python_code
stringlengths 0
1.8M
| repo_name
stringclasses 7
values | file_path
stringlengths 5
99
|
---|---|---|
/*
* Copyright 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dccg.h"
#include "clk_mgr_internal.h"
// For dce12_get_dp_ref_freq_khz
#include "dce100/dce_clk_mgr.h"
// For dcn20_update_clocks_update_dpp_dto
#include "dcn20/dcn20_clk_mgr.h"
#include "dcn31/dcn31_clk_mgr.h"
#include "dcn315_clk_mgr.h"
#include "core_types.h"
#include "dcn315_smu.h"
#include "dm_helpers.h"
#include "dc_dmub_srv.h"
#include "logger_types.h"
#undef DC_LOGGER
#define DC_LOGGER \
clk_mgr->base.base.ctx->logger
#include "link.h"
#define TO_CLK_MGR_DCN315(clk_mgr)\
container_of(clk_mgr, struct clk_mgr_dcn315, base)
#define UNSUPPORTED_DCFCLK 10000000
#define MIN_DPP_DISP_CLK 100000
static int dcn315_get_active_display_cnt_wa(
struct dc *dc,
struct dc_state *context)
{
int i, display_count;
bool tmds_present = false;
display_count = 0;
for (i = 0; i < context->stream_count; i++) {
const struct dc_stream_state *stream = context->streams[i];
if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
tmds_present = true;
}
for (i = 0; i < dc->link_count; i++) {
const struct dc_link *link = dc->links[i];
/* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
if (link->link_enc && link->link_enc->funcs->is_dig_enabled &&
link->link_enc->funcs->is_dig_enabled(link->link_enc))
display_count++;
}
/* WA for hang on HDMI after display off back back on*/
if (display_count == 0 && tmds_present)
display_count = 1;
return display_count;
}
static bool should_disable_otg(struct pipe_ctx *pipe)
{
bool ret = true;
if (pipe->stream->link->link_enc && pipe->stream->link->link_enc->funcs->is_dig_enabled &&
pipe->stream->link->link_enc->funcs->is_dig_enabled(pipe->stream->link->link_enc))
ret = false;
return ret;
}
static void dcn315_disable_otg_wa(struct clk_mgr *clk_mgr_base, struct dc_state *context, bool disable)
{
struct dc *dc = clk_mgr_base->ctx->dc;
int i;
for (i = 0; i < dc->res_pool->pipe_count; ++i) {
struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
if (pipe->top_pipe || pipe->prev_odm_pipe)
continue;
if (pipe->stream && (pipe->stream->dpms_off || pipe->plane_state == NULL ||
dc_is_virtual_signal(pipe->stream->signal))) {
/* This w/a should not trigger when we have a dig active */
if (should_disable_otg(pipe)) {
if (disable) {
pipe->stream_res.tg->funcs->immediate_disable_crtc(pipe->stream_res.tg);
reset_sync_context_for_pipe(dc, context, i);
} else
pipe->stream_res.tg->funcs->enable_crtc(pipe->stream_res.tg);
}
}
}
}
static void dcn315_update_clocks(struct clk_mgr *clk_mgr_base,
struct dc_state *context,
bool safe_to_lower)
{
union dmub_rb_cmd cmd;
struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
struct dc *dc = clk_mgr_base->ctx->dc;
int display_count;
bool update_dppclk = false;
bool update_dispclk = false;
bool dpp_clock_lowered = false;
if (dc->work_arounds.skip_clock_update)
return;
clk_mgr_base->clks.zstate_support = new_clocks->zstate_support;
/*
* if it is safe to lower, but we are already in the lower state, we don't have to do anything
* also if safe to lower is false, we just go in the higher state
*/
clk_mgr_base->clks.zstate_support = new_clocks->zstate_support;
if (safe_to_lower) {
/* check that we're not already in lower */
if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
display_count = dcn315_get_active_display_cnt_wa(dc, context);
/* if we can go lower, go lower */
if (display_count == 0) {
union display_idle_optimization_u idle_info = { 0 };
idle_info.idle_info.df_request_disabled = 1;
idle_info.idle_info.phy_ref_clk_off = 1;
idle_info.idle_info.s0i2_rdy = 1;
dcn315_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
/* update power state */
clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
}
}
} else {
/* check that we're not already in D0 */
if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
union display_idle_optimization_u idle_info = { 0 };
dcn315_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
/* update power state */
clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
}
}
/* Lock pstate by requesting unsupported dcfclk if change is unsupported */
if (!new_clocks->p_state_change_support)
new_clocks->dcfclk_khz = UNSUPPORTED_DCFCLK;
if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
dcn315_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
}
if (should_set_clock(safe_to_lower,
new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
dcn315_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
}
// workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
if (new_clocks->dppclk_khz < MIN_DPP_DISP_CLK)
new_clocks->dppclk_khz = MIN_DPP_DISP_CLK;
if (new_clocks->dispclk_khz < MIN_DPP_DISP_CLK)
new_clocks->dispclk_khz = MIN_DPP_DISP_CLK;
if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
dpp_clock_lowered = true;
clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
update_dppclk = true;
}
if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
/* No need to apply the w/a if we haven't taken over from bios yet */
if (clk_mgr_base->clks.dispclk_khz)
dcn315_disable_otg_wa(clk_mgr_base, context, true);
clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
dcn315_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
if (clk_mgr_base->clks.dispclk_khz)
dcn315_disable_otg_wa(clk_mgr_base, context, false);
update_dispclk = true;
}
if (dpp_clock_lowered) {
// increase per DPP DTO before lowering global dppclk
dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
dcn315_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
} else {
// increase global DPPCLK before lowering per DPP DTO
if (update_dppclk || update_dispclk)
dcn315_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
// always update dtos unless clock is lowered and not safe to lower
if (new_clocks->dppclk_khz >= dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz)
dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
}
// notify DMCUB of latest clocks
memset(&cmd, 0, sizeof(cmd));
cmd.notify_clocks.header.type = DMUB_CMD__CLK_MGR;
cmd.notify_clocks.header.sub_type = DMUB_CMD__CLK_MGR_NOTIFY_CLOCKS;
cmd.notify_clocks.clocks.dcfclk_khz = clk_mgr_base->clks.dcfclk_khz;
cmd.notify_clocks.clocks.dcfclk_deep_sleep_khz =
clk_mgr_base->clks.dcfclk_deep_sleep_khz;
cmd.notify_clocks.clocks.dispclk_khz = clk_mgr_base->clks.dispclk_khz;
cmd.notify_clocks.clocks.dppclk_khz = clk_mgr_base->clks.dppclk_khz;
dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
}
static void dcn315_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
{
return;
}
static struct clk_bw_params dcn315_bw_params = {
.vram_type = Ddr4MemType,
.num_channels = 2,
.clk_table = {
.entries = {
{
.voltage = 0,
.dispclk_mhz = 640,
.dppclk_mhz = 640,
.phyclk_mhz = 810,
.phyclk_d18_mhz = 667,
.dtbclk_mhz = 600,
},
{
.voltage = 1,
.dispclk_mhz = 739,
.dppclk_mhz = 739,
.phyclk_mhz = 810,
.phyclk_d18_mhz = 667,
.dtbclk_mhz = 600,
},
{
.voltage = 2,
.dispclk_mhz = 960,
.dppclk_mhz = 960,
.phyclk_mhz = 810,
.phyclk_d18_mhz = 667,
.dtbclk_mhz = 600,
},
{
.voltage = 3,
.dispclk_mhz = 1200,
.dppclk_mhz = 1200,
.phyclk_mhz = 810,
.phyclk_d18_mhz = 667,
.dtbclk_mhz = 600,
},
{
.voltage = 4,
.dispclk_mhz = 1372,
.dppclk_mhz = 1372,
.phyclk_mhz = 810,
.phyclk_d18_mhz = 667,
.dtbclk_mhz = 600,
},
},
.num_entries = 5,
},
};
static struct wm_table ddr5_wm_table = {
.entries = {
{
.wm_inst = WM_A,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 129.0,
.sr_exit_time_us = 11.5,
.sr_enter_plus_exit_time_us = 14.5,
.valid = true,
},
{
.wm_inst = WM_B,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 129.0,
.sr_exit_time_us = 11.5,
.sr_enter_plus_exit_time_us = 14.5,
.valid = true,
},
{
.wm_inst = WM_C,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 129.0,
.sr_exit_time_us = 11.5,
.sr_enter_plus_exit_time_us = 14.5,
.valid = true,
},
{
.wm_inst = WM_D,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 129.0,
.sr_exit_time_us = 11.5,
.sr_enter_plus_exit_time_us = 14.5,
.valid = true,
},
}
};
static struct wm_table lpddr5_wm_table = {
.entries = {
{
.wm_inst = WM_A,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.65333,
.sr_exit_time_us = 11.5,
.sr_enter_plus_exit_time_us = 14.5,
.valid = true,
},
{
.wm_inst = WM_B,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.65333,
.sr_exit_time_us = 11.5,
.sr_enter_plus_exit_time_us = 14.5,
.valid = true,
},
{
.wm_inst = WM_C,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.65333,
.sr_exit_time_us = 11.5,
.sr_enter_plus_exit_time_us = 14.5,
.valid = true,
},
{
.wm_inst = WM_D,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.65333,
.sr_exit_time_us = 11.5,
.sr_enter_plus_exit_time_us = 14.5,
.valid = true,
},
}
};
/* Temporary Place holder until we can get them from fuse */
static DpmClocks_315_t dummy_clocks = { 0 };
static struct dcn315_watermarks dummy_wms = { 0 };
static void dcn315_build_watermark_ranges(struct clk_bw_params *bw_params, struct dcn315_watermarks *table)
{
int i, num_valid_sets;
num_valid_sets = 0;
for (i = 0; i < WM_SET_COUNT; i++) {
/* skip empty entries, the smu array has no holes*/
if (!bw_params->wm_table.entries[i].valid)
continue;
table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmSetting = bw_params->wm_table.entries[i].wm_inst;
table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType = bw_params->wm_table.entries[i].wm_type;
/* We will not select WM based on fclk, so leave it as unconstrained */
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
if (table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType == WM_TYPE_PSTATE_CHG) {
if (i == 0)
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk = 0;
else {
/* add 1 to make it non-overlapping with next lvl */
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk =
bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
}
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxMclk =
bw_params->clk_table.entries[i].dcfclk_mhz;
} else {
/* unconstrained for memory retraining */
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
/* Modify previous watermark range to cover up to max */
table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
}
num_valid_sets++;
}
ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
/* modify the min and max to make sure we cover the whole range*/
table->WatermarkRow[WM_DCFCLK][0].MinMclk = 0;
table->WatermarkRow[WM_DCFCLK][0].MinClock = 0;
table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxMclk = 0xFFFF;
table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
/* This is for writeback only, does not matter currently as no writeback support*/
table->WatermarkRow[WM_SOCCLK][0].WmSetting = WM_A;
table->WatermarkRow[WM_SOCCLK][0].MinClock = 0;
table->WatermarkRow[WM_SOCCLK][0].MaxClock = 0xFFFF;
table->WatermarkRow[WM_SOCCLK][0].MinMclk = 0;
table->WatermarkRow[WM_SOCCLK][0].MaxMclk = 0xFFFF;
}
static void dcn315_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
{
struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
struct clk_mgr_dcn315 *clk_mgr_dcn315 = TO_CLK_MGR_DCN315(clk_mgr);
struct dcn315_watermarks *table = clk_mgr_dcn315->smu_wm_set.wm_set;
if (!clk_mgr->smu_ver)
return;
if (!table || clk_mgr_dcn315->smu_wm_set.mc_address.quad_part == 0)
return;
memset(table, 0, sizeof(*table));
dcn315_build_watermark_ranges(clk_mgr_base->bw_params, table);
dcn315_smu_set_dram_addr_high(clk_mgr,
clk_mgr_dcn315->smu_wm_set.mc_address.high_part);
dcn315_smu_set_dram_addr_low(clk_mgr,
clk_mgr_dcn315->smu_wm_set.mc_address.low_part);
dcn315_smu_transfer_wm_table_dram_2_smu(clk_mgr);
}
static void dcn315_get_dpm_table_from_smu(struct clk_mgr_internal *clk_mgr,
struct dcn315_smu_dpm_clks *smu_dpm_clks)
{
DpmClocks_315_t *table = smu_dpm_clks->dpm_clks;
if (!clk_mgr->smu_ver)
return;
if (!table || smu_dpm_clks->mc_address.quad_part == 0)
return;
memset(table, 0, sizeof(*table));
dcn315_smu_set_dram_addr_high(clk_mgr,
smu_dpm_clks->mc_address.high_part);
dcn315_smu_set_dram_addr_low(clk_mgr,
smu_dpm_clks->mc_address.low_part);
dcn315_smu_transfer_dpm_table_smu_2_dram(clk_mgr);
}
static void dcn315_clk_mgr_helper_populate_bw_params(
struct clk_mgr_internal *clk_mgr,
struct integrated_info *bios_info,
const DpmClocks_315_t *clock_table)
{
int i;
struct clk_bw_params *bw_params = clk_mgr->base.bw_params;
uint32_t max_pstate = clock_table->NumDfPstatesEnabled - 1;
struct clk_limit_table_entry def_max = bw_params->clk_table.entries[bw_params->clk_table.num_entries - 1];
/* For 315 we want to base clock table on dcfclk, need at least one entry regardless of pmfw table */
for (i = 0; i < clock_table->NumDcfClkLevelsEnabled; i++) {
int j;
/* DF table is sorted with clocks decreasing */
for (j = clock_table->NumDfPstatesEnabled - 2; j >= 0; j--) {
if (clock_table->DfPstateTable[j].Voltage <= clock_table->SocVoltage[i])
max_pstate = j;
}
/* Max DCFCLK should match up with max pstate */
if (i == clock_table->NumDcfClkLevelsEnabled - 1)
max_pstate = 0;
/* First search defaults for the clocks we don't read using closest lower or equal default dcfclk */
for (j = bw_params->clk_table.num_entries - 1; j > 0; j--)
if (bw_params->clk_table.entries[j].dcfclk_mhz <= clock_table->DcfClocks[i])
break;
bw_params->clk_table.entries[i].phyclk_mhz = bw_params->clk_table.entries[j].phyclk_mhz;
bw_params->clk_table.entries[i].phyclk_d18_mhz = bw_params->clk_table.entries[j].phyclk_d18_mhz;
bw_params->clk_table.entries[i].dtbclk_mhz = bw_params->clk_table.entries[j].dtbclk_mhz;
/* Now update clocks we do read */
bw_params->clk_table.entries[i].fclk_mhz = clock_table->DfPstateTable[max_pstate].FClk;
bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[max_pstate].MemClk;
bw_params->clk_table.entries[i].voltage = clock_table->SocVoltage[i];
bw_params->clk_table.entries[i].dcfclk_mhz = clock_table->DcfClocks[i];
bw_params->clk_table.entries[i].socclk_mhz = clock_table->SocClocks[i];
bw_params->clk_table.entries[i].dispclk_mhz = clock_table->DispClocks[i];
bw_params->clk_table.entries[i].dppclk_mhz = clock_table->DppClocks[i];
bw_params->clk_table.entries[i].wck_ratio = 1;
}
/* Make sure to include at least one entry */
if (i == 0) {
bw_params->clk_table.entries[i].fclk_mhz = clock_table->DfPstateTable[0].FClk;
bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[0].MemClk;
bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[0].Voltage;
bw_params->clk_table.entries[i].dcfclk_mhz = clock_table->DcfClocks[0];
bw_params->clk_table.entries[i].wck_ratio = 1;
i++;
} else if (clock_table->NumDcfClkLevelsEnabled != clock_table->NumSocClkLevelsEnabled) {
bw_params->clk_table.entries[i-1].voltage = clock_table->SocVoltage[clock_table->NumSocClkLevelsEnabled - 1];
bw_params->clk_table.entries[i-1].socclk_mhz = clock_table->SocClocks[clock_table->NumSocClkLevelsEnabled - 1];
bw_params->clk_table.entries[i-1].dispclk_mhz = clock_table->DispClocks[clock_table->NumDispClkLevelsEnabled - 1];
bw_params->clk_table.entries[i-1].dppclk_mhz = clock_table->DppClocks[clock_table->NumDispClkLevelsEnabled - 1];
}
bw_params->clk_table.num_entries = i;
/* Set any 0 clocks to max default setting. Not an issue for
* power since we aren't doing switching in such case anyway
*/
for (i = 0; i < bw_params->clk_table.num_entries; i++) {
if (!bw_params->clk_table.entries[i].fclk_mhz) {
bw_params->clk_table.entries[i].fclk_mhz = def_max.fclk_mhz;
bw_params->clk_table.entries[i].memclk_mhz = def_max.memclk_mhz;
bw_params->clk_table.entries[i].voltage = def_max.voltage;
}
if (!bw_params->clk_table.entries[i].dcfclk_mhz)
bw_params->clk_table.entries[i].dcfclk_mhz = def_max.dcfclk_mhz;
if (!bw_params->clk_table.entries[i].socclk_mhz)
bw_params->clk_table.entries[i].socclk_mhz = def_max.socclk_mhz;
if (!bw_params->clk_table.entries[i].dispclk_mhz)
bw_params->clk_table.entries[i].dispclk_mhz = def_max.dispclk_mhz;
if (!bw_params->clk_table.entries[i].dppclk_mhz)
bw_params->clk_table.entries[i].dppclk_mhz = def_max.dppclk_mhz;
if (!bw_params->clk_table.entries[i].phyclk_mhz)
bw_params->clk_table.entries[i].phyclk_mhz = def_max.phyclk_mhz;
if (!bw_params->clk_table.entries[i].phyclk_d18_mhz)
bw_params->clk_table.entries[i].phyclk_d18_mhz = def_max.phyclk_d18_mhz;
if (!bw_params->clk_table.entries[i].dtbclk_mhz)
bw_params->clk_table.entries[i].dtbclk_mhz = def_max.dtbclk_mhz;
}
/* Make sure all highest default clocks are included*/
ASSERT(bw_params->clk_table.entries[i-1].phyclk_mhz == def_max.phyclk_mhz);
ASSERT(bw_params->clk_table.entries[i-1].phyclk_d18_mhz == def_max.phyclk_d18_mhz);
ASSERT(bw_params->clk_table.entries[i-1].dtbclk_mhz == def_max.dtbclk_mhz);
ASSERT(bw_params->clk_table.entries[i-1].dcfclk_mhz);
bw_params->vram_type = bios_info->memory_type;
bw_params->num_channels = bios_info->ma_channel_number;
bw_params->dram_channel_width_bytes = bios_info->memory_type == 0x22 ? 8 : 4;
for (i = 0; i < WM_SET_COUNT; i++) {
bw_params->wm_table.entries[i].wm_inst = i;
if (i >= bw_params->clk_table.num_entries) {
bw_params->wm_table.entries[i].valid = false;
continue;
}
bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
bw_params->wm_table.entries[i].valid = true;
}
}
static void dcn315_enable_pme_wa(struct clk_mgr *clk_mgr_base)
{
struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
dcn315_smu_enable_pme_wa(clk_mgr);
}
static struct clk_mgr_funcs dcn315_funcs = {
.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
.get_dtb_ref_clk_frequency = dcn31_get_dtb_ref_freq_khz,
.update_clocks = dcn315_update_clocks,
.init_clocks = dcn31_init_clocks,
.enable_pme_wa = dcn315_enable_pme_wa,
.are_clock_states_equal = dcn31_are_clock_states_equal,
.notify_wm_ranges = dcn315_notify_wm_ranges
};
extern struct clk_mgr_funcs dcn3_fpga_funcs;
void dcn315_clk_mgr_construct(
struct dc_context *ctx,
struct clk_mgr_dcn315 *clk_mgr,
struct pp_smu_funcs *pp_smu,
struct dccg *dccg)
{
struct dcn315_smu_dpm_clks smu_dpm_clks = { 0 };
struct clk_log_info log_info = {0};
clk_mgr->base.base.ctx = ctx;
clk_mgr->base.base.funcs = &dcn315_funcs;
clk_mgr->base.pp_smu = pp_smu;
clk_mgr->base.dccg = dccg;
clk_mgr->base.dfs_bypass_disp_clk = 0;
clk_mgr->base.dprefclk_ss_percentage = 0;
clk_mgr->base.dprefclk_ss_divider = 1000;
clk_mgr->base.ss_on_dprefclk = false;
clk_mgr->base.dfs_ref_freq_khz = 48000;
clk_mgr->smu_wm_set.wm_set = (struct dcn315_watermarks *)dm_helpers_allocate_gpu_mem(
clk_mgr->base.base.ctx,
DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
sizeof(struct dcn315_watermarks),
&clk_mgr->smu_wm_set.mc_address.quad_part);
if (!clk_mgr->smu_wm_set.wm_set) {
clk_mgr->smu_wm_set.wm_set = &dummy_wms;
clk_mgr->smu_wm_set.mc_address.quad_part = 0;
}
ASSERT(clk_mgr->smu_wm_set.wm_set);
smu_dpm_clks.dpm_clks = (DpmClocks_315_t *)dm_helpers_allocate_gpu_mem(
clk_mgr->base.base.ctx,
DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
sizeof(DpmClocks_315_t),
&smu_dpm_clks.mc_address.quad_part);
if (smu_dpm_clks.dpm_clks == NULL) {
smu_dpm_clks.dpm_clks = &dummy_clocks;
smu_dpm_clks.mc_address.quad_part = 0;
}
ASSERT(smu_dpm_clks.dpm_clks);
clk_mgr->base.smu_ver = dcn315_smu_get_smu_version(&clk_mgr->base);
if (clk_mgr->base.smu_ver > 0)
clk_mgr->base.smu_present = true;
if (ctx->dc_bios->integrated_info->memory_type == LpDdr5MemType) {
dcn315_bw_params.wm_table = lpddr5_wm_table;
} else {
dcn315_bw_params.wm_table = ddr5_wm_table;
}
/* Saved clocks configured at boot for debug purposes */
dcn315_dump_clk_registers(&clk_mgr->base.base.boot_snapshot,
&clk_mgr->base.base, &log_info);
clk_mgr->base.base.dprefclk_khz = 600000;
clk_mgr->base.base.dprefclk_khz = dcn315_smu_get_dpref_clk(&clk_mgr->base);
clk_mgr->base.base.clks.ref_dtbclk_khz = clk_mgr->base.base.dprefclk_khz;
dce_clock_read_ss_info(&clk_mgr->base);
clk_mgr->base.base.clks.ref_dtbclk_khz = dce_adjust_dp_ref_freq_for_ss(&clk_mgr->base, clk_mgr->base.base.dprefclk_khz);
clk_mgr->base.base.bw_params = &dcn315_bw_params;
if (clk_mgr->base.base.ctx->dc->debug.pstate_enabled) {
int i;
dcn315_get_dpm_table_from_smu(&clk_mgr->base, &smu_dpm_clks);
DC_LOG_SMU("NumDcfClkLevelsEnabled: %d\n"
"NumDispClkLevelsEnabled: %d\n"
"NumSocClkLevelsEnabled: %d\n"
"VcnClkLevelsEnabled: %d\n"
"NumDfPst atesEnabled: %d\n"
"MinGfxClk: %d\n"
"MaxGfxClk: %d\n",
smu_dpm_clks.dpm_clks->NumDcfClkLevelsEnabled,
smu_dpm_clks.dpm_clks->NumDispClkLevelsEnabled,
smu_dpm_clks.dpm_clks->NumSocClkLevelsEnabled,
smu_dpm_clks.dpm_clks->VcnClkLevelsEnabled,
smu_dpm_clks.dpm_clks->NumDfPstatesEnabled,
smu_dpm_clks.dpm_clks->MinGfxClk,
smu_dpm_clks.dpm_clks->MaxGfxClk);
for (i = 0; i < smu_dpm_clks.dpm_clks->NumDcfClkLevelsEnabled; i++) {
DC_LOG_SMU("smu_dpm_clks.dpm_clks->DcfClocks[%d] = %d\n",
i,
smu_dpm_clks.dpm_clks->DcfClocks[i]);
}
for (i = 0; i < smu_dpm_clks.dpm_clks->NumDispClkLevelsEnabled; i++) {
DC_LOG_SMU("smu_dpm_clks.dpm_clks->DispClocks[%d] = %d\n",
i, smu_dpm_clks.dpm_clks->DispClocks[i]);
}
for (i = 0; i < smu_dpm_clks.dpm_clks->NumSocClkLevelsEnabled; i++) {
DC_LOG_SMU("smu_dpm_clks.dpm_clks->SocClocks[%d] = %d\n",
i, smu_dpm_clks.dpm_clks->SocClocks[i]);
}
for (i = 0; i < NUM_SOC_VOLTAGE_LEVELS; i++)
DC_LOG_SMU("smu_dpm_clks.dpm_clks->SocVoltage[%d] = %d\n",
i, smu_dpm_clks.dpm_clks->SocVoltage[i]);
for (i = 0; i < NUM_DF_PSTATE_LEVELS; i++) {
DC_LOG_SMU("smu_dpm_clks.dpm_clks.DfPstateTable[%d].FClk = %d\n"
"smu_dpm_clks.dpm_clks->DfPstateTable[%d].MemClk= %d\n"
"smu_dpm_clks.dpm_clks->DfPstateTable[%d].Voltage = %d\n",
i, smu_dpm_clks.dpm_clks->DfPstateTable[i].FClk,
i, smu_dpm_clks.dpm_clks->DfPstateTable[i].MemClk,
i, smu_dpm_clks.dpm_clks->DfPstateTable[i].Voltage);
}
if (ctx->dc_bios && ctx->dc_bios->integrated_info) {
dcn315_clk_mgr_helper_populate_bw_params(
&clk_mgr->base,
ctx->dc_bios->integrated_info,
smu_dpm_clks.dpm_clks);
}
}
if (smu_dpm_clks.dpm_clks && smu_dpm_clks.mc_address.quad_part != 0)
dm_helpers_free_gpu_mem(clk_mgr->base.base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
smu_dpm_clks.dpm_clks);
}
void dcn315_clk_mgr_destroy(struct clk_mgr_internal *clk_mgr_int)
{
struct clk_mgr_dcn315 *clk_mgr = TO_CLK_MGR_DCN315(clk_mgr_int);
if (clk_mgr->smu_wm_set.wm_set && clk_mgr->smu_wm_set.mc_address.quad_part != 0)
dm_helpers_free_gpu_mem(clk_mgr_int->base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
clk_mgr->smu_wm_set.wm_set);
}
| linux-master | drivers/gpu/drm/amd/display/dc/clk_mgr/dcn315/dcn315_clk_mgr.c |
// SPDX-License-Identifier: MIT
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "core_types.h"
#include "clk_mgr_internal.h"
#include "reg_helper.h"
#include "dm_helpers.h"
#include "dcn314_smu.h"
#include "mp/mp_13_0_5_offset.h"
/* TODO: Use the real headers when they're correct */
#define MP1_BASE__INST0_SEG0 0x00016000
#define MP1_BASE__INST0_SEG1 0x0243FC00
#define MP1_BASE__INST0_SEG2 0x00DC0000
#define MP1_BASE__INST0_SEG3 0x00E00000
#define MP1_BASE__INST0_SEG4 0x00E40000
#define MP1_BASE__INST0_SEG5 0
#ifdef BASE_INNER
#undef BASE_INNER
#endif
#define BASE_INNER(seg) MP1_BASE__INST0_SEG ## seg
#define BASE(seg) BASE_INNER(seg)
#define REG(reg_name) (BASE(reg##reg_name##_BASE_IDX) + reg##reg_name)
#define FN(reg_name, field) \
FD(reg_name##__##field)
#include "logger_types.h"
#undef DC_LOGGER
#define DC_LOGGER \
CTX->logger
#define smu_print(str, ...) {DC_LOG_SMU(str, ##__VA_ARGS__); }
#define VBIOSSMC_MSG_TestMessage 0x1
#define VBIOSSMC_MSG_GetSmuVersion 0x2
#define VBIOSSMC_MSG_PowerUpGfx 0x3
#define VBIOSSMC_MSG_SetDispclkFreq 0x4
#define VBIOSSMC_MSG_SetDprefclkFreq 0x5 //Not used. DPRef is constant
#define VBIOSSMC_MSG_SetDppclkFreq 0x6
#define VBIOSSMC_MSG_SetHardMinDcfclkByFreq 0x7
#define VBIOSSMC_MSG_SetMinDeepSleepDcfclk 0x8
#define VBIOSSMC_MSG_SetPhyclkVoltageByFreq 0x9 //Keep it in case VMIN dees not support phy clk
#define VBIOSSMC_MSG_GetFclkFrequency 0xA
#define VBIOSSMC_MSG_SetDisplayCount 0xB //Not used anymore
#define VBIOSSMC_MSG_EnableTmdp48MHzRefclkPwrDown 0xC //Not used anymore
#define VBIOSSMC_MSG_UpdatePmeRestore 0xD
#define VBIOSSMC_MSG_SetVbiosDramAddrHigh 0xE //Used for WM table txfr
#define VBIOSSMC_MSG_SetVbiosDramAddrLow 0xF
#define VBIOSSMC_MSG_TransferTableSmu2Dram 0x10
#define VBIOSSMC_MSG_TransferTableDram2Smu 0x11
#define VBIOSSMC_MSG_SetDisplayIdleOptimizations 0x12
#define VBIOSSMC_MSG_GetDprefclkFreq 0x13
#define VBIOSSMC_MSG_GetDtbclkFreq 0x14
#define VBIOSSMC_MSG_AllowZstatesEntry 0x15
#define VBIOSSMC_MSG_DisallowZstatesEntry 0x16
#define VBIOSSMC_MSG_SetDtbClk 0x17
#define VBIOSSMC_Message_Count 0x18
#define VBIOSSMC_Status_BUSY 0x0
#define VBIOSSMC_Result_OK 0x1
#define VBIOSSMC_Result_Failed 0xFF
#define VBIOSSMC_Result_UnknownCmd 0xFE
#define VBIOSSMC_Result_CmdRejectedPrereq 0xFD
#define VBIOSSMC_Result_CmdRejectedBusy 0xFC
/*
* Function to be used instead of REG_WAIT macro because the wait ends when
* the register is NOT EQUAL to zero, and because the translation in msg_if.h
* won't work with REG_WAIT.
*/
static uint32_t dcn314_smu_wait_for_response(struct clk_mgr_internal *clk_mgr, unsigned int delay_us, unsigned int max_retries)
{
uint32_t res_val = VBIOSSMC_Status_BUSY;
do {
res_val = REG_READ(MP1_SMN_C2PMSG_91);
if (res_val != VBIOSSMC_Status_BUSY)
break;
if (delay_us >= 1000)
msleep(delay_us/1000);
else if (delay_us > 0)
udelay(delay_us);
} while (max_retries--);
return res_val;
}
static int dcn314_smu_send_msg_with_param(struct clk_mgr_internal *clk_mgr,
unsigned int msg_id,
unsigned int param)
{
uint32_t result;
result = dcn314_smu_wait_for_response(clk_mgr, 10, 200000);
if (result != VBIOSSMC_Result_OK)
smu_print("SMU Response was not OK. SMU response after wait received is: %d\n",
result);
if (result == VBIOSSMC_Status_BUSY)
return -1;
/* First clear response register */
REG_WRITE(MP1_SMN_C2PMSG_91, VBIOSSMC_Status_BUSY);
/* Set the parameter register for the SMU message, unit is Mhz */
REG_WRITE(MP1_SMN_C2PMSG_83, param);
/* Trigger the message transaction by writing the message ID */
REG_WRITE(MP1_SMN_C2PMSG_67, msg_id);
result = dcn314_smu_wait_for_response(clk_mgr, 10, 200000);
if (result == VBIOSSMC_Result_Failed) {
if (msg_id == VBIOSSMC_MSG_TransferTableDram2Smu &&
param == TABLE_WATERMARKS)
DC_LOG_DEBUG("Watermarks table not configured properly by SMU");
else if (msg_id == VBIOSSMC_MSG_SetHardMinDcfclkByFreq ||
msg_id == VBIOSSMC_MSG_SetMinDeepSleepDcfclk)
DC_LOG_WARNING("DCFCLK_DPM is not enabled by BIOS");
else
ASSERT(0);
REG_WRITE(MP1_SMN_C2PMSG_91, VBIOSSMC_Result_OK);
return -1;
}
if (IS_SMU_TIMEOUT(result)) {
ASSERT(0);
dm_helpers_smu_timeout(CTX, msg_id, param, 10 * 200000);
}
return REG_READ(MP1_SMN_C2PMSG_83);
}
int dcn314_smu_get_smu_version(struct clk_mgr_internal *clk_mgr)
{
return dcn314_smu_send_msg_with_param(
clk_mgr,
VBIOSSMC_MSG_GetSmuVersion,
0);
}
int dcn314_smu_set_dispclk(struct clk_mgr_internal *clk_mgr, int requested_dispclk_khz)
{
int actual_dispclk_set_mhz = -1;
if (!clk_mgr->smu_present)
return requested_dispclk_khz;
/* Unit of SMU msg parameter is Mhz */
actual_dispclk_set_mhz = dcn314_smu_send_msg_with_param(
clk_mgr,
VBIOSSMC_MSG_SetDispclkFreq,
khz_to_mhz_ceil(requested_dispclk_khz));
return actual_dispclk_set_mhz * 1000;
}
int dcn314_smu_set_dprefclk(struct clk_mgr_internal *clk_mgr)
{
int actual_dprefclk_set_mhz = -1;
if (!clk_mgr->smu_present)
return clk_mgr->base.dprefclk_khz;
actual_dprefclk_set_mhz = dcn314_smu_send_msg_with_param(
clk_mgr,
VBIOSSMC_MSG_SetDprefclkFreq,
khz_to_mhz_ceil(clk_mgr->base.dprefclk_khz));
/* TODO: add code for programing DP DTO, currently this is down by command table */
return actual_dprefclk_set_mhz * 1000;
}
int dcn314_smu_set_hard_min_dcfclk(struct clk_mgr_internal *clk_mgr, int requested_dcfclk_khz)
{
int actual_dcfclk_set_mhz = -1;
if (!clk_mgr->base.ctx->dc->debug.pstate_enabled)
return -1;
if (!clk_mgr->smu_present)
return requested_dcfclk_khz;
actual_dcfclk_set_mhz = dcn314_smu_send_msg_with_param(
clk_mgr,
VBIOSSMC_MSG_SetHardMinDcfclkByFreq,
khz_to_mhz_ceil(requested_dcfclk_khz));
#ifdef DBG
smu_print("actual_dcfclk_set_mhz %d is set to : %d\n",
actual_dcfclk_set_mhz,
actual_dcfclk_set_mhz * 1000);
#endif
return actual_dcfclk_set_mhz * 1000;
}
int dcn314_smu_set_min_deep_sleep_dcfclk(struct clk_mgr_internal *clk_mgr, int requested_min_ds_dcfclk_khz)
{
int actual_min_ds_dcfclk_mhz = -1;
if (!clk_mgr->base.ctx->dc->debug.pstate_enabled)
return -1;
if (!clk_mgr->smu_present)
return requested_min_ds_dcfclk_khz;
actual_min_ds_dcfclk_mhz = dcn314_smu_send_msg_with_param(
clk_mgr,
VBIOSSMC_MSG_SetMinDeepSleepDcfclk,
khz_to_mhz_ceil(requested_min_ds_dcfclk_khz));
return actual_min_ds_dcfclk_mhz * 1000;
}
int dcn314_smu_set_dppclk(struct clk_mgr_internal *clk_mgr, int requested_dpp_khz)
{
int actual_dppclk_set_mhz = -1;
if (!clk_mgr->smu_present)
return requested_dpp_khz;
actual_dppclk_set_mhz = dcn314_smu_send_msg_with_param(
clk_mgr,
VBIOSSMC_MSG_SetDppclkFreq,
khz_to_mhz_ceil(requested_dpp_khz));
return actual_dppclk_set_mhz * 1000;
}
void dcn314_smu_set_display_idle_optimization(struct clk_mgr_internal *clk_mgr, uint32_t idle_info)
{
if (!clk_mgr->base.ctx->dc->debug.pstate_enabled)
return;
if (!clk_mgr->smu_present)
return;
//TODO: Work with smu team to define optimization options.
dcn314_smu_send_msg_with_param(
clk_mgr,
VBIOSSMC_MSG_SetDisplayIdleOptimizations,
idle_info);
}
void dcn314_smu_enable_phy_refclk_pwrdwn(struct clk_mgr_internal *clk_mgr, bool enable)
{
union display_idle_optimization_u idle_info = { 0 };
if (!clk_mgr->smu_present)
return;
if (enable) {
idle_info.idle_info.df_request_disabled = 1;
idle_info.idle_info.phy_ref_clk_off = 1;
}
dcn314_smu_send_msg_with_param(
clk_mgr,
VBIOSSMC_MSG_SetDisplayIdleOptimizations,
idle_info.data);
}
void dcn314_smu_enable_pme_wa(struct clk_mgr_internal *clk_mgr)
{
if (!clk_mgr->smu_present)
return;
dcn314_smu_send_msg_with_param(
clk_mgr,
VBIOSSMC_MSG_UpdatePmeRestore,
0);
}
void dcn314_smu_set_dram_addr_high(struct clk_mgr_internal *clk_mgr, uint32_t addr_high)
{
if (!clk_mgr->smu_present)
return;
dcn314_smu_send_msg_with_param(clk_mgr,
VBIOSSMC_MSG_SetVbiosDramAddrHigh, addr_high);
}
void dcn314_smu_set_dram_addr_low(struct clk_mgr_internal *clk_mgr, uint32_t addr_low)
{
if (!clk_mgr->smu_present)
return;
dcn314_smu_send_msg_with_param(clk_mgr,
VBIOSSMC_MSG_SetVbiosDramAddrLow, addr_low);
}
void dcn314_smu_transfer_dpm_table_smu_2_dram(struct clk_mgr_internal *clk_mgr)
{
if (!clk_mgr->smu_present)
return;
dcn314_smu_send_msg_with_param(clk_mgr,
VBIOSSMC_MSG_TransferTableSmu2Dram, TABLE_DPMCLOCKS);
}
void dcn314_smu_transfer_wm_table_dram_2_smu(struct clk_mgr_internal *clk_mgr)
{
if (!clk_mgr->smu_present)
return;
dcn314_smu_send_msg_with_param(clk_mgr,
VBIOSSMC_MSG_TransferTableDram2Smu, TABLE_WATERMARKS);
}
void dcn314_smu_set_zstate_support(struct clk_mgr_internal *clk_mgr, enum dcn_zstate_support_state support)
{
unsigned int msg_id, param;
if (!clk_mgr->smu_present)
return;
switch (support) {
case DCN_ZSTATE_SUPPORT_ALLOW:
msg_id = VBIOSSMC_MSG_AllowZstatesEntry;
param = (1 << 10) | (1 << 9) | (1 << 8);
break;
case DCN_ZSTATE_SUPPORT_DISALLOW:
msg_id = VBIOSSMC_MSG_AllowZstatesEntry;
param = 0;
break;
case DCN_ZSTATE_SUPPORT_ALLOW_Z10_ONLY:
msg_id = VBIOSSMC_MSG_AllowZstatesEntry;
param = (1 << 10);
break;
case DCN_ZSTATE_SUPPORT_ALLOW_Z8_Z10_ONLY:
msg_id = VBIOSSMC_MSG_AllowZstatesEntry;
param = (1 << 10) | (1 << 8);
break;
case DCN_ZSTATE_SUPPORT_ALLOW_Z8_ONLY:
msg_id = VBIOSSMC_MSG_AllowZstatesEntry;
param = (1 << 8);
break;
default: //DCN_ZSTATE_SUPPORT_UNKNOWN
msg_id = VBIOSSMC_MSG_AllowZstatesEntry;
param = 0;
break;
}
dcn314_smu_send_msg_with_param(
clk_mgr,
msg_id,
param);
}
/* Arg = 1: Turn DTB on; 0: Turn DTB CLK OFF. when it is on, it is 600MHZ */
void dcn314_smu_set_dtbclk(struct clk_mgr_internal *clk_mgr, bool enable)
{
if (!clk_mgr->smu_present)
return;
dcn314_smu_send_msg_with_param(
clk_mgr,
VBIOSSMC_MSG_SetDtbClk,
enable);
}
| linux-master | drivers/gpu/drm/amd/display/dc/clk_mgr/dcn314/dcn314_smu.c |
// SPDX-License-Identifier: MIT
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dcn314_clk_mgr.h"
#include "dccg.h"
#include "clk_mgr_internal.h"
// For dce12_get_dp_ref_freq_khz
#include "dce100/dce_clk_mgr.h"
// For dcn20_update_clocks_update_dpp_dto
#include "dcn20/dcn20_clk_mgr.h"
#include "reg_helper.h"
#include "core_types.h"
#include "dm_helpers.h"
/* TODO: remove this include once we ported over remaining clk mgr functions*/
#include "dcn30/dcn30_clk_mgr.h"
#include "dcn31/dcn31_clk_mgr.h"
#include "dc_dmub_srv.h"
#include "link.h"
#include "dcn314_smu.h"
#include "logger_types.h"
#undef DC_LOGGER
#define DC_LOGGER \
clk_mgr->base.base.ctx->logger
#define MAX_INSTANCE 7
#define MAX_SEGMENT 8
struct IP_BASE_INSTANCE {
unsigned int segment[MAX_SEGMENT];
};
struct IP_BASE {
struct IP_BASE_INSTANCE instance[MAX_INSTANCE];
};
static const struct IP_BASE CLK_BASE = { { { { 0x00016C00, 0x02401800, 0, 0, 0, 0, 0, 0 } },
{ { 0x00016E00, 0x02401C00, 0, 0, 0, 0, 0, 0 } },
{ { 0x00017000, 0x02402000, 0, 0, 0, 0, 0, 0 } },
{ { 0x00017200, 0x02402400, 0, 0, 0, 0, 0, 0 } },
{ { 0x0001B000, 0x0242D800, 0, 0, 0, 0, 0, 0 } },
{ { 0x0001B200, 0x0242DC00, 0, 0, 0, 0, 0, 0 } },
{ { 0x0001B400, 0x0242E000, 0, 0, 0, 0, 0, 0 } } } };
#define regCLK1_CLK_PLL_REQ 0x0237
#define regCLK1_CLK_PLL_REQ_BASE_IDX 0
#define CLK1_CLK_PLL_REQ__FbMult_int__SHIFT 0x0
#define CLK1_CLK_PLL_REQ__PllSpineDiv__SHIFT 0xc
#define CLK1_CLK_PLL_REQ__FbMult_frac__SHIFT 0x10
#define CLK1_CLK_PLL_REQ__FbMult_int_MASK 0x000001FFL
#define CLK1_CLK_PLL_REQ__PllSpineDiv_MASK 0x0000F000L
#define CLK1_CLK_PLL_REQ__FbMult_frac_MASK 0xFFFF0000L
#define REG(reg_name) \
(CLK_BASE.instance[0].segment[reg ## reg_name ## _BASE_IDX] + reg ## reg_name)
#define TO_CLK_MGR_DCN314(clk_mgr)\
container_of(clk_mgr, struct clk_mgr_dcn314, base)
static int dcn314_get_active_display_cnt_wa(
struct dc *dc,
struct dc_state *context)
{
int i, display_count;
bool tmds_present = false;
display_count = 0;
for (i = 0; i < context->stream_count; i++) {
const struct dc_stream_state *stream = context->streams[i];
if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
tmds_present = true;
/* Checking stream / link detection ensuring that PHY is active*/
if (dc_is_dp_signal(stream->signal) && !stream->dpms_off)
display_count++;
}
for (i = 0; i < dc->link_count; i++) {
const struct dc_link *link = dc->links[i];
/* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
if (link->link_enc && link->link_enc->funcs->is_dig_enabled &&
link->link_enc->funcs->is_dig_enabled(link->link_enc))
display_count++;
}
/* WA for hang on HDMI after display off back on*/
if (display_count == 0 && tmds_present)
display_count = 1;
return display_count;
}
static void dcn314_disable_otg_wa(struct clk_mgr *clk_mgr_base, struct dc_state *context, bool disable)
{
struct dc *dc = clk_mgr_base->ctx->dc;
int i;
for (i = 0; i < dc->res_pool->pipe_count; ++i) {
struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
if (pipe->top_pipe || pipe->prev_odm_pipe)
continue;
if (pipe->stream && (pipe->stream->dpms_off || dc_is_virtual_signal(pipe->stream->signal))) {
struct stream_encoder *stream_enc = pipe->stream_res.stream_enc;
if (disable) {
if (stream_enc && stream_enc->funcs->disable_fifo)
pipe->stream_res.stream_enc->funcs->disable_fifo(stream_enc);
pipe->stream_res.tg->funcs->immediate_disable_crtc(pipe->stream_res.tg);
reset_sync_context_for_pipe(dc, context, i);
} else {
pipe->stream_res.tg->funcs->enable_crtc(pipe->stream_res.tg);
if (stream_enc && stream_enc->funcs->enable_fifo)
pipe->stream_res.stream_enc->funcs->enable_fifo(stream_enc);
}
}
}
}
void dcn314_update_clocks(struct clk_mgr *clk_mgr_base,
struct dc_state *context,
bool safe_to_lower)
{
union dmub_rb_cmd cmd;
struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
struct dc *dc = clk_mgr_base->ctx->dc;
int display_count;
bool update_dppclk = false;
bool update_dispclk = false;
bool dpp_clock_lowered = false;
if (dc->work_arounds.skip_clock_update)
return;
/*
* if it is safe to lower, but we are already in the lower state, we don't have to do anything
* also if safe to lower is false, we just go in the higher state
*/
if (safe_to_lower) {
if (new_clocks->zstate_support != DCN_ZSTATE_SUPPORT_DISALLOW &&
new_clocks->zstate_support != clk_mgr_base->clks.zstate_support) {
dcn314_smu_set_zstate_support(clk_mgr, new_clocks->zstate_support);
dm_helpers_enable_periodic_detection(clk_mgr_base->ctx, true);
clk_mgr_base->clks.zstate_support = new_clocks->zstate_support;
}
if (clk_mgr_base->clks.dtbclk_en && !new_clocks->dtbclk_en) {
dcn314_smu_set_dtbclk(clk_mgr, false);
clk_mgr_base->clks.dtbclk_en = new_clocks->dtbclk_en;
}
/* check that we're not already in lower */
if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
display_count = dcn314_get_active_display_cnt_wa(dc, context);
/* if we can go lower, go lower */
if (display_count == 0) {
union display_idle_optimization_u idle_info = { 0 };
idle_info.idle_info.df_request_disabled = 1;
idle_info.idle_info.phy_ref_clk_off = 1;
idle_info.idle_info.s0i2_rdy = 1;
dcn314_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
/* update power state */
clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
}
}
} else {
if (new_clocks->zstate_support == DCN_ZSTATE_SUPPORT_DISALLOW &&
new_clocks->zstate_support != clk_mgr_base->clks.zstate_support) {
dcn314_smu_set_zstate_support(clk_mgr, DCN_ZSTATE_SUPPORT_DISALLOW);
dm_helpers_enable_periodic_detection(clk_mgr_base->ctx, false);
clk_mgr_base->clks.zstate_support = new_clocks->zstate_support;
}
if (!clk_mgr_base->clks.dtbclk_en && new_clocks->dtbclk_en) {
dcn314_smu_set_dtbclk(clk_mgr, true);
clk_mgr_base->clks.dtbclk_en = new_clocks->dtbclk_en;
}
/* check that we're not already in D0 */
if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
union display_idle_optimization_u idle_info = { 0 };
dcn314_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
/* update power state */
clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
}
}
if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
dcn314_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
}
if (should_set_clock(safe_to_lower,
new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
dcn314_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
}
// workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
if (new_clocks->dppclk_khz < 100000)
new_clocks->dppclk_khz = 100000;
if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
dpp_clock_lowered = true;
clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
update_dppclk = true;
}
if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
dcn314_disable_otg_wa(clk_mgr_base, context, true);
clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
dcn314_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
dcn314_disable_otg_wa(clk_mgr_base, context, false);
update_dispclk = true;
}
if (dpp_clock_lowered) {
// increase per DPP DTO before lowering global dppclk
dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
dcn314_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
} else {
// increase global DPPCLK before lowering per DPP DTO
if (update_dppclk || update_dispclk)
dcn314_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
// always update dtos unless clock is lowered and not safe to lower
if (new_clocks->dppclk_khz >= dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz)
dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
}
// notify DMCUB of latest clocks
memset(&cmd, 0, sizeof(cmd));
cmd.notify_clocks.header.type = DMUB_CMD__CLK_MGR;
cmd.notify_clocks.header.sub_type = DMUB_CMD__CLK_MGR_NOTIFY_CLOCKS;
cmd.notify_clocks.clocks.dcfclk_khz = clk_mgr_base->clks.dcfclk_khz;
cmd.notify_clocks.clocks.dcfclk_deep_sleep_khz =
clk_mgr_base->clks.dcfclk_deep_sleep_khz;
cmd.notify_clocks.clocks.dispclk_khz = clk_mgr_base->clks.dispclk_khz;
cmd.notify_clocks.clocks.dppclk_khz = clk_mgr_base->clks.dppclk_khz;
dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
}
static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
{
/* get FbMult value */
struct fixed31_32 pll_req;
unsigned int fbmult_frac_val = 0;
unsigned int fbmult_int_val = 0;
/*
* Register value of fbmult is in 8.16 format, we are converting to 314.32
* to leverage the fix point operations available in driver
*/
REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
pll_req = dc_fixpt_from_int(fbmult_int_val);
/*
* since fractional part is only 16 bit in register definition but is 32 bit
* in our fix point definiton, need to shift left by 16 to obtain correct value
*/
pll_req.value |= fbmult_frac_val << 16;
/* multiply by REFCLK period */
pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
/* integer part is now VCO frequency in kHz */
return dc_fixpt_floor(pll_req);
}
static void dcn314_enable_pme_wa(struct clk_mgr *clk_mgr_base)
{
struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
dcn314_smu_enable_pme_wa(clk_mgr);
}
bool dcn314_are_clock_states_equal(struct dc_clocks *a,
struct dc_clocks *b)
{
if (a->dispclk_khz != b->dispclk_khz)
return false;
else if (a->dppclk_khz != b->dppclk_khz)
return false;
else if (a->dcfclk_khz != b->dcfclk_khz)
return false;
else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
return false;
else if (a->zstate_support != b->zstate_support)
return false;
else if (a->dtbclk_en != b->dtbclk_en)
return false;
return true;
}
static void dcn314_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
{
return;
}
static struct clk_bw_params dcn314_bw_params = {
.vram_type = Ddr4MemType,
.num_channels = 1,
.clk_table = {
.num_entries = 4,
},
};
static struct wm_table ddr5_wm_table = {
.entries = {
{
.wm_inst = WM_A,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.72,
.sr_exit_time_us = 12.5,
.sr_enter_plus_exit_time_us = 14.5,
.valid = true,
},
{
.wm_inst = WM_B,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.72,
.sr_exit_time_us = 12.5,
.sr_enter_plus_exit_time_us = 14.5,
.valid = true,
},
{
.wm_inst = WM_C,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.72,
.sr_exit_time_us = 12.5,
.sr_enter_plus_exit_time_us = 14.5,
.valid = true,
},
{
.wm_inst = WM_D,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.72,
.sr_exit_time_us = 12.5,
.sr_enter_plus_exit_time_us = 14.5,
.valid = true,
},
}
};
static struct wm_table lpddr5_wm_table = {
.entries = {
{
.wm_inst = WM_A,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.65333,
.sr_exit_time_us = 30.0,
.sr_enter_plus_exit_time_us = 32.0,
.valid = true,
},
{
.wm_inst = WM_B,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.65333,
.sr_exit_time_us = 30.0,
.sr_enter_plus_exit_time_us = 32.0,
.valid = true,
},
{
.wm_inst = WM_C,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.65333,
.sr_exit_time_us = 30.0,
.sr_enter_plus_exit_time_us = 32.0,
.valid = true,
},
{
.wm_inst = WM_D,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.65333,
.sr_exit_time_us = 30.0,
.sr_enter_plus_exit_time_us = 32.0,
.valid = true,
},
}
};
static DpmClocks314_t dummy_clocks;
static struct dcn314_watermarks dummy_wms = { 0 };
static void dcn314_build_watermark_ranges(struct clk_bw_params *bw_params, struct dcn314_watermarks *table)
{
int i, num_valid_sets;
num_valid_sets = 0;
for (i = 0; i < WM_SET_COUNT; i++) {
/* skip empty entries, the smu array has no holes*/
if (!bw_params->wm_table.entries[i].valid)
continue;
table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmSetting = bw_params->wm_table.entries[i].wm_inst;
table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType = bw_params->wm_table.entries[i].wm_type;
/* We will not select WM based on fclk, so leave it as unconstrained */
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
if (table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType == WM_TYPE_PSTATE_CHG) {
if (i == 0)
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk = 0;
else {
/* add 1 to make it non-overlapping with next lvl */
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk =
bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
}
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxMclk =
bw_params->clk_table.entries[i].dcfclk_mhz;
} else {
/* unconstrained for memory retraining */
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
/* Modify previous watermark range to cover up to max */
table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
}
num_valid_sets++;
}
ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
/* modify the min and max to make sure we cover the whole range*/
table->WatermarkRow[WM_DCFCLK][0].MinMclk = 0;
table->WatermarkRow[WM_DCFCLK][0].MinClock = 0;
table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxMclk = 0xFFFF;
table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
/* This is for writeback only, does not matter currently as no writeback support*/
table->WatermarkRow[WM_SOCCLK][0].WmSetting = WM_A;
table->WatermarkRow[WM_SOCCLK][0].MinClock = 0;
table->WatermarkRow[WM_SOCCLK][0].MaxClock = 0xFFFF;
table->WatermarkRow[WM_SOCCLK][0].MinMclk = 0;
table->WatermarkRow[WM_SOCCLK][0].MaxMclk = 0xFFFF;
}
static void dcn314_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
{
struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
struct clk_mgr_dcn314 *clk_mgr_dcn314 = TO_CLK_MGR_DCN314(clk_mgr);
struct dcn314_watermarks *table = clk_mgr_dcn314->smu_wm_set.wm_set;
if (!clk_mgr->smu_ver)
return;
if (!table || clk_mgr_dcn314->smu_wm_set.mc_address.quad_part == 0)
return;
memset(table, 0, sizeof(*table));
dcn314_build_watermark_ranges(clk_mgr_base->bw_params, table);
dcn314_smu_set_dram_addr_high(clk_mgr,
clk_mgr_dcn314->smu_wm_set.mc_address.high_part);
dcn314_smu_set_dram_addr_low(clk_mgr,
clk_mgr_dcn314->smu_wm_set.mc_address.low_part);
dcn314_smu_transfer_wm_table_dram_2_smu(clk_mgr);
}
static void dcn314_get_dpm_table_from_smu(struct clk_mgr_internal *clk_mgr,
struct dcn314_smu_dpm_clks *smu_dpm_clks)
{
DpmClocks314_t *table = smu_dpm_clks->dpm_clks;
if (!clk_mgr->smu_ver)
return;
if (!table || smu_dpm_clks->mc_address.quad_part == 0)
return;
memset(table, 0, sizeof(*table));
dcn314_smu_set_dram_addr_high(clk_mgr,
smu_dpm_clks->mc_address.high_part);
dcn314_smu_set_dram_addr_low(clk_mgr,
smu_dpm_clks->mc_address.low_part);
dcn314_smu_transfer_dpm_table_smu_2_dram(clk_mgr);
}
static inline bool is_valid_clock_value(uint32_t clock_value)
{
return clock_value > 1 && clock_value < 100000;
}
static unsigned int convert_wck_ratio(uint8_t wck_ratio)
{
switch (wck_ratio) {
case WCK_RATIO_1_2:
return 2;
case WCK_RATIO_1_4:
return 4;
default:
break;
}
return 1;
}
static uint32_t find_max_clk_value(const uint32_t clocks[], uint32_t num_clocks)
{
uint32_t max = 0;
int i;
for (i = 0; i < num_clocks; ++i) {
if (clocks[i] > max)
max = clocks[i];
}
return max;
}
static void dcn314_clk_mgr_helper_populate_bw_params(struct clk_mgr_internal *clk_mgr,
struct integrated_info *bios_info,
const DpmClocks314_t *clock_table)
{
struct clk_bw_params *bw_params = clk_mgr->base.bw_params;
struct clk_limit_table_entry def_max = bw_params->clk_table.entries[bw_params->clk_table.num_entries - 1];
uint32_t max_pstate = 0, max_fclk = 0, min_pstate = 0, max_dispclk = 0, max_dppclk = 0;
int i;
/* Find highest valid fclk pstate */
for (i = 0; i < clock_table->NumDfPstatesEnabled; i++) {
if (is_valid_clock_value(clock_table->DfPstateTable[i].FClk) &&
clock_table->DfPstateTable[i].FClk > max_fclk) {
max_fclk = clock_table->DfPstateTable[i].FClk;
max_pstate = i;
}
}
/* We expect the table to contain at least one valid fclk entry. */
ASSERT(is_valid_clock_value(max_fclk));
/* Dispclk and dppclk can be max at any voltage, same number of levels for both */
if (clock_table->NumDispClkLevelsEnabled <= NUM_DISPCLK_DPM_LEVELS &&
clock_table->NumDispClkLevelsEnabled <= NUM_DPPCLK_DPM_LEVELS) {
max_dispclk = find_max_clk_value(clock_table->DispClocks, clock_table->NumDispClkLevelsEnabled);
max_dppclk = find_max_clk_value(clock_table->DppClocks, clock_table->NumDispClkLevelsEnabled);
} else {
/* Invalid number of entries in the table from PMFW. */
ASSERT(0);
}
/* Base the clock table on dcfclk, need at least one entry regardless of pmfw table */
for (i = 0; i < clock_table->NumDcfClkLevelsEnabled; i++) {
uint32_t min_fclk = clock_table->DfPstateTable[0].FClk;
int j;
for (j = 1; j < clock_table->NumDfPstatesEnabled; j++) {
if (is_valid_clock_value(clock_table->DfPstateTable[j].FClk) &&
clock_table->DfPstateTable[j].FClk < min_fclk &&
clock_table->DfPstateTable[j].Voltage <= clock_table->SocVoltage[i]) {
min_fclk = clock_table->DfPstateTable[j].FClk;
min_pstate = j;
}
}
/* First search defaults for the clocks we don't read using closest lower or equal default dcfclk */
for (j = bw_params->clk_table.num_entries - 1; j > 0; j--)
if (bw_params->clk_table.entries[j].dcfclk_mhz <= clock_table->DcfClocks[i])
break;
bw_params->clk_table.entries[i].phyclk_mhz = bw_params->clk_table.entries[j].phyclk_mhz;
bw_params->clk_table.entries[i].phyclk_d18_mhz = bw_params->clk_table.entries[j].phyclk_d18_mhz;
bw_params->clk_table.entries[i].dtbclk_mhz = bw_params->clk_table.entries[j].dtbclk_mhz;
/* Now update clocks we do read */
bw_params->clk_table.entries[i].fclk_mhz = min_fclk;
bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[min_pstate].MemClk;
bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[min_pstate].Voltage;
bw_params->clk_table.entries[i].dcfclk_mhz = clock_table->DcfClocks[i];
bw_params->clk_table.entries[i].socclk_mhz = clock_table->SocClocks[i];
bw_params->clk_table.entries[i].dispclk_mhz = max_dispclk;
bw_params->clk_table.entries[i].dppclk_mhz = max_dppclk;
bw_params->clk_table.entries[i].wck_ratio = convert_wck_ratio(
clock_table->DfPstateTable[min_pstate].WckRatio);
}
/* Make sure to include at least one entry at highest pstate */
if (max_pstate != min_pstate || i == 0) {
if (i > MAX_NUM_DPM_LVL - 1)
i = MAX_NUM_DPM_LVL - 1;
bw_params->clk_table.entries[i].fclk_mhz = max_fclk;
bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[max_pstate].MemClk;
bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[max_pstate].Voltage;
bw_params->clk_table.entries[i].dcfclk_mhz = find_max_clk_value(clock_table->DcfClocks, NUM_DCFCLK_DPM_LEVELS);
bw_params->clk_table.entries[i].socclk_mhz = find_max_clk_value(clock_table->SocClocks, NUM_SOCCLK_DPM_LEVELS);
bw_params->clk_table.entries[i].dispclk_mhz = max_dispclk;
bw_params->clk_table.entries[i].dppclk_mhz = max_dppclk;
bw_params->clk_table.entries[i].wck_ratio = convert_wck_ratio(
clock_table->DfPstateTable[max_pstate].WckRatio);
i++;
}
bw_params->clk_table.num_entries = i--;
/* Make sure all highest clocks are included*/
bw_params->clk_table.entries[i].socclk_mhz = find_max_clk_value(clock_table->SocClocks, NUM_SOCCLK_DPM_LEVELS);
bw_params->clk_table.entries[i].dispclk_mhz = find_max_clk_value(clock_table->DispClocks, NUM_DISPCLK_DPM_LEVELS);
bw_params->clk_table.entries[i].dppclk_mhz = find_max_clk_value(clock_table->DppClocks, NUM_DPPCLK_DPM_LEVELS);
ASSERT(clock_table->DcfClocks[i] == find_max_clk_value(clock_table->DcfClocks, NUM_DCFCLK_DPM_LEVELS));
bw_params->clk_table.entries[i].phyclk_mhz = def_max.phyclk_mhz;
bw_params->clk_table.entries[i].phyclk_d18_mhz = def_max.phyclk_d18_mhz;
bw_params->clk_table.entries[i].dtbclk_mhz = def_max.dtbclk_mhz;
/*
* Set any 0 clocks to max default setting. Not an issue for
* power since we aren't doing switching in such case anyway
*/
for (i = 0; i < bw_params->clk_table.num_entries; i++) {
if (!bw_params->clk_table.entries[i].fclk_mhz) {
bw_params->clk_table.entries[i].fclk_mhz = def_max.fclk_mhz;
bw_params->clk_table.entries[i].memclk_mhz = def_max.memclk_mhz;
bw_params->clk_table.entries[i].voltage = def_max.voltage;
}
if (!bw_params->clk_table.entries[i].dcfclk_mhz)
bw_params->clk_table.entries[i].dcfclk_mhz = def_max.dcfclk_mhz;
if (!bw_params->clk_table.entries[i].socclk_mhz)
bw_params->clk_table.entries[i].socclk_mhz = def_max.socclk_mhz;
if (!bw_params->clk_table.entries[i].dispclk_mhz)
bw_params->clk_table.entries[i].dispclk_mhz = def_max.dispclk_mhz;
if (!bw_params->clk_table.entries[i].dppclk_mhz)
bw_params->clk_table.entries[i].dppclk_mhz = def_max.dppclk_mhz;
if (!bw_params->clk_table.entries[i].phyclk_mhz)
bw_params->clk_table.entries[i].phyclk_mhz = def_max.phyclk_mhz;
if (!bw_params->clk_table.entries[i].phyclk_d18_mhz)
bw_params->clk_table.entries[i].phyclk_d18_mhz = def_max.phyclk_d18_mhz;
if (!bw_params->clk_table.entries[i].dtbclk_mhz)
bw_params->clk_table.entries[i].dtbclk_mhz = def_max.dtbclk_mhz;
}
ASSERT(bw_params->clk_table.entries[i-1].dcfclk_mhz);
bw_params->vram_type = bios_info->memory_type;
bw_params->dram_channel_width_bytes = bios_info->memory_type == 0x22 ? 8 : 4;
bw_params->num_channels = bios_info->ma_channel_number ? bios_info->ma_channel_number : 4;
for (i = 0; i < WM_SET_COUNT; i++) {
bw_params->wm_table.entries[i].wm_inst = i;
if (i >= bw_params->clk_table.num_entries) {
bw_params->wm_table.entries[i].valid = false;
continue;
}
bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
bw_params->wm_table.entries[i].valid = true;
}
}
static struct clk_mgr_funcs dcn314_funcs = {
.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
.get_dtb_ref_clk_frequency = dcn31_get_dtb_ref_freq_khz,
.update_clocks = dcn314_update_clocks,
.init_clocks = dcn31_init_clocks,
.enable_pme_wa = dcn314_enable_pme_wa,
.are_clock_states_equal = dcn314_are_clock_states_equal,
.notify_wm_ranges = dcn314_notify_wm_ranges
};
extern struct clk_mgr_funcs dcn3_fpga_funcs;
void dcn314_clk_mgr_construct(
struct dc_context *ctx,
struct clk_mgr_dcn314 *clk_mgr,
struct pp_smu_funcs *pp_smu,
struct dccg *dccg)
{
struct dcn314_smu_dpm_clks smu_dpm_clks = { 0 };
struct clk_log_info log_info = {0};
clk_mgr->base.base.ctx = ctx;
clk_mgr->base.base.funcs = &dcn314_funcs;
clk_mgr->base.pp_smu = pp_smu;
clk_mgr->base.dccg = dccg;
clk_mgr->base.dfs_bypass_disp_clk = 0;
clk_mgr->base.dprefclk_ss_percentage = 0;
clk_mgr->base.dprefclk_ss_divider = 1000;
clk_mgr->base.ss_on_dprefclk = false;
clk_mgr->base.dfs_ref_freq_khz = 48000;
clk_mgr->smu_wm_set.wm_set = (struct dcn314_watermarks *)dm_helpers_allocate_gpu_mem(
clk_mgr->base.base.ctx,
DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
sizeof(struct dcn314_watermarks),
&clk_mgr->smu_wm_set.mc_address.quad_part);
if (!clk_mgr->smu_wm_set.wm_set) {
clk_mgr->smu_wm_set.wm_set = &dummy_wms;
clk_mgr->smu_wm_set.mc_address.quad_part = 0;
}
ASSERT(clk_mgr->smu_wm_set.wm_set);
smu_dpm_clks.dpm_clks = (DpmClocks314_t *)dm_helpers_allocate_gpu_mem(
clk_mgr->base.base.ctx,
DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
sizeof(DpmClocks314_t),
&smu_dpm_clks.mc_address.quad_part);
if (smu_dpm_clks.dpm_clks == NULL) {
smu_dpm_clks.dpm_clks = &dummy_clocks;
smu_dpm_clks.mc_address.quad_part = 0;
}
ASSERT(smu_dpm_clks.dpm_clks);
clk_mgr->base.smu_ver = dcn314_smu_get_smu_version(&clk_mgr->base);
if (clk_mgr->base.smu_ver)
clk_mgr->base.smu_present = true;
/* TODO: Check we get what we expect during bringup */
clk_mgr->base.base.dentist_vco_freq_khz = get_vco_frequency_from_reg(&clk_mgr->base);
if (ctx->dc_bios->integrated_info->memory_type == LpDdr5MemType)
dcn314_bw_params.wm_table = lpddr5_wm_table;
else
dcn314_bw_params.wm_table = ddr5_wm_table;
/* Saved clocks configured at boot for debug purposes */
dcn314_dump_clk_registers(&clk_mgr->base.base.boot_snapshot,
&clk_mgr->base.base, &log_info);
clk_mgr->base.base.dprefclk_khz = 600000;
clk_mgr->base.base.clks.ref_dtbclk_khz = 600000;
dce_clock_read_ss_info(&clk_mgr->base);
/*if bios enabled SS, driver needs to adjust dtb clock, only enable with correct bios*/
clk_mgr->base.base.bw_params = &dcn314_bw_params;
if (clk_mgr->base.base.ctx->dc->debug.pstate_enabled) {
int i;
dcn314_get_dpm_table_from_smu(&clk_mgr->base, &smu_dpm_clks);
DC_LOG_SMU("NumDcfClkLevelsEnabled: %d\n"
"NumDispClkLevelsEnabled: %d\n"
"NumSocClkLevelsEnabled: %d\n"
"VcnClkLevelsEnabled: %d\n"
"NumDfPst atesEnabled: %d\n"
"MinGfxClk: %d\n"
"MaxGfxClk: %d\n",
smu_dpm_clks.dpm_clks->NumDcfClkLevelsEnabled,
smu_dpm_clks.dpm_clks->NumDispClkLevelsEnabled,
smu_dpm_clks.dpm_clks->NumSocClkLevelsEnabled,
smu_dpm_clks.dpm_clks->VcnClkLevelsEnabled,
smu_dpm_clks.dpm_clks->NumDfPstatesEnabled,
smu_dpm_clks.dpm_clks->MinGfxClk,
smu_dpm_clks.dpm_clks->MaxGfxClk);
for (i = 0; i < smu_dpm_clks.dpm_clks->NumDcfClkLevelsEnabled; i++) {
DC_LOG_SMU("smu_dpm_clks.dpm_clks->DcfClocks[%d] = %d\n",
i,
smu_dpm_clks.dpm_clks->DcfClocks[i]);
}
for (i = 0; i < smu_dpm_clks.dpm_clks->NumDispClkLevelsEnabled; i++) {
DC_LOG_SMU("smu_dpm_clks.dpm_clks->DispClocks[%d] = %d\n",
i, smu_dpm_clks.dpm_clks->DispClocks[i]);
}
for (i = 0; i < smu_dpm_clks.dpm_clks->NumSocClkLevelsEnabled; i++) {
DC_LOG_SMU("smu_dpm_clks.dpm_clks->SocClocks[%d] = %d\n",
i, smu_dpm_clks.dpm_clks->SocClocks[i]);
}
for (i = 0; i < NUM_SOC_VOLTAGE_LEVELS; i++)
DC_LOG_SMU("smu_dpm_clks.dpm_clks->SocVoltage[%d] = %d\n",
i, smu_dpm_clks.dpm_clks->SocVoltage[i]);
for (i = 0; i < NUM_DF_PSTATE_LEVELS; i++) {
DC_LOG_SMU("smu_dpm_clks.dpm_clks.DfPstateTable[%d].FClk = %d\n"
"smu_dpm_clks.dpm_clks->DfPstateTable[%d].MemClk= %d\n"
"smu_dpm_clks.dpm_clks->DfPstateTable[%d].Voltage = %d\n",
i, smu_dpm_clks.dpm_clks->DfPstateTable[i].FClk,
i, smu_dpm_clks.dpm_clks->DfPstateTable[i].MemClk,
i, smu_dpm_clks.dpm_clks->DfPstateTable[i].Voltage);
}
if (ctx->dc_bios && ctx->dc_bios->integrated_info && ctx->dc->config.use_default_clock_table == false) {
dcn314_clk_mgr_helper_populate_bw_params(
&clk_mgr->base,
ctx->dc_bios->integrated_info,
smu_dpm_clks.dpm_clks);
}
}
if (smu_dpm_clks.dpm_clks && smu_dpm_clks.mc_address.quad_part != 0)
dm_helpers_free_gpu_mem(clk_mgr->base.base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
smu_dpm_clks.dpm_clks);
}
void dcn314_clk_mgr_destroy(struct clk_mgr_internal *clk_mgr_int)
{
struct clk_mgr_dcn314 *clk_mgr = TO_CLK_MGR_DCN314(clk_mgr_int);
if (clk_mgr->smu_wm_set.wm_set && clk_mgr->smu_wm_set.mc_address.quad_part != 0)
dm_helpers_free_gpu_mem(clk_mgr_int->base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
clk_mgr->smu_wm_set.wm_set);
}
| linux-master | drivers/gpu/drm/amd/display/dc/clk_mgr/dcn314/dcn314_clk_mgr.c |
/*
* Copyright 2020 Mauro Rossi <[email protected]>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
/* include DCE6 register header files */
#include "dce/dce_6_0_d.h"
#include "dce/dce_6_0_sh_mask.h"
#include "dc_types.h"
#include "include/grph_object_id.h"
#include "include/logger_interface.h"
#include "../dce110/dce110_timing_generator.h"
#include "dce60_timing_generator.h"
#include "timing_generator.h"
enum black_color_format {
BLACK_COLOR_FORMAT_RGB_FULLRANGE = 0, /* used as index in array */
BLACK_COLOR_FORMAT_RGB_LIMITED,
BLACK_COLOR_FORMAT_YUV_TV,
BLACK_COLOR_FORMAT_YUV_CV,
BLACK_COLOR_FORMAT_YUV_SUPER_AA,
BLACK_COLOR_FORMAT_COUNT
};
static const struct dce110_timing_generator_offsets reg_offsets[] = {
{
.crtc = (mmCRTC0_DCFE_MEM_LIGHT_SLEEP_CNTL - mmCRTC0_DCFE_MEM_LIGHT_SLEEP_CNTL),
.dcp = (mmDCP0_GRPH_CONTROL - mmDCP0_GRPH_CONTROL),
},
{
.crtc = (mmCRTC1_DCFE_MEM_LIGHT_SLEEP_CNTL - mmCRTC0_DCFE_MEM_LIGHT_SLEEP_CNTL),
.dcp = (mmDCP1_GRPH_CONTROL - mmDCP0_GRPH_CONTROL),
},
{
.crtc = (mmCRTC2_DCFE_MEM_LIGHT_SLEEP_CNTL - mmCRTC0_DCFE_MEM_LIGHT_SLEEP_CNTL),
.dcp = (mmDCP2_GRPH_CONTROL - mmDCP0_GRPH_CONTROL),
},
{
.crtc = (mmCRTC3_DCFE_MEM_LIGHT_SLEEP_CNTL - mmCRTC0_DCFE_MEM_LIGHT_SLEEP_CNTL),
.dcp = (mmDCP3_GRPH_CONTROL - mmDCP0_GRPH_CONTROL),
},
{
.crtc = (mmCRTC4_DCFE_MEM_LIGHT_SLEEP_CNTL - mmCRTC0_DCFE_MEM_LIGHT_SLEEP_CNTL),
.dcp = (mmDCP4_GRPH_CONTROL - mmDCP0_GRPH_CONTROL),
},
{
.crtc = (mmCRTC5_DCFE_MEM_LIGHT_SLEEP_CNTL - mmCRTC0_DCFE_MEM_LIGHT_SLEEP_CNTL),
.dcp = (mmDCP5_GRPH_CONTROL - mmDCP0_GRPH_CONTROL),
}
};
#define NUMBER_OF_FRAME_TO_WAIT_ON_TRIGGERED_RESET 10
#define MAX_H_TOTAL (CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1)
#define MAX_V_TOTAL (CRTC_V_TOTAL__CRTC_V_TOTAL_MASKhw + 1)
#define CRTC_REG(reg) (reg + tg110->offsets.crtc)
#define DCP_REG(reg) (reg + tg110->offsets.dcp)
#define DMIF_REG(reg) (reg + tg110->offsets.dmif)
static void program_pix_dur(struct timing_generator *tg, uint32_t pix_clk_100hz)
{
uint64_t pix_dur;
uint32_t addr = mmDMIF_PG0_DPG_PIPE_ARBITRATION_CONTROL1
+ DCE110TG_FROM_TG(tg)->offsets.dmif;
uint32_t value = dm_read_reg(tg->ctx, addr);
if (pix_clk_100hz == 0)
return;
pix_dur = div_u64(10000000000ull, pix_clk_100hz);
set_reg_field_value(
value,
pix_dur,
DPG_PIPE_ARBITRATION_CONTROL1,
PIXEL_DURATION);
dm_write_reg(tg->ctx, addr, value);
}
static void program_timing(struct timing_generator *tg,
const struct dc_crtc_timing *timing,
int vready_offset,
int vstartup_start,
int vupdate_offset,
int vupdate_width,
const enum signal_type signal,
bool use_vbios)
{
if (!use_vbios)
program_pix_dur(tg, timing->pix_clk_100hz);
dce110_tg_program_timing(tg, timing, 0, 0, 0, 0, 0, use_vbios);
}
static void dce60_timing_generator_enable_advanced_request(
struct timing_generator *tg,
bool enable,
const struct dc_crtc_timing *timing)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t addr = CRTC_REG(mmCRTC_START_LINE_CONTROL);
uint32_t value = dm_read_reg(tg->ctx, addr);
/* DCE6 has CRTC_PREFETCH_EN bit in CRTC_CONTROL register */
uint32_t addr2 = CRTC_REG(mmCRTC_CONTROL);
uint32_t value2 = dm_read_reg(tg->ctx, addr2);
/* DCE6 does not support CRTC_LEGACY_REQUESTOR_EN bit
so here is not possible to set bit based on enable argument */
if ((timing->v_sync_width + timing->v_front_porch) <= 3) {
set_reg_field_value(
value,
3,
CRTC_START_LINE_CONTROL,
CRTC_ADVANCED_START_LINE_POSITION);
set_reg_field_value(
value2,
0,
CRTC_CONTROL,
CRTC_PREFETCH_EN);
} else {
set_reg_field_value(
value,
4,
CRTC_START_LINE_CONTROL,
CRTC_ADVANCED_START_LINE_POSITION);
set_reg_field_value(
value2,
1,
CRTC_CONTROL,
CRTC_PREFETCH_EN);
}
set_reg_field_value(
value,
1,
CRTC_START_LINE_CONTROL,
CRTC_PROGRESSIVE_START_LINE_EARLY);
set_reg_field_value(
value,
1,
CRTC_START_LINE_CONTROL,
CRTC_INTERLACE_START_LINE_EARLY);
dm_write_reg(tg->ctx, addr, value);
dm_write_reg(tg->ctx, addr2, value2);
}
static bool dce60_is_tg_enabled(struct timing_generator *tg)
{
uint32_t addr = 0;
uint32_t value = 0;
uint32_t field = 0;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
addr = CRTC_REG(mmCRTC_CONTROL);
value = dm_read_reg(tg->ctx, addr);
field = get_reg_field_value(value, CRTC_CONTROL,
CRTC_CURRENT_MASTER_EN_STATE);
return field == 1;
}
static bool dce60_configure_crc(struct timing_generator *tg,
const struct crc_params *params)
{
/* Cannot configure crc on a CRTC that is disabled */
if (!dce60_is_tg_enabled(tg))
return false;
/* DCE6 has no CRTC_CRC_CNTL register, nothing to do */
return true;
}
static const struct timing_generator_funcs dce60_tg_funcs = {
.validate_timing = dce110_tg_validate_timing,
.program_timing = program_timing,
.enable_crtc = dce110_timing_generator_enable_crtc,
.disable_crtc = dce110_timing_generator_disable_crtc,
.is_counter_moving = dce110_timing_generator_is_counter_moving,
.get_position = dce110_timing_generator_get_position,
.get_frame_count = dce110_timing_generator_get_vblank_counter,
.get_scanoutpos = dce110_timing_generator_get_crtc_scanoutpos,
.set_early_control = dce110_timing_generator_set_early_control,
.wait_for_state = dce110_tg_wait_for_state,
.set_blank = dce110_tg_set_blank,
.is_blanked = dce110_tg_is_blanked,
.set_colors = dce110_tg_set_colors,
.set_overscan_blank_color =
dce110_timing_generator_set_overscan_color_black,
.set_blank_color = dce110_timing_generator_program_blank_color,
.disable_vga = dce110_timing_generator_disable_vga,
.did_triggered_reset_occur =
dce110_timing_generator_did_triggered_reset_occur,
.setup_global_swap_lock =
dce110_timing_generator_setup_global_swap_lock,
.enable_reset_trigger = dce110_timing_generator_enable_reset_trigger,
.disable_reset_trigger = dce110_timing_generator_disable_reset_trigger,
.tear_down_global_swap_lock =
dce110_timing_generator_tear_down_global_swap_lock,
.set_drr = dce110_timing_generator_set_drr,
.set_static_screen_control =
dce110_timing_generator_set_static_screen_control,
.set_test_pattern = dce110_timing_generator_set_test_pattern,
.arm_vert_intr = dce110_arm_vert_intr,
/* DCE6.0 overrides */
.enable_advanced_request =
dce60_timing_generator_enable_advanced_request,
.configure_crc = dce60_configure_crc,
.get_crc = dce110_get_crc,
};
void dce60_timing_generator_construct(
struct dce110_timing_generator *tg110,
struct dc_context *ctx,
uint32_t instance,
const struct dce110_timing_generator_offsets *offsets)
{
tg110->controller_id = CONTROLLER_ID_D0 + instance;
tg110->base.inst = instance;
tg110->offsets = *offsets;
tg110->derived_offsets = reg_offsets[instance];
tg110->base.funcs = &dce60_tg_funcs;
tg110->base.ctx = ctx;
tg110->base.bp = ctx->dc_bios;
tg110->max_h_total = CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1;
tg110->max_v_total = CRTC_V_TOTAL__CRTC_V_TOTAL_MASK + 1;
tg110->min_h_blank = 56;
tg110->min_h_front_porch = 4;
tg110->min_h_back_porch = 4;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dce60/dce60_timing_generator.c |
/*
* Copyright 2020 Mauro Rossi <[email protected]>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dc.h"
#include "core_types.h"
#include "dce60_hw_sequencer.h"
#include "dce/dce_hwseq.h"
#include "dce110/dce110_hw_sequencer.h"
#include "dce100/dce100_hw_sequencer.h"
/* include DCE6 register header files */
#include "dce/dce_6_0_d.h"
#include "dce/dce_6_0_sh_mask.h"
#define DC_LOGGER_INIT()
/*******************************************************************************
* Private definitions
******************************************************************************/
/***************************PIPE_CONTROL***********************************/
/*
* Check if FBC can be enabled
*/
static bool dce60_should_enable_fbc(struct dc *dc,
struct dc_state *context,
uint32_t *pipe_idx)
{
uint32_t i;
struct pipe_ctx *pipe_ctx = NULL;
struct resource_context *res_ctx = &context->res_ctx;
unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
ASSERT(dc->fbc_compressor);
/* FBC memory should be allocated */
if (!dc->ctx->fbc_gpu_addr)
return false;
/* Only supports single display */
if (context->stream_count != 1)
return false;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
if (res_ctx->pipe_ctx[i].stream) {
pipe_ctx = &res_ctx->pipe_ctx[i];
if (!pipe_ctx)
continue;
/* fbc not applicable on underlay pipe */
if (pipe_ctx->pipe_idx != underlay_idx) {
*pipe_idx = i;
break;
}
}
}
if (i == dc->res_pool->pipe_count)
return false;
if (!pipe_ctx->stream->link)
return false;
/* Only supports eDP */
if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
return false;
/* PSR should not be enabled */
if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
return false;
/* Nothing to compress */
if (!pipe_ctx->plane_state)
return false;
/* Only for non-linear tiling */
if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
return false;
return true;
}
/*
* Enable FBC
*/
static void dce60_enable_fbc(
struct dc *dc,
struct dc_state *context)
{
uint32_t pipe_idx = 0;
if (dce60_should_enable_fbc(dc, context, &pipe_idx)) {
/* Program GRPH COMPRESSED ADDRESS and PITCH */
struct compr_addr_and_pitch_params params = {0, 0, 0};
struct compressor *compr = dc->fbc_compressor;
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
params.source_view_width = pipe_ctx->stream->timing.h_addressable;
params.source_view_height = pipe_ctx->stream->timing.v_addressable;
params.inst = pipe_ctx->stream_res.tg->inst;
compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
compr->funcs->surface_address_and_pitch(compr, ¶ms);
compr->funcs->set_fbc_invalidation_triggers(compr, 1);
compr->funcs->enable_fbc(compr, ¶ms);
}
}
/*******************************************************************************
* Front End programming
******************************************************************************/
static void dce60_set_default_colors(struct pipe_ctx *pipe_ctx)
{
struct default_adjustment default_adjust = { 0 };
default_adjust.force_hw_default = false;
default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
/* display color depth */
default_adjust.color_depth =
pipe_ctx->stream->timing.display_color_depth;
/* Lb color depth */
default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
pipe_ctx->plane_res.xfm, &default_adjust);
}
/*******************************************************************************
* In order to turn on surface we will program
* CRTC
*
* DCE6 has no bottom_pipe and no Blender HW
* We need to set 'blank_target' to false in order to turn on the display
*
* |-----------|------------|---------|
* |curr pipe | set_blank | |
* |Surface |blank_target| CRCT |
* |visibility | argument | |
* |-----------|------------|---------|
* | off | true | blank |
* | on | false | unblank |
* |-----------|------------|---------|
*
******************************************************************************/
static void dce60_program_surface_visibility(const struct dc *dc,
struct pipe_ctx *pipe_ctx)
{
bool blank_target = false;
/* DCE6 has no bottom_pipe and no Blender HW */
if (!pipe_ctx->plane_state->visible)
blank_target = true;
/* DCE6 skip dce_set_blender_mode() but then proceed to 'unblank' CRTC */
pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
}
static void dce60_get_surface_visual_confirm_color(const struct pipe_ctx *pipe_ctx,
struct tg_color *color)
{
uint32_t color_value = MAX_TG_COLOR_VALUE * (4 - pipe_ctx->stream_res.tg->inst) / 4;
switch (pipe_ctx->plane_res.scl_data.format) {
case PIXEL_FORMAT_ARGB8888:
/* set boarder color to red */
color->color_r_cr = color_value;
break;
case PIXEL_FORMAT_ARGB2101010:
/* set boarder color to blue */
color->color_b_cb = color_value;
break;
case PIXEL_FORMAT_420BPP8:
/* set boarder color to green */
color->color_g_y = color_value;
break;
case PIXEL_FORMAT_420BPP10:
/* set boarder color to yellow */
color->color_g_y = color_value;
color->color_r_cr = color_value;
break;
case PIXEL_FORMAT_FP16:
/* set boarder color to white */
color->color_r_cr = color_value;
color->color_b_cb = color_value;
color->color_g_y = color_value;
break;
default:
break;
}
}
static void dce60_program_scaler(const struct dc *dc,
const struct pipe_ctx *pipe_ctx)
{
struct tg_color color = {0};
/* DCE6 skips DCN TOFPGA check for transform_set_pixel_storage_depth == NULL */
if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
dce60_get_surface_visual_confirm_color(pipe_ctx, &color);
else
color_space_to_black_color(dc,
pipe_ctx->stream->output_color_space,
&color);
pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
pipe_ctx->plane_res.xfm,
pipe_ctx->plane_res.scl_data.lb_params.depth,
&pipe_ctx->stream->bit_depth_params);
if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
/*
* The way 420 is packed, 2 channels carry Y component, 1 channel
* alternate between Cb and Cr, so both channels need the pixel
* value for Y
*/
if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
color.color_r_cr = color.color_g_y;
pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
pipe_ctx->stream_res.tg,
&color);
}
pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
&pipe_ctx->plane_res.scl_data);
}
static void
dce60_program_front_end_for_pipe(
struct dc *dc, struct pipe_ctx *pipe_ctx)
{
struct mem_input *mi = pipe_ctx->plane_res.mi;
struct dc_plane_state *plane_state = pipe_ctx->plane_state;
struct xfm_grph_csc_adjustment adjust;
struct out_csc_color_matrix tbl_entry;
unsigned int i;
struct dce_hwseq *hws = dc->hwseq;
DC_LOGGER_INIT();
memset(&tbl_entry, 0, sizeof(tbl_entry));
memset(&adjust, 0, sizeof(adjust));
adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
dce_enable_fe_clock(dc->hwseq, mi->inst, true);
dce60_set_default_colors(pipe_ctx);
if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
== true) {
tbl_entry.color_space =
pipe_ctx->stream->output_color_space;
for (i = 0; i < 12; i++)
tbl_entry.regval[i] =
pipe_ctx->stream->csc_color_matrix.matrix[i];
pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
(pipe_ctx->plane_res.xfm, &tbl_entry);
}
if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
adjust.temperature_matrix[i] =
pipe_ctx->stream->gamut_remap_matrix.matrix[i];
}
pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
dce60_program_scaler(dc, pipe_ctx);
mi->funcs->mem_input_program_surface_config(
mi,
plane_state->format,
&plane_state->tiling_info,
&plane_state->plane_size,
plane_state->rotation,
NULL,
false);
if (mi->funcs->set_blank)
mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
if (dc->config.gpu_vm_support)
mi->funcs->mem_input_program_pte_vm(
pipe_ctx->plane_res.mi,
plane_state->format,
&plane_state->tiling_info,
plane_state->rotation);
/* Moved programming gamma from dc to hwss */
if (pipe_ctx->plane_state->update_flags.bits.full_update ||
pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
pipe_ctx->plane_state->update_flags.bits.gamma_change)
hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
if (pipe_ctx->plane_state->update_flags.bits.full_update)
hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
DC_LOG_SURFACE(
"Pipe:%d %p: addr hi:0x%x, "
"addr low:0x%x, "
"src: %d, %d, %d,"
" %d; dst: %d, %d, %d, %d;"
"clip: %d, %d, %d, %d\n",
pipe_ctx->pipe_idx,
(void *) pipe_ctx->plane_state,
pipe_ctx->plane_state->address.grph.addr.high_part,
pipe_ctx->plane_state->address.grph.addr.low_part,
pipe_ctx->plane_state->src_rect.x,
pipe_ctx->plane_state->src_rect.y,
pipe_ctx->plane_state->src_rect.width,
pipe_ctx->plane_state->src_rect.height,
pipe_ctx->plane_state->dst_rect.x,
pipe_ctx->plane_state->dst_rect.y,
pipe_ctx->plane_state->dst_rect.width,
pipe_ctx->plane_state->dst_rect.height,
pipe_ctx->plane_state->clip_rect.x,
pipe_ctx->plane_state->clip_rect.y,
pipe_ctx->plane_state->clip_rect.width,
pipe_ctx->plane_state->clip_rect.height);
DC_LOG_SURFACE(
"Pipe %d: width, height, x, y\n"
"viewport:%d, %d, %d, %d\n"
"recout: %d, %d, %d, %d\n",
pipe_ctx->pipe_idx,
pipe_ctx->plane_res.scl_data.viewport.width,
pipe_ctx->plane_res.scl_data.viewport.height,
pipe_ctx->plane_res.scl_data.viewport.x,
pipe_ctx->plane_res.scl_data.viewport.y,
pipe_ctx->plane_res.scl_data.recout.width,
pipe_ctx->plane_res.scl_data.recout.height,
pipe_ctx->plane_res.scl_data.recout.x,
pipe_ctx->plane_res.scl_data.recout.y);
}
static void dce60_apply_ctx_for_surface(
struct dc *dc,
const struct dc_stream_state *stream,
int num_planes,
struct dc_state *context)
{
int i;
if (num_planes == 0)
return;
if (dc->fbc_compressor)
dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->stream != stream)
continue;
/* Need to allocate mem before program front end for Fiji */
pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
pipe_ctx->plane_res.mi,
pipe_ctx->stream->timing.h_total,
pipe_ctx->stream->timing.v_total,
pipe_ctx->stream->timing.pix_clk_100hz / 10,
context->stream_count);
dce60_program_front_end_for_pipe(dc, pipe_ctx);
dc->hwss.update_plane_addr(dc, pipe_ctx);
dce60_program_surface_visibility(dc, pipe_ctx);
}
if (dc->fbc_compressor)
dce60_enable_fbc(dc, context);
}
void dce60_hw_sequencer_construct(struct dc *dc)
{
dce110_hw_sequencer_construct(dc);
dc->hwseq->funcs.enable_display_power_gating = dce100_enable_display_power_gating;
dc->hwss.apply_ctx_for_surface = dce60_apply_ctx_for_surface;
dc->hwss.cursor_lock = dce60_pipe_control_lock;
dc->hwss.pipe_control_lock = dce60_pipe_control_lock;
dc->hwss.prepare_bandwidth = dce100_prepare_bandwidth;
dc->hwss.optimize_bandwidth = dce100_optimize_bandwidth;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dce60/dce60_hw_sequencer.c |
/*
* Copyright 2020 Mauro Rossi <[email protected]>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include <linux/slab.h>
#include "dce/dce_6_0_d.h"
#include "dce/dce_6_0_sh_mask.h"
#include "dm_services.h"
#include "link_encoder.h"
#include "stream_encoder.h"
#include "resource.h"
#include "include/irq_service_interface.h"
#include "irq/dce60/irq_service_dce60.h"
#include "dce110/dce110_timing_generator.h"
#include "dce110/dce110_resource.h"
#include "dce60/dce60_timing_generator.h"
#include "dce/dce_mem_input.h"
#include "dce/dce_link_encoder.h"
#include "dce/dce_stream_encoder.h"
#include "dce/dce_ipp.h"
#include "dce/dce_transform.h"
#include "dce/dce_opp.h"
#include "dce/dce_clock_source.h"
#include "dce/dce_audio.h"
#include "dce/dce_hwseq.h"
#include "dce60/dce60_hw_sequencer.h"
#include "dce100/dce100_resource.h"
#include "dce/dce_panel_cntl.h"
#include "reg_helper.h"
#include "dce/dce_dmcu.h"
#include "dce/dce_aux.h"
#include "dce/dce_abm.h"
#include "dce/dce_i2c.h"
/* TODO remove this include */
#include "dce60_resource.h"
#ifndef mmMC_HUB_RDREQ_DMIF_LIMIT
#include "gmc/gmc_6_0_d.h"
#include "gmc/gmc_6_0_sh_mask.h"
#endif
#ifndef mmDP_DPHY_INTERNAL_CTRL
#define mmDP_DPHY_INTERNAL_CTRL 0x1CDE
#define mmDP0_DP_DPHY_INTERNAL_CTRL 0x1CDE
#define mmDP1_DP_DPHY_INTERNAL_CTRL 0x1FDE
#define mmDP2_DP_DPHY_INTERNAL_CTRL 0x42DE
#define mmDP3_DP_DPHY_INTERNAL_CTRL 0x45DE
#define mmDP4_DP_DPHY_INTERNAL_CTRL 0x48DE
#define mmDP5_DP_DPHY_INTERNAL_CTRL 0x4BDE
#endif
#ifndef mmBIOS_SCRATCH_2
#define mmBIOS_SCRATCH_2 0x05CB
#define mmBIOS_SCRATCH_3 0x05CC
#define mmBIOS_SCRATCH_6 0x05CF
#endif
#ifndef mmDP_DPHY_FAST_TRAINING
#define mmDP_DPHY_FAST_TRAINING 0x1CCE
#define mmDP0_DP_DPHY_FAST_TRAINING 0x1CCE
#define mmDP1_DP_DPHY_FAST_TRAINING 0x1FCE
#define mmDP2_DP_DPHY_FAST_TRAINING 0x42CE
#define mmDP3_DP_DPHY_FAST_TRAINING 0x45CE
#define mmDP4_DP_DPHY_FAST_TRAINING 0x48CE
#define mmDP5_DP_DPHY_FAST_TRAINING 0x4BCE
#endif
#ifndef mmHPD_DC_HPD_CONTROL
#define mmHPD_DC_HPD_CONTROL 0x189A
#define mmHPD0_DC_HPD_CONTROL 0x189A
#define mmHPD1_DC_HPD_CONTROL 0x18A2
#define mmHPD2_DC_HPD_CONTROL 0x18AA
#define mmHPD3_DC_HPD_CONTROL 0x18B2
#define mmHPD4_DC_HPD_CONTROL 0x18BA
#define mmHPD5_DC_HPD_CONTROL 0x18C2
#endif
#define DCE11_DIG_FE_CNTL 0x4a00
#define DCE11_DIG_BE_CNTL 0x4a47
#define DCE11_DP_SEC 0x4ac3
static const struct dce110_timing_generator_offsets dce60_tg_offsets[] = {
{
.crtc = (mmCRTC0_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmGRPH_CONTROL - mmGRPH_CONTROL),
.dmif = (mmDMIF_PG0_DPG_PIPE_ARBITRATION_CONTROL3
- mmDPG_PIPE_ARBITRATION_CONTROL3),
},
{
.crtc = (mmCRTC1_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP1_GRPH_CONTROL - mmGRPH_CONTROL),
.dmif = (mmDMIF_PG1_DPG_PIPE_ARBITRATION_CONTROL3
- mmDPG_PIPE_ARBITRATION_CONTROL3),
},
{
.crtc = (mmCRTC2_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP2_GRPH_CONTROL - mmGRPH_CONTROL),
.dmif = (mmDMIF_PG2_DPG_PIPE_ARBITRATION_CONTROL3
- mmDPG_PIPE_ARBITRATION_CONTROL3),
},
{
.crtc = (mmCRTC3_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP3_GRPH_CONTROL - mmGRPH_CONTROL),
.dmif = (mmDMIF_PG3_DPG_PIPE_ARBITRATION_CONTROL3
- mmDPG_PIPE_ARBITRATION_CONTROL3),
},
{
.crtc = (mmCRTC4_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP4_GRPH_CONTROL - mmGRPH_CONTROL),
.dmif = (mmDMIF_PG4_DPG_PIPE_ARBITRATION_CONTROL3
- mmDPG_PIPE_ARBITRATION_CONTROL3),
},
{
.crtc = (mmCRTC5_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP5_GRPH_CONTROL - mmGRPH_CONTROL),
.dmif = (mmDMIF_PG5_DPG_PIPE_ARBITRATION_CONTROL3
- mmDPG_PIPE_ARBITRATION_CONTROL3),
}
};
/* set register offset */
#define SR(reg_name)\
.reg_name = mm ## reg_name
/* set register offset with instance */
#define SRI(reg_name, block, id)\
.reg_name = mm ## block ## id ## _ ## reg_name
#define ipp_regs(id)\
[id] = {\
IPP_COMMON_REG_LIST_DCE_BASE(id)\
}
static const struct dce_ipp_registers ipp_regs[] = {
ipp_regs(0),
ipp_regs(1),
ipp_regs(2),
ipp_regs(3),
ipp_regs(4),
ipp_regs(5)
};
static const struct dce_ipp_shift ipp_shift = {
IPP_DCE60_MASK_SH_LIST_DCE_COMMON_BASE(__SHIFT)
};
static const struct dce_ipp_mask ipp_mask = {
IPP_DCE60_MASK_SH_LIST_DCE_COMMON_BASE(_MASK)
};
#define transform_regs(id)\
[id] = {\
XFM_COMMON_REG_LIST_DCE60(id)\
}
static const struct dce_transform_registers xfm_regs[] = {
transform_regs(0),
transform_regs(1),
transform_regs(2),
transform_regs(3),
transform_regs(4),
transform_regs(5)
};
static const struct dce_transform_shift xfm_shift = {
XFM_COMMON_MASK_SH_LIST_DCE60(__SHIFT)
};
static const struct dce_transform_mask xfm_mask = {
XFM_COMMON_MASK_SH_LIST_DCE60(_MASK)
};
#define aux_regs(id)\
[id] = {\
AUX_REG_LIST(id)\
}
static const struct dce110_link_enc_aux_registers link_enc_aux_regs[] = {
aux_regs(0),
aux_regs(1),
aux_regs(2),
aux_regs(3),
aux_regs(4),
aux_regs(5)
};
#define hpd_regs(id)\
[id] = {\
HPD_REG_LIST(id)\
}
static const struct dce110_link_enc_hpd_registers link_enc_hpd_regs[] = {
hpd_regs(0),
hpd_regs(1),
hpd_regs(2),
hpd_regs(3),
hpd_regs(4),
hpd_regs(5)
};
#define link_regs(id)\
[id] = {\
LE_DCE60_REG_LIST(id)\
}
static const struct dce110_link_enc_registers link_enc_regs[] = {
link_regs(0),
link_regs(1),
link_regs(2),
link_regs(3),
link_regs(4),
link_regs(5)
};
#define stream_enc_regs(id)\
[id] = {\
SE_COMMON_REG_LIST_DCE_BASE(id),\
.AFMT_CNTL = 0,\
}
static const struct dce110_stream_enc_registers stream_enc_regs[] = {
stream_enc_regs(0),
stream_enc_regs(1),
stream_enc_regs(2),
stream_enc_regs(3),
stream_enc_regs(4),
stream_enc_regs(5)
};
static const struct dce_stream_encoder_shift se_shift = {
SE_COMMON_MASK_SH_LIST_DCE80_100(__SHIFT)
};
static const struct dce_stream_encoder_mask se_mask = {
SE_COMMON_MASK_SH_LIST_DCE80_100(_MASK)
};
static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
{ DCE_PANEL_CNTL_REG_LIST() }
};
static const struct dce_panel_cntl_shift panel_cntl_shift = {
DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
};
static const struct dce_panel_cntl_mask panel_cntl_mask = {
DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
};
#define opp_regs(id)\
[id] = {\
OPP_DCE_60_REG_LIST(id),\
}
static const struct dce_opp_registers opp_regs[] = {
opp_regs(0),
opp_regs(1),
opp_regs(2),
opp_regs(3),
opp_regs(4),
opp_regs(5)
};
static const struct dce_opp_shift opp_shift = {
OPP_COMMON_MASK_SH_LIST_DCE_60(__SHIFT)
};
static const struct dce_opp_mask opp_mask = {
OPP_COMMON_MASK_SH_LIST_DCE_60(_MASK)
};
static const struct dce110_aux_registers_shift aux_shift = {
DCE10_AUX_MASK_SH_LIST(__SHIFT)
};
static const struct dce110_aux_registers_mask aux_mask = {
DCE10_AUX_MASK_SH_LIST(_MASK)
};
#define aux_engine_regs(id)\
[id] = {\
AUX_COMMON_REG_LIST(id), \
.AUX_RESET_MASK = 0 \
}
static const struct dce110_aux_registers aux_engine_regs[] = {
aux_engine_regs(0),
aux_engine_regs(1),
aux_engine_regs(2),
aux_engine_regs(3),
aux_engine_regs(4),
aux_engine_regs(5)
};
#define audio_regs(id)\
[id] = {\
AUD_COMMON_REG_LIST(id)\
}
static const struct dce_audio_registers audio_regs[] = {
audio_regs(0),
audio_regs(1),
audio_regs(2),
audio_regs(3),
audio_regs(4),
audio_regs(5),
};
static const struct dce_audio_shift audio_shift = {
AUD_DCE60_MASK_SH_LIST(__SHIFT)
};
static const struct dce_audio_mask audio_mask = {
AUD_DCE60_MASK_SH_LIST(_MASK)
};
#define clk_src_regs(id)\
[id] = {\
CS_COMMON_REG_LIST_DCE_80(id),\
}
static const struct dce110_clk_src_regs clk_src_regs[] = {
clk_src_regs(0),
clk_src_regs(1),
clk_src_regs(2)
};
static const struct dce110_clk_src_shift cs_shift = {
CS_COMMON_MASK_SH_LIST_DCE_COMMON_BASE(__SHIFT)
};
static const struct dce110_clk_src_mask cs_mask = {
CS_COMMON_MASK_SH_LIST_DCE_COMMON_BASE(_MASK)
};
static const struct bios_registers bios_regs = {
.BIOS_SCRATCH_3 = mmBIOS_SCRATCH_3,
.BIOS_SCRATCH_6 = mmBIOS_SCRATCH_6
};
static const struct resource_caps res_cap = {
.num_timing_generator = 6,
.num_audio = 6,
.num_stream_encoder = 6,
.num_pll = 2,
.num_ddc = 6,
};
static const struct resource_caps res_cap_61 = {
.num_timing_generator = 4,
.num_audio = 6,
.num_stream_encoder = 6,
.num_pll = 3,
.num_ddc = 6,
};
static const struct resource_caps res_cap_64 = {
.num_timing_generator = 2,
.num_audio = 2,
.num_stream_encoder = 2,
.num_pll = 2,
.num_ddc = 2,
};
static const struct dc_plane_cap plane_cap = {
.type = DC_PLANE_TYPE_DCE_RGB,
.pixel_format_support = {
.argb8888 = true,
.nv12 = false,
.fp16 = false
},
.max_upscale_factor = {
.argb8888 = 16000,
.nv12 = 1,
.fp16 = 1
},
.max_downscale_factor = {
.argb8888 = 250,
.nv12 = 1,
.fp16 = 1
}
};
static const struct dce_dmcu_registers dmcu_regs = {
DMCU_DCE60_REG_LIST()
};
static const struct dce_dmcu_shift dmcu_shift = {
DMCU_MASK_SH_LIST_DCE60(__SHIFT)
};
static const struct dce_dmcu_mask dmcu_mask = {
DMCU_MASK_SH_LIST_DCE60(_MASK)
};
static const struct dce_abm_registers abm_regs = {
ABM_DCE110_COMMON_REG_LIST()
};
static const struct dce_abm_shift abm_shift = {
ABM_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_abm_mask abm_mask = {
ABM_MASK_SH_LIST_DCE110(_MASK)
};
#define CTX ctx
#define REG(reg) mm ## reg
#ifndef mmCC_DC_HDMI_STRAPS
#define mmCC_DC_HDMI_STRAPS 0x1918
#define CC_DC_HDMI_STRAPS__HDMI_DISABLE_MASK 0x40
#define CC_DC_HDMI_STRAPS__HDMI_DISABLE__SHIFT 0x6
#define CC_DC_HDMI_STRAPS__AUDIO_STREAM_NUMBER_MASK 0x700
#define CC_DC_HDMI_STRAPS__AUDIO_STREAM_NUMBER__SHIFT 0x8
#endif
static int map_transmitter_id_to_phy_instance(
enum transmitter transmitter)
{
switch (transmitter) {
case TRANSMITTER_UNIPHY_A:
return 0;
case TRANSMITTER_UNIPHY_B:
return 1;
case TRANSMITTER_UNIPHY_C:
return 2;
case TRANSMITTER_UNIPHY_D:
return 3;
case TRANSMITTER_UNIPHY_E:
return 4;
case TRANSMITTER_UNIPHY_F:
return 5;
case TRANSMITTER_UNIPHY_G:
return 6;
default:
ASSERT(0);
return 0;
}
}
static void read_dce_straps(
struct dc_context *ctx,
struct resource_straps *straps)
{
REG_GET_2(CC_DC_HDMI_STRAPS,
HDMI_DISABLE, &straps->hdmi_disable,
AUDIO_STREAM_NUMBER, &straps->audio_stream_number);
REG_GET(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO, &straps->dc_pinstraps_audio);
}
static struct audio *create_audio(
struct dc_context *ctx, unsigned int inst)
{
return dce60_audio_create(ctx, inst,
&audio_regs[inst], &audio_shift, &audio_mask);
}
static struct timing_generator *dce60_timing_generator_create(
struct dc_context *ctx,
uint32_t instance,
const struct dce110_timing_generator_offsets *offsets)
{
struct dce110_timing_generator *tg110 =
kzalloc(sizeof(struct dce110_timing_generator), GFP_KERNEL);
if (!tg110)
return NULL;
dce60_timing_generator_construct(tg110, ctx, instance, offsets);
return &tg110->base;
}
static struct output_pixel_processor *dce60_opp_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce110_opp *opp =
kzalloc(sizeof(struct dce110_opp), GFP_KERNEL);
if (!opp)
return NULL;
dce60_opp_construct(opp,
ctx, inst, &opp_regs[inst], &opp_shift, &opp_mask);
return &opp->base;
}
static struct dce_aux *dce60_aux_engine_create(
struct dc_context *ctx,
uint32_t inst)
{
struct aux_engine_dce110 *aux_engine =
kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
if (!aux_engine)
return NULL;
dce110_aux_engine_construct(aux_engine, ctx, inst,
SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
&aux_engine_regs[inst],
&aux_mask,
&aux_shift,
ctx->dc->caps.extended_aux_timeout_support);
return &aux_engine->base;
}
#define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) }
static const struct dce_i2c_registers i2c_hw_regs[] = {
i2c_inst_regs(1),
i2c_inst_regs(2),
i2c_inst_regs(3),
i2c_inst_regs(4),
i2c_inst_regs(5),
i2c_inst_regs(6),
};
static const struct dce_i2c_shift i2c_shifts = {
I2C_COMMON_MASK_SH_LIST_DCE_COMMON_BASE(__SHIFT)
};
static const struct dce_i2c_mask i2c_masks = {
I2C_COMMON_MASK_SH_LIST_DCE_COMMON_BASE(_MASK)
};
static struct dce_i2c_hw *dce60_i2c_hw_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_i2c_hw *dce_i2c_hw =
kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
if (!dce_i2c_hw)
return NULL;
dce_i2c_hw_construct(dce_i2c_hw, ctx, inst,
&i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
return dce_i2c_hw;
}
static struct dce_i2c_sw *dce60_i2c_sw_create(
struct dc_context *ctx)
{
struct dce_i2c_sw *dce_i2c_sw =
kzalloc(sizeof(struct dce_i2c_sw), GFP_KERNEL);
if (!dce_i2c_sw)
return NULL;
dce_i2c_sw_construct(dce_i2c_sw, ctx);
return dce_i2c_sw;
}
static struct stream_encoder *dce60_stream_encoder_create(
enum engine_id eng_id,
struct dc_context *ctx)
{
struct dce110_stream_encoder *enc110 =
kzalloc(sizeof(struct dce110_stream_encoder), GFP_KERNEL);
if (!enc110)
return NULL;
dce110_stream_encoder_construct(enc110, ctx, ctx->dc_bios, eng_id,
&stream_enc_regs[eng_id],
&se_shift, &se_mask);
return &enc110->base;
}
#define SRII(reg_name, block, id)\
.reg_name[id] = mm ## block ## id ## _ ## reg_name
static const struct dce_hwseq_registers hwseq_reg = {
HWSEQ_DCE6_REG_LIST()
};
static const struct dce_hwseq_shift hwseq_shift = {
HWSEQ_DCE6_MASK_SH_LIST(__SHIFT)
};
static const struct dce_hwseq_mask hwseq_mask = {
HWSEQ_DCE6_MASK_SH_LIST(_MASK)
};
static struct dce_hwseq *dce60_hwseq_create(
struct dc_context *ctx)
{
struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
if (hws) {
hws->ctx = ctx;
hws->regs = &hwseq_reg;
hws->shifts = &hwseq_shift;
hws->masks = &hwseq_mask;
}
return hws;
}
static const struct resource_create_funcs res_create_funcs = {
.read_dce_straps = read_dce_straps,
.create_audio = create_audio,
.create_stream_encoder = dce60_stream_encoder_create,
.create_hwseq = dce60_hwseq_create,
};
#define mi_inst_regs(id) { \
MI_DCE6_REG_LIST(id), \
.MC_HUB_RDREQ_DMIF_LIMIT = mmMC_HUB_RDREQ_DMIF_LIMIT \
}
static const struct dce_mem_input_registers mi_regs[] = {
mi_inst_regs(0),
mi_inst_regs(1),
mi_inst_regs(2),
mi_inst_regs(3),
mi_inst_regs(4),
mi_inst_regs(5),
};
static const struct dce_mem_input_shift mi_shifts = {
MI_DCE6_MASK_SH_LIST(__SHIFT),
.ENABLE = MC_HUB_RDREQ_DMIF_LIMIT__ENABLE__SHIFT
};
static const struct dce_mem_input_mask mi_masks = {
MI_DCE6_MASK_SH_LIST(_MASK),
.ENABLE = MC_HUB_RDREQ_DMIF_LIMIT__ENABLE_MASK
};
static struct mem_input *dce60_mem_input_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_mem_input *dce_mi = kzalloc(sizeof(struct dce_mem_input),
GFP_KERNEL);
if (!dce_mi) {
BREAK_TO_DEBUGGER();
return NULL;
}
dce60_mem_input_construct(dce_mi, ctx, inst, &mi_regs[inst], &mi_shifts, &mi_masks);
dce_mi->wa.single_head_rdreq_dmif_limit = 2;
return &dce_mi->base;
}
static void dce60_transform_destroy(struct transform **xfm)
{
kfree(TO_DCE_TRANSFORM(*xfm));
*xfm = NULL;
}
static struct transform *dce60_transform_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_transform *transform =
kzalloc(sizeof(struct dce_transform), GFP_KERNEL);
if (!transform)
return NULL;
dce60_transform_construct(transform, ctx, inst,
&xfm_regs[inst], &xfm_shift, &xfm_mask);
transform->prescaler_on = false;
return &transform->base;
}
static const struct encoder_feature_support link_enc_feature = {
.max_hdmi_deep_color = COLOR_DEPTH_121212,
.max_hdmi_pixel_clock = 297000,
.flags.bits.IS_HBR2_CAPABLE = true,
.flags.bits.IS_TPS3_CAPABLE = true
};
static struct link_encoder *dce60_link_encoder_create(
struct dc_context *ctx,
const struct encoder_init_data *enc_init_data)
{
struct dce110_link_encoder *enc110 =
kzalloc(sizeof(struct dce110_link_encoder), GFP_KERNEL);
int link_regs_id;
if (!enc110)
return NULL;
link_regs_id =
map_transmitter_id_to_phy_instance(enc_init_data->transmitter);
dce60_link_encoder_construct(enc110,
enc_init_data,
&link_enc_feature,
&link_enc_regs[link_regs_id],
&link_enc_aux_regs[enc_init_data->channel - 1],
&link_enc_hpd_regs[enc_init_data->hpd_source]);
return &enc110->base;
}
static struct panel_cntl *dce60_panel_cntl_create(const struct panel_cntl_init_data *init_data)
{
struct dce_panel_cntl *panel_cntl =
kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
if (!panel_cntl)
return NULL;
dce_panel_cntl_construct(panel_cntl,
init_data,
&panel_cntl_regs[init_data->inst],
&panel_cntl_shift,
&panel_cntl_mask);
return &panel_cntl->base;
}
static struct clock_source *dce60_clock_source_create(
struct dc_context *ctx,
struct dc_bios *bios,
enum clock_source_id id,
const struct dce110_clk_src_regs *regs,
bool dp_clk_src)
{
struct dce110_clk_src *clk_src =
kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
if (!clk_src)
return NULL;
if (dce110_clk_src_construct(clk_src, ctx, bios, id,
regs, &cs_shift, &cs_mask)) {
clk_src->base.dp_clk_src = dp_clk_src;
return &clk_src->base;
}
kfree(clk_src);
BREAK_TO_DEBUGGER();
return NULL;
}
static void dce60_clock_source_destroy(struct clock_source **clk_src)
{
kfree(TO_DCE110_CLK_SRC(*clk_src));
*clk_src = NULL;
}
static struct input_pixel_processor *dce60_ipp_create(
struct dc_context *ctx, uint32_t inst)
{
struct dce_ipp *ipp = kzalloc(sizeof(struct dce_ipp), GFP_KERNEL);
if (!ipp) {
BREAK_TO_DEBUGGER();
return NULL;
}
dce60_ipp_construct(ipp, ctx, inst,
&ipp_regs[inst], &ipp_shift, &ipp_mask);
return &ipp->base;
}
static void dce60_resource_destruct(struct dce110_resource_pool *pool)
{
unsigned int i;
for (i = 0; i < pool->base.pipe_count; i++) {
if (pool->base.opps[i] != NULL)
dce110_opp_destroy(&pool->base.opps[i]);
if (pool->base.transforms[i] != NULL)
dce60_transform_destroy(&pool->base.transforms[i]);
if (pool->base.ipps[i] != NULL)
dce_ipp_destroy(&pool->base.ipps[i]);
if (pool->base.mis[i] != NULL) {
kfree(TO_DCE_MEM_INPUT(pool->base.mis[i]));
pool->base.mis[i] = NULL;
}
if (pool->base.timing_generators[i] != NULL) {
kfree(DCE110TG_FROM_TG(pool->base.timing_generators[i]));
pool->base.timing_generators[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
if (pool->base.engines[i] != NULL)
dce110_engine_destroy(&pool->base.engines[i]);
if (pool->base.hw_i2cs[i] != NULL) {
kfree(pool->base.hw_i2cs[i]);
pool->base.hw_i2cs[i] = NULL;
}
if (pool->base.sw_i2cs[i] != NULL) {
kfree(pool->base.sw_i2cs[i]);
pool->base.sw_i2cs[i] = NULL;
}
}
for (i = 0; i < pool->base.stream_enc_count; i++) {
if (pool->base.stream_enc[i] != NULL)
kfree(DCE110STRENC_FROM_STRENC(pool->base.stream_enc[i]));
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] != NULL) {
dce60_clock_source_destroy(&pool->base.clock_sources[i]);
}
}
if (pool->base.abm != NULL)
dce_abm_destroy(&pool->base.abm);
if (pool->base.dmcu != NULL)
dce_dmcu_destroy(&pool->base.dmcu);
if (pool->base.dp_clock_source != NULL)
dce60_clock_source_destroy(&pool->base.dp_clock_source);
for (i = 0; i < pool->base.audio_count; i++) {
if (pool->base.audios[i] != NULL) {
dce_aud_destroy(&pool->base.audios[i]);
}
}
if (pool->base.irqs != NULL) {
dal_irq_service_destroy(&pool->base.irqs);
}
}
static bool dce60_validate_bandwidth(
struct dc *dc,
struct dc_state *context,
bool fast_validate)
{
int i;
bool at_least_one_pipe = false;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
if (context->res_ctx.pipe_ctx[i].stream)
at_least_one_pipe = true;
}
if (at_least_one_pipe) {
/* TODO implement when needed but for now hardcode max value*/
context->bw_ctx.bw.dce.dispclk_khz = 681000;
context->bw_ctx.bw.dce.yclk_khz = 250000 * MEMORY_TYPE_MULTIPLIER_CZ;
} else {
context->bw_ctx.bw.dce.dispclk_khz = 0;
context->bw_ctx.bw.dce.yclk_khz = 0;
}
return true;
}
static bool dce60_validate_surface_sets(
struct dc_state *context)
{
int i;
for (i = 0; i < context->stream_count; i++) {
if (context->stream_status[i].plane_count == 0)
continue;
if (context->stream_status[i].plane_count > 1)
return false;
if (context->stream_status[i].plane_states[0]->format
>= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN)
return false;
}
return true;
}
static enum dc_status dce60_validate_global(
struct dc *dc,
struct dc_state *context)
{
if (!dce60_validate_surface_sets(context))
return DC_FAIL_SURFACE_VALIDATE;
return DC_OK;
}
static void dce60_destroy_resource_pool(struct resource_pool **pool)
{
struct dce110_resource_pool *dce110_pool = TO_DCE110_RES_POOL(*pool);
dce60_resource_destruct(dce110_pool);
kfree(dce110_pool);
*pool = NULL;
}
static const struct resource_funcs dce60_res_pool_funcs = {
.destroy = dce60_destroy_resource_pool,
.link_enc_create = dce60_link_encoder_create,
.panel_cntl_create = dce60_panel_cntl_create,
.validate_bandwidth = dce60_validate_bandwidth,
.validate_plane = dce100_validate_plane,
.add_stream_to_ctx = dce100_add_stream_to_ctx,
.validate_global = dce60_validate_global,
.find_first_free_match_stream_enc_for_link = dce100_find_first_free_match_stream_enc_for_link
};
static bool dce60_construct(
uint8_t num_virtual_links,
struct dc *dc,
struct dce110_resource_pool *pool)
{
unsigned int i;
struct dc_context *ctx = dc->ctx;
struct dc_bios *bp;
ctx->dc_bios->regs = &bios_regs;
pool->base.res_cap = &res_cap;
pool->base.funcs = &dce60_res_pool_funcs;
/*************************************************
* Resource + asic cap harcoding *
*************************************************/
pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
pool->base.pipe_count = res_cap.num_timing_generator;
pool->base.timing_generator_count = res_cap.num_timing_generator;
dc->caps.max_downscale_ratio = 200;
dc->caps.i2c_speed_in_khz = 40;
dc->caps.max_cursor_size = 64;
dc->caps.dual_link_dvi = true;
dc->caps.extended_aux_timeout_support = false;
/*************************************************
* Create resources *
*************************************************/
bp = ctx->dc_bios;
if (bp->fw_info_valid && bp->fw_info.external_clock_source_frequency_for_dp != 0) {
pool->base.dp_clock_source =
dce60_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_EXTERNAL, NULL, true);
pool->base.clock_sources[0] =
dce60_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL0, &clk_src_regs[0], false);
pool->base.clock_sources[1] =
dce60_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL1, &clk_src_regs[1], false);
pool->base.clk_src_count = 2;
} else {
pool->base.dp_clock_source =
dce60_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL0, &clk_src_regs[0], true);
pool->base.clock_sources[0] =
dce60_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL1, &clk_src_regs[1], false);
pool->base.clk_src_count = 1;
}
if (pool->base.dp_clock_source == NULL) {
dm_error("DC: failed to create dp clock source!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] == NULL) {
dm_error("DC: failed to create clock sources!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
}
pool->base.dmcu = dce_dmcu_create(ctx,
&dmcu_regs,
&dmcu_shift,
&dmcu_mask);
if (pool->base.dmcu == NULL) {
dm_error("DC: failed to create dmcu!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
pool->base.abm = dce_abm_create(ctx,
&abm_regs,
&abm_shift,
&abm_mask);
if (pool->base.abm == NULL) {
dm_error("DC: failed to create abm!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
{
struct irq_service_init_data init_data;
init_data.ctx = dc->ctx;
pool->base.irqs = dal_irq_service_dce60_create(&init_data);
if (!pool->base.irqs)
goto res_create_fail;
}
for (i = 0; i < pool->base.pipe_count; i++) {
pool->base.timing_generators[i] = dce60_timing_generator_create(
ctx, i, &dce60_tg_offsets[i]);
if (pool->base.timing_generators[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create tg!\n");
goto res_create_fail;
}
pool->base.mis[i] = dce60_mem_input_create(ctx, i);
if (pool->base.mis[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create memory input!\n");
goto res_create_fail;
}
pool->base.ipps[i] = dce60_ipp_create(ctx, i);
if (pool->base.ipps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create input pixel processor!\n");
goto res_create_fail;
}
pool->base.transforms[i] = dce60_transform_create(ctx, i);
if (pool->base.transforms[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create transform!\n");
goto res_create_fail;
}
pool->base.opps[i] = dce60_opp_create(ctx, i);
if (pool->base.opps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create output pixel processor!\n");
goto res_create_fail;
}
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
pool->base.engines[i] = dce60_aux_engine_create(ctx, i);
if (pool->base.engines[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create aux engine!!\n");
goto res_create_fail;
}
pool->base.hw_i2cs[i] = dce60_i2c_hw_create(ctx, i);
if (pool->base.hw_i2cs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create i2c engine!!\n");
goto res_create_fail;
}
pool->base.sw_i2cs[i] = dce60_i2c_sw_create(ctx);
if (pool->base.sw_i2cs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create sw i2c!!\n");
goto res_create_fail;
}
}
dc->caps.max_planes = pool->base.pipe_count;
for (i = 0; i < dc->caps.max_planes; ++i)
dc->caps.planes[i] = plane_cap;
dc->caps.disable_dp_clk_share = true;
if (!resource_construct(num_virtual_links, dc, &pool->base,
&res_create_funcs))
goto res_create_fail;
/* Create hardware sequencer */
dce60_hw_sequencer_construct(dc);
return true;
res_create_fail:
dce60_resource_destruct(pool);
return false;
}
struct resource_pool *dce60_create_resource_pool(
uint8_t num_virtual_links,
struct dc *dc)
{
struct dce110_resource_pool *pool =
kzalloc(sizeof(struct dce110_resource_pool), GFP_KERNEL);
if (!pool)
return NULL;
if (dce60_construct(num_virtual_links, dc, pool))
return &pool->base;
kfree(pool);
BREAK_TO_DEBUGGER();
return NULL;
}
static bool dce61_construct(
uint8_t num_virtual_links,
struct dc *dc,
struct dce110_resource_pool *pool)
{
unsigned int i;
struct dc_context *ctx = dc->ctx;
struct dc_bios *bp;
ctx->dc_bios->regs = &bios_regs;
pool->base.res_cap = &res_cap_61;
pool->base.funcs = &dce60_res_pool_funcs;
/*************************************************
* Resource + asic cap harcoding *
*************************************************/
pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
pool->base.pipe_count = res_cap_61.num_timing_generator;
pool->base.timing_generator_count = res_cap_61.num_timing_generator;
dc->caps.max_downscale_ratio = 200;
dc->caps.i2c_speed_in_khz = 40;
dc->caps.max_cursor_size = 64;
dc->caps.is_apu = true;
/*************************************************
* Create resources *
*************************************************/
bp = ctx->dc_bios;
if (bp->fw_info_valid && bp->fw_info.external_clock_source_frequency_for_dp != 0) {
pool->base.dp_clock_source =
dce60_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_EXTERNAL, NULL, true);
pool->base.clock_sources[0] =
dce60_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL0, &clk_src_regs[0], false);
pool->base.clock_sources[1] =
dce60_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL1, &clk_src_regs[1], false);
pool->base.clock_sources[2] =
dce60_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL2, &clk_src_regs[2], false);
pool->base.clk_src_count = 3;
} else {
pool->base.dp_clock_source =
dce60_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL0, &clk_src_regs[0], true);
pool->base.clock_sources[0] =
dce60_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL1, &clk_src_regs[1], false);
pool->base.clock_sources[1] =
dce60_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL2, &clk_src_regs[2], false);
pool->base.clk_src_count = 2;
}
if (pool->base.dp_clock_source == NULL) {
dm_error("DC: failed to create dp clock source!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] == NULL) {
dm_error("DC: failed to create clock sources!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
}
pool->base.dmcu = dce_dmcu_create(ctx,
&dmcu_regs,
&dmcu_shift,
&dmcu_mask);
if (pool->base.dmcu == NULL) {
dm_error("DC: failed to create dmcu!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
pool->base.abm = dce_abm_create(ctx,
&abm_regs,
&abm_shift,
&abm_mask);
if (pool->base.abm == NULL) {
dm_error("DC: failed to create abm!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
{
struct irq_service_init_data init_data;
init_data.ctx = dc->ctx;
pool->base.irqs = dal_irq_service_dce60_create(&init_data);
if (!pool->base.irqs)
goto res_create_fail;
}
for (i = 0; i < pool->base.pipe_count; i++) {
pool->base.timing_generators[i] = dce60_timing_generator_create(
ctx, i, &dce60_tg_offsets[i]);
if (pool->base.timing_generators[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create tg!\n");
goto res_create_fail;
}
pool->base.mis[i] = dce60_mem_input_create(ctx, i);
if (pool->base.mis[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create memory input!\n");
goto res_create_fail;
}
pool->base.ipps[i] = dce60_ipp_create(ctx, i);
if (pool->base.ipps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create input pixel processor!\n");
goto res_create_fail;
}
pool->base.transforms[i] = dce60_transform_create(ctx, i);
if (pool->base.transforms[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create transform!\n");
goto res_create_fail;
}
pool->base.opps[i] = dce60_opp_create(ctx, i);
if (pool->base.opps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create output pixel processor!\n");
goto res_create_fail;
}
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
pool->base.engines[i] = dce60_aux_engine_create(ctx, i);
if (pool->base.engines[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create aux engine!!\n");
goto res_create_fail;
}
pool->base.hw_i2cs[i] = dce60_i2c_hw_create(ctx, i);
if (pool->base.hw_i2cs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create i2c engine!!\n");
goto res_create_fail;
}
pool->base.sw_i2cs[i] = dce60_i2c_sw_create(ctx);
if (pool->base.sw_i2cs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create sw i2c!!\n");
goto res_create_fail;
}
}
dc->caps.max_planes = pool->base.pipe_count;
for (i = 0; i < dc->caps.max_planes; ++i)
dc->caps.planes[i] = plane_cap;
dc->caps.disable_dp_clk_share = true;
if (!resource_construct(num_virtual_links, dc, &pool->base,
&res_create_funcs))
goto res_create_fail;
/* Create hardware sequencer */
dce60_hw_sequencer_construct(dc);
return true;
res_create_fail:
dce60_resource_destruct(pool);
return false;
}
struct resource_pool *dce61_create_resource_pool(
uint8_t num_virtual_links,
struct dc *dc)
{
struct dce110_resource_pool *pool =
kzalloc(sizeof(struct dce110_resource_pool), GFP_KERNEL);
if (!pool)
return NULL;
if (dce61_construct(num_virtual_links, dc, pool))
return &pool->base;
kfree(pool);
BREAK_TO_DEBUGGER();
return NULL;
}
static bool dce64_construct(
uint8_t num_virtual_links,
struct dc *dc,
struct dce110_resource_pool *pool)
{
unsigned int i;
struct dc_context *ctx = dc->ctx;
struct dc_bios *bp;
ctx->dc_bios->regs = &bios_regs;
pool->base.res_cap = &res_cap_64;
pool->base.funcs = &dce60_res_pool_funcs;
/*************************************************
* Resource + asic cap harcoding *
*************************************************/
pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
pool->base.pipe_count = res_cap_64.num_timing_generator;
pool->base.timing_generator_count = res_cap_64.num_timing_generator;
dc->caps.max_downscale_ratio = 200;
dc->caps.i2c_speed_in_khz = 40;
dc->caps.max_cursor_size = 64;
dc->caps.is_apu = true;
/*************************************************
* Create resources *
*************************************************/
bp = ctx->dc_bios;
if (bp->fw_info_valid && bp->fw_info.external_clock_source_frequency_for_dp != 0) {
pool->base.dp_clock_source =
dce60_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_EXTERNAL, NULL, true);
pool->base.clock_sources[0] =
dce60_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL1, &clk_src_regs[0], false);
pool->base.clock_sources[1] =
dce60_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL2, &clk_src_regs[1], false);
pool->base.clk_src_count = 2;
} else {
pool->base.dp_clock_source =
dce60_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL1, &clk_src_regs[0], true);
pool->base.clock_sources[0] =
dce60_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL2, &clk_src_regs[1], false);
pool->base.clk_src_count = 1;
}
if (pool->base.dp_clock_source == NULL) {
dm_error("DC: failed to create dp clock source!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] == NULL) {
dm_error("DC: failed to create clock sources!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
}
pool->base.dmcu = dce_dmcu_create(ctx,
&dmcu_regs,
&dmcu_shift,
&dmcu_mask);
if (pool->base.dmcu == NULL) {
dm_error("DC: failed to create dmcu!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
pool->base.abm = dce_abm_create(ctx,
&abm_regs,
&abm_shift,
&abm_mask);
if (pool->base.abm == NULL) {
dm_error("DC: failed to create abm!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
{
struct irq_service_init_data init_data;
init_data.ctx = dc->ctx;
pool->base.irqs = dal_irq_service_dce60_create(&init_data);
if (!pool->base.irqs)
goto res_create_fail;
}
for (i = 0; i < pool->base.pipe_count; i++) {
pool->base.timing_generators[i] = dce60_timing_generator_create(
ctx, i, &dce60_tg_offsets[i]);
if (pool->base.timing_generators[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create tg!\n");
goto res_create_fail;
}
pool->base.mis[i] = dce60_mem_input_create(ctx, i);
if (pool->base.mis[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create memory input!\n");
goto res_create_fail;
}
pool->base.ipps[i] = dce60_ipp_create(ctx, i);
if (pool->base.ipps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create input pixel processor!\n");
goto res_create_fail;
}
pool->base.transforms[i] = dce60_transform_create(ctx, i);
if (pool->base.transforms[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create transform!\n");
goto res_create_fail;
}
pool->base.opps[i] = dce60_opp_create(ctx, i);
if (pool->base.opps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create output pixel processor!\n");
goto res_create_fail;
}
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
pool->base.engines[i] = dce60_aux_engine_create(ctx, i);
if (pool->base.engines[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create aux engine!!\n");
goto res_create_fail;
}
pool->base.hw_i2cs[i] = dce60_i2c_hw_create(ctx, i);
if (pool->base.hw_i2cs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create i2c engine!!\n");
goto res_create_fail;
}
pool->base.sw_i2cs[i] = dce60_i2c_sw_create(ctx);
if (pool->base.sw_i2cs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create sw i2c!!\n");
goto res_create_fail;
}
}
dc->caps.max_planes = pool->base.pipe_count;
for (i = 0; i < dc->caps.max_planes; ++i)
dc->caps.planes[i] = plane_cap;
dc->caps.disable_dp_clk_share = true;
if (!resource_construct(num_virtual_links, dc, &pool->base,
&res_create_funcs))
goto res_create_fail;
/* Create hardware sequencer */
dce60_hw_sequencer_construct(dc);
return true;
res_create_fail:
dce60_resource_destruct(pool);
return false;
}
struct resource_pool *dce64_create_resource_pool(
uint8_t num_virtual_links,
struct dc *dc)
{
struct dce110_resource_pool *pool =
kzalloc(sizeof(struct dce110_resource_pool), GFP_KERNEL);
if (!pool)
return NULL;
if (dce64_construct(num_virtual_links, dc, pool))
return &pool->base;
kfree(pool);
BREAK_TO_DEBUGGER();
return NULL;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dce60/dce60_resource.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "link_encoder.h"
#include "stream_encoder.h"
#include "resource.h"
#include "include/irq_service_interface.h"
#include "../virtual/virtual_stream_encoder.h"
#include "dce110/dce110_resource.h"
#include "dce110/dce110_timing_generator.h"
#include "irq/dce110/irq_service_dce110.h"
#include "dce/dce_link_encoder.h"
#include "dce/dce_stream_encoder.h"
#include "dce/dce_mem_input.h"
#include "dce/dce_ipp.h"
#include "dce/dce_transform.h"
#include "dce/dce_opp.h"
#include "dce/dce_clock_source.h"
#include "dce/dce_audio.h"
#include "dce/dce_hwseq.h"
#include "dce100/dce100_hw_sequencer.h"
#include "dce/dce_panel_cntl.h"
#include "reg_helper.h"
#include "dce/dce_10_0_d.h"
#include "dce/dce_10_0_sh_mask.h"
#include "dce/dce_dmcu.h"
#include "dce/dce_aux.h"
#include "dce/dce_abm.h"
#include "dce/dce_i2c.h"
#include "dce100_resource.h"
#ifndef mmMC_HUB_RDREQ_DMIF_LIMIT
#include "gmc/gmc_8_2_d.h"
#include "gmc/gmc_8_2_sh_mask.h"
#endif
#ifndef mmDP_DPHY_INTERNAL_CTRL
#define mmDP_DPHY_INTERNAL_CTRL 0x4aa7
#define mmDP0_DP_DPHY_INTERNAL_CTRL 0x4aa7
#define mmDP1_DP_DPHY_INTERNAL_CTRL 0x4ba7
#define mmDP2_DP_DPHY_INTERNAL_CTRL 0x4ca7
#define mmDP3_DP_DPHY_INTERNAL_CTRL 0x4da7
#define mmDP4_DP_DPHY_INTERNAL_CTRL 0x4ea7
#define mmDP5_DP_DPHY_INTERNAL_CTRL 0x4fa7
#define mmDP6_DP_DPHY_INTERNAL_CTRL 0x54a7
#define mmDP7_DP_DPHY_INTERNAL_CTRL 0x56a7
#define mmDP8_DP_DPHY_INTERNAL_CTRL 0x57a7
#endif
#ifndef mmBIOS_SCRATCH_2
#define mmBIOS_SCRATCH_2 0x05CB
#define mmBIOS_SCRATCH_3 0x05CC
#define mmBIOS_SCRATCH_6 0x05CF
#endif
#ifndef mmDP_DPHY_BS_SR_SWAP_CNTL
#define mmDP_DPHY_BS_SR_SWAP_CNTL 0x4ADC
#define mmDP0_DP_DPHY_BS_SR_SWAP_CNTL 0x4ADC
#define mmDP1_DP_DPHY_BS_SR_SWAP_CNTL 0x4BDC
#define mmDP2_DP_DPHY_BS_SR_SWAP_CNTL 0x4CDC
#define mmDP3_DP_DPHY_BS_SR_SWAP_CNTL 0x4DDC
#define mmDP4_DP_DPHY_BS_SR_SWAP_CNTL 0x4EDC
#define mmDP5_DP_DPHY_BS_SR_SWAP_CNTL 0x4FDC
#define mmDP6_DP_DPHY_BS_SR_SWAP_CNTL 0x54DC
#endif
#ifndef mmDP_DPHY_FAST_TRAINING
#define mmDP_DPHY_FAST_TRAINING 0x4ABC
#define mmDP0_DP_DPHY_FAST_TRAINING 0x4ABC
#define mmDP1_DP_DPHY_FAST_TRAINING 0x4BBC
#define mmDP2_DP_DPHY_FAST_TRAINING 0x4CBC
#define mmDP3_DP_DPHY_FAST_TRAINING 0x4DBC
#define mmDP4_DP_DPHY_FAST_TRAINING 0x4EBC
#define mmDP5_DP_DPHY_FAST_TRAINING 0x4FBC
#define mmDP6_DP_DPHY_FAST_TRAINING 0x54BC
#endif
static const struct dce110_timing_generator_offsets dce100_tg_offsets[] = {
{
.crtc = (mmCRTC0_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP0_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC1_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP1_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC2_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP2_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC3_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP3_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC4_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP4_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC5_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP5_GRPH_CONTROL - mmGRPH_CONTROL),
}
};
/* set register offset */
#define SR(reg_name)\
.reg_name = mm ## reg_name
/* set register offset with instance */
#define SRI(reg_name, block, id)\
.reg_name = mm ## block ## id ## _ ## reg_name
#define ipp_regs(id)\
[id] = {\
IPP_DCE100_REG_LIST_DCE_BASE(id)\
}
static const struct dce_ipp_registers ipp_regs[] = {
ipp_regs(0),
ipp_regs(1),
ipp_regs(2),
ipp_regs(3),
ipp_regs(4),
ipp_regs(5)
};
static const struct dce_ipp_shift ipp_shift = {
IPP_DCE100_MASK_SH_LIST_DCE_COMMON_BASE(__SHIFT)
};
static const struct dce_ipp_mask ipp_mask = {
IPP_DCE100_MASK_SH_LIST_DCE_COMMON_BASE(_MASK)
};
#define transform_regs(id)\
[id] = {\
XFM_COMMON_REG_LIST_DCE100(id)\
}
static const struct dce_transform_registers xfm_regs[] = {
transform_regs(0),
transform_regs(1),
transform_regs(2),
transform_regs(3),
transform_regs(4),
transform_regs(5)
};
static const struct dce_transform_shift xfm_shift = {
XFM_COMMON_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_transform_mask xfm_mask = {
XFM_COMMON_MASK_SH_LIST_DCE110(_MASK)
};
#define aux_regs(id)\
[id] = {\
AUX_REG_LIST(id)\
}
static const struct dce110_link_enc_aux_registers link_enc_aux_regs[] = {
aux_regs(0),
aux_regs(1),
aux_regs(2),
aux_regs(3),
aux_regs(4),
aux_regs(5)
};
#define hpd_regs(id)\
[id] = {\
HPD_REG_LIST(id)\
}
static const struct dce110_link_enc_hpd_registers link_enc_hpd_regs[] = {
hpd_regs(0),
hpd_regs(1),
hpd_regs(2),
hpd_regs(3),
hpd_regs(4),
hpd_regs(5)
};
#define link_regs(id)\
[id] = {\
LE_DCE100_REG_LIST(id)\
}
static const struct dce110_link_enc_registers link_enc_regs[] = {
link_regs(0),
link_regs(1),
link_regs(2),
link_regs(3),
link_regs(4),
link_regs(5),
link_regs(6),
};
#define stream_enc_regs(id)\
[id] = {\
SE_COMMON_REG_LIST_DCE_BASE(id),\
.AFMT_CNTL = 0,\
}
static const struct dce110_stream_enc_registers stream_enc_regs[] = {
stream_enc_regs(0),
stream_enc_regs(1),
stream_enc_regs(2),
stream_enc_regs(3),
stream_enc_regs(4),
stream_enc_regs(5),
stream_enc_regs(6)
};
static const struct dce_stream_encoder_shift se_shift = {
SE_COMMON_MASK_SH_LIST_DCE80_100(__SHIFT)
};
static const struct dce_stream_encoder_mask se_mask = {
SE_COMMON_MASK_SH_LIST_DCE80_100(_MASK)
};
static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
{ DCE_PANEL_CNTL_REG_LIST() }
};
static const struct dce_panel_cntl_shift panel_cntl_shift = {
DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
};
static const struct dce_panel_cntl_mask panel_cntl_mask = {
DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
};
#define opp_regs(id)\
[id] = {\
OPP_DCE_100_REG_LIST(id),\
}
static const struct dce_opp_registers opp_regs[] = {
opp_regs(0),
opp_regs(1),
opp_regs(2),
opp_regs(3),
opp_regs(4),
opp_regs(5)
};
static const struct dce_opp_shift opp_shift = {
OPP_COMMON_MASK_SH_LIST_DCE_100(__SHIFT)
};
static const struct dce_opp_mask opp_mask = {
OPP_COMMON_MASK_SH_LIST_DCE_100(_MASK)
};
#define aux_engine_regs(id)\
[id] = {\
AUX_COMMON_REG_LIST(id), \
.AUX_RESET_MASK = 0 \
}
static const struct dce110_aux_registers aux_engine_regs[] = {
aux_engine_regs(0),
aux_engine_regs(1),
aux_engine_regs(2),
aux_engine_regs(3),
aux_engine_regs(4),
aux_engine_regs(5)
};
#define audio_regs(id)\
[id] = {\
AUD_COMMON_REG_LIST(id)\
}
static const struct dce_audio_registers audio_regs[] = {
audio_regs(0),
audio_regs(1),
audio_regs(2),
audio_regs(3),
audio_regs(4),
audio_regs(5),
audio_regs(6),
};
static const struct dce_audio_shift audio_shift = {
AUD_COMMON_MASK_SH_LIST(__SHIFT)
};
static const struct dce_audio_mask audio_mask = {
AUD_COMMON_MASK_SH_LIST(_MASK)
};
#define clk_src_regs(id)\
[id] = {\
CS_COMMON_REG_LIST_DCE_100_110(id),\
}
static const struct dce110_clk_src_regs clk_src_regs[] = {
clk_src_regs(0),
clk_src_regs(1),
clk_src_regs(2)
};
static const struct dce110_clk_src_shift cs_shift = {
CS_COMMON_MASK_SH_LIST_DCE_COMMON_BASE(__SHIFT)
};
static const struct dce110_clk_src_mask cs_mask = {
CS_COMMON_MASK_SH_LIST_DCE_COMMON_BASE(_MASK)
};
static const struct dce_dmcu_registers dmcu_regs = {
DMCU_DCE110_COMMON_REG_LIST()
};
static const struct dce_dmcu_shift dmcu_shift = {
DMCU_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_dmcu_mask dmcu_mask = {
DMCU_MASK_SH_LIST_DCE110(_MASK)
};
static const struct dce_abm_registers abm_regs = {
ABM_DCE110_COMMON_REG_LIST()
};
static const struct dce_abm_shift abm_shift = {
ABM_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_abm_mask abm_mask = {
ABM_MASK_SH_LIST_DCE110(_MASK)
};
#define DCFE_MEM_PWR_CTRL_REG_BASE 0x1b03
static const struct bios_registers bios_regs = {
.BIOS_SCRATCH_3 = mmBIOS_SCRATCH_3,
.BIOS_SCRATCH_6 = mmBIOS_SCRATCH_6
};
static const struct resource_caps res_cap = {
.num_timing_generator = 6,
.num_audio = 6,
.num_stream_encoder = 6,
.num_pll = 3,
.num_ddc = 6,
};
static const struct dc_plane_cap plane_cap = {
.type = DC_PLANE_TYPE_DCE_RGB,
.pixel_format_support = {
.argb8888 = true,
.nv12 = false,
.fp16 = true
},
.max_upscale_factor = {
.argb8888 = 16000,
.nv12 = 1,
.fp16 = 1
},
.max_downscale_factor = {
.argb8888 = 250,
.nv12 = 1,
.fp16 = 1
}
};
static const struct dc_debug_options debug_defaults = {
.enable_legacy_fast_update = true,
};
#define CTX ctx
#define REG(reg) mm ## reg
#ifndef mmCC_DC_HDMI_STRAPS
#define mmCC_DC_HDMI_STRAPS 0x1918
#define CC_DC_HDMI_STRAPS__HDMI_DISABLE_MASK 0x40
#define CC_DC_HDMI_STRAPS__HDMI_DISABLE__SHIFT 0x6
#define CC_DC_HDMI_STRAPS__AUDIO_STREAM_NUMBER_MASK 0x700
#define CC_DC_HDMI_STRAPS__AUDIO_STREAM_NUMBER__SHIFT 0x8
#endif
static int map_transmitter_id_to_phy_instance(
enum transmitter transmitter)
{
switch (transmitter) {
case TRANSMITTER_UNIPHY_A:
return 0;
case TRANSMITTER_UNIPHY_B:
return 1;
case TRANSMITTER_UNIPHY_C:
return 2;
case TRANSMITTER_UNIPHY_D:
return 3;
case TRANSMITTER_UNIPHY_E:
return 4;
case TRANSMITTER_UNIPHY_F:
return 5;
case TRANSMITTER_UNIPHY_G:
return 6;
default:
ASSERT(0);
return 0;
}
}
static void read_dce_straps(
struct dc_context *ctx,
struct resource_straps *straps)
{
REG_GET_2(CC_DC_HDMI_STRAPS,
HDMI_DISABLE, &straps->hdmi_disable,
AUDIO_STREAM_NUMBER, &straps->audio_stream_number);
REG_GET(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO, &straps->dc_pinstraps_audio);
}
static struct audio *create_audio(
struct dc_context *ctx, unsigned int inst)
{
return dce_audio_create(ctx, inst,
&audio_regs[inst], &audio_shift, &audio_mask);
}
static struct timing_generator *dce100_timing_generator_create(
struct dc_context *ctx,
uint32_t instance,
const struct dce110_timing_generator_offsets *offsets)
{
struct dce110_timing_generator *tg110 =
kzalloc(sizeof(struct dce110_timing_generator), GFP_KERNEL);
if (!tg110)
return NULL;
dce110_timing_generator_construct(tg110, ctx, instance, offsets);
return &tg110->base;
}
static struct stream_encoder *dce100_stream_encoder_create(
enum engine_id eng_id,
struct dc_context *ctx)
{
struct dce110_stream_encoder *enc110 =
kzalloc(sizeof(struct dce110_stream_encoder), GFP_KERNEL);
if (!enc110)
return NULL;
dce110_stream_encoder_construct(enc110, ctx, ctx->dc_bios, eng_id,
&stream_enc_regs[eng_id], &se_shift, &se_mask);
return &enc110->base;
}
#define SRII(reg_name, block, id)\
.reg_name[id] = mm ## block ## id ## _ ## reg_name
static const struct dce_hwseq_registers hwseq_reg = {
HWSEQ_DCE10_REG_LIST()
};
static const struct dce_hwseq_shift hwseq_shift = {
HWSEQ_DCE10_MASK_SH_LIST(__SHIFT)
};
static const struct dce_hwseq_mask hwseq_mask = {
HWSEQ_DCE10_MASK_SH_LIST(_MASK)
};
static struct dce_hwseq *dce100_hwseq_create(
struct dc_context *ctx)
{
struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
if (hws) {
hws->ctx = ctx;
hws->regs = &hwseq_reg;
hws->shifts = &hwseq_shift;
hws->masks = &hwseq_mask;
}
return hws;
}
static const struct resource_create_funcs res_create_funcs = {
.read_dce_straps = read_dce_straps,
.create_audio = create_audio,
.create_stream_encoder = dce100_stream_encoder_create,
.create_hwseq = dce100_hwseq_create,
};
#define mi_inst_regs(id) { \
MI_DCE8_REG_LIST(id), \
.MC_HUB_RDREQ_DMIF_LIMIT = mmMC_HUB_RDREQ_DMIF_LIMIT \
}
static const struct dce_mem_input_registers mi_regs[] = {
mi_inst_regs(0),
mi_inst_regs(1),
mi_inst_regs(2),
mi_inst_regs(3),
mi_inst_regs(4),
mi_inst_regs(5),
};
static const struct dce_mem_input_shift mi_shifts = {
MI_DCE8_MASK_SH_LIST(__SHIFT),
.ENABLE = MC_HUB_RDREQ_DMIF_LIMIT__ENABLE__SHIFT
};
static const struct dce_mem_input_mask mi_masks = {
MI_DCE8_MASK_SH_LIST(_MASK),
.ENABLE = MC_HUB_RDREQ_DMIF_LIMIT__ENABLE_MASK
};
static const struct dce110_aux_registers_shift aux_shift = {
DCE10_AUX_MASK_SH_LIST(__SHIFT)
};
static const struct dce110_aux_registers_mask aux_mask = {
DCE10_AUX_MASK_SH_LIST(_MASK)
};
static struct mem_input *dce100_mem_input_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_mem_input *dce_mi = kzalloc(sizeof(struct dce_mem_input),
GFP_KERNEL);
if (!dce_mi) {
BREAK_TO_DEBUGGER();
return NULL;
}
dce_mem_input_construct(dce_mi, ctx, inst, &mi_regs[inst], &mi_shifts, &mi_masks);
dce_mi->wa.single_head_rdreq_dmif_limit = 2;
return &dce_mi->base;
}
static void dce100_transform_destroy(struct transform **xfm)
{
kfree(TO_DCE_TRANSFORM(*xfm));
*xfm = NULL;
}
static struct transform *dce100_transform_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_transform *transform =
kzalloc(sizeof(struct dce_transform), GFP_KERNEL);
if (!transform)
return NULL;
dce_transform_construct(transform, ctx, inst,
&xfm_regs[inst], &xfm_shift, &xfm_mask);
return &transform->base;
}
static struct input_pixel_processor *dce100_ipp_create(
struct dc_context *ctx, uint32_t inst)
{
struct dce_ipp *ipp = kzalloc(sizeof(struct dce_ipp), GFP_KERNEL);
if (!ipp) {
BREAK_TO_DEBUGGER();
return NULL;
}
dce_ipp_construct(ipp, ctx, inst,
&ipp_regs[inst], &ipp_shift, &ipp_mask);
return &ipp->base;
}
static const struct encoder_feature_support link_enc_feature = {
.max_hdmi_deep_color = COLOR_DEPTH_121212,
.max_hdmi_pixel_clock = 300000,
.flags.bits.IS_HBR2_CAPABLE = true,
.flags.bits.IS_TPS3_CAPABLE = true
};
static struct link_encoder *dce100_link_encoder_create(
struct dc_context *ctx,
const struct encoder_init_data *enc_init_data)
{
struct dce110_link_encoder *enc110 =
kzalloc(sizeof(struct dce110_link_encoder), GFP_KERNEL);
int link_regs_id;
if (!enc110)
return NULL;
link_regs_id =
map_transmitter_id_to_phy_instance(enc_init_data->transmitter);
dce110_link_encoder_construct(enc110,
enc_init_data,
&link_enc_feature,
&link_enc_regs[link_regs_id],
&link_enc_aux_regs[enc_init_data->channel - 1],
&link_enc_hpd_regs[enc_init_data->hpd_source]);
return &enc110->base;
}
static struct panel_cntl *dce100_panel_cntl_create(const struct panel_cntl_init_data *init_data)
{
struct dce_panel_cntl *panel_cntl =
kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
if (!panel_cntl)
return NULL;
dce_panel_cntl_construct(panel_cntl,
init_data,
&panel_cntl_regs[init_data->inst],
&panel_cntl_shift,
&panel_cntl_mask);
return &panel_cntl->base;
}
static struct output_pixel_processor *dce100_opp_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce110_opp *opp =
kzalloc(sizeof(struct dce110_opp), GFP_KERNEL);
if (!opp)
return NULL;
dce110_opp_construct(opp,
ctx, inst, &opp_regs[inst], &opp_shift, &opp_mask);
return &opp->base;
}
static struct dce_aux *dce100_aux_engine_create(
struct dc_context *ctx,
uint32_t inst)
{
struct aux_engine_dce110 *aux_engine =
kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
if (!aux_engine)
return NULL;
dce110_aux_engine_construct(aux_engine, ctx, inst,
SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
&aux_engine_regs[inst],
&aux_mask,
&aux_shift,
ctx->dc->caps.extended_aux_timeout_support);
return &aux_engine->base;
}
#define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) }
static const struct dce_i2c_registers i2c_hw_regs[] = {
i2c_inst_regs(1),
i2c_inst_regs(2),
i2c_inst_regs(3),
i2c_inst_regs(4),
i2c_inst_regs(5),
i2c_inst_regs(6),
};
static const struct dce_i2c_shift i2c_shifts = {
I2C_COMMON_MASK_SH_LIST_DCE_COMMON_BASE(__SHIFT)
};
static const struct dce_i2c_mask i2c_masks = {
I2C_COMMON_MASK_SH_LIST_DCE_COMMON_BASE(_MASK)
};
static struct dce_i2c_hw *dce100_i2c_hw_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_i2c_hw *dce_i2c_hw =
kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
if (!dce_i2c_hw)
return NULL;
dce100_i2c_hw_construct(dce_i2c_hw, ctx, inst,
&i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
return dce_i2c_hw;
}
static struct clock_source *dce100_clock_source_create(
struct dc_context *ctx,
struct dc_bios *bios,
enum clock_source_id id,
const struct dce110_clk_src_regs *regs,
bool dp_clk_src)
{
struct dce110_clk_src *clk_src =
kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
if (!clk_src)
return NULL;
if (dce110_clk_src_construct(clk_src, ctx, bios, id,
regs, &cs_shift, &cs_mask)) {
clk_src->base.dp_clk_src = dp_clk_src;
return &clk_src->base;
}
kfree(clk_src);
BREAK_TO_DEBUGGER();
return NULL;
}
static void dce100_clock_source_destroy(struct clock_source **clk_src)
{
kfree(TO_DCE110_CLK_SRC(*clk_src));
*clk_src = NULL;
}
static void dce100_resource_destruct(struct dce110_resource_pool *pool)
{
unsigned int i;
for (i = 0; i < pool->base.pipe_count; i++) {
if (pool->base.opps[i] != NULL)
dce110_opp_destroy(&pool->base.opps[i]);
if (pool->base.transforms[i] != NULL)
dce100_transform_destroy(&pool->base.transforms[i]);
if (pool->base.ipps[i] != NULL)
dce_ipp_destroy(&pool->base.ipps[i]);
if (pool->base.mis[i] != NULL) {
kfree(TO_DCE_MEM_INPUT(pool->base.mis[i]));
pool->base.mis[i] = NULL;
}
if (pool->base.timing_generators[i] != NULL) {
kfree(DCE110TG_FROM_TG(pool->base.timing_generators[i]));
pool->base.timing_generators[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
if (pool->base.engines[i] != NULL)
dce110_engine_destroy(&pool->base.engines[i]);
if (pool->base.hw_i2cs[i] != NULL) {
kfree(pool->base.hw_i2cs[i]);
pool->base.hw_i2cs[i] = NULL;
}
if (pool->base.sw_i2cs[i] != NULL) {
kfree(pool->base.sw_i2cs[i]);
pool->base.sw_i2cs[i] = NULL;
}
}
for (i = 0; i < pool->base.stream_enc_count; i++) {
if (pool->base.stream_enc[i] != NULL)
kfree(DCE110STRENC_FROM_STRENC(pool->base.stream_enc[i]));
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] != NULL)
dce100_clock_source_destroy(&pool->base.clock_sources[i]);
}
if (pool->base.dp_clock_source != NULL)
dce100_clock_source_destroy(&pool->base.dp_clock_source);
for (i = 0; i < pool->base.audio_count; i++) {
if (pool->base.audios[i] != NULL)
dce_aud_destroy(&pool->base.audios[i]);
}
if (pool->base.abm != NULL)
dce_abm_destroy(&pool->base.abm);
if (pool->base.dmcu != NULL)
dce_dmcu_destroy(&pool->base.dmcu);
if (pool->base.irqs != NULL)
dal_irq_service_destroy(&pool->base.irqs);
}
static enum dc_status build_mapped_resource(
const struct dc *dc,
struct dc_state *context,
struct dc_stream_state *stream)
{
struct pipe_ctx *pipe_ctx = resource_get_otg_master_for_stream(&context->res_ctx, stream);
if (!pipe_ctx)
return DC_ERROR_UNEXPECTED;
dce110_resource_build_pipe_hw_param(pipe_ctx);
resource_build_info_frame(pipe_ctx);
return DC_OK;
}
static bool dce100_validate_bandwidth(
struct dc *dc,
struct dc_state *context,
bool fast_validate)
{
int i;
bool at_least_one_pipe = false;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
if (context->res_ctx.pipe_ctx[i].stream)
at_least_one_pipe = true;
}
if (at_least_one_pipe) {
/* TODO implement when needed but for now hardcode max value*/
context->bw_ctx.bw.dce.dispclk_khz = 681000;
context->bw_ctx.bw.dce.yclk_khz = 250000 * MEMORY_TYPE_MULTIPLIER_CZ;
} else {
context->bw_ctx.bw.dce.dispclk_khz = 0;
context->bw_ctx.bw.dce.yclk_khz = 0;
}
return true;
}
static bool dce100_validate_surface_sets(
struct dc_state *context)
{
int i;
for (i = 0; i < context->stream_count; i++) {
if (context->stream_status[i].plane_count == 0)
continue;
if (context->stream_status[i].plane_count > 1)
return false;
if (context->stream_status[i].plane_states[0]->format
>= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN)
return false;
}
return true;
}
static enum dc_status dce100_validate_global(
struct dc *dc,
struct dc_state *context)
{
if (!dce100_validate_surface_sets(context))
return DC_FAIL_SURFACE_VALIDATE;
return DC_OK;
}
enum dc_status dce100_add_stream_to_ctx(
struct dc *dc,
struct dc_state *new_ctx,
struct dc_stream_state *dc_stream)
{
enum dc_status result = DC_ERROR_UNEXPECTED;
result = resource_map_pool_resources(dc, new_ctx, dc_stream);
if (result == DC_OK)
result = resource_map_clock_resources(dc, new_ctx, dc_stream);
if (result == DC_OK)
result = build_mapped_resource(dc, new_ctx, dc_stream);
return result;
}
static void dce100_destroy_resource_pool(struct resource_pool **pool)
{
struct dce110_resource_pool *dce110_pool = TO_DCE110_RES_POOL(*pool);
dce100_resource_destruct(dce110_pool);
kfree(dce110_pool);
*pool = NULL;
}
enum dc_status dce100_validate_plane(const struct dc_plane_state *plane_state, struct dc_caps *caps)
{
if (plane_state->format < SURFACE_PIXEL_FORMAT_VIDEO_BEGIN)
return DC_OK;
return DC_FAIL_SURFACE_VALIDATE;
}
struct stream_encoder *dce100_find_first_free_match_stream_enc_for_link(
struct resource_context *res_ctx,
const struct resource_pool *pool,
struct dc_stream_state *stream)
{
int i;
int j = -1;
struct dc_link *link = stream->link;
for (i = 0; i < pool->stream_enc_count; i++) {
if (!res_ctx->is_stream_enc_acquired[i] &&
pool->stream_enc[i]) {
/* Store first available for MST second display
* in daisy chain use case
*/
j = i;
if (pool->stream_enc[i]->id ==
link->link_enc->preferred_engine)
return pool->stream_enc[i];
}
}
/*
* below can happen in cases when stream encoder is acquired:
* 1) for second MST display in chain, so preferred engine already
* acquired;
* 2) for another link, which preferred engine already acquired by any
* MST configuration.
*
* If signal is of DP type and preferred engine not found, return last available
*
* TODO - This is just a patch up and a generic solution is
* required for non DP connectors.
*/
if (j >= 0 && link->connector_signal == SIGNAL_TYPE_DISPLAY_PORT)
return pool->stream_enc[j];
return NULL;
}
static const struct resource_funcs dce100_res_pool_funcs = {
.destroy = dce100_destroy_resource_pool,
.link_enc_create = dce100_link_encoder_create,
.panel_cntl_create = dce100_panel_cntl_create,
.validate_bandwidth = dce100_validate_bandwidth,
.validate_plane = dce100_validate_plane,
.add_stream_to_ctx = dce100_add_stream_to_ctx,
.validate_global = dce100_validate_global,
.find_first_free_match_stream_enc_for_link = dce100_find_first_free_match_stream_enc_for_link
};
static bool dce100_resource_construct(
uint8_t num_virtual_links,
struct dc *dc,
struct dce110_resource_pool *pool)
{
unsigned int i;
struct dc_context *ctx = dc->ctx;
struct dc_bios *bp;
ctx->dc_bios->regs = &bios_regs;
pool->base.res_cap = &res_cap;
pool->base.funcs = &dce100_res_pool_funcs;
pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
bp = ctx->dc_bios;
if (bp->fw_info_valid && bp->fw_info.external_clock_source_frequency_for_dp != 0) {
pool->base.dp_clock_source =
dce100_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_EXTERNAL, NULL, true);
pool->base.clock_sources[0] =
dce100_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL0, &clk_src_regs[0], false);
pool->base.clock_sources[1] =
dce100_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL1, &clk_src_regs[1], false);
pool->base.clock_sources[2] =
dce100_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL2, &clk_src_regs[2], false);
pool->base.clk_src_count = 3;
} else {
pool->base.dp_clock_source =
dce100_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL0, &clk_src_regs[0], true);
pool->base.clock_sources[0] =
dce100_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL1, &clk_src_regs[1], false);
pool->base.clock_sources[1] =
dce100_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL2, &clk_src_regs[2], false);
pool->base.clk_src_count = 2;
}
if (pool->base.dp_clock_source == NULL) {
dm_error("DC: failed to create dp clock source!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] == NULL) {
dm_error("DC: failed to create clock sources!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
}
pool->base.dmcu = dce_dmcu_create(ctx,
&dmcu_regs,
&dmcu_shift,
&dmcu_mask);
if (pool->base.dmcu == NULL) {
dm_error("DC: failed to create dmcu!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
pool->base.abm = dce_abm_create(ctx,
&abm_regs,
&abm_shift,
&abm_mask);
if (pool->base.abm == NULL) {
dm_error("DC: failed to create abm!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
{
struct irq_service_init_data init_data;
init_data.ctx = dc->ctx;
pool->base.irqs = dal_irq_service_dce110_create(&init_data);
if (!pool->base.irqs)
goto res_create_fail;
}
/*************************************************
* Resource + asic cap harcoding *
*************************************************/
pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
pool->base.pipe_count = res_cap.num_timing_generator;
pool->base.timing_generator_count = pool->base.res_cap->num_timing_generator;
dc->caps.max_downscale_ratio = 200;
dc->caps.i2c_speed_in_khz = 40;
dc->caps.i2c_speed_in_khz = 40;
dc->caps.max_cursor_size = 128;
dc->caps.min_horizontal_blanking_period = 80;
dc->caps.dual_link_dvi = true;
dc->caps.disable_dp_clk_share = true;
dc->caps.extended_aux_timeout_support = false;
dc->debug = debug_defaults;
for (i = 0; i < pool->base.pipe_count; i++) {
pool->base.timing_generators[i] =
dce100_timing_generator_create(
ctx,
i,
&dce100_tg_offsets[i]);
if (pool->base.timing_generators[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create tg!\n");
goto res_create_fail;
}
pool->base.mis[i] = dce100_mem_input_create(ctx, i);
if (pool->base.mis[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create memory input!\n");
goto res_create_fail;
}
pool->base.ipps[i] = dce100_ipp_create(ctx, i);
if (pool->base.ipps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create input pixel processor!\n");
goto res_create_fail;
}
pool->base.transforms[i] = dce100_transform_create(ctx, i);
if (pool->base.transforms[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create transform!\n");
goto res_create_fail;
}
pool->base.opps[i] = dce100_opp_create(ctx, i);
if (pool->base.opps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create output pixel processor!\n");
goto res_create_fail;
}
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
pool->base.engines[i] = dce100_aux_engine_create(ctx, i);
if (pool->base.engines[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create aux engine!!\n");
goto res_create_fail;
}
pool->base.hw_i2cs[i] = dce100_i2c_hw_create(ctx, i);
if (pool->base.hw_i2cs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create i2c engine!!\n");
goto res_create_fail;
}
pool->base.sw_i2cs[i] = NULL;
}
dc->caps.max_planes = pool->base.pipe_count;
for (i = 0; i < dc->caps.max_planes; ++i)
dc->caps.planes[i] = plane_cap;
if (!resource_construct(num_virtual_links, dc, &pool->base,
&res_create_funcs))
goto res_create_fail;
/* Create hardware sequencer */
dce100_hw_sequencer_construct(dc);
return true;
res_create_fail:
dce100_resource_destruct(pool);
return false;
}
struct resource_pool *dce100_create_resource_pool(
uint8_t num_virtual_links,
struct dc *dc)
{
struct dce110_resource_pool *pool =
kzalloc(sizeof(struct dce110_resource_pool), GFP_KERNEL);
if (!pool)
return NULL;
if (dce100_resource_construct(num_virtual_links, dc, pool))
return &pool->base;
kfree(pool);
BREAK_TO_DEBUGGER();
return NULL;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dce100/dce100_resource.c |
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dc.h"
#include "core_types.h"
#include "clk_mgr.h"
#include "dce100_hw_sequencer.h"
#include "resource.h"
#include "dce110/dce110_hw_sequencer.h"
/* include DCE10 register header files */
#include "dce/dce_10_0_d.h"
#include "dce/dce_10_0_sh_mask.h"
struct dce100_hw_seq_reg_offsets {
uint32_t blnd;
uint32_t crtc;
};
static const struct dce100_hw_seq_reg_offsets reg_offsets[] = {
{
.crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
},
{
.crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
},
{
.crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
},
{
.crtc = (mmCRTC3_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
},
{
.crtc = (mmCRTC4_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
},
{
.crtc = (mmCRTC5_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
}
};
#define HW_REG_CRTC(reg, id)\
(reg + reg_offsets[id].crtc)
/*******************************************************************************
* Private definitions
******************************************************************************/
/***************************PIPE_CONTROL***********************************/
bool dce100_enable_display_power_gating(
struct dc *dc,
uint8_t controller_id,
struct dc_bios *dcb,
enum pipe_gating_control power_gating)
{
enum bp_result bp_result = BP_RESULT_OK;
enum bp_pipe_control_action cntl;
struct dc_context *ctx = dc->ctx;
if (power_gating == PIPE_GATING_CONTROL_INIT)
cntl = ASIC_PIPE_INIT;
else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
cntl = ASIC_PIPE_ENABLE;
else
cntl = ASIC_PIPE_DISABLE;
if (!(power_gating == PIPE_GATING_CONTROL_INIT && controller_id != 0)){
bp_result = dcb->funcs->enable_disp_power_gating(
dcb, controller_id + 1, cntl);
/* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
* by default when command table is called
*/
dm_write_reg(ctx,
HW_REG_CRTC(mmMASTER_UPDATE_MODE, controller_id),
0);
}
if (bp_result == BP_RESULT_OK)
return true;
else
return false;
}
void dce100_prepare_bandwidth(
struct dc *dc,
struct dc_state *context)
{
dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
dc->clk_mgr->funcs->update_clocks(
dc->clk_mgr,
context,
false);
}
void dce100_optimize_bandwidth(
struct dc *dc,
struct dc_state *context)
{
dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
dc->clk_mgr->funcs->update_clocks(
dc->clk_mgr,
context,
true);
}
/**************************************************************************/
void dce100_hw_sequencer_construct(struct dc *dc)
{
dce110_hw_sequencer_construct(dc);
dc->hwseq->funcs.enable_display_power_gating = dce100_enable_display_power_gating;
dc->hwss.prepare_bandwidth = dce100_prepare_bandwidth;
dc->hwss.optimize_bandwidth = dce100_optimize_bandwidth;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dce100/dce100_hw_sequencer.c |
// SPDX-License-Identifier: MIT
/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dc.h"
#include "dcn32/dcn32_init.h"
#include "resource.h"
#include "include/irq_service_interface.h"
#include "dcn32/dcn32_resource.h"
#include "dcn321_resource.h"
#include "dcn20/dcn20_resource.h"
#include "dcn30/dcn30_resource.h"
#include "dml/dcn321/dcn321_fpu.h"
#include "dcn10/dcn10_ipp.h"
#include "dcn30/dcn30_hubbub.h"
#include "dcn31/dcn31_hubbub.h"
#include "dcn32/dcn32_hubbub.h"
#include "dcn32/dcn32_mpc.h"
#include "dcn32/dcn32_hubp.h"
#include "irq/dcn32/irq_service_dcn32.h"
#include "dcn32/dcn32_dpp.h"
#include "dcn32/dcn32_optc.h"
#include "dcn20/dcn20_hwseq.h"
#include "dcn30/dcn30_hwseq.h"
#include "dce110/dce110_hw_sequencer.h"
#include "dcn30/dcn30_opp.h"
#include "dcn20/dcn20_dsc.h"
#include "dcn30/dcn30_vpg.h"
#include "dcn30/dcn30_afmt.h"
#include "dcn30/dcn30_dio_stream_encoder.h"
#include "dcn32/dcn32_dio_stream_encoder.h"
#include "dcn31/dcn31_hpo_dp_stream_encoder.h"
#include "dcn31/dcn31_hpo_dp_link_encoder.h"
#include "dcn32/dcn32_hpo_dp_link_encoder.h"
#include "dcn31/dcn31_apg.h"
#include "dcn31/dcn31_dio_link_encoder.h"
#include "dcn32/dcn32_dio_link_encoder.h"
#include "dcn321_dio_link_encoder.h"
#include "dce/dce_clock_source.h"
#include "dce/dce_audio.h"
#include "dce/dce_hwseq.h"
#include "clk_mgr.h"
#include "virtual/virtual_stream_encoder.h"
#include "dml/display_mode_vba.h"
#include "dcn32/dcn32_dccg.h"
#include "dcn10/dcn10_resource.h"
#include "link.h"
#include "dcn31/dcn31_panel_cntl.h"
#include "dcn30/dcn30_dwb.h"
#include "dcn32/dcn32_mmhubbub.h"
#include "dcn/dcn_3_2_1_offset.h"
#include "dcn/dcn_3_2_1_sh_mask.h"
#include "nbio/nbio_4_3_0_offset.h"
#include "reg_helper.h"
#include "dce/dmub_abm.h"
#include "dce/dmub_psr.h"
#include "dce/dce_aux.h"
#include "dce/dce_i2c.h"
#include "dml/dcn30/display_mode_vba_30.h"
#include "vm_helper.h"
#include "dcn20/dcn20_vmid.h"
#define DC_LOGGER_INIT(logger)
enum dcn321_clk_src_array_id {
DCN321_CLK_SRC_PLL0,
DCN321_CLK_SRC_PLL1,
DCN321_CLK_SRC_PLL2,
DCN321_CLK_SRC_PLL3,
DCN321_CLK_SRC_PLL4,
DCN321_CLK_SRC_TOTAL
};
/* begin *********************
* macros to expend register list macro defined in HW object header file
*/
/* DCN */
#define BASE_INNER(seg) ctx->dcn_reg_offsets[seg]
#define BASE(seg) BASE_INNER(seg)
#define SR(reg_name)\
REG_STRUCT.reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \
reg ## reg_name
#define SR_ARR(reg_name, id)\
REG_STRUCT[id].reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \
reg ## reg_name
#define SR_ARR_INIT(reg_name, id, value)\
REG_STRUCT[id].reg_name = value
#define SRI(reg_name, block, id)\
REG_STRUCT.reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define SRI_ARR(reg_name, block, id)\
REG_STRUCT[id].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define SR_ARR_I2C(reg_name, id) \
REG_STRUCT[id-1].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name
#define SRI_ARR_I2C(reg_name, block, id)\
REG_STRUCT[id-1].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define SRI_ARR_ALPHABET(reg_name, block, index, id)\
REG_STRUCT[index].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define SRI2(reg_name, block, id)\
.reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \
reg ## reg_name
#define SRI2_ARR(reg_name, block, id)\
REG_STRUCT[id].reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \
reg ## reg_name
#define SRIR(var_name, reg_name, block, id)\
.var_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define SRII(reg_name, block, id)\
REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define SRII_ARR_2(reg_name, block, id, inst)\
REG_STRUCT[inst].reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define SRII_MPC_RMU(reg_name, block, id)\
.RMU##_##reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define SRII_DWB(reg_name, temp_name, block, id)\
REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## temp_name
#define DCCG_SRII(reg_name, block, id)\
REG_STRUCT.block ## _ ## reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define SF_DWB2(reg_name, block, id, field_name, post_fix) \
.field_name = reg_name ## __ ## field_name ## post_fix
#define VUPDATE_SRII(reg_name, block, id)\
REG_STRUCT.reg_name[id] = BASE(reg ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
reg ## reg_name ## _ ## block ## id
/* NBIO */
#define NBIO_BASE_INNER(seg) ctx->nbio_reg_offsets[seg]
#define NBIO_BASE(seg) \
NBIO_BASE_INNER(seg)
#define NBIO_SR(reg_name)\
REG_STRUCT.reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
regBIF_BX0_ ## reg_name
#define NBIO_SR_ARR(reg_name, id)\
REG_STRUCT[id].reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
regBIF_BX0_ ## reg_name
#define CTX ctx
#define REG(reg_name) \
(ctx->dcn_reg_offsets[reg ## reg_name ## _BASE_IDX] + reg ## reg_name)
static struct bios_registers bios_regs;
#define bios_regs_init() \
( \
NBIO_SR(BIOS_SCRATCH_3),\
NBIO_SR(BIOS_SCRATCH_6)\
)
#define clk_src_regs_init(index, pllid)\
CS_COMMON_REG_LIST_DCN3_0_RI(index, pllid)
static struct dce110_clk_src_regs clk_src_regs[5];
static const struct dce110_clk_src_shift cs_shift = {
CS_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
};
static const struct dce110_clk_src_mask cs_mask = {
CS_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
};
#define abm_regs_init(id)\
ABM_DCN32_REG_LIST_RI(id)
static struct dce_abm_registers abm_regs[4];
static const struct dce_abm_shift abm_shift = {
ABM_MASK_SH_LIST_DCN32(__SHIFT)
};
static const struct dce_abm_mask abm_mask = {
ABM_MASK_SH_LIST_DCN32(_MASK)
};
#define audio_regs_init(id)\
AUD_COMMON_REG_LIST_RI(id)
static struct dce_audio_registers audio_regs[5];
#define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
static const struct dce_audio_shift audio_shift = {
DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
};
static const struct dce_audio_mask audio_mask = {
DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
};
#define vpg_regs_init(id)\
VPG_DCN3_REG_LIST_RI(id)
static struct dcn30_vpg_registers vpg_regs[10];
static const struct dcn30_vpg_shift vpg_shift = {
DCN3_VPG_MASK_SH_LIST(__SHIFT)
};
static const struct dcn30_vpg_mask vpg_mask = {
DCN3_VPG_MASK_SH_LIST(_MASK)
};
#define afmt_regs_init(id)\
AFMT_DCN3_REG_LIST_RI(id)
static struct dcn30_afmt_registers afmt_regs[6];
static const struct dcn30_afmt_shift afmt_shift = {
DCN3_AFMT_MASK_SH_LIST(__SHIFT)
};
static const struct dcn30_afmt_mask afmt_mask = {
DCN3_AFMT_MASK_SH_LIST(_MASK)
};
#define apg_regs_init(id)\
APG_DCN31_REG_LIST_RI(id)
static struct dcn31_apg_registers apg_regs[4];
static const struct dcn31_apg_shift apg_shift = {
DCN31_APG_MASK_SH_LIST(__SHIFT)
};
static const struct dcn31_apg_mask apg_mask = {
DCN31_APG_MASK_SH_LIST(_MASK)
};
#define stream_enc_regs_init(id)\
SE_DCN32_REG_LIST_RI(id)
static struct dcn10_stream_enc_registers stream_enc_regs[5];
static const struct dcn10_stream_encoder_shift se_shift = {
SE_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
};
static const struct dcn10_stream_encoder_mask se_mask = {
SE_COMMON_MASK_SH_LIST_DCN32(_MASK)
};
#define aux_regs_init(id)\
DCN2_AUX_REG_LIST_RI(id)
static struct dcn10_link_enc_aux_registers link_enc_aux_regs[5];
#define hpd_regs_init(id)\
HPD_REG_LIST_RI(id)
static struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[5];
#define link_regs_init(id, phyid)\
( \
LE_DCN31_REG_LIST_RI(id), \
UNIPHY_DCN2_REG_LIST_RI(id, phyid)\
)
/*DPCS_DCN31_REG_LIST(id),*/ \
static struct dcn10_link_enc_registers link_enc_regs[5];
static const struct dcn10_link_enc_shift le_shift = {
LINK_ENCODER_MASK_SH_LIST_DCN31(__SHIFT), \
// DPCS_DCN31_MASK_SH_LIST(__SHIFT)
};
static const struct dcn10_link_enc_mask le_mask = {
LINK_ENCODER_MASK_SH_LIST_DCN31(_MASK), \
// DPCS_DCN31_MASK_SH_LIST(_MASK)
};
#define hpo_dp_stream_encoder_reg_init(id)\
DCN3_1_HPO_DP_STREAM_ENC_REG_LIST_RI(id)
static struct dcn31_hpo_dp_stream_encoder_registers hpo_dp_stream_enc_regs[4];
static const struct dcn31_hpo_dp_stream_encoder_shift hpo_dp_se_shift = {
DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(__SHIFT)
};
static const struct dcn31_hpo_dp_stream_encoder_mask hpo_dp_se_mask = {
DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(_MASK)
};
#define hpo_dp_link_encoder_reg_init(id)\
DCN3_1_HPO_DP_LINK_ENC_REG_LIST_RI(id)
/*DCN3_1_RDPCSTX_REG_LIST(0),*/
/*DCN3_1_RDPCSTX_REG_LIST(1),*/
/*DCN3_1_RDPCSTX_REG_LIST(2),*/
/*DCN3_1_RDPCSTX_REG_LIST(3),*/
static struct dcn31_hpo_dp_link_encoder_registers hpo_dp_link_enc_regs[2];
static const struct dcn31_hpo_dp_link_encoder_shift hpo_dp_le_shift = {
DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(__SHIFT)
};
static const struct dcn31_hpo_dp_link_encoder_mask hpo_dp_le_mask = {
DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(_MASK)
};
#define dpp_regs_init(id)\
DPP_REG_LIST_DCN30_COMMON_RI(id)
static struct dcn3_dpp_registers dpp_regs[4];
static const struct dcn3_dpp_shift tf_shift = {
DPP_REG_LIST_SH_MASK_DCN30_COMMON(__SHIFT)
};
static const struct dcn3_dpp_mask tf_mask = {
DPP_REG_LIST_SH_MASK_DCN30_COMMON(_MASK)
};
#define opp_regs_init(id)\
OPP_REG_LIST_DCN30_RI(id)
static struct dcn20_opp_registers opp_regs[4];
static const struct dcn20_opp_shift opp_shift = {
OPP_MASK_SH_LIST_DCN20(__SHIFT)
};
static const struct dcn20_opp_mask opp_mask = {
OPP_MASK_SH_LIST_DCN20(_MASK)
};
#define aux_engine_regs_init(id) \
( \
AUX_COMMON_REG_LIST0_RI(id), SR_ARR_INIT(AUXN_IMPCAL, id, 0), \
SR_ARR_INIT(AUXP_IMPCAL, id, 0), \
SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK), \
SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK)\
)
static struct dce110_aux_registers aux_engine_regs[5];
static const struct dce110_aux_registers_shift aux_shift = {
DCN_AUX_MASK_SH_LIST(__SHIFT)
};
static const struct dce110_aux_registers_mask aux_mask = {
DCN_AUX_MASK_SH_LIST(_MASK)
};
#define dwbc_regs_dcn3_init(id)\
DWBC_COMMON_REG_LIST_DCN30_RI(id)
static struct dcn30_dwbc_registers dwbc30_regs[1];
static const struct dcn30_dwbc_shift dwbc30_shift = {
DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn30_dwbc_mask dwbc30_mask = {
DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
};
#define mcif_wb_regs_dcn3_init(id)\
MCIF_WB_COMMON_REG_LIST_DCN32_RI(id)
static struct dcn30_mmhubbub_registers mcif_wb30_regs[1];
static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
MCIF_WB_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
};
static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
MCIF_WB_COMMON_MASK_SH_LIST_DCN32(_MASK)
};
#define dsc_regsDCN20_init(id)\
DSC_REG_LIST_DCN20_RI(id)
static struct dcn20_dsc_registers dsc_regs[4];
static const struct dcn20_dsc_shift dsc_shift = {
DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
};
static const struct dcn20_dsc_mask dsc_mask = {
DSC_REG_LIST_SH_MASK_DCN20(_MASK)
};
static struct dcn30_mpc_registers mpc_regs;
#define dcn_mpc_regs_init()\
MPC_REG_LIST_DCN3_2_RI(0),\
MPC_REG_LIST_DCN3_2_RI(1),\
MPC_REG_LIST_DCN3_2_RI(2),\
MPC_REG_LIST_DCN3_2_RI(3),\
MPC_OUT_MUX_REG_LIST_DCN3_0_RI(0),\
MPC_OUT_MUX_REG_LIST_DCN3_0_RI(1),\
MPC_OUT_MUX_REG_LIST_DCN3_0_RI(2),\
MPC_OUT_MUX_REG_LIST_DCN3_0_RI(3),\
MPC_DWB_MUX_REG_LIST_DCN3_0_RI(0)
static const struct dcn30_mpc_shift mpc_shift = {
MPC_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
};
static const struct dcn30_mpc_mask mpc_mask = {
MPC_COMMON_MASK_SH_LIST_DCN32(_MASK)
};
#define optc_regs_init(id)\
OPTC_COMMON_REG_LIST_DCN3_2_RI(id)
static struct dcn_optc_registers optc_regs[4];
static const struct dcn_optc_shift optc_shift = {
OPTC_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
};
static const struct dcn_optc_mask optc_mask = {
OPTC_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
};
#define hubp_regs_init(id) \
HUBP_REG_LIST_DCN32_RI(id)
static struct dcn_hubp2_registers hubp_regs[4];
static const struct dcn_hubp2_shift hubp_shift = {
HUBP_MASK_SH_LIST_DCN32(__SHIFT)
};
static const struct dcn_hubp2_mask hubp_mask = {
HUBP_MASK_SH_LIST_DCN32(_MASK)
};
static struct dcn_hubbub_registers hubbub_reg;
#define hubbub_reg_init()\
HUBBUB_REG_LIST_DCN32_RI(0)
static const struct dcn_hubbub_shift hubbub_shift = {
HUBBUB_MASK_SH_LIST_DCN32(__SHIFT)
};
static const struct dcn_hubbub_mask hubbub_mask = {
HUBBUB_MASK_SH_LIST_DCN32(_MASK)
};
static struct dccg_registers dccg_regs;
#define dccg_regs_init()\
DCCG_REG_LIST_DCN32_RI()
static const struct dccg_shift dccg_shift = {
DCCG_MASK_SH_LIST_DCN32(__SHIFT)
};
static const struct dccg_mask dccg_mask = {
DCCG_MASK_SH_LIST_DCN32(_MASK)
};
#define SRII2(reg_name_pre, reg_name_post, id)\
.reg_name_pre ## _ ## reg_name_post[id] = BASE(reg ## reg_name_pre \
## id ## _ ## reg_name_post ## _BASE_IDX) + \
reg ## reg_name_pre ## id ## _ ## reg_name_post
#define HWSEQ_DCN32_REG_LIST()\
SR(DCHUBBUB_GLOBAL_TIMER_CNTL), \
SR(DIO_MEM_PWR_CTRL), \
SR(ODM_MEM_PWR_CTRL3), \
SR(MMHUBBUB_MEM_PWR_CNTL), \
SR(DCCG_GATE_DISABLE_CNTL), \
SR(DCCG_GATE_DISABLE_CNTL2), \
SR(DCFCLK_CNTL),\
SR(DC_MEM_GLOBAL_PWR_REQ_CNTL), \
SRII(PIXEL_RATE_CNTL, OTG, 0), \
SRII(PIXEL_RATE_CNTL, OTG, 1),\
SRII(PIXEL_RATE_CNTL, OTG, 2),\
SRII(PIXEL_RATE_CNTL, OTG, 3),\
SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 0),\
SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 1),\
SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 2),\
SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 3),\
SR(MICROSECOND_TIME_BASE_DIV), \
SR(MILLISECOND_TIME_BASE_DIV), \
SR(DISPCLK_FREQ_CHANGE_CNTL), \
SR(RBBMIF_TIMEOUT_DIS), \
SR(RBBMIF_TIMEOUT_DIS_2), \
SR(DCHUBBUB_CRC_CTRL), \
SR(DPP_TOP0_DPP_CRC_CTRL), \
SR(DPP_TOP0_DPP_CRC_VAL_B_A), \
SR(DPP_TOP0_DPP_CRC_VAL_R_G), \
SR(MPC_CRC_CTRL), \
SR(MPC_CRC_RESULT_GB), \
SR(MPC_CRC_RESULT_C), \
SR(MPC_CRC_RESULT_AR), \
SR(DOMAIN0_PG_CONFIG), \
SR(DOMAIN1_PG_CONFIG), \
SR(DOMAIN2_PG_CONFIG), \
SR(DOMAIN3_PG_CONFIG), \
SR(DOMAIN16_PG_CONFIG), \
SR(DOMAIN17_PG_CONFIG), \
SR(DOMAIN18_PG_CONFIG), \
SR(DOMAIN19_PG_CONFIG), \
SR(DOMAIN0_PG_STATUS), \
SR(DOMAIN1_PG_STATUS), \
SR(DOMAIN2_PG_STATUS), \
SR(DOMAIN3_PG_STATUS), \
SR(DOMAIN16_PG_STATUS), \
SR(DOMAIN17_PG_STATUS), \
SR(DOMAIN18_PG_STATUS), \
SR(DOMAIN19_PG_STATUS), \
SR(D1VGA_CONTROL), \
SR(D2VGA_CONTROL), \
SR(D3VGA_CONTROL), \
SR(D4VGA_CONTROL), \
SR(D5VGA_CONTROL), \
SR(D6VGA_CONTROL), \
SR(DC_IP_REQUEST_CNTL), \
SR(AZALIA_AUDIO_DTO), \
SR(AZALIA_CONTROLLER_CLOCK_GATING)
static struct dce_hwseq_registers hwseq_reg;
#define hwseq_reg_init()\
HWSEQ_DCN32_REG_LIST()
#define HWSEQ_DCN32_MASK_SH_LIST(mask_sh)\
HWSEQ_DCN_MASK_SH_LIST(mask_sh), \
HWS_SF(, DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, mask_sh), \
HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DC_IP_REQUEST_CNTL, IP_REQUEST_EN, mask_sh), \
HWS_SF(, AZALIA_AUDIO_DTO, AZALIA_AUDIO_DTO_MODULE, mask_sh), \
HWS_SF(, HPO_TOP_CLOCK_CONTROL, HPO_HDMISTREAMCLK_G_GATE_DIS, mask_sh), \
HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_UNASSIGNED_PWR_MODE, mask_sh), \
HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_VBLANK_PWR_MODE, mask_sh), \
HWS_SF(, MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, mask_sh)
static const struct dce_hwseq_shift hwseq_shift = {
HWSEQ_DCN32_MASK_SH_LIST(__SHIFT)
};
static const struct dce_hwseq_mask hwseq_mask = {
HWSEQ_DCN32_MASK_SH_LIST(_MASK)
};
#define vmid_regs_init(id)\
DCN20_VMID_REG_LIST_RI(id)
static struct dcn_vmid_registers vmid_regs[16];
static const struct dcn20_vmid_shift vmid_shifts = {
DCN20_VMID_MASK_SH_LIST(__SHIFT)
};
static const struct dcn20_vmid_mask vmid_masks = {
DCN20_VMID_MASK_SH_LIST(_MASK)
};
static const struct resource_caps res_cap_dcn321 = {
.num_timing_generator = 4,
.num_opp = 4,
.num_video_plane = 4,
.num_audio = 5,
.num_stream_encoder = 5,
.num_hpo_dp_stream_encoder = 4,
.num_hpo_dp_link_encoder = 2,
.num_pll = 5,
.num_dwb = 1,
.num_ddc = 5,
.num_vmid = 16,
.num_mpc_3dlut = 4,
.num_dsc = 4,
};
static const struct dc_plane_cap plane_cap = {
.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
.per_pixel_alpha = true,
.pixel_format_support = {
.argb8888 = true,
.nv12 = true,
.fp16 = true,
.p010 = true,
.ayuv = false,
},
.max_upscale_factor = {
.argb8888 = 16000,
.nv12 = 16000,
.fp16 = 16000
},
// 6:1 downscaling ratio: 1000/6 = 166.666
.max_downscale_factor = {
.argb8888 = 167,
.nv12 = 167,
.fp16 = 167
},
64,
64
};
static const struct dc_debug_options debug_defaults_drv = {
.disable_dmcu = true,
.force_abm_enable = false,
.timing_trace = false,
.clock_trace = true,
.disable_pplib_clock_request = false,
.pipe_split_policy = MPC_SPLIT_AVOID,
.force_single_disp_pipe_split = false,
.disable_dcc = DCC_ENABLE,
.vsr_support = true,
.performance_trace = false,
.max_downscale_src_width = 7680,/*upto 8K*/
.disable_pplib_wm_range = false,
.scl_reset_length10 = true,
.sanity_checks = false,
.underflow_assert_delay_us = 0xFFFFFFFF,
.dwb_fi_phase = -1, // -1 = disable,
.dmub_command_table = true,
.enable_mem_low_power = {
.bits = {
.vga = false,
.i2c = false,
.dmcu = false, // This is previously known to cause hang on S3 cycles if enabled
.dscl = false,
.cm = false,
.mpc = false,
.optc = true,
}
},
.use_max_lb = true,
.force_disable_subvp = false,
.exit_idle_opt_for_cursor_updates = true,
.enable_single_display_2to1_odm_policy = true,
/*must match enable_single_display_2to1_odm_policy to support dynamic ODM transitions*/
.enable_double_buffered_dsc_pg_support = true,
.enable_dp_dig_pixel_rate_div_policy = 1,
.allow_sw_cursor_fallback = false, // Linux can't do SW cursor "fallback"
.alloc_extra_way_for_cursor = true,
.min_prefetch_in_strobe_ns = 60000, // 60us
.disable_unbounded_requesting = false,
.override_dispclk_programming = true,
.disable_fpo_optimizations = false,
.fpo_vactive_margin_us = 2000, // 2000us
.disable_fpo_vactive = false,
.disable_boot_optimizations = false,
.disable_subvp_high_refresh = false,
.fpo_vactive_min_active_margin_us = 200,
.fpo_vactive_max_blank_us = 1000,
.enable_legacy_fast_update = false,
.disable_dc_mode_overwrite = true,
};
static struct dce_aux *dcn321_aux_engine_create(
struct dc_context *ctx,
uint32_t inst)
{
struct aux_engine_dce110 *aux_engine =
kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
if (!aux_engine)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT aux_engine_regs
aux_engine_regs_init(0),
aux_engine_regs_init(1),
aux_engine_regs_init(2),
aux_engine_regs_init(3),
aux_engine_regs_init(4);
dce110_aux_engine_construct(aux_engine, ctx, inst,
SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
&aux_engine_regs[inst],
&aux_mask,
&aux_shift,
ctx->dc->caps.extended_aux_timeout_support);
return &aux_engine->base;
}
#define i2c_inst_regs_init(id)\
I2C_HW_ENGINE_COMMON_REG_LIST_DCN30_RI(id)
static struct dce_i2c_registers i2c_hw_regs[5];
static const struct dce_i2c_shift i2c_shifts = {
I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dce_i2c_mask i2c_masks = {
I2C_COMMON_MASK_SH_LIST_DCN30(_MASK)
};
static struct dce_i2c_hw *dcn321_i2c_hw_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_i2c_hw *dce_i2c_hw =
kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
if (!dce_i2c_hw)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT i2c_hw_regs
i2c_inst_regs_init(1),
i2c_inst_regs_init(2),
i2c_inst_regs_init(3),
i2c_inst_regs_init(4),
i2c_inst_regs_init(5);
dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
&i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
return dce_i2c_hw;
}
static struct clock_source *dcn321_clock_source_create(
struct dc_context *ctx,
struct dc_bios *bios,
enum clock_source_id id,
const struct dce110_clk_src_regs *regs,
bool dp_clk_src)
{
struct dce110_clk_src *clk_src =
kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
if (!clk_src)
return NULL;
if (dcn31_clk_src_construct(clk_src, ctx, bios, id,
regs, &cs_shift, &cs_mask)) {
clk_src->base.dp_clk_src = dp_clk_src;
return &clk_src->base;
}
kfree(clk_src);
BREAK_TO_DEBUGGER();
return NULL;
}
static struct hubbub *dcn321_hubbub_create(struct dc_context *ctx)
{
int i;
struct dcn20_hubbub *hubbub2 = kzalloc(sizeof(struct dcn20_hubbub),
GFP_KERNEL);
if (!hubbub2)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT hubbub_reg
hubbub_reg_init();
#undef REG_STRUCT
#define REG_STRUCT vmid_regs
vmid_regs_init(0),
vmid_regs_init(1),
vmid_regs_init(2),
vmid_regs_init(3),
vmid_regs_init(4),
vmid_regs_init(5),
vmid_regs_init(6),
vmid_regs_init(7),
vmid_regs_init(8),
vmid_regs_init(9),
vmid_regs_init(10),
vmid_regs_init(11),
vmid_regs_init(12),
vmid_regs_init(13),
vmid_regs_init(14),
vmid_regs_init(15);
hubbub32_construct(hubbub2, ctx,
&hubbub_reg,
&hubbub_shift,
&hubbub_mask,
ctx->dc->dml.ip.det_buffer_size_kbytes,
ctx->dc->dml.ip.pixel_chunk_size_kbytes,
ctx->dc->dml.ip.config_return_buffer_size_in_kbytes);
for (i = 0; i < res_cap_dcn321.num_vmid; i++) {
struct dcn20_vmid *vmid = &hubbub2->vmid[i];
vmid->ctx = ctx;
vmid->regs = &vmid_regs[i];
vmid->shifts = &vmid_shifts;
vmid->masks = &vmid_masks;
}
return &hubbub2->base;
}
static struct hubp *dcn321_hubp_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn20_hubp *hubp2 =
kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
if (!hubp2)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT hubp_regs
hubp_regs_init(0),
hubp_regs_init(1),
hubp_regs_init(2),
hubp_regs_init(3);
if (hubp32_construct(hubp2, ctx, inst,
&hubp_regs[inst], &hubp_shift, &hubp_mask))
return &hubp2->base;
BREAK_TO_DEBUGGER();
kfree(hubp2);
return NULL;
}
static void dcn321_dpp_destroy(struct dpp **dpp)
{
kfree(TO_DCN30_DPP(*dpp));
*dpp = NULL;
}
static struct dpp *dcn321_dpp_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn3_dpp *dpp3 =
kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
if (!dpp3)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT dpp_regs
dpp_regs_init(0),
dpp_regs_init(1),
dpp_regs_init(2),
dpp_regs_init(3);
if (dpp32_construct(dpp3, ctx, inst,
&dpp_regs[inst], &tf_shift, &tf_mask))
return &dpp3->base;
BREAK_TO_DEBUGGER();
kfree(dpp3);
return NULL;
}
static struct mpc *dcn321_mpc_create(
struct dc_context *ctx,
int num_mpcc,
int num_rmu)
{
struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
GFP_KERNEL);
if (!mpc30)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT mpc_regs
dcn_mpc_regs_init();
dcn32_mpc_construct(mpc30, ctx,
&mpc_regs,
&mpc_shift,
&mpc_mask,
num_mpcc,
num_rmu);
return &mpc30->base;
}
static struct output_pixel_processor *dcn321_opp_create(
struct dc_context *ctx, uint32_t inst)
{
struct dcn20_opp *opp2 =
kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
if (!opp2) {
BREAK_TO_DEBUGGER();
return NULL;
}
#undef REG_STRUCT
#define REG_STRUCT opp_regs
opp_regs_init(0),
opp_regs_init(1),
opp_regs_init(2),
opp_regs_init(3);
dcn20_opp_construct(opp2, ctx, inst,
&opp_regs[inst], &opp_shift, &opp_mask);
return &opp2->base;
}
static struct timing_generator *dcn321_timing_generator_create(
struct dc_context *ctx,
uint32_t instance)
{
struct optc *tgn10 =
kzalloc(sizeof(struct optc), GFP_KERNEL);
if (!tgn10)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT optc_regs
optc_regs_init(0),
optc_regs_init(1),
optc_regs_init(2),
optc_regs_init(3);
tgn10->base.inst = instance;
tgn10->base.ctx = ctx;
tgn10->tg_regs = &optc_regs[instance];
tgn10->tg_shift = &optc_shift;
tgn10->tg_mask = &optc_mask;
dcn32_timing_generator_init(tgn10);
return &tgn10->base;
}
static const struct encoder_feature_support link_enc_feature = {
.max_hdmi_deep_color = COLOR_DEPTH_121212,
.max_hdmi_pixel_clock = 600000,
.hdmi_ycbcr420_supported = true,
.dp_ycbcr420_supported = true,
.fec_supported = true,
.flags.bits.IS_HBR2_CAPABLE = true,
.flags.bits.IS_HBR3_CAPABLE = true,
.flags.bits.IS_TPS3_CAPABLE = true,
.flags.bits.IS_TPS4_CAPABLE = true
};
static struct link_encoder *dcn321_link_encoder_create(
struct dc_context *ctx,
const struct encoder_init_data *enc_init_data)
{
struct dcn20_link_encoder *enc20 =
kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
if (!enc20)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT link_enc_aux_regs
aux_regs_init(0),
aux_regs_init(1),
aux_regs_init(2),
aux_regs_init(3),
aux_regs_init(4);
#undef REG_STRUCT
#define REG_STRUCT link_enc_hpd_regs
hpd_regs_init(0),
hpd_regs_init(1),
hpd_regs_init(2),
hpd_regs_init(3),
hpd_regs_init(4);
#undef REG_STRUCT
#define REG_STRUCT link_enc_regs
link_regs_init(0, A),
link_regs_init(1, B),
link_regs_init(2, C),
link_regs_init(3, D),
link_regs_init(4, E);
dcn321_link_encoder_construct(enc20,
enc_init_data,
&link_enc_feature,
&link_enc_regs[enc_init_data->transmitter],
&link_enc_aux_regs[enc_init_data->channel - 1],
&link_enc_hpd_regs[enc_init_data->hpd_source],
&le_shift,
&le_mask);
return &enc20->enc10.base;
}
static void read_dce_straps(
struct dc_context *ctx,
struct resource_straps *straps)
{
generic_reg_get(ctx, ctx->dcn_reg_offsets[regDC_PINSTRAPS_BASE_IDX] + regDC_PINSTRAPS,
FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
}
static struct audio *dcn321_create_audio(
struct dc_context *ctx, unsigned int inst)
{
#undef REG_STRUCT
#define REG_STRUCT audio_regs
audio_regs_init(0),
audio_regs_init(1),
audio_regs_init(2),
audio_regs_init(3),
audio_regs_init(4);
return dce_audio_create(ctx, inst,
&audio_regs[inst], &audio_shift, &audio_mask);
}
static struct vpg *dcn321_vpg_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
if (!vpg3)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT vpg_regs
vpg_regs_init(0),
vpg_regs_init(1),
vpg_regs_init(2),
vpg_regs_init(3),
vpg_regs_init(4),
vpg_regs_init(5),
vpg_regs_init(6),
vpg_regs_init(7),
vpg_regs_init(8),
vpg_regs_init(9);
vpg3_construct(vpg3, ctx, inst,
&vpg_regs[inst],
&vpg_shift,
&vpg_mask);
return &vpg3->base;
}
static struct afmt *dcn321_afmt_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
if (!afmt3)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT afmt_regs
afmt_regs_init(0),
afmt_regs_init(1),
afmt_regs_init(2),
afmt_regs_init(3),
afmt_regs_init(4),
afmt_regs_init(5);
afmt3_construct(afmt3, ctx, inst,
&afmt_regs[inst],
&afmt_shift,
&afmt_mask);
return &afmt3->base;
}
static struct apg *dcn321_apg_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn31_apg *apg31 = kzalloc(sizeof(struct dcn31_apg), GFP_KERNEL);
if (!apg31)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT apg_regs
apg_regs_init(0),
apg_regs_init(1),
apg_regs_init(2),
apg_regs_init(3);
apg31_construct(apg31, ctx, inst,
&apg_regs[inst],
&apg_shift,
&apg_mask);
return &apg31->base;
}
static struct stream_encoder *dcn321_stream_encoder_create(
enum engine_id eng_id,
struct dc_context *ctx)
{
struct dcn10_stream_encoder *enc1;
struct vpg *vpg;
struct afmt *afmt;
int vpg_inst;
int afmt_inst;
/* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
if (eng_id <= ENGINE_ID_DIGF) {
vpg_inst = eng_id;
afmt_inst = eng_id;
} else
return NULL;
enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
vpg = dcn321_vpg_create(ctx, vpg_inst);
afmt = dcn321_afmt_create(ctx, afmt_inst);
if (!enc1 || !vpg || !afmt) {
kfree(enc1);
kfree(vpg);
kfree(afmt);
return NULL;
}
#undef REG_STRUCT
#define REG_STRUCT stream_enc_regs
stream_enc_regs_init(0),
stream_enc_regs_init(1),
stream_enc_regs_init(2),
stream_enc_regs_init(3),
stream_enc_regs_init(4);
dcn32_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
eng_id, vpg, afmt,
&stream_enc_regs[eng_id],
&se_shift, &se_mask);
return &enc1->base;
}
static struct hpo_dp_stream_encoder *dcn321_hpo_dp_stream_encoder_create(
enum engine_id eng_id,
struct dc_context *ctx)
{
struct dcn31_hpo_dp_stream_encoder *hpo_dp_enc31;
struct vpg *vpg;
struct apg *apg;
uint32_t hpo_dp_inst;
uint32_t vpg_inst;
uint32_t apg_inst;
ASSERT((eng_id >= ENGINE_ID_HPO_DP_0) && (eng_id <= ENGINE_ID_HPO_DP_3));
hpo_dp_inst = eng_id - ENGINE_ID_HPO_DP_0;
/* Mapping of VPG register blocks to HPO DP block instance:
* VPG[6] -> HPO_DP[0]
* VPG[7] -> HPO_DP[1]
* VPG[8] -> HPO_DP[2]
* VPG[9] -> HPO_DP[3]
*/
vpg_inst = hpo_dp_inst + 6;
/* Mapping of APG register blocks to HPO DP block instance:
* APG[0] -> HPO_DP[0]
* APG[1] -> HPO_DP[1]
* APG[2] -> HPO_DP[2]
* APG[3] -> HPO_DP[3]
*/
apg_inst = hpo_dp_inst;
/* allocate HPO stream encoder and create VPG sub-block */
hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_stream_encoder), GFP_KERNEL);
vpg = dcn321_vpg_create(ctx, vpg_inst);
apg = dcn321_apg_create(ctx, apg_inst);
if (!hpo_dp_enc31 || !vpg || !apg) {
kfree(hpo_dp_enc31);
kfree(vpg);
kfree(apg);
return NULL;
}
#undef REG_STRUCT
#define REG_STRUCT hpo_dp_stream_enc_regs
hpo_dp_stream_encoder_reg_init(0),
hpo_dp_stream_encoder_reg_init(1),
hpo_dp_stream_encoder_reg_init(2),
hpo_dp_stream_encoder_reg_init(3);
dcn31_hpo_dp_stream_encoder_construct(hpo_dp_enc31, ctx, ctx->dc_bios,
hpo_dp_inst, eng_id, vpg, apg,
&hpo_dp_stream_enc_regs[hpo_dp_inst],
&hpo_dp_se_shift, &hpo_dp_se_mask);
return &hpo_dp_enc31->base;
}
static struct hpo_dp_link_encoder *dcn321_hpo_dp_link_encoder_create(
uint8_t inst,
struct dc_context *ctx)
{
struct dcn31_hpo_dp_link_encoder *hpo_dp_enc31;
/* allocate HPO link encoder */
hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_link_encoder), GFP_KERNEL);
#undef REG_STRUCT
#define REG_STRUCT hpo_dp_link_enc_regs
hpo_dp_link_encoder_reg_init(0),
hpo_dp_link_encoder_reg_init(1);
hpo_dp_link_encoder32_construct(hpo_dp_enc31, ctx, inst,
&hpo_dp_link_enc_regs[inst],
&hpo_dp_le_shift, &hpo_dp_le_mask);
return &hpo_dp_enc31->base;
}
static struct dce_hwseq *dcn321_hwseq_create(
struct dc_context *ctx)
{
struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
#undef REG_STRUCT
#define REG_STRUCT hwseq_reg
hwseq_reg_init();
if (hws) {
hws->ctx = ctx;
hws->regs = &hwseq_reg;
hws->shifts = &hwseq_shift;
hws->masks = &hwseq_mask;
}
return hws;
}
static const struct resource_create_funcs res_create_funcs = {
.read_dce_straps = read_dce_straps,
.create_audio = dcn321_create_audio,
.create_stream_encoder = dcn321_stream_encoder_create,
.create_hpo_dp_stream_encoder = dcn321_hpo_dp_stream_encoder_create,
.create_hpo_dp_link_encoder = dcn321_hpo_dp_link_encoder_create,
.create_hwseq = dcn321_hwseq_create,
};
static void dcn321_resource_destruct(struct dcn321_resource_pool *pool)
{
unsigned int i;
for (i = 0; i < pool->base.stream_enc_count; i++) {
if (pool->base.stream_enc[i] != NULL) {
if (pool->base.stream_enc[i]->vpg != NULL) {
kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
pool->base.stream_enc[i]->vpg = NULL;
}
if (pool->base.stream_enc[i]->afmt != NULL) {
kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
pool->base.stream_enc[i]->afmt = NULL;
}
kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
pool->base.stream_enc[i] = NULL;
}
}
for (i = 0; i < pool->base.hpo_dp_stream_enc_count; i++) {
if (pool->base.hpo_dp_stream_enc[i] != NULL) {
if (pool->base.hpo_dp_stream_enc[i]->vpg != NULL) {
kfree(DCN30_VPG_FROM_VPG(pool->base.hpo_dp_stream_enc[i]->vpg));
pool->base.hpo_dp_stream_enc[i]->vpg = NULL;
}
if (pool->base.hpo_dp_stream_enc[i]->apg != NULL) {
kfree(DCN31_APG_FROM_APG(pool->base.hpo_dp_stream_enc[i]->apg));
pool->base.hpo_dp_stream_enc[i]->apg = NULL;
}
kfree(DCN3_1_HPO_DP_STREAM_ENC_FROM_HPO_STREAM_ENC(pool->base.hpo_dp_stream_enc[i]));
pool->base.hpo_dp_stream_enc[i] = NULL;
}
}
for (i = 0; i < pool->base.hpo_dp_link_enc_count; i++) {
if (pool->base.hpo_dp_link_enc[i] != NULL) {
kfree(DCN3_1_HPO_DP_LINK_ENC_FROM_HPO_LINK_ENC(pool->base.hpo_dp_link_enc[i]));
pool->base.hpo_dp_link_enc[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
if (pool->base.dscs[i] != NULL)
dcn20_dsc_destroy(&pool->base.dscs[i]);
}
if (pool->base.mpc != NULL) {
kfree(TO_DCN20_MPC(pool->base.mpc));
pool->base.mpc = NULL;
}
if (pool->base.hubbub != NULL) {
kfree(TO_DCN20_HUBBUB(pool->base.hubbub));
pool->base.hubbub = NULL;
}
for (i = 0; i < pool->base.pipe_count; i++) {
if (pool->base.dpps[i] != NULL)
dcn321_dpp_destroy(&pool->base.dpps[i]);
if (pool->base.ipps[i] != NULL)
pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
if (pool->base.hubps[i] != NULL) {
kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
pool->base.hubps[i] = NULL;
}
if (pool->base.irqs != NULL)
dal_irq_service_destroy(&pool->base.irqs);
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
if (pool->base.engines[i] != NULL)
dce110_engine_destroy(&pool->base.engines[i]);
if (pool->base.hw_i2cs[i] != NULL) {
kfree(pool->base.hw_i2cs[i]);
pool->base.hw_i2cs[i] = NULL;
}
if (pool->base.sw_i2cs[i] != NULL) {
kfree(pool->base.sw_i2cs[i]);
pool->base.sw_i2cs[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_opp; i++) {
if (pool->base.opps[i] != NULL)
pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
}
for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
if (pool->base.timing_generators[i] != NULL) {
kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
pool->base.timing_generators[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
if (pool->base.dwbc[i] != NULL) {
kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
pool->base.dwbc[i] = NULL;
}
if (pool->base.mcif_wb[i] != NULL) {
kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
pool->base.mcif_wb[i] = NULL;
}
}
for (i = 0; i < pool->base.audio_count; i++) {
if (pool->base.audios[i])
dce_aud_destroy(&pool->base.audios[i]);
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] != NULL) {
dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
pool->base.clock_sources[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
if (pool->base.mpc_lut[i] != NULL) {
dc_3dlut_func_release(pool->base.mpc_lut[i]);
pool->base.mpc_lut[i] = NULL;
}
if (pool->base.mpc_shaper[i] != NULL) {
dc_transfer_func_release(pool->base.mpc_shaper[i]);
pool->base.mpc_shaper[i] = NULL;
}
}
if (pool->base.dp_clock_source != NULL) {
dcn20_clock_source_destroy(&pool->base.dp_clock_source);
pool->base.dp_clock_source = NULL;
}
for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
if (pool->base.multiple_abms[i] != NULL)
dce_abm_destroy(&pool->base.multiple_abms[i]);
}
if (pool->base.psr != NULL)
dmub_psr_destroy(&pool->base.psr);
if (pool->base.dccg != NULL)
dcn_dccg_destroy(&pool->base.dccg);
if (pool->base.oem_device != NULL) {
struct dc *dc = pool->base.oem_device->ctx->dc;
dc->link_srv->destroy_ddc_service(&pool->base.oem_device);
}
}
static bool dcn321_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
{
int i;
uint32_t dwb_count = pool->res_cap->num_dwb;
for (i = 0; i < dwb_count; i++) {
struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
GFP_KERNEL);
if (!dwbc30) {
dm_error("DC: failed to create dwbc30!\n");
return false;
}
#undef REG_STRUCT
#define REG_STRUCT dwbc30_regs
dwbc_regs_dcn3_init(0);
dcn30_dwbc_construct(dwbc30, ctx,
&dwbc30_regs[i],
&dwbc30_shift,
&dwbc30_mask,
i);
pool->dwbc[i] = &dwbc30->base;
}
return true;
}
static bool dcn321_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
{
int i;
uint32_t dwb_count = pool->res_cap->num_dwb;
for (i = 0; i < dwb_count; i++) {
struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
GFP_KERNEL);
if (!mcif_wb30) {
dm_error("DC: failed to create mcif_wb30!\n");
return false;
}
#undef REG_STRUCT
#define REG_STRUCT mcif_wb30_regs
mcif_wb_regs_dcn3_init(0);
dcn32_mmhubbub_construct(mcif_wb30, ctx,
&mcif_wb30_regs[i],
&mcif_wb30_shift,
&mcif_wb30_mask,
i);
pool->mcif_wb[i] = &mcif_wb30->base;
}
return true;
}
static struct display_stream_compressor *dcn321_dsc_create(
struct dc_context *ctx, uint32_t inst)
{
struct dcn20_dsc *dsc =
kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
if (!dsc) {
BREAK_TO_DEBUGGER();
return NULL;
}
#undef REG_STRUCT
#define REG_STRUCT dsc_regs
dsc_regsDCN20_init(0),
dsc_regsDCN20_init(1),
dsc_regsDCN20_init(2),
dsc_regsDCN20_init(3);
dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
dsc->max_image_width = 6016;
return &dsc->base;
}
static void dcn321_destroy_resource_pool(struct resource_pool **pool)
{
struct dcn321_resource_pool *dcn321_pool = TO_DCN321_RES_POOL(*pool);
dcn321_resource_destruct(dcn321_pool);
kfree(dcn321_pool);
*pool = NULL;
}
static struct dc_cap_funcs cap_funcs = {
.get_dcc_compression_cap = dcn20_get_dcc_compression_cap
};
static void dcn321_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
{
DC_FP_START();
dcn321_update_bw_bounding_box_fpu(dc, bw_params);
DC_FP_END();
}
static struct resource_funcs dcn321_res_pool_funcs = {
.destroy = dcn321_destroy_resource_pool,
.link_enc_create = dcn321_link_encoder_create,
.link_enc_create_minimal = NULL,
.panel_cntl_create = dcn32_panel_cntl_create,
.validate_bandwidth = dcn32_validate_bandwidth,
.calculate_wm_and_dlg = dcn32_calculate_wm_and_dlg,
.populate_dml_pipes = dcn32_populate_dml_pipes_from_context,
.acquire_free_pipe_as_secondary_dpp_pipe = dcn32_acquire_free_pipe_as_secondary_dpp_pipe,
.add_stream_to_ctx = dcn30_add_stream_to_ctx,
.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
.populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
.set_mcif_arb_params = dcn30_set_mcif_arb_params,
.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
.acquire_post_bldn_3dlut = dcn32_acquire_post_bldn_3dlut,
.release_post_bldn_3dlut = dcn32_release_post_bldn_3dlut,
.update_bw_bounding_box = dcn321_update_bw_bounding_box,
.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
.update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
.add_phantom_pipes = dcn32_add_phantom_pipes,
.remove_phantom_pipes = dcn32_remove_phantom_pipes,
.retain_phantom_pipes = dcn32_retain_phantom_pipes,
.save_mall_state = dcn32_save_mall_state,
.restore_mall_state = dcn32_restore_mall_state,
};
static uint32_t read_pipe_fuses(struct dc_context *ctx)
{
uint32_t value = REG_READ(CC_DC_PIPE_DIS);
/* DCN321 support max 4 pipes */
value = value & 0xf;
return value;
}
static bool dcn321_resource_construct(
uint8_t num_virtual_links,
struct dc *dc,
struct dcn321_resource_pool *pool)
{
int i, j;
struct dc_context *ctx = dc->ctx;
struct irq_service_init_data init_data;
struct ddc_service_init_data ddc_init_data = {0};
uint32_t pipe_fuses = 0;
uint32_t num_pipes = 4;
#undef REG_STRUCT
#define REG_STRUCT bios_regs
bios_regs_init();
#undef REG_STRUCT
#define REG_STRUCT clk_src_regs
clk_src_regs_init(0, A),
clk_src_regs_init(1, B),
clk_src_regs_init(2, C),
clk_src_regs_init(3, D),
clk_src_regs_init(4, E);
#undef REG_STRUCT
#define REG_STRUCT abm_regs
abm_regs_init(0),
abm_regs_init(1),
abm_regs_init(2),
abm_regs_init(3);
#undef REG_STRUCT
#define REG_STRUCT dccg_regs
dccg_regs_init();
ctx->dc_bios->regs = &bios_regs;
pool->base.res_cap = &res_cap_dcn321;
/* max number of pipes for ASIC before checking for pipe fuses */
num_pipes = pool->base.res_cap->num_timing_generator;
pipe_fuses = read_pipe_fuses(ctx);
for (i = 0; i < pool->base.res_cap->num_timing_generator; i++)
if (pipe_fuses & 1 << i)
num_pipes--;
if (pipe_fuses & 1)
ASSERT(0); //Unexpected - Pipe 0 should always be fully functional!
if (pipe_fuses & CC_DC_PIPE_DIS__DC_FULL_DIS_MASK)
ASSERT(0); //Entire DCN is harvested!
