw_flag); fw_domains |= intel_uncore_forcewake_for_reg(uncore, GEN8_MCR_SELECTOR, FW_REG_READ | FW_REG_WRITE); intel_gt_mcr_lock(gt, &flags); spin_lock(&uncore->lock); intel_uncore_forcewake_get__locked(uncore, fw_domains); val = rw_with_mcr_steering_fw(gt, reg, rw_flag, group, instance, value); intel_uncore_forcewake_put__locked(uncore, fw_domains); spin_unlock(&uncore->lock); intel_gt_mcr_unlock(gt, flags); return val; } /** * intel_gt_mcr_lock - Acquire MCR steering lock * @gt: GT structure * @flags: storage to save IRQ flags to * * Performs locking to protect the steering for the duration of an MCR * operation. On MTL and beyond, a hardware lock will also be taken to * serialize access not only for the driver, but also for external hardware and * firmware agents. * * Context: Takes gt->mcr_lock. uncore->lock should *not* be held when this * function is called, although it may be acquired after this * function call. */ void intel_gt_mcr_lock(struct intel_gt *gt, unsigned long *flags) __acquires(&gt->mcr_lock) { unsigned long __flags; int err = 0; lockdep_assert_not_held(&gt->uncore->lock); /* * Starting with MTL, we need to coordinate not only with other * driver threads, but also with hardware/firmware agents. A dedicated * locking register is used. */ if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) err = wait_for(intel_uncore_read_fw(gt->uncore, MTL_STEER_SEMAPHORE) == 0x1, 100); /* * Even on platforms with a hardware lock, we'll continue to grab * a software spinlock too for lockdep purposes. If the hardware lock * was already acquired, there should never be contention on the * software lock. */ spin_lock_irqsave(&gt->mcr_lock, __flags); *flags = __flags; /* * In theory we should never fail to acquire the HW semaphore; this * would indicate some hardware/firmware is misbehaving and not * releasing it properly. */ if (err == -ETIMEDOUT) { gt_err_ratelimited(gt, "hardware MCR steering semaphore timed out"); add_taint_for_CI(gt->i915, TAINT_WARN); /* CI is now unreliable */ } } /** * intel_gt_mcr_unlock - Release MCR steering lock * @gt: GT structure * @flags: IRQ flags to restore * * Releases the lock acquired by intel_gt_mcr_lock(). * * Context: Releases gt->mcr_lock */ void intel_gt_mcr_unlock(struct intel_gt *gt, unsigned long flags) __releases(&gt->mcr_lock) { spin_unlock_irqrestore(&gt->mcr_lock, flags); if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) intel_uncore_write_fw(gt->uncore, MTL_STEER_SEMAPHORE, 0x1); } /** * intel_gt_mcr_read - read a specific instance of an MCR register * @gt: GT structure * @reg: the MCR register to read * @group: the MCR group * @instance: the MCR instance * * Context: Takes and releases gt->mcr_lock * * Returns the value read from an MCR register after steering toward a specific * group/instance. */ u32 intel_gt_mcr_read(struct intel_gt *gt, i915_mcr_reg_t reg, int group, int instance) { return rw_with_mcr_steering(gt, reg, FW_REG_READ, group, instance, 0); } /** * intel_gt_mcr_unicast_write - write a specific instance of an MCR register * @gt: GT structure * @reg: the MCR register to write * @value: value to write * @group: the MCR group * @instance: the MCR instance * * Write an MCR register in unicast mode after steering toward a specific * group/instance. * * Context: Calls a function that takes and releases gt->mcr_lock */ void intel_gt_mcr_unicast_write(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value, int group, int instance) { rw_with_mcr_steering(gt, reg, FW_REG_WRITE, group, instance, value); } /** * intel_gt_mcr_multicast_write - write a value to all instances of an MCR register * @gt: GT structure * @reg: the MCR register to write * @value: value to write * * Write an MCR register in multicast mode to update all instances. * * Context: Takes and releases gt->mcr_lock */ void intel_gt_mcr_multicast_write(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value) { unsigned long flags; intel_gt_mcr_lock(gt, &flags); /* * Ensure we have multicast behavior, just in case some non-i915 agent * left the hardware in unicast mode. */ if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST); intel_uncore_write(gt->uncore, mcr_reg_cast(reg), value); intel_gt_mcr_unlock(gt, flags); } /** * intel_gt_mcr_multicast_write_fw - write a value to all instances of an MCR register * @gt: GT structure * @reg: the MCR register to write * @value: value to write * * Write an MCR register in multicast mode to update all instances. This * function assumes the caller is already holding any necessary forcewake * domains; use intel_gt_mcr_multicast_write() in cases where forcewake should * be obtained automatically. * * Context: The caller must hold gt->mcr_lock. */ void intel_gt_mcr_multicast_write_fw(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value) { lockdep_assert_held(&gt->mcr_lock); /* * Ensure we have multicast behavior, just in case some non-i915 agent * left the hardware in unicast mode. */ if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST); intel_uncore_write_fw(gt->uncore, mcr_reg_cast(reg), value); } /** * intel_gt_mcr_multicast_rmw - Performs a multicast RMW operations * @gt: GT structure * @reg: the MCR register to read and write * @clear: bits to clear during RMW * @set: bits to set during RMW * * Performs a read-modify-write on an MCR register in a multicast manner. * This operation only makes sense on MCR registers where all instances are * expected to have the same value. The read will target any non-terminated * instance and the write will be applied to all instances. * * This function assumes the caller is already holding any necessary forcewake * domains; use intel_gt_mcr_multicast_rmw() in cases where forcewake should * be obtained automatically. * * Context: Calls functions that take and release gt->mcr_lock * * Returns the old (unmodified) value read. */ u32 intel_gt_mcr_multicast_rmw(struct intel_gt *gt, i915_mcr_reg_t reg, u32 clear, u32 set) { u32 val = intel_gt_mcr_read_any(gt, reg); intel_gt_mcr_multicast_write(gt, reg, (val & ~clear) | set); return val; } /* * reg_needs_read_steering - determine whether a register read requires * explicit steering * @gt: GT structure * @reg: the register to check steering requirements for * @type: type of multicast steering to check * * Determines whether @reg needs explicit steering of a specific type for * reads. * * Returns false if @reg does not belong to a register range of the given * steering type, or if the default (subslice-based) steering IDs are suitable * for @type steering too. */ static bool reg_needs_read_steering(struct intel_gt *gt, i915_mcr_reg_t reg, enum intel_steering_type type) { u32 offset = i915_mmio_reg_offset(reg); const struct intel_mmio_range *entry; if (likely(!gt->steering_table[type])) return false; if (IS_GSI_REG(offset)) offset += gt->uncore->gsi_offset; for (entry = gt->steering_table[type]; entry->end; entry++) { if (offset >= entry->start && offset <= entry->end) return true; } return false; } /* * get_nonterminated_steering - determines valid IDs for a class of MCR steering * @gt: GT structure * @type: multicast register type * @group: Group ID returned * @instance: Instance ID returned * * Determines group and instance values that will steer reads of the specified * MCR class to a non-terminated instance. */ static void get_nonterminated_steering(struct intel_gt *gt, enum intel_steering_type type, u8 *group, u8 *instance) { u32 dss; switch (type) { case L3BANK: *group = 0; /* unused */ *instance = __ffs(gt->info.l3bank_mask); break; case MSLICE: GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915)); *group = __ffs(gt->info.mslice_mask); *instance = 0; /* unused */ break; case LNCF: /* * An LNCF is always present if its mslice is present, so we * can safely just steer to LNCF 0 in all cases. */ GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915)); *group = __ffs(gt->info.mslice_mask) << 1; *instance = 0; /* unused */ break; case GAM: *group = IS_DG2(gt->i915) ? 1 : 0; *instance = 0; break; case DSS: dss = intel_sseu_find_first_xehp_dss(&gt->info.sseu, 0, 0); *group = dss / GEN_DSS_PER_GSLICE; *instance = dss % GEN_DSS_PER_GSLICE; break; case INSTANCE0: /* * There are a lot of MCR types for which instance (0, 0) * will always provide a non-terminated value. */ *group = 0; *instance = 0; break; case OADDRM: if ((VDBOX_MASK(gt) | VEBOX_MASK(gt) | gt->info.sfc_mask) & BIT(0)) *group = 0; else *group = 1; *instance = 0; break; default: MISSING_CASE(type); *group = 0; *instance = 0; } } /** * intel_gt_mcr_get_nonterminated_steering - find group/instance values that * will steer a register to a non-terminated instance * @gt: GT structure * @reg: register for which the steering is required * @group: return variable for group steering * @instance: return variable for instance steering * * This function returns a group/instance pair that is guaranteed to work for * read steering of the given register. Note that a value will be returned even * if the register is not replicated and therefore does not actually require * steering. */ void intel_gt_mcr_get_nonterminated_steering(struct intel_gt *gt, i915_mcr_reg_t reg, u8 *group, u8 *instance) { int type; for (type = 0; type < NUM_STEERING_TYPES; type++) { if (reg_needs_read_steering(gt, reg, type)) { get_nonterminated_steering(gt, type, group, instance); return; } } *group = gt->default_steering.groupid; *instance = gt->default_steering.instanceid; } /** * intel_gt_mcr_read_any_fw - reads one instance of an MCR register * @gt: GT structure * @reg: register to read * * Reads a GT MCR register. The read will be steered to a non-terminated * instance (i.e., one that isn't fused off or powered down by power gating). * This function assumes the caller is already holding any necessary forcewake * domains; use intel_gt_mcr_read_any() in cases where forcewake should be * obtained automatically. * * Context: The caller must hold gt->mcr_lock. * * Returns the value from a non-terminated instance of @reg. */ u32 intel_gt_mcr_read_any_fw(struct intel_gt *gt, i915_mcr_reg_t reg) { int type; u8 group, instance; lockdep_assert_held(&gt->mcr_lock); for (type = 0; type < NUM_STEERING_TYPES; type++) { if (reg_needs_read_steering(gt, reg, type)) { get_nonterminated_steering(gt, type, &group, &instance); return rw_with_mcr_steering_fw(gt, reg, FW_REG_READ, group, instance, 0); } } return intel_uncore_read_fw(gt->uncore, mcr_reg_cast(reg)); } /** * intel_gt_mcr_read_any - reads one instance of an MCR register * @gt: GT structure * @reg: register to read * * Reads a GT MCR register. The read will be steered to a non-terminated * instance (i.e., one that isn't fused off or powered down by power gating). * * Context: Calls a function that takes and releases gt->mcr_lock. * * Returns the value from a non-terminated instance of @reg. */ u32 intel_gt_mcr_read_any(struct intel_gt *gt, i915_mcr_reg_t reg) { int type; u8 group, instance; for (type = 0; type < NUM_STEERING_TYPES; type++) { if (reg_needs_read_steering(gt, reg, type)) { get_nonterminated_steering(gt, type, &group, &instance); return rw_with_mcr_steering(gt, reg, FW_REG_READ, group, instance, 0); } } return intel_uncore_read(gt->uncore, mcr_reg_cast(reg)); } static void report_steering_type(struct drm_printer *p, struct intel_gt *gt, enum intel_steering_type type, bool dump_table) { const struct intel_mmio_range *entry; u8 group, instance; BUILD_BUG_ON(ARRAY_SIZE(intel_steering_types) != NUM_STEERING_TYPES); if (!gt->steering_table[type]) { drm_printf(p, "%s steering: uses default steering\n", intel_steering_types[type]); return; } get_nonterminated_steering(gt, type, &group, &instance); drm_printf(p, "%s steering: group=0x%x, instance=0x%x\n", intel_steering_types[type], group, instance); if (!dump_table) return; for (entry = gt->steering_table[type]; entry->end; entry++) drm_printf(p, "\t0x%06x - 0x%06x\n", entry->start, entry->end); } void intel_gt_mcr_report_steering(struct drm_printer *p, struct intel_gt *gt, bool dump_table) { /* * Starting with MTL we no longer have default steering; * all ranges are explicitly steered. */ if (GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70)) drm_printf(p, "Default steering: group=0x%x, instance=0x%x\n", gt->default_steering.groupid, gt->default_steering.instanceid); if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) { for (int i = 0; i < NUM_STEERING_TYPES; i++) if (gt->steering_table[i]) report_steering_type(p, gt, i, dump_table); } else if (IS_PONTEVECCHIO(gt->i915)) { report_steering_type(p, gt, INSTANCE0, dump_table); } else if (HAS_MSLICE_STEERING(gt->i915)) { report_steering_type(p, gt, MSLICE, dump_table); report_steering_type(p, gt, LNCF, dump_table); } } /** * intel_gt_mcr_get_ss_steering - returns the group/instance steering for a SS * @gt: GT structure * @dss: DSS ID to obtain steering for * @group: pointer to storage for steering group ID * @instance: pointer to storage for steering instance ID * * Returns the steering IDs (via the @group and @instance parameters) that * correspond to a specific subslice/DSS ID. */ void intel_gt_mcr_get_ss_steering(struct intel_gt *gt, unsigned int dss, unsigned int *group, unsigned int *instance) { if (IS_PONTEVECCHIO(gt->i915)) { *group = dss / GEN_DSS_PER_CSLICE; *instance = dss % GEN_DSS_PER_CSLICE; } else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50)) { *group = dss / GEN_DSS_PER_GSLICE; *instance = dss % GEN_DSS_PER_GSLICE; } else { *group = dss / GEN_MAX_SS_PER_HSW_SLICE; *instance = dss % GEN_MAX_SS_PER_HSW_SLICE; return; } } /** * intel_gt_mcr_wait_for_reg - wait until MCR register matches expected state * @gt: GT structure * @reg: the register to read * @mask: mask to apply to register value * @value: value to wait for * @fast_timeout_us: fast timeout in microsecond for atomic/tight wait * @slow_timeout_ms: slow timeout in millisecond * * This routine waits until the target register @reg contains the expected * @value after applying the @mask, i.e. it waits until :: * * (intel_gt_mcr_read_any_fw(gt, reg) & mask) == value * * Otherwise, the wait will timeout after @slow_timeout_ms milliseconds. * For atomic context @slow_timeout_ms must be zero and @fast_timeout_us * must be not larger than 20,0000 microseconds. * * This function is basically an MCR-friendly version of * __intel_wait_for_register_fw(). Generally this function will only be used * on GAM registers which are a bit special --- although they're MCR registers, * reads (e.g., waiting for status updates) are always directed to the primary * instance. * * Note that this routine assumes the caller holds forcewake asserted, it is * not suitable for very long waits. * * Context: Calls a function that takes and releases gt->mcr_lock * Return: 0 if the register matches the desired condition, or -ETIMEDOUT. */ int intel_gt_mcr_wait_for_reg(struct intel_gt *gt, i915_mcr_reg_t reg, u32 mask, u32 value, unsigned int fast_timeout_us, unsigned int slow_timeout_ms) { int ret; lockdep_assert_not_held(&gt->mcr_lock); #define done ((intel_gt_mcr_read_any(gt, reg) & mask) == value) /* Catch any overuse of this function */ might_sleep_if(slow_timeout_ms); GEM_BUG_ON(fast_timeout_us > 20000); GEM_BUG_ON(!fast_timeout_us && !slow_timeout_ms); ret = -ETIMEDOUT; if (fast_timeout_us && fast_timeout_us <= 20000) ret = _wait_for_atomic(done, fast_timeout_us, 0); if (ret && slow_timeout_ms) ret = wait_for(done, slow_timeout_ms); return ret; #undef done }
linux-master
drivers/gpu/drm/i915/gt/intel_gt_mcr.c
// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include <linux/kobject.h> #include <linux/sysfs.h> #include "i915_drv.h" #include "intel_engine.h" #include "intel_engine_heartbeat.h" #include "sysfs_engines.h" struct kobj_engine { struct kobject base; struct intel_engine_cs *engine; }; static struct intel_engine_cs *kobj_to_engine(struct kobject *kobj) { return container_of(kobj, struct kobj_engine, base)->engine; } static ssize_t name_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%s\n", kobj_to_engine(kobj)->name); } static const struct kobj_attribute name_attr = __ATTR(name, 0444, name_show, NULL); static ssize_t class_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%d\n", kobj_to_engine(kobj)->uabi_class); } static const struct kobj_attribute class_attr = __ATTR(class, 0444, class_show, NULL); static ssize_t inst_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%d\n", kobj_to_engine(kobj)->uabi_instance); } static const struct kobj_attribute inst_attr = __ATTR(instance, 0444, inst_show, NULL); static ssize_t mmio_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "0x%x\n", kobj_to_engine(kobj)->mmio_base); } static const struct kobj_attribute mmio_attr = __ATTR(mmio_base, 0444, mmio_show, NULL); static const char * const vcs_caps[] = { [ilog2(I915_VIDEO_CLASS_CAPABILITY_HEVC)] = "hevc", [ilog2(I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC)] = "sfc", }; static const char * const vecs_caps[] = { [ilog2(I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC)] = "sfc", }; static ssize_t repr_trim(char *buf, ssize_t len) { /* Trim off the trailing space and replace with a newline */ if (len > PAGE_SIZE) len = PAGE_SIZE; if (len > 0) buf[len - 1] = '\n'; return len; } static ssize_t __caps_show(struct intel_engine_cs *engine, unsigned long caps, char *buf, bool show_unknown) { const char * const *repr; int count, n; ssize_t len; switch (engine->class) { case VIDEO_DECODE_CLASS: repr = vcs_caps; count = ARRAY_SIZE(vcs_caps); break; case VIDEO_ENHANCEMENT_CLASS: repr = vecs_caps; count = ARRAY_SIZE(vecs_caps); break; default: repr = NULL; count = 0; break; } GEM_BUG_ON(count > BITS_PER_LONG); len = 0; for_each_set_bit(n, &caps, show_unknown ? BITS_PER_LONG : count) { if (n >= count || !repr[n]) { if (GEM_WARN_ON(show_unknown)) len += sysfs_emit_at(buf, len, "[%x] ", n); } else { len += sysfs_emit_at(buf, len, "%s ", repr[n]); } if (GEM_WARN_ON(len >= PAGE_SIZE)) break; } return repr_trim(buf, len); } static ssize_t caps_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_engine_cs *engine = kobj_to_engine(kobj); return __caps_show(engine, engine->uabi_capabilities, buf, true); } static const struct kobj_attribute caps_attr = __ATTR(capabilities, 0444, caps_show, NULL); static ssize_t all_caps_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return __caps_show(kobj_to_engine(kobj), -1, buf, false); } static const struct kobj_attribute all_caps_attr = __ATTR(known_capabilities, 0444, all_caps_show, NULL); static ssize_t max_spin_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct intel_engine_cs *engine = kobj_to_engine(kobj); unsigned long long duration, clamped; int err; /* * When waiting for a request, if is it currently being executed * on the GPU, we busywait for a short while before sleeping. The * premise is that most requests are short, and if it is already * executing then there is a good chance that it will complete * before we can setup the interrupt handler and go to sleep. * We try to offset the cost of going to sleep, by first spinning * on the request -- if it completed in less time than it would take * to go sleep, process the interrupt and return back to the client, * then we have saved the client some latency, albeit at the cost * of spinning on an expensive CPU core. * * While we try to avoid waiting at all for a request that is unlikely * to complete, deciding how long it is worth spinning is for is an * arbitrary decision: trading off power vs latency. */ err = kstrtoull(buf, 0, &duration); if (err) return err; clamped = intel_clamp_max_busywait_duration_ns(engine, duration); if (duration != clamped) return -EINVAL; WRITE_ONCE(engine->props.max_busywait_duration_ns, duration); return count; } static ssize_t max_spin_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_engine_cs *engine = kobj_to_engine(kobj); return sysfs_emit(buf, "%lu\n", engine->props.max_busywait_duration_ns); } static const struct kobj_attribute max_spin_attr = __ATTR(max_busywait_duration_ns, 0644, max_spin_show, max_spin_store); static ssize_t max_spin_default(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_engine_cs *engine = kobj_to_engine(kobj); return sysfs_emit(buf, "%lu\n", engine->defaults.max_busywait_duration_ns); } static const struct kobj_attribute max_spin_def = __ATTR(max_busywait_duration_ns, 0444, max_spin_default, NULL); static ssize_t timeslice_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct intel_engine_cs *engine = kobj_to_engine(kobj); unsigned long long duration, clamped; int err; /* * Execlists uses a scheduling quantum (a timeslice) to alternate * execution between ready-to-run contexts of equal priority. This * ensures that all users (though only if they of equal importance) * have the opportunity to run and prevents livelocks where contexts * may have implicit ordering due to userspace semaphores. */ err = kstrtoull(buf, 0, &duration); if (err) return err; clamped = intel_clamp_timeslice_duration_ms(engine, duration); if (duration != clamped) return -EINVAL; WRITE_ONCE(engine->props.timeslice_duration_ms, duration); if (execlists_active(&engine->execlists)) set_timer_ms(&engine->execlists.timer, duration); return count; } static ssize_t timeslice_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_engine_cs *engine = kobj_to_engine(kobj); return sysfs_emit(buf, "%lu\n", engine->props.timeslice_duration_ms); } static const struct kobj_attribute timeslice_duration_attr = __ATTR(timeslice_duration_ms, 0644, timeslice_show, timeslice_store); static ssize_t timeslice_default(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_engine_cs *engine = kobj_to_engine(kobj); return sysfs_emit(buf, "%lu\n", engine->defaults.timeslice_duration_ms); } static const struct kobj_attribute timeslice_duration_def = __ATTR(timeslice_duration_ms, 0444, timeslice_default, NULL); static ssize_t stop_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct intel_engine_cs *engine = kobj_to_engine(kobj); unsigned long long duration, clamped; int err; /* * When we allow ourselves to sleep before a GPU reset after disabling * submission, even for a few milliseconds, gives an innocent context * the opportunity to clear the GPU before the reset occurs. However, * how long to sleep depends on the typical non-preemptible duration * (a similar problem to determining the ideal preempt-reset timeout * or even the heartbeat interval). */ err = kstrtoull(buf, 0, &duration); if (err) return err; clamped = intel_clamp_stop_timeout_ms(engine, duration); if (duration != clamped) return -EINVAL; WRITE_ONCE(engine->props.stop_timeout_ms, duration); return count; } static ssize_t stop_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_engine_cs *engine = kobj_to_engine(kobj); return sysfs_emit(buf, "%lu\n", engine->props.stop_timeout_ms); } static const struct kobj_attribute stop_timeout_attr = __ATTR(stop_timeout_ms, 0644, stop_show, stop_store); static ssize_t stop_default(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_engine_cs *engine = kobj_to_engine(kobj); return sysfs_emit(buf, "%lu\n", engine->defaults.stop_timeout_ms); } static const struct kobj_attribute stop_timeout_def = __ATTR(stop_timeout_ms, 0444, stop_default, NULL); static ssize_t preempt_timeout_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct intel_engine_cs *engine = kobj_to_engine(kobj); unsigned long long timeout, clamped; int err; /* * After initialising a preemption request, we give the current * resident a small amount of time to vacate the GPU. The preemption * request is for a higher priority context and should be immediate to * maintain high quality of service (and avoid priority inversion). * However, the preemption granularity of the GPU can be quite coarse * and so we need a compromise. */ err = kstrtoull(buf, 0, &timeout); if (err) return err; clamped = intel_clamp_preempt_timeout_ms(engine, timeout); if (timeout != clamped) return -EINVAL; WRITE_ONCE(engine->props.preempt_timeout_ms, timeout); if (READ_ONCE(engine->execlists.pending[0])) set_timer_ms(&engine->execlists.preempt, timeout); return count; } static ssize_t preempt_timeout_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_engine_cs *engine = kobj_to_engine(kobj); return sysfs_emit(buf, "%lu\n", engine->props.preempt_timeout_ms); } static const struct kobj_attribute preempt_timeout_attr = __ATTR(preempt_timeout_ms, 0644, preempt_timeout_show, preempt_timeout_store); static ssize_t preempt_timeout_default(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_engine_cs *engine = kobj_to_engine(kobj); return sysfs_emit(buf, "%lu\n", engine->defaults.preempt_timeout_ms); } static const struct kobj_attribute preempt_timeout_def = __ATTR(preempt_timeout_ms, 0444, preempt_timeout_default, NULL); static ssize_t heartbeat_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct intel_engine_cs *engine = kobj_to_engine(kobj); unsigned long long delay, clamped; int err; /* * We monitor the health of the system via periodic heartbeat pulses. * The pulses also provide the opportunity to perform garbage * collection. However, we interpret an incomplete pulse (a missed * heartbeat) as an indication that the system is no longer responsive, * i.e. hung, and perform an engine or full GPU reset. Given that the * preemption granularity can be very coarse on a system, the optimal * value for any workload is unknowable! */ err = kstrtoull(buf, 0, &delay); if (err) return err; clamped = intel_clamp_heartbeat_interval_ms(engine, delay); if (delay != clamped) return -EINVAL; err = intel_engine_set_heartbeat(engine, delay); if (err) return err; return count; } static ssize_t heartbeat_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_engine_cs *engine = kobj_to_engine(kobj); return sysfs_emit(buf, "%lu\n", engine->props.heartbeat_interval_ms); } static const struct kobj_attribute heartbeat_interval_attr = __ATTR(heartbeat_interval_ms, 0644, heartbeat_show, heartbeat_store); static ssize_t heartbeat_default(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_engine_cs *engine = kobj_to_engine(kobj); return sysfs_emit(buf, "%lu\n", engine->defaults.heartbeat_interval_ms); } static const struct kobj_attribute heartbeat_interval_def = __ATTR(heartbeat_interval_ms, 0444, heartbeat_default, NULL); static void kobj_engine_release(struct kobject *kobj) { kfree(kobj); } static const struct kobj_type kobj_engine_type = { .release = kobj_engine_release, .sysfs_ops = &kobj_sysfs_ops }; static struct kobject * kobj_engine(struct kobject *dir, struct intel_engine_cs *engine) { struct kobj_engine *ke; ke = kzalloc(sizeof(*ke), GFP_KERNEL); if (!ke) return NULL; kobject_init(&ke->base, &kobj_engine_type); ke->engine = engine; if (kobject_add(&ke->base, dir, "%s", engine->name)) { kobject_put(&ke->base); return NULL; } /* xfer ownership to sysfs tree */ return &ke->base; } static void add_defaults(struct kobj_engine *parent) { static const struct attribute * const files[] = { &max_spin_def.attr, &stop_timeout_def.attr, #if CONFIG_DRM_I915_HEARTBEAT_INTERVAL &heartbeat_interval_def.attr, #endif NULL }; struct kobj_engine *ke; ke = kzalloc(sizeof(*ke), GFP_KERNEL); if (!ke) return; kobject_init(&ke->base, &kobj_engine_type); ke->engine = parent->engine; if (kobject_add(&ke->base, &parent->base, "%s", ".defaults")) { kobject_put(&ke->base); return; } if (sysfs_create_files(&ke->base, files)) return; if (intel_engine_has_timeslices(ke->engine) && sysfs_create_file(&ke->base, &timeslice_duration_def.attr)) return; if (intel_engine_has_preempt_reset(ke->engine) && sysfs_create_file(&ke->base, &preempt_timeout_def.attr)) return; } void intel_engines_add_sysfs(struct drm_i915_private *i915) { static const struct attribute * const files[] = { &name_attr.attr, &class_attr.attr, &inst_attr.attr, &mmio_attr.attr, &caps_attr.attr, &all_caps_attr.attr, &max_spin_attr.attr, &stop_timeout_attr.attr, #if CONFIG_DRM_I915_HEARTBEAT_INTERVAL &heartbeat_interval_attr.attr, #endif NULL }; struct device *kdev = i915->drm.primary->kdev; struct intel_engine_cs *engine; struct kobject *dir; dir = kobject_create_and_add("engine", &kdev->kobj); if (!dir) return; for_each_uabi_engine(engine, i915) { struct kobject *kobj; kobj = kobj_engine(dir, engine); if (!kobj) goto err_engine; if (sysfs_create_files(kobj, files)) goto err_object; if (intel_engine_has_timeslices(engine) && sysfs_create_file(kobj, &timeslice_duration_attr.attr)) goto err_engine; if (intel_engine_has_preempt_reset(engine) && sysfs_create_file(kobj, &preempt_timeout_attr.attr)) goto err_engine; add_defaults(container_of(kobj, struct kobj_engine, base)); if (0) { err_object: kobject_put(kobj); err_engine: dev_err(kdev, "Failed to add sysfs engine '%s'\n", engine->name); break; } } }
linux-master
drivers/gpu/drm/i915/gt/sysfs_engines.c
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include <linux/sort.h> #include "gem/i915_gem_internal.h" #include "gem/i915_gem_lmem.h" #include "selftests/igt_spinner.h" #include "selftests/i915_random.h" static const unsigned int sizes[] = { SZ_4K, SZ_64K, SZ_2M, CHUNK_SZ - SZ_4K, CHUNK_SZ, CHUNK_SZ + SZ_4K, SZ_64M, }; static struct drm_i915_gem_object * create_lmem_or_internal(struct drm_i915_private *i915, size_t size) { struct drm_i915_gem_object *obj; obj = i915_gem_object_create_lmem(i915, size, 0); if (!IS_ERR(obj)) return obj; return i915_gem_object_create_internal(i915, size); } static int copy(struct intel_migrate *migrate, int (*fn)(struct intel_migrate *migrate, struct i915_gem_ww_ctx *ww, struct drm_i915_gem_object *src, struct drm_i915_gem_object *dst, struct i915_request **out), u32 sz, struct rnd_state *prng) { struct drm_i915_private *i915 = migrate->context->engine->i915; struct drm_i915_gem_object *src, *dst; struct i915_request *rq; struct i915_gem_ww_ctx ww; u32 *vaddr; int err = 0; int i; src = create_lmem_or_internal(i915, sz); if (IS_ERR(src)) return 0; sz = src->base.size; dst = i915_gem_object_create_internal(i915, sz); if (IS_ERR(dst)) goto err_free_src; for_i915_gem_ww(&ww, err, true) { err = i915_gem_object_lock(src, &ww); if (err) continue; err = i915_gem_object_lock(dst, &ww); if (err) continue; vaddr = i915_gem_object_pin_map(src, I915_MAP_WC); if (IS_ERR(vaddr)) { err = PTR_ERR(vaddr); continue; } for (i = 0; i < sz / sizeof(u32); i++) vaddr[i] = i; i915_gem_object_flush_map(src); vaddr = i915_gem_object_pin_map(dst, I915_MAP_WC); if (IS_ERR(vaddr)) { err = PTR_ERR(vaddr); goto unpin_src; } for (i = 0; i < sz / sizeof(u32); i++) vaddr[i] = ~i; i915_gem_object_flush_map(dst); err = fn(migrate, &ww, src, dst, &rq); if (!err) continue; if (err != -EDEADLK && err != -EINTR && err != -ERESTARTSYS) pr_err("%ps failed, size: %u\n", fn, sz); if (rq) { i915_request_wait(rq, 0, HZ); i915_request_put(rq); } i915_gem_object_unpin_map(dst); unpin_src: i915_gem_object_unpin_map(src); } if (err) goto err_out; if (rq) { if (i915_request_wait(rq, 0, HZ) < 0) { pr_err("%ps timed out, size: %u\n", fn, sz); err = -ETIME; } i915_request_put(rq); } for (i = 0; !err && i < sz / PAGE_SIZE; i++) { int x = i * 1024 + i915_prandom_u32_max_state(1024, prng); if (vaddr[x] != x) { pr_err("%ps failed, size: %u, offset: %zu\n", fn, sz, x * sizeof(u32)); igt_hexdump(vaddr + i * 1024, 4096); err = -EINVAL; } } i915_gem_object_unpin_map(dst); i915_gem_object_unpin_map(src); err_out: i915_gem_object_put(dst); err_free_src: i915_gem_object_put(src); return err; } static int intel_context_copy_ccs(struct intel_context *ce, const struct i915_deps *deps, struct scatterlist *sg, unsigned int pat_index, bool write_to_ccs, struct i915_request **out) { u8 src_access = write_to_ccs ? DIRECT_ACCESS : INDIRECT_ACCESS; u8 dst_access = write_to_ccs ? INDIRECT_ACCESS : DIRECT_ACCESS; struct sgt_dma it = sg_sgt(sg); struct i915_request *rq; u32 offset; int err; GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm); *out = NULL; GEM_BUG_ON(ce->ring->size < SZ_64K); offset = 0; if (HAS_64K_PAGES(ce->engine->i915)) offset = CHUNK_SZ; do { int len; rq = i915_request_create(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out_ce; } if (deps) { err = i915_request_await_deps(rq, deps); if (err) goto out_rq; if (rq->engine->emit_init_breadcrumb) { err = rq->engine->emit_init_breadcrumb(rq); if (err) goto out_rq; } deps = NULL; } /* The PTE updates + clear must not be interrupted. */ err = emit_no_arbitration(rq); if (err) goto out_rq; len = emit_pte(rq, &it, pat_index, true, offset, CHUNK_SZ); if (len <= 0) { err = len; goto out_rq; } err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); if (err) goto out_rq; err = emit_copy_ccs(rq, offset, dst_access, offset, src_access, len); if (err) goto out_rq; err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); /* Arbitration is re-enabled between requests. */ out_rq: if (*out) i915_request_put(*out); *out = i915_request_get(rq); i915_request_add(rq); if (err || !it.sg || !sg_dma_len(it.sg)) break; cond_resched(); } while (1); out_ce: return err; } static int intel_migrate_ccs_copy(struct intel_migrate *m, struct i915_gem_ww_ctx *ww, const struct i915_deps *deps, struct scatterlist *sg, unsigned int pat_index, bool write_to_ccs, struct i915_request **out) { struct intel_context *ce; int err; *out = NULL; if (!m->context) return -ENODEV; ce = intel_migrate_create_context(m); if (IS_ERR(ce)) ce = intel_context_get(m->context); GEM_BUG_ON(IS_ERR(ce)); err = intel_context_pin_ww(ce, ww); if (err) goto out; err = intel_context_copy_ccs(ce, deps, sg, pat_index, write_to_ccs, out); intel_context_unpin(ce); out: intel_context_put(ce); return err; } static int clear(struct intel_migrate *migrate, int (*fn)(struct intel_migrate *migrate, struct i915_gem_ww_ctx *ww, struct drm_i915_gem_object *obj, u32 value, struct i915_request **out), u32 sz, struct rnd_state *prng) { struct drm_i915_private *i915 = migrate->context->engine->i915; struct drm_i915_gem_object *obj; struct i915_request *rq; struct i915_gem_ww_ctx ww; u32 *vaddr, val = 0; bool ccs_cap = false; int err = 0; int i; obj = create_lmem_or_internal(i915, sz); if (IS_ERR(obj)) return 0; /* Consider the rounded up memory too */ sz = obj->base.size; if (HAS_FLAT_CCS(i915) && i915_gem_object_is_lmem(obj)) ccs_cap = true; for_i915_gem_ww(&ww, err, true) { int ccs_bytes, ccs_bytes_per_chunk; err = i915_gem_object_lock(obj, &ww); if (err) continue; vaddr = i915_gem_object_pin_map(obj, I915_MAP_WC); if (IS_ERR(vaddr)) { err = PTR_ERR(vaddr); continue; } for (i = 0; i < sz / sizeof(u32); i++) vaddr[i] = ~i; i915_gem_object_flush_map(obj); if (ccs_cap && !val) { /* Write the obj data into ccs surface */ err = intel_migrate_ccs_copy(migrate, &ww, NULL, obj->mm.pages->sgl, obj->pat_index, true, &rq); if (rq && !err) { if (i915_request_wait(rq, 0, HZ) < 0) { pr_err("%ps timed out, size: %u\n", fn, sz); err = -ETIME; } i915_request_put(rq); rq = NULL; } if (err) continue; } err = fn(migrate, &ww, obj, val, &rq); if (rq && !err) { if (i915_request_wait(rq, 0, HZ) < 0) { pr_err("%ps timed out, size: %u\n", fn, sz); err = -ETIME; } i915_request_put(rq); rq = NULL; } if (err) continue; i915_gem_object_flush_map(obj); /* Verify the set/clear of the obj mem */ for (i = 0; !err && i < sz / PAGE_SIZE; i++) { int x = i * 1024 + i915_prandom_u32_max_state(1024, prng); if (vaddr[x] != val) { pr_err("%ps failed, (%u != %u), offset: %zu\n", fn, vaddr[x], val, x * sizeof(u32)); igt_hexdump(vaddr + i * 1024, 4096); err = -EINVAL; } } if (err) continue; if (ccs_cap && !val) { for (i = 0; i < sz / sizeof(u32); i++) vaddr[i] = ~i; i915_gem_object_flush_map(obj); err = intel_migrate_ccs_copy(migrate, &ww, NULL, obj->mm.pages->sgl, obj->pat_index, false, &rq); if (rq && !err) { if (i915_request_wait(rq, 0, HZ) < 0) { pr_err("%ps timed out, size: %u\n", fn, sz); err = -ETIME; } i915_request_put(rq); rq = NULL; } if (err) continue; ccs_bytes = GET_CCS_BYTES(i915, sz); ccs_bytes_per_chunk = GET_CCS_BYTES(i915, CHUNK_SZ); i915_gem_object_flush_map(obj); for (i = 0; !err && i < DIV_ROUND_UP(ccs_bytes, PAGE_SIZE); i++) { int offset = ((i * PAGE_SIZE) / ccs_bytes_per_chunk) * CHUNK_SZ / sizeof(u32); int ccs_bytes_left = (ccs_bytes - i * PAGE_SIZE) / sizeof(u32); int x = i915_prandom_u32_max_state(min_t(int, 1024, ccs_bytes_left), prng); if (vaddr[offset + x]) { pr_err("%ps ccs clearing failed, offset: %ld/%d\n", fn, i * PAGE_SIZE + x * sizeof(u32), ccs_bytes); igt_hexdump(vaddr + offset, min_t(int, 4096, ccs_bytes_left * sizeof(u32))); err = -EINVAL; } } if (err) continue; } i915_gem_object_unpin_map(obj); } if (err) { if (err != -EDEADLK && err != -EINTR && err != -ERESTARTSYS) pr_err("%ps failed, size: %u\n", fn, sz); if (rq && err != -EINVAL) { i915_request_wait(rq, 0, HZ); i915_request_put(rq); } i915_gem_object_unpin_map(obj); } i915_gem_object_put(obj); return err; } static int __migrate_copy(struct intel_migrate *migrate, struct i915_gem_ww_ctx *ww, struct drm_i915_gem_object *src, struct drm_i915_gem_object *dst, struct i915_request **out) { return intel_migrate_copy(migrate, ww, NULL, src->mm.pages->sgl, src->pat_index, i915_gem_object_is_lmem(src), dst->mm.pages->sgl, dst->pat_index, i915_gem_object_is_lmem(dst), out); } static int __global_copy(struct intel_migrate *migrate, struct i915_gem_ww_ctx *ww, struct drm_i915_gem_object *src, struct drm_i915_gem_object *dst, struct i915_request **out) { return intel_context_migrate_copy(migrate->context, NULL, src->mm.pages->sgl, src->pat_index, i915_gem_object_is_lmem(src), dst->mm.pages->sgl, dst->pat_index, i915_gem_object_is_lmem(dst), out); } static int migrate_copy(struct intel_migrate *migrate, u32 sz, struct rnd_state *prng) { return copy(migrate, __migrate_copy, sz, prng); } static int global_copy(struct intel_migrate *migrate, u32 sz, struct rnd_state *prng) { return copy(migrate, __global_copy, sz, prng); } static int __migrate_clear(struct intel_migrate *migrate, struct i915_gem_ww_ctx *ww, struct drm_i915_gem_object *obj, u32 value, struct i915_request **out) { return intel_migrate_clear(migrate, ww, NULL, obj->mm.pages->sgl, obj->pat_index, i915_gem_object_is_lmem(obj), value, out); } static int __global_clear(struct intel_migrate *migrate, struct i915_gem_ww_ctx *ww, struct drm_i915_gem_object *obj, u32 value, struct i915_request **out) { return intel_context_migrate_clear(migrate->context, NULL, obj->mm.pages->sgl, obj->pat_index, i915_gem_object_is_lmem(obj), value, out); } static int migrate_clear(struct intel_migrate *migrate, u32 sz, struct rnd_state *prng) { return clear(migrate, __migrate_clear, sz, prng); } static int global_clear(struct intel_migrate *migrate, u32 sz, struct rnd_state *prng) { return clear(migrate, __global_clear, sz, prng); } static int live_migrate_copy(void *arg) { struct intel_gt *gt = arg; struct intel_migrate *migrate = &gt->migrate; struct drm_i915_private *i915 = migrate->context->engine->i915; I915_RND_STATE(prng); int i; for (i = 0; i < ARRAY_SIZE(sizes); i++) { int err; err = migrate_copy(migrate, sizes[i], &prng); if (err == 0) err = global_copy(migrate, sizes[i], &prng); i915_gem_drain_freed_objects(i915); if (err) return err; } return 0; } static int live_migrate_clear(void *arg) { struct intel_gt *gt = arg; struct intel_migrate *migrate = &gt->migrate; struct drm_i915_private *i915 = migrate->context->engine->i915; I915_RND_STATE(prng); int i; for (i = 0; i < ARRAY_SIZE(sizes); i++) { int err; err = migrate_clear(migrate, sizes[i], &prng); if (err == 0) err = global_clear(migrate, sizes[i], &prng); i915_gem_drain_freed_objects(i915); if (err) return err; } return 0; } struct spinner_timer { struct timer_list timer; struct igt_spinner spin; }; static void spinner_kill(struct timer_list *timer) { struct spinner_timer *st = from_timer(st, timer, timer); igt_spinner_end(&st->spin); pr_info("%s\n", __func__); } static int live_emit_pte_full_ring(void *arg) { struct intel_gt *gt = arg; struct intel_migrate *migrate = &gt->migrate; struct drm_i915_private *i915 = migrate->context->engine->i915; struct drm_i915_gem_object *obj; struct intel_context *ce; struct i915_request *rq, *prev; struct spinner_timer st; struct sgt_dma it; int len, sz, err; u32 *cs; /* * Simple regression test to check that we don't trample the * rq->reserved_space when returning from emit_pte(), if the ring is * nearly full. */ if (igt_spinner_init(&st.spin, to_gt(i915))) return -ENOMEM; obj = i915_gem_object_create_internal(i915, 2 * PAGE_SIZE); if (IS_ERR(obj)) { err = PTR_ERR(obj); goto out_spinner; } err = i915_gem_object_pin_pages_unlocked(obj); if (err) goto out_obj; ce = intel_migrate_create_context(migrate); if (IS_ERR(ce)) { err = PTR_ERR(ce); goto out_obj; } ce->ring_size = SZ_4K; /* Not too big */ err = intel_context_pin(ce); if (err) goto out_put; rq = igt_spinner_create_request(&st.spin, ce, MI_ARB_CHECK); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out_unpin; } i915_request_add(rq); if (!igt_wait_for_spinner(&st.spin, rq)) { err = -EIO; goto out_unpin; } /* * Fill the rest of the ring leaving I915_EMIT_PTE_NUM_DWORDS + * ring->reserved_space at the end. To actually emit the PTEs we require * slightly more than I915_EMIT_PTE_NUM_DWORDS, since our object size is * greater than PAGE_SIZE. The correct behaviour is to wait for more * ring space in emit_pte(), otherwise we trample on the reserved_space * resulting in crashes when later submitting the rq. */ prev = NULL; do { if (prev) i915_request_add(rq); rq = i915_request_create(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out_unpin; } sz = (rq->ring->space - rq->reserved_space) / sizeof(u32) - I915_EMIT_PTE_NUM_DWORDS; sz = min_t(u32, sz, (SZ_1K - rq->reserved_space) / sizeof(u32) - I915_EMIT_PTE_NUM_DWORDS); cs = intel_ring_begin(rq, sz); if (IS_ERR(cs)) { err = PTR_ERR(cs); goto out_rq; } memset32(cs, MI_NOOP, sz); cs += sz; intel_ring_advance(rq, cs); pr_info("%s emit=%u sz=%d\n", __func__, rq->ring->emit, sz); prev = rq; } while (rq->ring->space > (rq->reserved_space + I915_EMIT_PTE_NUM_DWORDS * sizeof(u32))); timer_setup_on_stack(&st.timer, spinner_kill, 0); mod_timer(&st.timer, jiffies + 2 * HZ); /* * This should wait for the spinner to be killed, otherwise we should go * down in flames when doing i915_request_add(). */ pr_info("%s emite_pte ring space=%u\n", __func__, rq->ring->space); it = sg_sgt(obj->mm.pages->sgl); len = emit_pte(rq, &it, obj->pat_index, false, 0, CHUNK_SZ); if (!len) { err = -EINVAL; goto out_rq; } if (len < 0) { err = len; goto out_rq; } out_rq: i915_request_add(rq); /* GEM_BUG_ON(rq->reserved_space > ring->space)? */ del_timer_sync(&st.timer); destroy_timer_on_stack(&st.timer); out_unpin: intel_context_unpin(ce); out_put: intel_context_put(ce); out_obj: i915_gem_object_put(obj); out_spinner: igt_spinner_fini(&st.spin); return err; } struct threaded_migrate { struct intel_migrate *migrate; struct task_struct *tsk; struct rnd_state prng; }; static int threaded_migrate(struct intel_migrate *migrate, int (*fn)(void *arg), unsigned int flags) { const unsigned int n_cpus = num_online_cpus() + 1; struct threaded_migrate *thread; I915_RND_STATE(prng); unsigned int i; int err = 0; thread = kcalloc(n_cpus, sizeof(*thread), GFP_KERNEL); if (!thread) return 0; for (i = 0; i < n_cpus; ++i) { struct task_struct *tsk; thread[i].migrate = migrate; thread[i].prng = I915_RND_STATE_INITIALIZER(prandom_u32_state(&prng)); tsk = kthread_run(fn, &thread[i], "igt-%d", i); if (IS_ERR(tsk)) { err = PTR_ERR(tsk); break; } get_task_struct(tsk); thread[i].tsk = tsk; } msleep(10); /* start all threads before we kthread_stop() */ for (i = 0; i < n_cpus; ++i) { struct task_struct *tsk = thread[i].tsk; int status; if (IS_ERR_OR_NULL(tsk)) continue; status = kthread_stop(tsk); if (status && !err) err = status; put_task_struct(tsk); } kfree(thread); return err; } static int __thread_migrate_copy(void *arg) { struct threaded_migrate *tm = arg; return migrate_copy(tm->migrate, 2 * CHUNK_SZ, &tm->prng); } static int thread_migrate_copy(void *arg) { struct intel_gt *gt = arg; struct intel_migrate *migrate = &gt->migrate; return threaded_migrate(migrate, __thread_migrate_copy, 0); } static int __thread_global_copy(void *arg) { struct threaded_migrate *tm = arg; return global_copy(tm->migrate, 2 * CHUNK_SZ, &tm->prng); } static int thread_global_copy(void *arg) { struct intel_gt *gt = arg; struct intel_migrate *migrate = &gt->migrate; return threaded_migrate(migrate, __thread_global_copy, 0); } static int __thread_migrate_clear(void *arg) { struct threaded_migrate *tm = arg; return migrate_clear(tm->migrate, 2 * CHUNK_SZ, &tm->prng); } static int __thread_global_clear(void *arg) { struct threaded_migrate *tm = arg; return global_clear(tm->migrate, 2 * CHUNK_SZ, &tm->prng); } static int thread_migrate_clear(void *arg) { struct intel_gt *gt = arg; struct intel_migrate *migrate = &gt->migrate; return threaded_migrate(migrate, __thread_migrate_clear, 0); } static int thread_global_clear(void *arg) { struct intel_gt *gt = arg; struct intel_migrate *migrate = &gt->migrate; return threaded_migrate(migrate, __thread_global_clear, 0); } int intel_migrate_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(live_migrate_copy), SUBTEST(live_migrate_clear), SUBTEST(live_emit_pte_full_ring), SUBTEST(thread_migrate_copy), SUBTEST(thread_migrate_clear), SUBTEST(thread_global_copy), SUBTEST(thread_global_clear), }; struct intel_gt *gt = to_gt(i915); if (!gt->migrate.context) return 0; return intel_gt_live_subtests(tests, gt); } static struct drm_i915_gem_object * create_init_lmem_internal(struct intel_gt *gt, size_t sz, bool try_lmem) { struct drm_i915_gem_object *obj = NULL; int err; if (try_lmem) obj = i915_gem_object_create_lmem(gt->i915, sz, 0); if (IS_ERR_OR_NULL(obj)) { obj = i915_gem_object_create_internal(gt->i915, sz); if (IS_ERR(obj)) return obj; } i915_gem_object_trylock(obj, NULL); err = i915_gem_object_pin_pages(obj); if (err) { i915_gem_object_unlock(obj); i915_gem_object_put(obj); return ERR_PTR(err); } return obj; } static int wrap_ktime_compare(const void *A, const void *B) { const ktime_t *a = A, *b = B; return ktime_compare(*a, *b); } static int __perf_clear_blt(struct intel_context *ce, struct scatterlist *sg, unsigned int pat_index, bool is_lmem, size_t sz) { ktime_t t[5]; int pass; int err = 0; for (pass = 0; pass < ARRAY_SIZE(t); pass++) { struct i915_request *rq; ktime_t t0, t1; t0 = ktime_get(); err = intel_context_migrate_clear(ce, NULL, sg, pat_index, is_lmem, 0, &rq); if (rq) { if (i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT) < 0) err = -EIO; i915_request_put(rq); } if (err) break; t1 = ktime_get(); t[pass] = ktime_sub(t1, t0); } if (err) return err; sort(t, ARRAY_SIZE(t), sizeof(*t), wrap_ktime_compare, NULL); pr_info("%s: %zd KiB fill: %lld MiB/s\n", ce->engine->name, sz >> 10, div64_u64(mul_u32_u32(4 * sz, 1000 * 1000 * 1000), t[1] + 2 * t[2] + t[3]) >> 20); return 0; } static int perf_clear_blt(void *arg) { struct intel_gt *gt = arg; static const unsigned long sizes[] = { SZ_4K, SZ_64K, SZ_2M, SZ_64M }; int i; for (i = 0; i < ARRAY_SIZE(sizes); i++) { struct drm_i915_gem_object *dst; int err; dst = create_init_lmem_internal(gt, sizes[i], true); if (IS_ERR(dst)) return PTR_ERR(dst); err = __perf_clear_blt(gt->migrate.context, dst->mm.pages->sgl, i915_gem_get_pat_index(gt->i915, I915_CACHE_NONE), i915_gem_object_is_lmem(dst), sizes[i]); i915_gem_object_unlock(dst); i915_gem_object_put(dst); if (err) return err; } return 0; } static int __perf_copy_blt(struct intel_context *ce, struct scatterlist *src, unsigned int src_pat_index, bool src_is_lmem, struct scatterlist *dst, unsigned int dst_pat_index, bool dst_is_lmem, size_t sz) { ktime_t t[5]; int pass; int err = 0; for (pass = 0; pass < ARRAY_SIZE(t); pass++) { struct i915_request *rq; ktime_t t0, t1; t0 = ktime_get(); err = intel_context_migrate_copy(ce, NULL, src, src_pat_index, src_is_lmem, dst, dst_pat_index, dst_is_lmem, &rq); if (rq) { if (i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT) < 0) err = -EIO; i915_request_put(rq); } if (err) break; t1 = ktime_get(); t[pass] = ktime_sub(t1, t0); } if (err) return err; sort(t, ARRAY_SIZE(t), sizeof(*t), wrap_ktime_compare, NULL); pr_info("%s: %zd KiB copy: %lld MiB/s\n", ce->engine->name, sz >> 10, div64_u64(mul_u32_u32(4 * sz, 1000 * 1000 * 1000), t[1] + 2 * t[2] + t[3]) >> 20); return 0; } static int perf_copy_blt(void *arg) { struct intel_gt *gt = arg; static const unsigned long sizes[] = { SZ_4K, SZ_64K, SZ_2M, SZ_64M }; int i; for (i = 0; i < ARRAY_SIZE(sizes); i++) { struct drm_i915_gem_object *src, *dst; size_t sz; int err; src = create_init_lmem_internal(gt, sizes[i], true); if (IS_ERR(src)) return PTR_ERR(src); sz = src->base.size; dst = create_init_lmem_internal(gt, sz, false); if (IS_ERR(dst)) { err = PTR_ERR(dst); goto err_src; } err = __perf_copy_blt(gt->migrate.context, src->mm.pages->sgl, i915_gem_get_pat_index(gt->i915, I915_CACHE_NONE), i915_gem_object_is_lmem(src), dst->mm.pages->sgl, i915_gem_get_pat_index(gt->i915, I915_CACHE_NONE), i915_gem_object_is_lmem(dst), sz); i915_gem_object_unlock(dst); i915_gem_object_put(dst); err_src: i915_gem_object_unlock(src); i915_gem_object_put(src); if (err) return err; } return 0; } int intel_migrate_perf_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(perf_clear_blt), SUBTEST(perf_copy_blt), }; struct intel_gt *gt = to_gt(i915); if (intel_gt_is_wedged(gt)) return 0; if (!gt->migrate.context) return 0; return intel_gt_live_subtests(tests, gt); }
linux-master
drivers/gpu/drm/i915/gt/selftest_migrate.c
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include <asm/set_memory.h> #include <asm/smp.h> #include <linux/types.h> #include <linux/stop_machine.h> #include <drm/drm_managed.h> #include <drm/i915_drm.h> #include <drm/intel-gtt.h> #include "display/intel_display.h" #include "gem/i915_gem_lmem.h" #include "intel_ggtt_gmch.h" #include "intel_gt.h" #include "intel_gt_regs.h" #include "intel_pci_config.h" #include "i915_drv.h" #include "i915_pci.h" #include "i915_scatterlist.h" #include "i915_utils.h" #include "i915_vgpu.h" #include "intel_gtt.h" #include "gen8_ppgtt.h" static void i915_ggtt_color_adjust(const struct drm_mm_node *node, unsigned long color, u64 *start, u64 *end) { if (i915_node_color_differs(node, color)) *start += I915_GTT_PAGE_SIZE; /* * Also leave a space between the unallocated reserved node after the * GTT and any objects within the GTT, i.e. we use the color adjustment * to insert a guard page to prevent prefetches crossing over the * GTT boundary. */ node = list_next_entry(node, node_list); if (node->color != color) *end -= I915_GTT_PAGE_SIZE; } static int ggtt_init_hw(struct i915_ggtt *ggtt) { struct drm_i915_private *i915 = ggtt->vm.i915; i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT); ggtt->vm.is_ggtt = true; /* Only VLV supports read-only GGTT mappings */ ggtt->vm.has_read_only = IS_VALLEYVIEW(i915); if (!HAS_LLC(i915) && !HAS_PPGTT(i915)) ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust; if (ggtt->mappable_end) { if (!io_mapping_init_wc(&ggtt->iomap, ggtt->gmadr.start, ggtt->mappable_end)) { ggtt->vm.cleanup(&ggtt->vm); return -EIO; } ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end); } intel_ggtt_init_fences(ggtt); return 0; } /** * i915_ggtt_init_hw - Initialize GGTT hardware * @i915: i915 device */ int i915_ggtt_init_hw(struct drm_i915_private *i915) { int ret; /* * Note that we use page colouring to enforce a guard page at the * end of the address space. This is required as the CS may prefetch * beyond the end of the batch buffer, across the page boundary, * and beyond the end of the GTT if we do not provide a guard. */ ret = ggtt_init_hw(to_gt(i915)->ggtt); if (ret) return ret; return 0; } /** * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM * @vm: The VM to suspend the mappings for * * Suspend the memory mappings for all objects mapped to HW via the GGTT or a * DPT page table. */ void i915_ggtt_suspend_vm(struct i915_address_space *vm) { struct i915_vma *vma, *vn; int save_skip_rewrite; drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); retry: i915_gem_drain_freed_objects(vm->i915); mutex_lock(&vm->mutex); /* * Skip rewriting PTE on VMA unbind. * FIXME: Use an argument to i915_vma_unbind() instead? */ save_skip_rewrite = vm->skip_pte_rewrite; vm->skip_pte_rewrite = true; list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) { struct drm_i915_gem_object *obj = vma->obj; GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) continue; /* unlikely to race when GPU is idle, so no worry about slowpath.. */ if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) { /* * No dead objects should appear here, GPU should be * completely idle, and userspace suspended */ i915_gem_object_get(obj); mutex_unlock(&vm->mutex); i915_gem_object_lock(obj, NULL); GEM_WARN_ON(i915_vma_unbind(vma)); i915_gem_object_unlock(obj); i915_gem_object_put(obj); vm->skip_pte_rewrite = save_skip_rewrite; goto retry; } if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) { i915_vma_wait_for_bind(vma); __i915_vma_evict(vma, false); drm_mm_remove_node(&vma->node); } i915_gem_object_unlock(obj); } vm->clear_range(vm, 0, vm->total); vm->skip_pte_rewrite = save_skip_rewrite; mutex_unlock(&vm->mutex); } void i915_ggtt_suspend(struct i915_ggtt *ggtt) { struct intel_gt *gt; i915_ggtt_suspend_vm(&ggtt->vm); ggtt->invalidate(ggtt); list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) intel_gt_check_and_clear_faults(gt); } void gen6_ggtt_invalidate(struct i915_ggtt *ggtt) { struct intel_uncore *uncore = ggtt->vm.gt->uncore; spin_lock_irq(&uncore->lock); intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6); spin_unlock_irq(&uncore->lock); } static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt) { struct intel_uncore *uncore = ggtt->vm.gt->uncore; /* * Note that as an uncached mmio write, this will flush the * WCB of the writes into the GGTT before it triggers the invalidate. */ intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); } static void guc_ggtt_invalidate(struct i915_ggtt *ggtt) { struct drm_i915_private *i915 = ggtt->vm.i915; gen8_ggtt_invalidate(ggtt); if (GRAPHICS_VER(i915) >= 12) { struct intel_gt *gt; list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) intel_uncore_write_fw(gt->uncore, GEN12_GUC_TLB_INV_CR, GEN12_GUC_TLB_INV_CR_INVALIDATE); } else { intel_uncore_write_fw(ggtt->vm.gt->uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE); } } static u64 mtl_ggtt_pte_encode(dma_addr_t addr, unsigned int pat_index, u32 flags) { gen8_pte_t pte = addr | GEN8_PAGE_PRESENT; WARN_ON_ONCE(addr & ~GEN12_GGTT_PTE_ADDR_MASK); if (flags & PTE_LM) pte |= GEN12_GGTT_PTE_LM; if (pat_index & BIT(0)) pte |= MTL_GGTT_PTE_PAT0; if (pat_index & BIT(1)) pte |= MTL_GGTT_PTE_PAT1; return pte; } u64 gen8_ggtt_pte_encode(dma_addr_t addr, unsigned int pat_index, u32 flags) { gen8_pte_t pte = addr | GEN8_PAGE_PRESENT; if (flags & PTE_LM) pte |= GEN12_GGTT_PTE_LM; return pte; } static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) { writeq(pte, addr); } static void gen8_ggtt_insert_page(struct i915_address_space *vm, dma_addr_t addr, u64 offset, unsigned int pat_index, u32 flags) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); gen8_pte_t __iomem *pte = (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; gen8_set_pte(pte, ggtt->vm.pte_encode(addr, pat_index, flags)); ggtt->invalidate(ggtt); } static void gen8_ggtt_insert_entries(struct i915_address_space *vm, struct i915_vma_resource *vma_res, unsigned int pat_index, u32 flags) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); const gen8_pte_t pte_encode = ggtt->vm.pte_encode(0, pat_index, flags); gen8_pte_t __iomem *gte; gen8_pte_t __iomem *end; struct sgt_iter iter; dma_addr_t addr; /* * Note that we ignore PTE_READ_ONLY here. The caller must be careful * not to allow the user to override access to a read only page. */ gte = (gen8_pte_t __iomem *)ggtt->gsm; gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE; end = gte + vma_res->guard / I915_GTT_PAGE_SIZE; while (gte < end) gen8_set_pte(gte++, vm->scratch[0]->encode); end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE; for_each_sgt_daddr(addr, iter, vma_res->bi.pages) gen8_set_pte(gte++, pte_encode | addr); GEM_BUG_ON(gte > end); /* Fill the allocated but "unused" space beyond the end of the buffer */ while (gte < end) gen8_set_pte(gte++, vm->scratch[0]->encode); /* * We want to flush the TLBs only after we're certain all the PTE * updates have finished. */ ggtt->invalidate(ggtt); } static void gen8_ggtt_clear_range(struct i915_address_space *vm, u64 start, u64 length) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); unsigned int first_entry = start / I915_GTT_PAGE_SIZE; unsigned int num_entries = length / I915_GTT_PAGE_SIZE; const gen8_pte_t scratch_pte = vm->scratch[0]->encode; gen8_pte_t __iomem *gtt_base = (gen8_pte_t __iomem *)ggtt->gsm + first_entry; const int max_entries = ggtt_total_entries(ggtt) - first_entry; int i; if (WARN(num_entries > max_entries, "First entry = %d; Num entries = %d (max=%d)\n", first_entry, num_entries, max_entries)) num_entries = max_entries; for (i = 0; i < num_entries; i++) gen8_set_pte(&gtt_base[i], scratch_pte); } static void gen6_ggtt_insert_page(struct i915_address_space *vm, dma_addr_t addr, u64 offset, unsigned int pat_index, u32 flags) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); gen6_pte_t __iomem *pte = (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; iowrite32(vm->pte_encode(addr, pat_index, flags), pte); ggtt->invalidate(ggtt); } /* * Binds an object into the global gtt with the specified cache level. * The object will be accessible to the GPU via commands whose operands * reference offsets within the global GTT as well as accessible by the GPU * through the GMADR mapped BAR (i915->mm.gtt->gtt). */ static void gen6_ggtt_insert_entries(struct i915_address_space *vm, struct i915_vma_resource *vma_res, unsigned int pat_index, u32 flags) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); gen6_pte_t __iomem *gte; gen6_pte_t __iomem *end; struct sgt_iter iter; dma_addr_t addr; gte = (gen6_pte_t __iomem *)ggtt->gsm; gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE; end = gte + vma_res->guard / I915_GTT_PAGE_SIZE; while (gte < end) iowrite32(vm->scratch[0]->encode, gte++); end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE; for_each_sgt_daddr(addr, iter, vma_res->bi.pages) iowrite32(vm->pte_encode(addr, pat_index, flags), gte++); GEM_BUG_ON(gte > end); /* Fill the allocated but "unused" space beyond the end of the buffer */ while (gte < end) iowrite32(vm->scratch[0]->encode, gte++); /* * We want to flush the TLBs only after we're certain all the PTE * updates have finished. */ ggtt->invalidate(ggtt); } static void nop_clear_range(struct i915_address_space *vm, u64 start, u64 length) { } static void bxt_vtd_ggtt_wa(struct i915_address_space *vm) { /* * Make sure the internal GAM fifo has been cleared of all GTT * writes before exiting stop_machine(). This guarantees that * any aperture accesses waiting to start in another process * cannot back up behind the GTT writes causing a hang. * The register can be any arbitrary GAM register. */ intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6); } struct insert_page { struct i915_address_space *vm; dma_addr_t addr; u64 offset; unsigned int pat_index; }; static int bxt_vtd_ggtt_insert_page__cb(void *_arg) { struct insert_page *arg = _arg; gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->pat_index, 0); bxt_vtd_ggtt_wa(arg->vm); return 0; } static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm, dma_addr_t addr, u64 offset, unsigned int pat_index, u32 unused) { struct insert_page arg = { vm, addr, offset, pat_index }; stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL); } struct insert_entries { struct i915_address_space *vm; struct i915_vma_resource *vma_res; unsigned int pat_index; u32 flags; }; static int bxt_vtd_ggtt_insert_entries__cb(void *_arg) { struct insert_entries *arg = _arg; gen8_ggtt_insert_entries(arg->vm, arg->vma_res, arg->pat_index, arg->flags); bxt_vtd_ggtt_wa(arg->vm); return 0; } static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm, struct i915_vma_resource *vma_res, unsigned int pat_index, u32 flags) { struct insert_entries arg = { vm, vma_res, pat_index, flags }; stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL); } static void gen6_ggtt_clear_range(struct i915_address_space *vm, u64 start, u64 length) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); unsigned int first_entry = start / I915_GTT_PAGE_SIZE; unsigned int num_entries = length / I915_GTT_PAGE_SIZE; gen6_pte_t scratch_pte, __iomem *gtt_base = (gen6_pte_t __iomem *)ggtt->gsm + first_entry; const int max_entries = ggtt_total_entries(ggtt) - first_entry; int i; if (WARN(num_entries > max_entries, "First entry = %d; Num entries = %d (max=%d)\n", first_entry, num_entries, max_entries)) num_entries = max_entries; scratch_pte = vm->scratch[0]->encode; for (i = 0; i < num_entries; i++) iowrite32(scratch_pte, &gtt_base[i]); } void intel_ggtt_bind_vma(struct i915_address_space *vm, struct i915_vm_pt_stash *stash, struct i915_vma_resource *vma_res, unsigned int pat_index, u32 flags) { u32 pte_flags; if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK)) return; vma_res->bound_flags |= flags; /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ pte_flags = 0; if (vma_res->bi.readonly) pte_flags |= PTE_READ_ONLY; if (vma_res->bi.lmem) pte_flags |= PTE_LM; vm->insert_entries(vm, vma_res, pat_index, pte_flags); vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE; } void intel_ggtt_unbind_vma(struct i915_address_space *vm, struct i915_vma_resource *vma_res) { vm->clear_range(vm, vma_res->start, vma_res->vma_size); } static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt) { u64 size; int ret; if (!intel_uc_uses_guc(&ggtt->vm.gt->uc)) return 0; GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP); size = ggtt->vm.total - GUC_GGTT_TOP; ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw, size, GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE, PIN_NOEVICT); if (ret) drm_dbg(&ggtt->vm.i915->drm, "Failed to reserve top of GGTT for GuC\n"); return ret; } static void ggtt_release_guc_top(struct i915_ggtt *ggtt) { if (drm_mm_node_allocated(&ggtt->uc_fw)) drm_mm_remove_node(&ggtt->uc_fw); } static void cleanup_init_ggtt(struct i915_ggtt *ggtt) { ggtt_release_guc_top(ggtt); if (drm_mm_node_allocated(&ggtt->error_capture)) drm_mm_remove_node(&ggtt->error_capture); mutex_destroy(&ggtt->error_mutex); } static int init_ggtt(struct i915_ggtt *ggtt) { /* * Let GEM Manage all of the aperture. * * However, leave one page at the end still bound to the scratch page. * There are a number of places where the hardware apparently prefetches * past the end of the object, and we've seen multiple hangs with the * GPU head pointer stuck in a batchbuffer bound at the last page of the * aperture. One page should be enough to keep any prefetching inside * of the aperture. */ unsigned long hole_start, hole_end; struct drm_mm_node *entry; int ret; /* * GuC requires all resources that we're sharing with it to be placed in * non-WOPCM memory. If GuC is not present or not in use we still need a * small bias as ring wraparound at offset 0 sometimes hangs. No idea * why. */ ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE, intel_wopcm_guc_size(&ggtt->vm.gt->wopcm)); ret = intel_vgt_balloon(ggtt); if (ret) return ret; mutex_init(&ggtt->error_mutex); if (ggtt->mappable_end) { /* * Reserve a mappable slot for our lockless error capture. * * We strongly prefer taking address 0x0 in order to protect * other critical buffers against accidental overwrites, * as writing to address 0 is a very common mistake. * * Since 0 may already be in use by the system (e.g. the BIOS * framebuffer), we let the reservation fail quietly and hope * 0 remains reserved always. * * If we fail to reserve 0, and then fail to find any space * for an error-capture, remain silent. We can afford not * to reserve an error_capture node as we have fallback * paths, and we trust that 0 will remain reserved. However, * the only likely reason for failure to insert is a driver * bug, which we expect to cause other failures... * * Since CPU can perform speculative reads on error capture * (write-combining allows it) add scratch page after error * capture to avoid DMAR errors. */ ggtt->error_capture.size = 2 * I915_GTT_PAGE_SIZE; ggtt->error_capture.color = I915_COLOR_UNEVICTABLE; if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture)) drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture, ggtt->error_capture.size, 0, ggtt->error_capture.color, 0, ggtt->mappable_end, DRM_MM_INSERT_LOW); } if (drm_mm_node_allocated(&ggtt->error_capture)) { u64 start = ggtt->error_capture.start; u64 size = ggtt->error_capture.size; ggtt->vm.scratch_range(&ggtt->vm, start, size); drm_dbg(&ggtt->vm.i915->drm, "Reserved GGTT:[%llx, %llx] for use by error capture\n", start, start + size); } /* * The upper portion of the GuC address space has a sizeable hole * (several MB) that is inaccessible by GuC. Reserve this range within * GGTT as it can comfortably hold GuC/HuC firmware images. */ ret = ggtt_reserve_guc_top(ggtt); if (ret) goto err; /* Clear any non-preallocated blocks */ drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) { drm_dbg(&ggtt->vm.i915->drm, "clearing unused GTT space: [%lx, %lx]\n", hole_start, hole_end); ggtt->vm.clear_range(&ggtt->vm, hole_start, hole_end - hole_start); } /* And finally clear the reserved guard page */ ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE); return 0; err: cleanup_init_ggtt(ggtt); return ret; } static void aliasing_gtt_bind_vma(struct i915_address_space *vm, struct i915_vm_pt_stash *stash, struct i915_vma_resource *vma_res, unsigned int pat_index, u32 flags) { u32 pte_flags; /* Currently applicable only to VLV */ pte_flags = 0; if (vma_res->bi.readonly) pte_flags |= PTE_READ_ONLY; if (flags & I915_VMA_LOCAL_BIND) ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm, stash, vma_res, pat_index, flags); if (flags & I915_VMA_GLOBAL_BIND) vm->insert_entries(vm, vma_res, pat_index, pte_flags); vma_res->bound_flags |= flags; } static void aliasing_gtt_unbind_vma(struct i915_address_space *vm, struct i915_vma_resource *vma_res) { if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND) vm->clear_range(vm, vma_res->start, vma_res->vma_size); if (vma_res->bound_flags & I915_VMA_LOCAL_BIND) ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res); } static int init_aliasing_ppgtt(struct i915_ggtt *ggtt) { struct i915_vm_pt_stash stash = {}; struct i915_ppgtt *ppgtt; int err; ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0); if (IS_ERR(ppgtt)) return PTR_ERR(ppgtt); if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) { err = -ENODEV; goto err_ppgtt; } err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total); if (err) goto err_ppgtt; i915_gem_object_lock(ppgtt->vm.scratch[0], NULL); err = i915_vm_map_pt_stash(&ppgtt->vm, &stash); i915_gem_object_unlock(ppgtt->vm.scratch[0]); if (err) goto err_stash; /* * Note we only pre-allocate as far as the end of the global * GTT. On 48b / 4-level page-tables, the difference is very, * very significant! We have to preallocate as GVT/vgpu does * not like the page directory disappearing. */ ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total); ggtt->alias = ppgtt; ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags; GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma); ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma; GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma); ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma; i915_vm_free_pt_stash(&ppgtt->vm, &stash); return 0; err_stash: i915_vm_free_pt_stash(&ppgtt->vm, &stash); err_ppgtt: i915_vm_put(&ppgtt->vm); return err; } static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt) { struct i915_ppgtt *ppgtt; ppgtt = fetch_and_zero(&ggtt->alias); if (!ppgtt) return; i915_vm_put(&ppgtt->vm); ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; } int i915_init_ggtt(struct drm_i915_private *i915) { int ret; ret = init_ggtt(to_gt(i915)->ggtt); if (ret) return ret; if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) { ret = init_aliasing_ppgtt(to_gt(i915)->ggtt); if (ret) cleanup_init_ggtt(to_gt(i915)->ggtt); } return 0; } static void ggtt_cleanup_hw(struct i915_ggtt *ggtt) { struct i915_vma *vma, *vn; flush_workqueue(ggtt->vm.i915->wq); i915_gem_drain_freed_objects(ggtt->vm.i915); mutex_lock(&ggtt->vm.mutex); ggtt->vm.skip_pte_rewrite = true; list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) { struct drm_i915_gem_object *obj = vma->obj; bool trylock; trylock = i915_gem_object_trylock(obj, NULL); WARN_ON(!trylock); WARN_ON(__i915_vma_unbind(vma)); if (trylock) i915_gem_object_unlock(obj); } if (drm_mm_node_allocated(&ggtt->error_capture)) drm_mm_remove_node(&ggtt->error_capture); mutex_destroy(&ggtt->error_mutex); ggtt_release_guc_top(ggtt); intel_vgt_deballoon(ggtt); ggtt->vm.cleanup(&ggtt->vm); mutex_unlock(&ggtt->vm.mutex); i915_address_space_fini(&ggtt->vm); arch_phys_wc_del(ggtt->mtrr); if (ggtt->iomap.size) io_mapping_fini(&ggtt->iomap); } /** * i915_ggtt_driver_release - Clean up GGTT hardware initialization * @i915: i915 device */ void i915_ggtt_driver_release(struct drm_i915_private *i915) { struct i915_ggtt *ggtt = to_gt(i915)->ggtt; fini_aliasing_ppgtt(ggtt); intel_ggtt_fini_fences(ggtt); ggtt_cleanup_hw(ggtt); } /** * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after * all free objects have been drained. * @i915: i915 device */ void i915_ggtt_driver_late_release(struct drm_i915_private *i915) { struct i915_ggtt *ggtt = to_gt(i915)->ggtt; GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1); dma_resv_fini(&ggtt->vm._resv); } static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) { snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; return snb_gmch_ctl << 20; } static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) { bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; if (bdw_gmch_ctl) bdw_gmch_ctl = 1 << bdw_gmch_ctl; #ifdef CONFIG_X86_32 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */ if (bdw_gmch_ctl > 4) bdw_gmch_ctl = 4; #endif return bdw_gmch_ctl << 20; } static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) { gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; gmch_ctrl &= SNB_GMCH_GGMS_MASK; if (gmch_ctrl) return 1 << (20 + gmch_ctrl); return 0; } static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915) { /* * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset */ GEM_BUG_ON(GRAPHICS_VER(i915) < 6); return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M; } static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915) { return gen6_gttmmadr_size(i915) / 2; } static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) { struct drm_i915_private *i915 = ggtt->vm.i915; struct pci_dev *pdev = to_pci_dev(i915->drm.dev); phys_addr_t phys_addr; u32 pte_flags; int ret; GEM_WARN_ON(pci_resource_len(pdev, GEN4_GTTMMADR_BAR) != gen6_gttmmadr_size(i915)); phys_addr = pci_resource_start(pdev, GEN4_GTTMMADR_BAR) + gen6_gttadr_offset(i915); /* * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range * will be dropped. For WC mappings in general we have 64 byte burst * writes when the WC buffer is flushed, so we can't use it, but have to * resort to an uncached mapping. The WC issue is easily caught by the * readback check when writing GTT PTE entries. */ if (IS_GEN9_LP(i915) || GRAPHICS_VER(i915) >= 11) ggtt->gsm = ioremap(phys_addr, size); else ggtt->gsm = ioremap_wc(phys_addr, size); if (!ggtt->gsm) { drm_err(&i915->drm, "Failed to map the ggtt page table\n"); return -ENOMEM; } kref_init(&ggtt->vm.resv_ref); ret = setup_scratch_page(&ggtt->vm); if (ret) { drm_err(&i915->drm, "Scratch setup failed\n"); /* iounmap will also get called at remove, but meh */ iounmap(ggtt->gsm); return ret; } pte_flags = 0; if (i915_gem_object_is_lmem(ggtt->vm.scratch[0])) pte_flags |= PTE_LM; ggtt->vm.scratch[0]->encode = ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]), i915_gem_get_pat_index(i915, I915_CACHE_NONE), pte_flags); return 0; } static void gen6_gmch_remove(struct i915_address_space *vm) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); iounmap(ggtt->gsm); free_scratch(vm); } static struct resource pci_resource(struct pci_dev *pdev, int bar) { return DEFINE_RES_MEM(pci_resource_start(pdev, bar), pci_resource_len(pdev, bar)); } static int gen8_gmch_probe(struct i915_ggtt *ggtt) { struct drm_i915_private *i915 = ggtt->vm.i915; struct pci_dev *pdev = to_pci_dev(i915->drm.dev); unsigned int size; u16 snb_gmch_ctl; if (!HAS_LMEM(i915) && !HAS_LMEMBAR_SMEM_STOLEN(i915)) { if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR)) return -ENXIO; ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR); ggtt->mappable_end = resource_size(&ggtt->gmadr); } pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); if (IS_CHERRYVIEW(i915)) size = chv_get_total_gtt_size(snb_gmch_ctl); else size = gen8_get_total_gtt_size(snb_gmch_ctl); ggtt->vm.alloc_pt_dma = alloc_pt_dma; ggtt->vm.alloc_scratch_dma = alloc_pt_dma; ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY; ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; ggtt->vm.cleanup = gen6_gmch_remove; ggtt->vm.insert_page = gen8_ggtt_insert_page; ggtt->vm.clear_range = nop_clear_range; ggtt->vm.scratch_range = gen8_ggtt_clear_range; ggtt->vm.insert_entries = gen8_ggtt_insert_entries; /* * Serialize GTT updates with aperture access on BXT if VT-d is on, * and always on CHV. */ if (intel_vm_no_concurrent_access_wa(i915)) { ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL; ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL; /* * Calling stop_machine() version of GGTT update function * at error capture/reset path will raise lockdep warning. * Allow calling gen8_ggtt_insert_* directly at reset path * which is safe from parallel GGTT updates. */ ggtt->vm.raw_insert_page = gen8_ggtt_insert_page; ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries; ggtt->vm.bind_async_flags = I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; } if (intel_uc_wants_guc(&ggtt->vm.gt->uc)) ggtt->invalidate = guc_ggtt_invalidate; else ggtt->invalidate = gen8_ggtt_invalidate; ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) ggtt->vm.pte_encode = mtl_ggtt_pte_encode; else ggtt->vm.pte_encode = gen8_ggtt_pte_encode; return ggtt_probe_common(ggtt, size); } /* * For pre-gen8 platforms pat_index is the same as enum i915_cache_level, * so the switch-case statements in these PTE encode functions are still valid. * See translation table LEGACY_CACHELEVEL. */ static u64 snb_pte_encode(dma_addr_t addr, unsigned int pat_index, u32 flags) { gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; switch (pat_index) { case I915_CACHE_L3_LLC: case I915_CACHE_LLC: pte |= GEN6_PTE_CACHE_LLC; break; case I915_CACHE_NONE: pte |= GEN6_PTE_UNCACHED; break; default: MISSING_CASE(pat_index); } return pte; } static u64 ivb_pte_encode(dma_addr_t addr, unsigned int pat_index, u32 flags) { gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; switch (pat_index) { case I915_CACHE_L3_LLC: pte |= GEN7_PTE_CACHE_L3_LLC; break; case I915_CACHE_LLC: pte |= GEN6_PTE_CACHE_LLC; break; case I915_CACHE_NONE: pte |= GEN6_PTE_UNCACHED; break; default: MISSING_CASE(pat_index); } return pte; } static u64 byt_pte_encode(dma_addr_t addr, unsigned int pat_index, u32 flags) { gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; if (!(flags & PTE_READ_ONLY)) pte |= BYT_PTE_WRITEABLE; if (pat_index != I915_CACHE_NONE) pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; return pte; } static u64 hsw_pte_encode(dma_addr_t addr, unsigned int pat_index, u32 flags) { gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; if (pat_index != I915_CACHE_NONE) pte |= HSW_WB_LLC_AGE3; return pte; } static u64 iris_pte_encode(dma_addr_t addr, unsigned int pat_index, u32 flags) { gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; switch (pat_index) { case I915_CACHE_NONE: break; case I915_CACHE_WT: pte |= HSW_WT_ELLC_LLC_AGE3; break; default: pte |= HSW_WB_ELLC_LLC_AGE3; break; } return pte; } static int gen6_gmch_probe(struct i915_ggtt *ggtt) { struct drm_i915_private *i915 = ggtt->vm.i915; struct pci_dev *pdev = to_pci_dev(i915->drm.dev); unsigned int size; u16 snb_gmch_ctl; if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR)) return -ENXIO; ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR); ggtt->mappable_end = resource_size(&ggtt->gmadr); /* * 64/512MB is the current min/max we actually know of, but this is * just a coarse sanity check. */ if (ggtt->mappable_end < (64 << 20) || ggtt->mappable_end > (512 << 20)) { drm_err(&i915->drm, "Unknown GMADR size (%pa)\n", &ggtt->mappable_end); return -ENXIO; } pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); size = gen6_get_total_gtt_size(snb_gmch_ctl); ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE; ggtt->vm.alloc_pt_dma = alloc_pt_dma; ggtt->vm.alloc_scratch_dma = alloc_pt_dma; ggtt->vm.clear_range = nop_clear_range; if (!HAS_FULL_PPGTT(i915)) ggtt->vm.clear_range = gen6_ggtt_clear_range; ggtt->vm.scratch_range = gen6_ggtt_clear_range; ggtt->vm.insert_page = gen6_ggtt_insert_page; ggtt->vm.insert_entries = gen6_ggtt_insert_entries; ggtt->vm.cleanup = gen6_gmch_remove; ggtt->invalidate = gen6_ggtt_invalidate; if (HAS_EDRAM(i915)) ggtt->vm.pte_encode = iris_pte_encode; else if (IS_HASWELL(i915)) ggtt->vm.pte_encode = hsw_pte_encode; else if (IS_VALLEYVIEW(i915)) ggtt->vm.pte_encode = byt_pte_encode; else if (GRAPHICS_VER(i915) >= 7) ggtt->vm.pte_encode = ivb_pte_encode; else ggtt->vm.pte_encode = snb_pte_encode; ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; return ggtt_probe_common(ggtt, size); } static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; int ret; ggtt->vm.gt = gt; ggtt->vm.i915 = i915; ggtt->vm.dma = i915->drm.dev; dma_resv_init(&ggtt->vm._resv); if (GRAPHICS_VER(i915) >= 8) ret = gen8_gmch_probe(ggtt); else if (GRAPHICS_VER(i915) >= 6) ret = gen6_gmch_probe(ggtt); else ret = intel_ggtt_gmch_probe(ggtt); if (ret) { dma_resv_fini(&ggtt->vm._resv); return ret; } if ((ggtt->vm.total - 1) >> 32) { drm_err(&i915->drm, "We never expected a Global GTT with more than 32bits" " of address space! Found %lldM!\n", ggtt->vm.total >> 20); ggtt->vm.total = 1ULL << 32; ggtt->mappable_end = min_t(u64, ggtt->mappable_end, ggtt->vm.total); } if (ggtt->mappable_end > ggtt->vm.total) { drm_err(&i915->drm, "mappable aperture extends past end of GGTT," " aperture=%pa, total=%llx\n", &ggtt->mappable_end, ggtt->vm.total); ggtt->mappable_end = ggtt->vm.total; } /* GMADR is the PCI mmio aperture into the global GTT. */ drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20); drm_dbg(&i915->drm, "GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20); drm_dbg(&i915->drm, "DSM size = %lluM\n", (u64)resource_size(&intel_graphics_stolen_res) >> 20); return 0; } /** * i915_ggtt_probe_hw - Probe GGTT hardware location * @i915: i915 device */ int i915_ggtt_probe_hw(struct drm_i915_private *i915) { struct intel_gt *gt; int ret, i; for_each_gt(gt, i915, i) { ret = intel_gt_assign_ggtt(gt); if (ret) return ret; } ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915)); if (ret) return ret; if (i915_vtd_active(i915)) drm_info(&i915->drm, "VT-d active for gfx access\n"); return 0; } struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915) { struct i915_ggtt *ggtt; ggtt = drmm_kzalloc(&i915->drm, sizeof(*ggtt), GFP_KERNEL); if (!ggtt) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&ggtt->gt_list); return ggtt; } int i915_ggtt_enable_hw(struct drm_i915_private *i915) { if (GRAPHICS_VER(i915) < 6) return intel_ggtt_gmch_enable_hw(i915); return 0; } /** * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM * @vm: The VM to restore the mappings for * * Restore the memory mappings for all objects mapped to HW via the GGTT or a * DPT page table. * * Returns %true if restoring the mapping for any object that was in a write * domain before suspend. */ bool i915_ggtt_resume_vm(struct i915_address_space *vm) { struct i915_vma *vma; bool write_domain_objs = false; drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); /* First fill our portion of the GTT with scratch pages */ vm->clear_range(vm, 0, vm->total); /* clflush objects bound into the GGTT and rebind them. */ list_for_each_entry(vma, &vm->bound_list, vm_link) { struct drm_i915_gem_object *obj = vma->obj; unsigned int was_bound = atomic_read(&vma->flags) & I915_VMA_BIND_MASK; GEM_BUG_ON(!was_bound); /* * Clear the bound flags of the vma resource to allow * ptes to be repopulated. */ vma->resource->bound_flags = 0; vma->ops->bind_vma(vm, NULL, vma->resource, obj ? obj->pat_index : i915_gem_get_pat_index(vm->i915, I915_CACHE_NONE), was_bound); if (obj) { /* only used during resume => exclusive access */ write_domain_objs |= fetch_and_zero(&obj->write_domain); obj->read_domains |= I915_GEM_DOMAIN_GTT; } } return write_domain_objs; } void i915_ggtt_resume(struct i915_ggtt *ggtt) { struct intel_gt *gt; bool flush; list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) intel_gt_check_and_clear_faults(gt); flush = i915_ggtt_resume_vm(&ggtt->vm); if (drm_mm_node_allocated(&ggtt->error_capture)) ggtt->vm.scratch_range(&ggtt->vm, ggtt->error_capture.start, ggtt->error_capture.size); list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) intel_uc_resume_mappings(&gt->uc); ggtt->invalidate(ggtt); if (flush) wbinvd_on_all_cpus(); intel_ggtt_restore_fences(ggtt); }
linux-master
drivers/gpu/drm/i915/gt/intel_ggtt.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright © 2018 Intel Corporation */ #include <linux/sort.h> #include "intel_gpu_commands.h" #include "intel_gt_pm.h" #include "intel_rps.h" #include "i915_selftest.h" #include "selftests/igt_flush_test.h" #define COUNT 5 static int cmp_u32(const void *A, const void *B) { const u32 *a = A, *b = B; return *a - *b; } static void perf_begin(struct intel_gt *gt) { intel_gt_pm_get(gt); /* Boost gpufreq to max [waitboost] and keep it fixed */ atomic_inc(&gt->rps.num_waiters); queue_work(gt->i915->unordered_wq, &gt->rps.work); flush_work(&gt->rps.work); } static int perf_end(struct intel_gt *gt) { atomic_dec(&gt->rps.num_waiters); intel_gt_pm_put(gt); return igt_flush_test(gt->i915); } static i915_reg_t timestamp_reg(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; if (GRAPHICS_VER(i915) == 5 || IS_G4X(i915)) return RING_TIMESTAMP_UDW(engine->mmio_base); else return RING_TIMESTAMP(engine->mmio_base); } static int write_timestamp(struct i915_request *rq, int slot) { struct intel_timeline *tl = rcu_dereference_protected(rq->timeline, !i915_request_signaled(rq)); u32 cmd; u32 *cs; cs = intel_ring_begin(rq, 4); if (IS_ERR(cs)) return PTR_ERR(cs); cmd = MI_STORE_REGISTER_MEM | MI_USE_GGTT; if (GRAPHICS_VER(rq->i915) >= 8) cmd++; *cs++ = cmd; *cs++ = i915_mmio_reg_offset(timestamp_reg(rq->engine)); *cs++ = tl->hwsp_offset + slot * sizeof(u32); *cs++ = 0; intel_ring_advance(rq, cs); return 0; } static struct i915_vma *create_empty_batch(struct intel_context *ce) { struct drm_i915_gem_object *obj; struct i915_vma *vma; u32 *cs; int err; obj = i915_gem_object_create_internal(ce->engine->i915, PAGE_SIZE); if (IS_ERR(obj)) return ERR_CAST(obj); cs = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WB); if (IS_ERR(cs)) { err = PTR_ERR(cs); goto err_put; } cs[0] = MI_BATCH_BUFFER_END; i915_gem_object_flush_map(obj); vma = i915_vma_instance(obj, ce->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto err_unpin; } err = i915_vma_pin(vma, 0, 0, PIN_USER); if (err) goto err_unpin; i915_gem_object_unpin_map(obj); return vma; err_unpin: i915_gem_object_unpin_map(obj); err_put: i915_gem_object_put(obj); return ERR_PTR(err); } static u32 trifilter(u32 *a) { u64 sum; sort(a, COUNT, sizeof(*a), cmp_u32, NULL); sum = mul_u32_u32(a[2], 2); sum += a[1]; sum += a[3]; return sum >> 2; } static int perf_mi_bb_start(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; if (GRAPHICS_VER(gt->i915) < 4) /* Any CS_TIMESTAMP? */ return 0; perf_begin(gt); for_each_engine(engine, gt, id) { struct intel_context *ce = engine->kernel_context; struct i915_vma *batch; u32 cycles[COUNT]; int i; if (GRAPHICS_VER(engine->i915) < 7 && engine->id != RCS0) continue; intel_engine_pm_get(engine); batch = create_empty_batch(ce); if (IS_ERR(batch)) { err = PTR_ERR(batch); intel_engine_pm_put(engine); break; } err = i915_vma_sync(batch); if (err) { intel_engine_pm_put(engine); i915_vma_put(batch); break; } for (i = 0; i < ARRAY_SIZE(cycles); i++) { struct i915_request *rq; rq = i915_request_create(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); break; } err = write_timestamp(rq, 2); if (err) goto out; err = rq->engine->emit_bb_start(rq, i915_vma_offset(batch), 8, 0); if (err) goto out; err = write_timestamp(rq, 3); if (err) goto out; out: i915_request_get(rq); i915_request_add(rq); if (i915_request_wait(rq, 0, HZ / 5) < 0) err = -EIO; i915_request_put(rq); if (err) break; cycles[i] = rq->hwsp_seqno[3] - rq->hwsp_seqno[2]; } i915_vma_put(batch); intel_engine_pm_put(engine); if (err) break; pr_info("%s: MI_BB_START cycles: %u\n", engine->name, trifilter(cycles)); } if (perf_end(gt)) err = -EIO; return err; } static struct i915_vma *create_nop_batch(struct intel_context *ce) { struct drm_i915_gem_object *obj; struct i915_vma *vma; u32 *cs; int err; obj = i915_gem_object_create_internal(ce->engine->i915, SZ_64K); if (IS_ERR(obj)) return ERR_CAST(obj); cs = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WB); if (IS_ERR(cs)) { err = PTR_ERR(cs); goto err_put; } memset(cs, 0, SZ_64K); cs[SZ_64K / sizeof(*cs) - 1] = MI_BATCH_BUFFER_END; i915_gem_object_flush_map(obj); vma = i915_vma_instance(obj, ce->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto err_unpin; } err = i915_vma_pin(vma, 0, 0, PIN_USER); if (err) goto err_unpin; i915_gem_object_unpin_map(obj); return vma; err_unpin: i915_gem_object_unpin_map(obj); err_put: i915_gem_object_put(obj); return ERR_PTR(err); } static int perf_mi_noop(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; if (GRAPHICS_VER(gt->i915) < 4) /* Any CS_TIMESTAMP? */ return 0; perf_begin(gt); for_each_engine(engine, gt, id) { struct intel_context *ce = engine->kernel_context; struct i915_vma *base, *nop; u32 cycles[COUNT]; int i; if (GRAPHICS_VER(engine->i915) < 7 && engine->id != RCS0) continue; intel_engine_pm_get(engine); base = create_empty_batch(ce); if (IS_ERR(base)) { err = PTR_ERR(base); intel_engine_pm_put(engine); break; } err = i915_vma_sync(base); if (err) { i915_vma_put(base); intel_engine_pm_put(engine); break; } nop = create_nop_batch(ce); if (IS_ERR(nop)) { err = PTR_ERR(nop); i915_vma_put(base); intel_engine_pm_put(engine); break; } err = i915_vma_sync(nop); if (err) { i915_vma_put(nop); i915_vma_put(base); intel_engine_pm_put(engine); break; } for (i = 0; i < ARRAY_SIZE(cycles); i++) { struct i915_request *rq; rq = i915_request_create(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); break; } err = write_timestamp(rq, 2); if (err) goto out; err = rq->engine->emit_bb_start(rq, i915_vma_offset(base), 8, 0); if (err) goto out; err = write_timestamp(rq, 3); if (err) goto out; err = rq->engine->emit_bb_start(rq, i915_vma_offset(nop), i915_vma_size(nop), 0); if (err) goto out; err = write_timestamp(rq, 4); if (err) goto out; out: i915_request_get(rq); i915_request_add(rq); if (i915_request_wait(rq, 0, HZ / 5) < 0) err = -EIO; i915_request_put(rq); if (err) break; cycles[i] = (rq->hwsp_seqno[4] - rq->hwsp_seqno[3]) - (rq->hwsp_seqno[3] - rq->hwsp_seqno[2]); } i915_vma_put(nop); i915_vma_put(base); intel_engine_pm_put(engine); if (err) break; pr_info("%s: 16K MI_NOOP cycles: %u\n", engine->name, trifilter(cycles)); } if (perf_end(gt)) err = -EIO; return err; } int intel_engine_cs_perf_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(perf_mi_bb_start), SUBTEST(perf_mi_noop), }; if (intel_gt_is_wedged(to_gt(i915))) return 0; return intel_gt_live_subtests(tests, to_gt(i915)); } static int intel_mmio_bases_check(void *arg) { int i, j; for (i = 0; i < ARRAY_SIZE(intel_engines); i++) { const struct engine_info *info = &intel_engines[i]; u8 prev = U8_MAX; for (j = 0; j < MAX_MMIO_BASES; j++) { u8 ver = info->mmio_bases[j].graphics_ver; u32 base = info->mmio_bases[j].base; if (ver >= prev) { pr_err("%s(%s, class:%d, instance:%d): mmio base for graphics ver %u is before the one for ver %u\n", __func__, intel_engine_class_repr(info->class), info->class, info->instance, prev, ver); return -EINVAL; } if (ver == 0) break; if (!base) { pr_err("%s(%s, class:%d, instance:%d): invalid mmio base (%x) for graphics ver %u at entry %u\n", __func__, intel_engine_class_repr(info->class), info->class, info->instance, base, ver, j); return -EINVAL; } prev = ver; } pr_debug("%s: min graphics version supported for %s%d is %u\n", __func__, intel_engine_class_repr(info->class), info->instance, prev); } return 0; } int intel_engine_cs_mock_selftests(void) { static const struct i915_subtest tests[] = { SUBTEST(intel_mmio_bases_check), }; return i915_subtests(tests, NULL); }
linux-master
drivers/gpu/drm/i915/gt/selftest_engine_cs.c
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include "intel_engine_pm.h" #include "selftests/igt_flush_test.h" static struct i915_vma *create_wally(struct intel_engine_cs *engine) { struct drm_i915_gem_object *obj; struct i915_vma *vma; u32 *cs; int err; obj = i915_gem_object_create_internal(engine->i915, 4096); if (IS_ERR(obj)) return ERR_CAST(obj); vma = i915_vma_instance(obj, engine->gt->vm, NULL); if (IS_ERR(vma)) { i915_gem_object_put(obj); return vma; } err = i915_vma_pin(vma, 0, 0, PIN_USER | PIN_HIGH); if (err) { i915_gem_object_put(obj); return ERR_PTR(err); } err = i915_vma_sync(vma); if (err) { i915_gem_object_put(obj); return ERR_PTR(err); } cs = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC); if (IS_ERR(cs)) { i915_gem_object_put(obj); return ERR_CAST(cs); } if (GRAPHICS_VER(engine->i915) >= 6) { *cs++ = MI_STORE_DWORD_IMM_GEN4; *cs++ = 0; } else if (GRAPHICS_VER(engine->i915) >= 4) { *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; *cs++ = 0; } else { *cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL; } *cs++ = i915_vma_offset(vma) + 4000; *cs++ = STACK_MAGIC; *cs++ = MI_BATCH_BUFFER_END; i915_gem_object_flush_map(obj); i915_gem_object_unpin_map(obj); vma->private = intel_context_create(engine); /* dummy residuals */ if (IS_ERR(vma->private)) { vma = ERR_CAST(vma->private); i915_gem_object_put(obj); } return vma; } static int context_sync(struct intel_context *ce) { struct i915_request *rq; int err = 0; rq = intel_context_create_request(ce); if (IS_ERR(rq)) return PTR_ERR(rq); i915_request_get(rq); i915_request_add(rq); if (i915_request_wait(rq, 0, HZ / 5) < 0) err = -ETIME; i915_request_put(rq); return err; } static int new_context_sync(struct intel_engine_cs *engine) { struct intel_context *ce; int err; ce = intel_context_create(engine); if (IS_ERR(ce)) return PTR_ERR(ce); err = context_sync(ce); intel_context_put(ce); return err; } static int mixed_contexts_sync(struct intel_engine_cs *engine, u32 *result) { int pass; int err; for (pass = 0; pass < 2; pass++) { WRITE_ONCE(*result, 0); err = context_sync(engine->kernel_context); if (err || READ_ONCE(*result)) { if (!err) { pr_err("pass[%d] wa_bb emitted for the kernel context\n", pass); err = -EINVAL; } return err; } WRITE_ONCE(*result, 0); err = new_context_sync(engine); if (READ_ONCE(*result) != STACK_MAGIC) { if (!err) { pr_err("pass[%d] wa_bb *NOT* emitted after the kernel context\n", pass); err = -EINVAL; } return err; } WRITE_ONCE(*result, 0); err = new_context_sync(engine); if (READ_ONCE(*result) != STACK_MAGIC) { if (!err) { pr_err("pass[%d] wa_bb *NOT* emitted for the user context switch\n", pass); err = -EINVAL; } return err; } } return 0; } static int double_context_sync_00(struct intel_engine_cs *engine, u32 *result) { struct intel_context *ce; int err, i; ce = intel_context_create(engine); if (IS_ERR(ce)) return PTR_ERR(ce); for (i = 0; i < 2; i++) { WRITE_ONCE(*result, 0); err = context_sync(ce); if (err) break; } intel_context_put(ce); if (err) return err; if (READ_ONCE(*result)) { pr_err("wa_bb emitted between the same user context\n"); return -EINVAL; } return 0; } static int kernel_context_sync_00(struct intel_engine_cs *engine, u32 *result) { struct intel_context *ce; int err, i; ce = intel_context_create(engine); if (IS_ERR(ce)) return PTR_ERR(ce); for (i = 0; i < 2; i++) { WRITE_ONCE(*result, 0); err = context_sync(ce); if (err) break; err = context_sync(engine->kernel_context); if (err) break; } intel_context_put(ce); if (err) return err; if (READ_ONCE(*result)) { pr_err("wa_bb emitted between the same user context [with intervening kernel]\n"); return -EINVAL; } return 0; } static int __live_ctx_switch_wa(struct intel_engine_cs *engine) { struct i915_vma *bb; u32 *result; int err; bb = create_wally(engine); if (IS_ERR(bb)) return PTR_ERR(bb); result = i915_gem_object_pin_map_unlocked(bb->obj, I915_MAP_WC); if (IS_ERR(result)) { intel_context_put(bb->private); i915_vma_unpin_and_release(&bb, 0); return PTR_ERR(result); } result += 1000; engine->wa_ctx.vma = bb; err = mixed_contexts_sync(engine, result); if (err) goto out; err = double_context_sync_00(engine, result); if (err) goto out; err = kernel_context_sync_00(engine, result); if (err) goto out; out: intel_context_put(engine->wa_ctx.vma->private); i915_vma_unpin_and_release(&engine->wa_ctx.vma, I915_VMA_RELEASE_MAP); return err; } static int live_ctx_switch_wa(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; /* * Exercise the inter-context wa batch. * * Between each user context we run a wa batch, and since it may * have implications for user visible state, we have to check that * we do actually execute it. * * The trick we use is to replace the normal wa batch with a custom * one that writes to a marker within it, and we can then look for * that marker to confirm if the batch was run when we expect it, * and equally important it was wasn't run when we don't! */ for_each_engine(engine, gt, id) { struct i915_vma *saved_wa; int err; if (!intel_engine_can_store_dword(engine)) continue; if (IS_GRAPHICS_VER(gt->i915, 4, 5)) continue; /* MI_STORE_DWORD is privileged! */ saved_wa = fetch_and_zero(&engine->wa_ctx.vma); intel_engine_pm_get(engine); err = __live_ctx_switch_wa(engine); intel_engine_pm_put(engine); if (igt_flush_test(gt->i915)) err = -EIO; engine->wa_ctx.vma = saved_wa; if (err) return err; } return 0; } int intel_ring_submission_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(live_ctx_switch_wa), }; if (to_gt(i915)->submission_method > INTEL_SUBMISSION_RING) return 0; return intel_gt_live_subtests(tests, to_gt(i915)); }
linux-master
drivers/gpu/drm/i915/gt/selftest_ring_submission.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright © 2020 Intel Corporation */ static struct intel_ring *mock_ring(unsigned long sz) { struct intel_ring *ring; ring = kzalloc(sizeof(*ring) + sz, GFP_KERNEL); if (!ring) return NULL; kref_init(&ring->ref); ring->size = sz; ring->wrap = BITS_PER_TYPE(ring->size) - ilog2(sz); ring->effective_size = sz; ring->vaddr = (void *)(ring + 1); atomic_set(&ring->pin_count, 1); intel_ring_update_space(ring); return ring; } static void mock_ring_free(struct intel_ring *ring) { kfree(ring); } static int check_ring_direction(struct intel_ring *ring, u32 next, u32 prev, int expected) { int result; result = intel_ring_direction(ring, next, prev); if (result < 0) result = -1; else if (result > 0) result = 1; if (result != expected) { pr_err("intel_ring_direction(%u, %u):%d != %d\n", next, prev, result, expected); return -EINVAL; } return 0; } static int check_ring_step(struct intel_ring *ring, u32 x, u32 step) { u32 prev = x, next = intel_ring_wrap(ring, x + step); int err = 0; err |= check_ring_direction(ring, next, next, 0); err |= check_ring_direction(ring, prev, prev, 0); err |= check_ring_direction(ring, next, prev, 1); err |= check_ring_direction(ring, prev, next, -1); return err; } static int check_ring_offset(struct intel_ring *ring, u32 x, u32 step) { int err = 0; err |= check_ring_step(ring, x, step); err |= check_ring_step(ring, intel_ring_wrap(ring, x + 1), step); err |= check_ring_step(ring, intel_ring_wrap(ring, x - 1), step); return err; } static int igt_ring_direction(void *dummy) { struct intel_ring *ring; unsigned int half = 2048; int step, err = 0; ring = mock_ring(2 * half); if (!ring) return -ENOMEM; GEM_BUG_ON(ring->size != 2 * half); /* Precision of wrap detection is limited to ring->size / 2 */ for (step = 1; step < half; step <<= 1) { err |= check_ring_offset(ring, 0, step); err |= check_ring_offset(ring, half, step); } err |= check_ring_step(ring, 0, half - 64); /* And check unwrapped handling for good measure */ err |= check_ring_offset(ring, 0, 2 * half + 64); err |= check_ring_offset(ring, 3 * half, 1); mock_ring_free(ring); return err; } int intel_ring_mock_selftests(void) { static const struct i915_subtest tests[] = { SUBTEST(igt_ring_direction), }; return i915_subtests(tests, NULL); }
linux-master
drivers/gpu/drm/i915/gt/selftest_ring.c
// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include <linux/string_helpers.h> #include <linux/suspend.h> #include "i915_drv.h" #include "i915_irq.h" #include "i915_params.h" #include "intel_context.h" #include "intel_engine_pm.h" #include "intel_gt.h" #include "intel_gt_clock_utils.h" #include "intel_gt_pm.h" #include "intel_gt_print.h" #include "intel_gt_requests.h" #include "intel_llc.h" #include "intel_rc6.h" #include "intel_rps.h" #include "intel_wakeref.h" #include "pxp/intel_pxp_pm.h" #define I915_GT_SUSPEND_IDLE_TIMEOUT (HZ / 2) static void user_forcewake(struct intel_gt *gt, bool suspend) { int count = atomic_read(&gt->user_wakeref); /* Inside suspend/resume so single threaded, no races to worry about. */ if (likely(!count)) return; intel_gt_pm_get(gt); if (suspend) { GEM_BUG_ON(count > atomic_read(&gt->wakeref.count)); atomic_sub(count, &gt->wakeref.count); } else { atomic_add(count, &gt->wakeref.count); } intel_gt_pm_put(gt); } static void runtime_begin(struct intel_gt *gt) { local_irq_disable(); write_seqcount_begin(&gt->stats.lock); gt->stats.start = ktime_get(); gt->stats.active = true; write_seqcount_end(&gt->stats.lock); local_irq_enable(); } static void runtime_end(struct intel_gt *gt) { local_irq_disable(); write_seqcount_begin(&gt->stats.lock); gt->stats.active = false; gt->stats.total = ktime_add(gt->stats.total, ktime_sub(ktime_get(), gt->stats.start)); write_seqcount_end(&gt->stats.lock); local_irq_enable(); } static int __gt_unpark(struct intel_wakeref *wf) { struct intel_gt *gt = container_of(wf, typeof(*gt), wakeref); struct drm_i915_private *i915 = gt->i915; GT_TRACE(gt, "\n"); /* * It seems that the DMC likes to transition between the DC states a lot * when there are no connected displays (no active power domains) during * command submission. * * This activity has negative impact on the performance of the chip with * huge latencies observed in the interrupt handler and elsewhere. * * Work around it by grabbing a GT IRQ power domain whilst there is any * GT activity, preventing any DC state transitions. */ gt->awake = intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ); GEM_BUG_ON(!gt->awake); intel_rc6_unpark(&gt->rc6); intel_rps_unpark(&gt->rps); i915_pmu_gt_unparked(gt); intel_guc_busyness_unpark(gt); intel_gt_unpark_requests(gt); runtime_begin(gt); return 0; } static int __gt_park(struct intel_wakeref *wf) { struct intel_gt *gt = container_of(wf, typeof(*gt), wakeref); intel_wakeref_t wakeref = fetch_and_zero(&gt->awake); struct drm_i915_private *i915 = gt->i915; GT_TRACE(gt, "\n"); runtime_end(gt); intel_gt_park_requests(gt); intel_guc_busyness_park(gt); i915_vma_parked(gt); i915_pmu_gt_parked(gt); intel_rps_park(&gt->rps); intel_rc6_park(&gt->rc6); /* Everything switched off, flush any residual interrupt just in case */ intel_synchronize_irq(i915); /* Defer dropping the display power well for 100ms, it's slow! */ GEM_BUG_ON(!wakeref); intel_display_power_put_async(i915, POWER_DOMAIN_GT_IRQ, wakeref); return 0; } static const struct intel_wakeref_ops wf_ops = { .get = __gt_unpark, .put = __gt_park, }; void intel_gt_pm_init_early(struct intel_gt *gt) { /* * We access the runtime_pm structure via gt->i915 here rather than * gt->uncore as we do elsewhere in the file because gt->uncore is not * yet initialized for all tiles at this point in the driver startup. * runtime_pm is per-device rather than per-tile, so this is still the * correct structure. */ intel_wakeref_init(&gt->wakeref, gt->i915, &wf_ops); seqcount_mutex_init(&gt->stats.lock, &gt->wakeref.mutex); } void intel_gt_pm_init(struct intel_gt *gt) { /* * Enabling power-management should be "self-healing". If we cannot * enable a feature, simply leave it disabled with a notice to the * user. */ intel_rc6_init(&gt->rc6); intel_rps_init(&gt->rps); } static bool reset_engines(struct intel_gt *gt) { if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) return false; return __intel_gt_reset(gt, ALL_ENGINES) == 0; } static void gt_sanitize(struct intel_gt *gt, bool force) { struct intel_engine_cs *engine; enum intel_engine_id id; intel_wakeref_t wakeref; GT_TRACE(gt, "force:%s", str_yes_no(force)); /* Use a raw wakeref to avoid calling intel_display_power_get early */ wakeref = intel_runtime_pm_get(gt->uncore->rpm); intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); intel_gt_check_clock_frequency(gt); /* * As we have just resumed the machine and woken the device up from * deep PCI sleep (presumably D3_cold), assume the HW has been reset * back to defaults, recovering from whatever wedged state we left it * in and so worth trying to use the device once more. */ if (intel_gt_is_wedged(gt)) intel_gt_unset_wedged(gt); /* For GuC mode, ensure submission is disabled before stopping ring */ intel_uc_reset_prepare(&gt->uc); for_each_engine(engine, gt, id) { if (engine->reset.prepare) engine->reset.prepare(engine); if (engine->sanitize) engine->sanitize(engine); } if (reset_engines(gt) || force) { for_each_engine(engine, gt, id) __intel_engine_reset(engine, false); } intel_uc_reset(&gt->uc, false); for_each_engine(engine, gt, id) if (engine->reset.finish) engine->reset.finish(engine); intel_rps_sanitize(&gt->rps); intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); intel_runtime_pm_put(gt->uncore->rpm, wakeref); } void intel_gt_pm_fini(struct intel_gt *gt) { intel_rc6_fini(&gt->rc6); } int intel_gt_resume(struct intel_gt *gt) { struct intel_engine_cs *engine; enum intel_engine_id id; int err; err = intel_gt_has_unrecoverable_error(gt); if (err) return err; GT_TRACE(gt, "\n"); /* * After resume, we may need to poke into the pinned kernel * contexts to paper over any damage caused by the sudden suspend. * Only the kernel contexts should remain pinned over suspend, * allowing us to fixup the user contexts on their first pin. */ gt_sanitize(gt, true); intel_gt_pm_get(gt); intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); intel_rc6_sanitize(&gt->rc6); if (intel_gt_is_wedged(gt)) { err = -EIO; goto out_fw; } /* Only when the HW is re-initialised, can we replay the requests */ err = intel_gt_init_hw(gt); if (err) { gt_probe_error(gt, "Failed to initialize GPU, declaring it wedged!\n"); goto err_wedged; } intel_uc_reset_finish(&gt->uc); intel_rps_enable(&gt->rps); intel_llc_enable(&gt->llc); for_each_engine(engine, gt, id) { intel_engine_pm_get(engine); engine->serial++; /* kernel context lost */ err = intel_engine_resume(engine); intel_engine_pm_put(engine); if (err) { gt_err(gt, "Failed to restart %s (%d)\n", engine->name, err); goto err_wedged; } } intel_rc6_enable(&gt->rc6); intel_uc_resume(&gt->uc); user_forcewake(gt, false); out_fw: intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); intel_gt_pm_put(gt); return err; err_wedged: intel_gt_set_wedged(gt); goto out_fw; } static void wait_for_suspend(struct intel_gt *gt) { if (!intel_gt_pm_is_awake(gt)) return; if (intel_gt_wait_for_idle(gt, I915_GT_SUSPEND_IDLE_TIMEOUT) == -ETIME) { /* * Forcibly cancel outstanding work and leave * the gpu quiet. */ intel_gt_set_wedged(gt); intel_gt_retire_requests(gt); } intel_gt_pm_wait_for_idle(gt); } void intel_gt_suspend_prepare(struct intel_gt *gt) { user_forcewake(gt, true); wait_for_suspend(gt); } static suspend_state_t pm_suspend_target(void) { #if IS_ENABLED(CONFIG_SUSPEND) && IS_ENABLED(CONFIG_PM_SLEEP) return pm_suspend_target_state; #else return PM_SUSPEND_TO_IDLE; #endif } void intel_gt_suspend_late(struct intel_gt *gt) { intel_wakeref_t wakeref; /* We expect to be idle already; but also want to be independent */ wait_for_suspend(gt); if (is_mock_gt(gt)) return; GEM_BUG_ON(gt->awake); intel_uc_suspend(&gt->uc); /* * On disabling the device, we want to turn off HW access to memory * that we no longer own. * * However, not all suspend-states disable the device. S0 (s2idle) * is effectively runtime-suspend, the device is left powered on * but needs to be put into a low power state. We need to keep * powermanagement enabled, but we also retain system state and so * it remains safe to keep on using our allocated memory. */ if (pm_suspend_target() == PM_SUSPEND_TO_IDLE) return; with_intel_runtime_pm(gt->uncore->rpm, wakeref) { intel_rps_disable(&gt->rps); intel_rc6_disable(&gt->rc6); intel_llc_disable(&gt->llc); } gt_sanitize(gt, false); GT_TRACE(gt, "\n"); } void intel_gt_runtime_suspend(struct intel_gt *gt) { intel_uc_runtime_suspend(&gt->uc); GT_TRACE(gt, "\n"); } int intel_gt_runtime_resume(struct intel_gt *gt) { int ret; GT_TRACE(gt, "\n"); intel_gt_init_swizzling(gt); intel_ggtt_restore_fences(gt->ggtt); ret = intel_uc_runtime_resume(&gt->uc); if (ret) return ret; return 0; } static ktime_t __intel_gt_get_awake_time(const struct intel_gt *gt) { ktime_t total = gt->stats.total; if (gt->stats.active) total = ktime_add(total, ktime_sub(ktime_get(), gt->stats.start)); return total; } ktime_t intel_gt_get_awake_time(const struct intel_gt *gt) { unsigned int seq; ktime_t total; do { seq = read_seqcount_begin(&gt->stats.lock); total = __intel_gt_get_awake_time(gt); } while (read_seqcount_retry(&gt->stats.lock, seq)); return total; } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_gt_pm.c" #endif
linux-master
drivers/gpu/drm/i915/gt/intel_gt_pm.c
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include "i915_drv.h" #include "intel_context.h" #include "intel_gpu_commands.h" #include "intel_gt.h" #include "intel_gtt.h" #include "intel_migrate.h" #include "intel_ring.h" #include "gem/i915_gem_lmem.h" struct insert_pte_data { u64 offset; }; #define CHUNK_SZ SZ_8M /* ~1ms at 8GiB/s preemption delay */ #define GET_CCS_BYTES(i915, size) (HAS_FLAT_CCS(i915) ? \ DIV_ROUND_UP(size, NUM_BYTES_PER_CCS_BYTE) : 0) static bool engine_supports_migration(struct intel_engine_cs *engine) { if (!engine) return false; /* * We need the ability to prevent aribtration (MI_ARB_ON_OFF), * the ability to write PTE using inline data (MI_STORE_DATA) * and of course the ability to do the block transfer (blits). */ GEM_BUG_ON(engine->class != COPY_ENGINE_CLASS); return true; } static void xehpsdv_toggle_pdes(struct i915_address_space *vm, struct i915_page_table *pt, void *data) { struct insert_pte_data *d = data; /* * Insert a dummy PTE into every PT that will map to LMEM to ensure * we have a correctly setup PDE structure for later use. */ vm->insert_page(vm, 0, d->offset, i915_gem_get_pat_index(vm->i915, I915_CACHE_NONE), PTE_LM); GEM_BUG_ON(!pt->is_compact); d->offset += SZ_2M; } static void xehpsdv_insert_pte(struct i915_address_space *vm, struct i915_page_table *pt, void *data) { struct insert_pte_data *d = data; /* * We are playing tricks here, since the actual pt, from the hw * pov, is only 256bytes with 32 entries, or 4096bytes with 512 * entries, but we are still guaranteed that the physical * alignment is 64K underneath for the pt, and we are careful * not to access the space in the void. */ vm->insert_page(vm, px_dma(pt), d->offset, i915_gem_get_pat_index(vm->i915, I915_CACHE_NONE), PTE_LM); d->offset += SZ_64K; } static void insert_pte(struct i915_address_space *vm, struct i915_page_table *pt, void *data) { struct insert_pte_data *d = data; vm->insert_page(vm, px_dma(pt), d->offset, i915_gem_get_pat_index(vm->i915, I915_CACHE_NONE), i915_gem_object_is_lmem(pt->base) ? PTE_LM : 0); d->offset += PAGE_SIZE; } static struct i915_address_space *migrate_vm(struct intel_gt *gt) { struct i915_vm_pt_stash stash = {}; struct i915_ppgtt *vm; int err; int i; /* * We construct a very special VM for use by all migration contexts, * it is kept pinned so that it can be used at any time. As we need * to pre-allocate the page directories for the migration VM, this * limits us to only using a small number of prepared vma. * * To be able to pipeline and reschedule migration operations while * avoiding unnecessary contention on the vm itself, the PTE updates * are inline with the blits. All the blits use the same fixed * addresses, with the backing store redirection being updated on the * fly. Only 2 implicit vma are used for all migration operations. * * We lay the ppGTT out as: * * [0, CHUNK_SZ) -> first object * [CHUNK_SZ, 2 * CHUNK_SZ) -> second object * [2 * CHUNK_SZ, 2 * CHUNK_SZ + 2 * CHUNK_SZ >> 9] -> PTE * * By exposing the dma addresses of the page directories themselves * within the ppGTT, we are then able to rewrite the PTE prior to use. * But the PTE update and subsequent migration operation must be atomic, * i.e. within the same non-preemptible window so that we do not switch * to another migration context that overwrites the PTE. * * This changes quite a bit on platforms with HAS_64K_PAGES support, * where we instead have three windows, each CHUNK_SIZE in size. The * first is reserved for mapping system-memory, and that just uses the * 512 entry layout using 4K GTT pages. The other two windows just map * lmem pages and must use the new compact 32 entry layout using 64K GTT * pages, which ensures we can address any lmem object that the user * throws at us. We then also use the xehpsdv_toggle_pdes as a way of * just toggling the PDE bit(GEN12_PDE_64K) for us, to enable the * compact layout for each of these page-tables, that fall within the * [CHUNK_SIZE, 3 * CHUNK_SIZE) range. * * We lay the ppGTT out as: * * [0, CHUNK_SZ) -> first window/object, maps smem * [CHUNK_SZ, 2 * CHUNK_SZ) -> second window/object, maps lmem src * [2 * CHUNK_SZ, 3 * CHUNK_SZ) -> third window/object, maps lmem dst * * For the PTE window it's also quite different, since each PTE must * point to some 64K page, one for each PT(since it's in lmem), and yet * each is only <= 4096bytes, but since the unused space within that PTE * range is never touched, this should be fine. * * So basically each PT now needs 64K of virtual memory, instead of 4K, * which looks like: * * [3 * CHUNK_SZ, 3 * CHUNK_SZ + ((3 * CHUNK_SZ / SZ_2M) * SZ_64K)] -> PTE */ vm = i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY); if (IS_ERR(vm)) return ERR_CAST(vm); if (!vm->vm.allocate_va_range || !vm->vm.foreach) { err = -ENODEV; goto err_vm; } if (HAS_64K_PAGES(gt->i915)) stash.pt_sz = I915_GTT_PAGE_SIZE_64K; /* * Each engine instance is assigned its own chunk in the VM, so * that we can run multiple instances concurrently */ for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) { struct intel_engine_cs *engine; u64 base = (u64)i << 32; struct insert_pte_data d = {}; struct i915_gem_ww_ctx ww; u64 sz; engine = gt->engine_class[COPY_ENGINE_CLASS][i]; if (!engine_supports_migration(engine)) continue; /* * We copy in 8MiB chunks. Each PDE covers 2MiB, so we need * 4x2 page directories for source/destination. */ if (HAS_64K_PAGES(gt->i915)) sz = 3 * CHUNK_SZ; else sz = 2 * CHUNK_SZ; d.offset = base + sz; /* * We need another page directory setup so that we can write * the 8x512 PTE in each chunk. */ if (HAS_64K_PAGES(gt->i915)) sz += (sz / SZ_2M) * SZ_64K; else sz += (sz >> 12) * sizeof(u64); err = i915_vm_alloc_pt_stash(&vm->vm, &stash, sz); if (err) goto err_vm; for_i915_gem_ww(&ww, err, true) { err = i915_vm_lock_objects(&vm->vm, &ww); if (err) continue; err = i915_vm_map_pt_stash(&vm->vm, &stash); if (err) continue; vm->vm.allocate_va_range(&vm->vm, &stash, base, sz); } i915_vm_free_pt_stash(&vm->vm, &stash); if (err) goto err_vm; /* Now allow the GPU to rewrite the PTE via its own ppGTT */ if (HAS_64K_PAGES(gt->i915)) { vm->vm.foreach(&vm->vm, base, d.offset - base, xehpsdv_insert_pte, &d); d.offset = base + CHUNK_SZ; vm->vm.foreach(&vm->vm, d.offset, 2 * CHUNK_SZ, xehpsdv_toggle_pdes, &d); } else { vm->vm.foreach(&vm->vm, base, d.offset - base, insert_pte, &d); } } return &vm->vm; err_vm: i915_vm_put(&vm->vm); return ERR_PTR(err); } static struct intel_engine_cs *first_copy_engine(struct intel_gt *gt) { struct intel_engine_cs *engine; int i; for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) { engine = gt->engine_class[COPY_ENGINE_CLASS][i]; if (engine_supports_migration(engine)) return engine; } return NULL; } static struct intel_context *pinned_context(struct intel_gt *gt) { static struct lock_class_key key; struct intel_engine_cs *engine; struct i915_address_space *vm; struct intel_context *ce; engine = first_copy_engine(gt); if (!engine) return ERR_PTR(-ENODEV); vm = migrate_vm(gt); if (IS_ERR(vm)) return ERR_CAST(vm); ce = intel_engine_create_pinned_context(engine, vm, SZ_512K, I915_GEM_HWS_MIGRATE, &key, "migrate"); i915_vm_put(vm); return ce; } int intel_migrate_init(struct intel_migrate *m, struct intel_gt *gt) { struct intel_context *ce; memset(m, 0, sizeof(*m)); ce = pinned_context(gt); if (IS_ERR(ce)) return PTR_ERR(ce); m->context = ce; return 0; } static int random_index(unsigned int max) { return upper_32_bits(mul_u32_u32(get_random_u32(), max)); } static struct intel_context *__migrate_engines(struct intel_gt *gt) { struct intel_engine_cs *engines[MAX_ENGINE_INSTANCE]; struct intel_engine_cs *engine; unsigned int count, i; count = 0; for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) { engine = gt->engine_class[COPY_ENGINE_CLASS][i]; if (engine_supports_migration(engine)) engines[count++] = engine; } return intel_context_create(engines[random_index(count)]); } struct intel_context *intel_migrate_create_context(struct intel_migrate *m) { struct intel_context *ce; /* * We randomly distribute contexts across the engines upon constrction, * as they all share the same pinned vm, and so in order to allow * multiple blits to run in parallel, we must construct each blit * to use a different range of the vm for its GTT. This has to be * known at construction, so we can not use the late greedy load * balancing of the virtual-engine. */ ce = __migrate_engines(m->context->engine->gt); if (IS_ERR(ce)) return ce; ce->ring = NULL; ce->ring_size = SZ_256K; i915_vm_put(ce->vm); ce->vm = i915_vm_get(m->context->vm); return ce; } static inline struct sgt_dma sg_sgt(struct scatterlist *sg) { dma_addr_t addr = sg_dma_address(sg); return (struct sgt_dma){ sg, addr, addr + sg_dma_len(sg) }; } static int emit_no_arbitration(struct i915_request *rq) { u32 *cs; cs = intel_ring_begin(rq, 2); if (IS_ERR(cs)) return PTR_ERR(cs); /* Explicitly disable preemption for this request. */ *cs++ = MI_ARB_ON_OFF; *cs++ = MI_NOOP; intel_ring_advance(rq, cs); return 0; } static int max_pte_pkt_size(struct i915_request *rq, int pkt) { struct intel_ring *ring = rq->ring; pkt = min_t(int, pkt, (ring->space - rq->reserved_space) / sizeof(u32) + 5); pkt = min_t(int, pkt, (ring->size - ring->emit) / sizeof(u32) + 5); return pkt; } #define I915_EMIT_PTE_NUM_DWORDS 6 static int emit_pte(struct i915_request *rq, struct sgt_dma *it, unsigned int pat_index, bool is_lmem, u64 offset, int length) { bool has_64K_pages = HAS_64K_PAGES(rq->i915); const u64 encode = rq->context->vm->pte_encode(0, pat_index, is_lmem ? PTE_LM : 0); struct intel_ring *ring = rq->ring; int pkt, dword_length; u32 total = 0; u32 page_size; u32 *hdr, *cs; GEM_BUG_ON(GRAPHICS_VER(rq->i915) < 8); page_size = I915_GTT_PAGE_SIZE; dword_length = 0x400; /* Compute the page directory offset for the target address range */ if (has_64K_pages) { GEM_BUG_ON(!IS_ALIGNED(offset, SZ_2M)); offset /= SZ_2M; offset *= SZ_64K; offset += 3 * CHUNK_SZ; if (is_lmem) { page_size = I915_GTT_PAGE_SIZE_64K; dword_length = 0x40; } } else { offset >>= 12; offset *= sizeof(u64); offset += 2 * CHUNK_SZ; } offset += (u64)rq->engine->instance << 32; cs = intel_ring_begin(rq, I915_EMIT_PTE_NUM_DWORDS); if (IS_ERR(cs)) return PTR_ERR(cs); /* Pack as many PTE updates as possible into a single MI command */ pkt = max_pte_pkt_size(rq, dword_length); hdr = cs; *cs++ = MI_STORE_DATA_IMM | REG_BIT(21); /* as qword elements */ *cs++ = lower_32_bits(offset); *cs++ = upper_32_bits(offset); do { if (cs - hdr >= pkt) { int dword_rem; *hdr += cs - hdr - 2; *cs++ = MI_NOOP; ring->emit = (void *)cs - ring->vaddr; intel_ring_advance(rq, cs); intel_ring_update_space(ring); cs = intel_ring_begin(rq, I915_EMIT_PTE_NUM_DWORDS); if (IS_ERR(cs)) return PTR_ERR(cs); dword_rem = dword_length; if (has_64K_pages) { if (IS_ALIGNED(total, SZ_2M)) { offset = round_up(offset, SZ_64K); } else { dword_rem = SZ_2M - (total & (SZ_2M - 1)); dword_rem /= page_size; dword_rem *= 2; } } pkt = max_pte_pkt_size(rq, dword_rem); hdr = cs; *cs++ = MI_STORE_DATA_IMM | REG_BIT(21); *cs++ = lower_32_bits(offset); *cs++ = upper_32_bits(offset); } GEM_BUG_ON(!IS_ALIGNED(it->dma, page_size)); *cs++ = lower_32_bits(encode | it->dma); *cs++ = upper_32_bits(encode | it->dma); offset += 8; total += page_size; it->dma += page_size; if (it->dma >= it->max) { it->sg = __sg_next(it->sg); if (!it->sg || sg_dma_len(it->sg) == 0) break; it->dma = sg_dma_address(it->sg); it->max = it->dma + sg_dma_len(it->sg); } } while (total < length); *hdr += cs - hdr - 2; *cs++ = MI_NOOP; ring->emit = (void *)cs - ring->vaddr; intel_ring_advance(rq, cs); intel_ring_update_space(ring); return total; } static bool wa_1209644611_applies(int ver, u32 size) { u32 height = size >> PAGE_SHIFT; if (ver != 11) return false; return height % 4 == 3 && height <= 8; } /** * DOC: Flat-CCS - Memory compression for Local memory * * On Xe-HP and later devices, we use dedicated compression control state (CCS) * stored in local memory for each surface, to support the 3D and media * compression formats. * * The memory required for the CCS of the entire local memory is 1/256 of the * local memory size. So before the kernel boot, the required memory is reserved * for the CCS data and a secure register will be programmed with the CCS base * address. * * Flat CCS data needs to be cleared when a lmem object is allocated. * And CCS data can be copied in and out of CCS region through * XY_CTRL_SURF_COPY_BLT. CPU can't access the CCS data directly. * * I915 supports Flat-CCS on lmem only objects. When an objects has smem in * its preference list, on memory pressure, i915 needs to migrate the lmem * content into smem. If the lmem object is Flat-CCS compressed by userspace, * then i915 needs to decompress it. But I915 lack the required information * for such decompression. Hence I915 supports Flat-CCS only on lmem only objects. * * When we exhaust the lmem, Flat-CCS capable objects' lmem backing memory can * be temporarily evicted to smem, along with the auxiliary CCS state, where * it can be potentially swapped-out at a later point, if required. * If userspace later touches the evicted pages, then we always move * the backing memory back to lmem, which includes restoring the saved CCS state, * and potentially performing any required swap-in. * * For the migration of the lmem objects with smem in placement list, such as * {lmem, smem}, objects are treated as non Flat-CCS capable objects. */ static inline u32 *i915_flush_dw(u32 *cmd, u32 flags) { *cmd++ = MI_FLUSH_DW | flags; *cmd++ = 0; *cmd++ = 0; return cmd; } static int emit_copy_ccs(struct i915_request *rq, u32 dst_offset, u8 dst_access, u32 src_offset, u8 src_access, int size) { struct drm_i915_private *i915 = rq->i915; int mocs = rq->engine->gt->mocs.uc_index << 1; u32 num_ccs_blks; u32 *cs; cs = intel_ring_begin(rq, 12); if (IS_ERR(cs)) return PTR_ERR(cs); num_ccs_blks = DIV_ROUND_UP(GET_CCS_BYTES(i915, size), NUM_CCS_BYTES_PER_BLOCK); GEM_BUG_ON(num_ccs_blks > NUM_CCS_BLKS_PER_XFER); cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS); /* * The XY_CTRL_SURF_COPY_BLT instruction is used to copy the CCS * data in and out of the CCS region. * * We can copy at most 1024 blocks of 256 bytes using one * XY_CTRL_SURF_COPY_BLT instruction. * * In case we need to copy more than 1024 blocks, we need to add * another instruction to the same batch buffer. * * 1024 blocks of 256 bytes of CCS represent a total 256KB of CCS. * * 256 KB of CCS represents 256 * 256 KB = 64 MB of LMEM. */ *cs++ = XY_CTRL_SURF_COPY_BLT | src_access << SRC_ACCESS_TYPE_SHIFT | dst_access << DST_ACCESS_TYPE_SHIFT | ((num_ccs_blks - 1) & CCS_SIZE_MASK) << CCS_SIZE_SHIFT; *cs++ = src_offset; *cs++ = rq->engine->instance | FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs); *cs++ = dst_offset; *cs++ = rq->engine->instance | FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs); cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS); *cs++ = MI_NOOP; intel_ring_advance(rq, cs); return 0; } static int emit_copy(struct i915_request *rq, u32 dst_offset, u32 src_offset, int size) { const int ver = GRAPHICS_VER(rq->i915); u32 instance = rq->engine->instance; u32 *cs; cs = intel_ring_begin(rq, ver >= 8 ? 10 : 6); if (IS_ERR(cs)) return PTR_ERR(cs); if (ver >= 9 && !wa_1209644611_applies(ver, size)) { *cs++ = GEN9_XY_FAST_COPY_BLT_CMD | (10 - 2); *cs++ = BLT_DEPTH_32 | PAGE_SIZE; *cs++ = 0; *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; *cs++ = dst_offset; *cs++ = instance; *cs++ = 0; *cs++ = PAGE_SIZE; *cs++ = src_offset; *cs++ = instance; } else if (ver >= 8) { *cs++ = XY_SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (10 - 2); *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE; *cs++ = 0; *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; *cs++ = dst_offset; *cs++ = instance; *cs++ = 0; *cs++ = PAGE_SIZE; *cs++ = src_offset; *cs++ = instance; } else { GEM_BUG_ON(instance); *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2); *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE; *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE; *cs++ = dst_offset; *cs++ = PAGE_SIZE; *cs++ = src_offset; } intel_ring_advance(rq, cs); return 0; } static u64 scatter_list_length(struct scatterlist *sg) { u64 len = 0; while (sg && sg_dma_len(sg)) { len += sg_dma_len(sg); sg = sg_next(sg); } return len; } static int calculate_chunk_sz(struct drm_i915_private *i915, bool src_is_lmem, u64 bytes_to_cpy, u64 ccs_bytes_to_cpy) { if (ccs_bytes_to_cpy && !src_is_lmem) /* * When CHUNK_SZ is passed all the pages upto CHUNK_SZ * will be taken for the blt. in Flat-ccs supported * platform Smem obj will have more pages than required * for main meory hence limit it to the required size * for main memory */ return min_t(u64, bytes_to_cpy, CHUNK_SZ); else return CHUNK_SZ; } static void get_ccs_sg_sgt(struct sgt_dma *it, u64 bytes_to_cpy) { u64 len; do { GEM_BUG_ON(!it->sg || !sg_dma_len(it->sg)); len = it->max - it->dma; if (len > bytes_to_cpy) { it->dma += bytes_to_cpy; break; } bytes_to_cpy -= len; it->sg = __sg_next(it->sg); it->dma = sg_dma_address(it->sg); it->max = it->dma + sg_dma_len(it->sg); } while (bytes_to_cpy); } int intel_context_migrate_copy(struct intel_context *ce, const struct i915_deps *deps, struct scatterlist *src, unsigned int src_pat_index, bool src_is_lmem, struct scatterlist *dst, unsigned int dst_pat_index, bool dst_is_lmem, struct i915_request **out) { struct sgt_dma it_src = sg_sgt(src), it_dst = sg_sgt(dst), it_ccs; struct drm_i915_private *i915 = ce->engine->i915; u64 ccs_bytes_to_cpy = 0, bytes_to_cpy; unsigned int ccs_pat_index; u32 src_offset, dst_offset; u8 src_access, dst_access; struct i915_request *rq; u64 src_sz, dst_sz; bool ccs_is_src, overwrite_ccs; int err; GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm); GEM_BUG_ON(IS_DGFX(ce->engine->i915) && (!src_is_lmem && !dst_is_lmem)); *out = NULL; GEM_BUG_ON(ce->ring->size < SZ_64K); src_sz = scatter_list_length(src); bytes_to_cpy = src_sz; if (HAS_FLAT_CCS(i915) && src_is_lmem ^ dst_is_lmem) { src_access = !src_is_lmem && dst_is_lmem; dst_access = !src_access; dst_sz = scatter_list_length(dst); if (src_is_lmem) { it_ccs = it_dst; ccs_pat_index = dst_pat_index; ccs_is_src = false; } else if (dst_is_lmem) { bytes_to_cpy = dst_sz; it_ccs = it_src; ccs_pat_index = src_pat_index; ccs_is_src = true; } /* * When there is a eviction of ccs needed smem will have the * extra pages for the ccs data * * TO-DO: Want to move the size mismatch check to a WARN_ON, * but still we have some requests of smem->lmem with same size. * Need to fix it. */ ccs_bytes_to_cpy = src_sz != dst_sz ? GET_CCS_BYTES(i915, bytes_to_cpy) : 0; if (ccs_bytes_to_cpy) get_ccs_sg_sgt(&it_ccs, bytes_to_cpy); } overwrite_ccs = HAS_FLAT_CCS(i915) && !ccs_bytes_to_cpy && dst_is_lmem; src_offset = 0; dst_offset = CHUNK_SZ; if (HAS_64K_PAGES(ce->engine->i915)) { src_offset = 0; dst_offset = 0; if (src_is_lmem) src_offset = CHUNK_SZ; if (dst_is_lmem) dst_offset = 2 * CHUNK_SZ; } do { int len; rq = i915_request_create(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out_ce; } if (deps) { err = i915_request_await_deps(rq, deps); if (err) goto out_rq; if (rq->engine->emit_init_breadcrumb) { err = rq->engine->emit_init_breadcrumb(rq); if (err) goto out_rq; } deps = NULL; } /* The PTE updates + copy must not be interrupted. */ err = emit_no_arbitration(rq); if (err) goto out_rq; src_sz = calculate_chunk_sz(i915, src_is_lmem, bytes_to_cpy, ccs_bytes_to_cpy); len = emit_pte(rq, &it_src, src_pat_index, src_is_lmem, src_offset, src_sz); if (!len) { err = -EINVAL; goto out_rq; } if (len < 0) { err = len; goto out_rq; } err = emit_pte(rq, &it_dst, dst_pat_index, dst_is_lmem, dst_offset, len); if (err < 0) goto out_rq; if (err < len) { err = -EINVAL; goto out_rq; } err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); if (err) goto out_rq; err = emit_copy(rq, dst_offset, src_offset, len); if (err) goto out_rq; bytes_to_cpy -= len; if (ccs_bytes_to_cpy) { int ccs_sz; err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); if (err) goto out_rq; ccs_sz = GET_CCS_BYTES(i915, len); err = emit_pte(rq, &it_ccs, ccs_pat_index, false, ccs_is_src ? src_offset : dst_offset, ccs_sz); if (err < 0) goto out_rq; if (err < ccs_sz) { err = -EINVAL; goto out_rq; } err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); if (err) goto out_rq; err = emit_copy_ccs(rq, dst_offset, dst_access, src_offset, src_access, len); if (err) goto out_rq; err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); if (err) goto out_rq; ccs_bytes_to_cpy -= ccs_sz; } else if (overwrite_ccs) { err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); if (err) goto out_rq; if (src_is_lmem) { /* * If the src is already in lmem, then we must * be doing an lmem -> lmem transfer, and so * should be safe to directly copy the CCS * state. In this case we have either * initialised the CCS aux state when first * clearing the pages (since it is already * allocated in lmem), or the user has * potentially populated it, in which case we * need to copy the CCS state as-is. */ err = emit_copy_ccs(rq, dst_offset, INDIRECT_ACCESS, src_offset, INDIRECT_ACCESS, len); } else { /* * While we can't always restore/manage the CCS * state, we still need to ensure we don't leak * the CCS state from the previous user, so make * sure we overwrite it with something. */ err = emit_copy_ccs(rq, dst_offset, INDIRECT_ACCESS, dst_offset, DIRECT_ACCESS, len); } if (err) goto out_rq; err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); if (err) goto out_rq; } /* Arbitration is re-enabled between requests. */ out_rq: if (*out) i915_request_put(*out); *out = i915_request_get(rq); i915_request_add(rq); if (err) break; if (!bytes_to_cpy && !ccs_bytes_to_cpy) { if (src_is_lmem) WARN_ON(it_src.sg && sg_dma_len(it_src.sg)); else WARN_ON(it_dst.sg && sg_dma_len(it_dst.sg)); break; } if (WARN_ON(!it_src.sg || !sg_dma_len(it_src.sg) || !it_dst.sg || !sg_dma_len(it_dst.sg) || (ccs_bytes_to_cpy && (!it_ccs.sg || !sg_dma_len(it_ccs.sg))))) { err = -EINVAL; break; } cond_resched(); } while (1); out_ce: return err; } static int emit_clear(struct i915_request *rq, u32 offset, int size, u32 value, bool is_lmem) { struct drm_i915_private *i915 = rq->i915; int mocs = rq->engine->gt->mocs.uc_index << 1; const int ver = GRAPHICS_VER(i915); int ring_sz; u32 *cs; GEM_BUG_ON(size >> PAGE_SHIFT > S16_MAX); if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) ring_sz = XY_FAST_COLOR_BLT_DW; else if (ver >= 8) ring_sz = 8; else ring_sz = 6; cs = intel_ring_begin(rq, ring_sz); if (IS_ERR(cs)) return PTR_ERR(cs); if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) { *cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 | (XY_FAST_COLOR_BLT_DW - 2); *cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, mocs) | (PAGE_SIZE - 1); *cs++ = 0; *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; *cs++ = offset; *cs++ = rq->engine->instance; *cs++ = !is_lmem << XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT; /* BG7 */ *cs++ = value; *cs++ = 0; *cs++ = 0; *cs++ = 0; /* BG11 */ *cs++ = 0; *cs++ = 0; /* BG13 */ *cs++ = 0; *cs++ = 0; *cs++ = 0; } else if (ver >= 8) { *cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (7 - 2); *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE; *cs++ = 0; *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; *cs++ = offset; *cs++ = rq->engine->instance; *cs++ = value; *cs++ = MI_NOOP; } else { *cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (6 - 2); *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE; *cs++ = 0; *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; *cs++ = offset; *cs++ = value; } intel_ring_advance(rq, cs); return 0; } int intel_context_migrate_clear(struct intel_context *ce, const struct i915_deps *deps, struct scatterlist *sg, unsigned int pat_index, bool is_lmem, u32 value, struct i915_request **out) { struct drm_i915_private *i915 = ce->engine->i915; struct sgt_dma it = sg_sgt(sg); struct i915_request *rq; u32 offset; int err; GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm); *out = NULL; GEM_BUG_ON(ce->ring->size < SZ_64K); offset = 0; if (HAS_64K_PAGES(i915) && is_lmem) offset = CHUNK_SZ; do { int len; rq = i915_request_create(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out_ce; } if (deps) { err = i915_request_await_deps(rq, deps); if (err) goto out_rq; if (rq->engine->emit_init_breadcrumb) { err = rq->engine->emit_init_breadcrumb(rq); if (err) goto out_rq; } deps = NULL; } /* The PTE updates + clear must not be interrupted. */ err = emit_no_arbitration(rq); if (err) goto out_rq; len = emit_pte(rq, &it, pat_index, is_lmem, offset, CHUNK_SZ); if (len <= 0) { err = len; goto out_rq; } err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); if (err) goto out_rq; err = emit_clear(rq, offset, len, value, is_lmem); if (err) goto out_rq; if (HAS_FLAT_CCS(i915) && is_lmem && !value) { /* * copy the content of memory into corresponding * ccs surface */ err = emit_copy_ccs(rq, offset, INDIRECT_ACCESS, offset, DIRECT_ACCESS, len); if (err) goto out_rq; } err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); /* Arbitration is re-enabled between requests. */ out_rq: if (*out) i915_request_put(*out); *out = i915_request_get(rq); i915_request_add(rq); if (err || !it.sg || !sg_dma_len(it.sg)) break; cond_resched(); } while (1); out_ce: return err; } int intel_migrate_copy(struct intel_migrate *m, struct i915_gem_ww_ctx *ww, const struct i915_deps *deps, struct scatterlist *src, unsigned int src_pat_index, bool src_is_lmem, struct scatterlist *dst, unsigned int dst_pat_index, bool dst_is_lmem, struct i915_request **out) { struct intel_context *ce; int err; *out = NULL; if (!m->context) return -ENODEV; ce = intel_migrate_create_context(m); if (IS_ERR(ce)) ce = intel_context_get(m->context); GEM_BUG_ON(IS_ERR(ce)); err = intel_context_pin_ww(ce, ww); if (err) goto out; err = intel_context_migrate_copy(ce, deps, src, src_pat_index, src_is_lmem, dst, dst_pat_index, dst_is_lmem, out); intel_context_unpin(ce); out: intel_context_put(ce); return err; } int intel_migrate_clear(struct intel_migrate *m, struct i915_gem_ww_ctx *ww, const struct i915_deps *deps, struct scatterlist *sg, unsigned int pat_index, bool is_lmem, u32 value, struct i915_request **out) { struct intel_context *ce; int err; *out = NULL; if (!m->context) return -ENODEV; ce = intel_migrate_create_context(m); if (IS_ERR(ce)) ce = intel_context_get(m->context); GEM_BUG_ON(IS_ERR(ce)); err = intel_context_pin_ww(ce, ww); if (err) goto out; err = intel_context_migrate_clear(ce, deps, sg, pat_index, is_lmem, value, out); intel_context_unpin(ce); out: intel_context_put(ce); return err; } void intel_migrate_fini(struct intel_migrate *m) { struct intel_context *ce; ce = fetch_and_zero(&m->context); if (!ce) return; intel_engine_destroy_pinned_context(ce); } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_migrate.c" #endif
linux-master
drivers/gpu/drm/i915/gt/intel_migrate.c
// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include <drm/drm_managed.h> #include <drm/intel-gtt.h> #include "gem/i915_gem_internal.h" #include "gem/i915_gem_lmem.h" #include "i915_drv.h" #include "i915_perf_oa_regs.h" #include "i915_reg.h" #include "intel_context.h" #include "intel_engine_pm.h" #include "intel_engine_regs.h" #include "intel_ggtt_gmch.h" #include "intel_gt.h" #include "intel_gt_buffer_pool.h" #include "intel_gt_clock_utils.h" #include "intel_gt_debugfs.h" #include "intel_gt_mcr.h" #include "intel_gt_pm.h" #include "intel_gt_print.h" #include "intel_gt_regs.h" #include "intel_gt_requests.h" #include "intel_migrate.h" #include "intel_mocs.h" #include "intel_pci_config.h" #include "intel_rc6.h" #include "intel_renderstate.h" #include "intel_rps.h" #include "intel_sa_media.h" #include "intel_gt_sysfs.h" #include "intel_tlb.h" #include "intel_uncore.h" #include "shmem_utils.h" void intel_gt_common_init_early(struct intel_gt *gt) { spin_lock_init(gt->irq_lock); INIT_LIST_HEAD(&gt->closed_vma); spin_lock_init(&gt->closed_lock); init_llist_head(&gt->watchdog.list); INIT_WORK(&gt->watchdog.work, intel_gt_watchdog_work); intel_gt_init_buffer_pool(gt); intel_gt_init_reset(gt); intel_gt_init_requests(gt); intel_gt_init_timelines(gt); intel_gt_init_tlb(gt); intel_gt_pm_init_early(gt); intel_wopcm_init_early(&gt->wopcm); intel_uc_init_early(&gt->uc); intel_rps_init_early(&gt->rps); } /* Preliminary initialization of Tile 0 */ int intel_root_gt_init_early(struct drm_i915_private *i915) { struct intel_gt *gt = to_gt(i915); gt->i915 = i915; gt->uncore = &i915->uncore; gt->irq_lock = drmm_kzalloc(&i915->drm, sizeof(*gt->irq_lock), GFP_KERNEL); if (!gt->irq_lock) return -ENOMEM; intel_gt_common_init_early(gt); return 0; } static int intel_gt_probe_lmem(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; unsigned int instance = gt->info.id; int id = INTEL_REGION_LMEM_0 + instance; struct intel_memory_region *mem; int err; mem = intel_gt_setup_lmem(gt); if (IS_ERR(mem)) { err = PTR_ERR(mem); if (err == -ENODEV) return 0; gt_err(gt, "Failed to setup region(%d) type=%d\n", err, INTEL_MEMORY_LOCAL); return err; } mem->id = id; mem->instance = instance; intel_memory_region_set_name(mem, "local%u", mem->instance); GEM_BUG_ON(!HAS_REGION(i915, id)); GEM_BUG_ON(i915->mm.regions[id]); i915->mm.regions[id] = mem; return 0; } int intel_gt_assign_ggtt(struct intel_gt *gt) { /* Media GT shares primary GT's GGTT */ if (gt->type == GT_MEDIA) { gt->ggtt = to_gt(gt->i915)->ggtt; } else { gt->ggtt = i915_ggtt_create(gt->i915); if (IS_ERR(gt->ggtt)) return PTR_ERR(gt->ggtt); } list_add_tail(&gt->ggtt_link, &gt->ggtt->gt_list); return 0; } int intel_gt_init_mmio(struct intel_gt *gt) { intel_gt_init_clock_frequency(gt); intel_uc_init_mmio(&gt->uc); intel_sseu_info_init(gt); intel_gt_mcr_init(gt); return intel_engines_init_mmio(gt); } static void init_unused_ring(struct intel_gt *gt, u32 base) { struct intel_uncore *uncore = gt->uncore; intel_uncore_write(uncore, RING_CTL(base), 0); intel_uncore_write(uncore, RING_HEAD(base), 0); intel_uncore_write(uncore, RING_TAIL(base), 0); intel_uncore_write(uncore, RING_START(base), 0); } static void init_unused_rings(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; if (IS_I830(i915)) { init_unused_ring(gt, PRB1_BASE); init_unused_ring(gt, SRB0_BASE); init_unused_ring(gt, SRB1_BASE); init_unused_ring(gt, SRB2_BASE); init_unused_ring(gt, SRB3_BASE); } else if (GRAPHICS_VER(i915) == 2) { init_unused_ring(gt, SRB0_BASE); init_unused_ring(gt, SRB1_BASE); } else if (GRAPHICS_VER(i915) == 3) { init_unused_ring(gt, PRB1_BASE); init_unused_ring(gt, PRB2_BASE); } } int intel_gt_init_hw(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; struct intel_uncore *uncore = gt->uncore; int ret; gt->last_init_time = ktime_get(); /* Double layer security blanket, see i915_gem_init() */ intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9) intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf)); if (IS_HASWELL(i915)) intel_uncore_write(uncore, HSW_MI_PREDICATE_RESULT_2, IS_HASWELL_GT3(i915) ? LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); /* Apply the GT workarounds... */ intel_gt_apply_workarounds(gt); /* ...and determine whether they are sticking. */ intel_gt_verify_workarounds(gt, "init"); intel_gt_init_swizzling(gt); /* * At least 830 can leave some of the unused rings * "active" (ie. head != tail) after resume which * will prevent c3 entry. Makes sure all unused rings * are totally idle. */ init_unused_rings(gt); ret = i915_ppgtt_init_hw(gt); if (ret) { gt_err(gt, "Enabling PPGTT failed (%d)\n", ret); goto out; } /* We can't enable contexts until all firmware is loaded */ ret = intel_uc_init_hw(&gt->uc); if (ret) { gt_probe_error(gt, "Enabling uc failed (%d)\n", ret); goto out; } intel_mocs_init(gt); out: intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); return ret; } static void gen6_clear_engine_error_register(struct intel_engine_cs *engine) { GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0); GEN6_RING_FAULT_REG_POSTING_READ(engine); } i915_reg_t intel_gt_perf_limit_reasons_reg(struct intel_gt *gt) { /* GT0_PERF_LIMIT_REASONS is available only for Gen11+ */ if (GRAPHICS_VER(gt->i915) < 11) return INVALID_MMIO_REG; return gt->type == GT_MEDIA ? MTL_MEDIA_PERF_LIMIT_REASONS : GT0_PERF_LIMIT_REASONS; } void intel_gt_clear_error_registers(struct intel_gt *gt, intel_engine_mask_t engine_mask) { struct drm_i915_private *i915 = gt->i915; struct intel_uncore *uncore = gt->uncore; u32 eir; if (GRAPHICS_VER(i915) != 2) intel_uncore_write(uncore, PGTBL_ER, 0); if (GRAPHICS_VER(i915) < 4) intel_uncore_write(uncore, IPEIR(RENDER_RING_BASE), 0); else intel_uncore_write(uncore, IPEIR_I965, 0); intel_uncore_write(uncore, EIR, 0); eir = intel_uncore_read(uncore, EIR); if (eir) { /* * some errors might have become stuck, * mask them. */ gt_dbg(gt, "EIR stuck: 0x%08x, masking\n", eir); intel_uncore_rmw(uncore, EMR, 0, eir); intel_uncore_write(uncore, GEN2_IIR, I915_MASTER_ERROR_INTERRUPT); } if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) { intel_gt_mcr_multicast_rmw(gt, XEHP_RING_FAULT_REG, RING_FAULT_VALID, 0); intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG); } else if (GRAPHICS_VER(i915) >= 12) { intel_uncore_rmw(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID, 0); intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG); } else if (GRAPHICS_VER(i915) >= 8) { intel_uncore_rmw(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID, 0); intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG); } else if (GRAPHICS_VER(i915) >= 6) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine_masked(engine, gt, engine_mask, id) gen6_clear_engine_error_register(engine); } } static void gen6_check_faults(struct intel_gt *gt) { struct intel_engine_cs *engine; enum intel_engine_id id; u32 fault; for_each_engine(engine, gt, id) { fault = GEN6_RING_FAULT_REG_READ(engine); if (fault & RING_FAULT_VALID) { gt_dbg(gt, "Unexpected fault\n" "\tAddr: 0x%08lx\n" "\tAddress space: %s\n" "\tSource ID: %d\n" "\tType: %d\n", fault & PAGE_MASK, fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT", RING_FAULT_SRCID(fault), RING_FAULT_FAULT_TYPE(fault)); } } } static void xehp_check_faults(struct intel_gt *gt) { u32 fault; /* * Although the fault register now lives in an MCR register range, * the GAM registers are special and we only truly need to read * the "primary" GAM instance rather than handling each instance * individually. intel_gt_mcr_read_any() will automatically steer * toward the primary instance. */ fault = intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG); if (fault & RING_FAULT_VALID) { u32 fault_data0, fault_data1; u64 fault_addr; fault_data0 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA0); fault_data1 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA1); fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | ((u64)fault_data0 << 12); gt_dbg(gt, "Unexpected fault\n" "\tAddr: 0x%08x_%08x\n" "\tAddress space: %s\n" "\tEngine ID: %d\n" "\tSource ID: %d\n" "\tType: %d\n", upper_32_bits(fault_addr), lower_32_bits(fault_addr), fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", GEN8_RING_FAULT_ENGINE_ID(fault), RING_FAULT_SRCID(fault), RING_FAULT_FAULT_TYPE(fault)); } } static void gen8_check_faults(struct intel_gt *gt) { struct intel_uncore *uncore = gt->uncore; i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg; u32 fault; if (GRAPHICS_VER(gt->i915) >= 12) { fault_reg = GEN12_RING_FAULT_REG; fault_data0_reg = GEN12_FAULT_TLB_DATA0; fault_data1_reg = GEN12_FAULT_TLB_DATA1; } else { fault_reg = GEN8_RING_FAULT_REG; fault_data0_reg = GEN8_FAULT_TLB_DATA0; fault_data1_reg = GEN8_FAULT_TLB_DATA1; } fault = intel_uncore_read(uncore, fault_reg); if (fault & RING_FAULT_VALID) { u32 fault_data0, fault_data1; u64 fault_addr; fault_data0 = intel_uncore_read(uncore, fault_data0_reg); fault_data1 = intel_uncore_read(uncore, fault_data1_reg); fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | ((u64)fault_data0 << 12); gt_dbg(gt, "Unexpected fault\n" "\tAddr: 0x%08x_%08x\n" "\tAddress space: %s\n" "\tEngine ID: %d\n" "\tSource ID: %d\n" "\tType: %d\n", upper_32_bits(fault_addr), lower_32_bits(fault_addr), fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", GEN8_RING_FAULT_ENGINE_ID(fault), RING_FAULT_SRCID(fault), RING_FAULT_FAULT_TYPE(fault)); } } void intel_gt_check_and_clear_faults(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; /* From GEN8 onwards we only have one 'All Engine Fault Register' */ if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) xehp_check_faults(gt); else if (GRAPHICS_VER(i915) >= 8) gen8_check_faults(gt); else if (GRAPHICS_VER(i915) >= 6) gen6_check_faults(gt); else return; intel_gt_clear_error_registers(gt, ALL_ENGINES); } void intel_gt_flush_ggtt_writes(struct intel_gt *gt) { struct intel_uncore *uncore = gt->uncore; intel_wakeref_t wakeref; /* * No actual flushing is required for the GTT write domain for reads * from the GTT domain. Writes to it "immediately" go to main memory * as far as we know, so there's no chipset flush. It also doesn't * land in the GPU render cache. * * However, we do have to enforce the order so that all writes through * the GTT land before any writes to the device, such as updates to * the GATT itself. * * We also have to wait a bit for the writes to land from the GTT. * An uncached read (i.e. mmio) seems to be ideal for the round-trip * timing. This issue has only been observed when switching quickly * between GTT writes and CPU reads from inside the kernel on recent hw, * and it appears to only affect discrete GTT blocks (i.e. on LLC * system agents we cannot reproduce this behaviour, until Cannonlake * that was!). */ wmb(); if (INTEL_INFO(gt->i915)->has_coherent_ggtt) return; intel_gt_chipset_flush(gt); with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) { unsigned long flags; spin_lock_irqsave(&uncore->lock, flags); intel_uncore_posting_read_fw(uncore, RING_HEAD(RENDER_RING_BASE)); spin_unlock_irqrestore(&uncore->lock, flags); } } void intel_gt_chipset_flush(struct intel_gt *gt) { wmb(); if (GRAPHICS_VER(gt->i915) < 6) intel_ggtt_gmch_flush(); } void intel_gt_driver_register(struct intel_gt *gt) { intel_gsc_init(&gt->gsc, gt->i915); intel_rps_driver_register(&gt->rps); intel_gt_debugfs_register(gt); intel_gt_sysfs_register(gt); } static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size) { struct drm_i915_private *i915 = gt->i915; struct drm_i915_gem_object *obj; struct i915_vma *vma; int ret; obj = i915_gem_object_create_lmem(i915, size, I915_BO_ALLOC_VOLATILE | I915_BO_ALLOC_GPU_ONLY); if (IS_ERR(obj) && !IS_METEORLAKE(i915)) /* Wa_22018444074 */ obj = i915_gem_object_create_stolen(i915, size); if (IS_ERR(obj)) obj = i915_gem_object_create_internal(i915, size); if (IS_ERR(obj)) { gt_err(gt, "Failed to allocate scratch page\n"); return PTR_ERR(obj); } vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto err_unref; } ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH); if (ret) goto err_unref; gt->scratch = i915_vma_make_unshrinkable(vma); return 0; err_unref: i915_gem_object_put(obj); return ret; } static void intel_gt_fini_scratch(struct intel_gt *gt) { i915_vma_unpin_and_release(&gt->scratch, 0); } static struct i915_address_space *kernel_vm(struct intel_gt *gt) { if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING) return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm; else return i915_vm_get(&gt->ggtt->vm); } static int __engines_record_defaults(struct intel_gt *gt) { struct i915_request *requests[I915_NUM_ENGINES] = {}; struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; /* * As we reset the gpu during very early sanitisation, the current * register state on the GPU should reflect its defaults values. * We load a context onto the hw (with restore-inhibit), then switch * over to a second context to save that default register state. We * can then prime every new context with that state so they all start * from the same default HW values. */ for_each_engine(engine, gt, id) { struct intel_renderstate so; struct intel_context *ce; struct i915_request *rq; /* We must be able to switch to something! */ GEM_BUG_ON(!engine->kernel_context); ce = intel_context_create(engine); if (IS_ERR(ce)) { err = PTR_ERR(ce); goto out; } err = intel_renderstate_init(&so, ce); if (err) goto err; rq = i915_request_create(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_fini; } err = intel_engine_emit_ctx_wa(rq); if (err) goto err_rq; err = intel_renderstate_emit(&so, rq); if (err) goto err_rq; err_rq: requests[id] = i915_request_get(rq); i915_request_add(rq); err_fini: intel_renderstate_fini(&so, ce); err: if (err) { intel_context_put(ce); goto out; } } /* Flush the default context image to memory, and enable powersaving. */ if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) { err = -EIO; goto out; } for (id = 0; id < ARRAY_SIZE(requests); id++) { struct i915_request *rq; struct file *state; rq = requests[id]; if (!rq) continue; if (rq->fence.error) { err = -EIO; goto out; } GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags)); if (!rq->context->state) continue; /* Keep a copy of the state's backing pages; free the obj */ state = shmem_create_from_object(rq->context->state->obj); if (IS_ERR(state)) { err = PTR_ERR(state); goto out; } rq->engine->default_state = state; } out: /* * If we have to abandon now, we expect the engines to be idle * and ready to be torn-down. The quickest way we can accomplish * this is by declaring ourselves wedged. */ if (err) intel_gt_set_wedged(gt); for (id = 0; id < ARRAY_SIZE(requests); id++) { struct intel_context *ce; struct i915_request *rq; rq = requests[id]; if (!rq) continue; ce = rq->context; i915_request_put(rq); intel_context_put(ce); } return err; } static int __engines_verify_workarounds(struct intel_gt *gt) { struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) return 0; for_each_engine(engine, gt, id) { if (intel_engine_verify_workarounds(engine, "load")) err = -EIO; } /* Flush and restore the kernel context for safety */ if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) err = -EIO; return err; } static void __intel_gt_disable(struct intel_gt *gt) { intel_gt_set_wedged_on_fini(gt); intel_gt_suspend_prepare(gt); intel_gt_suspend_late(gt); GEM_BUG_ON(intel_gt_pm_is_awake(gt)); } int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout) { long remaining_timeout; /* If the device is asleep, we have no requests outstanding */ if (!intel_gt_pm_is_awake(gt)) return 0; while ((timeout = intel_gt_retire_requests_timeout(gt, timeout, &remaining_timeout)) > 0) { cond_resched(); if (signal_pending(current)) return -EINTR; } if (timeout) return timeout; if (remaining_timeout < 0) remaining_timeout = 0; return intel_uc_wait_for_idle(&gt->uc, remaining_timeout); } int intel_gt_init(struct intel_gt *gt) { int err; err = i915_inject_probe_error(gt->i915, -ENODEV); if (err) return err; intel_gt_init_workarounds(gt); /* * This is just a security blanket to placate dragons. * On some systems, we very sporadically observe that the first TLBs * used by the CS may be stale, despite us poking the TLB reset. If * we hold the forcewake during initialisation these problems * just magically go away. */ intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); err = intel_gt_init_scratch(gt, GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K); if (err) goto out_fw; intel_gt_pm_init(gt); gt->vm = kernel_vm(gt); if (!gt->vm) { err = -ENOMEM; goto err_pm; } intel_set_mocs_index(gt); err = intel_engines_init(gt); if (err) goto err_engines; err = intel_uc_init(&gt->uc); if (err) goto err_engines; err = intel_gt_resume(gt); if (err) goto err_uc_init; err = intel_gt_init_hwconfig(gt); if (err) gt_err(gt, "Failed to retrieve hwconfig table: %pe\n", ERR_PTR(err)); err = __engines_record_defaults(gt); if (err) goto err_gt; err = __engines_verify_workarounds(gt); if (err) goto err_gt; err = i915_inject_probe_error(gt->i915, -EIO); if (err) goto err_gt; intel_uc_init_late(&gt->uc); intel_migrate_init(&gt->migrate, gt); goto out_fw; err_gt: __intel_gt_disable(gt); intel_uc_fini_hw(&gt->uc); err_uc_init: intel_uc_fini(&gt->uc); err_engines: intel_engines_release(gt); i915_vm_put(fetch_and_zero(&gt->vm)); err_pm: intel_gt_pm_fini(gt); intel_gt_fini_scratch(gt); out_fw: if (err) intel_gt_set_wedged_on_init(gt); intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); return err; } void intel_gt_driver_remove(struct intel_gt *gt) { __intel_gt_disable(gt); intel_migrate_fini(&gt->migrate); intel_uc_driver_remove(&gt->uc); intel_engines_release(gt); intel_gt_flush_buffer_pool(gt); } void intel_gt_driver_unregister(struct intel_gt *gt) { intel_wakeref_t wakeref; intel_gt_sysfs_unregister(gt); intel_rps_driver_unregister(&gt->rps); intel_gsc_fini(&gt->gsc); /* * If we unload the driver and wedge before the GSC worker is complete, * the worker will hit an error on its submission to the GSC engine and * then exit. This is hard to hit for a user, but it is reproducible * with skipping selftests. The error is handled gracefully by the * worker, so there are no functional issues, but we still end up with * an error message in dmesg, which is something we want to avoid as * this is a supported scenario. We could modify the worker to better * handle a wedging occurring during its execution, but that gets * complicated for a couple of reasons: * - We do want the error on runtime wedging, because there are * implications for subsystems outside of GT (i.e., PXP, HDCP), it's * only the error on driver unload that we want to silence. * - The worker is responsible for multiple submissions (GSC FW load, * HuC auth, SW proxy), so all of those will have to be adapted to * handle the wedged_on_fini scenario. * Therefore, it's much simpler to just wait for the worker to be done * before wedging on driver removal, also considering that the worker * will likely already be idle in the great majority of non-selftest * scenarios. */ intel_gsc_uc_flush_work(&gt->uc.gsc); /* * Upon unregistering the device to prevent any new users, cancel * all in-flight requests so that we can quickly unbind the active * resources. */ intel_gt_set_wedged_on_fini(gt); /* Scrub all HW state upon release */ with_intel_runtime_pm(gt->uncore->rpm, wakeref) __intel_gt_reset(gt, ALL_ENGINES); } void intel_gt_driver_release(struct intel_gt *gt) { struct i915_address_space *vm; vm = fetch_and_zero(&gt->vm); if (vm) /* FIXME being called twice on error paths :( */ i915_vm_put(vm); intel_wa_list_free(&gt->wa_list); intel_gt_pm_fini(gt); intel_gt_fini_scratch(gt); intel_gt_fini_buffer_pool(gt); intel_gt_fini_hwconfig(gt); } void intel_gt_driver_late_release_all(struct drm_i915_private *i915) { struct intel_gt *gt; unsigned int id; /* We need to wait for inflight RCU frees to release their grip */ rcu_barrier(); for_each_gt(gt, i915, id) { intel_uc_driver_late_release(&gt->uc); intel_gt_fini_requests(gt); intel_gt_fini_reset(gt); intel_gt_fini_timelines(gt); intel_gt_fini_tlb(gt); intel_engines_free(gt); } } static int intel_gt_tile_setup(struct intel_gt *gt, phys_addr_t phys_addr) { int ret; if (!gt_is_root(gt)) { struct intel_uncore *uncore; spinlock_t *irq_lock; uncore = drmm_kzalloc(&gt->i915->drm, sizeof(*uncore), GFP_KERNEL); if (!uncore) return -ENOMEM; irq_lock = drmm_kzalloc(&gt->i915->drm, sizeof(*irq_lock), GFP_KERNEL); if (!irq_lock) return -ENOMEM; gt->uncore = uncore; gt->irq_lock = irq_lock; intel_gt_common_init_early(gt); } intel_uncore_init_early(gt->uncore, gt); ret = intel_uncore_setup_mmio(gt->uncore, phys_addr); if (ret) return ret; gt->phys_addr = phys_addr; return 0; } int intel_gt_probe_all(struct drm_i915_private *i915) { struct pci_dev *pdev = to_pci_dev(i915->drm.dev); struct intel_gt *gt = to_gt(i915); const struct intel_gt_definition *gtdef; phys_addr_t phys_addr; unsigned int mmio_bar; unsigned int i; int ret; mmio_bar = intel_mmio_bar(GRAPHICS_VER(i915)); phys_addr = pci_resource_start(pdev, mmio_bar); /* * We always have at least one primary GT on any device * and it has been already initialized early during probe * in i915_driver_probe() */ gt->i915 = i915; gt->name = "Primary GT"; gt->info.engine_mask = INTEL_INFO(i915)->platform_engine_mask; gt_dbg(gt, "Setting up %s\n", gt->name); ret = intel_gt_tile_setup(gt, phys_addr); if (ret) return ret; i915->gt[0] = gt; if (!HAS_EXTRA_GT_LIST(i915)) return 0; for (i = 1, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1]; gtdef->name != NULL; i++, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1]) { gt = drmm_kzalloc(&i915->drm, sizeof(*gt), GFP_KERNEL); if (!gt) { ret = -ENOMEM; goto err; } gt->i915 = i915; gt->name = gtdef->name; gt->type = gtdef->type; gt->info.engine_mask = gtdef->engine_mask; gt->info.id = i; gt_dbg(gt, "Setting up %s\n", gt->name); if (GEM_WARN_ON(range_overflows_t(resource_size_t, gtdef->mapping_base, SZ_16M, pci_resource_len(pdev, mmio_bar)))) { ret = -ENODEV; goto err; } switch (gtdef->type) { case GT_TILE: ret = intel_gt_tile_setup(gt, phys_addr + gtdef->mapping_base); break; case GT_MEDIA: ret = intel_sa_mediagt_setup(gt, phys_addr + gtdef->mapping_base, gtdef->gsi_offset); break; case GT_PRIMARY: /* Primary GT should not appear in extra GT list */ default: MISSING_CASE(gtdef->type); ret = -ENODEV; } if (ret) goto err; i915->gt[i] = gt; } return 0; err: i915_probe_error(i915, "Failed to initialize %s! (%d)\n", gtdef->name, ret); intel_gt_release_all(i915); return ret; } int intel_gt_tiles_init(struct drm_i915_private *i915) { struct intel_gt *gt; unsigned int id; int ret; for_each_gt(gt, i915, id) { ret = intel_gt_probe_lmem(gt); if (ret) return ret; } return 0; } void intel_gt_release_all(struct drm_i915_private *i915) { struct intel_gt *gt; unsigned int id; for_each_gt(gt, i915, id) i915->gt[id] = NULL; } void intel_gt_info_print(const struct intel_gt_info *info, struct drm_printer *p) { drm_printf(p, "available engines: %x\n", info->engine_mask); intel_sseu_dump(&info->sseu, p); } enum i915_map_type intel_gt_coherent_map_type(struct intel_gt *gt, struct drm_i915_gem_object *obj, bool always_coherent) { /* * Wa_22016122933: always return I915_MAP_WC for Media * version 13.0 when the object is on the Media GT */ if (i915_gem_object_is_lmem(obj) || intel_gt_needs_wa_22016122933(gt)) return I915_MAP_WC; if (HAS_LLC(gt->i915) || always_coherent) return I915_MAP_WB; else return I915_MAP_WC; }
linux-master
drivers/gpu/drm/i915/gt/intel_gt.c
// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include "selftest_llc.h" #include "intel_rps.h" static int gen6_verify_ring_freq(struct intel_llc *llc) { struct drm_i915_private *i915 = llc_to_gt(llc)->i915; struct ia_constants consts; intel_wakeref_t wakeref; unsigned int gpu_freq; int err = 0; wakeref = intel_runtime_pm_get(llc_to_gt(llc)->uncore->rpm); if (!get_ia_constants(llc, &consts)) goto out_rpm; for (gpu_freq = consts.min_gpu_freq; gpu_freq <= consts.max_gpu_freq; gpu_freq++) { struct intel_rps *rps = &llc_to_gt(llc)->rps; unsigned int ia_freq, ring_freq, found; u32 val; calc_ia_freq(llc, gpu_freq, &consts, &ia_freq, &ring_freq); val = gpu_freq; if (snb_pcode_read(llc_to_gt(llc)->uncore, GEN6_PCODE_READ_MIN_FREQ_TABLE, &val, NULL)) { pr_err("Failed to read freq table[%d], range [%d, %d]\n", gpu_freq, consts.min_gpu_freq, consts.max_gpu_freq); err = -ENXIO; break; } found = (val >> 0) & 0xff; if (found != ia_freq) { pr_err("Min freq table(%d/[%d, %d]):%dMHz did not match expected CPU freq, found %d, expected %d\n", gpu_freq, consts.min_gpu_freq, consts.max_gpu_freq, intel_gpu_freq(rps, gpu_freq * (GRAPHICS_VER(i915) >= 9 ? GEN9_FREQ_SCALER : 1)), found, ia_freq); err = -EINVAL; break; } found = (val >> 8) & 0xff; if (found != ring_freq) { pr_err("Min freq table(%d/[%d, %d]):%dMHz did not match expected ring freq, found %d, expected %d\n", gpu_freq, consts.min_gpu_freq, consts.max_gpu_freq, intel_gpu_freq(rps, gpu_freq * (GRAPHICS_VER(i915) >= 9 ? GEN9_FREQ_SCALER : 1)), found, ring_freq); err = -EINVAL; break; } } out_rpm: intel_runtime_pm_put(llc_to_gt(llc)->uncore->rpm, wakeref); return err; } int st_llc_verify(struct intel_llc *llc) { return gen6_verify_ring_freq(llc); }
linux-master
drivers/gpu/drm/i915/gt/selftest_llc.c
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include <linux/log2.h> #include "gem/i915_gem_lmem.h" #include "gen8_ppgtt.h" #include "i915_scatterlist.h" #include "i915_trace.h" #include "i915_pvinfo.h" #include "i915_vgpu.h" #include "intel_gt.h" #include "intel_gtt.h" static u64 gen8_pde_encode(const dma_addr_t addr, const enum i915_cache_level level) { u64 pde = addr | GEN8_PAGE_PRESENT | GEN8_PAGE_RW; if (level != I915_CACHE_NONE) pde |= PPAT_CACHED_PDE; else pde |= PPAT_UNCACHED; return pde; } static u64 gen8_pte_encode(dma_addr_t addr, unsigned int pat_index, u32 flags) { gen8_pte_t pte = addr | GEN8_PAGE_PRESENT | GEN8_PAGE_RW; if (unlikely(flags & PTE_READ_ONLY)) pte &= ~GEN8_PAGE_RW; /* * For pre-gen12 platforms pat_index is the same as enum * i915_cache_level, so the switch-case here is still valid. * See translation table defined by LEGACY_CACHELEVEL. */ switch (pat_index) { case I915_CACHE_NONE: pte |= PPAT_UNCACHED; break; case I915_CACHE_WT: pte |= PPAT_DISPLAY_ELLC; break; default: pte |= PPAT_CACHED; break; } return pte; } static u64 gen12_pte_encode(dma_addr_t addr, unsigned int pat_index, u32 flags) { gen8_pte_t pte = addr | GEN8_PAGE_PRESENT | GEN8_PAGE_RW; if (unlikely(flags & PTE_READ_ONLY)) pte &= ~GEN8_PAGE_RW; if (flags & PTE_LM) pte |= GEN12_PPGTT_PTE_LM; if (pat_index & BIT(0)) pte |= GEN12_PPGTT_PTE_PAT0; if (pat_index & BIT(1)) pte |= GEN12_PPGTT_PTE_PAT1; if (pat_index & BIT(2)) pte |= GEN12_PPGTT_PTE_PAT2; if (pat_index & BIT(3)) pte |= MTL_PPGTT_PTE_PAT3; return pte; } static void gen8_ppgtt_notify_vgt(struct i915_ppgtt *ppgtt, bool create) { struct drm_i915_private *i915 = ppgtt->vm.i915; struct intel_uncore *uncore = ppgtt->vm.gt->uncore; enum vgt_g2v_type msg; int i; if (create) atomic_inc(px_used(ppgtt->pd)); /* never remove */ else atomic_dec(px_used(ppgtt->pd)); mutex_lock(&i915->vgpu.lock); if (i915_vm_is_4lvl(&ppgtt->vm)) { const u64 daddr = px_dma(ppgtt->pd); intel_uncore_write(uncore, vgtif_reg(pdp[0].lo), lower_32_bits(daddr)); intel_uncore_write(uncore, vgtif_reg(pdp[0].hi), upper_32_bits(daddr)); msg = create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE : VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY; } else { for (i = 0; i < GEN8_3LVL_PDPES; i++) { const u64 daddr = i915_page_dir_dma_addr(ppgtt, i); intel_uncore_write(uncore, vgtif_reg(pdp[i].lo), lower_32_bits(daddr)); intel_uncore_write(uncore, vgtif_reg(pdp[i].hi), upper_32_bits(daddr)); } msg = create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE : VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY; } /* g2v_notify atomically (via hv trap) consumes the message packet. */ intel_uncore_write(uncore, vgtif_reg(g2v_notify), msg); mutex_unlock(&i915->vgpu.lock); } /* Index shifts into the pagetable are offset by GEN8_PTE_SHIFT [12] */ #define GEN8_PAGE_SIZE (SZ_4K) /* page and page-directory sizes are the same */ #define GEN8_PTE_SHIFT (ilog2(GEN8_PAGE_SIZE)) #define GEN8_PDES (GEN8_PAGE_SIZE / sizeof(u64)) #define gen8_pd_shift(lvl) ((lvl) * ilog2(GEN8_PDES)) #define gen8_pd_index(i, lvl) i915_pde_index((i), gen8_pd_shift(lvl)) #define __gen8_pte_shift(lvl) (GEN8_PTE_SHIFT + gen8_pd_shift(lvl)) #define __gen8_pte_index(a, lvl) i915_pde_index((a), __gen8_pte_shift(lvl)) #define as_pd(x) container_of((x), typeof(struct i915_page_directory), pt) static unsigned int gen8_pd_range(u64 start, u64 end, int lvl, unsigned int *idx) { const int shift = gen8_pd_shift(lvl); const u64 mask = ~0ull << gen8_pd_shift(lvl + 1); GEM_BUG_ON(start >= end); end += ~mask >> gen8_pd_shift(1); *idx = i915_pde_index(start, shift); if ((start ^ end) & mask) return GEN8_PDES - *idx; else return i915_pde_index(end, shift) - *idx; } static bool gen8_pd_contains(u64 start, u64 end, int lvl) { const u64 mask = ~0ull << gen8_pd_shift(lvl + 1); GEM_BUG_ON(start >= end); return (start ^ end) & mask && (start & ~mask) == 0; } static unsigned int gen8_pt_count(u64 start, u64 end) { GEM_BUG_ON(start >= end); if ((start ^ end) >> gen8_pd_shift(1)) return GEN8_PDES - (start & (GEN8_PDES - 1)); else return end - start; } static unsigned int gen8_pd_top_count(const struct i915_address_space *vm) { unsigned int shift = __gen8_pte_shift(vm->top); return (vm->total + (1ull << shift) - 1) >> shift; } static struct i915_page_directory * gen8_pdp_for_page_index(struct i915_address_space * const vm, const u64 idx) { struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm); if (vm->top == 2) return ppgtt->pd; else return i915_pd_entry(ppgtt->pd, gen8_pd_index(idx, vm->top)); } static struct i915_page_directory * gen8_pdp_for_page_address(struct i915_address_space * const vm, const u64 addr) { return gen8_pdp_for_page_index(vm, addr >> GEN8_PTE_SHIFT); } static void __gen8_ppgtt_cleanup(struct i915_address_space *vm, struct i915_page_directory *pd, int count, int lvl) { if (lvl) { void **pde = pd->entry; do { if (!*pde) continue; __gen8_ppgtt_cleanup(vm, *pde, GEN8_PDES, lvl - 1); } while (pde++, --count); } free_px(vm, &pd->pt, lvl); } static void gen8_ppgtt_cleanup(struct i915_address_space *vm) { struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); if (intel_vgpu_active(vm->i915)) gen8_ppgtt_notify_vgt(ppgtt, false); if (ppgtt->pd) __gen8_ppgtt_cleanup(vm, ppgtt->pd, gen8_pd_top_count(vm), vm->top); free_scratch(vm); } static u64 __gen8_ppgtt_clear(struct i915_address_space * const vm, struct i915_page_directory * const pd, u64 start, const u64 end, int lvl) { const struct drm_i915_gem_object * const scratch = vm->scratch[lvl]; unsigned int idx, len; GEM_BUG_ON(end > vm->total >> GEN8_PTE_SHIFT); len = gen8_pd_range(start, end, lvl--, &idx); DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d }\n", __func__, vm, lvl + 1, start, end, idx, len, atomic_read(px_used(pd))); GEM_BUG_ON(!len || len >= atomic_read(px_used(pd))); do { struct i915_page_table *pt = pd->entry[idx]; if (atomic_fetch_inc(&pt->used) >> gen8_pd_shift(1) && gen8_pd_contains(start, end, lvl)) { DBG("%s(%p):{ lvl:%d, idx:%d, start:%llx, end:%llx } removing pd\n", __func__, vm, lvl + 1, idx, start, end); clear_pd_entry(pd, idx, scratch); __gen8_ppgtt_cleanup(vm, as_pd(pt), I915_PDES, lvl); start += (u64)I915_PDES << gen8_pd_shift(lvl); continue; } if (lvl) { start = __gen8_ppgtt_clear(vm, as_pd(pt), start, end, lvl); } else { unsigned int count; unsigned int pte = gen8_pd_index(start, 0); unsigned int num_ptes; u64 *vaddr; count = gen8_pt_count(start, end); DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d } removing pte\n", __func__, vm, lvl, start, end, gen8_pd_index(start, 0), count, atomic_read(&pt->used)); GEM_BUG_ON(!count || count >= atomic_read(&pt->used)); num_ptes = count; if (pt->is_compact) { GEM_BUG_ON(num_ptes % 16); GEM_BUG_ON(pte % 16); num_ptes /= 16; pte /= 16; } vaddr = px_vaddr(pt); memset64(vaddr + pte, vm->scratch[0]->encode, num_ptes); atomic_sub(count, &pt->used); start += count; } if (release_pd_entry(pd, idx, pt, scratch)) free_px(vm, pt, lvl); } while (idx++, --len); return start; } static void gen8_ppgtt_clear(struct i915_address_space *vm, u64 start, u64 length) { GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT))); GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT))); GEM_BUG_ON(range_overflows(start, length, vm->total)); start >>= GEN8_PTE_SHIFT; length >>= GEN8_PTE_SHIFT; GEM_BUG_ON(length == 0); __gen8_ppgtt_clear(vm, i915_vm_to_ppgtt(vm)->pd, start, start + length, vm->top); } static void __gen8_ppgtt_alloc(struct i915_address_space * const vm, struct i915_vm_pt_stash *stash, struct i915_page_directory * const pd, u64 * const start, const u64 end, int lvl) { unsigned int idx, len; GEM_BUG_ON(end > vm->total >> GEN8_PTE_SHIFT); len = gen8_pd_range(*start, end, lvl--, &idx); DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d }\n", __func__, vm, lvl + 1, *start, end, idx, len, atomic_read(px_used(pd))); GEM_BUG_ON(!len || (idx + len - 1) >> gen8_pd_shift(1)); spin_lock(&pd->lock); GEM_BUG_ON(!atomic_read(px_used(pd))); /* Must be pinned! */ do { struct i915_page_table *pt = pd->entry[idx]; if (!pt) { spin_unlock(&pd->lock); DBG("%s(%p):{ lvl:%d, idx:%d } allocating new tree\n", __func__, vm, lvl + 1, idx); pt = stash->pt[!!lvl]; __i915_gem_object_pin_pages(pt->base); fill_px(pt, vm->scratch[lvl]->encode); spin_lock(&pd->lock); if (likely(!pd->entry[idx])) { stash->pt[!!lvl] = pt->stash; atomic_set(&pt->used, 0); set_pd_entry(pd, idx, pt); } else { pt = pd->entry[idx]; } } if (lvl) { atomic_inc(&pt->used); spin_unlock(&pd->lock); __gen8_ppgtt_alloc(vm, stash, as_pd(pt), start, end, lvl); spin_lock(&pd->lock); atomic_dec(&pt->used); GEM_BUG_ON(!atomic_read(&pt->used)); } else { unsigned int count = gen8_pt_count(*start, end); DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d } inserting pte\n", __func__, vm, lvl, *start, end, gen8_pd_index(*start, 0), count, atomic_read(&pt->used)); atomic_add(count, &pt->used); /* All other pdes may be simultaneously removed */ GEM_BUG_ON(atomic_read(&pt->used) > NALLOC * I915_PDES); *start += count; } } while (idx++, --len); spin_unlock(&pd->lock); } static void gen8_ppgtt_alloc(struct i915_address_space *vm, struct i915_vm_pt_stash *stash, u64 start, u64 length) { GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT))); GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT))); GEM_BUG_ON(range_overflows(start, length, vm->total)); start >>= GEN8_PTE_SHIFT; length >>= GEN8_PTE_SHIFT; GEM_BUG_ON(length == 0); __gen8_ppgtt_alloc(vm, stash, i915_vm_to_ppgtt(vm)->pd, &start, start + length, vm->top); } static void __gen8_ppgtt_foreach(struct i915_address_space *vm, struct i915_page_directory *pd, u64 *start, u64 end, int lvl, void (*fn)(struct i915_address_space *vm, struct i915_page_table *pt, void *data), void *data) { unsigned int idx, len; len = gen8_pd_range(*start, end, lvl--, &idx); spin_lock(&pd->lock); do { struct i915_page_table *pt = pd->entry[idx]; atomic_inc(&pt->used); spin_unlock(&pd->lock); if (lvl) { __gen8_ppgtt_foreach(vm, as_pd(pt), start, end, lvl, fn, data); } else { fn(vm, pt, data); *start += gen8_pt_count(*start, end); } spin_lock(&pd->lock); atomic_dec(&pt->used); } while (idx++, --len); spin_unlock(&pd->lock); } static void gen8_ppgtt_foreach(struct i915_address_space *vm, u64 start, u64 length, void (*fn)(struct i915_address_space *vm, struct i915_page_table *pt, void *data), void *data) { start >>= GEN8_PTE_SHIFT; length >>= GEN8_PTE_SHIFT; __gen8_ppgtt_foreach(vm, i915_vm_to_ppgtt(vm)->pd, &start, start + length, vm->top, fn, data); } static __always_inline u64 gen8_ppgtt_insert_pte(struct i915_ppgtt *ppgtt, struct i915_page_directory *pdp, struct sgt_dma *iter, u64 idx, unsigned int pat_index, u32 flags) { struct i915_page_directory *pd; const gen8_pte_t pte_encode = ppgtt->vm.pte_encode(0, pat_index, flags); gen8_pte_t *vaddr; pd = i915_pd_entry(pdp, gen8_pd_index(idx, 2)); vaddr = px_vaddr(i915_pt_entry(pd, gen8_pd_index(idx, 1))); do { GEM_BUG_ON(sg_dma_len(iter->sg) < I915_GTT_PAGE_SIZE); vaddr[gen8_pd_index(idx, 0)] = pte_encode | iter->dma; iter->dma += I915_GTT_PAGE_SIZE; if (iter->dma >= iter->max) { iter->sg = __sg_next(iter->sg); if (!iter->sg || sg_dma_len(iter->sg) == 0) { idx = 0; break; } iter->dma = sg_dma_address(iter->sg); iter->max = iter->dma + sg_dma_len(iter->sg); } if (gen8_pd_index(++idx, 0) == 0) { if (gen8_pd_index(idx, 1) == 0) { /* Limited by sg length for 3lvl */ if (gen8_pd_index(idx, 2) == 0) break; pd = pdp->entry[gen8_pd_index(idx, 2)]; } drm_clflush_virt_range(vaddr, PAGE_SIZE); vaddr = px_vaddr(i915_pt_entry(pd, gen8_pd_index(idx, 1))); } } while (1); drm_clflush_virt_range(vaddr, PAGE_SIZE); return idx; } static void xehpsdv_ppgtt_insert_huge(struct i915_address_space *vm, struct i915_vma_resource *vma_res, struct sgt_dma *iter, unsigned int pat_index, u32 flags) { const gen8_pte_t pte_encode = vm->pte_encode(0, pat_index, flags); unsigned int rem = sg_dma_len(iter->sg); u64 start = vma_res->start; u64 end = start + vma_res->vma_size; GEM_BUG_ON(!i915_vm_is_4lvl(vm)); do { struct i915_page_directory * const pdp = gen8_pdp_for_page_address(vm, start); struct i915_page_directory * const pd = i915_pd_entry(pdp, __gen8_pte_index(start, 2)); struct i915_page_table *pt = i915_pt_entry(pd, __gen8_pte_index(start, 1)); gen8_pte_t encode = pte_encode; unsigned int page_size; gen8_pte_t *vaddr; u16 index, max, nent, i; max = I915_PDES; nent = 1; if (vma_res->bi.page_sizes.sg & I915_GTT_PAGE_SIZE_2M && IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) && rem >= I915_GTT_PAGE_SIZE_2M && !__gen8_pte_index(start, 0)) { index = __gen8_pte_index(start, 1); encode |= GEN8_PDE_PS_2M; page_size = I915_GTT_PAGE_SIZE_2M; vaddr = px_vaddr(pd); } else { index = __gen8_pte_index(start, 0); page_size = I915_GTT_PAGE_SIZE; if (vma_res->bi.page_sizes.sg & I915_GTT_PAGE_SIZE_64K) { /* * Device local-memory on these platforms should * always use 64K pages or larger (including GTT * alignment), therefore if we know the whole * page-table needs to be filled we can always * safely use the compact-layout. Otherwise fall * back to the TLB hint with PS64. If this is * system memory we only bother with PS64. */ if ((encode & GEN12_PPGTT_PTE_LM) && end - start >= SZ_2M && !index) { index = __gen8_pte_index(start, 0) / 16; page_size = I915_GTT_PAGE_SIZE_64K; max /= 16; vaddr = px_vaddr(pd); vaddr[__gen8_pte_index(start, 1)] |= GEN12_PDE_64K; pt->is_compact = true; } else if (IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) && rem >= I915_GTT_PAGE_SIZE_64K && !(index % 16)) { encode |= GEN12_PTE_PS64; page_size = I915_GTT_PAGE_SIZE_64K; nent = 16; } } vaddr = px_vaddr(pt); } do { GEM_BUG_ON(rem < page_size); for (i = 0; i < nent; i++) { vaddr[index++] = encode | (iter->dma + i * I915_GTT_PAGE_SIZE); } start += page_size; iter->dma += page_size; rem -= page_size; if (iter->dma >= iter->max) { iter->sg = __sg_next(iter->sg); if (!iter->sg) break; rem = sg_dma_len(iter->sg); if (!rem) break; iter->dma = sg_dma_address(iter->sg); iter->max = iter->dma + rem; if (unlikely(!IS_ALIGNED(iter->dma, page_size))) break; } } while (rem >= page_size && index < max); drm_clflush_virt_range(vaddr, PAGE_SIZE); vma_res->page_sizes_gtt |= page_size; } while (iter->sg && sg_dma_len(iter->sg)); } static void gen8_ppgtt_insert_huge(struct i915_address_space *vm, struct i915_vma_resource *vma_res, struct sgt_dma *iter, unsigned int pat_index, u32 flags) { const gen8_pte_t pte_encode = vm->pte_encode(0, pat_index, flags); unsigned int rem = sg_dma_len(iter->sg); u64 start = vma_res->start; GEM_BUG_ON(!i915_vm_is_4lvl(vm)); do { struct i915_page_directory * const pdp = gen8_pdp_for_page_address(vm, start); struct i915_page_directory * const pd = i915_pd_entry(pdp, __gen8_pte_index(start, 2)); gen8_pte_t encode = pte_encode; unsigned int maybe_64K = -1; unsigned int page_size; gen8_pte_t *vaddr; u16 index; if (vma_res->bi.page_sizes.sg & I915_GTT_PAGE_SIZE_2M && IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) && rem >= I915_GTT_PAGE_SIZE_2M && !__gen8_pte_index(start, 0)) { index = __gen8_pte_index(start, 1); encode |= GEN8_PDE_PS_2M; page_size = I915_GTT_PAGE_SIZE_2M; vaddr = px_vaddr(pd); } else { struct i915_page_table *pt = i915_pt_entry(pd, __gen8_pte_index(start, 1)); index = __gen8_pte_index(start, 0); page_size = I915_GTT_PAGE_SIZE; if (!index && vma_res->bi.page_sizes.sg & I915_GTT_PAGE_SIZE_64K && IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) && (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) || rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE)) maybe_64K = __gen8_pte_index(start, 1); vaddr = px_vaddr(pt); } do { GEM_BUG_ON(sg_dma_len(iter->sg) < page_size); vaddr[index++] = encode | iter->dma; start += page_size; iter->dma += page_size; rem -= page_size; if (iter->dma >= iter->max) { iter->sg = __sg_next(iter->sg); if (!iter->sg) break; rem = sg_dma_len(iter->sg); if (!rem) break; iter->dma = sg_dma_address(iter->sg); iter->max = iter->dma + rem; if (maybe_64K != -1 && index < I915_PDES && !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) && (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) || rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE))) maybe_64K = -1; if (unlikely(!IS_ALIGNED(iter->dma, page_size))) break; } } while (rem >= page_size && index < I915_PDES); drm_clflush_virt_range(vaddr, PAGE_SIZE); /* * Is it safe to mark the 2M block as 64K? -- Either we have * filled whole page-table with 64K entries, or filled part of * it and have reached the end of the sg table and we have * enough padding. */ if (maybe_64K != -1 && (index == I915_PDES || (i915_vm_has_scratch_64K(vm) && !iter->sg && IS_ALIGNED(vma_res->start + vma_res->node_size, I915_GTT_PAGE_SIZE_2M)))) { vaddr = px_vaddr(pd); vaddr[maybe_64K] |= GEN8_PDE_IPS_64K; drm_clflush_virt_range(vaddr, PAGE_SIZE); page_size = I915_GTT_PAGE_SIZE_64K; /* * We write all 4K page entries, even when using 64K * pages. In order to verify that the HW isn't cheating * by using the 4K PTE instead of the 64K PTE, we want * to remove all the surplus entries. If the HW skipped * the 64K PTE, it will read/write into the scratch page * instead - which we detect as missing results during * selftests. */ if (I915_SELFTEST_ONLY(vm->scrub_64K)) { u16 i; encode = vm->scratch[0]->encode; vaddr = px_vaddr(i915_pt_entry(pd, maybe_64K)); for (i = 1; i < index; i += 16) memset64(vaddr + i, encode, 15); drm_clflush_virt_range(vaddr, PAGE_SIZE); } } vma_res->page_sizes_gtt |= page_size; } while (iter->sg && sg_dma_len(iter->sg)); } static void gen8_ppgtt_insert(struct i915_address_space *vm, struct i915_vma_resource *vma_res, unsigned int pat_index, u32 flags) { struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm); struct sgt_dma iter = sgt_dma(vma_res); if (vma_res->bi.page_sizes.sg > I915_GTT_PAGE_SIZE) { if (GRAPHICS_VER_FULL(vm->i915) >= IP_VER(12, 50)) xehpsdv_ppgtt_insert_huge(vm, vma_res, &iter, pat_index, flags); else gen8_ppgtt_insert_huge(vm, vma_res, &iter, pat_index, flags); } else { u64 idx = vma_res->start >> GEN8_PTE_SHIFT; do { struct i915_page_directory * const pdp = gen8_pdp_for_page_index(vm, idx); idx = gen8_ppgtt_insert_pte(ppgtt, pdp, &iter, idx, pat_index, flags); } while (idx); vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE; } } static void gen8_ppgtt_insert_entry(struct i915_address_space *vm, dma_addr_t addr, u64 offset, unsigned int pat_index, u32 flags) { u64 idx = offset >> GEN8_PTE_SHIFT; struct i915_page_directory * const pdp = gen8_pdp_for_page_index(vm, idx); struct i915_page_directory *pd = i915_pd_entry(pdp, gen8_pd_index(idx, 2)); struct i915_page_table *pt = i915_pt_entry(pd, gen8_pd_index(idx, 1)); gen8_pte_t *vaddr; GEM_BUG_ON(pt->is_compact); vaddr = px_vaddr(pt); vaddr[gen8_pd_index(idx, 0)] = vm->pte_encode(addr, pat_index, flags); drm_clflush_virt_range(&vaddr[gen8_pd_index(idx, 0)], sizeof(*vaddr)); } static void __xehpsdv_ppgtt_insert_entry_lm(struct i915_address_space *vm, dma_addr_t addr, u64 offset, unsigned int pat_index, u32 flags) { u64 idx = offset >> GEN8_PTE_SHIFT; struct i915_page_directory * const pdp = gen8_pdp_for_page_index(vm, idx); struct i915_page_directory *pd = i915_pd_entry(pdp, gen8_pd_index(idx, 2)); struct i915_page_table *pt = i915_pt_entry(pd, gen8_pd_index(idx, 1)); gen8_pte_t *vaddr; GEM_BUG_ON(!IS_ALIGNED(addr, SZ_64K)); GEM_BUG_ON(!IS_ALIGNED(offset, SZ_64K)); /* XXX: we don't strictly need to use this layout */ if (!pt->is_compact) { vaddr = px_vaddr(pd); vaddr[gen8_pd_index(idx, 1)] |= GEN12_PDE_64K; pt->is_compact = true; } vaddr = px_vaddr(pt); vaddr[gen8_pd_index(idx, 0) / 16] = vm->pte_encode(addr, pat_index, flags); } static void xehpsdv_ppgtt_insert_entry(struct i915_address_space *vm, dma_addr_t addr, u64 offset, unsigned int pat_index, u32 flags) { if (flags & PTE_LM) return __xehpsdv_ppgtt_insert_entry_lm(vm, addr, offset, pat_index, flags); return gen8_ppgtt_insert_entry(vm, addr, offset, pat_index, flags); } static int gen8_init_scratch(struct i915_address_space *vm) { u32 pte_flags; int ret; int i; /* * If everybody agrees to not to write into the scratch page, * we can reuse it for all vm, keeping contexts and processes separate. */ if (vm->has_read_only && vm->gt->vm && !i915_is_ggtt(vm->gt->vm)) { struct i915_address_space *clone = vm->gt->vm; GEM_BUG_ON(!clone->has_read_only); vm->scratch_order = clone->scratch_order; for (i = 0; i <= vm->top; i++) vm->scratch[i] = i915_gem_object_get(clone->scratch[i]); return 0; } ret = setup_scratch_page(vm); if (ret) return ret; pte_flags = vm->has_read_only; if (i915_gem_object_is_lmem(vm->scratch[0])) pte_flags |= PTE_LM; vm->scratch[0]->encode = vm->pte_encode(px_dma(vm->scratch[0]), i915_gem_get_pat_index(vm->i915, I915_CACHE_NONE), pte_flags); for (i = 1; i <= vm->top; i++) { struct drm_i915_gem_object *obj; obj = vm->alloc_pt_dma(vm, I915_GTT_PAGE_SIZE_4K); if (IS_ERR(obj)) { ret = PTR_ERR(obj); goto free_scratch; } ret = map_pt_dma(vm, obj); if (ret) { i915_gem_object_put(obj); goto free_scratch; } fill_px(obj, vm->scratch[i - 1]->encode); obj->encode = gen8_pde_encode(px_dma(obj), I915_CACHE_NONE); vm->scratch[i] = obj; } return 0; free_scratch: while (i--) i915_gem_object_put(vm->scratch[i]); vm->scratch[0] = NULL; return ret; } static int gen8_preallocate_top_level_pdp(struct i915_ppgtt *ppgtt) { struct i915_address_space *vm = &ppgtt->vm; struct i915_page_directory *pd = ppgtt->pd; unsigned int idx; GEM_BUG_ON(vm->top != 2); GEM_BUG_ON(gen8_pd_top_count(vm) != GEN8_3LVL_PDPES); for (idx = 0; idx < GEN8_3LVL_PDPES; idx++) { struct i915_page_directory *pde; int err; pde = alloc_pd(vm); if (IS_ERR(pde)) return PTR_ERR(pde); err = map_pt_dma(vm, pde->pt.base); if (err) { free_pd(vm, pde); return err; } fill_px(pde, vm->scratch[1]->encode); set_pd_entry(pd, idx, pde); atomic_inc(px_used(pde)); /* keep pinned */ } wmb(); return 0; } static struct i915_page_directory * gen8_alloc_top_pd(struct i915_address_space *vm) { const unsigned int count = gen8_pd_top_count(vm); struct i915_page_directory *pd; int err; GEM_BUG_ON(count > I915_PDES); pd = __alloc_pd(count); if (unlikely(!pd)) return ERR_PTR(-ENOMEM); pd->pt.base = vm->alloc_pt_dma(vm, I915_GTT_PAGE_SIZE_4K); if (IS_ERR(pd->pt.base)) { err = PTR_ERR(pd->pt.base); pd->pt.base = NULL; goto err_pd; } err = map_pt_dma(vm, pd->pt.base); if (err) goto err_pd; fill_page_dma(px_base(pd), vm->scratch[vm->top]->encode, count); atomic_inc(px_used(pd)); /* mark as pinned */ return pd; err_pd: free_pd(vm, pd); return ERR_PTR(err); } /* * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers * with a net effect resembling a 2-level page table in normal x86 terms. Each * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address * space. * */ struct i915_ppgtt *gen8_ppgtt_create(struct intel_gt *gt, unsigned long lmem_pt_obj_flags) { struct i915_page_directory *pd; struct i915_ppgtt *ppgtt; int err; ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); if (!ppgtt) return ERR_PTR(-ENOMEM); ppgtt_init(ppgtt, gt, lmem_pt_obj_flags); ppgtt->vm.top = i915_vm_is_4lvl(&ppgtt->vm) ? 3 : 2; ppgtt->vm.pd_shift = ilog2(SZ_4K * SZ_4K / sizeof(gen8_pte_t)); /* * From bdw, there is hw support for read-only pages in the PPGTT. * * Gen11 has HSDES#:1807136187 unresolved. Disable ro support * for now. * * Gen12 has inherited the same read-only fault issue from gen11. */ ppgtt->vm.has_read_only = !IS_GRAPHICS_VER(gt->i915, 11, 12); if (HAS_LMEM(gt->i915)) ppgtt->vm.alloc_pt_dma = alloc_pt_lmem; else ppgtt->vm.alloc_pt_dma = alloc_pt_dma; /* * Using SMEM here instead of LMEM has the advantage of not reserving * high performance memory for a "never" used filler page. It also * removes the device access that would be required to initialise the * scratch page, reducing pressure on an even scarcer resource. */ ppgtt->vm.alloc_scratch_dma = alloc_pt_dma; if (GRAPHICS_VER(gt->i915) >= 12) ppgtt->vm.pte_encode = gen12_pte_encode; else ppgtt->vm.pte_encode = gen8_pte_encode; ppgtt->vm.bind_async_flags = I915_VMA_LOCAL_BIND; ppgtt->vm.insert_entries = gen8_ppgtt_insert; if (HAS_64K_PAGES(gt->i915)) ppgtt->vm.insert_page = xehpsdv_ppgtt_insert_entry; else ppgtt->vm.insert_page = gen8_ppgtt_insert_entry; ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc; ppgtt->vm.clear_range = gen8_ppgtt_clear; ppgtt->vm.foreach = gen8_ppgtt_foreach; ppgtt->vm.cleanup = gen8_ppgtt_cleanup; err = gen8_init_scratch(&ppgtt->vm); if (err) goto err_put; pd = gen8_alloc_top_pd(&ppgtt->vm); if (IS_ERR(pd)) { err = PTR_ERR(pd); goto err_put; } ppgtt->pd = pd; if (!i915_vm_is_4lvl(&ppgtt->vm)) { err = gen8_preallocate_top_level_pdp(ppgtt); if (err) goto err_put; } if (intel_vgpu_active(gt->i915)) gen8_ppgtt_notify_vgt(ppgtt, true); return ppgtt; err_put: i915_vm_put(&ppgtt->vm); return ERR_PTR(err); }
linux-master
drivers/gpu/drm/i915/gt/gen8_ppgtt.c