/* within dml lib, initial value is hard coded, if ASIC pipe is fused, the
* value will be changed, update max_num_dpp and max_num_otg for dml.
*/
dcn3_21_ip.max_num_dpp = num_pipes;
dcn3_21_ip.max_num_otg = num_pipes;
pool->base.funcs = &dcn321_res_pool_funcs;
/*************************************************
* Resource + asic cap harcoding *
*************************************************/
pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
pool->base.timing_generator_count = num_pipes;
pool->base.pipe_count = num_pipes;
pool->base.mpcc_count = num_pipes;
dc->caps.max_downscale_ratio = 600;
dc->caps.i2c_speed_in_khz = 100;
dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a applied by default*/
/* TODO: Bring max cursor size back to 256 after subvp cursor corruption is fixed*/
dc->caps.max_cursor_size = 64;
dc->caps.min_horizontal_blanking_period = 80;
dc->caps.dmdata_alloc_size = 2048;
dc->caps.mall_size_per_mem_channel = 4;
dc->caps.mall_size_total = 0;
dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;
dc->caps.cache_line_size = 64;
dc->caps.cache_num_ways = 16;
/* Calculate the available MALL space */
dc->caps.max_cab_allocation_bytes = dcn32_calc_num_avail_chans_for_mall(
dc, dc->ctx->dc_bios->vram_info.num_chans) *
dc->caps.mall_size_per_mem_channel * 1024 * 1024;
dc->caps.mall_size_total = dc->caps.max_cab_allocation_bytes;
dc->caps.subvp_fw_processing_delay_us = 15;
dc->caps.subvp_drr_max_vblank_margin_us = 40;
dc->caps.subvp_prefetch_end_to_mall_start_us = 15;
dc->caps.subvp_swath_height_margin_lines = 16;
dc->caps.subvp_pstate_allow_width_us = 20;
dc->caps.subvp_vertical_int_margin_us = 30;
dc->caps.subvp_drr_vblank_start_margin_us = 100; // 100us margin
dc->caps.max_slave_planes = 2;
dc->caps.max_slave_yuv_planes = 2;
dc->caps.max_slave_rgb_planes = 2;
dc->caps.post_blend_color_processing = true;
dc->caps.force_dp_tps4_for_cp2520 = true;
dc->caps.dp_hpo = true;
dc->caps.dp_hdmi21_pcon_support = true;
dc->caps.edp_dsc_support = true;
dc->caps.extended_aux_timeout_support = true;
dc->caps.dmcub_support = true;
dc->caps.max_v_total = (1 << 15) - 1;
/* Color pipeline capabilities */
dc->caps.color.dpp.dcn_arch = 1;
dc->caps.color.dpp.input_lut_shared = 0;
dc->caps.color.dpp.icsc = 1;
dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
dc->caps.color.dpp.dgam_rom_caps.pq = 1;
dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
dc->caps.color.dpp.post_csc = 1;
dc->caps.color.dpp.gamma_corr = 1;
dc->caps.color.dpp.dgam_rom_for_yuv = 0;
dc->caps.color.dpp.hw_3d_lut = 1;
dc->caps.color.dpp.ogam_ram = 1;
// no OGAM ROM on DCN2 and later ASICs
dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
dc->caps.color.dpp.ogam_rom_caps.pq = 0;
dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
dc->caps.color.dpp.ocsc = 0;
dc->caps.color.mpc.gamut_remap = 1;
dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //4, configurable to be before or after BLND in MPCC
dc->caps.color.mpc.ogam_ram = 1;
dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
dc->caps.color.mpc.ogam_rom_caps.pq = 0;
dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
dc->caps.color.mpc.ocsc = 1;
dc->config.dc_mode_clk_limit_support = true;
/* read VBIOS LTTPR caps */
{
if (ctx->dc_bios->funcs->get_lttpr_caps) {
enum bp_result bp_query_result;
uint8_t is_vbios_lttpr_enable = 0;
bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable);
dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable;
}
/* interop bit is implicit */
{
dc->caps.vbios_lttpr_aware = true;
}
}
if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
dc->debug = debug_defaults_drv;
// Init the vm_helper
if (dc->vm_helper)
vm_helper_init(dc->vm_helper, 16);
/*************************************************
* Create resources *
*************************************************/
/* Clock Sources for Pixel Clock*/
pool->base.clock_sources[DCN321_CLK_SRC_PLL0] =
dcn321_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL0,
&clk_src_regs[0], false);
pool->base.clock_sources[DCN321_CLK_SRC_PLL1] =
dcn321_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL1,
&clk_src_regs[1], false);
pool->base.clock_sources[DCN321_CLK_SRC_PLL2] =
dcn321_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL2,
&clk_src_regs[2], false);
pool->base.clock_sources[DCN321_CLK_SRC_PLL3] =
dcn321_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL3,
&clk_src_regs[3], false);
pool->base.clock_sources[DCN321_CLK_SRC_PLL4] =
dcn321_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL4,
&clk_src_regs[4], false);
pool->base.clk_src_count = DCN321_CLK_SRC_TOTAL;
/* todo: not reuse phy_pll registers */
pool->base.dp_clock_source =
dcn321_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_ID_DP_DTO,
&clk_src_regs[0], true);
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] == NULL) {
dm_error("DC: failed to create clock sources!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
}
/* DCCG */
pool->base.dccg = dccg32_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
if (pool->base.dccg == NULL) {
dm_error("DC: failed to create dccg!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
/* DML */
dml_init_instance(&dc->dml, &dcn3_21_soc, &dcn3_21_ip, DML_PROJECT_DCN32);
/* IRQ Service */
init_data.ctx = dc->ctx;
pool->base.irqs = dal_irq_service_dcn32_create(&init_data);
if (!pool->base.irqs)
goto create_fail;
/* HUBBUB */
pool->base.hubbub = dcn321_hubbub_create(ctx);
if (pool->base.hubbub == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create hubbub!\n");
goto create_fail;
}
/* HUBPs, DPPs, OPPs, TGs, ABMs */
for (i = 0, j = 0; i < pool->base.res_cap->num_timing_generator; i++) {
/* if pipe is disabled, skip instance of HW pipe,
* i.e, skip ASIC register instance
*/
if (pipe_fuses & 1 << i)
continue;
pool->base.hubps[j] = dcn321_hubp_create(ctx, i);
if (pool->base.hubps[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create hubps!\n");
goto create_fail;
}
pool->base.dpps[j] = dcn321_dpp_create(ctx, i);
if (pool->base.dpps[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create dpps!\n");
goto create_fail;
}
pool->base.opps[j] = dcn321_opp_create(ctx, i);
if (pool->base.opps[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create output pixel processor!\n");
goto create_fail;
}
pool->base.timing_generators[j] = dcn321_timing_generator_create(
ctx, i);
if (pool->base.timing_generators[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create tg!\n");
goto create_fail;
}
pool->base.multiple_abms[j] = dmub_abm_create(ctx,
&abm_regs[i],
&abm_shift,
&abm_mask);
if (pool->base.multiple_abms[j] == NULL) {
dm_error("DC: failed to create abm for pipe %d!\n", i);
BREAK_TO_DEBUGGER();
goto create_fail;
}
/* index for resource pool arrays for next valid pipe */
j++;
}
/* PSR */
pool->base.psr = dmub_psr_create(ctx);
if (pool->base.psr == NULL) {
dm_error("DC: failed to create psr obj!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
/* MPCCs */
pool->base.mpc = dcn321_mpc_create(ctx, pool->base.res_cap->num_timing_generator, pool->base.res_cap->num_mpc_3dlut);
if (pool->base.mpc == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create mpc!\n");
goto create_fail;
}
/* DSCs */
for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
pool->base.dscs[i] = dcn321_dsc_create(ctx, i);
if (pool->base.dscs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create display stream compressor %d!\n", i);
goto create_fail;
}
}
/* DWB */
if (!dcn321_dwbc_create(ctx, &pool->base)) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create dwbc!\n");
goto create_fail;
}
/* MMHUBBUB */
if (!dcn321_mmhubbub_create(ctx, &pool->base)) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create mcif_wb!\n");
goto create_fail;
}
/* AUX and I2C */
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
pool->base.engines[i] = dcn321_aux_engine_create(ctx, i);
if (pool->base.engines[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create aux engine!!\n");
goto create_fail;
}
pool->base.hw_i2cs[i] = dcn321_i2c_hw_create(ctx, i);
if (pool->base.hw_i2cs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create hw i2c!!\n");
goto create_fail;
}
pool->base.sw_i2cs[i] = NULL;
}
/* Audio, HWSeq, Stream Encoders including HPO and virtual, MPC 3D LUTs */
if (!resource_construct(num_virtual_links, dc, &pool->base,
&res_create_funcs))
goto create_fail;
/* HW Sequencer init functions and Plane caps */
dcn32_hw_sequencer_init_functions(dc);
dc->caps.max_planes = pool->base.pipe_count;
for (i = 0; i < dc->caps.max_planes; ++i)
dc->caps.planes[i] = plane_cap;
dc->cap_funcs = cap_funcs;
if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
ddc_init_data.ctx = dc->ctx;
ddc_init_data.link = NULL;
ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
ddc_init_data.id.enum_id = 0;
ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data);
} else {
pool->base.oem_device = NULL;
}
return true;
create_fail:
dcn321_resource_destruct(pool);
return false;
}
struct resource_pool *dcn321_create_resource_pool(
const struct dc_init_data *init_data,
struct dc *dc)
{
struct dcn321_resource_pool *pool =
kzalloc(sizeof(struct dcn321_resource_pool), GFP_KERNEL);
if (!pool)
return NULL;
if (dcn321_resource_construct(init_data->num_virtual_links, dc, pool))
return &pool->base;
BREAK_TO_DEBUGGER();
kfree(pool);
return NULL;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn321/dcn321_resource.c |
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "reg_helper.h"
#include "core_types.h"
#include "link_encoder.h"
#include "dcn321_dio_link_encoder.h"
#include "dcn31/dcn31_dio_link_encoder.h"
#include "stream_encoder.h"
#include "dc_bios_types.h"
#include "gpio_service_interface.h"
#ifndef MIN
#define MIN(X, Y) ((X) < (Y) ? (X) : (Y))
#endif
#define CTX \
enc10->base.ctx
#define DC_LOGGER \
enc10->base.ctx->logger
#define REG(reg)\
(enc10->link_regs->reg)
#undef FN
#define FN(reg_name, field_name) \
enc10->link_shift->field_name, enc10->link_mask->field_name
#define AUX_REG(reg)\
(enc10->aux_regs->reg)
#define AUX_REG_READ(reg_name) \
dm_read_reg(CTX, AUX_REG(reg_name))
#define AUX_REG_WRITE(reg_name, val) \
dm_write_reg(CTX, AUX_REG(reg_name), val)
static const struct link_encoder_funcs dcn321_link_enc_funcs = {
.read_state = link_enc2_read_state,
.validate_output_with_stream =
dcn30_link_encoder_validate_output_with_stream,
.hw_init = enc32_hw_init,
.setup = dcn10_link_encoder_setup,
.enable_tmds_output = dcn10_link_encoder_enable_tmds_output,
.enable_dp_output = dcn32_link_encoder_enable_dp_output,
.enable_dp_mst_output = dcn10_link_encoder_enable_dp_mst_output,
.disable_output = dcn10_link_encoder_disable_output,
.dp_set_lane_settings = dcn10_link_encoder_dp_set_lane_settings,
.dp_set_phy_pattern = dcn10_link_encoder_dp_set_phy_pattern,
.update_mst_stream_allocation_table =
dcn10_link_encoder_update_mst_stream_allocation_table,
.psr_program_dp_dphy_fast_training =
dcn10_psr_program_dp_dphy_fast_training,
.psr_program_secondary_packet = dcn10_psr_program_secondary_packet,
.connect_dig_be_to_fe = dcn10_link_encoder_connect_dig_be_to_fe,
.enable_hpd = dcn10_link_encoder_enable_hpd,
.disable_hpd = dcn10_link_encoder_disable_hpd,
.is_dig_enabled = dcn10_is_dig_enabled,
.destroy = dcn10_link_encoder_destroy,
.fec_set_enable = enc2_fec_set_enable,
.fec_set_ready = enc2_fec_set_ready,
.fec_is_active = enc2_fec_is_active,
.get_dig_frontend = dcn10_get_dig_frontend,
.get_dig_mode = dcn10_get_dig_mode,
.is_in_alt_mode = dcn20_link_encoder_is_in_alt_mode,
.get_max_link_cap = dcn20_link_encoder_get_max_link_cap,
.set_dio_phy_mux = dcn31_link_encoder_set_dio_phy_mux,
};
void dcn321_link_encoder_construct(
struct dcn20_link_encoder *enc20,
const struct encoder_init_data *init_data,
const struct encoder_feature_support *enc_features,
const struct dcn10_link_enc_registers *link_regs,
const struct dcn10_link_enc_aux_registers *aux_regs,
const struct dcn10_link_enc_hpd_registers *hpd_regs,
const struct dcn10_link_enc_shift *link_shift,
const struct dcn10_link_enc_mask *link_mask)
{
struct bp_connector_speed_cap_info bp_cap_info = {0};
const struct dc_vbios_funcs *bp_funcs = init_data->ctx->dc_bios->funcs;
enum bp_result result = BP_RESULT_OK;
struct dcn10_link_encoder *enc10 = &enc20->enc10;
enc10->base.funcs = &dcn321_link_enc_funcs;
enc10->base.ctx = init_data->ctx;
enc10->base.id = init_data->encoder;
enc10->base.hpd_source = init_data->hpd_source;
enc10->base.connector = init_data->connector;
if (enc10->base.connector.id == CONNECTOR_ID_USBC)
enc10->base.features.flags.bits.DP_IS_USB_C = 1;
enc10->base.preferred_engine = ENGINE_ID_UNKNOWN;
enc10->base.features = *enc_features;
enc10->base.transmitter = init_data->transmitter;
/* set the flag to indicate whether driver poll the I2C data pin
* while doing the DP sink detect
*/
/* if (dal_adapter_service_is_feature_supported(as,
FEATURE_DP_SINK_DETECT_POLL_DATA_PIN))
enc10->base.features.flags.bits.
DP_SINK_DETECT_POLL_DATA_PIN = true;*/
enc10->base.output_signals =
SIGNAL_TYPE_DVI_SINGLE_LINK |
SIGNAL_TYPE_DVI_DUAL_LINK |
SIGNAL_TYPE_LVDS |
SIGNAL_TYPE_DISPLAY_PORT |
SIGNAL_TYPE_DISPLAY_PORT_MST |
SIGNAL_TYPE_EDP |
SIGNAL_TYPE_HDMI_TYPE_A;
enc10->link_regs = link_regs;
enc10->aux_regs = aux_regs;
enc10->hpd_regs = hpd_regs;
enc10->link_shift = link_shift;
enc10->link_mask = link_mask;
switch (enc10->base.transmitter) {
case TRANSMITTER_UNIPHY_A:
enc10->base.preferred_engine = ENGINE_ID_DIGA;
break;
case TRANSMITTER_UNIPHY_B:
enc10->base.preferred_engine = ENGINE_ID_DIGB;
break;
case TRANSMITTER_UNIPHY_C:
enc10->base.preferred_engine = ENGINE_ID_DIGC;
break;
case TRANSMITTER_UNIPHY_D:
enc10->base.preferred_engine = ENGINE_ID_DIGD;
break;
case TRANSMITTER_UNIPHY_E:
enc10->base.preferred_engine = ENGINE_ID_DIGE;
break;
default:
ASSERT_CRITICAL(false);
enc10->base.preferred_engine = ENGINE_ID_UNKNOWN;
}
/* default to one to mirror Windows behavior */
enc10->base.features.flags.bits.HDMI_6GB_EN = 1;
if (bp_funcs->get_connector_speed_cap_info)
result = bp_funcs->get_connector_speed_cap_info(enc10->base.ctx->dc_bios,
enc10->base.connector, &bp_cap_info);
/* Override features with DCE-specific values */
if (result == BP_RESULT_OK) {
enc10->base.features.flags.bits.IS_HBR2_CAPABLE =
bp_cap_info.DP_HBR2_EN;
enc10->base.features.flags.bits.IS_HBR3_CAPABLE =
bp_cap_info.DP_HBR3_EN;
enc10->base.features.flags.bits.HDMI_6GB_EN = bp_cap_info.HDMI_6GB_EN;
enc10->base.features.flags.bits.IS_DP2_CAPABLE = 1;
enc10->base.features.flags.bits.IS_UHBR10_CAPABLE = bp_cap_info.DP_UHBR10_EN;
enc10->base.features.flags.bits.IS_UHBR13_5_CAPABLE = bp_cap_info.DP_UHBR13_5_EN;
enc10->base.features.flags.bits.IS_UHBR20_CAPABLE = bp_cap_info.DP_UHBR20_EN;
} else {
DC_LOG_WARNING("%s: Failed to get encoder_cap_info from VBIOS with error code %d!\n",
__func__,
result);
}
if (enc10->base.ctx->dc->debug.hdmi20_disable) {
enc10->base.features.flags.bits.HDMI_6GB_EN = 0;
}
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn321/dcn321_dio_link_encoder.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
/* include DCE11 register header files */
#include "dce/dce_11_0_d.h"
#include "dce/dce_11_0_sh_mask.h"
#include "dce110_transform_v.h"
static void power_on_lut(struct transform *xfm,
bool power_on, bool inputgamma, bool regamma)
{
uint32_t value = dm_read_reg(xfm->ctx, mmDCFEV_MEM_PWR_CTRL);
int i;
if (power_on) {
if (inputgamma)
set_reg_field_value(
value,
1,
DCFEV_MEM_PWR_CTRL,
COL_MAN_INPUT_GAMMA_MEM_PWR_DIS);
if (regamma)
set_reg_field_value(
value,
1,
DCFEV_MEM_PWR_CTRL,
COL_MAN_GAMMA_CORR_MEM_PWR_DIS);
} else {
if (inputgamma)
set_reg_field_value(
value,
0,
DCFEV_MEM_PWR_CTRL,
COL_MAN_INPUT_GAMMA_MEM_PWR_DIS);
if (regamma)
set_reg_field_value(
value,
0,
DCFEV_MEM_PWR_CTRL,
COL_MAN_GAMMA_CORR_MEM_PWR_DIS);
}
dm_write_reg(xfm->ctx, mmDCFEV_MEM_PWR_CTRL, value);
for (i = 0; i < 3; i++) {
value = dm_read_reg(xfm->ctx, mmDCFEV_MEM_PWR_CTRL);
if (get_reg_field_value(value,
DCFEV_MEM_PWR_CTRL,
COL_MAN_INPUT_GAMMA_MEM_PWR_DIS) &&
get_reg_field_value(value,
DCFEV_MEM_PWR_CTRL,
COL_MAN_GAMMA_CORR_MEM_PWR_DIS))
break;
udelay(2);
}
}
static void set_bypass_input_gamma(struct dce_transform *xfm_dce)
{
uint32_t value;
value = dm_read_reg(xfm_dce->base.ctx,
mmCOL_MAN_INPUT_GAMMA_CONTROL1);
set_reg_field_value(
value,
0,
COL_MAN_INPUT_GAMMA_CONTROL1,
INPUT_GAMMA_MODE);
dm_write_reg(xfm_dce->base.ctx,
mmCOL_MAN_INPUT_GAMMA_CONTROL1, value);
}
static void configure_regamma_mode(struct dce_transform *xfm_dce, uint32_t mode)
{
uint32_t value = 0;
set_reg_field_value(
value,
mode,
GAMMA_CORR_CONTROL,
GAMMA_CORR_MODE);
dm_write_reg(xfm_dce->base.ctx, mmGAMMA_CORR_CONTROL, 0);
}
/*
*****************************************************************************
* Function: regamma_config_regions_and_segments
*
* build regamma curve by using predefined hw points
* uses interface parameters ,like EDID coeff.
*
* @param : parameters interface parameters
* @return void
*
* @note
*
* @see
*
*****************************************************************************
*/
static void regamma_config_regions_and_segments(
struct dce_transform *xfm_dce, const struct pwl_params *params)
{
const struct gamma_curve *curve;
uint32_t value = 0;
{
set_reg_field_value(
value,
params->arr_points[0].custom_float_x,
GAMMA_CORR_CNTLA_START_CNTL,
GAMMA_CORR_CNTLA_EXP_REGION_START);
set_reg_field_value(
value,
0,
GAMMA_CORR_CNTLA_START_CNTL,
GAMMA_CORR_CNTLA_EXP_REGION_START_SEGMENT);
dm_write_reg(xfm_dce->base.ctx, mmGAMMA_CORR_CNTLA_START_CNTL,
value);
}
{
value = 0;
set_reg_field_value(
value,
params->arr_points[0].custom_float_slope,
GAMMA_CORR_CNTLA_SLOPE_CNTL,
GAMMA_CORR_CNTLA_EXP_REGION_LINEAR_SLOPE);
dm_write_reg(xfm_dce->base.ctx,
mmGAMMA_CORR_CNTLA_SLOPE_CNTL, value);
}
{
value = 0;
set_reg_field_value(
value,
params->arr_points[1].custom_float_x,
GAMMA_CORR_CNTLA_END_CNTL1,
GAMMA_CORR_CNTLA_EXP_REGION_END);
dm_write_reg(xfm_dce->base.ctx,
mmGAMMA_CORR_CNTLA_END_CNTL1, value);
}
{
value = 0;
set_reg_field_value(
value,
params->arr_points[1].custom_float_slope,
GAMMA_CORR_CNTLA_END_CNTL2,
GAMMA_CORR_CNTLA_EXP_REGION_END_BASE);
set_reg_field_value(
value,
params->arr_points[1].custom_float_y,
GAMMA_CORR_CNTLA_END_CNTL2,
GAMMA_CORR_CNTLA_EXP_REGION_END_SLOPE);
dm_write_reg(xfm_dce->base.ctx,
mmGAMMA_CORR_CNTLA_END_CNTL2, value);
}
curve = params->arr_curve_points;
{
value = 0;
set_reg_field_value(
value,
curve[0].offset,
GAMMA_CORR_CNTLA_REGION_0_1,
GAMMA_CORR_CNTLA_EXP_REGION0_LUT_OFFSET);
set_reg_field_value(
value,
curve[0].segments_num,
GAMMA_CORR_CNTLA_REGION_0_1,
GAMMA_CORR_CNTLA_EXP_REGION0_NUM_SEGMENTS);
set_reg_field_value(
value,
curve[1].offset,
GAMMA_CORR_CNTLA_REGION_0_1,
GAMMA_CORR_CNTLA_EXP_REGION1_LUT_OFFSET);
set_reg_field_value(
value,
curve[1].segments_num,
GAMMA_CORR_CNTLA_REGION_0_1,
GAMMA_CORR_CNTLA_EXP_REGION1_NUM_SEGMENTS);
dm_write_reg(
xfm_dce->base.ctx,
mmGAMMA_CORR_CNTLA_REGION_0_1,
value);
}
curve += 2;
{
value = 0;
set_reg_field_value(
value,
curve[0].offset,
GAMMA_CORR_CNTLA_REGION_2_3,
GAMMA_CORR_CNTLA_EXP_REGION2_LUT_OFFSET);
set_reg_field_value(
value,
curve[0].segments_num,
GAMMA_CORR_CNTLA_REGION_2_3,
GAMMA_CORR_CNTLA_EXP_REGION2_NUM_SEGMENTS);
set_reg_field_value(
value,
curve[1].offset,
GAMMA_CORR_CNTLA_REGION_2_3,
GAMMA_CORR_CNTLA_EXP_REGION3_LUT_OFFSET);
set_reg_field_value(
value,
curve[1].segments_num,
GAMMA_CORR_CNTLA_REGION_2_3,
GAMMA_CORR_CNTLA_EXP_REGION3_NUM_SEGMENTS);
dm_write_reg(xfm_dce->base.ctx,
mmGAMMA_CORR_CNTLA_REGION_2_3,
value);
}
curve += 2;
{
value = 0;
set_reg_field_value(
value,
curve[0].offset,
GAMMA_CORR_CNTLA_REGION_4_5,
GAMMA_CORR_CNTLA_EXP_REGION4_LUT_OFFSET);
set_reg_field_value(
value,
curve[0].segments_num,
GAMMA_CORR_CNTLA_REGION_4_5,
GAMMA_CORR_CNTLA_EXP_REGION4_NUM_SEGMENTS);
set_reg_field_value(
value,
curve[1].offset,
GAMMA_CORR_CNTLA_REGION_4_5,
GAMMA_CORR_CNTLA_EXP_REGION5_LUT_OFFSET);
set_reg_field_value(
value,
curve[1].segments_num,
GAMMA_CORR_CNTLA_REGION_4_5,
GAMMA_CORR_CNTLA_EXP_REGION5_NUM_SEGMENTS);
dm_write_reg(xfm_dce->base.ctx,
mmGAMMA_CORR_CNTLA_REGION_4_5,
value);
}
curve += 2;
{
value = 0;
set_reg_field_value(
value,
curve[0].offset,
GAMMA_CORR_CNTLA_REGION_6_7,
GAMMA_CORR_CNTLA_EXP_REGION6_LUT_OFFSET);
set_reg_field_value(
value,
curve[0].segments_num,
GAMMA_CORR_CNTLA_REGION_6_7,
GAMMA_CORR_CNTLA_EXP_REGION6_NUM_SEGMENTS);
set_reg_field_value(
value,
curve[1].offset,
GAMMA_CORR_CNTLA_REGION_6_7,
GAMMA_CORR_CNTLA_EXP_REGION7_LUT_OFFSET);
set_reg_field_value(
value,
curve[1].segments_num,
GAMMA_CORR_CNTLA_REGION_6_7,
GAMMA_CORR_CNTLA_EXP_REGION7_NUM_SEGMENTS);
dm_write_reg(xfm_dce->base.ctx,
mmGAMMA_CORR_CNTLA_REGION_6_7,
value);
}
curve += 2;
{
value = 0;
set_reg_field_value(
value,
curve[0].offset,
GAMMA_CORR_CNTLA_REGION_8_9,
GAMMA_CORR_CNTLA_EXP_REGION8_LUT_OFFSET);
set_reg_field_value(
value,
curve[0].segments_num,
GAMMA_CORR_CNTLA_REGION_8_9,
GAMMA_CORR_CNTLA_EXP_REGION8_NUM_SEGMENTS);
set_reg_field_value(
value,
curve[1].offset,
GAMMA_CORR_CNTLA_REGION_8_9,
GAMMA_CORR_CNTLA_EXP_REGION9_LUT_OFFSET);
set_reg_field_value(
value,
curve[1].segments_num,
GAMMA_CORR_CNTLA_REGION_8_9,
GAMMA_CORR_CNTLA_EXP_REGION9_NUM_SEGMENTS);
dm_write_reg(xfm_dce->base.ctx,
mmGAMMA_CORR_CNTLA_REGION_8_9,
value);
}
curve += 2;
{
value = 0;
set_reg_field_value(
value,
curve[0].offset,
GAMMA_CORR_CNTLA_REGION_10_11,
GAMMA_CORR_CNTLA_EXP_REGION10_LUT_OFFSET);
set_reg_field_value(
value,
curve[0].segments_num,
GAMMA_CORR_CNTLA_REGION_10_11,
GAMMA_CORR_CNTLA_EXP_REGION10_NUM_SEGMENTS);
set_reg_field_value(
value,
curve[1].offset,
GAMMA_CORR_CNTLA_REGION_10_11,
GAMMA_CORR_CNTLA_EXP_REGION11_LUT_OFFSET);
set_reg_field_value(
value,
curve[1].segments_num,
GAMMA_CORR_CNTLA_REGION_10_11,
GAMMA_CORR_CNTLA_EXP_REGION11_NUM_SEGMENTS);
dm_write_reg(xfm_dce->base.ctx,
mmGAMMA_CORR_CNTLA_REGION_10_11,
value);
}
curve += 2;
{
value = 0;
set_reg_field_value(
value,
curve[0].offset,
GAMMA_CORR_CNTLA_REGION_12_13,
GAMMA_CORR_CNTLA_EXP_REGION12_LUT_OFFSET);
set_reg_field_value(
value,
curve[0].segments_num,
GAMMA_CORR_CNTLA_REGION_12_13,
GAMMA_CORR_CNTLA_EXP_REGION12_NUM_SEGMENTS);
set_reg_field_value(
value,
curve[1].offset,
GAMMA_CORR_CNTLA_REGION_12_13,
GAMMA_CORR_CNTLA_EXP_REGION13_LUT_OFFSET);
set_reg_field_value(
value,
curve[1].segments_num,
GAMMA_CORR_CNTLA_REGION_12_13,
GAMMA_CORR_CNTLA_EXP_REGION13_NUM_SEGMENTS);
dm_write_reg(xfm_dce->base.ctx,
mmGAMMA_CORR_CNTLA_REGION_12_13,
value);
}
curve += 2;
{
value = 0;
set_reg_field_value(
value,
curve[0].offset,
GAMMA_CORR_CNTLA_REGION_14_15,
GAMMA_CORR_CNTLA_EXP_REGION14_LUT_OFFSET);
set_reg_field_value(
value,
curve[0].segments_num,
GAMMA_CORR_CNTLA_REGION_14_15,
GAMMA_CORR_CNTLA_EXP_REGION14_NUM_SEGMENTS);
set_reg_field_value(
value,
curve[1].offset,
GAMMA_CORR_CNTLA_REGION_14_15,
GAMMA_CORR_CNTLA_EXP_REGION15_LUT_OFFSET);
set_reg_field_value(
value,
curve[1].segments_num,
GAMMA_CORR_CNTLA_REGION_14_15,
GAMMA_CORR_CNTLA_EXP_REGION15_NUM_SEGMENTS);
dm_write_reg(xfm_dce->base.ctx,
mmGAMMA_CORR_CNTLA_REGION_14_15,
value);
}
}
static void program_pwl(struct dce_transform *xfm_dce,
const struct pwl_params *params)
{
uint32_t value = 0;
set_reg_field_value(
value,
7,
GAMMA_CORR_LUT_WRITE_EN_MASK,
GAMMA_CORR_LUT_WRITE_EN_MASK);
dm_write_reg(xfm_dce->base.ctx,
mmGAMMA_CORR_LUT_WRITE_EN_MASK, value);
dm_write_reg(xfm_dce->base.ctx,
mmGAMMA_CORR_LUT_INDEX, 0);
/* Program REGAMMA_LUT_DATA */
{
const uint32_t addr = mmGAMMA_CORR_LUT_DATA;
uint32_t i = 0;
const struct pwl_result_data *rgb =
params->rgb_resulted;
while (i != params->hw_points_num) {
dm_write_reg(xfm_dce->base.ctx, addr, rgb->red_reg);
dm_write_reg(xfm_dce->base.ctx, addr, rgb->green_reg);
dm_write_reg(xfm_dce->base.ctx, addr, rgb->blue_reg);
dm_write_reg(xfm_dce->base.ctx, addr,
rgb->delta_red_reg);
dm_write_reg(xfm_dce->base.ctx, addr,
rgb->delta_green_reg);
dm_write_reg(xfm_dce->base.ctx, addr,
rgb->delta_blue_reg);
++rgb;
++i;
}
}
}
void dce110_opp_program_regamma_pwl_v(
struct transform *xfm,
const struct pwl_params *params)
{
struct dce_transform *xfm_dce = TO_DCE_TRANSFORM(xfm);
/* Setup regions */
regamma_config_regions_and_segments(xfm_dce, params);
set_bypass_input_gamma(xfm_dce);
/* Power on gamma LUT memory */
power_on_lut(xfm, true, false, true);
/* Program PWL */
program_pwl(xfm_dce, params);
/* program regamma config */
configure_regamma_mode(xfm_dce, 1);
/* Power return to auto back */
power_on_lut(xfm, false, false, true);
}
void dce110_opp_power_on_regamma_lut_v(
struct transform *xfm,
bool power_on)
{
uint32_t value = dm_read_reg(xfm->ctx, mmDCFEV_MEM_PWR_CTRL);
set_reg_field_value(
value,
0,
DCFEV_MEM_PWR_CTRL,
COL_MAN_GAMMA_CORR_MEM_PWR_FORCE);
set_reg_field_value(
value,
power_on,
DCFEV_MEM_PWR_CTRL,
COL_MAN_GAMMA_CORR_MEM_PWR_DIS);
set_reg_field_value(
value,
0,
DCFEV_MEM_PWR_CTRL,
COL_MAN_INPUT_GAMMA_MEM_PWR_FORCE);
set_reg_field_value(
value,
power_on,
DCFEV_MEM_PWR_CTRL,
COL_MAN_INPUT_GAMMA_MEM_PWR_DIS);
dm_write_reg(xfm->ctx, mmDCFEV_MEM_PWR_CTRL, value);
}
void dce110_opp_set_regamma_mode_v(
struct transform *xfm,
enum opp_regamma mode)
{
// TODO: need to implement the function
}
| linux-master | drivers/gpu/drm/amd/display/dc/dce110/dce110_opp_regamma_v.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
/* include DCE11 register header files */
#include "dce/dce_11_0_d.h"
#include "dce/dce_11_0_sh_mask.h"
#include "dce/dce_opp.h"
#include "dce110_opp_v.h"
/*****************************************/
/* Constructor, Destructor */
/*****************************************/
static const struct opp_funcs funcs = {
.opp_set_dyn_expansion = dce110_opp_set_dyn_expansion,
.opp_destroy = dce110_opp_destroy,
.opp_program_fmt = dce110_opp_program_fmt,
.opp_program_bit_depth_reduction =
dce110_opp_program_bit_depth_reduction
};
void dce110_opp_v_construct(struct dce110_opp *opp110,
struct dc_context *ctx)
{
opp110->base.funcs = &funcs;
opp110->base.ctx = ctx;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dce110/dce110_opp_v.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dce110_transform_v.h"
#include "basics/conversion.h"
/* include DCE11 register header files */
#include "dce/dce_11_0_d.h"
#include "dce/dce_11_0_sh_mask.h"
#include "dce/dce_11_0_enum.h"
enum {
OUTPUT_CSC_MATRIX_SIZE = 12
};
/* constrast:0 - 2.0, default 1.0 */
#define UNDERLAY_CONTRAST_DEFAULT 100
#define UNDERLAY_CONTRAST_MAX 200
#define UNDERLAY_CONTRAST_MIN 0
#define UNDERLAY_CONTRAST_STEP 1
#define UNDERLAY_CONTRAST_DIVIDER 100
/* Saturation: 0 - 2.0; default 1.0 */
#define UNDERLAY_SATURATION_DEFAULT 100 /*1.00*/
#define UNDERLAY_SATURATION_MIN 0
#define UNDERLAY_SATURATION_MAX 200 /* 2.00 */
#define UNDERLAY_SATURATION_STEP 1 /* 0.01 */
/*actual max overlay saturation
* value = UNDERLAY_SATURATION_MAX /UNDERLAY_SATURATION_DIVIDER
*/
/* Hue */
#define UNDERLAY_HUE_DEFAULT 0
#define UNDERLAY_HUE_MIN -300
#define UNDERLAY_HUE_MAX 300
#define UNDERLAY_HUE_STEP 5
#define UNDERLAY_HUE_DIVIDER 10 /* HW range: -30 ~ +30 */
#define UNDERLAY_SATURATION_DIVIDER 100
/* Brightness: in DAL usually -.25 ~ .25.
* In MMD is -100 to +100 in 16-235 range; which when scaled to full range is
* ~-116 to +116. When normalized this is about 0.4566.
* With 100 divider this becomes 46, but we may use another for better precision
* The ideal one is 100/219 ((100/255)*(255/219)),
* i.e. min/max = +-100, divider = 219
* default 0.0
*/
#define UNDERLAY_BRIGHTNESS_DEFAULT 0
#define UNDERLAY_BRIGHTNESS_MIN -46 /* ~116/255 */
#define UNDERLAY_BRIGHTNESS_MAX 46
#define UNDERLAY_BRIGHTNESS_STEP 1 /* .01 */
#define UNDERLAY_BRIGHTNESS_DIVIDER 100
static const struct out_csc_color_matrix global_color_matrix[] = {
{ COLOR_SPACE_SRGB,
{ 0x2000, 0, 0, 0, 0, 0x2000, 0, 0, 0, 0, 0x2000, 0} },
{ COLOR_SPACE_SRGB_LIMITED,
{ 0x1B60, 0, 0, 0x200, 0, 0x1B60, 0, 0x200, 0, 0, 0x1B60, 0x200} },
{ COLOR_SPACE_YCBCR601,
{ 0xE00, 0xF447, 0xFDB9, 0x1000, 0x82F, 0x1012, 0x31F, 0x200, 0xFB47,
0xF6B9, 0xE00, 0x1000} },
{ COLOR_SPACE_YCBCR709, { 0xE00, 0xF349, 0xFEB7, 0x1000, 0x5D2, 0x1394, 0x1FA,
0x200, 0xFCCB, 0xF535, 0xE00, 0x1000} },
/* TODO: correct values below */
{ COLOR_SPACE_YCBCR601_LIMITED, { 0xE00, 0xF447, 0xFDB9, 0x1000, 0x991,
0x12C9, 0x3A6, 0x200, 0xFB47, 0xF6B9, 0xE00, 0x1000} },
{ COLOR_SPACE_YCBCR709_LIMITED, { 0xE00, 0xF349, 0xFEB7, 0x1000, 0x6CE, 0x16E3,
0x24F, 0x200, 0xFCCB, 0xF535, 0xE00, 0x1000} }
};
enum csc_color_mode {
/* 00 - BITS2:0 Bypass */
CSC_COLOR_MODE_GRAPHICS_BYPASS,
/* 01 - hard coded coefficient TV RGB */
CSC_COLOR_MODE_GRAPHICS_PREDEFINED,
/* 04 - programmable OUTPUT CSC coefficient */
CSC_COLOR_MODE_GRAPHICS_OUTPUT_CSC,
};
enum grph_color_adjust_option {
GRPH_COLOR_MATRIX_HW_DEFAULT = 1,
GRPH_COLOR_MATRIX_SW
};
static void program_color_matrix_v(
struct dce_transform *xfm_dce,
const struct out_csc_color_matrix *tbl_entry,
enum grph_color_adjust_option options)
{
struct dc_context *ctx = xfm_dce->base.ctx;
uint32_t cntl_value = dm_read_reg(ctx, mmCOL_MAN_OUTPUT_CSC_CONTROL);
bool use_set_a = (get_reg_field_value(cntl_value,
COL_MAN_OUTPUT_CSC_CONTROL,
OUTPUT_CSC_MODE) != 4);
set_reg_field_value(
cntl_value,
0,
COL_MAN_OUTPUT_CSC_CONTROL,
OUTPUT_CSC_MODE);
if (use_set_a) {
{
uint32_t value = 0;
uint32_t addr = mmOUTPUT_CSC_C11_C12_A;
/* fixed S2.13 format */
set_reg_field_value(
value,
tbl_entry->regval[0],
OUTPUT_CSC_C11_C12_A,
OUTPUT_CSC_C11_A);
set_reg_field_value(
value,
tbl_entry->regval[1],
OUTPUT_CSC_C11_C12_A,
OUTPUT_CSC_C12_A);
dm_write_reg(ctx, addr, value);
}
{
uint32_t value = 0;
uint32_t addr = mmOUTPUT_CSC_C13_C14_A;
/* fixed S2.13 format */
set_reg_field_value(
value,
tbl_entry->regval[2],
OUTPUT_CSC_C13_C14_A,
OUTPUT_CSC_C13_A);
/* fixed S0.13 format */
set_reg_field_value(
value,
tbl_entry->regval[3],
OUTPUT_CSC_C13_C14_A,
OUTPUT_CSC_C14_A);
dm_write_reg(ctx, addr, value);
}
{
uint32_t value = 0;
uint32_t addr = mmOUTPUT_CSC_C21_C22_A;
/* fixed S2.13 format */
set_reg_field_value(
value,
tbl_entry->regval[4],
OUTPUT_CSC_C21_C22_A,
OUTPUT_CSC_C21_A);
/* fixed S2.13 format */
set_reg_field_value(
value,
tbl_entry->regval[5],
OUTPUT_CSC_C21_C22_A,
OUTPUT_CSC_C22_A);
dm_write_reg(ctx, addr, value);
}
{
uint32_t value = 0;
uint32_t addr = mmOUTPUT_CSC_C23_C24_A;
/* fixed S2.13 format */
set_reg_field_value(
value,
tbl_entry->regval[6],
OUTPUT_CSC_C23_C24_A,
OUTPUT_CSC_C23_A);
/* fixed S0.13 format */
set_reg_field_value(
value,
tbl_entry->regval[7],
OUTPUT_CSC_C23_C24_A,
OUTPUT_CSC_C24_A);
dm_write_reg(ctx, addr, value);
}
{
uint32_t value = 0;
uint32_t addr = mmOUTPUT_CSC_C31_C32_A;
/* fixed S2.13 format */
set_reg_field_value(
value,
tbl_entry->regval[8],
OUTPUT_CSC_C31_C32_A,
OUTPUT_CSC_C31_A);
/* fixed S0.13 format */
set_reg_field_value(
value,
tbl_entry->regval[9],
OUTPUT_CSC_C31_C32_A,
OUTPUT_CSC_C32_A);
dm_write_reg(ctx, addr, value);
}
{
uint32_t value = 0;
uint32_t addr = mmOUTPUT_CSC_C33_C34_A;
/* fixed S2.13 format */
set_reg_field_value(
value,
tbl_entry->regval[10],
OUTPUT_CSC_C33_C34_A,
OUTPUT_CSC_C33_A);
/* fixed S0.13 format */
set_reg_field_value(
value,
tbl_entry->regval[11],
OUTPUT_CSC_C33_C34_A,
OUTPUT_CSC_C34_A);
dm_write_reg(ctx, addr, value);
}
set_reg_field_value(
cntl_value,
4,
COL_MAN_OUTPUT_CSC_CONTROL,
OUTPUT_CSC_MODE);
} else {
{
uint32_t value = 0;
uint32_t addr = mmOUTPUT_CSC_C11_C12_B;
/* fixed S2.13 format */
set_reg_field_value(
value,
tbl_entry->regval[0],
OUTPUT_CSC_C11_C12_B,
OUTPUT_CSC_C11_B);
set_reg_field_value(
value,
tbl_entry->regval[1],
OUTPUT_CSC_C11_C12_B,
OUTPUT_CSC_C12_B);
dm_write_reg(ctx, addr, value);
}
{
uint32_t value = 0;
uint32_t addr = mmOUTPUT_CSC_C13_C14_B;
/* fixed S2.13 format */
set_reg_field_value(
value,
tbl_entry->regval[2],
OUTPUT_CSC_C13_C14_B,
OUTPUT_CSC_C13_B);
/* fixed S0.13 format */
set_reg_field_value(
value,
tbl_entry->regval[3],
OUTPUT_CSC_C13_C14_B,
OUTPUT_CSC_C14_B);
dm_write_reg(ctx, addr, value);
}
{
uint32_t value = 0;
uint32_t addr = mmOUTPUT_CSC_C21_C22_B;
/* fixed S2.13 format */
set_reg_field_value(
value,
tbl_entry->regval[4],
OUTPUT_CSC_C21_C22_B,
OUTPUT_CSC_C21_B);
/* fixed S2.13 format */
set_reg_field_value(
value,
tbl_entry->regval[5],
OUTPUT_CSC_C21_C22_B,
OUTPUT_CSC_C22_B);
dm_write_reg(ctx, addr, value);
}
{
uint32_t value = 0;
uint32_t addr = mmOUTPUT_CSC_C23_C24_B;
/* fixed S2.13 format */
set_reg_field_value(
value,
tbl_entry->regval[6],
OUTPUT_CSC_C23_C24_B,
OUTPUT_CSC_C23_B);
/* fixed S0.13 format */
set_reg_field_value(
value,
tbl_entry->regval[7],
OUTPUT_CSC_C23_C24_B,
OUTPUT_CSC_C24_B);
dm_write_reg(ctx, addr, value);
}
{
uint32_t value = 0;
uint32_t addr = mmOUTPUT_CSC_C31_C32_B;
/* fixed S2.13 format */
set_reg_field_value(
value,
tbl_entry->regval[8],
OUTPUT_CSC_C31_C32_B,
OUTPUT_CSC_C31_B);
/* fixed S0.13 format */
set_reg_field_value(
value,
tbl_entry->regval[9],
OUTPUT_CSC_C31_C32_B,
OUTPUT_CSC_C32_B);
dm_write_reg(ctx, addr, value);
}
{
uint32_t value = 0;
uint32_t addr = mmOUTPUT_CSC_C33_C34_B;
/* fixed S2.13 format */
set_reg_field_value(
value,
tbl_entry->regval[10],
OUTPUT_CSC_C33_C34_B,
OUTPUT_CSC_C33_B);
/* fixed S0.13 format */
set_reg_field_value(
value,
tbl_entry->regval[11],
OUTPUT_CSC_C33_C34_B,
OUTPUT_CSC_C34_B);
dm_write_reg(ctx, addr, value);
}
set_reg_field_value(
cntl_value,
5,
COL_MAN_OUTPUT_CSC_CONTROL,
OUTPUT_CSC_MODE);
}
dm_write_reg(ctx, mmCOL_MAN_OUTPUT_CSC_CONTROL, cntl_value);
}
static bool configure_graphics_mode_v(
struct dce_transform *xfm_dce,
enum csc_color_mode config,
enum graphics_csc_adjust_type csc_adjust_type,
enum dc_color_space color_space)
{
struct dc_context *ctx = xfm_dce->base.ctx;
uint32_t addr = mmCOL_MAN_OUTPUT_CSC_CONTROL;
uint32_t value = dm_read_reg(ctx, addr);
set_reg_field_value(
value,
0,
COL_MAN_OUTPUT_CSC_CONTROL,
OUTPUT_CSC_MODE);
if (csc_adjust_type == GRAPHICS_CSC_ADJUST_TYPE_SW) {
if (config == CSC_COLOR_MODE_GRAPHICS_OUTPUT_CSC)
return true;
switch (color_space) {
case COLOR_SPACE_SRGB:
/* by pass */
set_reg_field_value(
value,
0,
COL_MAN_OUTPUT_CSC_CONTROL,
OUTPUT_CSC_MODE);
break;
case COLOR_SPACE_SRGB_LIMITED:
/* not supported for underlay on CZ */
return false;
case COLOR_SPACE_YCBCR601_LIMITED:
/* YCbCr601 */
set_reg_field_value(
value,
2,
COL_MAN_OUTPUT_CSC_CONTROL,
OUTPUT_CSC_MODE);
break;
case COLOR_SPACE_YCBCR709:
case COLOR_SPACE_YCBCR709_LIMITED:
/* YCbCr709 */
set_reg_field_value(
value,
3,
COL_MAN_OUTPUT_CSC_CONTROL,
OUTPUT_CSC_MODE);
break;
default:
return false;
}
} else if (csc_adjust_type == GRAPHICS_CSC_ADJUST_TYPE_HW) {
switch (color_space) {
case COLOR_SPACE_SRGB:
/* by pass */
set_reg_field_value(
value,
0,
COL_MAN_OUTPUT_CSC_CONTROL,
OUTPUT_CSC_MODE);
break;
case COLOR_SPACE_SRGB_LIMITED:
/* not supported for underlay on CZ */
return false;
case COLOR_SPACE_YCBCR601:
case COLOR_SPACE_YCBCR601_LIMITED:
/* YCbCr601 */
set_reg_field_value(
value,
2,
COL_MAN_OUTPUT_CSC_CONTROL,
OUTPUT_CSC_MODE);
break;
case COLOR_SPACE_YCBCR709:
case COLOR_SPACE_YCBCR709_LIMITED:
/* YCbCr709 */
set_reg_field_value(
value,
3,
COL_MAN_OUTPUT_CSC_CONTROL,
OUTPUT_CSC_MODE);
break;
default:
return false;
}
} else
/* by pass */
set_reg_field_value(
value,
0,
COL_MAN_OUTPUT_CSC_CONTROL,
OUTPUT_CSC_MODE);
addr = mmCOL_MAN_OUTPUT_CSC_CONTROL;
dm_write_reg(ctx, addr, value);
return true;
}
/*TODO: color depth is not correct when this is called*/
static void set_Denormalization(struct transform *xfm,
enum dc_color_depth color_depth)
{
uint32_t value = dm_read_reg(xfm->ctx, mmDENORM_CLAMP_CONTROL);
switch (color_depth) {
case COLOR_DEPTH_888:
/* 255/256 for 8 bit output color depth */
set_reg_field_value(
value,
1,
DENORM_CLAMP_CONTROL,
DENORM_MODE);
break;
case COLOR_DEPTH_101010:
/* 1023/1024 for 10 bit output color depth */
set_reg_field_value(
value,
2,
DENORM_CLAMP_CONTROL,
DENORM_MODE);
break;
case COLOR_DEPTH_121212:
/* 4095/4096 for 12 bit output color depth */
set_reg_field_value(
value,
3,
DENORM_CLAMP_CONTROL,
DENORM_MODE);
break;
default:
/* not valid case */
break;
}
set_reg_field_value(
value,
1,
DENORM_CLAMP_CONTROL,
DENORM_10BIT_OUT);
dm_write_reg(xfm->ctx, mmDENORM_CLAMP_CONTROL, value);
}
struct input_csc_matrix {
enum dc_color_space color_space;
uint32_t regval[12];
};
static const struct input_csc_matrix input_csc_matrix[] = {
{COLOR_SPACE_SRGB,
/*1_1 1_2 1_3 1_4 2_1 2_2 2_3 2_4 3_1 3_2 3_3 3_4 */
{0x2000, 0, 0, 0, 0, 0x2000, 0, 0, 0, 0, 0x2000, 0} },
{COLOR_SPACE_SRGB_LIMITED,
{0x2000, 0, 0, 0, 0, 0x2000, 0, 0, 0, 0, 0x2000, 0} },
{COLOR_SPACE_YCBCR601,
{0x2cdd, 0x2000, 0x0, 0xe991, 0xe926, 0x2000, 0xf4fd, 0x10ef,
0x0, 0x2000, 0x38b4, 0xe3a6} },
{COLOR_SPACE_YCBCR601_LIMITED,
{0x3353, 0x2568, 0x0, 0xe400, 0xe5dc, 0x2568, 0xf367, 0x1108,
0x0, 0x2568, 0x40de, 0xdd3a} },
{COLOR_SPACE_YCBCR709,
{0x3265, 0x2000, 0, 0xe6ce, 0xf105, 0x2000, 0xfa01, 0xa7d, 0,
0x2000, 0x3b61, 0xe24f} },
{COLOR_SPACE_YCBCR709_LIMITED,
{0x39a6, 0x2568, 0, 0xe0d6, 0xeedd, 0x2568, 0xf925, 0x9a8, 0,
0x2568, 0x43ee, 0xdbb2} }
};
static void program_input_csc(
struct transform *xfm, enum dc_color_space color_space)
{
int arr_size = sizeof(input_csc_matrix)/sizeof(struct input_csc_matrix);
struct dc_context *ctx = xfm->ctx;
const uint32_t *regval = NULL;
bool use_set_a;
uint32_t value;
int i;
for (i = 0; i < arr_size; i++)
if (input_csc_matrix[i].color_space == color_space) {
regval = input_csc_matrix[i].regval;
break;
}
if (regval == NULL) {
BREAK_TO_DEBUGGER();
return;
}
/*
* 1 == set A, the logic is 'if currently we're not using set A,
* then use set A, otherwise use set B'
*/
value = dm_read_reg(ctx, mmCOL_MAN_INPUT_CSC_CONTROL);
use_set_a = get_reg_field_value(
value, COL_MAN_INPUT_CSC_CONTROL, INPUT_CSC_MODE) != 1;
if (use_set_a) {
/* fixed S2.13 format */
value = 0;
set_reg_field_value(
value, regval[0], INPUT_CSC_C11_C12_A, INPUT_CSC_C11_A);
set_reg_field_value(
value, regval[1], INPUT_CSC_C11_C12_A, INPUT_CSC_C12_A);
dm_write_reg(ctx, mmINPUT_CSC_C11_C12_A, value);
value = 0;
set_reg_field_value(
value, regval[2], INPUT_CSC_C13_C14_A, INPUT_CSC_C13_A);
set_reg_field_value(
value, regval[3], INPUT_CSC_C13_C14_A, INPUT_CSC_C14_A);
dm_write_reg(ctx, mmINPUT_CSC_C13_C14_A, value);
value = 0;
set_reg_field_value(
value, regval[4], INPUT_CSC_C21_C22_A, INPUT_CSC_C21_A);
set_reg_field_value(
value, regval[5], INPUT_CSC_C21_C22_A, INPUT_CSC_C22_A);
dm_write_reg(ctx, mmINPUT_CSC_C21_C22_A, value);
value = 0;
set_reg_field_value(
value, regval[6], INPUT_CSC_C23_C24_A, INPUT_CSC_C23_A);
set_reg_field_value(
value, regval[7], INPUT_CSC_C23_C24_A, INPUT_CSC_C24_A);
dm_write_reg(ctx, mmINPUT_CSC_C23_C24_A, value);
value = 0;
set_reg_field_value(
value, regval[8], INPUT_CSC_C31_C32_A, INPUT_CSC_C31_A);
set_reg_field_value(
value, regval[9], INPUT_CSC_C31_C32_A, INPUT_CSC_C32_A);
dm_write_reg(ctx, mmINPUT_CSC_C31_C32_A, value);
value = 0;
set_reg_field_value(
value, regval[10], INPUT_CSC_C33_C34_A, INPUT_CSC_C33_A);
set_reg_field_value(
value, regval[11], INPUT_CSC_C33_C34_A, INPUT_CSC_C34_A);
dm_write_reg(ctx, mmINPUT_CSC_C33_C34_A, value);
} else {
/* fixed S2.13 format */
value = 0;
set_reg_field_value(
value, regval[0], INPUT_CSC_C11_C12_B, INPUT_CSC_C11_B);
set_reg_field_value(
value, regval[1], INPUT_CSC_C11_C12_B, INPUT_CSC_C12_B);
dm_write_reg(ctx, mmINPUT_CSC_C11_C12_B, value);
value = 0;
set_reg_field_value(
value, regval[2], INPUT_CSC_C13_C14_B, INPUT_CSC_C13_B);
set_reg_field_value(
value, regval[3], INPUT_CSC_C13_C14_B, INPUT_CSC_C14_B);
dm_write_reg(ctx, mmINPUT_CSC_C13_C14_B, value);
value = 0;
set_reg_field_value(
value, regval[4], INPUT_CSC_C21_C22_B, INPUT_CSC_C21_B);
set_reg_field_value(
value, regval[5], INPUT_CSC_C21_C22_B, INPUT_CSC_C22_B);
dm_write_reg(ctx, mmINPUT_CSC_C21_C22_B, value);
value = 0;
set_reg_field_value(
value, regval[6], INPUT_CSC_C23_C24_B, INPUT_CSC_C23_B);
set_reg_field_value(
value, regval[7], INPUT_CSC_C23_C24_B, INPUT_CSC_C24_B);
dm_write_reg(ctx, mmINPUT_CSC_C23_C24_B, value);
value = 0;
set_reg_field_value(
value, regval[8], INPUT_CSC_C31_C32_B, INPUT_CSC_C31_B);
set_reg_field_value(
value, regval[9], INPUT_CSC_C31_C32_B, INPUT_CSC_C32_B);
dm_write_reg(ctx, mmINPUT_CSC_C31_C32_B, value);
value = 0;
set_reg_field_value(
value, regval[10], INPUT_CSC_C33_C34_B, INPUT_CSC_C33_B);
set_reg_field_value(
value, regval[11], INPUT_CSC_C33_C34_B, INPUT_CSC_C34_B);
dm_write_reg(ctx, mmINPUT_CSC_C33_C34_B, value);
}
/* KK: leave INPUT_CSC_CONVERSION_MODE at default */
value = 0;
/*
* select 8.4 input type instead of default 12.0. From the discussion
* with HW team, this format depends on the UNP surface format, so for
* 8-bit we should select 8.4 (4 bits truncated). For 10 it should be
* 10.2. For Carrizo we only support 8-bit surfaces on underlay pipe
* so we can always keep this at 8.4 (input_type=2). If the later asics
* start supporting 10+ bits, we will have a problem: surface
* programming including UNP_GRPH* is being done in DalISR after this,
* so either we pass surface format to here, or move this logic to ISR
*/
set_reg_field_value(
value, 2, COL_MAN_INPUT_CSC_CONTROL, INPUT_CSC_INPUT_TYPE);
set_reg_field_value(
value,
use_set_a ? 1 : 2,
COL_MAN_INPUT_CSC_CONTROL,
INPUT_CSC_MODE);
dm_write_reg(ctx, mmCOL_MAN_INPUT_CSC_CONTROL, value);
}
void dce110_opp_v_set_csc_default(
struct transform *xfm,
const struct default_adjustment *default_adjust)
{
struct dce_transform *xfm_dce = TO_DCE_TRANSFORM(xfm);
enum csc_color_mode config =
CSC_COLOR_MODE_GRAPHICS_PREDEFINED;
if (default_adjust->force_hw_default == false) {
const struct out_csc_color_matrix *elm;
/* currently parameter not in use */
enum grph_color_adjust_option option;
uint32_t i;
/*
* HW default false we program locally defined matrix
* HW default true we use predefined hw matrix and we
* do not need to program matrix
* OEM wants the HW default via runtime parameter.
*/
option = GRPH_COLOR_MATRIX_SW;
for (i = 0; i < ARRAY_SIZE(global_color_matrix); ++i) {
elm = &global_color_matrix[i];
if (elm->color_space != default_adjust->out_color_space)
continue;
/* program the matrix with default values from this
* file
*/
program_color_matrix_v(xfm_dce, elm, option);
config = CSC_COLOR_MODE_GRAPHICS_OUTPUT_CSC;
break;
}
}
program_input_csc(xfm, default_adjust->in_color_space);
/* configure the what we programmed :
* 1. Default values from this file
* 2. Use hardware default from ROM_A and we do not need to program
* matrix
*/
configure_graphics_mode_v(xfm_dce, config,
default_adjust->csc_adjust_type,
default_adjust->out_color_space);
set_Denormalization(xfm, default_adjust->color_depth);
}
void dce110_opp_v_set_csc_adjustment(
struct transform *xfm,
const struct out_csc_color_matrix *tbl_entry)
{
struct dce_transform *xfm_dce = TO_DCE_TRANSFORM(xfm);
enum csc_color_mode config =
CSC_COLOR_MODE_GRAPHICS_OUTPUT_CSC;
program_color_matrix_v(
xfm_dce, tbl_entry, GRPH_COLOR_MATRIX_SW);
/* We did everything ,now program DxOUTPUT_CSC_CONTROL */
configure_graphics_mode_v(xfm_dce, config, GRAPHICS_CSC_ADJUST_TYPE_SW,
tbl_entry->color_space);
/*TODO: Check if denormalization is needed*/
/*set_Denormalization(opp, adjust->color_depth);*/
}
| linux-master | drivers/gpu/drm/amd/display/dc/dce110/dce110_opp_csc_v.c |
/*
* Copyright 2012-16 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dce/dce_11_0_d.h"
#include "dce/dce_11_0_sh_mask.h"
/* TODO: this needs to be looked at, used by Stella's workaround*/
#include "gmc/gmc_8_2_d.h"
#include "gmc/gmc_8_2_sh_mask.h"
#include "include/logger_interface.h"
#include "inc/dce_calcs.h"
#include "dce/dce_mem_input.h"
#include "dce110_mem_input_v.h"
static void set_flip_control(
struct dce_mem_input *mem_input110,
bool immediate)
{
uint32_t value = 0;
value = dm_read_reg(
mem_input110->base.ctx,
mmUNP_FLIP_CONTROL);
set_reg_field_value(value, 1,
UNP_FLIP_CONTROL,
GRPH_SURFACE_UPDATE_PENDING_MODE);
dm_write_reg(
mem_input110->base.ctx,
mmUNP_FLIP_CONTROL,
value);
}
/* chroma part */
static void program_pri_addr_c(
struct dce_mem_input *mem_input110,
PHYSICAL_ADDRESS_LOC address)
{
uint32_t value = 0;
uint32_t temp = 0;
/*high register MUST be programmed first*/
temp = address.high_part &
UNP_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH_C__GRPH_PRIMARY_SURFACE_ADDRESS_HIGH_C_MASK;
set_reg_field_value(value, temp,
UNP_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH_C,
GRPH_PRIMARY_SURFACE_ADDRESS_HIGH_C);
dm_write_reg(
mem_input110->base.ctx,
mmUNP_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH_C,
value);
temp = 0;
value = 0;
temp = address.low_part >>
UNP_GRPH_PRIMARY_SURFACE_ADDRESS_C__GRPH_PRIMARY_SURFACE_ADDRESS_C__SHIFT;
set_reg_field_value(value, temp,
UNP_GRPH_PRIMARY_SURFACE_ADDRESS_C,
GRPH_PRIMARY_SURFACE_ADDRESS_C);
dm_write_reg(
mem_input110->base.ctx,
mmUNP_GRPH_PRIMARY_SURFACE_ADDRESS_C,
value);
}
/* luma part */
static void program_pri_addr_l(
struct dce_mem_input *mem_input110,
PHYSICAL_ADDRESS_LOC address)
{
uint32_t value = 0;
uint32_t temp = 0;
/*high register MUST be programmed first*/
temp = address.high_part &
UNP_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH_L__GRPH_PRIMARY_SURFACE_ADDRESS_HIGH_L_MASK;
set_reg_field_value(value, temp,
UNP_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH_L,
GRPH_PRIMARY_SURFACE_ADDRESS_HIGH_L);
dm_write_reg(
mem_input110->base.ctx,
mmUNP_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH_L,
value);
temp = 0;
value = 0;
temp = address.low_part >>
UNP_GRPH_PRIMARY_SURFACE_ADDRESS_L__GRPH_PRIMARY_SURFACE_ADDRESS_L__SHIFT;
set_reg_field_value(value, temp,
UNP_GRPH_PRIMARY_SURFACE_ADDRESS_L,
GRPH_PRIMARY_SURFACE_ADDRESS_L);
dm_write_reg(
mem_input110->base.ctx,
mmUNP_GRPH_PRIMARY_SURFACE_ADDRESS_L,
value);
}
static void program_addr(
struct dce_mem_input *mem_input110,
const struct dc_plane_address *addr)
{
switch (addr->type) {
case PLN_ADDR_TYPE_GRAPHICS:
program_pri_addr_l(
mem_input110,
addr->grph.addr);
break;
case PLN_ADDR_TYPE_VIDEO_PROGRESSIVE:
program_pri_addr_c(
mem_input110,
addr->video_progressive.chroma_addr);
program_pri_addr_l(
mem_input110,
addr->video_progressive.luma_addr);
break;
default:
/* not supported */
BREAK_TO_DEBUGGER();
}
}
static void enable(struct dce_mem_input *mem_input110)
{
uint32_t value = 0;
value = dm_read_reg(mem_input110->base.ctx, mmUNP_GRPH_ENABLE);
set_reg_field_value(value, 1, UNP_GRPH_ENABLE, GRPH_ENABLE);
dm_write_reg(mem_input110->base.ctx,
mmUNP_GRPH_ENABLE,
value);
}
static void program_tiling(
struct dce_mem_input *mem_input110,
const union dc_tiling_info *info,
const enum surface_pixel_format pixel_format)
{
uint32_t value = 0;
set_reg_field_value(value, info->gfx8.num_banks,
UNP_GRPH_CONTROL, GRPH_NUM_BANKS);
set_reg_field_value(value, info->gfx8.bank_width,
UNP_GRPH_CONTROL, GRPH_BANK_WIDTH_L);
set_reg_field_value(value, info->gfx8.bank_height,
UNP_GRPH_CONTROL, GRPH_BANK_HEIGHT_L);
set_reg_field_value(value, info->gfx8.tile_aspect,
UNP_GRPH_CONTROL, GRPH_MACRO_TILE_ASPECT_L);
set_reg_field_value(value, info->gfx8.tile_split,
UNP_GRPH_CONTROL, GRPH_TILE_SPLIT_L);
set_reg_field_value(value, info->gfx8.tile_mode,
UNP_GRPH_CONTROL, GRPH_MICRO_TILE_MODE_L);
set_reg_field_value(value, info->gfx8.pipe_config,
UNP_GRPH_CONTROL, GRPH_PIPE_CONFIG);
set_reg_field_value(value, info->gfx8.array_mode,
UNP_GRPH_CONTROL, GRPH_ARRAY_MODE);
set_reg_field_value(value, 1,
UNP_GRPH_CONTROL, GRPH_COLOR_EXPANSION_MODE);
set_reg_field_value(value, 0,
UNP_GRPH_CONTROL, GRPH_Z);
dm_write_reg(
mem_input110->base.ctx,
mmUNP_GRPH_CONTROL,
value);
value = 0;
set_reg_field_value(value, info->gfx8.bank_width_c,
UNP_GRPH_CONTROL_C, GRPH_BANK_WIDTH_C);
set_reg_field_value(value, info->gfx8.bank_height_c,
UNP_GRPH_CONTROL_C, GRPH_BANK_HEIGHT_C);
set_reg_field_value(value, info->gfx8.tile_aspect_c,
UNP_GRPH_CONTROL_C, GRPH_MACRO_TILE_ASPECT_C);
set_reg_field_value(value, info->gfx8.tile_split_c,
UNP_GRPH_CONTROL_C, GRPH_TILE_SPLIT_C);
set_reg_field_value(value, info->gfx8.tile_mode_c,
UNP_GRPH_CONTROL_C, GRPH_MICRO_TILE_MODE_C);
dm_write_reg(
mem_input110->base.ctx,
mmUNP_GRPH_CONTROL_C,
value);
}
static void program_size_and_rotation(
struct dce_mem_input *mem_input110,
enum dc_rotation_angle rotation,
const struct plane_size *plane_size)
{
uint32_t value = 0;
struct plane_size local_size = *plane_size;
if (rotation == ROTATION_ANGLE_90 ||
rotation == ROTATION_ANGLE_270) {
swap(local_size.surface_size.x,
local_size.surface_size.y);
swap(local_size.surface_size.width,
local_size.surface_size.height);
swap(local_size.chroma_size.x,
local_size.chroma_size.y);
swap(local_size.chroma_size.width,
local_size.chroma_size.height);
}
value = 0;
set_reg_field_value(value, local_size.surface_pitch,
UNP_GRPH_PITCH_L, GRPH_PITCH_L);
dm_write_reg(
mem_input110->base.ctx,
mmUNP_GRPH_PITCH_L,
value);
value = 0;
set_reg_field_value(value, local_size.chroma_pitch,
UNP_GRPH_PITCH_C, GRPH_PITCH_C);
dm_write_reg(
mem_input110->base.ctx,
mmUNP_GRPH_PITCH_C,
value);
value = 0;
set_reg_field_value(value, 0,
UNP_GRPH_X_START_L, GRPH_X_START_L);
dm_write_reg(
mem_input110->base.ctx,
mmUNP_GRPH_X_START_L,
value);
value = 0;
set_reg_field_value(value, 0,
UNP_GRPH_X_START_C, GRPH_X_START_C);
dm_write_reg(
mem_input110->base.ctx,
mmUNP_GRPH_X_START_C,
value);
value = 0;
set_reg_field_value(value, 0,
UNP_GRPH_Y_START_L, GRPH_Y_START_L);
dm_write_reg(
mem_input110->base.ctx,
mmUNP_GRPH_Y_START_L,
value);
value = 0;
set_reg_field_value(value, 0,
UNP_GRPH_Y_START_C, GRPH_Y_START_C);
dm_write_reg(
mem_input110->base.ctx,
mmUNP_GRPH_Y_START_C,
value);
value = 0;
set_reg_field_value(value, local_size.surface_size.x +
local_size.surface_size.width,
UNP_GRPH_X_END_L, GRPH_X_END_L);
dm_write_reg(
mem_input110->base.ctx,
mmUNP_GRPH_X_END_L,
value);
value = 0;
set_reg_field_value(value, local_size.chroma_size.x +
local_size.chroma_size.width,
UNP_GRPH_X_END_C, GRPH_X_END_C);
dm_write_reg(
mem_input110->base.ctx,
mmUNP_GRPH_X_END_C,
value);
value = 0;
set_reg_field_value(value, local_size.surface_size.y +
local_size.surface_size.height,
UNP_GRPH_Y_END_L, GRPH_Y_END_L);
dm_write_reg(
mem_input110->base.ctx,
mmUNP_GRPH_Y_END_L,
value);
value = 0;
set_reg_field_value(value, local_size.chroma_size.y +
local_size.chroma_size.height,
UNP_GRPH_Y_END_C, GRPH_Y_END_C);
dm_write_reg(
mem_input110->base.ctx,
mmUNP_GRPH_Y_END_C,
value);
value = 0;
switch (rotation) {
case ROTATION_ANGLE_90:
set_reg_field_value(value, 3,
UNP_HW_ROTATION, ROTATION_ANGLE);
break;
case ROTATION_ANGLE_180:
set_reg_field_value(value, 2,
UNP_HW_ROTATION, ROTATION_ANGLE);
break;
case ROTATION_ANGLE_270:
set_reg_field_value(value, 1,
UNP_HW_ROTATION, ROTATION_ANGLE);
break;
default:
set_reg_field_value(value, 0,
UNP_HW_ROTATION, ROTATION_ANGLE);
break;
}
dm_write_reg(
mem_input110->base.ctx,
mmUNP_HW_ROTATION,
value);
}
static void program_pixel_format(
struct dce_mem_input *mem_input110,
enum surface_pixel_format format)
{
if (format < SURFACE_PIXEL_FORMAT_VIDEO_BEGIN) {
uint32_t value;
uint8_t grph_depth;
uint8_t grph_format;
value = dm_read_reg(
mem_input110->base.ctx,
mmUNP_GRPH_CONTROL);
switch (format) {
case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
grph_depth = 0;
grph_format = 0;
break;
case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
grph_depth = 1;
grph_format = 1;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
grph_depth = 2;
grph_format = 0;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
grph_depth = 2;
grph_format = 1;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
grph_depth = 3;
grph_format = 0;
break;
default:
grph_depth = 2;
grph_format = 0;
break;
}
set_reg_field_value(
value,
grph_depth,
UNP_GRPH_CONTROL,
GRPH_DEPTH);
set_reg_field_value(
value,
grph_format,
UNP_GRPH_CONTROL,
GRPH_FORMAT);
dm_write_reg(
mem_input110->base.ctx,
mmUNP_GRPH_CONTROL,
value);
value = dm_read_reg(
mem_input110->base.ctx,
mmUNP_GRPH_CONTROL_EXP);
/* VIDEO FORMAT 0 */
set_reg_field_value(
value,
0,
UNP_GRPH_CONTROL_EXP,
VIDEO_FORMAT);
dm_write_reg(
mem_input110->base.ctx,
mmUNP_GRPH_CONTROL_EXP,
value);
} else {
/* Video 422 and 420 needs UNP_GRPH_CONTROL_EXP programmed */
uint32_t value;
uint8_t video_format;
value = dm_read_reg(
mem_input110->base.ctx,
mmUNP_GRPH_CONTROL_EXP);
switch (format) {
case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
video_format = 2;
break;
case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
video_format = 3;
break;
default:
video_format = 0;
break;
}
set_reg_field_value(
value,
video_format,
UNP_GRPH_CONTROL_EXP,
VIDEO_FORMAT);
dm_write_reg(
mem_input110->base.ctx,
mmUNP_GRPH_CONTROL_EXP,
value);
}
}
static bool dce_mem_input_v_is_surface_pending(struct mem_input *mem_input)
{
struct dce_mem_input *mem_input110 = TO_DCE_MEM_INPUT(mem_input);
uint32_t value;
value = dm_read_reg(mem_input110->base.ctx, mmUNP_GRPH_UPDATE);
if (get_reg_field_value(value, UNP_GRPH_UPDATE,
GRPH_SURFACE_UPDATE_PENDING))
return true;
mem_input->current_address = mem_input->request_address;
return false;
}
static bool dce_mem_input_v_program_surface_flip_and_addr(
struct mem_input *mem_input,
const struct dc_plane_address *address,
bool flip_immediate)
{
struct dce_mem_input *mem_input110 = TO_DCE_MEM_INPUT(mem_input);
set_flip_control(mem_input110, flip_immediate);
program_addr(mem_input110,
address);
mem_input->request_address = *address;
return true;
}
/* Scatter Gather param tables */
static const unsigned int dvmm_Hw_Setting_2DTiling[4][9] = {
{ 8, 64, 64, 8, 8, 1, 4, 0, 0},
{ 16, 64, 32, 8, 16, 1, 8, 0, 0},
{ 32, 32, 32, 16, 16, 1, 8, 0, 0},
{ 64, 8, 32, 16, 16, 1, 8, 0, 0}, /* fake */
};
static const unsigned int dvmm_Hw_Setting_1DTiling[4][9] = {
{ 8, 512, 8, 1, 0, 1, 0, 0, 0}, /* 0 for invalid */
{ 16, 256, 8, 2, 0, 1, 0, 0, 0},
{ 32, 128, 8, 4, 0, 1, 0, 0, 0},
{ 64, 64, 8, 4, 0, 1, 0, 0, 0}, /* fake */
};
static const unsigned int dvmm_Hw_Setting_Linear[4][9] = {
{ 8, 4096, 1, 8, 0, 1, 0, 0, 0},
{ 16, 2048, 1, 8, 0, 1, 0, 0, 0},
{ 32, 1024, 1, 8, 0, 1, 0, 0, 0},
{ 64, 512, 1, 8, 0, 1, 0, 0, 0}, /* new for 64bpp from HW */
};
/* Helper to get table entry from surface info */
static const unsigned int *get_dvmm_hw_setting(
union dc_tiling_info *tiling_info,
enum surface_pixel_format format,
bool chroma)
{
enum bits_per_pixel {
bpp_8 = 0,
bpp_16,
bpp_32,
bpp_64
} bpp;
if (format >= SURFACE_PIXEL_FORMAT_INVALID)
bpp = bpp_32;
else if (format >= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN)
bpp = chroma ? bpp_16 : bpp_8;
else
bpp = bpp_8;
switch (tiling_info->gfx8.array_mode) {
case DC_ARRAY_1D_TILED_THIN1:
case DC_ARRAY_1D_TILED_THICK:
case DC_ARRAY_PRT_TILED_THIN1:
return dvmm_Hw_Setting_1DTiling[bpp];
case DC_ARRAY_2D_TILED_THIN1:
case DC_ARRAY_2D_TILED_THICK:
case DC_ARRAY_2D_TILED_X_THICK:
case DC_ARRAY_PRT_2D_TILED_THIN1:
case DC_ARRAY_PRT_2D_TILED_THICK:
return dvmm_Hw_Setting_2DTiling[bpp];
case DC_ARRAY_LINEAR_GENERAL:
case DC_ARRAY_LINEAR_ALLIGNED:
return dvmm_Hw_Setting_Linear[bpp];
default:
return dvmm_Hw_Setting_2DTiling[bpp];
}
}
static void dce_mem_input_v_program_pte_vm(
struct mem_input *mem_input,
enum surface_pixel_format format,
union dc_tiling_info *tiling_info,
enum dc_rotation_angle rotation)
{
struct dce_mem_input *mem_input110 = TO_DCE_MEM_INPUT(mem_input);
const unsigned int *pte = get_dvmm_hw_setting(tiling_info, format, false);
const unsigned int *pte_chroma = get_dvmm_hw_setting(tiling_info, format, true);
unsigned int page_width = 0;
unsigned int page_height = 0;
unsigned int page_width_chroma = 0;
unsigned int page_height_chroma = 0;
unsigned int temp_page_width = pte[1];
unsigned int temp_page_height = pte[2];
unsigned int min_pte_before_flip = 0;
unsigned int min_pte_before_flip_chroma = 0;
uint32_t value = 0;
while ((temp_page_width >>= 1) != 0)
page_width++;
while ((temp_page_height >>= 1) != 0)
page_height++;
temp_page_width = pte_chroma[1];
temp_page_height = pte_chroma[2];
while ((temp_page_width >>= 1) != 0)
page_width_chroma++;
while ((temp_page_height >>= 1) != 0)
page_height_chroma++;
switch (rotation) {
case ROTATION_ANGLE_90:
case ROTATION_ANGLE_270:
min_pte_before_flip = pte[4];
min_pte_before_flip_chroma = pte_chroma[4];
break;
default:
min_pte_before_flip = pte[3];
min_pte_before_flip_chroma = pte_chroma[3];
break;
}
value = dm_read_reg(mem_input110->base.ctx, mmUNP_PIPE_OUTSTANDING_REQUEST_LIMIT);
/* TODO: un-hardcode requestlimit */
set_reg_field_value(value, 0xff, UNP_PIPE_OUTSTANDING_REQUEST_LIMIT, UNP_PIPE_OUTSTANDING_REQUEST_LIMIT_L);
set_reg_field_value(value, 0xff, UNP_PIPE_OUTSTANDING_REQUEST_LIMIT, UNP_PIPE_OUTSTANDING_REQUEST_LIMIT_C);
dm_write_reg(mem_input110->base.ctx, mmUNP_PIPE_OUTSTANDING_REQUEST_LIMIT, value);
value = dm_read_reg(mem_input110->base.ctx, mmUNP_DVMM_PTE_CONTROL);
set_reg_field_value(value, page_width, UNP_DVMM_PTE_CONTROL, DVMM_PAGE_WIDTH);
set_reg_field_value(value, page_height, UNP_DVMM_PTE_CONTROL, DVMM_PAGE_HEIGHT);
set_reg_field_value(value, min_pte_before_flip, UNP_DVMM_PTE_CONTROL, DVMM_MIN_PTE_BEFORE_FLIP);
dm_write_reg(mem_input110->base.ctx, mmUNP_DVMM_PTE_CONTROL, value);
value = dm_read_reg(mem_input110->base.ctx, mmUNP_DVMM_PTE_ARB_CONTROL);
set_reg_field_value(value, pte[5], UNP_DVMM_PTE_ARB_CONTROL, DVMM_PTE_REQ_PER_CHUNK);
set_reg_field_value(value, 0xff, UNP_DVMM_PTE_ARB_CONTROL, DVMM_MAX_PTE_REQ_OUTSTANDING);
dm_write_reg(mem_input110->base.ctx, mmUNP_DVMM_PTE_ARB_CONTROL, value);
value = dm_read_reg(mem_input110->base.ctx, mmUNP_DVMM_PTE_CONTROL_C);
set_reg_field_value(value, page_width_chroma, UNP_DVMM_PTE_CONTROL_C, DVMM_PAGE_WIDTH_C);
set_reg_field_value(value, page_height_chroma, UNP_DVMM_PTE_CONTROL_C, DVMM_PAGE_HEIGHT_C);
set_reg_field_value(value, min_pte_before_flip_chroma, UNP_DVMM_PTE_CONTROL_C, DVMM_MIN_PTE_BEFORE_FLIP_C);
dm_write_reg(mem_input110->base.ctx, mmUNP_DVMM_PTE_CONTROL_C, value);
value = dm_read_reg(mem_input110->base.ctx, mmUNP_DVMM_PTE_ARB_CONTROL_C);
set_reg_field_value(value, pte_chroma[5], UNP_DVMM_PTE_ARB_CONTROL_C, DVMM_PTE_REQ_PER_CHUNK_C);
set_reg_field_value(value, 0xff, UNP_DVMM_PTE_ARB_CONTROL_C, DVMM_MAX_PTE_REQ_OUTSTANDING_C);
dm_write_reg(mem_input110->base.ctx, mmUNP_DVMM_PTE_ARB_CONTROL_C, value);
}
static void dce_mem_input_v_program_surface_config(
struct mem_input *mem_input,
enum surface_pixel_format format,
union dc_tiling_info *tiling_info,
struct plane_size *plane_size,
enum dc_rotation_angle rotation,
struct dc_plane_dcc_param *dcc,
bool horizotal_mirror)
{
struct dce_mem_input *mem_input110 = TO_DCE_MEM_INPUT(mem_input);
enable(mem_input110);
program_tiling(mem_input110, tiling_info, format);
program_size_and_rotation(mem_input110, rotation, plane_size);
program_pixel_format(mem_input110, format);
}
static void program_urgency_watermark(
const struct dc_context *ctx,
const uint32_t urgency_addr,
const uint32_t wm_addr,
struct dce_watermarks marks_low,
uint32_t total_dest_line_time_ns)
{
/* register value */
uint32_t urgency_cntl = 0;
uint32_t wm_mask_cntl = 0;
/*Write mask to enable reading/writing of watermark set A*/
wm_mask_cntl = dm_read_reg(ctx, wm_addr);
set_reg_field_value(wm_mask_cntl,
1,
DPGV0_WATERMARK_MASK_CONTROL,
URGENCY_WATERMARK_MASK);
dm_write_reg(ctx, wm_addr, wm_mask_cntl);
urgency_cntl = dm_read_reg(ctx, urgency_addr);
set_reg_field_value(
urgency_cntl,
marks_low.a_mark,
DPGV0_PIPE_URGENCY_CONTROL,
URGENCY_LOW_WATERMARK);
set_reg_field_value(
urgency_cntl,
total_dest_line_time_ns,
DPGV0_PIPE_URGENCY_CONTROL,
URGENCY_HIGH_WATERMARK);
dm_write_reg(ctx, urgency_addr, urgency_cntl);
/*Write mask to enable reading/writing of watermark set B*/
wm_mask_cntl = dm_read_reg(ctx, wm_addr);
set_reg_field_value(wm_mask_cntl,
2,
DPGV0_WATERMARK_MASK_CONTROL,
URGENCY_WATERMARK_MASK);
dm_write_reg(ctx, wm_addr, wm_mask_cntl);
urgency_cntl = dm_read_reg(ctx, urgency_addr);
set_reg_field_value(urgency_cntl,
marks_low.b_mark,
DPGV0_PIPE_URGENCY_CONTROL,
URGENCY_LOW_WATERMARK);
set_reg_field_value(urgency_cntl,
total_dest_line_time_ns,
DPGV0_PIPE_URGENCY_CONTROL,
URGENCY_HIGH_WATERMARK);
dm_write_reg(ctx, urgency_addr, urgency_cntl);
}
static void program_urgency_watermark_l(
const struct dc_context *ctx,
struct dce_watermarks marks_low,
uint32_t total_dest_line_time_ns)
{
program_urgency_watermark(
ctx,
mmDPGV0_PIPE_URGENCY_CONTROL,
mmDPGV0_WATERMARK_MASK_CONTROL,
marks_low,
total_dest_line_time_ns);
}
static void program_urgency_watermark_c(
const struct dc_context *ctx,
struct dce_watermarks marks_low,
uint32_t total_dest_line_time_ns)
{
program_urgency_watermark(
ctx,
mmDPGV1_PIPE_URGENCY_CONTROL,
mmDPGV1_WATERMARK_MASK_CONTROL,
marks_low,
total_dest_line_time_ns);
}
static void program_stutter_watermark(
const struct dc_context *ctx,
const uint32_t stutter_addr,
const uint32_t wm_addr,
struct dce_watermarks marks)
{
/* register value */
uint32_t stutter_cntl = 0;
uint32_t wm_mask_cntl = 0;
/*Write mask to enable reading/writing of watermark set A*/
wm_mask_cntl = dm_read_reg(ctx, wm_addr);
set_reg_field_value(wm_mask_cntl,
1,
DPGV0_WATERMARK_MASK_CONTROL,
STUTTER_EXIT_SELF_REFRESH_WATERMARK_MASK);
dm_write_reg(ctx, wm_addr, wm_mask_cntl);
stutter_cntl = dm_read_reg(ctx, stutter_addr);
if (ctx->dc->debug.disable_stutter) {
set_reg_field_value(stutter_cntl,
0,
DPGV0_PIPE_STUTTER_CONTROL,
STUTTER_ENABLE);
} else {
set_reg_field_value(stutter_cntl,
1,
DPGV0_PIPE_STUTTER_CONTROL,
STUTTER_ENABLE);
}
set_reg_field_value(stutter_cntl,
1,
DPGV0_PIPE_STUTTER_CONTROL,
STUTTER_IGNORE_FBC);
/*Write watermark set A*/
set_reg_field_value(stutter_cntl,
marks.a_mark,
DPGV0_PIPE_STUTTER_CONTROL,
STUTTER_EXIT_SELF_REFRESH_WATERMARK);
dm_write_reg(ctx, stutter_addr, stutter_cntl);
/*Write mask to enable reading/writing of watermark set B*/
wm_mask_cntl = dm_read_reg(ctx, wm_addr);
set_reg_field_value(wm_mask_cntl,
2,
DPGV0_WATERMARK_MASK_CONTROL,
STUTTER_EXIT_SELF_REFRESH_WATERMARK_MASK);
dm_write_reg(ctx, wm_addr, wm_mask_cntl);
stutter_cntl = dm_read_reg(ctx, stutter_addr);
/*Write watermark set B*/
set_reg_field_value(stutter_cntl,
marks.b_mark,
DPGV0_PIPE_STUTTER_CONTROL,
STUTTER_EXIT_SELF_REFRESH_WATERMARK);
dm_write_reg(ctx, stutter_addr, stutter_cntl);
}
static void program_stutter_watermark_l(
const struct dc_context *ctx,
struct dce_watermarks marks)
{
program_stutter_watermark(ctx,
mmDPGV0_PIPE_STUTTER_CONTROL,
mmDPGV0_WATERMARK_MASK_CONTROL,
marks);
}
static void program_stutter_watermark_c(
const struct dc_context *ctx,
struct dce_watermarks marks)
{
program_stutter_watermark(ctx,
mmDPGV1_PIPE_STUTTER_CONTROL,
mmDPGV1_WATERMARK_MASK_CONTROL,
marks);
}
static void program_nbp_watermark(
const struct dc_context *ctx,
const uint32_t wm_mask_ctrl_addr,
const uint32_t nbp_pstate_ctrl_addr,
struct dce_watermarks marks)
{
uint32_t value;
/* Write mask to enable reading/writing of watermark set A */
value = dm_read_reg(ctx, wm_mask_ctrl_addr);
set_reg_field_value(
value,
1,
DPGV0_WATERMARK_MASK_CONTROL,
NB_PSTATE_CHANGE_WATERMARK_MASK);
dm_write_reg(ctx, wm_mask_ctrl_addr, value);
value = dm_read_reg(ctx, nbp_pstate_ctrl_addr);
set_reg_field_value(
value,
1,
DPGV0_PIPE_NB_PSTATE_CHANGE_CONTROL,
NB_PSTATE_CHANGE_ENABLE);
set_reg_field_value(
value,
1,
DPGV0_PIPE_NB_PSTATE_CHANGE_CONTROL,
NB_PSTATE_CHANGE_URGENT_DURING_REQUEST);
set_reg_field_value(
value,
1,
DPGV0_PIPE_NB_PSTATE_CHANGE_CONTROL,
NB_PSTATE_CHANGE_NOT_SELF_REFRESH_DURING_REQUEST);
dm_write_reg(ctx, nbp_pstate_ctrl_addr, value);
/* Write watermark set A */
value = dm_read_reg(ctx, nbp_pstate_ctrl_addr);
set_reg_field_value(
value,
marks.a_mark,
DPGV0_PIPE_NB_PSTATE_CHANGE_CONTROL,
NB_PSTATE_CHANGE_WATERMARK);
dm_write_reg(ctx, nbp_pstate_ctrl_addr, value);
/* Write mask to enable reading/writing of watermark set B */
value = dm_read_reg(ctx, wm_mask_ctrl_addr);
set_reg_field_value(
value,
2,
DPGV0_WATERMARK_MASK_CONTROL,
NB_PSTATE_CHANGE_WATERMARK_MASK);
dm_write_reg(ctx, wm_mask_ctrl_addr, value);
value = dm_read_reg(ctx, nbp_pstate_ctrl_addr);
set_reg_field_value(
value,
1,
DPGV0_PIPE_NB_PSTATE_CHANGE_CONTROL,
NB_PSTATE_CHANGE_ENABLE);
set_reg_field_value(
value,
1,
DPGV0_PIPE_NB_PSTATE_CHANGE_CONTROL,
NB_PSTATE_CHANGE_URGENT_DURING_REQUEST);
set_reg_field_value(
value,
1,
DPGV0_PIPE_NB_PSTATE_CHANGE_CONTROL,
NB_PSTATE_CHANGE_NOT_SELF_REFRESH_DURING_REQUEST);
dm_write_reg(ctx, nbp_pstate_ctrl_addr, value);
/* Write watermark set B */
value = dm_read_reg(ctx, nbp_pstate_ctrl_addr);
set_reg_field_value(
value,
marks.b_mark,
DPGV0_PIPE_NB_PSTATE_CHANGE_CONTROL,
NB_PSTATE_CHANGE_WATERMARK);
dm_write_reg(ctx, nbp_pstate_ctrl_addr, value);
}
static void program_nbp_watermark_l(
const struct dc_context *ctx,
struct dce_watermarks marks)
{
program_nbp_watermark(ctx,
mmDPGV0_WATERMARK_MASK_CONTROL,
mmDPGV0_PIPE_NB_PSTATE_CHANGE_CONTROL,
marks);
}
static void program_nbp_watermark_c(
const struct dc_context *ctx,
struct dce_watermarks marks)
{
program_nbp_watermark(ctx,
mmDPGV1_WATERMARK_MASK_CONTROL,
mmDPGV1_PIPE_NB_PSTATE_CHANGE_CONTROL,
marks);
}
static void dce_mem_input_v_program_display_marks(
struct mem_input *mem_input,
struct dce_watermarks nbp,
struct dce_watermarks stutter,
struct dce_watermarks stutter_enter,
struct dce_watermarks urgent,
uint32_t total_dest_line_time_ns)
{
program_urgency_watermark_l(
mem_input->ctx,
urgent,
total_dest_line_time_ns);
program_nbp_watermark_l(
mem_input->ctx,
nbp);
program_stutter_watermark_l(
mem_input->ctx,
stutter);
}
static void dce_mem_input_program_chroma_display_marks(
struct mem_input *mem_input,
struct dce_watermarks nbp,
struct dce_watermarks stutter,
struct dce_watermarks urgent,
uint32_t total_dest_line_time_ns)
{
program_urgency_watermark_c(
mem_input->ctx,
urgent,
total_dest_line_time_ns);
program_nbp_watermark_c(
mem_input->ctx,
nbp);
program_stutter_watermark_c(
mem_input->ctx,
stutter);
}
static void dce110_allocate_mem_input_v(
struct mem_input *mi,
uint32_t h_total,/* for current stream */
uint32_t v_total,/* for current stream */
uint32_t pix_clk_khz,/* for current stream */
uint32_t total_stream_num)
{
uint32_t addr;
uint32_t value;
uint32_t pix_dur;
if (pix_clk_khz != 0) {
addr = mmDPGV0_PIPE_ARBITRATION_CONTROL1;
value = dm_read_reg(mi->ctx, addr);
pix_dur = 1000000000ULL / pix_clk_khz;
set_reg_field_value(
value,
pix_dur,
DPGV0_PIPE_ARBITRATION_CONTROL1,
PIXEL_DURATION);
dm_write_reg(mi->ctx, addr, value);
addr = mmDPGV1_PIPE_ARBITRATION_CONTROL1;
value = dm_read_reg(mi->ctx, addr);
pix_dur = 1000000000ULL / pix_clk_khz;
set_reg_field_value(
value,
pix_dur,
DPGV1_PIPE_ARBITRATION_CONTROL1,
PIXEL_DURATION);
dm_write_reg(mi->ctx, addr, value);
addr = mmDPGV0_PIPE_ARBITRATION_CONTROL2;
value = 0x4000800;
dm_write_reg(mi->ctx, addr, value);
addr = mmDPGV1_PIPE_ARBITRATION_CONTROL2;
value = 0x4000800;
dm_write_reg(mi->ctx, addr, value);
}
}
static void dce110_free_mem_input_v(
struct mem_input *mi,
uint32_t total_stream_num)
{
}
static const struct mem_input_funcs dce110_mem_input_v_funcs = {
.mem_input_program_display_marks =
dce_mem_input_v_program_display_marks,
.mem_input_program_chroma_display_marks =
dce_mem_input_program_chroma_display_marks,
.allocate_mem_input = dce110_allocate_mem_input_v,
.free_mem_input = dce110_free_mem_input_v,
.mem_input_program_surface_flip_and_addr =
dce_mem_input_v_program_surface_flip_and_addr,
.mem_input_program_pte_vm =
dce_mem_input_v_program_pte_vm,
.mem_input_program_surface_config =
dce_mem_input_v_program_surface_config,
.mem_input_is_flip_pending =
dce_mem_input_v_is_surface_pending
};
/*****************************************/
/* Constructor, Destructor */
/*****************************************/
void dce110_mem_input_v_construct(
struct dce_mem_input *dce_mi,
struct dc_context *ctx)
{
dce_mi->base.funcs = &dce110_mem_input_v_funcs;
dce_mi->base.ctx = ctx;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dce110/dce110_mem_input_v.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dce/dce_11_0_d.h"
#include "dce/dce_11_0_sh_mask.h"
#include "gmc/gmc_8_2_sh_mask.h"
#include "gmc/gmc_8_2_d.h"
#include "include/logger_interface.h"
#include "dce110_compressor.h"
#define DC_LOGGER \
cp110->base.ctx->logger
#define DCP_REG(reg)\
(reg + cp110->offsets.dcp_offset)
#define DMIF_REG(reg)\
(reg + cp110->offsets.dmif_offset)
static const struct dce110_compressor_reg_offsets reg_offsets[] = {
{
.dcp_offset = (mmDCP0_GRPH_CONTROL - mmDCP0_GRPH_CONTROL),
.dmif_offset =
(mmDMIF_PG0_DPG_PIPE_DPM_CONTROL
- mmDMIF_PG0_DPG_PIPE_DPM_CONTROL),
},
{
.dcp_offset = (mmDCP1_GRPH_CONTROL - mmDCP0_GRPH_CONTROL),
.dmif_offset =
(mmDMIF_PG1_DPG_PIPE_DPM_CONTROL
- mmDMIF_PG0_DPG_PIPE_DPM_CONTROL),
},
{
.dcp_offset = (mmDCP2_GRPH_CONTROL - mmDCP0_GRPH_CONTROL),
.dmif_offset =
(mmDMIF_PG2_DPG_PIPE_DPM_CONTROL
- mmDMIF_PG0_DPG_PIPE_DPM_CONTROL),
}
};
static uint32_t align_to_chunks_number_per_line(uint32_t pixels)
{
return 256 * ((pixels + 255) / 256);
}
static void reset_lb_on_vblank(struct compressor *compressor, uint32_t crtc_inst)
{
uint32_t value;
uint32_t frame_count;
uint32_t status_pos;
uint32_t retry = 0;
struct dce110_compressor *cp110 = TO_DCE110_COMPRESSOR(compressor);
cp110->offsets = reg_offsets[crtc_inst];
status_pos = dm_read_reg(compressor->ctx, DCP_REG(mmCRTC_STATUS_POSITION));
/* Only if CRTC is enabled and counter is moving we wait for one frame. */
if (status_pos != dm_read_reg(compressor->ctx, DCP_REG(mmCRTC_STATUS_POSITION))) {
/* Resetting LB on VBlank */
value = dm_read_reg(compressor->ctx, DCP_REG(mmLB_SYNC_RESET_SEL));
set_reg_field_value(value, 3, LB_SYNC_RESET_SEL, LB_SYNC_RESET_SEL);
set_reg_field_value(value, 1, LB_SYNC_RESET_SEL, LB_SYNC_RESET_SEL2);
dm_write_reg(compressor->ctx, DCP_REG(mmLB_SYNC_RESET_SEL), value);
frame_count = dm_read_reg(compressor->ctx, DCP_REG(mmCRTC_STATUS_FRAME_COUNT));
for (retry = 10000; retry > 0; retry--) {
if (frame_count != dm_read_reg(compressor->ctx, DCP_REG(mmCRTC_STATUS_FRAME_COUNT)))
break;
udelay(10);
}
if (!retry)
dm_error("Frame count did not increase for 100ms.\n");
/* Resetting LB on VBlank */
value = dm_read_reg(compressor->ctx, DCP_REG(mmLB_SYNC_RESET_SEL));
set_reg_field_value(value, 2, LB_SYNC_RESET_SEL, LB_SYNC_RESET_SEL);
set_reg_field_value(value, 0, LB_SYNC_RESET_SEL, LB_SYNC_RESET_SEL2);
dm_write_reg(compressor->ctx, DCP_REG(mmLB_SYNC_RESET_SEL), value);
}
}
static void wait_for_fbc_state_changed(
struct dce110_compressor *cp110,
bool enabled)
{
uint32_t counter = 0;
uint32_t addr = mmFBC_STATUS;
uint32_t value;
while (counter < 1000) {
value = dm_read_reg(cp110->base.ctx, addr);
if (get_reg_field_value(
value,
FBC_STATUS,
FBC_ENABLE_STATUS) == enabled)
break;
udelay(100);
counter++;
}
if (counter == 1000) {
DC_LOG_WARNING("%s: wait counter exceeded, changes to HW not applied",
__func__);
} else {
DC_LOG_SYNC("FBC status changed to %d", enabled);
}
}
void dce110_compressor_power_up_fbc(struct compressor *compressor)
{
uint32_t value;
uint32_t addr;
addr = mmFBC_CNTL;
value = dm_read_reg(compressor->ctx, addr);
set_reg_field_value(value, 0, FBC_CNTL, FBC_GRPH_COMP_EN);
set_reg_field_value(value, 1, FBC_CNTL, FBC_EN);
set_reg_field_value(value, 2, FBC_CNTL, FBC_COHERENCY_MODE);
if (compressor->options.bits.CLK_GATING_DISABLED == 1) {
/* HW needs to do power measurement comparison. */
set_reg_field_value(
value,
0,
FBC_CNTL,
FBC_COMP_CLK_GATE_EN);
}
dm_write_reg(compressor->ctx, addr, value);
addr = mmFBC_COMP_MODE;
value = dm_read_reg(compressor->ctx, addr);
set_reg_field_value(value, 1, FBC_COMP_MODE, FBC_RLE_EN);
set_reg_field_value(value, 1, FBC_COMP_MODE, FBC_DPCM4_RGB_EN);
set_reg_field_value(value, 1, FBC_COMP_MODE, FBC_IND_EN);
dm_write_reg(compressor->ctx, addr, value);
addr = mmFBC_COMP_CNTL;
value = dm_read_reg(compressor->ctx, addr);
set_reg_field_value(value, 1, FBC_COMP_CNTL, FBC_DEPTH_RGB08_EN);
dm_write_reg(compressor->ctx, addr, value);
/*FBC_MIN_COMPRESSION 0 ==> 2:1 */
/* 1 ==> 4:1 */
/* 2 ==> 8:1 */
/* 0xF ==> 1:1 */
set_reg_field_value(value, 0xF, FBC_COMP_CNTL, FBC_MIN_COMPRESSION);
dm_write_reg(compressor->ctx, addr, value);
compressor->min_compress_ratio = FBC_COMPRESS_RATIO_1TO1;
value = 0;
dm_write_reg(compressor->ctx, mmFBC_IND_LUT0, value);
value = 0xFFFFFF;
dm_write_reg(compressor->ctx, mmFBC_IND_LUT1, value);
}
void dce110_compressor_enable_fbc(
struct compressor *compressor,
struct compr_addr_and_pitch_params *params)
{
struct dce110_compressor *cp110 = TO_DCE110_COMPRESSOR(compressor);
if (compressor->options.bits.FBC_SUPPORT &&
(!dce110_compressor_is_fbc_enabled_in_hw(compressor, NULL))) {
uint32_t addr;
uint32_t value, misc_value;
addr = mmFBC_CNTL;
value = dm_read_reg(compressor->ctx, addr);
set_reg_field_value(value, 1, FBC_CNTL, FBC_GRPH_COMP_EN);
/* params->inst is valid HW CRTC instance start from 0 */
set_reg_field_value(
value,
params->inst,
FBC_CNTL, FBC_SRC_SEL);
dm_write_reg(compressor->ctx, addr, value);
/* Keep track of enum controller_id FBC is attached to */
compressor->is_enabled = true;
/* attached_inst is SW CRTC instance start from 1
* 0 = CONTROLLER_ID_UNDEFINED means not attached crtc
*/
compressor->attached_inst = params->inst + CONTROLLER_ID_D0;
/* Toggle it as there is bug in HW */
set_reg_field_value(value, 0, FBC_CNTL, FBC_GRPH_COMP_EN);
dm_write_reg(compressor->ctx, addr, value);
/* FBC usage with scatter & gather for dce110 */
misc_value = dm_read_reg(compressor->ctx, mmFBC_MISC);
set_reg_field_value(misc_value, 1,
FBC_MISC, FBC_INVALIDATE_ON_ERROR);
set_reg_field_value(misc_value, 1,
FBC_MISC, FBC_DECOMPRESS_ERROR_CLEAR);
set_reg_field_value(misc_value, 0x14,
FBC_MISC, FBC_SLOW_REQ_INTERVAL);
dm_write_reg(compressor->ctx, mmFBC_MISC, misc_value);
/* Enable FBC */
set_reg_field_value(value, 1, FBC_CNTL, FBC_GRPH_COMP_EN);
dm_write_reg(compressor->ctx, addr, value);
wait_for_fbc_state_changed(cp110, true);
}
}
void dce110_compressor_disable_fbc(struct compressor *compressor)
{
struct dce110_compressor *cp110 = TO_DCE110_COMPRESSOR(compressor);
uint32_t crtc_inst = 0;
if (compressor->options.bits.FBC_SUPPORT) {
if (dce110_compressor_is_fbc_enabled_in_hw(compressor, &crtc_inst)) {
uint32_t reg_data;
/* Turn off compression */
reg_data = dm_read_reg(compressor->ctx, mmFBC_CNTL);
set_reg_field_value(reg_data, 0, FBC_CNTL, FBC_GRPH_COMP_EN);
dm_write_reg(compressor->ctx, mmFBC_CNTL, reg_data);
/* Reset enum controller_id to undefined */
compressor->attached_inst = 0;
compressor->is_enabled = false;
wait_for_fbc_state_changed(cp110, false);
}
/* Sync line buffer which fbc was attached to dce100/110 only */
if (crtc_inst > CONTROLLER_ID_UNDEFINED && crtc_inst < CONTROLLER_ID_D3)
reset_lb_on_vblank(compressor,
crtc_inst - CONTROLLER_ID_D0);
}
}
bool dce110_compressor_is_fbc_enabled_in_hw(
struct compressor *compressor,
uint32_t *inst)
{
/* Check the hardware register */
uint32_t value;
value = dm_read_reg(compressor->ctx, mmFBC_STATUS);
if (get_reg_field_value(value, FBC_STATUS, FBC_ENABLE_STATUS)) {
if (inst != NULL)
*inst = compressor->attached_inst;
return true;
}
value = dm_read_reg(compressor->ctx, mmFBC_MISC);
if (get_reg_field_value(value, FBC_MISC, FBC_STOP_ON_HFLIP_EVENT)) {
value = dm_read_reg(compressor->ctx, mmFBC_CNTL);
if (get_reg_field_value(value, FBC_CNTL, FBC_GRPH_COMP_EN)) {
if (inst != NULL)
*inst =
compressor->attached_inst;
return true;
}
}
return false;
}
void dce110_compressor_program_compressed_surface_address_and_pitch(
struct compressor *compressor,
struct compr_addr_and_pitch_params *params)
{
struct dce110_compressor *cp110 = TO_DCE110_COMPRESSOR(compressor);
uint32_t value = 0;
uint32_t fbc_pitch = 0;
uint32_t compressed_surf_address_low_part =
compressor->compr_surface_address.addr.low_part;
cp110->offsets = reg_offsets[params->inst];
/* Clear content first. */
dm_write_reg(
compressor->ctx,
DCP_REG(mmGRPH_COMPRESS_SURFACE_ADDRESS_HIGH),
0);
dm_write_reg(compressor->ctx,
DCP_REG(mmGRPH_COMPRESS_SURFACE_ADDRESS), 0);
/* Write address, HIGH has to be first. */
dm_write_reg(compressor->ctx,
DCP_REG(mmGRPH_COMPRESS_SURFACE_ADDRESS_HIGH),
compressor->compr_surface_address.addr.high_part);
dm_write_reg(compressor->ctx,
DCP_REG(mmGRPH_COMPRESS_SURFACE_ADDRESS),
compressed_surf_address_low_part);
fbc_pitch = align_to_chunks_number_per_line(params->source_view_width);
if (compressor->min_compress_ratio == FBC_COMPRESS_RATIO_1TO1)
fbc_pitch = fbc_pitch / 8;
else
DC_LOG_WARNING("%s: Unexpected DCE11 compression ratio",
__func__);
/* Clear content first. */
dm_write_reg(compressor->ctx, DCP_REG(mmGRPH_COMPRESS_PITCH), 0);
/* Write FBC Pitch. */
set_reg_field_value(
value,
fbc_pitch,
GRPH_COMPRESS_PITCH,
GRPH_COMPRESS_PITCH);
dm_write_reg(compressor->ctx, DCP_REG(mmGRPH_COMPRESS_PITCH), value);
}
void dce110_compressor_set_fbc_invalidation_triggers(
struct compressor *compressor,
uint32_t fbc_trigger)
{
/* Disable region hit event, FBC_MEMORY_REGION_MASK = 0 (bits 16-19)
* for DCE 11 regions cannot be used - does not work with S/G
*/
uint32_t addr = mmFBC_CLIENT_REGION_MASK;
uint32_t value = dm_read_reg(compressor->ctx, addr);
set_reg_field_value(
value,
0,
FBC_CLIENT_REGION_MASK,
FBC_MEMORY_REGION_MASK);
dm_write_reg(compressor->ctx, addr, value);
/* Setup events when to clear all CSM entries (effectively marking
* current compressed data invalid)
* For DCE 11 CSM metadata 11111 means - "Not Compressed"
* Used as the initial value of the metadata sent to the compressor
* after invalidation, to indicate that the compressor should attempt
* to compress all chunks on the current pass. Also used when the chunk
* is not successfully written to memory.
* When this CSM value is detected, FBC reads from the uncompressed
* buffer. Set events according to passed in value, these events are
* valid for DCE11:
* - bit 0 - display register updated
* - bit 28 - memory write from any client except from MCIF
* - bit 29 - CG static screen signal is inactive
* In addition, DCE11.1 also needs to set new DCE11.1 specific events
* that are used to trigger invalidation on certain register changes,
* for example enabling of Alpha Compression may trigger invalidation of
* FBC once bit is set. These events are as follows:
* - Bit 2 - FBC_GRPH_COMP_EN register updated
* - Bit 3 - FBC_SRC_SEL register updated
* - Bit 4 - FBC_MIN_COMPRESSION register updated
* - Bit 5 - FBC_ALPHA_COMP_EN register updated
* - Bit 6 - FBC_ZERO_ALPHA_CHUNK_SKIP_EN register updated
* - Bit 7 - FBC_FORCE_COPY_TO_COMP_BUF register updated
*/
addr = mmFBC_IDLE_FORCE_CLEAR_MASK;
value = dm_read_reg(compressor->ctx, addr);
set_reg_field_value(
value,
fbc_trigger,
FBC_IDLE_FORCE_CLEAR_MASK,
FBC_IDLE_FORCE_CLEAR_MASK);
dm_write_reg(compressor->ctx, addr, value);
}
struct compressor *dce110_compressor_create(struct dc_context *ctx)
{
struct dce110_compressor *cp110 =
kzalloc(sizeof(struct dce110_compressor), GFP_KERNEL);
if (!cp110)
return NULL;
dce110_compressor_construct(cp110, ctx);
return &cp110->base;
}
void dce110_compressor_destroy(struct compressor **compressor)
{
kfree(TO_DCE110_COMPRESSOR(*compressor));
*compressor = NULL;
}
void get_max_support_fbc_buffersize(unsigned int *max_x, unsigned int *max_y)
{
*max_x = FBC_MAX_X;
*max_y = FBC_MAX_Y;
/* if (m_smallLocalFrameBufferMemory == 1)
* {
* *max_x = FBC_MAX_X_SG;
* *max_y = FBC_MAX_Y_SG;
* }
*/
}
static const struct compressor_funcs dce110_compressor_funcs = {
.power_up_fbc = dce110_compressor_power_up_fbc,
.enable_fbc = dce110_compressor_enable_fbc,
.disable_fbc = dce110_compressor_disable_fbc,
.set_fbc_invalidation_triggers = dce110_compressor_set_fbc_invalidation_triggers,
.surface_address_and_pitch = dce110_compressor_program_compressed_surface_address_and_pitch,
.is_fbc_enabled_in_hw = dce110_compressor_is_fbc_enabled_in_hw
};
void dce110_compressor_construct(struct dce110_compressor *compressor,
struct dc_context *ctx)
{
compressor->base.options.raw = 0;
compressor->base.options.bits.FBC_SUPPORT = true;
/* for dce 11 always use one dram channel for lpt */
compressor->base.lpt_channels_num = 1;
compressor->base.options.bits.DUMMY_BACKEND = false;
/*
* check if this system has more than 1 dram channel; if only 1 then lpt
* should not be supported
*/
compressor->base.options.bits.CLK_GATING_DISABLED = false;
compressor->base.ctx = ctx;
compressor->base.embedded_panel_h_size = 0;
compressor->base.embedded_panel_v_size = 0;
compressor->base.memory_bus_width = ctx->asic_id.vram_width;
compressor->base.allocated_size = 0;
compressor->base.preferred_requested_size = 0;
compressor->base.min_compress_ratio = FBC_COMPRESS_RATIO_INVALID;
compressor->base.banks_num = 0;
compressor->base.raw_size = 0;
compressor->base.channel_interleave_size = 0;
compressor->base.dram_channels_num = 0;
compressor->base.lpt_channels_num = 0;
compressor->base.attached_inst = CONTROLLER_ID_UNDEFINED;
compressor->base.is_enabled = false;
compressor->base.funcs = &dce110_compressor_funcs;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dce110/dce110_compressor.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
/* include DCE11 register header files */
#include "dce/dce_11_0_d.h"
#include "dce/dce_11_0_sh_mask.h"
#include "dc_types.h"
#include "dc_bios_types.h"
#include "dc.h"
#include "include/grph_object_id.h"
#include "include/logger_interface.h"
#include "dce110_timing_generator.h"
#include "timing_generator.h"
#define NUMBER_OF_FRAME_TO_WAIT_ON_TRIGGERED_RESET 10
#define MAX_H_TOTAL (CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1)
#define MAX_V_TOTAL (CRTC_V_TOTAL__CRTC_V_TOTAL_MASKhw + 1)
#define CRTC_REG(reg) (reg + tg110->offsets.crtc)
#define DCP_REG(reg) (reg + tg110->offsets.dcp)
/* Flowing register offsets are same in files of
* dce/dce_11_0_d.h
* dce/vi_polaris10_p/vi_polaris10_d.h
*
* So we can create dce110 timing generator to use it.
*/
/*
* apply_front_porch_workaround
*
* This is a workaround for a bug that has existed since R5xx and has not been
* fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
*/
static void dce110_timing_generator_apply_front_porch_workaround(
struct timing_generator *tg,
struct dc_crtc_timing *timing)
{
if (timing->flags.INTERLACE == 1) {
if (timing->v_front_porch < 2)
timing->v_front_porch = 2;
} else {
if (timing->v_front_porch < 1)
timing->v_front_porch = 1;
}
}
/*
*****************************************************************************
* Function: is_in_vertical_blank
*
* @brief
* check the current status of CRTC to check if we are in Vertical Blank
* regioneased" state
*
* @return
* true if currently in blank region, false otherwise
*
*****************************************************************************
*/
static bool dce110_timing_generator_is_in_vertical_blank(
struct timing_generator *tg)
{
uint32_t addr = 0;
uint32_t value = 0;
uint32_t field = 0;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
addr = CRTC_REG(mmCRTC_STATUS);
value = dm_read_reg(tg->ctx, addr);
field = get_reg_field_value(value, CRTC_STATUS, CRTC_V_BLANK);
return field == 1;
}
void dce110_timing_generator_set_early_control(
struct timing_generator *tg,
uint32_t early_cntl)
{
uint32_t regval;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t address = CRTC_REG(mmCRTC_CONTROL);
regval = dm_read_reg(tg->ctx, address);
set_reg_field_value(regval, early_cntl,
CRTC_CONTROL, CRTC_HBLANK_EARLY_CONTROL);
dm_write_reg(tg->ctx, address, regval);
}
/*
* Enable CRTC
* Enable CRTC - call ASIC Control Object to enable Timing generator.
*/
bool dce110_timing_generator_enable_crtc(struct timing_generator *tg)
{
enum bp_result result;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value = 0;
/*
* 3 is used to make sure V_UPDATE occurs at the beginning of the first
* line of vertical front porch
*/
set_reg_field_value(
value,
0,
CRTC_MASTER_UPDATE_MODE,
MASTER_UPDATE_MODE);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE), value);
/* TODO: may want this on to catch underflow */
value = 0;
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_LOCK), value);
result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, true);
return result == BP_RESULT_OK;
}
void dce110_timing_generator_program_blank_color(
struct timing_generator *tg,
const struct tg_color *black_color)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t addr = CRTC_REG(mmCRTC_BLACK_COLOR);
uint32_t value = dm_read_reg(tg->ctx, addr);
set_reg_field_value(
value,
black_color->color_b_cb,
CRTC_BLACK_COLOR,
CRTC_BLACK_COLOR_B_CB);
set_reg_field_value(
value,
black_color->color_g_y,
CRTC_BLACK_COLOR,
CRTC_BLACK_COLOR_G_Y);
set_reg_field_value(
value,
black_color->color_r_cr,
CRTC_BLACK_COLOR,
CRTC_BLACK_COLOR_R_CR);
dm_write_reg(tg->ctx, addr, value);
}
/*
*****************************************************************************
* Function: disable_stereo
*
* @brief
* Disables active stereo on controller
* Frame Packing need to be disabled in vBlank or when CRTC not running
*****************************************************************************
*/
#if 0
@TODOSTEREO
static void disable_stereo(struct timing_generator *tg)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t addr = CRTC_REG(mmCRTC_3D_STRUCTURE_CONTROL);
uint32_t value = 0;
uint32_t test = 0;
uint32_t field = 0;
uint32_t struc_en = 0;
uint32_t struc_stereo_sel_ovr = 0;
value = dm_read_reg(tg->ctx, addr);
struc_en = get_reg_field_value(
value,
CRTC_3D_STRUCTURE_CONTROL,
CRTC_3D_STRUCTURE_EN);
struc_stereo_sel_ovr = get_reg_field_value(
value,
CRTC_3D_STRUCTURE_CONTROL,
CRTC_3D_STRUCTURE_STEREO_SEL_OVR);
/*
* When disabling Frame Packing in 2 step mode, we need to program both
* registers at the same frame
* Programming it in the beginning of VActive makes sure we are ok
*/
if (struc_en != 0 && struc_stereo_sel_ovr == 0) {
tg->funcs->wait_for_vblank(tg);
tg->funcs->wait_for_vactive(tg);
}
value = 0;
dm_write_reg(tg->ctx, addr, value);
addr = tg->regs[IDX_CRTC_STEREO_CONTROL];
dm_write_reg(tg->ctx, addr, value);
}
#endif
/*
* disable_crtc - call ASIC Control Object to disable Timing generator.
*/
bool dce110_timing_generator_disable_crtc(struct timing_generator *tg)
{
enum bp_result result;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, false);
/* Need to make sure stereo is disabled according to the DCE5.0 spec */
/*
* @TODOSTEREO call this when adding stereo support
* tg->funcs->disable_stereo(tg);
*/
return result == BP_RESULT_OK;
}
/*
* program_horz_count_by_2
* Programs DxCRTC_HORZ_COUNT_BY2_EN - 1 for DVI 30bpp mode, 0 otherwise
*/
static void program_horz_count_by_2(
struct timing_generator *tg,
const struct dc_crtc_timing *timing)
{
uint32_t regval;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
regval = dm_read_reg(tg->ctx,
CRTC_REG(mmCRTC_COUNT_CONTROL));
set_reg_field_value(regval, 0, CRTC_COUNT_CONTROL,
CRTC_HORZ_COUNT_BY2_EN);
if (timing->flags.HORZ_COUNT_BY_TWO)
set_reg_field_value(regval, 1, CRTC_COUNT_CONTROL,
CRTC_HORZ_COUNT_BY2_EN);
dm_write_reg(tg->ctx,
CRTC_REG(mmCRTC_COUNT_CONTROL), regval);
}
/*
* program_timing_generator
* Program CRTC Timing Registers - DxCRTC_H_*, DxCRTC_V_*, Pixel repetition.
* Call ASIC Control Object to program Timings.
*/
bool dce110_timing_generator_program_timing_generator(
struct timing_generator *tg,
const struct dc_crtc_timing *dc_crtc_timing)
{
enum bp_result result;
struct bp_hw_crtc_timing_parameters bp_params;
struct dc_crtc_timing patched_crtc_timing;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t vsync_offset = dc_crtc_timing->v_border_bottom +
dc_crtc_timing->v_front_porch;
uint32_t v_sync_start = dc_crtc_timing->v_addressable + vsync_offset;
uint32_t hsync_offset = dc_crtc_timing->h_border_right +
dc_crtc_timing->h_front_porch;
uint32_t h_sync_start = dc_crtc_timing->h_addressable + hsync_offset;
memset(&bp_params, 0, sizeof(struct bp_hw_crtc_timing_parameters));
/* Due to an asic bug we need to apply the Front Porch workaround prior
* to programming the timing.
*/
patched_crtc_timing = *dc_crtc_timing;
dce110_timing_generator_apply_front_porch_workaround(tg, &patched_crtc_timing);
bp_params.controller_id = tg110->controller_id;
bp_params.h_total = patched_crtc_timing.h_total;
bp_params.h_addressable =
patched_crtc_timing.h_addressable;
bp_params.v_total = patched_crtc_timing.v_total;
bp_params.v_addressable = patched_crtc_timing.v_addressable;
bp_params.h_sync_start = h_sync_start;
bp_params.h_sync_width = patched_crtc_timing.h_sync_width;
bp_params.v_sync_start = v_sync_start;
bp_params.v_sync_width = patched_crtc_timing.v_sync_width;
/* Set overscan */
bp_params.h_overscan_left =
patched_crtc_timing.h_border_left;
bp_params.h_overscan_right =
patched_crtc_timing.h_border_right;
bp_params.v_overscan_top = patched_crtc_timing.v_border_top;
bp_params.v_overscan_bottom =
patched_crtc_timing.v_border_bottom;
/* Set flags */
if (patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY == 1)
bp_params.flags.HSYNC_POSITIVE_POLARITY = 1;
if (patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY == 1)
bp_params.flags.VSYNC_POSITIVE_POLARITY = 1;
if (patched_crtc_timing.flags.INTERLACE == 1)
bp_params.flags.INTERLACE = 1;
if (patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1)
bp_params.flags.HORZ_COUNT_BY_TWO = 1;
result = tg->bp->funcs->program_crtc_timing(tg->bp, &bp_params);
program_horz_count_by_2(tg, &patched_crtc_timing);
tg110->base.funcs->enable_advanced_request(tg, true, &patched_crtc_timing);
/* Enable stereo - only when we need to pack 3D frame. Other types
* of stereo handled in explicit call */
return result == BP_RESULT_OK;
}
/*
*****************************************************************************
* Function: set_drr
*
* @brief
* Program dynamic refresh rate registers m_DxCRTC_V_TOTAL_*.
*
* @param [in] pHwCrtcTiming: point to H
* wCrtcTiming struct
*****************************************************************************
*/
void dce110_timing_generator_set_drr(
struct timing_generator *tg,
const struct drr_params *params)
{
/* register values */
uint32_t v_total_min = 0;
uint32_t v_total_max = 0;
uint32_t v_total_cntl = 0;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t addr = 0;
addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
v_total_min = dm_read_reg(tg->ctx, addr);
addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
v_total_max = dm_read_reg(tg->ctx, addr);
addr = CRTC_REG(mmCRTC_V_TOTAL_CONTROL);
v_total_cntl = dm_read_reg(tg->ctx, addr);
if (params != NULL &&
params->vertical_total_max > 0 &&
params->vertical_total_min > 0) {
set_reg_field_value(v_total_max,
params->vertical_total_max - 1,
CRTC_V_TOTAL_MAX,
CRTC_V_TOTAL_MAX);
set_reg_field_value(v_total_min,
params->vertical_total_min - 1,
CRTC_V_TOTAL_MIN,
CRTC_V_TOTAL_MIN);
set_reg_field_value(v_total_cntl,
1,
CRTC_V_TOTAL_CONTROL,
CRTC_V_TOTAL_MIN_SEL);
set_reg_field_value(v_total_cntl,
1,
CRTC_V_TOTAL_CONTROL,
CRTC_V_TOTAL_MAX_SEL);
set_reg_field_value(v_total_cntl,
0,
CRTC_V_TOTAL_CONTROL,
CRTC_FORCE_LOCK_ON_EVENT);
set_reg_field_value(v_total_cntl,
0,
CRTC_V_TOTAL_CONTROL,
CRTC_FORCE_LOCK_TO_MASTER_VSYNC);
set_reg_field_value(v_total_cntl,
0,
CRTC_V_TOTAL_CONTROL,
CRTC_SET_V_TOTAL_MIN_MASK_EN);
set_reg_field_value(v_total_cntl,
0,
CRTC_V_TOTAL_CONTROL,
CRTC_SET_V_TOTAL_MIN_MASK);
} else {
set_reg_field_value(v_total_cntl,
0,
CRTC_V_TOTAL_CONTROL,
CRTC_SET_V_TOTAL_MIN_MASK);
set_reg_field_value(v_total_cntl,
0,
CRTC_V_TOTAL_CONTROL,
CRTC_V_TOTAL_MIN_SEL);
set_reg_field_value(v_total_cntl,
0,
CRTC_V_TOTAL_CONTROL,
CRTC_V_TOTAL_MAX_SEL);
set_reg_field_value(v_total_min,
0,
CRTC_V_TOTAL_MIN,
CRTC_V_TOTAL_MIN);
set_reg_field_value(v_total_max,
0,
CRTC_V_TOTAL_MAX,
CRTC_V_TOTAL_MAX);
set_reg_field_value(v_total_cntl,
0,
CRTC_V_TOTAL_CONTROL,
CRTC_FORCE_LOCK_ON_EVENT);
set_reg_field_value(v_total_cntl,
0,
CRTC_V_TOTAL_CONTROL,
CRTC_FORCE_LOCK_TO_MASTER_VSYNC);
}
addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
dm_write_reg(tg->ctx, addr, v_total_min);
addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
dm_write_reg(tg->ctx, addr, v_total_max);
addr = CRTC_REG(mmCRTC_V_TOTAL_CONTROL);
dm_write_reg(tg->ctx, addr, v_total_cntl);
}
void dce110_timing_generator_set_static_screen_control(
struct timing_generator *tg,
uint32_t event_triggers,
uint32_t num_frames)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t static_screen_cntl = 0;
uint32_t addr = 0;
// By register spec, it only takes 8 bit value
if (num_frames > 0xFF)
num_frames = 0xFF;
addr = CRTC_REG(mmCRTC_STATIC_SCREEN_CONTROL);
static_screen_cntl = dm_read_reg(tg->ctx, addr);
set_reg_field_value(static_screen_cntl,
event_triggers,
CRTC_STATIC_SCREEN_CONTROL,
CRTC_STATIC_SCREEN_EVENT_MASK);
set_reg_field_value(static_screen_cntl,
num_frames,
CRTC_STATIC_SCREEN_CONTROL,
CRTC_STATIC_SCREEN_FRAME_COUNT);
dm_write_reg(tg->ctx, addr, static_screen_cntl);
}
/*
* get_vblank_counter
*
* @brief
* Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
* holds the counter of frames.
*
* @param
* struct timing_generator *tg - [in] timing generator which controls the
* desired CRTC
*
* @return
* Counter of frames, which should equal to number of vblanks.
*/
uint32_t dce110_timing_generator_get_vblank_counter(struct timing_generator *tg)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t addr = CRTC_REG(mmCRTC_STATUS_FRAME_COUNT);
uint32_t value = dm_read_reg(tg->ctx, addr);
uint32_t field = get_reg_field_value(
value, CRTC_STATUS_FRAME_COUNT, CRTC_FRAME_COUNT);
return field;
}
/*
*****************************************************************************
* Function: dce110_timing_generator_get_position
*
* @brief
* Returns CRTC vertical/horizontal counters
*
* @param [out] position
*****************************************************************************
*/
void dce110_timing_generator_get_position(struct timing_generator *tg,
struct crtc_position *position)
{
uint32_t value;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_STATUS_POSITION));
position->horizontal_count = get_reg_field_value(
value,
CRTC_STATUS_POSITION,
CRTC_HORZ_COUNT);
position->vertical_count = get_reg_field_value(
value,
CRTC_STATUS_POSITION,
CRTC_VERT_COUNT);
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_NOM_VERT_POSITION));
position->nominal_vcount = get_reg_field_value(
value,
CRTC_NOM_VERT_POSITION,
CRTC_VERT_COUNT_NOM);
}
/*
*****************************************************************************
* Function: get_crtc_scanoutpos
*
* @brief
* Returns CRTC vertical/horizontal counters
*
* @param [out] vpos, hpos
*****************************************************************************
*/
void dce110_timing_generator_get_crtc_scanoutpos(
struct timing_generator *tg,
uint32_t *v_blank_start,
uint32_t *v_blank_end,
uint32_t *h_position,
uint32_t *v_position)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
struct crtc_position position;
uint32_t value = dm_read_reg(tg->ctx,
CRTC_REG(mmCRTC_V_BLANK_START_END));
*v_blank_start = get_reg_field_value(value,
CRTC_V_BLANK_START_END,
CRTC_V_BLANK_START);
*v_blank_end = get_reg_field_value(value,
CRTC_V_BLANK_START_END,
CRTC_V_BLANK_END);
dce110_timing_generator_get_position(
tg, &position);
*h_position = position.horizontal_count;
*v_position = position.vertical_count;
}
/* TODO: is it safe to assume that mask/shift of Primary and Underlay
* are the same?
* For example: today CRTC_H_TOTAL == CRTCV_H_TOTAL but is it always
* guaranteed? */
void dce110_timing_generator_program_blanking(
struct timing_generator *tg,
const struct dc_crtc_timing *timing)
{
uint32_t vsync_offset = timing->v_border_bottom +
timing->v_front_porch;
uint32_t v_sync_start = timing->v_addressable + vsync_offset;
uint32_t hsync_offset = timing->h_border_right +
timing->h_front_porch;
uint32_t h_sync_start = timing->h_addressable + hsync_offset;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
struct dc_context *ctx = tg->ctx;
uint32_t value = 0;
uint32_t addr = 0;
uint32_t tmp = 0;
addr = CRTC_REG(mmCRTC_H_TOTAL);
value = dm_read_reg(ctx, addr);
set_reg_field_value(
value,
timing->h_total - 1,
CRTC_H_TOTAL,
CRTC_H_TOTAL);
dm_write_reg(ctx, addr, value);
addr = CRTC_REG(mmCRTC_V_TOTAL);
value = dm_read_reg(ctx, addr);
set_reg_field_value(
value,
timing->v_total - 1,
CRTC_V_TOTAL,
CRTC_V_TOTAL);
dm_write_reg(ctx, addr, value);
/* In case of V_TOTAL_CONTROL is on, make sure V_TOTAL_MAX and
* V_TOTAL_MIN are equal to V_TOTAL.
*/
addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
value = dm_read_reg(ctx, addr);
set_reg_field_value(
value,
timing->v_total - 1,
CRTC_V_TOTAL_MAX,
CRTC_V_TOTAL_MAX);
dm_write_reg(ctx, addr, value);
addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
value = dm_read_reg(ctx, addr);
set_reg_field_value(
value,
timing->v_total - 1,
CRTC_V_TOTAL_MIN,
CRTC_V_TOTAL_MIN);
dm_write_reg(ctx, addr, value);
addr = CRTC_REG(mmCRTC_H_BLANK_START_END);
value = dm_read_reg(ctx, addr);
tmp = timing->h_total -
(h_sync_start + timing->h_border_left);
set_reg_field_value(
value,
tmp,
CRTC_H_BLANK_START_END,
CRTC_H_BLANK_END);
tmp = tmp + timing->h_addressable +
timing->h_border_left + timing->h_border_right;
set_reg_field_value(
value,
tmp,
CRTC_H_BLANK_START_END,
CRTC_H_BLANK_START);
dm_write_reg(ctx, addr, value);
addr = CRTC_REG(mmCRTC_V_BLANK_START_END);
value = dm_read_reg(ctx, addr);
tmp = timing->v_total - (v_sync_start + timing->v_border_top);
set_reg_field_value(
value,
tmp,
CRTC_V_BLANK_START_END,
CRTC_V_BLANK_END);
tmp = tmp + timing->v_addressable + timing->v_border_top +
timing->v_border_bottom;
set_reg_field_value(
value,
tmp,
CRTC_V_BLANK_START_END,
CRTC_V_BLANK_START);
dm_write_reg(ctx, addr, value);
}
void dce110_timing_generator_set_test_pattern(
struct timing_generator *tg,
/* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
* because this is not DP-specific (which is probably somewhere in DP
* encoder) */
enum controller_dp_test_pattern test_pattern,
enum dc_color_depth color_depth)
{
struct dc_context *ctx = tg->ctx;
uint32_t value;
uint32_t addr;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
enum test_pattern_color_format bit_depth;
enum test_pattern_dyn_range dyn_range;
enum test_pattern_mode mode;
/* color ramp generator mixes 16-bits color */
uint32_t src_bpc = 16;
/* requested bpc */
uint32_t dst_bpc;
uint32_t index;
/* RGB values of the color bars.
* Produce two RGB colors: RGB0 - white (all Fs)
* and RGB1 - black (all 0s)
* (three RGB components for two colors)
*/
uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
0x0000, 0x0000};
/* dest color (converted to the specified color format) */
uint16_t dst_color[6];
uint32_t inc_base;
/* translate to bit depth */
switch (color_depth) {
case COLOR_DEPTH_666:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
break;
case COLOR_DEPTH_888:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
break;
case COLOR_DEPTH_101010:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
break;
case COLOR_DEPTH_121212:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
break;
default:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
break;
}
switch (test_pattern) {
case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
{
dyn_range = (test_pattern ==
CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
TEST_PATTERN_DYN_RANGE_CEA :
TEST_PATTERN_DYN_RANGE_VESA);
mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
value = 0;
addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
set_reg_field_value(
value,
6,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_VRES);
set_reg_field_value(
value,
6,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_HRES);
dm_write_reg(ctx, addr, value);
addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
value = 0;
set_reg_field_value(
value,
1,
CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_EN);
set_reg_field_value(
value,
mode,
CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_MODE);
set_reg_field_value(
value,
dyn_range,
CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_DYNAMIC_RANGE);
set_reg_field_value(
value,
bit_depth,
CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_COLOR_FORMAT);
dm_write_reg(ctx, addr, value);
}
break;
case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
{
mode = (test_pattern ==
CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
TEST_PATTERN_MODE_VERTICALBARS :
TEST_PATTERN_MODE_HORIZONTALBARS);
switch (bit_depth) {
case TEST_PATTERN_COLOR_FORMAT_BPC_6:
dst_bpc = 6;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_8:
dst_bpc = 8;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_10:
dst_bpc = 10;
break;
default:
dst_bpc = 8;
break;
}
/* adjust color to the required colorFormat */
for (index = 0; index < 6; index++) {
/* dst = 2^dstBpc * src / 2^srcBpc = src >>
* (srcBpc - dstBpc);
*/
dst_color[index] =
src_color[index] >> (src_bpc - dst_bpc);
/* CRTC_TEST_PATTERN_DATA has 16 bits,
* lowest 6 are hardwired to ZERO
* color bits should be left aligned aligned to MSB
* XXXXXXXXXX000000 for 10 bit,
* XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
*/
dst_color[index] <<= (16 - dst_bpc);
}
value = 0;
addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
dm_write_reg(ctx, addr, value);
/* We have to write the mask before data, similar to pipeline.
* For example, for 8 bpc, if we want RGB0 to be magenta,
* and RGB1 to be cyan,
* we need to make 7 writes:
* MASK DATA
* 000001 00000000 00000000 set mask to R0
* 000010 11111111 00000000 R0 255, 0xFF00, set mask to G0
* 000100 00000000 00000000 G0 0, 0x0000, set mask to B0
* 001000 11111111 00000000 B0 255, 0xFF00, set mask to R1
* 010000 00000000 00000000 R1 0, 0x0000, set mask to G1
* 100000 11111111 00000000 G1 255, 0xFF00, set mask to B1
* 100000 11111111 00000000 B1 255, 0xFF00
*
* we will make a loop of 6 in which we prepare the mask,
* then write, then prepare the color for next write.
* first iteration will write mask only,
* but each next iteration color prepared in
* previous iteration will be written within new mask,
* the last component will written separately,
* mask is not changing between 6th and 7th write
* and color will be prepared by last iteration
*/
/* write color, color values mask in CRTC_TEST_PATTERN_MASK
* is B1, G1, R1, B0, G0, R0
*/
value = 0;
addr = CRTC_REG(mmCRTC_TEST_PATTERN_COLOR);
for (index = 0; index < 6; index++) {
/* prepare color mask, first write PATTERN_DATA
* will have all zeros
*/
set_reg_field_value(
value,
(1 << index),
CRTC_TEST_PATTERN_COLOR,
CRTC_TEST_PATTERN_MASK);
/* write color component */
dm_write_reg(ctx, addr, value);
/* prepare next color component,
* will be written in the next iteration
*/
set_reg_field_value(
value,
dst_color[index],
CRTC_TEST_PATTERN_COLOR,
CRTC_TEST_PATTERN_DATA);
}
/* write last color component,
* it's been already prepared in the loop
*/
dm_write_reg(ctx, addr, value);
/* enable test pattern */
addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
value = 0;
set_reg_field_value(
value,
1,
CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_EN);
set_reg_field_value(
value,
mode,
CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_MODE);
set_reg_field_value(
value,
0,
CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_DYNAMIC_RANGE);
set_reg_field_value(
value,
bit_depth,
CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_COLOR_FORMAT);
dm_write_reg(ctx, addr, value);
}
break;
case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
{
mode = (bit_depth ==
TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
TEST_PATTERN_MODE_DUALRAMP_RGB :
TEST_PATTERN_MODE_SINGLERAMP_RGB);
switch (bit_depth) {
case TEST_PATTERN_COLOR_FORMAT_BPC_6:
dst_bpc = 6;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_8:
dst_bpc = 8;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_10:
dst_bpc = 10;
break;
default:
dst_bpc = 8;
break;
}
/* increment for the first ramp for one color gradation
* 1 gradation for 6-bit color is 2^10
* gradations in 16-bit color
*/
inc_base = (src_bpc - dst_bpc);
value = 0;
addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
switch (bit_depth) {
case TEST_PATTERN_COLOR_FORMAT_BPC_6:
{
set_reg_field_value(
value,
inc_base,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_INC0);
set_reg_field_value(
value,
0,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_INC1);
set_reg_field_value(
value,
6,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_HRES);
set_reg_field_value(
value,
6,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_VRES);
set_reg_field_value(
value,
0,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_RAMP0_OFFSET);
}
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_8:
{
set_reg_field_value(
value,
inc_base,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_INC0);
set_reg_field_value(
value,
0,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_INC1);
set_reg_field_value(
value,
8,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_HRES);
set_reg_field_value(
value,
6,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_VRES);
set_reg_field_value(
value,
0,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_RAMP0_OFFSET);
}
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_10:
{
set_reg_field_value(
value,
inc_base,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_INC0);
set_reg_field_value(
value,
inc_base + 2,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_INC1);
set_reg_field_value(
value,
8,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_HRES);
set_reg_field_value(
value,
5,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_VRES);
set_reg_field_value(
value,
384 << 6,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_RAMP0_OFFSET);
}
break;
default:
break;
}
dm_write_reg(ctx, addr, value);
value = 0;
addr = CRTC_REG(mmCRTC_TEST_PATTERN_COLOR);
dm_write_reg(ctx, addr, value);
/* enable test pattern */
addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
value = 0;
set_reg_field_value(
value,
1,
CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_EN);
set_reg_field_value(
value,
mode,
CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_MODE);
set_reg_field_value(
value,
0,
CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_DYNAMIC_RANGE);
/* add color depth translation here */
set_reg_field_value(
value,
bit_depth,
CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_COLOR_FORMAT);
dm_write_reg(ctx, addr, value);
}
break;
case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
{
value = 0;
dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL), value);
dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_COLOR), value);
dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS),
value);
}
break;
default:
break;
}
}
/*
* dce110_timing_generator_validate_timing
* The timing generators support a maximum display size of is 8192 x 8192 pixels,
* including both active display and blanking periods. Check H Total and V Total.
*/
bool dce110_timing_generator_validate_timing(
struct timing_generator *tg,
const struct dc_crtc_timing *timing,
enum signal_type signal)
{
uint32_t h_blank;
uint32_t h_back_porch, hsync_offset, h_sync_start;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
ASSERT(timing != NULL);
if (!timing)
return false;
hsync_offset = timing->h_border_right + timing->h_front_porch;
h_sync_start = timing->h_addressable + hsync_offset;
/* Currently we don't support 3D, so block all 3D timings */
if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE)
return false;
/* Temporarily blocking interlacing mode until it's supported */
if (timing->flags.INTERLACE == 1)
return false;
/* Check maximum number of pixels supported by Timing Generator
* (Currently will never fail, in order to fail needs display which
* needs more than 8192 horizontal and
* more than 8192 vertical total pixels)
*/
if (timing->h_total > tg110->max_h_total ||
timing->v_total > tg110->max_v_total)
return false;
h_blank = (timing->h_total - timing->h_addressable -
timing->h_border_right -
timing->h_border_left);
if (h_blank < tg110->min_h_blank)
return false;
if (timing->h_front_porch < tg110->min_h_front_porch)
return false;
h_back_porch = h_blank - (h_sync_start -
timing->h_addressable -
timing->h_border_right -
timing->h_sync_width);
if (h_back_porch < tg110->min_h_back_porch)
return false;
return true;
}
/*
* Wait till we are at the beginning of VBlank.
*/
void dce110_timing_generator_wait_for_vblank(struct timing_generator *tg)
{
/* We want to catch beginning of VBlank here, so if the first try are
* in VBlank, we might be very close to Active, in this case wait for
* another frame
*/
while (dce110_timing_generator_is_in_vertical_blank(tg)) {
if (!dce110_timing_generator_is_counter_moving(tg)) {
/* error - no point to wait if counter is not moving */
break;
}
}
while (!dce110_timing_generator_is_in_vertical_blank(tg)) {
if (!dce110_timing_generator_is_counter_moving(tg)) {
/* error - no point to wait if counter is not moving */
break;
}
}
}
/*
* Wait till we are in VActive (anywhere in VActive)
*/
void dce110_timing_generator_wait_for_vactive(struct timing_generator *tg)
{
while (dce110_timing_generator_is_in_vertical_blank(tg)) {
if (!dce110_timing_generator_is_counter_moving(tg)) {
/* error - no point to wait if counter is not moving */
break;
}
}
}
/*
*****************************************************************************
* Function: dce110_timing_generator_setup_global_swap_lock
*
* @brief
* Setups Global Swap Lock group for current pipe
* Pipe can join or leave GSL group, become a TimingServer or TimingClient
*
* @param [in] gsl_params: setup data
*****************************************************************************
*/
void dce110_timing_generator_setup_global_swap_lock(
struct timing_generator *tg,
const struct dcp_gsl_params *gsl_params)
{
uint32_t value;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t address = DCP_REG(mmDCP_GSL_CONTROL);
uint32_t check_point = FLIP_READY_BACK_LOOKUP;
value = dm_read_reg(tg->ctx, address);
/* This pipe will belong to GSL Group zero. */
set_reg_field_value(value,
1,
DCP_GSL_CONTROL,
DCP_GSL0_EN);
set_reg_field_value(value,
gsl_params->gsl_master == tg->inst,
DCP_GSL_CONTROL,
DCP_GSL_MASTER_EN);
set_reg_field_value(value,
HFLIP_READY_DELAY,
DCP_GSL_CONTROL,
DCP_GSL_HSYNC_FLIP_FORCE_DELAY);
/* Keep signal low (pending high) during 6 lines.
* Also defines minimum interval before re-checking signal. */
set_reg_field_value(value,
HFLIP_CHECK_DELAY,
DCP_GSL_CONTROL,
DCP_GSL_HSYNC_FLIP_CHECK_DELAY);
dm_write_reg(tg->ctx, CRTC_REG(mmDCP_GSL_CONTROL), value);
value = 0;
set_reg_field_value(value,
gsl_params->gsl_master,
DCIO_GSL0_CNTL,
DCIO_GSL0_VSYNC_SEL);
set_reg_field_value(value,
0,
DCIO_GSL0_CNTL,
DCIO_GSL0_TIMING_SYNC_SEL);
set_reg_field_value(value,
0,
DCIO_GSL0_CNTL,
DCIO_GSL0_GLOBAL_UNLOCK_SEL);
dm_write_reg(tg->ctx, CRTC_REG(mmDCIO_GSL0_CNTL), value);
{
uint32_t value_crtc_vtotal;
value_crtc_vtotal = dm_read_reg(tg->ctx,
CRTC_REG(mmCRTC_V_TOTAL));
set_reg_field_value(value,
0,/* DCP_GSL_PURPOSE_SURFACE_FLIP */
DCP_GSL_CONTROL,
DCP_GSL_SYNC_SOURCE);
/* Checkpoint relative to end of frame */
check_point = get_reg_field_value(value_crtc_vtotal,
CRTC_V_TOTAL,
CRTC_V_TOTAL);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_GSL_WINDOW), 0);
}
set_reg_field_value(value,
1,
DCP_GSL_CONTROL,
DCP_GSL_DELAY_SURFACE_UPDATE_PENDING);
dm_write_reg(tg->ctx, address, value);
/********************************************************************/
address = CRTC_REG(mmCRTC_GSL_CONTROL);
value = dm_read_reg(tg->ctx, address);
set_reg_field_value(value,
check_point - FLIP_READY_BACK_LOOKUP,
CRTC_GSL_CONTROL,
CRTC_GSL_CHECK_LINE_NUM);
set_reg_field_value(value,
VFLIP_READY_DELAY,
CRTC_GSL_CONTROL,
CRTC_GSL_FORCE_DELAY);
dm_write_reg(tg->ctx, address, value);
}
void dce110_timing_generator_tear_down_global_swap_lock(
struct timing_generator *tg)
{
/* Clear all the register writes done by
* dce110_timing_generator_setup_global_swap_lock
*/
uint32_t value;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t address = DCP_REG(mmDCP_GSL_CONTROL);
value = 0;
/* This pipe will belong to GSL Group zero. */
/* Settig HW default values from reg specs */
set_reg_field_value(value,
0,
DCP_GSL_CONTROL,
DCP_GSL0_EN);
set_reg_field_value(value,
0,
DCP_GSL_CONTROL,
DCP_GSL_MASTER_EN);
set_reg_field_value(value,
0x2,
DCP_GSL_CONTROL,
DCP_GSL_HSYNC_FLIP_FORCE_DELAY);
set_reg_field_value(value,
0x6,
DCP_GSL_CONTROL,
DCP_GSL_HSYNC_FLIP_CHECK_DELAY);
/* Restore DCP_GSL_PURPOSE_SURFACE_FLIP */
{
dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_V_TOTAL));
set_reg_field_value(value,
0,
DCP_GSL_CONTROL,
DCP_GSL_SYNC_SOURCE);
}
set_reg_field_value(value,
0,
DCP_GSL_CONTROL,
DCP_GSL_DELAY_SURFACE_UPDATE_PENDING);
dm_write_reg(tg->ctx, address, value);
/********************************************************************/
address = CRTC_REG(mmCRTC_GSL_CONTROL);
value = 0;
set_reg_field_value(value,
0,
CRTC_GSL_CONTROL,
CRTC_GSL_CHECK_LINE_NUM);
set_reg_field_value(value,
0x2,
CRTC_GSL_CONTROL,
CRTC_GSL_FORCE_DELAY);
dm_write_reg(tg->ctx, address, value);
}
/*
*****************************************************************************
* Function: is_counter_moving
*
* @brief
* check if the timing generator is currently going
*
* @return
* true if currently going, false if currently paused or stopped.
*
*****************************************************************************
*/
bool dce110_timing_generator_is_counter_moving(struct timing_generator *tg)
{
struct crtc_position position1, position2;
tg->funcs->get_position(tg, &position1);
tg->funcs->get_position(tg, &position2);
if (position1.horizontal_count == position2.horizontal_count &&
position1.vertical_count == position2.vertical_count)
return false;
else
return true;
}
void dce110_timing_generator_enable_advanced_request(
struct timing_generator *tg,
bool enable,
const struct dc_crtc_timing *timing)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t addr = CRTC_REG(mmCRTC_START_LINE_CONTROL);
uint32_t value = dm_read_reg(tg->ctx, addr);
if (enable) {
set_reg_field_value(
value,
0,
CRTC_START_LINE_CONTROL,
CRTC_LEGACY_REQUESTOR_EN);
} else {
set_reg_field_value(
value,
1,
CRTC_START_LINE_CONTROL,
CRTC_LEGACY_REQUESTOR_EN);
}
if ((timing->v_sync_width + timing->v_front_porch) <= 3) {
set_reg_field_value(
value,
3,
CRTC_START_LINE_CONTROL,
CRTC_ADVANCED_START_LINE_POSITION);
set_reg_field_value(
value,
0,
CRTC_START_LINE_CONTROL,
CRTC_PREFETCH_EN);
} else {
set_reg_field_value(
value,
4,
CRTC_START_LINE_CONTROL,
CRTC_ADVANCED_START_LINE_POSITION);
set_reg_field_value(
value,
1,
CRTC_START_LINE_CONTROL,
CRTC_PREFETCH_EN);
}
set_reg_field_value(
value,
1,
CRTC_START_LINE_CONTROL,
CRTC_PROGRESSIVE_START_LINE_EARLY);
set_reg_field_value(
value,
1,
CRTC_START_LINE_CONTROL,
CRTC_INTERLACE_START_LINE_EARLY);
dm_write_reg(tg->ctx, addr, value);
}
/*TODO: Figure out if we need this function. */
void dce110_timing_generator_set_lock_master(struct timing_generator *tg,
bool lock)
{
struct dc_context *ctx = tg->ctx;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t addr = CRTC_REG(mmCRTC_MASTER_UPDATE_LOCK);
uint32_t value = dm_read_reg(ctx, addr);
set_reg_field_value(
value,
lock ? 1 : 0,
CRTC_MASTER_UPDATE_LOCK,
MASTER_UPDATE_LOCK);
dm_write_reg(ctx, addr, value);
}
void dce110_timing_generator_enable_reset_trigger(
struct timing_generator *tg,
int source_tg_inst)
{
uint32_t value;
uint32_t rising_edge = 0;
uint32_t falling_edge = 0;
enum trigger_source_select trig_src_select = TRIGGER_SOURCE_SELECT_LOGIC_ZERO;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
/* Setup trigger edge */
{
uint32_t pol_value = dm_read_reg(tg->ctx,
CRTC_REG(mmCRTC_V_SYNC_A_CNTL));
/* Register spec has reversed definition:
* 0 for positive, 1 for negative */
if (get_reg_field_value(pol_value,
CRTC_V_SYNC_A_CNTL,
CRTC_V_SYNC_A_POL) == 0) {
rising_edge = 1;
} else {
falling_edge = 1;
}
}
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
trig_src_select = TRIGGER_SOURCE_SELECT_GSL_GROUP0;
set_reg_field_value(value,
trig_src_select,
CRTC_TRIGB_CNTL,
CRTC_TRIGB_SOURCE_SELECT);
set_reg_field_value(value,
TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
CRTC_TRIGB_CNTL,
CRTC_TRIGB_POLARITY_SELECT);
set_reg_field_value(value,
rising_edge,
CRTC_TRIGB_CNTL,
CRTC_TRIGB_RISING_EDGE_DETECT_CNTL);
set_reg_field_value(value,
falling_edge,
CRTC_TRIGB_CNTL,
CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL);
set_reg_field_value(value,
0, /* send every signal */
CRTC_TRIGB_CNTL,
CRTC_TRIGB_FREQUENCY_SELECT);
set_reg_field_value(value,
0, /* no delay */
CRTC_TRIGB_CNTL,
CRTC_TRIGB_DELAY);
set_reg_field_value(value,
1, /* clear trigger status */
CRTC_TRIGB_CNTL,
CRTC_TRIGB_CLEAR);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
/**************************************************************/
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
set_reg_field_value(value,
2, /* force H count to H_TOTAL and V count to V_TOTAL */
CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_MODE);
set_reg_field_value(value,
1, /* TriggerB - we never use TriggerA */
CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_TRIG_SEL);
set_reg_field_value(value,
1, /* clear trigger status */
CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_CLEAR);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
}
void dce110_timing_generator_enable_crtc_reset(
struct timing_generator *tg,
int source_tg_inst,
struct crtc_trigger_info *crtc_tp)
{
uint32_t value = 0;
uint32_t rising_edge = 0;
uint32_t falling_edge = 0;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
/* Setup trigger edge */
switch (crtc_tp->event) {
case CRTC_EVENT_VSYNC_RISING:
rising_edge = 1;
break;
case CRTC_EVENT_VSYNC_FALLING:
falling_edge = 1;
break;
}
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
set_reg_field_value(value,
source_tg_inst,
CRTC_TRIGB_CNTL,
CRTC_TRIGB_SOURCE_SELECT);
set_reg_field_value(value,
TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
CRTC_TRIGB_CNTL,
CRTC_TRIGB_POLARITY_SELECT);
set_reg_field_value(value,
rising_edge,
CRTC_TRIGB_CNTL,
CRTC_TRIGB_RISING_EDGE_DETECT_CNTL);
set_reg_field_value(value,
falling_edge,
CRTC_TRIGB_CNTL,
CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL);
set_reg_field_value(value,
1, /* clear trigger status */
CRTC_TRIGB_CNTL,
CRTC_TRIGB_CLEAR);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
/**************************************************************/
switch (crtc_tp->delay) {
case TRIGGER_DELAY_NEXT_LINE:
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
set_reg_field_value(value,
0, /* force H count to H_TOTAL and V count to V_TOTAL */
CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_MODE);
set_reg_field_value(value,
0, /* TriggerB - we never use TriggerA */
CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_TRIG_SEL);
set_reg_field_value(value,
1, /* clear trigger status */
CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_CLEAR);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
set_reg_field_value(value,
1,
CRTC_VERT_SYNC_CONTROL,
CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
set_reg_field_value(value,
2,
CRTC_VERT_SYNC_CONTROL,
CRTC_AUTO_FORCE_VSYNC_MODE);
break;
case TRIGGER_DELAY_NEXT_PIXEL:
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
set_reg_field_value(value,
1,
CRTC_VERT_SYNC_CONTROL,
CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
set_reg_field_value(value,
0,
CRTC_VERT_SYNC_CONTROL,
CRTC_AUTO_FORCE_VSYNC_MODE);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL), value);
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
set_reg_field_value(value,
2, /* force H count to H_TOTAL and V count to V_TOTAL */
CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_MODE);
set_reg_field_value(value,
1, /* TriggerB - we never use TriggerA */
CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_TRIG_SEL);
set_reg_field_value(value,
1, /* clear trigger status */
CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_CLEAR);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
break;
}
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE));
set_reg_field_value(value,
2,
CRTC_MASTER_UPDATE_MODE,
MASTER_UPDATE_MODE);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE), value);
}
void dce110_timing_generator_disable_reset_trigger(
struct timing_generator *tg)
{
uint32_t value;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
set_reg_field_value(value,
0, /* force counter now mode is disabled */
CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_MODE);
set_reg_field_value(value,
1, /* clear trigger status */
CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_CLEAR);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
set_reg_field_value(value,
1,
CRTC_VERT_SYNC_CONTROL,
CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
set_reg_field_value(value,
0,
CRTC_VERT_SYNC_CONTROL,
CRTC_AUTO_FORCE_VSYNC_MODE);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL), value);
/********************************************************************/
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
set_reg_field_value(value,
TRIGGER_SOURCE_SELECT_LOGIC_ZERO,
CRTC_TRIGB_CNTL,
CRTC_TRIGB_SOURCE_SELECT);
set_reg_field_value(value,
TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
CRTC_TRIGB_CNTL,
CRTC_TRIGB_POLARITY_SELECT);
set_reg_field_value(value,
1, /* clear trigger status */
CRTC_TRIGB_CNTL,
CRTC_TRIGB_CLEAR);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
}
/*
*****************************************************************************
* @brief
* Checks whether CRTC triggered reset occurred
*
* @return
* true if triggered reset occurred, false otherwise
*****************************************************************************
*/
bool dce110_timing_generator_did_triggered_reset_occur(
struct timing_generator *tg)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value = dm_read_reg(tg->ctx,
CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
uint32_t value1 = dm_read_reg(tg->ctx,
CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
bool force = get_reg_field_value(value,
CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_OCCURRED) != 0;
bool vert_sync = get_reg_field_value(value1,
CRTC_VERT_SYNC_CONTROL,
CRTC_FORCE_VSYNC_NEXT_LINE_OCCURRED) != 0;
return (force || vert_sync);
}
/*
* dce110_timing_generator_disable_vga
* Turn OFF VGA Mode and Timing - DxVGA_CONTROL
* VGA Mode and VGA Timing is used by VBIOS on CRT Monitors;
*/
void dce110_timing_generator_disable_vga(
struct timing_generator *tg)
{
uint32_t addr = 0;
uint32_t value = 0;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
switch (tg110->controller_id) {
case CONTROLLER_ID_D0:
addr = mmD1VGA_CONTROL;
break;
case CONTROLLER_ID_D1:
addr = mmD2VGA_CONTROL;
break;
case CONTROLLER_ID_D2:
addr = mmD3VGA_CONTROL;
break;
case CONTROLLER_ID_D3:
addr = mmD4VGA_CONTROL;
break;
case CONTROLLER_ID_D4:
addr = mmD5VGA_CONTROL;
break;
case CONTROLLER_ID_D5:
addr = mmD6VGA_CONTROL;
break;
default:
break;
}
value = dm_read_reg(tg->ctx, addr);
set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_MODE_ENABLE);
set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_TIMING_SELECT);
set_reg_field_value(
value, 0, D1VGA_CONTROL, D1VGA_SYNC_POLARITY_SELECT);
set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_OVERSCAN_COLOR_EN);
dm_write_reg(tg->ctx, addr, value);
}
/*
* set_overscan_color_black
*
* @param :black_color is one of the color space
* :this routine will set overscan black color according to the color space.
* @return none
*/
void dce110_timing_generator_set_overscan_color_black(
struct timing_generator *tg,
const struct tg_color *color)
{
struct dc_context *ctx = tg->ctx;
uint32_t addr;
uint32_t value = 0;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
set_reg_field_value(
value,
color->color_b_cb,
CRTC_OVERSCAN_COLOR,
CRTC_OVERSCAN_COLOR_BLUE);
set_reg_field_value(
value,
color->color_r_cr,
CRTC_OVERSCAN_COLOR,
CRTC_OVERSCAN_COLOR_RED);
set_reg_field_value(
value,
color->color_g_y,
CRTC_OVERSCAN_COLOR,
CRTC_OVERSCAN_COLOR_GREEN);
addr = CRTC_REG(mmCRTC_OVERSCAN_COLOR);
dm_write_reg(ctx, addr, value);
addr = CRTC_REG(mmCRTC_BLACK_COLOR);
dm_write_reg(ctx, addr, value);
/* This is desirable to have a constant DAC output voltage during the
* blank time that is higher than the 0 volt reference level that the
* DAC outputs when the NBLANK signal
* is asserted low, such as for output to an analog TV. */
addr = CRTC_REG(mmCRTC_BLANK_DATA_COLOR);
dm_write_reg(ctx, addr, value);
/* TO DO we have to program EXT registers and we need to know LB DATA
* format because it is used when more 10 , i.e. 12 bits per color
*
* m_mmDxCRTC_OVERSCAN_COLOR_EXT
* m_mmDxCRTC_BLACK_COLOR_EXT
* m_mmDxCRTC_BLANK_DATA_COLOR_EXT
*/
}
void dce110_tg_program_blank_color(struct timing_generator *tg,
const struct tg_color *black_color)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t addr = CRTC_REG(mmCRTC_BLACK_COLOR);
uint32_t value = dm_read_reg(tg->ctx, addr);
set_reg_field_value(
value,
black_color->color_b_cb,
CRTC_BLACK_COLOR,
CRTC_BLACK_COLOR_B_CB);
set_reg_field_value(
value,
black_color->color_g_y,
CRTC_BLACK_COLOR,
CRTC_BLACK_COLOR_G_Y);
set_reg_field_value(
value,
black_color->color_r_cr,
CRTC_BLACK_COLOR,
CRTC_BLACK_COLOR_R_CR);
dm_write_reg(tg->ctx, addr, value);
addr = CRTC_REG(mmCRTC_BLANK_DATA_COLOR);
dm_write_reg(tg->ctx, addr, value);
}
void dce110_tg_set_overscan_color(struct timing_generator *tg,
const struct tg_color *overscan_color)
{
struct dc_context *ctx = tg->ctx;
uint32_t value = 0;
uint32_t addr;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
set_reg_field_value(
value,
overscan_color->color_b_cb,
CRTC_OVERSCAN_COLOR,
CRTC_OVERSCAN_COLOR_BLUE);
set_reg_field_value(
value,
overscan_color->color_g_y,
CRTC_OVERSCAN_COLOR,
CRTC_OVERSCAN_COLOR_GREEN);
set_reg_field_value(
value,
overscan_color->color_r_cr,
CRTC_OVERSCAN_COLOR,
CRTC_OVERSCAN_COLOR_RED);
addr = CRTC_REG(mmCRTC_OVERSCAN_COLOR);
dm_write_reg(ctx, addr, value);
}
void dce110_tg_program_timing(struct timing_generator *tg,
const struct dc_crtc_timing *timing,
int vready_offset,
int vstartup_start,
int vupdate_offset,
int vupdate_width,
const enum signal_type signal,
bool use_vbios)
{
if (use_vbios)
dce110_timing_generator_program_timing_generator(tg, timing);
else
dce110_timing_generator_program_blanking(tg, timing);
}
bool dce110_tg_is_blanked(struct timing_generator *tg)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL));
if (get_reg_field_value(
value,
CRTC_BLANK_CONTROL,
CRTC_BLANK_DATA_EN) == 1 &&
get_reg_field_value(
value,
CRTC_BLANK_CONTROL,
CRTC_CURRENT_BLANK_STATE) == 1)
return true;
return false;
}
void dce110_tg_set_blank(struct timing_generator *tg,
bool enable_blanking)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value = 0;
set_reg_field_value(
value,
1,
CRTC_DOUBLE_BUFFER_CONTROL,
CRTC_BLANK_DATA_DOUBLE_BUFFER_EN);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_DOUBLE_BUFFER_CONTROL), value);
value = 0;
if (enable_blanking) {
set_reg_field_value(
value,
1,
CRTC_BLANK_CONTROL,
CRTC_BLANK_DATA_EN);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL), value);
} else
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL), 0);
}
bool dce110_tg_validate_timing(struct timing_generator *tg,
const struct dc_crtc_timing *timing)
{
return dce110_timing_generator_validate_timing(tg, timing, SIGNAL_TYPE_NONE);
}
void dce110_tg_wait_for_state(struct timing_generator *tg,
enum crtc_state state)
{
switch (state) {
case CRTC_STATE_VBLANK:
dce110_timing_generator_wait_for_vblank(tg);
break;
case CRTC_STATE_VACTIVE:
dce110_timing_generator_wait_for_vactive(tg);
break;
default:
break;
}
}
void dce110_tg_set_colors(struct timing_generator *tg,
const struct tg_color *blank_color,
const struct tg_color *overscan_color)
{
if (blank_color != NULL)
dce110_tg_program_blank_color(tg, blank_color);
if (overscan_color != NULL)
dce110_tg_set_overscan_color(tg, overscan_color);
}
/* Gets first line of blank region of the display timing for CRTC
* and programms is as a trigger to fire vertical interrupt
*/
bool dce110_arm_vert_intr(struct timing_generator *tg, uint8_t width)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t v_blank_start = 0;
uint32_t v_blank_end = 0;
uint32_t val = 0;
uint32_t h_position, v_position;
tg->funcs->get_scanoutpos(
tg,
&v_blank_start,
&v_blank_end,
&h_position,
&v_position);
if (v_blank_start == 0 || v_blank_end == 0)
return false;
set_reg_field_value(
val,
v_blank_start,
CRTC_VERTICAL_INTERRUPT0_POSITION,
CRTC_VERTICAL_INTERRUPT0_LINE_START);
/* Set interval width for interrupt to fire to 1 scanline */
set_reg_field_value(
val,
v_blank_start + width,
CRTC_VERTICAL_INTERRUPT0_POSITION,
CRTC_VERTICAL_INTERRUPT0_LINE_END);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERTICAL_INTERRUPT0_POSITION), val);
return true;
}
static bool dce110_is_tg_enabled(struct timing_generator *tg)
{
uint32_t addr = 0;
uint32_t value = 0;
uint32_t field = 0;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
addr = CRTC_REG(mmCRTC_CONTROL);
value = dm_read_reg(tg->ctx, addr);
field = get_reg_field_value(value, CRTC_CONTROL,
CRTC_CURRENT_MASTER_EN_STATE);
return field == 1;
}
bool dce110_configure_crc(struct timing_generator *tg,
const struct crc_params *params)
{
uint32_t cntl_addr = 0;
uint32_t addr = 0;
uint32_t value;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
/* Cannot configure crc on a CRTC that is disabled */
if (!dce110_is_tg_enabled(tg))
return false;
cntl_addr = CRTC_REG(mmCRTC_CRC_CNTL);
/* First, disable CRC before we configure it. */
dm_write_reg(tg->ctx, cntl_addr, 0);
if (!params->enable)
return true;
/* Program frame boundaries */
/* Window A x axis start and end. */
value = 0;
addr = CRTC_REG(mmCRTC_CRC0_WINDOWA_X_CONTROL);
set_reg_field_value(value, params->windowa_x_start,
CRTC_CRC0_WINDOWA_X_CONTROL,
CRTC_CRC0_WINDOWA_X_START);
set_reg_field_value(value, params->windowa_x_end,
CRTC_CRC0_WINDOWA_X_CONTROL,
CRTC_CRC0_WINDOWA_X_END);
dm_write_reg(tg->ctx, addr, value);
/* Window A y axis start and end. */
value = 0;
addr = CRTC_REG(mmCRTC_CRC0_WINDOWA_Y_CONTROL);
set_reg_field_value(value, params->windowa_y_start,
CRTC_CRC0_WINDOWA_Y_CONTROL,
CRTC_CRC0_WINDOWA_Y_START);
set_reg_field_value(value, params->windowa_y_end,
CRTC_CRC0_WINDOWA_Y_CONTROL,
CRTC_CRC0_WINDOWA_Y_END);
dm_write_reg(tg->ctx, addr, value);
/* Window B x axis start and end. */
value = 0;
addr = CRTC_REG(mmCRTC_CRC0_WINDOWB_X_CONTROL);
set_reg_field_value(value, params->windowb_x_start,
CRTC_CRC0_WINDOWB_X_CONTROL,
CRTC_CRC0_WINDOWB_X_START);
set_reg_field_value(value, params->windowb_x_end,
CRTC_CRC0_WINDOWB_X_CONTROL,
CRTC_CRC0_WINDOWB_X_END);
dm_write_reg(tg->ctx, addr, value);
/* Window B y axis start and end. */
value = 0;
addr = CRTC_REG(mmCRTC_CRC0_WINDOWB_Y_CONTROL);
set_reg_field_value(value, params->windowb_y_start,
CRTC_CRC0_WINDOWB_Y_CONTROL,
CRTC_CRC0_WINDOWB_Y_START);
set_reg_field_value(value, params->windowb_y_end,
CRTC_CRC0_WINDOWB_Y_CONTROL,
CRTC_CRC0_WINDOWB_Y_END);
dm_write_reg(tg->ctx, addr, value);
/* Set crc mode and selection, and enable. Only using CRC0*/
value = 0;
set_reg_field_value(value, params->continuous_mode ? 1 : 0,
CRTC_CRC_CNTL, CRTC_CRC_CONT_EN);
set_reg_field_value(value, params->selection,
CRTC_CRC_CNTL, CRTC_CRC0_SELECT);
set_reg_field_value(value, 1, CRTC_CRC_CNTL, CRTC_CRC_EN);
dm_write_reg(tg->ctx, cntl_addr, value);
return true;
}
bool dce110_get_crc(struct timing_generator *tg,
uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
{
uint32_t addr = 0;
uint32_t value = 0;
uint32_t field = 0;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
addr = CRTC_REG(mmCRTC_CRC_CNTL);
value = dm_read_reg(tg->ctx, addr);
field = get_reg_field_value(value, CRTC_CRC_CNTL, CRTC_CRC_EN);
/* Early return if CRC is not enabled for this CRTC */
if (!field)
return false;
addr = CRTC_REG(mmCRTC_CRC0_DATA_RG);
value = dm_read_reg(tg->ctx, addr);
*r_cr = get_reg_field_value(value, CRTC_CRC0_DATA_RG, CRC0_R_CR);
*g_y = get_reg_field_value(value, CRTC_CRC0_DATA_RG, CRC0_G_Y);
addr = CRTC_REG(mmCRTC_CRC0_DATA_B);
value = dm_read_reg(tg->ctx, addr);
*b_cb = get_reg_field_value(value, CRTC_CRC0_DATA_B, CRC0_B_CB);
return true;
}
static const struct timing_generator_funcs dce110_tg_funcs = {
.validate_timing = dce110_tg_validate_timing,
.program_timing = dce110_tg_program_timing,
.enable_crtc = dce110_timing_generator_enable_crtc,
.disable_crtc = dce110_timing_generator_disable_crtc,
.is_counter_moving = dce110_timing_generator_is_counter_moving,
.get_position = dce110_timing_generator_get_position,
.get_frame_count = dce110_timing_generator_get_vblank_counter,
.get_scanoutpos = dce110_timing_generator_get_crtc_scanoutpos,
.set_early_control = dce110_timing_generator_set_early_control,
.wait_for_state = dce110_tg_wait_for_state,
.set_blank = dce110_tg_set_blank,
.is_blanked = dce110_tg_is_blanked,
.set_colors = dce110_tg_set_colors,
.set_overscan_blank_color =
dce110_timing_generator_set_overscan_color_black,
.set_blank_color = dce110_timing_generator_program_blank_color,
.disable_vga = dce110_timing_generator_disable_vga,
.did_triggered_reset_occur =
dce110_timing_generator_did_triggered_reset_occur,
.setup_global_swap_lock =
dce110_timing_generator_setup_global_swap_lock,
.enable_reset_trigger = dce110_timing_generator_enable_reset_trigger,
.enable_crtc_reset = dce110_timing_generator_enable_crtc_reset,
.disable_reset_trigger = dce110_timing_generator_disable_reset_trigger,
.tear_down_global_swap_lock =
dce110_timing_generator_tear_down_global_swap_lock,
.enable_advanced_request =
dce110_timing_generator_enable_advanced_request,
.set_drr =
dce110_timing_generator_set_drr,
.get_last_used_drr_vtotal = NULL,
.set_static_screen_control =
dce110_timing_generator_set_static_screen_control,
.set_test_pattern = dce110_timing_generator_set_test_pattern,
.arm_vert_intr = dce110_arm_vert_intr,
.is_tg_enabled = dce110_is_tg_enabled,
.configure_crc = dce110_configure_crc,
.get_crc = dce110_get_crc,
};
void dce110_timing_generator_construct(
struct dce110_timing_generator *tg110,
struct dc_context *ctx,
uint32_t instance,
const struct dce110_timing_generator_offsets *offsets)
{
tg110->controller_id = CONTROLLER_ID_D0 + instance;
tg110->base.inst = instance;
tg110->offsets = *offsets;
tg110->base.funcs = &dce110_tg_funcs;
tg110->base.ctx = ctx;
tg110->base.bp = ctx->dc_bios;
tg110->max_h_total = CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1;
tg110->max_v_total = CRTC_V_TOTAL__CRTC_V_TOTAL_MASK + 1;
tg110->min_h_blank = 56;
tg110->min_h_front_porch = 4;
tg110->min_h_back_porch = 4;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dce110/dce110_timing_generator.c |
/*
* Copyright 2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "dm_services.h"
/* include DCE11 register header files */
#include "dce/dce_11_0_d.h"
#include "dce/dce_11_0_sh_mask.h"
#include "dc_types.h"
#include "dc_bios_types.h"
#include "dc.h"
#include "include/grph_object_id.h"
#include "include/logger_interface.h"
#include "dce110_timing_generator.h"
#include "dce110_timing_generator_v.h"
#include "timing_generator.h"
#define DC_LOGGER \
tg->ctx->logger
/** ********************************************************************************
*
* DCE11 Timing Generator Implementation
*
**********************************************************************************/
/*
* Enable CRTCV
*/
static bool dce110_timing_generator_v_enable_crtc(struct timing_generator *tg)
{
/*
* Set MASTER_UPDATE_MODE to 0
* This is needed for DRR, and also suggested to be default value by Syed.
*/
uint32_t value;
value = 0;
set_reg_field_value(value, 0,
CRTCV_MASTER_UPDATE_MODE, MASTER_UPDATE_MODE);
dm_write_reg(tg->ctx,
mmCRTCV_MASTER_UPDATE_MODE, value);
/* TODO: may want this on for looking for underflow */
value = 0;
dm_write_reg(tg->ctx, mmCRTCV_MASTER_UPDATE_MODE, value);
value = 0;
set_reg_field_value(value, 1,
CRTCV_MASTER_EN, CRTC_MASTER_EN);
dm_write_reg(tg->ctx,
mmCRTCV_MASTER_EN, value);
return true;
}
static bool dce110_timing_generator_v_disable_crtc(struct timing_generator *tg)
{
uint32_t value;
value = dm_read_reg(tg->ctx,
mmCRTCV_CONTROL);
set_reg_field_value(value, 0,
CRTCV_CONTROL, CRTC_DISABLE_POINT_CNTL);
set_reg_field_value(value, 0,
CRTCV_CONTROL, CRTC_MASTER_EN);
dm_write_reg(tg->ctx,
mmCRTCV_CONTROL, value);
/*
* TODO: call this when adding stereo support
* tg->funcs->disable_stereo(tg);
*/
return true;
}
static void dce110_timing_generator_v_blank_crtc(struct timing_generator *tg)
{
uint32_t addr = mmCRTCV_BLANK_CONTROL;
uint32_t value = dm_read_reg(tg->ctx, addr);
set_reg_field_value(
value,
1,
CRTCV_BLANK_CONTROL,
CRTC_BLANK_DATA_EN);
set_reg_field_value(
value,
0,
CRTCV_BLANK_CONTROL,
CRTC_BLANK_DE_MODE);
dm_write_reg(tg->ctx, addr, value);
}
static void dce110_timing_generator_v_unblank_crtc(struct timing_generator *tg)
{
uint32_t addr = mmCRTCV_BLANK_CONTROL;
uint32_t value = dm_read_reg(tg->ctx, addr);
set_reg_field_value(
value,
0,
CRTCV_BLANK_CONTROL,
CRTC_BLANK_DATA_EN);
set_reg_field_value(
value,
0,
CRTCV_BLANK_CONTROL,
CRTC_BLANK_DE_MODE);
dm_write_reg(tg->ctx, addr, value);
}
static bool dce110_timing_generator_v_is_in_vertical_blank(
struct timing_generator *tg)
{
uint32_t addr = 0;
uint32_t value = 0;
uint32_t field = 0;
addr = mmCRTCV_STATUS;
value = dm_read_reg(tg->ctx, addr);
field = get_reg_field_value(value, CRTCV_STATUS, CRTC_V_BLANK);
return field == 1;
}
static bool dce110_timing_generator_v_is_counter_moving(struct timing_generator *tg)
{
uint32_t value;
uint32_t h1 = 0;
uint32_t h2 = 0;
uint32_t v1 = 0;
uint32_t v2 = 0;
value = dm_read_reg(tg->ctx, mmCRTCV_STATUS_POSITION);
h1 = get_reg_field_value(
value,
CRTCV_STATUS_POSITION,
CRTC_HORZ_COUNT);
v1 = get_reg_field_value(
value,
CRTCV_STATUS_POSITION,
CRTC_VERT_COUNT);
value = dm_read_reg(tg->ctx, mmCRTCV_STATUS_POSITION);
h2 = get_reg_field_value(
value,
CRTCV_STATUS_POSITION,
CRTC_HORZ_COUNT);
v2 = get_reg_field_value(
value,
CRTCV_STATUS_POSITION,
CRTC_VERT_COUNT);
if (h1 == h2 && v1 == v2)
return false;
else
return true;
}
static void dce110_timing_generator_v_wait_for_vblank(struct timing_generator *tg)
{
/* We want to catch beginning of VBlank here, so if the first try are
* in VBlank, we might be very close to Active, in this case wait for
* another frame
*/
while (dce110_timing_generator_v_is_in_vertical_blank(tg)) {
if (!dce110_timing_generator_v_is_counter_moving(tg)) {
/* error - no point to wait if counter is not moving */
break;
}
}
while (!dce110_timing_generator_v_is_in_vertical_blank(tg)) {
if (!dce110_timing_generator_v_is_counter_moving(tg)) {
/* error - no point to wait if counter is not moving */
break;
}
}
}
/*
* Wait till we are in VActive (anywhere in VActive)
*/
static void dce110_timing_generator_v_wait_for_vactive(struct timing_generator *tg)
{
while (dce110_timing_generator_v_is_in_vertical_blank(tg)) {
if (!dce110_timing_generator_v_is_counter_moving(tg)) {
/* error - no point to wait if counter is not moving */
break;
}
}
}
static void dce110_timing_generator_v_wait_for_state(struct timing_generator *tg,
enum crtc_state state)
{
switch (state) {
case CRTC_STATE_VBLANK:
dce110_timing_generator_v_wait_for_vblank(tg);
break;
case CRTC_STATE_VACTIVE:
dce110_timing_generator_v_wait_for_vactive(tg);
break;
default:
break;
}
}
static void dce110_timing_generator_v_program_blanking(
struct timing_generator *tg,
const struct dc_crtc_timing *timing)
{
uint32_t vsync_offset = timing->v_border_bottom +
timing->v_front_porch;
uint32_t v_sync_start = timing->v_addressable + vsync_offset;
uint32_t hsync_offset = timing->h_border_right +
timing->h_front_porch;
uint32_t h_sync_start = timing->h_addressable + hsync_offset;
struct dc_context *ctx = tg->ctx;
uint32_t value = 0;
uint32_t addr = 0;
uint32_t tmp = 0;
addr = mmCRTCV_H_TOTAL;
value = dm_read_reg(ctx, addr);
set_reg_field_value(
value,
timing->h_total - 1,
CRTCV_H_TOTAL,
CRTC_H_TOTAL);
dm_write_reg(ctx, addr, value);
addr = mmCRTCV_V_TOTAL;
value = dm_read_reg(ctx, addr);
set_reg_field_value(
value,
timing->v_total - 1,
CRTCV_V_TOTAL,
CRTC_V_TOTAL);
dm_write_reg(ctx, addr, value);
addr = mmCRTCV_H_BLANK_START_END;
value = dm_read_reg(ctx, addr);
tmp = timing->h_total -
(h_sync_start + timing->h_border_left);
set_reg_field_value(
value,
tmp,
CRTCV_H_BLANK_START_END,
CRTC_H_BLANK_END);
tmp = tmp + timing->h_addressable +
timing->h_border_left + timing->h_border_right;
set_reg_field_value(
value,
tmp,
CRTCV_H_BLANK_START_END,
CRTC_H_BLANK_START);
dm_write_reg(ctx, addr, value);
addr = mmCRTCV_V_BLANK_START_END;
value = dm_read_reg(ctx, addr);
tmp = timing->v_total - (v_sync_start + timing->v_border_top);
set_reg_field_value(
value,
tmp,
CRTCV_V_BLANK_START_END,
CRTC_V_BLANK_END);
tmp = tmp + timing->v_addressable + timing->v_border_top +
timing->v_border_bottom;
set_reg_field_value(
value,
tmp,
CRTCV_V_BLANK_START_END,
CRTC_V_BLANK_START);
dm_write_reg(ctx, addr, value);
addr = mmCRTCV_H_SYNC_A;
value = 0;
set_reg_field_value(
value,
timing->h_sync_width,
CRTCV_H_SYNC_A,
CRTC_H_SYNC_A_END);
dm_write_reg(ctx, addr, value);
addr = mmCRTCV_H_SYNC_A_CNTL;
value = dm_read_reg(ctx, addr);
if (timing->flags.HSYNC_POSITIVE_POLARITY) {
set_reg_field_value(
value,
0,
CRTCV_H_SYNC_A_CNTL,
CRTC_H_SYNC_A_POL);
} else {
set_reg_field_value(
value,
1,
CRTCV_H_SYNC_A_CNTL,
CRTC_H_SYNC_A_POL);
}
dm_write_reg(ctx, addr, value);
addr = mmCRTCV_V_SYNC_A;
value = 0;
set_reg_field_value(
value,
timing->v_sync_width,
CRTCV_V_SYNC_A,
CRTC_V_SYNC_A_END);
dm_write_reg(ctx, addr, value);
addr = mmCRTCV_V_SYNC_A_CNTL;
value = dm_read_reg(ctx, addr);
if (timing->flags.VSYNC_POSITIVE_POLARITY) {
set_reg_field_value(
value,
0,
CRTCV_V_SYNC_A_CNTL,
CRTC_V_SYNC_A_POL);
} else {
set_reg_field_value(
value,
1,
CRTCV_V_SYNC_A_CNTL,
CRTC_V_SYNC_A_POL);
}
dm_write_reg(ctx, addr, value);
addr = mmCRTCV_INTERLACE_CONTROL;
value = dm_read_reg(ctx, addr);
set_reg_field_value(
value,
timing->flags.INTERLACE,
CRTCV_INTERLACE_CONTROL,
CRTC_INTERLACE_ENABLE);
dm_write_reg(ctx, addr, value);
}
static void dce110_timing_generator_v_enable_advanced_request(
struct timing_generator *tg,
bool enable,
const struct dc_crtc_timing *timing)
{
uint32_t addr = mmCRTCV_START_LINE_CONTROL;
uint32_t value = dm_read_reg(tg->ctx, addr);
if (enable) {
if ((timing->v_sync_width + timing->v_front_porch) <= 3) {
set_reg_field_value(
value,
3,
CRTCV_START_LINE_CONTROL,
CRTC_ADVANCED_START_LINE_POSITION);
} else {
set_reg_field_value(
value,
4,
CRTCV_START_LINE_CONTROL,
CRTC_ADVANCED_START_LINE_POSITION);
}
set_reg_field_value(
value,
0,
CRTCV_START_LINE_CONTROL,
CRTC_LEGACY_REQUESTOR_EN);
} else {
set_reg_field_value(
value,
2,
CRTCV_START_LINE_CONTROL,
CRTC_ADVANCED_START_LINE_POSITION);
set_reg_field_value(
value,
1,
CRTCV_START_LINE_CONTROL,
CRTC_LEGACY_REQUESTOR_EN);
}
dm_write_reg(tg->ctx, addr, value);
}
static void dce110_timing_generator_v_set_blank(struct timing_generator *tg,
bool enable_blanking)
{
if (enable_blanking)
dce110_timing_generator_v_blank_crtc(tg);
else
dce110_timing_generator_v_unblank_crtc(tg);
}
static void dce110_timing_generator_v_program_timing(struct timing_generator *tg,
const struct dc_crtc_timing *timing,
int vready_offset,
int vstartup_start,
int vupdate_offset,
int vupdate_width,
const enum signal_type signal,
bool use_vbios)
{
if (use_vbios)
dce110_timing_generator_program_timing_generator(tg, timing);
else
dce110_timing_generator_v_program_blanking(tg, timing);
}
static void dce110_timing_generator_v_program_blank_color(
struct timing_generator *tg,
const struct tg_color *black_color)
{
uint32_t addr = mmCRTCV_BLACK_COLOR;
uint32_t value = dm_read_reg(tg->ctx, addr);
set_reg_field_value(
value,
black_color->color_b_cb,
CRTCV_BLACK_COLOR,
CRTC_BLACK_COLOR_B_CB);
set_reg_field_value(
value,
black_color->color_g_y,
CRTCV_BLACK_COLOR,
CRTC_BLACK_COLOR_G_Y);
set_reg_field_value(
value,
black_color->color_r_cr,
CRTCV_BLACK_COLOR,
CRTC_BLACK_COLOR_R_CR);
dm_write_reg(tg->ctx, addr, value);
}
static void dce110_timing_generator_v_set_overscan_color_black(
struct timing_generator *tg,
const struct tg_color *color)
{
struct dc_context *ctx = tg->ctx;
uint32_t addr;
uint32_t value = 0;
set_reg_field_value(
value,
color->color_b_cb,
CRTC_OVERSCAN_COLOR,
CRTC_OVERSCAN_COLOR_BLUE);
set_reg_field_value(
value,
color->color_r_cr,
CRTC_OVERSCAN_COLOR,
CRTC_OVERSCAN_COLOR_RED);
set_reg_field_value(
value,
color->color_g_y,
CRTC_OVERSCAN_COLOR,
CRTC_OVERSCAN_COLOR_GREEN);
addr = mmCRTCV_OVERSCAN_COLOR;
dm_write_reg(ctx, addr, value);
addr = mmCRTCV_BLACK_COLOR;
dm_write_reg(ctx, addr, value);
/* This is desirable to have a constant DAC output voltage during the
* blank time that is higher than the 0 volt reference level that the
* DAC outputs when the NBLANK signal
* is asserted low, such as for output to an analog TV. */
addr = mmCRTCV_BLANK_DATA_COLOR;
dm_write_reg(ctx, addr, value);
/* TO DO we have to program EXT registers and we need to know LB DATA
* format because it is used when more 10 , i.e. 12 bits per color
*
* m_mmDxCRTC_OVERSCAN_COLOR_EXT
* m_mmDxCRTC_BLACK_COLOR_EXT
* m_mmDxCRTC_BLANK_DATA_COLOR_EXT
*/
}
static void dce110_tg_v_program_blank_color(struct timing_generator *tg,
const struct tg_color *black_color)
{
uint32_t addr = mmCRTCV_BLACK_COLOR;
uint32_t value = dm_read_reg(tg->ctx, addr);
set_reg_field_value(
value,
black_color->color_b_cb,
CRTCV_BLACK_COLOR,
CRTC_BLACK_COLOR_B_CB);
set_reg_field_value(
value,
black_color->color_g_y,
CRTCV_BLACK_COLOR,
CRTC_BLACK_COLOR_G_Y);
set_reg_field_value(
value,
black_color->color_r_cr,
CRTCV_BLACK_COLOR,
CRTC_BLACK_COLOR_R_CR);
dm_write_reg(tg->ctx, addr, value);
addr = mmCRTCV_BLANK_DATA_COLOR;
dm_write_reg(tg->ctx, addr, value);
}
static void dce110_timing_generator_v_set_overscan_color(struct timing_generator *tg,
const struct tg_color *overscan_color)
{
struct dc_context *ctx = tg->ctx;
uint32_t value = 0;
uint32_t addr;
set_reg_field_value(
value,
overscan_color->color_b_cb,
CRTCV_OVERSCAN_COLOR,
CRTC_OVERSCAN_COLOR_BLUE);
set_reg_field_value(
value,
overscan_color->color_g_y,
CRTCV_OVERSCAN_COLOR,
CRTC_OVERSCAN_COLOR_GREEN);
set_reg_field_value(
value,
overscan_color->color_r_cr,
CRTCV_OVERSCAN_COLOR,
CRTC_OVERSCAN_COLOR_RED);
addr = mmCRTCV_OVERSCAN_COLOR;
dm_write_reg(ctx, addr, value);
}
static void dce110_timing_generator_v_set_colors(struct timing_generator *tg,
const struct tg_color *blank_color,
const struct tg_color *overscan_color)
{
if (blank_color != NULL)
dce110_tg_v_program_blank_color(tg, blank_color);
if (overscan_color != NULL)
dce110_timing_generator_v_set_overscan_color(tg, overscan_color);
}
static void dce110_timing_generator_v_set_early_control(
struct timing_generator *tg,
uint32_t early_cntl)
{
uint32_t regval;
uint32_t address = mmCRTC_CONTROL;
regval = dm_read_reg(tg->ctx, address);
set_reg_field_value(regval, early_cntl,
CRTCV_CONTROL, CRTC_HBLANK_EARLY_CONTROL);
dm_write_reg(tg->ctx, address, regval);
}
static uint32_t dce110_timing_generator_v_get_vblank_counter(struct timing_generator *tg)
{
uint32_t addr = mmCRTCV_STATUS_FRAME_COUNT;
uint32_t value = dm_read_reg(tg->ctx, addr);
uint32_t field = get_reg_field_value(
value, CRTCV_STATUS_FRAME_COUNT, CRTC_FRAME_COUNT);
return field;
}
static bool dce110_timing_generator_v_did_triggered_reset_occur(
struct timing_generator *tg)
{
DC_LOG_ERROR("Timing Sync not supported on underlay pipe\n");
return false;
}
static void dce110_timing_generator_v_setup_global_swap_lock(
struct timing_generator *tg,
const struct dcp_gsl_params *gsl_params)
{
DC_LOG_ERROR("Timing Sync not supported on underlay pipe\n");
return;
}
static void dce110_timing_generator_v_enable_reset_trigger(
struct timing_generator *tg,
int source_tg_inst)
{
DC_LOG_ERROR("Timing Sync not supported on underlay pipe\n");
return;
}
static void dce110_timing_generator_v_disable_reset_trigger(
struct timing_generator *tg)
{
DC_LOG_ERROR("Timing Sync not supported on underlay pipe\n");
return;
}
static void dce110_timing_generator_v_tear_down_global_swap_lock(
struct timing_generator *tg)
{
DC_LOG_ERROR("Timing Sync not supported on underlay pipe\n");
return;
}
static void dce110_timing_generator_v_disable_vga(
struct timing_generator *tg)
{
return;
}
/** ********************************************************************************************
*
* DCE11 Timing Generator Constructor / Destructor
*
*********************************************************************************************/
static const struct timing_generator_funcs dce110_tg_v_funcs = {
.validate_timing = dce110_tg_validate_timing,
.program_timing = dce110_timing_generator_v_program_timing,
.enable_crtc = dce110_timing_generator_v_enable_crtc,
.disable_crtc = dce110_timing_generator_v_disable_crtc,
.is_counter_moving = dce110_timing_generator_v_is_counter_moving,
.get_position = NULL, /* Not to be implemented for underlay*/
.get_frame_count = dce110_timing_generator_v_get_vblank_counter,
.set_early_control = dce110_timing_generator_v_set_early_control,
.wait_for_state = dce110_timing_generator_v_wait_for_state,
.set_blank = dce110_timing_generator_v_set_blank,
.set_colors = dce110_timing_generator_v_set_colors,
.set_overscan_blank_color =
dce110_timing_generator_v_set_overscan_color_black,
.set_blank_color = dce110_timing_generator_v_program_blank_color,
.disable_vga = dce110_timing_generator_v_disable_vga,
.did_triggered_reset_occur =
dce110_timing_generator_v_did_triggered_reset_occur,
.setup_global_swap_lock =
dce110_timing_generator_v_setup_global_swap_lock,
.enable_reset_trigger = dce110_timing_generator_v_enable_reset_trigger,
.disable_reset_trigger = dce110_timing_generator_v_disable_reset_trigger,
.tear_down_global_swap_lock =
dce110_timing_generator_v_tear_down_global_swap_lock,
.enable_advanced_request =
dce110_timing_generator_v_enable_advanced_request
};
void dce110_timing_generator_v_construct(
struct dce110_timing_generator *tg110,
struct dc_context *ctx)
{
tg110->controller_id = CONTROLLER_ID_UNDERLAY0;
tg110->base.funcs = &dce110_tg_v_funcs;
tg110->base.ctx = ctx;
tg110->base.bp = ctx->dc_bios;
tg110->max_h_total = CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1;
tg110->max_v_total = CRTC_V_TOTAL__CRTC_V_TOTAL_MASK + 1;
tg110->min_h_blank = 56;
tg110->min_h_front_porch = 4;
tg110->min_h_back_porch = 4;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dce110/dce110_timing_generator_v.c |
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dc.h"
#include "dc_bios_types.h"
#include "core_types.h"
#include "core_status.h"
#include "resource.h"
#include "dm_helpers.h"
#include "dce110_timing_generator.h"
#include "dce/dce_hwseq.h"
#include "gpio_service_interface.h"
#include "dce110_compressor.h"
#include "bios/bios_parser_helper.h"
#include "timing_generator.h"
#include "mem_input.h"
#include "opp.h"
#include "ipp.h"
#include "transform.h"
#include "stream_encoder.h"
#include "link_encoder.h"
#include "link_enc_cfg.h"
#include "link_hwss.h"
#include "link.h"
#include "dccg.h"
#include "clock_source.h"
#include "clk_mgr.h"
#include "abm.h"
#include "audio.h"
#include "reg_helper.h"
#include "panel_cntl.h"
#include "dpcd_defs.h"
/* include DCE11 register header files */
#include "dce/dce_11_0_d.h"
#include "dce/dce_11_0_sh_mask.h"
#include "custom_float.h"
#include "atomfirmware.h"
#include "dcn10/dcn10_hw_sequencer.h"
#include "dce110_hw_sequencer.h"
#define GAMMA_HW_POINTS_NUM 256
/*
* All values are in milliseconds;
* For eDP, after power-up/power/down,
* 300/500 msec max. delay from LCDVCC to black video generation
*/
#define PANEL_POWER_UP_TIMEOUT 300
#define PANEL_POWER_DOWN_TIMEOUT 500
#define HPD_CHECK_INTERVAL 10
#define OLED_POST_T7_DELAY 100
#define OLED_PRE_T11_DELAY 150
#define CTX \
hws->ctx
#define DC_LOGGER_INIT()
#define REG(reg)\
hws->regs->reg
#undef FN
#define FN(reg_name, field_name) \
hws->shifts->field_name, hws->masks->field_name
struct dce110_hw_seq_reg_offsets {
uint32_t crtc;
};
static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
{
.crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
},
{
.crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
},
{
.crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
},
{
.crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
}
};
#define HW_REG_BLND(reg, id)\
(reg + reg_offsets[id].blnd)
#define HW_REG_CRTC(reg, id)\
(reg + reg_offsets[id].crtc)
#define MAX_WATERMARK 0xFFFF
#define SAFE_NBP_MARK 0x7FFF
/*******************************************************************************
* Private definitions
******************************************************************************/
/***************************PIPE_CONTROL***********************************/
static void dce110_init_pte(struct dc_context *ctx)
{
uint32_t addr;
uint32_t value = 0;
uint32_t chunk_int = 0;
uint32_t chunk_mul = 0;
addr = mmUNP_DVMM_PTE_CONTROL;
value = dm_read_reg(ctx, addr);
set_reg_field_value(
value,
0,
DVMM_PTE_CONTROL,
DVMM_USE_SINGLE_PTE);
set_reg_field_value(
value,
1,
DVMM_PTE_CONTROL,
DVMM_PTE_BUFFER_MODE0);
set_reg_field_value(
value,
1,
DVMM_PTE_CONTROL,
DVMM_PTE_BUFFER_MODE1);
dm_write_reg(ctx, addr, value);
addr = mmDVMM_PTE_REQ;
value = dm_read_reg(ctx, addr);
chunk_int = get_reg_field_value(
value,
DVMM_PTE_REQ,
HFLIP_PTEREQ_PER_CHUNK_INT);
chunk_mul = get_reg_field_value(
value,
DVMM_PTE_REQ,
HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
if (chunk_int != 0x4 || chunk_mul != 0x4) {
set_reg_field_value(
value,
255,
DVMM_PTE_REQ,
MAX_PTEREQ_TO_ISSUE);
set_reg_field_value(
value,
4,
DVMM_PTE_REQ,
HFLIP_PTEREQ_PER_CHUNK_INT);
set_reg_field_value(
value,
4,
DVMM_PTE_REQ,
HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
dm_write_reg(ctx, addr, value);
}
}
/**************************************************************************/
static void enable_display_pipe_clock_gating(
struct dc_context *ctx,
bool clock_gating)
{
/*TODO*/
}
static bool dce110_enable_display_power_gating(
struct dc *dc,
uint8_t controller_id,
struct dc_bios *dcb,
enum pipe_gating_control power_gating)
{
enum bp_result bp_result = BP_RESULT_OK;
enum bp_pipe_control_action cntl;
struct dc_context *ctx = dc->ctx;
unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
if (power_gating == PIPE_GATING_CONTROL_INIT)
cntl = ASIC_PIPE_INIT;
else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
cntl = ASIC_PIPE_ENABLE;
else
cntl = ASIC_PIPE_DISABLE;
if (controller_id == underlay_idx)
controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0) {
bp_result = dcb->funcs->enable_disp_power_gating(
dcb, controller_id + 1, cntl);
/* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
* by default when command table is called
*
* Bios parser accepts controller_id = 6 as indicative of
* underlay pipe in dce110. But we do not support more
* than 3.
*/
if (controller_id < CONTROLLER_ID_MAX - 1)
dm_write_reg(ctx,
HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
0);
}
if (power_gating != PIPE_GATING_CONTROL_ENABLE)
dce110_init_pte(ctx);
if (bp_result == BP_RESULT_OK)
return true;
else
return false;
}
static void build_prescale_params(struct ipp_prescale_params *prescale_params,
const struct dc_plane_state *plane_state)
{
prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
switch (plane_state->format) {
case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
prescale_params->scale = 0x2082;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
prescale_params->scale = 0x2020;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
prescale_params->scale = 0x2008;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
prescale_params->scale = 0x2000;
break;
default:
ASSERT(false);
break;
}
}
static bool
dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
const struct dc_plane_state *plane_state)
{
struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
const struct dc_transfer_func *tf = NULL;
struct ipp_prescale_params prescale_params = { 0 };
bool result = true;
if (ipp == NULL)
return false;
if (plane_state->in_transfer_func)
tf = plane_state->in_transfer_func;
build_prescale_params(&prescale_params, plane_state);
ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
if (plane_state->gamma_correction &&
!plane_state->gamma_correction->is_identity &&
dce_use_lut(plane_state->format))
ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
if (tf == NULL) {
/* Default case if no input transfer function specified */
ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
} else if (tf->type == TF_TYPE_PREDEFINED) {
switch (tf->tf) {
case TRANSFER_FUNCTION_SRGB:
ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
break;
case TRANSFER_FUNCTION_BT709:
ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
break;
case TRANSFER_FUNCTION_LINEAR:
ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
break;
case TRANSFER_FUNCTION_PQ:
default:
result = false;
break;
}
} else if (tf->type == TF_TYPE_BYPASS) {
ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
} else {
/*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
result = false;
}
return result;
}
static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
struct curve_points *arr_points,
uint32_t hw_points_num)
{
struct custom_float_format fmt;
struct pwl_result_data *rgb = rgb_resulted;
uint32_t i = 0;
fmt.exponenta_bits = 6;
fmt.mantissa_bits = 12;
fmt.sign = true;
if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
&arr_points[0].custom_float_x)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
&arr_points[0].custom_float_offset)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
&arr_points[0].custom_float_slope)) {
BREAK_TO_DEBUGGER();
return false;
}
fmt.mantissa_bits = 10;
fmt.sign = false;
if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
&arr_points[1].custom_float_x)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
&arr_points[1].custom_float_y)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
&arr_points[1].custom_float_slope)) {
BREAK_TO_DEBUGGER();
return false;
}
fmt.mantissa_bits = 12;
fmt.sign = true;
while (i != hw_points_num) {
if (!convert_to_custom_float_format(rgb->red, &fmt,
&rgb->red_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(rgb->green, &fmt,
&rgb->green_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(rgb->blue, &fmt,
&rgb->blue_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
&rgb->delta_red_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
&rgb->delta_green_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
&rgb->delta_blue_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
++rgb;
++i;
}
return true;
}
#define MAX_LOW_POINT 25
#define NUMBER_REGIONS 16
#define NUMBER_SW_SEGMENTS 16
static bool
dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
struct pwl_params *regamma_params)
{
struct curve_points *arr_points;
struct pwl_result_data *rgb_resulted;
struct pwl_result_data *rgb;
struct pwl_result_data *rgb_plus_1;
struct fixed31_32 y_r;
struct fixed31_32 y_g;
struct fixed31_32 y_b;
struct fixed31_32 y1_min;
struct fixed31_32 y3_max;
int32_t region_start, region_end;
uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
return false;
arr_points = regamma_params->arr_points;
rgb_resulted = regamma_params->rgb_resulted;
hw_points = 0;
memset(regamma_params, 0, sizeof(struct pwl_params));
if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
/* 16 segments
* segments are from 2^-11 to 2^5
*/
region_start = -11;
region_end = region_start + NUMBER_REGIONS;
for (i = 0; i < NUMBER_REGIONS; i++)
seg_distr[i] = 4;
} else {
/* 10 segments
* segment is from 2^-10 to 2^1
* We include an extra segment for range [2^0, 2^1). This is to
* ensure that colors with normalized values of 1 don't miss the
* LUT.
*/
region_start = -10;
region_end = 1;
seg_distr[0] = 4;
seg_distr[1] = 4;
seg_distr[2] = 4;
seg_distr[3] = 4;
seg_distr[4] = 4;
seg_distr[5] = 4;
seg_distr[6] = 4;
seg_distr[7] = 4;
seg_distr[8] = 4;
seg_distr[9] = 4;
seg_distr[10] = 0;
seg_distr[11] = -1;
seg_distr[12] = -1;
seg_distr[13] = -1;
seg_distr[14] = -1;
seg_distr[15] = -1;
}
for (k = 0; k < 16; k++) {
if (seg_distr[k] != -1)
hw_points += (1 << seg_distr[k]);
}
j = 0;
for (k = 0; k < (region_end - region_start); k++) {
increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
start_index = (region_start + k + MAX_LOW_POINT) *
NUMBER_SW_SEGMENTS;
for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
i += increment) {
if (j == hw_points - 1)
break;
rgb_resulted[j].red = output_tf->tf_pts.red[i];
rgb_resulted[j].green = output_tf->tf_pts.green[i];
rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
j++;
}
}
/* last point */
start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
dc_fixpt_from_int(region_start));
arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
dc_fixpt_from_int(region_end));
y_r = rgb_resulted[0].red;
y_g = rgb_resulted[0].green;
y_b = rgb_resulted[0].blue;
y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
arr_points[0].y = y1_min;
arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
arr_points[0].x);
y_r = rgb_resulted[hw_points - 1].red;
y_g = rgb_resulted[hw_points - 1].green;
y_b = rgb_resulted[hw_points - 1].blue;
/* see comment above, m_arrPoints[1].y should be the Y value for the
* region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
*/
y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
arr_points[1].y = y3_max;
arr_points[1].slope = dc_fixpt_zero;
if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
/* for PQ, we want to have a straight line from last HW X point,
* and the slope to be such that we hit 1.0 at 10000 nits.
*/
const struct fixed31_32 end_value = dc_fixpt_from_int(125);
arr_points[1].slope = dc_fixpt_div(
dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
dc_fixpt_sub(end_value, arr_points[1].x));
}
regamma_params->hw_points_num = hw_points;
k = 0;
for (i = 1; i < 16; i++) {
if (seg_distr[k] != -1) {
regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
regamma_params->arr_curve_points[i].offset =
regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
}
k++;
}
if (seg_distr[k] != -1)
regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
rgb = rgb_resulted;
rgb_plus_1 = rgb_resulted + 1;
i = 1;
while (i != hw_points + 1) {
if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
rgb_plus_1->red = rgb->red;
if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
rgb_plus_1->green = rgb->green;
if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
rgb_plus_1->blue = rgb->blue;
rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
++rgb_plus_1;
++rgb;
++i;
}
convert_to_custom_float(rgb_resulted, arr_points, hw_points);
return true;
}
static bool
dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
const struct dc_stream_state *stream)
{
struct transform *xfm = pipe_ctx->plane_res.xfm;
xfm->funcs->opp_power_on_regamma_lut(xfm, true);
xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
if (stream->out_transfer_func &&
stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
} else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
&xfm->regamma_params)) {
xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
} else {
xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
}
xfm->funcs->opp_power_on_regamma_lut(xfm, false);
return true;
}
void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
{
bool is_hdmi_tmds;
bool is_dp;
ASSERT(pipe_ctx->stream);
if (pipe_ctx->stream_res.stream_enc == NULL)
return; /* this is not root pipe */
is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
if (!is_hdmi_tmds && !is_dp)
return;
if (is_hdmi_tmds)
pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
pipe_ctx->stream_res.stream_enc,
&pipe_ctx->stream_res.encoder_info_frame);
else {
if (pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num)
pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num(
pipe_ctx->stream_res.stream_enc,
&pipe_ctx->stream_res.encoder_info_frame);
pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
pipe_ctx->stream_res.stream_enc,
&pipe_ctx->stream_res.encoder_info_frame);
}
}
void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
{
enum dc_lane_count lane_count =
pipe_ctx->stream->link->cur_link_settings.lane_count;
struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
struct dc_link *link = pipe_ctx->stream->link;
const struct dc *dc = link->dc;
const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
uint32_t active_total_with_borders;
uint32_t early_control = 0;
struct timing_generator *tg = pipe_ctx->stream_res.tg;
link_hwss->setup_stream_encoder(pipe_ctx);
dc->hwss.update_info_frame(pipe_ctx);
/* enable early control to avoid corruption on DP monitor*/
active_total_with_borders =
timing->h_addressable
+ timing->h_border_left
+ timing->h_border_right;
if (lane_count != 0)
early_control = active_total_with_borders % lane_count;
if (early_control == 0)
early_control = lane_count;
tg->funcs->set_early_control(tg, early_control);
}
static enum bp_result link_transmitter_control(
struct dc_bios *bios,
struct bp_transmitter_control *cntl)
{
enum bp_result result;
result = bios->funcs->transmitter_control(bios, cntl);
return result;
}
/*
* @brief
* eDP only.
*/
void dce110_edp_wait_for_hpd_ready(
struct dc_link *link,
bool power_up)
{
struct dc_context *ctx = link->ctx;
struct graphics_object_id connector = link->link_enc->connector;
struct gpio *hpd;
bool edp_hpd_high = false;
uint32_t time_elapsed = 0;
uint32_t timeout = power_up ?
PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
if (dal_graphics_object_id_get_connector_id(connector)
!= CONNECTOR_ID_EDP) {
BREAK_TO_DEBUGGER();
return;
}
if (!power_up)
/*
* From KV, we will not HPD low after turning off VCC -
* instead, we will check the SW timer in power_up().
*/
return;
/*
* When we power on/off the eDP panel,
* we need to wait until SENSE bit is high/low.
*/
/* obtain HPD */
/* TODO what to do with this? */
hpd = ctx->dc->link_srv->get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
if (!hpd) {
BREAK_TO_DEBUGGER();
return;
}
if (link != NULL) {
if (link->panel_config.pps.extra_t3_ms > 0) {
int extra_t3_in_ms = link->panel_config.pps.extra_t3_ms;
msleep(extra_t3_in_ms);
}
}
dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
/* wait until timeout or panel detected */
do {
uint32_t detected = 0;
dal_gpio_get_value(hpd, &detected);
if (!(detected ^ power_up)) {
edp_hpd_high = true;
break;
}
msleep(HPD_CHECK_INTERVAL);
time_elapsed += HPD_CHECK_INTERVAL;
} while (time_elapsed < timeout);
dal_gpio_close(hpd);
dal_gpio_destroy_irq(&hpd);
/* ensure that the panel is detected */
if (!edp_hpd_high)
DC_LOG_DC("%s: wait timed out!\n", __func__);
}
void dce110_edp_power_control(
struct dc_link *link,
bool power_up)
{
struct dc_context *ctx = link->ctx;
struct bp_transmitter_control cntl = { 0 };
enum bp_result bp_result;
uint8_t panel_instance;
if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
!= CONNECTOR_ID_EDP) {
BREAK_TO_DEBUGGER();
return;
}
if (!link->panel_cntl)
return;
if (power_up !=
link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl)) {
unsigned long long current_ts = dm_get_timestamp(ctx);
unsigned long long time_since_edp_poweroff_ms =
div64_u64(dm_get_elapse_time_in_ns(
ctx,
current_ts,
ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
unsigned long long time_since_edp_poweron_ms =
div64_u64(dm_get_elapse_time_in_ns(
ctx,
current_ts,
ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link)), 1000000);
DC_LOG_HW_RESUME_S3(
"%s: transition: power_up=%d current_ts=%llu edp_poweroff=%llu edp_poweron=%llu time_since_edp_poweroff_ms=%llu time_since_edp_poweron_ms=%llu",
__func__,
power_up,
current_ts,
ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link),
time_since_edp_poweroff_ms,
time_since_edp_poweron_ms);
/* Send VBIOS command to prompt eDP panel power */
if (power_up) {
/* edp requires a min of 500ms from LCDVDD off to on */
unsigned long long remaining_min_edp_poweroff_time_ms = 500;
/* add time defined by a patch, if any (usually patch extra_t12_ms is 0) */
if (link->local_sink != NULL)
remaining_min_edp_poweroff_time_ms +=
link->panel_config.pps.extra_t12_ms;
/* Adjust remaining_min_edp_poweroff_time_ms if this is not the first time. */
if (ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
if (time_since_edp_poweroff_ms < remaining_min_edp_poweroff_time_ms)
remaining_min_edp_poweroff_time_ms =
remaining_min_edp_poweroff_time_ms - time_since_edp_poweroff_ms;
else
remaining_min_edp_poweroff_time_ms = 0;
}
if (remaining_min_edp_poweroff_time_ms) {
DC_LOG_HW_RESUME_S3(
"%s: remaining_min_edp_poweroff_time_ms=%llu: begin wait.\n",
__func__, remaining_min_edp_poweroff_time_ms);
msleep(remaining_min_edp_poweroff_time_ms);
DC_LOG_HW_RESUME_S3(
"%s: remaining_min_edp_poweroff_time_ms=%llu: end wait.\n",
__func__, remaining_min_edp_poweroff_time_ms);
dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
__func__, remaining_min_edp_poweroff_time_ms);
} else {
DC_LOG_HW_RESUME_S3(
"%s: remaining_min_edp_poweroff_time_ms=%llu: no wait required.\n",
__func__, remaining_min_edp_poweroff_time_ms);
}
}
DC_LOG_HW_RESUME_S3(
"%s: BEGIN: Panel Power action: %s\n",
__func__, (power_up ? "On":"Off"));
cntl.action = power_up ?
TRANSMITTER_CONTROL_POWER_ON :
TRANSMITTER_CONTROL_POWER_OFF;
cntl.transmitter = link->link_enc->transmitter;
cntl.connector_obj_id = link->link_enc->connector;
cntl.coherent = false;
cntl.lanes_number = LANE_COUNT_FOUR;
cntl.hpd_sel = link->link_enc->hpd_source;
panel_instance = link->panel_cntl->inst;
if (ctx->dc->ctx->dmub_srv &&
ctx->dc->debug.dmub_command_table) {
if (cntl.action == TRANSMITTER_CONTROL_POWER_ON) {
bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
LVTMA_CONTROL_POWER_ON,
panel_instance, link->link_powered_externally);
} else {
bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
LVTMA_CONTROL_POWER_OFF,
panel_instance, link->link_powered_externally);
}
}
bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
DC_LOG_HW_RESUME_S3(
"%s: END: Panel Power action: %s bp_result=%u\n",
__func__, (power_up ? "On":"Off"),
bp_result);
ctx->dc->link_srv->dp_trace_set_edp_power_timestamp(link, power_up);
DC_LOG_HW_RESUME_S3(
"%s: updated values: edp_poweroff=%llu edp_poweron=%llu\n",
__func__,
ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link));
if (bp_result != BP_RESULT_OK)
DC_LOG_ERROR(
"%s: Panel Power bp_result: %d\n",
__func__, bp_result);
} else {
DC_LOG_HW_RESUME_S3(
"%s: Skipping Panel Power action: %s\n",
__func__, (power_up ? "On":"Off"));
}
}
void dce110_edp_wait_for_T12(
struct dc_link *link)
{
struct dc_context *ctx = link->ctx;
if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
!= CONNECTOR_ID_EDP) {
BREAK_TO_DEBUGGER();
return;
}
if (!link->panel_cntl)
return;
if (!link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl) &&
ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
unsigned int t12_duration = 500; // Default T12 as per spec
unsigned long long current_ts = dm_get_timestamp(ctx);
unsigned long long time_since_edp_poweroff_ms =
div64_u64(dm_get_elapse_time_in_ns(
ctx,
current_ts,
ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
t12_duration += link->panel_config.pps.extra_t12_ms; // Add extra T12
if (time_since_edp_poweroff_ms < t12_duration)
msleep(t12_duration - time_since_edp_poweroff_ms);
}
}
/*todo: cloned in stream enc, fix*/
/*
* @brief
* eDP only. Control the backlight of the eDP panel
*/
void dce110_edp_backlight_control(
struct dc_link *link,
bool enable)
{
struct dc_context *ctx = link->ctx;
struct bp_transmitter_control cntl = { 0 };
uint8_t panel_instance;
unsigned int pre_T11_delay = OLED_PRE_T11_DELAY;
unsigned int post_T7_delay = OLED_POST_T7_DELAY;
if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
!= CONNECTOR_ID_EDP) {
BREAK_TO_DEBUGGER();
return;
}
if (link->panel_cntl && !(link->dpcd_sink_ext_caps.bits.oled ||
link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)) {
bool is_backlight_on = link->panel_cntl->funcs->is_panel_backlight_on(link->panel_cntl);
if ((enable && is_backlight_on) || (!enable && !is_backlight_on)) {
DC_LOG_HW_RESUME_S3(
"%s: panel already powered up/off. Do nothing.\n",
__func__);
return;
}
}
/* Send VBIOS command to control eDP panel backlight */
DC_LOG_HW_RESUME_S3(
"%s: backlight action: %s\n",
__func__, (enable ? "On":"Off"));
cntl.action = enable ?
TRANSMITTER_CONTROL_BACKLIGHT_ON :
TRANSMITTER_CONTROL_BACKLIGHT_OFF;
/*cntl.engine_id = ctx->engine;*/
cntl.transmitter = link->link_enc->transmitter;
cntl.connector_obj_id = link->link_enc->connector;
/*todo: unhardcode*/
cntl.lanes_number = LANE_COUNT_FOUR;
cntl.hpd_sel = link->link_enc->hpd_source;
cntl.signal = SIGNAL_TYPE_EDP;
/* For eDP, the following delays might need to be considered
* after link training completed:
* idle period - min. accounts for required BS-Idle pattern,
* max. allows for source frame synchronization);
* 50 msec max. delay from valid video data from source
* to video on dislpay or backlight enable.
*
* Disable the delay for now.
* Enable it in the future if necessary.
*/
/* dc_service_sleep_in_milliseconds(50); */
/*edp 1.2*/
panel_instance = link->panel_cntl->inst;
if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON) {
if (!link->dc->config.edp_no_power_sequencing)
/*
* Sometimes, DP receiver chip power-controlled externally by an
* Embedded Controller could be treated and used as eDP,
* if it drives mobile display. In this case,
* we shouldn't be doing power-sequencing, hence we can skip
* waiting for T7-ready.
*/
ctx->dc->link_srv->edp_receiver_ready_T7(link);
else
DC_LOG_DC("edp_receiver_ready_T7 skipped\n");
}
/* Setting link_powered_externally will bypass delays in the backlight
* as they are not required if the link is being powered by a different
* source.
*/
if (ctx->dc->ctx->dmub_srv &&
ctx->dc->debug.dmub_command_table) {
if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
LVTMA_CONTROL_LCD_BLON,
panel_instance, link->link_powered_externally);
else
ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
LVTMA_CONTROL_LCD_BLOFF,
panel_instance, link->link_powered_externally);
}
link_transmitter_control(ctx->dc_bios, &cntl);
if (enable && link->dpcd_sink_ext_caps.bits.oled) {
post_T7_delay += link->panel_config.pps.extra_post_t7_ms;
msleep(post_T7_delay);
}
if (link->dpcd_sink_ext_caps.bits.oled ||
link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)
ctx->dc->link_srv->edp_backlight_enable_aux(link, enable);
/*edp 1.2*/
if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF) {
if (!link->dc->config.edp_no_power_sequencing)
/*
* Sometimes, DP receiver chip power-controlled externally by an
* Embedded Controller could be treated and used as eDP,
* if it drives mobile display. In this case,
* we shouldn't be doing power-sequencing, hence we can skip
* waiting for T9-ready.
*/
ctx->dc->link_srv->edp_add_delay_for_T9(link);
else
DC_LOG_DC("edp_receiver_ready_T9 skipped\n");
}
if (!enable && link->dpcd_sink_ext_caps.bits.oled) {
pre_T11_delay += link->panel_config.pps.extra_pre_t11_ms;
msleep(pre_T11_delay);
}
}
void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
{
/* notify audio driver for audio modes of monitor */
struct dc *dc;
struct clk_mgr *clk_mgr;
unsigned int i, num_audio = 1;
const struct link_hwss *link_hwss;
if (!pipe_ctx->stream)
return;
dc = pipe_ctx->stream->ctx->dc;
clk_mgr = dc->clk_mgr;
link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
return;
if (pipe_ctx->stream_res.audio) {
for (i = 0; i < MAX_PIPES; i++) {
/*current_state not updated yet*/
if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
num_audio++;
}
pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
clk_mgr->funcs->enable_pme_wa(clk_mgr);
link_hwss->enable_audio_packet(pipe_ctx);
if (pipe_ctx->stream_res.audio)
pipe_ctx->stream_res.audio->enabled = true;
}
}
void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
{
struct dc *dc;
struct clk_mgr *clk_mgr;
const struct link_hwss *link_hwss;
if (!pipe_ctx || !pipe_ctx->stream)
return;
dc = pipe_ctx->stream->ctx->dc;
clk_mgr = dc->clk_mgr;
link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
return;
link_hwss->disable_audio_packet(pipe_ctx);
if (pipe_ctx->stream_res.audio) {
pipe_ctx->stream_res.audio->enabled = false;
if (clk_mgr->funcs->enable_pme_wa)
/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
clk_mgr->funcs->enable_pme_wa(clk_mgr);
/* TODO: notify audio driver for if audio modes list changed
* add audio mode list change flag */
/* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
* stream->stream_engine_id);
*/
}
}
void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
{
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
struct dc *dc = pipe_ctx->stream->ctx->dc;
const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
struct dccg *dccg = dc->res_pool->dccg;
struct timing_generator *tg = pipe_ctx->stream_res.tg;
struct dtbclk_dto_params dto_params = {0};
int dp_hpo_inst;
struct link_encoder *link_enc = link_enc_cfg_get_link_enc(pipe_ctx->stream->link);
struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc;
if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
pipe_ctx->stream_res.stream_enc);
pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
pipe_ctx->stream_res.stream_enc);
}
if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->stop_dp_info_packets(
pipe_ctx->stream_res.hpo_dp_stream_enc);
} else if (dc_is_dp_signal(pipe_ctx->stream->signal))
pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
pipe_ctx->stream_res.stream_enc);
dc->hwss.disable_audio_stream(pipe_ctx);
link_hwss->reset_stream_encoder(pipe_ctx);
if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
dto_params.otg_inst = tg->inst;
dto_params.timing = &pipe_ctx->stream->timing;
dp_hpo_inst = pipe_ctx->stream_res.hpo_dp_stream_enc->inst;
if (dccg) {
dccg->funcs->set_dtbclk_dto(dccg, &dto_params);
dccg->funcs->disable_symclk32_se(dccg, dp_hpo_inst);
dccg->funcs->set_dpstreamclk(dccg, REFCLK, tg->inst, dp_hpo_inst);
}
} else if (dccg && dccg->funcs->disable_symclk_se) {
dccg->funcs->disable_symclk_se(dccg, stream_enc->stream_enc_inst,
link_enc->transmitter - TRANSMITTER_UNIPHY_A);
}
if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
/* TODO: This looks like a bug to me as we are disabling HPO IO when
* we are just disabling a single HPO stream. Shouldn't we disable HPO
* HW control only when HPOs for all streams are disabled?
*/
if (pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control)
pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control(
pipe_ctx->stream->ctx->dc->hwseq, false);
}
}
void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
struct dc_link_settings *link_settings)
{
struct encoder_unblank_param params = { { 0 } };
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
struct dce_hwseq *hws = link->dc->hwseq;
/* only 3 items below are used by unblank */
params.timing = pipe_ctx->stream->timing;
params.link_settings.link_rate = link_settings->link_rate;
if (dc_is_dp_signal(pipe_ctx->stream->signal))
pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, ¶ms);
if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
hws->funcs.edp_backlight_control(link, true);
}
}
void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
{
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
struct dce_hwseq *hws = link->dc->hwseq;
if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
if (!stream->skip_edp_power_down)
hws->funcs.edp_backlight_control(link, false);
link->dc->hwss.set_abm_immediate_disable(pipe_ctx);
}
if (link->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
/* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_blank(
pipe_ctx->stream_res.hpo_dp_stream_enc);
} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
pipe_ctx->stream_res.stream_enc->funcs->dp_blank(link, pipe_ctx->stream_res.stream_enc);
if (!dc_is_embedded_signal(pipe_ctx->stream->signal)) {
/*
* After output is idle pattern some sinks need time to recognize the stream
* has changed or they enter protection state and hang.
*/
msleep(60);
} else if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP) {
if (!link->dc->config.edp_no_power_sequencing) {
/*
* Sometimes, DP receiver chip power-controlled externally by an
* Embedded Controller could be treated and used as eDP,
* if it drives mobile display. In this case,
* we shouldn't be doing power-sequencing, hence we can skip
* waiting for T9-ready.
*/
link->dc->link_srv->edp_receiver_ready_T9(link);
}
}
}
}
void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
{
if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
}
static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
{
switch (crtc_id) {
case CONTROLLER_ID_D0:
return DTO_SOURCE_ID0;
case CONTROLLER_ID_D1:
return DTO_SOURCE_ID1;
case CONTROLLER_ID_D2:
return DTO_SOURCE_ID2;
case CONTROLLER_ID_D3:
return DTO_SOURCE_ID3;
case CONTROLLER_ID_D4:
return DTO_SOURCE_ID4;
case CONTROLLER_ID_D5:
return DTO_SOURCE_ID5;
default:
return DTO_SOURCE_UNKNOWN;
}
}
static void build_audio_output(
struct dc_state *state,
const struct pipe_ctx *pipe_ctx,
struct audio_output *audio_output)
{
const struct dc_stream_state *stream = pipe_ctx->stream;
audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
audio_output->signal = pipe_ctx->stream->signal;
/* audio_crtc_info */
audio_output->crtc_info.h_total =
stream->timing.h_total;
/*
* Audio packets are sent during actual CRTC blank physical signal, we
* need to specify actual active signal portion
*/
audio_output->crtc_info.h_active =
stream->timing.h_addressable
+ stream->timing.h_border_left
+ stream->timing.h_border_right;
audio_output->crtc_info.v_active =
stream->timing.v_addressable
+ stream->timing.v_border_top
+ stream->timing.v_border_bottom;
audio_output->crtc_info.pixel_repetition = 1;
audio_output->crtc_info.interlaced =
stream->timing.flags.INTERLACE;
audio_output->crtc_info.refresh_rate =
(stream->timing.pix_clk_100hz*100)/
(stream->timing.h_total*stream->timing.v_total);
audio_output->crtc_info.color_depth =
stream->timing.display_color_depth;
audio_output->crtc_info.requested_pixel_clock_100Hz =
pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
audio_output->crtc_info.calculated_pixel_clock_100Hz =
pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
/*for HDMI, audio ACR is with deep color ratio factor*/
if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) &&
audio_output->crtc_info.requested_pixel_clock_100Hz ==
(stream->timing.pix_clk_100hz)) {
if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
audio_output->crtc_info.requested_pixel_clock_100Hz =
audio_output->crtc_info.requested_pixel_clock_100Hz/2;
audio_output->crtc_info.calculated_pixel_clock_100Hz =
pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
}
}
if (state->clk_mgr &&
(pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
audio_output->pll_info.dp_dto_source_clock_in_khz =
state->clk_mgr->funcs->get_dp_ref_clk_frequency(
state->clk_mgr);
}
audio_output->pll_info.feed_back_divider =
pipe_ctx->pll_settings.feedback_divider;
audio_output->pll_info.dto_source =
translate_to_dto_source(
pipe_ctx->stream_res.tg->inst + 1);
/* TODO hard code to enable for now. Need get from stream */
audio_output->pll_info.ss_enabled = true;
audio_output->pll_info.ss_percentage =
pipe_ctx->pll_settings.ss_percentage;
}
static void program_scaler(const struct dc *dc,
const struct pipe_ctx *pipe_ctx)
{
struct tg_color color = {0};
/* TOFPGA */
if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
return;
if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
get_surface_visual_confirm_color(pipe_ctx, &color);
else
color_space_to_black_color(dc,
pipe_ctx->stream->output_color_space,
&color);
pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
pipe_ctx->plane_res.xfm,
pipe_ctx->plane_res.scl_data.lb_params.depth,
&pipe_ctx->stream->bit_depth_params);
if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
/*
* The way 420 is packed, 2 channels carry Y component, 1 channel
* alternate between Cb and Cr, so both channels need the pixel
* value for Y
*/
if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
color.color_r_cr = color.color_g_y;
pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
pipe_ctx->stream_res.tg,
&color);
}
pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
&pipe_ctx->plane_res.scl_data);
}
static enum dc_status dce110_enable_stream_timing(
struct pipe_ctx *pipe_ctx,
struct dc_state *context,
struct dc *dc)
{
struct dc_stream_state *stream = pipe_ctx->stream;
struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
pipe_ctx[pipe_ctx->pipe_idx];
struct tg_color black_color = {0};
if (!pipe_ctx_old->stream) {
/* program blank color */
color_space_to_black_color(dc,
stream->output_color_space, &black_color);
pipe_ctx->stream_res.tg->funcs->set_blank_color(
pipe_ctx->stream_res.tg,
&black_color);
/*
* Must blank CRTC after disabling power gating and before any
* programming, otherwise CRTC will be hung in bad state
*/
pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
pipe_ctx->clock_source,
&pipe_ctx->stream_res.pix_clk_params,
dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings),
&pipe_ctx->pll_settings)) {
BREAK_TO_DEBUGGER();
return DC_ERROR_UNEXPECTED;
}
if (dc_is_hdmi_tmds_signal(stream->signal)) {
stream->link->phy_state.symclk_ref_cnts.otg = 1;
if (stream->link->phy_state.symclk_state == SYMCLK_OFF_TX_OFF)
stream->link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
else
stream->link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
}
pipe_ctx->stream_res.tg->funcs->program_timing(
pipe_ctx->stream_res.tg,
&stream->timing,
0,
0,
0,
0,
pipe_ctx->stream->signal,
true);
}
if (!pipe_ctx_old->stream) {
if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
pipe_ctx->stream_res.tg)) {
BREAK_TO_DEBUGGER();
return DC_ERROR_UNEXPECTED;
}
}
return DC_OK;
}
static enum dc_status apply_single_controller_ctx_to_hw(
struct pipe_ctx *pipe_ctx,
struct dc_state *context,
struct dc *dc)
{
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
struct drr_params params = {0};
unsigned int event_triggers = 0;
struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
struct dce_hwseq *hws = dc->hwseq;
const struct link_hwss *link_hwss = get_link_hwss(
link, &pipe_ctx->link_res);
if (hws->funcs.disable_stream_gating) {
hws->funcs.disable_stream_gating(dc, pipe_ctx);
}
if (pipe_ctx->stream_res.audio != NULL) {
struct audio_output audio_output;
build_audio_output(context, pipe_ctx, &audio_output);
link_hwss->setup_audio_output(pipe_ctx, &audio_output,
pipe_ctx->stream_res.audio->inst);
pipe_ctx->stream_res.audio->funcs->az_configure(
pipe_ctx->stream_res.audio,
pipe_ctx->stream->signal,
&audio_output.crtc_info,
&pipe_ctx->stream->audio_info);
}
/* make sure no pipes syncd to the pipe being enabled */
if (!pipe_ctx->stream->apply_seamless_boot_optimization && dc->config.use_pipe_ctx_sync_logic)
check_syncd_pipes_for_disabled_master_pipe(dc, context, pipe_ctx->pipe_idx);
pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
pipe_ctx->stream_res.opp,
&stream->bit_depth_params,
&stream->clamping);
pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
pipe_ctx->stream_res.opp,
COLOR_SPACE_YCBCR601,
stream->timing.display_color_depth,
stream->signal);
while (odm_pipe) {
odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
odm_pipe->stream_res.opp,
COLOR_SPACE_YCBCR601,
stream->timing.display_color_depth,
stream->signal);
odm_pipe->stream_res.opp->funcs->opp_program_fmt(
odm_pipe->stream_res.opp,
&stream->bit_depth_params,
&stream->clamping);
odm_pipe = odm_pipe->next_odm_pipe;
}
/* DCN3.1 FPGA Workaround
* Need to enable HPO DP Stream Encoder before setting OTG master enable.
* To do so, move calling function enable_stream_timing to only be done AFTER calling
* function core_link_enable_stream
*/
if (!(hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)))
/* */
/* Do not touch stream timing on seamless boot optimization. */
if (!pipe_ctx->stream->apply_seamless_boot_optimization)
hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
if (hws->funcs.setup_vupdate_interrupt)
hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
params.vertical_total_min = stream->adjust.v_total_min;
params.vertical_total_max = stream->adjust.v_total_max;
if (pipe_ctx->stream_res.tg->funcs->set_drr)
pipe_ctx->stream_res.tg->funcs->set_drr(
pipe_ctx->stream_res.tg, ¶ms);
// DRR should set trigger event to monitor surface update event
if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
event_triggers = 0x80;
/* Event triggers and num frames initialized for DRR, but can be
* later updated for PSR use. Note DRR trigger events are generated
* regardless of whether num frames met.
*/
if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
pipe_ctx->stream_res.tg, event_triggers, 2);
if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
pipe_ctx->stream_res.stream_enc,
pipe_ctx->stream_res.tg->inst);
if (dc_is_dp_signal(pipe_ctx->stream->signal))
dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_CONNECT_DIG_FE_OTG);
if (!stream->dpms_off)
dc->link_srv->set_dpms_on(context, pipe_ctx);
/* DCN3.1 FPGA Workaround
* Need to enable HPO DP Stream Encoder before setting OTG master enable.
* To do so, move calling function enable_stream_timing to only be done AFTER calling
* function core_link_enable_stream
*/
if (hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
if (!pipe_ctx->stream->apply_seamless_boot_optimization)
hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
}
pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
/* Phantom and main stream share the same link (because the stream
* is constructed with the same sink). Make sure not to override
* and link programming on the main.
*/
if (pipe_ctx->stream->mall_stream_config.type != SUBVP_PHANTOM) {
pipe_ctx->stream->link->psr_settings.psr_feature_enabled = false;
pipe_ctx->stream->link->replay_settings.replay_feature_enabled = false;
}
return DC_OK;
}
/******************************************************************************/
static void power_down_encoders(struct dc *dc)
{
int i;
for (i = 0; i < dc->link_count; i++) {
enum signal_type signal = dc->links[i]->connector_signal;
dc->link_srv->blank_dp_stream(dc->links[i], false);
if (signal != SIGNAL_TYPE_EDP)
signal = SIGNAL_TYPE_NONE;
if (dc->links[i]->ep_type == DISPLAY_ENDPOINT_PHY)
dc->links[i]->link_enc->funcs->disable_output(
dc->links[i]->link_enc, signal);
dc->links[i]->link_status.link_active = false;
memset(&dc->links[i]->cur_link_settings, 0,
sizeof(dc->links[i]->cur_link_settings));
}
}
static void power_down_controllers(struct dc *dc)
{
int i;
for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
dc->res_pool->timing_generators[i]->funcs->disable_crtc(
dc->res_pool->timing_generators[i]);
}
}
static void power_down_clock_sources(struct dc *dc)
{
int i;
if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
dc->res_pool->dp_clock_source) == false)
dm_error("Failed to power down pll! (dp clk src)\n");
for (i = 0; i < dc->res_pool->clk_src_count; i++) {
if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
dc->res_pool->clock_sources[i]) == false)
dm_error("Failed to power down pll! (clk src index=%d)\n", i);
}
}
static void power_down_all_hw_blocks(struct dc *dc)
{
power_down_encoders(dc);
power_down_controllers(dc);
power_down_clock_sources(dc);
if (dc->fbc_compressor)
dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
}
static void disable_vga_and_power_gate_all_controllers(
struct dc *dc)
{
int i;
struct timing_generator *tg;
struct dc_context *ctx = dc->ctx;
for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
tg = dc->res_pool->timing_generators[i];
if (tg->funcs->disable_vga)
tg->funcs->disable_vga(tg);
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
/* Enable CLOCK gating for each pipe BEFORE controller
* powergating. */
enable_display_pipe_clock_gating(ctx,
true);
dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
dc->hwss.disable_plane(dc,
&dc->current_state->res_ctx.pipe_ctx[i]);
}
}
static void get_edp_streams(struct dc_state *context,
struct dc_stream_state **edp_streams,
int *edp_stream_num)
{
int i;
*edp_stream_num = 0;
for (i = 0; i < context->stream_count; i++) {
if (context->streams[i]->signal == SIGNAL_TYPE_EDP) {
edp_streams[*edp_stream_num] = context->streams[i];
if (++(*edp_stream_num) == MAX_NUM_EDP)
return;
}
}
}
static void get_edp_links_with_sink(
struct dc *dc,
struct dc_link **edp_links_with_sink,
int *edp_with_sink_num)
{
int i;
/* check if there is an eDP panel not in use */
*edp_with_sink_num = 0;
for (i = 0; i < dc->link_count; i++) {
if (dc->links[i]->local_sink &&
dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
edp_links_with_sink[*edp_with_sink_num] = dc->links[i];
if (++(*edp_with_sink_num) == MAX_NUM_EDP)
return;
}
}
}
/*
* When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
* 1. Power down all DC HW blocks
* 2. Disable VGA engine on all controllers
* 3. Enable power gating for controller
* 4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
*/
void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
{
struct dc_link *edp_links_with_sink[MAX_NUM_EDP];
struct dc_link *edp_links[MAX_NUM_EDP];
struct dc_stream_state *edp_streams[MAX_NUM_EDP];
struct dc_link *edp_link_with_sink = NULL;
struct dc_link *edp_link = NULL;
struct dce_hwseq *hws = dc->hwseq;
int edp_with_sink_num;
int edp_num;
int edp_stream_num;
int i;
bool can_apply_edp_fast_boot = false;
bool can_apply_seamless_boot = false;
bool keep_edp_vdd_on = false;
DC_LOGGER_INIT();
get_edp_links_with_sink(dc, edp_links_with_sink, &edp_with_sink_num);
dc_get_edp_links(dc, edp_links, &edp_num);
if (hws->funcs.init_pipes)
hws->funcs.init_pipes(dc, context);
get_edp_streams(context, edp_streams, &edp_stream_num);
// Check fastboot support, disable on DCE8 because of blank screens
if (edp_num && edp_stream_num && dc->ctx->dce_version != DCE_VERSION_8_0 &&
dc->ctx->dce_version != DCE_VERSION_8_1 &&
dc->ctx->dce_version != DCE_VERSION_8_3) {
for (i = 0; i < edp_num; i++) {
edp_link = edp_links[i];
if (edp_link != edp_streams[0]->link)
continue;
// enable fastboot if backend is enabled on eDP
if (edp_link->link_enc->funcs->is_dig_enabled &&
edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
edp_link->link_status.link_active) {
struct dc_stream_state *edp_stream = edp_streams[0];
can_apply_edp_fast_boot = dc_validate_boot_timing(dc,
edp_stream->sink, &edp_stream->timing);
edp_stream->apply_edp_fast_boot_optimization = can_apply_edp_fast_boot;
if (can_apply_edp_fast_boot)
DC_LOG_EVENT_LINK_TRAINING("eDP fast boot disabled to optimize link rate\n");
break;
}
}
// We are trying to enable eDP, don't power down VDD
if (can_apply_edp_fast_boot)
keep_edp_vdd_on = true;
}
// Check seamless boot support
for (i = 0; i < context->stream_count; i++) {
if (context->streams[i]->apply_seamless_boot_optimization) {
can_apply_seamless_boot = true;
break;
}
}
/* eDP should not have stream in resume from S4 and so even with VBios post
* it should get turned off
*/
if (edp_with_sink_num)
edp_link_with_sink = edp_links_with_sink[0];
if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
if (edp_link_with_sink && !keep_edp_vdd_on) {
/*turn off backlight before DP_blank and encoder powered down*/
hws->funcs.edp_backlight_control(edp_link_with_sink, false);
}
/*resume from S3, no vbios posting, no need to power down again*/
clk_mgr_exit_optimized_pwr_state(dc, dc->clk_mgr);
power_down_all_hw_blocks(dc);
disable_vga_and_power_gate_all_controllers(dc);
if (edp_link_with_sink && !keep_edp_vdd_on)
dc->hwss.edp_power_control(edp_link_with_sink, false);
clk_mgr_optimize_pwr_state(dc, dc->clk_mgr);
}
bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 1);
}
static uint32_t compute_pstate_blackout_duration(
struct bw_fixed blackout_duration,
const struct dc_stream_state *stream)
{
uint32_t total_dest_line_time_ns;
uint32_t pstate_blackout_duration_ns;
pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
total_dest_line_time_ns = 1000000UL *
(stream->timing.h_total * 10) /
stream->timing.pix_clk_100hz +
pstate_blackout_duration_ns;
return total_dest_line_time_ns;
}
static void dce110_set_displaymarks(
const struct dc *dc,
struct dc_state *context)
{
uint8_t i, num_pipes;
unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
uint32_t total_dest_line_time_ns;
if (pipe_ctx->stream == NULL)
continue;
total_dest_line_time_ns = compute_pstate_blackout_duration(
dc->bw_vbios->blackout_duration, pipe_ctx->stream);
pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
pipe_ctx->plane_res.mi,
context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
total_dest_line_time_ns);
if (i == underlay_idx) {
num_pipes++;
pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
pipe_ctx->plane_res.mi,
context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
total_dest_line_time_ns);
}
num_pipes++;
}
}
void dce110_set_safe_displaymarks(
struct resource_context *res_ctx,
const struct resource_pool *pool)
{
int i;
int underlay_idx = pool->underlay_pipe_index;
struct dce_watermarks max_marks = {
MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
struct dce_watermarks nbp_marks = {
SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
struct dce_watermarks min_marks = { 0, 0, 0, 0};
for (i = 0; i < MAX_PIPES; i++) {
if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
continue;
res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
res_ctx->pipe_ctx[i].plane_res.mi,
nbp_marks,
max_marks,
min_marks,
max_marks,
MAX_WATERMARK);
if (i == underlay_idx)
res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
res_ctx->pipe_ctx[i].plane_res.mi,
nbp_marks,
max_marks,
max_marks,
MAX_WATERMARK);
}
}
/*******************************************************************************
* Public functions
******************************************************************************/
static void set_drr(struct pipe_ctx **pipe_ctx,
int num_pipes, struct dc_crtc_timing_adjust adjust)
{
int i = 0;
struct drr_params params = {0};
// DRR should set trigger event to monitor surface update event
unsigned int event_triggers = 0x80;
// Note DRR trigger events are generated regardless of whether num frames met.
unsigned int num_frames = 2;
params.vertical_total_max = adjust.v_total_max;
params.vertical_total_min = adjust.v_total_min;
/* TODO: If multiple pipes are to be supported, you need
* some GSL stuff. Static screen triggers may be programmed differently
* as well.
*/
for (i = 0; i < num_pipes; i++) {
pipe_ctx[i]->stream_res.tg->funcs->set_drr(
pipe_ctx[i]->stream_res.tg, ¶ms);
if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
pipe_ctx[i]->stream_res.tg,
event_triggers, num_frames);
}
}
static void get_position(struct pipe_ctx **pipe_ctx,
int num_pipes,
struct crtc_position *position)
{
int i = 0;
/* TODO: handle pipes > 1
*/
for (i = 0; i < num_pipes; i++)
pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
}
static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
int num_pipes, const struct dc_static_screen_params *params)
{
unsigned int i;
unsigned int triggers = 0;
if (params->triggers.overlay_update)
triggers |= 0x100;
if (params->triggers.surface_update)
triggers |= 0x80;
if (params->triggers.cursor_update)
triggers |= 0x2;
if (params->triggers.force_trigger)
triggers |= 0x1;
if (num_pipes) {
struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
if (dc->fbc_compressor)
triggers |= 0x84;
}
for (i = 0; i < num_pipes; i++)
pipe_ctx[i]->stream_res.tg->funcs->
set_static_screen_control(pipe_ctx[i]->stream_res.tg,
triggers, params->num_frames);
}
/*
* Check if FBC can be enabled
*/
static bool should_enable_fbc(struct dc *dc,
struct dc_state *context,
uint32_t *pipe_idx)
{
uint32_t i;
struct pipe_ctx *pipe_ctx = NULL;
struct resource_context *res_ctx = &context->res_ctx;
unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
ASSERT(dc->fbc_compressor);
/* FBC memory should be allocated */
if (!dc->ctx->fbc_gpu_addr)
return false;
/* Only supports single display */
if (context->stream_count != 1)
return false;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
if (res_ctx->pipe_ctx[i].stream) {
pipe_ctx = &res_ctx->pipe_ctx[i];
if (!pipe_ctx)
continue;
/* fbc not applicable on underlay pipe */
if (pipe_ctx->pipe_idx != underlay_idx) {
*pipe_idx = i;
break;
}
}
}
if (i == dc->res_pool->pipe_count)
return false;
if (!pipe_ctx->stream->link)
return false;
/* Only supports eDP */
if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
return false;
/* PSR should not be enabled */
if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
return false;
/* Replay should not be enabled */
if (pipe_ctx->stream->link->replay_settings.replay_feature_enabled)
return false;
/* Nothing to compress */
if (!pipe_ctx->plane_state)
return false;
/* Only for non-linear tiling */
if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
return false;
return true;
}
/*
* Enable FBC
*/
static void enable_fbc(
struct dc *dc,
struct dc_state *context)
{
uint32_t pipe_idx = 0;
if (should_enable_fbc(dc, context, &pipe_idx)) {
/* Program GRPH COMPRESSED ADDRESS and PITCH */
struct compr_addr_and_pitch_params params = {0, 0, 0};
struct compressor *compr = dc->fbc_compressor;
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
params.source_view_width = pipe_ctx->stream->timing.h_addressable;
params.source_view_height = pipe_ctx->stream->timing.v_addressable;
params.inst = pipe_ctx->stream_res.tg->inst;
compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
compr->funcs->surface_address_and_pitch(compr, ¶ms);
compr->funcs->set_fbc_invalidation_triggers(compr, 1);
compr->funcs->enable_fbc(compr, ¶ms);
}
}
static void dce110_reset_hw_ctx_wrap(
struct dc *dc,
struct dc_state *context)
{
int i;
/* Reset old context */
/* look up the targets that have been removed since last commit */
for (i = 0; i < MAX_PIPES; i++) {
struct pipe_ctx *pipe_ctx_old =
&dc->current_state->res_ctx.pipe_ctx[i];
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
/* Note: We need to disable output if clock sources change,
* since bios does optimization and doesn't apply if changing
* PHY when not already disabled.
*/
/* Skip underlay pipe since it will be handled in commit surface*/
if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
continue;
if (!pipe_ctx->stream ||
pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
struct clock_source *old_clk = pipe_ctx_old->clock_source;
/* Disable if new stream is null. O/w, if stream is
* disabled already, no need to disable again.
*/
if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
dc->link_srv->set_dpms_off(pipe_ctx_old);
/* free acquired resources*/
if (pipe_ctx_old->stream_res.audio) {
/*disable az_endpoint*/
pipe_ctx_old->stream_res.audio->funcs->
az_disable(pipe_ctx_old->stream_res.audio);
/*free audio*/
if (dc->caps.dynamic_audio == true) {
/*we have to dynamic arbitrate the audio endpoints*/
/*we free the resource, need reset is_audio_acquired*/
update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
pipe_ctx_old->stream_res.audio, false);
pipe_ctx_old->stream_res.audio = NULL;
}
}
}
pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
dm_error("DC: failed to blank crtc!\n");
BREAK_TO_DEBUGGER();
}
pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
pipe_ctx_old->stream->link->phy_state.symclk_ref_cnts.otg = 0;
pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
dc->res_pool,
old_clk))
old_clk->funcs->cs_power_down(old_clk);
dc->hwss.disable_plane(dc, pipe_ctx_old);
pipe_ctx_old->stream = NULL;
}
}
}
static void dce110_setup_audio_dto(
struct dc *dc,
struct dc_state *context)
{
int i;
/* program audio wall clock. use HDMI as clock source if HDMI
* audio active. Otherwise, use DP as clock source
* first, loop to find any HDMI audio, if not, loop find DP audio
*/
/* Setup audio rate clock source */
/* Issue:
* Audio lag happened on DP monitor when unplug a HDMI monitor
*
* Cause:
* In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
* is set to either dto0 or dto1, audio should work fine.
* In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
* set to dto0 will cause audio lag.
*
* Solution:
* Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
* find first available pipe with audio, setup audio wall DTO per topology
* instead of per pipe.
*/
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->stream == NULL)
continue;
if (pipe_ctx->top_pipe)
continue;
if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
continue;
if (pipe_ctx->stream_res.audio != NULL) {
struct audio_output audio_output;
build_audio_output(context, pipe_ctx, &audio_output);
if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->set_audio_dtbclk_dto) {
struct dtbclk_dto_params dto_params = {0};
dc->res_pool->dccg->funcs->set_audio_dtbclk_dto(
dc->res_pool->dccg, &dto_params);
pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
pipe_ctx->stream_res.audio,
pipe_ctx->stream->signal,
&audio_output.crtc_info,
&audio_output.pll_info);
} else
pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
pipe_ctx->stream_res.audio,
pipe_ctx->stream->signal,
&audio_output.crtc_info,
&audio_output.pll_info);
break;
}
}
/* no HDMI audio is found, try DP audio */
if (i == dc->res_pool->pipe_count) {
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->stream == NULL)
continue;
if (pipe_ctx->top_pipe)
continue;
if (!dc_is_dp_signal(pipe_ctx->stream->signal))
continue;
if (pipe_ctx->stream_res.audio != NULL) {
struct audio_output audio_output;
build_audio_output(context, pipe_ctx, &audio_output);
pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
pipe_ctx->stream_res.audio,
pipe_ctx->stream->signal,
&audio_output.crtc_info,
&audio_output.pll_info);
break;
}
}
}
}
enum dc_status dce110_apply_ctx_to_hw(
struct dc *dc,
struct dc_state *context)
{
struct dce_hwseq *hws = dc->hwseq;
struct dc_bios *dcb = dc->ctx->dc_bios;
enum dc_status status;
int i;
/* reset syncd pipes from disabled pipes */
if (dc->config.use_pipe_ctx_sync_logic)
reset_syncd_pipes_from_disabled_pipes(dc, context);
/* Reset old context */
/* look up the targets that have been removed since last commit */
hws->funcs.reset_hw_ctx_wrap(dc, context);
/* Skip applying if no targets */
if (context->stream_count <= 0)
return DC_OK;
/* Apply new context */
dcb->funcs->set_scratch_critical_state(dcb, true);
/* below is for real asic only */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx_old =
&dc->current_state->res_ctx.pipe_ctx[i];
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
continue;
if (pipe_ctx->stream == pipe_ctx_old->stream) {
if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
dce_crtc_switch_to_clk_src(dc->hwseq,
pipe_ctx->clock_source, i);
continue;
}
hws->funcs.enable_display_power_gating(
dc, i, dc->ctx->dc_bios,
PIPE_GATING_CONTROL_DISABLE);
}
if (dc->fbc_compressor)
dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
dce110_setup_audio_dto(dc, context);
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx_old =
&dc->current_state->res_ctx.pipe_ctx[i];
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->stream == NULL)
continue;
if (pipe_ctx->stream == pipe_ctx_old->stream &&
pipe_ctx->stream->link->link_state_valid) {
continue;
}
if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
continue;
if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
continue;
status = apply_single_controller_ctx_to_hw(
pipe_ctx,
context,
dc);
if (DC_OK != status)
return status;
#ifdef CONFIG_DRM_AMD_DC_FP
if (hws->funcs.resync_fifo_dccg_dio)
hws->funcs.resync_fifo_dccg_dio(hws, dc, context);
#endif
}
if (dc->fbc_compressor)
enable_fbc(dc, dc->current_state);
dcb->funcs->set_scratch_critical_state(dcb, false);
return DC_OK;
}
/*******************************************************************************
* Front End programming
******************************************************************************/
static void set_default_colors(struct pipe_ctx *pipe_ctx)
{
struct default_adjustment default_adjust = { 0 };
default_adjust.force_hw_default = false;
default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
/* display color depth */
default_adjust.color_depth =
pipe_ctx->stream->timing.display_color_depth;
/* Lb color depth */
default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
pipe_ctx->plane_res.xfm, &default_adjust);
}
/*******************************************************************************
* In order to turn on/off specific surface we will program
* Blender + CRTC
*
* In case that we have two surfaces and they have a different visibility
* we can't turn off the CRTC since it will turn off the entire display
*
* |----------------------------------------------- |
* |bottom pipe|curr pipe | | |
* |Surface |Surface | Blender | CRCT |
* |visibility |visibility | Configuration| |
* |------------------------------------------------|
* | off | off | CURRENT_PIPE | blank |
* | off | on | CURRENT_PIPE | unblank |
* | on | off | OTHER_PIPE | unblank |
* | on | on | BLENDING | unblank |
* -------------------------------------------------|
*
******************************************************************************/
static void program_surface_visibility(const struct dc *dc,
struct pipe_ctx *pipe_ctx)
{
enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
bool blank_target = false;
if (pipe_ctx->bottom_pipe) {
/* For now we are supporting only two pipes */
ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
if (pipe_ctx->bottom_pipe->plane_state->visible) {
if (pipe_ctx->plane_state->visible)
blender_mode = BLND_MODE_BLENDING;
else
blender_mode = BLND_MODE_OTHER_PIPE;
} else if (!pipe_ctx->plane_state->visible)
blank_target = true;
} else if (!pipe_ctx->plane_state->visible)
blank_target = true;
dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
}
static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
{
int i = 0;
struct xfm_grph_csc_adjustment adjust;
memset(&adjust, 0, sizeof(adjust));
adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
adjust.temperature_matrix[i] =
pipe_ctx->stream->gamut_remap_matrix.matrix[i];
}
pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
}
static void update_plane_addr(const struct dc *dc,
struct pipe_ctx *pipe_ctx)
{
struct dc_plane_state *plane_state = pipe_ctx->plane_state;
if (plane_state == NULL)
return;
pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
pipe_ctx->plane_res.mi,
&plane_state->address,
plane_state->flip_immediate);
plane_state->status.requested_address = plane_state->address;
}
static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
{
struct dc_plane_state *plane_state = pipe_ctx->plane_state;
if (plane_state == NULL)
return;
plane_state->status.is_flip_pending =
pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
pipe_ctx->plane_res.mi);
if (plane_state->status.is_flip_pending && !plane_state->visible)
pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
plane_state->status.is_right_eye =\
!pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
}
}
void dce110_power_down(struct dc *dc)
{
power_down_all_hw_blocks(dc);
disable_vga_and_power_gate_all_controllers(dc);
}
static bool wait_for_reset_trigger_to_occur(
struct dc_context *dc_ctx,
struct timing_generator *tg)
{
bool rc = false;
/* To avoid endless loop we wait at most
* frames_to_wait_on_triggered_reset frames for the reset to occur. */
const uint32_t frames_to_wait_on_triggered_reset = 10;
uint32_t i;
for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
if (!tg->funcs->is_counter_moving(tg)) {
DC_ERROR("TG counter is not moving!\n");
break;
}
if (tg->funcs->did_triggered_reset_occur(tg)) {
rc = true;
/* usually occurs at i=1 */
DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
i);
break;
}
/* Wait for one frame. */
tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
}
if (false == rc)
DC_ERROR("GSL: Timeout on reset trigger!\n");
return rc;
}
/* Enable timing synchronization for a group of Timing Generators. */
static void dce110_enable_timing_synchronization(
struct dc *dc,
int group_index,
int group_size,
struct pipe_ctx *grouped_pipes[])
{
struct dc_context *dc_ctx = dc->ctx;
struct dcp_gsl_params gsl_params = { 0 };
int i;
DC_SYNC_INFO("GSL: Setting-up...\n");
/* Designate a single TG in the group as a master.
* Since HW doesn't care which one, we always assign
* the 1st one in the group. */
gsl_params.gsl_group = 0;
gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
for (i = 0; i < group_size; i++)
grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
grouped_pipes[i]->stream_res.tg, &gsl_params);
/* Reset slave controllers on master VSync */
DC_SYNC_INFO("GSL: enabling trigger-reset\n");
for (i = 1 /* skip the master */; i < group_size; i++)
grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
grouped_pipes[i]->stream_res.tg,
gsl_params.gsl_group);
for (i = 1 /* skip the master */; i < group_size; i++) {
DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
grouped_pipes[i]->stream_res.tg);
}
/* GSL Vblank synchronization is a one time sync mechanism, assumption
* is that the sync'ed displays will not drift out of sync over time*/
DC_SYNC_INFO("GSL: Restoring register states.\n");
for (i = 0; i < group_size; i++)
grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
DC_SYNC_INFO("GSL: Set-up complete.\n");
}
static void dce110_enable_per_frame_crtc_position_reset(
struct dc *dc,
int group_size,
struct pipe_ctx *grouped_pipes[])
{
struct dc_context *dc_ctx = dc->ctx;
struct dcp_gsl_params gsl_params = { 0 };
int i;
gsl_params.gsl_group = 0;
gsl_params.gsl_master = 0;
for (i = 0; i < group_size; i++)
grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
grouped_pipes[i]->stream_res.tg, &gsl_params);
DC_SYNC_INFO("GSL: enabling trigger-reset\n");
for (i = 1; i < group_size; i++)
grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
grouped_pipes[i]->stream_res.tg,
gsl_params.gsl_master,
&grouped_pipes[i]->stream->triggered_crtc_reset);
DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
for (i = 1; i < group_size; i++)
wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
for (i = 0; i < group_size; i++)
grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
}
static void init_pipes(struct dc *dc, struct dc_state *context)
{
// Do nothing
}
static void init_hw(struct dc *dc)
{
int i;
struct dc_bios *bp;
struct transform *xfm;
struct abm *abm;
struct dmcu *dmcu;
struct dce_hwseq *hws = dc->hwseq;
uint32_t backlight = MAX_BACKLIGHT_LEVEL;
bp = dc->ctx->dc_bios;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
xfm = dc->res_pool->transforms[i];
xfm->funcs->transform_reset(xfm);
hws->funcs.enable_display_power_gating(
dc, i, bp,
PIPE_GATING_CONTROL_INIT);
hws->funcs.enable_display_power_gating(
dc, i, bp,
PIPE_GATING_CONTROL_DISABLE);
hws->funcs.enable_display_pipe_clock_gating(
dc->ctx,
true);
}
dce_clock_gating_power_up(dc->hwseq, false);
/***************************************/
for (i = 0; i < dc->link_count; i++) {
/****************************************/
/* Power up AND update implementation according to the
* required signal (which may be different from the
* default signal on connector). */
struct dc_link *link = dc->links[i];
link->link_enc->funcs->hw_init(link->link_enc);
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct timing_generator *tg = dc->res_pool->timing_generators[i];
tg->funcs->disable_vga(tg);
/* Blank controller using driver code instead of
* command table. */
tg->funcs->set_blank(tg, true);
hwss_wait_for_blank_complete(tg);
}
for (i = 0; i < dc->res_pool->audio_count; i++) {
struct audio *audio = dc->res_pool->audios[i];
audio->funcs->hw_init(audio);
}
for (i = 0; i < dc->link_count; i++) {
struct dc_link *link = dc->links[i];
if (link->panel_cntl)
backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
}
abm = dc->res_pool->abm;
if (abm != NULL)
abm->funcs->abm_init(abm, backlight);
dmcu = dc->res_pool->dmcu;
if (dmcu != NULL && abm != NULL)
abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
if (dc->fbc_compressor)
dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
}
void dce110_prepare_bandwidth(
struct dc *dc,
struct dc_state *context)
{
struct clk_mgr *dccg = dc->clk_mgr;
dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
if (dccg)
dccg->funcs->update_clocks(
dccg,
context,
false);
}
void dce110_optimize_bandwidth(
struct dc *dc,
struct dc_state *context)
{
struct clk_mgr *dccg = dc->clk_mgr;
dce110_set_displaymarks(dc, context);
if (dccg)
dccg->funcs->update_clocks(
dccg,
context,
true);
}
static void dce110_program_front_end_for_pipe(
struct dc *dc, struct pipe_ctx *pipe_ctx)
{
struct mem_input *mi = pipe_ctx->plane_res.mi;
struct dc_plane_state *plane_state = pipe_ctx->plane_state;
struct xfm_grph_csc_adjustment adjust;
struct out_csc_color_matrix tbl_entry;
unsigned int i;
struct dce_hwseq *hws = dc->hwseq;
DC_LOGGER_INIT();
memset(&tbl_entry, 0, sizeof(tbl_entry));
memset(&adjust, 0, sizeof(adjust));
adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
dce_enable_fe_clock(dc->hwseq, mi->inst, true);
set_default_colors(pipe_ctx);
if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
== true) {
tbl_entry.color_space =
pipe_ctx->stream->output_color_space;
for (i = 0; i < 12; i++)
tbl_entry.regval[i] =
pipe_ctx->stream->csc_color_matrix.matrix[i];
pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
(pipe_ctx->plane_res.xfm, &tbl_entry);
}
if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
adjust.temperature_matrix[i] =
pipe_ctx->stream->gamut_remap_matrix.matrix[i];
}
pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
program_scaler(dc, pipe_ctx);
mi->funcs->mem_input_program_surface_config(
mi,
plane_state->format,
&plane_state->tiling_info,
&plane_state->plane_size,
plane_state->rotation,
NULL,
false);
if (mi->funcs->set_blank)
mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
if (dc->config.gpu_vm_support)
mi->funcs->mem_input_program_pte_vm(
pipe_ctx->plane_res.mi,
plane_state->format,
&plane_state->tiling_info,
plane_state->rotation);
/* Moved programming gamma from dc to hwss */
if (pipe_ctx->plane_state->update_flags.bits.full_update ||
pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
pipe_ctx->plane_state->update_flags.bits.gamma_change)
hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
if (pipe_ctx->plane_state->update_flags.bits.full_update)
hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
DC_LOG_SURFACE(
"Pipe:%d %p: addr hi:0x%x, "
"addr low:0x%x, "
"src: %d, %d, %d,"
" %d; dst: %d, %d, %d, %d;"
"clip: %d, %d, %d, %d\n",
pipe_ctx->pipe_idx,
(void *) pipe_ctx->plane_state,
pipe_ctx->plane_state->address.grph.addr.high_part,
pipe_ctx->plane_state->address.grph.addr.low_part,
pipe_ctx->plane_state->src_rect.x,
pipe_ctx->plane_state->src_rect.y,
pipe_ctx->plane_state->src_rect.width,
pipe_ctx->plane_state->src_rect.height,
pipe_ctx->plane_state->dst_rect.x,
pipe_ctx->plane_state->dst_rect.y,
pipe_ctx->plane_state->dst_rect.width,
pipe_ctx->plane_state->dst_rect.height,
pipe_ctx->plane_state->clip_rect.x,
pipe_ctx->plane_state->clip_rect.y,
pipe_ctx->plane_state->clip_rect.width,
pipe_ctx->plane_state->clip_rect.height);
DC_LOG_SURFACE(
"Pipe %d: width, height, x, y\n"
"viewport:%d, %d, %d, %d\n"
"recout: %d, %d, %d, %d\n",
pipe_ctx->pipe_idx,
pipe_ctx->plane_res.scl_data.viewport.width,
pipe_ctx->plane_res.scl_data.viewport.height,
pipe_ctx->plane_res.scl_data.viewport.x,
pipe_ctx->plane_res.scl_data.viewport.y,
pipe_ctx->plane_res.scl_data.recout.width,
pipe_ctx->plane_res.scl_data.recout.height,
pipe_ctx->plane_res.scl_data.recout.x,
pipe_ctx->plane_res.scl_data.recout.y);
}
static void dce110_apply_ctx_for_surface(
struct dc *dc,
const struct dc_stream_state *stream,
int num_planes,
struct dc_state *context)
{
int i;
if (num_planes == 0)
return;
if (dc->fbc_compressor)
dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->stream != stream)
continue;
/* Need to allocate mem before program front end for Fiji */
pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
pipe_ctx->plane_res.mi,
pipe_ctx->stream->timing.h_total,
pipe_ctx->stream->timing.v_total,
pipe_ctx->stream->timing.pix_clk_100hz / 10,
context->stream_count);
dce110_program_front_end_for_pipe(dc, pipe_ctx);
dc->hwss.update_plane_addr(dc, pipe_ctx);
program_surface_visibility(dc, pipe_ctx);
}
if (dc->fbc_compressor)
enable_fbc(dc, context);
}
static void dce110_post_unlock_program_front_end(
struct dc *dc,
struct dc_state *context)
{
}
static void dce110_power_down_fe(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
struct dce_hwseq *hws = dc->hwseq;
int fe_idx = pipe_ctx->plane_res.mi ?
pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
/* Do not power down fe when stream is active on dce*/
if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
return;
hws->funcs.enable_display_power_gating(
dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
dc->res_pool->transforms[fe_idx]);
}
static void dce110_wait_for_mpcc_disconnect(
struct dc *dc,
struct resource_pool *res_pool,
struct pipe_ctx *pipe_ctx)
{
/* do nothing*/
}
static void program_output_csc(struct dc *dc,
struct pipe_ctx *pipe_ctx,
enum dc_color_space colorspace,
uint16_t *matrix,
int opp_id)
{
int i;
struct out_csc_color_matrix tbl_entry;
if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
for (i = 0; i < 12; i++)
tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
tbl_entry.color_space = color_space;
pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
pipe_ctx->plane_res.xfm, &tbl_entry);
}
}
static void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
{
struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
struct mem_input *mi = pipe_ctx->plane_res.mi;
struct dc_cursor_mi_param param = {
.pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
.ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
.viewport = pipe_ctx->plane_res.scl_data.viewport,
.h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
.v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
.rotation = pipe_ctx->plane_state->rotation,
.mirror = pipe_ctx->plane_state->horizontal_mirror
};
/**
* If the cursor's source viewport is clipped then we need to
* translate the cursor to appear in the correct position on
* the screen.
*
* This translation isn't affected by scaling so it needs to be
* done *after* we adjust the position for the scale factor.
*
* This is only done by opt-in for now since there are still
* some usecases like tiled display that might enable the
* cursor on both streams while expecting dc to clip it.
*/
if (pos_cpy.translate_by_source) {
pos_cpy.x += pipe_ctx->plane_state->src_rect.x;
pos_cpy.y += pipe_ctx->plane_state->src_rect.y;
}
if (pipe_ctx->plane_state->address.type
== PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
pos_cpy.enable = false;
if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
pos_cpy.enable = false;
if (ipp->funcs->ipp_cursor_set_position)
ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, ¶m);
if (mi->funcs->set_cursor_position)
mi->funcs->set_cursor_position(mi, &pos_cpy, ¶m);
}
static void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
{
struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
if (pipe_ctx->plane_res.ipp &&
pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
pipe_ctx->plane_res.ipp, attributes);
if (pipe_ctx->plane_res.mi &&
pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
pipe_ctx->plane_res.mi, attributes);
if (pipe_ctx->plane_res.xfm &&
pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
pipe_ctx->plane_res.xfm, attributes);
}
bool dce110_set_backlight_level(struct pipe_ctx *pipe_ctx,
uint32_t backlight_pwm_u16_16,
uint32_t frame_ramp)
{
struct dc_link *link = pipe_ctx->stream->link;
struct dc *dc = link->ctx->dc;
struct abm *abm = pipe_ctx->stream_res.abm;
struct panel_cntl *panel_cntl = link->panel_cntl;
struct dmcu *dmcu = dc->res_pool->dmcu;
bool fw_set_brightness = true;
/* DMCU -1 for all controller id values,
* therefore +1 here
*/
uint32_t controller_id = pipe_ctx->stream_res.tg->inst + 1;
if (abm == NULL || panel_cntl == NULL || (abm->funcs->set_backlight_level_pwm == NULL))
return false;
if (dmcu)
fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
if (!fw_set_brightness && panel_cntl->funcs->driver_set_backlight)
panel_cntl->funcs->driver_set_backlight(panel_cntl, backlight_pwm_u16_16);
else
abm->funcs->set_backlight_level_pwm(
abm,
backlight_pwm_u16_16,
frame_ramp,
controller_id,
link->panel_cntl->inst);
return true;
}
void dce110_set_abm_immediate_disable(struct pipe_ctx *pipe_ctx)
{
struct abm *abm = pipe_ctx->stream_res.abm;
struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
if (abm)
abm->funcs->set_abm_immediate_disable(abm,
pipe_ctx->stream->link->panel_cntl->inst);
if (panel_cntl)
panel_cntl->funcs->store_backlight_level(panel_cntl);
}
void dce110_set_pipe(struct pipe_ctx *pipe_ctx)
{
struct abm *abm = pipe_ctx->stream_res.abm;
struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
uint32_t otg_inst = pipe_ctx->stream_res.tg->inst + 1;
if (abm && panel_cntl)
abm->funcs->set_pipe(abm, otg_inst, panel_cntl->inst);
}
void dce110_enable_lvds_link_output(struct dc_link *link,
const struct link_resource *link_res,
enum clock_source_id clock_source,
uint32_t pixel_clock)
{
link->link_enc->funcs->enable_lvds_output(
link->link_enc,
clock_source,
pixel_clock);
link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
}
void dce110_enable_tmds_link_output(struct dc_link *link,
const struct link_resource *link_res,
enum signal_type signal,
enum clock_source_id clock_source,
enum dc_color_depth color_depth,
uint32_t pixel_clock)
{
link->link_enc->funcs->enable_tmds_output(
link->link_enc,
clock_source,
color_depth,
signal,
pixel_clock);
link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
}
void dce110_enable_dp_link_output(
struct dc_link *link,
const struct link_resource *link_res,
enum signal_type signal,
enum clock_source_id clock_source,
const struct dc_link_settings *link_settings)
{
struct dc *dc = link->ctx->dc;
struct dmcu *dmcu = dc->res_pool->dmcu;
struct pipe_ctx *pipes =
link->dc->current_state->res_ctx.pipe_ctx;
struct clock_source *dp_cs =
link->dc->res_pool->dp_clock_source;
const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
unsigned int i;
/*
* Add the logic to extract BOTH power up and power down sequences
* from enable/disable link output and only call edp panel control
* in enable_link_dp and disable_link_dp once.
*/
if (link->connector_signal == SIGNAL_TYPE_EDP) {
link->dc->hwss.edp_wait_for_hpd_ready(link, true);
}
/* If the current pixel clock source is not DTO(happens after
* switching from HDMI passive dongle to DP on the same connector),
* switch the pixel clock source to DTO.
*/
for (i = 0; i < MAX_PIPES; i++) {
if (pipes[i].stream != NULL &&
pipes[i].stream->link == link) {
if (pipes[i].clock_source != NULL &&
pipes[i].clock_source->id != CLOCK_SOURCE_ID_DP_DTO) {
pipes[i].clock_source = dp_cs;
pipes[i].stream_res.pix_clk_params.requested_pix_clk_100hz =
pipes[i].stream->timing.pix_clk_100hz;
pipes[i].clock_source->funcs->program_pix_clk(
pipes[i].clock_source,
&pipes[i].stream_res.pix_clk_params,
dc->link_srv->dp_get_encoding_format(link_settings),
&pipes[i].pll_settings);
}
}
}
if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_8b_10b_ENCODING) {
if (dc->clk_mgr->funcs->notify_link_rate_change)
dc->clk_mgr->funcs->notify_link_rate_change(dc->clk_mgr, link);
}
if (dmcu != NULL && dmcu->funcs->lock_phy)
dmcu->funcs->lock_phy(dmcu);
if (link_hwss->ext.enable_dp_link_output)
link_hwss->ext.enable_dp_link_output(link, link_res, signal,
clock_source, link_settings);
link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
if (dmcu != NULL && dmcu->funcs->unlock_phy)
dmcu->funcs->unlock_phy(dmcu);
dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_ENABLE_LINK_PHY);
}
void dce110_disable_link_output(struct dc_link *link,
const struct link_resource *link_res,
enum signal_type signal)
{
struct dc *dc = link->ctx->dc;
const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
struct dmcu *dmcu = dc->res_pool->dmcu;
if (signal == SIGNAL_TYPE_EDP &&
link->dc->hwss.edp_backlight_control)
link->dc->hwss.edp_backlight_control(link, false);
else if (dmcu != NULL && dmcu->funcs->lock_phy)
dmcu->funcs->lock_phy(dmcu);
link_hwss->disable_link_output(link, link_res, signal);
link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF;
/*
* Add the logic to extract BOTH power up and power down sequences
* from enable/disable link output and only call edp panel control
* in enable_link_dp and disable_link_dp once.
*/
if (dmcu != NULL && dmcu->funcs->lock_phy)
dmcu->funcs->unlock_phy(dmcu);
dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_DISABLE_LINK_PHY);
}
static const struct hw_sequencer_funcs dce110_funcs = {
.program_gamut_remap = program_gamut_remap,
.program_output_csc = program_output_csc,
.init_hw = init_hw,
.apply_ctx_to_hw = dce110_apply_ctx_to_hw,
.apply_ctx_for_surface = dce110_apply_ctx_for_surface,
.post_unlock_program_front_end = dce110_post_unlock_program_front_end,
.update_plane_addr = update_plane_addr,
.update_pending_status = dce110_update_pending_status,
.enable_accelerated_mode = dce110_enable_accelerated_mode,
.enable_timing_synchronization = dce110_enable_timing_synchronization,
.enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
.update_info_frame = dce110_update_info_frame,
.enable_stream = dce110_enable_stream,
.disable_stream = dce110_disable_stream,
.unblank_stream = dce110_unblank_stream,
.blank_stream = dce110_blank_stream,
.enable_audio_stream = dce110_enable_audio_stream,
.disable_audio_stream = dce110_disable_audio_stream,
.disable_plane = dce110_power_down_fe,
.pipe_control_lock = dce_pipe_control_lock,
.interdependent_update_lock = NULL,
.cursor_lock = dce_pipe_control_lock,
.prepare_bandwidth = dce110_prepare_bandwidth,
.optimize_bandwidth = dce110_optimize_bandwidth,
.set_drr = set_drr,
.get_position = get_position,
.set_static_screen_control = set_static_screen_control,
.setup_stereo = NULL,
.set_avmute = dce110_set_avmute,
.wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
.edp_backlight_control = dce110_edp_backlight_control,
.edp_power_control = dce110_edp_power_control,
.edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
.set_cursor_position = dce110_set_cursor_position,
.set_cursor_attribute = dce110_set_cursor_attribute,
.set_backlight_level = dce110_set_backlight_level,
.set_abm_immediate_disable = dce110_set_abm_immediate_disable,
.set_pipe = dce110_set_pipe,
.enable_lvds_link_output = dce110_enable_lvds_link_output,
.enable_tmds_link_output = dce110_enable_tmds_link_output,
.enable_dp_link_output = dce110_enable_dp_link_output,
.disable_link_output = dce110_disable_link_output,
};
static const struct hwseq_private_funcs dce110_private_funcs = {
.init_pipes = init_pipes,
.update_plane_addr = update_plane_addr,
.set_input_transfer_func = dce110_set_input_transfer_func,
.set_output_transfer_func = dce110_set_output_transfer_func,
.power_down = dce110_power_down,
.enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
.enable_display_power_gating = dce110_enable_display_power_gating,
.reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
.enable_stream_timing = dce110_enable_stream_timing,
.disable_stream_gating = NULL,
.enable_stream_gating = NULL,
.edp_backlight_control = dce110_edp_backlight_control,
};
void dce110_hw_sequencer_construct(struct dc *dc)
{
dc->hwss = dce110_funcs;
dc->hwseq->funcs = dce110_private_funcs;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dce110/dce110_hw_sequencer.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "link_encoder.h"
#include "stream_encoder.h"
#include "resource.h"
#include "dce110/dce110_resource.h"
#include "include/irq_service_interface.h"
#include "dce/dce_audio.h"
#include "dce110/dce110_timing_generator.h"
#include "irq/dce110/irq_service_dce110.h"
#include "dce110/dce110_timing_generator_v.h"
#include "dce/dce_link_encoder.h"
#include "dce/dce_stream_encoder.h"
#include "dce/dce_mem_input.h"
#include "dce110/dce110_mem_input_v.h"
#include "dce/dce_ipp.h"
#include "dce/dce_transform.h"
#include "dce110/dce110_transform_v.h"
#include "dce/dce_opp.h"
#include "dce110/dce110_opp_v.h"
#include "dce/dce_clock_source.h"
#include "dce/dce_hwseq.h"
#include "dce110/dce110_hw_sequencer.h"
#include "dce/dce_aux.h"
#include "dce/dce_abm.h"
#include "dce/dce_dmcu.h"
#include "dce/dce_i2c.h"
#include "dce/dce_panel_cntl.h"
#define DC_LOGGER \
dc->ctx->logger
#include "dce110/dce110_compressor.h"
#include "reg_helper.h"
#include "dce/dce_11_0_d.h"
#include "dce/dce_11_0_sh_mask.h"
#ifndef mmMC_HUB_RDREQ_DMIF_LIMIT
#include "gmc/gmc_8_2_d.h"
#include "gmc/gmc_8_2_sh_mask.h"
#endif
#ifndef mmDP_DPHY_INTERNAL_CTRL
#define mmDP_DPHY_INTERNAL_CTRL 0x4aa7
#define mmDP0_DP_DPHY_INTERNAL_CTRL 0x4aa7
#define mmDP1_DP_DPHY_INTERNAL_CTRL 0x4ba7
#define mmDP2_DP_DPHY_INTERNAL_CTRL 0x4ca7
#define mmDP3_DP_DPHY_INTERNAL_CTRL 0x4da7
#define mmDP4_DP_DPHY_INTERNAL_CTRL 0x4ea7
#define mmDP5_DP_DPHY_INTERNAL_CTRL 0x4fa7
#define mmDP6_DP_DPHY_INTERNAL_CTRL 0x54a7
#define mmDP7_DP_DPHY_INTERNAL_CTRL 0x56a7
#define mmDP8_DP_DPHY_INTERNAL_CTRL 0x57a7
#endif
#ifndef mmBIOS_SCRATCH_2
#define mmBIOS_SCRATCH_2 0x05CB
#define mmBIOS_SCRATCH_3 0x05CC
#define mmBIOS_SCRATCH_6 0x05CF
#endif
#ifndef mmDP_DPHY_BS_SR_SWAP_CNTL
#define mmDP_DPHY_BS_SR_SWAP_CNTL 0x4ADC
#define mmDP0_DP_DPHY_BS_SR_SWAP_CNTL 0x4ADC
#define mmDP1_DP_DPHY_BS_SR_SWAP_CNTL 0x4BDC
#define mmDP2_DP_DPHY_BS_SR_SWAP_CNTL 0x4CDC
#define mmDP3_DP_DPHY_BS_SR_SWAP_CNTL 0x4DDC
#define mmDP4_DP_DPHY_BS_SR_SWAP_CNTL 0x4EDC
#define mmDP5_DP_DPHY_BS_SR_SWAP_CNTL 0x4FDC
#define mmDP6_DP_DPHY_BS_SR_SWAP_CNTL 0x54DC
#endif
#ifndef mmDP_DPHY_FAST_TRAINING
#define mmDP_DPHY_FAST_TRAINING 0x4ABC
#define mmDP0_DP_DPHY_FAST_TRAINING 0x4ABC
#define mmDP1_DP_DPHY_FAST_TRAINING 0x4BBC
#define mmDP2_DP_DPHY_FAST_TRAINING 0x4CBC
#define mmDP3_DP_DPHY_FAST_TRAINING 0x4DBC
#define mmDP4_DP_DPHY_FAST_TRAINING 0x4EBC
#define mmDP5_DP_DPHY_FAST_TRAINING 0x4FBC
#define mmDP6_DP_DPHY_FAST_TRAINING 0x54BC
#endif
#ifndef DPHY_RX_FAST_TRAINING_CAPABLE
#define DPHY_RX_FAST_TRAINING_CAPABLE 0x1
#endif
static const struct dce110_timing_generator_offsets dce110_tg_offsets[] = {
{
.crtc = (mmCRTC0_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP0_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC1_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP1_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC2_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP2_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC3_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP3_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC4_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP4_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC5_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP5_GRPH_CONTROL - mmGRPH_CONTROL),
}
};
/* set register offset */
#define SR(reg_name)\
.reg_name = mm ## reg_name
/* set register offset with instance */
#define SRI(reg_name, block, id)\
.reg_name = mm ## block ## id ## _ ## reg_name
static const struct dce_dmcu_registers dmcu_regs = {
DMCU_DCE110_COMMON_REG_LIST()
};
static const struct dce_dmcu_shift dmcu_shift = {
DMCU_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_dmcu_mask dmcu_mask = {
DMCU_MASK_SH_LIST_DCE110(_MASK)
};
static const struct dce_abm_registers abm_regs = {
ABM_DCE110_COMMON_REG_LIST()
};
static const struct dce_abm_shift abm_shift = {
ABM_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_abm_mask abm_mask = {
ABM_MASK_SH_LIST_DCE110(_MASK)
};
#define ipp_regs(id)\
[id] = {\
IPP_DCE110_REG_LIST_DCE_BASE(id)\
}
static const struct dce_ipp_registers ipp_regs[] = {
ipp_regs(0),
ipp_regs(1),
ipp_regs(2)
};
static const struct dce_ipp_shift ipp_shift = {
IPP_DCE100_MASK_SH_LIST_DCE_COMMON_BASE(__SHIFT)
};
static const struct dce_ipp_mask ipp_mask = {
IPP_DCE100_MASK_SH_LIST_DCE_COMMON_BASE(_MASK)
};
#define transform_regs(id)\
[id] = {\
XFM_COMMON_REG_LIST_DCE110(id)\
}
static const struct dce_transform_registers xfm_regs[] = {
transform_regs(0),
transform_regs(1),
transform_regs(2)
};
static const struct dce_transform_shift xfm_shift = {
XFM_COMMON_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_transform_mask xfm_mask = {
XFM_COMMON_MASK_SH_LIST_DCE110(_MASK)
};
#define aux_regs(id)\
[id] = {\
AUX_REG_LIST(id)\
}
static const struct dce110_link_enc_aux_registers link_enc_aux_regs[] = {
aux_regs(0),
aux_regs(1),
aux_regs(2),
aux_regs(3),
aux_regs(4),
aux_regs(5)
};
#define hpd_regs(id)\
[id] = {\
HPD_REG_LIST(id)\
}
static const struct dce110_link_enc_hpd_registers link_enc_hpd_regs[] = {
hpd_regs(0),
hpd_regs(1),
hpd_regs(2),
hpd_regs(3),
hpd_regs(4),
hpd_regs(5)
};
#define link_regs(id)\
[id] = {\
LE_DCE110_REG_LIST(id)\
}
static const struct dce110_link_enc_registers link_enc_regs[] = {
link_regs(0),
link_regs(1),
link_regs(2),
link_regs(3),
link_regs(4),
link_regs(5),
link_regs(6),
};
#define stream_enc_regs(id)\
[id] = {\
SE_COMMON_REG_LIST(id),\
.TMDS_CNTL = 0,\
}
static const struct dce110_stream_enc_registers stream_enc_regs[] = {
stream_enc_regs(0),
stream_enc_regs(1),
stream_enc_regs(2)
};
static const struct dce_stream_encoder_shift se_shift = {
SE_COMMON_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_stream_encoder_mask se_mask = {
SE_COMMON_MASK_SH_LIST_DCE110(_MASK)
};
static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
{ DCE_PANEL_CNTL_REG_LIST() }
};
static const struct dce_panel_cntl_shift panel_cntl_shift = {
DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
};
static const struct dce_panel_cntl_mask panel_cntl_mask = {
DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
};
static const struct dce110_aux_registers_shift aux_shift = {
DCE_AUX_MASK_SH_LIST(__SHIFT)
};
static const struct dce110_aux_registers_mask aux_mask = {
DCE_AUX_MASK_SH_LIST(_MASK)
};
#define opp_regs(id)\
[id] = {\
OPP_DCE_110_REG_LIST(id),\
}
static const struct dce_opp_registers opp_regs[] = {
opp_regs(0),
opp_regs(1),
opp_regs(2),
opp_regs(3),
opp_regs(4),
opp_regs(5)
};
static const struct dce_opp_shift opp_shift = {
OPP_COMMON_MASK_SH_LIST_DCE_110(__SHIFT)
};
static const struct dce_opp_mask opp_mask = {
OPP_COMMON_MASK_SH_LIST_DCE_110(_MASK)
};
#define aux_engine_regs(id)\
[id] = {\
AUX_COMMON_REG_LIST(id), \
.AUX_RESET_MASK = 0 \
}
static const struct dce110_aux_registers aux_engine_regs[] = {
aux_engine_regs(0),
aux_engine_regs(1),
aux_engine_regs(2),
aux_engine_regs(3),
aux_engine_regs(4),
aux_engine_regs(5)
};
#define audio_regs(id)\
[id] = {\
AUD_COMMON_REG_LIST(id)\
}
static const struct dce_audio_registers audio_regs[] = {
audio_regs(0),
audio_regs(1),
audio_regs(2),
audio_regs(3),
audio_regs(4),
audio_regs(5),
audio_regs(6),
};
static const struct dce_audio_shift audio_shift = {
AUD_COMMON_MASK_SH_LIST(__SHIFT)
};
static const struct dce_audio_mask audio_mask = {
AUD_COMMON_MASK_SH_LIST(_MASK)
};
/* AG TBD Needs to be reduced back to 3 pipes once dce10 hw sequencer implemented. */
#define clk_src_regs(id)\
[id] = {\
CS_COMMON_REG_LIST_DCE_100_110(id),\
}
static const struct dce110_clk_src_regs clk_src_regs[] = {
clk_src_regs(0),
clk_src_regs(1),
clk_src_regs(2)
};
static const struct dce110_clk_src_shift cs_shift = {
CS_COMMON_MASK_SH_LIST_DCE_COMMON_BASE(__SHIFT)
};
static const struct dce110_clk_src_mask cs_mask = {
CS_COMMON_MASK_SH_LIST_DCE_COMMON_BASE(_MASK)
};
static const struct bios_registers bios_regs = {
.BIOS_SCRATCH_3 = mmBIOS_SCRATCH_3,
.BIOS_SCRATCH_6 = mmBIOS_SCRATCH_6
};
static const struct resource_caps carrizo_resource_cap = {
.num_timing_generator = 3,
.num_video_plane = 1,
.num_audio = 3,
.num_stream_encoder = 3,
.num_pll = 2,
.num_ddc = 3,
};
static const struct resource_caps stoney_resource_cap = {
.num_timing_generator = 2,
.num_video_plane = 1,
.num_audio = 3,
.num_stream_encoder = 3,
.num_pll = 2,
.num_ddc = 3,
};
static const struct dc_plane_cap plane_cap = {
.type = DC_PLANE_TYPE_DCE_RGB,
.per_pixel_alpha = 1,
.pixel_format_support = {
.argb8888 = true,
.nv12 = false,
.fp16 = true
},
.max_upscale_factor = {
.argb8888 = 16000,
.nv12 = 1,
.fp16 = 1
},
.max_downscale_factor = {
.argb8888 = 250,
.nv12 = 1,
.fp16 = 1
},
64,
64
};
static const struct dc_debug_options debug_defaults = {
.enable_legacy_fast_update = true,
};
static const struct dc_plane_cap underlay_plane_cap = {
.type = DC_PLANE_TYPE_DCE_UNDERLAY,
.per_pixel_alpha = 1,
.pixel_format_support = {
.argb8888 = false,
.nv12 = true,
.fp16 = false
},
.max_upscale_factor = {
.argb8888 = 1,
.nv12 = 16000,
.fp16 = 1
},
.max_downscale_factor = {
.argb8888 = 1,
.nv12 = 250,
.fp16 = 1
},
64,
64
};
#define CTX ctx
#define REG(reg) mm ## reg
#ifndef mmCC_DC_HDMI_STRAPS
#define mmCC_DC_HDMI_STRAPS 0x4819
#define CC_DC_HDMI_STRAPS__HDMI_DISABLE_MASK 0x40
#define CC_DC_HDMI_STRAPS__HDMI_DISABLE__SHIFT 0x6
#define CC_DC_HDMI_STRAPS__AUDIO_STREAM_NUMBER_MASK 0x700
#define CC_DC_HDMI_STRAPS__AUDIO_STREAM_NUMBER__SHIFT 0x8
#endif
static int map_transmitter_id_to_phy_instance(
enum transmitter transmitter)
{
switch (transmitter) {
case TRANSMITTER_UNIPHY_A:
return 0;
case TRANSMITTER_UNIPHY_B:
return 1;
case TRANSMITTER_UNIPHY_C:
return 2;
case TRANSMITTER_UNIPHY_D:
return 3;
case TRANSMITTER_UNIPHY_E:
return 4;
case TRANSMITTER_UNIPHY_F:
return 5;
case TRANSMITTER_UNIPHY_G:
return 6;
default:
ASSERT(0);
return 0;
}
}
static void read_dce_straps(
struct dc_context *ctx,
struct resource_straps *straps)
{
REG_GET_2(CC_DC_HDMI_STRAPS,
HDMI_DISABLE, &straps->hdmi_disable,
AUDIO_STREAM_NUMBER, &straps->audio_stream_number);
REG_GET(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO, &straps->dc_pinstraps_audio);
}
static struct audio *create_audio(
struct dc_context *ctx, unsigned int inst)
{
return dce_audio_create(ctx, inst,
&audio_regs[inst], &audio_shift, &audio_mask);
}
static struct timing_generator *dce110_timing_generator_create(
struct dc_context *ctx,
uint32_t instance,
const struct dce110_timing_generator_offsets *offsets)
{
struct dce110_timing_generator *tg110 =
kzalloc(sizeof(struct dce110_timing_generator), GFP_KERNEL);
if (!tg110)
return NULL;
dce110_timing_generator_construct(tg110, ctx, instance, offsets);
return &tg110->base;
}
static struct stream_encoder *dce110_stream_encoder_create(
enum engine_id eng_id,
struct dc_context *ctx)
{
struct dce110_stream_encoder *enc110 =
kzalloc(sizeof(struct dce110_stream_encoder), GFP_KERNEL);
if (!enc110)
return NULL;
dce110_stream_encoder_construct(enc110, ctx, ctx->dc_bios, eng_id,
&stream_enc_regs[eng_id],
&se_shift, &se_mask);
return &enc110->base;
}
#define SRII(reg_name, block, id)\
.reg_name[id] = mm ## block ## id ## _ ## reg_name
static const struct dce_hwseq_registers hwseq_stoney_reg = {
HWSEQ_ST_REG_LIST()
};
static const struct dce_hwseq_registers hwseq_cz_reg = {
HWSEQ_CZ_REG_LIST()
};
static const struct dce_hwseq_shift hwseq_shift = {
HWSEQ_DCE11_MASK_SH_LIST(__SHIFT),
};
static const struct dce_hwseq_mask hwseq_mask = {
HWSEQ_DCE11_MASK_SH_LIST(_MASK),
};
static struct dce_hwseq *dce110_hwseq_create(
struct dc_context *ctx)
{
struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
if (hws) {
hws->ctx = ctx;
hws->regs = ASIC_REV_IS_STONEY(ctx->asic_id.hw_internal_rev) ?
&hwseq_stoney_reg : &hwseq_cz_reg;
hws->shifts = &hwseq_shift;
hws->masks = &hwseq_mask;
hws->wa.blnd_crtc_trigger = true;
}
return hws;
}
static const struct resource_create_funcs res_create_funcs = {
.read_dce_straps = read_dce_straps,
.create_audio = create_audio,
.create_stream_encoder = dce110_stream_encoder_create,
.create_hwseq = dce110_hwseq_create,
};
#define mi_inst_regs(id) { \
MI_DCE11_REG_LIST(id), \
.MC_HUB_RDREQ_DMIF_LIMIT = mmMC_HUB_RDREQ_DMIF_LIMIT \
}
static const struct dce_mem_input_registers mi_regs[] = {
mi_inst_regs(0),
mi_inst_regs(1),
mi_inst_regs(2),
};
static const struct dce_mem_input_shift mi_shifts = {
MI_DCE11_MASK_SH_LIST(__SHIFT),
.ENABLE = MC_HUB_RDREQ_DMIF_LIMIT__ENABLE__SHIFT
};
static const struct dce_mem_input_mask mi_masks = {
MI_DCE11_MASK_SH_LIST(_MASK),
.ENABLE = MC_HUB_RDREQ_DMIF_LIMIT__ENABLE_MASK
};
static struct mem_input *dce110_mem_input_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_mem_input *dce_mi = kzalloc(sizeof(struct dce_mem_input),
GFP_KERNEL);
if (!dce_mi) {
BREAK_TO_DEBUGGER();
return NULL;
}
dce_mem_input_construct(dce_mi, ctx, inst, &mi_regs[inst], &mi_shifts, &mi_masks);
dce_mi->wa.single_head_rdreq_dmif_limit = 3;
return &dce_mi->base;
}
static void dce110_transform_destroy(struct transform **xfm)
{
kfree(TO_DCE_TRANSFORM(*xfm));
*xfm = NULL;
}
static struct transform *dce110_transform_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_transform *transform =
kzalloc(sizeof(struct dce_transform), GFP_KERNEL);
if (!transform)
return NULL;
dce_transform_construct(transform, ctx, inst,
&xfm_regs[inst], &xfm_shift, &xfm_mask);
return &transform->base;
}
static struct input_pixel_processor *dce110_ipp_create(
struct dc_context *ctx, uint32_t inst)
{
struct dce_ipp *ipp = kzalloc(sizeof(struct dce_ipp), GFP_KERNEL);
if (!ipp) {
BREAK_TO_DEBUGGER();
return NULL;
}
dce_ipp_construct(ipp, ctx, inst,
&ipp_regs[inst], &ipp_shift, &ipp_mask);
return &ipp->base;
}
static const struct encoder_feature_support link_enc_feature = {
.max_hdmi_deep_color = COLOR_DEPTH_121212,
.max_hdmi_pixel_clock = 300000,
.flags.bits.IS_HBR2_CAPABLE = true,
.flags.bits.IS_TPS3_CAPABLE = true
};
static struct link_encoder *dce110_link_encoder_create(
struct dc_context *ctx,
const struct encoder_init_data *enc_init_data)
{
struct dce110_link_encoder *enc110 =
kzalloc(sizeof(struct dce110_link_encoder), GFP_KERNEL);
int link_regs_id;
if (!enc110)
return NULL;
link_regs_id =
map_transmitter_id_to_phy_instance(enc_init_data->transmitter);
dce110_link_encoder_construct(enc110,
enc_init_data,
&link_enc_feature,
&link_enc_regs[link_regs_id],
&link_enc_aux_regs[enc_init_data->channel - 1],
&link_enc_hpd_regs[enc_init_data->hpd_source]);
return &enc110->base;
}
static struct panel_cntl *dce110_panel_cntl_create(const struct panel_cntl_init_data *init_data)
{
struct dce_panel_cntl *panel_cntl =
kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
if (!panel_cntl)
return NULL;
dce_panel_cntl_construct(panel_cntl,
init_data,
&panel_cntl_regs[init_data->inst],
&panel_cntl_shift,
&panel_cntl_mask);
return &panel_cntl->base;
}
static struct output_pixel_processor *dce110_opp_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce110_opp *opp =
kzalloc(sizeof(struct dce110_opp), GFP_KERNEL);
if (!opp)
return NULL;
dce110_opp_construct(opp,
ctx, inst, &opp_regs[inst], &opp_shift, &opp_mask);
return &opp->base;
}
static struct dce_aux *dce110_aux_engine_create(
struct dc_context *ctx,
uint32_t inst)
{
struct aux_engine_dce110 *aux_engine =
kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
if (!aux_engine)
return NULL;
dce110_aux_engine_construct(aux_engine, ctx, inst,
SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
&aux_engine_regs[inst],
&aux_mask,
&aux_shift,
ctx->dc->caps.extended_aux_timeout_support);
return &aux_engine->base;
}
#define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) }
static const struct dce_i2c_registers i2c_hw_regs[] = {
i2c_inst_regs(1),
i2c_inst_regs(2),
i2c_inst_regs(3),
i2c_inst_regs(4),
i2c_inst_regs(5),
i2c_inst_regs(6),
};
static const struct dce_i2c_shift i2c_shifts = {
I2C_COMMON_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_i2c_mask i2c_masks = {
I2C_COMMON_MASK_SH_LIST_DCE110(_MASK)
};
static struct dce_i2c_hw *dce110_i2c_hw_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_i2c_hw *dce_i2c_hw =
kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
if (!dce_i2c_hw)
return NULL;
dce100_i2c_hw_construct(dce_i2c_hw, ctx, inst,
&i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
return dce_i2c_hw;
}
static struct clock_source *dce110_clock_source_create(
struct dc_context *ctx,
struct dc_bios *bios,
enum clock_source_id id,
const struct dce110_clk_src_regs *regs,
bool dp_clk_src)
{
struct dce110_clk_src *clk_src =
kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
if (!clk_src)
return NULL;
if (dce110_clk_src_construct(clk_src, ctx, bios, id,
regs, &cs_shift, &cs_mask)) {
clk_src->base.dp_clk_src = dp_clk_src;
return &clk_src->base;
}
kfree(clk_src);
BREAK_TO_DEBUGGER();
return NULL;
}
static void dce110_clock_source_destroy(struct clock_source **clk_src)
{
struct dce110_clk_src *dce110_clk_src;
if (!clk_src)
return;
dce110_clk_src = TO_DCE110_CLK_SRC(*clk_src);
kfree(dce110_clk_src->dp_ss_params);
kfree(dce110_clk_src->hdmi_ss_params);
kfree(dce110_clk_src->dvi_ss_params);
kfree(dce110_clk_src);
*clk_src = NULL;
}
static void dce110_resource_destruct(struct dce110_resource_pool *pool)
{
unsigned int i;
for (i = 0; i < pool->base.pipe_count; i++) {
if (pool->base.opps[i] != NULL)
dce110_opp_destroy(&pool->base.opps[i]);
if (pool->base.transforms[i] != NULL)
dce110_transform_destroy(&pool->base.transforms[i]);
if (pool->base.ipps[i] != NULL)
dce_ipp_destroy(&pool->base.ipps[i]);
if (pool->base.mis[i] != NULL) {
kfree(TO_DCE_MEM_INPUT(pool->base.mis[i]));
pool->base.mis[i] = NULL;
}
if (pool->base.timing_generators[i] != NULL) {
kfree(DCE110TG_FROM_TG(pool->base.timing_generators[i]));
pool->base.timing_generators[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
if (pool->base.engines[i] != NULL)
dce110_engine_destroy(&pool->base.engines[i]);
if (pool->base.hw_i2cs[i] != NULL) {
kfree(pool->base.hw_i2cs[i]);
pool->base.hw_i2cs[i] = NULL;
}
if (pool->base.sw_i2cs[i] != NULL) {
kfree(pool->base.sw_i2cs[i]);
pool->base.sw_i2cs[i] = NULL;
}
}
for (i = 0; i < pool->base.stream_enc_count; i++) {
if (pool->base.stream_enc[i] != NULL)
kfree(DCE110STRENC_FROM_STRENC(pool->base.stream_enc[i]));
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] != NULL) {
dce110_clock_source_destroy(&pool->base.clock_sources[i]);
}
}
if (pool->base.dp_clock_source != NULL)
dce110_clock_source_destroy(&pool->base.dp_clock_source);
for (i = 0; i < pool->base.audio_count; i++) {
if (pool->base.audios[i] != NULL) {
dce_aud_destroy(&pool->base.audios[i]);
}
}
if (pool->base.abm != NULL)
dce_abm_destroy(&pool->base.abm);
if (pool->base.dmcu != NULL)
dce_dmcu_destroy(&pool->base.dmcu);
if (pool->base.irqs != NULL) {
dal_irq_service_destroy(&pool->base.irqs);
}
}
static void get_pixel_clock_parameters(
const struct pipe_ctx *pipe_ctx,
struct pixel_clk_params *pixel_clk_params)
{
const struct dc_stream_state *stream = pipe_ctx->stream;
/*TODO: is this halved for YCbCr 420? in that case we might want to move
* the pixel clock normalization for hdmi up to here instead of doing it
* in pll_adjust_pix_clk
*/
pixel_clk_params->requested_pix_clk_100hz = stream->timing.pix_clk_100hz;
pixel_clk_params->encoder_object_id = stream->link->link_enc->id;
pixel_clk_params->signal_type = pipe_ctx->stream->signal;
pixel_clk_params->controller_id = pipe_ctx->stream_res.tg->inst + 1;
/* TODO: un-hardcode*/
pixel_clk_params->requested_sym_clk = LINK_RATE_LOW *
LINK_RATE_REF_FREQ_IN_KHZ;
pixel_clk_params->flags.ENABLE_SS = 0;
pixel_clk_params->color_depth =
stream->timing.display_color_depth;
pixel_clk_params->flags.DISPLAY_BLANKED = 1;
pixel_clk_params->flags.SUPPORT_YCBCR420 = (stream->timing.pixel_encoding ==
PIXEL_ENCODING_YCBCR420);
pixel_clk_params->pixel_encoding = stream->timing.pixel_encoding;
if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422) {
pixel_clk_params->color_depth = COLOR_DEPTH_888;
}
if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
pixel_clk_params->requested_pix_clk_100hz = pixel_clk_params->requested_pix_clk_100hz / 2;
}
if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
pixel_clk_params->requested_pix_clk_100hz *= 2;
}
void dce110_resource_build_pipe_hw_param(struct pipe_ctx *pipe_ctx)
{
get_pixel_clock_parameters(pipe_ctx, &pipe_ctx->stream_res.pix_clk_params);
pipe_ctx->clock_source->funcs->get_pix_clk_dividers(
pipe_ctx->clock_source,
&pipe_ctx->stream_res.pix_clk_params,
&pipe_ctx->pll_settings);
resource_build_bit_depth_reduction_params(pipe_ctx->stream,
&pipe_ctx->stream->bit_depth_params);
pipe_ctx->stream->clamping.pixel_encoding = pipe_ctx->stream->timing.pixel_encoding;
}
static bool is_surface_pixel_format_supported(struct pipe_ctx *pipe_ctx, unsigned int underlay_idx)
{
if (pipe_ctx->pipe_idx != underlay_idx)
return true;
if (!pipe_ctx->plane_state)
return false;
if (pipe_ctx->plane_state->format < SURFACE_PIXEL_FORMAT_VIDEO_BEGIN)
return false;
return true;
}
static enum dc_status build_mapped_resource(
const struct dc *dc,
struct dc_state *context,
struct dc_stream_state *stream)
{
struct pipe_ctx *pipe_ctx = resource_get_otg_master_for_stream(&context->res_ctx, stream);
if (!pipe_ctx)
return DC_ERROR_UNEXPECTED;
if (!is_surface_pixel_format_supported(pipe_ctx,
dc->res_pool->underlay_pipe_index))
return DC_SURFACE_PIXEL_FORMAT_UNSUPPORTED;
dce110_resource_build_pipe_hw_param(pipe_ctx);
/* TODO: validate audio ASIC caps, encoder */
resource_build_info_frame(pipe_ctx);
return DC_OK;
}
static bool dce110_validate_bandwidth(
struct dc *dc,
struct dc_state *context,
bool fast_validate)
{
bool result = false;
DC_LOG_BANDWIDTH_CALCS(
"%s: start",
__func__);
if (bw_calcs(
dc->ctx,
dc->bw_dceip,
dc->bw_vbios,
context->res_ctx.pipe_ctx,
dc->res_pool->pipe_count,
&context->bw_ctx.bw.dce))
result = true;
if (!result)
DC_LOG_BANDWIDTH_VALIDATION("%s: %dx%d@%d Bandwidth validation failed!\n",
__func__,
context->streams[0]->timing.h_addressable,
context->streams[0]->timing.v_addressable,
context->streams[0]->timing.pix_clk_100hz / 10);
if (memcmp(&dc->current_state->bw_ctx.bw.dce,
&context->bw_ctx.bw.dce, sizeof(context->bw_ctx.bw.dce))) {
DC_LOG_BANDWIDTH_CALCS(
"%s: finish,\n"
"nbpMark_b: %d nbpMark_a: %d urgentMark_b: %d urgentMark_a: %d\n"
"stutMark_b: %d stutMark_a: %d\n"
"nbpMark_b: %d nbpMark_a: %d urgentMark_b: %d urgentMark_a: %d\n"
"stutMark_b: %d stutMark_a: %d\n"
"nbpMark_b: %d nbpMark_a: %d urgentMark_b: %d urgentMark_a: %d\n"
"stutMark_b: %d stutMark_a: %d stutter_mode_enable: %d\n"
"cstate: %d pstate: %d nbpstate: %d sync: %d dispclk: %d\n"
"sclk: %d sclk_sleep: %d yclk: %d blackout_recovery_time_us: %d\n"
,
__func__,
context->bw_ctx.bw.dce.nbp_state_change_wm_ns[0].b_mark,
context->bw_ctx.bw.dce.nbp_state_change_wm_ns[0].a_mark,
context->bw_ctx.bw.dce.urgent_wm_ns[0].b_mark,
context->bw_ctx.bw.dce.urgent_wm_ns[0].a_mark,
context->bw_ctx.bw.dce.stutter_exit_wm_ns[0].b_mark,
context->bw_ctx.bw.dce.stutter_exit_wm_ns[0].a_mark,
context->bw_ctx.bw.dce.nbp_state_change_wm_ns[1].b_mark,
context->bw_ctx.bw.dce.nbp_state_change_wm_ns[1].a_mark,
context->bw_ctx.bw.dce.urgent_wm_ns[1].b_mark,
context->bw_ctx.bw.dce.urgent_wm_ns[1].a_mark,
context->bw_ctx.bw.dce.stutter_exit_wm_ns[1].b_mark,
context->bw_ctx.bw.dce.stutter_exit_wm_ns[1].a_mark,
context->bw_ctx.bw.dce.nbp_state_change_wm_ns[2].b_mark,
context->bw_ctx.bw.dce.nbp_state_change_wm_ns[2].a_mark,
context->bw_ctx.bw.dce.urgent_wm_ns[2].b_mark,
context->bw_ctx.bw.dce.urgent_wm_ns[2].a_mark,
context->bw_ctx.bw.dce.stutter_exit_wm_ns[2].b_mark,
context->bw_ctx.bw.dce.stutter_exit_wm_ns[2].a_mark,
context->bw_ctx.bw.dce.stutter_mode_enable,
context->bw_ctx.bw.dce.cpuc_state_change_enable,
context->bw_ctx.bw.dce.cpup_state_change_enable,
context->bw_ctx.bw.dce.nbp_state_change_enable,
context->bw_ctx.bw.dce.all_displays_in_sync,
context->bw_ctx.bw.dce.dispclk_khz,
context->bw_ctx.bw.dce.sclk_khz,
context->bw_ctx.bw.dce.sclk_deep_sleep_khz,
context->bw_ctx.bw.dce.yclk_khz,
context->bw_ctx.bw.dce.blackout_recovery_time_us);
}
return result;
}
static enum dc_status dce110_validate_plane(const struct dc_plane_state *plane_state,
struct dc_caps *caps)
{
if (((plane_state->dst_rect.width * 2) < plane_state->src_rect.width) ||
((plane_state->dst_rect.height * 2) < plane_state->src_rect.height))
return DC_FAIL_SURFACE_VALIDATE;
return DC_OK;
}
static bool dce110_validate_surface_sets(
struct dc_state *context)
{
int i, j;
for (i = 0; i < context->stream_count; i++) {
if (context->stream_status[i].plane_count == 0)
continue;
if (context->stream_status[i].plane_count > 2)
return false;
for (j = 0; j < context->stream_status[i].plane_count; j++) {
struct dc_plane_state *plane =
context->stream_status[i].plane_states[j];
/* underlay validation */
if (plane->format >= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN) {
if ((plane->src_rect.width > 1920 ||
plane->src_rect.height > 1080))
return false;
/* we don't have the logic to support underlay
* only yet so block the use case where we get
* NV12 plane as top layer
*/
if (j == 0)
return false;
/* irrespective of plane format,
* stream should be RGB encoded
*/
if (context->streams[i]->timing.pixel_encoding
!= PIXEL_ENCODING_RGB)
return false;
}
}
}
return true;
}
static enum dc_status dce110_validate_global(
struct dc *dc,
struct dc_state *context)
{
if (!dce110_validate_surface_sets(context))
return DC_FAIL_SURFACE_VALIDATE;
return DC_OK;
}
static enum dc_status dce110_add_stream_to_ctx(
struct dc *dc,
struct dc_state *new_ctx,
struct dc_stream_state *dc_stream)
{
enum dc_status result = DC_ERROR_UNEXPECTED;
result = resource_map_pool_resources(dc, new_ctx, dc_stream);
if (result == DC_OK)
result = resource_map_clock_resources(dc, new_ctx, dc_stream);
if (result == DC_OK)
result = build_mapped_resource(dc, new_ctx, dc_stream);
return result;
}
static struct pipe_ctx *dce110_acquire_underlay(
const struct dc_state *cur_ctx,
struct dc_state *new_ctx,
const struct resource_pool *pool,
const struct pipe_ctx *opp_head_pipe)
{
struct dc_stream_state *stream = opp_head_pipe->stream;
struct dc *dc = stream->ctx->dc;
struct dce_hwseq *hws = dc->hwseq;
struct resource_context *res_ctx = &new_ctx->res_ctx;
unsigned int underlay_idx = pool->underlay_pipe_index;
struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[underlay_idx];
if (res_ctx->pipe_ctx[underlay_idx].stream)
return NULL;
pipe_ctx->stream_res.tg = pool->timing_generators[underlay_idx];
pipe_ctx->plane_res.mi = pool->mis[underlay_idx];
/*pipe_ctx->plane_res.ipp = res_ctx->pool->ipps[underlay_idx];*/
pipe_ctx->plane_res.xfm = pool->transforms[underlay_idx];
pipe_ctx->stream_res.opp = pool->opps[underlay_idx];
pipe_ctx->pipe_idx = underlay_idx;
pipe_ctx->stream = stream;
if (!dc->current_state->res_ctx.pipe_ctx[underlay_idx].stream) {
struct tg_color black_color = {0};
struct dc_bios *dcb = dc->ctx->dc_bios;
hws->funcs.enable_display_power_gating(
dc,
pipe_ctx->stream_res.tg->inst,
dcb, PIPE_GATING_CONTROL_DISABLE);
/*
* This is for powering on underlay, so crtc does not
* need to be enabled
*/
pipe_ctx->stream_res.tg->funcs->program_timing(pipe_ctx->stream_res.tg,
&stream->timing,
0,
0,
0,
0,
pipe_ctx->stream->signal,
false);
pipe_ctx->stream_res.tg->funcs->enable_advanced_request(
pipe_ctx->stream_res.tg,
true,
&stream->timing);
pipe_ctx->plane_res.mi->funcs->allocate_mem_input(pipe_ctx->plane_res.mi,
stream->timing.h_total,
stream->timing.v_total,
stream->timing.pix_clk_100hz / 10,
new_ctx->stream_count);
color_space_to_black_color(dc,
COLOR_SPACE_YCBCR601, &black_color);
pipe_ctx->stream_res.tg->funcs->set_blank_color(
pipe_ctx->stream_res.tg,
&black_color);
}
return pipe_ctx;
}
static void dce110_destroy_resource_pool(struct resource_pool **pool)
{
struct dce110_resource_pool *dce110_pool = TO_DCE110_RES_POOL(*pool);
dce110_resource_destruct(dce110_pool);
kfree(dce110_pool);
*pool = NULL;
}
struct stream_encoder *dce110_find_first_free_match_stream_enc_for_link(
struct resource_context *res_ctx,
const struct resource_pool *pool,
struct dc_stream_state *stream)
{
int i;
int j = -1;
struct dc_link *link = stream->link;
for (i = 0; i < pool->stream_enc_count; i++) {
if (!res_ctx->is_stream_enc_acquired[i] &&
pool->stream_enc[i]) {
/* Store first available for MST second display
* in daisy chain use case
*/
j = i;
if (pool->stream_enc[i]->id ==
link->link_enc->preferred_engine)
return pool->stream_enc[i];
}
}
/*
* For CZ and later, we can allow DIG FE and BE to differ for all display types
*/
if (j >= 0)
return pool->stream_enc[j];
return NULL;
}
static const struct resource_funcs dce110_res_pool_funcs = {
.destroy = dce110_destroy_resource_pool,
.link_enc_create = dce110_link_encoder_create,
.panel_cntl_create = dce110_panel_cntl_create,
.validate_bandwidth = dce110_validate_bandwidth,
.validate_plane = dce110_validate_plane,
.acquire_free_pipe_as_secondary_dpp_pipe = dce110_acquire_underlay,
.add_stream_to_ctx = dce110_add_stream_to_ctx,
.validate_global = dce110_validate_global,
.find_first_free_match_stream_enc_for_link = dce110_find_first_free_match_stream_enc_for_link
};
static bool underlay_create(struct dc_context *ctx, struct resource_pool *pool)
{
struct dce110_timing_generator *dce110_tgv = kzalloc(sizeof(*dce110_tgv),
GFP_KERNEL);
struct dce_transform *dce110_xfmv = kzalloc(sizeof(*dce110_xfmv),
GFP_KERNEL);
struct dce_mem_input *dce110_miv = kzalloc(sizeof(*dce110_miv),
GFP_KERNEL);
struct dce110_opp *dce110_oppv = kzalloc(sizeof(*dce110_oppv),
GFP_KERNEL);
if (!dce110_tgv || !dce110_xfmv || !dce110_miv || !dce110_oppv) {
kfree(dce110_tgv);
kfree(dce110_xfmv);
kfree(dce110_miv);
kfree(dce110_oppv);
return false;
}
dce110_opp_v_construct(dce110_oppv, ctx);
dce110_timing_generator_v_construct(dce110_tgv, ctx);
dce110_mem_input_v_construct(dce110_miv, ctx);
dce110_transform_v_construct(dce110_xfmv, ctx);
pool->opps[pool->pipe_count] = &dce110_oppv->base;
pool->timing_generators[pool->pipe_count] = &dce110_tgv->base;
pool->mis[pool->pipe_count] = &dce110_miv->base;
pool->transforms[pool->pipe_count] = &dce110_xfmv->base;
pool->pipe_count++;
/* update the public caps to indicate an underlay is available */
ctx->dc->caps.max_slave_planes = 1;
ctx->dc->caps.max_slave_yuv_planes = 1;
ctx->dc->caps.max_slave_rgb_planes = 0;
return true;
}
static void bw_calcs_data_update_from_pplib(struct dc *dc)
{
struct dm_pp_clock_levels clks = {0};
/*do system clock*/
dm_pp_get_clock_levels_by_type(
dc->ctx,
DM_PP_CLOCK_TYPE_ENGINE_CLK,
&clks);
/* convert all the clock fro kHz to fix point mHz */
dc->bw_vbios->high_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels-1], 1000);
dc->bw_vbios->mid1_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels/8], 1000);
dc->bw_vbios->mid2_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels*2/8], 1000);
dc->bw_vbios->mid3_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels*3/8], 1000);
dc->bw_vbios->mid4_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels*4/8], 1000);
dc->bw_vbios->mid5_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels*5/8], 1000);
dc->bw_vbios->mid6_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels*6/8], 1000);
dc->bw_vbios->low_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[0], 1000);
dc->sclk_lvls = clks;
/*do display clock*/
dm_pp_get_clock_levels_by_type(
dc->ctx,
DM_PP_CLOCK_TYPE_DISPLAY_CLK,
&clks);
dc->bw_vbios->high_voltage_max_dispclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels-1], 1000);
dc->bw_vbios->mid_voltage_max_dispclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels>>1], 1000);
dc->bw_vbios->low_voltage_max_dispclk = bw_frc_to_fixed(
clks.clocks_in_khz[0], 1000);
/*do memory clock*/
dm_pp_get_clock_levels_by_type(
dc->ctx,
DM_PP_CLOCK_TYPE_MEMORY_CLK,
&clks);
dc->bw_vbios->low_yclk = bw_frc_to_fixed(
clks.clocks_in_khz[0] * MEMORY_TYPE_MULTIPLIER_CZ, 1000);
dc->bw_vbios->mid_yclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels>>1] * MEMORY_TYPE_MULTIPLIER_CZ,
1000);
dc->bw_vbios->high_yclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels-1] * MEMORY_TYPE_MULTIPLIER_CZ,
1000);
}
static const struct resource_caps *dce110_resource_cap(
struct hw_asic_id *asic_id)
{
if (ASIC_REV_IS_STONEY(asic_id->hw_internal_rev))
return &stoney_resource_cap;
else
return &carrizo_resource_cap;
}
static bool dce110_resource_construct(
uint8_t num_virtual_links,
struct dc *dc,
struct dce110_resource_pool *pool,
struct hw_asic_id asic_id)
{
unsigned int i;
struct dc_context *ctx = dc->ctx;
struct dc_bios *bp;
ctx->dc_bios->regs = &bios_regs;
pool->base.res_cap = dce110_resource_cap(&ctx->asic_id);
pool->base.funcs = &dce110_res_pool_funcs;
/*************************************************
* Resource + asic cap harcoding *
*************************************************/
pool->base.pipe_count = pool->base.res_cap->num_timing_generator;
pool->base.underlay_pipe_index = pool->base.pipe_count;
pool->base.timing_generator_count = pool->base.res_cap->num_timing_generator;
dc->caps.max_downscale_ratio = 150;
dc->caps.i2c_speed_in_khz = 40;
dc->caps.i2c_speed_in_khz_hdcp = 40;
dc->caps.max_cursor_size = 128;
dc->caps.min_horizontal_blanking_period = 80;
dc->caps.is_apu = true;
dc->caps.extended_aux_timeout_support = false;
dc->debug = debug_defaults;
/*************************************************
* Create resources *
*************************************************/
bp = ctx->dc_bios;
if (bp->fw_info_valid && bp->fw_info.external_clock_source_frequency_for_dp != 0) {
pool->base.dp_clock_source =
dce110_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_EXTERNAL, NULL, true);
pool->base.clock_sources[0] =
dce110_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL0,
&clk_src_regs[0], false);
pool->base.clock_sources[1] =
dce110_clock_source_create(ctx, bp, CLOCK_SOURCE_ID_PLL1,
&clk_src_regs[1], false);
pool->base.clk_src_count = 2;
/* TODO: find out if CZ support 3 PLLs */
}
if (pool->base.dp_clock_source == NULL) {
dm_error("DC: failed to create dp clock source!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] == NULL) {
dm_error("DC: failed to create clock sources!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
}
pool->base.dmcu = dce_dmcu_create(ctx,
&dmcu_regs,
&dmcu_shift,
&dmcu_mask);
if (pool->base.dmcu == NULL) {
dm_error("DC: failed to create dmcu!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
pool->base.abm = dce_abm_create(ctx,
&abm_regs,
&abm_shift,
&abm_mask);
if (pool->base.abm == NULL) {
dm_error("DC: failed to create abm!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
{
struct irq_service_init_data init_data;
init_data.ctx = dc->ctx;
pool->base.irqs = dal_irq_service_dce110_create(&init_data);
if (!pool->base.irqs)
goto res_create_fail;
}
for (i = 0; i < pool->base.pipe_count; i++) {
pool->base.timing_generators[i] = dce110_timing_generator_create(
ctx, i, &dce110_tg_offsets[i]);
if (pool->base.timing_generators[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create tg!\n");
goto res_create_fail;
}
pool->base.mis[i] = dce110_mem_input_create(ctx, i);
if (pool->base.mis[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create memory input!\n");
goto res_create_fail;
}
pool->base.ipps[i] = dce110_ipp_create(ctx, i);
if (pool->base.ipps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create input pixel processor!\n");
goto res_create_fail;
}
pool->base.transforms[i] = dce110_transform_create(ctx, i);
if (pool->base.transforms[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create transform!\n");
goto res_create_fail;
}
pool->base.opps[i] = dce110_opp_create(ctx, i);
if (pool->base.opps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create output pixel processor!\n");
goto res_create_fail;
}
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
pool->base.engines[i] = dce110_aux_engine_create(ctx, i);
if (pool->base.engines[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create aux engine!!\n");
goto res_create_fail;
}
pool->base.hw_i2cs[i] = dce110_i2c_hw_create(ctx, i);
if (pool->base.hw_i2cs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create i2c engine!!\n");
goto res_create_fail;
}
pool->base.sw_i2cs[i] = NULL;
}
if (dc->config.fbc_support)
dc->fbc_compressor = dce110_compressor_create(ctx);
if (!underlay_create(ctx, &pool->base))
goto res_create_fail;
if (!resource_construct(num_virtual_links, dc, &pool->base,
&res_create_funcs))
goto res_create_fail;
/* Create hardware sequencer */
dce110_hw_sequencer_construct(dc);
dc->caps.max_planes = pool->base.pipe_count;
for (i = 0; i < pool->base.underlay_pipe_index; ++i)
dc->caps.planes[i] = plane_cap;
dc->caps.planes[pool->base.underlay_pipe_index] = underlay_plane_cap;
bw_calcs_init(dc->bw_dceip, dc->bw_vbios, dc->ctx->asic_id);
bw_calcs_data_update_from_pplib(dc);
return true;
res_create_fail:
dce110_resource_destruct(pool);
return false;
}
struct resource_pool *dce110_create_resource_pool(
uint8_t num_virtual_links,
struct dc *dc,
struct hw_asic_id asic_id)
{
struct dce110_resource_pool *pool =
kzalloc(sizeof(struct dce110_resource_pool), GFP_KERNEL);
if (!pool)
return NULL;
if (dce110_resource_construct(num_virtual_links, dc, pool, asic_id))
return &pool->base;
kfree(pool);
BREAK_TO_DEBUGGER();
return NULL;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dce110/dce110_resource.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dce110_transform_v.h"
#include "dm_services.h"
#include "dc.h"
#include "dce/dce_11_0_d.h"
#include "dce/dce_11_0_sh_mask.h"
#define SCLV_PHASES 64
#define DC_LOGGER \
xfm->ctx->logger
struct sclv_ratios_inits {
uint32_t h_int_scale_ratio_luma;
uint32_t h_int_scale_ratio_chroma;
uint32_t v_int_scale_ratio_luma;
uint32_t v_int_scale_ratio_chroma;
struct init_int_and_frac h_init_luma;
struct init_int_and_frac h_init_chroma;
struct init_int_and_frac v_init_luma;
struct init_int_and_frac v_init_chroma;
};
static void calculate_viewport(
const struct scaler_data *scl_data,
struct rect *luma_viewport,
struct rect *chroma_viewport)
{
/*Do not set chroma vp for rgb444 pixel format*/
luma_viewport->x = scl_data->viewport.x - scl_data->viewport.x % 2;
luma_viewport->y = scl_data->viewport.y - scl_data->viewport.y % 2;
luma_viewport->width =
scl_data->viewport.width - scl_data->viewport.width % 2;
luma_viewport->height =
scl_data->viewport.height - scl_data->viewport.height % 2;
chroma_viewport->x = luma_viewport->x;
chroma_viewport->y = luma_viewport->y;
chroma_viewport->height = luma_viewport->height;
chroma_viewport->width = luma_viewport->width;
if (scl_data->format == PIXEL_FORMAT_420BPP8) {
luma_viewport->height += luma_viewport->height % 2;
luma_viewport->width += luma_viewport->width % 2;
/*for 420 video chroma is 1/4 the area of luma, scaled
*vertically and horizontally
*/
chroma_viewport->x = luma_viewport->x / 2;
chroma_viewport->y = luma_viewport->y / 2;
chroma_viewport->height = luma_viewport->height / 2;
chroma_viewport->width = luma_viewport->width / 2;
}
}
static void program_viewport(
struct dce_transform *xfm_dce,
struct rect *luma_view_port,
struct rect *chroma_view_port)
{
struct dc_context *ctx = xfm_dce->base.ctx;
uint32_t value = 0;
uint32_t addr = 0;
if (luma_view_port->width != 0 && luma_view_port->height != 0) {
addr = mmSCLV_VIEWPORT_START;
value = 0;
set_reg_field_value(
value,
luma_view_port->x,
SCLV_VIEWPORT_START,
VIEWPORT_X_START);
set_reg_field_value(
value,
luma_view_port->y,
SCLV_VIEWPORT_START,
VIEWPORT_Y_START);
dm_write_reg(ctx, addr, value);
addr = mmSCLV_VIEWPORT_SIZE;
value = 0;
set_reg_field_value(
value,
luma_view_port->height,
SCLV_VIEWPORT_SIZE,
VIEWPORT_HEIGHT);
set_reg_field_value(
value,
luma_view_port->width,
SCLV_VIEWPORT_SIZE,
VIEWPORT_WIDTH);
dm_write_reg(ctx, addr, value);
}
if (chroma_view_port->width != 0 && chroma_view_port->height != 0) {
addr = mmSCLV_VIEWPORT_START_C;
value = 0;
set_reg_field_value(
value,
chroma_view_port->x,
SCLV_VIEWPORT_START_C,
VIEWPORT_X_START_C);
set_reg_field_value(
value,
chroma_view_port->y,
SCLV_VIEWPORT_START_C,
VIEWPORT_Y_START_C);
dm_write_reg(ctx, addr, value);
addr = mmSCLV_VIEWPORT_SIZE_C;
value = 0;
set_reg_field_value(
value,
chroma_view_port->height,
SCLV_VIEWPORT_SIZE_C,
VIEWPORT_HEIGHT_C);
set_reg_field_value(
value,
chroma_view_port->width,
SCLV_VIEWPORT_SIZE_C,
VIEWPORT_WIDTH_C);
dm_write_reg(ctx, addr, value);
}
}
/*
* Function:
* void setup_scaling_configuration
*
* Purpose: setup scaling mode : bypass, RGb, YCbCr and nummber of taps
* Input: data
*
* Output:
* void
*/
static bool setup_scaling_configuration(
struct dce_transform *xfm_dce,
const struct scaler_data *data)
{
bool is_scaling_needed = false;
struct dc_context *ctx = xfm_dce->base.ctx;
uint32_t value = 0;
set_reg_field_value(value, data->taps.h_taps - 1,
SCLV_TAP_CONTROL, SCL_H_NUM_OF_TAPS);
set_reg_field_value(value, data->taps.v_taps - 1,
SCLV_TAP_CONTROL, SCL_V_NUM_OF_TAPS);
set_reg_field_value(value, data->taps.h_taps_c - 1,
SCLV_TAP_CONTROL, SCL_H_NUM_OF_TAPS_C);
set_reg_field_value(value, data->taps.v_taps_c - 1,
SCLV_TAP_CONTROL, SCL_V_NUM_OF_TAPS_C);
dm_write_reg(ctx, mmSCLV_TAP_CONTROL, value);
value = 0;
if (data->taps.h_taps + data->taps.v_taps > 2) {
set_reg_field_value(value, 1, SCLV_MODE, SCL_MODE);
set_reg_field_value(value, 1, SCLV_MODE, SCL_PSCL_EN);
is_scaling_needed = true;
} else {
set_reg_field_value(value, 0, SCLV_MODE, SCL_MODE);
set_reg_field_value(value, 0, SCLV_MODE, SCL_PSCL_EN);
}
if (data->taps.h_taps_c + data->taps.v_taps_c > 2) {
set_reg_field_value(value, 1, SCLV_MODE, SCL_MODE_C);
set_reg_field_value(value, 1, SCLV_MODE, SCL_PSCL_EN_C);
is_scaling_needed = true;
} else if (data->format != PIXEL_FORMAT_420BPP8) {
set_reg_field_value(
value,
get_reg_field_value(value, SCLV_MODE, SCL_MODE),
SCLV_MODE,
SCL_MODE_C);
set_reg_field_value(
value,
get_reg_field_value(value, SCLV_MODE, SCL_PSCL_EN),
SCLV_MODE,
SCL_PSCL_EN_C);
} else {
set_reg_field_value(value, 0, SCLV_MODE, SCL_MODE_C);
set_reg_field_value(value, 0, SCLV_MODE, SCL_PSCL_EN_C);
}
dm_write_reg(ctx, mmSCLV_MODE, value);
value = 0;
/*
* 0 - Replaced out of bound pixels with black pixel
* (or any other required color)
* 1 - Replaced out of bound pixels with the edge pixel
*/
set_reg_field_value(value, 1, SCLV_CONTROL, SCL_BOUNDARY_MODE);
dm_write_reg(ctx, mmSCLV_CONTROL, value);
return is_scaling_needed;
}
/*
* Function:
* void program_overscan
*
* Purpose: Programs overscan border
* Input: overscan
*
* Output: void
*/
static void program_overscan(
struct dce_transform *xfm_dce,
const struct scaler_data *data)
{
uint32_t overscan_left_right = 0;
uint32_t overscan_top_bottom = 0;
int overscan_right = data->h_active - data->recout.x - data->recout.width;
int overscan_bottom = data->v_active - data->recout.y - data->recout.height;
if (xfm_dce->base.ctx->dc->debug.visual_confirm != VISUAL_CONFIRM_DISABLE) {
overscan_bottom += 2;
overscan_right += 2;
}
if (overscan_right < 0) {
BREAK_TO_DEBUGGER();
overscan_right = 0;
}
if (overscan_bottom < 0) {
BREAK_TO_DEBUGGER();
overscan_bottom = 0;
}
set_reg_field_value(overscan_left_right, data->recout.x,
EXT_OVERSCAN_LEFT_RIGHT, EXT_OVERSCAN_LEFT);
set_reg_field_value(overscan_left_right, overscan_right,
EXT_OVERSCAN_LEFT_RIGHT, EXT_OVERSCAN_RIGHT);
set_reg_field_value(overscan_top_bottom, data->recout.y,
EXT_OVERSCAN_TOP_BOTTOM, EXT_OVERSCAN_TOP);
set_reg_field_value(overscan_top_bottom, overscan_bottom,
EXT_OVERSCAN_TOP_BOTTOM, EXT_OVERSCAN_BOTTOM);
dm_write_reg(xfm_dce->base.ctx,
mmSCLV_EXT_OVERSCAN_LEFT_RIGHT,
overscan_left_right);
dm_write_reg(xfm_dce->base.ctx,
mmSCLV_EXT_OVERSCAN_TOP_BOTTOM,
overscan_top_bottom);
}
static void set_coeff_update_complete(
struct dce_transform *xfm_dce)
{
uint32_t value;
value = dm_read_reg(xfm_dce->base.ctx, mmSCLV_UPDATE);
set_reg_field_value(value, 1, SCLV_UPDATE, SCL_COEF_UPDATE_COMPLETE);
dm_write_reg(xfm_dce->base.ctx, mmSCLV_UPDATE, value);
}
static void program_multi_taps_filter(
struct dce_transform *xfm_dce,
int taps,
const uint16_t *coeffs,
enum ram_filter_type filter_type)
{
struct dc_context *ctx = xfm_dce->base.ctx;
int i, phase, pair;
int array_idx = 0;
int taps_pairs = (taps + 1) / 2;
int phases_to_program = SCLV_PHASES / 2 + 1;
uint32_t select = 0;
uint32_t power_ctl, power_ctl_off;
if (!coeffs)
return;
/*We need to disable power gating on coeff memory to do programming*/
power_ctl = dm_read_reg(ctx, mmDCFEV_MEM_PWR_CTRL);
power_ctl_off = power_ctl;
set_reg_field_value(power_ctl_off, 1, DCFEV_MEM_PWR_CTRL, SCLV_COEFF_MEM_PWR_DIS);
dm_write_reg(ctx, mmDCFEV_MEM_PWR_CTRL, power_ctl_off);
/*Wait to disable gating:*/
for (i = 0; i < 10; i++) {
if (get_reg_field_value(
dm_read_reg(ctx, mmDCFEV_MEM_PWR_STATUS),
DCFEV_MEM_PWR_STATUS,
SCLV_COEFF_MEM_PWR_STATE) == 0)
break;
udelay(1);
}
set_reg_field_value(select, filter_type, SCLV_COEF_RAM_SELECT, SCL_C_RAM_FILTER_TYPE);
for (phase = 0; phase < phases_to_program; phase++) {
/*we always program N/2 + 1 phases, total phases N, but N/2-1 are just mirror
phase 0 is unique and phase N/2 is unique if N is even*/
set_reg_field_value(select, phase, SCLV_COEF_RAM_SELECT, SCL_C_RAM_PHASE);
for (pair = 0; pair < taps_pairs; pair++) {
uint32_t data = 0;
set_reg_field_value(select, pair,
SCLV_COEF_RAM_SELECT, SCL_C_RAM_TAP_PAIR_IDX);
dm_write_reg(ctx, mmSCLV_COEF_RAM_SELECT, select);
set_reg_field_value(
data, 1,
SCLV_COEF_RAM_TAP_DATA,
SCL_C_RAM_EVEN_TAP_COEF_EN);
set_reg_field_value(
data, coeffs[array_idx],
SCLV_COEF_RAM_TAP_DATA,
SCL_C_RAM_EVEN_TAP_COEF);
if (taps % 2 && pair == taps_pairs - 1) {
set_reg_field_value(
data, 0,
SCLV_COEF_RAM_TAP_DATA,
SCL_C_RAM_ODD_TAP_COEF_EN);
array_idx++;
} else {
set_reg_field_value(
data, 1,
SCLV_COEF_RAM_TAP_DATA,
SCL_C_RAM_ODD_TAP_COEF_EN);
set_reg_field_value(
data, coeffs[array_idx + 1],
SCLV_COEF_RAM_TAP_DATA,
SCL_C_RAM_ODD_TAP_COEF);
array_idx += 2;
}
dm_write_reg(ctx, mmSCLV_COEF_RAM_TAP_DATA, data);
}
}
/*We need to restore power gating on coeff memory to initial state*/
dm_write_reg(ctx, mmDCFEV_MEM_PWR_CTRL, power_ctl);
}
static void calculate_inits(
struct dce_transform *xfm_dce,
const struct scaler_data *data,
struct sclv_ratios_inits *inits,
struct rect *luma_viewport,
struct rect *chroma_viewport)
{
inits->h_int_scale_ratio_luma =
dc_fixpt_u2d19(data->ratios.horz) << 5;
inits->v_int_scale_ratio_luma =
dc_fixpt_u2d19(data->ratios.vert) << 5;
inits->h_int_scale_ratio_chroma =
dc_fixpt_u2d19(data->ratios.horz_c) << 5;
inits->v_int_scale_ratio_chroma =
dc_fixpt_u2d19(data->ratios.vert_c) << 5;
inits->h_init_luma.integer = 1;
inits->v_init_luma.integer = 1;
inits->h_init_chroma.integer = 1;
inits->v_init_chroma.integer = 1;
}
static void program_scl_ratios_inits(
struct dce_transform *xfm_dce,
struct sclv_ratios_inits *inits)
{
struct dc_context *ctx = xfm_dce->base.ctx;
uint32_t addr = mmSCLV_HORZ_FILTER_SCALE_RATIO;
uint32_t value = 0;
set_reg_field_value(
value,
inits->h_int_scale_ratio_luma,
SCLV_HORZ_FILTER_SCALE_RATIO,
SCL_H_SCALE_RATIO);
dm_write_reg(ctx, addr, value);
addr = mmSCLV_VERT_FILTER_SCALE_RATIO;
value = 0;
set_reg_field_value(
value,
inits->v_int_scale_ratio_luma,
SCLV_VERT_FILTER_SCALE_RATIO,
SCL_V_SCALE_RATIO);
dm_write_reg(ctx, addr, value);
addr = mmSCLV_HORZ_FILTER_SCALE_RATIO_C;
value = 0;
set_reg_field_value(
value,
inits->h_int_scale_ratio_chroma,
SCLV_HORZ_FILTER_SCALE_RATIO_C,
SCL_H_SCALE_RATIO_C);
dm_write_reg(ctx, addr, value);
addr = mmSCLV_VERT_FILTER_SCALE_RATIO_C;
value = 0;
set_reg_field_value(
value,
inits->v_int_scale_ratio_chroma,
SCLV_VERT_FILTER_SCALE_RATIO_C,
SCL_V_SCALE_RATIO_C);
dm_write_reg(ctx, addr, value);
addr = mmSCLV_HORZ_FILTER_INIT;
value = 0;
set_reg_field_value(
value,
inits->h_init_luma.fraction,
SCLV_HORZ_FILTER_INIT,
SCL_H_INIT_FRAC);
set_reg_field_value(
value,
inits->h_init_luma.integer,
SCLV_HORZ_FILTER_INIT,
SCL_H_INIT_INT);
dm_write_reg(ctx, addr, value);
addr = mmSCLV_VERT_FILTER_INIT;
value = 0;
set_reg_field_value(
value,
inits->v_init_luma.fraction,
SCLV_VERT_FILTER_INIT,
SCL_V_INIT_FRAC);
set_reg_field_value(
value,
inits->v_init_luma.integer,
SCLV_VERT_FILTER_INIT,
SCL_V_INIT_INT);
dm_write_reg(ctx, addr, value);
addr = mmSCLV_HORZ_FILTER_INIT_C;
value = 0;
set_reg_field_value(
value,
inits->h_init_chroma.fraction,
SCLV_HORZ_FILTER_INIT_C,
SCL_H_INIT_FRAC_C);
set_reg_field_value(
value,
inits->h_init_chroma.integer,
SCLV_HORZ_FILTER_INIT_C,
SCL_H_INIT_INT_C);
dm_write_reg(ctx, addr, value);
addr = mmSCLV_VERT_FILTER_INIT_C;
value = 0;
set_reg_field_value(
value,
inits->v_init_chroma.fraction,
SCLV_VERT_FILTER_INIT_C,
SCL_V_INIT_FRAC_C);
set_reg_field_value(
value,
inits->v_init_chroma.integer,
SCLV_VERT_FILTER_INIT_C,
SCL_V_INIT_INT_C);
dm_write_reg(ctx, addr, value);
}
static const uint16_t *get_filter_coeffs_64p(int taps, struct fixed31_32 ratio)
{
if (taps == 4)
return get_filter_4tap_64p(ratio);
else if (taps == 2)
return get_filter_2tap_64p();
else if (taps == 1)
return NULL;
else {
/* should never happen, bug */
BREAK_TO_DEBUGGER();
return NULL;
}
}
static bool dce110_xfmv_power_up_line_buffer(struct transform *xfm)
{
struct dce_transform *xfm_dce = TO_DCE_TRANSFORM(xfm);
uint32_t value;
value = dm_read_reg(xfm_dce->base.ctx, mmLBV_MEMORY_CTRL);
/*Use all three pieces of memory always*/
set_reg_field_value(value, 0, LBV_MEMORY_CTRL, LB_MEMORY_CONFIG);
/*hard coded number DCE11 1712(0x6B0) Partitions: 720/960/1712*/
set_reg_field_value(value, xfm_dce->lb_memory_size, LBV_MEMORY_CTRL,
LB_MEMORY_SIZE);
dm_write_reg(xfm_dce->base.ctx, mmLBV_MEMORY_CTRL, value);
return true;
}
static void dce110_xfmv_set_scaler(
struct transform *xfm,
const struct scaler_data *data)
{
struct dce_transform *xfm_dce = TO_DCE_TRANSFORM(xfm);
bool is_scaling_required = false;
bool filter_updated = false;
const uint16_t *coeffs_v, *coeffs_h, *coeffs_h_c, *coeffs_v_c;
struct rect luma_viewport = {0};
struct rect chroma_viewport = {0};
dce110_xfmv_power_up_line_buffer(xfm);
/* 1. Calculate viewport, viewport programming should happen after init
* calculations as they may require an adjustment in the viewport.
*/
calculate_viewport(data, &luma_viewport, &chroma_viewport);
/* 2. Program overscan */
program_overscan(xfm_dce, data);
/* 3. Program taps and configuration */
is_scaling_required = setup_scaling_configuration(xfm_dce, data);
if (is_scaling_required) {
/* 4. Calculate and program ratio, filter initialization */
struct sclv_ratios_inits inits = { 0 };
calculate_inits(
xfm_dce,
data,
&inits,
&luma_viewport,
&chroma_viewport);
program_scl_ratios_inits(xfm_dce, &inits);
coeffs_v = get_filter_coeffs_64p(data->taps.v_taps, data->ratios.vert);
coeffs_h = get_filter_coeffs_64p(data->taps.h_taps, data->ratios.horz);
coeffs_v_c = get_filter_coeffs_64p(data->taps.v_taps_c, data->ratios.vert_c);
coeffs_h_c = get_filter_coeffs_64p(data->taps.h_taps_c, data->ratios.horz_c);
if (coeffs_v != xfm_dce->filter_v
|| coeffs_v_c != xfm_dce->filter_v_c
|| coeffs_h != xfm_dce->filter_h
|| coeffs_h_c != xfm_dce->filter_h_c) {
/* 5. Program vertical filters */
program_multi_taps_filter(
xfm_dce,
data->taps.v_taps,
coeffs_v,
FILTER_TYPE_RGB_Y_VERTICAL);
program_multi_taps_filter(
xfm_dce,
data->taps.v_taps_c,
coeffs_v_c,
FILTER_TYPE_CBCR_VERTICAL);
/* 6. Program horizontal filters */
program_multi_taps_filter(
xfm_dce,
data->taps.h_taps,
coeffs_h,
FILTER_TYPE_RGB_Y_HORIZONTAL);
program_multi_taps_filter(
xfm_dce,
data->taps.h_taps_c,
coeffs_h_c,
FILTER_TYPE_CBCR_HORIZONTAL);
xfm_dce->filter_v = coeffs_v;
xfm_dce->filter_v_c = coeffs_v_c;
xfm_dce->filter_h = coeffs_h;
xfm_dce->filter_h_c = coeffs_h_c;
filter_updated = true;
}
}
/* 7. Program the viewport */
program_viewport(xfm_dce, &luma_viewport, &chroma_viewport);
/* 8. Set bit to flip to new coefficient memory */
if (filter_updated)
set_coeff_update_complete(xfm_dce);
}
static void dce110_xfmv_reset(struct transform *xfm)
{
struct dce_transform *xfm_dce = TO_DCE_TRANSFORM(xfm);
xfm_dce->filter_h = NULL;
xfm_dce->filter_v = NULL;
xfm_dce->filter_h_c = NULL;
xfm_dce->filter_v_c = NULL;
}
static void dce110_xfmv_set_gamut_remap(
struct transform *xfm,
const struct xfm_grph_csc_adjustment *adjust)
{
/* DO NOTHING*/
}
static void dce110_xfmv_set_pixel_storage_depth(
struct transform *xfm,
enum lb_pixel_depth depth,
const struct bit_depth_reduction_params *bit_depth_params)
{
struct dce_transform *xfm_dce = TO_DCE_TRANSFORM(xfm);
int pixel_depth = 0;
int expan_mode = 0;
uint32_t reg_data = 0;
switch (depth) {
case LB_PIXEL_DEPTH_18BPP:
pixel_depth = 2;
expan_mode = 1;
break;
case LB_PIXEL_DEPTH_24BPP:
pixel_depth = 1;
expan_mode = 1;
break;
case LB_PIXEL_DEPTH_30BPP:
pixel_depth = 0;
expan_mode = 1;
break;
case LB_PIXEL_DEPTH_36BPP:
pixel_depth = 3;
expan_mode = 0;
break;
default:
BREAK_TO_DEBUGGER();
break;
}
set_reg_field_value(
reg_data,
expan_mode,
LBV_DATA_FORMAT,
PIXEL_EXPAN_MODE);
set_reg_field_value(
reg_data,
pixel_depth,
LBV_DATA_FORMAT,
PIXEL_DEPTH);
dm_write_reg(xfm->ctx, mmLBV_DATA_FORMAT, reg_data);
if (!(xfm_dce->lb_pixel_depth_supported & depth)) {
/*we should use unsupported capabilities
* unless it is required by w/a*/
DC_LOG_WARNING("%s: Capability not supported",
__func__);
}
}
static const struct transform_funcs dce110_xfmv_funcs = {
.transform_reset = dce110_xfmv_reset,
.transform_set_scaler = dce110_xfmv_set_scaler,
.transform_set_gamut_remap =
dce110_xfmv_set_gamut_remap,
.opp_set_csc_default = dce110_opp_v_set_csc_default,
.opp_set_csc_adjustment = dce110_opp_v_set_csc_adjustment,
.opp_power_on_regamma_lut = dce110_opp_power_on_regamma_lut_v,
.opp_program_regamma_pwl = dce110_opp_program_regamma_pwl_v,
.opp_set_regamma_mode = dce110_opp_set_regamma_mode_v,
.transform_set_pixel_storage_depth =
dce110_xfmv_set_pixel_storage_depth,
.transform_get_optimal_number_of_taps =
dce_transform_get_optimal_number_of_taps
};
/*****************************************/
/* Constructor, Destructor */
/*****************************************/
bool dce110_transform_v_construct(
struct dce_transform *xfm_dce,
struct dc_context *ctx)
{
xfm_dce->base.ctx = ctx;
xfm_dce->base.funcs = &dce110_xfmv_funcs;
xfm_dce->lb_pixel_depth_supported =
LB_PIXEL_DEPTH_18BPP |
LB_PIXEL_DEPTH_24BPP |
LB_PIXEL_DEPTH_30BPP |
LB_PIXEL_DEPTH_36BPP;
xfm_dce->prescaler_on = true;
xfm_dce->lb_bits_per_entry = LB_BITS_PER_ENTRY;
xfm_dce->lb_memory_size = LB_TOTAL_NUMBER_OF_ENTRIES; /*0x6B0*/
return true;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dce110/dce110_transform_v.c |
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dc.h"
#include "core_types.h"
#include "dce120_hw_sequencer.h"
#include "dce/dce_hwseq.h"
#include "dce110/dce110_hw_sequencer.h"
#include "dce/dce_12_0_offset.h"
#include "dce/dce_12_0_sh_mask.h"
#include "soc15_hw_ip.h"
#include "vega10_ip_offset.h"
#include "reg_helper.h"
#define CTX \
hws->ctx
#define REG(reg)\
hws->regs->reg
#undef FN
#define FN(reg_name, field_name) \
hws->shifts->field_name, hws->masks->field_name
struct dce120_hw_seq_reg_offsets {
uint32_t crtc;
};
#if 0
static const struct dce120_hw_seq_reg_offsets reg_offsets[] = {
{
.crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC0_CRTC_GSL_CONTROL),
},
{
.crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC0_CRTC_GSL_CONTROL),
},
{
.crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC0_CRTC_GSL_CONTROL),
},
{
.crtc = (mmCRTC3_CRTC_GSL_CONTROL - mmCRTC0_CRTC_GSL_CONTROL),
},
{
.crtc = (mmCRTC4_CRTC_GSL_CONTROL - mmCRTC0_CRTC_GSL_CONTROL),
},
{
.crtc = (mmCRTC5_CRTC_GSL_CONTROL - mmCRTC0_CRTC_GSL_CONTROL),
}
};
#define HW_REG_CRTC(reg, id)\
(reg + reg_offsets[id].crtc)
#define CNTL_ID(controller_id)\
controller_id
/*******************************************************************************
* Private definitions
******************************************************************************/
static void dce120_init_pte(struct dc_context *ctx, uint8_t controller_id)
{
uint32_t addr;
uint32_t value = 0;
uint32_t chunk_int = 0;
uint32_t chunk_mul = 0;
/*
addr = mmDCP0_DVMM_PTE_CONTROL + controller_id *
(mmDCP1_DVMM_PTE_CONTROL- mmDCP0_DVMM_PTE_CONTROL);
value = dm_read_reg(ctx, addr);
set_reg_field_value(
value, 0, DCP, controller_id,
DVMM_PTE_CONTROL,
DVMM_USE_SINGLE_PTE);
set_reg_field_value_soc15(
value, 1, DCP, controller_id,
DVMM_PTE_CONTROL,
DVMM_PTE_BUFFER_MODE0);
set_reg_field_value_soc15(
value, 1, DCP, controller_id,
DVMM_PTE_CONTROL,
DVMM_PTE_BUFFER_MODE1);
dm_write_reg(ctx, addr, value);*/
addr = mmDVMM_PTE_REQ;
value = dm_read_reg(ctx, addr);
chunk_int = get_reg_field_value(
value,
DVMM_PTE_REQ,
HFLIP_PTEREQ_PER_CHUNK_INT);
chunk_mul = get_reg_field_value(
value,
DVMM_PTE_REQ,
HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
if (chunk_int != 0x4 || chunk_mul != 0x4) {
set_reg_field_value(
value,
255,
DVMM_PTE_REQ,
MAX_PTEREQ_TO_ISSUE);
set_reg_field_value(
value,
4,
DVMM_PTE_REQ,
HFLIP_PTEREQ_PER_CHUNK_INT);
set_reg_field_value(
value,
4,
DVMM_PTE_REQ,
HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
dm_write_reg(ctx, addr, value);
}
}
#endif
static bool dce120_enable_display_power_gating(
struct dc *dc,
uint8_t controller_id,
struct dc_bios *dcb,
enum pipe_gating_control power_gating)
{
/* disable for bringup */
#if 0
enum bp_result bp_result = BP_RESULT_OK;
enum bp_pipe_control_action cntl;
struct dc_context *ctx = dc->ctx;
if (power_gating == PIPE_GATING_CONTROL_INIT)
cntl = ASIC_PIPE_INIT;
else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
cntl = ASIC_PIPE_ENABLE;
else
cntl = ASIC_PIPE_DISABLE;
if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0) {
bp_result = dcb->funcs->enable_disp_power_gating(
dcb, controller_id + 1, cntl);
/* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
* by default when command table is called
*/
dm_write_reg(ctx,
HW_REG_CRTC(mmCRTC0_CRTC_MASTER_UPDATE_MODE, controller_id),
0);
}
if (power_gating != PIPE_GATING_CONTROL_ENABLE)
dce120_init_pte(ctx, controller_id);
if (bp_result == BP_RESULT_OK)
return true;
else
return false;
#endif
return false;
}
static void dce120_update_dchub(
struct dce_hwseq *hws,
struct dchub_init_data *dh_data)
{
/* TODO: port code from dal2 */
switch (dh_data->fb_mode) {
case FRAME_BUFFER_MODE_ZFB_ONLY:
/*For ZFB case need to put DCHUB FB BASE and TOP upside down to indicate ZFB mode*/
REG_UPDATE_2(DCHUB_FB_LOCATION,
FB_TOP, 0,
FB_BASE, 0x0FFFF);
REG_UPDATE(DCHUB_AGP_BASE,
AGP_BASE, dh_data->zfb_phys_addr_base >> 22);
REG_UPDATE(DCHUB_AGP_BOT,
AGP_BOT, dh_data->zfb_mc_base_addr >> 22);
REG_UPDATE(DCHUB_AGP_TOP,
AGP_TOP, (dh_data->zfb_mc_base_addr + dh_data->zfb_size_in_byte - 1) >> 22);
break;
case FRAME_BUFFER_MODE_MIXED_ZFB_AND_LOCAL:
/*Should not touch FB LOCATION (done by VBIOS on AsicInit table)*/
REG_UPDATE(DCHUB_AGP_BASE,
AGP_BASE, dh_data->zfb_phys_addr_base >> 22);
REG_UPDATE(DCHUB_AGP_BOT,
AGP_BOT, dh_data->zfb_mc_base_addr >> 22);
REG_UPDATE(DCHUB_AGP_TOP,
AGP_TOP, (dh_data->zfb_mc_base_addr + dh_data->zfb_size_in_byte - 1) >> 22);
break;
case FRAME_BUFFER_MODE_LOCAL_ONLY:
/*Should not touch FB LOCATION (done by VBIOS on AsicInit table)*/
REG_UPDATE(DCHUB_AGP_BASE,
AGP_BASE, 0);
REG_UPDATE(DCHUB_AGP_BOT,
AGP_BOT, 0x03FFFF);
REG_UPDATE(DCHUB_AGP_TOP,
AGP_TOP, 0);
break;
default:
break;
}
dh_data->dchub_initialzied = true;
dh_data->dchub_info_valid = false;
}
/**
* dce121_xgmi_enabled() - Check if xGMI is enabled
* @hws: DCE hardware sequencer object
*
* Return true if xGMI is enabled. False otherwise.
*/
bool dce121_xgmi_enabled(struct dce_hwseq *hws)
{
uint32_t pf_max_region;
REG_GET(MC_VM_XGMI_LFB_CNTL, PF_MAX_REGION, &pf_max_region);
/* PF_MAX_REGION == 0 means xgmi is disabled */
return !!pf_max_region;
}
void dce120_hw_sequencer_construct(struct dc *dc)
{
/* All registers used by dce11.2 match those in dce11 in offset and
* structure
*/
dce110_hw_sequencer_construct(dc);
dc->hwseq->funcs.enable_display_power_gating = dce120_enable_display_power_gating;
dc->hwss.update_dchub = dce120_update_dchub;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dce120/dce120_hw_sequencer.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.cls
*
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "stream_encoder.h"
#include "resource.h"
#include "include/irq_service_interface.h"
#include "dce120_resource.h"
#include "dce112/dce112_resource.h"
#include "dce110/dce110_resource.h"
#include "../virtual/virtual_stream_encoder.h"
#include "dce120_timing_generator.h"
#include "irq/dce120/irq_service_dce120.h"
#include "dce/dce_opp.h"
#include "dce/dce_clock_source.h"
#include "dce/dce_ipp.h"
#include "dce/dce_mem_input.h"
#include "dce/dce_panel_cntl.h"
#include "dce110/dce110_hw_sequencer.h"
#include "dce120/dce120_hw_sequencer.h"
#include "dce/dce_transform.h"
#include "clk_mgr.h"
#include "dce/dce_audio.h"
#include "dce/dce_link_encoder.h"
#include "dce/dce_stream_encoder.h"
#include "dce/dce_hwseq.h"
#include "dce/dce_abm.h"
#include "dce/dce_dmcu.h"
#include "dce/dce_aux.h"
#include "dce/dce_i2c.h"
#include "dce/dce_12_0_offset.h"
#include "dce/dce_12_0_sh_mask.h"
#include "soc15_hw_ip.h"
#include "vega10_ip_offset.h"
#include "nbio/nbio_6_1_offset.h"
#include "mmhub/mmhub_1_0_offset.h"
#include "mmhub/mmhub_1_0_sh_mask.h"
#include "reg_helper.h"
#include "dce100/dce100_resource.h"
#ifndef mmDP0_DP_DPHY_INTERNAL_CTRL
#define mmDP0_DP_DPHY_INTERNAL_CTRL 0x210f
#define mmDP0_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP1_DP_DPHY_INTERNAL_CTRL 0x220f
#define mmDP1_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP2_DP_DPHY_INTERNAL_CTRL 0x230f
#define mmDP2_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP3_DP_DPHY_INTERNAL_CTRL 0x240f
#define mmDP3_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP4_DP_DPHY_INTERNAL_CTRL 0x250f
#define mmDP4_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP5_DP_DPHY_INTERNAL_CTRL 0x260f
#define mmDP5_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP6_DP_DPHY_INTERNAL_CTRL 0x270f
#define mmDP6_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#endif
enum dce120_clk_src_array_id {
DCE120_CLK_SRC_PLL0,
DCE120_CLK_SRC_PLL1,
DCE120_CLK_SRC_PLL2,
DCE120_CLK_SRC_PLL3,
DCE120_CLK_SRC_PLL4,
DCE120_CLK_SRC_PLL5,
DCE120_CLK_SRC_TOTAL
};
static const struct dce110_timing_generator_offsets dce120_tg_offsets[] = {
{
.crtc = (mmCRTC0_CRTC_CONTROL - mmCRTC0_CRTC_CONTROL),
},
{
.crtc = (mmCRTC1_CRTC_CONTROL - mmCRTC0_CRTC_CONTROL),
},
{
.crtc = (mmCRTC2_CRTC_CONTROL - mmCRTC0_CRTC_CONTROL),
},
{
.crtc = (mmCRTC3_CRTC_CONTROL - mmCRTC0_CRTC_CONTROL),
},
{
.crtc = (mmCRTC4_CRTC_CONTROL - mmCRTC0_CRTC_CONTROL),
},
{
.crtc = (mmCRTC5_CRTC_CONTROL - mmCRTC0_CRTC_CONTROL),
}
};
/* begin *********************
* macros to expend register list macro defined in HW object header file */
#define BASE_INNER(seg) \
DCE_BASE__INST0_SEG ## seg
#define NBIO_BASE_INNER(seg) \
NBIF_BASE__INST0_SEG ## seg
#define NBIO_BASE(seg) \
NBIO_BASE_INNER(seg)
/* compile time expand base address. */
#define BASE(seg) \
BASE_INNER(seg)
#define SR(reg_name)\
.reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
mm ## reg_name
#define SRI(reg_name, block, id)\
.reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
/* MMHUB */
#define MMHUB_BASE_INNER(seg) \
MMHUB_BASE__INST0_SEG ## seg
#define MMHUB_BASE(seg) \
MMHUB_BASE_INNER(seg)
#define MMHUB_SR(reg_name)\
.reg_name = MMHUB_BASE(mm ## reg_name ## _BASE_IDX) + \
mm ## reg_name
/* macros to expend register list macro defined in HW object header file
* end *********************/
static const struct dce_dmcu_registers dmcu_regs = {
DMCU_DCE110_COMMON_REG_LIST()
};
static const struct dce_dmcu_shift dmcu_shift = {
DMCU_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_dmcu_mask dmcu_mask = {
DMCU_MASK_SH_LIST_DCE110(_MASK)
};
static const struct dce_abm_registers abm_regs = {
ABM_DCE110_COMMON_REG_LIST()
};
static const struct dce_abm_shift abm_shift = {
ABM_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_abm_mask abm_mask = {
ABM_MASK_SH_LIST_DCE110(_MASK)
};
#define ipp_regs(id)\
[id] = {\
IPP_DCE110_REG_LIST_DCE_BASE(id)\
}
static const struct dce_ipp_registers ipp_regs[] = {
ipp_regs(0),
ipp_regs(1),
ipp_regs(2),
ipp_regs(3),
ipp_regs(4),
ipp_regs(5)
};
static const struct dce_ipp_shift ipp_shift = {
IPP_DCE120_MASK_SH_LIST_SOC_BASE(__SHIFT)
};
static const struct dce_ipp_mask ipp_mask = {
IPP_DCE120_MASK_SH_LIST_SOC_BASE(_MASK)
};
#define transform_regs(id)\
[id] = {\
XFM_COMMON_REG_LIST_DCE110(id)\
}
static const struct dce_transform_registers xfm_regs[] = {
transform_regs(0),
transform_regs(1),
transform_regs(2),
transform_regs(3),
transform_regs(4),
transform_regs(5)
};
static const struct dce_transform_shift xfm_shift = {
XFM_COMMON_MASK_SH_LIST_SOC_BASE(__SHIFT)
};
static const struct dce_transform_mask xfm_mask = {
XFM_COMMON_MASK_SH_LIST_SOC_BASE(_MASK)
};
#define aux_regs(id)\
[id] = {\
AUX_REG_LIST(id)\
}
static const struct dce110_link_enc_aux_registers link_enc_aux_regs[] = {
aux_regs(0),
aux_regs(1),
aux_regs(2),
aux_regs(3),
aux_regs(4),
aux_regs(5)
};
#define hpd_regs(id)\
[id] = {\
HPD_REG_LIST(id)\
}
static const struct dce110_link_enc_hpd_registers link_enc_hpd_regs[] = {
hpd_regs(0),
hpd_regs(1),
hpd_regs(2),
hpd_regs(3),
hpd_regs(4),
hpd_regs(5)
};
#define link_regs(id)\
[id] = {\
LE_DCE120_REG_LIST(id), \
SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
}
static const struct dce110_link_enc_registers link_enc_regs[] = {
link_regs(0),
link_regs(1),
link_regs(2),
link_regs(3),
link_regs(4),
link_regs(5),
link_regs(6),
};
#define stream_enc_regs(id)\
[id] = {\
SE_COMMON_REG_LIST(id),\
.TMDS_CNTL = 0,\
}
static const struct dce110_stream_enc_registers stream_enc_regs[] = {
stream_enc_regs(0),
stream_enc_regs(1),
stream_enc_regs(2),
stream_enc_regs(3),
stream_enc_regs(4),
stream_enc_regs(5)
};
static const struct dce_stream_encoder_shift se_shift = {
SE_COMMON_MASK_SH_LIST_DCE120(__SHIFT)
};
static const struct dce_stream_encoder_mask se_mask = {
SE_COMMON_MASK_SH_LIST_DCE120(_MASK)
};
static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
{ DCE_PANEL_CNTL_REG_LIST() }
};
static const struct dce_panel_cntl_shift panel_cntl_shift = {
DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
};
static const struct dce_panel_cntl_mask panel_cntl_mask = {
DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
};
static const struct dce110_aux_registers_shift aux_shift = {
DCE12_AUX_MASK_SH_LIST(__SHIFT)
};
static const struct dce110_aux_registers_mask aux_mask = {
DCE12_AUX_MASK_SH_LIST(_MASK)
};
#define opp_regs(id)\
[id] = {\
OPP_DCE_120_REG_LIST(id),\
}
static const struct dce_opp_registers opp_regs[] = {
opp_regs(0),
opp_regs(1),
opp_regs(2),
opp_regs(3),
opp_regs(4),
opp_regs(5)
};
static const struct dce_opp_shift opp_shift = {
OPP_COMMON_MASK_SH_LIST_DCE_120(__SHIFT)
};
static const struct dce_opp_mask opp_mask = {
OPP_COMMON_MASK_SH_LIST_DCE_120(_MASK)
};
#define aux_engine_regs(id)\
[id] = {\
AUX_COMMON_REG_LIST(id), \
.AUX_RESET_MASK = 0 \
}
static const struct dce110_aux_registers aux_engine_regs[] = {
aux_engine_regs(0),
aux_engine_regs(1),
aux_engine_regs(2),
aux_engine_regs(3),
aux_engine_regs(4),
aux_engine_regs(5)
};
#define audio_regs(id)\
[id] = {\
AUD_COMMON_REG_LIST(id)\
}
static const struct dce_audio_registers audio_regs[] = {
audio_regs(0),
audio_regs(1),
audio_regs(2),
audio_regs(3),
audio_regs(4),
audio_regs(5),
audio_regs(6),
};
#define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
static const struct dce_audio_shift audio_shift = {
DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
};
static const struct dce_audio_mask audio_mask = {
DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
};
static int map_transmitter_id_to_phy_instance(
enum transmitter transmitter)
{
switch (transmitter) {
case TRANSMITTER_UNIPHY_A:
return 0;
case TRANSMITTER_UNIPHY_B:
return 1;
case TRANSMITTER_UNIPHY_C:
return 2;
case TRANSMITTER_UNIPHY_D:
return 3;
case TRANSMITTER_UNIPHY_E:
return 4;
case TRANSMITTER_UNIPHY_F:
return 5;
case TRANSMITTER_UNIPHY_G:
return 6;
default:
ASSERT(0);
return 0;
}
}
#define clk_src_regs(index, id)\
[index] = {\
CS_COMMON_REG_LIST_DCE_112(id),\
}
static const struct dce110_clk_src_regs clk_src_regs[] = {
clk_src_regs(0, A),
clk_src_regs(1, B),
clk_src_regs(2, C),
clk_src_regs(3, D),
clk_src_regs(4, E),
clk_src_regs(5, F)
};
static const struct dce110_clk_src_shift cs_shift = {
CS_COMMON_MASK_SH_LIST_DCE_112(__SHIFT)
};
static const struct dce110_clk_src_mask cs_mask = {
CS_COMMON_MASK_SH_LIST_DCE_112(_MASK)
};
static struct output_pixel_processor *dce120_opp_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce110_opp *opp =
kzalloc(sizeof(struct dce110_opp), GFP_KERNEL);
if (!opp)
return NULL;
dce110_opp_construct(opp,
ctx, inst, &opp_regs[inst], &opp_shift, &opp_mask);
return &opp->base;
}
static struct dce_aux *dce120_aux_engine_create(
struct dc_context *ctx,
uint32_t inst)
{
struct aux_engine_dce110 *aux_engine =
kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
if (!aux_engine)
return NULL;
dce110_aux_engine_construct(aux_engine, ctx, inst,
SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
&aux_engine_regs[inst],
&aux_mask,
&aux_shift,
ctx->dc->caps.extended_aux_timeout_support);
return &aux_engine->base;
}
#define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) }
static const struct dce_i2c_registers i2c_hw_regs[] = {
i2c_inst_regs(1),
i2c_inst_regs(2),
i2c_inst_regs(3),
i2c_inst_regs(4),
i2c_inst_regs(5),
i2c_inst_regs(6),
};
static const struct dce_i2c_shift i2c_shifts = {
I2C_COMMON_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_i2c_mask i2c_masks = {
I2C_COMMON_MASK_SH_LIST_DCE110(_MASK)
};
static struct dce_i2c_hw *dce120_i2c_hw_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_i2c_hw *dce_i2c_hw =
kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
if (!dce_i2c_hw)
return NULL;
dce112_i2c_hw_construct(dce_i2c_hw, ctx, inst,
&i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
return dce_i2c_hw;
}
static const struct bios_registers bios_regs = {
.BIOS_SCRATCH_3 = mmBIOS_SCRATCH_3 + NBIO_BASE(mmBIOS_SCRATCH_3_BASE_IDX),
.BIOS_SCRATCH_6 = mmBIOS_SCRATCH_6 + NBIO_BASE(mmBIOS_SCRATCH_6_BASE_IDX)
};
static const struct resource_caps res_cap = {
.num_timing_generator = 6,
.num_audio = 7,
.num_stream_encoder = 6,
.num_pll = 6,
.num_ddc = 6,
};
static const struct dc_plane_cap plane_cap = {
.type = DC_PLANE_TYPE_DCE_RGB,
.pixel_format_support = {
.argb8888 = true,
.nv12 = false,
.fp16 = true
},
.max_upscale_factor = {
.argb8888 = 16000,
.nv12 = 1,
.fp16 = 1
},
.max_downscale_factor = {
.argb8888 = 250,
.nv12 = 1,
.fp16 = 1
}
};
static const struct dc_debug_options debug_defaults = {
.disable_clock_gate = true,
.enable_legacy_fast_update = true,
};
static struct clock_source *dce120_clock_source_create(
struct dc_context *ctx,
struct dc_bios *bios,
enum clock_source_id id,
const struct dce110_clk_src_regs *regs,
bool dp_clk_src)
{
struct dce110_clk_src *clk_src =
kzalloc(sizeof(*clk_src), GFP_KERNEL);
if (!clk_src)
return NULL;
if (dce112_clk_src_construct(clk_src, ctx, bios, id,
regs, &cs_shift, &cs_mask)) {
clk_src->base.dp_clk_src = dp_clk_src;
return &clk_src->base;
}
kfree(clk_src);
BREAK_TO_DEBUGGER();
return NULL;
}
static void dce120_clock_source_destroy(struct clock_source **clk_src)
{
kfree(TO_DCE110_CLK_SRC(*clk_src));
*clk_src = NULL;
}
static bool dce120_hw_sequencer_create(struct dc *dc)
{
/* All registers used by dce11.2 match those in dce11 in offset and
* structure
*/
dce120_hw_sequencer_construct(dc);
/*TODO Move to separate file and Override what is needed */
return true;
}
static struct timing_generator *dce120_timing_generator_create(
struct dc_context *ctx,
uint32_t instance,
const struct dce110_timing_generator_offsets *offsets)
{
struct dce110_timing_generator *tg110 =
kzalloc(sizeof(struct dce110_timing_generator), GFP_KERNEL);
if (!tg110)
return NULL;
dce120_timing_generator_construct(tg110, ctx, instance, offsets);
return &tg110->base;
}
static void dce120_transform_destroy(struct transform **xfm)
{
kfree(TO_DCE_TRANSFORM(*xfm));
*xfm = NULL;
}
static void dce120_resource_destruct(struct dce110_resource_pool *pool)
{
unsigned int i;
for (i = 0; i < pool->base.pipe_count; i++) {
if (pool->base.opps[i] != NULL)
dce110_opp_destroy(&pool->base.opps[i]);
if (pool->base.transforms[i] != NULL)
dce120_transform_destroy(&pool->base.transforms[i]);
if (pool->base.ipps[i] != NULL)
dce_ipp_destroy(&pool->base.ipps[i]);
if (pool->base.mis[i] != NULL) {
kfree(TO_DCE_MEM_INPUT(pool->base.mis[i]));
pool->base.mis[i] = NULL;
}
if (pool->base.irqs != NULL) {
dal_irq_service_destroy(&pool->base.irqs);
}
if (pool->base.timing_generators[i] != NULL) {
kfree(DCE110TG_FROM_TG(pool->base.timing_generators[i]));
pool->base.timing_generators[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
if (pool->base.engines[i] != NULL)
dce110_engine_destroy(&pool->base.engines[i]);
if (pool->base.hw_i2cs[i] != NULL) {
kfree(pool->base.hw_i2cs[i]);
pool->base.hw_i2cs[i] = NULL;
}
if (pool->base.sw_i2cs[i] != NULL) {
kfree(pool->base.sw_i2cs[i]);
pool->base.sw_i2cs[i] = NULL;
}
}
for (i = 0; i < pool->base.audio_count; i++) {
if (pool->base.audios[i])
dce_aud_destroy(&pool->base.audios[i]);
}
for (i = 0; i < pool->base.stream_enc_count; i++) {
if (pool->base.stream_enc[i] != NULL)
kfree(DCE110STRENC_FROM_STRENC(pool->base.stream_enc[i]));
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] != NULL)
dce120_clock_source_destroy(
&pool->base.clock_sources[i]);
}
if (pool->base.dp_clock_source != NULL)
dce120_clock_source_destroy(&pool->base.dp_clock_source);
if (pool->base.abm != NULL)
dce_abm_destroy(&pool->base.abm);
if (pool->base.dmcu != NULL)
dce_dmcu_destroy(&pool->base.dmcu);
}
static void read_dce_straps(
struct dc_context *ctx,
struct resource_straps *straps)
{
uint32_t reg_val = dm_read_reg_soc15(ctx, mmCC_DC_MISC_STRAPS, 0);
straps->audio_stream_number = get_reg_field_value(reg_val,
CC_DC_MISC_STRAPS,
AUDIO_STREAM_NUMBER);
straps->hdmi_disable = get_reg_field_value(reg_val,
CC_DC_MISC_STRAPS,
HDMI_DISABLE);
reg_val = dm_read_reg_soc15(ctx, mmDC_PINSTRAPS, 0);
straps->dc_pinstraps_audio = get_reg_field_value(reg_val,
DC_PINSTRAPS,
DC_PINSTRAPS_AUDIO);
}
static struct audio *create_audio(
struct dc_context *ctx, unsigned int inst)
{
return dce_audio_create(ctx, inst,
&audio_regs[inst], &audio_shift, &audio_mask);
}
static const struct encoder_feature_support link_enc_feature = {
.max_hdmi_deep_color = COLOR_DEPTH_121212,
.max_hdmi_pixel_clock = 600000,
.hdmi_ycbcr420_supported = true,
.dp_ycbcr420_supported = false,
.flags.bits.IS_HBR2_CAPABLE = true,
.flags.bits.IS_HBR3_CAPABLE = true,
.flags.bits.IS_TPS3_CAPABLE = true,
.flags.bits.IS_TPS4_CAPABLE = true,
};
static struct link_encoder *dce120_link_encoder_create(
struct dc_context *ctx,
const struct encoder_init_data *enc_init_data)
{
struct dce110_link_encoder *enc110 =
kzalloc(sizeof(struct dce110_link_encoder), GFP_KERNEL);
int link_regs_id;
if (!enc110)
return NULL;
link_regs_id =
map_transmitter_id_to_phy_instance(enc_init_data->transmitter);
dce110_link_encoder_construct(enc110,
enc_init_data,
&link_enc_feature,
&link_enc_regs[link_regs_id],
&link_enc_aux_regs[enc_init_data->channel - 1],
&link_enc_hpd_regs[enc_init_data->hpd_source]);
return &enc110->base;
}
static struct panel_cntl *dce120_panel_cntl_create(const struct panel_cntl_init_data *init_data)
{
struct dce_panel_cntl *panel_cntl =
kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
if (!panel_cntl)
return NULL;
dce_panel_cntl_construct(panel_cntl,
init_data,
&panel_cntl_regs[init_data->inst],
&panel_cntl_shift,
&panel_cntl_mask);
return &panel_cntl->base;
}
static struct input_pixel_processor *dce120_ipp_create(
struct dc_context *ctx, uint32_t inst)
{
struct dce_ipp *ipp = kzalloc(sizeof(struct dce_ipp), GFP_KERNEL);
if (!ipp) {
BREAK_TO_DEBUGGER();
return NULL;
}
dce_ipp_construct(ipp, ctx, inst,
&ipp_regs[inst], &ipp_shift, &ipp_mask);
return &ipp->base;
}
static struct stream_encoder *dce120_stream_encoder_create(
enum engine_id eng_id,
struct dc_context *ctx)
{
struct dce110_stream_encoder *enc110 =
kzalloc(sizeof(struct dce110_stream_encoder), GFP_KERNEL);
if (!enc110)
return NULL;
dce110_stream_encoder_construct(enc110, ctx, ctx->dc_bios, eng_id,
&stream_enc_regs[eng_id],
&se_shift, &se_mask);
return &enc110->base;
}
#define SRII(reg_name, block, id)\
.reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
static const struct dce_hwseq_registers hwseq_reg = {
HWSEQ_DCE120_REG_LIST()
};
static const struct dce_hwseq_shift hwseq_shift = {
HWSEQ_DCE12_MASK_SH_LIST(__SHIFT)
};
static const struct dce_hwseq_mask hwseq_mask = {
HWSEQ_DCE12_MASK_SH_LIST(_MASK)
};
/* HWSEQ regs for VG20 */
static const struct dce_hwseq_registers dce121_hwseq_reg = {
HWSEQ_VG20_REG_LIST()
};
static const struct dce_hwseq_shift dce121_hwseq_shift = {
HWSEQ_VG20_MASK_SH_LIST(__SHIFT)
};
static const struct dce_hwseq_mask dce121_hwseq_mask = {
HWSEQ_VG20_MASK_SH_LIST(_MASK)
};
static struct dce_hwseq *dce120_hwseq_create(
struct dc_context *ctx)
{
struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
if (hws) {
hws->ctx = ctx;
hws->regs = &hwseq_reg;
hws->shifts = &hwseq_shift;
hws->masks = &hwseq_mask;
}
return hws;
}
static struct dce_hwseq *dce121_hwseq_create(
struct dc_context *ctx)
{
struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
if (hws) {
hws->ctx = ctx;
hws->regs = &dce121_hwseq_reg;
hws->shifts = &dce121_hwseq_shift;
hws->masks = &dce121_hwseq_mask;
}
return hws;
}
static const struct resource_create_funcs res_create_funcs = {
.read_dce_straps = read_dce_straps,
.create_audio = create_audio,
.create_stream_encoder = dce120_stream_encoder_create,
.create_hwseq = dce120_hwseq_create,
};
static const struct resource_create_funcs dce121_res_create_funcs = {
.read_dce_straps = read_dce_straps,
.create_audio = create_audio,
.create_stream_encoder = dce120_stream_encoder_create,
.create_hwseq = dce121_hwseq_create,
};
#define mi_inst_regs(id) { MI_DCE12_REG_LIST(id) }
static const struct dce_mem_input_registers mi_regs[] = {
mi_inst_regs(0),
mi_inst_regs(1),
mi_inst_regs(2),
mi_inst_regs(3),
mi_inst_regs(4),
mi_inst_regs(5),
};
static const struct dce_mem_input_shift mi_shifts = {
MI_DCE12_MASK_SH_LIST(__SHIFT)
};
static const struct dce_mem_input_mask mi_masks = {
MI_DCE12_MASK_SH_LIST(_MASK)
};
static struct mem_input *dce120_mem_input_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_mem_input *dce_mi = kzalloc(sizeof(struct dce_mem_input),
GFP_KERNEL);
if (!dce_mi) {
BREAK_TO_DEBUGGER();
return NULL;
}
dce120_mem_input_construct(dce_mi, ctx, inst, &mi_regs[inst], &mi_shifts, &mi_masks);
return &dce_mi->base;
}
static struct transform *dce120_transform_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_transform *transform =
kzalloc(sizeof(struct dce_transform), GFP_KERNEL);
if (!transform)
return NULL;
dce_transform_construct(transform, ctx, inst,
&xfm_regs[inst], &xfm_shift, &xfm_mask);
transform->lb_memory_size = 0x1404; /*5124*/
return &transform->base;
}
static void dce120_destroy_resource_pool(struct resource_pool **pool)
{
struct dce110_resource_pool *dce110_pool = TO_DCE110_RES_POOL(*pool);
dce120_resource_destruct(dce110_pool);
kfree(dce110_pool);
*pool = NULL;
}
static const struct resource_funcs dce120_res_pool_funcs = {
.destroy = dce120_destroy_resource_pool,
.link_enc_create = dce120_link_encoder_create,
.panel_cntl_create = dce120_panel_cntl_create,
.validate_bandwidth = dce112_validate_bandwidth,
.validate_plane = dce100_validate_plane,
.add_stream_to_ctx = dce112_add_stream_to_ctx,
.find_first_free_match_stream_enc_for_link = dce110_find_first_free_match_stream_enc_for_link
};
static void bw_calcs_data_update_from_pplib(struct dc *dc)
{
struct dm_pp_clock_levels_with_latency eng_clks = {0};
struct dm_pp_clock_levels_with_latency mem_clks = {0};
struct dm_pp_wm_sets_with_clock_ranges clk_ranges = {0};
int i;
unsigned int clk;
unsigned int latency;
/*original logic in dal3*/
int memory_type_multiplier = MEMORY_TYPE_MULTIPLIER_CZ;
/*do system clock*/
if (!dm_pp_get_clock_levels_by_type_with_latency(
dc->ctx,
DM_PP_CLOCK_TYPE_ENGINE_CLK,
&eng_clks) || eng_clks.num_levels == 0) {
eng_clks.num_levels = 8;
clk = 300000;
for (i = 0; i < eng_clks.num_levels; i++) {
eng_clks.data[i].clocks_in_khz = clk;
clk += 100000;
}
}
/* convert all the clock fro kHz to fix point mHz TODO: wloop data */
dc->bw_vbios->high_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels-1].clocks_in_khz, 1000);
dc->bw_vbios->mid1_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels/8].clocks_in_khz, 1000);
dc->bw_vbios->mid2_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels*2/8].clocks_in_khz, 1000);
dc->bw_vbios->mid3_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz, 1000);
dc->bw_vbios->mid4_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels*4/8].clocks_in_khz, 1000);
dc->bw_vbios->mid5_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels*5/8].clocks_in_khz, 1000);
dc->bw_vbios->mid6_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels*6/8].clocks_in_khz, 1000);
dc->bw_vbios->low_sclk = bw_frc_to_fixed(
eng_clks.data[0].clocks_in_khz, 1000);
/*do memory clock*/
if (!dm_pp_get_clock_levels_by_type_with_latency(
dc->ctx,
DM_PP_CLOCK_TYPE_MEMORY_CLK,
&mem_clks) || mem_clks.num_levels == 0) {
mem_clks.num_levels = 3;
clk = 250000;
latency = 45;
for (i = 0; i < eng_clks.num_levels; i++) {
mem_clks.data[i].clocks_in_khz = clk;
mem_clks.data[i].latency_in_us = latency;
clk += 500000;
latency -= 5;
}
}
/* we don't need to call PPLIB for validation clock since they
* also give us the highest sclk and highest mclk (UMA clock).
* ALSO always convert UMA clock (from PPLIB) to YCLK (HW formula):
* YCLK = UMACLK*m_memoryTypeMultiplier
*/
if (dc->bw_vbios->memory_type == bw_def_hbm)
memory_type_multiplier = MEMORY_TYPE_HBM;
dc->bw_vbios->low_yclk = bw_frc_to_fixed(
mem_clks.data[0].clocks_in_khz * memory_type_multiplier, 1000);
dc->bw_vbios->mid_yclk = bw_frc_to_fixed(
mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz * memory_type_multiplier,
1000);
dc->bw_vbios->high_yclk = bw_frc_to_fixed(
mem_clks.data[mem_clks.num_levels-1].clocks_in_khz * memory_type_multiplier,
1000);
/* Now notify PPLib/SMU about which Watermarks sets they should select
* depending on DPM state they are in. And update BW MGR GFX Engine and
* Memory clock member variables for Watermarks calculations for each
* Watermark Set
*/
clk_ranges.num_wm_sets = 4;
clk_ranges.wm_clk_ranges[0].wm_set_id = WM_SET_A;
clk_ranges.wm_clk_ranges[0].wm_min_eng_clk_in_khz =
eng_clks.data[0].clocks_in_khz;
clk_ranges.wm_clk_ranges[0].wm_max_eng_clk_in_khz =
eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz - 1;
clk_ranges.wm_clk_ranges[0].wm_min_mem_clk_in_khz =
mem_clks.data[0].clocks_in_khz;
clk_ranges.wm_clk_ranges[0].wm_max_mem_clk_in_khz =
mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz - 1;
clk_ranges.wm_clk_ranges[1].wm_set_id = WM_SET_B;
clk_ranges.wm_clk_ranges[1].wm_min_eng_clk_in_khz =
eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz;
/* 5 GHz instead of data[7].clockInKHz to cover Overdrive */
clk_ranges.wm_clk_ranges[1].wm_max_eng_clk_in_khz = 5000000;
clk_ranges.wm_clk_ranges[1].wm_min_mem_clk_in_khz =
mem_clks.data[0].clocks_in_khz;
clk_ranges.wm_clk_ranges[1].wm_max_mem_clk_in_khz =
mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz - 1;
clk_ranges.wm_clk_ranges[2].wm_set_id = WM_SET_C;
clk_ranges.wm_clk_ranges[2].wm_min_eng_clk_in_khz =
eng_clks.data[0].clocks_in_khz;
clk_ranges.wm_clk_ranges[2].wm_max_eng_clk_in_khz =
eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz - 1;
clk_ranges.wm_clk_ranges[2].wm_min_mem_clk_in_khz =
mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz;
/* 5 GHz instead of data[2].clockInKHz to cover Overdrive */
clk_ranges.wm_clk_ranges[2].wm_max_mem_clk_in_khz = 5000000;
clk_ranges.wm_clk_ranges[3].wm_set_id = WM_SET_D;
clk_ranges.wm_clk_ranges[3].wm_min_eng_clk_in_khz =
eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz;
/* 5 GHz instead of data[7].clockInKHz to cover Overdrive */
clk_ranges.wm_clk_ranges[3].wm_max_eng_clk_in_khz = 5000000;
clk_ranges.wm_clk_ranges[3].wm_min_mem_clk_in_khz =
mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz;
/* 5 GHz instead of data[2].clockInKHz to cover Overdrive */
clk_ranges.wm_clk_ranges[3].wm_max_mem_clk_in_khz = 5000000;
/* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
dm_pp_notify_wm_clock_changes(dc->ctx, &clk_ranges);
}
static uint32_t read_pipe_fuses(struct dc_context *ctx)
{
uint32_t value = dm_read_reg_soc15(ctx, mmCC_DC_PIPE_DIS, 0);
/* VG20 support max 6 pipes */
value = value & 0x3f;
return value;
}
static bool dce120_resource_construct(
uint8_t num_virtual_links,
struct dc *dc,
struct dce110_resource_pool *pool)
{
unsigned int i;
int j;
struct dc_context *ctx = dc->ctx;
struct irq_service_init_data irq_init_data;
static const struct resource_create_funcs *res_funcs;
bool is_vg20 = ASICREV_IS_VEGA20_P(ctx->asic_id.hw_internal_rev);
uint32_t pipe_fuses;
ctx->dc_bios->regs = &bios_regs;
pool->base.res_cap = &res_cap;
pool->base.funcs = &dce120_res_pool_funcs;
/* TODO: Fill more data from GreenlandAsicCapability.cpp */
pool->base.pipe_count = res_cap.num_timing_generator;
pool->base.timing_generator_count = pool->base.res_cap->num_timing_generator;
pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
dc->caps.max_downscale_ratio = 200;
dc->caps.i2c_speed_in_khz = 100;
dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/
dc->caps.max_cursor_size = 128;
dc->caps.min_horizontal_blanking_period = 80;
dc->caps.dual_link_dvi = true;
dc->caps.psp_setup_panel_mode = true;
dc->caps.extended_aux_timeout_support = false;
dc->debug = debug_defaults;
/*************************************************
* Create resources *
*************************************************/
pool->base.clock_sources[DCE120_CLK_SRC_PLL0] =
dce120_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL0,
&clk_src_regs[0], false);
pool->base.clock_sources[DCE120_CLK_SRC_PLL1] =
dce120_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL1,
&clk_src_regs[1], false);
pool->base.clock_sources[DCE120_CLK_SRC_PLL2] =
dce120_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL2,
&clk_src_regs[2], false);
pool->base.clock_sources[DCE120_CLK_SRC_PLL3] =
dce120_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL3,
&clk_src_regs[3], false);
pool->base.clock_sources[DCE120_CLK_SRC_PLL4] =
dce120_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL4,
&clk_src_regs[4], false);
pool->base.clock_sources[DCE120_CLK_SRC_PLL5] =
dce120_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL5,
&clk_src_regs[5], false);
pool->base.clk_src_count = DCE120_CLK_SRC_TOTAL;
pool->base.dp_clock_source =
dce120_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_ID_DP_DTO,
&clk_src_regs[0], true);
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] == NULL) {
dm_error("DC: failed to create clock sources!\n");
BREAK_TO_DEBUGGER();
goto clk_src_create_fail;
}
}
pool->base.dmcu = dce_dmcu_create(ctx,
&dmcu_regs,
&dmcu_shift,
&dmcu_mask);
if (pool->base.dmcu == NULL) {
dm_error("DC: failed to create dmcu!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
pool->base.abm = dce_abm_create(ctx,
&abm_regs,
&abm_shift,
&abm_mask);
if (pool->base.abm == NULL) {
dm_error("DC: failed to create abm!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
irq_init_data.ctx = dc->ctx;
pool->base.irqs = dal_irq_service_dce120_create(&irq_init_data);
if (!pool->base.irqs)
goto irqs_create_fail;
/* VG20: Pipe harvesting enabled, retrieve valid pipe fuses */
if (is_vg20)
pipe_fuses = read_pipe_fuses(ctx);
/* index to valid pipe resource */
j = 0;
for (i = 0; i < pool->base.pipe_count; i++) {
if (is_vg20) {
if ((pipe_fuses & (1 << i)) != 0) {
dm_error("DC: skip invalid pipe %d!\n", i);
continue;
}
}
pool->base.timing_generators[j] =
dce120_timing_generator_create(
ctx,
i,
&dce120_tg_offsets[i]);
if (pool->base.timing_generators[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create tg!\n");
goto controller_create_fail;
}
pool->base.mis[j] = dce120_mem_input_create(ctx, i);
if (pool->base.mis[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create memory input!\n");
goto controller_create_fail;
}
pool->base.ipps[j] = dce120_ipp_create(ctx, i);
if (pool->base.ipps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create input pixel processor!\n");
goto controller_create_fail;
}
pool->base.transforms[j] = dce120_transform_create(ctx, i);
if (pool->base.transforms[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create transform!\n");
goto res_create_fail;
}
pool->base.opps[j] = dce120_opp_create(
ctx,
i);
if (pool->base.opps[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create output pixel processor!\n");
}
/* check next valid pipe */
j++;
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
pool->base.engines[i] = dce120_aux_engine_create(ctx, i);
if (pool->base.engines[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create aux engine!!\n");
goto res_create_fail;
}
pool->base.hw_i2cs[i] = dce120_i2c_hw_create(ctx, i);
if (pool->base.hw_i2cs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create i2c engine!!\n");
goto res_create_fail;
}
pool->base.sw_i2cs[i] = NULL;
}
/* valid pipe num */
pool->base.pipe_count = j;
pool->base.timing_generator_count = j;
if (is_vg20)
res_funcs = &dce121_res_create_funcs;
else
res_funcs = &res_create_funcs;
if (!resource_construct(num_virtual_links, dc, &pool->base, res_funcs))
goto res_create_fail;
/* Create hardware sequencer */
if (!dce120_hw_sequencer_create(dc))
goto controller_create_fail;
dc->caps.max_planes = pool->base.pipe_count;
for (i = 0; i < dc->caps.max_planes; ++i)
dc->caps.planes[i] = plane_cap;
bw_calcs_init(dc->bw_dceip, dc->bw_vbios, dc->ctx->asic_id);
bw_calcs_data_update_from_pplib(dc);
return true;
irqs_create_fail:
controller_create_fail:
clk_src_create_fail:
res_create_fail:
dce120_resource_destruct(pool);
return false;
}
struct resource_pool *dce120_create_resource_pool(
uint8_t num_virtual_links,
struct dc *dc)
{
struct dce110_resource_pool *pool =
kzalloc(sizeof(struct dce110_resource_pool), GFP_KERNEL);
if (!pool)
return NULL;
if (dce120_resource_construct(num_virtual_links, dc, pool))
return &pool->base;
kfree(pool);
BREAK_TO_DEBUGGER();
return NULL;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dce120/dce120_resource.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dce/dce_12_0_offset.h"
#include "dce/dce_12_0_sh_mask.h"
#include "soc15_hw_ip.h"
#include "vega10_ip_offset.h"
#include "dc_types.h"
#include "dc_bios_types.h"
#include "include/grph_object_id.h"
#include "include/logger_interface.h"
#include "dce120_timing_generator.h"
#include "timing_generator.h"
#define CRTC_REG_UPDATE_N(reg_name, n, ...) \
generic_reg_update_soc15(tg110->base.ctx, tg110->offsets.crtc, reg_name, n, __VA_ARGS__)
#define CRTC_REG_SET_N(reg_name, n, ...) \
generic_reg_set_soc15(tg110->base.ctx, tg110->offsets.crtc, reg_name, n, __VA_ARGS__)
#define CRTC_REG_UPDATE(reg, field, val) \
CRTC_REG_UPDATE_N(reg, 1, FD(reg##__##field), val)
#define CRTC_REG_UPDATE_2(reg, field1, val1, field2, val2) \
CRTC_REG_UPDATE_N(reg, 2, FD(reg##__##field1), val1, FD(reg##__##field2), val2)
#define CRTC_REG_UPDATE_3(reg, field1, val1, field2, val2, field3, val3) \
CRTC_REG_UPDATE_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3)
#define CRTC_REG_UPDATE_4(reg, field1, val1, field2, val2, field3, val3, field4, val4) \
CRTC_REG_UPDATE_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3, FD(reg##__##field4), val4)
#define CRTC_REG_UPDATE_5(reg, field1, val1, field2, val2, field3, val3, field4, val4, field5, val5) \
CRTC_REG_UPDATE_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3, FD(reg##__##field4), val4, FD(reg##__##field5), val5)
#define CRTC_REG_SET(reg, field, val) \
CRTC_REG_SET_N(reg, 1, FD(reg##__##field), val)
#define CRTC_REG_SET_2(reg, field1, val1, field2, val2) \
CRTC_REG_SET_N(reg, 2, FD(reg##__##field1), val1, FD(reg##__##field2), val2)
#define CRTC_REG_SET_3(reg, field1, val1, field2, val2, field3, val3) \
CRTC_REG_SET_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3)
/*
*****************************************************************************
* Function: is_in_vertical_blank
*
* @brief
* check the current status of CRTC to check if we are in Vertical Blank
* regioneased" state
*
* @return
* true if currently in blank region, false otherwise
*
*****************************************************************************
*/
static bool dce120_timing_generator_is_in_vertical_blank(
struct timing_generator *tg)
{
uint32_t field = 0;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value = dm_read_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_STATUS,
tg110->offsets.crtc);
field = get_reg_field_value(value, CRTC0_CRTC_STATUS, CRTC_V_BLANK);
return field == 1;
}
/* determine if given timing can be supported by TG */
static bool dce120_timing_generator_validate_timing(
struct timing_generator *tg,
const struct dc_crtc_timing *timing,
enum signal_type signal)
{
uint32_t interlace_factor = timing->flags.INTERLACE ? 2 : 1;
uint32_t v_blank =
(timing->v_total - timing->v_addressable -
timing->v_border_top - timing->v_border_bottom) *
interlace_factor;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
if (!dce110_timing_generator_validate_timing(
tg,
timing,
signal))
return false;
if (v_blank < tg110->min_v_blank ||
timing->h_sync_width < tg110->min_h_sync_width ||
timing->v_sync_width < tg110->min_v_sync_width)
return false;
return true;
}
static bool dce120_tg_validate_timing(struct timing_generator *tg,
const struct dc_crtc_timing *timing)
{
return dce120_timing_generator_validate_timing(tg, timing, SIGNAL_TYPE_NONE);
}
/******** HW programming ************/
/* Disable/Enable Timing Generator */
static bool dce120_timing_generator_enable_crtc(struct timing_generator *tg)
{
enum bp_result result;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
/* Set MASTER_UPDATE_MODE to 0
* This is needed for DRR, and also suggested to be default value by Syed.*/
CRTC_REG_UPDATE(CRTC0_CRTC_MASTER_UPDATE_MODE,
MASTER_UPDATE_MODE, 0);
CRTC_REG_UPDATE(CRTC0_CRTC_MASTER_UPDATE_LOCK,
UNDERFLOW_UPDATE_LOCK, 0);
/* TODO API for AtomFirmware didn't change*/
result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, true);
return result == BP_RESULT_OK;
}
static void dce120_timing_generator_set_early_control(
struct timing_generator *tg,
uint32_t early_cntl)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
CRTC_REG_UPDATE(CRTC0_CRTC_CONTROL,
CRTC_HBLANK_EARLY_CONTROL, early_cntl);
}
/**************** TG current status ******************/
/* return the current frame counter. Used by Linux kernel DRM */
static uint32_t dce120_timing_generator_get_vblank_counter(
struct timing_generator *tg)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value = dm_read_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_STATUS_FRAME_COUNT,
tg110->offsets.crtc);
uint32_t field = get_reg_field_value(
value, CRTC0_CRTC_STATUS_FRAME_COUNT, CRTC_FRAME_COUNT);
return field;
}
/* Get current H and V position */
static void dce120_timing_generator_get_crtc_position(
struct timing_generator *tg,
struct crtc_position *position)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value = dm_read_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_STATUS_POSITION,
tg110->offsets.crtc);
position->horizontal_count = get_reg_field_value(value,
CRTC0_CRTC_STATUS_POSITION, CRTC_HORZ_COUNT);
position->vertical_count = get_reg_field_value(value,
CRTC0_CRTC_STATUS_POSITION, CRTC_VERT_COUNT);
value = dm_read_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_NOM_VERT_POSITION,
tg110->offsets.crtc);
position->nominal_vcount = get_reg_field_value(value,
CRTC0_CRTC_NOM_VERT_POSITION, CRTC_VERT_COUNT_NOM);
}
/* wait until TG is in beginning of vertical blank region */
static void dce120_timing_generator_wait_for_vblank(struct timing_generator *tg)
{
/* We want to catch beginning of VBlank here, so if the first try are
* in VBlank, we might be very close to Active, in this case wait for
* another frame
*/
while (dce120_timing_generator_is_in_vertical_blank(tg)) {
if (!tg->funcs->is_counter_moving(tg)) {
/* error - no point to wait if counter is not moving */
break;
}
}
while (!dce120_timing_generator_is_in_vertical_blank(tg)) {
if (!tg->funcs->is_counter_moving(tg)) {
/* error - no point to wait if counter is not moving */
break;
}
}
}
/* wait until TG is in beginning of active region */
static void dce120_timing_generator_wait_for_vactive(struct timing_generator *tg)
{
while (dce120_timing_generator_is_in_vertical_blank(tg)) {
if (!tg->funcs->is_counter_moving(tg)) {
/* error - no point to wait if counter is not moving */
break;
}
}
}
/*********** Timing Generator Synchronization routines ****/
/* Setups Global Swap Lock group, TimingServer or TimingClient*/
static void dce120_timing_generator_setup_global_swap_lock(
struct timing_generator *tg,
const struct dcp_gsl_params *gsl_params)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value_crtc_vtotal =
dm_read_reg_soc15(tg->ctx,
mmCRTC0_CRTC_V_TOTAL,
tg110->offsets.crtc);
/* Checkpoint relative to end of frame */
uint32_t check_point =
get_reg_field_value(value_crtc_vtotal,
CRTC0_CRTC_V_TOTAL,
CRTC_V_TOTAL);
dm_write_reg_soc15(tg->ctx, mmCRTC0_CRTC_GSL_WINDOW, tg110->offsets.crtc, 0);
CRTC_REG_UPDATE_N(DCP0_DCP_GSL_CONTROL, 6,
/* This pipe will belong to GSL Group zero. */
FD(DCP0_DCP_GSL_CONTROL__DCP_GSL0_EN), 1,
FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_MASTER_EN), gsl_params->gsl_master == tg->inst,
FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_FORCE_DELAY), HFLIP_READY_DELAY,
/* Keep signal low (pending high) during 6 lines.
* Also defines minimum interval before re-checking signal. */
FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_CHECK_DELAY), HFLIP_CHECK_DELAY,
/* DCP_GSL_PURPOSE_SURFACE_FLIP */
FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_SYNC_SOURCE), 0,
FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_DELAY_SURFACE_UPDATE_PENDING), 1);
CRTC_REG_SET_2(
CRTC0_CRTC_GSL_CONTROL,
CRTC_GSL_CHECK_LINE_NUM, check_point - FLIP_READY_BACK_LOOKUP,
CRTC_GSL_FORCE_DELAY, VFLIP_READY_DELAY);
}
/* Clear all the register writes done by setup_global_swap_lock */
static void dce120_timing_generator_tear_down_global_swap_lock(
struct timing_generator *tg)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
/* Settig HW default values from reg specs */
CRTC_REG_SET_N(DCP0_DCP_GSL_CONTROL, 6,
FD(DCP0_DCP_GSL_CONTROL__DCP_GSL0_EN), 0,
FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_MASTER_EN), 0,
FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_FORCE_DELAY), HFLIP_READY_DELAY,
FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_CHECK_DELAY), HFLIP_CHECK_DELAY,
/* DCP_GSL_PURPOSE_SURFACE_FLIP */
FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_SYNC_SOURCE), 0,
FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_DELAY_SURFACE_UPDATE_PENDING), 0);
CRTC_REG_SET_2(CRTC0_CRTC_GSL_CONTROL,
CRTC_GSL_CHECK_LINE_NUM, 0,
CRTC_GSL_FORCE_DELAY, 0x2); /*TODO Why this value here ?*/
}
/* Reset slave controllers on master VSync */
static void dce120_timing_generator_enable_reset_trigger(
struct timing_generator *tg,
int source)
{
enum trigger_source_select trig_src_select = TRIGGER_SOURCE_SELECT_LOGIC_ZERO;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t rising_edge = 0;
uint32_t falling_edge = 0;
/* Setup trigger edge */
uint32_t pol_value = dm_read_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_V_SYNC_A_CNTL,
tg110->offsets.crtc);
/* Register spec has reversed definition:
* 0 for positive, 1 for negative */
if (get_reg_field_value(pol_value,
CRTC0_CRTC_V_SYNC_A_CNTL,
CRTC_V_SYNC_A_POL) == 0) {
rising_edge = 1;
} else {
falling_edge = 1;
}
/* TODO What about other sources ?*/
trig_src_select = TRIGGER_SOURCE_SELECT_GSL_GROUP0;
CRTC_REG_UPDATE_N(CRTC0_CRTC_TRIGB_CNTL, 7,
FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_SOURCE_SELECT), trig_src_select,
FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_POLARITY_SELECT), TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_RISING_EDGE_DETECT_CNTL), rising_edge,
FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL), falling_edge,
/* send every signal */
FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_FREQUENCY_SELECT), 0,
/* no delay */
FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_DELAY), 0,
/* clear trigger status */
FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_CLEAR), 1);
CRTC_REG_UPDATE_3(
CRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_MODE, 2,
CRTC_FORCE_COUNT_NOW_TRIG_SEL, 1,
CRTC_FORCE_COUNT_NOW_CLEAR, 1);
}
/* disabling trigger-reset */
static void dce120_timing_generator_disable_reset_trigger(
struct timing_generator *tg)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
CRTC_REG_UPDATE_2(
CRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_MODE, 0,
CRTC_FORCE_COUNT_NOW_CLEAR, 1);
CRTC_REG_UPDATE_3(
CRTC0_CRTC_TRIGB_CNTL,
CRTC_TRIGB_SOURCE_SELECT, TRIGGER_SOURCE_SELECT_LOGIC_ZERO,
CRTC_TRIGB_POLARITY_SELECT, TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
/* clear trigger status */
CRTC_TRIGB_CLEAR, 1);
}
/* Checks whether CRTC triggered reset occurred */
static bool dce120_timing_generator_did_triggered_reset_occur(
struct timing_generator *tg)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value = dm_read_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
tg110->offsets.crtc);
return get_reg_field_value(value,
CRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_OCCURRED) != 0;
}
/******** Stuff to move to other virtual HW objects *****************/
/* Move to enable accelerated mode */
static void dce120_timing_generator_disable_vga(struct timing_generator *tg)
{
uint32_t offset = 0;
uint32_t value = 0;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
switch (tg110->controller_id) {
case CONTROLLER_ID_D0:
offset = 0;
break;
case CONTROLLER_ID_D1:
offset = mmD2VGA_CONTROL - mmD1VGA_CONTROL;
break;
case CONTROLLER_ID_D2:
offset = mmD3VGA_CONTROL - mmD1VGA_CONTROL;
break;
case CONTROLLER_ID_D3:
offset = mmD4VGA_CONTROL - mmD1VGA_CONTROL;
break;
case CONTROLLER_ID_D4:
offset = mmD5VGA_CONTROL - mmD1VGA_CONTROL;
break;
case CONTROLLER_ID_D5:
offset = mmD6VGA_CONTROL - mmD1VGA_CONTROL;
break;
default:
break;
}
value = dm_read_reg_soc15(tg->ctx, mmD1VGA_CONTROL, offset);
set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_MODE_ENABLE);
set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_TIMING_SELECT);
set_reg_field_value(
value, 0, D1VGA_CONTROL, D1VGA_SYNC_POLARITY_SELECT);
set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_OVERSCAN_COLOR_EN);
dm_write_reg_soc15(tg->ctx, mmD1VGA_CONTROL, offset, value);
}
/* TODO: Should we move it to transform */
/* Fully program CRTC timing in timing generator */
static void dce120_timing_generator_program_blanking(
struct timing_generator *tg,
const struct dc_crtc_timing *timing)
{
uint32_t tmp1 = 0;
uint32_t tmp2 = 0;
uint32_t vsync_offset = timing->v_border_bottom +
timing->v_front_porch;
uint32_t v_sync_start = timing->v_addressable + vsync_offset;
uint32_t hsync_offset = timing->h_border_right +
timing->h_front_porch;
uint32_t h_sync_start = timing->h_addressable + hsync_offset;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
CRTC_REG_UPDATE(
CRTC0_CRTC_H_TOTAL,
CRTC_H_TOTAL,
timing->h_total - 1);
CRTC_REG_UPDATE(
CRTC0_CRTC_V_TOTAL,
CRTC_V_TOTAL,
timing->v_total - 1);
/* In case of V_TOTAL_CONTROL is on, make sure V_TOTAL_MAX and
* V_TOTAL_MIN are equal to V_TOTAL.
*/
CRTC_REG_UPDATE(
CRTC0_CRTC_V_TOTAL_MAX,
CRTC_V_TOTAL_MAX,
timing->v_total - 1);
CRTC_REG_UPDATE(
CRTC0_CRTC_V_TOTAL_MIN,
CRTC_V_TOTAL_MIN,
timing->v_total - 1);
tmp1 = timing->h_total -
(h_sync_start + timing->h_border_left);
tmp2 = tmp1 + timing->h_addressable +
timing->h_border_left + timing->h_border_right;
CRTC_REG_UPDATE_2(
CRTC0_CRTC_H_BLANK_START_END,
CRTC_H_BLANK_END, tmp1,
CRTC_H_BLANK_START, tmp2);
tmp1 = timing->v_total - (v_sync_start + timing->v_border_top);
tmp2 = tmp1 + timing->v_addressable + timing->v_border_top +
timing->v_border_bottom;
CRTC_REG_UPDATE_2(
CRTC0_CRTC_V_BLANK_START_END,
CRTC_V_BLANK_END, tmp1,
CRTC_V_BLANK_START, tmp2);
}
/* TODO: Should we move it to opp? */
/* Combine with below and move YUV/RGB color conversion to SW layer */
static void dce120_timing_generator_program_blank_color(
struct timing_generator *tg,
const struct tg_color *black_color)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
CRTC_REG_UPDATE_3(
CRTC0_CRTC_BLACK_COLOR,
CRTC_BLACK_COLOR_B_CB, black_color->color_b_cb,
CRTC_BLACK_COLOR_G_Y, black_color->color_g_y,
CRTC_BLACK_COLOR_R_CR, black_color->color_r_cr);
}
/* Combine with above and move YUV/RGB color conversion to SW layer */
static void dce120_timing_generator_set_overscan_color_black(
struct timing_generator *tg,
const struct tg_color *color)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value = 0;
CRTC_REG_SET_3(
CRTC0_CRTC_OVERSCAN_COLOR,
CRTC_OVERSCAN_COLOR_BLUE, color->color_b_cb,
CRTC_OVERSCAN_COLOR_GREEN, color->color_g_y,
CRTC_OVERSCAN_COLOR_RED, color->color_r_cr);
value = dm_read_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_OVERSCAN_COLOR,
tg110->offsets.crtc);
dm_write_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_BLACK_COLOR,
tg110->offsets.crtc,
value);
/* This is desirable to have a constant DAC output voltage during the
* blank time that is higher than the 0 volt reference level that the
* DAC outputs when the NBLANK signal
* is asserted low, such as for output to an analog TV. */
dm_write_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_BLANK_DATA_COLOR,
tg110->offsets.crtc,
value);
/* TO DO we have to program EXT registers and we need to know LB DATA
* format because it is used when more 10 , i.e. 12 bits per color
*
* m_mmDxCRTC_OVERSCAN_COLOR_EXT
* m_mmDxCRTC_BLACK_COLOR_EXT
* m_mmDxCRTC_BLANK_DATA_COLOR_EXT
*/
}
static void dce120_timing_generator_set_drr(
struct timing_generator *tg,
const struct drr_params *params)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
if (params != NULL &&
params->vertical_total_max > 0 &&
params->vertical_total_min > 0) {
CRTC_REG_UPDATE(
CRTC0_CRTC_V_TOTAL_MIN,
CRTC_V_TOTAL_MIN, params->vertical_total_min - 1);
CRTC_REG_UPDATE(
CRTC0_CRTC_V_TOTAL_MAX,
CRTC_V_TOTAL_MAX, params->vertical_total_max - 1);
CRTC_REG_SET_N(CRTC0_CRTC_V_TOTAL_CONTROL, 6,
FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MIN_SEL), 1,
FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MAX_SEL), 1,
FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_ON_EVENT), 0,
FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_TO_MASTER_VSYNC), 0,
FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_SET_V_TOTAL_MIN_MASK_EN), 0,
FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_SET_V_TOTAL_MIN_MASK), 0);
CRTC_REG_UPDATE(
CRTC0_CRTC_STATIC_SCREEN_CONTROL,
CRTC_STATIC_SCREEN_EVENT_MASK,
0x180);
} else {
CRTC_REG_SET_N(CRTC0_CRTC_V_TOTAL_CONTROL, 5,
FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MIN_SEL), 0,
FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MAX_SEL), 0,
FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_ON_EVENT), 0,
FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_TO_MASTER_VSYNC), 0,
FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_SET_V_TOTAL_MIN_MASK), 0);
CRTC_REG_UPDATE(
CRTC0_CRTC_V_TOTAL_MIN,
CRTC_V_TOTAL_MIN, 0);
CRTC_REG_UPDATE(
CRTC0_CRTC_V_TOTAL_MAX,
CRTC_V_TOTAL_MAX, 0);
CRTC_REG_UPDATE(
CRTC0_CRTC_STATIC_SCREEN_CONTROL,
CRTC_STATIC_SCREEN_EVENT_MASK,
0);
}
}
static void dce120_timing_generator_get_crtc_scanoutpos(
struct timing_generator *tg,
uint32_t *v_blank_start,
uint32_t *v_blank_end,
uint32_t *h_position,
uint32_t *v_position)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
struct crtc_position position;
uint32_t v_blank_start_end = dm_read_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_V_BLANK_START_END,
tg110->offsets.crtc);
*v_blank_start = get_reg_field_value(v_blank_start_end,
CRTC0_CRTC_V_BLANK_START_END,
CRTC_V_BLANK_START);
*v_blank_end = get_reg_field_value(v_blank_start_end,
CRTC0_CRTC_V_BLANK_START_END,
CRTC_V_BLANK_END);
dce120_timing_generator_get_crtc_position(
tg, &position);
*h_position = position.horizontal_count;
*v_position = position.vertical_count;
}
static void dce120_timing_generator_enable_advanced_request(
struct timing_generator *tg,
bool enable,
const struct dc_crtc_timing *timing)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t v_sync_width_and_b_porch =
timing->v_total - timing->v_addressable -
timing->v_border_bottom - timing->v_front_porch;
uint32_t value = dm_read_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_START_LINE_CONTROL,
tg110->offsets.crtc);
set_reg_field_value(
value,
enable ? 0 : 1,
CRTC0_CRTC_START_LINE_CONTROL,
CRTC_LEGACY_REQUESTOR_EN);
/* Program advanced line position acc.to the best case from fetching data perspective to hide MC latency
* and prefilling Line Buffer in V Blank (to 10 lines as LB can store max 10 lines)
*/
if (v_sync_width_and_b_porch > 10)
v_sync_width_and_b_porch = 10;
set_reg_field_value(
value,
v_sync_width_and_b_porch,
CRTC0_CRTC_START_LINE_CONTROL,
CRTC_ADVANCED_START_LINE_POSITION);
dm_write_reg_soc15(tg->ctx,
mmCRTC0_CRTC_START_LINE_CONTROL,
tg110->offsets.crtc,
value);
}
static void dce120_tg_program_blank_color(struct timing_generator *tg,
const struct tg_color *black_color)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value = 0;
CRTC_REG_UPDATE_3(
CRTC0_CRTC_BLACK_COLOR,
CRTC_BLACK_COLOR_B_CB, black_color->color_b_cb,
CRTC_BLACK_COLOR_G_Y, black_color->color_g_y,
CRTC_BLACK_COLOR_R_CR, black_color->color_r_cr);
value = dm_read_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_BLACK_COLOR,
tg110->offsets.crtc);
dm_write_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_BLANK_DATA_COLOR,
tg110->offsets.crtc,
value);
}
static void dce120_tg_set_overscan_color(struct timing_generator *tg,
const struct tg_color *overscan_color)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
CRTC_REG_SET_3(
CRTC0_CRTC_OVERSCAN_COLOR,
CRTC_OVERSCAN_COLOR_BLUE, overscan_color->color_b_cb,
CRTC_OVERSCAN_COLOR_GREEN, overscan_color->color_g_y,
CRTC_OVERSCAN_COLOR_RED, overscan_color->color_r_cr);
}
static void dce120_tg_program_timing(struct timing_generator *tg,
const struct dc_crtc_timing *timing,
int vready_offset,
int vstartup_start,
int vupdate_offset,
int vupdate_width,
const enum signal_type signal,
bool use_vbios)
{
if (use_vbios)
dce110_timing_generator_program_timing_generator(tg, timing);
else
dce120_timing_generator_program_blanking(tg, timing);
}
static bool dce120_tg_is_blanked(struct timing_generator *tg)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value = dm_read_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_BLANK_CONTROL,
tg110->offsets.crtc);
if (get_reg_field_value(
value,
CRTC0_CRTC_BLANK_CONTROL,
CRTC_BLANK_DATA_EN) == 1 &&
get_reg_field_value(
value,
CRTC0_CRTC_BLANK_CONTROL,
CRTC_CURRENT_BLANK_STATE) == 1)
return true;
return false;
}
static void dce120_tg_set_blank(struct timing_generator *tg,
bool enable_blanking)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
CRTC_REG_SET(
CRTC0_CRTC_DOUBLE_BUFFER_CONTROL,
CRTC_BLANK_DATA_DOUBLE_BUFFER_EN, 1);
if (enable_blanking)
CRTC_REG_SET(CRTC0_CRTC_BLANK_CONTROL, CRTC_BLANK_DATA_EN, 1);
else
dm_write_reg_soc15(tg->ctx, mmCRTC0_CRTC_BLANK_CONTROL,
tg110->offsets.crtc, 0);
}
bool dce120_tg_validate_timing(struct timing_generator *tg,
const struct dc_crtc_timing *timing);
static void dce120_tg_wait_for_state(struct timing_generator *tg,
enum crtc_state state)
{
switch (state) {
case CRTC_STATE_VBLANK:
dce120_timing_generator_wait_for_vblank(tg);
break;
case CRTC_STATE_VACTIVE:
dce120_timing_generator_wait_for_vactive(tg);
break;
default:
break;
}
}
static void dce120_tg_set_colors(struct timing_generator *tg,
const struct tg_color *blank_color,
const struct tg_color *overscan_color)
{
if (blank_color != NULL)
dce120_tg_program_blank_color(tg, blank_color);
if (overscan_color != NULL)
dce120_tg_set_overscan_color(tg, overscan_color);
}
static void dce120_timing_generator_set_static_screen_control(
struct timing_generator *tg,
uint32_t event_triggers,
uint32_t num_frames)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
// By register spec, it only takes 8 bit value
if (num_frames > 0xFF)
num_frames = 0xFF;
CRTC_REG_UPDATE_2(CRTC0_CRTC_STATIC_SCREEN_CONTROL,
CRTC_STATIC_SCREEN_EVENT_MASK, event_triggers,
CRTC_STATIC_SCREEN_FRAME_COUNT, num_frames);
}
static void dce120_timing_generator_set_test_pattern(
struct timing_generator *tg,
/* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
* because this is not DP-specific (which is probably somewhere in DP
* encoder) */
enum controller_dp_test_pattern test_pattern,
enum dc_color_depth color_depth)
{
struct dc_context *ctx = tg->ctx;
uint32_t value;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
enum test_pattern_color_format bit_depth;
enum test_pattern_dyn_range dyn_range;
enum test_pattern_mode mode;
/* color ramp generator mixes 16-bits color */
uint32_t src_bpc = 16;
/* requested bpc */
uint32_t dst_bpc;
uint32_t index;
/* RGB values of the color bars.
* Produce two RGB colors: RGB0 - white (all Fs)
* and RGB1 - black (all 0s)
* (three RGB components for two colors)
*/
uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
0x0000, 0x0000};
/* dest color (converted to the specified color format) */
uint16_t dst_color[6];
uint32_t inc_base;
/* translate to bit depth */
switch (color_depth) {
case COLOR_DEPTH_666:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
break;
case COLOR_DEPTH_888:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
break;
case COLOR_DEPTH_101010:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
break;
case COLOR_DEPTH_121212:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
break;
default:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
break;
}
switch (test_pattern) {
case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
{
dyn_range = (test_pattern ==
CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
TEST_PATTERN_DYN_RANGE_CEA :
TEST_PATTERN_DYN_RANGE_VESA);
mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
CRTC_REG_UPDATE_2(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_VRES, 6,
CRTC_TEST_PATTERN_HRES, 6);
CRTC_REG_UPDATE_4(CRTC0_CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_EN, 1,
CRTC_TEST_PATTERN_MODE, mode,
CRTC_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
CRTC_TEST_PATTERN_COLOR_FORMAT, bit_depth);
}
break;
case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
{
mode = (test_pattern ==
CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
TEST_PATTERN_MODE_VERTICALBARS :
TEST_PATTERN_MODE_HORIZONTALBARS);
switch (bit_depth) {
case TEST_PATTERN_COLOR_FORMAT_BPC_6:
dst_bpc = 6;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_8:
dst_bpc = 8;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_10:
dst_bpc = 10;
break;
default:
dst_bpc = 8;
break;
}
/* adjust color to the required colorFormat */
for (index = 0; index < 6; index++) {
/* dst = 2^dstBpc * src / 2^srcBpc = src >>
* (srcBpc - dstBpc);
*/
dst_color[index] =
src_color[index] >> (src_bpc - dst_bpc);
/* CRTC_TEST_PATTERN_DATA has 16 bits,
* lowest 6 are hardwired to ZERO
* color bits should be left aligned aligned to MSB
* XXXXXXXXXX000000 for 10 bit,
* XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
*/
dst_color[index] <<= (16 - dst_bpc);
}
dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_PARAMETERS, tg110->offsets.crtc, 0);
/* We have to write the mask before data, similar to pipeline.
* For example, for 8 bpc, if we want RGB0 to be magenta,
* and RGB1 to be cyan,
* we need to make 7 writes:
* MASK DATA
* 000001 00000000 00000000 set mask to R0
* 000010 11111111 00000000 R0 255, 0xFF00, set mask to G0
* 000100 00000000 00000000 G0 0, 0x0000, set mask to B0
* 001000 11111111 00000000 B0 255, 0xFF00, set mask to R1
* 010000 00000000 00000000 R1 0, 0x0000, set mask to G1
* 100000 11111111 00000000 G1 255, 0xFF00, set mask to B1
* 100000 11111111 00000000 B1 255, 0xFF00
*
* we will make a loop of 6 in which we prepare the mask,
* then write, then prepare the color for next write.
* first iteration will write mask only,
* but each next iteration color prepared in
* previous iteration will be written within new mask,
* the last component will written separately,
* mask is not changing between 6th and 7th write
* and color will be prepared by last iteration
*/
/* write color, color values mask in CRTC_TEST_PATTERN_MASK
* is B1, G1, R1, B0, G0, R0
*/
value = 0;
for (index = 0; index < 6; index++) {
/* prepare color mask, first write PATTERN_DATA
* will have all zeros
*/
set_reg_field_value(
value,
(1 << index),
CRTC0_CRTC_TEST_PATTERN_COLOR,
CRTC_TEST_PATTERN_MASK);
/* write color component */
dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, value);
/* prepare next color component,
* will be written in the next iteration
*/
set_reg_field_value(
value,
dst_color[index],
CRTC0_CRTC_TEST_PATTERN_COLOR,
CRTC_TEST_PATTERN_DATA);
}
/* write last color component,
* it's been already prepared in the loop
*/
dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, value);
/* enable test pattern */
CRTC_REG_UPDATE_4(CRTC0_CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_EN, 1,
CRTC_TEST_PATTERN_MODE, mode,
CRTC_TEST_PATTERN_DYNAMIC_RANGE, 0,
CRTC_TEST_PATTERN_COLOR_FORMAT, bit_depth);
}
break;
case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
{
mode = (bit_depth ==
TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
TEST_PATTERN_MODE_DUALRAMP_RGB :
TEST_PATTERN_MODE_SINGLERAMP_RGB);
switch (bit_depth) {
case TEST_PATTERN_COLOR_FORMAT_BPC_6:
dst_bpc = 6;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_8:
dst_bpc = 8;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_10:
dst_bpc = 10;
break;
default:
dst_bpc = 8;
break;
}
/* increment for the first ramp for one color gradation
* 1 gradation for 6-bit color is 2^10
* gradations in 16-bit color
*/
inc_base = (src_bpc - dst_bpc);
switch (bit_depth) {
case TEST_PATTERN_COLOR_FORMAT_BPC_6:
{
CRTC_REG_UPDATE_5(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_INC0, inc_base,
CRTC_TEST_PATTERN_INC1, 0,
CRTC_TEST_PATTERN_HRES, 6,
CRTC_TEST_PATTERN_VRES, 6,
CRTC_TEST_PATTERN_RAMP0_OFFSET, 0);
}
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_8:
{
CRTC_REG_UPDATE_5(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_INC0, inc_base,
CRTC_TEST_PATTERN_INC1, 0,
CRTC_TEST_PATTERN_HRES, 8,
CRTC_TEST_PATTERN_VRES, 6,
CRTC_TEST_PATTERN_RAMP0_OFFSET, 0);
}
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_10:
{
CRTC_REG_UPDATE_5(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_INC0, inc_base,
CRTC_TEST_PATTERN_INC1, inc_base + 2,
CRTC_TEST_PATTERN_HRES, 8,
CRTC_TEST_PATTERN_VRES, 5,
CRTC_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
}
break;
default:
break;
}
dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, 0);
/* enable test pattern */
dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_CONTROL, tg110->offsets.crtc, 0);
CRTC_REG_UPDATE_4(CRTC0_CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_EN, 1,
CRTC_TEST_PATTERN_MODE, mode,
CRTC_TEST_PATTERN_DYNAMIC_RANGE, 0,
CRTC_TEST_PATTERN_COLOR_FORMAT, bit_depth);
}
break;
case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
{
value = 0;
dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_CONTROL, tg110->offsets.crtc, value);
dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, value);
dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_PARAMETERS, tg110->offsets.crtc, value);
}
break;
default:
break;
}
}
static bool dce120_arm_vert_intr(
struct timing_generator *tg,
uint8_t width)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t v_blank_start, v_blank_end, h_position, v_position;
tg->funcs->get_scanoutpos(
tg,
&v_blank_start,
&v_blank_end,
&h_position,
&v_position);
if (v_blank_start == 0 || v_blank_end == 0)
return false;
CRTC_REG_SET_2(
CRTC0_CRTC_VERTICAL_INTERRUPT0_POSITION,
CRTC_VERTICAL_INTERRUPT0_LINE_START, v_blank_start,
CRTC_VERTICAL_INTERRUPT0_LINE_END, v_blank_start + width);
return true;
}
static bool dce120_is_tg_enabled(struct timing_generator *tg)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value, field;
value = dm_read_reg_soc15(tg->ctx, mmCRTC0_CRTC_CONTROL,
tg110->offsets.crtc);
field = get_reg_field_value(value, CRTC0_CRTC_CONTROL,
CRTC_CURRENT_MASTER_EN_STATE);
return field == 1;
}
static bool dce120_configure_crc(struct timing_generator *tg,
const struct crc_params *params)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
/* Cannot configure crc on a CRTC that is disabled */
if (!dce120_is_tg_enabled(tg))
return false;
/* First, disable CRC before we configure it. */
dm_write_reg_soc15(tg->ctx, mmCRTC0_CRTC_CRC_CNTL,
tg110->offsets.crtc, 0);
if (!params->enable)
return true;
/* Program frame boundaries */
/* Window A x axis start and end. */
CRTC_REG_UPDATE_2(CRTC0_CRTC_CRC0_WINDOWA_X_CONTROL,
CRTC_CRC0_WINDOWA_X_START, params->windowa_x_start,
CRTC_CRC0_WINDOWA_X_END, params->windowa_x_end);
/* Window A y axis start and end. */
CRTC_REG_UPDATE_2(CRTC0_CRTC_CRC0_WINDOWA_Y_CONTROL,
CRTC_CRC0_WINDOWA_Y_START, params->windowa_y_start,
CRTC_CRC0_WINDOWA_Y_END, params->windowa_y_end);
/* Window B x axis start and end. */
CRTC_REG_UPDATE_2(CRTC0_CRTC_CRC0_WINDOWB_X_CONTROL,
CRTC_CRC0_WINDOWB_X_START, params->windowb_x_start,
CRTC_CRC0_WINDOWB_X_END, params->windowb_x_end);
/* Window B y axis start and end. */
CRTC_REG_UPDATE_2(CRTC0_CRTC_CRC0_WINDOWB_Y_CONTROL,
CRTC_CRC0_WINDOWB_Y_START, params->windowb_y_start,
CRTC_CRC0_WINDOWB_Y_END, params->windowb_y_end);
/* Set crc mode and selection, and enable. Only using CRC0*/
CRTC_REG_UPDATE_3(CRTC0_CRTC_CRC_CNTL,
CRTC_CRC_EN, params->continuous_mode ? 1 : 0,
CRTC_CRC0_SELECT, params->selection,
CRTC_CRC_EN, 1);
return true;
}
static bool dce120_get_crc(struct timing_generator *tg, uint32_t *r_cr,
uint32_t *g_y, uint32_t *b_cb)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value, field;
value = dm_read_reg_soc15(tg->ctx, mmCRTC0_CRTC_CRC_CNTL,
tg110->offsets.crtc);
field = get_reg_field_value(value, CRTC0_CRTC_CRC_CNTL, CRTC_CRC_EN);
/* Early return if CRC is not enabled for this CRTC */
if (!field)
return false;
value = dm_read_reg_soc15(tg->ctx, mmCRTC0_CRTC_CRC0_DATA_RG,
tg110->offsets.crtc);
*r_cr = get_reg_field_value(value, CRTC0_CRTC_CRC0_DATA_RG, CRC0_R_CR);
*g_y = get_reg_field_value(value, CRTC0_CRTC_CRC0_DATA_RG, CRC0_G_Y);
value = dm_read_reg_soc15(tg->ctx, mmCRTC0_CRTC_CRC0_DATA_B,
tg110->offsets.crtc);
*b_cb = get_reg_field_value(value, CRTC0_CRTC_CRC0_DATA_B, CRC0_B_CB);
return true;
}
static const struct timing_generator_funcs dce120_tg_funcs = {
.validate_timing = dce120_tg_validate_timing,
.program_timing = dce120_tg_program_timing,
.enable_crtc = dce120_timing_generator_enable_crtc,
.disable_crtc = dce110_timing_generator_disable_crtc,
/* used by enable_timing_synchronization. Not need for FPGA */
.is_counter_moving = dce110_timing_generator_is_counter_moving,
/* never be called */
.get_position = dce120_timing_generator_get_crtc_position,
.get_frame_count = dce120_timing_generator_get_vblank_counter,
.get_scanoutpos = dce120_timing_generator_get_crtc_scanoutpos,
.set_early_control = dce120_timing_generator_set_early_control,
/* used by enable_timing_synchronization. Not need for FPGA */
.wait_for_state = dce120_tg_wait_for_state,
.set_blank = dce120_tg_set_blank,
.is_blanked = dce120_tg_is_blanked,
/* never be called */
.set_colors = dce120_tg_set_colors,
.set_overscan_blank_color = dce120_timing_generator_set_overscan_color_black,
.set_blank_color = dce120_timing_generator_program_blank_color,
.disable_vga = dce120_timing_generator_disable_vga,
.did_triggered_reset_occur = dce120_timing_generator_did_triggered_reset_occur,
.setup_global_swap_lock = dce120_timing_generator_setup_global_swap_lock,
.enable_reset_trigger = dce120_timing_generator_enable_reset_trigger,
.disable_reset_trigger = dce120_timing_generator_disable_reset_trigger,
.tear_down_global_swap_lock = dce120_timing_generator_tear_down_global_swap_lock,
.enable_advanced_request = dce120_timing_generator_enable_advanced_request,
.set_drr = dce120_timing_generator_set_drr,
.get_last_used_drr_vtotal = NULL,
.set_static_screen_control = dce120_timing_generator_set_static_screen_control,
.set_test_pattern = dce120_timing_generator_set_test_pattern,
.arm_vert_intr = dce120_arm_vert_intr,
.is_tg_enabled = dce120_is_tg_enabled,
.configure_crc = dce120_configure_crc,
.get_crc = dce120_get_crc,
};
void dce120_timing_generator_construct(
struct dce110_timing_generator *tg110,
struct dc_context *ctx,
uint32_t instance,
const struct dce110_timing_generator_offsets *offsets)
{
tg110->controller_id = CONTROLLER_ID_D0 + instance;
tg110->base.inst = instance;
tg110->offsets = *offsets;
tg110->base.funcs = &dce120_tg_funcs;
tg110->base.ctx = ctx;
tg110->base.bp = ctx->dc_bios;
tg110->max_h_total = CRTC0_CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1;
tg110->max_v_total = CRTC0_CRTC_V_TOTAL__CRTC_V_TOTAL_MASK + 1;
/*//CRTC requires a minimum HBLANK = 32 pixels and o
* Minimum HSYNC = 8 pixels*/
tg110->min_h_blank = 32;
/*DCE12_CRTC_Block_ARch.doc*/
tg110->min_h_front_porch = 0;
tg110->min_h_back_porch = 0;
tg110->min_h_sync_width = 4;
tg110->min_v_sync_width = 1;
tg110->min_v_blank = 3;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dce120/dce120_timing_generator.c |
/*
* Copyright 2020 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "reg_helper.h"
#include "core_types.h"
#include "dcn301_dccg.h"
#define TO_DCN_DCCG(dccg)\
container_of(dccg, struct dcn_dccg, base)
#define REG(reg) \
(dccg_dcn->regs->reg)
#undef FN
#define FN(reg_name, field_name) \
dccg_dcn->dccg_shift->field_name, dccg_dcn->dccg_mask->field_name
#define CTX \
dccg_dcn->base.ctx
#define DC_LOGGER \
dccg->ctx->logger
static const struct dccg_funcs dccg301_funcs = {
.update_dpp_dto = dccg2_update_dpp_dto,
.get_dccg_ref_freq = dccg2_get_dccg_ref_freq,
.set_fifo_errdet_ovr_en = dccg2_set_fifo_errdet_ovr_en,
.otg_add_pixel = dccg2_otg_add_pixel,
.otg_drop_pixel = dccg2_otg_drop_pixel,
.dccg_init = dccg2_init
};
struct dccg *dccg301_create(
struct dc_context *ctx,
const struct dccg_registers *regs,
const struct dccg_shift *dccg_shift,
const struct dccg_mask *dccg_mask)
{
struct dcn_dccg *dccg_dcn = kzalloc(sizeof(*dccg_dcn), GFP_KERNEL);
struct dccg *base;
if (dccg_dcn == NULL) {
BREAK_TO_DEBUGGER();
return NULL;
}
base = &dccg_dcn->base;
base->ctx = ctx;
base->funcs = &dccg301_funcs;
dccg_dcn->regs = regs;
dccg_dcn->dccg_shift = dccg_shift;
dccg_dcn->dccg_mask = dccg_mask;
return &dccg_dcn->base;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn301/dcn301_dccg.c |
/*
* Copyright 2020 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "reg_helper.h"
#include "dcn301_optc.h"
#include "dc.h"
#include "dcn_calc_math.h"
#include "dc_dmub_srv.h"
#include "dml/dcn30/dcn30_fpu.h"
#include "dc_trace.h"
#define REG(reg)\
optc1->tg_regs->reg
#define CTX \
optc1->base.ctx
#undef FN
#define FN(reg_name, field_name) \
optc1->tg_shift->field_name, optc1->tg_mask->field_name
/**
* optc301_set_drr() - Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
*
* @optc: timing_generator instance.