// SPDX-License-Identifier: MIT /* * Copyright © 2017-2018 Intel Corporation */ #include <linux/prime_numbers.h> #include <linux/string_helpers.h> #include "intel_context.h" #include "intel_engine_heartbeat.h" #include "intel_engine_pm.h" #include "intel_engine_regs.h" #include "intel_gpu_commands.h" #include "intel_gt.h" #include "intel_gt_requests.h" #include "intel_ring.h" #include "selftest_engine_heartbeat.h" #include "../selftests/i915_random.h" #include "../i915_selftest.h" #include "selftests/igt_flush_test.h" #include "selftests/lib_sw_fence.h" #include "selftests/mock_gem_device.h" #include "selftests/mock_timeline.h" static struct page *hwsp_page(struct intel_timeline *tl) { struct drm_i915_gem_object *obj = tl->hwsp_ggtt->obj; GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); return sg_page(obj->mm.pages->sgl); } static unsigned long hwsp_cacheline(struct intel_timeline *tl) { unsigned long address = (unsigned long)page_address(hwsp_page(tl)); return (address + offset_in_page(tl->hwsp_offset)) / TIMELINE_SEQNO_BYTES; } static int selftest_tl_pin(struct intel_timeline *tl) { struct i915_gem_ww_ctx ww; int err; i915_gem_ww_ctx_init(&ww, false); retry: err = i915_gem_object_lock(tl->hwsp_ggtt->obj, &ww); if (!err) err = intel_timeline_pin(tl, &ww); if (err == -EDEADLK) { err = i915_gem_ww_ctx_backoff(&ww); if (!err) goto retry; } i915_gem_ww_ctx_fini(&ww); return err; } /* Only half of seqno's are usable, see __intel_timeline_get_seqno() */ #define CACHELINES_PER_PAGE (PAGE_SIZE / TIMELINE_SEQNO_BYTES / 2) struct mock_hwsp_freelist { struct intel_gt *gt; struct radix_tree_root cachelines; struct intel_timeline **history; unsigned long count, max; struct rnd_state prng; }; enum { SHUFFLE = BIT(0), }; static void __mock_hwsp_record(struct mock_hwsp_freelist *state, unsigned int idx, struct intel_timeline *tl) { tl = xchg(&state->history[idx], tl); if (tl) { radix_tree_delete(&state->cachelines, hwsp_cacheline(tl)); intel_timeline_unpin(tl); intel_timeline_put(tl); } } static int __mock_hwsp_timeline(struct mock_hwsp_freelist *state, unsigned int count, unsigned int flags) { struct intel_timeline *tl; unsigned int idx; while (count--) { unsigned long cacheline; int err; tl = intel_timeline_create(state->gt); if (IS_ERR(tl)) return PTR_ERR(tl); err = selftest_tl_pin(tl); if (err) { intel_timeline_put(tl); return err; } cacheline = hwsp_cacheline(tl); err = radix_tree_insert(&state->cachelines, cacheline, tl); if (err) { if (err == -EEXIST) { pr_err("HWSP cacheline %lu already used; duplicate allocation!\n", cacheline); } intel_timeline_unpin(tl); intel_timeline_put(tl); return err; } idx = state->count++ % state->max; __mock_hwsp_record(state, idx, tl); } if (flags & SHUFFLE) i915_prandom_shuffle(state->history, sizeof(*state->history), min(state->count, state->max), &state->prng); count = i915_prandom_u32_max_state(min(state->count, state->max), &state->prng); while (count--) { idx = --state->count % state->max; __mock_hwsp_record(state, idx, NULL); } return 0; } static int mock_hwsp_freelist(void *arg) { struct mock_hwsp_freelist state; struct drm_i915_private *i915; const struct { const char *name; unsigned int flags; } phases[] = { { "linear", 0 }, { "shuffled", SHUFFLE }, { }, }, *p; unsigned int na; int err = 0; i915 = mock_gem_device(); if (!i915) return -ENOMEM; INIT_RADIX_TREE(&state.cachelines, GFP_KERNEL); state.prng = I915_RND_STATE_INITIALIZER(i915_selftest.random_seed); state.gt = to_gt(i915); /* * Create a bunch of timelines and check that their HWSP do not overlap. * Free some, and try again. */ state.max = PAGE_SIZE / sizeof(*state.history); state.count = 0; state.history = kcalloc(state.max, sizeof(*state.history), GFP_KERNEL); if (!state.history) { err = -ENOMEM; goto err_put; } for (p = phases; p->name; p++) { pr_debug("%s(%s)\n", __func__, p->name); for_each_prime_number_from(na, 1, 2 * CACHELINES_PER_PAGE) { err = __mock_hwsp_timeline(&state, na, p->flags); if (err) goto out; } } out: for (na = 0; na < state.max; na++) __mock_hwsp_record(&state, na, NULL); kfree(state.history); err_put: mock_destroy_device(i915); return err; } struct __igt_sync { const char *name; u32 seqno; bool expected; bool set; }; static int __igt_sync(struct intel_timeline *tl, u64 ctx, const struct __igt_sync *p, const char *name) { int ret; if (__intel_timeline_sync_is_later(tl, ctx, p->seqno) != p->expected) { pr_err("%s: %s(ctx=%llu, seqno=%u) expected passed %s but failed\n", name, p->name, ctx, p->seqno, str_yes_no(p->expected)); return -EINVAL; } if (p->set) { ret = __intel_timeline_sync_set(tl, ctx, p->seqno); if (ret) return ret; } return 0; } static int igt_sync(void *arg) { const struct __igt_sync pass[] = { { "unset", 0, false, false }, { "new", 0, false, true }, { "0a", 0, true, true }, { "1a", 1, false, true }, { "1b", 1, true, true }, { "0b", 0, true, false }, { "2a", 2, false, true }, { "4", 4, false, true }, { "INT_MAX", INT_MAX, false, true }, { "INT_MAX-1", INT_MAX-1, true, false }, { "INT_MAX+1", (u32)INT_MAX+1, false, true }, { "INT_MAX", INT_MAX, true, false }, { "UINT_MAX", UINT_MAX, false, true }, { "wrap", 0, false, true }, { "unwrap", UINT_MAX, true, false }, {}, }, *p; struct intel_timeline tl; int order, offset; int ret = -ENODEV; mock_timeline_init(&tl, 0); for (p = pass; p->name; p++) { for (order = 1; order < 64; order++) { for (offset = -1; offset <= (order > 1); offset++) { u64 ctx = BIT_ULL(order) + offset; ret = __igt_sync(&tl, ctx, p, "1"); if (ret) goto out; } } } mock_timeline_fini(&tl); mock_timeline_init(&tl, 0); for (order = 1; order < 64; order++) { for (offset = -1; offset <= (order > 1); offset++) { u64 ctx = BIT_ULL(order) + offset; for (p = pass; p->name; p++) { ret = __igt_sync(&tl, ctx, p, "2"); if (ret) goto out; } } } out: mock_timeline_fini(&tl); return ret; } static unsigned int random_engine(struct rnd_state *rnd) { return i915_prandom_u32_max_state(I915_NUM_ENGINES, rnd); } static int bench_sync(void *arg) { struct rnd_state prng; struct intel_timeline tl; unsigned long end_time, count; u64 prng32_1M; ktime_t kt; int order, last_order; mock_timeline_init(&tl, 0); /* Lookups from cache are very fast and so the random number generation * and the loop itself becomes a significant factor in the per-iteration * timings. We try to compensate the results by measuring the overhead * of the prng and subtract it from the reported results. */ prandom_seed_state(&prng, i915_selftest.random_seed); count = 0; kt = ktime_get(); end_time = jiffies + HZ/10; do { u32 x; /* Make sure the compiler doesn't optimise away the prng call */ WRITE_ONCE(x, prandom_u32_state(&prng)); count++; } while (!time_after(jiffies, end_time)); kt = ktime_sub(ktime_get(), kt); pr_debug("%s: %lu random evaluations, %lluns/prng\n", __func__, count, (long long)div64_ul(ktime_to_ns(kt), count)); prng32_1M = div64_ul(ktime_to_ns(kt) << 20, count); /* Benchmark (only) setting random context ids */ prandom_seed_state(&prng, i915_selftest.random_seed); count = 0; kt = ktime_get(); end_time = jiffies + HZ/10; do { u64 id = i915_prandom_u64_state(&prng); __intel_timeline_sync_set(&tl, id, 0); count++; } while (!time_after(jiffies, end_time)); kt = ktime_sub(ktime_get(), kt); kt = ktime_sub_ns(kt, (count * prng32_1M * 2) >> 20); pr_info("%s: %lu random insertions, %lluns/insert\n", __func__, count, (long long)div64_ul(ktime_to_ns(kt), count)); /* Benchmark looking up the exact same context ids as we just set */ prandom_seed_state(&prng, i915_selftest.random_seed); end_time = count; kt = ktime_get(); while (end_time--) { u64 id = i915_prandom_u64_state(&prng); if (!__intel_timeline_sync_is_later(&tl, id, 0)) { mock_timeline_fini(&tl); pr_err("Lookup of %llu failed\n", id); return -EINVAL; } } kt = ktime_sub(ktime_get(), kt); kt = ktime_sub_ns(kt, (count * prng32_1M * 2) >> 20); pr_info("%s: %lu random lookups, %lluns/lookup\n", __func__, count, (long long)div64_ul(ktime_to_ns(kt), count)); mock_timeline_fini(&tl); cond_resched(); mock_timeline_init(&tl, 0); /* Benchmark setting the first N (in order) contexts */ count = 0; kt = ktime_get(); end_time = jiffies + HZ/10; do { __intel_timeline_sync_set(&tl, count++, 0); } while (!time_after(jiffies, end_time)); kt = ktime_sub(ktime_get(), kt); pr_info("%s: %lu in-order insertions, %lluns/insert\n", __func__, count, (long long)div64_ul(ktime_to_ns(kt), count)); /* Benchmark looking up the exact same context ids as we just set */ end_time = count; kt = ktime_get(); while (end_time--) { if (!__intel_timeline_sync_is_later(&tl, end_time, 0)) { pr_err("Lookup of %lu failed\n", end_time); mock_timeline_fini(&tl); return -EINVAL; } } kt = ktime_sub(ktime_get(), kt); pr_info("%s: %lu in-order lookups, %lluns/lookup\n", __func__, count, (long long)div64_ul(ktime_to_ns(kt), count)); mock_timeline_fini(&tl); cond_resched(); mock_timeline_init(&tl, 0); /* Benchmark searching for a random context id and maybe changing it */ prandom_seed_state(&prng, i915_selftest.random_seed); count = 0; kt = ktime_get(); end_time = jiffies + HZ/10; do { u32 id = random_engine(&prng); u32 seqno = prandom_u32_state(&prng); if (!__intel_timeline_sync_is_later(&tl, id, seqno)) __intel_timeline_sync_set(&tl, id, seqno); count++; } while (!time_after(jiffies, end_time)); kt = ktime_sub(ktime_get(), kt); kt = ktime_sub_ns(kt, (count * prng32_1M * 2) >> 20); pr_info("%s: %lu repeated insert/lookups, %lluns/op\n", __func__, count, (long long)div64_ul(ktime_to_ns(kt), count)); mock_timeline_fini(&tl); cond_resched(); /* Benchmark searching for a known context id and changing the seqno */ for (last_order = 1, order = 1; order < 32; ({ int tmp = last_order; last_order = order; order += tmp; })) { unsigned int mask = BIT(order) - 1; mock_timeline_init(&tl, 0); count = 0; kt = ktime_get(); end_time = jiffies + HZ/10; do { /* Without assuming too many details of the underlying * implementation, try to identify its phase-changes * (if any)! */ u64 id = (u64)(count & mask) << order; __intel_timeline_sync_is_later(&tl, id, 0); __intel_timeline_sync_set(&tl, id, 0); count++; } while (!time_after(jiffies, end_time)); kt = ktime_sub(ktime_get(), kt); pr_info("%s: %lu cyclic/%d insert/lookups, %lluns/op\n", __func__, count, order, (long long)div64_ul(ktime_to_ns(kt), count)); mock_timeline_fini(&tl); cond_resched(); } return 0; } int intel_timeline_mock_selftests(void) { static const struct i915_subtest tests[] = { SUBTEST(mock_hwsp_freelist), SUBTEST(igt_sync), SUBTEST(bench_sync), }; return i915_subtests(tests, NULL); } static int emit_ggtt_store_dw(struct i915_request *rq, u32 addr, u32 value) { u32 *cs; cs = intel_ring_begin(rq, 4); if (IS_ERR(cs)) return PTR_ERR(cs); if (GRAPHICS_VER(rq->i915) >= 8) { *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; *cs++ = addr; *cs++ = 0; *cs++ = value; } else if (GRAPHICS_VER(rq->i915) >= 4) { *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; *cs++ = 0; *cs++ = addr; *cs++ = value; } else { *cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL; *cs++ = addr; *cs++ = value; *cs++ = MI_NOOP; } intel_ring_advance(rq, cs); return 0; } static struct i915_request * checked_tl_write(struct intel_timeline *tl, struct intel_engine_cs *engine, u32 value) { struct i915_request *rq; int err; err = selftest_tl_pin(tl); if (err) { rq = ERR_PTR(err); goto out; } if (READ_ONCE(*tl->hwsp_seqno) != tl->seqno) { pr_err("Timeline created with incorrect breadcrumb, found %x, expected %x\n", *tl->hwsp_seqno, tl->seqno); intel_timeline_unpin(tl); return ERR_PTR(-EINVAL); } rq = intel_engine_create_kernel_request(engine); if (IS_ERR(rq)) goto out_unpin; i915_request_get(rq); err = emit_ggtt_store_dw(rq, tl->hwsp_offset, value); i915_request_add(rq); if (err) { i915_request_put(rq); rq = ERR_PTR(err); } out_unpin: intel_timeline_unpin(tl); out: if (IS_ERR(rq)) pr_err("Failed to write to timeline!\n"); return rq; } static int live_hwsp_engine(void *arg) { #define NUM_TIMELINES 4096 struct intel_gt *gt = arg; struct intel_timeline **timelines; struct intel_engine_cs *engine; enum intel_engine_id id; unsigned long count, n; int err = 0; /* * Create a bunch of timelines and check we can write * independently to each of their breadcrumb slots. */ timelines = kvmalloc_array(NUM_TIMELINES * I915_NUM_ENGINES, sizeof(*timelines), GFP_KERNEL); if (!timelines) return -ENOMEM; count = 0; for_each_engine(engine, gt, id) { if (!intel_engine_can_store_dword(engine)) continue; intel_engine_pm_get(engine); for (n = 0; n < NUM_TIMELINES; n++) { struct intel_timeline *tl; struct i915_request *rq; tl = intel_timeline_create(gt); if (IS_ERR(tl)) { err = PTR_ERR(tl); break; } rq = checked_tl_write(tl, engine, count); if (IS_ERR(rq)) { intel_timeline_put(tl); err = PTR_ERR(rq); break; } timelines[count++] = tl; i915_request_put(rq); } intel_engine_pm_put(engine); if (err) break; } if (igt_flush_test(gt->i915)) err = -EIO; for (n = 0; n < count; n++) { struct intel_timeline *tl = timelines[n]; if (!err && READ_ONCE(*tl->hwsp_seqno) != n) { GEM_TRACE_ERR("Invalid seqno:%lu stored in timeline %llu @ %x, found 0x%x\n", n, tl->fence_context, tl->hwsp_offset, *tl->hwsp_seqno); GEM_TRACE_DUMP(); err = -EINVAL; } intel_timeline_put(tl); } kvfree(timelines); return err; #undef NUM_TIMELINES } static int live_hwsp_alternate(void *arg) { #define NUM_TIMELINES 4096 struct intel_gt *gt = arg; struct intel_timeline **timelines; struct intel_engine_cs *engine; enum intel_engine_id id; unsigned long count, n; int err = 0; /* * Create a bunch of timelines and check we can write * independently to each of their breadcrumb slots with adjacent * engines. */ timelines = kvmalloc_array(NUM_TIMELINES * I915_NUM_ENGINES, sizeof(*timelines), GFP_KERNEL); if (!timelines) return -ENOMEM; count = 0; for (n = 0; n < NUM_TIMELINES; n++) { for_each_engine(engine, gt, id) { struct intel_timeline *tl; struct i915_request *rq; if (!intel_engine_can_store_dword(engine)) continue; tl = intel_timeline_create(gt); if (IS_ERR(tl)) { err = PTR_ERR(tl); goto out; } intel_engine_pm_get(engine); rq = checked_tl_write(tl, engine, count); intel_engine_pm_put(engine); if (IS_ERR(rq)) { intel_timeline_put(tl); err = PTR_ERR(rq); goto out; } timelines[count++] = tl; i915_request_put(rq); } } out: if (igt_flush_test(gt->i915)) err = -EIO; for (n = 0; n < count; n++) { struct intel_timeline *tl = timelines[n]; if (!err && READ_ONCE(*tl->hwsp_seqno) != n) { GEM_TRACE_ERR("Invalid seqno:%lu stored in timeline %llu @ %x, found 0x%x\n", n, tl->fence_context, tl->hwsp_offset, *tl->hwsp_seqno); GEM_TRACE_DUMP(); err = -EINVAL; } intel_timeline_put(tl); } kvfree(timelines); return err; #undef NUM_TIMELINES } static int live_hwsp_wrap(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; struct intel_timeline *tl; enum intel_engine_id id; int err = 0; /* * Across a seqno wrap, we need to keep the old cacheline alive for * foreign GPU references. */ tl = intel_timeline_create(gt); if (IS_ERR(tl)) return PTR_ERR(tl); if (!tl->has_initial_breadcrumb) goto out_free; err = selftest_tl_pin(tl); if (err) goto out_free; for_each_engine(engine, gt, id) { const u32 *hwsp_seqno[2]; struct i915_request *rq; u32 seqno[2]; if (!intel_engine_can_store_dword(engine)) continue; rq = intel_engine_create_kernel_request(engine); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out; } tl->seqno = -4u; mutex_lock_nested(&tl->mutex, SINGLE_DEPTH_NESTING); err = intel_timeline_get_seqno(tl, rq, &seqno[0]); mutex_unlock(&tl->mutex); if (err) { i915_request_add(rq); goto out; } pr_debug("seqno[0]:%08x, hwsp_offset:%08x\n", seqno[0], tl->hwsp_offset); err = emit_ggtt_store_dw(rq, tl->hwsp_offset, seqno[0]); if (err) { i915_request_add(rq); goto out; } hwsp_seqno[0] = tl->hwsp_seqno; mutex_lock_nested(&tl->mutex, SINGLE_DEPTH_NESTING); err = intel_timeline_get_seqno(tl, rq, &seqno[1]); mutex_unlock(&tl->mutex); if (err) { i915_request_add(rq); goto out; } pr_debug("seqno[1]:%08x, hwsp_offset:%08x\n", seqno[1], tl->hwsp_offset); err = emit_ggtt_store_dw(rq, tl->hwsp_offset, seqno[1]); if (err) { i915_request_add(rq); goto out; } hwsp_seqno[1] = tl->hwsp_seqno; /* With wrap should come a new hwsp */ GEM_BUG_ON(seqno[1] >= seqno[0]); GEM_BUG_ON(hwsp_seqno[0] == hwsp_seqno[1]); i915_request_add(rq); if (i915_request_wait(rq, 0, HZ / 5) < 0) { pr_err("Wait for timeline writes timed out!\n"); err = -EIO; goto out; } if (READ_ONCE(*hwsp_seqno[0]) != seqno[0] || READ_ONCE(*hwsp_seqno[1]) != seqno[1]) { pr_err("Bad timeline values: found (%x, %x), expected (%x, %x)\n", *hwsp_seqno[0], *hwsp_seqno[1], seqno[0], seqno[1]); err = -EINVAL; goto out; } intel_gt_retire_requests(gt); /* recycle HWSP */ } out: if (igt_flush_test(gt->i915)) err = -EIO; intel_timeline_unpin(tl); out_free: intel_timeline_put(tl); return err; } static int emit_read_hwsp(struct i915_request *rq, u32 seqno, u32 hwsp, u32 *addr) { const u32 gpr = i915_mmio_reg_offset(GEN8_RING_CS_GPR(rq->engine->mmio_base, 0)); u32 *cs; cs = intel_ring_begin(rq, 12); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; *cs++ = *addr; *cs++ = 0; *cs++ = seqno; *addr += 4; *cs++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_USE_GGTT; *cs++ = gpr; *cs++ = hwsp; *cs++ = 0; *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT; *cs++ = gpr; *cs++ = *addr; *cs++ = 0; *addr += 4; intel_ring_advance(rq, cs); return 0; } struct hwsp_watcher { struct i915_vma *vma; struct i915_request *rq; u32 addr; u32 *map; }; static bool cmp_lt(u32 a, u32 b) { return a < b; } static bool cmp_gte(u32 a, u32 b) { return a >= b; } static int setup_watcher(struct hwsp_watcher *w, struct intel_gt *gt, struct intel_timeline *tl) { struct drm_i915_gem_object *obj; struct i915_vma *vma; obj = i915_gem_object_create_internal(gt->i915, SZ_2M); if (IS_ERR(obj)) return PTR_ERR(obj); /* keep the same cache settings as timeline */ i915_gem_object_set_pat_index(obj, tl->hwsp_ggtt->obj->pat_index); w->map = i915_gem_object_pin_map_unlocked(obj, page_unmask_bits(tl->hwsp_ggtt->obj->mm.mapping)); if (IS_ERR(w->map)) { i915_gem_object_put(obj); return PTR_ERR(w->map); } vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0); if (IS_ERR(vma)) { i915_gem_object_put(obj); return PTR_ERR(vma); } w->vma = vma; w->addr = i915_ggtt_offset(vma); return 0; } static void switch_tl_lock(struct i915_request *from, struct i915_request *to) { /* some light mutex juggling required; think co-routines */ if (from) { lockdep_unpin_lock(&from->context->timeline->mutex, from->cookie); mutex_unlock(&from->context->timeline->mutex); } if (to) { mutex_lock(&to->context->timeline->mutex); to->cookie = lockdep_pin_lock(&to->context->timeline->mutex); } } static int create_watcher(struct hwsp_watcher *w, struct intel_engine_cs *engine, int ringsz) { struct intel_context *ce; ce = intel_context_create(engine); if (IS_ERR(ce)) return PTR_ERR(ce); ce->ring_size = ringsz; w->rq = intel_context_create_request(ce); intel_context_put(ce); if (IS_ERR(w->rq)) return PTR_ERR(w->rq); w->addr = i915_ggtt_offset(w->vma); switch_tl_lock(w->rq, NULL); return 0; } static int check_watcher(struct hwsp_watcher *w, const char *name, bool (*op)(u32 hwsp, u32 seqno)) { struct i915_request *rq = fetch_and_zero(&w->rq); u32 offset, end; int err; GEM_BUG_ON(w->addr - i915_ggtt_offset(w->vma) > w->vma->size); i915_request_get(rq); switch_tl_lock(NULL, rq); i915_request_add(rq); if (i915_request_wait(rq, 0, HZ) < 0) { err = -ETIME; goto out; } err = 0; offset = 0; end = (w->addr - i915_ggtt_offset(w->vma)) / sizeof(*w->map); while (offset < end) { if (!op(w->map[offset + 1], w->map[offset])) { pr_err("Watcher '%s' found HWSP value %x for seqno %x\n", name, w->map[offset + 1], w->map[offset]); err = -EINVAL; } offset += 2; } out: i915_request_put(rq); return err; } static void cleanup_watcher(struct hwsp_watcher *w) { if (w->rq) { switch_tl_lock(NULL, w->rq); i915_request_add(w->rq); } i915_vma_unpin_and_release(&w->vma, I915_VMA_RELEASE_MAP); } static bool retire_requests(struct intel_timeline *tl) { struct i915_request *rq, *rn; mutex_lock(&tl->mutex); list_for_each_entry_safe(rq, rn, &tl->requests, link) if (!i915_request_retire(rq)) break; mutex_unlock(&tl->mutex); return !i915_active_fence_isset(&tl->last_request); } static struct i915_request *wrap_timeline(struct i915_request *rq) { struct intel_context *ce = rq->context; struct intel_timeline *tl = ce->timeline; u32 seqno = rq->fence.seqno; while (tl->seqno >= seqno) { /* Cause a wrap */ i915_request_put(rq); rq = intel_context_create_request(ce); if (IS_ERR(rq)) return rq; i915_request_get(rq); i915_request_add(rq); } i915_request_put(rq); rq = i915_request_create(ce); if (IS_ERR(rq)) return rq; i915_request_get(rq); i915_request_add(rq); return rq; } static int live_hwsp_read(void *arg) { struct intel_gt *gt = arg; struct hwsp_watcher watcher[2] = {}; struct intel_engine_cs *engine; struct intel_timeline *tl; enum intel_engine_id id; int err = 0; int i; /* * If we take a reference to the HWSP for reading on the GPU, that * read may be arbitrarily delayed (either by foreign fence or * priority saturation) and a wrap can happen within 30 minutes. * When the GPU read is finally submitted it should be correct, * even across multiple wraps. */ if (GRAPHICS_VER(gt->i915) < 8) /* CS convenience [SRM/LRM] */ return 0; tl = intel_timeline_create(gt); if (IS_ERR(tl)) return PTR_ERR(tl); if (!tl->has_initial_breadcrumb) goto out_free; selftest_tl_pin(tl); for (i = 0; i < ARRAY_SIZE(watcher); i++) { err = setup_watcher(&watcher[i], gt, tl); if (err) goto out; } for_each_engine(engine, gt, id) { struct intel_context *ce; unsigned long count = 0; IGT_TIMEOUT(end_time); /* Create a request we can use for remote reading of the HWSP */ err = create_watcher(&watcher[1], engine, SZ_512K); if (err) goto out; do { struct i915_sw_fence *submit; struct i915_request *rq; u32 hwsp, dummy; submit = heap_fence_create(GFP_KERNEL); if (!submit) { err = -ENOMEM; goto out; } err = create_watcher(&watcher[0], engine, SZ_4K); if (err) goto out; ce = intel_context_create(engine); if (IS_ERR(ce)) { err = PTR_ERR(ce); goto out; } ce->timeline = intel_timeline_get(tl); /* Ensure timeline is mapped, done during first pin */ err = intel_context_pin(ce); if (err) { intel_context_put(ce); goto out; } /* * Start at a new wrap, and set seqno right before another wrap, * saving 30 minutes of nops */ tl->seqno = -12u + 2 * (count & 3); __intel_timeline_get_seqno(tl, &dummy); rq = i915_request_create(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); intel_context_unpin(ce); intel_context_put(ce); goto out; } err = i915_sw_fence_await_dma_fence(&rq->submit, &watcher[0].rq->fence, 0, GFP_KERNEL); if (err < 0) { i915_request_add(rq); intel_context_unpin(ce); intel_context_put(ce); goto out; } switch_tl_lock(rq, watcher[0].rq); err = intel_timeline_read_hwsp(rq, watcher[0].rq, &hwsp); if (err == 0) err = emit_read_hwsp(watcher[0].rq, /* before */ rq->fence.seqno, hwsp, &watcher[0].addr); switch_tl_lock(watcher[0].rq, rq); if (err) { i915_request_add(rq); intel_context_unpin(ce); intel_context_put(ce); goto out; } switch_tl_lock(rq, watcher[1].rq); err = intel_timeline_read_hwsp(rq, watcher[1].rq, &hwsp); if (err == 0) err = emit_read_hwsp(watcher[1].rq, /* after */ rq->fence.seqno, hwsp, &watcher[1].addr); switch_tl_lock(watcher[1].rq, rq); if (err) { i915_request_add(rq); intel_context_unpin(ce); intel_context_put(ce); goto out; } i915_request_get(rq); i915_request_add(rq); rq = wrap_timeline(rq); intel_context_unpin(ce); intel_context_put(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out; } err = i915_sw_fence_await_dma_fence(&watcher[1].rq->submit, &rq->fence, 0, GFP_KERNEL); if (err < 0) { i915_request_put(rq); goto out; } err = check_watcher(&watcher[0], "before", cmp_lt); i915_sw_fence_commit(submit); heap_fence_put(submit); if (err) { i915_request_put(rq); goto out; } count++; /* Flush the timeline before manually wrapping again */ if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, HZ) < 0) { err = -ETIME; i915_request_put(rq); goto out; } retire_requests(tl); i915_request_put(rq); /* Single requests are limited to half a ring at most */ if (8 * watcher[1].rq->ring->emit > 3 * watcher[1].rq->ring->size) break; } while (!__igt_timeout(end_time, NULL) && count < (PAGE_SIZE / TIMELINE_SEQNO_BYTES - 1) / 2); pr_info("%s: simulated %lu wraps\n", engine->name, count); err = check_watcher(&watcher[1], "after", cmp_gte); if (err) goto out; } out: for (i = 0; i < ARRAY_SIZE(watcher); i++) cleanup_watcher(&watcher[i]); intel_timeline_unpin(tl); if (igt_flush_test(gt->i915)) err = -EIO; out_free: intel_timeline_put(tl); return err; } static int live_hwsp_rollover_kernel(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; /* * Run the host for long enough, and even the kernel context will * see a seqno rollover. */ for_each_engine(engine, gt, id) { struct intel_context *ce = engine->kernel_context; struct intel_timeline *tl = ce->timeline; struct i915_request *rq[3] = {}; int i; st_engine_heartbeat_disable(engine); if (intel_gt_wait_for_idle(gt, HZ / 2)) { err = -EIO; goto out; } GEM_BUG_ON(i915_active_fence_isset(&tl->last_request)); tl->seqno = -2u; WRITE_ONCE(*(u32 *)tl->hwsp_seqno, tl->seqno); for (i = 0; i < ARRAY_SIZE(rq); i++) { struct i915_request *this; this = i915_request_create(ce); if (IS_ERR(this)) { err = PTR_ERR(this); goto out; } pr_debug("%s: create fence.seqnp:%d\n", engine->name, lower_32_bits(this->fence.seqno)); GEM_BUG_ON(rcu_access_pointer(this->timeline) != tl); rq[i] = i915_request_get(this); i915_request_add(this); } /* We expected a wrap! */ GEM_BUG_ON(rq[2]->fence.seqno > rq[0]->fence.seqno); if (i915_request_wait(rq[2], 0, HZ / 5) < 0) { pr_err("Wait for timeline wrap timed out!\n"); err = -EIO; goto out; } for (i = 0; i < ARRAY_SIZE(rq); i++) { if (!i915_request_completed(rq[i])) { pr_err("Pre-wrap request not completed!\n"); err = -EINVAL; goto out; } } out: for (i = 0; i < ARRAY_SIZE(rq); i++) i915_request_put(rq[i]); st_engine_heartbeat_enable(engine); if (err) break; } if (igt_flush_test(gt->i915)) err = -EIO; return err; } static int live_hwsp_rollover_user(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; /* * Simulate a long running user context, and force the seqno wrap * on the user's timeline. */ for_each_engine(engine, gt, id) { struct i915_request *rq[3] = {}; struct intel_timeline *tl; struct intel_context *ce; int i; ce = intel_context_create(engine); if (IS_ERR(ce)) return PTR_ERR(ce); err = intel_context_alloc_state(ce); if (err) goto out; tl = ce->timeline; if (!tl->has_initial_breadcrumb) goto out; err = intel_context_pin(ce); if (err) goto out; tl->seqno = -4u; WRITE_ONCE(*(u32 *)tl->hwsp_seqno, tl->seqno); for (i = 0; i < ARRAY_SIZE(rq); i++) { struct i915_request *this; this = intel_context_create_request(ce); if (IS_ERR(this)) { err = PTR_ERR(this); goto out_unpin; } pr_debug("%s: create fence.seqnp:%d\n", engine->name, lower_32_bits(this->fence.seqno)); GEM_BUG_ON(rcu_access_pointer(this->timeline) != tl); rq[i] = i915_request_get(this); i915_request_add(this); } /* We expected a wrap! */ GEM_BUG_ON(rq[2]->fence.seqno > rq[0]->fence.seqno); if (i915_request_wait(rq[2], 0, HZ / 5) < 0) { pr_err("Wait for timeline wrap timed out!\n"); err = -EIO; goto out_unpin; } for (i = 0; i < ARRAY_SIZE(rq); i++) { if (!i915_request_completed(rq[i])) { pr_err("Pre-wrap request not completed!\n"); err = -EINVAL; goto out_unpin; } } out_unpin: intel_context_unpin(ce); out: for (i = 0; i < ARRAY_SIZE(rq); i++) i915_request_put(rq[i]); intel_context_put(ce); if (err) break; } if (igt_flush_test(gt->i915)) err = -EIO; return err; } static int live_hwsp_recycle(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; unsigned long count; int err = 0; /* * Check seqno writes into one timeline at a time. We expect to * recycle the breadcrumb slot between iterations and neither * want to confuse ourselves or the GPU. */ count = 0; for_each_engine(engine, gt, id) { IGT_TIMEOUT(end_time); if (!intel_engine_can_store_dword(engine)) continue; intel_engine_pm_get(engine); do { struct intel_timeline *tl; struct i915_request *rq; tl = intel_timeline_create(gt); if (IS_ERR(tl)) { err = PTR_ERR(tl); break; } rq = checked_tl_write(tl, engine, count); if (IS_ERR(rq)) { intel_timeline_put(tl); err = PTR_ERR(rq); break; } if (i915_request_wait(rq, 0, HZ / 5) < 0) { pr_err("Wait for timeline writes timed out!\n"); i915_request_put(rq); intel_timeline_put(tl); err = -EIO; break; } if (READ_ONCE(*tl->hwsp_seqno) != count) { GEM_TRACE_ERR("Invalid seqno:%lu stored in timeline %llu @ %x found 0x%x\n", count, tl->fence_context, tl->hwsp_offset, *tl->hwsp_seqno); GEM_TRACE_DUMP(); err = -EINVAL; } i915_request_put(rq); intel_timeline_put(tl); count++; if (err) break; } while (!__igt_timeout(end_time, NULL)); intel_engine_pm_put(engine); if (err) break; } return err; } int intel_timeline_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(live_hwsp_recycle), SUBTEST(live_hwsp_engine), SUBTEST(live_hwsp_alternate), SUBTEST(live_hwsp_wrap), SUBTEST(live_hwsp_read), SUBTEST(live_hwsp_rollover_kernel), SUBTEST(live_hwsp_rollover_user), }; if (intel_gt_is_wedged(to_gt(i915))) return 0; return intel_gt_live_subtests(tests, to_gt(i915)); }
linux-master
drivers/gpu/drm/i915/gt/selftest_timeline.c
// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include <drm/drm_device.h> #include <linux/device.h> #include <linux/kobject.h> #include <linux/printk.h> #include <linux/sysfs.h> #include "i915_drv.h" #include "i915_sysfs.h" #include "intel_gt.h" #include "intel_gt_print.h" #include "intel_gt_sysfs.h" #include "intel_gt_sysfs_pm.h" #include "intel_gt_types.h" #include "intel_rc6.h" bool is_object_gt(struct kobject *kobj) { return !strncmp(kobj->name, "gt", 2); } struct intel_gt *intel_gt_sysfs_get_drvdata(struct kobject *kobj, const char *name) { /* * We are interested at knowing from where the interface * has been called, whether it's called from gt/ or from * the parent directory. * From the interface position it depends also the value of * the private data. * If the interface is called from gt/ then private data is * of the "struct intel_gt *" type, otherwise it's * a * "struct drm_i915_private *" type. */ if (!is_object_gt(kobj)) { struct device *dev = kobj_to_dev(kobj); struct drm_i915_private *i915 = kdev_minor_to_i915(dev); return to_gt(i915); } return kobj_to_gt(kobj); } static struct kobject *gt_get_parent_obj(struct intel_gt *gt) { return &gt->i915->drm.primary->kdev->kobj; } static ssize_t id_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); return sysfs_emit(buf, "%u\n", gt->info.id); } static struct kobj_attribute attr_id = __ATTR_RO(id); static struct attribute *id_attrs[] = { &attr_id.attr, NULL, }; ATTRIBUTE_GROUPS(id); /* A kobject needs a release() method even if it does nothing */ static void kobj_gt_release(struct kobject *kobj) { } static const struct kobj_type kobj_gt_type = { .release = kobj_gt_release, .sysfs_ops = &kobj_sysfs_ops, .default_groups = id_groups, }; void intel_gt_sysfs_register(struct intel_gt *gt) { /* * We need to make things right with the * ABI compatibility. The files were originally * generated under the parent directory. * * We generate the files only for gt 0 * to avoid duplicates. */ if (gt_is_root(gt)) intel_gt_sysfs_pm_init(gt, gt_get_parent_obj(gt)); /* init and xfer ownership to sysfs tree */ if (kobject_init_and_add(&gt->sysfs_gt, &kobj_gt_type, gt->i915->sysfs_gt, "gt%d", gt->info.id)) goto exit_fail; gt->sysfs_defaults = kobject_create_and_add(".defaults", &gt->sysfs_gt); if (!gt->sysfs_defaults) goto exit_fail; intel_gt_sysfs_pm_init(gt, &gt->sysfs_gt); return; exit_fail: kobject_put(&gt->sysfs_gt); gt_warn(gt, "failed to initialize sysfs root\n"); } void intel_gt_sysfs_unregister(struct intel_gt *gt) { kobject_put(gt->sysfs_defaults); kobject_put(&gt->sysfs_gt); }
linux-master
drivers/gpu/drm/i915/gt/intel_gt_sysfs.c
// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include <drm/drm_print.h> #include "i915_drv.h" /* for_each_engine! */ #include "intel_engine.h" #include "intel_gt_debugfs.h" #include "intel_gt_engines_debugfs.h" static int engines_show(struct seq_file *m, void *data) { struct intel_gt *gt = m->private; struct intel_engine_cs *engine; enum intel_engine_id id; struct drm_printer p; p = drm_seq_file_printer(m); for_each_engine(engine, gt, id) intel_engine_dump(engine, &p, "%s\n", engine->name); return 0; } DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(engines); void intel_gt_engines_debugfs_register(struct intel_gt *gt, struct dentry *root) { static const struct intel_gt_debugfs_file files[] = { { "engines", &engines_fops }, }; intel_gt_debugfs_register_files(root, files, ARRAY_SIZE(files), gt); }
linux-master
drivers/gpu/drm/i915/gt/intel_gt_engines_debugfs.c
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include <linux/slab.h> #include "gem/i915_gem_lmem.h" #include "i915_trace.h" #include "intel_gt.h" #include "intel_gtt.h" #include "gen6_ppgtt.h" #include "gen8_ppgtt.h" struct i915_page_table *alloc_pt(struct i915_address_space *vm, int sz) { struct i915_page_table *pt; pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL); if (unlikely(!pt)) return ERR_PTR(-ENOMEM); pt->base = vm->alloc_pt_dma(vm, sz); if (IS_ERR(pt->base)) { kfree(pt); return ERR_PTR(-ENOMEM); } pt->is_compact = false; atomic_set(&pt->used, 0); return pt; } struct i915_page_directory *__alloc_pd(int count) { struct i915_page_directory *pd; pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL); if (unlikely(!pd)) return NULL; pd->entry = kcalloc(count, sizeof(*pd->entry), I915_GFP_ALLOW_FAIL); if (unlikely(!pd->entry)) { kfree(pd); return NULL; } spin_lock_init(&pd->lock); return pd; } struct i915_page_directory *alloc_pd(struct i915_address_space *vm) { struct i915_page_directory *pd; pd = __alloc_pd(I915_PDES); if (unlikely(!pd)) return ERR_PTR(-ENOMEM); pd->pt.base = vm->alloc_pt_dma(vm, I915_GTT_PAGE_SIZE_4K); if (IS_ERR(pd->pt.base)) { kfree(pd->entry); kfree(pd); return ERR_PTR(-ENOMEM); } return pd; } void free_px(struct i915_address_space *vm, struct i915_page_table *pt, int lvl) { BUILD_BUG_ON(offsetof(struct i915_page_directory, pt)); if (lvl) { struct i915_page_directory *pd = container_of(pt, typeof(*pd), pt); kfree(pd->entry); } if (pt->base) i915_gem_object_put(pt->base); kfree(pt); } static void write_dma_entry(struct drm_i915_gem_object * const pdma, const unsigned short idx, const u64 encoded_entry) { u64 * const vaddr = __px_vaddr(pdma); vaddr[idx] = encoded_entry; drm_clflush_virt_range(&vaddr[idx], sizeof(u64)); } void __set_pd_entry(struct i915_page_directory * const pd, const unsigned short idx, struct i915_page_table * const to, u64 (*encode)(const dma_addr_t, const enum i915_cache_level)) { /* Each thread pre-pins the pd, and we may have a thread per pde. */ GEM_BUG_ON(atomic_read(px_used(pd)) > NALLOC * I915_PDES); atomic_inc(px_used(pd)); pd->entry[idx] = to; write_dma_entry(px_base(pd), idx, encode(px_dma(to), I915_CACHE_LLC)); } void clear_pd_entry(struct i915_page_directory * const pd, const unsigned short idx, const struct drm_i915_gem_object * const scratch) { GEM_BUG_ON(atomic_read(px_used(pd)) == 0); write_dma_entry(px_base(pd), idx, scratch->encode); pd->entry[idx] = NULL; atomic_dec(px_used(pd)); } bool release_pd_entry(struct i915_page_directory * const pd, const unsigned short idx, struct i915_page_table * const pt, const struct drm_i915_gem_object * const scratch) { bool free = false; if (atomic_add_unless(&pt->used, -1, 1)) return false; spin_lock(&pd->lock); if (atomic_dec_and_test(&pt->used)) { clear_pd_entry(pd, idx, scratch); free = true; } spin_unlock(&pd->lock); return free; } int i915_ppgtt_init_hw(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; gtt_write_workarounds(gt); if (GRAPHICS_VER(i915) == 6) gen6_ppgtt_enable(gt); else if (GRAPHICS_VER(i915) == 7) gen7_ppgtt_enable(gt); return 0; } static struct i915_ppgtt * __ppgtt_create(struct intel_gt *gt, unsigned long lmem_pt_obj_flags) { if (GRAPHICS_VER(gt->i915) < 8) return gen6_ppgtt_create(gt); else return gen8_ppgtt_create(gt, lmem_pt_obj_flags); } struct i915_ppgtt *i915_ppgtt_create(struct intel_gt *gt, unsigned long lmem_pt_obj_flags) { struct i915_ppgtt *ppgtt; ppgtt = __ppgtt_create(gt, lmem_pt_obj_flags); if (IS_ERR(ppgtt)) return ppgtt; trace_i915_ppgtt_create(&ppgtt->vm); return ppgtt; } void ppgtt_bind_vma(struct i915_address_space *vm, struct i915_vm_pt_stash *stash, struct i915_vma_resource *vma_res, unsigned int pat_index, u32 flags) { u32 pte_flags; if (!vma_res->allocated) { vm->allocate_va_range(vm, stash, vma_res->start, vma_res->vma_size); vma_res->allocated = true; } /* Applicable to VLV, and gen8+ */ pte_flags = 0; if (vma_res->bi.readonly) pte_flags |= PTE_READ_ONLY; if (vma_res->bi.lmem) pte_flags |= PTE_LM; vm->insert_entries(vm, vma_res, pat_index, pte_flags); wmb(); } void ppgtt_unbind_vma(struct i915_address_space *vm, struct i915_vma_resource *vma_res) { if (!vma_res->allocated) return; vm->clear_range(vm, vma_res->start, vma_res->vma_size); vma_invalidate_tlb(vm, vma_res->tlb); } static unsigned long pd_count(u64 size, int shift) { /* Beware later misalignment */ return (size + 2 * (BIT_ULL(shift) - 1)) >> shift; } int i915_vm_alloc_pt_stash(struct i915_address_space *vm, struct i915_vm_pt_stash *stash, u64 size) { unsigned long count; int shift, n, pt_sz; shift = vm->pd_shift; if (!shift) return 0; pt_sz = stash->pt_sz; if (!pt_sz) pt_sz = I915_GTT_PAGE_SIZE_4K; else GEM_BUG_ON(!IS_DGFX(vm->i915)); GEM_BUG_ON(!is_power_of_2(pt_sz)); count = pd_count(size, shift); while (count--) { struct i915_page_table *pt; pt = alloc_pt(vm, pt_sz); if (IS_ERR(pt)) { i915_vm_free_pt_stash(vm, stash); return PTR_ERR(pt); } pt->stash = stash->pt[0]; stash->pt[0] = pt; } for (n = 1; n < vm->top; n++) { shift += ilog2(I915_PDES); /* Each PD holds 512 entries */ count = pd_count(size, shift); while (count--) { struct i915_page_directory *pd; pd = alloc_pd(vm); if (IS_ERR(pd)) { i915_vm_free_pt_stash(vm, stash); return PTR_ERR(pd); } pd->pt.stash = stash->pt[1]; stash->pt[1] = &pd->pt; } } return 0; } int i915_vm_map_pt_stash(struct i915_address_space *vm, struct i915_vm_pt_stash *stash) { struct i915_page_table *pt; int n, err; for (n = 0; n < ARRAY_SIZE(stash->pt); n++) { for (pt = stash->pt[n]; pt; pt = pt->stash) { err = map_pt_dma_locked(vm, pt->base); if (err) return err; } } return 0; } void i915_vm_free_pt_stash(struct i915_address_space *vm, struct i915_vm_pt_stash *stash) { struct i915_page_table *pt; int n; for (n = 0; n < ARRAY_SIZE(stash->pt); n++) { while ((pt = stash->pt[n])) { stash->pt[n] = pt->stash; free_px(vm, pt, n); } } } void ppgtt_init(struct i915_ppgtt *ppgtt, struct intel_gt *gt, unsigned long lmem_pt_obj_flags) { struct drm_i915_private *i915 = gt->i915; ppgtt->vm.gt = gt; ppgtt->vm.i915 = i915; ppgtt->vm.dma = i915->drm.dev; ppgtt->vm.total = BIT_ULL(RUNTIME_INFO(i915)->ppgtt_size); ppgtt->vm.lmem_pt_obj_flags = lmem_pt_obj_flags; dma_resv_init(&ppgtt->vm._resv); i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT); ppgtt->vm.vma_ops.bind_vma = ppgtt_bind_vma; ppgtt->vm.vma_ops.unbind_vma = ppgtt_unbind_vma; }
linux-master
drivers/gpu/drm/i915/gt/intel_ppgtt.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright © 2019 Intel Corporation */ #include "i915_selftest.h" #include "intel_engine_heartbeat.h" #include "intel_engine_pm.h" #include "intel_gt.h" #include "gem/selftests/mock_context.h" #include "selftests/igt_flush_test.h" #include "selftests/mock_drm.h" static int request_sync(struct i915_request *rq) { struct intel_timeline *tl = i915_request_timeline(rq); long timeout; int err = 0; intel_timeline_get(tl); i915_request_get(rq); /* Opencode i915_request_add() so we can keep the timeline locked. */ __i915_request_commit(rq); rq->sched.attr.priority = I915_PRIORITY_BARRIER; __i915_request_queue_bh(rq); timeout = i915_request_wait(rq, 0, HZ / 10); if (timeout < 0) err = timeout; else i915_request_retire_upto(rq); lockdep_unpin_lock(&tl->mutex, rq->cookie); mutex_unlock(&tl->mutex); i915_request_put(rq); intel_timeline_put(tl); return err; } static int context_sync(struct intel_context *ce) { struct intel_timeline *tl = ce->timeline; int err = 0; mutex_lock(&tl->mutex); do { struct i915_request *rq; long timeout; if (list_empty(&tl->requests)) break; rq = list_last_entry(&tl->requests, typeof(*rq), link); i915_request_get(rq); timeout = i915_request_wait(rq, 0, HZ / 10); if (timeout < 0) err = timeout; else i915_request_retire_upto(rq); i915_request_put(rq); } while (!err); mutex_unlock(&tl->mutex); /* Wait for all barriers to complete (remote CPU) before we check */ i915_active_unlock_wait(&ce->active); return err; } static int __live_context_size(struct intel_engine_cs *engine) { struct intel_context *ce; struct i915_request *rq; void *vaddr; int err; ce = intel_context_create(engine); if (IS_ERR(ce)) return PTR_ERR(ce); err = intel_context_pin(ce); if (err) goto err; vaddr = i915_gem_object_pin_map_unlocked(ce->state->obj, intel_gt_coherent_map_type(engine->gt, ce->state->obj, false)); if (IS_ERR(vaddr)) { err = PTR_ERR(vaddr); intel_context_unpin(ce); goto err; } /* * Note that execlists also applies a redzone which it checks on * context unpin when debugging. We are using the same location * and same poison value so that our checks overlap. Despite the * redundancy, we want to keep this little selftest so that we * get coverage of any and all submission backends, and we can * always extend this test to ensure we trick the HW into a * compromising position wrt to the various sections that need * to be written into the context state. * * TLDR; this overlaps with the execlists redzone. */ vaddr += engine->context_size - I915_GTT_PAGE_SIZE; memset(vaddr, POISON_INUSE, I915_GTT_PAGE_SIZE); rq = intel_context_create_request(ce); intel_context_unpin(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_unpin; } err = request_sync(rq); if (err) goto err_unpin; /* Force the context switch */ rq = intel_engine_create_kernel_request(engine); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_unpin; } err = request_sync(rq); if (err) goto err_unpin; if (memchr_inv(vaddr, POISON_INUSE, I915_GTT_PAGE_SIZE)) { pr_err("%s context overwrote trailing red-zone!", engine->name); err = -EINVAL; } err_unpin: i915_gem_object_unpin_map(ce->state->obj); err: intel_context_put(ce); return err; } static int live_context_size(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; /* * Check that our context sizes are correct by seeing if the * HW tries to write past the end of one. */ for_each_engine(engine, gt, id) { struct file *saved; if (!engine->context_size) continue; intel_engine_pm_get(engine); /* * Hide the old default state -- we lie about the context size * and get confused when the default state is smaller than * expected. For our do nothing request, inheriting the * active state is sufficient, we are only checking that we * don't use more than we planned. */ saved = fetch_and_zero(&engine->default_state); /* Overlaps with the execlists redzone */ engine->context_size += I915_GTT_PAGE_SIZE; err = __live_context_size(engine); engine->context_size -= I915_GTT_PAGE_SIZE; engine->default_state = saved; intel_engine_pm_put(engine); if (err) break; } return err; } static int __live_active_context(struct intel_engine_cs *engine) { unsigned long saved_heartbeat; struct intel_context *ce; int pass; int err; /* * We keep active contexts alive until after a subsequent context * switch as the final write from the context-save will be after * we retire the final request. We track when we unpin the context, * under the presumption that the final pin is from the last request, * and instead of immediately unpinning the context, we add a task * to unpin the context from the next idle-barrier. * * This test makes sure that the context is kept alive until a * subsequent idle-barrier (emitted when the engine wakeref hits 0 * with no more outstanding requests). * * In GuC submission mode we don't use idle barriers and we instead * get a message from the GuC to signal that it is safe to unpin the * context from memory. */ if (intel_engine_uses_guc(engine)) return 0; if (intel_engine_pm_is_awake(engine)) { pr_err("%s is awake before starting %s!\n", engine->name, __func__); return -EINVAL; } ce = intel_context_create(engine); if (IS_ERR(ce)) return PTR_ERR(ce); saved_heartbeat = engine->props.heartbeat_interval_ms; engine->props.heartbeat_interval_ms = 0; for (pass = 0; pass <= 2; pass++) { struct i915_request *rq; intel_engine_pm_get(engine); rq = intel_context_create_request(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out_engine; } err = request_sync(rq); if (err) goto out_engine; /* Context will be kept active until after an idle-barrier. */ if (i915_active_is_idle(&ce->active)) { pr_err("context is not active; expected idle-barrier (%s pass %d)\n", engine->name, pass); err = -EINVAL; goto out_engine; } if (!intel_engine_pm_is_awake(engine)) { pr_err("%s is asleep before idle-barrier\n", engine->name); err = -EINVAL; goto out_engine; } out_engine: intel_engine_pm_put(engine); if (err) goto err; } /* Now make sure our idle-barriers are flushed */ err = intel_engine_flush_barriers(engine); if (err) goto err; /* Wait for the barrier and in the process wait for engine to park */ err = context_sync(engine->kernel_context); if (err) goto err; if (!i915_active_is_idle(&ce->active)) { pr_err("context is still active!"); err = -EINVAL; } intel_engine_pm_flush(engine); if (intel_engine_pm_is_awake(engine)) { struct drm_printer p = drm_debug_printer(__func__); intel_engine_dump(engine, &p, "%s is still awake:%d after idle-barriers\n", engine->name, atomic_read(&engine->wakeref.count)); GEM_TRACE_DUMP(); err = -EINVAL; goto err; } err: engine->props.heartbeat_interval_ms = saved_heartbeat; intel_context_put(ce); return err; } static int live_active_context(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; for_each_engine(engine, gt, id) { err = __live_active_context(engine); if (err) break; err = igt_flush_test(gt->i915); if (err) break; } return err; } static int __remote_sync(struct intel_context *ce, struct intel_context *remote) { struct i915_request *rq; int err; err = intel_context_pin(remote); if (err) return err; rq = intel_context_create_request(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto unpin; } err = intel_context_prepare_remote_request(remote, rq); if (err) { i915_request_add(rq); goto unpin; } err = request_sync(rq); unpin: intel_context_unpin(remote); return err; } static int __live_remote_context(struct intel_engine_cs *engine) { struct intel_context *local, *remote; unsigned long saved_heartbeat; int pass; int err; /* * Check that our idle barriers do not interfere with normal * activity tracking. In particular, check that operating * on the context image remotely (intel_context_prepare_remote_request), * which inserts foreign fences into intel_context.active, does not * clobber the idle-barrier. * * In GuC submission mode we don't use idle barriers. */ if (intel_engine_uses_guc(engine)) return 0; if (intel_engine_pm_is_awake(engine)) { pr_err("%s is awake before starting %s!\n", engine->name, __func__); return -EINVAL; } remote = intel_context_create(engine); if (IS_ERR(remote)) return PTR_ERR(remote); local = intel_context_create(engine); if (IS_ERR(local)) { err = PTR_ERR(local); goto err_remote; } saved_heartbeat = engine->props.heartbeat_interval_ms; engine->props.heartbeat_interval_ms = 0; intel_engine_pm_get(engine); for (pass = 0; pass <= 2; pass++) { err = __remote_sync(local, remote); if (err) break; err = __remote_sync(engine->kernel_context, remote); if (err) break; if (i915_active_is_idle(&remote->active)) { pr_err("remote context is not active; expected idle-barrier (%s pass %d)\n", engine->name, pass); err = -EINVAL; break; } } intel_engine_pm_put(engine); engine->props.heartbeat_interval_ms = saved_heartbeat; intel_context_put(local); err_remote: intel_context_put(remote); return err; } static int live_remote_context(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; for_each_engine(engine, gt, id) { err = __live_remote_context(engine); if (err) break; err = igt_flush_test(gt->i915); if (err) break; } return err; } int intel_context_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(live_context_size), SUBTEST(live_active_context), SUBTEST(live_remote_context), }; struct intel_gt *gt = to_gt(i915); if (intel_gt_is_wedged(gt)) return 0; return intel_gt_live_subtests(tests, gt); }
linux-master
drivers/gpu/drm/i915/gt/selftest_context.c
// SPDX-License-Identifier: MIT /* * Copyright © 2021 Intel Corporation */ #define NUM_STEPS 5 #define H2G_DELAY 50000 #define delay_for_h2g() usleep_range(H2G_DELAY, H2G_DELAY + 10000) #define FREQUENCY_REQ_UNIT DIV_ROUND_CLOSEST(GT_FREQUENCY_MULTIPLIER, \ GEN9_FREQ_SCALER) enum test_type { VARY_MIN, VARY_MAX, MAX_GRANTED, SLPC_POWER, TILE_INTERACTION, }; struct slpc_thread { struct kthread_worker *worker; struct kthread_work work; struct intel_gt *gt; int result; }; static int slpc_set_min_freq(struct intel_guc_slpc *slpc, u32 freq) { int ret; ret = intel_guc_slpc_set_min_freq(slpc, freq); if (ret) pr_err("Could not set min frequency to [%u]\n", freq); else /* Delay to ensure h2g completes */ delay_for_h2g(); return ret; } static int slpc_set_max_freq(struct intel_guc_slpc *slpc, u32 freq) { int ret; ret = intel_guc_slpc_set_max_freq(slpc, freq); if (ret) pr_err("Could not set maximum frequency [%u]\n", freq); else /* Delay to ensure h2g completes */ delay_for_h2g(); return ret; } static int slpc_set_freq(struct intel_gt *gt, u32 freq) { int err; struct intel_guc_slpc *slpc = &gt->uc.guc.slpc; err = slpc_set_max_freq(slpc, freq); if (err) { pr_err("Unable to update max freq"); return err; } err = slpc_set_min_freq(slpc, freq); if (err) { pr_err("Unable to update min freq"); return err; } return err; } static int slpc_restore_freq(struct intel_guc_slpc *slpc, u32 min, u32 max) { int err; err = slpc_set_max_freq(slpc, max); if (err) { pr_err("Unable to restore max freq"); return err; } err = slpc_set_min_freq(slpc, min); if (err) { pr_err("Unable to restore min freq"); return err; } err = intel_guc_slpc_set_ignore_eff_freq(slpc, false); if (err) { pr_err("Unable to restore efficient freq"); return err; } return 0; } static u64 measure_power_at_freq(struct intel_gt *gt, int *freq, u64 *power) { int err = 0; err = slpc_set_freq(gt, *freq); if (err) return err; *freq = intel_rps_read_actual_frequency(&gt->rps); *power = measure_power(&gt->rps, freq); return err; } static int vary_max_freq(struct intel_guc_slpc *slpc, struct intel_rps *rps, u32 *max_act_freq) { u32 step, max_freq, req_freq; u32 act_freq; int err = 0; /* Go from max to min in 5 steps */ step = (slpc->rp0_freq - slpc->min_freq) / NUM_STEPS; *max_act_freq = slpc->min_freq; for (max_freq = slpc->rp0_freq; max_freq > slpc->min_freq; max_freq -= step) { err = slpc_set_max_freq(slpc, max_freq); if (err) break; req_freq = intel_rps_read_punit_req_frequency(rps); /* GuC requests freq in multiples of 50/3 MHz */ if (req_freq > (max_freq + FREQUENCY_REQ_UNIT)) { pr_err("SWReq is %d, should be at most %d\n", req_freq, max_freq + FREQUENCY_REQ_UNIT); err = -EINVAL; } act_freq = intel_rps_read_actual_frequency(rps); if (act_freq > *max_act_freq) *max_act_freq = act_freq; if (err) break; } return err; } static int vary_min_freq(struct intel_guc_slpc *slpc, struct intel_rps *rps, u32 *max_act_freq) { u32 step, min_freq, req_freq; u32 act_freq; int err = 0; /* Go from min to max in 5 steps */ step = (slpc->rp0_freq - slpc->min_freq) / NUM_STEPS; *max_act_freq = slpc->min_freq; for (min_freq = slpc->min_freq; min_freq < slpc->rp0_freq; min_freq += step) { err = slpc_set_min_freq(slpc, min_freq); if (err) break; req_freq = intel_rps_read_punit_req_frequency(rps); /* GuC requests freq in multiples of 50/3 MHz */ if (req_freq < (min_freq - FREQUENCY_REQ_UNIT)) { pr_err("SWReq is %d, should be at least %d\n", req_freq, min_freq - FREQUENCY_REQ_UNIT); err = -EINVAL; } act_freq = intel_rps_read_actual_frequency(rps); if (act_freq > *max_act_freq) *max_act_freq = act_freq; if (err) break; } return err; } static int slpc_power(struct intel_gt *gt, struct intel_engine_cs *engine) { struct intel_guc_slpc *slpc = &gt->uc.guc.slpc; struct { u64 power; int freq; } min, max; int err = 0; /* * Our fundamental assumption is that running at lower frequency * actually saves power. Let's see if our RAPL measurement supports * that theory. */ if (!librapl_supported(gt->i915)) return 0; min.freq = slpc->min_freq; err = measure_power_at_freq(gt, &min.freq, &min.power); if (err) return err; max.freq = slpc->rp0_freq; err = measure_power_at_freq(gt, &max.freq, &max.power); if (err) return err; pr_info("%s: min:%llumW @ %uMHz, max:%llumW @ %uMHz\n", engine->name, min.power, min.freq, max.power, max.freq); if (10 * min.freq >= 9 * max.freq) { pr_notice("Could not control frequency, ran at [%uMHz, %uMhz]\n", min.freq, max.freq); } if (11 * min.power > 10 * max.power) { pr_err("%s: did not conserve power when setting lower frequency!\n", engine->name); err = -EINVAL; } /* Restore min/max frequencies */ slpc_set_max_freq(slpc, slpc->rp0_freq); slpc_set_min_freq(slpc, slpc->min_freq); return err; } static int max_granted_freq(struct intel_guc_slpc *slpc, struct intel_rps *rps, u32 *max_act_freq) { struct intel_gt *gt = rps_to_gt(rps); u32 perf_limit_reasons; int err = 0; err = slpc_set_min_freq(slpc, slpc->rp0_freq); if (err) return err; *max_act_freq = intel_rps_read_actual_frequency(rps); if (*max_act_freq != slpc->rp0_freq) { /* Check if there was some throttling by pcode */ perf_limit_reasons = intel_uncore_read(gt->uncore, intel_gt_perf_limit_reasons_reg(gt)); /* If not, this is an error */ if (!(perf_limit_reasons & GT0_PERF_LIMIT_REASONS_MASK)) { pr_err("Pcode did not grant max freq\n"); err = -EINVAL; } else { pr_info("Pcode throttled frequency 0x%x\n", perf_limit_reasons); } } return err; } static int run_test(struct intel_gt *gt, int test_type) { struct intel_guc_slpc *slpc = &gt->uc.guc.slpc; struct intel_rps *rps = &gt->rps; struct intel_engine_cs *engine; enum intel_engine_id id; struct igt_spinner spin; u32 slpc_min_freq, slpc_max_freq; int err = 0; if (!intel_uc_uses_guc_slpc(&gt->uc)) return 0; if (slpc->min_freq == slpc->rp0_freq) { pr_err("Min/Max are fused to the same value\n"); return -EINVAL; } if (igt_spinner_init(&spin, gt)) return -ENOMEM; if (intel_guc_slpc_get_max_freq(slpc, &slpc_max_freq)) { pr_err("Could not get SLPC max freq\n"); return -EIO; } if (intel_guc_slpc_get_min_freq(slpc, &slpc_min_freq)) { pr_err("Could not get SLPC min freq\n"); return -EIO; } /* * Set min frequency to RPn so that we can test the whole * range of RPn-RP0. */ err = slpc_set_min_freq(slpc, slpc->min_freq); if (err) { pr_err("Unable to update min freq!"); return err; } /* * Turn off efficient frequency so RPn/RP0 ranges are obeyed. */ err = intel_guc_slpc_set_ignore_eff_freq(slpc, true); if (err) { pr_err("Unable to turn off efficient freq!"); return err; } intel_gt_pm_wait_for_idle(gt); intel_gt_pm_get(gt); for_each_engine(engine, gt, id) { struct i915_request *rq; u32 max_act_freq; if (!intel_engine_can_store_dword(engine)) continue; st_engine_heartbeat_disable(engine); rq = igt_spinner_create_request(&spin, engine->kernel_context, MI_NOOP); if (IS_ERR(rq)) { err = PTR_ERR(rq); st_engine_heartbeat_enable(engine); break; } i915_request_add(rq); if (!igt_wait_for_spinner(&spin, rq)) { pr_err("%s: Spinner did not start\n", engine->name); igt_spinner_end(&spin); st_engine_heartbeat_enable(engine); intel_gt_set_wedged(engine->gt); err = -EIO; break; } switch (test_type) { case VARY_MIN: err = vary_min_freq(slpc, rps, &max_act_freq); break; case VARY_MAX: err = vary_max_freq(slpc, rps, &max_act_freq); break; case MAX_GRANTED: case TILE_INTERACTION: /* Media engines have a different RP0 */ if (gt->type != GT_MEDIA && (engine->class == VIDEO_DECODE_CLASS || engine->class == VIDEO_ENHANCEMENT_CLASS)) { igt_spinner_end(&spin); st_engine_heartbeat_enable(engine); err = 0; continue; } err = max_granted_freq(slpc, rps, &max_act_freq); break; case SLPC_POWER: err = slpc_power(gt, engine); break; } if (test_type != SLPC_POWER) { pr_info("Max actual frequency for %s was %d\n", engine->name, max_act_freq); /* Actual frequency should rise above min */ if (max_act_freq <= slpc->min_freq) { pr_err("Actual freq did not rise above min\n"); pr_err("Perf Limit Reasons: 0x%x\n", intel_uncore_read(gt->uncore, intel_gt_perf_limit_reasons_reg(gt))); err = -EINVAL; } } igt_spinner_end(&spin); st_engine_heartbeat_enable(engine); if (err) break; } /* Restore min/max/efficient frequencies */ err = slpc_restore_freq(slpc, slpc_min_freq, slpc_max_freq); if (igt_flush_test(gt->i915)) err = -EIO; intel_gt_pm_put(gt); igt_spinner_fini(&spin); intel_gt_pm_wait_for_idle(gt); return err; } static int live_slpc_vary_min(void *arg) { struct drm_i915_private *i915 = arg; struct intel_gt *gt; unsigned int i; int ret; for_each_gt(gt, i915, i) { ret = run_test(gt, VARY_MIN); if (ret) return ret; } return ret; } static int live_slpc_vary_max(void *arg) { struct drm_i915_private *i915 = arg; struct intel_gt *gt; unsigned int i; int ret; for_each_gt(gt, i915, i) { ret = run_test(gt, VARY_MAX); if (ret) return ret; } return ret; } /* check if pcode can grant RP0 */ static int live_slpc_max_granted(void *arg) { struct drm_i915_private *i915 = arg; struct intel_gt *gt; unsigned int i; int ret; for_each_gt(gt, i915, i) { ret = run_test(gt, MAX_GRANTED); if (ret) return ret; } return ret; } static int live_slpc_power(void *arg) { struct drm_i915_private *i915 = arg; struct intel_gt *gt; unsigned int i; int ret; for_each_gt(gt, i915, i) { ret = run_test(gt, SLPC_POWER); if (ret) return ret; } return ret; } static void slpc_spinner_thread(struct kthread_work *work) { struct slpc_thread *thread = container_of(work, typeof(*thread), work); thread->result = run_test(thread->gt, TILE_INTERACTION); } static int live_slpc_tile_interaction(void *arg) { struct drm_i915_private *i915 = arg; struct intel_gt *gt; struct slpc_thread *threads; int i = 0, ret = 0; threads = kcalloc(I915_MAX_GT, sizeof(*threads), GFP_KERNEL); if (!threads) return -ENOMEM; for_each_gt(gt, i915, i) { threads[i].worker = kthread_create_worker(0, "igt/slpc_parallel:%d", gt->info.id); if (IS_ERR(threads[i].worker)) { ret = PTR_ERR(threads[i].worker); break; } threads[i].gt = gt; kthread_init_work(&threads[i].work, slpc_spinner_thread); kthread_queue_work(threads[i].worker, &threads[i].work); } for_each_gt(gt, i915, i) { int status; if (IS_ERR_OR_NULL(threads[i].worker)) continue; kthread_flush_work(&threads[i].work); status = READ_ONCE(threads[i].result); if (status && !ret) { pr_err("%s GT %d failed ", __func__, gt->info.id); ret = status; } kthread_destroy_worker(threads[i].worker); } kfree(threads); return ret; } int intel_slpc_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(live_slpc_vary_max), SUBTEST(live_slpc_vary_min), SUBTEST(live_slpc_max_granted), SUBTEST(live_slpc_power), SUBTEST(live_slpc_tile_interaction), }; struct intel_gt *gt; unsigned int i; for_each_gt(gt, i915, i) { if (intel_gt_is_wedged(gt)) return 0; } return i915_live_subtests(tests, i915); }
linux-master
drivers/gpu/drm/i915/gt/selftest_slpc.c
// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include <asm/tsc.h> #include <linux/cpufreq.h> #include "i915_drv.h" #include "i915_reg.h" #include "intel_gt.h" #include "intel_llc.h" #include "intel_mchbar_regs.h" #include "intel_pcode.h" #include "intel_rps.h" struct ia_constants { unsigned int min_gpu_freq; unsigned int max_gpu_freq; unsigned int min_ring_freq; unsigned int max_ia_freq; }; static struct intel_gt *llc_to_gt(struct intel_llc *llc) { return container_of(llc, struct intel_gt, llc); } static unsigned int cpu_max_MHz(void) { struct cpufreq_policy *policy; unsigned int max_khz; policy = cpufreq_cpu_get(0); if (policy) { max_khz = policy->cpuinfo.max_freq; cpufreq_cpu_put(policy); } else { /* * Default to measured freq if none found, PCU will ensure we * don't go over */ max_khz = tsc_khz; } return max_khz / 1000; } static bool get_ia_constants(struct intel_llc *llc, struct ia_constants *consts) { struct drm_i915_private *i915 = llc_to_gt(llc)->i915; struct intel_rps *rps = &llc_to_gt(llc)->rps; if (!HAS_LLC(i915) || IS_DGFX(i915)) return false; consts->max_ia_freq = cpu_max_MHz(); consts->min_ring_freq = intel_uncore_read(llc_to_gt(llc)->uncore, DCLK) & 0xf; /* convert DDR frequency from units of 266.6MHz to bandwidth */ consts->min_ring_freq = mult_frac(consts->min_ring_freq, 8, 3); consts->min_gpu_freq = intel_rps_get_min_raw_freq(rps); consts->max_gpu_freq = intel_rps_get_max_raw_freq(rps); return true; } static void calc_ia_freq(struct intel_llc *llc, unsigned int gpu_freq, const struct ia_constants *consts, unsigned int *out_ia_freq, unsigned int *out_ring_freq) { struct drm_i915_private *i915 = llc_to_gt(llc)->i915; const int diff = consts->max_gpu_freq - gpu_freq; unsigned int ia_freq = 0, ring_freq = 0; if (GRAPHICS_VER(i915) >= 9) { /* * ring_freq = 2 * GT. ring_freq is in 100MHz units * No floor required for ring frequency on SKL. */ ring_freq = gpu_freq; } else if (GRAPHICS_VER(i915) >= 8) { /* max(2 * GT, DDR). NB: GT is 50MHz units */ ring_freq = max(consts->min_ring_freq, gpu_freq); } else if (IS_HASWELL(i915)) { ring_freq = mult_frac(gpu_freq, 5, 4); ring_freq = max(consts->min_ring_freq, ring_freq); /* leave ia_freq as the default, chosen by cpufreq */ } else { const int min_freq = 15; const int scale = 180; /* * On older processors, there is no separate ring * clock domain, so in order to boost the bandwidth * of the ring, we need to upclock the CPU (ia_freq). * * For GPU frequencies less than 750MHz, * just use the lowest ring freq. */ if (gpu_freq < min_freq) ia_freq = 800; else ia_freq = consts->max_ia_freq - diff * scale / 2; ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100); } *out_ia_freq = ia_freq; *out_ring_freq = ring_freq; } static void gen6_update_ring_freq(struct intel_llc *llc) { struct ia_constants consts; unsigned int gpu_freq; if (!get_ia_constants(llc, &consts)) return; /* * Although this is unlikely on any platform during initialization, * let's ensure we don't get accidentally into infinite loop */ if (consts.max_gpu_freq <= consts.min_gpu_freq) return; /* * For each potential GPU frequency, load a ring frequency we'd like * to use for memory access. We do this by specifying the IA frequency * the PCU should use as a reference to determine the ring frequency. */ for (gpu_freq = consts.max_gpu_freq; gpu_freq >= consts.min_gpu_freq; gpu_freq--) { unsigned int ia_freq, ring_freq; calc_ia_freq(llc, gpu_freq, &consts, &ia_freq, &ring_freq); snb_pcode_write(llc_to_gt(llc)->uncore, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT | ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT | gpu_freq); } } void intel_llc_enable(struct intel_llc *llc) { gen6_update_ring_freq(llc); } void intel_llc_disable(struct intel_llc *llc) { /* Currently there is no HW configuration to be done to disable. */ } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_llc.c" #endif
linux-master
drivers/gpu/drm/i915/gt/intel_llc.c
// SPDX-License-Identifier: MIT /* * Copyright © 2008-2021 Intel Corporation */ #include <drm/drm_cache.h> #include "gem/i915_gem_internal.h" #include "gen2_engine_cs.h" #include "gen6_engine_cs.h" #include "gen6_ppgtt.h" #include "gen7_renderclear.h" #include "i915_drv.h" #include "i915_irq.h" #include "i915_mitigations.h" #include "i915_reg.h" #include "intel_breadcrumbs.h" #include "intel_context.h" #include "intel_engine_regs.h" #include "intel_gt.h" #include "intel_gt_irq.h" #include "intel_gt_regs.h" #include "intel_reset.h" #include "intel_ring.h" #include "shmem_utils.h" #include "intel_engine_heartbeat.h" #include "intel_engine_pm.h" /* Rough estimate of the typical request size, performing a flush, * set-context and then emitting the batch. */ #define LEGACY_REQUEST_SIZE 200 static void set_hwstam(struct intel_engine_cs *engine, u32 mask) { /* * Keep the render interrupt unmasked as this papers over * lost interrupts following a reset. */ if (engine->class == RENDER_CLASS) { if (GRAPHICS_VER(engine->i915) >= 6) mask &= ~BIT(0); else mask &= ~I915_USER_INTERRUPT; } intel_engine_set_hwsp_writemask(engine, mask); } static void set_hws_pga(struct intel_engine_cs *engine, phys_addr_t phys) { u32 addr; addr = lower_32_bits(phys); if (GRAPHICS_VER(engine->i915) >= 4) addr |= (phys >> 28) & 0xf0; intel_uncore_write(engine->uncore, HWS_PGA, addr); } static struct page *status_page(struct intel_engine_cs *engine) { struct drm_i915_gem_object *obj = engine->status_page.vma->obj; GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); return sg_page(obj->mm.pages->sgl); } static void ring_setup_phys_status_page(struct intel_engine_cs *engine) { set_hws_pga(engine, PFN_PHYS(page_to_pfn(status_page(engine)))); set_hwstam(engine, ~0u); } static void set_hwsp(struct intel_engine_cs *engine, u32 offset) { i915_reg_t hwsp; /* * The ring status page addresses are no longer next to the rest of * the ring registers as of gen7. */ if (GRAPHICS_VER(engine->i915) == 7) { switch (engine->id) { /* * No more rings exist on Gen7. Default case is only to shut up * gcc switch check warning. */ default: GEM_BUG_ON(engine->id); fallthrough; case RCS0: hwsp = RENDER_HWS_PGA_GEN7; break; case BCS0: hwsp = BLT_HWS_PGA_GEN7; break; case VCS0: hwsp = BSD_HWS_PGA_GEN7; break; case VECS0: hwsp = VEBOX_HWS_PGA_GEN7; break; } } else if (GRAPHICS_VER(engine->i915) == 6) { hwsp = RING_HWS_PGA_GEN6(engine->mmio_base); } else { hwsp = RING_HWS_PGA(engine->mmio_base); } intel_uncore_write_fw(engine->uncore, hwsp, offset); intel_uncore_posting_read_fw(engine->uncore, hwsp); } static void flush_cs_tlb(struct intel_engine_cs *engine) { if (!IS_GRAPHICS_VER(engine->i915, 6, 7)) return; /* ring should be idle before issuing a sync flush*/ if ((ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0) drm_warn(&engine->i915->drm, "%s not idle before sync flush!\n", engine->name); ENGINE_WRITE_FW(engine, RING_INSTPM, _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE | INSTPM_SYNC_FLUSH)); if (__intel_wait_for_register_fw(engine->uncore, RING_INSTPM(engine->mmio_base), INSTPM_SYNC_FLUSH, 0, 2000, 0, NULL)) ENGINE_TRACE(engine, "wait for SyncFlush to complete for TLB invalidation timed out\n"); } static void ring_setup_status_page(struct intel_engine_cs *engine) { set_hwsp(engine, i915_ggtt_offset(engine->status_page.vma)); set_hwstam(engine, ~0u); flush_cs_tlb(engine); } static struct i915_address_space *vm_alias(struct i915_address_space *vm) { if (i915_is_ggtt(vm)) vm = &i915_vm_to_ggtt(vm)->alias->vm; return vm; } static u32 pp_dir(struct i915_address_space *vm) { return to_gen6_ppgtt(i915_vm_to_ppgtt(vm))->pp_dir; } static void set_pp_dir(struct intel_engine_cs *engine) { struct i915_address_space *vm = vm_alias(engine->gt->vm); if (!vm) return; ENGINE_WRITE_FW(engine, RING_PP_DIR_DCLV, PP_DIR_DCLV_2G); ENGINE_WRITE_FW(engine, RING_PP_DIR_BASE, pp_dir(vm)); if (GRAPHICS_VER(engine->i915) >= 7) { ENGINE_WRITE_FW(engine, RING_MODE_GEN7, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); } } static bool stop_ring(struct intel_engine_cs *engine) { /* Empty the ring by skipping to the end */ ENGINE_WRITE_FW(engine, RING_HEAD, ENGINE_READ_FW(engine, RING_TAIL)); ENGINE_POSTING_READ(engine, RING_HEAD); /* The ring must be empty before it is disabled */ ENGINE_WRITE_FW(engine, RING_CTL, 0); ENGINE_POSTING_READ(engine, RING_CTL); /* Then reset the disabled ring */ ENGINE_WRITE_FW(engine, RING_HEAD, 0); ENGINE_WRITE_FW(engine, RING_TAIL, 0); return (ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) == 0; } static int xcs_resume(struct intel_engine_cs *engine) { struct intel_ring *ring = engine->legacy.ring; ENGINE_TRACE(engine, "ring:{HEAD:%04x, TAIL:%04x}\n", ring->head, ring->tail); /* * Double check the ring is empty & disabled before we resume. Called * from atomic context during PCI probe, so _hardirq(). */ intel_synchronize_hardirq(engine->i915); if (!stop_ring(engine)) goto err; if (HWS_NEEDS_PHYSICAL(engine->i915)) ring_setup_phys_status_page(engine); else ring_setup_status_page(engine); intel_breadcrumbs_reset(engine->breadcrumbs); /* Enforce ordering by reading HEAD register back */ ENGINE_POSTING_READ(engine, RING_HEAD); /* * Initialize the ring. This must happen _after_ we've cleared the ring * registers with the above sequence (the readback of the HEAD registers * also enforces ordering), otherwise the hw might lose the new ring * register values. */ ENGINE_WRITE_FW(engine, RING_START, i915_ggtt_offset(ring->vma)); /* Check that the ring offsets point within the ring! */ GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head)); GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail)); intel_ring_update_space(ring); set_pp_dir(engine); /* First wake the ring up to an empty/idle ring */ ENGINE_WRITE_FW(engine, RING_HEAD, ring->head); ENGINE_WRITE_FW(engine, RING_TAIL, ring->head); ENGINE_POSTING_READ(engine, RING_TAIL); ENGINE_WRITE_FW(engine, RING_CTL, RING_CTL_SIZE(ring->size) | RING_VALID); /* If the head is still not zero, the ring is dead */ if (__intel_wait_for_register_fw(engine->uncore, RING_CTL(engine->mmio_base), RING_VALID, RING_VALID, 5000, 0, NULL)) goto err; if (GRAPHICS_VER(engine->i915) > 2) ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); /* Now awake, let it get started */ if (ring->tail != ring->head) { ENGINE_WRITE_FW(engine, RING_TAIL, ring->tail); ENGINE_POSTING_READ(engine, RING_TAIL); } /* Papering over lost _interrupts_ immediately following the restart */ intel_engine_signal_breadcrumbs(engine); return 0; err: drm_err(&engine->i915->drm, "%s initialization failed; " "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n", engine->name, ENGINE_READ(engine, RING_CTL), ENGINE_READ(engine, RING_CTL) & RING_VALID, ENGINE_READ(engine, RING_HEAD), ring->head, ENGINE_READ(engine, RING_TAIL), ring->tail, ENGINE_READ(engine, RING_START), i915_ggtt_offset(ring->vma)); return -EIO; } static void sanitize_hwsp(struct intel_engine_cs *engine) { struct intel_timeline *tl; list_for_each_entry(tl, &engine->status_page.timelines, engine_link) intel_timeline_reset_seqno(tl); } static void xcs_sanitize(struct intel_engine_cs *engine) { /* * Poison residual state on resume, in case the suspend didn't! * * We have to assume that across suspend/resume (or other loss * of control) that the contents of our pinned buffers has been * lost, replaced by garbage. Since this doesn't always happen, * let's poison such state so that we more quickly spot when * we falsely assume it has been preserved. */ if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE); /* * The kernel_context HWSP is stored in the status_page. As above, * that may be lost on resume/initialisation, and so we need to * reset the value in the HWSP. */ sanitize_hwsp(engine); /* And scrub the dirty cachelines for the HWSP */ drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE); intel_engine_reset_pinned_contexts(engine); } static void reset_prepare(struct intel_engine_cs *engine) { /* * We stop engines, otherwise we might get failed reset and a * dead gpu (on elk). Also as modern gpu as kbl can suffer * from system hang if batchbuffer is progressing when * the reset is issued, regardless of READY_TO_RESET ack. * Thus assume it is best to stop engines on all gens * where we have a gpu reset. * * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES) * * WaMediaResetMainRingCleanup:ctg,elk (presumably) * WaClearRingBufHeadRegAtInit:ctg,elk * * FIXME: Wa for more modern gens needs to be validated */ ENGINE_TRACE(engine, "\n"); intel_engine_stop_cs(engine); if (!stop_ring(engine)) { /* G45 ring initialization often fails to reset head to zero */ ENGINE_TRACE(engine, "HEAD not reset to zero, " "{ CTL:%08x, HEAD:%08x, TAIL:%08x, START:%08x }\n", ENGINE_READ_FW(engine, RING_CTL), ENGINE_READ_FW(engine, RING_HEAD), ENGINE_READ_FW(engine, RING_TAIL), ENGINE_READ_FW(engine, RING_START)); if (!stop_ring(engine)) { drm_err(&engine->i915->drm, "failed to set %s head to zero " "ctl %08x head %08x tail %08x start %08x\n", engine->name, ENGINE_READ_FW(engine, RING_CTL), ENGINE_READ_FW(engine, RING_HEAD), ENGINE_READ_FW(engine, RING_TAIL), ENGINE_READ_FW(engine, RING_START)); } } } static void reset_rewind(struct intel_engine_cs *engine, bool stalled) { struct i915_request *pos, *rq; unsigned long flags; u32 head; rq = NULL; spin_lock_irqsave(&engine->sched_engine->lock, flags); rcu_read_lock(); list_for_each_entry(pos, &engine->sched_engine->requests, sched.link) { if (!__i915_request_is_complete(pos)) { rq = pos; break; } } rcu_read_unlock(); /* * The guilty request will get skipped on a hung engine. * * Users of client default contexts do not rely on logical * state preserved between batches so it is safe to execute * queued requests following the hang. Non default contexts * rely on preserved state, so skipping a batch loses the * evolution of the state and it needs to be considered corrupted. * Executing more queued batches on top of corrupted state is * risky. But we take the risk by trying to advance through * the queued requests in order to make the client behaviour * more predictable around resets, by not throwing away random * amount of batches it has prepared for execution. Sophisticated * clients can use gem_reset_stats_ioctl and dma fence status * (exported via sync_file info ioctl on explicit fences) to observe * when it loses the context state and should rebuild accordingly. * * The context ban, and ultimately the client ban, mechanism are safety * valves if client submission ends up resulting in nothing more than * subsequent hangs. */ if (rq) { /* * Try to restore the logical GPU state to match the * continuation of the request queue. If we skip the * context/PD restore, then the next request may try to execute * assuming that its context is valid and loaded on the GPU and * so may try to access invalid memory, prompting repeated GPU * hangs. * * If the request was guilty, we still restore the logical * state in case the next request requires it (e.g. the * aliasing ppgtt), but skip over the hung batch. * * If the request was innocent, we try to replay the request * with the restored context. */ __i915_request_reset(rq, stalled); GEM_BUG_ON(rq->ring != engine->legacy.ring); head = rq->head; } else { head = engine->legacy.ring->tail; } engine->legacy.ring->head = intel_ring_wrap(engine->legacy.ring, head); spin_unlock_irqrestore(&engine->sched_engine->lock, flags); } static void reset_finish(struct intel_engine_cs *engine) { } static void reset_cancel(struct intel_engine_cs *engine) { struct i915_request *request; unsigned long flags; spin_lock_irqsave(&engine->sched_engine->lock, flags); /* Mark all submitted requests as skipped. */ list_for_each_entry(request, &engine->sched_engine->requests, sched.link) i915_request_put(i915_request_mark_eio(request)); intel_engine_signal_breadcrumbs(engine); /* Remaining _unready_ requests will be nop'ed when submitted */ spin_unlock_irqrestore(&engine->sched_engine->lock, flags); } static void i9xx_submit_request(struct i915_request *request) { i915_request_submit(request); wmb(); /* paranoid flush writes out of the WCB before mmio */ ENGINE_WRITE(request->engine, RING_TAIL, intel_ring_set_tail(request->ring, request->tail)); } static void __ring_context_fini(struct intel_context *ce) { i915_vma_put(ce->state); } static void ring_context_destroy(struct kref *ref) { struct intel_context *ce = container_of(ref, typeof(*ce), ref); GEM_BUG_ON(intel_context_is_pinned(ce)); if (ce->state) __ring_context_fini(ce); intel_context_fini(ce); intel_context_free(ce); } static int ring_context_init_default_state(struct intel_context *ce, struct i915_gem_ww_ctx *ww) { struct drm_i915_gem_object *obj = ce->state->obj; void *vaddr; vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); if (IS_ERR(vaddr)) return PTR_ERR(vaddr); shmem_read(ce->engine->default_state, 0, vaddr, ce->engine->context_size); i915_gem_object_flush_map(obj); __i915_gem_object_release_map(obj); __set_bit(CONTEXT_VALID_BIT, &ce->flags); return 0; } static int ring_context_pre_pin(struct intel_context *ce, struct i915_gem_ww_ctx *ww, void **unused) { struct i915_address_space *vm; int err = 0; if (ce->engine->default_state && !test_bit(CONTEXT_VALID_BIT, &ce->flags)) { err = ring_context_init_default_state(ce, ww); if (err) return err; } vm = vm_alias(ce->vm); if (vm) err = gen6_ppgtt_pin(i915_vm_to_ppgtt((vm)), ww); return err; } static void __context_unpin_ppgtt(struct intel_context *ce) { struct i915_address_space *vm; vm = vm_alias(ce->vm); if (vm) gen6_ppgtt_unpin(i915_vm_to_ppgtt(vm)); } static void ring_context_unpin(struct intel_context *ce) { } static void ring_context_post_unpin(struct intel_context *ce) { __context_unpin_ppgtt(ce); } static struct i915_vma * alloc_context_vma(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; struct drm_i915_gem_object *obj; struct i915_vma *vma; int err; obj = i915_gem_object_create_shmem(i915, engine->context_size); if (IS_ERR(obj)) return ERR_CAST(obj); /* * Try to make the context utilize L3 as well as LLC. * * On VLV we don't have L3 controls in the PTEs so we * shouldn't touch the cache level, especially as that * would make the object snooped which might have a * negative performance impact. * * Snooping is required on non-llc platforms in execlist * mode, but since all GGTT accesses use PAT entry 0 we * get snooping anyway regardless of cache_level. * * This is only applicable for Ivy Bridge devices since * later platforms don't have L3 control bits in the PTE. */ if (IS_IVYBRIDGE(i915)) i915_gem_object_set_cache_coherency(obj, I915_CACHE_L3_LLC); vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto err_obj; } return vma; err_obj: i915_gem_object_put(obj); return ERR_PTR(err); } static int ring_context_alloc(struct intel_context *ce) { struct intel_engine_cs *engine = ce->engine; /* One ringbuffer to rule them all */ GEM_BUG_ON(!engine->legacy.ring); ce->ring = engine->legacy.ring; ce->timeline = intel_timeline_get(engine->legacy.timeline); GEM_BUG_ON(ce->state); if (engine->context_size) { struct i915_vma *vma; vma = alloc_context_vma(engine); if (IS_ERR(vma)) return PTR_ERR(vma); ce->state = vma; } return 0; } static int ring_context_pin(struct intel_context *ce, void *unused) { return 0; } static void ring_context_reset(struct intel_context *ce) { intel_ring_reset(ce->ring, ce->ring->emit); clear_bit(CONTEXT_VALID_BIT, &ce->flags); } static void ring_context_revoke(struct intel_context *ce, struct i915_request *rq, unsigned int preempt_timeout_ms) { struct intel_engine_cs *engine; if (!rq || !i915_request_is_active(rq)) return; engine = rq->engine; lockdep_assert_held(&engine->sched_engine->lock); list_for_each_entry_continue(rq, &engine->sched_engine->requests, sched.link) if (rq->context == ce) { i915_request_set_error_once(rq, -EIO); __i915_request_skip(rq); } } static void ring_context_cancel_request(struct intel_context *ce, struct i915_request *rq) { struct intel_engine_cs *engine = NULL; i915_request_active_engine(rq, &engine); if (engine && intel_engine_pulse(engine)) intel_gt_handle_error(engine->gt, engine->mask, 0, "request cancellation by %s", current->comm); } static const struct intel_context_ops ring_context_ops = { .alloc = ring_context_alloc, .cancel_request = ring_context_cancel_request, .revoke = ring_context_revoke, .pre_pin = ring_context_pre_pin, .pin = ring_context_pin, .unpin = ring_context_unpin, .post_unpin = ring_context_post_unpin, .enter = intel_context_enter_engine, .exit = intel_context_exit_engine, .reset = ring_context_reset, .destroy = ring_context_destroy, }; static int load_pd_dir(struct i915_request *rq, struct i915_address_space *vm, u32 valid) { const struct intel_engine_cs * const engine = rq->engine; u32 *cs; cs = intel_ring_begin(rq, 12); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = MI_LOAD_REGISTER_IMM(1); *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine->mmio_base)); *cs++ = valid; *cs++ = MI_LOAD_REGISTER_IMM(1); *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base)); *cs++ = pp_dir(vm); /* Stall until the page table load is complete? */ *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT; *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base)); *cs++ = intel_gt_scratch_offset(engine->gt, INTEL_GT_SCRATCH_FIELD_DEFAULT); *cs++ = MI_LOAD_REGISTER_IMM(1); *cs++ = i915_mmio_reg_offset(RING_INSTPM(engine->mmio_base)); *cs++ = _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE); intel_ring_advance(rq, cs); return rq->engine->emit_flush(rq, EMIT_FLUSH); } static int mi_set_context(struct i915_request *rq, struct intel_context *ce, u32 flags) { struct intel_engine_cs *engine = rq->engine; struct drm_i915_private *i915 = engine->i915; enum intel_engine_id id; const int num_engines = IS_HASWELL(i915) ? engine->gt->info.num_engines - 1 : 0; bool force_restore = false; int len; u32 *cs; len = 4; if (GRAPHICS_VER(i915) == 7) len += 2 + (num_engines ? 4 * num_engines + 6 : 0); else if (GRAPHICS_VER(i915) == 5) len += 2; if (flags & MI_FORCE_RESTORE) { GEM_BUG_ON(flags & MI_RESTORE_INHIBIT); flags &= ~MI_FORCE_RESTORE; force_restore = true; len += 2; } cs = intel_ring_begin(rq, len); if (IS_ERR(cs)) return PTR_ERR(cs); /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */ if (GRAPHICS_VER(i915) == 7) { *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; if (num_engines) { struct intel_engine_cs *signaller; *cs++ = MI_LOAD_REGISTER_IMM(num_engines); for_each_engine(signaller, engine->gt, id) { if (signaller == engine) continue; *cs++ = i915_mmio_reg_offset( RING_PSMI_CTL(signaller->mmio_base)); *cs++ = _MASKED_BIT_ENABLE( GEN6_PSMI_SLEEP_MSG_DISABLE); } } } else if (GRAPHICS_VER(i915) == 5) { /* * This w/a is only listed for pre-production ilk a/b steppings, * but is also mentioned for programming the powerctx. To be * safe, just apply the workaround; we do not use SyncFlush so * this should never take effect and so be a no-op! */ *cs++ = MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN; } if (force_restore) { /* * The HW doesn't handle being told to restore the current * context very well. Quite often it likes goes to go off and * sulk, especially when it is meant to be reloading PP_DIR. * A very simple fix to force the reload is to simply switch * away from the current context and back again. * * Note that the kernel_context will contain random state * following the INHIBIT_RESTORE. We accept this since we * never use the kernel_context state; it is merely a * placeholder we use to flush other contexts. */ *cs++ = MI_SET_CONTEXT; *cs++ = i915_ggtt_offset(engine->kernel_context->state) | MI_MM_SPACE_GTT | MI_RESTORE_INHIBIT; } *cs++ = MI_NOOP; *cs++ = MI_SET_CONTEXT; *cs++ = i915_ggtt_offset(ce->state) | flags; /* * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP * WaMiSetContext_Hang:snb,ivb,vlv */ *cs++ = MI_NOOP; if (GRAPHICS_VER(i915) == 7) { if (num_engines) { struct intel_engine_cs *signaller; i915_reg_t last_reg = INVALID_MMIO_REG; /* keep gcc quiet */ *cs++ = MI_LOAD_REGISTER_IMM(num_engines); for_each_engine(signaller, engine->gt, id) { if (signaller == engine) continue; last_reg = RING_PSMI_CTL(signaller->mmio_base); *cs++ = i915_mmio_reg_offset(last_reg); *cs++ = _MASKED_BIT_DISABLE( GEN6_PSMI_SLEEP_MSG_DISABLE); } /* Insert a delay before the next switch! */ *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT; *cs++ = i915_mmio_reg_offset(last_reg); *cs++ = intel_gt_scratch_offset(engine->gt, INTEL_GT_SCRATCH_FIELD_DEFAULT); *cs++ = MI_NOOP; } *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; } else if (GRAPHICS_VER(i915) == 5) { *cs++ = MI_SUSPEND_FLUSH; } intel_ring_advance(rq, cs); return 0; } static int remap_l3_slice(struct i915_request *rq, int slice) { #define L3LOG_DW (GEN7_L3LOG_SIZE / sizeof(u32)) u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice]; int i; if (!remap_info) return 0; cs = intel_ring_begin(rq, L3LOG_DW * 2 + 2); if (IS_ERR(cs)) return PTR_ERR(cs); /* * Note: We do not worry about the concurrent register cacheline hang * here because no other code should access these registers other than * at initialization time. */ *cs++ = MI_LOAD_REGISTER_IMM(L3LOG_DW); for (i = 0; i < L3LOG_DW; i++) { *cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i)); *cs++ = remap_info[i]; } *cs++ = MI_NOOP; intel_ring_advance(rq, cs); return 0; #undef L3LOG_DW } static int remap_l3(struct i915_request *rq) { struct i915_gem_context *ctx = i915_request_gem_context(rq); int i, err; if (!ctx || !ctx->remap_slice) return 0; for (i = 0; i < MAX_L3_SLICES; i++) { if (!(ctx->remap_slice & BIT(i))) continue; err = remap_l3_slice(rq, i); if (err) return err; } ctx->remap_slice = 0; return 0; } static int switch_mm(struct i915_request *rq, struct i915_address_space *vm) { int ret; if (!vm) return 0; ret = rq->engine->emit_flush(rq, EMIT_FLUSH); if (ret) return ret; /* * Not only do we need a full barrier (post-sync write) after * invalidating the TLBs, but we need to wait a little bit * longer. Whether this is merely delaying us, or the * subsequent flush is a key part of serialising with the * post-sync op, this extra pass appears vital before a * mm switch! */ ret = load_pd_dir(rq, vm, PP_DIR_DCLV_2G); if (ret) return ret; return rq->engine->emit_flush(rq, EMIT_INVALIDATE); } static int clear_residuals(struct i915_request *rq) { struct intel_engine_cs *engine = rq->engine; int ret; ret = switch_mm(rq, vm_alias(engine->kernel_context->vm)); if (ret) return ret; if (engine->kernel_context->state) { ret = mi_set_context(rq, engine->kernel_context, MI_MM_SPACE_GTT | MI_RESTORE_INHIBIT); if (ret) return ret; } ret = engine->emit_bb_start(rq, i915_vma_offset(engine->wa_ctx.vma), 0, 0); if (ret) return ret; ret = engine->emit_flush(rq, EMIT_FLUSH); if (ret) return ret; /* Always invalidate before the next switch_mm() */ return engine->emit_flush(rq, EMIT_INVALIDATE); } static int switch_context(struct i915_request *rq) { struct intel_engine_cs *engine = rq->engine; struct intel_context *ce = rq->context; void **residuals = NULL; int ret; GEM_BUG_ON(HAS_EXECLISTS(engine->i915)); if (engine->wa_ctx.vma && ce != engine->kernel_context) { if (engine->wa_ctx.vma->private != ce && i915_mitigate_clear_residuals()) { ret = clear_residuals(rq); if (ret) return ret; residuals = &engine->wa_ctx.vma->private; } } ret = switch_mm(rq, vm_alias(ce->vm)); if (ret) return ret; if (ce->state) { u32 flags; GEM_BUG_ON(engine->id != RCS0); /* For resource streamer on HSW+ and power context elsewhere */ BUILD_BUG_ON(HSW_MI_RS_SAVE_STATE_EN != MI_SAVE_EXT_STATE_EN); BUILD_BUG_ON(HSW_MI_RS_RESTORE_STATE_EN != MI_RESTORE_EXT_STATE_EN); flags = MI_SAVE_EXT_STATE_EN | MI_MM_SPACE_GTT; if (test_bit(CONTEXT_VALID_BIT, &ce->flags)) flags |= MI_RESTORE_EXT_STATE_EN; else flags |= MI_RESTORE_INHIBIT; ret = mi_set_context(rq, ce, flags); if (ret) return ret; } ret = remap_l3(rq); if (ret) return ret; /* * Now past the point of no return, this request _will_ be emitted. * * Or at least this preamble will be emitted, the request may be * interrupted prior to submitting the user payload. If so, we * still submit the "empty" request in order to preserve global * state tracking such as this, our tracking of the current * dirty context. */ if (residuals) { intel_context_put(*residuals); *residuals = intel_context_get(ce); } return 0; } static int ring_request_alloc(struct i915_request *request) { int ret; GEM_BUG_ON(!intel_context_is_pinned(request->context)); GEM_BUG_ON(i915_request_timeline(request)->has_initial_breadcrumb); /* * Flush enough space to reduce the likelihood of waiting after * we start building the request - in which case we will just * have to repeat work. */ request->reserved_space += LEGACY_REQUEST_SIZE; /* Unconditionally invalidate GPU caches and TLBs. */ ret = request->engine->emit_flush(request, EMIT_INVALIDATE); if (ret) return ret; ret = switch_context(request); if (ret) return ret; request->reserved_space -= LEGACY_REQUEST_SIZE; return 0; } static void gen6_bsd_submit_request(struct i915_request *request) { struct intel_uncore *uncore = request->engine->uncore; intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); /* Every tail move must follow the sequence below */ /* Disable notification that the ring is IDLE. The GT * will then assume that it is busy and bring it out of rc6. */ intel_uncore_write_fw(uncore, RING_PSMI_CTL(GEN6_BSD_RING_BASE), _MASKED_BIT_ENABLE(GEN6_PSMI_SLEEP_MSG_DISABLE)); /* Clear the context id. Here be magic! */ intel_uncore_write64_fw(uncore, GEN6_BSD_RNCID, 0x0); /* Wait for the ring not to be idle, i.e. for it to wake up. */ if (__intel_wait_for_register_fw(uncore, RING_PSMI_CTL(GEN6_BSD_RING_BASE), GEN6_BSD_SLEEP_INDICATOR, 0, 1000, 0, NULL)) drm_err(&uncore->i915->drm, "timed out waiting for the BSD ring to wake up\n"); /* Now that the ring is fully powered up, update the tail */ i9xx_submit_request(request); /* Let the ring send IDLE messages to the GT again, * and so let it sleep to conserve power when idle. */ intel_uncore_write_fw(uncore, RING_PSMI_CTL(GEN6_BSD_RING_BASE), _MASKED_BIT_DISABLE(GEN6_PSMI_SLEEP_MSG_DISABLE)); intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); } static void i9xx_set_default_submission(struct intel_engine_cs *engine) { engine->submit_request = i9xx_submit_request; } static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine) { engine->submit_request = gen6_bsd_submit_request; } static void ring_release(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; drm_WARN_ON(&i915->drm, GRAPHICS_VER(i915) > 2 && (ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0); intel_engine_cleanup_common(engine); if (engine->wa_ctx.vma) { intel_context_put(engine->wa_ctx.vma->private); i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0); } intel_ring_unpin(engine->legacy.ring); intel_ring_put(engine->legacy.ring); intel_timeline_unpin(engine->legacy.timeline); intel_timeline_put(engine->legacy.timeline); } static void irq_handler(struct intel_engine_cs *engine, u16 iir) { intel_engine_signal_breadcrumbs(engine); } static void setup_irq(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; intel_engine_set_irq_handler(engine, irq_handler); if (GRAPHICS_VER(i915) >= 6) { engine->irq_enable = gen6_irq_enable; engine->irq_disable = gen6_irq_disable; } else if (GRAPHICS_VER(i915) >= 5) { engine->irq_enable = gen5_irq_enable; engine->irq_disable = gen5_irq_disable; } else if (GRAPHICS_VER(i915) >= 3) { engine->irq_enable = gen3_irq_enable; engine->irq_disable = gen3_irq_disable; } else { engine->irq_enable = gen2_irq_enable; engine->irq_disable = gen2_irq_disable; } } static void add_to_engine(struct i915_request *rq) { lockdep_assert_held(&rq->engine->sched_engine->lock); list_move_tail(&rq->sched.link, &rq->engine->sched_engine->requests); } static void remove_from_engine(struct i915_request *rq) { spin_lock_irq(&rq->engine->sched_engine->lock); list_del_init(&rq->sched.link); /* Prevent further __await_execution() registering a cb, then flush */ set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); spin_unlock_irq(&rq->engine->sched_engine->lock); i915_request_notify_execute_cb_imm(rq); } static void setup_common(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; /* gen8+ are only supported with execlists */ GEM_BUG_ON(GRAPHICS_VER(i915) >= 8); setup_irq(engine); engine->resume = xcs_resume; engine->sanitize = xcs_sanitize; engine->reset.prepare = reset_prepare; engine->reset.rewind = reset_rewind; engine->reset.cancel = reset_cancel; engine->reset.finish = reset_finish; engine->add_active_request = add_to_engine; engine->remove_active_request = remove_from_engine; engine->cops = &ring_context_ops; engine->request_alloc = ring_request_alloc; /* * Using a global execution timeline; the previous final breadcrumb is * equivalent to our next initial bread so we can elide * engine->emit_init_breadcrumb(). */ engine->emit_fini_breadcrumb = gen3_emit_breadcrumb; if (GRAPHICS_VER(i915) == 5) engine->emit_fini_breadcrumb = gen5_emit_breadcrumb; engine->set_default_submission = i9xx_set_default_submission; if (GRAPHICS_VER(i915) >= 6) engine->emit_bb_start = gen6_emit_bb_start; else if (GRAPHICS_VER(i915) >= 4) engine->emit_bb_start = gen4_emit_bb_start; else if (IS_I830(i915) || IS_I845G(i915)) engine->emit_bb_start = i830_emit_bb_start; else engine->emit_bb_start = gen3_emit_bb_start; } static void setup_rcs(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; if (HAS_L3_DPF(i915)) engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT; engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT; if (GRAPHICS_VER(i915) >= 7) { engine->emit_flush = gen7_emit_flush_rcs; engine->emit_fini_breadcrumb = gen7_emit_breadcrumb_rcs; } else if (GRAPHICS_VER(i915) == 6) { engine->emit_flush = gen6_emit_flush_rcs; engine->emit_fini_breadcrumb = gen6_emit_breadcrumb_rcs; } else if (GRAPHICS_VER(i915) == 5) { engine->emit_flush = gen4_emit_flush_rcs; } else { if (GRAPHICS_VER(i915) < 4) engine->emit_flush = gen2_emit_flush; else engine->emit_flush = gen4_emit_flush_rcs; engine->irq_enable_mask = I915_USER_INTERRUPT; } if (IS_HASWELL(i915)) engine->emit_bb_start = hsw_emit_bb_start; } static void setup_vcs(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; if (GRAPHICS_VER(i915) >= 6) { /* gen6 bsd needs a special wa for tail updates */ if (GRAPHICS_VER(i915) == 6) engine->set_default_submission = gen6_bsd_set_default_submission; engine->emit_flush = gen6_emit_flush_vcs; engine->irq_enable_mask = GT_BSD_USER_INTERRUPT; if (GRAPHICS_VER(i915) == 6) engine->emit_fini_breadcrumb = gen6_emit_breadcrumb_xcs; else engine->emit_fini_breadcrumb = gen7_emit_breadcrumb_xcs; } else { engine->emit_flush = gen4_emit_flush_vcs; if (GRAPHICS_VER(i915) == 5) engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT; else engine->irq_enable_mask = I915_BSD_USER_INTERRUPT; } } static void setup_bcs(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; engine->emit_flush = gen6_emit_flush_xcs; engine->irq_enable_mask = GT_BLT_USER_INTERRUPT; if (GRAPHICS_VER(i915) == 6) engine->emit_fini_breadcrumb = gen6_emit_breadcrumb_xcs; else engine->emit_fini_breadcrumb = gen7_emit_breadcrumb_xcs; } static void setup_vecs(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; GEM_BUG_ON(GRAPHICS_VER(i915) < 7); engine->emit_flush = gen6_emit_flush_xcs; engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT; engine->irq_enable = hsw_irq_enable_vecs; engine->irq_disable = hsw_irq_disable_vecs; engine->emit_fini_breadcrumb = gen7_emit_breadcrumb_xcs; } static int gen7_ctx_switch_bb_setup(struct intel_engine_cs * const engine, struct i915_vma * const vma) { return gen7_setup_clear_gpr_bb(engine, vma); } static int gen7_ctx_switch_bb_init(struct intel_engine_cs *engine, struct i915_gem_ww_ctx *ww, struct i915_vma *vma) { int err; err = i915_vma_pin_ww(vma, ww, 0, 0, PIN_USER | PIN_HIGH); if (err) return err; err = i915_vma_sync(vma); if (err) goto err_unpin; err = gen7_ctx_switch_bb_setup(engine, vma); if (err) goto err_unpin; engine->wa_ctx.vma = vma; return 0; err_unpin: i915_vma_unpin(vma); return err; } static struct i915_vma *gen7_ctx_vma(struct intel_engine_cs *engine) { struct drm_i915_gem_object *obj; struct i915_vma *vma; int size, err; if (GRAPHICS_VER(engine->i915) != 7 || engine->class != RENDER_CLASS) return NULL; err = gen7_ctx_switch_bb_setup(engine, NULL /* probe size */); if (err < 0) return ERR_PTR(err); if (!err) return NULL; size = ALIGN(err, PAGE_SIZE); obj = i915_gem_object_create_internal(engine->i915, size); if (IS_ERR(obj)) return ERR_CAST(obj); vma = i915_vma_instance(obj, engine->gt->vm, NULL); if (IS_ERR(vma)) { i915_gem_object_put(obj); return ERR_CAST(vma); } vma->private = intel_context_create(engine); /* dummy residuals */ if (IS_ERR(vma->private)) { err = PTR_ERR(vma->private); vma->private = NULL; i915_gem_object_put(obj); return ERR_PTR(err); } return vma; } int intel_ring_submission_setup(struct intel_engine_cs *engine) { struct i915_gem_ww_ctx ww; struct intel_timeline *timeline; struct intel_ring *ring; struct i915_vma *gen7_wa_vma; int err; setup_common(engine); switch (engine->class) { case RENDER_CLASS: setup_rcs(engine); break; case VIDEO_DECODE_CLASS: setup_vcs(engine); break; case COPY_ENGINE_CLASS: setup_bcs(engine); break; case VIDEO_ENHANCEMENT_CLASS: setup_vecs(engine); break; default: MISSING_CASE(engine->class); return -ENODEV; } timeline = intel_timeline_create_from_engine(engine, I915_GEM_HWS_SEQNO_ADDR); if (IS_ERR(timeline)) { err = PTR_ERR(timeline); goto err; } GEM_BUG_ON(timeline->has_initial_breadcrumb); ring = intel_engine_create_ring(engine, SZ_16K); if (IS_ERR(ring)) { err = PTR_ERR(ring); goto err_timeline; } GEM_BUG_ON(engine->legacy.ring); engine->legacy.ring = ring; engine->legacy.timeline = timeline; gen7_wa_vma = gen7_ctx_vma(engine); if (IS_ERR(gen7_wa_vma)) { err = PTR_ERR(gen7_wa_vma); goto err_ring; } i915_gem_ww_ctx_init(&ww, false); retry: err = i915_gem_object_lock(timeline->hwsp_ggtt->obj, &ww); if (!err && gen7_wa_vma) err = i915_gem_object_lock(gen7_wa_vma->obj, &ww); if (!err) err = i915_gem_object_lock(engine->legacy.ring->vma->obj, &ww); if (!err) err = intel_timeline_pin(timeline, &ww); if (!err) { err = intel_ring_pin(ring, &ww); if (err) intel_timeline_unpin(timeline); } if (err) goto out; GEM_BUG_ON(timeline->hwsp_ggtt != engine->status_page.vma); if (gen7_wa_vma) { err = gen7_ctx_switch_bb_init(engine, &ww, gen7_wa_vma); if (err) { intel_ring_unpin(ring); intel_timeline_unpin(timeline); } } out: if (err == -EDEADLK) { err = i915_gem_ww_ctx_backoff(&ww); if (!err) goto retry; } i915_gem_ww_ctx_fini(&ww); if (err) goto err_gen7_put; /* Finally, take ownership and responsibility for cleanup! */ engine->release = ring_release; return 0; err_gen7_put: if (gen7_wa_vma) { intel_context_put(gen7_wa_vma->private); i915_gem_object_put(gen7_wa_vma->obj); } err_ring: intel_ring_put(ring); err_timeline: intel_timeline_put(timeline); err: intel_engine_cleanup_common(engine); return err; } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_ring_submission.c" #endif
linux-master
drivers/gpu/drm/i915/gt/intel_ring_submission.c
// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include <linux/debugfs.h> #include "i915_drv.h" #include "intel_gt.h" #include "intel_gt_debugfs.h" #include "intel_gt_engines_debugfs.h" #include "intel_gt_mcr.h" #include "intel_gt_pm_debugfs.h" #include "intel_sseu_debugfs.h" #include "uc/intel_uc_debugfs.h" int intel_gt_debugfs_reset_show(struct intel_gt *gt, u64 *val) { int ret = intel_gt_terminally_wedged(gt); switch (ret) { case -EIO: *val = 1; return 0; case 0: *val = 0; return 0; default: return ret; } } void intel_gt_debugfs_reset_store(struct intel_gt *gt, u64 val) { /* Flush any previous reset before applying for a new one */ wait_event(gt->reset.queue, !test_bit(I915_RESET_BACKOFF, &gt->reset.flags)); intel_gt_handle_error(gt, val, I915_ERROR_CAPTURE, "Manually reset engine mask to %llx", val); } /* * keep the interface clean where the first parameter * is a 'struct intel_gt *' instead of 'void *' */ static int __intel_gt_debugfs_reset_show(void *data, u64 *val) { return intel_gt_debugfs_reset_show(data, val); } static int __intel_gt_debugfs_reset_store(void *data, u64 val) { intel_gt_debugfs_reset_store(data, val); return 0; } DEFINE_SIMPLE_ATTRIBUTE(reset_fops, __intel_gt_debugfs_reset_show, __intel_gt_debugfs_reset_store, "%llu\n"); static int steering_show(struct seq_file *m, void *data) { struct drm_printer p = drm_seq_file_printer(m); struct intel_gt *gt = m->private; intel_gt_mcr_report_steering(&p, gt, true); return 0; } DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(steering); static void gt_debugfs_register(struct intel_gt *gt, struct dentry *root) { static const struct intel_gt_debugfs_file files[] = { { "reset", &reset_fops, NULL }, { "steering", &steering_fops }, }; intel_gt_debugfs_register_files(root, files, ARRAY_SIZE(files), gt); } void intel_gt_debugfs_register(struct intel_gt *gt) { struct dentry *root; char gtname[4]; if (!gt->i915->drm.primary->debugfs_root) return; snprintf(gtname, sizeof(gtname), "gt%u", gt->info.id); root = debugfs_create_dir(gtname, gt->i915->drm.primary->debugfs_root); if (IS_ERR(root)) return; gt_debugfs_register(gt, root); intel_gt_engines_debugfs_register(gt, root); intel_gt_pm_debugfs_register(gt, root); intel_sseu_debugfs_register(gt, root); intel_uc_debugfs_register(&gt->uc, root); } void intel_gt_debugfs_register_files(struct dentry *root, const struct intel_gt_debugfs_file *files, unsigned long count, void *data) { while (count--) { umode_t mode = files->fops->write ? 0644 : 0444; if (!files->eval || files->eval(data)) debugfs_create_file(files->name, mode, root, data, files->fops); files++; } }
linux-master
drivers/gpu/drm/i915/gt/intel_gt_debugfs.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright © 2018 Intel Corporation */ #include <linux/sort.h> #include "gt/intel_gt_print.h" #include "i915_selftest.h" #include "intel_engine_regs.h" #include "intel_gpu_commands.h" #include "intel_gt_clock_utils.h" #include "selftest_engine.h" #include "selftest_engine_heartbeat.h" #include "selftests/igt_atomic.h" #include "selftests/igt_flush_test.h" #include "selftests/igt_spinner.h" #define COUNT 5 static int cmp_u64(const void *A, const void *B) { const u64 *a = A, *b = B; return *a - *b; } static u64 trifilter(u64 *a) { sort(a, COUNT, sizeof(*a), cmp_u64, NULL); return (a[1] + 2 * a[2] + a[3]) >> 2; } static u32 *emit_wait(u32 *cs, u32 offset, int op, u32 value) { *cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT | MI_SEMAPHORE_POLL | op; *cs++ = value; *cs++ = offset; *cs++ = 0; return cs; } static u32 *emit_store(u32 *cs, u32 offset, u32 value) { *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; *cs++ = offset; *cs++ = 0; *cs++ = value; return cs; } static u32 *emit_srm(u32 *cs, i915_reg_t reg, u32 offset) { *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT; *cs++ = i915_mmio_reg_offset(reg); *cs++ = offset; *cs++ = 0; return cs; } static void write_semaphore(u32 *x, u32 value) { WRITE_ONCE(*x, value); wmb(); } static int __measure_timestamps(struct intel_context *ce, u64 *dt, u64 *d_ring, u64 *d_ctx) { struct intel_engine_cs *engine = ce->engine; u32 *sema = memset32(engine->status_page.addr + 1000, 0, 5); u32 offset = i915_ggtt_offset(engine->status_page.vma); struct i915_request *rq; u32 *cs; rq = intel_context_create_request(ce); if (IS_ERR(rq)) return PTR_ERR(rq); cs = intel_ring_begin(rq, 28); if (IS_ERR(cs)) { i915_request_add(rq); return PTR_ERR(cs); } /* Signal & wait for start */ cs = emit_store(cs, offset + 4008, 1); cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_NEQ_SDD, 1); cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4000); cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4004); /* Busy wait */ cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_EQ_SDD, 1); cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4016); cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4012); intel_ring_advance(rq, cs); i915_request_get(rq); i915_request_add(rq); intel_engine_flush_submission(engine); /* Wait for the request to start executing, that then waits for us */ while (READ_ONCE(sema[2]) == 0) cpu_relax(); /* Run the request for a 100us, sampling timestamps before/after */ local_irq_disable(); write_semaphore(&sema[2], 0); while (READ_ONCE(sema[1]) == 0) /* wait for the gpu to catch up */ cpu_relax(); *dt = local_clock(); udelay(100); *dt = local_clock() - *dt; write_semaphore(&sema[2], 1); local_irq_enable(); if (i915_request_wait(rq, 0, HZ / 2) < 0) { i915_request_put(rq); return -ETIME; } i915_request_put(rq); pr_debug("%s CTX_TIMESTAMP: [%x, %x], RING_TIMESTAMP: [%x, %x]\n", engine->name, sema[1], sema[3], sema[0], sema[4]); *d_ctx = sema[3] - sema[1]; *d_ring = sema[4] - sema[0]; return 0; } static int __live_engine_timestamps(struct intel_engine_cs *engine) { u64 s_ring[COUNT], s_ctx[COUNT], st[COUNT], d_ring, d_ctx, dt; struct intel_context *ce; int i, err = 0; ce = intel_context_create(engine); if (IS_ERR(ce)) return PTR_ERR(ce); for (i = 0; i < COUNT; i++) { err = __measure_timestamps(ce, &st[i], &s_ring[i], &s_ctx[i]); if (err) break; } intel_context_put(ce); if (err) return err; dt = trifilter(st); d_ring = trifilter(s_ring); d_ctx = trifilter(s_ctx); pr_info("%s elapsed:%lldns, CTX_TIMESTAMP:%lldns, RING_TIMESTAMP:%lldns\n", engine->name, dt, intel_gt_clock_interval_to_ns(engine->gt, d_ctx), intel_gt_clock_interval_to_ns(engine->gt, d_ring)); d_ring = intel_gt_clock_interval_to_ns(engine->gt, d_ring); if (3 * dt > 4 * d_ring || 4 * dt < 3 * d_ring) { pr_err("%s Mismatch between ring timestamp and walltime!\n", engine->name); return -EINVAL; } d_ring = trifilter(s_ring); d_ctx = trifilter(s_ctx); d_ctx *= engine->gt->clock_frequency; if (GRAPHICS_VER(engine->i915) == 11) d_ring *= 12500000; /* Fixed 80ns for GEN11 ctx timestamp? */ else d_ring *= engine->gt->clock_frequency; if (3 * d_ctx > 4 * d_ring || 4 * d_ctx < 3 * d_ring) { pr_err("%s Mismatch between ring and context timestamps!\n", engine->name); return -EINVAL; } return 0; } static int live_engine_timestamps(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; /* * Check that CS_TIMESTAMP / CTX_TIMESTAMP are in sync, i.e. share * the same CS clock. */ if (GRAPHICS_VER(gt->i915) < 8) return 0; for_each_engine(engine, gt, id) { int err; st_engine_heartbeat_disable(engine); err = __live_engine_timestamps(engine); st_engine_heartbeat_enable(engine); if (err) return err; } return 0; } static int __spin_until_busier(struct intel_engine_cs *engine, ktime_t busyness) { ktime_t start, unused, dt; if (!intel_engine_uses_guc(engine)) return 0; /* * In GuC mode of submission, the busyness stats may get updated after * the batch starts running. Poll for a change in busyness and timeout * after 500 us. */ start = ktime_get(); while (intel_engine_get_busy_time(engine, &unused) == busyness) { dt = ktime_get() - start; if (dt > 10000000) { pr_err("active wait timed out %lld\n", dt); ENGINE_TRACE(engine, "active wait time out %lld\n", dt); return -ETIME; } } return 0; } static int live_engine_busy_stats(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; struct igt_spinner spin; int err = 0; /* * Check that if an engine supports busy-stats, they tell the truth. */ if (igt_spinner_init(&spin, gt)) return -ENOMEM; GEM_BUG_ON(intel_gt_pm_is_awake(gt)); for_each_engine(engine, gt, id) { struct i915_request *rq; ktime_t busyness, dummy; ktime_t de, dt; ktime_t t[2]; if (!intel_engine_supports_stats(engine)) continue; if (!intel_engine_can_store_dword(engine)) continue; if (intel_gt_pm_wait_for_idle(gt)) { err = -EBUSY; break; } st_engine_heartbeat_disable(engine); ENGINE_TRACE(engine, "measuring idle time\n"); preempt_disable(); de = intel_engine_get_busy_time(engine, &t[0]); udelay(100); de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de); preempt_enable(); dt = ktime_sub(t[1], t[0]); if (de < 0 || de > 10) { pr_err("%s: reported %lldns [%d%%] busyness while sleeping [for %lldns]\n", engine->name, de, (int)div64_u64(100 * de, dt), dt); GEM_TRACE_DUMP(); err = -EINVAL; goto end; } /* 100% busy */ rq = igt_spinner_create_request(&spin, engine->kernel_context, MI_NOOP); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto end; } i915_request_add(rq); busyness = intel_engine_get_busy_time(engine, &dummy); if (!igt_wait_for_spinner(&spin, rq)) { intel_gt_set_wedged(engine->gt); err = -ETIME; goto end; } err = __spin_until_busier(engine, busyness); if (err) { GEM_TRACE_DUMP(); goto end; } ENGINE_TRACE(engine, "measuring busy time\n"); preempt_disable(); de = intel_engine_get_busy_time(engine, &t[0]); mdelay(100); de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de); preempt_enable(); dt = ktime_sub(t[1], t[0]); if (100 * de < 95 * dt || 95 * de > 100 * dt) { pr_err("%s: reported %lldns [%d%%] busyness while spinning [for %lldns]\n", engine->name, de, (int)div64_u64(100 * de, dt), dt); GEM_TRACE_DUMP(); err = -EINVAL; goto end; } end: st_engine_heartbeat_enable(engine); igt_spinner_end(&spin); if (igt_flush_test(gt->i915)) err = -EIO; if (err) break; } igt_spinner_fini(&spin); if (igt_flush_test(gt->i915)) err = -EIO; return err; } static int live_engine_pm(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; /* * Check we can call intel_engine_pm_put from any context. No * failures are reported directly, but if we mess up lockdep should * tell us. */ if (intel_gt_pm_wait_for_idle(gt)) { pr_err("Unable to flush GT pm before test\n"); return -EBUSY; } GEM_BUG_ON(intel_gt_pm_is_awake(gt)); for_each_engine(engine, gt, id) { const typeof(*igt_atomic_phases) *p; for (p = igt_atomic_phases; p->name; p++) { /* * Acquisition is always synchronous, except if we * know that the engine is already awake, in which * case we should use intel_engine_pm_get_if_awake() * to atomically grab the wakeref. * * In practice, * intel_engine_pm_get(); * intel_engine_pm_put(); * occurs in one thread, while simultaneously * intel_engine_pm_get_if_awake(); * intel_engine_pm_put(); * occurs from atomic context in another. */ GEM_BUG_ON(intel_engine_pm_is_awake(engine)); intel_engine_pm_get(engine); p->critical_section_begin(); if (!intel_engine_pm_get_if_awake(engine)) pr_err("intel_engine_pm_get_if_awake(%s) failed under %s\n", engine->name, p->name); else intel_engine_pm_put_async(engine); intel_engine_pm_put_async(engine); p->critical_section_end(); intel_engine_pm_flush(engine); if (intel_engine_pm_is_awake(engine)) { pr_err("%s is still awake after flushing pm\n", engine->name); return -EINVAL; } /* gt wakeref is async (deferred to workqueue) */ if (intel_gt_pm_wait_for_idle(gt)) { gt_err(gt, "GT failed to idle\n"); return -EINVAL; } } } return 0; } int live_engine_pm_selftests(struct intel_gt *gt) { static const struct i915_subtest tests[] = { SUBTEST(live_engine_timestamps), SUBTEST(live_engine_busy_stats), SUBTEST(live_engine_pm), }; return intel_gt_live_subtests(tests, gt); }
linux-master
drivers/gpu/drm/i915/gt/selftest_engine_pm.c
// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include <linux/sched/clock.h> #include "i915_drv.h" #include "i915_irq.h" #include "i915_reg.h" #include "intel_breadcrumbs.h" #include "intel_gt.h" #include "intel_gt_irq.h" #include "intel_gt_print.h" #include "intel_gt_regs.h" #include "intel_uncore.h" #include "intel_rps.h" #include "pxp/intel_pxp_irq.h" #include "uc/intel_gsc_proxy.h" static void guc_irq_handler(struct intel_guc *guc, u16 iir) { if (unlikely(!guc->interrupts.enabled)) return; if (iir & GUC_INTR_GUC2HOST) intel_guc_to_host_event_handler(guc); } static u32 gen11_gt_engine_identity(struct intel_gt *gt, const unsigned int bank, const unsigned int bit) { void __iomem * const regs = intel_uncore_regs(gt->uncore); u32 timeout_ts; u32 ident; lockdep_assert_held(gt->irq_lock); raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit)); /* * NB: Specs do not specify how long to spin wait, * so we do ~100us as an educated guess. */ timeout_ts = (local_clock() >> 10) + 100; do { ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank)); } while (!(ident & GEN11_INTR_DATA_VALID) && !time_after32(local_clock() >> 10, timeout_ts)); if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) { gt_err(gt, "INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n", bank, bit, ident); return 0; } raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank), GEN11_INTR_DATA_VALID); return ident; } static void gen11_other_irq_handler(struct intel_gt *gt, const u8 instance, const u16 iir) { struct intel_gt *media_gt = gt->i915->media_gt; if (instance == OTHER_GUC_INSTANCE) return guc_irq_handler(&gt->uc.guc, iir); if (instance == OTHER_MEDIA_GUC_INSTANCE && media_gt) return guc_irq_handler(&media_gt->uc.guc, iir); if (instance == OTHER_GTPM_INSTANCE) return gen11_rps_irq_handler(&gt->rps, iir); if (instance == OTHER_MEDIA_GTPM_INSTANCE && media_gt) return gen11_rps_irq_handler(&media_gt->rps, iir); if (instance == OTHER_KCR_INSTANCE) return intel_pxp_irq_handler(gt->i915->pxp, iir); if (instance == OTHER_GSC_INSTANCE) return intel_gsc_irq_handler(gt, iir); if (instance == OTHER_GSC_HECI_2_INSTANCE) return intel_gsc_proxy_irq_handler(&gt->uc.gsc, iir); WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n", instance, iir); } static struct intel_gt *pick_gt(struct intel_gt *gt, u8 class, u8 instance) { struct intel_gt *media_gt = gt->i915->media_gt; /* we expect the non-media gt to be passed in */ GEM_BUG_ON(gt == media_gt); if (!media_gt) return gt; switch (class) { case VIDEO_DECODE_CLASS: case VIDEO_ENHANCEMENT_CLASS: return media_gt; case OTHER_CLASS: if (instance == OTHER_GSC_HECI_2_INSTANCE) return media_gt; if ((instance == OTHER_GSC_INSTANCE || instance == OTHER_KCR_INSTANCE) && HAS_ENGINE(media_gt, GSC0)) return media_gt; fallthrough; default: return gt; } } static void gen11_gt_identity_handler(struct intel_gt *gt, const u32 identity) { const u8 class = GEN11_INTR_ENGINE_CLASS(identity); const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity); const u16 intr = GEN11_INTR_ENGINE_INTR(identity); if (unlikely(!intr)) return; /* * Platforms with standalone media have the media and GSC engines in * another GT. */ gt = pick_gt(gt, class, instance); if (class <= MAX_ENGINE_CLASS && instance <= MAX_ENGINE_INSTANCE) { struct intel_engine_cs *engine = gt->engine_class[class][instance]; if (engine) return intel_engine_cs_irq(engine, intr); } if (class == OTHER_CLASS) return gen11_other_irq_handler(gt, instance, intr); WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n", class, instance, intr); } static void gen11_gt_bank_handler(struct intel_gt *gt, const unsigned int bank) { void __iomem * const regs = intel_uncore_regs(gt->uncore); unsigned long intr_dw; unsigned int bit; lockdep_assert_held(gt->irq_lock); intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank)); for_each_set_bit(bit, &intr_dw, 32) { const u32 ident = gen11_gt_engine_identity(gt, bank, bit); gen11_gt_identity_handler(gt, ident); } /* Clear must be after shared has been served for engine */ raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw); } void gen11_gt_irq_handler(struct intel_gt *gt, const u32 master_ctl) { unsigned int bank; spin_lock(gt->irq_lock); for (bank = 0; bank < 2; bank++) { if (master_ctl & GEN11_GT_DW_IRQ(bank)) gen11_gt_bank_handler(gt, bank); } spin_unlock(gt->irq_lock); } bool gen11_gt_reset_one_iir(struct intel_gt *gt, const unsigned int bank, const unsigned int bit) { void __iomem * const regs = intel_uncore_regs(gt->uncore); u32 dw; lockdep_assert_held(gt->irq_lock); dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank)); if (dw & BIT(bit)) { /* * According to the BSpec, DW_IIR bits cannot be cleared without * first servicing the Selector & Shared IIR registers. */ gen11_gt_engine_identity(gt, bank, bit); /* * We locked GT INT DW by reading it. If we want to (try * to) recover from this successfully, we need to clear * our bit, otherwise we are locking the register for * everybody. */ raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit)); return true; } return false; } void gen11_gt_irq_reset(struct intel_gt *gt) { struct intel_uncore *uncore = gt->uncore; /* Disable RCS, BCS, VCS and VECS class engines. */ intel_uncore_write(uncore, GEN11_RENDER_COPY_INTR_ENABLE, 0); intel_uncore_write(uncore, GEN11_VCS_VECS_INTR_ENABLE, 0); if (CCS_MASK(gt)) intel_uncore_write(uncore, GEN12_CCS_RSVD_INTR_ENABLE, 0); if (HAS_HECI_GSC(gt->i915) || HAS_ENGINE(gt, GSC0)) intel_uncore_write(uncore, GEN11_GUNIT_CSME_INTR_ENABLE, 0); /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */ intel_uncore_write(uncore, GEN11_RCS0_RSVD_INTR_MASK, ~0); intel_uncore_write(uncore, GEN11_BCS_RSVD_INTR_MASK, ~0); if (HAS_ENGINE(gt, BCS1) || HAS_ENGINE(gt, BCS2)) intel_uncore_write(uncore, XEHPC_BCS1_BCS2_INTR_MASK, ~0); if (HAS_ENGINE(gt, BCS3) || HAS_ENGINE(gt, BCS4)) intel_uncore_write(uncore, XEHPC_BCS3_BCS4_INTR_MASK, ~0); if (HAS_ENGINE(gt, BCS5) || HAS_ENGINE(gt, BCS6)) intel_uncore_write(uncore, XEHPC_BCS5_BCS6_INTR_MASK, ~0); if (HAS_ENGINE(gt, BCS7) || HAS_ENGINE(gt, BCS8)) intel_uncore_write(uncore, XEHPC_BCS7_BCS8_INTR_MASK, ~0); intel_uncore_write(uncore, GEN11_VCS0_VCS1_INTR_MASK, ~0); intel_uncore_write(uncore, GEN11_VCS2_VCS3_INTR_MASK, ~0); if (HAS_ENGINE(gt, VCS4) || HAS_ENGINE(gt, VCS5)) intel_uncore_write(uncore, GEN12_VCS4_VCS5_INTR_MASK, ~0); if (HAS_ENGINE(gt, VCS6) || HAS_ENGINE(gt, VCS7)) intel_uncore_write(uncore, GEN12_VCS6_VCS7_INTR_MASK, ~0); intel_uncore_write(uncore, GEN11_VECS0_VECS1_INTR_MASK, ~0); if (HAS_ENGINE(gt, VECS2) || HAS_ENGINE(gt, VECS3)) intel_uncore_write(uncore, GEN12_VECS2_VECS3_INTR_MASK, ~0); if (HAS_ENGINE(gt, CCS0) || HAS_ENGINE(gt, CCS1)) intel_uncore_write(uncore, GEN12_CCS0_CCS1_INTR_MASK, ~0); if (HAS_ENGINE(gt, CCS2) || HAS_ENGINE(gt, CCS3)) intel_uncore_write(uncore, GEN12_CCS2_CCS3_INTR_MASK, ~0); if (HAS_HECI_GSC(gt->i915) || HAS_ENGINE(gt, GSC0)) intel_uncore_write(uncore, GEN11_GUNIT_CSME_INTR_MASK, ~0); intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0); intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK, ~0); intel_uncore_write(uncore, GEN11_GUC_SG_INTR_ENABLE, 0); intel_uncore_write(uncore, GEN11_GUC_SG_INTR_MASK, ~0); intel_uncore_write(uncore, GEN11_CRYPTO_RSVD_INTR_ENABLE, 0); intel_uncore_write(uncore, GEN11_CRYPTO_RSVD_INTR_MASK, ~0); } void gen11_gt_irq_postinstall(struct intel_gt *gt) { struct intel_uncore *uncore = gt->uncore; u32 irqs = GT_RENDER_USER_INTERRUPT; u32 guc_mask = intel_uc_wants_guc(&gt->uc) ? GUC_INTR_GUC2HOST : 0; u32 gsc_mask = 0; u32 heci_mask = 0; u32 dmask; u32 smask; if (!intel_uc_wants_guc_submission(&gt->uc)) irqs |= GT_CS_MASTER_ERROR_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT | GT_WAIT_SEMAPHORE_INTERRUPT; dmask = irqs << 16 | irqs; smask = irqs << 16; if (HAS_ENGINE(gt, GSC0)) { /* * the heci2 interrupt is enabled via the same register as the * GSC interrupt, but it has its own mask register. */ gsc_mask = irqs; heci_mask = GSC_IRQ_INTF(1); /* HECI2 IRQ for SW Proxy*/ } else if (HAS_HECI_GSC(gt->i915)) { gsc_mask = GSC_IRQ_INTF(0) | GSC_IRQ_INTF(1); } BUILD_BUG_ON(irqs & 0xffff0000); /* Enable RCS, BCS, VCS and VECS class interrupts. */ intel_uncore_write(uncore, GEN11_RENDER_COPY_INTR_ENABLE, dmask); intel_uncore_write(uncore, GEN11_VCS_VECS_INTR_ENABLE, dmask); if (CCS_MASK(gt)) intel_uncore_write(uncore, GEN12_CCS_RSVD_INTR_ENABLE, smask); if (gsc_mask) intel_uncore_write(uncore, GEN11_GUNIT_CSME_INTR_ENABLE, gsc_mask | heci_mask); /* Unmask irqs on RCS, BCS, VCS and VECS engines. */ intel_uncore_write(uncore, GEN11_RCS0_RSVD_INTR_MASK, ~smask); intel_uncore_write(uncore, GEN11_BCS_RSVD_INTR_MASK, ~smask); if (HAS_ENGINE(gt, BCS1) || HAS_ENGINE(gt, BCS2)) intel_uncore_write(uncore, XEHPC_BCS1_BCS2_INTR_MASK, ~dmask); if (HAS_ENGINE(gt, BCS3) || HAS_ENGINE(gt, BCS4)) intel_uncore_write(uncore, XEHPC_BCS3_BCS4_INTR_MASK, ~dmask); if (HAS_ENGINE(gt, BCS5) || HAS_ENGINE(gt, BCS6)) intel_uncore_write(uncore, XEHPC_BCS5_BCS6_INTR_MASK, ~dmask); if (HAS_ENGINE(gt, BCS7) || HAS_ENGINE(gt, BCS8)) intel_uncore_write(uncore, XEHPC_BCS7_BCS8_INTR_MASK, ~dmask); intel_uncore_write(uncore, GEN11_VCS0_VCS1_INTR_MASK, ~dmask); intel_uncore_write(uncore, GEN11_VCS2_VCS3_INTR_MASK, ~dmask); if (HAS_ENGINE(gt, VCS4) || HAS_ENGINE(gt, VCS5)) intel_uncore_write(uncore, GEN12_VCS4_VCS5_INTR_MASK, ~dmask); if (HAS_ENGINE(gt, VCS6) || HAS_ENGINE(gt, VCS7)) intel_uncore_write(uncore, GEN12_VCS6_VCS7_INTR_MASK, ~dmask); intel_uncore_write(uncore, GEN11_VECS0_VECS1_INTR_MASK, ~dmask); if (HAS_ENGINE(gt, VECS2) || HAS_ENGINE(gt, VECS3)) intel_uncore_write(uncore, GEN12_VECS2_VECS3_INTR_MASK, ~dmask); if (HAS_ENGINE(gt, CCS0) || HAS_ENGINE(gt, CCS1)) intel_uncore_write(uncore, GEN12_CCS0_CCS1_INTR_MASK, ~dmask); if (HAS_ENGINE(gt, CCS2) || HAS_ENGINE(gt, CCS3)) intel_uncore_write(uncore, GEN12_CCS2_CCS3_INTR_MASK, ~dmask); if (gsc_mask) intel_uncore_write(uncore, GEN11_GUNIT_CSME_INTR_MASK, ~gsc_mask); if (heci_mask) intel_uncore_write(uncore, GEN12_HECI2_RSVD_INTR_MASK, ~REG_FIELD_PREP(ENGINE1_MASK, heci_mask)); if (guc_mask) { /* the enable bit is common for both GTs but the masks are separate */ u32 mask = gt->type == GT_MEDIA ? REG_FIELD_PREP(ENGINE0_MASK, guc_mask) : REG_FIELD_PREP(ENGINE1_MASK, guc_mask); intel_uncore_write(uncore, GEN11_GUC_SG_INTR_ENABLE, REG_FIELD_PREP(ENGINE1_MASK, guc_mask)); /* we might not be the first GT to write this reg */ intel_uncore_rmw(uncore, MTL_GUC_MGUC_INTR_MASK, mask, 0); } /* * RPS interrupts will get enabled/disabled on demand when RPS itself * is enabled/disabled. */ gt->pm_ier = 0x0; gt->pm_imr = ~gt->pm_ier; intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0); intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK, ~0); } void gen5_gt_irq_handler(struct intel_gt *gt, u32 gt_iir) { if (gt_iir & GT_RENDER_USER_INTERRUPT) intel_engine_cs_irq(gt->engine_class[RENDER_CLASS][0], gt_iir); if (gt_iir & ILK_BSD_USER_INTERRUPT) intel_engine_cs_irq(gt->engine_class[VIDEO_DECODE_CLASS][0], gt_iir); } static void gen7_parity_error_irq_handler(struct intel_gt *gt, u32 iir) { if (!HAS_L3_DPF(gt->i915)) return; spin_lock(gt->irq_lock); gen5_gt_disable_irq(gt, GT_PARITY_ERROR(gt->i915)); spin_unlock(gt->irq_lock); if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1) gt->i915->l3_parity.which_slice |= 1 << 1; if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT) gt->i915->l3_parity.which_slice |= 1 << 0; queue_work(gt->i915->unordered_wq, &gt->i915->l3_parity.error_work); } void gen6_gt_irq_handler(struct intel_gt *gt, u32 gt_iir) { if (gt_iir & GT_RENDER_USER_INTERRUPT) intel_engine_cs_irq(gt->engine_class[RENDER_CLASS][0], gt_iir); if (gt_iir & GT_BSD_USER_INTERRUPT) intel_engine_cs_irq(gt->engine_class[VIDEO_DECODE_CLASS][0], gt_iir >> 12); if (gt_iir & GT_BLT_USER_INTERRUPT) intel_engine_cs_irq(gt->engine_class[COPY_ENGINE_CLASS][0], gt_iir >> 22); if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT | GT_BSD_CS_ERROR_INTERRUPT | GT_CS_MASTER_ERROR_INTERRUPT)) gt_dbg(gt, "Command parser error, gt_iir 0x%08x\n", gt_iir); if (gt_iir & GT_PARITY_ERROR(gt->i915)) gen7_parity_error_irq_handler(gt, gt_iir); } void gen8_gt_irq_handler(struct intel_gt *gt, u32 master_ctl) { void __iomem * const regs = intel_uncore_regs(gt->uncore); u32 iir; if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) { iir = raw_reg_read(regs, GEN8_GT_IIR(0)); if (likely(iir)) { intel_engine_cs_irq(gt->engine_class[RENDER_CLASS][0], iir >> GEN8_RCS_IRQ_SHIFT); intel_engine_cs_irq(gt->engine_class[COPY_ENGINE_CLASS][0], iir >> GEN8_BCS_IRQ_SHIFT); raw_reg_write(regs, GEN8_GT_IIR(0), iir); } } if (master_ctl & (GEN8_GT_VCS0_IRQ | GEN8_GT_VCS1_IRQ)) { iir = raw_reg_read(regs, GEN8_GT_IIR(1)); if (likely(iir)) { intel_engine_cs_irq(gt->engine_class[VIDEO_DECODE_CLASS][0], iir >> GEN8_VCS0_IRQ_SHIFT); intel_engine_cs_irq(gt->engine_class[VIDEO_DECODE_CLASS][1], iir >> GEN8_VCS1_IRQ_SHIFT); raw_reg_write(regs, GEN8_GT_IIR(1), iir); } } if (master_ctl & GEN8_GT_VECS_IRQ) { iir = raw_reg_read(regs, GEN8_GT_IIR(3)); if (likely(iir)) { intel_engine_cs_irq(gt->engine_class[VIDEO_ENHANCEMENT_CLASS][0], iir >> GEN8_VECS_IRQ_SHIFT); raw_reg_write(regs, GEN8_GT_IIR(3), iir); } } if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) { iir = raw_reg_read(regs, GEN8_GT_IIR(2)); if (likely(iir)) { gen6_rps_irq_handler(&gt->rps, iir); guc_irq_handler(&gt->uc.guc, iir >> 16); raw_reg_write(regs, GEN8_GT_IIR(2), iir); } } } void gen8_gt_irq_reset(struct intel_gt *gt) { struct intel_uncore *uncore = gt->uncore; GEN8_IRQ_RESET_NDX(uncore, GT, 0); GEN8_IRQ_RESET_NDX(uncore, GT, 1); GEN8_IRQ_RESET_NDX(uncore, GT, 2); GEN8_IRQ_RESET_NDX(uncore, GT, 3); } void gen8_gt_irq_postinstall(struct intel_gt *gt) { /* These are interrupts we'll toggle with the ring mask register */ const u32 irqs = GT_CS_MASTER_ERROR_INTERRUPT | GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT | GT_WAIT_SEMAPHORE_INTERRUPT; const u32 gt_interrupts[] = { irqs << GEN8_RCS_IRQ_SHIFT | irqs << GEN8_BCS_IRQ_SHIFT, irqs << GEN8_VCS0_IRQ_SHIFT | irqs << GEN8_VCS1_IRQ_SHIFT, 0, irqs << GEN8_VECS_IRQ_SHIFT, }; struct intel_uncore *uncore = gt->uncore; gt->pm_ier = 0x0; gt->pm_imr = ~gt->pm_ier; GEN8_IRQ_INIT_NDX(uncore, GT, 0, ~gt_interrupts[0], gt_interrupts[0]); GEN8_IRQ_INIT_NDX(uncore, GT, 1, ~gt_interrupts[1], gt_interrupts[1]); /* * RPS interrupts will get enabled/disabled on demand when RPS itself * is enabled/disabled. Same wil be the case for GuC interrupts. */ GEN8_IRQ_INIT_NDX(uncore, GT, 2, gt->pm_imr, gt->pm_ier); GEN8_IRQ_INIT_NDX(uncore, GT, 3, ~gt_interrupts[3], gt_interrupts[3]); } static void gen5_gt_update_irq(struct intel_gt *gt, u32 interrupt_mask, u32 enabled_irq_mask) { lockdep_assert_held(gt->irq_lock); GEM_BUG_ON(enabled_irq_mask & ~interrupt_mask); gt->gt_imr &= ~interrupt_mask; gt->gt_imr |= (~enabled_irq_mask & interrupt_mask); intel_uncore_write(gt->uncore, GTIMR, gt->gt_imr); } void gen5_gt_enable_irq(struct intel_gt *gt, u32 mask) { gen5_gt_update_irq(gt, mask, mask); intel_uncore_posting_read_fw(gt->uncore, GTIMR); } void gen5_gt_disable_irq(struct intel_gt *gt, u32 mask) { gen5_gt_update_irq(gt, mask, 0); } void gen5_gt_irq_reset(struct intel_gt *gt) { struct intel_uncore *uncore = gt->uncore; GEN3_IRQ_RESET(uncore, GT); if (GRAPHICS_VER(gt->i915) >= 6) GEN3_IRQ_RESET(uncore, GEN6_PM); } void gen5_gt_irq_postinstall(struct intel_gt *gt) { struct intel_uncore *uncore = gt->uncore; u32 pm_irqs = 0; u32 gt_irqs = 0; gt->gt_imr = ~0; if (HAS_L3_DPF(gt->i915)) { /* L3 parity interrupt is always unmasked. */ gt->gt_imr = ~GT_PARITY_ERROR(gt->i915); gt_irqs |= GT_PARITY_ERROR(gt->i915); } gt_irqs |= GT_RENDER_USER_INTERRUPT; if (GRAPHICS_VER(gt->i915) == 5) gt_irqs |= ILK_BSD_USER_INTERRUPT; else gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT; GEN3_IRQ_INIT(uncore, GT, gt->gt_imr, gt_irqs); if (GRAPHICS_VER(gt->i915) >= 6) { /* * RPS interrupts will get enabled/disabled on demand when RPS * itself is enabled/disabled. */ if (HAS_ENGINE(gt, VECS0)) { pm_irqs |= PM_VEBOX_USER_INTERRUPT; gt->pm_ier |= PM_VEBOX_USER_INTERRUPT; } gt->pm_imr = 0xffffffff; GEN3_IRQ_INIT(uncore, GEN6_PM, gt->pm_imr, pm_irqs); } }
linux-master
drivers/gpu/drm/i915/gt/intel_gt_irq.c
// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include "gem/i915_gem_internal.h" #include "gem/i915_gem_lmem.h" #include "gem/i915_gem_object.h" #include "i915_drv.h" #include "i915_vma.h" #include "intel_engine.h" #include "intel_engine_regs.h" #include "intel_gpu_commands.h" #include "intel_ring.h" #include "intel_gt.h" #include "intel_timeline.h" unsigned int intel_ring_update_space(struct intel_ring *ring) { unsigned int space; space = __intel_ring_space(ring->head, ring->emit, ring->size); ring->space = space; return space; } void __intel_ring_pin(struct intel_ring *ring) { GEM_BUG_ON(!atomic_read(&ring->pin_count)); atomic_inc(&ring->pin_count); } int intel_ring_pin(struct intel_ring *ring, struct i915_gem_ww_ctx *ww) { struct i915_vma *vma = ring->vma; unsigned int flags; void *addr; int ret; if (atomic_fetch_inc(&ring->pin_count)) return 0; /* Ring wraparound at offset 0 sometimes hangs. No idea why. */ flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); if (i915_gem_object_is_stolen(vma->obj)) flags |= PIN_MAPPABLE; else flags |= PIN_HIGH; ret = i915_ggtt_pin(vma, ww, 0, flags); if (unlikely(ret)) goto err_unpin; if (i915_vma_is_map_and_fenceable(vma) && !HAS_LLC(vma->vm->i915)) { addr = (void __force *)i915_vma_pin_iomap(vma); } else { int type = intel_gt_coherent_map_type(vma->vm->gt, vma->obj, false); addr = i915_gem_object_pin_map(vma->obj, type); } if (IS_ERR(addr)) { ret = PTR_ERR(addr); goto err_ring; } i915_vma_make_unshrinkable(vma); /* Discard any unused bytes beyond that submitted to hw. */ intel_ring_reset(ring, ring->emit); ring->vaddr = addr; return 0; err_ring: i915_vma_unpin(vma); err_unpin: atomic_dec(&ring->pin_count); return ret; } void intel_ring_reset(struct intel_ring *ring, u32 tail) { tail = intel_ring_wrap(ring, tail); ring->tail = tail; ring->head = tail; ring->emit = tail; intel_ring_update_space(ring); } void intel_ring_unpin(struct intel_ring *ring) { struct i915_vma *vma = ring->vma; if (!atomic_dec_and_test(&ring->pin_count)) return; i915_vma_unset_ggtt_write(vma); if (i915_vma_is_map_and_fenceable(vma) && !HAS_LLC(vma->vm->i915)) i915_vma_unpin_iomap(vma); else i915_gem_object_unpin_map(vma->obj); i915_vma_make_purgeable(vma); i915_vma_unpin(vma); } static struct i915_vma *create_ring_vma(struct i915_ggtt *ggtt, int size) { struct i915_address_space *vm = &ggtt->vm; struct drm_i915_private *i915 = vm->i915; struct drm_i915_gem_object *obj; struct i915_vma *vma; obj = i915_gem_object_create_lmem(i915, size, I915_BO_ALLOC_VOLATILE | I915_BO_ALLOC_PM_VOLATILE); if (IS_ERR(obj) && i915_ggtt_has_aperture(ggtt) && !HAS_LLC(i915)) obj = i915_gem_object_create_stolen(i915, size); if (IS_ERR(obj)) obj = i915_gem_object_create_internal(i915, size); if (IS_ERR(obj)) return ERR_CAST(obj); /* * Mark ring buffers as read-only from GPU side (so no stray overwrites) * if supported by the platform's GGTT. */ if (vm->has_read_only) i915_gem_object_set_readonly(obj); vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) goto err; return vma; err: i915_gem_object_put(obj); return vma; } struct intel_ring * intel_engine_create_ring(struct intel_engine_cs *engine, int size) { struct drm_i915_private *i915 = engine->i915; struct intel_ring *ring; struct i915_vma *vma; GEM_BUG_ON(!is_power_of_2(size)); GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES); ring = kzalloc(sizeof(*ring), GFP_KERNEL); if (!ring) return ERR_PTR(-ENOMEM); kref_init(&ring->ref); ring->size = size; ring->wrap = BITS_PER_TYPE(ring->size) - ilog2(size); /* * Workaround an erratum on the i830 which causes a hang if * the TAIL pointer points to within the last 2 cachelines * of the buffer. */ ring->effective_size = size; if (IS_I830(i915) || IS_I845G(i915)) ring->effective_size -= 2 * CACHELINE_BYTES; intel_ring_update_space(ring); vma = create_ring_vma(engine->gt->ggtt, size); if (IS_ERR(vma)) { kfree(ring); return ERR_CAST(vma); } ring->vma = vma; return ring; } void intel_ring_free(struct kref *ref) { struct intel_ring *ring = container_of(ref, typeof(*ring), ref); i915_vma_put(ring->vma); kfree(ring); } static noinline int wait_for_space(struct intel_ring *ring, struct intel_timeline *tl, unsigned int bytes) { struct i915_request *target; long timeout; if (intel_ring_update_space(ring) >= bytes) return 0; GEM_BUG_ON(list_empty(&tl->requests)); list_for_each_entry(target, &tl->requests, link) { if (target->ring != ring) continue; /* Would completion of this request free enough space? */ if (bytes <= __intel_ring_space(target->postfix, ring->emit, ring->size)) break; } if (GEM_WARN_ON(&target->link == &tl->requests)) return -ENOSPC; timeout = i915_request_wait(target, I915_WAIT_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); if (timeout < 0) return timeout; i915_request_retire_upto(target); intel_ring_update_space(ring); GEM_BUG_ON(ring->space < bytes); return 0; } u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords) { struct intel_ring *ring = rq->ring; const unsigned int remain_usable = ring->effective_size - ring->emit; const unsigned int bytes = num_dwords * sizeof(u32); unsigned int need_wrap = 0; unsigned int total_bytes; u32 *cs; /* Packets must be qword aligned. */ GEM_BUG_ON(num_dwords & 1); total_bytes = bytes + rq->reserved_space; GEM_BUG_ON(total_bytes > ring->effective_size); if (unlikely(total_bytes > remain_usable)) { const int remain_actual = ring->size - ring->emit; if (bytes > remain_usable) { /* * Not enough space for the basic request. So need to * flush out the remainder and then wait for * base + reserved. */ total_bytes += remain_actual; need_wrap = remain_actual | 1; } else { /* * The base request will fit but the reserved space * falls off the end. So we don't need an immediate * wrap and only need to effectively wait for the * reserved size from the start of ringbuffer. */ total_bytes = rq->reserved_space + remain_actual; } } if (unlikely(total_bytes > ring->space)) { int ret; /* * Space is reserved in the ringbuffer for finalising the * request, as that cannot be allowed to fail. During request * finalisation, reserved_space is set to 0 to stop the * overallocation and the assumption is that then we never need * to wait (which has the risk of failing with EINTR). * * See also i915_request_alloc() and i915_request_add(). */ GEM_BUG_ON(!rq->reserved_space); ret = wait_for_space(ring, i915_request_timeline(rq), total_bytes); if (unlikely(ret)) return ERR_PTR(ret); } if (unlikely(need_wrap)) { need_wrap &= ~1; GEM_BUG_ON(need_wrap > ring->space); GEM_BUG_ON(ring->emit + need_wrap > ring->size); GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64))); /* Fill the tail with MI_NOOP */ memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64)); ring->space -= need_wrap; ring->emit = 0; } GEM_BUG_ON(ring->emit > ring->size - bytes); GEM_BUG_ON(ring->space < bytes); cs = ring->vaddr + ring->emit; if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) memset32(cs, POISON_INUSE, bytes / sizeof(*cs)); ring->emit += bytes; ring->space -= bytes; return cs; } /* Align the ring tail to a cacheline boundary */ int intel_ring_cacheline_align(struct i915_request *rq) { int num_dwords; void *cs; num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32); if (num_dwords == 0) return 0; num_dwords = CACHELINE_DWORDS - num_dwords; GEM_BUG_ON(num_dwords & 1); cs = intel_ring_begin(rq, num_dwords); if (IS_ERR(cs)) return PTR_ERR(cs); memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2); intel_ring_advance(rq, cs + num_dwords); GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1)); return 0; } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_ring.c" #endif
linux-master
drivers/gpu/drm/i915/gt/intel_ring.c
// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include "gen7_renderclear.h" #include "i915_drv.h" #include "intel_gpu_commands.h" #include "intel_gt_regs.h" #define GT3_INLINE_DATA_DELAYS 0x1E00 #define batch_advance(Y, CS) GEM_BUG_ON((Y)->end != (CS)) struct cb_kernel { const void *data; u32 size; }; #define CB_KERNEL(name) { .data = (name), .size = sizeof(name) } #include "ivb_clear_kernel.c" static const struct cb_kernel cb_kernel_ivb = CB_KERNEL(ivb_clear_kernel); #include "hsw_clear_kernel.c" static const struct cb_kernel cb_kernel_hsw = CB_KERNEL(hsw_clear_kernel); struct batch_chunk { struct i915_vma *vma; u32 offset; u32 *start; u32 *end; u32 max_items; }; struct batch_vals { u32 max_threads; u32 state_start; u32 surface_start; u32 surface_height; u32 surface_width; u32 size; }; static int num_primitives(const struct batch_vals *bv) { /* * We need to saturate the GPU with work in order to dispatch * a shader on every HW thread, and clear the thread-local registers. * In short, we have to dispatch work faster than the shaders can * run in order to fill the EU and occupy each HW thread. */ return bv->max_threads; } static void batch_get_defaults(struct drm_i915_private *i915, struct batch_vals *bv) { if (IS_HASWELL(i915)) { switch (INTEL_INFO(i915)->gt) { default: case 1: bv->max_threads = 70; break; case 2: bv->max_threads = 140; break; case 3: bv->max_threads = 280; break; } bv->surface_height = 16 * 16; bv->surface_width = 32 * 2 * 16; } else { switch (INTEL_INFO(i915)->gt) { default: case 1: /* including vlv */ bv->max_threads = 36; break; case 2: bv->max_threads = 128; break; } bv->surface_height = 16 * 8; bv->surface_width = 32 * 16; } bv->state_start = round_up(SZ_1K + num_primitives(bv) * 64, SZ_4K); bv->surface_start = bv->state_start + SZ_4K; bv->size = bv->surface_start + bv->surface_height * bv->surface_width; } static void batch_init(struct batch_chunk *bc, struct i915_vma *vma, u32 *start, u32 offset, u32 max_bytes) { bc->vma = vma; bc->offset = offset; bc->start = start + bc->offset / sizeof(*bc->start); bc->end = bc->start; bc->max_items = max_bytes / sizeof(*bc->start); } static u32 batch_offset(const struct batch_chunk *bc, u32 *cs) { return (cs - bc->start) * sizeof(*bc->start) + bc->offset; } static u32 batch_addr(const struct batch_chunk *bc) { return i915_vma_offset(bc->vma); } static void batch_add(struct batch_chunk *bc, const u32 d) { GEM_BUG_ON((bc->end - bc->start) >= bc->max_items); *bc->end++ = d; } static u32 *batch_alloc_items(struct batch_chunk *bc, u32 align, u32 items) { u32 *map; if (align) { u32 *end = PTR_ALIGN(bc->end, align); memset32(bc->end, 0, end - bc->end); bc->end = end; } map = bc->end; bc->end += items; return map; } static u32 *batch_alloc_bytes(struct batch_chunk *bc, u32 align, u32 bytes) { GEM_BUG_ON(!IS_ALIGNED(bytes, sizeof(*bc->start))); return batch_alloc_items(bc, align, bytes / sizeof(*bc->start)); } static u32 gen7_fill_surface_state(struct batch_chunk *state, const u32 dst_offset, const struct batch_vals *bv) { u32 surface_h = bv->surface_height; u32 surface_w = bv->surface_width; u32 *cs = batch_alloc_items(state, 32, 8); u32 offset = batch_offset(state, cs); #define SURFACE_2D 1 #define SURFACEFORMAT_B8G8R8A8_UNORM 0x0C0 #define RENDER_CACHE_READ_WRITE 1 *cs++ = SURFACE_2D << 29 | (SURFACEFORMAT_B8G8R8A8_UNORM << 18) | (RENDER_CACHE_READ_WRITE << 8); *cs++ = batch_addr(state) + dst_offset; *cs++ = ((surface_h / 4 - 1) << 16) | (surface_w / 4 - 1); *cs++ = surface_w; *cs++ = 0; *cs++ = 0; *cs++ = 0; #define SHADER_CHANNELS(r, g, b, a) \ (((r) << 25) | ((g) << 22) | ((b) << 19) | ((a) << 16)) *cs++ = SHADER_CHANNELS(4, 5, 6, 7); batch_advance(state, cs); return offset; } static u32 gen7_fill_binding_table(struct batch_chunk *state, const struct batch_vals *bv) { u32 surface_start = gen7_fill_surface_state(state, bv->surface_start, bv); u32 *cs = batch_alloc_items(state, 32, 8); u32 offset = batch_offset(state, cs); *cs++ = surface_start - state->offset; *cs++ = 0; *cs++ = 0; *cs++ = 0; *cs++ = 0; *cs++ = 0; *cs++ = 0; *cs++ = 0; batch_advance(state, cs); return offset; } static u32 gen7_fill_kernel_data(struct batch_chunk *state, const u32 *data, const u32 size) { return batch_offset(state, memcpy(batch_alloc_bytes(state, 64, size), data, size)); } static u32 gen7_fill_interface_descriptor(struct batch_chunk *state, const struct batch_vals *bv, const struct cb_kernel *kernel, unsigned int count) { u32 kernel_offset = gen7_fill_kernel_data(state, kernel->data, kernel->size); u32 binding_table = gen7_fill_binding_table(state, bv); u32 *cs = batch_alloc_items(state, 32, 8 * count); u32 offset = batch_offset(state, cs); *cs++ = kernel_offset; *cs++ = (1 << 7) | (1 << 13); *cs++ = 0; *cs++ = (binding_table - state->offset) | 1; *cs++ = 0; *cs++ = 0; *cs++ = 0; *cs++ = 0; /* 1 - 63dummy idds */ memset32(cs, 0x00, (count - 1) * 8); batch_advance(state, cs + (count - 1) * 8); return offset; } static void gen7_emit_state_base_address(struct batch_chunk *batch, u32 surface_state_base) { u32 *cs = batch_alloc_items(batch, 0, 10); *cs++ = STATE_BASE_ADDRESS | (10 - 2); /* general */ *cs++ = batch_addr(batch) | BASE_ADDRESS_MODIFY; /* surface */ *cs++ = (batch_addr(batch) + surface_state_base) | BASE_ADDRESS_MODIFY; /* dynamic */ *cs++ = batch_addr(batch) | BASE_ADDRESS_MODIFY; /* indirect */ *cs++ = batch_addr(batch) | BASE_ADDRESS_MODIFY; /* instruction */ *cs++ = batch_addr(batch) | BASE_ADDRESS_MODIFY; /* general/dynamic/indirect/instruction access Bound */ *cs++ = 0; *cs++ = BASE_ADDRESS_MODIFY; *cs++ = 0; *cs++ = BASE_ADDRESS_MODIFY; batch_advance(batch, cs); } static void gen7_emit_vfe_state(struct batch_chunk *batch, const struct batch_vals *bv, u32 urb_size, u32 curbe_size, u32 mode) { u32 threads = bv->max_threads - 1; u32 *cs = batch_alloc_items(batch, 32, 8); *cs++ = MEDIA_VFE_STATE | (8 - 2); /* scratch buffer */ *cs++ = 0; /* number of threads & urb entries for GPGPU vs Media Mode */ *cs++ = threads << 16 | 1 << 8 | mode << 2; *cs++ = 0; /* urb entry size & curbe size in 256 bits unit */ *cs++ = urb_size << 16 | curbe_size; /* scoreboard */ *cs++ = 0; *cs++ = 0; *cs++ = 0; batch_advance(batch, cs); } static void gen7_emit_interface_descriptor_load(struct batch_chunk *batch, const u32 interface_descriptor, unsigned int count) { u32 *cs = batch_alloc_items(batch, 8, 4); *cs++ = MEDIA_INTERFACE_DESCRIPTOR_LOAD | (4 - 2); *cs++ = 0; *cs++ = count * 8 * sizeof(*cs); /* * interface descriptor address - it is relative to the dynamics base * address */ *cs++ = interface_descriptor; batch_advance(batch, cs); } static void gen7_emit_media_object(struct batch_chunk *batch, unsigned int media_object_index) { unsigned int x_offset = (media_object_index % 16) * 64; unsigned int y_offset = (media_object_index / 16) * 16; unsigned int pkt = 6 + 3; u32 *cs; cs = batch_alloc_items(batch, 8, pkt); *cs++ = MEDIA_OBJECT | (pkt - 2); /* interface descriptor offset */ *cs++ = 0; /* without indirect data */ *cs++ = 0; *cs++ = 0; /* scoreboard */ *cs++ = 0; *cs++ = 0; /* inline */ *cs++ = y_offset << 16 | x_offset; *cs++ = 0; *cs++ = GT3_INLINE_DATA_DELAYS; batch_advance(batch, cs); } static void gen7_emit_pipeline_flush(struct batch_chunk *batch) { u32 *cs = batch_alloc_items(batch, 0, 4); *cs++ = GFX_OP_PIPE_CONTROL(4); *cs++ = PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | PIPE_CONTROL_DEPTH_CACHE_FLUSH | PIPE_CONTROL_DC_FLUSH_ENABLE | PIPE_CONTROL_CS_STALL; *cs++ = 0; *cs++ = 0; batch_advance(batch, cs); } static void gen7_emit_pipeline_invalidate(struct batch_chunk *batch) { u32 *cs = batch_alloc_items(batch, 0, 10); /* ivb: Stall before STATE_CACHE_INVALIDATE */ *cs++ = GFX_OP_PIPE_CONTROL(5); *cs++ = PIPE_CONTROL_STALL_AT_SCOREBOARD | PIPE_CONTROL_CS_STALL; *cs++ = 0; *cs++ = 0; *cs++ = 0; *cs++ = GFX_OP_PIPE_CONTROL(5); *cs++ = PIPE_CONTROL_STATE_CACHE_INVALIDATE; *cs++ = 0; *cs++ = 0; *cs++ = 0; batch_advance(batch, cs); } static void emit_batch(struct i915_vma * const vma, u32 *start, const struct batch_vals *bv) { struct drm_i915_private *i915 = vma->vm->i915; const unsigned int desc_count = 1; const unsigned int urb_size = 1; struct batch_chunk cmds, state; u32 descriptors; unsigned int i; batch_init(&cmds, vma, start, 0, bv->state_start); batch_init(&state, vma, start, bv->state_start, SZ_4K); descriptors = gen7_fill_interface_descriptor(&state, bv, IS_HASWELL(i915) ? &cb_kernel_hsw : &cb_kernel_ivb, desc_count); /* Reset inherited context registers */ gen7_emit_pipeline_flush(&cmds); gen7_emit_pipeline_invalidate(&cmds); batch_add(&cmds, MI_LOAD_REGISTER_IMM(2)); batch_add(&cmds, i915_mmio_reg_offset(CACHE_MODE_0_GEN7)); batch_add(&cmds, 0xffff0000 | ((IS_IVB_GT1(i915) || IS_VALLEYVIEW(i915)) ? HIZ_RAW_STALL_OPT_DISABLE : 0)); batch_add(&cmds, i915_mmio_reg_offset(CACHE_MODE_1)); batch_add(&cmds, 0xffff0000 | PIXEL_SUBSPAN_COLLECT_OPT_DISABLE); gen7_emit_pipeline_invalidate(&cmds); gen7_emit_pipeline_flush(&cmds); /* Switch to the media pipeline and our base address */ gen7_emit_pipeline_invalidate(&cmds); batch_add(&cmds, PIPELINE_SELECT | PIPELINE_SELECT_MEDIA); batch_add(&cmds, MI_NOOP); gen7_emit_pipeline_invalidate(&cmds); gen7_emit_pipeline_flush(&cmds); gen7_emit_state_base_address(&cmds, descriptors); gen7_emit_pipeline_invalidate(&cmds); /* Set the clear-residual kernel state */ gen7_emit_vfe_state(&cmds, bv, urb_size - 1, 0, 0); gen7_emit_interface_descriptor_load(&cmds, descriptors, desc_count); /* Execute the kernel on all HW threads */ for (i = 0; i < num_primitives(bv); i++) gen7_emit_media_object(&cmds, i); batch_add(&cmds, MI_BATCH_BUFFER_END); } int gen7_setup_clear_gpr_bb(struct intel_engine_cs * const engine, struct i915_vma * const vma) { struct batch_vals bv; u32 *batch; batch_get_defaults(engine->i915, &bv); if (!vma) return bv.size; GEM_BUG_ON(vma->obj->base.size < bv.size); batch = i915_gem_object_pin_map(vma->obj, I915_MAP_WC); if (IS_ERR(batch)) return PTR_ERR(batch); emit_batch(vma, memset(batch, 0, bv.size), &bv); i915_gem_object_flush_map(vma->obj); __i915_gem_object_release_map(vma->obj); return 0; }
linux-master
drivers/gpu/drm/i915/gt/gen7_renderclear.c
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include <linux/bitmap.h> #include <linux/string_helpers.h> #include "i915_drv.h" #include "intel_gt_debugfs.h" #include "intel_gt_regs.h" #include "intel_sseu_debugfs.h" static void cherryview_sseu_device_status(struct intel_gt *gt, struct sseu_dev_info *sseu) { #define SS_MAX 2 struct intel_uncore *uncore = gt->uncore; const int ss_max = SS_MAX; u32 sig1[SS_MAX], sig2[SS_MAX]; int ss; sig1[0] = intel_uncore_read(uncore, CHV_POWER_SS0_SIG1); sig1[1] = intel_uncore_read(uncore, CHV_POWER_SS1_SIG1); sig2[0] = intel_uncore_read(uncore, CHV_POWER_SS0_SIG2); sig2[1] = intel_uncore_read(uncore, CHV_POWER_SS1_SIG2); for (ss = 0; ss < ss_max; ss++) { unsigned int eu_cnt; if (sig1[ss] & CHV_SS_PG_ENABLE) /* skip disabled subslice */ continue; sseu->slice_mask = BIT(0); sseu->subslice_mask.hsw[0] |= BIT(ss); eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) + ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) + ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) + ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2); sseu->eu_total += eu_cnt; sseu->eu_per_subslice = max_t(unsigned int, sseu->eu_per_subslice, eu_cnt); } #undef SS_MAX } static void gen11_sseu_device_status(struct intel_gt *gt, struct sseu_dev_info *sseu) { #define SS_MAX 8 struct intel_uncore *uncore = gt->uncore; const struct intel_gt_info *info = &gt->info; u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2]; int s, ss; for (s = 0; s < info->sseu.max_slices; s++) { /* * FIXME: Valid SS Mask respects the spec and read * only valid bits for those registers, excluding reserved * although this seems wrong because it would leave many * subslices without ACK. */ s_reg[s] = intel_uncore_read(uncore, GEN10_SLICE_PGCTL_ACK(s)) & GEN10_PGCTL_VALID_SS_MASK(s); eu_reg[2 * s] = intel_uncore_read(uncore, GEN10_SS01_EU_PGCTL_ACK(s)); eu_reg[2 * s + 1] = intel_uncore_read(uncore, GEN10_SS23_EU_PGCTL_ACK(s)); } eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK | GEN9_PGCTL_SSA_EU19_ACK | GEN9_PGCTL_SSA_EU210_ACK | GEN9_PGCTL_SSA_EU311_ACK; eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK | GEN9_PGCTL_SSB_EU19_ACK | GEN9_PGCTL_SSB_EU210_ACK | GEN9_PGCTL_SSB_EU311_ACK; for (s = 0; s < info->sseu.max_slices; s++) { if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0) /* skip disabled slice */ continue; sseu->slice_mask |= BIT(s); sseu->subslice_mask.hsw[s] = info->sseu.subslice_mask.hsw[s]; for (ss = 0; ss < info->sseu.max_subslices; ss++) { unsigned int eu_cnt; if (info->sseu.has_subslice_pg && !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss)))) /* skip disabled subslice */ continue; eu_cnt = 2 * hweight32(eu_reg[2 * s + ss / 2] & eu_mask[ss % 2]); sseu->eu_total += eu_cnt; sseu->eu_per_subslice = max_t(unsigned int, sseu->eu_per_subslice, eu_cnt); } } #undef SS_MAX } static void gen9_sseu_device_status(struct intel_gt *gt, struct sseu_dev_info *sseu) { #define SS_MAX 3 struct intel_uncore *uncore = gt->uncore; const struct intel_gt_info *info = &gt->info; u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2]; int s, ss; for (s = 0; s < info->sseu.max_slices; s++) { s_reg[s] = intel_uncore_read(uncore, GEN9_SLICE_PGCTL_ACK(s)); eu_reg[2 * s] = intel_uncore_read(uncore, GEN9_SS01_EU_PGCTL_ACK(s)); eu_reg[2 * s + 1] = intel_uncore_read(uncore, GEN9_SS23_EU_PGCTL_ACK(s)); } eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK | GEN9_PGCTL_SSA_EU19_ACK | GEN9_PGCTL_SSA_EU210_ACK | GEN9_PGCTL_SSA_EU311_ACK; eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK | GEN9_PGCTL_SSB_EU19_ACK | GEN9_PGCTL_SSB_EU210_ACK | GEN9_PGCTL_SSB_EU311_ACK; for (s = 0; s < info->sseu.max_slices; s++) { if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0) /* skip disabled slice */ continue; sseu->slice_mask |= BIT(s); if (IS_GEN9_BC(gt->i915)) sseu->subslice_mask.hsw[s] = info->sseu.subslice_mask.hsw[s]; for (ss = 0; ss < info->sseu.max_subslices; ss++) { unsigned int eu_cnt; if (IS_GEN9_LP(gt->i915)) { if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss)))) /* skip disabled subslice */ continue; sseu->subslice_mask.hsw[s] |= BIT(ss); } eu_cnt = eu_reg[2 * s + ss / 2] & eu_mask[ss % 2]; eu_cnt = 2 * hweight32(eu_cnt); sseu->eu_total += eu_cnt; sseu->eu_per_subslice = max_t(unsigned int, sseu->eu_per_subslice, eu_cnt); } } #undef SS_MAX } static void bdw_sseu_device_status(struct intel_gt *gt, struct sseu_dev_info *sseu) { const struct intel_gt_info *info = &gt->info; u32 slice_info = intel_uncore_read(gt->uncore, GEN8_GT_SLICE_INFO); int s; sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK; if (sseu->slice_mask) { sseu->eu_per_subslice = info->sseu.eu_per_subslice; for (s = 0; s < fls(sseu->slice_mask); s++) sseu->subslice_mask.hsw[s] = info->sseu.subslice_mask.hsw[s]; sseu->eu_total = sseu->eu_per_subslice * intel_sseu_subslice_total(sseu); /* subtract fused off EU(s) from enabled slice(s) */ for (s = 0; s < fls(sseu->slice_mask); s++) { u8 subslice_7eu = info->sseu.subslice_7eu[s]; sseu->eu_total -= hweight8(subslice_7eu); } } } static void i915_print_sseu_info(struct seq_file *m, bool is_available_info, bool has_pooled_eu, const struct sseu_dev_info *sseu) { const char *type = is_available_info ? "Available" : "Enabled"; seq_printf(m, " %s Slice Mask: %04x\n", type, sseu->slice_mask); seq_printf(m, " %s Slice Total: %u\n", type, hweight8(sseu->slice_mask)); seq_printf(m, " %s Subslice Total: %u\n", type, intel_sseu_subslice_total(sseu)); intel_sseu_print_ss_info(type, sseu, m); seq_printf(m, " %s EU Total: %u\n", type, sseu->eu_total); seq_printf(m, " %s EU Per Subslice: %u\n", type, sseu->eu_per_subslice); if (!is_available_info) return; seq_printf(m, " Has Pooled EU: %s\n", str_yes_no(has_pooled_eu)); if (has_pooled_eu) seq_printf(m, " Min EU in pool: %u\n", sseu->min_eu_in_pool); seq_printf(m, " Has Slice Power Gating: %s\n", str_yes_no(sseu->has_slice_pg)); seq_printf(m, " Has Subslice Power Gating: %s\n", str_yes_no(sseu->has_subslice_pg)); seq_printf(m, " Has EU Power Gating: %s\n", str_yes_no(sseu->has_eu_pg)); } /* * this is called from top-level debugfs as well, so we can't get the gt from * the seq_file. */ int intel_sseu_status(struct seq_file *m, struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; const struct intel_gt_info *info = &gt->info; struct sseu_dev_info *sseu; intel_wakeref_t wakeref; if (GRAPHICS_VER(i915) < 8) return -ENODEV; seq_puts(m, "SSEU Device Info\n"); i915_print_sseu_info(m, true, HAS_POOLED_EU(i915), &info->sseu); seq_puts(m, "SSEU Device Status\n"); sseu = kzalloc(sizeof(*sseu), GFP_KERNEL); if (!sseu) return -ENOMEM; intel_sseu_set_info(sseu, info->sseu.max_slices, info->sseu.max_subslices, info->sseu.max_eus_per_subslice); with_intel_runtime_pm(&i915->runtime_pm, wakeref) { if (IS_CHERRYVIEW(i915)) cherryview_sseu_device_status(gt, sseu); else if (IS_BROADWELL(i915)) bdw_sseu_device_status(gt, sseu); else if (GRAPHICS_VER(i915) == 9) gen9_sseu_device_status(gt, sseu); else if (GRAPHICS_VER(i915) >= 11) gen11_sseu_device_status(gt, sseu); } i915_print_sseu_info(m, false, HAS_POOLED_EU(i915), sseu); kfree(sseu); return 0; } static int sseu_status_show(struct seq_file *m, void *unused) { struct intel_gt *gt = m->private; return intel_sseu_status(m, gt); } DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(sseu_status); static int sseu_topology_show(struct seq_file *m, void *unused) { struct intel_gt *gt = m->private; struct drm_printer p = drm_seq_file_printer(m); intel_sseu_print_topology(gt->i915, &gt->info.sseu, &p); return 0; } DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(sseu_topology); void intel_sseu_debugfs_register(struct intel_gt *gt, struct dentry *root) { static const struct intel_gt_debugfs_file files[] = { { "sseu_status", &sseu_status_fops, NULL }, { "sseu_topology", &sseu_topology_fops, NULL }, }; intel_gt_debugfs_register_files(root, files, ARRAY_SIZE(files), gt); }
linux-master
drivers/gpu/drm/i915/gt/intel_sseu_debugfs.c
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include "gen6_engine_cs.h" #include "intel_engine.h" #include "intel_engine_regs.h" #include "intel_gpu_commands.h" #include "intel_gt.h" #include "intel_gt_irq.h" #include "intel_gt_pm_irq.h" #include "intel_ring.h" #define HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH * sizeof(u32)) /* * Emits a PIPE_CONTROL with a non-zero post-sync operation, for * implementing two workarounds on gen6. From section 1.4.7.1 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1: * * [DevSNB-C+{W/A}] Before any depth stall flush (including those * produced by non-pipelined state commands), software needs to first * send a PIPE_CONTROL with no bits set except Post-Sync Operation != * 0. * * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable * =1, a PIPE_CONTROL with any non-zero post-sync-op is required. * * And the workaround for these two requires this workaround first: * * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent * BEFORE the pipe-control with a post-sync op and no write-cache * flushes. * * And this last workaround is tricky because of the requirements on * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM * volume 2 part 1: * * "1 of the following must also be set: * - Render Target Cache Flush Enable ([12] of DW1) * - Depth Cache Flush Enable ([0] of DW1) * - Stall at Pixel Scoreboard ([1] of DW1) * - Depth Stall ([13] of DW1) * - Post-Sync Operation ([13] of DW1) * - Notify Enable ([8] of DW1)" * * The cache flushes require the workaround flush that triggered this * one, so we can't use it. Depth stall would trigger the same. * Post-sync nonzero is what triggered this second workaround, so we * can't use that one either. Notify enable is IRQs, which aren't * really our business. That leaves only stall at scoreboard. */ static int gen6_emit_post_sync_nonzero_flush(struct i915_request *rq) { u32 scratch_addr = intel_gt_scratch_offset(rq->engine->gt, INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH); u32 *cs; cs = intel_ring_begin(rq, 6); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = GFX_OP_PIPE_CONTROL(5); *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD; *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT; *cs++ = 0; /* low dword */ *cs++ = 0; /* high dword */ *cs++ = MI_NOOP; intel_ring_advance(rq, cs); cs = intel_ring_begin(rq, 6); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = GFX_OP_PIPE_CONTROL(5); *cs++ = PIPE_CONTROL_QW_WRITE; *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT; *cs++ = 0; *cs++ = 0; *cs++ = MI_NOOP; intel_ring_advance(rq, cs); return 0; } int gen6_emit_flush_rcs(struct i915_request *rq, u32 mode) { u32 scratch_addr = intel_gt_scratch_offset(rq->engine->gt, INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH); u32 *cs, flags = 0; int ret; /* Force SNB workarounds for PIPE_CONTROL flushes */ ret = gen6_emit_post_sync_nonzero_flush(rq); if (ret) return ret; /* * Just flush everything. Experiments have shown that reducing the * number of bits based on the write domains has little performance * impact. And when rearranging requests, the order of flushes is * unknown. */ if (mode & EMIT_FLUSH) { flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; /* * Ensure that any following seqno writes only happen * when the render cache is indeed flushed. */ flags |= PIPE_CONTROL_CS_STALL; } if (mode & EMIT_INVALIDATE) { flags |= PIPE_CONTROL_TLB_INVALIDATE; flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; /* * TLB invalidate requires a post-sync write. */ flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL; } cs = intel_ring_begin(rq, 4); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = GFX_OP_PIPE_CONTROL(4); *cs++ = flags; *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT; *cs++ = 0; intel_ring_advance(rq, cs); return 0; } u32 *gen6_emit_breadcrumb_rcs(struct i915_request *rq, u32 *cs) { /* First we do the gen6_emit_post_sync_nonzero_flush w/a */ *cs++ = GFX_OP_PIPE_CONTROL(4); *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD; *cs++ = 0; *cs++ = 0; *cs++ = GFX_OP_PIPE_CONTROL(4); *cs++ = PIPE_CONTROL_QW_WRITE; *cs++ = intel_gt_scratch_offset(rq->engine->gt, INTEL_GT_SCRATCH_FIELD_DEFAULT) | PIPE_CONTROL_GLOBAL_GTT; *cs++ = 0; /* Finally we can flush and with it emit the breadcrumb */ *cs++ = GFX_OP_PIPE_CONTROL(4); *cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | PIPE_CONTROL_DEPTH_CACHE_FLUSH | PIPE_CONTROL_DC_FLUSH_ENABLE | PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL); *cs++ = i915_request_active_seqno(rq) | PIPE_CONTROL_GLOBAL_GTT; *cs++ = rq->fence.seqno; *cs++ = MI_USER_INTERRUPT; *cs++ = MI_NOOP; rq->tail = intel_ring_offset(rq, cs); assert_ring_tail_valid(rq->ring, rq->tail); return cs; } static int mi_flush_dw(struct i915_request *rq, u32 flags) { u32 cmd, *cs; cs = intel_ring_begin(rq, 4); if (IS_ERR(cs)) return PTR_ERR(cs); cmd = MI_FLUSH_DW; /* * We always require a command barrier so that subsequent * commands, such as breadcrumb interrupts, are strictly ordered * wrt the contents of the write cache being flushed to memory * (and thus being coherent from the CPU). */ cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; /* * Bspec vol 1c.3 - blitter engine command streamer: * "If ENABLED, all TLBs will be invalidated once the flush * operation is complete. This bit is only valid when the * Post-Sync Operation field is a value of 1h or 3h." */ cmd |= flags; *cs++ = cmd; *cs++ = HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT; *cs++ = 0; *cs++ = MI_NOOP; intel_ring_advance(rq, cs); return 0; } static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags) { return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0); } int gen6_emit_flush_xcs(struct i915_request *rq, u32 mode) { return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB); } int gen6_emit_flush_vcs(struct i915_request *rq, u32 mode) { return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD); } int gen6_emit_bb_start(struct i915_request *rq, u64 offset, u32 len, unsigned int dispatch_flags) { u32 security; u32 *cs; security = MI_BATCH_NON_SECURE_I965; if (dispatch_flags & I915_DISPATCH_SECURE) security = 0; cs = intel_ring_begin(rq, 2); if (IS_ERR(cs)) return PTR_ERR(cs); cs = __gen6_emit_bb_start(cs, offset, security); intel_ring_advance(rq, cs); return 0; } int hsw_emit_bb_start(struct i915_request *rq, u64 offset, u32 len, unsigned int dispatch_flags) { u32 security; u32 *cs; security = MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW; if (dispatch_flags & I915_DISPATCH_SECURE) security = 0; cs = intel_ring_begin(rq, 2); if (IS_ERR(cs)) return PTR_ERR(cs); cs = __gen6_emit_bb_start(cs, offset, security); intel_ring_advance(rq, cs); return 0; } static int gen7_stall_cs(struct i915_request *rq) { u32 *cs; cs = intel_ring_begin(rq, 4); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = GFX_OP_PIPE_CONTROL(4); *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD; *cs++ = 0; *cs++ = 0; intel_ring_advance(rq, cs); return 0; } int gen7_emit_flush_rcs(struct i915_request *rq, u32 mode) { u32 scratch_addr = intel_gt_scratch_offset(rq->engine->gt, INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH); u32 *cs, flags = 0; /* * Ensure that any following seqno writes only happen when the render * cache is indeed flushed. * * Workaround: 4th PIPE_CONTROL command (except the ones with only * read-cache invalidate bits set) must have the CS_STALL bit set. We * don't try to be clever and just set it unconditionally. */ flags |= PIPE_CONTROL_CS_STALL; /* * CS_STALL suggests at least a post-sync write. */ flags |= PIPE_CONTROL_QW_WRITE; flags |= PIPE_CONTROL_GLOBAL_GTT_IVB; /* * Just flush everything. Experiments have shown that reducing the * number of bits based on the write domains has little performance * impact. */ if (mode & EMIT_FLUSH) { flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; flags |= PIPE_CONTROL_FLUSH_ENABLE; } if (mode & EMIT_INVALIDATE) { flags |= PIPE_CONTROL_TLB_INVALIDATE; flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR; /* * Workaround: we must issue a pipe_control with CS-stall bit * set before a pipe_control command that has the state cache * invalidate bit set. */ gen7_stall_cs(rq); } cs = intel_ring_begin(rq, 4); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = GFX_OP_PIPE_CONTROL(4); *cs++ = flags; *cs++ = scratch_addr; *cs++ = 0; intel_ring_advance(rq, cs); return 0; } u32 *gen7_emit_breadcrumb_rcs(struct i915_request *rq, u32 *cs) { *cs++ = GFX_OP_PIPE_CONTROL(4); *cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | PIPE_CONTROL_DEPTH_CACHE_FLUSH | PIPE_CONTROL_DC_FLUSH_ENABLE | PIPE_CONTROL_FLUSH_ENABLE | PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL); *cs++ = i915_request_active_seqno(rq); *cs++ = rq->fence.seqno; *cs++ = MI_USER_INTERRUPT; *cs++ = MI_NOOP; rq->tail = intel_ring_offset(rq, cs); assert_ring_tail_valid(rq->ring, rq->tail); return cs; } u32 *gen6_emit_breadcrumb_xcs(struct i915_request *rq, u32 *cs) { GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma); GEM_BUG_ON(offset_in_page(rq->hwsp_seqno) != I915_GEM_HWS_SEQNO_ADDR); *cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX; *cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT; *cs++ = rq->fence.seqno; *cs++ = MI_USER_INTERRUPT; rq->tail = intel_ring_offset(rq, cs); assert_ring_tail_valid(rq->ring, rq->tail); return cs; } #define GEN7_XCS_WA 32 u32 *gen7_emit_breadcrumb_xcs(struct i915_request *rq, u32 *cs) { int i; GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma); GEM_BUG_ON(offset_in_page(rq->hwsp_seqno) != I915_GEM_HWS_SEQNO_ADDR); *cs++ = MI_FLUSH_DW | MI_INVALIDATE_TLB | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX; *cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT; *cs++ = rq->fence.seqno; for (i = 0; i < GEN7_XCS_WA; i++) { *cs++ = MI_STORE_DWORD_INDEX; *cs++ = I915_GEM_HWS_SEQNO_ADDR; *cs++ = rq->fence.seqno; } *cs++ = MI_FLUSH_DW; *cs++ = 0; *cs++ = 0; *cs++ = MI_USER_INTERRUPT; *cs++ = MI_NOOP; rq->tail = intel_ring_offset(rq, cs); assert_ring_tail_valid(rq->ring, rq->tail); return cs; } #undef GEN7_XCS_WA void gen6_irq_enable(struct intel_engine_cs *engine) { ENGINE_WRITE(engine, RING_IMR, ~(engine->irq_enable_mask | engine->irq_keep_mask)); /* Flush/delay to ensure the RING_IMR is active before the GT IMR */ ENGINE_POSTING_READ(engine, RING_IMR); gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask); } void gen6_irq_disable(struct intel_engine_cs *engine) { ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask); gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask); } void hsw_irq_enable_vecs(struct intel_engine_cs *engine) { ENGINE_WRITE(engine, RING_IMR, ~engine->irq_enable_mask); /* Flush/delay to ensure the RING_IMR is active before the GT IMR */ ENGINE_POSTING_READ(engine, RING_IMR); gen6_gt_pm_unmask_irq(engine->gt, engine->irq_enable_mask); } void hsw_irq_disable_vecs(struct intel_engine_cs *engine) { ENGINE_WRITE(engine, RING_IMR, ~0); gen6_gt_pm_mask_irq(engine->gt, engine->irq_enable_mask); }
linux-master
drivers/gpu/drm/i915/gt/gen6_engine_cs.c
// SPDX-License-Identifier: MIT /* * Copyright © 2018 Intel Corporation */ #include <linux/prime_numbers.h> #include "gem/i915_gem_internal.h" #include "i915_selftest.h" #include "intel_engine_heartbeat.h" #include "intel_engine_pm.h" #include "intel_reset.h" #include "intel_ring.h" #include "selftest_engine_heartbeat.h" #include "selftests/i915_random.h" #include "selftests/igt_flush_test.h" #include "selftests/igt_live_test.h" #include "selftests/igt_spinner.h" #include "selftests/lib_sw_fence.h" #include "shmem_utils.h" #include "gem/selftests/igt_gem_utils.h" #include "gem/selftests/mock_context.h" #define CS_GPR(engine, n) ((engine)->mmio_base + 0x600 + (n) * 4) #define NUM_GPR 16 #define NUM_GPR_DW (NUM_GPR * 2) /* each GPR is 2 dwords */ #define LRI_HEADER MI_INSTR(0x22, 0) #define LRI_LENGTH_MASK GENMASK(7, 0) static struct i915_vma *create_scratch(struct intel_gt *gt) { return __vm_create_scratch_for_read_pinned(&gt->ggtt->vm, PAGE_SIZE); } static bool is_active(struct i915_request *rq) { if (i915_request_is_active(rq)) return true; if (i915_request_on_hold(rq)) return true; if (i915_request_has_initial_breadcrumb(rq) && i915_request_started(rq)) return true; return false; } static int wait_for_submit(struct intel_engine_cs *engine, struct i915_request *rq, unsigned long timeout) { /* Ignore our own attempts to suppress excess tasklets */ tasklet_hi_schedule(&engine->sched_engine->tasklet); timeout += jiffies; do { bool done = time_after(jiffies, timeout); if (i915_request_completed(rq)) /* that was quick! */ return 0; /* Wait until the HW has acknowleged the submission (or err) */ intel_engine_flush_submission(engine); if (!READ_ONCE(engine->execlists.pending[0]) && is_active(rq)) return 0; if (done) return -ETIME; cond_resched(); } while (1); } static int emit_semaphore_signal(struct intel_context *ce, void *slot) { const u32 offset = i915_ggtt_offset(ce->engine->status_page.vma) + offset_in_page(slot); struct i915_request *rq; u32 *cs; rq = intel_context_create_request(ce); if (IS_ERR(rq)) return PTR_ERR(rq); cs = intel_ring_begin(rq, 4); if (IS_ERR(cs)) { i915_request_add(rq); return PTR_ERR(cs); } *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; *cs++ = offset; *cs++ = 0; *cs++ = 1; intel_ring_advance(rq, cs); rq->sched.attr.priority = I915_PRIORITY_BARRIER; i915_request_add(rq); return 0; } static int context_flush(struct intel_context *ce, long timeout) { struct i915_request *rq; struct dma_fence *fence; int err = 0; rq = intel_engine_create_kernel_request(ce->engine); if (IS_ERR(rq)) return PTR_ERR(rq); fence = i915_active_fence_get(&ce->timeline->last_request); if (fence) { i915_request_await_dma_fence(rq, fence); dma_fence_put(fence); } rq = i915_request_get(rq); i915_request_add(rq); if (i915_request_wait(rq, 0, timeout) < 0) err = -ETIME; i915_request_put(rq); rmb(); /* We know the request is written, make sure all state is too! */ return err; } static int get_lri_mask(struct intel_engine_cs *engine, u32 lri) { if ((lri & MI_LRI_LRM_CS_MMIO) == 0) return ~0u; if (GRAPHICS_VER(engine->i915) < 12) return 0xfff; switch (engine->class) { default: case RENDER_CLASS: case COMPUTE_CLASS: return 0x07ff; case COPY_ENGINE_CLASS: return 0x0fff; case VIDEO_DECODE_CLASS: case VIDEO_ENHANCEMENT_CLASS: return 0x3fff; } } static int live_lrc_layout(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; u32 *lrc; int err; /* * Check the registers offsets we use to create the initial reg state * match the layout saved by HW. */ lrc = (u32 *)__get_free_page(GFP_KERNEL); /* requires page alignment */ if (!lrc) return -ENOMEM; GEM_BUG_ON(offset_in_page(lrc)); err = 0; for_each_engine(engine, gt, id) { u32 *hw; int dw; if (!engine->default_state) continue; hw = shmem_pin_map(engine->default_state); if (!hw) { err = -ENOMEM; break; } hw += LRC_STATE_OFFSET / sizeof(*hw); __lrc_init_regs(memset(lrc, POISON_INUSE, PAGE_SIZE), engine->kernel_context, engine, true); dw = 0; do { u32 lri = READ_ONCE(hw[dw]); u32 lri_mask; if (lri == 0) { dw++; continue; } if (lrc[dw] == 0) { pr_debug("%s: skipped instruction %x at dword %d\n", engine->name, lri, dw); dw++; continue; } if ((lri & GENMASK(31, 23)) != LRI_HEADER) { pr_err("%s: Expected LRI command at dword %d, found %08x\n", engine->name, dw, lri); err = -EINVAL; break; } if (lrc[dw] != lri) { pr_err("%s: LRI command mismatch at dword %d, expected %08x found %08x\n", engine->name, dw, lri, lrc[dw]); err = -EINVAL; break; } /* * When bit 19 of MI_LOAD_REGISTER_IMM instruction * opcode is set on Gen12+ devices, HW does not * care about certain register address offsets, and * instead check the following for valid address * ranges on specific engines: * RCS && CCS: BITS(0 - 10) * BCS: BITS(0 - 11) * VECS && VCS: BITS(0 - 13) */ lri_mask = get_lri_mask(engine, lri); lri &= 0x7f; lri++; dw++; while (lri) { u32 offset = READ_ONCE(hw[dw]); if ((offset ^ lrc[dw]) & lri_mask) { pr_err("%s: Different registers found at dword %d, expected %x, found %x\n", engine->name, dw, offset, lrc[dw]); err = -EINVAL; break; } /* * Skip over the actual register value as we * expect that to differ. */ dw += 2; lri -= 2; } } while (!err && (lrc[dw] & ~BIT(0)) != MI_BATCH_BUFFER_END); if (err) { pr_info("%s: HW register image:\n", engine->name); igt_hexdump(hw, PAGE_SIZE); pr_info("%s: SW register image:\n", engine->name); igt_hexdump(lrc, PAGE_SIZE); } shmem_unpin_map(engine->default_state, hw); if (err) break; } free_page((unsigned long)lrc); return err; } static int find_offset(const u32 *lri, u32 offset) { int i; for (i = 0; i < PAGE_SIZE / sizeof(u32); i++) if (lri[i] == offset) return i; return -1; } static int live_lrc_fixed(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; /* * Check the assumed register offsets match the actual locations in * the context image. */ for_each_engine(engine, gt, id) { const struct { u32 reg; u32 offset; const char *name; } tbl[] = { { i915_mmio_reg_offset(RING_START(engine->mmio_base)), CTX_RING_START - 1, "RING_START" }, { i915_mmio_reg_offset(RING_CTL(engine->mmio_base)), CTX_RING_CTL - 1, "RING_CTL" }, { i915_mmio_reg_offset(RING_HEAD(engine->mmio_base)), CTX_RING_HEAD - 1, "RING_HEAD" }, { i915_mmio_reg_offset(RING_TAIL(engine->mmio_base)), CTX_RING_TAIL - 1, "RING_TAIL" }, { i915_mmio_reg_offset(RING_MI_MODE(engine->mmio_base)), lrc_ring_mi_mode(engine), "RING_MI_MODE" }, { i915_mmio_reg_offset(RING_BBSTATE(engine->mmio_base)), CTX_BB_STATE - 1, "BB_STATE" }, { i915_mmio_reg_offset(RING_BB_PER_CTX_PTR(engine->mmio_base)), lrc_ring_wa_bb_per_ctx(engine), "RING_BB_PER_CTX_PTR" }, { i915_mmio_reg_offset(RING_INDIRECT_CTX(engine->mmio_base)), lrc_ring_indirect_ptr(engine), "RING_INDIRECT_CTX_PTR" }, { i915_mmio_reg_offset(RING_INDIRECT_CTX_OFFSET(engine->mmio_base)), lrc_ring_indirect_offset(engine), "RING_INDIRECT_CTX_OFFSET" }, { i915_mmio_reg_offset(RING_CTX_TIMESTAMP(engine->mmio_base)), CTX_TIMESTAMP - 1, "RING_CTX_TIMESTAMP" }, { i915_mmio_reg_offset(GEN8_RING_CS_GPR(engine->mmio_base, 0)), lrc_ring_gpr0(engine), "RING_CS_GPR0" }, { i915_mmio_reg_offset(RING_CMD_BUF_CCTL(engine->mmio_base)), lrc_ring_cmd_buf_cctl(engine), "RING_CMD_BUF_CCTL" }, { i915_mmio_reg_offset(RING_BB_OFFSET(engine->mmio_base)), lrc_ring_bb_offset(engine), "RING_BB_OFFSET" }, { }, }, *t; u32 *hw; if (!engine->default_state) continue; hw = shmem_pin_map(engine->default_state); if (!hw) { err = -ENOMEM; break; } hw += LRC_STATE_OFFSET / sizeof(*hw); for (t = tbl; t->name; t++) { int dw = find_offset(hw, t->reg); if (dw != t->offset) { pr_err("%s: Offset for %s [0x%x] mismatch, found %x, expected %x\n", engine->name, t->name, t->reg, dw, t->offset); err = -EINVAL; } } shmem_unpin_map(engine->default_state, hw); } return err; } static int __live_lrc_state(struct intel_engine_cs *engine, struct i915_vma *scratch) { struct intel_context *ce; struct i915_request *rq; struct i915_gem_ww_ctx ww; enum { RING_START_IDX = 0, RING_TAIL_IDX, MAX_IDX }; u32 expected[MAX_IDX]; u32 *cs; int err; int n; ce = intel_context_create(engine); if (IS_ERR(ce)) return PTR_ERR(ce); i915_gem_ww_ctx_init(&ww, false); retry: err = i915_gem_object_lock(scratch->obj, &ww); if (!err) err = intel_context_pin_ww(ce, &ww); if (err) goto err_put; rq = i915_request_create(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_unpin; } cs = intel_ring_begin(rq, 4 * MAX_IDX); if (IS_ERR(cs)) { err = PTR_ERR(cs); i915_request_add(rq); goto err_unpin; } *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT; *cs++ = i915_mmio_reg_offset(RING_START(engine->mmio_base)); *cs++ = i915_ggtt_offset(scratch) + RING_START_IDX * sizeof(u32); *cs++ = 0; expected[RING_START_IDX] = i915_ggtt_offset(ce->ring->vma); *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT; *cs++ = i915_mmio_reg_offset(RING_TAIL(engine->mmio_base)); *cs++ = i915_ggtt_offset(scratch) + RING_TAIL_IDX * sizeof(u32); *cs++ = 0; err = i915_vma_move_to_active(scratch, rq, EXEC_OBJECT_WRITE); i915_request_get(rq); i915_request_add(rq); if (err) goto err_rq; intel_engine_flush_submission(engine); expected[RING_TAIL_IDX] = ce->ring->tail; if (i915_request_wait(rq, 0, HZ / 5) < 0) { err = -ETIME; goto err_rq; } cs = i915_gem_object_pin_map(scratch->obj, I915_MAP_WB); if (IS_ERR(cs)) { err = PTR_ERR(cs); goto err_rq; } for (n = 0; n < MAX_IDX; n++) { if (cs[n] != expected[n]) { pr_err("%s: Stored register[%d] value[0x%x] did not match expected[0x%x]\n", engine->name, n, cs[n], expected[n]); err = -EINVAL; break; } } i915_gem_object_unpin_map(scratch->obj); err_rq: i915_request_put(rq); err_unpin: intel_context_unpin(ce); err_put: if (err == -EDEADLK) { err = i915_gem_ww_ctx_backoff(&ww); if (!err) goto retry; } i915_gem_ww_ctx_fini(&ww); intel_context_put(ce); return err; } static int live_lrc_state(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; struct i915_vma *scratch; enum intel_engine_id id; int err = 0; /* * Check the live register state matches what we expect for this * intel_context. */ scratch = create_scratch(gt); if (IS_ERR(scratch)) return PTR_ERR(scratch); for_each_engine(engine, gt, id) { err = __live_lrc_state(engine, scratch); if (err) break; } if (igt_flush_test(gt->i915)) err = -EIO; i915_vma_unpin_and_release(&scratch, 0); return err; } static int gpr_make_dirty(struct intel_context *ce) { struct i915_request *rq; u32 *cs; int n; rq = intel_context_create_request(ce); if (IS_ERR(rq)) return PTR_ERR(rq); cs = intel_ring_begin(rq, 2 * NUM_GPR_DW + 2); if (IS_ERR(cs)) { i915_request_add(rq); return PTR_ERR(cs); } *cs++ = MI_LOAD_REGISTER_IMM(NUM_GPR_DW); for (n = 0; n < NUM_GPR_DW; n++) { *cs++ = CS_GPR(ce->engine, n); *cs++ = STACK_MAGIC; } *cs++ = MI_NOOP; intel_ring_advance(rq, cs); rq->sched.attr.priority = I915_PRIORITY_BARRIER; i915_request_add(rq); return 0; } static struct i915_request * __gpr_read(struct intel_context *ce, struct i915_vma *scratch, u32 *slot) { const u32 offset = i915_ggtt_offset(ce->engine->status_page.vma) + offset_in_page(slot); struct i915_request *rq; u32 *cs; int err; int n; rq = intel_context_create_request(ce); if (IS_ERR(rq)) return rq; cs = intel_ring_begin(rq, 6 + 4 * NUM_GPR_DW); if (IS_ERR(cs)) { i915_request_add(rq); return ERR_CAST(cs); } *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; *cs++ = MI_NOOP; *cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT | MI_SEMAPHORE_POLL | MI_SEMAPHORE_SAD_NEQ_SDD; *cs++ = 0; *cs++ = offset; *cs++ = 0; for (n = 0; n < NUM_GPR_DW; n++) { *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT; *cs++ = CS_GPR(ce->engine, n); *cs++ = i915_ggtt_offset(scratch) + n * sizeof(u32); *cs++ = 0; } err = igt_vma_move_to_active_unlocked(scratch, rq, EXEC_OBJECT_WRITE); i915_request_get(rq); i915_request_add(rq); if (err) { i915_request_put(rq); rq = ERR_PTR(err); } return rq; } static int __live_lrc_gpr(struct intel_engine_cs *engine, struct i915_vma *scratch, bool preempt) { u32 *slot = memset32(engine->status_page.addr + 1000, 0, 4); struct intel_context *ce; struct i915_request *rq; u32 *cs; int err; int n; if (GRAPHICS_VER(engine->i915) < 9 && engine->class != RENDER_CLASS) return 0; /* GPR only on rcs0 for gen8 */ err = gpr_make_dirty(engine->kernel_context); if (err) return err; ce = intel_context_create(engine); if (IS_ERR(ce)) return PTR_ERR(ce); rq = __gpr_read(ce, scratch, slot); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_put; } err = wait_for_submit(engine, rq, HZ / 2); if (err) goto err_rq; if (preempt) { err = gpr_make_dirty(engine->kernel_context); if (err) goto err_rq; err = emit_semaphore_signal(engine->kernel_context, slot); if (err) goto err_rq; err = wait_for_submit(engine, rq, HZ / 2); if (err) goto err_rq; } else { slot[0] = 1; wmb(); } if (i915_request_wait(rq, 0, HZ / 5) < 0) { err = -ETIME; goto err_rq; } cs = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB); if (IS_ERR(cs)) { err = PTR_ERR(cs); goto err_rq; } for (n = 0; n < NUM_GPR_DW; n++) { if (cs[n]) { pr_err("%s: GPR[%d].%s was not zero, found 0x%08x!\n", engine->name, n / 2, n & 1 ? "udw" : "ldw", cs[n]); err = -EINVAL; break; } } i915_gem_object_unpin_map(scratch->obj); err_rq: memset32(&slot[0], -1, 4); wmb(); i915_request_put(rq); err_put: intel_context_put(ce); return err; } static int live_lrc_gpr(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; struct i915_vma *scratch; enum intel_engine_id id; int err = 0; /* * Check that GPR registers are cleared in new contexts as we need * to avoid leaking any information from previous contexts. */ scratch = create_scratch(gt); if (IS_ERR(scratch)) return PTR_ERR(scratch); for_each_engine(engine, gt, id) { st_engine_heartbeat_disable(engine); err = __live_lrc_gpr(engine, scratch, false); if (err) goto err; err = __live_lrc_gpr(engine, scratch, true); if (err) goto err; err: st_engine_heartbeat_enable(engine); if (igt_flush_test(gt->i915)) err = -EIO; if (err) break; } i915_vma_unpin_and_release(&scratch, 0); return err; } static struct i915_request * create_timestamp(struct intel_context *ce, void *slot, int idx) { const u32 offset = i915_ggtt_offset(ce->engine->status_page.vma) + offset_in_page(slot); struct i915_request *rq; u32 *cs; int err; rq = intel_context_create_request(ce); if (IS_ERR(rq)) return rq; cs = intel_ring_begin(rq, 10); if (IS_ERR(cs)) { err = PTR_ERR(cs); goto err; } *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; *cs++ = MI_NOOP; *cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT | MI_SEMAPHORE_POLL | MI_SEMAPHORE_SAD_NEQ_SDD; *cs++ = 0; *cs++ = offset; *cs++ = 0; *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT; *cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(rq->engine->mmio_base)); *cs++ = offset + idx * sizeof(u32); *cs++ = 0; intel_ring_advance(rq, cs); err = 0; err: i915_request_get(rq); i915_request_add(rq); if (err) { i915_request_put(rq); return ERR_PTR(err); } return rq; } struct lrc_timestamp { struct intel_engine_cs *engine; struct intel_context *ce[2]; u32 poison; }; static bool timestamp_advanced(u32 start, u32 end) { return (s32)(end - start) > 0; } static int __lrc_timestamp(const struct lrc_timestamp *arg, bool preempt) { u32 *slot = memset32(arg->engine->status_page.addr + 1000, 0, 4); struct i915_request *rq; u32 timestamp; int err = 0; arg->ce[0]->lrc_reg_state[CTX_TIMESTAMP] = arg->poison; rq = create_timestamp(arg->ce[0], slot, 1); if (IS_ERR(rq)) return PTR_ERR(rq); err = wait_for_submit(rq->engine, rq, HZ / 2); if (err) goto err; if (preempt) { arg->ce[1]->lrc_reg_state[CTX_TIMESTAMP] = 0xdeadbeef; err = emit_semaphore_signal(arg->ce[1], slot); if (err) goto err; } else { slot[0] = 1; wmb(); } /* And wait for switch to kernel (to save our context to memory) */ err = context_flush(arg->ce[0], HZ / 2); if (err) goto err; if (!timestamp_advanced(arg->poison, slot[1])) { pr_err("%s(%s): invalid timestamp on restore, context:%x, request:%x\n", arg->engine->name, preempt ? "preempt" : "simple", arg->poison, slot[1]); err = -EINVAL; } timestamp = READ_ONCE(arg->ce[0]->lrc_reg_state[CTX_TIMESTAMP]); if (!timestamp_advanced(slot[1], timestamp)) { pr_err("%s(%s): invalid timestamp on save, request:%x, context:%x\n", arg->engine->name, preempt ? "preempt" : "simple", slot[1], timestamp); err = -EINVAL; } err: memset32(slot, -1, 4); i915_request_put(rq); return err; } static int live_lrc_timestamp(void *arg) { struct lrc_timestamp data = {}; struct intel_gt *gt = arg; enum intel_engine_id id; const u32 poison[] = { 0, S32_MAX, (u32)S32_MAX + 1, U32_MAX, }; /* * We want to verify that the timestamp is saved and restore across * context switches and is monotonic. * * So we do this with a little bit of LRC poisoning to check various * boundary conditions, and see what happens if we preempt the context * with a second request (carrying more poison into the timestamp). */ for_each_engine(data.engine, gt, id) { int i, err = 0; st_engine_heartbeat_disable(data.engine); for (i = 0; i < ARRAY_SIZE(data.ce); i++) { struct intel_context *tmp; tmp = intel_context_create(data.engine); if (IS_ERR(tmp)) { err = PTR_ERR(tmp); goto err; } err = intel_context_pin(tmp); if (err) { intel_context_put(tmp); goto err; } data.ce[i] = tmp; } for (i = 0; i < ARRAY_SIZE(poison); i++) { data.poison = poison[i]; err = __lrc_timestamp(&data, false); if (err) break; err = __lrc_timestamp(&data, true); if (err) break; } err: st_engine_heartbeat_enable(data.engine); for (i = 0; i < ARRAY_SIZE(data.ce); i++) { if (!data.ce[i]) break; intel_context_unpin(data.ce[i]); intel_context_put(data.ce[i]); } if (igt_flush_test(gt->i915)) err = -EIO; if (err) return err; } return 0; } static struct i915_vma * create_user_vma(struct i915_address_space *vm, unsigned long size) { struct drm_i915_gem_object *obj; struct i915_vma *vma; int err; obj = i915_gem_object_create_internal(vm->i915, size); if (IS_ERR(obj)) return ERR_CAST(obj); vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) { i915_gem_object_put(obj); return vma; } err = i915_vma_pin(vma, 0, 0, PIN_USER); if (err) { i915_gem_object_put(obj); return ERR_PTR(err); } return vma; } static u32 safe_poison(u32 offset, u32 poison) { /* * Do not enable predication as it will nop all subsequent commands, * not only disabling the tests (by preventing all the other SRM) but * also preventing the arbitration events at the end of the request. */ if (offset == i915_mmio_reg_offset(RING_PREDICATE_RESULT(0))) poison &= ~REG_BIT(0); return poison; } static struct i915_vma * store_context(struct intel_context *ce, struct i915_vma *scratch) { struct i915_vma *batch; u32 dw, x, *cs, *hw; u32 *defaults; batch = create_user_vma(ce->vm, SZ_64K); if (IS_ERR(batch)) return batch; cs = i915_gem_object_pin_map_unlocked(batch->obj, I915_MAP_WC); if (IS_ERR(cs)) { i915_vma_put(batch); return ERR_CAST(cs); } defaults = shmem_pin_map(ce->engine->default_state); if (!defaults) { i915_gem_object_unpin_map(batch->obj); i915_vma_put(batch); return ERR_PTR(-ENOMEM); } x = 0; dw = 0; hw = defaults; hw += LRC_STATE_OFFSET / sizeof(*hw); do { u32 len = hw[dw] & LRI_LENGTH_MASK; /* * Keep it simple, skip parsing complex commands * * At present, there are no more MI_LOAD_REGISTER_IMM * commands after the first 3D state command. Rather * than include a table (see i915_cmd_parser.c) of all * the possible commands and their instruction lengths * (or mask for variable length instructions), assume * we have gathered the complete list of registers and * bail out. */ if ((hw[dw] >> INSTR_CLIENT_SHIFT) != INSTR_MI_CLIENT) break; if (hw[dw] == 0) { dw++; continue; } if ((hw[dw] & GENMASK(31, 23)) != LRI_HEADER) { /* Assume all other MI commands match LRI length mask */ dw += len + 2; continue; } if (!len) { pr_err("%s: invalid LRI found in context image\n", ce->engine->name); igt_hexdump(defaults, PAGE_SIZE); break; } dw++; len = (len + 1) / 2; while (len--) { *cs++ = MI_STORE_REGISTER_MEM_GEN8; *cs++ = hw[dw]; *cs++ = lower_32_bits(i915_vma_offset(scratch) + x); *cs++ = upper_32_bits(i915_vma_offset(scratch) + x); dw += 2; x += 4; } } while (dw < PAGE_SIZE / sizeof(u32) && (hw[dw] & ~BIT(0)) != MI_BATCH_BUFFER_END); *cs++ = MI_BATCH_BUFFER_END; shmem_unpin_map(ce->engine->default_state, defaults); i915_gem_object_flush_map(batch->obj); i915_gem_object_unpin_map(batch->obj); return batch; } static struct i915_request * record_registers(struct intel_context *ce, struct i915_vma *before, struct i915_vma *after, u32 *sema) { struct i915_vma *b_before, *b_after; struct i915_request *rq; u32 *cs; int err; b_before = store_context(ce, before); if (IS_ERR(b_before)) return ERR_CAST(b_before); b_after = store_context(ce, after); if (IS_ERR(b_after)) { rq = ERR_CAST(b_after); goto err_before; } rq = intel_context_create_request(ce); if (IS_ERR(rq)) goto err_after; err = igt_vma_move_to_active_unlocked(before, rq, EXEC_OBJECT_WRITE); if (err) goto err_rq; err = igt_vma_move_to_active_unlocked(b_before, rq, 0); if (err) goto err_rq; err = igt_vma_move_to_active_unlocked(after, rq, EXEC_OBJECT_WRITE); if (err) goto err_rq; err = igt_vma_move_to_active_unlocked(b_after, rq, 0); if (err) goto err_rq; cs = intel_ring_begin(rq, 14); if (IS_ERR(cs)) { err = PTR_ERR(cs); goto err_rq; } *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; *cs++ = MI_BATCH_BUFFER_START_GEN8 | BIT(8); *cs++ = lower_32_bits(i915_vma_offset(b_before)); *cs++ = upper_32_bits(i915_vma_offset(b_before)); *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; *cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT | MI_SEMAPHORE_POLL | MI_SEMAPHORE_SAD_NEQ_SDD; *cs++ = 0; *cs++ = i915_ggtt_offset(ce->engine->status_page.vma) + offset_in_page(sema); *cs++ = 0; *cs++ = MI_NOOP; *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; *cs++ = MI_BATCH_BUFFER_START_GEN8 | BIT(8); *cs++ = lower_32_bits(i915_vma_offset(b_after)); *cs++ = upper_32_bits(i915_vma_offset(b_after)); intel_ring_advance(rq, cs); WRITE_ONCE(*sema, 0); i915_request_get(rq); i915_request_add(rq); err_after: i915_vma_put(b_after); err_before: i915_vma_put(b_before); return rq; err_rq: i915_request_add(rq); rq = ERR_PTR(err); goto err_after; } static struct i915_vma *load_context(struct intel_context *ce, u32 poison) { struct i915_vma *batch; u32 dw, *cs, *hw; u32 *defaults; batch = create_user_vma(ce->vm, SZ_64K); if (IS_ERR(batch)) return batch; cs = i915_gem_object_pin_map_unlocked(batch->obj, I915_MAP_WC); if (IS_ERR(cs)) { i915_vma_put(batch); return ERR_CAST(cs); } defaults = shmem_pin_map(ce->engine->default_state); if (!defaults) { i915_gem_object_unpin_map(batch->obj); i915_vma_put(batch); return ERR_PTR(-ENOMEM); } dw = 0; hw = defaults; hw += LRC_STATE_OFFSET / sizeof(*hw); do { u32 len = hw[dw] & LRI_LENGTH_MASK; /* For simplicity, break parsing at the first complex command */ if ((hw[dw] >> INSTR_CLIENT_SHIFT) != INSTR_MI_CLIENT) break; if (hw[dw] == 0) { dw++; continue; } if ((hw[dw] & GENMASK(31, 23)) != LRI_HEADER) { dw += len + 2; continue; } if (!len) { pr_err("%s: invalid LRI found in context image\n", ce->engine->name); igt_hexdump(defaults, PAGE_SIZE); break; } dw++; len = (len + 1) / 2; *cs++ = MI_LOAD_REGISTER_IMM(len); while (len--) { *cs++ = hw[dw]; *cs++ = safe_poison(hw[dw] & get_lri_mask(ce->engine, MI_LRI_LRM_CS_MMIO), poison); dw += 2; } } while (dw < PAGE_SIZE / sizeof(u32) && (hw[dw] & ~BIT(0)) != MI_BATCH_BUFFER_END); *cs++ = MI_BATCH_BUFFER_END; shmem_unpin_map(ce->engine->default_state, defaults); i915_gem_object_flush_map(batch->obj); i915_gem_object_unpin_map(batch->obj); return batch; } static int poison_registers(struct intel_context *ce, u32 poison, u32 *sema) { struct i915_request *rq; struct i915_vma *batch; u32 *cs; int err; batch = load_context(ce, poison); if (IS_ERR(batch)) return PTR_ERR(batch); rq = intel_context_create_request(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_batch; } err = igt_vma_move_to_active_unlocked(batch, rq, 0); if (err) goto err_rq; cs = intel_ring_begin(rq, 8); if (IS_ERR(cs)) { err = PTR_ERR(cs); goto err_rq; } *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; *cs++ = MI_BATCH_BUFFER_START_GEN8 | BIT(8); *cs++ = lower_32_bits(i915_vma_offset(batch)); *cs++ = upper_32_bits(i915_vma_offset(batch)); *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; *cs++ = i915_ggtt_offset(ce->engine->status_page.vma) + offset_in_page(sema); *cs++ = 0; *cs++ = 1; intel_ring_advance(rq, cs); rq->sched.attr.priority = I915_PRIORITY_BARRIER; err_rq: i915_request_add(rq); err_batch: i915_vma_put(batch); return err; } static bool is_moving(u32 a, u32 b) { return a != b; } static int compare_isolation(struct intel_engine_cs *engine, struct i915_vma *ref[2], struct i915_vma *result[2], struct intel_context *ce, u32 poison) { u32 x, dw, *hw, *lrc; u32 *A[2], *B[2]; u32 *defaults; int err = 0; A[0] = i915_gem_object_pin_map_unlocked(ref[0]->obj, I915_MAP_WC); if (IS_ERR(A[0])) return PTR_ERR(A[0]); A[1] = i915_gem_object_pin_map_unlocked(ref[1]->obj, I915_MAP_WC); if (IS_ERR(A[1])) { err = PTR_ERR(A[1]); goto err_A0; } B[0] = i915_gem_object_pin_map_unlocked(result[0]->obj, I915_MAP_WC); if (IS_ERR(B[0])) { err = PTR_ERR(B[0]); goto err_A1; } B[1] = i915_gem_object_pin_map_unlocked(result[1]->obj, I915_MAP_WC); if (IS_ERR(B[1])) { err = PTR_ERR(B[1]); goto err_B0; } lrc = i915_gem_object_pin_map_unlocked(ce->state->obj, intel_gt_coherent_map_type(engine->gt, ce->state->obj, false)); if (IS_ERR(lrc)) { err = PTR_ERR(lrc); goto err_B1; } lrc += LRC_STATE_OFFSET / sizeof(*hw); defaults = shmem_pin_map(ce->engine->default_state); if (!defaults) { err = -ENOMEM; goto err_lrc; } x = 0; dw = 0; hw = defaults; hw += LRC_STATE_OFFSET / sizeof(*hw); do { u32 len = hw[dw] & LRI_LENGTH_MASK; /* For simplicity, break parsing at the first complex command */ if ((hw[dw] >> INSTR_CLIENT_SHIFT) != INSTR_MI_CLIENT) break; if (hw[dw] == 0) { dw++; continue; } if ((hw[dw] & GENMASK(31, 23)) != LRI_HEADER) { dw += len + 2; continue; } if (!len) { pr_err("%s: invalid LRI found in context image\n", engine->name); igt_hexdump(defaults, PAGE_SIZE); break; } dw++; len = (len + 1) / 2; while (len--) { if (!is_moving(A[0][x], A[1][x]) && (A[0][x] != B[0][x] || A[1][x] != B[1][x])) { switch (hw[dw] & 4095) { case 0x30: /* RING_HEAD */ case 0x34: /* RING_TAIL */ break; default: pr_err("%s[%d]: Mismatch for register %4x, default %08x, reference %08x, result (%08x, %08x), poison %08x, context %08x\n", engine->name, dw, hw[dw], hw[dw + 1], A[0][x], B[0][x], B[1][x], poison, lrc[dw + 1]); err = -EINVAL; } } dw += 2; x++; } } while (dw < PAGE_SIZE / sizeof(u32) && (hw[dw] & ~BIT(0)) != MI_BATCH_BUFFER_END); shmem_unpin_map(ce->engine->default_state, defaults); err_lrc: i915_gem_object_unpin_map(ce->state->obj); err_B1: i915_gem_object_unpin_map(result[1]->obj); err_B0: i915_gem_object_unpin_map(result[0]->obj); err_A1: i915_gem_object_unpin_map(ref[1]->obj); err_A0: i915_gem_object_unpin_map(ref[0]->obj); return err; } static struct i915_vma * create_result_vma(struct i915_address_space *vm, unsigned long sz) { struct i915_vma *vma; void *ptr; vma = create_user_vma(vm, sz); if (IS_ERR(vma)) return vma; /* Set the results to a known value distinct from the poison */ ptr = i915_gem_object_pin_map_unlocked(vma->obj, I915_MAP_WC); if (IS_ERR(ptr)) { i915_vma_put(vma); return ERR_CAST(ptr); } memset(ptr, POISON_INUSE, vma->size); i915_gem_object_flush_map(vma->obj); i915_gem_object_unpin_map(vma->obj); return vma; } static int __lrc_isolation(struct intel_engine_cs *engine, u32 poison) { u32 *sema = memset32(engine->status_page.addr + 1000, 0, 1); struct i915_vma *ref[2], *result[2]; struct intel_context *A, *B; struct i915_request *rq; int err; A = intel_context_create(engine); if (IS_ERR(A)) return PTR_ERR(A); B = intel_context_create(engine); if (IS_ERR(B)) { err = PTR_ERR(B); goto err_A; } ref[0] = create_result_vma(A->vm, SZ_64K); if (IS_ERR(ref[0])) { err = PTR_ERR(ref[0]); goto err_B; } ref[1] = create_result_vma(A->vm, SZ_64K); if (IS_ERR(ref[1])) { err = PTR_ERR(ref[1]); goto err_ref0; } rq = record_registers(A, ref[0], ref[1], sema); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_ref1; } WRITE_ONCE(*sema, 1); wmb(); if (i915_request_wait(rq, 0, HZ / 2) < 0) { i915_request_put(rq); err = -ETIME; goto err_ref1; } i915_request_put(rq); result[0] = create_result_vma(A->vm, SZ_64K); if (IS_ERR(result[0])) { err = PTR_ERR(result[0]); goto err_ref1; } result[1] = create_result_vma(A->vm, SZ_64K); if (IS_ERR(result[1])) { err = PTR_ERR(result[1]); goto err_result0; } rq = record_registers(A, result[0], result[1], sema); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_result1; } err = poison_registers(B, poison, sema); if (err == 0 && i915_request_wait(rq, 0, HZ / 2) < 0) { pr_err("%s(%s): wait for results timed out\n", __func__, engine->name); err = -ETIME; } /* Always cancel the semaphore wait, just in case the GPU gets stuck */ WRITE_ONCE(*sema, -1); i915_request_put(rq); if (err) goto err_result1; err = compare_isolation(engine, ref, result, A, poison); err_result1: i915_vma_put(result[1]); err_result0: i915_vma_put(result[0]); err_ref1: i915_vma_put(ref[1]); err_ref0: i915_vma_put(ref[0]); err_B: intel_context_put(B); err_A: intel_context_put(A); return err; } static bool skip_isolation(const struct intel_engine_cs *engine) { if (engine->class == COPY_ENGINE_CLASS && GRAPHICS_VER(engine->i915) == 9) return true; if (engine->class == RENDER_CLASS && GRAPHICS_VER(engine->i915) == 11) return true; return false; } static int live_lrc_isolation(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; const u32 poison[] = { STACK_MAGIC, 0x3a3a3a3a, 0x5c5c5c5c, 0xffffffff, 0xffff0000, }; int err = 0; /* * Our goal is try and verify that per-context state cannot be * tampered with by another non-privileged client. * * We take the list of context registers from the LRI in the default * context image and attempt to modify that list from a remote context. */ for_each_engine(engine, gt, id) { int i; /* Just don't even ask */ if (!IS_ENABLED(CONFIG_DRM_I915_SELFTEST_BROKEN) && skip_isolation(engine)) continue; intel_engine_pm_get(engine); for (i = 0; i < ARRAY_SIZE(poison); i++) { int result; result = __lrc_isolation(engine, poison[i]); if (result && !err) err = result; result = __lrc_isolation(engine, ~poison[i]); if (result && !err) err = result; } intel_engine_pm_put(engine); if (igt_flush_test(gt->i915)) { err = -EIO; break; } } return err; } static int indirect_ctx_submit_req(struct intel_context *ce) { struct i915_request *rq; int err = 0; rq = intel_context_create_request(ce); if (IS_ERR(rq)) return PTR_ERR(rq); i915_request_get(rq); i915_request_add(rq); if (i915_request_wait(rq, 0, HZ / 5) < 0) err = -ETIME; i915_request_put(rq); return err; } #define CTX_BB_CANARY_OFFSET (3 * 1024) #define CTX_BB_CANARY_INDEX (CTX_BB_CANARY_OFFSET / sizeof(u32)) static u32 * emit_indirect_ctx_bb_canary(const struct intel_context *ce, u32 *cs) { *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT | MI_LRI_LRM_CS_MMIO; *cs++ = i915_mmio_reg_offset(RING_START(0)); *cs++ = i915_ggtt_offset(ce->state) + context_wa_bb_offset(ce) + CTX_BB_CANARY_OFFSET; *cs++ = 0; return cs; } static void indirect_ctx_bb_setup(struct intel_context *ce) { u32 *cs = context_indirect_bb(ce); cs[CTX_BB_CANARY_INDEX] = 0xdeadf00d; setup_indirect_ctx_bb(ce, ce->engine, emit_indirect_ctx_bb_canary); } static bool check_ring_start(struct intel_context *ce) { const u32 * const ctx_bb = (void *)(ce->lrc_reg_state) - LRC_STATE_OFFSET + context_wa_bb_offset(ce); if (ctx_bb[CTX_BB_CANARY_INDEX] == ce->lrc_reg_state[CTX_RING_START]) return true; pr_err("ring start mismatch: canary 0x%08x vs state 0x%08x\n", ctx_bb[CTX_BB_CANARY_INDEX], ce->lrc_reg_state[CTX_RING_START]); return false; } static int indirect_ctx_bb_check(struct intel_context *ce) { int err; err = indirect_ctx_submit_req(ce); if (err) return err; if (!check_ring_start(ce)) return -EINVAL; return 0; } static int __live_lrc_indirect_ctx_bb(struct intel_engine_cs *engine) { struct intel_context *a, *b; int err; a = intel_context_create(engine); if (IS_ERR(a)) return PTR_ERR(a); err = intel_context_pin(a); if (err) goto put_a; b = intel_context_create(engine); if (IS_ERR(b)) { err = PTR_ERR(b); goto unpin_a; } err = intel_context_pin(b); if (err) goto put_b; /* We use the already reserved extra page in context state */ if (!a->wa_bb_page) { GEM_BUG_ON(b->wa_bb_page); GEM_BUG_ON(GRAPHICS_VER(engine->i915) == 12); goto unpin_b; } /* * In order to test that our per context bb is truly per context, * and executes at the intended spot on context restoring process, * make the batch store the ring start value to memory. * As ring start is restored apriori of starting the indirect ctx bb and * as it will be different for each context, it fits to this purpose. */ indirect_ctx_bb_setup(a); indirect_ctx_bb_setup(b); err = indirect_ctx_bb_check(a); if (err) goto unpin_b; err = indirect_ctx_bb_check(b); unpin_b: intel_context_unpin(b); put_b: intel_context_put(b); unpin_a: intel_context_unpin(a); put_a: intel_context_put(a); return err; } static int live_lrc_indirect_ctx_bb(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; for_each_engine(engine, gt, id) { intel_engine_pm_get(engine); err = __live_lrc_indirect_ctx_bb(engine); intel_engine_pm_put(engine); if (igt_flush_test(gt->i915)) err = -EIO; if (err) break; } return err; } static void garbage_reset(struct intel_engine_cs *engine, struct i915_request *rq) { const unsigned int bit = I915_RESET_ENGINE + engine->id; unsigned long *lock = &engine->gt->reset.flags; local_bh_disable(); if (!test_and_set_bit(bit, lock)) { tasklet_disable(&engine->sched_engine->tasklet); if (!rq->fence.error) __intel_engine_reset_bh(engine, NULL); tasklet_enable(&engine->sched_engine->tasklet); clear_and_wake_up_bit(bit, lock); } local_bh_enable(); } static struct i915_request *garbage(struct intel_context *ce, struct rnd_state *prng) { struct i915_request *rq; int err; err = intel_context_pin(ce); if (err) return ERR_PTR(err); prandom_bytes_state(prng, ce->lrc_reg_state, ce->engine->context_size - LRC_STATE_OFFSET); rq = intel_context_create_request(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_unpin; } i915_request_get(rq); i915_request_add(rq); return rq; err_unpin: intel_context_unpin(ce); return ERR_PTR(err); } static int __lrc_garbage(struct intel_engine_cs *engine, struct rnd_state *prng) { struct intel_context *ce; struct i915_request *hang; int err = 0; ce = intel_context_create(engine); if (IS_ERR(ce)) return PTR_ERR(ce); hang = garbage(ce, prng); if (IS_ERR(hang)) { err = PTR_ERR(hang); goto err_ce; } if (wait_for_submit(engine, hang, HZ / 2)) { i915_request_put(hang); err = -ETIME; goto err_ce; } intel_context_set_banned(ce); garbage_reset(engine, hang); intel_engine_flush_submission(engine); if (!hang->fence.error) { i915_request_put(hang); pr_err("%s: corrupted context was not reset\n", engine->name); err = -EINVAL; goto err_ce; } if (i915_request_wait(hang, 0, HZ / 2) < 0) { pr_err("%s: corrupted context did not recover\n", engine->name); i915_request_put(hang); err = -EIO; goto err_ce; } i915_request_put(hang); err_ce: intel_context_put(ce); return err; } static int live_lrc_garbage(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; /* * Verify that we can recover if one context state is completely * corrupted. */ if (!IS_ENABLED(CONFIG_DRM_I915_SELFTEST_BROKEN)) return 0; for_each_engine(engine, gt, id) { I915_RND_STATE(prng); int err = 0, i; if (!intel_has_reset_engine(engine->gt)) continue; intel_engine_pm_get(engine); for (i = 0; i < 3; i++) { err = __lrc_garbage(engine, &prng); if (err) break; } intel_engine_pm_put(engine); if (igt_flush_test(gt->i915)) err = -EIO; if (err) return err; } return 0; } static int __live_pphwsp_runtime(struct intel_engine_cs *engine) { struct intel_context *ce; struct i915_request *rq; IGT_TIMEOUT(end_time); int err; ce = intel_context_create(engine); if (IS_ERR(ce)) return PTR_ERR(ce); ce->stats.runtime.num_underflow = 0; ce->stats.runtime.max_underflow = 0; do { unsigned int loop = 1024; while (loop) { rq = intel_context_create_request(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_rq; } if (--loop == 0) i915_request_get(rq); i915_request_add(rq); } if (__igt_timeout(end_time, NULL)) break; i915_request_put(rq); } while (1); err = i915_request_wait(rq, 0, HZ / 5); if (err < 0) { pr_err("%s: request not completed!\n", engine->name); goto err_wait; } igt_flush_test(engine->i915); pr_info("%s: pphwsp runtime %lluns, average %lluns\n", engine->name, intel_context_get_total_runtime_ns(ce), intel_context_get_avg_runtime_ns(ce)); err = 0; if (ce->stats.runtime.num_underflow) { pr_err("%s: pphwsp underflow %u time(s), max %u cycles!\n", engine->name, ce->stats.runtime.num_underflow, ce->stats.runtime.max_underflow); GEM_TRACE_DUMP(); err = -EOVERFLOW; } err_wait: i915_request_put(rq); err_rq: intel_context_put(ce); return err; } static int live_pphwsp_runtime(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; /* * Check that cumulative context runtime as stored in the pphwsp[16] * is monotonic. */ for_each_engine(engine, gt, id) { err = __live_pphwsp_runtime(engine); if (err) break; } if (igt_flush_test(gt->i915)) err = -EIO; return err; } int intel_lrc_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(live_lrc_layout), SUBTEST(live_lrc_fixed), SUBTEST(live_lrc_state), SUBTEST(live_lrc_gpr), SUBTEST(live_lrc_isolation), SUBTEST(live_lrc_timestamp), SUBTEST(live_lrc_garbage), SUBTEST(live_pphwsp_runtime), SUBTEST(live_lrc_indirect_ctx_bb), }; if (!HAS_LOGICAL_RING_CONTEXTS(i915)) return 0; return intel_gt_live_subtests(tests, to_gt(i915)); }