* @params: parameters used for Dynamic Refresh Rate.
*/
void optc301_set_drr(
struct timing_generator *optc,
const struct drr_params *params)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
if (params != NULL &&
params->vertical_total_max > 0 &&
params->vertical_total_min > 0) {
if (params->vertical_total_mid != 0) {
REG_SET(OTG_V_TOTAL_MID, 0,
OTG_V_TOTAL_MID, params->vertical_total_mid - 1);
REG_UPDATE_2(OTG_V_TOTAL_CONTROL,
OTG_VTOTAL_MID_REPLACING_MAX_EN, 1,
OTG_VTOTAL_MID_FRAME_NUM,
(uint8_t)params->vertical_total_mid_frame_num);
}
optc->funcs->set_vtotal_min_max(optc, params->vertical_total_min - 1, params->vertical_total_max - 1);
REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
OTG_V_TOTAL_MIN_SEL, 1,
OTG_V_TOTAL_MAX_SEL, 1,
OTG_FORCE_LOCK_ON_EVENT, 0,
OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
OTG_SET_V_TOTAL_MIN_MASK, 0);
// Setup manual flow control for EOF via TRIG_A
optc->funcs->setup_manual_trigger(optc);
} else {
REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
OTG_SET_V_TOTAL_MIN_MASK, 0,
OTG_V_TOTAL_MIN_SEL, 0,
OTG_V_TOTAL_MAX_SEL, 0,
OTG_FORCE_LOCK_ON_EVENT, 0);
optc->funcs->set_vtotal_min_max(optc, 0, 0);
}
}
void optc301_setup_manual_trigger(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_SET_8(OTG_TRIGA_CNTL, 0,
OTG_TRIGA_SOURCE_SELECT, 21,
OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst,
OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1,
OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0,
OTG_TRIGA_POLARITY_SELECT, 0,
OTG_TRIGA_FREQUENCY_SELECT, 0,
OTG_TRIGA_DELAY, 0,
OTG_TRIGA_CLEAR, 1);
}
static struct timing_generator_funcs dcn30_tg_funcs = {
.validate_timing = optc1_validate_timing,
.program_timing = optc1_program_timing,
.setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
.setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
.setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
.program_global_sync = optc1_program_global_sync,
.enable_crtc = optc2_enable_crtc,
.disable_crtc = optc1_disable_crtc,
/* used by enable_timing_synchronization. Not need for FPGA */
.is_counter_moving = optc1_is_counter_moving,
.get_position = optc1_get_position,
.get_frame_count = optc1_get_vblank_counter,
.get_scanoutpos = optc1_get_crtc_scanoutpos,
.get_otg_active_size = optc1_get_otg_active_size,
.set_early_control = optc1_set_early_control,
/* used by enable_timing_synchronization. Not need for FPGA */
.wait_for_state = optc1_wait_for_state,
.set_blank_color = optc3_program_blank_color,
.did_triggered_reset_occur = optc1_did_triggered_reset_occur,
.triplebuffer_lock = optc3_triplebuffer_lock,
.triplebuffer_unlock = optc2_triplebuffer_unlock,
.enable_reset_trigger = optc1_enable_reset_trigger,
.enable_crtc_reset = optc1_enable_crtc_reset,
.disable_reset_trigger = optc1_disable_reset_trigger,
.lock = optc3_lock,
.unlock = optc1_unlock,
.lock_doublebuffer_enable = optc3_lock_doublebuffer_enable,
.lock_doublebuffer_disable = optc3_lock_doublebuffer_disable,
.enable_optc_clock = optc1_enable_optc_clock,
.set_drr = optc301_set_drr,
.get_last_used_drr_vtotal = optc2_get_last_used_drr_vtotal,
.set_vtotal_min_max = optc3_set_vtotal_min_max,
.set_static_screen_control = optc1_set_static_screen_control,
.program_stereo = optc1_program_stereo,
.is_stereo_left_eye = optc1_is_stereo_left_eye,
.tg_init = optc3_tg_init,
.is_tg_enabled = optc1_is_tg_enabled,
.is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
.clear_optc_underflow = optc1_clear_optc_underflow,
.setup_global_swap_lock = NULL,
.get_crc = optc1_get_crc,
.configure_crc = optc2_configure_crc,
.set_dsc_config = optc3_set_dsc_config,
.get_dsc_status = optc2_get_dsc_status,
.set_dwb_source = NULL,
.set_odm_bypass = optc3_set_odm_bypass,
.set_odm_combine = optc3_set_odm_combine,
.get_optc_source = optc2_get_optc_source,
.set_out_mux = optc3_set_out_mux,
.set_drr_trigger_window = optc3_set_drr_trigger_window,
.set_vtotal_change_limit = optc3_set_vtotal_change_limit,
.set_gsl = optc2_set_gsl,
.set_gsl_source_select = optc2_set_gsl_source_select,
.set_vtg_params = optc1_set_vtg_params,
.program_manual_trigger = optc2_program_manual_trigger,
.setup_manual_trigger = optc301_setup_manual_trigger,
.get_hw_timing = optc1_get_hw_timing,
.wait_drr_doublebuffer_pending_clear = optc3_wait_drr_doublebuffer_pending_clear,
};
void dcn301_timing_generator_init(struct optc *optc1)
{
optc1->base.funcs = &dcn30_tg_funcs;
optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
optc1->min_h_blank = 32;
optc1->min_v_blank = 3;
optc1->min_v_blank_interlace = 5;
optc1->min_h_sync_width = 4;
optc1->min_v_sync_width = 1;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn301/dcn301_optc.c |
/*
* Copyright 2020 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "core_types.h"
#include "dce/dce_hwseq.h"
#include "dcn301_hwseq.h"
#include "reg_helper.h"
#define DC_LOGGER_INIT(logger)
#define CTX \
hws->ctx
#define REG(reg)\
hws->regs->reg
#undef FN
#define FN(reg_name, field_name) \
hws->shifts->field_name, hws->masks->field_name
| linux-master | drivers/gpu/drm/amd/display/dc/dcn301/dcn301_hwseq.c |
/*
* Copyright 2020 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dcn301_hubbub.h"
#include "reg_helper.h"
#define REG(reg)\
hubbub1->regs->reg
#define DC_LOGGER \
hubbub1->base.ctx->logger
#define CTX \
hubbub1->base.ctx
#undef FN
#define FN(reg_name, field_name) \
hubbub1->shifts->field_name, hubbub1->masks->field_name
#define REG(reg)\
hubbub1->regs->reg
#define CTX \
hubbub1->base.ctx
#undef FN
#define FN(reg_name, field_name) \
hubbub1->shifts->field_name, hubbub1->masks->field_name
static const struct hubbub_funcs hubbub301_funcs = {
.update_dchub = hubbub2_update_dchub,
.init_dchub_sys_ctx = hubbub21_init_dchub,
.init_vm_ctx = hubbub2_init_vm_ctx,
.dcc_support_swizzle = hubbub3_dcc_support_swizzle,
.dcc_support_pixel_format = hubbub2_dcc_support_pixel_format,
.get_dcc_compression_cap = hubbub3_get_dcc_compression_cap,
.wm_read_state = hubbub21_wm_read_state,
.get_dchub_ref_freq = hubbub2_get_dchub_ref_freq,
.program_watermarks = hubbub3_program_watermarks,
.allow_self_refresh_control = hubbub1_allow_self_refresh_control,
.is_allow_self_refresh_enabled = hubbub1_is_allow_self_refresh_enabled,
.verify_allow_pstate_change_high = hubbub1_verify_allow_pstate_change_high,
.force_wm_propagate_to_pipes = hubbub3_force_wm_propagate_to_pipes,
.force_pstate_change_control = hubbub3_force_pstate_change_control,
.hubbub_read_state = hubbub2_read_state,
};
void hubbub301_construct(struct dcn20_hubbub *hubbub3,
struct dc_context *ctx,
const struct dcn_hubbub_registers *hubbub_regs,
const struct dcn_hubbub_shift *hubbub_shift,
const struct dcn_hubbub_mask *hubbub_mask)
{
hubbub3->base.ctx = ctx;
hubbub3->base.funcs = &hubbub301_funcs;
hubbub3->regs = hubbub_regs;
hubbub3->shifts = hubbub_shift;
hubbub3->masks = hubbub_mask;
hubbub3->debug_test_index_pstate = 0xB;
hubbub3->detile_buf_size = 184 * 1024; /* 184KB for DCN3 */
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn301/dcn301_hubbub.c |
/*
* Copyright 2016-2020 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dce110/dce110_hw_sequencer.h"
#include "dcn10/dcn10_hw_sequencer.h"
#include "dcn20/dcn20_hwseq.h"
#include "dcn21/dcn21_hwseq.h"
#include "dcn30/dcn30_hwseq.h"
#include "dcn301_hwseq.h"
#include "dcn301_init.h"
static const struct hw_sequencer_funcs dcn301_funcs = {
.program_gamut_remap = dcn10_program_gamut_remap,
.init_hw = dcn10_init_hw,
.power_down_on_boot = dcn10_power_down_on_boot,
.apply_ctx_to_hw = dce110_apply_ctx_to_hw,
.apply_ctx_for_surface = NULL,
.program_front_end_for_ctx = dcn20_program_front_end_for_ctx,
.wait_for_pending_cleared = dcn10_wait_for_pending_cleared,
.post_unlock_program_front_end = dcn20_post_unlock_program_front_end,
.update_plane_addr = dcn20_update_plane_addr,
.update_dchub = dcn10_update_dchub,
.update_pending_status = dcn10_update_pending_status,
.program_output_csc = dcn20_program_output_csc,
.enable_accelerated_mode = dce110_enable_accelerated_mode,
.enable_timing_synchronization = dcn10_enable_timing_synchronization,
.enable_per_frame_crtc_position_reset = dcn10_enable_per_frame_crtc_position_reset,
.update_info_frame = dcn30_update_info_frame,
.send_immediate_sdp_message = dcn10_send_immediate_sdp_message,
.enable_stream = dcn20_enable_stream,
.disable_stream = dce110_disable_stream,
.unblank_stream = dcn20_unblank_stream,
#ifdef FREESYNC_POWER_OPTIMIZE
.are_streams_coarse_grain_aligned = dcn20_are_streams_coarse_grain_aligned,
#endif
.blank_stream = dce110_blank_stream,
.enable_audio_stream = dce110_enable_audio_stream,
.disable_audio_stream = dce110_disable_audio_stream,
.disable_plane = dcn20_disable_plane,
.pipe_control_lock = dcn20_pipe_control_lock,
.interdependent_update_lock = dcn10_lock_all_pipes,
.cursor_lock = dcn10_cursor_lock,
.prepare_bandwidth = dcn20_prepare_bandwidth,
.optimize_bandwidth = dcn20_optimize_bandwidth,
.update_bandwidth = dcn20_update_bandwidth,
.set_drr = dcn10_set_drr,
.get_position = dcn10_get_position,
.set_static_screen_control = dcn10_set_static_screen_control,
.setup_stereo = dcn10_setup_stereo,
.set_avmute = dcn30_set_avmute,
.log_hw_state = dcn10_log_hw_state,
.get_hw_state = dcn10_get_hw_state,
.clear_status_bits = dcn10_clear_status_bits,
.wait_for_mpcc_disconnect = dcn10_wait_for_mpcc_disconnect,
.edp_backlight_control = dce110_edp_backlight_control,
.edp_power_control = dce110_edp_power_control,
.edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
.set_cursor_position = dcn10_set_cursor_position,
.set_cursor_attribute = dcn10_set_cursor_attribute,
.set_cursor_sdr_white_level = dcn10_set_cursor_sdr_white_level,
.setup_periodic_interrupt = dcn10_setup_periodic_interrupt,
.set_clock = dcn10_set_clock,
.get_clock = dcn10_get_clock,
.program_triplebuffer = dcn20_program_triple_buffer,
.enable_writeback = dcn30_enable_writeback,
.disable_writeback = dcn30_disable_writeback,
.update_writeback = dcn30_update_writeback,
.mmhubbub_warmup = dcn30_mmhubbub_warmup,
.dmdata_status_done = dcn20_dmdata_status_done,
.program_dmdata_engine = dcn30_program_dmdata_engine,
.set_dmdata_attributes = dcn20_set_dmdata_attributes,
.init_sys_ctx = dcn20_init_sys_ctx,
.init_vm_ctx = dcn20_init_vm_ctx,
.set_flip_control_gsl = dcn20_set_flip_control_gsl,
.get_vupdate_offset_from_vsync = dcn10_get_vupdate_offset_from_vsync,
.calc_vupdate_position = dcn10_calc_vupdate_position,
.set_backlight_level = dcn21_set_backlight_level,
.set_abm_immediate_disable = dcn21_set_abm_immediate_disable,
.set_pipe = dcn21_set_pipe,
.enable_lvds_link_output = dce110_enable_lvds_link_output,
.enable_tmds_link_output = dce110_enable_tmds_link_output,
.enable_dp_link_output = dce110_enable_dp_link_output,
.disable_link_output = dce110_disable_link_output,
.set_disp_pattern_generator = dcn30_set_disp_pattern_generator,
.get_dcc_en_bits = dcn10_get_dcc_en_bits,
.optimize_pwr_state = dcn21_optimize_pwr_state,
.exit_optimized_pwr_state = dcn21_exit_optimized_pwr_state,
.update_visual_confirm_color = dcn10_update_visual_confirm_color,
};
static const struct hwseq_private_funcs dcn301_private_funcs = {
.init_pipes = dcn10_init_pipes,
.update_plane_addr = dcn20_update_plane_addr,
.plane_atomic_disconnect = dcn10_plane_atomic_disconnect,
.update_mpcc = dcn20_update_mpcc,
.set_input_transfer_func = dcn30_set_input_transfer_func,
.set_output_transfer_func = dcn30_set_output_transfer_func,
.power_down = dce110_power_down,
.enable_display_power_gating = dcn10_dummy_display_power_gating,
.blank_pixel_data = dcn20_blank_pixel_data,
.reset_hw_ctx_wrap = dcn20_reset_hw_ctx_wrap,
.enable_stream_timing = dcn20_enable_stream_timing,
.edp_backlight_control = dce110_edp_backlight_control,
.disable_stream_gating = dcn20_disable_stream_gating,
.enable_stream_gating = dcn20_enable_stream_gating,
.setup_vupdate_interrupt = dcn20_setup_vupdate_interrupt,
.did_underflow_occur = dcn10_did_underflow_occur,
.init_blank = dcn20_init_blank,
.disable_vga = dcn20_disable_vga,
.bios_golden_init = dcn10_bios_golden_init,
.plane_atomic_disable = dcn20_plane_atomic_disable,
.plane_atomic_power_down = dcn10_plane_atomic_power_down,
.enable_power_gating_plane = dcn20_enable_power_gating_plane,
.dpp_pg_control = dcn20_dpp_pg_control,
.hubp_pg_control = dcn20_hubp_pg_control,
.program_all_writeback_pipes_in_tree = dcn30_program_all_writeback_pipes_in_tree,
.update_odm = dcn20_update_odm,
.dsc_pg_control = dcn20_dsc_pg_control,
.set_hdr_multiplier = dcn10_set_hdr_multiplier,
.verify_allow_pstate_change_high = dcn10_verify_allow_pstate_change_high,
.wait_for_blank_complete = dcn20_wait_for_blank_complete,
.dccg_init = dcn20_dccg_init,
.set_blend_lut = dcn30_set_blend_lut,
.set_shaper_3dlut = dcn20_set_shaper_3dlut,
};
void dcn301_hw_sequencer_construct(struct dc *dc)
{
dc->hwss = dcn301_funcs;
dc->hwseq->funcs = dcn301_private_funcs;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn301/dcn301_init.c |
/*
* Copyright 2020 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "reg_helper.h"
#include "core_types.h"
#include "link_encoder.h"
#include "dcn301_dio_link_encoder.h"
#include "stream_encoder.h"
#include "dc_bios_types.h"
#include "gpio_service_interface.h"
#define CTX \
enc10->base.ctx
#define DC_LOGGER \
enc10->base.ctx->logger
#define REG(reg)\
(enc10->link_regs->reg)
#undef FN
#define FN(reg_name, field_name) \
enc10->link_shift->field_name, enc10->link_mask->field_name
#define IND_REG(index) \
(enc10->link_regs->index)
static const struct link_encoder_funcs dcn301_link_enc_funcs = {
.read_state = link_enc2_read_state,
.validate_output_with_stream = dcn10_link_encoder_validate_output_with_stream,
.hw_init = enc3_hw_init,
.setup = dcn10_link_encoder_setup,
.enable_tmds_output = dcn10_link_encoder_enable_tmds_output,
.enable_dp_output = dcn20_link_encoder_enable_dp_output,
.enable_dp_mst_output = dcn10_link_encoder_enable_dp_mst_output,
.disable_output = dcn10_link_encoder_disable_output,
.dp_set_lane_settings = dcn10_link_encoder_dp_set_lane_settings,
.dp_set_phy_pattern = dcn10_link_encoder_dp_set_phy_pattern,
.update_mst_stream_allocation_table = dcn10_link_encoder_update_mst_stream_allocation_table,
.psr_program_dp_dphy_fast_training = dcn10_psr_program_dp_dphy_fast_training,
.psr_program_secondary_packet = dcn10_psr_program_secondary_packet,
.connect_dig_be_to_fe = dcn10_link_encoder_connect_dig_be_to_fe,
.enable_hpd = dcn10_link_encoder_enable_hpd,
.disable_hpd = dcn10_link_encoder_disable_hpd,
.is_dig_enabled = dcn10_is_dig_enabled,
.destroy = dcn10_link_encoder_destroy,
.fec_set_enable = enc2_fec_set_enable,
.fec_set_ready = enc2_fec_set_ready,
.fec_is_active = enc2_fec_is_active,
.get_dig_frontend = dcn10_get_dig_frontend,
.get_dig_mode = dcn10_get_dig_mode,
.is_in_alt_mode = dcn20_link_encoder_is_in_alt_mode,
.get_max_link_cap = dcn20_link_encoder_get_max_link_cap,
};
void dcn301_link_encoder_construct(
struct dcn20_link_encoder *enc20,
const struct encoder_init_data *init_data,
const struct encoder_feature_support *enc_features,
const struct dcn10_link_enc_registers *link_regs,
const struct dcn10_link_enc_aux_registers *aux_regs,
const struct dcn10_link_enc_hpd_registers *hpd_regs,
const struct dcn10_link_enc_shift *link_shift,
const struct dcn10_link_enc_mask *link_mask)
{
struct bp_encoder_cap_info bp_cap_info = {0};
const struct dc_vbios_funcs *bp_funcs = init_data->ctx->dc_bios->funcs;
enum bp_result result = BP_RESULT_OK;
struct dcn10_link_encoder *enc10 = &enc20->enc10;
enc10->base.funcs = &dcn301_link_enc_funcs;
enc10->base.ctx = init_data->ctx;
enc10->base.id = init_data->encoder;
enc10->base.hpd_source = init_data->hpd_source;
enc10->base.connector = init_data->connector;
enc10->base.preferred_engine = ENGINE_ID_UNKNOWN;
enc10->base.features = *enc_features;
enc10->base.transmitter = init_data->transmitter;
/* set the flag to indicate whether driver poll the I2C data pin
* while doing the DP sink detect
*/
/* if (dal_adapter_service_is_feature_supported(as,
FEATURE_DP_SINK_DETECT_POLL_DATA_PIN))
enc10->base.features.flags.bits.
DP_SINK_DETECT_POLL_DATA_PIN = true;*/
enc10->base.output_signals =
SIGNAL_TYPE_DVI_SINGLE_LINK |
SIGNAL_TYPE_DVI_DUAL_LINK |
SIGNAL_TYPE_LVDS |
SIGNAL_TYPE_DISPLAY_PORT |
SIGNAL_TYPE_DISPLAY_PORT_MST |
SIGNAL_TYPE_EDP |
SIGNAL_TYPE_HDMI_TYPE_A;
/* For DCE 8.0 and 8.1, by design, UNIPHY is hardwired to DIG_BE.
* SW always assign DIG_FE 1:1 mapped to DIG_FE for non-MST UNIPHY.
* SW assign DIG_FE to non-MST UNIPHY first and MST last. So prefer
* DIG is per UNIPHY and used by SST DP, eDP, HDMI, DVI and LVDS.
* Prefer DIG assignment is decided by board design.
* For DCE 8.0, there are only max 6 UNIPHYs, we assume board design
* and VBIOS will filter out 7 UNIPHY for DCE 8.0.
* By this, adding DIGG should not hurt DCE 8.0.
* This will let DCE 8.1 share DCE 8.0 as much as possible
*/
enc10->link_regs = link_regs;
enc10->aux_regs = aux_regs;
enc10->hpd_regs = hpd_regs;
enc10->link_shift = link_shift;
enc10->link_mask = link_mask;
switch (enc10->base.transmitter) {
case TRANSMITTER_UNIPHY_A:
enc10->base.preferred_engine = ENGINE_ID_DIGA;
break;
case TRANSMITTER_UNIPHY_B:
enc10->base.preferred_engine = ENGINE_ID_DIGB;
break;
case TRANSMITTER_UNIPHY_C:
enc10->base.preferred_engine = ENGINE_ID_DIGC;
break;
case TRANSMITTER_UNIPHY_D:
enc10->base.preferred_engine = ENGINE_ID_DIGD;
break;
case TRANSMITTER_UNIPHY_E:
enc10->base.preferred_engine = ENGINE_ID_DIGE;
break;
case TRANSMITTER_UNIPHY_F:
enc10->base.preferred_engine = ENGINE_ID_DIGF;
break;
case TRANSMITTER_UNIPHY_G:
enc10->base.preferred_engine = ENGINE_ID_DIGG;
break;
default:
ASSERT_CRITICAL(false);
enc10->base.preferred_engine = ENGINE_ID_UNKNOWN;
}
/* default to one to mirror Windows behavior */
enc10->base.features.flags.bits.HDMI_6GB_EN = 1;
result = bp_funcs->get_encoder_cap_info(enc10->base.ctx->dc_bios,
enc10->base.id, &bp_cap_info);
/* Override features with DCE-specific values */
if (result == BP_RESULT_OK) {
enc10->base.features.flags.bits.IS_HBR2_CAPABLE =
bp_cap_info.DP_HBR2_EN;
enc10->base.features.flags.bits.IS_HBR3_CAPABLE =
bp_cap_info.DP_HBR3_EN;
enc10->base.features.flags.bits.HDMI_6GB_EN = bp_cap_info.HDMI_6GB_EN;
enc10->base.features.flags.bits.DP_IS_USB_C =
bp_cap_info.DP_IS_USB_C;
} else {
DC_LOG_WARNING("%s: Failed to get encoder_cap_info from VBIOS with error code %d!\n",
__func__,
result);
}
if (enc10->base.ctx->dc->debug.hdmi20_disable) {
enc10->base.features.flags.bits.HDMI_6GB_EN = 0;
}
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn301/dcn301_dio_link_encoder.c |
/*
* Copyright 2019-2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dc.h"
#include "dcn301_init.h"
#include "resource.h"
#include "include/irq_service_interface.h"
#include "dcn30/dcn30_resource.h"
#include "dcn301_resource.h"
#include "dcn20/dcn20_resource.h"
#include "dcn10/dcn10_ipp.h"
#include "dcn301/dcn301_hubbub.h"
#include "dcn30/dcn30_mpc.h"
#include "dcn30/dcn30_hubp.h"
#include "irq/dcn30/irq_service_dcn30.h"
#include "dcn30/dcn30_dpp.h"
#include "dcn301/dcn301_optc.h"
#include "dcn20/dcn20_hwseq.h"
#include "dcn30/dcn30_hwseq.h"
#include "dce110/dce110_hw_sequencer.h"
#include "dcn30/dcn30_opp.h"
#include "dcn20/dcn20_dsc.h"
#include "dcn30/dcn30_vpg.h"
#include "dcn30/dcn30_afmt.h"
#include "dce/dce_clock_source.h"
#include "dce/dce_audio.h"
#include "dce/dce_hwseq.h"
#include "clk_mgr.h"
#include "virtual/virtual_stream_encoder.h"
#include "dce110/dce110_resource.h"
#include "dml/display_mode_vba.h"
#include "dcn301/dcn301_dccg.h"
#include "dcn10/dcn10_resource.h"
#include "dcn30/dcn30_dio_stream_encoder.h"
#include "dcn301/dcn301_dio_link_encoder.h"
#include "dcn301_panel_cntl.h"
#include "vangogh_ip_offset.h"
#include "dcn30/dcn30_dwb.h"
#include "dcn30/dcn30_mmhubbub.h"
#include "dcn/dcn_3_0_1_offset.h"
#include "dcn/dcn_3_0_1_sh_mask.h"
#include "nbio/nbio_7_2_0_offset.h"
#include "dpcs/dpcs_3_0_0_offset.h"
#include "dpcs/dpcs_3_0_0_sh_mask.h"
#include "reg_helper.h"
#include "dce/dmub_abm.h"
#include "dce/dce_aux.h"
#include "dce/dce_i2c.h"
#include "dml/dcn30/dcn30_fpu.h"
#include "dml/dcn30/display_mode_vba_30.h"
#include "dml/dcn301/dcn301_fpu.h"
#include "vm_helper.h"
#include "dcn20/dcn20_vmid.h"
#include "amdgpu_socbb.h"
#define TO_DCN301_RES_POOL(pool)\
container_of(pool, struct dcn301_resource_pool, base)
#define DC_LOGGER_INIT(logger)
enum dcn301_clk_src_array_id {
DCN301_CLK_SRC_PLL0,
DCN301_CLK_SRC_PLL1,
DCN301_CLK_SRC_PLL2,
DCN301_CLK_SRC_PLL3,
DCN301_CLK_SRC_TOTAL
};
/* begin *********************
* macros to expend register list macro defined in HW object header file
*/
/* DCN */
#define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
#define BASE(seg) BASE_INNER(seg)
#define SR(reg_name)\
.reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
mm ## reg_name
#define SRI(reg_name, block, id)\
.reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define SRI2(reg_name, block, id)\
.reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
mm ## reg_name
#define SRIR(var_name, reg_name, block, id)\
.var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define SRII(reg_name, block, id)\
.reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define SRII2(reg_name_pre, reg_name_post, id)\
.reg_name_pre ## _ ## reg_name_post[id] = BASE(mm ## reg_name_pre \
## id ## _ ## reg_name_post ## _BASE_IDX) + \
mm ## reg_name_pre ## id ## _ ## reg_name_post
#define SRII_MPC_RMU(reg_name, block, id)\
.RMU##_##reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define SRII_DWB(reg_name, temp_name, block, id)\
.reg_name[id] = BASE(mm ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## temp_name
#define SF_DWB2(reg_name, block, id, field_name, post_fix) \
.field_name = reg_name ## __ ## field_name ## post_fix
#define DCCG_SRII(reg_name, block, id)\
.block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define VUPDATE_SRII(reg_name, block, id)\
.reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
mm ## reg_name ## _ ## block ## id
/* NBIO */
#define NBIO_BASE_INNER(seg) \
NBIO_BASE__INST0_SEG ## seg
#define NBIO_BASE(seg) \
NBIO_BASE_INNER(seg)
#define NBIO_SR(reg_name)\
.reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
regBIF_BX0_ ## reg_name
/* MMHUB */
#define MMHUB_BASE_INNER(seg) \
MMHUB_BASE__INST0_SEG ## seg
#define MMHUB_BASE(seg) \
MMHUB_BASE_INNER(seg)
#define MMHUB_SR(reg_name)\
.reg_name = MMHUB_BASE(regMM ## reg_name ## _BASE_IDX) + \
regMM ## reg_name
/* CLOCK */
#define CLK_BASE_INNER(seg) \
CLK_BASE__INST0_SEG ## seg
#define CLK_BASE(seg) \
CLK_BASE_INNER(seg)
#define CLK_SRI(reg_name, block, inst)\
.reg_name = CLK_BASE(mm ## block ## _ ## inst ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## _ ## inst ## _ ## reg_name
static const struct bios_registers bios_regs = {
NBIO_SR(BIOS_SCRATCH_3),
NBIO_SR(BIOS_SCRATCH_6)
};
#define clk_src_regs(index, pllid)\
[index] = {\
CS_COMMON_REG_LIST_DCN3_01(index, pllid),\
}
static const struct dce110_clk_src_regs clk_src_regs[] = {
clk_src_regs(0, A),
clk_src_regs(1, B),
clk_src_regs(2, C),
clk_src_regs(3, D)
};
static const struct dce110_clk_src_shift cs_shift = {
CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
};
static const struct dce110_clk_src_mask cs_mask = {
CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
};
#define abm_regs(id)\
[id] = {\
ABM_DCN301_REG_LIST(id)\
}
static const struct dce_abm_registers abm_regs[] = {
abm_regs(0),
abm_regs(1),
abm_regs(2),
abm_regs(3),
};
static const struct dce_abm_shift abm_shift = {
ABM_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dce_abm_mask abm_mask = {
ABM_MASK_SH_LIST_DCN30(_MASK)
};
#define audio_regs(id)\
[id] = {\
AUD_COMMON_REG_LIST(id)\
}
static const struct dce_audio_registers audio_regs[] = {
audio_regs(0),
audio_regs(1),
audio_regs(2),
audio_regs(3),
audio_regs(4),
audio_regs(5),
audio_regs(6)
};
#define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
static const struct dce_audio_shift audio_shift = {
DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
};
static const struct dce_audio_mask audio_mask = {
DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
};
#define vpg_regs(id)\
[id] = {\
VPG_DCN3_REG_LIST(id)\
}
static const struct dcn30_vpg_registers vpg_regs[] = {
vpg_regs(0),
vpg_regs(1),
vpg_regs(2),
vpg_regs(3),
};
static const struct dcn30_vpg_shift vpg_shift = {
DCN3_VPG_MASK_SH_LIST(__SHIFT)
};
static const struct dcn30_vpg_mask vpg_mask = {
DCN3_VPG_MASK_SH_LIST(_MASK)
};
#define afmt_regs(id)\
[id] = {\
AFMT_DCN3_REG_LIST(id)\
}
static const struct dcn30_afmt_registers afmt_regs[] = {
afmt_regs(0),
afmt_regs(1),
afmt_regs(2),
afmt_regs(3),
};
static const struct dcn30_afmt_shift afmt_shift = {
DCN3_AFMT_MASK_SH_LIST(__SHIFT)
};
static const struct dcn30_afmt_mask afmt_mask = {
DCN3_AFMT_MASK_SH_LIST(_MASK)
};
#define stream_enc_regs(id)\
[id] = {\
SE_DCN3_REG_LIST(id)\
}
static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
stream_enc_regs(0),
stream_enc_regs(1),
stream_enc_regs(2),
stream_enc_regs(3),
};
static const struct dcn10_stream_encoder_shift se_shift = {
SE_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn10_stream_encoder_mask se_mask = {
SE_COMMON_MASK_SH_LIST_DCN30(_MASK)
};
#define aux_regs(id)\
[id] = {\
DCN2_AUX_REG_LIST(id)\
}
static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
aux_regs(0),
aux_regs(1),
aux_regs(2),
aux_regs(3),
};
#define hpd_regs(id)\
[id] = {\
HPD_REG_LIST(id)\
}
static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
hpd_regs(0),
hpd_regs(1),
hpd_regs(2),
hpd_regs(3),
};
#define link_regs(id, phyid)\
[id] = {\
LE_DCN301_REG_LIST(id), \
UNIPHY_DCN2_REG_LIST(phyid), \
DPCS_DCN2_REG_LIST(id), \
SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
}
static const struct dce110_aux_registers_shift aux_shift = {
DCN_AUX_MASK_SH_LIST(__SHIFT)
};
static const struct dce110_aux_registers_mask aux_mask = {
DCN_AUX_MASK_SH_LIST(_MASK)
};
static const struct dcn10_link_enc_registers link_enc_regs[] = {
link_regs(0, A),
link_regs(1, B),
link_regs(2, C),
link_regs(3, D),
};
static const struct dcn10_link_enc_shift le_shift = {
LINK_ENCODER_MASK_SH_LIST_DCN301(__SHIFT),\
DPCS_DCN2_MASK_SH_LIST(__SHIFT)
};
static const struct dcn10_link_enc_mask le_mask = {
LINK_ENCODER_MASK_SH_LIST_DCN301(_MASK),\
DPCS_DCN2_MASK_SH_LIST(_MASK)
};
#define panel_cntl_regs(id)\
[id] = {\
DCN301_PANEL_CNTL_REG_LIST(id),\
}
static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
panel_cntl_regs(0),
panel_cntl_regs(1),
};
static const struct dcn301_panel_cntl_shift panel_cntl_shift = {
DCN301_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
};
static const struct dcn301_panel_cntl_mask panel_cntl_mask = {
DCN301_PANEL_CNTL_MASK_SH_LIST(_MASK)
};
#define dpp_regs(id)\
[id] = {\
DPP_REG_LIST_DCN30(id),\
}
static const struct dcn3_dpp_registers dpp_regs[] = {
dpp_regs(0),
dpp_regs(1),
dpp_regs(2),
dpp_regs(3),
};
static const struct dcn3_dpp_shift tf_shift = {
DPP_REG_LIST_SH_MASK_DCN30(__SHIFT)
};
static const struct dcn3_dpp_mask tf_mask = {
DPP_REG_LIST_SH_MASK_DCN30(_MASK)
};
#define opp_regs(id)\
[id] = {\
OPP_REG_LIST_DCN30(id),\
}
static const struct dcn20_opp_registers opp_regs[] = {
opp_regs(0),
opp_regs(1),
opp_regs(2),
opp_regs(3),
};
static const struct dcn20_opp_shift opp_shift = {
OPP_MASK_SH_LIST_DCN20(__SHIFT)
};
static const struct dcn20_opp_mask opp_mask = {
OPP_MASK_SH_LIST_DCN20(_MASK)
};
#define aux_engine_regs(id)\
[id] = {\
AUX_COMMON_REG_LIST0(id), \
.AUXN_IMPCAL = 0, \
.AUXP_IMPCAL = 0, \
.AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \
}
static const struct dce110_aux_registers aux_engine_regs[] = {
aux_engine_regs(0),
aux_engine_regs(1),
aux_engine_regs(2),
aux_engine_regs(3),
};
#define dwbc_regs_dcn3(id)\
[id] = {\
DWBC_COMMON_REG_LIST_DCN30(id),\
}
static const struct dcn30_dwbc_registers dwbc30_regs[] = {
dwbc_regs_dcn3(0),
};
static const struct dcn30_dwbc_shift dwbc30_shift = {
DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn30_dwbc_mask dwbc30_mask = {
DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
};
#define mcif_wb_regs_dcn3(id)\
[id] = {\
MCIF_WB_COMMON_REG_LIST_DCN30(id),\
}
static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = {
mcif_wb_regs_dcn3(0)
};
static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
MCIF_WB_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
MCIF_WB_COMMON_MASK_SH_LIST_DCN30(_MASK)
};
#define dsc_regsDCN20(id)\
[id] = {\
DSC_REG_LIST_DCN20(id)\
}
static const struct dcn20_dsc_registers dsc_regs[] = {
dsc_regsDCN20(0),
dsc_regsDCN20(1),
dsc_regsDCN20(2),
};
static const struct dcn20_dsc_shift dsc_shift = {
DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
};
static const struct dcn20_dsc_mask dsc_mask = {
DSC_REG_LIST_SH_MASK_DCN20(_MASK)
};
static const struct dcn30_mpc_registers mpc_regs = {
MPC_REG_LIST_DCN3_0(0),
MPC_REG_LIST_DCN3_0(1),
MPC_REG_LIST_DCN3_0(2),
MPC_REG_LIST_DCN3_0(3),
MPC_OUT_MUX_REG_LIST_DCN3_0(0),
MPC_OUT_MUX_REG_LIST_DCN3_0(1),
MPC_OUT_MUX_REG_LIST_DCN3_0(2),
MPC_OUT_MUX_REG_LIST_DCN3_0(3),
MPC_RMU_GLOBAL_REG_LIST_DCN3AG,
MPC_RMU_REG_LIST_DCN3AG(0),
MPC_RMU_REG_LIST_DCN3AG(1),
MPC_DWB_MUX_REG_LIST_DCN3_0(0),
};
static const struct dcn30_mpc_shift mpc_shift = {
MPC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn30_mpc_mask mpc_mask = {
MPC_COMMON_MASK_SH_LIST_DCN30(_MASK)
};
#define optc_regs(id)\
[id] = {OPTC_COMMON_REG_LIST_DCN3_0(id)}
static const struct dcn_optc_registers optc_regs[] = {
optc_regs(0),
optc_regs(1),
optc_regs(2),
optc_regs(3),
};
static const struct dcn_optc_shift optc_shift = {
OPTC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn_optc_mask optc_mask = {
OPTC_COMMON_MASK_SH_LIST_DCN30(_MASK)
};
#define hubp_regs(id)\
[id] = {\
HUBP_REG_LIST_DCN30(id)\
}
static const struct dcn_hubp2_registers hubp_regs[] = {
hubp_regs(0),
hubp_regs(1),
hubp_regs(2),
hubp_regs(3),
};
static const struct dcn_hubp2_shift hubp_shift = {
HUBP_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn_hubp2_mask hubp_mask = {
HUBP_MASK_SH_LIST_DCN30(_MASK)
};
static const struct dcn_hubbub_registers hubbub_reg = {
HUBBUB_REG_LIST_DCN301(0)
};
static const struct dcn_hubbub_shift hubbub_shift = {
HUBBUB_MASK_SH_LIST_DCN301(__SHIFT)
};
static const struct dcn_hubbub_mask hubbub_mask = {
HUBBUB_MASK_SH_LIST_DCN301(_MASK)
};
static const struct dccg_registers dccg_regs = {
DCCG_REG_LIST_DCN301()
};
static const struct dccg_shift dccg_shift = {
DCCG_MASK_SH_LIST_DCN301(__SHIFT)
};
static const struct dccg_mask dccg_mask = {
DCCG_MASK_SH_LIST_DCN301(_MASK)
};
static const struct dce_hwseq_registers hwseq_reg = {
HWSEQ_DCN301_REG_LIST()
};
static const struct dce_hwseq_shift hwseq_shift = {
HWSEQ_DCN301_MASK_SH_LIST(__SHIFT)
};
static const struct dce_hwseq_mask hwseq_mask = {
HWSEQ_DCN301_MASK_SH_LIST(_MASK)
};
#define vmid_regs(id)\
[id] = {\
DCN20_VMID_REG_LIST(id)\
}
static const struct dcn_vmid_registers vmid_regs[] = {
vmid_regs(0),
vmid_regs(1),
vmid_regs(2),
vmid_regs(3),
vmid_regs(4),
vmid_regs(5),
vmid_regs(6),
vmid_regs(7),
vmid_regs(8),
vmid_regs(9),
vmid_regs(10),
vmid_regs(11),
vmid_regs(12),
vmid_regs(13),
vmid_regs(14),
vmid_regs(15)
};
static const struct dcn20_vmid_shift vmid_shifts = {
DCN20_VMID_MASK_SH_LIST(__SHIFT)
};
static const struct dcn20_vmid_mask vmid_masks = {
DCN20_VMID_MASK_SH_LIST(_MASK)
};
static struct resource_caps res_cap_dcn301 = {
.num_timing_generator = 4,
.num_opp = 4,
.num_video_plane = 4,
.num_audio = 4,
.num_stream_encoder = 4,
.num_pll = 4,
.num_dwb = 1,
.num_ddc = 4,
.num_vmid = 16,
.num_mpc_3dlut = 2,
.num_dsc = 3,
};
static const struct dc_plane_cap plane_cap = {
.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
.per_pixel_alpha = true,
.pixel_format_support = {
.argb8888 = true,
.nv12 = true,
.fp16 = true,
.p010 = true,
.ayuv = false,
},
.max_upscale_factor = {
.argb8888 = 16000,
.nv12 = 16000,
.fp16 = 16000
},
/* 6:1 downscaling ratio: 1000/6 = 166.666 */
.max_downscale_factor = {
.argb8888 = 167,
.nv12 = 167,
.fp16 = 167
},
64,
64
};
static const struct dc_debug_options debug_defaults_drv = {
.disable_dmcu = true,
.force_abm_enable = false,
.timing_trace = false,
.clock_trace = true,
.disable_dpp_power_gate = false,
.disable_hubp_power_gate = false,
.disable_clock_gate = true,
.disable_pplib_clock_request = true,
.disable_pplib_wm_range = true,
.pipe_split_policy = MPC_SPLIT_DYNAMIC,
.force_single_disp_pipe_split = false,
.disable_dcc = DCC_ENABLE,
.vsr_support = true,
.performance_trace = false,
.max_downscale_src_width = 7680,/*upto 8K*/
.scl_reset_length10 = true,
.sanity_checks = false,
.underflow_assert_delay_us = 0xFFFFFFFF,
.dwb_fi_phase = -1, // -1 = disable
.dmub_command_table = true,
.use_max_lb = false,
.exit_idle_opt_for_cursor_updates = true
};
static void dcn301_dpp_destroy(struct dpp **dpp)
{
kfree(TO_DCN20_DPP(*dpp));
*dpp = NULL;
}
static struct dpp *dcn301_dpp_create(struct dc_context *ctx, uint32_t inst)
{
struct dcn3_dpp *dpp =
kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
if (!dpp)
return NULL;
if (dpp3_construct(dpp, ctx, inst,
&dpp_regs[inst], &tf_shift, &tf_mask))
return &dpp->base;
BREAK_TO_DEBUGGER();
kfree(dpp);
return NULL;
}
static struct output_pixel_processor *dcn301_opp_create(struct dc_context *ctx,
uint32_t inst)
{
struct dcn20_opp *opp =
kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
if (!opp) {
BREAK_TO_DEBUGGER();
return NULL;
}
dcn20_opp_construct(opp, ctx, inst,
&opp_regs[inst], &opp_shift, &opp_mask);
return &opp->base;
}
static struct dce_aux *dcn301_aux_engine_create(struct dc_context *ctx, uint32_t inst)
{
struct aux_engine_dce110 *aux_engine =
kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
if (!aux_engine)
return NULL;
dce110_aux_engine_construct(aux_engine, ctx, inst,
SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
&aux_engine_regs[inst],
&aux_mask,
&aux_shift,
ctx->dc->caps.extended_aux_timeout_support);
return &aux_engine->base;
}
#define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) }
static const struct dce_i2c_registers i2c_hw_regs[] = {
i2c_inst_regs(1),
i2c_inst_regs(2),
i2c_inst_regs(3),
i2c_inst_regs(4),
};
static const struct dce_i2c_shift i2c_shifts = {
I2C_COMMON_MASK_SH_LIST_DCN2(__SHIFT)
};
static const struct dce_i2c_mask i2c_masks = {
I2C_COMMON_MASK_SH_LIST_DCN2(_MASK)
};
static struct dce_i2c_hw *dcn301_i2c_hw_create(struct dc_context *ctx, uint32_t inst)
{
struct dce_i2c_hw *dce_i2c_hw =
kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
if (!dce_i2c_hw)
return NULL;
dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
&i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
return dce_i2c_hw;
}
static struct mpc *dcn301_mpc_create(
struct dc_context *ctx,
int num_mpcc,
int num_rmu)
{
struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
GFP_KERNEL);
if (!mpc30)
return NULL;
dcn30_mpc_construct(mpc30, ctx,
&mpc_regs,
&mpc_shift,
&mpc_mask,
num_mpcc,
num_rmu);
return &mpc30->base;
}
static struct hubbub *dcn301_hubbub_create(struct dc_context *ctx)
{
int i;
struct dcn20_hubbub *hubbub3 = kzalloc(sizeof(struct dcn20_hubbub),
GFP_KERNEL);
if (!hubbub3)
return NULL;
hubbub301_construct(hubbub3, ctx,
&hubbub_reg,
&hubbub_shift,
&hubbub_mask);
for (i = 0; i < res_cap_dcn301.num_vmid; i++) {
struct dcn20_vmid *vmid = &hubbub3->vmid[i];
vmid->ctx = ctx;
vmid->regs = &vmid_regs[i];
vmid->shifts = &vmid_shifts;
vmid->masks = &vmid_masks;
}
hubbub3->num_vmid = res_cap_dcn301.num_vmid;
return &hubbub3->base;
}
static struct timing_generator *dcn301_timing_generator_create(
struct dc_context *ctx, uint32_t instance)
{
struct optc *tgn10 =
kzalloc(sizeof(struct optc), GFP_KERNEL);
if (!tgn10)
return NULL;
tgn10->base.inst = instance;
tgn10->base.ctx = ctx;
tgn10->tg_regs = &optc_regs[instance];
tgn10->tg_shift = &optc_shift;
tgn10->tg_mask = &optc_mask;
dcn301_timing_generator_init(tgn10);
return &tgn10->base;
}
static const struct encoder_feature_support link_enc_feature = {
.max_hdmi_deep_color = COLOR_DEPTH_121212,
.max_hdmi_pixel_clock = 600000,
.hdmi_ycbcr420_supported = true,
.dp_ycbcr420_supported = true,
.fec_supported = true,
.flags.bits.IS_HBR2_CAPABLE = true,
.flags.bits.IS_HBR3_CAPABLE = true,
.flags.bits.IS_TPS3_CAPABLE = true,
.flags.bits.IS_TPS4_CAPABLE = true
};
static struct link_encoder *dcn301_link_encoder_create(
struct dc_context *ctx,
const struct encoder_init_data *enc_init_data)
{
struct dcn20_link_encoder *enc20 =
kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
if (!enc20)
return NULL;
dcn301_link_encoder_construct(enc20,
enc_init_data,
&link_enc_feature,
&link_enc_regs[enc_init_data->transmitter],
&link_enc_aux_regs[enc_init_data->channel - 1],
&link_enc_hpd_regs[enc_init_data->hpd_source],
&le_shift,
&le_mask);
return &enc20->enc10.base;
}
static struct panel_cntl *dcn301_panel_cntl_create(const struct panel_cntl_init_data *init_data)
{
struct dcn301_panel_cntl *panel_cntl =
kzalloc(sizeof(struct dcn301_panel_cntl), GFP_KERNEL);
if (!panel_cntl)
return NULL;
dcn301_panel_cntl_construct(panel_cntl,
init_data,
&panel_cntl_regs[init_data->inst],
&panel_cntl_shift,
&panel_cntl_mask);
return &panel_cntl->base;
}
#define CTX ctx
#define REG(reg_name) \
(DCN_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
static uint32_t read_pipe_fuses(struct dc_context *ctx)
{
uint32_t value = REG_READ(CC_DC_PIPE_DIS);
/* RV1 support max 4 pipes */
value = value & 0xf;
return value;
}
static void read_dce_straps(
struct dc_context *ctx,
struct resource_straps *straps)
{
generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX),
FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
}
static struct audio *dcn301_create_audio(
struct dc_context *ctx, unsigned int inst)
{
return dce_audio_create(ctx, inst,
&audio_regs[inst], &audio_shift, &audio_mask);
}
static struct vpg *dcn301_vpg_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
if (!vpg3)
return NULL;
vpg3_construct(vpg3, ctx, inst,
&vpg_regs[inst],
&vpg_shift,
&vpg_mask);
return &vpg3->base;
}
static struct afmt *dcn301_afmt_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
if (!afmt3)
return NULL;
afmt3_construct(afmt3, ctx, inst,
&afmt_regs[inst],
&afmt_shift,
&afmt_mask);
return &afmt3->base;
}
static struct stream_encoder *dcn301_stream_encoder_create(enum engine_id eng_id,
struct dc_context *ctx)
{
struct dcn10_stream_encoder *enc1;
struct vpg *vpg;
struct afmt *afmt;
int vpg_inst;
int afmt_inst;
/* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
if (eng_id <= ENGINE_ID_DIGF) {
vpg_inst = eng_id;
afmt_inst = eng_id;
} else
return NULL;
enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
vpg = dcn301_vpg_create(ctx, vpg_inst);
afmt = dcn301_afmt_create(ctx, afmt_inst);
if (!enc1 || !vpg || !afmt) {
kfree(enc1);
kfree(vpg);
kfree(afmt);
return NULL;
}
dcn30_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
eng_id, vpg, afmt,
&stream_enc_regs[eng_id],
&se_shift, &se_mask);
return &enc1->base;
}
static struct dce_hwseq *dcn301_hwseq_create(struct dc_context *ctx)
{
struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
if (hws) {
hws->ctx = ctx;
hws->regs = &hwseq_reg;
hws->shifts = &hwseq_shift;
hws->masks = &hwseq_mask;
}
return hws;
}
static const struct resource_create_funcs res_create_funcs = {
.read_dce_straps = read_dce_straps,
.create_audio = dcn301_create_audio,
.create_stream_encoder = dcn301_stream_encoder_create,
.create_hwseq = dcn301_hwseq_create,
};
static void dcn301_destruct(struct dcn301_resource_pool *pool)
{
unsigned int i;
for (i = 0; i < pool->base.stream_enc_count; i++) {
if (pool->base.stream_enc[i] != NULL) {
if (pool->base.stream_enc[i]->vpg != NULL) {
kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
pool->base.stream_enc[i]->vpg = NULL;
}
if (pool->base.stream_enc[i]->afmt != NULL) {
kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
pool->base.stream_enc[i]->afmt = NULL;
}
kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
pool->base.stream_enc[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
if (pool->base.dscs[i] != NULL)
dcn20_dsc_destroy(&pool->base.dscs[i]);
}
if (pool->base.mpc != NULL) {
kfree(TO_DCN20_MPC(pool->base.mpc));
pool->base.mpc = NULL;
}
if (pool->base.hubbub != NULL) {
kfree(pool->base.hubbub);
pool->base.hubbub = NULL;
}
for (i = 0; i < pool->base.pipe_count; i++) {
if (pool->base.dpps[i] != NULL)
dcn301_dpp_destroy(&pool->base.dpps[i]);
if (pool->base.ipps[i] != NULL)
pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
if (pool->base.hubps[i] != NULL) {
kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
pool->base.hubps[i] = NULL;
}
if (pool->base.irqs != NULL) {
dal_irq_service_destroy(&pool->base.irqs);
}
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
if (pool->base.engines[i] != NULL)
dce110_engine_destroy(&pool->base.engines[i]);
if (pool->base.hw_i2cs[i] != NULL) {
kfree(pool->base.hw_i2cs[i]);
pool->base.hw_i2cs[i] = NULL;
}
if (pool->base.sw_i2cs[i] != NULL) {
kfree(pool->base.sw_i2cs[i]);
pool->base.sw_i2cs[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_opp; i++) {
if (pool->base.opps[i] != NULL)
pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
}
for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
if (pool->base.timing_generators[i] != NULL) {
kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
pool->base.timing_generators[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
if (pool->base.dwbc[i] != NULL) {
kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
pool->base.dwbc[i] = NULL;
}
if (pool->base.mcif_wb[i] != NULL) {
kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
pool->base.mcif_wb[i] = NULL;
}
}
for (i = 0; i < pool->base.audio_count; i++) {
if (pool->base.audios[i])
dce_aud_destroy(&pool->base.audios[i]);
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] != NULL) {
dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
pool->base.clock_sources[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
if (pool->base.mpc_lut[i] != NULL) {
dc_3dlut_func_release(pool->base.mpc_lut[i]);
pool->base.mpc_lut[i] = NULL;
}
if (pool->base.mpc_shaper[i] != NULL) {
dc_transfer_func_release(pool->base.mpc_shaper[i]);
pool->base.mpc_shaper[i] = NULL;
}
}
if (pool->base.dp_clock_source != NULL) {
dcn20_clock_source_destroy(&pool->base.dp_clock_source);
pool->base.dp_clock_source = NULL;
}
for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
if (pool->base.multiple_abms[i] != NULL)
dce_abm_destroy(&pool->base.multiple_abms[i]);
}
if (pool->base.dccg != NULL)
dcn_dccg_destroy(&pool->base.dccg);
}
static struct hubp *dcn301_hubp_create(struct dc_context *ctx, uint32_t inst)
{
struct dcn20_hubp *hubp2 =
kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
if (!hubp2)
return NULL;
if (hubp3_construct(hubp2, ctx, inst,
&hubp_regs[inst], &hubp_shift, &hubp_mask))
return &hubp2->base;
BREAK_TO_DEBUGGER();
kfree(hubp2);
return NULL;
}
static bool dcn301_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
{
int i;
uint32_t pipe_count = pool->res_cap->num_dwb;
for (i = 0; i < pipe_count; i++) {
struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
GFP_KERNEL);
if (!dwbc30) {
dm_error("DC: failed to create dwbc30!\n");
return false;
}
dcn30_dwbc_construct(dwbc30, ctx,
&dwbc30_regs[i],
&dwbc30_shift,
&dwbc30_mask,
i);
pool->dwbc[i] = &dwbc30->base;
}
return true;
}
static bool dcn301_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
{
int i;
uint32_t pipe_count = pool->res_cap->num_dwb;
for (i = 0; i < pipe_count; i++) {
struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
GFP_KERNEL);
if (!mcif_wb30) {
dm_error("DC: failed to create mcif_wb30!\n");
return false;
}
dcn30_mmhubbub_construct(mcif_wb30, ctx,
&mcif_wb30_regs[i],
&mcif_wb30_shift,
&mcif_wb30_mask,
i);
pool->mcif_wb[i] = &mcif_wb30->base;
}
return true;
}
static struct display_stream_compressor *dcn301_dsc_create(
struct dc_context *ctx, uint32_t inst)
{
struct dcn20_dsc *dsc =
kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
if (!dsc) {
BREAK_TO_DEBUGGER();
return NULL;
}
dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
return &dsc->base;
}
static void dcn301_destroy_resource_pool(struct resource_pool **pool)
{
struct dcn301_resource_pool *dcn301_pool = TO_DCN301_RES_POOL(*pool);
dcn301_destruct(dcn301_pool);
kfree(dcn301_pool);
*pool = NULL;
}
static struct clock_source *dcn301_clock_source_create(
struct dc_context *ctx,
struct dc_bios *bios,
enum clock_source_id id,
const struct dce110_clk_src_regs *regs,
bool dp_clk_src)
{
struct dce110_clk_src *clk_src =
kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
if (!clk_src)
return NULL;
if (dcn301_clk_src_construct(clk_src, ctx, bios, id,
regs, &cs_shift, &cs_mask)) {
clk_src->base.dp_clk_src = dp_clk_src;
return &clk_src->base;
}
kfree(clk_src);
BREAK_TO_DEBUGGER();
return NULL;
}
static struct dc_cap_funcs cap_funcs = {
.get_dcc_compression_cap = dcn20_get_dcc_compression_cap
};
static bool is_soc_bounding_box_valid(struct dc *dc)
{
uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev;
if (ASICREV_IS_VANGOGH(hw_internal_rev))
return true;
return false;
}
static bool init_soc_bounding_box(struct dc *dc,
struct dcn301_resource_pool *pool)
{
struct _vcs_dpi_soc_bounding_box_st *loaded_bb = &dcn3_01_soc;
struct _vcs_dpi_ip_params_st *loaded_ip = &dcn3_01_ip;
DC_LOGGER_INIT(dc->ctx->logger);
if (!is_soc_bounding_box_valid(dc)) {
DC_LOG_ERROR("%s: not valid soc bounding box\n", __func__);
return false;
}
loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator;
loaded_ip->max_num_dpp = pool->base.pipe_count;
DC_FP_START();
dcn20_patch_bounding_box(dc, loaded_bb);
DC_FP_END();
if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
struct bp_soc_bb_info bb_info = {0};
if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
DC_FP_START();
dcn301_fpu_init_soc_bounding_box(bb_info);
DC_FP_END();
}
}
return true;
}
static void set_wm_ranges(
struct pp_smu_funcs *pp_smu,
struct _vcs_dpi_soc_bounding_box_st *loaded_bb)
{
struct pp_smu_wm_range_sets ranges = {0};
int i;
ranges.num_reader_wm_sets = 0;
if (loaded_bb->num_states == 1) {
ranges.reader_wm_sets[0].wm_inst = 0;
ranges.reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges.reader_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges.reader_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
ranges.num_reader_wm_sets = 1;
} else if (loaded_bb->num_states > 1) {
for (i = 0; i < 4 && i < loaded_bb->num_states; i++) {
ranges.reader_wm_sets[i].wm_inst = i;
ranges.reader_wm_sets[i].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges.reader_wm_sets[i].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
DC_FP_START();
dcn301_fpu_set_wm_ranges(i, &ranges, loaded_bb);
DC_FP_END();
ranges.num_reader_wm_sets = i + 1;
}
ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges.reader_wm_sets[ranges.num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
}
ranges.num_writer_wm_sets = 1;
ranges.writer_wm_sets[0].wm_inst = 0;
ranges.writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges.writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
ranges.writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges.writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
/* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
pp_smu->nv_funcs.set_wm_ranges(&pp_smu->nv_funcs.pp_smu, &ranges);
}
static void dcn301_calculate_wm_and_dlg(
struct dc *dc, struct dc_state *context,
display_e2e_pipe_params_st *pipes,
int pipe_cnt,
int vlevel)
{
DC_FP_START();
dcn301_calculate_wm_and_dlg_fp(dc, context, pipes, pipe_cnt, vlevel);
DC_FP_END();
}
static struct resource_funcs dcn301_res_pool_funcs = {
.destroy = dcn301_destroy_resource_pool,
.link_enc_create = dcn301_link_encoder_create,
.panel_cntl_create = dcn301_panel_cntl_create,
.validate_bandwidth = dcn30_validate_bandwidth,
.calculate_wm_and_dlg = dcn301_calculate_wm_and_dlg,
.update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
.populate_dml_pipes = dcn30_populate_dml_pipes_from_context,
.acquire_free_pipe_as_secondary_dpp_pipe = dcn20_acquire_free_pipe_for_layer,
.add_stream_to_ctx = dcn30_add_stream_to_ctx,
.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
.populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
.set_mcif_arb_params = dcn30_set_mcif_arb_params,
.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
.acquire_post_bldn_3dlut = dcn30_acquire_post_bldn_3dlut,
.release_post_bldn_3dlut = dcn30_release_post_bldn_3dlut,
.update_bw_bounding_box = dcn301_update_bw_bounding_box,
.patch_unknown_plane_state = dcn20_patch_unknown_plane_state
};
static bool dcn301_resource_construct(
uint8_t num_virtual_links,
struct dc *dc,
struct dcn301_resource_pool *pool)
{
int i, j;
struct dc_context *ctx = dc->ctx;
struct irq_service_init_data init_data;
uint32_t pipe_fuses = read_pipe_fuses(ctx);
uint32_t num_pipes = 0;
DC_LOGGER_INIT(dc->ctx->logger);
ctx->dc_bios->regs = &bios_regs;
if (dc->ctx->asic_id.chip_id == DEVICE_ID_VGH_1435)
res_cap_dcn301.num_pll = 2;
pool->base.res_cap = &res_cap_dcn301;
pool->base.funcs = &dcn301_res_pool_funcs;
/*************************************************
* Resource + asic cap harcoding *
*************************************************/
pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
pool->base.pipe_count = pool->base.res_cap->num_timing_generator;
pool->base.mpcc_count = pool->base.res_cap->num_timing_generator;
dc->caps.max_downscale_ratio = 600;
dc->caps.i2c_speed_in_khz = 100;
dc->caps.i2c_speed_in_khz_hdcp = 5; /*1.4 w/a enabled by default*/
dc->caps.max_cursor_size = 256;
dc->caps.min_horizontal_blanking_period = 80;
dc->caps.dmdata_alloc_size = 2048;
dc->caps.max_slave_planes = 2;
dc->caps.max_slave_yuv_planes = 2;
dc->caps.max_slave_rgb_planes = 2;
dc->caps.is_apu = true;
dc->caps.post_blend_color_processing = true;
dc->caps.force_dp_tps4_for_cp2520 = true;
dc->caps.extended_aux_timeout_support = true;
dc->caps.dmcub_support = true;
/* Color pipeline capabilities */
dc->caps.color.dpp.dcn_arch = 1;
dc->caps.color.dpp.input_lut_shared = 0;
dc->caps.color.dpp.icsc = 1;
dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
dc->caps.color.dpp.dgam_rom_caps.pq = 1;
dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
dc->caps.color.dpp.post_csc = 1;
dc->caps.color.dpp.gamma_corr = 1;
dc->caps.color.dpp.dgam_rom_for_yuv = 0;
dc->caps.color.dpp.hw_3d_lut = 1;
dc->caps.color.dpp.ogam_ram = 1;
// no OGAM ROM on DCN301
dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
dc->caps.color.dpp.ogam_rom_caps.pq = 0;
dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
dc->caps.color.dpp.ocsc = 0;
dc->caps.color.mpc.gamut_remap = 1;
dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //2
dc->caps.color.mpc.ogam_ram = 1;
dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
dc->caps.color.mpc.ogam_rom_caps.pq = 0;
dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
dc->caps.color.mpc.ocsc = 1;
dc->caps.dp_hdmi21_pcon_support = true;
/* read VBIOS LTTPR caps */
if (ctx->dc_bios->funcs->get_lttpr_caps) {
enum bp_result bp_query_result;
uint8_t is_vbios_lttpr_enable = 0;
bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable);
dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable;
}
if (ctx->dc_bios->funcs->get_lttpr_interop) {
enum bp_result bp_query_result;
uint8_t is_vbios_interop_enabled = 0;
bp_query_result = ctx->dc_bios->funcs->get_lttpr_interop(ctx->dc_bios, &is_vbios_interop_enabled);
dc->caps.vbios_lttpr_aware = (bp_query_result == BP_RESULT_OK) && !!is_vbios_interop_enabled;
}
if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
dc->debug = debug_defaults_drv;
// Init the vm_helper
if (dc->vm_helper)
vm_helper_init(dc->vm_helper, 16);
/*************************************************
* Create resources *
*************************************************/
/* Clock Sources for Pixel Clock*/
pool->base.clock_sources[DCN301_CLK_SRC_PLL0] =
dcn301_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL0,
&clk_src_regs[0], false);
pool->base.clock_sources[DCN301_CLK_SRC_PLL1] =
dcn301_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL1,
&clk_src_regs[1], false);
pool->base.clock_sources[DCN301_CLK_SRC_PLL2] =
dcn301_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL2,
&clk_src_regs[2], false);
pool->base.clock_sources[DCN301_CLK_SRC_PLL3] =
dcn301_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL3,
&clk_src_regs[3], false);
pool->base.clk_src_count = DCN301_CLK_SRC_TOTAL;
/* todo: not reuse phy_pll registers */
pool->base.dp_clock_source =
dcn301_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_ID_DP_DTO,
&clk_src_regs[0], true);
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] == NULL) {
dm_error("DC: failed to create clock sources!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
}
/* DCCG */
pool->base.dccg = dccg301_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
if (pool->base.dccg == NULL) {
dm_error("DC: failed to create dccg!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
init_soc_bounding_box(dc, pool);
if (!dc->debug.disable_pplib_wm_range && pool->base.pp_smu->nv_funcs.set_wm_ranges)
set_wm_ranges(pool->base.pp_smu, &dcn3_01_soc);
num_pipes = dcn3_01_ip.max_num_dpp;
for (i = 0; i < dcn3_01_ip.max_num_dpp; i++)
if (pipe_fuses & 1 << i)
num_pipes--;
dcn3_01_ip.max_num_dpp = num_pipes;
dcn3_01_ip.max_num_otg = num_pipes;
dml_init_instance(&dc->dml, &dcn3_01_soc, &dcn3_01_ip, DML_PROJECT_DCN30);
/* IRQ */
init_data.ctx = dc->ctx;
pool->base.irqs = dal_irq_service_dcn30_create(&init_data);
if (!pool->base.irqs)
goto create_fail;
/* HUBBUB */
pool->base.hubbub = dcn301_hubbub_create(ctx);
if (pool->base.hubbub == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create hubbub!\n");
goto create_fail;
}
j = 0;
/* HUBPs, DPPs, OPPs and TGs */
for (i = 0; i < pool->base.pipe_count; i++) {
/* if pipe is disabled, skip instance of HW pipe,
* i.e, skip ASIC register instance
*/
if ((pipe_fuses & (1 << i)) != 0) {
DC_LOG_DEBUG("%s: fusing pipe %d\n", __func__, i);
continue;
}
pool->base.hubps[j] = dcn301_hubp_create(ctx, i);
if (pool->base.hubps[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create hubps!\n");
goto create_fail;
}
pool->base.dpps[j] = dcn301_dpp_create(ctx, i);
if (pool->base.dpps[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create dpps!\n");
goto create_fail;
}
pool->base.opps[j] = dcn301_opp_create(ctx, i);
if (pool->base.opps[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create output pixel processor!\n");
goto create_fail;
}
pool->base.timing_generators[j] = dcn301_timing_generator_create(ctx, i);
if (pool->base.timing_generators[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create tg!\n");
goto create_fail;
}
j++;
}
pool->base.timing_generator_count = j;
pool->base.pipe_count = j;
pool->base.mpcc_count = j;
/* ABM (or ABMs for NV2x) */
/* TODO: */
for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
pool->base.multiple_abms[i] = dmub_abm_create(ctx,
&abm_regs[i],
&abm_shift,
&abm_mask);
if (pool->base.multiple_abms[i] == NULL) {
dm_error("DC: failed to create abm for pipe %d!\n", i);
BREAK_TO_DEBUGGER();
goto create_fail;
}
}
/* MPC and DSC */
pool->base.mpc = dcn301_mpc_create(ctx, pool->base.mpcc_count, pool->base.res_cap->num_mpc_3dlut);
if (pool->base.mpc == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create mpc!\n");
goto create_fail;
}
for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
pool->base.dscs[i] = dcn301_dsc_create(ctx, i);
if (pool->base.dscs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create display stream compressor %d!\n", i);
goto create_fail;
}
}
/* DWB and MMHUBBUB */
if (!dcn301_dwbc_create(ctx, &pool->base)) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create dwbc!\n");
goto create_fail;
}
if (!dcn301_mmhubbub_create(ctx, &pool->base)) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create mcif_wb!\n");
goto create_fail;
}
/* AUX and I2C */
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
pool->base.engines[i] = dcn301_aux_engine_create(ctx, i);
if (pool->base.engines[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create aux engine!!\n");
goto create_fail;
}
pool->base.hw_i2cs[i] = dcn301_i2c_hw_create(ctx, i);
if (pool->base.hw_i2cs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create hw i2c!!\n");
goto create_fail;
}
pool->base.sw_i2cs[i] = NULL;
}
/* Audio, Stream Encoders including HPO and virtual, MPC 3D LUTs */
if (!resource_construct(num_virtual_links, dc, &pool->base,
&res_create_funcs))
goto create_fail;
/* HW Sequencer and Plane caps */
dcn301_hw_sequencer_construct(dc);
dc->caps.max_planes = pool->base.pipe_count;
for (i = 0; i < dc->caps.max_planes; ++i)
dc->caps.planes[i] = plane_cap;
dc->cap_funcs = cap_funcs;
return true;
create_fail:
dcn301_destruct(pool);
return false;
}
struct resource_pool *dcn301_create_resource_pool(
const struct dc_init_data *init_data,
struct dc *dc)
{
struct dcn301_resource_pool *pool =
kzalloc(sizeof(struct dcn301_resource_pool), GFP_KERNEL);
if (!pool)
return NULL;
if (dcn301_resource_construct(init_data->num_virtual_links, dc, pool))
return &pool->base;
BREAK_TO_DEBUGGER();
kfree(pool);
return NULL;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn301/dcn301_resource.c |
/*
* Copyright 2020 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "reg_helper.h"
#include "core_types.h"
#include "dc_dmub_srv.h"
#include "dcn301_panel_cntl.h"
#include "atom.h"
#define TO_DCN301_PANEL_CNTL(panel_cntl)\
container_of(panel_cntl, struct dcn301_panel_cntl, base)
#define CTX \
dcn301_panel_cntl->base.ctx
#define DC_LOGGER \
dcn301_panel_cntl->base.ctx->logger
#define REG(reg)\
dcn301_panel_cntl->regs->reg
#undef FN
#define FN(reg_name, field_name) \
dcn301_panel_cntl->shift->field_name, dcn301_panel_cntl->mask->field_name
static unsigned int dcn301_get_16_bit_backlight_from_pwm(struct panel_cntl *panel_cntl)
{
uint64_t current_backlight;
uint32_t round_result;
uint32_t bl_period, bl_int_count;
uint32_t bl_pwm, fractional_duty_cycle_en;
uint32_t bl_period_mask, bl_pwm_mask;
struct dcn301_panel_cntl *dcn301_panel_cntl = TO_DCN301_PANEL_CNTL(panel_cntl);
REG_GET(BL_PWM_PERIOD_CNTL, BL_PWM_PERIOD, &bl_period);
REG_GET(BL_PWM_PERIOD_CNTL, BL_PWM_PERIOD_BITCNT, &bl_int_count);
REG_GET(BL_PWM_CNTL, BL_ACTIVE_INT_FRAC_CNT, &bl_pwm);
REG_GET(BL_PWM_CNTL, BL_PWM_FRACTIONAL_EN, &fractional_duty_cycle_en);
if (bl_int_count == 0)
bl_int_count = 16;
bl_period_mask = (1 << bl_int_count) - 1;
bl_period &= bl_period_mask;
bl_pwm_mask = bl_period_mask << (16 - bl_int_count);
if (fractional_duty_cycle_en == 0)
bl_pwm &= bl_pwm_mask;
else
bl_pwm &= 0xFFFF;
current_backlight = (uint64_t)bl_pwm << (1 + bl_int_count);
if (bl_period == 0)
bl_period = 0xFFFF;
current_backlight = div_u64(current_backlight, bl_period);
current_backlight = (current_backlight + 1) >> 1;
current_backlight = (uint64_t)(current_backlight) * bl_period;
round_result = (uint32_t)(current_backlight & 0xFFFFFFFF);
round_result = (round_result >> (bl_int_count-1)) & 1;
current_backlight >>= bl_int_count;
current_backlight += round_result;
return (uint32_t)(current_backlight);
}
static uint32_t dcn301_panel_cntl_hw_init(struct panel_cntl *panel_cntl)
{
struct dcn301_panel_cntl *dcn301_panel_cntl = TO_DCN301_PANEL_CNTL(panel_cntl);
uint32_t value;
uint32_t current_backlight;
/* It must not be 0, so we have to restore them
* Bios bug w/a - period resets to zero,
* restoring to cache values which is always correct
*/
REG_GET(BL_PWM_CNTL, BL_ACTIVE_INT_FRAC_CNT, &value);
if (value == 0 || value == 1) {
if (panel_cntl->stored_backlight_registers.BL_PWM_CNTL != 0) {
REG_WRITE(BL_PWM_CNTL,
panel_cntl->stored_backlight_registers.BL_PWM_CNTL);
REG_WRITE(BL_PWM_CNTL2,
panel_cntl->stored_backlight_registers.BL_PWM_CNTL2);
REG_WRITE(BL_PWM_PERIOD_CNTL,
panel_cntl->stored_backlight_registers.BL_PWM_PERIOD_CNTL);
REG_UPDATE(PWRSEQ_REF_DIV,
BL_PWM_REF_DIV,
panel_cntl->stored_backlight_registers.LVTMA_PWRSEQ_REF_DIV_BL_PWM_REF_DIV);
} else {
/* TODO: Note: This should not really happen since VBIOS
* should have initialized PWM registers on boot.
*/
REG_WRITE(BL_PWM_CNTL, 0xC000FA00);
REG_WRITE(BL_PWM_PERIOD_CNTL, 0x000C0FA0);
}
} else {
panel_cntl->stored_backlight_registers.BL_PWM_CNTL =
REG_READ(BL_PWM_CNTL);
panel_cntl->stored_backlight_registers.BL_PWM_CNTL2 =
REG_READ(BL_PWM_CNTL2);
panel_cntl->stored_backlight_registers.BL_PWM_PERIOD_CNTL =
REG_READ(BL_PWM_PERIOD_CNTL);
REG_GET(PWRSEQ_REF_DIV, BL_PWM_REF_DIV,
&panel_cntl->stored_backlight_registers.LVTMA_PWRSEQ_REF_DIV_BL_PWM_REF_DIV);
}
// Enable the backlight output
REG_UPDATE(BL_PWM_CNTL, BL_PWM_EN, 1);
// Unlock group 2 backlight registers
REG_UPDATE(BL_PWM_GRP1_REG_LOCK,
BL_PWM_GRP1_REG_LOCK, 0);
current_backlight = dcn301_get_16_bit_backlight_from_pwm(panel_cntl);
return current_backlight;
}
static void dcn301_panel_cntl_destroy(struct panel_cntl **panel_cntl)
{
struct dcn301_panel_cntl *dcn301_panel_cntl = TO_DCN301_PANEL_CNTL(*panel_cntl);
kfree(dcn301_panel_cntl);
*panel_cntl = NULL;
}
static bool dcn301_is_panel_backlight_on(struct panel_cntl *panel_cntl)
{
struct dcn301_panel_cntl *dcn301_panel_cntl = TO_DCN301_PANEL_CNTL(panel_cntl);
uint32_t value;
REG_GET(PWRSEQ_CNTL, PANEL_BLON, &value);
return value;
}
static bool dcn301_is_panel_powered_on(struct panel_cntl *panel_cntl)
{
struct dcn301_panel_cntl *dcn301_panel_cntl = TO_DCN301_PANEL_CNTL(panel_cntl);
uint32_t pwr_seq_state, dig_on, dig_on_ovrd;
REG_GET(PWRSEQ_STATE, PANEL_PWRSEQ_TARGET_STATE_R, &pwr_seq_state);
REG_GET_2(PWRSEQ_CNTL, PANEL_DIGON, &dig_on, PANEL_DIGON_OVRD, &dig_on_ovrd);
return (pwr_seq_state == 1) || (dig_on == 1 && dig_on_ovrd == 1);
}
static void dcn301_store_backlight_level(struct panel_cntl *panel_cntl)
{
struct dcn301_panel_cntl *dcn301_panel_cntl = TO_DCN301_PANEL_CNTL(panel_cntl);
panel_cntl->stored_backlight_registers.BL_PWM_CNTL =
REG_READ(BL_PWM_CNTL);
panel_cntl->stored_backlight_registers.BL_PWM_CNTL2 =
REG_READ(BL_PWM_CNTL2);
panel_cntl->stored_backlight_registers.BL_PWM_PERIOD_CNTL =
REG_READ(BL_PWM_PERIOD_CNTL);
REG_GET(PWRSEQ_REF_DIV, BL_PWM_REF_DIV,
&panel_cntl->stored_backlight_registers.LVTMA_PWRSEQ_REF_DIV_BL_PWM_REF_DIV);
}
static const struct panel_cntl_funcs dcn301_link_panel_cntl_funcs = {
.destroy = dcn301_panel_cntl_destroy,
.hw_init = dcn301_panel_cntl_hw_init,
.is_panel_backlight_on = dcn301_is_panel_backlight_on,
.is_panel_powered_on = dcn301_is_panel_powered_on,
.store_backlight_level = dcn301_store_backlight_level,
.get_current_backlight = dcn301_get_16_bit_backlight_from_pwm,
};
void dcn301_panel_cntl_construct(
struct dcn301_panel_cntl *dcn301_panel_cntl,
const struct panel_cntl_init_data *init_data,
const struct dce_panel_cntl_registers *regs,
const struct dcn301_panel_cntl_shift *shift,
const struct dcn301_panel_cntl_mask *mask)
{
dcn301_panel_cntl->regs = regs;
dcn301_panel_cntl->shift = shift;
dcn301_panel_cntl->mask = mask;
dcn301_panel_cntl->base.funcs = &dcn301_link_panel_cntl_funcs;
dcn301_panel_cntl->base.ctx = init_data->ctx;
dcn301_panel_cntl->base.inst = init_data->inst;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn301/dcn301_panel_cntl.c |
/*
* Copyright 2023 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
/* FILE POLICY AND INTENDED USAGE:
* This file owns the programming sequence of stream's dpms state associated
* with the link and link's enable/disable sequences as result of the stream's
* dpms state change.
*
* TODO - The reason link owns stream's dpms programming sequence is
* because dpms programming sequence is highly dependent on underlying signal
* specific link protocols. This unfortunately causes link to own a portion of
* stream state programming sequence. This creates a gray area where the
* boundary between link and stream is not clearly defined.
*/
#include "link_dpms.h"
#include "link_hwss.h"
#include "link_validation.h"
#include "accessories/link_fpga.h"
#include "accessories/link_dp_trace.h"
#include "protocols/link_dpcd.h"
#include "protocols/link_ddc.h"
#include "protocols/link_hpd.h"
#include "protocols/link_dp_phy.h"
#include "protocols/link_dp_capability.h"
#include "protocols/link_dp_training.h"
#include "protocols/link_edp_panel_control.h"
#include "protocols/link_dp_dpia_bw.h"
#include "dm_helpers.h"
#include "link_enc_cfg.h"
#include "resource.h"
#include "dsc.h"
#include "dccg.h"
#include "clk_mgr.h"
#include "atomfirmware.h"
#define DC_LOGGER_INIT(logger)
#define LINK_INFO(...) \
DC_LOG_HW_HOTPLUG( \
__VA_ARGS__)
#define RETIMER_REDRIVER_INFO(...) \
DC_LOG_RETIMER_REDRIVER( \
__VA_ARGS__)
#include "dc/dcn30/dcn30_vpg.h"
#define MAX_MTP_SLOT_COUNT 64
#define LINK_TRAINING_ATTEMPTS 4
#define PEAK_FACTOR_X1000 1006
void link_blank_all_dp_displays(struct dc *dc)
{
unsigned int i;
uint8_t dpcd_power_state = '\0';
enum dc_status status = DC_ERROR_UNEXPECTED;
for (i = 0; i < dc->link_count; i++) {
if ((dc->links[i]->connector_signal != SIGNAL_TYPE_DISPLAY_PORT) ||
(dc->links[i]->priv == NULL) || (dc->links[i]->local_sink == NULL))
continue;
/* DP 2.0 spec requires that we read LTTPR caps first */
dp_retrieve_lttpr_cap(dc->links[i]);
/* if any of the displays are lit up turn them off */
status = core_link_read_dpcd(dc->links[i], DP_SET_POWER,
&dpcd_power_state, sizeof(dpcd_power_state));
if (status == DC_OK && dpcd_power_state == DP_POWER_STATE_D0)
link_blank_dp_stream(dc->links[i], true);
}
}
void link_blank_all_edp_displays(struct dc *dc)
{
unsigned int i;
uint8_t dpcd_power_state = '\0';
enum dc_status status = DC_ERROR_UNEXPECTED;
for (i = 0; i < dc->link_count; i++) {
if ((dc->links[i]->connector_signal != SIGNAL_TYPE_EDP) ||
(!dc->links[i]->edp_sink_present))
continue;
/* if any of the displays are lit up turn them off */
status = core_link_read_dpcd(dc->links[i], DP_SET_POWER,
&dpcd_power_state, sizeof(dpcd_power_state));
if (status == DC_OK && dpcd_power_state == DP_POWER_STATE_D0)
link_blank_dp_stream(dc->links[i], true);
}
}
void link_blank_dp_stream(struct dc_link *link, bool hw_init)
{
unsigned int j;
struct dc *dc = link->ctx->dc;
enum signal_type signal = link->connector_signal;
if ((signal == SIGNAL_TYPE_EDP) ||
(signal == SIGNAL_TYPE_DISPLAY_PORT)) {
if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
link->link_enc->funcs->get_dig_frontend &&
link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
unsigned int fe = link->link_enc->funcs->get_dig_frontend(link->link_enc);
if (fe != ENGINE_ID_UNKNOWN)
for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
if (fe == dc->res_pool->stream_enc[j]->id) {
dc->res_pool->stream_enc[j]->funcs->dp_blank(link,
dc->res_pool->stream_enc[j]);
break;
}
}
}
if ((!link->wa_flags.dp_keep_receiver_powered) || hw_init)
dpcd_write_rx_power_ctrl(link, false);
}
}
void link_set_all_streams_dpms_off_for_link(struct dc_link *link)
{
struct pipe_ctx *pipes[MAX_PIPES];
struct dc_state *state = link->dc->current_state;
uint8_t count;
int i;
struct dc_stream_update stream_update;
bool dpms_off = true;
struct link_resource link_res = {0};
memset(&stream_update, 0, sizeof(stream_update));
stream_update.dpms_off = &dpms_off;
link_get_master_pipes_with_dpms_on(link, state, &count, pipes);
for (i = 0; i < count; i++) {
stream_update.stream = pipes[i]->stream;
dc_commit_updates_for_stream(link->ctx->dc, NULL, 0,
pipes[i]->stream, &stream_update,
state);
}
/* link can be also enabled by vbios. In this case it is not recorded
* in pipe_ctx. Disable link phy here to make sure it is completely off
*/
dp_disable_link_phy(link, &link_res, link->connector_signal);
}
void link_resume(struct dc_link *link)
{
if (link->connector_signal != SIGNAL_TYPE_VIRTUAL)
program_hpd_filter(link);
}
/* This function returns true if the pipe is used to feed video signal directly
* to the link.
*/
static bool is_master_pipe_for_link(const struct dc_link *link,
const struct pipe_ctx *pipe)
{
return resource_is_pipe_type(pipe, OTG_MASTER) &&
pipe->stream->link == link;
}
/*
* This function finds all master pipes feeding to a given link with dpms set to
* on in given dc state.
*/
void link_get_master_pipes_with_dpms_on(const struct dc_link *link,
struct dc_state *state,
uint8_t *count,
struct pipe_ctx *pipes[MAX_PIPES])
{
int i;
struct pipe_ctx *pipe = NULL;
*count = 0;
for (i = 0; i < MAX_PIPES; i++) {
pipe = &state->res_ctx.pipe_ctx[i];
if (is_master_pipe_for_link(link, pipe) &&
pipe->stream->dpms_off == false) {
pipes[(*count)++] = pipe;
}
}
}
static bool get_ext_hdmi_settings(struct pipe_ctx *pipe_ctx,
enum engine_id eng_id,
struct ext_hdmi_settings *settings)
{
bool result = false;
int i = 0;
struct integrated_info *integrated_info =
pipe_ctx->stream->ctx->dc_bios->integrated_info;
if (integrated_info == NULL)
return false;
/*
* Get retimer settings from sbios for passing SI eye test for DCE11
* The setting values are varied based on board revision and port id
* Therefore the setting values of each ports is passed by sbios.
*/
// Check if current bios contains ext Hdmi settings
if (integrated_info->gpu_cap_info & 0x20) {
switch (eng_id) {
case ENGINE_ID_DIGA:
settings->slv_addr = integrated_info->dp0_ext_hdmi_slv_addr;
settings->reg_num = integrated_info->dp0_ext_hdmi_6g_reg_num;
settings->reg_num_6g = integrated_info->dp0_ext_hdmi_6g_reg_num;
memmove(settings->reg_settings,
integrated_info->dp0_ext_hdmi_reg_settings,
sizeof(integrated_info->dp0_ext_hdmi_reg_settings));
memmove(settings->reg_settings_6g,
integrated_info->dp0_ext_hdmi_6g_reg_settings,
sizeof(integrated_info->dp0_ext_hdmi_6g_reg_settings));
result = true;
break;
case ENGINE_ID_DIGB:
settings->slv_addr = integrated_info->dp1_ext_hdmi_slv_addr;
settings->reg_num = integrated_info->dp1_ext_hdmi_6g_reg_num;
settings->reg_num_6g = integrated_info->dp1_ext_hdmi_6g_reg_num;
memmove(settings->reg_settings,
integrated_info->dp1_ext_hdmi_reg_settings,
sizeof(integrated_info->dp1_ext_hdmi_reg_settings));
memmove(settings->reg_settings_6g,
integrated_info->dp1_ext_hdmi_6g_reg_settings,
sizeof(integrated_info->dp1_ext_hdmi_6g_reg_settings));
result = true;
break;
case ENGINE_ID_DIGC:
settings->slv_addr = integrated_info->dp2_ext_hdmi_slv_addr;
settings->reg_num = integrated_info->dp2_ext_hdmi_6g_reg_num;
settings->reg_num_6g = integrated_info->dp2_ext_hdmi_6g_reg_num;
memmove(settings->reg_settings,
integrated_info->dp2_ext_hdmi_reg_settings,
sizeof(integrated_info->dp2_ext_hdmi_reg_settings));
memmove(settings->reg_settings_6g,
integrated_info->dp2_ext_hdmi_6g_reg_settings,
sizeof(integrated_info->dp2_ext_hdmi_6g_reg_settings));
result = true;
break;
case ENGINE_ID_DIGD:
settings->slv_addr = integrated_info->dp3_ext_hdmi_slv_addr;
settings->reg_num = integrated_info->dp3_ext_hdmi_6g_reg_num;
settings->reg_num_6g = integrated_info->dp3_ext_hdmi_6g_reg_num;
memmove(settings->reg_settings,
integrated_info->dp3_ext_hdmi_reg_settings,
sizeof(integrated_info->dp3_ext_hdmi_reg_settings));
memmove(settings->reg_settings_6g,
integrated_info->dp3_ext_hdmi_6g_reg_settings,
sizeof(integrated_info->dp3_ext_hdmi_6g_reg_settings));
result = true;
break;
default:
break;
}
if (result == true) {
// Validate settings from bios integrated info table
if (settings->slv_addr == 0)
return false;
if (settings->reg_num > 9)
return false;
if (settings->reg_num_6g > 3)
return false;
for (i = 0; i < settings->reg_num; i++) {
if (settings->reg_settings[i].i2c_reg_index > 0x20)
return false;
}
for (i = 0; i < settings->reg_num_6g; i++) {
if (settings->reg_settings_6g[i].i2c_reg_index > 0x20)
return false;
}
}
}
return result;
}
static bool write_i2c(struct pipe_ctx *pipe_ctx,
uint8_t address, uint8_t *buffer, uint32_t length)
{
struct i2c_command cmd = {0};
struct i2c_payload payload = {0};
memset(&payload, 0, sizeof(payload));
memset(&cmd, 0, sizeof(cmd));
cmd.number_of_payloads = 1;
cmd.engine = I2C_COMMAND_ENGINE_DEFAULT;
cmd.speed = pipe_ctx->stream->ctx->dc->caps.i2c_speed_in_khz;
payload.address = address;
payload.data = buffer;
payload.length = length;
payload.write = true;
cmd.payloads = &payload;
if (dm_helpers_submit_i2c(pipe_ctx->stream->ctx,
pipe_ctx->stream->link, &cmd))
return true;
return false;
}
static void write_i2c_retimer_setting(
struct pipe_ctx *pipe_ctx,
bool is_vga_mode,
bool is_over_340mhz,
struct ext_hdmi_settings *settings)
{
uint8_t slave_address = (settings->slv_addr >> 1);
uint8_t buffer[2];
const uint8_t apply_rx_tx_change = 0x4;
uint8_t offset = 0xA;
uint8_t value = 0;
int i = 0;
bool i2c_success = false;
DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
memset(&buffer, 0, sizeof(buffer));
/* Start Ext-Hdmi programming*/
for (i = 0; i < settings->reg_num; i++) {
/* Apply 3G settings */
if (settings->reg_settings[i].i2c_reg_index <= 0x20) {
buffer[0] = settings->reg_settings[i].i2c_reg_index;
buffer[1] = settings->reg_settings[i].i2c_reg_val;
i2c_success = write_i2c(pipe_ctx, slave_address,
buffer, sizeof(buffer));
RETIMER_REDRIVER_INFO("retimer write to slave_address = 0x%x,\
offset = 0x%x, reg_val= 0x%x, i2c_success = %d\n",
slave_address, buffer[0], buffer[1], i2c_success?1:0);
if (!i2c_success)
goto i2c_write_fail;
/* Based on DP159 specs, APPLY_RX_TX_CHANGE bit in 0x0A
* needs to be set to 1 on every 0xA-0xC write.
*/
if (settings->reg_settings[i].i2c_reg_index == 0xA ||
settings->reg_settings[i].i2c_reg_index == 0xB ||
settings->reg_settings[i].i2c_reg_index == 0xC) {
/* Query current value from offset 0xA */
if (settings->reg_settings[i].i2c_reg_index == 0xA)
value = settings->reg_settings[i].i2c_reg_val;
else {
i2c_success =
link_query_ddc_data(
pipe_ctx->stream->link->ddc,
slave_address, &offset, 1, &value, 1);
if (!i2c_success)
goto i2c_write_fail;
}
buffer[0] = offset;
/* Set APPLY_RX_TX_CHANGE bit to 1 */
buffer[1] = value | apply_rx_tx_change;
i2c_success = write_i2c(pipe_ctx, slave_address,
buffer, sizeof(buffer));
RETIMER_REDRIVER_INFO("retimer write to slave_address = 0x%x,\
offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n",
slave_address, buffer[0], buffer[1], i2c_success?1:0);
if (!i2c_success)
goto i2c_write_fail;
}
}
}
/* Apply 3G settings */
if (is_over_340mhz) {
for (i = 0; i < settings->reg_num_6g; i++) {
/* Apply 3G settings */
if (settings->reg_settings[i].i2c_reg_index <= 0x20) {
buffer[0] = settings->reg_settings_6g[i].i2c_reg_index;
buffer[1] = settings->reg_settings_6g[i].i2c_reg_val;
i2c_success = write_i2c(pipe_ctx, slave_address,
buffer, sizeof(buffer));
RETIMER_REDRIVER_INFO("above 340Mhz: retimer write to slave_address = 0x%x,\
offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n",
slave_address, buffer[0], buffer[1], i2c_success?1:0);
if (!i2c_success)
goto i2c_write_fail;
/* Based on DP159 specs, APPLY_RX_TX_CHANGE bit in 0x0A
* needs to be set to 1 on every 0xA-0xC write.
*/
if (settings->reg_settings_6g[i].i2c_reg_index == 0xA ||
settings->reg_settings_6g[i].i2c_reg_index == 0xB ||
settings->reg_settings_6g[i].i2c_reg_index == 0xC) {
/* Query current value from offset 0xA */
if (settings->reg_settings_6g[i].i2c_reg_index == 0xA)
value = settings->reg_settings_6g[i].i2c_reg_val;
else {
i2c_success =
link_query_ddc_data(
pipe_ctx->stream->link->ddc,
slave_address, &offset, 1, &value, 1);
if (!i2c_success)
goto i2c_write_fail;
}
buffer[0] = offset;
/* Set APPLY_RX_TX_CHANGE bit to 1 */
buffer[1] = value | apply_rx_tx_change;
i2c_success = write_i2c(pipe_ctx, slave_address,
buffer, sizeof(buffer));
RETIMER_REDRIVER_INFO("retimer write to slave_address = 0x%x,\
offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n",
slave_address, buffer[0], buffer[1], i2c_success?1:0);
if (!i2c_success)
goto i2c_write_fail;
}
}
}
}
if (is_vga_mode) {
/* Program additional settings if using 640x480 resolution */
/* Write offset 0xFF to 0x01 */
buffer[0] = 0xff;
buffer[1] = 0x01;
i2c_success = write_i2c(pipe_ctx, slave_address,
buffer, sizeof(buffer));
RETIMER_REDRIVER_INFO("retimer write to slave_address = 0x%x,\
offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n",
slave_address, buffer[0], buffer[1], i2c_success?1:0);
if (!i2c_success)
goto i2c_write_fail;
/* Write offset 0x00 to 0x23 */
buffer[0] = 0x00;
buffer[1] = 0x23;
i2c_success = write_i2c(pipe_ctx, slave_address,
buffer, sizeof(buffer));
RETIMER_REDRIVER_INFO("retimer write to slave_address = 0x%x,\
offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n",
slave_address, buffer[0], buffer[1], i2c_success?1:0);
if (!i2c_success)
goto i2c_write_fail;
/* Write offset 0xff to 0x00 */
buffer[0] = 0xff;
buffer[1] = 0x00;
i2c_success = write_i2c(pipe_ctx, slave_address,
buffer, sizeof(buffer));
RETIMER_REDRIVER_INFO("retimer write to slave_address = 0x%x,\
offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n",
slave_address, buffer[0], buffer[1], i2c_success?1:0);
if (!i2c_success)
goto i2c_write_fail;
}
return;
i2c_write_fail:
DC_LOG_DEBUG("Set retimer failed");
}
static void write_i2c_default_retimer_setting(
struct pipe_ctx *pipe_ctx,
bool is_vga_mode,
bool is_over_340mhz)
{
uint8_t slave_address = (0xBA >> 1);
uint8_t buffer[2];
bool i2c_success = false;
DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
memset(&buffer, 0, sizeof(buffer));
/* Program Slave Address for tuning single integrity */
/* Write offset 0x0A to 0x13 */
buffer[0] = 0x0A;
buffer[1] = 0x13;
i2c_success = write_i2c(pipe_ctx, slave_address,
buffer, sizeof(buffer));
RETIMER_REDRIVER_INFO("retimer writes default setting to slave_address = 0x%x,\
offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n",
slave_address, buffer[0], buffer[1], i2c_success?1:0);
if (!i2c_success)
goto i2c_write_fail;
/* Write offset 0x0A to 0x17 */
buffer[0] = 0x0A;
buffer[1] = 0x17;
i2c_success = write_i2c(pipe_ctx, slave_address,
buffer, sizeof(buffer));
RETIMER_REDRIVER_INFO("retimer write to slave_addr = 0x%x,\
offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n",
slave_address, buffer[0], buffer[1], i2c_success?1:0);
if (!i2c_success)
goto i2c_write_fail;
/* Write offset 0x0B to 0xDA or 0xD8 */
buffer[0] = 0x0B;
buffer[1] = is_over_340mhz ? 0xDA : 0xD8;
i2c_success = write_i2c(pipe_ctx, slave_address,
buffer, sizeof(buffer));
RETIMER_REDRIVER_INFO("retimer write to slave_addr = 0x%x,\
offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n",
slave_address, buffer[0], buffer[1], i2c_success?1:0);
if (!i2c_success)
goto i2c_write_fail;
/* Write offset 0x0A to 0x17 */
buffer[0] = 0x0A;
buffer[1] = 0x17;
i2c_success = write_i2c(pipe_ctx, slave_address,
buffer, sizeof(buffer));
RETIMER_REDRIVER_INFO("retimer write to slave_addr = 0x%x,\
offset = 0x%x, reg_val= 0x%x, i2c_success = %d\n",
slave_address, buffer[0], buffer[1], i2c_success?1:0);
if (!i2c_success)
goto i2c_write_fail;
/* Write offset 0x0C to 0x1D or 0x91 */
buffer[0] = 0x0C;
buffer[1] = is_over_340mhz ? 0x1D : 0x91;
i2c_success = write_i2c(pipe_ctx, slave_address,
buffer, sizeof(buffer));
RETIMER_REDRIVER_INFO("retimer write to slave_addr = 0x%x,\
offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n",
slave_address, buffer[0], buffer[1], i2c_success?1:0);
if (!i2c_success)
goto i2c_write_fail;
/* Write offset 0x0A to 0x17 */
buffer[0] = 0x0A;
buffer[1] = 0x17;
i2c_success = write_i2c(pipe_ctx, slave_address,
buffer, sizeof(buffer));
RETIMER_REDRIVER_INFO("retimer write to slave_addr = 0x%x,\
offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n",
slave_address, buffer[0], buffer[1], i2c_success?1:0);
if (!i2c_success)
goto i2c_write_fail;
if (is_vga_mode) {
/* Program additional settings if using 640x480 resolution */
/* Write offset 0xFF to 0x01 */
buffer[0] = 0xff;
buffer[1] = 0x01;
i2c_success = write_i2c(pipe_ctx, slave_address,
buffer, sizeof(buffer));
RETIMER_REDRIVER_INFO("retimer write to slave_addr = 0x%x,\
offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n",
slave_address, buffer[0], buffer[1], i2c_success?1:0);
if (!i2c_success)
goto i2c_write_fail;
/* Write offset 0x00 to 0x23 */
buffer[0] = 0x00;
buffer[1] = 0x23;
i2c_success = write_i2c(pipe_ctx, slave_address,
buffer, sizeof(buffer));
RETIMER_REDRIVER_INFO("retimer write to slave_addr = 0x%x,\
offset = 0x%x, reg_val= 0x%x, i2c_success = %d\n",
slave_address, buffer[0], buffer[1], i2c_success?1:0);
if (!i2c_success)
goto i2c_write_fail;
/* Write offset 0xff to 0x00 */
buffer[0] = 0xff;
buffer[1] = 0x00;
i2c_success = write_i2c(pipe_ctx, slave_address,
buffer, sizeof(buffer));
RETIMER_REDRIVER_INFO("retimer write default setting to slave_addr = 0x%x,\
offset = 0x%x, reg_val= 0x%x, i2c_success = %d end here\n",
slave_address, buffer[0], buffer[1], i2c_success?1:0);
if (!i2c_success)
goto i2c_write_fail;
}
return;
i2c_write_fail:
DC_LOG_DEBUG("Set default retimer failed");
}
static void write_i2c_redriver_setting(
struct pipe_ctx *pipe_ctx,
bool is_over_340mhz)
{
uint8_t slave_address = (0xF0 >> 1);
uint8_t buffer[16];
bool i2c_success = false;
DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
memset(&buffer, 0, sizeof(buffer));
// Program Slave Address for tuning single integrity
buffer[3] = 0x4E;
buffer[4] = 0x4E;
buffer[5] = 0x4E;
buffer[6] = is_over_340mhz ? 0x4E : 0x4A;
i2c_success = write_i2c(pipe_ctx, slave_address,
buffer, sizeof(buffer));
RETIMER_REDRIVER_INFO("redriver write 0 to all 16 reg offset expect following:\n\
\t slave_addr = 0x%x, offset[3] = 0x%x, offset[4] = 0x%x,\
offset[5] = 0x%x,offset[6] is_over_340mhz = 0x%x,\
i2c_success = %d\n",
slave_address, buffer[3], buffer[4], buffer[5], buffer[6], i2c_success?1:0);
if (!i2c_success)
DC_LOG_DEBUG("Set redriver failed");
}
static void update_psp_stream_config(struct pipe_ctx *pipe_ctx, bool dpms_off)
{
struct cp_psp *cp_psp = &pipe_ctx->stream->ctx->cp_psp;
struct link_encoder *link_enc = NULL;
struct cp_psp_stream_config config = {0};
enum dp_panel_mode panel_mode =
dp_get_panel_mode(pipe_ctx->stream->link);
if (cp_psp == NULL || cp_psp->funcs.update_stream_config == NULL)
return;
link_enc = link_enc_cfg_get_link_enc(pipe_ctx->stream->link);
ASSERT(link_enc);
if (link_enc == NULL)
return;
/* otg instance */
config.otg_inst = (uint8_t) pipe_ctx->stream_res.tg->inst;
/* dig front end */
config.dig_fe = (uint8_t) pipe_ctx->stream_res.stream_enc->stream_enc_inst;
/* stream encoder index */
config.stream_enc_idx = pipe_ctx->stream_res.stream_enc->id - ENGINE_ID_DIGA;
if (dp_is_128b_132b_signal(pipe_ctx))
config.stream_enc_idx =
pipe_ctx->stream_res.hpo_dp_stream_enc->id - ENGINE_ID_HPO_DP_0;
/* dig back end */
config.dig_be = pipe_ctx->stream->link->link_enc_hw_inst;
/* link encoder index */
config.link_enc_idx = link_enc->transmitter - TRANSMITTER_UNIPHY_A;
if (dp_is_128b_132b_signal(pipe_ctx))
config.link_enc_idx = pipe_ctx->link_res.hpo_dp_link_enc->inst;
/* dio output index is dpia index for DPIA endpoint & dcio index by default */
if (pipe_ctx->stream->link->ep_type == DISPLAY_ENDPOINT_USB4_DPIA)
config.dio_output_idx = pipe_ctx->stream->link->link_id.enum_id - ENUM_ID_1;
else
config.dio_output_idx = link_enc->transmitter - TRANSMITTER_UNIPHY_A;
/* phy index */
config.phy_idx = resource_transmitter_to_phy_idx(
pipe_ctx->stream->link->dc, link_enc->transmitter);
if (pipe_ctx->stream->link->ep_type == DISPLAY_ENDPOINT_USB4_DPIA)
/* USB4 DPIA doesn't use PHY in our soc, initialize it to 0 */
config.phy_idx = 0;
/* stream properties */
config.assr_enabled = (panel_mode == DP_PANEL_MODE_EDP) ? 1 : 0;
config.mst_enabled = (pipe_ctx->stream->signal ==
SIGNAL_TYPE_DISPLAY_PORT_MST) ? 1 : 0;
config.dp2_enabled = dp_is_128b_132b_signal(pipe_ctx) ? 1 : 0;
config.usb4_enabled = (pipe_ctx->stream->link->ep_type == DISPLAY_ENDPOINT_USB4_DPIA) ?
1 : 0;
config.dpms_off = dpms_off;
/* dm stream context */
config.dm_stream_ctx = pipe_ctx->stream->dm_stream_context;
cp_psp->funcs.update_stream_config(cp_psp->handle, &config);
}
static void set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
{
struct dc *dc = pipe_ctx->stream->ctx->dc;
if (!dc_is_hdmi_signal(pipe_ctx->stream->signal))
return;
dc->hwss.set_avmute(pipe_ctx, enable);
}
static void enable_mst_on_sink(struct dc_link *link, bool enable)
{
unsigned char mstmCntl;
core_link_read_dpcd(link, DP_MSTM_CTRL, &mstmCntl, 1);
if (enable)
mstmCntl |= DP_MST_EN;
else
mstmCntl &= (~DP_MST_EN);
core_link_write_dpcd(link, DP_MSTM_CTRL, &mstmCntl, 1);
}
static void dsc_optc_config_log(struct display_stream_compressor *dsc,
struct dsc_optc_config *config)
{
uint32_t precision = 1 << 28;
uint32_t bytes_per_pixel_int = config->bytes_per_pixel / precision;
uint32_t bytes_per_pixel_mod = config->bytes_per_pixel % precision;
uint64_t ll_bytes_per_pix_fraq = bytes_per_pixel_mod;
DC_LOGGER_INIT(dsc->ctx->logger);
/* 7 fractional digits decimal precision for bytes per pixel is enough because DSC
* bits per pixel precision is 1/16th of a pixel, which means bytes per pixel precision is
* 1/16/8 = 1/128 of a byte, or 0.0078125 decimal
*/
ll_bytes_per_pix_fraq *= 10000000;
ll_bytes_per_pix_fraq /= precision;
DC_LOG_DSC("\tbytes_per_pixel 0x%08x (%d.%07d)",
config->bytes_per_pixel, bytes_per_pixel_int, (uint32_t)ll_bytes_per_pix_fraq);
DC_LOG_DSC("\tis_pixel_format_444 %d", config->is_pixel_format_444);
DC_LOG_DSC("\tslice_width %d", config->slice_width);
}
static bool dp_set_dsc_on_rx(struct pipe_ctx *pipe_ctx, bool enable)
{
struct dc *dc = pipe_ctx->stream->ctx->dc;
struct dc_stream_state *stream = pipe_ctx->stream;
bool result = false;
if (dc_is_virtual_signal(stream->signal))
result = true;
else
result = dm_helpers_dp_write_dsc_enable(dc->ctx, stream, enable);
return result;
}
/* The stream with these settings can be sent (unblanked) only after DSC was enabled on RX first,
* i.e. after dp_enable_dsc_on_rx() had been called
*/
void link_set_dsc_on_stream(struct pipe_ctx *pipe_ctx, bool enable)
{
struct display_stream_compressor *dsc = pipe_ctx->stream_res.dsc;
struct dc_stream_state *stream = pipe_ctx->stream;
struct pipe_ctx *odm_pipe;
int opp_cnt = 1;
DC_LOGGER_INIT(dsc->ctx->logger);
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
opp_cnt++;
if (enable) {
struct dsc_config dsc_cfg;
struct dsc_optc_config dsc_optc_cfg;
enum optc_dsc_mode optc_dsc_mode;
/* Enable DSC hw block */
dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right) / opp_cnt;
dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top + stream->timing.v_border_bottom;
dsc_cfg.pixel_encoding = stream->timing.pixel_encoding;
dsc_cfg.color_depth = stream->timing.display_color_depth;
dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false;
dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg;
ASSERT(dsc_cfg.dc_dsc_cfg.num_slices_h % opp_cnt == 0);
dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt;
dsc->funcs->dsc_set_config(dsc, &dsc_cfg, &dsc_optc_cfg);
dsc->funcs->dsc_enable(dsc, pipe_ctx->stream_res.opp->inst);
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
struct display_stream_compressor *odm_dsc = odm_pipe->stream_res.dsc;
odm_dsc->funcs->dsc_set_config(odm_dsc, &dsc_cfg, &dsc_optc_cfg);
odm_dsc->funcs->dsc_enable(odm_dsc, odm_pipe->stream_res.opp->inst);
}
dsc_cfg.dc_dsc_cfg.num_slices_h *= opp_cnt;
dsc_cfg.pic_width *= opp_cnt;
optc_dsc_mode = dsc_optc_cfg.is_pixel_format_444 ? OPTC_DSC_ENABLED_444 : OPTC_DSC_ENABLED_NATIVE_SUBSAMPLED;
/* Enable DSC in encoder */
if (dc_is_dp_signal(stream->signal) && !dp_is_128b_132b_signal(pipe_ctx)) {
DC_LOG_DSC("Setting stream encoder DSC config for engine %d:", (int)pipe_ctx->stream_res.stream_enc->id);
dsc_optc_config_log(dsc, &dsc_optc_cfg);
pipe_ctx->stream_res.stream_enc->funcs->dp_set_dsc_config(pipe_ctx->stream_res.stream_enc,
optc_dsc_mode,
dsc_optc_cfg.bytes_per_pixel,
dsc_optc_cfg.slice_width);
/* PPS SDP is set elsewhere because it has to be done after DIG FE is connected to DIG BE */
}
/* Enable DSC in OPTC */
DC_LOG_DSC("Setting optc DSC config for tg instance %d:", pipe_ctx->stream_res.tg->inst);
dsc_optc_config_log(dsc, &dsc_optc_cfg);
pipe_ctx->stream_res.tg->funcs->set_dsc_config(pipe_ctx->stream_res.tg,
optc_dsc_mode,
dsc_optc_cfg.bytes_per_pixel,
dsc_optc_cfg.slice_width);
} else {
/* disable DSC in OPTC */
pipe_ctx->stream_res.tg->funcs->set_dsc_config(
pipe_ctx->stream_res.tg,
OPTC_DSC_DISABLED, 0, 0);
/* disable DSC in stream encoder */
if (dc_is_dp_signal(stream->signal)) {
if (dp_is_128b_132b_signal(pipe_ctx))
pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_set_dsc_pps_info_packet(
pipe_ctx->stream_res.hpo_dp_stream_enc,
false,
NULL,
true);
else {
pipe_ctx->stream_res.stream_enc->funcs->dp_set_dsc_config(
pipe_ctx->stream_res.stream_enc,
OPTC_DSC_DISABLED, 0, 0);
pipe_ctx->stream_res.stream_enc->funcs->dp_set_dsc_pps_info_packet(
pipe_ctx->stream_res.stream_enc, false, NULL, true);
}
}
/* disable DSC block */
pipe_ctx->stream_res.dsc->funcs->dsc_disable(pipe_ctx->stream_res.dsc);
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
odm_pipe->stream_res.dsc->funcs->dsc_disable(odm_pipe->stream_res.dsc);
}
}
/*
* For dynamic bpp change case, dsc is programmed with MASTER_UPDATE_LOCK enabled;
* hence PPS info packet update need to use frame update instead of immediate update.
* Added parameter immediate_update for this purpose.
* The decision to use frame update is hard-coded in function dp_update_dsc_config(),
* which is the only place where a "false" would be passed in for param immediate_update.
*
* immediate_update is only applicable when DSC is enabled.
*/
bool link_set_dsc_pps_packet(struct pipe_ctx *pipe_ctx, bool enable, bool immediate_update)
{
struct display_stream_compressor *dsc = pipe_ctx->stream_res.dsc;
struct dc_stream_state *stream = pipe_ctx->stream;
DC_LOGGER_INIT(dsc->ctx->logger);
if (!pipe_ctx->stream->timing.flags.DSC || !dsc)
return false;
if (enable) {
struct dsc_config dsc_cfg;
uint8_t dsc_packed_pps[128];
memset(&dsc_cfg, 0, sizeof(dsc_cfg));
memset(dsc_packed_pps, 0, 128);
/* Enable DSC hw block */
dsc_cfg.pic_width = stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right;
dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top + stream->timing.v_border_bottom;
dsc_cfg.pixel_encoding = stream->timing.pixel_encoding;
dsc_cfg.color_depth = stream->timing.display_color_depth;
dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false;
dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg;
dsc->funcs->dsc_get_packed_pps(dsc, &dsc_cfg, &dsc_packed_pps[0]);
memcpy(&stream->dsc_packed_pps[0], &dsc_packed_pps[0], sizeof(stream->dsc_packed_pps));
if (dc_is_dp_signal(stream->signal)) {
DC_LOG_DSC("Setting stream encoder DSC PPS SDP for engine %d\n", (int)pipe_ctx->stream_res.stream_enc->id);
if (dp_is_128b_132b_signal(pipe_ctx))
pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_set_dsc_pps_info_packet(
pipe_ctx->stream_res.hpo_dp_stream_enc,
true,
&dsc_packed_pps[0],
immediate_update);
else
pipe_ctx->stream_res.stream_enc->funcs->dp_set_dsc_pps_info_packet(
pipe_ctx->stream_res.stream_enc,
true,
&dsc_packed_pps[0],
immediate_update);
}
} else {
/* disable DSC PPS in stream encoder */
memset(&stream->dsc_packed_pps[0], 0, sizeof(stream->dsc_packed_pps));
if (dc_is_dp_signal(stream->signal)) {
if (dp_is_128b_132b_signal(pipe_ctx))
pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_set_dsc_pps_info_packet(
pipe_ctx->stream_res.hpo_dp_stream_enc,
false,
NULL,
true);
else
pipe_ctx->stream_res.stream_enc->funcs->dp_set_dsc_pps_info_packet(
pipe_ctx->stream_res.stream_enc, false, NULL, true);
}
}
return true;
}
bool link_set_dsc_enable(struct pipe_ctx *pipe_ctx, bool enable)
{
struct display_stream_compressor *dsc = pipe_ctx->stream_res.dsc;
bool result = false;
if (!pipe_ctx->stream->timing.flags.DSC)
goto out;
if (!dsc)
goto out;
if (enable) {
{
link_set_dsc_on_stream(pipe_ctx, true);
result = true;
}
} else {
dp_set_dsc_on_rx(pipe_ctx, false);
link_set_dsc_on_stream(pipe_ctx, false);
result = true;
}
out:
return result;
}
bool link_update_dsc_config(struct pipe_ctx *pipe_ctx)
{
struct display_stream_compressor *dsc = pipe_ctx->stream_res.dsc;
if (!pipe_ctx->stream->timing.flags.DSC)
return false;
if (!dsc)
return false;
link_set_dsc_on_stream(pipe_ctx, true);
link_set_dsc_pps_packet(pipe_ctx, true, false);
return true;
}
static void enable_stream_features(struct pipe_ctx *pipe_ctx)
{
struct dc_stream_state *stream = pipe_ctx->stream;
if (pipe_ctx->stream->signal != SIGNAL_TYPE_DISPLAY_PORT_MST) {
struct dc_link *link = stream->link;
union down_spread_ctrl old_downspread;
union down_spread_ctrl new_downspread;
memset(&old_downspread, 0, sizeof(old_downspread));
core_link_read_dpcd(link, DP_DOWNSPREAD_CTRL,
&old_downspread.raw, sizeof(old_downspread));
new_downspread.raw = old_downspread.raw;
new_downspread.bits.IGNORE_MSA_TIMING_PARAM =
(stream->ignore_msa_timing_param) ? 1 : 0;
if (new_downspread.raw != old_downspread.raw) {
core_link_write_dpcd(link, DP_DOWNSPREAD_CTRL,
&new_downspread.raw, sizeof(new_downspread));
}
} else {
dm_helpers_mst_enable_stream_features(stream);
}
}
static void log_vcp_x_y(const struct dc_link *link, struct fixed31_32 avg_time_slots_per_mtp)
{
const uint32_t VCP_Y_PRECISION = 1000;
uint64_t vcp_x, vcp_y;
DC_LOGGER_INIT(link->ctx->logger);
// Add 0.5*(1/VCP_Y_PRECISION) to round up to decimal precision
avg_time_slots_per_mtp = dc_fixpt_add(
avg_time_slots_per_mtp,
dc_fixpt_from_fraction(
1,
2*VCP_Y_PRECISION));
vcp_x = dc_fixpt_floor(
avg_time_slots_per_mtp);
vcp_y = dc_fixpt_floor(
dc_fixpt_mul_int(
dc_fixpt_sub_int(
avg_time_slots_per_mtp,
dc_fixpt_floor(
avg_time_slots_per_mtp)),
VCP_Y_PRECISION));
if (link->type == dc_connection_mst_branch)
DC_LOG_DP2("MST Update Payload: set_throttled_vcp_size slot X.Y for MST stream "
"X: %llu "
"Y: %llu/%d",
vcp_x,
vcp_y,
VCP_Y_PRECISION);
else
DC_LOG_DP2("SST Update Payload: set_throttled_vcp_size slot X.Y for SST stream "
"X: %llu "
"Y: %llu/%d",
vcp_x,
vcp_y,
VCP_Y_PRECISION);
}
static struct fixed31_32 get_pbn_per_slot(struct dc_stream_state *stream)
{
struct fixed31_32 mbytes_per_sec;
uint32_t link_rate_in_mbytes_per_sec = dp_link_bandwidth_kbps(stream->link,
&stream->link->cur_link_settings);
link_rate_in_mbytes_per_sec /= 8000; /* Kbits to MBytes */
mbytes_per_sec = dc_fixpt_from_int(link_rate_in_mbytes_per_sec);
return dc_fixpt_div_int(mbytes_per_sec, 54);
}
static struct fixed31_32 get_pbn_from_bw_in_kbps(uint64_t kbps)
{
struct fixed31_32 peak_kbps;
uint32_t numerator = 0;
uint32_t denominator = 1;
/*
* margin 5300ppm + 300ppm ~ 0.6% as per spec, factor is 1.006
* The unit of 54/64Mbytes/sec is an arbitrary unit chosen based on
* common multiplier to render an integer PBN for all link rate/lane
* counts combinations
* calculate
* peak_kbps *= (1006/1000)
* peak_kbps *= (64/54)
* peak_kbps *= 8 convert to bytes
*/
numerator = 64 * PEAK_FACTOR_X1000;
denominator = 54 * 8 * 1000 * 1000;
kbps *= numerator;
peak_kbps = dc_fixpt_from_fraction(kbps, denominator);
return peak_kbps;
}
static struct fixed31_32 get_pbn_from_timing(struct pipe_ctx *pipe_ctx)
{
uint64_t kbps;
enum dc_link_encoding_format link_encoding;
if (dp_is_128b_132b_signal(pipe_ctx))
link_encoding = DC_LINK_ENCODING_DP_128b_132b;
else
link_encoding = DC_LINK_ENCODING_DP_8b_10b;
kbps = dc_bandwidth_in_kbps_from_timing(&pipe_ctx->stream->timing, link_encoding);
return get_pbn_from_bw_in_kbps(kbps);
}
// TODO - DP2.0 Link: Fix get_lane_status to handle LTTPR offset (SST and MST)
static void get_lane_status(
struct dc_link *link,
uint32_t lane_count,
union lane_status *status,
union lane_align_status_updated *status_updated)
{
unsigned int lane;
uint8_t dpcd_buf[3] = {0};
if (status == NULL || status_updated == NULL) {
return;
}
core_link_read_dpcd(
link,
DP_LANE0_1_STATUS,
dpcd_buf,
sizeof(dpcd_buf));
for (lane = 0; lane < lane_count; lane++) {
status[lane].raw = dp_get_nibble_at_index(&dpcd_buf[0], lane);
}
status_updated->raw = dpcd_buf[2];
}
static bool poll_for_allocation_change_trigger(struct dc_link *link)
{
/*
* wait for ACT handled
*/
int i;
const int act_retries = 30;
enum act_return_status result = ACT_FAILED;
union payload_table_update_status update_status = {0};
union lane_status dpcd_lane_status[LANE_COUNT_DP_MAX];
union lane_align_status_updated lane_status_updated;
DC_LOGGER_INIT(link->ctx->logger);
if (link->aux_access_disabled)
return true;
for (i = 0; i < act_retries; i++) {
get_lane_status(link, link->cur_link_settings.lane_count, dpcd_lane_status, &lane_status_updated);
if (!dp_is_cr_done(link->cur_link_settings.lane_count, dpcd_lane_status) ||
!dp_is_ch_eq_done(link->cur_link_settings.lane_count, dpcd_lane_status) ||
!dp_is_symbol_locked(link->cur_link_settings.lane_count, dpcd_lane_status) ||
!dp_is_interlane_aligned(lane_status_updated)) {
DC_LOG_ERROR("SST Update Payload: Link loss occurred while "
"polling for ACT handled.");
result = ACT_LINK_LOST;
break;
}
core_link_read_dpcd(
link,
DP_PAYLOAD_TABLE_UPDATE_STATUS,
&update_status.raw,
1);
if (update_status.bits.ACT_HANDLED == 1) {
DC_LOG_DP2("SST Update Payload: ACT handled by downstream.");
result = ACT_SUCCESS;
break;
}
fsleep(5000);
}
if (result == ACT_FAILED) {
DC_LOG_ERROR("SST Update Payload: ACT still not handled after retries, "
"continue on. Something is wrong with the branch.");
}
return (result == ACT_SUCCESS);
}
static void update_mst_stream_alloc_table(
struct dc_link *link,
struct stream_encoder *stream_enc,
struct hpo_dp_stream_encoder *hpo_dp_stream_enc, // TODO: Rename stream_enc to dio_stream_enc?
const struct dc_dp_mst_stream_allocation_table *proposed_table)
{
struct link_mst_stream_allocation work_table[MAX_CONTROLLER_NUM] = { 0 };
struct link_mst_stream_allocation *dc_alloc;
int i;
int j;
/* if DRM proposed_table has more than one new payload */
ASSERT(proposed_table->stream_count -
link->mst_stream_alloc_table.stream_count < 2);
/* copy proposed_table to link, add stream encoder */
for (i = 0; i < proposed_table->stream_count; i++) {
for (j = 0; j < link->mst_stream_alloc_table.stream_count; j++) {
dc_alloc =
&link->mst_stream_alloc_table.stream_allocations[j];
if (dc_alloc->vcp_id ==
proposed_table->stream_allocations[i].vcp_id) {
work_table[i] = *dc_alloc;
work_table[i].slot_count = proposed_table->stream_allocations[i].slot_count;
break; /* exit j loop */
}
}
/* new vcp_id */
if (j == link->mst_stream_alloc_table.stream_count) {
work_table[i].vcp_id =
proposed_table->stream_allocations[i].vcp_id;
work_table[i].slot_count =
proposed_table->stream_allocations[i].slot_count;
work_table[i].stream_enc = stream_enc;
work_table[i].hpo_dp_stream_enc = hpo_dp_stream_enc;
}
}
/* update link->mst_stream_alloc_table with work_table */
link->mst_stream_alloc_table.stream_count =
proposed_table->stream_count;
for (i = 0; i < MAX_CONTROLLER_NUM; i++)
link->mst_stream_alloc_table.stream_allocations[i] =
work_table[i];
}
static void remove_stream_from_alloc_table(
struct dc_link *link,
struct stream_encoder *dio_stream_enc,
struct hpo_dp_stream_encoder *hpo_dp_stream_enc)
{
int i = 0;
struct link_mst_stream_allocation_table *table =
&link->mst_stream_alloc_table;
if (hpo_dp_stream_enc) {
for (; i < table->stream_count; i++)
if (hpo_dp_stream_enc == table->stream_allocations[i].hpo_dp_stream_enc)
break;
} else {
for (; i < table->stream_count; i++)
if (dio_stream_enc == table->stream_allocations[i].stream_enc)
break;
}
if (i < table->stream_count) {
i++;
for (; i < table->stream_count; i++)
table->stream_allocations[i-1] = table->stream_allocations[i];
memset(&table->stream_allocations[table->stream_count-1], 0,
sizeof(struct link_mst_stream_allocation));
table->stream_count--;
}
}
static enum dc_status deallocate_mst_payload_with_temp_drm_wa(
struct pipe_ctx *pipe_ctx)
{
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
struct dc_dp_mst_stream_allocation_table proposed_table = {0};
struct fixed31_32 avg_time_slots_per_mtp = dc_fixpt_from_int(0);
int i;
bool mst_mode = (link->type == dc_connection_mst_branch);
/* adjust for drm changes*/
const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
const struct dc_link_settings empty_link_settings = {0};
DC_LOGGER_INIT(link->ctx->logger);
if (link_hwss->ext.set_throttled_vcp_size)
link_hwss->ext.set_throttled_vcp_size(pipe_ctx, avg_time_slots_per_mtp);
if (link_hwss->ext.set_hblank_min_symbol_width)
link_hwss->ext.set_hblank_min_symbol_width(pipe_ctx,
&empty_link_settings,
avg_time_slots_per_mtp);
if (dm_helpers_dp_mst_write_payload_allocation_table(
stream->ctx,
stream,
&proposed_table,
false))
update_mst_stream_alloc_table(
link,
pipe_ctx->stream_res.stream_enc,
pipe_ctx->stream_res.hpo_dp_stream_enc,
&proposed_table);
else
DC_LOG_WARNING("Failed to update"
"MST allocation table for"
"pipe idx:%d\n",
pipe_ctx->pipe_idx);
DC_LOG_MST("%s"
"stream_count: %d: ",
__func__,
link->mst_stream_alloc_table.stream_count);
for (i = 0; i < MAX_CONTROLLER_NUM; i++) {
DC_LOG_MST("stream_enc[%d]: %p "
"stream[%d].hpo_dp_stream_enc: %p "
"stream[%d].vcp_id: %d "
"stream[%d].slot_count: %d\n",
i,
(void *) link->mst_stream_alloc_table.stream_allocations[i].stream_enc,
i,
(void *) link->mst_stream_alloc_table.stream_allocations[i].hpo_dp_stream_enc,
i,
link->mst_stream_alloc_table.stream_allocations[i].vcp_id,
i,
link->mst_stream_alloc_table.stream_allocations[i].slot_count);
}
if (link_hwss->ext.update_stream_allocation_table == NULL ||
link_dp_get_encoding_format(&link->cur_link_settings) == DP_UNKNOWN_ENCODING) {
DC_LOG_DEBUG("Unknown encoding format\n");
return DC_ERROR_UNEXPECTED;
}
link_hwss->ext.update_stream_allocation_table(link, &pipe_ctx->link_res,
&link->mst_stream_alloc_table);
if (mst_mode) {
dm_helpers_dp_mst_poll_for_allocation_change_trigger(
stream->ctx,
stream);
}
dm_helpers_dp_mst_send_payload_allocation(
stream->ctx,
stream,
false);
return DC_OK;
}
static enum dc_status deallocate_mst_payload(struct pipe_ctx *pipe_ctx)
{
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
struct dc_dp_mst_stream_allocation_table proposed_table = {0};
struct fixed31_32 avg_time_slots_per_mtp = dc_fixpt_from_int(0);
int i;
bool mst_mode = (link->type == dc_connection_mst_branch);
const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
const struct dc_link_settings empty_link_settings = {0};
DC_LOGGER_INIT(link->ctx->logger);
if (link->dc->debug.temp_mst_deallocation_sequence)
return deallocate_mst_payload_with_temp_drm_wa(pipe_ctx);
/* deallocate_mst_payload is called before disable link. When mode or
* disable/enable monitor, new stream is created which is not in link
* stream[] yet. For this, payload is not allocated yet, so de-alloc
* should not done. For new mode set, map_resources will get engine
* for new stream, so stream_enc->id should be validated until here.
*/
/* slot X.Y */
if (link_hwss->ext.set_throttled_vcp_size)
link_hwss->ext.set_throttled_vcp_size(pipe_ctx, avg_time_slots_per_mtp);
if (link_hwss->ext.set_hblank_min_symbol_width)
link_hwss->ext.set_hblank_min_symbol_width(pipe_ctx,
&empty_link_settings,
avg_time_slots_per_mtp);
if (mst_mode) {
/* when link is in mst mode, reply on mst manager to remove
* payload
*/
if (dm_helpers_dp_mst_write_payload_allocation_table(
stream->ctx,
stream,
&proposed_table,
false))
update_mst_stream_alloc_table(
link,
pipe_ctx->stream_res.stream_enc,
pipe_ctx->stream_res.hpo_dp_stream_enc,
&proposed_table);
else
DC_LOG_WARNING("Failed to update"
"MST allocation table for"
"pipe idx:%d\n",
pipe_ctx->pipe_idx);
} else {
/* when link is no longer in mst mode (mst hub unplugged),
* remove payload with default dc logic
*/
remove_stream_from_alloc_table(link, pipe_ctx->stream_res.stream_enc,
pipe_ctx->stream_res.hpo_dp_stream_enc);
}
DC_LOG_MST("%s"
"stream_count: %d: ",
__func__,
link->mst_stream_alloc_table.stream_count);
for (i = 0; i < MAX_CONTROLLER_NUM; i++) {
DC_LOG_MST("stream_enc[%d]: %p "
"stream[%d].hpo_dp_stream_enc: %p "
"stream[%d].vcp_id: %d "
"stream[%d].slot_count: %d\n",
i,
(void *) link->mst_stream_alloc_table.stream_allocations[i].stream_enc,
i,
(void *) link->mst_stream_alloc_table.stream_allocations[i].hpo_dp_stream_enc,
i,
link->mst_stream_alloc_table.stream_allocations[i].vcp_id,
i,
link->mst_stream_alloc_table.stream_allocations[i].slot_count);
}
/* update mst stream allocation table hardware state */
if (link_hwss->ext.update_stream_allocation_table == NULL ||
link_dp_get_encoding_format(&link->cur_link_settings) == DP_UNKNOWN_ENCODING) {
DC_LOG_DEBUG("Unknown encoding format\n");
return DC_ERROR_UNEXPECTED;
}
link_hwss->ext.update_stream_allocation_table(link, &pipe_ctx->link_res,
&link->mst_stream_alloc_table);
if (mst_mode) {
dm_helpers_dp_mst_poll_for_allocation_change_trigger(
stream->ctx,
stream);
dm_helpers_dp_mst_send_payload_allocation(
stream->ctx,
stream,
false);
}
return DC_OK;
}
/* convert link_mst_stream_alloc_table to dm dp_mst_stream_alloc_table
* because stream_encoder is not exposed to dm
*/
static enum dc_status allocate_mst_payload(struct pipe_ctx *pipe_ctx)
{
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
struct dc_dp_mst_stream_allocation_table proposed_table = {0};
struct fixed31_32 avg_time_slots_per_mtp;
struct fixed31_32 pbn;
struct fixed31_32 pbn_per_slot;
int i;
enum act_return_status ret;
const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
DC_LOGGER_INIT(link->ctx->logger);
/* enable_link_dp_mst already check link->enabled_stream_count
* and stream is in link->stream[]. This is called during set mode,
* stream_enc is available.
*/
/* get calculate VC payload for stream: stream_alloc */
if (dm_helpers_dp_mst_write_payload_allocation_table(
stream->ctx,
stream,
&proposed_table,
true))
update_mst_stream_alloc_table(
link,
pipe_ctx->stream_res.stream_enc,
pipe_ctx->stream_res.hpo_dp_stream_enc,
&proposed_table);
else
DC_LOG_WARNING("Failed to update"
"MST allocation table for"
"pipe idx:%d\n",
pipe_ctx->pipe_idx);
DC_LOG_MST("%s "
"stream_count: %d: \n ",
__func__,
link->mst_stream_alloc_table.stream_count);
for (i = 0; i < MAX_CONTROLLER_NUM; i++) {
DC_LOG_MST("stream_enc[%d]: %p "
"stream[%d].hpo_dp_stream_enc: %p "
"stream[%d].vcp_id: %d "
"stream[%d].slot_count: %d\n",
i,
(void *) link->mst_stream_alloc_table.stream_allocations[i].stream_enc,
i,
(void *) link->mst_stream_alloc_table.stream_allocations[i].hpo_dp_stream_enc,
i,
link->mst_stream_alloc_table.stream_allocations[i].vcp_id,
i,
link->mst_stream_alloc_table.stream_allocations[i].slot_count);
}
ASSERT(proposed_table.stream_count > 0);
/* program DP source TX for payload */
if (link_hwss->ext.update_stream_allocation_table == NULL ||
link_dp_get_encoding_format(&link->cur_link_settings) == DP_UNKNOWN_ENCODING) {
DC_LOG_ERROR("Failure: unknown encoding format\n");
return DC_ERROR_UNEXPECTED;
}
link_hwss->ext.update_stream_allocation_table(link,
&pipe_ctx->link_res,
&link->mst_stream_alloc_table);
/* send down message */
ret = dm_helpers_dp_mst_poll_for_allocation_change_trigger(
stream->ctx,
stream);
if (ret != ACT_LINK_LOST) {
dm_helpers_dp_mst_send_payload_allocation(
stream->ctx,
stream,
true);
}
/* slot X.Y for only current stream */
pbn_per_slot = get_pbn_per_slot(stream);
if (pbn_per_slot.value == 0) {
DC_LOG_ERROR("Failure: pbn_per_slot==0 not allowed. Cannot continue, returning DC_UNSUPPORTED_VALUE.\n");
return DC_UNSUPPORTED_VALUE;
}
pbn = get_pbn_from_timing(pipe_ctx);
avg_time_slots_per_mtp = dc_fixpt_div(pbn, pbn_per_slot);
log_vcp_x_y(link, avg_time_slots_per_mtp);
if (link_hwss->ext.set_throttled_vcp_size)
link_hwss->ext.set_throttled_vcp_size(pipe_ctx, avg_time_slots_per_mtp);
if (link_hwss->ext.set_hblank_min_symbol_width)
link_hwss->ext.set_hblank_min_symbol_width(pipe_ctx,
&link->cur_link_settings,
avg_time_slots_per_mtp);
return DC_OK;
}
struct fixed31_32 link_calculate_sst_avg_time_slots_per_mtp(
const struct dc_stream_state *stream,
const struct dc_link *link)
{
struct fixed31_32 link_bw_effective =
dc_fixpt_from_int(
dp_link_bandwidth_kbps(link, &link->cur_link_settings));
struct fixed31_32 timeslot_bw_effective =
dc_fixpt_div_int(link_bw_effective, MAX_MTP_SLOT_COUNT);
struct fixed31_32 timing_bw =
dc_fixpt_from_int(
dc_bandwidth_in_kbps_from_timing(&stream->timing,
dc_link_get_highest_encoding_format(link)));
struct fixed31_32 avg_time_slots_per_mtp =
dc_fixpt_div(timing_bw, timeslot_bw_effective);
return avg_time_slots_per_mtp;
}
static bool write_128b_132b_sst_payload_allocation_table(
const struct dc_stream_state *stream,
struct dc_link *link,
struct link_mst_stream_allocation_table *proposed_table,
bool allocate)
{
const uint8_t vc_id = 1; /// VC ID always 1 for SST
const uint8_t start_time_slot = 0; /// Always start at time slot 0 for SST
bool result = false;
uint8_t req_slot_count = 0;
struct fixed31_32 avg_time_slots_per_mtp = { 0 };
union payload_table_update_status update_status = { 0 };
const uint32_t max_retries = 30;
uint32_t retries = 0;
DC_LOGGER_INIT(link->ctx->logger);
if (allocate) {
avg_time_slots_per_mtp = link_calculate_sst_avg_time_slots_per_mtp(stream, link);
req_slot_count = dc_fixpt_ceil(avg_time_slots_per_mtp);
/// Validation should filter out modes that exceed link BW
ASSERT(req_slot_count <= MAX_MTP_SLOT_COUNT);
if (req_slot_count > MAX_MTP_SLOT_COUNT)
return false;
} else {
/// Leave req_slot_count = 0 if allocate is false.
}
proposed_table->stream_count = 1; /// Always 1 stream for SST
proposed_table->stream_allocations[0].slot_count = req_slot_count;
proposed_table->stream_allocations[0].vcp_id = vc_id;
if (link->aux_access_disabled)
return true;
/// Write DPCD 2C0 = 1 to start updating
update_status.bits.VC_PAYLOAD_TABLE_UPDATED = 1;
core_link_write_dpcd(
link,
DP_PAYLOAD_TABLE_UPDATE_STATUS,
&update_status.raw,
1);
/// Program the changes in DPCD 1C0 - 1C2
ASSERT(vc_id == 1);
core_link_write_dpcd(
link,
DP_PAYLOAD_ALLOCATE_SET,
&vc_id,
1);
ASSERT(start_time_slot == 0);
core_link_write_dpcd(
link,
DP_PAYLOAD_ALLOCATE_START_TIME_SLOT,
&start_time_slot,
1);
core_link_write_dpcd(
link,
DP_PAYLOAD_ALLOCATE_TIME_SLOT_COUNT,
&req_slot_count,
1);
/// Poll till DPCD 2C0 read 1
/// Try for at least 150ms (30 retries, with 5ms delay after each attempt)
while (retries < max_retries) {
if (core_link_read_dpcd(
link,
DP_PAYLOAD_TABLE_UPDATE_STATUS,
&update_status.raw,
1) == DC_OK) {
if (update_status.bits.VC_PAYLOAD_TABLE_UPDATED == 1) {
DC_LOG_DP2("SST Update Payload: downstream payload table updated.");
result = true;
break;
}
} else {
union dpcd_rev dpcdRev;
if (core_link_read_dpcd(
link,
DP_DPCD_REV,
&dpcdRev.raw,
1) != DC_OK) {
DC_LOG_ERROR("SST Update Payload: Unable to read DPCD revision "
"of sink while polling payload table "
"updated status bit.");
break;
}
}
retries++;
fsleep(5000);
}
if (!result && retries == max_retries) {
DC_LOG_ERROR("SST Update Payload: Payload table not updated after retries, "
"continue on. Something is wrong with the branch.");
// TODO - DP2.0 Payload: Read and log the payload table from downstream branch
}
return result;
}
/*
* Payload allocation/deallocation for SST introduced in DP2.0
*/
static enum dc_status update_sst_payload(struct pipe_ctx *pipe_ctx,
bool allocate)
{
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
struct link_mst_stream_allocation_table proposed_table = {0};
struct fixed31_32 avg_time_slots_per_mtp;
const struct dc_link_settings empty_link_settings = {0};
const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
DC_LOGGER_INIT(link->ctx->logger);
/* slot X.Y for SST payload deallocate */
if (!allocate) {
avg_time_slots_per_mtp = dc_fixpt_from_int(0);
log_vcp_x_y(link, avg_time_slots_per_mtp);
if (link_hwss->ext.set_throttled_vcp_size)
link_hwss->ext.set_throttled_vcp_size(pipe_ctx,
avg_time_slots_per_mtp);
if (link_hwss->ext.set_hblank_min_symbol_width)
link_hwss->ext.set_hblank_min_symbol_width(pipe_ctx,
&empty_link_settings,
avg_time_slots_per_mtp);
}
/* calculate VC payload and update branch with new payload allocation table*/
if (!write_128b_132b_sst_payload_allocation_table(
stream,
link,
&proposed_table,
allocate)) {
DC_LOG_ERROR("SST Update Payload: Failed to update "
"allocation table for "
"pipe idx: %d\n",
pipe_ctx->pipe_idx);
return DC_FAIL_DP_PAYLOAD_ALLOCATION;
}
proposed_table.stream_allocations[0].hpo_dp_stream_enc = pipe_ctx->stream_res.hpo_dp_stream_enc;
ASSERT(proposed_table.stream_count == 1);
//TODO - DP2.0 Logging: Instead of hpo_dp_stream_enc pointer, log instance id
DC_LOG_DP2("SST Update Payload: hpo_dp_stream_enc: %p "
"vcp_id: %d "
"slot_count: %d\n",
(void *) proposed_table.stream_allocations[0].hpo_dp_stream_enc,
proposed_table.stream_allocations[0].vcp_id,
proposed_table.stream_allocations[0].slot_count);
/* program DP source TX for payload */
link_hwss->ext.update_stream_allocation_table(link, &pipe_ctx->link_res,
&proposed_table);
/* poll for ACT handled */
if (!poll_for_allocation_change_trigger(link)) {
// Failures will result in blackscreen and errors logged
BREAK_TO_DEBUGGER();
}
/* slot X.Y for SST payload allocate */
if (allocate && link_dp_get_encoding_format(&link->cur_link_settings) ==
DP_128b_132b_ENCODING) {
avg_time_slots_per_mtp = link_calculate_sst_avg_time_slots_per_mtp(stream, link);
log_vcp_x_y(link, avg_time_slots_per_mtp);
if (link_hwss->ext.set_throttled_vcp_size)
link_hwss->ext.set_throttled_vcp_size(pipe_ctx,
avg_time_slots_per_mtp);
if (link_hwss->ext.set_hblank_min_symbol_width)
link_hwss->ext.set_hblank_min_symbol_width(pipe_ctx,
&link->cur_link_settings,
avg_time_slots_per_mtp);
}
/* Always return DC_OK.
* If part of sequence fails, log failure(s) and show blackscreen
*/
return DC_OK;
}
enum dc_status link_reduce_mst_payload(struct pipe_ctx *pipe_ctx, uint32_t bw_in_kbps)
{
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
struct fixed31_32 avg_time_slots_per_mtp;
struct fixed31_32 pbn;
struct fixed31_32 pbn_per_slot;
struct dc_dp_mst_stream_allocation_table proposed_table = {0};
uint8_t i;
const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
DC_LOGGER_INIT(link->ctx->logger);
/* decrease throttled vcp size */
pbn_per_slot = get_pbn_per_slot(stream);
pbn = get_pbn_from_bw_in_kbps(bw_in_kbps);
avg_time_slots_per_mtp = dc_fixpt_div(pbn, pbn_per_slot);
if (link_hwss->ext.set_throttled_vcp_size)
link_hwss->ext.set_throttled_vcp_size(pipe_ctx, avg_time_slots_per_mtp);
if (link_hwss->ext.set_hblank_min_symbol_width)
link_hwss->ext.set_hblank_min_symbol_width(pipe_ctx,
&link->cur_link_settings,
avg_time_slots_per_mtp);
/* send ALLOCATE_PAYLOAD sideband message with updated pbn */
dm_helpers_dp_mst_send_payload_allocation(
stream->ctx,
stream,
true);
/* notify immediate branch device table update */
if (dm_helpers_dp_mst_write_payload_allocation_table(
stream->ctx,
stream,
&proposed_table,
true)) {
/* update mst stream allocation table software state */
update_mst_stream_alloc_table(
link,
pipe_ctx->stream_res.stream_enc,
pipe_ctx->stream_res.hpo_dp_stream_enc,
&proposed_table);
} else {
DC_LOG_WARNING("Failed to update"
"MST allocation table for"
"pipe idx:%d\n",
pipe_ctx->pipe_idx);
}
DC_LOG_MST("%s "
"stream_count: %d: \n ",
__func__,
link->mst_stream_alloc_table.stream_count);
for (i = 0; i < MAX_CONTROLLER_NUM; i++) {
DC_LOG_MST("stream_enc[%d]: %p "
"stream[%d].hpo_dp_stream_enc: %p "
"stream[%d].vcp_id: %d "
"stream[%d].slot_count: %d\n",
i,
(void *) link->mst_stream_alloc_table.stream_allocations[i].stream_enc,
i,
(void *) link->mst_stream_alloc_table.stream_allocations[i].hpo_dp_stream_enc,
i,
link->mst_stream_alloc_table.stream_allocations[i].vcp_id,
i,
link->mst_stream_alloc_table.stream_allocations[i].slot_count);
}
ASSERT(proposed_table.stream_count > 0);
/* update mst stream allocation table hardware state */
if (link_hwss->ext.update_stream_allocation_table == NULL ||
link_dp_get_encoding_format(&link->cur_link_settings) == DP_UNKNOWN_ENCODING) {
DC_LOG_ERROR("Failure: unknown encoding format\n");
return DC_ERROR_UNEXPECTED;
}
link_hwss->ext.update_stream_allocation_table(link, &pipe_ctx->link_res,
&link->mst_stream_alloc_table);
/* poll for immediate branch device ACT handled */
dm_helpers_dp_mst_poll_for_allocation_change_trigger(
stream->ctx,
stream);
return DC_OK;
}
enum dc_status link_increase_mst_payload(struct pipe_ctx *pipe_ctx, uint32_t bw_in_kbps)
{
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
struct fixed31_32 avg_time_slots_per_mtp;
struct fixed31_32 pbn;
struct fixed31_32 pbn_per_slot;
struct dc_dp_mst_stream_allocation_table proposed_table = {0};
uint8_t i;
enum act_return_status ret;
const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
DC_LOGGER_INIT(link->ctx->logger);
/* notify immediate branch device table update */
if (dm_helpers_dp_mst_write_payload_allocation_table(
stream->ctx,
stream,
&proposed_table,
true)) {
/* update mst stream allocation table software state */
update_mst_stream_alloc_table(
link,
pipe_ctx->stream_res.stream_enc,
pipe_ctx->stream_res.hpo_dp_stream_enc,
&proposed_table);
}
DC_LOG_MST("%s "
"stream_count: %d: \n ",
__func__,
link->mst_stream_alloc_table.stream_count);
for (i = 0; i < MAX_CONTROLLER_NUM; i++) {
DC_LOG_MST("stream_enc[%d]: %p "
"stream[%d].hpo_dp_stream_enc: %p "
"stream[%d].vcp_id: %d "
"stream[%d].slot_count: %d\n",
i,
(void *) link->mst_stream_alloc_table.stream_allocations[i].stream_enc,
i,
(void *) link->mst_stream_alloc_table.stream_allocations[i].hpo_dp_stream_enc,
i,
link->mst_stream_alloc_table.stream_allocations[i].vcp_id,
i,
link->mst_stream_alloc_table.stream_allocations[i].slot_count);
}
ASSERT(proposed_table.stream_count > 0);
/* update mst stream allocation table hardware state */
if (link_hwss->ext.update_stream_allocation_table == NULL ||
link_dp_get_encoding_format(&link->cur_link_settings) == DP_UNKNOWN_ENCODING) {
DC_LOG_ERROR("Failure: unknown encoding format\n");
return DC_ERROR_UNEXPECTED;
}
link_hwss->ext.update_stream_allocation_table(link, &pipe_ctx->link_res,
&link->mst_stream_alloc_table);
/* poll for immediate branch device ACT handled */
ret = dm_helpers_dp_mst_poll_for_allocation_change_trigger(
stream->ctx,
stream);
if (ret != ACT_LINK_LOST) {
/* send ALLOCATE_PAYLOAD sideband message with updated pbn */
dm_helpers_dp_mst_send_payload_allocation(
stream->ctx,
stream,
true);
}
/* increase throttled vcp size */
pbn = get_pbn_from_bw_in_kbps(bw_in_kbps);
pbn_per_slot = get_pbn_per_slot(stream);
avg_time_slots_per_mtp = dc_fixpt_div(pbn, pbn_per_slot);
if (link_hwss->ext.set_throttled_vcp_size)
link_hwss->ext.set_throttled_vcp_size(pipe_ctx, avg_time_slots_per_mtp);
if (link_hwss->ext.set_hblank_min_symbol_width)
link_hwss->ext.set_hblank_min_symbol_width(pipe_ctx,
&link->cur_link_settings,
avg_time_slots_per_mtp);
return DC_OK;
}
static void disable_link_dp(struct dc_link *link,
const struct link_resource *link_res,
enum signal_type signal)
{
struct dc_link_settings link_settings = link->cur_link_settings;
if (signal == SIGNAL_TYPE_DISPLAY_PORT_MST &&
link->mst_stream_alloc_table.stream_count > 0)
/* disable MST link only when last vc payload is deallocated */
return;
dp_disable_link_phy(link, link_res, signal);
if (link->connector_signal == SIGNAL_TYPE_EDP) {
if (!link->dc->config.edp_no_power_sequencing)
link->dc->hwss.edp_power_control(link, false);
}
if (signal == SIGNAL_TYPE_DISPLAY_PORT_MST)
/* set the sink to SST mode after disabling the link */
enable_mst_on_sink(link, false);
if (link_dp_get_encoding_format(&link_settings) ==
DP_8b_10b_ENCODING) {
dp_set_fec_enable(link, false);
dp_set_fec_ready(link, link_res, false);
}
}
static void disable_link(struct dc_link *link,
const struct link_resource *link_res,
enum signal_type signal)
{
if (dc_is_dp_signal(signal)) {
disable_link_dp(link, link_res, signal);
} else if (signal != SIGNAL_TYPE_VIRTUAL) {
link->dc->hwss.disable_link_output(link, link_res, signal);
}
if (signal == SIGNAL_TYPE_DISPLAY_PORT_MST) {
/* MST disable link only when no stream use the link */
if (link->mst_stream_alloc_table.stream_count <= 0)
link->link_status.link_active = false;
} else {
link->link_status.link_active = false;
}
}
static void enable_link_hdmi(struct pipe_ctx *pipe_ctx)
{
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
enum dc_color_depth display_color_depth;
enum engine_id eng_id;
struct ext_hdmi_settings settings = {0};
bool is_over_340mhz = false;
bool is_vga_mode = (stream->timing.h_addressable == 640)
&& (stream->timing.v_addressable == 480);
struct dc *dc = pipe_ctx->stream->ctx->dc;
const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
if (stream->phy_pix_clk == 0)
stream->phy_pix_clk = stream->timing.pix_clk_100hz / 10;
if (stream->phy_pix_clk > 340000)
is_over_340mhz = true;
if (dc_is_hdmi_signal(pipe_ctx->stream->signal)) {
unsigned short masked_chip_caps = pipe_ctx->stream->link->chip_caps &
EXT_DISPLAY_PATH_CAPS__EXT_CHIP_MASK;
if (masked_chip_caps == EXT_DISPLAY_PATH_CAPS__HDMI20_TISN65DP159RSBT) {
/* DP159, Retimer settings */
eng_id = pipe_ctx->stream_res.stream_enc->id;
if (get_ext_hdmi_settings(pipe_ctx, eng_id, &settings)) {
write_i2c_retimer_setting(pipe_ctx,
is_vga_mode, is_over_340mhz, &settings);
} else {
write_i2c_default_retimer_setting(pipe_ctx,
is_vga_mode, is_over_340mhz);
}
} else if (masked_chip_caps == EXT_DISPLAY_PATH_CAPS__HDMI20_PI3EQX1204) {
/* PI3EQX1204, Redriver settings */
write_i2c_redriver_setting(pipe_ctx, is_over_340mhz);
}
}
if (dc_is_hdmi_signal(pipe_ctx->stream->signal))
write_scdc_data(
stream->link->ddc,
stream->phy_pix_clk,
stream->timing.flags.LTE_340MCSC_SCRAMBLE);
memset(&stream->link->cur_link_settings, 0,
sizeof(struct dc_link_settings));
display_color_depth = stream->timing.display_color_depth;
if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
display_color_depth = COLOR_DEPTH_888;
/* We need to enable stream encoder for TMDS first to apply 1/4 TMDS
* character clock in case that beyond 340MHz.
*/
if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal))
link_hwss->setup_stream_encoder(pipe_ctx);
dc->hwss.enable_tmds_link_output(
link,
&pipe_ctx->link_res,
pipe_ctx->stream->signal,
pipe_ctx->clock_source->id,
display_color_depth,
stream->phy_pix_clk);
if (dc_is_hdmi_signal(pipe_ctx->stream->signal))
read_scdc_data(link->ddc);
}
static enum dc_status enable_link_dp(struct dc_state *state,
struct pipe_ctx *pipe_ctx)
{
struct dc_stream_state *stream = pipe_ctx->stream;
enum dc_status status;
bool skip_video_pattern;
struct dc_link *link = stream->link;
const struct dc_link_settings *link_settings =
&pipe_ctx->link_config.dp_link_settings;
bool fec_enable;
int i;
bool apply_seamless_boot_optimization = false;
uint32_t bl_oled_enable_delay = 50; // in ms
uint32_t post_oui_delay = 30; // 30ms
/* Reduce link bandwidth between failed link training attempts. */
bool do_fallback = false;
int lt_attempts = LINK_TRAINING_ATTEMPTS;
// Increase retry count if attempting DP1.x on FIXED_VS link
if ((link->chip_caps & EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN) &&
link_dp_get_encoding_format(link_settings) == DP_8b_10b_ENCODING)
lt_attempts = 10;
// check for seamless boot
for (i = 0; i < state->stream_count; i++) {
if (state->streams[i]->apply_seamless_boot_optimization) {
apply_seamless_boot_optimization = true;
break;
}
}
/*
* If the link is DP-over-USB4 do the following:
* - Train with fallback when enabling DPIA link. Conventional links are
* trained with fallback during sink detection.
* - Allocate only what the stream needs for bw in Gbps. Inform the CM
* in case stream needs more or less bw from what has been allocated
* earlier at plug time.
*/
if (link->ep_type == DISPLAY_ENDPOINT_USB4_DPIA) {
do_fallback = true;
}
/*
* Temporary w/a to get DP2.0 link rates to work with SST.
* TODO DP2.0 - Workaround: Remove w/a if and when the issue is resolved.
*/
if (link_dp_get_encoding_format(link_settings) == DP_128b_132b_ENCODING &&
pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT &&
link->dc->debug.set_mst_en_for_sst) {
enable_mst_on_sink(link, true);
}
if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP) {
/*in case it is not on*/
if (!link->dc->config.edp_no_power_sequencing)
link->dc->hwss.edp_power_control(link, true);
link->dc->hwss.edp_wait_for_hpd_ready(link, true);
}
if (link_dp_get_encoding_format(link_settings) == DP_128b_132b_ENCODING) {
/* TODO - DP2.0 HW: calculate 32 symbol clock for HPO encoder */
} else {
pipe_ctx->stream_res.pix_clk_params.requested_sym_clk =
link_settings->link_rate * LINK_RATE_REF_FREQ_IN_KHZ;
if (state->clk_mgr && !apply_seamless_boot_optimization)
state->clk_mgr->funcs->update_clocks(state->clk_mgr,
state, false);
}
// during mode switch we do DP_SET_POWER off then on, and OUI is lost
dpcd_set_source_specific_data(link);
if (link->dpcd_sink_ext_caps.raw != 0) {
post_oui_delay += link->panel_config.pps.extra_post_OUI_ms;
msleep(post_oui_delay);
}
// similarly, mode switch can cause loss of cable ID
dpcd_write_cable_id_to_dprx(link);
skip_video_pattern = true;
if (link_settings->link_rate == LINK_RATE_LOW)
skip_video_pattern = false;
if (perform_link_training_with_retries(link_settings,
skip_video_pattern,
lt_attempts,
pipe_ctx,
pipe_ctx->stream->signal,
do_fallback)) {
status = DC_OK;
} else {
status = DC_FAIL_DP_LINK_TRAINING;
}
if (link->preferred_training_settings.fec_enable)
fec_enable = *link->preferred_training_settings.fec_enable;
else
fec_enable = true;
if (link_dp_get_encoding_format(link_settings) == DP_8b_10b_ENCODING)
dp_set_fec_enable(link, fec_enable);
// during mode set we do DP_SET_POWER off then on, aux writes are lost
if (link->dpcd_sink_ext_caps.bits.oled == 1 ||
link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1 ||
link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1) {
set_cached_brightness_aux(link);
if (link->dpcd_sink_ext_caps.bits.oled == 1)
msleep(bl_oled_enable_delay);
edp_backlight_enable_aux(link, true);
}
return status;
}
static enum dc_status enable_link_edp(
struct dc_state *state,
struct pipe_ctx *pipe_ctx)
{
return enable_link_dp(state, pipe_ctx);
}
static void enable_link_lvds(struct pipe_ctx *pipe_ctx)
{
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
struct dc *dc = stream->ctx->dc;
if (stream->phy_pix_clk == 0)
stream->phy_pix_clk = stream->timing.pix_clk_100hz / 10;
memset(&stream->link->cur_link_settings, 0,
sizeof(struct dc_link_settings));
dc->hwss.enable_lvds_link_output(
link,
&pipe_ctx->link_res,
pipe_ctx->clock_source->id,
stream->phy_pix_clk);
}
static enum dc_status enable_link_dp_mst(
struct dc_state *state,
struct pipe_ctx *pipe_ctx)
{
struct dc_link *link = pipe_ctx->stream->link;
unsigned char mstm_cntl;
/* sink signal type after MST branch is MST. Multiple MST sinks
* share one link. Link DP PHY is enable or training only once.
*/
if (link->link_status.link_active)
return DC_OK;
/* clear payload table */
core_link_read_dpcd(link, DP_MSTM_CTRL, &mstm_cntl, 1);
if (mstm_cntl & DP_MST_EN)
dm_helpers_dp_mst_clear_payload_allocation_table(link->ctx, link);
/* to make sure the pending down rep can be processed
* before enabling the link
*/
dm_helpers_dp_mst_poll_pending_down_reply(link->ctx, link);
/* set the sink to MST mode before enabling the link */
enable_mst_on_sink(link, true);
return enable_link_dp(state, pipe_ctx);
}
static enum dc_status enable_link(
struct dc_state *state,
struct pipe_ctx *pipe_ctx)
{
enum dc_status status = DC_ERROR_UNEXPECTED;
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
/* There's some scenarios where driver is unloaded with display
* still enabled. When driver is reloaded, it may cause a display
* to not light up if there is a mismatch between old and new
* link settings. Need to call disable first before enabling at
* new link settings.
*/
if (link->link_status.link_active && !stream->skip_edp_power_down)
disable_link(link, &pipe_ctx->link_res, pipe_ctx->stream->signal);
switch (pipe_ctx->stream->signal) {
case SIGNAL_TYPE_DISPLAY_PORT:
status = enable_link_dp(state, pipe_ctx);
break;
case SIGNAL_TYPE_EDP:
status = enable_link_edp(state, pipe_ctx);
break;
case SIGNAL_TYPE_DISPLAY_PORT_MST:
status = enable_link_dp_mst(state, pipe_ctx);
msleep(200);
break;
case SIGNAL_TYPE_DVI_SINGLE_LINK:
case SIGNAL_TYPE_DVI_DUAL_LINK:
case SIGNAL_TYPE_HDMI_TYPE_A:
enable_link_hdmi(pipe_ctx);
status = DC_OK;
break;
case SIGNAL_TYPE_LVDS:
enable_link_lvds(pipe_ctx);
status = DC_OK;
break;
case SIGNAL_TYPE_VIRTUAL:
status = DC_OK;
break;
default:
break;
}
if (status == DC_OK) {
pipe_ctx->stream->link->link_status.link_active = true;
}
return status;
}
void link_set_dpms_off(struct pipe_ctx *pipe_ctx)
{
struct dc *dc = pipe_ctx->stream->ctx->dc;
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->sink->link;
struct vpg *vpg = pipe_ctx->stream_res.stream_enc->vpg;
ASSERT(is_master_pipe_for_link(link, pipe_ctx));
if (dp_is_128b_132b_signal(pipe_ctx))
vpg = pipe_ctx->stream_res.hpo_dp_stream_enc->vpg;
DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
if (pipe_ctx->stream->sink) {
if (pipe_ctx->stream->sink->sink_signal != SIGNAL_TYPE_VIRTUAL &&
pipe_ctx->stream->sink->sink_signal != SIGNAL_TYPE_NONE) {
DC_LOG_DC("%s pipe_ctx dispname=%s signal=%x\n", __func__,
pipe_ctx->stream->sink->edid_caps.display_name,
pipe_ctx->stream->signal);
}
}
if (dc_is_virtual_signal(pipe_ctx->stream->signal))
return;
if (!pipe_ctx->stream->sink->edid_caps.panel_patch.skip_avmute) {
if (dc_is_hdmi_signal(pipe_ctx->stream->signal))
set_avmute(pipe_ctx, true);
}
dc->hwss.disable_audio_stream(pipe_ctx);
update_psp_stream_config(pipe_ctx, true);
dc->hwss.blank_stream(pipe_ctx);
if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)
deallocate_mst_payload(pipe_ctx);
else if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT &&
dp_is_128b_132b_signal(pipe_ctx))
update_sst_payload(pipe_ctx, false);
if (dc_is_hdmi_signal(pipe_ctx->stream->signal)) {
struct ext_hdmi_settings settings = {0};
enum engine_id eng_id = pipe_ctx->stream_res.stream_enc->id;
unsigned short masked_chip_caps = link->chip_caps &
EXT_DISPLAY_PATH_CAPS__EXT_CHIP_MASK;
//Need to inform that sink is going to use legacy HDMI mode.
write_scdc_data(
link->ddc,
165000,//vbios only handles 165Mhz.
false);
if (masked_chip_caps == EXT_DISPLAY_PATH_CAPS__HDMI20_TISN65DP159RSBT) {
/* DP159, Retimer settings */
if (get_ext_hdmi_settings(pipe_ctx, eng_id, &settings))
write_i2c_retimer_setting(pipe_ctx,
false, false, &settings);
else
write_i2c_default_retimer_setting(pipe_ctx,
false, false);
} else if (masked_chip_caps == EXT_DISPLAY_PATH_CAPS__HDMI20_PI3EQX1204) {
/* PI3EQX1204, Redriver settings */
write_i2c_redriver_setting(pipe_ctx, false);
}
}
if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT &&
!dp_is_128b_132b_signal(pipe_ctx)) {
/* In DP1.x SST mode, our encoder will go to TPS1
* when link is on but stream is off.
* Disabling link before stream will avoid exposing TPS1 pattern
* during the disable sequence as it will confuse some receivers
* state machine.
* In DP2 or MST mode, our encoder will stay video active
*/
disable_link(pipe_ctx->stream->link, &pipe_ctx->link_res, pipe_ctx->stream->signal);
dc->hwss.disable_stream(pipe_ctx);
} else {
dc->hwss.disable_stream(pipe_ctx);
if (!pipe_ctx->stream->skip_edp_power_down) {
disable_link(pipe_ctx->stream->link, &pipe_ctx->link_res, pipe_ctx->stream->signal);
}
}
if (pipe_ctx->stream->timing.flags.DSC) {
if (dc_is_dp_signal(pipe_ctx->stream->signal))
link_set_dsc_enable(pipe_ctx, false);
}
if (dp_is_128b_132b_signal(pipe_ctx)) {
if (pipe_ctx->stream_res.tg->funcs->set_out_mux)
pipe_ctx->stream_res.tg->funcs->set_out_mux(pipe_ctx->stream_res.tg, OUT_MUX_DIO);
}
if (vpg && vpg->funcs->vpg_powerdown)
vpg->funcs->vpg_powerdown(vpg);
}
void link_set_dpms_on(
struct dc_state *state,
struct pipe_ctx *pipe_ctx)
{
struct dc *dc = pipe_ctx->stream->ctx->dc;
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->sink->link;
enum dc_status status;
struct link_encoder *link_enc;
enum otg_out_mux_dest otg_out_dest = OUT_MUX_DIO;
struct vpg *vpg = pipe_ctx->stream_res.stream_enc->vpg;
const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
bool apply_edp_fast_boot_optimization =
pipe_ctx->stream->apply_edp_fast_boot_optimization;
ASSERT(is_master_pipe_for_link(link, pipe_ctx));
if (dp_is_128b_132b_signal(pipe_ctx))
vpg = pipe_ctx->stream_res.hpo_dp_stream_enc->vpg;
DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
if (pipe_ctx->stream->sink) {
if (pipe_ctx->stream->sink->sink_signal != SIGNAL_TYPE_VIRTUAL &&
pipe_ctx->stream->sink->sink_signal != SIGNAL_TYPE_NONE) {
DC_LOG_DC("%s pipe_ctx dispname=%s signal=%x\n", __func__,
pipe_ctx->stream->sink->edid_caps.display_name,
pipe_ctx->stream->signal);
}
}
if (dc_is_virtual_signal(pipe_ctx->stream->signal))
return;
link_enc = link_enc_cfg_get_link_enc(link);
ASSERT(link_enc);
if (!dc_is_virtual_signal(pipe_ctx->stream->signal)
&& !dp_is_128b_132b_signal(pipe_ctx)) {
if (link_enc)
link_enc->funcs->setup(
link_enc,
pipe_ctx->stream->signal);
}
pipe_ctx->stream->link->link_state_valid = true;
if (pipe_ctx->stream_res.tg->funcs->set_out_mux) {
if (dp_is_128b_132b_signal(pipe_ctx))
otg_out_dest = OUT_MUX_HPO_DP;
else
otg_out_dest = OUT_MUX_DIO;
pipe_ctx->stream_res.tg->funcs->set_out_mux(pipe_ctx->stream_res.tg, otg_out_dest);
}
link_hwss->setup_stream_attribute(pipe_ctx);
pipe_ctx->stream->apply_edp_fast_boot_optimization = false;
// Enable VPG before building infoframe
if (vpg && vpg->funcs->vpg_poweron)
vpg->funcs->vpg_poweron(vpg);
resource_build_info_frame(pipe_ctx);
dc->hwss.update_info_frame(pipe_ctx);
if (dc_is_dp_signal(pipe_ctx->stream->signal))
dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
/* Do not touch link on seamless boot optimization. */
if (pipe_ctx->stream->apply_seamless_boot_optimization) {
pipe_ctx->stream->dpms_off = false;
/* Still enable stream features & audio on seamless boot for DP external displays */
if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT) {
enable_stream_features(pipe_ctx);
dc->hwss.enable_audio_stream(pipe_ctx);
}
update_psp_stream_config(pipe_ctx, false);
return;
}
/* eDP lit up by bios already, no need to enable again. */
if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP &&
apply_edp_fast_boot_optimization &&
!pipe_ctx->stream->timing.flags.DSC &&
!pipe_ctx->next_odm_pipe) {
pipe_ctx->stream->dpms_off = false;
update_psp_stream_config(pipe_ctx, false);
return;
}
if (pipe_ctx->stream->dpms_off)
return;
/* Have to setup DSC before DIG FE and BE are connected (which happens before the
* link training). This is to make sure the bandwidth sent to DIG BE won't be
* bigger than what the link and/or DIG BE can handle. VBID[6]/CompressedStream_flag
* will be automatically set at a later time when the video is enabled
* (DP_VID_STREAM_EN = 1).
*/
if (pipe_ctx->stream->timing.flags.DSC) {
if (dc_is_dp_signal(pipe_ctx->stream->signal) ||
dc_is_virtual_signal(pipe_ctx->stream->signal))
link_set_dsc_enable(pipe_ctx, true);
}
status = enable_link(state, pipe_ctx);
if (status != DC_OK) {
DC_LOG_WARNING("enabling link %u failed: %d\n",
pipe_ctx->stream->link->link_index,
status);
/* Abort stream enable *unless* the failure was due to
* DP link training - some DP monitors will recover and
* show the stream anyway. But MST displays can't proceed
* without link training.
*/
if (status != DC_FAIL_DP_LINK_TRAINING ||
pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST) {
if (false == stream->link->link_status.link_active)
disable_link(stream->link, &pipe_ctx->link_res,
pipe_ctx->stream->signal);
BREAK_TO_DEBUGGER();
return;
}
}
/* turn off otg test pattern if enable */
if (pipe_ctx->stream_res.tg->funcs->set_test_pattern)
pipe_ctx->stream_res.tg->funcs->set_test_pattern(pipe_ctx->stream_res.tg,
CONTROLLER_DP_TEST_PATTERN_VIDEOMODE,
COLOR_DEPTH_UNDEFINED);
/* This second call is needed to reconfigure the DIG
* as a workaround for the incorrect value being applied
* from transmitter control.
*/
if (!(dc_is_virtual_signal(pipe_ctx->stream->signal) ||
dp_is_128b_132b_signal(pipe_ctx))) {
if (link_enc)
link_enc->funcs->setup(
link_enc,
pipe_ctx->stream->signal);
}
dc->hwss.enable_stream(pipe_ctx);
/* Set DPS PPS SDP (AKA "info frames") */
if (pipe_ctx->stream->timing.flags.DSC) {
if (dc_is_dp_signal(pipe_ctx->stream->signal) ||
dc_is_virtual_signal(pipe_ctx->stream->signal)) {
dp_set_dsc_on_rx(pipe_ctx, true);
link_set_dsc_pps_packet(pipe_ctx, true, true);
}
}
if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)
allocate_mst_payload(pipe_ctx);
else if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT &&
dp_is_128b_132b_signal(pipe_ctx))
update_sst_payload(pipe_ctx, true);
dc->hwss.unblank_stream(pipe_ctx,
&pipe_ctx->stream->link->cur_link_settings);
if (stream->sink_patches.delay_ignore_msa > 0)
msleep(stream->sink_patches.delay_ignore_msa);
if (dc_is_dp_signal(pipe_ctx->stream->signal))
enable_stream_features(pipe_ctx);
update_psp_stream_config(pipe_ctx, false);
dc->hwss.enable_audio_stream(pipe_ctx);
if (dc_is_hdmi_signal(pipe_ctx->stream->signal)) {
set_avmute(pipe_ctx, false);
}
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/link_dpms.c |
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "link_hwss_hpo_frl.h"
#include "core_types.h"
#include "virtual/virtual_link_hwss.h"
static void setup_hpo_frl_stream_attribute(struct pipe_ctx *pipe_ctx)
{
struct hpo_frl_stream_encoder *stream_enc = pipe_ctx->stream_res.hpo_frl_stream_enc;
struct dc_stream_state *stream = pipe_ctx->stream;
struct pipe_ctx *odm_pipe;
int odm_combine_num_segments = 1;
/* get number of ODM combine input segments */
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
odm_combine_num_segments++;
stream_enc->funcs->hdmi_frl_set_stream_attribute(
stream_enc,
&stream->timing,
&stream->link->frl_link_settings.borrow_params,
odm_combine_num_segments);
}
static const struct link_hwss hpo_frl_link_hwss = {
.setup_stream_encoder = virtual_setup_stream_encoder,
.reset_stream_encoder = virtual_reset_stream_encoder,
.setup_stream_attribute = setup_hpo_frl_stream_attribute,
};
bool can_use_hpo_frl_link_hwss(const struct dc_link *link,
const struct link_resource *link_res)
{
return link_res->hpo_frl_link_enc != NULL;
}
const struct link_hwss *get_hpo_frl_link_hwss(void)
{
return &hpo_frl_link_hwss;
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/link_hwss_hpo_frl.c |
/*
* Copyright 2023 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
/* FILE POLICY AND INTENDED USAGE:
* This file owns the creation/destruction of link structure.
*/
#include "link_factory.h"
#include "link_detection.h"
#include "link_resource.h"
#include "link_validation.h"
#include "link_dpms.h"
#include "accessories/link_dp_cts.h"
#include "accessories/link_dp_trace.h"
#include "accessories/link_fpga.h"
#include "protocols/link_ddc.h"
#include "protocols/link_dp_capability.h"
#include "protocols/link_dp_dpia_bw.h"
#include "protocols/link_dp_dpia.h"
#include "protocols/link_dp_irq_handler.h"
#include "protocols/link_dp_phy.h"
#include "protocols/link_dp_training.h"
#include "protocols/link_edp_panel_control.h"
#include "protocols/link_hpd.h"
#include "gpio_service_interface.h"
#include "atomfirmware.h"
#define DC_LOGGER_INIT(logger)
#define LINK_INFO(...) \
DC_LOG_HW_HOTPLUG( \
__VA_ARGS__)
/* link factory owns the creation/destruction of link structures. */
static void construct_link_service_factory(struct link_service *link_srv)
{
link_srv->create_link = link_create;
link_srv->destroy_link = link_destroy;
}
/* link_detection manages link detection states and receiver states by using
* various link protocols. It also provides helper functions to interpret
* certain capabilities or status based on the states it manages or retrieve
* them directly from connected receivers.
*/
static void construct_link_service_detection(struct link_service *link_srv)
{
link_srv->detect_link = link_detect;
link_srv->detect_connection_type = link_detect_connection_type;
link_srv->add_remote_sink = link_add_remote_sink;
link_srv->remove_remote_sink = link_remove_remote_sink;
link_srv->get_hpd_state = link_get_hpd_state;
link_srv->get_hpd_gpio = link_get_hpd_gpio;
link_srv->enable_hpd = link_enable_hpd;
link_srv->disable_hpd = link_disable_hpd;
link_srv->enable_hpd_filter = link_enable_hpd_filter;
link_srv->reset_cur_dp_mst_topology = link_reset_cur_dp_mst_topology;
link_srv->get_status = link_get_status;
link_srv->is_hdcp1x_supported = link_is_hdcp14;
link_srv->is_hdcp2x_supported = link_is_hdcp22;
link_srv->clear_dprx_states = link_clear_dprx_states;
}
/* link resource implements accessors to link resource. */
static void construct_link_service_resource(struct link_service *link_srv)
{
link_srv->get_cur_res_map = link_get_cur_res_map;
link_srv->restore_res_map = link_restore_res_map;
link_srv->get_cur_link_res = link_get_cur_link_res;
}
/* link validation owns timing validation against various link limitations. (ex.
* link bandwidth, receiver capability or our hardware capability) It also
* provides helper functions exposing bandwidth formulas used in validation.
*/
static void construct_link_service_validation(struct link_service *link_srv)
{
link_srv->validate_mode_timing = link_validate_mode_timing;
link_srv->dp_link_bandwidth_kbps = dp_link_bandwidth_kbps;
link_srv->validate_dpia_bandwidth = link_validate_dpia_bandwidth;
}
/* link dpms owns the programming sequence of stream's dpms state associated
* with the link and link's enable/disable sequences as result of the stream's
* dpms state change.
*/
static void construct_link_service_dpms(struct link_service *link_srv)
{
link_srv->set_dpms_on = link_set_dpms_on;
link_srv->set_dpms_off = link_set_dpms_off;
link_srv->resume = link_resume;
link_srv->blank_all_dp_displays = link_blank_all_dp_displays;
link_srv->blank_all_edp_displays = link_blank_all_edp_displays;
link_srv->blank_dp_stream = link_blank_dp_stream;
link_srv->increase_mst_payload = link_increase_mst_payload;
link_srv->reduce_mst_payload = link_reduce_mst_payload;
link_srv->set_dsc_on_stream = link_set_dsc_on_stream;
link_srv->set_dsc_enable = link_set_dsc_enable;
link_srv->update_dsc_config = link_update_dsc_config;
}
/* link ddc implements generic display communication protocols such as i2c, aux
* and scdc. It should not contain any specific applications of these
* protocols such as display capability query, detection, or handshaking such as
* link training.
*/
static void construct_link_service_ddc(struct link_service *link_srv)
{
link_srv->create_ddc_service = link_create_ddc_service;
link_srv->destroy_ddc_service = link_destroy_ddc_service;
link_srv->query_ddc_data = link_query_ddc_data;
link_srv->aux_transfer_raw = link_aux_transfer_raw;
link_srv->configure_fixed_vs_pe_retimer = link_configure_fixed_vs_pe_retimer;
link_srv->aux_transfer_with_retries_no_mutex =
link_aux_transfer_with_retries_no_mutex;
link_srv->is_in_aux_transaction_mode = link_is_in_aux_transaction_mode;
link_srv->get_aux_defer_delay = link_get_aux_defer_delay;
}
/* link dp capability implements dp specific link capability retrieval sequence.
* It is responsible for retrieving, parsing, overriding, deciding capability
* obtained from dp link. Link capability consists of encoders, DPRXs, cables,
* retimers, usb and all other possible backend capabilities.
*/
static void construct_link_service_dp_capability(struct link_service *link_srv)
{
link_srv->dp_is_sink_present = dp_is_sink_present;
link_srv->dp_is_fec_supported = dp_is_fec_supported;
link_srv->dp_is_128b_132b_signal = dp_is_128b_132b_signal;
link_srv->dp_get_max_link_enc_cap = dp_get_max_link_enc_cap;
link_srv->dp_get_verified_link_cap = dp_get_verified_link_cap;
link_srv->dp_get_encoding_format = link_dp_get_encoding_format;
link_srv->dp_should_enable_fec = dp_should_enable_fec;
link_srv->dp_decide_link_settings = link_decide_link_settings;
link_srv->mst_decide_link_encoding_format =
mst_decide_link_encoding_format;
link_srv->edp_decide_link_settings = edp_decide_link_settings;
link_srv->bw_kbps_from_raw_frl_link_rate_data =
link_bw_kbps_from_raw_frl_link_rate_data;
link_srv->dp_overwrite_extended_receiver_cap =
dp_overwrite_extended_receiver_cap;
link_srv->dp_decide_lttpr_mode = dp_decide_lttpr_mode;
}
/* link dp phy/dpia implements basic dp phy/dpia functionality such as
* enable/disable output and set lane/drive settings. It is responsible for
* maintaining and update software state representing current phy/dpia status
* such as current link settings.
*/
static void construct_link_service_dp_phy_or_dpia(struct link_service *link_srv)
{
link_srv->dpia_handle_usb4_bandwidth_allocation_for_link =
dpia_handle_usb4_bandwidth_allocation_for_link;
link_srv->dpia_handle_bw_alloc_response = dpia_handle_bw_alloc_response;
link_srv->dp_set_drive_settings = dp_set_drive_settings;
link_srv->dpcd_write_rx_power_ctrl = dpcd_write_rx_power_ctrl;
}
/* link dp irq handler implements DP HPD short pulse handling sequence according
* to DP specifications
*/
static void construct_link_service_dp_irq_handler(struct link_service *link_srv)
{
link_srv->dp_parse_link_loss_status = dp_parse_link_loss_status;
link_srv->dp_should_allow_hpd_rx_irq = dp_should_allow_hpd_rx_irq;
link_srv->dp_handle_link_loss = dp_handle_link_loss;
link_srv->dp_read_hpd_rx_irq_data = dp_read_hpd_rx_irq_data;
link_srv->dp_handle_hpd_rx_irq = dp_handle_hpd_rx_irq;
}
/* link edp panel control implements retrieval and configuration of eDP panel
* features such as PSR and ABM and it also manages specs defined eDP panel
* power sequences.
*/
static void construct_link_service_edp_panel_control(struct link_service *link_srv)
{
link_srv->edp_panel_backlight_power_on = edp_panel_backlight_power_on;
link_srv->edp_get_backlight_level = edp_get_backlight_level;
link_srv->edp_get_backlight_level_nits = edp_get_backlight_level_nits;
link_srv->edp_set_backlight_level = edp_set_backlight_level;
link_srv->edp_set_backlight_level_nits = edp_set_backlight_level_nits;
link_srv->edp_get_target_backlight_pwm = edp_get_target_backlight_pwm;
link_srv->edp_get_psr_state = edp_get_psr_state;
link_srv->edp_set_psr_allow_active = edp_set_psr_allow_active;
link_srv->edp_setup_psr = edp_setup_psr;
link_srv->edp_set_sink_vtotal_in_psr_active =
edp_set_sink_vtotal_in_psr_active;
link_srv->edp_get_psr_residency = edp_get_psr_residency;
link_srv->edp_get_replay_state = edp_get_replay_state;
link_srv->edp_set_replay_allow_active = edp_set_replay_allow_active;
link_srv->edp_setup_replay = edp_setup_replay;
link_srv->edp_set_coasting_vtotal = edp_set_coasting_vtotal;
link_srv->edp_replay_residency = edp_replay_residency;
link_srv->edp_wait_for_t12 = edp_wait_for_t12;
link_srv->edp_is_ilr_optimization_required =
edp_is_ilr_optimization_required;
link_srv->edp_backlight_enable_aux = edp_backlight_enable_aux;
link_srv->edp_add_delay_for_T9 = edp_add_delay_for_T9;
link_srv->edp_receiver_ready_T9 = edp_receiver_ready_T9;
link_srv->edp_receiver_ready_T7 = edp_receiver_ready_T7;
link_srv->edp_power_alpm_dpcd_enable = edp_power_alpm_dpcd_enable;
}
/* link dp cts implements dp compliance test automation protocols and manual
* testing interfaces for debugging and certification purpose.
*/
static void construct_link_service_dp_cts(struct link_service *link_srv)
{
link_srv->dp_handle_automated_test = dp_handle_automated_test;
link_srv->dp_set_test_pattern = dp_set_test_pattern;
link_srv->dp_set_preferred_link_settings =
dp_set_preferred_link_settings;
link_srv->dp_set_preferred_training_settings =
dp_set_preferred_training_settings;
}
/* link dp trace implements tracing interfaces for tracking major dp sequences
* including execution status and timestamps
*/
static void construct_link_service_dp_trace(struct link_service *link_srv)
{
link_srv->dp_trace_is_initialized = dp_trace_is_initialized;
link_srv->dp_trace_set_is_logged_flag = dp_trace_set_is_logged_flag;
link_srv->dp_trace_is_logged = dp_trace_is_logged;
link_srv->dp_trace_get_lt_end_timestamp = dp_trace_get_lt_end_timestamp;
link_srv->dp_trace_get_lt_counts = dp_trace_get_lt_counts;
link_srv->dp_trace_get_link_loss_count = dp_trace_get_link_loss_count;
link_srv->dp_trace_set_edp_power_timestamp =
dp_trace_set_edp_power_timestamp;
link_srv->dp_trace_get_edp_poweron_timestamp =
dp_trace_get_edp_poweron_timestamp;
link_srv->dp_trace_get_edp_poweroff_timestamp =
dp_trace_get_edp_poweroff_timestamp;
link_srv->dp_trace_source_sequence = dp_trace_source_sequence;
}
static void construct_link_service(struct link_service *link_srv)
{
/* All link service functions should fall under some sub categories.
* If a new function doesn't perfectly fall under an existing sub
* category, it must be that you are either adding a whole new aspect of
* responsibility to link service or something doesn't belong to link
* service. In that case please contact the arch owner to arrange a
* design review meeting.
*/
construct_link_service_factory(link_srv);
construct_link_service_detection(link_srv);
construct_link_service_resource(link_srv);
construct_link_service_validation(link_srv);
construct_link_service_dpms(link_srv);
construct_link_service_ddc(link_srv);
construct_link_service_dp_capability(link_srv);
construct_link_service_dp_phy_or_dpia(link_srv);
construct_link_service_dp_irq_handler(link_srv);
construct_link_service_edp_panel_control(link_srv);
construct_link_service_dp_cts(link_srv);
construct_link_service_dp_trace(link_srv);
}
struct link_service *link_create_link_service(void)
{
struct link_service *link_srv = kzalloc(sizeof(*link_srv), GFP_KERNEL);
if (link_srv == NULL)
goto fail;
construct_link_service(link_srv);
return link_srv;
fail:
return NULL;
}
void link_destroy_link_service(struct link_service **link_srv)
{
kfree(*link_srv);
*link_srv = NULL;
}
static enum transmitter translate_encoder_to_transmitter(
struct graphics_object_id encoder)
{
switch (encoder.id) {
case ENCODER_ID_INTERNAL_UNIPHY:
switch (encoder.enum_id) {
case ENUM_ID_1:
return TRANSMITTER_UNIPHY_A;
case ENUM_ID_2:
return TRANSMITTER_UNIPHY_B;
default:
return TRANSMITTER_UNKNOWN;
}
break;
case ENCODER_ID_INTERNAL_UNIPHY1:
switch (encoder.enum_id) {
case ENUM_ID_1:
return TRANSMITTER_UNIPHY_C;
case ENUM_ID_2:
return TRANSMITTER_UNIPHY_D;
default:
return TRANSMITTER_UNKNOWN;
}
break;
case ENCODER_ID_INTERNAL_UNIPHY2:
switch (encoder.enum_id) {
case ENUM_ID_1:
return TRANSMITTER_UNIPHY_E;
case ENUM_ID_2:
return TRANSMITTER_UNIPHY_F;
default:
return TRANSMITTER_UNKNOWN;
}
break;
case ENCODER_ID_INTERNAL_UNIPHY3:
switch (encoder.enum_id) {
case ENUM_ID_1:
return TRANSMITTER_UNIPHY_G;
default:
return TRANSMITTER_UNKNOWN;
}
break;
case ENCODER_ID_EXTERNAL_NUTMEG:
switch (encoder.enum_id) {
case ENUM_ID_1:
return TRANSMITTER_NUTMEG_CRT;
default:
return TRANSMITTER_UNKNOWN;
}
break;
case ENCODER_ID_EXTERNAL_TRAVIS:
switch (encoder.enum_id) {
case ENUM_ID_1:
return TRANSMITTER_TRAVIS_CRT;
case ENUM_ID_2:
return TRANSMITTER_TRAVIS_LCD;
default:
return TRANSMITTER_UNKNOWN;
}
break;
default:
return TRANSMITTER_UNKNOWN;
}
}
static void link_destruct(struct dc_link *link)
{
int i;
if (link->hpd_gpio) {
dal_gpio_destroy_irq(&link->hpd_gpio);
link->hpd_gpio = NULL;
}
if (link->ddc)
link_destroy_ddc_service(&link->ddc);
if (link->panel_cntl)
link->panel_cntl->funcs->destroy(&link->panel_cntl);
if (link->link_enc) {
/* Update link encoder resource tracking variables. These are used for
* the dynamic assignment of link encoders to streams. Virtual links
* are not assigned encoder resources on creation.
*/
if (link->link_id.id != CONNECTOR_ID_VIRTUAL) {
link->dc->res_pool->link_encoders[link->eng_id - ENGINE_ID_DIGA] = NULL;
link->dc->res_pool->dig_link_enc_count--;
}
link->link_enc->funcs->destroy(&link->link_enc);
}
if (link->local_sink)
dc_sink_release(link->local_sink);
for (i = 0; i < link->sink_count; ++i)
dc_sink_release(link->remote_sinks[i]);
}
static enum channel_id get_ddc_line(struct dc_link *link)
{
struct ddc *ddc;
enum channel_id channel;
channel = CHANNEL_ID_UNKNOWN;
ddc = get_ddc_pin(link->ddc);
if (ddc) {
switch (dal_ddc_get_line(ddc)) {
case GPIO_DDC_LINE_DDC1:
channel = CHANNEL_ID_DDC1;
break;
case GPIO_DDC_LINE_DDC2:
channel = CHANNEL_ID_DDC2;
break;
case GPIO_DDC_LINE_DDC3:
channel = CHANNEL_ID_DDC3;
break;
case GPIO_DDC_LINE_DDC4:
channel = CHANNEL_ID_DDC4;
break;
case GPIO_DDC_LINE_DDC5:
channel = CHANNEL_ID_DDC5;
break;
case GPIO_DDC_LINE_DDC6:
channel = CHANNEL_ID_DDC6;
break;
case GPIO_DDC_LINE_DDC_VGA:
channel = CHANNEL_ID_DDC_VGA;
break;
case GPIO_DDC_LINE_I2C_PAD:
channel = CHANNEL_ID_I2C_PAD;
break;
default:
BREAK_TO_DEBUGGER();
break;
}
}
return channel;
}
static bool construct_phy(struct dc_link *link,
const struct link_init_data *init_params)
{
uint8_t i;
struct ddc_service_init_data ddc_service_init_data = { 0 };
struct dc_context *dc_ctx = init_params->ctx;
struct encoder_init_data enc_init_data = { 0 };
struct panel_cntl_init_data panel_cntl_init_data = { 0 };
struct integrated_info info = { 0 };
struct dc_bios *bios = init_params->dc->ctx->dc_bios;
const struct dc_vbios_funcs *bp_funcs = bios->funcs;
struct bp_disp_connector_caps_info disp_connect_caps_info = { 0 };
DC_LOGGER_INIT(dc_ctx->logger);
link->irq_source_hpd = DC_IRQ_SOURCE_INVALID;
link->irq_source_hpd_rx = DC_IRQ_SOURCE_INVALID;
link->link_status.dpcd_caps = &link->dpcd_caps;
link->dc = init_params->dc;
link->ctx = dc_ctx;
link->link_index = init_params->link_index;
memset(&link->preferred_training_settings, 0,
sizeof(struct dc_link_training_overrides));
memset(&link->preferred_link_setting, 0,
sizeof(struct dc_link_settings));
link->link_id =
bios->funcs->get_connector_id(bios, init_params->connector_index);
link->ep_type = DISPLAY_ENDPOINT_PHY;
DC_LOG_DC("BIOS object table - link_id: %d", link->link_id.id);
if (bios->funcs->get_disp_connector_caps_info) {
bios->funcs->get_disp_connector_caps_info(bios, link->link_id, &disp_connect_caps_info);
link->is_internal_display = disp_connect_caps_info.INTERNAL_DISPLAY;
DC_LOG_DC("BIOS object table - is_internal_display: %d", link->is_internal_display);
}
if (link->link_id.type != OBJECT_TYPE_CONNECTOR) {
dm_output_to_console("%s: Invalid Connector ObjectID from Adapter Service for connector index:%d! type %d expected %d\n",
__func__, init_params->connector_index,
link->link_id.type, OBJECT_TYPE_CONNECTOR);
goto create_fail;
}
if (link->dc->res_pool->funcs->link_init)
link->dc->res_pool->funcs->link_init(link);
link->hpd_gpio = link_get_hpd_gpio(link->ctx->dc_bios, link->link_id,
link->ctx->gpio_service);
if (link->hpd_gpio) {
dal_gpio_open(link->hpd_gpio, GPIO_MODE_INTERRUPT);
dal_gpio_unlock_pin(link->hpd_gpio);
link->irq_source_hpd = dal_irq_get_source(link->hpd_gpio);
DC_LOG_DC("BIOS object table - hpd_gpio id: %d", link->hpd_gpio->id);
DC_LOG_DC("BIOS object table - hpd_gpio en: %d", link->hpd_gpio->en);
}
switch (link->link_id.id) {
case CONNECTOR_ID_HDMI_TYPE_A:
link->connector_signal = SIGNAL_TYPE_HDMI_TYPE_A;
break;
case CONNECTOR_ID_SINGLE_LINK_DVID:
case CONNECTOR_ID_SINGLE_LINK_DVII:
link->connector_signal = SIGNAL_TYPE_DVI_SINGLE_LINK;
break;
case CONNECTOR_ID_DUAL_LINK_DVID:
case CONNECTOR_ID_DUAL_LINK_DVII:
link->connector_signal = SIGNAL_TYPE_DVI_DUAL_LINK;
break;
case CONNECTOR_ID_DISPLAY_PORT:
case CONNECTOR_ID_USBC:
link->connector_signal = SIGNAL_TYPE_DISPLAY_PORT;
if (link->hpd_gpio)
link->irq_source_hpd_rx =
dal_irq_get_rx_source(link->hpd_gpio);
break;
case CONNECTOR_ID_EDP:
link->connector_signal = SIGNAL_TYPE_EDP;
if (link->hpd_gpio) {
if (!link->dc->config.allow_edp_hotplug_detection)
link->irq_source_hpd = DC_IRQ_SOURCE_INVALID;
switch (link->dc->config.allow_edp_hotplug_detection) {
case HPD_EN_FOR_ALL_EDP:
link->irq_source_hpd_rx =
dal_irq_get_rx_source(link->hpd_gpio);
break;
case HPD_EN_FOR_PRIMARY_EDP_ONLY:
if (link->link_index == 0)
link->irq_source_hpd_rx =
dal_irq_get_rx_source(link->hpd_gpio);
else
link->irq_source_hpd = DC_IRQ_SOURCE_INVALID;
break;
case HPD_EN_FOR_SECONDARY_EDP_ONLY:
if (link->link_index == 1)
link->irq_source_hpd_rx =
dal_irq_get_rx_source(link->hpd_gpio);
else
link->irq_source_hpd = DC_IRQ_SOURCE_INVALID;
break;
default:
link->irq_source_hpd = DC_IRQ_SOURCE_INVALID;
break;
}
}
break;
case CONNECTOR_ID_LVDS:
link->connector_signal = SIGNAL_TYPE_LVDS;
break;
default:
DC_LOG_WARNING("Unsupported Connector type:%d!\n",
link->link_id.id);
goto create_fail;
}
LINK_INFO("Connector[%d] description: signal: %s\n",
init_params->connector_index,
signal_type_to_string(link->connector_signal));
ddc_service_init_data.ctx = link->ctx;
ddc_service_init_data.id = link->link_id;
ddc_service_init_data.link = link;
link->ddc = link_create_ddc_service(&ddc_service_init_data);
if (!link->ddc) {
DC_ERROR("Failed to create ddc_service!\n");
goto ddc_create_fail;
}
if (!link->ddc->ddc_pin) {
DC_ERROR("Failed to get I2C info for connector!\n");
goto ddc_create_fail;
}
link->ddc_hw_inst =
dal_ddc_get_line(get_ddc_pin(link->ddc));
if (link->dc->res_pool->funcs->panel_cntl_create &&
(link->link_id.id == CONNECTOR_ID_EDP ||
link->link_id.id == CONNECTOR_ID_LVDS)) {
panel_cntl_init_data.ctx = dc_ctx;
panel_cntl_init_data.inst =
panel_cntl_init_data.ctx->dc_edp_id_count;
link->panel_cntl =
link->dc->res_pool->funcs->panel_cntl_create(
&panel_cntl_init_data);
panel_cntl_init_data.ctx->dc_edp_id_count++;
if (link->panel_cntl == NULL) {
DC_ERROR("Failed to create link panel_cntl!\n");
goto panel_cntl_create_fail;
}
}
enc_init_data.ctx = dc_ctx;
bp_funcs->get_src_obj(dc_ctx->dc_bios, link->link_id, 0,
&enc_init_data.encoder);
enc_init_data.connector = link->link_id;
enc_init_data.channel = get_ddc_line(link);
enc_init_data.hpd_source = get_hpd_line(link);
link->hpd_src = enc_init_data.hpd_source;
enc_init_data.transmitter =
translate_encoder_to_transmitter(enc_init_data.encoder);
link->link_enc =
link->dc->res_pool->funcs->link_enc_create(dc_ctx, &enc_init_data);
DC_LOG_DC("BIOS object table - DP_IS_USB_C: %d", link->link_enc->features.flags.bits.DP_IS_USB_C);
DC_LOG_DC("BIOS object table - IS_DP2_CAPABLE: %d", link->link_enc->features.flags.bits.IS_DP2_CAPABLE);
if (!link->link_enc) {
DC_ERROR("Failed to create link encoder!\n");
goto link_enc_create_fail;
}
/* Update link encoder tracking variables. These are used for the dynamic
* assignment of link encoders to streams.
*/
link->eng_id = link->link_enc->preferred_engine;
link->dc->res_pool->link_encoders[link->eng_id - ENGINE_ID_DIGA] = link->link_enc;
link->dc->res_pool->dig_link_enc_count++;
link->link_enc_hw_inst = link->link_enc->transmitter;
for (i = 0; i < 4; i++) {
if (bp_funcs->get_device_tag(dc_ctx->dc_bios,
link->link_id, i,
&link->device_tag) != BP_RESULT_OK) {
DC_ERROR("Failed to find device tag!\n");
goto device_tag_fail;
}
/* Look for device tag that matches connector signal,
* CRT for rgb, LCD for other supported signal tyes
*/
if (!bp_funcs->is_device_id_supported(dc_ctx->dc_bios,
link->device_tag.dev_id))
continue;
if (link->device_tag.dev_id.device_type == DEVICE_TYPE_CRT &&
link->connector_signal != SIGNAL_TYPE_RGB)
continue;
if (link->device_tag.dev_id.device_type == DEVICE_TYPE_LCD &&
link->connector_signal == SIGNAL_TYPE_RGB)
continue;
DC_LOG_DC("BIOS object table - device_tag.acpi_device: %d", link->device_tag.acpi_device);
DC_LOG_DC("BIOS object table - device_tag.dev_id.device_type: %d", link->device_tag.dev_id.device_type);
DC_LOG_DC("BIOS object table - device_tag.dev_id.enum_id: %d", link->device_tag.dev_id.enum_id);
break;
}
if (bios->integrated_info)
info = *bios->integrated_info;
/* Look for channel mapping corresponding to connector and device tag */
for (i = 0; i < MAX_NUMBER_OF_EXT_DISPLAY_PATH; i++) {
struct external_display_path *path =
&info.ext_disp_conn_info.path[i];
if (path->device_connector_id.enum_id == link->link_id.enum_id &&
path->device_connector_id.id == link->link_id.id &&
path->device_connector_id.type == link->link_id.type) {
if (link->device_tag.acpi_device != 0 &&
path->device_acpi_enum == link->device_tag.acpi_device) {
link->ddi_channel_mapping = path->channel_mapping;
link->chip_caps = path->caps;
DC_LOG_DC("BIOS object table - ddi_channel_mapping: 0x%04X", link->ddi_channel_mapping.raw);
DC_LOG_DC("BIOS object table - chip_caps: %d", link->chip_caps);
} else if (path->device_tag ==
link->device_tag.dev_id.raw_device_tag) {
link->ddi_channel_mapping = path->channel_mapping;
link->chip_caps = path->caps;
DC_LOG_DC("BIOS object table - ddi_channel_mapping: 0x%04X", link->ddi_channel_mapping.raw);
DC_LOG_DC("BIOS object table - chip_caps: %d", link->chip_caps);
}
if (link->chip_caps & EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN) {
link->bios_forced_drive_settings.VOLTAGE_SWING =
(info.ext_disp_conn_info.fixdpvoltageswing & 0x3);
link->bios_forced_drive_settings.PRE_EMPHASIS =
((info.ext_disp_conn_info.fixdpvoltageswing >> 2) & 0x3);
}
break;
}
}
if (bios->funcs->get_atom_dc_golden_table)
bios->funcs->get_atom_dc_golden_table(bios);
/*
* TODO check if GPIO programmed correctly
*
* If GPIO isn't programmed correctly HPD might not rise or drain
* fast enough, leading to bounces.
*/
program_hpd_filter(link);
link->psr_settings.psr_vtotal_control_support = false;
link->psr_settings.psr_version = DC_PSR_VERSION_UNSUPPORTED;
DC_LOG_DC("BIOS object table - %s finished successfully.\n", __func__);
return true;
device_tag_fail:
link->link_enc->funcs->destroy(&link->link_enc);
link_enc_create_fail:
if (link->panel_cntl != NULL)
link->panel_cntl->funcs->destroy(&link->panel_cntl);
panel_cntl_create_fail:
link_destroy_ddc_service(&link->ddc);
ddc_create_fail:
create_fail:
if (link->hpd_gpio) {
dal_gpio_destroy_irq(&link->hpd_gpio);
link->hpd_gpio = NULL;
}
DC_LOG_DC("BIOS object table - %s failed.\n", __func__);
return false;
}
static bool construct_dpia(struct dc_link *link,
const struct link_init_data *init_params)
{
struct ddc_service_init_data ddc_service_init_data = { 0 };
struct dc_context *dc_ctx = init_params->ctx;
DC_LOGGER_INIT(dc_ctx->logger);
/* Initialized irq source for hpd and hpd rx */
link->irq_source_hpd = DC_IRQ_SOURCE_INVALID;
link->irq_source_hpd_rx = DC_IRQ_SOURCE_INVALID;
link->link_status.dpcd_caps = &link->dpcd_caps;
link->dc = init_params->dc;
link->ctx = dc_ctx;
link->link_index = init_params->link_index;
memset(&link->preferred_training_settings, 0,
sizeof(struct dc_link_training_overrides));
memset(&link->preferred_link_setting, 0,
sizeof(struct dc_link_settings));
/* Dummy Init for linkid */
link->link_id.type = OBJECT_TYPE_CONNECTOR;
link->link_id.id = CONNECTOR_ID_DISPLAY_PORT;
link->link_id.enum_id = ENUM_ID_1 + init_params->connector_index;
link->is_internal_display = false;
link->connector_signal = SIGNAL_TYPE_DISPLAY_PORT;
LINK_INFO("Connector[%d] description:signal %d\n",
init_params->connector_index,
link->connector_signal);
link->ep_type = DISPLAY_ENDPOINT_USB4_DPIA;
link->is_dig_mapping_flexible = true;
/* TODO: Initialize link : funcs->link_init */
ddc_service_init_data.ctx = link->ctx;
ddc_service_init_data.id = link->link_id;
ddc_service_init_data.link = link;
/* Set indicator for dpia link so that ddc wont be created */
ddc_service_init_data.is_dpia_link = true;
link->ddc = link_create_ddc_service(&ddc_service_init_data);
if (!link->ddc) {
DC_ERROR("Failed to create ddc_service!\n");
goto ddc_create_fail;
}
/* Set dpia port index : 0 to number of dpia ports */
link->ddc_hw_inst = init_params->connector_index;
// Assign Dpia preferred eng_id
if (link->dc->res_pool->funcs->get_preferred_eng_id_dpia)
link->dpia_preferred_eng_id = link->dc->res_pool->funcs->get_preferred_eng_id_dpia(link->ddc_hw_inst);
/* TODO: Create link encoder */
link->psr_settings.psr_version = DC_PSR_VERSION_UNSUPPORTED;
/* Some docks seem to NAK I2C writes to segment pointer with mot=0. */
link->wa_flags.dp_mot_reset_segment = true;
return true;
ddc_create_fail:
return false;
}
static bool link_construct(struct dc_link *link,
const struct link_init_data *init_params)
{
/* Handle dpia case */
if (init_params->is_dpia_link == true)
return construct_dpia(link, init_params);
else
return construct_phy(link, init_params);
}
struct dc_link *link_create(const struct link_init_data *init_params)
{
struct dc_link *link =
kzalloc(sizeof(*link), GFP_KERNEL);
if (NULL == link)
goto alloc_fail;
if (false == link_construct(link, init_params))
goto construct_fail;
return link;
construct_fail:
kfree(link);
alloc_fail:
return NULL;
}
void link_destroy(struct dc_link **link)
{
link_destruct(*link);
kfree(*link);
*link = NULL;
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/link_factory.c |
/*
* Copyright 2023 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
/* FILE POLICY AND INTENDED USAGE:
* This file implements accessors to link resource.
*/
#include "link_resource.h"
#include "protocols/link_dp_capability.h"
void link_get_cur_link_res(const struct dc_link *link,
struct link_resource *link_res)
{
int i;
struct pipe_ctx *pipe = NULL;
memset(link_res, 0, sizeof(*link_res));
for (i = 0; i < MAX_PIPES; i++) {
pipe = &link->dc->current_state->res_ctx.pipe_ctx[i];
if (pipe->stream && pipe->stream->link && pipe->top_pipe == NULL) {
if (pipe->stream->link == link) {
*link_res = pipe->link_res;
break;
}
}
}
}
void link_get_cur_res_map(const struct dc *dc, uint32_t *map)
{
struct dc_link *link;
uint32_t i;
uint32_t hpo_dp_recycle_map = 0;
*map = 0;
if (dc->caps.dp_hpo) {
for (i = 0; i < dc->caps.max_links; i++) {
link = dc->links[i];
if (link->link_status.link_active &&
link_dp_get_encoding_format(&link->reported_link_cap) == DP_128b_132b_ENCODING &&
link_dp_get_encoding_format(&link->cur_link_settings) != DP_128b_132b_ENCODING)
/* hpo dp link encoder is considered as recycled, when RX reports 128b/132b encoding capability
* but current link doesn't use it.
*/
hpo_dp_recycle_map |= (1 << i);
}
*map |= (hpo_dp_recycle_map << LINK_RES_HPO_DP_REC_MAP__SHIFT);
}
}
void link_restore_res_map(const struct dc *dc, uint32_t *map)
{
struct dc_link *link;
uint32_t i;
unsigned int available_hpo_dp_count;
uint32_t hpo_dp_recycle_map = (*map & LINK_RES_HPO_DP_REC_MAP__MASK)
>> LINK_RES_HPO_DP_REC_MAP__SHIFT;
if (dc->caps.dp_hpo) {
available_hpo_dp_count = dc->res_pool->hpo_dp_link_enc_count;
/* remove excess 128b/132b encoding support for not recycled links */
for (i = 0; i < dc->caps.max_links; i++) {
if ((hpo_dp_recycle_map & (1 << i)) == 0) {
link = dc->links[i];
if (link->type != dc_connection_none &&
link_dp_get_encoding_format(&link->verified_link_cap) == DP_128b_132b_ENCODING) {
if (available_hpo_dp_count > 0)
available_hpo_dp_count--;
else
/* remove 128b/132b encoding capability by limiting verified link rate to HBR3 */
link->verified_link_cap.link_rate = LINK_RATE_HIGH3;
}
}
}
/* remove excess 128b/132b encoding support for recycled links */
for (i = 0; i < dc->caps.max_links; i++) {
if ((hpo_dp_recycle_map & (1 << i)) != 0) {
link = dc->links[i];
if (link->type != dc_connection_none &&
link_dp_get_encoding_format(&link->verified_link_cap) == DP_128b_132b_ENCODING) {
if (available_hpo_dp_count > 0)
available_hpo_dp_count--;
else
/* remove 128b/132b encoding capability by limiting verified link rate to HBR3 */
link->verified_link_cap.link_rate = LINK_RATE_HIGH3;
}
}
}
}
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/link_resource.c |
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
/* FILE POLICY AND INTENDED USAGE:
* This file manages link detection states and receiver states by using various
* link protocols. It also provides helper functions to interpret certain
* capabilities or status based on the states it manages or retrieve them
* directly from connected receivers.
*/
#include "link_dpms.h"
#include "link_detection.h"
#include "link_hwss.h"
#include "protocols/link_edp_panel_control.h"
#include "protocols/link_ddc.h"
#include "protocols/link_hpd.h"
#include "protocols/link_dpcd.h"
#include "protocols/link_dp_capability.h"
#include "protocols/link_dp_dpia.h"
#include "protocols/link_dp_phy.h"
#include "protocols/link_dp_training.h"
#include "accessories/link_dp_trace.h"
#include "link_enc_cfg.h"
#include "dm_helpers.h"
#include "clk_mgr.h"
#define DC_LOGGER_INIT(logger)
#define LINK_INFO(...) \
DC_LOG_HW_HOTPLUG( \
__VA_ARGS__)
/*
* Some receivers fail to train on first try and are good
* on subsequent tries. 2 retries should be plenty. If we
* don't have a successful training then we don't expect to
* ever get one.
*/
#define LINK_TRAINING_MAX_VERIFY_RETRY 2
static const u8 DP_SINK_BRANCH_DEV_NAME_7580[] = "7580\x80u";
static const uint8_t dp_hdmi_dongle_signature_str[] = "DP-HDMI ADAPTOR";
static enum ddc_transaction_type get_ddc_transaction_type(enum signal_type sink_signal)
{
enum ddc_transaction_type transaction_type = DDC_TRANSACTION_TYPE_NONE;
switch (sink_signal) {
case SIGNAL_TYPE_DVI_SINGLE_LINK:
case SIGNAL_TYPE_DVI_DUAL_LINK:
case SIGNAL_TYPE_HDMI_TYPE_A:
case SIGNAL_TYPE_LVDS:
case SIGNAL_TYPE_RGB:
transaction_type = DDC_TRANSACTION_TYPE_I2C;
break;
case SIGNAL_TYPE_DISPLAY_PORT:
case SIGNAL_TYPE_EDP:
transaction_type = DDC_TRANSACTION_TYPE_I2C_OVER_AUX;
break;
case SIGNAL_TYPE_DISPLAY_PORT_MST:
/* MST does not use I2COverAux, but there is the
* SPECIAL use case for "immediate dwnstrm device
* access" (EPR#370830).
*/
transaction_type = DDC_TRANSACTION_TYPE_I2C_OVER_AUX;
break;
default:
break;
}
return transaction_type;
}
static enum signal_type get_basic_signal_type(struct graphics_object_id encoder,
struct graphics_object_id downstream)
{
if (downstream.type == OBJECT_TYPE_CONNECTOR) {
switch (downstream.id) {
case CONNECTOR_ID_SINGLE_LINK_DVII:
switch (encoder.id) {
case ENCODER_ID_INTERNAL_DAC1:
case ENCODER_ID_INTERNAL_KLDSCP_DAC1:
case ENCODER_ID_INTERNAL_DAC2:
case ENCODER_ID_INTERNAL_KLDSCP_DAC2:
return SIGNAL_TYPE_RGB;
default:
return SIGNAL_TYPE_DVI_SINGLE_LINK;
}
break;
case CONNECTOR_ID_DUAL_LINK_DVII:
{
switch (encoder.id) {
case ENCODER_ID_INTERNAL_DAC1:
case ENCODER_ID_INTERNAL_KLDSCP_DAC1:
case ENCODER_ID_INTERNAL_DAC2:
case ENCODER_ID_INTERNAL_KLDSCP_DAC2:
return SIGNAL_TYPE_RGB;
default:
return SIGNAL_TYPE_DVI_DUAL_LINK;
}
}
break;
case CONNECTOR_ID_SINGLE_LINK_DVID:
return SIGNAL_TYPE_DVI_SINGLE_LINK;
case CONNECTOR_ID_DUAL_LINK_DVID:
return SIGNAL_TYPE_DVI_DUAL_LINK;
case CONNECTOR_ID_VGA:
return SIGNAL_TYPE_RGB;
case CONNECTOR_ID_HDMI_TYPE_A:
return SIGNAL_TYPE_HDMI_TYPE_A;
case CONNECTOR_ID_LVDS:
return SIGNAL_TYPE_LVDS;
case CONNECTOR_ID_DISPLAY_PORT:
case CONNECTOR_ID_USBC:
return SIGNAL_TYPE_DISPLAY_PORT;
case CONNECTOR_ID_EDP:
return SIGNAL_TYPE_EDP;
default:
return SIGNAL_TYPE_NONE;
}
} else if (downstream.type == OBJECT_TYPE_ENCODER) {
switch (downstream.id) {
case ENCODER_ID_EXTERNAL_NUTMEG:
case ENCODER_ID_EXTERNAL_TRAVIS:
return SIGNAL_TYPE_DISPLAY_PORT;
default:
return SIGNAL_TYPE_NONE;
}
}
return SIGNAL_TYPE_NONE;
}
/*
* @brief
* Detect output sink type
*/
static enum signal_type link_detect_sink_signal_type(struct dc_link *link,
enum dc_detect_reason reason)
{
enum signal_type result;
struct graphics_object_id enc_id;
if (link->is_dig_mapping_flexible)
enc_id = (struct graphics_object_id){.id = ENCODER_ID_UNKNOWN};
else
enc_id = link->link_enc->id;
result = get_basic_signal_type(enc_id, link->link_id);
/* Use basic signal type for link without physical connector. */
if (link->ep_type != DISPLAY_ENDPOINT_PHY)
return result;
/* Internal digital encoder will detect only dongles
* that require digital signal
*/
/* Detection mechanism is different
* for different native connectors.
* LVDS connector supports only LVDS signal;
* PCIE is a bus slot, the actual connector needs to be detected first;
* eDP connector supports only eDP signal;
* HDMI should check straps for audio
*/
/* PCIE detects the actual connector on add-on board */
if (link->link_id.id == CONNECTOR_ID_PCIE) {
/* ZAZTODO implement PCIE add-on card detection */
}
switch (link->link_id.id) {
case CONNECTOR_ID_HDMI_TYPE_A: {
/* check audio support:
* if native HDMI is not supported, switch to DVI
*/
struct audio_support *aud_support =
&link->dc->res_pool->audio_support;
if (!aud_support->hdmi_audio_native)
if (link->link_id.id == CONNECTOR_ID_HDMI_TYPE_A)
result = SIGNAL_TYPE_DVI_SINGLE_LINK;
}
break;
case CONNECTOR_ID_DISPLAY_PORT:
case CONNECTOR_ID_USBC: {
/* DP HPD short pulse. Passive DP dongle will not
* have short pulse
*/
if (reason != DETECT_REASON_HPDRX) {
/* Check whether DP signal detected: if not -
* we assume signal is DVI; it could be corrected
* to HDMI after dongle detection
*/
if (!dm_helpers_is_dp_sink_present(link))
result = SIGNAL_TYPE_DVI_SINGLE_LINK;
}
}
break;
default:
break;
}
return result;
}
static enum signal_type decide_signal_from_strap_and_dongle_type(enum display_dongle_type dongle_type,
struct audio_support *audio_support)
{
enum signal_type signal = SIGNAL_TYPE_NONE;
switch (dongle_type) {
case DISPLAY_DONGLE_DP_HDMI_DONGLE:
if (audio_support->hdmi_audio_on_dongle)
signal = SIGNAL_TYPE_HDMI_TYPE_A;
else
signal = SIGNAL_TYPE_DVI_SINGLE_LINK;
break;
case DISPLAY_DONGLE_DP_DVI_DONGLE:
signal = SIGNAL_TYPE_DVI_SINGLE_LINK;
break;
case DISPLAY_DONGLE_DP_HDMI_MISMATCHED_DONGLE:
if (audio_support->hdmi_audio_native)
signal = SIGNAL_TYPE_HDMI_TYPE_A;
else
signal = SIGNAL_TYPE_DVI_SINGLE_LINK;
break;
default:
signal = SIGNAL_TYPE_NONE;
break;
}
return signal;
}
static void read_scdc_caps(struct ddc_service *ddc_service,
struct dc_sink *sink)
{
uint8_t slave_address = HDMI_SCDC_ADDRESS;
uint8_t offset = HDMI_SCDC_MANUFACTURER_OUI;
link_query_ddc_data(ddc_service, slave_address, &offset,
sizeof(offset), sink->scdc_caps.manufacturer_OUI.byte,
sizeof(sink->scdc_caps.manufacturer_OUI.byte));
offset = HDMI_SCDC_DEVICE_ID;
link_query_ddc_data(ddc_service, slave_address, &offset,
sizeof(offset), &(sink->scdc_caps.device_id.byte),
sizeof(sink->scdc_caps.device_id.byte));
}
static bool i2c_read(
struct ddc_service *ddc,
uint32_t address,
uint8_t *buffer,
uint32_t len)
{
uint8_t offs_data = 0;
struct i2c_payload payloads[2] = {
{
.write = true,
.address = address,
.length = 1,
.data = &offs_data },
{
.write = false,
.address = address,
.length = len,
.data = buffer } };
struct i2c_command command = {
.payloads = payloads,
.number_of_payloads = 2,
.engine = DDC_I2C_COMMAND_ENGINE,
.speed = ddc->ctx->dc->caps.i2c_speed_in_khz };
return dm_helpers_submit_i2c(
ddc->ctx,
ddc->link,
&command);
}
enum {
DP_SINK_CAP_SIZE =
DP_EDP_CONFIGURATION_CAP - DP_DPCD_REV + 1
};
static void query_dp_dual_mode_adaptor(
struct ddc_service *ddc,
struct display_sink_capability *sink_cap)
{
uint8_t i;
bool is_valid_hdmi_signature;
enum display_dongle_type *dongle = &sink_cap->dongle_type;
uint8_t type2_dongle_buf[DP_ADAPTOR_TYPE2_SIZE];
bool is_type2_dongle = false;
int retry_count = 2;
struct dp_hdmi_dongle_signature_data *dongle_signature;
/* Assume we have no valid DP passive dongle connected */
*dongle = DISPLAY_DONGLE_NONE;
sink_cap->max_hdmi_pixel_clock = DP_ADAPTOR_HDMI_SAFE_MAX_TMDS_CLK;
/* Read DP-HDMI dongle I2c (no response interpreted as DP-DVI dongle)*/
if (!i2c_read(
ddc,
DP_HDMI_DONGLE_ADDRESS,
type2_dongle_buf,
sizeof(type2_dongle_buf))) {
/* Passive HDMI dongles can sometimes fail here without retrying*/
while (retry_count > 0) {
if (i2c_read(ddc,
DP_HDMI_DONGLE_ADDRESS,
type2_dongle_buf,
sizeof(type2_dongle_buf)))
break;
retry_count--;
}
if (retry_count == 0) {
*dongle = DISPLAY_DONGLE_DP_DVI_DONGLE;
sink_cap->max_hdmi_pixel_clock = DP_ADAPTOR_DVI_MAX_TMDS_CLK;
CONN_DATA_DETECT(ddc->link, type2_dongle_buf, sizeof(type2_dongle_buf),
"DP-DVI passive dongle %dMhz: ",
DP_ADAPTOR_DVI_MAX_TMDS_CLK / 1000);
return;
}
}
/* Check if Type 2 dongle.*/
if (type2_dongle_buf[DP_ADAPTOR_TYPE2_REG_ID] == DP_ADAPTOR_TYPE2_ID)
is_type2_dongle = true;
dongle_signature =
(struct dp_hdmi_dongle_signature_data *)type2_dongle_buf;
is_valid_hdmi_signature = true;
/* Check EOT */
if (dongle_signature->eot != DP_HDMI_DONGLE_SIGNATURE_EOT) {
is_valid_hdmi_signature = false;
}
/* Check signature */
for (i = 0; i < sizeof(dongle_signature->id); ++i) {
/* If its not the right signature,
* skip mismatch in subversion byte.*/
if (dongle_signature->id[i] !=
dp_hdmi_dongle_signature_str[i] && i != 3) {
if (is_type2_dongle) {
is_valid_hdmi_signature = false;
break;
}
}
}
if (is_type2_dongle) {
uint32_t max_tmds_clk =
type2_dongle_buf[DP_ADAPTOR_TYPE2_REG_MAX_TMDS_CLK];
max_tmds_clk = max_tmds_clk * 2 + max_tmds_clk / 2;
if (0 == max_tmds_clk ||
max_tmds_clk < DP_ADAPTOR_TYPE2_MIN_TMDS_CLK ||
max_tmds_clk > DP_ADAPTOR_TYPE2_MAX_TMDS_CLK) {
*dongle = DISPLAY_DONGLE_DP_DVI_DONGLE;
CONN_DATA_DETECT(ddc->link, type2_dongle_buf,
sizeof(type2_dongle_buf),
"DP-DVI passive dongle %dMhz: ",
DP_ADAPTOR_DVI_MAX_TMDS_CLK / 1000);
} else {
if (is_valid_hdmi_signature == true) {
*dongle = DISPLAY_DONGLE_DP_HDMI_DONGLE;
CONN_DATA_DETECT(ddc->link, type2_dongle_buf,
sizeof(type2_dongle_buf),
"Type 2 DP-HDMI passive dongle %dMhz: ",
max_tmds_clk);
} else {
*dongle = DISPLAY_DONGLE_DP_HDMI_MISMATCHED_DONGLE;
CONN_DATA_DETECT(ddc->link, type2_dongle_buf,
sizeof(type2_dongle_buf),
"Type 2 DP-HDMI passive dongle (no signature) %dMhz: ",
max_tmds_clk);
}
/* Multiply by 1000 to convert to kHz. */
sink_cap->max_hdmi_pixel_clock =
max_tmds_clk * 1000;
}
sink_cap->is_dongle_type_one = false;
} else {
if (is_valid_hdmi_signature == true) {
*dongle = DISPLAY_DONGLE_DP_HDMI_DONGLE;
CONN_DATA_DETECT(ddc->link, type2_dongle_buf,
sizeof(type2_dongle_buf),
"Type 1 DP-HDMI passive dongle %dMhz: ",
sink_cap->max_hdmi_pixel_clock / 1000);
} else {
*dongle = DISPLAY_DONGLE_DP_HDMI_MISMATCHED_DONGLE;
CONN_DATA_DETECT(ddc->link, type2_dongle_buf,
sizeof(type2_dongle_buf),
"Type 1 DP-HDMI passive dongle (no signature) %dMhz: ",
sink_cap->max_hdmi_pixel_clock / 1000);
}
sink_cap->is_dongle_type_one = true;
}
return;
}
static enum signal_type dp_passive_dongle_detection(struct ddc_service *ddc,
struct display_sink_capability *sink_cap,
struct audio_support *audio_support)
{
query_dp_dual_mode_adaptor(ddc, sink_cap);
return decide_signal_from_strap_and_dongle_type(sink_cap->dongle_type,
audio_support);
}
static void link_disconnect_sink(struct dc_link *link)
{
if (link->local_sink) {
dc_sink_release(link->local_sink);
link->local_sink = NULL;
}
link->dpcd_sink_count = 0;
//link->dpcd_caps.dpcd_rev.raw = 0;
}
static void link_disconnect_remap(struct dc_sink *prev_sink, struct dc_link *link)
{
dc_sink_release(link->local_sink);
link->local_sink = prev_sink;
}
static void query_hdcp_capability(enum signal_type signal, struct dc_link *link)
{
struct hdcp_protection_message msg22;
struct hdcp_protection_message msg14;
memset(&msg22, 0, sizeof(struct hdcp_protection_message));
memset(&msg14, 0, sizeof(struct hdcp_protection_message));
memset(link->hdcp_caps.rx_caps.raw, 0,
sizeof(link->hdcp_caps.rx_caps.raw));
if ((link->connector_signal == SIGNAL_TYPE_DISPLAY_PORT &&
link->ddc->transaction_type ==
DDC_TRANSACTION_TYPE_I2C_OVER_AUX) ||
link->connector_signal == SIGNAL_TYPE_EDP) {
msg22.data = link->hdcp_caps.rx_caps.raw;
msg22.length = sizeof(link->hdcp_caps.rx_caps.raw);
msg22.msg_id = HDCP_MESSAGE_ID_RX_CAPS;
} else {
msg22.data = &link->hdcp_caps.rx_caps.fields.version;
msg22.length = sizeof(link->hdcp_caps.rx_caps.fields.version);
msg22.msg_id = HDCP_MESSAGE_ID_HDCP2VERSION;
}
msg22.version = HDCP_VERSION_22;
msg22.link = HDCP_LINK_PRIMARY;
msg22.max_retries = 5;
dc_process_hdcp_msg(signal, link, &msg22);
if (signal == SIGNAL_TYPE_DISPLAY_PORT || signal == SIGNAL_TYPE_DISPLAY_PORT_MST) {
msg14.data = &link->hdcp_caps.bcaps.raw;
msg14.length = sizeof(link->hdcp_caps.bcaps.raw);
msg14.msg_id = HDCP_MESSAGE_ID_READ_BCAPS;
msg14.version = HDCP_VERSION_14;
msg14.link = HDCP_LINK_PRIMARY;
msg14.max_retries = 5;
dc_process_hdcp_msg(signal, link, &msg14);
}
}
static void read_current_link_settings_on_detect(struct dc_link *link)
{
union lane_count_set lane_count_set = {0};
uint8_t link_bw_set;
uint8_t link_rate_set;
uint32_t read_dpcd_retry_cnt = 10;
enum dc_status status = DC_ERROR_UNEXPECTED;
int i;
union max_down_spread max_down_spread = {0};
// Read DPCD 00101h to find out the number of lanes currently set
for (i = 0; i < read_dpcd_retry_cnt; i++) {
status = core_link_read_dpcd(link,
DP_LANE_COUNT_SET,
&lane_count_set.raw,
sizeof(lane_count_set));
/* First DPCD read after VDD ON can fail if the particular board
* does not have HPD pin wired correctly. So if DPCD read fails,
* which it should never happen, retry a few times. Target worst
* case scenario of 80 ms.
*/
if (status == DC_OK) {
link->cur_link_settings.lane_count =
lane_count_set.bits.LANE_COUNT_SET;
break;
}
msleep(8);
}
// Read DPCD 00100h to find if standard link rates are set
core_link_read_dpcd(link, DP_LINK_BW_SET,
&link_bw_set, sizeof(link_bw_set));
if (link_bw_set == 0) {
if (link->connector_signal == SIGNAL_TYPE_EDP) {
/* If standard link rates are not being used,
* Read DPCD 00115h to find the edp link rate set used
*/
core_link_read_dpcd(link, DP_LINK_RATE_SET,
&link_rate_set, sizeof(link_rate_set));
// edp_supported_link_rates_count = 0 for DP
if (link_rate_set < link->dpcd_caps.edp_supported_link_rates_count) {
link->cur_link_settings.link_rate =
link->dpcd_caps.edp_supported_link_rates[link_rate_set];
link->cur_link_settings.link_rate_set = link_rate_set;
link->cur_link_settings.use_link_rate_set = true;
}
} else {
// Link Rate not found. Seamless boot may not work.
ASSERT(false);
}
} else {
link->cur_link_settings.link_rate = link_bw_set;
link->cur_link_settings.use_link_rate_set = false;
}
// Read DPCD 00003h to find the max down spread.
core_link_read_dpcd(link, DP_MAX_DOWNSPREAD,
&max_down_spread.raw, sizeof(max_down_spread));
link->cur_link_settings.link_spread =
max_down_spread.bits.MAX_DOWN_SPREAD ?
LINK_SPREAD_05_DOWNSPREAD_30KHZ : LINK_SPREAD_DISABLED;
}
static bool detect_dp(struct dc_link *link,
struct display_sink_capability *sink_caps,
enum dc_detect_reason reason)
{
struct audio_support *audio_support = &link->dc->res_pool->audio_support;
sink_caps->signal = link_detect_sink_signal_type(link, reason);
sink_caps->transaction_type =
get_ddc_transaction_type(sink_caps->signal);
if (sink_caps->transaction_type == DDC_TRANSACTION_TYPE_I2C_OVER_AUX) {
sink_caps->signal = SIGNAL_TYPE_DISPLAY_PORT;
if (!detect_dp_sink_caps(link))
return false;
if (is_dp_branch_device(link))
/* DP SST branch */
link->type = dc_connection_sst_branch;
} else {
if (link->dc->debug.disable_dp_plus_plus_wa &&
link->link_enc->features.flags.bits.IS_UHBR20_CAPABLE)
return false;
/* DP passive dongles */
sink_caps->signal = dp_passive_dongle_detection(link->ddc,
sink_caps,
audio_support);
link->dpcd_caps.dongle_type = sink_caps->dongle_type;
link->dpcd_caps.is_dongle_type_one = sink_caps->is_dongle_type_one;
link->dpcd_caps.dpcd_rev.raw = 0;
}
return true;
}
static bool is_same_edid(struct dc_edid *old_edid, struct dc_edid *new_edid)
{
if (old_edid->length != new_edid->length)
return false;
if (new_edid->length == 0)
return false;
return (memcmp(old_edid->raw_edid,
new_edid->raw_edid, new_edid->length) == 0);
}
static bool wait_for_entering_dp_alt_mode(struct dc_link *link)
{
/**
* something is terribly wrong if time out is > 200ms. (5Hz)
* 500 microseconds * 400 tries us 200 ms
**/
unsigned int sleep_time_in_microseconds = 500;
unsigned int tries_allowed = 400;
bool is_in_alt_mode;
unsigned long long enter_timestamp;
unsigned long long finish_timestamp;
unsigned long long time_taken_in_ns;
int tries_taken;
DC_LOGGER_INIT(link->ctx->logger);
/**
* this function will only exist if we are on dcn21 (is_in_alt_mode is a
* function pointer, so checking to see if it is equal to 0 is the same
* as checking to see if it is null
**/
if (!link->link_enc->funcs->is_in_alt_mode)
return true;
is_in_alt_mode = link->link_enc->funcs->is_in_alt_mode(link->link_enc);
DC_LOG_DC("DP Alt mode state on HPD: %d\n", is_in_alt_mode);
if (is_in_alt_mode)
return true;
enter_timestamp = dm_get_timestamp(link->ctx);
for (tries_taken = 0; tries_taken < tries_allowed; tries_taken++) {
udelay(sleep_time_in_microseconds);
/* ask the link if alt mode is enabled, if so return ok */
if (link->link_enc->funcs->is_in_alt_mode(link->link_enc)) {
finish_timestamp = dm_get_timestamp(link->ctx);
time_taken_in_ns =
dm_get_elapse_time_in_ns(link->ctx,
finish_timestamp,
enter_timestamp);
DC_LOG_WARNING("Alt mode entered finished after %llu ms\n",
div_u64(time_taken_in_ns, 1000000));
return true;
}
}
finish_timestamp = dm_get_timestamp(link->ctx);
time_taken_in_ns = dm_get_elapse_time_in_ns(link->ctx, finish_timestamp,
enter_timestamp);
DC_LOG_WARNING("Alt mode has timed out after %llu ms\n",
div_u64(time_taken_in_ns, 1000000));
return false;
}
static void apply_dpia_mst_dsc_always_on_wa(struct dc_link *link)
{
/* Apply work around for tunneled MST on certain USB4 docks. Always use DSC if dock
* reports DSC support.
*/
if (link->ep_type == DISPLAY_ENDPOINT_USB4_DPIA &&
link->type == dc_connection_mst_branch &&
link->dpcd_caps.branch_dev_id == DP_BRANCH_DEVICE_ID_90CC24 &&
link->dpcd_caps.branch_hw_revision == DP_BRANCH_HW_REV_20 &&
link->dpcd_caps.dsc_caps.dsc_basic_caps.fields.dsc_support.DSC_SUPPORT &&
!link->dc->debug.dpia_debug.bits.disable_mst_dsc_work_around)
link->wa_flags.dpia_mst_dsc_always_on = true;
}
static void revert_dpia_mst_dsc_always_on_wa(struct dc_link *link)
{
/* Disable work around which keeps DSC on for tunneled MST on certain USB4 docks. */
if (link->ep_type == DISPLAY_ENDPOINT_USB4_DPIA)
link->wa_flags.dpia_mst_dsc_always_on = false;
}
static bool discover_dp_mst_topology(struct dc_link *link, enum dc_detect_reason reason)
{
DC_LOGGER_INIT(link->ctx->logger);
LINK_INFO("link=%d, mst branch is now Connected\n",
link->link_index);
link->type = dc_connection_mst_branch;
apply_dpia_mst_dsc_always_on_wa(link);
dm_helpers_dp_update_branch_info(link->ctx, link);
if (dm_helpers_dp_mst_start_top_mgr(link->ctx,
link, (reason == DETECT_REASON_BOOT || reason == DETECT_REASON_RESUMEFROMS3S4))) {
link_disconnect_sink(link);
} else {
link->type = dc_connection_sst_branch;
}
return link->type == dc_connection_mst_branch;
}
bool link_reset_cur_dp_mst_topology(struct dc_link *link)
{
DC_LOGGER_INIT(link->ctx->logger);
LINK_INFO("link=%d, mst branch is now Disconnected\n",
link->link_index);
revert_dpia_mst_dsc_always_on_wa(link);
return dm_helpers_dp_mst_stop_top_mgr(link->ctx, link);
}
static bool should_prepare_phy_clocks_for_link_verification(const struct dc *dc,
enum dc_detect_reason reason)
{
int i;
bool can_apply_seamless_boot = false;
for (i = 0; i < dc->current_state->stream_count; i++) {
if (dc->current_state->streams[i]->apply_seamless_boot_optimization) {
can_apply_seamless_boot = true;
break;
}
}
return !can_apply_seamless_boot && reason != DETECT_REASON_BOOT;
}
static void prepare_phy_clocks_for_destructive_link_verification(const struct dc *dc)
{
dc_z10_restore(dc);
clk_mgr_exit_optimized_pwr_state(dc, dc->clk_mgr);
}
static void restore_phy_clocks_for_destructive_link_verification(const struct dc *dc)
{
clk_mgr_optimize_pwr_state(dc, dc->clk_mgr);
}
static void verify_link_capability_destructive(struct dc_link *link,
struct dc_sink *sink,
enum dc_detect_reason reason)
{
bool should_prepare_phy_clocks =
should_prepare_phy_clocks_for_link_verification(link->dc, reason);
if (should_prepare_phy_clocks)
prepare_phy_clocks_for_destructive_link_verification(link->dc);
if (dc_is_dp_signal(link->local_sink->sink_signal)) {
struct dc_link_settings known_limit_link_setting =
dp_get_max_link_cap(link);
link_set_all_streams_dpms_off_for_link(link);
dp_verify_link_cap_with_retries(
link, &known_limit_link_setting,
LINK_TRAINING_MAX_VERIFY_RETRY);
} else {
ASSERT(0);
}
if (should_prepare_phy_clocks)
restore_phy_clocks_for_destructive_link_verification(link->dc);
}
static void verify_link_capability_non_destructive(struct dc_link *link)
{
if (dc_is_dp_signal(link->local_sink->sink_signal)) {
if (dc_is_embedded_signal(link->local_sink->sink_signal) ||
link->ep_type == DISPLAY_ENDPOINT_USB4_DPIA)
/* TODO - should we check link encoder's max link caps here?
* How do we know which link encoder to check from?
*/
link->verified_link_cap = link->reported_link_cap;
else
link->verified_link_cap = dp_get_max_link_cap(link);
}
}
static bool should_verify_link_capability_destructively(struct dc_link *link,
enum dc_detect_reason reason)
{
bool destrictive = false;
struct dc_link_settings max_link_cap;
bool is_link_enc_unavailable = link->link_enc &&
link->dc->res_pool->funcs->link_encs_assign &&
!link_enc_cfg_is_link_enc_avail(
link->ctx->dc,
link->link_enc->preferred_engine,
link);
if (dc_is_dp_signal(link->local_sink->sink_signal)) {
max_link_cap = dp_get_max_link_cap(link);
destrictive = true;
if (link->dc->debug.skip_detection_link_training ||
dc_is_embedded_signal(link->local_sink->sink_signal) ||
link->ep_type == DISPLAY_ENDPOINT_USB4_DPIA) {
destrictive = false;
} else if (link_dp_get_encoding_format(&max_link_cap) ==
DP_8b_10b_ENCODING) {
if (link->dpcd_caps.is_mst_capable ||
is_link_enc_unavailable) {
destrictive = false;
}
}
}
return destrictive;
}
static void verify_link_capability(struct dc_link *link, struct dc_sink *sink,
enum dc_detect_reason reason)
{
if (should_verify_link_capability_destructively(link, reason))
verify_link_capability_destructive(link, sink, reason);
else
verify_link_capability_non_destructive(link);
}
/*
* detect_link_and_local_sink() - Detect if a sink is attached to a given link
*
* link->local_sink is created or destroyed as needed.
*
* This does not create remote sinks.
*/
static bool detect_link_and_local_sink(struct dc_link *link,
enum dc_detect_reason reason)
{
struct dc_sink_init_data sink_init_data = { 0 };
struct display_sink_capability sink_caps = { 0 };
uint32_t i;
bool converter_disable_audio = false;
struct audio_support *aud_support = &link->dc->res_pool->audio_support;
bool same_edid = false;
enum dc_edid_status edid_status;
struct dc_context *dc_ctx = link->ctx;
struct dc *dc = dc_ctx->dc;
struct dc_sink *sink = NULL;
struct dc_sink *prev_sink = NULL;
struct dpcd_caps prev_dpcd_caps;
enum dc_connection_type new_connection_type = dc_connection_none;
enum dc_connection_type pre_connection_type = link->type;
const uint32_t post_oui_delay = 30; // 30ms
DC_LOGGER_INIT(link->ctx->logger);
if (dc_is_virtual_signal(link->connector_signal))
return false;
if (((link->connector_signal == SIGNAL_TYPE_LVDS ||
link->connector_signal == SIGNAL_TYPE_EDP) &&
(!link->dc->config.allow_edp_hotplug_detection)) &&
link->local_sink) {
// need to re-write OUI and brightness in resume case
if (link->connector_signal == SIGNAL_TYPE_EDP &&
(link->dpcd_sink_ext_caps.bits.oled == 1)) {
dpcd_set_source_specific_data(link);
msleep(post_oui_delay);
set_cached_brightness_aux(link);
}
return true;
}
if (!link_detect_connection_type(link, &new_connection_type)) {
BREAK_TO_DEBUGGER();
return false;
}
prev_sink = link->local_sink;
if (prev_sink) {
dc_sink_retain(prev_sink);
memcpy(&prev_dpcd_caps, &link->dpcd_caps, sizeof(struct dpcd_caps));
}
link_disconnect_sink(link);
if (new_connection_type != dc_connection_none) {
link->type = new_connection_type;
link->link_state_valid = false;
/* From Disconnected-to-Connected. */
switch (link->connector_signal) {
case SIGNAL_TYPE_HDMI_TYPE_A: {
sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C;
if (aud_support->hdmi_audio_native)
sink_caps.signal = SIGNAL_TYPE_HDMI_TYPE_A;
else
sink_caps.signal = SIGNAL_TYPE_DVI_SINGLE_LINK;
break;
}
case SIGNAL_TYPE_DVI_SINGLE_LINK: {
sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C;
sink_caps.signal = SIGNAL_TYPE_DVI_SINGLE_LINK;
break;
}
case SIGNAL_TYPE_DVI_DUAL_LINK: {
sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C;
sink_caps.signal = SIGNAL_TYPE_DVI_DUAL_LINK;
break;
}
case SIGNAL_TYPE_LVDS: {
sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C;
sink_caps.signal = SIGNAL_TYPE_LVDS;
break;
}
case SIGNAL_TYPE_EDP: {
detect_edp_sink_caps(link);
read_current_link_settings_on_detect(link);
/* Disable power sequence on MIPI panel + converter
*/
if (dc->config.enable_mipi_converter_optimization &&
dc_ctx->dce_version == DCN_VERSION_3_01 &&
link->dpcd_caps.sink_dev_id == DP_BRANCH_DEVICE_ID_0022B9 &&
memcmp(&link->dpcd_caps.branch_dev_name, DP_SINK_BRANCH_DEV_NAME_7580,
sizeof(link->dpcd_caps.branch_dev_name)) == 0) {
dc->config.edp_no_power_sequencing = true;
if (!link->dpcd_caps.set_power_state_capable_edp)
link->wa_flags.dp_keep_receiver_powered = true;
}
sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C_OVER_AUX;
sink_caps.signal = SIGNAL_TYPE_EDP;
break;
}
case SIGNAL_TYPE_DISPLAY_PORT: {
/* wa HPD high coming too early*/
if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
link->link_enc->features.flags.bits.DP_IS_USB_C == 1) {
/* if alt mode times out, return false */
if (!wait_for_entering_dp_alt_mode(link))
return false;
}
if (!detect_dp(link, &sink_caps, reason)) {
link->type = pre_connection_type;
if (prev_sink)
dc_sink_release(prev_sink);
return false;
}
/* Active SST downstream branch device unplug*/
if (link->type == dc_connection_sst_branch &&
link->dpcd_caps.sink_count.bits.SINK_COUNT == 0) {
if (prev_sink)
/* Downstream unplug */
dc_sink_release(prev_sink);
return true;
}
/* disable audio for non DP to HDMI active sst converter */
if (link->type == dc_connection_sst_branch &&
is_dp_active_dongle(link) &&
(link->dpcd_caps.dongle_type !=
DISPLAY_DONGLE_DP_HDMI_CONVERTER))
converter_disable_audio = true;
/* limited link rate to HBR3 for DPIA until we implement USB4 V2 */
if (link->ep_type == DISPLAY_ENDPOINT_USB4_DPIA &&
link->reported_link_cap.link_rate > LINK_RATE_HIGH3)
link->reported_link_cap.link_rate = LINK_RATE_HIGH3;
break;
}
default:
DC_ERROR("Invalid connector type! signal:%d\n",
link->connector_signal);
if (prev_sink)
dc_sink_release(prev_sink);
return false;
} /* switch() */
if (link->dpcd_caps.sink_count.bits.SINK_COUNT)
link->dpcd_sink_count =
link->dpcd_caps.sink_count.bits.SINK_COUNT;
else
link->dpcd_sink_count = 1;
set_ddc_transaction_type(link->ddc,
sink_caps.transaction_type);
link->aux_mode =
link_is_in_aux_transaction_mode(link->ddc);
sink_init_data.link = link;
sink_init_data.sink_signal = sink_caps.signal;
sink = dc_sink_create(&sink_init_data);
if (!sink) {
DC_ERROR("Failed to create sink!\n");
if (prev_sink)
dc_sink_release(prev_sink);
return false;
}
sink->link->dongle_max_pix_clk = sink_caps.max_hdmi_pixel_clock;
sink->converter_disable_audio = converter_disable_audio;
/* dc_sink_create returns a new reference */
link->local_sink = sink;
edid_status = dm_helpers_read_local_edid(link->ctx,
link, sink);
switch (edid_status) {
case EDID_BAD_CHECKSUM:
DC_LOG_ERROR("EDID checksum invalid.\n");
break;
case EDID_PARTIAL_VALID:
DC_LOG_ERROR("Partial EDID valid, abandon invalid blocks.\n");
break;
case EDID_NO_RESPONSE:
DC_LOG_ERROR("No EDID read.\n");
/*
* Abort detection for non-DP connectors if we have
* no EDID
*
* DP needs to report as connected if HDP is high
* even if we have no EDID in order to go to
* fail-safe mode
*/
if (dc_is_hdmi_signal(link->connector_signal) ||
dc_is_dvi_signal(link->connector_signal)) {
if (prev_sink)
dc_sink_release(prev_sink);
return false;
}
if (link->type == dc_connection_sst_branch &&
link->dpcd_caps.dongle_type ==
DISPLAY_DONGLE_DP_VGA_CONVERTER &&
reason == DETECT_REASON_HPDRX) {
/* Abort detection for DP-VGA adapters when EDID
* can't be read and detection reason is VGA-side
* hotplug
*/
if (prev_sink)
dc_sink_release(prev_sink);
link_disconnect_sink(link);
return true;
}
break;
default:
break;
}
// Check if edid is the same
if ((prev_sink) &&
(edid_status == EDID_THE_SAME || edid_status == EDID_OK))
same_edid = is_same_edid(&prev_sink->dc_edid,
&sink->dc_edid);
if (sink->edid_caps.panel_patch.skip_scdc_overwrite)
link->ctx->dc->debug.hdmi20_disable = true;
if (dc_is_hdmi_signal(link->connector_signal))
read_scdc_caps(link->ddc, link->local_sink);
if (link->connector_signal == SIGNAL_TYPE_DISPLAY_PORT &&
sink_caps.transaction_type ==
DDC_TRANSACTION_TYPE_I2C_OVER_AUX) {
/*
* TODO debug why certain monitors don't like
* two link trainings
*/
query_hdcp_capability(sink->sink_signal, link);
} else {
// If edid is the same, then discard new sink and revert back to original sink
if (same_edid) {
link_disconnect_remap(prev_sink, link);
sink = prev_sink;
prev_sink = NULL;
}
query_hdcp_capability(sink->sink_signal, link);
}
/* HDMI-DVI Dongle */
if (sink->sink_signal == SIGNAL_TYPE_HDMI_TYPE_A &&
!sink->edid_caps.edid_hdmi)
sink->sink_signal = SIGNAL_TYPE_DVI_SINGLE_LINK;
if (link->local_sink && dc_is_dp_signal(sink_caps.signal))
dp_trace_init(link);
/* Connectivity log: detection */
for (i = 0; i < sink->dc_edid.length / DC_EDID_BLOCK_SIZE; i++) {
CONN_DATA_DETECT(link,
&sink->dc_edid.raw_edid[i * DC_EDID_BLOCK_SIZE],
DC_EDID_BLOCK_SIZE,
"%s: [Block %d] ", sink->edid_caps.display_name, i);
}
DC_LOG_DETECTION_EDID_PARSER("%s: "
"manufacturer_id = %X, "
"product_id = %X, "
"serial_number = %X, "
"manufacture_week = %d, "
"manufacture_year = %d, "
"display_name = %s, "
"speaker_flag = %d, "
"audio_mode_count = %d\n",
__func__,
sink->edid_caps.manufacturer_id,
sink->edid_caps.product_id,
sink->edid_caps.serial_number,
sink->edid_caps.manufacture_week,
sink->edid_caps.manufacture_year,
sink->edid_caps.display_name,
sink->edid_caps.speaker_flags,
sink->edid_caps.audio_mode_count);
for (i = 0; i < sink->edid_caps.audio_mode_count; i++) {
DC_LOG_DETECTION_EDID_PARSER("%s: mode number = %d, "
"format_code = %d, "
"channel_count = %d, "
"sample_rate = %d, "
"sample_size = %d\n",
__func__,
i,
sink->edid_caps.audio_modes[i].format_code,
sink->edid_caps.audio_modes[i].channel_count,
sink->edid_caps.audio_modes[i].sample_rate,
sink->edid_caps.audio_modes[i].sample_size);
}
if (link->connector_signal == SIGNAL_TYPE_EDP) {
// Init dc_panel_config by HW config
if (dc_ctx->dc->res_pool->funcs->get_panel_config_defaults)
dc_ctx->dc->res_pool->funcs->get_panel_config_defaults(&link->panel_config);
// Pickup base DM settings
dm_helpers_init_panel_settings(dc_ctx, &link->panel_config, sink);
// Override dc_panel_config if system has specific settings
dm_helpers_override_panel_settings(dc_ctx, &link->panel_config);
}
} else {
/* From Connected-to-Disconnected. */
link->type = dc_connection_none;
sink_caps.signal = SIGNAL_TYPE_NONE;
memset(&link->hdcp_caps, 0, sizeof(struct hdcp_caps));
/* When we unplug a passive DP-HDMI dongle connection, dongle_max_pix_clk
* is not cleared. If we emulate a DP signal on this connection, it thinks
* the dongle is still there and limits the number of modes we can emulate.
* Clear dongle_max_pix_clk on disconnect to fix this
*/
link->dongle_max_pix_clk = 0;
dc_link_clear_dprx_states(link);
dp_trace_reset(link);
}
LINK_INFO("link=%d, dc_sink_in=%p is now %s prev_sink=%p edid same=%d\n",
link->link_index, sink,
(sink_caps.signal ==
SIGNAL_TYPE_NONE ? "Disconnected" : "Connected"),
prev_sink, same_edid);
if (prev_sink)
dc_sink_release(prev_sink);
return true;
}
/*
* link_detect_connection_type() - Determine if there is a sink connected
*
* @type: Returned connection type
* Does not detect downstream devices, such as MST sinks
* or display connected through active dongles
*/
bool link_detect_connection_type(struct dc_link *link, enum dc_connection_type *type)
{
uint32_t is_hpd_high = 0;
if (link->connector_signal == SIGNAL_TYPE_LVDS) {
*type = dc_connection_single;
return true;
}
if (link->connector_signal == SIGNAL_TYPE_EDP) {
/*in case it is not on*/
if (!link->dc->config.edp_no_power_sequencing)
link->dc->hwss.edp_power_control(link, true);
link->dc->hwss.edp_wait_for_hpd_ready(link, true);
}
/* Link may not have physical HPD pin. */
if (link->ep_type != DISPLAY_ENDPOINT_PHY) {
if (link->is_hpd_pending || !dpia_query_hpd_status(link))
*type = dc_connection_none;
else
*type = dc_connection_single;
return true;
}
if (!query_hpd_status(link, &is_hpd_high))
goto hpd_gpio_failure;
if (is_hpd_high) {
*type = dc_connection_single;
/* TODO: need to do the actual detection */
} else {
*type = dc_connection_none;
if (link->connector_signal == SIGNAL_TYPE_EDP) {
/* eDP is not connected, power down it */
if (!link->dc->config.edp_no_power_sequencing)
link->dc->hwss.edp_power_control(link, false);
}
}
return true;
hpd_gpio_failure:
return false;
}
bool link_detect(struct dc_link *link, enum dc_detect_reason reason)
{
bool is_local_sink_detect_success;
bool is_delegated_to_mst_top_mgr = false;
enum dc_connection_type pre_link_type = link->type;
DC_LOGGER_INIT(link->ctx->logger);
is_local_sink_detect_success = detect_link_and_local_sink(link, reason);
if (is_local_sink_detect_success && link->local_sink)
verify_link_capability(link, link->local_sink, reason);
DC_LOG_DC("%s: link_index=%d is_local_sink_detect_success=%d pre_link_type=%d link_type=%d\n", __func__,
link->link_index, is_local_sink_detect_success, pre_link_type, link->type);
if (is_local_sink_detect_success && link->local_sink &&
dc_is_dp_signal(link->local_sink->sink_signal) &&
link->dpcd_caps.is_mst_capable)
is_delegated_to_mst_top_mgr = discover_dp_mst_topology(link, reason);
if (is_local_sink_detect_success &&
pre_link_type == dc_connection_mst_branch &&
link->type != dc_connection_mst_branch)
is_delegated_to_mst_top_mgr = link_reset_cur_dp_mst_topology(link);
return is_local_sink_detect_success && !is_delegated_to_mst_top_mgr;
}
void link_clear_dprx_states(struct dc_link *link)
{
memset(&link->dprx_states, 0, sizeof(link->dprx_states));
}
bool link_is_hdcp14(struct dc_link *link, enum signal_type signal)
{
bool ret = false;
switch (signal) {
case SIGNAL_TYPE_DISPLAY_PORT:
case SIGNAL_TYPE_DISPLAY_PORT_MST:
ret = link->hdcp_caps.bcaps.bits.HDCP_CAPABLE;
break;
case SIGNAL_TYPE_DVI_SINGLE_LINK:
case SIGNAL_TYPE_DVI_DUAL_LINK:
case SIGNAL_TYPE_HDMI_TYPE_A:
/* HDMI doesn't tell us its HDCP(1.4) capability, so assume to always be capable,
* we can poll for bksv but some displays have an issue with this. Since its so rare
* for a display to not be 1.4 capable, this assumtion is ok
*/
ret = true;
break;
default:
break;
}
return ret;
}
bool link_is_hdcp22(struct dc_link *link, enum signal_type signal)
{
bool ret = false;
switch (signal) {
case SIGNAL_TYPE_DISPLAY_PORT:
case SIGNAL_TYPE_DISPLAY_PORT_MST:
ret = (link->hdcp_caps.bcaps.bits.HDCP_CAPABLE &&
link->hdcp_caps.rx_caps.fields.byte0.hdcp_capable &&
(link->hdcp_caps.rx_caps.fields.version == 0x2)) ? 1 : 0;
break;
case SIGNAL_TYPE_DVI_SINGLE_LINK:
case SIGNAL_TYPE_DVI_DUAL_LINK:
case SIGNAL_TYPE_HDMI_TYPE_A:
ret = (link->hdcp_caps.rx_caps.fields.version == 0x4) ? 1:0;
break;
default:
break;
}
return ret;
}
const struct dc_link_status *link_get_status(const struct dc_link *link)
{
return &link->link_status;
}
static bool link_add_remote_sink_helper(struct dc_link *dc_link, struct dc_sink *sink)
{
if (dc_link->sink_count >= MAX_SINKS_PER_LINK) {
BREAK_TO_DEBUGGER();
return false;
}
dc_sink_retain(sink);
dc_link->remote_sinks[dc_link->sink_count] = sink;
dc_link->sink_count++;
return true;
}
struct dc_sink *link_add_remote_sink(
struct dc_link *link,
const uint8_t *edid,
int len,
struct dc_sink_init_data *init_data)
{
struct dc_sink *dc_sink;
enum dc_edid_status edid_status;
if (len > DC_MAX_EDID_BUFFER_SIZE) {
dm_error("Max EDID buffer size breached!\n");
return NULL;
}
if (!init_data) {
BREAK_TO_DEBUGGER();
return NULL;
}
if (!init_data->link) {
BREAK_TO_DEBUGGER();
return NULL;
}
dc_sink = dc_sink_create(init_data);
if (!dc_sink)
return NULL;
memmove(dc_sink->dc_edid.raw_edid, edid, len);
dc_sink->dc_edid.length = len;
if (!link_add_remote_sink_helper(
link,
dc_sink))
goto fail_add_sink;
edid_status = dm_helpers_parse_edid_caps(
link,
&dc_sink->dc_edid,
&dc_sink->edid_caps);
/*
* Treat device as no EDID device if EDID
* parsing fails
*/
if (edid_status != EDID_OK && edid_status != EDID_PARTIAL_VALID) {
dc_sink->dc_edid.length = 0;
dm_error("Bad EDID, status%d!\n", edid_status);
}
return dc_sink;
fail_add_sink:
dc_sink_release(dc_sink);
return NULL;
}
void link_remove_remote_sink(struct dc_link *link, struct dc_sink *sink)
{
int i;
if (!link->sink_count) {
BREAK_TO_DEBUGGER();
return;
}
for (i = 0; i < link->sink_count; i++) {
if (link->remote_sinks[i] == sink) {
dc_sink_release(sink);
link->remote_sinks[i] = NULL;
/* shrink array to remove empty place */
while (i < link->sink_count - 1) {
link->remote_sinks[i] = link->remote_sinks[i+1];
i++;
}
link->remote_sinks[i] = NULL;
link->sink_count--;
return;
}
}
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/link_detection.c |
/*
* Copyright 2023 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
/* FILE POLICY AND INTENDED USAGE:
* This file owns timing validation against various link limitations. (ex.
* link bandwidth, receiver capability or our hardware capability) It also
* provides helper functions exposing bandwidth formulas used in validation.
*/
#include "link_validation.h"
#include "protocols/link_dp_capability.h"
#include "protocols/link_dp_dpia_bw.h"
#include "resource.h"
#define DC_LOGGER_INIT(logger)
static uint32_t get_tmds_output_pixel_clock_100hz(const struct dc_crtc_timing *timing)
{
uint32_t pxl_clk = timing->pix_clk_100hz;
if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
pxl_clk /= 2;
else if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR422)
pxl_clk = pxl_clk * 2 / 3;
if (timing->display_color_depth == COLOR_DEPTH_101010)
pxl_clk = pxl_clk * 10 / 8;
else if (timing->display_color_depth == COLOR_DEPTH_121212)
pxl_clk = pxl_clk * 12 / 8;
return pxl_clk;
}
static bool dp_active_dongle_validate_timing(
const struct dc_crtc_timing *timing,
const struct dpcd_caps *dpcd_caps)
{
const struct dc_dongle_caps *dongle_caps = &dpcd_caps->dongle_caps;
switch (dpcd_caps->dongle_type) {
case DISPLAY_DONGLE_DP_VGA_CONVERTER:
case DISPLAY_DONGLE_DP_DVI_CONVERTER:
case DISPLAY_DONGLE_DP_DVI_DONGLE:
if (timing->pixel_encoding == PIXEL_ENCODING_RGB)
return true;
else
return false;
default:
break;
}
if (dpcd_caps->dongle_type == DISPLAY_DONGLE_DP_HDMI_CONVERTER &&
dongle_caps->extendedCapValid == true) {
/* Check Pixel Encoding */
switch (timing->pixel_encoding) {
case PIXEL_ENCODING_RGB:
case PIXEL_ENCODING_YCBCR444:
break;
case PIXEL_ENCODING_YCBCR422:
if (!dongle_caps->is_dp_hdmi_ycbcr422_pass_through)
return false;
break;
case PIXEL_ENCODING_YCBCR420:
if (!dongle_caps->is_dp_hdmi_ycbcr420_pass_through)
return false;
break;
default:
/* Invalid Pixel Encoding*/
return false;
}
switch (timing->display_color_depth) {
case COLOR_DEPTH_666:
case COLOR_DEPTH_888:
/*888 and 666 should always be supported*/
break;
case COLOR_DEPTH_101010:
if (dongle_caps->dp_hdmi_max_bpc < 10)
return false;
break;
case COLOR_DEPTH_121212:
if (dongle_caps->dp_hdmi_max_bpc < 12)
return false;
break;
case COLOR_DEPTH_141414:
case COLOR_DEPTH_161616:
default:
/* These color depths are currently not supported */
return false;
}
/* Check 3D format */
switch (timing->timing_3d_format) {
case TIMING_3D_FORMAT_NONE:
case TIMING_3D_FORMAT_FRAME_ALTERNATE:
/*Only frame alternate 3D is supported on active dongle*/
break;
default:
/*other 3D formats are not supported due to bad infoframe translation */
return false;
}
if (dongle_caps->dp_hdmi_frl_max_link_bw_in_kbps > 0) { // DP to HDMI FRL converter
struct dc_crtc_timing outputTiming = *timing;
#if defined(CONFIG_DRM_AMD_DC_FP)
if (timing->flags.DSC && !timing->dsc_cfg.is_frl)
/* DP input has DSC, HDMI FRL output doesn't have DSC, remove DSC from output timing */
outputTiming.flags.DSC = 0;
#endif
if (dc_bandwidth_in_kbps_from_timing(&outputTiming, DC_LINK_ENCODING_HDMI_FRL) >
dongle_caps->dp_hdmi_frl_max_link_bw_in_kbps)
return false;
} else { // DP to HDMI TMDS converter
if (get_tmds_output_pixel_clock_100hz(timing) > (dongle_caps->dp_hdmi_max_pixel_clk_in_khz * 10))
return false;
}
}
if (dpcd_caps->channel_coding_cap.bits.DP_128b_132b_SUPPORTED == 0 &&
dpcd_caps->dsc_caps.dsc_basic_caps.fields.dsc_support.DSC_PASSTHROUGH_SUPPORT == 0 &&
dongle_caps->dfp_cap_ext.supported) {
if (dongle_caps->dfp_cap_ext.max_pixel_rate_in_mps < (timing->pix_clk_100hz / 10000))
return false;
if (dongle_caps->dfp_cap_ext.max_video_h_active_width < timing->h_addressable)
return false;
if (dongle_caps->dfp_cap_ext.max_video_v_active_height < timing->v_addressable)
return false;
if (timing->pixel_encoding == PIXEL_ENCODING_RGB) {
if (!dongle_caps->dfp_cap_ext.encoding_format_caps.support_rgb)
return false;
if (timing->display_color_depth == COLOR_DEPTH_666 &&
!dongle_caps->dfp_cap_ext.rgb_color_depth_caps.support_6bpc)
return false;
else if (timing->display_color_depth == COLOR_DEPTH_888 &&
!dongle_caps->dfp_cap_ext.rgb_color_depth_caps.support_8bpc)
return false;
else if (timing->display_color_depth == COLOR_DEPTH_101010 &&
!dongle_caps->dfp_cap_ext.rgb_color_depth_caps.support_10bpc)
return false;
else if (timing->display_color_depth == COLOR_DEPTH_121212 &&
!dongle_caps->dfp_cap_ext.rgb_color_depth_caps.support_12bpc)
return false;
else if (timing->display_color_depth == COLOR_DEPTH_161616 &&
!dongle_caps->dfp_cap_ext.rgb_color_depth_caps.support_16bpc)
return false;
} else if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR444) {
if (!dongle_caps->dfp_cap_ext.encoding_format_caps.support_rgb)
return false;
if (timing->display_color_depth == COLOR_DEPTH_888 &&
!dongle_caps->dfp_cap_ext.ycbcr444_color_depth_caps.support_8bpc)
return false;
else if (timing->display_color_depth == COLOR_DEPTH_101010 &&
!dongle_caps->dfp_cap_ext.ycbcr444_color_depth_caps.support_10bpc)
return false;
else if (timing->display_color_depth == COLOR_DEPTH_121212 &&
!dongle_caps->dfp_cap_ext.ycbcr444_color_depth_caps.support_12bpc)
return false;
else if (timing->display_color_depth == COLOR_DEPTH_161616 &&
!dongle_caps->dfp_cap_ext.ycbcr444_color_depth_caps.support_16bpc)
return false;
} else if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR422) {
if (!dongle_caps->dfp_cap_ext.encoding_format_caps.support_rgb)
return false;
if (timing->display_color_depth == COLOR_DEPTH_888 &&
!dongle_caps->dfp_cap_ext.ycbcr422_color_depth_caps.support_8bpc)
return false;
else if (timing->display_color_depth == COLOR_DEPTH_101010 &&
!dongle_caps->dfp_cap_ext.ycbcr422_color_depth_caps.support_10bpc)
return false;
else if (timing->display_color_depth == COLOR_DEPTH_121212 &&
!dongle_caps->dfp_cap_ext.ycbcr422_color_depth_caps.support_12bpc)
return false;
else if (timing->display_color_depth == COLOR_DEPTH_161616 &&
!dongle_caps->dfp_cap_ext.ycbcr422_color_depth_caps.support_16bpc)
return false;
} else if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420) {
if (!dongle_caps->dfp_cap_ext.encoding_format_caps.support_rgb)
return false;
if (timing->display_color_depth == COLOR_DEPTH_888 &&
!dongle_caps->dfp_cap_ext.ycbcr420_color_depth_caps.support_8bpc)
return false;
else if (timing->display_color_depth == COLOR_DEPTH_101010 &&
!dongle_caps->dfp_cap_ext.ycbcr420_color_depth_caps.support_10bpc)
return false;
else if (timing->display_color_depth == COLOR_DEPTH_121212 &&
!dongle_caps->dfp_cap_ext.ycbcr420_color_depth_caps.support_12bpc)
return false;
else if (timing->display_color_depth == COLOR_DEPTH_161616 &&
!dongle_caps->dfp_cap_ext.ycbcr420_color_depth_caps.support_16bpc)
return false;
}
}
return true;
}
uint32_t dp_link_bandwidth_kbps(
const struct dc_link *link,
const struct dc_link_settings *link_settings)
{
uint32_t total_data_bw_efficiency_x10000 = 0;
uint32_t link_rate_per_lane_kbps = 0;
switch (link_dp_get_encoding_format(link_settings)) {
case DP_8b_10b_ENCODING:
/* For 8b/10b encoding:
* link rate is defined in the unit of LINK_RATE_REF_FREQ_IN_KHZ per DP byte per lane.
* data bandwidth efficiency is 80% with additional 3% overhead if FEC is supported.
*/
link_rate_per_lane_kbps = link_settings->link_rate * LINK_RATE_REF_FREQ_IN_KHZ * BITS_PER_DP_BYTE;
total_data_bw_efficiency_x10000 = DATA_EFFICIENCY_8b_10b_x10000;
if (dp_should_enable_fec(link)) {
total_data_bw_efficiency_x10000 /= 100;
total_data_bw_efficiency_x10000 *= DATA_EFFICIENCY_8b_10b_FEC_EFFICIENCY_x100;
}
break;
case DP_128b_132b_ENCODING:
/* For 128b/132b encoding:
* link rate is defined in the unit of 10mbps per lane.
* total data bandwidth efficiency is always 96.71%.
*/
link_rate_per_lane_kbps = link_settings->link_rate * 10000;
total_data_bw_efficiency_x10000 = DATA_EFFICIENCY_128b_132b_x10000;
break;
default:
break;
}
/* overall effective link bandwidth = link rate per lane * lane count * total data bandwidth efficiency */
return link_rate_per_lane_kbps * link_settings->lane_count / 10000 * total_data_bw_efficiency_x10000;
}
static bool dp_validate_mode_timing(
struct dc_link *link,
const struct dc_crtc_timing *timing)
{
uint32_t req_bw;
uint32_t max_bw;
const struct dc_link_settings *link_setting;
/* According to spec, VSC SDP should be used if pixel format is YCbCr420 */
if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420 &&
!link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED &&
dal_graphics_object_id_get_connector_id(link->link_id) != CONNECTOR_ID_VIRTUAL)
return false;
/*always DP fail safe mode*/
if ((timing->pix_clk_100hz / 10) == (uint32_t) 25175 &&
timing->h_addressable == (uint32_t) 640 &&
timing->v_addressable == (uint32_t) 480)
return true;
link_setting = dp_get_verified_link_cap(link);
/* TODO: DYNAMIC_VALIDATION needs to be implemented */
/*if (flags.DYNAMIC_VALIDATION == 1 &&
link->verified_link_cap.lane_count != LANE_COUNT_UNKNOWN)
link_setting = &link->verified_link_cap;
*/
req_bw = dc_bandwidth_in_kbps_from_timing(timing, dc_link_get_highest_encoding_format(link));
max_bw = dp_link_bandwidth_kbps(link, link_setting);
if (req_bw <= max_bw) {
/* remember the biggest mode here, during
* initial link training (to get
* verified_link_cap), LS sends event about
* cannot train at reported cap to upper
* layer and upper layer will re-enumerate modes.
* this is not necessary if the lower
* verified_link_cap is enough to drive
* all the modes */
/* TODO: DYNAMIC_VALIDATION needs to be implemented */
/* if (flags.DYNAMIC_VALIDATION == 1)
dpsst->max_req_bw_for_verified_linkcap = dal_max(
dpsst->max_req_bw_for_verified_linkcap, req_bw); */
return true;
} else
return false;
}
enum dc_status link_validate_mode_timing(
const struct dc_stream_state *stream,
struct dc_link *link,
const struct dc_crtc_timing *timing)
{
uint32_t max_pix_clk = stream->link->dongle_max_pix_clk * 10;
struct dpcd_caps *dpcd_caps = &link->dpcd_caps;
/* A hack to avoid failing any modes for EDID override feature on
* topology change such as lower quality cable for DP or different dongle
*/
if (link->remote_sinks[0] && link->remote_sinks[0]->sink_signal == SIGNAL_TYPE_VIRTUAL)
return DC_OK;
/* Passive Dongle */
if (max_pix_clk != 0 && get_tmds_output_pixel_clock_100hz(timing) > max_pix_clk)
return DC_EXCEED_DONGLE_CAP;
/* Active Dongle*/
if (!dp_active_dongle_validate_timing(timing, dpcd_caps))
return DC_EXCEED_DONGLE_CAP;
switch (stream->signal) {
case SIGNAL_TYPE_EDP:
case SIGNAL_TYPE_DISPLAY_PORT:
if (!dp_validate_mode_timing(
link,
timing))
return DC_NO_DP_LINK_BANDWIDTH;
break;
default:
break;
}
return DC_OK;
}
bool link_validate_dpia_bandwidth(const struct dc_stream_state *stream, const unsigned int num_streams)
{
bool ret = true;
int bw_needed[MAX_DPIA_NUM];
struct dc_link *link[MAX_DPIA_NUM];
if (!num_streams || num_streams > MAX_DPIA_NUM)
return ret;
for (uint8_t i = 0; i < num_streams; ++i) {
link[i] = stream[i].link;
bw_needed[i] = dc_bandwidth_in_kbps_from_timing(&stream[i].timing,
dc_link_get_highest_encoding_format(link[i]));
}
ret = dpia_validate_usb4_bw(link, bw_needed, num_streams);
return ret;
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/link_validation.c |
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "link_hwss_dpia.h"
#include "core_types.h"
#include "link_hwss_dio.h"
#include "link_enc_cfg.h"
#define DC_LOGGER_INIT(logger)
static void update_dpia_stream_allocation_table(struct dc_link *link,
const struct link_resource *link_res,
const struct link_mst_stream_allocation_table *table)
{
struct link_encoder *link_enc = link_enc_cfg_get_link_enc(link);
static enum dc_status status;
uint8_t mst_alloc_slots = 0, prev_mst_slots_in_use = 0xFF;
int i;
DC_LOGGER_INIT(link->ctx->logger);
for (i = 0; i < table->stream_count; i++)
mst_alloc_slots += table->stream_allocations[i].slot_count;
status = dc_process_dmub_set_mst_slots(link->dc, link->link_index,
mst_alloc_slots, &prev_mst_slots_in_use);
ASSERT(status == DC_OK);
DC_LOG_MST("dpia : status[%d]: alloc_slots[%d]: used_slots[%d]\n",
status, mst_alloc_slots, prev_mst_slots_in_use);
ASSERT(link_enc);
link_enc->funcs->update_mst_stream_allocation_table(link_enc, table);
}
static const struct link_hwss dpia_link_hwss = {
.setup_stream_encoder = setup_dio_stream_encoder,
.reset_stream_encoder = reset_dio_stream_encoder,
.setup_stream_attribute = setup_dio_stream_attribute,
.disable_link_output = disable_dio_link_output,
.setup_audio_output = setup_dio_audio_output,
.enable_audio_packet = enable_dio_audio_packet,
.disable_audio_packet = disable_dio_audio_packet,
.ext = {
.set_throttled_vcp_size = set_dio_throttled_vcp_size,
.enable_dp_link_output = enable_dio_dp_link_output,
.set_dp_link_test_pattern = set_dio_dp_link_test_pattern,
.set_dp_lane_settings = set_dio_dp_lane_settings,
.update_stream_allocation_table = update_dpia_stream_allocation_table,
},
};
bool can_use_dpia_link_hwss(const struct dc_link *link,
const struct link_resource *link_res)
{
return link->is_dig_mapping_flexible &&
link->dc->res_pool->funcs->link_encs_assign;
}
const struct link_hwss *get_dpia_link_hwss(void)
{
return &dpia_link_hwss;
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/hwss/link_hwss_dpia.c |
/*
* Copyright 2023 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "link_hwss_hpo_dp.h"
#include "link_hwss_hpo_fixed_vs_pe_retimer_dp.h"
#include "link_hwss_dio_fixed_vs_pe_retimer.h"
static void dp_hpo_fixed_vs_pe_retimer_set_tx_ffe(struct dc_link *link,
const struct dc_lane_settings *hw_lane_settings)
{
const uint8_t vendor_ffe_preset_table[16] = {
0x01, 0x41, 0x61, 0x81,
0xB1, 0x05, 0x35, 0x65,
0x85, 0xA5, 0x09, 0x39,
0x59, 0x89, 0x0F, 0x24};
const uint8_t ffe_mask[4] = {
(hw_lane_settings[0].FFE_PRESET.settings.no_deemphasis != 0 ? 0x0F : 0xFF)
& (hw_lane_settings[0].FFE_PRESET.settings.no_preshoot != 0 ? 0xF1 : 0xFF),
(hw_lane_settings[1].FFE_PRESET.settings.no_deemphasis != 0 ? 0x0F : 0xFF)
& (hw_lane_settings[1].FFE_PRESET.settings.no_preshoot != 0 ? 0xF1 : 0xFF),
(hw_lane_settings[2].FFE_PRESET.settings.no_deemphasis != 0 ? 0x0F : 0xFF)
& (hw_lane_settings[2].FFE_PRESET.settings.no_preshoot != 0 ? 0xF1 : 0xFF),
(hw_lane_settings[3].FFE_PRESET.settings.no_deemphasis != 0 ? 0x0F : 0xFF)
& (hw_lane_settings[3].FFE_PRESET.settings.no_preshoot != 0 ? 0xF1 : 0xFF)};
const uint8_t ffe_cfg[4] = {
vendor_ffe_preset_table[hw_lane_settings[0].FFE_PRESET.settings.level] & ffe_mask[0],
vendor_ffe_preset_table[hw_lane_settings[1].FFE_PRESET.settings.level] & ffe_mask[1],
vendor_ffe_preset_table[hw_lane_settings[2].FFE_PRESET.settings.level] & ffe_mask[2],
vendor_ffe_preset_table[hw_lane_settings[3].FFE_PRESET.settings.level] & ffe_mask[3]};
const uint8_t dp_type = dp_dio_fixed_vs_pe_retimer_lane_cfg_to_hw_cfg(link);
const uint8_t vendor_lttpr_write_data_ffe1[4] = {0x01, 0x50, dp_type, 0x0F};
const uint8_t vendor_lttpr_write_data_ffe2[4] = {0x01, 0x55, dp_type, ffe_cfg[0]};
const uint8_t vendor_lttpr_write_data_ffe3[4] = {0x01, 0x56, dp_type, ffe_cfg[1]};
const uint8_t vendor_lttpr_write_data_ffe4[4] = {0x01, 0x57, dp_type, ffe_cfg[2]};
const uint8_t vendor_lttpr_write_data_ffe5[4] = {0x01, 0x58, dp_type, ffe_cfg[3]};
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_ffe1[0], sizeof(vendor_lttpr_write_data_ffe1));
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_ffe2[0], sizeof(vendor_lttpr_write_data_ffe2));
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_ffe3[0], sizeof(vendor_lttpr_write_data_ffe3));
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_ffe4[0], sizeof(vendor_lttpr_write_data_ffe4));
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_ffe5[0], sizeof(vendor_lttpr_write_data_ffe5));
}
static void dp_hpo_fixed_vs_pe_retimer_program_override_test_pattern(struct dc_link *link,
struct encoder_set_dp_phy_pattern_param *tp_params)
{
const uint8_t vendor_lttpr_write_data_pg0[4] = {0x1, 0x11, 0x0, 0x0};
const uint8_t vendor_lttpr_write_data_pg1[4] = {0x1, 0x50, 0x50, 0x0};
const uint8_t vendor_lttpr_write_data_pg2[4] = {0x1, 0x51, 0x50, 0x0};
const uint8_t vendor_lttpr_write_data_pg3[4] = {0x1, 0x10, 0x58, 0x21};
const uint8_t vendor_lttpr_write_data_pg4[4] = {0x1, 0x10, 0x59, 0x21};
const uint8_t vendor_lttpr_write_data_pg5[4] = {0x1, 0x1C, 0x58, 0x4F};
const uint8_t vendor_lttpr_write_data_pg6[4] = {0x1, 0x1C, 0x59, 0x4F};
const uint8_t vendor_lttpr_write_data_pg7[4] = {0x1, 0x30, 0x51, 0x20};
const uint8_t vendor_lttpr_write_data_pg8[4] = {0x1, 0x30, 0x52, 0x20};
const uint8_t vendor_lttpr_write_data_pg9[4] = {0x1, 0x30, 0x54, 0x20};
const uint8_t vendor_lttpr_write_data_pg10[4] = {0x1, 0x30, 0x55, 0x20};
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_pg0[0], sizeof(vendor_lttpr_write_data_pg0));
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_pg1[0], sizeof(vendor_lttpr_write_data_pg1));
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_pg2[0], sizeof(vendor_lttpr_write_data_pg2));
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_pg3[0], sizeof(vendor_lttpr_write_data_pg3));
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_pg4[0], sizeof(vendor_lttpr_write_data_pg4));
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_pg5[0], sizeof(vendor_lttpr_write_data_pg5));
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_pg6[0], sizeof(vendor_lttpr_write_data_pg6));
if (link->cur_link_settings.lane_count == LANE_COUNT_FOUR)
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_pg7[0], sizeof(vendor_lttpr_write_data_pg7));
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_pg8[0], sizeof(vendor_lttpr_write_data_pg8));
if (link->cur_link_settings.lane_count == LANE_COUNT_FOUR)
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_pg9[0], sizeof(vendor_lttpr_write_data_pg9));
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_pg10[0], sizeof(vendor_lttpr_write_data_pg10));
}
static bool dp_hpo_fixed_vs_pe_retimer_set_override_test_pattern(struct dc_link *link,
const struct link_resource *link_res, struct encoder_set_dp_phy_pattern_param *tp_params,
const struct link_hwss *link_hwss)
{
struct encoder_set_dp_phy_pattern_param hw_tp_params = { 0 };
const uint8_t vendor_lttpr_exit_manual_automation_0[4] = {0x1, 0x11, 0x0, 0x06};
if (tp_params == NULL)
return false;
if (tp_params->dp_phy_pattern < DP_TEST_PATTERN_SQUARE_BEGIN ||
tp_params->dp_phy_pattern > DP_TEST_PATTERN_SQUARE_END) {
// Deprogram overrides from previously set square wave override
if (link->current_test_pattern == DP_TEST_PATTERN_80BIT_CUSTOM ||
link->current_test_pattern == DP_TEST_PATTERN_D102)
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_exit_manual_automation_0[0],
sizeof(vendor_lttpr_exit_manual_automation_0));
else
dp_dio_fixed_vs_pe_retimer_exit_manual_automation(link);
return false;
}
hw_tp_params.dp_phy_pattern = DP_TEST_PATTERN_PRBS31;
hw_tp_params.dp_panel_mode = tp_params->dp_panel_mode;
if (link_hwss->ext.set_dp_link_test_pattern)
link_hwss->ext.set_dp_link_test_pattern(link, link_res, &hw_tp_params);
dp_hpo_fixed_vs_pe_retimer_program_override_test_pattern(link, tp_params);
dp_hpo_fixed_vs_pe_retimer_set_tx_ffe(link, &link->cur_lane_setting[0]);
return true;
}
static void set_hpo_fixed_vs_pe_retimer_dp_link_test_pattern(struct dc_link *link,
const struct link_resource *link_res,
struct encoder_set_dp_phy_pattern_param *tp_params)
{
if (!dp_hpo_fixed_vs_pe_retimer_set_override_test_pattern(
link, link_res, tp_params, get_hpo_dp_link_hwss())) {
link_res->hpo_dp_link_enc->funcs->set_link_test_pattern(
link_res->hpo_dp_link_enc, tp_params);
}
link->dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_SET_SOURCE_PATTERN);
}
static void set_hpo_fixed_vs_pe_retimer_dp_lane_settings(struct dc_link *link,
const struct link_resource *link_res,
const struct dc_link_settings *link_settings,
const struct dc_lane_settings lane_settings[LANE_COUNT_DP_MAX])
{
link_res->hpo_dp_link_enc->funcs->set_ffe(
link_res->hpo_dp_link_enc,
link_settings,
lane_settings[0].FFE_PRESET.raw);
// FFE is programmed when retimer is programmed for SQ128, but explicit
// programming needed here as well in case FFE-only update is requested
if (link->current_test_pattern >= DP_TEST_PATTERN_SQUARE_BEGIN &&
link->current_test_pattern <= DP_TEST_PATTERN_SQUARE_END)
dp_hpo_fixed_vs_pe_retimer_set_tx_ffe(link, &lane_settings[0]);
}
static void enable_hpo_fixed_vs_pe_retimer_dp_link_output(struct dc_link *link,
const struct link_resource *link_res,
enum signal_type signal,
enum clock_source_id clock_source,
const struct dc_link_settings *link_settings)
{
if (link_settings->lane_count == LANE_COUNT_FOUR)
enable_dio_fixed_vs_pe_retimer_program_4lane_output(link);
enable_hpo_dp_link_output(link, link_res, signal, clock_source, link_settings);
}
static const struct link_hwss hpo_fixed_vs_pe_retimer_dp_link_hwss = {
.setup_stream_encoder = setup_hpo_dp_stream_encoder,
.reset_stream_encoder = reset_hpo_dp_stream_encoder,
.setup_stream_attribute = setup_hpo_dp_stream_attribute,
.disable_link_output = disable_hpo_dp_link_output,
.setup_audio_output = setup_hpo_dp_audio_output,
.enable_audio_packet = enable_hpo_dp_audio_packet,
.disable_audio_packet = disable_hpo_dp_audio_packet,
.ext = {
.set_throttled_vcp_size = set_hpo_dp_throttled_vcp_size,
.set_hblank_min_symbol_width = set_hpo_dp_hblank_min_symbol_width,
.enable_dp_link_output = enable_hpo_fixed_vs_pe_retimer_dp_link_output,
.set_dp_link_test_pattern = set_hpo_fixed_vs_pe_retimer_dp_link_test_pattern,
.set_dp_lane_settings = set_hpo_fixed_vs_pe_retimer_dp_lane_settings,
.update_stream_allocation_table = update_hpo_dp_stream_allocation_table,
},
};
bool requires_fixed_vs_pe_retimer_hpo_link_hwss(const struct dc_link *link)
{
if (!(link->chip_caps & EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN))
return false;
if (!link->dpcd_caps.lttpr_caps.main_link_channel_coding.bits.DP_128b_132b_SUPPORTED)
return false;
return true;
}
const struct link_hwss *get_hpo_fixed_vs_pe_retimer_dp_link_hwss(void)
{
return &hpo_fixed_vs_pe_retimer_dp_link_hwss;
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/hwss/link_hwss_hpo_fixed_vs_pe_retimer_dp.c |
/*
* Copyright 2023 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "link_hwss_dio.h"
#include "link_hwss_dio_fixed_vs_pe_retimer.h"
#include "link_enc_cfg.h"
uint8_t dp_dio_fixed_vs_pe_retimer_lane_cfg_to_hw_cfg(struct dc_link *link)
{
// TODO: Get USB-C cable orientation
if (link->cur_link_settings.lane_count == LANE_COUNT_FOUR)
return 0xF2;
else
return 0x12;
}
void dp_dio_fixed_vs_pe_retimer_exit_manual_automation(struct dc_link *link)
{
const uint8_t dp_type = dp_dio_fixed_vs_pe_retimer_lane_cfg_to_hw_cfg(link);
const uint8_t vendor_lttpr_exit_manual_automation_0[4] = {0x1, 0x11, 0x0, 0x06};
const uint8_t vendor_lttpr_exit_manual_automation_1[4] = {0x1, 0x50, dp_type, 0x0};
const uint8_t vendor_lttpr_exit_manual_automation_2[4] = {0x1, 0x50, 0x50, 0x0};
const uint8_t vendor_lttpr_exit_manual_automation_3[4] = {0x1, 0x51, 0x50, 0x0};
const uint8_t vendor_lttpr_exit_manual_automation_4[4] = {0x1, 0x10, 0x58, 0x0};
const uint8_t vendor_lttpr_exit_manual_automation_5[4] = {0x1, 0x10, 0x59, 0x0};
const uint8_t vendor_lttpr_exit_manual_automation_6[4] = {0x1, 0x30, 0x51, 0x0};
const uint8_t vendor_lttpr_exit_manual_automation_7[4] = {0x1, 0x30, 0x52, 0x0};
const uint8_t vendor_lttpr_exit_manual_automation_8[4] = {0x1, 0x30, 0x54, 0x0};
const uint8_t vendor_lttpr_exit_manual_automation_9[4] = {0x1, 0x30, 0x55, 0x0};
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_exit_manual_automation_0[0], sizeof(vendor_lttpr_exit_manual_automation_0));
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_exit_manual_automation_1[0], sizeof(vendor_lttpr_exit_manual_automation_1));
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_exit_manual_automation_2[0], sizeof(vendor_lttpr_exit_manual_automation_2));
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_exit_manual_automation_3[0], sizeof(vendor_lttpr_exit_manual_automation_3));
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_exit_manual_automation_4[0], sizeof(vendor_lttpr_exit_manual_automation_4));
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_exit_manual_automation_5[0], sizeof(vendor_lttpr_exit_manual_automation_5));
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_exit_manual_automation_6[0], sizeof(vendor_lttpr_exit_manual_automation_6));
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_exit_manual_automation_7[0], sizeof(vendor_lttpr_exit_manual_automation_7));
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_exit_manual_automation_8[0], sizeof(vendor_lttpr_exit_manual_automation_8));
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_exit_manual_automation_9[0], sizeof(vendor_lttpr_exit_manual_automation_9));
}
static bool set_dio_fixed_vs_pe_retimer_dp_link_test_pattern_override(struct dc_link *link,
const struct link_resource *link_res, struct encoder_set_dp_phy_pattern_param *tp_params,
const struct link_hwss *link_hwss)
{
struct encoder_set_dp_phy_pattern_param hw_tp_params = { 0 };
const uint8_t pltpat_custom[10] = {0x1F, 0x7C, 0xF0, 0xC1, 0x07, 0x1F, 0x7C, 0xF0, 0xC1, 0x07};
const uint8_t vendor_lttpr_write_data_pg0[4] = {0x1, 0x11, 0x0, 0x0};
const uint8_t vendor_lttpr_exit_manual_automation_0[4] = {0x1, 0x11, 0x0, 0x06};
if (tp_params == NULL)
return false;
if (link->current_test_pattern >= DP_TEST_PATTERN_SQUARE_BEGIN &&
link->current_test_pattern <= DP_TEST_PATTERN_SQUARE_END) {
// Deprogram overrides from previous test pattern
dp_dio_fixed_vs_pe_retimer_exit_manual_automation(link);
}
switch (tp_params->dp_phy_pattern) {
case DP_TEST_PATTERN_80BIT_CUSTOM:
if (tp_params->custom_pattern_size == 0 || memcmp(tp_params->custom_pattern,
pltpat_custom, tp_params->custom_pattern_size) != 0)
return false;
break;
case DP_TEST_PATTERN_D102:
break;
default:
if (link->current_test_pattern == DP_TEST_PATTERN_80BIT_CUSTOM ||
link->current_test_pattern == DP_TEST_PATTERN_D102)
// Deprogram overrides from previous test pattern
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_exit_manual_automation_0[0],
sizeof(vendor_lttpr_exit_manual_automation_0));
return false;
}
hw_tp_params.dp_phy_pattern = tp_params->dp_phy_pattern;
hw_tp_params.dp_panel_mode = tp_params->dp_panel_mode;
if (link_hwss->ext.set_dp_link_test_pattern)
link_hwss->ext.set_dp_link_test_pattern(link, link_res, &hw_tp_params);
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_pg0[0], sizeof(vendor_lttpr_write_data_pg0));
return true;
}
static void set_dio_fixed_vs_pe_retimer_dp_link_test_pattern(struct dc_link *link,
const struct link_resource *link_res,
struct encoder_set_dp_phy_pattern_param *tp_params)
{
struct link_encoder *link_enc = link_enc_cfg_get_link_enc(link);
if (!set_dio_fixed_vs_pe_retimer_dp_link_test_pattern_override(
link, link_res, tp_params, get_dio_link_hwss())) {
link_enc->funcs->dp_set_phy_pattern(link_enc, tp_params);
}
link->dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_SET_SOURCE_PATTERN);
}
void enable_dio_fixed_vs_pe_retimer_program_4lane_output(struct dc_link *link)
{
const uint8_t vendor_lttpr_write_data_4lane_1[4] = {0x1, 0x6E, 0xF2, 0x19};
const uint8_t vendor_lttpr_write_data_4lane_2[4] = {0x1, 0x6B, 0xF2, 0x01};
const uint8_t vendor_lttpr_write_data_4lane_3[4] = {0x1, 0x6D, 0xF2, 0x18};
const uint8_t vendor_lttpr_write_data_4lane_4[4] = {0x1, 0x6C, 0xF2, 0x03};
const uint8_t vendor_lttpr_write_data_4lane_5[4] = {0x1, 0x03, 0xF3, 0x06};
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_4lane_1[0], sizeof(vendor_lttpr_write_data_4lane_1));
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_4lane_2[0], sizeof(vendor_lttpr_write_data_4lane_2));
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_4lane_3[0], sizeof(vendor_lttpr_write_data_4lane_3));
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_4lane_4[0], sizeof(vendor_lttpr_write_data_4lane_4));
link->dc->link_srv->configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_4lane_5[0], sizeof(vendor_lttpr_write_data_4lane_5));
}
static void enable_dio_fixed_vs_pe_retimer_dp_link_output(struct dc_link *link,
const struct link_resource *link_res,
enum signal_type signal,
enum clock_source_id clock_source,
const struct dc_link_settings *link_settings)
{
if (link_settings->lane_count == LANE_COUNT_FOUR)
enable_dio_fixed_vs_pe_retimer_program_4lane_output(link);
enable_dio_dp_link_output(link, link_res, signal, clock_source, link_settings);
}
static const struct link_hwss dio_fixed_vs_pe_retimer_link_hwss = {
.setup_stream_encoder = setup_dio_stream_encoder,
.reset_stream_encoder = reset_dio_stream_encoder,
.setup_stream_attribute = setup_dio_stream_attribute,
.disable_link_output = disable_dio_link_output,
.setup_audio_output = setup_dio_audio_output,
.enable_audio_packet = enable_dio_audio_packet,
.disable_audio_packet = disable_dio_audio_packet,
.ext = {
.set_throttled_vcp_size = set_dio_throttled_vcp_size,
.enable_dp_link_output = enable_dio_fixed_vs_pe_retimer_dp_link_output,
.set_dp_link_test_pattern = set_dio_fixed_vs_pe_retimer_dp_link_test_pattern,
.set_dp_lane_settings = set_dio_dp_lane_settings,
.update_stream_allocation_table = update_dio_stream_allocation_table,
},
};
bool requires_fixed_vs_pe_retimer_dio_link_hwss(const struct dc_link *link)
{
if (!(link->chip_caps & EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN))
return false;
if (!link->dpcd_caps.lttpr_caps.main_link_channel_coding.bits.DP_128b_132b_SUPPORTED)
return false;
return true;
}
const struct link_hwss *get_dio_fixed_vs_pe_retimer_link_hwss(void)
{
return &dio_fixed_vs_pe_retimer_link_hwss;
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/hwss/link_hwss_dio_fixed_vs_pe_retimer.c |
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "link_hwss_dio.h"
#include "core_types.h"
#include "link_enc_cfg.h"
void set_dio_throttled_vcp_size(struct pipe_ctx *pipe_ctx,
struct fixed31_32 throttled_vcp_size)
{
struct stream_encoder *stream_encoder = pipe_ctx->stream_res.stream_enc;
stream_encoder->funcs->set_throttled_vcp_size(
stream_encoder,
throttled_vcp_size);
}
void setup_dio_stream_encoder(struct pipe_ctx *pipe_ctx)
{
struct link_encoder *link_enc = link_enc_cfg_get_link_enc(pipe_ctx->stream->link);
struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc;
link_enc->funcs->connect_dig_be_to_fe(link_enc,
pipe_ctx->stream_res.stream_enc->id, true);
if (dc_is_dp_signal(pipe_ctx->stream->signal))
pipe_ctx->stream->ctx->dc->link_srv->dp_trace_source_sequence(pipe_ctx->stream->link,
DPCD_SOURCE_SEQ_AFTER_CONNECT_DIG_FE_BE);
if (stream_enc->funcs->map_stream_to_link)
stream_enc->funcs->map_stream_to_link(stream_enc,
stream_enc->stream_enc_inst, link_enc->transmitter - TRANSMITTER_UNIPHY_A);
if (stream_enc->funcs->enable_fifo)
stream_enc->funcs->enable_fifo(stream_enc);
}
void reset_dio_stream_encoder(struct pipe_ctx *pipe_ctx)
{
struct link_encoder *link_enc = link_enc_cfg_get_link_enc(pipe_ctx->stream->link);
struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc;
if (stream_enc && stream_enc->funcs->disable_fifo)
stream_enc->funcs->disable_fifo(stream_enc);
link_enc->funcs->connect_dig_be_to_fe(
link_enc,
pipe_ctx->stream_res.stream_enc->id,
false);
if (dc_is_dp_signal(pipe_ctx->stream->signal))
pipe_ctx->stream->ctx->dc->link_srv->dp_trace_source_sequence(
pipe_ctx->stream->link,
DPCD_SOURCE_SEQ_AFTER_DISCONNECT_DIG_FE_BE);
}
void setup_dio_stream_attribute(struct pipe_ctx *pipe_ctx)
{
struct stream_encoder *stream_encoder = pipe_ctx->stream_res.stream_enc;
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
if (!dc_is_virtual_signal(stream->signal))
stream_encoder->funcs->setup_stereo_sync(
stream_encoder,
pipe_ctx->stream_res.tg->inst,
stream->timing.timing_3d_format != TIMING_3D_FORMAT_NONE);
if (dc_is_dp_signal(stream->signal))
stream_encoder->funcs->dp_set_stream_attribute(
stream_encoder,
&stream->timing,
stream->output_color_space,
stream->use_vsc_sdp_for_colorimetry,
link->dpcd_caps.dprx_feature.bits.SST_SPLIT_SDP_CAP);
else if (dc_is_hdmi_tmds_signal(stream->signal))
stream_encoder->funcs->hdmi_set_stream_attribute(
stream_encoder,
&stream->timing,
stream->phy_pix_clk,
pipe_ctx->stream_res.audio != NULL);
else if (dc_is_dvi_signal(stream->signal))
stream_encoder->funcs->dvi_set_stream_attribute(
stream_encoder,
&stream->timing,
(stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK) ?
true : false);
else if (dc_is_lvds_signal(stream->signal))
stream_encoder->funcs->lvds_set_stream_attribute(
stream_encoder,
&stream->timing);
if (dc_is_dp_signal(stream->signal))
link->dc->link_srv->dp_trace_source_sequence(link,
DPCD_SOURCE_SEQ_AFTER_DP_STREAM_ATTR);
}
void enable_dio_dp_link_output(struct dc_link *link,
const struct link_resource *link_res,
enum signal_type signal,
enum clock_source_id clock_source,
const struct dc_link_settings *link_settings)
{
struct link_encoder *link_enc = link_enc_cfg_get_link_enc(link);
if (dc_is_dp_sst_signal(signal))
link_enc->funcs->enable_dp_output(
link_enc,
link_settings,
clock_source);
else
link_enc->funcs->enable_dp_mst_output(
link_enc,
link_settings,
clock_source);
link->dc->link_srv->dp_trace_source_sequence(link,
DPCD_SOURCE_SEQ_AFTER_ENABLE_LINK_PHY);
}
void disable_dio_link_output(struct dc_link *link,
const struct link_resource *link_res,
enum signal_type signal)
{
struct link_encoder *link_enc = link_enc_cfg_get_link_enc(link);
link_enc->funcs->disable_output(link_enc, signal);
link->dc->link_srv->dp_trace_source_sequence(link,
DPCD_SOURCE_SEQ_AFTER_DISABLE_LINK_PHY);
}
void set_dio_dp_link_test_pattern(struct dc_link *link,
const struct link_resource *link_res,
struct encoder_set_dp_phy_pattern_param *tp_params)
{
struct link_encoder *link_enc = link_enc_cfg_get_link_enc(link);
link_enc->funcs->dp_set_phy_pattern(link_enc, tp_params);
link->dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_SET_SOURCE_PATTERN);
}
void set_dio_dp_lane_settings(struct dc_link *link,
const struct link_resource *link_res,
const struct dc_link_settings *link_settings,
const struct dc_lane_settings lane_settings[LANE_COUNT_DP_MAX])
{
struct link_encoder *link_enc = link_enc_cfg_get_link_enc(link);
link_enc->funcs->dp_set_lane_settings(link_enc, link_settings, lane_settings);
}
void update_dio_stream_allocation_table(struct dc_link *link,
const struct link_resource *link_res,
const struct link_mst_stream_allocation_table *table)
{
struct link_encoder *link_enc = link_enc_cfg_get_link_enc(link);
ASSERT(link_enc);
link_enc->funcs->update_mst_stream_allocation_table(link_enc, table);
}
void setup_dio_audio_output(struct pipe_ctx *pipe_ctx,
struct audio_output *audio_output, uint32_t audio_inst)
{
if (dc_is_dp_signal(pipe_ctx->stream->signal))
pipe_ctx->stream_res.stream_enc->funcs->dp_audio_setup(
pipe_ctx->stream_res.stream_enc,
audio_inst,
&pipe_ctx->stream->audio_info);
else
pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_setup(
pipe_ctx->stream_res.stream_enc,
audio_inst,
&pipe_ctx->stream->audio_info,
&audio_output->crtc_info);
}
void enable_dio_audio_packet(struct pipe_ctx *pipe_ctx)
{
if (dc_is_dp_signal(pipe_ctx->stream->signal))
pipe_ctx->stream_res.stream_enc->funcs->dp_audio_enable(
pipe_ctx->stream_res.stream_enc);
pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
pipe_ctx->stream_res.stream_enc, false);
if (dc_is_dp_signal(pipe_ctx->stream->signal))
pipe_ctx->stream->ctx->dc->link_srv->dp_trace_source_sequence(
pipe_ctx->stream->link,
DPCD_SOURCE_SEQ_AFTER_ENABLE_AUDIO_STREAM);
}
void disable_dio_audio_packet(struct pipe_ctx *pipe_ctx)
{
pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
pipe_ctx->stream_res.stream_enc, true);
if (pipe_ctx->stream_res.audio) {
if (dc_is_dp_signal(pipe_ctx->stream->signal))
pipe_ctx->stream_res.stream_enc->funcs->dp_audio_disable(
pipe_ctx->stream_res.stream_enc);
else
pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_disable(
pipe_ctx->stream_res.stream_enc);
}
if (dc_is_dp_signal(pipe_ctx->stream->signal))
pipe_ctx->stream->ctx->dc->link_srv->dp_trace_source_sequence(
pipe_ctx->stream->link,
DPCD_SOURCE_SEQ_AFTER_DISABLE_AUDIO_STREAM);
}
static const struct link_hwss dio_link_hwss = {
.setup_stream_encoder = setup_dio_stream_encoder,
.reset_stream_encoder = reset_dio_stream_encoder,
.setup_stream_attribute = setup_dio_stream_attribute,
.disable_link_output = disable_dio_link_output,
.setup_audio_output = setup_dio_audio_output,
.enable_audio_packet = enable_dio_audio_packet,
.disable_audio_packet = disable_dio_audio_packet,
.ext = {
.set_throttled_vcp_size = set_dio_throttled_vcp_size,
.enable_dp_link_output = enable_dio_dp_link_output,
.set_dp_link_test_pattern = set_dio_dp_link_test_pattern,
.set_dp_lane_settings = set_dio_dp_lane_settings,
.update_stream_allocation_table = update_dio_stream_allocation_table,
},
};
bool can_use_dio_link_hwss(const struct dc_link *link,
const struct link_resource *link_res)
{
return link->link_enc != NULL;
}
const struct link_hwss *get_dio_link_hwss(void)
{
return &dio_link_hwss;
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/hwss/link_hwss_dio.c |
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "link_hwss_hpo_dp.h"
#include "dm_helpers.h"
#include "core_types.h"
#include "dccg.h"
#include "clk_mgr.h"
void set_hpo_dp_throttled_vcp_size(struct pipe_ctx *pipe_ctx,
struct fixed31_32 throttled_vcp_size)
{
struct hpo_dp_stream_encoder *hpo_dp_stream_encoder =
pipe_ctx->stream_res.hpo_dp_stream_enc;
struct hpo_dp_link_encoder *hpo_dp_link_encoder =
pipe_ctx->link_res.hpo_dp_link_enc;
hpo_dp_link_encoder->funcs->set_throttled_vcp_size(hpo_dp_link_encoder,
hpo_dp_stream_encoder->inst,
throttled_vcp_size);
}
void set_hpo_dp_hblank_min_symbol_width(struct pipe_ctx *pipe_ctx,
const struct dc_link_settings *link_settings,
struct fixed31_32 throttled_vcp_size)
{
struct hpo_dp_stream_encoder *hpo_dp_stream_encoder =
pipe_ctx->stream_res.hpo_dp_stream_enc;
struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
struct fixed31_32 h_blank_in_ms, time_slot_in_ms, mtp_cnt_per_h_blank;
uint32_t link_bw_in_kbps =
hpo_dp_stream_encoder->ctx->dc->link_srv->dp_link_bandwidth_kbps(
pipe_ctx->stream->link, link_settings);
uint16_t hblank_min_symbol_width = 0;
if (link_bw_in_kbps > 0) {
h_blank_in_ms = dc_fixpt_div(dc_fixpt_from_int(
timing->h_total - timing->h_addressable),
dc_fixpt_from_fraction(timing->pix_clk_100hz, 10));
time_slot_in_ms = dc_fixpt_from_fraction(32 * 4, link_bw_in_kbps);
mtp_cnt_per_h_blank = dc_fixpt_div(h_blank_in_ms,
dc_fixpt_mul_int(time_slot_in_ms, 64));
hblank_min_symbol_width = dc_fixpt_floor(
dc_fixpt_mul(mtp_cnt_per_h_blank, throttled_vcp_size));
}
hpo_dp_stream_encoder->funcs->set_hblank_min_symbol_width(hpo_dp_stream_encoder,
hblank_min_symbol_width);
}
void setup_hpo_dp_stream_encoder(struct pipe_ctx *pipe_ctx)
{
struct hpo_dp_stream_encoder *stream_enc = pipe_ctx->stream_res.hpo_dp_stream_enc;
struct hpo_dp_link_encoder *link_enc = pipe_ctx->link_res.hpo_dp_link_enc;
stream_enc->funcs->enable_stream(stream_enc);
stream_enc->funcs->map_stream_to_link(stream_enc, stream_enc->inst, link_enc->inst);
}
void reset_hpo_dp_stream_encoder(struct pipe_ctx *pipe_ctx)
{
struct hpo_dp_stream_encoder *stream_enc = pipe_ctx->stream_res.hpo_dp_stream_enc;
stream_enc->funcs->disable(stream_enc);
}
void setup_hpo_dp_stream_attribute(struct pipe_ctx *pipe_ctx)
{
struct hpo_dp_stream_encoder *stream_enc = pipe_ctx->stream_res.hpo_dp_stream_enc;
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
stream_enc->funcs->set_stream_attribute(
stream_enc,
&stream->timing,
stream->output_color_space,
stream->use_vsc_sdp_for_colorimetry,
stream->timing.flags.DSC,
false);
link->dc->link_srv->dp_trace_source_sequence(link,
DPCD_SOURCE_SEQ_AFTER_DP_STREAM_ATTR);
}
void enable_hpo_dp_link_output(struct dc_link *link,
const struct link_resource *link_res,
enum signal_type signal,
enum clock_source_id clock_source,
const struct dc_link_settings *link_settings)
{
if (link->dc->res_pool->dccg->funcs->set_symclk32_le_root_clock_gating)
link->dc->res_pool->dccg->funcs->set_symclk32_le_root_clock_gating(
link->dc->res_pool->dccg,
link_res->hpo_dp_link_enc->inst,
true);
link_res->hpo_dp_link_enc->funcs->enable_link_phy(
link_res->hpo_dp_link_enc,
link_settings,
link->link_enc->transmitter,
link->link_enc->hpd_source);
}
void disable_hpo_dp_link_output(struct dc_link *link,
const struct link_resource *link_res,
enum signal_type signal)
{
link_res->hpo_dp_link_enc->funcs->link_disable(link_res->hpo_dp_link_enc);
link_res->hpo_dp_link_enc->funcs->disable_link_phy(
link_res->hpo_dp_link_enc, signal);
if (link->dc->res_pool->dccg->funcs->set_symclk32_le_root_clock_gating)
link->dc->res_pool->dccg->funcs->set_symclk32_le_root_clock_gating(
link->dc->res_pool->dccg,
link_res->hpo_dp_link_enc->inst,
false);
}
static void set_hpo_dp_link_test_pattern(struct dc_link *link,
const struct link_resource *link_res,
struct encoder_set_dp_phy_pattern_param *tp_params)
{
link_res->hpo_dp_link_enc->funcs->set_link_test_pattern(
link_res->hpo_dp_link_enc, tp_params);
link->dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_SET_SOURCE_PATTERN);
}
static void set_hpo_dp_lane_settings(struct dc_link *link,
const struct link_resource *link_res,
const struct dc_link_settings *link_settings,
const struct dc_lane_settings lane_settings[LANE_COUNT_DP_MAX])
{
link_res->hpo_dp_link_enc->funcs->set_ffe(
link_res->hpo_dp_link_enc,
link_settings,
lane_settings[0].FFE_PRESET.raw);
}
void update_hpo_dp_stream_allocation_table(struct dc_link *link,
const struct link_resource *link_res,
const struct link_mst_stream_allocation_table *table)
{
link_res->hpo_dp_link_enc->funcs->update_stream_allocation_table(
link_res->hpo_dp_link_enc,
table);
}
void setup_hpo_dp_audio_output(struct pipe_ctx *pipe_ctx,
struct audio_output *audio_output, uint32_t audio_inst)
{
pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_audio_setup(
pipe_ctx->stream_res.hpo_dp_stream_enc,
audio_inst,
&pipe_ctx->stream->audio_info);
}
void enable_hpo_dp_audio_packet(struct pipe_ctx *pipe_ctx)
{
pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_audio_enable(
pipe_ctx->stream_res.hpo_dp_stream_enc);
}
void disable_hpo_dp_audio_packet(struct pipe_ctx *pipe_ctx)
{
if (pipe_ctx->stream_res.audio)
pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_audio_disable(
pipe_ctx->stream_res.hpo_dp_stream_enc);
}
static const struct link_hwss hpo_dp_link_hwss = {
.setup_stream_encoder = setup_hpo_dp_stream_encoder,
.reset_stream_encoder = reset_hpo_dp_stream_encoder,
.setup_stream_attribute = setup_hpo_dp_stream_attribute,
.disable_link_output = disable_hpo_dp_link_output,
.setup_audio_output = setup_hpo_dp_audio_output,
.enable_audio_packet = enable_hpo_dp_audio_packet,
.disable_audio_packet = disable_hpo_dp_audio_packet,
.ext = {
.set_throttled_vcp_size = set_hpo_dp_throttled_vcp_size,
.set_hblank_min_symbol_width = set_hpo_dp_hblank_min_symbol_width,
.enable_dp_link_output = enable_hpo_dp_link_output,
.set_dp_link_test_pattern = set_hpo_dp_link_test_pattern,
.set_dp_lane_settings = set_hpo_dp_lane_settings,
.update_stream_allocation_table = update_hpo_dp_stream_allocation_table,
},
};
bool can_use_hpo_dp_link_hwss(const struct dc_link *link,
const struct link_resource *link_res)
{
return link_res->hpo_dp_link_enc != NULL;
}
const struct link_hwss *get_hpo_dp_link_hwss(void)
{
return &hpo_dp_link_hwss;
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/hwss/link_hwss_hpo_dp.c |
/*
* Copyright 2023 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "link_fpga.h"
#include "link/link_dpms.h"
#include "dm_helpers.h"
#include "link_hwss.h"
#include "dccg.h"
#include "resource.h"
#define DC_LOGGER_INIT(logger)
void dp_fpga_hpo_enable_link_and_stream(struct dc_state *state, struct pipe_ctx *pipe_ctx)
{
struct dc *dc = pipe_ctx->stream->ctx->dc;
struct dc_stream_state *stream = pipe_ctx->stream;
struct link_mst_stream_allocation_table proposed_table = {0};
struct fixed31_32 avg_time_slots_per_mtp;
uint8_t req_slot_count = 0;
uint8_t vc_id = 1; /// VC ID always 1 for SST
struct dc_link_settings link_settings = pipe_ctx->link_config.dp_link_settings;
const struct link_hwss *link_hwss = get_link_hwss(stream->link, &pipe_ctx->link_res);
DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
stream->link->cur_link_settings = link_settings;
if (link_hwss->ext.enable_dp_link_output)
link_hwss->ext.enable_dp_link_output(stream->link, &pipe_ctx->link_res,
stream->signal, pipe_ctx->clock_source->id,
&link_settings);
/* Enable DP_STREAM_ENC */
dc->hwss.enable_stream(pipe_ctx);
/* Set DPS PPS SDP (AKA "info frames") */
if (pipe_ctx->stream->timing.flags.DSC) {
link_set_dsc_pps_packet(pipe_ctx, true, true);
}
/* Allocate Payload */
if ((stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST) && (state->stream_count > 1)) {
// MST case
uint8_t i;
proposed_table.stream_count = state->stream_count;
for (i = 0; i < state->stream_count; i++) {
avg_time_slots_per_mtp = link_calculate_sst_avg_time_slots_per_mtp(state->streams[i], state->streams[i]->link);
req_slot_count = dc_fixpt_ceil(avg_time_slots_per_mtp);
proposed_table.stream_allocations[i].slot_count = req_slot_count;
proposed_table.stream_allocations[i].vcp_id = i+1;
/* NOTE: This makes assumption that pipe_ctx index is same as stream index */
proposed_table.stream_allocations[i].hpo_dp_stream_enc = state->res_ctx.pipe_ctx[i].stream_res.hpo_dp_stream_enc;
}
} else {
// SST case
avg_time_slots_per_mtp = link_calculate_sst_avg_time_slots_per_mtp(stream, stream->link);
req_slot_count = dc_fixpt_ceil(avg_time_slots_per_mtp);
proposed_table.stream_count = 1; /// Always 1 stream for SST
proposed_table.stream_allocations[0].slot_count = req_slot_count;
proposed_table.stream_allocations[0].vcp_id = vc_id;
proposed_table.stream_allocations[0].hpo_dp_stream_enc = pipe_ctx->stream_res.hpo_dp_stream_enc;
}
link_hwss->ext.update_stream_allocation_table(stream->link,
&pipe_ctx->link_res,
&proposed_table);
if (link_hwss->ext.set_throttled_vcp_size)
link_hwss->ext.set_throttled_vcp_size(pipe_ctx, avg_time_slots_per_mtp);
dc->hwss.unblank_stream(pipe_ctx, &stream->link->cur_link_settings);
dc->hwss.enable_audio_stream(pipe_ctx);
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/accessories/link_fpga.c |
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "link_dp_cts.h"
#include "link/link_resource.h"
#include "link/protocols/link_dpcd.h"
#include "link/protocols/link_dp_training.h"
#include "link/protocols/link_dp_phy.h"
#include "link/protocols/link_dp_training_fixed_vs_pe_retimer.h"
#include "link/protocols/link_dp_capability.h"
#include "link/link_dpms.h"
#include "resource.h"
#include "dm_helpers.h"
#include "dc_dmub_srv.h"
#include "dce/dmub_hw_lock_mgr.h"
#define DC_LOGGER \
link->ctx->logger
static enum dc_link_rate get_link_rate_from_test_link_rate(uint8_t test_rate)
{
switch (test_rate) {
case DP_TEST_LINK_RATE_RBR:
return LINK_RATE_LOW;
case DP_TEST_LINK_RATE_HBR:
return LINK_RATE_HIGH;
case DP_TEST_LINK_RATE_HBR2:
return LINK_RATE_HIGH2;
case DP_TEST_LINK_RATE_HBR3:
return LINK_RATE_HIGH3;
case DP_TEST_LINK_RATE_UHBR10:
return LINK_RATE_UHBR10;
case DP_TEST_LINK_RATE_UHBR20:
return LINK_RATE_UHBR20;
case DP_TEST_LINK_RATE_UHBR13_5:
return LINK_RATE_UHBR13_5;
default:
return LINK_RATE_UNKNOWN;
}
}
static bool is_dp_phy_sqaure_pattern(enum dp_test_pattern test_pattern)
{
return (DP_TEST_PATTERN_SQUARE_BEGIN <= test_pattern &&
test_pattern <= DP_TEST_PATTERN_SQUARE_END);
}
static bool is_dp_phy_pattern(enum dp_test_pattern test_pattern)
{
if ((DP_TEST_PATTERN_PHY_PATTERN_BEGIN <= test_pattern &&
test_pattern <= DP_TEST_PATTERN_PHY_PATTERN_END) ||
test_pattern == DP_TEST_PATTERN_VIDEO_MODE)
return true;
else
return false;
}
static void dp_retrain_link_dp_test(struct dc_link *link,
struct dc_link_settings *link_setting,
bool skip_video_pattern)
{
struct pipe_ctx *pipes[MAX_PIPES];
struct dc_state *state = link->dc->current_state;
uint8_t count;
int i;
udelay(100);
link_get_master_pipes_with_dpms_on(link, state, &count, pipes);
for (i = 0; i < count; i++) {
link_set_dpms_off(pipes[i]);
pipes[i]->link_config.dp_link_settings = *link_setting;
update_dp_encoder_resources_for_test_harness(
link->dc,
state,
pipes[i]);
}
for (i = count-1; i >= 0; i--)
link_set_dpms_on(state, pipes[i]);
}
static void dp_test_send_link_training(struct dc_link *link)
{
struct dc_link_settings link_settings = {0};
uint8_t test_rate = 0;
core_link_read_dpcd(
link,
DP_TEST_LANE_COUNT,
(unsigned char *)(&link_settings.lane_count),
1);
core_link_read_dpcd(
link,
DP_TEST_LINK_RATE,
&test_rate,
1);
link_settings.link_rate = get_link_rate_from_test_link_rate(test_rate);
/* Set preferred link settings */
link->verified_link_cap.lane_count = link_settings.lane_count;
link->verified_link_cap.link_rate = link_settings.link_rate;
dp_retrain_link_dp_test(link, &link_settings, false);
}
static void dp_test_get_audio_test_data(struct dc_link *link, bool disable_video)
{
union audio_test_mode dpcd_test_mode = {0};
struct audio_test_pattern_type dpcd_pattern_type = {0};
union audio_test_pattern_period dpcd_pattern_period[AUDIO_CHANNELS_COUNT] = {0};
enum dp_test_pattern test_pattern = DP_TEST_PATTERN_AUDIO_OPERATOR_DEFINED;
struct pipe_ctx *pipes = link->dc->current_state->res_ctx.pipe_ctx;
struct pipe_ctx *pipe_ctx = &pipes[0];
unsigned int channel_count;
unsigned int channel = 0;
unsigned int modes = 0;
unsigned int sampling_rate_in_hz = 0;
// get audio test mode and test pattern parameters
core_link_read_dpcd(
link,
DP_TEST_AUDIO_MODE,
&dpcd_test_mode.raw,
sizeof(dpcd_test_mode));
core_link_read_dpcd(
link,
DP_TEST_AUDIO_PATTERN_TYPE,
&dpcd_pattern_type.value,
sizeof(dpcd_pattern_type));
channel_count = min(dpcd_test_mode.bits.channel_count + 1, AUDIO_CHANNELS_COUNT);
// read pattern periods for requested channels when sawTooth pattern is requested
if (dpcd_pattern_type.value == AUDIO_TEST_PATTERN_SAWTOOTH ||
dpcd_pattern_type.value == AUDIO_TEST_PATTERN_OPERATOR_DEFINED) {
test_pattern = (dpcd_pattern_type.value == AUDIO_TEST_PATTERN_SAWTOOTH) ?
DP_TEST_PATTERN_AUDIO_SAWTOOTH : DP_TEST_PATTERN_AUDIO_OPERATOR_DEFINED;
// read period for each channel
for (channel = 0; channel < channel_count; channel++) {
core_link_read_dpcd(
link,
DP_TEST_AUDIO_PERIOD_CH1 + channel,
&dpcd_pattern_period[channel].raw,
sizeof(dpcd_pattern_period[channel]));
}
}
// translate sampling rate
switch (dpcd_test_mode.bits.sampling_rate) {
case AUDIO_SAMPLING_RATE_32KHZ:
sampling_rate_in_hz = 32000;
break;
case AUDIO_SAMPLING_RATE_44_1KHZ:
sampling_rate_in_hz = 44100;
break;
case AUDIO_SAMPLING_RATE_48KHZ:
sampling_rate_in_hz = 48000;
break;
case AUDIO_SAMPLING_RATE_88_2KHZ:
sampling_rate_in_hz = 88200;
break;
case AUDIO_SAMPLING_RATE_96KHZ:
sampling_rate_in_hz = 96000;
break;
case AUDIO_SAMPLING_RATE_176_4KHZ:
sampling_rate_in_hz = 176400;
break;
case AUDIO_SAMPLING_RATE_192KHZ:
sampling_rate_in_hz = 192000;
break;
default:
sampling_rate_in_hz = 0;
break;
}
link->audio_test_data.flags.test_requested = 1;
link->audio_test_data.flags.disable_video = disable_video;
link->audio_test_data.sampling_rate = sampling_rate_in_hz;
link->audio_test_data.channel_count = channel_count;
link->audio_test_data.pattern_type = test_pattern;
if (test_pattern == DP_TEST_PATTERN_AUDIO_SAWTOOTH) {
for (modes = 0; modes < pipe_ctx->stream->audio_info.mode_count; modes++) {
link->audio_test_data.pattern_period[modes] = dpcd_pattern_period[modes].bits.pattern_period;
}
}
}
/* TODO Raven hbr2 compliance eye output is unstable
* (toggling on and off) with debugger break
* This caueses intermittent PHY automation failure
* Need to look into the root cause */
static void dp_test_send_phy_test_pattern(struct dc_link *link)
{
union phy_test_pattern dpcd_test_pattern;
union lane_adjust dpcd_lane_adjustment[2];
unsigned char dpcd_post_cursor_2_adjustment = 0;
unsigned char test_pattern_buffer[
(DP_TEST_264BIT_CUSTOM_PATTERN_263_256 -
DP_TEST_264BIT_CUSTOM_PATTERN_7_0)+1] = {0};
unsigned int test_pattern_size = 0;
enum dp_test_pattern test_pattern;
union lane_adjust dpcd_lane_adjust;
unsigned int lane;
struct link_training_settings link_training_settings;
unsigned char no_preshoot = 0;
unsigned char no_deemphasis = 0;
dpcd_test_pattern.raw = 0;
memset(dpcd_lane_adjustment, 0, sizeof(dpcd_lane_adjustment));
memset(&link_training_settings, 0, sizeof(link_training_settings));
/* get phy test pattern and pattern parameters from DP receiver */
core_link_read_dpcd(
link,
DP_PHY_TEST_PATTERN,
&dpcd_test_pattern.raw,
sizeof(dpcd_test_pattern));
core_link_read_dpcd(
link,
DP_ADJUST_REQUEST_LANE0_1,
&dpcd_lane_adjustment[0].raw,
sizeof(dpcd_lane_adjustment));
/* prepare link training settings */
link_training_settings.link_settings = link->cur_link_settings;
link_training_settings.lttpr_mode = dp_decide_lttpr_mode(link, &link->cur_link_settings);
if ((link->chip_caps & EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN) &&
link_training_settings.lttpr_mode == LTTPR_MODE_TRANSPARENT)
dp_fixed_vs_pe_read_lane_adjust(
link,
link_training_settings.dpcd_lane_settings);
/*get post cursor 2 parameters
* For DP 1.1a or eariler, this DPCD register's value is 0
* For DP 1.2 or later:
* Bits 1:0 = POST_CURSOR2_LANE0; Bits 3:2 = POST_CURSOR2_LANE1
* Bits 5:4 = POST_CURSOR2_LANE2; Bits 7:6 = POST_CURSOR2_LANE3
*/
core_link_read_dpcd(
link,
DP_ADJUST_REQUEST_POST_CURSOR2,
&dpcd_post_cursor_2_adjustment,
sizeof(dpcd_post_cursor_2_adjustment));
/* translate request */
switch (dpcd_test_pattern.bits.PATTERN) {
case PHY_TEST_PATTERN_D10_2:
test_pattern = DP_TEST_PATTERN_D102;
break;
case PHY_TEST_PATTERN_SYMBOL_ERROR:
test_pattern = DP_TEST_PATTERN_SYMBOL_ERROR;
break;
case PHY_TEST_PATTERN_PRBS7:
test_pattern = DP_TEST_PATTERN_PRBS7;
break;
case PHY_TEST_PATTERN_80BIT_CUSTOM:
test_pattern = DP_TEST_PATTERN_80BIT_CUSTOM;
break;
case PHY_TEST_PATTERN_CP2520_1:
/* CP2520 pattern is unstable, temporarily use TPS4 instead */
test_pattern = (link->dc->caps.force_dp_tps4_for_cp2520 == 1) ?
DP_TEST_PATTERN_TRAINING_PATTERN4 :
DP_TEST_PATTERN_HBR2_COMPLIANCE_EYE;
break;
case PHY_TEST_PATTERN_CP2520_2:
/* CP2520 pattern is unstable, temporarily use TPS4 instead */
test_pattern = (link->dc->caps.force_dp_tps4_for_cp2520 == 1) ?
DP_TEST_PATTERN_TRAINING_PATTERN4 :
DP_TEST_PATTERN_HBR2_COMPLIANCE_EYE;
break;
case PHY_TEST_PATTERN_CP2520_3:
test_pattern = DP_TEST_PATTERN_TRAINING_PATTERN4;
break;
case PHY_TEST_PATTERN_128b_132b_TPS1:
test_pattern = DP_TEST_PATTERN_128b_132b_TPS1;
break;
case PHY_TEST_PATTERN_128b_132b_TPS2:
test_pattern = DP_TEST_PATTERN_128b_132b_TPS2;
break;
case PHY_TEST_PATTERN_PRBS9:
test_pattern = DP_TEST_PATTERN_PRBS9;
break;
case PHY_TEST_PATTERN_PRBS11:
test_pattern = DP_TEST_PATTERN_PRBS11;
break;
case PHY_TEST_PATTERN_PRBS15:
test_pattern = DP_TEST_PATTERN_PRBS15;
break;
case PHY_TEST_PATTERN_PRBS23:
test_pattern = DP_TEST_PATTERN_PRBS23;
break;
case PHY_TEST_PATTERN_PRBS31:
test_pattern = DP_TEST_PATTERN_PRBS31;
break;
case PHY_TEST_PATTERN_264BIT_CUSTOM:
test_pattern = DP_TEST_PATTERN_264BIT_CUSTOM;
break;
case PHY_TEST_PATTERN_SQUARE:
test_pattern = DP_TEST_PATTERN_SQUARE;
break;
case PHY_TEST_PATTERN_SQUARE_PRESHOOT_DISABLED:
test_pattern = DP_TEST_PATTERN_SQUARE_PRESHOOT_DISABLED;
no_preshoot = 1;
break;
case PHY_TEST_PATTERN_SQUARE_DEEMPHASIS_DISABLED:
test_pattern = DP_TEST_PATTERN_SQUARE_DEEMPHASIS_DISABLED;
no_deemphasis = 1;
break;
case PHY_TEST_PATTERN_SQUARE_PRESHOOT_DEEMPHASIS_DISABLED:
test_pattern = DP_TEST_PATTERN_SQUARE_PRESHOOT_DEEMPHASIS_DISABLED;
no_preshoot = 1;
no_deemphasis = 1;
break;
default:
test_pattern = DP_TEST_PATTERN_VIDEO_MODE;
break;
}
if (test_pattern == DP_TEST_PATTERN_80BIT_CUSTOM) {
test_pattern_size = (DP_TEST_80BIT_CUSTOM_PATTERN_79_72 -
DP_TEST_80BIT_CUSTOM_PATTERN_7_0) + 1;
core_link_read_dpcd(
link,
DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
test_pattern_buffer,
test_pattern_size);
}
if (is_dp_phy_sqaure_pattern(test_pattern)) {
test_pattern_size = 1; // Square pattern data is 1 byte (DP spec)
core_link_read_dpcd(
link,
DP_PHY_SQUARE_PATTERN,
test_pattern_buffer,
test_pattern_size);
}
if (test_pattern == DP_TEST_PATTERN_264BIT_CUSTOM) {
test_pattern_size = (DP_TEST_264BIT_CUSTOM_PATTERN_263_256-
DP_TEST_264BIT_CUSTOM_PATTERN_7_0) + 1;
core_link_read_dpcd(
link,
DP_TEST_264BIT_CUSTOM_PATTERN_7_0,
test_pattern_buffer,
test_pattern_size);
}
for (lane = 0; lane <
(unsigned int)(link->cur_link_settings.lane_count);
lane++) {
dpcd_lane_adjust.raw =
dp_get_nibble_at_index(&dpcd_lane_adjustment[0].raw, lane);
if (link_dp_get_encoding_format(&link->cur_link_settings) ==
DP_8b_10b_ENCODING) {
link_training_settings.hw_lane_settings[lane].VOLTAGE_SWING =
(enum dc_voltage_swing)
(dpcd_lane_adjust.bits.VOLTAGE_SWING_LANE);
link_training_settings.hw_lane_settings[lane].PRE_EMPHASIS =
(enum dc_pre_emphasis)
(dpcd_lane_adjust.bits.PRE_EMPHASIS_LANE);
link_training_settings.hw_lane_settings[lane].POST_CURSOR2 =
(enum dc_post_cursor2)
((dpcd_post_cursor_2_adjustment >> (lane * 2)) & 0x03);
} else if (link_dp_get_encoding_format(&link->cur_link_settings) ==
DP_128b_132b_ENCODING) {
link_training_settings.hw_lane_settings[lane].FFE_PRESET.settings.level =
dpcd_lane_adjust.tx_ffe.PRESET_VALUE;
link_training_settings.hw_lane_settings[lane].FFE_PRESET.settings.no_preshoot = no_preshoot;
link_training_settings.hw_lane_settings[lane].FFE_PRESET.settings.no_deemphasis = no_deemphasis;
}
}
dp_hw_to_dpcd_lane_settings(&link_training_settings,
link_training_settings.hw_lane_settings,
link_training_settings.dpcd_lane_settings);
/*Usage: Measure DP physical lane signal
* by DP SI test equipment automatically.
* PHY test pattern request is generated by equipment via HPD interrupt.
* HPD needs to be active all the time. HPD should be active
* all the time. Do not touch it.
* forward request to DS
*/
dp_set_test_pattern(
link,
test_pattern,
DP_TEST_PATTERN_COLOR_SPACE_UNDEFINED,
&link_training_settings,
test_pattern_buffer,
test_pattern_size);
}
static void set_crtc_test_pattern(struct dc_link *link,
struct pipe_ctx *pipe_ctx,
enum dp_test_pattern test_pattern,
enum dp_test_pattern_color_space test_pattern_color_space)
{
enum controller_dp_test_pattern controller_test_pattern;
enum dc_color_depth color_depth = pipe_ctx->
stream->timing.display_color_depth;
struct bit_depth_reduction_params params;
struct output_pixel_processor *opp = pipe_ctx->stream_res.opp;
struct pipe_ctx *odm_pipe;
int odm_cnt = 1;
int h_active = pipe_ctx->stream->timing.h_addressable +
pipe_ctx->stream->timing.h_border_left +
pipe_ctx->stream->timing.h_border_right;
int v_active = pipe_ctx->stream->timing.v_addressable +
pipe_ctx->stream->timing.v_border_bottom +
pipe_ctx->stream->timing.v_border_top;
int odm_slice_width, last_odm_slice_width, offset = 0;
memset(¶ms, 0, sizeof(params));
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
odm_cnt++;
odm_slice_width = h_active / odm_cnt;
last_odm_slice_width = h_active - odm_slice_width * (odm_cnt - 1);
switch (test_pattern) {
case DP_TEST_PATTERN_COLOR_SQUARES:
controller_test_pattern =
CONTROLLER_DP_TEST_PATTERN_COLORSQUARES;
break;
case DP_TEST_PATTERN_COLOR_SQUARES_CEA:
controller_test_pattern =
CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA;
break;
case DP_TEST_PATTERN_VERTICAL_BARS:
controller_test_pattern =
CONTROLLER_DP_TEST_PATTERN_VERTICALBARS;
break;
case DP_TEST_PATTERN_HORIZONTAL_BARS:
controller_test_pattern =
CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS;
break;
case DP_TEST_PATTERN_COLOR_RAMP:
controller_test_pattern =
CONTROLLER_DP_TEST_PATTERN_COLORRAMP;
break;
default:
controller_test_pattern =
CONTROLLER_DP_TEST_PATTERN_VIDEOMODE;
break;
}
switch (test_pattern) {
case DP_TEST_PATTERN_COLOR_SQUARES:
case DP_TEST_PATTERN_COLOR_SQUARES_CEA:
case DP_TEST_PATTERN_VERTICAL_BARS:
case DP_TEST_PATTERN_HORIZONTAL_BARS:
case DP_TEST_PATTERN_COLOR_RAMP:
{
/* disable bit depth reduction */
pipe_ctx->stream->bit_depth_params = params;
if (pipe_ctx->stream_res.tg->funcs->set_test_pattern) {
opp->funcs->opp_program_bit_depth_reduction(opp, ¶ms);
pipe_ctx->stream_res.tg->funcs->set_test_pattern(pipe_ctx->stream_res.tg,
controller_test_pattern, color_depth);
} else if (link->dc->hwss.set_disp_pattern_generator) {
enum controller_dp_color_space controller_color_space;
struct output_pixel_processor *odm_opp;
switch (test_pattern_color_space) {
case DP_TEST_PATTERN_COLOR_SPACE_RGB:
controller_color_space = CONTROLLER_DP_COLOR_SPACE_RGB;
break;
case DP_TEST_PATTERN_COLOR_SPACE_YCBCR601:
controller_color_space = CONTROLLER_DP_COLOR_SPACE_YCBCR601;
break;
case DP_TEST_PATTERN_COLOR_SPACE_YCBCR709:
controller_color_space = CONTROLLER_DP_COLOR_SPACE_YCBCR709;
break;
case DP_TEST_PATTERN_COLOR_SPACE_UNDEFINED:
default:
controller_color_space = CONTROLLER_DP_COLOR_SPACE_UDEFINED;
DC_LOG_ERROR("%s: Color space must be defined for test pattern", __func__);
ASSERT(0);
break;
}
odm_pipe = pipe_ctx;
while (odm_pipe->next_odm_pipe) {
odm_opp = odm_pipe->stream_res.opp;
odm_opp->funcs->opp_program_bit_depth_reduction(odm_opp, ¶ms);
link->dc->hwss.set_disp_pattern_generator(link->dc,
odm_pipe,
controller_test_pattern,
controller_color_space,
color_depth,
NULL,
odm_slice_width,
v_active,
offset);
offset += odm_slice_width;
odm_pipe = odm_pipe->next_odm_pipe;
}
odm_opp = odm_pipe->stream_res.opp;
odm_opp->funcs->opp_program_bit_depth_reduction(odm_opp, ¶ms);
link->dc->hwss.set_disp_pattern_generator(link->dc,
odm_pipe,
controller_test_pattern,
controller_color_space,
color_depth,
NULL,
last_odm_slice_width,
v_active,
offset);
}
}
break;
case DP_TEST_PATTERN_VIDEO_MODE:
{
/* restore bitdepth reduction */
resource_build_bit_depth_reduction_params(pipe_ctx->stream, ¶ms);
pipe_ctx->stream->bit_depth_params = params;
if (pipe_ctx->stream_res.tg->funcs->set_test_pattern) {
opp->funcs->opp_program_bit_depth_reduction(opp, ¶ms);
pipe_ctx->stream_res.tg->funcs->set_test_pattern(pipe_ctx->stream_res.tg,
CONTROLLER_DP_TEST_PATTERN_VIDEOMODE,
color_depth);
} else if (link->dc->hwss.set_disp_pattern_generator) {
struct output_pixel_processor *odm_opp;
odm_pipe = pipe_ctx;
while (odm_pipe->next_odm_pipe) {
odm_opp = odm_pipe->stream_res.opp;
odm_opp->funcs->opp_program_bit_depth_reduction(odm_opp, ¶ms);
link->dc->hwss.set_disp_pattern_generator(link->dc,
odm_pipe,
CONTROLLER_DP_TEST_PATTERN_VIDEOMODE,
CONTROLLER_DP_COLOR_SPACE_UDEFINED,
color_depth,
NULL,
odm_slice_width,
v_active,
offset);
offset += odm_slice_width;
odm_pipe = odm_pipe->next_odm_pipe;
}
odm_opp = odm_pipe->stream_res.opp;
odm_opp->funcs->opp_program_bit_depth_reduction(odm_opp, ¶ms);
link->dc->hwss.set_disp_pattern_generator(link->dc,
odm_pipe,
CONTROLLER_DP_TEST_PATTERN_VIDEOMODE,
CONTROLLER_DP_COLOR_SPACE_UDEFINED,
color_depth,
NULL,
last_odm_slice_width,
v_active,
offset);
}
}
break;
default:
break;
}
}
void dp_handle_automated_test(struct dc_link *link)
{
union test_request test_request;
union test_response test_response;
memset(&test_request, 0, sizeof(test_request));
memset(&test_response, 0, sizeof(test_response));
core_link_read_dpcd(
link,
DP_TEST_REQUEST,
&test_request.raw,
sizeof(union test_request));
if (test_request.bits.LINK_TRAINING) {
/* ACK first to let DP RX test box monitor LT sequence */
test_response.bits.ACK = 1;
core_link_write_dpcd(
link,
DP_TEST_RESPONSE,
&test_response.raw,
sizeof(test_response));
dp_test_send_link_training(link);
/* no acknowledge request is needed again */
test_response.bits.ACK = 0;
}
if (test_request.bits.LINK_TEST_PATTRN) {
union test_misc dpcd_test_params;
union link_test_pattern dpcd_test_pattern;
memset(&dpcd_test_pattern, 0, sizeof(dpcd_test_pattern));
memset(&dpcd_test_params, 0, sizeof(dpcd_test_params));
/* get link test pattern and pattern parameters */
core_link_read_dpcd(
link,
DP_TEST_PATTERN,
&dpcd_test_pattern.raw,
sizeof(dpcd_test_pattern));
core_link_read_dpcd(
link,
DP_TEST_MISC0,
&dpcd_test_params.raw,
sizeof(dpcd_test_params));
test_response.bits.ACK = dm_helpers_dp_handle_test_pattern_request(link->ctx, link,
dpcd_test_pattern, dpcd_test_params) ? 1 : 0;
}
if (test_request.bits.AUDIO_TEST_PATTERN) {
dp_test_get_audio_test_data(link, test_request.bits.TEST_AUDIO_DISABLED_VIDEO);
test_response.bits.ACK = 1;
}
if (test_request.bits.PHY_TEST_PATTERN) {
dp_test_send_phy_test_pattern(link);
test_response.bits.ACK = 1;
}
/* send request acknowledgment */
if (test_response.bits.ACK)
core_link_write_dpcd(
link,
DP_TEST_RESPONSE,
&test_response.raw,
sizeof(test_response));
}
bool dp_set_test_pattern(
struct dc_link *link,
enum dp_test_pattern test_pattern,
enum dp_test_pattern_color_space test_pattern_color_space,
const struct link_training_settings *p_link_settings,
const unsigned char *p_custom_pattern,
unsigned int cust_pattern_size)
{
struct pipe_ctx *pipes = link->dc->current_state->res_ctx.pipe_ctx;
struct pipe_ctx *pipe_ctx = NULL;
unsigned int lane;
unsigned int i;
unsigned char link_qual_pattern[LANE_COUNT_DP_MAX] = {0};
union dpcd_training_pattern training_pattern;
enum dpcd_phy_test_patterns pattern;
memset(&training_pattern, 0, sizeof(training_pattern));
for (i = 0; i < MAX_PIPES; i++) {
if (pipes[i].stream == NULL)
continue;
if (resource_is_pipe_type(&pipes[i], OTG_MASTER) &&
pipes[i].stream->link == link) {
pipe_ctx = &pipes[i];
break;
}
}
if (pipe_ctx == NULL)
return false;
/* Reset CRTC Test Pattern if it is currently running and request is VideoMode */
if (link->test_pattern_enabled && test_pattern ==
DP_TEST_PATTERN_VIDEO_MODE) {
/* Set CRTC Test Pattern */
set_crtc_test_pattern(link, pipe_ctx, test_pattern, test_pattern_color_space);
dp_set_hw_test_pattern(link, &pipe_ctx->link_res, test_pattern,
(uint8_t *)p_custom_pattern,
(uint32_t)cust_pattern_size);
/* Unblank Stream */
link->dc->hwss.unblank_stream(
pipe_ctx,
&link->verified_link_cap);
/* TODO:m_pHwss->MuteAudioEndpoint
* (pPathMode->pDisplayPath, false);
*/
/* Reset Test Pattern state */
link->test_pattern_enabled = false;
link->current_test_pattern = test_pattern;
return true;
}
/* Check for PHY Test Patterns */
if (is_dp_phy_pattern(test_pattern)) {
/* Set DPCD Lane Settings before running test pattern */
if (p_link_settings != NULL) {
if ((link->chip_caps & EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN) &&
p_link_settings->lttpr_mode == LTTPR_MODE_TRANSPARENT) {
dp_fixed_vs_pe_set_retimer_lane_settings(
link,
p_link_settings->dpcd_lane_settings,
p_link_settings->link_settings.lane_count);
} else {
dp_set_hw_lane_settings(link, &pipe_ctx->link_res, p_link_settings, DPRX);
}
dpcd_set_lane_settings(link, p_link_settings, DPRX);
}
/* Blank stream if running test pattern */
if (test_pattern != DP_TEST_PATTERN_VIDEO_MODE) {
/*TODO:
* m_pHwss->
* MuteAudioEndpoint(pPathMode->pDisplayPath, true);
*/
/* Blank stream */
link->dc->hwss.blank_stream(pipe_ctx);
}
dp_set_hw_test_pattern(link, &pipe_ctx->link_res, test_pattern,
(uint8_t *)p_custom_pattern,
(uint32_t)cust_pattern_size);
if (test_pattern != DP_TEST_PATTERN_VIDEO_MODE) {
/* Set Test Pattern state */
link->test_pattern_enabled = true;
link->current_test_pattern = test_pattern;
if (p_link_settings != NULL)
dpcd_set_link_settings(link,
p_link_settings);
}
switch (test_pattern) {
case DP_TEST_PATTERN_VIDEO_MODE:
pattern = PHY_TEST_PATTERN_NONE;
break;
case DP_TEST_PATTERN_D102:
pattern = PHY_TEST_PATTERN_D10_2;
break;
case DP_TEST_PATTERN_SYMBOL_ERROR:
pattern = PHY_TEST_PATTERN_SYMBOL_ERROR;
break;
case DP_TEST_PATTERN_PRBS7:
pattern = PHY_TEST_PATTERN_PRBS7;
break;
case DP_TEST_PATTERN_80BIT_CUSTOM:
pattern = PHY_TEST_PATTERN_80BIT_CUSTOM;
break;
case DP_TEST_PATTERN_CP2520_1:
pattern = PHY_TEST_PATTERN_CP2520_1;
break;
case DP_TEST_PATTERN_CP2520_2:
pattern = PHY_TEST_PATTERN_CP2520_2;
break;
case DP_TEST_PATTERN_CP2520_3:
pattern = PHY_TEST_PATTERN_CP2520_3;
break;
case DP_TEST_PATTERN_128b_132b_TPS1:
pattern = PHY_TEST_PATTERN_128b_132b_TPS1;
break;
case DP_TEST_PATTERN_128b_132b_TPS2:
pattern = PHY_TEST_PATTERN_128b_132b_TPS2;
break;
case DP_TEST_PATTERN_PRBS9:
pattern = PHY_TEST_PATTERN_PRBS9;
break;
case DP_TEST_PATTERN_PRBS11:
pattern = PHY_TEST_PATTERN_PRBS11;
break;
case DP_TEST_PATTERN_PRBS15:
pattern = PHY_TEST_PATTERN_PRBS15;
break;
case DP_TEST_PATTERN_PRBS23:
pattern = PHY_TEST_PATTERN_PRBS23;
break;
case DP_TEST_PATTERN_PRBS31:
pattern = PHY_TEST_PATTERN_PRBS31;
break;
case DP_TEST_PATTERN_264BIT_CUSTOM:
pattern = PHY_TEST_PATTERN_264BIT_CUSTOM;
break;
case DP_TEST_PATTERN_SQUARE:
pattern = PHY_TEST_PATTERN_SQUARE;
break;
case DP_TEST_PATTERN_SQUARE_PRESHOOT_DISABLED:
pattern = PHY_TEST_PATTERN_SQUARE_PRESHOOT_DISABLED;
break;
case DP_TEST_PATTERN_SQUARE_DEEMPHASIS_DISABLED:
pattern = PHY_TEST_PATTERN_SQUARE_DEEMPHASIS_DISABLED;
break;
case DP_TEST_PATTERN_SQUARE_PRESHOOT_DEEMPHASIS_DISABLED:
pattern = PHY_TEST_PATTERN_SQUARE_PRESHOOT_DEEMPHASIS_DISABLED;
break;
default:
return false;
}
if (test_pattern == DP_TEST_PATTERN_VIDEO_MODE
/*TODO:&& !pPathMode->pDisplayPath->IsTargetPoweredOn()*/)
return false;
if (link->dpcd_caps.dpcd_rev.raw >= DPCD_REV_12) {
if (is_dp_phy_sqaure_pattern(test_pattern))
core_link_write_dpcd(link,
DP_LINK_SQUARE_PATTERN,
p_custom_pattern,
1);
/* tell receiver that we are sending qualification
* pattern DP 1.2 or later - DP receiver's link quality
* pattern is set using DPCD LINK_QUAL_LANEx_SET
* register (0x10B~0x10E)\
*/
for (lane = 0; lane < LANE_COUNT_DP_MAX; lane++)
link_qual_pattern[lane] =
(unsigned char)(pattern);
core_link_write_dpcd(link,
DP_LINK_QUAL_LANE0_SET,
link_qual_pattern,
sizeof(link_qual_pattern));
} else if (link->dpcd_caps.dpcd_rev.raw >= DPCD_REV_10 ||
link->dpcd_caps.dpcd_rev.raw == 0) {
/* tell receiver that we are sending qualification
* pattern DP 1.1a or earlier - DP receiver's link
* quality pattern is set using
* DPCD TRAINING_PATTERN_SET -> LINK_QUAL_PATTERN_SET
* register (0x102). We will use v_1.3 when we are
* setting test pattern for DP 1.1.
*/
core_link_read_dpcd(link, DP_TRAINING_PATTERN_SET,
&training_pattern.raw,
sizeof(training_pattern));
training_pattern.v1_3.LINK_QUAL_PATTERN_SET = pattern;
core_link_write_dpcd(link, DP_TRAINING_PATTERN_SET,
&training_pattern.raw,
sizeof(training_pattern));
}
} else {
enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
switch (test_pattern_color_space) {
case DP_TEST_PATTERN_COLOR_SPACE_RGB:
color_space = COLOR_SPACE_SRGB;
if (test_pattern == DP_TEST_PATTERN_COLOR_SQUARES_CEA)
color_space = COLOR_SPACE_SRGB_LIMITED;
break;
case DP_TEST_PATTERN_COLOR_SPACE_YCBCR601:
color_space = COLOR_SPACE_YCBCR601;
if (test_pattern == DP_TEST_PATTERN_COLOR_SQUARES_CEA)
color_space = COLOR_SPACE_YCBCR601_LIMITED;
break;
case DP_TEST_PATTERN_COLOR_SPACE_YCBCR709:
color_space = COLOR_SPACE_YCBCR709;
if (test_pattern == DP_TEST_PATTERN_COLOR_SQUARES_CEA)
color_space = COLOR_SPACE_YCBCR709_LIMITED;
break;
default:
break;
}
if (pipe_ctx->stream_res.tg->funcs->lock_doublebuffer_enable) {
if (pipe_ctx->stream && should_use_dmub_lock(pipe_ctx->stream->link)) {
union dmub_hw_lock_flags hw_locks = { 0 };
struct dmub_hw_lock_inst_flags inst_flags = { 0 };
hw_locks.bits.lock_dig = 1;
inst_flags.dig_inst = pipe_ctx->stream_res.tg->inst;
dmub_hw_lock_mgr_cmd(link->ctx->dmub_srv,
true,
&hw_locks,
&inst_flags);
} else
pipe_ctx->stream_res.tg->funcs->lock_doublebuffer_enable(
pipe_ctx->stream_res.tg);
}
pipe_ctx->stream_res.tg->funcs->lock(pipe_ctx->stream_res.tg);
/* update MSA to requested color space */
pipe_ctx->stream_res.stream_enc->funcs->dp_set_stream_attribute(pipe_ctx->stream_res.stream_enc,
&pipe_ctx->stream->timing,
color_space,
pipe_ctx->stream->use_vsc_sdp_for_colorimetry,
link->dpcd_caps.dprx_feature.bits.SST_SPLIT_SDP_CAP);
if (pipe_ctx->stream->use_vsc_sdp_for_colorimetry) {
if (test_pattern == DP_TEST_PATTERN_COLOR_SQUARES_CEA)
pipe_ctx->stream->vsc_infopacket.sb[17] |= (1 << 7); // sb17 bit 7 Dynamic Range: 0 = VESA range, 1 = CTA range
else
pipe_ctx->stream->vsc_infopacket.sb[17] &= ~(1 << 7);
resource_build_info_frame(pipe_ctx);
link->dc->hwss.update_info_frame(pipe_ctx);
}
/* CRTC Patterns */
set_crtc_test_pattern(link, pipe_ctx, test_pattern, test_pattern_color_space);
pipe_ctx->stream_res.tg->funcs->unlock(pipe_ctx->stream_res.tg);
pipe_ctx->stream_res.tg->funcs->wait_for_state(pipe_ctx->stream_res.tg,
CRTC_STATE_VACTIVE);
pipe_ctx->stream_res.tg->funcs->wait_for_state(pipe_ctx->stream_res.tg,
CRTC_STATE_VBLANK);
pipe_ctx->stream_res.tg->funcs->wait_for_state(pipe_ctx->stream_res.tg,
CRTC_STATE_VACTIVE);
if (pipe_ctx->stream_res.tg->funcs->lock_doublebuffer_disable) {
if (pipe_ctx->stream && should_use_dmub_lock(pipe_ctx->stream->link)) {
union dmub_hw_lock_flags hw_locks = { 0 };
struct dmub_hw_lock_inst_flags inst_flags = { 0 };
hw_locks.bits.lock_dig = 1;
inst_flags.dig_inst = pipe_ctx->stream_res.tg->inst;
dmub_hw_lock_mgr_cmd(link->ctx->dmub_srv,
false,
&hw_locks,
&inst_flags);
} else
pipe_ctx->stream_res.tg->funcs->lock_doublebuffer_disable(
pipe_ctx->stream_res.tg);
}
/* Set Test Pattern state */
link->test_pattern_enabled = true;
link->current_test_pattern = test_pattern;
}
return true;
}
void dp_set_preferred_link_settings(struct dc *dc,
struct dc_link_settings *link_setting,
struct dc_link *link)
{
int i;
struct pipe_ctx *pipe;
struct dc_stream_state *link_stream;
struct dc_link_settings store_settings = *link_setting;
link->preferred_link_setting = store_settings;
/* Retrain with preferred link settings only relevant for
* DP signal type
* Check for non-DP signal or if passive dongle present
*/
if (!dc_is_dp_signal(link->connector_signal) ||
link->dongle_max_pix_clk > 0)
return;
for (i = 0; i < MAX_PIPES; i++) {
pipe = &dc->current_state->res_ctx.pipe_ctx[i];
if (pipe->stream && pipe->stream->link) {
if (pipe->stream->link == link) {
link_stream = pipe->stream;
break;
}
}
}
/* Stream not found */
if (i == MAX_PIPES)
return;
/* Cannot retrain link if backend is off */
if (link_stream->dpms_off)
return;
if (link_decide_link_settings(link_stream, &store_settings))
dp_retrain_link_dp_test(link, &store_settings, false);
}
void dp_set_preferred_training_settings(struct dc *dc,
struct dc_link_settings *link_setting,
struct dc_link_training_overrides *lt_overrides,
struct dc_link *link,
bool skip_immediate_retrain)
{
if (lt_overrides != NULL)
link->preferred_training_settings = *lt_overrides;
else
memset(&link->preferred_training_settings, 0, sizeof(link->preferred_training_settings));
if (link_setting != NULL) {
link->preferred_link_setting = *link_setting;
} else {
link->preferred_link_setting.lane_count = LANE_COUNT_UNKNOWN;
link->preferred_link_setting.link_rate = LINK_RATE_UNKNOWN;
}
if (link->connector_signal == SIGNAL_TYPE_DISPLAY_PORT &&
link->type == dc_connection_mst_branch)
dm_helpers_dp_mst_update_branch_bandwidth(dc->ctx, link);
/* Retrain now, or wait until next stream update to apply */
if (skip_immediate_retrain == false)
dp_set_preferred_link_settings(dc, &link->preferred_link_setting, link);
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/accessories/link_dp_cts.c |
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "link_dp_trace.h"
#include "link/protocols/link_dpcd.h"
#include "link.h"
void dp_trace_init(struct dc_link *link)
{
memset(&link->dp_trace, 0, sizeof(link->dp_trace));
link->dp_trace.is_initialized = true;
}
void dp_trace_reset(struct dc_link *link)
{
memset(&link->dp_trace, 0, sizeof(link->dp_trace));
}
bool dp_trace_is_initialized(struct dc_link *link)
{
return link->dp_trace.is_initialized;
}
void dp_trace_detect_lt_init(struct dc_link *link)
{
memset(&link->dp_trace.detect_lt_trace, 0, sizeof(link->dp_trace.detect_lt_trace));
}
void dp_trace_commit_lt_init(struct dc_link *link)
{
memset(&link->dp_trace.commit_lt_trace, 0, sizeof(link->dp_trace.commit_lt_trace));
}
void dp_trace_link_loss_increment(struct dc_link *link)
{
link->dp_trace.link_loss_count++;
}
void dp_trace_lt_fail_count_update(struct dc_link *link,
unsigned int fail_count,
bool in_detection)
{
if (in_detection)
link->dp_trace.detect_lt_trace.counts.fail = fail_count;
else
link->dp_trace.commit_lt_trace.counts.fail = fail_count;
}
void dp_trace_lt_total_count_increment(struct dc_link *link,
bool in_detection)
{
if (in_detection)
link->dp_trace.detect_lt_trace.counts.total++;
else
link->dp_trace.commit_lt_trace.counts.total++;
}
void dp_trace_set_is_logged_flag(struct dc_link *link,
bool in_detection,
bool is_logged)
{
if (in_detection)
link->dp_trace.detect_lt_trace.is_logged = is_logged;
else
link->dp_trace.commit_lt_trace.is_logged = is_logged;
}
bool dp_trace_is_logged(struct dc_link *link, bool in_detection)
{
if (in_detection)
return link->dp_trace.detect_lt_trace.is_logged;
else
return link->dp_trace.commit_lt_trace.is_logged;
}
void dp_trace_lt_result_update(struct dc_link *link,
enum link_training_result result,
bool in_detection)
{
if (in_detection)
link->dp_trace.detect_lt_trace.result = result;
else
link->dp_trace.commit_lt_trace.result = result;
}
void dp_trace_set_lt_start_timestamp(struct dc_link *link,
bool in_detection)
{
if (in_detection)
link->dp_trace.detect_lt_trace.timestamps.start = dm_get_timestamp(link->dc->ctx);
else
link->dp_trace.commit_lt_trace.timestamps.start = dm_get_timestamp(link->dc->ctx);
}
void dp_trace_set_lt_end_timestamp(struct dc_link *link,
bool in_detection)
{
if (in_detection)
link->dp_trace.detect_lt_trace.timestamps.end = dm_get_timestamp(link->dc->ctx);
else
link->dp_trace.commit_lt_trace.timestamps.end = dm_get_timestamp(link->dc->ctx);
}
unsigned long long dp_trace_get_lt_end_timestamp(struct dc_link *link,
bool in_detection)
{
if (in_detection)
return link->dp_trace.detect_lt_trace.timestamps.end;
else
return link->dp_trace.commit_lt_trace.timestamps.end;
}
const struct dp_trace_lt_counts *dp_trace_get_lt_counts(struct dc_link *link,
bool in_detection)
{
if (in_detection)
return &link->dp_trace.detect_lt_trace.counts;
else
return &link->dp_trace.commit_lt_trace.counts;
}
unsigned int dp_trace_get_link_loss_count(struct dc_link *link)
{
return link->dp_trace.link_loss_count;
}
void dp_trace_set_edp_power_timestamp(struct dc_link *link,
bool power_up)
{
if (!power_up)
/*save driver power off time stamp*/
link->dp_trace.edp_trace_power_timestamps.poweroff = dm_get_timestamp(link->dc->ctx);
else
link->dp_trace.edp_trace_power_timestamps.poweron = dm_get_timestamp(link->dc->ctx);
}
uint64_t dp_trace_get_edp_poweron_timestamp(struct dc_link *link)
{
return link->dp_trace.edp_trace_power_timestamps.poweron;
}
uint64_t dp_trace_get_edp_poweroff_timestamp(struct dc_link *link)
{
return link->dp_trace.edp_trace_power_timestamps.poweroff;
}
void dp_trace_source_sequence(struct dc_link *link, uint8_t dp_test_mode)
{
if (link != NULL && link->dc->debug.enable_driver_sequence_debug)
core_link_write_dpcd(link, DP_SOURCE_SEQUENCE,
&dp_test_mode, sizeof(dp_test_mode));
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/accessories/link_dp_trace.c |
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
/* FILE POLICY AND INTENDED USAGE:
*
*/
#include "link_dp_training_auxless.h"
#include "link_dp_phy.h"
#define DC_LOGGER \
link->ctx->logger
bool dp_perform_link_training_skip_aux(
struct dc_link *link,
const struct link_resource *link_res,
const struct dc_link_settings *link_setting)
{
struct link_training_settings lt_settings = {0};
dp_decide_training_settings(
link,
link_setting,
<_settings);
override_training_settings(
link,
&link->preferred_training_settings,
<_settings);
/* 1. Perform_clock_recovery_sequence. */
/* transmit training pattern for clock recovery */
dp_set_hw_training_pattern(link, link_res, lt_settings.pattern_for_cr, DPRX);
/* call HWSS to set lane settings*/
dp_set_hw_lane_settings(link, link_res, <_settings, DPRX);
/* wait receiver to lock-on*/
dp_wait_for_training_aux_rd_interval(link, lt_settings.cr_pattern_time);
/* 2. Perform_channel_equalization_sequence. */
/* transmit training pattern for channel equalization. */
dp_set_hw_training_pattern(link, link_res, lt_settings.pattern_for_eq, DPRX);
/* call HWSS to set lane settings*/
dp_set_hw_lane_settings(link, link_res, <_settings, DPRX);
/* wait receiver to lock-on. */
dp_wait_for_training_aux_rd_interval(link, lt_settings.eq_pattern_time);
/* 3. Perform_link_training_int. */
/* Mainlink output idle pattern. */
dp_set_hw_test_pattern(link, link_res, DP_TEST_PATTERN_VIDEO_MODE, NULL, 0);
dp_log_training_result(link, <_settings, LINK_TRAINING_SUCCESS);
return true;
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/protocols/link_dp_training_auxless.c |
// SPDX-License-Identifier: MIT
/*
* Copyright 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dc.h"
#include "inc/core_status.h"
#include "dpcd_defs.h"
#include "link_dp_dpia.h"
#include "link_hwss.h"
#include "dm_helpers.h"
#include "dmub/inc/dmub_cmd.h"
#include "link_dpcd.h"
#include "link_dp_training.h"
#include "dc_dmub_srv.h"
#define DC_LOGGER \
link->ctx->logger
/** @note Can remove once DP tunneling registers in upstream include/drm/drm_dp_helper.h */
/* DPCD DP Tunneling over USB4 */
#define DP_TUNNELING_CAPABILITIES_SUPPORT 0xe000d
#define DP_IN_ADAPTER_INFO 0xe000e
#define DP_USB4_DRIVER_ID 0xe000f
#define DP_USB4_ROUTER_TOPOLOGY_ID 0xe001b
enum dc_status dpcd_get_tunneling_device_data(struct dc_link *link)
{
enum dc_status status = DC_OK;
uint8_t dpcd_dp_tun_data[3] = {0};
uint8_t dpcd_topology_data[DPCD_USB4_TOPOLOGY_ID_LEN] = {0};
uint8_t i = 0;
status = core_link_read_dpcd(
link,
DP_TUNNELING_CAPABILITIES_SUPPORT,
dpcd_dp_tun_data,
sizeof(dpcd_dp_tun_data));
status = core_link_read_dpcd(
link,
DP_USB4_ROUTER_TOPOLOGY_ID,
dpcd_topology_data,
sizeof(dpcd_topology_data));
link->dpcd_caps.usb4_dp_tun_info.dp_tun_cap.raw =
dpcd_dp_tun_data[DP_TUNNELING_CAPABILITIES_SUPPORT - DP_TUNNELING_CAPABILITIES_SUPPORT];
link->dpcd_caps.usb4_dp_tun_info.dpia_info.raw =
dpcd_dp_tun_data[DP_IN_ADAPTER_INFO - DP_TUNNELING_CAPABILITIES_SUPPORT];
link->dpcd_caps.usb4_dp_tun_info.usb4_driver_id =
dpcd_dp_tun_data[DP_USB4_DRIVER_ID - DP_TUNNELING_CAPABILITIES_SUPPORT];
for (i = 0; i < DPCD_USB4_TOPOLOGY_ID_LEN; i++)
link->dpcd_caps.usb4_dp_tun_info.usb4_topology_id[i] = dpcd_topology_data[i];
return status;
}
bool dpia_query_hpd_status(struct dc_link *link)
{
union dmub_rb_cmd cmd = {0};
struct dc_dmub_srv *dmub_srv = link->ctx->dmub_srv;
bool is_hpd_high = false;
/* prepare QUERY_HPD command */
cmd.query_hpd.header.type = DMUB_CMD__QUERY_HPD_STATE;
cmd.query_hpd.data.instance = link->link_id.enum_id - ENUM_ID_1;
cmd.query_hpd.data.ch_type = AUX_CHANNEL_DPIA;
/* Return HPD status reported by DMUB if query successfully executed. */
if (dm_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY) && cmd.query_hpd.data.status == AUX_RET_SUCCESS)
is_hpd_high = cmd.query_hpd.data.result;
DC_LOG_DEBUG("%s: link(%d) dpia(%d) cmd_status(%d) result(%d)\n",
__func__,
link->link_index,
link->link_id.enum_id - ENUM_ID_1,
cmd.query_hpd.data.status,
cmd.query_hpd.data.result);
return is_hpd_high;
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/protocols/link_dp_dpia.c |
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
/* FILE POLICY AND INTENDED USAGE:
* This file implements retrieval and configuration of eDP panel features such
* as PSR and ABM and it also manages specs defined eDP panel power sequences.
*/
#include "link_edp_panel_control.h"
#include "link_dpcd.h"
#include "link_dp_capability.h"
#include "dm_helpers.h"
#include "dal_asic_id.h"
#include "dce/dmub_psr.h"
#include "dc/dc_dmub_srv.h"
#include "dce/dmub_replay.h"
#include "abm.h"
#define DC_LOGGER_INIT(logger)
#define DP_SINK_PR_ENABLE_AND_CONFIGURATION 0x37B
/* Travis */
static const uint8_t DP_VGA_LVDS_CONVERTER_ID_2[] = "sivarT";
/* Nutmeg */
static const uint8_t DP_VGA_LVDS_CONVERTER_ID_3[] = "dnomlA";
void dp_set_panel_mode(struct dc_link *link, enum dp_panel_mode panel_mode)
{
union dpcd_edp_config edp_config_set;
bool panel_mode_edp = false;
enum dc_status result;
memset(&edp_config_set, '\0', sizeof(union dpcd_edp_config));
switch (panel_mode) {
case DP_PANEL_MODE_EDP:
case DP_PANEL_MODE_SPECIAL:
panel_mode_edp = true;
break;
default:
break;
}
/*set edp panel mode in receiver*/
result = core_link_read_dpcd(
link,
DP_EDP_CONFIGURATION_SET,
&edp_config_set.raw,
sizeof(edp_config_set.raw));
if (result == DC_OK &&
edp_config_set.bits.PANEL_MODE_EDP
!= panel_mode_edp) {
edp_config_set.bits.PANEL_MODE_EDP =
panel_mode_edp;
result = core_link_write_dpcd(
link,
DP_EDP_CONFIGURATION_SET,
&edp_config_set.raw,
sizeof(edp_config_set.raw));
ASSERT(result == DC_OK);
}
link->panel_mode = panel_mode;
DC_LOG_DETECTION_DP_CAPS("Link: %d eDP panel mode supported: %d "
"eDP panel mode enabled: %d \n",
link->link_index,
link->dpcd_caps.panel_mode_edp,
panel_mode_edp);
}
enum dp_panel_mode dp_get_panel_mode(struct dc_link *link)
{
/* We need to explicitly check that connector
* is not DP. Some Travis_VGA get reported
* by video bios as DP.
*/
if (link->connector_signal != SIGNAL_TYPE_DISPLAY_PORT) {
switch (link->dpcd_caps.branch_dev_id) {
case DP_BRANCH_DEVICE_ID_0022B9:
/* alternate scrambler reset is required for Travis
* for the case when external chip does not
* provide sink device id, alternate scrambler
* scheme will be overriden later by querying
* Encoder features
*/
if (strncmp(
link->dpcd_caps.branch_dev_name,
DP_VGA_LVDS_CONVERTER_ID_2,
sizeof(
link->dpcd_caps.
branch_dev_name)) == 0) {
return DP_PANEL_MODE_SPECIAL;
}
break;
case DP_BRANCH_DEVICE_ID_00001A:
/* alternate scrambler reset is required for Travis
* for the case when external chip does not provide
* sink device id, alternate scrambler scheme will
* be overriden later by querying Encoder feature
*/
if (strncmp(link->dpcd_caps.branch_dev_name,
DP_VGA_LVDS_CONVERTER_ID_3,
sizeof(
link->dpcd_caps.
branch_dev_name)) == 0) {
return DP_PANEL_MODE_SPECIAL;
}
break;
default:
break;
}
}
if (link->dpcd_caps.panel_mode_edp &&
(link->connector_signal == SIGNAL_TYPE_EDP ||
(link->connector_signal == SIGNAL_TYPE_DISPLAY_PORT &&
link->is_internal_display))) {
return DP_PANEL_MODE_EDP;
}
return DP_PANEL_MODE_DEFAULT;
}
bool edp_set_backlight_level_nits(struct dc_link *link,
bool isHDR,
uint32_t backlight_millinits,
uint32_t transition_time_in_ms)
{
struct dpcd_source_backlight_set dpcd_backlight_set;
uint8_t backlight_control = isHDR ? 1 : 0;
if (!link || (link->connector_signal != SIGNAL_TYPE_EDP &&
link->connector_signal != SIGNAL_TYPE_DISPLAY_PORT))
return false;
// OLEDs have no PWM, they can only use AUX
if (link->dpcd_sink_ext_caps.bits.oled == 1)
backlight_control = 1;
*(uint32_t *)&dpcd_backlight_set.backlight_level_millinits = backlight_millinits;
*(uint16_t *)&dpcd_backlight_set.backlight_transition_time_ms = (uint16_t)transition_time_in_ms;
link->backlight_settings.backlight_millinits = backlight_millinits;
if (!link->dpcd_caps.panel_luminance_control) {
if (core_link_write_dpcd(link, DP_SOURCE_BACKLIGHT_LEVEL,
(uint8_t *)(&dpcd_backlight_set),
sizeof(dpcd_backlight_set)) != DC_OK)
return false;
if (core_link_write_dpcd(link, DP_SOURCE_BACKLIGHT_CONTROL,
&backlight_control, 1) != DC_OK)
return false;
} else {
const uint8_t backlight_enable = DP_EDP_PANEL_LUMINANCE_CONTROL_ENABLE;
struct target_luminance_value *target_luminance = NULL;
//if target luminance value is greater than 24 bits, clip the value to 24 bits
if (backlight_millinits > 0xFFFFFF)
backlight_millinits = 0xFFFFFF;
target_luminance = (struct target_luminance_value *)&backlight_millinits;
if (core_link_write_dpcd(link, DP_EDP_BACKLIGHT_MODE_SET_REGISTER,
&backlight_enable,
sizeof(backlight_enable)) != DC_OK)
return false;
if (core_link_write_dpcd(link, DP_EDP_PANEL_TARGET_LUMINANCE_VALUE,
(uint8_t *)(target_luminance),
sizeof(struct target_luminance_value)) != DC_OK)
return false;
}
return true;
}
bool edp_get_backlight_level_nits(struct dc_link *link,
uint32_t *backlight_millinits_avg,
uint32_t *backlight_millinits_peak)
{
union dpcd_source_backlight_get dpcd_backlight_get;
memset(&dpcd_backlight_get, 0, sizeof(union dpcd_source_backlight_get));
if (!link || (link->connector_signal != SIGNAL_TYPE_EDP &&
link->connector_signal != SIGNAL_TYPE_DISPLAY_PORT))
return false;
if (!core_link_read_dpcd(link, DP_SOURCE_BACKLIGHT_CURRENT_PEAK,
dpcd_backlight_get.raw,
sizeof(union dpcd_source_backlight_get)))
return false;
*backlight_millinits_avg =
dpcd_backlight_get.bytes.backlight_millinits_avg;
*backlight_millinits_peak =
dpcd_backlight_get.bytes.backlight_millinits_peak;
/* On non-supported panels dpcd_read usually succeeds with 0 returned */
if (*backlight_millinits_avg == 0 ||
*backlight_millinits_avg > *backlight_millinits_peak)
return false;
return true;
}
bool edp_backlight_enable_aux(struct dc_link *link, bool enable)
{
uint8_t backlight_enable = enable ? 1 : 0;
if (!link || (link->connector_signal != SIGNAL_TYPE_EDP &&
link->connector_signal != SIGNAL_TYPE_DISPLAY_PORT))
return false;
if (core_link_write_dpcd(link, DP_SOURCE_BACKLIGHT_ENABLE,
&backlight_enable, 1) != DC_OK)
return false;
return true;
}
// we read default from 0x320 because we expect BIOS wrote it there
// regular get_backlight_nit reads from panel set at 0x326
static bool read_default_bl_aux(struct dc_link *link, uint32_t *backlight_millinits)
{
if (!link || (link->connector_signal != SIGNAL_TYPE_EDP &&
link->connector_signal != SIGNAL_TYPE_DISPLAY_PORT))
return false;
if (!link->dpcd_caps.panel_luminance_control) {
if (!core_link_read_dpcd(link, DP_SOURCE_BACKLIGHT_LEVEL,
(uint8_t *)backlight_millinits,
sizeof(uint32_t)))
return false;
} else {
//setting to 0 as a precaution, since target_luminance_value is 3 bytes
memset(backlight_millinits, 0, sizeof(uint32_t));
if (!core_link_read_dpcd(link, DP_EDP_PANEL_TARGET_LUMINANCE_VALUE,
(uint8_t *)backlight_millinits,
sizeof(struct target_luminance_value)))
return false;
}
return true;
}
bool set_default_brightness_aux(struct dc_link *link)
{
uint32_t default_backlight;
if (link && link->dpcd_sink_ext_caps.bits.oled == 1) {
if (!read_default_bl_aux(link, &default_backlight))
default_backlight = 150000;
// if < 5 nits or > 5000, it might be wrong readback
if (default_backlight < 5000 || default_backlight > 5000000)
default_backlight = 150000; //
return edp_set_backlight_level_nits(link, true,
default_backlight, 0);
}
return false;
}
bool set_cached_brightness_aux(struct dc_link *link)
{
if (link->backlight_settings.backlight_millinits)
return edp_set_backlight_level_nits(link, true,
link->backlight_settings.backlight_millinits, 0);
else
return set_default_brightness_aux(link);
return false;
}
bool edp_is_ilr_optimization_required(struct dc_link *link,
struct dc_crtc_timing *crtc_timing)
{
struct dc_link_settings link_setting;
uint8_t link_bw_set;
uint8_t link_rate_set;
uint32_t req_bw;
union lane_count_set lane_count_set = {0};
ASSERT(link || crtc_timing); // invalid input
if (link->dpcd_caps.edp_supported_link_rates_count == 0 ||
!link->panel_config.ilr.optimize_edp_link_rate)
return false;
// Read DPCD 00100h to find if standard link rates are set
core_link_read_dpcd(link, DP_LINK_BW_SET,
&link_bw_set, sizeof(link_bw_set));
if (link_bw_set) {
DC_LOG_EVENT_LINK_TRAINING("eDP ILR: Optimization required, VBIOS used link_bw_set\n");
return true;
}
// Read DPCD 00115h to find the edp link rate set used
core_link_read_dpcd(link, DP_LINK_RATE_SET,
&link_rate_set, sizeof(link_rate_set));
// Read DPCD 00101h to find out the number of lanes currently set
core_link_read_dpcd(link, DP_LANE_COUNT_SET,
&lane_count_set.raw, sizeof(lane_count_set));
req_bw = dc_bandwidth_in_kbps_from_timing(crtc_timing, dc_link_get_highest_encoding_format(link));
if (!crtc_timing->flags.DSC)
edp_decide_link_settings(link, &link_setting, req_bw);
else
decide_edp_link_settings_with_dsc(link, &link_setting, req_bw, LINK_RATE_UNKNOWN);
if (link->dpcd_caps.edp_supported_link_rates[link_rate_set] != link_setting.link_rate ||
lane_count_set.bits.LANE_COUNT_SET != link_setting.lane_count) {
DC_LOG_EVENT_LINK_TRAINING("eDP ILR: Optimization required, VBIOS link_rate_set not optimal\n");
return true;
}
DC_LOG_EVENT_LINK_TRAINING("eDP ILR: No optimization required, VBIOS set optimal link_rate_set\n");
return false;
}
void edp_panel_backlight_power_on(struct dc_link *link, bool wait_for_hpd)
{
if (link->connector_signal != SIGNAL_TYPE_EDP)
return;
link->dc->hwss.edp_power_control(link, true);
if (wait_for_hpd)
link->dc->hwss.edp_wait_for_hpd_ready(link, true);
if (link->dc->hwss.edp_backlight_control)
link->dc->hwss.edp_backlight_control(link, true);
}
bool edp_wait_for_t12(struct dc_link *link)
{
if (link->connector_signal == SIGNAL_TYPE_EDP && link->dc->hwss.edp_wait_for_T12) {
link->dc->hwss.edp_wait_for_T12(link);
return true;
}
return false;
}
void edp_add_delay_for_T9(struct dc_link *link)
{
if (link && link->panel_config.pps.extra_delay_backlight_off > 0)
fsleep(link->panel_config.pps.extra_delay_backlight_off * 1000);
}
bool edp_receiver_ready_T9(struct dc_link *link)
{
unsigned int tries = 0;
unsigned char sinkstatus = 0;
unsigned char edpRev = 0;
enum dc_status result = DC_OK;
result = core_link_read_dpcd(link, DP_EDP_DPCD_REV, &edpRev, sizeof(edpRev));
/* start from eDP version 1.2, SINK_STAUS indicate the sink is ready.*/
if (result == DC_OK && edpRev >= DP_EDP_12) {
do {
sinkstatus = 1;
result = core_link_read_dpcd(link, DP_SINK_STATUS, &sinkstatus, sizeof(sinkstatus));
if (sinkstatus == 0)
break;
if (result != DC_OK)
break;
udelay(100); //MAx T9
} while (++tries < 50);
}
return result;
}
bool edp_receiver_ready_T7(struct dc_link *link)
{
unsigned char sinkstatus = 0;
unsigned char edpRev = 0;
enum dc_status result = DC_OK;
/* use absolute time stamp to constrain max T7*/
unsigned long long enter_timestamp = 0;
unsigned long long finish_timestamp = 0;
unsigned long long time_taken_in_ns = 0;
result = core_link_read_dpcd(link, DP_EDP_DPCD_REV, &edpRev, sizeof(edpRev));
if (result == DC_OK && edpRev >= DP_EDP_12) {
/* start from eDP version 1.2, SINK_STAUS indicate the sink is ready.*/
enter_timestamp = dm_get_timestamp(link->ctx);
do {
sinkstatus = 0;
result = core_link_read_dpcd(link, DP_SINK_STATUS, &sinkstatus, sizeof(sinkstatus));
if (sinkstatus == 1)
break;
if (result != DC_OK)
break;
udelay(25);
finish_timestamp = dm_get_timestamp(link->ctx);
time_taken_in_ns = dm_get_elapse_time_in_ns(link->ctx, finish_timestamp, enter_timestamp);
} while (time_taken_in_ns < 50 * 1000000); //MAx T7 is 50ms
}
if (link && link->panel_config.pps.extra_t7_ms > 0)
fsleep(link->panel_config.pps.extra_t7_ms * 1000);
return result;
}
bool edp_power_alpm_dpcd_enable(struct dc_link *link, bool enable)
{
bool ret = false;
union dpcd_alpm_configuration alpm_config;
if (link->psr_settings.psr_version == DC_PSR_VERSION_SU_1) {
memset(&alpm_config, 0, sizeof(alpm_config));
alpm_config.bits.ENABLE = (enable ? true : false);
ret = dm_helpers_dp_write_dpcd(link->ctx, link,
DP_RECEIVER_ALPM_CONFIG, &alpm_config.raw,
sizeof(alpm_config.raw));
}
return ret;
}
static struct pipe_ctx *get_pipe_from_link(const struct dc_link *link)
{
int i;
struct dc *dc = link->ctx->dc;
struct pipe_ctx *pipe_ctx = NULL;
for (i = 0; i < MAX_PIPES; i++) {
if (dc->current_state->res_ctx.pipe_ctx[i].stream) {
if (dc->current_state->res_ctx.pipe_ctx[i].stream->link == link) {
pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
break;
}
}
}
return pipe_ctx;
}
bool edp_set_backlight_level(const struct dc_link *link,
uint32_t backlight_pwm_u16_16,
uint32_t frame_ramp)
{
struct dc *dc = link->ctx->dc;
DC_LOGGER_INIT(link->ctx->logger);
DC_LOG_BACKLIGHT("New Backlight level: %d (0x%X)\n",
backlight_pwm_u16_16, backlight_pwm_u16_16);
if (dc_is_embedded_signal(link->connector_signal)) {
struct pipe_ctx *pipe_ctx = get_pipe_from_link(link);
if (pipe_ctx) {
/* Disable brightness ramping when the display is blanked
* as it can hang the DMCU
*/
if (pipe_ctx->plane_state == NULL)
frame_ramp = 0;
} else {
return false;
}
dc->hwss.set_backlight_level(
pipe_ctx,
backlight_pwm_u16_16,
frame_ramp);
}
return true;
}
bool edp_set_psr_allow_active(struct dc_link *link, const bool *allow_active,
bool wait, bool force_static, const unsigned int *power_opts)
{
struct dc *dc = link->ctx->dc;
struct dmcu *dmcu = dc->res_pool->dmcu;
struct dmub_psr *psr = dc->res_pool->psr;
unsigned int panel_inst;
if (psr == NULL && force_static)
return false;
if (!dc_get_edp_link_panel_inst(dc, link, &panel_inst))
return false;
if ((allow_active != NULL) && (*allow_active == true) && (link->type == dc_connection_none)) {
// Don't enter PSR if panel is not connected
return false;
}
/* Set power optimization flag */
if (power_opts && link->psr_settings.psr_power_opt != *power_opts) {
link->psr_settings.psr_power_opt = *power_opts;
if (psr != NULL && link->psr_settings.psr_feature_enabled && psr->funcs->psr_set_power_opt)
psr->funcs->psr_set_power_opt(psr, link->psr_settings.psr_power_opt, panel_inst);
}
if (psr != NULL && link->psr_settings.psr_feature_enabled &&
force_static && psr->funcs->psr_force_static)
psr->funcs->psr_force_static(psr, panel_inst);
/* Enable or Disable PSR */
if (allow_active && link->psr_settings.psr_allow_active != *allow_active) {
link->psr_settings.psr_allow_active = *allow_active;
if (!link->psr_settings.psr_allow_active)
dc_z10_restore(dc);
if (psr != NULL && link->psr_settings.psr_feature_enabled) {
psr->funcs->psr_enable(psr, link->psr_settings.psr_allow_active, wait, panel_inst);
} else if ((dmcu != NULL && dmcu->funcs->is_dmcu_initialized(dmcu)) &&
link->psr_settings.psr_feature_enabled)
dmcu->funcs->set_psr_enable(dmcu, link->psr_settings.psr_allow_active, wait);
else
return false;
}
return true;
}
bool edp_get_psr_state(const struct dc_link *link, enum dc_psr_state *state)
{
struct dc *dc = link->ctx->dc;
struct dmcu *dmcu = dc->res_pool->dmcu;
struct dmub_psr *psr = dc->res_pool->psr;
unsigned int panel_inst;
if (!dc_get_edp_link_panel_inst(dc, link, &panel_inst))
return false;
if (psr != NULL && link->psr_settings.psr_feature_enabled)
psr->funcs->psr_get_state(psr, state, panel_inst);
else if (dmcu != NULL && link->psr_settings.psr_feature_enabled)
dmcu->funcs->get_psr_state(dmcu, state);
return true;
}
static inline enum physical_phy_id
transmitter_to_phy_id(struct dc_link *link)
{
struct dc_context *dc_ctx = link->ctx;
enum transmitter transmitter_value = link->link_enc->transmitter;
switch (transmitter_value) {
case TRANSMITTER_UNIPHY_A:
return PHYLD_0;
case TRANSMITTER_UNIPHY_B:
return PHYLD_1;
case TRANSMITTER_UNIPHY_C:
return PHYLD_2;
case TRANSMITTER_UNIPHY_D:
return PHYLD_3;
case TRANSMITTER_UNIPHY_E:
return PHYLD_4;
case TRANSMITTER_UNIPHY_F:
return PHYLD_5;
case TRANSMITTER_NUTMEG_CRT:
return PHYLD_6;
case TRANSMITTER_TRAVIS_CRT:
return PHYLD_7;
case TRANSMITTER_TRAVIS_LCD:
return PHYLD_8;
case TRANSMITTER_UNIPHY_G:
return PHYLD_9;
case TRANSMITTER_COUNT:
return PHYLD_COUNT;
case TRANSMITTER_UNKNOWN:
return PHYLD_UNKNOWN;
default:
DC_ERROR("Unknown transmitter value %d\n", transmitter_value);
return PHYLD_UNKNOWN;
}
}
bool edp_setup_psr(struct dc_link *link,
const struct dc_stream_state *stream, struct psr_config *psr_config,
struct psr_context *psr_context)
{
struct dc *dc;
struct dmcu *dmcu;
struct dmub_psr *psr;
int i;
unsigned int panel_inst;
/* updateSinkPsrDpcdConfig*/
union dpcd_psr_configuration psr_configuration;
union dpcd_sink_active_vtotal_control_mode vtotal_control = {0};
psr_context->controllerId = CONTROLLER_ID_UNDEFINED;
if (!link)
return false;
dc = link->ctx->dc;
dmcu = dc->res_pool->dmcu;
psr = dc->res_pool->psr;
if (!dmcu && !psr)
return false;
if (!dc_get_edp_link_panel_inst(dc, link, &panel_inst))
return false;
memset(&psr_configuration, 0, sizeof(psr_configuration));
psr_configuration.bits.ENABLE = 1;
psr_configuration.bits.CRC_VERIFICATION = 1;
psr_configuration.bits.FRAME_CAPTURE_INDICATION =
psr_config->psr_frame_capture_indication_req;
/* Check for PSR v2*/
if (link->psr_settings.psr_version == DC_PSR_VERSION_SU_1) {
/* For PSR v2 selective update.
* Indicates whether sink should start capturing
* immediately following active scan line,
* or starting with the 2nd active scan line.
*/
psr_configuration.bits.LINE_CAPTURE_INDICATION = 0;
/*For PSR v2, determines whether Sink should generate
* IRQ_HPD when CRC mismatch is detected.
*/
psr_configuration.bits.IRQ_HPD_WITH_CRC_ERROR = 1;
/* For PSR v2, set the bit when the Source device will
* be enabling PSR2 operation.
*/
psr_configuration.bits.ENABLE_PSR2 = 1;
/* For PSR v2, the Sink device must be able to receive
* SU region updates early in the frame time.
*/
psr_configuration.bits.EARLY_TRANSPORT_ENABLE = 1;
}
dm_helpers_dp_write_dpcd(
link->ctx,
link,
368,
&psr_configuration.raw,
sizeof(psr_configuration.raw));
if (link->psr_settings.psr_version == DC_PSR_VERSION_SU_1) {
edp_power_alpm_dpcd_enable(link, true);
psr_context->su_granularity_required =
psr_config->su_granularity_required;
psr_context->su_y_granularity =
psr_config->su_y_granularity;
psr_context->line_time_in_us = psr_config->line_time_in_us;
/* linux must be able to expose AMD Source DPCD definition
* in order to support FreeSync PSR
*/
if (link->psr_settings.psr_vtotal_control_support) {
psr_context->rate_control_caps = psr_config->rate_control_caps;
vtotal_control.bits.ENABLE = true;
core_link_write_dpcd(link, DP_SINK_PSR_ACTIVE_VTOTAL_CONTROL_MODE,
&vtotal_control.raw, sizeof(vtotal_control.raw));
}
}
psr_context->channel = link->ddc->ddc_pin->hw_info.ddc_channel;
psr_context->transmitterId = link->link_enc->transmitter;
psr_context->engineId = link->link_enc->preferred_engine;
for (i = 0; i < MAX_PIPES; i++) {
if (dc->current_state->res_ctx.pipe_ctx[i].stream
== stream) {
/* dmcu -1 for all controller id values,
* therefore +1 here
*/
psr_context->controllerId =
dc->current_state->res_ctx.
pipe_ctx[i].stream_res.tg->inst + 1;
break;
}
}
/* Hardcoded for now. Can be Pcie or Uniphy (or Unknown)*/
psr_context->phyType = PHY_TYPE_UNIPHY;
/*PhyId is associated with the transmitter id*/
psr_context->smuPhyId = transmitter_to_phy_id(link);
psr_context->crtcTimingVerticalTotal = stream->timing.v_total;
psr_context->vsync_rate_hz = div64_u64(div64_u64((stream->
timing.pix_clk_100hz * 100),
stream->timing.v_total),
stream->timing.h_total);
psr_context->psrSupportedDisplayConfig = true;
psr_context->psrExitLinkTrainingRequired =
psr_config->psr_exit_link_training_required;
psr_context->sdpTransmitLineNumDeadline =
psr_config->psr_sdp_transmit_line_num_deadline;
psr_context->psrFrameCaptureIndicationReq =
psr_config->psr_frame_capture_indication_req;
psr_context->skipPsrWaitForPllLock = 0; /* only = 1 in KV */
psr_context->numberOfControllers =
link->dc->res_pool->timing_generator_count;
psr_context->rfb_update_auto_en = true;
/* 2 frames before enter PSR. */
psr_context->timehyst_frames = 2;
/* half a frame
* (units in 100 lines, i.e. a value of 1 represents 100 lines)
*/
psr_context->hyst_lines = stream->timing.v_total / 2 / 100;
psr_context->aux_repeats = 10;
psr_context->psr_level.u32all = 0;
/*skip power down the single pipe since it blocks the cstate*/
if (link->ctx->asic_id.chip_family >= FAMILY_RV) {
switch (link->ctx->asic_id.chip_family) {
case FAMILY_YELLOW_CARP:
case AMDGPU_FAMILY_GC_10_3_6:
case AMDGPU_FAMILY_GC_11_0_1:
if (dc->debug.disable_z10 || dc->debug.psr_skip_crtc_disable)
psr_context->psr_level.bits.SKIP_CRTC_DISABLE = true;
break;
default:
psr_context->psr_level.bits.SKIP_CRTC_DISABLE = true;
break;
}
}
/* SMU will perform additional powerdown sequence.
* For unsupported ASICs, set psr_level flag to skip PSR
* static screen notification to SMU.
* (Always set for DAL2, did not check ASIC)
*/
psr_context->allow_smu_optimizations = psr_config->allow_smu_optimizations;
psr_context->allow_multi_disp_optimizations = psr_config->allow_multi_disp_optimizations;
/* Complete PSR entry before aborting to prevent intermittent
* freezes on certain eDPs
*/
psr_context->psr_level.bits.DISABLE_PSR_ENTRY_ABORT = 1;
/* Disable ALPM first for compatible non-ALPM panel now */
psr_context->psr_level.bits.DISABLE_ALPM = 0;
psr_context->psr_level.bits.ALPM_DEFAULT_PD_MODE = 1;
/* Controls additional delay after remote frame capture before
* continuing power down, default = 0
*/
psr_context->frame_delay = 0;
psr_context->dsc_slice_height = psr_config->dsc_slice_height;
if (psr) {
link->psr_settings.psr_feature_enabled = psr->funcs->psr_copy_settings(psr,
link, psr_context, panel_inst);
link->psr_settings.psr_power_opt = 0;
link->psr_settings.psr_allow_active = 0;
} else {
link->psr_settings.psr_feature_enabled = dmcu->funcs->setup_psr(dmcu, link, psr_context);
}
/* psr_enabled == 0 indicates setup_psr did not succeed, but this
* should not happen since firmware should be running at this point
*/
if (link->psr_settings.psr_feature_enabled == 0)
ASSERT(0);
return true;
}
void edp_get_psr_residency(const struct dc_link *link, uint32_t *residency)
{
struct dc *dc = link->ctx->dc;
struct dmub_psr *psr = dc->res_pool->psr;
unsigned int panel_inst;
if (!dc_get_edp_link_panel_inst(dc, link, &panel_inst))
return;
// PSR residency measurements only supported on DMCUB
if (psr != NULL && link->psr_settings.psr_feature_enabled)
psr->funcs->psr_get_residency(psr, residency, panel_inst);
else
*residency = 0;
}
bool edp_set_sink_vtotal_in_psr_active(const struct dc_link *link, uint16_t psr_vtotal_idle, uint16_t psr_vtotal_su)
{
struct dc *dc = link->ctx->dc;
struct dmub_psr *psr = dc->res_pool->psr;
if (psr == NULL || !link->psr_settings.psr_feature_enabled || !link->psr_settings.psr_vtotal_control_support)
return false;
psr->funcs->psr_set_sink_vtotal_in_psr_active(psr, psr_vtotal_idle, psr_vtotal_su);
return true;
}
bool edp_set_replay_allow_active(struct dc_link *link, const bool *allow_active,
bool wait, bool force_static, const unsigned int *power_opts)
{
struct dc *dc = link->ctx->dc;
struct dmub_replay *replay = dc->res_pool->replay;
unsigned int panel_inst;
if (replay == NULL && force_static)
return false;
if (!dc_get_edp_link_panel_inst(dc, link, &panel_inst))
return false;
/* Set power optimization flag */
if (power_opts && link->replay_settings.replay_power_opt_active != *power_opts) {
if (link->replay_settings.replay_feature_enabled && replay->funcs->replay_set_power_opt) {
replay->funcs->replay_set_power_opt(replay, *power_opts, panel_inst);
link->replay_settings.replay_power_opt_active = *power_opts;
}
}
/* Activate or deactivate Replay */
if (allow_active && link->replay_settings.replay_allow_active != *allow_active) {
// TODO: Handle mux change case if force_static is set
// If force_static is set, just change the replay_allow_active state directly
if (replay != NULL && link->replay_settings.replay_feature_enabled)
replay->funcs->replay_enable(replay, *allow_active, wait, panel_inst);
link->replay_settings.replay_allow_active = *allow_active;
}
return true;
}
bool edp_get_replay_state(const struct dc_link *link, uint64_t *state)
{
struct dc *dc = link->ctx->dc;
struct dmub_replay *replay = dc->res_pool->replay;
unsigned int panel_inst;
enum replay_state pr_state = REPLAY_STATE_0;
if (!dc_get_edp_link_panel_inst(dc, link, &panel_inst))
return false;
if (replay != NULL && link->replay_settings.replay_feature_enabled)
replay->funcs->replay_get_state(replay, &pr_state, panel_inst);
*state = pr_state;
return true;
}
bool edp_setup_replay(struct dc_link *link, const struct dc_stream_state *stream)
{
/* To-do: Setup Replay */
struct dc *dc = link->ctx->dc;
struct dmub_replay *replay = dc->res_pool->replay;
int i;
unsigned int panel_inst;
struct replay_context replay_context = { 0 };
unsigned int lineTimeInNs = 0;
union replay_enable_and_configuration replay_config;
union dpcd_alpm_configuration alpm_config;
replay_context.controllerId = CONTROLLER_ID_UNDEFINED;
if (!link)
return false;
if (!replay)
return false;
if (!dc_get_edp_link_panel_inst(dc, link, &panel_inst))
return false;
replay_context.aux_inst = link->ddc->ddc_pin->hw_info.ddc_channel;
replay_context.digbe_inst = link->link_enc->transmitter;
replay_context.digfe_inst = link->link_enc->preferred_engine;
for (i = 0; i < MAX_PIPES; i++) {
if (dc->current_state->res_ctx.pipe_ctx[i].stream
== stream) {
/* dmcu -1 for all controller id values,
* therefore +1 here
*/
replay_context.controllerId =
dc->current_state->res_ctx.pipe_ctx[i].stream_res.tg->inst + 1;
break;
}
}
lineTimeInNs =
((stream->timing.h_total * 1000000) /
(stream->timing.pix_clk_100hz / 10)) + 1;
replay_context.line_time_in_ns = lineTimeInNs;
if (replay)
link->replay_settings.replay_feature_enabled =
replay->funcs->replay_copy_settings(replay, link, &replay_context, panel_inst);
if (link->replay_settings.replay_feature_enabled) {
replay_config.bits.FREESYNC_PANEL_REPLAY_MODE = 1;
replay_config.bits.TIMING_DESYNC_ERROR_VERIFICATION =
link->replay_settings.config.replay_timing_sync_supported;
replay_config.bits.STATE_TRANSITION_ERROR_DETECTION = 1;
dm_helpers_dp_write_dpcd(link->ctx, link,
DP_SINK_PR_ENABLE_AND_CONFIGURATION,
(uint8_t *)&(replay_config.raw), sizeof(uint8_t));
memset(&alpm_config, 0, sizeof(alpm_config));
alpm_config.bits.ENABLE = 1;
dm_helpers_dp_write_dpcd(
link->ctx,
link,
DP_RECEIVER_ALPM_CONFIG,
&alpm_config.raw,
sizeof(alpm_config.raw));
}
return true;
}
bool edp_set_coasting_vtotal(struct dc_link *link, uint16_t coasting_vtotal)
{
struct dc *dc = link->ctx->dc;
struct dmub_replay *replay = dc->res_pool->replay;
unsigned int panel_inst;
if (!replay)
return false;
if (!dc_get_edp_link_panel_inst(dc, link, &panel_inst))
return false;
if (coasting_vtotal && link->replay_settings.coasting_vtotal != coasting_vtotal) {
replay->funcs->replay_set_coasting_vtotal(replay, coasting_vtotal, panel_inst);
link->replay_settings.coasting_vtotal = coasting_vtotal;
}
return true;
}
bool edp_replay_residency(const struct dc_link *link,
unsigned int *residency, const bool is_start, const bool is_alpm)
{
struct dc *dc = link->ctx->dc;
struct dmub_replay *replay = dc->res_pool->replay;
unsigned int panel_inst;
if (!dc_get_edp_link_panel_inst(dc, link, &panel_inst))
return false;
if (replay != NULL && link->replay_settings.replay_feature_enabled)
replay->funcs->replay_residency(replay, panel_inst, residency, is_start, is_alpm);
else
*residency = 0;
return true;
}
static struct abm *get_abm_from_stream_res(const struct dc_link *link)
{
int i;
struct dc *dc = link->ctx->dc;
struct abm *abm = NULL;
for (i = 0; i < MAX_PIPES; i++) {
struct pipe_ctx pipe_ctx = dc->current_state->res_ctx.pipe_ctx[i];
struct dc_stream_state *stream = pipe_ctx.stream;
if (stream && stream->link == link) {
abm = pipe_ctx.stream_res.abm;
break;
}
}
return abm;
}
int edp_get_backlight_level(const struct dc_link *link)
{
struct abm *abm = get_abm_from_stream_res(link);
struct panel_cntl *panel_cntl = link->panel_cntl;
struct dc *dc = link->ctx->dc;
struct dmcu *dmcu = dc->res_pool->dmcu;
bool fw_set_brightness = true;
if (dmcu)
fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
if (!fw_set_brightness && panel_cntl->funcs->get_current_backlight)
return panel_cntl->funcs->get_current_backlight(panel_cntl);
else if (abm != NULL && abm->funcs->get_current_backlight != NULL)
return (int) abm->funcs->get_current_backlight(abm);
else
return DC_ERROR_UNEXPECTED;
}
int edp_get_target_backlight_pwm(const struct dc_link *link)
{
struct abm *abm = get_abm_from_stream_res(link);
if (abm == NULL || abm->funcs->get_target_backlight == NULL)
return DC_ERROR_UNEXPECTED;
return (int) abm->funcs->get_target_backlight(abm);
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/protocols/link_edp_panel_control.c |
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
/* FILE POLICY AND INTENDED USAGE:
* This file implements all generic dp link training helper functions and top
* level generic training sequence. All variations of dp link training sequence
* should be called inside the top level training functions in this file to
* ensure the integrity of our overall training procedure across different types
* of link encoding and back end hardware.
*/
#include "link_dp_training.h"
#include "link_dp_training_8b_10b.h"
#include "link_dp_training_128b_132b.h"
#include "link_dp_training_auxless.h"
#include "link_dp_training_dpia.h"
#include "link_dp_training_fixed_vs_pe_retimer.h"
#include "link_dpcd.h"
#include "link/accessories/link_dp_trace.h"
#include "link_dp_phy.h"
#include "link_dp_capability.h"
#include "link_edp_panel_control.h"
#include "link/link_detection.h"
#include "link/link_validation.h"
#include "atomfirmware.h"
#include "link_enc_cfg.h"
#include "resource.h"
#include "dm_helpers.h"
#define DC_LOGGER \
link->ctx->logger
#define POST_LT_ADJ_REQ_LIMIT 6
#define POST_LT_ADJ_REQ_TIMEOUT 200
#define LINK_TRAINING_RETRY_DELAY 50 /* ms */
void dp_log_training_result(
struct dc_link *link,
const struct link_training_settings *lt_settings,
enum link_training_result status)
{
char *link_rate = "Unknown";
char *lt_result = "Unknown";
char *lt_spread = "Disabled";
switch (lt_settings->link_settings.link_rate) {
case LINK_RATE_LOW:
link_rate = "RBR";
break;
case LINK_RATE_RATE_2:
link_rate = "R2";
break;
case LINK_RATE_RATE_3:
link_rate = "R3";
break;
case LINK_RATE_HIGH:
link_rate = "HBR";
break;
case LINK_RATE_RBR2:
link_rate = "RBR2";
break;
case LINK_RATE_RATE_6:
link_rate = "R6";
break;
case LINK_RATE_HIGH2:
link_rate = "HBR2";
break;
case LINK_RATE_RATE_8:
link_rate = "R8";
break;
case LINK_RATE_HIGH3:
link_rate = "HBR3";
break;
case LINK_RATE_UHBR10:
link_rate = "UHBR10";
break;
case LINK_RATE_UHBR13_5:
link_rate = "UHBR13.5";
break;
case LINK_RATE_UHBR20:
link_rate = "UHBR20";
break;
default:
break;
}
switch (status) {
case LINK_TRAINING_SUCCESS:
lt_result = "pass";
break;
case LINK_TRAINING_CR_FAIL_LANE0:
lt_result = "CR failed lane0";
break;
case LINK_TRAINING_CR_FAIL_LANE1:
lt_result = "CR failed lane1";
break;
case LINK_TRAINING_CR_FAIL_LANE23:
lt_result = "CR failed lane23";
break;
case LINK_TRAINING_EQ_FAIL_CR:
lt_result = "CR failed in EQ";
break;
case LINK_TRAINING_EQ_FAIL_CR_PARTIAL:
lt_result = "CR failed in EQ partially";
break;
case LINK_TRAINING_EQ_FAIL_EQ:
lt_result = "EQ failed";
break;
case LINK_TRAINING_LQA_FAIL:
lt_result = "LQA failed";
break;
case LINK_TRAINING_LINK_LOSS:
lt_result = "Link loss";
break;
case DP_128b_132b_LT_FAILED:
lt_result = "LT_FAILED received";
break;
case DP_128b_132b_MAX_LOOP_COUNT_REACHED:
lt_result = "max loop count reached";
break;
case DP_128b_132b_CHANNEL_EQ_DONE_TIMEOUT:
lt_result = "channel EQ timeout";
break;
case DP_128b_132b_CDS_DONE_TIMEOUT:
lt_result = "CDS timeout";
break;
default:
break;
}
switch (lt_settings->link_settings.link_spread) {
case LINK_SPREAD_DISABLED:
lt_spread = "Disabled";
break;
case LINK_SPREAD_05_DOWNSPREAD_30KHZ:
lt_spread = "0.5% 30KHz";
break;
case LINK_SPREAD_05_DOWNSPREAD_33KHZ:
lt_spread = "0.5% 33KHz";
break;
default:
break;
}
/* Connectivity log: link training */
/* TODO - DP2.0 Log: add connectivity log for FFE PRESET */
CONN_MSG_LT(link, "%sx%d %s VS=%d, PE=%d, DS=%s",
link_rate,
lt_settings->link_settings.lane_count,
lt_result,
lt_settings->hw_lane_settings[0].VOLTAGE_SWING,
lt_settings->hw_lane_settings[0].PRE_EMPHASIS,
lt_spread);
}
uint8_t dp_initialize_scrambling_data_symbols(
struct dc_link *link,
enum dc_dp_training_pattern pattern)
{
uint8_t disable_scrabled_data_symbols = 0;
switch (pattern) {
case DP_TRAINING_PATTERN_SEQUENCE_1:
case DP_TRAINING_PATTERN_SEQUENCE_2:
case DP_TRAINING_PATTERN_SEQUENCE_3:
disable_scrabled_data_symbols = 1;
break;
case DP_TRAINING_PATTERN_SEQUENCE_4:
case DP_128b_132b_TPS1:
case DP_128b_132b_TPS2:
disable_scrabled_data_symbols = 0;
break;
default:
ASSERT(0);
DC_LOG_HW_LINK_TRAINING("%s: Invalid HW Training pattern: %d\n",
__func__, pattern);
break;
}
return disable_scrabled_data_symbols;
}
enum dpcd_training_patterns
dp_training_pattern_to_dpcd_training_pattern(
struct dc_link *link,
enum dc_dp_training_pattern pattern)
{
enum dpcd_training_patterns dpcd_tr_pattern =
DPCD_TRAINING_PATTERN_VIDEOIDLE;
switch (pattern) {
case DP_TRAINING_PATTERN_SEQUENCE_1:
DC_LOG_HW_LINK_TRAINING("%s: Using DP training pattern TPS1\n", __func__);
dpcd_tr_pattern = DPCD_TRAINING_PATTERN_1;
break;
case DP_TRAINING_PATTERN_SEQUENCE_2:
DC_LOG_HW_LINK_TRAINING("%s: Using DP training pattern TPS2\n", __func__);
dpcd_tr_pattern = DPCD_TRAINING_PATTERN_2;
break;
case DP_TRAINING_PATTERN_SEQUENCE_3:
DC_LOG_HW_LINK_TRAINING("%s: Using DP training pattern TPS3\n", __func__);
dpcd_tr_pattern = DPCD_TRAINING_PATTERN_3;
break;
case DP_TRAINING_PATTERN_SEQUENCE_4:
DC_LOG_HW_LINK_TRAINING("%s: Using DP training pattern TPS4\n", __func__);
dpcd_tr_pattern = DPCD_TRAINING_PATTERN_4;
break;
case DP_128b_132b_TPS1:
DC_LOG_HW_LINK_TRAINING("%s: Using DP 128b/132b training pattern TPS1\n", __func__);
dpcd_tr_pattern = DPCD_128b_132b_TPS1;
break;
case DP_128b_132b_TPS2:
DC_LOG_HW_LINK_TRAINING("%s: Using DP 128b/132b training pattern TPS2\n", __func__);
dpcd_tr_pattern = DPCD_128b_132b_TPS2;
break;
case DP_128b_132b_TPS2_CDS:
DC_LOG_HW_LINK_TRAINING("%s: Using DP 128b/132b training pattern TPS2 CDS\n",
__func__);
dpcd_tr_pattern = DPCD_128b_132b_TPS2_CDS;
break;
case DP_TRAINING_PATTERN_VIDEOIDLE:
DC_LOG_HW_LINK_TRAINING("%s: Using DP training pattern videoidle\n", __func__);
dpcd_tr_pattern = DPCD_TRAINING_PATTERN_VIDEOIDLE;
break;
default:
ASSERT(0);
DC_LOG_HW_LINK_TRAINING("%s: Invalid HW Training pattern: %d\n",
__func__, pattern);
break;
}
return dpcd_tr_pattern;
}
uint8_t dp_get_nibble_at_index(const uint8_t *buf,
uint32_t index)
{
uint8_t nibble;
nibble = buf[index / 2];
if (index % 2)
nibble >>= 4;
else
nibble &= 0x0F;
return nibble;
}
void dp_wait_for_training_aux_rd_interval(
struct dc_link *link,
uint32_t wait_in_micro_secs)
{
fsleep(wait_in_micro_secs);
DC_LOG_HW_LINK_TRAINING("%s:\n wait = %d\n",
__func__,
wait_in_micro_secs);
}
/* maximum pre emphasis level allowed for each voltage swing level*/
static const enum dc_pre_emphasis voltage_swing_to_pre_emphasis[] = {
PRE_EMPHASIS_LEVEL3,
PRE_EMPHASIS_LEVEL2,
PRE_EMPHASIS_LEVEL1,
PRE_EMPHASIS_DISABLED };
static enum dc_pre_emphasis get_max_pre_emphasis_for_voltage_swing(
enum dc_voltage_swing voltage)
{
enum dc_pre_emphasis pre_emphasis;
pre_emphasis = PRE_EMPHASIS_MAX_LEVEL;
if (voltage <= VOLTAGE_SWING_MAX_LEVEL)
pre_emphasis = voltage_swing_to_pre_emphasis[voltage];
return pre_emphasis;
}
static void maximize_lane_settings(const struct link_training_settings *lt_settings,
struct dc_lane_settings lane_settings[LANE_COUNT_DP_MAX])
{
uint32_t lane;
struct dc_lane_settings max_requested;
max_requested.VOLTAGE_SWING = lane_settings[0].VOLTAGE_SWING;
max_requested.PRE_EMPHASIS = lane_settings[0].PRE_EMPHASIS;
max_requested.FFE_PRESET = lane_settings[0].FFE_PRESET;
/* Determine what the maximum of the requested settings are*/
for (lane = 1; lane < lt_settings->link_settings.lane_count; lane++) {
if (lane_settings[lane].VOLTAGE_SWING > max_requested.VOLTAGE_SWING)
max_requested.VOLTAGE_SWING = lane_settings[lane].VOLTAGE_SWING;
if (lane_settings[lane].PRE_EMPHASIS > max_requested.PRE_EMPHASIS)
max_requested.PRE_EMPHASIS = lane_settings[lane].PRE_EMPHASIS;
if (lane_settings[lane].FFE_PRESET.settings.level >
max_requested.FFE_PRESET.settings.level)
max_requested.FFE_PRESET.settings.level =
lane_settings[lane].FFE_PRESET.settings.level;
}
/* make sure the requested settings are
* not higher than maximum settings*/
if (max_requested.VOLTAGE_SWING > VOLTAGE_SWING_MAX_LEVEL)
max_requested.VOLTAGE_SWING = VOLTAGE_SWING_MAX_LEVEL;
if (max_requested.PRE_EMPHASIS > PRE_EMPHASIS_MAX_LEVEL)
max_requested.PRE_EMPHASIS = PRE_EMPHASIS_MAX_LEVEL;
if (max_requested.FFE_PRESET.settings.level > DP_FFE_PRESET_MAX_LEVEL)
max_requested.FFE_PRESET.settings.level = DP_FFE_PRESET_MAX_LEVEL;
/* make sure the pre-emphasis matches the voltage swing*/
if (max_requested.PRE_EMPHASIS >
get_max_pre_emphasis_for_voltage_swing(
max_requested.VOLTAGE_SWING))
max_requested.PRE_EMPHASIS =
get_max_pre_emphasis_for_voltage_swing(
max_requested.VOLTAGE_SWING);
for (lane = 0; lane < LANE_COUNT_DP_MAX; lane++) {
lane_settings[lane].VOLTAGE_SWING = max_requested.VOLTAGE_SWING;
lane_settings[lane].PRE_EMPHASIS = max_requested.PRE_EMPHASIS;
lane_settings[lane].FFE_PRESET = max_requested.FFE_PRESET;
}
}
void dp_hw_to_dpcd_lane_settings(
const struct link_training_settings *lt_settings,
const struct dc_lane_settings hw_lane_settings[LANE_COUNT_DP_MAX],
union dpcd_training_lane dpcd_lane_settings[LANE_COUNT_DP_MAX])
{
uint8_t lane = 0;
for (lane = 0; lane < LANE_COUNT_DP_MAX; lane++) {
if (link_dp_get_encoding_format(<_settings->link_settings) ==
DP_8b_10b_ENCODING) {
dpcd_lane_settings[lane].bits.VOLTAGE_SWING_SET =
(uint8_t)(hw_lane_settings[lane].VOLTAGE_SWING);
dpcd_lane_settings[lane].bits.PRE_EMPHASIS_SET =
(uint8_t)(hw_lane_settings[lane].PRE_EMPHASIS);
dpcd_lane_settings[lane].bits.MAX_SWING_REACHED =
(hw_lane_settings[lane].VOLTAGE_SWING ==
VOLTAGE_SWING_MAX_LEVEL ? 1 : 0);
dpcd_lane_settings[lane].bits.MAX_PRE_EMPHASIS_REACHED =
(hw_lane_settings[lane].PRE_EMPHASIS ==
PRE_EMPHASIS_MAX_LEVEL ? 1 : 0);
} else if (link_dp_get_encoding_format(<_settings->link_settings) ==
DP_128b_132b_ENCODING) {
dpcd_lane_settings[lane].tx_ffe.PRESET_VALUE =
hw_lane_settings[lane].FFE_PRESET.settings.level;
}
}
}
uint8_t get_dpcd_link_rate(const struct dc_link_settings *link_settings)
{
uint8_t link_rate = 0;
enum dp_link_encoding encoding = link_dp_get_encoding_format(link_settings);
if (encoding == DP_128b_132b_ENCODING)
switch (link_settings->link_rate) {
case LINK_RATE_UHBR10:
link_rate = 0x1;
break;
case LINK_RATE_UHBR20:
link_rate = 0x2;
break;
case LINK_RATE_UHBR13_5:
link_rate = 0x4;
break;
default:
link_rate = 0;
break;
}
else if (encoding == DP_8b_10b_ENCODING)
link_rate = (uint8_t) link_settings->link_rate;
else
link_rate = 0;
return link_rate;
}
/* Only used for channel equalization */
uint32_t dp_translate_training_aux_read_interval(uint32_t dpcd_aux_read_interval)
{
unsigned int aux_rd_interval_us = 400;
switch (dpcd_aux_read_interval) {
case 0x01:
aux_rd_interval_us = 4000;
break;
case 0x02:
aux_rd_interval_us = 8000;
break;
case 0x03:
aux_rd_interval_us = 12000;
break;
case 0x04:
aux_rd_interval_us = 16000;
break;
case 0x05:
aux_rd_interval_us = 32000;
break;
case 0x06:
aux_rd_interval_us = 64000;
break;
default:
break;
}
return aux_rd_interval_us;
}
enum link_training_result dp_get_cr_failure(enum dc_lane_count ln_count,
union lane_status *dpcd_lane_status)
{
enum link_training_result result = LINK_TRAINING_SUCCESS;
if (ln_count >= LANE_COUNT_ONE && !dpcd_lane_status[0].bits.CR_DONE_0)
result = LINK_TRAINING_CR_FAIL_LANE0;
else if (ln_count >= LANE_COUNT_TWO && !dpcd_lane_status[1].bits.CR_DONE_0)
result = LINK_TRAINING_CR_FAIL_LANE1;
else if (ln_count >= LANE_COUNT_FOUR && !dpcd_lane_status[2].bits.CR_DONE_0)
result = LINK_TRAINING_CR_FAIL_LANE23;
else if (ln_count >= LANE_COUNT_FOUR && !dpcd_lane_status[3].bits.CR_DONE_0)
result = LINK_TRAINING_CR_FAIL_LANE23;
return result;
}
bool is_repeater(const struct link_training_settings *lt_settings, uint32_t offset)
{
return (lt_settings->lttpr_mode == LTTPR_MODE_NON_TRANSPARENT) && (offset != 0);
}
bool dp_is_max_vs_reached(
const struct link_training_settings *lt_settings)
{
uint32_t lane;
for (lane = 0; lane <
(uint32_t)(lt_settings->link_settings.lane_count);
lane++) {
if (lt_settings->dpcd_lane_settings[lane].bits.VOLTAGE_SWING_SET
== VOLTAGE_SWING_MAX_LEVEL)
return true;
}
return false;
}
bool dp_is_cr_done(enum dc_lane_count ln_count,
union lane_status *dpcd_lane_status)
{
bool done = true;
uint32_t lane;
/*LANEx_CR_DONE bits All 1's?*/
for (lane = 0; lane < (uint32_t)(ln_count); lane++) {
if (!dpcd_lane_status[lane].bits.CR_DONE_0)
done = false;
}
return done;
}
bool dp_is_ch_eq_done(enum dc_lane_count ln_count,
union lane_status *dpcd_lane_status)
{
bool done = true;
uint32_t lane;
for (lane = 0; lane < (uint32_t)(ln_count); lane++)
if (!dpcd_lane_status[lane].bits.CHANNEL_EQ_DONE_0)
done = false;
return done;
}
bool dp_is_symbol_locked(enum dc_lane_count ln_count,
union lane_status *dpcd_lane_status)
{
bool locked = true;
uint32_t lane;
for (lane = 0; lane < (uint32_t)(ln_count); lane++)
if (!dpcd_lane_status[lane].bits.SYMBOL_LOCKED_0)
locked = false;
return locked;
}
bool dp_is_interlane_aligned(union lane_align_status_updated align_status)
{
return align_status.bits.INTERLANE_ALIGN_DONE == 1;
}
enum link_training_result dp_check_link_loss_status(
struct dc_link *link,
const struct link_training_settings *link_training_setting)
{
enum link_training_result status = LINK_TRAINING_SUCCESS;
union lane_status lane_status;
uint8_t dpcd_buf[6] = {0};
uint32_t lane;
core_link_read_dpcd(
link,
DP_SINK_COUNT,
(uint8_t *)(dpcd_buf),
sizeof(dpcd_buf));
/*parse lane status*/
for (lane = 0; lane < link->cur_link_settings.lane_count; lane++) {
/*
* check lanes status
*/
lane_status.raw = dp_get_nibble_at_index(&dpcd_buf[2], lane);
if (!lane_status.bits.CHANNEL_EQ_DONE_0 ||
!lane_status.bits.CR_DONE_0 ||
!lane_status.bits.SYMBOL_LOCKED_0) {
/* if one of the channel equalization, clock
* recovery or symbol lock is dropped
* consider it as (link has been
* dropped) dp sink status has changed
*/
status = LINK_TRAINING_LINK_LOSS;
break;
}
}
return status;
}
enum dc_status dp_get_lane_status_and_lane_adjust(
struct dc_link *link,
const struct link_training_settings *link_training_setting,
union lane_status ln_status[LANE_COUNT_DP_MAX],
union lane_align_status_updated *ln_align,
union lane_adjust ln_adjust[LANE_COUNT_DP_MAX],
uint32_t offset)
{
unsigned int lane01_status_address = DP_LANE0_1_STATUS;
uint8_t lane_adjust_offset = 4;
unsigned int lane01_adjust_address;
uint8_t dpcd_buf[6] = {0};
uint32_t lane;
enum dc_status status;
if (is_repeater(link_training_setting, offset)) {
lane01_status_address =
DP_LANE0_1_STATUS_PHY_REPEATER1 +
((DP_REPEATER_CONFIGURATION_AND_STATUS_SIZE) * (offset - 1));
lane_adjust_offset = 3;
}
status = core_link_read_dpcd(
link,
lane01_status_address,
(uint8_t *)(dpcd_buf),
sizeof(dpcd_buf));
if (status != DC_OK) {
DC_LOG_HW_LINK_TRAINING("%s:\n Failed to read from address 0x%X,"
" keep current lane status and lane adjust unchanged",
__func__,
lane01_status_address);
return status;
}
for (lane = 0; lane <
(uint32_t)(link_training_setting->link_settings.lane_count);
lane++) {
ln_status[lane].raw =
dp_get_nibble_at_index(&dpcd_buf[0], lane);
ln_adjust[lane].raw =
dp_get_nibble_at_index(&dpcd_buf[lane_adjust_offset], lane);
}
ln_align->raw = dpcd_buf[2];
if (is_repeater(link_training_setting, offset)) {
DC_LOG_HW_LINK_TRAINING("%s:\n LTTPR Repeater ID: %d\n"
" 0x%X Lane01Status = %x\n 0x%X Lane23Status = %x\n ",
__func__,
offset,
lane01_status_address, dpcd_buf[0],
lane01_status_address + 1, dpcd_buf[1]);
lane01_adjust_address = DP_ADJUST_REQUEST_LANE0_1_PHY_REPEATER1 +
((DP_REPEATER_CONFIGURATION_AND_STATUS_SIZE) * (offset - 1));
DC_LOG_HW_LINK_TRAINING("%s:\n LTTPR Repeater ID: %d\n"
" 0x%X Lane01AdjustRequest = %x\n 0x%X Lane23AdjustRequest = %x\n",
__func__,
offset,
lane01_adjust_address,
dpcd_buf[lane_adjust_offset],
lane01_adjust_address + 1,
dpcd_buf[lane_adjust_offset + 1]);
} else {
DC_LOG_HW_LINK_TRAINING("%s:\n 0x%X Lane01Status = %x\n 0x%X Lane23Status = %x\n ",
__func__,
lane01_status_address, dpcd_buf[0],
lane01_status_address + 1, dpcd_buf[1]);
lane01_adjust_address = DP_ADJUST_REQUEST_LANE0_1;
DC_LOG_HW_LINK_TRAINING("%s:\n 0x%X Lane01AdjustRequest = %x\n 0x%X Lane23AdjustRequest = %x\n",
__func__,
lane01_adjust_address,
dpcd_buf[lane_adjust_offset],
lane01_adjust_address + 1,
dpcd_buf[lane_adjust_offset + 1]);
}
return status;
}
static void override_lane_settings(const struct link_training_settings *lt_settings,
struct dc_lane_settings lane_settings[LANE_COUNT_DP_MAX])
{
uint32_t lane;
if (lt_settings->voltage_swing == NULL &&
lt_settings->pre_emphasis == NULL &&
lt_settings->ffe_preset == NULL &&
lt_settings->post_cursor2 == NULL)
return;
for (lane = 0; lane < LANE_COUNT_DP_MAX; lane++) {
if (lt_settings->voltage_swing)
lane_settings[lane].VOLTAGE_SWING = *lt_settings->voltage_swing;
if (lt_settings->pre_emphasis)
lane_settings[lane].PRE_EMPHASIS = *lt_settings->pre_emphasis;
if (lt_settings->post_cursor2)
lane_settings[lane].POST_CURSOR2 = *lt_settings->post_cursor2;
if (lt_settings->ffe_preset)
lane_settings[lane].FFE_PRESET = *lt_settings->ffe_preset;
}
}
void dp_get_lttpr_mode_override(struct dc_link *link, enum lttpr_mode *override)
{
if (!dp_is_lttpr_present(link))
return;
if (link->dc->debug.lttpr_mode_override == LTTPR_MODE_TRANSPARENT) {
*override = LTTPR_MODE_TRANSPARENT;
} else if (link->dc->debug.lttpr_mode_override == LTTPR_MODE_NON_TRANSPARENT) {
*override = LTTPR_MODE_NON_TRANSPARENT;
} else if (link->dc->debug.lttpr_mode_override == LTTPR_MODE_NON_LTTPR) {
*override = LTTPR_MODE_NON_LTTPR;
}
DC_LOG_DC("lttpr_mode_override chose LTTPR_MODE = %d\n", (uint8_t)(*override));
}
void override_training_settings(
struct dc_link *link,
const struct dc_link_training_overrides *overrides,
struct link_training_settings *lt_settings)
{
uint32_t lane;
/* Override link spread */
if (!link->dp_ss_off && overrides->downspread != NULL)
lt_settings->link_settings.link_spread = *overrides->downspread ?
LINK_SPREAD_05_DOWNSPREAD_30KHZ
: LINK_SPREAD_DISABLED;
/* Override lane settings */
if (overrides->voltage_swing != NULL)
lt_settings->voltage_swing = overrides->voltage_swing;
if (overrides->pre_emphasis != NULL)
lt_settings->pre_emphasis = overrides->pre_emphasis;
if (overrides->post_cursor2 != NULL)
lt_settings->post_cursor2 = overrides->post_cursor2;
if (overrides->ffe_preset != NULL)
lt_settings->ffe_preset = overrides->ffe_preset;
/* Override HW lane settings with BIOS forced values if present */
if ((link->chip_caps & EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN) &&
lt_settings->lttpr_mode == LTTPR_MODE_TRANSPARENT) {
lt_settings->voltage_swing = &link->bios_forced_drive_settings.VOLTAGE_SWING;
lt_settings->pre_emphasis = &link->bios_forced_drive_settings.PRE_EMPHASIS;
lt_settings->always_match_dpcd_with_hw_lane_settings = false;
}
for (lane = 0; lane < LANE_COUNT_DP_MAX; lane++) {
lt_settings->hw_lane_settings[lane].VOLTAGE_SWING =
lt_settings->voltage_swing != NULL ?
*lt_settings->voltage_swing :
VOLTAGE_SWING_LEVEL0;
lt_settings->hw_lane_settings[lane].PRE_EMPHASIS =
lt_settings->pre_emphasis != NULL ?
*lt_settings->pre_emphasis
: PRE_EMPHASIS_DISABLED;
lt_settings->hw_lane_settings[lane].POST_CURSOR2 =
lt_settings->post_cursor2 != NULL ?
*lt_settings->post_cursor2
: POST_CURSOR2_DISABLED;
}
if (lt_settings->always_match_dpcd_with_hw_lane_settings)
dp_hw_to_dpcd_lane_settings(lt_settings,
lt_settings->hw_lane_settings, lt_settings->dpcd_lane_settings);
/* Override training timings */
if (overrides->cr_pattern_time != NULL)
lt_settings->cr_pattern_time = *overrides->cr_pattern_time;
if (overrides->eq_pattern_time != NULL)
lt_settings->eq_pattern_time = *overrides->eq_pattern_time;
if (overrides->pattern_for_cr != NULL)
lt_settings->pattern_for_cr = *overrides->pattern_for_cr;
if (overrides->pattern_for_eq != NULL)
lt_settings->pattern_for_eq = *overrides->pattern_for_eq;
if (overrides->enhanced_framing != NULL)
lt_settings->enhanced_framing = *overrides->enhanced_framing;
if (link->preferred_training_settings.fec_enable != NULL)
lt_settings->should_set_fec_ready = *link->preferred_training_settings.fec_enable;
/* Check DP tunnel LTTPR mode debug option. */
if (link->ep_type == DISPLAY_ENDPOINT_USB4_DPIA && link->dc->debug.dpia_debug.bits.force_non_lttpr)
lt_settings->lttpr_mode = LTTPR_MODE_NON_LTTPR;
dp_get_lttpr_mode_override(link, <_settings->lttpr_mode);
}
enum dc_dp_training_pattern decide_cr_training_pattern(
const struct dc_link_settings *link_settings)
{
switch (link_dp_get_encoding_format(link_settings)) {
case DP_8b_10b_ENCODING:
default:
return DP_TRAINING_PATTERN_SEQUENCE_1;
case DP_128b_132b_ENCODING:
return DP_128b_132b_TPS1;
}
}
enum dc_dp_training_pattern decide_eq_training_pattern(struct dc_link *link,
const struct dc_link_settings *link_settings)
{
struct link_encoder *link_enc;
struct encoder_feature_support *enc_caps;
struct dpcd_caps *rx_caps = &link->dpcd_caps;
enum dc_dp_training_pattern pattern = DP_TRAINING_PATTERN_SEQUENCE_2;
link_enc = link_enc_cfg_get_link_enc(link);
ASSERT(link_enc);
enc_caps = &link_enc->features;
switch (link_dp_get_encoding_format(link_settings)) {
case DP_8b_10b_ENCODING:
if (enc_caps->flags.bits.IS_TPS4_CAPABLE &&
rx_caps->max_down_spread.bits.TPS4_SUPPORTED)
pattern = DP_TRAINING_PATTERN_SEQUENCE_4;
else if (enc_caps->flags.bits.IS_TPS3_CAPABLE &&
rx_caps->max_ln_count.bits.TPS3_SUPPORTED)
pattern = DP_TRAINING_PATTERN_SEQUENCE_3;
else
pattern = DP_TRAINING_PATTERN_SEQUENCE_2;
break;
case DP_128b_132b_ENCODING:
pattern = DP_128b_132b_TPS2;
break;
default:
pattern = DP_TRAINING_PATTERN_SEQUENCE_2;
break;
}
return pattern;
}
enum lttpr_mode dp_decide_lttpr_mode(struct dc_link *link,
struct dc_link_settings *link_setting)
{
enum dp_link_encoding encoding = link_dp_get_encoding_format(link_setting);
if (encoding == DP_8b_10b_ENCODING)
return dp_decide_8b_10b_lttpr_mode(link);
else if (encoding == DP_128b_132b_ENCODING)
return dp_decide_128b_132b_lttpr_mode(link);
ASSERT(0);
return LTTPR_MODE_NON_LTTPR;
}
void dp_decide_lane_settings(
const struct link_training_settings *lt_settings,
const union lane_adjust ln_adjust[LANE_COUNT_DP_MAX],
struct dc_lane_settings hw_lane_settings[LANE_COUNT_DP_MAX],
union dpcd_training_lane dpcd_lane_settings[LANE_COUNT_DP_MAX])
{
uint32_t lane;
for (lane = 0; lane < LANE_COUNT_DP_MAX; lane++) {
if (link_dp_get_encoding_format(<_settings->link_settings) ==
DP_8b_10b_ENCODING) {
hw_lane_settings[lane].VOLTAGE_SWING =
(enum dc_voltage_swing)(ln_adjust[lane].bits.
VOLTAGE_SWING_LANE);
hw_lane_settings[lane].PRE_EMPHASIS =
(enum dc_pre_emphasis)(ln_adjust[lane].bits.
PRE_EMPHASIS_LANE);
} else if (link_dp_get_encoding_format(<_settings->link_settings) ==
DP_128b_132b_ENCODING) {
hw_lane_settings[lane].FFE_PRESET.raw =
ln_adjust[lane].tx_ffe.PRESET_VALUE;
}
}
dp_hw_to_dpcd_lane_settings(lt_settings, hw_lane_settings, dpcd_lane_settings);
if (lt_settings->disallow_per_lane_settings) {
/* we find the maximum of the requested settings across all lanes*/
/* and set this maximum for all lanes*/
maximize_lane_settings(lt_settings, hw_lane_settings);
override_lane_settings(lt_settings, hw_lane_settings);
if (lt_settings->always_match_dpcd_with_hw_lane_settings)
dp_hw_to_dpcd_lane_settings(lt_settings, hw_lane_settings, dpcd_lane_settings);
}
}
void dp_decide_training_settings(
struct dc_link *link,
const struct dc_link_settings *link_settings,
struct link_training_settings *lt_settings)
{
if (link_dp_get_encoding_format(link_settings) == DP_8b_10b_ENCODING)
decide_8b_10b_training_settings(link, link_settings, lt_settings);
else if (link_dp_get_encoding_format(link_settings) == DP_128b_132b_ENCODING)
decide_128b_132b_training_settings(link, link_settings, lt_settings);
}
enum dc_status configure_lttpr_mode_transparent(struct dc_link *link)
{
uint8_t repeater_mode = DP_PHY_REPEATER_MODE_TRANSPARENT;
DC_LOG_HW_LINK_TRAINING("%s\n Set LTTPR to Transparent Mode\n", __func__);
return core_link_write_dpcd(link,
DP_PHY_REPEATER_MODE,
(uint8_t *)&repeater_mode,
sizeof(repeater_mode));
}
static enum dc_status configure_lttpr_mode_non_transparent(
struct dc_link *link,
const struct link_training_settings *lt_settings)
{
/* aux timeout is already set to extended */
/* RESET/SET lttpr mode to enable non transparent mode */
uint8_t repeater_cnt;
uint32_t aux_interval_address;
uint8_t repeater_id;
enum dc_status result = DC_ERROR_UNEXPECTED;
uint8_t repeater_mode = DP_PHY_REPEATER_MODE_TRANSPARENT;
const struct dc *dc = link->dc;
enum dp_link_encoding encoding = dc->link_srv->dp_get_encoding_format(<_settings->link_settings);
if (encoding == DP_8b_10b_ENCODING) {
DC_LOG_HW_LINK_TRAINING("%s\n Set LTTPR to Transparent Mode\n", __func__);
result = core_link_write_dpcd(link,
DP_PHY_REPEATER_MODE,
(uint8_t *)&repeater_mode,
sizeof(repeater_mode));
}
if (result == DC_OK) {
link->dpcd_caps.lttpr_caps.mode = repeater_mode;
}
if (lt_settings->lttpr_mode == LTTPR_MODE_NON_TRANSPARENT) {
DC_LOG_HW_LINK_TRAINING("%s\n Set LTTPR to Non Transparent Mode\n", __func__);
repeater_mode = DP_PHY_REPEATER_MODE_NON_TRANSPARENT;
result = core_link_write_dpcd(link,
DP_PHY_REPEATER_MODE,
(uint8_t *)&repeater_mode,
sizeof(repeater_mode));
if (result == DC_OK) {
link->dpcd_caps.lttpr_caps.mode = repeater_mode;
}
if (encoding == DP_8b_10b_ENCODING) {
repeater_cnt = dp_parse_lttpr_repeater_count(link->dpcd_caps.lttpr_caps.phy_repeater_cnt);
/* Driver does not need to train the first hop. Skip DPCD read and clear
* AUX_RD_INTERVAL for DPTX-to-DPIA hop.