linux-master
drivers/gpu/drm/i915/gt/selftest_lrc.c
// SPDX-License-Identifier: MIT /* * Copyright © 2016 Intel Corporation */ #include <linux/kthread.h> #include "gem/i915_gem_context.h" #include "gem/i915_gem_internal.h" #include "i915_gem_evict.h" #include "intel_gt.h" #include "intel_engine_heartbeat.h" #include "intel_engine_pm.h" #include "selftest_engine_heartbeat.h" #include "i915_selftest.h" #include "selftests/i915_random.h" #include "selftests/igt_flush_test.h" #include "selftests/igt_reset.h" #include "selftests/igt_atomic.h" #include "selftests/igt_spinner.h" #include "selftests/intel_scheduler_helpers.h" #include "selftests/mock_drm.h" #include "gem/selftests/mock_context.h" #include "gem/selftests/igt_gem_utils.h" #define IGT_IDLE_TIMEOUT 50 /* ms; time to wait after flushing between tests */ struct hang { struct intel_gt *gt; struct drm_i915_gem_object *hws; struct drm_i915_gem_object *obj; struct i915_gem_context *ctx; u32 *seqno; u32 *batch; }; static int hang_init(struct hang *h, struct intel_gt *gt) { void *vaddr; int err; memset(h, 0, sizeof(*h)); h->gt = gt; h->ctx = kernel_context(gt->i915, NULL); if (IS_ERR(h->ctx)) return PTR_ERR(h->ctx); GEM_BUG_ON(i915_gem_context_is_bannable(h->ctx)); h->hws = i915_gem_object_create_internal(gt->i915, PAGE_SIZE); if (IS_ERR(h->hws)) { err = PTR_ERR(h->hws); goto err_ctx; } h->obj = i915_gem_object_create_internal(gt->i915, PAGE_SIZE); if (IS_ERR(h->obj)) { err = PTR_ERR(h->obj); goto err_hws; } i915_gem_object_set_cache_coherency(h->hws, I915_CACHE_LLC); vaddr = i915_gem_object_pin_map_unlocked(h->hws, I915_MAP_WB); if (IS_ERR(vaddr)) { err = PTR_ERR(vaddr); goto err_obj; } h->seqno = memset(vaddr, 0xff, PAGE_SIZE); vaddr = i915_gem_object_pin_map_unlocked(h->obj, intel_gt_coherent_map_type(gt, h->obj, false)); if (IS_ERR(vaddr)) { err = PTR_ERR(vaddr); goto err_unpin_hws; } h->batch = vaddr; return 0; err_unpin_hws: i915_gem_object_unpin_map(h->hws); err_obj: i915_gem_object_put(h->obj); err_hws: i915_gem_object_put(h->hws); err_ctx: kernel_context_close(h->ctx); return err; } static u64 hws_address(const struct i915_vma *hws, const struct i915_request *rq) { return i915_vma_offset(hws) + offset_in_page(sizeof(u32) * rq->fence.context); } static struct i915_request * hang_create_request(struct hang *h, struct intel_engine_cs *engine) { struct intel_gt *gt = h->gt; struct i915_address_space *vm = i915_gem_context_get_eb_vm(h->ctx); struct drm_i915_gem_object *obj; struct i915_request *rq = NULL; struct i915_vma *hws, *vma; unsigned int flags; void *vaddr; u32 *batch; int err; obj = i915_gem_object_create_internal(gt->i915, PAGE_SIZE); if (IS_ERR(obj)) { i915_vm_put(vm); return ERR_CAST(obj); } vaddr = i915_gem_object_pin_map_unlocked(obj, intel_gt_coherent_map_type(gt, obj, false)); if (IS_ERR(vaddr)) { i915_gem_object_put(obj); i915_vm_put(vm); return ERR_CAST(vaddr); } i915_gem_object_unpin_map(h->obj); i915_gem_object_put(h->obj); h->obj = obj; h->batch = vaddr; vma = i915_vma_instance(h->obj, vm, NULL); if (IS_ERR(vma)) { i915_vm_put(vm); return ERR_CAST(vma); } hws = i915_vma_instance(h->hws, vm, NULL); if (IS_ERR(hws)) { i915_vm_put(vm); return ERR_CAST(hws); } err = i915_vma_pin(vma, 0, 0, PIN_USER); if (err) { i915_vm_put(vm); return ERR_PTR(err); } err = i915_vma_pin(hws, 0, 0, PIN_USER); if (err) goto unpin_vma; rq = igt_request_alloc(h->ctx, engine); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto unpin_hws; } err = igt_vma_move_to_active_unlocked(vma, rq, 0); if (err) goto cancel_rq; err = igt_vma_move_to_active_unlocked(hws, rq, 0); if (err) goto cancel_rq; batch = h->batch; if (GRAPHICS_VER(gt->i915) >= 8) { *batch++ = MI_STORE_DWORD_IMM_GEN4; *batch++ = lower_32_bits(hws_address(hws, rq)); *batch++ = upper_32_bits(hws_address(hws, rq)); *batch++ = rq->fence.seqno; *batch++ = MI_NOOP; memset(batch, 0, 1024); batch += 1024 / sizeof(*batch); *batch++ = MI_NOOP; *batch++ = MI_BATCH_BUFFER_START | 1 << 8 | 1; *batch++ = lower_32_bits(i915_vma_offset(vma)); *batch++ = upper_32_bits(i915_vma_offset(vma)); } else if (GRAPHICS_VER(gt->i915) >= 6) { *batch++ = MI_STORE_DWORD_IMM_GEN4; *batch++ = 0; *batch++ = lower_32_bits(hws_address(hws, rq)); *batch++ = rq->fence.seqno; *batch++ = MI_NOOP; memset(batch, 0, 1024); batch += 1024 / sizeof(*batch); *batch++ = MI_NOOP; *batch++ = MI_BATCH_BUFFER_START | 1 << 8; *batch++ = lower_32_bits(i915_vma_offset(vma)); } else if (GRAPHICS_VER(gt->i915) >= 4) { *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; *batch++ = 0; *batch++ = lower_32_bits(hws_address(hws, rq)); *batch++ = rq->fence.seqno; *batch++ = MI_NOOP; memset(batch, 0, 1024); batch += 1024 / sizeof(*batch); *batch++ = MI_NOOP; *batch++ = MI_BATCH_BUFFER_START | 2 << 6; *batch++ = lower_32_bits(i915_vma_offset(vma)); } else { *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL; *batch++ = lower_32_bits(hws_address(hws, rq)); *batch++ = rq->fence.seqno; *batch++ = MI_NOOP; memset(batch, 0, 1024); batch += 1024 / sizeof(*batch); *batch++ = MI_NOOP; *batch++ = MI_BATCH_BUFFER_START | 2 << 6; *batch++ = lower_32_bits(i915_vma_offset(vma)); } *batch++ = MI_BATCH_BUFFER_END; /* not reached */ intel_gt_chipset_flush(engine->gt); if (rq->engine->emit_init_breadcrumb) { err = rq->engine->emit_init_breadcrumb(rq); if (err) goto cancel_rq; } flags = 0; if (GRAPHICS_VER(gt->i915) <= 5) flags |= I915_DISPATCH_SECURE; err = rq->engine->emit_bb_start(rq, i915_vma_offset(vma), PAGE_SIZE, flags); cancel_rq: if (err) { i915_request_set_error_once(rq, err); i915_request_add(rq); } unpin_hws: i915_vma_unpin(hws); unpin_vma: i915_vma_unpin(vma); i915_vm_put(vm); return err ? ERR_PTR(err) : rq; } static u32 hws_seqno(const struct hang *h, const struct i915_request *rq) { return READ_ONCE(h->seqno[rq->fence.context % (PAGE_SIZE/sizeof(u32))]); } static void hang_fini(struct hang *h) { *h->batch = MI_BATCH_BUFFER_END; intel_gt_chipset_flush(h->gt); i915_gem_object_unpin_map(h->obj); i915_gem_object_put(h->obj); i915_gem_object_unpin_map(h->hws); i915_gem_object_put(h->hws); kernel_context_close(h->ctx); igt_flush_test(h->gt->i915); } static bool wait_until_running(struct hang *h, struct i915_request *rq) { return !(wait_for_us(i915_seqno_passed(hws_seqno(h, rq), rq->fence.seqno), 10) && wait_for(i915_seqno_passed(hws_seqno(h, rq), rq->fence.seqno), 1000)); } static int igt_hang_sanitycheck(void *arg) { struct intel_gt *gt = arg; struct i915_request *rq; struct intel_engine_cs *engine; enum intel_engine_id id; struct hang h; int err; /* Basic check that we can execute our hanging batch */ err = hang_init(&h, gt); if (err) return err; for_each_engine(engine, gt, id) { struct intel_wedge_me w; long timeout; if (!intel_engine_can_store_dword(engine)) continue; rq = hang_create_request(&h, engine); if (IS_ERR(rq)) { err = PTR_ERR(rq); pr_err("Failed to create request for %s, err=%d\n", engine->name, err); goto fini; } i915_request_get(rq); *h.batch = MI_BATCH_BUFFER_END; intel_gt_chipset_flush(engine->gt); i915_request_add(rq); timeout = 0; intel_wedge_on_timeout(&w, gt, HZ / 10 /* 100ms */) timeout = i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT); if (intel_gt_is_wedged(gt)) timeout = -EIO; i915_request_put(rq); if (timeout < 0) { err = timeout; pr_err("Wait for request failed on %s, err=%d\n", engine->name, err); goto fini; } } fini: hang_fini(&h); return err; } static bool wait_for_idle(struct intel_engine_cs *engine) { return wait_for(intel_engine_is_idle(engine), IGT_IDLE_TIMEOUT) == 0; } static int igt_reset_nop(void *arg) { struct intel_gt *gt = arg; struct i915_gpu_error *global = &gt->i915->gpu_error; struct intel_engine_cs *engine; unsigned int reset_count, count; enum intel_engine_id id; IGT_TIMEOUT(end_time); int err = 0; /* Check that we can reset during non-user portions of requests */ reset_count = i915_reset_count(global); count = 0; do { for_each_engine(engine, gt, id) { struct intel_context *ce; int i; ce = intel_context_create(engine); if (IS_ERR(ce)) { err = PTR_ERR(ce); pr_err("[%s] Create context failed: %d!\n", engine->name, err); break; } for (i = 0; i < 16; i++) { struct i915_request *rq; rq = intel_context_create_request(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); pr_err("[%s] Create request failed: %d!\n", engine->name, err); break; } i915_request_add(rq); } intel_context_put(ce); } igt_global_reset_lock(gt); intel_gt_reset(gt, ALL_ENGINES, NULL); igt_global_reset_unlock(gt); if (intel_gt_is_wedged(gt)) { pr_err("[%s] GT is wedged!\n", engine->name); err = -EIO; break; } if (i915_reset_count(global) != reset_count + ++count) { pr_err("[%s] Reset not recorded: %d vs %d + %d!\n", engine->name, i915_reset_count(global), reset_count, count); err = -EINVAL; break; } err = igt_flush_test(gt->i915); if (err) { pr_err("[%s] Flush failed: %d!\n", engine->name, err); break; } } while (time_before(jiffies, end_time)); pr_info("%s: %d resets\n", __func__, count); if (igt_flush_test(gt->i915)) { pr_err("Post flush failed: %d!\n", err); err = -EIO; } return err; } static int igt_reset_nop_engine(void *arg) { struct intel_gt *gt = arg; struct i915_gpu_error *global = &gt->i915->gpu_error; struct intel_engine_cs *engine; enum intel_engine_id id; /* Check that we can engine-reset during non-user portions */ if (!intel_has_reset_engine(gt)) return 0; for_each_engine(engine, gt, id) { unsigned int reset_count, reset_engine_count, count; struct intel_context *ce; IGT_TIMEOUT(end_time); int err; if (intel_engine_uses_guc(engine)) { /* Engine level resets are triggered by GuC when a hang * is detected. They can't be triggered by the KMD any * more. Thus a nop batch cannot be used as a reset test */ continue; } ce = intel_context_create(engine); if (IS_ERR(ce)) { pr_err("[%s] Create context failed: %pe!\n", engine->name, ce); return PTR_ERR(ce); } reset_count = i915_reset_count(global); reset_engine_count = i915_reset_engine_count(global, engine); count = 0; st_engine_heartbeat_disable(engine); GEM_BUG_ON(test_and_set_bit(I915_RESET_ENGINE + id, &gt->reset.flags)); do { int i; if (!wait_for_idle(engine)) { pr_err("%s failed to idle before reset\n", engine->name); err = -EIO; break; } for (i = 0; i < 16; i++) { struct i915_request *rq; rq = intel_context_create_request(ce); if (IS_ERR(rq)) { struct drm_printer p = drm_info_printer(gt->i915->drm.dev); intel_engine_dump(engine, &p, "%s(%s): failed to submit request\n", __func__, engine->name); GEM_TRACE("%s(%s): failed to submit request\n", __func__, engine->name); GEM_TRACE_DUMP(); intel_gt_set_wedged(gt); err = PTR_ERR(rq); break; } i915_request_add(rq); } err = intel_engine_reset(engine, NULL); if (err) { pr_err("intel_engine_reset(%s) failed, err:%d\n", engine->name, err); break; } if (i915_reset_count(global) != reset_count) { pr_err("Full GPU reset recorded! (engine reset expected)\n"); err = -EINVAL; break; } if (i915_reset_engine_count(global, engine) != reset_engine_count + ++count) { pr_err("%s engine reset not recorded!\n", engine->name); err = -EINVAL; break; } } while (time_before(jiffies, end_time)); clear_and_wake_up_bit(I915_RESET_ENGINE + id, &gt->reset.flags); st_engine_heartbeat_enable(engine); pr_info("%s(%s): %d resets\n", __func__, engine->name, count); intel_context_put(ce); if (igt_flush_test(gt->i915)) err = -EIO; if (err) return err; } return 0; } static void force_reset_timeout(struct intel_engine_cs *engine) { engine->reset_timeout.probability = 999; atomic_set(&engine->reset_timeout.times, -1); } static void cancel_reset_timeout(struct intel_engine_cs *engine) { memset(&engine->reset_timeout, 0, sizeof(engine->reset_timeout)); } static int igt_reset_fail_engine(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; /* Check that we can recover from engine-reset failues */ if (!intel_has_reset_engine(gt)) return 0; for_each_engine(engine, gt, id) { unsigned int count; struct intel_context *ce; IGT_TIMEOUT(end_time); int err; /* Can't manually break the reset if i915 doesn't perform it */ if (intel_engine_uses_guc(engine)) continue; ce = intel_context_create(engine); if (IS_ERR(ce)) { pr_err("[%s] Create context failed: %pe!\n", engine->name, ce); return PTR_ERR(ce); } st_engine_heartbeat_disable(engine); GEM_BUG_ON(test_and_set_bit(I915_RESET_ENGINE + id, &gt->reset.flags)); force_reset_timeout(engine); err = intel_engine_reset(engine, NULL); cancel_reset_timeout(engine); if (err == 0) /* timeouts only generated on gen8+ */ goto skip; count = 0; do { struct i915_request *last = NULL; int i; if (!wait_for_idle(engine)) { pr_err("%s failed to idle before reset\n", engine->name); err = -EIO; break; } for (i = 0; i < count % 15; i++) { struct i915_request *rq; rq = intel_context_create_request(ce); if (IS_ERR(rq)) { struct drm_printer p = drm_info_printer(gt->i915->drm.dev); intel_engine_dump(engine, &p, "%s(%s): failed to submit request\n", __func__, engine->name); GEM_TRACE("%s(%s): failed to submit request\n", __func__, engine->name); GEM_TRACE_DUMP(); intel_gt_set_wedged(gt); if (last) i915_request_put(last); err = PTR_ERR(rq); goto out; } if (last) i915_request_put(last); last = i915_request_get(rq); i915_request_add(rq); } if (count & 1) { err = intel_engine_reset(engine, NULL); if (err) { GEM_TRACE_ERR("intel_engine_reset(%s) failed, err:%d\n", engine->name, err); GEM_TRACE_DUMP(); i915_request_put(last); break; } } else { force_reset_timeout(engine); err = intel_engine_reset(engine, NULL); cancel_reset_timeout(engine); if (err != -ETIMEDOUT) { pr_err("intel_engine_reset(%s) did not fail, err:%d\n", engine->name, err); i915_request_put(last); break; } } err = 0; if (last) { if (i915_request_wait(last, 0, HZ / 2) < 0) { struct drm_printer p = drm_info_printer(gt->i915->drm.dev); intel_engine_dump(engine, &p, "%s(%s): failed to complete request\n", __func__, engine->name); GEM_TRACE("%s(%s): failed to complete request\n", __func__, engine->name); GEM_TRACE_DUMP(); err = -EIO; } i915_request_put(last); } count++; } while (err == 0 && time_before(jiffies, end_time)); out: pr_info("%s(%s): %d resets\n", __func__, engine->name, count); skip: clear_and_wake_up_bit(I915_RESET_ENGINE + id, &gt->reset.flags); st_engine_heartbeat_enable(engine); intel_context_put(ce); if (igt_flush_test(gt->i915)) err = -EIO; if (err) return err; } return 0; } static int __igt_reset_engine(struct intel_gt *gt, bool active) { struct i915_gpu_error *global = &gt->i915->gpu_error; struct intel_engine_cs *engine; enum intel_engine_id id; struct hang h; int err = 0; /* Check that we can issue an engine reset on an idle engine (no-op) */ if (!intel_has_reset_engine(gt)) return 0; if (active) { err = hang_init(&h, gt); if (err) return err; } for_each_engine(engine, gt, id) { unsigned int reset_count, reset_engine_count; unsigned long count; bool using_guc = intel_engine_uses_guc(engine); IGT_TIMEOUT(end_time); if (using_guc && !active) continue; if (active && !intel_engine_can_store_dword(engine)) continue; if (!wait_for_idle(engine)) { pr_err("%s failed to idle before reset\n", engine->name); err = -EIO; break; } reset_count = i915_reset_count(global); reset_engine_count = i915_reset_engine_count(global, engine); st_engine_heartbeat_disable(engine); GEM_BUG_ON(test_and_set_bit(I915_RESET_ENGINE + id, &gt->reset.flags)); count = 0; do { struct i915_request *rq = NULL; struct intel_selftest_saved_policy saved; int err2; err = intel_selftest_modify_policy(engine, &saved, SELFTEST_SCHEDULER_MODIFY_FAST_RESET); if (err) { pr_err("[%s] Modify policy failed: %d!\n", engine->name, err); break; } if (active) { rq = hang_create_request(&h, engine); if (IS_ERR(rq)) { err = PTR_ERR(rq); pr_err("[%s] Create hang request failed: %d!\n", engine->name, err); goto restore; } i915_request_get(rq); i915_request_add(rq); if (!wait_until_running(&h, rq)) { struct drm_printer p = drm_info_printer(gt->i915->drm.dev); pr_err("%s: Failed to start request %llx, at %x\n", __func__, rq->fence.seqno, hws_seqno(&h, rq)); intel_engine_dump(engine, &p, "%s\n", engine->name); i915_request_put(rq); err = -EIO; goto restore; } } if (!using_guc) { err = intel_engine_reset(engine, NULL); if (err) { pr_err("intel_engine_reset(%s) failed, err:%d\n", engine->name, err); goto skip; } } if (rq) { /* Ensure the reset happens and kills the engine */ err = intel_selftest_wait_for_rq(rq); if (err) pr_err("[%s] Wait for request %lld:%lld [0x%04X] failed: %d!\n", engine->name, rq->fence.context, rq->fence.seqno, rq->context->guc_id.id, err); } skip: if (rq) i915_request_put(rq); if (i915_reset_count(global) != reset_count) { pr_err("Full GPU reset recorded! (engine reset expected)\n"); err = -EINVAL; goto restore; } /* GuC based resets are not logged per engine */ if (!using_guc) { if (i915_reset_engine_count(global, engine) != ++reset_engine_count) { pr_err("%s engine reset not recorded!\n", engine->name); err = -EINVAL; goto restore; } } count++; restore: err2 = intel_selftest_restore_policy(engine, &saved); if (err2) pr_err("[%s] Restore policy failed: %d!\n", engine->name, err); if (err == 0) err = err2; if (err) break; } while (time_before(jiffies, end_time)); clear_and_wake_up_bit(I915_RESET_ENGINE + id, &gt->reset.flags); st_engine_heartbeat_enable(engine); pr_info("%s: Completed %lu %s resets\n", engine->name, count, active ? "active" : "idle"); if (err) break; err = igt_flush_test(gt->i915); if (err) { pr_err("[%s] Flush failed: %d!\n", engine->name, err); break; } } if (intel_gt_is_wedged(gt)) { pr_err("GT is wedged!\n"); err = -EIO; } if (active) hang_fini(&h); return err; } static int igt_reset_idle_engine(void *arg) { return __igt_reset_engine(arg, false); } static int igt_reset_active_engine(void *arg) { return __igt_reset_engine(arg, true); } struct active_engine { struct kthread_worker *worker; struct kthread_work work; struct intel_engine_cs *engine; unsigned long resets; unsigned int flags; bool stop; int result; }; #define TEST_ACTIVE BIT(0) #define TEST_OTHERS BIT(1) #define TEST_SELF BIT(2) #define TEST_PRIORITY BIT(3) static int active_request_put(struct i915_request *rq) { int err = 0; if (!rq) return 0; if (i915_request_wait(rq, 0, 10 * HZ) < 0) { GEM_TRACE("%s timed out waiting for completion of fence %llx:%lld\n", rq->engine->name, rq->fence.context, rq->fence.seqno); GEM_TRACE_DUMP(); intel_gt_set_wedged(rq->engine->gt); err = -EIO; } i915_request_put(rq); return err; } static void active_engine(struct kthread_work *work) { I915_RND_STATE(prng); struct active_engine *arg = container_of(work, typeof(*arg), work); struct intel_engine_cs *engine = arg->engine; struct i915_request *rq[8] = {}; struct intel_context *ce[ARRAY_SIZE(rq)]; unsigned long count; int err = 0; for (count = 0; count < ARRAY_SIZE(ce); count++) { ce[count] = intel_context_create(engine); if (IS_ERR(ce[count])) { arg->result = PTR_ERR(ce[count]); pr_err("[%s] Create context #%ld failed: %d!\n", engine->name, count, arg->result); while (--count) intel_context_put(ce[count]); return; } } count = 0; while (!READ_ONCE(arg->stop)) { unsigned int idx = count++ & (ARRAY_SIZE(rq) - 1); struct i915_request *old = rq[idx]; struct i915_request *new; new = intel_context_create_request(ce[idx]); if (IS_ERR(new)) { err = PTR_ERR(new); pr_err("[%s] Create request #%d failed: %d!\n", engine->name, idx, err); break; } rq[idx] = i915_request_get(new); i915_request_add(new); if (engine->sched_engine->schedule && arg->flags & TEST_PRIORITY) { struct i915_sched_attr attr = { .priority = i915_prandom_u32_max_state(512, &prng), }; engine->sched_engine->schedule(rq[idx], &attr); } err = active_request_put(old); if (err) { pr_err("[%s] Request put failed: %d!\n", engine->name, err); break; } cond_resched(); } for (count = 0; count < ARRAY_SIZE(rq); count++) { int err__ = active_request_put(rq[count]); if (err) pr_err("[%s] Request put #%ld failed: %d!\n", engine->name, count, err); /* Keep the first error */ if (!err) err = err__; intel_context_put(ce[count]); } arg->result = err; } static int __igt_reset_engines(struct intel_gt *gt, const char *test_name, unsigned int flags) { struct i915_gpu_error *global = &gt->i915->gpu_error; struct intel_engine_cs *engine, *other; struct active_engine *threads; enum intel_engine_id id, tmp; struct hang h; int err = 0; /* Check that issuing a reset on one engine does not interfere * with any other engine. */ if (!intel_has_reset_engine(gt)) return 0; if (flags & TEST_ACTIVE) { err = hang_init(&h, gt); if (err) return err; if (flags & TEST_PRIORITY) h.ctx->sched.priority = 1024; } threads = kmalloc_array(I915_NUM_ENGINES, sizeof(*threads), GFP_KERNEL); if (!threads) return -ENOMEM; for_each_engine(engine, gt, id) { unsigned long device = i915_reset_count(global); unsigned long count = 0, reported; bool using_guc = intel_engine_uses_guc(engine); IGT_TIMEOUT(end_time); if (flags & TEST_ACTIVE) { if (!intel_engine_can_store_dword(engine)) continue; } else if (using_guc) continue; if (!wait_for_idle(engine)) { pr_err("i915_reset_engine(%s:%s): failed to idle before reset\n", engine->name, test_name); err = -EIO; break; } memset(threads, 0, sizeof(*threads) * I915_NUM_ENGINES); for_each_engine(other, gt, tmp) { struct kthread_worker *worker; threads[tmp].resets = i915_reset_engine_count(global, other); if (other == engine && !(flags & TEST_SELF)) continue; if (other != engine && !(flags & TEST_OTHERS)) continue; threads[tmp].engine = other; threads[tmp].flags = flags; worker = kthread_create_worker(0, "igt/%s", other->name); if (IS_ERR(worker)) { err = PTR_ERR(worker); pr_err("[%s] Worker create failed: %d!\n", engine->name, err); goto unwind; } threads[tmp].worker = worker; kthread_init_work(&threads[tmp].work, active_engine); kthread_queue_work(threads[tmp].worker, &threads[tmp].work); } st_engine_heartbeat_disable_no_pm(engine); GEM_BUG_ON(test_and_set_bit(I915_RESET_ENGINE + id, &gt->reset.flags)); do { struct i915_request *rq = NULL; struct intel_selftest_saved_policy saved; int err2; err = intel_selftest_modify_policy(engine, &saved, SELFTEST_SCHEDULER_MODIFY_FAST_RESET); if (err) { pr_err("[%s] Modify policy failed: %d!\n", engine->name, err); break; } if (flags & TEST_ACTIVE) { rq = hang_create_request(&h, engine); if (IS_ERR(rq)) { err = PTR_ERR(rq); pr_err("[%s] Create hang request failed: %d!\n", engine->name, err); goto restore; } i915_request_get(rq); i915_request_add(rq); if (!wait_until_running(&h, rq)) { struct drm_printer p = drm_info_printer(gt->i915->drm.dev); pr_err("%s: Failed to start request %llx, at %x\n", __func__, rq->fence.seqno, hws_seqno(&h, rq)); intel_engine_dump(engine, &p, "%s\n", engine->name); i915_request_put(rq); err = -EIO; goto restore; } } else { intel_engine_pm_get(engine); } if (!using_guc) { err = intel_engine_reset(engine, NULL); if (err) { pr_err("i915_reset_engine(%s:%s): failed, err=%d\n", engine->name, test_name, err); goto restore; } } if (rq) { /* Ensure the reset happens and kills the engine */ err = intel_selftest_wait_for_rq(rq); if (err) pr_err("[%s] Wait for request %lld:%lld [0x%04X] failed: %d!\n", engine->name, rq->fence.context, rq->fence.seqno, rq->context->guc_id.id, err); } count++; if (rq) { if (rq->fence.error != -EIO) { pr_err("i915_reset_engine(%s:%s): failed to reset request %lld:%lld [0x%04X]\n", engine->name, test_name, rq->fence.context, rq->fence.seqno, rq->context->guc_id.id); i915_request_put(rq); GEM_TRACE_DUMP(); intel_gt_set_wedged(gt); err = -EIO; goto restore; } if (i915_request_wait(rq, 0, HZ / 5) < 0) { struct drm_printer p = drm_info_printer(gt->i915->drm.dev); pr_err("i915_reset_engine(%s:%s):" " failed to complete request %llx:%lld after reset\n", engine->name, test_name, rq->fence.context, rq->fence.seqno); intel_engine_dump(engine, &p, "%s\n", engine->name); i915_request_put(rq); GEM_TRACE_DUMP(); intel_gt_set_wedged(gt); err = -EIO; goto restore; } i915_request_put(rq); } if (!(flags & TEST_ACTIVE)) intel_engine_pm_put(engine); if (!(flags & TEST_SELF) && !wait_for_idle(engine)) { struct drm_printer p = drm_info_printer(gt->i915->drm.dev); pr_err("i915_reset_engine(%s:%s):" " failed to idle after reset\n", engine->name, test_name); intel_engine_dump(engine, &p, "%s\n", engine->name); err = -EIO; goto restore; } restore: err2 = intel_selftest_restore_policy(engine, &saved); if (err2) pr_err("[%s] Restore policy failed: %d!\n", engine->name, err2); if (err == 0) err = err2; if (err) break; } while (time_before(jiffies, end_time)); clear_and_wake_up_bit(I915_RESET_ENGINE + id, &gt->reset.flags); st_engine_heartbeat_enable_no_pm(engine); pr_info("i915_reset_engine(%s:%s): %lu resets\n", engine->name, test_name, count); /* GuC based resets are not logged per engine */ if (!using_guc) { reported = i915_reset_engine_count(global, engine); reported -= threads[engine->id].resets; if (reported != count) { pr_err("i915_reset_engine(%s:%s): reset %lu times, but reported %lu\n", engine->name, test_name, count, reported); if (!err) err = -EINVAL; } } unwind: for_each_engine(other, gt, tmp) { int ret; if (!threads[tmp].worker) continue; WRITE_ONCE(threads[tmp].stop, true); kthread_flush_work(&threads[tmp].work); ret = READ_ONCE(threads[tmp].result); if (ret) { pr_err("kthread for other engine %s failed, err=%d\n", other->name, ret); if (!err) err = ret; } kthread_destroy_worker(threads[tmp].worker); /* GuC based resets are not logged per engine */ if (!using_guc) { if (other->uabi_class != engine->uabi_class && threads[tmp].resets != i915_reset_engine_count(global, other)) { pr_err("Innocent engine %s was reset (count=%ld)\n", other->name, i915_reset_engine_count(global, other) - threads[tmp].resets); if (!err) err = -EINVAL; } } } if (device != i915_reset_count(global)) { pr_err("Global reset (count=%ld)!\n", i915_reset_count(global) - device); if (!err) err = -EINVAL; } if (err) break; err = igt_flush_test(gt->i915); if (err) { pr_err("[%s] Flush failed: %d!\n", engine->name, err); break; } } kfree(threads); if (intel_gt_is_wedged(gt)) err = -EIO; if (flags & TEST_ACTIVE) hang_fini(&h); return err; } static int igt_reset_engines(void *arg) { static const struct { const char *name; unsigned int flags; } phases[] = { { "idle", 0 }, { "active", TEST_ACTIVE }, { "others-idle", TEST_OTHERS }, { "others-active", TEST_OTHERS | TEST_ACTIVE }, { "others-priority", TEST_OTHERS | TEST_ACTIVE | TEST_PRIORITY }, { "self-priority", TEST_ACTIVE | TEST_PRIORITY | TEST_SELF, }, { } }; struct intel_gt *gt = arg; typeof(*phases) *p; int err; for (p = phases; p->name; p++) { if (p->flags & TEST_PRIORITY) { if (!(gt->i915->caps.scheduler & I915_SCHEDULER_CAP_PRIORITY)) continue; } err = __igt_reset_engines(arg, p->name, p->flags); if (err) return err; } return 0; } static u32 fake_hangcheck(struct intel_gt *gt, intel_engine_mask_t mask) { u32 count = i915_reset_count(&gt->i915->gpu_error); intel_gt_reset(gt, mask, NULL); return count; } static int igt_reset_wait(void *arg) { struct intel_gt *gt = arg; struct i915_gpu_error *global = &gt->i915->gpu_error; struct intel_engine_cs *engine; struct i915_request *rq; unsigned int reset_count; struct hang h; long timeout; int err; engine = intel_selftest_find_any_engine(gt); if (!engine || !intel_engine_can_store_dword(engine)) return 0; /* Check that we detect a stuck waiter and issue a reset */ igt_global_reset_lock(gt); err = hang_init(&h, gt); if (err) { pr_err("[%s] Hang init failed: %d!\n", engine->name, err); goto unlock; } rq = hang_create_request(&h, engine); if (IS_ERR(rq)) { err = PTR_ERR(rq); pr_err("[%s] Create hang request failed: %d!\n", engine->name, err); goto fini; } i915_request_get(rq); i915_request_add(rq); if (!wait_until_running(&h, rq)) { struct drm_printer p = drm_info_printer(gt->i915->drm.dev); pr_err("%s: Failed to start request %llx, at %x\n", __func__, rq->fence.seqno, hws_seqno(&h, rq)); intel_engine_dump(rq->engine, &p, "%s\n", rq->engine->name); intel_gt_set_wedged(gt); err = -EIO; goto out_rq; } reset_count = fake_hangcheck(gt, ALL_ENGINES); timeout = i915_request_wait(rq, 0, 10); if (timeout < 0) { pr_err("i915_request_wait failed on a stuck request: err=%ld\n", timeout); err = timeout; goto out_rq; } if (i915_reset_count(global) == reset_count) { pr_err("No GPU reset recorded!\n"); err = -EINVAL; goto out_rq; } out_rq: i915_request_put(rq); fini: hang_fini(&h); unlock: igt_global_reset_unlock(gt); if (intel_gt_is_wedged(gt)) return -EIO; return err; } struct evict_vma { struct completion completion; struct i915_vma *vma; }; static int evict_vma(void *data) { struct evict_vma *arg = data; struct i915_address_space *vm = arg->vma->vm; struct drm_mm_node evict = arg->vma->node; int err; complete(&arg->completion); mutex_lock(&vm->mutex); err = i915_gem_evict_for_node(vm, NULL, &evict, 0); mutex_unlock(&vm->mutex); return err; } static int evict_fence(void *data) { struct evict_vma *arg = data; int err; complete(&arg->completion); /* Mark the fence register as dirty to force the mmio update. */ err = i915_gem_object_set_tiling(arg->vma->obj, I915_TILING_Y, 512); if (err) { pr_err("Invalid Y-tiling settings; err:%d\n", err); return err; } err = i915_vma_pin(arg->vma, 0, 0, PIN_GLOBAL | PIN_MAPPABLE); if (err) { pr_err("Unable to pin vma for Y-tiled fence; err:%d\n", err); return err; } err = i915_vma_pin_fence(arg->vma); i915_vma_unpin(arg->vma); if (err) { pr_err("Unable to pin Y-tiled fence; err:%d\n", err); return err; } i915_vma_unpin_fence(arg->vma); return 0; } static int __igt_reset_evict_vma(struct intel_gt *gt, struct i915_address_space *vm, int (*fn)(void *), unsigned int flags) { struct intel_engine_cs *engine; struct drm_i915_gem_object *obj; struct task_struct *tsk = NULL; struct i915_request *rq; struct evict_vma arg; struct hang h; unsigned int pin_flags; int err; if (!gt->ggtt->num_fences && flags & EXEC_OBJECT_NEEDS_FENCE) return 0; engine = intel_selftest_find_any_engine(gt); if (!engine || !intel_engine_can_store_dword(engine)) return 0; /* Check that we can recover an unbind stuck on a hanging request */ err = hang_init(&h, gt); if (err) { pr_err("[%s] Hang init failed: %d!\n", engine->name, err); return err; } obj = i915_gem_object_create_internal(gt->i915, SZ_1M); if (IS_ERR(obj)) { err = PTR_ERR(obj); pr_err("[%s] Create object failed: %d!\n", engine->name, err); goto fini; } if (flags & EXEC_OBJECT_NEEDS_FENCE) { err = i915_gem_object_set_tiling(obj, I915_TILING_X, 512); if (err) { pr_err("Invalid X-tiling settings; err:%d\n", err); goto out_obj; } } arg.vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(arg.vma)) { err = PTR_ERR(arg.vma); pr_err("[%s] VMA instance failed: %d!\n", engine->name, err); goto out_obj; } rq = hang_create_request(&h, engine); if (IS_ERR(rq)) { err = PTR_ERR(rq); pr_err("[%s] Create hang request failed: %d!\n", engine->name, err); goto out_obj; } pin_flags = i915_vma_is_ggtt(arg.vma) ? PIN_GLOBAL : PIN_USER; if (flags & EXEC_OBJECT_NEEDS_FENCE) pin_flags |= PIN_MAPPABLE; err = i915_vma_pin(arg.vma, 0, 0, pin_flags); if (err) { i915_request_add(rq); pr_err("[%s] VMA pin failed: %d!\n", engine->name, err); goto out_obj; } if (flags & EXEC_OBJECT_NEEDS_FENCE) { err = i915_vma_pin_fence(arg.vma); if (err) { pr_err("Unable to pin X-tiled fence; err:%d\n", err); i915_vma_unpin(arg.vma); i915_request_add(rq); goto out_obj; } } err = igt_vma_move_to_active_unlocked(arg.vma, rq, flags); if (err) pr_err("[%s] Move to active failed: %d!\n", engine->name, err); if (flags & EXEC_OBJECT_NEEDS_FENCE) i915_vma_unpin_fence(arg.vma); i915_vma_unpin(arg.vma); i915_request_get(rq); i915_request_add(rq); if (err) goto out_rq; if (!wait_until_running(&h, rq)) { struct drm_printer p = drm_info_printer(gt->i915->drm.dev); pr_err("%s: Failed to start request %llx, at %x\n", __func__, rq->fence.seqno, hws_seqno(&h, rq)); intel_engine_dump(rq->engine, &p, "%s\n", rq->engine->name); intel_gt_set_wedged(gt); goto out_reset; } init_completion(&arg.completion); tsk = kthread_run(fn, &arg, "igt/evict_vma"); if (IS_ERR(tsk)) { err = PTR_ERR(tsk); pr_err("[%s] Thread spawn failed: %d!\n", engine->name, err); tsk = NULL; goto out_reset; } get_task_struct(tsk); wait_for_completion(&arg.completion); if (wait_for(!list_empty(&rq->fence.cb_list), 10)) { struct drm_printer p = drm_info_printer(gt->i915->drm.dev); pr_err("igt/evict_vma kthread did not wait\n"); intel_engine_dump(rq->engine, &p, "%s\n", rq->engine->name); intel_gt_set_wedged(gt); goto out_reset; } out_reset: igt_global_reset_lock(gt); fake_hangcheck(gt, rq->engine->mask); igt_global_reset_unlock(gt); if (tsk) { struct intel_wedge_me w; /* The reset, even indirectly, should take less than 10ms. */ intel_wedge_on_timeout(&w, gt, HZ / 10 /* 100ms */) err = kthread_stop(tsk); put_task_struct(tsk); } out_rq: i915_request_put(rq); out_obj: i915_gem_object_put(obj); fini: hang_fini(&h); if (intel_gt_is_wedged(gt)) return -EIO; return err; } static int igt_reset_evict_ggtt(void *arg) { struct intel_gt *gt = arg; return __igt_reset_evict_vma(gt, &gt->ggtt->vm, evict_vma, EXEC_OBJECT_WRITE); } static int igt_reset_evict_ppgtt(void *arg) { struct intel_gt *gt = arg; struct i915_ppgtt *ppgtt; int err; /* aliasing == global gtt locking, covered above */ if (INTEL_PPGTT(gt->i915) < INTEL_PPGTT_FULL) return 0; ppgtt = i915_ppgtt_create(gt, 0); if (IS_ERR(ppgtt)) return PTR_ERR(ppgtt); err = __igt_reset_evict_vma(gt, &ppgtt->vm, evict_vma, EXEC_OBJECT_WRITE); i915_vm_put(&ppgtt->vm); return err; } static int igt_reset_evict_fence(void *arg) { struct intel_gt *gt = arg; return __igt_reset_evict_vma(gt, &gt->ggtt->vm, evict_fence, EXEC_OBJECT_NEEDS_FENCE); } static int wait_for_others(struct intel_gt *gt, struct intel_engine_cs *exclude) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, gt, id) { if (engine == exclude) continue; if (!wait_for_idle(engine)) return -EIO; } return 0; } static int igt_reset_queue(void *arg) { struct intel_gt *gt = arg; struct i915_gpu_error *global = &gt->i915->gpu_error; struct intel_engine_cs *engine; enum intel_engine_id id; struct hang h; int err; /* Check that we replay pending requests following a hang */ igt_global_reset_lock(gt); err = hang_init(&h, gt); if (err) goto unlock; for_each_engine(engine, gt, id) { struct intel_selftest_saved_policy saved; struct i915_request *prev; IGT_TIMEOUT(end_time); unsigned int count; bool using_guc = intel_engine_uses_guc(engine); if (!intel_engine_can_store_dword(engine)) continue; if (using_guc) { err = intel_selftest_modify_policy(engine, &saved, SELFTEST_SCHEDULER_MODIFY_NO_HANGCHECK); if (err) { pr_err("[%s] Modify policy failed: %d!\n", engine->name, err); goto fini; } } prev = hang_create_request(&h, engine); if (IS_ERR(prev)) { err = PTR_ERR(prev); pr_err("[%s] Create 'prev' hang request failed: %d!\n", engine->name, err); goto restore; } i915_request_get(prev); i915_request_add(prev); count = 0; do { struct i915_request *rq; unsigned int reset_count; rq = hang_create_request(&h, engine); if (IS_ERR(rq)) { err = PTR_ERR(rq); pr_err("[%s] Create hang request failed: %d!\n", engine->name, err); goto restore; } i915_request_get(rq); i915_request_add(rq); /* * XXX We don't handle resetting the kernel context * very well. If we trigger a device reset twice in * quick succession while the kernel context is * executing, we may end up skipping the breadcrumb. * This is really only a problem for the selftest as * normally there is a large interlude between resets * (hangcheck), or we focus on resetting just one * engine and so avoid repeatedly resetting innocents. */ err = wait_for_others(gt, engine); if (err) { pr_err("%s(%s): Failed to idle other inactive engines after device reset\n", __func__, engine->name); i915_request_put(rq); i915_request_put(prev); GEM_TRACE_DUMP(); intel_gt_set_wedged(gt); goto restore; } if (!wait_until_running(&h, prev)) { struct drm_printer p = drm_info_printer(gt->i915->drm.dev); pr_err("%s(%s): Failed to start request %llx, at %x\n", __func__, engine->name, prev->fence.seqno, hws_seqno(&h, prev)); intel_engine_dump(engine, &p, "%s\n", engine->name); i915_request_put(rq); i915_request_put(prev); intel_gt_set_wedged(gt); err = -EIO; goto restore; } reset_count = fake_hangcheck(gt, BIT(id)); if (prev->fence.error != -EIO) { pr_err("GPU reset not recorded on hanging request [fence.error=%d]!\n", prev->fence.error); i915_request_put(rq); i915_request_put(prev); err = -EINVAL; goto restore; } if (rq->fence.error) { pr_err("Fence error status not zero [%d] after unrelated reset\n", rq->fence.error); i915_request_put(rq); i915_request_put(prev); err = -EINVAL; goto restore; } if (i915_reset_count(global) == reset_count) { pr_err("No GPU reset recorded!\n"); i915_request_put(rq); i915_request_put(prev); err = -EINVAL; goto restore; } i915_request_put(prev); prev = rq; count++; } while (time_before(jiffies, end_time)); pr_info("%s: Completed %d queued resets\n", engine->name, count); *h.batch = MI_BATCH_BUFFER_END; intel_gt_chipset_flush(engine->gt); i915_request_put(prev); restore: if (using_guc) { int err2 = intel_selftest_restore_policy(engine, &saved); if (err2) pr_err("%s:%d> [%s] Restore policy failed: %d!\n", __func__, __LINE__, engine->name, err2); if (err == 0) err = err2; } if (err) goto fini; err = igt_flush_test(gt->i915); if (err) { pr_err("[%s] Flush failed: %d!\n", engine->name, err); break; } } fini: hang_fini(&h); unlock: igt_global_reset_unlock(gt); if (intel_gt_is_wedged(gt)) return -EIO; return err; } static int igt_handle_error(void *arg) { struct intel_gt *gt = arg; struct i915_gpu_error *global = &gt->i915->gpu_error; struct intel_engine_cs *engine; struct hang h; struct i915_request *rq; struct i915_gpu_coredump *error; int err; engine = intel_selftest_find_any_engine(gt); /* Check that we can issue a global GPU and engine reset */ if (!intel_has_reset_engine(gt)) return 0; if (!engine || !intel_engine_can_store_dword(engine)) return 0; err = hang_init(&h, gt); if (err) { pr_err("[%s] Hang init failed: %d!\n", engine->name, err); return err; } rq = hang_create_request(&h, engine); if (IS_ERR(rq)) { err = PTR_ERR(rq); pr_err("[%s] Create hang request failed: %d!\n", engine->name, err); goto err_fini; } i915_request_get(rq); i915_request_add(rq); if (!wait_until_running(&h, rq)) { struct drm_printer p = drm_info_printer(gt->i915->drm.dev); pr_err("%s: Failed to start request %llx, at %x\n", __func__, rq->fence.seqno, hws_seqno(&h, rq)); intel_engine_dump(rq->engine, &p, "%s\n", rq->engine->name); intel_gt_set_wedged(gt); err = -EIO; goto err_request; } /* Temporarily disable error capture */ error = xchg(&global->first_error, (void *)-1); intel_gt_handle_error(gt, engine->mask, 0, NULL); xchg(&global->first_error, error); if (rq->fence.error != -EIO) { pr_err("Guilty request not identified!\n"); err = -EINVAL; goto err_request; } err_request: i915_request_put(rq); err_fini: hang_fini(&h); return err; } static int __igt_atomic_reset_engine(struct intel_engine_cs *engine, const struct igt_atomic_section *p, const char *mode) { struct tasklet_struct * const t = &engine->sched_engine->tasklet; int err; GEM_TRACE("i915_reset_engine(%s:%s) under %s\n", engine->name, mode, p->name); if (t->func) tasklet_disable(t); if (strcmp(p->name, "softirq")) local_bh_disable(); p->critical_section_begin(); err = __intel_engine_reset_bh(engine, NULL); p->critical_section_end(); if (strcmp(p->name, "softirq")) local_bh_enable(); if (t->func) { tasklet_enable(t); tasklet_hi_schedule(t); } if (err) pr_err("i915_reset_engine(%s:%s) failed under %s\n", engine->name, mode, p->name); return err; } static int igt_atomic_reset_engine(struct intel_engine_cs *engine, const struct igt_atomic_section *p) { struct i915_request *rq; struct hang h; int err; err = __igt_atomic_reset_engine(engine, p, "idle"); if (err) return err; err = hang_init(&h, engine->gt); if (err) { pr_err("[%s] Hang init failed: %d!\n", engine->name, err); return err; } rq = hang_create_request(&h, engine); if (IS_ERR(rq)) { err = PTR_ERR(rq); pr_err("[%s] Create hang request failed: %d!\n", engine->name, err); goto out; } i915_request_get(rq); i915_request_add(rq); if (wait_until_running(&h, rq)) { err = __igt_atomic_reset_engine(engine, p, "active"); } else { pr_err("%s(%s): Failed to start request %llx, at %x\n", __func__, engine->name, rq->fence.seqno, hws_seqno(&h, rq)); intel_gt_set_wedged(engine->gt); err = -EIO; } if (err == 0) { struct intel_wedge_me w; intel_wedge_on_timeout(&w, engine->gt, HZ / 20 /* 50ms */) i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT); if (intel_gt_is_wedged(engine->gt)) err = -EIO; } i915_request_put(rq); out: hang_fini(&h); return err; } static int igt_reset_engines_atomic(void *arg) { struct intel_gt *gt = arg; const typeof(*igt_atomic_phases) *p; int err = 0; /* Check that the engines resets are usable from atomic context */ if (!intel_has_reset_engine(gt)) return 0; if (intel_uc_uses_guc_submission(&gt->uc)) return 0; igt_global_reset_lock(gt); /* Flush any requests before we get started and check basics */ if (!igt_force_reset(gt)) goto unlock; for (p = igt_atomic_phases; p->name; p++) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, gt, id) { err = igt_atomic_reset_engine(engine, p); if (err) goto out; } } out: /* As we poke around the guts, do a full reset before continuing. */ igt_force_reset(gt); unlock: igt_global_reset_unlock(gt); return err; } int intel_hangcheck_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(igt_hang_sanitycheck), SUBTEST(igt_reset_nop), SUBTEST(igt_reset_nop_engine), SUBTEST(igt_reset_idle_engine), SUBTEST(igt_reset_active_engine), SUBTEST(igt_reset_fail_engine), SUBTEST(igt_reset_engines), SUBTEST(igt_reset_engines_atomic), SUBTEST(igt_reset_queue), SUBTEST(igt_reset_wait), SUBTEST(igt_reset_evict_ggtt), SUBTEST(igt_reset_evict_ppgtt), SUBTEST(igt_reset_evict_fence), SUBTEST(igt_handle_error), }; struct intel_gt *gt = to_gt(i915); intel_wakeref_t wakeref; int err; if (!intel_has_gpu_reset(gt)) return 0; if (intel_gt_is_wedged(gt)) return -EIO; /* we're long past hope of a successful reset */ wakeref = intel_runtime_pm_get(gt->uncore->rpm); err = intel_gt_live_subtests(tests, gt); intel_runtime_pm_put(gt->uncore->rpm, wakeref); return err; }
linux-master
drivers/gpu/drm/i915/gt/selftest_hangcheck.c
// SPDX-License-Identifier: MIT /* * Copyright © 2014 Intel Corporation * * Generated by: intel-gpu-tools-1.8-220-g01153e7 */ #include "intel_renderstate.h" static const u32 gen6_null_state_relocs[] = { 0x00000020, 0x00000024, 0x0000002c, 0x000001e0, 0x000001e4, -1, }; static const u32 gen6_null_state_batch[] = { 0x69040000, 0x790d0001, 0x00000000, 0x00000000, 0x78180000, 0x00000001, 0x61010008, 0x00000000, 0x00000001, /* reloc */ 0x00000001, /* reloc */ 0x00000000, 0x00000001, /* reloc */ 0x00000000, 0x00000001, 0x00000000, 0x00000001, 0x61020000, 0x00000000, 0x78050001, 0x00000018, 0x00000000, 0x780d1002, 0x00000000, 0x00000000, 0x00000420, 0x78150003, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x78100004, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x78160003, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x78110005, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x78120002, 0x00000000, 0x00000000, 0x00000000, 0x78170003, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x79050005, 0xe0040000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x79100000, 0x00000000, 0x79000002, 0xffffffff, 0x00000000, 0x00000000, 0x780e0002, 0x00000441, 0x00000401, 0x00000401, 0x78021002, 0x00000000, 0x00000000, 0x00000400, 0x78130012, 0x00400810, 0x00000000, 0x20000000, 0x04000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x78140007, 0x00000280, 0x08080000, 0x00000000, 0x00060000, 0x4e080002, 0x00100400, 0x00000000, 0x00000000, 0x78090005, 0x02000000, 0x22220000, 0x02f60000, 0x11330000, 0x02850004, 0x11220000, 0x78011002, 0x00000000, 0x00000000, 0x00000200, 0x78080003, 0x00002000, 0x00000448, /* reloc */ 0x00000448, /* reloc */ 0x00000000, 0x05000000, /* cmds end */ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000220, /* state start */ 0x00000240, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0060005a, 0x204077be, 0x000000c0, 0x008d0040, 0x0060005a, 0x206077be, 0x000000c0, 0x008d0080, 0x0060005a, 0x208077be, 0x000000d0, 0x008d0040, 0x0060005a, 0x20a077be, 0x000000d0, 0x008d0080, 0x00000201, 0x20080061, 0x00000000, 0x00000000, 0x00600001, 0x20200022, 0x008d0000, 0x00000000, 0x02800031, 0x21c01cc9, 0x00000020, 0x0a8a0001, 0x00600001, 0x204003be, 0x008d01c0, 0x00000000, 0x00600001, 0x206003be, 0x008d01e0, 0x00000000, 0x00600001, 0x208003be, 0x008d0200, 0x00000000, 0x00600001, 0x20a003be, 0x008d0220, 0x00000000, 0x00600001, 0x20c003be, 0x008d0240, 0x00000000, 0x00600001, 0x20e003be, 0x008d0260, 0x00000000, 0x00600001, 0x210003be, 0x008d0280, 0x00000000, 0x00600001, 0x212003be, 0x008d02a0, 0x00000000, 0x05800031, 0x24001cc8, 0x00000040, 0x90019000, 0x0000007e, 0x00000000, 0x00000000, 0x00000000, 0x0000007e, 0x00000000, 0x00000000, 0x00000000, 0x0000007e, 0x00000000, 0x00000000, 0x00000000, 0x0000007e, 0x00000000, 0x00000000, 0x00000000, 0x0000007e, 0x00000000, 0x00000000, 0x00000000, 0x0000007e, 0x00000000, 0x00000000, 0x00000000, 0x0000007e, 0x00000000, 0x00000000, 0x00000000, 0x0000007e, 0x00000000, 0x00000000, 0x00000000, 0x30000000, 0x00000124, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xf99a130c, 0x799a130c, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x80000031, 0x00000003, 0x00000000, /* state end */ }; RO_RENDERSTATE(6);
linux-master
drivers/gpu/drm/i915/gt/gen6_renderstate.c
// SPDX-License-Identifier: MIT /* * Copyright(c) 2019-2022, Intel Corporation. All rights reserved. */ #include <linux/irq.h> #include <linux/mei_aux.h> #include "i915_drv.h" #include "i915_reg.h" #include "gem/i915_gem_lmem.h" #include "gem/i915_gem_region.h" #include "gt/intel_gsc.h" #include "gt/intel_gt.h" #define GSC_BAR_LENGTH 0x00000FFC static void gsc_irq_mask(struct irq_data *d) { /* generic irq handling */ } static void gsc_irq_unmask(struct irq_data *d) { /* generic irq handling */ } static struct irq_chip gsc_irq_chip = { .name = "gsc_irq_chip", .irq_mask = gsc_irq_mask, .irq_unmask = gsc_irq_unmask, }; static int gsc_irq_init(int irq) { irq_set_chip_and_handler_name(irq, &gsc_irq_chip, handle_simple_irq, "gsc_irq_handler"); return irq_set_chip_data(irq, NULL); } static int gsc_ext_om_alloc(struct intel_gsc *gsc, struct intel_gsc_intf *intf, size_t size) { struct intel_gt *gt = gsc_to_gt(gsc); struct drm_i915_gem_object *obj; int err; obj = i915_gem_object_create_lmem(gt->i915, size, I915_BO_ALLOC_CONTIGUOUS | I915_BO_ALLOC_CPU_CLEAR); if (IS_ERR(obj)) { drm_err(&gt->i915->drm, "Failed to allocate gsc memory\n"); return PTR_ERR(obj); } err = i915_gem_object_pin_pages_unlocked(obj); if (err) { drm_err(&gt->i915->drm, "Failed to pin pages for gsc memory\n"); goto out_put; } intf->gem_obj = obj; return 0; out_put: i915_gem_object_put(obj); return err; } static void gsc_ext_om_destroy(struct intel_gsc_intf *intf) { struct drm_i915_gem_object *obj = fetch_and_zero(&intf->gem_obj); if (!obj) return; if (i915_gem_object_has_pinned_pages(obj)) i915_gem_object_unpin_pages(obj); i915_gem_object_put(obj); } struct gsc_def { const char *name; unsigned long bar; size_t bar_size; bool use_polling; bool slow_firmware; size_t lmem_size; }; /* gsc resources and definitions (HECI1 and HECI2) */ static const struct gsc_def gsc_def_dg1[] = { { /* HECI1 not yet implemented. */ }, { .name = "mei-gscfi", .bar = DG1_GSC_HECI2_BASE, .bar_size = GSC_BAR_LENGTH, } }; static const struct gsc_def gsc_def_xehpsdv[] = { { /* HECI1 not enabled on the device. */ }, { .name = "mei-gscfi", .bar = DG1_GSC_HECI2_BASE, .bar_size = GSC_BAR_LENGTH, .use_polling = true, .slow_firmware = true, } }; static const struct gsc_def gsc_def_dg2[] = { { .name = "mei-gsc", .bar = DG2_GSC_HECI1_BASE, .bar_size = GSC_BAR_LENGTH, .lmem_size = SZ_4M, }, { .name = "mei-gscfi", .bar = DG2_GSC_HECI2_BASE, .bar_size = GSC_BAR_LENGTH, } }; static void gsc_release_dev(struct device *dev) { struct auxiliary_device *aux_dev = to_auxiliary_dev(dev); struct mei_aux_device *adev = auxiliary_dev_to_mei_aux_dev(aux_dev); kfree(adev); } static void gsc_destroy_one(struct drm_i915_private *i915, struct intel_gsc *gsc, unsigned int intf_id) { struct intel_gsc_intf *intf = &gsc->intf[intf_id]; if (intf->adev) { struct auxiliary_device *aux_dev = &intf->adev->aux_dev; if (intf_id == 0) intel_huc_unregister_gsc_notifier(&gsc_to_gt(gsc)->uc.huc, aux_dev->dev.bus); auxiliary_device_delete(aux_dev); auxiliary_device_uninit(aux_dev); intf->adev = NULL; } if (intf->irq >= 0) irq_free_desc(intf->irq); intf->irq = -1; gsc_ext_om_destroy(intf); } static void gsc_init_one(struct drm_i915_private *i915, struct intel_gsc *gsc, unsigned int intf_id) { struct pci_dev *pdev = to_pci_dev(i915->drm.dev); struct mei_aux_device *adev; struct auxiliary_device *aux_dev; const struct gsc_def *def; struct intel_gsc_intf *intf = &gsc->intf[intf_id]; int ret; intf->irq = -1; intf->id = intf_id; /* * On the multi-tile setups the GSC is functional on the first tile only */ if (gsc_to_gt(gsc)->info.id != 0) { drm_dbg(&i915->drm, "Not initializing gsc for remote tiles\n"); return; } if (intf_id == 0 && !HAS_HECI_PXP(i915)) return; if (IS_DG1(i915)) { def = &gsc_def_dg1[intf_id]; } else if (IS_XEHPSDV(i915)) { def = &gsc_def_xehpsdv[intf_id]; } else if (IS_DG2(i915)) { def = &gsc_def_dg2[intf_id]; } else { drm_warn_once(&i915->drm, "Unknown platform\n"); return; } if (!def->name) { drm_warn_once(&i915->drm, "HECI%d is not implemented!\n", intf_id + 1); return; } /* skip irq initialization */ if (def->use_polling) goto add_device; intf->irq = irq_alloc_desc(0); if (intf->irq < 0) { drm_err(&i915->drm, "gsc irq error %d\n", intf->irq); goto fail; } ret = gsc_irq_init(intf->irq); if (ret < 0) { drm_err(&i915->drm, "gsc irq init failed %d\n", ret); goto fail; } add_device: adev = kzalloc(sizeof(*adev), GFP_KERNEL); if (!adev) goto fail; if (def->lmem_size) { drm_dbg(&i915->drm, "setting up GSC lmem\n"); if (gsc_ext_om_alloc(gsc, intf, def->lmem_size)) { drm_err(&i915->drm, "setting up gsc extended operational memory failed\n"); kfree(adev); goto fail; } adev->ext_op_mem.start = i915_gem_object_get_dma_address(intf->gem_obj, 0); adev->ext_op_mem.end = adev->ext_op_mem.start + def->lmem_size; } adev->irq = intf->irq; adev->bar.parent = &pdev->resource[0]; adev->bar.start = def->bar + pdev->resource[0].start; adev->bar.end = adev->bar.start + def->bar_size - 1; adev->bar.flags = IORESOURCE_MEM; adev->bar.desc = IORES_DESC_NONE; adev->slow_firmware = def->slow_firmware; aux_dev = &adev->aux_dev; aux_dev->name = def->name; aux_dev->id = (pci_domain_nr(pdev->bus) << 16) | PCI_DEVID(pdev->bus->number, pdev->devfn); aux_dev->dev.parent = &pdev->dev; aux_dev->dev.release = gsc_release_dev; ret = auxiliary_device_init(aux_dev); if (ret < 0) { drm_err(&i915->drm, "gsc aux init failed %d\n", ret); kfree(adev); goto fail; } intf->adev = adev; /* needed by the notifier */ if (intf_id == 0) intel_huc_register_gsc_notifier(&gsc_to_gt(gsc)->uc.huc, aux_dev->dev.bus); ret = auxiliary_device_add(aux_dev); if (ret < 0) { drm_err(&i915->drm, "gsc aux add failed %d\n", ret); if (intf_id == 0) intel_huc_unregister_gsc_notifier(&gsc_to_gt(gsc)->uc.huc, aux_dev->dev.bus); intf->adev = NULL; /* adev will be freed with the put_device() and .release sequence */ auxiliary_device_uninit(aux_dev); goto fail; } return; fail: gsc_destroy_one(i915, gsc, intf->id); } static void gsc_irq_handler(struct intel_gt *gt, unsigned int intf_id) { int ret; if (intf_id >= INTEL_GSC_NUM_INTERFACES) { drm_warn_once(&gt->i915->drm, "GSC irq: intf_id %d is out of range", intf_id); return; } if (!HAS_HECI_GSC(gt->i915)) { drm_warn_once(&gt->i915->drm, "GSC irq: not supported"); return; } if (gt->gsc.intf[intf_id].irq < 0) return; ret = generic_handle_irq(gt->gsc.intf[intf_id].irq); if (ret) drm_err_ratelimited(&gt->i915->drm, "error handling GSC irq: %d\n", ret); } void intel_gsc_irq_handler(struct intel_gt *gt, u32 iir) { if (iir & GSC_IRQ_INTF(0)) gsc_irq_handler(gt, 0); if (iir & GSC_IRQ_INTF(1)) gsc_irq_handler(gt, 1); } void intel_gsc_init(struct intel_gsc *gsc, struct drm_i915_private *i915) { unsigned int i; if (!HAS_HECI_GSC(i915)) return; for (i = 0; i < INTEL_GSC_NUM_INTERFACES; i++) gsc_init_one(i915, gsc, i); } void intel_gsc_fini(struct intel_gsc *gsc) { struct intel_gt *gt = gsc_to_gt(gsc); unsigned int i; if (!HAS_HECI_GSC(gt->i915)) return; for (i = 0; i < INTEL_GSC_NUM_INTERFACES; i++) gsc_destroy_one(gt->i915, gsc, i); }
linux-master
drivers/gpu/drm/i915/gt/intel_gsc.c
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include <linux/slab.h> /* fault-inject.h is not standalone! */ #include <linux/fault-inject.h> #include <linux/sched/mm.h> #include <drm/drm_cache.h> #include "gem/i915_gem_internal.h" #include "gem/i915_gem_lmem.h" #include "i915_reg.h" #include "i915_trace.h" #include "i915_utils.h" #include "intel_gt.h" #include "intel_gt_mcr.h" #include "intel_gt_print.h" #include "intel_gt_regs.h" #include "intel_gtt.h" static bool intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *i915) { return IS_BROXTON(i915) && i915_vtd_active(i915); } bool intel_vm_no_concurrent_access_wa(struct drm_i915_private *i915) { return IS_CHERRYVIEW(i915) || intel_ggtt_update_needs_vtd_wa(i915); } struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz) { struct drm_i915_gem_object *obj; /* * To avoid severe over-allocation when dealing with min_page_size * restrictions, we override that behaviour here by allowing an object * size and page layout which can be smaller. In practice this should be * totally fine, since GTT paging structures are not typically inserted * into the GTT. * * Note that we also hit this path for the scratch page, and for this * case it might need to be 64K, but that should work fine here since we * used the passed in size for the page size, which should ensure it * also has the same alignment. */ obj = __i915_gem_object_create_lmem_with_ps(vm->i915, sz, sz, vm->lmem_pt_obj_flags); /* * Ensure all paging structures for this vm share the same dma-resv * object underneath, with the idea that one object_lock() will lock * them all at once. */ if (!IS_ERR(obj)) { obj->base.resv = i915_vm_resv_get(vm); obj->shares_resv_from = vm; } return obj; } struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz) { struct drm_i915_gem_object *obj; if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1))) i915_gem_shrink_all(vm->i915); obj = i915_gem_object_create_internal(vm->i915, sz); /* * Ensure all paging structures for this vm share the same dma-resv * object underneath, with the idea that one object_lock() will lock * them all at once. */ if (!IS_ERR(obj)) { obj->base.resv = i915_vm_resv_get(vm); obj->shares_resv_from = vm; } return obj; } int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj) { enum i915_map_type type; void *vaddr; type = intel_gt_coherent_map_type(vm->gt, obj, true); vaddr = i915_gem_object_pin_map_unlocked(obj, type); if (IS_ERR(vaddr)) return PTR_ERR(vaddr); i915_gem_object_make_unshrinkable(obj); return 0; } int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj) { enum i915_map_type type; void *vaddr; type = intel_gt_coherent_map_type(vm->gt, obj, true); vaddr = i915_gem_object_pin_map(obj, type); if (IS_ERR(vaddr)) return PTR_ERR(vaddr); i915_gem_object_make_unshrinkable(obj); return 0; } static void clear_vm_list(struct list_head *list) { struct i915_vma *vma, *vn; list_for_each_entry_safe(vma, vn, list, vm_link) { struct drm_i915_gem_object *obj = vma->obj; if (!i915_gem_object_get_rcu(obj)) { /* * Object is dying, but has not yet cleared its * vma list. * Unbind the dying vma to ensure our list * is completely drained. We leave the destruction to * the object destructor to avoid the vma * disappearing under it. */ atomic_and(~I915_VMA_PIN_MASK, &vma->flags); WARN_ON(__i915_vma_unbind(vma)); /* Remove from the unbound list */ list_del_init(&vma->vm_link); /* * Delay the vm and vm mutex freeing until the * object is done with destruction. */ i915_vm_resv_get(vma->vm); vma->vm_ddestroy = true; } else { i915_vma_destroy_locked(vma); i915_gem_object_put(obj); } } } static void __i915_vm_close(struct i915_address_space *vm) { mutex_lock(&vm->mutex); clear_vm_list(&vm->bound_list); clear_vm_list(&vm->unbound_list); /* Check for must-fix unanticipated side-effects */ GEM_BUG_ON(!list_empty(&vm->bound_list)); GEM_BUG_ON(!list_empty(&vm->unbound_list)); mutex_unlock(&vm->mutex); } /* lock the vm into the current ww, if we lock one, we lock all */ int i915_vm_lock_objects(struct i915_address_space *vm, struct i915_gem_ww_ctx *ww) { if (vm->scratch[0]->base.resv == &vm->_resv) { return i915_gem_object_lock(vm->scratch[0], ww); } else { struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); /* We borrowed the scratch page from ggtt, take the top level object */ return i915_gem_object_lock(ppgtt->pd->pt.base, ww); } } void i915_address_space_fini(struct i915_address_space *vm) { drm_mm_takedown(&vm->mm); } /** * i915_vm_resv_release - Final struct i915_address_space destructor * @kref: Pointer to the &i915_address_space.resv_ref member. * * This function is called when the last lock sharer no longer shares the * &i915_address_space._resv lock, and also if we raced when * destroying a vma by the vma destruction */ void i915_vm_resv_release(struct kref *kref) { struct i915_address_space *vm = container_of(kref, typeof(*vm), resv_ref); dma_resv_fini(&vm->_resv); mutex_destroy(&vm->mutex); kfree(vm); } static void __i915_vm_release(struct work_struct *work) { struct i915_address_space *vm = container_of(work, struct i915_address_space, release_work); __i915_vm_close(vm); /* Synchronize async unbinds. */ i915_vma_resource_bind_dep_sync_all(vm); vm->cleanup(vm); i915_address_space_fini(vm); i915_vm_resv_put(vm); } void i915_vm_release(struct kref *kref) { struct i915_address_space *vm = container_of(kref, struct i915_address_space, ref); GEM_BUG_ON(i915_is_ggtt(vm)); trace_i915_ppgtt_release(vm); queue_work(vm->i915->wq, &vm->release_work); } void i915_address_space_init(struct i915_address_space *vm, int subclass) { kref_init(&vm->ref); /* * Special case for GGTT that has already done an early * kref_init here. */ if (!kref_read(&vm->resv_ref)) kref_init(&vm->resv_ref); vm->pending_unbind = RB_ROOT_CACHED; INIT_WORK(&vm->release_work, __i915_vm_release); /* * The vm->mutex must be reclaim safe (for use in the shrinker). * Do a dummy acquire now under fs_reclaim so that any allocation * attempt holding the lock is immediately reported by lockdep. */ mutex_init(&vm->mutex); lockdep_set_subclass(&vm->mutex, subclass); if (!intel_vm_no_concurrent_access_wa(vm->i915)) { i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex); } else { /* * CHV + BXT VTD workaround use stop_machine(), * which is allowed to allocate memory. This means &vm->mutex * is the outer lock, and in theory we can allocate memory inside * it through stop_machine(). * * Add the annotation for this, we use trylock in shrinker. */ mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_); might_alloc(GFP_KERNEL); mutex_release(&vm->mutex.dep_map, _THIS_IP_); } dma_resv_init(&vm->_resv); GEM_BUG_ON(!vm->total); drm_mm_init(&vm->mm, 0, vm->total); memset64(vm->min_alignment, I915_GTT_MIN_ALIGNMENT, ARRAY_SIZE(vm->min_alignment)); if (HAS_64K_PAGES(vm->i915)) { vm->min_alignment[INTEL_MEMORY_LOCAL] = I915_GTT_PAGE_SIZE_64K; vm->min_alignment[INTEL_MEMORY_STOLEN_LOCAL] = I915_GTT_PAGE_SIZE_64K; } vm->mm.head_node.color = I915_COLOR_UNEVICTABLE; INIT_LIST_HEAD(&vm->bound_list); INIT_LIST_HEAD(&vm->unbound_list); } void *__px_vaddr(struct drm_i915_gem_object *p) { enum i915_map_type type; GEM_BUG_ON(!i915_gem_object_has_pages(p)); return page_unpack_bits(p->mm.mapping, &type); } dma_addr_t __px_dma(struct drm_i915_gem_object *p) { GEM_BUG_ON(!i915_gem_object_has_pages(p)); return sg_dma_address(p->mm.pages->sgl); } struct page *__px_page(struct drm_i915_gem_object *p) { GEM_BUG_ON(!i915_gem_object_has_pages(p)); return sg_page(p->mm.pages->sgl); } void fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count) { void *vaddr = __px_vaddr(p); memset64(vaddr, val, count); drm_clflush_virt_range(vaddr, PAGE_SIZE); } static void poison_scratch_page(struct drm_i915_gem_object *scratch) { void *vaddr = __px_vaddr(scratch); u8 val; val = 0; if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) val = POISON_FREE; memset(vaddr, val, scratch->base.size); drm_clflush_virt_range(vaddr, scratch->base.size); } int setup_scratch_page(struct i915_address_space *vm) { unsigned long size; /* * In order to utilize 64K pages for an object with a size < 2M, we will * need to support a 64K scratch page, given that every 16th entry for a * page-table operating in 64K mode must point to a properly aligned 64K * region, including any PTEs which happen to point to scratch. * * This is only relevant for the 48b PPGTT where we support * huge-gtt-pages, see also i915_vma_insert(). However, as we share the * scratch (read-only) between all vm, we create one 64k scratch page * for all. */ size = I915_GTT_PAGE_SIZE_4K; if (i915_vm_is_4lvl(vm) && HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K) && !HAS_64K_PAGES(vm->i915)) size = I915_GTT_PAGE_SIZE_64K; do { struct drm_i915_gem_object *obj; obj = vm->alloc_scratch_dma(vm, size); if (IS_ERR(obj)) goto skip; if (map_pt_dma(vm, obj)) goto skip_obj; /* We need a single contiguous page for our scratch */ if (obj->mm.page_sizes.sg < size) goto skip_obj; /* And it needs to be correspondingly aligned */ if (__px_dma(obj) & (size - 1)) goto skip_obj; /* * Use a non-zero scratch page for debugging. * * We want a value that should be reasonably obvious * to spot in the error state, while also causing a GPU hang * if executed. We prefer using a clear page in production, so * should it ever be accidentally used, the effect should be * fairly benign. */ poison_scratch_page(obj); vm->scratch[0] = obj; vm->scratch_order = get_order(size); return 0; skip_obj: i915_gem_object_put(obj); skip: if (size == I915_GTT_PAGE_SIZE_4K) return -ENOMEM; size = I915_GTT_PAGE_SIZE_4K; } while (1); } void free_scratch(struct i915_address_space *vm) { int i; if (!vm->scratch[0]) return; for (i = 0; i <= vm->top; i++) i915_gem_object_put(vm->scratch[i]); } void gtt_write_workarounds(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; struct intel_uncore *uncore = gt->uncore; /* * This function is for gtt related workarounds. This function is * called on driver load and after a GPU reset, so you can place * workarounds here even if they get overwritten by GPU reset. */ /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */ if (IS_BROADWELL(i915)) intel_uncore_write(uncore, GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW); else if (IS_CHERRYVIEW(i915)) intel_uncore_write(uncore, GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV); else if (IS_GEN9_LP(i915)) intel_uncore_write(uncore, GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT); else if (GRAPHICS_VER(i915) >= 9 && GRAPHICS_VER(i915) <= 11) intel_uncore_write(uncore, GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL); /* * To support 64K PTEs we need to first enable the use of the * Intermediate-Page-Size(IPS) bit of the PDE field via some magical * mmio, otherwise the page-walker will simply ignore the IPS bit. This * shouldn't be needed after GEN10. * * 64K pages were first introduced from BDW+, although technically they * only *work* from gen9+. For pre-BDW we instead have the option for * 32K pages, but we don't currently have any support for it in our * driver. */ if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) && GRAPHICS_VER(i915) <= 10) intel_uncore_rmw(uncore, GEN8_GAMW_ECO_DEV_RW_IA, 0, GAMW_ECO_ENABLE_64K_IPS_FIELD); if (IS_GRAPHICS_VER(i915, 8, 11)) { bool can_use_gtt_cache = true; /* * According to the BSpec if we use 2M/1G pages then we also * need to disable the GTT cache. At least on BDW we can see * visual corruption when using 2M pages, and not disabling the * GTT cache. */ if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M)) can_use_gtt_cache = false; /* WaGttCachingOffByDefault */ intel_uncore_write(uncore, HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0); gt_WARN_ON_ONCE(gt, can_use_gtt_cache && intel_uncore_read(uncore, HSW_GTT_CACHE_EN) == 0); } } static void xelpmp_setup_private_ppat(struct intel_uncore *uncore) { intel_uncore_write(uncore, XELPMP_PAT_INDEX(0), MTL_PPAT_L4_0_WB); intel_uncore_write(uncore, XELPMP_PAT_INDEX(1), MTL_PPAT_L4_1_WT); intel_uncore_write(uncore, XELPMP_PAT_INDEX(2), MTL_PPAT_L4_3_UC); intel_uncore_write(uncore, XELPMP_PAT_INDEX(3), MTL_PPAT_L4_0_WB | MTL_2_COH_1W); intel_uncore_write(uncore, XELPMP_PAT_INDEX(4), MTL_PPAT_L4_0_WB | MTL_3_COH_2W); /* * Remaining PAT entries are left at the hardware-default * fully-cached setting */ } static void xelpg_setup_private_ppat(struct intel_gt *gt) { intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(0), MTL_PPAT_L4_0_WB); intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(1), MTL_PPAT_L4_1_WT); intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(2), MTL_PPAT_L4_3_UC); intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(3), MTL_PPAT_L4_0_WB | MTL_2_COH_1W); intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(4), MTL_PPAT_L4_0_WB | MTL_3_COH_2W); /* * Remaining PAT entries are left at the hardware-default * fully-cached setting */ } static void tgl_setup_private_ppat(struct intel_uncore *uncore) { /* TGL doesn't support LLC or AGE settings */ intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB); intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC); intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT); intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC); intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB); intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB); intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB); intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB); } static void xehp_setup_private_ppat(struct intel_gt *gt) { enum forcewake_domains fw; unsigned long flags; fw = intel_uncore_forcewake_for_reg(gt->uncore, _MMIO(XEHP_PAT_INDEX(0).reg), FW_REG_WRITE); intel_uncore_forcewake_get(gt->uncore, fw); intel_gt_mcr_lock(gt, &flags); intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(0), GEN8_PPAT_WB); intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(1), GEN8_PPAT_WC); intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(2), GEN8_PPAT_WT); intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(3), GEN8_PPAT_UC); intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(4), GEN8_PPAT_WB); intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(5), GEN8_PPAT_WB); intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(6), GEN8_PPAT_WB); intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(7), GEN8_PPAT_WB); intel_gt_mcr_unlock(gt, flags); intel_uncore_forcewake_put(gt->uncore, fw); } static void icl_setup_private_ppat(struct intel_uncore *uncore) { intel_uncore_write(uncore, GEN10_PAT_INDEX(0), GEN8_PPAT_WB | GEN8_PPAT_LLC); intel_uncore_write(uncore, GEN10_PAT_INDEX(1), GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); intel_uncore_write(uncore, GEN10_PAT_INDEX(2), GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE); intel_uncore_write(uncore, GEN10_PAT_INDEX(3), GEN8_PPAT_UC); intel_uncore_write(uncore, GEN10_PAT_INDEX(4), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); intel_uncore_write(uncore, GEN10_PAT_INDEX(5), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); intel_uncore_write(uncore, GEN10_PAT_INDEX(6), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); intel_uncore_write(uncore, GEN10_PAT_INDEX(7), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); } /* * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability * bits. When using advanced contexts each context stores its own PAT, but * writing this data shouldn't be harmful even in those cases. */ static void bdw_setup_private_ppat(struct intel_uncore *uncore) { struct drm_i915_private *i915 = uncore->i915; u64 pat; pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */ GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */ GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */ GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) | GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) | GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) | GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); /* for scanout with eLLC */ if (GRAPHICS_VER(i915) >= 9) pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE); else pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); } static void chv_setup_private_ppat(struct intel_uncore *uncore) { u64 pat; /* * Map WB on BDW to snooped on CHV. * * Only the snoop bit has meaning for CHV, the rest is * ignored. * * The hardware will never snoop for certain types of accesses: * - CPU GTT (GMADR->GGTT->no snoop->memory) * - PPGTT page tables * - some other special cycles * * As with BDW, we also need to consider the following for GT accesses: * "For GGTT, there is NO pat_sel[2:0] from the entry, * so RTL will always use the value corresponding to * pat_sel = 000". * Which means we must set the snoop bit in PAT entry 0 * in order to keep the global status page working. */ pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) | GEN8_PPAT(1, 0) | GEN8_PPAT(2, 0) | GEN8_PPAT(3, 0) | GEN8_PPAT(4, CHV_PPAT_SNOOP) | GEN8_PPAT(5, CHV_PPAT_SNOOP) | GEN8_PPAT(6, CHV_PPAT_SNOOP) | GEN8_PPAT(7, CHV_PPAT_SNOOP); intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); } void setup_private_pat(struct intel_gt *gt) { struct intel_uncore *uncore = gt->uncore; struct drm_i915_private *i915 = gt->i915; GEM_BUG_ON(GRAPHICS_VER(i915) < 8); if (gt->type == GT_MEDIA) { xelpmp_setup_private_ppat(gt->uncore); return; } if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) xelpg_setup_private_ppat(gt); else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) xehp_setup_private_ppat(gt); else if (GRAPHICS_VER(i915) >= 12) tgl_setup_private_ppat(uncore); else if (GRAPHICS_VER(i915) >= 11) icl_setup_private_ppat(uncore); else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915)) chv_setup_private_ppat(uncore); else bdw_setup_private_ppat(uncore); } struct i915_vma * __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size) { struct drm_i915_gem_object *obj; struct i915_vma *vma; obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size)); if (IS_ERR(obj)) return ERR_CAST(obj); i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) { i915_gem_object_put(obj); return vma; } return vma; } struct i915_vma * __vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size) { struct i915_vma *vma; int err; vma = __vm_create_scratch_for_read(vm, size); if (IS_ERR(vma)) return vma; err = i915_vma_pin(vma, 0, 0, i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER); if (err) { i915_vma_put(vma); return ERR_PTR(err); } return vma; } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftests/mock_gtt.c" #endif
linux-master
drivers/gpu/drm/i915/gt/intel_gtt.c
// SPDX-License-Identifier: MIT /* * Copyright © 2023 Intel Corporation */ #include "i915_drv.h" #include "i915_perf_oa_regs.h" #include "intel_engine_pm.h" #include "intel_gt.h" #include "intel_gt_mcr.h" #include "intel_gt_pm.h" #include "intel_gt_print.h" #include "intel_gt_regs.h" #include "intel_tlb.h" /* * HW architecture suggest typical invalidation time at 40us, * with pessimistic cases up to 100us and a recommendation to * cap at 1ms. We go a bit higher just in case. */ #define TLB_INVAL_TIMEOUT_US 100 #define TLB_INVAL_TIMEOUT_MS 4 /* * On Xe_HP the TLB invalidation registers are located at the same MMIO offsets * but are now considered MCR registers. Since they exist within a GAM range, * the primary instance of the register rolls up the status from each unit. */ static int wait_for_invalidate(struct intel_engine_cs *engine) { if (engine->tlb_inv.mcr) return intel_gt_mcr_wait_for_reg(engine->gt, engine->tlb_inv.reg.mcr_reg, engine->tlb_inv.done, 0, TLB_INVAL_TIMEOUT_US, TLB_INVAL_TIMEOUT_MS); else return __intel_wait_for_register_fw(engine->gt->uncore, engine->tlb_inv.reg.reg, engine->tlb_inv.done, 0, TLB_INVAL_TIMEOUT_US, TLB_INVAL_TIMEOUT_MS, NULL); } static void mmio_invalidate_full(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; struct intel_uncore *uncore = gt->uncore; struct intel_engine_cs *engine; intel_engine_mask_t awake, tmp; enum intel_engine_id id; unsigned long flags; if (GRAPHICS_VER(i915) < 8) return; intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); intel_gt_mcr_lock(gt, &flags); spin_lock(&uncore->lock); /* serialise invalidate with GT reset */ awake = 0; for_each_engine(engine, gt, id) { if (!intel_engine_pm_is_awake(engine)) continue; if (engine->tlb_inv.mcr) intel_gt_mcr_multicast_write_fw(gt, engine->tlb_inv.reg.mcr_reg, engine->tlb_inv.request); else intel_uncore_write_fw(uncore, engine->tlb_inv.reg.reg, engine->tlb_inv.request); awake |= engine->mask; } GT_TRACE(gt, "invalidated engines %08x\n", awake); /* Wa_2207587034:tgl,dg1,rkl,adl-s,adl-p */ if (awake && (IS_TIGERLAKE(i915) || IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_ALDERLAKE_S(i915) || IS_ALDERLAKE_P(i915))) intel_uncore_write_fw(uncore, GEN12_OA_TLB_INV_CR, 1); spin_unlock(&uncore->lock); intel_gt_mcr_unlock(gt, flags); for_each_engine_masked(engine, gt, awake, tmp) { if (wait_for_invalidate(engine)) gt_err_ratelimited(gt, "%s TLB invalidation did not complete in %ums!\n", engine->name, TLB_INVAL_TIMEOUT_MS); } /* * Use delayed put since a) we mostly expect a flurry of TLB * invalidations so it is good to avoid paying the forcewake cost and * b) it works around a bug in Icelake which cannot cope with too rapid * transitions. */ intel_uncore_forcewake_put_delayed(uncore, FORCEWAKE_ALL); } static bool tlb_seqno_passed(const struct intel_gt *gt, u32 seqno) { u32 cur = intel_gt_tlb_seqno(gt); /* Only skip if a *full* TLB invalidate barrier has passed */ return (s32)(cur - ALIGN(seqno, 2)) > 0; } void intel_gt_invalidate_tlb_full(struct intel_gt *gt, u32 seqno) { intel_wakeref_t wakeref; if (I915_SELFTEST_ONLY(gt->awake == -ENODEV)) return; if (intel_gt_is_wedged(gt)) return; if (tlb_seqno_passed(gt, seqno)) return; with_intel_gt_pm_if_awake(gt, wakeref) { mutex_lock(&gt->tlb.invalidate_lock); if (tlb_seqno_passed(gt, seqno)) goto unlock; mmio_invalidate_full(gt); write_seqcount_invalidate(&gt->tlb.seqno); unlock: mutex_unlock(&gt->tlb.invalidate_lock); } } void intel_gt_init_tlb(struct intel_gt *gt) { mutex_init(&gt->tlb.invalidate_lock); seqcount_mutex_init(&gt->tlb.seqno, &gt->tlb.invalidate_lock); } void intel_gt_fini_tlb(struct intel_gt *gt) { mutex_destroy(&gt->tlb.invalidate_lock); } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_tlb.c" #endif
linux-master
drivers/gpu/drm/i915/gt/intel_tlb.c
// SPDX-License-Identifier: MIT /* * Copyright © 2018 Intel Corporation */ #include <linux/crc32.h> #include "gem/i915_gem_stolen.h" #include "i915_memcpy.h" #include "i915_selftest.h" #include "intel_gpu_commands.h" #include "selftests/igt_reset.h" #include "selftests/igt_atomic.h" #include "selftests/igt_spinner.h" static int __igt_reset_stolen(struct intel_gt *gt, intel_engine_mask_t mask, const char *msg) { struct i915_ggtt *ggtt = gt->ggtt; const struct resource *dsm = &gt->i915->dsm.stolen; resource_size_t num_pages, page; struct intel_engine_cs *engine; intel_wakeref_t wakeref; enum intel_engine_id id; struct igt_spinner spin; long max, count; void *tmp; u32 *crc; int err; if (!drm_mm_node_allocated(&ggtt->error_capture)) return 0; num_pages = resource_size(dsm) >> PAGE_SHIFT; if (!num_pages) return 0; crc = kmalloc_array(num_pages, sizeof(u32), GFP_KERNEL); if (!crc) return -ENOMEM; tmp = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!tmp) { err = -ENOMEM; goto err_crc; } igt_global_reset_lock(gt); wakeref = intel_runtime_pm_get(gt->uncore->rpm); err = igt_spinner_init(&spin, gt); if (err) goto err_lock; for_each_engine(engine, gt, id) { struct intel_context *ce; struct i915_request *rq; if (!(mask & engine->mask)) continue; if (!intel_engine_can_store_dword(engine)) continue; ce = intel_context_create(engine); if (IS_ERR(ce)) { err = PTR_ERR(ce); goto err_spin; } rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK); intel_context_put(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_spin; } i915_request_add(rq); } for (page = 0; page < num_pages; page++) { dma_addr_t dma = (dma_addr_t)dsm->start + (page << PAGE_SHIFT); void __iomem *s; void *in; ggtt->vm.insert_page(&ggtt->vm, dma, ggtt->error_capture.start, i915_gem_get_pat_index(gt->i915, I915_CACHE_NONE), 0); mb(); s = io_mapping_map_wc(&ggtt->iomap, ggtt->error_capture.start, PAGE_SIZE); if (!__drm_mm_interval_first(&gt->i915->mm.stolen, page << PAGE_SHIFT, ((page + 1) << PAGE_SHIFT) - 1)) memset_io(s, STACK_MAGIC, PAGE_SIZE); in = (void __force *)s; if (i915_memcpy_from_wc(tmp, in, PAGE_SIZE)) in = tmp; crc[page] = crc32_le(0, in, PAGE_SIZE); io_mapping_unmap(s); } mb(); ggtt->vm.clear_range(&ggtt->vm, ggtt->error_capture.start, PAGE_SIZE); if (mask == ALL_ENGINES) { intel_gt_reset(gt, mask, NULL); } else { for_each_engine(engine, gt, id) { if (mask & engine->mask) intel_engine_reset(engine, NULL); } } max = -1; count = 0; for (page = 0; page < num_pages; page++) { dma_addr_t dma = (dma_addr_t)dsm->start + (page << PAGE_SHIFT); void __iomem *s; void *in; u32 x; ggtt->vm.insert_page(&ggtt->vm, dma, ggtt->error_capture.start, i915_gem_get_pat_index(gt->i915, I915_CACHE_NONE), 0); mb(); s = io_mapping_map_wc(&ggtt->iomap, ggtt->error_capture.start, PAGE_SIZE); in = (void __force *)s; if (i915_memcpy_from_wc(tmp, in, PAGE_SIZE)) in = tmp; x = crc32_le(0, in, PAGE_SIZE); if (x != crc[page] && !__drm_mm_interval_first(&gt->i915->mm.stolen, page << PAGE_SHIFT, ((page + 1) << PAGE_SHIFT) - 1)) { pr_debug("unused stolen page %pa modified by GPU reset\n", &page); if (count++ == 0) igt_hexdump(in, PAGE_SIZE); max = page; } io_mapping_unmap(s); } mb(); ggtt->vm.clear_range(&ggtt->vm, ggtt->error_capture.start, PAGE_SIZE); if (count > 0) { pr_info("%s reset clobbered %ld pages of stolen, last clobber at page %ld\n", msg, count, max); } if (max >= I915_GEM_STOLEN_BIAS >> PAGE_SHIFT) { pr_err("%s reset clobbered unreserved area [above %x] of stolen; may cause severe faults\n", msg, I915_GEM_STOLEN_BIAS); err = -EINVAL; } err_spin: igt_spinner_fini(&spin); err_lock: intel_runtime_pm_put(gt->uncore->rpm, wakeref); igt_global_reset_unlock(gt); kfree(tmp); err_crc: kfree(crc); return err; } static int igt_reset_device_stolen(void *arg) { return __igt_reset_stolen(arg, ALL_ENGINES, "device"); } static int igt_reset_engines_stolen(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; int err; if (!intel_has_reset_engine(gt)) return 0; for_each_engine(engine, gt, id) { err = __igt_reset_stolen(gt, engine->mask, engine->name); if (err) return err; } return 0; } static int igt_global_reset(void *arg) { struct intel_gt *gt = arg; unsigned int reset_count; intel_wakeref_t wakeref; int err = 0; /* Check that we can issue a global GPU reset */ igt_global_reset_lock(gt); wakeref = intel_runtime_pm_get(gt->uncore->rpm); reset_count = i915_reset_count(&gt->i915->gpu_error); intel_gt_reset(gt, ALL_ENGINES, NULL); if (i915_reset_count(&gt->i915->gpu_error) == reset_count) { pr_err("No GPU reset recorded!\n"); err = -EINVAL; } intel_runtime_pm_put(gt->uncore->rpm, wakeref); igt_global_reset_unlock(gt); if (intel_gt_is_wedged(gt)) err = -EIO; return err; } static int igt_wedged_reset(void *arg) { struct intel_gt *gt = arg; intel_wakeref_t wakeref; /* Check that we can recover a wedged device with a GPU reset */ igt_global_reset_lock(gt); wakeref = intel_runtime_pm_get(gt->uncore->rpm); intel_gt_set_wedged(gt); GEM_BUG_ON(!intel_gt_is_wedged(gt)); intel_gt_reset(gt, ALL_ENGINES, NULL); intel_runtime_pm_put(gt->uncore->rpm, wakeref); igt_global_reset_unlock(gt); return intel_gt_is_wedged(gt) ? -EIO : 0; } static int igt_atomic_reset(void *arg) { struct intel_gt *gt = arg; const typeof(*igt_atomic_phases) *p; int err = 0; /* Check that the resets are usable from atomic context */ intel_gt_pm_get(gt); igt_global_reset_lock(gt); /* Flush any requests before we get started and check basics */ if (!igt_force_reset(gt)) goto unlock; for (p = igt_atomic_phases; p->name; p++) { intel_engine_mask_t awake; GEM_TRACE("__intel_gt_reset under %s\n", p->name); awake = reset_prepare(gt); p->critical_section_begin(); err = __intel_gt_reset(gt, ALL_ENGINES); p->critical_section_end(); reset_finish(gt, awake); if (err) { pr_err("__intel_gt_reset failed under %s\n", p->name); break; } } /* As we poke around the guts, do a full reset before continuing. */ igt_force_reset(gt); unlock: igt_global_reset_unlock(gt); intel_gt_pm_put(gt); return err; } static int igt_atomic_engine_reset(void *arg) { struct intel_gt *gt = arg; const typeof(*igt_atomic_phases) *p; struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; /* Check that the resets are usable from atomic context */ if (!intel_has_reset_engine(gt)) return 0; if (intel_uc_uses_guc_submission(&gt->uc)) return 0; intel_gt_pm_get(gt); igt_global_reset_lock(gt); /* Flush any requests before we get started and check basics */ if (!igt_force_reset(gt)) goto out_unlock; for_each_engine(engine, gt, id) { struct tasklet_struct *t = &engine->sched_engine->tasklet; if (t->func) tasklet_disable(t); intel_engine_pm_get(engine); for (p = igt_atomic_phases; p->name; p++) { GEM_TRACE("intel_engine_reset(%s) under %s\n", engine->name, p->name); if (strcmp(p->name, "softirq")) local_bh_disable(); p->critical_section_begin(); err = __intel_engine_reset_bh(engine, NULL); p->critical_section_end(); if (strcmp(p->name, "softirq")) local_bh_enable(); if (err) { pr_err("intel_engine_reset(%s) failed under %s\n", engine->name, p->name); break; } } intel_engine_pm_put(engine); if (t->func) { tasklet_enable(t); tasklet_hi_schedule(t); } if (err) break; } /* As we poke around the guts, do a full reset before continuing. */ igt_force_reset(gt); out_unlock: igt_global_reset_unlock(gt); intel_gt_pm_put(gt); return err; } int intel_reset_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(igt_global_reset), /* attempt to recover GPU first */ SUBTEST(igt_reset_device_stolen), SUBTEST(igt_reset_engines_stolen), SUBTEST(igt_wedged_reset), SUBTEST(igt_atomic_reset), SUBTEST(igt_atomic_engine_reset), }; struct intel_gt *gt = to_gt(i915); if (!intel_has_gpu_reset(gt)) return 0; if (intel_gt_is_wedged(gt)) return -EIO; /* we're long past hope of a successful reset */ return intel_gt_live_subtests(tests, gt); }
linux-master
drivers/gpu/drm/i915/gt/selftest_reset.c
// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include "i915_drv.h" #include "i915_vma.h" #include "intel_context.h" #include "intel_engine_pm.h" #include "intel_gpu_commands.h" #include "intel_lrc.h" #include "intel_lrc_reg.h" #include "intel_ring.h" #include "intel_sseu.h" static int gen8_emit_rpcs_config(struct i915_request *rq, const struct intel_context *ce, const struct intel_sseu sseu) { u64 offset; u32 *cs; cs = intel_ring_begin(rq, 4); if (IS_ERR(cs)) return PTR_ERR(cs); offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET + CTX_R_PWR_CLK_STATE * 4; *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; *cs++ = lower_32_bits(offset); *cs++ = upper_32_bits(offset); *cs++ = intel_sseu_make_rpcs(rq->engine->gt, &sseu); intel_ring_advance(rq, cs); return 0; } static int gen8_modify_rpcs(struct intel_context *ce, const struct intel_sseu sseu) { struct i915_request *rq; int ret; lockdep_assert_held(&ce->pin_mutex); /* * If the context is not idle, we have to submit an ordered request to * modify its context image via the kernel context (writing to our own * image, or into the registers directory, does not stick). Pristine * and idle contexts will be configured on pinning. */ if (!intel_context_pin_if_active(ce)) return 0; rq = intel_engine_create_kernel_request(ce->engine); if (IS_ERR(rq)) { ret = PTR_ERR(rq); goto out_unpin; } /* Serialise with the remote context */ ret = intel_context_prepare_remote_request(ce, rq); if (ret == 0) ret = gen8_emit_rpcs_config(rq, ce, sseu); i915_request_add(rq); out_unpin: intel_context_unpin(ce); return ret; } int intel_context_reconfigure_sseu(struct intel_context *ce, const struct intel_sseu sseu) { int ret; GEM_BUG_ON(GRAPHICS_VER(ce->engine->i915) < 8); ret = intel_context_lock_pinned(ce); if (ret) return ret; /* Nothing to do if unmodified. */ if (!memcmp(&ce->sseu, &sseu, sizeof(sseu))) goto unlock; ret = gen8_modify_rpcs(ce, sseu); if (!ret) ce->sseu = sseu; unlock: intel_context_unlock_pinned(ce); return ret; }
linux-master
drivers/gpu/drm/i915/gt/intel_context_sseu.c
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation * * Generated by: IGT Gpu Tools on Fri 21 Feb 2020 05:30:13 AM UTC */ static const u32 hsw_clear_kernel[] = { 0x00000001, 0x26020128, 0x00000024, 0x00000000, 0x00000040, 0x20280c21, 0x00000028, 0x00000001, 0x01000010, 0x20000c20, 0x0000002c, 0x00000000, 0x00010220, 0x34001c00, 0x00001400, 0x00000160, 0x00600001, 0x20600061, 0x00000000, 0x00000000, 0x00000008, 0x20601c85, 0x00000e00, 0x0000000c, 0x00000005, 0x20601ca5, 0x00000060, 0x00000001, 0x00000008, 0x20641c85, 0x00000e00, 0x0000000d, 0x00000005, 0x20641ca5, 0x00000064, 0x00000003, 0x00000041, 0x207424a5, 0x00000064, 0x00000034, 0x00000040, 0x206014a5, 0x00000060, 0x00000074, 0x00000008, 0x20681c85, 0x00000e00, 0x00000008, 0x00000005, 0x20681ca5, 0x00000068, 0x0000000f, 0x00000041, 0x20701ca5, 0x00000060, 0x00000010, 0x00000040, 0x206814a5, 0x00000068, 0x00000070, 0x00600001, 0x20a00061, 0x00000000, 0x00000000, 0x00000005, 0x206c1c85, 0x00000e00, 0x00000007, 0x00000041, 0x206c1ca5, 0x0000006c, 0x00000004, 0x00600001, 0x20800021, 0x008d0000, 0x00000000, 0x00000001, 0x20800021, 0x0000006c, 0x00000000, 0x00000001, 0x20840021, 0x00000068, 0x00000000, 0x00000001, 0x20880061, 0x00000000, 0x00000003, 0x00000005, 0x208c0d21, 0x00000086, 0xffffffff, 0x05600032, 0x20a00fa1, 0x008d0080, 0x02190001, 0x00000040, 0x20a01ca5, 0x000000a0, 0x00000001, 0x05600032, 0x20a00fa1, 0x008d0080, 0x040a8001, 0x02000040, 0x20281c21, 0x00000028, 0xffffffff, 0x00010220, 0x34001c00, 0x00001400, 0xffffffe0, 0x00000001, 0x26020128, 0x00000024, 0x00000000, 0x00000001, 0x220010e4, 0x00000000, 0x00000000, 0x00000001, 0x220831ec, 0x00000000, 0x007f007f, 0x00600001, 0x20400021, 0x008d0000, 0x00000000, 0x00600001, 0x2fe00021, 0x008d0000, 0x00000000, 0x00200001, 0x20400121, 0x00450020, 0x00000000, 0x00000001, 0x20480061, 0x00000000, 0x000f000f, 0x00000005, 0x204c0d21, 0x00000046, 0xffffffef, 0x00800001, 0x20600061, 0x00000000, 0x00000000, 0x00800001, 0x20800061, 0x00000000, 0x00000000, 0x00800001, 0x20a00061, 0x00000000, 0x00000000, 0x00800001, 0x20c00061, 0x00000000, 0x00000000, 0x00800001, 0x20e00061, 0x00000000, 0x00000000, 0x00800001, 0x21000061, 0x00000000, 0x00000000, 0x00800001, 0x21200061, 0x00000000, 0x00000000, 0x00800001, 0x21400061, 0x00000000, 0x00000000, 0x05600032, 0x20000fa0, 0x008d0040, 0x120a8000, 0x00000040, 0x20402d21, 0x00000020, 0x00100010, 0x05600032, 0x20000fa0, 0x008d0040, 0x120a8000, 0x02000040, 0x22083d8c, 0x00000208, 0xffffffff, 0x00800001, 0xa0000109, 0x00000602, 0x00000000, 0x00000040, 0x22001c84, 0x00000200, 0x00000020, 0x00010220, 0x34001c00, 0x00001400, 0xffffffc0, 0x07600032, 0x20000fa0, 0x008d0fe0, 0x82000010, };
linux-master
drivers/gpu/drm/i915/gt/hsw_clear_kernel.c
// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include "gem/i915_gem_context.h" #include "gem/i915_gem_pm.h" #include "i915_drv.h" #include "i915_trace.h" #include "intel_context.h" #include "intel_engine.h" #include "intel_engine_pm.h" #include "intel_ring.h" static struct kmem_cache *slab_ce; static struct intel_context *intel_context_alloc(void) { return kmem_cache_zalloc(slab_ce, GFP_KERNEL); } static void rcu_context_free(struct rcu_head *rcu) { struct intel_context *ce = container_of(rcu, typeof(*ce), rcu); trace_intel_context_free(ce); kmem_cache_free(slab_ce, ce); } void intel_context_free(struct intel_context *ce) { call_rcu(&ce->rcu, rcu_context_free); } struct intel_context * intel_context_create(struct intel_engine_cs *engine) { struct intel_context *ce; ce = intel_context_alloc(); if (!ce) return ERR_PTR(-ENOMEM); intel_context_init(ce, engine); trace_intel_context_create(ce); return ce; } int intel_context_alloc_state(struct intel_context *ce) { int err = 0; if (mutex_lock_interruptible(&ce->pin_mutex)) return -EINTR; if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { if (intel_context_is_banned(ce)) { err = -EIO; goto unlock; } err = ce->ops->alloc(ce); if (unlikely(err)) goto unlock; set_bit(CONTEXT_ALLOC_BIT, &ce->flags); } unlock: mutex_unlock(&ce->pin_mutex); return err; } static int intel_context_active_acquire(struct intel_context *ce) { int err; __i915_active_acquire(&ce->active); if (intel_context_is_barrier(ce) || intel_engine_uses_guc(ce->engine) || intel_context_is_parallel(ce)) return 0; /* Preallocate tracking nodes */ err = i915_active_acquire_preallocate_barrier(&ce->active, ce->engine); if (err) i915_active_release(&ce->active); return err; } static void intel_context_active_release(struct intel_context *ce) { /* Nodes preallocated in intel_context_active() */ i915_active_acquire_barrier(&ce->active); i915_active_release(&ce->active); } static int __context_pin_state(struct i915_vma *vma, struct i915_gem_ww_ctx *ww) { unsigned int bias = i915_ggtt_pin_bias(vma) | PIN_OFFSET_BIAS; int err; err = i915_ggtt_pin(vma, ww, 0, bias | PIN_HIGH); if (err) return err; err = i915_active_acquire(&vma->active); if (err) goto err_unpin; /* * And mark it as a globally pinned object to let the shrinker know * it cannot reclaim the object until we release it. */ i915_vma_make_unshrinkable(vma); vma->obj->mm.dirty = true; return 0; err_unpin: i915_vma_unpin(vma); return err; } static void __context_unpin_state(struct i915_vma *vma) { i915_vma_make_shrinkable(vma); i915_active_release(&vma->active); __i915_vma_unpin(vma); } static int __ring_active(struct intel_ring *ring, struct i915_gem_ww_ctx *ww) { int err; err = intel_ring_pin(ring, ww); if (err) return err; err = i915_active_acquire(&ring->vma->active); if (err) goto err_pin; return 0; err_pin: intel_ring_unpin(ring); return err; } static void __ring_retire(struct intel_ring *ring) { i915_active_release(&ring->vma->active); intel_ring_unpin(ring); } static int intel_context_pre_pin(struct intel_context *ce, struct i915_gem_ww_ctx *ww) { int err; CE_TRACE(ce, "active\n"); err = __ring_active(ce->ring, ww); if (err) return err; err = intel_timeline_pin(ce->timeline, ww); if (err) goto err_ring; if (!ce->state) return 0; err = __context_pin_state(ce->state, ww); if (err) goto err_timeline; return 0; err_timeline: intel_timeline_unpin(ce->timeline); err_ring: __ring_retire(ce->ring); return err; } static void intel_context_post_unpin(struct intel_context *ce) { if (ce->state) __context_unpin_state(ce->state); intel_timeline_unpin(ce->timeline); __ring_retire(ce->ring); } int __intel_context_do_pin_ww(struct intel_context *ce, struct i915_gem_ww_ctx *ww) { bool handoff = false; void *vaddr; int err = 0; if (unlikely(!test_bit(CONTEXT_ALLOC_BIT, &ce->flags))) { err = intel_context_alloc_state(ce); if (err) return err; } /* * We always pin the context/ring/timeline here, to ensure a pin * refcount for __intel_context_active(), which prevent a lock * inversion of ce->pin_mutex vs dma_resv_lock(). */ err = i915_gem_object_lock(ce->timeline->hwsp_ggtt->obj, ww); if (!err) err = i915_gem_object_lock(ce->ring->vma->obj, ww); if (!err && ce->state) err = i915_gem_object_lock(ce->state->obj, ww); if (!err) err = intel_context_pre_pin(ce, ww); if (err) return err; err = ce->ops->pre_pin(ce, ww, &vaddr); if (err) goto err_ctx_unpin; err = i915_active_acquire(&ce->active); if (err) goto err_post_unpin; err = mutex_lock_interruptible(&ce->pin_mutex); if (err) goto err_release; intel_engine_pm_might_get(ce->engine); if (unlikely(intel_context_is_closed(ce))) { err = -ENOENT; goto err_unlock; } if (likely(!atomic_add_unless(&ce->pin_count, 1, 0))) { err = intel_context_active_acquire(ce); if (unlikely(err)) goto err_unlock; err = ce->ops->pin(ce, vaddr); if (err) { intel_context_active_release(ce); goto err_unlock; } CE_TRACE(ce, "pin ring:{start:%08x, head:%04x, tail:%04x}\n", i915_ggtt_offset(ce->ring->vma), ce->ring->head, ce->ring->tail); handoff = true; smp_mb__before_atomic(); /* flush pin before it is visible */ atomic_inc(&ce->pin_count); } GEM_BUG_ON(!intel_context_is_pinned(ce)); /* no overflow! */ trace_intel_context_do_pin(ce); err_unlock: mutex_unlock(&ce->pin_mutex); err_release: i915_active_release(&ce->active); err_post_unpin: if (!handoff) ce->ops->post_unpin(ce); err_ctx_unpin: intel_context_post_unpin(ce); /* * Unlock the hwsp_ggtt object since it's shared. * In principle we can unlock all the global state locked above * since it's pinned and doesn't need fencing, and will * thus remain resident until it is explicitly unpinned. */ i915_gem_ww_unlock_single(ce->timeline->hwsp_ggtt->obj); return err; } int __intel_context_do_pin(struct intel_context *ce) { struct i915_gem_ww_ctx ww; int err; i915_gem_ww_ctx_init(&ww, true); retry: err = __intel_context_do_pin_ww(ce, &ww); if (err == -EDEADLK) { err = i915_gem_ww_ctx_backoff(&ww); if (!err) goto retry; } i915_gem_ww_ctx_fini(&ww); return err; } void __intel_context_do_unpin(struct intel_context *ce, int sub) { if (!atomic_sub_and_test(sub, &ce->pin_count)) return; CE_TRACE(ce, "unpin\n"); ce->ops->unpin(ce); ce->ops->post_unpin(ce); /* * Once released, we may asynchronously drop the active reference. * As that may be the only reference keeping the context alive, * take an extra now so that it is not freed before we finish * dereferencing it. */ intel_context_get(ce); intel_context_active_release(ce); trace_intel_context_do_unpin(ce); intel_context_put(ce); } static void __intel_context_retire(struct i915_active *active) { struct intel_context *ce = container_of(active, typeof(*ce), active); CE_TRACE(ce, "retire runtime: { total:%lluns, avg:%lluns }\n", intel_context_get_total_runtime_ns(ce), intel_context_get_avg_runtime_ns(ce)); set_bit(CONTEXT_VALID_BIT, &ce->flags); intel_context_post_unpin(ce); intel_context_put(ce); } static int __intel_context_active(struct i915_active *active) { struct intel_context *ce = container_of(active, typeof(*ce), active); intel_context_get(ce); /* everything should already be activated by intel_context_pre_pin() */ GEM_WARN_ON(!i915_active_acquire_if_busy(&ce->ring->vma->active)); __intel_ring_pin(ce->ring); __intel_timeline_pin(ce->timeline); if (ce->state) { GEM_WARN_ON(!i915_active_acquire_if_busy(&ce->state->active)); __i915_vma_pin(ce->state); i915_vma_make_unshrinkable(ce->state); } return 0; } static int sw_fence_dummy_notify(struct i915_sw_fence *sf, enum i915_sw_fence_notify state) { return NOTIFY_DONE; } void intel_context_init(struct intel_context *ce, struct intel_engine_cs *engine) { GEM_BUG_ON(!engine->cops); GEM_BUG_ON(!engine->gt->vm); kref_init(&ce->ref); ce->engine = engine; ce->ops = engine->cops; ce->sseu = engine->sseu; ce->ring = NULL; ce->ring_size = SZ_4K; ewma_runtime_init(&ce->stats.runtime.avg); ce->vm = i915_vm_get(engine->gt->vm); /* NB ce->signal_link/lock is used under RCU */ spin_lock_init(&ce->signal_lock); INIT_LIST_HEAD(&ce->signals); mutex_init(&ce->pin_mutex); spin_lock_init(&ce->guc_state.lock); INIT_LIST_HEAD(&ce->guc_state.fences); INIT_LIST_HEAD(&ce->guc_state.requests); ce->guc_id.id = GUC_INVALID_CONTEXT_ID; INIT_LIST_HEAD(&ce->guc_id.link); INIT_LIST_HEAD(&ce->destroyed_link); INIT_LIST_HEAD(&ce->parallel.child_list); /* * Initialize fence to be complete as this is expected to be complete * unless there is a pending schedule disable outstanding. */ i915_sw_fence_init(&ce->guc_state.blocked, sw_fence_dummy_notify); i915_sw_fence_commit(&ce->guc_state.blocked); i915_active_init(&ce->active, __intel_context_active, __intel_context_retire, 0); } void intel_context_fini(struct intel_context *ce) { struct intel_context *child, *next; if (ce->timeline) intel_timeline_put(ce->timeline); i915_vm_put(ce->vm); /* Need to put the creation ref for the children */ if (intel_context_is_parent(ce)) for_each_child_safe(ce, child, next) intel_context_put(child); mutex_destroy(&ce->pin_mutex); i915_active_fini(&ce->active); i915_sw_fence_fini(&ce->guc_state.blocked); } void i915_context_module_exit(void) { kmem_cache_destroy(slab_ce); } int __init i915_context_module_init(void) { slab_ce = KMEM_CACHE(intel_context, SLAB_HWCACHE_ALIGN); if (!slab_ce) return -ENOMEM; return 0; } void intel_context_enter_engine(struct intel_context *ce) { intel_engine_pm_get(ce->engine); intel_timeline_enter(ce->timeline); } void intel_context_exit_engine(struct intel_context *ce) { intel_timeline_exit(ce->timeline); intel_engine_pm_put(ce->engine); } int intel_context_prepare_remote_request(struct intel_context *ce, struct i915_request *rq) { struct intel_timeline *tl = ce->timeline; int err; /* Only suitable for use in remotely modifying this context */ GEM_BUG_ON(rq->context == ce); if (rcu_access_pointer(rq->timeline) != tl) { /* timeline sharing! */ /* Queue this switch after current activity by this context. */ err = i915_active_fence_set(&tl->last_request, rq); if (err) return err; } /* * Guarantee context image and the timeline remains pinned until the * modifying request is retired by setting the ce activity tracker. * * But we only need to take one pin on the account of it. Or in other * words transfer the pinned ce object to tracked active request. */ GEM_BUG_ON(i915_active_is_idle(&ce->active)); return i915_active_add_request(&ce->active, rq); } struct i915_request *intel_context_create_request(struct intel_context *ce) { struct i915_gem_ww_ctx ww; struct i915_request *rq; int err; i915_gem_ww_ctx_init(&ww, true); retry: err = intel_context_pin_ww(ce, &ww); if (!err) { rq = i915_request_create(ce); intel_context_unpin(ce); } else if (err == -EDEADLK) { err = i915_gem_ww_ctx_backoff(&ww); if (!err) goto retry; rq = ERR_PTR(err); } else { rq = ERR_PTR(err); } i915_gem_ww_ctx_fini(&ww); if (IS_ERR(rq)) return rq; /* * timeline->mutex should be the inner lock, but is used as outer lock. * Hack around this to shut up lockdep in selftests.. */ lockdep_unpin_lock(&ce->timeline->mutex, rq->cookie); mutex_release(&ce->timeline->mutex.dep_map, _RET_IP_); mutex_acquire(&ce->timeline->mutex.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_); rq->cookie = lockdep_pin_lock(&ce->timeline->mutex); return rq; } struct i915_request *intel_context_get_active_request(struct intel_context *ce) { struct intel_context *parent = intel_context_to_parent(ce); struct i915_request *rq, *active = NULL; unsigned long flags; GEM_BUG_ON(!intel_engine_uses_guc(ce->engine)); /* * We search the parent list to find an active request on the submitted * context. The parent list contains the requests for all the contexts * in the relationship so we have to do a compare of each request's * context. */ spin_lock_irqsave(&parent->guc_state.lock, flags); list_for_each_entry_reverse(rq, &parent->guc_state.requests, sched.link) { if (rq->context != ce) continue; if (i915_request_completed(rq)) break; active = rq; } if (active) active = i915_request_get_rcu(active); spin_unlock_irqrestore(&parent->guc_state.lock, flags); return active; } void intel_context_bind_parent_child(struct intel_context *parent, struct intel_context *child) { /* * Callers responsibility to validate that this function is used * correctly but we use GEM_BUG_ON here ensure that they do. */ GEM_BUG_ON(intel_context_is_pinned(parent)); GEM_BUG_ON(intel_context_is_child(parent)); GEM_BUG_ON(intel_context_is_pinned(child)); GEM_BUG_ON(intel_context_is_child(child)); GEM_BUG_ON(intel_context_is_parent(child)); parent->parallel.child_index = parent->parallel.number_children++; list_add_tail(&child->parallel.child_link, &parent->parallel.child_list); child->parallel.parent = parent; } u64 intel_context_get_total_runtime_ns(struct intel_context *ce) { u64 total, active; if (ce->ops->update_stats) ce->ops->update_stats(ce); total = ce->stats.runtime.total; if (ce->ops->flags & COPS_RUNTIME_CYCLES) total *= ce->engine->gt->clock_period_ns; active = READ_ONCE(ce->stats.active); if (active) active = intel_context_clock() - active; return total + active; } u64 intel_context_get_avg_runtime_ns(struct intel_context *ce) { u64 avg = ewma_runtime_read(&ce->stats.runtime.avg); if (ce->ops->flags & COPS_RUNTIME_CYCLES) avg *= ce->engine->gt->clock_period_ns; return avg; } bool intel_context_ban(struct intel_context *ce, struct i915_request *rq) { bool ret = intel_context_set_banned(ce); trace_intel_context_ban(ce); if (ce->ops->revoke) ce->ops->revoke(ce, rq, INTEL_CONTEXT_BANNED_PREEMPT_TIMEOUT_MS); return ret; } bool intel_context_revoke(struct intel_context *ce) { bool ret = intel_context_set_exiting(ce); if (ce->ops->revoke) ce->ops->revoke(ce, NULL, ce->engine->props.preempt_timeout_ms); return ret; } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_context.c" #endif
linux-master
drivers/gpu/drm/i915/gt/intel_context.c
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include <linux/iosys-map.h> #include <linux/mm.h> #include <linux/pagemap.h> #include <linux/shmem_fs.h> #include "i915_drv.h" #include "gem/i915_gem_object.h" #include "gem/i915_gem_lmem.h" #include "shmem_utils.h" struct file *shmem_create_from_data(const char *name, void *data, size_t len) { struct file *file; int err; file = shmem_file_setup(name, PAGE_ALIGN(len), VM_NORESERVE); if (IS_ERR(file)) return file; err = shmem_write(file, 0, data, len); if (err) { fput(file); return ERR_PTR(err); } return file; } struct file *shmem_create_from_object(struct drm_i915_gem_object *obj) { enum i915_map_type map_type; struct file *file; void *ptr; if (i915_gem_object_is_shmem(obj)) { file = obj->base.filp; atomic_long_inc(&file->f_count); return file; } map_type = i915_gem_object_is_lmem(obj) ? I915_MAP_WC : I915_MAP_WB; ptr = i915_gem_object_pin_map_unlocked(obj, map_type); if (IS_ERR(ptr)) return ERR_CAST(ptr); file = shmem_create_from_data("", ptr, obj->base.size); i915_gem_object_unpin_map(obj); return file; } void *shmem_pin_map(struct file *file) { struct page **pages; size_t n_pages, i; void *vaddr; n_pages = file->f_mapping->host->i_size >> PAGE_SHIFT; pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL); if (!pages) return NULL; for (i = 0; i < n_pages; i++) { pages[i] = shmem_read_mapping_page_gfp(file->f_mapping, i, GFP_KERNEL); if (IS_ERR(pages[i])) goto err_page; } vaddr = vmap(pages, n_pages, VM_MAP_PUT_PAGES, PAGE_KERNEL); if (!vaddr) goto err_page; mapping_set_unevictable(file->f_mapping); return vaddr; err_page: while (i--) put_page(pages[i]); kvfree(pages); return NULL; } void shmem_unpin_map(struct file *file, void *ptr) { mapping_clear_unevictable(file->f_mapping); vfree(ptr); } static int __shmem_rw(struct file *file, loff_t off, void *ptr, size_t len, bool write) { unsigned long pfn; for (pfn = off >> PAGE_SHIFT; len; pfn++) { unsigned int this = min_t(size_t, PAGE_SIZE - offset_in_page(off), len); struct page *page; void *vaddr; page = shmem_read_mapping_page_gfp(file->f_mapping, pfn, GFP_KERNEL); if (IS_ERR(page)) return PTR_ERR(page); vaddr = kmap(page); if (write) { memcpy(vaddr + offset_in_page(off), ptr, this); set_page_dirty(page); } else { memcpy(ptr, vaddr + offset_in_page(off), this); } mark_page_accessed(page); kunmap(page); put_page(page); len -= this; ptr += this; off = 0; } return 0; } int shmem_read_to_iosys_map(struct file *file, loff_t off, struct iosys_map *map, size_t map_off, size_t len) { unsigned long pfn; for (pfn = off >> PAGE_SHIFT; len; pfn++) { unsigned int this = min_t(size_t, PAGE_SIZE - offset_in_page(off), len); struct page *page; void *vaddr; page = shmem_read_mapping_page_gfp(file->f_mapping, pfn, GFP_KERNEL); if (IS_ERR(page)) return PTR_ERR(page); vaddr = kmap(page); iosys_map_memcpy_to(map, map_off, vaddr + offset_in_page(off), this); mark_page_accessed(page); kunmap(page); put_page(page); len -= this; map_off += this; off = 0; } return 0; } int shmem_read(struct file *file, loff_t off, void *dst, size_t len) { return __shmem_rw(file, off, dst, len, false); } int shmem_write(struct file *file, loff_t off, void *src, size_t len) { return __shmem_rw(file, off, src, len, true); } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "st_shmem_utils.c" #endif
linux-master
drivers/gpu/drm/i915/gt/shmem_utils.c
// SPDX-License-Identifier: MIT /* * Copyright © 2008-2015 Intel Corporation */ #include <linux/highmem.h> #include "display/intel_display.h" #include "i915_drv.h" #include "i915_reg.h" #include "i915_scatterlist.h" #include "i915_pvinfo.h" #include "i915_vgpu.h" #include "intel_gt_regs.h" #include "intel_mchbar_regs.h" /** * DOC: fence register handling * * Important to avoid confusions: "fences" in the i915 driver are not execution * fences used to track command completion but hardware detiler objects which * wrap a given range of the global GTT. Each platform has only a fairly limited * set of these objects. * * Fences are used to detile GTT memory mappings. They're also connected to the * hardware frontbuffer render tracking and hence interact with frontbuffer * compression. Furthermore on older platforms fences are required for tiled * objects used by the display engine. They can also be used by the render * engine - they're required for blitter commands and are optional for render * commands. But on gen4+ both display (with the exception of fbc) and rendering * have their own tiling state bits and don't need fences. * * Also note that fences only support X and Y tiling and hence can't be used for * the fancier new tiling formats like W, Ys and Yf. * * Finally note that because fences are such a restricted resource they're * dynamically associated with objects. Furthermore fence state is committed to * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must * explicitly call i915_gem_object_get_fence() to synchronize fencing status * for cpu access. Also note that some code wants an unfenced view, for those * cases the fence can be removed forcefully with i915_gem_object_put_fence(). * * Internally these functions will synchronize with userspace access by removing * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed. */ #define pipelined 0 static struct drm_i915_private *fence_to_i915(struct i915_fence_reg *fence) { return fence->ggtt->vm.i915; } static struct intel_uncore *fence_to_uncore(struct i915_fence_reg *fence) { return fence->ggtt->vm.gt->uncore; } static void i965_write_fence_reg(struct i915_fence_reg *fence) { i915_reg_t fence_reg_lo, fence_reg_hi; int fence_pitch_shift; u64 val; if (GRAPHICS_VER(fence_to_i915(fence)) >= 6) { fence_reg_lo = FENCE_REG_GEN6_LO(fence->id); fence_reg_hi = FENCE_REG_GEN6_HI(fence->id); fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT; } else { fence_reg_lo = FENCE_REG_965_LO(fence->id); fence_reg_hi = FENCE_REG_965_HI(fence->id); fence_pitch_shift = I965_FENCE_PITCH_SHIFT; } val = 0; if (fence->tiling) { unsigned int stride = fence->stride; GEM_BUG_ON(!IS_ALIGNED(stride, 128)); val = fence->start + fence->size - I965_FENCE_PAGE; val <<= 32; val |= fence->start; val |= (u64)((stride / 128) - 1) << fence_pitch_shift; if (fence->tiling == I915_TILING_Y) val |= BIT(I965_FENCE_TILING_Y_SHIFT); val |= I965_FENCE_REG_VALID; } if (!pipelined) { struct intel_uncore *uncore = fence_to_uncore(fence); /* * To w/a incoherency with non-atomic 64-bit register updates, * we split the 64-bit update into two 32-bit writes. In order * for a partial fence not to be evaluated between writes, we * precede the update with write to turn off the fence register, * and only enable the fence as the last step. * * For extra levels of paranoia, we make sure each step lands * before applying the next step. */ intel_uncore_write_fw(uncore, fence_reg_lo, 0); intel_uncore_posting_read_fw(uncore, fence_reg_lo); intel_uncore_write_fw(uncore, fence_reg_hi, upper_32_bits(val)); intel_uncore_write_fw(uncore, fence_reg_lo, lower_32_bits(val)); intel_uncore_posting_read_fw(uncore, fence_reg_lo); } } static void i915_write_fence_reg(struct i915_fence_reg *fence) { u32 val; val = 0; if (fence->tiling) { unsigned int stride = fence->stride; unsigned int tiling = fence->tiling; bool is_y_tiled = tiling == I915_TILING_Y; if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence_to_i915(fence))) stride /= 128; else stride /= 512; GEM_BUG_ON(!is_power_of_2(stride)); val = fence->start; if (is_y_tiled) val |= BIT(I830_FENCE_TILING_Y_SHIFT); val |= I915_FENCE_SIZE_BITS(fence->size); val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT; val |= I830_FENCE_REG_VALID; } if (!pipelined) { struct intel_uncore *uncore = fence_to_uncore(fence); i915_reg_t reg = FENCE_REG(fence->id); intel_uncore_write_fw(uncore, reg, val); intel_uncore_posting_read_fw(uncore, reg); } } static void i830_write_fence_reg(struct i915_fence_reg *fence) { u32 val; val = 0; if (fence->tiling) { unsigned int stride = fence->stride; val = fence->start; if (fence->tiling == I915_TILING_Y) val |= BIT(I830_FENCE_TILING_Y_SHIFT); val |= I830_FENCE_SIZE_BITS(fence->size); val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT; val |= I830_FENCE_REG_VALID; } if (!pipelined) { struct intel_uncore *uncore = fence_to_uncore(fence); i915_reg_t reg = FENCE_REG(fence->id); intel_uncore_write_fw(uncore, reg, val); intel_uncore_posting_read_fw(uncore, reg); } } static void fence_write(struct i915_fence_reg *fence) { struct drm_i915_private *i915 = fence_to_i915(fence); /* * Previous access through the fence register is marshalled by * the mb() inside the fault handlers (i915_gem_release_mmaps) * and explicitly managed for internal users. */ if (GRAPHICS_VER(i915) == 2) i830_write_fence_reg(fence); else if (GRAPHICS_VER(i915) == 3) i915_write_fence_reg(fence); else i965_write_fence_reg(fence); /* * Access through the fenced region afterwards is * ordered by the posting reads whilst writing the registers. */ } static bool gpu_uses_fence_registers(struct i915_fence_reg *fence) { return GRAPHICS_VER(fence_to_i915(fence)) < 4; } static int fence_update(struct i915_fence_reg *fence, struct i915_vma *vma) { struct i915_ggtt *ggtt = fence->ggtt; struct intel_uncore *uncore = fence_to_uncore(fence); intel_wakeref_t wakeref; struct i915_vma *old; int ret; fence->tiling = 0; if (vma) { GEM_BUG_ON(!i915_gem_object_get_stride(vma->obj) || !i915_gem_object_get_tiling(vma->obj)); if (!i915_vma_is_map_and_fenceable(vma)) return -EINVAL; if (gpu_uses_fence_registers(fence)) { /* implicit 'unfenced' GPU blits */ ret = i915_vma_sync(vma); if (ret) return ret; } GEM_BUG_ON(vma->fence_size > i915_vma_size(vma)); fence->start = i915_ggtt_offset(vma); fence->size = vma->fence_size; fence->stride = i915_gem_object_get_stride(vma->obj); fence->tiling = i915_gem_object_get_tiling(vma->obj); } WRITE_ONCE(fence->dirty, false); old = xchg(&fence->vma, NULL); if (old) { /* XXX Ideally we would move the waiting to outside the mutex */ ret = i915_active_wait(&fence->active); if (ret) { fence->vma = old; return ret; } i915_vma_flush_writes(old); /* * Ensure that all userspace CPU access is completed before * stealing the fence. */ if (old != vma) { GEM_BUG_ON(old->fence != fence); i915_vma_revoke_mmap(old); old->fence = NULL; } list_move(&fence->link, &ggtt->fence_list); } /* * We only need to update the register itself if the device is awake. * If the device is currently powered down, we will defer the write * to the runtime resume, see intel_ggtt_restore_fences(). * * This only works for removing the fence register, on acquisition * the caller must hold the rpm wakeref. The fence register must * be cleared before we can use any other fences to ensure that * the new fences do not overlap the elided clears, confusing HW. */ wakeref = intel_runtime_pm_get_if_in_use(uncore->rpm); if (!wakeref) { GEM_BUG_ON(vma); return 0; } WRITE_ONCE(fence->vma, vma); fence_write(fence); if (vma) { vma->fence = fence; list_move_tail(&fence->link, &ggtt->fence_list); } intel_runtime_pm_put(uncore->rpm, wakeref); return 0; } /** * i915_vma_revoke_fence - force-remove fence for a VMA * @vma: vma to map linearly (not through a fence reg) * * This function force-removes any fence from the given object, which is useful * if the kernel wants to do untiled GTT access. */ void i915_vma_revoke_fence(struct i915_vma *vma) { struct i915_fence_reg *fence = vma->fence; intel_wakeref_t wakeref; lockdep_assert_held(&vma->vm->mutex); if (!fence) return; GEM_BUG_ON(fence->vma != vma); GEM_BUG_ON(!i915_active_is_idle(&fence->active)); GEM_BUG_ON(atomic_read(&fence->pin_count)); fence->tiling = 0; WRITE_ONCE(fence->vma, NULL); vma->fence = NULL; /* * Skip the write to HW if and only if the device is currently * suspended. * * If the driver does not currently hold a wakeref (if_in_use == 0), * the device may currently be runtime suspended, or it may be woken * up before the suspend takes place. If the device is not suspended * (powered down) and we skip clearing the fence register, the HW is * left in an undefined state where we may end up with multiple * registers overlapping. */ with_intel_runtime_pm_if_active(fence_to_uncore(fence)->rpm, wakeref) fence_write(fence); } static bool fence_is_active(const struct i915_fence_reg *fence) { return fence->vma && i915_vma_is_active(fence->vma); } static struct i915_fence_reg *fence_find(struct i915_ggtt *ggtt) { struct i915_fence_reg *active = NULL; struct i915_fence_reg *fence, *fn; list_for_each_entry_safe(fence, fn, &ggtt->fence_list, link) { GEM_BUG_ON(fence->vma && fence->vma->fence != fence); if (fence == active) /* now seen this fence twice */ active = ERR_PTR(-EAGAIN); /* Prefer idle fences so we do not have to wait on the GPU */ if (active != ERR_PTR(-EAGAIN) && fence_is_active(fence)) { if (!active) active = fence; list_move_tail(&fence->link, &ggtt->fence_list); continue; } if (atomic_read(&fence->pin_count)) continue; return fence; } /* Wait for completion of pending flips which consume fences */ if (intel_has_pending_fb_unpin(ggtt->vm.i915)) return ERR_PTR(-EAGAIN); return ERR_PTR(-ENOBUFS); } int __i915_vma_pin_fence(struct i915_vma *vma) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm); struct i915_fence_reg *fence; struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL; int err; lockdep_assert_held(&vma->vm->mutex); /* Just update our place in the LRU if our fence is getting reused. */ if (vma->fence) { fence = vma->fence; GEM_BUG_ON(fence->vma != vma); atomic_inc(&fence->pin_count); if (!fence->dirty) { list_move_tail(&fence->link, &ggtt->fence_list); return 0; } } else if (set) { fence = fence_find(ggtt); if (IS_ERR(fence)) return PTR_ERR(fence); GEM_BUG_ON(atomic_read(&fence->pin_count)); atomic_inc(&fence->pin_count); } else { return 0; } err = fence_update(fence, set); if (err) goto out_unpin; GEM_BUG_ON(fence->vma != set); GEM_BUG_ON(vma->fence != (set ? fence : NULL)); if (set) return 0; out_unpin: atomic_dec(&fence->pin_count); return err; } /** * i915_vma_pin_fence - set up fencing for a vma * @vma: vma to map through a fence reg * * When mapping objects through the GTT, userspace wants to be able to write * to them without having to worry about swizzling if the object is tiled. * This function walks the fence regs looking for a free one for @obj, * stealing one if it can't find any. * * It then sets up the reg based on the object's properties: address, pitch * and tiling format. * * For an untiled surface, this removes any existing fence. * * Returns: * * 0 on success, negative error code on failure. */ int i915_vma_pin_fence(struct i915_vma *vma) { int err; if (!vma->fence && !i915_gem_object_is_tiled(vma->obj)) return 0; /* * Note that we revoke fences on runtime suspend. Therefore the user * must keep the device awake whilst using the fence. */ assert_rpm_wakelock_held(vma->vm->gt->uncore->rpm); GEM_BUG_ON(!i915_vma_is_ggtt(vma)); err = mutex_lock_interruptible(&vma->vm->mutex); if (err) return err; err = __i915_vma_pin_fence(vma); mutex_unlock(&vma->vm->mutex); return err; } /** * i915_reserve_fence - Reserve a fence for vGPU * @ggtt: Global GTT * * This function walks the fence regs looking for a free one and remove * it from the fence_list. It is used to reserve fence for vGPU to use. */ struct i915_fence_reg *i915_reserve_fence(struct i915_ggtt *ggtt) { struct i915_fence_reg *fence; int count; int ret; lockdep_assert_held(&ggtt->vm.mutex); /* Keep at least one fence available for the display engine. */ count = 0; list_for_each_entry(fence, &ggtt->fence_list, link) count += !atomic_read(&fence->pin_count); if (count <= 1) return ERR_PTR(-ENOSPC); fence = fence_find(ggtt); if (IS_ERR(fence)) return fence; if (fence->vma) { /* Force-remove fence from VMA */ ret = fence_update(fence, NULL); if (ret) return ERR_PTR(ret); } list_del(&fence->link); return fence; } /** * i915_unreserve_fence - Reclaim a reserved fence * @fence: the fence reg * * This function add a reserved fence register from vGPU to the fence_list. */ void i915_unreserve_fence(struct i915_fence_reg *fence) { struct i915_ggtt *ggtt = fence->ggtt; lockdep_assert_held(&ggtt->vm.mutex); list_add(&fence->link, &ggtt->fence_list); } /** * intel_ggtt_restore_fences - restore fence state * @ggtt: Global GTT * * Restore the hw fence state to match the software tracking again, to be called * after a gpu reset and on resume. Note that on runtime suspend we only cancel * the fences, to be reacquired by the user later. */ void intel_ggtt_restore_fences(struct i915_ggtt *ggtt) { int i; for (i = 0; i < ggtt->num_fences; i++) fence_write(&ggtt->fence_regs[i]); } /** * DOC: tiling swizzling details * * The idea behind tiling is to increase cache hit rates by rearranging * pixel data so that a group of pixel accesses are in the same cacheline. * Performance improvement from doing this on the back/depth buffer are on * the order of 30%. * * Intel architectures make this somewhat more complicated, though, by * adjustments made to addressing of data when the memory is in interleaved * mode (matched pairs of DIMMS) to improve memory bandwidth. * For interleaved memory, the CPU sends every sequential 64 bytes * to an alternate memory channel so it can get the bandwidth from both. * * The GPU also rearranges its accesses for increased bandwidth to interleaved * memory, and it matches what the CPU does for non-tiled. However, when tiled * it does it a little differently, since one walks addresses not just in the * X direction but also Y. So, along with alternating channels when bit * 6 of the address flips, it also alternates when other bits flip -- Bits 9 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines) * are common to both the 915 and 965-class hardware. * * The CPU also sometimes XORs in higher bits as well, to improve * bandwidth doing strided access like we do so frequently in graphics. This * is called "Channel XOR Randomization" in the MCH documentation. The result * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address * decode. * * All of this bit 6 XORing has an effect on our memory management, * as we need to make sure that the 3d driver can correctly address object * contents. * * If we don't have interleaved memory, all tiling is safe and no swizzling is * required. * * When bit 17 is XORed in, we simply refuse to tile at all. Bit * 17 is not just a page offset, so as we page an object out and back in, * individual pages in it will have different bit 17 addresses, resulting in * each 64 bytes being swapped with its neighbor! * * Otherwise, if interleaved, we have to tell the 3d driver what the address * swizzling it needs to do is, since it's writing with the CPU to the pages * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order * to match what the GPU expects. */ /** * detect_bit_6_swizzle - detect bit 6 swizzling pattern * @ggtt: Global GGTT * * Detects bit 6 swizzling of address lookup between IGD access and CPU * access through main memory. */ static void detect_bit_6_swizzle(struct i915_ggtt *ggtt) { struct intel_uncore *uncore = ggtt->vm.gt->uncore; struct drm_i915_private *i915 = ggtt->vm.i915; u32 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN; u32 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN; if (GRAPHICS_VER(i915) >= 8 || IS_VALLEYVIEW(i915)) { /* * On BDW+, swizzling is not used. We leave the CPU memory * controller in charge of optimizing memory accesses without * the extra address manipulation GPU side. * * VLV and CHV don't have GPU swizzling. */ swizzle_x = I915_BIT_6_SWIZZLE_NONE; swizzle_y = I915_BIT_6_SWIZZLE_NONE; } else if (GRAPHICS_VER(i915) >= 6) { if (i915->preserve_bios_swizzle) { if (intel_uncore_read(uncore, DISP_ARB_CTL) & DISP_TILE_SURFACE_SWIZZLING) { swizzle_x = I915_BIT_6_SWIZZLE_9_10; swizzle_y = I915_BIT_6_SWIZZLE_9; } else { swizzle_x = I915_BIT_6_SWIZZLE_NONE; swizzle_y = I915_BIT_6_SWIZZLE_NONE; } } else { u32 dimm_c0, dimm_c1; dimm_c0 = intel_uncore_read(uncore, MAD_DIMM_C0); dimm_c1 = intel_uncore_read(uncore, MAD_DIMM_C1); dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK; dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK; /* * Enable swizzling when the channels are populated * with identically sized dimms. We don't need to check * the 3rd channel because no cpu with gpu attached * ships in that configuration. Also, swizzling only * makes sense for 2 channels anyway. */ if (dimm_c0 == dimm_c1) { swizzle_x = I915_BIT_6_SWIZZLE_9_10; swizzle_y = I915_BIT_6_SWIZZLE_9; } else { swizzle_x = I915_BIT_6_SWIZZLE_NONE; swizzle_y = I915_BIT_6_SWIZZLE_NONE; } } } else if (GRAPHICS_VER(i915) == 5) { /* * On Ironlake whatever DRAM config, GPU always do * same swizzling setup. */ swizzle_x = I915_BIT_6_SWIZZLE_9_10; swizzle_y = I915_BIT_6_SWIZZLE_9; } else if (GRAPHICS_VER(i915) == 2) { /* * As far as we know, the 865 doesn't have these bit 6 * swizzling issues. */ swizzle_x = I915_BIT_6_SWIZZLE_NONE; swizzle_y = I915_BIT_6_SWIZZLE_NONE; } else if (IS_G45(i915) || IS_I965G(i915) || IS_G33(i915)) { /* * The 965, G33, and newer, have a very flexible memory * configuration. It will enable dual-channel mode * (interleaving) on as much memory as it can, and the GPU * will additionally sometimes enable different bit 6 * swizzling for tiled objects from the CPU. * * Here's what I found on the G965: * slot fill memory size swizzling * 0A 0B 1A 1B 1-ch 2-ch * 512 0 0 0 512 0 O * 512 0 512 0 16 1008 X * 512 0 0 512 16 1008 X * 0 512 0 512 16 1008 X * 1024 1024 1024 0 2048 1024 O * * We could probably detect this based on either the DRB * matching, which was the case for the swizzling required in * the table above, or from the 1-ch value being less than * the minimum size of a rank. * * Reports indicate that the swizzling actually * varies depending upon page placement inside the * channels, i.e. we see swizzled pages where the * banks of memory are paired and unswizzled on the * uneven portion, so leave that as unknown. */ if (intel_uncore_read16(uncore, C0DRB3_BW) == intel_uncore_read16(uncore, C1DRB3_BW)) { swizzle_x = I915_BIT_6_SWIZZLE_9_10; swizzle_y = I915_BIT_6_SWIZZLE_9; } } else { u32 dcc = intel_uncore_read(uncore, DCC); /* * On 9xx chipsets, channel interleave by the CPU is * determined by DCC. For single-channel, neither the CPU * nor the GPU do swizzling. For dual channel interleaved, * the GPU's interleave is bit 9 and 10 for X tiled, and bit * 9 for Y tiled. The CPU's interleave is independent, and * can be based on either bit 11 (haven't seen this yet) or * bit 17 (common). */ switch (dcc & DCC_ADDRESSING_MODE_MASK) { case DCC_ADDRESSING_MODE_SINGLE_CHANNEL: case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC: swizzle_x = I915_BIT_6_SWIZZLE_NONE; swizzle_y = I915_BIT_6_SWIZZLE_NONE; break; case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED: if (dcc & DCC_CHANNEL_XOR_DISABLE) { /* * This is the base swizzling by the GPU for * tiled buffers. */ swizzle_x = I915_BIT_6_SWIZZLE_9_10; swizzle_y = I915_BIT_6_SWIZZLE_9; } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) { /* Bit 11 swizzling by the CPU in addition. */ swizzle_x = I915_BIT_6_SWIZZLE_9_10_11; swizzle_y = I915_BIT_6_SWIZZLE_9_11; } else { /* Bit 17 swizzling by the CPU in addition. */ swizzle_x = I915_BIT_6_SWIZZLE_9_10_17; swizzle_y = I915_BIT_6_SWIZZLE_9_17; } break; } /* check for L-shaped memory aka modified enhanced addressing */ if (GRAPHICS_VER(i915) == 4 && !(intel_uncore_read(uncore, DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) { swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN; swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN; } if (dcc == 0xffffffff) { drm_err(&i915->drm, "Couldn't read from MCHBAR. " "Disabling tiling.\n"); swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN; swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN; } } if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN || swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) { /* * Userspace likes to explode if it sees unknown swizzling, * so lie. We will finish the lie when reporting through * the get-tiling-ioctl by reporting the physical swizzle * mode as unknown instead. * * As we don't strictly know what the swizzling is, it may be * bit17 dependent, and so we need to also prevent the pages * from being moved. */ i915->gem_quirks |= GEM_QUIRK_PIN_SWIZZLED_PAGES; swizzle_x = I915_BIT_6_SWIZZLE_NONE; swizzle_y = I915_BIT_6_SWIZZLE_NONE; } to_gt(i915)->ggtt->bit_6_swizzle_x = swizzle_x; to_gt(i915)->ggtt->bit_6_swizzle_y = swizzle_y; } /* * Swap every 64 bytes of this page around, to account for it having a new * bit 17 of its physical address and therefore being interpreted differently * by the GPU. */ static void swizzle_page(struct page *page) { char temp[64]; char *vaddr; int i; vaddr = kmap(page); for (i = 0; i < PAGE_SIZE; i += 128) { memcpy(temp, &vaddr[i], 64); memcpy(&vaddr[i], &vaddr[i + 64], 64); memcpy(&vaddr[i + 64], temp, 64); } kunmap(page); } /** * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling * @obj: i915 GEM buffer object * @pages: the scattergather list of physical pages * * This function fixes up the swizzling in case any page frame number for this * object has changed in bit 17 since that state has been saved with * i915_gem_object_save_bit_17_swizzle(). * * This is called when pinning backing storage again, since the kernel is free * to move unpinned backing storage around (either by directly moving pages or * by swapping them out and back in again). */ void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj, struct sg_table *pages) { struct sgt_iter sgt_iter; struct page *page; int i; if (obj->bit_17 == NULL) return; i = 0; for_each_sgt_page(page, sgt_iter, pages) { char new_bit_17 = page_to_phys(page) >> 17; if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) { swizzle_page(page); set_page_dirty(page); } i++; } } /** * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling * @obj: i915 GEM buffer object * @pages: the scattergather list of physical pages * * This function saves the bit 17 of each page frame number so that swizzling * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must * be called before the backing storage can be unpinned. */ void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj, struct sg_table *pages) { const unsigned int page_count = obj->base.size >> PAGE_SHIFT; struct sgt_iter sgt_iter; struct page *page; int i; if (obj->bit_17 == NULL) { obj->bit_17 = bitmap_zalloc(page_count, GFP_KERNEL); if (obj->bit_17 == NULL) { drm_err(obj->base.dev, "Failed to allocate memory for bit 17 record\n"); return; } } i = 0; for_each_sgt_page(page, sgt_iter, pages) { if (page_to_phys(page) & (1 << 17)) __set_bit(i, obj->bit_17); else __clear_bit(i, obj->bit_17); i++; } } void intel_ggtt_init_fences(struct i915_ggtt *ggtt) { struct drm_i915_private *i915 = ggtt->vm.i915; struct intel_uncore *uncore = ggtt->vm.gt->uncore; int num_fences; int i; INIT_LIST_HEAD(&ggtt->fence_list); INIT_LIST_HEAD(&ggtt->userfault_list); detect_bit_6_swizzle(ggtt); if (!i915_ggtt_has_aperture(ggtt)) num_fences = 0; else if (GRAPHICS_VER(i915) >= 7 && !(IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))) num_fences = 32; else if (GRAPHICS_VER(i915) >= 4 || IS_I945G(i915) || IS_I945GM(i915) || IS_G33(i915) || IS_PINEVIEW(i915)) num_fences = 16; else num_fences = 8; if (intel_vgpu_active(i915)) num_fences = intel_uncore_read(uncore, vgtif_reg(avail_rs.fence_num)); ggtt->fence_regs = kcalloc(num_fences, sizeof(*ggtt->fence_regs), GFP_KERNEL); if (!ggtt->fence_regs) num_fences = 0; /* Initialize fence registers to zero */ for (i = 0; i < num_fences; i++) { struct i915_fence_reg *fence = &ggtt->fence_regs[i]; i915_active_init(&fence->active, NULL, NULL, 0); fence->ggtt = ggtt; fence->id = i; list_add_tail(&fence->link, &ggtt->fence_list); } ggtt->num_fences = num_fences; intel_ggtt_restore_fences(ggtt); } void intel_ggtt_fini_fences(struct i915_ggtt *ggtt) { int i; for (i = 0; i < ggtt->num_fences; i++) { struct i915_fence_reg *fence = &ggtt->fence_regs[i]; i915_active_fini(&fence->active); } kfree(ggtt->fence_regs); } void intel_gt_init_swizzling(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; struct intel_uncore *uncore = gt->uncore; if (GRAPHICS_VER(i915) < 5 || to_gt(i915)->ggtt->bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) return; intel_uncore_rmw(uncore, DISP_ARB_CTL, 0, DISP_TILE_SURFACE_SWIZZLING); if (GRAPHICS_VER(i915) == 5) return; intel_uncore_rmw(uncore, TILECTL, 0, TILECTL_SWZCTL); if (GRAPHICS_VER(i915) == 6) intel_uncore_write(uncore, ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); else if (GRAPHICS_VER(i915) == 7) intel_uncore_write(uncore, ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); else if (GRAPHICS_VER(i915) == 8) intel_uncore_write(uncore, GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); else MISSING_CASE(GRAPHICS_VER(i915)); }
linux-master
drivers/gpu/drm/i915/gt/intel_ggtt_fencing.c
// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include <linux/workqueue.h> #include "i915_drv.h" /* for_each_engine() */ #include "i915_request.h" #include "intel_engine_heartbeat.h" #include "intel_execlists_submission.h" #include "intel_gt.h" #include "intel_gt_pm.h" #include "intel_gt_requests.h" #include "intel_timeline.h" static bool retire_requests(struct intel_timeline *tl) { struct i915_request *rq, *rn; list_for_each_entry_safe(rq, rn, &tl->requests, link) if (!i915_request_retire(rq)) return false; /* And check nothing new was submitted */ return !i915_active_fence_isset(&tl->last_request); } static bool engine_active(const struct intel_engine_cs *engine) { return !list_empty(&engine->kernel_context->timeline->requests); } static bool flush_submission(struct intel_gt *gt, long timeout) { struct intel_engine_cs *engine; enum intel_engine_id id; bool active = false; if (!timeout) return false; if (!intel_gt_pm_is_awake(gt)) return false; for_each_engine(engine, gt, id) { intel_engine_flush_submission(engine); /* Flush the background retirement and idle barriers */ flush_work(&engine->retire_work); flush_delayed_work(&engine->wakeref.work); /* Is the idle barrier still outstanding? */ active |= engine_active(engine); } return active; } static void engine_retire(struct work_struct *work) { struct intel_engine_cs *engine = container_of(work, typeof(*engine), retire_work); struct intel_timeline *tl = xchg(&engine->retire, NULL); do { struct intel_timeline *next = xchg(&tl->retire, NULL); /* * Our goal here is to retire _idle_ timelines as soon as * possible (as they are idle, we do not expect userspace * to be cleaning up anytime soon). * * If the timeline is currently locked, either it is being * retired elsewhere or about to be! */ if (mutex_trylock(&tl->mutex)) { retire_requests(tl); mutex_unlock(&tl->mutex); } intel_timeline_put(tl); GEM_BUG_ON(!next); tl = ptr_mask_bits(next, 1); } while (tl); } static bool add_retire(struct intel_engine_cs *engine, struct intel_timeline *tl) { #define STUB ((struct intel_timeline *)1) struct intel_timeline *first; /* * We open-code a llist here to include the additional tag [BIT(0)] * so that we know when the timeline is already on a * retirement queue: either this engine or another. */ if (cmpxchg(&tl->retire, NULL, STUB)) /* already queued */ return false; intel_timeline_get(tl); first = READ_ONCE(engine->retire); do tl->retire = ptr_pack_bits(first, 1, 1); while (!try_cmpxchg(&engine->retire, &first, tl)); return !first; } void intel_engine_add_retire(struct intel_engine_cs *engine, struct intel_timeline *tl) { /* We don't deal well with the engine disappearing beneath us */ GEM_BUG_ON(intel_engine_is_virtual(engine)); if (add_retire(engine, tl)) queue_work(engine->i915->unordered_wq, &engine->retire_work); } void intel_engine_init_retire(struct intel_engine_cs *engine) { INIT_WORK(&engine->retire_work, engine_retire); } void intel_engine_fini_retire(struct intel_engine_cs *engine) { flush_work(&engine->retire_work); GEM_BUG_ON(engine->retire); } long intel_gt_retire_requests_timeout(struct intel_gt *gt, long timeout, long *remaining_timeout) { struct intel_gt_timelines *timelines = &gt->timelines; struct intel_timeline *tl, *tn; unsigned long active_count = 0; LIST_HEAD(free); flush_submission(gt, timeout); /* kick the ksoftirqd tasklets */ spin_lock(&timelines->lock); list_for_each_entry_safe(tl, tn, &timelines->active_list, link) { if (!mutex_trylock(&tl->mutex)) { active_count++; /* report busy to caller, try again? */ continue; } intel_timeline_get(tl); GEM_BUG_ON(!atomic_read(&tl->active_count)); atomic_inc(&tl->active_count); /* pin the list element */ spin_unlock(&timelines->lock); if (timeout > 0) { struct dma_fence *fence; fence = i915_active_fence_get(&tl->last_request); if (fence) { mutex_unlock(&tl->mutex); timeout = dma_fence_wait_timeout(fence, true, timeout); dma_fence_put(fence); /* Retirement is best effort */ if (!mutex_trylock(&tl->mutex)) { active_count++; goto out_active; } } } if (!retire_requests(tl)) active_count++; mutex_unlock(&tl->mutex); out_active: spin_lock(&timelines->lock); /* Resume list iteration after reacquiring spinlock */ list_safe_reset_next(tl, tn, link); if (atomic_dec_and_test(&tl->active_count)) list_del(&tl->link); /* Defer the final release to after the spinlock */ if (refcount_dec_and_test(&tl->kref.refcount)) { GEM_BUG_ON(atomic_read(&tl->active_count)); list_add(&tl->link, &free); } } spin_unlock(&timelines->lock); list_for_each_entry_safe(tl, tn, &free, link) __intel_timeline_free(&tl->kref); if (flush_submission(gt, timeout)) /* Wait, there's more! */ active_count++; if (remaining_timeout) *remaining_timeout = timeout; return active_count ? timeout ?: -ETIME : 0; } static void retire_work_handler(struct work_struct *work) { struct intel_gt *gt = container_of(work, typeof(*gt), requests.retire_work.work); queue_delayed_work(gt->i915->unordered_wq, &gt->requests.retire_work, round_jiffies_up_relative(HZ)); intel_gt_retire_requests(gt); } void intel_gt_init_requests(struct intel_gt *gt) { INIT_DELAYED_WORK(&gt->requests.retire_work, retire_work_handler); } void intel_gt_park_requests(struct intel_gt *gt) { cancel_delayed_work(&gt->requests.retire_work); } void intel_gt_unpark_requests(struct intel_gt *gt) { queue_delayed_work(gt->i915->unordered_wq, &gt->requests.retire_work, round_jiffies_up_relative(HZ)); } void intel_gt_fini_requests(struct intel_gt *gt) { /* Wait until the work is marked as finished before unloading! */ cancel_delayed_work_sync(&gt->requests.retire_work); flush_work(&gt->watchdog.work); } void intel_gt_watchdog_work(struct work_struct *work) { struct intel_gt *gt = container_of(work, typeof(*gt), watchdog.work); struct i915_request *rq, *rn; struct llist_node *first; first = llist_del_all(&gt->watchdog.list); if (!first) return; llist_for_each_entry_safe(rq, rn, first, watchdog.link) { if (!i915_request_completed(rq)) { struct dma_fence *f = &rq->fence; pr_notice("Fence expiration time out i915-%s:%s:%llx!\n", f->ops->get_driver_name(f), f->ops->get_timeline_name(f), f->seqno); i915_request_cancel(rq, -EINTR); } i915_request_put(rq); } }
linux-master
drivers/gpu/drm/i915/gt/intel_gt_requests.c
// SPDX-License-Identifier: MIT /* * Copyright © 2017-2019 Intel Corporation */ #include "intel_wopcm.h" #include "i915_drv.h" /** * DOC: WOPCM Layout * * The layout of the WOPCM will be fixed after writing to GuC WOPCM size and * offset registers whose values are calculated and determined by HuC/GuC * firmware size and set of hardware requirements/restrictions as shown below: * * :: * * +=========> +====================+ <== WOPCM Top * ^ | HW contexts RSVD | * | +===> +====================+ <== GuC WOPCM Top * | ^ | | * | | | | * | | | | * | GuC | | * | WOPCM | | * | Size +--------------------+ * WOPCM | | GuC FW RSVD | * | | +--------------------+ * | | | GuC Stack RSVD | * | | +------------------- + * | v | GuC WOPCM RSVD | * | +===> +====================+ <== GuC WOPCM base * | | WOPCM RSVD | * | +------------------- + <== HuC Firmware Top * v | HuC FW | * +=========> +====================+ <== WOPCM Base * * GuC accessible WOPCM starts at GuC WOPCM base and ends at GuC WOPCM top. * The top part of the WOPCM is reserved for hardware contexts (e.g. RC6 * context). */ /* Default WOPCM size is 2MB from Gen11, 1MB on previous platforms */ #define GEN11_WOPCM_SIZE SZ_2M #define GEN9_WOPCM_SIZE SZ_1M #define MAX_WOPCM_SIZE SZ_8M /* 16KB WOPCM (RSVD WOPCM) is reserved from HuC firmware top. */ #define WOPCM_RESERVED_SIZE SZ_16K /* 16KB reserved at the beginning of GuC WOPCM. */ #define GUC_WOPCM_RESERVED SZ_16K /* 8KB from GUC_WOPCM_RESERVED is reserved for GuC stack. */ #define GUC_WOPCM_STACK_RESERVED SZ_8K /* GuC WOPCM Offset value needs to be aligned to 16KB. */ #define GUC_WOPCM_OFFSET_ALIGNMENT (1UL << GUC_WOPCM_OFFSET_SHIFT) /* 24KB at the end of WOPCM is reserved for RC6 CTX on BXT. */ #define BXT_WOPCM_RC6_CTX_RESERVED (SZ_16K + SZ_8K) /* 36KB WOPCM reserved at the end of WOPCM on ICL. */ #define ICL_WOPCM_HW_CTX_RESERVED (SZ_32K + SZ_4K) /* 128KB from GUC_WOPCM_RESERVED is reserved for FW on Gen9. */ #define GEN9_GUC_FW_RESERVED SZ_128K #define GEN9_GUC_WOPCM_OFFSET (GUC_WOPCM_RESERVED + GEN9_GUC_FW_RESERVED) static inline struct intel_gt *wopcm_to_gt(struct intel_wopcm *wopcm) { return container_of(wopcm, struct intel_gt, wopcm); } /** * intel_wopcm_init_early() - Early initialization of the WOPCM. * @wopcm: pointer to intel_wopcm. * * Setup the size of WOPCM which will be used by later on WOPCM partitioning. */ void intel_wopcm_init_early(struct intel_wopcm *wopcm) { struct intel_gt *gt = wopcm_to_gt(wopcm); struct drm_i915_private *i915 = gt->i915; if (!HAS_GT_UC(i915)) return; if (GRAPHICS_VER(i915) >= 11) wopcm->size = GEN11_WOPCM_SIZE; else wopcm->size = GEN9_WOPCM_SIZE; drm_dbg(&i915->drm, "WOPCM: %uK\n", wopcm->size / 1024); } static u32 context_reserved_size(struct drm_i915_private *i915) { if (IS_GEN9_LP(i915)) return BXT_WOPCM_RC6_CTX_RESERVED; else if (GRAPHICS_VER(i915) >= 11) return ICL_WOPCM_HW_CTX_RESERVED; else return 0; } static bool gen9_check_dword_gap(struct drm_i915_private *i915, u32 guc_wopcm_base, u32 guc_wopcm_size) { u32 offset; /* * GuC WOPCM size shall be at least a dword larger than the offset from * WOPCM base (GuC WOPCM offset from WOPCM base + GEN9_GUC_WOPCM_OFFSET) * due to hardware limitation on Gen9. */ offset = guc_wopcm_base + GEN9_GUC_WOPCM_OFFSET; if (offset > guc_wopcm_size || (guc_wopcm_size - offset) < sizeof(u32)) { drm_err(&i915->drm, "WOPCM: invalid GuC region size: %uK < %uK\n", guc_wopcm_size / SZ_1K, (u32)(offset + sizeof(u32)) / SZ_1K); return false; } return true; } static bool gen9_check_huc_fw_fits(struct drm_i915_private *i915, u32 guc_wopcm_size, u32 huc_fw_size) { /* * On Gen9, hardware requires the total available GuC WOPCM * size to be larger than or equal to HuC firmware size. Otherwise, * firmware uploading would fail. */ if (huc_fw_size > guc_wopcm_size - GUC_WOPCM_RESERVED) { drm_err(&i915->drm, "WOPCM: no space for %s: %uK < %uK\n", intel_uc_fw_type_repr(INTEL_UC_FW_TYPE_HUC), (guc_wopcm_size - GUC_WOPCM_RESERVED) / SZ_1K, huc_fw_size / 1024); return false; } return true; } static bool check_hw_restrictions(struct drm_i915_private *i915, u32 guc_wopcm_base, u32 guc_wopcm_size, u32 huc_fw_size) { if (GRAPHICS_VER(i915) == 9 && !gen9_check_dword_gap(i915, guc_wopcm_base, guc_wopcm_size)) return false; if (GRAPHICS_VER(i915) == 9 && !gen9_check_huc_fw_fits(i915, guc_wopcm_size, huc_fw_size)) return false; return true; } static bool __check_layout(struct intel_gt *gt, u32 wopcm_size, u32 guc_wopcm_base, u32 guc_wopcm_size, u32 guc_fw_size, u32 huc_fw_size) { struct drm_i915_private *i915 = gt->i915; const u32 ctx_rsvd = context_reserved_size(i915); u32 size; size = wopcm_size - ctx_rsvd; if (unlikely(range_overflows(guc_wopcm_base, guc_wopcm_size, size))) { drm_err(&i915->drm, "WOPCM: invalid GuC region layout: %uK + %uK > %uK\n", guc_wopcm_base / SZ_1K, guc_wopcm_size / SZ_1K, size / SZ_1K); return false; } size = guc_fw_size + GUC_WOPCM_RESERVED + GUC_WOPCM_STACK_RESERVED; if (unlikely(guc_wopcm_size < size)) { drm_err(&i915->drm, "WOPCM: no space for %s: %uK < %uK\n", intel_uc_fw_type_repr(INTEL_UC_FW_TYPE_GUC), guc_wopcm_size / SZ_1K, size / SZ_1K); return false; } if (intel_uc_supports_huc(&gt->uc)) { size = huc_fw_size + WOPCM_RESERVED_SIZE; if (unlikely(guc_wopcm_base < size)) { drm_err(&i915->drm, "WOPCM: no space for %s: %uK < %uK\n", intel_uc_fw_type_repr(INTEL_UC_FW_TYPE_HUC), guc_wopcm_base / SZ_1K, size / SZ_1K); return false; } } return check_hw_restrictions(i915, guc_wopcm_base, guc_wopcm_size, huc_fw_size); } static bool __wopcm_regs_locked(struct intel_uncore *uncore, u32 *guc_wopcm_base, u32 *guc_wopcm_size) { u32 reg_base = intel_uncore_read(uncore, DMA_GUC_WOPCM_OFFSET); u32 reg_size = intel_uncore_read(uncore, GUC_WOPCM_SIZE); if (!(reg_size & GUC_WOPCM_SIZE_LOCKED) || !(reg_base & GUC_WOPCM_OFFSET_VALID)) return false; *guc_wopcm_base = reg_base & GUC_WOPCM_OFFSET_MASK; *guc_wopcm_size = reg_size & GUC_WOPCM_SIZE_MASK; return true; } static bool __wopcm_regs_writable(struct intel_uncore *uncore) { if (!HAS_GUC_DEPRIVILEGE(uncore->i915)) return true; return intel_uncore_read(uncore, GUC_SHIM_CONTROL2) & GUC_IS_PRIVILEGED; } /** * intel_wopcm_init() - Initialize the WOPCM structure. * @wopcm: pointer to intel_wopcm. * * This function will partition WOPCM space based on GuC and HuC firmware sizes * and will allocate max remaining for use by GuC. This function will also * enforce platform dependent hardware restrictions on GuC WOPCM offset and * size. It will fail the WOPCM init if any of these checks fail, so that the * following WOPCM registers setup and GuC firmware uploading would be aborted. */ void intel_wopcm_init(struct intel_wopcm *wopcm) { struct intel_gt *gt = wopcm_to_gt(wopcm); struct drm_i915_private *i915 = gt->i915; u32 guc_fw_size = intel_uc_fw_get_upload_size(&gt->uc.guc.fw); u32 huc_fw_size = intel_uc_fw_get_upload_size(&gt->uc.huc.fw); u32 ctx_rsvd = context_reserved_size(i915); u32 wopcm_size = wopcm->size; u32 guc_wopcm_base; u32 guc_wopcm_size; if (!guc_fw_size) return; GEM_BUG_ON(!wopcm_size); GEM_BUG_ON(wopcm->guc.base); GEM_BUG_ON(wopcm->guc.size); GEM_BUG_ON(guc_fw_size >= wopcm_size); GEM_BUG_ON(huc_fw_size >= wopcm_size); GEM_BUG_ON(ctx_rsvd + WOPCM_RESERVED_SIZE >= wopcm_size); if (i915_inject_probe_failure(i915)) return; if (__wopcm_regs_locked(gt->uncore, &guc_wopcm_base, &guc_wopcm_size)) { drm_dbg(&i915->drm, "GuC WOPCM is already locked [%uK, %uK)\n", guc_wopcm_base / SZ_1K, guc_wopcm_size / SZ_1K); /* * Note that to keep things simple (i.e. avoid different * defines per platform) our WOPCM math doesn't always use the * actual WOPCM size, but a value that is less or equal to it. * This is perfectly fine when i915 programs the registers, but * on platforms with GuC deprivilege the registers are not * writable from i915 and are instead pre-programmed by the * bios/IFWI, so there might be a mismatch of sizes. * Instead of handling the size difference, we trust that the * programmed values make sense and disable the relevant check * by using the maximum possible WOPCM size in the verification * math. In the extremely unlikely case that the registers * were pre-programmed with an invalid value, we will still * gracefully fail later during the GuC/HuC dma. */ if (!__wopcm_regs_writable(gt->uncore)) wopcm_size = MAX_WOPCM_SIZE; goto check; } /* * On platforms with a media GT, the WOPCM is partitioned between the * two GTs, so we would have to take that into account when doing the * math below. There is also a new section reserved for the GSC context * that would have to be factored in. However, all platforms with a * media GT also have GuC depriv enabled, so the WOPCM regs are * pre-locked and therefore we don't have to do the math ourselves. */ if (unlikely(i915->media_gt)) { drm_err(&i915->drm, "Unlocked WOPCM regs with media GT\n"); return; } /* * Aligned value of guc_wopcm_base will determine available WOPCM space * for HuC firmware and mandatory reserved area. */ guc_wopcm_base = huc_fw_size + WOPCM_RESERVED_SIZE; guc_wopcm_base = ALIGN(guc_wopcm_base, GUC_WOPCM_OFFSET_ALIGNMENT); /* * Need to clamp guc_wopcm_base now to make sure the following math is * correct. Formal check of whole WOPCM layout will be done below. */ guc_wopcm_base = min(guc_wopcm_base, wopcm_size - ctx_rsvd); /* Aligned remainings of usable WOPCM space can be assigned to GuC. */ guc_wopcm_size = wopcm_size - ctx_rsvd - guc_wopcm_base; guc_wopcm_size &= GUC_WOPCM_SIZE_MASK; drm_dbg(&i915->drm, "Calculated GuC WOPCM [%uK, %uK)\n", guc_wopcm_base / SZ_1K, guc_wopcm_size / SZ_1K); check: if (__check_layout(gt, wopcm_size, guc_wopcm_base, guc_wopcm_size, guc_fw_size, huc_fw_size)) { wopcm->guc.base = guc_wopcm_base; wopcm->guc.size = guc_wopcm_size; GEM_BUG_ON(!wopcm->guc.base); GEM_BUG_ON(!wopcm->guc.size); } }
linux-master
drivers/gpu/drm/i915/gt/intel_wopcm.c
// SPDX-License-Identifier: MIT /* * Copyright © 2014 Intel Corporation */ /** * DOC: Logical Rings, Logical Ring Contexts and Execlists * * Motivation: * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts". * These expanded contexts enable a number of new abilities, especially * "Execlists" (also implemented in this file). * * One of the main differences with the legacy HW contexts is that logical * ring contexts incorporate many more things to the context's state, like * PDPs or ringbuffer control registers: * * The reason why PDPs are included in the context is straightforward: as * PPGTTs (per-process GTTs) are actually per-context, having the PDPs * contained there mean you don't need to do a ppgtt->switch_mm yourself, * instead, the GPU will do it for you on the context switch. * * But, what about the ringbuffer control registers (head, tail, etc..)? * shouldn't we just need a set of those per engine command streamer? This is * where the name "Logical Rings" starts to make sense: by virtualizing the * rings, the engine cs shifts to a new "ring buffer" with every context * switch. When you want to submit a workload to the GPU you: A) choose your * context, B) find its appropriate virtualized ring, C) write commands to it * and then, finally, D) tell the GPU to switch to that context. * * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch * to a contexts is via a context execution list, ergo "Execlists". * * LRC implementation: * Regarding the creation of contexts, we have: * * - One global default context. * - One local default context for each opened fd. * - One local extra context for each context create ioctl call. * * Now that ringbuffers belong per-context (and not per-engine, like before) * and that contexts are uniquely tied to a given engine (and not reusable, * like before) we need: * * - One ringbuffer per-engine inside each context. * - One backing object per-engine inside each context. * * The global default context starts its life with these new objects fully * allocated and populated. The local default context for each opened fd is * more complex, because we don't know at creation time which engine is going * to use them. To handle this, we have implemented a deferred creation of LR * contexts: * * The local context starts its life as a hollow or blank holder, that only * gets populated for a given engine once we receive an execbuffer. If later * on we receive another execbuffer ioctl for the same context but a different * engine, we allocate/populate a new ringbuffer and context backing object and * so on. * * Finally, regarding local contexts created using the ioctl call: as they are * only allowed with the render ring, we can allocate & populate them right * away (no need to defer anything, at least for now). * * Execlists implementation: * Execlists are the new method by which, on gen8+ hardware, workloads are * submitted for execution (as opposed to the legacy, ringbuffer-based, method). * This method works as follows: * * When a request is committed, its commands (the BB start and any leading or * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer * for the appropriate context. The tail pointer in the hardware context is not * updated at this time, but instead, kept by the driver in the ringbuffer * structure. A structure representing this request is added to a request queue * for the appropriate engine: this structure contains a copy of the context's * tail after the request was written to the ring buffer and a pointer to the * context itself. * * If the engine's request queue was empty before the request was added, the * queue is processed immediately. Otherwise the queue will be processed during * a context switch interrupt. In any case, elements on the queue will get sent * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a * globally unique 20-bits submission ID. * * When execution of a request completes, the GPU updates the context status * buffer with a context complete event and generates a context switch interrupt. * During the interrupt handling, the driver examines the events in the buffer: * for each context complete event, if the announced ID matches that on the head * of the request queue, then that request is retired and removed from the queue. * * After processing, if any requests were retired and the queue is not empty * then a new execution list can be submitted. The two requests at the front of * the queue are next to be submitted but since a context may not occur twice in * an execution list, if subsequent requests have the same ID as the first then * the two requests must be combined. This is done simply by discarding requests * at the head of the queue until either only one requests is left (in which case * we use a NULL second context) or the first two requests have unique IDs. * * By always executing the first two requests in the queue the driver ensures * that the GPU is kept as busy as possible. In the case where a single context * completes but a second context is still executing, the request for this second * context will be at the head of the queue when we remove the first one. This * request will then be resubmitted along with a new request for a different context, * which will cause the hardware to continue executing the second request and queue * the new request (the GPU detects the condition of a context getting preempted * with the same context and optimizes the context switch flow by not doing * preemption, but just sampling the new tail pointer). * */ #include <linux/interrupt.h> #include <linux/string_helpers.h> #include "i915_drv.h" #include "i915_reg.h" #include "i915_trace.h" #include "i915_vgpu.h" #include "gen8_engine_cs.h" #include "intel_breadcrumbs.h" #include "intel_context.h" #include "intel_engine_heartbeat.h" #include "intel_engine_pm.h" #include "intel_engine_regs.h" #include "intel_engine_stats.h" #include "intel_execlists_submission.h" #include "intel_gt.h" #include "intel_gt_irq.h" #include "intel_gt_pm.h" #include "intel_gt_regs.h" #include "intel_gt_requests.h" #include "intel_lrc.h" #include "intel_lrc_reg.h" #include "intel_mocs.h" #include "intel_reset.h" #include "intel_ring.h" #include "intel_workarounds.h" #include "shmem_utils.h" #define RING_EXECLIST_QFULL (1 << 0x2) #define RING_EXECLIST1_VALID (1 << 0x3) #define RING_EXECLIST0_VALID (1 << 0x4) #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE) #define RING_EXECLIST1_ACTIVE (1 << 0x11) #define RING_EXECLIST0_ACTIVE (1 << 0x12) #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0) #define GEN8_CTX_STATUS_PREEMPTED (1 << 1) #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2) #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3) #define GEN8_CTX_STATUS_COMPLETE (1 << 4) #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15) #define GEN8_CTX_STATUS_COMPLETED_MASK \ (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED) #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE (0x1) /* lower csb dword */ #define GEN12_CTX_SWITCH_DETAIL(csb_dw) ((csb_dw) & 0xF) /* upper csb dword */ #define GEN12_CSB_SW_CTX_ID_MASK GENMASK(25, 15) #define GEN12_IDLE_CTX_ID 0x7FF #define GEN12_CSB_CTX_VALID(csb_dw) \ (FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID) #define XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE BIT(1) /* upper csb dword */ #define XEHP_CSB_SW_CTX_ID_MASK GENMASK(31, 10) #define XEHP_IDLE_CTX_ID 0xFFFF #define XEHP_CSB_CTX_VALID(csb_dw) \ (FIELD_GET(XEHP_CSB_SW_CTX_ID_MASK, csb_dw) != XEHP_IDLE_CTX_ID) /* Typical size of the average request (2 pipecontrols and a MI_BB) */ #define EXECLISTS_REQUEST_SIZE 64 /* bytes */ struct virtual_engine { struct intel_engine_cs base; struct intel_context context; struct rcu_work rcu; /* * We allow only a single request through the virtual engine at a time * (each request in the timeline waits for the completion fence of * the previous before being submitted). By restricting ourselves to * only submitting a single request, each request is placed on to a * physical to maximise load spreading (by virtue of the late greedy * scheduling -- each real engine takes the next available request * upon idling). */ struct i915_request *request; /* * We keep a rbtree of available virtual engines inside each physical * engine, sorted by priority. Here we preallocate the nodes we need * for the virtual engine, indexed by physical_engine->id. */ struct ve_node { struct rb_node rb; int prio; } nodes[I915_NUM_ENGINES]; /* And finally, which physical engines this virtual engine maps onto. */ unsigned int num_siblings; struct intel_engine_cs *siblings[]; }; static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine) { GEM_BUG_ON(!intel_engine_is_virtual(engine)); return container_of(engine, struct virtual_engine, base); } static struct intel_context * execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count, unsigned long flags); static struct i915_request * __active_request(const struct intel_timeline * const tl, struct i915_request *rq, int error) { struct i915_request *active = rq; list_for_each_entry_from_reverse(rq, &tl->requests, link) { if (__i915_request_is_complete(rq)) break; if (error) { i915_request_set_error_once(rq, error); __i915_request_skip(rq); } active = rq; } return active; } static struct i915_request * active_request(const struct intel_timeline * const tl, struct i915_request *rq) { return __active_request(tl, rq, 0); } static void ring_set_paused(const struct intel_engine_cs *engine, int state) { /* * We inspect HWS_PREEMPT with a semaphore inside * engine->emit_fini_breadcrumb. If the dword is true, * the ring is paused as the semaphore will busywait * until the dword is false. */ engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state; if (state) wmb(); } static struct i915_priolist *to_priolist(struct rb_node *rb) { return rb_entry(rb, struct i915_priolist, node); } static int rq_prio(const struct i915_request *rq) { return READ_ONCE(rq->sched.attr.priority); } static int effective_prio(const struct i915_request *rq) { int prio = rq_prio(rq); /* * If this request is special and must not be interrupted at any * cost, so be it. Note we are only checking the most recent request * in the context and so may be masking an earlier vip request. It * is hoped that under the conditions where nopreempt is used, this * will not matter (i.e. all requests to that context will be * nopreempt for as long as desired). */ if (i915_request_has_nopreempt(rq)) prio = I915_PRIORITY_UNPREEMPTABLE; return prio; } static int queue_prio(const struct i915_sched_engine *sched_engine) { struct rb_node *rb; rb = rb_first_cached(&sched_engine->queue); if (!rb) return INT_MIN; return to_priolist(rb)->priority; } static int virtual_prio(const struct intel_engine_execlists *el) { struct rb_node *rb = rb_first_cached(&el->virtual); return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN; } static bool need_preempt(const struct intel_engine_cs *engine, const struct i915_request *rq) { int last_prio; if (!intel_engine_has_semaphores(engine)) return false; /* * Check if the current priority hint merits a preemption attempt. * * We record the highest value priority we saw during rescheduling * prior to this dequeue, therefore we know that if it is strictly * less than the current tail of ESLP[0], we do not need to force * a preempt-to-idle cycle. * * However, the priority hint is a mere hint that we may need to * preempt. If that hint is stale or we may be trying to preempt * ourselves, ignore the request. * * More naturally we would write * prio >= max(0, last); * except that we wish to prevent triggering preemption at the same * priority level: the task that is running should remain running * to preserve FIFO ordering of dependencies. */ last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1); if (engine->sched_engine->queue_priority_hint <= last_prio) return false; /* * Check against the first request in ELSP[1], it will, thanks to the * power of PI, be the highest priority of that context. */ if (!list_is_last(&rq->sched.link, &engine->sched_engine->requests) && rq_prio(list_next_entry(rq, sched.link)) > last_prio) return true; /* * If the inflight context did not trigger the preemption, then maybe * it was the set of queued requests? Pick the highest priority in * the queue (the first active priolist) and see if it deserves to be * running instead of ELSP[0]. * * The highest priority request in the queue can not be either * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same * context, it's priority would not exceed ELSP[0] aka last_prio. */ return max(virtual_prio(&engine->execlists), queue_prio(engine->sched_engine)) > last_prio; } __maybe_unused static bool assert_priority_queue(const struct i915_request *prev, const struct i915_request *next) { /* * Without preemption, the prev may refer to the still active element * which we refuse to let go. * * Even with preemption, there are times when we think it is better not * to preempt and leave an ostensibly lower priority request in flight. */ if (i915_request_is_active(prev)) return true; return rq_prio(prev) >= rq_prio(next); } static struct i915_request * __unwind_incomplete_requests(struct intel_engine_cs *engine) { struct i915_request *rq, *rn, *active = NULL; struct list_head *pl; int prio = I915_PRIORITY_INVALID; lockdep_assert_held(&engine->sched_engine->lock); list_for_each_entry_safe_reverse(rq, rn, &engine->sched_engine->requests, sched.link) { if (__i915_request_is_complete(rq)) { list_del_init(&rq->sched.link); continue; } __i915_request_unsubmit(rq); GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID); if (rq_prio(rq) != prio) { prio = rq_prio(rq); pl = i915_sched_lookup_priolist(engine->sched_engine, prio); } GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine)); list_move(&rq->sched.link, pl); set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); /* Check in case we rollback so far we wrap [size/2] */ if (intel_ring_direction(rq->ring, rq->tail, rq->ring->tail + 8) > 0) rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE; active = rq; } return active; } struct i915_request * execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists) { struct intel_engine_cs *engine = container_of(execlists, typeof(*engine), execlists); return __unwind_incomplete_requests(engine); } static void execlists_context_status_change(struct i915_request *rq, unsigned long status) { /* * Only used when GVT-g is enabled now. When GVT-g is disabled, * The compiler should eliminate this function as dead-code. */ if (!IS_ENABLED(CONFIG_DRM_I915_GVT)) return; atomic_notifier_call_chain(&rq->engine->context_status_notifier, status, rq); } static void reset_active(struct i915_request *rq, struct intel_engine_cs *engine) { struct intel_context * const ce = rq->context; u32 head; /* * The executing context has been cancelled. We want to prevent * further execution along this context and propagate the error on * to anything depending on its results. * * In __i915_request_submit(), we apply the -EIO and remove the * requests' payloads for any banned requests. But first, we must * rewind the context back to the start of the incomplete request so * that we do not jump back into the middle of the batch. * * We preserve the breadcrumbs and semaphores of the incomplete * requests so that inter-timeline dependencies (i.e other timelines) * remain correctly ordered. And we defer to __i915_request_submit() * so that all asynchronous waits are correctly handled. */ ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n", rq->fence.context, rq->fence.seqno); /* On resubmission of the active request, payload will be scrubbed */ if (__i915_request_is_complete(rq)) head = rq->tail; else head = __active_request(ce->timeline, rq, -EIO)->head; head = intel_ring_wrap(ce->ring, head); /* Scrub the context image to prevent replaying the previous batch */ lrc_init_regs(ce, engine, true); /* We've switched away, so this should be a no-op, but intent matters */ ce->lrc.lrca = lrc_update_regs(ce, engine, head); } static bool bad_request(const struct i915_request *rq) { return rq->fence.error && i915_request_started(rq); } static struct intel_engine_cs * __execlists_schedule_in(struct i915_request *rq) { struct intel_engine_cs * const engine = rq->engine; struct intel_context * const ce = rq->context; intel_context_get(ce); if (unlikely(intel_context_is_closed(ce) && !intel_engine_has_heartbeat(engine))) intel_context_set_exiting(ce); if (unlikely(!intel_context_is_schedulable(ce) || bad_request(rq))) reset_active(rq, engine); if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) lrc_check_regs(ce, engine, "before"); if (ce->tag) { /* Use a fixed tag for OA and friends */ GEM_BUG_ON(ce->tag <= BITS_PER_LONG); ce->lrc.ccid = ce->tag; } else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) { /* We don't need a strict matching tag, just different values */ unsigned int tag = ffs(READ_ONCE(engine->context_tag)); GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG); clear_bit(tag - 1, &engine->context_tag); ce->lrc.ccid = tag << (XEHP_SW_CTX_ID_SHIFT - 32); BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID); } else { /* We don't need a strict matching tag, just different values */ unsigned int tag = __ffs(engine->context_tag); GEM_BUG_ON(tag >= BITS_PER_LONG); __clear_bit(tag, &engine->context_tag); ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32); BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID); } ce->lrc.ccid |= engine->execlists.ccid; __intel_gt_pm_get(engine->gt); if (engine->fw_domain && !engine->fw_active++) intel_uncore_forcewake_get(engine->uncore, engine->fw_domain); execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN); intel_engine_context_in(engine); CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid); return engine; } static void execlists_schedule_in(struct i915_request *rq, int idx) { struct intel_context * const ce = rq->context; struct intel_engine_cs *old; GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine)); trace_i915_request_in(rq, idx); old = ce->inflight; if (!old) old = __execlists_schedule_in(rq); WRITE_ONCE(ce->inflight, ptr_inc(old)); GEM_BUG_ON(intel_context_inflight(ce) != rq->engine); } static void resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve) { struct intel_engine_cs *engine = rq->engine; spin_lock_irq(&engine->sched_engine->lock); clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); WRITE_ONCE(rq->engine, &ve->base); ve->base.submit_request(rq); spin_unlock_irq(&engine->sched_engine->lock); } static void kick_siblings(struct i915_request *rq, struct intel_context *ce) { struct virtual_engine *ve = container_of(ce, typeof(*ve), context); struct intel_engine_cs *engine = rq->engine; /* * After this point, the rq may be transferred to a new sibling, so * before we clear ce->inflight make sure that the context has been * removed from the b->signalers and furthermore we need to make sure * that the concurrent iterator in signal_irq_work is no longer * following ce->signal_link. */ if (!list_empty(&ce->signals)) intel_context_remove_breadcrumbs(ce, engine->breadcrumbs); /* * This engine is now too busy to run this virtual request, so * see if we can find an alternative engine for it to execute on. * Once a request has become bonded to this engine, we treat it the * same as other native request. */ if (i915_request_in_priority_queue(rq) && rq->execution_mask != engine->mask) resubmit_virtual_request(rq, ve); if (READ_ONCE(ve->request)) tasklet_hi_schedule(&ve->base.sched_engine->tasklet); } static void __execlists_schedule_out(struct i915_request * const rq, struct intel_context * const ce) { struct intel_engine_cs * const engine = rq->engine; unsigned int ccid; /* * NB process_csb() is not under the engine->sched_engine->lock and hence * schedule_out can race with schedule_in meaning that we should * refrain from doing non-trivial work here. */ CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid); GEM_BUG_ON(ce->inflight != engine); if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) lrc_check_regs(ce, engine, "after"); /* * If we have just completed this context, the engine may now be * idle and we want to re-enter powersaving. */ if (intel_timeline_is_last(ce->timeline, rq) && __i915_request_is_complete(rq)) intel_engine_add_retire(engine, ce->timeline); ccid = ce->lrc.ccid; if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) { ccid >>= XEHP_SW_CTX_ID_SHIFT - 32; ccid &= XEHP_MAX_CONTEXT_HW_ID; } else { ccid >>= GEN11_SW_CTX_ID_SHIFT - 32; ccid &= GEN12_MAX_CONTEXT_HW_ID; } if (ccid < BITS_PER_LONG) { GEM_BUG_ON(ccid == 0); GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag)); __set_bit(ccid - 1, &engine->context_tag); } intel_engine_context_out(engine); execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT); if (engine->fw_domain && !--engine->fw_active) intel_uncore_forcewake_put(engine->uncore, engine->fw_domain); intel_gt_pm_put_async(engine->gt); /* * If this is part of a virtual engine, its next request may * have been blocked waiting for access to the active context. * We have to kick all the siblings again in case we need to * switch (e.g. the next request is not runnable on this * engine). Hopefully, we will already have submitted the next * request before the tasklet runs and do not need to rebuild * each virtual tree and kick everyone again. */ if (ce->engine != engine) kick_siblings(rq, ce); WRITE_ONCE(ce->inflight, NULL); intel_context_put(ce); } static inline void execlists_schedule_out(struct i915_request *rq) { struct intel_context * const ce = rq->context; trace_i915_request_out(rq); GEM_BUG_ON(!ce->inflight); ce->inflight = ptr_dec(ce->inflight); if (!__intel_context_inflight_count(ce->inflight)) __execlists_schedule_out(rq, ce); i915_request_put(rq); } static u32 map_i915_prio_to_lrc_desc_prio(int prio) { if (prio > I915_PRIORITY_NORMAL) return GEN12_CTX_PRIORITY_HIGH; else if (prio < I915_PRIORITY_NORMAL) return GEN12_CTX_PRIORITY_LOW; else return GEN12_CTX_PRIORITY_NORMAL; } static u64 execlists_update_context(struct i915_request *rq) { struct intel_context *ce = rq->context; u64 desc; u32 tail, prev; desc = ce->lrc.desc; if (rq->engine->flags & I915_ENGINE_HAS_EU_PRIORITY) desc |= map_i915_prio_to_lrc_desc_prio(rq_prio(rq)); /* * WaIdleLiteRestore:bdw,skl * * We should never submit the context with the same RING_TAIL twice * just in case we submit an empty ring, which confuses the HW. * * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of * the normal request to be able to always advance the RING_TAIL on * subsequent resubmissions (for lite restore). Should that fail us, * and we try and submit the same tail again, force the context * reload. * * If we need to return to a preempted context, we need to skip the * lite-restore and force it to reload the RING_TAIL. Otherwise, the * HW has a tendency to ignore us rewinding the TAIL to the end of * an earlier request. */ GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail); prev = rq->ring->tail; tail = intel_ring_set_tail(rq->ring, rq->tail); if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0)) desc |= CTX_DESC_FORCE_RESTORE; ce->lrc_reg_state[CTX_RING_TAIL] = tail; rq->tail = rq->wa_tail; /* * Make sure the context image is complete before we submit it to HW. * * Ostensibly, writes (including the WCB) should be flushed prior to * an uncached write such as our mmio register access, the empirical * evidence (esp. on Braswell) suggests that the WC write into memory * may not be visible to the HW prior to the completion of the UC * register write and that we may begin execution from the context * before its image is complete leading to invalid PD chasing. */ wmb(); ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE; return desc; } static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port) { if (execlists->ctrl_reg) { writel(lower_32_bits(desc), execlists->submit_reg + port * 2); writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1); } else { writel(upper_32_bits(desc), execlists->submit_reg); writel(lower_32_bits(desc), execlists->submit_reg); } } static __maybe_unused char * dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq) { if (!rq) return ""; snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d", prefix, rq->context->lrc.ccid, rq->fence.context, rq->fence.seqno, __i915_request_is_complete(rq) ? "!" : __i915_request_has_started(rq) ? "*" : "", rq_prio(rq)); return buf; } static __maybe_unused noinline void trace_ports(const struct intel_engine_execlists *execlists, const char *msg, struct i915_request * const *ports) { const struct intel_engine_cs *engine = container_of(execlists, typeof(*engine), execlists); char __maybe_unused p0[40], p1[40]; if (!ports[0]) return; ENGINE_TRACE(engine, "%s { %s%s }\n", msg, dump_port(p0, sizeof(p0), "", ports[0]), dump_port(p1, sizeof(p1), ", ", ports[1])); } static bool reset_in_progress(const struct intel_engine_cs *engine) { return unlikely(!__tasklet_is_enabled(&engine->sched_engine->tasklet)); } static __maybe_unused noinline bool assert_pending_valid(const struct intel_engine_execlists *execlists, const char *msg) { struct intel_engine_cs *engine = container_of(execlists, typeof(*engine), execlists); struct i915_request * const *port, *rq, *prev = NULL; struct intel_context *ce = NULL; u32 ccid = -1; trace_ports(execlists, msg, execlists->pending); /* We may be messing around with the lists during reset, lalala */ if (reset_in_progress(engine)) return true; if (!execlists->pending[0]) { GEM_TRACE_ERR("%s: Nothing pending for promotion!\n", engine->name); return false; } if (execlists->pending[execlists_num_ports(execlists)]) { GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n", engine->name, execlists_num_ports(execlists)); return false; } for (port = execlists->pending; (rq = *port); port++) { unsigned long flags; bool ok = true; GEM_BUG_ON(!kref_read(&rq->fence.refcount)); GEM_BUG_ON(!i915_request_is_active(rq)); if (ce == rq->context) { GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n", engine->name, ce->timeline->fence_context, port - execlists->pending); return false; } ce = rq->context; if (ccid == ce->lrc.ccid) { GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n", engine->name, ccid, ce->timeline->fence_context, port - execlists->pending); return false; } ccid = ce->lrc.ccid; /* * Sentinels are supposed to be the last request so they flush * the current execution off the HW. Check that they are the only * request in the pending submission. * * NB: Due to the async nature of preempt-to-busy and request * cancellation we need to handle the case where request * becomes a sentinel in parallel to CSB processing. */ if (prev && i915_request_has_sentinel(prev) && !READ_ONCE(prev->fence.error)) { GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n", engine->name, ce->timeline->fence_context, port - execlists->pending); return false; } prev = rq; /* * We want virtual requests to only be in the first slot so * that they are never stuck behind a hog and can be immediately * transferred onto the next idle engine. */ if (rq->execution_mask != engine->mask && port != execlists->pending) { GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n", engine->name, ce->timeline->fence_context, port - execlists->pending); return false; } /* Hold tightly onto the lock to prevent concurrent retires! */ if (!spin_trylock_irqsave(&rq->lock, flags)) continue; if (__i915_request_is_complete(rq)) goto unlock; if (i915_active_is_idle(&ce->active) && !intel_context_is_barrier(ce)) { GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n", engine->name, ce->timeline->fence_context, port - execlists->pending); ok = false; goto unlock; } if (!i915_vma_is_pinned(ce->state)) { GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n", engine->name, ce->timeline->fence_context, port - execlists->pending); ok = false; goto unlock; } if (!i915_vma_is_pinned(ce->ring->vma)) { GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n", engine->name, ce->timeline->fence_context, port - execlists->pending); ok = false; goto unlock; } unlock: spin_unlock_irqrestore(&rq->lock, flags); if (!ok) return false; } return ce; } static void execlists_submit_ports(struct intel_engine_cs *engine) { struct intel_engine_execlists *execlists = &engine->execlists; unsigned int n; GEM_BUG_ON(!assert_pending_valid(execlists, "submit")); /* * We can skip acquiring intel_runtime_pm_get() here as it was taken * on our behalf by the request (see i915_gem_mark_busy()) and it will * not be relinquished until the device is idle (see * i915_gem_idle_work_handler()). As a precaution, we make sure * that all ELSP are drained i.e. we have processed the CSB, * before allowing ourselves to idle and calling intel_runtime_pm_put(). */ GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); /* * ELSQ note: the submit queue is not cleared after being submitted * to the HW so we need to make sure we always clean it up. This is * currently ensured by the fact that we always write the same number * of elsq entries, keep this in mind before changing the loop below. */ for (n = execlists_num_ports(execlists); n--; ) { struct i915_request *rq = execlists->pending[n]; write_desc(execlists, rq ? execlists_update_context(rq) : 0, n); } /* we need to manually load the submit queue */ if (execlists->ctrl_reg) writel(EL_CTRL_LOAD, execlists->ctrl_reg); } static bool ctx_single_port_submission(const struct intel_context *ce) { return (IS_ENABLED(CONFIG_DRM_I915_GVT) && intel_context_force_single_submission(ce)); } static bool can_merge_ctx(const struct intel_context *prev, const struct intel_context *next) { if (prev != next) return false; if (ctx_single_port_submission(prev)) return false; return true; } static unsigned long i915_request_flags(const struct i915_request *rq) { return READ_ONCE(rq->fence.flags); } static bool can_merge_rq(const struct i915_request *prev, const struct i915_request *next) { GEM_BUG_ON(prev == next); GEM_BUG_ON(!assert_priority_queue(prev, next)); /* * We do not submit known completed requests. Therefore if the next * request is already completed, we can pretend to merge it in * with the previous context (and we will skip updating the ELSP * and tracking). Thus hopefully keeping the ELSP full with active * contexts, despite the best efforts of preempt-to-busy to confuse * us. */ if (__i915_request_is_complete(next)) return true; if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) & (BIT(I915_FENCE_FLAG_NOPREEMPT) | BIT(I915_FENCE_FLAG_SENTINEL)))) return false; if (!can_merge_ctx(prev->context, next->context)) return false; GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno)); return true; } static bool virtual_matches(const struct virtual_engine *ve, const struct i915_request *rq, const struct intel_engine_cs *engine) { const struct intel_engine_cs *inflight; if (!rq) return false; if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */ return false; /* * We track when the HW has completed saving the context image * (i.e. when we have seen the final CS event switching out of * the context) and must not overwrite the context image before * then. This restricts us to only using the active engine * while the previous virtualized request is inflight (so * we reuse the register offsets). This is a very small * hystersis on the greedy seelction algorithm. */ inflight = intel_context_inflight(&ve->context); if (inflight && inflight != engine) return false; return true; } static struct virtual_engine * first_virtual_engine(struct intel_engine_cs *engine) { struct intel_engine_execlists *el = &engine->execlists; struct rb_node *rb = rb_first_cached(&el->virtual); while (rb) { struct virtual_engine *ve = rb_entry(rb, typeof(*ve), nodes[engine->id].rb); struct i915_request *rq = READ_ONCE(ve->request); /* lazily cleanup after another engine handled rq */ if (!rq || !virtual_matches(ve, rq, engine)) { rb_erase_cached(rb, &el->virtual); RB_CLEAR_NODE(rb); rb = rb_first_cached(&el->virtual); continue; } return ve; } return NULL; } static void virtual_xfer_context(struct virtual_engine *ve, struct intel_engine_cs *engine) { unsigned int n; if (likely(engine == ve->siblings[0])) return; GEM_BUG_ON(READ_ONCE(ve->context.inflight)); if (!intel_engine_has_relative_mmio(engine)) lrc_update_offsets(&ve->context, engine); /* * Move the bound engine to the top of the list for * future execution. We then kick this tasklet first * before checking others, so that we preferentially * reuse this set of bound registers. */ for (n = 1; n < ve->num_siblings; n++) { if (ve->siblings[n] == engine) { swap(ve->siblings[n], ve->siblings[0]); break; } } } static void defer_request(struct i915_request *rq, struct list_head * const pl) { LIST_HEAD(list); /* * We want to move the interrupted request to the back of * the round-robin list (i.e. its priority level), but * in doing so, we must then move all requests that were in * flight and were waiting for the interrupted request to * be run after it again. */ do { struct i915_dependency *p; GEM_BUG_ON(i915_request_is_active(rq)); list_move_tail(&rq->sched.link, pl); for_each_waiter(p, rq) { struct i915_request *w = container_of(p->waiter, typeof(*w), sched); if (p->flags & I915_DEPENDENCY_WEAK) continue; /* Leave semaphores spinning on the other engines */ if (w->engine != rq->engine) continue; /* No waiter should start before its signaler */ GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) && __i915_request_has_started(w) && !__i915_request_is_complete(rq)); if (!i915_request_is_ready(w)) continue; if (rq_prio(w) < rq_prio(rq)) continue; GEM_BUG_ON(rq_prio(w) > rq_prio(rq)); GEM_BUG_ON(i915_request_is_active(w)); list_move_tail(&w->sched.link, &list); } rq = list_first_entry_or_null(&list, typeof(*rq), sched.link); } while (rq); } static void defer_active(struct intel_engine_cs *engine) { struct i915_request *rq; rq = __unwind_incomplete_requests(engine); if (!rq) return; defer_request(rq, i915_sched_lookup_priolist(engine->sched_engine, rq_prio(rq))); } static bool timeslice_yield(const struct intel_engine_execlists *el, const struct i915_request *rq) { /* * Once bitten, forever smitten! * * If the active context ever busy-waited on a semaphore, * it will be treated as a hog until the end of its timeslice (i.e. * until it is scheduled out and replaced by a new submission, * possibly even its own lite-restore). The HW only sends an interrupt * on the first miss, and we do know if that semaphore has been * signaled, or even if it is now stuck on another semaphore. Play * safe, yield if it might be stuck -- it will be given a fresh * timeslice in the near future. */ return rq->context->lrc.ccid == READ_ONCE(el->yield); } static bool needs_timeslice(const struct intel_engine_cs *engine, const struct i915_request *rq) { if (!intel_engine_has_timeslices(engine)) return false; /* If not currently active, or about to switch, wait for next event */ if (!rq || __i915_request_is_complete(rq)) return false; /* We do not need to start the timeslice until after the ACK */ if (READ_ONCE(engine->execlists.pending[0])) return false; /* If ELSP[1] is occupied, always check to see if worth slicing */ if (!list_is_last_rcu(&rq->sched.link, &engine->sched_engine->requests)) { ENGINE_TRACE(engine, "timeslice required for second inflight context\n"); return true; } /* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */ if (!i915_sched_engine_is_empty(engine->sched_engine)) { ENGINE_TRACE(engine, "timeslice required for queue\n"); return true; } if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) { ENGINE_TRACE(engine, "timeslice required for virtual\n"); return true; } return false; } static bool timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq) { const struct intel_engine_execlists *el = &engine->execlists; if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq)) return false; if (!needs_timeslice(engine, rq)) return false; return timer_expired(&el->timer) || timeslice_yield(el, rq); } static unsigned long timeslice(const struct intel_engine_cs *engine) { return READ_ONCE(engine->props.timeslice_duration_ms); } static void start_timeslice(struct intel_engine_cs *engine) { struct intel_engine_execlists *el = &engine->execlists; unsigned long duration; /* Disable the timer if there is nothing to switch to */ duration = 0; if (needs_timeslice(engine, *el->active)) { /* Avoid continually prolonging an active timeslice */ if (timer_active(&el->timer)) { /* * If we just submitted a new ELSP after an old * context, that context may have already consumed * its timeslice, so recheck. */ if (!timer_pending(&el->timer)) tasklet_hi_schedule(&engine->sched_engine->tasklet); return; } duration = timeslice(engine); } set_timer_ms(&el->timer, duration); } static void record_preemption(struct intel_engine_execlists *execlists) { (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++); } static unsigned long active_preempt_timeout(struct intel_engine_cs *engine, const struct i915_request *rq) { if (!rq) return 0; /* Only allow ourselves to force reset the currently active context */ engine->execlists.preempt_target = rq; /* Force a fast reset for terminated contexts (ignoring sysfs!) */ if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq))) return INTEL_CONTEXT_BANNED_PREEMPT_TIMEOUT_MS; return READ_ONCE(engine->props.preempt_timeout_ms); } static void set_preempt_timeout(struct intel_engine_cs *engine, const struct i915_request *rq) { if (!intel_engine_has_preempt_reset(engine)) return; set_timer_ms(&engine->execlists.preempt, active_preempt_timeout(engine, rq)); } static bool completed(const struct i915_request *rq) { if (i915_request_has_sentinel(rq)) return false; return __i915_request_is_complete(rq); } static void execlists_dequeue(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; struct i915_sched_engine * const sched_engine = engine->sched_engine; struct i915_request **port = execlists->pending; struct i915_request ** const last_port = port + execlists->port_mask; struct i915_request *last, * const *active; struct virtual_engine *ve; struct rb_node *rb; bool submit = false; /* * Hardware submission is through 2 ports. Conceptually each port * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is * static for a context, and unique to each, so we only execute * requests belonging to a single context from each ring. RING_HEAD * is maintained by the CS in the context image, it marks the place * where it got up to last time, and through RING_TAIL we tell the CS * where we want to execute up to this time. * * In this list the requests are in order of execution. Consecutive * requests from the same context are adjacent in the ringbuffer. We * can combine these requests into a single RING_TAIL update: * * RING_HEAD...req1...req2 * ^- RING_TAIL * since to execute req2 the CS must first execute req1. * * Our goal then is to point each port to the end of a consecutive * sequence of requests as being the most optimal (fewest wake ups * and context switches) submission. */ spin_lock(&sched_engine->lock); /* * If the queue is higher priority than the last * request in the currently active context, submit afresh. * We will resubmit again afterwards in case we need to split * the active context to interject the preemption request, * i.e. we will retrigger preemption following the ack in case * of trouble. * */ active = execlists->active; while ((last = *active) && completed(last)) active++; if (last) { if (need_preempt(engine, last)) { ENGINE_TRACE(engine, "preempting last=%llx:%lld, prio=%d, hint=%d\n", last->fence.context, last->fence.seqno, last->sched.attr.priority, sched_engine->queue_priority_hint); record_preemption(execlists); /* * Don't let the RING_HEAD advance past the breadcrumb * as we unwind (and until we resubmit) so that we do * not accidentally tell it to go backwards. */ ring_set_paused(engine, 1); /* * Note that we have not stopped the GPU at this point, * so we are unwinding the incomplete requests as they * remain inflight and so by the time we do complete * the preemption, some of the unwound requests may * complete! */ __unwind_incomplete_requests(engine); last = NULL; } else if (timeslice_expired(engine, last)) { ENGINE_TRACE(engine, "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n", str_yes_no(timer_expired(&execlists->timer)), last->fence.context, last->fence.seqno, rq_prio(last), sched_engine->queue_priority_hint, str_yes_no(timeslice_yield(execlists, last))); /* * Consume this timeslice; ensure we start a new one. * * The timeslice expired, and we will unwind the * running contexts and recompute the next ELSP. * If that submit will be the same pair of contexts * (due to dependency ordering), we will skip the * submission. If we don't cancel the timer now, * we will see that the timer has expired and * reschedule the tasklet; continually until the * next context switch or other preemption event. * * Since we have decided to reschedule based on * consumption of this timeslice, if we submit the * same context again, grant it a full timeslice. */ cancel_timer(&execlists->timer); ring_set_paused(engine, 1); defer_active(engine); /* * Unlike for preemption, if we rewind and continue * executing the same context as previously active, * the order of execution will remain the same and * the tail will only advance. We do not need to * force a full context restore, as a lite-restore * is sufficient to resample the monotonic TAIL. * * If we switch to any other context, similarly we * will not rewind TAIL of current context, and * normal save/restore will preserve state and allow * us to later continue executing the same request. */ last = NULL; } else { /* * Otherwise if we already have a request pending * for execution after the current one, we can * just wait until the next CS event before * queuing more. In either case we will force a * lite-restore preemption event, but if we wait * we hopefully coalesce several updates into a single * submission. */ if (active[1]) { /* * Even if ELSP[1] is occupied and not worthy * of timeslices, our queue might be. */ spin_unlock(&sched_engine->lock); return; } } } /* XXX virtual is always taking precedence */ while ((ve = first_virtual_engine(engine))) { struct i915_request *rq; spin_lock(&ve->base.sched_engine->lock); rq = ve->request; if (unlikely(!virtual_matches(ve, rq, engine))) goto unlock; /* lost the race to a sibling */ GEM_BUG_ON(rq->engine != &ve->base); GEM_BUG_ON(rq->context != &ve->context); if (unlikely(rq_prio(rq) < queue_prio(sched_engine))) { spin_unlock(&ve->base.sched_engine->lock); break; } if (last && !can_merge_rq(last, rq)) { spin_unlock(&ve->base.sched_engine->lock); spin_unlock(&engine->sched_engine->lock); return; /* leave this for another sibling */ } ENGINE_TRACE(engine, "virtual rq=%llx:%lld%s, new engine? %s\n", rq->fence.context, rq->fence.seqno, __i915_request_is_complete(rq) ? "!" : __i915_request_has_started(rq) ? "*" : "", str_yes_no(engine != ve->siblings[0])); WRITE_ONCE(ve->request, NULL); WRITE_ONCE(ve->base.sched_engine->queue_priority_hint, INT_MIN); rb = &ve->nodes[engine->id].rb; rb_erase_cached(rb, &execlists->virtual); RB_CLEAR_NODE(rb); GEM_BUG_ON(!(rq->execution_mask & engine->mask)); WRITE_ONCE(rq->engine, engine); if (__i915_request_submit(rq)) { /* * Only after we confirm that we will submit * this request (i.e. it has not already * completed), do we want to update the context. * * This serves two purposes. It avoids * unnecessary work if we are resubmitting an * already completed request after timeslicing. * But more importantly, it prevents us altering * ve->siblings[] on an idle context, where * we may be using ve->siblings[] in * virtual_context_enter / virtual_context_exit. */ virtual_xfer_context(ve, engine); GEM_BUG_ON(ve->siblings[0] != engine); submit = true; last = rq; } i915_request_put(rq); unlock: spin_unlock(&ve->base.sched_engine->lock); /* * Hmm, we have a bunch of virtual engine requests, * but the first one was already completed (thanks * preempt-to-busy!). Keep looking at the veng queue * until we have no more relevant requests (i.e. * the normal submit queue has higher priority). */ if (submit) break; } while ((rb = rb_first_cached(&sched_engine->queue))) { struct i915_priolist *p = to_priolist(rb); struct i915_request *rq, *rn; priolist_for_each_request_consume(rq, rn, p) { bool merge = true; /* * Can we combine this request with the current port? * It has to be the same context/ringbuffer and not * have any exceptions (e.g. GVT saying never to * combine contexts). * * If we can combine the requests, we can execute both * by updating the RING_TAIL to point to the end of the * second request, and so we never need to tell the * hardware about the first. */ if (last && !can_merge_rq(last, rq)) { /* * If we are on the second port and cannot * combine this request with the last, then we * are done. */ if (port == last_port) goto done; /* * We must not populate both ELSP[] with the * same LRCA, i.e. we must submit 2 different * contexts if we submit 2 ELSP. */ if (last->context == rq->context) goto done; if (i915_request_has_sentinel(last)) goto done; /* * We avoid submitting virtual requests into * the secondary ports so that we can migrate * the request immediately to another engine * rather than wait for the primary request. */ if (rq->execution_mask != engine->mask) goto done; /* * If GVT overrides us we only ever submit * port[0], leaving port[1] empty. Note that we * also have to be careful that we don't queue * the same context (even though a different * request) to the second port. */ if (ctx_single_port_submission(last->context) || ctx_single_port_submission(rq->context)) goto done; merge = false; } if (__i915_request_submit(rq)) { if (!merge) { *port++ = i915_request_get(last); last = NULL; } GEM_BUG_ON(last && !can_merge_ctx(last->context, rq->context)); GEM_BUG_ON(last && i915_seqno_passed(last->fence.seqno, rq->fence.seqno)); submit = true; last = rq; } } rb_erase_cached(&p->node, &sched_engine->queue); i915_priolist_free(p); } done: *port++ = i915_request_get(last); /* * Here be a bit of magic! Or sleight-of-hand, whichever you prefer. * * We choose the priority hint such that if we add a request of greater * priority than this, we kick the submission tasklet to decide on * the right order of submitting the requests to hardware. We must * also be prepared to reorder requests as they are in-flight on the * HW. We derive the priority hint then as the first "hole" in * the HW submission ports and if there are no available slots, * the priority of the lowest executing request, i.e. last. * * When we do receive a higher priority request ready to run from the * user, see queue_request(), the priority hint is bumped to that * request triggering preemption on the next dequeue (or subsequent * interrupt for secondary ports). */ sched_engine->queue_priority_hint = queue_prio(sched_engine); i915_sched_engine_reset_on_empty(sched_engine); spin_unlock(&sched_engine->lock); /* * We can skip poking the HW if we ended up with exactly the same set * of requests as currently running, e.g. trying to timeslice a pair * of ordered contexts. */ if (submit && memcmp(active, execlists->pending, (port - execlists->pending) * sizeof(*port))) { *port = NULL; while (port-- != execlists->pending) execlists_schedule_in(*port, port - execlists->pending); WRITE_ONCE(execlists->yield, -1); set_preempt_timeout(engine, *active); execlists_submit_ports(engine); } else { ring_set_paused(engine, 0); while (port-- != execlists->pending) i915_request_put(*port); *execlists->pending = NULL; } } static void execlists_dequeue_irq(struct intel_engine_cs *engine) { local_irq_disable(); /* Suspend interrupts across request submission */ execlists_dequeue(engine); local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */ } static void clear_ports(struct i915_request **ports, int count) { memset_p((void **)ports, NULL, count); } static void copy_ports(struct i915_request **dst, struct i915_request **src, int count) { /* A memcpy_p() would be very useful here! */ while (count--) WRITE_ONCE(*dst++, *src++); /* avoid write tearing */ } static struct i915_request ** cancel_port_requests(struct intel_engine_execlists * const execlists, struct i915_request **inactive) { struct i915_request * const *port; for (port = execlists->pending; *port; port++) *inactive++ = *port; clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending)); /* Mark the end of active before we overwrite *active */ for (port = xchg(&execlists->active, execlists->pending); *port; port++) *inactive++ = *port; clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight)); smp_wmb(); /* complete the seqlock for execlists_active() */ WRITE_ONCE(execlists->active, execlists->inflight); /* Having cancelled all outstanding process_csb(), stop their timers */ GEM_BUG_ON(execlists->pending[0]); cancel_timer(&execlists->timer); cancel_timer(&execlists->preempt); return inactive; } /* * Starting with Gen12, the status has a new format: * * bit 0: switched to new queue * bit 1: reserved * bit 2: semaphore wait mode (poll or signal), only valid when * switch detail is set to "wait on semaphore" * bits 3-5: engine class * bits 6-11: engine instance * bits 12-14: reserved * bits 15-25: sw context id of the lrc the GT switched to * bits 26-31: sw counter of the lrc the GT switched to * bits 32-35: context switch detail * - 0: ctx complete * - 1: wait on sync flip * - 2: wait on vblank * - 3: wait on scanline * - 4: wait on semaphore * - 5: context preempted (not on SEMAPHORE_WAIT or * WAIT_FOR_EVENT) * bit 36: reserved * bits 37-43: wait detail (for switch detail 1 to 4) * bits 44-46: reserved * bits 47-57: sw context id of the lrc the GT switched away from * bits 58-63: sw counter of the lrc the GT switched away from * * Xe_HP csb shuffles things around compared to TGL: * * bits 0-3: context switch detail (same possible values as TGL) * bits 4-9: engine instance * bits 10-25: sw context id of the lrc the GT switched to * bits 26-31: sw counter of the lrc the GT switched to * bit 32: semaphore wait mode (poll or signal), Only valid when * switch detail is set to "wait on semaphore" * bit 33: switched to new queue * bits 34-41: wait detail (for switch detail 1 to 4) * bits 42-57: sw context id of the lrc the GT switched away from * bits 58-63: sw counter of the lrc the GT switched away from */ static inline bool __gen12_csb_parse(bool ctx_to_valid, bool ctx_away_valid, bool new_queue, u8 switch_detail) { /* * The context switch detail is not guaranteed to be 5 when a preemption * occurs, so we can't just check for that. The check below works for * all the cases we care about, including preemptions of WAIT * instructions and lite-restore. Preempt-to-idle via the CTRL register * would require some extra handling, but we don't support that. */ if (!ctx_away_valid || new_queue) { GEM_BUG_ON(!ctx_to_valid); return true; } /* * switch detail = 5 is covered by the case above and we do not expect a * context switch on an unsuccessful wait instruction since we always * use polling mode. */ GEM_BUG_ON(switch_detail); return false; } static bool xehp_csb_parse(const u64 csb) { return __gen12_csb_parse(XEHP_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */ XEHP_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */ upper_32_bits(csb) & XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE, GEN12_CTX_SWITCH_DETAIL(lower_32_bits(csb))); } static bool gen12_csb_parse(const u64 csb) { return __gen12_csb_parse(GEN12_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */ GEN12_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */ lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE, GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb))); } static bool gen8_csb_parse(const u64 csb) { return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED); } static noinline u64 wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb) { u64 entry; /* * Reading from the HWSP has one particular advantage: we can detect * a stale entry. Since the write into HWSP is broken, we have no reason * to trust the HW at all, the mmio entry may equally be unordered, so * we prefer the path that is self-checking and as a last resort, * return the mmio value. * * tgl,dg1:HSDES#22011327657 */ preempt_disable(); if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) { int idx = csb - engine->execlists.csb_status; int status; status = GEN8_EXECLISTS_STATUS_BUF; if (idx >= 6) { status = GEN11_EXECLISTS_STATUS_BUF2; idx -= 6; } status += sizeof(u64) * idx; entry = intel_uncore_read64(engine->uncore, _MMIO(engine->mmio_base + status)); } preempt_enable(); return entry; } static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb) { u64 entry = READ_ONCE(*csb); /* * Unfortunately, the GPU does not always serialise its write * of the CSB entries before its write of the CSB pointer, at least * from the perspective of the CPU, using what is known as a Global * Observation Point. We may read a new CSB tail pointer, but then * read the stale CSB entries, causing us to misinterpret the * context-switch events, and eventually declare the GPU hung. * * icl:HSDES#1806554093 * tgl:HSDES#22011248461 */ if (unlikely(entry == -1)) entry = wa_csb_read(engine, csb); /* Consume this entry so that we can spot its future reuse. */ WRITE_ONCE(*csb, -1); /* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */ return entry; } static void new_timeslice(struct intel_engine_execlists *el) { /* By cancelling, we will start afresh in start_timeslice() */ cancel_timer(&el->timer); } static struct i915_request ** process_csb(struct intel_engine_cs *engine, struct i915_request **inactive) { struct intel_engine_execlists * const execlists = &engine->execlists; u64 * const buf = execlists->csb_status; const u8 num_entries = execlists->csb_size; struct i915_request **prev; u8 head, tail; /* * As we modify our execlists state tracking we require exclusive * access. Either we are inside the tasklet, or the tasklet is disabled * and we assume that is only inside the reset paths and so serialised. */ GEM_BUG_ON(!tasklet_is_locked(&engine->sched_engine->tasklet) && !reset_in_progress(engine)); /* * Note that csb_write, csb_status may be either in HWSP or mmio. * When reading from the csb_write mmio register, we have to be * careful to only use the GEN8_CSB_WRITE_PTR portion, which is * the low 4bits. As it happens we know the next 4bits are always * zero and so we can simply masked off the low u8 of the register * and treat it identically to reading from the HWSP (without having * to use explicit shifting and masking, and probably bifurcating * the code to handle the legacy mmio read). */ head = execlists->csb_head; tail = READ_ONCE(*execlists->csb_write); if (unlikely(head == tail)) return inactive; /* * We will consume all events from HW, or at least pretend to. * * The sequence of events from the HW is deterministic, and derived * from our writes to the ELSP, with a smidgen of variability for * the arrival of the asynchronous requests wrt to the inflight * execution. If the HW sends an event that does not correspond with * the one we are expecting, we have to abandon all hope as we lose * all tracking of what the engine is actually executing. We will * only detect we are out of sequence with the HW when we get an * 'impossible' event because we have already drained our own * preemption/promotion queue. If this occurs, we know that we likely * lost track of execution earlier and must unwind and restart, the * simplest way is by stop processing the event queue and force the * engine to reset. */ execlists->csb_head = tail; ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail); /* * Hopefully paired with a wmb() in HW! * * We must complete the read of the write pointer before any reads * from the CSB, so that we do not see stale values. Without an rmb * (lfence) the HW may speculatively perform the CSB[] reads *before* * we perform the READ_ONCE(*csb_write). */ rmb(); /* Remember who was last running under the timer */ prev = inactive; *prev = NULL; do { bool promote; u64 csb; if (++head == num_entries) head = 0; /* * We are flying near dragons again. * * We hold a reference to the request in execlist_port[] * but no more than that. We are operating in softirq * context and so cannot hold any mutex or sleep. That * prevents us stopping the requests we are processing * in port[] from being retired simultaneously (the * breadcrumb will be complete before we see the * context-switch). As we only hold the reference to the * request, any pointer chasing underneath the request * is subject to a potential use-after-free. Thus we * store all of the bookkeeping within port[] as * required, and avoid using unguarded pointers beneath * request itself. The same applies to the atomic * status notifier. */ csb = csb_read(engine, buf + head); ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n", head, upper_32_bits(csb), lower_32_bits(csb)); if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) promote = xehp_csb_parse(csb); else if (GRAPHICS_VER(engine->i915) >= 12) promote = gen12_csb_parse(csb); else promote = gen8_csb_parse(csb); if (promote) { struct i915_request * const *old = execlists->active; if (GEM_WARN_ON(!*execlists->pending)) { execlists->error_interrupt |= ERROR_CSB; break; } ring_set_paused(engine, 0); /* Point active to the new ELSP; prevent overwriting */ WRITE_ONCE(execlists->active, execlists->pending); smp_wmb(); /* notify execlists_active() */ /* cancel old inflight, prepare for switch */ trace_ports(execlists, "preempted", old); while (*old) *inactive++ = *old++; /* switch pending to inflight */ GEM_BUG_ON(!assert_pending_valid(execlists, "promote")); copy_ports(execlists->inflight, execlists->pending, execlists_num_ports(execlists)); smp_wmb(); /* complete the seqlock */ WRITE_ONCE(execlists->active, execlists->inflight); /* XXX Magic delay for tgl */ ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR); WRITE_ONCE(execlists->pending[0], NULL); } else { if (GEM_WARN_ON(!*execlists->active)) { execlists->error_interrupt |= ERROR_CSB; break; } /* port0 completed, advanced to port1 */ trace_ports(execlists, "completed", execlists->active); /* * We rely on the hardware being strongly * ordered, that the breadcrumb write is * coherent (visible from the CPU) before the * user interrupt is processed. One might assume * that the breadcrumb write being before the * user interrupt and the CS event for the context * switch would therefore be before the CS event * itself... */ if (GEM_SHOW_DEBUG() && !__i915_request_is_complete(*execlists->active)) { struct i915_request *rq = *execlists->active; const u32 *regs __maybe_unused = rq->context->lrc_reg_state; ENGINE_TRACE(engine, "context completed before request!\n"); ENGINE_TRACE(engine, "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n", ENGINE_READ(engine, RING_START), ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR, ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR, ENGINE_READ(engine, RING_CTL), ENGINE_READ(engine, RING_MI_MODE)); ENGINE_TRACE(engine, "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ", i915_ggtt_offset(rq->ring->vma), rq->head, rq->tail, rq->fence.context, lower_32_bits(rq->fence.seqno), hwsp_seqno(rq)); ENGINE_TRACE(engine, "ctx:{start:%08x, head:%04x, tail:%04x}, ", regs[CTX_RING_START], regs[CTX_RING_HEAD], regs[CTX_RING_TAIL]); } *inactive++ = *execlists->active++; GEM_BUG_ON(execlists->active - execlists->inflight > execlists_num_ports(execlists)); } } while (head != tail); /* * Gen11 has proven to fail wrt global observation point between * entry and tail update, failing on the ordering and thus * we see an old entry in the context status buffer. * * Forcibly evict out entries for the next gpu csb update, * to increase the odds that we get a fresh entries with non * working hardware. The cost for doing so comes out mostly with * the wash as hardware, working or not, will need to do the * invalidation before. */ drm_clflush_virt_range(&buf[0], num_entries * sizeof(buf[0])); /* * We assume that any event reflects a change in context flow * and merits a fresh timeslice. We reinstall the timer after * inspecting the queue to see if we need to resumbit. */ if (*prev != *execlists->active) { /* elide lite-restores */ struct intel_context *prev_ce = NULL, *active_ce = NULL; /* * Note the inherent discrepancy between the HW runtime, * recorded as part of the context switch, and the CPU * adjustment for active contexts. We have to hope that * the delay in processing the CS event is very small * and consistent. It works to our advantage to have * the CPU adjustment _undershoot_ (i.e. start later than) * the CS timestamp so we never overreport the runtime * and correct overselves later when updating from HW. */ if (*prev) prev_ce = (*prev)->context; if (*execlists->active) active_ce = (*execlists->active)->context; if (prev_ce != active_ce) { if (prev_ce) lrc_runtime_stop(prev_ce); if (active_ce) lrc_runtime_start(active_ce); } new_timeslice(execlists); } return inactive; } static void post_process_csb(struct i915_request **port, struct i915_request **last) { while (port != last) execlists_schedule_out(*port++); } static void __execlists_hold(struct i915_request *rq) { LIST_HEAD(list); do { struct i915_dependency *p; if (i915_request_is_active(rq)) __i915_request_unsubmit(rq); clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); list_move_tail(&rq->sched.link, &rq->engine->sched_engine->hold); i915_request_set_hold(rq); RQ_TRACE(rq, "on hold\n"); for_each_waiter(p, rq) { struct i915_request *w = container_of(p->waiter, typeof(*w), sched); if (p->flags & I915_DEPENDENCY_WEAK) continue; /* Leave semaphores spinning on the other engines */ if (w->engine != rq->engine) continue; if (!i915_request_is_ready(w)) continue; if (__i915_request_is_complete(w)) continue; if (i915_request_on_hold(w)) continue; list_move_tail(&w->sched.link, &list); } rq = list_first_entry_or_null(&list, typeof(*rq), sched.link); } while (rq); } static bool execlists_hold(struct intel_engine_cs *engine, struct i915_request *rq) { if (i915_request_on_hold(rq)) return false; spin_lock_irq(&engine->sched_engine->lock); if (__i915_request_is_complete(rq)) { /* too late! */ rq = NULL; goto unlock; } /* * Transfer this request onto the hold queue to prevent it * being resumbitted to HW (and potentially completed) before we have * released it. Since we may have already submitted following * requests, we need to remove those as well. */ GEM_BUG_ON(i915_request_on_hold(rq)); GEM_BUG_ON(rq->engine != engine); __execlists_hold(rq); GEM_BUG_ON(list_empty(&engine->sched_engine->hold)); unlock: spin_unlock_irq(&engine->sched_engine->lock); return rq; } static bool hold_request(const struct i915_request *rq) { struct i915_dependency *p; bool result = false; /* * If one of our ancestors is on hold, we must also be on hold, * otherwise we will bypass it and execute before it. */ rcu_read_lock(); for_each_signaler(p, rq) { const struct i915_request *s = container_of(p->signaler, typeof(*s), sched); if (s->engine != rq->engine) continue; result = i915_request_on_hold(s); if (result) break; } rcu_read_unlock(); return result; } static void __execlists_unhold(struct i915_request *rq) { LIST_HEAD(list); do { struct i915_dependency *p; RQ_TRACE(rq, "hold release\n"); GEM_BUG_ON(!i915_request_on_hold(rq)); GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); i915_request_clear_hold(rq); list_move_tail(&rq->sched.link, i915_sched_lookup_priolist(rq->engine->sched_engine, rq_prio(rq))); set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); /* Also release any children on this engine that are ready */ for_each_waiter(p, rq) { struct i915_request *w = container_of(p->waiter, typeof(*w), sched); if (p->flags & I915_DEPENDENCY_WEAK) continue; if (w->engine != rq->engine) continue; if (!i915_request_on_hold(w)) continue; /* Check that no other parents are also on hold */ if (hold_request(w)) continue; list_move_tail(&w->sched.link, &list); } rq = list_first_entry_or_null(&list, typeof(*rq), sched.link); } while (rq); } static void execlists_unhold(struct intel_engine_cs *engine, struct i915_request *rq) { spin_lock_irq(&engine->sched_engine->lock); /* * Move this request back to the priority queue, and all of its * children and grandchildren that were suspended along with it. */ __execlists_unhold(rq); if (rq_prio(rq) > engine->sched_engine->queue_priority_hint) { engine->sched_engine->queue_priority_hint = rq_prio(rq); tasklet_hi_schedule(&engine->sched_engine->tasklet); } spin_unlock_irq(&engine->sched_engine->lock); } struct execlists_capture { struct work_struct work; struct i915_request *rq; struct i915_gpu_coredump *error; }; static void execlists_capture_work(struct work_struct *work) { struct execlists_capture *cap = container_of(work, typeof(*cap), work); const gfp_t gfp = __GFP_KSWAPD_RECLAIM | __GFP_RETRY_MAYFAIL | __GFP_NOWARN; struct intel_engine_cs *engine = cap->rq->engine; struct intel_gt_coredump *gt = cap->error->gt; struct intel_engine_capture_vma *vma; /* Compress all the objects attached to the request, slow! */ vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp); if (vma) { struct i915_vma_compress *compress = i915_vma_capture_prepare(gt); intel_engine_coredump_add_vma(gt->engine, vma, compress); i915_vma_capture_finish(gt, compress); } gt->simulated = gt->engine->simulated; cap->error->simulated = gt->simulated; /* Publish the error state, and announce it to the world */ i915_error_state_store(cap->error); i915_gpu_coredump_put(cap->error); /* Return this request and all that depend upon it for signaling */ execlists_unhold(engine, cap->rq); i915_request_put(cap->rq); kfree(cap); } static struct execlists_capture *capture_regs(struct intel_engine_cs *engine) { const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN; struct execlists_capture *cap; cap = kmalloc(sizeof(*cap), gfp); if (!cap) return NULL; cap->error = i915_gpu_coredump_alloc(engine->i915, gfp); if (!cap->error) goto err_cap; cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp, CORE_DUMP_FLAG_NONE); if (!cap->error->gt) goto err_gpu; cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp, CORE_DUMP_FLAG_NONE); if (!cap->error->gt->engine) goto err_gt; cap->error->gt->engine->hung = true; return cap; err_gt: kfree(cap->error->gt); err_gpu: kfree(cap->error); err_cap: kfree(cap); return NULL; } static struct i915_request * active_context(struct intel_engine_cs *engine, u32 ccid) { const struct intel_engine_execlists * const el = &engine->execlists; struct i915_request * const *port, *rq; /* * Use the most recent result from process_csb(), but just in case * we trigger an error (via interrupt) before the first CS event has * been written, peek at the next submission. */ for (port = el->active; (rq = *port); port++) { if (rq->context->lrc.ccid == ccid) { ENGINE_TRACE(engine, "ccid:%x found at active:%zd\n", ccid, port - el->active); return rq; } } for (port = el->pending; (rq = *port); port++) { if (rq->context->lrc.ccid == ccid) { ENGINE_TRACE(engine, "ccid:%x found at pending:%zd\n", ccid, port - el->pending); return rq; } } ENGINE_TRACE(engine, "ccid:%x not found\n", ccid); return NULL; } static u32 active_ccid(struct intel_engine_cs *engine) { return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI); } static void execlists_capture(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; struct execlists_capture *cap; if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)) return; /* * We need to _quickly_ capture the engine state before we reset. * We are inside an atomic section (softirq) here and we are delaying * the forced preemption event. */ cap = capture_regs(engine); if (!cap) return; spin_lock_irq(&engine->sched_engine->lock); cap->rq = active_context(engine, active_ccid(engine)); if (cap->rq) { cap->rq = active_request(cap->rq->context->timeline, cap->rq); cap->rq = i915_request_get_rcu(cap->rq); } spin_unlock_irq(&engine->sched_engine->lock); if (!cap->rq) goto err_free; /* * Remove the request from the execlists queue, and take ownership * of the request. We pass it to our worker who will _slowly_ compress * all the pages the _user_ requested for debugging their batch, after * which we return it to the queue for signaling. * * By removing them from the execlists queue, we also remove the * requests from being processed by __unwind_incomplete_requests() * during the intel_engine_reset(), and so they will *not* be replayed * afterwards. * * Note that because we have not yet reset the engine at this point, * it is possible for the request that we have identified as being * guilty, did in fact complete and we will then hit an arbitration * point allowing the outstanding preemption to succeed. The likelihood * of that is very low (as capturing of the engine registers should be * fast enough to run inside an irq-off atomic section!), so we will * simply hold that request accountable for being non-preemptible * long enough to force the reset. */ if (!execlists_hold(engine, cap->rq)) goto err_rq; INIT_WORK(&cap->work, execlists_capture_work); queue_work(i915->unordered_wq, &cap->work); return; err_rq: i915_request_put(cap->rq); err_free: i915_gpu_coredump_put(cap->error); kfree(cap); } static void execlists_reset(struct intel_engine_cs *engine, const char *msg) { const unsigned int bit = I915_RESET_ENGINE + engine->id; unsigned long *lock = &engine->gt->reset.flags; if (!intel_has_reset_engine(engine->gt)) return; if (test_and_set_bit(bit, lock)) return; ENGINE_TRACE(engine, "reset for %s\n", msg); /* Mark this tasklet as disabled to avoid waiting for it to complete */ tasklet_disable_nosync(&engine->sched_engine->tasklet); ring_set_paused(engine, 1); /* Freeze the current request in place */ execlists_capture(engine); intel_engine_reset(engine, msg); tasklet_enable(&engine->sched_engine->tasklet); clear_and_wake_up_bit(bit, lock); } static bool preempt_timeout(const struct intel_engine_cs *const engine) { const struct timer_list *t = &engine->execlists.preempt; if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT) return false; if (!timer_expired(t)) return false; return engine->execlists.pending[0]; } /* * Check the unread Context Status Buffers and manage the submission of new * contexts to the ELSP accordingly. */ static void execlists_submission_tasklet(struct tasklet_struct *t) { struct i915_sched_engine *sched_engine = from_tasklet(sched_engine, t, tasklet); struct intel_engine_cs * const engine = sched_engine->private_data; struct i915_request *post[2 * EXECLIST_MAX_PORTS]; struct i915_request **inactive; rcu_read_lock(); inactive = process_csb(engine, post); GEM_BUG_ON(inactive - post > ARRAY_SIZE(post)); if (unlikely(preempt_timeout(engine))) { const struct i915_request *rq = *engine->execlists.active; /* * If after the preempt-timeout expired, we are still on the * same active request/context as before we initiated the * preemption, reset the engine. * * However, if we have processed a CS event to switch contexts, * but not yet processed the CS event for the pending * preemption, reset the timer allowing the new context to * gracefully exit. */ cancel_timer(&engine->execlists.preempt); if (rq == engine->execlists.preempt_target) engine->execlists.error_interrupt |= ERROR_PREEMPT; else set_timer_ms(&engine->execlists.preempt, active_preempt_timeout(engine, rq)); } if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) { const char *msg; /* Generate the error message in priority wrt to the user! */ if (engine->execlists.error_interrupt & GENMASK(15, 0)) msg = "CS error"; /* thrown by a user payload */ else if (engine->execlists.error_interrupt & ERROR_CSB) msg = "invalid CSB event"; else if (engine->execlists.error_interrupt & ERROR_PREEMPT) msg = "preemption time out"; else msg = "internal error"; engine->execlists.error_interrupt = 0; execlists_reset(engine, msg); } if (!engine->execlists.pending[0]) { execlists_dequeue_irq(engine); start_timeslice(engine); } post_process_csb(post, inactive); rcu_read_unlock(); } static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir) { bool tasklet = false; if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) { u32 eir; /* Upper 16b are the enabling mask, rsvd for internal errors */ eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0); ENGINE_TRACE(engine, "CS error: %x\n", eir); /* Disable the error interrupt until after the reset */ if (likely(eir)) { ENGINE_WRITE(engine, RING_EMR, ~0u); ENGINE_WRITE(engine, RING_EIR, eir); WRITE_ONCE(engine->execlists.error_interrupt, eir); tasklet = true; } } if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) { WRITE_ONCE(engine->execlists.yield, ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI)); ENGINE_TRACE(engine, "semaphore yield: %08x\n", engine->execlists.yield); if (del_timer(&engine->execlists.timer)) tasklet = true; } if (iir & GT_CONTEXT_SWITCH_INTERRUPT) tasklet = true; if (iir & GT_RENDER_USER_INTERRUPT) intel_engine_signal_breadcrumbs(engine); if (tasklet) tasklet_hi_schedule(&engine->sched_engine->tasklet); } static void __execlists_kick(struct intel_engine_execlists *execlists) { struct intel_engine_cs *engine = container_of(execlists, typeof(*engine), execlists); /* Kick the tasklet for some interrupt coalescing and reset handling */ tasklet_hi_schedule(&engine->sched_engine->tasklet); } #define execlists_kick(t, member) \ __execlists_kick(container_of(t, struct intel_engine_execlists, member)) static void execlists_timeslice(struct timer_list *timer) { execlists_kick(timer, timer); } static void execlists_preempt(struct timer_list *timer) { execlists_kick(timer, preempt); } static void queue_request(struct intel_engine_cs *engine, struct i915_request *rq) { GEM_BUG_ON(!list_empty(&rq->sched.link)); list_add_tail(&rq->sched.link, i915_sched_lookup_priolist(engine->sched_engine, rq_prio(rq))); set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); } static bool submit_queue(struct intel_engine_cs *engine, const struct i915_request *rq) { struct i915_sched_engine *sched_engine = engine->sched_engine; if (rq_prio(rq) <= sched_engine->queue_priority_hint) return false; sched_engine->queue_priority_hint = rq_prio(rq); return true; } static bool ancestor_on_hold(const struct intel_engine_cs *engine, const struct i915_request *rq) { GEM_BUG_ON(i915_request_on_hold(rq)); return !list_empty(&engine->sched_engine->hold) && hold_request(rq); } static void execlists_submit_request(struct i915_request *request) { struct intel_engine_cs *engine = request->engine; unsigned long flags; /* Will be called from irq-context when using foreign fences. */ spin_lock_irqsave(&engine->sched_engine->lock, flags); if (unlikely(ancestor_on_hold(engine, request))) { RQ_TRACE(request, "ancestor on hold\n"); list_add_tail(&request->sched.link, &engine->sched_engine->hold); i915_request_set_hold(request); } else { queue_request(engine, request); GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine)); GEM_BUG_ON(list_empty(&request->sched.link)); if (submit_queue(engine, request)) __execlists_kick(&engine->execlists); } spin_unlock_irqrestore(&engine->sched_engine->lock, flags); } static int __execlists_context_pre_pin(struct intel_context *ce, struct intel_engine_cs *engine, struct i915_gem_ww_ctx *ww, void **vaddr) { int err; err = lrc_pre_pin(ce, engine, ww, vaddr); if (err) return err; if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) { lrc_init_state(ce, engine, *vaddr); __i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size); } return 0; } static int execlists_context_pre_pin(struct intel_context *ce, struct i915_gem_ww_ctx *ww, void **vaddr) { return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr); } static int execlists_context_pin(struct intel_context *ce, void *vaddr) { return lrc_pin(ce, ce->engine, vaddr); } static int execlists_context_alloc(struct intel_context *ce) { return lrc_alloc(ce, ce->engine); } static void execlists_context_cancel_request(struct intel_context *ce, struct i915_request *rq) { struct intel_engine_cs *engine = NULL; i915_request_active_engine(rq, &engine); if (engine && intel_engine_pulse(engine)) intel_gt_handle_error(engine->gt, engine->mask, 0, "request cancellation by %s", current->comm); } static struct intel_context * execlists_create_parallel(struct intel_engine_cs **engines, unsigned int num_siblings, unsigned int width) { struct intel_context *parent = NULL, *ce, *err; int i; GEM_BUG_ON(num_siblings != 1); for (i = 0; i < width; ++i) { ce = intel_context_create(engines[i]); if (IS_ERR(ce)) { err = ce; goto unwind; } if (i == 0) parent = ce; else intel_context_bind_parent_child(parent, ce); } parent->parallel.fence_context = dma_fence_context_alloc(1); intel_context_set_nopreempt(parent); for_each_child(parent, ce) intel_context_set_nopreempt(ce); return parent; unwind: if (parent) intel_context_put(parent); return err; } static const struct intel_context_ops execlists_context_ops = { .flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES, .alloc = execlists_context_alloc, .cancel_request = execlists_context_cancel_request, .pre_pin = execlists_context_pre_pin, .pin = execlists_context_pin, .unpin = lrc_unpin, .post_unpin = lrc_post_unpin, .enter = intel_context_enter_engine, .exit = intel_context_exit_engine, .reset = lrc_reset, .destroy = lrc_destroy, .create_parallel = execlists_create_parallel, .create_virtual = execlists_create_virtual, }; static int emit_pdps(struct i915_request *rq) { const struct intel_engine_cs * const engine = rq->engine; struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm); int err, i; u32 *cs; GEM_BUG_ON(intel_vgpu_active(rq->i915)); /* * Beware ye of the dragons, this sequence is magic! * * Small changes to this sequence can cause anything from * GPU hangs to forcewake errors and machine lockups! */ cs = intel_ring_begin(rq, 2); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; *cs++ = MI_NOOP; intel_ring_advance(rq, cs); /* Flush any residual operations from the context load */ err = engine->emit_flush(rq, EMIT_FLUSH); if (err) return err; /* Magic required to prevent forcewake errors! */ err = engine->emit_flush(rq, EMIT_INVALIDATE); if (err) return err; cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2); if (IS_ERR(cs)) return PTR_ERR(cs); /* Ensure the LRI have landed before we invalidate & continue */ *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED; for (i = GEN8_3LVL_PDPES; i--; ) { const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i); u32 base = engine->mmio_base; *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i)); *cs++ = upper_32_bits(pd_daddr); *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i)); *cs++ = lower_32_bits(pd_daddr); } *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; intel_ring_advance(rq, cs); intel_ring_advance(rq, cs); return 0; } static int execlists_request_alloc(struct i915_request *request) { int ret; GEM_BUG_ON(!intel_context_is_pinned(request->context)); /* * Flush enough space to reduce the likelihood of waiting after * we start building the request - in which case we will just * have to repeat work. */ request->reserved_space += EXECLISTS_REQUEST_SIZE; /* * Note that after this point, we have committed to using * this request as it is being used to both track the * state of engine initialisation and liveness of the * golden renderstate above. Think twice before you try * to cancel/unwind this request now. */ if (!i915_vm_is_4lvl(request->context->vm)) { ret = emit_pdps(request); if (ret) return ret; } /* Unconditionally invalidate GPU caches and TLBs. */ ret = request->engine->emit_flush(request, EMIT_INVALIDATE); if (ret) return ret; request->reserved_space -= EXECLISTS_REQUEST_SIZE; return 0; } static void reset_csb_pointers(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; const unsigned int reset_value = execlists->csb_size - 1; ring_set_paused(engine, 0); /* * Sometimes Icelake forgets to reset its pointers on a GPU reset. * Bludgeon them with a mmio update to be sure. */ ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR, 0xffff << 16 | reset_value << 8 | reset_value); ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR); /* * After a reset, the HW starts writing into CSB entry [0]. We * therefore have to set our HEAD pointer back one entry so that * the *first* entry we check is entry 0. To complicate this further, * as we don't wait for the first interrupt after reset, we have to * fake the HW write to point back to the last entry so that our * inline comparison of our cached head position against the last HW * write works even before the first interrupt. */ execlists->csb_head = reset_value; WRITE_ONCE(*execlists->csb_write, reset_value); wmb(); /* Make sure this is visible to HW (paranoia?) */ /* Check that the GPU does indeed update the CSB entries! */ memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64)); drm_clflush_virt_range(execlists->csb_status, execlists->csb_size * sizeof(execlists->csb_status)); /* Once more for luck and our trusty paranoia */ ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR, 0xffff << 16 | reset_value << 8 | reset_value); ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR); GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value); } static void sanitize_hwsp(struct intel_engine_cs *engine) { struct intel_timeline *tl; list_for_each_entry(tl, &engine->status_page.timelines, engine_link) intel_timeline_reset_seqno(tl); } static void execlists_sanitize(struct intel_engine_cs *engine) { GEM_BUG_ON(execlists_active(&engine->execlists)); /* * Poison residual state on resume, in case the suspend didn't! * * We have to assume that across suspend/resume (or other loss * of control) that the contents of our pinned buffers has been * lost, replaced by garbage. Since this doesn't always happen, * let's poison such state so that we more quickly spot when * we falsely assume it has been preserved. */ if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE); reset_csb_pointers(engine); /* * The kernel_context HWSP is stored in the status_page. As above, * that may be lost on resume/initialisation, and so we need to * reset the value in the HWSP. */ sanitize_hwsp(engine); /* And scrub the dirty cachelines for the HWSP */ drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE); intel_engine_reset_pinned_contexts(engine); } static void enable_error_interrupt(struct intel_engine_cs *engine) { u32 status; engine->execlists.error_interrupt = 0; ENGINE_WRITE(engine, RING_EMR, ~0u); ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */ status = ENGINE_READ(engine, RING_ESR); if (unlikely(status)) { drm_err(&engine->i915->drm, "engine '%s' resumed still in error: %08x\n", engine->name, status); __intel_gt_reset(engine->gt, engine->mask); } /* * On current gen8+, we have 2 signals to play with * * - I915_ERROR_INSTUCTION (bit 0) * * Generate an error if the command parser encounters an invalid * instruction * * This is a fatal error. * * - CP_PRIV (bit 2) * * Generate an error on privilege violation (where the CP replaces * the instruction with a no-op). This also fires for writes into * read-only scratch pages. * * This is a non-fatal error, parsing continues. * * * there are a few others defined for odd HW that we do not use * * Since CP_PRIV fires for cases where we have chosen to ignore the * error (as the HW is validating and suppressing the mistakes), we * only unmask the instruction error bit. */ ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION); } static void enable_execlists(struct intel_engine_cs *engine) { u32 mode; assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL); intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */ if (GRAPHICS_VER(engine->i915) >= 11) mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE); else mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE); ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode); ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); ENGINE_WRITE_FW(engine, RING_HWS_PGA, i915_ggtt_offset(engine->status_page.vma)); ENGINE_POSTING_READ(engine, RING_HWS_PGA); enable_error_interrupt(engine); } static int execlists_resume(struct intel_engine_cs *engine) { intel_mocs_init_engine(engine); intel_breadcrumbs_reset(engine->breadcrumbs); enable_execlists(engine); if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) xehp_enable_ccs_engines(engine); return 0; } static void execlists_reset_prepare(struct intel_engine_cs *engine) { ENGINE_TRACE(engine, "depth<-%d\n", atomic_read(&engine->sched_engine->tasklet.count)); /* * Prevent request submission to the hardware until we have * completed the reset in i915_gem_reset_finish(). If a request * is completed by one engine, it may then queue a request * to a second via its execlists->tasklet *just* as we are * calling engine->resume() and also writing the ELSP. * Turning off the execlists->tasklet until the reset is over * prevents the race. */ __tasklet_disable_sync_once(&engine->sched_engine->tasklet); GEM_BUG_ON(!reset_in_progress(engine)); /* * We stop engines, otherwise we might get failed reset and a * dead gpu (on elk). Also as modern gpu as kbl can suffer * from system hang if batchbuffer is progressing when * the reset is issued, regardless of READY_TO_RESET ack. * Thus assume it is best to stop engines on all gens * where we have a gpu reset. * * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES) * * FIXME: Wa for more modern gens needs to be validated */ ring_set_paused(engine, 1); intel_engine_stop_cs(engine); /* * Wa_22011802037: In addition to stopping the cs, we need * to wait for any pending mi force wakeups */ if (IS_MTL_GRAPHICS_STEP(engine->i915, M, STEP_A0, STEP_B0) || (GRAPHICS_VER(engine->i915) >= 11 && GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 70))) intel_engine_wait_for_pending_mi_fw(engine); engine->execlists.reset_ccid = active_ccid(engine); } static struct i915_request ** reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive) { struct intel_engine_execlists * const execlists = &engine->execlists; drm_clflush_virt_range(execlists->csb_write, sizeof(execlists->csb_write[0])); inactive = process_csb(engine, inactive); /* drain preemption events */ /* Following the reset, we need to reload the CSB read/write pointers */ reset_csb_pointers(engine); return inactive; } static void execlists_reset_active(struct intel_engine_cs *engine, bool stalled) { struct intel_context *ce; struct i915_request *rq; u32 head; /* * Save the currently executing context, even if we completed * its request, it was still running at the time of the * reset and will have been clobbered. */ rq = active_context(engine, engine->execlists.reset_ccid); if (!rq) return; ce = rq->context; GEM_BUG_ON(!i915_vma_is_pinned(ce->state)); if (__i915_request_is_complete(rq)) { /* Idle context; tidy up the ring so we can restart afresh */ head = intel_ring_wrap(ce->ring, rq->tail); goto out_replay; } /* We still have requests in-flight; the engine should be active */ GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); /* Context has requests still in-flight; it should not be idle! */ GEM_BUG_ON(i915_active_is_idle(&ce->active)); rq = active_request(ce->timeline, rq); head = intel_ring_wrap(ce->ring, rq->head); GEM_BUG_ON(head == ce->ring->tail); /* * If this request hasn't started yet, e.g. it is waiting on a * semaphore, we need to avoid skipping the request or else we * break the signaling chain. However, if the context is corrupt * the request will not restart and we will be stuck with a wedged * device. It is quite often the case that if we issue a reset * while the GPU is loading the context image, that the context * image becomes corrupt. * * Otherwise, if we have not started yet, the request should replay * perfectly and we do not need to flag the result as being erroneous. */ if (!__i915_request_has_started(rq)) goto out_replay; /* * If the request was innocent, we leave the request in the ELSP * and will try to replay it on restarting. The context image may * have been corrupted by the reset, in which case we may have * to service a new GPU hang, but more likely we can continue on * without impact. * * If the request was guilty, we presume the context is corrupt * and have to at least restore the RING register in the context * image back to the expected values to skip over the guilty request. */ __i915_request_reset(rq, stalled); /* * We want a simple context + ring to execute the breadcrumb update. * We cannot rely on the context being intact across the GPU hang, * so clear it and rebuild just what we need for the breadcrumb. * All pending requests for this context will be zapped, and any * future request will be after userspace has had the opportunity * to recreate its own state. */ out_replay: ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n", head, ce->ring->tail); lrc_reset_regs(ce, engine); ce->lrc.lrca = lrc_update_regs(ce, engine, head); } static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled) { struct intel_engine_execlists * const execlists = &engine->execlists; struct i915_request *post[2 * EXECLIST_MAX_PORTS]; struct i915_request **inactive; rcu_read_lock(); inactive = reset_csb(engine, post); execlists_reset_active(engine, true); inactive = cancel_port_requests(execlists, inactive); post_process_csb(post, inactive); rcu_read_unlock(); } static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled) { unsigned long flags; ENGINE_TRACE(engine, "\n"); /* Process the csb, find the guilty context and throw away */ execlists_reset_csb(engine, stalled); /* Push back any incomplete requests for replay after the reset. */ rcu_read_lock(); spin_lock_irqsave(&engine->sched_engine->lock, flags); __unwind_incomplete_requests(engine); spin_unlock_irqrestore(&engine->sched_engine->lock, flags); rcu_read_unlock(); } static void nop_submission_tasklet(struct tasklet_struct *t) { struct i915_sched_engine *sched_engine = from_tasklet(sched_engine, t, tasklet); struct intel_engine_cs * const engine = sched_engine->private_data; /* The driver is wedged; don't process any more events. */ WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN); } static void execlists_reset_cancel(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; struct i915_sched_engine * const sched_engine = engine->sched_engine; struct i915_request *rq, *rn; struct rb_node *rb; unsigned long flags; ENGINE_TRACE(engine, "\n"); /* * Before we call engine->cancel_requests(), we should have exclusive * access to the submission state. This is arranged for us by the * caller disabling the interrupt generation, the tasklet and other * threads that may then access the same state, giving us a free hand * to reset state. However, we still need to let lockdep be aware that * we know this state may be accessed in hardirq context, so we * disable the irq around this manipulation and we want to keep * the spinlock focused on its duties and not accidentally conflate * coverage to the submission's irq state. (Similarly, although we * shouldn't need to disable irq around the manipulation of the * submission's irq state, we also wish to remind ourselves that * it is irq state.) */ execlists_reset_csb(engine, true); rcu_read_lock(); spin_lock_irqsave(&engine->sched_engine->lock, flags); /* Mark all executing requests as skipped. */ list_for_each_entry(rq, &engine->sched_engine->requests, sched.link) i915_request_put(i915_request_mark_eio(rq)); intel_engine_signal_breadcrumbs(engine); /* Flush the queued requests to the timeline list (for retiring). */ while ((rb = rb_first_cached(&sched_engine->queue))) { struct i915_priolist *p = to_priolist(rb); priolist_for_each_request_consume(rq, rn, p) { if (i915_request_mark_eio(rq)) { __i915_request_submit(rq); i915_request_put(rq); } } rb_erase_cached(&p->node, &sched_engine->queue); i915_priolist_free(p); } /* On-hold requests will be flushed to timeline upon their release */ list_for_each_entry(rq, &sched_engine->hold, sched.link) i915_request_put(i915_request_mark_eio(rq)); /* Cancel all attached virtual engines */ while ((rb = rb_first_cached(&execlists->virtual))) { struct virtual_engine *ve = rb_entry(rb, typeof(*ve), nodes[engine->id].rb); rb_erase_cached(rb, &execlists->virtual); RB_CLEAR_NODE(rb); spin_lock(&ve->base.sched_engine->lock); rq = fetch_and_zero(&ve->request); if (rq) { if (i915_request_mark_eio(rq)) { rq->engine = engine; __i915_request_submit(rq); i915_request_put(rq); } i915_request_put(rq); ve->base.sched_engine->queue_priority_hint = INT_MIN; } spin_unlock(&ve->base.sched_engine->lock); } /* Remaining _unready_ requests will be nop'ed when submitted */ sched_engine->queue_priority_hint = INT_MIN; sched_engine->queue = RB_ROOT_CACHED; GEM_BUG_ON(__tasklet_is_enabled(&engine->sched_engine->tasklet)); engine->sched_engine->tasklet.callback = nop_submission_tasklet; spin_unlock_irqrestore(&engine->sched_engine->lock, flags); rcu_read_unlock(); } static void execlists_reset_finish(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; /* * After a GPU reset, we may have requests to replay. Do so now while * we still have the forcewake to be sure that the GPU is not allowed * to sleep before we restart and reload a context. * * If the GPU reset fails, the engine may still be alive with requests * inflight. We expect those to complete, or for the device to be * reset as the next level of recovery, and as a final resort we * will declare the device wedged. */ GEM_BUG_ON(!reset_in_progress(engine)); /* And kick in case we missed a new request submission. */ if (__tasklet_enable(&engine->sched_engine->tasklet)) __execlists_kick(execlists); ENGINE_TRACE(engine, "depth->%d\n", atomic_read(&engine->sched_engine->tasklet.count)); } static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine) { ENGINE_WRITE(engine, RING_IMR, ~(engine->irq_enable_mask | engine->irq_keep_mask)); ENGINE_POSTING_READ(engine, RING_IMR); } static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine) { ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask); } static void execlists_park(struct intel_engine_cs *engine) { cancel_timer(&engine->execlists.timer); cancel_timer(&engine->execlists.preempt); } static void add_to_engine(struct i915_request *rq) { lockdep_assert_held(&rq->engine->sched_engine->lock); list_move_tail(&rq->sched.link, &rq->engine->sched_engine->requests); } static void remove_from_engine(struct i915_request *rq) { struct intel_engine_cs *engine, *locked; /* * Virtual engines complicate acquiring the engine timeline lock, * as their rq->engine pointer is not stable until under that * engine lock. The simple ploy we use is to take the lock then * check that the rq still belongs to the newly locked engine. */ locked = READ_ONCE(rq->engine); spin_lock_irq(&locked->sched_engine->lock); while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { spin_unlock(&locked->sched_engine->lock); spin_lock(&engine->sched_engine->lock); locked = engine; } list_del_init(&rq->sched.link); clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); /* Prevent further __await_execution() registering a cb, then flush */ set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); spin_unlock_irq(&locked->sched_engine->lock); i915_request_notify_execute_cb_imm(rq); } static bool can_preempt(struct intel_engine_cs *engine) { if (GRAPHICS_VER(engine->i915) > 8) return true; /* GPGPU on bdw requires extra w/a; not implemented */ return engine->class != RENDER_CLASS; } static void kick_execlists(const struct i915_request *rq, int prio) { struct intel_engine_cs *engine = rq->engine; struct i915_sched_engine *sched_engine = engine->sched_engine; const struct i915_request *inflight; /* * We only need to kick the tasklet once for the high priority * new context we add into the queue. */ if (prio <= sched_engine->queue_priority_hint) return; rcu_read_lock(); /* Nothing currently active? We're overdue for a submission! */ inflight = execlists_active(&engine->execlists); if (!inflight) goto unlock; /* * If we are already the currently executing context, don't * bother evaluating if we should preempt ourselves. */ if (inflight->context == rq->context) goto unlock; ENGINE_TRACE(engine, "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n", prio, rq->fence.context, rq->fence.seqno, inflight->fence.context, inflight->fence.seqno, inflight->sched.attr.priority); sched_engine->queue_priority_hint = prio; /* * Allow preemption of low -> normal -> high, but we do * not allow low priority tasks to preempt other low priority * tasks under the impression that latency for low priority * tasks does not matter (as much as background throughput), * so kiss. */ if (prio >= max(I915_PRIORITY_NORMAL, rq_prio(inflight))) tasklet_hi_schedule(&sched_engine->tasklet); unlock: rcu_read_unlock(); } static void execlists_set_default_submission(struct intel_engine_cs *engine) { engine->submit_request = execlists_submit_request; engine->sched_engine->schedule = i915_schedule; engine->sched_engine->kick_backend = kick_execlists; engine->sched_engine->tasklet.callback = execlists_submission_tasklet; } static void execlists_shutdown(struct intel_engine_cs *engine) { /* Synchronise with residual timers and any softirq they raise */ del_timer_sync(&engine->execlists.timer); del_timer_sync(&engine->execlists.preempt); tasklet_kill(&engine->sched_engine->tasklet); } static void execlists_release(struct intel_engine_cs *engine) { engine->sanitize = NULL; /* no longer in control, nothing to sanitize */ execlists_shutdown(engine); intel_engine_cleanup_common(engine); lrc_fini_wa_ctx(engine); } static ktime_t __execlists_engine_busyness(struct intel_engine_cs *engine, ktime_t *now) { struct intel_engine_execlists_stats *stats = &engine->stats.execlists; ktime_t total = stats->total; /* * If the engine is executing something at the moment * add it to the total. */ *now = ktime_get(); if (READ_ONCE(stats->active)) total = ktime_add(total, ktime_sub(*now, stats->start)); return total; } static ktime_t execlists_engine_busyness(struct intel_engine_cs *engine, ktime_t *now) { struct intel_engine_execlists_stats *stats = &engine->stats.execlists; unsigned int seq; ktime_t total; do { seq = read_seqcount_begin(&stats->lock); total = __execlists_engine_busyness(engine, now); } while (read_seqcount_retry(&stats->lock, seq)); return total; } static void logical_ring_default_vfuncs(struct intel_engine_cs *engine) { /* Default vfuncs which can be overridden by each engine. */ engine->resume = execlists_resume; engine->cops = &execlists_context_ops; engine->request_alloc = execlists_request_alloc; engine->add_active_request = add_to_engine; engine->remove_active_request = remove_from_engine; engine->reset.prepare = execlists_reset_prepare; engine->reset.rewind = execlists_reset_rewind; engine->reset.cancel = execlists_reset_cancel; engine->reset.finish = execlists_reset_finish; engine->park = execlists_park; engine->unpark = NULL; engine->emit_flush = gen8_emit_flush_xcs; engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb; engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs; if (GRAPHICS_VER(engine->i915) >= 12) { engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs; engine->emit_flush = gen12_emit_flush_xcs; } engine->set_default_submission = execlists_set_default_submission; if (GRAPHICS_VER(engine->i915) < 11) { engine->irq_enable = gen8_logical_ring_enable_irq; engine->irq_disable = gen8_logical_ring_disable_irq; } else { /* * TODO: On Gen11 interrupt masks need to be clear * to allow C6 entry. Keep interrupts enabled at * and take the hit of generating extra interrupts * until a more refined solution exists. */ } intel_engine_set_irq_handler(engine, execlists_irq_handler); engine->flags |= I915_ENGINE_SUPPORTS_STATS; if (!intel_vgpu_active(engine->i915)) { engine->flags |= I915_ENGINE_HAS_SEMAPHORES; if (can_preempt(engine)) { engine->flags |= I915_ENGINE_HAS_PREEMPTION; if (CONFIG_DRM_I915_TIMESLICE_DURATION) engine->flags |= I915_ENGINE_HAS_TIMESLICES; } } if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) { if (intel_engine_has_preemption(engine)) engine->emit_bb_start = xehp_emit_bb_start; else engine->emit_bb_start = xehp_emit_bb_start_noarb; } else { if (intel_engine_has_preemption(engine)) engine->emit_bb_start = gen8_emit_bb_start; else engine->emit_bb_start = gen8_emit_bb_start_noarb; } engine->busyness = execlists_engine_busyness; } static void logical_ring_default_irqs(struct intel_engine_cs *engine) { unsigned int shift = 0; if (GRAPHICS_VER(engine->i915) < 11) { const u8 irq_shifts[] = { [RCS0] = GEN8_RCS_IRQ_SHIFT, [BCS0] = GEN8_BCS_IRQ_SHIFT, [VCS0] = GEN8_VCS0_IRQ_SHIFT, [VCS1] = GEN8_VCS1_IRQ_SHIFT, [VECS0] = GEN8_VECS_IRQ_SHIFT, }; shift = irq_shifts[engine->id]; } engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift; engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift; engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift; engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift; } static void rcs_submission_override(struct intel_engine_cs *engine) { switch (GRAPHICS_VER(engine->i915)) { case 12: engine->emit_flush = gen12_emit_flush_rcs; engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs; break; case 11: engine->emit_flush = gen11_emit_flush_rcs; engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs; break; default: engine->emit_flush = gen8_emit_flush_rcs; engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs; break; } } int intel_execlists_submission_setup(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; struct drm_i915_private *i915 = engine->i915; struct intel_uncore *uncore = engine->uncore; u32 base = engine->mmio_base; tasklet_setup(&engine->sched_engine->tasklet, execlists_submission_tasklet); timer_setup(&engine->execlists.timer, execlists_timeslice, 0); timer_setup(&engine->execlists.preempt, execlists_preempt, 0); logical_ring_default_vfuncs(engine); logical_ring_default_irqs(engine); seqcount_init(&engine->stats.execlists.lock); if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) rcs_submission_override(engine); lrc_init_wa_ctx(engine); if (HAS_LOGICAL_RING_ELSQ(i915)) { execlists->submit_reg = intel_uncore_regs(uncore) + i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base)); execlists->ctrl_reg = intel_uncore_regs(uncore) + i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base)); engine->fw_domain = intel_uncore_forcewake_for_reg(engine->uncore, RING_EXECLIST_CONTROL(engine->mmio_base), FW_REG_WRITE); } else { execlists->submit_reg = intel_uncore_regs(uncore) + i915_mmio_reg_offset(RING_ELSP(base)); } execlists->csb_status = (u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; execlists->csb_write = &engine->status_page.addr[INTEL_HWS_CSB_WRITE_INDEX(i915)]; if (GRAPHICS_VER(i915) < 11) execlists->csb_size = GEN8_CSB_ENTRIES; else execlists->csb_size = GEN11_CSB_ENTRIES; engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0); if (GRAPHICS_VER(engine->i915) >= 11 && GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 50)) { execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32); execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32); } /* Finally, take ownership and responsibility for cleanup! */ engine->sanitize = execlists_sanitize; engine->release = execlists_release; return 0; } static struct list_head *virtual_queue(struct virtual_engine *ve) { return &ve->base.sched_engine->default_priolist.requests; } static void rcu_virtual_context_destroy(struct work_struct *wrk) { struct virtual_engine *ve = container_of(wrk, typeof(*ve), rcu.work); unsigned int n; GEM_BUG_ON(ve->context.inflight); /* Preempt-to-busy may leave a stale request behind. */ if (unlikely(ve->request)) { struct i915_request *old; spin_lock_irq(&ve->base.sched_engine->lock); old = fetch_and_zero(&ve->request); if (old) { GEM_BUG_ON(!__i915_request_is_complete(old)); __i915_request_submit(old); i915_request_put(old); } spin_unlock_irq(&ve->base.sched_engine->lock); } /* * Flush the tasklet in case it is still running on another core. * * This needs to be done before we remove ourselves from the siblings' * rbtrees as in the case it is running in parallel, it may reinsert * the rb_node into a sibling. */ tasklet_kill(&ve->base.sched_engine->tasklet); /* Decouple ourselves from the siblings, no more access allowed. */ for (n = 0; n < ve->num_siblings; n++) { struct intel_engine_cs *sibling = ve->siblings[n]; struct rb_node *node = &ve->nodes[sibling->id].rb; if (RB_EMPTY_NODE(node)) continue; spin_lock_irq(&sibling->sched_engine->lock); /* Detachment is lazily performed in the sched_engine->tasklet */ if (!RB_EMPTY_NODE(node)) rb_erase_cached(node, &sibling->execlists.virtual); spin_unlock_irq(&sibling->sched_engine->lock); } GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.sched_engine->tasklet)); GEM_BUG_ON(!list_empty(virtual_queue(ve))); lrc_fini(&ve->context); intel_context_fini(&ve->context); if (ve->base.breadcrumbs) intel_breadcrumbs_put(ve->base.breadcrumbs); if (ve->base.sched_engine) i915_sched_engine_put(ve->base.sched_engine); intel_engine_free_request_pool(&ve->base); kfree(ve); } static void virtual_context_destroy(struct kref *kref) { struct virtual_engine *ve = container_of(kref, typeof(*ve), context.ref); GEM_BUG_ON(!list_empty(&ve->context.signals)); /* * When destroying the virtual engine, we have to be aware that * it may still be in use from an hardirq/softirq context causing * the resubmission of a completed request (background completion * due to preempt-to-busy). Before we can free the engine, we need * to flush the submission code and tasklets that are still potentially * accessing the engine. Flushing the tasklets requires process context, * and since we can guard the resubmit onto the engine with an RCU read * lock, we can delegate the free of the engine to an RCU worker. */ INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy); queue_rcu_work(ve->context.engine->i915->unordered_wq, &ve->rcu); } static void virtual_engine_initial_hint(struct virtual_engine *ve) { int swp; /* * Pick a random sibling on starting to help spread the load around. * * New contexts are typically created with exactly the same order * of siblings, and often started in batches. Due to the way we iterate * the array of sibling when submitting requests, sibling[0] is * prioritised for dequeuing. If we make sure that sibling[0] is fairly * randomised across the system, we also help spread the load by the * first engine we inspect being different each time. * * NB This does not force us to execute on this engine, it will just * typically be the first we inspect for submission. */ swp = get_random_u32_below(ve->num_siblings); if (swp) swap(ve->siblings[swp], ve->siblings[0]); } static int virtual_context_alloc(struct intel_context *ce) { struct virtual_engine *ve = container_of(ce, typeof(*ve), context); return lrc_alloc(ce, ve->siblings[0]); } static int virtual_context_pre_pin(struct intel_context *ce, struct i915_gem_ww_ctx *ww, void **vaddr) { struct virtual_engine *ve = container_of(ce, typeof(*ve), context); /* Note: we must use a real engine class for setting up reg state */ return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr); } static int virtual_context_pin(struct intel_context *ce, void *vaddr) { struct virtual_engine *ve = container_of(ce, typeof(*ve), context); return lrc_pin(ce, ve->siblings[0], vaddr); } static void virtual_context_enter(struct intel_context *ce) { struct virtual_engine *ve = container_of(ce, typeof(*ve), context); unsigned int n; for (n = 0; n < ve->num_siblings; n++) intel_engine_pm_get(ve->siblings[n]); intel_timeline_enter(ce->timeline); } static void virtual_context_exit(struct intel_context *ce) { struct virtual_engine *ve = container_of(ce, typeof(*ve), context); unsigned int n; intel_timeline_exit(ce->timeline); for (n = 0; n < ve->num_siblings; n++) intel_engine_pm_put(ve->siblings[n]); } static struct intel_engine_cs * virtual_get_sibling(struct intel_engine_cs *engine, unsigned int sibling) { struct virtual_engine *ve = to_virtual_engine(engine); if (sibling >= ve->num_siblings) return NULL; return ve->siblings[sibling]; } static const struct intel_context_ops virtual_context_ops = { .flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES, .alloc = virtual_context_alloc, .cancel_request = execlists_context_cancel_request, .pre_pin = virtual_context_pre_pin, .pin = virtual_context_pin, .unpin = lrc_unpin, .post_unpin = lrc_post_unpin, .enter = virtual_context_enter, .exit = virtual_context_exit, .destroy = virtual_context_destroy, .get_sibling = virtual_get_sibling, }; static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve) { struct i915_request *rq; intel_engine_mask_t mask; rq = READ_ONCE(ve->request); if (!rq) return 0; /* The rq is ready for submission; rq->execution_mask is now stable. */ mask = rq->execution_mask; if (unlikely(!mask)) { /* Invalid selection, submit to a random engine in error */ i915_request_set_error_once(rq, -ENODEV); mask = ve->siblings[0]->mask; } ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n", rq->fence.context, rq->fence.seqno, mask, ve->base.sched_engine->queue_priority_hint); return mask; } static void virtual_submission_tasklet(struct tasklet_struct *t) { struct i915_sched_engine *sched_engine = from_tasklet(sched_engine, t, tasklet); struct virtual_engine * const ve = (struct virtual_engine *)sched_engine->private_data; const int prio = READ_ONCE(sched_engine->queue_priority_hint); intel_engine_mask_t mask; unsigned int n; rcu_read_lock(); mask = virtual_submission_mask(ve); rcu_read_unlock(); if (unlikely(!mask)) return; for (n = 0; n < ve->num_siblings; n++) { struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]); struct ve_node * const node = &ve->nodes[sibling->id]; struct rb_node **parent, *rb; bool first; if (!READ_ONCE(ve->request)) break; /* already handled by a sibling's tasklet */ spin_lock_irq(&sibling->sched_engine->lock); if (unlikely(!(mask & sibling->mask))) { if (!RB_EMPTY_NODE(&node->rb)) { rb_erase_cached(&node->rb, &sibling->execlists.virtual); RB_CLEAR_NODE(&node->rb); } goto unlock_engine; } if (unlikely(!RB_EMPTY_NODE(&node->rb))) { /* * Cheat and avoid rebalancing the tree if we can * reuse this node in situ. */ first = rb_first_cached(&sibling->execlists.virtual) == &node->rb; if (prio == node->prio || (prio > node->prio && first)) goto submit_engine; rb_erase_cached(&node->rb, &sibling->execlists.virtual); } rb = NULL; first = true; parent = &sibling->execlists.virtual.rb_root.rb_node; while (*parent) { struct ve_node *other; rb = *parent; other = rb_entry(rb, typeof(*other), rb); if (prio > other->prio) { parent = &rb->rb_left; } else { parent = &rb->rb_right; first = false; } } rb_link_node(&node->rb, rb, parent); rb_insert_color_cached(&node->rb, &sibling->execlists.virtual, first); submit_engine: GEM_BUG_ON(RB_EMPTY_NODE(&node->rb)); node->prio = prio; if (first && prio > sibling->sched_engine->queue_priority_hint) tasklet_hi_schedule(&sibling->sched_engine->tasklet); unlock_engine: spin_unlock_irq(&sibling->sched_engine->lock); if (intel_context_inflight(&ve->context)) break; } } static void virtual_submit_request(struct i915_request *rq) { struct virtual_engine *ve = to_virtual_engine(rq->engine); unsigned long flags; ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n", rq->fence.context, rq->fence.seqno); GEM_BUG_ON(ve->base.submit_request != virtual_submit_request); spin_lock_irqsave(&ve->base.sched_engine->lock, flags); /* By the time we resubmit a request, it may be completed */ if (__i915_request_is_complete(rq)) { __i915_request_submit(rq); goto unlock; } if (ve->request) { /* background completion from preempt-to-busy */ GEM_BUG_ON(!__i915_request_is_complete(ve->request)); __i915_request_submit(ve->request); i915_request_put(ve->request); } ve->base.sched_engine->queue_priority_hint = rq_prio(rq); ve->request = i915_request_get(rq); GEM_BUG_ON(!list_empty(virtual_queue(ve))); list_move_tail(&rq->sched.link, virtual_queue(ve)); tasklet_hi_schedule(&ve->base.sched_engine->tasklet); unlock: spin_unlock_irqrestore(&ve->base.sched_engine->lock, flags); } static struct intel_context * execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count, unsigned long flags) { struct drm_i915_private *i915 = siblings[0]->i915; struct virtual_engine *ve; unsigned int n; int err; ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL); if (!ve) return ERR_PTR(-ENOMEM); ve->base.i915 = i915; ve->base.gt = siblings[0]->gt; ve->base.uncore = siblings[0]->uncore; ve->base.id = -1; ve->base.class = OTHER_CLASS; ve->base.uabi_class = I915_ENGINE_CLASS_INVALID; ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; /* * The decision on whether to submit a request using semaphores * depends on the saturated state of the engine. We only compute * this during HW submission of the request, and we need for this * state to be globally applied to all requests being submitted * to this engine. Virtual engines encompass more than one physical * engine and so we cannot accurately tell in advance if one of those * engines is already saturated and so cannot afford to use a semaphore * and be pessimized in priority for doing so -- if we are the only * context using semaphores after all other clients have stopped, we * will be starved on the saturated system. Such a global switch for * semaphores is less than ideal, but alas is the current compromise. */ ve->base.saturated = ALL_ENGINES; snprintf(ve->base.name, sizeof(ve->base.name), "virtual"); intel_engine_init_execlists(&ve->base); ve->base.sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL); if (!ve->base.sched_engine) { err = -ENOMEM; goto err_put; } ve->base.sched_engine->private_data = &ve->base; ve->base.cops = &virtual_context_ops; ve->base.request_alloc = execlists_request_alloc; ve->base.sched_engine->schedule = i915_schedule; ve->base.sched_engine->kick_backend = kick_execlists; ve->base.submit_request = virtual_submit_request; INIT_LIST_HEAD(virtual_queue(ve)); tasklet_setup(&ve->base.sched_engine->tasklet, virtual_submission_tasklet); intel_context_init(&ve->context, &ve->base); ve->base.breadcrumbs = intel_breadcrumbs_create(NULL); if (!ve->base.breadcrumbs) { err = -ENOMEM; goto err_put; } for (n = 0; n < count; n++) { struct intel_engine_cs *sibling = siblings[n]; GEM_BUG_ON(!is_power_of_2(sibling->mask)); if (sibling->mask & ve->base.mask) { drm_dbg(&i915->drm, "duplicate %s entry in load balancer\n", sibling->name); err = -EINVAL; goto err_put; } /* * The virtual engine implementation is tightly coupled to * the execlists backend -- we push out request directly * into a tree inside each physical engine. We could support * layering if we handle cloning of the requests and * submitting a copy into each backend. */ if (sibling->sched_engine->tasklet.callback != execlists_submission_tasklet) { err = -ENODEV; goto err_put; } GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb)); RB_CLEAR_NODE(&ve->nodes[sibling->id].rb); ve->siblings[ve->num_siblings++] = sibling; ve->base.mask |= sibling->mask; ve->base.logical_mask |= sibling->logical_mask; /* * All physical engines must be compatible for their emission * functions (as we build the instructions during request * construction and do not alter them before submission * on the physical engine). We use the engine class as a guide * here, although that could be refined. */ if (ve->base.class != OTHER_CLASS) { if (ve->base.class != sibling->class) { drm_dbg(&i915->drm, "invalid mixing of engine class, sibling %d, already %d\n", sibling->class, ve->base.class); err = -EINVAL; goto err_put; } continue; } ve->base.class = sibling->class; ve->base.uabi_class = sibling->uabi_class; snprintf(ve->base.name, sizeof(ve->base.name), "v%dx%d", ve->base.class, count); ve->base.context_size = sibling->context_size; ve->base.add_active_request = sibling->add_active_request; ve->base.remove_active_request = sibling->remove_active_request; ve->base.emit_bb_start = sibling->emit_bb_start; ve->base.emit_flush = sibling->emit_flush; ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb; ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb; ve->base.emit_fini_breadcrumb_dw = sibling->emit_fini_breadcrumb_dw; ve->base.flags = sibling->flags; } ve->base.flags |= I915_ENGINE_IS_VIRTUAL; virtual_engine_initial_hint(ve); return &ve->context; err_put: intel_context_put(&ve->context); return ERR_PTR(err); } void intel_execlists_show_requests(struct intel_engine_cs *engine, struct drm_printer *m, void (*show_request)(struct drm_printer *m, const struct i915_request *rq, const char *prefix, int indent), unsigned int max) { const struct intel_engine_execlists *execlists = &engine->execlists; struct i915_sched_engine *sched_engine = engine->sched_engine; struct i915_request *rq, *last; unsigned long flags; unsigned int count; struct rb_node *rb; spin_lock_irqsave(&sched_engine->lock, flags); last = NULL; count = 0; list_for_each_entry(rq, &sched_engine->requests, sched.link) { if (count++ < max - 1) show_request(m, rq, "\t\t", 0); else last = rq; } if (last) { if (count > max) { drm_printf(m, "\t\t...skipping %d executing requests...\n", count - max); } show_request(m, last, "\t\t", 0); } if (sched_engine->queue_priority_hint != INT_MIN) drm_printf(m, "\t\tQueue priority hint: %d\n", READ_ONCE(sched_engine->queue_priority_hint)); last = NULL; count = 0; for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) { struct i915_priolist *p = rb_entry(rb, typeof(*p), node); priolist_for_each_request(rq, p) { if (count++ < max - 1) show_request(m, rq, "\t\t", 0); else last = rq; } } if (last) { if (count > max) { drm_printf(m, "\t\t...skipping %d queued requests...\n", count - max); } show_request(m, last, "\t\t", 0); } last = NULL; count = 0; for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) { struct virtual_engine *ve = rb_entry(rb, typeof(*ve), nodes[engine->id].rb); struct i915_request *rq = READ_ONCE(ve->request); if (rq) { if (count++ < max - 1) show_request(m, rq, "\t\t", 0); else last = rq; } } if (last) { if (count > max) { drm_printf(m, "\t\t...skipping %d virtual requests...\n", count - max); } show_request(m, last, "\t\t", 0); } spin_unlock_irqrestore(&sched_engine->lock, flags); } void intel_execlists_dump_active_requests(struct intel_engine_cs *engine, struct i915_request *hung_rq, struct drm_printer *m) { unsigned long flags; spin_lock_irqsave(&engine->sched_engine->lock, flags); intel_engine_dump_active_requests(&engine->sched_engine->requests, hung_rq, m); drm_printf(m, "\tOn hold?: %zu\n", list_count_nodes(&engine->sched_engine->hold)); spin_unlock_irqrestore(&engine->sched_engine->lock, flags); } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_execlists.c" #endif
linux-master
drivers/gpu/drm/i915/gt/intel_execlists_submission.c
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include "i915_drv.h" #include "i915_reg.h" #include "intel_gt.h" #include "intel_gt_clock_utils.h" #include "intel_gt_print.h" #include "intel_gt_regs.h" static u32 read_reference_ts_freq(struct intel_uncore *uncore) { u32 ts_override = intel_uncore_read(uncore, GEN9_TIMESTAMP_OVERRIDE); u32 base_freq, frac_freq; base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >> GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1; base_freq *= 1000000; frac_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >> GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT); frac_freq = 1000000 / (frac_freq + 1); return base_freq + frac_freq; } static u32 gen11_get_crystal_clock_freq(struct intel_uncore *uncore, u32 rpm_config_reg) { u32 f19_2_mhz = 19200000; u32 f24_mhz = 24000000; u32 f25_mhz = 25000000; u32 f38_4_mhz = 38400000; u32 crystal_clock = (rpm_config_reg & GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >> GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT; switch (crystal_clock) { case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ: return f24_mhz; case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ: return f19_2_mhz; case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ: return f38_4_mhz; case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ: return f25_mhz; default: MISSING_CASE(crystal_clock); return 0; } } static u32 gen11_read_clock_frequency(struct intel_uncore *uncore) { u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE); u32 freq = 0; /* * Note that on gen11+, the clock frequency may be reconfigured. * We do not, and we assume nobody else does. * * First figure out the reference frequency. There are 2 ways * we can compute the frequency, either through the * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE * tells us which one we should use. */ if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) { freq = read_reference_ts_freq(uncore); } else { u32 c0 = intel_uncore_read(uncore, RPM_CONFIG0); freq = gen11_get_crystal_clock_freq(uncore, c0); /* * Now figure out how the command stream's timestamp * register increments from this frequency (it might * increment only every few clock cycle). */ freq >>= 3 - ((c0 & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >> GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT); } return freq; } static u32 gen9_read_clock_frequency(struct intel_uncore *uncore) { u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE); u32 freq = 0; if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) { freq = read_reference_ts_freq(uncore); } else { freq = IS_GEN9_LP(uncore->i915) ? 19200000 : 24000000; /* * Now figure out how the command stream's timestamp * register increments from this frequency (it might * increment only every few clock cycle). */ freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >> CTC_SHIFT_PARAMETER_SHIFT); } return freq; } static u32 gen6_read_clock_frequency(struct intel_uncore *uncore) { /* * PRMs say: * * "The PCU TSC counts 10ns increments; this timestamp * reflects bits 38:3 of the TSC (i.e. 80ns granularity, * rolling over every 1.5 hours). */ return 12500000; } static u32 gen5_read_clock_frequency(struct intel_uncore *uncore) { /* * 63:32 increments every 1000 ns * 31:0 mbz */ return 1000000000 / 1000; } static u32 g4x_read_clock_frequency(struct intel_uncore *uncore) { /* * 63:20 increments every 1/4 ns * 19:0 mbz * * -> 63:32 increments every 1024 ns */ return 1000000000 / 1024; } static u32 gen4_read_clock_frequency(struct intel_uncore *uncore) { /* * PRMs say: * * "The value in this register increments once every 16 * hclks." (through the “Clocking Configuration” * (“CLKCFG”) MCHBAR register) * * Testing on actual hardware has shown there is no /16. */ return RUNTIME_INFO(uncore->i915)->rawclk_freq * 1000; } static u32 read_clock_frequency(struct intel_uncore *uncore) { if (GRAPHICS_VER(uncore->i915) >= 11) return gen11_read_clock_frequency(uncore); else if (GRAPHICS_VER(uncore->i915) >= 9) return gen9_read_clock_frequency(uncore); else if (GRAPHICS_VER(uncore->i915) >= 6) return gen6_read_clock_frequency(uncore); else if (GRAPHICS_VER(uncore->i915) == 5) return gen5_read_clock_frequency(uncore); else if (IS_G4X(uncore->i915)) return g4x_read_clock_frequency(uncore); else if (GRAPHICS_VER(uncore->i915) == 4) return gen4_read_clock_frequency(uncore); else return 0; } void intel_gt_init_clock_frequency(struct intel_gt *gt) { gt->clock_frequency = read_clock_frequency(gt->uncore); /* Icelake appears to use another fixed frequency for CTX_TIMESTAMP */ if (GRAPHICS_VER(gt->i915) == 11) gt->clock_period_ns = NSEC_PER_SEC / 13750000; else if (gt->clock_frequency) gt->clock_period_ns = intel_gt_clock_interval_to_ns(gt, 1); GT_TRACE(gt, "Using clock frequency: %dkHz, period: %dns, wrap: %lldms\n", gt->clock_frequency / 1000, gt->clock_period_ns, div_u64(mul_u32_u32(gt->clock_period_ns, S32_MAX), USEC_PER_SEC)); } #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) void intel_gt_check_clock_frequency(const struct intel_gt *gt) { if (gt->clock_frequency != read_clock_frequency(gt->uncore)) { gt_err(gt, "GT clock frequency changed, was %uHz, now %uHz!\n", gt->clock_frequency, read_clock_frequency(gt->uncore)); } } #endif static u64 div_u64_roundup(u64 nom, u32 den) { return div_u64(nom + den - 1, den); } u64 intel_gt_clock_interval_to_ns(const struct intel_gt *gt, u64 count) { return div_u64_roundup(count * NSEC_PER_SEC, gt->clock_frequency); } u64 intel_gt_pm_interval_to_ns(const struct intel_gt *gt, u64 count) { return intel_gt_clock_interval_to_ns(gt, 16 * count); } u64 intel_gt_ns_to_clock_interval(const struct intel_gt *gt, u64 ns) { return div_u64_roundup(gt->clock_frequency * ns, NSEC_PER_SEC); } u64 intel_gt_ns_to_pm_interval(const struct intel_gt *gt, u64 ns) { u64 val; /* * Make these a multiple of magic 25 to avoid SNB (eg. Dell XPS * 8300) freezing up around GPU hangs. Looks as if even * scheduling/timer interrupts start misbehaving if the RPS * EI/thresholds are "bad", leading to a very sluggish or even * frozen machine. */ val = div_u64_roundup(intel_gt_ns_to_clock_interval(gt, ns), 16); if (GRAPHICS_VER(gt->i915) == 6) val = div_u64_roundup(val, 25) * 25; return val; }
linux-master
drivers/gpu/drm/i915/gt/intel_gt_clock_utils.c
// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include <linux/pm_runtime.h> #include <linux/string_helpers.h> #include "gem/i915_gem_region.h" #include "i915_drv.h" #include "i915_reg.h" #include "i915_vgpu.h" #include "intel_engine_regs.h" #include "intel_gt.h" #include "intel_gt_pm.h" #include "intel_gt_regs.h" #include "intel_pcode.h" #include "intel_rc6.h" /** * DOC: RC6 * * RC6 is a special power stage which allows the GPU to enter an very * low-voltage mode when idle, using down to 0V while at this stage. This * stage is entered automatically when the GPU is idle when RC6 support is * enabled, and as soon as new workload arises GPU wakes up automatically as * well. * * There are different RC6 modes available in Intel GPU, which differentiate * among each other with the latency required to enter and leave RC6 and * voltage consumed by the GPU in different states. * * The combination of the following flags define which states GPU is allowed * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and * RC6pp is deepest RC6. Their support by hardware varies according to the * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one * which brings the most power savings; deeper states save more power, but * require higher latency to switch to and wake up. */ static struct intel_gt *rc6_to_gt(struct intel_rc6 *rc6) { return container_of(rc6, struct intel_gt, rc6); } static struct intel_uncore *rc6_to_uncore(struct intel_rc6 *rc) { return rc6_to_gt(rc)->uncore; } static struct drm_i915_private *rc6_to_i915(struct intel_rc6 *rc) { return rc6_to_gt(rc)->i915; } static void gen11_rc6_enable(struct intel_rc6 *rc6) { struct intel_gt *gt = rc6_to_gt(rc6); struct intel_uncore *uncore = gt->uncore; struct intel_engine_cs *engine; enum intel_engine_id id; u32 pg_enable; int i; /* * With GuCRC, these parameters are set by GuC */ if (!intel_uc_uses_guc_rc(&gt->uc)) { /* 2b: Program RC6 thresholds.*/ intel_uncore_write_fw(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85); intel_uncore_write_fw(uncore, GEN10_MEDIA_WAKE_RATE_LIMIT, 150); intel_uncore_write_fw(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */ intel_uncore_write_fw(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */ for_each_engine(engine, rc6_to_gt(rc6), id) intel_uncore_write_fw(uncore, RING_MAX_IDLE(engine->mmio_base), 10); intel_uncore_write_fw(uncore, GUC_MAX_IDLE_COUNT, 0xA); intel_uncore_write_fw(uncore, GEN6_RC_SLEEP, 0); intel_uncore_write_fw(uncore, GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */ } /* * 2c: Program Coarse Power Gating Policies. * * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we * use instead is a more conservative estimate for the maximum time * it takes us to service a CS interrupt and submit a new ELSP - that * is the time which the GPU is idle waiting for the CPU to select the * next request to execute. If the idle hysteresis is less than that * interrupt service latency, the hardware will automatically gate * the power well and we will then incur the wake up cost on top of * the service latency. A similar guide from plane_state is that we * do not want the enable hysteresis to less than the wakeup latency. * * igt/gem_exec_nop/sequential provides a rough estimate for the * service latency, and puts it under 10us for Icelake, similar to * Broadwell+, To be conservative, we want to factor in a context * switch on top (due to ksoftirqd). */ intel_uncore_write_fw(uncore, GEN9_MEDIA_PG_IDLE_HYSTERESIS, 60); intel_uncore_write_fw(uncore, GEN9_RENDER_PG_IDLE_HYSTERESIS, 60); /* 3a: Enable RC6 * * With GuCRC, we do not enable bit 31 of RC_CTL, * thus allowing GuC to control RC6 entry/exit fully instead. * We will not set the HW ENABLE and EI bits */ if (!intel_guc_rc_enable(&gt->uc.guc)) rc6->ctl_enable = GEN6_RC_CTL_RC6_ENABLE; else rc6->ctl_enable = GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_RC6_ENABLE | GEN6_RC_CTL_EI_MODE(1); /* * Wa_16011777198 and BSpec 52698 - Render powergating must be off. * FIXME BSpec is outdated, disabling powergating for MTL is just * temporary wa and should be removed after fixing real cause * of forcewake timeouts. */ if (IS_METEORLAKE(gt->i915) || IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) || IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0)) pg_enable = GEN9_MEDIA_PG_ENABLE | GEN11_MEDIA_SAMPLER_PG_ENABLE; else pg_enable = GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE | GEN11_MEDIA_SAMPLER_PG_ENABLE; if (GRAPHICS_VER(gt->i915) >= 12) { for (i = 0; i < I915_MAX_VCS; i++) if (HAS_ENGINE(gt, _VCS(i))) pg_enable |= (VDN_HCP_POWERGATE_ENABLE(i) | VDN_MFX_POWERGATE_ENABLE(i)); } intel_uncore_write_fw(uncore, GEN9_PG_ENABLE, pg_enable); } static void gen9_rc6_enable(struct intel_rc6 *rc6) { struct intel_uncore *uncore = rc6_to_uncore(rc6); struct intel_engine_cs *engine; enum intel_engine_id id; /* 2b: Program RC6 thresholds.*/ if (GRAPHICS_VER(rc6_to_i915(rc6)) >= 11) { intel_uncore_write_fw(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85); intel_uncore_write_fw(uncore, GEN10_MEDIA_WAKE_RATE_LIMIT, 150); } else if (IS_SKYLAKE(rc6_to_i915(rc6))) { /* * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only * when CPG is enabled */ intel_uncore_write_fw(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16); } else { intel_uncore_write_fw(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16); } intel_uncore_write_fw(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */ intel_uncore_write_fw(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */ for_each_engine(engine, rc6_to_gt(rc6), id) intel_uncore_write_fw(uncore, RING_MAX_IDLE(engine->mmio_base), 10); intel_uncore_write_fw(uncore, GUC_MAX_IDLE_COUNT, 0xA); intel_uncore_write_fw(uncore, GEN6_RC_SLEEP, 0); /* * 2c: Program Coarse Power Gating Policies. * * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we * use instead is a more conservative estimate for the maximum time * it takes us to service a CS interrupt and submit a new ELSP - that * is the time which the GPU is idle waiting for the CPU to select the * next request to execute. If the idle hysteresis is less than that * interrupt service latency, the hardware will automatically gate * the power well and we will then incur the wake up cost on top of * the service latency. A similar guide from plane_state is that we * do not want the enable hysteresis to less than the wakeup latency. * * igt/gem_exec_nop/sequential provides a rough estimate for the * service latency, and puts it around 10us for Broadwell (and other * big core) and around 40us for Broxton (and other low power cores). * [Note that for legacy ringbuffer submission, this is less than 1us!] * However, the wakeup latency on Broxton is closer to 100us. To be * conservative, we have to factor in a context switch on top (due * to ksoftirqd). */ intel_uncore_write_fw(uncore, GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250); intel_uncore_write_fw(uncore, GEN9_RENDER_PG_IDLE_HYSTERESIS, 250); /* 3a: Enable RC6 */ intel_uncore_write_fw(uncore, GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */ rc6->ctl_enable = GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_RC6_ENABLE | GEN6_RC_CTL_EI_MODE(1); /* * WaRsDisableCoarsePowerGating:skl,cnl * - Render/Media PG need to be disabled with RC6. */ if (!NEEDS_WaRsDisableCoarsePowerGating(rc6_to_i915(rc6))) intel_uncore_write_fw(uncore, GEN9_PG_ENABLE, GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE); } static void gen8_rc6_enable(struct intel_rc6 *rc6) { struct intel_uncore *uncore = rc6_to_uncore(rc6); struct intel_engine_cs *engine; enum intel_engine_id id; /* 2b: Program RC6 thresholds.*/ intel_uncore_write_fw(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16); intel_uncore_write_fw(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */ intel_uncore_write_fw(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */ for_each_engine(engine, rc6_to_gt(rc6), id) intel_uncore_write_fw(uncore, RING_MAX_IDLE(engine->mmio_base), 10); intel_uncore_write_fw(uncore, GEN6_RC_SLEEP, 0); intel_uncore_write_fw(uncore, GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */ /* 3: Enable RC6 */ rc6->ctl_enable = GEN6_RC_CTL_HW_ENABLE | GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_RC6_ENABLE; } static void gen6_rc6_enable(struct intel_rc6 *rc6) { struct intel_uncore *uncore = rc6_to_uncore(rc6); struct drm_i915_private *i915 = rc6_to_i915(rc6); struct intel_engine_cs *engine; enum intel_engine_id id; u32 rc6vids, rc6_mask; int ret; intel_uncore_write_fw(uncore, GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16); intel_uncore_write_fw(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30); intel_uncore_write_fw(uncore, GEN6_RC6pp_WAKE_RATE_LIMIT, 30); intel_uncore_write_fw(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); intel_uncore_write_fw(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); for_each_engine(engine, rc6_to_gt(rc6), id) intel_uncore_write_fw(uncore, RING_MAX_IDLE(engine->mmio_base), 10); intel_uncore_write_fw(uncore, GEN6_RC_SLEEP, 0); intel_uncore_write_fw(uncore, GEN6_RC1e_THRESHOLD, 1000); intel_uncore_write_fw(uncore, GEN6_RC6_THRESHOLD, 50000); intel_uncore_write_fw(uncore, GEN6_RC6p_THRESHOLD, 150000); intel_uncore_write_fw(uncore, GEN6_RC6pp_THRESHOLD, 64000); /* unused */ /* We don't use those on Haswell */ rc6_mask = GEN6_RC_CTL_RC6_ENABLE; if (HAS_RC6p(i915)) rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE; if (HAS_RC6pp(i915)) rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE; rc6->ctl_enable = rc6_mask | GEN6_RC_CTL_EI_MODE(1) | GEN6_RC_CTL_HW_ENABLE; rc6vids = 0; ret = snb_pcode_read(rc6_to_gt(rc6)->uncore, GEN6_PCODE_READ_RC6VIDS, &rc6vids, NULL); if (GRAPHICS_VER(i915) == 6 && ret) { drm_dbg(&i915->drm, "Couldn't check for BIOS workaround\n"); } else if (GRAPHICS_VER(i915) == 6 && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) { drm_dbg(&i915->drm, "You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n", GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450); rc6vids &= 0xffff00; rc6vids |= GEN6_ENCODE_RC6_VID(450); ret = snb_pcode_write(rc6_to_gt(rc6)->uncore, GEN6_PCODE_WRITE_RC6VIDS, rc6vids); if (ret) drm_err(&i915->drm, "Couldn't fix incorrect rc6 voltage\n"); } } /* Check that the pcbr address is not empty. */ static int chv_rc6_init(struct intel_rc6 *rc6) { struct intel_uncore *uncore = rc6_to_uncore(rc6); struct drm_i915_private *i915 = rc6_to_i915(rc6); resource_size_t pctx_paddr, paddr; resource_size_t pctx_size = 32 * SZ_1K; u32 pcbr; pcbr = intel_uncore_read(uncore, VLV_PCBR); if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) { drm_dbg(&i915->drm, "BIOS didn't set up PCBR, fixing up\n"); paddr = i915->dsm.stolen.end + 1 - pctx_size; GEM_BUG_ON(paddr > U32_MAX); pctx_paddr = (paddr & ~4095); intel_uncore_write(uncore, VLV_PCBR, pctx_paddr); } return 0; } static int vlv_rc6_init(struct intel_rc6 *rc6) { struct drm_i915_private *i915 = rc6_to_i915(rc6); struct intel_uncore *uncore = rc6_to_uncore(rc6); struct drm_i915_gem_object *pctx; resource_size_t pctx_paddr; resource_size_t pctx_size = 24 * SZ_1K; u32 pcbr; pcbr = intel_uncore_read(uncore, VLV_PCBR); if (pcbr) { /* BIOS set it up already, grab the pre-alloc'd space */ resource_size_t pcbr_offset; pcbr_offset = (pcbr & ~4095) - i915->dsm.stolen.start; pctx = i915_gem_object_create_region_at(i915->mm.stolen_region, pcbr_offset, pctx_size, 0); if (IS_ERR(pctx)) return PTR_ERR(pctx); goto out; } drm_dbg(&i915->drm, "BIOS didn't set up PCBR, fixing up\n"); /* * From the Gunit register HAS: * The Gfx driver is expected to program this register and ensure * proper allocation within Gfx stolen memory. For example, this * register should be programmed such than the PCBR range does not * overlap with other ranges, such as the frame buffer, protected * memory, or any other relevant ranges. */ pctx = i915_gem_object_create_stolen(i915, pctx_size); if (IS_ERR(pctx)) { drm_dbg(&i915->drm, "not enough stolen space for PCTX, disabling\n"); return PTR_ERR(pctx); } GEM_BUG_ON(range_overflows_end_t(u64, i915->dsm.stolen.start, pctx->stolen->start, U32_MAX)); pctx_paddr = i915->dsm.stolen.start + pctx->stolen->start; intel_uncore_write(uncore, VLV_PCBR, pctx_paddr); out: rc6->pctx = pctx; return 0; } static void chv_rc6_enable(struct intel_rc6 *rc6) { struct intel_uncore *uncore = rc6_to_uncore(rc6); struct intel_engine_cs *engine; enum intel_engine_id id; /* 2a: Program RC6 thresholds.*/ intel_uncore_write_fw(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16); intel_uncore_write_fw(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */ intel_uncore_write_fw(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */ for_each_engine(engine, rc6_to_gt(rc6), id) intel_uncore_write_fw(uncore, RING_MAX_IDLE(engine->mmio_base), 10); intel_uncore_write_fw(uncore, GEN6_RC_SLEEP, 0); /* TO threshold set to 500 us (0x186 * 1.28 us) */ intel_uncore_write_fw(uncore, GEN6_RC6_THRESHOLD, 0x186); /* Allows RC6 residency counter to work */ intel_uncore_write_fw(uncore, VLV_COUNTER_CONTROL, _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH | VLV_MEDIA_RC6_COUNT_EN | VLV_RENDER_RC6_COUNT_EN)); /* 3: Enable RC6 */ rc6->ctl_enable = GEN7_RC_CTL_TO_MODE; } static void vlv_rc6_enable(struct intel_rc6 *rc6) { struct intel_uncore *uncore = rc6_to_uncore(rc6); struct intel_engine_cs *engine; enum intel_engine_id id; intel_uncore_write_fw(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000); intel_uncore_write_fw(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); intel_uncore_write_fw(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); for_each_engine(engine, rc6_to_gt(rc6), id) intel_uncore_write_fw(uncore, RING_MAX_IDLE(engine->mmio_base), 10); intel_uncore_write_fw(uncore, GEN6_RC6_THRESHOLD, 0x557); /* Allows RC6 residency counter to work */ intel_uncore_write_fw(uncore, VLV_COUNTER_CONTROL, _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH | VLV_MEDIA_RC0_COUNT_EN | VLV_RENDER_RC0_COUNT_EN | VLV_MEDIA_RC6_COUNT_EN | VLV_RENDER_RC6_COUNT_EN)); rc6->ctl_enable = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL; } bool intel_check_bios_c6_setup(struct intel_rc6 *rc6) { if (!rc6->bios_state_captured) { struct intel_uncore *uncore = rc6_to_uncore(rc6); intel_wakeref_t wakeref; with_intel_runtime_pm(uncore->rpm, wakeref) rc6->bios_rc_state = intel_uncore_read(uncore, GEN6_RC_STATE); rc6->bios_state_captured = true; } return rc6->bios_rc_state & RC_SW_TARGET_STATE_MASK; } static bool bxt_check_bios_rc6_setup(struct intel_rc6 *rc6) { struct intel_uncore *uncore = rc6_to_uncore(rc6); struct drm_i915_private *i915 = rc6_to_i915(rc6); u32 rc6_ctx_base, rc_ctl, rc_sw_target; bool enable_rc6 = true; rc_ctl = intel_uncore_read(uncore, GEN6_RC_CONTROL); rc_sw_target = intel_uncore_read(uncore, GEN6_RC_STATE); rc_sw_target &= RC_SW_TARGET_STATE_MASK; rc_sw_target >>= RC_SW_TARGET_STATE_SHIFT; drm_dbg(&i915->drm, "BIOS enabled RC states: " "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n", str_on_off(rc_ctl & GEN6_RC_CTL_HW_ENABLE), str_on_off(rc_ctl & GEN6_RC_CTL_RC6_ENABLE), rc_sw_target); if (!(intel_uncore_read(uncore, RC6_LOCATION) & RC6_CTX_IN_DRAM)) { drm_dbg(&i915->drm, "RC6 Base location not set properly.\n"); enable_rc6 = false; } /* * The exact context size is not known for BXT, so assume a page size * for this check. */ rc6_ctx_base = intel_uncore_read(uncore, RC6_CTX_BASE) & RC6_CTX_BASE_MASK; if (!(rc6_ctx_base >= i915->dsm.reserved.start && rc6_ctx_base + PAGE_SIZE < i915->dsm.reserved.end)) { drm_dbg(&i915->drm, "RC6 Base address not as expected.\n"); enable_rc6 = false; } if (!((intel_uncore_read(uncore, PWRCTX_MAXCNT(RENDER_RING_BASE)) & IDLE_TIME_MASK) > 1 && (intel_uncore_read(uncore, PWRCTX_MAXCNT(GEN6_BSD_RING_BASE)) & IDLE_TIME_MASK) > 1 && (intel_uncore_read(uncore, PWRCTX_MAXCNT(BLT_RING_BASE)) & IDLE_TIME_MASK) > 1 && (intel_uncore_read(uncore, PWRCTX_MAXCNT(VEBOX_RING_BASE)) & IDLE_TIME_MASK) > 1)) { drm_dbg(&i915->drm, "Engine Idle wait time not set properly.\n"); enable_rc6 = false; } if (!intel_uncore_read(uncore, GEN8_PUSHBUS_CONTROL) || !intel_uncore_read(uncore, GEN8_PUSHBUS_ENABLE) || !intel_uncore_read(uncore, GEN8_PUSHBUS_SHIFT)) { drm_dbg(&i915->drm, "Pushbus not setup properly.\n"); enable_rc6 = false; } if (!intel_uncore_read(uncore, GEN6_GFXPAUSE)) { drm_dbg(&i915->drm, "GFX pause not setup properly.\n"); enable_rc6 = false; } if (!intel_uncore_read(uncore, GEN8_MISC_CTRL0)) { drm_dbg(&i915->drm, "GPM control not setup properly.\n"); enable_rc6 = false; } return enable_rc6; } static bool rc6_supported(struct intel_rc6 *rc6) { struct drm_i915_private *i915 = rc6_to_i915(rc6); struct intel_gt *gt = rc6_to_gt(rc6); if (!HAS_RC6(i915)) return false; if (intel_vgpu_active(i915)) return false; if (is_mock_gt(rc6_to_gt(rc6))) return false; if (IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(rc6)) { drm_notice(&i915->drm, "RC6 and powersaving disabled by BIOS\n"); return false; } if (IS_METEORLAKE(gt->i915) && !intel_check_bios_c6_setup(rc6)) { drm_notice(&i915->drm, "C6 disabled by BIOS\n"); return false; } if (IS_MTL_MEDIA_STEP(gt->i915, STEP_A0, STEP_B0) && gt->type == GT_MEDIA) { drm_notice(&i915->drm, "Media RC6 disabled on A step\n"); return false; } return true; } static void rpm_get(struct intel_rc6 *rc6) { GEM_BUG_ON(rc6->wakeref); pm_runtime_get_sync(rc6_to_i915(rc6)->drm.dev); rc6->wakeref = true; } static void rpm_put(struct intel_rc6 *rc6) { GEM_BUG_ON(!rc6->wakeref); pm_runtime_put(rc6_to_i915(rc6)->drm.dev); rc6->wakeref = false; } static bool pctx_corrupted(struct intel_rc6 *rc6) { struct drm_i915_private *i915 = rc6_to_i915(rc6); if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915)) return false; if (intel_uncore_read(rc6_to_uncore(rc6), GEN8_RC6_CTX_INFO)) return false; drm_notice(&i915->drm, "RC6 context corruption, disabling runtime power management\n"); return true; } static void __intel_rc6_disable(struct intel_rc6 *rc6) { struct drm_i915_private *i915 = rc6_to_i915(rc6); struct intel_uncore *uncore = rc6_to_uncore(rc6); struct intel_gt *gt = rc6_to_gt(rc6); /* Take control of RC6 back from GuC */ intel_guc_rc_disable(&gt->uc.guc); intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); if (GRAPHICS_VER(i915) >= 9) intel_uncore_write_fw(uncore, GEN9_PG_ENABLE, 0); intel_uncore_write_fw(uncore, GEN6_RC_CONTROL, 0); intel_uncore_write_fw(uncore, GEN6_RC_STATE, 0); intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); } static void rc6_res_reg_init(struct intel_rc6 *rc6) { memset(rc6->res_reg, INVALID_MMIO_REG.reg, sizeof(rc6->res_reg)); switch (rc6_to_gt(rc6)->type) { case GT_MEDIA: rc6->res_reg[INTEL_RC6_RES_RC6] = MTL_MEDIA_MC6; break; default: rc6->res_reg[INTEL_RC6_RES_RC6_LOCKED] = GEN6_GT_GFX_RC6_LOCKED; rc6->res_reg[INTEL_RC6_RES_RC6] = GEN6_GT_GFX_RC6; rc6->res_reg[INTEL_RC6_RES_RC6p] = GEN6_GT_GFX_RC6p; rc6->res_reg[INTEL_RC6_RES_RC6pp] = GEN6_GT_GFX_RC6pp; break; } } void intel_rc6_init(struct intel_rc6 *rc6) { struct drm_i915_private *i915 = rc6_to_i915(rc6); int err; /* Disable runtime-pm until we can save the GPU state with rc6 pctx */ rpm_get(rc6); if (!rc6_supported(rc6)) return; rc6_res_reg_init(rc6); if (IS_CHERRYVIEW(i915)) err = chv_rc6_init(rc6); else if (IS_VALLEYVIEW(i915)) err = vlv_rc6_init(rc6); else err = 0; /* Sanitize rc6, ensure it is disabled before we are ready. */ __intel_rc6_disable(rc6); rc6->supported = err == 0; } void intel_rc6_sanitize(struct intel_rc6 *rc6) { memset(rc6->prev_hw_residency, 0, sizeof(rc6->prev_hw_residency)); if (rc6->enabled) { /* unbalanced suspend/resume */ rpm_get(rc6); rc6->enabled = false; } if (rc6->supported) __intel_rc6_disable(rc6); } void intel_rc6_enable(struct intel_rc6 *rc6) { struct drm_i915_private *i915 = rc6_to_i915(rc6); struct intel_uncore *uncore = rc6_to_uncore(rc6); if (!rc6->supported) return; GEM_BUG_ON(rc6->enabled); intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); if (IS_CHERRYVIEW(i915)) chv_rc6_enable(rc6); else if (IS_VALLEYVIEW(i915)) vlv_rc6_enable(rc6); else if (GRAPHICS_VER(i915) >= 11) gen11_rc6_enable(rc6); else if (GRAPHICS_VER(i915) >= 9) gen9_rc6_enable(rc6); else if (IS_BROADWELL(i915)) gen8_rc6_enable(rc6); else if (GRAPHICS_VER(i915) >= 6) gen6_rc6_enable(rc6); rc6->manual = rc6->ctl_enable & GEN6_RC_CTL_RC6_ENABLE; if (NEEDS_RC6_CTX_CORRUPTION_WA(i915)) rc6->ctl_enable = 0; intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); if (unlikely(pctx_corrupted(rc6))) return; /* rc6 is ready, runtime-pm is go! */ rpm_put(rc6); rc6->enabled = true; } void intel_rc6_unpark(struct intel_rc6 *rc6) { struct intel_uncore *uncore = rc6_to_uncore(rc6); if (!rc6->enabled) return; /* Restore HW timers for automatic RC6 entry while busy */ intel_uncore_write_fw(uncore, GEN6_RC_CONTROL, rc6->ctl_enable); } void intel_rc6_park(struct intel_rc6 *rc6) { struct intel_uncore *uncore = rc6_to_uncore(rc6); unsigned int target; if (!rc6->enabled) return; if (unlikely(pctx_corrupted(rc6))) { intel_rc6_disable(rc6); return; } if (!rc6->manual) return; /* Turn off the HW timers and go directly to rc6 */ intel_uncore_write_fw(uncore, GEN6_RC_CONTROL, GEN6_RC_CTL_RC6_ENABLE); if (HAS_RC6pp(rc6_to_i915(rc6))) target = 0x6; /* deepest rc6 */ else if (HAS_RC6p(rc6_to_i915(rc6))) target = 0x5; /* deep rc6 */ else target = 0x4; /* normal rc6 */ intel_uncore_write_fw(uncore, GEN6_RC_STATE, target << RC_SW_TARGET_STATE_SHIFT); } void intel_rc6_disable(struct intel_rc6 *rc6) { if (!rc6->enabled) return; rpm_get(rc6); rc6->enabled = false; __intel_rc6_disable(rc6); } void intel_rc6_fini(struct intel_rc6 *rc6) { struct drm_i915_gem_object *pctx; struct intel_uncore *uncore = rc6_to_uncore(rc6); intel_rc6_disable(rc6); /* We want the BIOS C6 state preserved across loads for MTL */ if (IS_METEORLAKE(rc6_to_i915(rc6)) && rc6->bios_state_captured) intel_uncore_write_fw(uncore, GEN6_RC_STATE, rc6->bios_rc_state); pctx = fetch_and_zero(&rc6->pctx); if (pctx) i915_gem_object_put(pctx); if (rc6->wakeref) rpm_put(rc6); } static u64 vlv_residency_raw(struct intel_uncore *uncore, const i915_reg_t reg) { u32 lower, upper, tmp; int loop = 2; /* * The register accessed do not need forcewake. We borrow * uncore lock to prevent concurrent access to range reg. */ lockdep_assert_held(&uncore->lock); /* * vlv and chv residency counters are 40 bits in width. * With a control bit, we can choose between upper or lower * 32bit window into this counter. * * Although we always use the counter in high-range mode elsewhere, * userspace may attempt to read the value before rc6 is initialised, * before we have set the default VLV_COUNTER_CONTROL value. So always * set the high bit to be safe. */ intel_uncore_write_fw(uncore, VLV_COUNTER_CONTROL, _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH)); upper = intel_uncore_read_fw(uncore, reg); do { tmp = upper; intel_uncore_write_fw(uncore, VLV_COUNTER_CONTROL, _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH)); lower = intel_uncore_read_fw(uncore, reg); intel_uncore_write_fw(uncore, VLV_COUNTER_CONTROL, _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH)); upper = intel_uncore_read_fw(uncore, reg); } while (upper != tmp && --loop); /* * Everywhere else we always use VLV_COUNTER_CONTROL with the * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set * now. */ return lower | (u64)upper << 8; } u64 intel_rc6_residency_ns(struct intel_rc6 *rc6, enum intel_rc6_res_type id) { struct drm_i915_private *i915 = rc6_to_i915(rc6); struct intel_uncore *uncore = rc6_to_uncore(rc6); u64 time_hw, prev_hw, overflow_hw; i915_reg_t reg = rc6->res_reg[id]; unsigned int fw_domains; unsigned long flags; u32 mul, div; if (!rc6->supported) return 0; fw_domains = intel_uncore_forcewake_for_reg(uncore, reg, FW_REG_READ); spin_lock_irqsave(&uncore->lock, flags); intel_uncore_forcewake_get__locked(uncore, fw_domains); /* On VLV and CHV, residency time is in CZ units rather than 1.28us */ if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) { mul = 1000000; div = i915->czclk_freq; overflow_hw = BIT_ULL(40); time_hw = vlv_residency_raw(uncore, reg); } else { /* 833.33ns units on Gen9LP, 1.28us elsewhere. */ if (IS_GEN9_LP(i915)) { mul = 10000; div = 12; } else { mul = 1280; div = 1; } overflow_hw = BIT_ULL(32); time_hw = intel_uncore_read_fw(uncore, reg); } /* * Counter wrap handling. * * Store previous hw counter values for counter wrap-around handling. But * relying on a sufficient frequency of queries otherwise counters can still wrap. */ prev_hw = rc6->prev_hw_residency[id]; rc6->prev_hw_residency[id] = time_hw; /* RC6 delta from last sample. */ if (time_hw >= prev_hw) time_hw -= prev_hw; else time_hw += overflow_hw - prev_hw; /* Add delta to RC6 extended raw driver copy. */ time_hw += rc6->cur_residency[id]; rc6->cur_residency[id] = time_hw; intel_uncore_forcewake_put__locked(uncore, fw_domains); spin_unlock_irqrestore(&uncore->lock, flags); return mul_u64_u32_div(time_hw, mul, div); } u64 intel_rc6_residency_us(struct intel_rc6 *rc6, enum intel_rc6_res_type id) { return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(rc6, id), 1000); } void intel_rc6_print_residency(struct seq_file *m, const char *title, enum intel_rc6_res_type id) { struct intel_gt *gt = m->private; i915_reg_t reg = gt->rc6.res_reg[id]; intel_wakeref_t wakeref; with_intel_runtime_pm(gt->uncore->rpm, wakeref) seq_printf(m, "%s %u (%llu us)\n", title, intel_uncore_read(gt->uncore, reg), intel_rc6_residency_us(&gt->rc6, id)); } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_rc6.c" #endif
linux-master
drivers/gpu/drm/i915/gt/intel_rc6.c
// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include <linux/list.h> #include <linux/list_sort.h> #include <linux/llist.h> #include "i915_drv.h" #include "intel_engine.h" #include "intel_engine_user.h" #include "intel_gt.h" #include "uc/intel_guc_submission.h" struct intel_engine_cs * intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance) { struct rb_node *p = i915->uabi_engines.rb_node; while (p) { struct intel_engine_cs *it = rb_entry(p, typeof(*it), uabi_node); if (class < it->uabi_class) p = p->rb_left; else if (class > it->uabi_class || instance > it->uabi_instance) p = p->rb_right; else if (instance < it->uabi_instance) p = p->rb_left; else return it; } return NULL; } void intel_engine_add_user(struct intel_engine_cs *engine) { llist_add((struct llist_node *)&engine->uabi_node, (struct llist_head *)&engine->i915->uabi_engines); } static const u8 uabi_classes[] = { [RENDER_CLASS] = I915_ENGINE_CLASS_RENDER, [COPY_ENGINE_CLASS] = I915_ENGINE_CLASS_COPY, [VIDEO_DECODE_CLASS] = I915_ENGINE_CLASS_VIDEO, [VIDEO_ENHANCEMENT_CLASS] = I915_ENGINE_CLASS_VIDEO_ENHANCE, [COMPUTE_CLASS] = I915_ENGINE_CLASS_COMPUTE, }; static int engine_cmp(void *priv, const struct list_head *A, const struct list_head *B) { const struct intel_engine_cs *a = container_of((struct rb_node *)A, typeof(*a), uabi_node); const struct intel_engine_cs *b = container_of((struct rb_node *)B, typeof(*b), uabi_node); if (uabi_classes[a->class] < uabi_classes[b->class]) return -1; if (uabi_classes[a->class] > uabi_classes[b->class]) return 1; if (a->instance < b->instance) return -1; if (a->instance > b->instance) return 1; return 0; } static struct llist_node *get_engines(struct drm_i915_private *i915) { return llist_del_all((struct llist_head *)&i915->uabi_engines); } static void sort_engines(struct drm_i915_private *i915, struct list_head *engines) { struct llist_node *pos, *next; llist_for_each_safe(pos, next, get_engines(i915)) { struct intel_engine_cs *engine = container_of((struct rb_node *)pos, typeof(*engine), uabi_node); list_add((struct list_head *)&engine->uabi_node, engines); } list_sort(NULL, engines, engine_cmp); } static void set_scheduler_caps(struct drm_i915_private *i915) { static const struct { u8 engine; u8 sched; } map[] = { #define MAP(x, y) { ilog2(I915_ENGINE_##x), ilog2(I915_SCHEDULER_CAP_##y) } MAP(HAS_PREEMPTION, PREEMPTION), MAP(HAS_SEMAPHORES, SEMAPHORES), MAP(SUPPORTS_STATS, ENGINE_BUSY_STATS), #undef MAP }; struct intel_engine_cs *engine; u32 enabled, disabled; enabled = 0; disabled = 0; for_each_uabi_engine(engine, i915) { /* all engines must agree! */ int i; if (engine->sched_engine->schedule) enabled |= (I915_SCHEDULER_CAP_ENABLED | I915_SCHEDULER_CAP_PRIORITY); else disabled |= (I915_SCHEDULER_CAP_ENABLED | I915_SCHEDULER_CAP_PRIORITY); if (intel_uc_uses_guc_submission(&engine->gt->uc)) enabled |= I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP; for (i = 0; i < ARRAY_SIZE(map); i++) { if (engine->flags & BIT(map[i].engine)) enabled |= BIT(map[i].sched); else disabled |= BIT(map[i].sched); } } i915->caps.scheduler = enabled & ~disabled; if (!(i915->caps.scheduler & I915_SCHEDULER_CAP_ENABLED)) i915->caps.scheduler = 0; } const char *intel_engine_class_repr(u8 class) { static const char * const uabi_names[] = { [RENDER_CLASS] = "rcs", [COPY_ENGINE_CLASS] = "bcs", [VIDEO_DECODE_CLASS] = "vcs", [VIDEO_ENHANCEMENT_CLASS] = "vecs", [OTHER_CLASS] = "other", [COMPUTE_CLASS] = "ccs", }; if (class >= ARRAY_SIZE(uabi_names) || !uabi_names[class]) return "xxx"; return uabi_names[class]; } struct legacy_ring { struct intel_gt *gt; u8 class; u8 instance; }; static int legacy_ring_idx(const struct legacy_ring *ring) { static const struct { u8 base, max; } map[] = { [RENDER_CLASS] = { RCS0, 1 }, [COPY_ENGINE_CLASS] = { BCS0, 1 }, [VIDEO_DECODE_CLASS] = { VCS0, I915_MAX_VCS }, [VIDEO_ENHANCEMENT_CLASS] = { VECS0, I915_MAX_VECS }, [COMPUTE_CLASS] = { CCS0, I915_MAX_CCS }, }; if (GEM_DEBUG_WARN_ON(ring->class >= ARRAY_SIZE(map))) return INVALID_ENGINE; if (GEM_DEBUG_WARN_ON(ring->instance >= map[ring->class].max)) return INVALID_ENGINE; return map[ring->class].base + ring->instance; } static void add_legacy_ring(struct legacy_ring *ring, struct intel_engine_cs *engine) { if (engine->gt != ring->gt || engine->class != ring->class) { ring->gt = engine->gt; ring->class = engine->class; ring->instance = 0; } engine->legacy_idx = legacy_ring_idx(ring); if (engine->legacy_idx != INVALID_ENGINE) ring->instance++; } static void engine_rename(struct intel_engine_cs *engine, const char *name, u16 instance) { char old[sizeof(engine->name)]; memcpy(old, engine->name, sizeof(engine->name)); scnprintf(engine->name, sizeof(engine->name), "%s%u", name, instance); drm_dbg(&engine->i915->drm, "renamed %s to %s\n", old, engine->name); } void intel_engines_driver_register(struct drm_i915_private *i915) { struct legacy_ring ring = {}; struct list_head *it, *next; struct rb_node **p, *prev; LIST_HEAD(engines); sort_engines(i915, &engines); prev = NULL; p = &i915->uabi_engines.rb_node; list_for_each_safe(it, next, &engines) { struct intel_engine_cs *engine = container_of((struct rb_node *)it, typeof(*engine), uabi_node); if (intel_gt_has_unrecoverable_error(engine->gt)) continue; /* ignore incomplete engines */ /* * We don't want to expose the GSC engine to the users, but we * still rename it so it is easier to identify in the debug logs */ if (engine->id == GSC0) { engine_rename(engine, "gsc", 0); continue; } GEM_BUG_ON(engine->class >= ARRAY_SIZE(uabi_classes)); engine->uabi_class = uabi_classes[engine->class]; GEM_BUG_ON(engine->uabi_class >= ARRAY_SIZE(i915->engine_uabi_class_count)); engine->uabi_instance = i915->engine_uabi_class_count[engine->uabi_class]++; /* Replace the internal name with the final user facing name */ engine_rename(engine, intel_engine_class_repr(engine->class), engine->uabi_instance); rb_link_node(&engine->uabi_node, prev, p); rb_insert_color(&engine->uabi_node, &i915->uabi_engines); GEM_BUG_ON(intel_engine_lookup_user(i915, engine->uabi_class, engine->uabi_instance) != engine); /* Fix up the mapping to match default execbuf::user_map[] */ add_legacy_ring(&ring, engine); prev = &engine->uabi_node; p = &prev->rb_right; } if (IS_ENABLED(CONFIG_DRM_I915_SELFTESTS) && IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) { struct intel_engine_cs *engine; unsigned int isolation; int class, inst; int errors = 0; for (class = 0; class < ARRAY_SIZE(i915->engine_uabi_class_count); class++) { for (inst = 0; inst < i915->engine_uabi_class_count[class]; inst++) { engine = intel_engine_lookup_user(i915, class, inst); if (!engine) { pr_err("UABI engine not found for { class:%d, instance:%d }\n", class, inst); errors++; continue; } if (engine->uabi_class != class || engine->uabi_instance != inst) { pr_err("Wrong UABI engine:%s { class:%d, instance:%d } found for { class:%d, instance:%d }\n", engine->name, engine->uabi_class, engine->uabi_instance, class, inst); errors++; continue; } } } /* * Make sure that classes with multiple engine instances all * share the same basic configuration. */ isolation = intel_engines_has_context_isolation(i915); for_each_uabi_engine(engine, i915) { unsigned int bit = BIT(engine->uabi_class); unsigned int expected = engine->default_state ? bit : 0; if ((isolation & bit) != expected) { pr_err("mismatching default context state for class %d on engine %s\n", engine->uabi_class, engine->name); errors++; } } if (drm_WARN(&i915->drm, errors, "Invalid UABI engine mapping found")) i915->uabi_engines = RB_ROOT; } set_scheduler_caps(i915); } unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915) { struct intel_engine_cs *engine; unsigned int which; which = 0; for_each_uabi_engine(engine, i915) if (engine->default_state) which |= BIT(engine->uabi_class); return which; }
linux-master
drivers/gpu/drm/i915/gt/intel_engine_user.c
// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include "i915_drv.h" #include "i915_reg.h" #include "intel_gt.h" #include "intel_gt_irq.h" #include "intel_gt_pm_irq.h" #include "intel_gt_regs.h" static void write_pm_imr(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; struct intel_uncore *uncore = gt->uncore; u32 mask = gt->pm_imr; i915_reg_t reg; if (GRAPHICS_VER(i915) >= 11) { reg = GEN11_GPM_WGBOXPERF_INTR_MASK; mask <<= 16; /* pm is in upper half */ } else if (GRAPHICS_VER(i915) >= 8) { reg = GEN8_GT_IMR(2); } else { reg = GEN6_PMIMR; } intel_uncore_write(uncore, reg, mask); } static void gen6_gt_pm_update_irq(struct intel_gt *gt, u32 interrupt_mask, u32 enabled_irq_mask) { u32 new_val; WARN_ON(enabled_irq_mask & ~interrupt_mask); lockdep_assert_held(gt->irq_lock); new_val = gt->pm_imr; new_val &= ~interrupt_mask; new_val |= ~enabled_irq_mask & interrupt_mask; if (new_val != gt->pm_imr) { gt->pm_imr = new_val; write_pm_imr(gt); } } void gen6_gt_pm_unmask_irq(struct intel_gt *gt, u32 mask) { gen6_gt_pm_update_irq(gt, mask, mask); } void gen6_gt_pm_mask_irq(struct intel_gt *gt, u32 mask) { gen6_gt_pm_update_irq(gt, mask, 0); } void gen6_gt_pm_reset_iir(struct intel_gt *gt, u32 reset_mask) { struct intel_uncore *uncore = gt->uncore; i915_reg_t reg = GRAPHICS_VER(gt->i915) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR; lockdep_assert_held(gt->irq_lock); intel_uncore_write(uncore, reg, reset_mask); intel_uncore_write(uncore, reg, reset_mask); intel_uncore_posting_read(uncore, reg); } static void write_pm_ier(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; struct intel_uncore *uncore = gt->uncore; u32 mask = gt->pm_ier; i915_reg_t reg; if (GRAPHICS_VER(i915) >= 11) { reg = GEN11_GPM_WGBOXPERF_INTR_ENABLE; mask <<= 16; /* pm is in upper half */ } else if (GRAPHICS_VER(i915) >= 8) { reg = GEN8_GT_IER(2); } else { reg = GEN6_PMIER; } intel_uncore_write(uncore, reg, mask); } void gen6_gt_pm_enable_irq(struct intel_gt *gt, u32 enable_mask) { lockdep_assert_held(gt->irq_lock); gt->pm_ier |= enable_mask; write_pm_ier(gt); gen6_gt_pm_unmask_irq(gt, enable_mask); } void gen6_gt_pm_disable_irq(struct intel_gt *gt, u32 disable_mask) { lockdep_assert_held(gt->irq_lock); gt->pm_ier &= ~disable_mask; gen6_gt_pm_mask_irq(gt, disable_mask); write_pm_ier(gt); }
linux-master
drivers/gpu/drm/i915/gt/intel_gt_pm_irq.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright © 2018 Intel Corporation */ #include "i915_selftest.h" #include "selftest_engine.h" int intel_engine_live_selftests(struct drm_i915_private *i915) { static int (* const tests[])(struct intel_gt *) = { live_engine_pm_selftests, NULL, }; struct intel_gt *gt = to_gt(i915); typeof(*tests) *fn; for (fn = tests; *fn; fn++) { int err; err = (*fn)(gt); if (err) return err; } return 0; }
linux-master
drivers/gpu/drm/i915/gt/selftest_engine.c
// SPDX-License-Identifier: MIT /* * Copyright © 2016-2018 Intel Corporation */ #include <drm/drm_cache.h> #include "gem/i915_gem_internal.h" #include "i915_active.h" #include "i915_drv.h" #include "i915_syncmap.h" #include "intel_gt.h" #include "intel_ring.h" #include "intel_timeline.h" #define TIMELINE_SEQNO_BYTES 8 static struct i915_vma *hwsp_alloc(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; struct drm_i915_gem_object *obj; struct i915_vma *vma; obj = i915_gem_object_create_internal(i915, PAGE_SIZE); if (IS_ERR(obj)) return ERR_CAST(obj); i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL); if (IS_ERR(vma)) i915_gem_object_put(obj); return vma; } static void __timeline_retire(struct i915_active *active) { struct intel_timeline *tl = container_of(active, typeof(*tl), active); i915_vma_unpin(tl->hwsp_ggtt); intel_timeline_put(tl); } static int __timeline_active(struct i915_active *active) { struct intel_timeline *tl = container_of(active, typeof(*tl), active); __i915_vma_pin(tl->hwsp_ggtt); intel_timeline_get(tl); return 0; } I915_SELFTEST_EXPORT int intel_timeline_pin_map(struct intel_timeline *timeline) { struct drm_i915_gem_object *obj = timeline->hwsp_ggtt->obj; u32 ofs = offset_in_page(timeline->hwsp_offset); void *vaddr; vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); if (IS_ERR(vaddr)) return PTR_ERR(vaddr); timeline->hwsp_map = vaddr; timeline->hwsp_seqno = memset(vaddr + ofs, 0, TIMELINE_SEQNO_BYTES); drm_clflush_virt_range(vaddr + ofs, TIMELINE_SEQNO_BYTES); return 0; } static int intel_timeline_init(struct intel_timeline *timeline, struct intel_gt *gt, struct i915_vma *hwsp, unsigned int offset) { kref_init(&timeline->kref); atomic_set(&timeline->pin_count, 0); timeline->gt = gt; if (hwsp) { timeline->hwsp_offset = offset; timeline->hwsp_ggtt = i915_vma_get(hwsp); } else { timeline->has_initial_breadcrumb = true; hwsp = hwsp_alloc(gt); if (IS_ERR(hwsp)) return PTR_ERR(hwsp); timeline->hwsp_ggtt = hwsp; } timeline->hwsp_map = NULL; timeline->hwsp_seqno = (void *)(long)timeline->hwsp_offset; GEM_BUG_ON(timeline->hwsp_offset >= hwsp->size); timeline->fence_context = dma_fence_context_alloc(1); mutex_init(&timeline->mutex); INIT_ACTIVE_FENCE(&timeline->last_request); INIT_LIST_HEAD(&timeline->requests); i915_syncmap_init(&timeline->sync); i915_active_init(&timeline->active, __timeline_active, __timeline_retire, 0); return 0; } void intel_gt_init_timelines(struct intel_gt *gt) { struct intel_gt_timelines *timelines = &gt->timelines; spin_lock_init(&timelines->lock); INIT_LIST_HEAD(&timelines->active_list); } static void intel_timeline_fini(struct rcu_head *rcu) { struct intel_timeline *timeline = container_of(rcu, struct intel_timeline, rcu); if (timeline->hwsp_map) i915_gem_object_unpin_map(timeline->hwsp_ggtt->obj); i915_vma_put(timeline->hwsp_ggtt); i915_active_fini(&timeline->active); /* * A small race exists between intel_gt_retire_requests_timeout and * intel_timeline_exit which could result in the syncmap not getting * free'd. Rather than work to hard to seal this race, simply cleanup * the syncmap on fini. */ i915_syncmap_free(&timeline->sync); kfree(timeline); } struct intel_timeline * __intel_timeline_create(struct intel_gt *gt, struct i915_vma *global_hwsp, unsigned int offset) { struct intel_timeline *timeline; int err; timeline = kzalloc(sizeof(*timeline), GFP_KERNEL); if (!timeline) return ERR_PTR(-ENOMEM); err = intel_timeline_init(timeline, gt, global_hwsp, offset); if (err) { kfree(timeline); return ERR_PTR(err); } return timeline; } struct intel_timeline * intel_timeline_create_from_engine(struct intel_engine_cs *engine, unsigned int offset) { struct i915_vma *hwsp = engine->status_page.vma; struct intel_timeline *tl; tl = __intel_timeline_create(engine->gt, hwsp, offset); if (IS_ERR(tl)) return tl; /* Borrow a nearby lock; we only create these timelines during init */ mutex_lock(&hwsp->vm->mutex); list_add_tail(&tl->engine_link, &engine->status_page.timelines); mutex_unlock(&hwsp->vm->mutex); return tl; } void __intel_timeline_pin(struct intel_timeline *tl) { GEM_BUG_ON(!atomic_read(&tl->pin_count)); atomic_inc(&tl->pin_count); } int intel_timeline_pin(struct intel_timeline *tl, struct i915_gem_ww_ctx *ww) { int err; if (atomic_add_unless(&tl->pin_count, 1, 0)) return 0; if (!tl->hwsp_map) { err = intel_timeline_pin_map(tl); if (err) return err; } err = i915_ggtt_pin(tl->hwsp_ggtt, ww, 0, PIN_HIGH); if (err) return err; tl->hwsp_offset = i915_ggtt_offset(tl->hwsp_ggtt) + offset_in_page(tl->hwsp_offset); GT_TRACE(tl->gt, "timeline:%llx using HWSP offset:%x\n", tl->fence_context, tl->hwsp_offset); i915_active_acquire(&tl->active); if (atomic_fetch_inc(&tl->pin_count)) { i915_active_release(&tl->active); __i915_vma_unpin(tl->hwsp_ggtt); } return 0; } void intel_timeline_reset_seqno(const struct intel_timeline *tl) { u32 *hwsp_seqno = (u32 *)tl->hwsp_seqno; /* Must be pinned to be writable, and no requests in flight. */ GEM_BUG_ON(!atomic_read(&tl->pin_count)); memset(hwsp_seqno + 1, 0, TIMELINE_SEQNO_BYTES - sizeof(*hwsp_seqno)); WRITE_ONCE(*hwsp_seqno, tl->seqno); drm_clflush_virt_range(hwsp_seqno, TIMELINE_SEQNO_BYTES); } void intel_timeline_enter(struct intel_timeline *tl) { struct intel_gt_timelines *timelines = &tl->gt->timelines; /* * Pretend we are serialised by the timeline->mutex. * * While generally true, there are a few exceptions to the rule * for the engine->kernel_context being used to manage power * transitions. As the engine_park may be called from under any * timeline, it uses the power mutex as a global serialisation * lock to prevent any other request entering its timeline. * * The rule is generally tl->mutex, otherwise engine->wakeref.mutex. * * However, intel_gt_retire_request() does not know which engine * it is retiring along and so cannot partake in the engine-pm * barrier, and there we use the tl->active_count as a means to * pin the timeline in the active_list while the locks are dropped. * Ergo, as that is outside of the engine-pm barrier, we need to * use atomic to manipulate tl->active_count. */ lockdep_assert_held(&tl->mutex); if (atomic_add_unless(&tl->active_count, 1, 0)) return; spin_lock(&timelines->lock); if (!atomic_fetch_inc(&tl->active_count)) { /* * The HWSP is volatile, and may have been lost while inactive, * e.g. across suspend/resume. Be paranoid, and ensure that * the HWSP value matches our seqno so we don't proclaim * the next request as already complete. */ intel_timeline_reset_seqno(tl); list_add_tail(&tl->link, &timelines->active_list); } spin_unlock(&timelines->lock); } void intel_timeline_exit(struct intel_timeline *tl) { struct intel_gt_timelines *timelines = &tl->gt->timelines; /* See intel_timeline_enter() */ lockdep_assert_held(&tl->mutex); GEM_BUG_ON(!atomic_read(&tl->active_count)); if (atomic_add_unless(&tl->active_count, -1, 1)) return; spin_lock(&timelines->lock); if (atomic_dec_and_test(&tl->active_count)) list_del(&tl->link); spin_unlock(&timelines->lock); /* * Since this timeline is idle, all bariers upon which we were waiting * must also be complete and so we can discard the last used barriers * without loss of information. */ i915_syncmap_free(&tl->sync); } static u32 timeline_advance(struct intel_timeline *tl) { GEM_BUG_ON(!atomic_read(&tl->pin_count)); GEM_BUG_ON(tl->seqno & tl->has_initial_breadcrumb); return tl->seqno += 1 + tl->has_initial_breadcrumb; } static noinline int __intel_timeline_get_seqno(struct intel_timeline *tl, u32 *seqno) { u32 next_ofs = offset_in_page(tl->hwsp_offset + TIMELINE_SEQNO_BYTES); /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */ if (TIMELINE_SEQNO_BYTES <= BIT(5) && (next_ofs & BIT(5))) next_ofs = offset_in_page(next_ofs + BIT(5)); tl->hwsp_offset = i915_ggtt_offset(tl->hwsp_ggtt) + next_ofs; tl->hwsp_seqno = tl->hwsp_map + next_ofs; intel_timeline_reset_seqno(tl); *seqno = timeline_advance(tl); GEM_BUG_ON(i915_seqno_passed(*tl->hwsp_seqno, *seqno)); return 0; } int intel_timeline_get_seqno(struct intel_timeline *tl, struct i915_request *rq, u32 *seqno) { *seqno = timeline_advance(tl); /* Replace the HWSP on wraparound for HW semaphores */ if (unlikely(!*seqno && tl->has_initial_breadcrumb)) return __intel_timeline_get_seqno(tl, seqno); return 0; } int intel_timeline_read_hwsp(struct i915_request *from, struct i915_request *to, u32 *hwsp) { struct intel_timeline *tl; int err; rcu_read_lock(); tl = rcu_dereference(from->timeline); if (i915_request_signaled(from) || !i915_active_acquire_if_busy(&tl->active)) tl = NULL; if (tl) { /* hwsp_offset may wraparound, so use from->hwsp_seqno */ *hwsp = i915_ggtt_offset(tl->hwsp_ggtt) + offset_in_page(from->hwsp_seqno); } /* ensure we wait on the right request, if not, we completed */ if (tl && __i915_request_is_complete(from)) { i915_active_release(&tl->active); tl = NULL; } rcu_read_unlock(); if (!tl) return 1; /* Can't do semaphore waits on kernel context */ if (!tl->has_initial_breadcrumb) { err = -EINVAL; goto out; } err = i915_active_add_request(&tl->active, to); out: i915_active_release(&tl->active); return err; } void intel_timeline_unpin(struct intel_timeline *tl) { GEM_BUG_ON(!atomic_read(&tl->pin_count)); if (!atomic_dec_and_test(&tl->pin_count)) return; i915_active_release(&tl->active); __i915_vma_unpin(tl->hwsp_ggtt); } void __intel_timeline_free(struct kref *kref) { struct intel_timeline *timeline = container_of(kref, typeof(*timeline), kref); GEM_BUG_ON(atomic_read(&timeline->pin_count)); GEM_BUG_ON(!list_empty(&timeline->requests)); GEM_BUG_ON(timeline->retire); call_rcu(&timeline->rcu, intel_timeline_fini); } void intel_gt_fini_timelines(struct intel_gt *gt) { struct intel_gt_timelines *timelines = &gt->timelines; GEM_BUG_ON(!list_empty(&timelines->active_list)); } void intel_gt_show_timelines(struct intel_gt *gt, struct drm_printer *m, void (*show_request)(struct drm_printer *m, const struct i915_request *rq, const char *prefix, int indent)) { struct intel_gt_timelines *timelines = &gt->timelines; struct intel_timeline *tl, *tn; LIST_HEAD(free); spin_lock(&timelines->lock); list_for_each_entry_safe(tl, tn, &timelines->active_list, link) { unsigned long count, ready, inflight; struct i915_request *rq, *rn; struct dma_fence *fence; if (!mutex_trylock(&tl->mutex)) { drm_printf(m, "Timeline %llx: busy; skipping\n", tl->fence_context); continue; } intel_timeline_get(tl); GEM_BUG_ON(!atomic_read(&tl->active_count)); atomic_inc(&tl->active_count); /* pin the list element */ spin_unlock(&timelines->lock); count = 0; ready = 0; inflight = 0; list_for_each_entry_safe(rq, rn, &tl->requests, link) { if (i915_request_completed(rq)) continue; count++; if (i915_request_is_ready(rq)) ready++; if (i915_request_is_active(rq)) inflight++; } drm_printf(m, "Timeline %llx: { ", tl->fence_context); drm_printf(m, "count: %lu, ready: %lu, inflight: %lu", count, ready, inflight); drm_printf(m, ", seqno: { current: %d, last: %d }", *tl->hwsp_seqno, tl->seqno); fence = i915_active_fence_get(&tl->last_request); if (fence) { drm_printf(m, ", engine: %s", to_request(fence)->engine->name); dma_fence_put(fence); } drm_printf(m, " }\n"); if (show_request) { list_for_each_entry_safe(rq, rn, &tl->requests, link) show_request(m, rq, "", 2); } mutex_unlock(&tl->mutex); spin_lock(&timelines->lock); /* Resume list iteration after reacquiring spinlock */ list_safe_reset_next(tl, tn, link); if (atomic_dec_and_test(&tl->active_count)) list_del(&tl->link); /* Defer the final release to after the spinlock */ if (refcount_dec_and_test(&tl->kref.refcount)) { GEM_BUG_ON(atomic_read(&tl->active_count)); list_add(&tl->link, &free); } } spin_unlock(&timelines->lock); list_for_each_entry_safe(tl, tn, &free, link) __intel_timeline_free(&tl->kref); } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "gt/selftests/mock_timeline.c" #include "gt/selftest_timeline.c" #endif
linux-master
drivers/gpu/drm/i915/gt/intel_timeline.c
// SPDX-License-Identifier: MIT /* * Copyright © 2008-2018 Intel Corporation */ #include <linux/sched/mm.h> #include <linux/stop_machine.h> #include <linux/string_helpers.h> #include "display/intel_display_reset.h" #include "display/intel_overlay.h" #include "gem/i915_gem_context.h" #include "gt/intel_gt_regs.h" #include "gt/uc/intel_gsc_fw.h" #include "i915_drv.h" #include "i915_file_private.h" #include "i915_gpu_error.h" #include "i915_irq.h" #include "i915_reg.h" #include "intel_breadcrumbs.h" #include "intel_engine_pm.h" #include "intel_engine_regs.h" #include "intel_gt.h" #include "intel_gt_pm.h" #include "intel_gt_requests.h" #include "intel_mchbar_regs.h" #include "intel_pci_config.h" #include "intel_reset.h" #include "uc/intel_guc.h" #define RESET_MAX_RETRIES 3 static void client_mark_guilty(struct i915_gem_context *ctx, bool banned) { struct drm_i915_file_private *file_priv = ctx->file_priv; unsigned long prev_hang; unsigned int score; if (IS_ERR_OR_NULL(file_priv)) return; score = 0; if (banned) score = I915_CLIENT_SCORE_CONTEXT_BAN; prev_hang = xchg(&file_priv->hang_timestamp, jiffies); if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES)) score += I915_CLIENT_SCORE_HANG_FAST; if (score) { atomic_add(score, &file_priv->ban_score); drm_dbg(&ctx->i915->drm, "client %s: gained %u ban score, now %u\n", ctx->name, score, atomic_read(&file_priv->ban_score)); } } static bool mark_guilty(struct i915_request *rq) { struct i915_gem_context *ctx; unsigned long prev_hang; bool banned; int i; if (intel_context_is_closed(rq->context)) return true; rcu_read_lock(); ctx = rcu_dereference(rq->context->gem_context); if (ctx && !kref_get_unless_zero(&ctx->ref)) ctx = NULL; rcu_read_unlock(); if (!ctx) return intel_context_is_banned(rq->context); atomic_inc(&ctx->guilty_count); /* Cool contexts are too cool to be banned! (Used for reset testing.) */ if (!i915_gem_context_is_bannable(ctx)) { banned = false; goto out; } drm_notice(&ctx->i915->drm, "%s context reset due to GPU hang\n", ctx->name); /* Record the timestamp for the last N hangs */ prev_hang = ctx->hang_timestamp[0]; for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp) - 1; i++) ctx->hang_timestamp[i] = ctx->hang_timestamp[i + 1]; ctx->hang_timestamp[i] = jiffies; /* If we have hung N+1 times in rapid succession, we ban the context! */ banned = !i915_gem_context_is_recoverable(ctx); if (time_before(jiffies, prev_hang + CONTEXT_FAST_HANG_JIFFIES)) banned = true; if (banned) drm_dbg(&ctx->i915->drm, "context %s: guilty %d, banned\n", ctx->name, atomic_read(&ctx->guilty_count)); client_mark_guilty(ctx, banned); out: i915_gem_context_put(ctx); return banned; } static void mark_innocent(struct i915_request *rq) { struct i915_gem_context *ctx; rcu_read_lock(); ctx = rcu_dereference(rq->context->gem_context); if (ctx) atomic_inc(&ctx->active_count); rcu_read_unlock(); } void __i915_request_reset(struct i915_request *rq, bool guilty) { bool banned = false; RQ_TRACE(rq, "guilty? %s\n", str_yes_no(guilty)); GEM_BUG_ON(__i915_request_is_complete(rq)); rcu_read_lock(); /* protect the GEM context */ if (guilty) { i915_request_set_error_once(rq, -EIO); __i915_request_skip(rq); banned = mark_guilty(rq); } else { i915_request_set_error_once(rq, -EAGAIN); mark_innocent(rq); } rcu_read_unlock(); if (banned) intel_context_ban(rq->context, rq); } static bool i915_in_reset(struct pci_dev *pdev) { u8 gdrst; pci_read_config_byte(pdev, I915_GDRST, &gdrst); return gdrst & GRDOM_RESET_STATUS; } static int i915_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask, unsigned int retry) { struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); int err; /* Assert reset for at least 20 usec, and wait for acknowledgement. */ pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); udelay(50); err = wait_for_atomic(i915_in_reset(pdev), 50); /* Clear the reset request. */ pci_write_config_byte(pdev, I915_GDRST, 0); udelay(50); if (!err) err = wait_for_atomic(!i915_in_reset(pdev), 50); return err; } static bool g4x_reset_complete(struct pci_dev *pdev) { u8 gdrst; pci_read_config_byte(pdev, I915_GDRST, &gdrst); return (gdrst & GRDOM_RESET_ENABLE) == 0; } static int g33_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask, unsigned int retry) { struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); return wait_for_atomic(g4x_reset_complete(pdev), 50); } static int g4x_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask, unsigned int retry) { struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); struct intel_uncore *uncore = gt->uncore; int ret; /* WaVcpClkGateDisableForMediaReset:ctg,elk */ intel_uncore_rmw_fw(uncore, VDECCLK_GATE_D, 0, VCP_UNIT_CLOCK_GATE_DISABLE); intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); pci_write_config_byte(pdev, I915_GDRST, GRDOM_MEDIA | GRDOM_RESET_ENABLE); ret = wait_for_atomic(g4x_reset_complete(pdev), 50); if (ret) { GT_TRACE(gt, "Wait for media reset failed\n"); goto out; } pci_write_config_byte(pdev, I915_GDRST, GRDOM_RENDER | GRDOM_RESET_ENABLE); ret = wait_for_atomic(g4x_reset_complete(pdev), 50); if (ret) { GT_TRACE(gt, "Wait for render reset failed\n"); goto out; } out: pci_write_config_byte(pdev, I915_GDRST, 0); intel_uncore_rmw_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE, 0); intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); return ret; } static int ilk_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask, unsigned int retry) { struct intel_uncore *uncore = gt->uncore; int ret; intel_uncore_write_fw(uncore, ILK_GDSR, ILK_GRDOM_RENDER | ILK_GRDOM_RESET_ENABLE); ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, ILK_GRDOM_RESET_ENABLE, 0, 5000, 0, NULL); if (ret) { GT_TRACE(gt, "Wait for render reset failed\n"); goto out; } intel_uncore_write_fw(uncore, ILK_GDSR, ILK_GRDOM_MEDIA | ILK_GRDOM_RESET_ENABLE); ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, ILK_GRDOM_RESET_ENABLE, 0, 5000, 0, NULL); if (ret) { GT_TRACE(gt, "Wait for media reset failed\n"); goto out; } out: intel_uncore_write_fw(uncore, ILK_GDSR, 0); intel_uncore_posting_read_fw(uncore, ILK_GDSR); return ret; } /* Reset the hardware domains (GENX_GRDOM_*) specified by mask */ static int gen6_hw_domain_reset(struct intel_gt *gt, u32 hw_domain_mask) { struct intel_uncore *uncore = gt->uncore; int loops; int err; /* * On some platforms, e.g. Jasperlake, we see that the engine register * state is not cleared until shortly after GDRST reports completion, * causing a failure as we try to immediately resume while the internal * state is still in flux. If we immediately repeat the reset, the * second reset appears to serialise with the first, and since it is a * no-op, the registers should retain their reset value. However, there * is still a concern that upon leaving the second reset, the internal * engine state is still in flux and not ready for resuming. * * Starting on MTL, there are some prep steps that we need to do when * resetting some engines that need to be applied every time we write to * GEN6_GDRST. As those are time consuming (tens of ms), we don't want * to perform that twice, so, since the Jasperlake issue hasn't been * observed on MTL, we avoid repeating the reset on newer platforms. */ loops = GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70) ? 2 : 1; /* * GEN6_GDRST is not in the gt power well, no need to check * for fifo space for the write or forcewake the chip for * the read */ do { intel_uncore_write_fw(uncore, GEN6_GDRST, hw_domain_mask); /* Wait for the device to ack the reset requests. */ err = __intel_wait_for_register_fw(uncore, GEN6_GDRST, hw_domain_mask, 0, 2000, 0, NULL); } while (err == 0 && --loops); if (err) GT_TRACE(gt, "Wait for 0x%08x engines reset failed\n", hw_domain_mask); /* * As we have observed that the engine state is still volatile * after GDRST is acked, impose a small delay to let everything settle. */ udelay(50); return err; } static int __gen6_reset_engines(struct intel_gt *gt, intel_engine_mask_t engine_mask, unsigned int retry) { struct intel_engine_cs *engine; u32 hw_mask; if (engine_mask == ALL_ENGINES) { hw_mask = GEN6_GRDOM_FULL; } else { intel_engine_mask_t tmp; hw_mask = 0; for_each_engine_masked(engine, gt, engine_mask, tmp) { hw_mask |= engine->reset_domain; } } return gen6_hw_domain_reset(gt, hw_mask); } static int gen6_reset_engines(struct intel_gt *gt, intel_engine_mask_t engine_mask, unsigned int retry) { unsigned long flags; int ret; spin_lock_irqsave(&gt->uncore->lock, flags); ret = __gen6_reset_engines(gt, engine_mask, retry); spin_unlock_irqrestore(&gt->uncore->lock, flags); return ret; } static struct intel_engine_cs *find_sfc_paired_vecs_engine(struct intel_engine_cs *engine) { int vecs_id; GEM_BUG_ON(engine->class != VIDEO_DECODE_CLASS); vecs_id = _VECS((engine->instance) / 2); return engine->gt->engine[vecs_id]; } struct sfc_lock_data { i915_reg_t lock_reg; i915_reg_t ack_reg; i915_reg_t usage_reg; u32 lock_bit; u32 ack_bit; u32 usage_bit; u32 reset_bit; }; static void get_sfc_forced_lock_data(struct intel_engine_cs *engine, struct sfc_lock_data *sfc_lock) { switch (engine->class) { default: MISSING_CASE(engine->class); fallthrough; case VIDEO_DECODE_CLASS: sfc_lock->lock_reg = GEN11_VCS_SFC_FORCED_LOCK(engine->mmio_base); sfc_lock->lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT; sfc_lock->ack_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base); sfc_lock->ack_bit = GEN11_VCS_SFC_LOCK_ACK_BIT; sfc_lock->usage_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base); sfc_lock->usage_bit = GEN11_VCS_SFC_USAGE_BIT; sfc_lock->reset_bit = GEN11_VCS_SFC_RESET_BIT(engine->instance); break; case VIDEO_ENHANCEMENT_CLASS: sfc_lock->lock_reg = GEN11_VECS_SFC_FORCED_LOCK(engine->mmio_base); sfc_lock->lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT; sfc_lock->ack_reg = GEN11_VECS_SFC_LOCK_ACK(engine->mmio_base); sfc_lock->ack_bit = GEN11_VECS_SFC_LOCK_ACK_BIT; sfc_lock->usage_reg = GEN11_VECS_SFC_USAGE(engine->mmio_base); sfc_lock->usage_bit = GEN11_VECS_SFC_USAGE_BIT; sfc_lock->reset_bit = GEN11_VECS_SFC_RESET_BIT(engine->instance); break; } } static int gen11_lock_sfc(struct intel_engine_cs *engine, u32 *reset_mask, u32 *unlock_mask) { struct intel_uncore *uncore = engine->uncore; u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access; struct sfc_lock_data sfc_lock; bool lock_obtained, lock_to_other = false; int ret; switch (engine->class) { case VIDEO_DECODE_CLASS: if ((BIT(engine->instance) & vdbox_sfc_access) == 0) return 0; fallthrough; case VIDEO_ENHANCEMENT_CLASS: get_sfc_forced_lock_data(engine, &sfc_lock); break; default: return 0; } if (!(intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & sfc_lock.usage_bit)) { struct intel_engine_cs *paired_vecs; if (engine->class != VIDEO_DECODE_CLASS || GRAPHICS_VER(engine->i915) != 12) return 0; /* * Wa_14010733141 * * If the VCS-MFX isn't using the SFC, we also need to check * whether VCS-HCP is using it. If so, we need to issue a *VE* * forced lock on the VE engine that shares the same SFC. */ if (!(intel_uncore_read_fw(uncore, GEN12_HCP_SFC_LOCK_STATUS(engine->mmio_base)) & GEN12_HCP_SFC_USAGE_BIT)) return 0; paired_vecs = find_sfc_paired_vecs_engine(engine); get_sfc_forced_lock_data(paired_vecs, &sfc_lock); lock_to_other = true; *unlock_mask |= paired_vecs->mask; } else { *unlock_mask |= engine->mask; } /* * If the engine is using an SFC, tell the engine that a software reset * is going to happen. The engine will then try to force lock the SFC. * If SFC ends up being locked to the engine we want to reset, we have * to reset it as well (we will unlock it once the reset sequence is * completed). */ intel_uncore_rmw_fw(uncore, sfc_lock.lock_reg, 0, sfc_lock.lock_bit); ret = __intel_wait_for_register_fw(uncore, sfc_lock.ack_reg, sfc_lock.ack_bit, sfc_lock.ack_bit, 1000, 0, NULL); /* * Was the SFC released while we were trying to lock it? * * We should reset both the engine and the SFC if: * - We were locking the SFC to this engine and the lock succeeded * OR * - We were locking the SFC to a different engine (Wa_14010733141) * but the SFC was released before the lock was obtained. * * Otherwise we need only reset the engine by itself and we can * leave the SFC alone. */ lock_obtained = (intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & sfc_lock.usage_bit) != 0; if (lock_obtained == lock_to_other) return 0; if (ret) { ENGINE_TRACE(engine, "Wait for SFC forced lock ack failed\n"); return ret; } *reset_mask |= sfc_lock.reset_bit; return 0; } static void gen11_unlock_sfc(struct intel_engine_cs *engine) { struct intel_uncore *uncore = engine->uncore; u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access; struct sfc_lock_data sfc_lock = {}; if (engine->class != VIDEO_DECODE_CLASS && engine->class != VIDEO_ENHANCEMENT_CLASS) return; if (engine->class == VIDEO_DECODE_CLASS && (BIT(engine->instance) & vdbox_sfc_access) == 0) return; get_sfc_forced_lock_data(engine, &sfc_lock); intel_uncore_rmw_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit, 0); } static int __gen11_reset_engines(struct intel_gt *gt, intel_engine_mask_t engine_mask, unsigned int retry) { struct intel_engine_cs *engine; intel_engine_mask_t tmp; u32 reset_mask, unlock_mask = 0; int ret; if (engine_mask == ALL_ENGINES) { reset_mask = GEN11_GRDOM_FULL; } else { reset_mask = 0; for_each_engine_masked(engine, gt, engine_mask, tmp) { reset_mask |= engine->reset_domain; ret = gen11_lock_sfc(engine, &reset_mask, &unlock_mask); if (ret) goto sfc_unlock; } } ret = gen6_hw_domain_reset(gt, reset_mask); sfc_unlock: /* * We unlock the SFC based on the lock status and not the result of * gen11_lock_sfc to make sure that we clean properly if something * wrong happened during the lock (e.g. lock acquired after timeout * expiration). * * Due to Wa_14010733141, we may have locked an SFC to an engine that * wasn't being reset. So instead of calling gen11_unlock_sfc() * on engine_mask, we instead call it on the mask of engines that our * gen11_lock_sfc() calls told us actually had locks attempted. */ for_each_engine_masked(engine, gt, unlock_mask, tmp) gen11_unlock_sfc(engine); return ret; } static int gen8_engine_reset_prepare(struct intel_engine_cs *engine) { struct intel_uncore *uncore = engine->uncore; const i915_reg_t reg = RING_RESET_CTL(engine->mmio_base); u32 request, mask, ack; int ret; if (I915_SELFTEST_ONLY(should_fail(&engine->reset_timeout, 1))) return -ETIMEDOUT; ack = intel_uncore_read_fw(uncore, reg); if (ack & RESET_CTL_CAT_ERROR) { /* * For catastrophic errors, ready-for-reset sequence * needs to be bypassed: HAS#396813 */ request = RESET_CTL_CAT_ERROR; mask = RESET_CTL_CAT_ERROR; /* Catastrophic errors need to be cleared by HW */ ack = 0; } else if (!(ack & RESET_CTL_READY_TO_RESET)) { request = RESET_CTL_REQUEST_RESET; mask = RESET_CTL_READY_TO_RESET; ack = RESET_CTL_READY_TO_RESET; } else { return 0; } intel_uncore_write_fw(uncore, reg, _MASKED_BIT_ENABLE(request)); ret = __intel_wait_for_register_fw(uncore, reg, mask, ack, 700, 0, NULL); if (ret) drm_err(&engine->i915->drm, "%s reset request timed out: {request: %08x, RESET_CTL: %08x}\n", engine->name, request, intel_uncore_read_fw(uncore, reg)); return ret; } static void gen8_engine_reset_cancel(struct intel_engine_cs *engine) { intel_uncore_write_fw(engine->uncore, RING_RESET_CTL(engine->mmio_base), _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET)); } static int gen8_reset_engines(struct intel_gt *gt, intel_engine_mask_t engine_mask, unsigned int retry) { struct intel_engine_cs *engine; const bool reset_non_ready = retry >= 1; intel_engine_mask_t tmp; unsigned long flags; int ret; spin_lock_irqsave(&gt->uncore->lock, flags); for_each_engine_masked(engine, gt, engine_mask, tmp) { ret = gen8_engine_reset_prepare(engine); if (ret && !reset_non_ready) goto skip_reset; /* * If this is not the first failed attempt to prepare, * we decide to proceed anyway. * * By doing so we risk context corruption and with * some gens (kbl), possible system hang if reset * happens during active bb execution. * * We rather take context corruption instead of * failed reset with a wedged driver/gpu. And * active bb execution case should be covered by * stop_engines() we have before the reset. */ } /* * Wa_22011100796:dg2, whenever Full soft reset is required, * reset all individual engines firstly, and then do a full soft reset. * * This is best effort, so ignore any error from the initial reset. */ if (IS_DG2(gt->i915) && engine_mask == ALL_ENGINES) __gen11_reset_engines(gt, gt->info.engine_mask, 0); if (GRAPHICS_VER(gt->i915) >= 11) ret = __gen11_reset_engines(gt, engine_mask, retry); else ret = __gen6_reset_engines(gt, engine_mask, retry); skip_reset: for_each_engine_masked(engine, gt, engine_mask, tmp) gen8_engine_reset_cancel(engine); spin_unlock_irqrestore(&gt->uncore->lock, flags); return ret; } static int mock_reset(struct intel_gt *gt, intel_engine_mask_t mask, unsigned int retry) { return 0; } typedef int (*reset_func)(struct intel_gt *, intel_engine_mask_t engine_mask, unsigned int retry); static reset_func intel_get_gpu_reset(const struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; if (is_mock_gt(gt)) return mock_reset; else if (GRAPHICS_VER(i915) >= 8) return gen8_reset_engines; else if (GRAPHICS_VER(i915) >= 6) return gen6_reset_engines; else if (GRAPHICS_VER(i915) >= 5) return ilk_do_reset; else if (IS_G4X(i915)) return g4x_do_reset; else if (IS_G33(i915) || IS_PINEVIEW(i915)) return g33_do_reset; else if (GRAPHICS_VER(i915) >= 3) return i915_do_reset; else return NULL; } static int __reset_guc(struct intel_gt *gt) { u32 guc_domain = GRAPHICS_VER(gt->i915) >= 11 ? GEN11_GRDOM_GUC : GEN9_GRDOM_GUC; return gen6_hw_domain_reset(gt, guc_domain); } static bool needs_wa_14015076503(struct intel_gt *gt, intel_engine_mask_t engine_mask) { if (!IS_METEORLAKE(gt->i915) || !HAS_ENGINE(gt, GSC0)) return false; if (!__HAS_ENGINE(engine_mask, GSC0)) return false; return intel_gsc_uc_fw_init_done(&gt->uc.gsc); } static intel_engine_mask_t wa_14015076503_start(struct intel_gt *gt, intel_engine_mask_t engine_mask, bool first) { if (!needs_wa_14015076503(gt, engine_mask)) return engine_mask; /* * wa_14015076503: if the GSC FW is loaded, we need to alert it that * we're going to do a GSC engine reset and then wait for 200ms for the * FW to get ready for it. However, if this is the first ALL_ENGINES * reset attempt and the GSC is not busy, we can try to instead reset * the GuC and all the other engines individually to avoid the 200ms * wait. * Skipping the GSC engine is safe because, differently from other * engines, the GSCCS only role is to forward the commands to the GSC * FW, so it doesn't have any HW outside of the CS itself and therefore * it has no state that we don't explicitly re-init on resume or on * context switch LRC or power context). The HW for the GSC uC is * managed by the GSC FW so we don't need to care about that. */ if (engine_mask == ALL_ENGINES && first && intel_engine_is_idle(gt->engine[GSC0])) { __reset_guc(gt); engine_mask = gt->info.engine_mask & ~BIT(GSC0); } else { intel_uncore_rmw(gt->uncore, HECI_H_GS1(MTL_GSC_HECI2_BASE), 0, HECI_H_GS1_ER_PREP); /* make sure the reset bit is clear when writing the CSR reg */ intel_uncore_rmw(gt->uncore, HECI_H_CSR(MTL_GSC_HECI2_BASE), HECI_H_CSR_RST, HECI_H_CSR_IG); msleep(200); } return engine_mask; } static void wa_14015076503_end(struct intel_gt *gt, intel_engine_mask_t engine_mask) { if (!needs_wa_14015076503(gt, engine_mask)) return; intel_uncore_rmw(gt->uncore, HECI_H_GS1(MTL_GSC_HECI2_BASE), HECI_H_GS1_ER_PREP, 0); } int __intel_gt_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask) { const int retries = engine_mask == ALL_ENGINES ? RESET_MAX_RETRIES : 1; reset_func reset; int ret = -ETIMEDOUT; int retry; reset = intel_get_gpu_reset(gt); if (!reset) return -ENODEV; /* * If the power well sleeps during the reset, the reset * request may be dropped and never completes (causing -EIO). */ intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); for (retry = 0; ret == -ETIMEDOUT && retry < retries; retry++) { intel_engine_mask_t reset_mask; reset_mask = wa_14015076503_start(gt, engine_mask, !retry); GT_TRACE(gt, "engine_mask=%x\n", reset_mask); preempt_disable(); ret = reset(gt, reset_mask, retry); preempt_enable(); wa_14015076503_end(gt, reset_mask); } intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); return ret; } bool intel_has_gpu_reset(const struct intel_gt *gt) { if (!gt->i915->params.reset) return NULL; return intel_get_gpu_reset(gt); } bool intel_has_reset_engine(const struct intel_gt *gt) { if (gt->i915->params.reset < 2) return false; return INTEL_INFO(gt->i915)->has_reset_engine; } int intel_reset_guc(struct intel_gt *gt) { int ret; GEM_BUG_ON(!HAS_GT_UC(gt->i915)); intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); ret = __reset_guc(gt); intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); return ret; } /* * Ensure irq handler finishes, and not run again. * Also return the active request so that we only search for it once. */ static void reset_prepare_engine(struct intel_engine_cs *engine) { /* * During the reset sequence, we must prevent the engine from * entering RC6. As the context state is undefined until we restart * the engine, if it does enter RC6 during the reset, the state * written to the powercontext is undefined and so we may lose * GPU state upon resume, i.e. fail to restart after a reset. */ intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL); if (engine->reset.prepare) engine->reset.prepare(engine); } static void revoke_mmaps(struct intel_gt *gt) { int i; for (i = 0; i < gt->ggtt->num_fences; i++) { struct drm_vma_offset_node *node; struct i915_vma *vma; u64 vma_offset; vma = READ_ONCE(gt->ggtt->fence_regs[i].vma); if (!vma) continue; if (!i915_vma_has_userfault(vma)) continue; GEM_BUG_ON(vma->fence != &gt->ggtt->fence_regs[i]); if (!vma->mmo) continue; node = &vma->mmo->vma_node; vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT; unmap_mapping_range(gt->i915->drm.anon_inode->i_mapping, drm_vma_node_offset_addr(node) + vma_offset, vma->size, 1); } } static intel_engine_mask_t reset_prepare(struct intel_gt *gt) { struct intel_engine_cs *engine; intel_engine_mask_t awake = 0; enum intel_engine_id id; /* For GuC mode, ensure submission is disabled before stopping ring */ intel_uc_reset_prepare(&gt->uc); for_each_engine(engine, gt, id) { if (intel_engine_pm_get_if_awake(engine)) awake |= engine->mask; reset_prepare_engine(engine); } return awake; } static void gt_revoke(struct intel_gt *gt) { revoke_mmaps(gt); } static int gt_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) { struct intel_engine_cs *engine; enum intel_engine_id id; int err; /* * Everything depends on having the GTT running, so we need to start * there. */ err = i915_ggtt_enable_hw(gt->i915); if (err) return err; local_bh_disable(); for_each_engine(engine, gt, id) __intel_engine_reset(engine, stalled_mask & engine->mask); local_bh_enable(); intel_uc_reset(&gt->uc, ALL_ENGINES); intel_ggtt_restore_fences(gt->ggtt); return err; } static void reset_finish_engine(struct intel_engine_cs *engine) { if (engine->reset.finish) engine->reset.finish(engine); intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL); intel_engine_signal_breadcrumbs(engine); } static void reset_finish(struct intel_gt *gt, intel_engine_mask_t awake) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, gt, id) { reset_finish_engine(engine); if (awake & engine->mask) intel_engine_pm_put(engine); } intel_uc_reset_finish(&gt->uc); } static void nop_submit_request(struct i915_request *request) { RQ_TRACE(request, "-EIO\n"); request = i915_request_mark_eio(request); if (request) { i915_request_submit(request); intel_engine_signal_breadcrumbs(request->engine); i915_request_put(request); } } static void __intel_gt_set_wedged(struct intel_gt *gt) { struct intel_engine_cs *engine; intel_engine_mask_t awake; enum intel_engine_id id; if (test_bit(I915_WEDGED, &gt->reset.flags)) return; GT_TRACE(gt, "start\n"); /* * First, stop submission to hw, but do not yet complete requests by * rolling the global seqno forward (since this would complete requests * for which we haven't set the fence error to EIO yet). */ awake = reset_prepare(gt); /* Even if the GPU reset fails, it should still stop the engines */ if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) __intel_gt_reset(gt, ALL_ENGINES); for_each_engine(engine, gt, id) engine->submit_request = nop_submit_request; /* * Make sure no request can slip through without getting completed by * either this call here to intel_engine_write_global_seqno, or the one * in nop_submit_request. */ synchronize_rcu_expedited(); set_bit(I915_WEDGED, &gt->reset.flags); /* Mark all executing requests as skipped */ local_bh_disable(); for_each_engine(engine, gt, id) if (engine->reset.cancel) engine->reset.cancel(engine); intel_uc_cancel_requests(&gt->uc); local_bh_enable(); reset_finish(gt, awake); GT_TRACE(gt, "end\n"); } void intel_gt_set_wedged(struct intel_gt *gt) { intel_wakeref_t wakeref; if (test_bit(I915_WEDGED, &gt->reset.flags)) return; wakeref = intel_runtime_pm_get(gt->uncore->rpm); mutex_lock(&gt->reset.mutex); if (GEM_SHOW_DEBUG()) { struct drm_printer p = drm_debug_printer(__func__); struct intel_engine_cs *engine; enum intel_engine_id id; drm_printf(&p, "called from %pS\n", (void *)_RET_IP_); for_each_engine(engine, gt, id) { if (intel_engine_is_idle(engine)) continue; intel_engine_dump(engine, &p, "%s\n", engine->name); } } __intel_gt_set_wedged(gt); mutex_unlock(&gt->reset.mutex); intel_runtime_pm_put(gt->uncore->rpm, wakeref); } static bool __intel_gt_unset_wedged(struct intel_gt *gt) { struct intel_gt_timelines *timelines = &gt->timelines; struct intel_timeline *tl; bool ok; if (!test_bit(I915_WEDGED, &gt->reset.flags)) return true; /* Never fully initialised, recovery impossible */ if (intel_gt_has_unrecoverable_error(gt)) return false; GT_TRACE(gt, "start\n"); /* * Before unwedging, make sure that all pending operations * are flushed and errored out - we may have requests waiting upon * third party fences. We marked all inflight requests as EIO, and * every execbuf since returned EIO, for consistency we want all * the currently pending requests to also be marked as EIO, which * is done inside our nop_submit_request - and so we must wait. * * No more can be submitted until we reset the wedged bit. */ spin_lock(&timelines->lock); list_for_each_entry(tl, &timelines->active_list, link) { struct dma_fence *fence; fence = i915_active_fence_get(&tl->last_request); if (!fence) continue; spin_unlock(&timelines->lock); /* * All internal dependencies (i915_requests) will have * been flushed by the set-wedge, but we may be stuck waiting * for external fences. These should all be capped to 10s * (I915_FENCE_TIMEOUT) so this wait should not be unbounded * in the worst case. */ dma_fence_default_wait(fence, false, MAX_SCHEDULE_TIMEOUT); dma_fence_put(fence); /* Restart iteration after droping lock */ spin_lock(&timelines->lock); tl = list_entry(&timelines->active_list, typeof(*tl), link); } spin_unlock(&timelines->lock); /* We must reset pending GPU events before restoring our submission */ ok = !HAS_EXECLISTS(gt->i915); /* XXX better agnosticism desired */ if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) ok = __intel_gt_reset(gt, ALL_ENGINES) == 0; if (!ok) { /* * Warn CI about the unrecoverable wedged condition. * Time for a reboot. */ add_taint_for_CI(gt->i915, TAINT_WARN); return false; } /* * Undo nop_submit_request. We prevent all new i915 requests from * being queued (by disallowing execbuf whilst wedged) so having * waited for all active requests above, we know the system is idle * and do not have to worry about a thread being inside * engine->submit_request() as we swap over. So unlike installing * the nop_submit_request on reset, we can do this from normal * context and do not require stop_machine(). */ intel_engines_reset_default_submission(gt); GT_TRACE(gt, "end\n"); smp_mb__before_atomic(); /* complete takeover before enabling execbuf */ clear_bit(I915_WEDGED, &gt->reset.flags); return true; } bool intel_gt_unset_wedged(struct intel_gt *gt) { bool result; mutex_lock(&gt->reset.mutex); result = __intel_gt_unset_wedged(gt); mutex_unlock(&gt->reset.mutex); return result; } static int do_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) { int err, i; err = __intel_gt_reset(gt, ALL_ENGINES); for (i = 0; err && i < RESET_MAX_RETRIES; i++) { msleep(10 * (i + 1)); err = __intel_gt_reset(gt, ALL_ENGINES); } if (err) return err; return gt_reset(gt, stalled_mask); } static int resume(struct intel_gt *gt) { struct intel_engine_cs *engine; enum intel_engine_id id; int ret; for_each_engine(engine, gt, id) { ret = intel_engine_resume(engine); if (ret) return ret; } return 0; } /** * intel_gt_reset - reset chip after a hang * @gt: #intel_gt to reset * @stalled_mask: mask of the stalled engines with the guilty requests * @reason: user error message for why we are resetting * * Reset the chip. Useful if a hang is detected. Marks the device as wedged * on failure. * * Procedure is fairly simple: * - reset the chip using the reset reg * - re-init context state * - re-init hardware status page * - re-init ring buffer * - re-init interrupt state * - re-init display */ void intel_gt_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask, const char *reason) { intel_engine_mask_t awake; int ret; GT_TRACE(gt, "flags=%lx\n", gt->reset.flags); might_sleep(); GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &gt->reset.flags)); /* * FIXME: Revoking cpu mmap ptes cannot be done from a dma_fence * critical section like gpu reset. */ gt_revoke(gt); mutex_lock(&gt->reset.mutex); /* Clear any previous failed attempts at recovery. Time to try again. */ if (!__intel_gt_unset_wedged(gt)) goto unlock; if (reason) drm_notice(&gt->i915->drm, "Resetting chip for %s\n", reason); atomic_inc(&gt->i915->gpu_error.reset_count); awake = reset_prepare(gt); if (!intel_has_gpu_reset(gt)) { if (gt->i915->params.reset) drm_err(&gt->i915->drm, "GPU reset not supported\n"); else drm_dbg(&gt->i915->drm, "GPU reset disabled\n"); goto error; } if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) intel_runtime_pm_disable_interrupts(gt->i915); if (do_reset(gt, stalled_mask)) { drm_err(&gt->i915->drm, "Failed to reset chip\n"); goto taint; } if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) intel_runtime_pm_enable_interrupts(gt->i915); intel_overlay_reset(gt->i915); /* * Next we need to restore the context, but we don't use those * yet either... * * Ring buffer needs to be re-initialized in the KMS case, or if X * was running at the time of the reset (i.e. we weren't VT * switched away). */ ret = intel_gt_init_hw(gt); if (ret) { drm_err(&gt->i915->drm, "Failed to initialise HW following reset (%d)\n", ret); goto taint; } ret = resume(gt); if (ret) goto taint; finish: reset_finish(gt, awake); unlock: mutex_unlock(&gt->reset.mutex); return; taint: /* * History tells us that if we cannot reset the GPU now, we * never will. This then impacts everything that is run * subsequently. On failing the reset, we mark the driver * as wedged, preventing further execution on the GPU. * We also want to go one step further and add a taint to the * kernel so that any subsequent faults can be traced back to * this failure. This is important for CI, where if the * GPU/driver fails we would like to reboot and restart testing * rather than continue on into oblivion. For everyone else, * the system should still plod along, but they have been warned! */ add_taint_for_CI(gt->i915, TAINT_WARN); error: __intel_gt_set_wedged(gt); goto finish; } static int intel_gt_reset_engine(struct intel_engine_cs *engine) { return __intel_gt_reset(engine->gt, engine->mask); } int __intel_engine_reset_bh(struct intel_engine_cs *engine, const char *msg) { struct intel_gt *gt = engine->gt; int ret; ENGINE_TRACE(engine, "flags=%lx\n", gt->reset.flags); GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, &gt->reset.flags)); if (intel_engine_uses_guc(engine)) return -ENODEV; if (!intel_engine_pm_get_if_awake(engine)) return 0; reset_prepare_engine(engine); if (msg) drm_notice(&engine->i915->drm, "Resetting %s for %s\n", engine->name, msg); atomic_inc(&engine->i915->gpu_error.reset_engine_count[engine->uabi_class]); ret = intel_gt_reset_engine(engine); if (ret) { /* If we fail here, we expect to fallback to a global reset */ ENGINE_TRACE(engine, "Failed to reset %s, err: %d\n", engine->name, ret); goto out; } /* * The request that caused the hang is stuck on elsp, we know the * active request and can drop it, adjust head to skip the offending * request to resume executing remaining requests in the queue. */ __intel_engine_reset(engine, true); /* * The engine and its registers (and workarounds in case of render) * have been reset to their default values. Follow the init_ring * process to program RING_MODE, HWSP and re-enable submission. */ ret = intel_engine_resume(engine); out: intel_engine_cancel_stop_cs(engine); reset_finish_engine(engine); intel_engine_pm_put_async(engine); return ret; } /** * intel_engine_reset - reset GPU engine to recover from a hang * @engine: engine to reset * @msg: reason for GPU reset; or NULL for no drm_notice() * * Reset a specific GPU engine. Useful if a hang is detected. * Returns zero on successful reset or otherwise an error code. * * Procedure is: * - identifies the request that caused the hang and it is dropped * - reset engine (which will force the engine to idle) * - re-init/configure engine */ int intel_engine_reset(struct intel_engine_cs *engine, const char *msg) { int err; local_bh_disable(); err = __intel_engine_reset_bh(engine, msg); local_bh_enable(); return err; } static void intel_gt_reset_global(struct intel_gt *gt, u32 engine_mask, const char *reason) { struct kobject *kobj = &gt->i915->drm.primary->kdev->kobj; char *error_event[] = { I915_ERROR_UEVENT "=1", NULL }; char *reset_event[] = { I915_RESET_UEVENT "=1", NULL }; char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL }; struct intel_wedge_me w; kobject_uevent_env(kobj, KOBJ_CHANGE, error_event); GT_TRACE(gt, "resetting chip, engines=%x\n", engine_mask); kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event); /* Use a watchdog to ensure that our reset completes */ intel_wedge_on_timeout(&w, gt, 60 * HZ) { intel_display_reset_prepare(gt->i915); intel_gt_reset(gt, engine_mask, reason); intel_display_reset_finish(gt->i915); } if (!test_bit(I915_WEDGED, &gt->reset.flags)) kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event); } /** * intel_gt_handle_error - handle a gpu error * @gt: the intel_gt * @engine_mask: mask representing engines that are hung * @flags: control flags * @fmt: Error message format string * * Do some basic checking of register state at error time and * dump it to the syslog. Also call i915_capture_error_state() to make * sure we get a record and make it available in debugfs. Fire a uevent * so userspace knows something bad happened (should trigger collection * of a ring dump etc.). */ void intel_gt_handle_error(struct intel_gt *gt, intel_engine_mask_t engine_mask, unsigned long flags, const char *fmt, ...) { struct intel_engine_cs *engine; intel_wakeref_t wakeref; intel_engine_mask_t tmp; char error_msg[80]; char *msg = NULL; if (fmt) { va_list args; va_start(args, fmt); vscnprintf(error_msg, sizeof(error_msg), fmt, args); va_end(args); msg = error_msg; } /* * In most cases it's guaranteed that we get here with an RPM * reference held, for example because there is a pending GPU * request that won't finish until the reset is done. This * isn't the case at least when we get here by doing a * simulated reset via debugfs, so get an RPM reference. */ wakeref = intel_runtime_pm_get(gt->uncore->rpm); engine_mask &= gt->info.engine_mask; if (flags & I915_ERROR_CAPTURE) { i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_NONE); intel_gt_clear_error_registers(gt, engine_mask); } /* * Try engine reset when available. We fall back to full reset if * single reset fails. */ if (!intel_uc_uses_guc_submission(&gt->uc) && intel_has_reset_engine(gt) && !intel_gt_is_wedged(gt)) { local_bh_disable(); for_each_engine_masked(engine, gt, engine_mask, tmp) { BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE); if (test_and_set_bit(I915_RESET_ENGINE + engine->id, &gt->reset.flags)) continue; if (__intel_engine_reset_bh(engine, msg) == 0) engine_mask &= ~engine->mask; clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id, &gt->reset.flags); } local_bh_enable(); } if (!engine_mask) goto out; /* Full reset needs the mutex, stop any other user trying to do so. */ if (test_and_set_bit(I915_RESET_BACKOFF, &gt->reset.flags)) { wait_event(gt->reset.queue, !test_bit(I915_RESET_BACKOFF, &gt->reset.flags)); goto out; /* piggy-back on the other reset */ } /* Make sure i915_reset_trylock() sees the I915_RESET_BACKOFF */ synchronize_rcu_expedited(); /* * Prevent any other reset-engine attempt. We don't do this for GuC * submission the GuC owns the per-engine reset, not the i915. */ if (!intel_uc_uses_guc_submission(&gt->uc)) { for_each_engine(engine, gt, tmp) { while (test_and_set_bit(I915_RESET_ENGINE + engine->id, &gt->reset.flags)) wait_on_bit(&gt->reset.flags, I915_RESET_ENGINE + engine->id, TASK_UNINTERRUPTIBLE); } } /* Flush everyone using a resource about to be clobbered */ synchronize_srcu_expedited(&gt->reset.backoff_srcu); intel_gt_reset_global(gt, engine_mask, msg); if (!intel_uc_uses_guc_submission(&gt->uc)) { for_each_engine(engine, gt, tmp) clear_bit_unlock(I915_RESET_ENGINE + engine->id, &gt->reset.flags); } clear_bit_unlock(I915_RESET_BACKOFF, &gt->reset.flags); smp_mb__after_atomic(); wake_up_all(&gt->reset.queue); out: intel_runtime_pm_put(gt->uncore->rpm, wakeref); } static int _intel_gt_reset_lock(struct intel_gt *gt, int *srcu, bool retry) { might_lock(&gt->reset.backoff_srcu); if (retry) might_sleep(); rcu_read_lock(); while (test_bit(I915_RESET_BACKOFF, &gt->reset.flags)) { rcu_read_unlock(); if (!retry) return -EBUSY; if (wait_event_interruptible(gt->reset.queue, !test_bit(I915_RESET_BACKOFF, &gt->reset.flags))) return -EINTR; rcu_read_lock(); } *srcu = srcu_read_lock(&gt->reset.backoff_srcu); rcu_read_unlock(); return 0; } int intel_gt_reset_trylock(struct intel_gt *gt, int *srcu) { return _intel_gt_reset_lock(gt, srcu, false); } int intel_gt_reset_lock_interruptible(struct intel_gt *gt, int *srcu) { return _intel_gt_reset_lock(gt, srcu, true); } void intel_gt_reset_unlock(struct intel_gt *gt, int tag) __releases(&gt->reset.backoff_srcu) { srcu_read_unlock(&gt->reset.backoff_srcu, tag); } int intel_gt_terminally_wedged(struct intel_gt *gt) { might_sleep(); if (!intel_gt_is_wedged(gt)) return 0; if (intel_gt_has_unrecoverable_error(gt)) return -EIO; /* Reset still in progress? Maybe we will recover? */ if (wait_event_interruptible(gt->reset.queue, !test_bit(I915_RESET_BACKOFF, &gt->reset.flags))) return -EINTR; return intel_gt_is_wedged(gt) ? -EIO : 0; } void intel_gt_set_wedged_on_init(struct intel_gt *gt) { BUILD_BUG_ON(I915_RESET_ENGINE + I915_NUM_ENGINES > I915_WEDGED_ON_INIT); intel_gt_set_wedged(gt); i915_disable_error_state(gt->i915, -ENODEV); set_bit(I915_WEDGED_ON_INIT, &gt->reset.flags); /* Wedged on init is non-recoverable */ add_taint_for_CI(gt->i915, TAINT_WARN); } void intel_gt_set_wedged_on_fini(struct intel_gt *gt) { intel_gt_set_wedged(gt); i915_disable_error_state(gt->i915, -ENODEV); set_bit(I915_WEDGED_ON_FINI, &gt->reset.flags); intel_gt_retire_requests(gt); /* cleanup any wedged requests */ } void intel_gt_init_reset(struct intel_gt *gt) { init_waitqueue_head(&gt->reset.queue); mutex_init(&gt->reset.mutex); init_srcu_struct(&gt->reset.backoff_srcu); /* * While undesirable to wait inside the shrinker, complain anyway. * * If we have to wait during shrinking, we guarantee forward progress * by forcing the reset. Therefore during the reset we must not * re-enter the shrinker. By declaring that we take the reset mutex * within the shrinker, we forbid ourselves from performing any * fs-reclaim or taking related locks during reset. */ i915_gem_shrinker_taints_mutex(gt->i915, &gt->reset.mutex); /* no GPU until we are ready! */ __set_bit(I915_WEDGED, &gt->reset.flags); } void intel_gt_fini_reset(struct intel_gt *gt) { cleanup_srcu_struct(&gt->reset.backoff_srcu); } static void intel_wedge_me(struct work_struct *work) { struct intel_wedge_me *w = container_of(work, typeof(*w), work.work); drm_err(&w->gt->i915->drm, "%s timed out, cancelling all in-flight rendering.\n", w->name); intel_gt_set_wedged(w->gt); } void __intel_init_wedge(struct intel_wedge_me *w, struct intel_gt *gt, long timeout, const char *name) { w->gt = gt; w->name = name; INIT_DELAYED_WORK_ONSTACK(&w->work, intel_wedge_me); queue_delayed_work(gt->i915->unordered_wq, &w->work, timeout); } void __intel_fini_wedge(struct intel_wedge_me *w) { cancel_delayed_work_sync(&w->work); destroy_delayed_work_on_stack(&w->work); w->gt = NULL; } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_reset.c" #include "selftest_hangcheck.c" #endif
linux-master
drivers/gpu/drm/i915/gt/intel_reset.c
// SPDX-License-Identifier: MIT /* * Copyright © 2014 Intel Corporation * * Generated by: intel-gpu-tools-1.8-220-g01153e7 */ #include "intel_renderstate.h" static const u32 gen8_null_state_relocs[] = { 0x00000798, 0x000007a4, 0x000007ac, 0x000007bc, -1, }; static const u32 gen8_null_state_batch[] = { 0x7a000004, 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x69040000, 0x78140000, 0x04000000, 0x7820000a, 0x00000000, 0x00000000, 0x80000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x78130002, 0x00000000, 0x00000000, 0x02001808, 0x781f0002, 0x00000000, 0x00000000, 0x00000000, 0x78510009, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x78100007, 0x00000000, 0x00000000, 0x00010000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x781b0007, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000800, 0x00000000, 0x78110008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x781e0003, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x781d0007, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x78120002, 0x00000000, 0x00000000, 0x00000000, 0x78500003, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x781c0002, 0x00000000, 0x00000000, 0x00000000, 0x780c0000, 0x00000000, 0x78520003, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x78300000, 0x08010040, 0x78310000, 0x1e000000, 0x78320000, 0x1e000000, 0x78330000, 0x1e000000, 0x79190002, 0x00000000, 0x00000000, 0x00000000, 0x791a0002, 0x00000000, 0x00000000, 0x00000000, 0x791b0002, 0x00000000, 0x00000000, 0x00000000, 0x79120000, 0x00000000, 0x79130000, 0x00000000, 0x79140000, 0x00000000, 0x79150000, 0x00000000, 0x79160000, 0x00000000, 0x78150009, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x78190009, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x781a0009, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x78160009, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x78170009, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x78490001, 0x00000000, 0x00000000, 0x784a0000, 0x00000000, 0x784b0000, 0x00000004, 0x79170101, 0x00000000, 0x00000080, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x79180006, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x79180006, 0x20000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x79180006, 0x40000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x79180006, 0x60000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x6101000e, 0x00000001, /* reloc */ 0x00000000, 0x00000000, 0x00000001, /* reloc */ 0x00000000, 0x00000001, /* reloc */ 0x00000000, 0x00000001, 0x00000000, 0x00000001, /* reloc */ 0x00000000, 0x00001001, 0x00001001, 0x00000001, 0x00001001, 0x61020001, 0x00000000, 0x00000000, 0x79000002, 0x00000000, 0x00000000, 0x00000000, 0x78050006, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x79040002, 0x00000000, 0x00000000, 0x00000000, 0x79040002, 0x40000000, 0x00000000, 0x00000000, 0x79040002, 0x80000000, 0x00000000, 0x00000000, 0x79040002, 0xc0000000, 0x00000000, 0x00000000, 0x79080001, 0x00000000, 0x00000000, 0x790a0001, 0x00000000, 0x00000000, 0x78060003, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x78070003, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x78040001, 0x00000000, 0x00000000, 0x79110000, 0x00000000, 0x780d0000, 0x00000000, 0x79060000, 0x00000000, 0x7907001f, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x7902000f, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x790c000f, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x780a0003, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x78080083, 0x00004000, 0x00000000, 0x00000000, 0x00000000, 0x04004000, 0x00000000, 0x00000000, 0x00000000, 0x08004000, 0x00000000, 0x00000000, 0x00000000, 0x0c004000, 0x00000000, 0x00000000, 0x00000000, 0x10004000, 0x00000000, 0x00000000, 0x00000000, 0x14004000, 0x00000000, 0x00000000, 0x00000000, 0x18004000, 0x00000000, 0x00000000, 0x00000000, 0x1c004000, 0x00000000, 0x00000000, 0x00000000, 0x20004000, 0x00000000, 0x00000000, 0x00000000, 0x24004000, 0x00000000, 0x00000000, 0x00000000, 0x28004000, 0x00000000, 0x00000000, 0x00000000, 0x2c004000, 0x00000000, 0x00000000, 0x00000000, 0x30004000, 0x00000000, 0x00000000, 0x00000000, 0x34004000, 0x00000000, 0x00000000, 0x00000000, 0x38004000, 0x00000000, 0x00000000, 0x00000000, 0x3c004000, 0x00000000, 0x00000000, 0x00000000, 0x40004000, 0x00000000, 0x00000000, 0x00000000, 0x44004000, 0x00000000, 0x00000000, 0x00000000, 0x48004000, 0x00000000, 0x00000000, 0x00000000, 0x4c004000, 0x00000000, 0x00000000, 0x00000000, 0x50004000, 0x00000000, 0x00000000, 0x00000000, 0x54004000, 0x00000000, 0x00000000, 0x00000000, 0x58004000, 0x00000000, 0x00000000, 0x00000000, 0x5c004000, 0x00000000, 0x00000000, 0x00000000, 0x60004000, 0x00000000, 0x00000000, 0x00000000, 0x64004000, 0x00000000, 0x00000000, 0x00000000, 0x68004000, 0x00000000, 0x00000000, 0x00000000, 0x6c004000, 0x00000000, 0x00000000, 0x00000000, 0x70004000, 0x00000000, 0x00000000, 0x00000000, 0x74004000, 0x00000000, 0x00000000, 0x00000000, 0x78004000, 0x00000000, 0x00000000, 0x00000000, 0x7c004000, 0x00000000, 0x00000000, 0x00000000, 0x80004000, 0x00000000, 0x00000000, 0x00000000, 0x78090043, 0x02000000, 0x22220000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x680b0001, 0x78260000, 0x00000000, 0x78270000, 0x00000000, 0x78280000, 0x00000000, 0x78290000, 0x00000000, 0x782a0000, 0x00000000, 0x780e0000, 0x00000dc1, 0x78240000, 0x00000e01, 0x784f0000, 0x80000100, 0x784d0000, 0x40000000, 0x782b0000, 0x00000000, 0x782c0000, 0x00000000, 0x782d0000, 0x00000000, 0x782e0000, 0x00000000, 0x782f0000, 0x00000000, 0x780f0000, 0x00000000, 0x78230000, 0x00000e60, 0x78210000, 0x00000e80, 0x7b000005, 0x00000004, 0x00000001, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x05000000, /* cmds end */ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, /* state start */ 0x00000000, 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, /* state end */ }; RO_RENDERSTATE(8);
linux-master
drivers/gpu/drm/i915/gt/gen8_renderstate.c
// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include <drm/drm_device.h> #include <linux/sysfs.h> #include <linux/printk.h> #include "i915_drv.h" #include "i915_reg.h" #include "i915_sysfs.h" #include "intel_gt.h" #include "intel_gt_print.h" #include "intel_gt_regs.h" #include "intel_gt_sysfs.h" #include "intel_gt_sysfs_pm.h" #include "intel_pcode.h" #include "intel_rc6.h" #include "intel_rps.h" enum intel_gt_sysfs_op { INTEL_GT_SYSFS_MIN = 0, INTEL_GT_SYSFS_MAX, }; static int sysfs_gt_attribute_w_func(struct kobject *kobj, struct attribute *attr, int (func)(struct intel_gt *gt, u32 val), u32 val) { struct intel_gt *gt; int ret; if (!is_object_gt(kobj)) { int i; struct device *dev = kobj_to_dev(kobj); struct drm_i915_private *i915 = kdev_minor_to_i915(dev); for_each_gt(gt, i915, i) { ret = func(gt, val); if (ret) break; } } else { gt = intel_gt_sysfs_get_drvdata(kobj, attr->name); ret = func(gt, val); } return ret; } static u32 sysfs_gt_attribute_r_func(struct kobject *kobj, struct attribute *attr, u32 (func)(struct intel_gt *gt), enum intel_gt_sysfs_op op) { struct intel_gt *gt; u32 ret; ret = (op == INTEL_GT_SYSFS_MAX) ? 0 : (u32) -1; if (!is_object_gt(kobj)) { int i; struct device *dev = kobj_to_dev(kobj); struct drm_i915_private *i915 = kdev_minor_to_i915(dev); for_each_gt(gt, i915, i) { u32 val = func(gt); switch (op) { case INTEL_GT_SYSFS_MIN: if (val < ret) ret = val; break; case INTEL_GT_SYSFS_MAX: if (val > ret) ret = val; break; } } } else { gt = intel_gt_sysfs_get_drvdata(kobj, attr->name); ret = func(gt); } return ret; } /* RC6 interfaces will show the minimum RC6 residency value */ #define sysfs_gt_attribute_r_min_func(d, a, f) \ sysfs_gt_attribute_r_func(d, a, f, INTEL_GT_SYSFS_MIN) /* Frequency interfaces will show the maximum frequency value */ #define sysfs_gt_attribute_r_max_func(d, a, f) \ sysfs_gt_attribute_r_func(d, a, f, INTEL_GT_SYSFS_MAX) #define INTEL_GT_SYSFS_SHOW(_name, _attr_type) \ static ssize_t _name##_show_common(struct kobject *kobj, \ struct attribute *attr, char *buff) \ { \ u32 val = sysfs_gt_attribute_r_##_attr_type##_func(kobj, attr, \ __##_name##_show); \ \ return sysfs_emit(buff, "%u\n", val); \ } \ static ssize_t _name##_show(struct kobject *kobj, \ struct kobj_attribute *attr, char *buff) \ { \ return _name ##_show_common(kobj, &attr->attr, buff); \ } \ static ssize_t _name##_dev_show(struct device *dev, \ struct device_attribute *attr, char *buff) \ { \ return _name##_show_common(&dev->kobj, &attr->attr, buff); \ } #define INTEL_GT_SYSFS_STORE(_name, _func) \ static ssize_t _name##_store_common(struct kobject *kobj, \ struct attribute *attr, \ const char *buff, size_t count) \ { \ int ret; \ u32 val; \ \ ret = kstrtou32(buff, 0, &val); \ if (ret) \ return ret; \ \ ret = sysfs_gt_attribute_w_func(kobj, attr, _func, val); \ \ return ret ?: count; \ } \ static ssize_t _name##_store(struct kobject *kobj, \ struct kobj_attribute *attr, const char *buff, \ size_t count) \ { \ return _name##_store_common(kobj, &attr->attr, buff, count); \ } \ static ssize_t _name##_dev_store(struct device *dev, \ struct device_attribute *attr, \ const char *buff, size_t count) \ { \ return _name##_store_common(&dev->kobj, &attr->attr, buff, count); \ } #define INTEL_GT_SYSFS_SHOW_MAX(_name) INTEL_GT_SYSFS_SHOW(_name, max) #define INTEL_GT_SYSFS_SHOW_MIN(_name) INTEL_GT_SYSFS_SHOW(_name, min) #define INTEL_GT_ATTR_RW(_name) \ static struct kobj_attribute attr_##_name = __ATTR_RW(_name) #define INTEL_GT_ATTR_RO(_name) \ static struct kobj_attribute attr_##_name = __ATTR_RO(_name) #define INTEL_GT_DUAL_ATTR_RW(_name) \ static struct device_attribute dev_attr_##_name = __ATTR(_name, 0644, \ _name##_dev_show, \ _name##_dev_store); \ INTEL_GT_ATTR_RW(_name) #define INTEL_GT_DUAL_ATTR_RO(_name) \ static struct device_attribute dev_attr_##_name = __ATTR(_name, 0444, \ _name##_dev_show, \ NULL); \ INTEL_GT_ATTR_RO(_name) static u32 get_residency(struct intel_gt *gt, enum intel_rc6_res_type id) { intel_wakeref_t wakeref; u64 res = 0; with_intel_runtime_pm(gt->uncore->rpm, wakeref) res = intel_rc6_residency_us(&gt->rc6, id); return DIV_ROUND_CLOSEST_ULL(res, 1000); } static u8 get_rc6_mask(struct intel_gt *gt) { u8 mask = 0; if (HAS_RC6(gt->i915)) mask |= BIT(0); if (HAS_RC6p(gt->i915)) mask |= BIT(1); if (HAS_RC6pp(gt->i915)) mask |= BIT(2); return mask; } static ssize_t rc6_enable_show(struct kobject *kobj, struct kobj_attribute *attr, char *buff) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); return sysfs_emit(buff, "%x\n", get_rc6_mask(gt)); } static ssize_t rc6_enable_dev_show(struct device *dev, struct device_attribute *attr, char *buff) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(&dev->kobj, attr->attr.name); return sysfs_emit(buff, "%x\n", get_rc6_mask(gt)); } static u32 __rc6_residency_ms_show(struct intel_gt *gt) { return get_residency(gt, INTEL_RC6_RES_RC6); } static u32 __rc6p_residency_ms_show(struct intel_gt *gt) { return get_residency(gt, INTEL_RC6_RES_RC6p); } static u32 __rc6pp_residency_ms_show(struct intel_gt *gt) { return get_residency(gt, INTEL_RC6_RES_RC6pp); } static u32 __media_rc6_residency_ms_show(struct intel_gt *gt) { return get_residency(gt, INTEL_RC6_RES_VLV_MEDIA); } INTEL_GT_SYSFS_SHOW_MIN(rc6_residency_ms); INTEL_GT_SYSFS_SHOW_MIN(rc6p_residency_ms); INTEL_GT_SYSFS_SHOW_MIN(rc6pp_residency_ms); INTEL_GT_SYSFS_SHOW_MIN(media_rc6_residency_ms); INTEL_GT_DUAL_ATTR_RO(rc6_enable); INTEL_GT_DUAL_ATTR_RO(rc6_residency_ms); INTEL_GT_DUAL_ATTR_RO(rc6p_residency_ms); INTEL_GT_DUAL_ATTR_RO(rc6pp_residency_ms); INTEL_GT_DUAL_ATTR_RO(media_rc6_residency_ms); static struct attribute *rc6_attrs[] = { &attr_rc6_enable.attr, &attr_rc6_residency_ms.attr, NULL }; static struct attribute *rc6p_attrs[] = { &attr_rc6p_residency_ms.attr, &attr_rc6pp_residency_ms.attr, NULL }; static struct attribute *media_rc6_attrs[] = { &attr_media_rc6_residency_ms.attr, NULL }; static struct attribute *rc6_dev_attrs[] = { &dev_attr_rc6_enable.attr, &dev_attr_rc6_residency_ms.attr, NULL }; static struct attribute *rc6p_dev_attrs[] = { &dev_attr_rc6p_residency_ms.attr, &dev_attr_rc6pp_residency_ms.attr, NULL }; static struct attribute *media_rc6_dev_attrs[] = { &dev_attr_media_rc6_residency_ms.attr, NULL }; static const struct attribute_group rc6_attr_group[] = { { .attrs = rc6_attrs, }, { .name = power_group_name, .attrs = rc6_dev_attrs, }, }; static const struct attribute_group rc6p_attr_group[] = { { .attrs = rc6p_attrs, }, { .name = power_group_name, .attrs = rc6p_dev_attrs, }, }; static const struct attribute_group media_rc6_attr_group[] = { { .attrs = media_rc6_attrs, }, { .name = power_group_name, .attrs = media_rc6_dev_attrs, }, }; static int __intel_gt_sysfs_create_group(struct kobject *kobj, const struct attribute_group *grp) { return is_object_gt(kobj) ? sysfs_create_group(kobj, &grp[0]) : sysfs_merge_group(kobj, &grp[1]); } static void intel_sysfs_rc6_init(struct intel_gt *gt, struct kobject *kobj) { int ret; if (!IS_ENABLED(CONFIG_PM) || !HAS_RC6(gt->i915)) return; ret = __intel_gt_sysfs_create_group(kobj, rc6_attr_group); if (ret) gt_warn(gt, "failed to create RC6 sysfs files (%pe)\n", ERR_PTR(ret)); /* * cannot use the is_visible() attribute because * the upper object inherits from the parent group. */ if (HAS_RC6p(gt->i915)) { ret = __intel_gt_sysfs_create_group(kobj, rc6p_attr_group); if (ret) gt_warn(gt, "failed to create RC6p sysfs files (%pe)\n", ERR_PTR(ret)); } if (IS_VALLEYVIEW(gt->i915) || IS_CHERRYVIEW(gt->i915)) { ret = __intel_gt_sysfs_create_group(kobj, media_rc6_attr_group); if (ret) gt_warn(gt, "failed to create media RC6 sysfs files (%pe)\n", ERR_PTR(ret)); } } static u32 __act_freq_mhz_show(struct intel_gt *gt) { return intel_rps_read_actual_frequency(&gt->rps); } static u32 __cur_freq_mhz_show(struct intel_gt *gt) { return intel_rps_get_requested_frequency(&gt->rps); } static u32 __boost_freq_mhz_show(struct intel_gt *gt) { return intel_rps_get_boost_frequency(&gt->rps); } static int __boost_freq_mhz_store(struct intel_gt *gt, u32 val) { return intel_rps_set_boost_frequency(&gt->rps, val); } static u32 __RP0_freq_mhz_show(struct intel_gt *gt) { return intel_rps_get_rp0_frequency(&gt->rps); } static u32 __RPn_freq_mhz_show(struct intel_gt *gt) { return intel_rps_get_rpn_frequency(&gt->rps); } static u32 __RP1_freq_mhz_show(struct intel_gt *gt) { return intel_rps_get_rp1_frequency(&gt->rps); } static u32 __max_freq_mhz_show(struct intel_gt *gt) { return intel_rps_get_max_frequency(&gt->rps); } static int __set_max_freq(struct intel_gt *gt, u32 val) { return intel_rps_set_max_frequency(&gt->rps, val); } static u32 __min_freq_mhz_show(struct intel_gt *gt) { return intel_rps_get_min_frequency(&gt->rps); } static int __set_min_freq(struct intel_gt *gt, u32 val) { return intel_rps_set_min_frequency(&gt->rps, val); } static u32 __vlv_rpe_freq_mhz_show(struct intel_gt *gt) { struct intel_rps *rps = &gt->rps; return intel_gpu_freq(rps, rps->efficient_freq); } INTEL_GT_SYSFS_SHOW_MAX(act_freq_mhz); INTEL_GT_SYSFS_SHOW_MAX(boost_freq_mhz); INTEL_GT_SYSFS_SHOW_MAX(cur_freq_mhz); INTEL_GT_SYSFS_SHOW_MAX(RP0_freq_mhz); INTEL_GT_SYSFS_SHOW_MAX(RP1_freq_mhz); INTEL_GT_SYSFS_SHOW_MAX(RPn_freq_mhz); INTEL_GT_SYSFS_SHOW_MAX(max_freq_mhz); INTEL_GT_SYSFS_SHOW_MIN(min_freq_mhz); INTEL_GT_SYSFS_SHOW_MAX(vlv_rpe_freq_mhz); INTEL_GT_SYSFS_STORE(boost_freq_mhz, __boost_freq_mhz_store); INTEL_GT_SYSFS_STORE(max_freq_mhz, __set_max_freq); INTEL_GT_SYSFS_STORE(min_freq_mhz, __set_min_freq); #define INTEL_GT_RPS_SYSFS_ATTR(_name, _mode, _show, _store, _show_dev, _store_dev) \ static struct device_attribute dev_attr_gt_##_name = __ATTR(gt_##_name, _mode, \ _show_dev, _store_dev); \ static struct kobj_attribute attr_rps_##_name = __ATTR(rps_##_name, _mode, \ _show, _store) #define INTEL_GT_RPS_SYSFS_ATTR_RO(_name) \ INTEL_GT_RPS_SYSFS_ATTR(_name, 0444, _name##_show, NULL, \ _name##_dev_show, NULL) #define INTEL_GT_RPS_SYSFS_ATTR_RW(_name) \ INTEL_GT_RPS_SYSFS_ATTR(_name, 0644, _name##_show, _name##_store, \ _name##_dev_show, _name##_dev_store) /* The below macros generate static structures */ INTEL_GT_RPS_SYSFS_ATTR_RO(act_freq_mhz); INTEL_GT_RPS_SYSFS_ATTR_RO(cur_freq_mhz); INTEL_GT_RPS_SYSFS_ATTR_RW(boost_freq_mhz); INTEL_GT_RPS_SYSFS_ATTR_RO(RP0_freq_mhz); INTEL_GT_RPS_SYSFS_ATTR_RO(RP1_freq_mhz); INTEL_GT_RPS_SYSFS_ATTR_RO(RPn_freq_mhz); INTEL_GT_RPS_SYSFS_ATTR_RW(max_freq_mhz); INTEL_GT_RPS_SYSFS_ATTR_RW(min_freq_mhz); INTEL_GT_RPS_SYSFS_ATTR_RO(vlv_rpe_freq_mhz); #define GEN6_ATTR(p, s) { \ &p##attr_##s##_act_freq_mhz.attr, \ &p##attr_##s##_cur_freq_mhz.attr, \ &p##attr_##s##_boost_freq_mhz.attr, \ &p##attr_##s##_max_freq_mhz.attr, \ &p##attr_##s##_min_freq_mhz.attr, \ &p##attr_##s##_RP0_freq_mhz.attr, \ &p##attr_##s##_RP1_freq_mhz.attr, \ &p##attr_##s##_RPn_freq_mhz.attr, \ NULL, \ } #define GEN6_RPS_ATTR GEN6_ATTR(, rps) #define GEN6_GT_ATTR GEN6_ATTR(dev_, gt) static const struct attribute * const gen6_rps_attrs[] = GEN6_RPS_ATTR; static const struct attribute * const gen6_gt_attrs[] = GEN6_GT_ATTR; static ssize_t punit_req_freq_mhz_show(struct kobject *kobj, struct kobj_attribute *attr, char *buff) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); u32 preq = intel_rps_read_punit_req_frequency(&gt->rps); return sysfs_emit(buff, "%u\n", preq); } static ssize_t slpc_ignore_eff_freq_show(struct kobject *kobj, struct kobj_attribute *attr, char *buff) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); struct intel_guc_slpc *slpc = &gt->uc.guc.slpc; return sysfs_emit(buff, "%u\n", slpc->ignore_eff_freq); } static ssize_t slpc_ignore_eff_freq_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buff, size_t count) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); struct intel_guc_slpc *slpc = &gt->uc.guc.slpc; int err; u32 val; err = kstrtou32(buff, 0, &val); if (err) return err; err = intel_guc_slpc_set_ignore_eff_freq(slpc, val); return err ?: count; } struct intel_gt_bool_throttle_attr { struct attribute attr; ssize_t (*show)(struct kobject *kobj, struct kobj_attribute *attr, char *buf); i915_reg_t (*reg32)(struct intel_gt *gt); u32 mask; }; static ssize_t throttle_reason_bool_show(struct kobject *kobj, struct kobj_attribute *attr, char *buff) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); struct intel_gt_bool_throttle_attr *t_attr = (struct intel_gt_bool_throttle_attr *) attr; bool val = rps_read_mask_mmio(&gt->rps, t_attr->reg32(gt), t_attr->mask); return sysfs_emit(buff, "%u\n", val); } #define INTEL_GT_RPS_BOOL_ATTR_RO(sysfs_func__, mask__) \ struct intel_gt_bool_throttle_attr attr_##sysfs_func__ = { \ .attr = { .name = __stringify(sysfs_func__), .mode = 0444 }, \ .show = throttle_reason_bool_show, \ .reg32 = intel_gt_perf_limit_reasons_reg, \ .mask = mask__, \ } INTEL_GT_ATTR_RO(punit_req_freq_mhz); static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_status, GT0_PERF_LIMIT_REASONS_MASK); static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_pl1, POWER_LIMIT_1_MASK); static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_pl2, POWER_LIMIT_2_MASK); static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_pl4, POWER_LIMIT_4_MASK); static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_thermal, THERMAL_LIMIT_MASK); static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_prochot, PROCHOT_MASK); static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_ratl, RATL_MASK); static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_vr_thermalert, VR_THERMALERT_MASK); static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_vr_tdc, VR_TDC_MASK); static const struct attribute *throttle_reason_attrs[] = { &attr_throttle_reason_status.attr, &attr_throttle_reason_pl1.attr, &attr_throttle_reason_pl2.attr, &attr_throttle_reason_pl4.attr, &attr_throttle_reason_thermal.attr, &attr_throttle_reason_prochot.attr, &attr_throttle_reason_ratl.attr, &attr_throttle_reason_vr_thermalert.attr, &attr_throttle_reason_vr_tdc.attr, NULL }; /* * Scaling for multipliers (aka frequency factors). * The format of the value in the register is u8.8. * * The presentation to userspace is inspired by the perf event framework. * See: * Documentation/ABI/testing/sysfs-bus-event_source-devices-events * for description of: * /sys/bus/event_source/devices/<pmu>/events/<event>.scale * * Summary: Expose two sysfs files for each multiplier. * * 1. File <attr> contains a raw hardware value. * 2. File <attr>.scale contains the multiplicative scale factor to be * used by userspace to compute the actual value. * * So userspace knows that to get the frequency_factor it multiplies the * provided value by the specified scale factor and vice-versa. * * That way there is no precision loss in the kernel interface and API * is future proof should one day the hardware register change to u16.u16, * on some platform. (Or any other fixed point representation.) * * Example: * File <attr> contains the value 2.5, represented as u8.8 0x0280, which * is comprised of: * - an integer part of 2 * - a fractional part of 0x80 (representing 0x80 / 2^8 == 0x80 / 256). * File <attr>.scale contains a string representation of floating point * value 0.00390625 (which is (1 / 256)). * Userspace computes the actual value: * 0x0280 * 0.00390625 -> 2.5 * or converts an actual value to the value to be written into <attr>: * 2.5 / 0.00390625 -> 0x0280 */ #define U8_8_VAL_MASK 0xffff #define U8_8_SCALE_TO_VALUE "0.00390625" static ssize_t freq_factor_scale_show(struct kobject *kobj, struct kobj_attribute *attr, char *buff) { return sysfs_emit(buff, "%s\n", U8_8_SCALE_TO_VALUE); } static u32 media_ratio_mode_to_factor(u32 mode) { /* 0 -> 0, 1 -> 256, 2 -> 128 */ return !mode ? mode : 256 / mode; } static ssize_t media_freq_factor_show(struct kobject *kobj, struct kobj_attribute *attr, char *buff) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); struct intel_guc_slpc *slpc = &gt->uc.guc.slpc; intel_wakeref_t wakeref; u32 mode; /* * Retrieve media_ratio_mode from GEN6_RPNSWREQ bit 13 set by * GuC. GEN6_RPNSWREQ:13 value 0 represents 1:2 and 1 represents 1:1 */ if (IS_XEHPSDV(gt->i915) && slpc->media_ratio_mode == SLPC_MEDIA_RATIO_MODE_DYNAMIC_CONTROL) { /* * For XEHPSDV dynamic mode GEN6_RPNSWREQ:13 does not contain * the media_ratio_mode, just return the cached media ratio */ mode = slpc->media_ratio_mode; } else { with_intel_runtime_pm(gt->uncore->rpm, wakeref) mode = intel_uncore_read(gt->uncore, GEN6_RPNSWREQ); mode = REG_FIELD_GET(GEN12_MEDIA_FREQ_RATIO, mode) ? SLPC_MEDIA_RATIO_MODE_FIXED_ONE_TO_ONE : SLPC_MEDIA_RATIO_MODE_FIXED_ONE_TO_TWO; } return sysfs_emit(buff, "%u\n", media_ratio_mode_to_factor(mode)); } static ssize_t media_freq_factor_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buff, size_t count) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); struct intel_guc_slpc *slpc = &gt->uc.guc.slpc; u32 factor, mode; int err; err = kstrtou32(buff, 0, &factor); if (err) return err; for (mode = SLPC_MEDIA_RATIO_MODE_DYNAMIC_CONTROL; mode <= SLPC_MEDIA_RATIO_MODE_FIXED_ONE_TO_TWO; mode++) if (factor == media_ratio_mode_to_factor(mode)) break; if (mode > SLPC_MEDIA_RATIO_MODE_FIXED_ONE_TO_TWO) return -EINVAL; err = intel_guc_slpc_set_media_ratio_mode(slpc, mode); if (!err) { slpc->media_ratio_mode = mode; DRM_DEBUG("Set slpc->media_ratio_mode to %d", mode); } return err ?: count; } static ssize_t media_RP0_freq_mhz_show(struct kobject *kobj, struct kobj_attribute *attr, char *buff) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); u32 val; int err; err = snb_pcode_read_p(gt->uncore, XEHP_PCODE_FREQUENCY_CONFIG, PCODE_MBOX_FC_SC_READ_FUSED_P0, PCODE_MBOX_DOMAIN_MEDIAFF, &val); if (err) return err; /* Fused media RP0 read from pcode is in units of 50 MHz */ val *= GT_FREQUENCY_MULTIPLIER; return sysfs_emit(buff, "%u\n", val); } static ssize_t media_RPn_freq_mhz_show(struct kobject *kobj, struct kobj_attribute *attr, char *buff) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); u32 val; int err; err = snb_pcode_read_p(gt->uncore, XEHP_PCODE_FREQUENCY_CONFIG, PCODE_MBOX_FC_SC_READ_FUSED_PN, PCODE_MBOX_DOMAIN_MEDIAFF, &val); if (err) return err; /* Fused media RPn read from pcode is in units of 50 MHz */ val *= GT_FREQUENCY_MULTIPLIER; return sysfs_emit(buff, "%u\n", val); } INTEL_GT_ATTR_RW(media_freq_factor); static struct kobj_attribute attr_media_freq_factor_scale = __ATTR(media_freq_factor.scale, 0444, freq_factor_scale_show, NULL); INTEL_GT_ATTR_RO(media_RP0_freq_mhz); INTEL_GT_ATTR_RO(media_RPn_freq_mhz); INTEL_GT_ATTR_RW(slpc_ignore_eff_freq); static const struct attribute *media_perf_power_attrs[] = { &attr_media_freq_factor.attr, &attr_media_freq_factor_scale.attr, &attr_media_RP0_freq_mhz.attr, &attr_media_RPn_freq_mhz.attr, NULL }; static ssize_t rps_up_threshold_pct_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); struct intel_rps *rps = &gt->rps; return sysfs_emit(buf, "%u\n", intel_rps_get_up_threshold(rps)); } static ssize_t rps_up_threshold_pct_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); struct intel_rps *rps = &gt->rps; int ret; u8 val; ret = kstrtou8(buf, 10, &val); if (ret) return ret; ret = intel_rps_set_up_threshold(rps, val); return ret == 0 ? count : ret; } static struct kobj_attribute rps_up_threshold_pct = __ATTR(rps_up_threshold_pct, 0664, rps_up_threshold_pct_show, rps_up_threshold_pct_store); static ssize_t rps_down_threshold_pct_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); struct intel_rps *rps = &gt->rps; return sysfs_emit(buf, "%u\n", intel_rps_get_down_threshold(rps)); } static ssize_t rps_down_threshold_pct_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); struct intel_rps *rps = &gt->rps; int ret; u8 val; ret = kstrtou8(buf, 10, &val); if (ret) return ret; ret = intel_rps_set_down_threshold(rps, val); return ret == 0 ? count : ret; } static struct kobj_attribute rps_down_threshold_pct = __ATTR(rps_down_threshold_pct, 0664, rps_down_threshold_pct_show, rps_down_threshold_pct_store); static const struct attribute * const gen6_gt_rps_attrs[] = { &rps_up_threshold_pct.attr, &rps_down_threshold_pct.attr, NULL }; static ssize_t default_min_freq_mhz_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_gt *gt = kobj_to_gt(kobj->parent); return sysfs_emit(buf, "%u\n", gt->defaults.min_freq); } static struct kobj_attribute default_min_freq_mhz = __ATTR(rps_min_freq_mhz, 0444, default_min_freq_mhz_show, NULL); static ssize_t default_max_freq_mhz_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_gt *gt = kobj_to_gt(kobj->parent); return sysfs_emit(buf, "%u\n", gt->defaults.max_freq); } static struct kobj_attribute default_max_freq_mhz = __ATTR(rps_max_freq_mhz, 0444, default_max_freq_mhz_show, NULL); static ssize_t default_rps_up_threshold_pct_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_gt *gt = kobj_to_gt(kobj->parent); return sysfs_emit(buf, "%u\n", gt->defaults.rps_up_threshold); } static struct kobj_attribute default_rps_up_threshold_pct = __ATTR(rps_up_threshold_pct, 0444, default_rps_up_threshold_pct_show, NULL); static ssize_t default_rps_down_threshold_pct_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_gt *gt = kobj_to_gt(kobj->parent); return sysfs_emit(buf, "%u\n", gt->defaults.rps_down_threshold); } static struct kobj_attribute default_rps_down_threshold_pct = __ATTR(rps_down_threshold_pct, 0444, default_rps_down_threshold_pct_show, NULL); static const struct attribute * const rps_defaults_attrs[] = { &default_min_freq_mhz.attr, &default_max_freq_mhz.attr, &default_rps_up_threshold_pct.attr, &default_rps_down_threshold_pct.attr, NULL }; static int intel_sysfs_rps_init(struct intel_gt *gt, struct kobject *kobj) { const struct attribute * const *attrs; struct attribute *vlv_attr; int ret; if (GRAPHICS_VER(gt->i915) < 6) return 0; if (is_object_gt(kobj)) { attrs = gen6_rps_attrs; vlv_attr = &attr_rps_vlv_rpe_freq_mhz.attr; } else { attrs = gen6_gt_attrs; vlv_attr = &dev_attr_gt_vlv_rpe_freq_mhz.attr; } ret = sysfs_create_files(kobj, attrs); if (ret) return ret; if (IS_VALLEYVIEW(gt->i915) || IS_CHERRYVIEW(gt->i915)) ret = sysfs_create_file(kobj, vlv_attr); if (is_object_gt(kobj) && !intel_uc_uses_guc_slpc(&gt->uc)) { ret = sysfs_create_files(kobj, gen6_gt_rps_attrs); if (ret) return ret; } return ret; } void intel_gt_sysfs_pm_init(struct intel_gt *gt, struct kobject *kobj) { int ret; intel_sysfs_rc6_init(gt, kobj); ret = intel_sysfs_rps_init(gt, kobj); if (ret) gt_warn(gt, "failed to create RPS sysfs files (%pe)", ERR_PTR(ret)); /* end of the legacy interfaces */ if (!is_object_gt(kobj)) return; ret = sysfs_create_file(kobj, &attr_punit_req_freq_mhz.attr); if (ret) gt_warn(gt, "failed to create punit_req_freq_mhz sysfs (%pe)", ERR_PTR(ret)); if (intel_uc_uses_guc_slpc(&gt->uc)) { ret = sysfs_create_file(kobj, &attr_slpc_ignore_eff_freq.attr); if (ret) gt_warn(gt, "failed to create ignore_eff_freq sysfs (%pe)", ERR_PTR(ret)); } if (i915_mmio_reg_valid(intel_gt_perf_limit_reasons_reg(gt))) { ret = sysfs_create_files(kobj, throttle_reason_attrs); if (ret) gt_warn(gt, "failed to create throttle sysfs files (%pe)", ERR_PTR(ret)); } if (HAS_MEDIA_RATIO_MODE(gt->i915) && intel_uc_uses_guc_slpc(&gt->uc)) { ret = sysfs_create_files(kobj, media_perf_power_attrs); if (ret) gt_warn(gt, "failed to create media_perf_power_attrs sysfs (%pe)\n", ERR_PTR(ret)); } ret = sysfs_create_files(gt->sysfs_defaults, rps_defaults_attrs); if (ret) gt_warn(gt, "failed to add rps defaults (%pe)\n", ERR_PTR(ret)); }