*/
if (link->ep_type == DISPLAY_ENDPOINT_USB4_DPIA)
link->dpcd_caps.lttpr_caps.aux_rd_interval[--repeater_cnt] = 0;
for (repeater_id = repeater_cnt; repeater_id > 0; repeater_id--) {
aux_interval_address = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1 +
((DP_REPEATER_CONFIGURATION_AND_STATUS_SIZE) * (repeater_id - 1));
core_link_read_dpcd(
link,
aux_interval_address,
(uint8_t *)&link->dpcd_caps.lttpr_caps.aux_rd_interval[repeater_id - 1],
sizeof(link->dpcd_caps.lttpr_caps.aux_rd_interval[repeater_id - 1]));
link->dpcd_caps.lttpr_caps.aux_rd_interval[repeater_id - 1] &= 0x7F;
}
}
}
return result;
}
enum dc_status dpcd_configure_lttpr_mode(struct dc_link *link, struct link_training_settings *lt_settings)
{
enum dc_status status = DC_OK;
if (lt_settings->lttpr_mode == LTTPR_MODE_TRANSPARENT)
status = configure_lttpr_mode_transparent(link);
else if (lt_settings->lttpr_mode == LTTPR_MODE_NON_TRANSPARENT)
status = configure_lttpr_mode_non_transparent(link, lt_settings);
return status;
}
void repeater_training_done(struct dc_link *link, uint32_t offset)
{
union dpcd_training_pattern dpcd_pattern = {0};
const uint32_t dpcd_base_lt_offset =
DP_TRAINING_PATTERN_SET_PHY_REPEATER1 +
((DP_REPEATER_CONFIGURATION_AND_STATUS_SIZE) * (offset - 1));
/* Set training not in progress*/
dpcd_pattern.v1_4.TRAINING_PATTERN_SET = DPCD_TRAINING_PATTERN_VIDEOIDLE;
core_link_write_dpcd(
link,
dpcd_base_lt_offset,
&dpcd_pattern.raw,
1);
DC_LOG_HW_LINK_TRAINING("%s\n LTTPR Id: %d 0x%X pattern = %x\n",
__func__,
offset,
dpcd_base_lt_offset,
dpcd_pattern.v1_4.TRAINING_PATTERN_SET);
}
static void dpcd_exit_training_mode(struct dc_link *link, enum dp_link_encoding encoding)
{
uint8_t sink_status = 0;
uint8_t i;
/* clear training pattern set */
dpcd_set_training_pattern(link, DP_TRAINING_PATTERN_VIDEOIDLE);
if (encoding == DP_128b_132b_ENCODING) {
/* poll for intra-hop disable */
for (i = 0; i < 10; i++) {
if ((core_link_read_dpcd(link, DP_SINK_STATUS, &sink_status, 1) == DC_OK) &&
(sink_status & DP_INTRA_HOP_AUX_REPLY_INDICATION) == 0)
break;
fsleep(1000);
}
}
}
enum dc_status dpcd_configure_channel_coding(struct dc_link *link,
struct link_training_settings *lt_settings)
{
enum dp_link_encoding encoding =
link_dp_get_encoding_format(
<_settings->link_settings);
enum dc_status status;
status = core_link_write_dpcd(
link,
DP_MAIN_LINK_CHANNEL_CODING_SET,
(uint8_t *) &encoding,
1);
DC_LOG_HW_LINK_TRAINING("%s:\n 0x%X MAIN_LINK_CHANNEL_CODING_SET = %x\n",
__func__,
DP_MAIN_LINK_CHANNEL_CODING_SET,
encoding);
return status;
}
void dpcd_set_training_pattern(
struct dc_link *link,
enum dc_dp_training_pattern training_pattern)
{
union dpcd_training_pattern dpcd_pattern = {0};
dpcd_pattern.v1_4.TRAINING_PATTERN_SET =
dp_training_pattern_to_dpcd_training_pattern(
link, training_pattern);
core_link_write_dpcd(
link,
DP_TRAINING_PATTERN_SET,
&dpcd_pattern.raw,
1);
DC_LOG_HW_LINK_TRAINING("%s\n %x pattern = %x\n",
__func__,
DP_TRAINING_PATTERN_SET,
dpcd_pattern.v1_4.TRAINING_PATTERN_SET);
}
enum dc_status dpcd_set_link_settings(
struct dc_link *link,
const struct link_training_settings *lt_settings)
{
uint8_t rate;
enum dc_status status;
union down_spread_ctrl downspread = {0};
union lane_count_set lane_count_set = {0};
downspread.raw = (uint8_t)
(lt_settings->link_settings.link_spread);
lane_count_set.bits.LANE_COUNT_SET =
lt_settings->link_settings.lane_count;
lane_count_set.bits.ENHANCED_FRAMING = lt_settings->enhanced_framing;
lane_count_set.bits.POST_LT_ADJ_REQ_GRANTED = 0;
if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
lt_settings->pattern_for_eq < DP_TRAINING_PATTERN_SEQUENCE_4) {
lane_count_set.bits.POST_LT_ADJ_REQ_GRANTED =
link->dpcd_caps.max_ln_count.bits.POST_LT_ADJ_REQ_SUPPORTED;
}
status = core_link_write_dpcd(link, DP_DOWNSPREAD_CTRL,
&downspread.raw, sizeof(downspread));
status = core_link_write_dpcd(link, DP_LANE_COUNT_SET,
&lane_count_set.raw, 1);
if (link->dpcd_caps.dpcd_rev.raw >= DPCD_REV_13 &&
lt_settings->link_settings.use_link_rate_set == true) {
rate = 0;
/* WA for some MUX chips that will power down with eDP and lose supported
* link rate set for eDP 1.4. Source reads DPCD 0x010 again to ensure
* MUX chip gets link rate set back before link training.
*/
if (link->connector_signal == SIGNAL_TYPE_EDP) {
uint8_t supported_link_rates[16];
core_link_read_dpcd(link, DP_SUPPORTED_LINK_RATES,
supported_link_rates, sizeof(supported_link_rates));
}
status = core_link_write_dpcd(link, DP_LINK_BW_SET, &rate, 1);
status = core_link_write_dpcd(link, DP_LINK_RATE_SET,
<_settings->link_settings.link_rate_set, 1);
} else {
rate = get_dpcd_link_rate(<_settings->link_settings);
status = core_link_write_dpcd(link, DP_LINK_BW_SET, &rate, 1);
}
if (rate) {
DC_LOG_HW_LINK_TRAINING("%s\n %x rate = %x\n %x lane = %x framing = %x\n %x spread = %x\n",
__func__,
DP_LINK_BW_SET,
lt_settings->link_settings.link_rate,
DP_LANE_COUNT_SET,
lt_settings->link_settings.lane_count,
lt_settings->enhanced_framing,
DP_DOWNSPREAD_CTRL,
lt_settings->link_settings.link_spread);
} else {
DC_LOG_HW_LINK_TRAINING("%s\n %x rate set = %x\n %x lane = %x framing = %x\n %x spread = %x\n",
__func__,
DP_LINK_RATE_SET,
lt_settings->link_settings.link_rate_set,
DP_LANE_COUNT_SET,
lt_settings->link_settings.lane_count,
lt_settings->enhanced_framing,
DP_DOWNSPREAD_CTRL,
lt_settings->link_settings.link_spread);
}
return status;
}
enum dc_status dpcd_set_lane_settings(
struct dc_link *link,
const struct link_training_settings *link_training_setting,
uint32_t offset)
{
unsigned int lane0_set_address;
enum dc_status status;
lane0_set_address = DP_TRAINING_LANE0_SET;
if (is_repeater(link_training_setting, offset))
lane0_set_address = DP_TRAINING_LANE0_SET_PHY_REPEATER1 +
((DP_REPEATER_CONFIGURATION_AND_STATUS_SIZE) * (offset - 1));
status = core_link_write_dpcd(link,
lane0_set_address,
(uint8_t *)(link_training_setting->dpcd_lane_settings),
link_training_setting->link_settings.lane_count);
if (is_repeater(link_training_setting, offset)) {
DC_LOG_HW_LINK_TRAINING("%s\n LTTPR Repeater ID: %d\n"
" 0x%X VS set = %x PE set = %x max VS Reached = %x max PE Reached = %x\n",
__func__,
offset,
lane0_set_address,
link_training_setting->dpcd_lane_settings[0].bits.VOLTAGE_SWING_SET,
link_training_setting->dpcd_lane_settings[0].bits.PRE_EMPHASIS_SET,
link_training_setting->dpcd_lane_settings[0].bits.MAX_SWING_REACHED,
link_training_setting->dpcd_lane_settings[0].bits.MAX_PRE_EMPHASIS_REACHED);
} else {
DC_LOG_HW_LINK_TRAINING("%s\n 0x%X VS set = %x PE set = %x max VS Reached = %x max PE Reached = %x\n",
__func__,
lane0_set_address,
link_training_setting->dpcd_lane_settings[0].bits.VOLTAGE_SWING_SET,
link_training_setting->dpcd_lane_settings[0].bits.PRE_EMPHASIS_SET,
link_training_setting->dpcd_lane_settings[0].bits.MAX_SWING_REACHED,
link_training_setting->dpcd_lane_settings[0].bits.MAX_PRE_EMPHASIS_REACHED);
}
return status;
}
void dpcd_set_lt_pattern_and_lane_settings(
struct dc_link *link,
const struct link_training_settings *lt_settings,
enum dc_dp_training_pattern pattern,
uint32_t offset)
{
uint32_t dpcd_base_lt_offset;
uint8_t dpcd_lt_buffer[5] = {0};
union dpcd_training_pattern dpcd_pattern = {0};
uint32_t size_in_bytes;
bool edp_workaround = false; /* TODO link_prop.INTERNAL */
dpcd_base_lt_offset = DP_TRAINING_PATTERN_SET;
if (is_repeater(lt_settings, offset))
dpcd_base_lt_offset = DP_TRAINING_PATTERN_SET_PHY_REPEATER1 +
((DP_REPEATER_CONFIGURATION_AND_STATUS_SIZE) * (offset - 1));
/*****************************************************************
* DpcdAddress_TrainingPatternSet
*****************************************************************/
dpcd_pattern.v1_4.TRAINING_PATTERN_SET =
dp_training_pattern_to_dpcd_training_pattern(link, pattern);
dpcd_pattern.v1_4.SCRAMBLING_DISABLE =
dp_initialize_scrambling_data_symbols(link, pattern);
dpcd_lt_buffer[DP_TRAINING_PATTERN_SET - DP_TRAINING_PATTERN_SET]
= dpcd_pattern.raw;
if (is_repeater(lt_settings, offset)) {
DC_LOG_HW_LINK_TRAINING("%s\n LTTPR Repeater ID: %d\n 0x%X pattern = %x\n",
__func__,
offset,
dpcd_base_lt_offset,
dpcd_pattern.v1_4.TRAINING_PATTERN_SET);
} else {
DC_LOG_HW_LINK_TRAINING("%s\n 0x%X pattern = %x\n",
__func__,
dpcd_base_lt_offset,
dpcd_pattern.v1_4.TRAINING_PATTERN_SET);
}
/* concatenate everything into one buffer*/
size_in_bytes = lt_settings->link_settings.lane_count *
sizeof(lt_settings->dpcd_lane_settings[0]);
// 0x00103 - 0x00102
memmove(
&dpcd_lt_buffer[DP_TRAINING_LANE0_SET - DP_TRAINING_PATTERN_SET],
lt_settings->dpcd_lane_settings,
size_in_bytes);
if (is_repeater(lt_settings, offset)) {
if (link_dp_get_encoding_format(<_settings->link_settings) ==
DP_128b_132b_ENCODING)
DC_LOG_HW_LINK_TRAINING("%s:\n LTTPR Repeater ID: %d\n"
" 0x%X TX_FFE_PRESET_VALUE = %x\n",
__func__,
offset,
dpcd_base_lt_offset,
lt_settings->dpcd_lane_settings[0].tx_ffe.PRESET_VALUE);
else if (link_dp_get_encoding_format(<_settings->link_settings) ==
DP_8b_10b_ENCODING)
DC_LOG_HW_LINK_TRAINING("%s:\n LTTPR Repeater ID: %d\n"
" 0x%X VS set = %x PE set = %x max VS Reached = %x max PE Reached = %x\n",
__func__,
offset,
dpcd_base_lt_offset,
lt_settings->dpcd_lane_settings[0].bits.VOLTAGE_SWING_SET,
lt_settings->dpcd_lane_settings[0].bits.PRE_EMPHASIS_SET,
lt_settings->dpcd_lane_settings[0].bits.MAX_SWING_REACHED,
lt_settings->dpcd_lane_settings[0].bits.MAX_PRE_EMPHASIS_REACHED);
} else {
if (link_dp_get_encoding_format(<_settings->link_settings) ==
DP_128b_132b_ENCODING)
DC_LOG_HW_LINK_TRAINING("%s:\n 0x%X TX_FFE_PRESET_VALUE = %x\n",
__func__,
dpcd_base_lt_offset,
lt_settings->dpcd_lane_settings[0].tx_ffe.PRESET_VALUE);
else if (link_dp_get_encoding_format(<_settings->link_settings) ==
DP_8b_10b_ENCODING)
DC_LOG_HW_LINK_TRAINING("%s:\n 0x%X VS set = %x PE set = %x max VS Reached = %x max PE Reached = %x\n",
__func__,
dpcd_base_lt_offset,
lt_settings->dpcd_lane_settings[0].bits.VOLTAGE_SWING_SET,
lt_settings->dpcd_lane_settings[0].bits.PRE_EMPHASIS_SET,
lt_settings->dpcd_lane_settings[0].bits.MAX_SWING_REACHED,
lt_settings->dpcd_lane_settings[0].bits.MAX_PRE_EMPHASIS_REACHED);
}
if (edp_workaround) {
/* for eDP write in 2 parts because the 5-byte burst is
* causing issues on some eDP panels (EPR#366724)
*/
core_link_write_dpcd(
link,
DP_TRAINING_PATTERN_SET,
&dpcd_pattern.raw,
sizeof(dpcd_pattern.raw));
core_link_write_dpcd(
link,
DP_TRAINING_LANE0_SET,
(uint8_t *)(lt_settings->dpcd_lane_settings),
size_in_bytes);
} else if (link_dp_get_encoding_format(<_settings->link_settings) ==
DP_128b_132b_ENCODING) {
core_link_write_dpcd(
link,
dpcd_base_lt_offset,
dpcd_lt_buffer,
sizeof(dpcd_lt_buffer));
} else
/* write it all in (1 + number-of-lanes)-byte burst*/
core_link_write_dpcd(
link,
dpcd_base_lt_offset,
dpcd_lt_buffer,
size_in_bytes + sizeof(dpcd_pattern.raw));
}
void start_clock_recovery_pattern_early(struct dc_link *link,
const struct link_resource *link_res,
struct link_training_settings *lt_settings,
uint32_t offset)
{
DC_LOG_HW_LINK_TRAINING("%s\n GPU sends TPS1. Wait 400us.\n",
__func__);
dp_set_hw_training_pattern(link, link_res, lt_settings->pattern_for_cr, offset);
dp_set_hw_lane_settings(link, link_res, lt_settings, offset);
udelay(400);
}
void dp_set_hw_test_pattern(
struct dc_link *link,
const struct link_resource *link_res,
enum dp_test_pattern test_pattern,
uint8_t *custom_pattern,
uint32_t custom_pattern_size)
{
const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
struct encoder_set_dp_phy_pattern_param pattern_param = {0};
pattern_param.dp_phy_pattern = test_pattern;
pattern_param.custom_pattern = custom_pattern;
pattern_param.custom_pattern_size = custom_pattern_size;
pattern_param.dp_panel_mode = dp_get_panel_mode(link);
if (link_hwss->ext.set_dp_link_test_pattern)
link_hwss->ext.set_dp_link_test_pattern(link, link_res, &pattern_param);
}
bool dp_set_hw_training_pattern(
struct dc_link *link,
const struct link_resource *link_res,
enum dc_dp_training_pattern pattern,
uint32_t offset)
{
enum dp_test_pattern test_pattern = DP_TEST_PATTERN_UNSUPPORTED;
switch (pattern) {
case DP_TRAINING_PATTERN_SEQUENCE_1:
test_pattern = DP_TEST_PATTERN_TRAINING_PATTERN1;
break;
case DP_TRAINING_PATTERN_SEQUENCE_2:
test_pattern = DP_TEST_PATTERN_TRAINING_PATTERN2;
break;
case DP_TRAINING_PATTERN_SEQUENCE_3:
test_pattern = DP_TEST_PATTERN_TRAINING_PATTERN3;
break;
case DP_TRAINING_PATTERN_SEQUENCE_4:
test_pattern = DP_TEST_PATTERN_TRAINING_PATTERN4;
break;
case DP_128b_132b_TPS1:
test_pattern = DP_TEST_PATTERN_128b_132b_TPS1_TRAINING_MODE;
break;
case DP_128b_132b_TPS2:
test_pattern = DP_TEST_PATTERN_128b_132b_TPS2_TRAINING_MODE;
break;
default:
break;
}
dp_set_hw_test_pattern(link, link_res, test_pattern, NULL, 0);
return true;
}
static bool perform_post_lt_adj_req_sequence(
struct dc_link *link,
const struct link_resource *link_res,
struct link_training_settings *lt_settings)
{
enum dc_lane_count lane_count =
lt_settings->link_settings.lane_count;
uint32_t adj_req_count;
uint32_t adj_req_timer;
bool req_drv_setting_changed;
uint32_t lane;
union lane_status dpcd_lane_status[LANE_COUNT_DP_MAX] = {0};
union lane_align_status_updated dpcd_lane_status_updated = {0};
union lane_adjust dpcd_lane_adjust[LANE_COUNT_DP_MAX] = {0};
req_drv_setting_changed = false;
for (adj_req_count = 0; adj_req_count < POST_LT_ADJ_REQ_LIMIT;
adj_req_count++) {
req_drv_setting_changed = false;
for (adj_req_timer = 0;
adj_req_timer < POST_LT_ADJ_REQ_TIMEOUT;
adj_req_timer++) {
dp_get_lane_status_and_lane_adjust(
link,
lt_settings,
dpcd_lane_status,
&dpcd_lane_status_updated,
dpcd_lane_adjust,
DPRX);
if (dpcd_lane_status_updated.bits.
POST_LT_ADJ_REQ_IN_PROGRESS == 0)
return true;
if (!dp_is_cr_done(lane_count, dpcd_lane_status))
return false;
if (!dp_is_ch_eq_done(lane_count, dpcd_lane_status) ||
!dp_is_symbol_locked(lane_count, dpcd_lane_status) ||
!dp_is_interlane_aligned(dpcd_lane_status_updated))
return false;
for (lane = 0; lane < (uint32_t)(lane_count); lane++) {
if (lt_settings->
dpcd_lane_settings[lane].bits.VOLTAGE_SWING_SET !=
dpcd_lane_adjust[lane].bits.VOLTAGE_SWING_LANE ||
lt_settings->dpcd_lane_settings[lane].bits.PRE_EMPHASIS_SET !=
dpcd_lane_adjust[lane].bits.PRE_EMPHASIS_LANE) {
req_drv_setting_changed = true;
break;
}
}
if (req_drv_setting_changed) {
dp_decide_lane_settings(lt_settings, dpcd_lane_adjust,
lt_settings->hw_lane_settings, lt_settings->dpcd_lane_settings);
dp_set_drive_settings(link,
link_res,
lt_settings);
break;
}
msleep(1);
}
if (!req_drv_setting_changed) {
DC_LOG_WARNING("%s: Post Link Training Adjust Request Timed out\n",
__func__);
ASSERT(0);
return true;
}
}
DC_LOG_WARNING("%s: Post Link Training Adjust Request limit reached\n",
__func__);
ASSERT(0);
return true;
}
static enum link_training_result dp_transition_to_video_idle(
struct dc_link *link,
const struct link_resource *link_res,
struct link_training_settings *lt_settings,
enum link_training_result status)
{
union lane_count_set lane_count_set = {0};
/* 4. mainlink output idle pattern*/
dp_set_hw_test_pattern(link, link_res, DP_TEST_PATTERN_VIDEO_MODE, NULL, 0);
/*
* 5. post training adjust if required
* If the upstream DPTX and downstream DPRX both support TPS4,
* TPS4 must be used instead of POST_LT_ADJ_REQ.
*/
if (link->dpcd_caps.max_ln_count.bits.POST_LT_ADJ_REQ_SUPPORTED != 1 ||
lt_settings->pattern_for_eq >= DP_TRAINING_PATTERN_SEQUENCE_4) {
/* delay 5ms after Main Link output idle pattern and then check
* DPCD 0202h.
*/
if (link->connector_signal != SIGNAL_TYPE_EDP && status == LINK_TRAINING_SUCCESS) {
msleep(5);
status = dp_check_link_loss_status(link, lt_settings);
}
return status;
}
if (status == LINK_TRAINING_SUCCESS &&
perform_post_lt_adj_req_sequence(link, link_res, lt_settings) == false)
status = LINK_TRAINING_LQA_FAIL;
lane_count_set.bits.LANE_COUNT_SET = lt_settings->link_settings.lane_count;
lane_count_set.bits.ENHANCED_FRAMING = lt_settings->enhanced_framing;
lane_count_set.bits.POST_LT_ADJ_REQ_GRANTED = 0;
core_link_write_dpcd(
link,
DP_LANE_COUNT_SET,
&lane_count_set.raw,
sizeof(lane_count_set));
return status;
}
enum link_training_result dp_perform_link_training(
struct dc_link *link,
const struct link_resource *link_res,
const struct dc_link_settings *link_settings,
bool skip_video_pattern)
{
enum link_training_result status = LINK_TRAINING_SUCCESS;
struct link_training_settings lt_settings = {0};
enum dp_link_encoding encoding =
link_dp_get_encoding_format(link_settings);
/* decide training settings */
dp_decide_training_settings(
link,
link_settings,
<_settings);
override_training_settings(
link,
&link->preferred_training_settings,
<_settings);
/* reset previous training states */
dpcd_exit_training_mode(link, encoding);
/* configure link prior to entering training mode */
dpcd_configure_lttpr_mode(link, <_settings);
dp_set_fec_ready(link, link_res, lt_settings.should_set_fec_ready);
dpcd_configure_channel_coding(link, <_settings);
/* enter training mode:
* Per DP specs starting from here, DPTX device shall not issue
* Non-LT AUX transactions inside training mode.
*/
if ((link->chip_caps & EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN) && encoding == DP_8b_10b_ENCODING)
if (link->dc->config.use_old_fixed_vs_sequence)
status = dp_perform_fixed_vs_pe_training_sequence_legacy(link, link_res, <_settings);
else
status = dp_perform_fixed_vs_pe_training_sequence(link, link_res, <_settings);
else if (encoding == DP_8b_10b_ENCODING)
status = dp_perform_8b_10b_link_training(link, link_res, <_settings);
else if (encoding == DP_128b_132b_ENCODING)
status = dp_perform_128b_132b_link_training(link, link_res, <_settings);
else
ASSERT(0);
/* exit training mode */
dpcd_exit_training_mode(link, encoding);
/* switch to video idle */
if ((status == LINK_TRAINING_SUCCESS) || !skip_video_pattern)
status = dp_transition_to_video_idle(link,
link_res,
<_settings,
status);
/* dump debug data */
dp_log_training_result(link, <_settings, status);
if (status != LINK_TRAINING_SUCCESS)
link->ctx->dc->debug_data.ltFailCount++;
return status;
}
bool perform_link_training_with_retries(
const struct dc_link_settings *link_setting,
bool skip_video_pattern,
int attempts,
struct pipe_ctx *pipe_ctx,
enum signal_type signal,
bool do_fallback)
{
int j;
uint8_t delay_between_attempts = LINK_TRAINING_RETRY_DELAY;
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
enum dp_panel_mode panel_mode = dp_get_panel_mode(link);
enum link_training_result status = LINK_TRAINING_CR_FAIL_LANE0;
struct dc_link_settings cur_link_settings = *link_setting;
struct dc_link_settings max_link_settings = *link_setting;
const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
int fail_count = 0;
bool is_link_bw_low = false; /* link bandwidth < stream bandwidth */
bool is_link_bw_min = /* RBR x 1 */
(cur_link_settings.link_rate <= LINK_RATE_LOW) &&
(cur_link_settings.lane_count <= LANE_COUNT_ONE);
dp_trace_commit_lt_init(link);
if (link_dp_get_encoding_format(&cur_link_settings) == DP_8b_10b_ENCODING)
/* We need to do this before the link training to ensure the idle
* pattern in SST mode will be sent right after the link training
*/
link_hwss->setup_stream_encoder(pipe_ctx);
dp_trace_set_lt_start_timestamp(link, false);
j = 0;
while (j < attempts && fail_count < (attempts * 10)) {
DC_LOG_HW_LINK_TRAINING("%s: Beginning link(%d) training attempt %u of %d @ rate(%d) x lane(%d) @ spread = %x\n",
__func__, link->link_index, (unsigned int)j + 1, attempts,
cur_link_settings.link_rate, cur_link_settings.lane_count,
cur_link_settings.link_spread);
dp_enable_link_phy(
link,
&pipe_ctx->link_res,
signal,
pipe_ctx->clock_source->id,
&cur_link_settings);
if (stream->sink_patches.dppowerup_delay > 0) {
int delay_dp_power_up_in_ms = stream->sink_patches.dppowerup_delay;
msleep(delay_dp_power_up_in_ms);
}
if (panel_mode == DP_PANEL_MODE_EDP) {
struct cp_psp *cp_psp = &stream->ctx->cp_psp;
if (cp_psp && cp_psp->funcs.enable_assr) {
/* ASSR is bound to fail with unsigned PSP
* verstage used during devlopment phase.
* Report and continue with eDP panel mode to
* perform eDP link training with right settings
*/
bool result;
result = cp_psp->funcs.enable_assr(cp_psp->handle, link);
if (!result && link->panel_mode != DP_PANEL_MODE_EDP)
panel_mode = DP_PANEL_MODE_DEFAULT;
}
}
dp_set_panel_mode(link, panel_mode);
if (link->aux_access_disabled) {
dp_perform_link_training_skip_aux(link, &pipe_ctx->link_res, &cur_link_settings);
return true;
} else {
/** @todo Consolidate USB4 DP and DPx.x training. */
if (link->ep_type == DISPLAY_ENDPOINT_USB4_DPIA) {
status = dpia_perform_link_training(
link,
&pipe_ctx->link_res,
&cur_link_settings,
skip_video_pattern);
/* Transmit idle pattern once training successful. */
if (status == LINK_TRAINING_SUCCESS && !is_link_bw_low) {
dp_set_hw_test_pattern(link, &pipe_ctx->link_res, DP_TEST_PATTERN_VIDEO_MODE, NULL, 0);
// Update verified link settings to current one
// Because DPIA LT might fallback to lower link setting.
if (stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST) {
link->verified_link_cap.link_rate = link->cur_link_settings.link_rate;
link->verified_link_cap.lane_count = link->cur_link_settings.lane_count;
dm_helpers_dp_mst_update_branch_bandwidth(link->ctx, link);
}
}
} else {
status = dp_perform_link_training(
link,
&pipe_ctx->link_res,
&cur_link_settings,
skip_video_pattern);
}
dp_trace_lt_total_count_increment(link, false);
dp_trace_lt_result_update(link, status, false);
dp_trace_set_lt_end_timestamp(link, false);
if (status == LINK_TRAINING_SUCCESS && !is_link_bw_low)
return true;
}
fail_count++;
dp_trace_lt_fail_count_update(link, fail_count, false);
if (link->ep_type == DISPLAY_ENDPOINT_PHY) {
/* latest link training still fail or link training is aborted
* skip delay and keep PHY on
*/
if (j == (attempts - 1) || (status == LINK_TRAINING_ABORT))
break;
}
if (j == (attempts - 1)) {
DC_LOG_WARNING(
"%s: Link(%d) training attempt %u of %d failed @ rate(%d) x lane(%d) @ spread = %x : fail reason:(%d)\n",
__func__, link->link_index, (unsigned int)j + 1, attempts,
cur_link_settings.link_rate, cur_link_settings.lane_count,
cur_link_settings.link_spread, status);
} else {
DC_LOG_HW_LINK_TRAINING(
"%s: Link(%d) training attempt %u of %d failed @ rate(%d) x lane(%d) @ spread = %x : fail reason:(%d)\n",
__func__, link->link_index, (unsigned int)j + 1, attempts,
cur_link_settings.link_rate, cur_link_settings.lane_count,
cur_link_settings.link_spread, status);
}
dp_disable_link_phy(link, &pipe_ctx->link_res, signal);
/* Abort link training if failure due to sink being unplugged. */
if (status == LINK_TRAINING_ABORT) {
enum dc_connection_type type = dc_connection_none;
link_detect_connection_type(link, &type);
if (type == dc_connection_none) {
DC_LOG_HW_LINK_TRAINING("%s: Aborting training because sink unplugged\n", __func__);
break;
}
}
/* Try to train again at original settings if:
* - not falling back between training attempts;
* - aborted previous attempt due to reasons other than sink unplug;
* - successfully trained but at a link rate lower than that required by stream;
* - reached minimum link bandwidth.
*/
if (!do_fallback || (status == LINK_TRAINING_ABORT) ||
(status == LINK_TRAINING_SUCCESS && is_link_bw_low) ||
is_link_bw_min) {
j++;
cur_link_settings = *link_setting;
delay_between_attempts += LINK_TRAINING_RETRY_DELAY;
is_link_bw_low = false;
is_link_bw_min = (cur_link_settings.link_rate <= LINK_RATE_LOW) &&
(cur_link_settings.lane_count <= LANE_COUNT_ONE);
} else if (do_fallback) { /* Try training at lower link bandwidth if doing fallback. */
uint32_t req_bw;
uint32_t link_bw;
enum dc_link_encoding_format link_encoding = DC_LINK_ENCODING_UNSPECIFIED;
decide_fallback_link_setting(link, &max_link_settings,
&cur_link_settings, status);
if (link_dp_get_encoding_format(&cur_link_settings) == DP_8b_10b_ENCODING)
link_encoding = DC_LINK_ENCODING_DP_8b_10b;
else if (link_dp_get_encoding_format(&cur_link_settings) == DP_128b_132b_ENCODING)
link_encoding = DC_LINK_ENCODING_DP_128b_132b;
/* Flag if reduced link bandwidth no longer meets stream requirements or fallen back to
* minimum link bandwidth.
*/
req_bw = dc_bandwidth_in_kbps_from_timing(&stream->timing, link_encoding);
link_bw = dp_link_bandwidth_kbps(link, &cur_link_settings);
is_link_bw_low = (req_bw > link_bw);
is_link_bw_min = ((cur_link_settings.link_rate <= LINK_RATE_LOW) &&
(cur_link_settings.lane_count <= LANE_COUNT_ONE));
if (is_link_bw_low)
DC_LOG_WARNING(
"%s: Link(%d) bandwidth too low after fallback req_bw(%d) > link_bw(%d)\n",
__func__, link->link_index, req_bw, link_bw);
}
msleep(delay_between_attempts);
}
return false;
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/protocols/link_dp_training.c |
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
/* FILE POLICY AND INTENDED USAGE:
* This file implements 8b/10b link training specially modified to support an
* embedded retimer chip. This retimer chip is referred as fixed vs pe retimer.
* Unlike native dp connection this chip requires a modified link training
* protocol based on 8b/10b link training. Since this is a non standard sequence
* and we must support this hardware, we decided to isolate it in its own
* training sequence inside its own file.
*/
#include "link_dp_training_fixed_vs_pe_retimer.h"
#include "link_dp_training_8b_10b.h"
#include "link_dpcd.h"
#include "link_dp_phy.h"
#include "link_dp_capability.h"
#include "link_ddc.h"
#define DC_LOGGER \
link->ctx->logger
void dp_fixed_vs_pe_read_lane_adjust(
struct dc_link *link,
union dpcd_training_lane dpcd_lane_adjust[LANE_COUNT_DP_MAX])
{
const uint8_t vendor_lttpr_write_data_vs[3] = {0x0, 0x53, 0x63};
const uint8_t vendor_lttpr_write_data_pe[3] = {0x0, 0x54, 0x63};
uint8_t dprx_vs = 0;
uint8_t dprx_pe = 0;
uint8_t lane;
/* W/A to read lane settings requested by DPRX */
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_vs[0], sizeof(vendor_lttpr_write_data_vs));
link_query_fixed_vs_pe_retimer(link->ddc, &dprx_vs, 1);
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_pe[0], sizeof(vendor_lttpr_write_data_pe));
link_query_fixed_vs_pe_retimer(link->ddc, &dprx_pe, 1);
for (lane = 0; lane < LANE_COUNT_DP_MAX; lane++) {
dpcd_lane_adjust[lane].bits.VOLTAGE_SWING_SET = (dprx_vs >> (2 * lane)) & 0x3;
dpcd_lane_adjust[lane].bits.PRE_EMPHASIS_SET = (dprx_pe >> (2 * lane)) & 0x3;
}
}
void dp_fixed_vs_pe_set_retimer_lane_settings(
struct dc_link *link,
const union dpcd_training_lane dpcd_lane_adjust[LANE_COUNT_DP_MAX],
uint8_t lane_count)
{
const uint8_t vendor_lttpr_write_data_reset[4] = {0x1, 0x50, 0x63, 0xFF};
uint8_t vendor_lttpr_write_data_vs[4] = {0x1, 0x51, 0x63, 0x0};
uint8_t vendor_lttpr_write_data_pe[4] = {0x1, 0x52, 0x63, 0x0};
uint8_t lane = 0;
for (lane = 0; lane < lane_count; lane++) {
vendor_lttpr_write_data_vs[3] |=
dpcd_lane_adjust[lane].bits.VOLTAGE_SWING_SET << (2 * lane);
vendor_lttpr_write_data_pe[3] |=
dpcd_lane_adjust[lane].bits.PRE_EMPHASIS_SET << (2 * lane);
}
/* Force LTTPR to output desired VS and PE */
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_reset[0], sizeof(vendor_lttpr_write_data_reset));
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_vs[0], sizeof(vendor_lttpr_write_data_vs));
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_pe[0], sizeof(vendor_lttpr_write_data_pe));
}
static enum link_training_result perform_fixed_vs_pe_nontransparent_training_sequence(
struct dc_link *link,
const struct link_resource *link_res,
struct link_training_settings *lt_settings)
{
enum link_training_result status = LINK_TRAINING_SUCCESS;
uint8_t lane = 0;
uint8_t toggle_rate = 0x6;
uint8_t target_rate = 0x6;
bool apply_toggle_rate_wa = false;
uint8_t repeater_cnt;
uint8_t repeater_id;
/* Fixed VS/PE specific: Force CR AUX RD Interval to at least 16ms */
if (lt_settings->cr_pattern_time < 16000)
lt_settings->cr_pattern_time = 16000;
/* Fixed VS/PE specific: Toggle link rate */
apply_toggle_rate_wa = (link->vendor_specific_lttpr_link_rate_wa == target_rate);
target_rate = get_dpcd_link_rate(<_settings->link_settings);
toggle_rate = (target_rate == 0x6) ? 0xA : 0x6;
if (apply_toggle_rate_wa)
lt_settings->link_settings.link_rate = toggle_rate;
if (link->ctx->dc->work_arounds.lt_early_cr_pattern)
start_clock_recovery_pattern_early(link, link_res, lt_settings, DPRX);
/* 1. set link rate, lane count and spread. */
dpcd_set_link_settings(link, lt_settings);
/* Fixed VS/PE specific: Toggle link rate back*/
if (apply_toggle_rate_wa) {
core_link_write_dpcd(
link,
DP_LINK_BW_SET,
&target_rate,
1);
}
link->vendor_specific_lttpr_link_rate_wa = target_rate;
if (lt_settings->lttpr_mode == LTTPR_MODE_NON_TRANSPARENT) {
/* 2. perform link training (set link training done
* to false is done as well)
*/
repeater_cnt = dp_parse_lttpr_repeater_count(link->dpcd_caps.lttpr_caps.phy_repeater_cnt);
for (repeater_id = repeater_cnt; (repeater_id > 0 && status == LINK_TRAINING_SUCCESS);
repeater_id--) {
status = perform_8b_10b_clock_recovery_sequence(link, link_res, lt_settings, repeater_id);
if (status != LINK_TRAINING_SUCCESS) {
repeater_training_done(link, repeater_id);
break;
}
status = perform_8b_10b_channel_equalization_sequence(link,
link_res,
lt_settings,
repeater_id);
repeater_training_done(link, repeater_id);
if (status != LINK_TRAINING_SUCCESS)
break;
for (lane = 0; lane < LANE_COUNT_DP_MAX; lane++) {
lt_settings->dpcd_lane_settings[lane].raw = 0;
lt_settings->hw_lane_settings[lane].VOLTAGE_SWING = 0;
lt_settings->hw_lane_settings[lane].PRE_EMPHASIS = 0;
}
}
}
if (status == LINK_TRAINING_SUCCESS) {
status = perform_8b_10b_clock_recovery_sequence(link, link_res, lt_settings, DPRX);
if (status == LINK_TRAINING_SUCCESS) {
status = perform_8b_10b_channel_equalization_sequence(link,
link_res,
lt_settings,
DPRX);
}
}
return status;
}
enum link_training_result dp_perform_fixed_vs_pe_training_sequence_legacy(
struct dc_link *link,
const struct link_resource *link_res,
struct link_training_settings *lt_settings)
{
const uint8_t vendor_lttpr_write_data_reset[4] = {0x1, 0x50, 0x63, 0xFF};
const uint8_t offset = dp_parse_lttpr_repeater_count(
link->dpcd_caps.lttpr_caps.phy_repeater_cnt);
const uint8_t vendor_lttpr_write_data_intercept_en[4] = {0x1, 0x55, 0x63, 0x0};
const uint8_t vendor_lttpr_write_data_intercept_dis[4] = {0x1, 0x55, 0x63, 0x68};
uint32_t pre_disable_intercept_delay_ms = 0;
uint8_t vendor_lttpr_write_data_vs[4] = {0x1, 0x51, 0x63, 0x0};
uint8_t vendor_lttpr_write_data_pe[4] = {0x1, 0x52, 0x63, 0x0};
const uint8_t vendor_lttpr_write_data_4lane_1[4] = {0x1, 0x6E, 0xF2, 0x19};
const uint8_t vendor_lttpr_write_data_4lane_2[4] = {0x1, 0x6B, 0xF2, 0x01};
const uint8_t vendor_lttpr_write_data_4lane_3[4] = {0x1, 0x6D, 0xF2, 0x18};
const uint8_t vendor_lttpr_write_data_4lane_4[4] = {0x1, 0x6C, 0xF2, 0x03};
const uint8_t vendor_lttpr_write_data_4lane_5[4] = {0x1, 0x03, 0xF3, 0x06};
enum link_training_result status = LINK_TRAINING_SUCCESS;
uint8_t lane = 0;
union down_spread_ctrl downspread = {0};
union lane_count_set lane_count_set = {0};
uint8_t toggle_rate;
uint8_t rate;
/* Only 8b/10b is supported */
ASSERT(link_dp_get_encoding_format(<_settings->link_settings) ==
DP_8b_10b_ENCODING);
if (lt_settings->lttpr_mode == LTTPR_MODE_NON_TRANSPARENT) {
status = perform_fixed_vs_pe_nontransparent_training_sequence(link, link_res, lt_settings);
return status;
}
if (offset != 0xFF) {
if (offset == 2) {
pre_disable_intercept_delay_ms = link->dc->debug.fixed_vs_aux_delay_config_wa;
/* Certain display and cable configuration require extra delay */
} else if (offset > 2) {
pre_disable_intercept_delay_ms = link->dc->debug.fixed_vs_aux_delay_config_wa * 2;
}
}
/* Vendor specific: Reset lane settings */
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_reset[0], sizeof(vendor_lttpr_write_data_reset));
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_vs[0], sizeof(vendor_lttpr_write_data_vs));
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_pe[0], sizeof(vendor_lttpr_write_data_pe));
/* Vendor specific: Enable intercept */
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_intercept_en[0], sizeof(vendor_lttpr_write_data_intercept_en));
/* 1. set link rate, lane count and spread. */
downspread.raw = (uint8_t)(lt_settings->link_settings.link_spread);
lane_count_set.bits.LANE_COUNT_SET =
lt_settings->link_settings.lane_count;
lane_count_set.bits.ENHANCED_FRAMING = lt_settings->enhanced_framing;
lane_count_set.bits.POST_LT_ADJ_REQ_GRANTED = 0;
if (lt_settings->pattern_for_eq < DP_TRAINING_PATTERN_SEQUENCE_4) {
lane_count_set.bits.POST_LT_ADJ_REQ_GRANTED =
link->dpcd_caps.max_ln_count.bits.POST_LT_ADJ_REQ_SUPPORTED;
}
core_link_write_dpcd(link, DP_DOWNSPREAD_CTRL,
&downspread.raw, sizeof(downspread));
core_link_write_dpcd(link, DP_LANE_COUNT_SET,
&lane_count_set.raw, 1);
rate = get_dpcd_link_rate(<_settings->link_settings);
/* Vendor specific: Toggle link rate */
toggle_rate = (rate == 0x6) ? 0xA : 0x6;
if (link->vendor_specific_lttpr_link_rate_wa == rate) {
core_link_write_dpcd(
link,
DP_LINK_BW_SET,
&toggle_rate,
1);
}
link->vendor_specific_lttpr_link_rate_wa = rate;
core_link_write_dpcd(link, DP_LINK_BW_SET, &rate, 1);
DC_LOG_HW_LINK_TRAINING("%s\n %x rate = %x\n %x lane = %x framing = %x\n %x spread = %x\n",
__func__,
DP_LINK_BW_SET,
lt_settings->link_settings.link_rate,
DP_LANE_COUNT_SET,
lt_settings->link_settings.lane_count,
lt_settings->enhanced_framing,
DP_DOWNSPREAD_CTRL,
lt_settings->link_settings.link_spread);
if (lt_settings->link_settings.lane_count == LANE_COUNT_FOUR) {
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_4lane_1[0], sizeof(vendor_lttpr_write_data_4lane_1));
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_4lane_2[0], sizeof(vendor_lttpr_write_data_4lane_2));
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_4lane_3[0], sizeof(vendor_lttpr_write_data_4lane_3));
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_4lane_4[0], sizeof(vendor_lttpr_write_data_4lane_4));
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_4lane_5[0], sizeof(vendor_lttpr_write_data_4lane_5));
}
/* 2. Perform link training */
/* Perform Clock Recovery Sequence */
if (status == LINK_TRAINING_SUCCESS) {
const uint8_t max_vendor_dpcd_retries = 10;
uint32_t retries_cr;
uint32_t retry_count;
uint32_t wait_time_microsec;
enum dc_lane_count lane_count = lt_settings->link_settings.lane_count;
union lane_status dpcd_lane_status[LANE_COUNT_DP_MAX];
union lane_align_status_updated dpcd_lane_status_updated;
union lane_adjust dpcd_lane_adjust[LANE_COUNT_DP_MAX] = {0};
uint8_t i = 0;
retries_cr = 0;
retry_count = 0;
memset(&dpcd_lane_status, '\0', sizeof(dpcd_lane_status));
memset(&dpcd_lane_status_updated, '\0',
sizeof(dpcd_lane_status_updated));
while ((retries_cr < LINK_TRAINING_MAX_RETRY_COUNT) &&
(retry_count < LINK_TRAINING_MAX_CR_RETRY)) {
/* 1. call HWSS to set lane settings */
dp_set_hw_lane_settings(
link,
link_res,
lt_settings,
0);
/* 2. update DPCD of the receiver */
if (!retry_count) {
/* EPR #361076 - write as a 5-byte burst,
* but only for the 1-st iteration.
*/
dpcd_set_lt_pattern_and_lane_settings(
link,
lt_settings,
lt_settings->pattern_for_cr,
0);
/* Vendor specific: Disable intercept */
for (i = 0; i < max_vendor_dpcd_retries; i++) {
if (pre_disable_intercept_delay_ms != 0)
msleep(pre_disable_intercept_delay_ms);
if (link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_intercept_dis[0],
sizeof(vendor_lttpr_write_data_intercept_dis)))
break;
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_intercept_en[0],
sizeof(vendor_lttpr_write_data_intercept_en));
}
} else {
vendor_lttpr_write_data_vs[3] = 0;
vendor_lttpr_write_data_pe[3] = 0;
for (lane = 0; lane < lane_count; lane++) {
vendor_lttpr_write_data_vs[3] |=
lt_settings->dpcd_lane_settings[lane].bits.VOLTAGE_SWING_SET << (2 * lane);
vendor_lttpr_write_data_pe[3] |=
lt_settings->dpcd_lane_settings[lane].bits.PRE_EMPHASIS_SET << (2 * lane);
}
/* Vendor specific: Update VS and PE to DPRX requested value */
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_vs[0], sizeof(vendor_lttpr_write_data_vs));
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_pe[0], sizeof(vendor_lttpr_write_data_pe));
dpcd_set_lane_settings(
link,
lt_settings,
0);
}
/* 3. wait receiver to lock-on*/
wait_time_microsec = lt_settings->cr_pattern_time;
dp_wait_for_training_aux_rd_interval(
link,
wait_time_microsec);
/* 4. Read lane status and requested drive
* settings as set by the sink
*/
dp_get_lane_status_and_lane_adjust(
link,
lt_settings,
dpcd_lane_status,
&dpcd_lane_status_updated,
dpcd_lane_adjust,
0);
/* 5. check CR done*/
if (dp_is_cr_done(lane_count, dpcd_lane_status)) {
status = LINK_TRAINING_SUCCESS;
break;
}
/* 6. max VS reached*/
if (dp_is_max_vs_reached(lt_settings))
break;
/* 7. same lane settings */
/* Note: settings are the same for all lanes,
* so comparing first lane is sufficient
*/
if (lt_settings->dpcd_lane_settings[0].bits.VOLTAGE_SWING_SET ==
dpcd_lane_adjust[0].bits.VOLTAGE_SWING_LANE)
retries_cr++;
else
retries_cr = 0;
/* 8. update VS/PE/PC2 in lt_settings*/
dp_decide_lane_settings(lt_settings, dpcd_lane_adjust,
lt_settings->hw_lane_settings, lt_settings->dpcd_lane_settings);
retry_count++;
}
if (retry_count >= LINK_TRAINING_MAX_CR_RETRY) {
ASSERT(0);
DC_LOG_ERROR("%s: Link Training Error, could not get CR after %d tries. Possibly voltage swing issue",
__func__,
LINK_TRAINING_MAX_CR_RETRY);
}
status = dp_get_cr_failure(lane_count, dpcd_lane_status);
}
/* Perform Channel EQ Sequence */
if (status == LINK_TRAINING_SUCCESS) {
enum dc_dp_training_pattern tr_pattern;
uint32_t retries_ch_eq;
uint32_t wait_time_microsec;
enum dc_lane_count lane_count = lt_settings->link_settings.lane_count;
union lane_align_status_updated dpcd_lane_status_updated = {0};
union lane_status dpcd_lane_status[LANE_COUNT_DP_MAX] = {0};
union lane_adjust dpcd_lane_adjust[LANE_COUNT_DP_MAX] = {0};
/* Note: also check that TPS4 is a supported feature*/
tr_pattern = lt_settings->pattern_for_eq;
dp_set_hw_training_pattern(link, link_res, tr_pattern, 0);
status = LINK_TRAINING_EQ_FAIL_EQ;
for (retries_ch_eq = 0; retries_ch_eq <= LINK_TRAINING_MAX_RETRY_COUNT;
retries_ch_eq++) {
dp_set_hw_lane_settings(link, link_res, lt_settings, 0);
vendor_lttpr_write_data_vs[3] = 0;
vendor_lttpr_write_data_pe[3] = 0;
for (lane = 0; lane < lane_count; lane++) {
vendor_lttpr_write_data_vs[3] |=
lt_settings->dpcd_lane_settings[lane].bits.VOLTAGE_SWING_SET << (2 * lane);
vendor_lttpr_write_data_pe[3] |=
lt_settings->dpcd_lane_settings[lane].bits.PRE_EMPHASIS_SET << (2 * lane);
}
/* Vendor specific: Update VS and PE to DPRX requested value */
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_vs[0], sizeof(vendor_lttpr_write_data_vs));
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_pe[0], sizeof(vendor_lttpr_write_data_pe));
/* 2. update DPCD*/
if (!retries_ch_eq)
/* EPR #361076 - write as a 5-byte burst,
* but only for the 1-st iteration
*/
dpcd_set_lt_pattern_and_lane_settings(
link,
lt_settings,
tr_pattern, 0);
else
dpcd_set_lane_settings(link, lt_settings, 0);
/* 3. wait for receiver to lock-on*/
wait_time_microsec = lt_settings->eq_pattern_time;
dp_wait_for_training_aux_rd_interval(
link,
wait_time_microsec);
/* 4. Read lane status and requested
* drive settings as set by the sink
*/
dp_get_lane_status_and_lane_adjust(
link,
lt_settings,
dpcd_lane_status,
&dpcd_lane_status_updated,
dpcd_lane_adjust,
0);
/* 5. check CR done*/
if (!dp_is_cr_done(lane_count, dpcd_lane_status)) {
status = LINK_TRAINING_EQ_FAIL_CR;
break;
}
/* 6. check CHEQ done*/
if (dp_is_ch_eq_done(lane_count, dpcd_lane_status) &&
dp_is_symbol_locked(lane_count, dpcd_lane_status) &&
dp_is_interlane_aligned(dpcd_lane_status_updated)) {
status = LINK_TRAINING_SUCCESS;
break;
}
/* 7. update VS/PE/PC2 in lt_settings*/
dp_decide_lane_settings(lt_settings, dpcd_lane_adjust,
lt_settings->hw_lane_settings, lt_settings->dpcd_lane_settings);
}
}
return status;
}
enum link_training_result dp_perform_fixed_vs_pe_training_sequence(
struct dc_link *link,
const struct link_resource *link_res,
struct link_training_settings *lt_settings)
{
const uint8_t vendor_lttpr_write_data_reset[4] = {0x1, 0x50, 0x63, 0xFF};
const uint8_t offset = dp_parse_lttpr_repeater_count(
link->dpcd_caps.lttpr_caps.phy_repeater_cnt);
const uint8_t vendor_lttpr_write_data_intercept_en[4] = {0x1, 0x55, 0x63, 0x0};
const uint8_t vendor_lttpr_write_data_intercept_dis[4] = {0x1, 0x55, 0x63, 0x6E};
const uint8_t vendor_lttpr_write_data_adicora_eq1[4] = {0x1, 0x55, 0x63, 0x2E};
const uint8_t vendor_lttpr_write_data_adicora_eq2[4] = {0x1, 0x55, 0x63, 0x01};
const uint8_t vendor_lttpr_write_data_adicora_eq3[4] = {0x1, 0x55, 0x63, 0x68};
uint32_t pre_disable_intercept_delay_ms = 0;
uint8_t vendor_lttpr_write_data_vs[4] = {0x1, 0x51, 0x63, 0x0};
uint8_t vendor_lttpr_write_data_pe[4] = {0x1, 0x52, 0x63, 0x0};
const uint8_t vendor_lttpr_write_data_4lane_1[4] = {0x1, 0x6E, 0xF2, 0x19};
const uint8_t vendor_lttpr_write_data_4lane_2[4] = {0x1, 0x6B, 0xF2, 0x01};
const uint8_t vendor_lttpr_write_data_4lane_3[4] = {0x1, 0x6D, 0xF2, 0x18};
const uint8_t vendor_lttpr_write_data_4lane_4[4] = {0x1, 0x6C, 0xF2, 0x03};
const uint8_t vendor_lttpr_write_data_4lane_5[4] = {0x1, 0x03, 0xF3, 0x06};
enum link_training_result status = LINK_TRAINING_SUCCESS;
uint8_t lane = 0;
union down_spread_ctrl downspread = {0};
union lane_count_set lane_count_set = {0};
uint8_t toggle_rate;
uint8_t rate;
/* Only 8b/10b is supported */
ASSERT(link_dp_get_encoding_format(<_settings->link_settings) ==
DP_8b_10b_ENCODING);
if (lt_settings->lttpr_mode == LTTPR_MODE_NON_TRANSPARENT) {
status = perform_fixed_vs_pe_nontransparent_training_sequence(link, link_res, lt_settings);
return status;
}
if (offset != 0xFF) {
if (offset == 2) {
pre_disable_intercept_delay_ms = link->dc->debug.fixed_vs_aux_delay_config_wa;
/* Certain display and cable configuration require extra delay */
} else if (offset > 2) {
pre_disable_intercept_delay_ms = link->dc->debug.fixed_vs_aux_delay_config_wa * 2;
}
}
/* Vendor specific: Reset lane settings */
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_reset[0], sizeof(vendor_lttpr_write_data_reset));
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_vs[0], sizeof(vendor_lttpr_write_data_vs));
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_pe[0], sizeof(vendor_lttpr_write_data_pe));
/* Vendor specific: Enable intercept */
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_intercept_en[0], sizeof(vendor_lttpr_write_data_intercept_en));
/* 1. set link rate, lane count and spread. */
downspread.raw = (uint8_t)(lt_settings->link_settings.link_spread);
lane_count_set.bits.LANE_COUNT_SET =
lt_settings->link_settings.lane_count;
lane_count_set.bits.ENHANCED_FRAMING = lt_settings->enhanced_framing;
lane_count_set.bits.POST_LT_ADJ_REQ_GRANTED = 0;
if (lt_settings->pattern_for_eq < DP_TRAINING_PATTERN_SEQUENCE_4) {
lane_count_set.bits.POST_LT_ADJ_REQ_GRANTED =
link->dpcd_caps.max_ln_count.bits.POST_LT_ADJ_REQ_SUPPORTED;
}
core_link_write_dpcd(link, DP_DOWNSPREAD_CTRL,
&downspread.raw, sizeof(downspread));
core_link_write_dpcd(link, DP_LANE_COUNT_SET,
&lane_count_set.raw, 1);
rate = get_dpcd_link_rate(<_settings->link_settings);
/* Vendor specific: Toggle link rate */
toggle_rate = (rate == 0x6) ? 0xA : 0x6;
if (link->vendor_specific_lttpr_link_rate_wa == rate) {
core_link_write_dpcd(
link,
DP_LINK_BW_SET,
&toggle_rate,
1);
}
link->vendor_specific_lttpr_link_rate_wa = rate;
core_link_write_dpcd(link, DP_LINK_BW_SET, &rate, 1);
DC_LOG_HW_LINK_TRAINING("%s\n %x rate = %x\n %x lane = %x framing = %x\n %x spread = %x\n",
__func__,
DP_LINK_BW_SET,
lt_settings->link_settings.link_rate,
DP_LANE_COUNT_SET,
lt_settings->link_settings.lane_count,
lt_settings->enhanced_framing,
DP_DOWNSPREAD_CTRL,
lt_settings->link_settings.link_spread);
if (lt_settings->link_settings.lane_count == LANE_COUNT_FOUR) {
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_4lane_1[0], sizeof(vendor_lttpr_write_data_4lane_1));
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_4lane_2[0], sizeof(vendor_lttpr_write_data_4lane_2));
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_4lane_3[0], sizeof(vendor_lttpr_write_data_4lane_3));
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_4lane_4[0], sizeof(vendor_lttpr_write_data_4lane_4));
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_4lane_5[0], sizeof(vendor_lttpr_write_data_4lane_5));
}
/* 2. Perform link training */
/* Perform Clock Recovery Sequence */
if (status == LINK_TRAINING_SUCCESS) {
const uint8_t max_vendor_dpcd_retries = 10;
uint32_t retries_cr;
uint32_t retry_count;
uint32_t wait_time_microsec;
enum dc_lane_count lane_count = lt_settings->link_settings.lane_count;
union lane_status dpcd_lane_status[LANE_COUNT_DP_MAX];
union lane_align_status_updated dpcd_lane_status_updated;
union lane_adjust dpcd_lane_adjust[LANE_COUNT_DP_MAX] = {0};
uint8_t i = 0;
retries_cr = 0;
retry_count = 0;
memset(&dpcd_lane_status, '\0', sizeof(dpcd_lane_status));
memset(&dpcd_lane_status_updated, '\0',
sizeof(dpcd_lane_status_updated));
while ((retries_cr < LINK_TRAINING_MAX_RETRY_COUNT) &&
(retry_count < LINK_TRAINING_MAX_CR_RETRY)) {
/* 1. call HWSS to set lane settings */
dp_set_hw_lane_settings(
link,
link_res,
lt_settings,
0);
/* 2. update DPCD of the receiver */
if (!retry_count) {
/* EPR #361076 - write as a 5-byte burst,
* but only for the 1-st iteration.
*/
dpcd_set_lt_pattern_and_lane_settings(
link,
lt_settings,
lt_settings->pattern_for_cr,
0);
/* Vendor specific: Disable intercept */
for (i = 0; i < max_vendor_dpcd_retries; i++) {
if (pre_disable_intercept_delay_ms != 0)
msleep(pre_disable_intercept_delay_ms);
if (link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_intercept_dis[0],
sizeof(vendor_lttpr_write_data_intercept_dis)))
break;
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_intercept_en[0],
sizeof(vendor_lttpr_write_data_intercept_en));
}
} else {
vendor_lttpr_write_data_vs[3] = 0;
vendor_lttpr_write_data_pe[3] = 0;
for (lane = 0; lane < lane_count; lane++) {
vendor_lttpr_write_data_vs[3] |=
lt_settings->dpcd_lane_settings[lane].bits.VOLTAGE_SWING_SET << (2 * lane);
vendor_lttpr_write_data_pe[3] |=
lt_settings->dpcd_lane_settings[lane].bits.PRE_EMPHASIS_SET << (2 * lane);
}
/* Vendor specific: Update VS and PE to DPRX requested value */
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_vs[0], sizeof(vendor_lttpr_write_data_vs));
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_pe[0], sizeof(vendor_lttpr_write_data_pe));
dpcd_set_lane_settings(
link,
lt_settings,
0);
}
/* 3. wait receiver to lock-on*/
wait_time_microsec = lt_settings->cr_pattern_time;
dp_wait_for_training_aux_rd_interval(
link,
wait_time_microsec);
/* 4. Read lane status and requested drive
* settings as set by the sink
*/
dp_get_lane_status_and_lane_adjust(
link,
lt_settings,
dpcd_lane_status,
&dpcd_lane_status_updated,
dpcd_lane_adjust,
0);
/* 5. check CR done*/
if (dp_is_cr_done(lane_count, dpcd_lane_status)) {
status = LINK_TRAINING_SUCCESS;
break;
}
/* 6. max VS reached*/
if (dp_is_max_vs_reached(lt_settings))
break;
/* 7. same lane settings */
/* Note: settings are the same for all lanes,
* so comparing first lane is sufficient
*/
if (lt_settings->dpcd_lane_settings[0].bits.VOLTAGE_SWING_SET ==
dpcd_lane_adjust[0].bits.VOLTAGE_SWING_LANE)
retries_cr++;
else
retries_cr = 0;
/* 8. update VS/PE/PC2 in lt_settings*/
dp_decide_lane_settings(lt_settings, dpcd_lane_adjust,
lt_settings->hw_lane_settings, lt_settings->dpcd_lane_settings);
retry_count++;
}
if (retry_count >= LINK_TRAINING_MAX_CR_RETRY) {
ASSERT(0);
DC_LOG_ERROR("%s: Link Training Error, could not get CR after %d tries. Possibly voltage swing issue",
__func__,
LINK_TRAINING_MAX_CR_RETRY);
}
status = dp_get_cr_failure(lane_count, dpcd_lane_status);
}
/* Perform Channel EQ Sequence */
if (status == LINK_TRAINING_SUCCESS) {
enum dc_dp_training_pattern tr_pattern;
uint32_t retries_ch_eq;
uint32_t wait_time_microsec;
enum dc_lane_count lane_count = lt_settings->link_settings.lane_count;
union lane_align_status_updated dpcd_lane_status_updated = {0};
union lane_status dpcd_lane_status[LANE_COUNT_DP_MAX] = {0};
union lane_adjust dpcd_lane_adjust[LANE_COUNT_DP_MAX] = {0};
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_adicora_eq1[0],
sizeof(vendor_lttpr_write_data_adicora_eq1));
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_adicora_eq2[0],
sizeof(vendor_lttpr_write_data_adicora_eq2));
/* Note: also check that TPS4 is a supported feature*/
tr_pattern = lt_settings->pattern_for_eq;
dp_set_hw_training_pattern(link, link_res, tr_pattern, 0);
status = LINK_TRAINING_EQ_FAIL_EQ;
for (retries_ch_eq = 0; retries_ch_eq <= LINK_TRAINING_MAX_RETRY_COUNT;
retries_ch_eq++) {
dp_set_hw_lane_settings(link, link_res, lt_settings, 0);
vendor_lttpr_write_data_vs[3] = 0;
vendor_lttpr_write_data_pe[3] = 0;
for (lane = 0; lane < lane_count; lane++) {
vendor_lttpr_write_data_vs[3] |=
lt_settings->dpcd_lane_settings[lane].bits.VOLTAGE_SWING_SET << (2 * lane);
vendor_lttpr_write_data_pe[3] |=
lt_settings->dpcd_lane_settings[lane].bits.PRE_EMPHASIS_SET << (2 * lane);
}
/* Vendor specific: Update VS and PE to DPRX requested value */
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_vs[0], sizeof(vendor_lttpr_write_data_vs));
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_pe[0], sizeof(vendor_lttpr_write_data_pe));
/* 2. update DPCD*/
if (!retries_ch_eq) {
/* EPR #361076 - write as a 5-byte burst,
* but only for the 1-st iteration
*/
dpcd_set_lt_pattern_and_lane_settings(
link,
lt_settings,
tr_pattern, 0);
link_configure_fixed_vs_pe_retimer(link->ddc,
&vendor_lttpr_write_data_adicora_eq3[0],
sizeof(vendor_lttpr_write_data_adicora_eq3));
} else
dpcd_set_lane_settings(link, lt_settings, 0);
/* 3. wait for receiver to lock-on*/
wait_time_microsec = lt_settings->eq_pattern_time;
dp_wait_for_training_aux_rd_interval(
link,
wait_time_microsec);
/* 4. Read lane status and requested
* drive settings as set by the sink
*/
dp_get_lane_status_and_lane_adjust(
link,
lt_settings,
dpcd_lane_status,
&dpcd_lane_status_updated,
dpcd_lane_adjust,
0);
/* 5. check CR done*/
if (!dp_is_cr_done(lane_count, dpcd_lane_status)) {
status = LINK_TRAINING_EQ_FAIL_CR;
break;
}
/* 6. check CHEQ done*/
if (dp_is_ch_eq_done(lane_count, dpcd_lane_status) &&
dp_is_symbol_locked(lane_count, dpcd_lane_status) &&
dp_is_interlane_aligned(dpcd_lane_status_updated)) {
status = LINK_TRAINING_SUCCESS;
break;
}
/* 7. update VS/PE/PC2 in lt_settings*/
dp_decide_lane_settings(lt_settings, dpcd_lane_adjust,
lt_settings->hw_lane_settings, lt_settings->dpcd_lane_settings);
}
}
return status;
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/protocols/link_dp_training_fixed_vs_pe_retimer.c |
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
/* FILE POLICY AND INTENDED USAGE:
* This module implements functionality for training DPIA links.
*/
#include "link_dp_training_dpia.h"
#include "dc.h"
#include "inc/core_status.h"
#include "dpcd_defs.h"
#include "link_dp_dpia.h"
#include "link_hwss.h"
#include "dm_helpers.h"
#include "dmub/inc/dmub_cmd.h"
#include "link_dpcd.h"
#include "link_dp_phy.h"
#include "link_dp_training_8b_10b.h"
#include "link_dp_capability.h"
#include "dc_dmub_srv.h"
#define DC_LOGGER \
link->ctx->logger
/* The approximate time (us) it takes to transmit 9 USB4 DP clock sync packets. */
#define DPIA_CLK_SYNC_DELAY 16000
/* Extend interval between training status checks for manual testing. */
#define DPIA_DEBUG_EXTENDED_AUX_RD_INTERVAL_US 60000000
#define TRAINING_AUX_RD_INTERVAL 100 //us
/* SET_CONFIG message types sent by driver. */
enum dpia_set_config_type {
DPIA_SET_CFG_SET_LINK = 0x01,
DPIA_SET_CFG_SET_PHY_TEST_MODE = 0x05,
DPIA_SET_CFG_SET_TRAINING = 0x18,
DPIA_SET_CFG_SET_VSPE = 0x19
};
/* Training stages (TS) in SET_CONFIG(SET_TRAINING) message. */
enum dpia_set_config_ts {
DPIA_TS_DPRX_DONE = 0x00, /* Done training DPRX. */
DPIA_TS_TPS1 = 0x01,
DPIA_TS_TPS2 = 0x02,
DPIA_TS_TPS3 = 0x03,
DPIA_TS_TPS4 = 0x07,
DPIA_TS_UFP_DONE = 0xff /* Done training DPTX-to-DPIA hop. */
};
/* SET_CONFIG message data associated with messages sent by driver. */
union dpia_set_config_data {
struct {
uint8_t mode : 1;
uint8_t reserved : 7;
} set_link;
struct {
uint8_t stage;
} set_training;
struct {
uint8_t swing : 2;
uint8_t max_swing_reached : 1;
uint8_t pre_emph : 2;
uint8_t max_pre_emph_reached : 1;
uint8_t reserved : 2;
} set_vspe;
uint8_t raw;
};
/* Configure link as prescribed in link_setting; set LTTPR mode; and
* Initialize link training settings.
* Abort link training if sink unplug detected.
*
* @param link DPIA link being trained.
* @param[in] link_setting Lane count, link rate and downspread control.
* @param[out] lt_settings Link settings and drive settings (voltage swing and pre-emphasis).
*/
static enum link_training_result dpia_configure_link(
struct dc_link *link,
const struct link_resource *link_res,
const struct dc_link_settings *link_setting,
struct link_training_settings *lt_settings)
{
enum dc_status status;
bool fec_enable;
DC_LOG_HW_LINK_TRAINING("%s\n DPIA(%d) configuring\n - LTTPR mode(%d)\n",
__func__,
link->link_id.enum_id - ENUM_ID_1,
lt_settings->lttpr_mode);
dp_decide_training_settings(
link,
link_setting,
lt_settings);
dp_get_lttpr_mode_override(link, <_settings->lttpr_mode);
status = dpcd_configure_channel_coding(link, lt_settings);
if (status != DC_OK && link->is_hpd_pending)
return LINK_TRAINING_ABORT;
/* Configure lttpr mode */
status = dpcd_configure_lttpr_mode(link, lt_settings);
if (status != DC_OK && link->is_hpd_pending)
return LINK_TRAINING_ABORT;
/* Set link rate, lane count and spread. */
status = dpcd_set_link_settings(link, lt_settings);
if (status != DC_OK && link->is_hpd_pending)
return LINK_TRAINING_ABORT;
if (link->preferred_training_settings.fec_enable != NULL)
fec_enable = *link->preferred_training_settings.fec_enable;
else
fec_enable = true;
status = dp_set_fec_ready(link, link_res, fec_enable);
if (status != DC_OK && link->is_hpd_pending)
return LINK_TRAINING_ABORT;
return LINK_TRAINING_SUCCESS;
}
static enum dc_status core_link_send_set_config(
struct dc_link *link,
uint8_t msg_type,
uint8_t msg_data)
{
struct set_config_cmd_payload payload;
enum set_config_status set_config_result = SET_CONFIG_PENDING;
/* prepare set_config payload */
payload.msg_type = msg_type;
payload.msg_data = msg_data;
if (!link->ddc->ddc_pin && !link->aux_access_disabled &&
(dm_helpers_dmub_set_config_sync(link->ctx,
link, &payload, &set_config_result) == -1)) {
return DC_ERROR_UNEXPECTED;
}
/* set_config should return ACK if successful */
return (set_config_result == SET_CONFIG_ACK_RECEIVED) ? DC_OK : DC_ERROR_UNEXPECTED;
}
/* Build SET_CONFIG message data payload for specified message type. */
static uint8_t dpia_build_set_config_data(
enum dpia_set_config_type type,
struct dc_link *link,
struct link_training_settings *lt_settings)
{
union dpia_set_config_data data;
data.raw = 0;
switch (type) {
case DPIA_SET_CFG_SET_LINK:
data.set_link.mode = lt_settings->lttpr_mode == LTTPR_MODE_NON_TRANSPARENT ? 1 : 0;
break;
case DPIA_SET_CFG_SET_PHY_TEST_MODE:
break;
case DPIA_SET_CFG_SET_VSPE:
/* Assume all lanes have same drive settings. */
data.set_vspe.swing = lt_settings->hw_lane_settings[0].VOLTAGE_SWING;
data.set_vspe.pre_emph = lt_settings->hw_lane_settings[0].PRE_EMPHASIS;
data.set_vspe.max_swing_reached =
lt_settings->hw_lane_settings[0].VOLTAGE_SWING == VOLTAGE_SWING_MAX_LEVEL ? 1 : 0;
data.set_vspe.max_pre_emph_reached =
lt_settings->hw_lane_settings[0].PRE_EMPHASIS == PRE_EMPHASIS_MAX_LEVEL ? 1 : 0;
break;
default:
ASSERT(false); /* Message type not supported by helper function. */
break;
}
return data.raw;
}
/* Convert DC training pattern to DPIA training stage. */
static enum dc_status convert_trng_ptn_to_trng_stg(enum dc_dp_training_pattern tps, enum dpia_set_config_ts *ts)
{
enum dc_status status = DC_OK;
switch (tps) {
case DP_TRAINING_PATTERN_SEQUENCE_1:
*ts = DPIA_TS_TPS1;
break;
case DP_TRAINING_PATTERN_SEQUENCE_2:
*ts = DPIA_TS_TPS2;
break;
case DP_TRAINING_PATTERN_SEQUENCE_3:
*ts = DPIA_TS_TPS3;
break;
case DP_TRAINING_PATTERN_SEQUENCE_4:
*ts = DPIA_TS_TPS4;
break;
case DP_TRAINING_PATTERN_VIDEOIDLE:
*ts = DPIA_TS_DPRX_DONE;
break;
default: /* TPS not supported by helper function. */
ASSERT(false);
*ts = DPIA_TS_DPRX_DONE;
status = DC_UNSUPPORTED_VALUE;
break;
}
return status;
}
/* Write training pattern to DPCD. */
static enum dc_status dpcd_set_lt_pattern(
struct dc_link *link,
enum dc_dp_training_pattern pattern,
uint32_t hop)
{
union dpcd_training_pattern dpcd_pattern = {0};
uint32_t dpcd_tps_offset = DP_TRAINING_PATTERN_SET;
enum dc_status status;
if (hop != DPRX)
dpcd_tps_offset = DP_TRAINING_PATTERN_SET_PHY_REPEATER1 +
((DP_REPEATER_CONFIGURATION_AND_STATUS_SIZE) * (hop - 1));
/* DpcdAddress_TrainingPatternSet */
dpcd_pattern.v1_4.TRAINING_PATTERN_SET =
dp_training_pattern_to_dpcd_training_pattern(link, pattern);
dpcd_pattern.v1_4.SCRAMBLING_DISABLE =
dp_initialize_scrambling_data_symbols(link, pattern);
if (hop != DPRX) {
DC_LOG_HW_LINK_TRAINING("%s\n LTTPR Repeater ID: %d\n 0x%X pattern = %x\n",
__func__,
hop,
dpcd_tps_offset,
dpcd_pattern.v1_4.TRAINING_PATTERN_SET);
} else {
DC_LOG_HW_LINK_TRAINING("%s\n 0x%X pattern = %x\n",
__func__,
dpcd_tps_offset,
dpcd_pattern.v1_4.TRAINING_PATTERN_SET);
}
status = core_link_write_dpcd(
link,
dpcd_tps_offset,
&dpcd_pattern.raw,
sizeof(dpcd_pattern.raw));
return status;
}
/* Execute clock recovery phase of link training for specified hop in display
* path.in non-transparent mode:
* - Driver issues both DPCD and SET_CONFIG transactions.
* - TPS1 is transmitted for any hops downstream of DPOA.
* - Drive (VS/PE) only transmitted for the hop immediately downstream of DPOA.
* - CR for the first hop (DPTX-to-DPIA) is assumed to be successful.
*
* @param link DPIA link being trained.
* @param lt_settings link_setting and drive settings (voltage swing and pre-emphasis).
* @param hop Hop in display path. DPRX = 0.
*/
static enum link_training_result dpia_training_cr_non_transparent(
struct dc_link *link,
const struct link_resource *link_res,
struct link_training_settings *lt_settings,
uint32_t hop)
{
enum link_training_result result = LINK_TRAINING_CR_FAIL_LANE0;
uint8_t repeater_cnt = 0; /* Number of hops/repeaters in display path. */
enum dc_status status;
uint32_t retries_cr = 0; /* Number of consecutive attempts with same VS or PE. */
uint32_t retry_count = 0;
uint32_t wait_time_microsec = TRAINING_AUX_RD_INTERVAL; /* From DP spec, CR read interval is always 100us. */
enum dc_lane_count lane_count = lt_settings->link_settings.lane_count;
union lane_status dpcd_lane_status[LANE_COUNT_DP_MAX] = {0};
union lane_align_status_updated dpcd_lane_status_updated = {0};
union lane_adjust dpcd_lane_adjust[LANE_COUNT_DP_MAX] = {0};
uint8_t set_cfg_data;
enum dpia_set_config_ts ts;
repeater_cnt = dp_parse_lttpr_repeater_count(link->dpcd_caps.lttpr_caps.phy_repeater_cnt);
/* Cap of LINK_TRAINING_MAX_CR_RETRY attempts at clock recovery.
* Fix inherited from perform_clock_recovery_sequence() -
* the DP equivalent of this function:
* Required for Synaptics MST hub which can put the LT in
* infinite loop by switching the VS between level 0 and level 1
* continuously.
*/
while ((retries_cr < LINK_TRAINING_MAX_RETRY_COUNT) &&
(retry_count < LINK_TRAINING_MAX_CR_RETRY)) {
/* DPTX-to-DPIA */
if (hop == repeater_cnt) {
/* Send SET_CONFIG(SET_LINK:LC,LR,LTTPR) to notify DPOA that
* non-transparent link training has started.
* This also enables the transmission of clk_sync packets.
*/
set_cfg_data = dpia_build_set_config_data(
DPIA_SET_CFG_SET_LINK,
link,
lt_settings);
status = core_link_send_set_config(
link,
DPIA_SET_CFG_SET_LINK,
set_cfg_data);
/* CR for this hop is considered successful as long as
* SET_CONFIG message is acknowledged by DPOA.
*/
if (status == DC_OK)
result = LINK_TRAINING_SUCCESS;
else
result = LINK_TRAINING_ABORT;
break;
}
/* DPOA-to-x */
/* Instruct DPOA to transmit TPS1 then update DPCD. */
if (retry_count == 0) {
status = convert_trng_ptn_to_trng_stg(lt_settings->pattern_for_cr, &ts);
if (status != DC_OK) {
result = LINK_TRAINING_ABORT;
break;
}
status = core_link_send_set_config(
link,
DPIA_SET_CFG_SET_TRAINING,
ts);
if (status != DC_OK) {
result = LINK_TRAINING_ABORT;
break;
}
status = dpcd_set_lt_pattern(link, lt_settings->pattern_for_cr, hop);
if (status != DC_OK) {
result = LINK_TRAINING_ABORT;
break;
}
}
/* Update DPOA drive settings then DPCD. DPOA does only adjusts
* drive settings for hops immediately downstream.
*/
if (hop == repeater_cnt - 1) {
set_cfg_data = dpia_build_set_config_data(
DPIA_SET_CFG_SET_VSPE,
link,
lt_settings);
status = core_link_send_set_config(
link,
DPIA_SET_CFG_SET_VSPE,
set_cfg_data);
if (status != DC_OK) {
result = LINK_TRAINING_ABORT;
break;
}
}
status = dpcd_set_lane_settings(link, lt_settings, hop);
if (status != DC_OK) {
result = LINK_TRAINING_ABORT;
break;
}
dp_wait_for_training_aux_rd_interval(link, wait_time_microsec);
/* Read status and adjustment requests from DPCD. */
status = dp_get_lane_status_and_lane_adjust(
link,
lt_settings,
dpcd_lane_status,
&dpcd_lane_status_updated,
dpcd_lane_adjust,
hop);
if (status != DC_OK) {
result = LINK_TRAINING_ABORT;
break;
}
/* Check if clock recovery successful. */
if (dp_is_cr_done(lane_count, dpcd_lane_status)) {
DC_LOG_HW_LINK_TRAINING("%s: Clock recovery OK\n", __func__);
result = LINK_TRAINING_SUCCESS;
break;
}
result = dp_get_cr_failure(lane_count, dpcd_lane_status);
if (dp_is_max_vs_reached(lt_settings))
break;
/* Count number of attempts with same drive settings.
* Note: settings are the same for all lanes,
* so comparing first lane is sufficient.
*/
if ((lt_settings->dpcd_lane_settings[0].bits.VOLTAGE_SWING_SET ==
dpcd_lane_adjust[0].bits.VOLTAGE_SWING_LANE)
&& (lt_settings->dpcd_lane_settings[0].bits.PRE_EMPHASIS_SET ==
dpcd_lane_adjust[0].bits.PRE_EMPHASIS_LANE))
retries_cr++;
else
retries_cr = 0;
/* Update VS/PE. */
dp_decide_lane_settings(lt_settings, dpcd_lane_adjust,
lt_settings->hw_lane_settings,
lt_settings->dpcd_lane_settings);
retry_count++;
}
/* Abort link training if clock recovery failed due to HPD unplug. */
if (link->is_hpd_pending)
result = LINK_TRAINING_ABORT;
DC_LOG_HW_LINK_TRAINING(
"%s\n DPIA(%d) clock recovery\n -hop(%d)\n - result(%d)\n - retries(%d)\n - status(%d)\n",
__func__,
link->link_id.enum_id - ENUM_ID_1,
hop,
result,
retry_count,
status);
return result;
}
/* Execute clock recovery phase of link training in transparent LTTPR mode:
* - Driver only issues DPCD transactions and leaves USB4 tunneling (SET_CONFIG) messages to DPIA.
* - Driver writes TPS1 to DPCD to kick off training.
* - Clock recovery (CR) for link is handled by DPOA, which reports result to DPIA on completion.
* - DPIA communicates result to driver by updating CR status when driver reads DPCD.
*
* @param link DPIA link being trained.
* @param lt_settings link_setting and drive settings (voltage swing and pre-emphasis).
*/
static enum link_training_result dpia_training_cr_transparent(
struct dc_link *link,
const struct link_resource *link_res,
struct link_training_settings *lt_settings)
{
enum link_training_result result = LINK_TRAINING_CR_FAIL_LANE0;
enum dc_status status;
uint32_t retries_cr = 0; /* Number of consecutive attempts with same VS or PE. */
uint32_t retry_count = 0;
uint32_t wait_time_microsec = lt_settings->cr_pattern_time;
enum dc_lane_count lane_count = lt_settings->link_settings.lane_count;
union lane_status dpcd_lane_status[LANE_COUNT_DP_MAX] = {0};
union lane_align_status_updated dpcd_lane_status_updated = {0};
union lane_adjust dpcd_lane_adjust[LANE_COUNT_DP_MAX] = {0};
/* Cap of LINK_TRAINING_MAX_CR_RETRY attempts at clock recovery.
* Fix inherited from perform_clock_recovery_sequence() -
* the DP equivalent of this function:
* Required for Synaptics MST hub which can put the LT in
* infinite loop by switching the VS between level 0 and level 1
* continuously.
*/
while ((retries_cr < LINK_TRAINING_MAX_RETRY_COUNT) &&
(retry_count < LINK_TRAINING_MAX_CR_RETRY)) {
/* Write TPS1 (not VS or PE) to DPCD to start CR phase.
* DPIA sends SET_CONFIG(SET_LINK) to notify DPOA to
* start link training.
*/
if (retry_count == 0) {
status = dpcd_set_lt_pattern(link, lt_settings->pattern_for_cr, DPRX);
if (status != DC_OK) {
result = LINK_TRAINING_ABORT;
break;
}
}
dp_wait_for_training_aux_rd_interval(link, wait_time_microsec);
/* Read status and adjustment requests from DPCD. */
status = dp_get_lane_status_and_lane_adjust(
link,
lt_settings,
dpcd_lane_status,
&dpcd_lane_status_updated,
dpcd_lane_adjust,
DPRX);
if (status != DC_OK) {
result = LINK_TRAINING_ABORT;
break;
}
/* Check if clock recovery successful. */
if (dp_is_cr_done(lane_count, dpcd_lane_status)) {
DC_LOG_HW_LINK_TRAINING("%s: Clock recovery OK\n", __func__);
result = LINK_TRAINING_SUCCESS;
break;
}
result = dp_get_cr_failure(lane_count, dpcd_lane_status);
if (dp_is_max_vs_reached(lt_settings))
break;
/* Count number of attempts with same drive settings.
* Note: settings are the same for all lanes,
* so comparing first lane is sufficient.
*/
if ((lt_settings->dpcd_lane_settings[0].bits.VOLTAGE_SWING_SET ==
dpcd_lane_adjust[0].bits.VOLTAGE_SWING_LANE)
&& (lt_settings->dpcd_lane_settings[0].bits.PRE_EMPHASIS_SET ==
dpcd_lane_adjust[0].bits.PRE_EMPHASIS_LANE))
retries_cr++;
else
retries_cr = 0;
/* Update VS/PE. */
dp_decide_lane_settings(lt_settings, dpcd_lane_adjust,
lt_settings->hw_lane_settings, lt_settings->dpcd_lane_settings);
retry_count++;
}
/* Abort link training if clock recovery failed due to HPD unplug. */
if (link->is_hpd_pending)
result = LINK_TRAINING_ABORT;
DC_LOG_HW_LINK_TRAINING("%s\n DPIA(%d) clock recovery\n -hop(%d)\n - result(%d)\n - retries(%d)\n",
__func__,
link->link_id.enum_id - ENUM_ID_1,
DPRX,
result,
retry_count);
return result;
}
/* Execute clock recovery phase of link training for specified hop in display
* path.
*
* @param link DPIA link being trained.
* @param lt_settings link_setting and drive settings (voltage swing and pre-emphasis).
* @param hop Hop in display path. DPRX = 0.
*/
static enum link_training_result dpia_training_cr_phase(
struct dc_link *link,
const struct link_resource *link_res,
struct link_training_settings *lt_settings,
uint32_t hop)
{
enum link_training_result result = LINK_TRAINING_CR_FAIL_LANE0;
if (lt_settings->lttpr_mode == LTTPR_MODE_NON_TRANSPARENT)
result = dpia_training_cr_non_transparent(link, link_res, lt_settings, hop);
else
result = dpia_training_cr_transparent(link, link_res, lt_settings);
return result;
}
/* Return status read interval during equalization phase. */
static uint32_t dpia_get_eq_aux_rd_interval(
const struct dc_link *link,
const struct link_training_settings *lt_settings,
uint32_t hop)
{
uint32_t wait_time_microsec;
if (hop == DPRX)
wait_time_microsec = lt_settings->eq_pattern_time;
else
wait_time_microsec =
dp_translate_training_aux_read_interval(
link->dpcd_caps.lttpr_caps.aux_rd_interval[hop - 1]);
/* Check debug option for extending aux read interval. */
if (link->dc->debug.dpia_debug.bits.extend_aux_rd_interval)
wait_time_microsec = DPIA_DEBUG_EXTENDED_AUX_RD_INTERVAL_US;
return wait_time_microsec;
}
/* Execute equalization phase of link training for specified hop in display
* path in non-transparent mode:
* - driver issues both DPCD and SET_CONFIG transactions.
* - TPSx is transmitted for any hops downstream of DPOA.
* - Drive (VS/PE) only transmitted for the hop immediately downstream of DPOA.
* - EQ for the first hop (DPTX-to-DPIA) is assumed to be successful.
* - DPRX EQ only reported successful when both DPRX and DPIA requirements (clk sync packets sent) fulfilled.
*
* @param link DPIA link being trained.
* @param lt_settings link_setting and drive settings (voltage swing and pre-emphasis).
* @param hop Hop in display path. DPRX = 0.
*/
static enum link_training_result dpia_training_eq_non_transparent(
struct dc_link *link,
const struct link_resource *link_res,
struct link_training_settings *lt_settings,
uint32_t hop)
{
enum link_training_result result = LINK_TRAINING_EQ_FAIL_EQ;
uint8_t repeater_cnt = 0; /* Number of hops/repeaters in display path. */
uint32_t retries_eq = 0;
enum dc_status status;
enum dc_dp_training_pattern tr_pattern;
uint32_t wait_time_microsec;
enum dc_lane_count lane_count = lt_settings->link_settings.lane_count;
union lane_align_status_updated dpcd_lane_status_updated = {0};
union lane_status dpcd_lane_status[LANE_COUNT_DP_MAX] = {0};
union lane_adjust dpcd_lane_adjust[LANE_COUNT_DP_MAX] = {0};
uint8_t set_cfg_data;
enum dpia_set_config_ts ts;
/* Training pattern is TPS4 for repeater;
* TPS2/3/4 for DPRX depending on what it supports.
*/
if (hop == DPRX)
tr_pattern = lt_settings->pattern_for_eq;
else
tr_pattern = DP_TRAINING_PATTERN_SEQUENCE_4;
repeater_cnt = dp_parse_lttpr_repeater_count(link->dpcd_caps.lttpr_caps.phy_repeater_cnt);
for (retries_eq = 0; retries_eq < LINK_TRAINING_MAX_RETRY_COUNT; retries_eq++) {
/* DPTX-to-DPIA equalization always successful. */
if (hop == repeater_cnt) {
result = LINK_TRAINING_SUCCESS;
break;
}
/* Instruct DPOA to transmit TPSn then update DPCD. */
if (retries_eq == 0) {
status = convert_trng_ptn_to_trng_stg(tr_pattern, &ts);
if (status != DC_OK) {
result = LINK_TRAINING_ABORT;
break;
}
status = core_link_send_set_config(
link,
DPIA_SET_CFG_SET_TRAINING,
ts);
if (status != DC_OK) {
result = LINK_TRAINING_ABORT;
break;
}
status = dpcd_set_lt_pattern(link, tr_pattern, hop);
if (status != DC_OK) {
result = LINK_TRAINING_ABORT;
break;
}
}
/* Update DPOA drive settings then DPCD. DPOA only adjusts
* drive settings for hop immediately downstream.
*/
if (hop == repeater_cnt - 1) {
set_cfg_data = dpia_build_set_config_data(
DPIA_SET_CFG_SET_VSPE,
link,
lt_settings);
status = core_link_send_set_config(
link,
DPIA_SET_CFG_SET_VSPE,
set_cfg_data);
if (status != DC_OK) {
result = LINK_TRAINING_ABORT;
break;
}
}
status = dpcd_set_lane_settings(link, lt_settings, hop);
if (status != DC_OK) {
result = LINK_TRAINING_ABORT;
break;
}
/* Extend wait time on second equalisation attempt on final hop to
* ensure clock sync packets have been sent.
*/
if (hop == DPRX && retries_eq == 1)
wait_time_microsec = max(wait_time_microsec, (uint32_t) DPIA_CLK_SYNC_DELAY);
else
wait_time_microsec = dpia_get_eq_aux_rd_interval(link, lt_settings, hop);
dp_wait_for_training_aux_rd_interval(link, wait_time_microsec);
/* Read status and adjustment requests from DPCD. */
status = dp_get_lane_status_and_lane_adjust(
link,
lt_settings,
dpcd_lane_status,
&dpcd_lane_status_updated,
dpcd_lane_adjust,
hop);
if (status != DC_OK) {
result = LINK_TRAINING_ABORT;
break;
}
/* CR can still fail during EQ phase. Fail training if CR fails. */
if (!dp_is_cr_done(lane_count, dpcd_lane_status)) {
result = LINK_TRAINING_EQ_FAIL_CR;
break;
}
if (dp_is_ch_eq_done(lane_count, dpcd_lane_status) &&
dp_is_symbol_locked(link->cur_link_settings.lane_count, dpcd_lane_status) &&
dp_is_interlane_aligned(dpcd_lane_status_updated)) {
result = LINK_TRAINING_SUCCESS;
break;
}
/* Update VS/PE. */
dp_decide_lane_settings(lt_settings, dpcd_lane_adjust,
lt_settings->hw_lane_settings, lt_settings->dpcd_lane_settings);
}
/* Abort link training if equalization failed due to HPD unplug. */
if (link->is_hpd_pending)
result = LINK_TRAINING_ABORT;
DC_LOG_HW_LINK_TRAINING(
"%s\n DPIA(%d) equalization\n - hop(%d)\n - result(%d)\n - retries(%d)\n - status(%d)\n",
__func__,
link->link_id.enum_id - ENUM_ID_1,
hop,
result,
retries_eq,
status);
return result;
}
/* Execute equalization phase of link training for specified hop in display
* path in transparent LTTPR mode:
* - driver only issues DPCD transactions leaves USB4 tunneling (SET_CONFIG) messages to DPIA.
* - driver writes TPSx to DPCD to notify DPIA that is in equalization phase.
* - equalization (EQ) for link is handled by DPOA, which reports result to DPIA on completion.
* - DPIA communicates result to driver by updating EQ status when driver reads DPCD.
*
* @param link DPIA link being trained.
* @param lt_settings link_setting and drive settings (voltage swing and pre-emphasis).
* @param hop Hop in display path. DPRX = 0.
*/
static enum link_training_result dpia_training_eq_transparent(
struct dc_link *link,
const struct link_resource *link_res,
struct link_training_settings *lt_settings)
{
enum link_training_result result = LINK_TRAINING_EQ_FAIL_EQ;
uint32_t retries_eq = 0;
enum dc_status status;
enum dc_dp_training_pattern tr_pattern = lt_settings->pattern_for_eq;
uint32_t wait_time_microsec;
enum dc_lane_count lane_count = lt_settings->link_settings.lane_count;
union lane_align_status_updated dpcd_lane_status_updated = {0};
union lane_status dpcd_lane_status[LANE_COUNT_DP_MAX] = {0};
union lane_adjust dpcd_lane_adjust[LANE_COUNT_DP_MAX] = {0};
wait_time_microsec = dpia_get_eq_aux_rd_interval(link, lt_settings, DPRX);
for (retries_eq = 0; retries_eq < LINK_TRAINING_MAX_RETRY_COUNT; retries_eq++) {
if (retries_eq == 0) {
status = dpcd_set_lt_pattern(link, tr_pattern, DPRX);
if (status != DC_OK) {
result = LINK_TRAINING_ABORT;
break;
}
}
dp_wait_for_training_aux_rd_interval(link, wait_time_microsec);
/* Read status and adjustment requests from DPCD. */
status = dp_get_lane_status_and_lane_adjust(
link,
lt_settings,
dpcd_lane_status,
&dpcd_lane_status_updated,
dpcd_lane_adjust,
DPRX);
if (status != DC_OK) {
result = LINK_TRAINING_ABORT;
break;
}
/* CR can still fail during EQ phase. Fail training if CR fails. */
if (!dp_is_cr_done(lane_count, dpcd_lane_status)) {
result = LINK_TRAINING_EQ_FAIL_CR;
break;
}
if (dp_is_ch_eq_done(lane_count, dpcd_lane_status) &&
dp_is_symbol_locked(link->cur_link_settings.lane_count, dpcd_lane_status)) {
/* Take into consideration corner case for DP 1.4a LL Compliance CTS as USB4
* has to share encoders unlike DP and USBC
*/
if (dp_is_interlane_aligned(dpcd_lane_status_updated) || (link->is_automated && retries_eq)) {
result = LINK_TRAINING_SUCCESS;
break;
}
}
/* Update VS/PE. */
dp_decide_lane_settings(lt_settings, dpcd_lane_adjust,
lt_settings->hw_lane_settings, lt_settings->dpcd_lane_settings);
}
/* Abort link training if equalization failed due to HPD unplug. */
if (link->is_hpd_pending)
result = LINK_TRAINING_ABORT;
DC_LOG_HW_LINK_TRAINING("%s\n DPIA(%d) equalization\n - hop(%d)\n - result(%d)\n - retries(%d)\n",
__func__,
link->link_id.enum_id - ENUM_ID_1,
DPRX,
result,
retries_eq);
return result;
}
/* Execute equalization phase of link training for specified hop in display
* path.
*
* @param link DPIA link being trained.
* @param lt_settings link_setting and drive settings (voltage swing and pre-emphasis).
* @param hop Hop in display path. DPRX = 0.
*/
static enum link_training_result dpia_training_eq_phase(
struct dc_link *link,
const struct link_resource *link_res,
struct link_training_settings *lt_settings,
uint32_t hop)
{
enum link_training_result result;
if (lt_settings->lttpr_mode == LTTPR_MODE_NON_TRANSPARENT)
result = dpia_training_eq_non_transparent(link, link_res, lt_settings, hop);
else
result = dpia_training_eq_transparent(link, link_res, lt_settings);
return result;
}
/* End training of specified hop in display path. */
static enum dc_status dpcd_clear_lt_pattern(
struct dc_link *link,
uint32_t hop)
{
union dpcd_training_pattern dpcd_pattern = {0};
uint32_t dpcd_tps_offset = DP_TRAINING_PATTERN_SET;
enum dc_status status;
if (hop != DPRX)
dpcd_tps_offset = DP_TRAINING_PATTERN_SET_PHY_REPEATER1 +
((DP_REPEATER_CONFIGURATION_AND_STATUS_SIZE) * (hop - 1));
status = core_link_write_dpcd(
link,
dpcd_tps_offset,
&dpcd_pattern.raw,
sizeof(dpcd_pattern.raw));
return status;
}
/* End training of specified hop in display path.
*
* In transparent LTTPR mode:
* - driver clears training pattern for the specified hop in DPCD.
* In non-transparent LTTPR mode:
* - in addition to clearing training pattern, driver issues USB4 tunneling
* (SET_CONFIG) messages to notify DPOA when training is done for first hop
* (DPTX-to-DPIA) and last hop (DPRX).
*
* @param link DPIA link being trained.
* @param hop Hop in display path. DPRX = 0.
*/
static enum link_training_result dpia_training_end(
struct dc_link *link,
struct link_training_settings *lt_settings,
uint32_t hop)
{
enum link_training_result result = LINK_TRAINING_SUCCESS;
uint8_t repeater_cnt = 0; /* Number of hops/repeaters in display path. */
enum dc_status status;
if (lt_settings->lttpr_mode == LTTPR_MODE_NON_TRANSPARENT) {
repeater_cnt = dp_parse_lttpr_repeater_count(link->dpcd_caps.lttpr_caps.phy_repeater_cnt);
if (hop == repeater_cnt) { /* DPTX-to-DPIA */
/* Send SET_CONFIG(SET_TRAINING:0xff) to notify DPOA that
* DPTX-to-DPIA hop trained. No DPCD write needed for first hop.
*/
status = core_link_send_set_config(
link,
DPIA_SET_CFG_SET_TRAINING,
DPIA_TS_UFP_DONE);
if (status != DC_OK)
result = LINK_TRAINING_ABORT;
} else { /* DPOA-to-x */
/* Write 0x0 to TRAINING_PATTERN_SET */
status = dpcd_clear_lt_pattern(link, hop);
if (status != DC_OK)
result = LINK_TRAINING_ABORT;
}
/* Notify DPOA that non-transparent link training of DPRX done. */
if (hop == DPRX && result != LINK_TRAINING_ABORT) {
status = core_link_send_set_config(
link,
DPIA_SET_CFG_SET_TRAINING,
DPIA_TS_DPRX_DONE);
if (status != DC_OK)
result = LINK_TRAINING_ABORT;
}
} else { /* non-LTTPR or transparent LTTPR. */
/* Write 0x0 to TRAINING_PATTERN_SET */
status = dpcd_clear_lt_pattern(link, hop);
if (status != DC_OK)
result = LINK_TRAINING_ABORT;
}
DC_LOG_HW_LINK_TRAINING("%s\n DPIA(%d) end\n - hop(%d)\n - result(%d)\n - LTTPR mode(%d)\n",
__func__,
link->link_id.enum_id - ENUM_ID_1,
hop,
result,
lt_settings->lttpr_mode);
return result;
}
/* When aborting training of specified hop in display path, clean up by:
* - Attempting to clear DPCD TRAINING_PATTERN_SET, LINK_BW_SET and LANE_COUNT_SET.
* - Sending SET_CONFIG(SET_LINK) with lane count and link rate set to 0.
*
* @param link DPIA link being trained.
* @param hop Hop in display path. DPRX = 0.
*/
static void dpia_training_abort(
struct dc_link *link,
struct link_training_settings *lt_settings,
uint32_t hop)
{
uint8_t data = 0;
uint32_t dpcd_tps_offset = DP_TRAINING_PATTERN_SET;
DC_LOG_HW_LINK_TRAINING("%s\n DPIA(%d) aborting\n - LTTPR mode(%d)\n - HPD(%d)\n",
__func__,
link->link_id.enum_id - ENUM_ID_1,
lt_settings->lttpr_mode,
link->is_hpd_pending);
/* Abandon clean-up if sink unplugged. */
if (link->is_hpd_pending)
return;
if (hop != DPRX)
dpcd_tps_offset = DP_TRAINING_PATTERN_SET_PHY_REPEATER1 +
((DP_REPEATER_CONFIGURATION_AND_STATUS_SIZE) * (hop - 1));
core_link_write_dpcd(link, dpcd_tps_offset, &data, 1);
core_link_write_dpcd(link, DP_LINK_BW_SET, &data, 1);
core_link_write_dpcd(link, DP_LANE_COUNT_SET, &data, 1);
core_link_send_set_config(link, DPIA_SET_CFG_SET_LINK, data);
}
enum link_training_result dpia_perform_link_training(
struct dc_link *link,
const struct link_resource *link_res,
const struct dc_link_settings *link_setting,
bool skip_video_pattern)
{
enum link_training_result result;
struct link_training_settings lt_settings = {0};
uint8_t repeater_cnt = 0; /* Number of hops/repeaters in display path. */
int8_t repeater_id; /* Current hop. */
struct dc_link_settings link_settings = *link_setting; // non-const copy to pass in
lt_settings.lttpr_mode = dp_decide_lttpr_mode(link, &link_settings);
/* Configure link as prescribed in link_setting and set LTTPR mode. */
result = dpia_configure_link(link, link_res, link_setting, <_settings);
if (result != LINK_TRAINING_SUCCESS)
return result;
if (lt_settings.lttpr_mode == LTTPR_MODE_NON_TRANSPARENT)
repeater_cnt = dp_parse_lttpr_repeater_count(link->dpcd_caps.lttpr_caps.phy_repeater_cnt);
/* Train each hop in turn starting with the one closest to DPTX.
* In transparent or non-LTTPR mode, train only the final hop (DPRX).
*/
for (repeater_id = repeater_cnt; repeater_id >= 0; repeater_id--) {
/* Clock recovery. */
result = dpia_training_cr_phase(link, link_res, <_settings, repeater_id);
if (result != LINK_TRAINING_SUCCESS)
break;
/* Equalization. */
result = dpia_training_eq_phase(link, link_res, <_settings, repeater_id);
if (result != LINK_TRAINING_SUCCESS)
break;
/* Stop training hop. */
result = dpia_training_end(link, <_settings, repeater_id);
if (result != LINK_TRAINING_SUCCESS)
break;
}
/* Double-check link status if training successful; gracefully abort
* training of current hop if training failed due to message tunneling
* failure; end training of hop if training ended conventionally and
* falling back to lower bandwidth settings possible.
*/
if (result == LINK_TRAINING_SUCCESS) {
fsleep(5000);
if (!link->is_automated)
result = dp_check_link_loss_status(link, <_settings);
} else if (result == LINK_TRAINING_ABORT)
dpia_training_abort(link, <_settings, repeater_id);
else
dpia_training_end(link, <_settings, repeater_id);
return result;
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/protocols/link_dp_training_dpia.c |
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
/* FILE POLICY AND INTENDED USAGE:
* This file implements dp 8b/10b link training software policies and
* sequences.
*/
#include "link_dp_training_8b_10b.h"
#include "link_dpcd.h"
#include "link_dp_phy.h"
#include "link_dp_capability.h"
#define DC_LOGGER \
link->ctx->logger
static int32_t get_cr_training_aux_rd_interval(struct dc_link *link,
const struct dc_link_settings *link_settings)
{
union training_aux_rd_interval training_rd_interval;
uint32_t wait_in_micro_secs = 100;
memset(&training_rd_interval, 0, sizeof(training_rd_interval));
if (link_dp_get_encoding_format(link_settings) == DP_8b_10b_ENCODING &&
link->dpcd_caps.dpcd_rev.raw >= DPCD_REV_12) {
core_link_read_dpcd(
link,
DP_TRAINING_AUX_RD_INTERVAL,
(uint8_t *)&training_rd_interval,
sizeof(training_rd_interval));
if (training_rd_interval.bits.TRAINIG_AUX_RD_INTERVAL)
wait_in_micro_secs = training_rd_interval.bits.TRAINIG_AUX_RD_INTERVAL * 4000;
}
return wait_in_micro_secs;
}
static uint32_t get_eq_training_aux_rd_interval(
struct dc_link *link,
const struct dc_link_settings *link_settings)
{
union training_aux_rd_interval training_rd_interval;
memset(&training_rd_interval, 0, sizeof(training_rd_interval));
if (link_dp_get_encoding_format(link_settings) == DP_128b_132b_ENCODING) {
core_link_read_dpcd(
link,
DP_128B132B_TRAINING_AUX_RD_INTERVAL,
(uint8_t *)&training_rd_interval,
sizeof(training_rd_interval));
} else if (link_dp_get_encoding_format(link_settings) == DP_8b_10b_ENCODING &&
link->dpcd_caps.dpcd_rev.raw >= DPCD_REV_12) {
core_link_read_dpcd(
link,
DP_TRAINING_AUX_RD_INTERVAL,
(uint8_t *)&training_rd_interval,
sizeof(training_rd_interval));
}
switch (training_rd_interval.bits.TRAINIG_AUX_RD_INTERVAL) {
case 0: return 400;
case 1: return 4000;
case 2: return 8000;
case 3: return 12000;
case 4: return 16000;
case 5: return 32000;
case 6: return 64000;
default: return 400;
}
}
void decide_8b_10b_training_settings(
struct dc_link *link,
const struct dc_link_settings *link_setting,
struct link_training_settings *lt_settings)
{
memset(lt_settings, '\0', sizeof(struct link_training_settings));
/* Initialize link settings */
lt_settings->link_settings.use_link_rate_set = link_setting->use_link_rate_set;
lt_settings->link_settings.link_rate_set = link_setting->link_rate_set;
lt_settings->link_settings.link_rate = link_setting->link_rate;
lt_settings->link_settings.lane_count = link_setting->lane_count;
/* TODO hard coded to SS for now
* lt_settings.link_settings.link_spread =
* dal_display_path_is_ss_supported(
* path_mode->display_path) ?
* LINK_SPREAD_05_DOWNSPREAD_30KHZ :
* LINK_SPREAD_DISABLED;
*/
lt_settings->link_settings.link_spread = link->dp_ss_off ?
LINK_SPREAD_DISABLED : LINK_SPREAD_05_DOWNSPREAD_30KHZ;
lt_settings->cr_pattern_time = get_cr_training_aux_rd_interval(link, link_setting);
lt_settings->eq_pattern_time = get_eq_training_aux_rd_interval(link, link_setting);
lt_settings->pattern_for_cr = decide_cr_training_pattern(link_setting);
lt_settings->pattern_for_eq = decide_eq_training_pattern(link, link_setting);
lt_settings->enhanced_framing = 1;
lt_settings->should_set_fec_ready = true;
lt_settings->disallow_per_lane_settings = true;
lt_settings->always_match_dpcd_with_hw_lane_settings = true;
lt_settings->lttpr_mode = dp_decide_8b_10b_lttpr_mode(link);
dp_hw_to_dpcd_lane_settings(lt_settings, lt_settings->hw_lane_settings, lt_settings->dpcd_lane_settings);
}
enum lttpr_mode dp_decide_8b_10b_lttpr_mode(struct dc_link *link)
{
bool is_lttpr_present = dp_is_lttpr_present(link);
bool vbios_lttpr_force_non_transparent = link->dc->caps.vbios_lttpr_enable;
bool vbios_lttpr_aware = link->dc->caps.vbios_lttpr_aware;
if (!is_lttpr_present)
return LTTPR_MODE_NON_LTTPR;
if (vbios_lttpr_aware) {
if (vbios_lttpr_force_non_transparent) {
DC_LOG_DC("chose LTTPR_MODE_NON_TRANSPARENT due to VBIOS DCE_INFO_CAPS_LTTPR_SUPPORT_ENABLE set to 1.\n");
return LTTPR_MODE_NON_TRANSPARENT;
} else {
DC_LOG_DC("chose LTTPR_MODE_NON_TRANSPARENT by default due to VBIOS not set DCE_INFO_CAPS_LTTPR_SUPPORT_ENABLE set to 1.\n");
return LTTPR_MODE_TRANSPARENT;
}
}
if (link->dc->config.allow_lttpr_non_transparent_mode.bits.DP1_4A &&
link->dc->caps.extended_aux_timeout_support) {
DC_LOG_DC("chose LTTPR_MODE_NON_TRANSPARENT by default and dc->config.allow_lttpr_non_transparent_mode.bits.DP1_4A set to 1.\n");
return LTTPR_MODE_NON_TRANSPARENT;
}
DC_LOG_DC("chose LTTPR_MODE_NON_LTTPR.\n");
return LTTPR_MODE_NON_LTTPR;
}
enum link_training_result perform_8b_10b_clock_recovery_sequence(
struct dc_link *link,
const struct link_resource *link_res,
struct link_training_settings *lt_settings,
uint32_t offset)
{
uint32_t retries_cr;
uint32_t retry_count;
uint32_t wait_time_microsec;
enum dc_lane_count lane_count = lt_settings->link_settings.lane_count;
union lane_status dpcd_lane_status[LANE_COUNT_DP_MAX];
union lane_align_status_updated dpcd_lane_status_updated;
union lane_adjust dpcd_lane_adjust[LANE_COUNT_DP_MAX] = {0};
retries_cr = 0;
retry_count = 0;
memset(&dpcd_lane_status, '\0', sizeof(dpcd_lane_status));
memset(&dpcd_lane_status_updated, '\0',
sizeof(dpcd_lane_status_updated));
if (!link->ctx->dc->work_arounds.lt_early_cr_pattern)
dp_set_hw_training_pattern(link, link_res, lt_settings->pattern_for_cr, offset);
/* najeeb - The synaptics MST hub can put the LT in
* infinite loop by switching the VS
*/
/* between level 0 and level 1 continuously, here
* we try for CR lock for LinkTrainingMaxCRRetry count*/
while ((retries_cr < LINK_TRAINING_MAX_RETRY_COUNT) &&
(retry_count < LINK_TRAINING_MAX_CR_RETRY)) {
/* 1. call HWSS to set lane settings*/
dp_set_hw_lane_settings(
link,
link_res,
lt_settings,
offset);
/* 2. update DPCD of the receiver*/
if (!retry_count)
/* EPR #361076 - write as a 5-byte burst,
* but only for the 1-st iteration.*/
dpcd_set_lt_pattern_and_lane_settings(
link,
lt_settings,
lt_settings->pattern_for_cr,
offset);
else
dpcd_set_lane_settings(
link,
lt_settings,
offset);
/* 3. wait receiver to lock-on*/
wait_time_microsec = lt_settings->cr_pattern_time;
dp_wait_for_training_aux_rd_interval(
link,
wait_time_microsec);
/* 4. Read lane status and requested drive
* settings as set by the sink
*/
dp_get_lane_status_and_lane_adjust(
link,
lt_settings,
dpcd_lane_status,
&dpcd_lane_status_updated,
dpcd_lane_adjust,
offset);
/* 5. check CR done*/
if (dp_is_cr_done(lane_count, dpcd_lane_status)) {
DC_LOG_HW_LINK_TRAINING("%s: Clock recovery OK\n", __func__);
return LINK_TRAINING_SUCCESS;
}
/* 6. max VS reached*/
if ((link_dp_get_encoding_format(<_settings->link_settings) ==
DP_8b_10b_ENCODING) &&
dp_is_max_vs_reached(lt_settings))
break;
/* 7. same lane settings*/
/* Note: settings are the same for all lanes,
* so comparing first lane is sufficient*/
if ((link_dp_get_encoding_format(<_settings->link_settings) == DP_8b_10b_ENCODING) &&
lt_settings->dpcd_lane_settings[0].bits.VOLTAGE_SWING_SET ==
dpcd_lane_adjust[0].bits.VOLTAGE_SWING_LANE)
retries_cr++;
else if ((link_dp_get_encoding_format(<_settings->link_settings) == DP_128b_132b_ENCODING) &&
lt_settings->dpcd_lane_settings[0].tx_ffe.PRESET_VALUE ==
dpcd_lane_adjust[0].tx_ffe.PRESET_VALUE)
retries_cr++;
else
retries_cr = 0;
/* 8. update VS/PE/PC2 in lt_settings*/
dp_decide_lane_settings(lt_settings, dpcd_lane_adjust,
lt_settings->hw_lane_settings, lt_settings->dpcd_lane_settings);
retry_count++;
}
if (retry_count >= LINK_TRAINING_MAX_CR_RETRY) {
ASSERT(0);
DC_LOG_ERROR("%s: Link Training Error, could not get CR after %d tries. Possibly voltage swing issue",
__func__,
LINK_TRAINING_MAX_CR_RETRY);
}
return dp_get_cr_failure(lane_count, dpcd_lane_status);
}
enum link_training_result perform_8b_10b_channel_equalization_sequence(
struct dc_link *link,
const struct link_resource *link_res,
struct link_training_settings *lt_settings,
uint32_t offset)
{
enum dc_dp_training_pattern tr_pattern;
uint32_t retries_ch_eq;
uint32_t wait_time_microsec;
enum dc_lane_count lane_count = lt_settings->link_settings.lane_count;
union lane_align_status_updated dpcd_lane_status_updated = {0};
union lane_status dpcd_lane_status[LANE_COUNT_DP_MAX] = {0};
union lane_adjust dpcd_lane_adjust[LANE_COUNT_DP_MAX] = {0};
/* Note: also check that TPS4 is a supported feature*/
tr_pattern = lt_settings->pattern_for_eq;
if (is_repeater(lt_settings, offset) && link_dp_get_encoding_format(<_settings->link_settings) == DP_8b_10b_ENCODING)
tr_pattern = DP_TRAINING_PATTERN_SEQUENCE_4;
dp_set_hw_training_pattern(link, link_res, tr_pattern, offset);
for (retries_ch_eq = 0; retries_ch_eq <= LINK_TRAINING_MAX_RETRY_COUNT;
retries_ch_eq++) {
dp_set_hw_lane_settings(link, link_res, lt_settings, offset);
/* 2. update DPCD*/
if (!retries_ch_eq)
/* EPR #361076 - write as a 5-byte burst,
* but only for the 1-st iteration
*/
dpcd_set_lt_pattern_and_lane_settings(
link,
lt_settings,
tr_pattern, offset);
else
dpcd_set_lane_settings(link, lt_settings, offset);
/* 3. wait for receiver to lock-on*/
wait_time_microsec = lt_settings->eq_pattern_time;
if (is_repeater(lt_settings, offset))
wait_time_microsec =
dp_translate_training_aux_read_interval(
link->dpcd_caps.lttpr_caps.aux_rd_interval[offset - 1]);
dp_wait_for_training_aux_rd_interval(
link,
wait_time_microsec);
/* 4. Read lane status and requested
* drive settings as set by the sink*/
dp_get_lane_status_and_lane_adjust(
link,
lt_settings,
dpcd_lane_status,
&dpcd_lane_status_updated,
dpcd_lane_adjust,
offset);
/* 5. check CR done*/
if (!dp_is_cr_done(lane_count, dpcd_lane_status))
return dpcd_lane_status[0].bits.CR_DONE_0 ?
LINK_TRAINING_EQ_FAIL_CR_PARTIAL :
LINK_TRAINING_EQ_FAIL_CR;
/* 6. check CHEQ done*/
if (dp_is_ch_eq_done(lane_count, dpcd_lane_status) &&
dp_is_symbol_locked(lane_count, dpcd_lane_status) &&
dp_is_interlane_aligned(dpcd_lane_status_updated))
return LINK_TRAINING_SUCCESS;
/* 7. update VS/PE/PC2 in lt_settings*/
dp_decide_lane_settings(lt_settings, dpcd_lane_adjust,
lt_settings->hw_lane_settings, lt_settings->dpcd_lane_settings);
}
return LINK_TRAINING_EQ_FAIL_EQ;
}
enum link_training_result dp_perform_8b_10b_link_training(
struct dc_link *link,
const struct link_resource *link_res,
struct link_training_settings *lt_settings)
{
enum link_training_result status = LINK_TRAINING_SUCCESS;
uint8_t repeater_cnt;
uint8_t repeater_id;
uint8_t lane = 0;
if (link->ctx->dc->work_arounds.lt_early_cr_pattern)
start_clock_recovery_pattern_early(link, link_res, lt_settings, DPRX);
/* 1. set link rate, lane count and spread. */
dpcd_set_link_settings(link, lt_settings);
if (lt_settings->lttpr_mode == LTTPR_MODE_NON_TRANSPARENT) {
/* 2. perform link training (set link training done
* to false is done as well)
*/
repeater_cnt = dp_parse_lttpr_repeater_count(link->dpcd_caps.lttpr_caps.phy_repeater_cnt);
for (repeater_id = repeater_cnt; (repeater_id > 0 && status == LINK_TRAINING_SUCCESS);
repeater_id--) {
status = perform_8b_10b_clock_recovery_sequence(link, link_res, lt_settings, repeater_id);
if (status != LINK_TRAINING_SUCCESS) {
repeater_training_done(link, repeater_id);
break;
}
status = perform_8b_10b_channel_equalization_sequence(link,
link_res,
lt_settings,
repeater_id);
if (status == LINK_TRAINING_SUCCESS)
DC_LOG_HW_LINK_TRAINING("%s: Channel EQ done.\n", __func__);
repeater_training_done(link, repeater_id);
if (status != LINK_TRAINING_SUCCESS)
break;
for (lane = 0; lane < LANE_COUNT_DP_MAX; lane++) {
lt_settings->dpcd_lane_settings[lane].raw = 0;
lt_settings->hw_lane_settings[lane].VOLTAGE_SWING = 0;
lt_settings->hw_lane_settings[lane].PRE_EMPHASIS = 0;
}
}
}
if (status == LINK_TRAINING_SUCCESS) {
status = perform_8b_10b_clock_recovery_sequence(link, link_res, lt_settings, DPRX);
if (status == LINK_TRAINING_SUCCESS) {
status = perform_8b_10b_channel_equalization_sequence(link,
link_res,
lt_settings,
DPRX);
if (status == LINK_TRAINING_SUCCESS)
DC_LOG_HW_LINK_TRAINING("%s: Channel EQ done.\n", __func__);
}
}
return status;
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/protocols/link_dp_training_8b_10b.c |
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
/* FILE POLICY AND INTENDED USAGE:
* This file implements dp 128b/132b link training software policies and
* sequences.
*/
#include "link_dp_training_128b_132b.h"
#include "link_dp_training_8b_10b.h"
#include "link_dpcd.h"
#include "link_dp_phy.h"
#include "link_dp_capability.h"
#define DC_LOGGER \
link->ctx->logger
static enum dc_status dpcd_128b_132b_set_lane_settings(
struct dc_link *link,
const struct link_training_settings *link_training_setting)
{
enum dc_status status = core_link_write_dpcd(link,
DP_TRAINING_LANE0_SET,
(uint8_t *)(link_training_setting->dpcd_lane_settings),
sizeof(link_training_setting->dpcd_lane_settings));
DC_LOG_HW_LINK_TRAINING("%s:\n 0x%X TX_FFE_PRESET_VALUE = %x\n",
__func__,
DP_TRAINING_LANE0_SET,
link_training_setting->dpcd_lane_settings[0].tx_ffe.PRESET_VALUE);
return status;
}
static void dpcd_128b_132b_get_aux_rd_interval(struct dc_link *link,
uint32_t *interval_in_us)
{
union dp_128b_132b_training_aux_rd_interval dpcd_interval;
uint32_t interval_unit = 0;
dpcd_interval.raw = 0;
core_link_read_dpcd(link, DP_128B132B_TRAINING_AUX_RD_INTERVAL,
&dpcd_interval.raw, sizeof(dpcd_interval.raw));
interval_unit = dpcd_interval.bits.UNIT ? 1 : 2; /* 0b = 2 ms, 1b = 1 ms */
/* (128b/132b_TRAINING_AUX_RD_INTERVAL value + 1) *
* INTERVAL_UNIT. The maximum is 256 ms
*/
*interval_in_us = (dpcd_interval.bits.VALUE + 1) * interval_unit * 1000;
}
static enum link_training_result dp_perform_128b_132b_channel_eq_done_sequence(
struct dc_link *link,
const struct link_resource *link_res,
struct link_training_settings *lt_settings)
{
uint8_t loop_count;
uint32_t aux_rd_interval = 0;
uint32_t wait_time = 0;
union lane_align_status_updated dpcd_lane_status_updated = {0};
union lane_status dpcd_lane_status[LANE_COUNT_DP_MAX] = {0};
union lane_adjust dpcd_lane_adjust[LANE_COUNT_DP_MAX] = {0};
enum dc_status status = DC_OK;
enum link_training_result result = LINK_TRAINING_SUCCESS;
/* Transmit 128b/132b_TPS1 over Main-Link */
dp_set_hw_training_pattern(link, link_res, lt_settings->pattern_for_cr, DPRX);
/* Set TRAINING_PATTERN_SET to 01h */
dpcd_set_training_pattern(link, lt_settings->pattern_for_cr);
/* Adjust TX_FFE_PRESET_VALUE and Transmit 128b/132b_TPS2 over Main-Link */
dpcd_128b_132b_get_aux_rd_interval(link, &aux_rd_interval);
dp_get_lane_status_and_lane_adjust(link, lt_settings, dpcd_lane_status,
&dpcd_lane_status_updated, dpcd_lane_adjust, DPRX);
dp_decide_lane_settings(lt_settings, dpcd_lane_adjust,
lt_settings->hw_lane_settings, lt_settings->dpcd_lane_settings);
dp_set_hw_lane_settings(link, link_res, lt_settings, DPRX);
dp_set_hw_training_pattern(link, link_res, lt_settings->pattern_for_eq, DPRX);
/* Set loop counter to start from 1 */
loop_count = 1;
/* Set TRAINING_PATTERN_SET to 02h and TX_FFE_PRESET_VALUE in one AUX transaction */
dpcd_set_lt_pattern_and_lane_settings(link, lt_settings,
lt_settings->pattern_for_eq, DPRX);
/* poll for channel EQ done */
while (result == LINK_TRAINING_SUCCESS) {
dp_wait_for_training_aux_rd_interval(link, aux_rd_interval);
wait_time += aux_rd_interval;
status = dp_get_lane_status_and_lane_adjust(link, lt_settings, dpcd_lane_status,
&dpcd_lane_status_updated, dpcd_lane_adjust, DPRX);
dp_decide_lane_settings(lt_settings, dpcd_lane_adjust,
lt_settings->hw_lane_settings, lt_settings->dpcd_lane_settings);
dpcd_128b_132b_get_aux_rd_interval(link, &aux_rd_interval);
if (status != DC_OK) {
result = LINK_TRAINING_ABORT;
} else if (dp_is_ch_eq_done(lt_settings->link_settings.lane_count,
dpcd_lane_status)) {
/* pass */
break;
} else if (loop_count >= lt_settings->eq_loop_count_limit) {
result = DP_128b_132b_MAX_LOOP_COUNT_REACHED;
} else if (dpcd_lane_status_updated.bits.LT_FAILED_128b_132b) {
result = DP_128b_132b_LT_FAILED;
} else {
dp_set_hw_lane_settings(link, link_res, lt_settings, DPRX);
dpcd_128b_132b_set_lane_settings(link, lt_settings);
}
loop_count++;
}
/* poll for EQ interlane align done */
while (result == LINK_TRAINING_SUCCESS) {
if (status != DC_OK) {
result = LINK_TRAINING_ABORT;
} else if (dpcd_lane_status_updated.bits.EQ_INTERLANE_ALIGN_DONE_128b_132b) {
/* pass */
break;
} else if (wait_time >= lt_settings->eq_wait_time_limit) {
result = DP_128b_132b_CHANNEL_EQ_DONE_TIMEOUT;
} else if (dpcd_lane_status_updated.bits.LT_FAILED_128b_132b) {
result = DP_128b_132b_LT_FAILED;
} else {
dp_wait_for_training_aux_rd_interval(link,
lt_settings->eq_pattern_time);
wait_time += lt_settings->eq_pattern_time;
status = dp_get_lane_status_and_lane_adjust(link, lt_settings, dpcd_lane_status,
&dpcd_lane_status_updated, dpcd_lane_adjust, DPRX);
}
}
return result;
}
static enum link_training_result dp_perform_128b_132b_cds_done_sequence(
struct dc_link *link,
const struct link_resource *link_res,
struct link_training_settings *lt_settings)
{
/* Assumption: assume hardware has transmitted eq pattern */
enum dc_status status = DC_OK;
enum link_training_result result = LINK_TRAINING_SUCCESS;
union lane_align_status_updated dpcd_lane_status_updated = {0};
union lane_status dpcd_lane_status[LANE_COUNT_DP_MAX] = {0};
union lane_adjust dpcd_lane_adjust[LANE_COUNT_DP_MAX] = {0};
uint32_t wait_time = 0;
/* initiate CDS done sequence */
dpcd_set_training_pattern(link, lt_settings->pattern_for_cds);
/* poll for CDS interlane align done and symbol lock */
while (result == LINK_TRAINING_SUCCESS) {
dp_wait_for_training_aux_rd_interval(link,
lt_settings->cds_pattern_time);
wait_time += lt_settings->cds_pattern_time;
status = dp_get_lane_status_and_lane_adjust(link, lt_settings, dpcd_lane_status,
&dpcd_lane_status_updated, dpcd_lane_adjust, DPRX);
if (status != DC_OK) {
result = LINK_TRAINING_ABORT;
} else if (dp_is_symbol_locked(lt_settings->link_settings.lane_count, dpcd_lane_status) &&
dpcd_lane_status_updated.bits.CDS_INTERLANE_ALIGN_DONE_128b_132b) {
/* pass */
break;
} else if (dpcd_lane_status_updated.bits.LT_FAILED_128b_132b) {
result = DP_128b_132b_LT_FAILED;
} else if (wait_time >= lt_settings->cds_wait_time_limit) {
result = DP_128b_132b_CDS_DONE_TIMEOUT;
}
}
return result;
}
enum link_training_result dp_perform_128b_132b_link_training(
struct dc_link *link,
const struct link_resource *link_res,
struct link_training_settings *lt_settings)
{
enum link_training_result result = LINK_TRAINING_SUCCESS;
/* TODO - DP2.0 Link: remove legacy_dp2_lt logic */
if (link->dc->debug.legacy_dp2_lt) {
struct link_training_settings legacy_settings;
decide_8b_10b_training_settings(link,
<_settings->link_settings,
&legacy_settings);
return dp_perform_8b_10b_link_training(link, link_res, &legacy_settings);
}
dpcd_set_link_settings(link, lt_settings);
if (result == LINK_TRAINING_SUCCESS) {
result = dp_perform_128b_132b_channel_eq_done_sequence(link, link_res, lt_settings);
if (result == LINK_TRAINING_SUCCESS)
DC_LOG_HW_LINK_TRAINING("%s: Channel EQ done.\n", __func__);
}
if (result == LINK_TRAINING_SUCCESS) {
result = dp_perform_128b_132b_cds_done_sequence(link, link_res, lt_settings);
if (result == LINK_TRAINING_SUCCESS)
DC_LOG_HW_LINK_TRAINING("%s: CDS done.\n", __func__);
}
return result;
}
void decide_128b_132b_training_settings(struct dc_link *link,
const struct dc_link_settings *link_settings,
struct link_training_settings *lt_settings)
{
memset(lt_settings, 0, sizeof(*lt_settings));
lt_settings->link_settings = *link_settings;
/* TODO: should decide link spread when populating link_settings */
lt_settings->link_settings.link_spread = link->dp_ss_off ? LINK_SPREAD_DISABLED :
LINK_SPREAD_05_DOWNSPREAD_30KHZ;
lt_settings->pattern_for_cr = decide_cr_training_pattern(link_settings);
lt_settings->pattern_for_eq = decide_eq_training_pattern(link, link_settings);
lt_settings->eq_pattern_time = 2500;
lt_settings->eq_wait_time_limit = 400000;
lt_settings->eq_loop_count_limit = 20;
lt_settings->pattern_for_cds = DP_128b_132b_TPS2_CDS;
lt_settings->cds_pattern_time = 2500;
lt_settings->cds_wait_time_limit = (dp_parse_lttpr_repeater_count(
link->dpcd_caps.lttpr_caps.phy_repeater_cnt) + 1) * 20000;
lt_settings->disallow_per_lane_settings = true;
lt_settings->lttpr_mode = dp_decide_128b_132b_lttpr_mode(link);
dp_hw_to_dpcd_lane_settings(lt_settings,
lt_settings->hw_lane_settings, lt_settings->dpcd_lane_settings);
}
enum lttpr_mode dp_decide_128b_132b_lttpr_mode(struct dc_link *link)
{
enum lttpr_mode mode = LTTPR_MODE_NON_LTTPR;
if (dp_is_lttpr_present(link))
mode = LTTPR_MODE_NON_TRANSPARENT;
DC_LOG_DC("128b_132b chose LTTPR_MODE %d.\n", mode);
return mode;
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/protocols/link_dp_training_128b_132b.c |
/*
* Copyright 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
/* FILE POLICY AND INTENDED USAGE:
*
* This file implements basic dpcd read/write functionality. It also does basic
* dpcd range check to ensure that every dpcd request is compliant with specs
* range requirements.
*/
#include "link_dpcd.h"
#include <drm/display/drm_dp_helper.h>
#include "dm_helpers.h"
#define END_ADDRESS(start, size) (start + size - 1)
#define ADDRESS_RANGE_SIZE(start, end) (end - start + 1)
struct dpcd_address_range {
uint32_t start;
uint32_t end;
};
static enum dc_status internal_link_read_dpcd(
struct dc_link *link,
uint32_t address,
uint8_t *data,
uint32_t size)
{
if (!link->aux_access_disabled &&
!dm_helpers_dp_read_dpcd(link->ctx,
link, address, data, size)) {
return DC_ERROR_UNEXPECTED;
}
return DC_OK;
}
static enum dc_status internal_link_write_dpcd(
struct dc_link *link,
uint32_t address,
const uint8_t *data,
uint32_t size)
{
if (!link->aux_access_disabled &&
!dm_helpers_dp_write_dpcd(link->ctx,
link, address, data, size)) {
return DC_ERROR_UNEXPECTED;
}
return DC_OK;
}
/*
* Partition the entire DPCD address space
* XXX: This partitioning must cover the entire DPCD address space,
* and must contain no gaps or overlapping address ranges.
*/
static const struct dpcd_address_range mandatory_dpcd_partitions[] = {
{ 0, DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR1) - 1},
{ DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR1), DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR2) - 1 },
{ DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR2), DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR3) - 1 },
{ DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR3), DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR4) - 1 },
{ DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR4), DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR5) - 1 },
{ DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR5), DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR6) - 1 },
{ DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR6), DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR7) - 1 },
{ DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR7), DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR8) - 1 },
{ DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR8), DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR1) - 1 },
/*
* The FEC registers are contiguous
*/
{ DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR1), DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR1) - 1 },
{ DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR2), DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR2) - 1 },
{ DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR3), DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR3) - 1 },
{ DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR4), DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR4) - 1 },
{ DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR5), DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR5) - 1 },
{ DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR6), DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR6) - 1 },
{ DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR7), DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR7) - 1 },
{ DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR8), DP_LTTPR_MAX_ADD },
/* all remaining DPCD addresses */
{ DP_LTTPR_MAX_ADD + 1, DP_DPCD_MAX_ADD } };
static inline bool do_addresses_intersect_with_range(
const struct dpcd_address_range *range,
const uint32_t start_address,
const uint32_t end_address)
{
return start_address <= range->end && end_address >= range->start;
}
static uint32_t dpcd_get_next_partition_size(const uint32_t address, const uint32_t size)
{
const uint32_t end_address = END_ADDRESS(address, size);
uint32_t partition_iterator = 0;
/*
* find current partition
* this loop spins forever if partition map above is not surjective
*/
while (!do_addresses_intersect_with_range(&mandatory_dpcd_partitions[partition_iterator],
address, end_address))
partition_iterator++;
if (end_address < mandatory_dpcd_partitions[partition_iterator].end)
return size;
return ADDRESS_RANGE_SIZE(address, mandatory_dpcd_partitions[partition_iterator].end);
}
/*
* Ranges of DPCD addresses that must be read in a single transaction
* XXX: Do not allow any two address ranges in this array to overlap
*/
static const struct dpcd_address_range mandatory_dpcd_blocks[] = {
{ DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV, DP_PHY_REPEATER_EXTENDED_WAIT_TIMEOUT }};
/*
* extend addresses to read all mandatory blocks together
*/
static void dpcd_extend_address_range(
const uint32_t in_address,
uint8_t * const in_data,
const uint32_t in_size,
uint32_t *out_address,
uint8_t **out_data,
uint32_t *out_size)
{
const uint32_t end_address = END_ADDRESS(in_address, in_size);
const struct dpcd_address_range *addr_range;
struct dpcd_address_range new_addr_range;
uint32_t i;
new_addr_range.start = in_address;
new_addr_range.end = end_address;
for (i = 0; i < ARRAY_SIZE(mandatory_dpcd_blocks); i++) {
addr_range = &mandatory_dpcd_blocks[i];
if (addr_range->start <= in_address && addr_range->end >= in_address)
new_addr_range.start = addr_range->start;
if (addr_range->start <= end_address && addr_range->end >= end_address)
new_addr_range.end = addr_range->end;
}
*out_address = in_address;
*out_size = in_size;
*out_data = in_data;
if (new_addr_range.start != in_address || new_addr_range.end != end_address) {
*out_address = new_addr_range.start;
*out_size = ADDRESS_RANGE_SIZE(new_addr_range.start, new_addr_range.end);
*out_data = kzalloc(*out_size * sizeof(**out_data), GFP_KERNEL);
}
}
/*
* Reduce the AUX reply down to the values the caller requested
*/
static void dpcd_reduce_address_range(
const uint32_t extended_address,
uint8_t * const extended_data,
const uint32_t extended_size,
const uint32_t reduced_address,
uint8_t * const reduced_data,
const uint32_t reduced_size)
{
const uint32_t offset = reduced_address - extended_address;
/*
* If the address is same, address was not extended.
* So we do not need to free any memory.
* The data is in original buffer(reduced_data).
*/
if (extended_data == reduced_data)
return;
memcpy(&extended_data[offset], reduced_data, reduced_size);
kfree(extended_data);
}
enum dc_status core_link_read_dpcd(
struct dc_link *link,
uint32_t address,
uint8_t *data,
uint32_t size)
{
uint32_t extended_address;
uint32_t partitioned_address;
uint8_t *extended_data;
uint32_t extended_size;
/* size of the remaining partitioned address space */
uint32_t size_left_to_read;
enum dc_status status;
/* size of the next partition to be read from */
uint32_t partition_size;
uint32_t data_index = 0;
dpcd_extend_address_range(address, data, size, &extended_address, &extended_data, &extended_size);
partitioned_address = extended_address;
size_left_to_read = extended_size;
while (size_left_to_read) {
partition_size = dpcd_get_next_partition_size(partitioned_address, size_left_to_read);
status = internal_link_read_dpcd(link, partitioned_address, &extended_data[data_index], partition_size);
if (status != DC_OK)
break;
partitioned_address += partition_size;
data_index += partition_size;
size_left_to_read -= partition_size;
}
dpcd_reduce_address_range(extended_address, extended_data, extended_size, address, data, size);
return status;
}
enum dc_status core_link_write_dpcd(
struct dc_link *link,
uint32_t address,
const uint8_t *data,
uint32_t size)
{
uint32_t partition_size;
uint32_t data_index = 0;
enum dc_status status;
while (size) {
partition_size = dpcd_get_next_partition_size(address, size);
status = internal_link_write_dpcd(link, address, &data[data_index], partition_size);
if (status != DC_OK)
break;
address += partition_size;
data_index += partition_size;
size -= partition_size;
}
return status;
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/protocols/link_dpcd.c |
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
/* FILE POLICY AND INTENDED USAGE:
* This file implements basic dp phy functionality such as enable/disable phy
* output and set lane/drive settings. This file is responsible for maintaining
* and update software state representing current phy status such as current
* link settings.
*/
#include "link_dp_phy.h"
#include "link_dpcd.h"
#include "link_dp_training.h"
#include "link_dp_capability.h"
#include "clk_mgr.h"
#include "resource.h"
#include "link_enc_cfg.h"
#define DC_LOGGER \
link->ctx->logger
void dpcd_write_rx_power_ctrl(struct dc_link *link, bool on)
{
uint8_t state;
state = on ? DP_POWER_STATE_D0 : DP_POWER_STATE_D3;
if (link->sync_lt_in_progress)
return;
core_link_write_dpcd(link, DP_SET_POWER, &state,
sizeof(state));
}
void dp_enable_link_phy(
struct dc_link *link,
const struct link_resource *link_res,
enum signal_type signal,
enum clock_source_id clock_source,
const struct dc_link_settings *link_settings)
{
link->cur_link_settings = *link_settings;
link->dc->hwss.enable_dp_link_output(link, link_res, signal,
clock_source, link_settings);
dpcd_write_rx_power_ctrl(link, true);
}
void dp_disable_link_phy(struct dc_link *link,
const struct link_resource *link_res,
enum signal_type signal)
{
struct dc *dc = link->ctx->dc;
if (!link->wa_flags.dp_keep_receiver_powered)
dpcd_write_rx_power_ctrl(link, false);
dc->hwss.disable_link_output(link, link_res, signal);
/* Clear current link setting.*/
memset(&link->cur_link_settings, 0,
sizeof(link->cur_link_settings));
if (dc->clk_mgr->funcs->notify_link_rate_change)
dc->clk_mgr->funcs->notify_link_rate_change(dc->clk_mgr, link);
}
static inline bool is_immediate_downstream(struct dc_link *link, uint32_t offset)
{
return (dp_parse_lttpr_repeater_count(link->dpcd_caps.lttpr_caps.phy_repeater_cnt) ==
offset);
}
void dp_set_hw_lane_settings(
struct dc_link *link,
const struct link_resource *link_res,
const struct link_training_settings *link_settings,
uint32_t offset)
{
const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
if ((link_settings->lttpr_mode == LTTPR_MODE_NON_TRANSPARENT) &&
!is_immediate_downstream(link, offset))
return;
if (link_hwss->ext.set_dp_lane_settings)
link_hwss->ext.set_dp_lane_settings(link, link_res,
&link_settings->link_settings,
link_settings->hw_lane_settings);
memmove(link->cur_lane_setting,
link_settings->hw_lane_settings,
sizeof(link->cur_lane_setting));
}
void dp_set_drive_settings(
struct dc_link *link,
const struct link_resource *link_res,
struct link_training_settings *lt_settings)
{
/* program ASIC PHY settings*/
dp_set_hw_lane_settings(link, link_res, lt_settings, DPRX);
dp_hw_to_dpcd_lane_settings(lt_settings,
lt_settings->hw_lane_settings,
lt_settings->dpcd_lane_settings);
/* Notify DP sink the PHY settings from source */
dpcd_set_lane_settings(link, lt_settings, DPRX);
}
enum dc_status dp_set_fec_ready(struct dc_link *link, const struct link_resource *link_res, bool ready)
{
/* FEC has to be "set ready" before the link training.
* The policy is to always train with FEC
* if the sink supports it and leave it enabled on link.
* If FEC is not supported, disable it.
*/
struct link_encoder *link_enc = NULL;
enum dc_status status = DC_OK;
uint8_t fec_config = 0;
link_enc = link_enc_cfg_get_link_enc(link);
ASSERT(link_enc);
if (!dp_should_enable_fec(link))
return status;
if (link_enc->funcs->fec_set_ready &&
link->dpcd_caps.fec_cap.bits.FEC_CAPABLE) {
if (ready) {
fec_config = 1;
status = core_link_write_dpcd(link,
DP_FEC_CONFIGURATION,
&fec_config,
sizeof(fec_config));
if (status == DC_OK) {
link_enc->funcs->fec_set_ready(link_enc, true);
link->fec_state = dc_link_fec_ready;
} else {
link_enc->funcs->fec_set_ready(link_enc, false);
link->fec_state = dc_link_fec_not_ready;
dm_error("dpcd write failed to set fec_ready");
}
} else if (link->fec_state == dc_link_fec_ready) {
fec_config = 0;
status = core_link_write_dpcd(link,
DP_FEC_CONFIGURATION,
&fec_config,
sizeof(fec_config));
link_enc->funcs->fec_set_ready(link_enc, false);
link->fec_state = dc_link_fec_not_ready;
}
}
return status;
}
void dp_set_fec_enable(struct dc_link *link, bool enable)
{
struct link_encoder *link_enc = NULL;
link_enc = link_enc_cfg_get_link_enc(link);
ASSERT(link_enc);
if (!dp_should_enable_fec(link))
return;
if (link_enc->funcs->fec_set_enable &&
link->dpcd_caps.fec_cap.bits.FEC_CAPABLE) {
if (link->fec_state == dc_link_fec_ready && enable) {
/* Accord to DP spec, FEC enable sequence can first
* be transmitted anytime after 1000 LL codes have
* been transmitted on the link after link training
* completion. Using 1 lane RBR should have the maximum
* time for transmitting 1000 LL codes which is 6.173 us.
* So use 7 microseconds delay instead.
*/
udelay(7);
link_enc->funcs->fec_set_enable(link_enc, true);
link->fec_state = dc_link_fec_enabled;
} else if (link->fec_state == dc_link_fec_enabled && !enable) {
link_enc->funcs->fec_set_enable(link_enc, false);
link->fec_state = dc_link_fec_ready;
}
}
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/protocols/link_dp_phy.c |
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
/*********************************************************************/
// USB4 DPIA BANDWIDTH ALLOCATION LOGIC
/*********************************************************************/
#include "link_dp_dpia_bw.h"
#include "link_dpcd.h"
#include "dc_dmub_srv.h"
#define DC_LOGGER \
link->ctx->logger
#define Kbps_TO_Gbps (1000 * 1000)
// ------------------------------------------------------------------
// PRIVATE FUNCTIONS
// ------------------------------------------------------------------
/*
* Always Check the following:
* - Is it USB4 link?
* - Is HPD HIGH?
* - Is BW Allocation Support Mode enabled on DP-Tx?
*/
static bool get_bw_alloc_proceed_flag(struct dc_link *tmp)
{
return (tmp && DISPLAY_ENDPOINT_USB4_DPIA == tmp->ep_type
&& tmp->hpd_status
&& tmp->dpia_bw_alloc_config.bw_alloc_enabled);
}
static void reset_bw_alloc_struct(struct dc_link *link)
{
link->dpia_bw_alloc_config.bw_alloc_enabled = false;
link->dpia_bw_alloc_config.sink_verified_bw = 0;
link->dpia_bw_alloc_config.sink_max_bw = 0;
link->dpia_bw_alloc_config.estimated_bw = 0;
link->dpia_bw_alloc_config.bw_granularity = 0;
link->dpia_bw_alloc_config.response_ready = false;
}
static uint8_t get_bw_granularity(struct dc_link *link)
{
uint8_t bw_granularity = 0;
core_link_read_dpcd(
link,
DP_BW_GRANULALITY,
&bw_granularity,
sizeof(uint8_t));
switch (bw_granularity & 0x3) {
case 0:
bw_granularity = 4;
break;
case 1:
default:
bw_granularity = 2;
break;
}
return bw_granularity;
}
static int get_estimated_bw(struct dc_link *link)
{
uint8_t bw_estimated_bw = 0;
core_link_read_dpcd(
link,
ESTIMATED_BW,
&bw_estimated_bw,
sizeof(uint8_t));
return bw_estimated_bw * (Kbps_TO_Gbps / link->dpia_bw_alloc_config.bw_granularity);
}
static bool allocate_usb4_bw(int *stream_allocated_bw, int bw_needed, struct dc_link *link)
{
if (bw_needed > 0)
*stream_allocated_bw += bw_needed;
return true;
}
static bool deallocate_usb4_bw(int *stream_allocated_bw, int bw_to_dealloc, struct dc_link *link)
{
bool ret = false;
if (*stream_allocated_bw > 0) {
*stream_allocated_bw -= bw_to_dealloc;
ret = true;
} else {
//Do nothing for now
ret = true;
}
// Unplug so reset values
if (!link->hpd_status)
reset_bw_alloc_struct(link);
return ret;
}
/*
* Read all New BW alloc configuration ex: estimated_bw, allocated_bw,
* granuality, Driver_ID, CM_Group, & populate the BW allocation structs
* for host router and dpia
*/
static void init_usb4_bw_struct(struct dc_link *link)
{
// Init the known values
link->dpia_bw_alloc_config.bw_granularity = get_bw_granularity(link);
link->dpia_bw_alloc_config.estimated_bw = get_estimated_bw(link);
}
static uint8_t get_lowest_dpia_index(struct dc_link *link)
{
const struct dc *dc_struct = link->dc;
uint8_t idx = 0xFF;
int i;
for (i = 0; i < MAX_PIPES * 2; ++i) {
if (!dc_struct->links[i] ||
dc_struct->links[i]->ep_type != DISPLAY_ENDPOINT_USB4_DPIA)
continue;
if (idx > dc_struct->links[i]->link_index)
idx = dc_struct->links[i]->link_index;
}
return idx;
}
/*
* Get the Max Available BW or Max Estimated BW for each Host Router
*
* @link: pointer to the dc_link struct instance
* @type: ESTIMATD BW or MAX AVAILABLE BW
*
* return: response_ready flag from dc_link struct
*/
static int get_host_router_total_bw(struct dc_link *link, uint8_t type)
{
const struct dc *dc_struct = link->dc;
uint8_t lowest_dpia_index = get_lowest_dpia_index(link);
uint8_t idx = (link->link_index - lowest_dpia_index) / 2, idx_temp = 0;
struct dc_link *link_temp;
int total_bw = 0;
int i;
for (i = 0; i < MAX_PIPES * 2; ++i) {
if (!dc_struct->links[i] || dc_struct->links[i]->ep_type != DISPLAY_ENDPOINT_USB4_DPIA)
continue;
link_temp = dc_struct->links[i];
if (!link_temp || !link_temp->hpd_status)
continue;
idx_temp = (link_temp->link_index - lowest_dpia_index) / 2;
if (idx_temp == idx) {
if (type == HOST_ROUTER_BW_ESTIMATED)
total_bw += link_temp->dpia_bw_alloc_config.estimated_bw;
else if (type == HOST_ROUTER_BW_ALLOCATED)
total_bw += link_temp->dpia_bw_alloc_config.sink_allocated_bw;
}
}
return total_bw;
}
/*
* Cleanup function for when the dpia is unplugged to reset struct
* and perform any required clean up
*
* @link: pointer to the dc_link struct instance
*
* return: none
*/
static bool dpia_bw_alloc_unplug(struct dc_link *link)
{
if (!link)
return true;
return deallocate_usb4_bw(&link->dpia_bw_alloc_config.sink_allocated_bw,
link->dpia_bw_alloc_config.sink_allocated_bw, link);
}
static void set_usb4_req_bw_req(struct dc_link *link, int req_bw)
{
uint8_t requested_bw;
uint32_t temp;
// 1. Add check for this corner case #1
if (req_bw > link->dpia_bw_alloc_config.estimated_bw)
req_bw = link->dpia_bw_alloc_config.estimated_bw;
temp = req_bw * link->dpia_bw_alloc_config.bw_granularity;
requested_bw = temp / Kbps_TO_Gbps;
// Always make sure to add more to account for floating points
if (temp % Kbps_TO_Gbps)
++requested_bw;
// 2. Add check for this corner case #2
req_bw = requested_bw * (Kbps_TO_Gbps / link->dpia_bw_alloc_config.bw_granularity);
if (req_bw == link->dpia_bw_alloc_config.sink_allocated_bw)
return;
if (core_link_write_dpcd(
link,
REQUESTED_BW,
&requested_bw,
sizeof(uint8_t)) == DC_OK)
link->dpia_bw_alloc_config.response_ready = false; // Reset flag
}
/*
* Return the response_ready flag from dc_link struct
*
* @link: pointer to the dc_link struct instance
*
* return: response_ready flag from dc_link struct
*/
static bool get_cm_response_ready_flag(struct dc_link *link)
{
return link->dpia_bw_alloc_config.response_ready;
}
// ------------------------------------------------------------------
// PUBLIC FUNCTIONS
// ------------------------------------------------------------------
bool link_dp_dpia_set_dptx_usb4_bw_alloc_support(struct dc_link *link)
{
bool ret = false;
uint8_t response = 0,
bw_support_dpia = 0,
bw_support_cm = 0;
if (!(link->ep_type == DISPLAY_ENDPOINT_USB4_DPIA && link->hpd_status))
goto out;
if (core_link_read_dpcd(
link,
DP_TUNNELING_CAPABILITIES,
&response,
sizeof(uint8_t)) == DC_OK)
bw_support_dpia = (response >> 7) & 1;
if (core_link_read_dpcd(
link,
USB4_DRIVER_BW_CAPABILITY,
&response,
sizeof(uint8_t)) == DC_OK)
bw_support_cm = (response >> 7) & 1;
/* Send request acknowledgment to Turn ON DPTX support */
if (bw_support_cm && bw_support_dpia) {
response = 0x80;
if (core_link_write_dpcd(
link,
DPTX_BW_ALLOCATION_MODE_CONTROL,
&response,
sizeof(uint8_t)) != DC_OK) {
DC_LOG_DEBUG("%s: **** FAILURE Enabling DPtx BW Allocation Mode Support ***\n",
__func__);
} else {
// SUCCESS Enabled DPtx BW Allocation Mode Support
link->dpia_bw_alloc_config.bw_alloc_enabled = true;
DC_LOG_DEBUG("%s: **** SUCCESS Enabling DPtx BW Allocation Mode Support ***\n",
__func__);
ret = true;
init_usb4_bw_struct(link);
}
}
out:
return ret;
}
void dpia_handle_bw_alloc_response(struct dc_link *link, uint8_t bw, uint8_t result)
{
int bw_needed = 0;
int estimated = 0;
int host_router_total_estimated_bw = 0;
if (!get_bw_alloc_proceed_flag((link)))
return;
switch (result) {
case DPIA_BW_REQ_FAILED:
DC_LOG_DEBUG("%s: *** *** BW REQ FAILURE for DP-TX Request *** ***\n", __func__);
// Update the new Estimated BW value updated by CM
link->dpia_bw_alloc_config.estimated_bw =
bw * (Kbps_TO_Gbps / link->dpia_bw_alloc_config.bw_granularity);
set_usb4_req_bw_req(link, link->dpia_bw_alloc_config.estimated_bw);
link->dpia_bw_alloc_config.response_ready = false;
/*
* If FAIL then it is either:
* 1. Due to DP-Tx trying to allocate more than available i.e. it failed locally
* => get estimated and allocate that
* 2. Due to the fact that DP-Tx tried to allocated ESTIMATED BW and failed then
* CM will have to update 0xE0023 with new ESTIMATED BW value.
*/
break;
case DPIA_BW_REQ_SUCCESS:
DC_LOG_DEBUG("%s: *** BW REQ SUCCESS for DP-TX Request ***\n", __func__);
// 1. SUCCESS 1st time before any Pruning is done
// 2. SUCCESS after prev. FAIL before any Pruning is done
// 3. SUCCESS after Pruning is done but before enabling link
bw_needed = bw * (Kbps_TO_Gbps / link->dpia_bw_alloc_config.bw_granularity);
// 1.
if (!link->dpia_bw_alloc_config.sink_allocated_bw) {
allocate_usb4_bw(&link->dpia_bw_alloc_config.sink_allocated_bw, bw_needed, link);
link->dpia_bw_alloc_config.sink_verified_bw =
link->dpia_bw_alloc_config.sink_allocated_bw;
// SUCCESS from first attempt
if (link->dpia_bw_alloc_config.sink_allocated_bw >
link->dpia_bw_alloc_config.sink_max_bw)
link->dpia_bw_alloc_config.sink_verified_bw =
link->dpia_bw_alloc_config.sink_max_bw;
}
// 3.
else if (link->dpia_bw_alloc_config.sink_allocated_bw) {
// Find out how much do we need to de-alloc
if (link->dpia_bw_alloc_config.sink_allocated_bw > bw_needed)
deallocate_usb4_bw(&link->dpia_bw_alloc_config.sink_allocated_bw,
link->dpia_bw_alloc_config.sink_allocated_bw - bw_needed, link);
else
allocate_usb4_bw(&link->dpia_bw_alloc_config.sink_allocated_bw,
bw_needed - link->dpia_bw_alloc_config.sink_allocated_bw, link);
}
// 4. If this is the 2nd sink then any unused bw will be reallocated to master DPIA
// => check if estimated_bw changed
link->dpia_bw_alloc_config.response_ready = true;
break;
case DPIA_EST_BW_CHANGED:
DC_LOG_DEBUG("%s: *** ESTIMATED BW CHANGED for DP-TX Request ***\n", __func__);
estimated = bw * (Kbps_TO_Gbps / link->dpia_bw_alloc_config.bw_granularity);
host_router_total_estimated_bw = get_host_router_total_bw(link, HOST_ROUTER_BW_ESTIMATED);
// 1. If due to unplug of other sink
if (estimated == host_router_total_estimated_bw) {
// First update the estimated & max_bw fields
if (link->dpia_bw_alloc_config.estimated_bw < estimated)
link->dpia_bw_alloc_config.estimated_bw = estimated;
}
// 2. If due to realloc bw btw 2 dpia due to plug OR realloc unused Bw
else {
// We lost estimated bw usually due to plug event of other dpia
link->dpia_bw_alloc_config.estimated_bw = estimated;
}
break;
case DPIA_BW_ALLOC_CAPS_CHANGED:
DC_LOG_DEBUG("%s: *** BW ALLOC CAPABILITY CHANGED for DP-TX Request ***\n", __func__);
link->dpia_bw_alloc_config.bw_alloc_enabled = false;
break;
}
}
int dpia_handle_usb4_bandwidth_allocation_for_link(struct dc_link *link, int peak_bw)
{
int ret = 0;
uint8_t timeout = 10;
if (!(link && DISPLAY_ENDPOINT_USB4_DPIA == link->ep_type
&& link->dpia_bw_alloc_config.bw_alloc_enabled))
goto out;
//1. Hot Plug
if (link->hpd_status && peak_bw > 0) {
// If DP over USB4 then we need to check BW allocation
link->dpia_bw_alloc_config.sink_max_bw = peak_bw;
set_usb4_req_bw_req(link, link->dpia_bw_alloc_config.sink_max_bw);
do {
if (!(timeout > 0))
timeout--;
else
break;
fsleep(10 * 1000);
} while (!get_cm_response_ready_flag(link));
if (!timeout)
ret = 0;// ERROR TIMEOUT waiting for response for allocating bw
else if (link->dpia_bw_alloc_config.sink_allocated_bw > 0)
ret = get_host_router_total_bw(link, HOST_ROUTER_BW_ALLOCATED);
}
//2. Cold Unplug
else if (!link->hpd_status)
dpia_bw_alloc_unplug(link);
out:
return ret;
}
int link_dp_dpia_allocate_usb4_bandwidth_for_stream(struct dc_link *link, int req_bw)
{
int ret = 0;
uint8_t timeout = 10;
if (!get_bw_alloc_proceed_flag(link))
goto out;
/*
* Sometimes stream uses same timing parameters as the already
* allocated max sink bw so no need to re-alloc
*/
if (req_bw != link->dpia_bw_alloc_config.sink_allocated_bw) {
set_usb4_req_bw_req(link, req_bw);
do {
if (!(timeout > 0))
timeout--;
else
break;
udelay(10 * 1000);
} while (!get_cm_response_ready_flag(link));
if (!timeout)
ret = 0;// ERROR TIMEOUT waiting for response for allocating bw
else if (link->dpia_bw_alloc_config.sink_allocated_bw > 0)
ret = get_host_router_total_bw(link, HOST_ROUTER_BW_ALLOCATED);
}
out:
return ret;
}
bool dpia_validate_usb4_bw(struct dc_link **link, int *bw_needed_per_dpia, const unsigned int num_dpias)
{
bool ret = true;
int bw_needed_per_hr[MAX_HR_NUM] = { 0, 0 };
uint8_t lowest_dpia_index = 0, dpia_index = 0;
uint8_t i;
if (!num_dpias || num_dpias > MAX_DPIA_NUM)
return ret;
//Get total Host Router BW & Validate against each Host Router max BW
for (i = 0; i < num_dpias; ++i) {
if (!link[i]->dpia_bw_alloc_config.bw_alloc_enabled)
continue;
lowest_dpia_index = get_lowest_dpia_index(link[i]);
if (link[i]->link_index < lowest_dpia_index)
continue;
dpia_index = (link[i]->link_index - lowest_dpia_index) / 2;
bw_needed_per_hr[dpia_index] += bw_needed_per_dpia[i];
if (bw_needed_per_hr[dpia_index] > get_host_router_total_bw(link[i], HOST_ROUTER_BW_ALLOCATED)) {
ret = false;
break;
}
}
return ret;
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/protocols/link_dp_dpia_bw.c |
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
/* FILE POLICY AND INTENDED USAGE:
* This file implements DP HPD short pulse handling sequence according to DP
* specifications
*
*/
#include "link_dp_irq_handler.h"
#include "link_dpcd.h"
#include "link_dp_training.h"
#include "link_dp_capability.h"
#include "link_edp_panel_control.h"
#include "link/accessories/link_dp_trace.h"
#include "link/link_dpms.h"
#include "dm_helpers.h"
#define DC_LOGGER_INIT(logger)
bool dp_parse_link_loss_status(
struct dc_link *link,
union hpd_irq_data *hpd_irq_dpcd_data)
{
uint8_t irq_reg_rx_power_state = 0;
enum dc_status dpcd_result = DC_ERROR_UNEXPECTED;
union lane_status lane_status;
uint32_t lane;
bool sink_status_changed;
bool return_code;
sink_status_changed = false;
return_code = false;
if (link->cur_link_settings.lane_count == 0)
return return_code;
/*1. Check that Link Status changed, before re-training.*/
/*parse lane status*/
for (lane = 0; lane < link->cur_link_settings.lane_count; lane++) {
/* check status of lanes 0,1
* changed DpcdAddress_Lane01Status (0x202)
*/
lane_status.raw = dp_get_nibble_at_index(
&hpd_irq_dpcd_data->bytes.lane01_status.raw,
lane);
if (!lane_status.bits.CHANNEL_EQ_DONE_0 ||
!lane_status.bits.CR_DONE_0 ||
!lane_status.bits.SYMBOL_LOCKED_0) {
/* if one of the channel equalization, clock
* recovery or symbol lock is dropped
* consider it as (link has been
* dropped) dp sink status has changed
*/
sink_status_changed = true;
break;
}
}
/* Check interlane align.*/
if (link_dp_get_encoding_format(&link->cur_link_settings) == DP_128b_132b_ENCODING &&
(!hpd_irq_dpcd_data->bytes.lane_status_updated.bits.EQ_INTERLANE_ALIGN_DONE_128b_132b ||
!hpd_irq_dpcd_data->bytes.lane_status_updated.bits.CDS_INTERLANE_ALIGN_DONE_128b_132b)) {
sink_status_changed = true;
} else if (!hpd_irq_dpcd_data->bytes.lane_status_updated.bits.INTERLANE_ALIGN_DONE) {
sink_status_changed = true;
}
if (sink_status_changed) {
DC_LOG_HW_HPD_IRQ("%s: Link Status changed.\n", __func__);
return_code = true;
/*2. Check that we can handle interrupt: Not in FS DOS,
* Not in "Display Timeout" state, Link is trained.
*/
dpcd_result = core_link_read_dpcd(link,
DP_SET_POWER,
&irq_reg_rx_power_state,
sizeof(irq_reg_rx_power_state));
if (dpcd_result != DC_OK) {
DC_LOG_HW_HPD_IRQ("%s: DPCD read failed to obtain power state.\n",
__func__);
} else {
if (irq_reg_rx_power_state != DP_SET_POWER_D0)
return_code = false;
}
}
return return_code;
}
static bool handle_hpd_irq_psr_sink(struct dc_link *link)
{
union dpcd_psr_configuration psr_configuration;
if (!link->psr_settings.psr_feature_enabled)
return false;
dm_helpers_dp_read_dpcd(
link->ctx,
link,
368,/*DpcdAddress_PSR_Enable_Cfg*/
&psr_configuration.raw,
sizeof(psr_configuration.raw));
if (psr_configuration.bits.ENABLE) {
unsigned char dpcdbuf[3] = {0};
union psr_error_status psr_error_status;
union psr_sink_psr_status psr_sink_psr_status;
dm_helpers_dp_read_dpcd(
link->ctx,
link,
0x2006, /*DpcdAddress_PSR_Error_Status*/
(unsigned char *) dpcdbuf,
sizeof(dpcdbuf));
/*DPCD 2006h ERROR STATUS*/
psr_error_status.raw = dpcdbuf[0];
/*DPCD 2008h SINK PANEL SELF REFRESH STATUS*/
psr_sink_psr_status.raw = dpcdbuf[2];
if (psr_error_status.bits.LINK_CRC_ERROR ||
psr_error_status.bits.RFB_STORAGE_ERROR ||
psr_error_status.bits.VSC_SDP_ERROR) {
bool allow_active;
/* Acknowledge and clear error bits */
dm_helpers_dp_write_dpcd(
link->ctx,
link,
8198,/*DpcdAddress_PSR_Error_Status*/
&psr_error_status.raw,
sizeof(psr_error_status.raw));
/* PSR error, disable and re-enable PSR */
if (link->psr_settings.psr_allow_active) {
allow_active = false;
edp_set_psr_allow_active(link, &allow_active, true, false, NULL);
allow_active = true;
edp_set_psr_allow_active(link, &allow_active, true, false, NULL);
}
return true;
} else if (psr_sink_psr_status.bits.SINK_SELF_REFRESH_STATUS ==
PSR_SINK_STATE_ACTIVE_DISPLAY_FROM_SINK_RFB){
/* No error is detect, PSR is active.
* We should return with IRQ_HPD handled without
* checking for loss of sync since PSR would have
* powered down main link.
*/
return true;
}
}
return false;
}
static bool handle_hpd_irq_replay_sink(struct dc_link *link)
{
union dpcd_replay_configuration replay_configuration;
/*AMD Replay version reuse DP_PSR_ERROR_STATUS for REPLAY_ERROR status.*/
union psr_error_status replay_error_status;
if (!link->replay_settings.replay_feature_enabled)
return false;
dm_helpers_dp_read_dpcd(
link->ctx,
link,
DP_SINK_PR_REPLAY_STATUS,
&replay_configuration.raw,
sizeof(replay_configuration.raw));
dm_helpers_dp_read_dpcd(
link->ctx,
link,
DP_PSR_ERROR_STATUS,
&replay_error_status.raw,
sizeof(replay_error_status.raw));
link->replay_settings.config.replay_error_status.bits.LINK_CRC_ERROR =
replay_error_status.bits.LINK_CRC_ERROR;
link->replay_settings.config.replay_error_status.bits.DESYNC_ERROR =
replay_configuration.bits.DESYNC_ERROR_STATUS;
link->replay_settings.config.replay_error_status.bits.STATE_TRANSITION_ERROR =
replay_configuration.bits.STATE_TRANSITION_ERROR_STATUS;
if (link->replay_settings.config.replay_error_status.bits.LINK_CRC_ERROR ||
link->replay_settings.config.replay_error_status.bits.DESYNC_ERROR ||
link->replay_settings.config.replay_error_status.bits.STATE_TRANSITION_ERROR) {
bool allow_active;
/* Acknowledge and clear configuration bits */
dm_helpers_dp_write_dpcd(
link->ctx,
link,
DP_SINK_PR_REPLAY_STATUS,
&replay_configuration.raw,
sizeof(replay_configuration.raw));
/* Acknowledge and clear error bits */
dm_helpers_dp_write_dpcd(
link->ctx,
link,
DP_PSR_ERROR_STATUS,/*DpcdAddress_REPLAY_Error_Status*/
&replay_error_status.raw,
sizeof(replay_error_status.raw));
/* Replay error, disable and re-enable Replay */
if (link->replay_settings.replay_allow_active) {
allow_active = false;
edp_set_replay_allow_active(link, &allow_active, true, false, NULL);
allow_active = true;
edp_set_replay_allow_active(link, &allow_active, true, false, NULL);
}
}
return true;
}
void dp_handle_link_loss(struct dc_link *link)
{
struct pipe_ctx *pipes[MAX_PIPES];
struct dc_state *state = link->dc->current_state;
uint8_t count;
int i;
link_get_master_pipes_with_dpms_on(link, state, &count, pipes);
for (i = 0; i < count; i++)
link_set_dpms_off(pipes[i]);
for (i = count - 1; i >= 0; i--) {
// Always use max settings here for DP 1.4a LL Compliance CTS
if (link->is_automated) {
pipes[i]->link_config.dp_link_settings.lane_count =
link->verified_link_cap.lane_count;
pipes[i]->link_config.dp_link_settings.link_rate =
link->verified_link_cap.link_rate;
pipes[i]->link_config.dp_link_settings.link_spread =
link->verified_link_cap.link_spread;
}
link_set_dpms_on(link->dc->current_state, pipes[i]);
}
}
static void read_dpcd204h_on_irq_hpd(struct dc_link *link, union hpd_irq_data *irq_data)
{
enum dc_status retval;
union lane_align_status_updated dpcd_lane_status_updated;
retval = core_link_read_dpcd(
link,
DP_LANE_ALIGN_STATUS_UPDATED,
&dpcd_lane_status_updated.raw,
sizeof(union lane_align_status_updated));
if (retval == DC_OK) {
irq_data->bytes.lane_status_updated.bits.EQ_INTERLANE_ALIGN_DONE_128b_132b =
dpcd_lane_status_updated.bits.EQ_INTERLANE_ALIGN_DONE_128b_132b;
irq_data->bytes.lane_status_updated.bits.CDS_INTERLANE_ALIGN_DONE_128b_132b =
dpcd_lane_status_updated.bits.CDS_INTERLANE_ALIGN_DONE_128b_132b;
}
}
enum dc_status dp_read_hpd_rx_irq_data(
struct dc_link *link,
union hpd_irq_data *irq_data)
{
static enum dc_status retval;
/* The HW reads 16 bytes from 200h on HPD,
* but if we get an AUX_DEFER, the HW cannot retry
* and this causes the CTS tests 4.3.2.1 - 3.2.4 to
* fail, so we now explicitly read 6 bytes which is
* the req from the above mentioned test cases.
*
* For DP 1.4 we need to read those from 2002h range.
*/
if (link->dpcd_caps.dpcd_rev.raw < DPCD_REV_14)
retval = core_link_read_dpcd(
link,
DP_SINK_COUNT,
irq_data->raw,
sizeof(union hpd_irq_data));
else {
/* Read 14 bytes in a single read and then copy only the required fields.
* This is more efficient than doing it in two separate AUX reads. */
uint8_t tmp[DP_SINK_STATUS_ESI - DP_SINK_COUNT_ESI + 1];
retval = core_link_read_dpcd(
link,
DP_SINK_COUNT_ESI,
tmp,
sizeof(tmp));
if (retval != DC_OK)
return retval;
irq_data->bytes.sink_cnt.raw = tmp[DP_SINK_COUNT_ESI - DP_SINK_COUNT_ESI];
irq_data->bytes.device_service_irq.raw = tmp[DP_DEVICE_SERVICE_IRQ_VECTOR_ESI0 - DP_SINK_COUNT_ESI];
irq_data->bytes.lane01_status.raw = tmp[DP_LANE0_1_STATUS_ESI - DP_SINK_COUNT_ESI];
irq_data->bytes.lane23_status.raw = tmp[DP_LANE2_3_STATUS_ESI - DP_SINK_COUNT_ESI];
irq_data->bytes.lane_status_updated.raw = tmp[DP_LANE_ALIGN_STATUS_UPDATED_ESI - DP_SINK_COUNT_ESI];
irq_data->bytes.sink_status.raw = tmp[DP_SINK_STATUS_ESI - DP_SINK_COUNT_ESI];
/*
* This display doesn't have correct values in DPCD200Eh.
* Read and check DPCD204h instead.
*/
if (link->wa_flags.read_dpcd204h_on_irq_hpd)
read_dpcd204h_on_irq_hpd(link, irq_data);
}
return retval;
}
/*************************Short Pulse IRQ***************************/
bool dp_should_allow_hpd_rx_irq(const struct dc_link *link)
{
/*
* Don't handle RX IRQ unless one of following is met:
* 1) The link is established (cur_link_settings != unknown)
* 2) We know we're dealing with a branch device, SST or MST
*/
if ((link->cur_link_settings.lane_count != LANE_COUNT_UNKNOWN) ||
is_dp_branch_device(link))
return true;
return false;
}
bool dp_handle_hpd_rx_irq(struct dc_link *link,
union hpd_irq_data *out_hpd_irq_dpcd_data, bool *out_link_loss,
bool defer_handling, bool *has_left_work)
{
union hpd_irq_data hpd_irq_dpcd_data = {0};
union device_service_irq device_service_clear = {0};
enum dc_status result;
bool status = false;
if (out_link_loss)
*out_link_loss = false;
if (has_left_work)
*has_left_work = false;
/* For use cases related to down stream connection status change,
* PSR and device auto test, refer to function handle_sst_hpd_irq
* in DAL2.1*/
DC_LOG_HW_HPD_IRQ("%s: Got short pulse HPD on link %d\n",
__func__, link->link_index);
/* All the "handle_hpd_irq_xxx()" methods
* should be called only after
* dal_dpsst_ls_read_hpd_irq_data
* Order of calls is important too
*/
result = dp_read_hpd_rx_irq_data(link, &hpd_irq_dpcd_data);
if (out_hpd_irq_dpcd_data)
*out_hpd_irq_dpcd_data = hpd_irq_dpcd_data;
if (result != DC_OK) {
DC_LOG_HW_HPD_IRQ("%s: DPCD read failed to obtain irq data\n",
__func__);
return false;
}
if (hpd_irq_dpcd_data.bytes.device_service_irq.bits.AUTOMATED_TEST) {
// Workaround for DP 1.4a LL Compliance CTS as USB4 has to share encoders unlike DP and USBC
link->is_automated = true;
device_service_clear.bits.AUTOMATED_TEST = 1;
core_link_write_dpcd(
link,
DP_DEVICE_SERVICE_IRQ_VECTOR,
&device_service_clear.raw,
sizeof(device_service_clear.raw));
device_service_clear.raw = 0;
if (defer_handling && has_left_work)
*has_left_work = true;
else
dc_link_dp_handle_automated_test(link);
return false;
}
if (!dp_should_allow_hpd_rx_irq(link)) {
DC_LOG_HW_HPD_IRQ("%s: skipping HPD handling on %d\n",
__func__, link->link_index);
return false;
}
if (handle_hpd_irq_psr_sink(link))
/* PSR-related error was detected and handled */
return true;
if (handle_hpd_irq_replay_sink(link))
/* Replay-related error was detected and handled */
return true;
/* If PSR-related error handled, Main link may be off,
* so do not handle as a normal sink status change interrupt.
*/
if (hpd_irq_dpcd_data.bytes.device_service_irq.bits.UP_REQ_MSG_RDY) {
if (defer_handling && has_left_work)
*has_left_work = true;
return true;
}
/* check if we have MST msg and return since we poll for it */
if (hpd_irq_dpcd_data.bytes.device_service_irq.bits.DOWN_REP_MSG_RDY) {
if (defer_handling && has_left_work)
*has_left_work = true;
return false;
}
/* For now we only handle 'Downstream port status' case.
* If we got sink count changed it means
* Downstream port status changed,
* then DM should call DC to do the detection.
* NOTE: Do not handle link loss on eDP since it is internal link*/
if ((link->connector_signal != SIGNAL_TYPE_EDP) &&
dp_parse_link_loss_status(
link,
&hpd_irq_dpcd_data)) {
/* Connectivity log: link loss */
CONN_DATA_LINK_LOSS(link,
hpd_irq_dpcd_data.raw,
sizeof(hpd_irq_dpcd_data),
"Status: ");
if (defer_handling && has_left_work)
*has_left_work = true;
else
dp_handle_link_loss(link);
status = false;
if (out_link_loss)
*out_link_loss = true;
dp_trace_link_loss_increment(link);
}
if (link->type == dc_connection_sst_branch &&
hpd_irq_dpcd_data.bytes.sink_cnt.bits.SINK_COUNT
!= link->dpcd_sink_count)
status = true;
/* reasons for HPD RX:
* 1. Link Loss - ie Re-train the Link
* 2. MST sideband message
* 3. Automated Test - ie. Internal Commit
* 4. CP (copy protection) - (not interesting for DM???)
* 5. DRR
* 6. Downstream Port status changed
* -ie. Detect - this the only one
* which is interesting for DM because
* it must call dc_link_detect.
*/
return status;
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/protocols/link_dp_irq_handler.c |
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
/* FILE POLICY AND INTENDED USAGE:
*
* This file implements functions that manage basic HPD components such as gpio.
* It also provides wrapper functions to execute HPD related programming. This
* file only manages basic HPD functionality. It doesn't manage detection or
* feature or signal specific HPD behaviors.
*/
#include "link_hpd.h"
#include "gpio_service_interface.h"
bool link_get_hpd_state(struct dc_link *link)
{
uint32_t state;
dal_gpio_lock_pin(link->hpd_gpio);
dal_gpio_get_value(link->hpd_gpio, &state);
dal_gpio_unlock_pin(link->hpd_gpio);
return state;
}
void link_enable_hpd(const struct dc_link *link)
{
struct link_encoder *encoder = link->link_enc;
if (encoder != NULL && encoder->funcs->enable_hpd != NULL)
encoder->funcs->enable_hpd(encoder);
}
void link_disable_hpd(const struct dc_link *link)
{
struct link_encoder *encoder = link->link_enc;
if (encoder != NULL && encoder->funcs->enable_hpd != NULL)
encoder->funcs->disable_hpd(encoder);
}
void link_enable_hpd_filter(struct dc_link *link, bool enable)
{
struct gpio *hpd;
if (enable) {
link->is_hpd_filter_disabled = false;
program_hpd_filter(link);
} else {
link->is_hpd_filter_disabled = true;
/* Obtain HPD handle */
hpd = link_get_hpd_gpio(link->ctx->dc_bios, link->link_id, link->ctx->gpio_service);
if (!hpd)
return;
/* Setup HPD filtering */
if (dal_gpio_open(hpd, GPIO_MODE_INTERRUPT) == GPIO_RESULT_OK) {
struct gpio_hpd_config config;
config.delay_on_connect = 0;
config.delay_on_disconnect = 0;
dal_irq_setup_hpd_filter(hpd, &config);
dal_gpio_close(hpd);
} else {
ASSERT_CRITICAL(false);
}
/* Release HPD handle */
dal_gpio_destroy_irq(&hpd);
}
}
struct gpio *link_get_hpd_gpio(struct dc_bios *dcb,
struct graphics_object_id link_id,
struct gpio_service *gpio_service)
{
enum bp_result bp_result;
struct graphics_object_hpd_info hpd_info;
struct gpio_pin_info pin_info;
if (dcb->funcs->get_hpd_info(dcb, link_id, &hpd_info) != BP_RESULT_OK)
return NULL;
bp_result = dcb->funcs->get_gpio_pin_info(dcb,
hpd_info.hpd_int_gpio_uid, &pin_info);
if (bp_result != BP_RESULT_OK) {
ASSERT(bp_result == BP_RESULT_NORECORD);
return NULL;
}
return dal_gpio_service_create_irq(gpio_service,
pin_info.offset,
pin_info.mask);
}
bool query_hpd_status(struct dc_link *link, uint32_t *is_hpd_high)
{
struct gpio *hpd_pin = link_get_hpd_gpio(
link->ctx->dc_bios, link->link_id,
link->ctx->gpio_service);
if (!hpd_pin)
return false;
dal_gpio_open(hpd_pin, GPIO_MODE_INTERRUPT);
dal_gpio_get_value(hpd_pin, is_hpd_high);
dal_gpio_close(hpd_pin);
dal_gpio_destroy_irq(&hpd_pin);
return true;
}
enum hpd_source_id get_hpd_line(struct dc_link *link)
{
struct gpio *hpd;
enum hpd_source_id hpd_id;
hpd_id = HPD_SOURCEID_UNKNOWN;
hpd = link_get_hpd_gpio(link->ctx->dc_bios, link->link_id,
link->ctx->gpio_service);
if (hpd) {
switch (dal_irq_get_source(hpd)) {
case DC_IRQ_SOURCE_HPD1:
hpd_id = HPD_SOURCEID1;
break;
case DC_IRQ_SOURCE_HPD2:
hpd_id = HPD_SOURCEID2;
break;
case DC_IRQ_SOURCE_HPD3:
hpd_id = HPD_SOURCEID3;
break;
case DC_IRQ_SOURCE_HPD4:
hpd_id = HPD_SOURCEID4;
break;
case DC_IRQ_SOURCE_HPD5:
hpd_id = HPD_SOURCEID5;
break;
case DC_IRQ_SOURCE_HPD6:
hpd_id = HPD_SOURCEID6;
break;
default:
BREAK_TO_DEBUGGER();
break;
}
dal_gpio_destroy_irq(&hpd);
}
return hpd_id;
}
bool program_hpd_filter(const struct dc_link *link)
{
bool result = false;
struct gpio *hpd;
int delay_on_connect_in_ms = 0;
int delay_on_disconnect_in_ms = 0;
if (link->is_hpd_filter_disabled)
return false;
/* Verify feature is supported */
switch (link->connector_signal) {
case SIGNAL_TYPE_DVI_SINGLE_LINK:
case SIGNAL_TYPE_DVI_DUAL_LINK:
case SIGNAL_TYPE_HDMI_TYPE_A:
/* Program hpd filter */
delay_on_connect_in_ms = 500;
delay_on_disconnect_in_ms = 100;
break;
case SIGNAL_TYPE_DISPLAY_PORT:
case SIGNAL_TYPE_DISPLAY_PORT_MST:
/* Program hpd filter to allow DP signal to settle */
/* 500: not able to detect MST <-> SST switch as HPD is low for
* only 100ms on DELL U2413
* 0: some passive dongle still show aux mode instead of i2c
* 20-50: not enough to hide bouncing HPD with passive dongle.
* also see intermittent i2c read issues.
*/
delay_on_connect_in_ms = 80;
delay_on_disconnect_in_ms = 0;
break;
case SIGNAL_TYPE_LVDS:
case SIGNAL_TYPE_EDP:
default:
/* Don't program hpd filter */
return false;
}
/* Obtain HPD handle */
hpd = link_get_hpd_gpio(link->ctx->dc_bios, link->link_id,
link->ctx->gpio_service);
if (!hpd)
return result;
/* Setup HPD filtering */
if (dal_gpio_open(hpd, GPIO_MODE_INTERRUPT) == GPIO_RESULT_OK) {
struct gpio_hpd_config config;
config.delay_on_connect = delay_on_connect_in_ms;
config.delay_on_disconnect = delay_on_disconnect_in_ms;
dal_irq_setup_hpd_filter(hpd, &config);
dal_gpio_close(hpd);
result = true;
} else {
ASSERT_CRITICAL(false);
}
/* Release HPD handle */
dal_gpio_destroy_irq(&hpd);
return result;
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/protocols/link_hpd.c |
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
/* FILE POLICY AND INTENDED USAGE:
* This file implements dp specific link capability retrieval sequence. It is
* responsible for retrieving, parsing, overriding, deciding capability obtained
* from dp link. Link capability consists of encoders, DPRXs, cables, retimers,
* usb and all other possible backend capabilities. Other components should
* include this header file in order to access link capability. Accessing link
* capability by dereferencing dc_link outside dp_link_capability is not a
* recommended method as it makes the component dependent on the underlying data
* structure used to represent link capability instead of function interfaces.
*/
#include "link_dp_capability.h"
#include "link_ddc.h"
#include "link_dpcd.h"
#include "link_dp_dpia.h"
#include "link_dp_phy.h"
#include "link_edp_panel_control.h"
#include "link_dp_irq_handler.h"
#include "link/accessories/link_dp_trace.h"
#include "link/link_detection.h"
#include "link/link_validation.h"
#include "link_dp_training.h"
#include "atomfirmware.h"
#include "resource.h"
#include "link_enc_cfg.h"
#include "dc_dmub_srv.h"
#include "gpio_service_interface.h"
#define DC_LOGGER \
link->ctx->logger
#define DC_TRACE_LEVEL_MESSAGE(...) /* do nothing */
#ifndef MAX
#define MAX(X, Y) ((X) > (Y) ? (X) : (Y))
#endif
#ifndef MIN
#define MIN(X, Y) ((X) < (Y) ? (X) : (Y))
#endif
struct dp_lt_fallback_entry {
enum dc_lane_count lane_count;
enum dc_link_rate link_rate;
};
static const struct dp_lt_fallback_entry dp_lt_fallbacks[] = {
/* This link training fallback array is ordered by
* link bandwidth from highest to lowest.
* DP specs makes it a normative policy to always
* choose the next highest link bandwidth during
* link training fallback.
*/
{LANE_COUNT_FOUR, LINK_RATE_UHBR20},
{LANE_COUNT_FOUR, LINK_RATE_UHBR13_5},
{LANE_COUNT_TWO, LINK_RATE_UHBR20},
{LANE_COUNT_FOUR, LINK_RATE_UHBR10},
{LANE_COUNT_TWO, LINK_RATE_UHBR13_5},
{LANE_COUNT_FOUR, LINK_RATE_HIGH3},
{LANE_COUNT_ONE, LINK_RATE_UHBR20},
{LANE_COUNT_TWO, LINK_RATE_UHBR10},
{LANE_COUNT_FOUR, LINK_RATE_HIGH2},
{LANE_COUNT_ONE, LINK_RATE_UHBR13_5},
{LANE_COUNT_TWO, LINK_RATE_HIGH3},
{LANE_COUNT_ONE, LINK_RATE_UHBR10},
{LANE_COUNT_TWO, LINK_RATE_HIGH2},
{LANE_COUNT_FOUR, LINK_RATE_HIGH},
{LANE_COUNT_ONE, LINK_RATE_HIGH3},
{LANE_COUNT_FOUR, LINK_RATE_LOW},
{LANE_COUNT_ONE, LINK_RATE_HIGH2},
{LANE_COUNT_TWO, LINK_RATE_HIGH},
{LANE_COUNT_TWO, LINK_RATE_LOW},
{LANE_COUNT_ONE, LINK_RATE_HIGH},
{LANE_COUNT_ONE, LINK_RATE_LOW},
};
static const struct dc_link_settings fail_safe_link_settings = {
.lane_count = LANE_COUNT_ONE,
.link_rate = LINK_RATE_LOW,
.link_spread = LINK_SPREAD_DISABLED,
};
bool is_dp_active_dongle(const struct dc_link *link)
{
return (link->dpcd_caps.dongle_type >= DISPLAY_DONGLE_DP_VGA_CONVERTER) &&
(link->dpcd_caps.dongle_type <= DISPLAY_DONGLE_DP_HDMI_CONVERTER);
}
bool is_dp_branch_device(const struct dc_link *link)
{
return link->dpcd_caps.is_branch_dev;
}
static int translate_dpcd_max_bpc(enum dpcd_downstream_port_max_bpc bpc)
{
switch (bpc) {
case DOWN_STREAM_MAX_8BPC:
return 8;
case DOWN_STREAM_MAX_10BPC:
return 10;
case DOWN_STREAM_MAX_12BPC:
return 12;
case DOWN_STREAM_MAX_16BPC:
return 16;
default:
break;
}
return -1;
}
uint8_t dp_parse_lttpr_repeater_count(uint8_t lttpr_repeater_count)
{
switch (lttpr_repeater_count) {
case 0x80: // 1 lttpr repeater
return 1;
case 0x40: // 2 lttpr repeaters
return 2;
case 0x20: // 3 lttpr repeaters
return 3;
case 0x10: // 4 lttpr repeaters
return 4;
case 0x08: // 5 lttpr repeaters
return 5;
case 0x04: // 6 lttpr repeaters
return 6;
case 0x02: // 7 lttpr repeaters
return 7;
case 0x01: // 8 lttpr repeaters
return 8;
default:
break;
}
return 0; // invalid value
}
uint32_t link_bw_kbps_from_raw_frl_link_rate_data(uint8_t bw)
{
switch (bw) {
case 0b001:
return 9000000;
case 0b010:
return 18000000;
case 0b011:
return 24000000;
case 0b100:
return 32000000;
case 0b101:
return 40000000;
case 0b110:
return 48000000;
}
return 0;
}
static enum dc_link_rate linkRateInKHzToLinkRateMultiplier(uint32_t link_rate_in_khz)
{
enum dc_link_rate link_rate;
// LinkRate is normally stored as a multiplier of 0.27 Gbps per lane. Do the translation.
switch (link_rate_in_khz) {
case 1620000:
link_rate = LINK_RATE_LOW; // Rate_1 (RBR) - 1.62 Gbps/Lane
break;
case 2160000:
link_rate = LINK_RATE_RATE_2; // Rate_2 - 2.16 Gbps/Lane
break;
case 2430000:
link_rate = LINK_RATE_RATE_3; // Rate_3 - 2.43 Gbps/Lane
break;
case 2700000:
link_rate = LINK_RATE_HIGH; // Rate_4 (HBR) - 2.70 Gbps/Lane
break;
case 3240000:
link_rate = LINK_RATE_RBR2; // Rate_5 (RBR2)- 3.24 Gbps/Lane
break;
case 4320000:
link_rate = LINK_RATE_RATE_6; // Rate_6 - 4.32 Gbps/Lane
break;
case 5400000:
link_rate = LINK_RATE_HIGH2; // Rate_7 (HBR2)- 5.40 Gbps/Lane
break;
case 6750000:
link_rate = LINK_RATE_RATE_8; // Rate_8 - 6.75 Gbps/Lane
break;
case 8100000:
link_rate = LINK_RATE_HIGH3; // Rate_9 (HBR3)- 8.10 Gbps/Lane
break;
default:
link_rate = LINK_RATE_UNKNOWN;
break;
}
return link_rate;
}
static union dp_cable_id intersect_cable_id(
union dp_cable_id *a, union dp_cable_id *b)
{
union dp_cable_id out;
out.bits.UHBR10_20_CAPABILITY = MIN(a->bits.UHBR10_20_CAPABILITY,
b->bits.UHBR10_20_CAPABILITY);
out.bits.UHBR13_5_CAPABILITY = MIN(a->bits.UHBR13_5_CAPABILITY,
b->bits.UHBR13_5_CAPABILITY);
out.bits.CABLE_TYPE = MAX(a->bits.CABLE_TYPE, b->bits.CABLE_TYPE);
return out;
}
/*
* Return PCON's post FRL link training supported BW if its non-zero, otherwise return max_supported_frl_bw.
*/
static uint32_t intersect_frl_link_bw_support(
const uint32_t max_supported_frl_bw_in_kbps,
const union hdmi_encoded_link_bw hdmi_encoded_link_bw)
{
uint32_t supported_bw_in_kbps = max_supported_frl_bw_in_kbps;
// HDMI_ENCODED_LINK_BW bits are only valid if HDMI Link Configuration bit is 1 (FRL mode)
if (hdmi_encoded_link_bw.bits.FRL_MODE) {
if (hdmi_encoded_link_bw.bits.BW_48Gbps)
supported_bw_in_kbps = 48000000;
else if (hdmi_encoded_link_bw.bits.BW_40Gbps)
supported_bw_in_kbps = 40000000;
else if (hdmi_encoded_link_bw.bits.BW_32Gbps)
supported_bw_in_kbps = 32000000;
else if (hdmi_encoded_link_bw.bits.BW_24Gbps)
supported_bw_in_kbps = 24000000;
else if (hdmi_encoded_link_bw.bits.BW_18Gbps)
supported_bw_in_kbps = 18000000;
else if (hdmi_encoded_link_bw.bits.BW_9Gbps)
supported_bw_in_kbps = 9000000;
}
return supported_bw_in_kbps;
}
static enum clock_source_id get_clock_source_id(struct dc_link *link)
{
enum clock_source_id dp_cs_id = CLOCK_SOURCE_ID_UNDEFINED;
struct clock_source *dp_cs = link->dc->res_pool->dp_clock_source;
if (dp_cs != NULL) {
dp_cs_id = dp_cs->id;
} else {
/*
* dp clock source is not initialized for some reason.
* Should not happen, CLOCK_SOURCE_ID_EXTERNAL will be used
*/
ASSERT(dp_cs);
}
return dp_cs_id;
}
static void dp_wa_power_up_0010FA(struct dc_link *link, uint8_t *dpcd_data,
int length)
{
int retry = 0;
if (!link->dpcd_caps.dpcd_rev.raw) {
do {
dpcd_write_rx_power_ctrl(link, true);
core_link_read_dpcd(link, DP_DPCD_REV,
dpcd_data, length);
link->dpcd_caps.dpcd_rev.raw = dpcd_data[
DP_DPCD_REV -
DP_DPCD_REV];
} while (retry++ < 4 && !link->dpcd_caps.dpcd_rev.raw);
}
if (link->dpcd_caps.dongle_type == DISPLAY_DONGLE_DP_VGA_CONVERTER) {
switch (link->dpcd_caps.branch_dev_id) {
/* 0010FA active dongles (DP-VGA, DP-DLDVI converters) power down
* all internal circuits including AUX communication preventing
* reading DPCD table and EDID (spec violation).
* Encoder will skip DP RX power down on disable_output to
* keep receiver powered all the time.*/
case DP_BRANCH_DEVICE_ID_0010FA:
case DP_BRANCH_DEVICE_ID_0080E1:
case DP_BRANCH_DEVICE_ID_00E04C:
link->wa_flags.dp_keep_receiver_powered = true;
break;
/* TODO: May need work around for other dongles. */
default:
link->wa_flags.dp_keep_receiver_powered = false;
break;
}
} else
link->wa_flags.dp_keep_receiver_powered = false;
}
bool dp_is_fec_supported(const struct dc_link *link)
{
/* TODO - use asic cap instead of link_enc->features
* we no longer know which link enc to use for this link before commit
*/
struct link_encoder *link_enc = NULL;
link_enc = link_enc_cfg_get_link_enc(link);
ASSERT(link_enc);
return (dc_is_dp_signal(link->connector_signal) && link_enc &&
link_enc->features.fec_supported &&
link->dpcd_caps.fec_cap.bits.FEC_CAPABLE);
}
bool dp_should_enable_fec(const struct dc_link *link)
{
bool force_disable = false;
if (link->fec_state == dc_link_fec_enabled)
force_disable = false;
else if (link->connector_signal != SIGNAL_TYPE_DISPLAY_PORT_MST &&
link->local_sink &&
link->local_sink->edid_caps.panel_patch.disable_fec)
force_disable = true;
else if (link->connector_signal == SIGNAL_TYPE_EDP
&& (link->dpcd_caps.dsc_caps.dsc_basic_caps.fields.
dsc_support.DSC_SUPPORT == false
|| link->panel_config.dsc.disable_dsc_edp
|| !link->dc->caps.edp_dsc_support))
force_disable = true;
return !force_disable && dp_is_fec_supported(link);
}
bool dp_is_128b_132b_signal(struct pipe_ctx *pipe_ctx)
{
/* If this assert is hit then we have a link encoder dynamic management issue */
ASSERT(pipe_ctx->stream_res.hpo_dp_stream_enc ? pipe_ctx->link_res.hpo_dp_link_enc != NULL : true);
return (pipe_ctx->stream_res.hpo_dp_stream_enc &&
pipe_ctx->link_res.hpo_dp_link_enc &&
dc_is_dp_signal(pipe_ctx->stream->signal));
}
bool dp_is_lttpr_present(struct dc_link *link)
{
return (dp_parse_lttpr_repeater_count(link->dpcd_caps.lttpr_caps.phy_repeater_cnt) != 0 &&
link->dpcd_caps.lttpr_caps.max_lane_count > 0 &&
link->dpcd_caps.lttpr_caps.max_lane_count <= 4 &&
link->dpcd_caps.lttpr_caps.revision.raw >= 0x14);
}
/* in DP compliance test, DPR-120 may have
* a random value in its MAX_LINK_BW dpcd field.
* We map it to the maximum supported link rate that
* is smaller than MAX_LINK_BW in this case.
*/
static enum dc_link_rate get_link_rate_from_max_link_bw(
uint8_t max_link_bw)
{
enum dc_link_rate link_rate;
if (max_link_bw >= LINK_RATE_HIGH3) {
link_rate = LINK_RATE_HIGH3;
} else if (max_link_bw < LINK_RATE_HIGH3
&& max_link_bw >= LINK_RATE_HIGH2) {
link_rate = LINK_RATE_HIGH2;
} else if (max_link_bw < LINK_RATE_HIGH2
&& max_link_bw >= LINK_RATE_HIGH) {
link_rate = LINK_RATE_HIGH;
} else if (max_link_bw < LINK_RATE_HIGH
&& max_link_bw >= LINK_RATE_LOW) {
link_rate = LINK_RATE_LOW;
} else {
link_rate = LINK_RATE_UNKNOWN;
}
return link_rate;
}
static enum dc_link_rate get_lttpr_max_link_rate(struct dc_link *link)
{
enum dc_link_rate lttpr_max_link_rate = link->dpcd_caps.lttpr_caps.max_link_rate;
if (link->dpcd_caps.lttpr_caps.supported_128b_132b_rates.bits.UHBR20)
lttpr_max_link_rate = LINK_RATE_UHBR20;
else if (link->dpcd_caps.lttpr_caps.supported_128b_132b_rates.bits.UHBR13_5)
lttpr_max_link_rate = LINK_RATE_UHBR13_5;
else if (link->dpcd_caps.lttpr_caps.supported_128b_132b_rates.bits.UHBR10)
lttpr_max_link_rate = LINK_RATE_UHBR10;
return lttpr_max_link_rate;
}
static enum dc_link_rate get_cable_max_link_rate(struct dc_link *link)
{
enum dc_link_rate cable_max_link_rate = LINK_RATE_UNKNOWN;
if (link->dpcd_caps.cable_id.bits.UHBR10_20_CAPABILITY & DP_UHBR20)
cable_max_link_rate = LINK_RATE_UHBR20;
else if (link->dpcd_caps.cable_id.bits.UHBR13_5_CAPABILITY)
cable_max_link_rate = LINK_RATE_UHBR13_5;
else if (link->dpcd_caps.cable_id.bits.UHBR10_20_CAPABILITY & DP_UHBR10)
cable_max_link_rate = LINK_RATE_UHBR10;
return cable_max_link_rate;
}
static inline bool reached_minimum_lane_count(enum dc_lane_count lane_count)
{
return lane_count <= LANE_COUNT_ONE;
}
static inline bool reached_minimum_link_rate(enum dc_link_rate link_rate)
{
return link_rate <= LINK_RATE_LOW;
}
static enum dc_lane_count reduce_lane_count(enum dc_lane_count lane_count)
{
switch (lane_count) {
case LANE_COUNT_FOUR:
return LANE_COUNT_TWO;
case LANE_COUNT_TWO:
return LANE_COUNT_ONE;
case LANE_COUNT_ONE:
return LANE_COUNT_UNKNOWN;
default:
return LANE_COUNT_UNKNOWN;
}
}
static enum dc_link_rate reduce_link_rate(const struct dc_link *link, enum dc_link_rate link_rate)
{
// NEEDSWORK: provide some details about why this function never returns some of the
// obscure link rates such as 4.32 Gbps or 3.24 Gbps and if such behavior is intended.
//
switch (link_rate) {
case LINK_RATE_UHBR20:
return LINK_RATE_UHBR13_5;
case LINK_RATE_UHBR13_5:
return LINK_RATE_UHBR10;
case LINK_RATE_UHBR10:
return LINK_RATE_HIGH3;
case LINK_RATE_HIGH3:
if (link->connector_signal == SIGNAL_TYPE_EDP && link->dc->debug.support_eDP1_5)
return LINK_RATE_RATE_8;
return LINK_RATE_HIGH2;
case LINK_RATE_RATE_8:
return LINK_RATE_HIGH2;
case LINK_RATE_HIGH2:
return LINK_RATE_HIGH;
case LINK_RATE_RATE_6:
case LINK_RATE_RBR2:
return LINK_RATE_HIGH;
case LINK_RATE_HIGH:
return LINK_RATE_LOW;
case LINK_RATE_RATE_3:
case LINK_RATE_RATE_2:
return LINK_RATE_LOW;
case LINK_RATE_LOW:
default:
return LINK_RATE_UNKNOWN;
}
}
static enum dc_lane_count increase_lane_count(enum dc_lane_count lane_count)
{
switch (lane_count) {
case LANE_COUNT_ONE:
return LANE_COUNT_TWO;
case LANE_COUNT_TWO:
return LANE_COUNT_FOUR;
default:
return LANE_COUNT_UNKNOWN;
}
}
static enum dc_link_rate increase_link_rate(struct dc_link *link,
enum dc_link_rate link_rate)
{
switch (link_rate) {
case LINK_RATE_LOW:
return LINK_RATE_HIGH;
case LINK_RATE_HIGH:
return LINK_RATE_HIGH2;
case LINK_RATE_HIGH2:
return LINK_RATE_HIGH3;
case LINK_RATE_HIGH3:
return LINK_RATE_UHBR10;
case LINK_RATE_UHBR10:
/* upto DP2.x specs UHBR13.5 is the only link rate that could be
* not supported by DPRX when higher link rate is supported.
* so we treat it as a special case for code simplicity. When we
* have new specs with more link rates like this, we should
* consider a more generic solution to handle discrete link
* rate capabilities.
*/
return link->dpcd_caps.dp_128b_132b_supported_link_rates.bits.UHBR13_5 ?
LINK_RATE_UHBR13_5 : LINK_RATE_UHBR20;
case LINK_RATE_UHBR13_5:
return LINK_RATE_UHBR20;
default:
return LINK_RATE_UNKNOWN;
}
}
static bool decide_fallback_link_setting_max_bw_policy(
struct dc_link *link,
const struct dc_link_settings *max,
struct dc_link_settings *cur,
enum link_training_result training_result)
{
uint8_t cur_idx = 0, next_idx;
bool found = false;
if (training_result == LINK_TRAINING_ABORT)
return false;
while (cur_idx < ARRAY_SIZE(dp_lt_fallbacks))
/* find current index */
if (dp_lt_fallbacks[cur_idx].lane_count == cur->lane_count &&
dp_lt_fallbacks[cur_idx].link_rate == cur->link_rate)
break;
else
cur_idx++;
next_idx = cur_idx + 1;
while (next_idx < ARRAY_SIZE(dp_lt_fallbacks))
/* find next index */
if (dp_lt_fallbacks[next_idx].lane_count > max->lane_count ||
dp_lt_fallbacks[next_idx].link_rate > max->link_rate)
next_idx++;
else if (dp_lt_fallbacks[next_idx].link_rate == LINK_RATE_UHBR13_5 &&
link->dpcd_caps.dp_128b_132b_supported_link_rates.bits.UHBR13_5 == 0)
/* upto DP2.x specs UHBR13.5 is the only link rate that
* could be not supported by DPRX when higher link rate
* is supported. so we treat it as a special case for
* code simplicity. When we have new specs with more
* link rates like this, we should consider a more
* generic solution to handle discrete link rate
* capabilities.
*/
next_idx++;
else
break;
if (next_idx < ARRAY_SIZE(dp_lt_fallbacks)) {
cur->lane_count = dp_lt_fallbacks[next_idx].lane_count;
cur->link_rate = dp_lt_fallbacks[next_idx].link_rate;
found = true;
}
return found;
}
/*
* function: set link rate and lane count fallback based
* on current link setting and last link training result
* return value:
* true - link setting could be set
* false - has reached minimum setting
* and no further fallback could be done
*/
bool decide_fallback_link_setting(
struct dc_link *link,
struct dc_link_settings *max,
struct dc_link_settings *cur,
enum link_training_result training_result)
{
if (link_dp_get_encoding_format(max) == DP_128b_132b_ENCODING ||
link->dc->debug.force_dp2_lt_fallback_method)
return decide_fallback_link_setting_max_bw_policy(link, max,
cur, training_result);
switch (training_result) {
case LINK_TRAINING_CR_FAIL_LANE0:
case LINK_TRAINING_CR_FAIL_LANE1:
case LINK_TRAINING_CR_FAIL_LANE23:
case LINK_TRAINING_LQA_FAIL:
{
if (!reached_minimum_link_rate(cur->link_rate)) {
cur->link_rate = reduce_link_rate(link, cur->link_rate);
} else if (!reached_minimum_lane_count(cur->lane_count)) {
cur->link_rate = max->link_rate;
if (training_result == LINK_TRAINING_CR_FAIL_LANE0)
return false;
else if (training_result == LINK_TRAINING_CR_FAIL_LANE1)
cur->lane_count = LANE_COUNT_ONE;
else if (training_result == LINK_TRAINING_CR_FAIL_LANE23)
cur->lane_count = LANE_COUNT_TWO;
else
cur->lane_count = reduce_lane_count(cur->lane_count);
} else {
return false;
}
break;
}
case LINK_TRAINING_EQ_FAIL_EQ:
case LINK_TRAINING_EQ_FAIL_CR_PARTIAL:
{
if (!reached_minimum_lane_count(cur->lane_count)) {
cur->lane_count = reduce_lane_count(cur->lane_count);
} else if (!reached_minimum_link_rate(cur->link_rate)) {
cur->link_rate = reduce_link_rate(link, cur->link_rate);
/* Reduce max link rate to avoid potential infinite loop.
* Needed so that any subsequent CR_FAIL fallback can't
* re-set the link rate higher than the link rate from
* the latest EQ_FAIL fallback.
*/
max->link_rate = cur->link_rate;
cur->lane_count = max->lane_count;
} else {
return false;
}
break;
}
case LINK_TRAINING_EQ_FAIL_CR:
{
if (!reached_minimum_link_rate(cur->link_rate)) {
cur->link_rate = reduce_link_rate(link, cur->link_rate);
/* Reduce max link rate to avoid potential infinite loop.
* Needed so that any subsequent CR_FAIL fallback can't
* re-set the link rate higher than the link rate from
* the latest EQ_FAIL fallback.
*/
max->link_rate = cur->link_rate;
cur->lane_count = max->lane_count;
} else {
return false;
}
break;
}
default:
return false;
}
return true;
}
static bool decide_dp_link_settings(struct dc_link *link, struct dc_link_settings *link_setting, uint32_t req_bw)
{
struct dc_link_settings initial_link_setting = {
LANE_COUNT_ONE, LINK_RATE_LOW, LINK_SPREAD_DISABLED, false, 0};
struct dc_link_settings current_link_setting =
initial_link_setting;
uint32_t link_bw;
if (req_bw > dp_link_bandwidth_kbps(link, &link->verified_link_cap))
return false;
/* search for the minimum link setting that:
* 1. is supported according to the link training result
* 2. could support the b/w requested by the timing
*/
while (current_link_setting.link_rate <=
link->verified_link_cap.link_rate) {
link_bw = dp_link_bandwidth_kbps(
link,
¤t_link_setting);
if (req_bw <= link_bw) {
*link_setting = current_link_setting;
return true;
}
if (current_link_setting.lane_count <
link->verified_link_cap.lane_count) {
current_link_setting.lane_count =
increase_lane_count(
current_link_setting.lane_count);
} else {
current_link_setting.link_rate =
increase_link_rate(link,
current_link_setting.link_rate);
current_link_setting.lane_count =
initial_link_setting.lane_count;
}
}
return false;
}
bool edp_decide_link_settings(struct dc_link *link,
struct dc_link_settings *link_setting, uint32_t req_bw)
{
struct dc_link_settings initial_link_setting;
struct dc_link_settings current_link_setting;
uint32_t link_bw;
/*
* edp_supported_link_rates_count is only valid for eDP v1.4 or higher.
* Per VESA eDP spec, "The DPCD revision for eDP v1.4 is 13h"
*/
if (link->dpcd_caps.dpcd_rev.raw < DPCD_REV_13 ||
link->dpcd_caps.edp_supported_link_rates_count == 0) {
*link_setting = link->verified_link_cap;
return true;
}
memset(&initial_link_setting, 0, sizeof(initial_link_setting));
initial_link_setting.lane_count = LANE_COUNT_ONE;
initial_link_setting.link_rate = link->dpcd_caps.edp_supported_link_rates[0];
initial_link_setting.link_spread = LINK_SPREAD_DISABLED;
initial_link_setting.use_link_rate_set = true;
initial_link_setting.link_rate_set = 0;
current_link_setting = initial_link_setting;
/* search for the minimum link setting that:
* 1. is supported according to the link training result
* 2. could support the b/w requested by the timing
*/
while (current_link_setting.link_rate <=
link->verified_link_cap.link_rate) {
link_bw = dp_link_bandwidth_kbps(
link,
¤t_link_setting);
if (req_bw <= link_bw) {
*link_setting = current_link_setting;
return true;
}
if (current_link_setting.lane_count <
link->verified_link_cap.lane_count) {
current_link_setting.lane_count =
increase_lane_count(
current_link_setting.lane_count);
} else {
if (current_link_setting.link_rate_set < link->dpcd_caps.edp_supported_link_rates_count) {
current_link_setting.link_rate_set++;
current_link_setting.link_rate =
link->dpcd_caps.edp_supported_link_rates[current_link_setting.link_rate_set];
current_link_setting.lane_count =
initial_link_setting.lane_count;
} else
break;
}
}
return false;
}
bool decide_edp_link_settings_with_dsc(struct dc_link *link,
struct dc_link_settings *link_setting,
uint32_t req_bw,
enum dc_link_rate max_link_rate)
{
struct dc_link_settings initial_link_setting;
struct dc_link_settings current_link_setting;
uint32_t link_bw;
unsigned int policy = 0;
policy = link->panel_config.dsc.force_dsc_edp_policy;
if (max_link_rate == LINK_RATE_UNKNOWN)
max_link_rate = link->verified_link_cap.link_rate;
/*
* edp_supported_link_rates_count is only valid for eDP v1.4 or higher.
* Per VESA eDP spec, "The DPCD revision for eDP v1.4 is 13h"
*/
if ((link->dpcd_caps.dpcd_rev.raw < DPCD_REV_13 ||
link->dpcd_caps.edp_supported_link_rates_count == 0)) {
/* for DSC enabled case, we search for minimum lane count */
memset(&initial_link_setting, 0, sizeof(initial_link_setting));
initial_link_setting.lane_count = LANE_COUNT_ONE;
initial_link_setting.link_rate = LINK_RATE_LOW;
initial_link_setting.link_spread = LINK_SPREAD_DISABLED;
initial_link_setting.use_link_rate_set = false;
initial_link_setting.link_rate_set = 0;
current_link_setting = initial_link_setting;
if (req_bw > dp_link_bandwidth_kbps(link, &link->verified_link_cap))
return false;
/* search for the minimum link setting that:
* 1. is supported according to the link training result
* 2. could support the b/w requested by the timing
*/
while (current_link_setting.link_rate <=
max_link_rate) {
link_bw = dp_link_bandwidth_kbps(
link,
¤t_link_setting);
if (req_bw <= link_bw) {
*link_setting = current_link_setting;
return true;
}
if (policy) {
/* minimize lane */
if (current_link_setting.link_rate < max_link_rate) {
current_link_setting.link_rate =
increase_link_rate(link,
current_link_setting.link_rate);
} else {
if (current_link_setting.lane_count <
link->verified_link_cap.lane_count) {
current_link_setting.lane_count =
increase_lane_count(
current_link_setting.lane_count);
current_link_setting.link_rate = initial_link_setting.link_rate;
} else
break;
}
} else {
/* minimize link rate */
if (current_link_setting.lane_count <
link->verified_link_cap.lane_count) {
current_link_setting.lane_count =
increase_lane_count(
current_link_setting.lane_count);
} else {
current_link_setting.link_rate =
increase_link_rate(link,
current_link_setting.link_rate);
current_link_setting.lane_count =
initial_link_setting.lane_count;
}
}
}
return false;
}
/* if optimize edp link is supported */
memset(&initial_link_setting, 0, sizeof(initial_link_setting));
initial_link_setting.lane_count = LANE_COUNT_ONE;
initial_link_setting.link_rate = link->dpcd_caps.edp_supported_link_rates[0];
initial_link_setting.link_spread = LINK_SPREAD_DISABLED;
initial_link_setting.use_link_rate_set = true;
initial_link_setting.link_rate_set = 0;
current_link_setting = initial_link_setting;
/* search for the minimum link setting that:
* 1. is supported according to the link training result
* 2. could support the b/w requested by the timing
*/
while (current_link_setting.link_rate <=
max_link_rate) {
link_bw = dp_link_bandwidth_kbps(
link,
¤t_link_setting);
if (req_bw <= link_bw) {
*link_setting = current_link_setting;
return true;
}
if (policy) {
/* minimize lane */
if (current_link_setting.link_rate_set <
link->dpcd_caps.edp_supported_link_rates_count
&& current_link_setting.link_rate < max_link_rate) {
current_link_setting.link_rate_set++;
current_link_setting.link_rate =
link->dpcd_caps.edp_supported_link_rates[current_link_setting.link_rate_set];
} else {
if (current_link_setting.lane_count < link->verified_link_cap.lane_count) {
current_link_setting.lane_count =
increase_lane_count(
current_link_setting.lane_count);
current_link_setting.link_rate_set = initial_link_setting.link_rate_set;
current_link_setting.link_rate =
link->dpcd_caps.edp_supported_link_rates[current_link_setting.link_rate_set];
} else
break;
}
} else {
/* minimize link rate */
if (current_link_setting.lane_count <
link->verified_link_cap.lane_count) {
current_link_setting.lane_count =
increase_lane_count(
current_link_setting.lane_count);
} else {
if (current_link_setting.link_rate_set < link->dpcd_caps.edp_supported_link_rates_count) {
current_link_setting.link_rate_set++;
current_link_setting.link_rate =
link->dpcd_caps.edp_supported_link_rates[current_link_setting.link_rate_set];
current_link_setting.lane_count =
initial_link_setting.lane_count;
} else
break;
}
}
}
return false;
}
static bool decide_mst_link_settings(const struct dc_link *link, struct dc_link_settings *link_setting)
{
*link_setting = link->verified_link_cap;
return true;
}
bool link_decide_link_settings(struct dc_stream_state *stream,
struct dc_link_settings *link_setting)
{
struct dc_link *link = stream->link;
uint32_t req_bw = dc_bandwidth_in_kbps_from_timing(&stream->timing, dc_link_get_highest_encoding_format(link));
memset(link_setting, 0, sizeof(*link_setting));
/* if preferred is specified through AMDDP, use it, if it's enough
* to drive the mode
*/
if (link->preferred_link_setting.lane_count !=
LANE_COUNT_UNKNOWN &&
link->preferred_link_setting.link_rate !=
LINK_RATE_UNKNOWN) {
*link_setting = link->preferred_link_setting;
return true;
}
/* MST doesn't perform link training for now
* TODO: add MST specific link training routine
*/
if (stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST) {
decide_mst_link_settings(link, link_setting);
} else if (link->connector_signal == SIGNAL_TYPE_EDP) {
/* enable edp link optimization for DSC eDP case */
if (stream->timing.flags.DSC) {
enum dc_link_rate max_link_rate = LINK_RATE_UNKNOWN;
if (link->panel_config.dsc.force_dsc_edp_policy) {
/* calculate link max link rate cap*/
struct dc_link_settings tmp_link_setting;
struct dc_crtc_timing tmp_timing = stream->timing;
uint32_t orig_req_bw;
tmp_link_setting.link_rate = LINK_RATE_UNKNOWN;
tmp_timing.flags.DSC = 0;
orig_req_bw = dc_bandwidth_in_kbps_from_timing(&tmp_timing,
dc_link_get_highest_encoding_format(link));
edp_decide_link_settings(link, &tmp_link_setting, orig_req_bw);
max_link_rate = tmp_link_setting.link_rate;
}
decide_edp_link_settings_with_dsc(link, link_setting, req_bw, max_link_rate);
} else {
edp_decide_link_settings(link, link_setting, req_bw);
}
} else {
decide_dp_link_settings(link, link_setting, req_bw);
}
return link_setting->lane_count != LANE_COUNT_UNKNOWN &&
link_setting->link_rate != LINK_RATE_UNKNOWN;
}
enum dp_link_encoding link_dp_get_encoding_format(const struct dc_link_settings *link_settings)
{
if ((link_settings->link_rate >= LINK_RATE_LOW) &&
(link_settings->link_rate <= LINK_RATE_HIGH3))
return DP_8b_10b_ENCODING;
else if ((link_settings->link_rate >= LINK_RATE_UHBR10) &&
(link_settings->link_rate <= LINK_RATE_UHBR20))
return DP_128b_132b_ENCODING;
return DP_UNKNOWN_ENCODING;
}
enum dp_link_encoding mst_decide_link_encoding_format(const struct dc_link *link)
{
struct dc_link_settings link_settings = {0};
if (!dc_is_dp_signal(link->connector_signal))
return DP_UNKNOWN_ENCODING;
if (link->preferred_link_setting.lane_count !=
LANE_COUNT_UNKNOWN &&
link->preferred_link_setting.link_rate !=
LINK_RATE_UNKNOWN) {
link_settings = link->preferred_link_setting;
} else {
decide_mst_link_settings(link, &link_settings);
}
return link_dp_get_encoding_format(&link_settings);
}
static void read_dp_device_vendor_id(struct dc_link *link)
{
struct dp_device_vendor_id dp_id;
/* read IEEE branch device id */
core_link_read_dpcd(
link,
DP_BRANCH_OUI,
(uint8_t *)&dp_id,
sizeof(dp_id));
link->dpcd_caps.branch_dev_id =
(dp_id.ieee_oui[0] << 16) +
(dp_id.ieee_oui[1] << 8) +
dp_id.ieee_oui[2];
memmove(
link->dpcd_caps.branch_dev_name,
dp_id.ieee_device_id,
sizeof(dp_id.ieee_device_id));
}
static enum dc_status wake_up_aux_channel(struct dc_link *link)
{
enum dc_status status = DC_ERROR_UNEXPECTED;
uint32_t aux_channel_retry_cnt = 0;
uint8_t dpcd_power_state = '\0';
while (status != DC_OK && aux_channel_retry_cnt < 10) {
status = core_link_read_dpcd(link, DP_SET_POWER,
&dpcd_power_state, sizeof(dpcd_power_state));
/* Delay 1 ms if AUX CH is in power down state. Based on spec
* section 2.3.1.2, if AUX CH may be powered down due to
* write to DPCD 600h = 2. Sink AUX CH is monitoring differential
* signal and may need up to 1 ms before being able to reply.