linux-master
drivers/gpu/drm/i915/gt/intel_gt_sysfs_pm.c
// SPDX-License-Identifier: MIT /* * Copyright © 2021 Intel Corporation */ #include <drm/drm_managed.h> #include "i915_drv.h" #include "gt/intel_gt.h" #include "gt/intel_sa_media.h" int intel_sa_mediagt_setup(struct intel_gt *gt, phys_addr_t phys_addr, u32 gsi_offset) { struct drm_i915_private *i915 = gt->i915; struct intel_uncore *uncore; uncore = drmm_kzalloc(&i915->drm, sizeof(*uncore), GFP_KERNEL); if (!uncore) return -ENOMEM; uncore->gsi_offset = gsi_offset; gt->irq_lock = to_gt(i915)->irq_lock; intel_gt_common_init_early(gt); intel_uncore_init_early(uncore, gt); /* * Standalone media shares the general MMIO space with the primary * GT. We'll re-use the primary GT's mapping. */ uncore->regs = intel_uncore_regs(&i915->uncore); if (drm_WARN_ON(&i915->drm, uncore->regs == NULL)) return -EIO; gt->uncore = uncore; gt->phys_addr = phys_addr; /* * For current platforms we can assume there's only a single * media GT and cache it for quick lookup. */ drm_WARN_ON(&i915->drm, i915->media_gt); i915->media_gt = gt; return 0; }
linux-master
drivers/gpu/drm/i915/gt/intel_sa_media.c
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation * * Generated by: IGT Gpu Tools on Fri 21 Feb 2020 05:29:32 AM UTC */ static const u32 ivb_clear_kernel[] = { 0x00000001, 0x26020128, 0x00000024, 0x00000000, 0x00000040, 0x20280c21, 0x00000028, 0x00000001, 0x01000010, 0x20000c20, 0x0000002c, 0x00000000, 0x00010220, 0x34001c00, 0x00001400, 0x0000002c, 0x00600001, 0x20600061, 0x00000000, 0x00000000, 0x00000008, 0x20601c85, 0x00000e00, 0x0000000c, 0x00000005, 0x20601ca5, 0x00000060, 0x00000001, 0x00000008, 0x20641c85, 0x00000e00, 0x0000000d, 0x00000005, 0x20641ca5, 0x00000064, 0x00000003, 0x00000041, 0x207424a5, 0x00000064, 0x00000034, 0x00000040, 0x206014a5, 0x00000060, 0x00000074, 0x00000008, 0x20681c85, 0x00000e00, 0x00000008, 0x00000005, 0x20681ca5, 0x00000068, 0x0000000f, 0x00000041, 0x20701ca5, 0x00000060, 0x00000010, 0x00000040, 0x206814a5, 0x00000068, 0x00000070, 0x00600001, 0x20a00061, 0x00000000, 0x00000000, 0x00000005, 0x206c1c85, 0x00000e00, 0x00000007, 0x00000041, 0x206c1ca5, 0x0000006c, 0x00000004, 0x00600001, 0x20800021, 0x008d0000, 0x00000000, 0x00000001, 0x20800021, 0x0000006c, 0x00000000, 0x00000001, 0x20840021, 0x00000068, 0x00000000, 0x00000001, 0x20880061, 0x00000000, 0x00000003, 0x00000005, 0x208c0d21, 0x00000086, 0xffffffff, 0x05600032, 0x20a00fa1, 0x008d0080, 0x02190001, 0x00000040, 0x20a01ca5, 0x000000a0, 0x00000001, 0x05600032, 0x20a00fa1, 0x008d0080, 0x040a8001, 0x02000040, 0x20281c21, 0x00000028, 0xffffffff, 0x00010220, 0x34001c00, 0x00001400, 0xfffffffc, 0x00000001, 0x26020128, 0x00000024, 0x00000000, 0x00000001, 0x220010e4, 0x00000000, 0x00000000, 0x00000001, 0x220831ec, 0x00000000, 0x007f007f, 0x00600001, 0x20400021, 0x008d0000, 0x00000000, 0x00600001, 0x2fe00021, 0x008d0000, 0x00000000, 0x00200001, 0x20400121, 0x00450020, 0x00000000, 0x00000001, 0x20480061, 0x00000000, 0x000f000f, 0x00000005, 0x204c0d21, 0x00000046, 0xffffffef, 0x00800001, 0x20600061, 0x00000000, 0x00000000, 0x00800001, 0x20800061, 0x00000000, 0x00000000, 0x00800001, 0x20a00061, 0x00000000, 0x00000000, 0x00800001, 0x20c00061, 0x00000000, 0x00000000, 0x00800001, 0x20e00061, 0x00000000, 0x00000000, 0x00800001, 0x21000061, 0x00000000, 0x00000000, 0x00800001, 0x21200061, 0x00000000, 0x00000000, 0x00800001, 0x21400061, 0x00000000, 0x00000000, 0x05600032, 0x20000fa0, 0x008d0040, 0x120a8000, 0x00000040, 0x20402d21, 0x00000020, 0x00100010, 0x05600032, 0x20000fa0, 0x008d0040, 0x120a8000, 0x02000040, 0x22083d8c, 0x00000208, 0xffffffff, 0x00800001, 0xa0000109, 0x00000602, 0x00000000, 0x00000040, 0x22001c84, 0x00000200, 0x00000020, 0x00010220, 0x34001c00, 0x00001400, 0xfffffff8, 0x07600032, 0x20000fa0, 0x008d0fe0, 0x82000010, };
linux-master
drivers/gpu/drm/i915/gt/ivb_clear_kernel.c
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include <linux/log2.h> #include "gem/i915_gem_internal.h" #include "gen6_ppgtt.h" #include "i915_scatterlist.h" #include "i915_trace.h" #include "i915_vgpu.h" #include "intel_gt_regs.h" #include "intel_engine_regs.h" #include "intel_gt.h" /* Write pde (index) from the page directory @pd to the page table @pt */ static void gen6_write_pde(const struct gen6_ppgtt *ppgtt, const unsigned int pde, const struct i915_page_table *pt) { dma_addr_t addr = pt ? px_dma(pt) : px_dma(ppgtt->base.vm.scratch[1]); /* Caller needs to make sure the write completes if necessary */ iowrite32(GEN6_PDE_ADDR_ENCODE(addr) | GEN6_PDE_VALID, ppgtt->pd_addr + pde); } void gen7_ppgtt_enable(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; struct intel_uncore *uncore = gt->uncore; u32 ecochk; intel_uncore_rmw(uncore, GAC_ECO_BITS, 0, ECOBITS_PPGTT_CACHE64B); ecochk = intel_uncore_read(uncore, GAM_ECOCHK); if (IS_HASWELL(i915)) { ecochk |= ECOCHK_PPGTT_WB_HSW; } else { ecochk |= ECOCHK_PPGTT_LLC_IVB; ecochk &= ~ECOCHK_PPGTT_GFDT_IVB; } intel_uncore_write(uncore, GAM_ECOCHK, ecochk); } void gen6_ppgtt_enable(struct intel_gt *gt) { struct intel_uncore *uncore = gt->uncore; intel_uncore_rmw(uncore, GAC_ECO_BITS, 0, ECOBITS_SNB_BIT | ECOBITS_PPGTT_CACHE64B); intel_uncore_rmw(uncore, GAB_CTL, 0, GAB_CTL_CONT_AFTER_PAGEFAULT); intel_uncore_rmw(uncore, GAM_ECOCHK, 0, ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B); if (HAS_PPGTT(uncore->i915)) /* may be disabled for VT-d */ intel_uncore_write(uncore, GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); } /* PPGTT support for Sandybdrige/Gen6 and later */ static void gen6_ppgtt_clear_range(struct i915_address_space *vm, u64 start, u64 length) { struct gen6_ppgtt * const ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm)); const unsigned int first_entry = start / I915_GTT_PAGE_SIZE; const gen6_pte_t scratch_pte = vm->scratch[0]->encode; unsigned int pde = first_entry / GEN6_PTES; unsigned int pte = first_entry % GEN6_PTES; unsigned int num_entries = length / I915_GTT_PAGE_SIZE; while (num_entries) { struct i915_page_table * const pt = i915_pt_entry(ppgtt->base.pd, pde++); const unsigned int count = min(num_entries, GEN6_PTES - pte); gen6_pte_t *vaddr; num_entries -= count; GEM_BUG_ON(count > atomic_read(&pt->used)); if (!atomic_sub_return(count, &pt->used)) ppgtt->scan_for_unused_pt = true; /* * Note that the hw doesn't support removing PDE on the fly * (they are cached inside the context with no means to * invalidate the cache), so we can only reset the PTE * entries back to scratch. */ vaddr = px_vaddr(pt); memset32(vaddr + pte, scratch_pte, count); pte = 0; } } static void gen6_ppgtt_insert_entries(struct i915_address_space *vm, struct i915_vma_resource *vma_res, unsigned int pat_index, u32 flags) { struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); struct i915_page_directory * const pd = ppgtt->pd; unsigned int first_entry = vma_res->start / I915_GTT_PAGE_SIZE; unsigned int act_pt = first_entry / GEN6_PTES; unsigned int act_pte = first_entry % GEN6_PTES; const u32 pte_encode = vm->pte_encode(0, pat_index, flags); struct sgt_dma iter = sgt_dma(vma_res); gen6_pte_t *vaddr; GEM_BUG_ON(!pd->entry[act_pt]); vaddr = px_vaddr(i915_pt_entry(pd, act_pt)); do { GEM_BUG_ON(sg_dma_len(iter.sg) < I915_GTT_PAGE_SIZE); vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma); iter.dma += I915_GTT_PAGE_SIZE; if (iter.dma == iter.max) { iter.sg = __sg_next(iter.sg); if (!iter.sg || sg_dma_len(iter.sg) == 0) break; iter.dma = sg_dma_address(iter.sg); iter.max = iter.dma + sg_dma_len(iter.sg); } if (++act_pte == GEN6_PTES) { vaddr = px_vaddr(i915_pt_entry(pd, ++act_pt)); act_pte = 0; } } while (1); vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE; } static void gen6_flush_pd(struct gen6_ppgtt *ppgtt, u64 start, u64 end) { struct i915_page_directory * const pd = ppgtt->base.pd; struct i915_page_table *pt; unsigned int pde; start = round_down(start, SZ_64K); end = round_up(end, SZ_64K) - start; mutex_lock(&ppgtt->flush); gen6_for_each_pde(pt, pd, start, end, pde) gen6_write_pde(ppgtt, pde, pt); mb(); ioread32(ppgtt->pd_addr + pde - 1); gen6_ggtt_invalidate(ppgtt->base.vm.gt->ggtt); mb(); mutex_unlock(&ppgtt->flush); } static void gen6_alloc_va_range(struct i915_address_space *vm, struct i915_vm_pt_stash *stash, u64 start, u64 length) { struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm)); struct i915_page_directory * const pd = ppgtt->base.pd; struct i915_page_table *pt; bool flush = false; u64 from = start; unsigned int pde; spin_lock(&pd->lock); gen6_for_each_pde(pt, pd, start, length, pde) { const unsigned int count = gen6_pte_count(start, length); if (!pt) { spin_unlock(&pd->lock); pt = stash->pt[0]; __i915_gem_object_pin_pages(pt->base); fill32_px(pt, vm->scratch[0]->encode); spin_lock(&pd->lock); if (!pd->entry[pde]) { stash->pt[0] = pt->stash; atomic_set(&pt->used, 0); pd->entry[pde] = pt; } else { pt = pd->entry[pde]; } flush = true; } atomic_add(count, &pt->used); } spin_unlock(&pd->lock); if (flush && i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND)) { intel_wakeref_t wakeref; with_intel_runtime_pm(&vm->i915->runtime_pm, wakeref) gen6_flush_pd(ppgtt, from, start); } } static int gen6_ppgtt_init_scratch(struct gen6_ppgtt *ppgtt) { struct i915_address_space * const vm = &ppgtt->base.vm; int ret; ret = setup_scratch_page(vm); if (ret) return ret; vm->scratch[0]->encode = vm->pte_encode(px_dma(vm->scratch[0]), i915_gem_get_pat_index(vm->i915, I915_CACHE_NONE), PTE_READ_ONLY); vm->scratch[1] = vm->alloc_pt_dma(vm, I915_GTT_PAGE_SIZE_4K); if (IS_ERR(vm->scratch[1])) { ret = PTR_ERR(vm->scratch[1]); goto err_scratch0; } ret = map_pt_dma(vm, vm->scratch[1]); if (ret) goto err_scratch1; fill32_px(vm->scratch[1], vm->scratch[0]->encode); return 0; err_scratch1: i915_gem_object_put(vm->scratch[1]); err_scratch0: i915_gem_object_put(vm->scratch[0]); vm->scratch[0] = NULL; return ret; } static void gen6_ppgtt_free_pd(struct gen6_ppgtt *ppgtt) { struct i915_page_directory * const pd = ppgtt->base.pd; struct i915_page_table *pt; u32 pde; gen6_for_all_pdes(pt, pd, pde) if (pt) free_pt(&ppgtt->base.vm, pt); } static void gen6_ppgtt_cleanup(struct i915_address_space *vm) { struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm)); gen6_ppgtt_free_pd(ppgtt); free_scratch(vm); if (ppgtt->base.pd) free_pd(&ppgtt->base.vm, ppgtt->base.pd); mutex_destroy(&ppgtt->flush); } static void pd_vma_bind(struct i915_address_space *vm, struct i915_vm_pt_stash *stash, struct i915_vma_resource *vma_res, unsigned int pat_index, u32 unused) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); struct gen6_ppgtt *ppgtt = vma_res->private; u32 ggtt_offset = vma_res->start / I915_GTT_PAGE_SIZE; ppgtt->pp_dir = ggtt_offset * sizeof(gen6_pte_t) << 10; ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset; gen6_flush_pd(ppgtt, 0, ppgtt->base.vm.total); } static void pd_vma_unbind(struct i915_address_space *vm, struct i915_vma_resource *vma_res) { struct gen6_ppgtt *ppgtt = vma_res->private; struct i915_page_directory * const pd = ppgtt->base.pd; struct i915_page_table *pt; unsigned int pde; if (!ppgtt->scan_for_unused_pt) return; /* Free all no longer used page tables */ gen6_for_all_pdes(pt, ppgtt->base.pd, pde) { if (!pt || atomic_read(&pt->used)) continue; free_pt(&ppgtt->base.vm, pt); pd->entry[pde] = NULL; } ppgtt->scan_for_unused_pt = false; } static const struct i915_vma_ops pd_vma_ops = { .bind_vma = pd_vma_bind, .unbind_vma = pd_vma_unbind, }; int gen6_ppgtt_pin(struct i915_ppgtt *base, struct i915_gem_ww_ctx *ww) { struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base); int err; GEM_BUG_ON(!kref_read(&ppgtt->base.vm.ref)); /* * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt * which will be pinned into every active context. * (When vma->pin_count becomes atomic, I expect we will naturally * need a larger, unpacked, type and kill this redundancy.) */ if (atomic_add_unless(&ppgtt->pin_count, 1, 0)) return 0; /* grab the ppgtt resv to pin the object */ err = i915_vm_lock_objects(&ppgtt->base.vm, ww); if (err) return err; /* * PPGTT PDEs reside in the GGTT and consists of 512 entries. The * allocator works in address space sizes, so it's multiplied by page * size. We allocate at the top of the GTT to avoid fragmentation. */ if (!atomic_read(&ppgtt->pin_count)) { err = i915_ggtt_pin(ppgtt->vma, ww, GEN6_PD_ALIGN, PIN_HIGH); GEM_BUG_ON(ppgtt->vma->fence); clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(ppgtt->vma)); } if (!err) atomic_inc(&ppgtt->pin_count); return err; } static int pd_dummy_obj_get_pages(struct drm_i915_gem_object *obj) { obj->mm.pages = ZERO_SIZE_PTR; return 0; } static void pd_dummy_obj_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages) { } static const struct drm_i915_gem_object_ops pd_dummy_obj_ops = { .name = "pd_dummy_obj", .get_pages = pd_dummy_obj_get_pages, .put_pages = pd_dummy_obj_put_pages, }; static struct i915_page_directory * gen6_alloc_top_pd(struct gen6_ppgtt *ppgtt) { struct i915_ggtt * const ggtt = ppgtt->base.vm.gt->ggtt; struct i915_page_directory *pd; int err; pd = __alloc_pd(I915_PDES); if (unlikely(!pd)) return ERR_PTR(-ENOMEM); pd->pt.base = __i915_gem_object_create_internal(ppgtt->base.vm.gt->i915, &pd_dummy_obj_ops, I915_PDES * SZ_4K); if (IS_ERR(pd->pt.base)) { err = PTR_ERR(pd->pt.base); pd->pt.base = NULL; goto err_pd; } pd->pt.base->base.resv = i915_vm_resv_get(&ppgtt->base.vm); pd->pt.base->shares_resv_from = &ppgtt->base.vm; ppgtt->vma = i915_vma_instance(pd->pt.base, &ggtt->vm, NULL); if (IS_ERR(ppgtt->vma)) { err = PTR_ERR(ppgtt->vma); ppgtt->vma = NULL; goto err_pd; } /* The dummy object we create is special, override ops.. */ ppgtt->vma->ops = &pd_vma_ops; ppgtt->vma->private = ppgtt; return pd; err_pd: free_pd(&ppgtt->base.vm, pd); return ERR_PTR(err); } void gen6_ppgtt_unpin(struct i915_ppgtt *base) { struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base); GEM_BUG_ON(!atomic_read(&ppgtt->pin_count)); if (atomic_dec_and_test(&ppgtt->pin_count)) i915_vma_unpin(ppgtt->vma); } struct i915_ppgtt *gen6_ppgtt_create(struct intel_gt *gt) { struct i915_ggtt * const ggtt = gt->ggtt; struct gen6_ppgtt *ppgtt; int err; ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); if (!ppgtt) return ERR_PTR(-ENOMEM); mutex_init(&ppgtt->flush); ppgtt_init(&ppgtt->base, gt, 0); ppgtt->base.vm.pd_shift = ilog2(SZ_4K * SZ_4K / sizeof(gen6_pte_t)); ppgtt->base.vm.top = 1; ppgtt->base.vm.bind_async_flags = I915_VMA_LOCAL_BIND; ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range; ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range; ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries; ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup; ppgtt->base.vm.alloc_pt_dma = alloc_pt_dma; ppgtt->base.vm.alloc_scratch_dma = alloc_pt_dma; ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode; err = gen6_ppgtt_init_scratch(ppgtt); if (err) goto err_put; ppgtt->base.pd = gen6_alloc_top_pd(ppgtt); if (IS_ERR(ppgtt->base.pd)) { err = PTR_ERR(ppgtt->base.pd); goto err_put; } return &ppgtt->base; err_put: i915_vm_put(&ppgtt->base.vm); return ERR_PTR(err); }
linux-master
drivers/gpu/drm/i915/gt/gen6_ppgtt.c
// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include <linux/seq_file.h> #include <linux/string_helpers.h> #include "i915_drv.h" #include "i915_reg.h" #include "intel_gt.h" #include "intel_gt_clock_utils.h" #include "intel_gt_debugfs.h" #include "intel_gt_pm.h" #include "intel_gt_pm_debugfs.h" #include "intel_gt_regs.h" #include "intel_llc.h" #include "intel_mchbar_regs.h" #include "intel_pcode.h" #include "intel_rc6.h" #include "intel_rps.h" #include "intel_runtime_pm.h" #include "intel_uncore.h" #include "vlv_sideband.h" void intel_gt_pm_debugfs_forcewake_user_open(struct intel_gt *gt) { atomic_inc(&gt->user_wakeref); intel_gt_pm_get(gt); if (GRAPHICS_VER(gt->i915) >= 6) intel_uncore_forcewake_user_get(gt->uncore); } void intel_gt_pm_debugfs_forcewake_user_release(struct intel_gt *gt) { if (GRAPHICS_VER(gt->i915) >= 6) intel_uncore_forcewake_user_put(gt->uncore); intel_gt_pm_put(gt); atomic_dec(&gt->user_wakeref); } static int forcewake_user_open(struct inode *inode, struct file *file) { struct intel_gt *gt = inode->i_private; intel_gt_pm_debugfs_forcewake_user_open(gt); return 0; } static int forcewake_user_release(struct inode *inode, struct file *file) { struct intel_gt *gt = inode->i_private; intel_gt_pm_debugfs_forcewake_user_release(gt); return 0; } static const struct file_operations forcewake_user_fops = { .owner = THIS_MODULE, .open = forcewake_user_open, .release = forcewake_user_release, }; static int fw_domains_show(struct seq_file *m, void *data) { struct intel_gt *gt = m->private; struct intel_uncore *uncore = gt->uncore; struct intel_uncore_forcewake_domain *fw_domain; unsigned int tmp; seq_printf(m, "user.bypass_count = %u\n", uncore->user_forcewake_count); for_each_fw_domain(fw_domain, uncore, tmp) seq_printf(m, "%s.wake_count = %u\n", intel_uncore_forcewake_domain_to_str(fw_domain->id), READ_ONCE(fw_domain->wake_count)); return 0; } DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(fw_domains); static int vlv_drpc(struct seq_file *m) { struct intel_gt *gt = m->private; struct intel_uncore *uncore = gt->uncore; u32 rcctl1, pw_status, mt_fwake_req; mt_fwake_req = intel_uncore_read_fw(uncore, FORCEWAKE_MT); pw_status = intel_uncore_read(uncore, VLV_GTLC_PW_STATUS); rcctl1 = intel_uncore_read(uncore, GEN6_RC_CONTROL); seq_printf(m, "RC6 Enabled: %s\n", str_yes_no(rcctl1 & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))); seq_printf(m, "Multi-threaded Forcewake Request: 0x%x\n", mt_fwake_req); seq_printf(m, "Render Power Well: %s\n", (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down"); seq_printf(m, "Media Power Well: %s\n", (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down"); intel_rc6_print_residency(m, "Render RC6 residency since boot:", INTEL_RC6_RES_RC6); intel_rc6_print_residency(m, "Media RC6 residency since boot:", INTEL_RC6_RES_VLV_MEDIA); return fw_domains_show(m, NULL); } static int gen6_drpc(struct seq_file *m) { struct intel_gt *gt = m->private; struct drm_i915_private *i915 = gt->i915; struct intel_uncore *uncore = gt->uncore; u32 gt_core_status, mt_fwake_req, rcctl1, rc6vids = 0; u32 gen9_powergate_enable = 0, gen9_powergate_status = 0; mt_fwake_req = intel_uncore_read_fw(uncore, FORCEWAKE_MT); gt_core_status = intel_uncore_read_fw(uncore, GEN6_GT_CORE_STATUS); rcctl1 = intel_uncore_read(uncore, GEN6_RC_CONTROL); if (GRAPHICS_VER(i915) >= 9) { gen9_powergate_enable = intel_uncore_read(uncore, GEN9_PG_ENABLE); gen9_powergate_status = intel_uncore_read(uncore, GEN9_PWRGT_DOMAIN_STATUS); } if (GRAPHICS_VER(i915) <= 7) snb_pcode_read(gt->uncore, GEN6_PCODE_READ_RC6VIDS, &rc6vids, NULL); seq_printf(m, "RC1e Enabled: %s\n", str_yes_no(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE)); seq_printf(m, "RC6 Enabled: %s\n", str_yes_no(rcctl1 & GEN6_RC_CTL_RC6_ENABLE)); if (GRAPHICS_VER(i915) >= 9) { seq_printf(m, "Render Well Gating Enabled: %s\n", str_yes_no(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE)); seq_printf(m, "Media Well Gating Enabled: %s\n", str_yes_no(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE)); } seq_printf(m, "Deep RC6 Enabled: %s\n", str_yes_no(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE)); seq_printf(m, "Deepest RC6 Enabled: %s\n", str_yes_no(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE)); seq_puts(m, "Current RC state: "); switch (gt_core_status & GEN6_RCn_MASK) { case GEN6_RC0: if (gt_core_status & GEN6_CORE_CPD_STATE_MASK) seq_puts(m, "Core Power Down\n"); else seq_puts(m, "on\n"); break; case GEN6_RC3: seq_puts(m, "RC3\n"); break; case GEN6_RC6: seq_puts(m, "RC6\n"); break; case GEN6_RC7: seq_puts(m, "RC7\n"); break; default: seq_puts(m, "Unknown\n"); break; } seq_printf(m, "Core Power Down: %s\n", str_yes_no(gt_core_status & GEN6_CORE_CPD_STATE_MASK)); seq_printf(m, "Multi-threaded Forcewake Request: 0x%x\n", mt_fwake_req); if (GRAPHICS_VER(i915) >= 9) { seq_printf(m, "Render Power Well: %s\n", (gen9_powergate_status & GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down"); seq_printf(m, "Media Power Well: %s\n", (gen9_powergate_status & GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down"); } /* Not exactly sure what this is */ intel_rc6_print_residency(m, "RC6 \"Locked to RPn\" residency since boot:", INTEL_RC6_RES_RC6_LOCKED); intel_rc6_print_residency(m, "RC6 residency since boot:", INTEL_RC6_RES_RC6); intel_rc6_print_residency(m, "RC6+ residency since boot:", INTEL_RC6_RES_RC6p); intel_rc6_print_residency(m, "RC6++ residency since boot:", INTEL_RC6_RES_RC6pp); if (GRAPHICS_VER(i915) <= 7) { seq_printf(m, "RC6 voltage: %dmV\n", GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff))); seq_printf(m, "RC6+ voltage: %dmV\n", GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff))); seq_printf(m, "RC6++ voltage: %dmV\n", GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff))); } return fw_domains_show(m, NULL); } static int ilk_drpc(struct seq_file *m) { struct intel_gt *gt = m->private; struct intel_uncore *uncore = gt->uncore; u32 rgvmodectl, rstdbyctl; u16 crstandvid; rgvmodectl = intel_uncore_read(uncore, MEMMODECTL); rstdbyctl = intel_uncore_read(uncore, RSTDBYCTL); crstandvid = intel_uncore_read16(uncore, CRSTANDVID); seq_printf(m, "HD boost: %s\n", str_yes_no(rgvmodectl & MEMMODE_BOOST_EN)); seq_printf(m, "Boost freq: %d\n", (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >> MEMMODE_BOOST_FREQ_SHIFT); seq_printf(m, "HW control enabled: %s\n", str_yes_no(rgvmodectl & MEMMODE_HWIDLE_EN)); seq_printf(m, "SW control enabled: %s\n", str_yes_no(rgvmodectl & MEMMODE_SWMODE_EN)); seq_printf(m, "Gated voltage change: %s\n", str_yes_no(rgvmodectl & MEMMODE_RCLK_GATE)); seq_printf(m, "Starting frequency: P%d\n", (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT); seq_printf(m, "Max P-state: P%d\n", (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT); seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK)); seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f)); seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f)); seq_printf(m, "Render standby enabled: %s\n", str_yes_no(!(rstdbyctl & RCX_SW_EXIT))); seq_puts(m, "Current RS state: "); switch (rstdbyctl & RSX_STATUS_MASK) { case RSX_STATUS_ON: seq_puts(m, "on\n"); break; case RSX_STATUS_RC1: seq_puts(m, "RC1\n"); break; case RSX_STATUS_RC1E: seq_puts(m, "RC1E\n"); break; case RSX_STATUS_RS1: seq_puts(m, "RS1\n"); break; case RSX_STATUS_RS2: seq_puts(m, "RS2 (RC6)\n"); break; case RSX_STATUS_RS3: seq_puts(m, "RC3 (RC6+)\n"); break; default: seq_puts(m, "unknown\n"); break; } return 0; } static int mtl_drpc(struct seq_file *m) { struct intel_gt *gt = m->private; struct intel_uncore *uncore = gt->uncore; u32 gt_core_status, rcctl1, mt_fwake_req; u32 mtl_powergate_enable = 0, mtl_powergate_status = 0; mt_fwake_req = intel_uncore_read_fw(uncore, FORCEWAKE_MT); gt_core_status = intel_uncore_read(uncore, MTL_MIRROR_TARGET_WP1); rcctl1 = intel_uncore_read(uncore, GEN6_RC_CONTROL); mtl_powergate_enable = intel_uncore_read(uncore, GEN9_PG_ENABLE); mtl_powergate_status = intel_uncore_read(uncore, GEN9_PWRGT_DOMAIN_STATUS); seq_printf(m, "RC6 Enabled: %s\n", str_yes_no(rcctl1 & GEN6_RC_CTL_RC6_ENABLE)); if (gt->type == GT_MEDIA) { seq_printf(m, "Media Well Gating Enabled: %s\n", str_yes_no(mtl_powergate_enable & GEN9_MEDIA_PG_ENABLE)); } else { seq_printf(m, "Render Well Gating Enabled: %s\n", str_yes_no(mtl_powergate_enable & GEN9_RENDER_PG_ENABLE)); } seq_puts(m, "Current RC state: "); switch (REG_FIELD_GET(MTL_CC_MASK, gt_core_status)) { case MTL_CC0: seq_puts(m, "RC0\n"); break; case MTL_CC6: seq_puts(m, "RC6\n"); break; default: MISSING_CASE(REG_FIELD_GET(MTL_CC_MASK, gt_core_status)); seq_puts(m, "Unknown\n"); break; } seq_printf(m, "Multi-threaded Forcewake Request: 0x%x\n", mt_fwake_req); if (gt->type == GT_MEDIA) seq_printf(m, "Media Power Well: %s\n", (mtl_powergate_status & GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down"); else seq_printf(m, "Render Power Well: %s\n", (mtl_powergate_status & GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down"); /* Works for both render and media gt's */ intel_rc6_print_residency(m, "RC6 residency since boot:", INTEL_RC6_RES_RC6); return fw_domains_show(m, NULL); } static int drpc_show(struct seq_file *m, void *unused) { struct intel_gt *gt = m->private; struct drm_i915_private *i915 = gt->i915; intel_wakeref_t wakeref; int err = -ENODEV; with_intel_runtime_pm(gt->uncore->rpm, wakeref) { if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) err = mtl_drpc(m); else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) err = vlv_drpc(m); else if (GRAPHICS_VER(i915) >= 6) err = gen6_drpc(m); else err = ilk_drpc(m); } return err; } DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(drpc); void intel_gt_pm_frequency_dump(struct intel_gt *gt, struct drm_printer *p) { struct drm_i915_private *i915 = gt->i915; struct intel_uncore *uncore = gt->uncore; struct intel_rps *rps = &gt->rps; intel_wakeref_t wakeref; wakeref = intel_runtime_pm_get(uncore->rpm); if (GRAPHICS_VER(i915) == 5) { u16 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL); u16 rgvstat = intel_uncore_read16(uncore, MEMSTAT_ILK); drm_printf(p, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf); drm_printf(p, "Requested VID: %d\n", rgvswctl & 0x3f); drm_printf(p, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >> MEMSTAT_VID_SHIFT); drm_printf(p, "Current P-state: %d\n", REG_FIELD_GET(MEMSTAT_PSTATE_MASK, rgvstat)); } else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) { u32 rpmodectl, freq_sts; rpmodectl = intel_uncore_read(uncore, GEN6_RP_CONTROL); drm_printf(p, "Video Turbo Mode: %s\n", str_yes_no(rpmodectl & GEN6_RP_MEDIA_TURBO)); drm_printf(p, "HW control enabled: %s\n", str_yes_no(rpmodectl & GEN6_RP_ENABLE)); drm_printf(p, "SW control enabled: %s\n", str_yes_no((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) == GEN6_RP_MEDIA_SW_MODE)); vlv_punit_get(i915); freq_sts = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS); vlv_punit_put(i915); drm_printf(p, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts); drm_printf(p, "DDR freq: %d MHz\n", i915->mem_freq); drm_printf(p, "actual GPU freq: %d MHz\n", intel_gpu_freq(rps, (freq_sts >> 8) & 0xff)); drm_printf(p, "current GPU freq: %d MHz\n", intel_gpu_freq(rps, rps->cur_freq)); drm_printf(p, "max GPU freq: %d MHz\n", intel_gpu_freq(rps, rps->max_freq)); drm_printf(p, "min GPU freq: %d MHz\n", intel_gpu_freq(rps, rps->min_freq)); drm_printf(p, "idle GPU freq: %d MHz\n", intel_gpu_freq(rps, rps->idle_freq)); drm_printf(p, "efficient (RPe) frequency: %d MHz\n", intel_gpu_freq(rps, rps->efficient_freq)); } else if (GRAPHICS_VER(i915) >= 6) { gen6_rps_frequency_dump(rps, p); } else { drm_puts(p, "no P-state info available\n"); } drm_printf(p, "Current CD clock frequency: %d kHz\n", i915->display.cdclk.hw.cdclk); drm_printf(p, "Max CD clock frequency: %d kHz\n", i915->display.cdclk.max_cdclk_freq); drm_printf(p, "Max pixel clock frequency: %d kHz\n", i915->max_dotclk_freq); intel_runtime_pm_put(uncore->rpm, wakeref); } static int frequency_show(struct seq_file *m, void *unused) { struct intel_gt *gt = m->private; struct drm_printer p = drm_seq_file_printer(m); intel_gt_pm_frequency_dump(gt, &p); return 0; } DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(frequency); static int llc_show(struct seq_file *m, void *data) { struct intel_gt *gt = m->private; struct drm_i915_private *i915 = gt->i915; const bool edram = GRAPHICS_VER(i915) > 8; struct intel_rps *rps = &gt->rps; unsigned int max_gpu_freq, min_gpu_freq; intel_wakeref_t wakeref; int gpu_freq, ia_freq; seq_printf(m, "LLC: %s\n", str_yes_no(HAS_LLC(i915))); seq_printf(m, "%s: %uMB\n", edram ? "eDRAM" : "eLLC", i915->edram_size_mb); min_gpu_freq = rps->min_freq; max_gpu_freq = rps->max_freq; if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) { /* Convert GT frequency to 50 HZ units */ min_gpu_freq /= GEN9_FREQ_SCALER; max_gpu_freq /= GEN9_FREQ_SCALER; } seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n"); wakeref = intel_runtime_pm_get(gt->uncore->rpm); for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) { ia_freq = gpu_freq; snb_pcode_read(gt->uncore, GEN6_PCODE_READ_MIN_FREQ_TABLE, &ia_freq, NULL); seq_printf(m, "%d\t\t%d\t\t\t\t%d\n", intel_gpu_freq(rps, (gpu_freq * (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11 ? GEN9_FREQ_SCALER : 1))), ((ia_freq >> 0) & 0xff) * 100, ((ia_freq >> 8) & 0xff) * 100); } intel_runtime_pm_put(gt->uncore->rpm, wakeref); return 0; } static bool llc_eval(void *data) { struct intel_gt *gt = data; return HAS_LLC(gt->i915); } DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(llc); static const char *rps_power_to_str(unsigned int power) { static const char * const strings[] = { [LOW_POWER] = "low power", [BETWEEN] = "mixed", [HIGH_POWER] = "high power", }; if (power >= ARRAY_SIZE(strings) || !strings[power]) return "unknown"; return strings[power]; } static int rps_boost_show(struct seq_file *m, void *data) { struct intel_gt *gt = m->private; struct drm_i915_private *i915 = gt->i915; struct intel_rps *rps = &gt->rps; seq_printf(m, "RPS enabled? %s\n", str_yes_no(intel_rps_is_enabled(rps))); seq_printf(m, "RPS active? %s\n", str_yes_no(intel_rps_is_active(rps))); seq_printf(m, "GPU busy? %s, %llums\n", str_yes_no(gt->awake), ktime_to_ms(intel_gt_get_awake_time(gt))); seq_printf(m, "Boosts outstanding? %d\n", atomic_read(&rps->num_waiters)); seq_printf(m, "Interactive? %d\n", READ_ONCE(rps->power.interactive)); seq_printf(m, "Frequency requested %d, actual %d\n", intel_gpu_freq(rps, rps->cur_freq), intel_rps_read_actual_frequency(rps)); seq_printf(m, " min hard:%d, soft:%d; max soft:%d, hard:%d\n", intel_gpu_freq(rps, rps->min_freq), intel_gpu_freq(rps, rps->min_freq_softlimit), intel_gpu_freq(rps, rps->max_freq_softlimit), intel_gpu_freq(rps, rps->max_freq)); seq_printf(m, " idle:%d, efficient:%d, boost:%d\n", intel_gpu_freq(rps, rps->idle_freq), intel_gpu_freq(rps, rps->efficient_freq), intel_gpu_freq(rps, rps->boost_freq)); seq_printf(m, "Wait boosts: %d\n", READ_ONCE(rps->boosts)); if (GRAPHICS_VER(i915) >= 6 && intel_rps_is_active(rps)) { struct intel_uncore *uncore = gt->uncore; u32 rpup, rpupei; u32 rpdown, rpdownei; intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); rpup = intel_uncore_read_fw(uncore, GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK; rpupei = intel_uncore_read_fw(uncore, GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK; rpdown = intel_uncore_read_fw(uncore, GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK; rpdownei = intel_uncore_read_fw(uncore, GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK; intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n", rps_power_to_str(rps->power.mode)); seq_printf(m, " Avg. up: %d%% [above threshold? %d%%]\n", rpup && rpupei ? 100 * rpup / rpupei : 0, rps->power.up_threshold); seq_printf(m, " Avg. down: %d%% [below threshold? %d%%]\n", rpdown && rpdownei ? 100 * rpdown / rpdownei : 0, rps->power.down_threshold); } else { seq_puts(m, "\nRPS Autotuning inactive\n"); } return 0; } static bool rps_eval(void *data) { struct intel_gt *gt = data; if (intel_guc_slpc_is_used(&gt->uc.guc)) return false; else return HAS_RPS(gt->i915); } DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(rps_boost); static int perf_limit_reasons_get(void *data, u64 *val) { struct intel_gt *gt = data; intel_wakeref_t wakeref; with_intel_runtime_pm(gt->uncore->rpm, wakeref) *val = intel_uncore_read(gt->uncore, intel_gt_perf_limit_reasons_reg(gt)); return 0; } static int perf_limit_reasons_clear(void *data, u64 val) { struct intel_gt *gt = data; intel_wakeref_t wakeref; /* * Clear the upper 16 "log" bits, the lower 16 "status" bits are * read-only. The upper 16 "log" bits are identical to the lower 16 * "status" bits except that the "log" bits remain set until cleared. */ with_intel_runtime_pm(gt->uncore->rpm, wakeref) intel_uncore_rmw(gt->uncore, intel_gt_perf_limit_reasons_reg(gt), GT0_PERF_LIMIT_REASONS_LOG_MASK, 0); return 0; } static bool perf_limit_reasons_eval(void *data) { struct intel_gt *gt = data; return i915_mmio_reg_valid(intel_gt_perf_limit_reasons_reg(gt)); } DEFINE_SIMPLE_ATTRIBUTE(perf_limit_reasons_fops, perf_limit_reasons_get, perf_limit_reasons_clear, "0x%llx\n"); void intel_gt_pm_debugfs_register(struct intel_gt *gt, struct dentry *root) { static const struct intel_gt_debugfs_file files[] = { { "drpc", &drpc_fops, NULL }, { "frequency", &frequency_fops, NULL }, { "forcewake", &fw_domains_fops, NULL }, { "forcewake_user", &forcewake_user_fops, NULL}, { "llc", &llc_fops, llc_eval }, { "rps_boost", &rps_boost_fops, rps_eval }, { "perf_limit_reasons", &perf_limit_reasons_fops, perf_limit_reasons_eval }, }; intel_gt_debugfs_register_files(root, files, ARRAY_SIZE(files), gt); }
linux-master
drivers/gpu/drm/i915/gt/intel_gt_pm_debugfs.c
// SPDX-License-Identifier: MIT /* * Copyright © 2014-2018 Intel Corporation */ #include "gem/i915_gem_internal.h" #include "gem/i915_gem_object.h" #include "i915_drv.h" #include "intel_engine_pm.h" #include "intel_gt_buffer_pool.h" static struct list_head * bucket_for_size(struct intel_gt_buffer_pool *pool, size_t sz) { int n; /* * Compute a power-of-two bucket, but throw everything greater than * 16KiB into the same bucket: i.e. the buckets hold objects of * (1 page, 2 pages, 4 pages, 8+ pages). */ n = fls(sz >> PAGE_SHIFT) - 1; if (n >= ARRAY_SIZE(pool->cache_list)) n = ARRAY_SIZE(pool->cache_list) - 1; return &pool->cache_list[n]; } static void node_free(struct intel_gt_buffer_pool_node *node) { i915_gem_object_put(node->obj); i915_active_fini(&node->active); kfree_rcu(node, rcu); } static bool pool_free_older_than(struct intel_gt_buffer_pool *pool, long keep) { struct intel_gt_buffer_pool_node *node, *stale = NULL; bool active = false; int n; /* Free buffers that have not been used in the past second */ for (n = 0; n < ARRAY_SIZE(pool->cache_list); n++) { struct list_head *list = &pool->cache_list[n]; if (list_empty(list)) continue; if (spin_trylock_irq(&pool->lock)) { struct list_head *pos; /* Most recent at head; oldest at tail */ list_for_each_prev(pos, list) { unsigned long age; node = list_entry(pos, typeof(*node), link); age = READ_ONCE(node->age); if (!age || jiffies - age < keep) break; /* Check we are the first to claim this node */ if (!xchg(&node->age, 0)) break; node->free = stale; stale = node; } if (!list_is_last(pos, list)) __list_del_many(pos, list); spin_unlock_irq(&pool->lock); } active |= !list_empty(list); } while ((node = stale)) { stale = stale->free; node_free(node); } return active; } static void pool_free_work(struct work_struct *wrk) { struct intel_gt_buffer_pool *pool = container_of(wrk, typeof(*pool), work.work); struct intel_gt *gt = container_of(pool, struct intel_gt, buffer_pool); if (pool_free_older_than(pool, HZ)) queue_delayed_work(gt->i915->unordered_wq, &pool->work, round_jiffies_up_relative(HZ)); } static void pool_retire(struct i915_active *ref) { struct intel_gt_buffer_pool_node *node = container_of(ref, typeof(*node), active); struct intel_gt_buffer_pool *pool = node->pool; struct intel_gt *gt = container_of(pool, struct intel_gt, buffer_pool); struct list_head *list = bucket_for_size(pool, node->obj->base.size); unsigned long flags; if (node->pinned) { i915_gem_object_unpin_pages(node->obj); /* Return this object to the shrinker pool */ i915_gem_object_make_purgeable(node->obj); node->pinned = false; } GEM_BUG_ON(node->age); spin_lock_irqsave(&pool->lock, flags); list_add_rcu(&node->link, list); WRITE_ONCE(node->age, jiffies ?: 1); /* 0 reserved for active nodes */ spin_unlock_irqrestore(&pool->lock, flags); queue_delayed_work(gt->i915->unordered_wq, &pool->work, round_jiffies_up_relative(HZ)); } void intel_gt_buffer_pool_mark_used(struct intel_gt_buffer_pool_node *node) { assert_object_held(node->obj); if (node->pinned) return; __i915_gem_object_pin_pages(node->obj); /* Hide this pinned object from the shrinker until retired */ i915_gem_object_make_unshrinkable(node->obj); node->pinned = true; } static struct intel_gt_buffer_pool_node * node_create(struct intel_gt_buffer_pool *pool, size_t sz, enum i915_map_type type) { struct intel_gt *gt = container_of(pool, struct intel_gt, buffer_pool); struct intel_gt_buffer_pool_node *node; struct drm_i915_gem_object *obj; node = kmalloc(sizeof(*node), GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); if (!node) return ERR_PTR(-ENOMEM); node->age = 0; node->pool = pool; node->pinned = false; i915_active_init(&node->active, NULL, pool_retire, 0); obj = i915_gem_object_create_internal(gt->i915, sz); if (IS_ERR(obj)) { i915_active_fini(&node->active); kfree(node); return ERR_CAST(obj); } i915_gem_object_set_readonly(obj); node->type = type; node->obj = obj; return node; } struct intel_gt_buffer_pool_node * intel_gt_get_buffer_pool(struct intel_gt *gt, size_t size, enum i915_map_type type) { struct intel_gt_buffer_pool *pool = &gt->buffer_pool; struct intel_gt_buffer_pool_node *node; struct list_head *list; int ret; size = PAGE_ALIGN(size); list = bucket_for_size(pool, size); rcu_read_lock(); list_for_each_entry_rcu(node, list, link) { unsigned long age; if (node->obj->base.size < size) continue; if (node->type != type) continue; age = READ_ONCE(node->age); if (!age) continue; if (cmpxchg(&node->age, age, 0) == age) { spin_lock_irq(&pool->lock); list_del_rcu(&node->link); spin_unlock_irq(&pool->lock); break; } } rcu_read_unlock(); if (&node->link == list) { node = node_create(pool, size, type); if (IS_ERR(node)) return node; } ret = i915_active_acquire(&node->active); if (ret) { node_free(node); return ERR_PTR(ret); } return node; } void intel_gt_init_buffer_pool(struct intel_gt *gt) { struct intel_gt_buffer_pool *pool = &gt->buffer_pool; int n; spin_lock_init(&pool->lock); for (n = 0; n < ARRAY_SIZE(pool->cache_list); n++) INIT_LIST_HEAD(&pool->cache_list[n]); INIT_DELAYED_WORK(&pool->work, pool_free_work); } void intel_gt_flush_buffer_pool(struct intel_gt *gt) { struct intel_gt_buffer_pool *pool = &gt->buffer_pool; do { while (pool_free_older_than(pool, 0)) ; } while (cancel_delayed_work_sync(&pool->work)); } void intel_gt_fini_buffer_pool(struct intel_gt *gt) { struct intel_gt_buffer_pool *pool = &gt->buffer_pool; int n; for (n = 0; n < ARRAY_SIZE(pool->cache_list); n++) GEM_BUG_ON(!list_empty(&pool->cache_list[n])); }
linux-master
drivers/gpu/drm/i915/gt/intel_gt_buffer_pool.c
// SPDX-License-Identifier: MIT /* * Copyright © 2014-2018 Intel Corporation */ #include "i915_drv.h" #include "i915_reg.h" #include "intel_context.h" #include "intel_engine_pm.h" #include "intel_engine_regs.h" #include "intel_gpu_commands.h" #include "intel_gt.h" #include "intel_gt_mcr.h" #include "intel_gt_regs.h" #include "intel_ring.h" #include "intel_workarounds.h" /** * DOC: Hardware workarounds * * Hardware workarounds are register programming documented to be executed in * the driver that fall outside of the normal programming sequences for a * platform. There are some basic categories of workarounds, depending on * how/when they are applied: * * - Context workarounds: workarounds that touch registers that are * saved/restored to/from the HW context image. The list is emitted (via Load * Register Immediate commands) once when initializing the device and saved in * the default context. That default context is then used on every context * creation to have a "primed golden context", i.e. a context image that * already contains the changes needed to all the registers. * * Context workarounds should be implemented in the \*_ctx_workarounds_init() * variants respective to the targeted platforms. * * - Engine workarounds: the list of these WAs is applied whenever the specific * engine is reset. It's also possible that a set of engine classes share a * common power domain and they are reset together. This happens on some * platforms with render and compute engines. In this case (at least) one of * them need to keeep the workaround programming: the approach taken in the * driver is to tie those workarounds to the first compute/render engine that * is registered. When executing with GuC submission, engine resets are * outside of kernel driver control, hence the list of registers involved in * written once, on engine initialization, and then passed to GuC, that * saves/restores their values before/after the reset takes place. See * ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference. * * Workarounds for registers specific to RCS and CCS should be implemented in * rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for * registers belonging to BCS, VCS or VECS should be implemented in * xcs_engine_wa_init(). Workarounds for registers not belonging to a specific * engine's MMIO range but that are part of of the common RCS/CCS reset domain * should be implemented in general_render_compute_wa_init(). * * - GT workarounds: the list of these WAs is applied whenever these registers * revert to their default values: on GPU reset, suspend/resume [1]_, etc. * * GT workarounds should be implemented in the \*_gt_workarounds_init() * variants respective to the targeted platforms. * * - Register whitelist: some workarounds need to be implemented in userspace, * but need to touch privileged registers. The whitelist in the kernel * instructs the hardware to allow the access to happen. From the kernel side, * this is just a special case of a MMIO workaround (as we write the list of * these to/be-whitelisted registers to some special HW registers). * * Register whitelisting should be done in the \*_whitelist_build() variants * respective to the targeted platforms. * * - Workaround batchbuffers: buffers that get executed automatically by the * hardware on every HW context restore. These buffers are created and * programmed in the default context so the hardware always go through those * programming sequences when switching contexts. The support for workaround * batchbuffers is enabled these hardware mechanisms: * * #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default * context, pointing the hardware to jump to that location when that offset * is reached in the context restore. Workaround batchbuffer in the driver * currently uses this mechanism for all platforms. * * #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context, * pointing the hardware to a buffer to continue executing after the * engine registers are restored in a context restore sequence. This is * currently not used in the driver. * * - Other: There are WAs that, due to their nature, cannot be applied from a * central place. Those are peppered around the rest of the code, as needed. * Workarounds related to the display IP are the main example. * * .. [1] Technically, some registers are powercontext saved & restored, so they * survive a suspend/resume. In practice, writing them again is not too * costly and simplifies things, so it's the approach taken in the driver. */ static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt, const char *name, const char *engine_name) { wal->gt = gt; wal->name = name; wal->engine_name = engine_name; } #define WA_LIST_CHUNK (1 << 4) static void wa_init_finish(struct i915_wa_list *wal) { /* Trim unused entries. */ if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) { struct i915_wa *list = kmemdup(wal->list, wal->count * sizeof(*list), GFP_KERNEL); if (list) { kfree(wal->list); wal->list = list; } } if (!wal->count) return; drm_dbg(&wal->gt->i915->drm, "Initialized %u %s workarounds on %s\n", wal->wa_count, wal->name, wal->engine_name); } static enum forcewake_domains wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal) { enum forcewake_domains fw = 0; struct i915_wa *wa; unsigned int i; for (i = 0, wa = wal->list; i < wal->count; i++, wa++) fw |= intel_uncore_forcewake_for_reg(uncore, wa->reg, FW_REG_READ | FW_REG_WRITE); return fw; } static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa) { unsigned int addr = i915_mmio_reg_offset(wa->reg); struct drm_i915_private *i915 = wal->gt->i915; unsigned int start = 0, end = wal->count; const unsigned int grow = WA_LIST_CHUNK; struct i915_wa *wa_; GEM_BUG_ON(!is_power_of_2(grow)); if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */ struct i915_wa *list; list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa), GFP_KERNEL); if (!list) { drm_err(&i915->drm, "No space for workaround init!\n"); return; } if (wal->list) { memcpy(list, wal->list, sizeof(*wa) * wal->count); kfree(wal->list); } wal->list = list; } while (start < end) { unsigned int mid = start + (end - start) / 2; if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) { start = mid + 1; } else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) { end = mid; } else { wa_ = &wal->list[mid]; if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) { drm_err(&i915->drm, "Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n", i915_mmio_reg_offset(wa_->reg), wa_->clr, wa_->set); wa_->set &= ~wa->clr; } wal->wa_count++; wa_->set |= wa->set; wa_->clr |= wa->clr; wa_->read |= wa->read; return; } } wal->wa_count++; wa_ = &wal->list[wal->count++]; *wa_ = *wa; while (wa_-- > wal->list) { GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) == i915_mmio_reg_offset(wa_[1].reg)); if (i915_mmio_reg_offset(wa_[1].reg) > i915_mmio_reg_offset(wa_[0].reg)) break; swap(wa_[1], wa_[0]); } } static void wa_add(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set, u32 read_mask, bool masked_reg) { struct i915_wa wa = { .reg = reg, .clr = clear, .set = set, .read = read_mask, .masked_reg = masked_reg, }; _wa_add(wal, &wa); } static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set, u32 read_mask, bool masked_reg) { struct i915_wa wa = { .mcr_reg = reg, .clr = clear, .set = set, .read = read_mask, .masked_reg = masked_reg, .is_mcr = 1, }; _wa_add(wal, &wa); } static void wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set) { wa_add(wal, reg, clear, set, clear | set, false); } static void wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set) { wa_mcr_add(wal, reg, clear, set, clear | set, false); } static void wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set) { wa_write_clr_set(wal, reg, ~0, set); } static void wa_mcr_write(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set) { wa_mcr_write_clr_set(wal, reg, ~0, set); } static void wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set) { wa_write_clr_set(wal, reg, set, set); } static void wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set) { wa_mcr_write_clr_set(wal, reg, set, set); } static void wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr) { wa_write_clr_set(wal, reg, clr, 0); } static void wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr) { wa_mcr_write_clr_set(wal, reg, clr, 0); } /* * WA operations on "masked register". A masked register has the upper 16 bits * documented as "masked" in b-spec. Its purpose is to allow writing to just a * portion of the register without a rmw: you simply write in the upper 16 bits * the mask of bits you are going to modify. * * The wa_masked_* family of functions already does the necessary operations to * calculate the mask based on the parameters passed, so user only has to * provide the lower 16 bits of that register. */ static void wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val) { wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true); } static void wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val) { wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true); } static void wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val) { wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true); } static void wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val) { wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true); } static void wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg, u32 mask, u32 val) { wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true); } static void wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 mask, u32 val) { wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true); } static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING); } static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING); } static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING); /* WaDisableAsyncFlipPerfMode:bdw,chv */ wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE); /* WaDisablePartialInstShootdown:bdw,chv */ wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE); /* Use Force Non-Coherent whenever executing a 3D context. This is a * workaround for a possible hang in the unlikely event a TLB * invalidation occurs during a PSD flush. */ /* WaForceEnableNonCoherent:bdw,chv */ /* WaHdcDisableFetchWhenMasked:bdw,chv */ wa_masked_en(wal, HDC_CHICKEN0, HDC_DONOT_FETCH_MEM_WHEN_MASKED | HDC_FORCE_NON_COHERENT); /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0: * "The Hierarchical Z RAW Stall Optimization allows non-overlapping * polygons in the same 8x4 pixel/sample area to be processed without * stalling waiting for the earlier ones to write to Hierarchical Z * buffer." * * This optimization is off by default for BDW and CHV; turn it on. */ wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE); /* Wa4x4STCOptimizationDisable:bdw,chv */ wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE); /* * BSpec recommends 8x4 when MSAA is used, * however in practice 16x4 seems fastest. * * Note that PS/WM thread counts depend on the WIZ hashing * disable bit, which we don't touch here, but it's good * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). */ wa_masked_field_set(wal, GEN7_GT_MODE, GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4); } static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { struct drm_i915_private *i915 = engine->i915; gen8_ctx_workarounds_init(engine, wal); /* WaDisableThreadStallDopClockGating:bdw (pre-production) */ wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE); /* WaDisableDopClockGating:bdw * * Also see the related UCGTCL1 write in bdw_init_clock_gating() * to disable EUTC clock gating. */ wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, DOP_CLOCK_GATING_DISABLE); wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3, GEN8_SAMPLER_POWER_BYPASS_DIS); wa_masked_en(wal, HDC_CHICKEN0, /* WaForceContextSaveRestoreNonCoherent:bdw */ HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT | /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */ (IS_BROADWELL_GT3(i915) ? HDC_FENCE_DEST_SLM_DISABLE : 0)); } static void chv_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { gen8_ctx_workarounds_init(engine, wal); /* WaDisableThreadStallDopClockGating:chv */ wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE); /* Improve HiZ throughput on CHV. */ wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X); } static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { struct drm_i915_private *i915 = engine->i915; if (HAS_LLC(i915)) { /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl * * Must match Display Engine. See * WaCompressedResourceDisplayNewHashMode. */ wa_masked_en(wal, COMMON_SLICE_CHICKEN2, GEN9_PBE_COMPRESSED_HASH_SELECTION); wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7, GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR); } /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */ /* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */ wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, FLOW_CONTROL_ENABLE | PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE); /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */ /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */ wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7, GEN9_ENABLE_YV12_BUGFIX | GEN9_ENABLE_GPGPU_PREEMPTION); /* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */ /* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */ wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE | GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE); /* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */ wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5, GEN9_CCS_TLB_PREFETCH_ENABLE); /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */ wa_masked_en(wal, HDC_CHICKEN0, HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT | HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE); /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are * both tied to WaForceContextSaveRestoreNonCoherent * in some hsds for skl. We keep the tie for all gen9. The * documentation is a bit hazy and so we want to get common behaviour, * even though there is no clear evidence we would need both on kbl/bxt. * This area has been source of system hangs so we play it safe * and mimic the skl regardless of what bspec says. * * Use Force Non-Coherent whenever executing a 3D context. This * is a workaround for a possible hang in the unlikely event * a TLB invalidation occurs during a PSD flush. */ /* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */ wa_masked_en(wal, HDC_CHICKEN0, HDC_FORCE_NON_COHERENT); /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */ if (IS_SKYLAKE(i915) || IS_KABYLAKE(i915) || IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3, GEN8_SAMPLER_POWER_BYPASS_DIS); /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */ wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE); /* * Supporting preemption with fine-granularity requires changes in the * batch buffer programming. Since we can't break old userspace, we * need to set our default preemption level to safe value. Userspace is * still able to use more fine-grained preemption levels, since in * WaEnablePreemptionGranularityControlByUMD we're whitelisting the * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are * not real HW workarounds, but merely a way to start using preemption * while maintaining old contract with userspace. */ /* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */ wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL); /* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */ wa_masked_field_set(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_GPGPU_LEVEL_MASK, GEN9_PREEMPT_GPGPU_COMMAND_LEVEL); /* WaClearHIZ_WM_CHICKEN3:bxt,glk */ if (IS_GEN9_LP(i915)) wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ); } static void skl_tune_iz_hashing(struct intel_engine_cs *engine, struct i915_wa_list *wal) { struct intel_gt *gt = engine->gt; u8 vals[3] = { 0, 0, 0 }; unsigned int i; for (i = 0; i < 3; i++) { u8 ss; /* * Only consider slices where one, and only one, subslice has 7 * EUs */ if (!is_power_of_2(gt->info.sseu.subslice_7eu[i])) continue; /* * subslice_7eu[i] != 0 (because of the check above) and * ss_max == 4 (maximum number of subslices possible per slice) * * -> 0 <= ss <= 3; */ ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1; vals[i] = 3 - ss; } if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0) return; /* Tune IZ hashing. See intel_device_info_runtime_init() */ wa_masked_field_set(wal, GEN7_GT_MODE, GEN9_IZ_HASHING_MASK(2) | GEN9_IZ_HASHING_MASK(1) | GEN9_IZ_HASHING_MASK(0), GEN9_IZ_HASHING(2, vals[2]) | GEN9_IZ_HASHING(1, vals[1]) | GEN9_IZ_HASHING(0, vals[0])); } static void skl_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { gen9_ctx_workarounds_init(engine, wal); skl_tune_iz_hashing(engine, wal); } static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { gen9_ctx_workarounds_init(engine, wal); /* WaDisableThreadStallDopClockGating:bxt */ wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE); /* WaToEnableHwFixForPushConstHWBug:bxt */ wa_masked_en(wal, COMMON_SLICE_CHICKEN2, GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); } static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { struct drm_i915_private *i915 = engine->i915; gen9_ctx_workarounds_init(engine, wal); /* WaToEnableHwFixForPushConstHWBug:kbl */ if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER)) wa_masked_en(wal, COMMON_SLICE_CHICKEN2, GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); /* WaDisableSbeCacheDispatchPortSharing:kbl */ wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1, GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE); } static void glk_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { gen9_ctx_workarounds_init(engine, wal); /* WaToEnableHwFixForPushConstHWBug:glk */ wa_masked_en(wal, COMMON_SLICE_CHICKEN2, GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); } static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { gen9_ctx_workarounds_init(engine, wal); /* WaToEnableHwFixForPushConstHWBug:cfl */ wa_masked_en(wal, COMMON_SLICE_CHICKEN2, GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); /* WaDisableSbeCacheDispatchPortSharing:cfl */ wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1, GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE); } static void icl_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { /* Wa_1406697149 (WaDisableBankHangMode:icl) */ wa_write(wal, GEN8_L3CNTLREG, GEN8_ERRDETBCTRL); /* WaForceEnableNonCoherent:icl * This is not the same workaround as in early Gen9 platforms, where * lacking this could cause system hangs, but coherency performance * overhead is high and only a few compute workloads really need it * (the register is whitelisted in hardware now, so UMDs can opt in * for coherency if they have a good reason). */ wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT); /* WaEnableFloatBlendOptimization:icl */ wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0, _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE), 0 /* write-only, so skip validation */, true); /* WaDisableGPGPUMidThreadPreemption:icl */ wa_masked_field_set(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_GPGPU_LEVEL_MASK, GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL); /* allow headerless messages for preemptible GPGPU context */ wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, GEN11_SAMPLER_ENABLE_HEADLESS_MSG); /* Wa_1604278689:icl,ehl */ wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID); wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER, 0, 0xFFFFFFFF); /* Wa_1406306137:icl,ehl */ wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU); } /* * These settings aren't actually workarounds, but general tuning settings that * need to be programmed on dg2 platform. */ static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP); wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK, REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f)); wa_mcr_write_clr_set(wal, XEHP_FF_MODE2, FF_MODE2_TDS_TIMER_MASK, FF_MODE2_TDS_TIMER_128); } static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { struct drm_i915_private *i915 = engine->i915; /* * Wa_1409142259:tgl,dg1,adl-p * Wa_1409347922:tgl,dg1,adl-p * Wa_1409252684:tgl,dg1,adl-p * Wa_1409217633:tgl,dg1,adl-p * Wa_1409207793:tgl,dg1,adl-p * Wa_1409178076:tgl,dg1,adl-p * Wa_1408979724:tgl,dg1,adl-p * Wa_14010443199:tgl,rkl,dg1,adl-p * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p */ wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3, GEN12_DISABLE_CPS_AWARE_COLOR_PIPE); /* WaDisableGPGPUMidThreadPreemption:gen12 */ wa_masked_field_set(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_GPGPU_LEVEL_MASK, GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL); /* * Wa_16011163337 - GS_TIMER * * TDS_TIMER: Although some platforms refer to it as Wa_1604555607, we * need to program it even on those that don't explicitly list that * workaround. * * Note that the programming of GEN12_FF_MODE2 is further modified * according to the FF_MODE2 guidance given by Wa_1608008084. * Wa_1608008084 tells us the FF_MODE2 register will return the wrong * value when read from the CPU. * * The default value for this register is zero for all fields. * So instead of doing a RMW we should just write the desired values * for TDS and GS timers. Note that since the readback can't be trusted, * the clear mask is just set to ~0 to make sure other bits are not * inadvertently set. For the same reason read verification is ignored. */ wa_add(wal, GEN12_FF_MODE2, ~0, FF_MODE2_TDS_TIMER_128 | FF_MODE2_GS_TIMER_224, 0, false); if (!IS_DG1(i915)) { /* Wa_1806527549 */ wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE); /* Wa_1606376872 */ wa_masked_en(wal, COMMON_SLICE_CHICKEN4, DISABLE_TDC_LOAD_BALANCING_CALC); } } static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { gen12_ctx_workarounds_init(engine, wal); /* Wa_1409044764 */ wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3, DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN); /* Wa_22010493298 */ wa_masked_en(wal, HIZ_CHICKEN, DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE); } static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { dg2_ctx_gt_tuning_init(engine, wal); /* Wa_16011186671:dg2_g11 */ if (IS_DG2_GRAPHICS_STEP(engine->i915, G11, STEP_A0, STEP_B0)) { wa_mcr_masked_dis(wal, VFLSKPD, DIS_MULT_MISS_RD_SQUASH); wa_mcr_masked_en(wal, VFLSKPD, DIS_OVER_FETCH_CACHE); } if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0)) { /* Wa_14010469329:dg2_g10 */ wa_mcr_masked_en(wal, XEHP_COMMON_SLICE_CHICKEN3, XEHP_DUAL_SIMD8_SEQ_MERGE_DISABLE); /* * Wa_22010465075:dg2_g10 * Wa_22010613112:dg2_g10 * Wa_14010698770:dg2_g10 */ wa_mcr_masked_en(wal, XEHP_COMMON_SLICE_CHICKEN3, GEN12_DISABLE_CPS_AWARE_COLOR_PIPE); } /* Wa_16013271637:dg2 */ wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1, MSC_MSAA_REODER_BUF_BYPASS_DISABLE); /* Wa_14014947963:dg2 */ if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_B0, STEP_FOREVER) || IS_DG2_G11(engine->i915) || IS_DG2_G12(engine->i915)) wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000); /* Wa_18018764978:dg2 */ if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_C0, STEP_FOREVER) || IS_DG2_G11(engine->i915) || IS_DG2_G12(engine->i915)) wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL); /* Wa_15010599737:dg2 */ wa_mcr_masked_en(wal, CHICKEN_RASTER_1, DIS_SF_ROUND_NEAREST_EVEN); /* Wa_18019271663:dg2 */ wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE); } static void mtl_ctx_gt_tuning_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { struct drm_i915_private *i915 = engine->i915; dg2_ctx_gt_tuning_init(engine, wal); if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_B0, STEP_FOREVER) || IS_MTL_GRAPHICS_STEP(i915, P, STEP_B0, STEP_FOREVER)) wa_add(wal, DRAW_WATERMARK, VERT_WM_VAL, 0x3FF, 0, false); } static void mtl_ctx_workarounds_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { struct drm_i915_private *i915 = engine->i915; mtl_ctx_gt_tuning_init(engine, wal); if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) || IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0)) { /* Wa_14014947963 */ wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000); /* Wa_16013271637 */ wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1, MSC_MSAA_REODER_BUF_BYPASS_DISABLE); /* Wa_18019627453 */ wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS); /* Wa_18018764978 */ wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL); } /* Wa_18019271663 */ wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE); } static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine, struct i915_wa_list *wal) { /* * This is a "fake" workaround defined by software to ensure we * maintain reliable, backward-compatible behavior for userspace with * regards to how nested MI_BATCH_BUFFER_START commands are handled. * * The per-context setting of MI_MODE[12] determines whether the bits * of a nested MI_BATCH_BUFFER_START instruction should be interpreted * in the traditional manner or whether they should instead use a new * tgl+ meaning that breaks backward compatibility, but allows nesting * into 3rd-level batchbuffers. When this new capability was first * added in TGL, it remained off by default unless a context * intentionally opted in to the new behavior. However Xe_HPG now * flips this on by default and requires that we explicitly opt out if * we don't want the new behavior. * * From a SW perspective, we want to maintain the backward-compatible * behavior for userspace, so we'll apply a fake workaround to set it * back to the legacy behavior on platforms where the hardware default * is to break compatibility. At the moment there is no Linux * userspace that utilizes third-level batchbuffers, so this will avoid * userspace from needing to make any changes. using the legacy * meaning is the correct thing to do. If/when we have userspace * consumers that want to utilize third-level batch nesting, we can * provide a context parameter to allow them to opt-in. */ wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN); } static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { u8 mocs; /* * Some blitter commands do not have a field for MOCS, those * commands will use MOCS index pointed by BLIT_CCTL. * BLIT_CCTL registers are needed to be programmed to un-cached. */ if (engine->class == COPY_ENGINE_CLASS) { mocs = engine->gt->mocs.uc_index; wa_write_clr_set(wal, BLIT_CCTL(engine->mmio_base), BLIT_CCTL_MASK, BLIT_CCTL_MOCS(mocs, mocs)); } } /* * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround * defined by the hardware team, but it programming general context registers. * Adding those context register programming in context workaround * allow us to use the wa framework for proper application and validation. */ static void gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) fakewa_disable_nestedbb_mode(engine, wal); gen12_ctx_gt_mocs_init(engine, wal); } static void __intel_engine_init_ctx_wa(struct intel_engine_cs *engine, struct i915_wa_list *wal, const char *name) { struct drm_i915_private *i915 = engine->i915; wa_init_start(wal, engine->gt, name, engine->name); /* Applies to all engines */ /* * Fake workarounds are not the actual workaround but * programming of context registers using workaround framework. */ if (GRAPHICS_VER(i915) >= 12) gen12_ctx_gt_fake_wa_init(engine, wal); if (engine->class != RENDER_CLASS) goto done; if (IS_METEORLAKE(i915)) mtl_ctx_workarounds_init(engine, wal); else if (IS_PONTEVECCHIO(i915)) ; /* noop; none at this time */ else if (IS_DG2(i915)) dg2_ctx_workarounds_init(engine, wal); else if (IS_XEHPSDV(i915)) ; /* noop; none at this time */ else if (IS_DG1(i915)) dg1_ctx_workarounds_init(engine, wal); else if (GRAPHICS_VER(i915) == 12) gen12_ctx_workarounds_init(engine, wal); else if (GRAPHICS_VER(i915) == 11) icl_ctx_workarounds_init(engine, wal); else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) cfl_ctx_workarounds_init(engine, wal); else if (IS_GEMINILAKE(i915)) glk_ctx_workarounds_init(engine, wal); else if (IS_KABYLAKE(i915)) kbl_ctx_workarounds_init(engine, wal); else if (IS_BROXTON(i915)) bxt_ctx_workarounds_init(engine, wal); else if (IS_SKYLAKE(i915)) skl_ctx_workarounds_init(engine, wal); else if (IS_CHERRYVIEW(i915)) chv_ctx_workarounds_init(engine, wal); else if (IS_BROADWELL(i915)) bdw_ctx_workarounds_init(engine, wal); else if (GRAPHICS_VER(i915) == 7) gen7_ctx_workarounds_init(engine, wal); else if (GRAPHICS_VER(i915) == 6) gen6_ctx_workarounds_init(engine, wal); else if (GRAPHICS_VER(i915) < 8) ; else MISSING_CASE(GRAPHICS_VER(i915)); done: wa_init_finish(wal); } void intel_engine_init_ctx_wa(struct intel_engine_cs *engine) { __intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context"); } int intel_engine_emit_ctx_wa(struct i915_request *rq) { struct i915_wa_list *wal = &rq->engine->ctx_wa_list; struct intel_uncore *uncore = rq->engine->uncore; enum forcewake_domains fw; unsigned long flags; struct i915_wa *wa; unsigned int i; u32 *cs; int ret; if (wal->count == 0) return 0; ret = rq->engine->emit_flush(rq, EMIT_BARRIER); if (ret) return ret; cs = intel_ring_begin(rq, (wal->count * 2 + 2)); if (IS_ERR(cs)) return PTR_ERR(cs); fw = wal_get_fw_for_rmw(uncore, wal); intel_gt_mcr_lock(wal->gt, &flags); spin_lock(&uncore->lock); intel_uncore_forcewake_get__locked(uncore, fw); *cs++ = MI_LOAD_REGISTER_IMM(wal->count); for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { u32 val; /* Skip reading the register if it's not really needed */ if (wa->masked_reg || (wa->clr | wa->set) == U32_MAX) { val = wa->set; } else { val = wa->is_mcr ? intel_gt_mcr_read_any_fw(wal->gt, wa->mcr_reg) : intel_uncore_read_fw(uncore, wa->reg); val &= ~wa->clr; val |= wa->set; } *cs++ = i915_mmio_reg_offset(wa->reg); *cs++ = val; } *cs++ = MI_NOOP; intel_uncore_forcewake_put__locked(uncore, fw); spin_unlock(&uncore->lock); intel_gt_mcr_unlock(wal->gt, flags); intel_ring_advance(rq, cs); ret = rq->engine->emit_flush(rq, EMIT_BARRIER); if (ret) return ret; return 0; } static void gen4_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { /* WaDisable_RenderCache_OperationalFlush:gen4,ilk */ wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE); } static void g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { gen4_gt_workarounds_init(gt, wal); /* WaDisableRenderCachePipelinedFlush:g4x,ilk */ wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE); } static void ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { g4x_gt_workarounds_init(gt, wal); wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED); } static void snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { } static void ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */ wa_masked_dis(wal, GEN7_COMMON_SLICE_CHICKEN1, GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC); /* WaApplyL3ControlAndL3ChickenMode:ivb */ wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL); wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE); /* WaForceL3Serialization:ivb */ wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE); } static void vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { /* WaForceL3Serialization:vlv */ wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE); /* * WaIncreaseL3CreditsForVLVB0:vlv * This is the hardware default actually. */ wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE); } static void hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { /* L3 caching of data atomics doesn't work -- disable it. */ wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE); wa_add(wal, HSW_ROW_CHICKEN3, 0, _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE), 0 /* XXX does this reg exist? */, true); /* WaVSRefCountFullforceMissDisable:hsw */ wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME); } static void gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal) { const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu; unsigned int slice, subslice; u32 mcr, mcr_mask; GEM_BUG_ON(GRAPHICS_VER(i915) != 9); /* * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml * Before any MMIO read into slice/subslice specific registers, MCR * packet control register needs to be programmed to point to any * enabled s/ss pair. Otherwise, incorrect values will be returned. * This means each subsequent MMIO read will be forwarded to an * specific s/ss combination, but this is OK since these registers * are consistent across s/ss in almost all cases. In the rare * occasions, such as INSTDONE, where this value is dependent * on s/ss combo, the read should be done with read_subslice_reg. */ slice = ffs(sseu->slice_mask) - 1; GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw)); subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice)); GEM_BUG_ON(!subslice); subslice--; /* * We use GEN8_MCR..() macros to calculate the |mcr| value for * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads */ mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice); mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK; drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr); wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr); } static void gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { struct drm_i915_private *i915 = gt->i915; /* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */ gen9_wa_init_mcr(i915, wal); /* WaDisableKillLogic:bxt,skl,kbl */ if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915)) wa_write_or(wal, GAM_ECOCHK, ECOCHK_DIS_TLB); if (HAS_LLC(i915)) { /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl * * Must match Display Engine. See * WaCompressedResourceDisplayNewHashMode. */ wa_write_or(wal, MMCD_MISC_CTRL, MMCD_PCLA | MMCD_HOTSPOT_EN); } /* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */ wa_write_or(wal, GAM_ECOCHK, BDW_DISABLE_HDC_INVALIDATION); } static void skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { gen9_gt_workarounds_init(gt, wal); /* WaDisableGafsUnitClkGating:skl */ wa_write_or(wal, GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); /* WaInPlaceDecompressionHang:skl */ if (IS_SKYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0)) wa_write_or(wal, GEN9_GAMT_ECO_REG_RW_IA, GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS); } static void kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { gen9_gt_workarounds_init(gt, wal); /* WaDisableDynamicCreditSharing:kbl */ if (IS_KABYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, 0, STEP_C0)) wa_write_or(wal, GAMT_CHKN_BIT_REG, GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING); /* WaDisableGafsUnitClkGating:kbl */ wa_write_or(wal, GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); /* WaInPlaceDecompressionHang:kbl */ wa_write_or(wal, GEN9_GAMT_ECO_REG_RW_IA, GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS); } static void glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { gen9_gt_workarounds_init(gt, wal); } static void cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { gen9_gt_workarounds_init(gt, wal); /* WaDisableGafsUnitClkGating:cfl */ wa_write_or(wal, GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); /* WaInPlaceDecompressionHang:cfl */ wa_write_or(wal, GEN9_GAMT_ECO_REG_RW_IA, GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS); } static void __set_mcr_steering(struct i915_wa_list *wal, i915_reg_t steering_reg, unsigned int slice, unsigned int subslice) { u32 mcr, mcr_mask; mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice); mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK; wa_write_clr_set(wal, steering_reg, mcr_mask, mcr); } static void debug_dump_steering(struct intel_gt *gt) { struct drm_printer p = drm_debug_printer("MCR Steering:"); if (drm_debug_enabled(DRM_UT_DRIVER)) intel_gt_mcr_report_steering(&p, gt, false); } static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal, unsigned int slice, unsigned int subslice) { __set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice); gt->default_steering.groupid = slice; gt->default_steering.instanceid = subslice; debug_dump_steering(gt); } static void icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal) { const struct sseu_dev_info *sseu = &gt->info.sseu; unsigned int subslice; GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11); GEM_BUG_ON(hweight8(sseu->slice_mask) > 1); /* * Although a platform may have subslices, we need to always steer * reads to the lowest instance that isn't fused off. When Render * Power Gating is enabled, grabbing forcewake will only power up a * single subslice (the "minconfig") if there isn't a real workload * that needs to be run; this means that if we steer register reads to * one of the higher subslices, we run the risk of reading back 0's or * random garbage. */ subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0)); /* * If the subslice we picked above also steers us to a valid L3 bank, * then we can just rely on the default steering and won't need to * worry about explicitly re-steering L3BANK reads later. */ if (gt->info.l3bank_mask & BIT(subslice)) gt->steering_table[L3BANK] = NULL; __add_mcr_wa(gt, wal, 0, subslice); } static void xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal) { const struct sseu_dev_info *sseu = &gt->info.sseu; unsigned long slice, subslice = 0, slice_mask = 0; u32 lncf_mask = 0; int i; /* * On Xe_HP the steering increases in complexity. There are now several * more units that require steering and we're not guaranteed to be able * to find a common setting for all of them. These are: * - GSLICE (fusable) * - DSS (sub-unit within gslice; fusable) * - L3 Bank (fusable) * - MSLICE (fusable) * - LNCF (sub-unit within mslice; always present if mslice is present) * * We'll do our default/implicit steering based on GSLICE (in the * sliceid field) and DSS (in the subsliceid field). If we can * find overlap between the valid MSLICE and/or LNCF values with * a suitable GSLICE, then we can just re-use the default value and * skip and explicit steering at runtime. * * We only need to look for overlap between GSLICE/MSLICE/LNCF to find * a valid sliceid value. DSS steering is the only type of steering * that utilizes the 'subsliceid' bits. * * Also note that, even though the steering domain is called "GSlice" * and it is encoded in the register using the gslice format, the spec * says that the combined (geometry | compute) fuse should be used to * select the steering. */ /* Find the potential gslice candidates */ slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask, GEN_DSS_PER_GSLICE); /* * Find the potential LNCF candidates. Either LNCF within a valid * mslice is fine. */ for_each_set_bit(i, &gt->info.mslice_mask, GEN12_MAX_MSLICES) lncf_mask |= (0x3 << (i * 2)); /* * Are there any sliceid values that work for both GSLICE and LNCF * steering? */ if (slice_mask & lncf_mask) { slice_mask &= lncf_mask; gt->steering_table[LNCF] = NULL; } /* How about sliceid values that also work for MSLICE steering? */ if (slice_mask & gt->info.mslice_mask) { slice_mask &= gt->info.mslice_mask; gt->steering_table[MSLICE] = NULL; } if (IS_XEHPSDV(gt->i915) && slice_mask & BIT(0)) gt->steering_table[GAM] = NULL; slice = __ffs(slice_mask); subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) % GEN_DSS_PER_GSLICE; __add_mcr_wa(gt, wal, slice, subslice); /* * SQIDI ranges are special because they use different steering * registers than everything else we work with. On XeHP SDV and * DG2-G10, any value in the steering registers will work fine since * all instances are present, but DG2-G11 only has SQIDI instances at * ID's 2 and 3, so we need to steer to one of those. For simplicity * we'll just steer to a hardcoded "2" since that value will work * everywhere. */ __set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2); __set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2); /* * On DG2, GAM registers have a dedicated steering control register * and must always be programmed to a hardcoded groupid of "1." */ if (IS_DG2(gt->i915)) __set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0); } static void pvc_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal) { unsigned int dss; /* * Setup implicit steering for COMPUTE and DSS ranges to the first * non-fused-off DSS. All other types of MCR registers will be * explicitly steered. */ dss = intel_sseu_find_first_xehp_dss(&gt->info.sseu, 0, 0); __add_mcr_wa(gt, wal, dss / GEN_DSS_PER_CSLICE, dss % GEN_DSS_PER_CSLICE); } static void icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { struct drm_i915_private *i915 = gt->i915; icl_wa_init_mcr(gt, wal); /* WaModifyGamTlbPartitioning:icl */ wa_write_clr_set(wal, GEN11_GACB_PERF_CTRL, GEN11_HASH_CTRL_MASK, GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4); /* Wa_1405766107:icl * Formerly known as WaCL2SFHalfMaxAlloc */ wa_write_or(wal, GEN11_LSN_UNSLCVC, GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC | GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC); /* Wa_220166154:icl * Formerly known as WaDisCtxReload */ wa_write_or(wal, GEN8_GAMW_ECO_DEV_RW_IA, GAMW_ECO_DEV_CTX_RELOAD_DISABLE); /* Wa_1406463099:icl * Formerly known as WaGamTlbPendError */ wa_write_or(wal, GAMT_CHKN_BIT_REG, GAMT_CHKN_DISABLE_L3_COH_PIPE); /* * Wa_1408615072:icl,ehl (vsunit) * Wa_1407596294:icl,ehl (hsunit) */ wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS); /* Wa_1407352427:icl,ehl */ wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, PSDUNIT_CLKGATE_DIS); /* Wa_1406680159:icl,ehl */ wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE, GWUNIT_CLKGATE_DIS); /* Wa_1607087056:icl,ehl,jsl */ if (IS_ICELAKE(i915) || ((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) && IS_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))) wa_write_or(wal, GEN11_SLICE_UNIT_LEVEL_CLKGATE, L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS); /* * This is not a documented workaround, but rather an optimization * to reduce sampler power. */ wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE); } /* * Though there are per-engine instances of these registers, * they retain their value through engine resets and should * only be provided on the GT workaround list rather than * the engine-specific workaround list. */ static void wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal) { struct intel_engine_cs *engine; int id; for_each_engine(engine, gt, id) { if (engine->class != VIDEO_DECODE_CLASS || (engine->instance % 2)) continue; wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base), IECPUNIT_CLKGATE_DIS); } } static void gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { icl_wa_init_mcr(gt, wal); /* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */ wa_14011060649(gt, wal); /* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */ wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE); /* * Wa_14015795083 * * Firmware on some gen12 platforms locks the MISCCPCTL register, * preventing i915 from modifying it for this workaround. Skip the * readback verification for this workaround on debug builds; if the * workaround doesn't stick due to firmware behavior, it's not an error * that we want CI to flag. */ wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE, 0, 0, false); } static void dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { gen12_gt_workarounds_init(gt, wal); /* Wa_1409420604:dg1 */ wa_mcr_write_or(wal, SUBSLICE_UNIT_LEVEL_CLKGATE2, CPSSUNIT_CLKGATE_DIS); /* Wa_1408615072:dg1 */ /* Empirical testing shows this register is unaffected by engine reset. */ wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, VSUNIT_CLKGATE_DIS_TGL); } static void xehpsdv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { struct drm_i915_private *i915 = gt->i915; xehp_init_mcr(gt, wal); /* Wa_1409757795:xehpsdv */ wa_mcr_write_or(wal, SCCGCTL94DC, CG3DDISURB); /* Wa_18011725039:xehpsdv */ if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_B0)) { wa_mcr_masked_dis(wal, MLTICTXCTL, TDONRENDER); wa_mcr_write_or(wal, L3SQCREG1_CCS0, FLUSHALLNONCOH); } /* Wa_16011155590:xehpsdv */ if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)) wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, TSGUNIT_CLKGATE_DIS); /* Wa_14011780169:xehpsdv */ if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_B0, STEP_FOREVER)) { wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS | GAMTLBVDBOX7_CLKGATE_DIS | GAMTLBVDBOX6_CLKGATE_DIS | GAMTLBVDBOX5_CLKGATE_DIS | GAMTLBVDBOX4_CLKGATE_DIS | GAMTLBVDBOX3_CLKGATE_DIS | GAMTLBVDBOX2_CLKGATE_DIS | GAMTLBVDBOX1_CLKGATE_DIS | GAMTLBVDBOX0_CLKGATE_DIS | GAMTLBKCR_CLKGATE_DIS | GAMTLBGUC_CLKGATE_DIS | GAMTLBBLT_CLKGATE_DIS); wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS | GAMTLBGFXA1_CLKGATE_DIS | GAMTLBCOMPA0_CLKGATE_DIS | GAMTLBCOMPA1_CLKGATE_DIS | GAMTLBCOMPB0_CLKGATE_DIS | GAMTLBCOMPB1_CLKGATE_DIS | GAMTLBCOMPC0_CLKGATE_DIS | GAMTLBCOMPC1_CLKGATE_DIS | GAMTLBCOMPD0_CLKGATE_DIS | GAMTLBCOMPD1_CLKGATE_DIS | GAMTLBMERT_CLKGATE_DIS | GAMTLBVEBOX3_CLKGATE_DIS | GAMTLBVEBOX2_CLKGATE_DIS | GAMTLBVEBOX1_CLKGATE_DIS | GAMTLBVEBOX0_CLKGATE_DIS); } /* Wa_16012725990:xehpsdv */ if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_FOREVER)) wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, VFUNIT_CLKGATE_DIS); /* Wa_14011060649:xehpsdv */ wa_14011060649(gt, wal); /* Wa_14012362059:xehpsdv */ wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB); /* Wa_14014368820:xehpsdv */ wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL, INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE); /* Wa_14010670810:xehpsdv */ wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE); } static void dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { struct intel_engine_cs *engine; int id; xehp_init_mcr(gt, wal); /* Wa_14011060649:dg2 */ wa_14011060649(gt, wal); /* * Although there are per-engine instances of these registers, * they technically exist outside the engine itself and are not * impacted by engine resets. Furthermore, they're part of the * GuC blacklist so trying to treat them as engine workarounds * will result in GuC initialization failure and a wedged GPU. */ for_each_engine(engine, gt, id) { if (engine->class != VIDEO_DECODE_CLASS) continue; /* Wa_16010515920:dg2_g10 */ if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0)) wa_write_or(wal, VDBOX_CGCTL3F18(engine->mmio_base), ALNUNIT_CLKGATE_DIS); } if (IS_DG2_G10(gt->i915)) { /* Wa_22010523718:dg2 */ wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, CG3DDISCFEG_CLKGATE_DIS); /* Wa_14011006942:dg2 */ wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE, DSS_ROUTER_CLKGATE_DIS); } if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0) || IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0)) { /* Wa_14012362059:dg2 */ wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB); } if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0)) { /* Wa_14010948348:dg2_g10 */ wa_write_or(wal, UNSLCGCTL9430, MSQDUNIT_CLKGATE_DIS); /* Wa_14011037102:dg2_g10 */ wa_write_or(wal, UNSLCGCTL9444, LTCDD_CLKGATE_DIS); /* Wa_14011371254:dg2_g10 */ wa_mcr_write_or(wal, XEHP_SLICE_UNIT_LEVEL_CLKGATE, NODEDSS_CLKGATE_DIS); /* Wa_14011431319:dg2_g10 */ wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS | GAMTLBVDBOX7_CLKGATE_DIS | GAMTLBVDBOX6_CLKGATE_DIS | GAMTLBVDBOX5_CLKGATE_DIS | GAMTLBVDBOX4_CLKGATE_DIS | GAMTLBVDBOX3_CLKGATE_DIS | GAMTLBVDBOX2_CLKGATE_DIS | GAMTLBVDBOX1_CLKGATE_DIS | GAMTLBVDBOX0_CLKGATE_DIS | GAMTLBKCR_CLKGATE_DIS | GAMTLBGUC_CLKGATE_DIS | GAMTLBBLT_CLKGATE_DIS); wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS | GAMTLBGFXA1_CLKGATE_DIS | GAMTLBCOMPA0_CLKGATE_DIS | GAMTLBCOMPA1_CLKGATE_DIS | GAMTLBCOMPB0_CLKGATE_DIS | GAMTLBCOMPB1_CLKGATE_DIS | GAMTLBCOMPC0_CLKGATE_DIS | GAMTLBCOMPC1_CLKGATE_DIS | GAMTLBCOMPD0_CLKGATE_DIS | GAMTLBCOMPD1_CLKGATE_DIS | GAMTLBMERT_CLKGATE_DIS | GAMTLBVEBOX3_CLKGATE_DIS | GAMTLBVEBOX2_CLKGATE_DIS | GAMTLBVEBOX1_CLKGATE_DIS | GAMTLBVEBOX0_CLKGATE_DIS); /* Wa_14010569222:dg2_g10 */ wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, GAMEDIA_CLKGATE_DIS); /* Wa_14011028019:dg2_g10 */ wa_mcr_write_or(wal, SSMCGCTL9530, RTFUNIT_CLKGATE_DIS); /* Wa_14010680813:dg2_g10 */ wa_mcr_write_or(wal, XEHP_GAMSTLB_CTRL, CONTROL_BLOCK_CLKGATE_DIS | EGRESS_BLOCK_CLKGATE_DIS | TAG_BLOCK_CLKGATE_DIS); } /* Wa_14014830051:dg2 */ wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN); /* Wa_14015795083 */ wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE); /* Wa_18018781329 */ wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB); wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB); wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB); wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB); /* Wa_1509235366:dg2 */ wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL, INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE); /* Wa_14010648519:dg2 */ wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE); } static void pvc_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { pvc_init_mcr(gt, wal); /* Wa_14015795083 */ wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE); /* Wa_18018781329 */ wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB); wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB); wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB); wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB); /* Wa_16016694945 */ wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_OVRLSCCC); } static void xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { /* Wa_14018778641 / Wa_18018781329 */ wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB); /* Wa_22016670082 */ wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE); if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) || IS_MTL_GRAPHICS_STEP(gt->i915, P, STEP_A0, STEP_B0)) { /* Wa_14014830051 */ wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN); /* Wa_14015795083 */ wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE); } /* * Unlike older platforms, we no longer setup implicit steering here; * all MCR accesses are explicitly steered. */ debug_dump_steering(gt); } static void xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) { /* * Wa_14018778641 * Wa_18018781329 * * Note that although these registers are MCR on the primary * GT, the media GT's versions are regular singleton registers. */ wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB); debug_dump_steering(gt); } /* * The bspec performance guide has recommended MMIO tuning settings. These * aren't truly "workarounds" but we want to program them through the * workaround infrastructure to make sure they're (re)applied at the proper * times. * * The programming in this function is for settings that persist through * engine resets and also are not part of any engine's register state context. * I.e., settings that only need to be re-applied in the event of a full GT * reset. */ static void gt_tuning_settings(struct intel_gt *gt, struct i915_wa_list *wal) { if (IS_METEORLAKE(gt->i915)) { if (gt->type != GT_MEDIA) wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS); wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS); } if (IS_PONTEVECCHIO(gt->i915)) { wa_mcr_write(wal, XEHPC_L3SCRUB, SCRUB_CL_DWNGRADE_SHARED | SCRUB_RATE_4B_PER_CLK); wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_HOSTCACHEEN); } if (IS_DG2(gt->i915)) { wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS); wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS); } } static void gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal) { struct drm_i915_private *i915 = gt->i915; gt_tuning_settings(gt, wal); if (gt->type == GT_MEDIA) { if (MEDIA_VER(i915) >= 13) xelpmp_gt_workarounds_init(gt, wal); else MISSING_CASE(MEDIA_VER(i915)); return; } if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) xelpg_gt_workarounds_init(gt, wal); else if (IS_PONTEVECCHIO(i915)) pvc_gt_workarounds_init(gt, wal); else if (IS_DG2(i915)) dg2_gt_workarounds_init(gt, wal); else if (IS_XEHPSDV(i915)) xehpsdv_gt_workarounds_init(gt, wal); else if (IS_DG1(i915)) dg1_gt_workarounds_init(gt, wal); else if (GRAPHICS_VER(i915) == 12) gen12_gt_workarounds_init(gt, wal); else if (GRAPHICS_VER(i915) == 11) icl_gt_workarounds_init(gt, wal); else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) cfl_gt_workarounds_init(gt, wal); else if (IS_GEMINILAKE(i915)) glk_gt_workarounds_init(gt, wal); else if (IS_KABYLAKE(i915)) kbl_gt_workarounds_init(gt, wal); else if (IS_BROXTON(i915)) gen9_gt_workarounds_init(gt, wal); else if (IS_SKYLAKE(i915)) skl_gt_workarounds_init(gt, wal); else if (IS_HASWELL(i915)) hsw_gt_workarounds_init(gt, wal); else if (IS_VALLEYVIEW(i915)) vlv_gt_workarounds_init(gt, wal); else if (IS_IVYBRIDGE(i915)) ivb_gt_workarounds_init(gt, wal); else if (GRAPHICS_VER(i915) == 6) snb_gt_workarounds_init(gt, wal); else if (GRAPHICS_VER(i915) == 5) ilk_gt_workarounds_init(gt, wal); else if (IS_G4X(i915)) g4x_gt_workarounds_init(gt, wal); else if (GRAPHICS_VER(i915) == 4) gen4_gt_workarounds_init(gt, wal); else if (GRAPHICS_VER(i915) <= 8) ; else MISSING_CASE(GRAPHICS_VER(i915)); } void intel_gt_init_workarounds(struct intel_gt *gt) { struct i915_wa_list *wal = &gt->wa_list; wa_init_start(wal, gt, "GT", "global"); gt_init_workarounds(gt, wal); wa_init_finish(wal); } static bool wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur, const char *name, const char *from) { if ((cur ^ wa->set) & wa->read) { drm_err(&gt->i915->drm, "%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n", name, from, i915_mmio_reg_offset(wa->reg), cur, cur & wa->read, wa->set & wa->read); return false; } return true; } static void wa_list_apply(const struct i915_wa_list *wal) { struct intel_gt *gt = wal->gt; struct intel_uncore *uncore = gt->uncore; enum forcewake_domains fw; unsigned long flags; struct i915_wa *wa; unsigned int i; if (!wal->count) return; fw = wal_get_fw_for_rmw(uncore, wal); intel_gt_mcr_lock(gt, &flags); spin_lock(&uncore->lock); intel_uncore_forcewake_get__locked(uncore, fw); for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { u32 val, old = 0; /* open-coded rmw due to steering */ if (wa->clr) old = wa->is_mcr ? intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) : intel_uncore_read_fw(uncore, wa->reg); val = (old & ~wa->clr) | wa->set; if (val != old || !wa->clr) { if (wa->is_mcr) intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val); else intel_uncore_write_fw(uncore, wa->reg, val); } if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) { u32 val = wa->is_mcr ? intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) : intel_uncore_read_fw(uncore, wa->reg); wa_verify(gt, wa, val, wal->name, "application"); } } intel_uncore_forcewake_put__locked(uncore, fw); spin_unlock(&uncore->lock); intel_gt_mcr_unlock(gt, flags); } void intel_gt_apply_workarounds(struct intel_gt *gt) { wa_list_apply(&gt->wa_list); } static bool wa_list_verify(struct intel_gt *gt, const struct i915_wa_list *wal, const char *from) { struct intel_uncore *uncore = gt->uncore; struct i915_wa *wa; enum forcewake_domains fw; unsigned long flags; unsigned int i; bool ok = true; fw = wal_get_fw_for_rmw(uncore, wal); intel_gt_mcr_lock(gt, &flags); spin_lock(&uncore->lock); intel_uncore_forcewake_get__locked(uncore, fw); for (i = 0, wa = wal->list; i < wal->count; i++, wa++) ok &= wa_verify(wal->gt, wa, wa->is_mcr ? intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) : intel_uncore_read_fw(uncore, wa->reg), wal->name, from); intel_uncore_forcewake_put__locked(uncore, fw); spin_unlock(&uncore->lock); intel_gt_mcr_unlock(gt, flags); return ok; } bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from) { return wa_list_verify(gt, &gt->wa_list, from); } __maybe_unused static bool is_nonpriv_flags_valid(u32 flags) { /* Check only valid flag bits are set */ if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID) return false; /* NB: Only 3 out of 4 enum values are valid for access field */ if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) == RING_FORCE_TO_NONPRIV_ACCESS_INVALID) return false; return true; } static void whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags) { struct i915_wa wa = { .reg = reg }; if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS)) return; if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags))) return; wa.reg.reg |= flags; _wa_add(wal, &wa); } static void whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags) { struct i915_wa wa = { .mcr_reg = reg, .is_mcr = 1, }; if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS)) return; if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags))) return; wa.mcr_reg.reg |= flags; _wa_add(wal, &wa); } static void whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg) { whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW); } static void whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg) { whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW); } static void gen9_whitelist_build(struct i915_wa_list *w) { /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */ whitelist_reg(w, GEN9_CTX_PREEMPT_REG); /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */ whitelist_reg(w, GEN8_CS_CHICKEN1); /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */ whitelist_reg(w, GEN8_HDC_CHICKEN1); /* WaSendPushConstantsFromMMIO:skl,bxt */ whitelist_reg(w, COMMON_SLICE_CHICKEN2); } static void skl_whitelist_build(struct intel_engine_cs *engine) { struct i915_wa_list *w = &engine->whitelist; if (engine->class != RENDER_CLASS) return; gen9_whitelist_build(w); /* WaDisableLSQCROPERFforOCL:skl */ whitelist_mcr_reg(w, GEN8_L3SQCREG4); } static void bxt_whitelist_build(struct intel_engine_cs *engine) { if (engine->class != RENDER_CLASS) return; gen9_whitelist_build(&engine->whitelist); } static void kbl_whitelist_build(struct intel_engine_cs *engine) { struct i915_wa_list *w = &engine->whitelist; if (engine->class != RENDER_CLASS) return; gen9_whitelist_build(w); /* WaDisableLSQCROPERFforOCL:kbl */ whitelist_mcr_reg(w, GEN8_L3SQCREG4); } static void glk_whitelist_build(struct intel_engine_cs *engine) { struct i915_wa_list *w = &engine->whitelist; if (engine->class != RENDER_CLASS) return; gen9_whitelist_build(w); /* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */ whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1); } static void cfl_whitelist_build(struct intel_engine_cs *engine) { struct i915_wa_list *w = &engine->whitelist; if (engine->class != RENDER_CLASS) return; gen9_whitelist_build(w); /* * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml * * This covers 4 register which are next to one another : * - PS_INVOCATION_COUNT * - PS_INVOCATION_COUNT_UDW * - PS_DEPTH_COUNT * - PS_DEPTH_COUNT_UDW */ whitelist_reg_ext(w, PS_INVOCATION_COUNT, RING_FORCE_TO_NONPRIV_ACCESS_RD | RING_FORCE_TO_NONPRIV_RANGE_4); } static void allow_read_ctx_timestamp(struct intel_engine_cs *engine) { struct i915_wa_list *w = &engine->whitelist; if (engine->class != RENDER_CLASS) whitelist_reg_ext(w, RING_CTX_TIMESTAMP(engine->mmio_base), RING_FORCE_TO_NONPRIV_ACCESS_RD); } static void cml_whitelist_build(struct intel_engine_cs *engine) { allow_read_ctx_timestamp(engine); cfl_whitelist_build(engine); } static void icl_whitelist_build(struct intel_engine_cs *engine) { struct i915_wa_list *w = &engine->whitelist; allow_read_ctx_timestamp(engine); switch (engine->class) { case RENDER_CLASS: /* WaAllowUMDToModifyHalfSliceChicken7:icl */ whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7); /* WaAllowUMDToModifySamplerMode:icl */ whitelist_mcr_reg(w, GEN10_SAMPLER_MODE); /* WaEnableStateCacheRedirectToCS:icl */ whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1); /* * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl * * This covers 4 register which are next to one another : * - PS_INVOCATION_COUNT * - PS_INVOCATION_COUNT_UDW * - PS_DEPTH_COUNT * - PS_DEPTH_COUNT_UDW */ whitelist_reg_ext(w, PS_INVOCATION_COUNT, RING_FORCE_TO_NONPRIV_ACCESS_RD | RING_FORCE_TO_NONPRIV_RANGE_4); break; case VIDEO_DECODE_CLASS: /* hucStatusRegOffset */ whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base), RING_FORCE_TO_NONPRIV_ACCESS_RD); /* hucUKernelHdrInfoRegOffset */ whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base), RING_FORCE_TO_NONPRIV_ACCESS_RD); /* hucStatus2RegOffset */ whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base), RING_FORCE_TO_NONPRIV_ACCESS_RD); break; default: break; } } static void tgl_whitelist_build(struct intel_engine_cs *engine) { struct i915_wa_list *w = &engine->whitelist; allow_read_ctx_timestamp(engine); switch (engine->class) { case RENDER_CLASS: /* * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl * Wa_1408556865:tgl * * This covers 4 registers which are next to one another : * - PS_INVOCATION_COUNT * - PS_INVOCATION_COUNT_UDW * - PS_DEPTH_COUNT * - PS_DEPTH_COUNT_UDW */ whitelist_reg_ext(w, PS_INVOCATION_COUNT, RING_FORCE_TO_NONPRIV_ACCESS_RD | RING_FORCE_TO_NONPRIV_RANGE_4); /* * Wa_1808121037:tgl * Wa_14012131227:dg1 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p */ whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1); /* Wa_1806527549:tgl */ whitelist_reg(w, HIZ_CHICKEN); /* Required by recommended tuning setting (not a workaround) */ whitelist_reg(w, GEN11_COMMON_SLICE_CHICKEN3); break; default: break; } } static void dg2_whitelist_build(struct intel_engine_cs *engine) { struct i915_wa_list *w = &engine->whitelist; switch (engine->class) { case RENDER_CLASS: /* * Wa_1507100340:dg2_g10 * * This covers 4 registers which are next to one another : * - PS_INVOCATION_COUNT * - PS_INVOCATION_COUNT_UDW * - PS_DEPTH_COUNT * - PS_DEPTH_COUNT_UDW */ if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0)) whitelist_reg_ext(w, PS_INVOCATION_COUNT, RING_FORCE_TO_NONPRIV_ACCESS_RD | RING_FORCE_TO_NONPRIV_RANGE_4); /* Required by recommended tuning setting (not a workaround) */ whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3); break; case COMPUTE_CLASS: /* Wa_16011157294:dg2_g10 */ if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0)) whitelist_reg(w, GEN9_CTX_PREEMPT_REG); break; default: break; } } static void blacklist_trtt(struct intel_engine_cs *engine) { struct i915_wa_list *w = &engine->whitelist; /* * Prevent read/write access to [0x4400, 0x4600) which covers * the TRTT range across all engines. Note that normally userspace * cannot access the other engines' trtt control, but for simplicity * we cover the entire range on each engine. */ whitelist_reg_ext(w, _MMIO(0x4400), RING_FORCE_TO_NONPRIV_DENY | RING_FORCE_TO_NONPRIV_RANGE_64); whitelist_reg_ext(w, _MMIO(0x4500), RING_FORCE_TO_NONPRIV_DENY | RING_FORCE_TO_NONPRIV_RANGE_64); } static void pvc_whitelist_build(struct intel_engine_cs *engine) { /* Wa_16014440446:pvc */ blacklist_trtt(engine); } static void mtl_whitelist_build(struct intel_engine_cs *engine) { struct i915_wa_list *w = &engine->whitelist; switch (engine->class) { case RENDER_CLASS: /* Required by recommended tuning setting (not a workaround) */ whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3); break; default: break; } } void intel_engine_init_whitelist(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; struct i915_wa_list *w = &engine->whitelist; wa_init_start(w, engine->gt, "whitelist", engine->name); if (IS_METEORLAKE(i915)) mtl_whitelist_build(engine); else if (IS_PONTEVECCHIO(i915)) pvc_whitelist_build(engine); else if (IS_DG2(i915)) dg2_whitelist_build(engine); else if (IS_XEHPSDV(i915)) ; /* none needed */ else if (GRAPHICS_VER(i915) == 12) tgl_whitelist_build(engine); else if (GRAPHICS_VER(i915) == 11) icl_whitelist_build(engine); else if (IS_COMETLAKE(i915)) cml_whitelist_build(engine); else if (IS_COFFEELAKE(i915)) cfl_whitelist_build(engine); else if (IS_GEMINILAKE(i915)) glk_whitelist_build(engine); else if (IS_KABYLAKE(i915)) kbl_whitelist_build(engine); else if (IS_BROXTON(i915)) bxt_whitelist_build(engine); else if (IS_SKYLAKE(i915)) skl_whitelist_build(engine); else if (GRAPHICS_VER(i915) <= 8) ; else MISSING_CASE(GRAPHICS_VER(i915)); wa_init_finish(w); } void intel_engine_apply_whitelist(struct intel_engine_cs *engine) { const struct i915_wa_list *wal = &engine->whitelist; struct intel_uncore *uncore = engine->uncore; const u32 base = engine->mmio_base; struct i915_wa *wa; unsigned int i; if (!wal->count) return; for (i = 0, wa = wal->list; i < wal->count; i++, wa++) intel_uncore_write(uncore, RING_FORCE_TO_NONPRIV(base, i), i915_mmio_reg_offset(wa->reg)); /* And clear the rest just in case of garbage */ for (; i < RING_MAX_NONPRIV_SLOTS; i++) intel_uncore_write(uncore, RING_FORCE_TO_NONPRIV(base, i), i915_mmio_reg_offset(RING_NOPID(base))); } /* * engine_fake_wa_init(), a place holder to program the registers * which are not part of an official workaround defined by the * hardware team. * Adding programming of those register inside workaround will * allow utilizing wa framework to proper application and verification. */ static void engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { u8 mocs_w, mocs_r; /* * RING_CMD_CCTL specifies the default MOCS entry that will be used * by the command streamer when executing commands that don't have * a way to explicitly specify a MOCS setting. The default should * usually reference whichever MOCS entry corresponds to uncached * behavior, although use of a WB cached entry is recommended by the * spec in certain circumstances on specific platforms. */ if (GRAPHICS_VER(engine->i915) >= 12) { mocs_r = engine->gt->mocs.uc_index; mocs_w = engine->gt->mocs.uc_index; if (HAS_L3_CCS_READ(engine->i915) && engine->class == COMPUTE_CLASS) { mocs_r = engine->gt->mocs.wb_index; /* * Even on the few platforms where MOCS 0 is a * legitimate table entry, it's never the correct * setting to use here; we can assume the MOCS init * just forgot to initialize wb_index. */ drm_WARN_ON(&engine->i915->drm, mocs_r == 0); } wa_masked_field_set(wal, RING_CMD_CCTL(engine->mmio_base), CMD_CCTL_MOCS_MASK, CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r)); } } static bool needs_wa_1308578152(struct intel_engine_cs *engine) { return intel_sseu_find_first_xehp_dss(&engine->gt->info.sseu, 0, 0) >= GEN_DSS_PER_GSLICE; } static void rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { struct drm_i915_private *i915 = engine->i915; if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) || IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0)) { /* Wa_22014600077 */ wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, ENABLE_EU_COUNT_FOR_TDL_FLUSH); } if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) || IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) || IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) || IS_DG2_G11(i915) || IS_DG2_G12(i915)) { /* Wa_1509727124 */ wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, SC_DISABLE_POWER_OPTIMIZATION_EBB); } if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) || IS_DG2_G11(i915) || IS_DG2_G12(i915) || IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0)) { /* Wa_22012856258 */ wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_READ_SUPPRESSION); } if (IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0)) { /* Wa_14013392000:dg2_g11 */ wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_ENABLE_LARGE_GRF_MODE); } if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0) || IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0)) { /* Wa_14012419201:dg2 */ wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_HDR_PAST_PAYLOAD_HOLD_FIX); } /* Wa_1308578152:dg2_g10 when first gslice is fused off */ if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) && needs_wa_1308578152(engine)) { wa_masked_dis(wal, GEN12_CS_DEBUG_MODE1_CCCSUNIT_BE_COMMON, GEN12_REPLAY_MODE_GRANULARITY); } if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) || IS_DG2_G11(i915) || IS_DG2_G12(i915)) { /* * Wa_22010960976:dg2 * Wa_14013347512:dg2 */ wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0, LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK); } if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) { /* * Wa_1608949956:dg2_g10 * Wa_14010198302:dg2_g10 */ wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, MDQ_ARBITRATION_MODE | UGM_BACKUP_MODE); } if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) /* Wa_22010430635:dg2 */ wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_GRF_CLEAR); /* Wa_14013202645:dg2 */ if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) || IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0)) wa_mcr_write_or(wal, RT_CTRL, DIS_NULL_QUERY); /* Wa_22012532006:dg2 */ if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_C0) || IS_DG2_GRAPHICS_STEP(engine->i915, G11, STEP_A0, STEP_B0)) wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7, DG2_DISABLE_ROUND_ENABLE_ALLOW_FOR_SSLA); if (IS_DG2_GRAPHICS_STEP(i915, G11, STEP_B0, STEP_FOREVER) || IS_DG2_G10(i915)) { /* Wa_22014600077:dg2 */ wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0, _MASKED_BIT_ENABLE(ENABLE_EU_COUNT_FOR_TDL_FLUSH), 0 /* Wa_14012342262 write-only reg, so skip verification */, true); } if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) { /* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */ wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ); /* * Wa_1407928979:tgl A* * Wa_18011464164:tgl[B0+],dg1[B0+] * Wa_22010931296:tgl[B0+],dg1[B0+] * Wa_14010919138:rkl,dg1,adl-s,adl-p */ wa_write_or(wal, GEN7_FF_THREAD_MODE, GEN12_FF_TESSELATION_DOP_GATE_DISABLE); } if (IS_ALDERLAKE_P(i915) || IS_DG2(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) { /* * Wa_1606700617:tgl,dg1,adl-p * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p * Wa_14010826681:tgl,dg1,rkl,adl-p * Wa_18019627453:dg2 */ wa_masked_en(wal, GEN9_CS_DEBUG_MODE1, FF_DOP_CLOCK_GATE_DISABLE); } if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) { /* Wa_1409804808 */ wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_PUSH_CONST_DEREF_HOLD_DIS); /* Wa_14010229206 */ wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH); } if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) { /* * Wa_1607297627 * * On TGL and RKL there are multiple entries for this WA in the * BSpec; some indicate this is an A0-only WA, others indicate * it applies to all steppings so we trust the "all steppings." */ wa_masked_en(wal, RING_PSMI_CTL(RENDER_RING_BASE), GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE | GEN8_RC_SEMA_IDLE_MSG_DISABLE); } if (IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_S(i915) || IS_ALDERLAKE_P(i915)) { /* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */ wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, ENABLE_SMALLPL); } if (GRAPHICS_VER(i915) == 11) { /* This is not an Wa. Enable for better image quality */ wa_masked_en(wal, _3D_CHICKEN3, _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE); /* * Wa_1405543622:icl * Formerly known as WaGAPZPriorityScheme */ wa_write_or(wal, GEN8_GARBCNTL, GEN11_ARBITRATION_PRIO_ORDER_MASK); /* * Wa_1604223664:icl * Formerly known as WaL3BankAddressHashing */ wa_write_clr_set(wal, GEN8_GARBCNTL, GEN11_HASH_CTRL_EXCL_MASK, GEN11_HASH_CTRL_EXCL_BIT0); wa_write_clr_set(wal, GEN11_GLBLINVL, GEN11_BANK_HASH_ADDR_EXCL_MASK, GEN11_BANK_HASH_ADDR_EXCL_BIT0); /* * Wa_1405733216:icl * Formerly known as WaDisableCleanEvicts */ wa_mcr_write_or(wal, GEN8_L3SQCREG4, GEN11_LQSC_CLEAN_EVICT_DISABLE); /* Wa_1606682166:icl */ wa_write_or(wal, GEN7_SARCHKMD, GEN7_DISABLE_SAMPLER_PREFETCH); /* Wa_1409178092:icl */ wa_mcr_write_clr_set(wal, GEN11_SCRATCH2, GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE, 0); /* WaEnable32PlaneMode:icl */ wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS, GEN11_ENABLE_32_PLANE_MODE); /* * Wa_1408767742:icl[a2..forever],ehl[all] * Wa_1605460711:icl[a0..c0] */ wa_write_or(wal, GEN7_FF_THREAD_MODE, GEN12_FF_TESSELATION_DOP_GATE_DISABLE); /* Wa_22010271021 */ wa_masked_en(wal, GEN9_CS_DEBUG_MODE1, FF_DOP_CLOCK_GATE_DISABLE); } /* * Intel platforms that support fine-grained preemption (i.e., gen9 and * beyond) allow the kernel-mode driver to choose between two different * options for controlling preemption granularity and behavior. * * Option 1 (hardware default): * Preemption settings are controlled in a global manner via * kernel-only register CS_DEBUG_MODE1 (0x20EC). Any granularity * and settings chosen by the kernel-mode driver will apply to all * userspace clients. * * Option 2: * Preemption settings are controlled on a per-context basis via * register CS_CHICKEN1 (0x2580). CS_CHICKEN1 is saved/restored on * context switch and is writable by userspace (e.g., via * MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer) * which allows different userspace drivers/clients to select * different settings, or to change those settings on the fly in * response to runtime needs. This option was known by name * "FtrPerCtxtPreemptionGranularityControl" at one time, although * that name is somewhat misleading as other non-granularity * preemption settings are also impacted by this decision. * * On Linux, our policy has always been to let userspace drivers * control preemption granularity/settings (Option 2). This was * originally mandatory on gen9 to prevent ABI breakage (old gen9 * userspace developed before object-level preemption was enabled would * not behave well if i915 were to go with Option 1 and enable that * preemption in a global manner). On gen9 each context would have * object-level preemption disabled by default (see * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but * userspace drivers could opt-in to object-level preemption as they * saw fit. For post-gen9 platforms, we continue to utilize Option 2; * even though it is no longer necessary for ABI compatibility when * enabling a new platform, it does ensure that userspace will be able * to implement any workarounds that show up requiring temporary * adjustments to preemption behavior at runtime. * * Notes/Workarounds: * - Wa_14015141709: On DG2 and early steppings of MTL, * CS_CHICKEN1[0] does not disable object-level preemption as * it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been * using Option 1). Effectively this means userspace is unable * to disable object-level preemption on these platforms/steppings * despite the setting here. * * - Wa_16013994831: May require that userspace program * CS_CHICKEN1[10] when certain runtime conditions are true. * Userspace requires Option 2 to be in effect for their update of * CS_CHICKEN1[10] to be effective. * * Other workarounds may appear in the future that will also require * Option 2 behavior to allow proper userspace implementation. */ if (GRAPHICS_VER(i915) >= 9) wa_masked_en(wal, GEN7_FF_SLICE_CS_CHICKEN1, GEN9_FFSC_PERCTX_PREEMPT_CTRL); if (IS_SKYLAKE(i915) || IS_KABYLAKE(i915) || IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) { /* WaEnableGapsTsvCreditFix:skl,kbl,cfl */ wa_write_or(wal, GEN8_GARBCNTL, GEN9_GAPS_TSV_CREDIT_DISABLE); } if (IS_BROXTON(i915)) { /* WaDisablePooledEuLoadBalancingFix:bxt */ wa_masked_en(wal, FF_SLICE_CS_CHICKEN2, GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE); } if (GRAPHICS_VER(i915) == 9) { /* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */ wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS, GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE); /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */ wa_mcr_write_or(wal, BDW_SCRATCH1, GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE); /* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */ if (IS_GEN9_LP(i915)) wa_mcr_write_clr_set(wal, GEN8_L3SQCREG1, L3_PRIO_CREDITS_MASK, L3_GENERAL_PRIO_CREDITS(62) | L3_HIGH_PRIO_CREDITS(2)); /* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */ wa_mcr_write_or(wal, GEN8_L3SQCREG4, GEN8_LQSC_FLUSH_COHERENT_LINES); /* Disable atomics in L3 to prevent unrecoverable hangs */ wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1, GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0); wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4, GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0); wa_mcr_write_clr_set(wal, GEN9_SCRATCH1, EVICTION_PERF_FIX_ENABLE, 0); } if (IS_HASWELL(i915)) { /* WaSampleCChickenBitEnable:hsw */ wa_masked_en(wal, HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE); wa_masked_dis(wal, CACHE_MODE_0_GEN7, /* enable HiZ Raw Stall Optimization */ HIZ_RAW_STALL_OPT_DISABLE); } if (IS_VALLEYVIEW(i915)) { /* WaDisableEarlyCull:vlv */ wa_masked_en(wal, _3D_CHICKEN3, _3D_CHICKEN_SF_DISABLE_OBJEND_CULL); /* * WaVSThreadDispatchOverride:ivb,vlv * * This actually overrides the dispatch * mode for all thread types. */ wa_write_clr_set(wal, GEN7_FF_THREAD_MODE, GEN7_FF_SCHED_MASK, GEN7_FF_TS_SCHED_HW | GEN7_FF_VS_SCHED_HW | GEN7_FF_DS_SCHED_HW); /* WaPsdDispatchEnable:vlv */ /* WaDisablePSDDualDispatchEnable:vlv */ wa_masked_en(wal, GEN7_HALF_SLICE_CHICKEN1, GEN7_MAX_PS_THREAD_DEP | GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE); } if (IS_IVYBRIDGE(i915)) { /* WaDisableEarlyCull:ivb */ wa_masked_en(wal, _3D_CHICKEN3, _3D_CHICKEN_SF_DISABLE_OBJEND_CULL); if (0) { /* causes HiZ corruption on ivb:gt1 */ /* enable HiZ Raw Stall Optimization */ wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE); } /* * WaVSThreadDispatchOverride:ivb,vlv * * This actually overrides the dispatch * mode for all thread types. */ wa_write_clr_set(wal, GEN7_FF_THREAD_MODE, GEN7_FF_SCHED_MASK, GEN7_FF_TS_SCHED_HW | GEN7_FF_VS_SCHED_HW | GEN7_FF_DS_SCHED_HW); /* WaDisablePSDDualDispatchEnable:ivb */ if (IS_IVB_GT1(i915)) wa_masked_en(wal, GEN7_HALF_SLICE_CHICKEN1, GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE); } if (GRAPHICS_VER(i915) == 7) { /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */ wa_masked_en(wal, RING_MODE_GEN7(RENDER_RING_BASE), GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE); /* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */ wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE); /* * BSpec says this must be set, even though * WaDisable4x2SubspanOptimization:ivb,hsw * WaDisable4x2SubspanOptimization isn't listed for VLV. */ wa_masked_en(wal, CACHE_MODE_1, PIXEL_SUBSPAN_COLLECT_OPT_DISABLE); /* * BSpec recommends 8x4 when MSAA is used, * however in practice 16x4 seems fastest. * * Note that PS/WM thread counts depend on the WIZ hashing * disable bit, which we don't touch here, but it's good * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). */ wa_masked_field_set(wal, GEN7_GT_MODE, GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4); } if (IS_GRAPHICS_VER(i915, 6, 7)) /* * We need to disable the AsyncFlip performance optimisations in * order to use MI_WAIT_FOR_EVENT within the CS. It should * already be programmed to '1' on all products. * * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv */ wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE); if (GRAPHICS_VER(i915) == 6) { /* * Required for the hardware to program scanline values for * waiting * WaEnableFlushTlbInvalidationMode:snb */ wa_masked_en(wal, GFX_MODE, GFX_TLB_INVALIDATE_EXPLICIT); /* WaDisableHiZPlanesWhenMSAAEnabled:snb */ wa_masked_en(wal, _3D_CHICKEN, _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB); wa_masked_en(wal, _3D_CHICKEN3, /* WaStripsFansDisableFastClipPerformanceFix:snb */ _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL | /* * Bspec says: * "This bit must be set if 3DSTATE_CLIP clip mode is set * to normal and 3DSTATE_SF number of SF output attributes * is more than 16." */ _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH); /* * BSpec recommends 8x4 when MSAA is used, * however in practice 16x4 seems fastest. * * Note that PS/WM thread counts depend on the WIZ hashing * disable bit, which we don't touch here, but it's good * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). */ wa_masked_field_set(wal, GEN6_GT_MODE, GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4); /* WaDisable_RenderCache_OperationalFlush:snb */ wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE); /* * From the Sandybridge PRM, volume 1 part 3, page 24: * "If this bit is set, STCunit will have LRA as replacement * policy. [...] This bit must be reset. LRA replacement * policy is not supported." */ wa_masked_dis(wal, CACHE_MODE_0, CM0_STC_EVICT_DISABLE_LRA_SNB); } if (IS_GRAPHICS_VER(i915, 4, 6)) /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */ wa_add(wal, RING_MI_MODE(RENDER_RING_BASE), 0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH), /* XXX bit doesn't stick on Broadwater */ IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true); if (GRAPHICS_VER(i915) == 4) /* * Disable CONSTANT_BUFFER before it is loaded from the context * image. For as it is loaded, it is executed and the stored * address may no longer be valid, leading to a GPU hang. * * This imposes the requirement that userspace reload their * CONSTANT_BUFFER on every batch, fortunately a requirement * they are already accustomed to from before contexts were * enabled. */ wa_add(wal, ECOSKPD(RENDER_RING_BASE), 0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE), 0 /* XXX bit doesn't stick on Broadwater */, true); } static void xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { struct drm_i915_private *i915 = engine->i915; /* WaKBLVECSSemaphoreWaitPoll:kbl */ if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) { wa_write(wal, RING_SEMA_WAIT_POLL(engine->mmio_base), 1); } } static void ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { if (IS_PVC_CT_STEP(engine->i915, STEP_A0, STEP_C0)) { /* Wa_14014999345:pvc */ wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, DISABLE_ECC); } } /* * The bspec performance guide has recommended MMIO tuning settings. These * aren't truly "workarounds" but we want to program them with the same * workaround infrastructure to ensure that they're automatically added to * the GuC save/restore lists, re-applied at the right times, and checked for * any conflicting programming requested by real workarounds. * * Programming settings should be added here only if their registers are not * part of an engine's register state context. If a register is part of a * context, then any tuning settings should be programmed in an appropriate * function invoked by __intel_engine_init_ctx_wa(). */ static void add_render_compute_tuning_settings(struct drm_i915_private *i915, struct i915_wa_list *wal) { if (IS_METEORLAKE(i915) || IS_DG2(i915)) wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512); /* * This tuning setting proves beneficial only on ATS-M designs; the * default "age based" setting is optimal on regular DG2 and other * platforms. */ if (INTEL_INFO(i915)->tuning_thread_rr_after_dep) wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE, THREAD_EX_ARB_MODE_RR_AFTER_DEP); if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC); } /* * The workarounds in this function apply to shared registers in * the general render reset domain that aren't tied to a * specific engine. Since all render+compute engines get reset * together, and the contents of these registers are lost during * the shared render domain reset, we'll define such workarounds * here and then add them to just a single RCS or CCS engine's * workaround list (whichever engine has the XXXX flag). */ static void general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) { struct drm_i915_private *i915 = engine->i915; add_render_compute_tuning_settings(i915, wal); if (GRAPHICS_VER(i915) >= 11) { /* This is not a Wa (although referred to as * WaSetInidrectStateOverride in places), this allows * applications that reference sampler states through * the BindlessSamplerStateBaseAddress to have their * border color relative to DynamicStateBaseAddress * rather than BindlessSamplerStateBaseAddress. * * Otherwise SAMPLER_STATE border colors have to be * copied in multiple heaps (DynamicStateBaseAddress & * BindlessSamplerStateBaseAddress) * * BSpec: 46052 */ wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, GEN11_INDIRECT_STATE_BASE_ADDR_OVERRIDE); } if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_B0, STEP_FOREVER) || IS_MTL_GRAPHICS_STEP(i915, P, STEP_B0, STEP_FOREVER)) /* Wa_14017856879 */ wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN3, MTL_DISABLE_FIX_FOR_EOT_FLUSH); if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) || IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0)) /* * Wa_14017066071 * Wa_14017654203 */ wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, MTL_DISABLE_SAMPLER_SC_OOO); if (IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0)) /* Wa_22015279794 */ wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, DISABLE_PREFETCH_INTO_IC); if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) || IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) || IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) || IS_DG2_G11(i915) || IS_DG2_G12(i915)) { /* Wa_22013037850 */ wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DISABLE_128B_EVICTION_COMMAND_UDW); } if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) || IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) || IS_PONTEVECCHIO(i915) || IS_DG2(i915)) { /* Wa_22014226127 */ wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE); } if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) || IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) || IS_DG2(i915)) { /* Wa_18017747507 */ wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE); } if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) || IS_DG2_G11(i915)) { /* * Wa_22012826095:dg2 * Wa_22013059131:dg2 */ wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW, MAXREQS_PER_BANK, REG_FIELD_PREP(MAXREQS_PER_BANK, 2)); /* Wa_22013059131:dg2 */ wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, FORCE_1_SUB_MESSAGE_PER_FRAGMENT); } if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) { /* * Wa_14010918519:dg2_g10 * * LSC_CHICKEN_BIT_0 always reads back as 0 is this stepping, * so ignoring verification. */ wa_mcr_add(wal, LSC_CHICKEN_BIT_0_UDW, 0, FORCE_SLM_FENCE_SCOPE_TO_TILE | FORCE_UGM_FENCE_SCOPE_TO_TILE, 0, false); } if (IS_XEHPSDV(i915)) { /* Wa_1409954639 */ wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, SYSTOLIC_DOP_CLOCK_GATING_DIS); /* Wa_1607196519 */ wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_GRF_CLEAR); /* Wa_14010449647:xehpsdv */ wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1, GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE); } if (IS_DG2(i915) || IS_PONTEVECCHIO(i915)) { /* Wa_14015227452:dg2,pvc */ wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE); /* Wa_16015675438:dg2,pvc */ wa_masked_en(wal, FF_SLICE_CS_CHICKEN2, GEN12_PERF_FIX_BALANCING_CFE_DISABLE); } if (IS_DG2(i915)) { /* * Wa_16011620976:dg2_g11 * Wa_22015475538:dg2 */ wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8); } if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_C0) || IS_DG2_G11(i915)) /* * Wa_22012654132 * * Note that register 0xE420 is write-only and cannot be read * back for verification on DG2 (due to Wa_14012342262), so * we need to explicitly skip the readback. */ wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0, _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC), 0 /* write-only, so skip validation */, true); } static void engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal) { if (GRAPHICS_VER(engine->i915) < 4) return; engine_fake_wa_init(engine, wal); /* * These are common workarounds that just need to applied * to a single RCS/CCS engine's workaround list since * they're reset as part of the general render domain reset. */ if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) general_render_compute_wa_init(engine, wal); if (engine->class == COMPUTE_CLASS) ccs_engine_wa_init(engine, wal); else if (engine->class == RENDER_CLASS) rcs_engine_wa_init(engine, wal); else xcs_engine_wa_init(engine, wal); } void intel_engine_init_workarounds(struct intel_engine_cs *engine) { struct i915_wa_list *wal = &engine->wa_list; wa_init_start(wal, engine->gt, "engine", engine->name); engine_init_workarounds(engine, wal); wa_init_finish(wal); } void intel_engine_apply_workarounds(struct intel_engine_cs *engine) { wa_list_apply(&engine->wa_list); } static const struct i915_range mcr_ranges_gen8[] = { { .start = 0x5500, .end = 0x55ff }, { .start = 0x7000, .end = 0x7fff }, { .start = 0x9400, .end = 0x97ff }, { .start = 0xb000, .end = 0xb3ff }, { .start = 0xe000, .end = 0xe7ff }, {}, }; static const struct i915_range mcr_ranges_gen12[] = { { .start = 0x8150, .end = 0x815f }, { .start = 0x9520, .end = 0x955f }, { .start = 0xb100, .end = 0xb3ff }, { .start = 0xde80, .end = 0xe8ff }, { .start = 0x24a00, .end = 0x24a7f }, {}, }; static const struct i915_range mcr_ranges_xehp[] = { { .start = 0x4000, .end = 0x4aff }, { .start = 0x5200, .end = 0x52ff }, { .start = 0x5400, .end = 0x7fff }, { .start = 0x8140, .end = 0x815f }, { .start = 0x8c80, .end = 0x8dff }, { .start = 0x94d0, .end = 0x955f }, { .start = 0x9680, .end = 0x96ff }, { .start = 0xb000, .end = 0xb3ff }, { .start = 0xc800, .end = 0xcfff }, { .start = 0xd800, .end = 0xd8ff }, { .start = 0xdc00, .end = 0xffff }, { .start = 0x17000, .end = 0x17fff }, { .start = 0x24a00, .end = 0x24a7f }, {}, }; static bool mcr_range(struct drm_i915_private *i915, u32 offset) { const struct i915_range *mcr_ranges; int i; if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) mcr_ranges = mcr_ranges_xehp; else if (GRAPHICS_VER(i915) >= 12) mcr_ranges = mcr_ranges_gen12; else if (GRAPHICS_VER(i915) >= 8) mcr_ranges = mcr_ranges_gen8; else return false; /* * Registers in these ranges are affected by the MCR selector * which only controls CPU initiated MMIO. Routing does not * work for CS access so we cannot verify them on this path. */ for (i = 0; mcr_ranges[i].start; i++) if (offset >= mcr_ranges[i].start && offset <= mcr_ranges[i].end) return true; return false; } static int wa_list_srm(struct i915_request *rq, const struct i915_wa_list *wal, struct i915_vma *vma) { struct drm_i915_private *i915 = rq->i915; unsigned int i, count = 0; const struct i915_wa *wa; u32 srm, *cs; srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT; if (GRAPHICS_VER(i915) >= 8) srm++; for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg))) count++; } cs = intel_ring_begin(rq, 4 * count); if (IS_ERR(cs)) return PTR_ERR(cs); for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { u32 offset = i915_mmio_reg_offset(wa->reg); if (mcr_range(i915, offset)) continue; *cs++ = srm; *cs++ = offset; *cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i; *cs++ = 0; } intel_ring_advance(rq, cs); return 0; } static int engine_wa_list_verify(struct intel_context *ce, const struct i915_wa_list * const wal, const char *from) { const struct i915_wa *wa; struct i915_request *rq; struct i915_vma *vma; struct i915_gem_ww_ctx ww; unsigned int i; u32 *results; int err; if (!wal->count) return 0; vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm, wal->count * sizeof(u32)); if (IS_ERR(vma)) return PTR_ERR(vma); intel_engine_pm_get(ce->engine); i915_gem_ww_ctx_init(&ww, false); retry: err = i915_gem_object_lock(vma->obj, &ww); if (err == 0) err = intel_context_pin_ww(ce, &ww); if (err) goto err_pm; err = i915_vma_pin_ww(vma, &ww, 0, 0, i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER); if (err) goto err_unpin; rq = i915_request_create(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_vma; } err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); if (err == 0) err = wa_list_srm(rq, wal, vma); i915_request_get(rq); if (err) i915_request_set_error_once(rq, err); i915_request_add(rq); if (err) goto err_rq; if (i915_request_wait(rq, 0, HZ / 5) < 0) { err = -ETIME; goto err_rq; } results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); if (IS_ERR(results)) { err = PTR_ERR(results); goto err_rq; } err = 0; for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { if (mcr_range(rq->i915, i915_mmio_reg_offset(wa->reg))) continue; if (!wa_verify(wal->gt, wa, results[i], wal->name, from)) err = -ENXIO; } i915_gem_object_unpin_map(vma->obj); err_rq: i915_request_put(rq); err_vma: i915_vma_unpin(vma); err_unpin: intel_context_unpin(ce); err_pm: if (err == -EDEADLK) { err = i915_gem_ww_ctx_backoff(&ww); if (!err) goto retry; } i915_gem_ww_ctx_fini(&ww); intel_engine_pm_put(ce->engine); i915_vma_put(vma); return err; } int intel_engine_verify_workarounds(struct intel_engine_cs *engine, const char *from) { return engine_wa_list_verify(engine->kernel_context, &engine->wa_list, from); } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_workarounds.c" #endif
linux-master
drivers/gpu/drm/i915/gt/intel_workarounds.c
// SPDX-License-Identifier: MIT /* * Copyright © 2018 Intel Corporation */ #include <linux/sort.h> #include "i915_drv.h" #include "intel_gt_requests.h" #include "i915_selftest.h" #include "selftest_engine_heartbeat.h" static void reset_heartbeat(struct intel_engine_cs *engine) { intel_engine_set_heartbeat(engine, engine->defaults.heartbeat_interval_ms); } static int timeline_sync(struct intel_timeline *tl) { struct dma_fence *fence; long timeout; fence = i915_active_fence_get(&tl->last_request); if (!fence) return 0; timeout = dma_fence_wait_timeout(fence, true, HZ / 2); dma_fence_put(fence); if (timeout < 0) return timeout; return 0; } static int engine_sync_barrier(struct intel_engine_cs *engine) { return timeline_sync(engine->kernel_context->timeline); } struct pulse { struct i915_active active; struct kref kref; }; static int pulse_active(struct i915_active *active) { kref_get(&container_of(active, struct pulse, active)->kref); return 0; } static void pulse_free(struct kref *kref) { struct pulse *p = container_of(kref, typeof(*p), kref); i915_active_fini(&p->active); kfree(p); } static void pulse_put(struct pulse *p) { kref_put(&p->kref, pulse_free); } static void pulse_retire(struct i915_active *active) { pulse_put(container_of(active, struct pulse, active)); } static struct pulse *pulse_create(void) { struct pulse *p; p = kmalloc(sizeof(*p), GFP_KERNEL); if (!p) return p; kref_init(&p->kref); i915_active_init(&p->active, pulse_active, pulse_retire, 0); return p; } static void pulse_unlock_wait(struct pulse *p) { i915_active_unlock_wait(&p->active); } static int __live_idle_pulse(struct intel_engine_cs *engine, int (*fn)(struct intel_engine_cs *cs)) { struct pulse *p; int err; GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); p = pulse_create(); if (!p) return -ENOMEM; err = i915_active_acquire(&p->active); if (err) goto out; err = i915_active_acquire_preallocate_barrier(&p->active, engine); if (err) { i915_active_release(&p->active); goto out; } i915_active_acquire_barrier(&p->active); i915_active_release(&p->active); GEM_BUG_ON(i915_active_is_idle(&p->active)); GEM_BUG_ON(llist_empty(&engine->barrier_tasks)); err = fn(engine); if (err) goto out; GEM_BUG_ON(!llist_empty(&engine->barrier_tasks)); if (engine_sync_barrier(engine)) { struct drm_printer m = drm_err_printer("pulse"); pr_err("%s: no heartbeat pulse?\n", engine->name); intel_engine_dump(engine, &m, "%s", engine->name); err = -ETIME; goto out; } GEM_BUG_ON(READ_ONCE(engine->serial) != engine->wakeref_serial); pulse_unlock_wait(p); /* synchronize with the retirement callback */ if (!i915_active_is_idle(&p->active)) { struct drm_printer m = drm_err_printer("pulse"); pr_err("%s: heartbeat pulse did not flush idle tasks\n", engine->name); i915_active_print(&p->active, &m); err = -EINVAL; goto out; } out: pulse_put(p); return err; } static int live_idle_flush(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; /* Check that we can flush the idle barriers */ for_each_engine(engine, gt, id) { st_engine_heartbeat_disable(engine); err = __live_idle_pulse(engine, intel_engine_flush_barriers); st_engine_heartbeat_enable(engine); if (err) break; } return err; } static int live_idle_pulse(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; /* Check that heartbeat pulses flush the idle barriers */ for_each_engine(engine, gt, id) { st_engine_heartbeat_disable(engine); err = __live_idle_pulse(engine, intel_engine_pulse); st_engine_heartbeat_enable(engine); if (err && err != -ENODEV) break; err = 0; } return err; } static int cmp_u32(const void *_a, const void *_b) { const u32 *a = _a, *b = _b; return *a - *b; } static int __live_heartbeat_fast(struct intel_engine_cs *engine) { const unsigned int error_threshold = max(20000u, jiffies_to_usecs(6)); struct intel_context *ce; struct i915_request *rq; ktime_t t0, t1; u32 times[5]; int err; int i; ce = intel_context_create(engine); if (IS_ERR(ce)) return PTR_ERR(ce); intel_engine_pm_get(engine); err = intel_engine_set_heartbeat(engine, 1); if (err) goto err_pm; for (i = 0; i < ARRAY_SIZE(times); i++) { do { /* Manufacture a tick */ intel_engine_park_heartbeat(engine); GEM_BUG_ON(engine->heartbeat.systole); engine->serial++; /* pretend we are not idle! */ intel_engine_unpark_heartbeat(engine); flush_delayed_work(&engine->heartbeat.work); if (!delayed_work_pending(&engine->heartbeat.work)) { pr_err("%s: heartbeat %d did not start\n", engine->name, i); err = -EINVAL; goto err_pm; } rcu_read_lock(); rq = READ_ONCE(engine->heartbeat.systole); if (rq) rq = i915_request_get_rcu(rq); rcu_read_unlock(); } while (!rq); t0 = ktime_get(); while (rq == READ_ONCE(engine->heartbeat.systole)) yield(); /* work is on the local cpu! */ t1 = ktime_get(); i915_request_put(rq); times[i] = ktime_us_delta(t1, t0); } sort(times, ARRAY_SIZE(times), sizeof(times[0]), cmp_u32, NULL); pr_info("%s: Heartbeat delay: %uus [%u, %u]\n", engine->name, times[ARRAY_SIZE(times) / 2], times[0], times[ARRAY_SIZE(times) - 1]); /* * Ideally, the upper bound on min work delay would be something like * 2 * 2 (worst), +1 for scheduling, +1 for slack. In practice, we * are, even with system_wq_highpri, at the mercy of the CPU scheduler * and may be stuck behind some slow work for many millisecond. Such * as our very own display workers. */ if (times[ARRAY_SIZE(times) / 2] > error_threshold) { pr_err("%s: Heartbeat delay was %uus, expected less than %dus\n", engine->name, times[ARRAY_SIZE(times) / 2], error_threshold); err = -EINVAL; } reset_heartbeat(engine); err_pm: intel_engine_pm_put(engine); intel_context_put(ce); return err; } static int live_heartbeat_fast(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; /* Check that the heartbeat ticks at the desired rate. */ if (!CONFIG_DRM_I915_HEARTBEAT_INTERVAL) return 0; for_each_engine(engine, gt, id) { err = __live_heartbeat_fast(engine); if (err) break; } return err; } static int __live_heartbeat_off(struct intel_engine_cs *engine) { int err; intel_engine_pm_get(engine); engine->serial++; flush_delayed_work(&engine->heartbeat.work); if (!delayed_work_pending(&engine->heartbeat.work)) { pr_err("%s: heartbeat not running\n", engine->name); err = -EINVAL; goto err_pm; } err = intel_engine_set_heartbeat(engine, 0); if (err) goto err_pm; engine->serial++; flush_delayed_work(&engine->heartbeat.work); if (delayed_work_pending(&engine->heartbeat.work)) { pr_err("%s: heartbeat still running\n", engine->name); err = -EINVAL; goto err_beat; } if (READ_ONCE(engine->heartbeat.systole)) { pr_err("%s: heartbeat still allocated\n", engine->name); err = -EINVAL; goto err_beat; } err_beat: reset_heartbeat(engine); err_pm: intel_engine_pm_put(engine); return err; } static int live_heartbeat_off(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; /* Check that we can turn off heartbeat and not interrupt VIP */ if (!CONFIG_DRM_I915_HEARTBEAT_INTERVAL) return 0; for_each_engine(engine, gt, id) { if (!intel_engine_has_preemption(engine)) continue; err = __live_heartbeat_off(engine); if (err) break; } return err; } int intel_heartbeat_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(live_idle_flush), SUBTEST(live_idle_pulse), SUBTEST(live_heartbeat_fast), SUBTEST(live_heartbeat_off), }; int saved_hangcheck; int err; if (intel_gt_is_wedged(to_gt(i915))) return 0; saved_hangcheck = i915->params.enable_hangcheck; i915->params.enable_hangcheck = INT_MAX; err = intel_gt_live_subtests(tests, to_gt(i915)); i915->params.enable_hangcheck = saved_hangcheck; return err; } void st_engine_heartbeat_disable(struct intel_engine_cs *engine) { engine->props.heartbeat_interval_ms = 0; intel_engine_pm_get(engine); intel_engine_park_heartbeat(engine); } void st_engine_heartbeat_enable(struct intel_engine_cs *engine) { intel_engine_pm_put(engine); engine->props.heartbeat_interval_ms = engine->defaults.heartbeat_interval_ms; } void st_engine_heartbeat_disable_no_pm(struct intel_engine_cs *engine) { engine->props.heartbeat_interval_ms = 0; /* * Park the heartbeat but without holding the PM lock as that * makes the engines appear not-idle. Note that if/when unpark * is called due to the PM lock being acquired later the * heartbeat still won't be enabled because of the above = 0. */ if (intel_engine_pm_get_if_awake(engine)) { intel_engine_park_heartbeat(engine); intel_engine_pm_put(engine); } } void st_engine_heartbeat_enable_no_pm(struct intel_engine_cs *engine) { engine->props.heartbeat_interval_ms = engine->defaults.heartbeat_interval_ms; }
linux-master
drivers/gpu/drm/i915/gt/selftest_engine_heartbeat.c
// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include <linux/string_helpers.h> #include <drm/i915_drm.h> #include "display/intel_display.h" #include "display/intel_display_irq.h" #include "i915_drv.h" #include "i915_irq.h" #include "i915_reg.h" #include "intel_breadcrumbs.h" #include "intel_gt.h" #include "intel_gt_clock_utils.h" #include "intel_gt_irq.h" #include "intel_gt_pm.h" #include "intel_gt_pm_irq.h" #include "intel_gt_print.h" #include "intel_gt_regs.h" #include "intel_mchbar_regs.h" #include "intel_pcode.h" #include "intel_rps.h" #include "vlv_sideband.h" #include "../../../platform/x86/intel_ips.h" #define BUSY_MAX_EI 20u /* ms */ /* * Lock protecting IPS related data structures */ static DEFINE_SPINLOCK(mchdev_lock); static struct intel_gt *rps_to_gt(struct intel_rps *rps) { return container_of(rps, struct intel_gt, rps); } static struct drm_i915_private *rps_to_i915(struct intel_rps *rps) { return rps_to_gt(rps)->i915; } static struct intel_uncore *rps_to_uncore(struct intel_rps *rps) { return rps_to_gt(rps)->uncore; } static struct intel_guc_slpc *rps_to_slpc(struct intel_rps *rps) { struct intel_gt *gt = rps_to_gt(rps); return &gt->uc.guc.slpc; } static bool rps_uses_slpc(struct intel_rps *rps) { struct intel_gt *gt = rps_to_gt(rps); return intel_uc_uses_guc_slpc(&gt->uc); } static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask) { return mask & ~rps->pm_intrmsk_mbz; } static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val) { intel_uncore_write_fw(uncore, reg, val); } static void rps_timer(struct timer_list *t) { struct intel_rps *rps = from_timer(rps, t, timer); struct intel_gt *gt = rps_to_gt(rps); struct intel_engine_cs *engine; ktime_t dt, last, timestamp; enum intel_engine_id id; s64 max_busy[3] = {}; timestamp = 0; for_each_engine(engine, gt, id) { s64 busy; int i; dt = intel_engine_get_busy_time(engine, &timestamp); last = engine->stats.rps; engine->stats.rps = dt; busy = ktime_to_ns(ktime_sub(dt, last)); for (i = 0; i < ARRAY_SIZE(max_busy); i++) { if (busy > max_busy[i]) swap(busy, max_busy[i]); } } last = rps->pm_timestamp; rps->pm_timestamp = timestamp; if (intel_rps_is_active(rps)) { s64 busy; int i; dt = ktime_sub(timestamp, last); /* * Our goal is to evaluate each engine independently, so we run * at the lowest clocks required to sustain the heaviest * workload. However, a task may be split into sequential * dependent operations across a set of engines, such that * the independent contributions do not account for high load, * but overall the task is GPU bound. For example, consider * video decode on vcs followed by colour post-processing * on vecs, followed by general post-processing on rcs. * Since multi-engines being active does imply a single * continuous workload across all engines, we hedge our * bets by only contributing a factor of the distributed * load into our busyness calculation. */ busy = max_busy[0]; for (i = 1; i < ARRAY_SIZE(max_busy); i++) { if (!max_busy[i]) break; busy += div_u64(max_busy[i], 1 << i); } GT_TRACE(gt, "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n", busy, (int)div64_u64(100 * busy, dt), max_busy[0], max_busy[1], max_busy[2], rps->pm_interval); if (100 * busy > rps->power.up_threshold * dt && rps->cur_freq < rps->max_freq_softlimit) { rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD; rps->pm_interval = 1; queue_work(gt->i915->unordered_wq, &rps->work); } else if (100 * busy < rps->power.down_threshold * dt && rps->cur_freq > rps->min_freq_softlimit) { rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD; rps->pm_interval = 1; queue_work(gt->i915->unordered_wq, &rps->work); } else { rps->last_adj = 0; } mod_timer(&rps->timer, jiffies + msecs_to_jiffies(rps->pm_interval)); rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI); } } static void rps_start_timer(struct intel_rps *rps) { rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp); rps->pm_interval = 1; mod_timer(&rps->timer, jiffies + 1); } static void rps_stop_timer(struct intel_rps *rps) { del_timer_sync(&rps->timer); rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp); cancel_work_sync(&rps->work); } static u32 rps_pm_mask(struct intel_rps *rps, u8 val) { u32 mask = 0; /* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */ if (val > rps->min_freq_softlimit) mask |= (GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT); if (val < rps->max_freq_softlimit) mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD; mask &= rps->pm_events; return rps_pm_sanitize_mask(rps, ~mask); } static void rps_reset_ei(struct intel_rps *rps) { memset(&rps->ei, 0, sizeof(rps->ei)); } static void rps_enable_interrupts(struct intel_rps *rps) { struct intel_gt *gt = rps_to_gt(rps); GEM_BUG_ON(rps_uses_slpc(rps)); GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n", rps->pm_events, rps_pm_mask(rps, rps->last_freq)); rps_reset_ei(rps); spin_lock_irq(gt->irq_lock); gen6_gt_pm_enable_irq(gt, rps->pm_events); spin_unlock_irq(gt->irq_lock); intel_uncore_write(gt->uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq)); } static void gen6_rps_reset_interrupts(struct intel_rps *rps) { gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS); } static void gen11_rps_reset_interrupts(struct intel_rps *rps) { while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM)) ; } static void rps_reset_interrupts(struct intel_rps *rps) { struct intel_gt *gt = rps_to_gt(rps); spin_lock_irq(gt->irq_lock); if (GRAPHICS_VER(gt->i915) >= 11) gen11_rps_reset_interrupts(rps); else gen6_rps_reset_interrupts(rps); rps->pm_iir = 0; spin_unlock_irq(gt->irq_lock); } static void rps_disable_interrupts(struct intel_rps *rps) { struct intel_gt *gt = rps_to_gt(rps); intel_uncore_write(gt->uncore, GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u)); spin_lock_irq(gt->irq_lock); gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS); spin_unlock_irq(gt->irq_lock); intel_synchronize_irq(gt->i915); /* * Now that we will not be generating any more work, flush any * outstanding tasks. As we are called on the RPS idle path, * we will reset the GPU to minimum frequencies, so the current * state of the worker can be discarded. */ cancel_work_sync(&rps->work); rps_reset_interrupts(rps); GT_TRACE(gt, "interrupts:off\n"); } static const struct cparams { u16 i; u16 t; u16 m; u16 c; } cparams[] = { { 1, 1333, 301, 28664 }, { 1, 1066, 294, 24460 }, { 1, 800, 294, 25192 }, { 0, 1333, 276, 27605 }, { 0, 1066, 276, 27605 }, { 0, 800, 231, 23784 }, }; static void gen5_rps_init(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); struct intel_uncore *uncore = rps_to_uncore(rps); u8 fmax, fmin, fstart; u32 rgvmodectl; int c_m, i; if (i915->fsb_freq <= 3200) c_m = 0; else if (i915->fsb_freq <= 4800) c_m = 1; else c_m = 2; for (i = 0; i < ARRAY_SIZE(cparams); i++) { if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) { rps->ips.m = cparams[i].m; rps->ips.c = cparams[i].c; break; } } rgvmodectl = intel_uncore_read(uncore, MEMMODECTL); /* Set up min, max, and cur for interrupt handling */ fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT; fmin = (rgvmodectl & MEMMODE_FMIN_MASK); fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT; drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin, fstart); rps->min_freq = fmax; rps->efficient_freq = fstart; rps->max_freq = fmin; } static unsigned long __ips_chipset_val(struct intel_ips *ips) { struct intel_uncore *uncore = rps_to_uncore(container_of(ips, struct intel_rps, ips)); unsigned long now = jiffies_to_msecs(jiffies), dt; unsigned long result; u64 total, delta; lockdep_assert_held(&mchdev_lock); /* * Prevent division-by-zero if we are asking too fast. * Also, we don't get interesting results if we are polling * faster than once in 10ms, so just return the saved value * in such cases. */ dt = now - ips->last_time1; if (dt <= 10) return ips->chipset_power; /* FIXME: handle per-counter overflow */ total = intel_uncore_read(uncore, DMIEC); total += intel_uncore_read(uncore, DDREC); total += intel_uncore_read(uncore, CSIEC); delta = total - ips->last_count1; result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10); ips->last_count1 = total; ips->last_time1 = now; ips->chipset_power = result; return result; } static unsigned long ips_mch_val(struct intel_uncore *uncore) { unsigned int m, x, b; u32 tsfs; tsfs = intel_uncore_read(uncore, TSFS); x = intel_uncore_read8(uncore, TR1); b = tsfs & TSFS_INTR_MASK; m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT; return m * x / 127 - b; } static int _pxvid_to_vd(u8 pxvid) { if (pxvid == 0) return 0; if (pxvid >= 8 && pxvid < 31) pxvid = 31; return (pxvid + 2) * 125; } static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid) { const int vd = _pxvid_to_vd(pxvid); if (INTEL_INFO(i915)->is_mobile) return max(vd - 1125, 0); return vd; } static void __gen5_ips_update(struct intel_ips *ips) { struct intel_uncore *uncore = rps_to_uncore(container_of(ips, struct intel_rps, ips)); u64 now, delta, dt; u32 count; lockdep_assert_held(&mchdev_lock); now = ktime_get_raw_ns(); dt = now - ips->last_time2; do_div(dt, NSEC_PER_MSEC); /* Don't divide by 0 */ if (dt <= 10) return; count = intel_uncore_read(uncore, GFXEC); delta = count - ips->last_count2; ips->last_count2 = count; ips->last_time2 = now; /* More magic constants... */ ips->gfx_power = div_u64(delta * 1181, dt * 10); } static void gen5_rps_update(struct intel_rps *rps) { spin_lock_irq(&mchdev_lock); __gen5_ips_update(&rps->ips); spin_unlock_irq(&mchdev_lock); } static unsigned int gen5_invert_freq(struct intel_rps *rps, unsigned int val) { /* Invert the frequency bin into an ips delay */ val = rps->max_freq - val; val = rps->min_freq + val; return val; } static int __gen5_rps_set(struct intel_rps *rps, u8 val) { struct intel_uncore *uncore = rps_to_uncore(rps); u16 rgvswctl; lockdep_assert_held(&mchdev_lock); rgvswctl = intel_uncore_read16(uncore, MEMSWCTL); if (rgvswctl & MEMCTL_CMD_STS) { drm_dbg(&rps_to_i915(rps)->drm, "gpu busy, RCS change rejected\n"); return -EBUSY; /* still busy with another command */ } /* Invert the frequency bin into an ips delay */ val = gen5_invert_freq(rps, val); rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) | (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM; intel_uncore_write16(uncore, MEMSWCTL, rgvswctl); intel_uncore_posting_read16(uncore, MEMSWCTL); rgvswctl |= MEMCTL_CMD_STS; intel_uncore_write16(uncore, MEMSWCTL, rgvswctl); return 0; } static int gen5_rps_set(struct intel_rps *rps, u8 val) { int err; spin_lock_irq(&mchdev_lock); err = __gen5_rps_set(rps, val); spin_unlock_irq(&mchdev_lock); return err; } static unsigned long intel_pxfreq(u32 vidfreq) { int div = (vidfreq & 0x3f0000) >> 16; int post = (vidfreq & 0x3000) >> 12; int pre = (vidfreq & 0x7); if (!pre) return 0; return div * 133333 / (pre << post); } static unsigned int init_emon(struct intel_uncore *uncore) { u8 pxw[16]; int i; /* Disable to program */ intel_uncore_write(uncore, ECR, 0); intel_uncore_posting_read(uncore, ECR); /* Program energy weights for various events */ intel_uncore_write(uncore, SDEW, 0x15040d00); intel_uncore_write(uncore, CSIEW0, 0x007f0000); intel_uncore_write(uncore, CSIEW1, 0x1e220004); intel_uncore_write(uncore, CSIEW2, 0x04000004); for (i = 0; i < 5; i++) intel_uncore_write(uncore, PEW(i), 0); for (i = 0; i < 3; i++) intel_uncore_write(uncore, DEW(i), 0); /* Program P-state weights to account for frequency power adjustment */ for (i = 0; i < 16; i++) { u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i)); unsigned int freq = intel_pxfreq(pxvidfreq); unsigned int vid = (pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT; unsigned int val; val = vid * vid * freq / 1000 * 255; val /= 127 * 127 * 900; pxw[i] = val; } /* Render standby states get 0 weight */ pxw[14] = 0; pxw[15] = 0; for (i = 0; i < 4; i++) { intel_uncore_write(uncore, PXW(i), pxw[i * 4 + 0] << 24 | pxw[i * 4 + 1] << 16 | pxw[i * 4 + 2] << 8 | pxw[i * 4 + 3] << 0); } /* Adjust magic regs to magic values (more experimental results) */ intel_uncore_write(uncore, OGW0, 0); intel_uncore_write(uncore, OGW1, 0); intel_uncore_write(uncore, EG0, 0x00007f00); intel_uncore_write(uncore, EG1, 0x0000000e); intel_uncore_write(uncore, EG2, 0x000e0000); intel_uncore_write(uncore, EG3, 0x68000300); intel_uncore_write(uncore, EG4, 0x42000000); intel_uncore_write(uncore, EG5, 0x00140031); intel_uncore_write(uncore, EG6, 0); intel_uncore_write(uncore, EG7, 0); for (i = 0; i < 8; i++) intel_uncore_write(uncore, PXWL(i), 0); /* Enable PMON + select events */ intel_uncore_write(uncore, ECR, 0x80000019); return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK; } static bool gen5_rps_enable(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); struct intel_uncore *uncore = rps_to_uncore(rps); u8 fstart, vstart; u32 rgvmodectl; spin_lock_irq(&mchdev_lock); rgvmodectl = intel_uncore_read(uncore, MEMMODECTL); /* Enable temp reporting */ intel_uncore_write16(uncore, PMMISC, intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN); intel_uncore_write16(uncore, TSC1, intel_uncore_read16(uncore, TSC1) | TSE); /* 100ms RC evaluation intervals */ intel_uncore_write(uncore, RCUPEI, 100000); intel_uncore_write(uncore, RCDNEI, 100000); /* Set max/min thresholds to 90ms and 80ms respectively */ intel_uncore_write(uncore, RCBMAXAVG, 90000); intel_uncore_write(uncore, RCBMINAVG, 80000); intel_uncore_write(uncore, MEMIHYST, 1); /* Set up min, max, and cur for interrupt handling */ fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT; vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT; intel_uncore_write(uncore, MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN); intel_uncore_write(uncore, VIDSTART, vstart); intel_uncore_posting_read(uncore, VIDSTART); rgvmodectl |= MEMMODE_SWMODE_EN; intel_uncore_write(uncore, MEMMODECTL, rgvmodectl); if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10)) drm_err(&uncore->i915->drm, "stuck trying to change perf mode\n"); mdelay(1); __gen5_rps_set(rps, rps->cur_freq); rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC); rps->ips.last_count1 += intel_uncore_read(uncore, DDREC); rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC); rps->ips.last_time1 = jiffies_to_msecs(jiffies); rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC); rps->ips.last_time2 = ktime_get_raw_ns(); spin_lock(&i915->irq_lock); ilk_enable_display_irq(i915, DE_PCU_EVENT); spin_unlock(&i915->irq_lock); spin_unlock_irq(&mchdev_lock); rps->ips.corr = init_emon(uncore); return true; } static void gen5_rps_disable(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); struct intel_uncore *uncore = rps_to_uncore(rps); u16 rgvswctl; spin_lock_irq(&mchdev_lock); spin_lock(&i915->irq_lock); ilk_disable_display_irq(i915, DE_PCU_EVENT); spin_unlock(&i915->irq_lock); rgvswctl = intel_uncore_read16(uncore, MEMSWCTL); /* Ack interrupts, disable EFC interrupt */ intel_uncore_rmw(uncore, MEMINTREN, MEMINT_EVAL_CHG_EN, 0); intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG); /* Go back to the starting frequency */ __gen5_rps_set(rps, rps->idle_freq); mdelay(1); rgvswctl |= MEMCTL_CMD_STS; intel_uncore_write(uncore, MEMSWCTL, rgvswctl); mdelay(1); spin_unlock_irq(&mchdev_lock); } static u32 rps_limits(struct intel_rps *rps, u8 val) { u32 limits; /* * Only set the down limit when we've reached the lowest level to avoid * getting more interrupts, otherwise leave this clear. This prevents a * race in the hw when coming out of rc6: There's a tiny window where * the hw runs at the minimal clock before selecting the desired * frequency, if the down threshold expires in that window we will not * receive a down interrupt. */ if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) { limits = rps->max_freq_softlimit << 23; if (val <= rps->min_freq_softlimit) limits |= rps->min_freq_softlimit << 14; } else { limits = rps->max_freq_softlimit << 24; if (val <= rps->min_freq_softlimit) limits |= rps->min_freq_softlimit << 16; } return limits; } static void rps_set_power(struct intel_rps *rps, int new_power) { struct intel_gt *gt = rps_to_gt(rps); struct intel_uncore *uncore = gt->uncore; u32 ei_up = 0, ei_down = 0; lockdep_assert_held(&rps->power.mutex); if (new_power == rps->power.mode) return; /* Note the units here are not exactly 1us, but 1280ns. */ switch (new_power) { case LOW_POWER: ei_up = 16000; ei_down = 32000; break; case BETWEEN: ei_up = 13000; ei_down = 32000; break; case HIGH_POWER: ei_up = 10000; ei_down = 32000; break; } /* When byt can survive without system hang with dynamic * sw freq adjustments, this restriction can be lifted. */ if (IS_VALLEYVIEW(gt->i915)) goto skip_hw_write; GT_TRACE(gt, "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n", new_power, rps->power.up_threshold, ei_up, rps->power.down_threshold, ei_down); set(uncore, GEN6_RP_UP_EI, intel_gt_ns_to_pm_interval(gt, ei_up * 1000)); set(uncore, GEN6_RP_UP_THRESHOLD, intel_gt_ns_to_pm_interval(gt, ei_up * rps->power.up_threshold * 10)); set(uncore, GEN6_RP_DOWN_EI, intel_gt_ns_to_pm_interval(gt, ei_down * 1000)); set(uncore, GEN6_RP_DOWN_THRESHOLD, intel_gt_ns_to_pm_interval(gt, ei_down * rps->power.down_threshold * 10)); set(uncore, GEN6_RP_CONTROL, (GRAPHICS_VER(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) | GEN6_RP_MEDIA_HW_NORMAL_MODE | GEN6_RP_MEDIA_IS_GFX | GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG | GEN6_RP_DOWN_IDLE_AVG); skip_hw_write: rps->power.mode = new_power; } static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val) { int new_power; new_power = rps->power.mode; switch (rps->power.mode) { case LOW_POWER: if (val > rps->efficient_freq + 1 && val > rps->cur_freq) new_power = BETWEEN; break; case BETWEEN: if (val <= rps->efficient_freq && val < rps->cur_freq) new_power = LOW_POWER; else if (val >= rps->rp0_freq && val > rps->cur_freq) new_power = HIGH_POWER; break; case HIGH_POWER: if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 && val < rps->cur_freq) new_power = BETWEEN; break; } /* Max/min bins are special */ if (val <= rps->min_freq_softlimit) new_power = LOW_POWER; if (val >= rps->max_freq_softlimit) new_power = HIGH_POWER; mutex_lock(&rps->power.mutex); if (rps->power.interactive) new_power = HIGH_POWER; rps_set_power(rps, new_power); mutex_unlock(&rps->power.mutex); } void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive) { GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n", str_yes_no(interactive)); mutex_lock(&rps->power.mutex); if (interactive) { if (!rps->power.interactive++ && intel_rps_is_active(rps)) rps_set_power(rps, HIGH_POWER); } else { GEM_BUG_ON(!rps->power.interactive); rps->power.interactive--; } mutex_unlock(&rps->power.mutex); } static int gen6_rps_set(struct intel_rps *rps, u8 val) { struct intel_uncore *uncore = rps_to_uncore(rps); struct drm_i915_private *i915 = rps_to_i915(rps); u32 swreq; GEM_BUG_ON(rps_uses_slpc(rps)); if (GRAPHICS_VER(i915) >= 9) swreq = GEN9_FREQUENCY(val); else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) swreq = HSW_FREQUENCY(val); else swreq = (GEN6_FREQUENCY(val) | GEN6_OFFSET(0) | GEN6_AGGRESSIVE_TURBO); set(uncore, GEN6_RPNSWREQ, swreq); GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n", val, intel_gpu_freq(rps, val), swreq); return 0; } static int vlv_rps_set(struct intel_rps *rps, u8 val) { struct drm_i915_private *i915 = rps_to_i915(rps); int err; vlv_punit_get(i915); err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val); vlv_punit_put(i915); GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n", val, intel_gpu_freq(rps, val)); return err; } static int rps_set(struct intel_rps *rps, u8 val, bool update) { struct drm_i915_private *i915 = rps_to_i915(rps); int err; if (val == rps->last_freq) return 0; if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) err = vlv_rps_set(rps, val); else if (GRAPHICS_VER(i915) >= 6) err = gen6_rps_set(rps, val); else err = gen5_rps_set(rps, val); if (err) return err; if (update && GRAPHICS_VER(i915) >= 6) gen6_rps_set_thresholds(rps, val); rps->last_freq = val; return 0; } void intel_rps_unpark(struct intel_rps *rps) { if (!intel_rps_is_enabled(rps)) return; GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq); /* * Use the user's desired frequency as a guide, but for better * performance, jump directly to RPe as our starting frequency. */ mutex_lock(&rps->lock); intel_rps_set_active(rps); intel_rps_set(rps, clamp(rps->cur_freq, rps->min_freq_softlimit, rps->max_freq_softlimit)); mutex_unlock(&rps->lock); rps->pm_iir = 0; if (intel_rps_has_interrupts(rps)) rps_enable_interrupts(rps); if (intel_rps_uses_timer(rps)) rps_start_timer(rps); if (GRAPHICS_VER(rps_to_i915(rps)) == 5) gen5_rps_update(rps); } void intel_rps_park(struct intel_rps *rps) { int adj; if (!intel_rps_is_enabled(rps)) return; if (!intel_rps_clear_active(rps)) return; if (intel_rps_uses_timer(rps)) rps_stop_timer(rps); if (intel_rps_has_interrupts(rps)) rps_disable_interrupts(rps); if (rps->last_freq <= rps->idle_freq) return; /* * The punit delays the write of the frequency and voltage until it * determines the GPU is awake. During normal usage we don't want to * waste power changing the frequency if the GPU is sleeping (rc6). * However, the GPU and driver is now idle and we do not want to delay * switching to minimum voltage (reducing power whilst idle) as we do * not expect to be woken in the near future and so must flush the * change by waking the device. * * We choose to take the media powerwell (either would do to trick the * punit into committing the voltage change) as that takes a lot less * power than the render powerwell. */ intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA); rps_set(rps, rps->idle_freq, false); intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA); /* * Since we will try and restart from the previously requested * frequency on unparking, treat this idle point as a downclock * interrupt and reduce the frequency for resume. If we park/unpark * more frequently than the rps worker can run, we will not respond * to any EI and never see a change in frequency. * * (Note we accommodate Cherryview's limitation of only using an * even bin by applying it to all.) */ adj = rps->last_adj; if (adj < 0) adj *= 2; else /* CHV needs even encode values */ adj = -2; rps->last_adj = adj; rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq); if (rps->cur_freq < rps->efficient_freq) { rps->cur_freq = rps->efficient_freq; rps->last_adj = 0; } GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq); } u32 intel_rps_get_boost_frequency(struct intel_rps *rps) { struct intel_guc_slpc *slpc; if (rps_uses_slpc(rps)) { slpc = rps_to_slpc(rps); return slpc->boost_freq; } else { return intel_gpu_freq(rps, rps->boost_freq); } } static int rps_set_boost_freq(struct intel_rps *rps, u32 val) { bool boost = false; /* Validate against (static) hardware limits */ val = intel_freq_opcode(rps, val); if (val < rps->min_freq || val > rps->max_freq) return -EINVAL; mutex_lock(&rps->lock); if (val != rps->boost_freq) { rps->boost_freq = val; boost = atomic_read(&rps->num_waiters); } mutex_unlock(&rps->lock); if (boost) queue_work(rps_to_gt(rps)->i915->unordered_wq, &rps->work); return 0; } int intel_rps_set_boost_frequency(struct intel_rps *rps, u32 freq) { struct intel_guc_slpc *slpc; if (rps_uses_slpc(rps)) { slpc = rps_to_slpc(rps); return intel_guc_slpc_set_boost_freq(slpc, freq); } else { return rps_set_boost_freq(rps, freq); } } void intel_rps_dec_waiters(struct intel_rps *rps) { struct intel_guc_slpc *slpc; if (rps_uses_slpc(rps)) { slpc = rps_to_slpc(rps); intel_guc_slpc_dec_waiters(slpc); } else { atomic_dec(&rps->num_waiters); } } void intel_rps_boost(struct i915_request *rq) { struct intel_guc_slpc *slpc; if (i915_request_signaled(rq) || i915_request_has_waitboost(rq)) return; /* Serializes with i915_request_retire() */ if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) { struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps; if (rps_uses_slpc(rps)) { slpc = rps_to_slpc(rps); if (slpc->min_freq_softlimit >= slpc->boost_freq) return; /* Return if old value is non zero */ if (!atomic_fetch_inc(&slpc->num_waiters)) { GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n", rq->fence.context, rq->fence.seqno); queue_work(rps_to_gt(rps)->i915->unordered_wq, &slpc->boost_work); } return; } if (atomic_fetch_inc(&rps->num_waiters)) return; if (!intel_rps_is_active(rps)) return; GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n", rq->fence.context, rq->fence.seqno); if (READ_ONCE(rps->cur_freq) < rps->boost_freq) queue_work(rps_to_gt(rps)->i915->unordered_wq, &rps->work); WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */ } } int intel_rps_set(struct intel_rps *rps, u8 val) { int err; lockdep_assert_held(&rps->lock); GEM_BUG_ON(val > rps->max_freq); GEM_BUG_ON(val < rps->min_freq); if (intel_rps_is_active(rps)) { err = rps_set(rps, val, true); if (err) return err; /* * Make sure we continue to get interrupts * until we hit the minimum or maximum frequencies. */ if (intel_rps_has_interrupts(rps)) { struct intel_uncore *uncore = rps_to_uncore(rps); set(uncore, GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val)); set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val)); } } rps->cur_freq = val; return 0; } static u32 intel_rps_read_state_cap(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); struct intel_uncore *uncore = rps_to_uncore(rps); if (IS_PONTEVECCHIO(i915)) return intel_uncore_read(uncore, PVC_RP_STATE_CAP); else if (IS_XEHPSDV(i915)) return intel_uncore_read(uncore, XEHPSDV_RP_STATE_CAP); else if (IS_GEN9_LP(i915)) return intel_uncore_read(uncore, BXT_RP_STATE_CAP); else return intel_uncore_read(uncore, GEN6_RP_STATE_CAP); } static void mtl_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps) { struct intel_uncore *uncore = rps_to_uncore(rps); u32 rp_state_cap = rps_to_gt(rps)->type == GT_MEDIA ? intel_uncore_read(uncore, MTL_MEDIAP_STATE_CAP) : intel_uncore_read(uncore, MTL_RP_STATE_CAP); u32 rpe = rps_to_gt(rps)->type == GT_MEDIA ? intel_uncore_read(uncore, MTL_MPE_FREQUENCY) : intel_uncore_read(uncore, MTL_GT_RPE_FREQUENCY); /* MTL values are in units of 16.67 MHz */ caps->rp0_freq = REG_FIELD_GET(MTL_RP0_CAP_MASK, rp_state_cap); caps->min_freq = REG_FIELD_GET(MTL_RPN_CAP_MASK, rp_state_cap); caps->rp1_freq = REG_FIELD_GET(MTL_RPE_MASK, rpe); } static void __gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 rp_state_cap; rp_state_cap = intel_rps_read_state_cap(rps); /* static values from HW: RP0 > RP1 > RPn (min_freq) */ if (IS_GEN9_LP(i915)) { caps->rp0_freq = (rp_state_cap >> 16) & 0xff; caps->rp1_freq = (rp_state_cap >> 8) & 0xff; caps->min_freq = (rp_state_cap >> 0) & 0xff; } else { caps->rp0_freq = (rp_state_cap >> 0) & 0xff; if (GRAPHICS_VER(i915) >= 10) caps->rp1_freq = REG_FIELD_GET(RPE_MASK, intel_uncore_read(to_gt(i915)->uncore, GEN10_FREQ_INFO_REC)); else caps->rp1_freq = (rp_state_cap >> 8) & 0xff; caps->min_freq = (rp_state_cap >> 16) & 0xff; } if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) { /* * In this case rp_state_cap register reports frequencies in * units of 50 MHz. Convert these to the actual "hw unit", i.e. * units of 16.67 MHz */ caps->rp0_freq *= GEN9_FREQ_SCALER; caps->rp1_freq *= GEN9_FREQ_SCALER; caps->min_freq *= GEN9_FREQ_SCALER; } } /** * gen6_rps_get_freq_caps - Get freq caps exposed by HW * @rps: the intel_rps structure * @caps: returned freq caps * * Returned "caps" frequencies should be converted to MHz using * intel_gpu_freq() */ void gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps) { struct drm_i915_private *i915 = rps_to_i915(rps); if (IS_METEORLAKE(i915)) return mtl_get_freq_caps(rps, caps); else return __gen6_rps_get_freq_caps(rps, caps); } static void gen6_rps_init(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); struct intel_rps_freq_caps caps; gen6_rps_get_freq_caps(rps, &caps); rps->rp0_freq = caps.rp0_freq; rps->rp1_freq = caps.rp1_freq; rps->min_freq = caps.min_freq; /* hw_max = RP0 until we check for overclocking */ rps->max_freq = rps->rp0_freq; rps->efficient_freq = rps->rp1_freq; if (IS_HASWELL(i915) || IS_BROADWELL(i915) || IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) { u32 ddcc_status = 0; u32 mult = 1; if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) mult = GEN9_FREQ_SCALER; if (snb_pcode_read(rps_to_gt(rps)->uncore, HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL, &ddcc_status, NULL) == 0) rps->efficient_freq = clamp_t(u32, ((ddcc_status >> 8) & 0xff) * mult, rps->min_freq, rps->max_freq); } } static bool rps_reset(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); /* force a reset */ rps->power.mode = -1; rps->last_freq = -1; if (rps_set(rps, rps->min_freq, true)) { drm_err(&i915->drm, "Failed to reset RPS to initial values\n"); return false; } rps->cur_freq = rps->min_freq; return true; } /* See the Gen9_GT_PM_Programming_Guide doc for the below */ static bool gen9_rps_enable(struct intel_rps *rps) { struct intel_gt *gt = rps_to_gt(rps); struct intel_uncore *uncore = gt->uncore; /* Program defaults and thresholds for RPS */ if (GRAPHICS_VER(gt->i915) == 9) intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ, GEN9_FREQUENCY(rps->rp1_freq)); intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa); rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD; return rps_reset(rps); } static bool gen8_rps_enable(struct intel_rps *rps) { struct intel_uncore *uncore = rps_to_uncore(rps); intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(rps->rp1_freq)); intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10); rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD; return rps_reset(rps); } static bool gen6_rps_enable(struct intel_rps *rps) { struct intel_uncore *uncore = rps_to_uncore(rps); /* Power down if completely idle for over 50ms */ intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000); intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10); rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT); return rps_reset(rps); } static int chv_rps_max_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); struct intel_gt *gt = rps_to_gt(rps); u32 val; val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE); switch (gt->info.sseu.eu_total) { case 8: /* (2 * 4) config */ val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT; break; case 12: /* (2 * 6) config */ val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT; break; case 16: /* (2 * 8) config */ default: /* Setting (2 * 8) Min RP0 for any other combination */ val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT; break; } return val & FB_GFX_FREQ_FUSE_MASK; } static int chv_rps_rpe_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val; val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG); val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT; return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK; } static int chv_rps_guar_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val; val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE); return val & FB_GFX_FREQ_FUSE_MASK; } static u32 chv_rps_min_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val; val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE); val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT; return val & FB_GFX_FREQ_FUSE_MASK; } static bool chv_rps_enable(struct intel_rps *rps) { struct intel_uncore *uncore = rps_to_uncore(rps); struct drm_i915_private *i915 = rps_to_i915(rps); u32 val; /* 1: Program defaults and thresholds for RPS*/ intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000); intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400); intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000); intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000); intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000); intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10); /* 2: Enable RPS */ intel_uncore_write_fw(uncore, GEN6_RP_CONTROL, GEN6_RP_MEDIA_HW_NORMAL_MODE | GEN6_RP_MEDIA_IS_GFX | GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG | GEN6_RP_DOWN_IDLE_AVG); rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT); /* Setting Fixed Bias */ vlv_punit_get(i915); val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50; vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val); val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS); vlv_punit_put(i915); /* RPS code assumes GPLL is used */ drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0, "GPLL not enabled\n"); drm_dbg(&i915->drm, "GPLL enabled? %s\n", str_yes_no(val & GPLLENABLE)); drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val); return rps_reset(rps); } static int vlv_rps_guar_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val, rp1; val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE); rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK; rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT; return rp1; } static int vlv_rps_max_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val, rp0; val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE); rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT; /* Clamp to max */ rp0 = min_t(u32, rp0, 0xea); return rp0; } static int vlv_rps_rpe_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val, rpe; val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO); rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT; val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI); rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5; return rpe; } static int vlv_rps_min_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val; val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff; /* * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on * a BYT-M B0 the above register contains 0xbf. Moreover when setting * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0 * to make sure it matches what Punit accepts. */ return max_t(u32, val, 0xc0); } static bool vlv_rps_enable(struct intel_rps *rps) { struct intel_uncore *uncore = rps_to_uncore(rps); struct drm_i915_private *i915 = rps_to_i915(rps); u32 val; intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000); intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400); intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000); intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000); intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000); intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10); intel_uncore_write_fw(uncore, GEN6_RP_CONTROL, GEN6_RP_MEDIA_TURBO | GEN6_RP_MEDIA_HW_NORMAL_MODE | GEN6_RP_MEDIA_IS_GFX | GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG | GEN6_RP_DOWN_IDLE_CONT); /* WaGsvRC0ResidencyMethod:vlv */ rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED; vlv_punit_get(i915); /* Setting Fixed Bias */ val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875; vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val); val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS); vlv_punit_put(i915); /* RPS code assumes GPLL is used */ drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0, "GPLL not enabled\n"); drm_dbg(&i915->drm, "GPLL enabled? %s\n", str_yes_no(val & GPLLENABLE)); drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val); return rps_reset(rps); } static unsigned long __ips_gfx_val(struct intel_ips *ips) { struct intel_rps *rps = container_of(ips, typeof(*rps), ips); struct intel_uncore *uncore = rps_to_uncore(rps); unsigned int t, state1, state2; u32 pxvid, ext_v; u64 corr, corr2; lockdep_assert_held(&mchdev_lock); pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq)); pxvid = (pxvid >> 24) & 0x7f; ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid); state1 = ext_v; /* Revel in the empirically derived constants */ /* Correction factor in 1/100000 units */ t = ips_mch_val(uncore); if (t > 80) corr = t * 2349 + 135940; else if (t >= 50) corr = t * 964 + 29317; else /* < 50 */ corr = t * 301 + 1004; corr = div_u64(corr * 150142 * state1, 10000) - 78642; corr2 = div_u64(corr, 100000) * ips->corr; state2 = div_u64(corr2 * state1, 10000); state2 /= 100; /* convert to mW */ __gen5_ips_update(ips); return ips->gfx_power + state2; } static bool has_busy_stats(struct intel_rps *rps) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, rps_to_gt(rps), id) { if (!intel_engine_supports_stats(engine)) return false; } return true; } void intel_rps_enable(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); struct intel_uncore *uncore = rps_to_uncore(rps); bool enabled = false; if (!HAS_RPS(i915)) return; if (rps_uses_slpc(rps)) return; intel_gt_check_clock_frequency(rps_to_gt(rps)); intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); if (rps->max_freq <= rps->min_freq) /* leave disabled, no room for dynamic reclocking */; else if (IS_CHERRYVIEW(i915)) enabled = chv_rps_enable(rps); else if (IS_VALLEYVIEW(i915)) enabled = vlv_rps_enable(rps); else if (GRAPHICS_VER(i915) >= 9) enabled = gen9_rps_enable(rps); else if (GRAPHICS_VER(i915) >= 8) enabled = gen8_rps_enable(rps); else if (GRAPHICS_VER(i915) >= 6) enabled = gen6_rps_enable(rps); else if (IS_IRONLAKE_M(i915)) enabled = gen5_rps_enable(rps); else MISSING_CASE(GRAPHICS_VER(i915)); intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); if (!enabled) return; GT_TRACE(rps_to_gt(rps), "min:%x, max:%x, freq:[%d, %d], thresholds:[%u, %u]\n", rps->min_freq, rps->max_freq, intel_gpu_freq(rps, rps->min_freq), intel_gpu_freq(rps, rps->max_freq), rps->power.up_threshold, rps->power.down_threshold); GEM_BUG_ON(rps->max_freq < rps->min_freq); GEM_BUG_ON(rps->idle_freq > rps->max_freq); GEM_BUG_ON(rps->efficient_freq < rps->min_freq); GEM_BUG_ON(rps->efficient_freq > rps->max_freq); if (has_busy_stats(rps)) intel_rps_set_timer(rps); else if (GRAPHICS_VER(i915) >= 6 && GRAPHICS_VER(i915) <= 11) intel_rps_set_interrupts(rps); else /* Ironlake currently uses intel_ips.ko */ {} intel_rps_set_enabled(rps); } static void gen6_rps_disable(struct intel_rps *rps) { set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0); } void intel_rps_disable(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); if (!intel_rps_is_enabled(rps)) return; intel_rps_clear_enabled(rps); intel_rps_clear_interrupts(rps); intel_rps_clear_timer(rps); if (GRAPHICS_VER(i915) >= 6) gen6_rps_disable(rps); else if (IS_IRONLAKE_M(i915)) gen5_rps_disable(rps); } static int byt_gpu_freq(struct intel_rps *rps, int val) { /* * N = val - 0xb7 * Slow = Fast = GPLL ref * N */ return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000); } static int byt_freq_opcode(struct intel_rps *rps, int val) { return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7; } static int chv_gpu_freq(struct intel_rps *rps, int val) { /* * N = val / 2 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2 */ return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000); } static int chv_freq_opcode(struct intel_rps *rps, int val) { /* CHV needs even values */ return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2; } int intel_gpu_freq(struct intel_rps *rps, int val) { struct drm_i915_private *i915 = rps_to_i915(rps); if (GRAPHICS_VER(i915) >= 9) return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER, GEN9_FREQ_SCALER); else if (IS_CHERRYVIEW(i915)) return chv_gpu_freq(rps, val); else if (IS_VALLEYVIEW(i915)) return byt_gpu_freq(rps, val); else if (GRAPHICS_VER(i915) >= 6) return val * GT_FREQUENCY_MULTIPLIER; else return val; } int intel_freq_opcode(struct intel_rps *rps, int val) { struct drm_i915_private *i915 = rps_to_i915(rps); if (GRAPHICS_VER(i915) >= 9) return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER, GT_FREQUENCY_MULTIPLIER); else if (IS_CHERRYVIEW(i915)) return chv_freq_opcode(rps, val); else if (IS_VALLEYVIEW(i915)) return byt_freq_opcode(rps, val); else if (GRAPHICS_VER(i915) >= 6) return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER); else return val; } static void vlv_init_gpll_ref_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); rps->gpll_ref_freq = vlv_get_cck_clock(i915, "GPLL ref", CCK_GPLL_CLOCK_CONTROL, i915->czclk_freq); drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n", rps->gpll_ref_freq); } static void vlv_rps_init(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); vlv_iosf_sb_get(i915, BIT(VLV_IOSF_SB_PUNIT) | BIT(VLV_IOSF_SB_NC) | BIT(VLV_IOSF_SB_CCK)); vlv_init_gpll_ref_freq(rps); rps->max_freq = vlv_rps_max_freq(rps); rps->rp0_freq = rps->max_freq; drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n", intel_gpu_freq(rps, rps->max_freq), rps->max_freq); rps->efficient_freq = vlv_rps_rpe_freq(rps); drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n", intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq); rps->rp1_freq = vlv_rps_guar_freq(rps); drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n", intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq); rps->min_freq = vlv_rps_min_freq(rps); drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n", intel_gpu_freq(rps, rps->min_freq), rps->min_freq); vlv_iosf_sb_put(i915, BIT(VLV_IOSF_SB_PUNIT) | BIT(VLV_IOSF_SB_NC) | BIT(VLV_IOSF_SB_CCK)); } static void chv_rps_init(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); vlv_iosf_sb_get(i915, BIT(VLV_IOSF_SB_PUNIT) | BIT(VLV_IOSF_SB_NC) | BIT(VLV_IOSF_SB_CCK)); vlv_init_gpll_ref_freq(rps); rps->max_freq = chv_rps_max_freq(rps); rps->rp0_freq = rps->max_freq; drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n", intel_gpu_freq(rps, rps->max_freq), rps->max_freq); rps->efficient_freq = chv_rps_rpe_freq(rps); drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n", intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq); rps->rp1_freq = chv_rps_guar_freq(rps); drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n", intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq); rps->min_freq = chv_rps_min_freq(rps); drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n", intel_gpu_freq(rps, rps->min_freq), rps->min_freq); vlv_iosf_sb_put(i915, BIT(VLV_IOSF_SB_PUNIT) | BIT(VLV_IOSF_SB_NC) | BIT(VLV_IOSF_SB_CCK)); drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq | rps->rp1_freq | rps->min_freq) & 1, "Odd GPU freq values\n"); } static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei) { ei->ktime = ktime_get_raw(); ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT); ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT); } static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir) { struct intel_uncore *uncore = rps_to_uncore(rps); const struct intel_rps_ei *prev = &rps->ei; struct intel_rps_ei now; u32 events = 0; if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0) return 0; vlv_c0_read(uncore, &now); if (prev->ktime) { u64 time, c0; u32 render, media; time = ktime_us_delta(now.ktime, prev->ktime); time *= rps_to_i915(rps)->czclk_freq; /* Workload can be split between render + media, * e.g. SwapBuffers being blitted in X after being rendered in * mesa. To account for this we need to combine both engines * into our activity counter. */ render = now.render_c0 - prev->render_c0; media = now.media_c0 - prev->media_c0; c0 = max(render, media); c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */ if (c0 > time * rps->power.up_threshold) events = GEN6_PM_RP_UP_THRESHOLD; else if (c0 < time * rps->power.down_threshold) events = GEN6_PM_RP_DOWN_THRESHOLD; } rps->ei = now; return events; } static void rps_work(struct work_struct *work) { struct intel_rps *rps = container_of(work, typeof(*rps), work); struct intel_gt *gt = rps_to_gt(rps); struct drm_i915_private *i915 = rps_to_i915(rps); bool client_boost = false; int new_freq, adj, min, max; u32 pm_iir = 0; spin_lock_irq(gt->irq_lock); pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events; client_boost = atomic_read(&rps->num_waiters); spin_unlock_irq(gt->irq_lock); /* Make sure we didn't queue anything we're not going to process. */ if (!pm_iir && !client_boost) goto out; mutex_lock(&rps->lock); if (!intel_rps_is_active(rps)) { mutex_unlock(&rps->lock); return; } pm_iir |= vlv_wa_c0_ei(rps, pm_iir); adj = rps->last_adj; new_freq = rps->cur_freq; min = rps->min_freq_softlimit; max = rps->max_freq_softlimit; if (client_boost) max = rps->max_freq; GT_TRACE(gt, "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n", pm_iir, str_yes_no(client_boost), adj, new_freq, min, max); if (client_boost && new_freq < rps->boost_freq) { new_freq = rps->boost_freq; adj = 0; } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) { if (adj > 0) adj *= 2; else /* CHV needs even encode values */ adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1; if (new_freq >= rps->max_freq_softlimit) adj = 0; } else if (client_boost) { adj = 0; } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) { if (rps->cur_freq > rps->efficient_freq) new_freq = rps->efficient_freq; else if (rps->cur_freq > rps->min_freq_softlimit) new_freq = rps->min_freq_softlimit; adj = 0; } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) { if (adj < 0) adj *= 2; else /* CHV needs even encode values */ adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1; if (new_freq <= rps->min_freq_softlimit) adj = 0; } else { /* unknown event */ adj = 0; } /* * sysfs frequency limits may have snuck in while * servicing the interrupt */ new_freq += adj; new_freq = clamp_t(int, new_freq, min, max); if (intel_rps_set(rps, new_freq)) { drm_dbg(&i915->drm, "Failed to set new GPU frequency\n"); adj = 0; } rps->last_adj = adj; mutex_unlock(&rps->lock); out: spin_lock_irq(gt->irq_lock); gen6_gt_pm_unmask_irq(gt, rps->pm_events); spin_unlock_irq(gt->irq_lock); } void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir) { struct intel_gt *gt = rps_to_gt(rps); const u32 events = rps->pm_events & pm_iir; lockdep_assert_held(gt->irq_lock); if (unlikely(!events)) return; GT_TRACE(gt, "irq events:%x\n", events); gen6_gt_pm_mask_irq(gt, events); rps->pm_iir |= events; queue_work(gt->i915->unordered_wq, &rps->work); } void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir) { struct intel_gt *gt = rps_to_gt(rps); u32 events; events = pm_iir & rps->pm_events; if (events) { spin_lock(gt->irq_lock); GT_TRACE(gt, "irq events:%x\n", events); gen6_gt_pm_mask_irq(gt, events); rps->pm_iir |= events; queue_work(gt->i915->unordered_wq, &rps->work); spin_unlock(gt->irq_lock); } if (GRAPHICS_VER(gt->i915) >= 8) return; if (pm_iir & PM_VEBOX_USER_INTERRUPT) intel_engine_cs_irq(gt->engine[VECS0], pm_iir >> 10); if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) drm_dbg(&rps_to_i915(rps)->drm, "Command parser error, pm_iir 0x%08x\n", pm_iir); } void gen5_rps_irq_handler(struct intel_rps *rps) { struct intel_uncore *uncore = rps_to_uncore(rps); u32 busy_up, busy_down, max_avg, min_avg; u8 new_freq; spin_lock(&mchdev_lock); intel_uncore_write16(uncore, MEMINTRSTS, intel_uncore_read(uncore, MEMINTRSTS)); intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG); busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG); busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG); max_avg = intel_uncore_read(uncore, RCBMAXAVG); min_avg = intel_uncore_read(uncore, RCBMINAVG); /* Handle RCS change request from hw */ new_freq = rps->cur_freq; if (busy_up > max_avg) new_freq++; else if (busy_down < min_avg) new_freq--; new_freq = clamp(new_freq, rps->min_freq_softlimit, rps->max_freq_softlimit); if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq)) rps->cur_freq = new_freq; spin_unlock(&mchdev_lock); } void intel_rps_init_early(struct intel_rps *rps) { mutex_init(&rps->lock); mutex_init(&rps->power.mutex); INIT_WORK(&rps->work, rps_work); timer_setup(&rps->timer, rps_timer, 0); atomic_set(&rps->num_waiters, 0); } void intel_rps_init(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); if (rps_uses_slpc(rps)) return; if (IS_CHERRYVIEW(i915)) chv_rps_init(rps); else if (IS_VALLEYVIEW(i915)) vlv_rps_init(rps); else if (GRAPHICS_VER(i915) >= 6) gen6_rps_init(rps); else if (IS_IRONLAKE_M(i915)) gen5_rps_init(rps); /* Derive initial user preferences/limits from the hardware limits */ rps->max_freq_softlimit = rps->max_freq; rps_to_gt(rps)->defaults.max_freq = rps->max_freq_softlimit; rps->min_freq_softlimit = rps->min_freq; rps_to_gt(rps)->defaults.min_freq = rps->min_freq_softlimit; /* After setting max-softlimit, find the overclock max freq */ if (GRAPHICS_VER(i915) == 6 || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) { u32 params = 0; snb_pcode_read(rps_to_gt(rps)->uncore, GEN6_READ_OC_PARAMS, &params, NULL); if (params & BIT(31)) { /* OC supported */ drm_dbg(&i915->drm, "Overclocking supported, max: %dMHz, overclock: %dMHz\n", (rps->max_freq & 0xff) * 50, (params & 0xff) * 50); rps->max_freq = params & 0xff; } } /* Set default thresholds in % */ rps->power.up_threshold = 95; rps_to_gt(rps)->defaults.rps_up_threshold = rps->power.up_threshold; rps->power.down_threshold = 85; rps_to_gt(rps)->defaults.rps_down_threshold = rps->power.down_threshold; /* Finally allow us to boost to max by default */ rps->boost_freq = rps->max_freq; rps->idle_freq = rps->min_freq; /* Start in the middle, from here we will autotune based on workload */ rps->cur_freq = rps->efficient_freq; rps->pm_intrmsk_mbz = 0; /* * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer * if GEN6_PM_UP_EI_EXPIRED is masked. * * TODO: verify if this can be reproduced on VLV,CHV. */ if (GRAPHICS_VER(i915) <= 7) rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED; if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) < 11) rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC; /* GuC needs ARAT expired interrupt unmasked */ if (intel_uc_uses_guc_submission(&rps_to_gt(rps)->uc)) rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK; } void intel_rps_sanitize(struct intel_rps *rps) { if (rps_uses_slpc(rps)) return; if (GRAPHICS_VER(rps_to_i915(rps)) >= 6) rps_disable_interrupts(rps); } u32 intel_rps_read_rpstat(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); i915_reg_t rpstat; rpstat = (GRAPHICS_VER(i915) >= 12) ? GEN12_RPSTAT1 : GEN6_RPSTAT1; return intel_uncore_read(rps_to_gt(rps)->uncore, rpstat); } static u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 cagf; if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) cagf = REG_FIELD_GET(MTL_CAGF_MASK, rpstat); else if (GRAPHICS_VER(i915) >= 12) cagf = REG_FIELD_GET(GEN12_CAGF_MASK, rpstat); else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) cagf = REG_FIELD_GET(RPE_MASK, rpstat); else if (GRAPHICS_VER(i915) >= 9) cagf = REG_FIELD_GET(GEN9_CAGF_MASK, rpstat); else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) cagf = REG_FIELD_GET(HSW_CAGF_MASK, rpstat); else if (GRAPHICS_VER(i915) >= 6) cagf = REG_FIELD_GET(GEN6_CAGF_MASK, rpstat); else cagf = gen5_invert_freq(rps, REG_FIELD_GET(MEMSTAT_PSTATE_MASK, rpstat)); return cagf; } static u32 __read_cagf(struct intel_rps *rps, bool take_fw) { struct drm_i915_private *i915 = rps_to_i915(rps); struct intel_uncore *uncore = rps_to_uncore(rps); i915_reg_t r = INVALID_MMIO_REG; u32 freq; /* * For Gen12+ reading freq from HW does not need a forcewake and * registers will return 0 freq when GT is in RC6 */ if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) { r = MTL_MIRROR_TARGET_WP1; } else if (GRAPHICS_VER(i915) >= 12) { r = GEN12_RPSTAT1; } else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) { vlv_punit_get(i915); freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS); vlv_punit_put(i915); } else if (GRAPHICS_VER(i915) >= 6) { r = GEN6_RPSTAT1; } else { r = MEMSTAT_ILK; } if (i915_mmio_reg_valid(r)) freq = take_fw ? intel_uncore_read(uncore, r) : intel_uncore_read_fw(uncore, r); return intel_rps_get_cagf(rps, freq); } static u32 read_cagf(struct intel_rps *rps) { return __read_cagf(rps, true); } u32 intel_rps_read_actual_frequency(struct intel_rps *rps) { struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm; intel_wakeref_t wakeref; u32 freq = 0; with_intel_runtime_pm_if_in_use(rpm, wakeref) freq = intel_gpu_freq(rps, read_cagf(rps)); return freq; } u32 intel_rps_read_actual_frequency_fw(struct intel_rps *rps) { return intel_gpu_freq(rps, __read_cagf(rps, false)); } static u32 intel_rps_read_punit_req(struct intel_rps *rps) { struct intel_uncore *uncore = rps_to_uncore(rps); struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm; intel_wakeref_t wakeref; u32 freq = 0; with_intel_runtime_pm_if_in_use(rpm, wakeref) freq = intel_uncore_read(uncore, GEN6_RPNSWREQ); return freq; } static u32 intel_rps_get_req(u32 pureq) { u32 req = pureq >> GEN9_SW_REQ_UNSLICE_RATIO_SHIFT; return req; } u32 intel_rps_read_punit_req_frequency(struct intel_rps *rps) { u32 freq = intel_rps_get_req(intel_rps_read_punit_req(rps)); return intel_gpu_freq(rps, freq); } u32 intel_rps_get_requested_frequency(struct intel_rps *rps) { if (rps_uses_slpc(rps)) return intel_rps_read_punit_req_frequency(rps); else return intel_gpu_freq(rps, rps->cur_freq); } u32 intel_rps_get_max_frequency(struct intel_rps *rps) { struct intel_guc_slpc *slpc = rps_to_slpc(rps); if (rps_uses_slpc(rps)) return slpc->max_freq_softlimit; else return intel_gpu_freq(rps, rps->max_freq_softlimit); } /** * intel_rps_get_max_raw_freq - returns the max frequency in some raw format. * @rps: the intel_rps structure * * Returns the max frequency in a raw format. In newer platforms raw is in * units of 50 MHz. */ u32 intel_rps_get_max_raw_freq(struct intel_rps *rps) { struct intel_guc_slpc *slpc = rps_to_slpc(rps); u32 freq; if (rps_uses_slpc(rps)) { return DIV_ROUND_CLOSEST(slpc->rp0_freq, GT_FREQUENCY_MULTIPLIER); } else { freq = rps->max_freq; if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) { /* Convert GT frequency to 50 MHz units */ freq /= GEN9_FREQ_SCALER; } return freq; } } u32 intel_rps_get_rp0_frequency(struct intel_rps *rps) { struct intel_guc_slpc *slpc = rps_to_slpc(rps); if (rps_uses_slpc(rps)) return slpc->rp0_freq; else return intel_gpu_freq(rps, rps->rp0_freq); } u32 intel_rps_get_rp1_frequency(struct intel_rps *rps) { struct intel_guc_slpc *slpc = rps_to_slpc(rps); if (rps_uses_slpc(rps)) return slpc->rp1_freq; else return intel_gpu_freq(rps, rps->rp1_freq); } u32 intel_rps_get_rpn_frequency(struct intel_rps *rps) { struct intel_guc_slpc *slpc = rps_to_slpc(rps); if (rps_uses_slpc(rps)) return slpc->min_freq; else return intel_gpu_freq(rps, rps->min_freq); } static void rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p) { struct intel_gt *gt = rps_to_gt(rps); struct drm_i915_private *i915 = gt->i915; struct intel_uncore *uncore = gt->uncore; struct intel_rps_freq_caps caps; u32 rp_state_limits; u32 gt_perf_status; u32 rpmodectl, rpinclimit, rpdeclimit; u32 rpstat, cagf, reqf; u32 rpcurupei, rpcurup, rpprevup; u32 rpcurdownei, rpcurdown, rpprevdown; u32 rpupei, rpupt, rpdownei, rpdownt; u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask; rp_state_limits = intel_uncore_read(uncore, GEN6_RP_STATE_LIMITS); gen6_rps_get_freq_caps(rps, &caps); if (IS_GEN9_LP(i915)) gt_perf_status = intel_uncore_read(uncore, BXT_GT_PERF_STATUS); else gt_perf_status = intel_uncore_read(uncore, GEN6_GT_PERF_STATUS); /* RPSTAT1 is in the GT power well */ intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); reqf = intel_uncore_read(uncore, GEN6_RPNSWREQ); if (GRAPHICS_VER(i915) >= 9) { reqf >>= 23; } else { reqf &= ~GEN6_TURBO_DISABLE; if (IS_HASWELL(i915) || IS_BROADWELL(i915)) reqf >>= 24; else reqf >>= 25; } reqf = intel_gpu_freq(rps, reqf); rpmodectl = intel_uncore_read(uncore, GEN6_RP_CONTROL); rpinclimit = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD); rpdeclimit = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD); rpstat = intel_rps_read_rpstat(rps); rpcurupei = intel_uncore_read(uncore, GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK; rpcurup = intel_uncore_read(uncore, GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK; rpprevup = intel_uncore_read(uncore, GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK; rpcurdownei = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK; rpcurdown = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK; rpprevdown = intel_uncore_read(uncore, GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK; rpupei = intel_uncore_read(uncore, GEN6_RP_UP_EI); rpupt = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD); rpdownei = intel_uncore_read(uncore, GEN6_RP_DOWN_EI); rpdownt = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD); cagf = intel_rps_read_actual_frequency(rps); intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); if (GRAPHICS_VER(i915) >= 11) { pm_ier = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE); pm_imr = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK); /* * The equivalent to the PM ISR & IIR cannot be read * without affecting the current state of the system */ pm_isr = 0; pm_iir = 0; } else if (GRAPHICS_VER(i915) >= 8) { pm_ier = intel_uncore_read(uncore, GEN8_GT_IER(2)); pm_imr = intel_uncore_read(uncore, GEN8_GT_IMR(2)); pm_isr = intel_uncore_read(uncore, GEN8_GT_ISR(2)); pm_iir = intel_uncore_read(uncore, GEN8_GT_IIR(2)); } else { pm_ier = intel_uncore_read(uncore, GEN6_PMIER); pm_imr = intel_uncore_read(uncore, GEN6_PMIMR); pm_isr = intel_uncore_read(uncore, GEN6_PMISR); pm_iir = intel_uncore_read(uncore, GEN6_PMIIR); } pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK); drm_printf(p, "Video Turbo Mode: %s\n", str_yes_no(rpmodectl & GEN6_RP_MEDIA_TURBO)); drm_printf(p, "HW control enabled: %s\n", str_yes_no(rpmodectl & GEN6_RP_ENABLE)); drm_printf(p, "SW control enabled: %s\n", str_yes_no((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) == GEN6_RP_MEDIA_SW_MODE)); drm_printf(p, "PM IER=0x%08x IMR=0x%08x, MASK=0x%08x\n", pm_ier, pm_imr, pm_mask); if (GRAPHICS_VER(i915) <= 10) drm_printf(p, "PM ISR=0x%08x IIR=0x%08x\n", pm_isr, pm_iir); drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n", rps->pm_intrmsk_mbz); drm_printf(p, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status); drm_printf(p, "Render p-state ratio: %d\n", (gt_perf_status & (GRAPHICS_VER(i915) >= 9 ? 0x1ff00 : 0xff00)) >> 8); drm_printf(p, "Render p-state VID: %d\n", gt_perf_status & 0xff); drm_printf(p, "Render p-state limit: %d\n", rp_state_limits & 0xff); drm_printf(p, "RPSTAT1: 0x%08x\n", rpstat); drm_printf(p, "RPMODECTL: 0x%08x\n", rpmodectl); drm_printf(p, "RPINCLIMIT: 0x%08x\n", rpinclimit); drm_printf(p, "RPDECLIMIT: 0x%08x\n", rpdeclimit); drm_printf(p, "RPNSWREQ: %dMHz\n", reqf); drm_printf(p, "CAGF: %dMHz\n", cagf); drm_printf(p, "RP CUR UP EI: %d (%lldns)\n", rpcurupei, intel_gt_pm_interval_to_ns(gt, rpcurupei)); drm_printf(p, "RP CUR UP: %d (%lldns)\n", rpcurup, intel_gt_pm_interval_to_ns(gt, rpcurup)); drm_printf(p, "RP PREV UP: %d (%lldns)\n", rpprevup, intel_gt_pm_interval_to_ns(gt, rpprevup)); drm_printf(p, "Up threshold: %d%%\n", rps->power.up_threshold); drm_printf(p, "RP UP EI: %d (%lldns)\n", rpupei, intel_gt_pm_interval_to_ns(gt, rpupei)); drm_printf(p, "RP UP THRESHOLD: %d (%lldns)\n", rpupt, intel_gt_pm_interval_to_ns(gt, rpupt)); drm_printf(p, "RP CUR DOWN EI: %d (%lldns)\n", rpcurdownei, intel_gt_pm_interval_to_ns(gt, rpcurdownei)); drm_printf(p, "RP CUR DOWN: %d (%lldns)\n", rpcurdown, intel_gt_pm_interval_to_ns(gt, rpcurdown)); drm_printf(p, "RP PREV DOWN: %d (%lldns)\n", rpprevdown, intel_gt_pm_interval_to_ns(gt, rpprevdown)); drm_printf(p, "Down threshold: %d%%\n", rps->power.down_threshold); drm_printf(p, "RP DOWN EI: %d (%lldns)\n", rpdownei, intel_gt_pm_interval_to_ns(gt, rpdownei)); drm_printf(p, "RP DOWN THRESHOLD: %d (%lldns)\n", rpdownt, intel_gt_pm_interval_to_ns(gt, rpdownt)); drm_printf(p, "Lowest (RPN) frequency: %dMHz\n", intel_gpu_freq(rps, caps.min_freq)); drm_printf(p, "Nominal (RP1) frequency: %dMHz\n", intel_gpu_freq(rps, caps.rp1_freq)); drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n", intel_gpu_freq(rps, caps.rp0_freq)); drm_printf(p, "Max overclocked frequency: %dMHz\n", intel_gpu_freq(rps, rps->max_freq)); drm_printf(p, "Current freq: %d MHz\n", intel_gpu_freq(rps, rps->cur_freq)); drm_printf(p, "Actual freq: %d MHz\n", cagf); drm_printf(p, "Idle freq: %d MHz\n", intel_gpu_freq(rps, rps->idle_freq)); drm_printf(p, "Min freq: %d MHz\n", intel_gpu_freq(rps, rps->min_freq)); drm_printf(p, "Boost freq: %d MHz\n", intel_gpu_freq(rps, rps->boost_freq)); drm_printf(p, "Max freq: %d MHz\n", intel_gpu_freq(rps, rps->max_freq)); drm_printf(p, "efficient (RPe) frequency: %d MHz\n", intel_gpu_freq(rps, rps->efficient_freq)); } static void slpc_frequency_dump(struct intel_rps *rps, struct drm_printer *p) { struct intel_gt *gt = rps_to_gt(rps); struct intel_uncore *uncore = gt->uncore; struct intel_rps_freq_caps caps; u32 pm_mask; gen6_rps_get_freq_caps(rps, &caps); pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK); drm_printf(p, "PM MASK=0x%08x\n", pm_mask); drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n", rps->pm_intrmsk_mbz); drm_printf(p, "RPSTAT1: 0x%08x\n", intel_rps_read_rpstat(rps)); drm_printf(p, "RPNSWREQ: %dMHz\n", intel_rps_get_requested_frequency(rps)); drm_printf(p, "Lowest (RPN) frequency: %dMHz\n", intel_gpu_freq(rps, caps.min_freq)); drm_printf(p, "Nominal (RP1) frequency: %dMHz\n", intel_gpu_freq(rps, caps.rp1_freq)); drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n", intel_gpu_freq(rps, caps.rp0_freq)); drm_printf(p, "Current freq: %d MHz\n", intel_rps_get_requested_frequency(rps)); drm_printf(p, "Actual freq: %d MHz\n", intel_rps_read_actual_frequency(rps)); drm_printf(p, "Min freq: %d MHz\n", intel_rps_get_min_frequency(rps)); drm_printf(p, "Boost freq: %d MHz\n", intel_rps_get_boost_frequency(rps)); drm_printf(p, "Max freq: %d MHz\n", intel_rps_get_max_frequency(rps)); drm_printf(p, "efficient (RPe) frequency: %d MHz\n", intel_gpu_freq(rps, caps.rp1_freq)); } void gen6_rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p) { if (rps_uses_slpc(rps)) return slpc_frequency_dump(rps, p); else return rps_frequency_dump(rps, p); } static int set_max_freq(struct intel_rps *rps, u32 val) { struct drm_i915_private *i915 = rps_to_i915(rps); int ret = 0; mutex_lock(&rps->lock); val = intel_freq_opcode(rps, val); if (val < rps->min_freq || val > rps->max_freq || val < rps->min_freq_softlimit) { ret = -EINVAL; goto unlock; } if (val > rps->rp0_freq) drm_dbg(&i915->drm, "User requested overclocking to %d\n", intel_gpu_freq(rps, val)); rps->max_freq_softlimit = val; val = clamp_t(int, rps->cur_freq, rps->min_freq_softlimit, rps->max_freq_softlimit); /* * We still need *_set_rps to process the new max_delay and * update the interrupt limits and PMINTRMSK even though * frequency request may be unchanged. */ intel_rps_set(rps, val); unlock: mutex_unlock(&rps->lock); return ret; } int intel_rps_set_max_frequency(struct intel_rps *rps, u32 val) { struct intel_guc_slpc *slpc = rps_to_slpc(rps); if (rps_uses_slpc(rps)) return intel_guc_slpc_set_max_freq(slpc, val); else return set_max_freq(rps, val); } u32 intel_rps_get_min_frequency(struct intel_rps *rps) { struct intel_guc_slpc *slpc = rps_to_slpc(rps); if (rps_uses_slpc(rps)) return slpc->min_freq_softlimit; else return intel_gpu_freq(rps, rps->min_freq_softlimit); } /** * intel_rps_get_min_raw_freq - returns the min frequency in some raw format. * @rps: the intel_rps structure * * Returns the min frequency in a raw format. In newer platforms raw is in * units of 50 MHz. */ u32 intel_rps_get_min_raw_freq(struct intel_rps *rps) { struct intel_guc_slpc *slpc = rps_to_slpc(rps); u32 freq; if (rps_uses_slpc(rps)) { return DIV_ROUND_CLOSEST(slpc->min_freq, GT_FREQUENCY_MULTIPLIER); } else { freq = rps->min_freq; if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) { /* Convert GT frequency to 50 MHz units */ freq /= GEN9_FREQ_SCALER; } return freq; } } static int set_min_freq(struct intel_rps *rps, u32 val) { int ret = 0; mutex_lock(&rps->lock); val = intel_freq_opcode(rps, val); if (val < rps->min_freq || val > rps->max_freq || val > rps->max_freq_softlimit) { ret = -EINVAL; goto unlock; } rps->min_freq_softlimit = val; val = clamp_t(int, rps->cur_freq, rps->min_freq_softlimit, rps->max_freq_softlimit); /* * We still need *_set_rps to process the new min_delay and * update the interrupt limits and PMINTRMSK even though * frequency request may be unchanged. */ intel_rps_set(rps, val); unlock: mutex_unlock(&rps->lock); return ret; } int intel_rps_set_min_frequency(struct intel_rps *rps, u32 val) { struct intel_guc_slpc *slpc = rps_to_slpc(rps); if (rps_uses_slpc(rps)) return intel_guc_slpc_set_min_freq(slpc, val); else return set_min_freq(rps, val); } u8 intel_rps_get_up_threshold(struct intel_rps *rps) { return rps->power.up_threshold; } static int rps_set_threshold(struct intel_rps *rps, u8 *threshold, u8 val) { int ret; if (val > 100) return -EINVAL; ret = mutex_lock_interruptible(&rps->lock); if (ret) return ret; if (*threshold == val) goto out_unlock; *threshold = val; /* Force reset. */ rps->last_freq = -1; mutex_lock(&rps->power.mutex); rps->power.mode = -1; mutex_unlock(&rps->power.mutex); intel_rps_set(rps, clamp(rps->cur_freq, rps->min_freq_softlimit, rps->max_freq_softlimit)); out_unlock: mutex_unlock(&rps->lock); return ret; } int intel_rps_set_up_threshold(struct intel_rps *rps, u8 threshold) { return rps_set_threshold(rps, &rps->power.up_threshold, threshold); } u8 intel_rps_get_down_threshold(struct intel_rps *rps) { return rps->power.down_threshold; } int intel_rps_set_down_threshold(struct intel_rps *rps, u8 threshold) { return rps_set_threshold(rps, &rps->power.down_threshold, threshold); } static void intel_rps_set_manual(struct intel_rps *rps, bool enable) { struct intel_uncore *uncore = rps_to_uncore(rps); u32 state = enable ? GEN9_RPSWCTL_ENABLE : GEN9_RPSWCTL_DISABLE; /* Allow punit to process software requests */ intel_uncore_write(uncore, GEN6_RP_CONTROL, state); } void intel_rps_raise_unslice(struct intel_rps *rps) { struct intel_uncore *uncore = rps_to_uncore(rps); mutex_lock(&rps->lock); if (rps_uses_slpc(rps)) { /* RP limits have not been initialized yet for SLPC path */ struct intel_rps_freq_caps caps; gen6_rps_get_freq_caps(rps, &caps); intel_rps_set_manual(rps, true); intel_uncore_write(uncore, GEN6_RPNSWREQ, ((caps.rp0_freq << GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) | GEN9_IGNORE_SLICE_RATIO)); intel_rps_set_manual(rps, false); } else { intel_rps_set(rps, rps->rp0_freq); } mutex_unlock(&rps->lock); } void intel_rps_lower_unslice(struct intel_rps *rps) { struct intel_uncore *uncore = rps_to_uncore(rps); mutex_lock(&rps->lock); if (rps_uses_slpc(rps)) { /* RP limits have not been initialized yet for SLPC path */ struct intel_rps_freq_caps caps; gen6_rps_get_freq_caps(rps, &caps); intel_rps_set_manual(rps, true); intel_uncore_write(uncore, GEN6_RPNSWREQ, ((caps.min_freq << GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) | GEN9_IGNORE_SLICE_RATIO)); intel_rps_set_manual(rps, false); } else { intel_rps_set(rps, rps->min_freq); } mutex_unlock(&rps->lock); } static u32 rps_read_mmio(struct intel_rps *rps, i915_reg_t reg32) { struct intel_gt *gt = rps_to_gt(rps); intel_wakeref_t wakeref; u32 val; with_intel_runtime_pm(gt->uncore->rpm, wakeref) val = intel_uncore_read(gt->uncore, reg32); return val; } bool rps_read_mask_mmio(struct intel_rps *rps, i915_reg_t reg32, u32 mask) { return rps_read_mmio(rps, reg32) & mask; } /* External interface for intel_ips.ko */ static struct drm_i915_private __rcu *ips_mchdev; /* * Tells the intel_ips driver that the i915 driver is now loaded, if * IPS got loaded first. * * This awkward dance is so that neither module has to depend on the * other in order for IPS to do the appropriate communication of * GPU turbo limits to i915. */ static void ips_ping_for_i915_load(void) { void (*link)(void); link = symbol_get(ips_link_to_i915_driver); if (link) { link(); symbol_put(ips_link_to_i915_driver); } } void intel_rps_driver_register(struct intel_rps *rps) { struct intel_gt *gt = rps_to_gt(rps); /* * We only register the i915 ips part with intel-ips once everything is * set up, to avoid intel-ips sneaking in and reading bogus values. */ if (GRAPHICS_VER(gt->i915) == 5) { GEM_BUG_ON(ips_mchdev); rcu_assign_pointer(ips_mchdev, gt->i915); ips_ping_for_i915_load(); } } void intel_rps_driver_unregister(struct intel_rps *rps) { if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps)) rcu_assign_pointer(ips_mchdev, NULL); } static struct drm_i915_private *mchdev_get(void) { struct drm_i915_private *i915; rcu_read_lock(); i915 = rcu_dereference(ips_mchdev); if (i915 && !kref_get_unless_zero(&i915->drm.ref)) i915 = NULL; rcu_read_unlock(); return i915; } /** * i915_read_mch_val - return value for IPS use * * Calculate and return a value for the IPS driver to use when deciding whether * we have thermal and power headroom to increase CPU or GPU power budget. */ unsigned long i915_read_mch_val(void) { struct drm_i915_private *i915; unsigned long chipset_val = 0; unsigned long graphics_val = 0; intel_wakeref_t wakeref; i915 = mchdev_get(); if (!i915) return 0; with_intel_runtime_pm(&i915->runtime_pm, wakeref) { struct intel_ips *ips = &to_gt(i915)->rps.ips; spin_lock_irq(&mchdev_lock); chipset_val = __ips_chipset_val(ips); graphics_val = __ips_gfx_val(ips); spin_unlock_irq(&mchdev_lock); } drm_dev_put(&i915->drm); return chipset_val + graphics_val; } EXPORT_SYMBOL_GPL(i915_read_mch_val); /** * i915_gpu_raise - raise GPU frequency limit * * Raise the limit; IPS indicates we have thermal headroom. */ bool i915_gpu_raise(void) { struct drm_i915_private *i915; struct intel_rps *rps; i915 = mchdev_get(); if (!i915) return false; rps = &to_gt(i915)->rps; spin_lock_irq(&mchdev_lock); if (rps->max_freq_softlimit < rps->max_freq) rps->max_freq_softlimit++; spin_unlock_irq(&mchdev_lock); drm_dev_put(&i915->drm); return true; } EXPORT_SYMBOL_GPL(i915_gpu_raise); /** * i915_gpu_lower - lower GPU frequency limit * * IPS indicates we're close to a thermal limit, so throttle back the GPU * frequency maximum. */ bool i915_gpu_lower(void) { struct drm_i915_private *i915; struct intel_rps *rps; i915 = mchdev_get(); if (!i915) return false; rps = &to_gt(i915)->rps; spin_lock_irq(&mchdev_lock); if (rps->max_freq_softlimit > rps->min_freq) rps->max_freq_softlimit--; spin_unlock_irq(&mchdev_lock); drm_dev_put(&i915->drm); return true; } EXPORT_SYMBOL_GPL(i915_gpu_lower); /** * i915_gpu_busy - indicate GPU business to IPS * * Tell the IPS driver whether or not the GPU is busy. */ bool i915_gpu_busy(void) { struct drm_i915_private *i915; bool ret; i915 = mchdev_get(); if (!i915) return false; ret = to_gt(i915)->awake; drm_dev_put(&i915->drm); return ret; } EXPORT_SYMBOL_GPL(i915_gpu_busy); /** * i915_gpu_turbo_disable - disable graphics turbo * * Disable graphics turbo by resetting the max frequency and setting the * current frequency to the default. */ bool i915_gpu_turbo_disable(void) { struct drm_i915_private *i915; struct intel_rps *rps; bool ret; i915 = mchdev_get(); if (!i915) return false; rps = &to_gt(i915)->rps; spin_lock_irq(&mchdev_lock); rps->max_freq_softlimit = rps->min_freq; ret = !__gen5_rps_set(&to_gt(i915)->rps, rps->min_freq); spin_unlock_irq(&mchdev_lock); drm_dev_put(&i915->drm); return ret; } EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable); #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_rps.c" #include "selftest_slpc.c" #endif
linux-master
drivers/gpu/drm/i915/gt/intel_rps.c
// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include "i915_drv.h" #include "i915_pci.h" #include "i915_reg.h" #include "intel_memory_region.h" #include "intel_pci_config.h" #include "intel_region_lmem.h" #include "intel_region_ttm.h" #include "gem/i915_gem_lmem.h" #include "gem/i915_gem_region.h" #include "gem/i915_gem_ttm.h" #include "gt/intel_gt.h" #include "gt/intel_gt_mcr.h" #include "gt/intel_gt_regs.h" #ifdef CONFIG_64BIT static void _release_bars(struct pci_dev *pdev) { int resno; for (resno = PCI_STD_RESOURCES; resno < PCI_STD_RESOURCE_END; resno++) { if (pci_resource_len(pdev, resno)) pci_release_resource(pdev, resno); } } static void _resize_bar(struct drm_i915_private *i915, int resno, resource_size_t size) { struct pci_dev *pdev = to_pci_dev(i915->drm.dev); int bar_size = pci_rebar_bytes_to_size(size); int ret; _release_bars(pdev); ret = pci_resize_resource(pdev, resno, bar_size); if (ret) { drm_info(&i915->drm, "Failed to resize BAR%d to %dM (%pe)\n", resno, 1 << bar_size, ERR_PTR(ret)); return; } drm_info(&i915->drm, "BAR%d resized to %dM\n", resno, 1 << bar_size); } static void i915_resize_lmem_bar(struct drm_i915_private *i915, resource_size_t lmem_size) { struct pci_dev *pdev = to_pci_dev(i915->drm.dev); struct pci_bus *root = pdev->bus; struct resource *root_res; resource_size_t rebar_size; resource_size_t current_size; intel_wakeref_t wakeref; u32 pci_cmd; int i; current_size = roundup_pow_of_two(pci_resource_len(pdev, GEN12_LMEM_BAR)); if (i915->params.lmem_bar_size) { u32 bar_sizes; rebar_size = i915->params.lmem_bar_size * (resource_size_t)SZ_1M; bar_sizes = pci_rebar_get_possible_sizes(pdev, GEN12_LMEM_BAR); if (rebar_size == current_size) return; if (!(bar_sizes & BIT(pci_rebar_bytes_to_size(rebar_size))) || rebar_size >= roundup_pow_of_two(lmem_size)) { rebar_size = lmem_size; drm_info(&i915->drm, "Given bar size is not within supported size, setting it to default: %llu\n", (u64)lmem_size >> 20); } } else { rebar_size = current_size; if (rebar_size != roundup_pow_of_two(lmem_size)) rebar_size = lmem_size; else return; } /* Find out if root bus contains 64bit memory addressing */ while (root->parent) root = root->parent; pci_bus_for_each_resource(root, root_res, i) { if (root_res && root_res->flags & (IORESOURCE_MEM | IORESOURCE_MEM_64) && root_res->start > 0x100000000ull) break; } /* pci_resize_resource will fail anyways */ if (!root_res) { drm_info(&i915->drm, "Can't resize LMEM BAR - platform support is missing\n"); return; } /* * Releasing forcewake during BAR resizing results in later forcewake * ack timeouts and former can happen any time - it is asynchronous. * Grabbing all forcewakes prevents it. */ with_intel_runtime_pm(i915->uncore.rpm, wakeref) { intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL); /* First disable PCI memory decoding references */ pci_read_config_dword(pdev, PCI_COMMAND, &pci_cmd); pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd & ~PCI_COMMAND_MEMORY); _resize_bar(i915, GEN12_LMEM_BAR, rebar_size); pci_assign_unassigned_bus_resources(pdev->bus); pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd); intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL); } } #else static void i915_resize_lmem_bar(struct drm_i915_private *i915, resource_size_t lmem_size) {} #endif static int region_lmem_release(struct intel_memory_region *mem) { int ret; ret = intel_region_ttm_fini(mem); io_mapping_fini(&mem->iomap); return ret; } static int region_lmem_init(struct intel_memory_region *mem) { int ret; if (!io_mapping_init_wc(&mem->iomap, mem->io_start, mem->io_size)) return -EIO; ret = intel_region_ttm_init(mem); if (ret) goto out_no_buddy; return 0; out_no_buddy: io_mapping_fini(&mem->iomap); return ret; } static const struct intel_memory_region_ops intel_region_lmem_ops = { .init = region_lmem_init, .release = region_lmem_release, .init_object = __i915_gem_ttm_object_init, }; static bool get_legacy_lowmem_region(struct intel_uncore *uncore, u64 *start, u32 *size) { if (!IS_DG1(uncore->i915)) return false; *start = 0; *size = SZ_1M; drm_dbg(&uncore->i915->drm, "LMEM: reserved legacy low-memory [0x%llx-0x%llx]\n", *start, *start + *size); return true; } static int reserve_lowmem_region(struct intel_uncore *uncore, struct intel_memory_region *mem) { u64 reserve_start; u32 reserve_size; int ret; if (!get_legacy_lowmem_region(uncore, &reserve_start, &reserve_size)) return 0; ret = intel_memory_region_reserve(mem, reserve_start, reserve_size); if (ret) drm_err(&uncore->i915->drm, "LMEM: reserving low memory region failed\n"); return ret; } static struct intel_memory_region *setup_lmem(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; struct intel_uncore *uncore = gt->uncore; struct pci_dev *pdev = to_pci_dev(i915->drm.dev); struct intel_memory_region *mem; resource_size_t min_page_size; resource_size_t io_start; resource_size_t io_size; resource_size_t lmem_size; int err; if (!IS_DGFX(i915)) return ERR_PTR(-ENODEV); if (!i915_pci_resource_valid(pdev, GEN12_LMEM_BAR)) return ERR_PTR(-ENXIO); if (HAS_FLAT_CCS(i915)) { resource_size_t lmem_range; u64 tile_stolen, flat_ccs_base; lmem_range = intel_gt_mcr_read_any(to_gt(i915), XEHP_TILE0_ADDR_RANGE) & 0xFFFF; lmem_size = lmem_range >> XEHP_TILE_LMEM_RANGE_SHIFT; lmem_size *= SZ_1G; flat_ccs_base = intel_gt_mcr_read_any(gt, XEHP_FLAT_CCS_BASE_ADDR); flat_ccs_base = (flat_ccs_base >> XEHP_CCS_BASE_SHIFT) * SZ_64K; if (GEM_WARN_ON(lmem_size < flat_ccs_base)) return ERR_PTR(-EIO); tile_stolen = lmem_size - flat_ccs_base; /* If the FLAT_CCS_BASE_ADDR register is not populated, flag an error */ if (tile_stolen == lmem_size) drm_err(&i915->drm, "CCS_BASE_ADDR register did not have expected value\n"); lmem_size -= tile_stolen; } else { /* Stolen starts from GSMBASE without CCS */ lmem_size = intel_uncore_read64(&i915->uncore, GEN12_GSMBASE); } i915_resize_lmem_bar(i915, lmem_size); if (i915->params.lmem_size > 0) { lmem_size = min_t(resource_size_t, lmem_size, mul_u32_u32(i915->params.lmem_size, SZ_1M)); } io_start = pci_resource_start(pdev, GEN12_LMEM_BAR); io_size = min(pci_resource_len(pdev, GEN12_LMEM_BAR), lmem_size); if (!io_size) return ERR_PTR(-EIO); min_page_size = HAS_64K_PAGES(i915) ? I915_GTT_PAGE_SIZE_64K : I915_GTT_PAGE_SIZE_4K; mem = intel_memory_region_create(i915, 0, lmem_size, min_page_size, io_start, io_size, INTEL_MEMORY_LOCAL, 0, &intel_region_lmem_ops); if (IS_ERR(mem)) return mem; err = reserve_lowmem_region(uncore, mem); if (err) goto err_region_put; drm_dbg(&i915->drm, "Local memory: %pR\n", &mem->region); drm_dbg(&i915->drm, "Local memory IO start: %pa\n", &mem->io_start); drm_info(&i915->drm, "Local memory IO size: %pa\n", &mem->io_size); drm_info(&i915->drm, "Local memory available: %pa\n", &lmem_size); if (io_size < lmem_size) drm_info(&i915->drm, "Using a reduced BAR size of %lluMiB. Consider enabling 'Resizable BAR' or similar, if available in the BIOS.\n", (u64)io_size >> 20); return mem; err_region_put: intel_memory_region_destroy(mem); return ERR_PTR(err); } struct intel_memory_region *intel_gt_setup_lmem(struct intel_gt *gt) { return setup_lmem(gt); }
linux-master
drivers/gpu/drm/i915/gt/intel_region_lmem.c
// SPDX-License-Identifier: MIT /* * Copyright © 2016 Intel Corporation */ #include "gem/i915_gem_context.h" #include "gt/intel_ring.h" #include "i915_drv.h" #include "intel_context.h" #include "intel_engine_pm.h" #include "mock_engine.h" #include "selftests/mock_request.h" static int mock_timeline_pin(struct intel_timeline *tl) { int err; if (WARN_ON(!i915_gem_object_trylock(tl->hwsp_ggtt->obj, NULL))) return -EBUSY; err = intel_timeline_pin_map(tl); i915_gem_object_unlock(tl->hwsp_ggtt->obj); if (err) return err; atomic_inc(&tl->pin_count); return 0; } static void mock_timeline_unpin(struct intel_timeline *tl) { GEM_BUG_ON(!atomic_read(&tl->pin_count)); atomic_dec(&tl->pin_count); } static struct i915_vma *create_ring_vma(struct i915_ggtt *ggtt, int size) { struct i915_address_space *vm = &ggtt->vm; struct drm_i915_private *i915 = vm->i915; struct drm_i915_gem_object *obj; struct i915_vma *vma; obj = i915_gem_object_create_internal(i915, size); if (IS_ERR(obj)) return ERR_CAST(obj); vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) goto err; return vma; err: i915_gem_object_put(obj); return vma; } static struct intel_ring *mock_ring(struct intel_engine_cs *engine) { const unsigned long sz = PAGE_SIZE; struct intel_ring *ring; ring = kzalloc(sizeof(*ring) + sz, GFP_KERNEL); if (!ring) return NULL; kref_init(&ring->ref); ring->size = sz; ring->effective_size = sz; ring->vaddr = (void *)(ring + 1); atomic_set(&ring->pin_count, 1); ring->vma = create_ring_vma(engine->gt->ggtt, PAGE_SIZE); if (IS_ERR(ring->vma)) { kfree(ring); return NULL; } intel_ring_update_space(ring); return ring; } static void mock_ring_free(struct intel_ring *ring) { i915_vma_put(ring->vma); kfree(ring); } static struct i915_request *first_request(struct mock_engine *engine) { return list_first_entry_or_null(&engine->hw_queue, struct i915_request, mock.link); } static void advance(struct i915_request *request) { list_del_init(&request->mock.link); i915_request_mark_complete(request); GEM_BUG_ON(!i915_request_completed(request)); intel_engine_signal_breadcrumbs(request->engine); } static void hw_delay_complete(struct timer_list *t) { struct mock_engine *engine = from_timer(engine, t, hw_delay); struct i915_request *request; unsigned long flags; spin_lock_irqsave(&engine->hw_lock, flags); /* Timer fired, first request is complete */ request = first_request(engine); if (request) advance(request); /* * Also immediately signal any subsequent 0-delay requests, but * requeue the timer for the next delayed request. */ while ((request = first_request(engine))) { if (request->mock.delay) { mod_timer(&engine->hw_delay, jiffies + request->mock.delay); break; } advance(request); } spin_unlock_irqrestore(&engine->hw_lock, flags); } static void mock_context_unpin(struct intel_context *ce) { } static void mock_context_post_unpin(struct intel_context *ce) { i915_vma_unpin(ce->ring->vma); } static void mock_context_destroy(struct kref *ref) { struct intel_context *ce = container_of(ref, typeof(*ce), ref); GEM_BUG_ON(intel_context_is_pinned(ce)); if (test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { mock_ring_free(ce->ring); mock_timeline_unpin(ce->timeline); } intel_context_fini(ce); intel_context_free(ce); } static int mock_context_alloc(struct intel_context *ce) { int err; ce->ring = mock_ring(ce->engine); if (!ce->ring) return -ENOMEM; ce->timeline = intel_timeline_create(ce->engine->gt); if (IS_ERR(ce->timeline)) { kfree(ce->engine); return PTR_ERR(ce->timeline); } err = mock_timeline_pin(ce->timeline); if (err) { intel_timeline_put(ce->timeline); ce->timeline = NULL; return err; } return 0; } static int mock_context_pre_pin(struct intel_context *ce, struct i915_gem_ww_ctx *ww, void **unused) { return i915_vma_pin_ww(ce->ring->vma, ww, 0, 0, PIN_GLOBAL | PIN_HIGH); } static int mock_context_pin(struct intel_context *ce, void *unused) { return 0; } static void mock_context_reset(struct intel_context *ce) { } static const struct intel_context_ops mock_context_ops = { .alloc = mock_context_alloc, .pre_pin = mock_context_pre_pin, .pin = mock_context_pin, .unpin = mock_context_unpin, .post_unpin = mock_context_post_unpin, .enter = intel_context_enter_engine, .exit = intel_context_exit_engine, .reset = mock_context_reset, .destroy = mock_context_destroy, }; static int mock_request_alloc(struct i915_request *request) { INIT_LIST_HEAD(&request->mock.link); request->mock.delay = 0; return 0; } static int mock_emit_flush(struct i915_request *request, unsigned int flags) { return 0; } static u32 *mock_emit_breadcrumb(struct i915_request *request, u32 *cs) { return cs; } static void mock_submit_request(struct i915_request *request) { struct mock_engine *engine = container_of(request->engine, typeof(*engine), base); unsigned long flags; i915_request_submit(request); spin_lock_irqsave(&engine->hw_lock, flags); list_add_tail(&request->mock.link, &engine->hw_queue); if (list_is_first(&request->mock.link, &engine->hw_queue)) { if (request->mock.delay) mod_timer(&engine->hw_delay, jiffies + request->mock.delay); else advance(request); } spin_unlock_irqrestore(&engine->hw_lock, flags); } static void mock_add_to_engine(struct i915_request *rq) { lockdep_assert_held(&rq->engine->sched_engine->lock); list_move_tail(&rq->sched.link, &rq->engine->sched_engine->requests); } static void mock_remove_from_engine(struct i915_request *rq) { struct intel_engine_cs *engine, *locked; /* * Virtual engines complicate acquiring the engine timeline lock, * as their rq->engine pointer is not stable until under that * engine lock. The simple ploy we use is to take the lock then * check that the rq still belongs to the newly locked engine. */ locked = READ_ONCE(rq->engine); spin_lock_irq(&locked->sched_engine->lock); while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { spin_unlock(&locked->sched_engine->lock); spin_lock(&engine->sched_engine->lock); locked = engine; } list_del_init(&rq->sched.link); spin_unlock_irq(&locked->sched_engine->lock); } static void mock_reset_prepare(struct intel_engine_cs *engine) { } static void mock_reset_rewind(struct intel_engine_cs *engine, bool stalled) { GEM_BUG_ON(stalled); } static void mock_reset_cancel(struct intel_engine_cs *engine) { struct mock_engine *mock = container_of(engine, typeof(*mock), base); struct i915_request *rq; unsigned long flags; del_timer_sync(&mock->hw_delay); spin_lock_irqsave(&engine->sched_engine->lock, flags); /* Mark all submitted requests as skipped. */ list_for_each_entry(rq, &engine->sched_engine->requests, sched.link) i915_request_put(i915_request_mark_eio(rq)); intel_engine_signal_breadcrumbs(engine); /* Cancel and submit all pending requests. */ list_for_each_entry(rq, &mock->hw_queue, mock.link) { if (i915_request_mark_eio(rq)) { __i915_request_submit(rq); i915_request_put(rq); } } INIT_LIST_HEAD(&mock->hw_queue); spin_unlock_irqrestore(&engine->sched_engine->lock, flags); } static void mock_reset_finish(struct intel_engine_cs *engine) { } static void mock_engine_release(struct intel_engine_cs *engine) { struct mock_engine *mock = container_of(engine, typeof(*mock), base); GEM_BUG_ON(timer_pending(&mock->hw_delay)); i915_sched_engine_put(engine->sched_engine); intel_breadcrumbs_put(engine->breadcrumbs); intel_context_unpin(engine->kernel_context); intel_context_put(engine->kernel_context); intel_engine_fini_retire(engine); } struct intel_engine_cs *mock_engine(struct drm_i915_private *i915, const char *name, int id) { struct mock_engine *engine; GEM_BUG_ON(id >= I915_NUM_ENGINES); GEM_BUG_ON(!to_gt(i915)->uncore); engine = kzalloc(sizeof(*engine) + PAGE_SIZE, GFP_KERNEL); if (!engine) return NULL; /* minimal engine setup for requests */ engine->base.i915 = i915; engine->base.gt = to_gt(i915); engine->base.uncore = to_gt(i915)->uncore; snprintf(engine->base.name, sizeof(engine->base.name), "%s", name); engine->base.id = id; engine->base.mask = BIT(id); engine->base.legacy_idx = INVALID_ENGINE; engine->base.instance = id; engine->base.status_page.addr = (void *)(engine + 1); engine->base.cops = &mock_context_ops; engine->base.request_alloc = mock_request_alloc; engine->base.emit_flush = mock_emit_flush; engine->base.emit_fini_breadcrumb = mock_emit_breadcrumb; engine->base.submit_request = mock_submit_request; engine->base.add_active_request = mock_add_to_engine; engine->base.remove_active_request = mock_remove_from_engine; engine->base.reset.prepare = mock_reset_prepare; engine->base.reset.rewind = mock_reset_rewind; engine->base.reset.cancel = mock_reset_cancel; engine->base.reset.finish = mock_reset_finish; engine->base.release = mock_engine_release; to_gt(i915)->engine[id] = &engine->base; to_gt(i915)->engine_class[0][id] = &engine->base; /* fake hw queue */ spin_lock_init(&engine->hw_lock); timer_setup(&engine->hw_delay, hw_delay_complete, 0); INIT_LIST_HEAD(&engine->hw_queue); intel_engine_add_user(&engine->base); return &engine->base; } int mock_engine_init(struct intel_engine_cs *engine) { struct intel_context *ce; INIT_LIST_HEAD(&engine->pinned_contexts_list); engine->sched_engine = i915_sched_engine_create(ENGINE_MOCK); if (!engine->sched_engine) return -ENOMEM; engine->sched_engine->private_data = engine; intel_engine_init_execlists(engine); intel_engine_init__pm(engine); intel_engine_init_retire(engine); engine->breadcrumbs = intel_breadcrumbs_create(NULL); if (!engine->breadcrumbs) goto err_schedule; ce = create_kernel_context(engine); if (IS_ERR(ce)) goto err_breadcrumbs; /* We insist the kernel context is using the status_page */ engine->status_page.vma = ce->timeline->hwsp_ggtt; engine->kernel_context = ce; return 0; err_breadcrumbs: intel_breadcrumbs_put(engine->breadcrumbs); err_schedule: i915_sched_engine_put(engine->sched_engine); return -ENOMEM; } void mock_engine_flush(struct intel_engine_cs *engine) { struct mock_engine *mock = container_of(engine, typeof(*mock), base); struct i915_request *request, *rn; del_timer_sync(&mock->hw_delay); spin_lock_irq(&mock->hw_lock); list_for_each_entry_safe(request, rn, &mock->hw_queue, mock.link) advance(request); spin_unlock_irq(&mock->hw_lock); } void mock_engine_reset(struct intel_engine_cs *engine) { }
linux-master
drivers/gpu/drm/i915/gt/mock_engine.c
// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include "i915_drv.h" #include "intel_breadcrumbs.h" #include "intel_context.h" #include "intel_engine.h" #include "intel_engine_heartbeat.h" #include "intel_engine_pm.h" #include "intel_gt.h" #include "intel_gt_pm.h" #include "intel_rc6.h" #include "intel_ring.h" #include "shmem_utils.h" #include "intel_gt_regs.h" static void intel_gsc_idle_msg_enable(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; if (IS_METEORLAKE(i915) && engine->id == GSC0) { intel_uncore_write(engine->gt->uncore, RC_PSMI_CTRL_GSCCS, _MASKED_BIT_DISABLE(IDLE_MSG_DISABLE)); /* hysteresis 0xA=5us as recommended in spec*/ intel_uncore_write(engine->gt->uncore, PWRCTX_MAXCNT_GSCCS, 0xA); } } static void dbg_poison_ce(struct intel_context *ce) { if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) return; if (ce->state) { struct drm_i915_gem_object *obj = ce->state->obj; int type = intel_gt_coherent_map_type(ce->engine->gt, obj, true); void *map; if (!i915_gem_object_trylock(obj, NULL)) return; map = i915_gem_object_pin_map(obj, type); if (!IS_ERR(map)) { memset(map, CONTEXT_REDZONE, obj->base.size); i915_gem_object_flush_map(obj); i915_gem_object_unpin_map(obj); } i915_gem_object_unlock(obj); } } static int __engine_unpark(struct intel_wakeref *wf) { struct intel_engine_cs *engine = container_of(wf, typeof(*engine), wakeref); struct intel_context *ce; ENGINE_TRACE(engine, "\n"); intel_gt_pm_get(engine->gt); /* Discard stale context state from across idling */ ce = engine->kernel_context; if (ce) { GEM_BUG_ON(test_bit(CONTEXT_VALID_BIT, &ce->flags)); /* Flush all pending HW writes before we touch the context */ while (unlikely(intel_context_inflight(ce))) intel_engine_flush_submission(engine); /* First poison the image to verify we never fully trust it */ dbg_poison_ce(ce); /* Scrub the context image after our loss of control */ ce->ops->reset(ce); CE_TRACE(ce, "reset { seqno:%x, *hwsp:%x, ring:%x }\n", ce->timeline->seqno, READ_ONCE(*ce->timeline->hwsp_seqno), ce->ring->emit); GEM_BUG_ON(ce->timeline->seqno != READ_ONCE(*ce->timeline->hwsp_seqno)); } if (engine->unpark) engine->unpark(engine); intel_breadcrumbs_unpark(engine->breadcrumbs); intel_engine_unpark_heartbeat(engine); return 0; } static void duration(struct dma_fence *fence, struct dma_fence_cb *cb) { struct i915_request *rq = to_request(fence); ewma__engine_latency_add(&rq->engine->latency, ktime_us_delta(rq->fence.timestamp, rq->duration.emitted)); } static void __queue_and_release_pm(struct i915_request *rq, struct intel_timeline *tl, struct intel_engine_cs *engine) { struct intel_gt_timelines *timelines = &engine->gt->timelines; ENGINE_TRACE(engine, "parking\n"); /* * Open coded one half of intel_context_enter, which we have to omit * here (see the large comment below) and because the other part must * not be called due constructing directly with __i915_request_create * which increments active count via intel_context_mark_active. */ GEM_BUG_ON(rq->context->active_count != 1); __intel_gt_pm_get(engine->gt); /* * We have to serialise all potential retirement paths with our * submission, as we don't want to underflow either the * engine->wakeref.counter or our timeline->active_count. * * Equally, we cannot allow a new submission to start until * after we finish queueing, nor could we allow that submitter * to retire us before we are ready! */ spin_lock(&timelines->lock); /* Let intel_gt_retire_requests() retire us (acquired under lock) */ if (!atomic_fetch_inc(&tl->active_count)) list_add_tail(&tl->link, &timelines->active_list); /* Hand the request over to HW and so engine_retire() */ __i915_request_queue_bh(rq); /* Let new submissions commence (and maybe retire this timeline) */ __intel_wakeref_defer_park(&engine->wakeref); spin_unlock(&timelines->lock); } static bool switch_to_kernel_context(struct intel_engine_cs *engine) { struct intel_context *ce = engine->kernel_context; struct i915_request *rq; bool result = true; /* * This is execlist specific behaviour intended to ensure the GPU is * idle by switching to a known 'safe' context. With GuC submission, the * same idle guarantee is achieved by other means (disabling * scheduling). Further, switching to a 'safe' context has no effect * with GuC submission as the scheduler can just switch back again. * * FIXME: Move this backend scheduler specific behaviour into the * scheduler backend. */ if (intel_engine_uses_guc(engine)) return true; /* GPU is pointing to the void, as good as in the kernel context. */ if (intel_gt_is_wedged(engine->gt)) return true; GEM_BUG_ON(!intel_context_is_barrier(ce)); GEM_BUG_ON(ce->timeline->hwsp_ggtt != engine->status_page.vma); /* Already inside the kernel context, safe to power down. */ if (engine->wakeref_serial == engine->serial) return true; /* * Note, we do this without taking the timeline->mutex. We cannot * as we may be called while retiring the kernel context and so * already underneath the timeline->mutex. Instead we rely on the * exclusive property of the __engine_park that prevents anyone * else from creating a request on this engine. This also requires * that the ring is empty and we avoid any waits while constructing * the context, as they assume protection by the timeline->mutex. * This should hold true as we can only park the engine after * retiring the last request, thus all rings should be empty and * all timelines idle. * * For unlocking, there are 2 other parties and the GPU who have a * stake here. * * A new gpu user will be waiting on the engine-pm to start their * engine_unpark. New waiters are predicated on engine->wakeref.count * and so intel_wakeref_defer_park() acts like a mutex_unlock of the * engine->wakeref. * * The other party is intel_gt_retire_requests(), which is walking the * list of active timelines looking for completions. Meanwhile as soon * as we call __i915_request_queue(), the GPU may complete our request. * Ergo, if we put ourselves on the timelines.active_list * (se intel_timeline_enter()) before we increment the * engine->wakeref.count, we may see the request completion and retire * it causing an underflow of the engine->wakeref. */ set_bit(CONTEXT_IS_PARKING, &ce->flags); GEM_BUG_ON(atomic_read(&ce->timeline->active_count) < 0); rq = __i915_request_create(ce, GFP_NOWAIT); if (IS_ERR(rq)) /* Context switch failed, hope for the best! Maybe reset? */ goto out_unlock; /* Check again on the next retirement. */ engine->wakeref_serial = engine->serial + 1; i915_request_add_active_barriers(rq); /* Install ourselves as a preemption barrier */ rq->sched.attr.priority = I915_PRIORITY_BARRIER; if (likely(!__i915_request_commit(rq))) { /* engine should be idle! */ /* * Use an interrupt for precise measurement of duration, * otherwise we rely on someone else retiring all the requests * which may delay the signaling (i.e. we will likely wait * until the background request retirement running every * second or two). */ BUILD_BUG_ON(sizeof(rq->duration) > sizeof(rq->submitq)); dma_fence_add_callback(&rq->fence, &rq->duration.cb, duration); rq->duration.emitted = ktime_get(); } /* Expose ourselves to the world */ __queue_and_release_pm(rq, ce->timeline, engine); result = false; out_unlock: clear_bit(CONTEXT_IS_PARKING, &ce->flags); return result; } static void call_idle_barriers(struct intel_engine_cs *engine) { struct llist_node *node, *next; llist_for_each_safe(node, next, llist_del_all(&engine->barrier_tasks)) { struct dma_fence_cb *cb = container_of((struct list_head *)node, typeof(*cb), node); cb->func(ERR_PTR(-EAGAIN), cb); } } static int __engine_park(struct intel_wakeref *wf) { struct intel_engine_cs *engine = container_of(wf, typeof(*engine), wakeref); engine->saturated = 0; /* * If one and only one request is completed between pm events, * we know that we are inside the kernel context and it is * safe to power down. (We are paranoid in case that runtime * suspend causes corruption to the active context image, and * want to avoid that impacting userspace.) */ if (!switch_to_kernel_context(engine)) return -EBUSY; ENGINE_TRACE(engine, "parked\n"); call_idle_barriers(engine); /* cleanup after wedging */ intel_engine_park_heartbeat(engine); intel_breadcrumbs_park(engine->breadcrumbs); /* Must be reset upon idling, or we may miss the busy wakeup. */ GEM_BUG_ON(engine->sched_engine->queue_priority_hint != INT_MIN); if (engine->park) engine->park(engine); /* While gt calls i915_vma_parked(), we have to break the lock cycle */ intel_gt_pm_put_async(engine->gt); return 0; } static const struct intel_wakeref_ops wf_ops = { .get = __engine_unpark, .put = __engine_park, }; void intel_engine_init__pm(struct intel_engine_cs *engine) { intel_wakeref_init(&engine->wakeref, engine->i915, &wf_ops); intel_engine_init_heartbeat(engine); intel_gsc_idle_msg_enable(engine); } /** * intel_engine_reset_pinned_contexts - Reset the pinned contexts of * an engine. * @engine: The engine whose pinned contexts we want to reset. * * Typically the pinned context LMEM images lose or get their content * corrupted on suspend. This function resets their images. */ void intel_engine_reset_pinned_contexts(struct intel_engine_cs *engine) { struct intel_context *ce; list_for_each_entry(ce, &engine->pinned_contexts_list, pinned_contexts_link) { /* kernel context gets reset at __engine_unpark() */ if (ce == engine->kernel_context) continue; dbg_poison_ce(ce); ce->ops->reset(ce); } } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_engine_pm.c" #endif
linux-master
drivers/gpu/drm/i915/gt/intel_engine_pm.c
// SPDX-License-Identifier: MIT /* * Copyright © 2015 Intel Corporation */ #include "i915_drv.h" #include "intel_engine.h" #include "intel_gt.h" #include "intel_gt_mcr.h" #include "intel_gt_regs.h" #include "intel_mocs.h" #include "intel_ring.h" /* structures required */ struct drm_i915_mocs_entry { u32 control_value; u16 l3cc_value; u16 used; }; struct drm_i915_mocs_table { unsigned int size; unsigned int n_entries; const struct drm_i915_mocs_entry *table; u8 uc_index; u8 wb_index; /* Only used on HAS_L3_CCS_READ() platforms */ u8 unused_entries_index; }; /* Defines for the tables (XXX_MOCS_0 - XXX_MOCS_63) */ #define _LE_CACHEABILITY(value) ((value) << 0) #define _LE_TGT_CACHE(value) ((value) << 2) #define LE_LRUM(value) ((value) << 4) #define LE_AOM(value) ((value) << 6) #define LE_RSC(value) ((value) << 7) #define LE_SCC(value) ((value) << 8) #define LE_PFM(value) ((value) << 11) #define LE_SCF(value) ((value) << 14) #define LE_COS(value) ((value) << 15) #define LE_SSE(value) ((value) << 17) /* Defines for the tables (GLOB_MOCS_0 - GLOB_MOCS_16) */ #define _L4_CACHEABILITY(value) ((value) << 2) #define IG_PAT(value) ((value) << 8) /* Defines for the tables (LNCFMOCS0 - LNCFMOCS31) - two entries per word */ #define L3_ESC(value) ((value) << 0) #define L3_SCC(value) ((value) << 1) #define _L3_CACHEABILITY(value) ((value) << 4) #define L3_GLBGO(value) ((value) << 6) #define L3_LKUP(value) ((value) << 7) /* Helper defines */ #define GEN9_NUM_MOCS_ENTRIES 64 /* 63-64 are reserved, but configured. */ #define PVC_NUM_MOCS_ENTRIES 3 #define MTL_NUM_MOCS_ENTRIES 16 /* (e)LLC caching options */ /* * Note: LE_0_PAGETABLE works only up to Gen11; for newer gens it means * the same as LE_UC */ #define LE_0_PAGETABLE _LE_CACHEABILITY(0) #define LE_1_UC _LE_CACHEABILITY(1) #define LE_2_WT _LE_CACHEABILITY(2) #define LE_3_WB _LE_CACHEABILITY(3) /* Target cache */ #define LE_TC_0_PAGETABLE _LE_TGT_CACHE(0) #define LE_TC_1_LLC _LE_TGT_CACHE(1) #define LE_TC_2_LLC_ELLC _LE_TGT_CACHE(2) #define LE_TC_3_LLC_ELLC_ALT _LE_TGT_CACHE(3) /* L3 caching options */ #define L3_0_DIRECT _L3_CACHEABILITY(0) #define L3_1_UC _L3_CACHEABILITY(1) #define L3_2_RESERVED _L3_CACHEABILITY(2) #define L3_3_WB _L3_CACHEABILITY(3) /* L4 caching options */ #define L4_0_WB _L4_CACHEABILITY(0) #define L4_1_WT _L4_CACHEABILITY(1) #define L4_2_RESERVED _L4_CACHEABILITY(2) #define L4_3_UC _L4_CACHEABILITY(3) #define MOCS_ENTRY(__idx, __control_value, __l3cc_value) \ [__idx] = { \ .control_value = __control_value, \ .l3cc_value = __l3cc_value, \ .used = 1, \ } /* * MOCS tables * * These are the MOCS tables that are programmed across all the rings. * The control value is programmed to all the rings that support the * MOCS registers. While the l3cc_values are only programmed to the * LNCFCMOCS0 - LNCFCMOCS32 registers. * * These tables are intended to be kept reasonably consistent across * HW platforms, and for ICL+, be identical across OSes. To achieve * that, for Icelake and above, list of entries is published as part * of bspec. * * Entries not part of the following tables are undefined as far as * userspace is concerned and shouldn't be relied upon. For Gen < 12 * they will be initialized to PTE. Gen >= 12 don't have a setting for * PTE and those platforms except TGL/RKL will be initialized L3 WB to * catch accidental use of reserved and unused mocs indexes. * * The last few entries are reserved by the hardware. For ICL+ they * should be initialized according to bspec and never used, for older * platforms they should never be written to. * * NOTE1: These tables are part of bspec and defined as part of hardware * interface for ICL+. For older platforms, they are part of kernel * ABI. It is expected that, for specific hardware platform, existing * entries will remain constant and the table will only be updated by * adding new entries, filling unused positions. * * NOTE2: For GEN >= 12 except TGL and RKL, reserved and unspecified MOCS * indices have been set to L3 WB. These reserved entries should never * be used, they may be changed to low performant variants with better * coherency in the future if more entries are needed. * For TGL/RKL, all the unspecified MOCS indexes are mapped to L3 UC. */ #define GEN9_MOCS_ENTRIES \ MOCS_ENTRY(I915_MOCS_UNCACHED, \ LE_1_UC | LE_TC_2_LLC_ELLC, \ L3_1_UC), \ MOCS_ENTRY(I915_MOCS_PTE, \ LE_0_PAGETABLE | LE_TC_0_PAGETABLE | LE_LRUM(3), \ L3_3_WB) static const struct drm_i915_mocs_entry skl_mocs_table[] = { GEN9_MOCS_ENTRIES, MOCS_ENTRY(I915_MOCS_CACHED, LE_3_WB | LE_TC_2_LLC_ELLC | LE_LRUM(3), L3_3_WB), /* * mocs:63 * - used by the L3 for all of its evictions. * Thus it is expected to allow LLC cacheability to enable coherent * flows to be maintained. * - used to force L3 uncachable cycles. * Thus it is expected to make the surface L3 uncacheable. */ MOCS_ENTRY(63, LE_3_WB | LE_TC_1_LLC | LE_LRUM(3), L3_1_UC) }; /* NOTE: the LE_TGT_CACHE is not used on Broxton */ static const struct drm_i915_mocs_entry broxton_mocs_table[] = { GEN9_MOCS_ENTRIES, MOCS_ENTRY(I915_MOCS_CACHED, LE_1_UC | LE_TC_2_LLC_ELLC | LE_LRUM(3), L3_3_WB) }; #define GEN11_MOCS_ENTRIES \ /* Entries 0 and 1 are defined per-platform */ \ /* Base - L3 + LLC */ \ MOCS_ENTRY(2, \ LE_3_WB | LE_TC_1_LLC | LE_LRUM(3), \ L3_3_WB), \ /* Base - Uncached */ \ MOCS_ENTRY(3, \ LE_1_UC | LE_TC_1_LLC, \ L3_1_UC), \ /* Base - L3 */ \ MOCS_ENTRY(4, \ LE_1_UC | LE_TC_1_LLC, \ L3_3_WB), \ /* Base - LLC */ \ MOCS_ENTRY(5, \ LE_3_WB | LE_TC_1_LLC | LE_LRUM(3), \ L3_1_UC), \ /* Age 0 - LLC */ \ MOCS_ENTRY(6, \ LE_3_WB | LE_TC_1_LLC | LE_LRUM(1), \ L3_1_UC), \ /* Age 0 - L3 + LLC */ \ MOCS_ENTRY(7, \ LE_3_WB | LE_TC_1_LLC | LE_LRUM(1), \ L3_3_WB), \ /* Age: Don't Chg. - LLC */ \ MOCS_ENTRY(8, \ LE_3_WB | LE_TC_1_LLC | LE_LRUM(2), \ L3_1_UC), \ /* Age: Don't Chg. - L3 + LLC */ \ MOCS_ENTRY(9, \ LE_3_WB | LE_TC_1_LLC | LE_LRUM(2), \ L3_3_WB), \ /* No AOM - LLC */ \ MOCS_ENTRY(10, \ LE_3_WB | LE_TC_1_LLC | LE_LRUM(3) | LE_AOM(1), \ L3_1_UC), \ /* No AOM - L3 + LLC */ \ MOCS_ENTRY(11, \ LE_3_WB | LE_TC_1_LLC | LE_LRUM(3) | LE_AOM(1), \ L3_3_WB), \ /* No AOM; Age 0 - LLC */ \ MOCS_ENTRY(12, \ LE_3_WB | LE_TC_1_LLC | LE_LRUM(1) | LE_AOM(1), \ L3_1_UC), \ /* No AOM; Age 0 - L3 + LLC */ \ MOCS_ENTRY(13, \ LE_3_WB | LE_TC_1_LLC | LE_LRUM(1) | LE_AOM(1), \ L3_3_WB), \ /* No AOM; Age:DC - LLC */ \ MOCS_ENTRY(14, \ LE_3_WB | LE_TC_1_LLC | LE_LRUM(2) | LE_AOM(1), \ L3_1_UC), \ /* No AOM; Age:DC - L3 + LLC */ \ MOCS_ENTRY(15, \ LE_3_WB | LE_TC_1_LLC | LE_LRUM(2) | LE_AOM(1), \ L3_3_WB), \ /* Bypass LLC - Uncached (EHL+) */ \ MOCS_ENTRY(16, \ LE_1_UC | LE_TC_1_LLC | LE_SCF(1), \ L3_1_UC), \ /* Bypass LLC - L3 (Read-Only) (EHL+) */ \ MOCS_ENTRY(17, \ LE_1_UC | LE_TC_1_LLC | LE_SCF(1), \ L3_3_WB), \ /* Self-Snoop - L3 + LLC */ \ MOCS_ENTRY(18, \ LE_3_WB | LE_TC_1_LLC | LE_LRUM(3) | LE_SSE(3), \ L3_3_WB), \ /* Skip Caching - L3 + LLC(12.5%) */ \ MOCS_ENTRY(19, \ LE_3_WB | LE_TC_1_LLC | LE_LRUM(3) | LE_SCC(7), \ L3_3_WB), \ /* Skip Caching - L3 + LLC(25%) */ \ MOCS_ENTRY(20, \ LE_3_WB | LE_TC_1_LLC | LE_LRUM(3) | LE_SCC(3), \ L3_3_WB), \ /* Skip Caching - L3 + LLC(50%) */ \ MOCS_ENTRY(21, \ LE_3_WB | LE_TC_1_LLC | LE_LRUM(3) | LE_SCC(1), \ L3_3_WB), \ /* Skip Caching - L3 + LLC(75%) */ \ MOCS_ENTRY(22, \ LE_3_WB | LE_TC_1_LLC | LE_LRUM(3) | LE_RSC(1) | LE_SCC(3), \ L3_3_WB), \ /* Skip Caching - L3 + LLC(87.5%) */ \ MOCS_ENTRY(23, \ LE_3_WB | LE_TC_1_LLC | LE_LRUM(3) | LE_RSC(1) | LE_SCC(7), \ L3_3_WB), \ /* HW Reserved - SW program but never use */ \ MOCS_ENTRY(62, \ LE_3_WB | LE_TC_1_LLC | LE_LRUM(3), \ L3_1_UC), \ /* HW Reserved - SW program but never use */ \ MOCS_ENTRY(63, \ LE_3_WB | LE_TC_1_LLC | LE_LRUM(3), \ L3_1_UC) static const struct drm_i915_mocs_entry tgl_mocs_table[] = { /* * NOTE: * Reserved and unspecified MOCS indices have been set to (L3 + LCC). * These reserved entries should never be used, they may be changed * to low performant variants with better coherency in the future if * more entries are needed. We are programming index I915_MOCS_PTE(1) * only, __init_mocs_table() take care to program unused index with * this entry. */ MOCS_ENTRY(I915_MOCS_PTE, LE_0_PAGETABLE | LE_TC_0_PAGETABLE, L3_1_UC), GEN11_MOCS_ENTRIES, /* Implicitly enable L1 - HDC:L1 + L3 + LLC */ MOCS_ENTRY(48, LE_3_WB | LE_TC_1_LLC | LE_LRUM(3), L3_3_WB), /* Implicitly enable L1 - HDC:L1 + L3 */ MOCS_ENTRY(49, LE_1_UC | LE_TC_1_LLC, L3_3_WB), /* Implicitly enable L1 - HDC:L1 + LLC */ MOCS_ENTRY(50, LE_3_WB | LE_TC_1_LLC | LE_LRUM(3), L3_1_UC), /* Implicitly enable L1 - HDC:L1 */ MOCS_ENTRY(51, LE_1_UC | LE_TC_1_LLC, L3_1_UC), /* HW Special Case (CCS) */ MOCS_ENTRY(60, LE_3_WB | LE_TC_1_LLC | LE_LRUM(3), L3_1_UC), /* HW Special Case (Displayable) */ MOCS_ENTRY(61, LE_1_UC | LE_TC_1_LLC, L3_3_WB), }; static const struct drm_i915_mocs_entry icl_mocs_table[] = { /* Base - Uncached (Deprecated) */ MOCS_ENTRY(I915_MOCS_UNCACHED, LE_1_UC | LE_TC_1_LLC, L3_1_UC), /* Base - L3 + LeCC:PAT (Deprecated) */ MOCS_ENTRY(I915_MOCS_PTE, LE_0_PAGETABLE | LE_TC_0_PAGETABLE, L3_3_WB), GEN11_MOCS_ENTRIES }; static const struct drm_i915_mocs_entry dg1_mocs_table[] = { /* UC */ MOCS_ENTRY(1, 0, L3_1_UC), /* WB - L3 */ MOCS_ENTRY(5, 0, L3_3_WB), /* WB - L3 50% */ MOCS_ENTRY(6, 0, L3_ESC(1) | L3_SCC(1) | L3_3_WB), /* WB - L3 25% */ MOCS_ENTRY(7, 0, L3_ESC(1) | L3_SCC(3) | L3_3_WB), /* WB - L3 12.5% */ MOCS_ENTRY(8, 0, L3_ESC(1) | L3_SCC(7) | L3_3_WB), /* HDC:L1 + L3 */ MOCS_ENTRY(48, 0, L3_3_WB), /* HDC:L1 */ MOCS_ENTRY(49, 0, L3_1_UC), /* HW Reserved */ MOCS_ENTRY(60, 0, L3_1_UC), MOCS_ENTRY(61, 0, L3_1_UC), MOCS_ENTRY(62, 0, L3_1_UC), MOCS_ENTRY(63, 0, L3_1_UC), }; static const struct drm_i915_mocs_entry gen12_mocs_table[] = { GEN11_MOCS_ENTRIES, /* Implicitly enable L1 - HDC:L1 + L3 + LLC */ MOCS_ENTRY(48, LE_3_WB | LE_TC_1_LLC | LE_LRUM(3), L3_3_WB), /* Implicitly enable L1 - HDC:L1 + L3 */ MOCS_ENTRY(49, LE_1_UC | LE_TC_1_LLC, L3_3_WB), /* Implicitly enable L1 - HDC:L1 + LLC */ MOCS_ENTRY(50, LE_3_WB | LE_TC_1_LLC | LE_LRUM(3), L3_1_UC), /* Implicitly enable L1 - HDC:L1 */ MOCS_ENTRY(51, LE_1_UC | LE_TC_1_LLC, L3_1_UC), /* HW Special Case (CCS) */ MOCS_ENTRY(60, LE_3_WB | LE_TC_1_LLC | LE_LRUM(3), L3_1_UC), /* HW Special Case (Displayable) */ MOCS_ENTRY(61, LE_1_UC | LE_TC_1_LLC, L3_3_WB), }; static const struct drm_i915_mocs_entry xehpsdv_mocs_table[] = { /* wa_1608975824 */ MOCS_ENTRY(0, 0, L3_3_WB | L3_LKUP(1)), /* UC - Coherent; GO:L3 */ MOCS_ENTRY(1, 0, L3_1_UC | L3_LKUP(1)), /* UC - Coherent; GO:Memory */ MOCS_ENTRY(2, 0, L3_1_UC | L3_GLBGO(1) | L3_LKUP(1)), /* UC - Non-Coherent; GO:Memory */ MOCS_ENTRY(3, 0, L3_1_UC | L3_GLBGO(1)), /* UC - Non-Coherent; GO:L3 */ MOCS_ENTRY(4, 0, L3_1_UC), /* WB */ MOCS_ENTRY(5, 0, L3_3_WB | L3_LKUP(1)), /* HW Reserved - SW program but never use. */ MOCS_ENTRY(48, 0, L3_3_WB | L3_LKUP(1)), MOCS_ENTRY(49, 0, L3_1_UC | L3_LKUP(1)), MOCS_ENTRY(60, 0, L3_1_UC), MOCS_ENTRY(61, 0, L3_1_UC), MOCS_ENTRY(62, 0, L3_1_UC), MOCS_ENTRY(63, 0, L3_1_UC), }; static const struct drm_i915_mocs_entry dg2_mocs_table[] = { /* UC - Coherent; GO:L3 */ MOCS_ENTRY(0, 0, L3_1_UC | L3_LKUP(1)), /* UC - Coherent; GO:Memory */ MOCS_ENTRY(1, 0, L3_1_UC | L3_GLBGO(1) | L3_LKUP(1)), /* UC - Non-Coherent; GO:Memory */ MOCS_ENTRY(2, 0, L3_1_UC | L3_GLBGO(1)), /* WB - LC */ MOCS_ENTRY(3, 0, L3_3_WB | L3_LKUP(1)), }; static const struct drm_i915_mocs_entry dg2_mocs_table_g10_ax[] = { /* Wa_14011441408: Set Go to Memory for MOCS#0 */ MOCS_ENTRY(0, 0, L3_1_UC | L3_GLBGO(1) | L3_LKUP(1)), /* UC - Coherent; GO:Memory */ MOCS_ENTRY(1, 0, L3_1_UC | L3_GLBGO(1) | L3_LKUP(1)), /* UC - Non-Coherent; GO:Memory */ MOCS_ENTRY(2, 0, L3_1_UC | L3_GLBGO(1)), /* WB - LC */ MOCS_ENTRY(3, 0, L3_3_WB | L3_LKUP(1)), }; static const struct drm_i915_mocs_entry pvc_mocs_table[] = { /* Error */ MOCS_ENTRY(0, 0, L3_3_WB), /* UC */ MOCS_ENTRY(1, 0, L3_1_UC), /* WB */ MOCS_ENTRY(2, 0, L3_3_WB), }; static const struct drm_i915_mocs_entry mtl_mocs_table[] = { /* Error - Reserved for Non-Use */ MOCS_ENTRY(0, IG_PAT(0), L3_LKUP(1) | L3_3_WB), /* Cached - L3 + L4 */ MOCS_ENTRY(1, IG_PAT(1), L3_LKUP(1) | L3_3_WB), /* L4 - GO:L3 */ MOCS_ENTRY(2, IG_PAT(1), L3_LKUP(1) | L3_1_UC), /* Uncached - GO:L3 */ MOCS_ENTRY(3, IG_PAT(1) | L4_3_UC, L3_LKUP(1) | L3_1_UC), /* L4 - GO:Mem */ MOCS_ENTRY(4, IG_PAT(1), L3_LKUP(1) | L3_GLBGO(1) | L3_1_UC), /* Uncached - GO:Mem */ MOCS_ENTRY(5, IG_PAT(1) | L4_3_UC, L3_LKUP(1) | L3_GLBGO(1) | L3_1_UC), /* L4 - L3:NoLKUP; GO:L3 */ MOCS_ENTRY(6, IG_PAT(1), L3_1_UC), /* Uncached - L3:NoLKUP; GO:L3 */ MOCS_ENTRY(7, IG_PAT(1) | L4_3_UC, L3_1_UC), /* L4 - L3:NoLKUP; GO:Mem */ MOCS_ENTRY(8, IG_PAT(1), L3_GLBGO(1) | L3_1_UC), /* Uncached - L3:NoLKUP; GO:Mem */ MOCS_ENTRY(9, IG_PAT(1) | L4_3_UC, L3_GLBGO(1) | L3_1_UC), /* Display - L3; L4:WT */ MOCS_ENTRY(14, IG_PAT(1) | L4_1_WT, L3_LKUP(1) | L3_3_WB), /* CCS - Non-Displayable */ MOCS_ENTRY(15, IG_PAT(1), L3_GLBGO(1) | L3_1_UC), }; enum { HAS_GLOBAL_MOCS = BIT(0), HAS_ENGINE_MOCS = BIT(1), HAS_RENDER_L3CC = BIT(2), }; static bool has_l3cc(const struct drm_i915_private *i915) { return true; } static bool has_global_mocs(const struct drm_i915_private *i915) { return HAS_GLOBAL_MOCS_REGISTERS(i915); } static bool has_mocs(const struct drm_i915_private *i915) { return !IS_DGFX(i915); } static unsigned int get_mocs_settings(const struct drm_i915_private *i915, struct drm_i915_mocs_table *table) { unsigned int flags; memset(table, 0, sizeof(struct drm_i915_mocs_table)); table->unused_entries_index = I915_MOCS_PTE; if (IS_METEORLAKE(i915)) { table->size = ARRAY_SIZE(mtl_mocs_table); table->table = mtl_mocs_table; table->n_entries = MTL_NUM_MOCS_ENTRIES; table->uc_index = 9; table->unused_entries_index = 1; } else if (IS_PONTEVECCHIO(i915)) { table->size = ARRAY_SIZE(pvc_mocs_table); table->table = pvc_mocs_table; table->n_entries = PVC_NUM_MOCS_ENTRIES; table->uc_index = 1; table->wb_index = 2; table->unused_entries_index = 2; } else if (IS_DG2(i915)) { if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) { table->size = ARRAY_SIZE(dg2_mocs_table_g10_ax); table->table = dg2_mocs_table_g10_ax; } else { table->size = ARRAY_SIZE(dg2_mocs_table); table->table = dg2_mocs_table; } table->uc_index = 1; table->n_entries = GEN9_NUM_MOCS_ENTRIES; table->unused_entries_index = 3; } else if (IS_XEHPSDV(i915)) { table->size = ARRAY_SIZE(xehpsdv_mocs_table); table->table = xehpsdv_mocs_table; table->uc_index = 2; table->n_entries = GEN9_NUM_MOCS_ENTRIES; table->unused_entries_index = 5; } else if (IS_DG1(i915)) { table->size = ARRAY_SIZE(dg1_mocs_table); table->table = dg1_mocs_table; table->uc_index = 1; table->n_entries = GEN9_NUM_MOCS_ENTRIES; table->uc_index = 1; table->unused_entries_index = 5; } else if (IS_TIGERLAKE(i915) || IS_ROCKETLAKE(i915)) { /* For TGL/RKL, Can't be changed now for ABI reasons */ table->size = ARRAY_SIZE(tgl_mocs_table); table->table = tgl_mocs_table; table->n_entries = GEN9_NUM_MOCS_ENTRIES; table->uc_index = 3; } else if (GRAPHICS_VER(i915) >= 12) { table->size = ARRAY_SIZE(gen12_mocs_table); table->table = gen12_mocs_table; table->n_entries = GEN9_NUM_MOCS_ENTRIES; table->uc_index = 3; table->unused_entries_index = 2; } else if (GRAPHICS_VER(i915) == 11) { table->size = ARRAY_SIZE(icl_mocs_table); table->table = icl_mocs_table; table->n_entries = GEN9_NUM_MOCS_ENTRIES; } else if (IS_GEN9_BC(i915)) { table->size = ARRAY_SIZE(skl_mocs_table); table->n_entries = GEN9_NUM_MOCS_ENTRIES; table->table = skl_mocs_table; } else if (IS_GEN9_LP(i915)) { table->size = ARRAY_SIZE(broxton_mocs_table); table->n_entries = GEN9_NUM_MOCS_ENTRIES; table->table = broxton_mocs_table; } else { drm_WARN_ONCE(&i915->drm, GRAPHICS_VER(i915) >= 9, "Platform that should have a MOCS table does not.\n"); return 0; } if (GEM_DEBUG_WARN_ON(table->size > table->n_entries)) return 0; /* WaDisableSkipCaching:skl,bxt,kbl,glk */ if (GRAPHICS_VER(i915) == 9) { int i; for (i = 0; i < table->size; i++) if (GEM_DEBUG_WARN_ON(table->table[i].l3cc_value & (L3_ESC(1) | L3_SCC(0x7)))) return 0; } flags = 0; if (has_mocs(i915)) { if (has_global_mocs(i915)) flags |= HAS_GLOBAL_MOCS; else flags |= HAS_ENGINE_MOCS; } if (has_l3cc(i915)) flags |= HAS_RENDER_L3CC; return flags; } /* * Get control_value from MOCS entry taking into account when it's not used * then if unused_entries_index is non-zero then its value will be returned * otherwise I915_MOCS_PTE's value is returned in this case. */ static u32 get_entry_control(const struct drm_i915_mocs_table *table, unsigned int index) { if (index < table->size && table->table[index].used) return table->table[index].control_value; return table->table[table->unused_entries_index].control_value; } #define for_each_mocs(mocs, t, i) \ for (i = 0; \ i < (t)->n_entries ? (mocs = get_entry_control((t), i)), 1 : 0;\ i++) static void __init_mocs_table(struct intel_uncore *uncore, const struct drm_i915_mocs_table *table, u32 addr) { unsigned int i; u32 mocs; drm_WARN_ONCE(&uncore->i915->drm, !table->unused_entries_index, "Unused entries index should have been defined\n"); for_each_mocs(mocs, table, i) intel_uncore_write_fw(uncore, _MMIO(addr + i * 4), mocs); } static u32 mocs_offset(const struct intel_engine_cs *engine) { static const u32 offset[] = { [RCS0] = __GEN9_RCS0_MOCS0, [VCS0] = __GEN9_VCS0_MOCS0, [VCS1] = __GEN9_VCS1_MOCS0, [VECS0] = __GEN9_VECS0_MOCS0, [BCS0] = __GEN9_BCS0_MOCS0, [VCS2] = __GEN11_VCS2_MOCS0, }; GEM_BUG_ON(engine->id >= ARRAY_SIZE(offset)); return offset[engine->id]; } static void init_mocs_table(struct intel_engine_cs *engine, const struct drm_i915_mocs_table *table) { __init_mocs_table(engine->uncore, table, mocs_offset(engine)); } /* * Get l3cc_value from MOCS entry taking into account when it's not used * then if unused_entries_index is not zero then its value will be returned * otherwise I915_MOCS_PTE's value is returned in this case. */ static u16 get_entry_l3cc(const struct drm_i915_mocs_table *table, unsigned int index) { if (index < table->size && table->table[index].used) return table->table[index].l3cc_value; return table->table[table->unused_entries_index].l3cc_value; } static u32 l3cc_combine(u16 low, u16 high) { return low | (u32)high << 16; } #define for_each_l3cc(l3cc, t, i) \ for (i = 0; \ i < ((t)->n_entries + 1) / 2 ? \ (l3cc = l3cc_combine(get_entry_l3cc((t), 2 * i), \ get_entry_l3cc((t), 2 * i + 1))), 1 : \ 0; \ i++) static void init_l3cc_table(struct intel_gt *gt, const struct drm_i915_mocs_table *table) { unsigned long flags; unsigned int i; u32 l3cc; intel_gt_mcr_lock(gt, &flags); for_each_l3cc(l3cc, table, i) if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50)) intel_gt_mcr_multicast_write_fw(gt, XEHP_LNCFCMOCS(i), l3cc); else intel_uncore_write_fw(gt->uncore, GEN9_LNCFCMOCS(i), l3cc); intel_gt_mcr_unlock(gt, flags); } void intel_mocs_init_engine(struct intel_engine_cs *engine) { struct drm_i915_mocs_table table; unsigned int flags; /* Called under a blanket forcewake */ assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL); flags = get_mocs_settings(engine->i915, &table); if (!flags) return; /* Platforms with global MOCS do not need per-engine initialization. */ if (flags & HAS_ENGINE_MOCS) init_mocs_table(engine, &table); if (flags & HAS_RENDER_L3CC && engine->class == RENDER_CLASS) init_l3cc_table(engine->gt, &table); } static u32 global_mocs_offset(void) { return i915_mmio_reg_offset(GEN12_GLOBAL_MOCS(0)); } void intel_set_mocs_index(struct intel_gt *gt) { struct drm_i915_mocs_table table; get_mocs_settings(gt->i915, &table); gt->mocs.uc_index = table.uc_index; if (HAS_L3_CCS_READ(gt->i915)) gt->mocs.wb_index = table.wb_index; } void intel_mocs_init(struct intel_gt *gt) { struct drm_i915_mocs_table table; unsigned int flags; /* * LLC and eDRAM control values are not applicable to dgfx */ flags = get_mocs_settings(gt->i915, &table); if (flags & HAS_GLOBAL_MOCS) __init_mocs_table(gt->uncore, &table, global_mocs_offset()); /* * Initialize the L3CC table as part of mocs initalization to make * sure the LNCFCMOCSx registers are programmed for the subsequent * memory transactions including guc transactions */ if (flags & HAS_RENDER_L3CC) init_l3cc_table(gt, &table); } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_mocs.c" #endif
linux-master
drivers/gpu/drm/i915/gt/intel_mocs.c
/* * SPDX-License-Identifier: MIT * * Copyright © 2017-2018 Intel Corporation */ #include "../intel_timeline.h" #include "mock_timeline.h" void mock_timeline_init(struct intel_timeline *timeline, u64 context) { timeline->gt = NULL; timeline->fence_context = context; mutex_init(&timeline->mutex); INIT_ACTIVE_FENCE(&timeline->last_request); INIT_LIST_HEAD(&timeline->requests); i915_syncmap_init(&timeline->sync); INIT_LIST_HEAD(&timeline->link); } void mock_timeline_fini(struct intel_timeline *timeline) { i915_syncmap_free(&timeline->sync); }
linux-master
drivers/gpu/drm/i915/gt/selftests/mock_timeline.c
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include <drm/drm_print.h> #include "gt/intel_gt_debugfs.h" #include "gt/uc/intel_guc_ads.h" #include "gt/uc/intel_guc_ct.h" #include "gt/uc/intel_guc_slpc.h" #include "gt/uc/intel_guc_submission.h" #include "intel_guc.h" #include "intel_guc_debugfs.h" #include "intel_guc_log_debugfs.h" static int guc_info_show(struct seq_file *m, void *data) { struct intel_guc *guc = m->private; struct drm_printer p = drm_seq_file_printer(m); if (!intel_guc_is_supported(guc)) return -ENODEV; intel_guc_load_status(guc, &p); drm_puts(&p, "\n"); intel_guc_log_info(&guc->log, &p); if (!intel_guc_submission_is_used(guc)) return 0; intel_guc_ct_print_info(&guc->ct, &p); intel_guc_submission_print_info(guc, &p); intel_guc_ads_print_policy_info(guc, &p); return 0; } DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(guc_info); static int guc_registered_contexts_show(struct seq_file *m, void *data) { struct intel_guc *guc = m->private; struct drm_printer p = drm_seq_file_printer(m); if (!intel_guc_submission_is_used(guc)) return -ENODEV; intel_guc_submission_print_context_info(guc, &p); return 0; } DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(guc_registered_contexts); static int guc_slpc_info_show(struct seq_file *m, void *unused) { struct intel_guc *guc = m->private; struct intel_guc_slpc *slpc = &guc->slpc; struct drm_printer p = drm_seq_file_printer(m); if (!intel_guc_slpc_is_used(guc)) return -ENODEV; return intel_guc_slpc_print_info(slpc, &p); } DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(guc_slpc_info); static bool intel_eval_slpc_support(void *data) { struct intel_guc *guc = (struct intel_guc *)data; return intel_guc_slpc_is_used(guc); } static int guc_sched_disable_delay_ms_get(void *data, u64 *val) { struct intel_guc *guc = data; if (!intel_guc_submission_is_used(guc)) return -ENODEV; *val = (u64)guc->submission_state.sched_disable_delay_ms; return 0; } static int guc_sched_disable_delay_ms_set(void *data, u64 val) { struct intel_guc *guc = data; if (!intel_guc_submission_is_used(guc)) return -ENODEV; /* clamp to a practical limit, 1 minute is reasonable for a longest delay */ guc->submission_state.sched_disable_delay_ms = min_t(u64, val, 60000); return 0; } DEFINE_SIMPLE_ATTRIBUTE(guc_sched_disable_delay_ms_fops, guc_sched_disable_delay_ms_get, guc_sched_disable_delay_ms_set, "%lld\n"); static int guc_sched_disable_gucid_threshold_get(void *data, u64 *val) { struct intel_guc *guc = data; if (!intel_guc_submission_is_used(guc)) return -ENODEV; *val = guc->submission_state.sched_disable_gucid_threshold; return 0; } static int guc_sched_disable_gucid_threshold_set(void *data, u64 val) { struct intel_guc *guc = data; if (!intel_guc_submission_is_used(guc)) return -ENODEV; if (val > intel_guc_sched_disable_gucid_threshold_max(guc)) guc->submission_state.sched_disable_gucid_threshold = intel_guc_sched_disable_gucid_threshold_max(guc); else guc->submission_state.sched_disable_gucid_threshold = val; return 0; } DEFINE_SIMPLE_ATTRIBUTE(guc_sched_disable_gucid_threshold_fops, guc_sched_disable_gucid_threshold_get, guc_sched_disable_gucid_threshold_set, "%lld\n"); void intel_guc_debugfs_register(struct intel_guc *guc, struct dentry *root) { static const struct intel_gt_debugfs_file files[] = { { "guc_info", &guc_info_fops, NULL }, { "guc_registered_contexts", &guc_registered_contexts_fops, NULL }, { "guc_slpc_info", &guc_slpc_info_fops, &intel_eval_slpc_support}, { "guc_sched_disable_delay_ms", &guc_sched_disable_delay_ms_fops, NULL }, { "guc_sched_disable_gucid_threshold", &guc_sched_disable_gucid_threshold_fops, NULL }, }; if (!intel_guc_is_supported(guc)) return; intel_gt_debugfs_register_files(root, files, ARRAY_SIZE(files), guc); intel_guc_log_debugfs_register(&guc->log, root); }
linux-master
drivers/gpu/drm/i915/gt/uc/intel_guc_debugfs.c
// SPDX-License-Identifier: MIT /* * Copyright © 2014 Intel Corporation */ #include <linux/circ_buf.h> #include "gem/i915_gem_context.h" #include "gem/i915_gem_lmem.h" #include "gt/gen8_engine_cs.h" #include "gt/intel_breadcrumbs.h" #include "gt/intel_context.h" #include "gt/intel_engine_heartbeat.h" #include "gt/intel_engine_pm.h" #include "gt/intel_engine_regs.h" #include "gt/intel_gpu_commands.h" #include "gt/intel_gt.h" #include "gt/intel_gt_clock_utils.h" #include "gt/intel_gt_irq.h" #include "gt/intel_gt_pm.h" #include "gt/intel_gt_regs.h" #include "gt/intel_gt_requests.h" #include "gt/intel_lrc.h" #include "gt/intel_lrc_reg.h" #include "gt/intel_mocs.h" #include "gt/intel_ring.h" #include "intel_guc_ads.h" #include "intel_guc_capture.h" #include "intel_guc_print.h" #include "intel_guc_submission.h" #include "i915_drv.h" #include "i915_reg.h" #include "i915_trace.h" /** * DOC: GuC-based command submission * * The Scratch registers: * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes * a value to the action register (SOFT_SCRATCH_0) along with any data. It then * triggers an interrupt on the GuC via another register write (0xC4C8). * Firmware writes a success/fail code back to the action register after * processes the request. The kernel driver polls waiting for this update and * then proceeds. * * Command Transport buffers (CTBs): * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host * - G2H) are a message interface between the i915 and GuC. * * Context registration: * Before a context can be submitted it must be registered with the GuC via a * H2G. A unique guc_id is associated with each context. The context is either * registered at request creation time (normal operation) or at submission time * (abnormal operation, e.g. after a reset). * * Context submission: * The i915 updates the LRC tail value in memory. The i915 must enable the * scheduling of the context within the GuC for the GuC to actually consider it. * Therefore, the first time a disabled context is submitted we use a schedule * enable H2G, while follow up submissions are done via the context submit H2G, * which informs the GuC that a previously enabled context has new work * available. * * Context unpin: * To unpin a context a H2G is used to disable scheduling. When the * corresponding G2H returns indicating the scheduling disable operation has * completed it is safe to unpin the context. While a disable is in flight it * isn't safe to resubmit the context so a fence is used to stall all future * requests of that context until the G2H is returned. Because this interaction * with the GuC takes a non-zero amount of time we delay the disabling of * scheduling after the pin count goes to zero by a configurable period of time * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of * time to resubmit something on the context before doing this costly operation. * This delay is only done if the context isn't closed and the guc_id usage is * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD). * * Context deregistration: * Before a context can be destroyed or if we steal its guc_id we must * deregister the context with the GuC via H2G. If stealing the guc_id it isn't * safe to submit anything to this guc_id until the deregister completes so a * fence is used to stall all requests associated with this guc_id until the * corresponding G2H returns indicating the guc_id has been deregistered. * * submission_state.guc_ids: * Unique number associated with private GuC context data passed in during * context registration / submission / deregistration. 64k available. Simple ida * is used for allocation. * * Stealing guc_ids: * If no guc_ids are available they can be stolen from another context at * request creation time if that context is unpinned. If a guc_id can't be found * we punt this problem to the user as we believe this is near impossible to hit * during normal use cases. * * Locking: * In the GuC submission code we have 3 basic spin locks which protect * everything. Details about each below. * * sched_engine->lock * This is the submission lock for all contexts that share an i915 schedule * engine (sched_engine), thus only one of the contexts which share a * sched_engine can be submitting at a time. Currently only one sched_engine is * used for all of GuC submission but that could change in the future. * * guc->submission_state.lock * Global lock for GuC submission state. Protects guc_ids and destroyed contexts * list. * * ce->guc_state.lock * Protects everything under ce->guc_state. Ensures that a context is in the * correct state before issuing a H2G. e.g. We don't issue a schedule disable * on a disabled context (bad idea), we don't issue a schedule enable when a * schedule disable is in flight, etc... Also protects list of inflight requests * on the context and the priority management state. Lock is individual to each * context. * * Lock ordering rules: * sched_engine->lock -> ce->guc_state.lock * guc->submission_state.lock -> ce->guc_state.lock * * Reset races: * When a full GT reset is triggered it is assumed that some G2H responses to * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be * fatal as we do certain operations upon receiving a G2H (e.g. destroy * contexts, release guc_ids, etc...). When this occurs we can scrub the * context state and cleanup appropriately, however this is quite racey. * To avoid races, the reset code must disable submission before scrubbing for * the missing G2H, while the submission code must check for submission being * disabled and skip sending H2Gs and updating context states when it is. Both * sides must also make sure to hold the relevant locks. */ /* GuC Virtual Engine */ struct guc_virtual_engine { struct intel_engine_cs base; struct intel_context context; }; static struct intel_context * guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, unsigned long flags); static struct intel_context * guc_create_parallel(struct intel_engine_cs **engines, unsigned int num_siblings, unsigned int width); #define GUC_REQUEST_SIZE 64 /* bytes */ /* * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous * per the GuC submission interface. A different allocation algorithm is used * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to * partition the guc_id space. We believe the number of multi-lrc contexts in * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for * multi-lrc. */ #define NUMBER_MULTI_LRC_GUC_ID(guc) \ ((guc)->submission_state.num_guc_ids / 16) /* * Below is a set of functions which control the GuC scheduling state which * require a lock. */ #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER BIT(0) #define SCHED_STATE_DESTROYED BIT(1) #define SCHED_STATE_PENDING_DISABLE BIT(2) #define SCHED_STATE_BANNED BIT(3) #define SCHED_STATE_ENABLED BIT(4) #define SCHED_STATE_PENDING_ENABLE BIT(5) #define SCHED_STATE_REGISTERED BIT(6) #define SCHED_STATE_POLICY_REQUIRED BIT(7) #define SCHED_STATE_CLOSED BIT(8) #define SCHED_STATE_BLOCKED_SHIFT 9 #define SCHED_STATE_BLOCKED BIT(SCHED_STATE_BLOCKED_SHIFT) #define SCHED_STATE_BLOCKED_MASK (0xfff << SCHED_STATE_BLOCKED_SHIFT) static inline void init_sched_state(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK; } /* * Kernel contexts can have SCHED_STATE_REGISTERED after suspend. * A context close can race with the submission path, so SCHED_STATE_CLOSED * can be set immediately before we try to register. */ #define SCHED_STATE_VALID_INIT \ (SCHED_STATE_BLOCKED_MASK | \ SCHED_STATE_CLOSED | \ SCHED_STATE_REGISTERED) __maybe_unused static bool sched_state_is_init(struct intel_context *ce) { return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT); } static inline bool context_wait_for_deregister_to_register(struct intel_context *ce) { return ce->guc_state.sched_state & SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; } static inline void set_context_wait_for_deregister_to_register(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state |= SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; } static inline void clr_context_wait_for_deregister_to_register(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state &= ~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; } static inline bool context_destroyed(struct intel_context *ce) { return ce->guc_state.sched_state & SCHED_STATE_DESTROYED; } static inline void set_context_destroyed(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state |= SCHED_STATE_DESTROYED; } static inline bool context_pending_disable(struct intel_context *ce) { return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE; } static inline void set_context_pending_disable(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE; } static inline void clr_context_pending_disable(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE; } static inline bool context_banned(struct intel_context *ce) { return ce->guc_state.sched_state & SCHED_STATE_BANNED; } static inline void set_context_banned(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state |= SCHED_STATE_BANNED; } static inline void clr_context_banned(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state &= ~SCHED_STATE_BANNED; } static inline bool context_enabled(struct intel_context *ce) { return ce->guc_state.sched_state & SCHED_STATE_ENABLED; } static inline void set_context_enabled(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state |= SCHED_STATE_ENABLED; } static inline void clr_context_enabled(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED; } static inline bool context_pending_enable(struct intel_context *ce) { return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE; } static inline void set_context_pending_enable(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE; } static inline void clr_context_pending_enable(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE; } static inline bool context_registered(struct intel_context *ce) { return ce->guc_state.sched_state & SCHED_STATE_REGISTERED; } static inline void set_context_registered(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state |= SCHED_STATE_REGISTERED; } static inline void clr_context_registered(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED; } static inline bool context_policy_required(struct intel_context *ce) { return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED; } static inline void set_context_policy_required(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED; } static inline void clr_context_policy_required(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED; } static inline bool context_close_done(struct intel_context *ce) { return ce->guc_state.sched_state & SCHED_STATE_CLOSED; } static inline void set_context_close_done(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state |= SCHED_STATE_CLOSED; } static inline u32 context_blocked(struct intel_context *ce) { return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >> SCHED_STATE_BLOCKED_SHIFT; } static inline void incr_context_blocked(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state += SCHED_STATE_BLOCKED; GEM_BUG_ON(!context_blocked(ce)); /* Overflow check */ } static inline void decr_context_blocked(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); GEM_BUG_ON(!context_blocked(ce)); /* Underflow check */ ce->guc_state.sched_state -= SCHED_STATE_BLOCKED; } static struct intel_context * request_to_scheduling_context(struct i915_request *rq) { return intel_context_to_parent(rq->context); } static inline bool context_guc_id_invalid(struct intel_context *ce) { return ce->guc_id.id == GUC_INVALID_CONTEXT_ID; } static inline void set_context_guc_id_invalid(struct intel_context *ce) { ce->guc_id.id = GUC_INVALID_CONTEXT_ID; } static inline struct intel_guc *ce_to_guc(struct intel_context *ce) { return &ce->engine->gt->uc.guc; } static inline struct i915_priolist *to_priolist(struct rb_node *rb) { return rb_entry(rb, struct i915_priolist, node); } /* * When using multi-lrc submission a scratch memory area is reserved in the * parent's context state for the process descriptor, work queue, and handshake * between the parent + children contexts to insert safe preemption points * between each of the BBs. Currently the scratch area is sized to a page. * * The layout of this scratch area is below: * 0 guc_process_desc * + sizeof(struct guc_process_desc) child go * + CACHELINE_BYTES child join[0] * ... * + CACHELINE_BYTES child join[n - 1] * ... unused * PARENT_SCRATCH_SIZE / 2 work queue start * ... work queue * PARENT_SCRATCH_SIZE - 1 work queue end */ #define WQ_SIZE (PARENT_SCRATCH_SIZE / 2) #define WQ_OFFSET (PARENT_SCRATCH_SIZE - WQ_SIZE) struct sync_semaphore { u32 semaphore; u8 unused[CACHELINE_BYTES - sizeof(u32)]; }; struct parent_scratch { union guc_descs { struct guc_sched_wq_desc wq_desc; struct guc_process_desc_v69 pdesc; } descs; struct sync_semaphore go; struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1]; u8 unused[WQ_OFFSET - sizeof(union guc_descs) - sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)]; u32 wq[WQ_SIZE / sizeof(u32)]; }; static u32 __get_parent_scratch_offset(struct intel_context *ce) { GEM_BUG_ON(!ce->parallel.guc.parent_page); return ce->parallel.guc.parent_page * PAGE_SIZE; } static u32 __get_wq_offset(struct intel_context *ce) { BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET); return __get_parent_scratch_offset(ce) + WQ_OFFSET; } static struct parent_scratch * __get_parent_scratch(struct intel_context *ce) { BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE); BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES); /* * Need to subtract LRC_STATE_OFFSET here as the * parallel.guc.parent_page is the offset into ce->state while * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET. */ return (struct parent_scratch *) (ce->lrc_reg_state + ((__get_parent_scratch_offset(ce) - LRC_STATE_OFFSET) / sizeof(u32))); } static struct guc_process_desc_v69 * __get_process_desc_v69(struct intel_context *ce) { struct parent_scratch *ps = __get_parent_scratch(ce); return &ps->descs.pdesc; } static struct guc_sched_wq_desc * __get_wq_desc_v70(struct intel_context *ce) { struct parent_scratch *ps = __get_parent_scratch(ce); return &ps->descs.wq_desc; } static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size) { /* * Check for space in work queue. Caching a value of head pointer in * intel_context structure in order reduce the number accesses to shared * GPU memory which may be across a PCIe bus. */ #define AVAILABLE_SPACE \ CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE) if (wqi_size > AVAILABLE_SPACE) { ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head); if (wqi_size > AVAILABLE_SPACE) return NULL; } #undef AVAILABLE_SPACE return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)]; } static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id) { struct intel_context *ce = xa_load(&guc->context_lookup, id); GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID); return ce; } static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index) { struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69; if (!base) return NULL; GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID); return &base[index]; } static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc) { u32 size; int ret; size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) * GUC_MAX_CONTEXT_ID); ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69, (void **)&guc->lrc_desc_pool_vaddr_v69); if (ret) return ret; return 0; } static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc) { if (!guc->lrc_desc_pool_vaddr_v69) return; guc->lrc_desc_pool_vaddr_v69 = NULL; i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP); } static inline bool guc_submission_initialized(struct intel_guc *guc) { return guc->submission_initialized; } static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id) { struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id); if (desc) memset(desc, 0, sizeof(*desc)); } static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id) { return __get_context(guc, id); } static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id, struct intel_context *ce) { unsigned long flags; /* * xarray API doesn't have xa_save_irqsave wrapper, so calling the * lower level functions directly. */ xa_lock_irqsave(&guc->context_lookup, flags); __xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC); xa_unlock_irqrestore(&guc->context_lookup, flags); } static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id) { unsigned long flags; if (unlikely(!guc_submission_initialized(guc))) return; _reset_lrc_desc_v69(guc, id); /* * xarray API doesn't have xa_erase_irqsave wrapper, so calling * the lower level functions directly. */ xa_lock_irqsave(&guc->context_lookup, flags); __xa_erase(&guc->context_lookup, id); xa_unlock_irqrestore(&guc->context_lookup, flags); } static void decr_outstanding_submission_g2h(struct intel_guc *guc) { if (atomic_dec_and_test(&guc->outstanding_submission_g2h)) wake_up_all(&guc->ct.wq); } static int guc_submission_send_busy_loop(struct intel_guc *guc, const u32 *action, u32 len, u32 g2h_len_dw, bool loop) { /* * We always loop when a send requires a reply (i.e. g2h_len_dw > 0), * so we don't handle the case where we don't get a reply because we * aborted the send due to the channel being busy. */ GEM_BUG_ON(g2h_len_dw && !loop); if (g2h_len_dw) atomic_inc(&guc->outstanding_submission_g2h); return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop); } int intel_guc_wait_for_pending_msg(struct intel_guc *guc, atomic_t *wait_var, bool interruptible, long timeout) { const int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; DEFINE_WAIT(wait); might_sleep(); GEM_BUG_ON(timeout < 0); if (!atomic_read(wait_var)) return 0; if (!timeout) return -ETIME; for (;;) { prepare_to_wait(&guc->ct.wq, &wait, state); if (!atomic_read(wait_var)) break; if (signal_pending_state(state, current)) { timeout = -EINTR; break; } if (!timeout) { timeout = -ETIME; break; } timeout = io_schedule_timeout(timeout); } finish_wait(&guc->ct.wq, &wait); return (timeout < 0) ? timeout : 0; } int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout) { if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc)) return 0; return intel_guc_wait_for_pending_msg(guc, &guc->outstanding_submission_g2h, true, timeout); } static int guc_context_policy_init_v70(struct intel_context *ce, bool loop); static int try_context_registration(struct intel_context *ce, bool loop); static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq) { int err = 0; struct intel_context *ce = request_to_scheduling_context(rq); u32 action[3]; int len = 0; u32 g2h_len_dw = 0; bool enabled; lockdep_assert_held(&rq->engine->sched_engine->lock); /* * Corner case where requests were sitting in the priority list or a * request resubmitted after the context was banned. */ if (unlikely(!intel_context_is_schedulable(ce))) { i915_request_put(i915_request_mark_eio(rq)); intel_engine_signal_breadcrumbs(ce->engine); return 0; } GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); GEM_BUG_ON(context_guc_id_invalid(ce)); if (context_policy_required(ce)) { err = guc_context_policy_init_v70(ce, false); if (err) return err; } spin_lock(&ce->guc_state.lock); /* * The request / context will be run on the hardware when scheduling * gets enabled in the unblock. For multi-lrc we still submit the * context to move the LRC tails. */ if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce))) goto out; enabled = context_enabled(ce) || context_blocked(ce); if (!enabled) { action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET; action[len++] = ce->guc_id.id; action[len++] = GUC_CONTEXT_ENABLE; set_context_pending_enable(ce); intel_context_get(ce); g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET; } else { action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT; action[len++] = ce->guc_id.id; } err = intel_guc_send_nb(guc, action, len, g2h_len_dw); if (!enabled && !err) { trace_intel_context_sched_enable(ce); atomic_inc(&guc->outstanding_submission_g2h); set_context_enabled(ce); /* * Without multi-lrc KMD does the submission step (moving the * lrc tail) so enabling scheduling is sufficient to submit the * context. This isn't the case in multi-lrc submission as the * GuC needs to move the tails, hence the need for another H2G * to submit a multi-lrc context after enabling scheduling. */ if (intel_context_is_parent(ce)) { action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT; err = intel_guc_send_nb(guc, action, len - 1, 0); } } else if (!enabled) { clr_context_pending_enable(ce); intel_context_put(ce); } if (likely(!err)) trace_i915_request_guc_submit(rq); out: spin_unlock(&ce->guc_state.lock); return err; } static int guc_add_request(struct intel_guc *guc, struct i915_request *rq) { int ret = __guc_add_request(guc, rq); if (unlikely(ret == -EBUSY)) { guc->stalled_request = rq; guc->submission_stall_reason = STALL_ADD_REQUEST; } return ret; } static inline void guc_set_lrc_tail(struct i915_request *rq) { rq->context->lrc_reg_state[CTX_RING_TAIL] = intel_ring_set_tail(rq->ring, rq->tail); } static inline int rq_prio(const struct i915_request *rq) { return rq->sched.attr.priority; } static bool is_multi_lrc_rq(struct i915_request *rq) { return intel_context_is_parallel(rq->context); } static bool can_merge_rq(struct i915_request *rq, struct i915_request *last) { return request_to_scheduling_context(rq) == request_to_scheduling_context(last); } static u32 wq_space_until_wrap(struct intel_context *ce) { return (WQ_SIZE - ce->parallel.guc.wqi_tail); } static void write_wqi(struct intel_context *ce, u32 wqi_size) { BUILD_BUG_ON(!is_power_of_2(WQ_SIZE)); /* * Ensure WQI are visible before updating tail */ intel_guc_write_barrier(ce_to_guc(ce)); ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) & (WQ_SIZE - 1); WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail); } static int guc_wq_noop_append(struct intel_context *ce) { u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce)); u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1; if (!wqi) return -EBUSY; GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); *wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) | FIELD_PREP(WQ_LEN_MASK, len_dw); ce->parallel.guc.wqi_tail = 0; return 0; } static int __guc_wq_item_append(struct i915_request *rq) { struct intel_context *ce = request_to_scheduling_context(rq); struct intel_context *child; unsigned int wqi_size = (ce->parallel.number_children + 4) * sizeof(u32); u32 *wqi; u32 len_dw = (wqi_size / sizeof(u32)) - 1; int ret; /* Ensure context is in correct state updating work queue */ GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); GEM_BUG_ON(context_guc_id_invalid(ce)); GEM_BUG_ON(context_wait_for_deregister_to_register(ce)); GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)); /* Insert NOOP if this work queue item will wrap the tail pointer. */ if (wqi_size > wq_space_until_wrap(ce)) { ret = guc_wq_noop_append(ce); if (ret) return ret; } wqi = get_wq_pointer(ce, wqi_size); if (!wqi) return -EBUSY; GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); *wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) | FIELD_PREP(WQ_LEN_MASK, len_dw); *wqi++ = ce->lrc.lrca; *wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) | FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64)); *wqi++ = 0; /* fence_id */ for_each_child(ce, child) *wqi++ = child->ring->tail / sizeof(u64); write_wqi(ce, wqi_size); return 0; } static int guc_wq_item_append(struct intel_guc *guc, struct i915_request *rq) { struct intel_context *ce = request_to_scheduling_context(rq); int ret; if (unlikely(!intel_context_is_schedulable(ce))) return 0; ret = __guc_wq_item_append(rq); if (unlikely(ret == -EBUSY)) { guc->stalled_request = rq; guc->submission_stall_reason = STALL_MOVE_LRC_TAIL; } return ret; } static bool multi_lrc_submit(struct i915_request *rq) { struct intel_context *ce = request_to_scheduling_context(rq); intel_ring_set_tail(rq->ring, rq->tail); /* * We expect the front end (execbuf IOCTL) to set this flag on the last * request generated from a multi-BB submission. This indicates to the * backend (GuC interface) that we should submit this context thus * submitting all the requests generated in parallel. */ return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) || !intel_context_is_schedulable(ce); } static int guc_dequeue_one_context(struct intel_guc *guc) { struct i915_sched_engine * const sched_engine = guc->sched_engine; struct i915_request *last = NULL; bool submit = false; struct rb_node *rb; int ret; lockdep_assert_held(&sched_engine->lock); if (guc->stalled_request) { submit = true; last = guc->stalled_request; switch (guc->submission_stall_reason) { case STALL_REGISTER_CONTEXT: goto register_context; case STALL_MOVE_LRC_TAIL: goto move_lrc_tail; case STALL_ADD_REQUEST: goto add_request; default: MISSING_CASE(guc->submission_stall_reason); } } while ((rb = rb_first_cached(&sched_engine->queue))) { struct i915_priolist *p = to_priolist(rb); struct i915_request *rq, *rn; priolist_for_each_request_consume(rq, rn, p) { if (last && !can_merge_rq(rq, last)) goto register_context; list_del_init(&rq->sched.link); __i915_request_submit(rq); trace_i915_request_in(rq, 0); last = rq; if (is_multi_lrc_rq(rq)) { /* * We need to coalesce all multi-lrc requests in * a relationship into a single H2G. We are * guaranteed that all of these requests will be * submitted sequentially. */ if (multi_lrc_submit(rq)) { submit = true; goto register_context; } } else { submit = true; } } rb_erase_cached(&p->node, &sched_engine->queue); i915_priolist_free(p); } register_context: if (submit) { struct intel_context *ce = request_to_scheduling_context(last); if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) && intel_context_is_schedulable(ce))) { ret = try_context_registration(ce, false); if (unlikely(ret == -EPIPE)) { goto deadlk; } else if (ret == -EBUSY) { guc->stalled_request = last; guc->submission_stall_reason = STALL_REGISTER_CONTEXT; goto schedule_tasklet; } else if (ret != 0) { GEM_WARN_ON(ret); /* Unexpected */ goto deadlk; } } move_lrc_tail: if (is_multi_lrc_rq(last)) { ret = guc_wq_item_append(guc, last); if (ret == -EBUSY) { goto schedule_tasklet; } else if (ret != 0) { GEM_WARN_ON(ret); /* Unexpected */ goto deadlk; } } else { guc_set_lrc_tail(last); } add_request: ret = guc_add_request(guc, last); if (unlikely(ret == -EPIPE)) { goto deadlk; } else if (ret == -EBUSY) { goto schedule_tasklet; } else if (ret != 0) { GEM_WARN_ON(ret); /* Unexpected */ goto deadlk; } } guc->stalled_request = NULL; guc->submission_stall_reason = STALL_NONE; return submit; deadlk: sched_engine->tasklet.callback = NULL; tasklet_disable_nosync(&sched_engine->tasklet); return false; schedule_tasklet: tasklet_schedule(&sched_engine->tasklet); return false; } static void guc_submission_tasklet(struct tasklet_struct *t) { struct i915_sched_engine *sched_engine = from_tasklet(sched_engine, t, tasklet); unsigned long flags; bool loop; spin_lock_irqsave(&sched_engine->lock, flags); do { loop = guc_dequeue_one_context(sched_engine->private_data); } while (loop); i915_sched_engine_reset_on_empty(sched_engine); spin_unlock_irqrestore(&sched_engine->lock, flags); } static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir) { if (iir & GT_RENDER_USER_INTERRUPT) intel_engine_signal_breadcrumbs(engine); } static void __guc_context_destroy(struct intel_context *ce); static void release_guc_id(struct intel_guc *guc, struct intel_context *ce); static void guc_signal_context_fence(struct intel_context *ce); static void guc_cancel_context_requests(struct intel_context *ce); static void guc_blocked_fence_complete(struct intel_context *ce); static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc) { struct intel_context *ce; unsigned long index, flags; bool pending_disable, pending_enable, deregister, destroyed, banned; xa_lock_irqsave(&guc->context_lookup, flags); xa_for_each(&guc->context_lookup, index, ce) { /* * Corner case where the ref count on the object is zero but and * deregister G2H was lost. In this case we don't touch the ref * count and finish the destroy of the context. */ bool do_put = kref_get_unless_zero(&ce->ref); xa_unlock(&guc->context_lookup); if (test_bit(CONTEXT_GUC_INIT, &ce->flags) && (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) { /* successful cancel so jump straight to close it */ intel_context_sched_disable_unpin(ce); } spin_lock(&ce->guc_state.lock); /* * Once we are at this point submission_disabled() is guaranteed * to be visible to all callers who set the below flags (see above * flush and flushes in reset_prepare). If submission_disabled() * is set, the caller shouldn't set these flags. */ destroyed = context_destroyed(ce); pending_enable = context_pending_enable(ce); pending_disable = context_pending_disable(ce); deregister = context_wait_for_deregister_to_register(ce); banned = context_banned(ce); init_sched_state(ce); spin_unlock(&ce->guc_state.lock); if (pending_enable || destroyed || deregister) { decr_outstanding_submission_g2h(guc); if (deregister) guc_signal_context_fence(ce); if (destroyed) { intel_gt_pm_put_async(guc_to_gt(guc)); release_guc_id(guc, ce); __guc_context_destroy(ce); } if (pending_enable || deregister) intel_context_put(ce); } /* Not mutualy exclusive with above if statement. */ if (pending_disable) { guc_signal_context_fence(ce); if (banned) { guc_cancel_context_requests(ce); intel_engine_signal_breadcrumbs(ce->engine); } intel_context_sched_disable_unpin(ce); decr_outstanding_submission_g2h(guc); spin_lock(&ce->guc_state.lock); guc_blocked_fence_complete(ce); spin_unlock(&ce->guc_state.lock); intel_context_put(ce); } if (do_put) intel_context_put(ce); xa_lock(&guc->context_lookup); } xa_unlock_irqrestore(&guc->context_lookup, flags); } /* * GuC stores busyness stats for each engine at context in/out boundaries. A * context 'in' logs execution start time, 'out' adds in -> out delta to total. * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with * GuC. * * __i915_pmu_event_read samples engine busyness. When sampling, if context id * is valid (!= ~0) and start is non-zero, the engine is considered to be * active. For an active engine total busyness = total + (now - start), where * 'now' is the time at which the busyness is sampled. For inactive engine, * total busyness = total. * * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain. * * The start and total values provided by GuC are 32 bits and wrap around in a * few minutes. Since perf pmu provides busyness as 64 bit monotonically * increasing ns values, there is a need for this implementation to account for * overflows and extend the GuC provided values to 64 bits before returning * busyness to the user. In order to do that, a worker runs periodically at * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in * 27 seconds for a gt clock frequency of 19.2 MHz). */ #define WRAP_TIME_CLKS U32_MAX #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3) static void __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start) { u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp); if (new_start == lower_32_bits(*prev_start)) return; /* * When gt is unparked, we update the gt timestamp and start the ping * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt * is unparked, all switched in contexts will have a start time that is * within +/- POLL_TIME_CLKS of the most recent gt_stamp. * * If neither gt_stamp nor new_start has rolled over, then the * gt_stamp_hi does not need to be adjusted, however if one of them has * rolled over, we need to adjust gt_stamp_hi accordingly. * * The below conditions address the cases of new_start rollover and * gt_stamp_last rollover respectively. */ if (new_start < gt_stamp_last && (new_start - gt_stamp_last) <= POLL_TIME_CLKS) gt_stamp_hi++; if (new_start > gt_stamp_last && (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi) gt_stamp_hi--; *prev_start = ((u64)gt_stamp_hi << 32) | new_start; } #define record_read(map_, field_) \ iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_) /* * GuC updates shared memory and KMD reads it. Since this is not synchronized, * we run into a race where the value read is inconsistent. Sometimes the * inconsistency is in reading the upper MSB bytes of the last_in value when * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper * 24 bits are zero. Since these are non-zero values, it is non-trivial to * determine validity of these values. Instead we read the values multiple times * until they are consistent. In test runs, 3 attempts results in consistent * values. The upper bound is set to 6 attempts and may need to be tuned as per * any new occurences. */ static void __get_engine_usage_record(struct intel_engine_cs *engine, u32 *last_in, u32 *id, u32 *total) { struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine); int i = 0; do { *last_in = record_read(&rec_map, last_switch_in_stamp); *id = record_read(&rec_map, current_context_index); *total = record_read(&rec_map, total_runtime); if (record_read(&rec_map, last_switch_in_stamp) == *last_in && record_read(&rec_map, current_context_index) == *id && record_read(&rec_map, total_runtime) == *total) break; } while (++i < 6); } static void guc_update_engine_gt_clks(struct intel_engine_cs *engine) { struct intel_engine_guc_stats *stats = &engine->stats.guc; struct intel_guc *guc = &engine->gt->uc.guc; u32 last_switch, ctx_id, total; lockdep_assert_held(&guc->timestamp.lock); __get_engine_usage_record(engine, &last_switch, &ctx_id, &total); stats->running = ctx_id != ~0U && last_switch; if (stats->running) __extend_last_switch(guc, &stats->start_gt_clk, last_switch); /* * Instead of adjusting the total for overflow, just add the * difference from previous sample stats->total_gt_clks */ if (total && total != ~0U) { stats->total_gt_clks += (u32)(total - stats->prev_total); stats->prev_total = total; } } static u32 gpm_timestamp_shift(struct intel_gt *gt) { intel_wakeref_t wakeref; u32 reg, shift; with_intel_runtime_pm(gt->uncore->rpm, wakeref) reg = intel_uncore_read(gt->uncore, RPM_CONFIG0); shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >> GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT; return 3 - shift; } static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now) { struct intel_gt *gt = guc_to_gt(guc); u32 gt_stamp_lo, gt_stamp_hi; u64 gpm_ts; lockdep_assert_held(&guc->timestamp.lock); gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0, MISC_STATUS1) >> guc->timestamp.shift; gt_stamp_lo = lower_32_bits(gpm_ts); *now = ktime_get(); if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp)) gt_stamp_hi++; guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo; } /* * Unlike the execlist mode of submission total and active times are in terms of * gt clocks. The *now parameter is retained to return the cpu time at which the * busyness was sampled. */ static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now) { struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc; struct i915_gpu_error *gpu_error = &engine->i915->gpu_error; struct intel_gt *gt = engine->gt; struct intel_guc *guc = &gt->uc.guc; u64 total, gt_stamp_saved; unsigned long flags; u32 reset_count; bool in_reset; spin_lock_irqsave(&guc->timestamp.lock, flags); /* * If a reset happened, we risk reading partially updated engine * busyness from GuC, so we just use the driver stored copy of busyness. * Synchronize with gt reset using reset_count and the * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count * after I915_RESET_BACKOFF flag, so ensure that the reset_count is * usable by checking the flag afterwards. */ reset_count = i915_reset_count(gpu_error); in_reset = test_bit(I915_RESET_BACKOFF, &gt->reset.flags); *now = ktime_get(); /* * The active busyness depends on start_gt_clk and gt_stamp. * gt_stamp is updated by i915 only when gt is awake and the * start_gt_clk is derived from GuC state. To get a consistent * view of activity, we query the GuC state only if gt is awake. */ if (!in_reset && intel_gt_pm_get_if_awake(gt)) { stats_saved = *stats; gt_stamp_saved = guc->timestamp.gt_stamp; /* * Update gt_clks, then gt timestamp to simplify the 'gt_stamp - * start_gt_clk' calculation below for active engines. */ guc_update_engine_gt_clks(engine); guc_update_pm_timestamp(guc, now); intel_gt_pm_put_async(gt); if (i915_reset_count(gpu_error) != reset_count) { *stats = stats_saved; guc->timestamp.gt_stamp = gt_stamp_saved; } } total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks); if (stats->running) { u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk; total += intel_gt_clock_interval_to_ns(gt, clk); } spin_unlock_irqrestore(&guc->timestamp.lock, flags); return ns_to_ktime(total); } static void guc_enable_busyness_worker(struct intel_guc *guc) { mod_delayed_work(system_highpri_wq, &guc->timestamp.work, guc->timestamp.ping_delay); } static void guc_cancel_busyness_worker(struct intel_guc *guc) { cancel_delayed_work_sync(&guc->timestamp.work); } static void __reset_guc_busyness_stats(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct intel_engine_cs *engine; enum intel_engine_id id; unsigned long flags; ktime_t unused; guc_cancel_busyness_worker(guc); spin_lock_irqsave(&guc->timestamp.lock, flags); guc_update_pm_timestamp(guc, &unused); for_each_engine(engine, gt, id) { guc_update_engine_gt_clks(engine); engine->stats.guc.prev_total = 0; } spin_unlock_irqrestore(&guc->timestamp.lock, flags); } static void __update_guc_busyness_stats(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct intel_engine_cs *engine; enum intel_engine_id id; unsigned long flags; ktime_t unused; guc->timestamp.last_stat_jiffies = jiffies; spin_lock_irqsave(&guc->timestamp.lock, flags); guc_update_pm_timestamp(guc, &unused); for_each_engine(engine, gt, id) guc_update_engine_gt_clks(engine); spin_unlock_irqrestore(&guc->timestamp.lock, flags); } static void __guc_context_update_stats(struct intel_context *ce) { struct intel_guc *guc = ce_to_guc(ce); unsigned long flags; spin_lock_irqsave(&guc->timestamp.lock, flags); lrc_update_runtime(ce); spin_unlock_irqrestore(&guc->timestamp.lock, flags); } static void guc_context_update_stats(struct intel_context *ce) { if (!intel_context_pin_if_active(ce)) return; __guc_context_update_stats(ce); intel_context_unpin(ce); } static void guc_timestamp_ping(struct work_struct *wrk) { struct intel_guc *guc = container_of(wrk, typeof(*guc), timestamp.work.work); struct intel_uc *uc = container_of(guc, typeof(*uc), guc); struct intel_gt *gt = guc_to_gt(guc); struct intel_context *ce; intel_wakeref_t wakeref; unsigned long index; int srcu, ret; /* * Synchronize with gt reset to make sure the worker does not * corrupt the engine/guc stats. NB: can't actually block waiting * for a reset to complete as the reset requires flushing out * this worker thread if started. So waiting would deadlock. */ ret = intel_gt_reset_trylock(gt, &srcu); if (ret) return; with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) __update_guc_busyness_stats(guc); /* adjust context stats for overflow */ xa_for_each(&guc->context_lookup, index, ce) guc_context_update_stats(ce); intel_gt_reset_unlock(gt, srcu); guc_enable_busyness_worker(guc); } static int guc_action_enable_usage_stats(struct intel_guc *guc) { u32 offset = intel_guc_engine_usage_offset(guc); u32 action[] = { INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF, offset, 0, }; return intel_guc_send(guc, action, ARRAY_SIZE(action)); } static int guc_init_engine_stats(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); intel_wakeref_t wakeref; int ret; with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) ret = guc_action_enable_usage_stats(guc); if (ret) guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret)); else guc_enable_busyness_worker(guc); return ret; } static void guc_fini_engine_stats(struct intel_guc *guc) { guc_cancel_busyness_worker(guc); } void intel_guc_busyness_park(struct intel_gt *gt) { struct intel_guc *guc = &gt->uc.guc; if (!guc_submission_initialized(guc)) return; /* * There is a race with suspend flow where the worker runs after suspend * and causes an unclaimed register access warning. Cancel the worker * synchronously here. */ guc_cancel_busyness_worker(guc); /* * Before parking, we should sample engine busyness stats if we need to. * We can skip it if we are less than half a ping from the last time we * sampled the busyness stats. */ if (guc->timestamp.last_stat_jiffies && !time_after(jiffies, guc->timestamp.last_stat_jiffies + (guc->timestamp.ping_delay / 2))) return; __update_guc_busyness_stats(guc); } void intel_guc_busyness_unpark(struct intel_gt *gt) { struct intel_guc *guc = &gt->uc.guc; unsigned long flags; ktime_t unused; if (!guc_submission_initialized(guc)) return; spin_lock_irqsave(&guc->timestamp.lock, flags); guc_update_pm_timestamp(guc, &unused); spin_unlock_irqrestore(&guc->timestamp.lock, flags); guc_enable_busyness_worker(guc); } static inline bool submission_disabled(struct intel_guc *guc) { struct i915_sched_engine * const sched_engine = guc->sched_engine; return unlikely(!sched_engine || !__tasklet_is_enabled(&sched_engine->tasklet) || intel_gt_is_wedged(guc_to_gt(guc))); } static void disable_submission(struct intel_guc *guc) { struct i915_sched_engine * const sched_engine = guc->sched_engine; if (__tasklet_is_enabled(&sched_engine->tasklet)) { GEM_BUG_ON(!guc->ct.enabled); __tasklet_disable_sync_once(&sched_engine->tasklet); sched_engine->tasklet.callback = NULL; } } static void enable_submission(struct intel_guc *guc) { struct i915_sched_engine * const sched_engine = guc->sched_engine; unsigned long flags; spin_lock_irqsave(&guc->sched_engine->lock, flags); sched_engine->tasklet.callback = guc_submission_tasklet; wmb(); /* Make sure callback visible */ if (!__tasklet_is_enabled(&sched_engine->tasklet) && __tasklet_enable(&sched_engine->tasklet)) { GEM_BUG_ON(!guc->ct.enabled); /* And kick in case we missed a new request submission. */ tasklet_hi_schedule(&sched_engine->tasklet); } spin_unlock_irqrestore(&guc->sched_engine->lock, flags); } static void guc_flush_submissions(struct intel_guc *guc) { struct i915_sched_engine * const sched_engine = guc->sched_engine; unsigned long flags; spin_lock_irqsave(&sched_engine->lock, flags); spin_unlock_irqrestore(&sched_engine->lock, flags); } static void guc_flush_destroyed_contexts(struct intel_guc *guc); void intel_guc_submission_reset_prepare(struct intel_guc *guc) { if (unlikely(!guc_submission_initialized(guc))) { /* Reset called during driver load? GuC not yet initialised! */ return; } intel_gt_park_heartbeats(guc_to_gt(guc)); disable_submission(guc); guc->interrupts.disable(guc); __reset_guc_busyness_stats(guc); /* Flush IRQ handler */ spin_lock_irq(guc_to_gt(guc)->irq_lock); spin_unlock_irq(guc_to_gt(guc)->irq_lock); guc_flush_submissions(guc); guc_flush_destroyed_contexts(guc); flush_work(&guc->ct.requests.worker); scrub_guc_desc_for_outstanding_g2h(guc); } static struct intel_engine_cs * guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling) { struct intel_engine_cs *engine; intel_engine_mask_t tmp, mask = ve->mask; unsigned int num_siblings = 0; for_each_engine_masked(engine, ve->gt, mask, tmp) if (num_siblings++ == sibling) return engine; return NULL; } static inline struct intel_engine_cs * __context_to_physical_engine(struct intel_context *ce) { struct intel_engine_cs *engine = ce->engine; if (intel_engine_is_virtual(engine)) engine = guc_virtual_get_sibling(engine, 0); return engine; } static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub) { struct intel_engine_cs *engine = __context_to_physical_engine(ce); if (!intel_context_is_schedulable(ce)) return; GEM_BUG_ON(!intel_context_is_pinned(ce)); /* * We want a simple context + ring to execute the breadcrumb update. * We cannot rely on the context being intact across the GPU hang, * so clear it and rebuild just what we need for the breadcrumb. * All pending requests for this context will be zapped, and any * future request will be after userspace has had the opportunity * to recreate its own state. */ if (scrub) lrc_init_regs(ce, engine, true); /* Rerun the request; its payload has been neutered (if guilty). */ lrc_update_regs(ce, engine, head); } static void guc_engine_reset_prepare(struct intel_engine_cs *engine) { /* * Wa_22011802037: In addition to stopping the cs, we need * to wait for any pending mi force wakeups */ if (IS_MTL_GRAPHICS_STEP(engine->i915, M, STEP_A0, STEP_B0) || (GRAPHICS_VER(engine->i915) >= 11 && GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 70))) { intel_engine_stop_cs(engine); intel_engine_wait_for_pending_mi_fw(engine); } } static void guc_reset_nop(struct intel_engine_cs *engine) { } static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled) { } static void __unwind_incomplete_requests(struct intel_context *ce) { struct i915_request *rq, *rn; struct list_head *pl; int prio = I915_PRIORITY_INVALID; struct i915_sched_engine * const sched_engine = ce->engine->sched_engine; unsigned long flags; spin_lock_irqsave(&sched_engine->lock, flags); spin_lock(&ce->guc_state.lock); list_for_each_entry_safe_reverse(rq, rn, &ce->guc_state.requests, sched.link) { if (i915_request_completed(rq)) continue; list_del_init(&rq->sched.link); __i915_request_unsubmit(rq); /* Push the request back into the queue for later resubmission. */ GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID); if (rq_prio(rq) != prio) { prio = rq_prio(rq); pl = i915_sched_lookup_priolist(sched_engine, prio); } GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine)); list_add(&rq->sched.link, pl); set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); } spin_unlock(&ce->guc_state.lock); spin_unlock_irqrestore(&sched_engine->lock, flags); } static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled) { bool guilty; struct i915_request *rq; unsigned long flags; u32 head; int i, number_children = ce->parallel.number_children; struct intel_context *parent = ce; GEM_BUG_ON(intel_context_is_child(ce)); intel_context_get(ce); /* * GuC will implicitly mark the context as non-schedulable when it sends * the reset notification. Make sure our state reflects this change. The * context will be marked enabled on resubmission. */ spin_lock_irqsave(&ce->guc_state.lock, flags); clr_context_enabled(ce); spin_unlock_irqrestore(&ce->guc_state.lock, flags); /* * For each context in the relationship find the hanging request * resetting each context / request as needed */ for (i = 0; i < number_children + 1; ++i) { if (!intel_context_is_pinned(ce)) goto next_context; guilty = false; rq = intel_context_get_active_request(ce); if (!rq) { head = ce->ring->tail; goto out_replay; } if (i915_request_started(rq)) guilty = stalled & ce->engine->mask; GEM_BUG_ON(i915_active_is_idle(&ce->active)); head = intel_ring_wrap(ce->ring, rq->head); __i915_request_reset(rq, guilty); i915_request_put(rq); out_replay: guc_reset_state(ce, head, guilty); next_context: if (i != number_children) ce = list_next_entry(ce, parallel.child_link); } __unwind_incomplete_requests(parent); intel_context_put(parent); } void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled) { struct intel_context *ce; unsigned long index; unsigned long flags; if (unlikely(!guc_submission_initialized(guc))) { /* Reset called during driver load? GuC not yet initialised! */ return; } xa_lock_irqsave(&guc->context_lookup, flags); xa_for_each(&guc->context_lookup, index, ce) { if (!kref_get_unless_zero(&ce->ref)) continue; xa_unlock(&guc->context_lookup); if (intel_context_is_pinned(ce) && !intel_context_is_child(ce)) __guc_reset_context(ce, stalled); intel_context_put(ce); xa_lock(&guc->context_lookup); } xa_unlock_irqrestore(&guc->context_lookup, flags); /* GuC is blown away, drop all references to contexts */ xa_destroy(&guc->context_lookup); } static void guc_cancel_context_requests(struct intel_context *ce) { struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine; struct i915_request *rq; unsigned long flags; /* Mark all executing requests as skipped. */ spin_lock_irqsave(&sched_engine->lock, flags); spin_lock(&ce->guc_state.lock); list_for_each_entry(rq, &ce->guc_state.requests, sched.link) i915_request_put(i915_request_mark_eio(rq)); spin_unlock(&ce->guc_state.lock); spin_unlock_irqrestore(&sched_engine->lock, flags); } static void guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine) { struct i915_request *rq, *rn; struct rb_node *rb; unsigned long flags; /* Can be called during boot if GuC fails to load */ if (!sched_engine) return; /* * Before we call engine->cancel_requests(), we should have exclusive * access to the submission state. This is arranged for us by the * caller disabling the interrupt generation, the tasklet and other * threads that may then access the same state, giving us a free hand * to reset state. However, we still need to let lockdep be aware that * we know this state may be accessed in hardirq context, so we * disable the irq around this manipulation and we want to keep * the spinlock focused on its duties and not accidentally conflate * coverage to the submission's irq state. (Similarly, although we * shouldn't need to disable irq around the manipulation of the * submission's irq state, we also wish to remind ourselves that * it is irq state.) */ spin_lock_irqsave(&sched_engine->lock, flags); /* Flush the queued requests to the timeline list (for retiring). */ while ((rb = rb_first_cached(&sched_engine->queue))) { struct i915_priolist *p = to_priolist(rb); priolist_for_each_request_consume(rq, rn, p) { list_del_init(&rq->sched.link); __i915_request_submit(rq); i915_request_put(i915_request_mark_eio(rq)); } rb_erase_cached(&p->node, &sched_engine->queue); i915_priolist_free(p); } /* Remaining _unready_ requests will be nop'ed when submitted */ sched_engine->queue_priority_hint = INT_MIN; sched_engine->queue = RB_ROOT_CACHED; spin_unlock_irqrestore(&sched_engine->lock, flags); } void intel_guc_submission_cancel_requests(struct intel_guc *guc) { struct intel_context *ce; unsigned long index; unsigned long flags; xa_lock_irqsave(&guc->context_lookup, flags); xa_for_each(&guc->context_lookup, index, ce) { if (!kref_get_unless_zero(&ce->ref)) continue; xa_unlock(&guc->context_lookup); if (intel_context_is_pinned(ce) && !intel_context_is_child(ce)) guc_cancel_context_requests(ce); intel_context_put(ce); xa_lock(&guc->context_lookup); } xa_unlock_irqrestore(&guc->context_lookup, flags); guc_cancel_sched_engine_requests(guc->sched_engine); /* GuC is blown away, drop all references to contexts */ xa_destroy(&guc->context_lookup); } void intel_guc_submission_reset_finish(struct intel_guc *guc) { /* Reset called during driver load or during wedge? */ if (unlikely(!guc_submission_initialized(guc) || intel_gt_is_wedged(guc_to_gt(guc)))) { return; } /* * Technically possible for either of these values to be non-zero here, * but very unlikely + harmless. Regardless let's add a warn so we can * see in CI if this happens frequently / a precursor to taking down the * machine. */ GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h)); atomic_set(&guc->outstanding_submission_g2h, 0); intel_guc_global_policies_update(guc); enable_submission(guc); intel_gt_unpark_heartbeats(guc_to_gt(guc)); } static void destroyed_worker_func(struct work_struct *w); static void reset_fail_worker_func(struct work_struct *w); /* * Set up the memory resources to be shared with the GuC (via the GGTT) * at firmware loading time. */ int intel_guc_submission_init(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); int ret; if (guc->submission_initialized) return 0; if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) { ret = guc_lrc_desc_pool_create_v69(guc); if (ret) return ret; } guc->submission_state.guc_ids_bitmap = bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL); if (!guc->submission_state.guc_ids_bitmap) { ret = -ENOMEM; goto destroy_pool; } guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ; guc->timestamp.shift = gpm_timestamp_shift(gt); guc->submission_initialized = true; return 0; destroy_pool: guc_lrc_desc_pool_destroy_v69(guc); return ret; } void intel_guc_submission_fini(struct intel_guc *guc) { if (!guc->submission_initialized) return; guc_flush_destroyed_contexts(guc); guc_lrc_desc_pool_destroy_v69(guc); i915_sched_engine_put(guc->sched_engine); bitmap_free(guc->submission_state.guc_ids_bitmap); guc->submission_initialized = false; } static inline void queue_request(struct i915_sched_engine *sched_engine, struct i915_request *rq, int prio) { GEM_BUG_ON(!list_empty(&rq->sched.link)); list_add_tail(&rq->sched.link, i915_sched_lookup_priolist(sched_engine, prio)); set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); tasklet_hi_schedule(&sched_engine->tasklet); } static int guc_bypass_tasklet_submit(struct intel_guc *guc, struct i915_request *rq) { int ret = 0; __i915_request_submit(rq); trace_i915_request_in(rq, 0); if (is_multi_lrc_rq(rq)) { if (multi_lrc_submit(rq)) { ret = guc_wq_item_append(guc, rq); if (!ret) ret = guc_add_request(guc, rq); } } else { guc_set_lrc_tail(rq); ret = guc_add_request(guc, rq); } if (unlikely(ret == -EPIPE)) disable_submission(guc); return ret; } static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq) { struct i915_sched_engine *sched_engine = rq->engine->sched_engine; struct intel_context *ce = request_to_scheduling_context(rq); return submission_disabled(guc) || guc->stalled_request || !i915_sched_engine_is_empty(sched_engine) || !ctx_id_mapped(guc, ce->guc_id.id); } static void guc_submit_request(struct i915_request *rq) { struct i915_sched_engine *sched_engine = rq->engine->sched_engine; struct intel_guc *guc = &rq->engine->gt->uc.guc; unsigned long flags; /* Will be called from irq-context when using foreign fences. */ spin_lock_irqsave(&sched_engine->lock, flags); if (need_tasklet(guc, rq)) queue_request(sched_engine, rq, rq_prio(rq)); else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY) tasklet_hi_schedule(&sched_engine->tasklet); spin_unlock_irqrestore(&sched_engine->lock, flags); } static int new_guc_id(struct intel_guc *guc, struct intel_context *ce) { int ret; GEM_BUG_ON(intel_context_is_child(ce)); if (intel_context_is_parent(ce)) ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap, NUMBER_MULTI_LRC_GUC_ID(guc), order_base_2(ce->parallel.number_children + 1)); else ret = ida_simple_get(&guc->submission_state.guc_ids, NUMBER_MULTI_LRC_GUC_ID(guc), guc->submission_state.num_guc_ids, GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); if (unlikely(ret < 0)) return ret; if (!intel_context_is_parent(ce)) ++guc->submission_state.guc_ids_in_use; ce->guc_id.id = ret; return 0; } static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce) { GEM_BUG_ON(intel_context_is_child(ce)); if (!context_guc_id_invalid(ce)) { if (intel_context_is_parent(ce)) { bitmap_release_region(guc->submission_state.guc_ids_bitmap, ce->guc_id.id, order_base_2(ce->parallel.number_children + 1)); } else { --guc->submission_state.guc_ids_in_use; ida_simple_remove(&guc->submission_state.guc_ids, ce->guc_id.id); } clr_ctx_id_mapping(guc, ce->guc_id.id); set_context_guc_id_invalid(ce); } if (!list_empty(&ce->guc_id.link)) list_del_init(&ce->guc_id.link); } static void release_guc_id(struct intel_guc *guc, struct intel_context *ce) { unsigned long flags; spin_lock_irqsave(&guc->submission_state.lock, flags); __release_guc_id(guc, ce); spin_unlock_irqrestore(&guc->submission_state.lock, flags); } static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce) { struct intel_context *cn; lockdep_assert_held(&guc->submission_state.lock); GEM_BUG_ON(intel_context_is_child(ce)); GEM_BUG_ON(intel_context_is_parent(ce)); if (!list_empty(&guc->submission_state.guc_id_list)) { cn = list_first_entry(&guc->submission_state.guc_id_list, struct intel_context, guc_id.link); GEM_BUG_ON(atomic_read(&cn->guc_id.ref)); GEM_BUG_ON(context_guc_id_invalid(cn)); GEM_BUG_ON(intel_context_is_child(cn)); GEM_BUG_ON(intel_context_is_parent(cn)); list_del_init(&cn->guc_id.link); ce->guc_id.id = cn->guc_id.id; spin_lock(&cn->guc_state.lock); clr_context_registered(cn); spin_unlock(&cn->guc_state.lock); set_context_guc_id_invalid(cn); #ifdef CONFIG_DRM_I915_SELFTEST guc->number_guc_id_stolen++; #endif return 0; } else { return -EAGAIN; } } static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce) { int ret; lockdep_assert_held(&guc->submission_state.lock); GEM_BUG_ON(intel_context_is_child(ce)); ret = new_guc_id(guc, ce); if (unlikely(ret < 0)) { if (intel_context_is_parent(ce)) return -ENOSPC; ret = steal_guc_id(guc, ce); if (ret < 0) return ret; } if (intel_context_is_parent(ce)) { struct intel_context *child; int i = 1; for_each_child(ce, child) child->guc_id.id = ce->guc_id.id + i++; } return 0; } #define PIN_GUC_ID_TRIES 4 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce) { int ret = 0; unsigned long flags, tries = PIN_GUC_ID_TRIES; GEM_BUG_ON(atomic_read(&ce->guc_id.ref)); try_again: spin_lock_irqsave(&guc->submission_state.lock, flags); might_lock(&ce->guc_state.lock); if (context_guc_id_invalid(ce)) { ret = assign_guc_id(guc, ce); if (ret) goto out_unlock; ret = 1; /* Indidcates newly assigned guc_id */ } if (!list_empty(&ce->guc_id.link)) list_del_init(&ce->guc_id.link); atomic_inc(&ce->guc_id.ref); out_unlock: spin_unlock_irqrestore(&guc->submission_state.lock, flags); /* * -EAGAIN indicates no guc_id are available, let's retire any * outstanding requests to see if that frees up a guc_id. If the first * retire didn't help, insert a sleep with the timeslice duration before * attempting to retire more requests. Double the sleep period each * subsequent pass before finally giving up. The sleep period has max of * 100ms and minimum of 1ms. */ if (ret == -EAGAIN && --tries) { if (PIN_GUC_ID_TRIES - tries > 1) { unsigned int timeslice_shifted = ce->engine->props.timeslice_duration_ms << (PIN_GUC_ID_TRIES - tries - 2); unsigned int max = min_t(unsigned int, 100, timeslice_shifted); msleep(max_t(unsigned int, max, 1)); } intel_gt_retire_requests(guc_to_gt(guc)); goto try_again; } return ret; } static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce) { unsigned long flags; GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0); GEM_BUG_ON(intel_context_is_child(ce)); if (unlikely(context_guc_id_invalid(ce) || intel_context_is_parent(ce))) return; spin_lock_irqsave(&guc->submission_state.lock, flags); if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) && !atomic_read(&ce->guc_id.ref)) list_add_tail(&ce->guc_id.link, &guc->submission_state.guc_id_list); spin_unlock_irqrestore(&guc->submission_state.lock, flags); } static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc, struct intel_context *ce, u32 guc_id, u32 offset, bool loop) { struct intel_context *child; u32 action[4 + MAX_ENGINE_INSTANCE]; int len = 0; GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; action[len++] = guc_id; action[len++] = ce->parallel.number_children + 1; action[len++] = offset; for_each_child(ce, child) { offset += sizeof(struct guc_lrc_desc_v69); action[len++] = offset; } return guc_submission_send_busy_loop(guc, action, len, 0, loop); } static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc, struct intel_context *ce, struct guc_ctxt_registration_info *info, bool loop) { struct intel_context *child; u32 action[13 + (MAX_ENGINE_INSTANCE * 2)]; int len = 0; u32 next_id; GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; action[len++] = info->flags; action[len++] = info->context_idx; action[len++] = info->engine_class; action[len++] = info->engine_submit_mask; action[len++] = info->wq_desc_lo; action[len++] = info->wq_desc_hi; action[len++] = info->wq_base_lo; action[len++] = info->wq_base_hi; action[len++] = info->wq_size; action[len++] = ce->parallel.number_children + 1; action[len++] = info->hwlrca_lo; action[len++] = info->hwlrca_hi; next_id = info->context_idx + 1; for_each_child(ce, child) { GEM_BUG_ON(next_id++ != child->guc_id.id); /* * NB: GuC interface supports 64 bit LRCA even though i915/HW * only supports 32 bit currently. */ action[len++] = lower_32_bits(child->lrc.lrca); action[len++] = upper_32_bits(child->lrc.lrca); } GEM_BUG_ON(len > ARRAY_SIZE(action)); return guc_submission_send_busy_loop(guc, action, len, 0, loop); } static int __guc_action_register_context_v69(struct intel_guc *guc, u32 guc_id, u32 offset, bool loop) { u32 action[] = { INTEL_GUC_ACTION_REGISTER_CONTEXT, guc_id, offset, }; return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, loop); } static int __guc_action_register_context_v70(struct intel_guc *guc, struct guc_ctxt_registration_info *info, bool loop) { u32 action[] = { INTEL_GUC_ACTION_REGISTER_CONTEXT, info->flags, info->context_idx, info->engine_class, info->engine_submit_mask, info->wq_desc_lo, info->wq_desc_hi, info->wq_base_lo, info->wq_base_hi, info->wq_size, info->hwlrca_lo, info->hwlrca_hi, }; return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, loop); } static void prepare_context_registration_info_v69(struct intel_context *ce); static void prepare_context_registration_info_v70(struct intel_context *ce, struct guc_ctxt_registration_info *info); static int register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop) { u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) + ce->guc_id.id * sizeof(struct guc_lrc_desc_v69); prepare_context_registration_info_v69(ce); if (intel_context_is_parent(ce)) return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id, offset, loop); else return __guc_action_register_context_v69(guc, ce->guc_id.id, offset, loop); } static int register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop) { struct guc_ctxt_registration_info info; prepare_context_registration_info_v70(ce, &info); if (intel_context_is_parent(ce)) return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop); else return __guc_action_register_context_v70(guc, &info, loop); } static int register_context(struct intel_context *ce, bool loop) { struct intel_guc *guc = ce_to_guc(ce); int ret; GEM_BUG_ON(intel_context_is_child(ce)); trace_intel_context_register(ce); if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) ret = register_context_v70(guc, ce, loop); else ret = register_context_v69(guc, ce, loop); if (likely(!ret)) { unsigned long flags; spin_lock_irqsave(&ce->guc_state.lock, flags); set_context_registered(ce); spin_unlock_irqrestore(&ce->guc_state.lock, flags); if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) guc_context_policy_init_v70(ce, loop); } return ret; } static int __guc_action_deregister_context(struct intel_guc *guc, u32 guc_id) { u32 action[] = { INTEL_GUC_ACTION_DEREGISTER_CONTEXT, guc_id, }; return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), G2H_LEN_DW_DEREGISTER_CONTEXT, true); } static int deregister_context(struct intel_context *ce, u32 guc_id) { struct intel_guc *guc = ce_to_guc(ce); GEM_BUG_ON(intel_context_is_child(ce)); trace_intel_context_deregister(ce); return __guc_action_deregister_context(guc, guc_id); } static inline void clear_children_join_go_memory(struct intel_context *ce) { struct parent_scratch *ps = __get_parent_scratch(ce); int i; ps->go.semaphore = 0; for (i = 0; i < ce->parallel.number_children + 1; ++i) ps->join[i].semaphore = 0; } static inline u32 get_children_go_value(struct intel_context *ce) { return __get_parent_scratch(ce)->go.semaphore; } static inline u32 get_children_join_value(struct intel_context *ce, u8 child_index) { return __get_parent_scratch(ce)->join[child_index].semaphore; } struct context_policy { u32 count; struct guc_update_context_policy h2g; }; static u32 __guc_context_policy_action_size(struct context_policy *policy) { size_t bytes = sizeof(policy->h2g.header) + (sizeof(policy->h2g.klv[0]) * policy->count); return bytes / sizeof(u32); } static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id) { policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES; policy->h2g.header.ctx_id = guc_id; policy->count = 0; } #define MAKE_CONTEXT_POLICY_ADD(func, id) \ static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \ { \ GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \ policy->h2g.klv[policy->count].kl = \ FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \ FIELD_PREP(GUC_KLV_0_LEN, 1); \ policy->h2g.klv[policy->count].value = data; \ policy->count++; \ } MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM) MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT) MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY) MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY) #undef MAKE_CONTEXT_POLICY_ADD static int __guc_context_set_context_policies(struct intel_guc *guc, struct context_policy *policy, bool loop) { return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g, __guc_context_policy_action_size(policy), 0, loop); } static int guc_context_policy_init_v70(struct intel_context *ce, bool loop) { struct intel_engine_cs *engine = ce->engine; struct intel_guc *guc = &engine->gt->uc.guc; struct context_policy policy; u32 execution_quantum; u32 preemption_timeout; unsigned long flags; int ret; /* NB: For both of these, zero means disabled. */ GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000, execution_quantum)); GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000, preemption_timeout)); execution_quantum = engine->props.timeslice_duration_ms * 1000; preemption_timeout = engine->props.preempt_timeout_ms * 1000; __guc_context_policy_start_klv(&policy, ce->guc_id.id); __guc_context_policy_add_priority(&policy, ce->guc_state.prio); __guc_context_policy_add_execution_quantum(&policy, execution_quantum); __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) __guc_context_policy_add_preempt_to_idle(&policy, 1); ret = __guc_context_set_context_policies(guc, &policy, loop); spin_lock_irqsave(&ce->guc_state.lock, flags); if (ret != 0) set_context_policy_required(ce); else clr_context_policy_required(ce); spin_unlock_irqrestore(&ce->guc_state.lock, flags); return ret; } static void guc_context_policy_init_v69(struct intel_engine_cs *engine, struct guc_lrc_desc_v69 *desc) { desc->policy_flags = 0; if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69; /* NB: For both of these, zero means disabled. */ GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000, desc->execution_quantum)); GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000, desc->preemption_timeout)); desc->execution_quantum = engine->props.timeslice_duration_ms * 1000; desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000; } static u32 map_guc_prio_to_lrc_desc_prio(u8 prio) { /* * this matches the mapping we do in map_i915_prio_to_guc_prio() * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL) */ switch (prio) { default: MISSING_CASE(prio); fallthrough; case GUC_CLIENT_PRIORITY_KMD_NORMAL: return GEN12_CTX_PRIORITY_NORMAL; case GUC_CLIENT_PRIORITY_NORMAL: return GEN12_CTX_PRIORITY_LOW; case GUC_CLIENT_PRIORITY_HIGH: case GUC_CLIENT_PRIORITY_KMD_HIGH: return GEN12_CTX_PRIORITY_HIGH; } } static void prepare_context_registration_info_v69(struct intel_context *ce) { struct intel_engine_cs *engine = ce->engine; struct intel_guc *guc = &engine->gt->uc.guc; u32 ctx_id = ce->guc_id.id; struct guc_lrc_desc_v69 *desc; struct intel_context *child; GEM_BUG_ON(!engine->mask); /* * Ensure LRC + CT vmas are is same region as write barrier is done * based on CT vma region. */ GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != i915_gem_object_is_lmem(ce->ring->vma->obj)); desc = __get_lrc_desc_v69(guc, ctx_id); GEM_BUG_ON(!desc); desc->engine_class = engine_class_to_guc_class(engine->class); desc->engine_submit_mask = engine->logical_mask; desc->hw_context_desc = ce->lrc.lrca; desc->priority = ce->guc_state.prio; desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; guc_context_policy_init_v69(engine, desc); /* * If context is a parent, we need to register a process descriptor * describing a work queue and register all child contexts. */ if (intel_context_is_parent(ce)) { struct guc_process_desc_v69 *pdesc; ce->parallel.guc.wqi_tail = 0; ce->parallel.guc.wqi_head = 0; desc->process_desc = i915_ggtt_offset(ce->state) + __get_parent_scratch_offset(ce); desc->wq_addr = i915_ggtt_offset(ce->state) + __get_wq_offset(ce); desc->wq_size = WQ_SIZE; pdesc = __get_process_desc_v69(ce); memset(pdesc, 0, sizeof(*(pdesc))); pdesc->stage_id = ce->guc_id.id; pdesc->wq_base_addr = desc->wq_addr; pdesc->wq_size_bytes = desc->wq_size; pdesc->wq_status = WQ_STATUS_ACTIVE; ce->parallel.guc.wq_head = &pdesc->head; ce->parallel.guc.wq_tail = &pdesc->tail; ce->parallel.guc.wq_status = &pdesc->wq_status; for_each_child(ce, child) { desc = __get_lrc_desc_v69(guc, child->guc_id.id); desc->engine_class = engine_class_to_guc_class(engine->class); desc->hw_context_desc = child->lrc.lrca; desc->priority = ce->guc_state.prio; desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; guc_context_policy_init_v69(engine, desc); } clear_children_join_go_memory(ce); } } static void prepare_context_registration_info_v70(struct intel_context *ce, struct guc_ctxt_registration_info *info) { struct intel_engine_cs *engine = ce->engine; struct intel_guc *guc = &engine->gt->uc.guc; u32 ctx_id = ce->guc_id.id; GEM_BUG_ON(!engine->mask); /* * Ensure LRC + CT vmas are is same region as write barrier is done * based on CT vma region. */ GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != i915_gem_object_is_lmem(ce->ring->vma->obj)); memset(info, 0, sizeof(*info)); info->context_idx = ctx_id; info->engine_class = engine_class_to_guc_class(engine->class); info->engine_submit_mask = engine->logical_mask; /* * NB: GuC interface supports 64 bit LRCA even though i915/HW * only supports 32 bit currently. */ info->hwlrca_lo = lower_32_bits(ce->lrc.lrca); info->hwlrca_hi = upper_32_bits(ce->lrc.lrca); if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY) info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio); info->flags = CONTEXT_REGISTRATION_FLAG_KMD; /* * If context is a parent, we need to register a process descriptor * describing a work queue and register all child contexts. */ if (intel_context_is_parent(ce)) { struct guc_sched_wq_desc *wq_desc; u64 wq_desc_offset, wq_base_offset; ce->parallel.guc.wqi_tail = 0; ce->parallel.guc.wqi_head = 0; wq_desc_offset = i915_ggtt_offset(ce->state) + __get_parent_scratch_offset(ce); wq_base_offset = i915_ggtt_offset(ce->state) + __get_wq_offset(ce); info->wq_desc_lo = lower_32_bits(wq_desc_offset); info->wq_desc_hi = upper_32_bits(wq_desc_offset); info->wq_base_lo = lower_32_bits(wq_base_offset); info->wq_base_hi = upper_32_bits(wq_base_offset); info->wq_size = WQ_SIZE; wq_desc = __get_wq_desc_v70(ce); memset(wq_desc, 0, sizeof(*wq_desc)); wq_desc->wq_status = WQ_STATUS_ACTIVE; ce->parallel.guc.wq_head = &wq_desc->head; ce->parallel.guc.wq_tail = &wq_desc->tail; ce->parallel.guc.wq_status = &wq_desc->wq_status; clear_children_join_go_memory(ce); } } static int try_context_registration(struct intel_context *ce, bool loop) { struct intel_engine_cs *engine = ce->engine; struct intel_runtime_pm *runtime_pm = engine->uncore->rpm; struct intel_guc *guc = &engine->gt->uc.guc; intel_wakeref_t wakeref; u32 ctx_id = ce->guc_id.id; bool context_registered; int ret = 0; GEM_BUG_ON(!sched_state_is_init(ce)); context_registered = ctx_id_mapped(guc, ctx_id); clr_ctx_id_mapping(guc, ctx_id); set_ctx_id_mapping(guc, ctx_id, ce); /* * The context_lookup xarray is used to determine if the hardware * context is currently registered. There are two cases in which it * could be registered either the guc_id has been stolen from another * context or the lrc descriptor address of this context has changed. In * either case the context needs to be deregistered with the GuC before * registering this context. */ if (context_registered) { bool disabled; unsigned long flags; trace_intel_context_steal_guc_id(ce); GEM_BUG_ON(!loop); /* Seal race with Reset */ spin_lock_irqsave(&ce->guc_state.lock, flags); disabled = submission_disabled(guc); if (likely(!disabled)) { set_context_wait_for_deregister_to_register(ce); intel_context_get(ce); } spin_unlock_irqrestore(&ce->guc_state.lock, flags); if (unlikely(disabled)) { clr_ctx_id_mapping(guc, ctx_id); return 0; /* Will get registered later */ } /* * If stealing the guc_id, this ce has the same guc_id as the * context whose guc_id was stolen. */ with_intel_runtime_pm(runtime_pm, wakeref) ret = deregister_context(ce, ce->guc_id.id); if (unlikely(ret == -ENODEV)) ret = 0; /* Will get registered later */ } else { with_intel_runtime_pm(runtime_pm, wakeref) ret = register_context(ce, loop); if (unlikely(ret == -EBUSY)) { clr_ctx_id_mapping(guc, ctx_id); } else if (unlikely(ret == -ENODEV)) { clr_ctx_id_mapping(guc, ctx_id); ret = 0; /* Will get registered later */ } } return ret; } static int __guc_context_pre_pin(struct intel_context *ce, struct intel_engine_cs *engine, struct i915_gem_ww_ctx *ww, void **vaddr) { return lrc_pre_pin(ce, engine, ww, vaddr); } static int __guc_context_pin(struct intel_context *ce, struct intel_engine_cs *engine, void *vaddr) { if (i915_ggtt_offset(ce->state) != (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK)) set_bit(CONTEXT_LRCA_DIRTY, &ce->flags); /* * GuC context gets pinned in guc_request_alloc. See that function for * explaination of why. */ return lrc_pin(ce, engine, vaddr); } static int guc_context_pre_pin(struct intel_context *ce, struct i915_gem_ww_ctx *ww, void **vaddr) { return __guc_context_pre_pin(ce, ce->engine, ww, vaddr); } static int guc_context_pin(struct intel_context *ce, void *vaddr) { int ret = __guc_context_pin(ce, ce->engine, vaddr); if (likely(!ret && !intel_context_is_barrier(ce))) intel_engine_pm_get(ce->engine); return ret; } static void guc_context_unpin(struct intel_context *ce) { struct intel_guc *guc = ce_to_guc(ce); __guc_context_update_stats(ce); unpin_guc_id(guc, ce); lrc_unpin(ce); if (likely(!intel_context_is_barrier(ce))) intel_engine_pm_put_async(ce->engine); } static void guc_context_post_unpin(struct intel_context *ce) { lrc_post_unpin(ce); } static void __guc_context_sched_enable(struct intel_guc *guc, struct intel_context *ce) { u32 action[] = { INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, ce->guc_id.id, GUC_CONTEXT_ENABLE }; trace_intel_context_sched_enable(ce); guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); } static void __guc_context_sched_disable(struct intel_guc *guc, struct intel_context *ce, u16 guc_id) { u32 action[] = { INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, guc_id, /* ce->guc_id.id not stable */ GUC_CONTEXT_DISABLE }; GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID); GEM_BUG_ON(intel_context_is_child(ce)); trace_intel_context_sched_disable(ce); guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); } static void guc_blocked_fence_complete(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); if (!i915_sw_fence_done(&ce->guc_state.blocked)) i915_sw_fence_complete(&ce->guc_state.blocked); } static void guc_blocked_fence_reinit(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked)); /* * This fence is always complete unless a pending schedule disable is * outstanding. We arm the fence here and complete it when we receive * the pending schedule disable complete message. */ i915_sw_fence_fini(&ce->guc_state.blocked); i915_sw_fence_reinit(&ce->guc_state.blocked); i915_sw_fence_await(&ce->guc_state.blocked); i915_sw_fence_commit(&ce->guc_state.blocked); } static u16 prep_context_pending_disable(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); set_context_pending_disable(ce); clr_context_enabled(ce); guc_blocked_fence_reinit(ce); intel_context_get(ce); return ce->guc_id.id; } static struct i915_sw_fence *guc_context_block(struct intel_context *ce) { struct intel_guc *guc = ce_to_guc(ce); unsigned long flags; struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; intel_wakeref_t wakeref; u16 guc_id; bool enabled; GEM_BUG_ON(intel_context_is_child(ce)); spin_lock_irqsave(&ce->guc_state.lock, flags); incr_context_blocked(ce); enabled = context_enabled(ce); if (unlikely(!enabled || submission_disabled(guc))) { if (enabled) clr_context_enabled(ce); spin_unlock_irqrestore(&ce->guc_state.lock, flags); return &ce->guc_state.blocked; } /* * We add +2 here as the schedule disable complete CTB handler calls * intel_context_sched_disable_unpin (-2 to pin_count). */ atomic_add(2, &ce->pin_count); guc_id = prep_context_pending_disable(ce); spin_unlock_irqrestore(&ce->guc_state.lock, flags); with_intel_runtime_pm(runtime_pm, wakeref) __guc_context_sched_disable(guc, ce, guc_id); return &ce->guc_state.blocked; } #define SCHED_STATE_MULTI_BLOCKED_MASK \ (SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED) #define SCHED_STATE_NO_UNBLOCK \ (SCHED_STATE_MULTI_BLOCKED_MASK | \ SCHED_STATE_PENDING_DISABLE | \ SCHED_STATE_BANNED) static bool context_cant_unblock(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) || context_guc_id_invalid(ce) || !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) || !intel_context_is_pinned(ce); } static void guc_context_unblock(struct intel_context *ce) { struct intel_guc *guc = ce_to_guc(ce); unsigned long flags; struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; intel_wakeref_t wakeref; bool enable; GEM_BUG_ON(context_enabled(ce)); GEM_BUG_ON(intel_context_is_child(ce)); spin_lock_irqsave(&ce->guc_state.lock, flags); if (unlikely(submission_disabled(guc) || context_cant_unblock(ce))) { enable = false; } else { enable = true; set_context_pending_enable(ce); set_context_enabled(ce); intel_context_get(ce); } decr_context_blocked(ce); spin_unlock_irqrestore(&ce->guc_state.lock, flags); if (enable) { with_intel_runtime_pm(runtime_pm, wakeref) __guc_context_sched_enable(guc, ce); } } static void guc_context_cancel_request(struct intel_context *ce, struct i915_request *rq) { struct intel_context *block_context = request_to_scheduling_context(rq); if (i915_sw_fence_signaled(&rq->submit)) { struct i915_sw_fence *fence; intel_context_get(ce); fence = guc_context_block(block_context); i915_sw_fence_wait(fence); if (!i915_request_completed(rq)) { __i915_request_skip(rq); guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head), true); } guc_context_unblock(block_context); intel_context_put(ce); } } static void __guc_context_set_preemption_timeout(struct intel_guc *guc, u16 guc_id, u32 preemption_timeout) { if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) { struct context_policy policy; __guc_context_policy_start_klv(&policy, guc_id); __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); __guc_context_set_context_policies(guc, &policy, true); } else { u32 action[] = { INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT, guc_id, preemption_timeout }; intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); } } static void guc_context_revoke(struct intel_context *ce, struct i915_request *rq, unsigned int preempt_timeout_ms) { struct intel_guc *guc = ce_to_guc(ce); struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm; intel_wakeref_t wakeref; unsigned long flags; GEM_BUG_ON(intel_context_is_child(ce)); guc_flush_submissions(guc); spin_lock_irqsave(&ce->guc_state.lock, flags); set_context_banned(ce); if (submission_disabled(guc) || (!context_enabled(ce) && !context_pending_disable(ce))) { spin_unlock_irqrestore(&ce->guc_state.lock, flags); guc_cancel_context_requests(ce); intel_engine_signal_breadcrumbs(ce->engine); } else if (!context_pending_disable(ce)) { u16 guc_id; /* * We add +2 here as the schedule disable complete CTB handler * calls intel_context_sched_disable_unpin (-2 to pin_count). */ atomic_add(2, &ce->pin_count); guc_id = prep_context_pending_disable(ce); spin_unlock_irqrestore(&ce->guc_state.lock, flags); /* * In addition to disabling scheduling, set the preemption * timeout to the minimum value (1 us) so the banned context * gets kicked off the HW ASAP. */ with_intel_runtime_pm(runtime_pm, wakeref) { __guc_context_set_preemption_timeout(guc, guc_id, preempt_timeout_ms); __guc_context_sched_disable(guc, ce, guc_id); } } else { if (!context_guc_id_invalid(ce)) with_intel_runtime_pm(runtime_pm, wakeref) __guc_context_set_preemption_timeout(guc, ce->guc_id.id, preempt_timeout_ms); spin_unlock_irqrestore(&ce->guc_state.lock, flags); } } static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce, unsigned long flags) __releases(ce->guc_state.lock) { struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm; intel_wakeref_t wakeref; u16 guc_id; lockdep_assert_held(&ce->guc_state.lock); guc_id = prep_context_pending_disable(ce); spin_unlock_irqrestore(&ce->guc_state.lock, flags); with_intel_runtime_pm(runtime_pm, wakeref) __guc_context_sched_disable(guc, ce, guc_id); } static bool bypass_sched_disable(struct intel_guc *guc, struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); GEM_BUG_ON(intel_context_is_child(ce)); if (submission_disabled(guc) || context_guc_id_invalid(ce) || !ctx_id_mapped(guc, ce->guc_id.id)) { clr_context_enabled(ce); return true; } return !context_enabled(ce); } static void __delay_sched_disable(struct work_struct *wrk) { struct intel_context *ce = container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work); struct intel_guc *guc = ce_to_guc(ce); unsigned long flags; spin_lock_irqsave(&ce->guc_state.lock, flags); if (bypass_sched_disable(guc, ce)) { spin_unlock_irqrestore(&ce->guc_state.lock, flags); intel_context_sched_disable_unpin(ce); } else { do_sched_disable(guc, ce, flags); } } static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce) { /* * parent contexts are perma-pinned, if we are unpinning do schedule * disable immediately. */ if (intel_context_is_parent(ce)) return true; /* * If we are beyond the threshold for avail guc_ids, do schedule disable immediately. */ return guc->submission_state.guc_ids_in_use > guc->submission_state.sched_disable_gucid_threshold; } static void guc_context_sched_disable(struct intel_context *ce) { struct intel_guc *guc = ce_to_guc(ce); u64 delay = guc->submission_state.sched_disable_delay_ms; unsigned long flags; spin_lock_irqsave(&ce->guc_state.lock, flags); if (bypass_sched_disable(guc, ce)) { spin_unlock_irqrestore(&ce->guc_state.lock, flags); intel_context_sched_disable_unpin(ce); } else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) && delay) { spin_unlock_irqrestore(&ce->guc_state.lock, flags); mod_delayed_work(system_unbound_wq, &ce->guc_state.sched_disable_delay_work, msecs_to_jiffies(delay)); } else { do_sched_disable(guc, ce, flags); } } static void guc_context_close(struct intel_context *ce) { unsigned long flags; if (test_bit(CONTEXT_GUC_INIT, &ce->flags) && cancel_delayed_work(&ce->guc_state.sched_disable_delay_work)) __delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work); spin_lock_irqsave(&ce->guc_state.lock, flags); set_context_close_done(ce); spin_unlock_irqrestore(&ce->guc_state.lock, flags); } static inline void guc_lrc_desc_unpin(struct intel_context *ce) { struct intel_guc *guc = ce_to_guc(ce); struct intel_gt *gt = guc_to_gt(guc); unsigned long flags; bool disabled; GEM_BUG_ON(!intel_gt_pm_is_awake(gt)); GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id)); GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id)); GEM_BUG_ON(context_enabled(ce)); /* Seal race with Reset */ spin_lock_irqsave(&ce->guc_state.lock, flags); disabled = submission_disabled(guc); if (likely(!disabled)) { __intel_gt_pm_get(gt); set_context_destroyed(ce); clr_context_registered(ce); } spin_unlock_irqrestore(&ce->guc_state.lock, flags); if (unlikely(disabled)) { release_guc_id(guc, ce); __guc_context_destroy(ce); return; } deregister_context(ce, ce->guc_id.id); } static void __guc_context_destroy(struct intel_context *ce) { GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] || ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] || ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] || ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]); lrc_fini(ce); intel_context_fini(ce); if (intel_engine_is_virtual(ce->engine)) { struct guc_virtual_engine *ve = container_of(ce, typeof(*ve), context); if (ve->base.breadcrumbs) intel_breadcrumbs_put(ve->base.breadcrumbs); kfree(ve); } else { intel_context_free(ce); } } static void guc_flush_destroyed_contexts(struct intel_guc *guc) { struct intel_context *ce; unsigned long flags; GEM_BUG_ON(!submission_disabled(guc) && guc_submission_initialized(guc)); while (!list_empty(&guc->submission_state.destroyed_contexts)) { spin_lock_irqsave(&guc->submission_state.lock, flags); ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, struct intel_context, destroyed_link); if (ce) list_del_init(&ce->destroyed_link); spin_unlock_irqrestore(&guc->submission_state.lock, flags); if (!ce) break; release_guc_id(guc, ce); __guc_context_destroy(ce); } } static void deregister_destroyed_contexts(struct intel_guc *guc) { struct intel_context *ce; unsigned long flags; while (!list_empty(&guc->submission_state.destroyed_contexts)) { spin_lock_irqsave(&guc->submission_state.lock, flags); ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, struct intel_context, destroyed_link); if (ce) list_del_init(&ce->destroyed_link); spin_unlock_irqrestore(&guc->submission_state.lock, flags); if (!ce) break; guc_lrc_desc_unpin(ce); } } static void destroyed_worker_func(struct work_struct *w) { struct intel_guc *guc = container_of(w, struct intel_guc, submission_state.destroyed_worker); struct intel_gt *gt = guc_to_gt(guc); int tmp; with_intel_gt_pm(gt, tmp) deregister_destroyed_contexts(guc); } static void guc_context_destroy(struct kref *kref) { struct intel_context *ce = container_of(kref, typeof(*ce), ref); struct intel_guc *guc = ce_to_guc(ce); unsigned long flags; bool destroy; /* * If the guc_id is invalid this context has been stolen and we can free * it immediately. Also can be freed immediately if the context is not * registered with the GuC or the GuC is in the middle of a reset. */ spin_lock_irqsave(&guc->submission_state.lock, flags); destroy = submission_disabled(guc) || context_guc_id_invalid(ce) || !ctx_id_mapped(guc, ce->guc_id.id); if (likely(!destroy)) { if (!list_empty(&ce->guc_id.link)) list_del_init(&ce->guc_id.link); list_add_tail(&ce->destroyed_link, &guc->submission_state.destroyed_contexts); } else { __release_guc_id(guc, ce); } spin_unlock_irqrestore(&guc->submission_state.lock, flags); if (unlikely(destroy)) { __guc_context_destroy(ce); return; } /* * We use a worker to issue the H2G to deregister the context as we can * take the GT PM for the first time which isn't allowed from an atomic * context. */ queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker); } static int guc_context_alloc(struct intel_context *ce) { return lrc_alloc(ce, ce->engine); } static void __guc_context_set_prio(struct intel_guc *guc, struct intel_context *ce) { if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) { struct context_policy policy; __guc_context_policy_start_klv(&policy, ce->guc_id.id); __guc_context_policy_add_priority(&policy, ce->guc_state.prio); __guc_context_set_context_policies(guc, &policy, true); } else { u32 action[] = { INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY, ce->guc_id.id, ce->guc_state.prio, }; guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); } } static void guc_context_set_prio(struct intel_guc *guc, struct intel_context *ce, u8 prio) { GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH || prio > GUC_CLIENT_PRIORITY_NORMAL); lockdep_assert_held(&ce->guc_state.lock); if (ce->guc_state.prio == prio || submission_disabled(guc) || !context_registered(ce)) { ce->guc_state.prio = prio; return; } ce->guc_state.prio = prio; __guc_context_set_prio(guc, ce); trace_intel_context_set_prio(ce); } static inline u8 map_i915_prio_to_guc_prio(int prio) { if (prio == I915_PRIORITY_NORMAL) return GUC_CLIENT_PRIORITY_KMD_NORMAL; else if (prio < I915_PRIORITY_NORMAL) return GUC_CLIENT_PRIORITY_NORMAL; else if (prio < I915_PRIORITY_DISPLAY) return GUC_CLIENT_PRIORITY_HIGH; else return GUC_CLIENT_PRIORITY_KMD_HIGH; } static inline void add_context_inflight_prio(struct intel_context *ce, u8 guc_prio) { lockdep_assert_held(&ce->guc_state.lock); GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); ++ce->guc_state.prio_count[guc_prio]; /* Overflow protection */ GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); } static inline void sub_context_inflight_prio(struct intel_context *ce, u8 guc_prio) { lockdep_assert_held(&ce->guc_state.lock); GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); /* Underflow protection */ GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); --ce->guc_state.prio_count[guc_prio]; } static inline void update_context_prio(struct intel_context *ce) { struct intel_guc *guc = &ce->engine->gt->uc.guc; int i; BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0); BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL); lockdep_assert_held(&ce->guc_state.lock); for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) { if (ce->guc_state.prio_count[i]) { guc_context_set_prio(guc, ce, i); break; } } } static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio) { /* Lower value is higher priority */ return new_guc_prio < old_guc_prio; } static void add_to_context(struct i915_request *rq) { struct intel_context *ce = request_to_scheduling_context(rq); u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq)); GEM_BUG_ON(intel_context_is_child(ce)); GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI); spin_lock(&ce->guc_state.lock); list_move_tail(&rq->sched.link, &ce->guc_state.requests); if (rq->guc_prio == GUC_PRIO_INIT) { rq->guc_prio = new_guc_prio; add_context_inflight_prio(ce, rq->guc_prio); } else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) { sub_context_inflight_prio(ce, rq->guc_prio); rq->guc_prio = new_guc_prio; add_context_inflight_prio(ce, rq->guc_prio); } update_context_prio(ce); spin_unlock(&ce->guc_state.lock); } static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); if (rq->guc_prio != GUC_PRIO_INIT && rq->guc_prio != GUC_PRIO_FINI) { sub_context_inflight_prio(ce, rq->guc_prio); update_context_prio(ce); } rq->guc_prio = GUC_PRIO_FINI; } static void remove_from_context(struct i915_request *rq) { struct intel_context *ce = request_to_scheduling_context(rq); GEM_BUG_ON(intel_context_is_child(ce)); spin_lock_irq(&ce->guc_state.lock); list_del_init(&rq->sched.link); clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); /* Prevent further __await_execution() registering a cb, then flush */ set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); guc_prio_fini(rq, ce); spin_unlock_irq(&ce->guc_state.lock); atomic_dec(&ce->guc_id.ref); i915_request_notify_execute_cb_imm(rq); } static const struct intel_context_ops guc_context_ops = { .flags = COPS_RUNTIME_CYCLES, .alloc = guc_context_alloc, .close = guc_context_close, .pre_pin = guc_context_pre_pin, .pin = guc_context_pin, .unpin = guc_context_unpin, .post_unpin = guc_context_post_unpin, .revoke = guc_context_revoke, .cancel_request = guc_context_cancel_request, .enter = intel_context_enter_engine, .exit = intel_context_exit_engine, .sched_disable = guc_context_sched_disable, .update_stats = guc_context_update_stats, .reset = lrc_reset, .destroy = guc_context_destroy, .create_virtual = guc_create_virtual, .create_parallel = guc_create_parallel, }; static void submit_work_cb(struct irq_work *wrk) { struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work); might_lock(&rq->engine->sched_engine->lock); i915_sw_fence_complete(&rq->submit); } static void __guc_signal_context_fence(struct intel_context *ce) { struct i915_request *rq, *rn; lockdep_assert_held(&ce->guc_state.lock); if (!list_empty(&ce->guc_state.fences)) trace_intel_context_fence_release(ce); /* * Use an IRQ to ensure locking order of sched_engine->lock -> * ce->guc_state.lock is preserved. */ list_for_each_entry_safe(rq, rn, &ce->guc_state.fences, guc_fence_link) { list_del(&rq->guc_fence_link); irq_work_queue(&rq->submit_work); } INIT_LIST_HEAD(&ce->guc_state.fences); } static void guc_signal_context_fence(struct intel_context *ce) { unsigned long flags; GEM_BUG_ON(intel_context_is_child(ce)); spin_lock_irqsave(&ce->guc_state.lock, flags); clr_context_wait_for_deregister_to_register(ce); __guc_signal_context_fence(ce); spin_unlock_irqrestore(&ce->guc_state.lock, flags); } static bool context_needs_register(struct intel_context *ce, bool new_guc_id) { return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) || !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) && !submission_disabled(ce_to_guc(ce)); } static void guc_context_init(struct intel_context *ce) { const struct i915_gem_context *ctx; int prio = I915_CONTEXT_DEFAULT_PRIORITY; rcu_read_lock(); ctx = rcu_dereference(ce->gem_context); if (ctx) prio = ctx->sched.priority; rcu_read_unlock(); ce->guc_state.prio = map_i915_prio_to_guc_prio(prio); INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work, __delay_sched_disable); set_bit(CONTEXT_GUC_INIT, &ce->flags); } static int guc_request_alloc(struct i915_request *rq) { struct intel_context *ce = request_to_scheduling_context(rq); struct intel_guc *guc = ce_to_guc(ce); unsigned long flags; int ret; GEM_BUG_ON(!intel_context_is_pinned(rq->context)); /* * Flush enough space to reduce the likelihood of waiting after * we start building the request - in which case we will just * have to repeat work. */ rq->reserved_space += GUC_REQUEST_SIZE; /* * Note that after this point, we have committed to using * this request as it is being used to both track the * state of engine initialisation and liveness of the * golden renderstate above. Think twice before you try * to cancel/unwind this request now. */ /* Unconditionally invalidate GPU caches and TLBs. */ ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE); if (ret) return ret; rq->reserved_space -= GUC_REQUEST_SIZE; if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags))) guc_context_init(ce); /* * If the context gets closed while the execbuf is ongoing, the context * close code will race with the below code to cancel the delayed work. * If the context close wins the race and cancels the work, it will * immediately call the sched disable (see guc_context_close), so there * is a chance we can get past this check while the sched_disable code * is being executed. To make sure that code completes before we check * the status further down, we wait for the close process to complete. * Else, this code path could send a request down thinking that the * context is still in a schedule-enable mode while the GuC ends up * dropping the request completely because the disable did go from the * context_close path right to GuC just prior. In the event the CT is * full, we could potentially need to wait up to 1.5 seconds. */ if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work)) intel_context_sched_disable_unpin(ce); else if (intel_context_is_closed(ce)) if (wait_for(context_close_done(ce), 1500)) guc_warn(guc, "timed out waiting on context sched close before realloc\n"); /* * Call pin_guc_id here rather than in the pinning step as with * dma_resv, contexts can be repeatedly pinned / unpinned trashing the * guc_id and creating horrible race conditions. This is especially bad * when guc_id are being stolen due to over subscription. By the time * this function is reached, it is guaranteed that the guc_id will be * persistent until the generated request is retired. Thus, sealing these * race conditions. It is still safe to fail here if guc_id are * exhausted and return -EAGAIN to the user indicating that they can try * again in the future. * * There is no need for a lock here as the timeline mutex ensures at * most one context can be executing this code path at once. The * guc_id_ref is incremented once for every request in flight and * decremented on each retire. When it is zero, a lock around the * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id. */ if (atomic_add_unless(&ce->guc_id.ref, 1, 0)) goto out; ret = pin_guc_id(guc, ce); /* returns 1 if new guc_id assigned */ if (unlikely(ret < 0)) return ret; if (context_needs_register(ce, !!ret)) { ret = try_context_registration(ce, true); if (unlikely(ret)) { /* unwind */ if (ret == -EPIPE) { disable_submission(guc); goto out; /* GPU will be reset */ } atomic_dec(&ce->guc_id.ref); unpin_guc_id(guc, ce); return ret; } } clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags); out: /* * We block all requests on this context if a G2H is pending for a * schedule disable or context deregistration as the GuC will fail a * schedule enable or context registration if either G2H is pending * respectfully. Once a G2H returns, the fence is released that is * blocking these requests (see guc_signal_context_fence). */ spin_lock_irqsave(&ce->guc_state.lock, flags); if (context_wait_for_deregister_to_register(ce) || context_pending_disable(ce)) { init_irq_work(&rq->submit_work, submit_work_cb); i915_sw_fence_await(&rq->submit); list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences); } spin_unlock_irqrestore(&ce->guc_state.lock, flags); return 0; } static int guc_virtual_context_pre_pin(struct intel_context *ce, struct i915_gem_ww_ctx *ww, void **vaddr) { struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); return __guc_context_pre_pin(ce, engine, ww, vaddr); } static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr) { struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); int ret = __guc_context_pin(ce, engine, vaddr); intel_engine_mask_t tmp, mask = ce->engine->mask; if (likely(!ret)) for_each_engine_masked(engine, ce->engine->gt, mask, tmp) intel_engine_pm_get(engine); return ret; } static void guc_virtual_context_unpin(struct intel_context *ce) { intel_engine_mask_t tmp, mask = ce->engine->mask; struct intel_engine_cs *engine; struct intel_guc *guc = ce_to_guc(ce); GEM_BUG_ON(context_enabled(ce)); GEM_BUG_ON(intel_context_is_barrier(ce)); unpin_guc_id(guc, ce); lrc_unpin(ce); for_each_engine_masked(engine, ce->engine->gt, mask, tmp) intel_engine_pm_put_async(engine); } static void guc_virtual_context_enter(struct intel_context *ce) { intel_engine_mask_t tmp, mask = ce->engine->mask; struct intel_engine_cs *engine; for_each_engine_masked(engine, ce->engine->gt, mask, tmp) intel_engine_pm_get(engine); intel_timeline_enter(ce->timeline); } static void guc_virtual_context_exit(struct intel_context *ce) { intel_engine_mask_t tmp, mask = ce->engine->mask; struct intel_engine_cs *engine; for_each_engine_masked(engine, ce->engine->gt, mask, tmp) intel_engine_pm_put(engine); intel_timeline_exit(ce->timeline); } static int guc_virtual_context_alloc(struct intel_context *ce) { struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); return lrc_alloc(ce, engine); } static const struct intel_context_ops virtual_guc_context_ops = { .flags = COPS_RUNTIME_CYCLES, .alloc = guc_virtual_context_alloc, .close = guc_context_close, .pre_pin = guc_virtual_context_pre_pin, .pin = guc_virtual_context_pin, .unpin = guc_virtual_context_unpin, .post_unpin = guc_context_post_unpin, .revoke = guc_context_revoke, .cancel_request = guc_context_cancel_request, .enter = guc_virtual_context_enter, .exit = guc_virtual_context_exit, .sched_disable = guc_context_sched_disable, .update_stats = guc_context_update_stats, .destroy = guc_context_destroy, .get_sibling = guc_virtual_get_sibling, }; static int guc_parent_context_pin(struct intel_context *ce, void *vaddr) { struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); struct intel_guc *guc = ce_to_guc(ce); int ret; GEM_BUG_ON(!intel_context_is_parent(ce)); GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); ret = pin_guc_id(guc, ce); if (unlikely(ret < 0)) return ret; return __guc_context_pin(ce, engine, vaddr); } static int guc_child_context_pin(struct intel_context *ce, void *vaddr) { struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); GEM_BUG_ON(!intel_context_is_child(ce)); GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); __intel_context_pin(ce->parallel.parent); return __guc_context_pin(ce, engine, vaddr); } static void guc_parent_context_unpin(struct intel_context *ce) { struct intel_guc *guc = ce_to_guc(ce); GEM_BUG_ON(context_enabled(ce)); GEM_BUG_ON(intel_context_is_barrier(ce)); GEM_BUG_ON(!intel_context_is_parent(ce)); GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); unpin_guc_id(guc, ce); lrc_unpin(ce); } static void guc_child_context_unpin(struct intel_context *ce) { GEM_BUG_ON(context_enabled(ce)); GEM_BUG_ON(intel_context_is_barrier(ce)); GEM_BUG_ON(!intel_context_is_child(ce)); GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); lrc_unpin(ce); } static void guc_child_context_post_unpin(struct intel_context *ce) { GEM_BUG_ON(!intel_context_is_child(ce)); GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent)); GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); lrc_post_unpin(ce); intel_context_unpin(ce->parallel.parent); } static void guc_child_context_destroy(struct kref *kref) { struct intel_context *ce = container_of(kref, typeof(*ce), ref); __guc_context_destroy(ce); } static const struct intel_context_ops virtual_parent_context_ops = { .alloc = guc_virtual_context_alloc, .close = guc_context_close, .pre_pin = guc_context_pre_pin, .pin = guc_parent_context_pin, .unpin = guc_parent_context_unpin, .post_unpin = guc_context_post_unpin, .revoke = guc_context_revoke, .cancel_request = guc_context_cancel_request, .enter = guc_virtual_context_enter, .exit = guc_virtual_context_exit, .sched_disable = guc_context_sched_disable, .destroy = guc_context_destroy, .get_sibling = guc_virtual_get_sibling, }; static const struct intel_context_ops virtual_child_context_ops = { .alloc = guc_virtual_context_alloc, .pre_pin = guc_context_pre_pin, .pin = guc_child_context_pin, .unpin = guc_child_context_unpin, .post_unpin = guc_child_context_post_unpin, .cancel_request = guc_context_cancel_request, .enter = guc_virtual_context_enter, .exit = guc_virtual_context_exit, .destroy = guc_child_context_destroy, .get_sibling = guc_virtual_get_sibling, }; /* * The below override of the breadcrumbs is enabled when the user configures a * context for parallel submission (multi-lrc, parent-child). * * The overridden breadcrumbs implements an algorithm which allows the GuC to * safely preempt all the hw contexts configured for parallel submission * between each BB. The contract between the i915 and GuC is if the parent * context can be preempted, all the children can be preempted, and the GuC will * always try to preempt the parent before the children. A handshake between the * parent / children breadcrumbs ensures the i915 holds up its end of the deal * creating a window to preempt between each set of BBs. */ static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, u64 offset, u32 len, const unsigned int flags); static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, u64 offset, u32 len, const unsigned int flags); static u32 * emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, u32 *cs); static u32 * emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, u32 *cs); static struct intel_context * guc_create_parallel(struct intel_engine_cs **engines, unsigned int num_siblings, unsigned int width) { struct intel_engine_cs **siblings = NULL; struct intel_context *parent = NULL, *ce, *err; int i, j; siblings = kmalloc_array(num_siblings, sizeof(*siblings), GFP_KERNEL); if (!siblings) return ERR_PTR(-ENOMEM); for (i = 0; i < width; ++i) { for (j = 0; j < num_siblings; ++j) siblings[j] = engines[i * num_siblings + j]; ce = intel_engine_create_virtual(siblings, num_siblings, FORCE_VIRTUAL); if (IS_ERR(ce)) { err = ERR_CAST(ce); goto unwind; } if (i == 0) { parent = ce; parent->ops = &virtual_parent_context_ops; } else { ce->ops = &virtual_child_context_ops; intel_context_bind_parent_child(parent, ce); } } parent->parallel.fence_context = dma_fence_context_alloc(1); parent->engine->emit_bb_start = emit_bb_start_parent_no_preempt_mid_batch; parent->engine->emit_fini_breadcrumb = emit_fini_breadcrumb_parent_no_preempt_mid_batch; parent->engine->emit_fini_breadcrumb_dw = 12 + 4 * parent->parallel.number_children; for_each_child(parent, ce) { ce->engine->emit_bb_start = emit_bb_start_child_no_preempt_mid_batch; ce->engine->emit_fini_breadcrumb = emit_fini_breadcrumb_child_no_preempt_mid_batch; ce->engine->emit_fini_breadcrumb_dw = 16; } kfree(siblings); return parent; unwind: if (parent) intel_context_put(parent); kfree(siblings); return err; } static bool guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b) { struct intel_engine_cs *sibling; intel_engine_mask_t tmp, mask = b->engine_mask; bool result = false; for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) result |= intel_engine_irq_enable(sibling); return result; } static void guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b) { struct intel_engine_cs *sibling; intel_engine_mask_t tmp, mask = b->engine_mask; for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) intel_engine_irq_disable(sibling); } static void guc_init_breadcrumbs(struct intel_engine_cs *engine) { int i; /* * In GuC submission mode we do not know which physical engine a request * will be scheduled on, this creates a problem because the breadcrumb * interrupt is per physical engine. To work around this we attach * requests and direct all breadcrumb interrupts to the first instance * of an engine per class. In addition all breadcrumb interrupts are * enabled / disabled across an engine class in unison. */ for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) { struct intel_engine_cs *sibling = engine->gt->engine_class[engine->class][i]; if (sibling) { if (engine->breadcrumbs != sibling->breadcrumbs) { intel_breadcrumbs_put(engine->breadcrumbs); engine->breadcrumbs = intel_breadcrumbs_get(sibling->breadcrumbs); } break; } } if (engine->breadcrumbs) { engine->breadcrumbs->engine_mask |= engine->mask; engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs; engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs; } } static void guc_bump_inflight_request_prio(struct i915_request *rq, int prio) { struct intel_context *ce = request_to_scheduling_context(rq); u8 new_guc_prio = map_i915_prio_to_guc_prio(prio); /* Short circuit function */ if (prio < I915_PRIORITY_NORMAL || rq->guc_prio == GUC_PRIO_FINI || (rq->guc_prio != GUC_PRIO_INIT && !new_guc_prio_higher(rq->guc_prio, new_guc_prio))) return; spin_lock(&ce->guc_state.lock); if (rq->guc_prio != GUC_PRIO_FINI) { if (rq->guc_prio != GUC_PRIO_INIT) sub_context_inflight_prio(ce, rq->guc_prio); rq->guc_prio = new_guc_prio; add_context_inflight_prio(ce, rq->guc_prio); update_context_prio(ce); } spin_unlock(&ce->guc_state.lock); } static void guc_retire_inflight_request_prio(struct i915_request *rq) { struct intel_context *ce = request_to_scheduling_context(rq); spin_lock(&ce->guc_state.lock); guc_prio_fini(rq, ce); spin_unlock(&ce->guc_state.lock); } static void sanitize_hwsp(struct intel_engine_cs *engine) { struct intel_timeline *tl; list_for_each_entry(tl, &engine->status_page.timelines, engine_link) intel_timeline_reset_seqno(tl); } static void guc_sanitize(struct intel_engine_cs *engine) { /* * Poison residual state on resume, in case the suspend didn't! * * We have to assume that across suspend/resume (or other loss * of control) that the contents of our pinned buffers has been * lost, replaced by garbage. Since this doesn't always happen, * let's poison such state so that we more quickly spot when * we falsely assume it has been preserved. */ if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE); /* * The kernel_context HWSP is stored in the status_page. As above, * that may be lost on resume/initialisation, and so we need to * reset the value in the HWSP. */ sanitize_hwsp(engine); /* And scrub the dirty cachelines for the HWSP */ drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE); intel_engine_reset_pinned_contexts(engine); } static void setup_hwsp(struct intel_engine_cs *engine) { intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */ ENGINE_WRITE_FW(engine, RING_HWS_PGA, i915_ggtt_offset(engine->status_page.vma)); } static void start_engine(struct intel_engine_cs *engine) { ENGINE_WRITE_FW(engine, RING_MODE_GEN7, _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE)); ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); ENGINE_POSTING_READ(engine, RING_MI_MODE); } static int guc_resume(struct intel_engine_cs *engine) { assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL); intel_mocs_init_engine(engine); intel_breadcrumbs_reset(engine->breadcrumbs); setup_hwsp(engine); start_engine(engine); if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) xehp_enable_ccs_engines(engine); return 0; } static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine) { return !sched_engine->tasklet.callback; } static void guc_set_default_submission(struct intel_engine_cs *engine) { engine->submit_request = guc_submit_request; } static inline int guc_kernel_context_pin(struct intel_guc *guc, struct intel_context *ce) { int ret; /* * Note: we purposefully do not check the returns below because * the registration can only fail if a reset is just starting. * This is called at the end of reset so presumably another reset * isn't happening and even it did this code would be run again. */ if (context_guc_id_invalid(ce)) { ret = pin_guc_id(guc, ce); if (ret < 0) return ret; } if (!test_bit(CONTEXT_GUC_INIT, &ce->flags)) guc_context_init(ce); ret = try_context_registration(ce, true); if (ret) unpin_guc_id(guc, ce); return ret; } static inline int guc_init_submission(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct intel_engine_cs *engine; enum intel_engine_id id; /* make sure all descriptors are clean... */ xa_destroy(&guc->context_lookup); /* * A reset might have occurred while we had a pending stalled request, * so make sure we clean that up. */ guc->stalled_request = NULL; guc->submission_stall_reason = STALL_NONE; /* * Some contexts might have been pinned before we enabled GuC * submission, so we need to add them to the GuC bookeeping. * Also, after a reset the of the GuC we want to make sure that the * information shared with GuC is properly reset. The kernel LRCs are * not attached to the gem_context, so they need to be added separately. */ for_each_engine(engine, gt, id) { struct intel_context *ce; list_for_each_entry(ce, &engine->pinned_contexts_list, pinned_contexts_link) { int ret = guc_kernel_context_pin(guc, ce); if (ret) { /* No point in trying to clean up as i915 will wedge on failure */ return ret; } } } return 0; } static void guc_release(struct intel_engine_cs *engine) { engine->sanitize = NULL; /* no longer in control, nothing to sanitize */ intel_engine_cleanup_common(engine); lrc_fini_wa_ctx(engine); } static void virtual_guc_bump_serial(struct intel_engine_cs *engine) { struct intel_engine_cs *e; intel_engine_mask_t tmp, mask = engine->mask; for_each_engine_masked(e, engine->gt, mask, tmp) e->serial++; } static void guc_default_vfuncs(struct intel_engine_cs *engine) { /* Default vfuncs which can be overridden by each engine. */ engine->resume = guc_resume; engine->cops = &guc_context_ops; engine->request_alloc = guc_request_alloc; engine->add_active_request = add_to_context; engine->remove_active_request = remove_from_context; engine->sched_engine->schedule = i915_schedule; engine->reset.prepare = guc_engine_reset_prepare; engine->reset.rewind = guc_rewind_nop; engine->reset.cancel = guc_reset_nop; engine->reset.finish = guc_reset_nop; engine->emit_flush = gen8_emit_flush_xcs; engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb; engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs; if (GRAPHICS_VER(engine->i915) >= 12) { engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs; engine->emit_flush = gen12_emit_flush_xcs; } engine->set_default_submission = guc_set_default_submission; engine->busyness = guc_engine_busyness; engine->flags |= I915_ENGINE_SUPPORTS_STATS; engine->flags |= I915_ENGINE_HAS_PREEMPTION; engine->flags |= I915_ENGINE_HAS_TIMESLICES; /* Wa_14014475959:dg2 */ if (engine->class == COMPUTE_CLASS) if (IS_MTL_GRAPHICS_STEP(engine->i915, M, STEP_A0, STEP_B0) || IS_DG2(engine->i915)) engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT; /* * TODO: GuC supports timeslicing and semaphores as well, but they're * handled by the firmware so some minor tweaks are required before * enabling. * * engine->flags |= I915_ENGINE_HAS_SEMAPHORES; */ engine->emit_bb_start = gen8_emit_bb_start; if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) engine->emit_bb_start = xehp_emit_bb_start; } static void rcs_submission_override(struct intel_engine_cs *engine) { switch (GRAPHICS_VER(engine->i915)) { case 12: engine->emit_flush = gen12_emit_flush_rcs; engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs; break; case 11: engine->emit_flush = gen11_emit_flush_rcs; engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs; break; default: engine->emit_flush = gen8_emit_flush_rcs; engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs; break; } } static inline void guc_default_irqs(struct intel_engine_cs *engine) { engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT; intel_engine_set_irq_handler(engine, cs_irq_handler); } static void guc_sched_engine_destroy(struct kref *kref) { struct i915_sched_engine *sched_engine = container_of(kref, typeof(*sched_engine), ref); struct intel_guc *guc = sched_engine->private_data; guc->sched_engine = NULL; tasklet_kill(&sched_engine->tasklet); /* flush the callback */ kfree(sched_engine); } int intel_guc_submission_setup(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; struct intel_guc *guc = &engine->gt->uc.guc; /* * The setup relies on several assumptions (e.g. irqs always enabled) * that are only valid on gen11+ */ GEM_BUG_ON(GRAPHICS_VER(i915) < 11); if (!guc->sched_engine) { guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL); if (!guc->sched_engine) return -ENOMEM; guc->sched_engine->schedule = i915_schedule; guc->sched_engine->disabled = guc_sched_engine_disabled; guc->sched_engine->private_data = guc; guc->sched_engine->destroy = guc_sched_engine_destroy; guc->sched_engine->bump_inflight_request_prio = guc_bump_inflight_request_prio; guc->sched_engine->retire_inflight_request_prio = guc_retire_inflight_request_prio; tasklet_setup(&guc->sched_engine->tasklet, guc_submission_tasklet); } i915_sched_engine_put(engine->sched_engine); engine->sched_engine = i915_sched_engine_get(guc->sched_engine); guc_default_vfuncs(engine); guc_default_irqs(engine); guc_init_breadcrumbs(engine); if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) rcs_submission_override(engine); lrc_init_wa_ctx(engine); /* Finally, take ownership and responsibility for cleanup! */ engine->sanitize = guc_sanitize; engine->release = guc_release; return 0; } struct scheduling_policy { /* internal data */ u32 max_words, num_words; u32 count; /* API data */ struct guc_update_scheduling_policy h2g; }; static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy) { u32 *start = (void *)&policy->h2g; u32 *end = policy->h2g.data + policy->num_words; size_t delta = end - start; return delta; } static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy) { policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV; policy->max_words = ARRAY_SIZE(policy->h2g.data); policy->num_words = 0; policy->count = 0; return policy; } static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy, u32 action, u32 *data, u32 len) { u32 *klv_ptr = policy->h2g.data + policy->num_words; GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words); *(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) | FIELD_PREP(GUC_KLV_0_LEN, len); memcpy(klv_ptr, data, sizeof(u32) * len); policy->num_words += 1 + len; policy->count++; } static int __guc_action_set_scheduling_policies(struct intel_guc *guc, struct scheduling_policy *policy) { int ret; ret = intel_guc_send(guc, (u32 *)&policy->h2g, __guc_scheduling_policy_action_size(policy)); if (ret < 0) { guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n", ERR_PTR(ret)); return ret; } if (ret != policy->count) { guc_warn(guc, "global scheduler policy processed %d of %d KLVs!", ret, policy->count); if (ret > policy->count) return -EPROTO; } return 0; } static int guc_init_global_schedule_policy(struct intel_guc *guc) { struct scheduling_policy policy; struct intel_gt *gt = guc_to_gt(guc); intel_wakeref_t wakeref; int ret; if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0)) return 0; __guc_scheduling_policy_start_klv(&policy); with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) { u32 yield[] = { GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION, GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO, }; __guc_scheduling_policy_add_klv(&policy, GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD, yield, ARRAY_SIZE(yield)); ret = __guc_action_set_scheduling_policies(guc, &policy); } return ret; } static void guc_route_semaphores(struct intel_guc *guc, bool to_guc) { struct intel_gt *gt = guc_to_gt(guc); u32 val; if (GRAPHICS_VER(gt->i915) < 12) return; if (to_guc) val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL; else val = 0; intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val); } int intel_guc_submission_enable(struct intel_guc *guc) { int ret; /* Semaphore interrupt enable and route to GuC */ guc_route_semaphores(guc, true); ret = guc_init_submission(guc); if (ret) goto fail_sem; ret = guc_init_engine_stats(guc); if (ret) goto fail_sem; ret = guc_init_global_schedule_policy(guc); if (ret) goto fail_stats; return 0; fail_stats: guc_fini_engine_stats(guc); fail_sem: guc_route_semaphores(guc, false); return ret; } /* Note: By the time we're here, GuC may have already been reset */ void intel_guc_submission_disable(struct intel_guc *guc) { guc_cancel_busyness_worker(guc); /* Semaphore interrupt disable and route to host */ guc_route_semaphores(guc, false); } static bool __guc_submission_supported(struct intel_guc *guc) { /* GuC submission is unavailable for pre-Gen11 */ return intel_guc_is_supported(guc) && GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11; } static bool __guc_submission_selected(struct intel_guc *guc) { struct drm_i915_private *i915 = guc_to_gt(guc)->i915; if (!intel_guc_submission_is_supported(guc)) return false; return i915->params.enable_guc & ENABLE_GUC_SUBMISSION; } int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc) { return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc); } /* * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher * workloads are able to enjoy the latency reduction when delaying the schedule-disable * operation. This matches the 30fps game-render + encode (real world) workload this * knob was tested against. */ #define SCHED_DISABLE_DELAY_MS 34 /* * A threshold of 75% is a reasonable starting point considering that real world apps * generally don't get anywhere near this. */ #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \ (((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4) void intel_guc_submission_init_early(struct intel_guc *guc) { xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ); spin_lock_init(&guc->submission_state.lock); INIT_LIST_HEAD(&guc->submission_state.guc_id_list); ida_init(&guc->submission_state.guc_ids); INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts); INIT_WORK(&guc->submission_state.destroyed_worker, destroyed_worker_func); INIT_WORK(&guc->submission_state.reset_fail_worker, reset_fail_worker_func); spin_lock_init(&guc->timestamp.lock); INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping); guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS; guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID; guc->submission_state.sched_disable_gucid_threshold = NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc); guc->submission_supported = __guc_submission_supported(guc); guc->submission_selected = __guc_submission_selected(guc); } static inline struct intel_context * g2h_context_lookup(struct intel_guc *guc, u32 ctx_id) { struct intel_context *ce; if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) { guc_err(guc, "Invalid ctx_id %u\n", ctx_id); return NULL; } ce = __get_context(guc, ctx_id); if (unlikely(!ce)) { guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id); return NULL; } if (unlikely(intel_context_is_child(ce))) { guc_err(guc, "Context is child, ctx_id %u\n", ctx_id); return NULL; } return ce; } int intel_guc_deregister_done_process_msg(struct intel_guc *guc, const u32 *msg, u32 len) { struct intel_context *ce; u32 ctx_id; if (unlikely(len < 1)) { guc_err(guc, "Invalid length %u\n", len); return -EPROTO; } ctx_id = msg[0]; ce = g2h_context_lookup(guc, ctx_id); if (unlikely(!ce)) return -EPROTO; trace_intel_context_deregister_done(ce); #ifdef CONFIG_DRM_I915_SELFTEST if (unlikely(ce->drop_deregister)) { ce->drop_deregister = false; return 0; } #endif if (context_wait_for_deregister_to_register(ce)) { struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm; intel_wakeref_t wakeref; /* * Previous owner of this guc_id has been deregistered, now safe * register this context. */ with_intel_runtime_pm(runtime_pm, wakeref) register_context(ce, true); guc_signal_context_fence(ce); intel_context_put(ce); } else if (context_destroyed(ce)) { /* Context has been destroyed */ intel_gt_pm_put_async(guc_to_gt(guc)); release_guc_id(guc, ce); __guc_context_destroy(ce); } decr_outstanding_submission_g2h(guc); return 0; } int intel_guc_sched_done_process_msg(struct intel_guc *guc, const u32 *msg, u32 len) { struct intel_context *ce; unsigned long flags; u32 ctx_id; if (unlikely(len < 2)) { guc_err(guc, "Invalid length %u\n", len); return -EPROTO; } ctx_id = msg[0]; ce = g2h_context_lookup(guc, ctx_id); if (unlikely(!ce)) return -EPROTO; if (unlikely(context_destroyed(ce) || (!context_pending_enable(ce) && !context_pending_disable(ce)))) { guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n", ce->guc_state.sched_state, ctx_id); return -EPROTO; } trace_intel_context_sched_done(ce); if (context_pending_enable(ce)) { #ifdef CONFIG_DRM_I915_SELFTEST if (unlikely(ce->drop_schedule_enable)) { ce->drop_schedule_enable = false; return 0; } #endif spin_lock_irqsave(&ce->guc_state.lock, flags); clr_context_pending_enable(ce); spin_unlock_irqrestore(&ce->guc_state.lock, flags); } else if (context_pending_disable(ce)) { bool banned; #ifdef CONFIG_DRM_I915_SELFTEST if (unlikely(ce->drop_schedule_disable)) { ce->drop_schedule_disable = false; return 0; } #endif /* * Unpin must be done before __guc_signal_context_fence, * otherwise a race exists between the requests getting * submitted + retired before this unpin completes resulting in * the pin_count going to zero and the context still being * enabled. */ intel_context_sched_disable_unpin(ce); spin_lock_irqsave(&ce->guc_state.lock, flags); banned = context_banned(ce); clr_context_banned(ce); clr_context_pending_disable(ce); __guc_signal_context_fence(ce); guc_blocked_fence_complete(ce); spin_unlock_irqrestore(&ce->guc_state.lock, flags); if (banned) { guc_cancel_context_requests(ce); intel_engine_signal_breadcrumbs(ce->engine); } } decr_outstanding_submission_g2h(guc); intel_context_put(ce); return 0; } static void capture_error_state(struct intel_guc *guc, struct intel_context *ce) { struct intel_gt *gt = guc_to_gt(guc); struct drm_i915_private *i915 = gt->i915; intel_wakeref_t wakeref; intel_engine_mask_t engine_mask; if (intel_engine_is_virtual(ce->engine)) { struct intel_engine_cs *e; intel_engine_mask_t tmp, virtual_mask = ce->engine->mask; engine_mask = 0; for_each_engine_masked(e, ce->engine->gt, virtual_mask, tmp) { bool match = intel_guc_capture_is_matching_engine(gt, ce, e); if (match) { intel_engine_set_hung_context(e, ce); engine_mask |= e->mask; atomic_inc(&i915->gpu_error.reset_engine_count[e->uabi_class]); } } if (!engine_mask) { guc_warn(guc, "No matching physical engine capture for virtual engine context 0x%04X / %s", ce->guc_id.id, ce->engine->name); engine_mask = ~0U; } } else { intel_engine_set_hung_context(ce->engine, ce); engine_mask = ce->engine->mask; atomic_inc(&i915->gpu_error.reset_engine_count[ce->engine->uabi_class]); } with_intel_runtime_pm(&i915->runtime_pm, wakeref) i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE); } static void guc_context_replay(struct intel_context *ce) { struct i915_sched_engine *sched_engine = ce->engine->sched_engine; __guc_reset_context(ce, ce->engine->mask); tasklet_hi_schedule(&sched_engine->tasklet); } static void guc_handle_context_reset(struct intel_guc *guc, struct intel_context *ce) { trace_intel_context_reset(ce); guc_dbg(guc, "Got context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n", ce->guc_id.id, ce->engine->name, str_yes_no(intel_context_is_exiting(ce)), str_yes_no(intel_context_is_banned(ce))); if (likely(intel_context_is_schedulable(ce))) { capture_error_state(guc, ce); guc_context_replay(ce); } else { guc_info(guc, "Ignoring context reset notification of exiting context 0x%04X on %s", ce->guc_id.id, ce->engine->name); } } int intel_guc_context_reset_process_msg(struct intel_guc *guc, const u32 *msg, u32 len) { struct intel_context *ce; unsigned long flags; int ctx_id; if (unlikely(len != 1)) { guc_err(guc, "Invalid length %u", len); return -EPROTO; } ctx_id = msg[0]; /* * The context lookup uses the xarray but lookups only require an RCU lock * not the full spinlock. So take the lock explicitly and keep it until the * context has been reference count locked to ensure it can't be destroyed * asynchronously until the reset is done. */ xa_lock_irqsave(&guc->context_lookup, flags); ce = g2h_context_lookup(guc, ctx_id); if (ce) intel_context_get(ce); xa_unlock_irqrestore(&guc->context_lookup, flags); if (unlikely(!ce)) return -EPROTO; guc_handle_context_reset(guc, ce); intel_context_put(ce); return 0; } int intel_guc_error_capture_process_msg(struct intel_guc *guc, const u32 *msg, u32 len) { u32 status; if (unlikely(len != 1)) { guc_dbg(guc, "Invalid length %u", len); return -EPROTO; } status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK; if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE) guc_warn(guc, "No space for error capture"); intel_guc_capture_process(guc); return 0; } struct intel_engine_cs * intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance) { struct intel_gt *gt = guc_to_gt(guc); u8 engine_class = guc_class_to_engine_class(guc_class); /* Class index is checked in class converter */ GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE); return gt->engine_class[engine_class][instance]; } static void reset_fail_worker_func(struct work_struct *w) { struct intel_guc *guc = container_of(w, struct intel_guc, submission_state.reset_fail_worker); struct intel_gt *gt = guc_to_gt(guc); intel_engine_mask_t reset_fail_mask; unsigned long flags; spin_lock_irqsave(&guc->submission_state.lock, flags); reset_fail_mask = guc->submission_state.reset_fail_mask; guc->submission_state.reset_fail_mask = 0; spin_unlock_irqrestore(&guc->submission_state.lock, flags); if (likely(reset_fail_mask)) { struct intel_engine_cs *engine; enum intel_engine_id id; /* * GuC is toast at this point - it dead loops after sending the failed * reset notification. So need to manually determine the guilty context. * Note that it should be reliable to do this here because the GuC is * toast and will not be scheduling behind the KMD's back. */ for_each_engine_masked(engine, gt, reset_fail_mask, id) intel_guc_find_hung_context(engine); intel_gt_handle_error(gt, reset_fail_mask, I915_ERROR_CAPTURE, "GuC failed to reset engine mask=0x%x", reset_fail_mask); } } int intel_guc_engine_failure_process_msg(struct intel_guc *guc, const u32 *msg, u32 len) { struct intel_engine_cs *engine; u8 guc_class, instance; u32 reason; unsigned long flags; if (unlikely(len != 3)) { guc_err(guc, "Invalid length %u", len); return -EPROTO; } guc_class = msg[0]; instance = msg[1]; reason = msg[2]; engine = intel_guc_lookup_engine(guc, guc_class, instance); if (unlikely(!engine)) { guc_err(guc, "Invalid engine %d:%d", guc_class, instance); return -EPROTO; } /* * This is an unexpected failure of a hardware feature. So, log a real * error message not just the informational that comes with the reset. */ guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X", guc_class, instance, engine->name, reason); spin_lock_irqsave(&guc->submission_state.lock, flags); guc->submission_state.reset_fail_mask |= engine->mask; spin_unlock_irqrestore(&guc->submission_state.lock, flags); /* * A GT reset flushes this worker queue (G2H handler) so we must use * another worker to trigger a GT reset. */ queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker); return 0; } void intel_guc_find_hung_context(struct intel_engine_cs *engine) { struct intel_guc *guc = &engine->gt->uc.guc; struct intel_context *ce; struct i915_request *rq; unsigned long index; unsigned long flags; /* Reset called during driver load? GuC not yet initialised! */ if (unlikely(!guc_submission_initialized(guc))) return; xa_lock_irqsave(&guc->context_lookup, flags); xa_for_each(&guc->context_lookup, index, ce) { bool found; if (!kref_get_unless_zero(&ce->ref)) continue; xa_unlock(&guc->context_lookup); if (!intel_context_is_pinned(ce)) goto next; if (intel_engine_is_virtual(ce->engine)) { if (!