*/
if (status != DC_OK || dpcd_power_state == DP_SET_POWER_D3) {
fsleep(1000);
aux_channel_retry_cnt++;
}
}
if (status != DC_OK) {
dpcd_power_state = DP_SET_POWER_D0;
status = core_link_write_dpcd(
link,
DP_SET_POWER,
&dpcd_power_state,
sizeof(dpcd_power_state));
dpcd_power_state = DP_SET_POWER_D3;
status = core_link_write_dpcd(
link,
DP_SET_POWER,
&dpcd_power_state,
sizeof(dpcd_power_state));
DC_LOG_DC("%s: Failed to power up sink\n", __func__);
return DC_ERROR_UNEXPECTED;
}
return DC_OK;
}
static void get_active_converter_info(
uint8_t data, struct dc_link *link)
{
union dp_downstream_port_present ds_port = { .byte = data };
memset(&link->dpcd_caps.dongle_caps, 0, sizeof(link->dpcd_caps.dongle_caps));
/* decode converter info*/
if (!ds_port.fields.PORT_PRESENT) {
link->dpcd_caps.dongle_type = DISPLAY_DONGLE_NONE;
set_dongle_type(link->ddc,
link->dpcd_caps.dongle_type);
link->dpcd_caps.is_branch_dev = false;
return;
}
/* DPCD 0x5 bit 0 = 1, it indicate it's branch device */
link->dpcd_caps.is_branch_dev = ds_port.fields.PORT_PRESENT;
switch (ds_port.fields.PORT_TYPE) {
case DOWNSTREAM_VGA:
link->dpcd_caps.dongle_type = DISPLAY_DONGLE_DP_VGA_CONVERTER;
break;
case DOWNSTREAM_DVI_HDMI_DP_PLUS_PLUS:
/* At this point we don't know is it DVI or HDMI or DP++,
* assume DVI.*/
link->dpcd_caps.dongle_type = DISPLAY_DONGLE_DP_DVI_CONVERTER;
break;
default:
link->dpcd_caps.dongle_type = DISPLAY_DONGLE_NONE;
break;
}
if (link->dpcd_caps.dpcd_rev.raw >= DPCD_REV_11) {
uint8_t det_caps[16]; /* CTS 4.2.2.7 expects source to read Detailed Capabilities Info : 00080h-0008F.*/
union dwnstream_port_caps_byte0 *port_caps =
(union dwnstream_port_caps_byte0 *)det_caps;
if (core_link_read_dpcd(link, DP_DOWNSTREAM_PORT_0,
det_caps, sizeof(det_caps)) == DC_OK) {
switch (port_caps->bits.DWN_STRM_PORTX_TYPE) {
/*Handle DP case as DONGLE_NONE*/
case DOWN_STREAM_DETAILED_DP:
link->dpcd_caps.dongle_type = DISPLAY_DONGLE_NONE;
break;
case DOWN_STREAM_DETAILED_VGA:
link->dpcd_caps.dongle_type =
DISPLAY_DONGLE_DP_VGA_CONVERTER;
break;
case DOWN_STREAM_DETAILED_DVI:
link->dpcd_caps.dongle_type =
DISPLAY_DONGLE_DP_DVI_CONVERTER;
break;
case DOWN_STREAM_DETAILED_HDMI:
case DOWN_STREAM_DETAILED_DP_PLUS_PLUS:
/*Handle DP++ active converter case, process DP++ case as HDMI case according DP1.4 spec*/
link->dpcd_caps.dongle_type =
DISPLAY_DONGLE_DP_HDMI_CONVERTER;
link->dpcd_caps.dongle_caps.dongle_type = link->dpcd_caps.dongle_type;
if (ds_port.fields.DETAILED_CAPS) {
union dwnstream_port_caps_byte3_hdmi
hdmi_caps = {.raw = det_caps[3] };
union dwnstream_port_caps_byte2
hdmi_color_caps = {.raw = det_caps[2] };
link->dpcd_caps.dongle_caps.dp_hdmi_max_pixel_clk_in_khz =
det_caps[1] * 2500;
link->dpcd_caps.dongle_caps.is_dp_hdmi_s3d_converter =
hdmi_caps.bits.FRAME_SEQ_TO_FRAME_PACK;
/*YCBCR capability only for HDMI case*/
if (port_caps->bits.DWN_STRM_PORTX_TYPE
== DOWN_STREAM_DETAILED_HDMI) {
link->dpcd_caps.dongle_caps.is_dp_hdmi_ycbcr422_pass_through =
hdmi_caps.bits.YCrCr422_PASS_THROUGH;
link->dpcd_caps.dongle_caps.is_dp_hdmi_ycbcr420_pass_through =
hdmi_caps.bits.YCrCr420_PASS_THROUGH;
link->dpcd_caps.dongle_caps.is_dp_hdmi_ycbcr422_converter =
hdmi_caps.bits.YCrCr422_CONVERSION;
link->dpcd_caps.dongle_caps.is_dp_hdmi_ycbcr420_converter =
hdmi_caps.bits.YCrCr420_CONVERSION;
}
link->dpcd_caps.dongle_caps.dp_hdmi_max_bpc =
translate_dpcd_max_bpc(
hdmi_color_caps.bits.MAX_BITS_PER_COLOR_COMPONENT);
if (link->dc->caps.dp_hdmi21_pcon_support) {
union hdmi_encoded_link_bw hdmi_encoded_link_bw;
link->dpcd_caps.dongle_caps.dp_hdmi_frl_max_link_bw_in_kbps =
link_bw_kbps_from_raw_frl_link_rate_data(
hdmi_color_caps.bits.MAX_ENCODED_LINK_BW_SUPPORT);
// Intersect reported max link bw support with the supported link rate post FRL link training
if (core_link_read_dpcd(link, DP_PCON_HDMI_POST_FRL_STATUS,
&hdmi_encoded_link_bw.raw, sizeof(hdmi_encoded_link_bw)) == DC_OK) {
link->dpcd_caps.dongle_caps.dp_hdmi_frl_max_link_bw_in_kbps = intersect_frl_link_bw_support(
link->dpcd_caps.dongle_caps.dp_hdmi_frl_max_link_bw_in_kbps,
hdmi_encoded_link_bw);
}
if (link->dpcd_caps.dongle_caps.dp_hdmi_frl_max_link_bw_in_kbps > 0)
link->dpcd_caps.dongle_caps.extendedCapValid = true;
}
if (link->dpcd_caps.dongle_caps.dp_hdmi_max_pixel_clk_in_khz != 0)
link->dpcd_caps.dongle_caps.extendedCapValid = true;
}
break;
}
}
}
set_dongle_type(link->ddc, link->dpcd_caps.dongle_type);
{
struct dp_sink_hw_fw_revision dp_hw_fw_revision;
core_link_read_dpcd(
link,
DP_BRANCH_REVISION_START,
(uint8_t *)&dp_hw_fw_revision,
sizeof(dp_hw_fw_revision));
link->dpcd_caps.branch_hw_revision =
dp_hw_fw_revision.ieee_hw_rev;
memmove(
link->dpcd_caps.branch_fw_revision,
dp_hw_fw_revision.ieee_fw_rev,
sizeof(dp_hw_fw_revision.ieee_fw_rev));
}
if (link->dpcd_caps.dpcd_rev.raw >= DPCD_REV_14 &&
link->dpcd_caps.dongle_type != DISPLAY_DONGLE_NONE) {
union dp_dfp_cap_ext dfp_cap_ext;
memset(&dfp_cap_ext, '\0', sizeof (dfp_cap_ext));
core_link_read_dpcd(
link,
DP_DFP_CAPABILITY_EXTENSION_SUPPORT,
dfp_cap_ext.raw,
sizeof(dfp_cap_ext.raw));
link->dpcd_caps.dongle_caps.dfp_cap_ext.supported = dfp_cap_ext.fields.supported;
link->dpcd_caps.dongle_caps.dfp_cap_ext.max_pixel_rate_in_mps =
dfp_cap_ext.fields.max_pixel_rate_in_mps[0] +
(dfp_cap_ext.fields.max_pixel_rate_in_mps[1] << 8);
link->dpcd_caps.dongle_caps.dfp_cap_ext.max_video_h_active_width =
dfp_cap_ext.fields.max_video_h_active_width[0] +
(dfp_cap_ext.fields.max_video_h_active_width[1] << 8);
link->dpcd_caps.dongle_caps.dfp_cap_ext.max_video_v_active_height =
dfp_cap_ext.fields.max_video_v_active_height[0] +
(dfp_cap_ext.fields.max_video_v_active_height[1] << 8);
link->dpcd_caps.dongle_caps.dfp_cap_ext.encoding_format_caps =
dfp_cap_ext.fields.encoding_format_caps;
link->dpcd_caps.dongle_caps.dfp_cap_ext.rgb_color_depth_caps =
dfp_cap_ext.fields.rgb_color_depth_caps;
link->dpcd_caps.dongle_caps.dfp_cap_ext.ycbcr444_color_depth_caps =
dfp_cap_ext.fields.ycbcr444_color_depth_caps;
link->dpcd_caps.dongle_caps.dfp_cap_ext.ycbcr422_color_depth_caps =
dfp_cap_ext.fields.ycbcr422_color_depth_caps;
link->dpcd_caps.dongle_caps.dfp_cap_ext.ycbcr420_color_depth_caps =
dfp_cap_ext.fields.ycbcr420_color_depth_caps;
DC_LOG_DP2("DFP capability extension is read at link %d", link->link_index);
DC_LOG_DP2("\tdfp_cap_ext.supported = %s", link->dpcd_caps.dongle_caps.dfp_cap_ext.supported ? "true" : "false");
DC_LOG_DP2("\tdfp_cap_ext.max_pixel_rate_in_mps = %d", link->dpcd_caps.dongle_caps.dfp_cap_ext.max_pixel_rate_in_mps);
DC_LOG_DP2("\tdfp_cap_ext.max_video_h_active_width = %d", link->dpcd_caps.dongle_caps.dfp_cap_ext.max_video_h_active_width);
DC_LOG_DP2("\tdfp_cap_ext.max_video_v_active_height = %d", link->dpcd_caps.dongle_caps.dfp_cap_ext.max_video_v_active_height);
}
}
static void apply_usbc_combo_phy_reset_wa(struct dc_link *link,
struct dc_link_settings *link_settings)
{
/* Temporary Renoir-specific workaround PHY will sometimes be in bad
* state on hotplugging display from certain USB-C dongle, so add extra
* cycle of enabling and disabling the PHY before first link training.
*/
struct link_resource link_res = {0};
enum clock_source_id dp_cs_id = get_clock_source_id(link);
dp_enable_link_phy(link, &link_res, link->connector_signal,
dp_cs_id, link_settings);
dp_disable_link_phy(link, &link_res, link->connector_signal);
}
bool dp_overwrite_extended_receiver_cap(struct dc_link *link)
{
uint8_t dpcd_data[16];
uint32_t read_dpcd_retry_cnt = 3;
enum dc_status status = DC_ERROR_UNEXPECTED;
union dp_downstream_port_present ds_port = { 0 };
union down_stream_port_count down_strm_port_count;
union edp_configuration_cap edp_config_cap;
int i;
for (i = 0; i < read_dpcd_retry_cnt; i++) {
status = core_link_read_dpcd(
link,
DP_DPCD_REV,
dpcd_data,
sizeof(dpcd_data));
if (status == DC_OK)
break;
}
link->dpcd_caps.dpcd_rev.raw =
dpcd_data[DP_DPCD_REV - DP_DPCD_REV];
if (dpcd_data[DP_MAX_LANE_COUNT - DP_DPCD_REV] == 0)
return false;
ds_port.byte = dpcd_data[DP_DOWNSTREAMPORT_PRESENT -
DP_DPCD_REV];
get_active_converter_info(ds_port.byte, link);
down_strm_port_count.raw = dpcd_data[DP_DOWN_STREAM_PORT_COUNT -
DP_DPCD_REV];
link->dpcd_caps.allow_invalid_MSA_timing_param =
down_strm_port_count.bits.IGNORE_MSA_TIMING_PARAM;
link->dpcd_caps.max_ln_count.raw = dpcd_data[
DP_MAX_LANE_COUNT - DP_DPCD_REV];
link->dpcd_caps.max_down_spread.raw = dpcd_data[
DP_MAX_DOWNSPREAD - DP_DPCD_REV];
link->reported_link_cap.lane_count =
link->dpcd_caps.max_ln_count.bits.MAX_LANE_COUNT;
link->reported_link_cap.link_rate = dpcd_data[
DP_MAX_LINK_RATE - DP_DPCD_REV];
link->reported_link_cap.link_spread =
link->dpcd_caps.max_down_spread.bits.MAX_DOWN_SPREAD ?
LINK_SPREAD_05_DOWNSPREAD_30KHZ : LINK_SPREAD_DISABLED;
edp_config_cap.raw = dpcd_data[
DP_EDP_CONFIGURATION_CAP - DP_DPCD_REV];
link->dpcd_caps.panel_mode_edp =
edp_config_cap.bits.ALT_SCRAMBLER_RESET;
link->dpcd_caps.dpcd_display_control_capable =
edp_config_cap.bits.DPCD_DISPLAY_CONTROL_CAPABLE;
return true;
}
void dpcd_set_source_specific_data(struct dc_link *link)
{
if (!link->dc->vendor_signature.is_valid) {
enum dc_status __maybe_unused result_write_min_hblank = DC_NOT_SUPPORTED;
struct dpcd_amd_signature amd_signature = {0};
struct dpcd_amd_device_id amd_device_id = {0};
amd_device_id.device_id_byte1 =
(uint8_t)(link->ctx->asic_id.chip_id);
amd_device_id.device_id_byte2 =
(uint8_t)(link->ctx->asic_id.chip_id >> 8);
amd_device_id.dce_version =
(uint8_t)(link->ctx->dce_version);
amd_device_id.dal_version_byte1 = 0x0; // needed? where to get?
amd_device_id.dal_version_byte2 = 0x0; // needed? where to get?
core_link_read_dpcd(link, DP_SOURCE_OUI,
(uint8_t *)(&amd_signature),
sizeof(amd_signature));
if (!((amd_signature.AMD_IEEE_TxSignature_byte1 == 0x0) &&
(amd_signature.AMD_IEEE_TxSignature_byte2 == 0x0) &&
(amd_signature.AMD_IEEE_TxSignature_byte3 == 0x1A))) {
amd_signature.AMD_IEEE_TxSignature_byte1 = 0x0;
amd_signature.AMD_IEEE_TxSignature_byte2 = 0x0;
amd_signature.AMD_IEEE_TxSignature_byte3 = 0x1A;
core_link_write_dpcd(link, DP_SOURCE_OUI,
(uint8_t *)(&amd_signature),
sizeof(amd_signature));
}
core_link_write_dpcd(link, DP_SOURCE_OUI+0x03,
(uint8_t *)(&amd_device_id),
sizeof(amd_device_id));
if (link->ctx->dce_version >= DCN_VERSION_2_0 &&
link->dc->caps.min_horizontal_blanking_period != 0) {
uint8_t hblank_size = (uint8_t)link->dc->caps.min_horizontal_blanking_period;
result_write_min_hblank = core_link_write_dpcd(link,
DP_SOURCE_MINIMUM_HBLANK_SUPPORTED, (uint8_t *)(&hblank_size),
sizeof(hblank_size));
}
DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION,
WPP_BIT_FLAG_DC_DETECTION_DP_CAPS,
"result=%u link_index=%u enum dce_version=%d DPCD=0x%04X min_hblank=%u branch_dev_id=0x%x branch_dev_name='%c%c%c%c%c%c'",
result_write_min_hblank,
link->link_index,
link->ctx->dce_version,
DP_SOURCE_MINIMUM_HBLANK_SUPPORTED,
link->dc->caps.min_horizontal_blanking_period,
link->dpcd_caps.branch_dev_id,
link->dpcd_caps.branch_dev_name[0],
link->dpcd_caps.branch_dev_name[1],
link->dpcd_caps.branch_dev_name[2],
link->dpcd_caps.branch_dev_name[3],
link->dpcd_caps.branch_dev_name[4],
link->dpcd_caps.branch_dev_name[5]);
} else {
core_link_write_dpcd(link, DP_SOURCE_OUI,
link->dc->vendor_signature.data.raw,
sizeof(link->dc->vendor_signature.data.raw));
}
}
void dpcd_write_cable_id_to_dprx(struct dc_link *link)
{
if (!link->dpcd_caps.channel_coding_cap.bits.DP_128b_132b_SUPPORTED ||
link->dpcd_caps.cable_id.raw == 0 ||
link->dprx_states.cable_id_written)
return;
core_link_write_dpcd(link, DP_CABLE_ATTRIBUTES_UPDATED_BY_DPTX,
&link->dpcd_caps.cable_id.raw,
sizeof(link->dpcd_caps.cable_id.raw));
link->dprx_states.cable_id_written = 1;
}
static bool get_usbc_cable_id(struct dc_link *link, union dp_cable_id *cable_id)
{
union dmub_rb_cmd cmd;
if (!link->ctx->dmub_srv ||
link->ep_type != DISPLAY_ENDPOINT_PHY ||
link->link_enc->features.flags.bits.DP_IS_USB_C == 0)
return false;
memset(&cmd, 0, sizeof(cmd));
cmd.cable_id.header.type = DMUB_CMD_GET_USBC_CABLE_ID;
cmd.cable_id.header.payload_bytes = sizeof(cmd.cable_id.data);
cmd.cable_id.data.input.phy_inst = resource_transmitter_to_phy_idx(
link->dc, link->link_enc->transmitter);
if (dm_execute_dmub_cmd(link->dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY) &&
cmd.cable_id.header.ret_status == 1) {
cable_id->raw = cmd.cable_id.data.output_raw;
DC_LOG_DC("usbc_cable_id = %d.\n", cable_id->raw);
}
return cmd.cable_id.header.ret_status == 1;
}
static void retrieve_cable_id(struct dc_link *link)
{
union dp_cable_id usbc_cable_id;
link->dpcd_caps.cable_id.raw = 0;
core_link_read_dpcd(link, DP_CABLE_ATTRIBUTES_UPDATED_BY_DPRX,
&link->dpcd_caps.cable_id.raw, sizeof(uint8_t));
if (get_usbc_cable_id(link, &usbc_cable_id))
link->dpcd_caps.cable_id = intersect_cable_id(
&link->dpcd_caps.cable_id, &usbc_cable_id);
}
bool read_is_mst_supported(struct dc_link *link)
{
bool mst = false;
enum dc_status st = DC_OK;
union dpcd_rev rev;
union mstm_cap cap;
if (link->preferred_training_settings.mst_enable &&
*link->preferred_training_settings.mst_enable == false) {
return false;
}
rev.raw = 0;
cap.raw = 0;
st = core_link_read_dpcd(link, DP_DPCD_REV, &rev.raw,
sizeof(rev));
if (st == DC_OK && rev.raw >= DPCD_REV_12) {
st = core_link_read_dpcd(link, DP_MSTM_CAP,
&cap.raw, sizeof(cap));
if (st == DC_OK && cap.bits.MST_CAP == 1)
mst = true;
}
return mst;
}
/* Read additional sink caps defined in source specific DPCD area
* This function currently only reads from SinkCapability address (DP_SOURCE_SINK_CAP)
* TODO: Add FS caps and read from DP_SOURCE_SINK_FS_CAP as well
*/
static bool dpcd_read_sink_ext_caps(struct dc_link *link)
{
uint8_t dpcd_data = 0;
uint8_t edp_general_cap2 = 0;
if (!link)
return false;
if (core_link_read_dpcd(link, DP_SOURCE_SINK_CAP, &dpcd_data, 1) != DC_OK)
return false;
link->dpcd_sink_ext_caps.raw = dpcd_data;
if (core_link_read_dpcd(link, DP_EDP_GENERAL_CAP_2, &edp_general_cap2, 1) != DC_OK)
return false;
link->dpcd_caps.panel_luminance_control = (edp_general_cap2 & DP_EDP_PANEL_LUMINANCE_CONTROL_CAPABLE) != 0;
return true;
}
enum dc_status dp_retrieve_lttpr_cap(struct dc_link *link)
{
uint8_t lttpr_dpcd_data[8];
enum dc_status status;
bool is_lttpr_present;
/* Logic to determine LTTPR support*/
bool vbios_lttpr_interop = link->dc->caps.vbios_lttpr_aware;
if (!vbios_lttpr_interop || !link->dc->caps.extended_aux_timeout_support)
return DC_NOT_SUPPORTED;
/* By reading LTTPR capability, RX assumes that we will enable
* LTTPR extended aux timeout if LTTPR is present.
*/
status = core_link_read_dpcd(
link,
DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV,
lttpr_dpcd_data,
sizeof(lttpr_dpcd_data));
link->dpcd_caps.lttpr_caps.revision.raw =
lttpr_dpcd_data[DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV -
DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
link->dpcd_caps.lttpr_caps.max_link_rate =
lttpr_dpcd_data[DP_MAX_LINK_RATE_PHY_REPEATER -
DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
link->dpcd_caps.lttpr_caps.phy_repeater_cnt =
lttpr_dpcd_data[DP_PHY_REPEATER_CNT -
DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
link->dpcd_caps.lttpr_caps.max_lane_count =
lttpr_dpcd_data[DP_MAX_LANE_COUNT_PHY_REPEATER -
DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
link->dpcd_caps.lttpr_caps.mode =
lttpr_dpcd_data[DP_PHY_REPEATER_MODE -
DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
link->dpcd_caps.lttpr_caps.max_ext_timeout =
lttpr_dpcd_data[DP_PHY_REPEATER_EXTENDED_WAIT_TIMEOUT -
DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
link->dpcd_caps.lttpr_caps.main_link_channel_coding.raw =
lttpr_dpcd_data[DP_MAIN_LINK_CHANNEL_CODING_PHY_REPEATER -
DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
link->dpcd_caps.lttpr_caps.supported_128b_132b_rates.raw =
lttpr_dpcd_data[DP_PHY_REPEATER_128B132B_RATES -
DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
/* If this chip cap is set, at least one retimer must exist in the chain
* Override count to 1 if we receive a known bad count (0 or an invalid value) */
if ((link->chip_caps & EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN) &&
(dp_parse_lttpr_repeater_count(link->dpcd_caps.lttpr_caps.phy_repeater_cnt) == 0)) {
ASSERT(0);
link->dpcd_caps.lttpr_caps.phy_repeater_cnt = 0x80;
DC_LOG_DC("lttpr_caps forced phy_repeater_cnt = %d\n", link->dpcd_caps.lttpr_caps.phy_repeater_cnt);
}
/* Attempt to train in LTTPR transparent mode if repeater count exceeds 8. */
is_lttpr_present = dp_is_lttpr_present(link);
if (is_lttpr_present)
CONN_DATA_DETECT(link, lttpr_dpcd_data, sizeof(lttpr_dpcd_data), "LTTPR Caps: ");
DC_LOG_DC("is_lttpr_present = %d\n", is_lttpr_present);
return status;
}
static bool retrieve_link_cap(struct dc_link *link)
{
/* DP_ADAPTER_CAP - DP_DPCD_REV + 1 == 16 and also DP_DSC_BITS_PER_PIXEL_INC - DP_DSC_SUPPORT + 1 == 16,
* which means size 16 will be good for both of those DPCD register block reads
*/
uint8_t dpcd_data[16];
/*Only need to read 1 byte starting from DP_DPRX_FEATURE_ENUMERATION_LIST.
*/
uint8_t dpcd_dprx_data = '\0';
struct dp_device_vendor_id sink_id;
union down_stream_port_count down_strm_port_count;
union edp_configuration_cap edp_config_cap;
union dp_downstream_port_present ds_port = { 0 };
enum dc_status status = DC_ERROR_UNEXPECTED;
uint32_t read_dpcd_retry_cnt = 3;
int i;
struct dp_sink_hw_fw_revision dp_hw_fw_revision;
const uint32_t post_oui_delay = 30; // 30ms
bool is_fec_supported = false;
bool is_dsc_basic_supported = false;
bool is_dsc_passthrough_supported = false;
memset(dpcd_data, '\0', sizeof(dpcd_data));
memset(&down_strm_port_count,
'\0', sizeof(union down_stream_port_count));
memset(&edp_config_cap, '\0',
sizeof(union edp_configuration_cap));
/* if extended timeout is supported in hardware,
* default to LTTPR timeout (3.2ms) first as a W/A for DP link layer
* CTS 4.2.1.1 regression introduced by CTS specs requirement update.
*/
try_to_configure_aux_timeout(link->ddc,
LINK_AUX_DEFAULT_LTTPR_TIMEOUT_PERIOD);
status = dp_retrieve_lttpr_cap(link);
if (status != DC_OK) {
status = wake_up_aux_channel(link);
if (status == DC_OK)
dp_retrieve_lttpr_cap(link);
else
return false;
}
if (dp_is_lttpr_present(link))
configure_lttpr_mode_transparent(link);
/* Read DP tunneling information. */
status = dpcd_get_tunneling_device_data(link);
dpcd_set_source_specific_data(link);
/* Sink may need to configure internals based on vendor, so allow some
* time before proceeding with possibly vendor specific transactions
*/
msleep(post_oui_delay);
for (i = 0; i < read_dpcd_retry_cnt; i++) {
status = core_link_read_dpcd(
link,
DP_DPCD_REV,
dpcd_data,
sizeof(dpcd_data));
if (status == DC_OK)
break;
}
if (status != DC_OK) {
dm_error("%s: Read receiver caps dpcd data failed.\n", __func__);
return false;
}
if (!dp_is_lttpr_present(link))
try_to_configure_aux_timeout(link->ddc, LINK_AUX_DEFAULT_TIMEOUT_PERIOD);
{
union training_aux_rd_interval aux_rd_interval;
aux_rd_interval.raw =
dpcd_data[DP_TRAINING_AUX_RD_INTERVAL];
link->dpcd_caps.ext_receiver_cap_field_present =
aux_rd_interval.bits.EXT_RECEIVER_CAP_FIELD_PRESENT == 1;
if (aux_rd_interval.bits.EXT_RECEIVER_CAP_FIELD_PRESENT == 1) {
uint8_t ext_cap_data[16];
memset(ext_cap_data, '\0', sizeof(ext_cap_data));
for (i = 0; i < read_dpcd_retry_cnt; i++) {
status = core_link_read_dpcd(
link,
DP_DP13_DPCD_REV,
ext_cap_data,
sizeof(ext_cap_data));
if (status == DC_OK) {
memcpy(dpcd_data, ext_cap_data, sizeof(dpcd_data));
break;
}
}
if (status != DC_OK)
dm_error("%s: Read extend caps data failed, use cap from dpcd 0.\n", __func__);
}
}
link->dpcd_caps.dpcd_rev.raw =
dpcd_data[DP_DPCD_REV - DP_DPCD_REV];
if (link->dpcd_caps.ext_receiver_cap_field_present) {
for (i = 0; i < read_dpcd_retry_cnt; i++) {
status = core_link_read_dpcd(
link,
DP_DPRX_FEATURE_ENUMERATION_LIST,
&dpcd_dprx_data,
sizeof(dpcd_dprx_data));
if (status == DC_OK)
break;
}
link->dpcd_caps.dprx_feature.raw = dpcd_dprx_data;
if (status != DC_OK)
dm_error("%s: Read DPRX caps data failed.\n", __func__);
/* AdaptiveSyncCapability */
dpcd_dprx_data = 0;
for (i = 0; i < read_dpcd_retry_cnt; i++) {
status = core_link_read_dpcd(
link, DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1,
&dpcd_dprx_data, sizeof(dpcd_dprx_data));
if (status == DC_OK)
break;
}
link->dpcd_caps.adaptive_sync_caps.dp_adap_sync_caps.raw = dpcd_dprx_data;
if (status != DC_OK)
dm_error("%s: Read DPRX caps data failed. Addr:%#x\n",
__func__, DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1);
}
else {
link->dpcd_caps.dprx_feature.raw = 0;
}
/* Error condition checking...
* It is impossible for Sink to report Max Lane Count = 0.
* It is possible for Sink to report Max Link Rate = 0, if it is
* an eDP device that is reporting specialized link rates in the
* SUPPORTED_LINK_RATE table.
*/
if (dpcd_data[DP_MAX_LANE_COUNT - DP_DPCD_REV] == 0)
return false;
ds_port.byte = dpcd_data[DP_DOWNSTREAMPORT_PRESENT -
DP_DPCD_REV];
read_dp_device_vendor_id(link);
/* TODO - decouple raw mst capability from policy decision */
link->dpcd_caps.is_mst_capable = read_is_mst_supported(link);
DC_LOG_DC("%s: MST_Support: %s\n", __func__, str_yes_no(link->dpcd_caps.is_mst_capable));
get_active_converter_info(ds_port.byte, link);
dp_wa_power_up_0010FA(link, dpcd_data, sizeof(dpcd_data));
down_strm_port_count.raw = dpcd_data[DP_DOWN_STREAM_PORT_COUNT -
DP_DPCD_REV];
link->dpcd_caps.allow_invalid_MSA_timing_param =
down_strm_port_count.bits.IGNORE_MSA_TIMING_PARAM;
link->dpcd_caps.max_ln_count.raw = dpcd_data[
DP_MAX_LANE_COUNT - DP_DPCD_REV];
link->dpcd_caps.max_down_spread.raw = dpcd_data[
DP_MAX_DOWNSPREAD - DP_DPCD_REV];
link->reported_link_cap.lane_count =
link->dpcd_caps.max_ln_count.bits.MAX_LANE_COUNT;
link->reported_link_cap.link_rate = get_link_rate_from_max_link_bw(
dpcd_data[DP_MAX_LINK_RATE - DP_DPCD_REV]);
link->reported_link_cap.link_spread =
link->dpcd_caps.max_down_spread.bits.MAX_DOWN_SPREAD ?
LINK_SPREAD_05_DOWNSPREAD_30KHZ : LINK_SPREAD_DISABLED;
edp_config_cap.raw = dpcd_data[
DP_EDP_CONFIGURATION_CAP - DP_DPCD_REV];
link->dpcd_caps.panel_mode_edp =
edp_config_cap.bits.ALT_SCRAMBLER_RESET;
link->dpcd_caps.dpcd_display_control_capable =
edp_config_cap.bits.DPCD_DISPLAY_CONTROL_CAPABLE;
link->dpcd_caps.channel_coding_cap.raw =
dpcd_data[DP_MAIN_LINK_CHANNEL_CODING - DP_DPCD_REV];
link->test_pattern_enabled = false;
link->compliance_test_state.raw = 0;
/* read sink count */
core_link_read_dpcd(link,
DP_SINK_COUNT,
&link->dpcd_caps.sink_count.raw,
sizeof(link->dpcd_caps.sink_count.raw));
/* read sink ieee oui */
core_link_read_dpcd(link,
DP_SINK_OUI,
(uint8_t *)(&sink_id),
sizeof(sink_id));
link->dpcd_caps.sink_dev_id =
(sink_id.ieee_oui[0] << 16) +
(sink_id.ieee_oui[1] << 8) +
(sink_id.ieee_oui[2]);
memmove(
link->dpcd_caps.sink_dev_id_str,
sink_id.ieee_device_id,
sizeof(sink_id.ieee_device_id));
core_link_read_dpcd(
link,
DP_SINK_HW_REVISION_START,
(uint8_t *)&dp_hw_fw_revision,
sizeof(dp_hw_fw_revision));
link->dpcd_caps.sink_hw_revision =
dp_hw_fw_revision.ieee_hw_rev;
memmove(
link->dpcd_caps.sink_fw_revision,
dp_hw_fw_revision.ieee_fw_rev,
sizeof(dp_hw_fw_revision.ieee_fw_rev));
/* Quirk for Retina panels: wrong DP_MAX_LINK_RATE */
{
uint8_t str_mbp_2018[] = { 101, 68, 21, 103, 98, 97 };
uint8_t fwrev_mbp_2018[] = { 7, 4 };
uint8_t fwrev_mbp_2018_vega[] = { 8, 4 };
/* We also check for the firmware revision as 16,1 models have an
* identical device id and are incorrectly quirked otherwise.
*/
if ((link->dpcd_caps.sink_dev_id == 0x0010fa) &&
!memcmp(link->dpcd_caps.sink_dev_id_str, str_mbp_2018,
sizeof(str_mbp_2018)) &&
(!memcmp(link->dpcd_caps.sink_fw_revision, fwrev_mbp_2018,
sizeof(fwrev_mbp_2018)) ||
!memcmp(link->dpcd_caps.sink_fw_revision, fwrev_mbp_2018_vega,
sizeof(fwrev_mbp_2018_vega)))) {
link->reported_link_cap.link_rate = LINK_RATE_RBR2;
}
}
memset(&link->dpcd_caps.dsc_caps, '\0',
sizeof(link->dpcd_caps.dsc_caps));
memset(&link->dpcd_caps.fec_cap, '\0', sizeof(link->dpcd_caps.fec_cap));
/* Read DSC and FEC sink capabilities if DP revision is 1.4 and up */
if (link->dpcd_caps.dpcd_rev.raw >= DPCD_REV_14) {
status = core_link_read_dpcd(
link,
DP_FEC_CAPABILITY,
&link->dpcd_caps.fec_cap.raw,
sizeof(link->dpcd_caps.fec_cap.raw));
status = core_link_read_dpcd(
link,
DP_DSC_SUPPORT,
link->dpcd_caps.dsc_caps.dsc_basic_caps.raw,
sizeof(link->dpcd_caps.dsc_caps.dsc_basic_caps.raw));
if (status == DC_OK) {
is_fec_supported = link->dpcd_caps.fec_cap.bits.FEC_CAPABLE;
is_dsc_basic_supported = link->dpcd_caps.dsc_caps.dsc_basic_caps.fields.dsc_support.DSC_SUPPORT;
is_dsc_passthrough_supported = link->dpcd_caps.dsc_caps.dsc_basic_caps.fields.dsc_support.DSC_PASSTHROUGH_SUPPORT;
DC_LOG_DC("%s: FEC_Sink_Support: %s\n", __func__,
str_yes_no(is_fec_supported));
DC_LOG_DC("%s: DSC_Basic_Sink_Support: %s\n", __func__,
str_yes_no(is_dsc_basic_supported));
DC_LOG_DC("%s: DSC_Passthrough_Sink_Support: %s\n", __func__,
str_yes_no(is_dsc_passthrough_supported));
}
if (link->dpcd_caps.dongle_type != DISPLAY_DONGLE_NONE) {
status = core_link_read_dpcd(
link,
DP_DSC_BRANCH_OVERALL_THROUGHPUT_0,
link->dpcd_caps.dsc_caps.dsc_branch_decoder_caps.raw,
sizeof(link->dpcd_caps.dsc_caps.dsc_branch_decoder_caps.raw));
DC_LOG_DSC("DSC branch decoder capability is read at link %d", link->link_index);
DC_LOG_DSC("\tBRANCH_OVERALL_THROUGHPUT_0 = 0x%02x",
link->dpcd_caps.dsc_caps.dsc_branch_decoder_caps.fields.BRANCH_OVERALL_THROUGHPUT_0);
DC_LOG_DSC("\tBRANCH_OVERALL_THROUGHPUT_1 = 0x%02x",
link->dpcd_caps.dsc_caps.dsc_branch_decoder_caps.fields.BRANCH_OVERALL_THROUGHPUT_1);
DC_LOG_DSC("\tBRANCH_MAX_LINE_WIDTH 0x%02x",
link->dpcd_caps.dsc_caps.dsc_branch_decoder_caps.fields.BRANCH_MAX_LINE_WIDTH);
}
/* Apply work around to disable FEC and DSC for USB4 tunneling in TBT3 compatibility mode
* only if required.
*/
if (link->ep_type == DISPLAY_ENDPOINT_USB4_DPIA &&
link->dc->debug.dpia_debug.bits.enable_force_tbt3_work_around &&
link->dpcd_caps.is_branch_dev &&
link->dpcd_caps.branch_dev_id == DP_BRANCH_DEVICE_ID_90CC24 &&
link->dpcd_caps.branch_hw_revision == DP_BRANCH_HW_REV_10 &&
(link->dpcd_caps.fec_cap.bits.FEC_CAPABLE ||
link->dpcd_caps.dsc_caps.dsc_basic_caps.fields.dsc_support.DSC_SUPPORT)) {
/* A TBT3 device is expected to report no support for FEC or DSC to a USB4 DPIA.
* Clear FEC and DSC capabilities as a work around if that is not the case.
*/
link->wa_flags.dpia_forced_tbt3_mode = true;
memset(&link->dpcd_caps.dsc_caps, '\0', sizeof(link->dpcd_caps.dsc_caps));
memset(&link->dpcd_caps.fec_cap, '\0', sizeof(link->dpcd_caps.fec_cap));
DC_LOG_DSC("Clear DSC SUPPORT for USB4 link(%d) in TBT3 compatibility mode", link->link_index);
} else
link->wa_flags.dpia_forced_tbt3_mode = false;
}
if (!dpcd_read_sink_ext_caps(link))
link->dpcd_sink_ext_caps.raw = 0;
if (link->dpcd_caps.channel_coding_cap.bits.DP_128b_132b_SUPPORTED) {
DC_LOG_DP2("128b/132b encoding is supported at link %d", link->link_index);
core_link_read_dpcd(link,
DP_128B132B_SUPPORTED_LINK_RATES,
&link->dpcd_caps.dp_128b_132b_supported_link_rates.raw,
sizeof(link->dpcd_caps.dp_128b_132b_supported_link_rates.raw));
if (link->dpcd_caps.dp_128b_132b_supported_link_rates.bits.UHBR20)
link->reported_link_cap.link_rate = LINK_RATE_UHBR20;
else if (link->dpcd_caps.dp_128b_132b_supported_link_rates.bits.UHBR13_5)
link->reported_link_cap.link_rate = LINK_RATE_UHBR13_5;
else if (link->dpcd_caps.dp_128b_132b_supported_link_rates.bits.UHBR10)
link->reported_link_cap.link_rate = LINK_RATE_UHBR10;
else
dm_error("%s: Invalid RX 128b_132b_supported_link_rates\n", __func__);
DC_LOG_DP2("128b/132b supported link rates is read at link %d", link->link_index);
DC_LOG_DP2("\tmax 128b/132b link rate support is %d.%d GHz",
link->reported_link_cap.link_rate / 100,
link->reported_link_cap.link_rate % 100);
core_link_read_dpcd(link,
DP_SINK_VIDEO_FALLBACK_FORMATS,
&link->dpcd_caps.fallback_formats.raw,
sizeof(link->dpcd_caps.fallback_formats.raw));
DC_LOG_DP2("sink video fallback format is read at link %d", link->link_index);
if (link->dpcd_caps.fallback_formats.bits.dp_1920x1080_60Hz_24bpp_support)
DC_LOG_DP2("\t1920x1080@60Hz 24bpp fallback format supported");
if (link->dpcd_caps.fallback_formats.bits.dp_1280x720_60Hz_24bpp_support)
DC_LOG_DP2("\t1280x720@60Hz 24bpp fallback format supported");
if (link->dpcd_caps.fallback_formats.bits.dp_1024x768_60Hz_24bpp_support)
DC_LOG_DP2("\t1024x768@60Hz 24bpp fallback format supported");
if (link->dpcd_caps.fallback_formats.raw == 0) {
DC_LOG_DP2("\tno supported fallback formats, assume 1920x1080@60Hz 24bpp is supported");
link->dpcd_caps.fallback_formats.bits.dp_1920x1080_60Hz_24bpp_support = 1;
}
core_link_read_dpcd(link,
DP_FEC_CAPABILITY_1,
&link->dpcd_caps.fec_cap1.raw,
sizeof(link->dpcd_caps.fec_cap1.raw));
DC_LOG_DP2("FEC CAPABILITY 1 is read at link %d", link->link_index);
if (link->dpcd_caps.fec_cap1.bits.AGGREGATED_ERROR_COUNTERS_CAPABLE)
DC_LOG_DP2("\tFEC aggregated error counters are supported");
}
retrieve_cable_id(link);
dpcd_write_cable_id_to_dprx(link);
/* Connectivity log: detection */
CONN_DATA_DETECT(link, dpcd_data, sizeof(dpcd_data), "Rx Caps: ");
return true;
}
bool detect_dp_sink_caps(struct dc_link *link)
{
return retrieve_link_cap(link);
}
void detect_edp_sink_caps(struct dc_link *link)
{
uint8_t supported_link_rates[16];
uint32_t entry;
uint32_t link_rate_in_khz;
enum dc_link_rate link_rate = LINK_RATE_UNKNOWN;
uint8_t backlight_adj_cap;
uint8_t general_edp_cap;
retrieve_link_cap(link);
link->dpcd_caps.edp_supported_link_rates_count = 0;
memset(supported_link_rates, 0, sizeof(supported_link_rates));
/*
* edp_supported_link_rates_count is only valid for eDP v1.4 or higher.
* Per VESA eDP spec, "The DPCD revision for eDP v1.4 is 13h"
*/
if (link->dpcd_caps.dpcd_rev.raw >= DPCD_REV_13 &&
(link->panel_config.ilr.optimize_edp_link_rate ||
link->reported_link_cap.link_rate == LINK_RATE_UNKNOWN)) {
// Read DPCD 00010h - 0001Fh 16 bytes at one shot
core_link_read_dpcd(link, DP_SUPPORTED_LINK_RATES,
supported_link_rates, sizeof(supported_link_rates));
for (entry = 0; entry < 16; entry += 2) {
// DPCD register reports per-lane link rate = 16-bit link rate capability
// value X 200 kHz. Need multiplier to find link rate in kHz.
link_rate_in_khz = (supported_link_rates[entry+1] * 0x100 +
supported_link_rates[entry]) * 200;
DC_LOG_DC("%s: eDP v1.4 supported sink rates: [%d] %d kHz\n", __func__,
entry / 2, link_rate_in_khz);
if (link_rate_in_khz != 0) {
link_rate = linkRateInKHzToLinkRateMultiplier(link_rate_in_khz);
link->dpcd_caps.edp_supported_link_rates[link->dpcd_caps.edp_supported_link_rates_count] = link_rate;
link->dpcd_caps.edp_supported_link_rates_count++;
if (link->reported_link_cap.link_rate < link_rate)
link->reported_link_cap.link_rate = link_rate;
}
}
}
core_link_read_dpcd(link, DP_EDP_BACKLIGHT_ADJUSTMENT_CAP,
&backlight_adj_cap, sizeof(backlight_adj_cap));
link->dpcd_caps.dynamic_backlight_capable_edp =
(backlight_adj_cap & DP_EDP_DYNAMIC_BACKLIGHT_CAP) ? true:false;
core_link_read_dpcd(link, DP_EDP_GENERAL_CAP_1,
&general_edp_cap, sizeof(general_edp_cap));
link->dpcd_caps.set_power_state_capable_edp =
(general_edp_cap & DP_EDP_SET_POWER_CAP) ? true:false;
set_default_brightness_aux(link);
core_link_read_dpcd(link, DP_EDP_DPCD_REV,
&link->dpcd_caps.edp_rev,
sizeof(link->dpcd_caps.edp_rev));
/*
* PSR is only valid for eDP v1.3 or higher.
*/
if (link->dpcd_caps.edp_rev >= DP_EDP_13) {
core_link_read_dpcd(link, DP_PSR_SUPPORT,
&link->dpcd_caps.psr_info.psr_version,
sizeof(link->dpcd_caps.psr_info.psr_version));
if (link->dpcd_caps.sink_dev_id == DP_BRANCH_DEVICE_ID_001CF8)
core_link_read_dpcd(link, DP_FORCE_PSRSU_CAPABILITY,
&link->dpcd_caps.psr_info.force_psrsu_cap,
sizeof(link->dpcd_caps.psr_info.force_psrsu_cap));
core_link_read_dpcd(link, DP_PSR_CAPS,
&link->dpcd_caps.psr_info.psr_dpcd_caps.raw,
sizeof(link->dpcd_caps.psr_info.psr_dpcd_caps.raw));
if (link->dpcd_caps.psr_info.psr_dpcd_caps.bits.Y_COORDINATE_REQUIRED) {
core_link_read_dpcd(link, DP_PSR2_SU_Y_GRANULARITY,
&link->dpcd_caps.psr_info.psr2_su_y_granularity_cap,
sizeof(link->dpcd_caps.psr_info.psr2_su_y_granularity_cap));
}
}
/*
* ALPM is only valid for eDP v1.4 or higher.
*/
if (link->dpcd_caps.dpcd_rev.raw >= DP_EDP_14)
core_link_read_dpcd(link, DP_RECEIVER_ALPM_CAP,
&link->dpcd_caps.alpm_caps.raw,
sizeof(link->dpcd_caps.alpm_caps.raw));
/*
* Read REPLAY info
*/
core_link_read_dpcd(link, DP_SINK_PR_PIXEL_DEVIATION_PER_LINE,
&link->dpcd_caps.pr_info.pixel_deviation_per_line,
sizeof(link->dpcd_caps.pr_info.pixel_deviation_per_line));
core_link_read_dpcd(link, DP_SINK_PR_MAX_NUMBER_OF_DEVIATION_LINE,
&link->dpcd_caps.pr_info.max_deviation_line,
sizeof(link->dpcd_caps.pr_info.max_deviation_line));
}
bool dp_get_max_link_enc_cap(const struct dc_link *link, struct dc_link_settings *max_link_enc_cap)
{
struct link_encoder *link_enc = NULL;
if (!max_link_enc_cap) {
DC_LOG_ERROR("%s: Could not return max link encoder caps", __func__);
return false;
}
link_enc = link_enc_cfg_get_link_enc(link);
ASSERT(link_enc);
if (link_enc && link_enc->funcs->get_max_link_cap) {
link_enc->funcs->get_max_link_cap(link_enc, max_link_enc_cap);
return true;
}
DC_LOG_ERROR("%s: Max link encoder caps unknown", __func__);
max_link_enc_cap->lane_count = 1;
max_link_enc_cap->link_rate = 6;
return false;
}
const struct dc_link_settings *dp_get_verified_link_cap(
const struct dc_link *link)
{
if (link->preferred_link_setting.lane_count != LANE_COUNT_UNKNOWN &&
link->preferred_link_setting.link_rate != LINK_RATE_UNKNOWN)
return &link->preferred_link_setting;
return &link->verified_link_cap;
}
struct dc_link_settings dp_get_max_link_cap(struct dc_link *link)
{
struct dc_link_settings max_link_cap = {0};
enum dc_link_rate lttpr_max_link_rate;
enum dc_link_rate cable_max_link_rate;
struct link_encoder *link_enc = NULL;
link_enc = link_enc_cfg_get_link_enc(link);
ASSERT(link_enc);
/* get max link encoder capability */
if (link_enc)
link_enc->funcs->get_max_link_cap(link_enc, &max_link_cap);
/* Lower link settings based on sink's link cap */
if (link->reported_link_cap.lane_count < max_link_cap.lane_count)
max_link_cap.lane_count =
link->reported_link_cap.lane_count;
if (link->reported_link_cap.link_rate < max_link_cap.link_rate)
max_link_cap.link_rate =
link->reported_link_cap.link_rate;
if (link->reported_link_cap.link_spread <
max_link_cap.link_spread)
max_link_cap.link_spread =
link->reported_link_cap.link_spread;
/* Lower link settings based on cable attributes
* Cable ID is a DP2 feature to identify max certified link rate that
* a cable can carry. The cable identification method requires both
* cable and display hardware support. Since the specs comes late, it is
* anticipated that the first round of DP2 cables and displays may not
* be fully compatible to reliably return cable ID data. Therefore the
* decision of our cable id policy is that if the cable can return non
* zero cable id data, we will take cable's link rate capability into
* account. However if we get zero data, the cable link rate capability
* is considered inconclusive. In this case, we will not take cable's
* capability into account to avoid of over limiting hardware capability
* from users. The max overall link rate capability is still determined
* after actual dp pre-training. Cable id is considered as an auxiliary
* method of determining max link bandwidth capability.
*/
cable_max_link_rate = get_cable_max_link_rate(link);
if (!link->dc->debug.ignore_cable_id &&
cable_max_link_rate != LINK_RATE_UNKNOWN &&
cable_max_link_rate < max_link_cap.link_rate)
max_link_cap.link_rate = cable_max_link_rate;
/* account for lttpr repeaters cap
* notes: repeaters do not snoop in the DPRX Capabilities addresses (3.6.3).
*/
if (dp_is_lttpr_present(link)) {
if (link->dpcd_caps.lttpr_caps.max_lane_count < max_link_cap.lane_count)
max_link_cap.lane_count = link->dpcd_caps.lttpr_caps.max_lane_count;
lttpr_max_link_rate = get_lttpr_max_link_rate(link);
if (lttpr_max_link_rate < max_link_cap.link_rate)
max_link_cap.link_rate = lttpr_max_link_rate;
DC_LOG_HW_LINK_TRAINING("%s\n Training with LTTPR, max_lane count %d max_link rate %d \n",
__func__,
max_link_cap.lane_count,
max_link_cap.link_rate);
}
if (link_dp_get_encoding_format(&max_link_cap) == DP_128b_132b_ENCODING &&
link->dc->debug.disable_uhbr)
max_link_cap.link_rate = LINK_RATE_HIGH3;
return max_link_cap;
}
static bool dp_verify_link_cap(
struct dc_link *link,
struct dc_link_settings *known_limit_link_setting,
int *fail_count)
{
struct dc_link_settings cur_link_settings = {0};
struct dc_link_settings max_link_settings = *known_limit_link_setting;
bool success = false;
bool skip_video_pattern;
enum clock_source_id dp_cs_id = get_clock_source_id(link);
enum link_training_result status = LINK_TRAINING_SUCCESS;
union hpd_irq_data irq_data;
struct link_resource link_res;
memset(&irq_data, 0, sizeof(irq_data));
cur_link_settings = max_link_settings;
/* Grant extended timeout request */
if (dp_is_lttpr_present(link) && link->dpcd_caps.lttpr_caps.max_ext_timeout > 0) {
uint8_t grant = link->dpcd_caps.lttpr_caps.max_ext_timeout & 0x80;
core_link_write_dpcd(link, DP_PHY_REPEATER_EXTENDED_WAIT_TIMEOUT, &grant, sizeof(grant));
}
do {
if (!get_temp_dp_link_res(link, &link_res, &cur_link_settings))
continue;
skip_video_pattern = cur_link_settings.link_rate != LINK_RATE_LOW;
dp_enable_link_phy(
link,
&link_res,
link->connector_signal,
dp_cs_id,
&cur_link_settings);
status = dp_perform_link_training(
link,
&link_res,
&cur_link_settings,
skip_video_pattern);
if (status == LINK_TRAINING_SUCCESS) {
success = true;
fsleep(1000);
if (dp_read_hpd_rx_irq_data(link, &irq_data) == DC_OK &&
dp_parse_link_loss_status(
link,
&irq_data))
(*fail_count)++;
} else if (status == LINK_TRAINING_LINK_LOSS) {
success = true;
(*fail_count)++;
} else {
(*fail_count)++;
}
dp_trace_lt_total_count_increment(link, true);
dp_trace_lt_result_update(link, status, true);
dp_disable_link_phy(link, &link_res, link->connector_signal);
} while (!success && decide_fallback_link_setting(link,
&max_link_settings, &cur_link_settings, status));
link->verified_link_cap = success ?
cur_link_settings : fail_safe_link_settings;
return success;
}
bool dp_verify_link_cap_with_retries(
struct dc_link *link,
struct dc_link_settings *known_limit_link_setting,
int attempts)
{
int i = 0;
bool success = false;
int fail_count = 0;
struct dc_link_settings last_verified_link_cap = fail_safe_link_settings;
dp_trace_detect_lt_init(link);
if (link->link_enc && link->link_enc->features.flags.bits.DP_IS_USB_C &&
link->dc->debug.usbc_combo_phy_reset_wa)
apply_usbc_combo_phy_reset_wa(link, known_limit_link_setting);
dp_trace_set_lt_start_timestamp(link, false);
for (i = 0; i < attempts; i++) {
enum dc_connection_type type = dc_connection_none;
memset(&link->verified_link_cap, 0,
sizeof(struct dc_link_settings));
if (!link_detect_connection_type(link, &type) || type == dc_connection_none) {
link->verified_link_cap = fail_safe_link_settings;
break;
} else if (dp_verify_link_cap(link, known_limit_link_setting, &fail_count)) {
last_verified_link_cap = link->verified_link_cap;
if (fail_count == 0) {
success = true;
break;
}
} else {
link->verified_link_cap = last_verified_link_cap;
}
fsleep(10 * 1000);
}
dp_trace_lt_fail_count_update(link, fail_count, true);
dp_trace_set_lt_end_timestamp(link, true);
return success;
}
/*
* Check if there is a native DP or passive DP-HDMI dongle connected
*/
bool dp_is_sink_present(struct dc_link *link)
{
enum gpio_result gpio_result;
uint32_t clock_pin = 0;
uint8_t retry = 0;
struct ddc *ddc;
enum connector_id connector_id =
dal_graphics_object_id_get_connector_id(link->link_id);
bool present =
((connector_id == CONNECTOR_ID_DISPLAY_PORT) ||
(connector_id == CONNECTOR_ID_EDP) ||
(connector_id == CONNECTOR_ID_USBC));
ddc = get_ddc_pin(link->ddc);
if (!ddc) {
BREAK_TO_DEBUGGER();
return present;
}
/* Open GPIO and set it to I2C mode */
/* Note: this GpioMode_Input will be converted
* to GpioConfigType_I2cAuxDualMode in GPIO component,
* which indicates we need additional delay
*/
if (dal_ddc_open(ddc, GPIO_MODE_INPUT,
GPIO_DDC_CONFIG_TYPE_MODE_I2C) != GPIO_RESULT_OK) {
dal_ddc_close(ddc);
return present;
}
/*
* Read GPIO: DP sink is present if both clock and data pins are zero
*
* [W/A] plug-unplug DP cable, sometimes customer board has
* one short pulse on clk_pin(1V, < 1ms). DP will be config to HDMI/DVI
* then monitor can't br light up. Add retry 3 times
* But in real passive dongle, it need additional 3ms to detect
*/
do {
gpio_result = dal_gpio_get_value(ddc->pin_clock, &clock_pin);
ASSERT(gpio_result == GPIO_RESULT_OK);
if (clock_pin)
fsleep(1000);
else
break;
} while (retry++ < 3);
present = (gpio_result == GPIO_RESULT_OK) && !clock_pin;
dal_ddc_close(ddc);
return present;
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/protocols/link_dp_capability.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
/* FILE POLICY AND INTENDED USAGE:
*
* This file implements generic display communication protocols such as i2c, aux
* and scdc. The file should not contain any specific applications of these
* protocols such as display capability query, detection, or handshaking such as
* link training.
*/
#include "link_ddc.h"
#include "vector.h"
#include "dce/dce_aux.h"
#include "dal_asic_id.h"
#include "link_dpcd.h"
#include "dm_helpers.h"
#include "atomfirmware.h"
#define DC_LOGGER_INIT(logger)
static const uint8_t DP_VGA_DONGLE_BRANCH_DEV_NAME[] = "DpVga";
/* DP to Dual link DVI converter */
static const uint8_t DP_DVI_CONVERTER_ID_4[] = "m2DVIa";
static const uint8_t DP_DVI_CONVERTER_ID_5[] = "3393N2";
struct i2c_payloads {
struct vector payloads;
};
struct aux_payloads {
struct vector payloads;
};
static bool i2c_payloads_create(
struct dc_context *ctx,
struct i2c_payloads *payloads,
uint32_t count)
{
if (dal_vector_construct(
&payloads->payloads, ctx, count, sizeof(struct i2c_payload)))
return true;
return false;
}
static struct i2c_payload *i2c_payloads_get(struct i2c_payloads *p)
{
return (struct i2c_payload *)p->payloads.container;
}
static uint32_t i2c_payloads_get_count(struct i2c_payloads *p)
{
return p->payloads.count;
}
static void i2c_payloads_destroy(struct i2c_payloads *p)
{
if (!p)
return;
dal_vector_destruct(&p->payloads);
}
#define DDC_MIN(a, b) (((a) < (b)) ? (a) : (b))
static void i2c_payloads_add(
struct i2c_payloads *payloads,
uint32_t address,
uint32_t len,
uint8_t *data,
bool write)
{
uint32_t payload_size = EDID_SEGMENT_SIZE;
uint32_t pos;
for (pos = 0; pos < len; pos += payload_size) {
struct i2c_payload payload = {
.write = write,
.address = address,
.length = DDC_MIN(payload_size, len - pos),
.data = data + pos };
dal_vector_append(&payloads->payloads, &payload);
}
}
static void ddc_service_construct(
struct ddc_service *ddc_service,
struct ddc_service_init_data *init_data)
{
enum connector_id connector_id =
dal_graphics_object_id_get_connector_id(init_data->id);
struct gpio_service *gpio_service = init_data->ctx->gpio_service;
struct graphics_object_i2c_info i2c_info;
struct gpio_ddc_hw_info hw_info;
struct dc_bios *dcb = init_data->ctx->dc_bios;
ddc_service->link = init_data->link;
ddc_service->ctx = init_data->ctx;
if (init_data->is_dpia_link ||
dcb->funcs->get_i2c_info(dcb, init_data->id, &i2c_info) != BP_RESULT_OK) {
ddc_service->ddc_pin = NULL;
} else {
DC_LOGGER_INIT(ddc_service->ctx->logger);
DC_LOG_DC("BIOS object table - i2c_line: %d", i2c_info.i2c_line);
DC_LOG_DC("BIOS object table - i2c_engine_id: %d", i2c_info.i2c_engine_id);
hw_info.ddc_channel = i2c_info.i2c_line;
if (ddc_service->link != NULL)
hw_info.hw_supported = i2c_info.i2c_hw_assist;
else
hw_info.hw_supported = false;
ddc_service->ddc_pin = dal_gpio_create_ddc(
gpio_service,
i2c_info.gpio_info.clk_a_register_index,
1 << i2c_info.gpio_info.clk_a_shift,
&hw_info);
}
ddc_service->flags.EDID_QUERY_DONE_ONCE = false;
ddc_service->flags.FORCE_READ_REPEATED_START = false;
ddc_service->flags.EDID_STRESS_READ = false;
ddc_service->flags.IS_INTERNAL_DISPLAY =
connector_id == CONNECTOR_ID_EDP ||
connector_id == CONNECTOR_ID_LVDS;
ddc_service->wa.raw = 0;
}
struct ddc_service *link_create_ddc_service(
struct ddc_service_init_data *init_data)
{
struct ddc_service *ddc_service;
ddc_service = kzalloc(sizeof(struct ddc_service), GFP_KERNEL);
if (!ddc_service)
return NULL;
ddc_service_construct(ddc_service, init_data);
return ddc_service;
}
static void ddc_service_destruct(struct ddc_service *ddc)
{
if (ddc->ddc_pin)
dal_gpio_destroy_ddc(&ddc->ddc_pin);
}
void link_destroy_ddc_service(struct ddc_service **ddc)
{
if (!ddc || !*ddc) {
BREAK_TO_DEBUGGER();
return;
}
ddc_service_destruct(*ddc);
kfree(*ddc);
*ddc = NULL;
}
void set_ddc_transaction_type(
struct ddc_service *ddc,
enum ddc_transaction_type type)
{
ddc->transaction_type = type;
}
bool link_is_in_aux_transaction_mode(struct ddc_service *ddc)
{
switch (ddc->transaction_type) {
case DDC_TRANSACTION_TYPE_I2C_OVER_AUX:
case DDC_TRANSACTION_TYPE_I2C_OVER_AUX_WITH_DEFER:
case DDC_TRANSACTION_TYPE_I2C_OVER_AUX_RETRY_DEFER:
return true;
default:
break;
}
return false;
}
void set_dongle_type(struct ddc_service *ddc,
enum display_dongle_type dongle_type)
{
ddc->dongle_type = dongle_type;
}
static uint32_t defer_delay_converter_wa(
struct ddc_service *ddc,
uint32_t defer_delay)
{
struct dc_link *link = ddc->link;
if (link->dpcd_caps.dongle_type == DISPLAY_DONGLE_DP_VGA_CONVERTER &&
link->dpcd_caps.branch_dev_id == DP_BRANCH_DEVICE_ID_0080E1 &&
(link->dpcd_caps.branch_fw_revision[0] < 0x01 ||
(link->dpcd_caps.branch_fw_revision[0] == 0x01 &&
link->dpcd_caps.branch_fw_revision[1] < 0x40)) &&
!memcmp(link->dpcd_caps.branch_dev_name,
DP_VGA_DONGLE_BRANCH_DEV_NAME,
sizeof(link->dpcd_caps.branch_dev_name)))
return defer_delay > DPVGA_DONGLE_AUX_DEFER_WA_DELAY ?
defer_delay : DPVGA_DONGLE_AUX_DEFER_WA_DELAY;
if (link->dpcd_caps.branch_dev_id == DP_BRANCH_DEVICE_ID_0080E1 &&
!memcmp(link->dpcd_caps.branch_dev_name,
DP_DVI_CONVERTER_ID_4,
sizeof(link->dpcd_caps.branch_dev_name)))
return defer_delay > I2C_OVER_AUX_DEFER_WA_DELAY ?
defer_delay : I2C_OVER_AUX_DEFER_WA_DELAY;
if (link->dpcd_caps.branch_dev_id == DP_BRANCH_DEVICE_ID_006037 &&
!memcmp(link->dpcd_caps.branch_dev_name,
DP_DVI_CONVERTER_ID_5,
sizeof(link->dpcd_caps.branch_dev_name)))
return defer_delay > I2C_OVER_AUX_DEFER_WA_DELAY_1MS ?
I2C_OVER_AUX_DEFER_WA_DELAY_1MS : defer_delay;
return defer_delay;
}
#define DP_TRANSLATOR_DELAY 5
uint32_t link_get_aux_defer_delay(struct ddc_service *ddc)
{
uint32_t defer_delay = 0;
switch (ddc->transaction_type) {
case DDC_TRANSACTION_TYPE_I2C_OVER_AUX:
if ((DISPLAY_DONGLE_DP_VGA_CONVERTER == ddc->dongle_type) ||
(DISPLAY_DONGLE_DP_DVI_CONVERTER == ddc->dongle_type) ||
(DISPLAY_DONGLE_DP_HDMI_CONVERTER ==
ddc->dongle_type)) {
defer_delay = DP_TRANSLATOR_DELAY;
defer_delay =
defer_delay_converter_wa(ddc, defer_delay);
} else /*sink has a delay different from an Active Converter*/
defer_delay = 0;
break;
case DDC_TRANSACTION_TYPE_I2C_OVER_AUX_WITH_DEFER:
defer_delay = DP_TRANSLATOR_DELAY;
break;
default:
break;
}
return defer_delay;
}
static bool submit_aux_command(struct ddc_service *ddc,
struct aux_payload *payload)
{
uint32_t retrieved = 0;
bool ret = false;
if (!ddc)
return false;
if (!payload)
return false;
do {
struct aux_payload current_payload;
bool is_end_of_payload = (retrieved + DEFAULT_AUX_MAX_DATA_SIZE) >=
payload->length;
uint32_t payload_length = is_end_of_payload ?
payload->length - retrieved : DEFAULT_AUX_MAX_DATA_SIZE;
current_payload.address = payload->address;
current_payload.data = &payload->data[retrieved];
current_payload.defer_delay = payload->defer_delay;
current_payload.i2c_over_aux = payload->i2c_over_aux;
current_payload.length = payload_length;
/* set mot (middle of transaction) to false if it is the last payload */
current_payload.mot = is_end_of_payload ? payload->mot:true;
current_payload.write_status_update = false;
current_payload.reply = payload->reply;
current_payload.write = payload->write;
ret = link_aux_transfer_with_retries_no_mutex(ddc, ¤t_payload);
retrieved += payload_length;
} while (retrieved < payload->length && ret == true);
return ret;
}
bool link_query_ddc_data(
struct ddc_service *ddc,
uint32_t address,
uint8_t *write_buf,
uint32_t write_size,
uint8_t *read_buf,
uint32_t read_size)
{
bool success = true;
uint32_t payload_size =
link_is_in_aux_transaction_mode(ddc) ?
DEFAULT_AUX_MAX_DATA_SIZE : EDID_SEGMENT_SIZE;
uint32_t write_payloads =
(write_size + payload_size - 1) / payload_size;
uint32_t read_payloads =
(read_size + payload_size - 1) / payload_size;
uint32_t payloads_num = write_payloads + read_payloads;
if (!payloads_num)
return false;
if (link_is_in_aux_transaction_mode(ddc)) {
struct aux_payload payload;
payload.i2c_over_aux = true;
payload.address = address;
payload.reply = NULL;
payload.defer_delay = link_get_aux_defer_delay(ddc);
payload.write_status_update = false;
if (write_size != 0) {
payload.write = true;
/* should not set mot (middle of transaction) to 0
* if there are pending read payloads
*/
payload.mot = !(read_size == 0);
payload.length = write_size;
payload.data = write_buf;
success = submit_aux_command(ddc, &payload);
}
if (read_size != 0 && success) {
payload.write = false;
/* should set mot (middle of transaction) to 0
* since it is the last payload to send
*/
payload.mot = false;
payload.length = read_size;
payload.data = read_buf;
success = submit_aux_command(ddc, &payload);
}
} else {
struct i2c_command command = {0};
struct i2c_payloads payloads;
if (!i2c_payloads_create(ddc->ctx, &payloads, payloads_num))
return false;
command.payloads = i2c_payloads_get(&payloads);
command.number_of_payloads = 0;
command.engine = DDC_I2C_COMMAND_ENGINE;
command.speed = ddc->ctx->dc->caps.i2c_speed_in_khz;
i2c_payloads_add(
&payloads, address, write_size, write_buf, true);
i2c_payloads_add(
&payloads, address, read_size, read_buf, false);
command.number_of_payloads =
i2c_payloads_get_count(&payloads);
success = dm_helpers_submit_i2c(
ddc->ctx,
ddc->link,
&command);
i2c_payloads_destroy(&payloads);
}
return success;
}
int link_aux_transfer_raw(struct ddc_service *ddc,
struct aux_payload *payload,
enum aux_return_code_type *operation_result)
{
if (ddc->ctx->dc->debug.enable_dmub_aux_for_legacy_ddc ||
!ddc->ddc_pin) {
return dce_aux_transfer_dmub_raw(ddc, payload, operation_result);
} else {
return dce_aux_transfer_raw(ddc, payload, operation_result);
}
}
uint32_t link_get_fixed_vs_pe_retimer_write_address(struct dc_link *link)
{
uint32_t vendor_lttpr_write_address = 0xF004F;
uint8_t offset;
switch (link->dpcd_caps.lttpr_caps.phy_repeater_cnt) {
case 0x80: // 1 lttpr repeater
offset = 1;
break;
case 0x40: // 2 lttpr repeaters
offset = 2;
break;
case 0x20: // 3 lttpr repeaters
offset = 3;
break;
case 0x10: // 4 lttpr repeaters
offset = 4;
break;
case 0x08: // 5 lttpr repeaters
offset = 5;
break;
case 0x04: // 6 lttpr repeaters
offset = 6;
break;
case 0x02: // 7 lttpr repeaters
offset = 7;
break;
case 0x01: // 8 lttpr repeaters
offset = 8;
break;
default:
offset = 0xFF;
}
if (offset != 0xFF) {
vendor_lttpr_write_address +=
((DP_REPEATER_CONFIGURATION_AND_STATUS_SIZE) * (offset - 1));
}
return vendor_lttpr_write_address;
}
uint32_t link_get_fixed_vs_pe_retimer_read_address(struct dc_link *link)
{
return link_get_fixed_vs_pe_retimer_write_address(link) + 4;
}
bool link_configure_fixed_vs_pe_retimer(struct ddc_service *ddc, const uint8_t *data, uint32_t length)
{
struct aux_payload write_payload = {
.i2c_over_aux = false,
.write = true,
.address = link_get_fixed_vs_pe_retimer_write_address(ddc->link),
.length = length,
.data = (uint8_t *) data,
.reply = NULL,
.mot = I2C_MOT_UNDEF,
.write_status_update = false,
.defer_delay = 0,
};
return link_aux_transfer_with_retries_no_mutex(ddc,
&write_payload);
}
bool link_query_fixed_vs_pe_retimer(struct ddc_service *ddc, uint8_t *data, uint32_t length)
{
struct aux_payload read_payload = {
.i2c_over_aux = false,
.write = false,
.address = link_get_fixed_vs_pe_retimer_read_address(ddc->link),
.length = length,
.data = data,
.reply = NULL,
.mot = I2C_MOT_UNDEF,
.write_status_update = false,
.defer_delay = 0,
};
return link_aux_transfer_with_retries_no_mutex(ddc,
&read_payload);
}
bool link_aux_transfer_with_retries_no_mutex(struct ddc_service *ddc,
struct aux_payload *payload)
{
return dce_aux_transfer_with_retries(ddc, payload);
}
bool try_to_configure_aux_timeout(struct ddc_service *ddc,
uint32_t timeout)
{
bool result = false;
struct ddc *ddc_pin = ddc->ddc_pin;
if ((ddc->link->chip_caps & EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN) &&
!ddc->link->dc->debug.disable_fixed_vs_aux_timeout_wa &&
ddc->ctx->dce_version == DCN_VERSION_3_1) {
/* Fixed VS workaround for AUX timeout */
const uint32_t fixed_vs_address = 0xF004F;
const uint8_t fixed_vs_data[4] = {0x1, 0x22, 0x63, 0xc};
core_link_write_dpcd(ddc->link,
fixed_vs_address,
fixed_vs_data,
sizeof(fixed_vs_data));
timeout = 3072;
}
/* Do not try to access nonexistent DDC pin. */
if (ddc->link->ep_type != DISPLAY_ENDPOINT_PHY)
return true;
if (ddc->ctx->dc->res_pool->engines[ddc_pin->pin_data->en]->funcs->configure_timeout) {
ddc->ctx->dc->res_pool->engines[ddc_pin->pin_data->en]->funcs->configure_timeout(ddc, timeout);
result = true;
}
return result;
}
struct ddc *get_ddc_pin(struct ddc_service *ddc_service)
{
return ddc_service->ddc_pin;
}
void write_scdc_data(struct ddc_service *ddc_service,
uint32_t pix_clk,
bool lte_340_scramble)
{
bool over_340_mhz = pix_clk > 340000 ? 1 : 0;
uint8_t slave_address = HDMI_SCDC_ADDRESS;
uint8_t offset = HDMI_SCDC_SINK_VERSION;
uint8_t sink_version = 0;
uint8_t write_buffer[2] = {0};
/*Lower than 340 Scramble bit from SCDC caps*/
if (ddc_service->link->local_sink &&
ddc_service->link->local_sink->edid_caps.panel_patch.skip_scdc_overwrite)
return;
link_query_ddc_data(ddc_service, slave_address, &offset,
sizeof(offset), &sink_version, sizeof(sink_version));
if (sink_version == 1) {
/*Source Version = 1*/
write_buffer[0] = HDMI_SCDC_SOURCE_VERSION;
write_buffer[1] = 1;
link_query_ddc_data(ddc_service, slave_address,
write_buffer, sizeof(write_buffer), NULL, 0);
/*Read Request from SCDC caps*/
}
write_buffer[0] = HDMI_SCDC_TMDS_CONFIG;
if (over_340_mhz) {
write_buffer[1] = 3;
} else if (lte_340_scramble) {
write_buffer[1] = 1;
} else {
write_buffer[1] = 0;
}
link_query_ddc_data(ddc_service, slave_address, write_buffer,
sizeof(write_buffer), NULL, 0);
}
void read_scdc_data(struct ddc_service *ddc_service)
{
uint8_t slave_address = HDMI_SCDC_ADDRESS;
uint8_t offset = HDMI_SCDC_TMDS_CONFIG;
uint8_t tmds_config = 0;
if (ddc_service->link->local_sink &&
ddc_service->link->local_sink->edid_caps.panel_patch.skip_scdc_overwrite)
return;
link_query_ddc_data(ddc_service, slave_address, &offset,
sizeof(offset), &tmds_config, sizeof(tmds_config));
if (tmds_config & 0x1) {
union hdmi_scdc_status_flags_data status_data = {0};
uint8_t scramble_status = 0;
offset = HDMI_SCDC_SCRAMBLER_STATUS;
link_query_ddc_data(ddc_service, slave_address,
&offset, sizeof(offset), &scramble_status,
sizeof(scramble_status));
offset = HDMI_SCDC_STATUS_FLAGS;
link_query_ddc_data(ddc_service, slave_address,
&offset, sizeof(offset), &status_data.byte,
sizeof(status_data.byte));
}
}
| linux-master | drivers/gpu/drm/amd/display/dc/link/protocols/link_ddc.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "virtual_stream_encoder.h"
static void virtual_stream_encoder_dp_set_stream_attribute(
struct stream_encoder *enc,
struct dc_crtc_timing *crtc_timing,
enum dc_color_space output_color_space,
bool use_vsc_sdp_for_colorimetry,
uint32_t enable_sdp_splitting) {}
static void virtual_stream_encoder_hdmi_set_stream_attribute(
struct stream_encoder *enc,
struct dc_crtc_timing *crtc_timing,
int actual_pix_clk_khz,
bool enable_audio) {}
static void virtual_stream_encoder_dvi_set_stream_attribute(
struct stream_encoder *enc,
struct dc_crtc_timing *crtc_timing,
bool is_dual_link) {}
static void virtual_stream_encoder_set_throttled_vcp_size(
struct stream_encoder *enc,
struct fixed31_32 avg_time_slots_per_mtp)
{}
static void virtual_stream_encoder_update_hdmi_info_packets(
struct stream_encoder *enc,
const struct encoder_info_frame *info_frame) {}
static void virtual_stream_encoder_stop_hdmi_info_packets(
struct stream_encoder *enc) {}
static void virtual_stream_encoder_set_avmute(
struct stream_encoder *enc,
bool enable) {}
static void virtual_stream_encoder_update_dp_info_packets(
struct stream_encoder *enc,
const struct encoder_info_frame *info_frame) {}
static void virtual_stream_encoder_stop_dp_info_packets(
struct stream_encoder *enc) {}
static void virtual_stream_encoder_dp_blank(
struct dc_link *link,
struct stream_encoder *enc) {}
static void virtual_stream_encoder_dp_unblank(
struct dc_link *link,
struct stream_encoder *enc,
const struct encoder_unblank_param *param) {}
static void virtual_audio_mute_control(
struct stream_encoder *enc,
bool mute) {}
static void virtual_stream_encoder_reset_hdmi_stream_attribute(
struct stream_encoder *enc)
{}
static void virtual_enc_dp_set_odm_combine(
struct stream_encoder *enc,
bool odm_combine)
{}
static void virtual_dig_connect_to_otg(
struct stream_encoder *enc,
int tg_inst)
{}
static void virtual_setup_stereo_sync(
struct stream_encoder *enc,
int tg_inst,
bool enable)
{}
static void virtual_stream_encoder_set_dsc_pps_info_packet(
struct stream_encoder *enc,
bool enable,
uint8_t *dsc_packed_pps,
bool immediate_update)
{}
static const struct stream_encoder_funcs virtual_str_enc_funcs = {
.dp_set_odm_combine =
virtual_enc_dp_set_odm_combine,
.dp_set_stream_attribute =
virtual_stream_encoder_dp_set_stream_attribute,
.hdmi_set_stream_attribute =
virtual_stream_encoder_hdmi_set_stream_attribute,
.dvi_set_stream_attribute =
virtual_stream_encoder_dvi_set_stream_attribute,
.set_throttled_vcp_size =
virtual_stream_encoder_set_throttled_vcp_size,
.update_hdmi_info_packets =
virtual_stream_encoder_update_hdmi_info_packets,
.stop_hdmi_info_packets =
virtual_stream_encoder_stop_hdmi_info_packets,
.update_dp_info_packets =
virtual_stream_encoder_update_dp_info_packets,
.stop_dp_info_packets =
virtual_stream_encoder_stop_dp_info_packets,
.dp_blank =
virtual_stream_encoder_dp_blank,
.dp_unblank =
virtual_stream_encoder_dp_unblank,
.audio_mute_control = virtual_audio_mute_control,
.set_avmute = virtual_stream_encoder_set_avmute,
.hdmi_reset_stream_attribute = virtual_stream_encoder_reset_hdmi_stream_attribute,
.dig_connect_to_otg = virtual_dig_connect_to_otg,
.setup_stereo_sync = virtual_setup_stereo_sync,
.dp_set_dsc_pps_info_packet = virtual_stream_encoder_set_dsc_pps_info_packet,
};
bool virtual_stream_encoder_construct(
struct stream_encoder *enc,
struct dc_context *ctx,
struct dc_bios *bp)
{
if (!enc)
return false;
if (!bp)
return false;
enc->funcs = &virtual_str_enc_funcs;
enc->ctx = ctx;
enc->id = ENGINE_ID_VIRTUAL;
enc->bp = bp;
return true;
}
struct stream_encoder *virtual_stream_encoder_create(
struct dc_context *ctx, struct dc_bios *bp)
{
struct stream_encoder *enc = kzalloc(sizeof(*enc), GFP_KERNEL);
if (!enc)
return NULL;
if (virtual_stream_encoder_construct(enc, ctx, bp))
return enc;
BREAK_TO_DEBUGGER();
kfree(enc);
return NULL;
}
| linux-master | drivers/gpu/drm/amd/display/dc/virtual/virtual_stream_encoder.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dm_services_types.h"
#include "virtual_link_encoder.h"
static bool virtual_link_encoder_validate_output_with_stream(
struct link_encoder *enc,
const struct dc_stream_state *stream) { return true; }
static void virtual_link_encoder_hw_init(struct link_encoder *enc) {}
static void virtual_link_encoder_setup(
struct link_encoder *enc,
enum signal_type signal) {}
static void virtual_link_encoder_enable_tmds_output(
struct link_encoder *enc,
enum clock_source_id clock_source,
enum dc_color_depth color_depth,
enum signal_type signal,
uint32_t pixel_clock) {}
static void virtual_link_encoder_enable_dp_output(
struct link_encoder *enc,
const struct dc_link_settings *link_settings,
enum clock_source_id clock_source) {}
static void virtual_link_encoder_enable_dp_mst_output(
struct link_encoder *enc,
const struct dc_link_settings *link_settings,
enum clock_source_id clock_source) {}
static void virtual_link_encoder_disable_output(
struct link_encoder *link_enc,
enum signal_type signal) {}
static void virtual_link_encoder_dp_set_lane_settings(
struct link_encoder *enc,
const struct dc_link_settings *link_settings,
const struct dc_lane_settings lane_settings[LANE_COUNT_DP_MAX]) {}
static void virtual_link_encoder_dp_set_phy_pattern(
struct link_encoder *enc,
const struct encoder_set_dp_phy_pattern_param *param) {}
static void virtual_link_encoder_update_mst_stream_allocation_table(
struct link_encoder *enc,
const struct link_mst_stream_allocation_table *table) {}
static void virtual_link_encoder_connect_dig_be_to_fe(
struct link_encoder *enc,
enum engine_id engine,
bool connect) {}
static void virtual_link_encoder_destroy(struct link_encoder **enc)
{
kfree(*enc);
*enc = NULL;
}
static void virtual_link_encoder_get_max_link_cap(struct link_encoder *enc,
struct dc_link_settings *link_settings)
{
/* Set Default link settings */
struct dc_link_settings max_link_cap = {LANE_COUNT_FOUR, LINK_RATE_HIGH,
LINK_SPREAD_05_DOWNSPREAD_30KHZ, false, 0};
*link_settings = max_link_cap;
}
static const struct link_encoder_funcs virtual_lnk_enc_funcs = {
.validate_output_with_stream =
virtual_link_encoder_validate_output_with_stream,
.hw_init = virtual_link_encoder_hw_init,
.setup = virtual_link_encoder_setup,
.enable_tmds_output = virtual_link_encoder_enable_tmds_output,
.enable_dp_output = virtual_link_encoder_enable_dp_output,
.enable_dp_mst_output = virtual_link_encoder_enable_dp_mst_output,
.disable_output = virtual_link_encoder_disable_output,
.get_max_link_cap = virtual_link_encoder_get_max_link_cap,
.dp_set_lane_settings = virtual_link_encoder_dp_set_lane_settings,
.dp_set_phy_pattern = virtual_link_encoder_dp_set_phy_pattern,
.update_mst_stream_allocation_table =
virtual_link_encoder_update_mst_stream_allocation_table,
.connect_dig_be_to_fe = virtual_link_encoder_connect_dig_be_to_fe,
.destroy = virtual_link_encoder_destroy
};
bool virtual_link_encoder_construct(
struct link_encoder *enc, const struct encoder_init_data *init_data)
{
enc->funcs = &virtual_lnk_enc_funcs;
enc->ctx = init_data->ctx;
enc->id = init_data->encoder;
enc->hpd_source = init_data->hpd_source;
enc->connector = init_data->connector;
enc->transmitter = init_data->transmitter;
enc->output_signals = SIGNAL_TYPE_VIRTUAL;
enc->preferred_engine = ENGINE_ID_VIRTUAL;
return true;
}
| linux-master | drivers/gpu/drm/amd/display/dc/virtual/virtual_link_encoder.c |
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "virtual_link_hwss.h"
void virtual_setup_stream_encoder(struct pipe_ctx *pipe_ctx)
{
}
void virtual_setup_stream_attribute(struct pipe_ctx *pipe_ctx)
{
}
void virtual_reset_stream_encoder(struct pipe_ctx *pipe_ctx)
{
}
static void virtual_disable_link_output(struct dc_link *link,
const struct link_resource *link_res,
enum signal_type signal)
{
}
static const struct link_hwss virtual_link_hwss = {
.setup_stream_encoder = virtual_setup_stream_encoder,
.reset_stream_encoder = virtual_reset_stream_encoder,
.setup_stream_attribute = virtual_setup_stream_attribute,
.disable_link_output = virtual_disable_link_output,
};
const struct link_hwss *get_virtual_link_hwss(void)
{
return &virtual_link_hwss;
}
| linux-master | drivers/gpu/drm/amd/display/dc/virtual/virtual_link_hwss.c |
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dm_helpers.h"
#include "core_types.h"
#include "resource.h"
#include "dccg.h"
#include "dce/dce_hwseq.h"
#include "dcn30/dcn30_cm_common.h"
#include "reg_helper.h"
#include "abm.h"
#include "hubp.h"
#include "dchubbub.h"
#include "timing_generator.h"
#include "opp.h"
#include "ipp.h"
#include "mpc.h"
#include "mcif_wb.h"
#include "dc_dmub_srv.h"
#include "link_hwss.h"
#include "dpcd_defs.h"
#include "dcn32_hwseq.h"
#include "clk_mgr.h"
#include "dsc.h"
#include "dcn20/dcn20_optc.h"
#include "dce/dmub_hw_lock_mgr.h"
#include "dcn32_resource.h"
#include "link.h"
#define DC_LOGGER_INIT(logger)
#define CTX \
hws->ctx
#define REG(reg)\
hws->regs->reg
#define DC_LOGGER \
dc->ctx->logger
#undef FN
#define FN(reg_name, field_name) \
hws->shifts->field_name, hws->masks->field_name
void dcn32_dsc_pg_control(
struct dce_hwseq *hws,
unsigned int dsc_inst,
bool power_on)
{
uint32_t power_gate = power_on ? 0 : 1;
uint32_t pwr_status = power_on ? 0 : 2;
uint32_t org_ip_request_cntl = 0;
if (hws->ctx->dc->debug.disable_dsc_power_gate)
return;
REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl);
if (org_ip_request_cntl == 0)
REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1);
switch (dsc_inst) {
case 0: /* DSC0 */
REG_UPDATE(DOMAIN16_PG_CONFIG,
DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN16_PG_STATUS,
DOMAIN_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 1: /* DSC1 */
REG_UPDATE(DOMAIN17_PG_CONFIG,
DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN17_PG_STATUS,
DOMAIN_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 2: /* DSC2 */
REG_UPDATE(DOMAIN18_PG_CONFIG,
DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN18_PG_STATUS,
DOMAIN_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 3: /* DSC3 */
REG_UPDATE(DOMAIN19_PG_CONFIG,
DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN19_PG_STATUS,
DOMAIN_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
default:
BREAK_TO_DEBUGGER();
break;
}
if (org_ip_request_cntl == 0)
REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0);
}
void dcn32_enable_power_gating_plane(
struct dce_hwseq *hws,
bool enable)
{
bool force_on = true; /* disable power gating */
uint32_t org_ip_request_cntl = 0;
if (enable)
force_on = false;
REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl);
if (org_ip_request_cntl == 0)
REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1);
/* DCHUBP0/1/2/3 */
REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
/* DCS0/1/2/3 */
REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
if (org_ip_request_cntl == 0)
REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0);
}
void dcn32_hubp_pg_control(struct dce_hwseq *hws, unsigned int hubp_inst, bool power_on)
{
uint32_t power_gate = power_on ? 0 : 1;
uint32_t pwr_status = power_on ? 0 : 2;
if (hws->ctx->dc->debug.disable_hubp_power_gate)
return;
if (REG(DOMAIN0_PG_CONFIG) == 0)
return;
switch (hubp_inst) {
case 0:
REG_SET(DOMAIN0_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
break;
case 1:
REG_SET(DOMAIN1_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
break;
case 2:
REG_SET(DOMAIN2_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
break;
case 3:
REG_SET(DOMAIN3_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
break;
default:
BREAK_TO_DEBUGGER();
break;
}
}
static bool dcn32_check_no_memory_request_for_cab(struct dc *dc)
{
int i;
/* First, check no-memory-request case */
for (i = 0; i < dc->current_state->stream_count; i++) {
if ((dc->current_state->stream_status[i].plane_count) &&
(dc->current_state->streams[i]->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED))
/* Fail eligibility on a visible stream */
break;
}
if (i == dc->current_state->stream_count)
return true;
return false;
}
/* This function loops through every surface that needs to be cached in CAB for SS,
* and calculates the total number of ways required to store all surfaces (primary,
* meta, cursor).
*/
static uint32_t dcn32_calculate_cab_allocation(struct dc *dc, struct dc_state *ctx)
{
int i;
uint8_t num_ways = 0;
uint32_t mall_ss_size_bytes = 0;
mall_ss_size_bytes = ctx->bw_ctx.bw.dcn.mall_ss_size_bytes;
// TODO add additional logic for PSR active stream exclusion optimization
// mall_ss_psr_active_size_bytes = ctx->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes;
// Include cursor size for CAB allocation
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &ctx->res_ctx.pipe_ctx[i];
if (!pipe->stream || !pipe->plane_state)
continue;
mall_ss_size_bytes += dcn32_helper_calculate_mall_bytes_for_cursor(dc, pipe, false);
}
// Convert number of cache lines required to number of ways
if (dc->debug.force_mall_ss_num_ways > 0) {
num_ways = dc->debug.force_mall_ss_num_ways;
} else {
num_ways = dcn32_helper_mall_bytes_to_ways(dc, mall_ss_size_bytes);
}
return num_ways;
}
bool dcn32_apply_idle_power_optimizations(struct dc *dc, bool enable)
{
union dmub_rb_cmd cmd;
uint8_t ways, i;
int j;
bool mall_ss_unsupported = false;
struct dc_plane_state *plane = NULL;
if (!dc->ctx->dmub_srv)
return false;
for (i = 0; i < dc->current_state->stream_count; i++) {
/* MALL SS messaging is not supported with PSR at this time */
if (dc->current_state->streams[i] != NULL &&
dc->current_state->streams[i]->link->psr_settings.psr_version != DC_PSR_VERSION_UNSUPPORTED)
return false;
}
if (enable) {
if (dc->current_state) {
/* 1. Check no memory request case for CAB.
* If no memory request case, send CAB_ACTION NO_DF_REQ DMUB message
*/
if (dcn32_check_no_memory_request_for_cab(dc)) {
/* Enable no-memory-requests case */
memset(&cmd, 0, sizeof(cmd));
cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS;
cmd.cab.header.sub_type = DMUB_CMD__CAB_NO_DCN_REQ;
cmd.cab.header.payload_bytes = sizeof(cmd.cab) - sizeof(cmd.cab.header);
dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
return true;
}
/* 2. Check if all surfaces can fit in CAB.
* If surfaces can fit into CAB, send CAB_ACTION_ALLOW DMUB message
* and configure HUBP's to fetch from MALL
*/
ways = dcn32_calculate_cab_allocation(dc, dc->current_state);
/* MALL not supported with Stereo3D or TMZ surface. If any plane is using stereo,
* or TMZ surface, don't try to enter MALL.
*/
for (i = 0; i < dc->current_state->stream_count; i++) {
for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
plane = dc->current_state->stream_status[i].plane_states[j];
if (plane->address.type == PLN_ADDR_TYPE_GRPH_STEREO ||
plane->address.tmz_surface) {
mall_ss_unsupported = true;
break;
}
}
if (mall_ss_unsupported)
break;
}
if (ways <= dc->caps.cache_num_ways && !mall_ss_unsupported) {
memset(&cmd, 0, sizeof(cmd));
cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS;
cmd.cab.header.sub_type = DMUB_CMD__CAB_DCN_SS_FIT_IN_CAB;
cmd.cab.header.payload_bytes = sizeof(cmd.cab) - sizeof(cmd.cab.header);
cmd.cab.cab_alloc_ways = ways;
dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
return true;
}
}
return false;
}
/* Disable CAB */
memset(&cmd, 0, sizeof(cmd));
cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS;
cmd.cab.header.sub_type = DMUB_CMD__CAB_NO_IDLE_OPTIMIZATION;
cmd.cab.header.payload_bytes =
sizeof(cmd.cab) - sizeof(cmd.cab.header);
dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
return true;
}
/* Send DMCUB message with SubVP pipe info
* - For each pipe in context, populate payload with required SubVP information
* if the pipe is using SubVP for MCLK switch
* - This function must be called while the DMUB HW lock is acquired by driver
*/
void dcn32_commit_subvp_config(struct dc *dc, struct dc_state *context)
{
int i;
bool enable_subvp = false;
if (!dc->ctx || !dc->ctx->dmub_srv)
return;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->stream && pipe_ctx->stream->mall_stream_config.paired_stream &&
pipe_ctx->stream->mall_stream_config.type == SUBVP_MAIN) {
// There is at least 1 SubVP pipe, so enable SubVP
enable_subvp = true;
break;
}
}
dc_dmub_setup_subvp_dmub_command(dc, context, enable_subvp);
}
/* Sub-Viewport DMUB lock needs to be acquired by driver whenever SubVP is active and:
* 1. Any full update for any SubVP main pipe
* 2. Any immediate flip for any SubVP pipe
* 3. Any flip for DRR pipe
* 4. If SubVP was previously in use (i.e. in old context)
*/
void dcn32_subvp_pipe_control_lock(struct dc *dc,
struct dc_state *context,
bool lock,
bool should_lock_all_pipes,
struct pipe_ctx *top_pipe_to_program,
bool subvp_prev_use)
{
unsigned int i = 0;
bool subvp_immediate_flip = false;
bool subvp_in_use = false;
struct pipe_ctx *pipe;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
pipe = &context->res_ctx.pipe_ctx[i];
if (pipe->stream && pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
subvp_in_use = true;
break;
}
}
if (top_pipe_to_program && top_pipe_to_program->stream && top_pipe_to_program->plane_state) {
if (top_pipe_to_program->stream->mall_stream_config.type == SUBVP_MAIN &&
top_pipe_to_program->plane_state->flip_immediate)
subvp_immediate_flip = true;
}
// Don't need to lock for DRR VSYNC flips -- FW will wait for DRR pending update cleared.
if ((subvp_in_use && (should_lock_all_pipes || subvp_immediate_flip)) || (!subvp_in_use && subvp_prev_use)) {
union dmub_inbox0_cmd_lock_hw hw_lock_cmd = { 0 };
if (!lock) {
for (i = 0; i < dc->res_pool->pipe_count; i++) {
pipe = &context->res_ctx.pipe_ctx[i];
if (pipe->stream && pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_MAIN &&
should_lock_all_pipes)
pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
}
}
hw_lock_cmd.bits.command_code = DMUB_INBOX0_CMD__HW_LOCK;
hw_lock_cmd.bits.hw_lock_client = HW_LOCK_CLIENT_DRIVER;
hw_lock_cmd.bits.lock = lock;
hw_lock_cmd.bits.should_release = !lock;
dmub_hw_lock_mgr_inbox0_cmd(dc->ctx->dmub_srv, hw_lock_cmd);
}
}
void dcn32_subvp_pipe_control_lock_fast(union block_sequence_params *params)
{
struct dc *dc = params->subvp_pipe_control_lock_fast_params.dc;
bool lock = params->subvp_pipe_control_lock_fast_params.lock;
struct pipe_ctx *pipe_ctx = params->subvp_pipe_control_lock_fast_params.pipe_ctx;
bool subvp_immediate_flip = false;
if (pipe_ctx && pipe_ctx->stream && pipe_ctx->plane_state) {
if (pipe_ctx->stream->mall_stream_config.type == SUBVP_MAIN &&
pipe_ctx->plane_state->flip_immediate)
subvp_immediate_flip = true;
}
// Don't need to lock for DRR VSYNC flips -- FW will wait for DRR pending update cleared.
if (subvp_immediate_flip) {
union dmub_inbox0_cmd_lock_hw hw_lock_cmd = { 0 };
hw_lock_cmd.bits.command_code = DMUB_INBOX0_CMD__HW_LOCK;
hw_lock_cmd.bits.hw_lock_client = HW_LOCK_CLIENT_DRIVER;
hw_lock_cmd.bits.lock = lock;
hw_lock_cmd.bits.should_release = !lock;
dmub_hw_lock_mgr_inbox0_cmd(dc->ctx->dmub_srv, hw_lock_cmd);
}
}
bool dcn32_set_mpc_shaper_3dlut(
struct pipe_ctx *pipe_ctx, const struct dc_stream_state *stream)
{
struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
int mpcc_id = pipe_ctx->plane_res.hubp->inst;
struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
bool result = false;
const struct pwl_params *shaper_lut = NULL;
//get the shaper lut params
if (stream->func_shaper) {
if (stream->func_shaper->type == TF_TYPE_HWPWL)
shaper_lut = &stream->func_shaper->pwl;
else if (stream->func_shaper->type == TF_TYPE_DISTRIBUTED_POINTS) {
cm_helper_translate_curve_to_hw_format(stream->ctx,
stream->func_shaper,
&dpp_base->shaper_params, true);
shaper_lut = &dpp_base->shaper_params;
}
}
if (stream->lut3d_func &&
stream->lut3d_func->state.bits.initialized == 1) {
result = mpc->funcs->program_3dlut(mpc,
&stream->lut3d_func->lut_3d,
mpcc_id);
result = mpc->funcs->program_shaper(mpc,
shaper_lut,
mpcc_id);
}
return result;
}
bool dcn32_set_mcm_luts(
struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state)
{
struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
int mpcc_id = pipe_ctx->plane_res.hubp->inst;
struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
bool result = true;
struct pwl_params *lut_params = NULL;
// 1D LUT
if (plane_state->blend_tf) {
if (plane_state->blend_tf->type == TF_TYPE_HWPWL)
lut_params = &plane_state->blend_tf->pwl;
else if (plane_state->blend_tf->type == TF_TYPE_DISTRIBUTED_POINTS) {
cm_helper_translate_curve_to_hw_format(plane_state->ctx,
plane_state->blend_tf,
&dpp_base->regamma_params, false);
lut_params = &dpp_base->regamma_params;
}
}
result = mpc->funcs->program_1dlut(mpc, lut_params, mpcc_id);
// Shaper
if (plane_state->in_shaper_func) {
if (plane_state->in_shaper_func->type == TF_TYPE_HWPWL)
lut_params = &plane_state->in_shaper_func->pwl;
else if (plane_state->in_shaper_func->type == TF_TYPE_DISTRIBUTED_POINTS) {
// TODO: dpp_base replace
ASSERT(false);
cm_helper_translate_curve_to_hw_format(plane_state->ctx,
plane_state->in_shaper_func,
&dpp_base->shaper_params, true);
lut_params = &dpp_base->shaper_params;
}
}
result = mpc->funcs->program_shaper(mpc, lut_params, mpcc_id);
// 3D
if (plane_state->lut3d_func && plane_state->lut3d_func->state.bits.initialized == 1)
result = mpc->funcs->program_3dlut(mpc, &plane_state->lut3d_func->lut_3d, mpcc_id);
else
result = mpc->funcs->program_3dlut(mpc, NULL, mpcc_id);
return result;
}
bool dcn32_set_input_transfer_func(struct dc *dc,
struct pipe_ctx *pipe_ctx,
const struct dc_plane_state *plane_state)
{
struct dce_hwseq *hws = dc->hwseq;
struct mpc *mpc = dc->res_pool->mpc;
struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
enum dc_transfer_func_predefined tf;
bool result = true;
struct pwl_params *params = NULL;
if (mpc == NULL || plane_state == NULL)
return false;
tf = TRANSFER_FUNCTION_UNITY;
if (plane_state->in_transfer_func &&
plane_state->in_transfer_func->type == TF_TYPE_PREDEFINED)
tf = plane_state->in_transfer_func->tf;
dpp_base->funcs->dpp_set_pre_degam(dpp_base, tf);
if (plane_state->in_transfer_func) {
if (plane_state->in_transfer_func->type == TF_TYPE_HWPWL)
params = &plane_state->in_transfer_func->pwl;
else if (plane_state->in_transfer_func->type == TF_TYPE_DISTRIBUTED_POINTS &&
cm3_helper_translate_curve_to_hw_format(plane_state->in_transfer_func,
&dpp_base->degamma_params, false))
params = &dpp_base->degamma_params;
}
dpp_base->funcs->dpp_program_gamcor_lut(dpp_base, params);
if (pipe_ctx->stream_res.opp &&
pipe_ctx->stream_res.opp->ctx &&
hws->funcs.set_mcm_luts)
result = hws->funcs.set_mcm_luts(pipe_ctx, plane_state);
return result;
}
bool dcn32_set_output_transfer_func(struct dc *dc,
struct pipe_ctx *pipe_ctx,
const struct dc_stream_state *stream)
{
int mpcc_id = pipe_ctx->plane_res.hubp->inst;
struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
struct pwl_params *params = NULL;
bool ret = false;
/* program OGAM or 3DLUT only for the top pipe*/
if (resource_is_pipe_type(pipe_ctx, OPP_HEAD)) {
/*program shaper and 3dlut in MPC*/
ret = dcn32_set_mpc_shaper_3dlut(pipe_ctx, stream);
if (ret == false && mpc->funcs->set_output_gamma && stream->out_transfer_func) {
if (stream->out_transfer_func->type == TF_TYPE_HWPWL)
params = &stream->out_transfer_func->pwl;
else if (pipe_ctx->stream->out_transfer_func->type ==
TF_TYPE_DISTRIBUTED_POINTS &&
cm3_helper_translate_curve_to_hw_format(
stream->out_transfer_func,
&mpc->blender_params, false))
params = &mpc->blender_params;
/* there are no ROM LUTs in OUTGAM */
if (stream->out_transfer_func->type == TF_TYPE_PREDEFINED)
BREAK_TO_DEBUGGER();
}
}
mpc->funcs->set_output_gamma(mpc, mpcc_id, params);
return ret;
}
/* Program P-State force value according to if pipe is using SubVP / FPO or not:
* 1. Reset P-State force on all pipes first
* 2. For each main pipe, force P-State disallow (P-State allow moderated by DMUB)
*/
void dcn32_update_force_pstate(struct dc *dc, struct dc_state *context)
{
int i;
/* Unforce p-state for each pipe if it is not FPO or SubVP.
* For FPO and SubVP, if it's already forced disallow, leave
* it as disallow.
*/
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
struct hubp *hubp = pipe->plane_res.hubp;
if (!pipe->stream || !(pipe->stream->mall_stream_config.type == SUBVP_MAIN ||
pipe->stream->fpo_in_use)) {
if (hubp && hubp->funcs->hubp_update_force_pstate_disallow)
hubp->funcs->hubp_update_force_pstate_disallow(hubp, false);
}
/* Today only FPO uses cursor P-State force. Only clear cursor P-State force
* if it's not FPO.
*/
if (!pipe->stream || !pipe->stream->fpo_in_use) {
if (hubp && hubp->funcs->hubp_update_force_cursor_pstate_disallow)
hubp->funcs->hubp_update_force_cursor_pstate_disallow(hubp, false);
}
}
/* Loop through each pipe -- for each subvp main pipe force p-state allow equal to false.
*/
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
struct hubp *hubp = pipe->plane_res.hubp;
if (pipe->stream && pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
if (hubp && hubp->funcs->hubp_update_force_pstate_disallow)
hubp->funcs->hubp_update_force_pstate_disallow(hubp, true);
}
if (pipe->stream && pipe->stream->fpo_in_use) {
if (hubp && hubp->funcs->hubp_update_force_pstate_disallow)
hubp->funcs->hubp_update_force_pstate_disallow(hubp, true);
/* For now only force cursor p-state disallow for FPO
* Needs to be added for subvp once FW side gets updated
*/
if (hubp && hubp->funcs->hubp_update_force_cursor_pstate_disallow)
hubp->funcs->hubp_update_force_cursor_pstate_disallow(hubp, true);
}
}
}
/* Update MALL_SEL register based on if pipe / plane
* is a phantom pipe, main pipe, and if using MALL
* for SS.
*/
void dcn32_update_mall_sel(struct dc *dc, struct dc_state *context)
{
int i;
unsigned int num_ways = dcn32_calculate_cab_allocation(dc, context);
bool cache_cursor = false;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
struct hubp *hubp = pipe->plane_res.hubp;
if (pipe->stream && pipe->plane_state && hubp && hubp->funcs->hubp_update_mall_sel) {
int cursor_size = hubp->curs_attr.pitch * hubp->curs_attr.height;
switch (hubp->curs_attr.color_format) {
case CURSOR_MODE_MONO:
cursor_size /= 2;
break;
case CURSOR_MODE_COLOR_1BIT_AND:
case CURSOR_MODE_COLOR_PRE_MULTIPLIED_ALPHA:
case CURSOR_MODE_COLOR_UN_PRE_MULTIPLIED_ALPHA:
cursor_size *= 4;
break;
case CURSOR_MODE_COLOR_64BIT_FP_PRE_MULTIPLIED:
case CURSOR_MODE_COLOR_64BIT_FP_UN_PRE_MULTIPLIED:
default:
cursor_size *= 8;
break;
}
if (cursor_size > 16384)
cache_cursor = true;
if (pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
hubp->funcs->hubp_update_mall_sel(hubp, 1, false);
} else {
// MALL not supported with Stereo3D
hubp->funcs->hubp_update_mall_sel(hubp,
num_ways <= dc->caps.cache_num_ways &&
pipe->stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED &&
pipe->plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO &&
!pipe->plane_state->address.tmz_surface ? 2 : 0,
cache_cursor);
}
}
}
}
/* Program the sub-viewport pipe configuration after the main / phantom pipes
* have been programmed in hardware.
* 1. Update force P-State for all the main pipes (disallow P-state)
* 2. Update MALL_SEL register
* 3. Program FORCE_ONE_ROW_FOR_FRAME for main subvp pipes
*/
void dcn32_program_mall_pipe_config(struct dc *dc, struct dc_state *context)
{
int i;
struct dce_hwseq *hws = dc->hwseq;
// Don't force p-state disallow -- can't block dummy p-state
// Update MALL_SEL register for each pipe
if (hws && hws->funcs.update_mall_sel)
hws->funcs.update_mall_sel(dc, context);
// Program FORCE_ONE_ROW_FOR_FRAME and CURSOR_REQ_MODE for main subvp pipes
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
struct hubp *hubp = pipe->plane_res.hubp;
if (pipe->stream && hubp && hubp->funcs->hubp_prepare_subvp_buffering) {
/* TODO - remove setting CURSOR_REQ_MODE to 0 for legacy cases
* - need to investigate single pipe MPO + SubVP case to
* see if CURSOR_REQ_MODE will be back to 1 for SubVP
* when it should be 0 for MPO
*/
if (pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
hubp->funcs->hubp_prepare_subvp_buffering(hubp, true);
}
}
}
}
static void dcn32_initialize_min_clocks(struct dc *dc)
{
struct dc_clocks *clocks = &dc->current_state->bw_ctx.bw.dcn.clk;
clocks->dcfclk_deep_sleep_khz = DCN3_2_DCFCLK_DS_INIT_KHZ;
clocks->dcfclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz * 1000;
clocks->socclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].socclk_mhz * 1000;
clocks->dramclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 1000;
clocks->dppclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].dppclk_mhz * 1000;
clocks->ref_dtbclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].dtbclk_mhz * 1000;
clocks->fclk_p_state_change_support = true;
clocks->p_state_change_support = true;
if (dc->debug.disable_boot_optimizations) {
clocks->dispclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].dispclk_mhz * 1000;
} else {
/* Even though DPG_EN = 1 for the connected display, it still requires the
* correct timing so we cannot set DISPCLK to min freq or it could cause
* audio corruption. Read current DISPCLK from DENTIST and request the same
* freq to ensure that the timing is valid and unchanged.
*/
clocks->dispclk_khz = dc->clk_mgr->funcs->get_dispclk_from_dentist(dc->clk_mgr);
}
dc->clk_mgr->funcs->update_clocks(
dc->clk_mgr,
dc->current_state,
true);
}
void dcn32_init_hw(struct dc *dc)
{
struct abm **abms = dc->res_pool->multiple_abms;
struct dce_hwseq *hws = dc->hwseq;
struct dc_bios *dcb = dc->ctx->dc_bios;
struct resource_pool *res_pool = dc->res_pool;
int i;
int edp_num;
uint32_t backlight = MAX_BACKLIGHT_LEVEL;
if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks)
dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);
// Initialize the dccg
if (res_pool->dccg->funcs->dccg_init)
res_pool->dccg->funcs->dccg_init(res_pool->dccg);
if (!dcb->funcs->is_accelerated_mode(dcb)) {
hws->funcs.bios_golden_init(dc);
hws->funcs.disable_vga(dc->hwseq);
}
// Set default OPTC memory power states
if (dc->debug.enable_mem_low_power.bits.optc) {
// Shutdown when unassigned and light sleep in VBLANK
REG_SET_2(ODM_MEM_PWR_CTRL3, 0, ODM_MEM_UNASSIGNED_PWR_MODE, 3, ODM_MEM_VBLANK_PWR_MODE, 1);
}
if (dc->debug.enable_mem_low_power.bits.vga) {
// Power down VGA memory
REG_UPDATE(MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, 1);
}
if (dc->ctx->dc_bios->fw_info_valid) {
res_pool->ref_clocks.xtalin_clock_inKhz =
dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
if (res_pool->dccg && res_pool->hubbub) {
(res_pool->dccg->funcs->get_dccg_ref_freq)(res_pool->dccg,
dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency,
&res_pool->ref_clocks.dccg_ref_clock_inKhz);
(res_pool->hubbub->funcs->get_dchub_ref_freq)(res_pool->hubbub,
res_pool->ref_clocks.dccg_ref_clock_inKhz,
&res_pool->ref_clocks.dchub_ref_clock_inKhz);
} else {
// Not all ASICs have DCCG sw component
res_pool->ref_clocks.dccg_ref_clock_inKhz =
res_pool->ref_clocks.xtalin_clock_inKhz;
res_pool->ref_clocks.dchub_ref_clock_inKhz =
res_pool->ref_clocks.xtalin_clock_inKhz;
}
} else
ASSERT_CRITICAL(false);
for (i = 0; i < dc->link_count; i++) {
/* Power up AND update implementation according to the
* required signal (which may be different from the
* default signal on connector).
*/
struct dc_link *link = dc->links[i];
link->link_enc->funcs->hw_init(link->link_enc);
/* Check for enabled DIG to identify enabled display */
if (link->link_enc->funcs->is_dig_enabled &&
link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
link->link_status.link_active = true;
link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
if (link->link_enc->funcs->fec_is_active &&
link->link_enc->funcs->fec_is_active(link->link_enc))
link->fec_state = dc_link_fec_enabled;
}
}
/* enable_power_gating_plane before dsc_pg_control because
* FORCEON = 1 with hw default value on bootup, resume from s3
*/
if (hws->funcs.enable_power_gating_plane)
hws->funcs.enable_power_gating_plane(dc->hwseq, true);
/* we want to turn off all dp displays before doing detection */
dc->link_srv->blank_all_dp_displays(dc);
/* If taking control over from VBIOS, we may want to optimize our first
* mode set, so we need to skip powering down pipes until we know which
* pipes we want to use.
* Otherwise, if taking control is not possible, we need to power
* everything down.
*/
if (dcb->funcs->is_accelerated_mode(dcb) || !dc->config.seamless_boot_edp_requested) {
/* Disable boot optimizations means power down everything including PHY, DIG,
* and OTG (i.e. the boot is not optimized because we do a full power down).
*/
if (dc->hwss.enable_accelerated_mode && dc->debug.disable_boot_optimizations)
dc->hwss.enable_accelerated_mode(dc, dc->current_state);
else
hws->funcs.init_pipes(dc, dc->current_state);
if (dc->res_pool->hubbub->funcs->allow_self_refresh_control)
dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub,
!dc->res_pool->hubbub->ctx->dc->debug.disable_stutter);
dcn32_initialize_min_clocks(dc);
/* On HW init, allow idle optimizations after pipes have been turned off.
*
* In certain D3 cases (i.e. BOCO / BOMACO) it's possible that hardware state
* is reset (i.e. not in idle at the time hw init is called), but software state
* still has idle_optimizations = true, so we must disable idle optimizations first
* (i.e. set false), then re-enable (set true).
*/
dc_allow_idle_optimizations(dc, false);
dc_allow_idle_optimizations(dc, true);
}
/* In headless boot cases, DIG may be turned
* on which causes HW/SW discrepancies.
* To avoid this, power down hardware on boot
* if DIG is turned on and seamless boot not enabled
*/
if (!dc->config.seamless_boot_edp_requested) {
struct dc_link *edp_links[MAX_NUM_EDP];
struct dc_link *edp_link;
dc_get_edp_links(dc, edp_links, &edp_num);
if (edp_num) {
for (i = 0; i < edp_num; i++) {
edp_link = edp_links[i];
if (edp_link->link_enc->funcs->is_dig_enabled &&
edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
dc->hwss.edp_backlight_control &&
dc->hwss.power_down &&
dc->hwss.edp_power_control) {
dc->hwss.edp_backlight_control(edp_link, false);
dc->hwss.power_down(dc);
dc->hwss.edp_power_control(edp_link, false);
}
}
} else {
for (i = 0; i < dc->link_count; i++) {
struct dc_link *link = dc->links[i];
if (link->link_enc->funcs->is_dig_enabled &&
link->link_enc->funcs->is_dig_enabled(link->link_enc) &&
dc->hwss.power_down) {
dc->hwss.power_down(dc);
break;
}
}
}
}
for (i = 0; i < res_pool->audio_count; i++) {
struct audio *audio = res_pool->audios[i];
audio->funcs->hw_init(audio);
}
for (i = 0; i < dc->link_count; i++) {
struct dc_link *link = dc->links[i];
if (link->panel_cntl)
backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
if (abms[i] != NULL && abms[i]->funcs != NULL)
abms[i]->funcs->abm_init(abms[i], backlight);
}
/* power AFMT HDMI memory TODO: may move to dis/en output save power*/
REG_WRITE(DIO_MEM_PWR_CTRL, 0);
if (!dc->debug.disable_clock_gate) {
/* enable all DCN clock gating */
REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0);
REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0);
REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
}
if (!dcb->funcs->is_accelerated_mode(dcb) && dc->res_pool->hubbub->funcs->init_watermarks)
dc->res_pool->hubbub->funcs->init_watermarks(dc->res_pool->hubbub);
if (dc->clk_mgr->funcs->notify_wm_ranges)
dc->clk_mgr->funcs->notify_wm_ranges(dc->clk_mgr);
if (dc->clk_mgr->funcs->set_hard_max_memclk && !dc->clk_mgr->dc_mode_softmax_enabled)
dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
if (dc->res_pool->hubbub->funcs->force_pstate_change_control)
dc->res_pool->hubbub->funcs->force_pstate_change_control(
dc->res_pool->hubbub, false, false);
if (dc->res_pool->hubbub->funcs->init_crb)
dc->res_pool->hubbub->funcs->init_crb(dc->res_pool->hubbub);
if (dc->res_pool->hubbub->funcs->set_request_limit && dc->config.sdpif_request_limit_words_per_umc > 0)
dc->res_pool->hubbub->funcs->set_request_limit(dc->res_pool->hubbub, dc->ctx->dc_bios->vram_info.num_chans, dc->config.sdpif_request_limit_words_per_umc);
// Get DMCUB capabilities
if (dc->ctx->dmub_srv) {
dc_dmub_srv_query_caps_cmd(dc->ctx->dmub_srv);
dc->caps.dmub_caps.psr = dc->ctx->dmub_srv->dmub->feature_caps.psr;
dc->caps.dmub_caps.subvp_psr = dc->ctx->dmub_srv->dmub->feature_caps.subvp_psr_support;
dc->caps.dmub_caps.gecc_enable = dc->ctx->dmub_srv->dmub->feature_caps.gecc_enable;
dc->caps.dmub_caps.mclk_sw = dc->ctx->dmub_srv->dmub->feature_caps.fw_assisted_mclk_switch;
}
}
static int calc_mpc_flow_ctrl_cnt(const struct dc_stream_state *stream,
int opp_cnt)
{
bool hblank_halved = optc2_is_two_pixels_per_containter(&stream->timing);
int flow_ctrl_cnt;
if (opp_cnt >= 2)
hblank_halved = true;
flow_ctrl_cnt = stream->timing.h_total - stream->timing.h_addressable -
stream->timing.h_border_left -
stream->timing.h_border_right;
if (hblank_halved)
flow_ctrl_cnt /= 2;
/* ODM combine 4:1 case */
if (opp_cnt == 4)
flow_ctrl_cnt /= 2;
return flow_ctrl_cnt;
}
static void update_dsc_on_stream(struct pipe_ctx *pipe_ctx, bool enable)
{
struct display_stream_compressor *dsc = pipe_ctx->stream_res.dsc;
struct dc_stream_state *stream = pipe_ctx->stream;
struct pipe_ctx *odm_pipe;
int opp_cnt = 1;
ASSERT(dsc);
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
opp_cnt++;
if (enable) {
struct dsc_config dsc_cfg;
struct dsc_optc_config dsc_optc_cfg;
enum optc_dsc_mode optc_dsc_mode;
/* Enable DSC hw block */
dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right) / opp_cnt;
dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top + stream->timing.v_border_bottom;
dsc_cfg.pixel_encoding = stream->timing.pixel_encoding;
dsc_cfg.color_depth = stream->timing.display_color_depth;
dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false;
dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg;
ASSERT(dsc_cfg.dc_dsc_cfg.num_slices_h % opp_cnt == 0);
dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt;
dsc->funcs->dsc_set_config(dsc, &dsc_cfg, &dsc_optc_cfg);
dsc->funcs->dsc_enable(dsc, pipe_ctx->stream_res.opp->inst);
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
struct display_stream_compressor *odm_dsc = odm_pipe->stream_res.dsc;
ASSERT(odm_dsc);
odm_dsc->funcs->dsc_set_config(odm_dsc, &dsc_cfg, &dsc_optc_cfg);
odm_dsc->funcs->dsc_enable(odm_dsc, odm_pipe->stream_res.opp->inst);
}
dsc_cfg.dc_dsc_cfg.num_slices_h *= opp_cnt;
dsc_cfg.pic_width *= opp_cnt;
optc_dsc_mode = dsc_optc_cfg.is_pixel_format_444 ? OPTC_DSC_ENABLED_444 : OPTC_DSC_ENABLED_NATIVE_SUBSAMPLED;
/* Enable DSC in OPTC */
DC_LOG_DSC("Setting optc DSC config for tg instance %d:", pipe_ctx->stream_res.tg->inst);
pipe_ctx->stream_res.tg->funcs->set_dsc_config(pipe_ctx->stream_res.tg,
optc_dsc_mode,
dsc_optc_cfg.bytes_per_pixel,
dsc_optc_cfg.slice_width);
} else {
/* disable DSC in OPTC */
pipe_ctx->stream_res.tg->funcs->set_dsc_config(
pipe_ctx->stream_res.tg,
OPTC_DSC_DISABLED, 0, 0);
/* disable DSC block */
dsc->funcs->dsc_disable(pipe_ctx->stream_res.dsc);
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
ASSERT(odm_pipe->stream_res.dsc);
odm_pipe->stream_res.dsc->funcs->dsc_disable(odm_pipe->stream_res.dsc);
}
}
}
/*
* Given any pipe_ctx, return the total ODM combine factor, and optionally return
* the OPPids which are used
* */
static unsigned int get_odm_config(struct pipe_ctx *pipe_ctx, unsigned int *opp_instances)
{
unsigned int opp_count = 1;
struct pipe_ctx *odm_pipe;
/* First get to the top pipe */
for (odm_pipe = pipe_ctx; odm_pipe->prev_odm_pipe; odm_pipe = odm_pipe->prev_odm_pipe)
;
/* First pipe is always used */
if (opp_instances)
opp_instances[0] = odm_pipe->stream_res.opp->inst;
/* Find and count odm pipes, if any */
for (odm_pipe = odm_pipe->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
if (opp_instances)
opp_instances[opp_count] = odm_pipe->stream_res.opp->inst;
opp_count++;
}
return opp_count;
}
void dcn32_update_odm(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
{
struct pipe_ctx *odm_pipe;
int opp_cnt = 0;
int opp_inst[MAX_PIPES] = {0};
bool rate_control_2x_pclk = (pipe_ctx->stream->timing.flags.INTERLACE || optc2_is_two_pixels_per_containter(&pipe_ctx->stream->timing));
struct mpc_dwb_flow_control flow_control;
struct mpc *mpc = dc->res_pool->mpc;
int i;
opp_cnt = get_odm_config(pipe_ctx, opp_inst);
if (opp_cnt > 1)
pipe_ctx->stream_res.tg->funcs->set_odm_combine(
pipe_ctx->stream_res.tg,
opp_inst, opp_cnt,
&pipe_ctx->stream->timing);
else
pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
rate_control_2x_pclk = rate_control_2x_pclk || opp_cnt > 1;
flow_control.flow_ctrl_mode = 0;
flow_control.flow_ctrl_cnt0 = 0x80;
flow_control.flow_ctrl_cnt1 = calc_mpc_flow_ctrl_cnt(pipe_ctx->stream, opp_cnt);
if (mpc->funcs->set_out_rate_control) {
for (i = 0; i < opp_cnt; ++i) {
mpc->funcs->set_out_rate_control(
mpc, opp_inst[i],
true,
rate_control_2x_pclk,
&flow_control);
}
}
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
odm_pipe->stream_res.opp->funcs->opp_pipe_clock_control(
odm_pipe->stream_res.opp,
true);
}
if (pipe_ctx->stream_res.dsc) {
struct pipe_ctx *current_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[pipe_ctx->pipe_idx];
update_dsc_on_stream(pipe_ctx, pipe_ctx->stream->timing.flags.DSC);
/* Check if no longer using pipe for ODM, then need to disconnect DSC for that pipe */
if (!pipe_ctx->next_odm_pipe && current_pipe_ctx->next_odm_pipe &&
current_pipe_ctx->next_odm_pipe->stream_res.dsc) {
struct display_stream_compressor *dsc = current_pipe_ctx->next_odm_pipe->stream_res.dsc;
/* disconnect DSC block from stream */
dsc->funcs->dsc_disconnect(dsc);
}
}
}
unsigned int dcn32_calculate_dccg_k1_k2_values(struct pipe_ctx *pipe_ctx, unsigned int *k1_div, unsigned int *k2_div)
{
struct dc_stream_state *stream = pipe_ctx->stream;
unsigned int odm_combine_factor = 0;
bool two_pix_per_container = false;
two_pix_per_container = optc2_is_two_pixels_per_containter(&stream->timing);
odm_combine_factor = get_odm_config(pipe_ctx, NULL);
if (stream->ctx->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
*k1_div = PIXEL_RATE_DIV_BY_1;
*k2_div = PIXEL_RATE_DIV_BY_1;
} else if (dc_is_hdmi_tmds_signal(stream->signal) || dc_is_dvi_signal(stream->signal)) {
*k1_div = PIXEL_RATE_DIV_BY_1;
if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
*k2_div = PIXEL_RATE_DIV_BY_2;
else
*k2_div = PIXEL_RATE_DIV_BY_4;
} else if (dc_is_dp_signal(stream->signal) || dc_is_virtual_signal(stream->signal)) {
if (two_pix_per_container) {
*k1_div = PIXEL_RATE_DIV_BY_1;
*k2_div = PIXEL_RATE_DIV_BY_2;
} else {
*k1_div = PIXEL_RATE_DIV_BY_1;
*k2_div = PIXEL_RATE_DIV_BY_4;
if ((odm_combine_factor == 2) || dcn32_is_dp_dig_pixel_rate_div_policy(pipe_ctx))
*k2_div = PIXEL_RATE_DIV_BY_2;
}
}
if ((*k1_div == PIXEL_RATE_DIV_NA) && (*k2_div == PIXEL_RATE_DIV_NA))
ASSERT(false);
return odm_combine_factor;
}
void dcn32_set_pixels_per_cycle(struct pipe_ctx *pipe_ctx)
{
uint32_t pix_per_cycle = 1;
uint32_t odm_combine_factor = 1;
if (!pipe_ctx || !pipe_ctx->stream || !pipe_ctx->stream_res.stream_enc)
return;
odm_combine_factor = get_odm_config(pipe_ctx, NULL);
if (optc2_is_two_pixels_per_containter(&pipe_ctx->stream->timing) || odm_combine_factor > 1
|| dcn32_is_dp_dig_pixel_rate_div_policy(pipe_ctx))
pix_per_cycle = 2;
if (pipe_ctx->stream_res.stream_enc->funcs->set_input_mode)
pipe_ctx->stream_res.stream_enc->funcs->set_input_mode(pipe_ctx->stream_res.stream_enc,
pix_per_cycle);
}
void dcn32_resync_fifo_dccg_dio(struct dce_hwseq *hws, struct dc *dc, struct dc_state *context)
{
unsigned int i;
struct pipe_ctx *pipe = NULL;
bool otg_disabled[MAX_PIPES] = {false};
for (i = 0; i < dc->res_pool->pipe_count; i++) {
pipe = &dc->current_state->res_ctx.pipe_ctx[i];
if (!resource_is_pipe_type(pipe, OTG_MASTER))
continue;
if ((pipe->stream->dpms_off || dc_is_virtual_signal(pipe->stream->signal))
&& pipe->stream->mall_stream_config.type != SUBVP_PHANTOM) {
pipe->stream_res.tg->funcs->disable_crtc(pipe->stream_res.tg);
reset_sync_context_for_pipe(dc, context, i);
otg_disabled[i] = true;
}
}
hws->ctx->dc->res_pool->dccg->funcs->trigger_dio_fifo_resync(hws->ctx->dc->res_pool->dccg);
for (i = 0; i < dc->res_pool->pipe_count; i++) {
pipe = &dc->current_state->res_ctx.pipe_ctx[i];
if (otg_disabled[i])
pipe->stream_res.tg->funcs->enable_crtc(pipe->stream_res.tg);
}
}
void dcn32_unblank_stream(struct pipe_ctx *pipe_ctx,
struct dc_link_settings *link_settings)
{
struct encoder_unblank_param params = {0};
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
struct dce_hwseq *hws = link->dc->hwseq;
struct pipe_ctx *odm_pipe;
uint32_t pix_per_cycle = 1;
params.opp_cnt = 1;
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
params.opp_cnt++;
/* only 3 items below are used by unblank */
params.timing = pipe_ctx->stream->timing;
params.link_settings.link_rate = link_settings->link_rate;
if (link->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
/* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_unblank(
pipe_ctx->stream_res.hpo_dp_stream_enc,
pipe_ctx->stream_res.tg->inst);
} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
if (optc2_is_two_pixels_per_containter(&stream->timing) || params.opp_cnt > 1
|| dcn32_is_dp_dig_pixel_rate_div_policy(pipe_ctx)) {
params.timing.pix_clk_100hz /= 2;
pix_per_cycle = 2;
}
pipe_ctx->stream_res.stream_enc->funcs->dp_set_odm_combine(
pipe_ctx->stream_res.stream_enc, pix_per_cycle > 1);
pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, ¶ms);
}
if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP)
hws->funcs.edp_backlight_control(link, true);
}
bool dcn32_is_dp_dig_pixel_rate_div_policy(struct pipe_ctx *pipe_ctx)
{
struct dc *dc = pipe_ctx->stream->ctx->dc;
if (!is_h_timing_divisible_by_2(pipe_ctx->stream))
return false;
if (dc_is_dp_signal(pipe_ctx->stream->signal) && !dc->link_srv->dp_is_128b_132b_signal(pipe_ctx) &&
dc->debug.enable_dp_dig_pixel_rate_div_policy)
return true;
return false;
}
static void apply_symclk_on_tx_off_wa(struct dc_link *link)
{
/* There are use cases where SYMCLK is referenced by OTG. For instance
* for TMDS signal, OTG relies SYMCLK even if TX video output is off.
* However current link interface will power off PHY when disabling link
* output. This will turn off SYMCLK generated by PHY. The workaround is
* to identify such case where SYMCLK is still in use by OTG when we
* power off PHY. When this is detected, we will temporarily power PHY
* back on and move PHY's SYMCLK state to SYMCLK_ON_TX_OFF by calling
* program_pix_clk interface. When OTG is disabled, we will then power
* off PHY by calling disable link output again.
*
* In future dcn generations, we plan to rework transmitter control
* interface so that we could have an option to set SYMCLK ON TX OFF
* state in one step without this workaround
*/
struct dc *dc = link->ctx->dc;
struct pipe_ctx *pipe_ctx = NULL;
uint8_t i;
if (link->phy_state.symclk_ref_cnts.otg > 0) {
for (i = 0; i < MAX_PIPES; i++) {
pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) && pipe_ctx->stream->link == link) {
pipe_ctx->clock_source->funcs->program_pix_clk(
pipe_ctx->clock_source,
&pipe_ctx->stream_res.pix_clk_params,
dc->link_srv->dp_get_encoding_format(
&pipe_ctx->link_config.dp_link_settings),
&pipe_ctx->pll_settings);
link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
break;
}
}
}
}
void dcn32_disable_link_output(struct dc_link *link,
const struct link_resource *link_res,
enum signal_type signal)
{
struct dc *dc = link->ctx->dc;
const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
struct dmcu *dmcu = dc->res_pool->dmcu;
if (signal == SIGNAL_TYPE_EDP &&
link->dc->hwss.edp_backlight_control)
link->dc->hwss.edp_backlight_control(link, false);
else if (dmcu != NULL && dmcu->funcs->lock_phy)
dmcu->funcs->lock_phy(dmcu);
link_hwss->disable_link_output(link, link_res, signal);
link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF;
if (signal == SIGNAL_TYPE_EDP &&
link->dc->hwss.edp_backlight_control)
link->dc->hwss.edp_power_control(link, false);
else if (dmcu != NULL && dmcu->funcs->lock_phy)
dmcu->funcs->unlock_phy(dmcu);
dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_DISABLE_LINK_PHY);
apply_symclk_on_tx_off_wa(link);
}
/* For SubVP the main pipe can have a viewport position change
* without a full update. In this case we must also update the
* viewport positions for the phantom pipe accordingly.
*/
void dcn32_update_phantom_vp_position(struct dc *dc,
struct dc_state *context,
struct pipe_ctx *phantom_pipe)
{
uint32_t i;
struct dc_plane_state *phantom_plane = phantom_pipe->plane_state;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_MAIN &&
pipe->stream->mall_stream_config.paired_stream == phantom_pipe->stream) {
if (pipe->plane_state && pipe->plane_state->update_flags.bits.position_change) {
phantom_plane->src_rect.x = pipe->plane_state->src_rect.x;
phantom_plane->src_rect.y = pipe->plane_state->src_rect.y;
phantom_plane->clip_rect.x = pipe->plane_state->clip_rect.x;
phantom_plane->dst_rect.x = pipe->plane_state->dst_rect.x;
phantom_plane->dst_rect.y = pipe->plane_state->dst_rect.y;
phantom_pipe->plane_state->update_flags.bits.position_change = 1;
resource_build_scaling_params(phantom_pipe);
return;
}
}
}
}
/* Treat the phantom pipe as if it needs to be fully enabled.
* If the pipe was previously in use but not phantom, it would
* have been disabled earlier in the sequence so we need to run
* the full enable sequence.
*/
void dcn32_apply_update_flags_for_phantom(struct pipe_ctx *phantom_pipe)
{
phantom_pipe->update_flags.raw = 0;
if (phantom_pipe->stream && phantom_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
if (resource_is_pipe_type(phantom_pipe, DPP_PIPE)) {
phantom_pipe->update_flags.bits.enable = 1;
phantom_pipe->update_flags.bits.mpcc = 1;
phantom_pipe->update_flags.bits.dppclk = 1;
phantom_pipe->update_flags.bits.hubp_interdependent = 1;
phantom_pipe->update_flags.bits.hubp_rq_dlg_ttu = 1;
phantom_pipe->update_flags.bits.gamut_remap = 1;
phantom_pipe->update_flags.bits.scaler = 1;
phantom_pipe->update_flags.bits.viewport = 1;
phantom_pipe->update_flags.bits.det_size = 1;
if (resource_is_pipe_type(phantom_pipe, OTG_MASTER)) {
phantom_pipe->update_flags.bits.odm = 1;
phantom_pipe->update_flags.bits.global_sync = 1;
}
}
}
}
bool dcn32_dsc_pg_status(
struct dce_hwseq *hws,
unsigned int dsc_inst)
{
uint32_t pwr_status = 0;
switch (dsc_inst) {
case 0: /* DSC0 */
REG_GET(DOMAIN16_PG_STATUS,
DOMAIN_PGFSM_PWR_STATUS, &pwr_status);
break;
case 1: /* DSC1 */
REG_GET(DOMAIN17_PG_STATUS,
DOMAIN_PGFSM_PWR_STATUS, &pwr_status);
break;
case 2: /* DSC2 */
REG_GET(DOMAIN18_PG_STATUS,
DOMAIN_PGFSM_PWR_STATUS, &pwr_status);
break;
case 3: /* DSC3 */
REG_GET(DOMAIN19_PG_STATUS,
DOMAIN_PGFSM_PWR_STATUS, &pwr_status);
break;
default:
BREAK_TO_DEBUGGER();
break;
}
return pwr_status == 0;
}
void dcn32_update_dsc_pg(struct dc *dc,
struct dc_state *context,
bool safe_to_disable)
{
struct dce_hwseq *hws = dc->hwseq;
int i;
for (i = 0; i < dc->res_pool->res_cap->num_dsc; i++) {
struct display_stream_compressor *dsc = dc->res_pool->dscs[i];
bool is_dsc_ungated = hws->funcs.dsc_pg_status(hws, dsc->inst);
if (context->res_ctx.is_dsc_acquired[i]) {
if (!is_dsc_ungated) {
hws->funcs.dsc_pg_control(hws, dsc->inst, true);
}
} else if (safe_to_disable) {
if (is_dsc_ungated) {
hws->funcs.dsc_pg_control(hws, dsc->inst, false);
}
}
}
}
void dcn32_enable_phantom_streams(struct dc *dc, struct dc_state *context)
{
unsigned int i;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
/* If an active, non-phantom pipe is being transitioned into a phantom
* pipe, wait for the double buffer update to complete first before we do
* ANY phantom pipe programming.
*/
if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM &&
old_pipe->stream && old_pipe->stream->mall_stream_config.type != SUBVP_PHANTOM) {
old_pipe->stream_res.tg->funcs->wait_for_state(
old_pipe->stream_res.tg,
CRTC_STATE_VBLANK);
old_pipe->stream_res.tg->funcs->wait_for_state(
old_pipe->stream_res.tg,
CRTC_STATE_VACTIVE);
}
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
if (new_pipe->stream && new_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
// If old context or new context has phantom pipes, apply
// the phantom timings now. We can't change the phantom
// pipe configuration safely without driver acquiring
// the DMCUB lock first.
dc->hwss.apply_ctx_to_hw(dc, context);
break;
}
}
}
/* Blank pixel data during initialization */
void dcn32_init_blank(
struct dc *dc,
struct timing_generator *tg)
{
struct dce_hwseq *hws = dc->hwseq;
enum dc_color_space color_space;
struct tg_color black_color = {0};
struct output_pixel_processor *opp = NULL;
struct output_pixel_processor *bottom_opp = NULL;
uint32_t num_opps, opp_id_src0, opp_id_src1;
uint32_t otg_active_width, otg_active_height;
uint32_t i;
/* program opp dpg blank color */
color_space = COLOR_SPACE_SRGB;
color_space_to_black_color(dc, color_space, &black_color);
/* get the OTG active size */
tg->funcs->get_otg_active_size(tg,
&otg_active_width,
&otg_active_height);
/* get the OPTC source */
tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1);
if (opp_id_src0 >= dc->res_pool->res_cap->num_opp) {
ASSERT(false);
return;
}
for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) {
if (dc->res_pool->opps[i] != NULL && dc->res_pool->opps[i]->inst == opp_id_src0) {
opp = dc->res_pool->opps[i];
break;
}
}
if (num_opps == 2) {
otg_active_width = otg_active_width / 2;
if (opp_id_src1 >= dc->res_pool->res_cap->num_opp) {
ASSERT(false);
return;
}
for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) {
if (dc->res_pool->opps[i] != NULL && dc->res_pool->opps[i]->inst == opp_id_src1) {
bottom_opp = dc->res_pool->opps[i];
break;
}
}
}
if (opp && opp->funcs->opp_set_disp_pattern_generator)
opp->funcs->opp_set_disp_pattern_generator(
opp,
CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
CONTROLLER_DP_COLOR_SPACE_UDEFINED,
COLOR_DEPTH_UNDEFINED,
&black_color,
otg_active_width,
otg_active_height,
0);
if (num_opps == 2) {
if (bottom_opp && bottom_opp->funcs->opp_set_disp_pattern_generator) {
bottom_opp->funcs->opp_set_disp_pattern_generator(
bottom_opp,
CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
CONTROLLER_DP_COLOR_SPACE_UDEFINED,
COLOR_DEPTH_UNDEFINED,
&black_color,
otg_active_width,
otg_active_height,
0);
hws->funcs.wait_for_blank_complete(bottom_opp);
}
}
if (opp)
hws->funcs.wait_for_blank_complete(opp);
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn32/dcn32_hwseq.c |
/*
* Copyright 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "reg_helper.h"
#include "core_types.h"
#include "link_encoder.h"
#include "dcn31/dcn31_dio_link_encoder.h"
#include "dcn32_dio_link_encoder.h"
#include "stream_encoder.h"
#include "dc_bios_types.h"
#include "link_enc_cfg.h"
#include "gpio_service_interface.h"
#ifndef MIN
#define MIN(X, Y) ((X) < (Y) ? (X) : (Y))
#endif
#define CTX \
enc10->base.ctx
#define DC_LOGGER \
enc10->base.ctx->logger
#define REG(reg)\
(enc10->link_regs->reg)
#undef FN
#define FN(reg_name, field_name) \
enc10->link_shift->field_name, enc10->link_mask->field_name
#define AUX_REG(reg)\
(enc10->aux_regs->reg)
#define AUX_REG_READ(reg_name) \
dm_read_reg(CTX, AUX_REG(reg_name))
#define AUX_REG_WRITE(reg_name, val) \
dm_write_reg(CTX, AUX_REG(reg_name), val)
void enc32_hw_init(struct link_encoder *enc)
{
struct dcn10_link_encoder *enc10 = TO_DCN10_LINK_ENC(enc);
/*
00 - DP_AUX_DPHY_RX_DETECTION_THRESHOLD__1to2 : 1/2
01 - DP_AUX_DPHY_RX_DETECTION_THRESHOLD__3to4 : 3/4
02 - DP_AUX_DPHY_RX_DETECTION_THRESHOLD__7to8 : 7/8
03 - DP_AUX_DPHY_RX_DETECTION_THRESHOLD__15to16 : 15/16
04 - DP_AUX_DPHY_RX_DETECTION_THRESHOLD__31to32 : 31/32
05 - DP_AUX_DPHY_RX_DETECTION_THRESHOLD__63to64 : 63/64
06 - DP_AUX_DPHY_RX_DETECTION_THRESHOLD__127to128 : 127/128
07 - DP_AUX_DPHY_RX_DETECTION_THRESHOLD__255to256 : 255/256
*/
/*
AUX_REG_UPDATE_5(AUX_DPHY_RX_CONTROL0,
AUX_RX_START_WINDOW = 1 [6:4]
AUX_RX_RECEIVE_WINDOW = 1 default is 2 [10:8]
AUX_RX_HALF_SYM_DETECT_LEN = 1 [13:12] default is 1
AUX_RX_TRANSITION_FILTER_EN = 1 [16] default is 1
AUX_RX_ALLOW_BELOW_THRESHOLD_PHASE_DETECT [17] is 0 default is 0
AUX_RX_ALLOW_BELOW_THRESHOLD_START [18] is 1 default is 1
AUX_RX_ALLOW_BELOW_THRESHOLD_STOP [19] is 1 default is 1
AUX_RX_PHASE_DETECT_LEN, [21,20] = 0x3 default is 3
AUX_RX_DETECTION_THRESHOLD [30:28] = 1
*/
AUX_REG_WRITE(AUX_DPHY_RX_CONTROL0, 0x103d1110);
AUX_REG_WRITE(AUX_DPHY_TX_CONTROL, 0x21c7a);
//AUX_DPHY_TX_REF_CONTROL'AUX_TX_REF_DIV HW default is 0x32;
// Set AUX_TX_REF_DIV Divider to generate 2 MHz reference from refclk
// 27MHz -> 0xd
// 100MHz -> 0x32
// 48MHz -> 0x18
// Set TMDS_CTL0 to 1. This is a legacy setting.
REG_UPDATE(TMDS_CTL_BITS, TMDS_CTL0, 1);
dcn10_aux_initialize(enc10);
}
void dcn32_link_encoder_enable_dp_output(
struct link_encoder *enc,
const struct dc_link_settings *link_settings,
enum clock_source_id clock_source)
{
if (!enc->ctx->dc->debug.avoid_vbios_exec_table) {
dcn10_link_encoder_enable_dp_output(enc, link_settings, clock_source);
return;
}
}
static bool dcn32_link_encoder_is_in_alt_mode(struct link_encoder *enc)
{
struct dcn10_link_encoder *enc10 = TO_DCN10_LINK_ENC(enc);
uint32_t dp_alt_mode_disable = 0;
bool is_usb_c_alt_mode = false;
if (enc->features.flags.bits.DP_IS_USB_C) {
/* if value == 1 alt mode is disabled, otherwise it is enabled */
REG_GET(RDPCSPIPE_PHY_CNTL6, RDPCS_PHY_DPALT_DISABLE, &dp_alt_mode_disable);
is_usb_c_alt_mode = (dp_alt_mode_disable == 0);
}
return is_usb_c_alt_mode;
}
static void dcn32_link_encoder_get_max_link_cap(struct link_encoder *enc,
struct dc_link_settings *link_settings)
{
struct dcn10_link_encoder *enc10 = TO_DCN10_LINK_ENC(enc);
uint32_t is_in_usb_c_dp4_mode = 0;
dcn10_link_encoder_get_max_link_cap(enc, link_settings);
/* in usb c dp2 mode, max lane count is 2 */
if (enc->funcs->is_in_alt_mode && enc->funcs->is_in_alt_mode(enc)) {
REG_GET(RDPCSPIPE_PHY_CNTL6, RDPCS_PHY_DPALT_DP4, &is_in_usb_c_dp4_mode);
if (!is_in_usb_c_dp4_mode)
link_settings->lane_count = MIN(LANE_COUNT_TWO, link_settings->lane_count);
}
}
static const struct link_encoder_funcs dcn32_link_enc_funcs = {
.read_state = link_enc2_read_state,
.validate_output_with_stream =
dcn30_link_encoder_validate_output_with_stream,
.hw_init = enc32_hw_init,
.setup = dcn10_link_encoder_setup,
.enable_tmds_output = dcn10_link_encoder_enable_tmds_output,
.enable_dp_output = dcn32_link_encoder_enable_dp_output,
.enable_dp_mst_output = dcn10_link_encoder_enable_dp_mst_output,
.disable_output = dcn10_link_encoder_disable_output,
.dp_set_lane_settings = dcn10_link_encoder_dp_set_lane_settings,
.dp_set_phy_pattern = dcn10_link_encoder_dp_set_phy_pattern,
.update_mst_stream_allocation_table =
dcn10_link_encoder_update_mst_stream_allocation_table,
.psr_program_dp_dphy_fast_training =
dcn10_psr_program_dp_dphy_fast_training,
.psr_program_secondary_packet = dcn10_psr_program_secondary_packet,
.connect_dig_be_to_fe = dcn10_link_encoder_connect_dig_be_to_fe,
.enable_hpd = dcn10_link_encoder_enable_hpd,
.disable_hpd = dcn10_link_encoder_disable_hpd,
.is_dig_enabled = dcn10_is_dig_enabled,
.destroy = dcn10_link_encoder_destroy,
.fec_set_enable = enc2_fec_set_enable,
.fec_set_ready = enc2_fec_set_ready,
.fec_is_active = enc2_fec_is_active,
.get_dig_frontend = dcn10_get_dig_frontend,
.get_dig_mode = dcn10_get_dig_mode,
.is_in_alt_mode = dcn32_link_encoder_is_in_alt_mode,
.get_max_link_cap = dcn32_link_encoder_get_max_link_cap,
.set_dio_phy_mux = dcn31_link_encoder_set_dio_phy_mux,
};
void dcn32_link_encoder_construct(
struct dcn20_link_encoder *enc20,
const struct encoder_init_data *init_data,
const struct encoder_feature_support *enc_features,
const struct dcn10_link_enc_registers *link_regs,
const struct dcn10_link_enc_aux_registers *aux_regs,
const struct dcn10_link_enc_hpd_registers *hpd_regs,
const struct dcn10_link_enc_shift *link_shift,
const struct dcn10_link_enc_mask *link_mask)
{
struct bp_connector_speed_cap_info bp_cap_info = {0};
const struct dc_vbios_funcs *bp_funcs = init_data->ctx->dc_bios->funcs;
enum bp_result result = BP_RESULT_OK;
struct dcn10_link_encoder *enc10 = &enc20->enc10;
enc10->base.funcs = &dcn32_link_enc_funcs;
enc10->base.ctx = init_data->ctx;
enc10->base.id = init_data->encoder;
enc10->base.hpd_source = init_data->hpd_source;
enc10->base.connector = init_data->connector;
if (enc10->base.connector.id == CONNECTOR_ID_USBC)
enc10->base.features.flags.bits.DP_IS_USB_C = 1;
enc10->base.preferred_engine = ENGINE_ID_UNKNOWN;
enc10->base.features = *enc_features;
enc10->base.transmitter = init_data->transmitter;
/* set the flag to indicate whether driver poll the I2C data pin
* while doing the DP sink detect
*/
/* if (dal_adapter_service_is_feature_supported(as,
FEATURE_DP_SINK_DETECT_POLL_DATA_PIN))
enc10->base.features.flags.bits.
DP_SINK_DETECT_POLL_DATA_PIN = true;*/
enc10->base.output_signals =
SIGNAL_TYPE_DVI_SINGLE_LINK |
SIGNAL_TYPE_DVI_DUAL_LINK |
SIGNAL_TYPE_LVDS |
SIGNAL_TYPE_DISPLAY_PORT |
SIGNAL_TYPE_DISPLAY_PORT_MST |
SIGNAL_TYPE_EDP |
SIGNAL_TYPE_HDMI_TYPE_A;
enc10->link_regs = link_regs;
enc10->aux_regs = aux_regs;
enc10->hpd_regs = hpd_regs;
enc10->link_shift = link_shift;
enc10->link_mask = link_mask;
switch (enc10->base.transmitter) {
case TRANSMITTER_UNIPHY_A:
enc10->base.preferred_engine = ENGINE_ID_DIGA;
break;
case TRANSMITTER_UNIPHY_B:
enc10->base.preferred_engine = ENGINE_ID_DIGB;
break;
case TRANSMITTER_UNIPHY_C:
enc10->base.preferred_engine = ENGINE_ID_DIGC;
break;
case TRANSMITTER_UNIPHY_D:
enc10->base.preferred_engine = ENGINE_ID_DIGD;
break;
case TRANSMITTER_UNIPHY_E:
enc10->base.preferred_engine = ENGINE_ID_DIGE;
break;
default:
ASSERT_CRITICAL(false);
enc10->base.preferred_engine = ENGINE_ID_UNKNOWN;
}
/* default to one to mirror Windows behavior */
enc10->base.features.flags.bits.HDMI_6GB_EN = 1;
if (bp_funcs->get_connector_speed_cap_info)
result = bp_funcs->get_connector_speed_cap_info(enc10->base.ctx->dc_bios,
enc10->base.connector, &bp_cap_info);
/* Override features with DCE-specific values */
if (result == BP_RESULT_OK) {
enc10->base.features.flags.bits.IS_HBR2_CAPABLE =
bp_cap_info.DP_HBR2_EN;
enc10->base.features.flags.bits.IS_HBR3_CAPABLE =
bp_cap_info.DP_HBR3_EN;
enc10->base.features.flags.bits.HDMI_6GB_EN = bp_cap_info.HDMI_6GB_EN;
enc10->base.features.flags.bits.IS_DP2_CAPABLE = 1;
enc10->base.features.flags.bits.IS_UHBR10_CAPABLE = bp_cap_info.DP_UHBR10_EN;
enc10->base.features.flags.bits.IS_UHBR13_5_CAPABLE = bp_cap_info.DP_UHBR13_5_EN;
enc10->base.features.flags.bits.IS_UHBR20_CAPABLE = bp_cap_info.DP_UHBR20_EN;
} else {
DC_LOG_WARNING("%s: Failed to get encoder_cap_info from VBIOS with error code %d!\n",
__func__,
result);
}
if (enc10->base.ctx->dc->debug.hdmi20_disable) {
enc10->base.features.flags.bits.HDMI_6GB_EN = 0;
}
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn32/dcn32_dio_link_encoder.c |
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dce110/dce110_hw_sequencer.h"
#include "dcn10/dcn10_hw_sequencer.h"
#include "dcn20/dcn20_hwseq.h"
#include "dcn21/dcn21_hwseq.h"
#include "dcn30/dcn30_hwseq.h"
#include "dcn31/dcn31_hwseq.h"
#include "dcn32_hwseq.h"
#include "dcn32_init.h"
static const struct hw_sequencer_funcs dcn32_funcs = {
.program_gamut_remap = dcn10_program_gamut_remap,
.init_hw = dcn32_init_hw,
.apply_ctx_to_hw = dce110_apply_ctx_to_hw,
.apply_ctx_for_surface = NULL,
.program_front_end_for_ctx = dcn20_program_front_end_for_ctx,
.wait_for_pending_cleared = dcn10_wait_for_pending_cleared,
.post_unlock_program_front_end = dcn20_post_unlock_program_front_end,
.update_plane_addr = dcn20_update_plane_addr,
.update_dchub = dcn10_update_dchub,
.update_pending_status = dcn10_update_pending_status,
.program_output_csc = dcn20_program_output_csc,
.enable_accelerated_mode = dce110_enable_accelerated_mode,
.enable_timing_synchronization = dcn10_enable_timing_synchronization,
.enable_per_frame_crtc_position_reset = dcn10_enable_per_frame_crtc_position_reset,
.update_info_frame = dcn31_update_info_frame,
.send_immediate_sdp_message = dcn10_send_immediate_sdp_message,
.enable_stream = dcn20_enable_stream,
.disable_stream = dce110_disable_stream,
.unblank_stream = dcn32_unblank_stream,
.blank_stream = dce110_blank_stream,
.enable_audio_stream = dce110_enable_audio_stream,
.disable_audio_stream = dce110_disable_audio_stream,
.disable_plane = dcn20_disable_plane,
.disable_pixel_data = dcn20_disable_pixel_data,
.pipe_control_lock = dcn20_pipe_control_lock,
.interdependent_update_lock = dcn10_lock_all_pipes,
.cursor_lock = dcn10_cursor_lock,
.prepare_bandwidth = dcn30_prepare_bandwidth,
.optimize_bandwidth = dcn20_optimize_bandwidth,
.update_bandwidth = dcn20_update_bandwidth,
.set_drr = dcn10_set_drr,
.get_position = dcn10_get_position,
.set_static_screen_control = dcn30_set_static_screen_control,
.setup_stereo = dcn10_setup_stereo,
.set_avmute = dcn30_set_avmute,
.log_hw_state = dcn10_log_hw_state,
.get_hw_state = dcn10_get_hw_state,
.clear_status_bits = dcn10_clear_status_bits,
.wait_for_mpcc_disconnect = dcn10_wait_for_mpcc_disconnect,
.edp_backlight_control = dce110_edp_backlight_control,
.edp_power_control = dce110_edp_power_control,
.edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
.edp_wait_for_T12 = dce110_edp_wait_for_T12,
.set_cursor_position = dcn10_set_cursor_position,
.set_cursor_attribute = dcn10_set_cursor_attribute,
.set_cursor_sdr_white_level = dcn10_set_cursor_sdr_white_level,
.setup_periodic_interrupt = dcn10_setup_periodic_interrupt,
.set_clock = dcn10_set_clock,
.get_clock = dcn10_get_clock,
.program_triplebuffer = dcn20_program_triple_buffer,
.enable_writeback = dcn30_enable_writeback,
.disable_writeback = dcn30_disable_writeback,
.update_writeback = dcn30_update_writeback,
.mmhubbub_warmup = dcn30_mmhubbub_warmup,
.dmdata_status_done = dcn20_dmdata_status_done,
.program_dmdata_engine = dcn30_program_dmdata_engine,
.set_dmdata_attributes = dcn20_set_dmdata_attributes,
.init_sys_ctx = dcn20_init_sys_ctx,
.init_vm_ctx = dcn20_init_vm_ctx,
.set_flip_control_gsl = dcn20_set_flip_control_gsl,
.get_vupdate_offset_from_vsync = dcn10_get_vupdate_offset_from_vsync,
.calc_vupdate_position = dcn10_calc_vupdate_position,
.apply_idle_power_optimizations = dcn32_apply_idle_power_optimizations,
.does_plane_fit_in_mall = NULL,
.set_backlight_level = dcn21_set_backlight_level,
.set_abm_immediate_disable = dcn21_set_abm_immediate_disable,
.hardware_release = dcn30_hardware_release,
.set_pipe = dcn21_set_pipe,
.enable_lvds_link_output = dce110_enable_lvds_link_output,
.enable_tmds_link_output = dce110_enable_tmds_link_output,
.enable_dp_link_output = dce110_enable_dp_link_output,
.disable_link_output = dcn32_disable_link_output,
.set_disp_pattern_generator = dcn30_set_disp_pattern_generator,
.get_dcc_en_bits = dcn10_get_dcc_en_bits,
.commit_subvp_config = dcn32_commit_subvp_config,
.enable_phantom_streams = dcn32_enable_phantom_streams,
.subvp_pipe_control_lock = dcn32_subvp_pipe_control_lock,
.update_visual_confirm_color = dcn10_update_visual_confirm_color,
.subvp_pipe_control_lock_fast = dcn32_subvp_pipe_control_lock_fast,
.update_phantom_vp_position = dcn32_update_phantom_vp_position,
.update_dsc_pg = dcn32_update_dsc_pg,
.apply_update_flags_for_phantom = dcn32_apply_update_flags_for_phantom,
};
static const struct hwseq_private_funcs dcn32_private_funcs = {
.init_pipes = dcn10_init_pipes,
.update_plane_addr = dcn20_update_plane_addr,
.plane_atomic_disconnect = dcn10_plane_atomic_disconnect,
.update_mpcc = dcn20_update_mpcc,
.set_input_transfer_func = dcn32_set_input_transfer_func,
.set_output_transfer_func = dcn32_set_output_transfer_func,
.power_down = dce110_power_down,
.enable_display_power_gating = dcn10_dummy_display_power_gating,
.blank_pixel_data = dcn20_blank_pixel_data,
.reset_hw_ctx_wrap = dcn20_reset_hw_ctx_wrap,
.enable_stream_timing = dcn20_enable_stream_timing,
.edp_backlight_control = dce110_edp_backlight_control,
.disable_stream_gating = dcn20_disable_stream_gating,
.enable_stream_gating = dcn20_enable_stream_gating,
.setup_vupdate_interrupt = dcn20_setup_vupdate_interrupt,
.did_underflow_occur = dcn10_did_underflow_occur,
.init_blank = dcn32_init_blank,
.disable_vga = dcn20_disable_vga,
.bios_golden_init = dcn10_bios_golden_init,
.plane_atomic_disable = dcn20_plane_atomic_disable,
.plane_atomic_power_down = dcn10_plane_atomic_power_down,
.enable_power_gating_plane = dcn32_enable_power_gating_plane,
.hubp_pg_control = dcn32_hubp_pg_control,
.program_all_writeback_pipes_in_tree = dcn30_program_all_writeback_pipes_in_tree,
.update_odm = dcn32_update_odm,
.dsc_pg_control = dcn32_dsc_pg_control,
.dsc_pg_status = dcn32_dsc_pg_status,
.set_hdr_multiplier = dcn10_set_hdr_multiplier,
.verify_allow_pstate_change_high = dcn10_verify_allow_pstate_change_high,
.wait_for_blank_complete = dcn20_wait_for_blank_complete,
.dccg_init = dcn20_dccg_init,
.set_mcm_luts = dcn32_set_mcm_luts,
.program_mall_pipe_config = dcn32_program_mall_pipe_config,
.update_force_pstate = dcn32_update_force_pstate,
.update_mall_sel = dcn32_update_mall_sel,
.calculate_dccg_k1_k2_values = dcn32_calculate_dccg_k1_k2_values,
.set_pixels_per_cycle = dcn32_set_pixels_per_cycle,
.resync_fifo_dccg_dio = dcn32_resync_fifo_dccg_dio,
.is_dp_dig_pixel_rate_div_policy = dcn32_is_dp_dig_pixel_rate_div_policy,
};
void dcn32_hw_sequencer_init_functions(struct dc *dc)
{
dc->hwss = dcn32_funcs;
dc->hwseq->funcs = dcn32_private_funcs;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn32/dcn32_init.c |
/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dc_bios_types.h"
#include "dcn31/dcn31_hpo_dp_link_encoder.h"
#include "dcn32_hpo_dp_link_encoder.h"
#include "reg_helper.h"
#include "stream_encoder.h"
#define DC_LOGGER \
enc3->base.ctx->logger
#define REG(reg)\
(enc3->regs->reg)
#undef FN
#define FN(reg_name, field_name) \
enc3->hpo_le_shift->field_name, enc3->hpo_le_mask->field_name
#define CTX \
enc3->base.ctx
static bool dcn32_hpo_dp_link_enc_is_in_alt_mode(
struct hpo_dp_link_encoder *enc)
{
struct dcn31_hpo_dp_link_encoder *enc3 = DCN3_1_HPO_DP_LINK_ENC_FROM_HPO_LINK_ENC(enc);
uint32_t dp_alt_mode_disable = 0;
ASSERT((enc->transmitter >= TRANSMITTER_UNIPHY_A) && (enc->transmitter <= TRANSMITTER_UNIPHY_E));
/* if value == 1 alt mode is disabled, otherwise it is enabled */
REG_GET(RDPCSTX_PHY_CNTL6[enc->transmitter], RDPCS_PHY_DPALT_DISABLE, &dp_alt_mode_disable);
return (dp_alt_mode_disable == 0);
}
static struct hpo_dp_link_encoder_funcs dcn32_hpo_dp_link_encoder_funcs = {
.enable_link_phy = dcn31_hpo_dp_link_enc_enable_dp_output,
.disable_link_phy = dcn31_hpo_dp_link_enc_disable_output,
.link_enable = dcn31_hpo_dp_link_enc_enable,
.link_disable = dcn31_hpo_dp_link_enc_disable,
.set_link_test_pattern = dcn31_hpo_dp_link_enc_set_link_test_pattern,
.update_stream_allocation_table = dcn31_hpo_dp_link_enc_update_stream_allocation_table,
.set_throttled_vcp_size = dcn31_hpo_dp_link_enc_set_throttled_vcp_size,
.is_in_alt_mode = dcn32_hpo_dp_link_enc_is_in_alt_mode,
.read_state = dcn31_hpo_dp_link_enc_read_state,
.set_ffe = dcn31_hpo_dp_link_enc_set_ffe,
};
void hpo_dp_link_encoder32_construct(struct dcn31_hpo_dp_link_encoder *enc31,
struct dc_context *ctx,
uint32_t inst,
const struct dcn31_hpo_dp_link_encoder_registers *hpo_le_regs,
const struct dcn31_hpo_dp_link_encoder_shift *hpo_le_shift,
const struct dcn31_hpo_dp_link_encoder_mask *hpo_le_mask)
{
enc31->base.ctx = ctx;
enc31->base.inst = inst;
enc31->base.funcs = &dcn32_hpo_dp_link_encoder_funcs;
enc31->base.hpd_source = HPD_SOURCEID_UNKNOWN;
enc31->base.transmitter = TRANSMITTER_UNKNOWN;
enc31->regs = hpo_le_regs;
enc31->hpo_le_shift = hpo_le_shift;
enc31->hpo_le_mask = hpo_le_mask;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn32/dcn32_hpo_dp_link_encoder.c |
/*
* Copyright 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "core_types.h"
#include "reg_helper.h"
#include "dcn32_dpp.h"
#include "basics/conversion.h"
#include "dcn30/dcn30_cm_common.h"
/* Compute the maximum number of lines that we can fit in the line buffer */
static void dscl32_calc_lb_num_partitions(
const struct scaler_data *scl_data,
enum lb_memory_config lb_config,
int *num_part_y,
int *num_part_c)
{
int memory_line_size_y, memory_line_size_c, memory_line_size_a,
lb_memory_size, lb_memory_size_c, lb_memory_size_a, num_partitions_a;
int line_size = scl_data->viewport.width < scl_data->recout.width ?
scl_data->viewport.width : scl_data->recout.width;
int line_size_c = scl_data->viewport_c.width < scl_data->recout.width ?
scl_data->viewport_c.width : scl_data->recout.width;
if (line_size == 0)
line_size = 1;
if (line_size_c == 0)
line_size_c = 1;
memory_line_size_y = (line_size + 5) / 6; /* +5 to ceil */
memory_line_size_c = (line_size_c + 5) / 6; /* +5 to ceil */
memory_line_size_a = (line_size + 5) / 6; /* +5 to ceil */
if (lb_config == LB_MEMORY_CONFIG_1) {
lb_memory_size = 970;
lb_memory_size_c = 970;
lb_memory_size_a = 970;
} else if (lb_config == LB_MEMORY_CONFIG_2) {
lb_memory_size = 1290;
lb_memory_size_c = 1290;
lb_memory_size_a = 1290;
} else if (lb_config == LB_MEMORY_CONFIG_3) {
if (scl_data->viewport.width == scl_data->h_active &&
scl_data->viewport.height == scl_data->v_active) {
/* 420 mode: luma using all 3 mem from Y, plus 3rd mem from Cr and Cb */
/* use increased LB size for calculation only if Scaler not enabled */
lb_memory_size = 970 + 1290 + 1170 + 1170 + 1170;
lb_memory_size_c = 970 + 1290;
lb_memory_size_a = 970 + 1290 + 1170;
} else {
/* 420 mode: luma using all 3 mem from Y, plus 3rd mem from Cr and Cb */
lb_memory_size = 970 + 1290 + 484 + 484 + 484;
lb_memory_size_c = 970 + 1290;
lb_memory_size_a = 970 + 1290 + 484;
}
} else {
if (scl_data->viewport.width == scl_data->h_active &&
scl_data->viewport.height == scl_data->v_active) {
/* use increased LB size for calculation only if Scaler not enabled */
lb_memory_size = 970 + 1290 + 1170;
lb_memory_size_c = 970 + 1290 + 1170;
lb_memory_size_a = 970 + 1290 + 1170;
} else {
lb_memory_size = 970 + 1290 + 484;
lb_memory_size_c = 970 + 1290 + 484;
lb_memory_size_a = 970 + 1290 + 484;
}
}
*num_part_y = lb_memory_size / memory_line_size_y;
*num_part_c = lb_memory_size_c / memory_line_size_c;
num_partitions_a = lb_memory_size_a / memory_line_size_a;
if (scl_data->lb_params.alpha_en
&& (num_partitions_a < *num_part_y))
*num_part_y = num_partitions_a;
if (*num_part_y > 32)
*num_part_y = 32;
if (*num_part_c > 32)
*num_part_c = 32;
}
static struct dpp_funcs dcn32_dpp_funcs = {
.dpp_program_gamcor_lut = dpp3_program_gamcor_lut,
.dpp_read_state = dpp30_read_state,
.dpp_reset = dpp_reset,
.dpp_set_scaler = dpp1_dscl_set_scaler_manual_scale,
.dpp_get_optimal_number_of_taps = dpp3_get_optimal_number_of_taps,
.dpp_set_gamut_remap = dpp3_cm_set_gamut_remap,
.dpp_set_csc_adjustment = NULL,
.dpp_set_csc_default = NULL,
.dpp_program_regamma_pwl = NULL,
.dpp_set_pre_degam = dpp3_set_pre_degam,
.dpp_program_input_lut = NULL,
.dpp_full_bypass = dpp1_full_bypass,
.dpp_setup = dpp3_cnv_setup,
.dpp_program_degamma_pwl = NULL,
.dpp_program_cm_dealpha = dpp3_program_cm_dealpha,
.dpp_program_cm_bias = dpp3_program_cm_bias,
.dpp_program_blnd_lut = NULL, // BLNDGAM is removed completely in DCN3.2 DPP
.dpp_program_shaper_lut = NULL, // CM SHAPER block is removed in DCN3.2 DPP, (it is in MPCC, programmable before or after BLND)
.dpp_program_3dlut = NULL, // CM 3DLUT block is removed in DCN3.2 DPP, (it is in MPCC, programmable before or after BLND)
.dpp_program_bias_and_scale = NULL,
.dpp_cnv_set_alpha_keyer = dpp2_cnv_set_alpha_keyer,
.set_cursor_attributes = dpp3_set_cursor_attributes,
.set_cursor_position = dpp1_set_cursor_position,
.set_optional_cursor_attributes = dpp1_cnv_set_optional_cursor_attributes,
.dpp_dppclk_control = dpp1_dppclk_control,
.dpp_set_hdr_multiplier = dpp3_set_hdr_multiplier,
};
static struct dpp_caps dcn32_dpp_cap = {
.dscl_data_proc_format = DSCL_DATA_PRCESSING_FLOAT_FORMAT,
.max_lb_partitions = 31,
.dscl_calc_lb_num_partitions = dscl32_calc_lb_num_partitions,
};
bool dpp32_construct(
struct dcn3_dpp *dpp,
struct dc_context *ctx,
uint32_t inst,
const struct dcn3_dpp_registers *tf_regs,
const struct dcn3_dpp_shift *tf_shift,
const struct dcn3_dpp_mask *tf_mask)
{
dpp->base.ctx = ctx;
dpp->base.inst = inst;
dpp->base.funcs = &dcn32_dpp_funcs;
dpp->base.caps = &dcn32_dpp_cap;
dpp->tf_regs = tf_regs;
dpp->tf_shift = tf_shift;
dpp->tf_mask = tf_mask;
return true;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn32/dcn32_dpp.c |
/*
* Copyright 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "reg_helper.h"
#include "core_types.h"
#include "dcn32_dccg.h"
#define TO_DCN_DCCG(dccg)\
container_of(dccg, struct dcn_dccg, base)
#define REG(reg) \
(dccg_dcn->regs->reg)
#undef FN
#define FN(reg_name, field_name) \
dccg_dcn->dccg_shift->field_name, dccg_dcn->dccg_mask->field_name
#define CTX \
dccg_dcn->base.ctx
#define DC_LOGGER \
dccg->ctx->logger
static void dccg32_trigger_dio_fifo_resync(
struct dccg *dccg)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
uint32_t dispclk_rdivider_value = 0;
REG_GET(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_RDIVIDER, &dispclk_rdivider_value);
/* Not valid for the WDIVIDER to be set to 0 */
if (dispclk_rdivider_value != 0)
REG_UPDATE(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_WDIVIDER, dispclk_rdivider_value);
}
static void dccg32_get_pixel_rate_div(
struct dccg *dccg,
uint32_t otg_inst,
enum pixel_rate_div *k1,
enum pixel_rate_div *k2)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
uint32_t val_k1 = PIXEL_RATE_DIV_NA, val_k2 = PIXEL_RATE_DIV_NA;
*k1 = PIXEL_RATE_DIV_NA;
*k2 = PIXEL_RATE_DIV_NA;
switch (otg_inst) {
case 0:
REG_GET_2(OTG_PIXEL_RATE_DIV,
OTG0_PIXEL_RATE_DIVK1, &val_k1,
OTG0_PIXEL_RATE_DIVK2, &val_k2);
break;
case 1:
REG_GET_2(OTG_PIXEL_RATE_DIV,
OTG1_PIXEL_RATE_DIVK1, &val_k1,
OTG1_PIXEL_RATE_DIVK2, &val_k2);
break;
case 2:
REG_GET_2(OTG_PIXEL_RATE_DIV,
OTG2_PIXEL_RATE_DIVK1, &val_k1,
OTG2_PIXEL_RATE_DIVK2, &val_k2);
break;
case 3:
REG_GET_2(OTG_PIXEL_RATE_DIV,
OTG3_PIXEL_RATE_DIVK1, &val_k1,
OTG3_PIXEL_RATE_DIVK2, &val_k2);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
*k1 = (enum pixel_rate_div)val_k1;
*k2 = (enum pixel_rate_div)val_k2;
}
static void dccg32_set_pixel_rate_div(
struct dccg *dccg,
uint32_t otg_inst,
enum pixel_rate_div k1,
enum pixel_rate_div k2)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
enum pixel_rate_div cur_k1 = PIXEL_RATE_DIV_NA, cur_k2 = PIXEL_RATE_DIV_NA;
// Don't program 0xF into the register field. Not valid since
// K1 / K2 field is only 1 / 2 bits wide
if (k1 == PIXEL_RATE_DIV_NA || k2 == PIXEL_RATE_DIV_NA) {
BREAK_TO_DEBUGGER();
return;
}
dccg32_get_pixel_rate_div(dccg, otg_inst, &cur_k1, &cur_k2);
if (k1 == cur_k1 && k2 == cur_k2)
return;
switch (otg_inst) {
case 0:
REG_UPDATE_2(OTG_PIXEL_RATE_DIV,
OTG0_PIXEL_RATE_DIVK1, k1,
OTG0_PIXEL_RATE_DIVK2, k2);
break;
case 1:
REG_UPDATE_2(OTG_PIXEL_RATE_DIV,
OTG1_PIXEL_RATE_DIVK1, k1,
OTG1_PIXEL_RATE_DIVK2, k2);
break;
case 2:
REG_UPDATE_2(OTG_PIXEL_RATE_DIV,
OTG2_PIXEL_RATE_DIVK1, k1,
OTG2_PIXEL_RATE_DIVK2, k2);
break;
case 3:
REG_UPDATE_2(OTG_PIXEL_RATE_DIV,
OTG3_PIXEL_RATE_DIVK1, k1,
OTG3_PIXEL_RATE_DIVK2, k2);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg32_set_dtbclk_p_src(
struct dccg *dccg,
enum streamclk_source src,
uint32_t otg_inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
uint32_t p_src_sel = 0; /* selects dprefclk */
if (src == DTBCLK0)
p_src_sel = 2; /* selects dtbclk0 */
switch (otg_inst) {
case 0:
if (src == REFCLK)
REG_UPDATE(DTBCLK_P_CNTL,
DTBCLK_P0_EN, 0);
else
REG_UPDATE_2(DTBCLK_P_CNTL,
DTBCLK_P0_SRC_SEL, p_src_sel,
DTBCLK_P0_EN, 1);
break;
case 1:
if (src == REFCLK)
REG_UPDATE(DTBCLK_P_CNTL,
DTBCLK_P1_EN, 0);
else
REG_UPDATE_2(DTBCLK_P_CNTL,
DTBCLK_P1_SRC_SEL, p_src_sel,
DTBCLK_P1_EN, 1);
break;
case 2:
if (src == REFCLK)
REG_UPDATE(DTBCLK_P_CNTL,
DTBCLK_P2_EN, 0);
else
REG_UPDATE_2(DTBCLK_P_CNTL,
DTBCLK_P2_SRC_SEL, p_src_sel,
DTBCLK_P2_EN, 1);
break;
case 3:
if (src == REFCLK)
REG_UPDATE(DTBCLK_P_CNTL,
DTBCLK_P3_EN, 0);
else
REG_UPDATE_2(DTBCLK_P_CNTL,
DTBCLK_P3_SRC_SEL, p_src_sel,
DTBCLK_P3_EN, 1);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
/* Controls the generation of pixel valid for OTG in (OTG -> HPO case) */
static void dccg32_set_dtbclk_dto(
struct dccg *dccg,
const struct dtbclk_dto_params *params)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
/* DTO Output Rate / Pixel Rate = 1/4 */
int req_dtbclk_khz = params->pixclk_khz / 4;
if (params->ref_dtbclk_khz && req_dtbclk_khz) {
uint32_t modulo, phase;
// phase / modulo = dtbclk / dtbclk ref
modulo = params->ref_dtbclk_khz * 1000;
phase = req_dtbclk_khz * 1000;
REG_WRITE(DTBCLK_DTO_MODULO[params->otg_inst], modulo);
REG_WRITE(DTBCLK_DTO_PHASE[params->otg_inst], phase);
REG_UPDATE(OTG_PIXEL_RATE_CNTL[params->otg_inst],
DTBCLK_DTO_ENABLE[params->otg_inst], 1);
REG_WAIT(OTG_PIXEL_RATE_CNTL[params->otg_inst],
DTBCLKDTO_ENABLE_STATUS[params->otg_inst], 1,
1, 100);
/* program OTG_PIXEL_RATE_DIV for DIVK1 and DIVK2 fields */
dccg32_set_pixel_rate_div(dccg, params->otg_inst, PIXEL_RATE_DIV_BY_1, PIXEL_RATE_DIV_BY_1);
/* The recommended programming sequence to enable DTBCLK DTO to generate
* valid pixel HPO DPSTREAM ENCODER, specifies that DTO source select should
* be set only after DTO is enabled
*/
REG_UPDATE(OTG_PIXEL_RATE_CNTL[params->otg_inst],
PIPE_DTO_SRC_SEL[params->otg_inst], 2);
} else {
REG_UPDATE_2(OTG_PIXEL_RATE_CNTL[params->otg_inst],
DTBCLK_DTO_ENABLE[params->otg_inst], 0,
PIPE_DTO_SRC_SEL[params->otg_inst], params->is_hdmi ? 0 : 1);
REG_WRITE(DTBCLK_DTO_MODULO[params->otg_inst], 0);
REG_WRITE(DTBCLK_DTO_PHASE[params->otg_inst], 0);
}
}
static void dccg32_set_valid_pixel_rate(
struct dccg *dccg,
int ref_dtbclk_khz,
int otg_inst,
int pixclk_khz)
{
struct dtbclk_dto_params dto_params = {0};
dto_params.ref_dtbclk_khz = ref_dtbclk_khz;
dto_params.otg_inst = otg_inst;
dto_params.pixclk_khz = pixclk_khz;
dto_params.is_hdmi = true;
dccg32_set_dtbclk_dto(dccg, &dto_params);
}
static void dccg32_get_dccg_ref_freq(struct dccg *dccg,
unsigned int xtalin_freq_inKhz,
unsigned int *dccg_ref_freq_inKhz)
{
/*
* Assume refclk is sourced from xtalin
* expect 100MHz
*/
*dccg_ref_freq_inKhz = xtalin_freq_inKhz;
return;
}
static void dccg32_set_dpstreamclk(
struct dccg *dccg,
enum streamclk_source src,
int otg_inst,
int dp_hpo_inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
/* set the dtbclk_p source */
/* always program refclk as DTBCLK. No use-case expected to require DPREFCLK as refclk */
dccg32_set_dtbclk_p_src(dccg, DTBCLK0, otg_inst);
/* enabled to select one of the DTBCLKs for pipe */
switch (dp_hpo_inst) {
case 0:
REG_UPDATE_2(DPSTREAMCLK_CNTL,
DPSTREAMCLK0_EN,
(src == REFCLK) ? 0 : 1, DPSTREAMCLK0_SRC_SEL, otg_inst);
break;
case 1:
REG_UPDATE_2(DPSTREAMCLK_CNTL, DPSTREAMCLK1_EN,
(src == REFCLK) ? 0 : 1, DPSTREAMCLK1_SRC_SEL, otg_inst);
break;
case 2:
REG_UPDATE_2(DPSTREAMCLK_CNTL, DPSTREAMCLK2_EN,
(src == REFCLK) ? 0 : 1, DPSTREAMCLK2_SRC_SEL, otg_inst);
break;
case 3:
REG_UPDATE_2(DPSTREAMCLK_CNTL, DPSTREAMCLK3_EN,
(src == REFCLK) ? 0 : 1, DPSTREAMCLK3_SRC_SEL, otg_inst);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
static void dccg32_otg_add_pixel(struct dccg *dccg,
uint32_t otg_inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
REG_UPDATE(OTG_PIXEL_RATE_CNTL[otg_inst],
OTG_ADD_PIXEL[otg_inst], 1);
}
static void dccg32_otg_drop_pixel(struct dccg *dccg,
uint32_t otg_inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
REG_UPDATE(OTG_PIXEL_RATE_CNTL[otg_inst],
OTG_DROP_PIXEL[otg_inst], 1);
}
static const struct dccg_funcs dccg32_funcs = {
.update_dpp_dto = dccg2_update_dpp_dto,
.get_dccg_ref_freq = dccg32_get_dccg_ref_freq,
.dccg_init = dccg31_init,
.set_dpstreamclk = dccg32_set_dpstreamclk,
.enable_symclk32_se = dccg31_enable_symclk32_se,
.disable_symclk32_se = dccg31_disable_symclk32_se,
.enable_symclk32_le = dccg31_enable_symclk32_le,
.disable_symclk32_le = dccg31_disable_symclk32_le,
.set_physymclk = dccg31_set_physymclk,
.set_dtbclk_dto = dccg32_set_dtbclk_dto,
.set_valid_pixel_rate = dccg32_set_valid_pixel_rate,
.set_fifo_errdet_ovr_en = dccg2_set_fifo_errdet_ovr_en,
.set_audio_dtbclk_dto = dccg31_set_audio_dtbclk_dto,
.otg_add_pixel = dccg32_otg_add_pixel,
.otg_drop_pixel = dccg32_otg_drop_pixel,
.set_pixel_rate_div = dccg32_set_pixel_rate_div,
.trigger_dio_fifo_resync = dccg32_trigger_dio_fifo_resync,
};
struct dccg *dccg32_create(
struct dc_context *ctx,
const struct dccg_registers *regs,
const struct dccg_shift *dccg_shift,
const struct dccg_mask *dccg_mask)
{
struct dcn_dccg *dccg_dcn = kzalloc(sizeof(*dccg_dcn), GFP_KERNEL);
struct dccg *base;
if (dccg_dcn == NULL) {
BREAK_TO_DEBUGGER();
return NULL;
}
base = &dccg_dcn->base;
base->ctx = ctx;
base->funcs = &dccg32_funcs;
dccg_dcn->regs = regs;
dccg_dcn->dccg_shift = dccg_shift;
dccg_dcn->dccg_mask = dccg_mask;
return &dccg_dcn->base;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn32/dcn32_dccg.c |
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dcn32_optc.h"
#include "dcn30/dcn30_optc.h"
#include "dcn31/dcn31_optc.h"
#include "reg_helper.h"
#include "dc.h"
#include "dcn_calc_math.h"
#include "dc_dmub_srv.h"
#define REG(reg)\
optc1->tg_regs->reg
#define CTX \
optc1->base.ctx
#undef FN
#define FN(reg_name, field_name) \
optc1->tg_shift->field_name, optc1->tg_mask->field_name
static void optc32_set_odm_combine(struct timing_generator *optc, int *opp_id, int opp_cnt,
struct dc_crtc_timing *timing)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
uint32_t memory_mask = 0;
int h_active = timing->h_addressable + timing->h_border_left + timing->h_border_right;
int mpcc_hactive = h_active / opp_cnt;
/* Each memory instance is 2048x(32x2) bits to support half line of 4096 */
int odm_mem_count = (h_active + 2047) / 2048;
/*
* display <= 4k : 2 memories + 2 pipes
* 4k < display <= 8k : 4 memories + 2 pipes
* 8k < display <= 12k : 6 memories + 4 pipes
*/
if (opp_cnt == 4) {
if (odm_mem_count <= 2)
memory_mask = 0x3;
else if (odm_mem_count <= 4)
memory_mask = 0xf;
else
memory_mask = 0x3f;
} else {
if (odm_mem_count <= 2)
memory_mask = 0x1 << (opp_id[0] * 2) | 0x1 << (opp_id[1] * 2);
else if (odm_mem_count <= 4)
memory_mask = 0x3 << (opp_id[0] * 2) | 0x3 << (opp_id[1] * 2);
else
memory_mask = 0x77;
}
REG_SET(OPTC_MEMORY_CONFIG, 0,
OPTC_MEM_SEL, memory_mask);
if (opp_cnt == 2) {
REG_SET_3(OPTC_DATA_SOURCE_SELECT, 0,
OPTC_NUM_OF_INPUT_SEGMENT, 1,
OPTC_SEG0_SRC_SEL, opp_id[0],
OPTC_SEG1_SRC_SEL, opp_id[1]);
} else if (opp_cnt == 4) {
REG_SET_5(OPTC_DATA_SOURCE_SELECT, 0,
OPTC_NUM_OF_INPUT_SEGMENT, 3,
OPTC_SEG0_SRC_SEL, opp_id[0],
OPTC_SEG1_SRC_SEL, opp_id[1],
OPTC_SEG2_SRC_SEL, opp_id[2],
OPTC_SEG3_SRC_SEL, opp_id[3]);
}
REG_UPDATE(OPTC_WIDTH_CONTROL,
OPTC_SEGMENT_WIDTH, mpcc_hactive);
REG_UPDATE(OTG_H_TIMING_CNTL,
OTG_H_TIMING_DIV_MODE, opp_cnt - 1);
optc1->opp_count = opp_cnt;
}
void optc32_set_h_timing_div_manual_mode(struct timing_generator *optc, bool manual_mode)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_UPDATE(OTG_H_TIMING_CNTL,
OTG_H_TIMING_DIV_MODE_MANUAL, manual_mode ? 1 : 0);
}
/**
* optc32_enable_crtc() - Enable CRTC - call ASIC Control Object to enable Timing generator.
*
* @optc: timing_generator instance.
*
* Return: If CRTC is enabled, return true.
*/
static bool optc32_enable_crtc(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
/* opp instance for OTG, 1 to 1 mapping and odm will adjust */
REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
OPTC_SEG0_SRC_SEL, optc->inst);
/* VTG enable first is for HW workaround */
REG_UPDATE(CONTROL,
VTG0_ENABLE, 1);
REG_SEQ_START();
/* Enable CRTC */
REG_UPDATE_2(OTG_CONTROL,
OTG_DISABLE_POINT_CNTL, 2,
OTG_MASTER_EN, 1);
REG_SEQ_SUBMIT();
REG_SEQ_WAIT_DONE();
return true;
}
/* disable_crtc */
static bool optc32_disable_crtc(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
/* disable otg request until end of the first line
* in the vertical blank region
*/
REG_UPDATE(OTG_CONTROL,
OTG_MASTER_EN, 0);
REG_UPDATE(CONTROL,
VTG0_ENABLE, 0);
/* CRTC disabled, so disable clock. */
REG_WAIT(OTG_CLOCK_CONTROL,
OTG_BUSY, 0,
1, 150000);
return true;
}
static void optc32_phantom_crtc_post_enable(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
/* Disable immediately. */
REG_UPDATE_2(OTG_CONTROL, OTG_DISABLE_POINT_CNTL, 0, OTG_MASTER_EN, 0);
/* CRTC disabled, so disable clock. */
REG_WAIT(OTG_CLOCK_CONTROL, OTG_BUSY, 0, 1, 100000);
}
static void optc32_disable_phantom_otg(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_UPDATE(OTG_CONTROL, OTG_MASTER_EN, 0);
}
static void optc32_set_odm_bypass(struct timing_generator *optc,
const struct dc_crtc_timing *dc_crtc_timing)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
enum h_timing_div_mode h_div = H_TIMING_NO_DIV;
REG_SET_5(OPTC_DATA_SOURCE_SELECT, 0,
OPTC_NUM_OF_INPUT_SEGMENT, 0,
OPTC_SEG0_SRC_SEL, optc->inst,
OPTC_SEG1_SRC_SEL, 0xf,
OPTC_SEG2_SRC_SEL, 0xf,
OPTC_SEG3_SRC_SEL, 0xf
);
h_div = optc1_is_two_pixels_per_containter(dc_crtc_timing);
REG_UPDATE(OTG_H_TIMING_CNTL,
OTG_H_TIMING_DIV_MODE, h_div);
REG_SET(OPTC_MEMORY_CONFIG, 0,
OPTC_MEM_SEL, 0);
optc1->opp_count = 1;
}
static void optc32_setup_manual_trigger(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
struct dc *dc = optc->ctx->dc;
if (dc->caps.dmub_caps.mclk_sw && !dc->debug.disable_fams)
dc_dmub_srv_set_drr_manual_trigger_cmd(dc, optc->inst);
else {
/*
* MIN_MASK_EN is gone and MASK is now always enabled.
*
* To get it to it work with manual trigger we need to make sure
* we program the correct bit.
*/
REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
OTG_V_TOTAL_MIN_SEL, 1,
OTG_V_TOTAL_MAX_SEL, 1,
OTG_FORCE_LOCK_ON_EVENT, 0,
OTG_SET_V_TOTAL_MIN_MASK, (1 << 1)); /* TRIGA */
// Setup manual flow control for EOF via TRIG_A
optc->funcs->setup_manual_trigger(optc);
}
}
static void optc32_set_drr(
struct timing_generator *optc,
const struct drr_params *params)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
if (params != NULL &&
params->vertical_total_max > 0 &&
params->vertical_total_min > 0) {
if (params->vertical_total_mid != 0) {
REG_SET(OTG_V_TOTAL_MID, 0,
OTG_V_TOTAL_MID, params->vertical_total_mid - 1);
REG_UPDATE_2(OTG_V_TOTAL_CONTROL,
OTG_VTOTAL_MID_REPLACING_MAX_EN, 1,
OTG_VTOTAL_MID_FRAME_NUM,
(uint8_t)params->vertical_total_mid_frame_num);
}
optc->funcs->set_vtotal_min_max(optc, params->vertical_total_min - 1, params->vertical_total_max - 1);
}
optc32_setup_manual_trigger(optc);
}
static struct timing_generator_funcs dcn32_tg_funcs = {
.validate_timing = optc1_validate_timing,
.program_timing = optc1_program_timing,
.setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
.setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
.setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
.program_global_sync = optc1_program_global_sync,
.enable_crtc = optc32_enable_crtc,
.disable_crtc = optc32_disable_crtc,
.phantom_crtc_post_enable = optc32_phantom_crtc_post_enable,
.disable_phantom_crtc = optc32_disable_phantom_otg,
/* used by enable_timing_synchronization. Not need for FPGA */
.is_counter_moving = optc1_is_counter_moving,
.get_position = optc1_get_position,
.get_frame_count = optc1_get_vblank_counter,
.get_scanoutpos = optc1_get_crtc_scanoutpos,
.get_otg_active_size = optc1_get_otg_active_size,
.set_early_control = optc1_set_early_control,
/* used by enable_timing_synchronization. Not need for FPGA */
.wait_for_state = optc1_wait_for_state,
.set_blank_color = optc3_program_blank_color,
.did_triggered_reset_occur = optc1_did_triggered_reset_occur,
.triplebuffer_lock = optc3_triplebuffer_lock,
.triplebuffer_unlock = optc2_triplebuffer_unlock,
.enable_reset_trigger = optc1_enable_reset_trigger,
.enable_crtc_reset = optc1_enable_crtc_reset,
.disable_reset_trigger = optc1_disable_reset_trigger,
.lock = optc3_lock,
.unlock = optc1_unlock,
.lock_doublebuffer_enable = optc3_lock_doublebuffer_enable,
.lock_doublebuffer_disable = optc3_lock_doublebuffer_disable,
.enable_optc_clock = optc1_enable_optc_clock,
.set_drr = optc32_set_drr,
.get_last_used_drr_vtotal = optc2_get_last_used_drr_vtotal,
.set_vtotal_min_max = optc3_set_vtotal_min_max,
.set_static_screen_control = optc1_set_static_screen_control,
.program_stereo = optc1_program_stereo,
.is_stereo_left_eye = optc1_is_stereo_left_eye,
.tg_init = optc3_tg_init,
.is_tg_enabled = optc1_is_tg_enabled,
.is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
.clear_optc_underflow = optc1_clear_optc_underflow,
.setup_global_swap_lock = NULL,
.get_crc = optc1_get_crc,
.configure_crc = optc1_configure_crc,
.set_dsc_config = optc3_set_dsc_config,
.get_dsc_status = optc2_get_dsc_status,
.set_dwb_source = NULL,
.set_odm_bypass = optc32_set_odm_bypass,
.set_odm_combine = optc32_set_odm_combine,
.set_h_timing_div_manual_mode = optc32_set_h_timing_div_manual_mode,
.get_optc_source = optc2_get_optc_source,
.set_out_mux = optc3_set_out_mux,
.set_drr_trigger_window = optc3_set_drr_trigger_window,
.set_vtotal_change_limit = optc3_set_vtotal_change_limit,
.set_gsl = optc2_set_gsl,
.set_gsl_source_select = optc2_set_gsl_source_select,
.set_vtg_params = optc1_set_vtg_params,
.program_manual_trigger = optc2_program_manual_trigger,
.setup_manual_trigger = optc2_setup_manual_trigger,
.get_hw_timing = optc1_get_hw_timing,
};
void dcn32_timing_generator_init(struct optc *optc1)
{
optc1->base.funcs = &dcn32_tg_funcs;
optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
optc1->min_h_blank = 32;
optc1->min_v_blank = 3;
optc1->min_v_blank_interlace = 5;
optc1->min_h_sync_width = 4;
optc1->min_v_sync_width = 1;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn32/dcn32_optc.c |
/*
* Copyright 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "reg_helper.h"
#include "dcn30/dcn30_mpc.h"
#include "dcn30/dcn30_cm_common.h"
#include "dcn32_mpc.h"
#include "basics/conversion.h"
#include "dcn10/dcn10_cm_common.h"
#include "dc.h"
#define REG(reg)\
mpc30->mpc_regs->reg
#define CTX \
mpc30->base.ctx
#undef FN
#define FN(reg_name, field_name) \
mpc30->mpc_shift->field_name, mpc30->mpc_mask->field_name
void mpc32_mpc_init(struct mpc *mpc)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
int mpcc_id;
mpc1_mpc_init(mpc);
if (mpc->ctx->dc->debug.enable_mem_low_power.bits.mpc) {
if (mpc30->mpc_mask->MPCC_MCM_SHAPER_MEM_LOW_PWR_MODE && mpc30->mpc_mask->MPCC_MCM_3DLUT_MEM_LOW_PWR_MODE) {
for (mpcc_id = 0; mpcc_id < mpc30->num_mpcc; mpcc_id++) {
REG_UPDATE(MPCC_MCM_MEM_PWR_CTRL[mpcc_id], MPCC_MCM_SHAPER_MEM_LOW_PWR_MODE, 3);
REG_UPDATE(MPCC_MCM_MEM_PWR_CTRL[mpcc_id], MPCC_MCM_3DLUT_MEM_LOW_PWR_MODE, 3);
REG_UPDATE(MPCC_MCM_MEM_PWR_CTRL[mpcc_id], MPCC_MCM_1DLUT_MEM_LOW_PWR_MODE, 3);
}
}
if (mpc30->mpc_mask->MPCC_OGAM_MEM_LOW_PWR_MODE) {
for (mpcc_id = 0; mpcc_id < mpc30->num_mpcc; mpcc_id++)
REG_UPDATE(MPCC_MEM_PWR_CTRL[mpcc_id], MPCC_OGAM_MEM_LOW_PWR_MODE, 3);
}
}
}
void mpc32_power_on_blnd_lut(
struct mpc *mpc,
uint32_t mpcc_id,
bool power_on)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
if (mpc->ctx->dc->debug.enable_mem_low_power.bits.cm) {
if (power_on) {
REG_UPDATE(MPCC_MCM_MEM_PWR_CTRL[mpcc_id], MPCC_MCM_1DLUT_MEM_PWR_FORCE, 0);
REG_WAIT(MPCC_MCM_MEM_PWR_CTRL[mpcc_id], MPCC_MCM_1DLUT_MEM_PWR_STATE, 0, 1, 5);
} else if (!mpc->ctx->dc->debug.disable_mem_low_power) {
ASSERT(false);
/* TODO: change to mpc
* dpp_base->ctx->dc->optimized_required = true;
* dpp_base->deferred_reg_writes.bits.disable_blnd_lut = true;
*/
}
} else {
REG_SET(MPCC_MCM_MEM_PWR_CTRL[mpcc_id], 0,
MPCC_MCM_1DLUT_MEM_PWR_FORCE, power_on == true ? 0 : 1);
}
}
static enum dc_lut_mode mpc32_get_post1dlut_current(struct mpc *mpc, uint32_t mpcc_id)
{
enum dc_lut_mode mode;
uint32_t mode_current = 0;
uint32_t in_use = 0;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
REG_GET(MPCC_MCM_1DLUT_CONTROL[mpcc_id],
MPCC_MCM_1DLUT_MODE_CURRENT, &mode_current);
REG_GET(MPCC_MCM_1DLUT_CONTROL[mpcc_id],
MPCC_MCM_1DLUT_SELECT_CURRENT, &in_use);
switch (mode_current) {
case 0:
case 1:
mode = LUT_BYPASS;
break;
case 2:
if (in_use == 0)
mode = LUT_RAM_A;
else
mode = LUT_RAM_B;
break;
default:
mode = LUT_BYPASS;
break;
}
return mode;
}
void mpc32_configure_post1dlut(
struct mpc *mpc,
uint32_t mpcc_id,
bool is_ram_a)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
//TODO: this
REG_UPDATE_2(MPCC_MCM_1DLUT_LUT_CONTROL[mpcc_id],
MPCC_MCM_1DLUT_LUT_WRITE_COLOR_MASK, 7,
MPCC_MCM_1DLUT_LUT_HOST_SEL, is_ram_a == true ? 0 : 1);
REG_SET(MPCC_MCM_1DLUT_LUT_INDEX[mpcc_id], 0, MPCC_MCM_1DLUT_LUT_INDEX, 0);
}
static void mpc32_post1dlut_get_reg_field(
struct dcn30_mpc *mpc,
struct dcn3_xfer_func_reg *reg)
{
reg->shifts.exp_region0_lut_offset = mpc->mpc_shift->MPCC_MCM_1DLUT_RAMA_EXP_REGION0_LUT_OFFSET;
reg->masks.exp_region0_lut_offset = mpc->mpc_mask->MPCC_MCM_1DLUT_RAMA_EXP_REGION0_LUT_OFFSET;
reg->shifts.exp_region0_num_segments = mpc->mpc_shift->MPCC_MCM_1DLUT_RAMA_EXP_REGION0_NUM_SEGMENTS;
reg->masks.exp_region0_num_segments = mpc->mpc_mask->MPCC_MCM_1DLUT_RAMA_EXP_REGION0_NUM_SEGMENTS;
reg->shifts.exp_region1_lut_offset = mpc->mpc_shift->MPCC_MCM_1DLUT_RAMA_EXP_REGION1_LUT_OFFSET;
reg->masks.exp_region1_lut_offset = mpc->mpc_mask->MPCC_MCM_1DLUT_RAMA_EXP_REGION1_LUT_OFFSET;
reg->shifts.exp_region1_num_segments = mpc->mpc_shift->MPCC_MCM_1DLUT_RAMA_EXP_REGION1_NUM_SEGMENTS;
reg->masks.exp_region1_num_segments = mpc->mpc_mask->MPCC_MCM_1DLUT_RAMA_EXP_REGION1_NUM_SEGMENTS;
reg->shifts.field_region_end = mpc->mpc_shift->MPCC_MCM_1DLUT_RAMA_EXP_REGION_END_B;
reg->masks.field_region_end = mpc->mpc_mask->MPCC_MCM_1DLUT_RAMA_EXP_REGION_END_B;
reg->shifts.field_region_end_slope = mpc->mpc_shift->MPCC_MCM_1DLUT_RAMA_EXP_REGION_END_SLOPE_B;
reg->masks.field_region_end_slope = mpc->mpc_mask->MPCC_MCM_1DLUT_RAMA_EXP_REGION_END_SLOPE_B;
reg->shifts.field_region_end_base = mpc->mpc_shift->MPCC_MCM_1DLUT_RAMA_EXP_REGION_END_BASE_B;
reg->masks.field_region_end_base = mpc->mpc_mask->MPCC_MCM_1DLUT_RAMA_EXP_REGION_END_BASE_B;
reg->shifts.field_region_linear_slope = mpc->mpc_shift->MPCC_MCM_1DLUT_RAMA_EXP_REGION_START_SLOPE_B;
reg->masks.field_region_linear_slope = mpc->mpc_mask->MPCC_MCM_1DLUT_RAMA_EXP_REGION_START_SLOPE_B;
reg->shifts.exp_region_start = mpc->mpc_shift->MPCC_MCM_1DLUT_RAMA_EXP_REGION_START_B;
reg->masks.exp_region_start = mpc->mpc_mask->MPCC_MCM_1DLUT_RAMA_EXP_REGION_START_B;
reg->shifts.exp_resion_start_segment = mpc->mpc_shift->MPCC_MCM_1DLUT_RAMA_EXP_REGION_START_SEGMENT_B;
reg->masks.exp_resion_start_segment = mpc->mpc_mask->MPCC_MCM_1DLUT_RAMA_EXP_REGION_START_SEGMENT_B;
}
/*program blnd lut RAM A*/
void mpc32_program_post1dluta_settings(
struct mpc *mpc,
uint32_t mpcc_id,
const struct pwl_params *params)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
struct dcn3_xfer_func_reg gam_regs;
mpc32_post1dlut_get_reg_field(mpc30, &gam_regs);
gam_regs.start_cntl_b = REG(MPCC_MCM_1DLUT_RAMA_START_CNTL_B[mpcc_id]);
gam_regs.start_cntl_g = REG(MPCC_MCM_1DLUT_RAMA_START_CNTL_G[mpcc_id]);
gam_regs.start_cntl_r = REG(MPCC_MCM_1DLUT_RAMA_START_CNTL_R[mpcc_id]);
gam_regs.start_slope_cntl_b = REG(MPCC_MCM_1DLUT_RAMA_START_SLOPE_CNTL_B[mpcc_id]);
gam_regs.start_slope_cntl_g = REG(MPCC_MCM_1DLUT_RAMA_START_SLOPE_CNTL_G[mpcc_id]);
gam_regs.start_slope_cntl_r = REG(MPCC_MCM_1DLUT_RAMA_START_SLOPE_CNTL_R[mpcc_id]);
gam_regs.start_end_cntl1_b = REG(MPCC_MCM_1DLUT_RAMA_END_CNTL1_B[mpcc_id]);
gam_regs.start_end_cntl2_b = REG(MPCC_MCM_1DLUT_RAMA_END_CNTL2_B[mpcc_id]);
gam_regs.start_end_cntl1_g = REG(MPCC_MCM_1DLUT_RAMA_END_CNTL1_G[mpcc_id]);
gam_regs.start_end_cntl2_g = REG(MPCC_MCM_1DLUT_RAMA_END_CNTL2_G[mpcc_id]);
gam_regs.start_end_cntl1_r = REG(MPCC_MCM_1DLUT_RAMA_END_CNTL1_R[mpcc_id]);
gam_regs.start_end_cntl2_r = REG(MPCC_MCM_1DLUT_RAMA_END_CNTL2_R[mpcc_id]);
gam_regs.region_start = REG(MPCC_MCM_1DLUT_RAMA_REGION_0_1[mpcc_id]);
gam_regs.region_end = REG(MPCC_MCM_1DLUT_RAMA_REGION_32_33[mpcc_id]);
cm_helper_program_gamcor_xfer_func(mpc->ctx, params, &gam_regs);
}
/*program blnd lut RAM B*/
void mpc32_program_post1dlutb_settings(
struct mpc *mpc,
uint32_t mpcc_id,
const struct pwl_params *params)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
struct dcn3_xfer_func_reg gam_regs;
mpc32_post1dlut_get_reg_field(mpc30, &gam_regs);
gam_regs.start_cntl_b = REG(MPCC_MCM_1DLUT_RAMB_START_CNTL_B[mpcc_id]);
gam_regs.start_cntl_g = REG(MPCC_MCM_1DLUT_RAMB_START_CNTL_G[mpcc_id]);
gam_regs.start_cntl_r = REG(MPCC_MCM_1DLUT_RAMB_START_CNTL_R[mpcc_id]);
gam_regs.start_slope_cntl_b = REG(MPCC_MCM_1DLUT_RAMB_START_SLOPE_CNTL_B[mpcc_id]);
gam_regs.start_slope_cntl_g = REG(MPCC_MCM_1DLUT_RAMB_START_SLOPE_CNTL_G[mpcc_id]);
gam_regs.start_slope_cntl_r = REG(MPCC_MCM_1DLUT_RAMB_START_SLOPE_CNTL_R[mpcc_id]);
gam_regs.start_end_cntl1_b = REG(MPCC_MCM_1DLUT_RAMB_END_CNTL1_B[mpcc_id]);
gam_regs.start_end_cntl2_b = REG(MPCC_MCM_1DLUT_RAMB_END_CNTL2_B[mpcc_id]);
gam_regs.start_end_cntl1_g = REG(MPCC_MCM_1DLUT_RAMB_END_CNTL1_G[mpcc_id]);
gam_regs.start_end_cntl2_g = REG(MPCC_MCM_1DLUT_RAMB_END_CNTL2_G[mpcc_id]);
gam_regs.start_end_cntl1_r = REG(MPCC_MCM_1DLUT_RAMB_END_CNTL1_R[mpcc_id]);
gam_regs.start_end_cntl2_r = REG(MPCC_MCM_1DLUT_RAMB_END_CNTL2_R[mpcc_id]);
gam_regs.region_start = REG(MPCC_MCM_1DLUT_RAMB_REGION_0_1[mpcc_id]);
gam_regs.region_end = REG(MPCC_MCM_1DLUT_RAMB_REGION_32_33[mpcc_id]);
cm_helper_program_gamcor_xfer_func(mpc->ctx, params, &gam_regs);
}
void mpc32_program_post1dlut_pwl(
struct mpc *mpc,
uint32_t mpcc_id,
const struct pwl_result_data *rgb,
uint32_t num)
{
uint32_t i;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
uint32_t last_base_value_red = rgb[num-1].red_reg + rgb[num-1].delta_red_reg;
uint32_t last_base_value_green = rgb[num-1].green_reg + rgb[num-1].delta_green_reg;
uint32_t last_base_value_blue = rgb[num-1].blue_reg + rgb[num-1].delta_blue_reg;
if (is_rgb_equal(rgb, num)) {
for (i = 0 ; i < num; i++)
REG_SET(MPCC_MCM_1DLUT_LUT_DATA[mpcc_id], 0, MPCC_MCM_1DLUT_LUT_DATA, rgb[i].red_reg);
REG_SET(MPCC_MCM_1DLUT_LUT_DATA[mpcc_id], 0, MPCC_MCM_1DLUT_LUT_DATA, last_base_value_red);
} else {
REG_UPDATE(MPCC_MCM_1DLUT_LUT_CONTROL[mpcc_id], MPCC_MCM_1DLUT_LUT_WRITE_COLOR_MASK, 4);
for (i = 0 ; i < num; i++)
REG_SET(MPCC_MCM_1DLUT_LUT_DATA[mpcc_id], 0, MPCC_MCM_1DLUT_LUT_DATA, rgb[i].red_reg);
REG_SET(MPCC_MCM_1DLUT_LUT_DATA[mpcc_id], 0, MPCC_MCM_1DLUT_LUT_DATA, last_base_value_red);
REG_UPDATE(MPCC_MCM_1DLUT_LUT_CONTROL[mpcc_id], MPCC_MCM_1DLUT_LUT_WRITE_COLOR_MASK, 2);
for (i = 0 ; i < num; i++)
REG_SET(MPCC_MCM_1DLUT_LUT_DATA[mpcc_id], 0, MPCC_MCM_1DLUT_LUT_DATA, rgb[i].green_reg);
REG_SET(MPCC_MCM_1DLUT_LUT_DATA[mpcc_id], 0, MPCC_MCM_1DLUT_LUT_DATA, last_base_value_green);
REG_UPDATE(MPCC_MCM_1DLUT_LUT_CONTROL[mpcc_id], MPCC_MCM_1DLUT_LUT_WRITE_COLOR_MASK, 1);
for (i = 0 ; i < num; i++)
REG_SET(MPCC_MCM_1DLUT_LUT_DATA[mpcc_id], 0, MPCC_MCM_1DLUT_LUT_DATA, rgb[i].blue_reg);
REG_SET(MPCC_MCM_1DLUT_LUT_DATA[mpcc_id], 0, MPCC_MCM_1DLUT_LUT_DATA, last_base_value_blue);
}
}
bool mpc32_program_post1dlut(
struct mpc *mpc,
const struct pwl_params *params,
uint32_t mpcc_id)
{
enum dc_lut_mode current_mode;
enum dc_lut_mode next_mode;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
if (params == NULL) {
REG_SET(MPCC_MCM_1DLUT_CONTROL[mpcc_id], 0, MPCC_MCM_1DLUT_MODE, 0);
if (mpc->ctx->dc->debug.enable_mem_low_power.bits.cm)
mpc32_power_on_blnd_lut(mpc, mpcc_id, false);
return false;
}
current_mode = mpc32_get_post1dlut_current(mpc, mpcc_id);
if (current_mode == LUT_BYPASS || current_mode == LUT_RAM_B)
next_mode = LUT_RAM_A;
else
next_mode = LUT_RAM_B;
mpc32_power_on_blnd_lut(mpc, mpcc_id, true);
mpc32_configure_post1dlut(mpc, mpcc_id, next_mode == LUT_RAM_A);
if (next_mode == LUT_RAM_A)
mpc32_program_post1dluta_settings(mpc, mpcc_id, params);
else
mpc32_program_post1dlutb_settings(mpc, mpcc_id, params);
mpc32_program_post1dlut_pwl(
mpc, mpcc_id, params->rgb_resulted, params->hw_points_num);
REG_UPDATE_2(MPCC_MCM_1DLUT_CONTROL[mpcc_id],
MPCC_MCM_1DLUT_MODE, 2,
MPCC_MCM_1DLUT_SELECT, next_mode == LUT_RAM_A ? 0 : 1);
return true;
}
static enum dc_lut_mode mpc32_get_shaper_current(struct mpc *mpc, uint32_t mpcc_id)
{
enum dc_lut_mode mode;
uint32_t state_mode;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
REG_GET(MPCC_MCM_SHAPER_CONTROL[mpcc_id], MPCC_MCM_SHAPER_MODE_CURRENT, &state_mode);
switch (state_mode) {
case 0:
mode = LUT_BYPASS;
break;
case 1:
mode = LUT_RAM_A;
break;
case 2:
mode = LUT_RAM_B;
break;
default:
mode = LUT_BYPASS;
break;
}
return mode;
}
void mpc32_configure_shaper_lut(
struct mpc *mpc,
bool is_ram_a,
uint32_t mpcc_id)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
REG_UPDATE(MPCC_MCM_SHAPER_LUT_WRITE_EN_MASK[mpcc_id],
MPCC_MCM_SHAPER_LUT_WRITE_EN_MASK, 7);
REG_UPDATE(MPCC_MCM_SHAPER_LUT_WRITE_EN_MASK[mpcc_id],
MPCC_MCM_SHAPER_LUT_WRITE_SEL, is_ram_a == true ? 0:1);
REG_SET(MPCC_MCM_SHAPER_LUT_INDEX[mpcc_id], 0, MPCC_MCM_SHAPER_LUT_INDEX, 0);
}
void mpc32_program_shaper_luta_settings(
struct mpc *mpc,
const struct pwl_params *params,
uint32_t mpcc_id)
{
const struct gamma_curve *curve;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
REG_SET_2(MPCC_MCM_SHAPER_RAMA_START_CNTL_B[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].blue.custom_float_x,
MPCC_MCM_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0);
REG_SET_2(MPCC_MCM_SHAPER_RAMA_START_CNTL_G[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].green.custom_float_x,
MPCC_MCM_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0);
REG_SET_2(MPCC_MCM_SHAPER_RAMA_START_CNTL_R[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].red.custom_float_x,
MPCC_MCM_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0);
REG_SET_2(MPCC_MCM_SHAPER_RAMA_END_CNTL_B[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].blue.custom_float_x,
MPCC_MCM_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].blue.custom_float_y);
REG_SET_2(MPCC_MCM_SHAPER_RAMA_END_CNTL_G[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].green.custom_float_x,
MPCC_MCM_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].green.custom_float_y);
REG_SET_2(MPCC_MCM_SHAPER_RAMA_END_CNTL_R[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].red.custom_float_x,
MPCC_MCM_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].red.custom_float_y);
curve = params->arr_curve_points;
REG_SET_4(MPCC_MCM_SHAPER_RAMA_REGION_0_1[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMA_REGION_2_3[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMA_REGION_4_5[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMA_REGION_6_7[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMA_REGION_8_9[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMA_REGION_10_11[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMA_REGION_12_13[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMA_REGION_14_15[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMA_REGION_16_17[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMA_REGION_18_19[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMA_REGION_20_21[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMA_REGION_22_23[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMA_REGION_24_25[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMA_REGION_26_27[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMA_REGION_28_29[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMA_REGION_30_31[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMA_REGION_32_33[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
}
void mpc32_program_shaper_lutb_settings(
struct mpc *mpc,
const struct pwl_params *params,
uint32_t mpcc_id)
{
const struct gamma_curve *curve;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
REG_SET_2(MPCC_MCM_SHAPER_RAMB_START_CNTL_B[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].blue.custom_float_x,
MPCC_MCM_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0);
REG_SET_2(MPCC_MCM_SHAPER_RAMB_START_CNTL_G[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].green.custom_float_x,
MPCC_MCM_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0);
REG_SET_2(MPCC_MCM_SHAPER_RAMB_START_CNTL_R[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].red.custom_float_x,
MPCC_MCM_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0);
REG_SET_2(MPCC_MCM_SHAPER_RAMB_END_CNTL_B[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].blue.custom_float_x,
MPCC_MCM_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].blue.custom_float_y);
REG_SET_2(MPCC_MCM_SHAPER_RAMB_END_CNTL_G[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].green.custom_float_x,
MPCC_MCM_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].green.custom_float_y);
REG_SET_2(MPCC_MCM_SHAPER_RAMB_END_CNTL_R[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].red.custom_float_x,
MPCC_MCM_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].red.custom_float_y);
curve = params->arr_curve_points;
REG_SET_4(MPCC_MCM_SHAPER_RAMB_REGION_0_1[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMB_REGION_2_3[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMB_REGION_4_5[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMB_REGION_6_7[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMB_REGION_8_9[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMB_REGION_10_11[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMB_REGION_12_13[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMB_REGION_14_15[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMB_REGION_16_17[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMB_REGION_18_19[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMB_REGION_20_21[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMB_REGION_22_23[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMB_REGION_24_25[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMB_REGION_26_27[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMB_REGION_28_29[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMB_REGION_30_31[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(MPCC_MCM_SHAPER_RAMB_REGION_32_33[mpcc_id], 0,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPCC_MCM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
}
void mpc32_program_shaper_lut(
struct mpc *mpc,
const struct pwl_result_data *rgb,
uint32_t num,
uint32_t mpcc_id)
{
uint32_t i, red, green, blue;
uint32_t red_delta, green_delta, blue_delta;
uint32_t red_value, green_value, blue_value;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
for (i = 0 ; i < num; i++) {
red = rgb[i].red_reg;
green = rgb[i].green_reg;
blue = rgb[i].blue_reg;
red_delta = rgb[i].delta_red_reg;
green_delta = rgb[i].delta_green_reg;
blue_delta = rgb[i].delta_blue_reg;
red_value = ((red_delta & 0x3ff) << 14) | (red & 0x3fff);
green_value = ((green_delta & 0x3ff) << 14) | (green & 0x3fff);
blue_value = ((blue_delta & 0x3ff) << 14) | (blue & 0x3fff);
REG_SET(MPCC_MCM_SHAPER_LUT_DATA[mpcc_id], 0, MPCC_MCM_SHAPER_LUT_DATA, red_value);
REG_SET(MPCC_MCM_SHAPER_LUT_DATA[mpcc_id], 0, MPCC_MCM_SHAPER_LUT_DATA, green_value);
REG_SET(MPCC_MCM_SHAPER_LUT_DATA[mpcc_id], 0, MPCC_MCM_SHAPER_LUT_DATA, blue_value);
}
}
void mpc32_power_on_shaper_3dlut(
struct mpc *mpc,
uint32_t mpcc_id,
bool power_on)
{
uint32_t power_status_shaper = 2;
uint32_t power_status_3dlut = 2;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
int max_retries = 10;
REG_SET(MPCC_MCM_MEM_PWR_CTRL[mpcc_id], 0,
MPCC_MCM_3DLUT_MEM_PWR_DIS, power_on == true ? 1:0);
/* wait for memory to fully power up */
if (power_on && mpc->ctx->dc->debug.enable_mem_low_power.bits.mpc) {
REG_WAIT(MPCC_MCM_MEM_PWR_CTRL[mpcc_id], MPCC_MCM_SHAPER_MEM_PWR_STATE, 0, 1, max_retries);
REG_WAIT(MPCC_MCM_MEM_PWR_CTRL[mpcc_id], MPCC_MCM_3DLUT_MEM_PWR_STATE, 0, 1, max_retries);
}
/*read status is not mandatory, it is just for debugging*/
REG_GET(MPCC_MCM_MEM_PWR_CTRL[mpcc_id], MPCC_MCM_SHAPER_MEM_PWR_STATE, &power_status_shaper);
REG_GET(MPCC_MCM_MEM_PWR_CTRL[mpcc_id], MPCC_MCM_3DLUT_MEM_PWR_STATE, &power_status_3dlut);
if (power_status_shaper != 0 && power_on == true)
BREAK_TO_DEBUGGER();
if (power_status_3dlut != 0 && power_on == true)
BREAK_TO_DEBUGGER();
}
bool mpc32_program_shaper(
struct mpc *mpc,
const struct pwl_params *params,
uint32_t mpcc_id)
{
enum dc_lut_mode current_mode;
enum dc_lut_mode next_mode;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
if (params == NULL) {
REG_SET(MPCC_MCM_SHAPER_CONTROL[mpcc_id], 0, MPCC_MCM_SHAPER_LUT_MODE, 0);
return false;
}
if (mpc->ctx->dc->debug.enable_mem_low_power.bits.mpc)
mpc32_power_on_shaper_3dlut(mpc, mpcc_id, true);
current_mode = mpc32_get_shaper_current(mpc, mpcc_id);
if (current_mode == LUT_BYPASS || current_mode == LUT_RAM_A)
next_mode = LUT_RAM_B;
else
next_mode = LUT_RAM_A;
mpc32_configure_shaper_lut(mpc, next_mode == LUT_RAM_A, mpcc_id);
if (next_mode == LUT_RAM_A)
mpc32_program_shaper_luta_settings(mpc, params, mpcc_id);
else
mpc32_program_shaper_lutb_settings(mpc, params, mpcc_id);
mpc32_program_shaper_lut(
mpc, params->rgb_resulted, params->hw_points_num, mpcc_id);
REG_SET(MPCC_MCM_SHAPER_CONTROL[mpcc_id], 0, MPCC_MCM_SHAPER_LUT_MODE, next_mode == LUT_RAM_A ? 1:2);
mpc32_power_on_shaper_3dlut(mpc, mpcc_id, false);
return true;
}
static enum dc_lut_mode get3dlut_config(
struct mpc *mpc,
bool *is_17x17x17,
bool *is_12bits_color_channel,
int mpcc_id)
{
uint32_t i_mode, i_enable_10bits, lut_size;
enum dc_lut_mode mode;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
REG_GET(MPCC_MCM_3DLUT_MODE[mpcc_id],
MPCC_MCM_3DLUT_MODE_CURRENT, &i_mode);
REG_GET(MPCC_MCM_3DLUT_READ_WRITE_CONTROL[mpcc_id],
MPCC_MCM_3DLUT_30BIT_EN, &i_enable_10bits);
switch (i_mode) {
case 0:
mode = LUT_BYPASS;
break;
case 1:
mode = LUT_RAM_A;
break;
case 2:
mode = LUT_RAM_B;
break;
default:
mode = LUT_BYPASS;
break;
}
if (i_enable_10bits > 0)
*is_12bits_color_channel = false;
else
*is_12bits_color_channel = true;
REG_GET(MPCC_MCM_3DLUT_MODE[mpcc_id], MPCC_MCM_3DLUT_SIZE, &lut_size);
if (lut_size == 0)
*is_17x17x17 = true;
else
*is_17x17x17 = false;
return mode;
}
void mpc32_select_3dlut_ram(
struct mpc *mpc,
enum dc_lut_mode mode,
bool is_color_channel_12bits,
uint32_t mpcc_id)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
REG_UPDATE_2(MPCC_MCM_3DLUT_READ_WRITE_CONTROL[mpcc_id],
MPCC_MCM_3DLUT_RAM_SEL, mode == LUT_RAM_A ? 0 : 1,
MPCC_MCM_3DLUT_30BIT_EN, is_color_channel_12bits == true ? 0:1);
}
void mpc32_select_3dlut_ram_mask(
struct mpc *mpc,
uint32_t ram_selection_mask,
uint32_t mpcc_id)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
REG_UPDATE(MPCC_MCM_3DLUT_READ_WRITE_CONTROL[mpcc_id], MPCC_MCM_3DLUT_WRITE_EN_MASK,
ram_selection_mask);
REG_SET(MPCC_MCM_3DLUT_INDEX[mpcc_id], 0, MPCC_MCM_3DLUT_INDEX, 0);
}
void mpc32_set3dlut_ram12(
struct mpc *mpc,
const struct dc_rgb *lut,
uint32_t entries,
uint32_t mpcc_id)
{
uint32_t i, red, green, blue, red1, green1, blue1;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
for (i = 0 ; i < entries; i += 2) {
red = lut[i].red<<4;
green = lut[i].green<<4;
blue = lut[i].blue<<4;
red1 = lut[i+1].red<<4;
green1 = lut[i+1].green<<4;
blue1 = lut[i+1].blue<<4;
REG_SET_2(MPCC_MCM_3DLUT_DATA[mpcc_id], 0,
MPCC_MCM_3DLUT_DATA0, red,
MPCC_MCM_3DLUT_DATA1, red1);
REG_SET_2(MPCC_MCM_3DLUT_DATA[mpcc_id], 0,
MPCC_MCM_3DLUT_DATA0, green,
MPCC_MCM_3DLUT_DATA1, green1);
REG_SET_2(MPCC_MCM_3DLUT_DATA[mpcc_id], 0,
MPCC_MCM_3DLUT_DATA0, blue,
MPCC_MCM_3DLUT_DATA1, blue1);
}
}
void mpc32_set3dlut_ram10(
struct mpc *mpc,
const struct dc_rgb *lut,
uint32_t entries,
uint32_t mpcc_id)
{
uint32_t i, red, green, blue, value;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
for (i = 0; i < entries; i++) {
red = lut[i].red;
green = lut[i].green;
blue = lut[i].blue;
//should we shift red 22bit and green 12?
value = (red<<20) | (green<<10) | blue;
REG_SET(MPCC_MCM_3DLUT_DATA_30BIT[mpcc_id], 0, MPCC_MCM_3DLUT_DATA_30BIT, value);
}
}
static void mpc32_set_3dlut_mode(
struct mpc *mpc,
enum dc_lut_mode mode,
bool is_color_channel_12bits,
bool is_lut_size17x17x17,
uint32_t mpcc_id)
{
uint32_t lut_mode;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
// set default 3DLUT to pre-blend
// TODO: implement movable CM location
REG_UPDATE(MPCC_MOVABLE_CM_LOCATION_CONTROL[mpcc_id], MPCC_MOVABLE_CM_LOCATION_CNTL, 0);
if (mode == LUT_BYPASS)
lut_mode = 0;
else if (mode == LUT_RAM_A)
lut_mode = 1;
else
lut_mode = 2;
REG_UPDATE_2(MPCC_MCM_3DLUT_MODE[mpcc_id],
MPCC_MCM_3DLUT_MODE, lut_mode,
MPCC_MCM_3DLUT_SIZE, is_lut_size17x17x17 == true ? 0 : 1);
}
bool mpc32_program_3dlut(
struct mpc *mpc,
const struct tetrahedral_params *params,
int mpcc_id)
{
enum dc_lut_mode mode;
bool is_17x17x17;
bool is_12bits_color_channel;
const struct dc_rgb *lut0;
const struct dc_rgb *lut1;
const struct dc_rgb *lut2;
const struct dc_rgb *lut3;
int lut_size0;
int lut_size;
if (params == NULL) {
mpc32_set_3dlut_mode(mpc, LUT_BYPASS, false, false, mpcc_id);
return false;
}
mpc32_power_on_shaper_3dlut(mpc, mpcc_id, true);
mode = get3dlut_config(mpc, &is_17x17x17, &is_12bits_color_channel, mpcc_id);
if (mode == LUT_BYPASS || mode == LUT_RAM_B)
mode = LUT_RAM_A;
else
mode = LUT_RAM_B;
is_17x17x17 = !params->use_tetrahedral_9;
is_12bits_color_channel = params->use_12bits;
if (is_17x17x17) {
lut0 = params->tetrahedral_17.lut0;
lut1 = params->tetrahedral_17.lut1;
lut2 = params->tetrahedral_17.lut2;
lut3 = params->tetrahedral_17.lut3;
lut_size0 = sizeof(params->tetrahedral_17.lut0)/
sizeof(params->tetrahedral_17.lut0[0]);
lut_size = sizeof(params->tetrahedral_17.lut1)/
sizeof(params->tetrahedral_17.lut1[0]);
} else {
lut0 = params->tetrahedral_9.lut0;
lut1 = params->tetrahedral_9.lut1;
lut2 = params->tetrahedral_9.lut2;
lut3 = params->tetrahedral_9.lut3;
lut_size0 = sizeof(params->tetrahedral_9.lut0)/
sizeof(params->tetrahedral_9.lut0[0]);
lut_size = sizeof(params->tetrahedral_9.lut1)/
sizeof(params->tetrahedral_9.lut1[0]);
}
mpc32_select_3dlut_ram(mpc, mode,
is_12bits_color_channel, mpcc_id);
mpc32_select_3dlut_ram_mask(mpc, 0x1, mpcc_id);
if (is_12bits_color_channel)
mpc32_set3dlut_ram12(mpc, lut0, lut_size0, mpcc_id);
else
mpc32_set3dlut_ram10(mpc, lut0, lut_size0, mpcc_id);
mpc32_select_3dlut_ram_mask(mpc, 0x2, mpcc_id);
if (is_12bits_color_channel)
mpc32_set3dlut_ram12(mpc, lut1, lut_size, mpcc_id);
else
mpc32_set3dlut_ram10(mpc, lut1, lut_size, mpcc_id);
mpc32_select_3dlut_ram_mask(mpc, 0x4, mpcc_id);
if (is_12bits_color_channel)
mpc32_set3dlut_ram12(mpc, lut2, lut_size, mpcc_id);
else
mpc32_set3dlut_ram10(mpc, lut2, lut_size, mpcc_id);
mpc32_select_3dlut_ram_mask(mpc, 0x8, mpcc_id);
if (is_12bits_color_channel)
mpc32_set3dlut_ram12(mpc, lut3, lut_size, mpcc_id);
else
mpc32_set3dlut_ram10(mpc, lut3, lut_size, mpcc_id);
mpc32_set_3dlut_mode(mpc, mode, is_12bits_color_channel,
is_17x17x17, mpcc_id);
if (mpc->ctx->dc->debug.enable_mem_low_power.bits.mpc)
mpc32_power_on_shaper_3dlut(mpc, mpcc_id, false);
return true;
}
static const struct mpc_funcs dcn32_mpc_funcs = {
.read_mpcc_state = mpc1_read_mpcc_state,
.insert_plane = mpc1_insert_plane,
.remove_mpcc = mpc1_remove_mpcc,
.mpc_init = mpc32_mpc_init,
.mpc_init_single_inst = mpc1_mpc_init_single_inst,
.update_blending = mpc2_update_blending,
.cursor_lock = mpc1_cursor_lock,
.get_mpcc_for_dpp = mpc1_get_mpcc_for_dpp,
.wait_for_idle = mpc2_assert_idle_mpcc,
.assert_mpcc_idle_before_connect = mpc2_assert_mpcc_idle_before_connect,
.init_mpcc_list_from_hw = mpc1_init_mpcc_list_from_hw,
.set_denorm = mpc3_set_denorm,
.set_denorm_clamp = mpc3_set_denorm_clamp,
.set_output_csc = mpc3_set_output_csc,
.set_ocsc_default = mpc3_set_ocsc_default,
.set_output_gamma = mpc3_set_output_gamma,
.insert_plane_to_secondary = NULL,
.remove_mpcc_from_secondary = NULL,
.set_dwb_mux = mpc3_set_dwb_mux,
.disable_dwb_mux = mpc3_disable_dwb_mux,
.is_dwb_idle = mpc3_is_dwb_idle,
.set_out_rate_control = mpc3_set_out_rate_control,
.set_gamut_remap = mpc3_set_gamut_remap,
.program_shaper = mpc32_program_shaper,
.program_3dlut = mpc32_program_3dlut,
.program_1dlut = mpc32_program_post1dlut,
.acquire_rmu = NULL,
.release_rmu = NULL,
.power_on_mpc_mem_pwr = mpc3_power_on_ogam_lut,
.get_mpc_out_mux = mpc1_get_mpc_out_mux,
.set_bg_color = mpc1_set_bg_color,
};
void dcn32_mpc_construct(struct dcn30_mpc *mpc30,
struct dc_context *ctx,
const struct dcn30_mpc_registers *mpc_regs,
const struct dcn30_mpc_shift *mpc_shift,
const struct dcn30_mpc_mask *mpc_mask,
int num_mpcc,
int num_rmu)
{
int i;
mpc30->base.ctx = ctx;
mpc30->base.funcs = &dcn32_mpc_funcs;
mpc30->mpc_regs = mpc_regs;
mpc30->mpc_shift = mpc_shift;
mpc30->mpc_mask = mpc_mask;
mpc30->mpcc_in_use_mask = 0;
mpc30->num_mpcc = num_mpcc;
mpc30->num_rmu = num_rmu;
for (i = 0; i < MAX_MPCC; i++)
mpc3_init_mpcc(&mpc30->base.mpcc_array[i], i);
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn32/dcn32_mpc.c |
/*
* Copyright 2012-20 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dce_calcs.h"
#include "reg_helper.h"
#include "basics/conversion.h"
#include "dcn32_hubp.h"
#define REG(reg)\
hubp2->hubp_regs->reg
#define CTX \
hubp2->base.ctx
#undef FN
#define FN(reg_name, field_name) \
hubp2->hubp_shift->field_name, hubp2->hubp_mask->field_name
void hubp32_update_force_pstate_disallow(struct hubp *hubp, bool pstate_disallow)
{
struct dcn20_hubp *hubp2 = TO_DCN20_HUBP(hubp);
REG_UPDATE_2(UCLK_PSTATE_FORCE,
DATA_UCLK_PSTATE_FORCE_EN, pstate_disallow,
DATA_UCLK_PSTATE_FORCE_VALUE, 0);
}
void hubp32_update_force_cursor_pstate_disallow(struct hubp *hubp, bool pstate_disallow)
{
struct dcn20_hubp *hubp2 = TO_DCN20_HUBP(hubp);
REG_UPDATE_2(UCLK_PSTATE_FORCE,
CURSOR_UCLK_PSTATE_FORCE_EN, pstate_disallow,
CURSOR_UCLK_PSTATE_FORCE_VALUE, 0);
}
void hubp32_update_mall_sel(struct hubp *hubp, uint32_t mall_sel, bool c_cursor)
{
struct dcn20_hubp *hubp2 = TO_DCN20_HUBP(hubp);
// Also cache cursor in MALL if using MALL for SS
REG_UPDATE_2(DCHUBP_MALL_CONFIG, USE_MALL_SEL, mall_sel,
USE_MALL_FOR_CURSOR, c_cursor);
}
void hubp32_prepare_subvp_buffering(struct hubp *hubp, bool enable)
{
struct dcn20_hubp *hubp2 = TO_DCN20_HUBP(hubp);
REG_UPDATE(DCHUBP_VMPG_CONFIG, FORCE_ONE_ROW_FOR_FRAME, enable);
/* Programming guide suggests CURSOR_REQ_MODE = 1 for SubVP:
* For Pstate change using the MALL with sub-viewport buffering,
* the cursor does not use the MALL (USE_MALL_FOR_CURSOR is ignored)
* and sub-viewport positioning by Display FW has to avoid the cursor
* requests to DRAM (set CURSOR_REQ_MODE = 1 to minimize this exclusion).