(ce->engine->mask & engine->mask)) goto next; } else { if (ce->engine != engine) goto next; } found = false; spin_lock(&ce->guc_state.lock); list_for_each_entry(rq, &ce->guc_state.requests, sched.link) { if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE) continue; found = true; break; } spin_unlock(&ce->guc_state.lock); if (found) { intel_engine_set_hung_context(engine, ce); /* Can only cope with one hang at a time... */ intel_context_put(ce); xa_lock(&guc->context_lookup); goto done; } next: intel_context_put(ce); xa_lock(&guc->context_lookup); } done: xa_unlock_irqrestore(&guc->context_lookup, flags); } void intel_guc_dump_active_requests(struct intel_engine_cs *engine, struct i915_request *hung_rq, struct drm_printer *m) { struct intel_guc *guc = &engine->gt->uc.guc; struct intel_context *ce; unsigned long index; unsigned long flags; /* Reset called during driver load? GuC not yet initialised! */ if (unlikely(!guc_submission_initialized(guc))) return; xa_lock_irqsave(&guc->context_lookup, flags); xa_for_each(&guc->context_lookup, index, ce) { if (!kref_get_unless_zero(&ce->ref)) continue; xa_unlock(&guc->context_lookup); if (!intel_context_is_pinned(ce)) goto next; if (intel_engine_is_virtual(ce->engine)) { if (!(ce->engine->mask & engine->mask)) goto next; } else { if (ce->engine != engine) goto next; } spin_lock(&ce->guc_state.lock); intel_engine_dump_active_requests(&ce->guc_state.requests, hung_rq, m); spin_unlock(&ce->guc_state.lock); next: intel_context_put(ce); xa_lock(&guc->context_lookup); } xa_unlock_irqrestore(&guc->context_lookup, flags); } void intel_guc_submission_print_info(struct intel_guc *guc, struct drm_printer *p) { struct i915_sched_engine *sched_engine = guc->sched_engine; struct rb_node *rb; unsigned long flags; if (!sched_engine) return; drm_printf(p, "GuC Submission API Version: %d.%d.%d\n", guc->submission_version.major, guc->submission_version.minor, guc->submission_version.patch); drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n", atomic_read(&guc->outstanding_submission_g2h)); drm_printf(p, "GuC tasklet count: %u\n", atomic_read(&sched_engine->tasklet.count)); spin_lock_irqsave(&sched_engine->lock, flags); drm_printf(p, "Requests in GuC submit tasklet:\n"); for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) { struct i915_priolist *pl = to_priolist(rb); struct i915_request *rq; priolist_for_each_request(rq, pl) drm_printf(p, "guc_id=%u, seqno=%llu\n", rq->context->guc_id.id, rq->fence.seqno); } spin_unlock_irqrestore(&sched_engine->lock, flags); drm_printf(p, "\n"); } static inline void guc_log_context_priority(struct drm_printer *p, struct intel_context *ce) { int i; drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio); drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n"); for (i = GUC_CLIENT_PRIORITY_KMD_HIGH; i < GUC_CLIENT_PRIORITY_NUM; ++i) { drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n", i, ce->guc_state.prio_count[i]); } drm_printf(p, "\n"); } static inline void guc_log_context(struct drm_printer *p, struct intel_context *ce) { drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id); drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca); drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n", ce->ring->head, ce->lrc_reg_state[CTX_RING_HEAD]); drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n", ce->ring->tail, ce->lrc_reg_state[CTX_RING_TAIL]); drm_printf(p, "\t\tContext Pin Count: %u\n", atomic_read(&ce->pin_count)); drm_printf(p, "\t\tGuC ID Ref Count: %u\n", atomic_read(&ce->guc_id.ref)); drm_printf(p, "\t\tSchedule State: 0x%x\n", ce->guc_state.sched_state); } void intel_guc_submission_print_context_info(struct intel_guc *guc, struct drm_printer *p) { struct intel_context *ce; unsigned long index; unsigned long flags; xa_lock_irqsave(&guc->context_lookup, flags); xa_for_each(&guc->context_lookup, index, ce) { GEM_BUG_ON(intel_context_is_child(ce)); guc_log_context(p, ce); guc_log_context_priority(p, ce); if (intel_context_is_parent(ce)) { struct intel_context *child; drm_printf(p, "\t\tNumber children: %u\n", ce->parallel.number_children); if (ce->parallel.guc.wq_status) { drm_printf(p, "\t\tWQI Head: %u\n", READ_ONCE(*ce->parallel.guc.wq_head)); drm_printf(p, "\t\tWQI Tail: %u\n", READ_ONCE(*ce->parallel.guc.wq_tail)); drm_printf(p, "\t\tWQI Status: %u\n", READ_ONCE(*ce->parallel.guc.wq_status)); } if (ce->engine->emit_bb_start == emit_bb_start_parent_no_preempt_mid_batch) { u8 i; drm_printf(p, "\t\tChildren Go: %u\n", get_children_go_value(ce)); for (i = 0; i < ce->parallel.number_children; ++i) drm_printf(p, "\t\tChildren Join: %u\n", get_children_join_value(ce, i)); } for_each_child(ce, child) guc_log_context(p, child); } } xa_unlock_irqrestore(&guc->context_lookup, flags); } static inline u32 get_children_go_addr(struct intel_context *ce) { GEM_BUG_ON(!intel_context_is_parent(ce)); return i915_ggtt_offset(ce->state) + __get_parent_scratch_offset(ce) + offsetof(struct parent_scratch, go.semaphore); } static inline u32 get_children_join_addr(struct intel_context *ce, u8 child_index) { GEM_BUG_ON(!intel_context_is_parent(ce)); return i915_ggtt_offset(ce->state) + __get_parent_scratch_offset(ce) + offsetof(struct parent_scratch, join[child_index].semaphore); } #define PARENT_GO_BB 1 #define PARENT_GO_FINI_BREADCRUMB 0 #define CHILD_GO_BB 1 #define CHILD_GO_FINI_BREADCRUMB 0 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, u64 offset, u32 len, const unsigned int flags) { struct intel_context *ce = rq->context; u32 *cs; u8 i; GEM_BUG_ON(!intel_context_is_parent(ce)); cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children); if (IS_ERR(cs)) return PTR_ERR(cs); /* Wait on children */ for (i = 0; i < ce->parallel.number_children; ++i) { *cs++ = (MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT | MI_SEMAPHORE_POLL | MI_SEMAPHORE_SAD_EQ_SDD); *cs++ = PARENT_GO_BB; *cs++ = get_children_join_addr(ce, i); *cs++ = 0; } /* Turn off preemption */ *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; *cs++ = MI_NOOP; /* Tell children go */ cs = gen8_emit_ggtt_write(cs, CHILD_GO_BB, get_children_go_addr(ce), 0); /* Jump to batch */ *cs++ = MI_BATCH_BUFFER_START_GEN8 | (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); *cs++ = lower_32_bits(offset); *cs++ = upper_32_bits(offset); *cs++ = MI_NOOP; intel_ring_advance(rq, cs); return 0; } static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, u64 offset, u32 len, const unsigned int flags) { struct intel_context *ce = rq->context; struct intel_context *parent = intel_context_to_parent(ce); u32 *cs; GEM_BUG_ON(!intel_context_is_child(ce)); cs = intel_ring_begin(rq, 12); if (IS_ERR(cs)) return PTR_ERR(cs); /* Signal parent */ cs = gen8_emit_ggtt_write(cs, PARENT_GO_BB, get_children_join_addr(parent, ce->parallel.child_index), 0); /* Wait on parent for go */ *cs++ = (MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT | MI_SEMAPHORE_POLL | MI_SEMAPHORE_SAD_EQ_SDD); *cs++ = CHILD_GO_BB; *cs++ = get_children_go_addr(parent); *cs++ = 0; /* Turn off preemption */ *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; /* Jump to batch */ *cs++ = MI_BATCH_BUFFER_START_GEN8 | (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); *cs++ = lower_32_bits(offset); *cs++ = upper_32_bits(offset); intel_ring_advance(rq, cs); return 0; } static u32 * __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, u32 *cs) { struct intel_context *ce = rq->context; u8 i; GEM_BUG_ON(!intel_context_is_parent(ce)); /* Wait on children */ for (i = 0; i < ce->parallel.number_children; ++i) { *cs++ = (MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT | MI_SEMAPHORE_POLL | MI_SEMAPHORE_SAD_EQ_SDD); *cs++ = PARENT_GO_FINI_BREADCRUMB; *cs++ = get_children_join_addr(ce, i); *cs++ = 0; } /* Turn on preemption */ *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; *cs++ = MI_NOOP; /* Tell children go */ cs = gen8_emit_ggtt_write(cs, CHILD_GO_FINI_BREADCRUMB, get_children_go_addr(ce), 0); return cs; } /* * If this true, a submission of multi-lrc requests had an error and the * requests need to be skipped. The front end (execuf IOCTL) should've called * i915_request_skip which squashes the BB but we still need to emit the fini * breadrcrumbs seqno write. At this point we don't know how many of the * requests in the multi-lrc submission were generated so we can't do the * handshake between the parent and children (e.g. if 4 requests should be * generated but 2nd hit an error only 1 would be seen by the GuC backend). * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error * has occurred on any of the requests in submission / relationship. */ static inline bool skip_handshake(struct i915_request *rq) { return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags); } #define NON_SKIP_LEN 6 static u32 * emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, u32 *cs) { struct intel_context *ce = rq->context; __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; __maybe_unused u32 *start_fini_breadcrumb_cs = cs; GEM_BUG_ON(!intel_context_is_parent(ce)); if (unlikely(skip_handshake(rq))) { /* * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch, * the NON_SKIP_LEN comes from the length of the emits below. */ memset(cs, 0, sizeof(u32) * (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; } else { cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs); } /* Emit fini breadcrumb */ before_fini_breadcrumb_user_interrupt_cs = cs; cs = gen8_emit_ggtt_write(cs, rq->fence.seqno, i915_request_active_timeline(rq)->hwsp_offset, 0); /* User interrupt */ *cs++ = MI_USER_INTERRUPT; *cs++ = MI_NOOP; /* Ensure our math for skip + emit is correct */ GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != cs); GEM_BUG_ON(start_fini_breadcrumb_cs + ce->engine->emit_fini_breadcrumb_dw != cs); rq->tail = intel_ring_offset(rq, cs); return cs; } static u32 * __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, u32 *cs) { struct intel_context *ce = rq->context; struct intel_context *parent = intel_context_to_parent(ce); GEM_BUG_ON(!intel_context_is_child(ce)); /* Turn on preemption */ *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; *cs++ = MI_NOOP; /* Signal parent */ cs = gen8_emit_ggtt_write(cs, PARENT_GO_FINI_BREADCRUMB, get_children_join_addr(parent, ce->parallel.child_index), 0); /* Wait parent on for go */ *cs++ = (MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT | MI_SEMAPHORE_POLL | MI_SEMAPHORE_SAD_EQ_SDD); *cs++ = CHILD_GO_FINI_BREADCRUMB; *cs++ = get_children_go_addr(parent); *cs++ = 0; return cs; } static u32 * emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, u32 *cs) { struct intel_context *ce = rq->context; __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; __maybe_unused u32 *start_fini_breadcrumb_cs = cs; GEM_BUG_ON(!intel_context_is_child(ce)); if (unlikely(skip_handshake(rq))) { /* * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch, * the NON_SKIP_LEN comes from the length of the emits below. */ memset(cs, 0, sizeof(u32) * (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; } else { cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs); } /* Emit fini breadcrumb */ before_fini_breadcrumb_user_interrupt_cs = cs; cs = gen8_emit_ggtt_write(cs, rq->fence.seqno, i915_request_active_timeline(rq)->hwsp_offset, 0); /* User interrupt */ *cs++ = MI_USER_INTERRUPT; *cs++ = MI_NOOP; /* Ensure our math for skip + emit is correct */ GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != cs); GEM_BUG_ON(start_fini_breadcrumb_cs + ce->engine->emit_fini_breadcrumb_dw != cs); rq->tail = intel_ring_offset(rq, cs); return cs; } #undef NON_SKIP_LEN static struct intel_context * guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, unsigned long flags) { struct guc_virtual_engine *ve; struct intel_guc *guc; unsigned int n; int err; ve = kzalloc(sizeof(*ve), GFP_KERNEL); if (!ve) return ERR_PTR(-ENOMEM); guc = &siblings[0]->gt->uc.guc; ve->base.i915 = siblings[0]->i915; ve->base.gt = siblings[0]->gt; ve->base.uncore = siblings[0]->uncore; ve->base.id = -1; ve->base.uabi_class = I915_ENGINE_CLASS_INVALID; ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; ve->base.saturated = ALL_ENGINES; snprintf(ve->base.name, sizeof(ve->base.name), "virtual"); ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine); ve->base.cops = &virtual_guc_context_ops; ve->base.request_alloc = guc_request_alloc; ve->base.bump_serial = virtual_guc_bump_serial; ve->base.submit_request = guc_submit_request; ve->base.flags = I915_ENGINE_IS_VIRTUAL; BUILD_BUG_ON(ilog2(VIRTUAL_ENGINES) < I915_NUM_ENGINES); ve->base.mask = VIRTUAL_ENGINES; intel_context_init(&ve->context, &ve->base); for (n = 0; n < count; n++) { struct intel_engine_cs *sibling = siblings[n]; GEM_BUG_ON(!is_power_of_2(sibling->mask)); if (sibling->mask & ve->base.mask) { guc_dbg(guc, "duplicate %s entry in load balancer\n", sibling->name); err = -EINVAL; goto err_put; } ve->base.mask |= sibling->mask; ve->base.logical_mask |= sibling->logical_mask; if (n != 0 && ve->base.class != sibling->class) { guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n", sibling->class, ve->base.class); err = -EINVAL; goto err_put; } else if (n == 0) { ve->base.class = sibling->class; ve->base.uabi_class = sibling->uabi_class; snprintf(ve->base.name, sizeof(ve->base.name), "v%dx%d", ve->base.class, count); ve->base.context_size = sibling->context_size; ve->base.add_active_request = sibling->add_active_request; ve->base.remove_active_request = sibling->remove_active_request; ve->base.emit_bb_start = sibling->emit_bb_start; ve->base.emit_flush = sibling->emit_flush; ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb; ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb; ve->base.emit_fini_breadcrumb_dw = sibling->emit_fini_breadcrumb_dw; ve->base.breadcrumbs = intel_breadcrumbs_get(sibling->breadcrumbs); ve->base.flags |= sibling->flags; ve->base.props.timeslice_duration_ms = sibling->props.timeslice_duration_ms; ve->base.props.preempt_timeout_ms = sibling->props.preempt_timeout_ms; } } return &ve->context; err_put: intel_context_put(&ve->context); return ERR_PTR(err); } bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve) { struct intel_engine_cs *engine; intel_engine_mask_t tmp, mask = ve->mask; for_each_engine_masked(engine, ve->gt, mask, tmp) if (READ_ONCE(engine->props.heartbeat_interval_ms)) return true; return false; } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_guc.c" #include "selftest_guc_multi_lrc.c" #include "selftest_guc_hangcheck.c" #endif
linux-master
drivers/gpu/drm/i915/gt/uc/intel_guc_submission.c
// SPDX-License-Identifier: MIT /* * Copyright © 2014-2019 Intel Corporation */ #include <linux/bsearch.h> #include "gem/i915_gem_lmem.h" #include "gt/intel_engine_regs.h" #include "gt/intel_gt.h" #include "gt/intel_gt_mcr.h" #include "gt/intel_gt_regs.h" #include "gt/intel_lrc.h" #include "gt/shmem_utils.h" #include "intel_guc_ads.h" #include "intel_guc_capture.h" #include "intel_guc_fwif.h" #include "intel_guc_print.h" #include "intel_uc.h" #include "i915_drv.h" /* * The Additional Data Struct (ADS) has pointers for different buffers used by * the GuC. One single gem object contains the ADS struct itself (guc_ads) and * all the extra buffers indirectly linked via the ADS struct's entries. * * Layout of the ADS blob allocated for the GuC: * * +---------------------------------------+ <== base * | guc_ads | * +---------------------------------------+ * | guc_policies | * +---------------------------------------+ * | guc_gt_system_info | * +---------------------------------------+ * | guc_engine_usage | * +---------------------------------------+ <== static * | guc_mmio_reg[countA] (engine 0.0) | * | guc_mmio_reg[countB] (engine 0.1) | * | guc_mmio_reg[countC] (engine 1.0) | * | ... | * +---------------------------------------+ <== dynamic * | padding | * +---------------------------------------+ <== 4K aligned * | golden contexts | * +---------------------------------------+ * | padding | * +---------------------------------------+ <== 4K aligned * | capture lists | * +---------------------------------------+ * | padding | * +---------------------------------------+ <== 4K aligned * | private data | * +---------------------------------------+ * | padding | * +---------------------------------------+ <== 4K aligned */ struct __guc_ads_blob { struct guc_ads ads; struct guc_policies policies; struct guc_gt_system_info system_info; struct guc_engine_usage engine_usage; /* From here on, location is dynamic! Refer to above diagram. */ struct guc_mmio_reg regset[]; } __packed; #define ads_blob_read(guc_, field_) \ iosys_map_rd_field(&(guc_)->ads_map, 0, struct __guc_ads_blob, field_) #define ads_blob_write(guc_, field_, val_) \ iosys_map_wr_field(&(guc_)->ads_map, 0, struct __guc_ads_blob, \ field_, val_) #define info_map_write(map_, field_, val_) \ iosys_map_wr_field(map_, 0, struct guc_gt_system_info, field_, val_) #define info_map_read(map_, field_) \ iosys_map_rd_field(map_, 0, struct guc_gt_system_info, field_) static u32 guc_ads_regset_size(struct intel_guc *guc) { GEM_BUG_ON(!guc->ads_regset_size); return guc->ads_regset_size; } static u32 guc_ads_golden_ctxt_size(struct intel_guc *guc) { return PAGE_ALIGN(guc->ads_golden_ctxt_size); } static u32 guc_ads_capture_size(struct intel_guc *guc) { return PAGE_ALIGN(guc->ads_capture_size); } static u32 guc_ads_private_data_size(struct intel_guc *guc) { return PAGE_ALIGN(guc->fw.private_data_size); } static u32 guc_ads_regset_offset(struct intel_guc *guc) { return offsetof(struct __guc_ads_blob, regset); } static u32 guc_ads_golden_ctxt_offset(struct intel_guc *guc) { u32 offset; offset = guc_ads_regset_offset(guc) + guc_ads_regset_size(guc); return PAGE_ALIGN(offset); } static u32 guc_ads_capture_offset(struct intel_guc *guc) { u32 offset; offset = guc_ads_golden_ctxt_offset(guc) + guc_ads_golden_ctxt_size(guc); return PAGE_ALIGN(offset); } static u32 guc_ads_private_data_offset(struct intel_guc *guc) { u32 offset; offset = guc_ads_capture_offset(guc) + guc_ads_capture_size(guc); return PAGE_ALIGN(offset); } static u32 guc_ads_blob_size(struct intel_guc *guc) { return guc_ads_private_data_offset(guc) + guc_ads_private_data_size(guc); } static void guc_policies_init(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct drm_i915_private *i915 = gt->i915; u32 global_flags = 0; ads_blob_write(guc, policies.dpc_promote_time, GLOBAL_POLICY_DEFAULT_DPC_PROMOTE_TIME_US); ads_blob_write(guc, policies.max_num_work_items, GLOBAL_POLICY_MAX_NUM_WI); if (i915->params.reset < 2) global_flags |= GLOBAL_POLICY_DISABLE_ENGINE_RESET; ads_blob_write(guc, policies.global_flags, global_flags); ads_blob_write(guc, policies.is_valid, 1); } void intel_guc_ads_print_policy_info(struct intel_guc *guc, struct drm_printer *dp) { if (unlikely(iosys_map_is_null(&guc->ads_map))) return; drm_printf(dp, "Global scheduling policies:\n"); drm_printf(dp, " DPC promote time = %u\n", ads_blob_read(guc, policies.dpc_promote_time)); drm_printf(dp, " Max num work items = %u\n", ads_blob_read(guc, policies.max_num_work_items)); drm_printf(dp, " Flags = %u\n", ads_blob_read(guc, policies.global_flags)); } static int guc_action_policies_update(struct intel_guc *guc, u32 policy_offset) { u32 action[] = { INTEL_GUC_ACTION_GLOBAL_SCHED_POLICY_CHANGE, policy_offset }; return intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); } int intel_guc_global_policies_update(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); u32 scheduler_policies; intel_wakeref_t wakeref; int ret; if (iosys_map_is_null(&guc->ads_map)) return -EOPNOTSUPP; scheduler_policies = ads_blob_read(guc, ads.scheduler_policies); GEM_BUG_ON(!scheduler_policies); guc_policies_init(guc); if (!intel_guc_is_ready(guc)) return 0; with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) ret = guc_action_policies_update(guc, scheduler_policies); return ret; } static void guc_mapping_table_init(struct intel_gt *gt, struct iosys_map *info_map) { unsigned int i, j; struct intel_engine_cs *engine; enum intel_engine_id id; /* Table must be set to invalid values for entries not used */ for (i = 0; i < GUC_MAX_ENGINE_CLASSES; ++i) for (j = 0; j < GUC_MAX_INSTANCES_PER_CLASS; ++j) info_map_write(info_map, mapping_table[i][j], GUC_MAX_INSTANCES_PER_CLASS); for_each_engine(engine, gt, id) { u8 guc_class = engine_class_to_guc_class(engine->class); info_map_write(info_map, mapping_table[guc_class][ilog2(engine->logical_mask)], engine->instance); } } /* * The save/restore register list must be pre-calculated to a temporary * buffer before it can be copied inside the ADS. */ struct temp_regset { /* * ptr to the section of the storage for the engine currently being * worked on */ struct guc_mmio_reg *registers; /* ptr to the base of the allocated storage for all engines */ struct guc_mmio_reg *storage; u32 storage_used; u32 storage_max; }; static int guc_mmio_reg_cmp(const void *a, const void *b) { const struct guc_mmio_reg *ra = a; const struct guc_mmio_reg *rb = b; return (int)ra->offset - (int)rb->offset; } static struct guc_mmio_reg * __must_check __mmio_reg_add(struct temp_regset *regset, struct guc_mmio_reg *reg) { u32 pos = regset->storage_used; struct guc_mmio_reg *slot; if (pos >= regset->storage_max) { size_t size = ALIGN((pos + 1) * sizeof(*slot), PAGE_SIZE); struct guc_mmio_reg *r = krealloc(regset->storage, size, GFP_KERNEL); if (!r) { WARN_ONCE(1, "Incomplete regset list: can't add register (%d)\n", -ENOMEM); return ERR_PTR(-ENOMEM); } regset->registers = r + (regset->registers - regset->storage); regset->storage = r; regset->storage_max = size / sizeof(*slot); } slot = &regset->storage[pos]; regset->storage_used++; *slot = *reg; return slot; } static long __must_check guc_mmio_reg_add(struct intel_gt *gt, struct temp_regset *regset, u32 offset, u32 flags) { u32 count = regset->storage_used - (regset->registers - regset->storage); struct guc_mmio_reg entry = { .offset = offset, .flags = flags, }; struct guc_mmio_reg *slot; /* * The mmio list is built using separate lists within the driver. * It's possible that at some point we may attempt to add the same * register more than once. Do not consider this an error; silently * move on if the register is already in the list. */ if (bsearch(&entry, regset->registers, count, sizeof(entry), guc_mmio_reg_cmp)) return 0; slot = __mmio_reg_add(regset, &entry); if (IS_ERR(slot)) return PTR_ERR(slot); while (slot-- > regset->registers) { GEM_BUG_ON(slot[0].offset == slot[1].offset); if (slot[1].offset > slot[0].offset) break; swap(slot[1], slot[0]); } return 0; } #define GUC_MMIO_REG_ADD(gt, regset, reg, masked) \ guc_mmio_reg_add(gt, \ regset, \ i915_mmio_reg_offset(reg), \ (masked) ? GUC_REGSET_MASKED : 0) #define GUC_REGSET_STEERING(group, instance) ( \ FIELD_PREP(GUC_REGSET_STEERING_GROUP, (group)) | \ FIELD_PREP(GUC_REGSET_STEERING_INSTANCE, (instance)) | \ GUC_REGSET_NEEDS_STEERING \ ) static long __must_check guc_mcr_reg_add(struct intel_gt *gt, struct temp_regset *regset, i915_mcr_reg_t reg, u32 flags) { u8 group, inst; /* * The GuC doesn't have a default steering, so we need to explicitly * steer all registers that need steering. However, we do not keep track * of all the steering ranges, only of those that have a chance of using * a non-default steering from the i915 pov. Instead of adding such * tracking, it is easier to just program the default steering for all * regs that don't need a non-default one. */ intel_gt_mcr_get_nonterminated_steering(gt, reg, &group, &inst); flags |= GUC_REGSET_STEERING(group, inst); return guc_mmio_reg_add(gt, regset, i915_mmio_reg_offset(reg), flags); } #define GUC_MCR_REG_ADD(gt, regset, reg, masked) \ guc_mcr_reg_add(gt, \ regset, \ (reg), \ (masked) ? GUC_REGSET_MASKED : 0) static int guc_mmio_regset_init(struct temp_regset *regset, struct intel_engine_cs *engine) { struct intel_gt *gt = engine->gt; const u32 base = engine->mmio_base; struct i915_wa_list *wal = &engine->wa_list; struct i915_wa *wa; unsigned int i; int ret = 0; /* * Each engine's registers point to a new start relative to * storage */ regset->registers = regset->storage + regset->storage_used; ret |= GUC_MMIO_REG_ADD(gt, regset, RING_MODE_GEN7(base), true); ret |= GUC_MMIO_REG_ADD(gt, regset, RING_HWS_PGA(base), false); ret |= GUC_MMIO_REG_ADD(gt, regset, RING_IMR(base), false); if ((engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) && CCS_MASK(engine->gt)) ret |= GUC_MMIO_REG_ADD(gt, regset, GEN12_RCU_MODE, true); for (i = 0, wa = wal->list; i < wal->count; i++, wa++) ret |= GUC_MMIO_REG_ADD(gt, regset, wa->reg, wa->masked_reg); /* Be extra paranoid and include all whitelist registers. */ for (i = 0; i < RING_MAX_NONPRIV_SLOTS; i++) ret |= GUC_MMIO_REG_ADD(gt, regset, RING_FORCE_TO_NONPRIV(base, i), false); /* add in local MOCS registers */ for (i = 0; i < LNCFCMOCS_REG_COUNT; i++) if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) ret |= GUC_MCR_REG_ADD(gt, regset, XEHP_LNCFCMOCS(i), false); else ret |= GUC_MMIO_REG_ADD(gt, regset, GEN9_LNCFCMOCS(i), false); if (GRAPHICS_VER(engine->i915) >= 12) { ret |= GUC_MMIO_REG_ADD(gt, regset, EU_PERF_CNTL0, false); ret |= GUC_MMIO_REG_ADD(gt, regset, EU_PERF_CNTL1, false); ret |= GUC_MMIO_REG_ADD(gt, regset, EU_PERF_CNTL2, false); ret |= GUC_MMIO_REG_ADD(gt, regset, EU_PERF_CNTL3, false); ret |= GUC_MMIO_REG_ADD(gt, regset, EU_PERF_CNTL4, false); ret |= GUC_MMIO_REG_ADD(gt, regset, EU_PERF_CNTL5, false); ret |= GUC_MMIO_REG_ADD(gt, regset, EU_PERF_CNTL6, false); } return ret ? -1 : 0; } static long guc_mmio_reg_state_create(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct intel_engine_cs *engine; enum intel_engine_id id; struct temp_regset temp_set = {}; long total = 0; long ret; for_each_engine(engine, gt, id) { u32 used = temp_set.storage_used; ret = guc_mmio_regset_init(&temp_set, engine); if (ret < 0) goto fail_regset_init; guc->ads_regset_count[id] = temp_set.storage_used - used; total += guc->ads_regset_count[id]; } guc->ads_regset = temp_set.storage; guc_dbg(guc, "Used %zu KB for temporary ADS regset\n", (temp_set.storage_max * sizeof(struct guc_mmio_reg)) >> 10); return total * sizeof(struct guc_mmio_reg); fail_regset_init: kfree(temp_set.storage); return ret; } static void guc_mmio_reg_state_init(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct intel_engine_cs *engine; enum intel_engine_id id; u32 addr_ggtt, offset; offset = guc_ads_regset_offset(guc); addr_ggtt = intel_guc_ggtt_offset(guc, guc->ads_vma) + offset; iosys_map_memcpy_to(&guc->ads_map, offset, guc->ads_regset, guc->ads_regset_size); for_each_engine(engine, gt, id) { u32 count = guc->ads_regset_count[id]; u8 guc_class; /* Class index is checked in class converter */ GEM_BUG_ON(engine->instance >= GUC_MAX_INSTANCES_PER_CLASS); guc_class = engine_class_to_guc_class(engine->class); if (!count) { ads_blob_write(guc, ads.reg_state_list[guc_class][engine->instance].address, 0); ads_blob_write(guc, ads.reg_state_list[guc_class][engine->instance].count, 0); continue; } ads_blob_write(guc, ads.reg_state_list[guc_class][engine->instance].address, addr_ggtt); ads_blob_write(guc, ads.reg_state_list[guc_class][engine->instance].count, count); addr_ggtt += count * sizeof(struct guc_mmio_reg); } } static void fill_engine_enable_masks(struct intel_gt *gt, struct iosys_map *info_map) { info_map_write(info_map, engine_enabled_masks[GUC_RENDER_CLASS], RCS_MASK(gt)); info_map_write(info_map, engine_enabled_masks[GUC_COMPUTE_CLASS], CCS_MASK(gt)); info_map_write(info_map, engine_enabled_masks[GUC_BLITTER_CLASS], BCS_MASK(gt)); info_map_write(info_map, engine_enabled_masks[GUC_VIDEO_CLASS], VDBOX_MASK(gt)); info_map_write(info_map, engine_enabled_masks[GUC_VIDEOENHANCE_CLASS], VEBOX_MASK(gt)); /* The GSC engine is an instance (6) of OTHER_CLASS */ if (gt->engine[GSC0]) info_map_write(info_map, engine_enabled_masks[GUC_GSC_OTHER_CLASS], BIT(gt->engine[GSC0]->instance)); } #define LR_HW_CONTEXT_SIZE (80 * sizeof(u32)) #define XEHP_LR_HW_CONTEXT_SIZE (96 * sizeof(u32)) #define LR_HW_CONTEXT_SZ(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50) ? \ XEHP_LR_HW_CONTEXT_SIZE : \ LR_HW_CONTEXT_SIZE) #define LRC_SKIP_SIZE(i915) (LRC_PPHWSP_SZ * PAGE_SIZE + LR_HW_CONTEXT_SZ(i915)) static int guc_prep_golden_context(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); u32 addr_ggtt, offset; u32 total_size = 0, alloc_size, real_size; u8 engine_class, guc_class; struct guc_gt_system_info local_info; struct iosys_map info_map; /* * Reserve the memory for the golden contexts and point GuC at it but * leave it empty for now. The context data will be filled in later * once there is something available to put there. * * Note that the HWSP and ring context are not included. * * Note also that the storage must be pinned in the GGTT, so that the * address won't change after GuC has been told where to find it. The * GuC will also validate that the LRC base + size fall within the * allowed GGTT range. */ if (!iosys_map_is_null(&guc->ads_map)) { offset = guc_ads_golden_ctxt_offset(guc); addr_ggtt = intel_guc_ggtt_offset(guc, guc->ads_vma) + offset; info_map = IOSYS_MAP_INIT_OFFSET(&guc->ads_map, offsetof(struct __guc_ads_blob, system_info)); } else { memset(&local_info, 0, sizeof(local_info)); iosys_map_set_vaddr(&info_map, &local_info); fill_engine_enable_masks(gt, &info_map); } for (engine_class = 0; engine_class <= MAX_ENGINE_CLASS; ++engine_class) { guc_class = engine_class_to_guc_class(engine_class); if (!info_map_read(&info_map, engine_enabled_masks[guc_class])) continue; real_size = intel_engine_context_size(gt, engine_class); alloc_size = PAGE_ALIGN(real_size); total_size += alloc_size; if (iosys_map_is_null(&guc->ads_map)) continue; /* * This interface is slightly confusing. We need to pass the * base address of the full golden context and the size of just * the engine state, which is the section of the context image * that starts after the execlists context. This is required to * allow the GuC to restore just the engine state when a * watchdog reset occurs. * We calculate the engine state size by removing the size of * what comes before it in the context image (which is identical * on all engines). */ ads_blob_write(guc, ads.eng_state_size[guc_class], real_size - LRC_SKIP_SIZE(gt->i915)); ads_blob_write(guc, ads.golden_context_lrca[guc_class], addr_ggtt); addr_ggtt += alloc_size; } /* Make sure current size matches what we calculated previously */ if (guc->ads_golden_ctxt_size) GEM_BUG_ON(guc->ads_golden_ctxt_size != total_size); return total_size; } static struct intel_engine_cs *find_engine_state(struct intel_gt *gt, u8 engine_class) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, gt, id) { if (engine->class != engine_class) continue; if (!engine->default_state) continue; return engine; } return NULL; } static void guc_init_golden_context(struct intel_guc *guc) { struct intel_engine_cs *engine; struct intel_gt *gt = guc_to_gt(guc); unsigned long offset; u32 addr_ggtt, total_size = 0, alloc_size, real_size; u8 engine_class, guc_class; if (!intel_uc_uses_guc_submission(&gt->uc)) return; GEM_BUG_ON(iosys_map_is_null(&guc->ads_map)); /* * Go back and fill in the golden context data now that it is * available. */ offset = guc_ads_golden_ctxt_offset(guc); addr_ggtt = intel_guc_ggtt_offset(guc, guc->ads_vma) + offset; for (engine_class = 0; engine_class <= MAX_ENGINE_CLASS; ++engine_class) { guc_class = engine_class_to_guc_class(engine_class); if (!ads_blob_read(guc, system_info.engine_enabled_masks[guc_class])) continue; real_size = intel_engine_context_size(gt, engine_class); alloc_size = PAGE_ALIGN(real_size); total_size += alloc_size; engine = find_engine_state(gt, engine_class); if (!engine) { guc_err(guc, "No engine state recorded for class %d!\n", engine_class); ads_blob_write(guc, ads.eng_state_size[guc_class], 0); ads_blob_write(guc, ads.golden_context_lrca[guc_class], 0); continue; } GEM_BUG_ON(ads_blob_read(guc, ads.eng_state_size[guc_class]) != real_size - LRC_SKIP_SIZE(gt->i915)); GEM_BUG_ON(ads_blob_read(guc, ads.golden_context_lrca[guc_class]) != addr_ggtt); addr_ggtt += alloc_size; shmem_read_to_iosys_map(engine->default_state, 0, &guc->ads_map, offset, real_size); offset += alloc_size; } GEM_BUG_ON(guc->ads_golden_ctxt_size != total_size); } static u32 guc_get_capture_engine_mask(struct iosys_map *info_map, u32 capture_class) { u32 mask; switch (capture_class) { case GUC_CAPTURE_LIST_CLASS_RENDER_COMPUTE: mask = info_map_read(info_map, engine_enabled_masks[GUC_RENDER_CLASS]); mask |= info_map_read(info_map, engine_enabled_masks[GUC_COMPUTE_CLASS]); break; case GUC_CAPTURE_LIST_CLASS_VIDEO: mask = info_map_read(info_map, engine_enabled_masks[GUC_VIDEO_CLASS]); break; case GUC_CAPTURE_LIST_CLASS_VIDEOENHANCE: mask = info_map_read(info_map, engine_enabled_masks[GUC_VIDEOENHANCE_CLASS]); break; case GUC_CAPTURE_LIST_CLASS_BLITTER: mask = info_map_read(info_map, engine_enabled_masks[GUC_BLITTER_CLASS]); break; case GUC_CAPTURE_LIST_CLASS_GSC_OTHER: mask = info_map_read(info_map, engine_enabled_masks[GUC_GSC_OTHER_CLASS]); break; default: mask = 0; } return mask; } static int guc_capture_prep_lists(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); u32 ads_ggtt, capture_offset, null_ggtt, total_size = 0; struct guc_gt_system_info local_info; struct iosys_map info_map; bool ads_is_mapped; size_t size = 0; void *ptr; int i, j; ads_is_mapped = !iosys_map_is_null(&guc->ads_map); if (ads_is_mapped) { capture_offset = guc_ads_capture_offset(guc); ads_ggtt = intel_guc_ggtt_offset(guc, guc->ads_vma); info_map = IOSYS_MAP_INIT_OFFSET(&guc->ads_map, offsetof(struct __guc_ads_blob, system_info)); } else { memset(&local_info, 0, sizeof(local_info)); iosys_map_set_vaddr(&info_map, &local_info); fill_engine_enable_masks(gt, &info_map); } /* first, set aside the first page for a capture_list with zero descriptors */ total_size = PAGE_SIZE; if (ads_is_mapped) { if (!intel_guc_capture_getnullheader(guc, &ptr, &size)) iosys_map_memcpy_to(&guc->ads_map, capture_offset, ptr, size); null_ggtt = ads_ggtt + capture_offset; capture_offset += PAGE_SIZE; } for (i = 0; i < GUC_CAPTURE_LIST_INDEX_MAX; i++) { for (j = 0; j < GUC_MAX_ENGINE_CLASSES; j++) { u32 engine_mask = guc_get_capture_engine_mask(&info_map, j); /* null list if we dont have said engine or list */ if (!engine_mask) { if (ads_is_mapped) { ads_blob_write(guc, ads.capture_class[i][j], null_ggtt); ads_blob_write(guc, ads.capture_instance[i][j], null_ggtt); } continue; } if (intel_guc_capture_getlistsize(guc, i, GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS, j, &size)) { if (ads_is_mapped) ads_blob_write(guc, ads.capture_class[i][j], null_ggtt); goto engine_instance_list; } total_size += size; if (ads_is_mapped) { if (total_size > guc->ads_capture_size || intel_guc_capture_getlist(guc, i, GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS, j, &ptr)) { ads_blob_write(guc, ads.capture_class[i][j], null_ggtt); continue; } ads_blob_write(guc, ads.capture_class[i][j], ads_ggtt + capture_offset); iosys_map_memcpy_to(&guc->ads_map, capture_offset, ptr, size); capture_offset += size; } engine_instance_list: if (intel_guc_capture_getlistsize(guc, i, GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE, j, &size)) { if (ads_is_mapped) ads_blob_write(guc, ads.capture_instance[i][j], null_ggtt); continue; } total_size += size; if (ads_is_mapped) { if (total_size > guc->ads_capture_size || intel_guc_capture_getlist(guc, i, GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE, j, &ptr)) { ads_blob_write(guc, ads.capture_instance[i][j], null_ggtt); continue; } ads_blob_write(guc, ads.capture_instance[i][j], ads_ggtt + capture_offset); iosys_map_memcpy_to(&guc->ads_map, capture_offset, ptr, size); capture_offset += size; } } if (intel_guc_capture_getlistsize(guc, i, GUC_CAPTURE_LIST_TYPE_GLOBAL, 0, &size)) { if (ads_is_mapped) ads_blob_write(guc, ads.capture_global[i], null_ggtt); continue; } total_size += size; if (ads_is_mapped) { if (total_size > guc->ads_capture_size || intel_guc_capture_getlist(guc, i, GUC_CAPTURE_LIST_TYPE_GLOBAL, 0, &ptr)) { ads_blob_write(guc, ads.capture_global[i], null_ggtt); continue; } ads_blob_write(guc, ads.capture_global[i], ads_ggtt + capture_offset); iosys_map_memcpy_to(&guc->ads_map, capture_offset, ptr, size); capture_offset += size; } } if (guc->ads_capture_size && guc->ads_capture_size != PAGE_ALIGN(total_size)) guc_warn(guc, "ADS capture alloc size changed from %d to %d\n", guc->ads_capture_size, PAGE_ALIGN(total_size)); return PAGE_ALIGN(total_size); } static void __guc_ads_init(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct drm_i915_private *i915 = gt->i915; struct iosys_map info_map = IOSYS_MAP_INIT_OFFSET(&guc->ads_map, offsetof(struct __guc_ads_blob, system_info)); u32 base; /* GuC scheduling policies */ guc_policies_init(guc); /* System info */ fill_engine_enable_masks(gt, &info_map); ads_blob_write(guc, system_info.generic_gt_sysinfo[GUC_GENERIC_GT_SYSINFO_SLICE_ENABLED], hweight8(gt->info.sseu.slice_mask)); ads_blob_write(guc, system_info.generic_gt_sysinfo[GUC_GENERIC_GT_SYSINFO_VDBOX_SFC_SUPPORT_MASK], gt->info.vdbox_sfc_access); if (GRAPHICS_VER(i915) >= 12 && !IS_DGFX(i915)) { u32 distdbreg = intel_uncore_read(gt->uncore, GEN12_DIST_DBS_POPULATED); ads_blob_write(guc, system_info.generic_gt_sysinfo[GUC_GENERIC_GT_SYSINFO_DOORBELL_COUNT_PER_SQIDI], ((distdbreg >> GEN12_DOORBELLS_PER_SQIDI_SHIFT) & GEN12_DOORBELLS_PER_SQIDI) + 1); } /* Golden contexts for re-initialising after a watchdog reset */ guc_prep_golden_context(guc); guc_mapping_table_init(guc_to_gt(guc), &info_map); base = intel_guc_ggtt_offset(guc, guc->ads_vma); /* Lists for error capture debug */ guc_capture_prep_lists(guc); /* ADS */ ads_blob_write(guc, ads.scheduler_policies, base + offsetof(struct __guc_ads_blob, policies)); ads_blob_write(guc, ads.gt_system_info, base + offsetof(struct __guc_ads_blob, system_info)); /* MMIO save/restore list */ guc_mmio_reg_state_init(guc); /* Private Data */ ads_blob_write(guc, ads.private_data, base + guc_ads_private_data_offset(guc)); i915_gem_object_flush_map(guc->ads_vma->obj); } /** * intel_guc_ads_create() - allocates and initializes GuC ADS. * @guc: intel_guc struct * * GuC needs memory block (Additional Data Struct), where it will store * some data. Allocate and initialize such memory block for GuC use. */ int intel_guc_ads_create(struct intel_guc *guc) { void *ads_blob; u32 size; int ret; GEM_BUG_ON(guc->ads_vma); /* * Create reg state size dynamically on system memory to be copied to * the final ads blob on gt init/reset */ ret = guc_mmio_reg_state_create(guc); if (ret < 0) return ret; guc->ads_regset_size = ret; /* Likewise the golden contexts: */ ret = guc_prep_golden_context(guc); if (ret < 0) return ret; guc->ads_golden_ctxt_size = ret; /* Likewise the capture lists: */ ret = guc_capture_prep_lists(guc); if (ret < 0) return ret; guc->ads_capture_size = ret; /* Now the total size can be determined: */ size = guc_ads_blob_size(guc); ret = intel_guc_allocate_and_map_vma(guc, size, &guc->ads_vma, &ads_blob); if (ret) return ret; if (i915_gem_object_is_lmem(guc->ads_vma->obj)) iosys_map_set_vaddr_iomem(&guc->ads_map, (void __iomem *)ads_blob); else iosys_map_set_vaddr(&guc->ads_map, ads_blob); __guc_ads_init(guc); return 0; } void intel_guc_ads_init_late(struct intel_guc *guc) { /* * The golden context setup requires the saved engine state from * __engines_record_defaults(). However, that requires engines to be * operational which means the ADS must already have been configured. * Fortunately, the golden context state is not needed until a hang * occurs, so it can be filled in during this late init phase. */ guc_init_golden_context(guc); } void intel_guc_ads_destroy(struct intel_guc *guc) { i915_vma_unpin_and_release(&guc->ads_vma, I915_VMA_RELEASE_MAP); iosys_map_clear(&guc->ads_map); kfree(guc->ads_regset); } static void guc_ads_private_data_reset(struct intel_guc *guc) { u32 size; size = guc_ads_private_data_size(guc); if (!size) return; iosys_map_memset(&guc->ads_map, guc_ads_private_data_offset(guc), 0, size); } /** * intel_guc_ads_reset() - prepares GuC Additional Data Struct for reuse * @guc: intel_guc struct * * GuC stores some data in ADS, which might be stale after a reset. * Reinitialize whole ADS in case any part of it was corrupted during * previous GuC run. */ void intel_guc_ads_reset(struct intel_guc *guc) { if (!guc->ads_vma) return; __guc_ads_init(guc); guc_ads_private_data_reset(guc); } u32 intel_guc_engine_usage_offset(struct intel_guc *guc) { return intel_guc_ggtt_offset(guc, guc->ads_vma) + offsetof(struct __guc_ads_blob, engine_usage); } struct iosys_map intel_guc_engine_usage_record_map(struct intel_engine_cs *engine) { struct intel_guc *guc = &engine->gt->uc.guc; u8 guc_class = engine_class_to_guc_class(engine->class); size_t offset = offsetof(struct __guc_ads_blob, engine_usage.engines[guc_class][ilog2(engine->logical_mask)]); return IOSYS_MAP_INIT_OFFSET(&guc->ads_map, offset); }
linux-master
drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c
// SPDX-License-Identifier: MIT /* * Copyright © 2023 Intel Corporation */ #include <drm/drm_print.h> #include "gt/intel_gt.h" #include "gt/intel_gt_debugfs.h" #include "gt/intel_gt_print.h" #include "intel_gsc_uc.h" #include "intel_gsc_uc_debugfs.h" #include "i915_drv.h" static int gsc_info_show(struct seq_file *m, void *data) { struct drm_printer p = drm_seq_file_printer(m); struct intel_gsc_uc *gsc = m->private; if (!intel_gsc_uc_is_supported(gsc)) return -ENODEV; intel_gsc_uc_load_status(gsc, &p); return 0; } DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(gsc_info); void intel_gsc_uc_debugfs_register(struct intel_gsc_uc *gsc_uc, struct dentry *root) { static const struct intel_gt_debugfs_file files[] = { { "gsc_info", &gsc_info_fops, NULL }, }; if (!intel_gsc_uc_is_supported(gsc_uc)) return; intel_gt_debugfs_register_files(root, files, ARRAY_SIZE(files), gsc_uc); }
linux-master
drivers/gpu/drm/i915/gt/uc/intel_gsc_uc_debugfs.c
// SPDX-License-Identifier: MIT /* * Copyright © 2014-2019 Intel Corporation */ #include <linux/debugfs.h> #include <linux/string_helpers.h> #include "gt/intel_gt.h" #include "i915_drv.h" #include "i915_irq.h" #include "i915_memcpy.h" #include "intel_guc_capture.h" #include "intel_guc_log.h" #include "intel_guc_print.h" #if defined(CONFIG_DRM_I915_DEBUG_GUC) #define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE SZ_2M #define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE SZ_16M #define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE SZ_1M #elif defined(CONFIG_DRM_I915_DEBUG_GEM) #define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE SZ_1M #define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE SZ_2M #define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE SZ_1M #else #define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE SZ_8K #define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE SZ_64K #define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE SZ_1M #endif static void guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log); struct guc_log_section { u32 max; u32 flag; u32 default_val; const char *name; }; static void _guc_log_init_sizes(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); static const struct guc_log_section sections[GUC_LOG_SECTIONS_LIMIT] = { { GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT, GUC_LOG_LOG_ALLOC_UNITS, GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE, "crash dump" }, { GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT, GUC_LOG_LOG_ALLOC_UNITS, GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE, "debug", }, { GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT, GUC_LOG_CAPTURE_ALLOC_UNITS, GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE, "capture", } }; int i; for (i = 0; i < GUC_LOG_SECTIONS_LIMIT; i++) log->sizes[i].bytes = sections[i].default_val; /* If debug size > 1MB then bump default crash size to keep the same units */ if (log->sizes[GUC_LOG_SECTIONS_DEBUG].bytes >= SZ_1M && GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE < SZ_1M) log->sizes[GUC_LOG_SECTIONS_CRASH].bytes = SZ_1M; /* Prepare the GuC API structure fields: */ for (i = 0; i < GUC_LOG_SECTIONS_LIMIT; i++) { /* Convert to correct units */ if ((log->sizes[i].bytes % SZ_1M) == 0) { log->sizes[i].units = SZ_1M; log->sizes[i].flag = sections[i].flag; } else { log->sizes[i].units = SZ_4K; log->sizes[i].flag = 0; } if (!IS_ALIGNED(log->sizes[i].bytes, log->sizes[i].units)) guc_err(guc, "Mis-aligned log %s size: 0x%X vs 0x%X!\n", sections[i].name, log->sizes[i].bytes, log->sizes[i].units); log->sizes[i].count = log->sizes[i].bytes / log->sizes[i].units; if (!log->sizes[i].count) { guc_err(guc, "Zero log %s size!\n", sections[i].name); } else { /* Size is +1 unit */ log->sizes[i].count--; } /* Clip to field size */ if (log->sizes[i].count > sections[i].max) { guc_err(guc, "log %s size too large: %d vs %d!\n", sections[i].name, log->sizes[i].count + 1, sections[i].max + 1); log->sizes[i].count = sections[i].max; } } if (log->sizes[GUC_LOG_SECTIONS_CRASH].units != log->sizes[GUC_LOG_SECTIONS_DEBUG].units) { guc_err(guc, "Unit mismatch for crash and debug sections: %d vs %d!\n", log->sizes[GUC_LOG_SECTIONS_CRASH].units, log->sizes[GUC_LOG_SECTIONS_DEBUG].units); log->sizes[GUC_LOG_SECTIONS_CRASH].units = log->sizes[GUC_LOG_SECTIONS_DEBUG].units; log->sizes[GUC_LOG_SECTIONS_CRASH].count = 0; } log->sizes_initialised = true; } static void guc_log_init_sizes(struct intel_guc_log *log) { if (log->sizes_initialised) return; _guc_log_init_sizes(log); } static u32 intel_guc_log_section_size_crash(struct intel_guc_log *log) { guc_log_init_sizes(log); return log->sizes[GUC_LOG_SECTIONS_CRASH].bytes; } static u32 intel_guc_log_section_size_debug(struct intel_guc_log *log) { guc_log_init_sizes(log); return log->sizes[GUC_LOG_SECTIONS_DEBUG].bytes; } u32 intel_guc_log_section_size_capture(struct intel_guc_log *log) { guc_log_init_sizes(log); return log->sizes[GUC_LOG_SECTIONS_CAPTURE].bytes; } static u32 intel_guc_log_size(struct intel_guc_log *log) { /* * GuC Log buffer Layout: * * NB: Ordering must follow "enum guc_log_buffer_type". * * +===============================+ 00B * | Debug state header | * +-------------------------------+ 32B * | Crash dump state header | * +-------------------------------+ 64B * | Capture state header | * +-------------------------------+ 96B * | | * +===============================+ PAGE_SIZE (4KB) * | Debug logs | * +===============================+ + DEBUG_SIZE * | Crash Dump logs | * +===============================+ + CRASH_SIZE * | Capture logs | * +===============================+ + CAPTURE_SIZE */ return PAGE_SIZE + intel_guc_log_section_size_crash(log) + intel_guc_log_section_size_debug(log) + intel_guc_log_section_size_capture(log); } /** * DOC: GuC firmware log * * Firmware log is enabled by setting i915.guc_log_level to the positive level. * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from * i915_guc_load_status will print out firmware loading status and scratch * registers value. */ static int guc_action_flush_log_complete(struct intel_guc *guc) { u32 action[] = { INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE, GUC_DEBUG_LOG_BUFFER }; return intel_guc_send_nb(guc, action, ARRAY_SIZE(action), 0); } static int guc_action_flush_log(struct intel_guc *guc) { u32 action[] = { INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH, 0 }; return intel_guc_send(guc, action, ARRAY_SIZE(action)); } static int guc_action_control_log(struct intel_guc *guc, bool enable, bool default_logging, u32 verbosity) { u32 action[] = { INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING, (enable ? GUC_LOG_CONTROL_LOGGING_ENABLED : 0) | (verbosity << GUC_LOG_CONTROL_VERBOSITY_SHIFT) | (default_logging ? GUC_LOG_CONTROL_DEFAULT_LOGGING : 0) }; GEM_BUG_ON(verbosity > GUC_LOG_VERBOSITY_MAX); return intel_guc_send(guc, action, ARRAY_SIZE(action)); } /* * Sub buffer switch callback. Called whenever relay has to switch to a new * sub buffer, relay stays on the same sub buffer if 0 is returned. */ static int subbuf_start_callback(struct rchan_buf *buf, void *subbuf, void *prev_subbuf, size_t prev_padding) { /* * Use no-overwrite mode by default, where relay will stop accepting * new data if there are no empty sub buffers left. * There is no strict synchronization enforced by relay between Consumer * and Producer. In overwrite mode, there is a possibility of getting * inconsistent/garbled data, the producer could be writing on to the * same sub buffer from which Consumer is reading. This can't be avoided * unless Consumer is fast enough and can always run in tandem with * Producer. */ if (relay_buf_full(buf)) return 0; return 1; } /* * file_create() callback. Creates relay file in debugfs. */ static struct dentry *create_buf_file_callback(const char *filename, struct dentry *parent, umode_t mode, struct rchan_buf *buf, int *is_global) { struct dentry *buf_file; /* * This to enable the use of a single buffer for the relay channel and * correspondingly have a single file exposed to User, through which * it can collect the logs in order without any post-processing. * Need to set 'is_global' even if parent is NULL for early logging. */ *is_global = 1; if (!parent) return NULL; buf_file = debugfs_create_file(filename, mode, parent, buf, &relay_file_operations); if (IS_ERR(buf_file)) return NULL; return buf_file; } /* * file_remove() default callback. Removes relay file in debugfs. */ static int remove_buf_file_callback(struct dentry *dentry) { debugfs_remove(dentry); return 0; } /* relay channel callbacks */ static const struct rchan_callbacks relay_callbacks = { .subbuf_start = subbuf_start_callback, .create_buf_file = create_buf_file_callback, .remove_buf_file = remove_buf_file_callback, }; static void guc_move_to_next_buf(struct intel_guc_log *log) { /* * Make sure the updates made in the sub buffer are visible when * Consumer sees the following update to offset inside the sub buffer. */ smp_wmb(); /* All data has been written, so now move the offset of sub buffer. */ relay_reserve(log->relay.channel, log->vma->obj->base.size - intel_guc_log_section_size_capture(log)); /* Switch to the next sub buffer */ relay_flush(log->relay.channel); } static void *guc_get_write_buffer(struct intel_guc_log *log) { /* * Just get the base address of a new sub buffer and copy data into it * ourselves. NULL will be returned in no-overwrite mode, if all sub * buffers are full. Could have used the relay_write() to indirectly * copy the data, but that would have been bit convoluted, as we need to * write to only certain locations inside a sub buffer which cannot be * done without using relay_reserve() along with relay_write(). So its * better to use relay_reserve() alone. */ return relay_reserve(log->relay.channel, 0); } bool intel_guc_check_log_buf_overflow(struct intel_guc_log *log, enum guc_log_buffer_type type, unsigned int full_cnt) { unsigned int prev_full_cnt = log->stats[type].sampled_overflow; bool overflow = false; if (full_cnt != prev_full_cnt) { overflow = true; log->stats[type].overflow = full_cnt; log->stats[type].sampled_overflow += full_cnt - prev_full_cnt; if (full_cnt < prev_full_cnt) { /* buffer_full_cnt is a 4 bit counter */ log->stats[type].sampled_overflow += 16; } guc_notice_ratelimited(log_to_guc(log), "log buffer overflow\n"); } return overflow; } unsigned int intel_guc_get_log_buffer_size(struct intel_guc_log *log, enum guc_log_buffer_type type) { switch (type) { case GUC_DEBUG_LOG_BUFFER: return intel_guc_log_section_size_debug(log); case GUC_CRASH_DUMP_LOG_BUFFER: return intel_guc_log_section_size_crash(log); case GUC_CAPTURE_LOG_BUFFER: return intel_guc_log_section_size_capture(log); default: MISSING_CASE(type); } return 0; } size_t intel_guc_get_log_buffer_offset(struct intel_guc_log *log, enum guc_log_buffer_type type) { enum guc_log_buffer_type i; size_t offset = PAGE_SIZE;/* for the log_buffer_states */ for (i = GUC_DEBUG_LOG_BUFFER; i < GUC_MAX_LOG_BUFFER; ++i) { if (i == type) break; offset += intel_guc_get_log_buffer_size(log, i); } return offset; } static void _guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt; struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state; struct guc_log_buffer_state log_buf_state_local; enum guc_log_buffer_type type; void *src_data, *dst_data; bool new_overflow; mutex_lock(&log->relay.lock); if (guc_WARN_ON(guc, !intel_guc_log_relay_created(log))) goto out_unlock; /* Get the pointer to shared GuC log buffer */ src_data = log->buf_addr; log_buf_state = src_data; /* Get the pointer to local buffer to store the logs */ log_buf_snapshot_state = dst_data = guc_get_write_buffer(log); if (unlikely(!log_buf_snapshot_state)) { /* * Used rate limited to avoid deluge of messages, logs might be * getting consumed by User at a slow rate. */ guc_err_ratelimited(guc, "no sub-buffer to copy general logs\n"); log->relay.full_count++; goto out_unlock; } /* Actual logs are present from the 2nd page */ src_data += PAGE_SIZE; dst_data += PAGE_SIZE; /* For relay logging, we exclude error state capture */ for (type = GUC_DEBUG_LOG_BUFFER; type <= GUC_CRASH_DUMP_LOG_BUFFER; type++) { /* * Make a copy of the state structure, inside GuC log buffer * (which is uncached mapped), on the stack to avoid reading * from it multiple times. */ memcpy(&log_buf_state_local, log_buf_state, sizeof(struct guc_log_buffer_state)); buffer_size = intel_guc_get_log_buffer_size(log, type); read_offset = log_buf_state_local.read_ptr; write_offset = log_buf_state_local.sampled_write_ptr; full_cnt = log_buf_state_local.buffer_full_cnt; /* Bookkeeping stuff */ log->stats[type].flush += log_buf_state_local.flush_to_file; new_overflow = intel_guc_check_log_buf_overflow(log, type, full_cnt); /* Update the state of shared log buffer */ log_buf_state->read_ptr = write_offset; log_buf_state->flush_to_file = 0; log_buf_state++; /* First copy the state structure in snapshot buffer */ memcpy(log_buf_snapshot_state, &log_buf_state_local, sizeof(struct guc_log_buffer_state)); /* * The write pointer could have been updated by GuC firmware, * after sending the flush interrupt to Host, for consistency * set write pointer value to same value of sampled_write_ptr * in the snapshot buffer. */ log_buf_snapshot_state->write_ptr = write_offset; log_buf_snapshot_state++; /* Now copy the actual logs. */ if (unlikely(new_overflow)) { /* copy the whole buffer in case of overflow */ read_offset = 0; write_offset = buffer_size; } else if (unlikely((read_offset > buffer_size) || (write_offset > buffer_size))) { guc_err(guc, "invalid log buffer state\n"); /* copy whole buffer as offsets are unreliable */ read_offset = 0; write_offset = buffer_size; } /* Just copy the newly written data */ if (read_offset > write_offset) { i915_memcpy_from_wc(dst_data, src_data, write_offset); bytes_to_copy = buffer_size - read_offset; } else { bytes_to_copy = write_offset - read_offset; } i915_memcpy_from_wc(dst_data + read_offset, src_data + read_offset, bytes_to_copy); src_data += buffer_size; dst_data += buffer_size; } guc_move_to_next_buf(log); out_unlock: mutex_unlock(&log->relay.lock); } static void copy_debug_logs_work(struct work_struct *work) { struct intel_guc_log *log = container_of(work, struct intel_guc_log, relay.flush_work); guc_log_copy_debuglogs_for_relay(log); } static int guc_log_relay_map(struct intel_guc_log *log) { lockdep_assert_held(&log->relay.lock); if (!log->vma || !log->buf_addr) return -ENODEV; /* * WC vmalloc mapping of log buffer pages was done at * GuC Log Init time, but lets keep a ref for book-keeping */ i915_gem_object_get(log->vma->obj); log->relay.buf_in_use = true; return 0; } static void guc_log_relay_unmap(struct intel_guc_log *log) { lockdep_assert_held(&log->relay.lock); i915_gem_object_put(log->vma->obj); log->relay.buf_in_use = false; } void intel_guc_log_init_early(struct intel_guc_log *log) { mutex_init(&log->relay.lock); INIT_WORK(&log->relay.flush_work, copy_debug_logs_work); log->relay.started = false; } static int guc_log_relay_create(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); struct drm_i915_private *i915 = guc_to_gt(guc)->i915; struct rchan *guc_log_relay_chan; size_t n_subbufs, subbuf_size; int ret; lockdep_assert_held(&log->relay.lock); GEM_BUG_ON(!log->vma); /* * Keep the size of sub buffers same as shared log buffer * but GuC log-events excludes the error-state-capture logs */ subbuf_size = log->vma->size - intel_guc_log_section_size_capture(log); /* * Store up to 8 snapshots, which is large enough to buffer sufficient * boot time logs and provides enough leeway to User, in terms of * latency, for consuming the logs from relay. Also doesn't take * up too much memory. */ n_subbufs = 8; if (!guc->dbgfs_node) return -ENOENT; guc_log_relay_chan = relay_open("guc_log", guc->dbgfs_node, subbuf_size, n_subbufs, &relay_callbacks, i915); if (!guc_log_relay_chan) { guc_err(guc, "Couldn't create relay channel for logging\n"); ret = -ENOMEM; return ret; } GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size); log->relay.channel = guc_log_relay_chan; return 0; } static void guc_log_relay_destroy(struct intel_guc_log *log) { lockdep_assert_held(&log->relay.lock); relay_close(log->relay.channel); log->relay.channel = NULL; } static void guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); struct drm_i915_private *i915 = guc_to_gt(guc)->i915; intel_wakeref_t wakeref; _guc_log_copy_debuglogs_for_relay(log); /* * Generally device is expected to be active only at this * time, so get/put should be really quick. */ with_intel_runtime_pm(&i915->runtime_pm, wakeref) guc_action_flush_log_complete(guc); } static u32 __get_default_log_level(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); struct drm_i915_private *i915 = guc_to_gt(guc)->i915; /* A negative value means "use platform/config default" */ if (i915->params.guc_log_level < 0) { return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) || IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ? GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_NON_VERBOSE; } if (i915->params.guc_log_level > GUC_LOG_LEVEL_MAX) { guc_warn(guc, "Log verbosity param out of range: %d > %d!\n", i915->params.guc_log_level, GUC_LOG_LEVEL_MAX); return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) || IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ? GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_DISABLED; } GEM_BUG_ON(i915->params.guc_log_level < GUC_LOG_LEVEL_DISABLED); GEM_BUG_ON(i915->params.guc_log_level > GUC_LOG_LEVEL_MAX); return i915->params.guc_log_level; } int intel_guc_log_create(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); struct i915_vma *vma; void *vaddr; u32 guc_log_size; int ret; GEM_BUG_ON(log->vma); guc_log_size = intel_guc_log_size(log); vma = intel_guc_allocate_vma(guc, guc_log_size); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto err; } log->vma = vma; /* * Create a WC (Uncached for read) vmalloc mapping up front immediate access to * data from memory during critical events such as error capture */ vaddr = i915_gem_object_pin_map_unlocked(log->vma->obj, I915_MAP_WC); if (IS_ERR(vaddr)) { ret = PTR_ERR(vaddr); i915_vma_unpin_and_release(&log->vma, 0); goto err; } log->buf_addr = vaddr; log->level = __get_default_log_level(log); guc_dbg(guc, "guc_log_level=%d (%s, verbose:%s, verbosity:%d)\n", log->level, str_enabled_disabled(log->level), str_yes_no(GUC_LOG_LEVEL_IS_VERBOSE(log->level)), GUC_LOG_LEVEL_TO_VERBOSITY(log->level)); return 0; err: guc_err(guc, "Failed to allocate or map log buffer %pe\n", ERR_PTR(ret)); return ret; } void intel_guc_log_destroy(struct intel_guc_log *log) { log->buf_addr = NULL; i915_vma_unpin_and_release(&log->vma, I915_VMA_RELEASE_MAP); } int intel_guc_log_set_level(struct intel_guc_log *log, u32 level) { struct intel_guc *guc = log_to_guc(log); struct drm_i915_private *i915 = guc_to_gt(guc)->i915; intel_wakeref_t wakeref; int ret = 0; BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0); GEM_BUG_ON(!log->vma); /* * GuC is recognizing log levels starting from 0 to max, we're using 0 * as indication that logging should be disabled. */ if (level < GUC_LOG_LEVEL_DISABLED || level > GUC_LOG_LEVEL_MAX) return -EINVAL; mutex_lock(&i915->drm.struct_mutex); if (log->level == level) goto out_unlock; with_intel_runtime_pm(&i915->runtime_pm, wakeref) ret = guc_action_control_log(guc, GUC_LOG_LEVEL_IS_VERBOSE(level), GUC_LOG_LEVEL_IS_ENABLED(level), GUC_LOG_LEVEL_TO_VERBOSITY(level)); if (ret) { guc_dbg(guc, "guc_log_control action failed %pe\n", ERR_PTR(ret)); goto out_unlock; } log->level = level; out_unlock: mutex_unlock(&i915->drm.struct_mutex); return ret; } bool intel_guc_log_relay_created(const struct intel_guc_log *log) { return log->buf_addr; } int intel_guc_log_relay_open(struct intel_guc_log *log) { int ret; if (!log->vma) return -ENODEV; mutex_lock(&log->relay.lock); if (intel_guc_log_relay_created(log)) { ret = -EEXIST; goto out_unlock; } /* * We require SSE 4.1 for fast reads from the GuC log buffer and * it should be present on the chipsets supporting GuC based * submissions. */ if (!i915_has_memcpy_from_wc()) { ret = -ENXIO; goto out_unlock; } ret = guc_log_relay_create(log); if (ret) goto out_unlock; ret = guc_log_relay_map(log); if (ret) goto out_relay; mutex_unlock(&log->relay.lock); return 0; out_relay: guc_log_relay_destroy(log); out_unlock: mutex_unlock(&log->relay.lock); return ret; } int intel_guc_log_relay_start(struct intel_guc_log *log) { if (log->relay.started) return -EEXIST; /* * When GuC is logging without us relaying to userspace, we're ignoring * the flush notification. This means that we need to unconditionally * flush on relay enabling, since GuC only notifies us once. */ queue_work(system_highpri_wq, &log->relay.flush_work); log->relay.started = true; return 0; } void intel_guc_log_relay_flush(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); intel_wakeref_t wakeref; if (!log->relay.started) return; /* * Before initiating the forceful flush, wait for any pending/ongoing * flush to complete otherwise forceful flush may not actually happen. */ flush_work(&log->relay.flush_work); with_intel_runtime_pm(guc_to_gt(guc)->uncore->rpm, wakeref) guc_action_flush_log(guc); /* GuC would have updated log buffer by now, so copy it */ guc_log_copy_debuglogs_for_relay(log); } /* * Stops the relay log. Called from intel_guc_log_relay_close(), so no * possibility of race with start/flush since relay_write cannot race * relay_close. */ static void guc_log_relay_stop(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); struct drm_i915_private *i915 = guc_to_gt(guc)->i915; if (!log->relay.started) return; intel_synchronize_irq(i915); flush_work(&log->relay.flush_work); log->relay.started = false; } void intel_guc_log_relay_close(struct intel_guc_log *log) { guc_log_relay_stop(log); mutex_lock(&log->relay.lock); GEM_BUG_ON(!intel_guc_log_relay_created(log)); guc_log_relay_unmap(log); guc_log_relay_destroy(log); mutex_unlock(&log->relay.lock); } void intel_guc_log_handle_flush_event(struct intel_guc_log *log) { if (log->relay.started) queue_work(system_highpri_wq, &log->relay.flush_work); } static const char * stringify_guc_log_type(enum guc_log_buffer_type type) { switch (type) { case GUC_DEBUG_LOG_BUFFER: return "DEBUG"; case GUC_CRASH_DUMP_LOG_BUFFER: return "CRASH"; case GUC_CAPTURE_LOG_BUFFER: return "CAPTURE"; default: MISSING_CASE(type); } return ""; } /** * intel_guc_log_info - dump information about GuC log relay * @log: the GuC log * @p: the &drm_printer * * Pretty printer for GuC log info */ void intel_guc_log_info(struct intel_guc_log *log, struct drm_printer *p) { enum guc_log_buffer_type type; if (!intel_guc_log_relay_created(log)) { drm_puts(p, "GuC log relay not created\n"); return; } drm_puts(p, "GuC logging stats:\n"); drm_printf(p, "\tRelay full count: %u\n", log->relay.full_count); for (type = GUC_DEBUG_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) { drm_printf(p, "\t%s:\tflush count %10u, overflow count %10u\n", stringify_guc_log_type(type), log->stats[type].flush, log->stats[type].sampled_overflow); } } /** * intel_guc_log_dump - dump the contents of the GuC log * @log: the GuC log * @p: the &drm_printer * @dump_load_err: dump the log saved on GuC load error * * Pretty printer for the GuC log */ int intel_guc_log_dump(struct intel_guc_log *log, struct drm_printer *p, bool dump_load_err) { struct intel_guc *guc = log_to_guc(log); struct intel_uc *uc = container_of(guc, struct intel_uc, guc); struct drm_i915_gem_object *obj = NULL; void *map; u32 *page; int i, j; if (!intel_guc_is_supported(guc)) return -ENODEV; if (dump_load_err) obj = uc->load_err_log; else if (guc->log.vma) obj = guc->log.vma->obj; if (!obj) return 0; page = (u32 *)__get_free_page(GFP_KERNEL); if (!page) return -ENOMEM; intel_guc_dump_time_info(guc, p); map = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC); if (IS_ERR(map)) { guc_dbg(guc, "Failed to pin log object: %pe\n", map); drm_puts(p, "(log data unaccessible)\n"); free_page((unsigned long)page); return PTR_ERR(map); } for (i = 0; i < obj->base.size; i += PAGE_SIZE) { if (!i915_memcpy_from_wc(page, map + i, PAGE_SIZE)) memcpy(page, map + i, PAGE_SIZE); for (j = 0; j < PAGE_SIZE / sizeof(u32); j += 4) drm_printf(p, "0x%08x 0x%08x 0x%08x 0x%08x\n", *(page + j + 0), *(page + j + 1), *(page + j + 2), *(page + j + 3)); } drm_puts(p, "\n"); i915_gem_object_unpin_map(obj); free_page((unsigned long)page); return 0; }
linux-master
drivers/gpu/drm/i915/gt/uc/intel_guc_log.c
// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include <linux/types.h> #include "gt/intel_gt.h" #include "gt/intel_gt_print.h" #include "intel_gsc_fw.h" #include "intel_gsc_proxy.h" #include "intel_gsc_uc.h" #include "i915_drv.h" #include "i915_reg.h" static void gsc_work(struct work_struct *work) { struct intel_gsc_uc *gsc = container_of(work, typeof(*gsc), work); struct intel_gt *gt = gsc_uc_to_gt(gsc); intel_wakeref_t wakeref; u32 actions; int ret; wakeref = intel_runtime_pm_get(gt->uncore->rpm); spin_lock_irq(gt->irq_lock); actions = gsc->gsc_work_actions; gsc->gsc_work_actions = 0; spin_unlock_irq(gt->irq_lock); if (actions & GSC_ACTION_FW_LOAD) { ret = intel_gsc_uc_fw_upload(gsc); if (!ret) /* setup proxy on a new load */ actions |= GSC_ACTION_SW_PROXY; else if (ret != -EEXIST) goto out_put; /* * The HuC auth can be done both before or after the proxy init; * if done after, a proxy request will be issued and must be * serviced before the authentication can complete. * Since this worker also handles proxy requests, we can't * perform an action that requires the proxy from within it and * then stall waiting for it, because we'd be blocking the * service path. Therefore, it is easier for us to load HuC * first and do proxy later. The GSC will ack the HuC auth and * then send the HuC proxy request as part of the proxy init * flow. * Note that we can only do the GSC auth if the GuC auth was * successful. */ if (intel_uc_uses_huc(&gt->uc) && intel_huc_is_authenticated(&gt->uc.huc, INTEL_HUC_AUTH_BY_GUC)) intel_huc_auth(&gt->uc.huc, INTEL_HUC_AUTH_BY_GSC); } if (actions & GSC_ACTION_SW_PROXY) { if (!intel_gsc_uc_fw_init_done(gsc)) { gt_err(gt, "Proxy request received with GSC not loaded!\n"); goto out_put; } ret = intel_gsc_proxy_request_handler(gsc); if (ret) { if (actions & GSC_ACTION_FW_LOAD) { /* * A proxy failure right after firmware load means the proxy-init * step has failed so mark GSC as not usable after this */ drm_err(&gt->i915->drm, "GSC proxy handler failed to init\n"); intel_uc_fw_change_status(&gsc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL); } goto out_put; } /* mark the GSC FW init as done the first time we run this */ if (actions & GSC_ACTION_FW_LOAD) { /* * If there is a proxy establishment error, the GSC might still * complete the request handling cleanly, so we need to check the * status register to check if the proxy init was actually successful */ if (intel_gsc_uc_fw_proxy_init_done(gsc, false)) { drm_dbg(&gt->i915->drm, "GSC Proxy initialized\n"); intel_uc_fw_change_status(&gsc->fw, INTEL_UC_FIRMWARE_RUNNING); } else { drm_err(&gt->i915->drm, "GSC status reports proxy init not complete\n"); intel_uc_fw_change_status(&gsc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL); } } } out_put: intel_runtime_pm_put(gt->uncore->rpm, wakeref); } static bool gsc_engine_supported(struct intel_gt *gt) { intel_engine_mask_t mask; /* * We reach here from i915_driver_early_probe for the primary GT before * its engine mask is set, so we use the device info engine mask for it. * For other GTs we expect the GT-specific mask to be set before we * call this function. */ GEM_BUG_ON(!gt_is_root(gt) && !gt->info.engine_mask); if (gt_is_root(gt)) mask = INTEL_INFO(gt->i915)->platform_engine_mask; else mask = gt->info.engine_mask; return __HAS_ENGINE(mask, GSC0); } void intel_gsc_uc_init_early(struct intel_gsc_uc *gsc) { struct intel_gt *gt = gsc_uc_to_gt(gsc); /* * GSC FW needs to be copied to a dedicated memory allocations for * loading (see gsc->local), so we don't need to GGTT map the FW image * itself into GGTT. */ intel_uc_fw_init_early(&gsc->fw, INTEL_UC_FW_TYPE_GSC, false); INIT_WORK(&gsc->work, gsc_work); /* we can arrive here from i915_driver_early_probe for primary * GT with it being not fully setup hence check device info's * engine mask */ if (!gsc_engine_supported(gt)) { intel_uc_fw_change_status(&gsc->fw, INTEL_UC_FIRMWARE_NOT_SUPPORTED); return; } gsc->wq = alloc_ordered_workqueue("i915_gsc", 0); if (!gsc->wq) { gt_err(gt, "failed to allocate WQ for GSC, disabling FW\n"); intel_uc_fw_change_status(&gsc->fw, INTEL_UC_FIRMWARE_NOT_SUPPORTED); } } static int gsc_allocate_and_map_vma(struct intel_gsc_uc *gsc, u32 size) { struct intel_gt *gt = gsc_uc_to_gt(gsc); struct drm_i915_gem_object *obj; struct i915_vma *vma; void __iomem *vaddr; int ret = 0; /* * The GSC FW doesn't immediately suspend after becoming idle, so there * is a chance that it could still be awake after we successfully * return from the pci suspend function, even if there are no pending * operations. * The FW might therefore try to access memory for its suspend operation * after the kernel has completed the HW suspend flow; this can cause * issues if the FW is mapped in normal RAM memory, as some of the * involved HW units might've already lost power. * The driver must therefore avoid this situation and the recommended * way to do so is to use stolen memory for the GSC memory allocation, * because stolen memory takes a different path in HW and it is * guaranteed to always work as long as the GPU itself is awake (which * it must be if the GSC is awake). */ obj = i915_gem_object_create_stolen(gt->i915, size); if (IS_ERR(obj)) return PTR_ERR(obj); vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto err; } vaddr = i915_vma_pin_iomap(vma); i915_vma_unpin(vma); if (IS_ERR(vaddr)) { ret = PTR_ERR(vaddr); goto err; } i915_vma_make_unshrinkable(vma); gsc->local = vma; gsc->local_vaddr = vaddr; return 0; err: i915_gem_object_put(obj); return ret; } static void gsc_unmap_and_free_vma(struct intel_gsc_uc *gsc) { struct i915_vma *vma = fetch_and_zero(&gsc->local); if (!vma) return; gsc->local_vaddr = NULL; i915_vma_unpin_iomap(vma); i915_gem_object_put(vma->obj); } int intel_gsc_uc_init(struct intel_gsc_uc *gsc) { static struct lock_class_key gsc_lock; struct intel_gt *gt = gsc_uc_to_gt(gsc); struct intel_engine_cs *engine = gt->engine[GSC0]; struct intel_context *ce; int err; err = intel_uc_fw_init(&gsc->fw); if (err) goto out; err = gsc_allocate_and_map_vma(gsc, SZ_4M); if (err) goto out_fw; ce = intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K, I915_GEM_HWS_GSC_ADDR, &gsc_lock, "gsc_context"); if (IS_ERR(ce)) { gt_err(gt, "failed to create GSC CS ctx for FW communication\n"); err = PTR_ERR(ce); goto out_vma; } gsc->ce = ce; /* if we fail to init proxy we still want to load GSC for PM */ intel_gsc_proxy_init(gsc); intel_uc_fw_change_status(&gsc->fw, INTEL_UC_FIRMWARE_LOADABLE); return 0; out_vma: gsc_unmap_and_free_vma(gsc); out_fw: intel_uc_fw_fini(&gsc->fw); out: gt_probe_error(gt, "GSC init failed %pe\n", ERR_PTR(err)); return err; } void intel_gsc_uc_fini(struct intel_gsc_uc *gsc) { if (!intel_uc_fw_is_loadable(&gsc->fw)) return; flush_work(&gsc->work); if (gsc->wq) { destroy_workqueue(gsc->wq); gsc->wq = NULL; } intel_gsc_proxy_fini(gsc); if (gsc->ce) intel_engine_destroy_pinned_context(fetch_and_zero(&gsc->ce)); gsc_unmap_and_free_vma(gsc); intel_uc_fw_fini(&gsc->fw); } void intel_gsc_uc_flush_work(struct intel_gsc_uc *gsc) { if (!intel_uc_fw_is_loadable(&gsc->fw)) return; flush_work(&gsc->work); } void intel_gsc_uc_resume(struct intel_gsc_uc *gsc) { if (!intel_uc_fw_is_loadable(&gsc->fw)) return; /* * we only want to start the GSC worker from here in the actual resume * flow and not during driver load. This is because GSC load is slow and * therefore we want to make sure that the default state init completes * first to not slow down the init thread. A separate call to * intel_gsc_uc_load_start will ensure that the GSC is loaded during * driver load. */ if (!gsc_uc_to_gt(gsc)->engine[GSC0]->default_state) return; intel_gsc_uc_load_start(gsc); } void intel_gsc_uc_load_start(struct intel_gsc_uc *gsc) { struct intel_gt *gt = gsc_uc_to_gt(gsc); if (!intel_uc_fw_is_loadable(&gsc->fw)) return; if (intel_gsc_uc_fw_init_done(gsc)) return; spin_lock_irq(gt->irq_lock); gsc->gsc_work_actions |= GSC_ACTION_FW_LOAD; spin_unlock_irq(gt->irq_lock); queue_work(gsc->wq, &gsc->work); } void intel_gsc_uc_load_status(struct intel_gsc_uc *gsc, struct drm_printer *p) { struct intel_gt *gt = gsc_uc_to_gt(gsc); struct intel_uncore *uncore = gt->uncore; intel_wakeref_t wakeref; if (!intel_gsc_uc_is_supported(gsc)) { drm_printf(p, "GSC not supported\n"); return; } if (!intel_gsc_uc_is_wanted(gsc)) { drm_printf(p, "GSC disabled\n"); return; } drm_printf(p, "GSC firmware: %s\n", gsc->fw.file_selected.path); if (gsc->fw.file_selected.path != gsc->fw.file_wanted.path) drm_printf(p, "GSC firmware wanted: %s\n", gsc->fw.file_wanted.path); drm_printf(p, "\tstatus: %s\n", intel_uc_fw_status_repr(gsc->fw.status)); drm_printf(p, "Release: %u.%u.%u.%u\n", gsc->release.major, gsc->release.minor, gsc->release.patch, gsc->release.build); drm_printf(p, "Compatibility Version: %u.%u [min expected %u.%u]\n", gsc->fw.file_selected.ver.major, gsc->fw.file_selected.ver.minor, gsc->fw.file_wanted.ver.major, gsc->fw.file_wanted.ver.minor); drm_printf(p, "SVN: %u\n", gsc->security_version); with_intel_runtime_pm(uncore->rpm, wakeref) { u32 i; for (i = 1; i <= 6; i++) { u32 status = intel_uncore_read(uncore, HECI_FWSTS(MTL_GSC_HECI1_BASE, i)); drm_printf(p, "HECI1 FWSTST%u = 0x%08x\n", i, status); } } }
linux-master
drivers/gpu/drm/i915/gt/uc/intel_gsc_uc.c
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include <drm/drm_print.h> #include "gt/intel_gt_debugfs.h" #include "intel_huc.h" #include "intel_huc_debugfs.h" static int huc_info_show(struct seq_file *m, void *data) { struct intel_huc *huc = m->private; struct drm_printer p = drm_seq_file_printer(m); if (!intel_huc_is_supported(huc)) return -ENODEV; intel_huc_load_status(huc, &p); return 0; } DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(huc_info); void intel_huc_debugfs_register(struct intel_huc *huc, struct dentry *root) { static const struct intel_gt_debugfs_file files[] = { { "huc_info", &huc_info_fops, NULL }, }; if (!intel_huc_is_supported(huc)) return; intel_gt_debugfs_register_files(root, files, ARRAY_SIZE(files), huc); }
linux-master
drivers/gpu/drm/i915/gt/uc/intel_huc_debugfs.c
// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include "gt/intel_gt.h" #include "gt/intel_hwconfig.h" #include "i915_drv.h" #include "i915_memcpy.h" /* * GuC has a blob containing hardware configuration information (HWConfig). * This is formatted as a simple and flexible KLV (Key/Length/Value) table. * * For example, a minimal version could be: * enum device_attr { * ATTR_SOME_VALUE = 0, * ATTR_SOME_MASK = 1, * }; * * static const u32 hwconfig[] = { * ATTR_SOME_VALUE, * 1, // Value Length in DWords * 8, // Value * * ATTR_SOME_MASK, * 3, * 0x00FFFFFFFF, 0xFFFFFFFF, 0xFF000000, * }; * * The attribute ids are defined in a hardware spec. */ static int __guc_action_get_hwconfig(struct intel_guc *guc, u32 ggtt_offset, u32 ggtt_size) { u32 action[] = { INTEL_GUC_ACTION_GET_HWCONFIG, lower_32_bits(ggtt_offset), upper_32_bits(ggtt_offset), ggtt_size, }; int ret; ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0); if (ret == -ENXIO) return -ENOENT; return ret; } static int guc_hwconfig_discover_size(struct intel_guc *guc, struct intel_hwconfig *hwconfig) { int ret; /* * Sending a query with zero offset and size will return the * size of the blob. */ ret = __guc_action_get_hwconfig(guc, 0, 0); if (ret < 0) return ret; if (ret == 0) return -EINVAL; hwconfig->size = ret; return 0; } static int guc_hwconfig_fill_buffer(struct intel_guc *guc, struct intel_hwconfig *hwconfig) { struct i915_vma *vma; u32 ggtt_offset; void *vaddr; int ret; GEM_BUG_ON(!hwconfig->size); ret = intel_guc_allocate_and_map_vma(guc, hwconfig->size, &vma, &vaddr); if (ret) return ret; ggtt_offset = intel_guc_ggtt_offset(guc, vma); ret = __guc_action_get_hwconfig(guc, ggtt_offset, hwconfig->size); if (ret >= 0) memcpy(hwconfig->ptr, vaddr, hwconfig->size); i915_vma_unpin_and_release(&vma, I915_VMA_RELEASE_MAP); return ret; } static bool has_table(struct drm_i915_private *i915) { if (IS_ALDERLAKE_P(i915) && !IS_ALDERLAKE_P_N(i915)) return true; if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) return true; return false; } /* * intel_guc_hwconfig_init - Initialize the HWConfig * * Retrieve the HWConfig table from the GuC and save it locally. * It can then be queried on demand by other users later on. */ static int guc_hwconfig_init(struct intel_gt *gt) { struct intel_hwconfig *hwconfig = &gt->info.hwconfig; struct intel_guc *guc = &gt->uc.guc; int ret; if (!has_table(gt->i915)) return 0; ret = guc_hwconfig_discover_size(guc, hwconfig); if (ret) return ret; hwconfig->ptr = kmalloc(hwconfig->size, GFP_KERNEL); if (!hwconfig->ptr) { hwconfig->size = 0; return -ENOMEM; } ret = guc_hwconfig_fill_buffer(guc, hwconfig); if (ret < 0) { intel_gt_fini_hwconfig(gt); return ret; } return 0; } /* * intel_gt_init_hwconfig - Initialize the HWConfig if available * * Retrieve the HWConfig table if available on the current platform. */ int intel_gt_init_hwconfig(struct intel_gt *gt) { if (!intel_uc_uses_guc(&gt->uc)) return 0; return guc_hwconfig_init(gt); } /* * intel_gt_fini_hwconfig - Finalize the HWConfig * * Free up the memory allocation holding the table. */ void intel_gt_fini_hwconfig(struct intel_gt *gt) { struct intel_hwconfig *hwconfig = &gt->info.hwconfig; kfree(hwconfig->ptr); hwconfig->size = 0; hwconfig->ptr = NULL; }
linux-master
drivers/gpu/drm/i915/gt/uc/intel_guc_hwconfig.c
// SPDX-License-Identifier: MIT /* * Copyright © 2014-2019 Intel Corporation */ #include "gem/i915_gem_lmem.h" #include "gt/intel_gt.h" #include "gt/intel_gt_irq.h" #include "gt/intel_gt_pm_irq.h" #include "gt/intel_gt_regs.h" #include "intel_guc.h" #include "intel_guc_ads.h" #include "intel_guc_capture.h" #include "intel_guc_print.h" #include "intel_guc_slpc.h" #include "intel_guc_submission.h" #include "i915_drv.h" #include "i915_irq.h" #include "i915_reg.h" /** * DOC: GuC * * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is * designed to offload some of the functionality usually performed by the host * driver; currently the main operations it can take care of are: * * - Authentication of the HuC, which is required to fully enable HuC usage. * - Low latency graphics context scheduling (a.k.a. GuC submission). * - GT Power management. * * The enable_guc module parameter can be used to select which of those * operations to enable within GuC. Note that not all the operations are * supported on all gen9+ platforms. * * Enabling the GuC is not mandatory and therefore the firmware is only loaded * if at least one of the operations is selected. However, not loading the GuC * might result in the loss of some features that do require the GuC (currently * just the HuC, but more are expected to land in the future). */ void intel_guc_notify(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); /* * On Gen11+, the value written to the register is passes as a payload * to the FW. However, the FW currently treats all values the same way * (H2G interrupt), so we can just write the value that the HW expects * on older gens. */ intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER); } static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i) { GEM_BUG_ON(!guc->send_regs.base); GEM_BUG_ON(!guc->send_regs.count); GEM_BUG_ON(i >= guc->send_regs.count); return _MMIO(guc->send_regs.base + 4 * i); } void intel_guc_init_send_regs(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); enum forcewake_domains fw_domains = 0; unsigned int i; GEM_BUG_ON(!guc->send_regs.base); GEM_BUG_ON(!guc->send_regs.count); for (i = 0; i < guc->send_regs.count; i++) { fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore, guc_send_reg(guc, i), FW_REG_READ | FW_REG_WRITE); } guc->send_regs.fw_domains = fw_domains; } static void gen9_reset_guc_interrupts(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); assert_rpm_wakelock_held(&gt->i915->runtime_pm); spin_lock_irq(gt->irq_lock); gen6_gt_pm_reset_iir(gt, gt->pm_guc_events); spin_unlock_irq(gt->irq_lock); } static void gen9_enable_guc_interrupts(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); assert_rpm_wakelock_held(&gt->i915->runtime_pm); spin_lock_irq(gt->irq_lock); guc_WARN_ON_ONCE(guc, intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) & gt->pm_guc_events); gen6_gt_pm_enable_irq(gt, gt->pm_guc_events); spin_unlock_irq(gt->irq_lock); guc->interrupts.enabled = true; } static void gen9_disable_guc_interrupts(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); assert_rpm_wakelock_held(&gt->i915->runtime_pm); guc->interrupts.enabled = false; spin_lock_irq(gt->irq_lock); gen6_gt_pm_disable_irq(gt, gt->pm_guc_events); spin_unlock_irq(gt->irq_lock); intel_synchronize_irq(gt->i915); gen9_reset_guc_interrupts(guc); } static bool __gen11_reset_guc_interrupts(struct intel_gt *gt) { u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC; lockdep_assert_held(gt->irq_lock); return gen11_gt_reset_one_iir(gt, 0, irq); } static void gen11_reset_guc_interrupts(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); spin_lock_irq(gt->irq_lock); __gen11_reset_guc_interrupts(gt); spin_unlock_irq(gt->irq_lock); } static void gen11_enable_guc_interrupts(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); spin_lock_irq(gt->irq_lock); __gen11_reset_guc_interrupts(gt); spin_unlock_irq(gt->irq_lock); guc->interrupts.enabled = true; } static void gen11_disable_guc_interrupts(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); guc->interrupts.enabled = false; intel_synchronize_irq(gt->i915); gen11_reset_guc_interrupts(guc); } void intel_guc_init_early(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct drm_i915_private *i915 = gt->i915; intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC, true); intel_guc_ct_init_early(&guc->ct); intel_guc_log_init_early(&guc->log); intel_guc_submission_init_early(guc); intel_guc_slpc_init_early(&guc->slpc); intel_guc_rc_init_early(guc); mutex_init(&guc->send_mutex); spin_lock_init(&guc->irq_lock); if (GRAPHICS_VER(i915) >= 11) { guc->interrupts.reset = gen11_reset_guc_interrupts; guc->interrupts.enable = gen11_enable_guc_interrupts; guc->interrupts.disable = gen11_disable_guc_interrupts; if (gt->type == GT_MEDIA) { guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT; guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0)); } else { guc->notify_reg = GEN11_GUC_HOST_INTERRUPT; guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0)); } guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT; } else { guc->notify_reg = GUC_SEND_INTERRUPT; guc->interrupts.reset = gen9_reset_guc_interrupts; guc->interrupts.enable = gen9_enable_guc_interrupts; guc->interrupts.disable = gen9_disable_guc_interrupts; guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0)); guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN; BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT); } intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION | INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED); } void intel_guc_init_late(struct intel_guc *guc) { intel_guc_ads_init_late(guc); } static u32 guc_ctl_debug_flags(struct intel_guc *guc) { u32 level = intel_guc_log_get_level(&guc->log); u32 flags = 0; if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) flags |= GUC_LOG_DISABLED; else flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << GUC_LOG_VERBOSITY_SHIFT; return flags; } static u32 guc_ctl_feature_flags(struct intel_guc *guc) { u32 flags = 0; if (!intel_guc_submission_is_used(guc)) flags |= GUC_CTL_DISABLE_SCHEDULER; if (intel_guc_slpc_is_used(guc)) flags |= GUC_CTL_ENABLE_SLPC; return flags; } static u32 guc_ctl_log_params_flags(struct intel_guc *guc) { struct intel_guc_log *log = &guc->log; u32 offset, flags; GEM_BUG_ON(!log->sizes_initialised); offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT; flags = GUC_LOG_VALID | GUC_LOG_NOTIFY_ON_HALF_FULL | log->sizes[GUC_LOG_SECTIONS_DEBUG].flag | log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag | (log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) | (log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) | (log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) | (offset << GUC_LOG_BUF_ADDR_SHIFT); return flags; } static u32 guc_ctl_ads_flags(struct intel_guc *guc) { u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT; u32 flags = ads << GUC_ADS_ADDR_SHIFT; return flags; } static u32 guc_ctl_wa_flags(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); u32 flags = 0; /* Wa_22012773006:gen11,gen12 < XeHP */ if (GRAPHICS_VER(gt->i915) >= 11 && GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 50)) flags |= GUC_WA_POLLCS; /* Wa_16011759253:dg2_g10:a0 */ if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0)) flags |= GUC_WA_GAM_CREDITS; /* Wa_14014475959 */ if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) || IS_DG2(gt->i915)) flags |= GUC_WA_HOLD_CCS_SWITCHOUT; /* * Wa_14012197797:dg2_g10:a0,dg2_g11:a0 * Wa_22011391025:dg2_g10,dg2_g11,dg2_g12 * * The same WA bit is used for both and 22011391025 is applicable to * all DG2. */ if (IS_DG2(gt->i915)) flags |= GUC_WA_DUAL_QUEUE; /* Wa_22011802037: graphics version 11/12 */ if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) || (GRAPHICS_VER(gt->i915) >= 11 && GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70))) flags |= GUC_WA_PRE_PARSER; /* Wa_16011777198:dg2 */ if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) || IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0)) flags |= GUC_WA_RCS_RESET_BEFORE_RC6; /* * Wa_22012727170:dg2_g10[a0-c0), dg2_g11[a0..) * Wa_22012727685:dg2_g11[a0..) */ if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) || IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_FOREVER)) flags |= GUC_WA_CONTEXT_ISOLATION; /* Wa_16015675438 */ if (!RCS_MASK(gt)) flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST; return flags; } static u32 guc_ctl_devid(struct intel_guc *guc) { struct drm_i915_private *i915 = guc_to_gt(guc)->i915; return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915); } /* * Initialise the GuC parameter block before starting the firmware * transfer. These parameters are read by the firmware on startup * and cannot be changed thereafter. */ static void guc_init_params(struct intel_guc *guc) { u32 *params = guc->params; int i; BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); params[GUC_CTL_WA] = guc_ctl_wa_flags(guc); params[GUC_CTL_DEVID] = guc_ctl_devid(guc); for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) guc_dbg(guc, "param[%2d] = %#x\n", i, params[i]); } /* * Initialise the GuC parameter block before starting the firmware * transfer. These parameters are read by the firmware on startup * and cannot be changed thereafter. */ void intel_guc_write_params(struct intel_guc *guc) { struct intel_uncore *uncore = guc_to_gt(guc)->uncore; int i; /* * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and * they are power context saved so it's ok to release forcewake * when we are done here and take it again at xfer time. */ intel_uncore_forcewake_get(uncore, FORCEWAKE_GT); intel_uncore_write(uncore, SOFT_SCRATCH(0), 0); for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]); intel_uncore_forcewake_put(uncore, FORCEWAKE_GT); } void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p) { struct intel_gt *gt = guc_to_gt(guc); intel_wakeref_t wakeref; u32 stamp = 0; u64 ktime; with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP); ktime = ktime_get_boottime_ns(); drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime); drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp); drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n", gt->clock_frequency, gt->clock_period_ns); } int intel_guc_init(struct intel_guc *guc) { int ret; ret = intel_uc_fw_init(&guc->fw); if (ret) goto out; ret = intel_guc_log_create(&guc->log); if (ret) goto err_fw; ret = intel_guc_capture_init(guc); if (ret) goto err_log; ret = intel_guc_ads_create(guc); if (ret) goto err_capture; GEM_BUG_ON(!guc->ads_vma); ret = intel_guc_ct_init(&guc->ct); if (ret) goto err_ads; if (intel_guc_submission_is_used(guc)) { /* * This is stuff we need to have available at fw load time * if we are planning to enable submission later */ ret = intel_guc_submission_init(guc); if (ret) goto err_ct; } if (intel_guc_slpc_is_used(guc)) { ret = intel_guc_slpc_init(&guc->slpc); if (ret) goto err_submission; } /* now that everything is perma-pinned, initialize the parameters */ guc_init_params(guc); intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE); return 0; err_submission: intel_guc_submission_fini(guc); err_ct: intel_guc_ct_fini(&guc->ct); err_ads: intel_guc_ads_destroy(guc); err_capture: intel_guc_capture_destroy(guc); err_log: intel_guc_log_destroy(&guc->log); err_fw: intel_uc_fw_fini(&guc->fw); out: intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL); guc_probe_error(guc, "failed with %pe\n", ERR_PTR(ret)); return ret; } void intel_guc_fini(struct intel_guc *guc) { if (!intel_uc_fw_is_loadable(&guc->fw)) return; if (intel_guc_slpc_is_used(guc)) intel_guc_slpc_fini(&guc->slpc); if (intel_guc_submission_is_used(guc)) intel_guc_submission_fini(guc); intel_guc_ct_fini(&guc->ct); intel_guc_ads_destroy(guc); intel_guc_capture_destroy(guc); intel_guc_log_destroy(&guc->log); intel_uc_fw_fini(&guc->fw); } /* * This function implements the MMIO based host to GuC interface. */ int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len, u32 *response_buf, u32 response_buf_size) { struct intel_uncore *uncore = guc_to_gt(guc)->uncore; u32 header; int i; int ret; GEM_BUG_ON(!len); GEM_BUG_ON(len > guc->send_regs.count); GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST); GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST); mutex_lock(&guc->send_mutex); intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains); retry: for (i = 0; i < len; i++) intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]); intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1)); intel_guc_notify(guc); /* * No GuC command should ever take longer than 10ms. * Fast commands should still complete in 10us. */ ret = __intel_wait_for_register_fw(uncore, guc_send_reg(guc, 0), GUC_HXG_MSG_0_ORIGIN, FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_GUC), 10, 10, &header); if (unlikely(ret)) { timeout: guc_err(guc, "mmio request %#x: no reply %x\n", request[0], header); goto out; } if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) { #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \ FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \ FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; }) ret = wait_for(done, 1000); if (unlikely(ret)) goto timeout; if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC)) goto proto; #undef done } if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header); guc_dbg(guc, "mmio request %#x: retrying, reason %u\n", request[0], reason); goto retry; } if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) { u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header); u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header); guc_err(guc, "mmio request %#x: failure %x/%u\n", request[0], error, hint); ret = -ENXIO; goto out; } if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) { proto: guc_err(guc, "mmio request %#x: unexpected reply %#x\n", request[0], header); ret = -EPROTO; goto out; } if (response_buf) { int count = min(response_buf_size, guc->send_regs.count); GEM_BUG_ON(!count); response_buf[0] = header; for (i = 1; i < count; i++) response_buf[i] = intel_uncore_read(uncore, guc_send_reg(guc, i)); /* Use number of copied dwords as our return value */ ret = count; } else { /* Use data from the GuC response as our return value */ ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header); } out: intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains); mutex_unlock(&guc->send_mutex); return ret; } int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, const u32 *payload, u32 len) { u32 msg; if (unlikely(!len)) return -EPROTO; /* Make sure to handle only enabled messages */ msg = payload[0] & guc->msg_enabled_mask; if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED) guc_err(guc, "Received early crash dump notification!\n"); if (msg & INTEL_GUC_RECV_MSG_EXCEPTION) guc_err(guc, "Received early exception notification!\n"); return 0; } /** * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode * @guc: intel_guc structure * @rsa_offset: rsa offset w.r.t ggtt base of huc vma * * Triggers a HuC firmware authentication request to the GuC via intel_guc_send * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by * intel_huc_auth(). * * Return: non-zero code on error */ int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset) { u32 action[] = { INTEL_GUC_ACTION_AUTHENTICATE_HUC, rsa_offset }; return intel_guc_send(guc, action, ARRAY_SIZE(action)); } /** * intel_guc_suspend() - notify GuC entering suspend state * @guc: the guc */ int intel_guc_suspend(struct intel_guc *guc) { int ret; u32 action[] = { INTEL_GUC_ACTION_CLIENT_SOFT_RESET, }; if (!intel_guc_is_ready(guc)) return 0; if (intel_guc_submission_is_used(guc)) { /* * This H2G MMIO command tears down the GuC in two steps. First it will * generate a G2H CTB for every active context indicating a reset. In * practice the i915 shouldn't ever get a G2H as suspend should only be * called when the GPU is idle. Next, it tears down the CTBs and this * H2G MMIO command completes. * * Don't abort on a failure code from the GuC. Keep going and do the * clean up in santize() and re-initialisation on resume and hopefully * the error here won't be problematic. */ ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0); if (ret) guc_err(guc, "suspend: RESET_CLIENT action failed with %pe\n", ERR_PTR(ret)); } /* Signal that the GuC isn't running. */ intel_guc_sanitize(guc); return 0; } /** * intel_guc_resume() - notify GuC resuming from suspend state * @guc: the guc */ int intel_guc_resume(struct intel_guc *guc) { /* * NB: This function can still be called even if GuC submission is * disabled, e.g. if GuC is enabled for HuC authentication only. Thus, * if any code is later added here, it must be support doing nothing * if submission is disabled (as per intel_guc_suspend). */ return 0; } /** * DOC: GuC Memory Management * * GuC can't allocate any memory for its own usage, so all the allocations must * be handled by the host driver. GuC accesses the memory via the GGTT, with the * exception of the top and bottom parts of the 4GB address space, which are * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM) * or other parts of the HW. The driver must take care not to place objects that * the GuC is going to access in these reserved ranges. The layout of the GuC * address space is shown below: * * :: * * +===========> +====================+ <== FFFF_FFFF * ^ | Reserved | * | +====================+ <== GUC_GGTT_TOP * | | | * | | DRAM | * GuC | | * Address +===> +====================+ <== GuC ggtt_pin_bias * Space ^ | | * | | | | * | GuC | GuC | * | WOPCM | WOPCM | * | Size | | * | | | | * v v | | * +=======+===> +====================+ <== 0000_0000 * * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size. */ /** * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage * @guc: the guc * @size: size of area to allocate (both virtual space and memory) * * This is a wrapper to create an object for use with the GuC. In order to * use it inside the GuC, an object needs to be pinned lifetime, so we allocate * both some backing storage and a range inside the Global GTT. We must pin * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that * range is reserved inside GuC. * * Return: A i915_vma if successful, otherwise an ERR_PTR. */ struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) { struct intel_gt *gt = guc_to_gt(guc); struct drm_i915_gem_object *obj; struct i915_vma *vma; u64 flags; int ret; if (HAS_LMEM(gt->i915)) obj = i915_gem_object_create_lmem(gt->i915, size, I915_BO_ALLOC_CPU_CLEAR | I915_BO_ALLOC_CONTIGUOUS | I915_BO_ALLOC_PM_EARLY); else obj = i915_gem_object_create_shmem(gt->i915, size); if (IS_ERR(obj)) return ERR_CAST(obj); /* * Wa_22016122933: For Media version 13.0, all Media GT shared * memory needs to be mapped as WC on CPU side and UC (PAT * index 2) on GPU side. */ if (intel_gt_needs_wa_22016122933(gt)) i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE); vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL); if (IS_ERR(vma)) goto err; flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); ret = i915_ggtt_pin(vma, NULL, 0, flags); if (ret) { vma = ERR_PTR(ret); goto err; } return i915_vma_make_unshrinkable(vma); err: i915_gem_object_put(obj); return vma; } /** * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage * @guc: the guc * @size: size of area to allocate (both virtual space and memory) * @out_vma: return variable for the allocated vma pointer * @out_vaddr: return variable for the obj mapping * * This wrapper calls intel_guc_allocate_vma() and then maps the allocated * object with I915_MAP_WB. * * Return: 0 if successful, a negative errno code otherwise. */ int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size, struct i915_vma **out_vma, void **out_vaddr) { struct i915_vma *vma; void *vaddr; vma = intel_guc_allocate_vma(guc, size); if (IS_ERR(vma)) return PTR_ERR(vma); vaddr = i915_gem_object_pin_map_unlocked(vma->obj, intel_gt_coherent_map_type(guc_to_gt(guc), vma->obj, true)); if (IS_ERR(vaddr)) { i915_vma_unpin_and_release(&vma, 0); return PTR_ERR(vaddr); } *out_vma = vma; *out_vaddr = vaddr; return 0; } static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) { u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = { FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG), FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) | FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len), FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)), FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)), }; int ret; GEM_BUG_ON(len > 2); GEM_BUG_ON(len == 1 && upper_32_bits(value)); /* Self config must go over MMIO */ ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0); if (unlikely(ret < 0)) return ret; if (unlikely(ret > 1)) return -EPROTO; if (unlikely(!ret)) return -ENOKEY; return 0; } static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) { int err = __guc_action_self_cfg(guc, key, len, value); if (unlikely(err)) guc_probe_error(guc, "Unsuccessful self-config (%pe) key %#hx value %#llx\n", ERR_PTR(err), key, value); return err; } int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value) { return __guc_self_cfg(guc, key, 1, value); } int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value) { return __guc_self_cfg(guc, key, 2, value); } /** * intel_guc_load_status - dump information about GuC load status * @guc: the GuC * @p: the &drm_printer * * Pretty printer for GuC load status. */ void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p) { struct intel_gt *gt = guc_to_gt(guc); struct intel_uncore *uncore = gt->uncore; intel_wakeref_t wakeref; if (!intel_guc_is_supported(guc)) { drm_printf(p, "GuC not supported\n"); return; } if (!intel_guc_is_wanted(guc)) { drm_printf(p, "GuC disabled\n"); return; } intel_uc_fw_dump(&guc->fw, p); with_intel_runtime_pm(uncore->rpm, wakeref) { u32 status = intel_uncore_read(uncore, GUC_STATUS); u32 i; drm_printf(p, "GuC status 0x%08x:\n", status); drm_printf(p, "\tBootrom status = 0x%x\n", (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT); drm_printf(p, "\tuKernel status = 0x%x\n", (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT); drm_printf(p, "\tMIA Core status = 0x%x\n", (status & GS_MIA_MASK) >> GS_MIA_SHIFT); drm_puts(p, "Scratch registers:\n"); for (i = 0; i < 16; i++) { drm_printf(p, "\t%2d: \t0x%x\n", i, intel_uncore_read(uncore, SOFT_SCRATCH(i))); } } } void intel_guc_write_barrier(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); if (i915_gem_object_is_lmem(guc->ct.vma->obj)) { /* * Ensure intel_uncore_write_fw can be used rather than * intel_uncore_write. */ GEM_BUG_ON(guc->send_regs.fw_domains); /* * This register is used by the i915 and GuC for MMIO based * communication. Once we are in this code CTBs are the only * method the i915 uses to communicate with the GuC so it is * safe to write to this register (a value of 0 is NOP for MMIO * communication). If we ever start mixing CTBs and MMIOs a new * register will have to be chosen. This function is also used * to enforce ordering of a work queue item write and an update * to the process descriptor. When a work queue is being used, * CTBs are also the only mechanism of communication. */ intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0); } else { /* wmb() sufficient for a barrier if in smem */ wmb(); } }
linux-master
drivers/gpu/drm/i915/gt/uc/intel_guc.c
// SPDX-License-Identifier: MIT /* * Copyright © 2014-2019 Intel Corporation */ #include "gt/intel_gsc.h" #include "gt/intel_gt.h" #include "intel_gsc_binary_headers.h" #include "intel_gsc_uc_heci_cmd_submit.h" #include "intel_huc.h" #include "intel_huc_fw.h" #include "intel_huc_print.h" #include "i915_drv.h" #include "pxp/intel_pxp_huc.h" #include "pxp/intel_pxp_cmd_interface_43.h" struct mtl_huc_auth_msg_in { struct intel_gsc_mtl_header header; struct pxp43_new_huc_auth_in huc_in; } __packed; struct mtl_huc_auth_msg_out { struct intel_gsc_mtl_header header; struct pxp43_huc_auth_out huc_out; } __packed; int intel_huc_fw_auth_via_gsccs(struct intel_huc *huc) { struct intel_gt *gt = huc_to_gt(huc); struct drm_i915_gem_object *obj; struct mtl_huc_auth_msg_in *msg_in; struct mtl_huc_auth_msg_out *msg_out; void *pkt_vaddr; u64 pkt_offset; int retry = 5; int err = 0; if (!huc->heci_pkt) return -ENODEV; obj = huc->heci_pkt->obj; pkt_offset = i915_ggtt_offset(huc->heci_pkt); pkt_vaddr = i915_gem_object_pin_map_unlocked(obj, intel_gt_coherent_map_type(gt, obj, true)); if (IS_ERR(pkt_vaddr)) return PTR_ERR(pkt_vaddr); msg_in = pkt_vaddr; msg_out = pkt_vaddr + PXP43_HUC_AUTH_INOUT_SIZE; intel_gsc_uc_heci_cmd_emit_mtl_header(&msg_in->header, HECI_MEADDRESS_PXP, sizeof(*msg_in), 0); msg_in->huc_in.header.api_version = PXP_APIVER(4, 3); msg_in->huc_in.header.command_id = PXP43_CMDID_NEW_HUC_AUTH; msg_in->huc_in.header.status = 0; msg_in->huc_in.header.buffer_len = sizeof(msg_in->huc_in) - sizeof(msg_in->huc_in.header); msg_in->huc_in.huc_base_address = huc->fw.vma_res.start; msg_in->huc_in.huc_size = huc->fw.obj->base.size; do { err = intel_gsc_uc_heci_cmd_submit_packet(&gt->uc.gsc, pkt_offset, sizeof(*msg_in), pkt_offset + PXP43_HUC_AUTH_INOUT_SIZE, PXP43_HUC_AUTH_INOUT_SIZE); if (err) { huc_err(huc, "failed to submit GSC request to auth: %d\n", err); goto out_unpin; } if (msg_out->header.flags & GSC_OUTFLAG_MSG_PENDING) { msg_in->header.gsc_message_handle = msg_out->header.gsc_message_handle; err = -EBUSY; msleep(50); } } while (--retry && err == -EBUSY); if (err) goto out_unpin; if (msg_out->header.message_size != sizeof(*msg_out)) { huc_err(huc, "invalid GSC reply length %u [expected %zu]\n", msg_out->header.message_size, sizeof(*msg_out)); err = -EPROTO; goto out_unpin; } /* * The GSC will return PXP_STATUS_OP_NOT_PERMITTED if the HuC is already * loaded. If the same error is ever returned with HuC not loaded we'll * still catch it when we check the authentication bit later. */ if (msg_out->huc_out.header.status != PXP_STATUS_SUCCESS && msg_out->huc_out.header.status != PXP_STATUS_OP_NOT_PERMITTED) { huc_err(huc, "auth failed with GSC error = 0x%x\n", msg_out->huc_out.header.status); err = -EIO; goto out_unpin; } out_unpin: i915_gem_object_unpin_map(obj); return err; } static bool css_valid(const void *data, size_t size) { const struct uc_css_header *css = data; if (unlikely(size < sizeof(struct uc_css_header))) return false; if (css->module_type != 0x6) return false; if (css->module_vendor != PCI_VENDOR_ID_INTEL) return false; return true; } static inline u32 entry_offset(const struct intel_gsc_cpd_entry *entry) { return entry->offset & INTEL_GSC_CPD_ENTRY_OFFSET_MASK; } int intel_huc_fw_get_binary_info(struct intel_uc_fw *huc_fw, const void *data, size_t size) { struct intel_huc *huc = container_of(huc_fw, struct intel_huc, fw); const struct intel_gsc_cpd_header_v2 *header = data; const struct intel_gsc_cpd_entry *entry; size_t min_size = sizeof(*header); int i; if (!huc_fw->has_gsc_headers) { huc_err(huc, "Invalid FW type for GSC header parsing!\n"); return -EINVAL; } if (size < sizeof(*header)) { huc_err(huc, "FW too small! %zu < %zu\n", size, min_size); return -ENODATA; } /* * The GSC-enabled HuC binary starts with a directory header, followed * by a series of entries. Each entry is identified by a name and * points to a specific section of the binary containing the relevant * data. The entries we're interested in are: * - "HUCP.man": points to the GSC manifest header for the HuC, which * contains the version info. * - "huc_fw": points to the legacy-style binary that can be used for * load via the DMA. This entry only contains a valid CSS * on binaries for platforms that support 2-step HuC load * via dma and auth via GSC (like MTL). * * -------------------------------------------------- * [ intel_gsc_cpd_header_v2 ] * -------------------------------------------------- * [ intel_gsc_cpd_entry[] ] * [ entry1 ] * [ ... ] * [ entryX ] * [ "HUCP.man" ] * [ ... ] * [ offset >----------------------------]------o * [ ... ] | * [ entryY ] | * [ "huc_fw" ] | * [ ... ] | * [ offset >----------------------------]----------o * -------------------------------------------------- | | * | | * -------------------------------------------------- | | * [ intel_gsc_manifest_header ]<-----o | * [ ... ] | * [ intel_gsc_version fw_version ] | * [ ... ] | * -------------------------------------------------- | * | * -------------------------------------------------- | * [ data[] ]<---------o * [ ... ] * [ ... ] * -------------------------------------------------- */ if (header->header_marker != INTEL_GSC_CPD_HEADER_MARKER) { huc_err(huc, "invalid marker for CPD header: 0x%08x!\n", header->header_marker); return -EINVAL; } /* we only have binaries with header v2 and entry v1 for now */ if (header->header_version != 2 || header->entry_version != 1) { huc_err(huc, "invalid CPD header/entry version %u:%u!\n", header->header_version, header->entry_version); return -EINVAL; } if (header->header_length < sizeof(struct intel_gsc_cpd_header_v2)) { huc_err(huc, "invalid CPD header length %u!\n", header->header_length); return -EINVAL; } min_size = header->header_length + sizeof(*entry) * header->num_of_entries; if (size < min_size) { huc_err(huc, "FW too small! %zu < %zu\n", size, min_size); return -ENODATA; } entry = data + header->header_length; for (i = 0; i < header->num_of_entries; i++, entry++) { if (strcmp(entry->name, "HUCP.man") == 0) intel_uc_fw_version_from_gsc_manifest(&huc_fw->file_selected.ver, data + entry_offset(entry)); if (strcmp(entry->name, "huc_fw") == 0) { u32 offset = entry_offset(entry); if (offset < size && css_valid(data + offset, size - offset)) huc_fw->dma_start_offset = offset; } } return 0; } int intel_huc_fw_load_and_auth_via_gsc(struct intel_huc *huc) { int ret; if (!intel_huc_is_loaded_by_gsc(huc)) return -ENODEV; if (!intel_uc_fw_is_loadable(&huc->fw)) return -ENOEXEC; /* * If we abort a suspend, HuC might still be loaded when the mei * component gets re-bound and this function called again. If so, just * mark the HuC as loaded. */ if (intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC)) { intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_RUNNING); return 0; } GEM_WARN_ON(intel_uc_fw_is_loaded(&huc->fw)); ret = intel_pxp_huc_load_and_auth(huc_to_gt(huc)->i915->pxp); if (ret) return ret; intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_TRANSFERRED); return intel_huc_wait_for_auth_complete(huc, INTEL_HUC_AUTH_BY_GSC); } /** * intel_huc_fw_upload() - load HuC uCode to device via DMA transfer * @huc: intel_huc structure * * Called from intel_uc_init_hw() during driver load, resume from sleep and * after a GPU reset. Note that HuC must be loaded before GuC. * * The firmware image should have already been fetched into memory, so only * check that fetch succeeded, and then transfer the image to the h/w. * * Return: non-zero code on error */ int intel_huc_fw_upload(struct intel_huc *huc) { if (intel_huc_is_loaded_by_gsc(huc)) return -ENODEV; /* HW doesn't look at destination address for HuC, so set it to 0 */ return intel_uc_fw_upload(&huc->fw, 0, HUC_UKERNEL); }
linux-master
drivers/gpu/drm/i915/gt/uc/intel_huc_fw.c
// SPDX-License-Identifier: MIT /* * Copyright © 2023 Intel Corporation */ #include "gt/intel_context.h" #include "gt/intel_engine_pm.h" #include "gt/intel_gpu_commands.h" #include "gt/intel_gt.h" #include "gt/intel_ring.h" #include "intel_gsc_uc_heci_cmd_submit.h" struct gsc_heci_pkt { u64 addr_in; u32 size_in; u64 addr_out; u32 size_out; }; static int emit_gsc_heci_pkt(struct i915_request *rq, struct gsc_heci_pkt *pkt) { u32 *cs; cs = intel_ring_begin(rq, 8); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = GSC_HECI_CMD_PKT; *cs++ = lower_32_bits(pkt->addr_in); *cs++ = upper_32_bits(pkt->addr_in); *cs++ = pkt->size_in; *cs++ = lower_32_bits(pkt->addr_out); *cs++ = upper_32_bits(pkt->addr_out); *cs++ = pkt->size_out; *cs++ = 0; intel_ring_advance(rq, cs); return 0; } int intel_gsc_uc_heci_cmd_submit_packet(struct intel_gsc_uc *gsc, u64 addr_in, u32 size_in, u64 addr_out, u32 size_out) { struct intel_context *ce = gsc->ce; struct i915_request *rq; struct gsc_heci_pkt pkt = { .addr_in = addr_in, .size_in = size_in, .addr_out = addr_out, .size_out = size_out }; int err; if (!ce) return -ENODEV; rq = i915_request_create(ce); if (IS_ERR(rq)) return PTR_ERR(rq); if (ce->engine->emit_init_breadcrumb) { err = ce->engine->emit_init_breadcrumb(rq); if (err) goto out_rq; } err = emit_gsc_heci_pkt(rq, &pkt); if (err) goto out_rq; err = ce->engine->emit_flush(rq, 0); out_rq: i915_request_get(rq); if (unlikely(err)) i915_request_set_error_once(rq, err); i915_request_add(rq); if (!err && i915_request_wait(rq, 0, msecs_to_jiffies(500)) < 0) err = -ETIME; i915_request_put(rq); if (err) drm_err(&gsc_uc_to_gt(gsc)->i915->drm, "Request submission for GSC heci cmd failed (%d)\n", err); return err; } void intel_gsc_uc_heci_cmd_emit_mtl_header(struct intel_gsc_mtl_header *header, u8 heci_client_id, u32 message_size, u64 host_session_id) { host_session_id &= ~HOST_SESSION_MASK; if (host_session_id && heci_client_id == HECI_MEADDRESS_PXP) host_session_id |= HOST_SESSION_PXP_SINGLE; header->validity_marker = GSC_HECI_VALIDITY_MARKER; header->heci_client_id = heci_client_id; header->host_session_handle = host_session_id; header->header_version = MTL_GSC_HEADER_VERSION; header->message_size = message_size; } static void emit_gsc_heci_pkt_nonpriv(u32 *cmd, struct intel_gsc_heci_non_priv_pkt *pkt) { *cmd++ = GSC_HECI_CMD_PKT; *cmd++ = lower_32_bits(pkt->addr_in); *cmd++ = upper_32_bits(pkt->addr_in); *cmd++ = pkt->size_in; *cmd++ = lower_32_bits(pkt->addr_out); *cmd++ = upper_32_bits(pkt->addr_out); *cmd++ = pkt->size_out; *cmd++ = 0; *cmd++ = MI_BATCH_BUFFER_END; } int intel_gsc_uc_heci_cmd_submit_nonpriv(struct intel_gsc_uc *gsc, struct intel_context *ce, struct intel_gsc_heci_non_priv_pkt *pkt, u32 *cmd, int timeout_ms) { struct intel_engine_cs *engine; struct i915_gem_ww_ctx ww; struct i915_request *rq; int err, trials = 0; i915_gem_ww_ctx_init(&ww, false); retry: err = i915_gem_object_lock(pkt->bb_vma->obj, &ww); if (err) goto out_ww; err = i915_gem_object_lock(pkt->heci_pkt_vma->obj, &ww); if (err) goto out_ww; err = intel_context_pin_ww(ce, &ww); if (err) goto out_ww; rq = i915_request_create(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out_unpin_ce; } emit_gsc_heci_pkt_nonpriv(cmd, pkt); err = i915_vma_move_to_active(pkt->bb_vma, rq, 0); if (err) goto out_rq; err = i915_vma_move_to_active(pkt->heci_pkt_vma, rq, EXEC_OBJECT_WRITE); if (err) goto out_rq; engine = rq->context->engine; if (engine->emit_init_breadcrumb) { err = engine->emit_init_breadcrumb(rq); if (err) goto out_rq; } err = engine->emit_bb_start(rq, i915_vma_offset(pkt->bb_vma), PAGE_SIZE, 0); if (err) goto out_rq; err = ce->engine->emit_flush(rq, 0); if (err) drm_err(&gsc_uc_to_gt(gsc)->i915->drm, "Failed emit-flush for gsc-heci-non-priv-pkterr=%d\n", err); out_rq: i915_request_get(rq); if (unlikely(err)) i915_request_set_error_once(rq, err); i915_request_add(rq); if (!err) { if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, msecs_to_jiffies(timeout_ms)) < 0) err = -ETIME; } i915_request_put(rq); out_unpin_ce: intel_context_unpin(ce); out_ww: if (err == -EDEADLK) { err = i915_gem_ww_ctx_backoff(&ww); if (!err) { if (++trials < 10) goto retry; else err = -EAGAIN; } } i915_gem_ww_ctx_fini(&ww); return err; }
linux-master
drivers/gpu/drm/i915/gt/uc/intel_gsc_uc_heci_cmd_submit.c
// SPDX-License-Identifier: MIT /* * Copyright © 2023 Intel Corporation */ #include <linux/component.h> #include <drm/i915_component.h> #include <drm/i915_gsc_proxy_mei_interface.h> #include "gt/intel_gt.h" #include "gt/intel_gt_print.h" #include "intel_gsc_proxy.h" #include "intel_gsc_uc.h" #include "intel_gsc_uc_heci_cmd_submit.h" #include "i915_drv.h" #include "i915_reg.h" /* * GSC proxy: * The GSC uC needs to communicate with the CSME to perform certain operations. * Since the GSC can't perform this communication directly on platforms where it * is integrated in GT, i915 needs to transfer the messages from GSC to CSME * and back. i915 must manually start the proxy flow after the GSC is loaded to * signal to GSC that we're ready to handle its messages and allow it to query * its init data from CSME; GSC will then trigger an HECI2 interrupt if it needs * to send messages to CSME again. * The proxy flow is as follow: * 1 - i915 submits a request to GSC asking for the message to CSME * 2 - GSC replies with the proxy header + payload for CSME * 3 - i915 sends the reply from GSC as-is to CSME via the mei proxy component * 4 - CSME replies with the proxy header + payload for GSC * 5 - i915 submits a request to GSC with the reply from CSME * 6 - GSC replies either with a new header + payload (same as step 2, so we * restart from there) or with an end message. */ /* * The component should load quite quickly in most cases, but it could take * a bit. Using a very big timeout just to cover the worst case scenario */ #define GSC_PROXY_INIT_TIMEOUT_MS 20000 /* the protocol supports up to 32K in each direction */ #define GSC_PROXY_BUFFER_SIZE SZ_32K #define GSC_PROXY_CHANNEL_SIZE (GSC_PROXY_BUFFER_SIZE * 2) #define GSC_PROXY_MAX_MSG_SIZE (GSC_PROXY_BUFFER_SIZE - sizeof(struct intel_gsc_mtl_header)) /* FW-defined proxy header */ struct intel_gsc_proxy_header { /* * hdr: * Bits 0-7: type of the proxy message (see enum intel_gsc_proxy_type) * Bits 8-15: rsvd * Bits 16-31: length in bytes of the payload following the proxy header */ u32 hdr; #define GSC_PROXY_TYPE GENMASK(7, 0) #define GSC_PROXY_PAYLOAD_LENGTH GENMASK(31, 16) u32 source; /* Source of the Proxy message */ u32 destination; /* Destination of the Proxy message */ #define GSC_PROXY_ADDRESSING_KMD 0x10000 #define GSC_PROXY_ADDRESSING_GSC 0x20000 #define GSC_PROXY_ADDRESSING_CSME 0x30000 u32 status; /* Command status */ } __packed; /* FW-defined proxy types */ enum intel_gsc_proxy_type { GSC_PROXY_MSG_TYPE_PROXY_INVALID = 0, GSC_PROXY_MSG_TYPE_PROXY_QUERY = 1, GSC_PROXY_MSG_TYPE_PROXY_PAYLOAD = 2, GSC_PROXY_MSG_TYPE_PROXY_END = 3, GSC_PROXY_MSG_TYPE_PROXY_NOTIFICATION = 4, }; struct gsc_proxy_msg { struct intel_gsc_mtl_header header; struct intel_gsc_proxy_header proxy_header; } __packed; static int proxy_send_to_csme(struct intel_gsc_uc *gsc) { struct intel_gt *gt = gsc_uc_to_gt(gsc); struct i915_gsc_proxy_component *comp = gsc->proxy.component; struct intel_gsc_mtl_header *hdr; void *in = gsc->proxy.to_csme; void *out = gsc->proxy.to_gsc; u32 in_size; int ret; /* CSME msg only includes the proxy */ hdr = in; in += sizeof(struct intel_gsc_mtl_header); out += sizeof(struct intel_gsc_mtl_header); in_size = hdr->message_size - sizeof(struct intel_gsc_mtl_header); /* the message must contain at least the proxy header */ if (in_size < sizeof(struct intel_gsc_proxy_header) || in_size > GSC_PROXY_MAX_MSG_SIZE) { gt_err(gt, "Invalid CSME message size: %u\n", in_size); return -EINVAL; } ret = comp->ops->send(comp->mei_dev, in, in_size); if (ret < 0) { gt_err(gt, "Failed to send CSME message\n"); return ret; } ret = comp->ops->recv(comp->mei_dev, out, GSC_PROXY_MAX_MSG_SIZE); if (ret < 0) { gt_err(gt, "Failed to receive CSME message\n"); return ret; } return ret; } static int proxy_send_to_gsc(struct intel_gsc_uc *gsc) { struct intel_gt *gt = gsc_uc_to_gt(gsc); u32 *marker = gsc->proxy.to_csme; /* first dw of the reply header */ u64 addr_in = i915_ggtt_offset(gsc->proxy.vma); u64 addr_out = addr_in + GSC_PROXY_BUFFER_SIZE; u32 size = ((struct gsc_proxy_msg *)gsc->proxy.to_gsc)->header.message_size; int err; /* the message must contain at least the gsc and proxy headers */ if (size < sizeof(struct gsc_proxy_msg) || size > GSC_PROXY_BUFFER_SIZE) { gt_err(gt, "Invalid GSC proxy message size: %u\n", size); return -EINVAL; } /* clear the message marker */ *marker = 0; /* make sure the marker write is flushed */ wmb(); /* send the request */ err = intel_gsc_uc_heci_cmd_submit_packet(gsc, addr_in, size, addr_out, GSC_PROXY_BUFFER_SIZE); if (!err) { /* wait for the reply to show up */ err = wait_for(*marker != 0, 300); if (err) gt_err(gt, "Failed to get a proxy reply from gsc\n"); } return err; } static int validate_proxy_header(struct intel_gsc_proxy_header *header, u32 source, u32 dest) { u32 type = FIELD_GET(GSC_PROXY_TYPE, header->hdr); u32 length = FIELD_GET(GSC_PROXY_PAYLOAD_LENGTH, header->hdr); int ret = 0; if (header->destination != dest || header->source != source) { ret = -ENOEXEC; goto fail; } switch (type) { case GSC_PROXY_MSG_TYPE_PROXY_PAYLOAD: if (length > 0) break; fallthrough; case GSC_PROXY_MSG_TYPE_PROXY_INVALID: ret = -EIO; goto fail; default: break; } fail: return ret; } static int proxy_query(struct intel_gsc_uc *gsc) { struct intel_gt *gt = gsc_uc_to_gt(gsc); struct gsc_proxy_msg *to_gsc = gsc->proxy.to_gsc; struct gsc_proxy_msg *to_csme = gsc->proxy.to_csme; int ret; intel_gsc_uc_heci_cmd_emit_mtl_header(&to_gsc->header, HECI_MEADDRESS_PROXY, sizeof(struct gsc_proxy_msg), 0); to_gsc->proxy_header.hdr = FIELD_PREP(GSC_PROXY_TYPE, GSC_PROXY_MSG_TYPE_PROXY_QUERY) | FIELD_PREP(GSC_PROXY_PAYLOAD_LENGTH, 0); to_gsc->proxy_header.source = GSC_PROXY_ADDRESSING_KMD; to_gsc->proxy_header.destination = GSC_PROXY_ADDRESSING_GSC; to_gsc->proxy_header.status = 0; while (1) { /* clear the GSC response header space */ memset(gsc->proxy.to_csme, 0, sizeof(struct gsc_proxy_msg)); /* send proxy message to GSC */ ret = proxy_send_to_gsc(gsc); if (ret) { gt_err(gt, "failed to send proxy message to GSC! %d\n", ret); goto proxy_error; } /* stop if this was the last message */ if (FIELD_GET(GSC_PROXY_TYPE, to_csme->proxy_header.hdr) == GSC_PROXY_MSG_TYPE_PROXY_END) break; /* make sure the GSC-to-CSME proxy header is sane */ ret = validate_proxy_header(&to_csme->proxy_header, GSC_PROXY_ADDRESSING_GSC, GSC_PROXY_ADDRESSING_CSME); if (ret) { gt_err(gt, "invalid GSC to CSME proxy header! %d\n", ret); goto proxy_error; } /* send the GSC message to the CSME */ ret = proxy_send_to_csme(gsc); if (ret < 0) { gt_err(gt, "failed to send proxy message to CSME! %d\n", ret); goto proxy_error; } /* update the GSC message size with the returned value from CSME */ to_gsc->header.message_size = ret + sizeof(struct intel_gsc_mtl_header); /* make sure the CSME-to-GSC proxy header is sane */ ret = validate_proxy_header(&to_gsc->proxy_header, GSC_PROXY_ADDRESSING_CSME, GSC_PROXY_ADDRESSING_GSC); if (ret) { gt_err(gt, "invalid CSME to GSC proxy header! %d\n", ret); goto proxy_error; } } proxy_error: return ret < 0 ? ret : 0; } int intel_gsc_proxy_request_handler(struct intel_gsc_uc *gsc) { struct intel_gt *gt = gsc_uc_to_gt(gsc); int err; if (!gsc->proxy.component_added) return -ENODEV; assert_rpm_wakelock_held(gt->uncore->rpm); /* when GSC is loaded, we can queue this before the component is bound */ err = wait_for(gsc->proxy.component, GSC_PROXY_INIT_TIMEOUT_MS); if (err) { gt_err(gt, "GSC proxy component didn't bind within the expected timeout\n"); return -EIO; } mutex_lock(&gsc->proxy.mutex); if (!gsc->proxy.component) { gt_err(gt, "GSC proxy worker called without the component being bound!\n"); err = -EIO; } else { /* * write the status bit to clear it and allow new proxy * interrupts to be generated while we handle the current * request, but be sure not to write the reset bit */ intel_uncore_rmw(gt->uncore, HECI_H_CSR(MTL_GSC_HECI2_BASE), HECI_H_CSR_RST, HECI_H_CSR_IS); err = proxy_query(gsc); } mutex_unlock(&gsc->proxy.mutex); return err; } void intel_gsc_proxy_irq_handler(struct intel_gsc_uc *gsc, u32 iir) { struct intel_gt *gt = gsc_uc_to_gt(gsc); if (unlikely(!iir)) return; lockdep_assert_held(gt->irq_lock); if (!gsc->proxy.component) { gt_err(gt, "GSC proxy irq received without the component being bound!\n"); return; } gsc->gsc_work_actions |= GSC_ACTION_SW_PROXY; queue_work(gsc->wq, &gsc->work); } static int i915_gsc_proxy_component_bind(struct device *i915_kdev, struct device *mei_kdev, void *data) { struct drm_i915_private *i915 = kdev_to_i915(i915_kdev); struct intel_gt *gt = i915->media_gt; struct intel_gsc_uc *gsc = &gt->uc.gsc; intel_wakeref_t wakeref; /* enable HECI2 IRQs */ with_intel_runtime_pm(&i915->runtime_pm, wakeref) intel_uncore_rmw(gt->uncore, HECI_H_CSR(MTL_GSC_HECI2_BASE), HECI_H_CSR_RST, HECI_H_CSR_IE); mutex_lock(&gsc->proxy.mutex); gsc->proxy.component = data; gsc->proxy.component->mei_dev = mei_kdev; mutex_unlock(&gsc->proxy.mutex); return 0; } static void i915_gsc_proxy_component_unbind(struct device *i915_kdev, struct device *mei_kdev, void *data) { struct drm_i915_private *i915 = kdev_to_i915(i915_kdev); struct intel_gt *gt = i915->media_gt; struct intel_gsc_uc *gsc = &gt->uc.gsc; intel_wakeref_t wakeref; mutex_lock(&gsc->proxy.mutex); gsc->proxy.component = NULL; mutex_unlock(&gsc->proxy.mutex); /* disable HECI2 IRQs */ with_intel_runtime_pm(&i915->runtime_pm, wakeref) intel_uncore_rmw(gt->uncore, HECI_H_CSR(MTL_GSC_HECI2_BASE), HECI_H_CSR_IE | HECI_H_CSR_RST, 0); } static const struct component_ops i915_gsc_proxy_component_ops = { .bind = i915_gsc_proxy_component_bind, .unbind = i915_gsc_proxy_component_unbind, }; static int proxy_channel_alloc(struct intel_gsc_uc *gsc) { struct intel_gt *gt = gsc_uc_to_gt(gsc); struct i915_vma *vma; void *vaddr; int err; err = intel_guc_allocate_and_map_vma(&gt->uc.guc, GSC_PROXY_CHANNEL_SIZE, &vma, &vaddr); if (err) return err; gsc->proxy.vma = vma; gsc->proxy.to_gsc = vaddr; gsc->proxy.to_csme = vaddr + GSC_PROXY_BUFFER_SIZE; return 0; } static void proxy_channel_free(struct intel_gsc_uc *gsc) { if (!gsc->proxy.vma) return; gsc->proxy.to_gsc = NULL; gsc->proxy.to_csme = NULL; i915_vma_unpin_and_release(&gsc->proxy.vma, I915_VMA_RELEASE_MAP); } void intel_gsc_proxy_fini(struct intel_gsc_uc *gsc) { struct intel_gt *gt = gsc_uc_to_gt(gsc); struct drm_i915_private *i915 = gt->i915; if (fetch_and_zero(&gsc->proxy.component_added)) component_del(i915->drm.dev, &i915_gsc_proxy_component_ops); proxy_channel_free(gsc); } int intel_gsc_proxy_init(struct intel_gsc_uc *gsc) { int err; struct intel_gt *gt = gsc_uc_to_gt(gsc); struct drm_i915_private *i915 = gt->i915; mutex_init(&gsc->proxy.mutex); if (!IS_ENABLED(CONFIG_INTEL_MEI_GSC_PROXY)) { gt_info(gt, "can't init GSC proxy due to missing mei component\n"); return -ENODEV; } err = proxy_channel_alloc(gsc); if (err) return err; err = component_add_typed(i915->drm.dev, &i915_gsc_proxy_component_ops, I915_COMPONENT_GSC_PROXY); if (err < 0) { gt_err(gt, "Failed to add GSC_PROXY component (%d)\n", err); goto out_free; } gsc->proxy.component_added = true; return 0; out_free: proxy_channel_free(gsc); return err; }
linux-master
drivers/gpu/drm/i915/gt/uc/intel_gsc_proxy.c
// SPDX-License-Identifier: MIT /* * Copyright �� 2021 Intel Corporation */ #include "gt/intel_gt_print.h" #include "intel_guc_print.h" #include "selftests/igt_spinner.h" #include "selftests/intel_scheduler_helpers.h" static int request_add_spin(struct i915_request *rq, struct igt_spinner *spin) { int err = 0; i915_request_get(rq); i915_request_add(rq); if (spin && !igt_wait_for_spinner(spin, rq)) err = -ETIMEDOUT; return err; } static struct i915_request *nop_user_request(struct intel_context *ce, struct i915_request *from) { struct i915_request *rq; int ret; rq = intel_context_create_request(ce); if (IS_ERR(rq)) return rq; if (from) { ret = i915_sw_fence_await_dma_fence(&rq->submit, &from->fence, 0, I915_FENCE_GFP); if (ret < 0) { i915_request_put(rq); return ERR_PTR(ret); } } i915_request_get(rq); i915_request_add(rq); return rq; } static int intel_guc_scrub_ctbs(void *arg) { struct intel_gt *gt = arg; int ret = 0; int i; struct i915_request *last[3] = {NULL, NULL, NULL}, *rq; intel_wakeref_t wakeref; struct intel_engine_cs *engine; struct intel_context *ce; if (!intel_has_gpu_reset(gt)) return 0; wakeref = intel_runtime_pm_get(gt->uncore->rpm); engine = intel_selftest_find_any_engine(gt); /* Submit requests and inject errors forcing G2H to be dropped */ for (i = 0; i < 3; ++i) { ce = intel_context_create(engine); if (IS_ERR(ce)) { ret = PTR_ERR(ce); gt_err(gt, "Failed to create context %d: %pe\n", i, ce); goto err; } switch (i) { case 0: ce->drop_schedule_enable = true; break; case 1: ce->drop_schedule_disable = true; break; case 2: ce->drop_deregister = true; break; } rq = nop_user_request(ce, NULL); intel_context_put(ce); if (IS_ERR(rq)) { ret = PTR_ERR(rq); gt_err(gt, "Failed to create request %d: %pe\n", i, rq); goto err; } last[i] = rq; } for (i = 0; i < 3; ++i) { ret = i915_request_wait(last[i], 0, HZ); if (ret < 0) { gt_err(gt, "Last request failed to complete: %pe\n", ERR_PTR(ret)); goto err; } i915_request_put(last[i]); last[i] = NULL; } /* Force all H2G / G2H to be submitted / processed */ intel_gt_retire_requests(gt); msleep(500); /* Scrub missing G2H */ intel_gt_handle_error(engine->gt, -1, 0, "selftest reset"); /* GT will not idle if G2H are lost */ ret = intel_gt_wait_for_idle(gt, HZ); if (ret < 0) { gt_err(gt, "GT failed to idle: %pe\n", ERR_PTR(ret)); goto err; } err: for (i = 0; i < 3; ++i) if (last[i]) i915_request_put(last[i]); intel_runtime_pm_put(gt->uncore->rpm, wakeref); return ret; } /* * intel_guc_steal_guc_ids - Test to exhaust all guc_ids and then steal one * * This test creates a spinner which is used to block all subsequent submissions * until it completes. Next, a loop creates a context and a NOP request each * iteration until the guc_ids are exhausted (request creation returns -EAGAIN). * The spinner is ended, unblocking all requests created in the loop. At this * point all guc_ids are exhausted but are available to steal. Try to create * another request which should successfully steal a guc_id. Wait on last * request to complete, idle GPU, verify a guc_id was stolen via a counter, and * exit the test. Test also artificially reduces the number of guc_ids so the * test runs in a timely manner. */ static int intel_guc_steal_guc_ids(void *arg) { struct intel_gt *gt = arg; struct intel_guc *guc = &gt->uc.guc; int ret, sv, context_index = 0; intel_wakeref_t wakeref; struct intel_engine_cs *engine; struct intel_context **ce; struct igt_spinner spin; struct i915_request *spin_rq = NULL, *rq, *last = NULL; int number_guc_id_stolen = guc->number_guc_id_stolen; ce = kcalloc(GUC_MAX_CONTEXT_ID, sizeof(*ce), GFP_KERNEL); if (!ce) { guc_err(guc, "Context array allocation failed\n"); return -ENOMEM; } wakeref = intel_runtime_pm_get(gt->uncore->rpm); engine = intel_selftest_find_any_engine(gt); sv = guc->submission_state.num_guc_ids; guc->submission_state.num_guc_ids = 512; /* Create spinner to block requests in below loop */ ce[context_index] = intel_context_create(engine); if (IS_ERR(ce[context_index])) { ret = PTR_ERR(ce[context_index]); guc_err(guc, "Failed to create context: %pe\n", ce[context_index]); ce[context_index] = NULL; goto err_wakeref; } ret = igt_spinner_init(&spin, engine->gt); if (ret) { guc_err(guc, "Failed to create spinner: %pe\n", ERR_PTR(ret)); goto err_contexts; } spin_rq = igt_spinner_create_request(&spin, ce[context_index], MI_ARB_CHECK); if (IS_ERR(spin_rq)) { ret = PTR_ERR(spin_rq); guc_err(guc, "Failed to create spinner request: %pe\n", spin_rq); goto err_contexts; } ret = request_add_spin(spin_rq, &spin); if (ret) { guc_err(guc, "Failed to add Spinner request: %pe\n", ERR_PTR(ret)); goto err_spin_rq; } /* Use all guc_ids */ while (ret != -EAGAIN) { ce[++context_index] = intel_context_create(engine); if (IS_ERR(ce[context_index])) { ret = PTR_ERR(ce[context_index]); guc_err(guc, "Failed to create context: %pe\n", ce[context_index]); ce[context_index--] = NULL; goto err_spin_rq; } rq = nop_user_request(ce[context_index], spin_rq); if (IS_ERR(rq)) { ret = PTR_ERR(rq); rq = NULL; if ((ret != -EAGAIN) || !last) { guc_err(guc, "Failed to create %srequest %d: %pe\n", last ? "" : "first ", context_index, ERR_PTR(ret)); goto err_spin_rq; } } else { if (last) i915_request_put(last); last = rq; } } /* Release blocked requests */ igt_spinner_end(&spin); ret = intel_selftest_wait_for_rq(spin_rq); if (ret) { guc_err(guc, "Spin request failed to complete: %pe\n", ERR_PTR(ret)); i915_request_put(last); goto err_spin_rq; } i915_request_put(spin_rq); igt_spinner_fini(&spin); spin_rq = NULL; /* Wait for last request */ ret = i915_request_wait(last, 0, HZ * 30); i915_request_put(last); if (ret < 0) { guc_err(guc, "Last request failed to complete: %pe\n", ERR_PTR(ret)); goto err_spin_rq; } /* Try to steal guc_id */ rq = nop_user_request(ce[context_index], NULL); if (IS_ERR(rq)) { ret = PTR_ERR(rq); guc_err(guc, "Failed to steal guc_id %d: %pe\n", context_index, rq); goto err_spin_rq; } /* Wait for request with stolen guc_id */ ret = i915_request_wait(rq, 0, HZ); i915_request_put(rq); if (ret < 0) { guc_err(guc, "Request with stolen guc_id failed to complete: %pe\n", ERR_PTR(ret)); goto err_spin_rq; } /* Wait for idle */ ret = intel_gt_wait_for_idle(gt, HZ * 30); if (ret < 0) { guc_err(guc, "GT failed to idle: %pe\n", ERR_PTR(ret)); goto err_spin_rq; } /* Verify a guc_id was stolen */ if (guc->number_guc_id_stolen == number_guc_id_stolen) { guc_err(guc, "No guc_id was stolen"); ret = -EINVAL; } else { ret = 0; } err_spin_rq: if (spin_rq) { igt_spinner_end(&spin); intel_selftest_wait_for_rq(spin_rq); i915_request_put(spin_rq); igt_spinner_fini(&spin); intel_gt_wait_for_idle(gt, HZ * 30); } err_contexts: for (; context_index >= 0 && ce[context_index]; --context_index) intel_context_put(ce[context_index]); err_wakeref: intel_runtime_pm_put(gt->uncore->rpm, wakeref); kfree(ce); guc->submission_state.num_guc_ids = sv; return ret; } int intel_guc_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(intel_guc_scrub_ctbs), SUBTEST(intel_guc_steal_guc_ids), }; struct intel_gt *gt = to_gt(i915); if (intel_gt_is_wedged(gt)) return 0; if (!intel_uc_uses_guc_submission(&gt->uc)) return 0; return intel_gt_live_subtests(tests, gt); }
linux-master
drivers/gpu/drm/i915/gt/uc/selftest_guc.c
// SPDX-License-Identifier: MIT /* * Copyright © 2016-2019 Intel Corporation */ #include <linux/types.h> #include "gt/intel_gt.h" #include "intel_guc_reg.h" #include "intel_huc.h" #include "intel_huc_print.h" #include "i915_drv.h" #include "i915_reg.h" #include "pxp/intel_pxp_cmd_interface_43.h" #include <linux/device/bus.h> #include <linux/mei_aux.h> /** * DOC: HuC * * The HuC is a dedicated microcontroller for usage in media HEVC (High * Efficiency Video Coding) operations. Userspace can directly use the firmware * capabilities by adding HuC specific commands to batch buffers. * * The kernel driver is only responsible for loading the HuC firmware and * triggering its security authentication. This is done differently depending * on the platform: * * - older platforms (from Gen9 to most Gen12s): the load is performed via DMA * and the authentication via GuC * - DG2: load and authentication are both performed via GSC. * - MTL and newer platforms: the load is performed via DMA (same as with * not-DG2 older platforms), while the authentication is done in 2-steps, * a first auth for clear-media workloads via GuC and a second one for all * workloads via GSC. * * On platforms where the GuC does the authentication, to correctly do so the * HuC binary must be loaded before the GuC one. * Loading the HuC is optional; however, not using the HuC might negatively * impact power usage and/or performance of media workloads, depending on the * use-cases. * HuC must be reloaded on events that cause the WOPCM to lose its contents * (S3/S4, FLR); on older platforms the HuC must also be reloaded on GuC/GT * reset, while on newer ones it will survive that. * * See https://github.com/intel/media-driver for the latest details on HuC * functionality. */ /** * DOC: HuC Memory Management * * Similarly to the GuC, the HuC can't do any memory allocations on its own, * with the difference being that the allocations for HuC usage are handled by * the userspace driver instead of the kernel one. The HuC accesses the memory * via the PPGTT belonging to the context loaded on the VCS executing the * HuC-specific commands. */ /* * MEI-GSC load is an async process. The probing of the exposed aux device * (see intel_gsc.c) usually happens a few seconds after i915 probe, depending * on when the kernel schedules it. Unless something goes terribly wrong, we're * guaranteed for this to happen during boot, so the big timeout is a safety net * that we never expect to need. * MEI-PXP + HuC load usually takes ~300ms, but if the GSC needs to be resumed * and/or reset, this can take longer. Note that the kernel might schedule * other work between the i915 init/resume and the MEI one, which can add to * the delay. */ #define GSC_INIT_TIMEOUT_MS 10000 #define PXP_INIT_TIMEOUT_MS 5000 static int sw_fence_dummy_notify(struct i915_sw_fence *sf, enum i915_sw_fence_notify state) { return NOTIFY_DONE; } static void __delayed_huc_load_complete(struct intel_huc *huc) { if (!i915_sw_fence_done(&huc->delayed_load.fence)) i915_sw_fence_complete(&huc->delayed_load.fence); } static void delayed_huc_load_complete(struct intel_huc *huc) { hrtimer_cancel(&huc->delayed_load.timer); __delayed_huc_load_complete(huc); } static void __gsc_init_error(struct intel_huc *huc) { huc->delayed_load.status = INTEL_HUC_DELAYED_LOAD_ERROR; __delayed_huc_load_complete(huc); } static void gsc_init_error(struct intel_huc *huc) { hrtimer_cancel(&huc->delayed_load.timer); __gsc_init_error(huc); } static void gsc_init_done(struct intel_huc *huc) { hrtimer_cancel(&huc->delayed_load.timer); /* MEI-GSC init is done, now we wait for MEI-PXP to bind */ huc->delayed_load.status = INTEL_HUC_WAITING_ON_PXP; if (!i915_sw_fence_done(&huc->delayed_load.fence)) hrtimer_start(&huc->delayed_load.timer, ms_to_ktime(PXP_INIT_TIMEOUT_MS), HRTIMER_MODE_REL); } static enum hrtimer_restart huc_delayed_load_timer_callback(struct hrtimer *hrtimer) { struct intel_huc *huc = container_of(hrtimer, struct intel_huc, delayed_load.timer); if (!intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC)) { if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_GSC) huc_notice(huc, "timed out waiting for MEI GSC\n"); else if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_PXP) huc_notice(huc, "timed out waiting for MEI PXP\n"); else MISSING_CASE(huc->delayed_load.status); __gsc_init_error(huc); } return HRTIMER_NORESTART; } static void huc_delayed_load_start(struct intel_huc *huc) { ktime_t delay; GEM_BUG_ON(intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC)); /* * On resume we don't have to wait for MEI-GSC to be re-probed, but we * do need to wait for MEI-PXP to reset & re-bind */ switch (huc->delayed_load.status) { case INTEL_HUC_WAITING_ON_GSC: delay = ms_to_ktime(GSC_INIT_TIMEOUT_MS); break; case INTEL_HUC_WAITING_ON_PXP: delay = ms_to_ktime(PXP_INIT_TIMEOUT_MS); break; default: gsc_init_error(huc); return; } /* * This fence is always complete unless we're waiting for the * GSC device to come up to load the HuC. We arm the fence here * and complete it when we confirm that the HuC is loaded from * the PXP bind callback. */ GEM_BUG_ON(!i915_sw_fence_done(&huc->delayed_load.fence)); i915_sw_fence_fini(&huc->delayed_load.fence); i915_sw_fence_reinit(&huc->delayed_load.fence); i915_sw_fence_await(&huc->delayed_load.fence); i915_sw_fence_commit(&huc->delayed_load.fence); hrtimer_start(&huc->delayed_load.timer, delay, HRTIMER_MODE_REL); } static int gsc_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct device *dev = data; struct intel_huc *huc = container_of(nb, struct intel_huc, delayed_load.nb); struct intel_gsc_intf *intf = &huc_to_gt(huc)->gsc.intf[0]; if (!intf->adev || &intf->adev->aux_dev.dev != dev) return 0; switch (action) { case BUS_NOTIFY_BOUND_DRIVER: /* mei driver bound to aux device */ gsc_init_done(huc); break; case BUS_NOTIFY_DRIVER_NOT_BOUND: /* mei driver fails to be bound */ case BUS_NOTIFY_UNBIND_DRIVER: /* mei driver about to be unbound */ huc_info(huc, "MEI driver not bound, disabling load\n"); gsc_init_error(huc); break; } return 0; } void intel_huc_register_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus) { int ret; if (!intel_huc_is_loaded_by_gsc(huc)) return; huc->delayed_load.nb.notifier_call = gsc_notifier; ret = bus_register_notifier(bus, &huc->delayed_load.nb); if (ret) { huc_err(huc, "failed to register GSC notifier %pe\n", ERR_PTR(ret)); huc->delayed_load.nb.notifier_call = NULL; gsc_init_error(huc); } } void intel_huc_unregister_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus) { if (!huc->delayed_load.nb.notifier_call) return; delayed_huc_load_complete(huc); bus_unregister_notifier(bus, &huc->delayed_load.nb); huc->delayed_load.nb.notifier_call = NULL; } static void delayed_huc_load_init(struct intel_huc *huc) { /* * Initialize fence to be complete as this is expected to be complete * unless there is a delayed HuC load in progress. */ i915_sw_fence_init(&huc->delayed_load.fence, sw_fence_dummy_notify); i915_sw_fence_commit(&huc->delayed_load.fence); hrtimer_init(&huc->delayed_load.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); huc->delayed_load.timer.function = huc_delayed_load_timer_callback; } static void delayed_huc_load_fini(struct intel_huc *huc) { /* * the fence is initialized in init_early, so we need to clean it up * even if HuC loading is off. */ delayed_huc_load_complete(huc); i915_sw_fence_fini(&huc->delayed_load.fence); } int intel_huc_sanitize(struct intel_huc *huc) { delayed_huc_load_complete(huc); intel_uc_fw_sanitize(&huc->fw); return 0; } static bool vcs_supported(struct intel_gt *gt) { intel_engine_mask_t mask = gt->info.engine_mask; /* * We reach here from i915_driver_early_probe for the primary GT before * its engine mask is set, so we use the device info engine mask for it; * this means we're not taking VCS fusing into account, but if the * primary GT supports VCS engines we expect at least one of them to * remain unfused so we're fine. * For other GTs we expect the GT-specific mask to be set before we * call this function. */ GEM_BUG_ON(!gt_is_root(gt) && !gt->info.engine_mask); if (gt_is_root(gt)) mask = INTEL_INFO(gt->i915)->platform_engine_mask; else mask = gt->info.engine_mask; return __ENGINE_INSTANCES_MASK(mask, VCS0, I915_MAX_VCS); } void intel_huc_init_early(struct intel_huc *huc) { struct drm_i915_private *i915 = huc_to_gt(huc)->i915; struct intel_gt *gt = huc_to_gt(huc); intel_uc_fw_init_early(&huc->fw, INTEL_UC_FW_TYPE_HUC, true); /* * we always init the fence as already completed, even if HuC is not * supported. This way we don't have to distinguish between HuC not * supported/disabled or already loaded, and can focus on if the load * is currently in progress (fence not complete) or not, which is what * we care about for stalling userspace submissions. */ delayed_huc_load_init(huc); if (!vcs_supported(gt)) { intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_NOT_SUPPORTED); return; } if (GRAPHICS_VER(i915) >= 11) { huc->status[INTEL_HUC_AUTH_BY_GUC].reg = GEN11_HUC_KERNEL_LOAD_INFO; huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_LOAD_SUCCESSFUL; huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_LOAD_SUCCESSFUL; } else { huc->status[INTEL_HUC_AUTH_BY_GUC].reg = HUC_STATUS2; huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_FW_VERIFIED; huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_FW_VERIFIED; } if (IS_DG2(i915)) { huc->status[INTEL_HUC_AUTH_BY_GSC].reg = GEN11_HUC_KERNEL_LOAD_INFO; huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HUC_LOAD_SUCCESSFUL; huc->status[INTEL_HUC_AUTH_BY_GSC].value = HUC_LOAD_SUCCESSFUL; } else { huc->status[INTEL_HUC_AUTH_BY_GSC].reg = HECI_FWSTS(MTL_GSC_HECI1_BASE, 5); huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HECI1_FWSTS5_HUC_AUTH_DONE; huc->status[INTEL_HUC_AUTH_BY_GSC].value = HECI1_FWSTS5_HUC_AUTH_DONE; } } #define HUC_LOAD_MODE_STRING(x) (x ? "GSC" : "legacy") static int check_huc_loading_mode(struct intel_huc *huc) { struct intel_gt *gt = huc_to_gt(huc); bool gsc_enabled = huc->fw.has_gsc_headers; /* * The fuse for HuC load via GSC is only valid on platforms that have * GuC deprivilege. */ if (HAS_GUC_DEPRIVILEGE(gt->i915)) huc->loaded_via_gsc = intel_uncore_read(gt->uncore, GUC_SHIM_CONTROL2) & GSC_LOADS_HUC; if (huc->loaded_via_gsc && !gsc_enabled) { huc_err(huc, "HW requires a GSC-enabled blob, but we found a legacy one\n"); return -ENOEXEC; } /* * On newer platforms we have GSC-enabled binaries but we load the HuC * via DMA. To do so we need to find the location of the legacy-style * binary inside the GSC-enabled one, which we do at fetch time. Make * sure that we were able to do so if the fuse says we need to load via * DMA and the binary is GSC-enabled. */ if (!huc->loaded_via_gsc && gsc_enabled && !huc->fw.dma_start_offset) { huc_err(huc, "HW in DMA mode, but we have an incompatible GSC-enabled blob\n"); return -ENOEXEC; } /* * If the HuC is loaded via GSC, we need to be able to access the GSC. * On DG2 this is done via the mei components, while on newer platforms * it is done via the GSCCS, */ if (huc->loaded_via_gsc) { if (IS_DG2(gt->i915)) { if (!IS_ENABLED(CONFIG_INTEL_MEI_PXP) || !IS_ENABLED(CONFIG_INTEL_MEI_GSC)) { huc_info(huc, "can't load due to missing mei modules\n"); return -EIO; } } else { if (!HAS_ENGINE(gt, GSC0)) { huc_info(huc, "can't load due to missing GSCCS\n"); return -EIO; } } } huc_dbg(huc, "loaded by GSC = %s\n", str_yes_no(huc->loaded_via_gsc)); return 0; } int intel_huc_init(struct intel_huc *huc) { struct intel_gt *gt = huc_to_gt(huc); int err; err = check_huc_loading_mode(huc); if (err) goto out; if (HAS_ENGINE(gt, GSC0)) { struct i915_vma *vma; vma = intel_guc_allocate_vma(&gt->uc.guc, PXP43_HUC_AUTH_INOUT_SIZE * 2); if (IS_ERR(vma)) { err = PTR_ERR(vma); huc_info(huc, "Failed to allocate heci pkt\n"); goto out; } huc->heci_pkt = vma; } err = intel_uc_fw_init(&huc->fw); if (err) goto out_pkt; intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOADABLE); return 0; out_pkt: if (huc->heci_pkt) i915_vma_unpin_and_release(&huc->heci_pkt, 0); out: intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_INIT_FAIL); huc_info(huc, "initialization failed %pe\n", ERR_PTR(err)); return err; } void intel_huc_fini(struct intel_huc *huc) { /* * the fence is initialized in init_early, so we need to clean it up * even if HuC loading is off. */ delayed_huc_load_fini(huc); if (huc->heci_pkt) i915_vma_unpin_and_release(&huc->heci_pkt, 0); if (intel_uc_fw_is_loadable(&huc->fw)) intel_uc_fw_fini(&huc->fw); } void intel_huc_suspend(struct intel_huc *huc) { if (!intel_uc_fw_is_loadable(&huc->fw)) return; /* * in the unlikely case that we're suspending before the GSC has * completed its loading sequence, just stop waiting. We'll restart * on resume. */ delayed_huc_load_complete(huc); } static const char *auth_mode_string(struct intel_huc *huc, enum intel_huc_authentication_type type) { bool partial = huc->fw.has_gsc_headers && type == INTEL_HUC_AUTH_BY_GUC; return partial ? "clear media" : "all workloads"; } int intel_huc_wait_for_auth_complete(struct intel_huc *huc, enum intel_huc_authentication_type type) { struct intel_gt *gt = huc_to_gt(huc); int ret; ret = __intel_wait_for_register(gt->uncore, huc->status[type].reg, huc->status[type].mask, huc->status[type].value, 2, 50, NULL); /* mark the load process as complete even if the wait failed */ delayed_huc_load_complete(huc); if (ret) { huc_err(huc, "firmware not verified for %s: %pe\n", auth_mode_string(huc, type), ERR_PTR(ret)); intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL); return ret; } intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_RUNNING); huc_info(huc, "authenticated for %s\n", auth_mode_string(huc, type)); return 0; } /** * intel_huc_auth() - Authenticate HuC uCode * @huc: intel_huc structure * @type: authentication type (via GuC or via GSC) * * Called after HuC and GuC firmware loading during intel_uc_init_hw(). * * This function invokes the GuC action to authenticate the HuC firmware, * passing the offset of the RSA signature to intel_guc_auth_huc(). It then * waits for up to 50ms for firmware verification ACK. */ int intel_huc_auth(struct intel_huc *huc, enum intel_huc_authentication_type type) { struct intel_gt *gt = huc_to_gt(huc); struct intel_guc *guc = &gt->uc.guc; int ret; if (!intel_uc_fw_is_loaded(&huc->fw)) return -ENOEXEC; /* GSC will do the auth with the load */ if (intel_huc_is_loaded_by_gsc(huc)) return -ENODEV; if (intel_huc_is_authenticated(huc, type)) return -EEXIST; ret = i915_inject_probe_error(gt->i915, -ENXIO); if (ret) goto fail; switch (type) { case INTEL_HUC_AUTH_BY_GUC: ret = intel_guc_auth_huc(guc, intel_guc_ggtt_offset(guc, huc->fw.rsa_data)); break; case INTEL_HUC_AUTH_BY_GSC: ret = intel_huc_fw_auth_via_gsccs(huc); break; default: MISSING_CASE(type); ret = -EINVAL; } if (ret) goto fail; /* Check authentication status, it should be done by now */ ret = intel_huc_wait_for_auth_complete(huc, type); if (ret) goto fail; return 0; fail: huc_probe_error(huc, "%s authentication failed %pe\n", auth_mode_string(huc, type), ERR_PTR(ret)); return ret; } bool intel_huc_is_authenticated(struct intel_huc *huc, enum intel_huc_authentication_type type) { struct intel_gt *gt = huc_to_gt(huc); intel_wakeref_t wakeref; u32 status = 0; with_intel_runtime_pm(gt->uncore->rpm, wakeref) status = intel_uncore_read(gt->uncore, huc->status[type].reg); return (status & huc->status[type].mask) == huc->status[type].value; } static bool huc_is_fully_authenticated(struct intel_huc *huc) { struct intel_uc_fw *huc_fw = &huc->fw; if (!huc_fw->has_gsc_headers) return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC); else if (intel_huc_is_loaded_by_gsc(huc) || HAS_ENGINE(huc_to_gt(huc), GSC0)) return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC); else return false; } /** * intel_huc_check_status() - check HuC status * @huc: intel_huc structure * * This function reads status register to verify if HuC * firmware was successfully loaded. * * The return values match what is expected for the I915_PARAM_HUC_STATUS * getparam. */ int intel_huc_check_status(struct intel_huc *huc) { struct intel_uc_fw *huc_fw = &huc->fw; switch (__intel_uc_fw_status(huc_fw)) { case INTEL_UC_FIRMWARE_NOT_SUPPORTED: return -ENODEV; case INTEL_UC_FIRMWARE_DISABLED: return -EOPNOTSUPP; case INTEL_UC_FIRMWARE_MISSING: return -ENOPKG; case INTEL_UC_FIRMWARE_ERROR: return -ENOEXEC; case INTEL_UC_FIRMWARE_INIT_FAIL: return -ENOMEM; case INTEL_UC_FIRMWARE_LOAD_FAIL: return -EIO; default: break; } /* * GSC-enabled binaries loaded via DMA are first partially * authenticated by GuC and then fully authenticated by GSC */ if (huc_is_fully_authenticated(huc)) return 1; /* full auth */ else if (huc_fw->has_gsc_headers && !intel_huc_is_loaded_by_gsc(huc) && intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC)) return 2; /* clear media only */ else return 0; } static bool huc_has_delayed_load(struct intel_huc *huc) { return intel_huc_is_loaded_by_gsc(huc) && (huc->delayed_load.status != INTEL_HUC_DELAYED_LOAD_ERROR); } void intel_huc_update_auth_status(struct intel_huc *huc) { if (!intel_uc_fw_is_loadable(&huc->fw)) return; if (!huc->fw.has_gsc_headers) return; if (huc_is_fully_authenticated(huc)) intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_RUNNING); else if (huc_has_delayed_load(huc)) huc_delayed_load_start(huc); } /** * intel_huc_load_status - dump information about HuC load status * @huc: the HuC * @p: the &drm_printer * * Pretty printer for HuC load status. */ void intel_huc_load_status(struct intel_huc *huc, struct drm_printer *p) { struct intel_gt *gt = huc_to_gt(huc); intel_wakeref_t wakeref; if (!intel_huc_is_supported(huc)) { drm_printf(p, "HuC not supported\n"); return; } if (!intel_huc_is_wanted(huc)) { drm_printf(p, "HuC disabled\n"); return; } intel_uc_fw_dump(&huc->fw, p); with_intel_runtime_pm(gt->uncore->rpm, wakeref) drm_printf(p, "HuC status: 0x%08x\n", intel_uncore_read(gt->uncore, huc->status[INTEL_HUC_AUTH_BY_GUC].reg)); }
linux-master
drivers/gpu/drm/i915/gt/uc/intel_huc.c
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include <linux/debugfs.h> #include <linux/string_helpers.h> #include <drm/drm_print.h> #include "gt/intel_gt_debugfs.h" #include "intel_guc_debugfs.h" #include "intel_gsc_uc_debugfs.h" #include "intel_huc_debugfs.h" #include "intel_uc.h" #include "intel_uc_debugfs.h" static int uc_usage_show(struct seq_file *m, void *data) { struct intel_uc *uc = m->private; struct drm_printer p = drm_seq_file_printer(m); drm_printf(&p, "[guc] supported:%s wanted:%s used:%s\n", str_yes_no(intel_uc_supports_guc(uc)), str_yes_no(intel_uc_wants_guc(uc)), str_yes_no(intel_uc_uses_guc(uc))); drm_printf(&p, "[huc] supported:%s wanted:%s used:%s\n", str_yes_no(intel_uc_supports_huc(uc)), str_yes_no(intel_uc_wants_huc(uc)), str_yes_no(intel_uc_uses_huc(uc))); drm_printf(&p, "[submission] supported:%s wanted:%s used:%s\n", str_yes_no(intel_uc_supports_guc_submission(uc)), str_yes_no(intel_uc_wants_guc_submission(uc)), str_yes_no(intel_uc_uses_guc_submission(uc))); return 0; } DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(uc_usage); void intel_uc_debugfs_register(struct intel_uc *uc, struct dentry *gt_root) { static const struct intel_gt_debugfs_file files[] = { { "usage", &uc_usage_fops, NULL }, }; struct dentry *root; if (!gt_root) return; /* GuC and HuC go always in pair, no need to check both */ if (!intel_uc_supports_guc(uc)) return; root = debugfs_create_dir("uc", gt_root); if (IS_ERR(root)) return; uc->guc.dbgfs_node = root; intel_gt_debugfs_register_files(root, files, ARRAY_SIZE(files), uc); intel_gsc_uc_debugfs_register(&uc->gsc, root); intel_guc_debugfs_register(&uc->guc, root); intel_huc_debugfs_register(&uc->huc, root); }
linux-master
drivers/gpu/drm/i915/gt/uc/intel_uc_debugfs.c
// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include "gt/intel_gt_print.h" #include "selftests/igt_spinner.h" #include "selftests/igt_reset.h" #include "selftests/intel_scheduler_helpers.h" #include "gt/intel_engine_heartbeat.h" #include "gem/selftests/mock_context.h" #define BEAT_INTERVAL 100 static struct i915_request *nop_request(struct intel_engine_cs *engine) { struct i915_request *rq; rq = intel_engine_create_kernel_request(engine); if (IS_ERR(rq)) return rq; i915_request_get(rq); i915_request_add(rq); return rq; } static int intel_hang_guc(void *arg) { struct intel_gt *gt = arg; int ret = 0; struct i915_gem_context *ctx; struct intel_context *ce; struct igt_spinner spin; struct i915_request *rq; intel_wakeref_t wakeref; struct i915_gpu_error *global = &gt->i915->gpu_error; struct intel_engine_cs *engine = intel_selftest_find_any_engine(gt); unsigned int reset_count; u32 guc_status; u32 old_beat; if (!engine) return 0; ctx = kernel_context(gt->i915, NULL); if (IS_ERR(ctx)) { gt_err(gt, "Failed get kernel context: %pe\n", ctx); return PTR_ERR(ctx); } wakeref = intel_runtime_pm_get(gt->uncore->rpm); ce = intel_context_create(engine); if (IS_ERR(ce)) { ret = PTR_ERR(ce); gt_err(gt, "Failed to create spinner request: %pe\n", ce); goto err; } reset_count = i915_reset_count(global); old_beat = engine->props.heartbeat_interval_ms; ret = intel_engine_set_heartbeat(engine, BEAT_INTERVAL); if (ret) { gt_err(gt, "Failed to boost heatbeat interval: %pe\n", ERR_PTR(ret)); goto err; } ret = igt_spinner_init(&spin, engine->gt); if (ret) { gt_err(gt, "Failed to create spinner: %pe\n", ERR_PTR(ret)); goto err; } rq = igt_spinner_create_request(&spin, ce, MI_NOOP); intel_context_put(ce); if (IS_ERR(rq)) { ret = PTR_ERR(rq); gt_err(gt, "Failed to create spinner request: %pe\n", rq); goto err_spin; } ret = request_add_spin(rq, &spin); if (ret) { i915_request_put(rq); gt_err(gt, "Failed to add Spinner request: %pe\n", ERR_PTR(ret)); goto err_spin; } ret = intel_reset_guc(gt); if (ret) { i915_request_put(rq); gt_err(gt, "Failed to reset GuC: %pe\n", ERR_PTR(ret)); goto err_spin; } guc_status = intel_uncore_read(gt->uncore, GUC_STATUS); if (!(guc_status & GS_MIA_IN_RESET)) { i915_request_put(rq); gt_err(gt, "Failed to reset GuC: status = 0x%08X\n", guc_status); ret = -EIO; goto err_spin; } /* Wait for the heartbeat to cause a reset */ ret = intel_selftest_wait_for_rq(rq); i915_request_put(rq); if (ret) { gt_err(gt, "Request failed to complete: %pe\n", ERR_PTR(ret)); goto err_spin; } if (i915_reset_count(global) == reset_count) { gt_err(gt, "Failed to record a GPU reset\n"); ret = -EINVAL; goto err_spin; } err_spin: igt_spinner_end(&spin); igt_spinner_fini(&spin); intel_engine_set_heartbeat(engine, old_beat); if (ret == 0) { rq = nop_request(engine); if (IS_ERR(rq)) { ret = PTR_ERR(rq); goto err; } ret = intel_selftest_wait_for_rq(rq); i915_request_put(rq); if (ret) { gt_err(gt, "No-op failed to complete: %pe\n", ERR_PTR(ret)); goto err; } } err: intel_runtime_pm_put(gt->uncore->rpm, wakeref); kernel_context_close(ctx); return ret; } int intel_guc_hang_check(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(intel_hang_guc), }; struct intel_gt *gt = to_gt(i915); if (intel_gt_is_wedged(gt)) return 0; if (!intel_uc_uses_guc_submission(&gt->uc)) return 0; return intel_gt_live_subtests(tests, gt); }
linux-master
drivers/gpu/drm/i915/gt/uc/selftest_guc_hangcheck.c
// SPDX-License-Identifier: MIT /* * Copyright © 2016-2019 Intel Corporation */ #include <linux/circ_buf.h> #include <linux/ktime.h> #include <linux/time64.h> #include <linux/string_helpers.h> #include <linux/timekeeping.h> #include "i915_drv.h" #include "intel_guc_ct.h" #include "intel_guc_print.h" #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GUC) enum { CT_DEAD_ALIVE = 0, CT_DEAD_SETUP, CT_DEAD_WRITE, CT_DEAD_DEADLOCK, CT_DEAD_H2G_HAS_ROOM, CT_DEAD_READ, CT_DEAD_PROCESS_FAILED, }; static void ct_dead_ct_worker_func(struct work_struct *w); #define CT_DEAD(ct, reason) \ do { \ if (!(ct)->dead_ct_reported) { \ (ct)->dead_ct_reason |= 1 << CT_DEAD_##reason; \ queue_work(system_unbound_wq, &(ct)->dead_ct_worker); \ } \ } while (0) #else #define CT_DEAD(ct, reason) do { } while (0) #endif static inline struct intel_guc *ct_to_guc(struct intel_guc_ct *ct) { return container_of(ct, struct intel_guc, ct); } #define CT_ERROR(_ct, _fmt, ...) \ guc_err(ct_to_guc(_ct), "CT: " _fmt, ##__VA_ARGS__) #ifdef CONFIG_DRM_I915_DEBUG_GUC #define CT_DEBUG(_ct, _fmt, ...) \ guc_dbg(ct_to_guc(_ct), "CT: " _fmt, ##__VA_ARGS__) #else #define CT_DEBUG(...) do { } while (0) #endif #define CT_PROBE_ERROR(_ct, _fmt, ...) \ guc_probe_error(ct_to_guc(ct), "CT: " _fmt, ##__VA_ARGS__) /** * DOC: CTB Blob * * We allocate single blob to hold both CTB descriptors and buffers: * * +--------+-----------------------------------------------+------+ * | offset | contents | size | * +========+===============================================+======+ * | 0x0000 | H2G `CTB Descriptor`_ (send) | | * +--------+-----------------------------------------------+ 4K | * | 0x0800 | G2H `CTB Descriptor`_ (recv) | | * +--------+-----------------------------------------------+------+ * | 0x1000 | H2G `CT Buffer`_ (send) | n*4K | * | | | | * +--------+-----------------------------------------------+------+ * | 0x1000 | G2H `CT Buffer`_ (recv) | m*4K | * | + n*4K | | | * +--------+-----------------------------------------------+------+ * * Size of each `CT Buffer`_ must be multiple of 4K. * We don't expect too many messages in flight at any time, unless we are * using the GuC submission. In that case each request requires a minimum * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this * enough space to avoid backpressure on the driver. We increase the size * of the receive buffer (relative to the send) to ensure a G2H response * CTB has a landing spot. */ #define CTB_DESC_SIZE ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K) #define CTB_H2G_BUFFER_SIZE (SZ_4K) #define CTB_G2H_BUFFER_SIZE (4 * CTB_H2G_BUFFER_SIZE) #define G2H_ROOM_BUFFER_SIZE (CTB_G2H_BUFFER_SIZE / 4) struct ct_request { struct list_head link; u32 fence; u32 status; u32 response_len; u32 *response_buf; }; struct ct_incoming_msg { struct list_head link; u32 size; u32 msg[]; }; enum { CTB_SEND = 0, CTB_RECV = 1 }; enum { CTB_OWNER_HOST = 0 }; static void ct_receive_tasklet_func(struct tasklet_struct *t); static void ct_incoming_request_worker_func(struct work_struct *w); /** * intel_guc_ct_init_early - Initialize CT state without requiring device access * @ct: pointer to CT struct */ void intel_guc_ct_init_early(struct intel_guc_ct *ct) { spin_lock_init(&ct->ctbs.send.lock); spin_lock_init(&ct->ctbs.recv.lock); spin_lock_init(&ct->requests.lock); INIT_LIST_HEAD(&ct->requests.pending); INIT_LIST_HEAD(&ct->requests.incoming); #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GUC) INIT_WORK(&ct->dead_ct_worker, ct_dead_ct_worker_func); #endif INIT_WORK(&ct->requests.worker, ct_incoming_request_worker_func); tasklet_setup(&ct->receive_tasklet, ct_receive_tasklet_func); init_waitqueue_head(&ct->wq); } static void guc_ct_buffer_desc_init(struct guc_ct_buffer_desc *desc) { memset(desc, 0, sizeof(*desc)); } static void guc_ct_buffer_reset(struct intel_guc_ct_buffer *ctb) { u32 space; ctb->broken = false; ctb->tail = 0; ctb->head = 0; space = CIRC_SPACE(ctb->tail, ctb->head, ctb->size) - ctb->resv_space; atomic_set(&ctb->space, space); guc_ct_buffer_desc_init(ctb->desc); } static void guc_ct_buffer_init(struct intel_guc_ct_buffer *ctb, struct guc_ct_buffer_desc *desc, u32 *cmds, u32 size_in_bytes, u32 resv_space) { GEM_BUG_ON(size_in_bytes % 4); ctb->desc = desc; ctb->cmds = cmds; ctb->size = size_in_bytes / 4; ctb->resv_space = resv_space / 4; guc_ct_buffer_reset(ctb); } static int guc_action_control_ctb(struct intel_guc *guc, u32 control) { u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = { FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_CONTROL_CTB), FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL, control), }; int ret; GEM_BUG_ON(control != GUC_CTB_CONTROL_DISABLE && control != GUC_CTB_CONTROL_ENABLE); /* CT control must go over MMIO */ ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0); return ret > 0 ? -EPROTO : ret; } static int ct_control_enable(struct intel_guc_ct *ct, bool enable) { int err; err = guc_action_control_ctb(ct_to_guc(ct), enable ? GUC_CTB_CONTROL_ENABLE : GUC_CTB_CONTROL_DISABLE); if (unlikely(err)) CT_PROBE_ERROR(ct, "Failed to control/%s CTB (%pe)\n", str_enable_disable(enable), ERR_PTR(err)); return err; } static int ct_register_buffer(struct intel_guc_ct *ct, bool send, u32 desc_addr, u32 buff_addr, u32 size) { int err; err = intel_guc_self_cfg64(ct_to_guc(ct), send ? GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY : GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY, desc_addr); if (unlikely(err)) goto failed; err = intel_guc_self_cfg64(ct_to_guc(ct), send ? GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY : GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY, buff_addr); if (unlikely(err)) goto failed; err = intel_guc_self_cfg32(ct_to_guc(ct), send ? GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY : GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY, size); if (unlikely(err)) failed: CT_PROBE_ERROR(ct, "Failed to register %s buffer (%pe)\n", send ? "SEND" : "RECV", ERR_PTR(err)); return err; } /** * intel_guc_ct_init - Init buffer-based communication * @ct: pointer to CT struct * * Allocate memory required for buffer-based communication. * * Return: 0 on success, a negative errno code on failure. */ int intel_guc_ct_init(struct intel_guc_ct *ct) { struct intel_guc *guc = ct_to_guc(ct); struct guc_ct_buffer_desc *desc; u32 blob_size; u32 cmds_size; u32 resv_space; void *blob; u32 *cmds; int err; err = i915_inject_probe_error(guc_to_gt(guc)->i915, -ENXIO); if (err) return err; GEM_BUG_ON(ct->vma); blob_size = 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE + CTB_G2H_BUFFER_SIZE; err = intel_guc_allocate_and_map_vma(guc, blob_size, &ct->vma, &blob); if (unlikely(err)) { CT_PROBE_ERROR(ct, "Failed to allocate %u for CTB data (%pe)\n", blob_size, ERR_PTR(err)); return err; } CT_DEBUG(ct, "base=%#x size=%u\n", intel_guc_ggtt_offset(guc, ct->vma), blob_size); /* store pointers to desc and cmds for send ctb */ desc = blob; cmds = blob + 2 * CTB_DESC_SIZE; cmds_size = CTB_H2G_BUFFER_SIZE; resv_space = 0; CT_DEBUG(ct, "%s desc %#tx cmds %#tx size %u/%u\n", "send", ptrdiff(desc, blob), ptrdiff(cmds, blob), cmds_size, resv_space); guc_ct_buffer_init(&ct->ctbs.send, desc, cmds, cmds_size, resv_space); /* store pointers to desc and cmds for recv ctb */ desc = blob + CTB_DESC_SIZE; cmds = blob + 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE; cmds_size = CTB_G2H_BUFFER_SIZE; resv_space = G2H_ROOM_BUFFER_SIZE; CT_DEBUG(ct, "%s desc %#tx cmds %#tx size %u/%u\n", "recv", ptrdiff(desc, blob), ptrdiff(cmds, blob), cmds_size, resv_space); guc_ct_buffer_init(&ct->ctbs.recv, desc, cmds, cmds_size, resv_space); return 0; } /** * intel_guc_ct_fini - Fini buffer-based communication * @ct: pointer to CT struct * * Deallocate memory required for buffer-based communication. */ void intel_guc_ct_fini(struct intel_guc_ct *ct) { GEM_BUG_ON(ct->enabled); tasklet_kill(&ct->receive_tasklet); i915_vma_unpin_and_release(&ct->vma, I915_VMA_RELEASE_MAP); memset(ct, 0, sizeof(*ct)); } /** * intel_guc_ct_enable - Enable buffer based command transport. * @ct: pointer to CT struct * * Return: 0 on success, a negative errno code on failure. */ int intel_guc_ct_enable(struct intel_guc_ct *ct) { struct intel_guc *guc = ct_to_guc(ct); u32 base, desc, cmds, size; void *blob; int err; GEM_BUG_ON(ct->enabled); /* vma should be already allocated and map'ed */ GEM_BUG_ON(!ct->vma); GEM_BUG_ON(!i915_gem_object_has_pinned_pages(ct->vma->obj)); base = intel_guc_ggtt_offset(guc, ct->vma); /* blob should start with send descriptor */ blob = __px_vaddr(ct->vma->obj); GEM_BUG_ON(blob != ct->ctbs.send.desc); /* (re)initialize descriptors */ guc_ct_buffer_reset(&ct->ctbs.send); guc_ct_buffer_reset(&ct->ctbs.recv); /* * Register both CT buffers starting with RECV buffer. * Descriptors are in first half of the blob. */ desc = base + ptrdiff(ct->ctbs.recv.desc, blob); cmds = base + ptrdiff(ct->ctbs.recv.cmds, blob); size = ct->ctbs.recv.size * 4; err = ct_register_buffer(ct, false, desc, cmds, size); if (unlikely(err)) goto err_out; desc = base + ptrdiff(ct->ctbs.send.desc, blob); cmds = base + ptrdiff(ct->ctbs.send.cmds, blob); size = ct->ctbs.send.size * 4; err = ct_register_buffer(ct, true, desc, cmds, size); if (unlikely(err)) goto err_out; err = ct_control_enable(ct, true); if (unlikely(err)) goto err_out; ct->enabled = true; ct->stall_time = KTIME_MAX; #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GUC) ct->dead_ct_reported = false; ct->dead_ct_reason = CT_DEAD_ALIVE; #endif return 0; err_out: CT_PROBE_ERROR(ct, "Failed to enable CTB (%pe)\n", ERR_PTR(err)); CT_DEAD(ct, SETUP); return err; } /** * intel_guc_ct_disable - Disable buffer based command transport. * @ct: pointer to CT struct */ void intel_guc_ct_disable(struct intel_guc_ct *ct) { struct intel_guc *guc = ct_to_guc(ct); GEM_BUG_ON(!ct->enabled); ct->enabled = false; if (intel_guc_is_fw_running(guc)) { ct_control_enable(ct, false); } } #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) static void ct_track_lost_and_found(struct intel_guc_ct *ct, u32 fence, u32 action) { unsigned int lost = fence % ARRAY_SIZE(ct->requests.lost_and_found); #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GUC) unsigned long entries[SZ_32]; unsigned int n; n = stack_trace_save(entries, ARRAY_SIZE(entries), 1); /* May be called under spinlock, so avoid sleeping */ ct->requests.lost_and_found[lost].stack = stack_depot_save(entries, n, GFP_NOWAIT); #endif ct->requests.lost_and_found[lost].fence = fence; ct->requests.lost_and_found[lost].action = action; } #endif static u32 ct_get_next_fence(struct intel_guc_ct *ct) { /* For now it's trivial */ return ++ct->requests.last_fence; } static int ct_write(struct intel_guc_ct *ct, const u32 *action, u32 len /* in dwords */, u32 fence, u32 flags) { struct intel_guc_ct_buffer *ctb = &ct->ctbs.send; struct guc_ct_buffer_desc *desc = ctb->desc; u32 tail = ctb->tail; u32 size = ctb->size; u32 header; u32 hxg; u32 type; u32 *cmds = ctb->cmds; unsigned int i; if (unlikely(desc->status)) goto corrupted; GEM_BUG_ON(tail > size); #ifdef CONFIG_DRM_I915_DEBUG_GUC if (unlikely(tail != READ_ONCE(desc->tail))) { CT_ERROR(ct, "Tail was modified %u != %u\n", desc->tail, tail); desc->status |= GUC_CTB_STATUS_MISMATCH; goto corrupted; } if (unlikely(READ_ONCE(desc->head) >= size)) { CT_ERROR(ct, "Invalid head offset %u >= %u)\n", desc->head, size); desc->status |= GUC_CTB_STATUS_OVERFLOW; goto corrupted; } #endif /* * dw0: CT header (including fence) * dw1: HXG header (including action code) * dw2+: action data */ header = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) | FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) | FIELD_PREP(GUC_CTB_MSG_0_FENCE, fence); type = (flags & INTEL_GUC_CT_SEND_NB) ? GUC_HXG_TYPE_FAST_REQUEST : GUC_HXG_TYPE_REQUEST; hxg = FIELD_PREP(GUC_HXG_MSG_0_TYPE, type) | FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION | GUC_HXG_REQUEST_MSG_0_DATA0, action[0]); CT_DEBUG(ct, "writing (tail %u) %*ph %*ph %*ph\n", tail, 4, &header, 4, &hxg, 4 * (len - 1), &action[1]); cmds[tail] = header; tail = (tail + 1) % size; cmds[tail] = hxg; tail = (tail + 1) % size; for (i = 1; i < len; i++) { cmds[tail] = action[i]; tail = (tail + 1) % size; } GEM_BUG_ON(tail > size); #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) ct_track_lost_and_found(ct, fence, FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, action[0])); #endif /* * make sure H2G buffer update and LRC tail update (if this triggering a * submission) are visible before updating the descriptor tail */ intel_guc_write_barrier(ct_to_guc(ct)); /* update local copies */ ctb->tail = tail; GEM_BUG_ON(atomic_read(&ctb->space) < len + GUC_CTB_HDR_LEN); atomic_sub(len + GUC_CTB_HDR_LEN, &ctb->space); /* now update descriptor */ WRITE_ONCE(desc->tail, tail); return 0; corrupted: CT_ERROR(ct, "Corrupted descriptor head=%u tail=%u status=%#x\n", desc->head, desc->tail, desc->status); CT_DEAD(ct, WRITE); ctb->broken = true; return -EPIPE; } /** * wait_for_ct_request_update - Wait for CT request state update. * @ct: pointer to CT * @req: pointer to pending request * @status: placeholder for status * * For each sent request, GuC shall send back CT response message. * Our message handler will update status of tracked request once * response message with given fence is received. Wait here and * check for valid response status value. * * Return: * * 0 response received (status is valid) * * -ETIMEDOUT no response within hardcoded timeout */ static int wait_for_ct_request_update(struct intel_guc_ct *ct, struct ct_request *req, u32 *status) { int err; bool ct_enabled; /* * Fast commands should complete in less than 10us, so sample quickly * up to that length of time, then switch to a slower sleep-wait loop. * No GuC command should ever take longer than 10ms but many GuC * commands can be inflight at time, so use a 1s timeout on the slower * sleep-wait loop. */ #define GUC_CTB_RESPONSE_TIMEOUT_SHORT_MS 10 #define GUC_CTB_RESPONSE_TIMEOUT_LONG_MS 1000 #define done \ (!(ct_enabled = intel_guc_ct_enabled(ct)) || \ FIELD_GET(GUC_HXG_MSG_0_ORIGIN, READ_ONCE(req->status)) == \ GUC_HXG_ORIGIN_GUC) err = wait_for_us(done, GUC_CTB_RESPONSE_TIMEOUT_SHORT_MS); if (err) err = wait_for(done, GUC_CTB_RESPONSE_TIMEOUT_LONG_MS); #undef done if (!ct_enabled) err = -ENODEV; *status = req->status; return err; } #define GUC_CTB_TIMEOUT_MS 1500 static inline bool ct_deadlocked(struct intel_guc_ct *ct) { long timeout = GUC_CTB_TIMEOUT_MS; bool ret = ktime_ms_delta(ktime_get(), ct->stall_time) > timeout; if (unlikely(ret)) { struct guc_ct_buffer_desc *send = ct->ctbs.send.desc; struct guc_ct_buffer_desc *recv = ct->ctbs.send.desc; CT_ERROR(ct, "Communication stalled for %lld ms, desc status=%#x,%#x\n", ktime_ms_delta(ktime_get(), ct->stall_time), send->status, recv->status); CT_ERROR(ct, "H2G Space: %u (Bytes)\n", atomic_read(&ct->ctbs.send.space) * 4); CT_ERROR(ct, "Head: %u (Dwords)\n", ct->ctbs.send.desc->head); CT_ERROR(ct, "Tail: %u (Dwords)\n", ct->ctbs.send.desc->tail); CT_ERROR(ct, "G2H Space: %u (Bytes)\n", atomic_read(&ct->ctbs.recv.space) * 4); CT_ERROR(ct, "Head: %u\n (Dwords)", ct->ctbs.recv.desc->head); CT_ERROR(ct, "Tail: %u\n (Dwords)", ct->ctbs.recv.desc->tail); CT_DEAD(ct, DEADLOCK); ct->ctbs.send.broken = true; } return ret; } static inline bool g2h_has_room(struct intel_guc_ct *ct, u32 g2h_len_dw) { struct intel_guc_ct_buffer *ctb = &ct->ctbs.recv; /* * We leave a certain amount of space in the G2H CTB buffer for * unexpected G2H CTBs (e.g. logging, engine hang, etc...) */ return !g2h_len_dw || atomic_read(&ctb->space) >= g2h_len_dw; } static inline void g2h_reserve_space(struct intel_guc_ct *ct, u32 g2h_len_dw) { lockdep_assert_held(&ct->ctbs.send.lock); GEM_BUG_ON(!g2h_has_room(ct, g2h_len_dw)); if (g2h_len_dw) atomic_sub(g2h_len_dw, &ct->ctbs.recv.space); } static inline void g2h_release_space(struct intel_guc_ct *ct, u32 g2h_len_dw) { atomic_add(g2h_len_dw, &ct->ctbs.recv.space); } static inline bool h2g_has_room(struct intel_guc_ct *ct, u32 len_dw) { struct intel_guc_ct_buffer *ctb = &ct->ctbs.send; struct guc_ct_buffer_desc *desc = ctb->desc; u32 head; u32 space; if (atomic_read(&ctb->space) >= len_dw) return true; head = READ_ONCE(desc->head); if (unlikely(head > ctb->size)) { CT_ERROR(ct, "Invalid head offset %u >= %u)\n", head, ctb->size); desc->status |= GUC_CTB_STATUS_OVERFLOW; ctb->broken = true; CT_DEAD(ct, H2G_HAS_ROOM); return false; } space = CIRC_SPACE(ctb->tail, head, ctb->size); atomic_set(&ctb->space, space); return space >= len_dw; } static int has_room_nb(struct intel_guc_ct *ct, u32 h2g_dw, u32 g2h_dw) { bool h2g = h2g_has_room(ct, h2g_dw); bool g2h = g2h_has_room(ct, g2h_dw); lockdep_assert_held(&ct->ctbs.send.lock); if (unlikely(!h2g || !g2h)) { if (ct->stall_time == KTIME_MAX) ct->stall_time = ktime_get(); /* Be paranoid and kick G2H tasklet to free credits */ if (!g2h) tasklet_hi_schedule(&ct->receive_tasklet); if (unlikely(ct_deadlocked(ct))) return -EPIPE; else return -EBUSY; } ct->stall_time = KTIME_MAX; return 0; } #define G2H_LEN_DW(f) ({ \ typeof(f) f_ = (f); \ FIELD_GET(INTEL_GUC_CT_SEND_G2H_DW_MASK, f_) ? \ FIELD_GET(INTEL_GUC_CT_SEND_G2H_DW_MASK, f_) + \ GUC_CTB_HXG_MSG_MIN_LEN : 0; \ }) static int ct_send_nb(struct intel_guc_ct *ct, const u32 *action, u32 len, u32 flags) { struct intel_guc_ct_buffer *ctb = &ct->ctbs.send; unsigned long spin_flags; u32 g2h_len_dw = G2H_LEN_DW(flags); u32 fence; int ret; spin_lock_irqsave(&ctb->lock, spin_flags); ret = has_room_nb(ct, len + GUC_CTB_HDR_LEN, g2h_len_dw); if (unlikely(ret)) goto out; fence = ct_get_next_fence(ct); ret = ct_write(ct, action, len, fence, flags); if (unlikely(ret)) goto out; g2h_reserve_space(ct, g2h_len_dw); intel_guc_notify(ct_to_guc(ct)); out: spin_unlock_irqrestore(&ctb->lock, spin_flags); return ret; } static int ct_send(struct intel_guc_ct *ct, const u32 *action, u32 len, u32 *response_buf, u32 response_buf_size, u32 *status) { struct intel_guc_ct_buffer *ctb = &ct->ctbs.send; struct ct_request request; unsigned long flags; unsigned int sleep_period_ms = 1; bool send_again; u32 fence; int err; GEM_BUG_ON(!ct->enabled); GEM_BUG_ON(!len); GEM_BUG_ON(len > GUC_CTB_HXG_MSG_MAX_LEN - GUC_CTB_HDR_LEN); GEM_BUG_ON(!response_buf && response_buf_size); might_sleep(); resend: send_again = false; /* * We use a lazy spin wait loop here as we believe that if the CT * buffers are sized correctly the flow control condition should be * rare. Reserving the maximum size in the G2H credits as we don't know * how big the response is going to be. */ retry: spin_lock_irqsave(&ctb->lock, flags); if (unlikely(!h2g_has_room(ct, len + GUC_CTB_HDR_LEN) || !g2h_has_room(ct, GUC_CTB_HXG_MSG_MAX_LEN))) { if (ct->stall_time == KTIME_MAX) ct->stall_time = ktime_get(); spin_unlock_irqrestore(&ctb->lock, flags); if (unlikely(ct_deadlocked(ct))) return -EPIPE; if (msleep_interruptible(sleep_period_ms)) return -EINTR; sleep_period_ms = sleep_period_ms << 1; goto retry; } ct->stall_time = KTIME_MAX; fence = ct_get_next_fence(ct); request.fence = fence; request.status = 0; request.response_len = response_buf_size; request.response_buf = response_buf; spin_lock(&ct->requests.lock); list_add_tail(&request.link, &ct->requests.pending); spin_unlock(&ct->requests.lock); err = ct_write(ct, action, len, fence, 0); g2h_reserve_space(ct, GUC_CTB_HXG_MSG_MAX_LEN); spin_unlock_irqrestore(&ctb->lock, flags); if (unlikely(err)) goto unlink; intel_guc_notify(ct_to_guc(ct)); err = wait_for_ct_request_update(ct, &request, status); g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN); if (unlikely(err)) { if (err == -ENODEV) /* wait_for_ct_request_update returns -ENODEV on reset/suspend in progress. * In this case, output is debug rather than error info */ CT_DEBUG(ct, "Request %#x (fence %u) cancelled as CTB is disabled\n", action[0], request.fence); else CT_ERROR(ct, "No response for request %#x (fence %u)\n", action[0], request.fence); goto unlink; } if (FIELD_GET(GUC_HXG_MSG_0_TYPE, *status) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { CT_DEBUG(ct, "retrying request %#x (%u)\n", *action, FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, *status)); send_again = true; goto unlink; } if (FIELD_GET(GUC_HXG_MSG_0_TYPE, *status) != GUC_HXG_TYPE_RESPONSE_SUCCESS) { err = -EIO; goto unlink; } if (response_buf) { /* There shall be no data in the status */ WARN_ON(FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, request.status)); /* Return actual response len */ err = request.response_len; } else { /* There shall be no response payload */ WARN_ON(request.response_len); /* Return data decoded from the status dword */ err = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, *status); } unlink: spin_lock_irqsave(&ct->requests.lock, flags); list_del(&request.link); spin_unlock_irqrestore(&ct->requests.lock, flags); if (unlikely(send_again)) goto resend; return err; } /* * Command Transport (CT) buffer based GuC send function. */ int intel_guc_ct_send(struct intel_guc_ct *ct, const u32 *action, u32 len, u32 *response_buf, u32 response_buf_size, u32 flags) { u32 status = ~0; /* undefined */ int ret; if (unlikely(!ct->enabled)) { struct intel_guc *guc = ct_to_guc(ct); struct intel_uc *uc = container_of(guc, struct intel_uc, guc); WARN(!uc->reset_in_progress, "Unexpected send: action=%#x\n", *action); return -ENODEV; } if (unlikely(ct->ctbs.send.broken)) return -EPIPE; if (flags & INTEL_GUC_CT_SEND_NB) return ct_send_nb(ct, action, len, flags); ret = ct_send(ct, action, len, response_buf, response_buf_size, &status); if (unlikely(ret < 0)) { if (ret != -ENODEV) CT_ERROR(ct, "Sending action %#x failed (%pe) status=%#X\n", action[0], ERR_PTR(ret), status); } else if (unlikely(ret)) { CT_DEBUG(ct, "send action %#x returned %d (%#x)\n", action[0], ret, ret); } return ret; } static struct ct_incoming_msg *ct_alloc_msg(u32 num_dwords) { struct ct_incoming_msg *msg; msg = kmalloc(struct_size(msg, msg, num_dwords), GFP_ATOMIC); if (msg) msg->size = num_dwords; return msg; } static void ct_free_msg(struct ct_incoming_msg *msg) { kfree(msg); } /* * Return: number available remaining dwords to read (0 if empty) * or a negative error code on failure */ static int ct_read(struct intel_guc_ct *ct, struct ct_incoming_msg **msg) { struct intel_guc_ct_buffer *ctb = &ct->ctbs.recv; struct guc_ct_buffer_desc *desc = ctb->desc; u32 head = ctb->head; u32 tail = READ_ONCE(desc->tail); u32 size = ctb->size; u32 *cmds = ctb->cmds; s32 available; unsigned int len; unsigned int i; u32 header; if (unlikely(ctb->broken)) return -EPIPE; if (unlikely(desc->status)) { u32 status = desc->status; if (status & GUC_CTB_STATUS_UNUSED) { /* * Potentially valid if a CLIENT_RESET request resulted in * contexts/engines being reset. But should never happen as * no contexts should be active when CLIENT_RESET is sent. */ CT_ERROR(ct, "Unexpected G2H after GuC has stopped!\n"); status &= ~GUC_CTB_STATUS_UNUSED; } if (status) goto corrupted; } GEM_BUG_ON(head > size); #ifdef CONFIG_DRM_I915_DEBUG_GUC if (unlikely(head != READ_ONCE(desc->head))) { CT_ERROR(ct, "Head was modified %u != %u\n", desc->head, head); desc->status |= GUC_CTB_STATUS_MISMATCH; goto corrupted; } #endif if (unlikely(tail >= size)) { CT_ERROR(ct, "Invalid tail offset %u >= %u)\n", tail, size); desc->status |= GUC_CTB_STATUS_OVERFLOW; goto corrupted; } /* tail == head condition indicates empty */ available = tail - head; if (unlikely(available == 0)) { *msg = NULL; return 0; } /* beware of buffer wrap case */ if (unlikely(available < 0)) available += size; CT_DEBUG(ct, "available %d (%u:%u:%u)\n", available, head, tail, size); GEM_BUG_ON(available < 0); header = cmds[head]; head = (head + 1) % size; /* message len with header */ len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, header) + GUC_CTB_MSG_MIN_LEN; if (unlikely(len > (u32)available)) { CT_ERROR(ct, "Incomplete message %*ph %*ph %*ph\n", 4, &header, 4 * (head + available - 1 > size ? size - head : available - 1), &cmds[head], 4 * (head + available - 1 > size ? available - 1 - size + head : 0), &cmds[0]); desc->status |= GUC_CTB_STATUS_UNDERFLOW; goto corrupted; } *msg = ct_alloc_msg(len); if (!*msg) { CT_ERROR(ct, "No memory for message %*ph %*ph %*ph\n", 4, &header, 4 * (head + available - 1 > size ? size - head : available - 1), &cmds[head], 4 * (head + available - 1 > size ? available - 1 - size + head : 0), &cmds[0]); return available; } (*msg)->msg[0] = header; for (i = 1; i < len; i++) { (*msg)->msg[i] = cmds[head]; head = (head + 1) % size; } CT_DEBUG(ct, "received %*ph\n", 4 * len, (*msg)->msg); /* update local copies */ ctb->head = head; /* now update descriptor */ WRITE_ONCE(desc->head, head); intel_guc_write_barrier(ct_to_guc(ct)); return available - len; corrupted: CT_ERROR(ct, "Corrupted descriptor head=%u tail=%u status=%#x\n", desc->head, desc->tail, desc->status); ctb->broken = true; CT_DEAD(ct, READ); return -EPIPE; } #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) static bool ct_check_lost_and_found(struct intel_guc_ct *ct, u32 fence) { unsigned int n; char *buf = NULL; bool found = false; lockdep_assert_held(&ct->requests.lock); for (n = 0; n < ARRAY_SIZE(ct->requests.lost_and_found); n++) { if (ct->requests.lost_and_found[n].fence != fence) continue; found = true; #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GUC) buf = kmalloc(SZ_4K, GFP_NOWAIT); if (buf && stack_depot_snprint(ct->requests.lost_and_found[n].stack, buf, SZ_4K, 0)) { CT_ERROR(ct, "Fence %u was used by action %#04x sent at\n%s", fence, ct->requests.lost_and_found[n].action, buf); break; } #endif CT_ERROR(ct, "Fence %u was used by action %#04x\n", fence, ct->requests.lost_and_found[n].action); break; } kfree(buf); return found; } #else static bool ct_check_lost_and_found(struct intel_guc_ct *ct, u32 fence) { return false; } #endif static int ct_handle_response(struct intel_guc_ct *ct, struct ct_incoming_msg *response) { u32 len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, response->msg[0]); u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, response->msg[0]); const u32 *hxg = &response->msg[GUC_CTB_MSG_MIN_LEN]; const u32 *data = &hxg[GUC_HXG_MSG_MIN_LEN]; u32 datalen = len - GUC_HXG_MSG_MIN_LEN; struct ct_request *req; unsigned long flags; bool found = false; int err = 0; GEM_BUG_ON(len < GUC_HXG_MSG_MIN_LEN); GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]) != GUC_HXG_ORIGIN_GUC); GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_RESPONSE_SUCCESS && FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_NO_RESPONSE_RETRY && FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_RESPONSE_FAILURE); CT_DEBUG(ct, "response fence %u status %#x\n", fence, hxg[0]); spin_lock_irqsave(&ct->requests.lock, flags); list_for_each_entry(req, &ct->requests.pending, link) { if (unlikely(fence != req->fence)) { CT_DEBUG(ct, "request %u awaits response\n", req->fence); continue; } if (unlikely(datalen > req->response_len)) { CT_ERROR(ct, "Response %u too long (datalen %u > %u)\n", req->fence, datalen, req->response_len); datalen = min(datalen, req->response_len); err = -EMSGSIZE; } if (datalen) memcpy(req->response_buf, data, 4 * datalen); req->response_len = datalen; WRITE_ONCE(req->status, hxg[0]); found = true; break; } if (!found) { CT_ERROR(ct, "Unsolicited response message: len %u, data %#x (fence %u, last %u)\n", len, hxg[0], fence, ct->requests.last_fence); if (!ct_check_lost_and_found(ct, fence)) { list_for_each_entry(req, &ct->requests.pending, link) CT_ERROR(ct, "request %u awaits response\n", req->fence); } err = -ENOKEY; } spin_unlock_irqrestore(&ct->requests.lock, flags); if (unlikely(err)) return err; ct_free_msg(response); return 0; } static int ct_process_request(struct intel_guc_ct *ct, struct ct_incoming_msg *request) { struct intel_guc *guc = ct_to_guc(ct); const u32 *hxg; const u32 *payload; u32 hxg_len, action, len; int ret; hxg = &request->msg[GUC_CTB_MSG_MIN_LEN]; hxg_len = request->size - GUC_CTB_MSG_MIN_LEN; payload = &hxg[GUC_HXG_MSG_MIN_LEN]; action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); len = hxg_len - GUC_HXG_MSG_MIN_LEN; CT_DEBUG(ct, "request %x %*ph\n", action, 4 * len, payload); switch (action) { case INTEL_GUC_ACTION_DEFAULT: ret = intel_guc_to_host_process_recv_msg(guc, payload, len); break; case INTEL_GUC_ACTION_DEREGISTER_CONTEXT_DONE: ret = intel_guc_deregister_done_process_msg(guc, payload, len); break; case INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_DONE: ret = intel_guc_sched_done_process_msg(guc, payload, len); break; case INTEL_GUC_ACTION_CONTEXT_RESET_NOTIFICATION: ret = intel_guc_context_reset_process_msg(guc, payload, len); break; case INTEL_GUC_ACTION_STATE_CAPTURE_NOTIFICATION: ret = intel_guc_error_capture_process_msg(guc, payload, len); if (unlikely(ret)) CT_ERROR(ct, "error capture notification failed %x %*ph\n", action, 4 * len, payload); break; case INTEL_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION: ret = intel_guc_engine_failure_process_msg(guc, payload, len); break; case INTEL_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE: intel_guc_log_handle_flush_event(&guc->log); ret = 0; break; case INTEL_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED: CT_ERROR(ct, "Received GuC crash dump notification!\n"); ret = 0; break; case INTEL_GUC_ACTION_NOTIFY_EXCEPTION: CT_ERROR(ct, "Received GuC exception notification!\n"); ret = 0; break; default: ret = -EOPNOTSUPP; break; } if (unlikely(ret)) { CT_ERROR(ct, "Failed to process request %04x (%pe)\n", action, ERR_PTR(ret)); return ret; } ct_free_msg(request); return 0; } static bool ct_process_incoming_requests(struct intel_guc_ct *ct) { unsigned long flags; struct ct_incoming_msg *request; bool done; int err; spin_lock_irqsave(&ct->requests.lock, flags); request = list_first_entry_or_null(&ct->requests.incoming, struct ct_incoming_msg, link); if (request) list_del(&request->link); done = !!list_empty(&ct->requests.incoming); spin_unlock_irqrestore(&ct->requests.lock, flags); if (!request) return true; err = ct_process_request(ct, request); if (unlikely(err)) { CT_ERROR(ct, "Failed to process CT message (%pe) %*ph\n", ERR_PTR(err), 4 * request->size, request->msg); CT_DEAD(ct, PROCESS_FAILED); ct_free_msg(request); } return done; } static void ct_incoming_request_worker_func(struct work_struct *w) { struct intel_guc_ct *ct = container_of(w, struct intel_guc_ct, requests.worker); bool done; do { done = ct_process_incoming_requests(ct); } while (!done); } static int ct_handle_event(struct intel_guc_ct *ct, struct ct_incoming_msg *request) { const u32 *hxg = &request->msg[GUC_CTB_MSG_MIN_LEN]; u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); unsigned long flags; GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT); /* * Adjusting the space must be done in IRQ or deadlock can occur as the * CTB processing in the below workqueue can send CTBs which creates a * circular dependency if the space was returned there. */ switch (action) { case INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_DONE: case INTEL_GUC_ACTION_DEREGISTER_CONTEXT_DONE: g2h_release_space(ct, request->size); } spin_lock_irqsave(&ct->requests.lock, flags); list_add_tail(&request->link, &ct->requests.incoming); spin_unlock_irqrestore(&ct->requests.lock, flags); queue_work(system_unbound_wq, &ct->requests.worker); return 0; } static int ct_handle_hxg(struct intel_guc_ct *ct, struct ct_incoming_msg *msg) { u32 origin, type; u32 *hxg; int err; if (unlikely(msg->size < GUC_CTB_HXG_MSG_MIN_LEN)) return -EBADMSG; hxg = &msg->msg[GUC_CTB_MSG_MIN_LEN]; origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]); if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) { err = -EPROTO; goto failed; } type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]); switch (type) { case GUC_HXG_TYPE_EVENT: err = ct_handle_event(ct, msg); break; case GUC_HXG_TYPE_RESPONSE_SUCCESS: case GUC_HXG_TYPE_RESPONSE_FAILURE: case GUC_HXG_TYPE_NO_RESPONSE_RETRY: err = ct_handle_response(ct, msg); break; default: err = -EOPNOTSUPP; } if (unlikely(err)) { failed: CT_ERROR(ct, "Failed to handle HXG message (%pe) %*ph\n", ERR_PTR(err), 4 * GUC_HXG_MSG_MIN_LEN, hxg); } return err; } static void ct_handle_msg(struct intel_guc_ct *ct, struct ct_incoming_msg *msg) { u32 format = FIELD_GET(GUC_CTB_MSG_0_FORMAT, msg->msg[0]); int err; if (format == GUC_CTB_FORMAT_HXG) err = ct_handle_hxg(ct, msg); else err = -EOPNOTSUPP; if (unlikely(err)) { CT_ERROR(ct, "Failed to process CT message (%pe) %*ph\n", ERR_PTR(err), 4 * msg->size, msg->msg); ct_free_msg(msg); } } /* * Return: number available remaining dwords to read (0 if empty) * or a negative error code on failure */ static int ct_receive(struct intel_guc_ct *ct) { struct ct_incoming_msg *msg = NULL; unsigned long flags; int ret; spin_lock_irqsave(&ct->ctbs.recv.lock, flags); ret = ct_read(ct, &msg); spin_unlock_irqrestore(&ct->ctbs.recv.lock, flags); if (ret < 0) return ret; if (msg) ct_handle_msg(ct, msg); return ret; } static void ct_try_receive_message(struct intel_guc_ct *ct) { int ret; if (GEM_WARN_ON(!ct->enabled)) return; ret = ct_receive(ct); if (ret > 0) tasklet_hi_schedule(&ct->receive_tasklet); } static void ct_receive_tasklet_func(struct tasklet_struct *t) { struct intel_guc_ct *ct = from_tasklet(ct, t, receive_tasklet); ct_try_receive_message(ct); } /* * When we're communicating with the GuC over CT, GuC uses events * to notify us about new messages being posted on the RECV buffer. */ void intel_guc_ct_event_handler(struct intel_guc_ct *ct) { if (unlikely(!ct->enabled)) { WARN(1, "Unexpected GuC event received while CT disabled!\n"); return; } ct_try_receive_message(ct); } void intel_guc_ct_print_info(struct intel_guc_ct *ct, struct drm_printer *p) { drm_printf(p, "CT %s\n", str_enabled_disabled(ct->enabled)); if (!ct->enabled) return; drm_printf(p, "H2G Space: %u\n", atomic_read(&ct->ctbs.send.space) * 4); drm_printf(p, "Head: %u\n", ct->ctbs.send.desc->head); drm_printf(p, "Tail: %u\n", ct->ctbs.send.desc->tail); drm_printf(p, "G2H Space: %u\n", atomic_read(&ct->ctbs.recv.space) * 4); drm_printf(p, "Head: %u\n", ct->ctbs.recv.desc->head); drm_printf(p, "Tail: %u\n", ct->ctbs.recv.desc->tail); } #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GUC) static void ct_dead_ct_worker_func(struct work_struct *w) { struct intel_guc_ct *ct = container_of(w, struct intel_guc_ct, dead_ct_worker); struct intel_guc *guc = ct_to_guc(ct); if (ct->dead_ct_reported) return; ct->dead_ct_reported = true; guc_info(guc, "CTB is dead - reason=0x%X\n", ct->dead_ct_reason); intel_klog_error_capture(guc_to_gt(guc), (intel_engine_mask_t)~0U); } #endif
linux-master
drivers/gpu/drm/i915/gt/uc/intel_guc_ct.c
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include <linux/fs.h> #include <drm/drm_print.h> #include "gt/intel_gt_debugfs.h" #include "intel_guc.h" #include "intel_guc_log.h" #include "intel_guc_log_debugfs.h" #include "intel_uc.h" static u32 obj_to_guc_log_dump_size(struct drm_i915_gem_object *obj) { u32 size; if (!obj) return PAGE_SIZE; /* "0x%08x 0x%08x 0x%08x 0x%08x\n" => 16 bytes -> 44 chars => x2.75 */ size = ((obj->base.size * 11) + 3) / 4; /* Add padding for final blank line, any extra header info, etc. */ size = PAGE_ALIGN(size + PAGE_SIZE); return size; } static u32 guc_log_dump_size(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); if (!intel_guc_is_supported(guc)) return PAGE_SIZE; if (!log->vma) return PAGE_SIZE; return obj_to_guc_log_dump_size(log->vma->obj); } static int guc_log_dump_show(struct seq_file *m, void *data) { struct drm_printer p = drm_seq_file_printer(m); int ret; ret = intel_guc_log_dump(m->private, &p, false); if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && seq_has_overflowed(m)) pr_warn_once("preallocated size:%zx for %s exceeded\n", m->size, __func__); return ret; } DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE_WITH_SIZE(guc_log_dump, guc_log_dump_size); static u32 guc_load_err_dump_size(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); struct intel_uc *uc = container_of(guc, struct intel_uc, guc); if (!intel_guc_is_supported(guc)) return PAGE_SIZE; return obj_to_guc_log_dump_size(uc->load_err_log); } static int guc_load_err_log_dump_show(struct seq_file *m, void *data) { struct drm_printer p = drm_seq_file_printer(m); if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && seq_has_overflowed(m)) pr_warn_once("preallocated size:%zx for %s exceeded\n", m->size, __func__); return intel_guc_log_dump(m->private, &p, true); } DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE_WITH_SIZE(guc_load_err_log_dump, guc_load_err_dump_size); static int guc_log_level_get(void *data, u64 *val) { struct intel_guc_log *log = data; if (!log->vma) return -ENODEV; *val = intel_guc_log_get_level(log); return 0; } static int guc_log_level_set(void *data, u64 val) { struct intel_guc_log *log = data; if (!log->vma) return -ENODEV; return intel_guc_log_set_level(log, val); } DEFINE_SIMPLE_ATTRIBUTE(guc_log_level_fops, guc_log_level_get, guc_log_level_set, "%lld\n"); static int guc_log_relay_open(struct inode *inode, struct file *file) { struct intel_guc_log *log = inode->i_private; if (!intel_guc_is_ready(log_to_guc(log))) return -ENODEV; file->private_data = log; return intel_guc_log_relay_open(log); } static ssize_t guc_log_relay_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { struct intel_guc_log *log = filp->private_data; int val; int ret; ret = kstrtoint_from_user(ubuf, cnt, 0, &val); if (ret < 0) return ret; /* * Enable and start the guc log relay on value of 1. * Flush log relay for any other value. */ if (val == 1) ret = intel_guc_log_relay_start(log); else intel_guc_log_relay_flush(log); return ret ?: cnt; } static int guc_log_relay_release(struct inode *inode, struct file *file) { struct intel_guc_log *log = inode->i_private; intel_guc_log_relay_close(log); return 0; } static const struct file_operations guc_log_relay_fops = { .owner = THIS_MODULE, .open = guc_log_relay_open, .write = guc_log_relay_write, .release = guc_log_relay_release, }; void intel_guc_log_debugfs_register(struct intel_guc_log *log, struct dentry *root) { static const struct intel_gt_debugfs_file files[] = { { "guc_log_dump", &guc_log_dump_fops, NULL }, { "guc_load_err_log_dump", &guc_load_err_log_dump_fops, NULL }, { "guc_log_level", &guc_log_level_fops, NULL }, { "guc_log_relay", &guc_log_relay_fops, NULL }, }; if (!intel_guc_is_supported(log_to_guc(log))) return; intel_gt_debugfs_register_files(root, files, ARRAY_SIZE(files), log); }
linux-master
drivers/gpu/drm/i915/gt/uc/intel_guc_log_debugfs.c
// SPDX-License-Identifier: MIT /* * Copyright �� 2019 Intel Corporation */ #include "gt/intel_gt_print.h" #include "selftests/igt_spinner.h" #include "selftests/igt_reset.h" #include "selftests/intel_scheduler_helpers.h" #include "gt/intel_engine_heartbeat.h" #include "gem/selftests/mock_context.h" static void logical_sort(struct intel_engine_cs **engines, int num_engines) { struct intel_engine_cs *sorted[MAX_ENGINE_INSTANCE + 1]; int i, j; for (i = 0; i < num_engines; ++i) for (j = 0; j < MAX_ENGINE_INSTANCE + 1; ++j) { if (engines[j]->logical_mask & BIT(i)) { sorted[i] = engines[j]; break; } } memcpy(*engines, *sorted, sizeof(struct intel_engine_cs *) * num_engines); } static struct intel_context * multi_lrc_create_parent(struct intel_gt *gt, u8 class, unsigned long flags) { struct intel_engine_cs *siblings[MAX_ENGINE_INSTANCE + 1]; struct intel_engine_cs *engine; enum intel_engine_id id; int i = 0; for_each_engine(engine, gt, id) { if (engine->class != class) continue; siblings[i++] = engine; } if (i <= 1) return ERR_PTR(0); logical_sort(siblings, i); return intel_engine_create_parallel(siblings, 1, i); } static void multi_lrc_context_unpin(struct intel_context *ce) { struct intel_context *child; GEM_BUG_ON(!intel_context_is_parent(ce)); for_each_child(ce, child) intel_context_unpin(child); intel_context_unpin(ce); } static void multi_lrc_context_put(struct intel_context *ce) { GEM_BUG_ON(!intel_context_is_parent(ce)); /* * Only the parent gets the creation ref put in the uAPI, the parent * itself is responsible for creation ref put on the children. */ intel_context_put(ce); } static struct i915_request * multi_lrc_nop_request(struct intel_context *ce) { struct intel_context *child; struct i915_request *rq, *child_rq; int i = 0; GEM_BUG_ON(!intel_context_is_parent(ce)); rq = intel_context_create_request(ce); if (IS_ERR(rq)) return rq; i915_request_get(rq); i915_request_add(rq); for_each_child(ce, child) { child_rq = intel_context_create_request(child); if (IS_ERR(child_rq)) goto child_error; if (++i == ce->parallel.number_children) set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &child_rq->fence.flags); i915_request_add(child_rq); } return rq; child_error: i915_request_put(rq); return ERR_PTR(-ENOMEM); } static int __intel_guc_multi_lrc_basic(struct intel_gt *gt, unsigned int class) { struct intel_context *parent; struct i915_request *rq; int ret; parent = multi_lrc_create_parent(gt, class, 0); if (IS_ERR(parent)) { gt_err(gt, "Failed creating contexts: %pe\n", parent); return PTR_ERR(parent); } else if (!parent) { gt_dbg(gt, "Not enough engines in class: %d\n", class); return 0; } rq = multi_lrc_nop_request(parent); if (IS_ERR(rq)) { ret = PTR_ERR(rq); gt_err(gt, "Failed creating requests: %pe\n", rq); goto out; } ret = intel_selftest_wait_for_rq(rq); if (ret) gt_err(gt, "Failed waiting on request: %pe\n", ERR_PTR(ret)); i915_request_put(rq); if (ret >= 0) { ret = intel_gt_wait_for_idle(gt, HZ * 5); if (ret < 0) gt_err(gt, "GT failed to idle: %pe\n", ERR_PTR(ret)); } out: multi_lrc_context_unpin(parent); multi_lrc_context_put(parent); return ret; } static int intel_guc_multi_lrc_basic(void *arg) { struct intel_gt *gt = arg; unsigned int class; int ret; for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) { /* We don't support breadcrumb handshake on these classes */ if (class == COMPUTE_CLASS || class == RENDER_CLASS) continue; ret = __intel_guc_multi_lrc_basic(gt, class); if (ret) return ret; } return 0; } int intel_guc_multi_lrc_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(intel_guc_multi_lrc_basic), }; struct intel_gt *gt = to_gt(i915); if (intel_gt_is_wedged(gt)) return 0; if (!intel_uc_uses_guc_submission(&gt->uc)) return 0; return intel_gt_live_subtests(tests, gt); }
linux-master
drivers/gpu/drm/i915/gt/uc/selftest_guc_multi_lrc.c
// SPDX-License-Identifier: MIT /* * Copyright © 2014-2019 Intel Corporation * * Authors: * Vinit Azad <[email protected]> * Ben Widawsky <[email protected]> * Dave Gordon <[email protected]> * Alex Dai <[email protected]> */ #include "gt/intel_gt.h" #include "gt/intel_gt_mcr.h" #include "gt/intel_gt_regs.h" #include "gt/intel_rps.h" #include "intel_guc_fw.h" #include "intel_guc_print.h" #include "i915_drv.h" static void guc_prepare_xfer(struct intel_gt *gt) { struct intel_uncore *uncore = gt->uncore; u32 shim_flags = GUC_ENABLE_READ_CACHE_LOGIC | GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA | GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA | GUC_ENABLE_MIA_CLOCK_GATING; if (GRAPHICS_VER_FULL(uncore->i915) < IP_VER(12, 50)) shim_flags |= GUC_DISABLE_SRAM_INIT_TO_ZEROES | GUC_ENABLE_MIA_CACHING; /* Must program this register before loading the ucode with DMA */ intel_uncore_write(uncore, GUC_SHIM_CONTROL, shim_flags); if (IS_GEN9_LP(uncore->i915)) intel_uncore_write(uncore, GEN9LP_GT_PM_CONFIG, GT_DOORBELL_ENABLE); else intel_uncore_write(uncore, GEN9_GT_PM_CONFIG, GT_DOORBELL_ENABLE); if (GRAPHICS_VER(uncore->i915) == 9) { /* DOP Clock Gating Enable for GuC clocks */ intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 0, GEN8_DOP_CLOCK_GATE_GUC_ENABLE); /* allows for 5us (in 10ns units) before GT can go to RC6 */ intel_uncore_write(uncore, GUC_ARAT_C6DIS, 0x1FF); } } static int guc_xfer_rsa_mmio(struct intel_uc_fw *guc_fw, struct intel_uncore *uncore) { u32 rsa[UOS_RSA_SCRATCH_COUNT]; size_t copied; int i; copied = intel_uc_fw_copy_rsa(guc_fw, rsa, sizeof(rsa)); if (copied < sizeof(rsa)) return -ENOMEM; for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++) intel_uncore_write(uncore, UOS_RSA_SCRATCH(i), rsa[i]); return 0; } static int guc_xfer_rsa_vma(struct intel_uc_fw *guc_fw, struct intel_uncore *uncore) { struct intel_guc *guc = container_of(guc_fw, struct intel_guc, fw); intel_uncore_write(uncore, UOS_RSA_SCRATCH(0), intel_guc_ggtt_offset(guc, guc_fw->rsa_data)); return 0; } /* Copy RSA signature from the fw image to HW for verification */ static int guc_xfer_rsa(struct intel_uc_fw *guc_fw, struct intel_uncore *uncore) { if (guc_fw->rsa_data) return guc_xfer_rsa_vma(guc_fw, uncore); else return guc_xfer_rsa_mmio(guc_fw, uncore); } /* * Read the GuC status register (GUC_STATUS) and store it in the * specified location; then return a boolean indicating whether * the value matches either completion or a known failure code. * * This is used for polling the GuC status in a wait_for() * loop below. */ static inline bool guc_load_done(struct intel_uncore *uncore, u32 *status, bool *success) { u32 val = intel_uncore_read(uncore, GUC_STATUS); u32 uk_val = REG_FIELD_GET(GS_UKERNEL_MASK, val); u32 br_val = REG_FIELD_GET(GS_BOOTROM_MASK, val); *status = val; switch (uk_val) { case INTEL_GUC_LOAD_STATUS_READY: *success = true; return true; case INTEL_GUC_LOAD_STATUS_ERROR_DEVID_BUILD_MISMATCH: case INTEL_GUC_LOAD_STATUS_GUC_PREPROD_BUILD_MISMATCH: case INTEL_GUC_LOAD_STATUS_ERROR_DEVID_INVALID_GUCTYPE: case INTEL_GUC_LOAD_STATUS_HWCONFIG_ERROR: case INTEL_GUC_LOAD_STATUS_DPC_ERROR: case INTEL_GUC_LOAD_STATUS_EXCEPTION: case INTEL_GUC_LOAD_STATUS_INIT_DATA_INVALID: case INTEL_GUC_LOAD_STATUS_MPU_DATA_INVALID: case INTEL_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID: *success = false; return true; } switch (br_val) { case INTEL_BOOTROM_STATUS_NO_KEY_FOUND: case INTEL_BOOTROM_STATUS_RSA_FAILED: case INTEL_BOOTROM_STATUS_PAVPC_FAILED: case INTEL_BOOTROM_STATUS_WOPCM_FAILED: case INTEL_BOOTROM_STATUS_LOADLOC_FAILED: case INTEL_BOOTROM_STATUS_JUMP_FAILED: case INTEL_BOOTROM_STATUS_RC6CTXCONFIG_FAILED: case INTEL_BOOTROM_STATUS_MPUMAP_INCORRECT: case INTEL_BOOTROM_STATUS_EXCEPTION: case INTEL_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE: *success = false; return true; } return false; } /* * Use a longer timeout for debug builds so that problems can be detected * and analysed. But a shorter timeout for releases so that user's don't * wait forever to find out there is a problem. Note that the only reason * an end user should hit the timeout is in case of extreme thermal throttling. * And a system that is that hot during boot is probably dead anyway! */ #if defined(CONFIG_DRM_I915_DEBUG_GEM) #define GUC_LOAD_RETRY_LIMIT 20 #else #define GUC_LOAD_RETRY_LIMIT 3 #endif static int guc_wait_ucode(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct intel_uncore *uncore = gt->uncore; ktime_t before, after, delta; bool success; u32 status; int ret, count; u64 delta_ms; u32 before_freq; /* * Wait for the GuC to start up. * * Measurements indicate this should take no more than 20ms * (assuming the GT clock is at maximum frequency). So, a * timeout here indicates that the GuC has failed and is unusable. * (Higher levels of the driver may decide to reset the GuC and * attempt the ucode load again if this happens.) * * FIXME: There is a known (but exceedingly unlikely) race condition * where the asynchronous frequency management code could reduce * the GT clock while a GuC reload is in progress (during a full * GT reset). A fix is in progress but there are complex locking * issues to be resolved. In the meantime bump the timeout to * 200ms. Even at slowest clock, this should be sufficient. And * in the working case, a larger timeout makes no difference. * * IFWI updates have also been seen to cause sporadic failures due to * the requested frequency not being granted and thus the firmware * load is attempted at minimum frequency. That can lead to load times * in the seconds range. However, there is a limit on how long an * individual wait_for() can wait. So wrap it in a loop. */ before_freq = intel_rps_read_actual_frequency(&uncore->gt->rps); before = ktime_get(); for (count = 0; count < GUC_LOAD_RETRY_LIMIT; count++) { ret = wait_for(guc_load_done(uncore, &status, &success), 1000); if (!ret || !success) break; guc_dbg(guc, "load still in progress, count = %d, freq = %dMHz, status = 0x%08X [0x%02X/%02X]\n", count, intel_rps_read_actual_frequency(&uncore->gt->rps), status, REG_FIELD_GET(GS_BOOTROM_MASK, status), REG_FIELD_GET(GS_UKERNEL_MASK, status)); } after = ktime_get(); delta = ktime_sub(after, before); delta_ms = ktime_to_ms(delta); if (ret || !success) { u32 ukernel = REG_FIELD_GET(GS_UKERNEL_MASK, status); u32 bootrom = REG_FIELD_GET(GS_BOOTROM_MASK, status); guc_info(guc, "load failed: status = 0x%08X, time = %lldms, freq = %dMHz, ret = %d\n", status, delta_ms, intel_rps_read_actual_frequency(&uncore->gt->rps), ret); guc_info(guc, "load failed: status: Reset = %d, BootROM = 0x%02X, UKernel = 0x%02X, MIA = 0x%02X, Auth = 0x%02X\n", REG_FIELD_GET(GS_MIA_IN_RESET, status), bootrom, ukernel, REG_FIELD_GET(GS_MIA_MASK, status), REG_FIELD_GET(GS_AUTH_STATUS_MASK, status)); switch (bootrom) { case INTEL_BOOTROM_STATUS_NO_KEY_FOUND: guc_info(guc, "invalid key requested, header = 0x%08X\n", intel_uncore_read(uncore, GUC_HEADER_INFO)); ret = -ENOEXEC; break; case INTEL_BOOTROM_STATUS_RSA_FAILED: guc_info(guc, "firmware signature verification failed\n"); ret = -ENOEXEC; break; case INTEL_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE: guc_info(guc, "firmware production part check failure\n"); ret = -ENOEXEC; break; } switch (ukernel) { case INTEL_GUC_LOAD_STATUS_EXCEPTION: guc_info(guc, "firmware exception. EIP: %#x\n", intel_uncore_read(uncore, SOFT_SCRATCH(13))); ret = -ENXIO; break; case INTEL_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID: guc_info(guc, "illegal register in save/restore workaround list\n"); ret = -EPERM; break; case INTEL_GUC_LOAD_STATUS_HWCONFIG_START: guc_info(guc, "still extracting hwconfig table.\n"); ret = -ETIMEDOUT; break; } /* Uncommon/unexpected error, see earlier status code print for details */ if (ret == 0) ret = -ENXIO; } else if (delta_ms > 200) { guc_warn(guc, "excessive init time: %lldms! [status = 0x%08X, count = %d, ret = %d]\n", delta_ms, status, count, ret); guc_warn(guc, "excessive init time: [freq = %dMHz, before = %dMHz, perf_limit_reasons = 0x%08X]\n", intel_rps_read_actual_frequency(&uncore->gt->rps), before_freq, intel_uncore_read(uncore, intel_gt_perf_limit_reasons_reg(gt))); } else { guc_dbg(guc, "init took %lldms, freq = %dMHz, before = %dMHz, status = 0x%08X, count = %d, ret = %d\n", delta_ms, intel_rps_read_actual_frequency(&uncore->gt->rps), before_freq, status, count, ret); } return ret; } /** * intel_guc_fw_upload() - load GuC uCode to device * @guc: intel_guc structure * * Called from intel_uc_init_hw() during driver load, resume from sleep and * after a GPU reset. * * The firmware image should have already been fetched into memory, so only * check that fetch succeeded, and then transfer the image to the h/w. * * Return: non-zero code on error */ int intel_guc_fw_upload(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct intel_uncore *uncore = gt->uncore; int ret; guc_prepare_xfer(gt); /* * Note that GuC needs the CSS header plus uKernel code to be copied * by the DMA engine in one operation, whereas the RSA signature is * loaded separately, either by copying it to the UOS_RSA_SCRATCH * register (if key size <= 256) or through a ggtt-pinned vma (if key * size > 256). The RSA size and therefore the way we provide it to the * HW is fixed for each platform and hard-coded in the bootrom. */ ret = guc_xfer_rsa(&guc->fw, uncore); if (ret) goto out; /* * Current uCode expects the code to be loaded at 8k; locations below * this are used for the stack. */ ret = intel_uc_fw_upload(&guc->fw, 0x2000, UOS_MOVE); if (ret) goto out; ret = guc_wait_ucode(guc); if (ret) goto out; intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_RUNNING); return 0; out: intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL); return ret; }
linux-master
drivers/gpu/drm/i915/gt/uc/intel_guc_fw.c
// SPDX-License-Identifier: MIT /* * Copyright © 2021 Intel Corporation */ #include <drm/drm_cache.h> #include <linux/string_helpers.h> #include "i915_drv.h" #include "i915_reg.h" #include "intel_guc_slpc.h" #include "intel_guc_print.h" #include "intel_mchbar_regs.h" #include "gt/intel_gt.h" #include "gt/intel_gt_regs.h" #include "gt/intel_rps.h" static inline struct intel_guc *slpc_to_guc(struct intel_guc_slpc *slpc) { return container_of(slpc, struct intel_guc, slpc); } static inline struct intel_gt *slpc_to_gt(struct intel_guc_slpc *slpc) { return guc_to_gt(slpc_to_guc(slpc)); } static inline struct drm_i915_private *slpc_to_i915(struct intel_guc_slpc *slpc) { return slpc_to_gt(slpc)->i915; } static bool __detect_slpc_supported(struct intel_guc *guc) { /* GuC SLPC is unavailable for pre-Gen12 */ return guc->submission_supported && GRAPHICS_VER(guc_to_gt(guc)->i915) >= 12; } static bool __guc_slpc_selected(struct intel_guc *guc) { if (!intel_guc_slpc_is_supported(guc)) return false; return guc->submission_selected; } void intel_guc_slpc_init_early(struct intel_guc_slpc *slpc) { struct intel_guc *guc = slpc_to_guc(slpc); slpc->supported = __detect_slpc_supported(guc); slpc->selected = __guc_slpc_selected(guc); } static void slpc_mem_set_param(struct slpc_shared_data *data, u32 id, u32 value) { GEM_BUG_ON(id >= SLPC_MAX_OVERRIDE_PARAMETERS); /* * When the flag bit is set, corresponding value will be read * and applied by SLPC. */ data->override_params.bits[id >> 5] |= (1 << (id % 32)); data->override_params.values[id] = value; } static void slpc_mem_set_enabled(struct slpc_shared_data *data, u8 enable_id, u8 disable_id) { /* * Enabling a param involves setting the enable_id * to 1 and disable_id to 0. */ slpc_mem_set_param(data, enable_id, 1); slpc_mem_set_param(data, disable_id, 0); } static void slpc_mem_set_disabled(struct slpc_shared_data *data, u8 enable_id, u8 disable_id) { /* * Disabling a param involves setting the enable_id * to 0 and disable_id to 1. */ slpc_mem_set_param(data, disable_id, 1); slpc_mem_set_param(data, enable_id, 0); } static u32 slpc_get_state(struct intel_guc_slpc *slpc) { struct slpc_shared_data *data; GEM_BUG_ON(!slpc->vma); drm_clflush_virt_range(slpc->vaddr, sizeof(u32)); data = slpc->vaddr; return data->header.global_state; } static int guc_action_slpc_set_param_nb(struct intel_guc *guc, u8 id, u32 value) { u32 request[] = { GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST, SLPC_EVENT(SLPC_EVENT_PARAMETER_SET, 2), id, value, }; int ret; ret = intel_guc_send_nb(guc, request, ARRAY_SIZE(request), 0); return ret > 0 ? -EPROTO : ret; } static int slpc_set_param_nb(struct intel_guc_slpc *slpc, u8 id, u32 value) { struct intel_guc *guc = slpc_to_guc(slpc); GEM_BUG_ON(id >= SLPC_MAX_PARAM); return guc_action_slpc_set_param_nb(guc, id, value); } static int guc_action_slpc_set_param(struct intel_guc *guc, u8 id, u32 value) { u32 request[] = { GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST, SLPC_EVENT(SLPC_EVENT_PARAMETER_SET, 2), id, value, }; int ret; ret = intel_guc_send(guc, request, ARRAY_SIZE(request)); return ret > 0 ? -EPROTO : ret; } static int guc_action_slpc_unset_param(struct intel_guc *guc, u8 id) { u32 request[] = { GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST, SLPC_EVENT(SLPC_EVENT_PARAMETER_UNSET, 1), id, }; return intel_guc_send(guc, request, ARRAY_SIZE(request)); } static bool slpc_is_running(struct intel_guc_slpc *slpc) { return slpc_get_state(slpc) == SLPC_GLOBAL_STATE_RUNNING; } static int guc_action_slpc_query(struct intel_guc *guc, u32 offset) { u32 request[] = { GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST, SLPC_EVENT(SLPC_EVENT_QUERY_TASK_STATE, 2), offset, 0, }; int ret; ret = intel_guc_send(guc, request, ARRAY_SIZE(request)); return ret > 0 ? -EPROTO : ret; } static int slpc_query_task_state(struct intel_guc_slpc *slpc) { struct intel_guc *guc = slpc_to_guc(slpc); u32 offset = intel_guc_ggtt_offset(guc, slpc->vma); int ret; ret = guc_action_slpc_query(guc, offset); if (unlikely(ret)) guc_probe_error(guc, "Failed to query task state: %pe\n", ERR_PTR(ret)); drm_clflush_virt_range(slpc->vaddr, SLPC_PAGE_SIZE_BYTES); return ret; } static int slpc_set_param(struct intel_guc_slpc *slpc, u8 id, u32 value) { struct intel_guc *guc = slpc_to_guc(slpc); int ret; GEM_BUG_ON(id >= SLPC_MAX_PARAM); ret = guc_action_slpc_set_param(guc, id, value); if (ret) guc_probe_error(guc, "Failed to set param %d to %u: %pe\n", id, value, ERR_PTR(ret)); return ret; } static int slpc_unset_param(struct intel_guc_slpc *slpc, u8 id) { struct intel_guc *guc = slpc_to_guc(slpc); GEM_BUG_ON(id >= SLPC_MAX_PARAM); return guc_action_slpc_unset_param(guc, id); } static int slpc_force_min_freq(struct intel_guc_slpc *slpc, u32 freq) { struct intel_guc *guc = slpc_to_guc(slpc); struct drm_i915_private *i915 = slpc_to_i915(slpc); intel_wakeref_t wakeref; int ret = 0; lockdep_assert_held(&slpc->lock); if (!intel_guc_is_ready(guc)) return -ENODEV; /* * This function is a little different as compared to * intel_guc_slpc_set_min_freq(). Softlimit will not be updated * here since this is used to temporarily change min freq, * for example, during a waitboost. Caller is responsible for * checking bounds. */ with_intel_runtime_pm(&i915->runtime_pm, wakeref) { /* Non-blocking request will avoid stalls */ ret = slpc_set_param_nb(slpc, SLPC_PARAM_GLOBAL_MIN_GT_UNSLICE_FREQ_MHZ, freq); if (ret) guc_notice(guc, "Failed to send set_param for min freq(%d): %pe\n", freq, ERR_PTR(ret)); } return ret; } static void slpc_boost_work(struct work_struct *work) { struct intel_guc_slpc *slpc = container_of(work, typeof(*slpc), boost_work); int err; /* * Raise min freq to boost. It's possible that * this is greater than current max. But it will * certainly be limited by RP0. An error setting * the min param is not fatal. */ mutex_lock(&slpc->lock); if (atomic_read(&slpc->num_waiters)) { err = slpc_force_min_freq(slpc, slpc->boost_freq); if (!err) slpc->num_boosts++; } mutex_unlock(&slpc->lock); } int intel_guc_slpc_init(struct intel_guc_slpc *slpc) { struct intel_guc *guc = slpc_to_guc(slpc); u32 size = PAGE_ALIGN(sizeof(struct slpc_shared_data)); int err; GEM_BUG_ON(slpc->vma); err = intel_guc_allocate_and_map_vma(guc, size, &slpc->vma, (void **)&slpc->vaddr); if (unlikely(err)) { guc_probe_error(guc, "Failed to allocate SLPC struct: %pe\n", ERR_PTR(err)); return err; } slpc->max_freq_softlimit = 0; slpc->min_freq_softlimit = 0; slpc->ignore_eff_freq = false; slpc->min_is_rpmax = false; slpc->boost_freq = 0; atomic_set(&slpc->num_waiters, 0); slpc->num_boosts = 0; slpc->media_ratio_mode = SLPC_MEDIA_RATIO_MODE_DYNAMIC_CONTROL; mutex_init(&slpc->lock); INIT_WORK(&slpc->boost_work, slpc_boost_work); return err; } static const char *slpc_global_state_to_string(enum slpc_global_state state) { switch (state) { case SLPC_GLOBAL_STATE_NOT_RUNNING: return "not running"; case SLPC_GLOBAL_STATE_INITIALIZING: return "initializing"; case SLPC_GLOBAL_STATE_RESETTING: return "resetting"; case SLPC_GLOBAL_STATE_RUNNING: return "running"; case SLPC_GLOBAL_STATE_SHUTTING_DOWN: return "shutting down"; case SLPC_GLOBAL_STATE_ERROR: return "error"; default: return "unknown"; } } static const char *slpc_get_state_string(struct intel_guc_slpc *slpc) { return slpc_global_state_to_string(slpc_get_state(slpc)); } static int guc_action_slpc_reset(struct intel_guc *guc, u32 offset) { u32 request[] = { GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST, SLPC_EVENT(SLPC_EVENT_RESET, 2), offset, 0, }; int ret; ret = intel_guc_send(guc, request, ARRAY_SIZE(request)); return ret > 0 ? -EPROTO : ret; } static int slpc_reset(struct intel_guc_slpc *slpc) { struct intel_guc *guc = slpc_to_guc(slpc); u32 offset = intel_guc_ggtt_offset(guc, slpc->vma); int ret; ret = guc_action_slpc_reset(guc, offset); if (unlikely(ret < 0)) { guc_probe_error(guc, "SLPC reset action failed: %pe\n", ERR_PTR(ret)); return ret; } if (!ret) { if (wait_for(slpc_is_running(slpc), SLPC_RESET_TIMEOUT_MS)) { guc_probe_error(guc, "SLPC not enabled! State = %s\n", slpc_get_state_string(slpc)); return -EIO; } } return 0; } static u32 slpc_decode_min_freq(struct intel_guc_slpc *slpc) { struct slpc_shared_data *data = slpc->vaddr; GEM_BUG_ON(!slpc->vma); return DIV_ROUND_CLOSEST(REG_FIELD_GET(SLPC_MIN_UNSLICE_FREQ_MASK, data->task_state_data.freq) * GT_FREQUENCY_MULTIPLIER, GEN9_FREQ_SCALER); } static u32 slpc_decode_max_freq(struct intel_guc_slpc *slpc) { struct slpc_shared_data *data = slpc->vaddr; GEM_BUG_ON(!slpc->vma); return DIV_ROUND_CLOSEST(REG_FIELD_GET(SLPC_MAX_UNSLICE_FREQ_MASK, data->task_state_data.freq) * GT_FREQUENCY_MULTIPLIER, GEN9_FREQ_SCALER); } static void slpc_shared_data_reset(struct slpc_shared_data *data) { memset(data, 0, sizeof(struct slpc_shared_data)); data->header.size = sizeof(struct slpc_shared_data); /* Enable only GTPERF task, disable others */ slpc_mem_set_enabled(data, SLPC_PARAM_TASK_ENABLE_GTPERF, SLPC_PARAM_TASK_DISABLE_GTPERF); slpc_mem_set_disabled(data, SLPC_PARAM_TASK_ENABLE_BALANCER, SLPC_PARAM_TASK_DISABLE_BALANCER); slpc_mem_set_disabled(data, SLPC_PARAM_TASK_ENABLE_DCC, SLPC_PARAM_TASK_DISABLE_DCC); } /** * intel_guc_slpc_set_max_freq() - Set max frequency limit for SLPC. * @slpc: pointer to intel_guc_slpc. * @val: frequency (MHz) * * This function will invoke GuC SLPC action to update the max frequency * limit for unslice. * * Return: 0 on success, non-zero error code on failure. */ int intel_guc_slpc_set_max_freq(struct intel_guc_slpc *slpc, u32 val) { struct drm_i915_private *i915 = slpc_to_i915(slpc); intel_wakeref_t wakeref; int ret; if (val < slpc->min_freq || val > slpc->rp0_freq || val < slpc->min_freq_softlimit) return -EINVAL; with_intel_runtime_pm(&i915->runtime_pm, wakeref) { ret = slpc_set_param(slpc, SLPC_PARAM_GLOBAL_MAX_GT_UNSLICE_FREQ_MHZ, val); /* Return standardized err code for sysfs calls */ if (ret) ret = -EIO; } if (!ret) slpc->max_freq_softlimit = val; return ret; } /** * intel_guc_slpc_get_max_freq() - Get max frequency limit for SLPC. * @slpc: pointer to intel_guc_slpc. * @val: pointer to val which will hold max frequency (MHz) * * This function will invoke GuC SLPC action to read the max frequency * limit for unslice. * * Return: 0 on success, non-zero error code on failure. */ int intel_guc_slpc_get_max_freq(struct intel_guc_slpc *slpc, u32 *val) { struct drm_i915_private *i915 = slpc_to_i915(slpc); intel_wakeref_t wakeref; int ret = 0; with_intel_runtime_pm(&i915->runtime_pm, wakeref) { /* Force GuC to update task data */ ret = slpc_query_task_state(slpc); if (!ret) *val = slpc_decode_max_freq(slpc); } return ret; } int intel_guc_slpc_set_ignore_eff_freq(struct intel_guc_slpc *slpc, bool val) { struct drm_i915_private *i915 = slpc_to_i915(slpc); intel_wakeref_t wakeref; int ret; mutex_lock(&slpc->lock); wakeref = intel_runtime_pm_get(&i915->runtime_pm); ret = slpc_set_param(slpc, SLPC_PARAM_IGNORE_EFFICIENT_FREQUENCY, val); if (ret) { guc_probe_error(slpc_to_guc(slpc), "Failed to set efficient freq(%d): %pe\n", val, ERR_PTR(ret)); } else { slpc->ignore_eff_freq = val; /* Set min to RPn when we disable efficient freq */ if (val) ret = slpc_set_param(slpc, SLPC_PARAM_GLOBAL_MIN_GT_UNSLICE_FREQ_MHZ, slpc->min_freq); } intel_runtime_pm_put(&i915->runtime_pm, wakeref); mutex_unlock(&slpc->lock); return ret; } /** * intel_guc_slpc_set_min_freq() - Set min frequency limit for SLPC. * @slpc: pointer to intel_guc_slpc. * @val: frequency (MHz) * * This function will invoke GuC SLPC action to update the min unslice * frequency. * * Return: 0 on success, non-zero error code on failure. */ int intel_guc_slpc_set_min_freq(struct intel_guc_slpc *slpc, u32 val) { struct drm_i915_private *i915 = slpc_to_i915(slpc); intel_wakeref_t wakeref; int ret; if (val < slpc->min_freq || val > slpc->rp0_freq || val > slpc->max_freq_softlimit) return -EINVAL; /* Need a lock now since waitboost can be modifying min as well */ mutex_lock(&slpc->lock); wakeref = intel_runtime_pm_get(&i915->runtime_pm); ret = slpc_set_param(slpc, SLPC_PARAM_GLOBAL_MIN_GT_UNSLICE_FREQ_MHZ, val); if (!ret) slpc->min_freq_softlimit = val; intel_runtime_pm_put(&i915->runtime_pm, wakeref); mutex_unlock(&slpc->lock); /* Return standardized err code for sysfs calls */ if (ret) ret = -EIO; return ret; } /** * intel_guc_slpc_get_min_freq() - Get min frequency limit for SLPC. * @slpc: pointer to intel_guc_slpc. * @val: pointer to val which will hold min frequency (MHz) * * This function will invoke GuC SLPC action to read the min frequency * limit for unslice. * * Return: 0 on success, non-zero error code on failure. */ int intel_guc_slpc_get_min_freq(struct intel_guc_slpc *slpc, u32 *val) { struct drm_i915_private *i915 = slpc_to_i915(slpc); intel_wakeref_t wakeref; int ret = 0; with_intel_runtime_pm(&i915->runtime_pm, wakeref) { /* Force GuC to update task data */ ret = slpc_query_task_state(slpc); if (!ret) *val = slpc_decode_min_freq(slpc); } return ret; } int intel_guc_slpc_set_media_ratio_mode(struct intel_guc_slpc *slpc, u32 val) { struct drm_i915_private *i915 = slpc_to_i915(slpc); intel_wakeref_t wakeref; int ret = 0; if (!HAS_MEDIA_RATIO_MODE(i915)) return -ENODEV; with_intel_runtime_pm(&i915->runtime_pm, wakeref) ret = slpc_set_param(slpc, SLPC_PARAM_MEDIA_FF_RATIO_MODE, val); return ret; } void intel_guc_pm_intrmsk_enable(struct intel_gt *gt) { u32 pm_intrmsk_mbz = 0; /* * Allow GuC to receive ARAT timer expiry event. * This interrupt register is setup by RPS code * when host based Turbo is enabled. */ pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK; intel_uncore_rmw(gt->uncore, GEN6_PMINTRMSK, pm_intrmsk_mbz, 0); } static int slpc_set_softlimits(struct intel_guc_slpc *slpc) { int ret = 0; /* * Softlimits are initially equivalent to platform limits * unless they have deviated from defaults, in which case, * we retain the values and set min/max accordingly. */ if (!slpc->max_freq_softlimit) { slpc->max_freq_softlimit = slpc->rp0_freq; slpc_to_gt(slpc)->defaults.max_freq = slpc->max_freq_softlimit; } else if (slpc->max_freq_softlimit != slpc->rp0_freq) { ret = intel_guc_slpc_set_max_freq(slpc, slpc->max_freq_softlimit); } if (unlikely(ret)) return ret; if (!slpc->min_freq_softlimit) { /* Min softlimit is initialized to RPn */ slpc->min_freq_softlimit = slpc->min_freq; slpc_to_gt(slpc)->defaults.min_freq = slpc->min_freq_softlimit; } else { return intel_guc_slpc_set_min_freq(slpc, slpc->min_freq_softlimit); } return 0; } static bool is_slpc_min_freq_rpmax(struct intel_guc_slpc *slpc) { int slpc_min_freq; int ret; ret = intel_guc_slpc_get_min_freq(slpc, &slpc_min_freq); if (ret) { guc_err(slpc_to_guc(slpc), "Failed to get min freq: %pe\n", ERR_PTR(ret)); return false; } if (slpc_min_freq == SLPC_MAX_FREQ_MHZ) return true; else return false; } static void update_server_min_softlimit(struct intel_guc_slpc *slpc) { /* For server parts, SLPC min will be at RPMax. * Use min softlimit to clamp it to RP0 instead. */ if (!slpc->min_freq_softlimit && is_slpc_min_freq_rpmax(slpc)) { slpc->min_is_rpmax = true; slpc->min_freq_softlimit = slpc->rp0_freq; (slpc_to_gt(slpc))->defaults.min_freq = slpc->min_freq_softlimit; } } static int slpc_use_fused_rp0(struct intel_guc_slpc *slpc) { /* Force SLPC to used platform rp0 */ return slpc_set_param(slpc, SLPC_PARAM_GLOBAL_MAX_GT_UNSLICE_FREQ_MHZ, slpc->rp0_freq); } static void slpc_get_rp_values(struct intel_guc_slpc *slpc) { struct intel_rps *rps = &slpc_to_gt(slpc)->rps; struct intel_rps_freq_caps caps; gen6_rps_get_freq_caps(rps, &caps); slpc->rp0_freq = intel_gpu_freq(rps, caps.rp0_freq); slpc->rp1_freq = intel_gpu_freq(rps, caps.rp1_freq); slpc->min_freq = intel_gpu_freq(rps, caps.min_freq); if (!slpc->boost_freq) slpc->boost_freq = slpc->rp0_freq; } /** * intel_guc_slpc_override_gucrc_mode() - override GUCRC mode * @slpc: pointer to intel_guc_slpc. * @mode: new value of the mode. * * This function will override the GUCRC mode. * * Return: 0 on success, non-zero error code on failure. */ int intel_guc_slpc_override_gucrc_mode(struct intel_guc_slpc *slpc, u32 mode) { int ret; struct drm_i915_private *i915 = slpc_to_i915(slpc); intel_wakeref_t wakeref; if (mode >= SLPC_GUCRC_MODE_MAX) return -EINVAL; with_intel_runtime_pm(&i915->runtime_pm, wakeref) { ret = slpc_set_param(slpc, SLPC_PARAM_PWRGATE_RC_MODE, mode); if (ret) guc_err(slpc_to_guc(slpc), "Override RC mode %d failed: %pe\n", mode, ERR_PTR(ret)); } return ret; } int intel_guc_slpc_unset_gucrc_mode(struct intel_guc_slpc *slpc) { struct drm_i915_private *i915 = slpc_to_i915(slpc); intel_wakeref_t wakeref; int ret = 0; with_intel_runtime_pm(&i915->runtime_pm, wakeref) { ret = slpc_unset_param(slpc, SLPC_PARAM_PWRGATE_RC_MODE); if (ret) guc_err(slpc_to_guc(slpc), "Unsetting RC mode failed: %pe\n", ERR_PTR(ret)); } return ret; } /* * intel_guc_slpc_enable() - Start SLPC * @slpc: pointer to intel_guc_slpc. * * SLPC is enabled by setting up the shared data structure and * sending reset event to GuC SLPC. Initial data is setup in * intel_guc_slpc_init. Here we send the reset event. We do * not currently need a slpc_disable since this is taken care * of automatically when a reset/suspend occurs and the GuC * CTB is destroyed. * * Return: 0 on success, non-zero error code on failure. */ int intel_guc_slpc_enable(struct intel_guc_slpc *slpc) { struct intel_guc *guc = slpc_to_guc(slpc); int ret; GEM_BUG_ON(!slpc->vma); slpc_shared_data_reset(slpc->vaddr); ret = slpc_reset(slpc); if (unlikely(ret < 0)) { guc_probe_error(guc, "SLPC Reset event returned: %pe\n", ERR_PTR(ret)); return ret; } ret = slpc_query_task_state(slpc); if (unlikely(ret < 0)) return ret; intel_guc_pm_intrmsk_enable(slpc_to_gt(slpc)); slpc_get_rp_values(slpc); /* Handle the case where min=max=RPmax */ update_server_min_softlimit(slpc); /* Set SLPC max limit to RP0 */ ret = slpc_use_fused_rp0(slpc); if (unlikely(ret)) { guc_probe_error(guc, "Failed to set SLPC max to RP0: %pe\n", ERR_PTR(ret)); return ret; } /* Set cached value of ignore efficient freq */ intel_guc_slpc_set_ignore_eff_freq(slpc, slpc->ignore_eff_freq); /* Revert SLPC min/max to softlimits if necessary */ ret = slpc_set_softlimits(slpc); if (unlikely(ret)) { guc_probe_error(guc, "Failed to set SLPC softlimits: %pe\n", ERR_PTR(ret)); return ret; } /* Set cached media freq ratio mode */ intel_guc_slpc_set_media_ratio_mode(slpc, slpc->media_ratio_mode); return 0; } int intel_guc_slpc_set_boost_freq(struct intel_guc_slpc *slpc, u32 val) { int ret = 0; if (val < slpc->min_freq || val > slpc->rp0_freq) return -EINVAL; mutex_lock(&slpc->lock); if (slpc->boost_freq != val) { /* Apply only if there are active waiters */ if (atomic_read(&slpc->num_waiters)) { ret = slpc_force_min_freq(slpc, val); if (ret) { ret = -EIO; goto done; } } slpc->boost_freq = val; } done: mutex_unlock(&slpc->lock); return ret; } void intel_guc_slpc_dec_waiters(struct intel_guc_slpc *slpc) { /* * Return min back to the softlimit. * This is called during request retire, * so we don't need to fail that if the * set_param fails. */ mutex_lock(&slpc->lock); if (atomic_dec_and_test(&slpc->num_waiters)) slpc_force_min_freq(slpc, slpc->min_freq_softlimit); mutex_unlock(&slpc->lock); } int intel_guc_slpc_print_info(struct intel_guc_slpc *slpc, struct drm_printer *p) { struct drm_i915_private *i915 = slpc_to_i915(slpc); struct slpc_shared_data *data = slpc->vaddr; struct slpc_task_state_data *slpc_tasks; intel_wakeref_t wakeref; int ret = 0; GEM_BUG_ON(!slpc->vma); with_intel_runtime_pm(&i915->runtime_pm, wakeref) { ret = slpc_query_task_state(slpc); if (!ret) { slpc_tasks = &data->task_state_data; drm_printf(p, "\tSLPC state: %s\n", slpc_get_state_string(slpc)); drm_printf(p, "\tGTPERF task active: %s\n", str_yes_no(slpc_tasks->status & SLPC_GTPERF_TASK_ENABLED)); drm_printf(p, "\tMax freq: %u MHz\n", slpc_decode_max_freq(slpc)); drm_printf(p, "\tMin freq: %u MHz\n", slpc_decode_min_freq(slpc)); drm_printf(p, "\twaitboosts: %u\n", slpc->num_boosts); drm_printf(p, "\tBoosts outstanding: %u\n", atomic_read(&slpc->num_waiters)); } } return ret; } void intel_guc_slpc_fini(struct intel_guc_slpc *slpc) { if (!slpc->vma) return; i915_vma_unpin_and_release(&slpc->vma, I915_VMA_RELEASE_MAP); }
linux-master
drivers/gpu/drm/i915/gt/uc/intel_guc_slpc.c
// SPDX-License-Identifier: MIT /* * Copyright © 2021-2022 Intel Corporation */ #include <linux/types.h> #include <drm/drm_print.h> #include "gt/intel_engine_regs.h" #include "gt/intel_gt.h" #include "gt/intel_gt_mcr.h" #include "gt/intel_gt_regs.h" #include "gt/intel_lrc.h" #include "guc_capture_fwif.h" #include "intel_guc_capture.h" #include "intel_guc_fwif.h" #include "intel_guc_print.h" #include "i915_drv.h" #include "i915_gpu_error.h" #include "i915_irq.h" #include "i915_memcpy.h" #include "i915_reg.h" /* * Define all device tables of GuC error capture register lists * NOTE: For engine-registers, GuC only needs the register offsets * from the engine-mmio-base */ #define COMMON_BASE_GLOBAL \ { FORCEWAKE_MT, 0, 0, "FORCEWAKE" } #define COMMON_GEN8BASE_GLOBAL \ { ERROR_GEN6, 0, 0, "ERROR_GEN6" }, \ { DONE_REG, 0, 0, "DONE_REG" }, \ { HSW_GTT_CACHE_EN, 0, 0, "HSW_GTT_CACHE_EN" } #define GEN8_GLOBAL \ { GEN8_FAULT_TLB_DATA0, 0, 0, "GEN8_FAULT_TLB_DATA0" }, \ { GEN8_FAULT_TLB_DATA1, 0, 0, "GEN8_FAULT_TLB_DATA1" } #define COMMON_GEN12BASE_GLOBAL \ { GEN12_FAULT_TLB_DATA0, 0, 0, "GEN12_FAULT_TLB_DATA0" }, \ { GEN12_FAULT_TLB_DATA1, 0, 0, "GEN12_FAULT_TLB_DATA1" }, \ { GEN12_AUX_ERR_DBG, 0, 0, "AUX_ERR_DBG" }, \ { GEN12_GAM_DONE, 0, 0, "GAM_DONE" }, \ { GEN12_RING_FAULT_REG, 0, 0, "FAULT_REG" } #define COMMON_BASE_ENGINE_INSTANCE \ { RING_PSMI_CTL(0), 0, 0, "RC PSMI" }, \ { RING_ESR(0), 0, 0, "ESR" }, \ { RING_DMA_FADD(0), 0, 0, "RING_DMA_FADD_LDW" }, \ { RING_DMA_FADD_UDW(0), 0, 0, "RING_DMA_FADD_UDW" }, \ { RING_IPEIR(0), 0, 0, "IPEIR" }, \ { RING_IPEHR(0), 0, 0, "IPEHR" }, \ { RING_INSTPS(0), 0, 0, "INSTPS" }, \ { RING_BBADDR(0), 0, 0, "RING_BBADDR_LOW32" }, \ { RING_BBADDR_UDW(0), 0, 0, "RING_BBADDR_UP32" }, \ { RING_BBSTATE(0), 0, 0, "BB_STATE" }, \ { CCID(0), 0, 0, "CCID" }, \ { RING_ACTHD(0), 0, 0, "ACTHD_LDW" }, \ { RING_ACTHD_UDW(0), 0, 0, "ACTHD_UDW" }, \ { RING_INSTPM(0), 0, 0, "INSTPM" }, \ { RING_INSTDONE(0), 0, 0, "INSTDONE" }, \ { RING_NOPID(0), 0, 0, "RING_NOPID" }, \ { RING_START(0), 0, 0, "START" }, \ { RING_HEAD(0), 0, 0, "HEAD" }, \ { RING_TAIL(0), 0, 0, "TAIL" }, \ { RING_CTL(0), 0, 0, "CTL" }, \ { RING_MI_MODE(0), 0, 0, "MODE" }, \ { RING_CONTEXT_CONTROL(0), 0, 0, "RING_CONTEXT_CONTROL" }, \ { RING_HWS_PGA(0), 0, 0, "HWS" }, \ { RING_MODE_GEN7(0), 0, 0, "GFX_MODE" }, \ { GEN8_RING_PDP_LDW(0, 0), 0, 0, "PDP0_LDW" }, \ { GEN8_RING_PDP_UDW(0, 0), 0, 0, "PDP0_UDW" }, \ { GEN8_RING_PDP_LDW(0, 1), 0, 0, "PDP1_LDW" }, \ { GEN8_RING_PDP_UDW(0, 1), 0, 0, "PDP1_UDW" }, \ { GEN8_RING_PDP_LDW(0, 2), 0, 0, "PDP2_LDW" }, \ { GEN8_RING_PDP_UDW(0, 2), 0, 0, "PDP2_UDW" }, \ { GEN8_RING_PDP_LDW(0, 3), 0, 0, "PDP3_LDW" }, \ { GEN8_RING_PDP_UDW(0, 3), 0, 0, "PDP3_UDW" } #define COMMON_BASE_HAS_EU \ { EIR, 0, 0, "EIR" } #define COMMON_BASE_RENDER \ { GEN7_SC_INSTDONE, 0, 0, "GEN7_SC_INSTDONE" } #define COMMON_GEN12BASE_RENDER \ { GEN12_SC_INSTDONE_EXTRA, 0, 0, "GEN12_SC_INSTDONE_EXTRA" }, \ { GEN12_SC_INSTDONE_EXTRA2, 0, 0, "GEN12_SC_INSTDONE_EXTRA2" } #define COMMON_GEN12BASE_VEC \ { GEN12_SFC_DONE(0), 0, 0, "SFC_DONE[0]" }, \ { GEN12_SFC_DONE(1), 0, 0, "SFC_DONE[1]" }, \ { GEN12_SFC_DONE(2), 0, 0, "SFC_DONE[2]" }, \ { GEN12_SFC_DONE(3), 0, 0, "SFC_DONE[3]" } /* XE_LP Global */ static const struct __guc_mmio_reg_descr xe_lp_global_regs[] = { COMMON_BASE_GLOBAL, COMMON_GEN8BASE_GLOBAL, COMMON_GEN12BASE_GLOBAL, }; /* XE_LP Render / Compute Per-Class */ static const struct __guc_mmio_reg_descr xe_lp_rc_class_regs[] = { COMMON_BASE_HAS_EU, COMMON_BASE_RENDER, COMMON_GEN12BASE_RENDER, }; /* GEN8+ Render / Compute Per-Engine-Instance */ static const struct __guc_mmio_reg_descr gen8_rc_inst_regs[] = { COMMON_BASE_ENGINE_INSTANCE, }; /* GEN8+ Media Decode/Encode Per-Engine-Instance */ static const struct __guc_mmio_reg_descr gen8_vd_inst_regs[] = { COMMON_BASE_ENGINE_INSTANCE, }; /* XE_LP Video Enhancement Per-Class */ static const struct __guc_mmio_reg_descr xe_lp_vec_class_regs[] = { COMMON_GEN12BASE_VEC, }; /* GEN8+ Video Enhancement Per-Engine-Instance */ static const struct __guc_mmio_reg_descr gen8_vec_inst_regs[] = { COMMON_BASE_ENGINE_INSTANCE, }; /* GEN8+ Blitter Per-Engine-Instance */ static const struct __guc_mmio_reg_descr gen8_blt_inst_regs[] = { COMMON_BASE_ENGINE_INSTANCE, }; /* XE_LP - GSC Per-Engine-Instance */ static const struct __guc_mmio_reg_descr xe_lp_gsc_inst_regs[] = { COMMON_BASE_ENGINE_INSTANCE, }; /* GEN8 - Global */ static const struct __guc_mmio_reg_descr gen8_global_regs[] = { COMMON_BASE_GLOBAL, COMMON_GEN8BASE_GLOBAL, GEN8_GLOBAL, }; static const struct __guc_mmio_reg_descr gen8_rc_class_regs[] = { COMMON_BASE_HAS_EU, COMMON_BASE_RENDER, }; /* * Empty list to prevent warnings about unknown class/instance types * as not all class/instanace types have entries on all platforms. */ static const struct __guc_mmio_reg_descr empty_regs_list[] = { }; #define TO_GCAP_DEF_OWNER(x) (GUC_CAPTURE_LIST_INDEX_##x) #define TO_GCAP_DEF_TYPE(x) (GUC_CAPTURE_LIST_TYPE_##x) #define MAKE_REGLIST(regslist, regsowner, regstype, class) \ { \ regslist, \ ARRAY_SIZE(regslist), \ TO_GCAP_DEF_OWNER(regsowner), \ TO_GCAP_DEF_TYPE(regstype), \ class, \ NULL, \ } /* List of lists */ static const struct __guc_mmio_reg_descr_group gen8_lists[] = { MAKE_REGLIST(gen8_global_regs, PF, GLOBAL, 0), MAKE_REGLIST(gen8_rc_class_regs, PF, ENGINE_CLASS, GUC_CAPTURE_LIST_CLASS_RENDER_COMPUTE), MAKE_REGLIST(gen8_rc_inst_regs, PF, ENGINE_INSTANCE, GUC_CAPTURE_LIST_CLASS_RENDER_COMPUTE), MAKE_REGLIST(empty_regs_list, PF, ENGINE_CLASS, GUC_CAPTURE_LIST_CLASS_VIDEO), MAKE_REGLIST(gen8_vd_inst_regs, PF, ENGINE_INSTANCE, GUC_CAPTURE_LIST_CLASS_VIDEO), MAKE_REGLIST(empty_regs_list, PF, ENGINE_CLASS, GUC_CAPTURE_LIST_CLASS_VIDEOENHANCE), MAKE_REGLIST(gen8_vec_inst_regs, PF, ENGINE_INSTANCE, GUC_CAPTURE_LIST_CLASS_VIDEOENHANCE), MAKE_REGLIST(empty_regs_list, PF, ENGINE_CLASS, GUC_CAPTURE_LIST_CLASS_BLITTER), MAKE_REGLIST(gen8_blt_inst_regs, PF, ENGINE_INSTANCE, GUC_CAPTURE_LIST_CLASS_BLITTER), MAKE_REGLIST(empty_regs_list, PF, ENGINE_CLASS, GUC_CAPTURE_LIST_CLASS_GSC_OTHER), MAKE_REGLIST(empty_regs_list, PF, ENGINE_INSTANCE, GUC_CAPTURE_LIST_CLASS_GSC_OTHER), {} }; static const struct __guc_mmio_reg_descr_group xe_lp_lists[] = { MAKE_REGLIST(xe_lp_global_regs, PF, GLOBAL, 0), MAKE_REGLIST(xe_lp_rc_class_regs, PF, ENGINE_CLASS, GUC_CAPTURE_LIST_CLASS_RENDER_COMPUTE), MAKE_REGLIST(gen8_rc_inst_regs, PF, ENGINE_INSTANCE, GUC_CAPTURE_LIST_CLASS_RENDER_COMPUTE), MAKE_REGLIST(empty_regs_list, PF, ENGINE_CLASS, GUC_CAPTURE_LIST_CLASS_VIDEO), MAKE_REGLIST(gen8_vd_inst_regs, PF, ENGINE_INSTANCE, GUC_CAPTURE_LIST_CLASS_VIDEO), MAKE_REGLIST(xe_lp_vec_class_regs, PF, ENGINE_CLASS, GUC_CAPTURE_LIST_CLASS_VIDEOENHANCE), MAKE_REGLIST(gen8_vec_inst_regs, PF, ENGINE_INSTANCE, GUC_CAPTURE_LIST_CLASS_VIDEOENHANCE), MAKE_REGLIST(empty_regs_list, PF, ENGINE_CLASS, GUC_CAPTURE_LIST_CLASS_BLITTER), MAKE_REGLIST(gen8_blt_inst_regs, PF, ENGINE_INSTANCE, GUC_CAPTURE_LIST_CLASS_BLITTER), MAKE_REGLIST(empty_regs_list, PF, ENGINE_CLASS, GUC_CAPTURE_LIST_CLASS_GSC_OTHER), MAKE_REGLIST(xe_lp_gsc_inst_regs, PF, ENGINE_INSTANCE, GUC_CAPTURE_LIST_CLASS_GSC_OTHER), {} }; static const struct __guc_mmio_reg_descr_group * guc_capture_get_one_list(const struct __guc_mmio_reg_descr_group *reglists, u32 owner, u32 type, u32 id) { int i; if (!reglists) return NULL; for (i = 0; reglists[i].list; ++i) { if (reglists[i].owner == owner && reglists[i].type == type && (reglists[i].engine == id || reglists[i].type == GUC_CAPTURE_LIST_TYPE_GLOBAL)) return &reglists[i]; } return NULL; } static struct __guc_mmio_reg_descr_group * guc_capture_get_one_ext_list(struct __guc_mmio_reg_descr_group *reglists, u32 owner, u32 type, u32 id) { int i; if (!reglists) return NULL; for (i = 0; reglists[i].extlist; ++i) { if (reglists[i].owner == owner && reglists[i].type == type && (reglists[i].engine == id || reglists[i].type == GUC_CAPTURE_LIST_TYPE_GLOBAL)) return &reglists[i]; } return NULL; } static void guc_capture_free_extlists(struct __guc_mmio_reg_descr_group *reglists) { int i = 0; if (!reglists) return; while (reglists[i].extlist) kfree(reglists[i++].extlist); } struct __ext_steer_reg { const char *name; i915_mcr_reg_t reg; }; static const struct __ext_steer_reg gen8_extregs[] = { {"GEN8_SAMPLER_INSTDONE", GEN8_SAMPLER_INSTDONE}, {"GEN8_ROW_INSTDONE", GEN8_ROW_INSTDONE} }; static const struct __ext_steer_reg xehpg_extregs[] = { {"XEHPG_INSTDONE_GEOM_SVG", XEHPG_INSTDONE_GEOM_SVG} }; static void __fill_ext_reg(struct __guc_mmio_reg_descr *ext, const struct __ext_steer_reg *extlist, int slice_id, int subslice_id) { ext->reg = _MMIO(i915_mmio_reg_offset(extlist->reg)); ext->flags = FIELD_PREP(GUC_REGSET_STEERING_GROUP, slice_id); ext->flags |= FIELD_PREP(GUC_REGSET_STEERING_INSTANCE, subslice_id); ext->regname = extlist->name; } static int __alloc_ext_regs(struct __guc_mmio_reg_descr_group *newlist, const struct __guc_mmio_reg_descr_group *rootlist, int num_regs) { struct __guc_mmio_reg_descr *list; list = kcalloc(num_regs, sizeof(struct __guc_mmio_reg_descr), GFP_KERNEL); if (!list) return -ENOMEM; newlist->extlist = list; newlist->num_regs = num_regs; newlist->owner = rootlist->owner; newlist->engine = rootlist->engine; newlist->type = rootlist->type; return 0; } static void guc_capture_alloc_steered_lists(struct intel_guc *guc, const struct __guc_mmio_reg_descr_group *lists) { struct intel_gt *gt = guc_to_gt(guc); int slice, subslice, iter, i, num_steer_regs, num_tot_regs = 0; const struct __guc_mmio_reg_descr_group *list; struct __guc_mmio_reg_descr_group *extlists; struct __guc_mmio_reg_descr *extarray; bool has_xehpg_extregs; /* steered registers currently only exist for the render-class */ list = guc_capture_get_one_list(lists, GUC_CAPTURE_LIST_INDEX_PF, GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS, GUC_CAPTURE_LIST_CLASS_RENDER_COMPUTE); /* skip if extlists was previously allocated */ if (!list || guc->capture->extlists) return; has_xehpg_extregs = GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 55); num_steer_regs = ARRAY_SIZE(gen8_extregs); if (has_xehpg_extregs) num_steer_regs += ARRAY_SIZE(xehpg_extregs); for_each_ss_steering(iter, gt, slice, subslice) num_tot_regs += num_steer_regs; if (!num_tot_regs) return; /* allocate an extra for an end marker */ extlists = kcalloc(2, sizeof(struct __guc_mmio_reg_descr_group), GFP_KERNEL); if (!extlists) return; if (__alloc_ext_regs(&extlists[0], list, num_tot_regs)) { kfree(extlists); return; } extarray = extlists[0].extlist; for_each_ss_steering(iter, gt, slice, subslice) { for (i = 0; i < ARRAY_SIZE(gen8_extregs); ++i) { __fill_ext_reg(extarray, &gen8_extregs[i], slice, subslice); ++extarray; } if (has_xehpg_extregs) { for (i = 0; i < ARRAY_SIZE(xehpg_extregs); ++i) { __fill_ext_reg(extarray, &xehpg_extregs[i], slice, subslice); ++extarray; } } } guc_dbg(guc, "capture found %d ext-regs.\n", num_tot_regs); guc->capture->extlists = extlists; } static const struct __guc_mmio_reg_descr_group * guc_capture_get_device_reglist(struct intel_guc *guc) { struct drm_i915_private *i915 = guc_to_gt(guc)->i915; const struct __guc_mmio_reg_descr_group *lists; if (GRAPHICS_VER(i915) >= 12) lists = xe_lp_lists; else lists = gen8_lists; /* * For certain engine classes, there are slice and subslice * level registers requiring steering. We allocate and populate * these at init time based on hw config add it as an extension * list at the end of the pre-populated render list. */ guc_capture_alloc_steered_lists(guc, lists); return lists; } static const char * __stringify_type(u32 type) { switch (type) { case GUC_CAPTURE_LIST_TYPE_GLOBAL: return "Global"; case GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS: return "Class"; case GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE: return "Instance"; default: break; } return "unknown"; } static const char * __stringify_engclass(u32 class) { switch (class) { case GUC_CAPTURE_LIST_CLASS_RENDER_COMPUTE: return "Render/Compute"; case GUC_CAPTURE_LIST_CLASS_VIDEO: return "Video"; case GUC_CAPTURE_LIST_CLASS_VIDEOENHANCE: return "VideoEnhance"; case GUC_CAPTURE_LIST_CLASS_BLITTER: return "Blitter"; case GUC_CAPTURE_LIST_CLASS_GSC_OTHER: return "GSC-Other"; default: break; } return "unknown"; } static int guc_capture_list_init(struct intel_guc *guc, u32 owner, u32 type, u32 classid, struct guc_mmio_reg *ptr, u16 num_entries) { u32 i = 0, j = 0; const struct __guc_mmio_reg_descr_group *reglists = guc->capture->reglists; struct __guc_mmio_reg_descr_group *extlists = guc->capture->extlists; const struct __guc_mmio_reg_descr_group *match; struct __guc_mmio_reg_descr_group *matchext; if (!reglists) return -ENODEV; match = guc_capture_get_one_list(reglists, owner, type, classid); if (!match) return -ENODATA; for (i = 0; i < num_entries && i < match->num_regs; ++i) { ptr[i].offset = match->list[i].reg.reg; ptr[i].value = 0xDEADF00D; ptr[i].flags = match->list[i].flags; ptr[i].mask = match->list[i].mask; } matchext = guc_capture_get_one_ext_list(extlists, owner, type, classid); if (matchext) { for (i = match->num_regs, j = 0; i < num_entries && i < (match->num_regs + matchext->num_regs) && j < matchext->num_regs; ++i, ++j) { ptr[i].offset = matchext->extlist[j].reg.reg; ptr[i].value = 0xDEADF00D; ptr[i].flags = matchext->extlist[j].flags; ptr[i].mask = matchext->extlist[j].mask; } } if (i < num_entries) guc_dbg(guc, "Got short capture reglist init: %d out %d.\n", i, num_entries); return 0; } static int guc_cap_list_num_regs(struct intel_guc_state_capture *gc, u32 owner, u32 type, u32 classid) { const struct __guc_mmio_reg_descr_group *match; struct __guc_mmio_reg_descr_group *matchext; int num_regs; match = guc_capture_get_one_list(gc->reglists, owner, type, classid); if (!match) return 0; num_regs = match->num_regs; matchext = guc_capture_get_one_ext_list(gc->extlists, owner, type, classid); if (matchext) num_regs += matchext->num_regs; return num_regs; } static int guc_capture_getlistsize(struct intel_guc *guc, u32 owner, u32 type, u32 classid, size_t *size, bool is_purpose_est) { struct intel_guc_state_capture *gc = guc->capture; struct __guc_capture_ads_cache *cache = &gc->ads_cache[owner][type][classid]; int num_regs; if (!gc->reglists) { guc_warn(guc, "No capture reglist for this device\n"); return -ENODEV; } if (cache->is_valid) { *size = cache->size; return cache->status; } if (!is_purpose_est && owner == GUC_CAPTURE_LIST_INDEX_PF && !guc_capture_get_one_list(gc->reglists, owner, type, classid)) { if (type == GUC_CAPTURE_LIST_TYPE_GLOBAL) guc_warn(guc, "Missing capture reglist: global!\n"); else guc_warn(guc, "Missing capture reglist: %s(%u):%s(%u)!\n", __stringify_type(type), type, __stringify_engclass(classid), classid); return -ENODATA; } num_regs = guc_cap_list_num_regs(gc, owner, type, classid); /* intentional empty lists can exist depending on hw config */ if (!num_regs) return -ENODATA; if (size) *size = PAGE_ALIGN((sizeof(struct guc_debug_capture_list)) + (num_regs * sizeof(struct guc_mmio_reg))); return 0; } int intel_guc_capture_getlistsize(struct intel_guc *guc, u32 owner, u32 type, u32 classid, size_t *size) { return guc_capture_getlistsize(guc, owner, type, classid, size, false); } static void guc_capture_create_prealloc_nodes(struct intel_guc *guc); int intel_guc_capture_getlist(struct intel_guc *guc, u32 owner, u32 type, u32 classid, void **outptr) { struct intel_guc_state_capture *gc = guc->capture; struct __guc_capture_ads_cache *cache = &gc->ads_cache[owner][type][classid]; struct guc_debug_capture_list *listnode; int ret, num_regs; u8 *caplist, *tmp; size_t size = 0; if (!gc->reglists) return -ENODEV; if (cache->is_valid) { *outptr = cache->ptr; return cache->status; } /* * ADS population of input registers is a good * time to pre-allocate cachelist output nodes */ guc_capture_create_prealloc_nodes(guc); ret = intel_guc_capture_getlistsize(guc, owner, type, classid, &size); if (ret) { cache->is_valid = true; cache->ptr = NULL; cache->size = 0; cache->status = ret; return ret; } caplist = kzalloc(size, GFP_KERNEL); if (!caplist) { guc_dbg(guc, "Failed to alloc cached register capture list"); return -ENOMEM; } /* populate capture list header */ tmp = caplist; num_regs = guc_cap_list_num_regs(guc->capture, owner, type, classid); listnode = (struct guc_debug_capture_list *)tmp; listnode->header.info = FIELD_PREP(GUC_CAPTURELISTHDR_NUMDESCR, (u32)num_regs); /* populate list of register descriptor */ tmp += sizeof(struct guc_debug_capture_list); guc_capture_list_init(guc, owner, type, classid, (struct guc_mmio_reg *)tmp, num_regs); /* cache this list */ cache->is_valid = true; cache->ptr = caplist; cache->size = size; cache->status = 0; *outptr = caplist; return 0; } int intel_guc_capture_getnullheader(struct intel_guc *guc, void **outptr, size_t *size) { struct intel_guc_state_capture *gc = guc->capture; int tmp = sizeof(u32) * 4; void *null_header; if (gc->ads_null_cache) { *outptr = gc->ads_null_cache; *size = tmp; return 0; } null_header = kzalloc(tmp, GFP_KERNEL); if (!null_header) { guc_dbg(guc, "Failed to alloc cached register capture null list"); return -ENOMEM; } gc->ads_null_cache = null_header; *outptr = null_header; *size = tmp; return 0; } static int guc_capture_output_min_size_est(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct intel_engine_cs *engine; enum intel_engine_id id; int worst_min_size = 0; size_t tmp = 0; if (!guc->capture) return -ENODEV; /* * If every single engine-instance suffered a failure in quick succession but * were all unrelated, then a burst of multiple error-capture events would dump * registers for every one engine instance, one at a time. In this case, GuC * would even dump the global-registers repeatedly. * * For each engine instance, there would be 1 x guc_state_capture_group_t output * followed by 3 x guc_state_capture_t lists. The latter is how the register * dumps are split across different register types (where the '3' are global vs class * vs instance). */ for_each_engine(engine, gt, id) { worst_min_size += sizeof(struct guc_state_capture_group_header_t) + (3 * sizeof(struct guc_state_capture_header_t)); if (!guc_capture_getlistsize(guc, 0, GUC_CAPTURE_LIST_TYPE_GLOBAL, 0, &tmp, true)) worst_min_size += tmp; if (!guc_capture_getlistsize(guc, 0, GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS, engine->class, &tmp, true)) { worst_min_size += tmp; } if (!guc_capture_getlistsize(guc, 0, GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE, engine->class, &tmp, true)) { worst_min_size += tmp; } } return worst_min_size; } /* * Add on a 3x multiplier to allow for multiple back-to-back captures occurring * before the i915 can read the data out and process it */ #define GUC_CAPTURE_OVERBUFFER_MULTIPLIER 3 static void check_guc_capture_size(struct intel_guc *guc) { int min_size = guc_capture_output_min_size_est(guc); int spare_size = min_size * GUC_CAPTURE_OVERBUFFER_MULTIPLIER; u32 buffer_size = intel_guc_log_section_size_capture(&guc->log); /* * NOTE: min_size is much smaller than the capture region allocation (DG2: <80K vs 1MB) * Additionally, its based on space needed to fit all engines getting reset at once * within the same G2H handler task slot. This is very unlikely. However, if GuC really * does run out of space for whatever reason, we will see an separate warning message * when processing the G2H event capture-notification, search for: * INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE. */ if (min_size < 0) guc_warn(guc, "Failed to calculate error state capture buffer minimum size: %d!\n", min_size); else if (min_size > buffer_size) guc_warn(guc, "Error state capture buffer maybe small: %d < %d\n", buffer_size, min_size); else if (spare_size > buffer_size) guc_dbg(guc, "Error state capture buffer lacks spare size: %d < %d (min = %d)\n", buffer_size, spare_size, min_size); } /* * KMD Init time flows: * -------------------- * --> alloc A: GuC input capture regs lists (registered to GuC via ADS). * intel_guc_ads acquires the register lists by calling * intel_guc_capture_list_size and intel_guc_capture_list_get 'n' times, * where n = 1 for global-reg-list + * num_engine_classes for class-reg-list + * num_engine_classes for instance-reg-list * (since all instances of the same engine-class type * have an identical engine-instance register-list). * ADS module also calls separately for PF vs VF. * * --> alloc B: GuC output capture buf (registered via guc_init_params(log_param)) * Size = #define CAPTURE_BUFFER_SIZE (warns if on too-small) * Note2: 'x 3' to hold multiple capture groups * * GUC Runtime notify capture: * -------------------------- * --> G2H STATE_CAPTURE_NOTIFICATION * L--> intel_guc_capture_process * L--> Loop through B (head..tail) and for each engine instance's * err-state-captured register-list we find, we alloc 'C': * --> alloc C: A capture-output-node structure that includes misc capture info along * with 3 register list dumps (global, engine-class and engine-instance) * This node is created from a pre-allocated list of blank nodes in * guc->capture->cachelist and populated with the error-capture * data from GuC and then it's added into guc->capture->outlist linked * list. This list is used for matchup and printout by i915_gpu_coredump * and err_print_gt, (when user invokes the error capture sysfs). * * GUC --> notify context reset: * ----------------------------- * --> G2H CONTEXT RESET * L--> guc_handle_context_reset --> i915_capture_error_state * L--> i915_gpu_coredump(..IS_GUC_CAPTURE) --> gt_record_engines * --> capture_engine(..IS_GUC_CAPTURE) * L--> intel_guc_capture_get_matching_node is where * detach C from internal linked list and add it into * intel_engine_coredump struct (if the context and * engine of the event notification matches a node * in the link list). * * User Sysfs / Debugfs * -------------------- * --> i915_gpu_coredump_copy_to_buffer-> * L--> err_print_to_sgl --> err_print_gt * L--> error_print_guc_captures * L--> intel_guc_capture_print_node prints the * register lists values of the attached node * on the error-engine-dump being reported. * L--> i915_reset_error_state ... -->__i915_gpu_coredump_free * L--> ... cleanup_gt --> * L--> intel_guc_capture_free_node returns the * capture-output-node back to the internal * cachelist for reuse. * */ static int guc_capture_buf_cnt(struct __guc_capture_bufstate *buf) { if (buf->wr >= buf->rd) return (buf->wr - buf->rd); return (buf->size - buf->rd) + buf->wr; } static int guc_capture_buf_cnt_to_end(struct __guc_capture_bufstate *buf) { if (buf->rd > buf->wr) return (buf->size - buf->rd); return (buf->wr - buf->rd); } /* * GuC's error-capture output is a ring buffer populated in a byte-stream fashion: * * The GuC Log buffer region for error-capture is managed like a ring buffer. * The GuC firmware dumps error capture logs into this ring in a byte-stream flow. * Additionally, as per the current and foreseeable future, all packed error- * capture output structures are dword aligned. * * That said, if the GuC firmware is in the midst of writing a structure that is larger * than one dword but the tail end of the err-capture buffer-region has lesser space left, * we would need to extract that structure one dword at a time straddled across the end, * onto the start of the ring. * * Below function, guc_capture_log_remove_dw is a helper for that. All callers of this * function would typically do a straight-up memcpy from the ring contents and will only * call this helper if their structure-extraction is straddling across the end of the * ring. GuC firmware does not add any padding. The reason for the no-padding is to ease * scalability for future expansion of output data types without requiring a redesign * of the flow controls. */ static int guc_capture_log_remove_dw(struct intel_guc *guc, struct __guc_capture_bufstate *buf, u32 *dw) { int tries = 2; int avail = 0; u32 *src_data; if (!guc_capture_buf_cnt(buf)) return 0; while (tries--) { avail = guc_capture_buf_cnt_to_end(buf); if (avail >= sizeof(u32)) { src_data = (u32 *)(buf->data + buf->rd); *dw = *src_data; buf->rd += 4; return 4; } if (avail) guc_dbg(guc, "Register capture log not dword aligned, skipping.\n"); buf->rd = 0; } return 0; } static bool guc_capture_data_extracted(struct __guc_capture_bufstate *b, int size, void *dest) { if (guc_capture_buf_cnt_to_end(b) >= size) { memcpy(dest, (b->data + b->rd), size); b->rd += size; return true; } return false; } static int guc_capture_log_get_group_hdr(struct intel_guc *guc, struct __guc_capture_bufstate *buf, struct guc_state_capture_group_header_t *ghdr) { int read = 0; int fullsize = sizeof(struct guc_state_capture_group_header_t); if (fullsize > guc_capture_buf_cnt(buf)) return -1; if (guc_capture_data_extracted(buf, fullsize, (void *)ghdr)) return 0; read += guc_capture_log_remove_dw(guc, buf, &ghdr->owner); read += guc_capture_log_remove_dw(guc, buf, &ghdr->info); if (read != fullsize) return -1; return 0; } static int guc_capture_log_get_data_hdr(struct intel_guc *guc, struct __guc_capture_bufstate *buf, struct guc_state_capture_header_t *hdr) { int read = 0; int fullsize = sizeof(struct guc_state_capture_header_t); if (fullsize > guc_capture_buf_cnt(buf)) return -1; if (guc_capture_data_extracted(buf, fullsize, (void *)hdr)) return 0; read += guc_capture_log_remove_dw(guc, buf, &hdr->owner); read += guc_capture_log_remove_dw(guc, buf, &hdr->info); read += guc_capture_log_remove_dw(guc, buf, &hdr->lrca); read += guc_capture_log_remove_dw(guc, buf, &hdr->guc_id); read += guc_capture_log_remove_dw(guc, buf, &hdr->num_mmios); if (read != fullsize) return -1; return 0; } static int guc_capture_log_get_register(struct intel_guc *guc, struct __guc_capture_bufstate *buf, struct guc_mmio_reg *reg) { int read = 0; int fullsize = sizeof(struct guc_mmio_reg); if (fullsize > guc_capture_buf_cnt(buf)) return -1; if (guc_capture_data_extracted(buf, fullsize, (void *)reg)) return 0; read += guc_capture_log_remove_dw(guc, buf, &reg->offset); read += guc_capture_log_remove_dw(guc, buf, &reg->value); read += guc_capture_log_remove_dw(guc, buf, &reg->flags); read += guc_capture_log_remove_dw(guc, buf, &reg->mask); if (read != fullsize) return -1; return 0; } static void guc_capture_delete_one_node(struct intel_guc *guc, struct __guc_capture_parsed_output *node) { int i; for (i = 0; i < GUC_CAPTURE_LIST_TYPE_MAX; ++i) kfree(node->reginfo[i].regs); list_del(&node->link); kfree(node); } static void guc_capture_delete_prealloc_nodes(struct intel_guc *guc) { struct __guc_capture_parsed_output *n, *ntmp; /* * NOTE: At the end of driver operation, we must assume that we * have prealloc nodes in both the cachelist as well as outlist * if unclaimed error capture events occurred prior to shutdown. */ list_for_each_entry_safe(n, ntmp, &guc->capture->outlist, link) guc_capture_delete_one_node(guc, n); list_for_each_entry_safe(n, ntmp, &guc->capture->cachelist, link) guc_capture_delete_one_node(guc, n); } static void guc_capture_add_node_to_list(struct __guc_capture_parsed_output *node, struct list_head *list) { list_add_tail(&node->link, list); } static void guc_capture_add_node_to_outlist(struct intel_guc_state_capture *gc, struct __guc_capture_parsed_output *node) { guc_capture_add_node_to_list(node, &gc->outlist); } static void guc_capture_add_node_to_cachelist(struct intel_guc_state_capture *gc, struct __guc_capture_parsed_output *node) { guc_capture_add_node_to_list(node, &gc->cachelist); } static void guc_capture_init_node(struct intel_guc *guc, struct __guc_capture_parsed_output *node) { struct guc_mmio_reg *tmp[GUC_CAPTURE_LIST_TYPE_MAX]; int i; for (i = 0; i < GUC_CAPTURE_LIST_TYPE_MAX; ++i) { tmp[i] = node->reginfo[i].regs; memset(tmp[i], 0, sizeof(struct guc_mmio_reg) * guc->capture->max_mmio_per_node); } memset(node, 0, sizeof(*node)); for (i = 0; i < GUC_CAPTURE_LIST_TYPE_MAX; ++i) node->reginfo[i].regs = tmp[i]; INIT_LIST_HEAD(&node->link); } static struct __guc_capture_parsed_output * guc_capture_get_prealloc_node(struct intel_guc *guc) { struct __guc_capture_parsed_output *found = NULL; if (!list_empty(&guc->capture->cachelist)) { struct __guc_capture_parsed_output *n, *ntmp; /* get first avail node from the cache list */ list_for_each_entry_safe(n, ntmp, &guc->capture->cachelist, link) { found = n; list_del(&n->link); break; } } else { struct __guc_capture_parsed_output *n, *ntmp; /* traverse down and steal back the oldest node already allocated */ list_for_each_entry_safe(n, ntmp, &guc->capture->outlist, link) { found = n; } if (found) list_del(&found->link); } if (found) guc_capture_init_node(guc, found); return found; } static struct __guc_capture_parsed_output * guc_capture_alloc_one_node(struct intel_guc *guc) { struct __guc_capture_parsed_output *new; int i; new = kzalloc(sizeof(*new), GFP_KERNEL); if (!new) return NULL; for (i = 0; i < GUC_CAPTURE_LIST_TYPE_MAX; ++i) { new->reginfo[i].regs = kcalloc(guc->capture->max_mmio_per_node, sizeof(struct guc_mmio_reg), GFP_KERNEL); if (!new->reginfo[i].regs) { while (i) kfree(new->reginfo[--i].regs); kfree(new); return NULL; } } guc_capture_init_node(guc, new); return new; } static struct __guc_capture_parsed_output * guc_capture_clone_node(struct intel_guc *guc, struct __guc_capture_parsed_output *original, u32 keep_reglist_mask) { struct __guc_capture_parsed_output *new; int i; new = guc_capture_get_prealloc_node(guc); if (!new) return NULL; if (!original) return new; new->is_partial = original->is_partial; /* copy reg-lists that we want to clone */ for (i = 0; i < GUC_CAPTURE_LIST_TYPE_MAX; ++i) { if (keep_reglist_mask & BIT(i)) { GEM_BUG_ON(original->reginfo[i].num_regs > guc->capture->max_mmio_per_node); memcpy(new->reginfo[i].regs, original->reginfo[i].regs, original->reginfo[i].num_regs * sizeof(struct guc_mmio_reg)); new->reginfo[i].num_regs = original->reginfo[i].num_regs; new->reginfo[i].vfid = original->reginfo[i].vfid; if (i == GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS) { new->eng_class = original->eng_class; } else if (i == GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE) { new->eng_inst = original->eng_inst; new->guc_id = original->guc_id; new->lrca = original->lrca; } } } return new; } static void __guc_capture_create_prealloc_nodes(struct intel_guc *guc) { struct __guc_capture_parsed_output *node = NULL; int i; for (i = 0; i < PREALLOC_NODES_MAX_COUNT; ++i) { node = guc_capture_alloc_one_node(guc); if (!node) { guc_warn(guc, "Register capture pre-alloc-cache failure\n"); /* dont free the priors, use what we got and cleanup at shutdown */ return; } guc_capture_add_node_to_cachelist(guc->capture, node); } } static int guc_get_max_reglist_count(struct intel_guc *guc) { int i, j, k, tmp, maxregcount = 0; for (i = 0; i < GUC_CAPTURE_LIST_INDEX_MAX; ++i) { for (j = 0; j < GUC_CAPTURE_LIST_TYPE_MAX; ++j) { for (k = 0; k < GUC_MAX_ENGINE_CLASSES; ++k) { if (j == GUC_CAPTURE_LIST_TYPE_GLOBAL && k > 0) continue; tmp = guc_cap_list_num_regs(guc->capture, i, j, k); if (tmp > maxregcount) maxregcount = tmp; } } } if (!maxregcount) maxregcount = PREALLOC_NODES_DEFAULT_NUMREGS; return maxregcount; } static void guc_capture_create_prealloc_nodes(struct intel_guc *guc) { /* skip if we've already done the pre-alloc */ if (guc->capture->max_mmio_per_node) return; guc->capture->max_mmio_per_node = guc_get_max_reglist_count(guc); __guc_capture_create_prealloc_nodes(guc); } static int guc_capture_extract_reglists(struct intel_guc *guc, struct __guc_capture_bufstate *buf) { struct guc_state_capture_group_header_t ghdr = {0}; struct guc_state_capture_header_t hdr = {0}; struct __guc_capture_parsed_output *node = NULL; struct guc_mmio_reg *regs = NULL; int i, numlists, numregs, ret = 0; enum guc_capture_type datatype; struct guc_mmio_reg tmp; bool is_partial = false; i = guc_capture_buf_cnt(buf); if (!i) return -ENODATA; if (i % sizeof(u32)) { guc_warn(guc, "Got mis-aligned register capture entries\n"); ret = -EIO; goto bailout; } /* first get the capture group header */ if (guc_capture_log_get_group_hdr(guc, buf, &ghdr)) { ret = -EIO; goto bailout; } /* * we would typically expect a layout as below where n would be expected to be * anywhere between 3 to n where n > 3 if we are seeing multiple dependent engine * instances being reset together. * ____________________________________________ * | Capture Group | * | ________________________________________ | * | | Capture Group Header: | | * | | - num_captures = 5 | | * | |______________________________________| | * | ________________________________________ | * | | Capture1: | | * | | Hdr: GLOBAL, numregs=a | | * | | ____________________________________ | | * | | | Reglist | | | * | | | - reg1, reg2, ... rega | | | * | | |__________________________________| | | * | |______________________________________| | * | ________________________________________ | * | | Capture2: | | * | | Hdr: CLASS=RENDER/COMPUTE, numregs=b| | * | | ____________________________________ | | * | | | Reglist | | | * | | | - reg1, reg2, ... regb | | | * | | |__________________________________| | | * | |______________________________________| | * | ________________________________________ | * | | Capture3: | | * | | Hdr: INSTANCE=RCS, numregs=c | | * | | ____________________________________ | | * | | | Reglist | | | * | | | - reg1, reg2, ... regc | | | * | | |__________________________________| | | * | |______________________________________| | * | ________________________________________ | * | | Capture4: | | * | | Hdr: CLASS=RENDER/COMPUTE, numregs=d| | * | | ____________________________________ | | * | | | Reglist | | | * | | | - reg1, reg2, ... regd | | | * | | |__________________________________| | | * | |______________________________________| | * | ________________________________________ | * | | Capture5: | | * | | Hdr: INSTANCE=CCS0, numregs=e | | * | | ____________________________________ | | * | | | Reglist | | | * | | | - reg1, reg2, ... rege | | | * | | |__________________________________| | | * | |______________________________________| | * |__________________________________________| */ is_partial = FIELD_GET(CAP_GRP_HDR_CAPTURE_TYPE, ghdr.info); numlists = FIELD_GET(CAP_GRP_HDR_NUM_CAPTURES, ghdr.info); while (numlists--) { if (guc_capture_log_get_data_hdr(guc, buf, &hdr)) { ret = -EIO; break; } datatype = FIELD_GET(CAP_HDR_CAPTURE_TYPE, hdr.info); if (datatype > GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE) { /* unknown capture type - skip over to next capture set */ numregs = FIELD_GET(CAP_HDR_NUM_MMIOS, hdr.num_mmios); while (numregs--) { if (guc_capture_log_get_register(guc, buf, &tmp)) { ret = -EIO; break; } } continue; } else if (node) { /* * Based on the current capture type and what we have so far, * decide if we should add the current node into the internal * linked list for match-up when i915_gpu_coredump calls later * (and alloc a blank node for the next set of reglists) * or continue with the same node or clone the current node * but only retain the global or class registers (such as the * case of dependent engine resets). */ if (datatype == GUC_CAPTURE_LIST_TYPE_GLOBAL) { guc_capture_add_node_to_outlist(guc->capture, node); node = NULL; } else if (datatype == GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS && node->reginfo[GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS].num_regs) { /* Add to list, clone node and duplicate global list */ guc_capture_add_node_to_outlist(guc->capture, node); node = guc_capture_clone_node(guc, node, GCAP_PARSED_REGLIST_INDEX_GLOBAL); } else if (datatype == GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE && node->reginfo[GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE].num_regs) { /* Add to list, clone node and duplicate global + class lists */ guc_capture_add_node_to_outlist(guc->capture, node); node = guc_capture_clone_node(guc, node, (GCAP_PARSED_REGLIST_INDEX_GLOBAL | GCAP_PARSED_REGLIST_INDEX_ENGCLASS)); } } if (!node) { node = guc_capture_get_prealloc_node(guc); if (!node) { ret = -ENOMEM; break; } if (datatype != GUC_CAPTURE_LIST_TYPE_GLOBAL) guc_dbg(guc, "Register capture missing global dump: %08x!\n", datatype); } node->is_partial = is_partial; node->reginfo[datatype].vfid = FIELD_GET(CAP_HDR_CAPTURE_VFID, hdr.owner); switch (datatype) { case GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE: node->eng_class = FIELD_GET(CAP_HDR_ENGINE_CLASS, hdr.info); node->eng_inst = FIELD_GET(CAP_HDR_ENGINE_INSTANCE, hdr.info); node->lrca = hdr.lrca; node->guc_id = hdr.guc_id; break; case GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS: node->eng_class = FIELD_GET(CAP_HDR_ENGINE_CLASS, hdr.info); break; default: break; } numregs = FIELD_GET(CAP_HDR_NUM_MMIOS, hdr.num_mmios); if (numregs > guc->capture->max_mmio_per_node) { guc_dbg(guc, "Register capture list extraction clipped by prealloc!\n"); numregs = guc->capture->max_mmio_per_node; } node->reginfo[datatype].num_regs = numregs; regs = node->reginfo[datatype].regs; i = 0; while (numregs--) { if (guc_capture_log_get_register(guc, buf, &regs[i++])) { ret = -EIO; break; } } } bailout: if (node) { /* If we have data, add to linked list for match-up when i915_gpu_coredump calls */ for (i = GUC_CAPTURE_LIST_TYPE_GLOBAL; i < GUC_CAPTURE_LIST_TYPE_MAX; ++i) { if (node->reginfo[i].regs) { guc_capture_add_node_to_outlist(guc->capture, node); node = NULL; break; } } if (node) /* else return it back to cache list */ guc_capture_add_node_to_cachelist(guc->capture, node); } return ret; } static int __guc_capture_flushlog_complete(struct intel_guc *guc) { u32 action[] = { INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE, GUC_CAPTURE_LOG_BUFFER }; return intel_guc_send_nb(guc, action, ARRAY_SIZE(action), 0); } static void __guc_capture_process_output(struct intel_guc *guc) { unsigned int buffer_size, read_offset, write_offset, full_count; struct intel_uc *uc = container_of(guc, typeof(*uc), guc); struct guc_log_buffer_state log_buf_state_local; struct guc_log_buffer_state *log_buf_state; struct __guc_capture_bufstate buf; void *src_data = NULL; bool new_overflow; int ret; log_buf_state = guc->log.buf_addr + (sizeof(struct guc_log_buffer_state) * GUC_CAPTURE_LOG_BUFFER); src_data = guc->log.buf_addr + intel_guc_get_log_buffer_offset(&guc->log, GUC_CAPTURE_LOG_BUFFER); /* * Make a copy of the state structure, inside GuC log buffer * (which is uncached mapped), on the stack to avoid reading * from it multiple times. */ memcpy(&log_buf_state_local, log_buf_state, sizeof(struct guc_log_buffer_state)); buffer_size = intel_guc_get_log_buffer_size(&guc->log, GUC_CAPTURE_LOG_BUFFER); read_offset = log_buf_state_local.read_ptr; write_offset = log_buf_state_local.sampled_write_ptr; full_count = log_buf_state_local.buffer_full_cnt; /* Bookkeeping stuff */ guc->log.stats[GUC_CAPTURE_LOG_BUFFER].flush += log_buf_state_local.flush_to_file; new_overflow = intel_guc_check_log_buf_overflow(&guc->log, GUC_CAPTURE_LOG_BUFFER, full_count); /* Now copy the actual logs. */ if (unlikely(new_overflow)) { /* copy the whole buffer in case of overflow */ read_offset = 0; write_offset = buffer_size; } else if (unlikely((read_offset > buffer_size) || (write_offset > buffer_size))) { guc_err(guc, "Register capture buffer in invalid state: read = 0x%X, size = 0x%X!\n", read_offset, buffer_size); /* copy whole buffer as offsets are unreliable */ read_offset = 0; write_offset = buffer_size; } buf.size = buffer_size; buf.rd = read_offset; buf.wr = write_offset; buf.data = src_data; if (!uc->reset_in_progress) { do { ret = guc_capture_extract_reglists(guc, &buf); } while (ret >= 0); } /* Update the state of log buffer err-cap state */ log_buf_state->read_ptr = write_offset; log_buf_state->flush_to_file = 0; __guc_capture_flushlog_complete(guc); } #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) static const char * guc_capture_reg_to_str(const struct intel_guc *guc, u32 owner, u32 type, u32 class, u32 id, u32 offset, u32 *is_ext) { const struct __guc_mmio_reg_descr_group *reglists = guc->capture->reglists; struct __guc_mmio_reg_descr_group *extlists = guc->capture->extlists; const struct __guc_mmio_reg_descr_group *match; struct __guc_mmio_reg_descr_group *matchext; int j; *is_ext = 0; if (!reglists) return NULL; match = guc_capture_get_one_list(reglists, owner, type, id); if (!match) return NULL; for (j = 0; j < match->num_regs; ++j) { if (offset == match->list[j].reg.reg) return match->list[j].regname; } if (extlists) { matchext = guc_capture_get_one_ext_list(extlists, owner, type, id); if (!matchext) return NULL; for (j = 0; j < matchext->num_regs; ++j) { if (offset == matchext->extlist[j].reg.reg) { *is_ext = 1; return matchext->extlist[j].regname; } } } return NULL; } #define GCAP_PRINT_INTEL_ENG_INFO(ebuf, eng) \ do { \ i915_error_printf(ebuf, " i915-Eng-Name: %s command stream\n", \ (eng)->name); \ i915_error_printf(ebuf, " i915-Eng-Inst-Class: 0x%02x\n", (eng)->class); \ i915_error_printf(ebuf, " i915-Eng-Inst-Id: 0x%02x\n", (eng)->instance); \ i915_error_printf(ebuf, " i915-Eng-LogicalMask: 0x%08x\n", \ (eng)->logical_mask); \ } while (0) #define GCAP_PRINT_GUC_INST_INFO(ebuf, node) \ do { \ i915_error_printf(ebuf, " GuC-Engine-Inst-Id: 0x%08x\n", \ (node)->eng_inst); \ i915_error_printf(ebuf, " GuC-Context-Id: 0x%08x\n", (node)->guc_id); \ i915_error_printf(ebuf, " LRCA: 0x%08x\n", (node)->lrca); \ } while (0) int intel_guc_capture_print_engine_node(struct drm_i915_error_state_buf *ebuf, const struct intel_engine_coredump *ee) { const char *grptype[GUC_STATE_CAPTURE_GROUP_TYPE_MAX] = { "full-capture", "partial-capture" }; const char *datatype[GUC_CAPTURE_LIST_TYPE_MAX] = { "Global", "Engine-Class", "Engine-Instance" }; struct intel_guc_state_capture *cap; struct __guc_capture_parsed_output *node; struct intel_engine_cs *eng; struct guc_mmio_reg *regs; struct intel_guc *guc; const char *str; int numregs, i, j; u32 is_ext; if (!ebuf || !ee) return -EINVAL; cap = ee->guc_capture; if (!cap || !ee->engine) return -ENODEV; guc = &ee->engine->gt->uc.guc; i915_error_printf(ebuf, "global --- GuC Error Capture on %s command stream:\n", ee->engine->name); node = ee->guc_capture_node; if (!node) { i915_error_printf(ebuf, " No matching ee-node\n"); return 0; } i915_error_printf(ebuf, "Coverage: %s\n", grptype[node->is_partial]); for (i = GUC_CAPTURE_LIST_TYPE_GLOBAL; i < GUC_CAPTURE_LIST_TYPE_MAX; ++i) { i915_error_printf(ebuf, " RegListType: %s\n", datatype[i % GUC_CAPTURE_LIST_TYPE_MAX]); i915_error_printf(ebuf, " Owner-Id: %d\n", node->reginfo[i].vfid); switch (i) { case GUC_CAPTURE_LIST_TYPE_GLOBAL: default: break; case GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS: i915_error_printf(ebuf, " GuC-Eng-Class: %d\n", node->eng_class); i915_error_printf(ebuf, " i915-Eng-Class: %d\n", guc_class_to_engine_class(node->eng_class)); break; case GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE: eng = intel_guc_lookup_engine(guc, node->eng_class, node->eng_inst); if (eng) GCAP_PRINT_INTEL_ENG_INFO(ebuf, eng); else i915_error_printf(ebuf, " i915-Eng-Lookup Fail!\n"); GCAP_PRINT_GUC_INST_INFO(ebuf, node); break; } numregs = node->reginfo[i].num_regs; i915_error_printf(ebuf, " NumRegs: %d\n", numregs); j = 0; while (numregs--) { regs = node->reginfo[i].regs; str = guc_capture_reg_to_str(guc, GUC_CAPTURE_LIST_INDEX_PF, i, node->eng_class, 0, regs[j].offset, &is_ext); if (!str) i915_error_printf(ebuf, " REG-0x%08x", regs[j].offset); else i915_error_printf(ebuf, " %s", str); if (is_ext) i915_error_printf(ebuf, "[%ld][%ld]", FIELD_GET(GUC_REGSET_STEERING_GROUP, regs[j].flags), FIELD_GET(GUC_REGSET_STEERING_INSTANCE, regs[j].flags)); i915_error_printf(ebuf, ": 0x%08x\n", regs[j].value); ++j; } } return 0; } #endif //CONFIG_DRM_I915_CAPTURE_ERROR static void guc_capture_find_ecode(struct intel_engine_coredump *ee) { struct gcap_reg_list_info *reginfo; struct guc_mmio_reg *regs; i915_reg_t reg_ipehr = RING_IPEHR(0); i915_reg_t reg_instdone = RING_INSTDONE(0); int i; if (!ee->guc_capture_node) return; reginfo = ee->guc_capture_node->reginfo + GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE; regs = reginfo->regs; for (i = 0; i < reginfo->num_regs; i++) { if (regs[i].offset == reg_ipehr.reg) ee->ipehr = regs[i].value; else if (regs[i].offset == reg_instdone.reg) ee->instdone.instdone = regs[i].value; } } void intel_guc_capture_free_node(struct intel_engine_coredump *ee) { if (!ee || !ee->guc_capture_node) return; guc_capture_add_node_to_cachelist(ee->guc_capture, ee->guc_capture_node); ee->guc_capture = NULL; ee->guc_capture_node = NULL; } bool intel_guc_capture_is_matching_engine(struct intel_gt *gt, struct intel_context *ce, struct intel_engine_cs *engine) { struct __guc_capture_parsed_output *n; struct intel_guc *guc; if (!gt || !ce || !engine) return false; guc = &gt->uc.guc; if (!guc->capture) return false; /* * Look for a matching GuC reported error capture node from * the internal output link-list based on lrca, guc-id and engine * identification. */ list_for_each_entry(n, &guc->capture->outlist, link) { if (n->eng_inst == GUC_ID_TO_ENGINE_INSTANCE(engine->guc_id) && n->eng_class == GUC_ID_TO_ENGINE_CLASS(engine->guc_id) && n->guc_id == ce->guc_id.id && (n->lrca & CTX_GTT_ADDRESS_MASK) == (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK)) return true; } return false; } void intel_guc_capture_get_matching_node(struct intel_gt *gt, struct intel_engine_coredump *ee, struct intel_context *ce) { struct __guc_capture_parsed_output *n, *ntmp; struct intel_guc *guc; if (!gt || !ee || !ce) return; guc = &gt->uc.guc; if (!guc->capture) return; GEM_BUG_ON(ee->guc_capture_node); /* * Look for a matching GuC reported error capture node from * the internal output link-list based on lrca, guc-id and engine * identification. */ list_for_each_entry_safe(n, ntmp, &guc->capture->outlist, link) { if (n->eng_inst == GUC_ID_TO_ENGINE_INSTANCE(ee->engine->guc_id) && n->eng_class == GUC_ID_TO_ENGINE_CLASS(ee->engine->guc_id) && n->guc_id == ce->guc_id.id && (n->lrca & CTX_GTT_ADDRESS_MASK) == (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK)) { list_del(&n->link); ee->guc_capture_node = n; ee->guc_capture = guc->capture; guc_capture_find_ecode(ee); return; } } guc_warn(guc, "No register capture node found for 0x%04X / 0x%08X\n", ce->guc_id.id, ce->lrc.lrca); } void intel_guc_capture_process(struct intel_guc *guc) { if (guc->capture) __guc_capture_process_output(guc); } static void guc_capture_free_ads_cache(struct intel_guc_state_capture *gc) { int i, j, k; struct __guc_capture_ads_cache *cache; for (i = 0; i < GUC_CAPTURE_LIST_INDEX_MAX; ++i) { for (j = 0; j < GUC_CAPTURE_LIST_TYPE_MAX; ++j) { for (k = 0; k < GUC_MAX_ENGINE_CLASSES; ++k) { cache = &gc->ads_cache[i][j][k]; if (cache->is_valid) kfree(cache->ptr); } } } kfree(gc->ads_null_cache); } void intel_guc_capture_destroy(struct intel_guc *guc) { if (!guc->capture) return; guc_capture_free_ads_cache(guc->capture); guc_capture_delete_prealloc_nodes(guc); guc_capture_free_extlists(guc->capture->extlists); kfree(guc->capture->extlists); kfree(guc->capture); guc->capture = NULL; } int intel_guc_capture_init(struct intel_guc *guc) { guc->capture = kzalloc(sizeof(*guc->capture), GFP_KERNEL); if (!guc->capture) return -ENOMEM; guc->capture->reglists = guc_capture_get_device_reglist(guc); INIT_LIST_HEAD(&guc->capture->outlist); INIT_LIST_HEAD(&guc->capture->cachelist); check_guc_capture_size(guc); return 0; }
linux-master
drivers/gpu/drm/i915/gt/uc/intel_guc_capture.c
// SPDX-License-Identifier: MIT /* * Copyright © 2016-2019 Intel Corporation */ #include <linux/string_helpers.h> #include "gt/intel_gt.h" #include "gt/intel_gt_print.h" #include "gt/intel_reset.h" #include "intel_gsc_fw.h" #include "intel_gsc_uc.h" #include "intel_guc.h" #include "intel_guc_ads.h" #include "intel_guc_print.h" #include "intel_guc_submission.h" #include "gt/intel_rps.h" #include "intel_uc.h" #include "i915_drv.h" #include "i915_hwmon.h" static const struct intel_uc_ops uc_ops_off; static const struct intel_uc_ops uc_ops_on; static void uc_expand_default_options(struct intel_uc *uc) { struct drm_i915_private *i915 = uc_to_gt(uc)->i915; if (i915->params.enable_guc != -1) return; /* Don't enable GuC/HuC on pre-Gen12 */ if (GRAPHICS_VER(i915) < 12) { i915->params.enable_guc = 0; return; } /* Don't enable GuC/HuC on older Gen12 platforms */ if (IS_TIGERLAKE(i915) || IS_ROCKETLAKE(i915)) { i915->params.enable_guc = 0; return; } /* Intermediate platforms are HuC authentication only */ if (IS_ALDERLAKE_S(i915) && !IS_RAPTORLAKE_S(i915)) { i915->params.enable_guc = ENABLE_GUC_LOAD_HUC; return; } /* Default: enable HuC authentication and GuC submission */ i915->params.enable_guc = ENABLE_GUC_LOAD_HUC | ENABLE_GUC_SUBMISSION; /* XEHPSDV and PVC do not use HuC */ if (IS_XEHPSDV(i915) || IS_PONTEVECCHIO(i915)) i915->params.enable_guc &= ~ENABLE_GUC_LOAD_HUC; } /* Reset GuC providing us with fresh state for both GuC and HuC. */ static int __intel_uc_reset_hw(struct intel_uc *uc) { struct intel_gt *gt = uc_to_gt(uc); int ret; u32 guc_status; ret = i915_inject_probe_error(gt->i915, -ENXIO); if (ret) return ret; ret = intel_reset_guc(gt); if (ret) { gt_err(gt, "Failed to reset GuC, ret = %d\n", ret); return ret; } guc_status = intel_uncore_read(gt->uncore, GUC_STATUS); gt_WARN(gt, !(guc_status & GS_MIA_IN_RESET), "GuC status: 0x%x, MIA core expected to be in reset\n", guc_status); return ret; } static void __confirm_options(struct intel_uc *uc) { struct intel_gt *gt = uc_to_gt(uc); struct drm_i915_private *i915 = gt->i915; gt_dbg(gt, "enable_guc=%d (guc:%s submission:%s huc:%s slpc:%s)\n", i915->params.enable_guc, str_yes_no(intel_uc_wants_guc(uc)), str_yes_no(intel_uc_wants_guc_submission(uc)), str_yes_no(intel_uc_wants_huc(uc)), str_yes_no(intel_uc_wants_guc_slpc(uc))); if (i915->params.enable_guc == 0) { GEM_BUG_ON(intel_uc_wants_guc(uc)); GEM_BUG_ON(intel_uc_wants_guc_submission(uc)); GEM_BUG_ON(intel_uc_wants_huc(uc)); GEM_BUG_ON(intel_uc_wants_guc_slpc(uc)); return; } if (!intel_uc_supports_guc(uc)) gt_info(gt, "Incompatible option enable_guc=%d - %s\n", i915->params.enable_guc, "GuC is not supported!"); if (i915->params.enable_guc & ENABLE_GUC_LOAD_HUC && !intel_uc_supports_huc(uc)) gt_info(gt, "Incompatible option enable_guc=%d - %s\n", i915->params.enable_guc, "HuC is not supported!"); if (i915->params.enable_guc & ENABLE_GUC_SUBMISSION && !intel_uc_supports_guc_submission(uc)) gt_info(gt, "Incompatible option enable_guc=%d - %s\n", i915->params.enable_guc, "GuC submission is N/A"); if (i915->params.enable_guc & ~ENABLE_GUC_MASK) gt_info(gt, "Incompatible option enable_guc=%d - %s\n", i915->params.enable_guc, "undocumented flag"); } void intel_uc_init_early(struct intel_uc *uc) { uc_expand_default_options(uc); intel_guc_init_early(&uc->guc); intel_huc_init_early(&uc->huc); intel_gsc_uc_init_early(&uc->gsc); __confirm_options(uc); if (intel_uc_wants_guc(uc)) uc->ops = &uc_ops_on; else uc->ops = &uc_ops_off; } void intel_uc_init_late(struct intel_uc *uc) { intel_guc_init_late(&uc->guc); intel_gsc_uc_load_start(&uc->gsc); } void intel_uc_driver_late_release(struct intel_uc *uc) { } /** * intel_uc_init_mmio - setup uC MMIO access * @uc: the intel_uc structure * * Setup minimal state necessary for MMIO accesses later in the * initialization sequence. */ void intel_uc_init_mmio(struct intel_uc *uc) { intel_guc_init_send_regs(&uc->guc); } static void __uc_capture_load_err_log(struct intel_uc *uc) { struct intel_guc *guc = &uc->guc; if (guc->log.vma && !uc->load_err_log) uc->load_err_log = i915_gem_object_get(guc->log.vma->obj); } static void __uc_free_load_err_log(struct intel_uc *uc) { struct drm_i915_gem_object *log = fetch_and_zero(&uc->load_err_log); if (log) i915_gem_object_put(log); } void intel_uc_driver_remove(struct intel_uc *uc) { intel_uc_fini_hw(uc); intel_uc_fini(uc); __uc_free_load_err_log(uc); } /* * Events triggered while CT buffers are disabled are logged in the SCRATCH_15 * register using the same bits used in the CT message payload. Since our * communication channel with guc is turned off at this point, we can save the * message and handle it after we turn it back on. */ static void guc_clear_mmio_msg(struct intel_guc *guc) { intel_uncore_write(guc_to_gt(guc)->uncore, SOFT_SCRATCH(15), 0); } static void guc_get_mmio_msg(struct intel_guc *guc) { u32 val; spin_lock_irq(&guc->irq_lock); val = intel_uncore_read(guc_to_gt(guc)->uncore, SOFT_SCRATCH(15)); guc->mmio_msg |= val & guc->msg_enabled_mask; /* * clear all events, including the ones we're not currently servicing, * to make sure we don't try to process a stale message if we enable * handling of more events later. */ guc_clear_mmio_msg(guc); spin_unlock_irq(&guc->irq_lock); } static void guc_handle_mmio_msg(struct intel_guc *guc) { /* we need communication to be enabled to reply to GuC */ GEM_BUG_ON(!intel_guc_ct_enabled(&guc->ct)); spin_lock_irq(&guc->irq_lock); if (guc->mmio_msg) { intel_guc_to_host_process_recv_msg(guc, &guc->mmio_msg, 1); guc->mmio_msg = 0; } spin_unlock_irq(&guc->irq_lock); } static int guc_enable_communication(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct drm_i915_private *i915 = gt->i915; int ret; GEM_BUG_ON(intel_guc_ct_enabled(&guc->ct)); ret = i915_inject_probe_error(i915, -ENXIO); if (ret) return ret; ret = intel_guc_ct_enable(&guc->ct); if (ret) return ret; /* check for mmio messages received before/during the CT enable */ guc_get_mmio_msg(guc); guc_handle_mmio_msg(guc); intel_guc_enable_interrupts(guc); /* check for CT messages received before we enabled interrupts */ spin_lock_irq(gt->irq_lock); intel_guc_ct_event_handler(&guc->ct); spin_unlock_irq(gt->irq_lock); guc_dbg(guc, "communication enabled\n"); return 0; } static void guc_disable_communication(struct intel_guc *guc) { /* * Events generated during or after CT disable are logged by guc in * via mmio. Make sure the register is clear before disabling CT since * all events we cared about have already been processed via CT. */ guc_clear_mmio_msg(guc); intel_guc_disable_interrupts(guc); intel_guc_ct_disable(&guc->ct); /* * Check for messages received during/after the CT disable. We do not * expect any messages to have arrived via CT between the interrupt * disable and the CT disable because GuC should've been idle until we * triggered the CT disable protocol. */ guc_get_mmio_msg(guc); guc_dbg(guc, "communication disabled\n"); } static void __uc_fetch_firmwares(struct intel_uc *uc) { struct intel_gt *gt = uc_to_gt(uc); int err; GEM_BUG_ON(!intel_uc_wants_guc(uc)); err = intel_uc_fw_fetch(&uc->guc.fw); if (err) { /* Make sure we transition out of transient "SELECTED" state */ if (intel_uc_wants_huc(uc)) { gt_dbg(gt, "Failed to fetch GuC fw (%pe) disabling HuC\n", ERR_PTR(err)); intel_uc_fw_change_status(&uc->huc.fw, INTEL_UC_FIRMWARE_ERROR); } if (intel_uc_wants_gsc_uc(uc)) { gt_dbg(gt, "Failed to fetch GuC fw (%pe) disabling GSC\n", ERR_PTR(err)); intel_uc_fw_change_status(&uc->gsc.fw, INTEL_UC_FIRMWARE_ERROR); } return; } if (intel_uc_wants_huc(uc)) intel_uc_fw_fetch(&uc->huc.fw); if (intel_uc_wants_gsc_uc(uc)) intel_uc_fw_fetch(&uc->gsc.fw); } static void __uc_cleanup_firmwares(struct intel_uc *uc) { intel_uc_fw_cleanup_fetch(&uc->gsc.fw); intel_uc_fw_cleanup_fetch(&uc->huc.fw); intel_uc_fw_cleanup_fetch(&uc->guc.fw); } static int __uc_init(struct intel_uc *uc) { struct intel_guc *guc = &uc->guc; struct intel_huc *huc = &uc->huc; int ret; GEM_BUG_ON(!intel_uc_wants_guc(uc)); if (!intel_uc_uses_guc(uc)) return 0; if (i915_inject_probe_failure(uc_to_gt(uc)->i915)) return -ENOMEM; ret = intel_guc_init(guc); if (ret) return ret; if (intel_uc_uses_huc(uc)) intel_huc_init(huc); if (intel_uc_uses_gsc_uc(uc)) intel_gsc_uc_init(&uc->gsc); return 0; } static void __uc_fini(struct intel_uc *uc) { intel_gsc_uc_fini(&uc->gsc); intel_huc_fini(&uc->huc); intel_guc_fini(&uc->guc); } static int __uc_sanitize(struct intel_uc *uc) { struct intel_guc *guc = &uc->guc; struct intel_huc *huc = &uc->huc; GEM_BUG_ON(!intel_uc_supports_guc(uc)); intel_huc_sanitize(huc); intel_guc_sanitize(guc); return __intel_uc_reset_hw(uc); } /* Initialize and verify the uC regs related to uC positioning in WOPCM */ static int uc_init_wopcm(struct intel_uc *uc) { struct intel_gt *gt = uc_to_gt(uc); struct intel_uncore *uncore = gt->uncore; u32 base = intel_wopcm_guc_base(&gt->wopcm); u32 size = intel_wopcm_guc_size(&gt->wopcm); u32 huc_agent = intel_uc_uses_huc(uc) ? HUC_LOADING_AGENT_GUC : 0; u32 mask; int err; if (unlikely(!base || !size)) { gt_probe_error(gt, "Unsuccessful WOPCM partitioning\n"); return -E2BIG; } GEM_BUG_ON(!intel_uc_supports_guc(uc)); GEM_BUG_ON(!(base & GUC_WOPCM_OFFSET_MASK)); GEM_BUG_ON(base & ~GUC_WOPCM_OFFSET_MASK); GEM_BUG_ON(!(size & GUC_WOPCM_SIZE_MASK)); GEM_BUG_ON(size & ~GUC_WOPCM_SIZE_MASK); err = i915_inject_probe_error(gt->i915, -ENXIO); if (err) return err; mask = GUC_WOPCM_SIZE_MASK | GUC_WOPCM_SIZE_LOCKED; err = intel_uncore_write_and_verify(uncore, GUC_WOPCM_SIZE, size, mask, size | GUC_WOPCM_SIZE_LOCKED); if (err) goto err_out; mask = GUC_WOPCM_OFFSET_MASK | GUC_WOPCM_OFFSET_VALID | huc_agent; err = intel_uncore_write_and_verify(uncore, DMA_GUC_WOPCM_OFFSET, base | huc_agent, mask, base | huc_agent | GUC_WOPCM_OFFSET_VALID); if (err) goto err_out; return 0; err_out: gt_probe_error(gt, "Failed to init uC WOPCM registers!\n"); gt_probe_error(gt, "%s(%#x)=%#x\n", "DMA_GUC_WOPCM_OFFSET", i915_mmio_reg_offset(DMA_GUC_WOPCM_OFFSET), intel_uncore_read(uncore, DMA_GUC_WOPCM_OFFSET)); gt_probe_error(gt, "%s(%#x)=%#x\n", "GUC_WOPCM_SIZE", i915_mmio_reg_offset(GUC_WOPCM_SIZE), intel_uncore_read(uncore, GUC_WOPCM_SIZE)); return err; } static bool uc_is_wopcm_locked(struct intel_uc *uc) { struct intel_gt *gt = uc_to_gt(uc); struct intel_uncore *uncore = gt->uncore; return (intel_uncore_read(uncore, GUC_WOPCM_SIZE) & GUC_WOPCM_SIZE_LOCKED) || (intel_uncore_read(uncore, DMA_GUC_WOPCM_OFFSET) & GUC_WOPCM_OFFSET_VALID); } static int __uc_check_hw(struct intel_uc *uc) { if (uc->fw_table_invalid) return -EIO; if (!intel_uc_supports_guc(uc)) return 0; /* * We can silently continue without GuC only if it was never enabled * before on this system after reboot, otherwise we risk GPU hangs. * To check if GuC was loaded before we look at WOPCM registers. */ if (uc_is_wopcm_locked(uc)) return -EIO; return 0; } static void print_fw_ver(struct intel_gt *gt, struct intel_uc_fw *fw) { gt_info(gt, "%s firmware %s version %u.%u.%u\n", intel_uc_fw_type_repr(fw->type), fw->file_selected.path, fw->file_selected.ver.major, fw->file_selected.ver.minor, fw->file_selected.ver.patch); } static int __uc_init_hw(struct intel_uc *uc) { struct intel_gt *gt = uc_to_gt(uc); struct drm_i915_private *i915 = gt->i915; struct intel_guc *guc = &uc->guc; struct intel_huc *huc = &uc->huc; int ret, attempts; bool pl1en = false; GEM_BUG_ON(!intel_uc_supports_guc(uc)); GEM_BUG_ON(!intel_uc_wants_guc(uc)); print_fw_ver(gt, &guc->fw); if (intel_uc_uses_huc(uc)) print_fw_ver(gt, &huc->fw); if (!intel_uc_fw_is_loadable(&guc->fw)) { ret = __uc_check_hw(uc) || intel_uc_fw_is_overridden(&guc->fw) || intel_uc_wants_guc_submission(uc) ? intel_uc_fw_status_to_error(guc->fw.status) : 0; goto err_out; } ret = uc_init_wopcm(uc); if (ret) goto err_out; intel_guc_reset_interrupts(guc); /* WaEnableuKernelHeaderValidFix:skl */ /* WaEnableGuCBootHashCheckNotSet:skl,bxt,kbl */ if (GRAPHICS_VER(i915) == 9) attempts = 3; else attempts = 1; /* Disable a potentially low PL1 power limit to allow freq to be raised */ i915_hwmon_power_max_disable(gt->i915, &pl1en); intel_rps_raise_unslice(&uc_to_gt(uc)->rps); while (attempts--) { /* * Always reset the GuC just before (re)loading, so * that the state and timing are fairly predictable */ ret = __uc_sanitize(uc); if (ret) goto err_rps; intel_huc_fw_upload(huc); intel_guc_ads_reset(guc); intel_guc_write_params(guc); ret = intel_guc_fw_upload(guc); if (ret == 0) break; gt_dbg(gt, "GuC fw load failed (%pe) will reset and retry %d more time(s)\n", ERR_PTR(ret), attempts); } /* Did we succeded or run out of retries? */ if (ret) goto err_log_capture; ret = guc_enable_communication(guc); if (ret) goto err_log_capture; /* * GSC-loaded HuC is authenticated by the GSC, so we don't need to * trigger the auth here. However, given that the HuC loaded this way * survive GT reset, we still need to update our SW bookkeeping to make * sure it reflects the correct HW status. */ if (intel_huc_is_loaded_by_gsc(huc)) intel_huc_update_auth_status(huc); else intel_huc_auth(huc, INTEL_HUC_AUTH_BY_GUC); if (intel_uc_uses_guc_submission(uc)) { ret = intel_guc_submission_enable(guc); if (ret) goto err_log_capture; } if (intel_uc_uses_guc_slpc(uc)) { ret = intel_guc_slpc_enable(&guc->slpc); if (ret) goto err_submission; } else { /* Restore GT back to RPn for non-SLPC path */ intel_rps_lower_unslice(&uc_to_gt(uc)->rps); } i915_hwmon_power_max_restore(gt->i915, pl1en); guc_info(guc, "submission %s\n", str_enabled_disabled(intel_uc_uses_guc_submission(uc))); guc_info(guc, "SLPC %s\n", str_enabled_disabled(intel_uc_uses_guc_slpc(uc))); return 0; /* * We've failed to load the firmware :( */ err_submission: intel_guc_submission_disable(guc); err_log_capture: __uc_capture_load_err_log(uc); err_rps: /* Return GT back to RPn */ intel_rps_lower_unslice(&uc_to_gt(uc)->rps); i915_hwmon_power_max_restore(gt->i915, pl1en); err_out: __uc_sanitize(uc); if (!ret) { gt_notice(gt, "GuC is uninitialized\n"); /* We want to run without GuC submission */ return 0; } gt_probe_error(gt, "GuC initialization failed %pe\n", ERR_PTR(ret)); /* We want to keep KMS alive */ return -EIO; } static void __uc_fini_hw(struct intel_uc *uc) { struct intel_guc *guc = &uc->guc; if (!intel_guc_is_fw_running(guc)) return; if (intel_uc_uses_guc_submission(uc)) intel_guc_submission_disable(guc); __uc_sanitize(uc); } /** * intel_uc_reset_prepare - Prepare for reset * @uc: the intel_uc structure * * Preparing for full gpu reset. */ void intel_uc_reset_prepare(struct intel_uc *uc) { struct intel_guc *guc = &uc->guc; uc->reset_in_progress = true; /* Nothing to do if GuC isn't supported */ if (!intel_uc_supports_guc(uc)) return; /* Firmware expected to be running when this function is called */ if (!intel_guc_is_ready(guc)) goto sanitize; if (intel_uc_uses_guc_submission(uc)) intel_guc_submission_reset_prepare(guc); sanitize: __uc_sanitize(uc); } void intel_uc_reset(struct intel_uc *uc, intel_engine_mask_t stalled) { struct intel_guc *guc = &uc->guc; /* Firmware can not be running when this function is called */ if (intel_uc_uses_guc_submission(uc)) intel_guc_submission_reset(guc, stalled); } void intel_uc_reset_finish(struct intel_uc *uc) { struct intel_guc *guc = &uc->guc; uc->reset_in_progress = false; /* Firmware expected to be running when this function is called */ if (intel_guc_is_fw_running(guc) && intel_uc_uses_guc_submission(uc)) intel_guc_submission_reset_finish(guc); } void intel_uc_cancel_requests(struct intel_uc *uc) { struct intel_guc *guc = &uc->guc; /* Firmware can not be running when this function is called */ if (intel_uc_uses_guc_submission(uc)) intel_guc_submission_cancel_requests(guc); } void intel_uc_runtime_suspend(struct intel_uc *uc) { struct intel_guc *guc = &uc->guc; if (!intel_guc_is_ready(guc)) { guc->interrupts.enabled = false; return; } /* * Wait for any outstanding CTB before tearing down communication /w the * GuC. */ #define OUTSTANDING_CTB_TIMEOUT_PERIOD (HZ / 5) intel_guc_wait_for_pending_msg(guc, &guc->outstanding_submission_g2h, false, OUTSTANDING_CTB_TIMEOUT_PERIOD); GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h)); guc_disable_communication(guc); } void intel_uc_suspend(struct intel_uc *uc) { struct intel_guc *guc = &uc->guc; intel_wakeref_t wakeref; int err; /* flush the GSC worker */ intel_gsc_uc_flush_work(&uc->gsc); if (!intel_guc_is_ready(guc)) { guc->interrupts.enabled = false; return; } with_intel_runtime_pm(&uc_to_gt(uc)->i915->runtime_pm, wakeref) { err = intel_guc_suspend(guc); if (err) guc_dbg(guc, "Failed to suspend, %pe", ERR_PTR(err)); } } static void __uc_resume_mappings(struct intel_uc *uc) { intel_uc_fw_resume_mapping(&uc->guc.fw); intel_uc_fw_resume_mapping(&uc->huc.fw); } static int __uc_resume(struct intel_uc *uc, bool enable_communication) { struct intel_guc *guc = &uc->guc; struct intel_gt *gt = guc_to_gt(guc); int err; if (!intel_guc_is_fw_running(guc)) return 0; /* Make sure we enable communication if and only if it's disabled */ GEM_BUG_ON(enable_communication == intel_guc_ct_enabled(&guc->ct)); if (enable_communication) guc_enable_communication(guc); /* If we are only resuming GuC communication but not reloading * GuC, we need to ensure the ARAT timer interrupt is enabled * again. In case of GuC reload, it is enabled during SLPC enable. */ if (enable_communication && intel_uc_uses_guc_slpc(uc)) intel_guc_pm_intrmsk_enable(gt); err = intel_guc_resume(guc); if (err) { guc_dbg(guc, "Failed to resume, %pe", ERR_PTR(err)); return err; } intel_gsc_uc_resume(&uc->gsc); return 0; } int intel_uc_resume(struct intel_uc *uc) { /* * When coming out of S3/S4 we sanitize and re-init the HW, so * communication is already re-enabled at this point. */ return __uc_resume(uc, false); } int intel_uc_runtime_resume(struct intel_uc *uc) { /* * During runtime resume we don't sanitize, so we need to re-init * communication as well. */ return __uc_resume(uc, true); } static const struct intel_uc_ops uc_ops_off = { .init_hw = __uc_check_hw, .fini = __uc_fini, /* to clean-up the init_early initialization */ }; static const struct intel_uc_ops uc_ops_on = { .sanitize = __uc_sanitize, .init_fw = __uc_fetch_firmwares, .fini_fw = __uc_cleanup_firmwares, .init = __uc_init, .fini = __uc_fini, .init_hw = __uc_init_hw, .fini_hw = __uc_fini_hw, .resume_mappings = __uc_resume_mappings, };
linux-master
drivers/gpu/drm/i915/gt/uc/intel_uc.c
// SPDX-License-Identifier: MIT /* * Copyright © 2021 Intel Corporation */ #include <linux/string_helpers.h> #include "intel_guc_rc.h" #include "intel_guc_print.h" #include "gt/intel_gt.h" #include "i915_drv.h" static bool __guc_rc_supported(struct intel_guc *guc) { /* GuC RC is unavailable for pre-Gen12 */ return guc->submission_supported && GRAPHICS_VER(guc_to_gt(guc)->i915) >= 12; } static bool __guc_rc_selected(struct intel_guc *guc) { if (!intel_guc_rc_is_supported(guc)) return false; return guc->submission_selected; } void intel_guc_rc_init_early(struct intel_guc *guc) { guc->rc_supported = __guc_rc_supported(guc); guc->rc_selected = __guc_rc_selected(guc); } static int guc_action_control_gucrc(struct intel_guc *guc, bool enable) { u32 rc_mode = enable ? INTEL_GUCRC_FIRMWARE_CONTROL : INTEL_GUCRC_HOST_CONTROL; u32 action[] = { INTEL_GUC_ACTION_SETUP_PC_GUCRC, rc_mode }; int ret; ret = intel_guc_send(guc, action, ARRAY_SIZE(action)); ret = ret > 0 ? -EPROTO : ret; return ret; } static int __guc_rc_control(struct intel_guc *guc, bool enable) { struct intel_gt *gt = guc_to_gt(guc); int ret; if (!intel_uc_uses_guc_rc(&gt->uc)) return -EOPNOTSUPP; if (!intel_guc_is_ready(guc)) return -EINVAL; ret = guc_action_control_gucrc(guc, enable); if (ret) { guc_probe_error(guc, "Failed to %s RC (%pe)\n", str_enable_disable(enable), ERR_PTR(ret)); return ret; } guc_info(guc, "RC %s\n", str_enabled_disabled(enable)); return 0; } int intel_guc_rc_enable(struct intel_guc *guc) { return __guc_rc_control(guc, true); } int intel_guc_rc_disable(struct intel_guc *guc) { return __guc_rc_control(guc, false); }
linux-master
drivers/gpu/drm/i915/gt/uc/intel_guc_rc.c
// SPDX-License-Identifier: MIT /* * Copyright © 2016-2019 Intel Corporation */ #include <linux/bitfield.h> #include <linux/firmware.h> #include <linux/highmem.h> #include <drm/drm_cache.h> #include <drm/drm_print.h> #include "gem/i915_gem_lmem.h" #include "gt/intel_gt.h" #include "gt/intel_gt_print.h" #include "intel_gsc_binary_headers.h" #include "intel_gsc_fw.h" #include "intel_uc_fw.h" #include "intel_uc_fw_abi.h" #include "i915_drv.h" #include "i915_reg.h" #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) #define UNEXPECTED gt_probe_error #else #define UNEXPECTED gt_notice #endif static inline struct intel_gt * ____uc_fw_to_gt(struct intel_uc_fw *uc_fw, enum intel_uc_fw_type type) { GEM_BUG_ON(type >= INTEL_UC_FW_NUM_TYPES); switch (type) { case INTEL_UC_FW_TYPE_GUC: return container_of(uc_fw, struct intel_gt, uc.guc.fw); case INTEL_UC_FW_TYPE_HUC: return container_of(uc_fw, struct intel_gt, uc.huc.fw); case INTEL_UC_FW_TYPE_GSC: return container_of(uc_fw, struct intel_gt, uc.gsc.fw); } return NULL; } static inline struct intel_gt *__uc_fw_to_gt(struct intel_uc_fw *uc_fw) { GEM_BUG_ON(uc_fw->status == INTEL_UC_FIRMWARE_UNINITIALIZED); return ____uc_fw_to_gt(uc_fw, uc_fw->type); } #ifdef CONFIG_DRM_I915_DEBUG_GUC void intel_uc_fw_change_status(struct intel_uc_fw *uc_fw, enum intel_uc_fw_status status) { uc_fw->__status = status; gt_dbg(__uc_fw_to_gt(uc_fw), "%s firmware -> %s\n", intel_uc_fw_type_repr(uc_fw->type), status == INTEL_UC_FIRMWARE_SELECTED ? uc_fw->file_selected.path : intel_uc_fw_status_repr(status)); } #endif /* * List of required GuC and HuC binaries per-platform. * Must be ordered based on platform + revid, from newer to older. * * Note that RKL and ADL-S have the same GuC/HuC device ID's and use the same * firmware as TGL. * * Version numbers: * Originally, the driver required an exact match major/minor/patch furmware * file and only supported that one version for any given platform. However, * the new direction from upstream is to be backwards compatible with all * prior releases and to be as flexible as possible as to what firmware is * loaded. * * For GuC, the major version number signifies a backwards breaking API change. * So, new format GuC firmware files are labelled by their major version only. * For HuC, there is no KMD interaction, hence no version matching requirement. * So, new format HuC firmware files have no version number at all. * * All of which means that the table below must keep all old format files with * full three point version number. But newer files have reduced requirements. * Having said that, the driver still needs to track the minor version number * for GuC at least. As it is useful to report to the user that they are not * running with a recent enough version for all KMD supported features, * security fixes, etc. to be enabled. */ #define INTEL_GUC_FIRMWARE_DEFS(fw_def, guc_maj, guc_mmp) \ fw_def(METEORLAKE, 0, guc_maj(mtl, 70, 6, 6)) \ fw_def(DG2, 0, guc_maj(dg2, 70, 5, 1)) \ fw_def(ALDERLAKE_P, 0, guc_maj(adlp, 70, 5, 1)) \ fw_def(ALDERLAKE_P, 0, guc_mmp(adlp, 70, 1, 1)) \ fw_def(ALDERLAKE_P, 0, guc_mmp(adlp, 69, 0, 3)) \ fw_def(ALDERLAKE_S, 0, guc_maj(tgl, 70, 5, 1)) \ fw_def(ALDERLAKE_S, 0, guc_mmp(tgl, 70, 1, 1)) \ fw_def(ALDERLAKE_S, 0, guc_mmp(tgl, 69, 0, 3)) \ fw_def(DG1, 0, guc_maj(dg1, 70, 5, 1)) \ fw_def(ROCKETLAKE, 0, guc_mmp(tgl, 70, 1, 1)) \ fw_def(TIGERLAKE, 0, guc_mmp(tgl, 70, 1, 1)) \ fw_def(JASPERLAKE, 0, guc_mmp(ehl, 70, 1, 1)) \ fw_def(ELKHARTLAKE, 0, guc_mmp(ehl, 70, 1, 1)) \ fw_def(ICELAKE, 0, guc_mmp(icl, 70, 1, 1)) \ fw_def(COMETLAKE, 5, guc_mmp(cml, 70, 1, 1)) \ fw_def(COMETLAKE, 0, guc_mmp(kbl, 70, 1, 1)) \ fw_def(COFFEELAKE, 0, guc_mmp(kbl, 70, 1, 1)) \ fw_def(GEMINILAKE, 0, guc_mmp(glk, 70, 1, 1)) \ fw_def(KABYLAKE, 0, guc_mmp(kbl, 70, 1, 1)) \ fw_def(BROXTON, 0, guc_mmp(bxt, 70, 1, 1)) \ fw_def(SKYLAKE, 0, guc_mmp(skl, 70, 1, 1)) #define INTEL_HUC_FIRMWARE_DEFS(fw_def, huc_raw, huc_mmp, huc_gsc) \ fw_def(METEORLAKE, 0, huc_gsc(mtl)) \ fw_def(DG2, 0, huc_gsc(dg2)) \ fw_def(ALDERLAKE_P, 0, huc_raw(tgl)) \ fw_def(ALDERLAKE_P, 0, huc_mmp(tgl, 7, 9, 3)) \ fw_def(ALDERLAKE_S, 0, huc_raw(tgl)) \ fw_def(ALDERLAKE_S, 0, huc_mmp(tgl, 7, 9, 3)) \ fw_def(DG1, 0, huc_raw(dg1)) \ fw_def(ROCKETLAKE, 0, huc_mmp(tgl, 7, 9, 3)) \ fw_def(TIGERLAKE, 0, huc_mmp(tgl, 7, 9, 3)) \ fw_def(JASPERLAKE, 0, huc_mmp(ehl, 9, 0, 0)) \ fw_def(ELKHARTLAKE, 0, huc_mmp(ehl, 9, 0, 0)) \ fw_def(ICELAKE, 0, huc_mmp(icl, 9, 0, 0)) \ fw_def(COMETLAKE, 5, huc_mmp(cml, 4, 0, 0)) \ fw_def(COMETLAKE, 0, huc_mmp(kbl, 4, 0, 0)) \ fw_def(COFFEELAKE, 0, huc_mmp(kbl, 4, 0, 0)) \ fw_def(GEMINILAKE, 0, huc_mmp(glk, 4, 0, 0)) \ fw_def(KABYLAKE, 0, huc_mmp(kbl, 4, 0, 0)) \ fw_def(BROXTON, 0, huc_mmp(bxt, 2, 0, 0)) \ fw_def(SKYLAKE, 0, huc_mmp(skl, 2, 0, 0)) /* * Set of macros for producing a list of filenames from the above table. */ #define __MAKE_UC_FW_PATH_BLANK(prefix_, name_) \ "i915/" \ __stringify(prefix_) "_" name_ ".bin" #define __MAKE_UC_FW_PATH_MAJOR(prefix_, name_, major_) \ "i915/" \ __stringify(prefix_) "_" name_ "_" \ __stringify(major_) ".bin" #define __MAKE_UC_FW_PATH_MMP(prefix_, name_, major_, minor_, patch_) \ "i915/" \ __stringify(prefix_) "_" name_ "_" \ __stringify(major_) "." \ __stringify(minor_) "." \ __stringify(patch_) ".bin" /* Minor for internal driver use, not part of file name */ #define MAKE_GUC_FW_PATH_MAJOR(prefix_, major_, minor_, patch_) \ __MAKE_UC_FW_PATH_MAJOR(prefix_, "guc", major_) #define MAKE_GUC_FW_PATH_MMP(prefix_, major_, minor_, patch_) \ __MAKE_UC_FW_PATH_MMP(prefix_, "guc", major_, minor_, patch_) #define MAKE_HUC_FW_PATH_BLANK(prefix_) \ __MAKE_UC_FW_PATH_BLANK(prefix_, "huc") #define MAKE_HUC_FW_PATH_GSC(prefix_) \ __MAKE_UC_FW_PATH_BLANK(prefix_, "huc_gsc") #define MAKE_HUC_FW_PATH_MMP(prefix_, major_, minor_, patch_) \ __MAKE_UC_FW_PATH_MMP(prefix_, "huc", major_, minor_, patch_) /* * All blobs need to be declared via MODULE_FIRMWARE(). * This first expansion of the table macros is solely to provide * that declaration. */ #define INTEL_UC_MODULE_FW(platform_, revid_, uc_) \ MODULE_FIRMWARE(uc_); INTEL_GUC_FIRMWARE_DEFS(INTEL_UC_MODULE_FW, MAKE_GUC_FW_PATH_MAJOR, MAKE_GUC_FW_PATH_MMP) INTEL_HUC_FIRMWARE_DEFS(INTEL_UC_MODULE_FW, MAKE_HUC_FW_PATH_BLANK, MAKE_HUC_FW_PATH_MMP, MAKE_HUC_FW_PATH_GSC) /* * The next expansion of the table macros (in __uc_fw_auto_select below) provides * actual data structures with both the filename and the version information. * These structure arrays are then iterated over to the list of suitable files * for the current platform and to then attempt to load those files, in the order * listed, until one is successfully found. */ struct __packed uc_fw_blob { const char *path; bool legacy; u8 major; u8 minor; u8 patch; bool has_gsc_headers; }; #define UC_FW_BLOB_BASE(major_, minor_, patch_, path_) \ .major = major_, \ .minor = minor_, \ .patch = patch_, \ .path = path_, #define UC_FW_BLOB_NEW(major_, minor_, patch_, gsc_, path_) \ { UC_FW_BLOB_BASE(major_, minor_, patch_, path_) \ .legacy = false, .has_gsc_headers = gsc_ } #define UC_FW_BLOB_OLD(major_, minor_, patch_, path_) \ { UC_FW_BLOB_BASE(major_, minor_, patch_, path_) \ .legacy = true } #define GUC_FW_BLOB(prefix_, major_, minor_, patch_) \ UC_FW_BLOB_NEW(major_, minor_, patch_, false, \ MAKE_GUC_FW_PATH_MAJOR(prefix_, major_, minor_, patch_)) #define GUC_FW_BLOB_MMP(prefix_, major_, minor_, patch_) \ UC_FW_BLOB_OLD(major_, minor_, patch_, \ MAKE_GUC_FW_PATH_MMP(prefix_, major_, minor_, patch_)) #define HUC_FW_BLOB(prefix_) \ UC_FW_BLOB_NEW(0, 0, 0, false, MAKE_HUC_FW_PATH_BLANK(prefix_)) #define HUC_FW_BLOB_MMP(prefix_, major_, minor_, patch_) \ UC_FW_BLOB_OLD(major_, minor_, patch_, \ MAKE_HUC_FW_PATH_MMP(prefix_, major_, minor_, patch_)) #define HUC_FW_BLOB_GSC(prefix_) \ UC_FW_BLOB_NEW(0, 0, 0, true, MAKE_HUC_FW_PATH_GSC(prefix_)) struct __packed uc_fw_platform_requirement { enum intel_platform p; u8 rev; /* first platform rev using this FW */ const struct uc_fw_blob blob; }; #define MAKE_FW_LIST(platform_, revid_, uc_) \ { \ .p = INTEL_##platform_, \ .rev = revid_, \ .blob = uc_, \ }, struct fw_blobs_by_type { const struct uc_fw_platform_requirement *blobs; u32 count; }; static const struct uc_fw_platform_requirement blobs_guc[] = { INTEL_GUC_FIRMWARE_DEFS(MAKE_FW_LIST, GUC_FW_BLOB, GUC_FW_BLOB_MMP) }; static const struct uc_fw_platform_requirement blobs_huc[] = { INTEL_HUC_FIRMWARE_DEFS(MAKE_FW_LIST, HUC_FW_BLOB, HUC_FW_BLOB_MMP, HUC_FW_BLOB_GSC) }; static const struct fw_blobs_by_type blobs_all[INTEL_UC_FW_NUM_TYPES] = { [INTEL_UC_FW_TYPE_GUC] = { blobs_guc, ARRAY_SIZE(blobs_guc) }, [INTEL_UC_FW_TYPE_HUC] = { blobs_huc, ARRAY_SIZE(blobs_huc) }, }; static void __uc_fw_auto_select(struct drm_i915_private *i915, struct intel_uc_fw *uc_fw) { const struct uc_fw_platform_requirement *fw_blobs; enum intel_platform p = INTEL_INFO(i915)->platform; u32 fw_count; u8 rev = INTEL_REVID(i915); int i; bool found; /* * GSC FW support is still not fully in place, so we're not defining * the FW blob yet because we don't want the driver to attempt to load * it until we're ready for it. */ if (uc_fw->type == INTEL_UC_FW_TYPE_GSC) return; /* * The only difference between the ADL GuC FWs is the HWConfig support. * ADL-N does not support HWConfig, so we should use the same binary as * ADL-S, otherwise the GuC might attempt to fetch a config table that * does not exist. */ if (IS_ALDERLAKE_P_N(i915)) p = INTEL_ALDERLAKE_S; GEM_BUG_ON(uc_fw->type >= ARRAY_SIZE(blobs_all)); fw_blobs = blobs_all[uc_fw->type].blobs; fw_count = blobs_all[uc_fw->type].count; found = false; for (i = 0; i < fw_count && p <= fw_blobs[i].p; i++) { const struct uc_fw_blob *blob = &fw_blobs[i].blob; if (p != fw_blobs[i].p) continue; if (rev < fw_blobs[i].rev) continue; if (uc_fw->file_selected.path) { /* * Continuing an earlier search after a found blob failed to load. * Once the previously chosen path has been found, clear it out * and let the search continue from there. */ if (uc_fw->file_selected.path == blob->path) uc_fw->file_selected.path = NULL; continue; } uc_fw->file_selected.path = blob->path; uc_fw->file_wanted.path = blob->path; uc_fw->file_wanted.ver.major = blob->major; uc_fw->file_wanted.ver.minor = blob->minor; uc_fw->file_wanted.ver.patch = blob->patch; uc_fw->has_gsc_headers = blob->has_gsc_headers; found = true; break; } if (!found && uc_fw->file_selected.path) { /* Failed to find a match for the last attempt?! */ uc_fw->file_selected.path = NULL; } } static bool validate_fw_table_type(struct drm_i915_private *i915, enum intel_uc_fw_type type) { const struct uc_fw_platform_requirement *fw_blobs; u32 fw_count; int i, j; if (type >= ARRAY_SIZE(blobs_all)) { drm_err(&i915->drm, "No blob array for %s\n", intel_uc_fw_type_repr(type)); return false; } fw_blobs = blobs_all[type].blobs; fw_count = blobs_all[type].count; if (!fw_count) return true; /* make sure the list is ordered as expected */ for (i = 1; i < fw_count; i++) { /* Versionless file names must be unique per platform: */ for (j = i + 1; j < fw_count; j++) { /* Same platform? */ if (fw_blobs[i].p != fw_blobs[j].p) continue; if (fw_blobs[i].blob.path != fw_blobs[j].blob.path) continue; drm_err(&i915->drm, "Duplicate %s blobs: %s r%u %s%d.%d.%d [%s] matches %s%d.%d.%d [%s]\n", intel_uc_fw_type_repr(type), intel_platform_name(fw_blobs[j].p), fw_blobs[j].rev, fw_blobs[j].blob.legacy ? "L" : "v", fw_blobs[j].blob.major, fw_blobs[j].blob.minor, fw_blobs[j].blob.patch, fw_blobs[j].blob.path, fw_blobs[i].blob.legacy ? "L" : "v", fw_blobs[i].blob.major, fw_blobs[i].blob.minor, fw_blobs[i].blob.patch, fw_blobs[i].blob.path); } /* Next platform is good: */ if (fw_blobs[i].p < fw_blobs[i - 1].p) continue; /* Next platform revision is good: */ if (fw_blobs[i].p == fw_blobs[i - 1].p && fw_blobs[i].rev < fw_blobs[i - 1].rev) continue; /* Platform/revision must be in order: */ if (fw_blobs[i].p != fw_blobs[i - 1].p || fw_blobs[i].rev != fw_blobs[i - 1].rev) goto bad; /* Next major version is good: */ if (fw_blobs[i].blob.major < fw_blobs[i - 1].blob.major) continue; /* New must be before legacy: */ if (!fw_blobs[i].blob.legacy && fw_blobs[i - 1].blob.legacy) goto bad; /* New to legacy also means 0.0 to X.Y (HuC), or X.0 to X.Y (GuC) */ if (fw_blobs[i].blob.legacy && !fw_blobs[i - 1].blob.legacy) { if (!fw_blobs[i - 1].blob.major) continue; if (fw_blobs[i].blob.major == fw_blobs[i - 1].blob.major) continue; } /* Major versions must be in order: */ if (fw_blobs[i].blob.major != fw_blobs[i - 1].blob.major) goto bad; /* Next minor version is good: */ if (fw_blobs[i].blob.minor < fw_blobs[i - 1].blob.minor) continue; /* Minor versions must be in order: */ if (fw_blobs[i].blob.minor != fw_blobs[i - 1].blob.minor) goto bad; /* Patch versions must be in order and unique: */ if (fw_blobs[i].blob.patch < fw_blobs[i - 1].blob.patch) continue; bad: drm_err(&i915->drm, "Invalid %s blob order: %s r%u %s%d.%d.%d comes before %s r%u %s%d.%d.%d\n", intel_uc_fw_type_repr(type), intel_platform_name(fw_blobs[i - 1].p), fw_blobs[i - 1].rev, fw_blobs[i - 1].blob.legacy ? "L" : "v", fw_blobs[i - 1].blob.major, fw_blobs[i - 1].blob.minor, fw_blobs[i - 1].blob.patch, intel_platform_name(fw_blobs[i].p), fw_blobs[i].rev, fw_blobs[i].blob.legacy ? "L" : "v", fw_blobs[i].blob.major, fw_blobs[i].blob.minor, fw_blobs[i].blob.patch); return false; } return true; } static const char *__override_guc_firmware_path(struct drm_i915_private *i915) { if (i915->params.enable_guc & ENABLE_GUC_MASK) return i915->params.guc_firmware_path; return ""; } static const char *__override_huc_firmware_path(struct drm_i915_private *i915) { if (i915->params.enable_guc & ENABLE_GUC_LOAD_HUC) return i915->params.huc_firmware_path; return ""; } static const char *__override_gsc_firmware_path(struct drm_i915_private *i915) { return i915->params.gsc_firmware_path; } static void __uc_fw_user_override(struct drm_i915_private *i915, struct intel_uc_fw *uc_fw) { const char *path = NULL; switch (uc_fw->type) { case INTEL_UC_FW_TYPE_GUC: path = __override_guc_firmware_path(i915); break; case INTEL_UC_FW_TYPE_HUC: path = __override_huc_firmware_path(i915); break; case INTEL_UC_FW_TYPE_GSC: path = __override_gsc_firmware_path(i915); break; } if (unlikely(path)) { uc_fw->file_selected.path = path; uc_fw->user_overridden = true; } } void intel_uc_fw_version_from_gsc_manifest(struct intel_uc_fw_ver *ver, const void *data) { const struct intel_gsc_manifest_header *manifest = data; ver->major = manifest->fw_version.major; ver->minor = manifest->fw_version.minor; ver->patch = manifest->fw_version.hotfix; ver->build = manifest->fw_version.build; } /** * intel_uc_fw_init_early - initialize the uC object and select the firmware * @uc_fw: uC firmware * @type: type of uC * @needs_ggtt_mapping: whether the FW needs to be GGTT mapped for loading * * Initialize the state of our uC object and relevant tracking and select the * firmware to fetch and load. */ void intel_uc_fw_init_early(struct intel_uc_fw *uc_fw, enum intel_uc_fw_type type, bool needs_ggtt_mapping) { struct intel_gt *gt = ____uc_fw_to_gt(uc_fw, type); struct drm_i915_private *i915 = gt->i915; /* * we use FIRMWARE_UNINITIALIZED to detect checks against uc_fw->status * before we're looked at the HW caps to see if we have uc support */ BUILD_BUG_ON(INTEL_UC_FIRMWARE_UNINITIALIZED); GEM_BUG_ON(uc_fw->status); GEM_BUG_ON(uc_fw->file_selected.path); uc_fw->type = type; uc_fw->needs_ggtt_mapping = needs_ggtt_mapping; if (HAS_GT_UC(i915)) { if (!validate_fw_table_type(i915, type)) { gt->uc.fw_table_invalid = true; intel_uc_fw_change_status(uc_fw, INTEL_UC_FIRMWARE_NOT_SUPPORTED); return; } __uc_fw_auto_select(i915, uc_fw); __uc_fw_user_override(i915, uc_fw); } intel_uc_fw_change_status(uc_fw, uc_fw->file_selected.path ? *uc_fw->file_selected.path ? INTEL_UC_FIRMWARE_SELECTED : INTEL_UC_FIRMWARE_DISABLED : INTEL_UC_FIRMWARE_NOT_SUPPORTED); } static void __force_fw_fetch_failures(struct intel_uc_fw *uc_fw, int e) { struct drm_i915_private *i915 = __uc_fw_to_gt(uc_fw)->i915; bool user = e == -EINVAL; if (i915_inject_probe_error(i915, e)) { /* non-existing blob */ uc_fw->file_selected.path = "<invalid>"; uc_fw->user_overridden = user; } else if (i915_inject_probe_error(i915, e)) { /* require next major version */ uc_fw->file_wanted.ver.major += 1; uc_fw->file_wanted.ver.minor = 0; uc_fw->user_overridden = user; } else if (i915_inject_probe_error(i915, e)) { /* require next minor version */ uc_fw->file_wanted.ver.minor += 1; uc_fw->user_overridden = user; } else if (uc_fw->file_wanted.ver.major && i915_inject_probe_error(i915, e)) { /* require prev major version */ uc_fw->file_wanted.ver.major -= 1; uc_fw->file_wanted.ver.minor = 0; uc_fw->user_overridden = user; } else if (uc_fw->file_wanted.ver.minor && i915_inject_probe_error(i915, e)) { /* require prev minor version - hey, this should work! */ uc_fw->file_wanted.ver.minor -= 1; uc_fw->user_overridden = user; } else if (user && i915_inject_probe_error(i915, e)) { /* officially unsupported platform */ uc_fw->file_wanted.ver.major = 0; uc_fw->file_wanted.ver.minor = 0; uc_fw->user_overridden = true; } } static void uc_unpack_css_version(struct intel_uc_fw_ver *ver, u32 css_value) { /* Get version numbers from the CSS header */ ver->major = FIELD_GET(CSS_SW_VERSION_UC_MAJOR, css_value); ver->minor = FIELD_GET(CSS_SW_VERSION_UC_MINOR, css_value); ver->patch = FIELD_GET(CSS_SW_VERSION_UC_PATCH, css_value); } static void guc_read_css_info(struct intel_uc_fw *uc_fw, struct uc_css_header *css) { struct intel_guc *guc = container_of(uc_fw, struct intel_guc, fw); /* * The GuC firmware includes an extra version number to specify the * submission API level. This allows submission code to work with * multiple GuC versions without having to know the absolute firmware * version number (there are likely to be multiple firmware releases * which all support the same submission API level). * * Note that the spec for the CSS header defines this version number * as 'vf_version' as it was originally intended for virtualisation. * However, it is applicable to native submission as well. * * Unfortunately, due to an oversight, this version number was only * exposed in the CSS header from v70.6.0. */ if (uc_fw->file_selected.ver.major >= 70) { if (uc_fw->file_selected.ver.minor >= 6) { /* v70.6.0 adds CSS header support */ uc_unpack_css_version(&guc->submission_version, css->vf_version); } else if (uc_fw->file_selected.ver.minor >= 3) { /* v70.3.0 introduced v1.1.0 */ guc->submission_version.major = 1; guc->submission_version.minor = 1; guc->submission_version.patch = 0; } else { /* v70.0.0 introduced v1.0.0 */ guc->submission_version.major = 1; guc->submission_version.minor = 0; guc->submission_version.patch = 0; } } else if (uc_fw->file_selected.ver.major >= 69) { /* v69.0.0 introduced v0.10.0 */ guc->submission_version.major = 0; guc->submission_version.minor = 10; guc->submission_version.patch = 0; } else { /* Prior versions were v0.1.0 */ guc->submission_version.major = 0; guc->submission_version.minor = 1; guc->submission_version.patch = 0; } uc_fw->private_data_size = css->private_data_size; } static int __check_ccs_header(struct intel_gt *gt, const void *fw_data, size_t fw_size, struct intel_uc_fw *uc_fw) { struct uc_css_header *css; size_t size; /* Check the size of the blob before examining buffer contents */ if (unlikely(fw_size < sizeof(struct uc_css_header))) { gt_warn(gt, "%s firmware %s: invalid size: %zu < %zu\n", intel_uc_fw_type_repr(uc_fw->type), uc_fw->file_selected.path, fw_size, sizeof(struct uc_css_header)); return -ENODATA; } css = (struct uc_css_header *)fw_data; /* Check integrity of size values inside CSS header */ size = (css->header_size_dw - css->key_size_dw - css->modulus_size_dw - css->exponent_size_dw) * sizeof(u32); if (unlikely(size != sizeof(struct uc_css_header))) { gt_warn(gt, "%s firmware %s: unexpected header size: %zu != %zu\n", intel_uc_fw_type_repr(uc_fw->type), uc_fw->file_selected.path, fw_size, sizeof(struct uc_css_header)); return -EPROTO; } /* uCode size must calculated from other sizes */ uc_fw->ucode_size = (css->size_dw - css->header_size_dw) * sizeof(u32); /* now RSA */ uc_fw->rsa_size = css->key_size_dw * sizeof(u32); /* At least, it should have header, uCode and RSA. Size of all three. */ size = sizeof(struct uc_css_header) + uc_fw->ucode_size + uc_fw->rsa_size; if (unlikely(fw_size < size)) { gt_warn(gt, "%s firmware %s: invalid size: %zu < %zu\n", intel_uc_fw_type_repr(uc_fw->type), uc_fw->file_selected.path, fw_size, size); return -ENOEXEC; } /* Sanity check whether this fw is not larger than whole WOPCM memory */ size = __intel_uc_fw_get_upload_size(uc_fw); if (unlikely(size >= gt->wopcm.size)) { gt_warn(gt, "%s firmware %s: invalid size: %zu > %zu\n", intel_uc_fw_type_repr(uc_fw->type), uc_fw->file_selected.path, size, (size_t)gt->wopcm.size); return -E2BIG; } uc_unpack_css_version(&uc_fw->file_selected.ver, css->sw_version); if (uc_fw->type == INTEL_UC_FW_TYPE_GUC) guc_read_css_info(uc_fw, css); return 0; } static int check_gsc_manifest(struct intel_gt *gt, const struct firmware *fw, struct intel_uc_fw *uc_fw) { switch (uc_fw->type) { case INTEL_UC_FW_TYPE_HUC: intel_huc_fw_get_binary_info(uc_fw, fw->data, fw->size); break; case INTEL_UC_FW_TYPE_GSC: intel_gsc_fw_get_binary_info(uc_fw, fw->data, fw->size); break; default: MISSING_CASE(uc_fw->type); return -EINVAL; } if (uc_fw->dma_start_offset) { u32 delta = uc_fw->dma_start_offset; __check_ccs_header(gt, fw->data + delta, fw->size - delta, uc_fw); } return 0; } static int check_ccs_header(struct intel_gt *gt, const struct firmware *fw, struct intel_uc_fw *uc_fw) { return __check_ccs_header(gt, fw->data, fw->size, uc_fw); } static bool is_ver_8bit(struct intel_uc_fw_ver *ver) { return ver->major < 0xFF && ver->minor < 0xFF && ver->patch < 0xFF; } static int guc_check_version_range(struct intel_uc_fw *uc_fw) { struct intel_guc *guc = container_of(uc_fw, struct intel_guc, fw); struct intel_gt *gt = __uc_fw_to_gt(uc_fw); /* * GuC version number components are defined as being 8-bits. * The submission code relies on this to optimise version comparison * tests. So enforce the restriction here. */ if (!is_ver_8bit(&uc_fw->file_selected.ver)) { gt_warn(gt, "%s firmware: invalid file version: 0x%02X:%02X:%02X\n", intel_uc_fw_type_repr(uc_fw->type), uc_fw->file_selected.ver.major, uc_fw->file_selected.ver.minor, uc_fw->file_selected.ver.patch); return -EINVAL; } if (!is_ver_8bit(&guc->submission_version)) { gt_warn(gt, "%s firmware: invalid submit version: 0x%02X:%02X:%02X\n", intel_uc_fw_type_repr(uc_fw->type), guc->submission_version.major, guc->submission_version.minor, guc->submission_version.patch); return -EINVAL; } return i915_inject_probe_error(gt->i915, -EINVAL); } static int check_fw_header(struct intel_gt *gt, const struct firmware *fw, struct intel_uc_fw *uc_fw) { int err = 0; if (uc_fw->has_gsc_headers) err = check_gsc_manifest(gt, fw, uc_fw); else err = check_ccs_header(gt, fw, uc_fw); if (err) return err; return 0; } static int try_firmware_load(struct intel_uc_fw *uc_fw, const struct firmware **fw) { struct intel_gt *gt = __uc_fw_to_gt(uc_fw); struct device *dev = gt->i915->drm.dev; int err; err = firmware_request_nowarn(fw, uc_fw->file_selected.path, dev); if (err) return err; if (uc_fw->needs_ggtt_mapping && (*fw)->size > INTEL_UC_RSVD_GGTT_PER_FW) { gt_err(gt, "%s firmware %s: size (%zuKB) exceeds max supported size (%uKB)\n", intel_uc_fw_type_repr(uc_fw->type), uc_fw->file_selected.path, (*fw)->size / SZ_1K, INTEL_UC_RSVD_GGTT_PER_FW / SZ_1K); /* try to find another blob to load */ release_firmware(*fw); *fw = NULL; return -ENOENT; } return 0; } static int check_mtl_huc_guc_compatibility(struct intel_gt *gt, struct intel_uc_fw_file *huc_selected) { struct intel_uc_fw_file *guc_selected = &gt->uc.guc.fw.file_selected; struct intel_uc_fw_ver *huc_ver = &huc_selected->ver; struct intel_uc_fw_ver *guc_ver = &guc_selected->ver; bool new_huc, new_guc; /* we can only do this check after having fetched both GuC and HuC */ GEM_BUG_ON(!huc_selected->path || !guc_selected->path); /* * Due to changes in the authentication flow for MTL, HuC 8.5.1 or newer * requires GuC 70.7.0 or newer. Older HuC binaries will instead require * GuC < 70.7.0. */ new_huc = huc_ver->major > 8 || (huc_ver->major == 8 && huc_ver->minor > 5) || (huc_ver->major == 8 && huc_ver->minor == 5 && huc_ver->patch >= 1); new_guc = guc_ver->major > 70 || (guc_ver->major == 70 && guc_ver->minor >= 7); if (new_huc != new_guc) { UNEXPECTED(gt, "HuC %u.%u.%u is incompatible with GuC %u.%u.%u\n", huc_ver->major, huc_ver->minor, huc_ver->patch, guc_ver->major, guc_ver->minor, guc_ver->patch); gt_info(gt, "MTL GuC 70.7.0+ and HuC 8.5.1+ don't work with older releases\n"); return -ENOEXEC; } return 0; } int intel_uc_check_file_version(struct intel_uc_fw *uc_fw, bool *old_ver) { struct intel_gt *gt = __uc_fw_to_gt(uc_fw); struct intel_uc_fw_file *wanted = &uc_fw->file_wanted; struct intel_uc_fw_file *selected = &uc_fw->file_selected; int ret; /* * MTL has some compatibility issues with early GuC/HuC binaries * not working with newer ones. This is specific to MTL and we * don't expect it to extend to other platforms. */ if (IS_METEORLAKE(gt->i915) && uc_fw->type == INTEL_UC_FW_TYPE_HUC) { ret = check_mtl_huc_guc_compatibility(gt, selected); if (ret) return ret; } if (!wanted->ver.major || !selected->ver.major) return 0; /* Check the file's major version was as it claimed */ if (selected->ver.major != wanted->ver.major) { UNEXPECTED(gt, "%s firmware %s: unexpected version: %u.%u != %u.%u\n", intel_uc_fw_type_repr(uc_fw->type), selected->path, selected->ver.major, selected->ver.minor, wanted->ver.major, wanted->ver.minor); if (!intel_uc_fw_is_overridden(uc_fw)) return -ENOEXEC; } else if (old_ver) { if (selected->ver.minor < wanted->ver.minor) *old_ver = true; else if ((selected->ver.minor == wanted->ver.minor) && (selected->ver.patch < wanted->ver.patch)) *old_ver = true; } return 0; } /** * intel_uc_fw_fetch - fetch uC firmware * @uc_fw: uC firmware * * Fetch uC firmware into GEM obj. * * Return: 0 on success, a negative errno code on failure. */ int intel_uc_fw_fetch(struct intel_uc_fw *uc_fw) { struct intel_gt *gt = __uc_fw_to_gt(uc_fw); struct drm_i915_private *i915 = gt->i915; struct intel_uc_fw_file file_ideal; struct drm_i915_gem_object *obj; const struct firmware *fw = NULL; bool old_ver = false; int err; GEM_BUG_ON(!gt->wopcm.size); GEM_BUG_ON(!intel_uc_fw_is_enabled(uc_fw)); err = i915_inject_probe_error(i915, -ENXIO); if (err) goto fail; __force_fw_fetch_failures(uc_fw, -EINVAL); __force_fw_fetch_failures(uc_fw, -ESTALE); err = try_firmware_load(uc_fw, &fw); memcpy(&file_ideal, &uc_fw->file_wanted, sizeof(file_ideal)); /* Any error is terminal if overriding. Don't bother searching for older versions */ if (err && intel_uc_fw_is_overridden(uc_fw)) goto fail; while (err == -ENOENT) { old_ver = true; __uc_fw_auto_select(i915, uc_fw); if (!uc_fw->file_selected.path) { /* * No more options! But set the path back to something * valid just in case it gets dereferenced. */ uc_fw->file_selected.path = file_ideal.path; /* Also, preserve the version that was really wanted */ memcpy(&uc_fw->file_wanted, &file_ideal, sizeof(uc_fw->file_wanted)); break; } err = try_firmware_load(uc_fw, &fw); } if (err) goto fail; err = check_fw_header(gt, fw, uc_fw); if (err) goto fail; if (uc_fw->type == INTEL_UC_FW_TYPE_GUC) { err = guc_check_version_range(uc_fw); if (err) goto fail; } err = intel_uc_check_file_version(uc_fw, &old_ver); if (err) goto fail; if (old_ver && uc_fw->file_selected.ver.major) { /* Preserve the version that was really wanted */ memcpy(&uc_fw->file_wanted, &file_ideal, sizeof(uc_fw->file_wanted)); UNEXPECTED(gt, "%s firmware %s (%d.%d.%d) is recommended, but only %s (%d.%d.%d) was found\n", intel_uc_fw_type_repr(uc_fw->type), uc_fw->file_wanted.path, uc_fw->file_wanted.ver.major, uc_fw->file_wanted.ver.minor, uc_fw->file_wanted.ver.patch, uc_fw->file_selected.path, uc_fw->file_selected.ver.major, uc_fw->file_selected.ver.minor, uc_fw->file_selected.ver.patch); gt_info(gt, "Consider updating your linux-firmware pkg or downloading from %s\n", INTEL_UC_FIRMWARE_URL); } if (HAS_LMEM(i915)) { obj = i915_gem_object_create_lmem_from_data(i915, fw->data, fw->size); if (!IS_ERR(obj)) obj->flags |= I915_BO_ALLOC_PM_EARLY; } else { obj = i915_gem_object_create_shmem_from_data(i915, fw->data, fw->size); } if (IS_ERR(obj)) { err = PTR_ERR(obj); goto fail; } uc_fw->obj = obj; uc_fw->size = fw->size; intel_uc_fw_change_status(uc_fw, INTEL_UC_FIRMWARE_AVAILABLE); release_firmware(fw); return 0; fail: intel_uc_fw_change_status(uc_fw, err == -ENOENT ? INTEL_UC_FIRMWARE_MISSING : INTEL_UC_FIRMWARE_ERROR); gt_probe_error(gt, "%s firmware %s: fetch failed %pe\n", intel_uc_fw_type_repr(uc_fw->type), uc_fw->file_selected.path, ERR_PTR(err)); gt_info(gt, "%s firmware(s) can be downloaded from %s\n", intel_uc_fw_type_repr(uc_fw->type), INTEL_UC_FIRMWARE_URL); release_firmware(fw); /* OK even if fw is NULL */ return err; } static u32 uc_fw_ggtt_offset(struct intel_uc_fw *uc_fw) { struct intel_gt *gt = __uc_fw_to_gt(uc_fw); struct i915_ggtt *ggtt = gt->ggtt; struct drm_mm_node *node = &ggtt->uc_fw; u32 offset = uc_fw->type * INTEL_UC_RSVD_GGTT_PER_FW; /* * The media GT shares the GGTT with the root GT, which means that * we need to use different offsets for the binaries on the media GT. * To keep the math simple, we use 8MB for the root tile and 8MB for * the media one. This will need to be updated if we ever have more * than 1 media GT. */ BUILD_BUG_ON(INTEL_UC_FW_NUM_TYPES * INTEL_UC_RSVD_GGTT_PER_FW > SZ_8M); GEM_BUG_ON(gt->type == GT_MEDIA && gt->info.id > 1); if (gt->type == GT_MEDIA) offset += SZ_8M; GEM_BUG_ON(!drm_mm_node_allocated(node)); GEM_BUG_ON(upper_32_bits(node->start)); GEM_BUG_ON(upper_32_bits(node->start + node->size - 1)); GEM_BUG_ON(offset + uc_fw->obj->base.size > node->size); GEM_BUG_ON(uc_fw->obj->base.size > INTEL_UC_RSVD_GGTT_PER_FW); return lower_32_bits(node->start + offset); } static void uc_fw_bind_ggtt(struct intel_uc_fw *uc_fw) { struct drm_i915_gem_object *obj = uc_fw->obj; struct i915_ggtt *ggtt = __uc_fw_to_gt(uc_fw)->ggtt; struct i915_vma_resource *vma_res = &uc_fw->vma_res; u32 pte_flags = 0; if (!uc_fw->needs_ggtt_mapping) return; vma_res->start = uc_fw_ggtt_offset(uc_fw); vma_res->node_size = obj->base.size; vma_res->bi.pages = obj->mm.pages; GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); /* uc_fw->obj cache domains were not controlled across suspend */ if (i915_gem_object_has_struct_page(obj)) drm_clflush_sg(vma_res->bi.pages); if (i915_gem_object_is_lmem(obj)) pte_flags |= PTE_LM; if (ggtt->vm.raw_insert_entries) ggtt->vm.raw_insert_entries(&ggtt->vm, vma_res, i915_gem_get_pat_index(ggtt->vm.i915, I915_CACHE_NONE), pte_flags); else ggtt->vm.insert_entries(&ggtt->vm, vma_res, i915_gem_get_pat_index(ggtt->vm.i915, I915_CACHE_NONE), pte_flags); } static void uc_fw_unbind_ggtt(struct intel_uc_fw *uc_fw) { struct i915_ggtt *ggtt = __uc_fw_to_gt(uc_fw)->ggtt; struct i915_vma_resource *vma_res = &uc_fw->vma_res; if (!vma_res->node_size) return; ggtt->vm.clear_range(&ggtt->vm, vma_res->start, vma_res->node_size); } static int uc_fw_xfer(struct intel_uc_fw *uc_fw, u32 dst_offset, u32 dma_flags) { struct intel_gt *gt = __uc_fw_to_gt(uc_fw); struct intel_uncore *uncore = gt->uncore; u64 offset; int ret; ret = i915_inject_probe_error(gt->i915, -ETIMEDOUT); if (ret) return ret; intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); /* Set the source address for the uCode */ offset = uc_fw->vma_res.start + uc_fw->dma_start_offset; GEM_BUG_ON(upper_32_bits(offset) & 0xFFFF0000); intel_uncore_write_fw(uncore, DMA_ADDR_0_LOW, lower_32_bits(offset)); intel_uncore_write_fw(uncore, DMA_ADDR_0_HIGH, upper_32_bits(offset)); /* Set the DMA destination */ intel_uncore_write_fw(uncore, DMA_ADDR_1_LOW, dst_offset); intel_uncore_write_fw(uncore, DMA_ADDR_1_HIGH, DMA_ADDRESS_SPACE_WOPCM); /* * Set the transfer size. The header plus uCode will be copied to WOPCM * via DMA, excluding any other components */ intel_uncore_write_fw(uncore, DMA_COPY_SIZE, sizeof(struct uc_css_header) + uc_fw->ucode_size); /* Start the DMA */ intel_uncore_write_fw(uncore, DMA_CTRL, _MASKED_BIT_ENABLE(dma_flags | START_DMA)); /* Wait for DMA to finish */ ret = intel_wait_for_register_fw(uncore, DMA_CTRL, START_DMA, 0, 100); if (ret) gt_err(gt, "DMA for %s fw failed, DMA_CTRL=%u\n", intel_uc_fw_type_repr(uc_fw->type), intel_uncore_read_fw(uncore, DMA_CTRL)); /* Disable the bits once DMA is over */ intel_uncore_write_fw(uncore, DMA_CTRL, _MASKED_BIT_DISABLE(dma_flags)); intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); return ret; } int intel_uc_fw_mark_load_failed(struct intel_uc_fw *uc_fw, int err) { struct intel_gt *gt = __uc_fw_to_gt(uc_fw); GEM_BUG_ON(!intel_uc_fw_is_loadable(uc_fw)); gt_probe_error(gt, "Failed to load %s firmware %s %pe\n", intel_uc_fw_type_repr(uc_fw->type), uc_fw->file_selected.path, ERR_PTR(err)); intel_uc_fw_change_status(uc_fw, INTEL_UC_FIRMWARE_LOAD_FAIL); return err; } /** * intel_uc_fw_upload - load uC firmware using custom loader * @uc_fw: uC firmware * @dst_offset: destination offset * @dma_flags: flags for flags for dma ctrl * * Loads uC firmware and updates internal flags. * * Return: 0 on success, non-zero on failure. */ int intel_uc_fw_upload(struct intel_uc_fw *uc_fw, u32 dst_offset, u32 dma_flags) { struct intel_gt *gt = __uc_fw_to_gt(uc_fw); int err; /* make sure the status was cleared the last time we reset the uc */ GEM_BUG_ON(intel_uc_fw_is_loaded(uc_fw)); err = i915_inject_probe_error(gt->i915, -ENOEXEC); if (err) return err; if (!intel_uc_fw_is_loadable(uc_fw)) return -ENOEXEC; /* Call custom loader */ err = uc_fw_xfer(uc_fw, dst_offset, dma_flags); if (err) goto fail; intel_uc_fw_change_status(uc_fw, INTEL_UC_FIRMWARE_TRANSFERRED); return 0; fail: return intel_uc_fw_mark_load_failed(uc_fw, err); } static inline bool uc_fw_need_rsa_in_memory(struct intel_uc_fw *uc_fw) { /* * The HW reads the GuC RSA from memory if the key size is > 256 bytes, * while it reads it from the 64 RSA registers if it is smaller. * The HuC RSA is always read from memory. */ return uc_fw->type == INTEL_UC_FW_TYPE_HUC || uc_fw->rsa_size > 256; } static int uc_fw_rsa_data_create(struct intel_uc_fw *uc_fw) { struct intel_gt *gt = __uc_fw_to_gt(uc_fw); struct i915_vma *vma; size_t copied; void *vaddr; int err; err = i915_inject_probe_error(gt->i915, -ENXIO); if (err) return err; if (!uc_fw_need_rsa_in_memory(uc_fw)) return 0; /* * uC firmwares will sit above GUC_GGTT_TOP and will not map through * GGTT. Unfortunately, this means that the GuC HW cannot perform the uC * authentication from memory, as the RSA offset now falls within the * GuC inaccessible range. We resort to perma-pinning an additional vma * within the accessible range that only contains the RSA signature. * The GuC HW can use this extra pinning to perform the authentication * since its GGTT offset will be GuC accessible. */ GEM_BUG_ON(uc_fw->rsa_size > PAGE_SIZE); vma = intel_guc_allocate_vma(&gt->uc.guc, PAGE_SIZE); if (IS_ERR(vma)) return PTR_ERR(vma); vaddr = i915_gem_object_pin_map_unlocked(vma->obj, intel_gt_coherent_map_type(gt, vma->obj, true)); if (IS_ERR(vaddr)) { i915_vma_unpin_and_release(&vma, 0); err = PTR_ERR(vaddr); goto unpin_out; } copied = intel_uc_fw_copy_rsa(uc_fw, vaddr, vma->size); i915_gem_object_unpin_map(vma->obj); if (copied < uc_fw->rsa_size) { err = -ENOMEM; goto unpin_out; } uc_fw->rsa_data = vma; return 0; unpin_out: i915_vma_unpin_and_release(&vma, 0); return err; } static void uc_fw_rsa_data_destroy(struct intel_uc_fw *uc_fw) { i915_vma_unpin_and_release(&uc_fw->rsa_data, 0); } int intel_uc_fw_init(struct intel_uc_fw *uc_fw) { int err; /* this should happen before the load! */ GEM_BUG_ON(intel_uc_fw_is_loaded(uc_fw)); if (!intel_uc_fw_is_available(uc_fw)) return -ENOEXEC; err = i915_gem_object_pin_pages_unlocked(uc_fw->obj); if (err) { gt_dbg(__uc_fw_to_gt(uc_fw), "%s fw pin-pages failed %pe\n", intel_uc_fw_type_repr(uc_fw->type), ERR_PTR(err)); goto out; } err = uc_fw_rsa_data_create(uc_fw); if (err) { gt_dbg(__uc_fw_to_gt(uc_fw), "%s fw rsa data creation failed %pe\n", intel_uc_fw_type_repr(uc_fw->type), ERR_PTR(err)); goto out_unpin; } uc_fw_bind_ggtt(uc_fw); return 0; out_unpin: i915_gem_object_unpin_pages(uc_fw->obj); out: return err; } void intel_uc_fw_fini(struct intel_uc_fw *uc_fw) { uc_fw_unbind_ggtt(uc_fw); uc_fw_rsa_data_destroy(uc_fw); if (i915_gem_object_has_pinned_pages(uc_fw->obj)) i915_gem_object_unpin_pages(uc_fw->obj); intel_uc_fw_change_status(uc_fw, INTEL_UC_FIRMWARE_AVAILABLE); } void intel_uc_fw_resume_mapping(struct intel_uc_fw *uc_fw) { if (!intel_uc_fw_is_available(uc_fw)) return; if (!i915_gem_object_has_pinned_pages(uc_fw->obj)) return; uc_fw_bind_ggtt(uc_fw); } /** * intel_uc_fw_cleanup_fetch - cleanup uC firmware * @uc_fw: uC firmware * * Cleans up uC firmware by releasing the firmware GEM obj. */ void intel_uc_fw_cleanup_fetch(struct intel_uc_fw *uc_fw) { if (!intel_uc_fw_is_available(uc_fw)) return; i915_gem_object_put(fetch_and_zero(&uc_fw->obj)); intel_uc_fw_change_status(uc_fw, INTEL_UC_FIRMWARE_SELECTED); } /** * intel_uc_fw_copy_rsa - copy fw RSA to buffer * * @uc_fw: uC firmware * @dst: dst buffer * @max_len: max number of bytes to copy * * Return: number of copied bytes. */ size_t intel_uc_fw_copy_rsa(struct intel_uc_fw *uc_fw, void *dst, u32 max_len) { struct intel_memory_region *mr = uc_fw->obj->mm.region; u32 size = min_t(u32, uc_fw->rsa_size, max_len); u32 offset = uc_fw->dma_start_offset + sizeof(struct uc_css_header) + uc_fw->ucode_size; struct sgt_iter iter; size_t count = 0; int idx; /* Called during reset handling, must be atomic [no fs_reclaim] */ GEM_BUG_ON(!intel_uc_fw_is_available(uc_fw)); idx = offset >> PAGE_SHIFT; offset = offset_in_page(offset); if (i915_gem_object_has_struct_page(uc_fw->obj)) { struct page *page; for_each_sgt_page(page, iter, uc_fw->obj->mm.pages) { u32 len = min_t(u32, size, PAGE_SIZE - offset); void *vaddr; if (idx > 0) { idx--; continue; } vaddr = kmap_atomic(page); memcpy(dst, vaddr + offset, len); kunmap_atomic(vaddr); offset = 0; dst += len; size -= len; count += len; if (!size) break; } } else { dma_addr_t addr; for_each_sgt_daddr(addr, iter, uc_fw->obj->mm.pages) { u32 len = min_t(u32, size, PAGE_SIZE - offset); void __iomem *vaddr; if (idx > 0) { idx--; continue; } vaddr = io_mapping_map_atomic_wc(&mr->iomap, addr - mr->region.start); memcpy_fromio(dst, vaddr + offset, len); io_mapping_unmap_atomic(vaddr); offset = 0; dst += len; size -= len; count += len; if (!size) break; } } return count; } /** * intel_uc_fw_dump - dump information about uC firmware * @uc_fw: uC firmware * @p: the &drm_printer * * Pretty printer for uC firmware. */ void intel_uc_fw_dump(const struct intel_uc_fw *uc_fw, struct drm_printer *p) { bool got_wanted; drm_printf(p, "%s firmware: %s\n", intel_uc_fw_type_repr(uc_fw->type), uc_fw->file_selected.path); if (uc_fw->file_selected.path != uc_fw->file_wanted.path) drm_printf(p, "%s firmware wanted: %s\n", intel_uc_fw_type_repr(uc_fw->type), uc_fw->file_wanted.path); drm_printf(p, "\tstatus: %s\n", intel_uc_fw_status_repr(uc_fw->status)); if (uc_fw->file_selected.ver.major < uc_fw->file_wanted.ver.major) got_wanted = false; else if ((uc_fw->file_selected.ver.major == uc_fw->file_wanted.ver.major) && (uc_fw->file_selected.ver.minor < uc_fw->file_wanted.ver.minor)) got_wanted = false; else if ((uc_fw->file_selected.ver.major == uc_fw->file_wanted.ver.major) && (uc_fw->file_selected.ver.minor == uc_fw->file_wanted.ver.minor) && (uc_fw->file_selected.ver.patch < uc_fw->file_wanted.ver.patch)) got_wanted = false; else got_wanted = true; if (!got_wanted) drm_printf(p, "\tversion: wanted %u.%u.%u, found %u.%u.%u\n", uc_fw->file_wanted.ver.major, uc_fw->file_wanted.ver.minor, uc_fw->file_wanted.ver.patch, uc_fw->file_selected.ver.major, uc_fw->file_selected.ver.minor, uc_fw->file_selected.ver.patch); else drm_printf(p, "\tversion: found %u.%u.%u\n", uc_fw->file_selected.ver.major, uc_fw->file_selected.ver.minor, uc_fw->file_selected.ver.patch); drm_printf(p, "\tuCode: %u bytes\n", uc_fw->ucode_size); drm_printf(p, "\tRSA: %u bytes\n", uc_fw->rsa_size); }
linux-master
drivers/gpu/drm/i915/gt/uc/intel_uc_fw.c
// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include "gem/i915_gem_lmem.h" #include "gt/intel_engine_pm.h" #include "gt/intel_gpu_commands.h" #include "gt/intel_gt.h" #include "gt/intel_gt_print.h" #include "gt/intel_ring.h" #include "intel_gsc_binary_headers.h" #include "intel_gsc_fw.h" #include "intel_gsc_uc_heci_cmd_submit.h" #include "i915_reg.h" static bool gsc_is_in_reset(struct intel_uncore *uncore) { u32 fw_status = intel_uncore_read(uncore, HECI_FWSTS(MTL_GSC_HECI1_BASE, 1)); return REG_FIELD_GET(HECI1_FWSTS1_CURRENT_STATE, fw_status) == HECI1_FWSTS1_CURRENT_STATE_RESET; } static u32 gsc_uc_get_fw_status(struct intel_uncore *uncore, bool needs_wakeref) { intel_wakeref_t wakeref; u32 fw_status = 0; if (needs_wakeref) wakeref = intel_runtime_pm_get(uncore->rpm); fw_status = intel_uncore_read(uncore, HECI_FWSTS(MTL_GSC_HECI1_BASE, 1)); if (needs_wakeref) intel_runtime_pm_put(uncore->rpm, wakeref); return fw_status; } bool intel_gsc_uc_fw_proxy_init_done(struct intel_gsc_uc *gsc, bool needs_wakeref) { return REG_FIELD_GET(HECI1_FWSTS1_CURRENT_STATE, gsc_uc_get_fw_status(gsc_uc_to_gt(gsc)->uncore, needs_wakeref)) == HECI1_FWSTS1_PROXY_STATE_NORMAL; } int intel_gsc_uc_fw_proxy_get_status(struct intel_gsc_uc *gsc) { if (!(IS_ENABLED(CONFIG_INTEL_MEI_GSC_PROXY))) return -ENODEV; if (!intel_uc_fw_is_loadable(&gsc->fw)) return -ENODEV; if (__intel_uc_fw_status(&gsc->fw) == INTEL_UC_FIRMWARE_LOAD_FAIL) return -ENOLINK; if (!intel_gsc_uc_fw_proxy_init_done(gsc, true)) return -EAGAIN; return 0; } bool intel_gsc_uc_fw_init_done(struct intel_gsc_uc *gsc) { return gsc_uc_get_fw_status(gsc_uc_to_gt(gsc)->uncore, false) & HECI1_FWSTS1_INIT_COMPLETE; } static inline u32 cpd_entry_offset(const struct intel_gsc_cpd_entry *entry) { return entry->offset & INTEL_GSC_CPD_ENTRY_OFFSET_MASK; } int intel_gsc_fw_get_binary_info(struct intel_uc_fw *gsc_fw, const void *data, size_t size) { struct intel_gsc_uc *gsc = container_of(gsc_fw, struct intel_gsc_uc, fw); struct intel_gt *gt = gsc_uc_to_gt(gsc); const struct intel_gsc_layout_pointers *layout = data; const struct intel_gsc_bpdt_header *bpdt_header = NULL; const struct intel_gsc_bpdt_entry *bpdt_entry = NULL; const struct intel_gsc_cpd_header_v2 *cpd_header = NULL; const struct intel_gsc_cpd_entry *cpd_entry = NULL; const struct intel_gsc_manifest_header *manifest; size_t min_size = sizeof(*layout); int i; if (size < min_size) { gt_err(gt, "GSC FW too small! %zu < %zu\n", size, min_size); return -ENODATA; } /* * The GSC binary starts with the pointer layout, which contains the * locations of the various partitions of the binary. The one we're * interested in to get the version is the boot1 partition, where we can * find a BPDT header followed by entries, one of which points to the * RBE sub-section of the partition. From here, we can parse the CPD * header and the following entries to find the manifest location * (entry identified by the "RBEP.man" name), from which we can finally * extract the version. * * -------------------------------------------------- * [ intel_gsc_layout_pointers ] * [ ... ] * [ boot1.offset >---------------------------]------o * [ ... ] | * -------------------------------------------------- | * | * -------------------------------------------------- | * [ intel_gsc_bpdt_header ]<-----o * -------------------------------------------------- * [ intel_gsc_bpdt_entry[] ] * [ entry1 ] * [ ... ] * [ entryX ] * [ type == GSC_RBE ] * [ offset >-----------------------------]------o * [ ... ] | * -------------------------------------------------- | * | * -------------------------------------------------- | * [ intel_gsc_cpd_header_v2 ]<-----o * -------------------------------------------------- * [ intel_gsc_cpd_entry[] ] * [ entry1 ] * [ ... ] * [ entryX ] * [ "RBEP.man" ] * [ ... ] * [ offset >----------------------------]------o * [ ... ] | * -------------------------------------------------- | * | * -------------------------------------------------- | * [ intel_gsc_manifest_header ]<-----o * [ ... ] * [ intel_gsc_version fw_version ] * [ ... ] * -------------------------------------------------- */ min_size = layout->boot1.offset + layout->boot1.size; if (size < min_size) { gt_err(gt, "GSC FW too small for boot section! %zu < %zu\n", size, min_size); return -ENODATA; } min_size = sizeof(*bpdt_header); if (layout->boot1.size < min_size) { gt_err(gt, "GSC FW boot section too small for BPDT header: %u < %zu\n", layout->boot1.size, min_size); return -ENODATA; } bpdt_header = data + layout->boot1.offset; if (bpdt_header->signature != INTEL_GSC_BPDT_HEADER_SIGNATURE) { gt_err(gt, "invalid signature for BPDT header: 0x%08x!\n", bpdt_header->signature); return -EINVAL; } min_size += sizeof(*bpdt_entry) * bpdt_header->descriptor_count; if (layout->boot1.size < min_size) { gt_err(gt, "GSC FW boot section too small for BPDT entries: %u < %zu\n", layout->boot1.size, min_size); return -ENODATA; } bpdt_entry = (void *)bpdt_header + sizeof(*bpdt_header); for (i = 0; i < bpdt_header->descriptor_count; i++, bpdt_entry++) { if ((bpdt_entry->type & INTEL_GSC_BPDT_ENTRY_TYPE_MASK) != INTEL_GSC_BPDT_ENTRY_TYPE_GSC_RBE) continue; cpd_header = (void *)bpdt_header + bpdt_entry->sub_partition_offset; min_size = bpdt_entry->sub_partition_offset + sizeof(*cpd_header); break; } if (!cpd_header) { gt_err(gt, "couldn't find CPD header in GSC binary!\n"); return -ENODATA; } if (layout->boot1.size < min_size) { gt_err(gt, "GSC FW boot section too small for CPD header: %u < %zu\n", layout->boot1.size, min_size); return -ENODATA; } if (cpd_header->header_marker != INTEL_GSC_CPD_HEADER_MARKER) { gt_err(gt, "invalid marker for CPD header in GSC bin: 0x%08x!\n", cpd_header->header_marker); return -EINVAL; } min_size += sizeof(*cpd_entry) * cpd_header->num_of_entries; if (layout->boot1.size < min_size) { gt_err(gt, "GSC FW boot section too small for CPD entries: %u < %zu\n", layout->boot1.size, min_size); return -ENODATA; } cpd_entry = (void *)cpd_header + cpd_header->header_length; for (i = 0; i < cpd_header->num_of_entries; i++, cpd_entry++) { if (strcmp(cpd_entry->name, "RBEP.man") == 0) { manifest = (void *)cpd_header + cpd_entry_offset(cpd_entry); intel_uc_fw_version_from_gsc_manifest(&gsc->release, manifest); gsc->security_version = manifest->security_version; break; } } return 0; } static int emit_gsc_fw_load(struct i915_request *rq, struct intel_gsc_uc *gsc) { u32 offset = i915_ggtt_offset(gsc->local); u32 *cs; cs = intel_ring_begin(rq, 4); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = GSC_FW_LOAD; *cs++ = lower_32_bits(offset); *cs++ = upper_32_bits(offset); *cs++ = (gsc->local->size / SZ_4K) | HECI1_FW_LIMIT_VALID; intel_ring_advance(rq, cs); return 0; } static int gsc_fw_load(struct intel_gsc_uc *gsc) { struct intel_context *ce = gsc->ce; struct i915_request *rq; int err; if (!ce) return -ENODEV; rq = i915_request_create(ce); if (IS_ERR(rq)) return PTR_ERR(rq); if (ce->engine->emit_init_breadcrumb) { err = ce->engine->emit_init_breadcrumb(rq); if (err) goto out_rq; } err = emit_gsc_fw_load(rq, gsc); if (err) goto out_rq; err = ce->engine->emit_flush(rq, 0); out_rq: i915_request_get(rq); if (unlikely(err)) i915_request_set_error_once(rq, err); i915_request_add(rq); if (!err && i915_request_wait(rq, 0, msecs_to_jiffies(500)) < 0) err = -ETIME; i915_request_put(rq); if (err) gt_err(gsc_uc_to_gt(gsc), "Request submission for GSC load failed %pe\n", ERR_PTR(err)); return err; } static int gsc_fw_load_prepare(struct intel_gsc_uc *gsc) { struct intel_gt *gt = gsc_uc_to_gt(gsc); void *src; if (!gsc->local) return -ENODEV; if (gsc->local->size < gsc->fw.size) return -ENOSPC; src = i915_gem_object_pin_map_unlocked(gsc->fw.obj, intel_gt_coherent_map_type(gt, gsc->fw.obj, true)); if (IS_ERR(src)) return PTR_ERR(src); memcpy_toio(gsc->local_vaddr, src, gsc->fw.size); memset_io(gsc->local_vaddr + gsc->fw.size, 0, gsc->local->size - gsc->fw.size); intel_guc_write_barrier(&gt->uc.guc); i915_gem_object_unpin_map(gsc->fw.obj); return 0; } static int gsc_fw_wait(struct intel_gt *gt) { return intel_wait_for_register(gt->uncore, HECI_FWSTS(MTL_GSC_HECI1_BASE, 1), HECI1_FWSTS1_INIT_COMPLETE, HECI1_FWSTS1_INIT_COMPLETE, 500); } struct intel_gsc_mkhi_header { u8 group_id; #define MKHI_GROUP_ID_GFX_SRV 0x30 u8 command; #define MKHI_GFX_SRV_GET_HOST_COMPATIBILITY_VERSION (0x42) u8 reserved; u8 result; } __packed; struct mtl_gsc_ver_msg_in { struct intel_gsc_mtl_header header; struct intel_gsc_mkhi_header mkhi; } __packed; struct mtl_gsc_ver_msg_out { struct intel_gsc_mtl_header header; struct intel_gsc_mkhi_header mkhi; u16 proj_major; u16 compat_major; u16 compat_minor; u16 reserved[5]; } __packed; #define GSC_VER_PKT_SZ SZ_4K static int gsc_fw_query_compatibility_version(struct intel_gsc_uc *gsc) { struct intel_gt *gt = gsc_uc_to_gt(gsc); struct mtl_gsc_ver_msg_in *msg_in; struct mtl_gsc_ver_msg_out *msg_out; struct i915_vma *vma; u64 offset; void *vaddr; int err; err = intel_guc_allocate_and_map_vma(&gt->uc.guc, GSC_VER_PKT_SZ * 2, &vma, &vaddr); if (err) { gt_err(gt, "failed to allocate vma for GSC version query\n"); return err; } offset = i915_ggtt_offset(vma); msg_in = vaddr; msg_out = vaddr + GSC_VER_PKT_SZ; intel_gsc_uc_heci_cmd_emit_mtl_header(&msg_in->header, HECI_MEADDRESS_MKHI, sizeof(*msg_in), 0); msg_in->mkhi.group_id = MKHI_GROUP_ID_GFX_SRV; msg_in->mkhi.command = MKHI_GFX_SRV_GET_HOST_COMPATIBILITY_VERSION; err = intel_gsc_uc_heci_cmd_submit_packet(&gt->uc.gsc, offset, sizeof(*msg_in), offset + GSC_VER_PKT_SZ, GSC_VER_PKT_SZ); if (err) { gt_err(gt, "failed to submit GSC request for compatibility version: %d\n", err); goto out_vma; } if (msg_out->header.message_size != sizeof(*msg_out)) { gt_err(gt, "invalid GSC reply length %u [expected %zu], s=0x%x, f=0x%x, r=0x%x\n", msg_out->header.message_size, sizeof(*msg_out), msg_out->header.status, msg_out->header.flags, msg_out->mkhi.result); err = -EPROTO; goto out_vma; } gsc->fw.file_selected.ver.major = msg_out->compat_major; gsc->fw.file_selected.ver.minor = msg_out->compat_minor; out_vma: i915_vma_unpin_and_release(&vma, I915_VMA_RELEASE_MAP); return err; } int intel_gsc_uc_fw_upload(struct intel_gsc_uc *gsc) { struct intel_gt *gt = gsc_uc_to_gt(gsc); struct intel_uc_fw *gsc_fw = &gsc->fw; int err; /* check current fw status */ if (intel_gsc_uc_fw_init_done(gsc)) { if (GEM_WARN_ON(!intel_uc_fw_is_loaded(gsc_fw))) intel_uc_fw_change_status(gsc_fw, INTEL_UC_FIRMWARE_TRANSFERRED); return -EEXIST; } if (!intel_uc_fw_is_loadable(gsc_fw)) return -ENOEXEC; /* FW blob is ok, so clean the status */ intel_uc_fw_sanitize(&gsc->fw); if (!gsc_is_in_reset(gt->uncore)) return -EIO; err = gsc_fw_load_prepare(gsc); if (err) goto fail; /* * GSC is only killed by an FLR, so we need to trigger one on unload to * make sure we stop it. This is because we assign a chunk of memory to * the GSC as part of the FW load , so we need to make sure it stops * using it when we release it to the system on driver unload. Note that * this is not a problem of the unload per-se, because the GSC will not * touch that memory unless there are requests for it coming from the * driver; therefore, no accesses will happen while i915 is not loaded, * but if we re-load the driver then the GSC might wake up and try to * access that old memory location again. * Given that an FLR is a very disruptive action (see the FLR function * for details), we want to do it as the last action before releasing * the access to the MMIO bar, which means we need to do it as part of * the primary uncore cleanup. * An alternative approach to the FLR would be to use a memory location * that survives driver unload, like e.g. stolen memory, and keep the * GSC loaded across reloads. However, this requires us to make sure we * preserve that memory location on unload and then determine and * reserve its offset on each subsequent load, which is not trivial, so * it is easier to just kill everything and start fresh. */ intel_uncore_set_flr_on_fini(&gt->i915->uncore); err = gsc_fw_load(gsc); if (err) goto fail; err = gsc_fw_wait(gt); if (err) goto fail; err = gsc_fw_query_compatibility_version(gsc); if (err) goto fail; /* we only support compatibility version 1.0 at the moment */ err = intel_uc_check_file_version(gsc_fw, NULL); if (err) goto fail; /* FW is not fully operational until we enable SW proxy */ intel_uc_fw_change_status(gsc_fw, INTEL_UC_FIRMWARE_TRANSFERRED); gt_info(gt, "Loaded GSC firmware %s (cv%u.%u, r%u.%u.%u.%u, svn %u)\n", gsc_fw->file_selected.path, gsc_fw->file_selected.ver.major, gsc_fw->file_selected.ver.minor, gsc->release.major, gsc->release.minor, gsc->release.patch, gsc->release.build, gsc->security_version); return 0; fail: return intel_uc_fw_mark_load_failed(gsc_fw, err); }
linux-master
drivers/gpu/drm/i915/gt/uc/intel_gsc_fw.c
// SPDX-License-Identifier: MIT /* * Copyright © 2023 Intel Corporation */ #include <linux/pci.h> #include <linux/pnp.h> #include <drm/drm_managed.h> #include <drm/i915_drm.h> #include "i915_drv.h" #include "intel_gmch.h" #include "intel_pci_config.h" static void intel_gmch_bridge_release(struct drm_device *dev, void *bridge) { pci_dev_put(bridge); } int intel_gmch_bridge_setup(struct drm_i915_private *i915) { int domain = pci_domain_nr(to_pci_dev(i915->drm.dev)->bus); i915->gmch.pdev = pci_get_domain_bus_and_slot(domain, 0, PCI_DEVFN(0, 0)); if (!i915->gmch.pdev) { drm_err(&i915->drm, "bridge device not found\n"); return -EIO; } return drmm_add_action_or_reset(&i915->drm, intel_gmch_bridge_release, i915->gmch.pdev); } /* Allocate space for the MCH regs if needed, return nonzero on error */ static int intel_alloc_mchbar_resource(struct drm_i915_private *i915) { int reg = GRAPHICS_VER(i915) >= 4 ? MCHBAR_I965 : MCHBAR_I915; u32 temp_lo, temp_hi = 0; u64 mchbar_addr; int ret; if (GRAPHICS_VER(i915) >= 4) pci_read_config_dword(i915->gmch.pdev, reg + 4, &temp_hi); pci_read_config_dword(i915->gmch.pdev, reg, &temp_lo); mchbar_addr = ((u64)temp_hi << 32) | temp_lo; /* If ACPI doesn't have it, assume we need to allocate it ourselves */ if (IS_ENABLED(CONFIG_PNP) && mchbar_addr && pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE)) return 0; /* Get some space for it */ i915->gmch.mch_res.name = "i915 MCHBAR"; i915->gmch.mch_res.flags = IORESOURCE_MEM; ret = pci_bus_alloc_resource(i915->gmch.pdev->bus, &i915->gmch.mch_res, MCHBAR_SIZE, MCHBAR_SIZE, PCIBIOS_MIN_MEM, 0, pcibios_align_resource, i915->gmch.pdev); if (ret) { drm_dbg(&i915->drm, "failed bus alloc: %d\n", ret); i915->gmch.mch_res.start = 0; return ret; } if (GRAPHICS_VER(i915) >= 4) pci_write_config_dword(i915->gmch.pdev, reg + 4, upper_32_bits(i915->gmch.mch_res.start)); pci_write_config_dword(i915->gmch.pdev, reg, lower_32_bits(i915->gmch.mch_res.start)); return 0; } /* Setup MCHBAR if possible, return true if we should disable it again */ void intel_gmch_bar_setup(struct drm_i915_private *i915) { int mchbar_reg = GRAPHICS_VER(i915) >= 4 ? MCHBAR_I965 : MCHBAR_I915; u32 temp; bool enabled; if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) return; i915->gmch.mchbar_need_disable = false; if (IS_I915G(i915) || IS_I915GM(i915)) { pci_read_config_dword(i915->gmch.pdev, DEVEN, &temp); enabled = !!(temp & DEVEN_MCHBAR_EN); } else { pci_read_config_dword(i915->gmch.pdev, mchbar_reg, &temp); enabled = temp & 1; } /* If it's already enabled, don't have to do anything */ if (enabled) return; if (intel_alloc_mchbar_resource(i915)) return; i915->gmch.mchbar_need_disable = true; /* Space is allocated or reserved, so enable it. */ if (IS_I915G(i915) || IS_I915GM(i915)) { pci_write_config_dword(i915->gmch.pdev, DEVEN, temp | DEVEN_MCHBAR_EN); } else { pci_read_config_dword(i915->gmch.pdev, mchbar_reg, &temp); pci_write_config_dword(i915->gmch.pdev, mchbar_reg, temp | 1); } } void intel_gmch_bar_teardown(struct drm_i915_private *i915) { int mchbar_reg = GRAPHICS_VER(i915) >= 4 ? MCHBAR_I965 : MCHBAR_I915; if (i915->gmch.mchbar_need_disable) { if (IS_I915G(i915) || IS_I915GM(i915)) { u32 deven_val; pci_read_config_dword(i915->gmch.pdev, DEVEN, &deven_val); deven_val &= ~DEVEN_MCHBAR_EN; pci_write_config_dword(i915->gmch.pdev, DEVEN, deven_val); } else { u32 mchbar_val; pci_read_config_dword(i915->gmch.pdev, mchbar_reg, &mchbar_val); mchbar_val &= ~1; pci_write_config_dword(i915->gmch.pdev, mchbar_reg, mchbar_val); } } if (i915->gmch.mch_res.start) release_resource(&i915->gmch.mch_res); } int intel_gmch_vga_set_state(struct drm_i915_private *i915, bool enable_decode) { unsigned int reg = DISPLAY_VER(i915) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL; u16 gmch_ctrl; if (pci_read_config_word(i915->gmch.pdev, reg, &gmch_ctrl)) { drm_err(&i915->drm, "failed to read control word\n"); return -EIO; } if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !enable_decode) return 0; if (enable_decode) gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE; else gmch_ctrl |= INTEL_GMCH_VGA_DISABLE; if (pci_write_config_word(i915->gmch.pdev, reg, gmch_ctrl)) { drm_err(&i915->drm, "failed to write control word\n"); return -EIO; } return 0; }
linux-master
drivers/gpu/drm/i915/soc/intel_gmch.c
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include <linux/string_helpers.h> #include "i915_drv.h" #include "i915_reg.h" #include "intel_dram.h" #include "intel_mchbar_regs.h" #include "intel_pcode.h" #include "vlv_sideband.h" struct dram_dimm_info { u16 size; u8 width, ranks; }; struct dram_channel_info { struct dram_dimm_info dimm_l, dimm_s; u8 ranks; bool is_16gb_dimm; }; #define DRAM_TYPE_STR(type) [INTEL_DRAM_ ## type] = #type static const char *intel_dram_type_str(enum intel_dram_type type) { static const char * const str[] = { DRAM_TYPE_STR(UNKNOWN), DRAM_TYPE_STR(DDR3), DRAM_TYPE_STR(DDR4), DRAM_TYPE_STR(LPDDR3), DRAM_TYPE_STR(LPDDR4), }; if (type >= ARRAY_SIZE(str)) type = INTEL_DRAM_UNKNOWN; return str[type]; } #undef DRAM_TYPE_STR static void pnv_detect_mem_freq(struct drm_i915_private *dev_priv) { u32 tmp; tmp = intel_uncore_read(&dev_priv->uncore, CLKCFG); switch (tmp & CLKCFG_FSB_MASK) { case CLKCFG_FSB_533: dev_priv->fsb_freq = 533; /* 133*4 */ break; case CLKCFG_FSB_800: dev_priv->fsb_freq = 800; /* 200*4 */ break; case CLKCFG_FSB_667: dev_priv->fsb_freq = 667; /* 167*4 */ break; case CLKCFG_FSB_400: dev_priv->fsb_freq = 400; /* 100*4 */ break; } switch (tmp & CLKCFG_MEM_MASK) { case CLKCFG_MEM_533: dev_priv->mem_freq = 533; break; case CLKCFG_MEM_667: dev_priv->mem_freq = 667; break; case CLKCFG_MEM_800: dev_priv->mem_freq = 800; break; } /* detect pineview DDR3 setting */ tmp = intel_uncore_read(&dev_priv->uncore, CSHRDDR3CTL); dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0; } static void ilk_detect_mem_freq(struct drm_i915_private *dev_priv) { u16 ddrpll, csipll; ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1); switch (ddrpll & 0xff) { case 0xc: dev_priv->mem_freq = 800; break; case 0x10: dev_priv->mem_freq = 1066; break; case 0x14: dev_priv->mem_freq = 1333; break; case 0x18: dev_priv->mem_freq = 1600; break; default: drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n", ddrpll & 0xff); dev_priv->mem_freq = 0; break; } csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0); switch (csipll & 0x3ff) { case 0x00c: dev_priv->fsb_freq = 3200; break; case 0x00e: dev_priv->fsb_freq = 3733; break; case 0x010: dev_priv->fsb_freq = 4266; break; case 0x012: dev_priv->fsb_freq = 4800; break; case 0x014: dev_priv->fsb_freq = 5333; break; case 0x016: dev_priv->fsb_freq = 5866; break; case 0x018: dev_priv->fsb_freq = 6400; break; default: drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n", csipll & 0x3ff); dev_priv->fsb_freq = 0; break; } } static void chv_detect_mem_freq(struct drm_i915_private *i915) { u32 val; vlv_iosf_sb_get(i915, BIT(VLV_IOSF_SB_CCK)); val = vlv_cck_read(i915, CCK_FUSE_REG); vlv_iosf_sb_put(i915, BIT(VLV_IOSF_SB_CCK)); switch ((val >> 2) & 0x7) { case 3: i915->mem_freq = 2000; break; default: i915->mem_freq = 1600; break; } } static void vlv_detect_mem_freq(struct drm_i915_private *i915) { u32 val; vlv_iosf_sb_get(i915, BIT(VLV_IOSF_SB_PUNIT)); val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS); vlv_iosf_sb_put(i915, BIT(VLV_IOSF_SB_PUNIT)); switch ((val >> 6) & 3) { case 0: case 1: i915->mem_freq = 800; break; case 2: i915->mem_freq = 1066; break; case 3: i915->mem_freq = 1333; break; } } static void detect_mem_freq(struct drm_i915_private *i915) { if (IS_PINEVIEW(i915)) pnv_detect_mem_freq(i915); else if (GRAPHICS_VER(i915) == 5) ilk_detect_mem_freq(i915); else if (IS_CHERRYVIEW(i915)) chv_detect_mem_freq(i915); else if (IS_VALLEYVIEW(i915)) vlv_detect_mem_freq(i915); if (i915->mem_freq) drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq); } static int intel_dimm_num_devices(const struct dram_dimm_info *dimm) { return dimm->ranks * 64 / (dimm->width ?: 1); } /* Returns total Gb for the whole DIMM */ static int skl_get_dimm_size(u16 val) { return (val & SKL_DRAM_SIZE_MASK) * 8; } static int skl_get_dimm_width(u16 val) { if (skl_get_dimm_size(val) == 0) return 0; switch (val & SKL_DRAM_WIDTH_MASK) { case SKL_DRAM_WIDTH_X8: case SKL_DRAM_WIDTH_X16: case SKL_DRAM_WIDTH_X32: val = (val & SKL_DRAM_WIDTH_MASK) >> SKL_DRAM_WIDTH_SHIFT; return 8 << val; default: MISSING_CASE(val); return 0; } } static int skl_get_dimm_ranks(u16 val) { if (skl_get_dimm_size(val) == 0) return 0; val = (val & SKL_DRAM_RANK_MASK) >> SKL_DRAM_RANK_SHIFT; return val + 1; } /* Returns total Gb for the whole DIMM */ static int icl_get_dimm_size(u16 val) { return (val & ICL_DRAM_SIZE_MASK) * 8 / 2; } static int icl_get_dimm_width(u16 val) { if (icl_get_dimm_size(val) == 0) return 0; switch (val & ICL_DRAM_WIDTH_MASK) { case ICL_DRAM_WIDTH_X8: case ICL_DRAM_WIDTH_X16: case ICL_DRAM_WIDTH_X32: val = (val & ICL_DRAM_WIDTH_MASK) >> ICL_DRAM_WIDTH_SHIFT; return 8 << val; default: MISSING_CASE(val); return 0; } } static int icl_get_dimm_ranks(u16 val) { if (icl_get_dimm_size(val) == 0) return 0; val = (val & ICL_DRAM_RANK_MASK) >> ICL_DRAM_RANK_SHIFT; return val + 1; } static bool skl_is_16gb_dimm(const struct dram_dimm_info *dimm) { /* Convert total Gb to Gb per DRAM device */ return dimm->size / (intel_dimm_num_devices(dimm) ?: 1) == 16; } static void skl_dram_get_dimm_info(struct drm_i915_private *i915, struct dram_dimm_info *dimm, int channel, char dimm_name, u16 val) { if (GRAPHICS_VER(i915) >= 11) { dimm->size = icl_get_dimm_size(val); dimm->width = icl_get_dimm_width(val); dimm->ranks = icl_get_dimm_ranks(val); } else { dimm->size = skl_get_dimm_size(val); dimm->width = skl_get_dimm_width(val); dimm->ranks = skl_get_dimm_ranks(val); } drm_dbg_kms(&i915->drm, "CH%u DIMM %c size: %u Gb, width: X%u, ranks: %u, 16Gb DIMMs: %s\n", channel, dimm_name, dimm->size, dimm->width, dimm->ranks, str_yes_no(skl_is_16gb_dimm(dimm))); } static int skl_dram_get_channel_info(struct drm_i915_private *i915, struct dram_channel_info *ch, int channel, u32 val) { skl_dram_get_dimm_info(i915, &ch->dimm_l, channel, 'L', val & 0xffff); skl_dram_get_dimm_info(i915, &ch->dimm_s, channel, 'S', val >> 16); if (ch->dimm_l.size == 0 && ch->dimm_s.size == 0) { drm_dbg_kms(&i915->drm, "CH%u not populated\n", channel); return -EINVAL; } if (ch->dimm_l.ranks == 2 || ch->dimm_s.ranks == 2) ch->ranks = 2; else if (ch->dimm_l.ranks == 1 && ch->dimm_s.ranks == 1) ch->ranks = 2; else ch->ranks = 1; ch->is_16gb_dimm = skl_is_16gb_dimm(&ch->dimm_l) || skl_is_16gb_dimm(&ch->dimm_s); drm_dbg_kms(&i915->drm, "CH%u ranks: %u, 16Gb DIMMs: %s\n", channel, ch->ranks, str_yes_no(ch->is_16gb_dimm)); return 0; } static bool intel_is_dram_symmetric(const struct dram_channel_info *ch0, const struct dram_channel_info *ch1) { return !memcmp(ch0, ch1, sizeof(*ch0)) && (ch0->dimm_s.size == 0 || !memcmp(&ch0->dimm_l, &ch0->dimm_s, sizeof(ch0->dimm_l))); } static int skl_dram_get_channels_info(struct drm_i915_private *i915) { struct dram_info *dram_info = &i915->dram_info; struct dram_channel_info ch0 = {}, ch1 = {}; u32 val; int ret; val = intel_uncore_read(&i915->uncore, SKL_MAD_DIMM_CH0_0_0_0_MCHBAR_MCMAIN); ret = skl_dram_get_channel_info(i915, &ch0, 0, val); if (ret == 0) dram_info->num_channels++; val = intel_uncore_read(&i915->uncore, SKL_MAD_DIMM_CH1_0_0_0_MCHBAR_MCMAIN); ret = skl_dram_get_channel_info(i915, &ch1, 1, val); if (ret == 0) dram_info->num_channels++; if (dram_info->num_channels == 0) { drm_info(&i915->drm, "Number of memory channels is zero\n"); return -EINVAL; } if (ch0.ranks == 0 && ch1.ranks == 0) { drm_info(&i915->drm, "couldn't get memory rank information\n"); return -EINVAL; } dram_info->wm_lv_0_adjust_needed = ch0.is_16gb_dimm || ch1.is_16gb_dimm; dram_info->symmetric_memory = intel_is_dram_symmetric(&ch0, &ch1); drm_dbg_kms(&i915->drm, "Memory configuration is symmetric? %s\n", str_yes_no(dram_info->symmetric_memory)); return 0; } static enum intel_dram_type skl_get_dram_type(struct drm_i915_private *i915) { u32 val; val = intel_uncore_read(&i915->uncore, SKL_MAD_INTER_CHANNEL_0_0_0_MCHBAR_MCMAIN); switch (val & SKL_DRAM_DDR_TYPE_MASK) { case SKL_DRAM_DDR_TYPE_DDR3: return INTEL_DRAM_DDR3; case SKL_DRAM_DDR_TYPE_DDR4: return INTEL_DRAM_DDR4; case SKL_DRAM_DDR_TYPE_LPDDR3: return INTEL_DRAM_LPDDR3; case SKL_DRAM_DDR_TYPE_LPDDR4: return INTEL_DRAM_LPDDR4; default: MISSING_CASE(val); return INTEL_DRAM_UNKNOWN; } } static int skl_get_dram_info(struct drm_i915_private *i915) { struct dram_info *dram_info = &i915->dram_info; int ret; dram_info->type = skl_get_dram_type(i915); drm_dbg_kms(&i915->drm, "DRAM type: %s\n", intel_dram_type_str(dram_info->type)); ret = skl_dram_get_channels_info(i915); if (ret) return ret; return 0; } /* Returns Gb per DRAM device */ static int bxt_get_dimm_size(u32 val) { switch (val & BXT_DRAM_SIZE_MASK) { case BXT_DRAM_SIZE_4GBIT: return 4; case BXT_DRAM_SIZE_6GBIT: return 6; case BXT_DRAM_SIZE_8GBIT: return 8; case BXT_DRAM_SIZE_12GBIT: return 12; case BXT_DRAM_SIZE_16GBIT: return 16; default: MISSING_CASE(val); return 0; } } static int bxt_get_dimm_width(u32 val) { if (!bxt_get_dimm_size(val)) return 0; val = (val & BXT_DRAM_WIDTH_MASK) >> BXT_DRAM_WIDTH_SHIFT; return 8 << val; } static int bxt_get_dimm_ranks(u32 val) { if (!bxt_get_dimm_size(val)) return 0; switch (val & BXT_DRAM_RANK_MASK) { case BXT_DRAM_RANK_SINGLE: return 1; case BXT_DRAM_RANK_DUAL: return 2; default: MISSING_CASE(val); return 0; } } static enum intel_dram_type bxt_get_dimm_type(u32 val) { if (!bxt_get_dimm_size(val)) return INTEL_DRAM_UNKNOWN; switch (val & BXT_DRAM_TYPE_MASK) { case BXT_DRAM_TYPE_DDR3: return INTEL_DRAM_DDR3; case BXT_DRAM_TYPE_LPDDR3: return INTEL_DRAM_LPDDR3; case BXT_DRAM_TYPE_DDR4: return INTEL_DRAM_DDR4; case BXT_DRAM_TYPE_LPDDR4: return INTEL_DRAM_LPDDR4; default: MISSING_CASE(val); return INTEL_DRAM_UNKNOWN; } } static void bxt_get_dimm_info(struct dram_dimm_info *dimm, u32 val) { dimm->width = bxt_get_dimm_width(val); dimm->ranks = bxt_get_dimm_ranks(val); /* * Size in register is Gb per DRAM device. Convert to total * Gb to match the way we report this for non-LP platforms. */ dimm->size = bxt_get_dimm_size(val) * intel_dimm_num_devices(dimm); } static int bxt_get_dram_info(struct drm_i915_private *i915) { struct dram_info *dram_info = &i915->dram_info; u32 val; u8 valid_ranks = 0; int i; /* * Now read each DUNIT8/9/10/11 to check the rank of each dimms. */ for (i = BXT_D_CR_DRP0_DUNIT_START; i <= BXT_D_CR_DRP0_DUNIT_END; i++) { struct dram_dimm_info dimm; enum intel_dram_type type; val = intel_uncore_read(&i915->uncore, BXT_D_CR_DRP0_DUNIT(i)); if (val == 0xFFFFFFFF) continue; dram_info->num_channels++; bxt_get_dimm_info(&dimm, val); type = bxt_get_dimm_type(val); drm_WARN_ON(&i915->drm, type != INTEL_DRAM_UNKNOWN && dram_info->type != INTEL_DRAM_UNKNOWN && dram_info->type != type); drm_dbg_kms(&i915->drm, "CH%u DIMM size: %u Gb, width: X%u, ranks: %u, type: %s\n", i - BXT_D_CR_DRP0_DUNIT_START, dimm.size, dimm.width, dimm.ranks, intel_dram_type_str(type)); if (valid_ranks == 0) valid_ranks = dimm.ranks; if (type != INTEL_DRAM_UNKNOWN) dram_info->type = type; } if (dram_info->type == INTEL_DRAM_UNKNOWN || valid_ranks == 0) { drm_info(&i915->drm, "couldn't get memory information\n"); return -EINVAL; } return 0; } static int icl_pcode_read_mem_global_info(struct drm_i915_private *dev_priv) { struct dram_info *dram_info = &dev_priv->dram_info; u32 val = 0; int ret; ret = snb_pcode_read(&dev_priv->uncore, ICL_PCODE_MEM_SUBSYSYSTEM_INFO | ICL_PCODE_MEM_SS_READ_GLOBAL_INFO, &val, NULL); if (ret) return ret; if (GRAPHICS_VER(dev_priv) == 12) { switch (val & 0xf) { case 0: dram_info->type = INTEL_DRAM_DDR4; break; case 1: dram_info->type = INTEL_DRAM_DDR5; break; case 2: dram_info->type = INTEL_DRAM_LPDDR5; break; case 3: dram_info->type = INTEL_DRAM_LPDDR4; break; case 4: dram_info->type = INTEL_DRAM_DDR3; break; case 5: dram_info->type = INTEL_DRAM_LPDDR3; break; default: MISSING_CASE(val & 0xf); return -EINVAL; } } else { switch (val & 0xf) { case 0: dram_info->type = INTEL_DRAM_DDR4; break; case 1: dram_info->type = INTEL_DRAM_DDR3; break; case 2: dram_info->type = INTEL_DRAM_LPDDR3; break; case 3: dram_info->type = INTEL_DRAM_LPDDR4; break; default: MISSING_CASE(val & 0xf); return -EINVAL; } } dram_info->num_channels = (val & 0xf0) >> 4; dram_info->num_qgv_points = (val & 0xf00) >> 8; dram_info->num_psf_gv_points = (val & 0x3000) >> 12; return 0; } static int gen11_get_dram_info(struct drm_i915_private *i915) { int ret = skl_get_dram_info(i915); if (ret) return ret; return icl_pcode_read_mem_global_info(i915); } static int gen12_get_dram_info(struct drm_i915_private *i915) { i915->dram_info.wm_lv_0_adjust_needed = false; return icl_pcode_read_mem_global_info(i915); } static int xelpdp_get_dram_info(struct drm_i915_private *i915) { u32 val = intel_uncore_read(&i915->uncore, MTL_MEM_SS_INFO_GLOBAL); struct dram_info *dram_info = &i915->dram_info; switch (REG_FIELD_GET(MTL_DDR_TYPE_MASK, val)) { case 0: dram_info->type = INTEL_DRAM_DDR4; break; case 1: dram_info->type = INTEL_DRAM_DDR5; break; case 2: dram_info->type = INTEL_DRAM_LPDDR5; break; case 3: dram_info->type = INTEL_DRAM_LPDDR4; break; case 4: dram_info->type = INTEL_DRAM_DDR3; break; case 5: dram_info->type = INTEL_DRAM_LPDDR3; break; default: MISSING_CASE(val); return -EINVAL; } dram_info->num_channels = REG_FIELD_GET(MTL_N_OF_POPULATED_CH_MASK, val); dram_info->num_qgv_points = REG_FIELD_GET(MTL_N_OF_ENABLED_QGV_POINTS_MASK, val); /* PSF GV points not supported in D14+ */ return 0; } void intel_dram_detect(struct drm_i915_private *i915) { struct dram_info *dram_info = &i915->dram_info; int ret; detect_mem_freq(i915); if (GRAPHICS_VER(i915) < 9 || IS_DG2(i915) || !HAS_DISPLAY(i915)) return; /* * Assume level 0 watermark latency adjustment is needed until proven * otherwise, this w/a is not needed by bxt/glk. */ dram_info->wm_lv_0_adjust_needed = !IS_GEN9_LP(i915); if (DISPLAY_VER(i915) >= 14) ret = xelpdp_get_dram_info(i915); else if (GRAPHICS_VER(i915) >= 12) ret = gen12_get_dram_info(i915); else if (GRAPHICS_VER(i915) >= 11) ret = gen11_get_dram_info(i915); else if (IS_GEN9_LP(i915)) ret = bxt_get_dram_info(i915); else ret = skl_get_dram_info(i915); if (ret) return; drm_dbg_kms(&i915->drm, "DRAM channels: %u\n", dram_info->num_channels); drm_dbg_kms(&i915->drm, "Watermark level 0 adjustment needed: %s\n", str_yes_no(dram_info->wm_lv_0_adjust_needed)); } static u32 gen9_edram_size_mb(struct drm_i915_private *i915, u32 cap) { static const u8 ways[8] = { 4, 8, 12, 16, 16, 16, 16, 16 }; static const u8 sets[4] = { 1, 1, 2, 2 }; return EDRAM_NUM_BANKS(cap) * ways[EDRAM_WAYS_IDX(cap)] * sets[EDRAM_SETS_IDX(cap)]; } void intel_dram_edram_detect(struct drm_i915_private *i915) { u32 edram_cap = 0; if (!(IS_HASWELL(i915) || IS_BROADWELL(i915) || GRAPHICS_VER(i915) >= 9)) return; edram_cap = intel_uncore_read_fw(&i915->uncore, HSW_EDRAM_CAP); /* NB: We can't write IDICR yet because we don't have gt funcs set up */ if (!(edram_cap & EDRAM_ENABLED)) return; /* * The needed capability bits for size calculation are not there with * pre gen9 so return 128MB always. */ if (GRAPHICS_VER(i915) < 9) i915->edram_size_mb = 128; else i915->edram_size_mb = gen9_edram_size_mb(i915, edram_cap); drm_info(&i915->drm, "Found %uMB of eDRAM\n", i915->edram_size_mb); }
linux-master
drivers/gpu/drm/i915/soc/intel_dram.c