*
* CURSOR_REQ_MODE = 1 begins fetching cursor data at the beginning of display prefetch.
* Setting this should allow the sub-viewport position to always avoid the cursor because
* we do not allow the sub-viewport region to overlap with display prefetch (i.e. during blank).
*/
REG_UPDATE(CURSOR_CONTROL, CURSOR_REQ_MODE, enable);
}
void hubp32_phantom_hubp_post_enable(struct hubp *hubp)
{
uint32_t reg_val;
struct dcn20_hubp *hubp2 = TO_DCN20_HUBP(hubp);
/* For phantom pipe enable, disable GSL */
REG_UPDATE(DCSURF_FLIP_CONTROL2, SURFACE_GSL_ENABLE, 0);
REG_UPDATE(DCHUBP_CNTL, HUBP_BLANK_EN, 1);
reg_val = REG_READ(DCHUBP_CNTL);
if (reg_val) {
/* init sequence workaround: in case HUBP is
* power gated, this wait would timeout.
*
* we just wrote reg_val to non-0, if it stay 0
* it means HUBP is gated
*/
REG_WAIT(DCHUBP_CNTL,
HUBP_NO_OUTSTANDING_REQ, 1,
1, 200);
}
}
void hubp32_cursor_set_attributes(
struct hubp *hubp,
const struct dc_cursor_attributes *attr)
{
struct dcn20_hubp *hubp2 = TO_DCN20_HUBP(hubp);
enum cursor_pitch hw_pitch = hubp1_get_cursor_pitch(attr->pitch);
enum cursor_lines_per_chunk lpc = hubp2_get_lines_per_chunk(
attr->width, attr->color_format);
//Round cursor width up to next multiple of 64
uint32_t cursor_width = ((attr->width + 63) / 64) * 64;
uint32_t cursor_height = attr->height;
uint32_t cursor_size = cursor_width * cursor_height;
hubp->curs_attr = *attr;
REG_UPDATE(CURSOR_SURFACE_ADDRESS_HIGH,
CURSOR_SURFACE_ADDRESS_HIGH, attr->address.high_part);
REG_UPDATE(CURSOR_SURFACE_ADDRESS,
CURSOR_SURFACE_ADDRESS, attr->address.low_part);
REG_UPDATE_2(CURSOR_SIZE,
CURSOR_WIDTH, attr->width,
CURSOR_HEIGHT, attr->height);
REG_UPDATE_4(CURSOR_CONTROL,
CURSOR_MODE, attr->color_format,
CURSOR_2X_MAGNIFY, attr->attribute_flags.bits.ENABLE_MAGNIFICATION,
CURSOR_PITCH, hw_pitch,
CURSOR_LINES_PER_CHUNK, lpc);
REG_SET_2(CURSOR_SETTINGS, 0,
/* no shift of the cursor HDL schedule */
CURSOR0_DST_Y_OFFSET, 0,
/* used to shift the cursor chunk request deadline */
CURSOR0_CHUNK_HDL_ADJUST, 3);
switch (attr->color_format) {
case CURSOR_MODE_MONO:
cursor_size /= 2;
break;
case CURSOR_MODE_COLOR_1BIT_AND:
case CURSOR_MODE_COLOR_PRE_MULTIPLIED_ALPHA:
case CURSOR_MODE_COLOR_UN_PRE_MULTIPLIED_ALPHA:
cursor_size *= 4;
break;
case CURSOR_MODE_COLOR_64BIT_FP_PRE_MULTIPLIED:
case CURSOR_MODE_COLOR_64BIT_FP_UN_PRE_MULTIPLIED:
default:
cursor_size *= 8;
break;
}
if (cursor_size > 16384)
REG_UPDATE(DCHUBP_MALL_CONFIG, USE_MALL_FOR_CURSOR, true);
else
REG_UPDATE(DCHUBP_MALL_CONFIG, USE_MALL_FOR_CURSOR, false);
}
void hubp32_init(struct hubp *hubp)
{
struct dcn20_hubp *hubp2 = TO_DCN20_HUBP(hubp);
REG_WRITE(HUBPREQ_DEBUG_DB, 1 << 8);
}
static struct hubp_funcs dcn32_hubp_funcs = {
.hubp_enable_tripleBuffer = hubp2_enable_triplebuffer,
.hubp_is_triplebuffer_enabled = hubp2_is_triplebuffer_enabled,
.hubp_program_surface_flip_and_addr = hubp3_program_surface_flip_and_addr,
.hubp_program_surface_config = hubp3_program_surface_config,
.hubp_is_flip_pending = hubp2_is_flip_pending,
.hubp_setup = hubp3_setup,
.hubp_setup_interdependent = hubp2_setup_interdependent,
.hubp_set_vm_system_aperture_settings = hubp3_set_vm_system_aperture_settings,
.set_blank = hubp2_set_blank,
.set_blank_regs = hubp2_set_blank_regs,
.dcc_control = hubp3_dcc_control,
.mem_program_viewport = min_set_viewport,
.set_cursor_attributes = hubp32_cursor_set_attributes,
.set_cursor_position = hubp2_cursor_set_position,
.hubp_clk_cntl = hubp2_clk_cntl,
.hubp_vtg_sel = hubp2_vtg_sel,
.dmdata_set_attributes = hubp3_dmdata_set_attributes,
.dmdata_load = hubp2_dmdata_load,
.dmdata_status_done = hubp2_dmdata_status_done,
.hubp_read_state = hubp3_read_state,
.hubp_clear_underflow = hubp2_clear_underflow,
.hubp_set_flip_control_surface_gsl = hubp2_set_flip_control_surface_gsl,
.hubp_init = hubp3_init,
.set_unbounded_requesting = hubp31_set_unbounded_requesting,
.hubp_soft_reset = hubp31_soft_reset,
.hubp_set_flip_int = hubp1_set_flip_int,
.hubp_in_blank = hubp1_in_blank,
.hubp_update_force_pstate_disallow = hubp32_update_force_pstate_disallow,
.hubp_update_force_cursor_pstate_disallow = hubp32_update_force_cursor_pstate_disallow,
.phantom_hubp_post_enable = hubp32_phantom_hubp_post_enable,
.hubp_update_mall_sel = hubp32_update_mall_sel,
.hubp_prepare_subvp_buffering = hubp32_prepare_subvp_buffering
};
bool hubp32_construct(
struct dcn20_hubp *hubp2,
struct dc_context *ctx,
uint32_t inst,
const struct dcn_hubp2_registers *hubp_regs,
const struct dcn_hubp2_shift *hubp_shift,
const struct dcn_hubp2_mask *hubp_mask)
{
hubp2->base.funcs = &dcn32_hubp_funcs;
hubp2->base.ctx = ctx;
hubp2->hubp_regs = hubp_regs;
hubp2->hubp_shift = hubp_shift;
hubp2->hubp_mask = hubp_mask;
hubp2->base.inst = inst;
hubp2->base.opp_id = OPP_ID_INVALID;
hubp2->base.mpcc_id = 0xf;
return true;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn32/dcn32_hubp.c |
/*
* Copyright 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dc_bios_types.h"
#include "dcn30/dcn30_dio_stream_encoder.h"
#include "dcn32_dio_stream_encoder.h"
#include "reg_helper.h"
#include "hw_shared.h"
#include "link.h"
#include "dpcd_defs.h"
#define DC_LOGGER \
enc1->base.ctx->logger
#define REG(reg)\
(enc1->regs->reg)
#undef FN
#define FN(reg_name, field_name) \
enc1->se_shift->field_name, enc1->se_mask->field_name
#define VBI_LINE_0 0
#define HDMI_CLOCK_CHANNEL_RATE_MORE_340M 340000
#define CTX \
enc1->base.ctx
static void enc32_dp_set_odm_combine(
struct stream_encoder *enc,
bool odm_combine)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
REG_UPDATE(DP_PIXEL_FORMAT, DP_PIXEL_PER_CYCLE_PROCESSING_MODE, odm_combine ? 1 : 0);
}
/* setup stream encoder in dvi mode */
static void enc32_stream_encoder_dvi_set_stream_attribute(
struct stream_encoder *enc,
struct dc_crtc_timing *crtc_timing,
bool is_dual_link)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
if (!enc->ctx->dc->debug.avoid_vbios_exec_table) {
struct bp_encoder_control cntl = {0};
cntl.action = ENCODER_CONTROL_SETUP;
cntl.engine_id = enc1->base.id;
cntl.signal = is_dual_link ?
SIGNAL_TYPE_DVI_DUAL_LINK : SIGNAL_TYPE_DVI_SINGLE_LINK;
cntl.enable_dp_audio = false;
cntl.pixel_clock = crtc_timing->pix_clk_100hz / 10;
cntl.lanes_number = (is_dual_link) ? LANE_COUNT_EIGHT : LANE_COUNT_FOUR;
if (enc1->base.bp->funcs->encoder_control(
enc1->base.bp, &cntl) != BP_RESULT_OK)
return;
} else {
//Set pattern for clock channel, default vlue 0x63 does not work
REG_UPDATE(DIG_CLOCK_PATTERN, DIG_CLOCK_PATTERN, 0x1F);
//DIG_BE_TMDS_DVI_MODE : TMDS-DVI mode is already set in link_encoder_setup
//DIG_SOURCE_SELECT is already set in dig_connect_to_otg
/* DIG_START is removed from the register spec */
}
ASSERT(crtc_timing->pixel_encoding == PIXEL_ENCODING_RGB);
ASSERT(crtc_timing->display_color_depth == COLOR_DEPTH_888);
enc1_stream_encoder_set_stream_attribute_helper(enc1, crtc_timing);
}
/* setup stream encoder in hdmi mode */
static void enc32_stream_encoder_hdmi_set_stream_attribute(
struct stream_encoder *enc,
struct dc_crtc_timing *crtc_timing,
int actual_pix_clk_khz,
bool enable_audio)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
if (!enc->ctx->dc->debug.avoid_vbios_exec_table) {
struct bp_encoder_control cntl = {0};
cntl.action = ENCODER_CONTROL_SETUP;
cntl.engine_id = enc1->base.id;
cntl.signal = SIGNAL_TYPE_HDMI_TYPE_A;
cntl.enable_dp_audio = enable_audio;
cntl.pixel_clock = actual_pix_clk_khz;
cntl.lanes_number = LANE_COUNT_FOUR;
if (enc1->base.bp->funcs->encoder_control(
enc1->base.bp, &cntl) != BP_RESULT_OK)
return;
} else {
//Set pattern for clock channel, default vlue 0x63 does not work
REG_UPDATE(DIG_CLOCK_PATTERN, DIG_CLOCK_PATTERN, 0x1F);
//DIG_BE_TMDS_HDMI_MODE : TMDS-HDMI mode is already set in link_encoder_setup
//DIG_SOURCE_SELECT is already set in dig_connect_to_otg
/* DIG_START is removed from the register spec */
}
/* Configure pixel encoding */
enc1_stream_encoder_set_stream_attribute_helper(enc1, crtc_timing);
/* setup HDMI engine */
REG_UPDATE_6(HDMI_CONTROL,
HDMI_PACKET_GEN_VERSION, 1,
HDMI_KEEPOUT_MODE, 1,
HDMI_DEEP_COLOR_ENABLE, 0,
HDMI_DATA_SCRAMBLE_EN, 0,
HDMI_NO_EXTRA_NULL_PACKET_FILLED, 1,
HDMI_CLOCK_CHANNEL_RATE, 0);
/* Configure color depth */
switch (crtc_timing->display_color_depth) {
case COLOR_DEPTH_888:
REG_UPDATE(HDMI_CONTROL, HDMI_DEEP_COLOR_DEPTH, 0);
break;
case COLOR_DEPTH_101010:
if (crtc_timing->pixel_encoding == PIXEL_ENCODING_YCBCR422) {
REG_UPDATE_2(HDMI_CONTROL,
HDMI_DEEP_COLOR_DEPTH, 1,
HDMI_DEEP_COLOR_ENABLE, 0);
} else {
REG_UPDATE_2(HDMI_CONTROL,
HDMI_DEEP_COLOR_DEPTH, 1,
HDMI_DEEP_COLOR_ENABLE, 1);
}
break;
case COLOR_DEPTH_121212:
if (crtc_timing->pixel_encoding == PIXEL_ENCODING_YCBCR422) {
REG_UPDATE_2(HDMI_CONTROL,
HDMI_DEEP_COLOR_DEPTH, 2,
HDMI_DEEP_COLOR_ENABLE, 0);
} else {
REG_UPDATE_2(HDMI_CONTROL,
HDMI_DEEP_COLOR_DEPTH, 2,
HDMI_DEEP_COLOR_ENABLE, 1);
}
break;
case COLOR_DEPTH_161616:
REG_UPDATE_2(HDMI_CONTROL,
HDMI_DEEP_COLOR_DEPTH, 3,
HDMI_DEEP_COLOR_ENABLE, 1);
break;
default:
break;
}
if (actual_pix_clk_khz >= HDMI_CLOCK_CHANNEL_RATE_MORE_340M) {
/* enable HDMI data scrambler
* HDMI_CLOCK_CHANNEL_RATE_MORE_340M
* Clock channel frequency is 1/4 of character rate.
*/
REG_UPDATE_2(HDMI_CONTROL,
HDMI_DATA_SCRAMBLE_EN, 1,
HDMI_CLOCK_CHANNEL_RATE, 1);
} else if (crtc_timing->flags.LTE_340MCSC_SCRAMBLE) {
/* TODO: New feature for DCE11, still need to implement */
/* enable HDMI data scrambler
* HDMI_CLOCK_CHANNEL_FREQ_EQUAL_TO_CHAR_RATE
* Clock channel frequency is the same
* as character rate
*/
REG_UPDATE_2(HDMI_CONTROL,
HDMI_DATA_SCRAMBLE_EN, 1,
HDMI_CLOCK_CHANNEL_RATE, 0);
}
/* Enable transmission of General Control packet on every frame */
REG_UPDATE_3(HDMI_VBI_PACKET_CONTROL,
HDMI_GC_CONT, 1,
HDMI_GC_SEND, 1,
HDMI_NULL_SEND, 1);
/* Disable Audio Content Protection packet transmission */
REG_UPDATE(HDMI_VBI_PACKET_CONTROL, HDMI_ACP_SEND, 0);
/* following belongs to audio */
/* Enable Audio InfoFrame packet transmission. */
REG_UPDATE(HDMI_INFOFRAME_CONTROL0, HDMI_AUDIO_INFO_SEND, 1);
/* update double-buffered AUDIO_INFO registers immediately */
ASSERT(enc->afmt);
enc->afmt->funcs->audio_info_immediate_update(enc->afmt);
/* Select line number on which to send Audio InfoFrame packets */
REG_UPDATE(HDMI_INFOFRAME_CONTROL1, HDMI_AUDIO_INFO_LINE,
VBI_LINE_0 + 2);
/* set HDMI GC AVMUTE */
REG_UPDATE(HDMI_GC, HDMI_GC_AVMUTE, 0);
}
static bool is_two_pixels_per_containter(const struct dc_crtc_timing *timing)
{
bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420;
two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422
&& !timing->dsc_cfg.ycbcr422_simple);
return two_pix;
}
static bool is_h_timing_divisible_by_2(const struct dc_crtc_timing *timing)
{
/* math borrowed from function of same name in inc/resource
* checks if h_timing is divisible by 2
*/
bool divisible = false;
uint16_t h_blank_start = 0;
uint16_t h_blank_end = 0;
if (timing) {
h_blank_start = timing->h_total - timing->h_front_porch;
h_blank_end = h_blank_start - timing->h_addressable;
/* HTOTAL, Hblank start/end, and Hsync start/end all must be
* divisible by 2 in order for the horizontal timing params
* to be considered divisible by 2. Hsync start is always 0.
*/
divisible = (timing->h_total % 2 == 0) &&
(h_blank_start % 2 == 0) &&
(h_blank_end % 2 == 0) &&
(timing->h_sync_width % 2 == 0);
}
return divisible;
}
static bool is_dp_dig_pixel_rate_div_policy(struct dc *dc, const struct dc_crtc_timing *timing)
{
/* should be functionally the same as dcn32_is_dp_dig_pixel_rate_div_policy for DP encoders*/
return is_h_timing_divisible_by_2(timing) &&
dc->debug.enable_dp_dig_pixel_rate_div_policy;
}
void enc32_stream_encoder_dp_unblank(
struct dc_link *link,
struct stream_encoder *enc,
const struct encoder_unblank_param *param)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
struct dc *dc = enc->ctx->dc;
if (param->link_settings.link_rate != LINK_RATE_UNKNOWN) {
uint32_t n_vid = 0x8000;
uint32_t m_vid;
uint32_t n_multiply = 0;
uint32_t pix_per_cycle = 0;
uint64_t m_vid_l = n_vid;
/* YCbCr 4:2:0 : Computed VID_M will be 2X the input rate */
if (is_two_pixels_per_containter(¶m->timing) || param->opp_cnt > 1
|| is_dp_dig_pixel_rate_div_policy(dc, ¶m->timing)) {
/*this logic should be the same in get_pixel_clock_parameters() */
n_multiply = 1;
pix_per_cycle = 1;
}
/* M / N = Fstream / Flink
* m_vid / n_vid = pixel rate / link rate
*/
m_vid_l *= param->timing.pix_clk_100hz / 10;
m_vid_l = div_u64(m_vid_l,
param->link_settings.link_rate
* LINK_RATE_REF_FREQ_IN_KHZ);
m_vid = (uint32_t) m_vid_l;
/* enable auto measurement */
REG_UPDATE(DP_VID_TIMING, DP_VID_M_N_GEN_EN, 0);
/* auto measurement need 1 full 0x8000 symbol cycle to kick in,
* therefore program initial value for Mvid and Nvid
*/
REG_UPDATE(DP_VID_N, DP_VID_N, n_vid);
REG_UPDATE(DP_VID_M, DP_VID_M, m_vid);
REG_UPDATE_2(DP_VID_TIMING,
DP_VID_M_N_GEN_EN, 1,
DP_VID_N_MUL, n_multiply);
REG_UPDATE(DP_PIXEL_FORMAT,
DP_PIXEL_PER_CYCLE_PROCESSING_MODE,
pix_per_cycle);
}
/* make sure stream is disabled before resetting steer fifo */
REG_UPDATE(DP_VID_STREAM_CNTL, DP_VID_STREAM_ENABLE, false);
REG_WAIT(DP_VID_STREAM_CNTL, DP_VID_STREAM_STATUS, 0, 10, 5000);
/* DIG_START is removed from the register spec */
/* switch DP encoder to CRTC data, but reset it the fifo first. It may happen
* that it overflows during mode transition, and sometimes doesn't recover.
*/
REG_UPDATE(DP_STEER_FIFO, DP_STEER_FIFO_RESET, 1);
udelay(10);
REG_UPDATE(DP_STEER_FIFO, DP_STEER_FIFO_RESET, 0);
/* DIG Resync FIFO now needs to be explicitly enabled
*/
// TODO: Confirm if we need to wait for DIG_SYMCLK_FE_ON
REG_WAIT(DIG_FE_CNTL, DIG_SYMCLK_FE_ON, 1, 10, 5000);
/* read start level = 0 will bring underflow / overflow and DIG_FIFO_ERROR = 1
* so set it to 1/2 full = 7 before reset as suggested by hardware team.
*/
REG_UPDATE(DIG_FIFO_CTRL0, DIG_FIFO_READ_START_LEVEL, 0x7);
REG_UPDATE(DIG_FIFO_CTRL0, DIG_FIFO_RESET, 1);
REG_WAIT(DIG_FIFO_CTRL0, DIG_FIFO_RESET_DONE, 1, 10, 5000);
REG_UPDATE(DIG_FIFO_CTRL0, DIG_FIFO_RESET, 0);
REG_WAIT(DIG_FIFO_CTRL0, DIG_FIFO_RESET_DONE, 0, 10, 5000);
REG_UPDATE(DIG_FIFO_CTRL0, DIG_FIFO_ENABLE, 1);
/* wait 100us for DIG/DP logic to prime
* (i.e. a few video lines)
*/
udelay(100);
/* the hardware would start sending video at the start of the next DP
* frame (i.e. rising edge of the vblank).
* NOTE: We used to program DP_VID_STREAM_DIS_DEFER = 2 here, but this
* register has no effect on enable transition! HW always guarantees
* VID_STREAM enable at start of next frame, and this is not
* programmable
*/
REG_UPDATE(DP_VID_STREAM_CNTL, DP_VID_STREAM_ENABLE, true);
link->dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_ENABLE_DP_VID_STREAM);
}
/* Set DSC-related configuration.
* dsc_mode: 0 disables DSC, other values enable DSC in specified format
* sc_bytes_per_pixel: DP_DSC_BYTES_PER_PIXEL removed in DCN32
* dsc_slice_width: DP_DSC_SLICE_WIDTH removed in DCN32
*/
static void enc32_dp_set_dsc_config(struct stream_encoder *enc,
enum optc_dsc_mode dsc_mode,
uint32_t dsc_bytes_per_pixel,
uint32_t dsc_slice_width)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
REG_UPDATE(DP_DSC_CNTL, DP_DSC_MODE, dsc_mode == OPTC_DSC_DISABLED ? 0 : 1);
}
/* this function read dsc related register fields to be logged later in dcn10_log_hw_state
* into a dcn_dsc_state struct.
*/
static void enc32_read_state(struct stream_encoder *enc, struct enc_state *s)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
//if dsc is enabled, continue to read
REG_GET(DP_DSC_CNTL, DP_DSC_MODE, &s->dsc_mode);
if (s->dsc_mode) {
REG_GET(DP_GSP11_CNTL, DP_SEC_GSP11_LINE_NUM, &s->sec_gsp_pps_line_num);
REG_GET(DP_MSA_VBID_MISC, DP_VBID6_LINE_REFERENCE, &s->vbid6_line_reference);
REG_GET(DP_MSA_VBID_MISC, DP_VBID6_LINE_NUM, &s->vbid6_line_num);
REG_GET(DP_GSP11_CNTL, DP_SEC_GSP11_ENABLE, &s->sec_gsp_pps_enable);
REG_GET(DP_SEC_CNTL, DP_SEC_STREAM_ENABLE, &s->sec_stream_enable);
}
}
static void enc32_set_dig_input_mode(struct stream_encoder *enc, unsigned int pix_per_container)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
/* The naming of this field is confusing, what it means is the output mode of otg, which
* is the input mode of the dig
*/
REG_UPDATE(DIG_FIFO_CTRL0, DIG_FIFO_OUTPUT_PIXEL_MODE, pix_per_container == 2 ? 0x1 : 0x0);
}
static void enc32_reset_fifo(struct stream_encoder *enc, bool reset)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
uint32_t reset_val = reset ? 1 : 0;
uint32_t is_symclk_on;
REG_UPDATE(DIG_FIFO_CTRL0, DIG_FIFO_RESET, reset_val);
REG_GET(DIG_FE_CNTL, DIG_SYMCLK_FE_ON, &is_symclk_on);
if (is_symclk_on)
REG_WAIT(DIG_FIFO_CTRL0, DIG_FIFO_RESET_DONE, reset_val, 10, 5000);
else
udelay(10);
}
void enc32_enable_fifo(struct stream_encoder *enc)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
REG_UPDATE(DIG_FIFO_CTRL0, DIG_FIFO_READ_START_LEVEL, 0x7);
enc32_reset_fifo(enc, true);
enc32_reset_fifo(enc, false);
REG_UPDATE(DIG_FIFO_CTRL0, DIG_FIFO_ENABLE, 1);
}
static const struct stream_encoder_funcs dcn32_str_enc_funcs = {
.dp_set_odm_combine =
enc32_dp_set_odm_combine,
.dp_set_stream_attribute =
enc2_stream_encoder_dp_set_stream_attribute,
.hdmi_set_stream_attribute =
enc32_stream_encoder_hdmi_set_stream_attribute,
.dvi_set_stream_attribute =
enc32_stream_encoder_dvi_set_stream_attribute,
.set_throttled_vcp_size =
enc1_stream_encoder_set_throttled_vcp_size,
.update_hdmi_info_packets =
enc3_stream_encoder_update_hdmi_info_packets,
.stop_hdmi_info_packets =
enc3_stream_encoder_stop_hdmi_info_packets,
.update_dp_info_packets_sdp_line_num =
enc3_stream_encoder_update_dp_info_packets_sdp_line_num,
.update_dp_info_packets =
enc3_stream_encoder_update_dp_info_packets,
.stop_dp_info_packets =
enc1_stream_encoder_stop_dp_info_packets,
.dp_blank =
enc1_stream_encoder_dp_blank,
.dp_unblank =
enc32_stream_encoder_dp_unblank,
.audio_mute_control = enc3_audio_mute_control,
.dp_audio_setup = enc3_se_dp_audio_setup,
.dp_audio_enable = enc3_se_dp_audio_enable,
.dp_audio_disable = enc1_se_dp_audio_disable,
.hdmi_audio_setup = enc3_se_hdmi_audio_setup,
.hdmi_audio_disable = enc1_se_hdmi_audio_disable,
.setup_stereo_sync = enc1_setup_stereo_sync,
.set_avmute = enc1_stream_encoder_set_avmute,
.dig_connect_to_otg = enc1_dig_connect_to_otg,
.dig_source_otg = enc1_dig_source_otg,
.dp_get_pixel_format = enc1_stream_encoder_dp_get_pixel_format,
.enc_read_state = enc32_read_state,
.dp_set_dsc_config = enc32_dp_set_dsc_config,
.dp_set_dsc_pps_info_packet = enc3_dp_set_dsc_pps_info_packet,
.set_dynamic_metadata = enc2_set_dynamic_metadata,
.hdmi_reset_stream_attribute = enc1_reset_hdmi_stream_attribute,
.set_input_mode = enc32_set_dig_input_mode,
.enable_fifo = enc32_enable_fifo,
};
void dcn32_dio_stream_encoder_construct(
struct dcn10_stream_encoder *enc1,
struct dc_context *ctx,
struct dc_bios *bp,
enum engine_id eng_id,
struct vpg *vpg,
struct afmt *afmt,
const struct dcn10_stream_enc_registers *regs,
const struct dcn10_stream_encoder_shift *se_shift,
const struct dcn10_stream_encoder_mask *se_mask)
{
enc1->base.funcs = &dcn32_str_enc_funcs;
enc1->base.ctx = ctx;
enc1->base.id = eng_id;
enc1->base.bp = bp;
enc1->base.vpg = vpg;
enc1->base.afmt = afmt;
enc1->regs = regs;
enc1->se_shift = se_shift;
enc1->se_mask = se_mask;
enc1->base.stream_enc_inst = vpg->inst;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn32/dcn32_dio_stream_encoder.c |
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "reg_helper.h"
#include "resource.h"
#include "mcif_wb.h"
#include "dcn32_mmhubbub.h"
#define REG(reg)\
mcif_wb30->mcif_wb_regs->reg
#define CTX \
mcif_wb30->base.ctx
#undef FN
#define FN(reg_name, field_name) \
mcif_wb30->mcif_wb_shift->field_name, mcif_wb30->mcif_wb_mask->field_name
#define MCIF_ADDR(addr) (((unsigned long long)addr & 0xffffffffff) + 0xFE) >> 8
#define MCIF_ADDR_HIGH(addr) (unsigned long long)addr >> 40
/* wbif programming guide:
* 1. set up wbif parameter:
* unsigned long long luma_address[4]; //4 frame buffer
* unsigned long long chroma_address[4];
* unsigned int luma_pitch;
* unsigned int chroma_pitch;
* unsigned int warmup_pitch=0x10; //256B align, the page size is 4KB when it is 0x10
* unsigned int slice_lines; //slice size
* unsigned int time_per_pixel; // time per pixel, in ns
* unsigned int arbitration_slice; // 0: 2048 bytes 1: 4096 bytes 2: 8192 Bytes
* unsigned int max_scaled_time; // used for QOS generation
* unsigned int swlock=0x0;
* unsigned int cli_watermark[4]; //4 group urgent watermark
* unsigned int pstate_watermark[4]; //4 group pstate watermark
* unsigned int sw_int_en; // Software interrupt enable, frame end and overflow
* unsigned int sw_slice_int_en; // slice end interrupt enable
* unsigned int sw_overrun_int_en; // overrun error interrupt enable
* unsigned int vce_int_en; // VCE interrupt enable, frame end and overflow
* unsigned int vce_slice_int_en; // VCE slice end interrupt enable, frame end and overflow
*
* 2. configure wbif register
* a. call mmhubbub_config_wbif()
*
* 3. Enable wbif
* call set_wbif_bufmgr_enable();
*
* 4. wbif_dump_status(), option, for debug purpose
* the bufmgr status can show the progress of write back, can be used for debug purpose
*/
static void mmhubbub32_warmup_mcif(struct mcif_wb *mcif_wb,
struct mcif_warmup_params *params)
{
struct dcn30_mmhubbub *mcif_wb30 = TO_DCN30_MMHUBBUB(mcif_wb);
union large_integer start_address_shift = {.quad_part = params->start_address.quad_part >> 5};
/* Set base address and region size for warmup */
REG_SET(MMHUBBUB_WARMUP_BASE_ADDR_HIGH, 0, MMHUBBUB_WARMUP_BASE_ADDR_HIGH, start_address_shift.high_part);
REG_SET(MMHUBBUB_WARMUP_BASE_ADDR_LOW, 0, MMHUBBUB_WARMUP_BASE_ADDR_LOW, start_address_shift.low_part);
REG_SET(MMHUBBUB_WARMUP_ADDR_REGION, 0, MMHUBBUB_WARMUP_ADDR_REGION, params->region_size >> 5);
// REG_SET(MMHUBBUB_WARMUP_P_VMID, 0, MMHUBBUB_WARMUP_P_VMID, params->p_vmid);
/* Set address increment and enable warmup */
REG_SET_3(MMHUBBUB_WARMUP_CONTROL_STATUS, 0, MMHUBBUB_WARMUP_EN, true,
MMHUBBUB_WARMUP_SW_INT_EN, true,
MMHUBBUB_WARMUP_INC_ADDR, params->address_increment >> 5);
/* Wait for an interrupt to signal warmup is completed */
REG_WAIT(MMHUBBUB_WARMUP_CONTROL_STATUS, MMHUBBUB_WARMUP_SW_INT_STATUS, 1, 20, 100);
/* Acknowledge interrupt */
REG_UPDATE(MMHUBBUB_WARMUP_CONTROL_STATUS, MMHUBBUB_WARMUP_SW_INT_ACK, 1);
/* Disable warmup */
REG_UPDATE(MMHUBBUB_WARMUP_CONTROL_STATUS, MMHUBBUB_WARMUP_EN, false);
}
static void mmhubbub32_config_mcif_buf(struct mcif_wb *mcif_wb,
struct mcif_buf_params *params,
unsigned int dest_height)
{
struct dcn30_mmhubbub *mcif_wb30 = TO_DCN30_MMHUBBUB(mcif_wb);
/* buffer address for packing mode or Luma in planar mode */
REG_UPDATE(MCIF_WB_BUF_1_ADDR_Y, MCIF_WB_BUF_1_ADDR_Y, MCIF_ADDR(params->luma_address[0]));
REG_UPDATE(MCIF_WB_BUF_1_ADDR_Y_HIGH, MCIF_WB_BUF_1_ADDR_Y_HIGH, MCIF_ADDR_HIGH(params->luma_address[0]));
/* buffer address for Chroma in planar mode (unused in packing mode) */
REG_UPDATE(MCIF_WB_BUF_1_ADDR_C, MCIF_WB_BUF_1_ADDR_C, MCIF_ADDR(params->chroma_address[0]));
REG_UPDATE(MCIF_WB_BUF_1_ADDR_C_HIGH, MCIF_WB_BUF_1_ADDR_C_HIGH, MCIF_ADDR_HIGH(params->chroma_address[0]));
/* buffer address for packing mode or Luma in planar mode */
REG_UPDATE(MCIF_WB_BUF_2_ADDR_Y, MCIF_WB_BUF_2_ADDR_Y, MCIF_ADDR(params->luma_address[1]));
REG_UPDATE(MCIF_WB_BUF_2_ADDR_Y_HIGH, MCIF_WB_BUF_2_ADDR_Y_HIGH, MCIF_ADDR_HIGH(params->luma_address[1]));
/* buffer address for Chroma in planar mode (unused in packing mode) */
REG_UPDATE(MCIF_WB_BUF_2_ADDR_C, MCIF_WB_BUF_2_ADDR_C, MCIF_ADDR(params->chroma_address[1]));
REG_UPDATE(MCIF_WB_BUF_2_ADDR_C_HIGH, MCIF_WB_BUF_2_ADDR_C_HIGH, MCIF_ADDR_HIGH(params->chroma_address[1]));
/* buffer address for packing mode or Luma in planar mode */
REG_UPDATE(MCIF_WB_BUF_3_ADDR_Y, MCIF_WB_BUF_3_ADDR_Y, MCIF_ADDR(params->luma_address[2]));
REG_UPDATE(MCIF_WB_BUF_3_ADDR_Y_HIGH, MCIF_WB_BUF_3_ADDR_Y_HIGH, MCIF_ADDR_HIGH(params->luma_address[2]));
/* buffer address for Chroma in planar mode (unused in packing mode) */
REG_UPDATE(MCIF_WB_BUF_3_ADDR_C, MCIF_WB_BUF_3_ADDR_C, MCIF_ADDR(params->chroma_address[2]));
REG_UPDATE(MCIF_WB_BUF_3_ADDR_C_HIGH, MCIF_WB_BUF_3_ADDR_C_HIGH, MCIF_ADDR_HIGH(params->chroma_address[2]));
/* buffer address for packing mode or Luma in planar mode */
REG_UPDATE(MCIF_WB_BUF_4_ADDR_Y, MCIF_WB_BUF_4_ADDR_Y, MCIF_ADDR(params->luma_address[3]));
REG_UPDATE(MCIF_WB_BUF_4_ADDR_Y_HIGH, MCIF_WB_BUF_4_ADDR_Y_HIGH, MCIF_ADDR_HIGH(params->luma_address[3]));
/* buffer address for Chroma in planar mode (unused in packing mode) */
REG_UPDATE(MCIF_WB_BUF_4_ADDR_C, MCIF_WB_BUF_4_ADDR_C, MCIF_ADDR(params->chroma_address[3]));
REG_UPDATE(MCIF_WB_BUF_4_ADDR_C_HIGH, MCIF_WB_BUF_4_ADDR_C_HIGH, MCIF_ADDR_HIGH(params->chroma_address[3]));
/* setup luma & chroma size
* should be enough to contain a whole frame Luma data,
* the programmed value is frame buffer size [27:8], 256-byte aligned
*/
REG_UPDATE(MCIF_WB_BUF_LUMA_SIZE, MCIF_WB_BUF_LUMA_SIZE, (params->luma_pitch>>8) * dest_height);
REG_UPDATE(MCIF_WB_BUF_CHROMA_SIZE, MCIF_WB_BUF_CHROMA_SIZE, (params->chroma_pitch>>8) * dest_height);
/* enable address fence */
REG_UPDATE(MCIF_WB_BUFMGR_SW_CONTROL, MCIF_WB_BUF_ADDR_FENCE_EN, 1);
/* setup pitch, the programmed value is [15:8], 256B align */
REG_UPDATE_2(MCIF_WB_BUF_PITCH, MCIF_WB_BUF_LUMA_PITCH, params->luma_pitch >> 8,
MCIF_WB_BUF_CHROMA_PITCH, params->chroma_pitch >> 8);
}
static void mmhubbub32_config_mcif_arb(struct mcif_wb *mcif_wb,
struct mcif_arb_params *params)
{
struct dcn30_mmhubbub *mcif_wb30 = TO_DCN30_MMHUBBUB(mcif_wb);
/* Programmed by the video driver based on the CRTC timing (for DWB) */
REG_UPDATE(MCIF_WB_ARBITRATION_CONTROL, MCIF_WB_TIME_PER_PIXEL, params->time_per_pixel);
/* Programming dwb watermark */
/* Watermark to generate urgent in MCIF_WB_CLI, value is determined by MCIF_WB_CLI_WATERMARK_MASK. */
/* Program in ns. A formula will be provided in the pseudo code to calculate the value. */
REG_UPDATE(MCIF_WB_WATERMARK, MCIF_WB_CLI_WATERMARK_MASK, 0x0);
/* urgent_watermarkA */
REG_UPDATE(MCIF_WB_WATERMARK, MCIF_WB_CLI_WATERMARK, params->cli_watermark[0]);
REG_UPDATE(MCIF_WB_WATERMARK, MCIF_WB_CLI_WATERMARK_MASK, 0x1);
/* urgent_watermarkB */
REG_UPDATE(MCIF_WB_WATERMARK, MCIF_WB_CLI_WATERMARK, params->cli_watermark[1]);
REG_UPDATE(MCIF_WB_WATERMARK, MCIF_WB_CLI_WATERMARK_MASK, 0x2);
/* urgent_watermarkC */
REG_UPDATE(MCIF_WB_WATERMARK, MCIF_WB_CLI_WATERMARK, params->cli_watermark[2]);
REG_UPDATE(MCIF_WB_WATERMARK, MCIF_WB_CLI_WATERMARK_MASK, 0x3);
/* urgent_watermarkD */
REG_UPDATE(MCIF_WB_WATERMARK, MCIF_WB_CLI_WATERMARK, params->cli_watermark[3]);
/* Programming nb pstate watermark */
/* nbp_state_change_watermarkA */
REG_UPDATE(MCIF_WB_NB_PSTATE_LATENCY_WATERMARK, NB_PSTATE_CHANGE_WATERMARK_MASK, 0x0);
REG_UPDATE(MCIF_WB_NB_PSTATE_LATENCY_WATERMARK,
NB_PSTATE_CHANGE_REFRESH_WATERMARK, params->pstate_watermark[0]);
/* nbp_state_change_watermarkB */
REG_UPDATE(MCIF_WB_NB_PSTATE_LATENCY_WATERMARK, NB_PSTATE_CHANGE_WATERMARK_MASK, 0x1);
REG_UPDATE(MCIF_WB_NB_PSTATE_LATENCY_WATERMARK,
NB_PSTATE_CHANGE_REFRESH_WATERMARK, params->pstate_watermark[1]);
/* nbp_state_change_watermarkC */
REG_UPDATE(MCIF_WB_NB_PSTATE_LATENCY_WATERMARK, NB_PSTATE_CHANGE_WATERMARK_MASK, 0x2);
REG_UPDATE(MCIF_WB_NB_PSTATE_LATENCY_WATERMARK,
NB_PSTATE_CHANGE_REFRESH_WATERMARK, params->pstate_watermark[2]);
/* nbp_state_change_watermarkD */
REG_UPDATE(MCIF_WB_NB_PSTATE_LATENCY_WATERMARK, NB_PSTATE_CHANGE_WATERMARK_MASK, 0x3);
REG_UPDATE(MCIF_WB_NB_PSTATE_LATENCY_WATERMARK,
NB_PSTATE_CHANGE_REFRESH_WATERMARK, params->pstate_watermark[3]);
/* dram_speed_change_duration - register removed */
//REG_UPDATE(MCIF_WB_DRAM_SPEED_CHANGE_DURATION_VBI,
// MCIF_WB_DRAM_SPEED_CHANGE_DURATION_VBI, params->dram_speed_change_duration);
/* max_scaled_time */
REG_UPDATE(MULTI_LEVEL_QOS_CTRL, MAX_SCALED_TIME_TO_URGENT, params->max_scaled_time);
/* slice_lines */
REG_UPDATE(MCIF_WB_BUFMGR_VCE_CONTROL, MCIF_WB_BUFMGR_SLICE_SIZE, params->slice_lines-1);
/* Set arbitration unit for Luma/Chroma */
/* arb_unit=2 should be chosen for more efficiency */
/* Arbitration size, 0: 2048 bytes 1: 4096 bytes 2: 8192 Bytes */
REG_UPDATE(MCIF_WB_ARBITRATION_CONTROL, MCIF_WB_CLIENT_ARBITRATION_SLICE, params->arbitration_slice);
}
static const struct mcif_wb_funcs dcn32_mmhubbub_funcs = {
.warmup_mcif = mmhubbub32_warmup_mcif,
.enable_mcif = mmhubbub2_enable_mcif,
.disable_mcif = mmhubbub2_disable_mcif,
.config_mcif_buf = mmhubbub32_config_mcif_buf,
.config_mcif_arb = mmhubbub32_config_mcif_arb,
.config_mcif_irq = mmhubbub2_config_mcif_irq,
.dump_frame = mcifwb2_dump_frame,
};
void dcn32_mmhubbub_construct(struct dcn30_mmhubbub *mcif_wb30,
struct dc_context *ctx,
const struct dcn30_mmhubbub_registers *mcif_wb_regs,
const struct dcn30_mmhubbub_shift *mcif_wb_shift,
const struct dcn30_mmhubbub_mask *mcif_wb_mask,
int inst)
{
mcif_wb30->base.ctx = ctx;
mcif_wb30->base.inst = inst;
mcif_wb30->base.funcs = &dcn32_mmhubbub_funcs;
mcif_wb30->mcif_wb_regs = mcif_wb_regs;
mcif_wb30->mcif_wb_shift = mcif_wb_shift;
mcif_wb30->mcif_wb_mask = mcif_wb_mask;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn32/dcn32_mmhubbub.c |
// SPDX-License-Identifier: MIT
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dc.h"
#include "dcn32_init.h"
#include "resource.h"
#include "include/irq_service_interface.h"
#include "dcn32_resource.h"
#include "dcn20/dcn20_resource.h"
#include "dcn30/dcn30_resource.h"
#include "dcn10/dcn10_ipp.h"
#include "dcn30/dcn30_hubbub.h"
#include "dcn31/dcn31_hubbub.h"
#include "dcn32/dcn32_hubbub.h"
#include "dcn32/dcn32_mpc.h"
#include "dcn32_hubp.h"
#include "irq/dcn32/irq_service_dcn32.h"
#include "dcn32/dcn32_dpp.h"
#include "dcn32/dcn32_optc.h"
#include "dcn20/dcn20_hwseq.h"
#include "dcn30/dcn30_hwseq.h"
#include "dce110/dce110_hw_sequencer.h"
#include "dcn30/dcn30_opp.h"
#include "dcn20/dcn20_dsc.h"
#include "dcn30/dcn30_vpg.h"
#include "dcn30/dcn30_afmt.h"
#include "dcn30/dcn30_dio_stream_encoder.h"
#include "dcn32/dcn32_dio_stream_encoder.h"
#include "dcn31/dcn31_hpo_dp_stream_encoder.h"
#include "dcn31/dcn31_hpo_dp_link_encoder.h"
#include "dcn32/dcn32_hpo_dp_link_encoder.h"
#include "dcn31/dcn31_apg.h"
#include "dcn31/dcn31_dio_link_encoder.h"
#include "dcn32/dcn32_dio_link_encoder.h"
#include "dce/dce_clock_source.h"
#include "dce/dce_audio.h"
#include "dce/dce_hwseq.h"
#include "clk_mgr.h"
#include "virtual/virtual_stream_encoder.h"
#include "dml/display_mode_vba.h"
#include "dcn32/dcn32_dccg.h"
#include "dcn10/dcn10_resource.h"
#include "link.h"
#include "dcn31/dcn31_panel_cntl.h"
#include "dcn30/dcn30_dwb.h"
#include "dcn32/dcn32_mmhubbub.h"
#include "dcn/dcn_3_2_0_offset.h"
#include "dcn/dcn_3_2_0_sh_mask.h"
#include "nbio/nbio_4_3_0_offset.h"
#include "reg_helper.h"
#include "dce/dmub_abm.h"
#include "dce/dmub_psr.h"
#include "dce/dce_aux.h"
#include "dce/dce_i2c.h"
#include "dml/dcn30/display_mode_vba_30.h"
#include "vm_helper.h"
#include "dcn20/dcn20_vmid.h"
#include "dml/dcn32/dcn32_fpu.h"
#define DC_LOGGER_INIT(logger)
enum dcn32_clk_src_array_id {
DCN32_CLK_SRC_PLL0,
DCN32_CLK_SRC_PLL1,
DCN32_CLK_SRC_PLL2,
DCN32_CLK_SRC_PLL3,
DCN32_CLK_SRC_PLL4,
DCN32_CLK_SRC_TOTAL
};
/* begin *********************
* macros to expend register list macro defined in HW object header file
*/
/* DCN */
#define BASE_INNER(seg) ctx->dcn_reg_offsets[seg]
#define BASE(seg) BASE_INNER(seg)
#define SR(reg_name)\
REG_STRUCT.reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \
reg ## reg_name
#define SR_ARR(reg_name, id) \
REG_STRUCT[id].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name
#define SR_ARR_INIT(reg_name, id, value) \
REG_STRUCT[id].reg_name = value
#define SRI(reg_name, block, id)\
REG_STRUCT.reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define SRI_ARR(reg_name, block, id)\
REG_STRUCT[id].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define SR_ARR_I2C(reg_name, id) \
REG_STRUCT[id-1].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name
#define SRI_ARR_I2C(reg_name, block, id)\
REG_STRUCT[id-1].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define SRI_ARR_ALPHABET(reg_name, block, index, id)\
REG_STRUCT[index].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define SRI2(reg_name, block, id)\
.reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \
reg ## reg_name
#define SRI2_ARR(reg_name, block, id)\
REG_STRUCT[id].reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \
reg ## reg_name
#define SRIR(var_name, reg_name, block, id)\
.var_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define SRII(reg_name, block, id)\
REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define SRII_ARR_2(reg_name, block, id, inst)\
REG_STRUCT[inst].reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define SRII_MPC_RMU(reg_name, block, id)\
.RMU##_##reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define SRII_DWB(reg_name, temp_name, block, id)\
REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## temp_name
#define SF_DWB2(reg_name, block, id, field_name, post_fix) \
.field_name = reg_name ## __ ## field_name ## post_fix
#define DCCG_SRII(reg_name, block, id)\
REG_STRUCT.block ## _ ## reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
reg ## block ## id ## _ ## reg_name
#define VUPDATE_SRII(reg_name, block, id)\
REG_STRUCT.reg_name[id] = BASE(reg ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
reg ## reg_name ## _ ## block ## id
/* NBIO */
#define NBIO_BASE_INNER(seg) ctx->nbio_reg_offsets[seg]
#define NBIO_BASE(seg) \
NBIO_BASE_INNER(seg)
#define NBIO_SR(reg_name)\
REG_STRUCT.reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
regBIF_BX0_ ## reg_name
#define NBIO_SR_ARR(reg_name, id)\
REG_STRUCT[id].reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
regBIF_BX0_ ## reg_name
#undef CTX
#define CTX ctx
#define REG(reg_name) \
(ctx->dcn_reg_offsets[reg ## reg_name ## _BASE_IDX] + reg ## reg_name)
static struct bios_registers bios_regs;
#define bios_regs_init() \
( \
NBIO_SR(BIOS_SCRATCH_3),\
NBIO_SR(BIOS_SCRATCH_6)\
)
#define clk_src_regs_init(index, pllid)\
CS_COMMON_REG_LIST_DCN3_0_RI(index, pllid)
static struct dce110_clk_src_regs clk_src_regs[5];
static const struct dce110_clk_src_shift cs_shift = {
CS_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
};
static const struct dce110_clk_src_mask cs_mask = {
CS_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
};
#define abm_regs_init(id)\
ABM_DCN32_REG_LIST_RI(id)
static struct dce_abm_registers abm_regs[4];
static const struct dce_abm_shift abm_shift = {
ABM_MASK_SH_LIST_DCN32(__SHIFT)
};
static const struct dce_abm_mask abm_mask = {
ABM_MASK_SH_LIST_DCN32(_MASK)
};
#define audio_regs_init(id)\
AUD_COMMON_REG_LIST_RI(id)
static struct dce_audio_registers audio_regs[5];
#define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
static const struct dce_audio_shift audio_shift = {
DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
};
static const struct dce_audio_mask audio_mask = {
DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
};
#define vpg_regs_init(id)\
VPG_DCN3_REG_LIST_RI(id)
static struct dcn30_vpg_registers vpg_regs[10];
static const struct dcn30_vpg_shift vpg_shift = {
DCN3_VPG_MASK_SH_LIST(__SHIFT)
};
static const struct dcn30_vpg_mask vpg_mask = {
DCN3_VPG_MASK_SH_LIST(_MASK)
};
#define afmt_regs_init(id)\
AFMT_DCN3_REG_LIST_RI(id)
static struct dcn30_afmt_registers afmt_regs[6];
static const struct dcn30_afmt_shift afmt_shift = {
DCN3_AFMT_MASK_SH_LIST(__SHIFT)
};
static const struct dcn30_afmt_mask afmt_mask = {
DCN3_AFMT_MASK_SH_LIST(_MASK)
};
#define apg_regs_init(id)\
APG_DCN31_REG_LIST_RI(id)
static struct dcn31_apg_registers apg_regs[4];
static const struct dcn31_apg_shift apg_shift = {
DCN31_APG_MASK_SH_LIST(__SHIFT)
};
static const struct dcn31_apg_mask apg_mask = {
DCN31_APG_MASK_SH_LIST(_MASK)
};
#define stream_enc_regs_init(id)\
SE_DCN32_REG_LIST_RI(id)
static struct dcn10_stream_enc_registers stream_enc_regs[5];
static const struct dcn10_stream_encoder_shift se_shift = {
SE_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
};
static const struct dcn10_stream_encoder_mask se_mask = {
SE_COMMON_MASK_SH_LIST_DCN32(_MASK)
};
#define aux_regs_init(id)\
DCN2_AUX_REG_LIST_RI(id)
static struct dcn10_link_enc_aux_registers link_enc_aux_regs[5];
#define hpd_regs_init(id)\
HPD_REG_LIST_RI(id)
static struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[5];
#define link_regs_init(id, phyid)\
( \
LE_DCN31_REG_LIST_RI(id), \
UNIPHY_DCN2_REG_LIST_RI(id, phyid)\
)
/*DPCS_DCN31_REG_LIST(id),*/ \
static struct dcn10_link_enc_registers link_enc_regs[5];
static const struct dcn10_link_enc_shift le_shift = {
LINK_ENCODER_MASK_SH_LIST_DCN31(__SHIFT), \
//DPCS_DCN31_MASK_SH_LIST(__SHIFT)
};
static const struct dcn10_link_enc_mask le_mask = {
LINK_ENCODER_MASK_SH_LIST_DCN31(_MASK), \
//DPCS_DCN31_MASK_SH_LIST(_MASK)
};
#define hpo_dp_stream_encoder_reg_init(id)\
DCN3_1_HPO_DP_STREAM_ENC_REG_LIST_RI(id)
static struct dcn31_hpo_dp_stream_encoder_registers hpo_dp_stream_enc_regs[4];
static const struct dcn31_hpo_dp_stream_encoder_shift hpo_dp_se_shift = {
DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(__SHIFT)
};
static const struct dcn31_hpo_dp_stream_encoder_mask hpo_dp_se_mask = {
DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(_MASK)
};
#define hpo_dp_link_encoder_reg_init(id)\
DCN3_1_HPO_DP_LINK_ENC_REG_LIST_RI(id)
/*DCN3_1_RDPCSTX_REG_LIST(0),*/
/*DCN3_1_RDPCSTX_REG_LIST(1),*/
/*DCN3_1_RDPCSTX_REG_LIST(2),*/
/*DCN3_1_RDPCSTX_REG_LIST(3),*/
static struct dcn31_hpo_dp_link_encoder_registers hpo_dp_link_enc_regs[2];
static const struct dcn31_hpo_dp_link_encoder_shift hpo_dp_le_shift = {
DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(__SHIFT)
};
static const struct dcn31_hpo_dp_link_encoder_mask hpo_dp_le_mask = {
DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(_MASK)
};
#define dpp_regs_init(id)\
DPP_REG_LIST_DCN30_COMMON_RI(id)
static struct dcn3_dpp_registers dpp_regs[4];
static const struct dcn3_dpp_shift tf_shift = {
DPP_REG_LIST_SH_MASK_DCN30_COMMON(__SHIFT)
};
static const struct dcn3_dpp_mask tf_mask = {
DPP_REG_LIST_SH_MASK_DCN30_COMMON(_MASK)
};
#define opp_regs_init(id)\
OPP_REG_LIST_DCN30_RI(id)
static struct dcn20_opp_registers opp_regs[4];
static const struct dcn20_opp_shift opp_shift = {
OPP_MASK_SH_LIST_DCN20(__SHIFT)
};
static const struct dcn20_opp_mask opp_mask = {
OPP_MASK_SH_LIST_DCN20(_MASK)
};
#define aux_engine_regs_init(id)\
( \
AUX_COMMON_REG_LIST0_RI(id), \
SR_ARR_INIT(AUXN_IMPCAL, id, 0), \
SR_ARR_INIT(AUXP_IMPCAL, id, 0), \
SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK), \
SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK)\
)
static struct dce110_aux_registers aux_engine_regs[5];
static const struct dce110_aux_registers_shift aux_shift = {
DCN_AUX_MASK_SH_LIST(__SHIFT)
};
static const struct dce110_aux_registers_mask aux_mask = {
DCN_AUX_MASK_SH_LIST(_MASK)
};
#define dwbc_regs_dcn3_init(id)\
DWBC_COMMON_REG_LIST_DCN30_RI(id)
static struct dcn30_dwbc_registers dwbc30_regs[1];
static const struct dcn30_dwbc_shift dwbc30_shift = {
DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn30_dwbc_mask dwbc30_mask = {
DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
};
#define mcif_wb_regs_dcn3_init(id)\
MCIF_WB_COMMON_REG_LIST_DCN32_RI(id)
static struct dcn30_mmhubbub_registers mcif_wb30_regs[1];
static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
MCIF_WB_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
};
static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
MCIF_WB_COMMON_MASK_SH_LIST_DCN32(_MASK)
};
#define dsc_regsDCN20_init(id)\
DSC_REG_LIST_DCN20_RI(id)
static struct dcn20_dsc_registers dsc_regs[4];
static const struct dcn20_dsc_shift dsc_shift = {
DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
};
static const struct dcn20_dsc_mask dsc_mask = {
DSC_REG_LIST_SH_MASK_DCN20(_MASK)
};
static struct dcn30_mpc_registers mpc_regs;
#define dcn_mpc_regs_init() \
MPC_REG_LIST_DCN3_2_RI(0),\
MPC_REG_LIST_DCN3_2_RI(1),\
MPC_REG_LIST_DCN3_2_RI(2),\
MPC_REG_LIST_DCN3_2_RI(3),\
MPC_OUT_MUX_REG_LIST_DCN3_0_RI(0),\
MPC_OUT_MUX_REG_LIST_DCN3_0_RI(1),\
MPC_OUT_MUX_REG_LIST_DCN3_0_RI(2),\
MPC_OUT_MUX_REG_LIST_DCN3_0_RI(3),\
MPC_DWB_MUX_REG_LIST_DCN3_0_RI(0)
static const struct dcn30_mpc_shift mpc_shift = {
MPC_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
};
static const struct dcn30_mpc_mask mpc_mask = {
MPC_COMMON_MASK_SH_LIST_DCN32(_MASK)
};
#define optc_regs_init(id)\
OPTC_COMMON_REG_LIST_DCN3_2_RI(id)
static struct dcn_optc_registers optc_regs[4];
static const struct dcn_optc_shift optc_shift = {
OPTC_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
};
static const struct dcn_optc_mask optc_mask = {
OPTC_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
};
#define hubp_regs_init(id)\
HUBP_REG_LIST_DCN32_RI(id)
static struct dcn_hubp2_registers hubp_regs[4];
static const struct dcn_hubp2_shift hubp_shift = {
HUBP_MASK_SH_LIST_DCN32(__SHIFT)
};
static const struct dcn_hubp2_mask hubp_mask = {
HUBP_MASK_SH_LIST_DCN32(_MASK)
};
static struct dcn_hubbub_registers hubbub_reg;
#define hubbub_reg_init()\
HUBBUB_REG_LIST_DCN32_RI(0)
static const struct dcn_hubbub_shift hubbub_shift = {
HUBBUB_MASK_SH_LIST_DCN32(__SHIFT)
};
static const struct dcn_hubbub_mask hubbub_mask = {
HUBBUB_MASK_SH_LIST_DCN32(_MASK)
};
static struct dccg_registers dccg_regs;
#define dccg_regs_init()\
DCCG_REG_LIST_DCN32_RI()
static const struct dccg_shift dccg_shift = {
DCCG_MASK_SH_LIST_DCN32(__SHIFT)
};
static const struct dccg_mask dccg_mask = {
DCCG_MASK_SH_LIST_DCN32(_MASK)
};
#define SRII2(reg_name_pre, reg_name_post, id)\
.reg_name_pre ## _ ## reg_name_post[id] = BASE(reg ## reg_name_pre \
## id ## _ ## reg_name_post ## _BASE_IDX) + \
reg ## reg_name_pre ## id ## _ ## reg_name_post
#define HWSEQ_DCN32_REG_LIST()\
SR(DCHUBBUB_GLOBAL_TIMER_CNTL), \
SR(DIO_MEM_PWR_CTRL), \
SR(ODM_MEM_PWR_CTRL3), \
SR(MMHUBBUB_MEM_PWR_CNTL), \
SR(DCCG_GATE_DISABLE_CNTL), \
SR(DCCG_GATE_DISABLE_CNTL2), \
SR(DCFCLK_CNTL),\
SR(DC_MEM_GLOBAL_PWR_REQ_CNTL), \
SRII(PIXEL_RATE_CNTL, OTG, 0), \
SRII(PIXEL_RATE_CNTL, OTG, 1),\
SRII(PIXEL_RATE_CNTL, OTG, 2),\
SRII(PIXEL_RATE_CNTL, OTG, 3),\
SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 0),\
SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 1),\
SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 2),\
SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 3),\
SR(MICROSECOND_TIME_BASE_DIV), \
SR(MILLISECOND_TIME_BASE_DIV), \
SR(DISPCLK_FREQ_CHANGE_CNTL), \
SR(RBBMIF_TIMEOUT_DIS), \
SR(RBBMIF_TIMEOUT_DIS_2), \
SR(DCHUBBUB_CRC_CTRL), \
SR(DPP_TOP0_DPP_CRC_CTRL), \
SR(DPP_TOP0_DPP_CRC_VAL_B_A), \
SR(DPP_TOP0_DPP_CRC_VAL_R_G), \
SR(MPC_CRC_CTRL), \
SR(MPC_CRC_RESULT_GB), \
SR(MPC_CRC_RESULT_C), \
SR(MPC_CRC_RESULT_AR), \
SR(DOMAIN0_PG_CONFIG), \
SR(DOMAIN1_PG_CONFIG), \
SR(DOMAIN2_PG_CONFIG), \
SR(DOMAIN3_PG_CONFIG), \
SR(DOMAIN16_PG_CONFIG), \
SR(DOMAIN17_PG_CONFIG), \
SR(DOMAIN18_PG_CONFIG), \
SR(DOMAIN19_PG_CONFIG), \
SR(DOMAIN0_PG_STATUS), \
SR(DOMAIN1_PG_STATUS), \
SR(DOMAIN2_PG_STATUS), \
SR(DOMAIN3_PG_STATUS), \
SR(DOMAIN16_PG_STATUS), \
SR(DOMAIN17_PG_STATUS), \
SR(DOMAIN18_PG_STATUS), \
SR(DOMAIN19_PG_STATUS), \
SR(D1VGA_CONTROL), \
SR(D2VGA_CONTROL), \
SR(D3VGA_CONTROL), \
SR(D4VGA_CONTROL), \
SR(D5VGA_CONTROL), \
SR(D6VGA_CONTROL), \
SR(DC_IP_REQUEST_CNTL), \
SR(AZALIA_AUDIO_DTO), \
SR(AZALIA_CONTROLLER_CLOCK_GATING)
static struct dce_hwseq_registers hwseq_reg;
#define hwseq_reg_init()\
HWSEQ_DCN32_REG_LIST()
#define HWSEQ_DCN32_MASK_SH_LIST(mask_sh)\
HWSEQ_DCN_MASK_SH_LIST(mask_sh), \
HWS_SF(, DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, mask_sh), \
HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DC_IP_REQUEST_CNTL, IP_REQUEST_EN, mask_sh), \
HWS_SF(, AZALIA_AUDIO_DTO, AZALIA_AUDIO_DTO_MODULE, mask_sh), \
HWS_SF(, HPO_TOP_CLOCK_CONTROL, HPO_HDMISTREAMCLK_G_GATE_DIS, mask_sh), \
HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_UNASSIGNED_PWR_MODE, mask_sh), \
HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_VBLANK_PWR_MODE, mask_sh), \
HWS_SF(, MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, mask_sh)
static const struct dce_hwseq_shift hwseq_shift = {
HWSEQ_DCN32_MASK_SH_LIST(__SHIFT)
};
static const struct dce_hwseq_mask hwseq_mask = {
HWSEQ_DCN32_MASK_SH_LIST(_MASK)
};
#define vmid_regs_init(id)\
DCN20_VMID_REG_LIST_RI(id)
static struct dcn_vmid_registers vmid_regs[16];
static const struct dcn20_vmid_shift vmid_shifts = {
DCN20_VMID_MASK_SH_LIST(__SHIFT)
};
static const struct dcn20_vmid_mask vmid_masks = {
DCN20_VMID_MASK_SH_LIST(_MASK)
};
static const struct resource_caps res_cap_dcn32 = {
.num_timing_generator = 4,
.num_opp = 4,
.num_video_plane = 4,
.num_audio = 5,
.num_stream_encoder = 5,
.num_hpo_dp_stream_encoder = 4,
.num_hpo_dp_link_encoder = 2,
.num_pll = 5,
.num_dwb = 1,
.num_ddc = 5,
.num_vmid = 16,
.num_mpc_3dlut = 4,
.num_dsc = 4,
};
static const struct dc_plane_cap plane_cap = {
.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
.per_pixel_alpha = true,
.pixel_format_support = {
.argb8888 = true,
.nv12 = true,
.fp16 = true,
.p010 = true,
.ayuv = false,
},
.max_upscale_factor = {
.argb8888 = 16000,
.nv12 = 16000,
.fp16 = 16000
},
// 6:1 downscaling ratio: 1000/6 = 166.666
.max_downscale_factor = {
.argb8888 = 167,
.nv12 = 167,
.fp16 = 167
},
64,
64
};
static const struct dc_debug_options debug_defaults_drv = {
.disable_dmcu = true,
.force_abm_enable = false,
.timing_trace = false,
.clock_trace = true,
.disable_pplib_clock_request = false,
.pipe_split_policy = MPC_SPLIT_AVOID, // Due to CRB, no need to MPC split anymore
.force_single_disp_pipe_split = false,
.disable_dcc = DCC_ENABLE,
.vsr_support = true,
.performance_trace = false,
.max_downscale_src_width = 7680,/*upto 8K*/
.disable_pplib_wm_range = false,
.scl_reset_length10 = true,
.sanity_checks = false,
.underflow_assert_delay_us = 0xFFFFFFFF,
.dwb_fi_phase = -1, // -1 = disable,
.dmub_command_table = true,
.enable_mem_low_power = {
.bits = {
.vga = false,
.i2c = false,
.dmcu = false, // This is previously known to cause hang on S3 cycles if enabled
.dscl = false,
.cm = false,
.mpc = false,
.optc = true,
}
},
.use_max_lb = true,
.force_disable_subvp = false,
.exit_idle_opt_for_cursor_updates = true,
.enable_single_display_2to1_odm_policy = true,
/* Must match enable_single_display_2to1_odm_policy to support dynamic ODM transitions*/
.enable_double_buffered_dsc_pg_support = true,
.enable_dp_dig_pixel_rate_div_policy = 1,
.allow_sw_cursor_fallback = false, // Linux can't do SW cursor "fallback"
.alloc_extra_way_for_cursor = true,
.min_prefetch_in_strobe_ns = 60000, // 60us
.disable_unbounded_requesting = false,
.override_dispclk_programming = true,
.disable_fpo_optimizations = false,
.fpo_vactive_margin_us = 2000, // 2000us
.disable_fpo_vactive = false,
.disable_boot_optimizations = false,
.disable_subvp_high_refresh = false,
.disable_dp_plus_plus_wa = true,
.fpo_vactive_min_active_margin_us = 200,
.fpo_vactive_max_blank_us = 1000,
.enable_legacy_fast_update = false,
};
static struct dce_aux *dcn32_aux_engine_create(
struct dc_context *ctx,
uint32_t inst)
{
struct aux_engine_dce110 *aux_engine =
kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
if (!aux_engine)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT aux_engine_regs
aux_engine_regs_init(0),
aux_engine_regs_init(1),
aux_engine_regs_init(2),
aux_engine_regs_init(3),
aux_engine_regs_init(4);
dce110_aux_engine_construct(aux_engine, ctx, inst,
SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
&aux_engine_regs[inst],
&aux_mask,
&aux_shift,
ctx->dc->caps.extended_aux_timeout_support);
return &aux_engine->base;
}
#define i2c_inst_regs_init(id)\
I2C_HW_ENGINE_COMMON_REG_LIST_DCN30_RI(id)
static struct dce_i2c_registers i2c_hw_regs[5];
static const struct dce_i2c_shift i2c_shifts = {
I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dce_i2c_mask i2c_masks = {
I2C_COMMON_MASK_SH_LIST_DCN30(_MASK)
};
static struct dce_i2c_hw *dcn32_i2c_hw_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_i2c_hw *dce_i2c_hw =
kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
if (!dce_i2c_hw)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT i2c_hw_regs
i2c_inst_regs_init(1),
i2c_inst_regs_init(2),
i2c_inst_regs_init(3),
i2c_inst_regs_init(4),
i2c_inst_regs_init(5);
dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
&i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
return dce_i2c_hw;
}
static struct clock_source *dcn32_clock_source_create(
struct dc_context *ctx,
struct dc_bios *bios,
enum clock_source_id id,
const struct dce110_clk_src_regs *regs,
bool dp_clk_src)
{
struct dce110_clk_src *clk_src =
kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
if (!clk_src)
return NULL;
if (dcn31_clk_src_construct(clk_src, ctx, bios, id,
regs, &cs_shift, &cs_mask)) {
clk_src->base.dp_clk_src = dp_clk_src;
return &clk_src->base;
}
kfree(clk_src);
BREAK_TO_DEBUGGER();
return NULL;
}
static struct hubbub *dcn32_hubbub_create(struct dc_context *ctx)
{
int i;
struct dcn20_hubbub *hubbub2 = kzalloc(sizeof(struct dcn20_hubbub),
GFP_KERNEL);
if (!hubbub2)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT hubbub_reg
hubbub_reg_init();
#undef REG_STRUCT
#define REG_STRUCT vmid_regs
vmid_regs_init(0),
vmid_regs_init(1),
vmid_regs_init(2),
vmid_regs_init(3),
vmid_regs_init(4),
vmid_regs_init(5),
vmid_regs_init(6),
vmid_regs_init(7),
vmid_regs_init(8),
vmid_regs_init(9),
vmid_regs_init(10),
vmid_regs_init(11),
vmid_regs_init(12),
vmid_regs_init(13),
vmid_regs_init(14),
vmid_regs_init(15);
hubbub32_construct(hubbub2, ctx,
&hubbub_reg,
&hubbub_shift,
&hubbub_mask,
ctx->dc->dml.ip.det_buffer_size_kbytes,
ctx->dc->dml.ip.pixel_chunk_size_kbytes,
ctx->dc->dml.ip.config_return_buffer_size_in_kbytes);
for (i = 0; i < res_cap_dcn32.num_vmid; i++) {
struct dcn20_vmid *vmid = &hubbub2->vmid[i];
vmid->ctx = ctx;
vmid->regs = &vmid_regs[i];
vmid->shifts = &vmid_shifts;
vmid->masks = &vmid_masks;
}
return &hubbub2->base;
}
static struct hubp *dcn32_hubp_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn20_hubp *hubp2 =
kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
if (!hubp2)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT hubp_regs
hubp_regs_init(0),
hubp_regs_init(1),
hubp_regs_init(2),
hubp_regs_init(3);
if (hubp32_construct(hubp2, ctx, inst,
&hubp_regs[inst], &hubp_shift, &hubp_mask))
return &hubp2->base;
BREAK_TO_DEBUGGER();
kfree(hubp2);
return NULL;
}
static void dcn32_dpp_destroy(struct dpp **dpp)
{
kfree(TO_DCN30_DPP(*dpp));
*dpp = NULL;
}
static struct dpp *dcn32_dpp_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn3_dpp *dpp3 =
kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
if (!dpp3)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT dpp_regs
dpp_regs_init(0),
dpp_regs_init(1),
dpp_regs_init(2),
dpp_regs_init(3);
if (dpp32_construct(dpp3, ctx, inst,
&dpp_regs[inst], &tf_shift, &tf_mask))
return &dpp3->base;
BREAK_TO_DEBUGGER();
kfree(dpp3);
return NULL;
}
static struct mpc *dcn32_mpc_create(
struct dc_context *ctx,
int num_mpcc,
int num_rmu)
{
struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
GFP_KERNEL);
if (!mpc30)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT mpc_regs
dcn_mpc_regs_init();
dcn32_mpc_construct(mpc30, ctx,
&mpc_regs,
&mpc_shift,
&mpc_mask,
num_mpcc,
num_rmu);
return &mpc30->base;
}
static struct output_pixel_processor *dcn32_opp_create(
struct dc_context *ctx, uint32_t inst)
{
struct dcn20_opp *opp2 =
kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
if (!opp2) {
BREAK_TO_DEBUGGER();
return NULL;
}
#undef REG_STRUCT
#define REG_STRUCT opp_regs
opp_regs_init(0),
opp_regs_init(1),
opp_regs_init(2),
opp_regs_init(3);
dcn20_opp_construct(opp2, ctx, inst,
&opp_regs[inst], &opp_shift, &opp_mask);
return &opp2->base;
}
static struct timing_generator *dcn32_timing_generator_create(
struct dc_context *ctx,
uint32_t instance)
{
struct optc *tgn10 =
kzalloc(sizeof(struct optc), GFP_KERNEL);
if (!tgn10)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT optc_regs
optc_regs_init(0),
optc_regs_init(1),
optc_regs_init(2),
optc_regs_init(3);
tgn10->base.inst = instance;
tgn10->base.ctx = ctx;
tgn10->tg_regs = &optc_regs[instance];
tgn10->tg_shift = &optc_shift;
tgn10->tg_mask = &optc_mask;
dcn32_timing_generator_init(tgn10);
return &tgn10->base;
}
static const struct encoder_feature_support link_enc_feature = {
.max_hdmi_deep_color = COLOR_DEPTH_121212,
.max_hdmi_pixel_clock = 600000,
.hdmi_ycbcr420_supported = true,
.dp_ycbcr420_supported = true,
.fec_supported = true,
.flags.bits.IS_HBR2_CAPABLE = true,
.flags.bits.IS_HBR3_CAPABLE = true,
.flags.bits.IS_TPS3_CAPABLE = true,
.flags.bits.IS_TPS4_CAPABLE = true
};
static struct link_encoder *dcn32_link_encoder_create(
struct dc_context *ctx,
const struct encoder_init_data *enc_init_data)
{
struct dcn20_link_encoder *enc20 =
kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
if (!enc20)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT link_enc_aux_regs
aux_regs_init(0),
aux_regs_init(1),
aux_regs_init(2),
aux_regs_init(3),
aux_regs_init(4);
#undef REG_STRUCT
#define REG_STRUCT link_enc_hpd_regs
hpd_regs_init(0),
hpd_regs_init(1),
hpd_regs_init(2),
hpd_regs_init(3),
hpd_regs_init(4);
#undef REG_STRUCT
#define REG_STRUCT link_enc_regs
link_regs_init(0, A),
link_regs_init(1, B),
link_regs_init(2, C),
link_regs_init(3, D),
link_regs_init(4, E);
dcn32_link_encoder_construct(enc20,
enc_init_data,
&link_enc_feature,
&link_enc_regs[enc_init_data->transmitter],
&link_enc_aux_regs[enc_init_data->channel - 1],
&link_enc_hpd_regs[enc_init_data->hpd_source],
&le_shift,
&le_mask);
return &enc20->enc10.base;
}
struct panel_cntl *dcn32_panel_cntl_create(const struct panel_cntl_init_data *init_data)
{
struct dcn31_panel_cntl *panel_cntl =
kzalloc(sizeof(struct dcn31_panel_cntl), GFP_KERNEL);
if (!panel_cntl)
return NULL;
dcn31_panel_cntl_construct(panel_cntl, init_data);
return &panel_cntl->base;
}
static void read_dce_straps(
struct dc_context *ctx,
struct resource_straps *straps)
{
generic_reg_get(ctx, ctx->dcn_reg_offsets[regDC_PINSTRAPS_BASE_IDX] + regDC_PINSTRAPS,
FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
}
static struct audio *dcn32_create_audio(
struct dc_context *ctx, unsigned int inst)
{
#undef REG_STRUCT
#define REG_STRUCT audio_regs
audio_regs_init(0),
audio_regs_init(1),
audio_regs_init(2),
audio_regs_init(3),
audio_regs_init(4);
return dce_audio_create(ctx, inst,
&audio_regs[inst], &audio_shift, &audio_mask);
}
static struct vpg *dcn32_vpg_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
if (!vpg3)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT vpg_regs
vpg_regs_init(0),
vpg_regs_init(1),
vpg_regs_init(2),
vpg_regs_init(3),
vpg_regs_init(4),
vpg_regs_init(5),
vpg_regs_init(6),
vpg_regs_init(7),
vpg_regs_init(8),
vpg_regs_init(9);
vpg3_construct(vpg3, ctx, inst,
&vpg_regs[inst],
&vpg_shift,
&vpg_mask);
return &vpg3->base;
}
static struct afmt *dcn32_afmt_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
if (!afmt3)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT afmt_regs
afmt_regs_init(0),
afmt_regs_init(1),
afmt_regs_init(2),
afmt_regs_init(3),
afmt_regs_init(4),
afmt_regs_init(5);
afmt3_construct(afmt3, ctx, inst,
&afmt_regs[inst],
&afmt_shift,
&afmt_mask);
return &afmt3->base;
}
static struct apg *dcn31_apg_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn31_apg *apg31 = kzalloc(sizeof(struct dcn31_apg), GFP_KERNEL);
if (!apg31)
return NULL;
#undef REG_STRUCT
#define REG_STRUCT apg_regs
apg_regs_init(0),
apg_regs_init(1),
apg_regs_init(2),
apg_regs_init(3);
apg31_construct(apg31, ctx, inst,
&apg_regs[inst],
&apg_shift,
&apg_mask);
return &apg31->base;
}
static struct stream_encoder *dcn32_stream_encoder_create(
enum engine_id eng_id,
struct dc_context *ctx)
{
struct dcn10_stream_encoder *enc1;
struct vpg *vpg;
struct afmt *afmt;
int vpg_inst;
int afmt_inst;
/* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
if (eng_id <= ENGINE_ID_DIGF) {
vpg_inst = eng_id;
afmt_inst = eng_id;
} else
return NULL;
enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
vpg = dcn32_vpg_create(ctx, vpg_inst);
afmt = dcn32_afmt_create(ctx, afmt_inst);
if (!enc1 || !vpg || !afmt) {
kfree(enc1);
kfree(vpg);
kfree(afmt);
return NULL;
}
#undef REG_STRUCT
#define REG_STRUCT stream_enc_regs
stream_enc_regs_init(0),
stream_enc_regs_init(1),
stream_enc_regs_init(2),
stream_enc_regs_init(3),
stream_enc_regs_init(4);
dcn32_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
eng_id, vpg, afmt,
&stream_enc_regs[eng_id],
&se_shift, &se_mask);
return &enc1->base;
}
static struct hpo_dp_stream_encoder *dcn32_hpo_dp_stream_encoder_create(
enum engine_id eng_id,
struct dc_context *ctx)
{
struct dcn31_hpo_dp_stream_encoder *hpo_dp_enc31;
struct vpg *vpg;
struct apg *apg;
uint32_t hpo_dp_inst;
uint32_t vpg_inst;
uint32_t apg_inst;
ASSERT((eng_id >= ENGINE_ID_HPO_DP_0) && (eng_id <= ENGINE_ID_HPO_DP_3));
hpo_dp_inst = eng_id - ENGINE_ID_HPO_DP_0;
/* Mapping of VPG register blocks to HPO DP block instance:
* VPG[6] -> HPO_DP[0]
* VPG[7] -> HPO_DP[1]
* VPG[8] -> HPO_DP[2]
* VPG[9] -> HPO_DP[3]
*/
vpg_inst = hpo_dp_inst + 6;
/* Mapping of APG register blocks to HPO DP block instance:
* APG[0] -> HPO_DP[0]
* APG[1] -> HPO_DP[1]
* APG[2] -> HPO_DP[2]
* APG[3] -> HPO_DP[3]
*/
apg_inst = hpo_dp_inst;
/* allocate HPO stream encoder and create VPG sub-block */
hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_stream_encoder), GFP_KERNEL);
vpg = dcn32_vpg_create(ctx, vpg_inst);
apg = dcn31_apg_create(ctx, apg_inst);
if (!hpo_dp_enc31 || !vpg || !apg) {
kfree(hpo_dp_enc31);
kfree(vpg);
kfree(apg);
return NULL;
}
#undef REG_STRUCT
#define REG_STRUCT hpo_dp_stream_enc_regs
hpo_dp_stream_encoder_reg_init(0),
hpo_dp_stream_encoder_reg_init(1),
hpo_dp_stream_encoder_reg_init(2),
hpo_dp_stream_encoder_reg_init(3);
dcn31_hpo_dp_stream_encoder_construct(hpo_dp_enc31, ctx, ctx->dc_bios,
hpo_dp_inst, eng_id, vpg, apg,
&hpo_dp_stream_enc_regs[hpo_dp_inst],
&hpo_dp_se_shift, &hpo_dp_se_mask);
return &hpo_dp_enc31->base;
}
static struct hpo_dp_link_encoder *dcn32_hpo_dp_link_encoder_create(
uint8_t inst,
struct dc_context *ctx)
{
struct dcn31_hpo_dp_link_encoder *hpo_dp_enc31;
/* allocate HPO link encoder */
hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_link_encoder), GFP_KERNEL);
#undef REG_STRUCT
#define REG_STRUCT hpo_dp_link_enc_regs
hpo_dp_link_encoder_reg_init(0),
hpo_dp_link_encoder_reg_init(1);
hpo_dp_link_encoder32_construct(hpo_dp_enc31, ctx, inst,
&hpo_dp_link_enc_regs[inst],
&hpo_dp_le_shift, &hpo_dp_le_mask);
return &hpo_dp_enc31->base;
}
static struct dce_hwseq *dcn32_hwseq_create(
struct dc_context *ctx)
{
struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
#undef REG_STRUCT
#define REG_STRUCT hwseq_reg
hwseq_reg_init();
if (hws) {
hws->ctx = ctx;
hws->regs = &hwseq_reg;
hws->shifts = &hwseq_shift;
hws->masks = &hwseq_mask;
}
return hws;
}
static const struct resource_create_funcs res_create_funcs = {
.read_dce_straps = read_dce_straps,
.create_audio = dcn32_create_audio,
.create_stream_encoder = dcn32_stream_encoder_create,
.create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create,
.create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create,
.create_hwseq = dcn32_hwseq_create,
};
static void dcn32_resource_destruct(struct dcn32_resource_pool *pool)
{
unsigned int i;
for (i = 0; i < pool->base.stream_enc_count; i++) {
if (pool->base.stream_enc[i] != NULL) {
if (pool->base.stream_enc[i]->vpg != NULL) {
kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
pool->base.stream_enc[i]->vpg = NULL;
}
if (pool->base.stream_enc[i]->afmt != NULL) {
kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
pool->base.stream_enc[i]->afmt = NULL;
}
kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
pool->base.stream_enc[i] = NULL;
}
}
for (i = 0; i < pool->base.hpo_dp_stream_enc_count; i++) {
if (pool->base.hpo_dp_stream_enc[i] != NULL) {
if (pool->base.hpo_dp_stream_enc[i]->vpg != NULL) {
kfree(DCN30_VPG_FROM_VPG(pool->base.hpo_dp_stream_enc[i]->vpg));
pool->base.hpo_dp_stream_enc[i]->vpg = NULL;
}
if (pool->base.hpo_dp_stream_enc[i]->apg != NULL) {
kfree(DCN31_APG_FROM_APG(pool->base.hpo_dp_stream_enc[i]->apg));
pool->base.hpo_dp_stream_enc[i]->apg = NULL;
}
kfree(DCN3_1_HPO_DP_STREAM_ENC_FROM_HPO_STREAM_ENC(pool->base.hpo_dp_stream_enc[i]));
pool->base.hpo_dp_stream_enc[i] = NULL;
}
}
for (i = 0; i < pool->base.hpo_dp_link_enc_count; i++) {
if (pool->base.hpo_dp_link_enc[i] != NULL) {
kfree(DCN3_1_HPO_DP_LINK_ENC_FROM_HPO_LINK_ENC(pool->base.hpo_dp_link_enc[i]));
pool->base.hpo_dp_link_enc[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
if (pool->base.dscs[i] != NULL)
dcn20_dsc_destroy(&pool->base.dscs[i]);
}
if (pool->base.mpc != NULL) {
kfree(TO_DCN20_MPC(pool->base.mpc));
pool->base.mpc = NULL;
}
if (pool->base.hubbub != NULL) {
kfree(TO_DCN20_HUBBUB(pool->base.hubbub));
pool->base.hubbub = NULL;
}
for (i = 0; i < pool->base.pipe_count; i++) {
if (pool->base.dpps[i] != NULL)
dcn32_dpp_destroy(&pool->base.dpps[i]);
if (pool->base.ipps[i] != NULL)
pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
if (pool->base.hubps[i] != NULL) {
kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
pool->base.hubps[i] = NULL;
}
if (pool->base.irqs != NULL) {
dal_irq_service_destroy(&pool->base.irqs);
}
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
if (pool->base.engines[i] != NULL)
dce110_engine_destroy(&pool->base.engines[i]);
if (pool->base.hw_i2cs[i] != NULL) {
kfree(pool->base.hw_i2cs[i]);
pool->base.hw_i2cs[i] = NULL;
}
if (pool->base.sw_i2cs[i] != NULL) {
kfree(pool->base.sw_i2cs[i]);
pool->base.sw_i2cs[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_opp; i++) {
if (pool->base.opps[i] != NULL)
pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
}
for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
if (pool->base.timing_generators[i] != NULL) {
kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
pool->base.timing_generators[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
if (pool->base.dwbc[i] != NULL) {
kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
pool->base.dwbc[i] = NULL;
}
if (pool->base.mcif_wb[i] != NULL) {
kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
pool->base.mcif_wb[i] = NULL;
}
}
for (i = 0; i < pool->base.audio_count; i++) {
if (pool->base.audios[i])
dce_aud_destroy(&pool->base.audios[i]);
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] != NULL) {
dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
pool->base.clock_sources[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
if (pool->base.mpc_lut[i] != NULL) {
dc_3dlut_func_release(pool->base.mpc_lut[i]);
pool->base.mpc_lut[i] = NULL;
}
if (pool->base.mpc_shaper[i] != NULL) {
dc_transfer_func_release(pool->base.mpc_shaper[i]);
pool->base.mpc_shaper[i] = NULL;
}
}
if (pool->base.dp_clock_source != NULL) {
dcn20_clock_source_destroy(&pool->base.dp_clock_source);
pool->base.dp_clock_source = NULL;
}
for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
if (pool->base.multiple_abms[i] != NULL)
dce_abm_destroy(&pool->base.multiple_abms[i]);
}
if (pool->base.psr != NULL)
dmub_psr_destroy(&pool->base.psr);
if (pool->base.dccg != NULL)
dcn_dccg_destroy(&pool->base.dccg);
if (pool->base.oem_device != NULL) {
struct dc *dc = pool->base.oem_device->ctx->dc;
dc->link_srv->destroy_ddc_service(&pool->base.oem_device);
}
}
static bool dcn32_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
{
int i;
uint32_t dwb_count = pool->res_cap->num_dwb;
for (i = 0; i < dwb_count; i++) {
struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
GFP_KERNEL);
if (!dwbc30) {
dm_error("DC: failed to create dwbc30!\n");
return false;
}
#undef REG_STRUCT
#define REG_STRUCT dwbc30_regs
dwbc_regs_dcn3_init(0);
dcn30_dwbc_construct(dwbc30, ctx,
&dwbc30_regs[i],
&dwbc30_shift,
&dwbc30_mask,
i);
pool->dwbc[i] = &dwbc30->base;
}
return true;
}
static bool dcn32_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
{
int i;
uint32_t dwb_count = pool->res_cap->num_dwb;
for (i = 0; i < dwb_count; i++) {
struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
GFP_KERNEL);
if (!mcif_wb30) {
dm_error("DC: failed to create mcif_wb30!\n");
return false;
}
#undef REG_STRUCT
#define REG_STRUCT mcif_wb30_regs
mcif_wb_regs_dcn3_init(0);
dcn32_mmhubbub_construct(mcif_wb30, ctx,
&mcif_wb30_regs[i],
&mcif_wb30_shift,
&mcif_wb30_mask,
i);
pool->mcif_wb[i] = &mcif_wb30->base;
}
return true;
}
static struct display_stream_compressor *dcn32_dsc_create(
struct dc_context *ctx, uint32_t inst)
{
struct dcn20_dsc *dsc =
kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
if (!dsc) {
BREAK_TO_DEBUGGER();
return NULL;
}
#undef REG_STRUCT
#define REG_STRUCT dsc_regs
dsc_regsDCN20_init(0),
dsc_regsDCN20_init(1),
dsc_regsDCN20_init(2),
dsc_regsDCN20_init(3);
dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
dsc->max_image_width = 6016;
return &dsc->base;
}
static void dcn32_destroy_resource_pool(struct resource_pool **pool)
{
struct dcn32_resource_pool *dcn32_pool = TO_DCN32_RES_POOL(*pool);
dcn32_resource_destruct(dcn32_pool);
kfree(dcn32_pool);
*pool = NULL;
}
bool dcn32_acquire_post_bldn_3dlut(
struct resource_context *res_ctx,
const struct resource_pool *pool,
int mpcc_id,
struct dc_3dlut **lut,
struct dc_transfer_func **shaper)
{
bool ret = false;
ASSERT(*lut == NULL && *shaper == NULL);
*lut = NULL;
*shaper = NULL;
if (!res_ctx->is_mpc_3dlut_acquired[mpcc_id]) {
*lut = pool->mpc_lut[mpcc_id];
*shaper = pool->mpc_shaper[mpcc_id];
res_ctx->is_mpc_3dlut_acquired[mpcc_id] = true;
ret = true;
}
return ret;
}
bool dcn32_release_post_bldn_3dlut(
struct resource_context *res_ctx,
const struct resource_pool *pool,
struct dc_3dlut **lut,
struct dc_transfer_func **shaper)
{
int i;
bool ret = false;
for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) {
res_ctx->is_mpc_3dlut_acquired[i] = false;
pool->mpc_lut[i]->state.raw = 0;
*lut = NULL;
*shaper = NULL;
ret = true;
break;
}
}
return ret;
}
static void dcn32_enable_phantom_plane(struct dc *dc,
struct dc_state *context,
struct dc_stream_state *phantom_stream,
unsigned int dc_pipe_idx)
{
struct dc_plane_state *phantom_plane = NULL;
struct dc_plane_state *prev_phantom_plane = NULL;
struct pipe_ctx *curr_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
while (curr_pipe) {
if (curr_pipe->top_pipe && curr_pipe->top_pipe->plane_state == curr_pipe->plane_state)
phantom_plane = prev_phantom_plane;
else
phantom_plane = dc_create_plane_state(dc);
memcpy(&phantom_plane->address, &curr_pipe->plane_state->address, sizeof(phantom_plane->address));
memcpy(&phantom_plane->scaling_quality, &curr_pipe->plane_state->scaling_quality,
sizeof(phantom_plane->scaling_quality));
memcpy(&phantom_plane->src_rect, &curr_pipe->plane_state->src_rect, sizeof(phantom_plane->src_rect));
memcpy(&phantom_plane->dst_rect, &curr_pipe->plane_state->dst_rect, sizeof(phantom_plane->dst_rect));
memcpy(&phantom_plane->clip_rect, &curr_pipe->plane_state->clip_rect, sizeof(phantom_plane->clip_rect));
memcpy(&phantom_plane->plane_size, &curr_pipe->plane_state->plane_size,
sizeof(phantom_plane->plane_size));
memcpy(&phantom_plane->tiling_info, &curr_pipe->plane_state->tiling_info,
sizeof(phantom_plane->tiling_info));
memcpy(&phantom_plane->dcc, &curr_pipe->plane_state->dcc, sizeof(phantom_plane->dcc));
phantom_plane->format = curr_pipe->plane_state->format;
phantom_plane->rotation = curr_pipe->plane_state->rotation;
phantom_plane->visible = curr_pipe->plane_state->visible;
/* Shadow pipe has small viewport. */
phantom_plane->clip_rect.y = 0;
phantom_plane->clip_rect.height = phantom_stream->src.height;
phantom_plane->is_phantom = true;
dc_add_plane_to_context(dc, phantom_stream, phantom_plane, context);
curr_pipe = curr_pipe->bottom_pipe;
prev_phantom_plane = phantom_plane;
}
}
static struct dc_stream_state *dcn32_enable_phantom_stream(struct dc *dc,
struct dc_state *context,
display_e2e_pipe_params_st *pipes,
unsigned int pipe_cnt,
unsigned int dc_pipe_idx)
{
struct dc_stream_state *phantom_stream = NULL;
struct pipe_ctx *ref_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
phantom_stream = dc_create_stream_for_sink(ref_pipe->stream->sink);
phantom_stream->signal = SIGNAL_TYPE_VIRTUAL;
phantom_stream->dpms_off = true;
phantom_stream->mall_stream_config.type = SUBVP_PHANTOM;
phantom_stream->mall_stream_config.paired_stream = ref_pipe->stream;
ref_pipe->stream->mall_stream_config.type = SUBVP_MAIN;
ref_pipe->stream->mall_stream_config.paired_stream = phantom_stream;
/* stream has limited viewport and small timing */
memcpy(&phantom_stream->timing, &ref_pipe->stream->timing, sizeof(phantom_stream->timing));
memcpy(&phantom_stream->src, &ref_pipe->stream->src, sizeof(phantom_stream->src));
memcpy(&phantom_stream->dst, &ref_pipe->stream->dst, sizeof(phantom_stream->dst));
DC_FP_START();
dcn32_set_phantom_stream_timing(dc, context, ref_pipe, phantom_stream, pipes, pipe_cnt, dc_pipe_idx);
DC_FP_END();
dc_add_stream_to_ctx(dc, context, phantom_stream);
return phantom_stream;
}
void dcn32_retain_phantom_pipes(struct dc *dc, struct dc_state *context)
{
int i;
struct dc_plane_state *phantom_plane = NULL;
struct dc_stream_state *phantom_stream = NULL;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
if (resource_is_pipe_type(pipe, OTG_MASTER) &&
resource_is_pipe_type(pipe, DPP_PIPE) &&
pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
phantom_plane = pipe->plane_state;
phantom_stream = pipe->stream;
dc_plane_state_retain(phantom_plane);
dc_stream_retain(phantom_stream);
}
}
}
// return true if removed piped from ctx, false otherwise
bool dcn32_remove_phantom_pipes(struct dc *dc, struct dc_state *context, bool fast_update)
{
int i;
bool removed_pipe = false;
struct dc_plane_state *phantom_plane = NULL;
struct dc_stream_state *phantom_stream = NULL;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
// build scaling params for phantom pipes
if (pipe->plane_state && pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
phantom_plane = pipe->plane_state;
phantom_stream = pipe->stream;
dc_rem_all_planes_for_stream(dc, pipe->stream, context);
dc_remove_stream_from_ctx(dc, context, pipe->stream);
/* Ref count is incremented on allocation and also when added to the context.
* Therefore we must call release for the the phantom plane and stream once
* they are removed from the ctx to finally decrement the refcount to 0 to free.
*/
dc_plane_state_release(phantom_plane);
dc_stream_release(phantom_stream);
removed_pipe = true;
}
/* For non-full updates, a shallow copy of the current state
* is created. In this case we don't want to erase the current
* state (there can be 2 HIRQL threads, one in flip, and one in
* checkMPO) that can cause a race condition.
*
* This is just a workaround, needs a proper fix.
*/
if (!fast_update) {
// Clear all phantom stream info
if (pipe->stream) {
pipe->stream->mall_stream_config.type = SUBVP_NONE;
pipe->stream->mall_stream_config.paired_stream = NULL;
}
if (pipe->plane_state) {
pipe->plane_state->is_phantom = false;
}
}
}
return removed_pipe;
}
/* TODO: Input to this function should indicate which pipe indexes (or streams)
* require a phantom pipe / stream
*/
void dcn32_add_phantom_pipes(struct dc *dc, struct dc_state *context,
display_e2e_pipe_params_st *pipes,
unsigned int pipe_cnt,
unsigned int index)
{
struct dc_stream_state *phantom_stream = NULL;
unsigned int i;
// The index of the DC pipe passed into this function is guarenteed to
// be a valid candidate for SubVP (i.e. has a plane, stream, doesn't
// already have phantom pipe assigned, etc.) by previous checks.
phantom_stream = dcn32_enable_phantom_stream(dc, context, pipes, pipe_cnt, index);
dcn32_enable_phantom_plane(dc, context, phantom_stream, index);
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
// Build scaling params for phantom pipes which were newly added.
// We determine which phantom pipes were added by comparing with
// the phantom stream.
if (pipe->plane_state && pipe->stream && pipe->stream == phantom_stream &&
pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
pipe->stream->use_dynamic_meta = false;
pipe->plane_state->flip_immediate = false;
if (!resource_build_scaling_params(pipe)) {
// Log / remove phantom pipes since failed to build scaling params
}
}
}
}
bool dcn32_validate_bandwidth(struct dc *dc,
struct dc_state *context,
bool fast_validate)
{
bool out = false;
BW_VAL_TRACE_SETUP();
int vlevel = 0;
int pipe_cnt = 0;
display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
struct mall_temp_config mall_temp_config;
/* To handle Freesync properly, setting FreeSync DML parameters
* to its default state for the first stage of validation
*/
context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;
DC_LOGGER_INIT(dc->ctx->logger);
/* For fast validation, there are situations where a shallow copy of
* of the dc->current_state is created for the validation. In this case
* we want to save and restore the mall config because we always
* teardown subvp at the beginning of validation (and don't attempt
* to add it back if it's fast validation). If we don't restore the
* subvp config in cases of fast validation + shallow copy of the
* dc->current_state, the dc->current_state will have a partially
* removed subvp state when we did not intend to remove it.
*/
if (fast_validate) {
memset(&mall_temp_config, 0, sizeof(mall_temp_config));
dcn32_save_mall_state(dc, context, &mall_temp_config);
}
BW_VAL_TRACE_COUNT();
DC_FP_START();
out = dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate);
DC_FP_END();
if (fast_validate)
dcn32_restore_mall_state(dc, context, &mall_temp_config);
if (pipe_cnt == 0)
goto validate_out;
if (!out)
goto validate_fail;
BW_VAL_TRACE_END_VOLTAGE_LEVEL();
if (fast_validate) {
BW_VAL_TRACE_SKIP(fast);
goto validate_out;
}
dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
dcn32_override_min_req_memclk(dc, context);
BW_VAL_TRACE_END_WATERMARKS();
goto validate_out;
validate_fail:
DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n",
dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states]));
BW_VAL_TRACE_SKIP(fail);
out = false;
validate_out:
kfree(pipes);
BW_VAL_TRACE_FINISH();
return out;
}
int dcn32_populate_dml_pipes_from_context(
struct dc *dc, struct dc_state *context,
display_e2e_pipe_params_st *pipes,
bool fast_validate)
{
int i, pipe_cnt;
struct resource_context *res_ctx = &context->res_ctx;
struct pipe_ctx *pipe = NULL;
bool subvp_in_use = false;
struct dc_crtc_timing *timing;
bool vsr_odm_support = false;
dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate);
/* Determine whether we will apply ODM 2to1 policy:
* Applies to single display and where the number of planes is less than 3.
* For 3 plane case ( 2 MPO planes ), we will not set the policy for the MPO pipes.
*
* Apply pipe split policy first so we can predict the pipe split correctly
* (dcn32_predict_pipe_split).
*/
for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
if (!res_ctx->pipe_ctx[i].stream)
continue;
pipe = &res_ctx->pipe_ctx[i];
timing = &pipe->stream->timing;
pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal;
vsr_odm_support = (res_ctx->pipe_ctx[i].stream->src.width >= 5120 &&
res_ctx->pipe_ctx[i].stream->src.width > res_ctx->pipe_ctx[i].stream->dst.width);
if (context->stream_count == 1 &&
context->stream_status[0].plane_count == 1 &&
!dc_is_hdmi_signal(res_ctx->pipe_ctx[i].stream->signal) &&
is_h_timing_divisible_by_2(res_ctx->pipe_ctx[i].stream) &&
pipe->stream->timing.pix_clk_100hz * 100 > DCN3_2_VMIN_DISPCLK_HZ &&
dc->debug.enable_single_display_2to1_odm_policy &&
!vsr_odm_support) { //excluding 2to1 ODM combine on >= 5k vsr
pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1;
}
pipe_cnt++;
}
for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
if (!res_ctx->pipe_ctx[i].stream)
continue;
pipe = &res_ctx->pipe_ctx[i];
timing = &pipe->stream->timing;
pipes[pipe_cnt].pipe.src.gpuvm = true;
DC_FP_START();
dcn32_zero_pipe_dcc_fraction(pipes, pipe_cnt);
DC_FP_END();
pipes[pipe_cnt].pipe.dest.vfront_porch = timing->v_front_porch;
pipes[pipe_cnt].pipe.src.gpuvm_min_page_size_kbytes = 256; // according to spreadsheet
pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_19;
/* Only populate DML input with subvp info for full updates.
* This is just a workaround -- needs a proper fix.
*/
if (!fast_validate) {
switch (pipe->stream->mall_stream_config.type) {
case SUBVP_MAIN:
pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_sub_viewport;
subvp_in_use = true;
break;
case SUBVP_PHANTOM:
pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_phantom_pipe;
pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
// Disallow unbounded req for SubVP according to DCHUB programming guide
pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
break;
case SUBVP_NONE:
pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_disable;
pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
break;
default:
break;
}
}
pipes[pipe_cnt].dout.dsc_input_bpc = 0;
if (pipes[pipe_cnt].dout.dsc_enable) {
switch (timing->display_color_depth) {
case COLOR_DEPTH_888:
pipes[pipe_cnt].dout.dsc_input_bpc = 8;
break;
case COLOR_DEPTH_101010:
pipes[pipe_cnt].dout.dsc_input_bpc = 10;
break;
case COLOR_DEPTH_121212:
pipes[pipe_cnt].dout.dsc_input_bpc = 12;
break;
default:
ASSERT(0);
break;
}
}
DC_FP_START();
dcn32_predict_pipe_split(context, &pipes[pipe_cnt]);
DC_FP_END();
pipe_cnt++;
}
/* For DET allocation, we don't want to use DML policy (not optimal for utilizing all
* the DET available for each pipe). Use the DET override input to maintain our driver
* policy.
*/
dcn32_set_det_allocations(dc, context, pipes);
// In general cases we want to keep the dram clock change requirement
// (prefer configs that support MCLK switch). Only override to false
// for SubVP
if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || subvp_in_use)
context->bw_ctx.dml.soc.dram_clock_change_requirement_final = false;
else
context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;
return pipe_cnt;
}
static struct dc_cap_funcs cap_funcs = {
.get_dcc_compression_cap = dcn20_get_dcc_compression_cap
};
void dcn32_calculate_wm_and_dlg(struct dc *dc, struct dc_state *context,
display_e2e_pipe_params_st *pipes,
int pipe_cnt,
int vlevel)
{
DC_FP_START();
dcn32_calculate_wm_and_dlg_fpu(dc, context, pipes, pipe_cnt, vlevel);
DC_FP_END();
}
static void dcn32_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
{
DC_FP_START();
dcn32_update_bw_bounding_box_fpu(dc, bw_params);
DC_FP_END();
}
static struct resource_funcs dcn32_res_pool_funcs = {
.destroy = dcn32_destroy_resource_pool,
.link_enc_create = dcn32_link_encoder_create,
.link_enc_create_minimal = NULL,
.panel_cntl_create = dcn32_panel_cntl_create,
.validate_bandwidth = dcn32_validate_bandwidth,
.calculate_wm_and_dlg = dcn32_calculate_wm_and_dlg,
.populate_dml_pipes = dcn32_populate_dml_pipes_from_context,
.acquire_free_pipe_as_secondary_dpp_pipe = dcn32_acquire_free_pipe_as_secondary_dpp_pipe,
.add_stream_to_ctx = dcn30_add_stream_to_ctx,
.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
.populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
.set_mcif_arb_params = dcn30_set_mcif_arb_params,
.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
.acquire_post_bldn_3dlut = dcn32_acquire_post_bldn_3dlut,
.release_post_bldn_3dlut = dcn32_release_post_bldn_3dlut,
.update_bw_bounding_box = dcn32_update_bw_bounding_box,
.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
.update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
.add_phantom_pipes = dcn32_add_phantom_pipes,
.remove_phantom_pipes = dcn32_remove_phantom_pipes,
.retain_phantom_pipes = dcn32_retain_phantom_pipes,
.save_mall_state = dcn32_save_mall_state,
.restore_mall_state = dcn32_restore_mall_state,
};
static uint32_t read_pipe_fuses(struct dc_context *ctx)
{
uint32_t value = REG_READ(CC_DC_PIPE_DIS);
/* DCN32 support max 4 pipes */
value = value & 0xf;
return value;
}
static bool dcn32_resource_construct(
uint8_t num_virtual_links,
struct dc *dc,
struct dcn32_resource_pool *pool)
{
int i, j;
struct dc_context *ctx = dc->ctx;
struct irq_service_init_data init_data;
struct ddc_service_init_data ddc_init_data = {0};
uint32_t pipe_fuses = 0;
uint32_t num_pipes = 4;
#undef REG_STRUCT
#define REG_STRUCT bios_regs
bios_regs_init();
#undef REG_STRUCT
#define REG_STRUCT clk_src_regs
clk_src_regs_init(0, A),
clk_src_regs_init(1, B),
clk_src_regs_init(2, C),
clk_src_regs_init(3, D),
clk_src_regs_init(4, E);
#undef REG_STRUCT
#define REG_STRUCT abm_regs
abm_regs_init(0),
abm_regs_init(1),
abm_regs_init(2),
abm_regs_init(3);
#undef REG_STRUCT
#define REG_STRUCT dccg_regs
dccg_regs_init();
DC_FP_START();
ctx->dc_bios->regs = &bios_regs;
pool->base.res_cap = &res_cap_dcn32;
/* max number of pipes for ASIC before checking for pipe fuses */
num_pipes = pool->base.res_cap->num_timing_generator;
pipe_fuses = read_pipe_fuses(ctx);
for (i = 0; i < pool->base.res_cap->num_timing_generator; i++)
if (pipe_fuses & 1 << i)
num_pipes--;
if (pipe_fuses & 1)
ASSERT(0); //Unexpected - Pipe 0 should always be fully functional!
if (pipe_fuses & CC_DC_PIPE_DIS__DC_FULL_DIS_MASK)
ASSERT(0); //Entire DCN is harvested!
/* within dml lib, initial value is hard coded, if ASIC pipe is fused, the
* value will be changed, update max_num_dpp and max_num_otg for dml.
*/
dcn3_2_ip.max_num_dpp = num_pipes;
dcn3_2_ip.max_num_otg = num_pipes;
pool->base.funcs = &dcn32_res_pool_funcs;
/*************************************************
* Resource + asic cap harcoding *
*************************************************/
pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
pool->base.timing_generator_count = num_pipes;
pool->base.pipe_count = num_pipes;
pool->base.mpcc_count = num_pipes;
dc->caps.max_downscale_ratio = 600;
dc->caps.i2c_speed_in_khz = 100;
dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a applied by default*/
/* TODO: Bring max_cursor_size back to 256 after subvp cursor corruption is fixed*/
dc->caps.max_cursor_size = 64;
dc->caps.min_horizontal_blanking_period = 80;
dc->caps.dmdata_alloc_size = 2048;
dc->caps.mall_size_per_mem_channel = 4;
dc->caps.mall_size_total = 0;
dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;
dc->caps.cache_line_size = 64;
dc->caps.cache_num_ways = 16;
/* Calculate the available MALL space */
dc->caps.max_cab_allocation_bytes = dcn32_calc_num_avail_chans_for_mall(
dc, dc->ctx->dc_bios->vram_info.num_chans) *
dc->caps.mall_size_per_mem_channel * 1024 * 1024;
dc->caps.mall_size_total = dc->caps.max_cab_allocation_bytes;
dc->caps.subvp_fw_processing_delay_us = 15;
dc->caps.subvp_drr_max_vblank_margin_us = 40;
dc->caps.subvp_prefetch_end_to_mall_start_us = 15;
dc->caps.subvp_swath_height_margin_lines = 16;
dc->caps.subvp_pstate_allow_width_us = 20;
dc->caps.subvp_vertical_int_margin_us = 30;
dc->caps.subvp_drr_vblank_start_margin_us = 100; // 100us margin
dc->caps.max_slave_planes = 2;
dc->caps.max_slave_yuv_planes = 2;
dc->caps.max_slave_rgb_planes = 2;
dc->caps.post_blend_color_processing = true;
dc->caps.force_dp_tps4_for_cp2520 = true;
if (dc->config.forceHBR2CP2520)
dc->caps.force_dp_tps4_for_cp2520 = false;
dc->caps.dp_hpo = true;
dc->caps.dp_hdmi21_pcon_support = true;
dc->caps.edp_dsc_support = true;
dc->caps.extended_aux_timeout_support = true;
dc->caps.dmcub_support = true;
dc->caps.seamless_odm = true;
dc->caps.max_v_total = (1 << 15) - 1;
/* Color pipeline capabilities */
dc->caps.color.dpp.dcn_arch = 1;
dc->caps.color.dpp.input_lut_shared = 0;
dc->caps.color.dpp.icsc = 1;
dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
dc->caps.color.dpp.dgam_rom_caps.pq = 1;
dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
dc->caps.color.dpp.post_csc = 1;
dc->caps.color.dpp.gamma_corr = 1;
dc->caps.color.dpp.dgam_rom_for_yuv = 0;
dc->caps.color.dpp.hw_3d_lut = 1;
dc->caps.color.dpp.ogam_ram = 0; // no OGAM in DPP since DCN1
// no OGAM ROM on DCN2 and later ASICs
dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
dc->caps.color.dpp.ogam_rom_caps.pq = 0;
dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
dc->caps.color.dpp.ocsc = 0;
dc->caps.color.mpc.gamut_remap = 1;
dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //4, configurable to be before or after BLND in MPCC
dc->caps.color.mpc.ogam_ram = 1;
dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
dc->caps.color.mpc.ogam_rom_caps.pq = 0;
dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
dc->caps.color.mpc.ocsc = 1;
/* Use pipe context based otg sync logic */
dc->config.use_pipe_ctx_sync_logic = true;
dc->config.dc_mode_clk_limit_support = true;
/* read VBIOS LTTPR caps */
{
if (ctx->dc_bios->funcs->get_lttpr_caps) {
enum bp_result bp_query_result;
uint8_t is_vbios_lttpr_enable = 0;
bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable);
dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable;
}
/* interop bit is implicit */
{
dc->caps.vbios_lttpr_aware = true;
}
}
if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
dc->debug = debug_defaults_drv;
// Init the vm_helper
if (dc->vm_helper)
vm_helper_init(dc->vm_helper, 16);
/*************************************************
* Create resources *
*************************************************/
/* Clock Sources for Pixel Clock*/
pool->base.clock_sources[DCN32_CLK_SRC_PLL0] =
dcn32_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL0,
&clk_src_regs[0], false);
pool->base.clock_sources[DCN32_CLK_SRC_PLL1] =
dcn32_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL1,
&clk_src_regs[1], false);
pool->base.clock_sources[DCN32_CLK_SRC_PLL2] =
dcn32_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL2,
&clk_src_regs[2], false);
pool->base.clock_sources[DCN32_CLK_SRC_PLL3] =
dcn32_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL3,
&clk_src_regs[3], false);
pool->base.clock_sources[DCN32_CLK_SRC_PLL4] =
dcn32_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL4,
&clk_src_regs[4], false);
pool->base.clk_src_count = DCN32_CLK_SRC_TOTAL;
/* todo: not reuse phy_pll registers */
pool->base.dp_clock_source =
dcn32_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_ID_DP_DTO,
&clk_src_regs[0], true);
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] == NULL) {
dm_error("DC: failed to create clock sources!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
}
/* DCCG */
pool->base.dccg = dccg32_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
if (pool->base.dccg == NULL) {
dm_error("DC: failed to create dccg!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
/* DML */
dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
/* IRQ Service */
init_data.ctx = dc->ctx;
pool->base.irqs = dal_irq_service_dcn32_create(&init_data);
if (!pool->base.irqs)
goto create_fail;
/* HUBBUB */
pool->base.hubbub = dcn32_hubbub_create(ctx);
if (pool->base.hubbub == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create hubbub!\n");
goto create_fail;
}
/* HUBPs, DPPs, OPPs, TGs, ABMs */
for (i = 0, j = 0; i < pool->base.res_cap->num_timing_generator; i++) {
/* if pipe is disabled, skip instance of HW pipe,
* i.e, skip ASIC register instance
*/
if (pipe_fuses & 1 << i)
continue;
/* HUBPs */
pool->base.hubps[j] = dcn32_hubp_create(ctx, i);
if (pool->base.hubps[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create hubps!\n");
goto create_fail;
}
/* DPPs */
pool->base.dpps[j] = dcn32_dpp_create(ctx, i);
if (pool->base.dpps[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create dpps!\n");
goto create_fail;
}
/* OPPs */
pool->base.opps[j] = dcn32_opp_create(ctx, i);
if (pool->base.opps[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create output pixel processor!\n");
goto create_fail;
}
/* TGs */
pool->base.timing_generators[j] = dcn32_timing_generator_create(
ctx, i);
if (pool->base.timing_generators[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create tg!\n");
goto create_fail;
}
/* ABMs */
pool->base.multiple_abms[j] = dmub_abm_create(ctx,
&abm_regs[i],
&abm_shift,
&abm_mask);
if (pool->base.multiple_abms[j] == NULL) {
dm_error("DC: failed to create abm for pipe %d!\n", i);
BREAK_TO_DEBUGGER();
goto create_fail;
}
/* index for resource pool arrays for next valid pipe */
j++;
}
/* PSR */
pool->base.psr = dmub_psr_create(ctx);
if (pool->base.psr == NULL) {
dm_error("DC: failed to create psr obj!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
/* MPCCs */
pool->base.mpc = dcn32_mpc_create(ctx, pool->base.res_cap->num_timing_generator, pool->base.res_cap->num_mpc_3dlut);
if (pool->base.mpc == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create mpc!\n");
goto create_fail;
}
/* DSCs */
for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
pool->base.dscs[i] = dcn32_dsc_create(ctx, i);
if (pool->base.dscs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create display stream compressor %d!\n", i);
goto create_fail;
}
}
/* DWB */
if (!dcn32_dwbc_create(ctx, &pool->base)) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create dwbc!\n");
goto create_fail;
}
/* MMHUBBUB */
if (!dcn32_mmhubbub_create(ctx, &pool->base)) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create mcif_wb!\n");
goto create_fail;
}
/* AUX and I2C */
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
pool->base.engines[i] = dcn32_aux_engine_create(ctx, i);
if (pool->base.engines[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create aux engine!!\n");
goto create_fail;
}
pool->base.hw_i2cs[i] = dcn32_i2c_hw_create(ctx, i);
if (pool->base.hw_i2cs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create hw i2c!!\n");
goto create_fail;
}
pool->base.sw_i2cs[i] = NULL;
}
/* Audio, HWSeq, Stream Encoders including HPO and virtual, MPC 3D LUTs */
if (!resource_construct(num_virtual_links, dc, &pool->base,
&res_create_funcs))
goto create_fail;
/* HW Sequencer init functions and Plane caps */
dcn32_hw_sequencer_init_functions(dc);
dc->caps.max_planes = pool->base.pipe_count;
for (i = 0; i < dc->caps.max_planes; ++i)
dc->caps.planes[i] = plane_cap;
dc->cap_funcs = cap_funcs;
if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
ddc_init_data.ctx = dc->ctx;
ddc_init_data.link = NULL;
ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
ddc_init_data.id.enum_id = 0;
ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data);
} else {
pool->base.oem_device = NULL;
}
if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev) && (dc->config.sdpif_request_limit_words_per_umc == 0))
dc->config.sdpif_request_limit_words_per_umc = 16;
DC_FP_END();
return true;
create_fail:
DC_FP_END();
dcn32_resource_destruct(pool);
return false;
}
struct resource_pool *dcn32_create_resource_pool(
const struct dc_init_data *init_data,
struct dc *dc)
{
struct dcn32_resource_pool *pool =
kzalloc(sizeof(struct dcn32_resource_pool), GFP_KERNEL);
if (!pool)
return NULL;
if (dcn32_resource_construct(init_data->num_virtual_links, dc, pool))
return &pool->base;
BREAK_TO_DEBUGGER();
kfree(pool);
return NULL;
}
/*
* Find the most optimal free pipe from res_ctx, which could be used as a
* secondary dpp pipe for input opp head pipe.
*
* a free pipe - a pipe in input res_ctx not yet used for any streams or
* planes.
* secondary dpp pipe - a pipe gets inserted to a head OPP pipe's MPC blending
* tree. This is typical used for rendering MPO planes or additional offset
* areas in MPCC combine.
*
* Hardware Transition Minimization Algorithm for Finding a Secondary DPP Pipe
* -------------------------------------------------------------------------
*
* PROBLEM:
*
* 1. There is a hardware limitation that a secondary DPP pipe cannot be
* transferred from one MPC blending tree to the other in a single frame.
* Otherwise it could cause glitches on the screen.
*
* For instance, we cannot transition from state 1 to state 2 in one frame. This
* is because PIPE1 is transferred from PIPE0's MPC blending tree over to
* PIPE2's MPC blending tree, which is not supported by hardware.
* To support this transition we need to first remove PIPE1 from PIPE0's MPC
* blending tree in one frame and then insert PIPE1 to PIPE2's MPC blending tree
* in the next frame. This is not optimal as it will delay the flip for two
* frames.
*
* State 1:
* PIPE0 -- secondary DPP pipe --> (PIPE1)
* PIPE2 -- secondary DPP pipe --> NONE
*
* State 2:
* PIPE0 -- secondary DPP pipe --> NONE
* PIPE2 -- secondary DPP pipe --> (PIPE1)
*
* 2. We want to in general minimize the unnecessary changes in pipe topology.
* If a pipe is already added in current blending tree and there are no changes
* to plane topology, we don't want to swap it with another free pipe
* unnecessarily in every update. Powering up and down a pipe would require a
* full update which delays the flip for 1 frame. If we use the original pipe
* we don't have to toggle its power. So we can flip faster.
*/
static int find_optimal_free_pipe_as_secondary_dpp_pipe(
const struct resource_context *cur_res_ctx,
struct resource_context *new_res_ctx,
const struct resource_pool *pool,
const struct pipe_ctx *new_opp_head)
{
const struct pipe_ctx *cur_opp_head;
int free_pipe_idx;
cur_opp_head = &cur_res_ctx->pipe_ctx[new_opp_head->pipe_idx];
free_pipe_idx = resource_find_free_pipe_used_in_cur_mpc_blending_tree(
cur_res_ctx, new_res_ctx, cur_opp_head);
/* Up until here if we have not found a free secondary pipe, we will
* need to wait for at least one frame to complete the transition
* sequence.
*/
if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
free_pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx(
cur_res_ctx, new_res_ctx, pool);
/* Up until here if we have not found a free secondary pipe, we will
* need to wait for at least two frames to complete the transition
* sequence. It really doesn't matter which pipe we decide take from
* current enabled pipes. It won't save our frame time when we swap only
* one pipe or more pipes.
*/
if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
free_pipe_idx = resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(
cur_res_ctx, new_res_ctx, pool);
if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
free_pipe_idx = resource_find_any_free_pipe(new_res_ctx, pool);
return free_pipe_idx;
}
static struct pipe_ctx *find_idle_secondary_pipe_check_mpo(
struct resource_context *res_ctx,
const struct resource_pool *pool,
const struct pipe_ctx *primary_pipe)
{
int i;
struct pipe_ctx *secondary_pipe = NULL;
struct pipe_ctx *next_odm_mpo_pipe = NULL;
int primary_index, preferred_pipe_idx;
struct pipe_ctx *old_primary_pipe = NULL;
/*
* Modified from find_idle_secondary_pipe
* With windowed MPO and ODM, we want to avoid the case where we want a
* free pipe for the left side but the free pipe is being used on the
* right side.
* Add check on current_state if the primary_pipe is the left side,
* to check the right side ( primary_pipe->next_odm_pipe ) to see if
* it is using a pipe for MPO ( primary_pipe->next_odm_pipe->bottom_pipe )
* - If so, then don't use this pipe
* EXCEPTION - 3 plane ( 2 MPO plane ) case
* - in this case, the primary pipe has already gotten a free pipe for the
* MPO window in the left
* - when it tries to get a free pipe for the MPO window on the right,
* it will see that it is already assigned to the right side
* ( primary_pipe->next_odm_pipe ). But in this case, we want this
* free pipe, since it will be for the right side. So add an
* additional condition, that skipping the free pipe on the right only
* applies if the primary pipe has no bottom pipe currently assigned
*/
if (primary_pipe) {
primary_index = primary_pipe->pipe_idx;
old_primary_pipe = &primary_pipe->stream->ctx->dc->current_state->res_ctx.pipe_ctx[primary_index];
if ((old_primary_pipe->next_odm_pipe) && (old_primary_pipe->next_odm_pipe->bottom_pipe)
&& (!primary_pipe->bottom_pipe))
next_odm_mpo_pipe = old_primary_pipe->next_odm_pipe->bottom_pipe;
preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
if ((res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) &&
!(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == preferred_pipe_idx)) {
secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
secondary_pipe->pipe_idx = preferred_pipe_idx;
}
}
/*
* search backwards for the second pipe to keep pipe
* assignment more consistent
*/
if (!secondary_pipe)
for (i = pool->pipe_count - 1; i >= 0; i--) {
if ((res_ctx->pipe_ctx[i].stream == NULL) &&
!(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == i)) {
secondary_pipe = &res_ctx->pipe_ctx[i];
secondary_pipe->pipe_idx = i;
break;
}
}
return secondary_pipe;
}
static struct pipe_ctx *dcn32_acquire_idle_pipe_for_head_pipe_in_layer(
struct dc_state *state,
const struct resource_pool *pool,
struct dc_stream_state *stream,
const struct pipe_ctx *head_pipe)
{
struct resource_context *res_ctx = &state->res_ctx;
struct pipe_ctx *idle_pipe, *pipe;
struct resource_context *old_ctx = &stream->ctx->dc->current_state->res_ctx;
int head_index;
if (!head_pipe)
ASSERT(0);
/*
* Modified from dcn20_acquire_idle_pipe_for_layer
* Check if head_pipe in old_context already has bottom_pipe allocated.
* - If so, check if that pipe is available in the current context.
* -- If so, reuse pipe from old_context
*/
head_index = head_pipe->pipe_idx;
pipe = &old_ctx->pipe_ctx[head_index];
if (pipe->bottom_pipe && res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx].stream == NULL) {
idle_pipe = &res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx];
idle_pipe->pipe_idx = pipe->bottom_pipe->pipe_idx;
} else {
idle_pipe = find_idle_secondary_pipe_check_mpo(res_ctx, pool, head_pipe);
if (!idle_pipe)
return NULL;
}
idle_pipe->stream = head_pipe->stream;
idle_pipe->stream_res.tg = head_pipe->stream_res.tg;
idle_pipe->stream_res.opp = head_pipe->stream_res.opp;
idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx];
idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx];
idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx];
idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst;
return idle_pipe;
}
struct pipe_ctx *dcn32_acquire_free_pipe_as_secondary_dpp_pipe(
const struct dc_state *cur_ctx,
struct dc_state *new_ctx,
const struct resource_pool *pool,
const struct pipe_ctx *opp_head_pipe)
{
int free_pipe_idx;
struct pipe_ctx *free_pipe;
if (!opp_head_pipe->stream->ctx->dc->config.enable_windowed_mpo_odm)
return dcn32_acquire_idle_pipe_for_head_pipe_in_layer(
new_ctx, pool, opp_head_pipe->stream, opp_head_pipe);
free_pipe_idx = find_optimal_free_pipe_as_secondary_dpp_pipe(
&cur_ctx->res_ctx, &new_ctx->res_ctx,
pool, opp_head_pipe);
if (free_pipe_idx >= 0) {
free_pipe = &new_ctx->res_ctx.pipe_ctx[free_pipe_idx];
free_pipe->pipe_idx = free_pipe_idx;
free_pipe->stream = opp_head_pipe->stream;
free_pipe->stream_res.tg = opp_head_pipe->stream_res.tg;
free_pipe->stream_res.opp = opp_head_pipe->stream_res.opp;
free_pipe->plane_res.hubp = pool->hubps[free_pipe->pipe_idx];
free_pipe->plane_res.ipp = pool->ipps[free_pipe->pipe_idx];
free_pipe->plane_res.dpp = pool->dpps[free_pipe->pipe_idx];
free_pipe->plane_res.mpcc_inst =
pool->dpps[free_pipe->pipe_idx]->inst;
} else {
ASSERT(opp_head_pipe);
free_pipe = NULL;
}
return free_pipe;
}
unsigned int dcn32_calc_num_avail_chans_for_mall(struct dc *dc, int num_chans)
{
/*
* DCN32 and DCN321 SKUs may have different sizes for MALL
* but we may not be able to access all the MALL space.
* If the num_chans is power of 2, then we can access all
* of the available MALL space. Otherwise, we can only
* access:
*
* max_cab_size_in_bytes = total_cache_size_in_bytes *
* ((2^floor(log2(num_chans)))/num_chans)
*
* Calculating the MALL sizes for all available SKUs, we
* have come up with the follow simplified check.
* - we have max_chans which provides the max MALL size.
* Each chans supports 4MB of MALL so:
*
* total_cache_size_in_bytes = max_chans * 4 MB
*
* - we have avail_chans which shows the number of channels
* we can use if we can't access the entire MALL space.
* It is generally half of max_chans
* - so we use the following checks:
*
* if (num_chans == max_chans), return max_chans
* if (num_chans < max_chans), return avail_chans
*
* - exception is GC_11_0_0 where we can't access max_chans,
* so we define max_avail_chans as the maximum available
* MALL space
*
*/
int gc_11_0_0_max_chans = 48;
int gc_11_0_0_max_avail_chans = 32;
int gc_11_0_0_avail_chans = 16;
int gc_11_0_3_max_chans = 16;
int gc_11_0_3_avail_chans = 8;
int gc_11_0_2_max_chans = 8;
int gc_11_0_2_avail_chans = 4;
if (ASICREV_IS_GC_11_0_0(dc->ctx->asic_id.hw_internal_rev)) {
return (num_chans == gc_11_0_0_max_chans) ?
gc_11_0_0_max_avail_chans : gc_11_0_0_avail_chans;
} else if (ASICREV_IS_GC_11_0_2(dc->ctx->asic_id.hw_internal_rev)) {
return (num_chans == gc_11_0_2_max_chans) ?
gc_11_0_2_max_chans : gc_11_0_2_avail_chans;
} else { // if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev)) {
return (num_chans == gc_11_0_3_max_chans) ?
gc_11_0_3_max_chans : gc_11_0_3_avail_chans;
}
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn32/dcn32_resource.c |
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
// header file of functions being implemented
#include "dcn32_resource.h"
#include "dcn20/dcn20_resource.h"
#include "dml/dcn32/display_mode_vba_util_32.h"
#include "dml/dcn32/dcn32_fpu.h"
static bool is_dual_plane(enum surface_pixel_format format)
{
return format >= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN || format == SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA;
}
uint32_t dcn32_helper_mall_bytes_to_ways(
struct dc *dc,
uint32_t total_size_in_mall_bytes)
{
uint32_t cache_lines_used, lines_per_way, total_cache_lines, num_ways;
/* add 2 lines for worst case alignment */
cache_lines_used = total_size_in_mall_bytes / dc->caps.cache_line_size + 2;
total_cache_lines = dc->caps.max_cab_allocation_bytes / dc->caps.cache_line_size;
lines_per_way = total_cache_lines / dc->caps.cache_num_ways;
num_ways = cache_lines_used / lines_per_way;
if (cache_lines_used % lines_per_way > 0)
num_ways++;
return num_ways;
}
uint32_t dcn32_helper_calculate_mall_bytes_for_cursor(
struct dc *dc,
struct pipe_ctx *pipe_ctx,
bool ignore_cursor_buf)
{
struct hubp *hubp = pipe_ctx->plane_res.hubp;
uint32_t cursor_size = hubp->curs_attr.pitch * hubp->curs_attr.height;
uint32_t cursor_mall_size_bytes = 0;
switch (pipe_ctx->stream->cursor_attributes.color_format) {
case CURSOR_MODE_MONO:
cursor_size /= 2;
break;
case CURSOR_MODE_COLOR_1BIT_AND:
case CURSOR_MODE_COLOR_PRE_MULTIPLIED_ALPHA:
case CURSOR_MODE_COLOR_UN_PRE_MULTIPLIED_ALPHA:
cursor_size *= 4;
break;
case CURSOR_MODE_COLOR_64BIT_FP_PRE_MULTIPLIED:
case CURSOR_MODE_COLOR_64BIT_FP_UN_PRE_MULTIPLIED:
cursor_size *= 8;
break;
}
/* only count if cursor is enabled, and if additional allocation needed outside of the
* DCN cursor buffer
*/
if (pipe_ctx->stream->cursor_position.enable && (ignore_cursor_buf ||
cursor_size > 16384)) {
/* cursor_num_mblk = CEILING(num_cursors*cursor_width*cursor_width*cursor_Bpe/mblk_bytes, 1)
* Note: add 1 mblk in case of cursor misalignment
*/
cursor_mall_size_bytes = ((cursor_size + DCN3_2_MALL_MBLK_SIZE_BYTES - 1) /
DCN3_2_MALL_MBLK_SIZE_BYTES + 1) * DCN3_2_MALL_MBLK_SIZE_BYTES;
}
return cursor_mall_size_bytes;
}
/**
* dcn32_helper_calculate_num_ways_for_subvp(): Calculate number of ways needed for SubVP
*
* Gets total allocation required for the phantom viewport calculated by DML in bytes and
* converts to number of cache ways.
*
* @dc: current dc state
* @context: new dc state
*
* Return: number of ways required for SubVP
*/
uint32_t dcn32_helper_calculate_num_ways_for_subvp(
struct dc *dc,
struct dc_state *context)
{
if (context->bw_ctx.bw.dcn.mall_subvp_size_bytes > 0) {
if (dc->debug.force_subvp_num_ways) {
return dc->debug.force_subvp_num_ways;
} else {
return dcn32_helper_mall_bytes_to_ways(dc, context->bw_ctx.bw.dcn.mall_subvp_size_bytes);
}
} else {
return 0;
}
}
void dcn32_merge_pipes_for_subvp(struct dc *dc,
struct dc_state *context)
{
uint32_t i;
/* merge pipes if necessary */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
// For now merge all pipes for SubVP since pipe split case isn't supported yet
/* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
if (pipe->prev_odm_pipe) {
/*split off odm pipe*/
pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
if (pipe->next_odm_pipe)
pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
pipe->bottom_pipe = NULL;
pipe->next_odm_pipe = NULL;
pipe->plane_state = NULL;
pipe->stream = NULL;
pipe->top_pipe = NULL;
pipe->prev_odm_pipe = NULL;
if (pipe->stream_res.dsc)
dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
} else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
struct pipe_ctx *top_pipe = pipe->top_pipe;
struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
top_pipe->bottom_pipe = bottom_pipe;
if (bottom_pipe)
bottom_pipe->top_pipe = top_pipe;
pipe->top_pipe = NULL;
pipe->bottom_pipe = NULL;
pipe->plane_state = NULL;
pipe->stream = NULL;
memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
}
}
}
bool dcn32_all_pipes_have_stream_and_plane(struct dc *dc,
struct dc_state *context)
{
uint32_t i;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
if (!pipe->stream)
continue;
if (!pipe->plane_state)
return false;
}
return true;
}
bool dcn32_subvp_in_use(struct dc *dc,
struct dc_state *context)
{
uint32_t i;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_NONE)
return true;
}
return false;
}
bool dcn32_mpo_in_use(struct dc_state *context)
{
uint32_t i;
for (i = 0; i < context->stream_count; i++) {
if (context->stream_status[i].plane_count > 1)
return true;
}
return false;
}
bool dcn32_any_surfaces_rotated(struct dc *dc, struct dc_state *context)
{
uint32_t i;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
if (!pipe->stream)
continue;
if (pipe->plane_state && pipe->plane_state->rotation != ROTATION_ANGLE_0)
return true;
}
return false;
}
bool dcn32_is_center_timing(struct pipe_ctx *pipe)
{
bool is_center_timing = false;
if (pipe->stream) {
if (pipe->stream->timing.v_addressable != pipe->stream->dst.height ||
pipe->stream->timing.v_addressable != pipe->stream->src.height) {
is_center_timing = true;
}
}
if (pipe->plane_state) {
if (pipe->stream->timing.v_addressable != pipe->plane_state->dst_rect.height &&
pipe->stream->timing.v_addressable != pipe->plane_state->src_rect.height) {
is_center_timing = true;
}
}
return is_center_timing;
}
bool dcn32_is_psr_capable(struct pipe_ctx *pipe)
{
bool psr_capable = false;
if (pipe->stream && pipe->stream->link->psr_settings.psr_version != DC_PSR_VERSION_UNSUPPORTED) {
psr_capable = true;
}
return psr_capable;
}
/**
* dcn32_determine_det_override(): Determine DET allocation for each pipe
*
* This function determines how much DET to allocate for each pipe. The total number of
* DET segments will be split equally among each of the streams, and after that the DET
* segments per stream will be split equally among the planes for the given stream.
*
* If there is a plane that's driven by more than 1 pipe (i.e. pipe split), then the
* number of DET for that given plane will be split among the pipes driving that plane.
*
*
* High level algorithm:
* 1. Split total DET among number of streams
* 2. For each stream, split DET among the planes
* 3. For each plane, check if there is a pipe split. If yes, split the DET allocation
* among those pipes.
* 4. Assign the DET override to the DML pipes.
*
* @dc: Current DC state
* @context: New DC state to be programmed
* @pipes: Array of DML pipes
*
* Return: void
*/
void dcn32_determine_det_override(struct dc *dc,
struct dc_state *context,
display_e2e_pipe_params_st *pipes)
{
uint32_t i, j, k;
uint8_t pipe_plane_count, stream_segments, plane_segments, pipe_segments[MAX_PIPES] = {0};
uint8_t pipe_counted[MAX_PIPES] = {0};
uint8_t pipe_cnt = 0;
struct dc_plane_state *current_plane = NULL;
uint8_t stream_count = 0;
for (i = 0; i < context->stream_count; i++) {
/* Don't count SubVP streams for DET allocation */
if (context->streams[i]->mall_stream_config.type != SUBVP_PHANTOM)
stream_count++;
}
if (stream_count > 0) {
stream_segments = 18 / stream_count;
for (i = 0; i < context->stream_count; i++) {
if (context->streams[i]->mall_stream_config.type == SUBVP_PHANTOM)
continue;
if (context->stream_status[i].plane_count > 0)
plane_segments = stream_segments / context->stream_status[i].plane_count;
else
plane_segments = stream_segments;
for (j = 0; j < dc->res_pool->pipe_count; j++) {
pipe_plane_count = 0;
if (context->res_ctx.pipe_ctx[j].stream == context->streams[i] &&
pipe_counted[j] != 1) {
/* Note: pipe_plane_count indicates the number of pipes to be used for a
* given plane. e.g. pipe_plane_count = 1 means single pipe (i.e. not split),
* pipe_plane_count = 2 means 2:1 split, etc.
*/
pipe_plane_count++;
pipe_counted[j] = 1;
current_plane = context->res_ctx.pipe_ctx[j].plane_state;
for (k = 0; k < dc->res_pool->pipe_count; k++) {
if (k != j && context->res_ctx.pipe_ctx[k].stream == context->streams[i] &&
context->res_ctx.pipe_ctx[k].plane_state == current_plane) {
pipe_plane_count++;
pipe_counted[k] = 1;
}
}
pipe_segments[j] = plane_segments / pipe_plane_count;
for (k = 0; k < dc->res_pool->pipe_count; k++) {
if (k != j && context->res_ctx.pipe_ctx[k].stream == context->streams[i] &&
context->res_ctx.pipe_ctx[k].plane_state == current_plane) {
pipe_segments[k] = plane_segments / pipe_plane_count;
}
}
}
}
}
for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
if (!context->res_ctx.pipe_ctx[i].stream)
continue;
pipes[pipe_cnt].pipe.src.det_size_override = pipe_segments[i] * DCN3_2_DET_SEG_SIZE;
pipe_cnt++;
}
} else {
for (i = 0; i < dc->res_pool->pipe_count; i++)
pipes[i].pipe.src.det_size_override = 4 * DCN3_2_DET_SEG_SIZE; //DCN3_2_DEFAULT_DET_SIZE
}
}
void dcn32_set_det_allocations(struct dc *dc, struct dc_state *context,
display_e2e_pipe_params_st *pipes)
{
int i, pipe_cnt;
struct resource_context *res_ctx = &context->res_ctx;
struct pipe_ctx *pipe;
bool disable_unbounded_requesting = dc->debug.disable_z9_mpc || dc->debug.disable_unbounded_requesting;
for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
if (!res_ctx->pipe_ctx[i].stream)
continue;
pipe = &res_ctx->pipe_ctx[i];
pipe_cnt++;
}
/* For DET allocation, we don't want to use DML policy (not optimal for utilizing all
* the DET available for each pipe). Use the DET override input to maintain our driver
* policy.
*/
if (pipe_cnt == 1) {
pipes[0].pipe.src.det_size_override = DCN3_2_MAX_DET_SIZE;
if (pipe->plane_state && !disable_unbounded_requesting && pipe->plane_state->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
if (!is_dual_plane(pipe->plane_state->format)) {
pipes[0].pipe.src.det_size_override = DCN3_2_DEFAULT_DET_SIZE;
pipes[0].pipe.src.unbounded_req_mode = true;
if (pipe->plane_state->src_rect.width >= 5120 &&
pipe->plane_state->src_rect.height >= 2880)
pipes[0].pipe.src.det_size_override = 320; // 5K or higher
}
}
} else
dcn32_determine_det_override(dc, context, pipes);
}
/**
* dcn32_save_mall_state(): Save MALL (SubVP) state for fast validation cases
*
* This function saves the MALL (SubVP) case for fast validation cases. For fast validation,
* there are situations where a shallow copy of the dc->current_state is created for the
* validation. In this case we want to save and restore the mall config because we always
* teardown subvp at the beginning of validation (and don't attempt to add it back if it's
* fast validation). If we don't restore the subvp config in cases of fast validation +
* shallow copy of the dc->current_state, the dc->current_state will have a partially
* removed subvp state when we did not intend to remove it.
*
* NOTE: This function ONLY works if the streams are not moved to a different pipe in the
* validation. We don't expect this to happen in fast_validation=1 cases.
*
* @dc: Current DC state
* @context: New DC state to be programmed
* @temp_config: struct used to cache the existing MALL state
*
* Return: void
*/
void dcn32_save_mall_state(struct dc *dc,
struct dc_state *context,
struct mall_temp_config *temp_config)
{
uint32_t i;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
if (pipe->stream)
temp_config->mall_stream_config[i] = pipe->stream->mall_stream_config;
if (pipe->plane_state)
temp_config->is_phantom_plane[i] = pipe->plane_state->is_phantom;
}
}
/**
* dcn32_restore_mall_state(): Restore MALL (SubVP) state for fast validation cases
*
* Restore the MALL state based on the previously saved state from dcn32_save_mall_state
*
* @dc: Current DC state
* @context: New DC state to be programmed, restore MALL state into here
* @temp_config: struct that has the cached MALL state
*
* Return: void
*/
void dcn32_restore_mall_state(struct dc *dc,
struct dc_state *context,
struct mall_temp_config *temp_config)
{
uint32_t i;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
if (pipe->stream)
pipe->stream->mall_stream_config = temp_config->mall_stream_config[i];
if (pipe->plane_state)
pipe->plane_state->is_phantom = temp_config->is_phantom_plane[i];
}
}
#define MAX_STRETCHED_V_BLANK 1000 // in micro-seconds (must ensure to match value in FW)
/*
* Scaling factor for v_blank stretch calculations considering timing in
* micro-seconds and pixel clock in 100hz.
* Note: the parenthesis are necessary to ensure the correct order of
* operation where V_SCALE is used.
*/
#define V_SCALE (10000 / MAX_STRETCHED_V_BLANK)
static int get_frame_rate_at_max_stretch_100hz(
struct dc_stream_state *fpo_candidate_stream,
uint32_t fpo_vactive_margin_us)
{
struct dc_crtc_timing *timing = NULL;
uint32_t sec_per_100_lines;
uint32_t max_v_blank;
uint32_t curr_v_blank;
uint32_t v_stretch_max;
uint32_t stretched_frame_pix_cnt;
uint32_t scaled_stretched_frame_pix_cnt;
uint32_t scaled_refresh_rate;
uint32_t v_scale;
if (fpo_candidate_stream == NULL)
return 0;
/* check if refresh rate at least 120hz */
timing = &fpo_candidate_stream->timing;
if (timing == NULL)
return 0;
v_scale = 10000 / (MAX_STRETCHED_V_BLANK + fpo_vactive_margin_us);
sec_per_100_lines = timing->pix_clk_100hz / timing->h_total + 1;
max_v_blank = sec_per_100_lines / v_scale + 1;
curr_v_blank = timing->v_total - timing->v_addressable;
v_stretch_max = (max_v_blank > curr_v_blank) ? (max_v_blank - curr_v_blank) : (0);
stretched_frame_pix_cnt = (v_stretch_max + timing->v_total) * timing->h_total;
scaled_stretched_frame_pix_cnt = stretched_frame_pix_cnt / 10000;
scaled_refresh_rate = (timing->pix_clk_100hz) / scaled_stretched_frame_pix_cnt + 1;
return scaled_refresh_rate;
}
static bool is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(
struct dc_stream_state *fpo_candidate_stream, uint32_t fpo_vactive_margin_us)
{
int refresh_rate_max_stretch_100hz;
int min_refresh_100hz;
if (fpo_candidate_stream == NULL)
return false;
refresh_rate_max_stretch_100hz = get_frame_rate_at_max_stretch_100hz(fpo_candidate_stream, fpo_vactive_margin_us);
min_refresh_100hz = fpo_candidate_stream->timing.min_refresh_in_uhz / 10000;
if (refresh_rate_max_stretch_100hz < min_refresh_100hz)
return false;
return true;
}
static int get_refresh_rate(struct dc_stream_state *fpo_candidate_stream)
{
int refresh_rate = 0;
int h_v_total = 0;
struct dc_crtc_timing *timing = NULL;
if (fpo_candidate_stream == NULL)
return 0;
/* check if refresh rate at least 120hz */
timing = &fpo_candidate_stream->timing;
if (timing == NULL)
return 0;
h_v_total = timing->h_total * timing->v_total;
if (h_v_total == 0)
return 0;
refresh_rate = ((timing->pix_clk_100hz * 100) / (h_v_total)) + 1;
return refresh_rate;
}
/**
* dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch() - Determines if config can
* support FPO
*
* @dc: current dc state
* @context: new dc state
*
* Return: Pointer to FPO stream candidate if config can support FPO, otherwise NULL
*/
struct dc_stream_state *dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch(struct dc *dc, const struct dc_state *context)
{
int refresh_rate = 0;
const int minimum_refreshrate_supported = 120;
struct dc_stream_state *fpo_candidate_stream = NULL;
bool is_fpo_vactive = false;
uint32_t fpo_vactive_margin_us = 0;
if (context == NULL)
return NULL;
if (dc->debug.disable_fams)
return NULL;
if (!dc->caps.dmub_caps.mclk_sw)
return NULL;
if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down)
return NULL;
/* For FPO we can support up to 2 display configs if:
* - first display uses FPO
* - Second display switches in VACTIVE */
if (context->stream_count > 2)
return NULL;
else if (context->stream_count == 2) {
DC_FP_START();
dcn32_assign_fpo_vactive_candidate(dc, context, &fpo_candidate_stream);
DC_FP_END();
DC_FP_START();
is_fpo_vactive = dcn32_find_vactive_pipe(dc, context, dc->debug.fpo_vactive_min_active_margin_us);
DC_FP_END();
if (!is_fpo_vactive || dc->debug.disable_fpo_vactive)
return NULL;
} else
fpo_candidate_stream = context->streams[0];
if (!fpo_candidate_stream)
return NULL;
if (fpo_candidate_stream->sink->edid_caps.panel_patch.disable_fams)
return NULL;
refresh_rate = get_refresh_rate(fpo_candidate_stream);
if (refresh_rate < minimum_refreshrate_supported)
return NULL;
fpo_vactive_margin_us = is_fpo_vactive ? dc->debug.fpo_vactive_margin_us : 0; // For now hardcode the FPO + Vactive stretch margin to be 2000us
if (!is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(fpo_candidate_stream, fpo_vactive_margin_us))
return NULL;
if (!fpo_candidate_stream->allow_freesync)
return NULL;
if (fpo_candidate_stream->vrr_active_variable && dc->debug.disable_fams_gaming)
return NULL;
return fpo_candidate_stream;
}
bool dcn32_check_native_scaling_for_res(struct pipe_ctx *pipe, unsigned int width, unsigned int height)
{
bool is_native_scaling = false;
if (pipe->stream->timing.h_addressable == width &&
pipe->stream->timing.v_addressable == height &&
pipe->plane_state->src_rect.width == width &&
pipe->plane_state->src_rect.height == height &&
pipe->plane_state->dst_rect.width == width &&
pipe->plane_state->dst_rect.height == height)
is_native_scaling = true;
return is_native_scaling;
}
/**
* dcn32_subvp_drr_admissable() - Determine if SubVP + DRR config is admissible
*
* @dc: Current DC state
* @context: New DC state to be programmed
*
* SubVP + DRR is admissible under the following conditions:
* - Config must have 2 displays (i.e., 2 non-phantom master pipes)
* - One display is SubVP
* - Other display must have Freesync enabled
* - The potential DRR display must not be PSR capable
*
* Return: True if admissible, false otherwise
*/
bool dcn32_subvp_drr_admissable(struct dc *dc, struct dc_state *context)
{
bool result = false;
uint32_t i;
uint8_t subvp_count = 0;
uint8_t non_subvp_pipes = 0;
bool drr_pipe_found = false;
bool drr_psr_capable = false;
uint64_t refresh_rate = 0;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
if (resource_is_pipe_type(pipe, OPP_HEAD) &&
resource_is_pipe_type(pipe, DPP_PIPE)) {
if (pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
subvp_count++;
refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1);
refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total);
refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total);
}
if (pipe->stream->mall_stream_config.type == SUBVP_NONE) {
non_subvp_pipes++;
drr_psr_capable = (drr_psr_capable || dcn32_is_psr_capable(pipe));
if (pipe->stream->ignore_msa_timing_param &&
(pipe->stream->allow_freesync || pipe->stream->vrr_active_variable)) {
drr_pipe_found = true;
}
}
}
}
if (subvp_count == 1 && non_subvp_pipes == 1 && drr_pipe_found && !drr_psr_capable &&
((uint32_t)refresh_rate < 120))
result = true;
return result;
}
/**
* dcn32_subvp_vblank_admissable() - Determine if SubVP + Vblank config is admissible
*
* @dc: Current DC state
* @context: New DC state to be programmed
* @vlevel: Voltage level calculated by DML
*
* SubVP + Vblank is admissible under the following conditions:
* - Config must have 2 displays (i.e., 2 non-phantom master pipes)
* - One display is SubVP
* - Other display must not have Freesync capability
* - DML must have output DRAM clock change support as SubVP + Vblank
* - The potential vblank display must not be PSR capable
*
* Return: True if admissible, false otherwise
*/
bool dcn32_subvp_vblank_admissable(struct dc *dc, struct dc_state *context, int vlevel)
{
bool result = false;
uint32_t i;
uint8_t subvp_count = 0;
uint8_t non_subvp_pipes = 0;
bool drr_pipe_found = false;
struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
bool vblank_psr_capable = false;
uint64_t refresh_rate = 0;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
if (resource_is_pipe_type(pipe, OPP_HEAD) &&
resource_is_pipe_type(pipe, DPP_PIPE)) {
if (pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
subvp_count++;
refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1);
refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total);
refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total);
}
if (pipe->stream->mall_stream_config.type == SUBVP_NONE) {
non_subvp_pipes++;
vblank_psr_capable = (vblank_psr_capable || dcn32_is_psr_capable(pipe));
if (pipe->stream->ignore_msa_timing_param &&
(pipe->stream->allow_freesync || pipe->stream->vrr_active_variable)) {
drr_pipe_found = true;
}
}
}
}
if (subvp_count == 1 && non_subvp_pipes == 1 && !drr_pipe_found && !vblank_psr_capable &&
((uint32_t)refresh_rate < 120) &&
vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vblank_w_mall_sub_vp)
result = true;
return result;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn32/dcn32_resource_helpers.c |
/*
* Copyright 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dcn30/dcn30_hubbub.h"
#include "dcn32_hubbub.h"
#include "dm_services.h"
#include "reg_helper.h"
#define CTX \
hubbub2->base.ctx
#define DC_LOGGER \
hubbub2->base.ctx->logger
#define REG(reg)\
hubbub2->regs->reg
#undef FN
#define FN(reg_name, field_name) \
hubbub2->shifts->field_name, hubbub2->masks->field_name
/**
* DCN32_CRB_SEGMENT_SIZE_KB: Maximum Configurable Return Buffer size for
* DCN32
*/
#define DCN32_CRB_SEGMENT_SIZE_KB 64
static void dcn32_init_crb(struct hubbub *hubbub)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
REG_GET(DCHUBBUB_DET0_CTRL, DET0_SIZE_CURRENT,
&hubbub2->det0_size);
REG_GET(DCHUBBUB_DET1_CTRL, DET1_SIZE_CURRENT,
&hubbub2->det1_size);
REG_GET(DCHUBBUB_DET2_CTRL, DET2_SIZE_CURRENT,
&hubbub2->det2_size);
REG_GET(DCHUBBUB_DET3_CTRL, DET3_SIZE_CURRENT,
&hubbub2->det3_size);
REG_GET(DCHUBBUB_COMPBUF_CTRL, COMPBUF_SIZE_CURRENT,
&hubbub2->compbuf_size_segments);
REG_SET_2(COMPBUF_RESERVED_SPACE, 0,
COMPBUF_RESERVED_SPACE_64B, hubbub2->pixel_chunk_size / 32,
COMPBUF_RESERVED_SPACE_ZS, hubbub2->pixel_chunk_size / 128);
REG_UPDATE(DCHUBBUB_DEBUG_CTRL_0, DET_DEPTH, 0x47F);
}
void hubbub32_set_request_limit(struct hubbub *hubbub, int memory_channel_count, int words_per_channel)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
uint32_t request_limit = 3 * memory_channel_count * words_per_channel / 4;
ASSERT((request_limit & (~0xFFF)) == 0); //field is only 24 bits long
ASSERT(request_limit > 0); //field is only 24 bits long
if (request_limit > 0xFFF)
request_limit = 0xFFF;
if (request_limit > 0)
REG_UPDATE(SDPIF_REQUEST_RATE_LIMIT, SDPIF_REQUEST_RATE_LIMIT, request_limit);
}
void dcn32_program_det_size(struct hubbub *hubbub, int hubp_inst, unsigned int det_buffer_size_in_kbyte)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
unsigned int det_size_segments = (det_buffer_size_in_kbyte + DCN32_CRB_SEGMENT_SIZE_KB - 1) / DCN32_CRB_SEGMENT_SIZE_KB;
switch (hubp_inst) {
case 0:
REG_UPDATE(DCHUBBUB_DET0_CTRL,
DET0_SIZE, det_size_segments);
hubbub2->det0_size = det_size_segments;
break;
case 1:
REG_UPDATE(DCHUBBUB_DET1_CTRL,
DET1_SIZE, det_size_segments);
hubbub2->det1_size = det_size_segments;
break;
case 2:
REG_UPDATE(DCHUBBUB_DET2_CTRL,
DET2_SIZE, det_size_segments);
hubbub2->det2_size = det_size_segments;
break;
case 3:
REG_UPDATE(DCHUBBUB_DET3_CTRL,
DET3_SIZE, det_size_segments);
hubbub2->det3_size = det_size_segments;
break;
default:
break;
}
if (hubbub2->det0_size + hubbub2->det1_size + hubbub2->det2_size
+ hubbub2->det3_size + hubbub2->compbuf_size_segments > hubbub2->crb_size_segs) {
/* This may happen during seamless transition from ODM 2:1 to ODM4:1 */
DC_LOG_WARNING("CRB Config Warning: DET size (%d,%d,%d,%d) + Compbuf size (%d) > CRB segments (%d)\n",
hubbub2->det0_size, hubbub2->det1_size, hubbub2->det2_size, hubbub2->det3_size,
hubbub2->compbuf_size_segments, hubbub2->crb_size_segs);
}
}
static void dcn32_program_compbuf_size(struct hubbub *hubbub, unsigned int compbuf_size_kb, bool safe_to_increase)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
unsigned int compbuf_size_segments = (compbuf_size_kb + DCN32_CRB_SEGMENT_SIZE_KB - 1) / DCN32_CRB_SEGMENT_SIZE_KB;
if (safe_to_increase || compbuf_size_segments <= hubbub2->compbuf_size_segments) {
if (compbuf_size_segments > hubbub2->compbuf_size_segments) {
REG_WAIT(DCHUBBUB_DET0_CTRL, DET0_SIZE_CURRENT, hubbub2->det0_size, 1, 100);
REG_WAIT(DCHUBBUB_DET1_CTRL, DET1_SIZE_CURRENT, hubbub2->det1_size, 1, 100);
REG_WAIT(DCHUBBUB_DET2_CTRL, DET2_SIZE_CURRENT, hubbub2->det2_size, 1, 100);
REG_WAIT(DCHUBBUB_DET3_CTRL, DET3_SIZE_CURRENT, hubbub2->det3_size, 1, 100);
}
/* Should never be hit, if it is we have an erroneous hw config*/
ASSERT(hubbub2->det0_size + hubbub2->det1_size + hubbub2->det2_size
+ hubbub2->det3_size + compbuf_size_segments <= hubbub2->crb_size_segs);
REG_UPDATE(DCHUBBUB_COMPBUF_CTRL, COMPBUF_SIZE, compbuf_size_segments);
hubbub2->compbuf_size_segments = compbuf_size_segments;
ASSERT(REG_GET(DCHUBBUB_COMPBUF_CTRL, CONFIG_ERROR, &compbuf_size_segments) && !compbuf_size_segments);
}
}
static uint32_t convert_and_clamp(
uint32_t wm_ns,
uint32_t refclk_mhz,
uint32_t clamp_value)
{
uint32_t ret_val = 0;
ret_val = wm_ns * refclk_mhz;
ret_val /= 1000;
if (ret_val > clamp_value)
ret_val = clamp_value;
return ret_val;
}
bool hubbub32_program_urgent_watermarks(
struct hubbub *hubbub,
struct dcn_watermark_set *watermarks,
unsigned int refclk_mhz,
bool safe_to_lower)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
uint32_t prog_wm_value;
bool wm_pending = false;
/* Repeat for water mark set A, B, C and D. */
/* clock state A */
if (safe_to_lower || watermarks->a.urgent_ns > hubbub2->watermarks.a.urgent_ns) {
hubbub2->watermarks.a.urgent_ns = watermarks->a.urgent_ns;
prog_wm_value = convert_and_clamp(watermarks->a.urgent_ns,
refclk_mhz, 0x3fff);
REG_SET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, 0,
DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("URGENCY_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->a.urgent_ns, prog_wm_value);
} else if (watermarks->a.urgent_ns < hubbub2->watermarks.a.urgent_ns)
wm_pending = true;
/* determine the transfer time for a quantity of data for a particular requestor.*/
if (safe_to_lower || watermarks->a.frac_urg_bw_flip
> hubbub2->watermarks.a.frac_urg_bw_flip) {
hubbub2->watermarks.a.frac_urg_bw_flip = watermarks->a.frac_urg_bw_flip;
REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_A, 0,
DCHUBBUB_ARB_FRAC_URG_BW_FLIP_A, watermarks->a.frac_urg_bw_flip);
} else if (watermarks->a.frac_urg_bw_flip
< hubbub2->watermarks.a.frac_urg_bw_flip)
wm_pending = true;
if (safe_to_lower || watermarks->a.frac_urg_bw_nom
> hubbub2->watermarks.a.frac_urg_bw_nom) {
hubbub2->watermarks.a.frac_urg_bw_nom = watermarks->a.frac_urg_bw_nom;
REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_NOM_A, 0,
DCHUBBUB_ARB_FRAC_URG_BW_NOM_A, watermarks->a.frac_urg_bw_nom);
} else if (watermarks->a.frac_urg_bw_nom
< hubbub2->watermarks.a.frac_urg_bw_nom)
wm_pending = true;
if (safe_to_lower || watermarks->a.urgent_latency_ns > hubbub2->watermarks.a.urgent_latency_ns) {
hubbub2->watermarks.a.urgent_latency_ns = watermarks->a.urgent_latency_ns;
prog_wm_value = convert_and_clamp(watermarks->a.urgent_latency_ns,
refclk_mhz, 0x3fff);
REG_SET(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_A, 0,
DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_A, prog_wm_value);
} else if (watermarks->a.urgent_latency_ns < hubbub2->watermarks.a.urgent_latency_ns)
wm_pending = true;
/* clock state B */
if (safe_to_lower || watermarks->b.urgent_ns > hubbub2->watermarks.b.urgent_ns) {
hubbub2->watermarks.b.urgent_ns = watermarks->b.urgent_ns;
prog_wm_value = convert_and_clamp(watermarks->b.urgent_ns,
refclk_mhz, 0x3fff);
REG_SET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, 0,
DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("URGENCY_WATERMARK_B calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->b.urgent_ns, prog_wm_value);
} else if (watermarks->b.urgent_ns < hubbub2->watermarks.b.urgent_ns)
wm_pending = true;
/* determine the transfer time for a quantity of data for a particular requestor.*/
if (safe_to_lower || watermarks->b.frac_urg_bw_flip
> hubbub2->watermarks.b.frac_urg_bw_flip) {
hubbub2->watermarks.b.frac_urg_bw_flip = watermarks->b.frac_urg_bw_flip;
REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_B, 0,
DCHUBBUB_ARB_FRAC_URG_BW_FLIP_B, watermarks->b.frac_urg_bw_flip);
} else if (watermarks->b.frac_urg_bw_flip
< hubbub2->watermarks.b.frac_urg_bw_flip)
wm_pending = true;
if (safe_to_lower || watermarks->b.frac_urg_bw_nom
> hubbub2->watermarks.b.frac_urg_bw_nom) {
hubbub2->watermarks.b.frac_urg_bw_nom = watermarks->b.frac_urg_bw_nom;
REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_NOM_B, 0,
DCHUBBUB_ARB_FRAC_URG_BW_NOM_B, watermarks->b.frac_urg_bw_nom);
} else if (watermarks->b.frac_urg_bw_nom
< hubbub2->watermarks.b.frac_urg_bw_nom)
wm_pending = true;
if (safe_to_lower || watermarks->b.urgent_latency_ns > hubbub2->watermarks.b.urgent_latency_ns) {
hubbub2->watermarks.b.urgent_latency_ns = watermarks->b.urgent_latency_ns;
prog_wm_value = convert_and_clamp(watermarks->b.urgent_latency_ns,
refclk_mhz, 0x3fff);
REG_SET(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_B, 0,
DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_B, prog_wm_value);
} else if (watermarks->b.urgent_latency_ns < hubbub2->watermarks.b.urgent_latency_ns)
wm_pending = true;
/* clock state C */
if (safe_to_lower || watermarks->c.urgent_ns > hubbub2->watermarks.c.urgent_ns) {
hubbub2->watermarks.c.urgent_ns = watermarks->c.urgent_ns;
prog_wm_value = convert_and_clamp(watermarks->c.urgent_ns,
refclk_mhz, 0x3fff);
REG_SET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_C, 0,
DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_C, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("URGENCY_WATERMARK_C calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->c.urgent_ns, prog_wm_value);
} else if (watermarks->c.urgent_ns < hubbub2->watermarks.c.urgent_ns)
wm_pending = true;
/* determine the transfer time for a quantity of data for a particular requestor.*/
if (safe_to_lower || watermarks->c.frac_urg_bw_flip
> hubbub2->watermarks.c.frac_urg_bw_flip) {
hubbub2->watermarks.c.frac_urg_bw_flip = watermarks->c.frac_urg_bw_flip;
REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_C, 0,
DCHUBBUB_ARB_FRAC_URG_BW_FLIP_C, watermarks->c.frac_urg_bw_flip);
} else if (watermarks->c.frac_urg_bw_flip
< hubbub2->watermarks.c.frac_urg_bw_flip)
wm_pending = true;
if (safe_to_lower || watermarks->c.frac_urg_bw_nom
> hubbub2->watermarks.c.frac_urg_bw_nom) {
hubbub2->watermarks.c.frac_urg_bw_nom = watermarks->c.frac_urg_bw_nom;
REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_NOM_C, 0,
DCHUBBUB_ARB_FRAC_URG_BW_NOM_C, watermarks->c.frac_urg_bw_nom);
} else if (watermarks->c.frac_urg_bw_nom
< hubbub2->watermarks.c.frac_urg_bw_nom)
wm_pending = true;
if (safe_to_lower || watermarks->c.urgent_latency_ns > hubbub2->watermarks.c.urgent_latency_ns) {
hubbub2->watermarks.c.urgent_latency_ns = watermarks->c.urgent_latency_ns;
prog_wm_value = convert_and_clamp(watermarks->c.urgent_latency_ns,
refclk_mhz, 0x3fff);
REG_SET(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_C, 0,
DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_C, prog_wm_value);
} else if (watermarks->c.urgent_latency_ns < hubbub2->watermarks.c.urgent_latency_ns)
wm_pending = true;
/* clock state D */
if (safe_to_lower || watermarks->d.urgent_ns > hubbub2->watermarks.d.urgent_ns) {
hubbub2->watermarks.d.urgent_ns = watermarks->d.urgent_ns;
prog_wm_value = convert_and_clamp(watermarks->d.urgent_ns,
refclk_mhz, 0x3fff);
REG_SET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_D, 0,
DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_D, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("URGENCY_WATERMARK_D calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->d.urgent_ns, prog_wm_value);
} else if (watermarks->d.urgent_ns < hubbub2->watermarks.d.urgent_ns)
wm_pending = true;
/* determine the transfer time for a quantity of data for a particular requestor.*/
if (safe_to_lower || watermarks->d.frac_urg_bw_flip
> hubbub2->watermarks.d.frac_urg_bw_flip) {
hubbub2->watermarks.d.frac_urg_bw_flip = watermarks->d.frac_urg_bw_flip;
REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_D, 0,
DCHUBBUB_ARB_FRAC_URG_BW_FLIP_D, watermarks->d.frac_urg_bw_flip);
} else if (watermarks->d.frac_urg_bw_flip
< hubbub2->watermarks.d.frac_urg_bw_flip)
wm_pending = true;
if (safe_to_lower || watermarks->d.frac_urg_bw_nom
> hubbub2->watermarks.d.frac_urg_bw_nom) {
hubbub2->watermarks.d.frac_urg_bw_nom = watermarks->d.frac_urg_bw_nom;
REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_NOM_D, 0,
DCHUBBUB_ARB_FRAC_URG_BW_NOM_D, watermarks->d.frac_urg_bw_nom);
} else if (watermarks->d.frac_urg_bw_nom
< hubbub2->watermarks.d.frac_urg_bw_nom)
wm_pending = true;
if (safe_to_lower || watermarks->d.urgent_latency_ns > hubbub2->watermarks.d.urgent_latency_ns) {
hubbub2->watermarks.d.urgent_latency_ns = watermarks->d.urgent_latency_ns;
prog_wm_value = convert_and_clamp(watermarks->d.urgent_latency_ns,
refclk_mhz, 0x3fff);
REG_SET(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_D, 0,
DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_D, prog_wm_value);
} else if (watermarks->d.urgent_latency_ns < hubbub2->watermarks.d.urgent_latency_ns)
wm_pending = true;
return wm_pending;
}
bool hubbub32_program_stutter_watermarks(
struct hubbub *hubbub,
struct dcn_watermark_set *watermarks,
unsigned int refclk_mhz,
bool safe_to_lower)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
uint32_t prog_wm_value;
bool wm_pending = false;
/* clock state A */
if (safe_to_lower || watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns
> hubbub2->watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns) {
hubbub2->watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns =
watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns;
prog_wm_value = convert_and_clamp(
watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A, 0,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("SR_ENTER_EXIT_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value);
} else if (watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns
< hubbub2->watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns)
wm_pending = true;
if (safe_to_lower || watermarks->a.cstate_pstate.cstate_exit_ns
> hubbub2->watermarks.a.cstate_pstate.cstate_exit_ns) {
hubbub2->watermarks.a.cstate_pstate.cstate_exit_ns =
watermarks->a.cstate_pstate.cstate_exit_ns;
prog_wm_value = convert_and_clamp(
watermarks->a.cstate_pstate.cstate_exit_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A, 0,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->a.cstate_pstate.cstate_exit_ns, prog_wm_value);
} else if (watermarks->a.cstate_pstate.cstate_exit_ns
< hubbub2->watermarks.a.cstate_pstate.cstate_exit_ns)
wm_pending = true;
/* clock state B */
if (safe_to_lower || watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns
> hubbub2->watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns) {
hubbub2->watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns =
watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns;
prog_wm_value = convert_and_clamp(
watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, 0,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("SR_ENTER_EXIT_WATERMARK_B calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value);
} else if (watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns
< hubbub2->watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns)
wm_pending = true;
if (safe_to_lower || watermarks->b.cstate_pstate.cstate_exit_ns
> hubbub2->watermarks.b.cstate_pstate.cstate_exit_ns) {
hubbub2->watermarks.b.cstate_pstate.cstate_exit_ns =
watermarks->b.cstate_pstate.cstate_exit_ns;
prog_wm_value = convert_and_clamp(
watermarks->b.cstate_pstate.cstate_exit_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, 0,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_B calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->b.cstate_pstate.cstate_exit_ns, prog_wm_value);
} else if (watermarks->b.cstate_pstate.cstate_exit_ns
< hubbub2->watermarks.b.cstate_pstate.cstate_exit_ns)
wm_pending = true;
/* clock state C */
if (safe_to_lower || watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns
> hubbub2->watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns) {
hubbub2->watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns =
watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns;
prog_wm_value = convert_and_clamp(
watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C, 0,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("SR_ENTER_EXIT_WATERMARK_C calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value);
} else if (watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns
< hubbub2->watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns)
wm_pending = true;
if (safe_to_lower || watermarks->c.cstate_pstate.cstate_exit_ns
> hubbub2->watermarks.c.cstate_pstate.cstate_exit_ns) {
hubbub2->watermarks.c.cstate_pstate.cstate_exit_ns =
watermarks->c.cstate_pstate.cstate_exit_ns;
prog_wm_value = convert_and_clamp(
watermarks->c.cstate_pstate.cstate_exit_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_C, 0,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_C, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_C calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->c.cstate_pstate.cstate_exit_ns, prog_wm_value);
} else if (watermarks->c.cstate_pstate.cstate_exit_ns
< hubbub2->watermarks.c.cstate_pstate.cstate_exit_ns)
wm_pending = true;
/* clock state D */
if (safe_to_lower || watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns
> hubbub2->watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns) {
hubbub2->watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns =
watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns;
prog_wm_value = convert_and_clamp(
watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D, 0,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("SR_ENTER_EXIT_WATERMARK_D calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value);
} else if (watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns
< hubbub2->watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns)
wm_pending = true;
if (safe_to_lower || watermarks->d.cstate_pstate.cstate_exit_ns
> hubbub2->watermarks.d.cstate_pstate.cstate_exit_ns) {
hubbub2->watermarks.d.cstate_pstate.cstate_exit_ns =
watermarks->d.cstate_pstate.cstate_exit_ns;
prog_wm_value = convert_and_clamp(
watermarks->d.cstate_pstate.cstate_exit_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_D, 0,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_D, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_D calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->d.cstate_pstate.cstate_exit_ns, prog_wm_value);
} else if (watermarks->d.cstate_pstate.cstate_exit_ns
< hubbub2->watermarks.d.cstate_pstate.cstate_exit_ns)
wm_pending = true;
return wm_pending;
}
bool hubbub32_program_pstate_watermarks(
struct hubbub *hubbub,
struct dcn_watermark_set *watermarks,
unsigned int refclk_mhz,
bool safe_to_lower)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
uint32_t prog_wm_value;
bool wm_pending = false;
/* Section for UCLK_PSTATE_CHANGE_WATERMARKS */
/* clock state A */
if (safe_to_lower || watermarks->a.cstate_pstate.pstate_change_ns
> hubbub2->watermarks.a.cstate_pstate.pstate_change_ns) {
hubbub2->watermarks.a.cstate_pstate.pstate_change_ns =
watermarks->a.cstate_pstate.pstate_change_ns;
prog_wm_value = convert_and_clamp(
watermarks->a.cstate_pstate.pstate_change_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_A, 0,
DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_A, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->a.cstate_pstate.pstate_change_ns, prog_wm_value);
} else if (watermarks->a.cstate_pstate.pstate_change_ns
< hubbub2->watermarks.a.cstate_pstate.pstate_change_ns)
wm_pending = true;
/* clock state B */
if (safe_to_lower || watermarks->b.cstate_pstate.pstate_change_ns
> hubbub2->watermarks.b.cstate_pstate.pstate_change_ns) {
hubbub2->watermarks.b.cstate_pstate.pstate_change_ns =
watermarks->b.cstate_pstate.pstate_change_ns;
prog_wm_value = convert_and_clamp(
watermarks->b.cstate_pstate.pstate_change_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_B, 0,
DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_B, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK_B calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->b.cstate_pstate.pstate_change_ns, prog_wm_value);
} else if (watermarks->b.cstate_pstate.pstate_change_ns
< hubbub2->watermarks.b.cstate_pstate.pstate_change_ns)
wm_pending = true;
/* clock state C */
if (safe_to_lower || watermarks->c.cstate_pstate.pstate_change_ns
> hubbub2->watermarks.c.cstate_pstate.pstate_change_ns) {
hubbub2->watermarks.c.cstate_pstate.pstate_change_ns =
watermarks->c.cstate_pstate.pstate_change_ns;
prog_wm_value = convert_and_clamp(
watermarks->c.cstate_pstate.pstate_change_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_C, 0,
DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_C, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK_C calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->c.cstate_pstate.pstate_change_ns, prog_wm_value);
} else if (watermarks->c.cstate_pstate.pstate_change_ns
< hubbub2->watermarks.c.cstate_pstate.pstate_change_ns)
wm_pending = true;
/* clock state D */
if (safe_to_lower || watermarks->d.cstate_pstate.pstate_change_ns
> hubbub2->watermarks.d.cstate_pstate.pstate_change_ns) {
hubbub2->watermarks.d.cstate_pstate.pstate_change_ns =
watermarks->d.cstate_pstate.pstate_change_ns;
prog_wm_value = convert_and_clamp(
watermarks->d.cstate_pstate.pstate_change_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_D, 0,
DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_D, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK_D calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->d.cstate_pstate.pstate_change_ns, prog_wm_value);
} else if (watermarks->d.cstate_pstate.pstate_change_ns
< hubbub2->watermarks.d.cstate_pstate.pstate_change_ns)
wm_pending = true;
/* Section for FCLK_PSTATE_CHANGE_WATERMARKS */
/* clock state A */
if (safe_to_lower || watermarks->a.cstate_pstate.fclk_pstate_change_ns
> hubbub2->watermarks.a.cstate_pstate.fclk_pstate_change_ns) {
hubbub2->watermarks.a.cstate_pstate.fclk_pstate_change_ns =
watermarks->a.cstate_pstate.fclk_pstate_change_ns;
prog_wm_value = convert_and_clamp(
watermarks->a.cstate_pstate.fclk_pstate_change_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_A, 0,
DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_A, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("FCLK_CHANGE_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->a.cstate_pstate.fclk_pstate_change_ns, prog_wm_value);
} else if (watermarks->a.cstate_pstate.fclk_pstate_change_ns
< hubbub2->watermarks.a.cstate_pstate.fclk_pstate_change_ns)
wm_pending = true;
/* clock state B */
if (safe_to_lower || watermarks->b.cstate_pstate.fclk_pstate_change_ns
> hubbub2->watermarks.b.cstate_pstate.fclk_pstate_change_ns) {
hubbub2->watermarks.b.cstate_pstate.fclk_pstate_change_ns =
watermarks->b.cstate_pstate.fclk_pstate_change_ns;
prog_wm_value = convert_and_clamp(
watermarks->b.cstate_pstate.fclk_pstate_change_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_B, 0,
DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_B, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("FCLK_CHANGE_WATERMARK_B calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->b.cstate_pstate.fclk_pstate_change_ns, prog_wm_value);
} else if (watermarks->b.cstate_pstate.fclk_pstate_change_ns
< hubbub2->watermarks.b.cstate_pstate.fclk_pstate_change_ns)
wm_pending = true;
/* clock state C */
if (safe_to_lower || watermarks->c.cstate_pstate.fclk_pstate_change_ns
> hubbub2->watermarks.c.cstate_pstate.fclk_pstate_change_ns) {
hubbub2->watermarks.c.cstate_pstate.fclk_pstate_change_ns =
watermarks->c.cstate_pstate.fclk_pstate_change_ns;
prog_wm_value = convert_and_clamp(
watermarks->c.cstate_pstate.fclk_pstate_change_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_C, 0,
DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_C, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("FCLK_CHANGE_WATERMARK_C calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->c.cstate_pstate.fclk_pstate_change_ns, prog_wm_value);
} else if (watermarks->c.cstate_pstate.fclk_pstate_change_ns
< hubbub2->watermarks.c.cstate_pstate.fclk_pstate_change_ns)
wm_pending = true;
/* clock state D */
if (safe_to_lower || watermarks->d.cstate_pstate.fclk_pstate_change_ns
> hubbub2->watermarks.d.cstate_pstate.fclk_pstate_change_ns) {
hubbub2->watermarks.d.cstate_pstate.fclk_pstate_change_ns =
watermarks->d.cstate_pstate.fclk_pstate_change_ns;
prog_wm_value = convert_and_clamp(
watermarks->d.cstate_pstate.fclk_pstate_change_ns,
refclk_mhz, 0xffff);
REG_SET(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_D, 0,
DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_D, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("FCLK_CHANGE_WATERMARK_D calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->d.cstate_pstate.fclk_pstate_change_ns, prog_wm_value);
} else if (watermarks->d.cstate_pstate.fclk_pstate_change_ns
< hubbub2->watermarks.d.cstate_pstate.fclk_pstate_change_ns)
wm_pending = true;
return wm_pending;
}
bool hubbub32_program_usr_watermarks(
struct hubbub *hubbub,
struct dcn_watermark_set *watermarks,
unsigned int refclk_mhz,
bool safe_to_lower)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
uint32_t prog_wm_value;
bool wm_pending = false;
/* clock state A */
if (safe_to_lower || watermarks->a.usr_retraining_ns
> hubbub2->watermarks.a.usr_retraining_ns) {
hubbub2->watermarks.a.usr_retraining_ns = watermarks->a.usr_retraining_ns;
prog_wm_value = convert_and_clamp(
watermarks->a.usr_retraining_ns,
refclk_mhz, 0x3fff);
REG_SET(DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_A, 0,
DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_A, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("USR_RETRAINING_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->a.usr_retraining_ns, prog_wm_value);
} else if (watermarks->a.usr_retraining_ns
< hubbub2->watermarks.a.usr_retraining_ns)
wm_pending = true;
/* clock state B */
if (safe_to_lower || watermarks->b.usr_retraining_ns
> hubbub2->watermarks.b.usr_retraining_ns) {
hubbub2->watermarks.b.usr_retraining_ns = watermarks->b.usr_retraining_ns;
prog_wm_value = convert_and_clamp(
watermarks->b.usr_retraining_ns,
refclk_mhz, 0x3fff);
REG_SET(DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_B, 0,
DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_B, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("USR_RETRAINING_WATERMARK_B calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->b.usr_retraining_ns, prog_wm_value);
} else if (watermarks->b.usr_retraining_ns
< hubbub2->watermarks.b.usr_retraining_ns)
wm_pending = true;
/* clock state C */
if (safe_to_lower || watermarks->c.usr_retraining_ns
> hubbub2->watermarks.c.usr_retraining_ns) {
hubbub2->watermarks.c.usr_retraining_ns =
watermarks->c.usr_retraining_ns;
prog_wm_value = convert_and_clamp(
watermarks->c.usr_retraining_ns,
refclk_mhz, 0x3fff);
REG_SET(DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_C, 0,
DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_C, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("USR_RETRAINING_WATERMARK_C calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->c.usr_retraining_ns, prog_wm_value);
} else if (watermarks->c.usr_retraining_ns
< hubbub2->watermarks.c.usr_retraining_ns)
wm_pending = true;
/* clock state D */
if (safe_to_lower || watermarks->d.usr_retraining_ns
> hubbub2->watermarks.d.usr_retraining_ns) {
hubbub2->watermarks.d.usr_retraining_ns =
watermarks->d.usr_retraining_ns;
prog_wm_value = convert_and_clamp(
watermarks->d.usr_retraining_ns,
refclk_mhz, 0x3fff);
REG_SET(DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_D, 0,
DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_D, prog_wm_value);
DC_LOG_BANDWIDTH_CALCS("USR_RETRAINING_WATERMARK_D calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->d.usr_retraining_ns, prog_wm_value);
} else if (watermarks->d.usr_retraining_ns
< hubbub2->watermarks.d.usr_retraining_ns)
wm_pending = true;
return wm_pending;
}
void hubbub32_force_usr_retraining_allow(struct hubbub *hubbub, bool allow)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
/*
* DCHUBBUB_ARB_ALLOW_USR_RETRAINING_FORCE_ENABLE = 1 means enabling forcing value
* DCHUBBUB_ARB_ALLOW_USR_RETRAINING_FORCE_VALUE = 1 or 0, means value to be forced when force enable
*/
REG_UPDATE_2(DCHUBBUB_ARB_USR_RETRAINING_CNTL,
DCHUBBUB_ARB_ALLOW_USR_RETRAINING_FORCE_VALUE, allow,
DCHUBBUB_ARB_ALLOW_USR_RETRAINING_FORCE_ENABLE, allow);
}
static bool hubbub32_program_watermarks(
struct hubbub *hubbub,
struct dcn_watermark_set *watermarks,
unsigned int refclk_mhz,
bool safe_to_lower)
{
bool wm_pending = false;
if (hubbub32_program_urgent_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower))
wm_pending = true;
if (hubbub32_program_stutter_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower))
wm_pending = true;
if (hubbub32_program_pstate_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower))
wm_pending = true;
if (hubbub32_program_usr_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower))
wm_pending = true;
/*
* The DCHub arbiter has a mechanism to dynamically rate limit the DCHub request stream to the fabric.
* If the memory controller is fully utilized and the DCHub requestors are
* well ahead of their amortized schedule, then it is safe to prevent the next winner
* from being committed and sent to the fabric.
* The utilization of the memory controller is approximated by ensuring that
* the number of outstanding requests is greater than a threshold specified
* by the ARB_MIN_REQ_OUTSTANDING. To determine that the DCHub requestors are well ahead of the amortized schedule,
* the slack of the next winner is compared with the ARB_SAT_LEVEL in DLG RefClk cycles.
*
* TODO: Revisit request limit after figure out right number. request limit for RM isn't decided yet, set maximum value (0x1FF)
* to turn off it for now.
*/
/*REG_SET(DCHUBBUB_ARB_SAT_LEVEL, 0,
DCHUBBUB_ARB_SAT_LEVEL, 60 * refclk_mhz);
REG_UPDATE(DCHUBBUB_ARB_DF_REQ_OUTSTAND,
DCHUBBUB_ARB_MIN_REQ_OUTSTAND, 0x1FF);*/
hubbub1_allow_self_refresh_control(hubbub, !hubbub->ctx->dc->debug.disable_stutter);
hubbub32_force_usr_retraining_allow(hubbub, hubbub->ctx->dc->debug.force_usr_allow);
return wm_pending;
}
/* Copy values from WM set A to all other sets */
static void hubbub32_init_watermarks(struct hubbub *hubbub)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
uint32_t reg;
reg = REG_READ(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A);
REG_WRITE(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, reg);
REG_WRITE(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_C, reg);
REG_WRITE(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_D, reg);
reg = REG_READ(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_A);
REG_WRITE(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_B, reg);
REG_WRITE(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_C, reg);
REG_WRITE(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_D, reg);
reg = REG_READ(DCHUBBUB_ARB_FRAC_URG_BW_NOM_A);
REG_WRITE(DCHUBBUB_ARB_FRAC_URG_BW_NOM_B, reg);
REG_WRITE(DCHUBBUB_ARB_FRAC_URG_BW_NOM_C, reg);
REG_WRITE(DCHUBBUB_ARB_FRAC_URG_BW_NOM_D, reg);
reg = REG_READ(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_A);
REG_WRITE(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_B, reg);
REG_WRITE(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_C, reg);
REG_WRITE(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_D, reg);
reg = REG_READ(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, reg);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C, reg);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D, reg);
reg = REG_READ(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, reg);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_C, reg);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_D, reg);
reg = REG_READ(DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_A);
REG_WRITE(DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_B, reg);
REG_WRITE(DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_C, reg);
REG_WRITE(DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_D, reg);
reg = REG_READ(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_A);
REG_WRITE(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_B, reg);
REG_WRITE(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_C, reg);
REG_WRITE(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_D, reg);
reg = REG_READ(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_A);
REG_WRITE(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_B, reg);
REG_WRITE(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_C, reg);
REG_WRITE(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_D, reg);
}
static void hubbub32_wm_read_state(struct hubbub *hubbub,
struct dcn_hubbub_wm *wm)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
struct dcn_hubbub_wm_set *s;
memset(wm, 0, sizeof(struct dcn_hubbub_wm));
s = &wm->sets[0];
s->wm_set = 0;
REG_GET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A,
DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, &s->data_urgent);
REG_GET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A, &s->sr_enter);
REG_GET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A, &s->sr_exit);
REG_GET(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_A,
DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_A, &s->dram_clk_change);
REG_GET(DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_A,
DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_A, &s->usr_retrain);
REG_GET(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_A,
DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_A, &s->fclk_pstate_change);
s = &wm->sets[1];
s->wm_set = 1;
REG_GET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B,
DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, &s->data_urgent);
REG_GET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, &s->sr_enter);
REG_GET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, &s->sr_exit);
REG_GET(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_B,
DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_B, &s->dram_clk_change);
REG_GET(DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_B,
DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_B, &s->usr_retrain);
REG_GET(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_B,
DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_B, &s->fclk_pstate_change);
s = &wm->sets[2];
s->wm_set = 2;
REG_GET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_C,
DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_C, &s->data_urgent);
REG_GET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C, &s->sr_enter);
REG_GET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_C,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_C, &s->sr_exit);
REG_GET(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_C,
DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_C, &s->dram_clk_change);
REG_GET(DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_C,
DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_C, &s->usr_retrain);
REG_GET(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_C,
DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_C, &s->fclk_pstate_change);
s = &wm->sets[3];
s->wm_set = 3;
REG_GET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_D,
DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_D, &s->data_urgent);
REG_GET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D, &s->sr_enter);
REG_GET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_D,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_D, &s->sr_exit);
REG_GET(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_D,
DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_D, &s->dram_clk_change);
REG_GET(DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_D,
DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_D, &s->usr_retrain);
REG_GET(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_D,
DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_D, &s->fclk_pstate_change);
}
void hubbub32_force_wm_propagate_to_pipes(struct hubbub *hubbub)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
uint32_t refclk_mhz = hubbub->ctx->dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000;
uint32_t prog_wm_value = convert_and_clamp(hubbub2->watermarks.a.urgent_ns,
refclk_mhz, 0x3fff);
REG_SET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, 0,
DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, prog_wm_value);
}
void hubbub32_init(struct hubbub *hubbub)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
/* Enable clock gate*/
if (hubbub->ctx->dc->debug.disable_clock_gate) {
/*done in hwseq*/
/*REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);*/
REG_UPDATE_2(DCHUBBUB_CLOCK_CNTL,
DISPCLK_R_DCHUBBUB_GATE_DIS, 1,
DCFCLK_R_DCHUBBUB_GATE_DIS, 1);
}
/*
ignore the "df_pre_cstate_req" from the SDP port control.
only the DCN will determine when to connect the SDP port
*/
REG_UPDATE(DCHUBBUB_SDPIF_CFG0,
SDPIF_PORT_CONTROL, 1);
/*Set SDP's max outstanding request to 512
must set the register back to 0 (max outstanding = 256) in zero frame buffer mode*/
REG_UPDATE(DCHUBBUB_SDPIF_CFG1,
SDPIF_MAX_NUM_OUTSTANDING, 1);
/*must set the registers back to 256 in zero frame buffer mode*/
REG_UPDATE_2(DCHUBBUB_ARB_DF_REQ_OUTSTAND,
DCHUBBUB_ARB_MAX_REQ_OUTSTAND, 512,
DCHUBBUB_ARB_MIN_REQ_OUTSTAND, 512);
}
static const struct hubbub_funcs hubbub32_funcs = {
.update_dchub = hubbub2_update_dchub,
.init_dchub_sys_ctx = hubbub3_init_dchub_sys_ctx,
.init_vm_ctx = hubbub2_init_vm_ctx,
.dcc_support_swizzle = hubbub3_dcc_support_swizzle,
.dcc_support_pixel_format = hubbub2_dcc_support_pixel_format,
.get_dcc_compression_cap = hubbub3_get_dcc_compression_cap,
.wm_read_state = hubbub32_wm_read_state,
.get_dchub_ref_freq = hubbub2_get_dchub_ref_freq,
.program_watermarks = hubbub32_program_watermarks,
.allow_self_refresh_control = hubbub1_allow_self_refresh_control,
.is_allow_self_refresh_enabled = hubbub1_is_allow_self_refresh_enabled,
.verify_allow_pstate_change_high = hubbub1_verify_allow_pstate_change_high,
.force_wm_propagate_to_pipes = hubbub32_force_wm_propagate_to_pipes,
.force_pstate_change_control = hubbub3_force_pstate_change_control,
.init_watermarks = hubbub32_init_watermarks,
.program_det_size = dcn32_program_det_size,
.program_compbuf_size = dcn32_program_compbuf_size,
.init_crb = dcn32_init_crb,
.hubbub_read_state = hubbub2_read_state,
.force_usr_retraining_allow = hubbub32_force_usr_retraining_allow,
.set_request_limit = hubbub32_set_request_limit
};
void hubbub32_construct(struct dcn20_hubbub *hubbub2,
struct dc_context *ctx,
const struct dcn_hubbub_registers *hubbub_regs,
const struct dcn_hubbub_shift *hubbub_shift,
const struct dcn_hubbub_mask *hubbub_mask,
int det_size_kb,
int pixel_chunk_size_kb,
int config_return_buffer_size_kb)
{
hubbub2->base.ctx = ctx;
hubbub2->base.funcs = &hubbub32_funcs;
hubbub2->regs = hubbub_regs;
hubbub2->shifts = hubbub_shift;
hubbub2->masks = hubbub_mask;
hubbub2->debug_test_index_pstate = 0xB;
hubbub2->detile_buf_size = det_size_kb * 1024;
hubbub2->pixel_chunk_size = pixel_chunk_size_kb * 1024;
hubbub2->crb_size_segs = config_return_buffer_size_kb / DCN32_CRB_SEGMENT_SIZE_KB;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn32/dcn32_hubbub.c |
/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include <linux/slab.h>
#include "dm_services.h"
#include "dm_helpers.h"
#include "include/hdcp_msg_types.h"
#include "include/signal_types.h"
#include "core_types.h"
#include "link.h"
#include "link_hwss.h"
#include "link/protocols/link_dpcd.h"
#define DC_LOGGER \
link->ctx->logger
#define HDCP14_KSV_SIZE 5
#define HDCP14_MAX_KSV_FIFO_SIZE 127*HDCP14_KSV_SIZE
static const bool hdcp_cmd_is_read[HDCP_MESSAGE_ID_MAX] = {
[HDCP_MESSAGE_ID_READ_BKSV] = true,
[HDCP_MESSAGE_ID_READ_RI_R0] = true,
[HDCP_MESSAGE_ID_READ_PJ] = true,
[HDCP_MESSAGE_ID_WRITE_AKSV] = false,
[HDCP_MESSAGE_ID_WRITE_AINFO] = false,
[HDCP_MESSAGE_ID_WRITE_AN] = false,
[HDCP_MESSAGE_ID_READ_VH_X] = true,
[HDCP_MESSAGE_ID_READ_VH_0] = true,
[HDCP_MESSAGE_ID_READ_VH_1] = true,
[HDCP_MESSAGE_ID_READ_VH_2] = true,
[HDCP_MESSAGE_ID_READ_VH_3] = true,
[HDCP_MESSAGE_ID_READ_VH_4] = true,
[HDCP_MESSAGE_ID_READ_BCAPS] = true,
[HDCP_MESSAGE_ID_READ_BSTATUS] = true,
[HDCP_MESSAGE_ID_READ_KSV_FIFO] = true,
[HDCP_MESSAGE_ID_READ_BINFO] = true,
[HDCP_MESSAGE_ID_HDCP2VERSION] = true,
[HDCP_MESSAGE_ID_RX_CAPS] = true,
[HDCP_MESSAGE_ID_WRITE_AKE_INIT] = false,
[HDCP_MESSAGE_ID_READ_AKE_SEND_CERT] = true,
[HDCP_MESSAGE_ID_WRITE_AKE_NO_STORED_KM] = false,
[HDCP_MESSAGE_ID_WRITE_AKE_STORED_KM] = false,
[HDCP_MESSAGE_ID_READ_AKE_SEND_H_PRIME] = true,
[HDCP_MESSAGE_ID_READ_AKE_SEND_PAIRING_INFO] = true,
[HDCP_MESSAGE_ID_WRITE_LC_INIT] = false,
[HDCP_MESSAGE_ID_READ_LC_SEND_L_PRIME] = true,
[HDCP_MESSAGE_ID_WRITE_SKE_SEND_EKS] = false,
[HDCP_MESSAGE_ID_READ_REPEATER_AUTH_SEND_RECEIVERID_LIST] = true,
[HDCP_MESSAGE_ID_WRITE_REPEATER_AUTH_SEND_ACK] = false,
[HDCP_MESSAGE_ID_WRITE_REPEATER_AUTH_STREAM_MANAGE] = false,
[HDCP_MESSAGE_ID_READ_REPEATER_AUTH_STREAM_READY] = true,
[HDCP_MESSAGE_ID_READ_RXSTATUS] = true,
[HDCP_MESSAGE_ID_WRITE_CONTENT_STREAM_TYPE] = false
};
static const uint8_t hdcp_i2c_offsets[HDCP_MESSAGE_ID_MAX] = {
[HDCP_MESSAGE_ID_READ_BKSV] = 0x0,
[HDCP_MESSAGE_ID_READ_RI_R0] = 0x8,
[HDCP_MESSAGE_ID_READ_PJ] = 0xA,
[HDCP_MESSAGE_ID_WRITE_AKSV] = 0x10,
[HDCP_MESSAGE_ID_WRITE_AINFO] = 0x15,
[HDCP_MESSAGE_ID_WRITE_AN] = 0x18,
[HDCP_MESSAGE_ID_READ_VH_X] = 0x20,
[HDCP_MESSAGE_ID_READ_VH_0] = 0x20,
[HDCP_MESSAGE_ID_READ_VH_1] = 0x24,
[HDCP_MESSAGE_ID_READ_VH_2] = 0x28,
[HDCP_MESSAGE_ID_READ_VH_3] = 0x2C,
[HDCP_MESSAGE_ID_READ_VH_4] = 0x30,
[HDCP_MESSAGE_ID_READ_BCAPS] = 0x40,
[HDCP_MESSAGE_ID_READ_BSTATUS] = 0x41,
[HDCP_MESSAGE_ID_READ_KSV_FIFO] = 0x43,
[HDCP_MESSAGE_ID_READ_BINFO] = 0xFF,
[HDCP_MESSAGE_ID_HDCP2VERSION] = 0x50,
[HDCP_MESSAGE_ID_WRITE_AKE_INIT] = 0x60,
[HDCP_MESSAGE_ID_READ_AKE_SEND_CERT] = 0x80,
[HDCP_MESSAGE_ID_WRITE_AKE_NO_STORED_KM] = 0x60,
[HDCP_MESSAGE_ID_WRITE_AKE_STORED_KM] = 0x60,
[HDCP_MESSAGE_ID_READ_AKE_SEND_H_PRIME] = 0x80,
[HDCP_MESSAGE_ID_READ_AKE_SEND_PAIRING_INFO] = 0x80,
[HDCP_MESSAGE_ID_WRITE_LC_INIT] = 0x60,
[HDCP_MESSAGE_ID_READ_LC_SEND_L_PRIME] = 0x80,
[HDCP_MESSAGE_ID_WRITE_SKE_SEND_EKS] = 0x60,
[HDCP_MESSAGE_ID_READ_REPEATER_AUTH_SEND_RECEIVERID_LIST] = 0x80,
[HDCP_MESSAGE_ID_WRITE_REPEATER_AUTH_SEND_ACK] = 0x60,
[HDCP_MESSAGE_ID_WRITE_REPEATER_AUTH_STREAM_MANAGE] = 0x60,
[HDCP_MESSAGE_ID_READ_REPEATER_AUTH_STREAM_READY] = 0x80,
[HDCP_MESSAGE_ID_READ_RXSTATUS] = 0x70,
[HDCP_MESSAGE_ID_WRITE_CONTENT_STREAM_TYPE] = 0x0,
};
struct protection_properties {
bool supported;
bool (*process_transaction)(
struct dc_link *link,
struct hdcp_protection_message *message_info);
};
static const struct protection_properties non_supported_protection = {
.supported = false
};
static bool hdmi_14_process_transaction(
struct dc_link *link,
struct hdcp_protection_message *message_info)
{
uint8_t *buff = NULL;
bool result;
const uint8_t hdcp_i2c_addr_link_primary = 0x3a; /* 0x74 >> 1*/
const uint8_t hdcp_i2c_addr_link_secondary = 0x3b; /* 0x76 >> 1*/
struct i2c_command i2c_command;
uint8_t offset = hdcp_i2c_offsets[message_info->msg_id];
struct i2c_payload i2c_payloads[] = {
{ true, 0, 1, &offset },
/* actual hdcp payload, will be filled later, zeroed for now*/
{ 0 }
};
switch (message_info->link) {
case HDCP_LINK_SECONDARY:
i2c_payloads[0].address = hdcp_i2c_addr_link_secondary;
i2c_payloads[1].address = hdcp_i2c_addr_link_secondary;
break;
case HDCP_LINK_PRIMARY:
default:
i2c_payloads[0].address = hdcp_i2c_addr_link_primary;
i2c_payloads[1].address = hdcp_i2c_addr_link_primary;
break;
}
if (hdcp_cmd_is_read[message_info->msg_id]) {
i2c_payloads[1].write = false;
i2c_command.number_of_payloads = ARRAY_SIZE(i2c_payloads);
i2c_payloads[1].length = message_info->length;
i2c_payloads[1].data = message_info->data;
} else {
i2c_command.number_of_payloads = 1;
buff = kzalloc(message_info->length + 1, GFP_KERNEL);
if (!buff)
return false;
buff[0] = offset;
memmove(&buff[1], message_info->data, message_info->length);
i2c_payloads[0].length = message_info->length + 1;
i2c_payloads[0].data = buff;
}
i2c_command.payloads = i2c_payloads;
i2c_command.engine = I2C_COMMAND_ENGINE_HW;//only HW
i2c_command.speed = link->ddc->ctx->dc->caps.i2c_speed_in_khz;
result = dm_helpers_submit_i2c(
link->ctx,
link,
&i2c_command);
kfree(buff);
return result;
}
static const struct protection_properties hdmi_14_protection = {
.supported = true,
.process_transaction = hdmi_14_process_transaction
};
static const uint32_t hdcp_dpcd_addrs[HDCP_MESSAGE_ID_MAX] = {
[HDCP_MESSAGE_ID_READ_BKSV] = 0x68000,
[HDCP_MESSAGE_ID_READ_RI_R0] = 0x68005,
[HDCP_MESSAGE_ID_READ_PJ] = 0xFFFFFFFF,
[HDCP_MESSAGE_ID_WRITE_AKSV] = 0x68007,
[HDCP_MESSAGE_ID_WRITE_AINFO] = 0x6803B,
[HDCP_MESSAGE_ID_WRITE_AN] = 0x6800c,
[HDCP_MESSAGE_ID_READ_VH_X] = 0x68014,
[HDCP_MESSAGE_ID_READ_VH_0] = 0x68014,
[HDCP_MESSAGE_ID_READ_VH_1] = 0x68018,
[HDCP_MESSAGE_ID_READ_VH_2] = 0x6801c,
[HDCP_MESSAGE_ID_READ_VH_3] = 0x68020,
[HDCP_MESSAGE_ID_READ_VH_4] = 0x68024,
[HDCP_MESSAGE_ID_READ_BCAPS] = 0x68028,
[HDCP_MESSAGE_ID_READ_BSTATUS] = 0x68029,
[HDCP_MESSAGE_ID_READ_KSV_FIFO] = 0x6802c,
[HDCP_MESSAGE_ID_READ_BINFO] = 0x6802a,
[HDCP_MESSAGE_ID_RX_CAPS] = 0x6921d,
[HDCP_MESSAGE_ID_WRITE_AKE_INIT] = 0x69000,
[HDCP_MESSAGE_ID_READ_AKE_SEND_CERT] = 0x6900b,
[HDCP_MESSAGE_ID_WRITE_AKE_NO_STORED_KM] = 0x69220,
[HDCP_MESSAGE_ID_WRITE_AKE_STORED_KM] = 0x692a0,
[HDCP_MESSAGE_ID_READ_AKE_SEND_H_PRIME] = 0x692c0,
[HDCP_MESSAGE_ID_READ_AKE_SEND_PAIRING_INFO] = 0x692e0,
[HDCP_MESSAGE_ID_WRITE_LC_INIT] = 0x692f0,
[HDCP_MESSAGE_ID_READ_LC_SEND_L_PRIME] = 0x692f8,
[HDCP_MESSAGE_ID_WRITE_SKE_SEND_EKS] = 0x69318,
[HDCP_MESSAGE_ID_READ_REPEATER_AUTH_SEND_RECEIVERID_LIST] = 0x69330,
[HDCP_MESSAGE_ID_WRITE_REPEATER_AUTH_SEND_ACK] = 0x693e0,
[HDCP_MESSAGE_ID_WRITE_REPEATER_AUTH_STREAM_MANAGE] = 0x693f0,
[HDCP_MESSAGE_ID_READ_REPEATER_AUTH_STREAM_READY] = 0x69473,
[HDCP_MESSAGE_ID_READ_RXSTATUS] = 0x69493,
[HDCP_MESSAGE_ID_WRITE_CONTENT_STREAM_TYPE] = 0x69494
};
static bool dpcd_access_helper(
struct dc_link *link,
uint32_t length,
uint8_t *data,
uint32_t dpcd_addr,
bool is_read)
{
enum dc_status status;
uint32_t cur_length = 0;
uint32_t offset = 0;
uint32_t ksv_read_size = 0x6803b - 0x6802c;
/* Read KSV, need repeatedly handle */
if (dpcd_addr == 0x6802c) {
if (length % HDCP14_KSV_SIZE) {
DC_LOG_ERROR("%s: KsvFifo Size(%d) is not a multiple of HDCP14_KSV_SIZE(%d)\n",
__func__,
length,
HDCP14_KSV_SIZE);
}
if (length > HDCP14_MAX_KSV_FIFO_SIZE) {
DC_LOG_ERROR("%s: KsvFifo Size(%d) is greater than HDCP14_MAX_KSV_FIFO_SIZE(%d)\n",
__func__,
length,
HDCP14_MAX_KSV_FIFO_SIZE);
}
DC_LOG_ERROR("%s: Reading %d Ksv(s) from KsvFifo\n",
__func__,
length / HDCP14_KSV_SIZE);
while (length > 0) {
if (length > ksv_read_size) {
status = core_link_read_dpcd(
link,
dpcd_addr + offset,
data + offset,
ksv_read_size);
data += ksv_read_size;
length -= ksv_read_size;
} else {
status = core_link_read_dpcd(
link,
dpcd_addr + offset,
data + offset,
length);
data += length;
length = 0;
}
if (status != DC_OK)
return false;
}
} else {
while (length > 0) {
if (length > DEFAULT_AUX_MAX_DATA_SIZE)
cur_length = DEFAULT_AUX_MAX_DATA_SIZE;
else
cur_length = length;
if (is_read) {
status = core_link_read_dpcd(
link,
dpcd_addr + offset,
data + offset,
cur_length);
} else {
status = core_link_write_dpcd(
link,
dpcd_addr + offset,
data + offset,
cur_length);
}
if (status != DC_OK)
return false;
length -= cur_length;
offset += cur_length;
}
}
return true;
}
static bool dp_11_process_transaction(
struct dc_link *link,
struct hdcp_protection_message *message_info)
{
return dpcd_access_helper(
link,
message_info->length,
message_info->data,
hdcp_dpcd_addrs[message_info->msg_id],
hdcp_cmd_is_read[message_info->msg_id]);
}
static const struct protection_properties dp_11_protection = {
.supported = true,
.process_transaction = dp_11_process_transaction
};
static const struct protection_properties *get_protection_properties_by_signal(
struct dc_link *link,
enum signal_type st,
enum hdcp_version version)
{
switch (version) {
case HDCP_VERSION_14:
switch (st) {
case SIGNAL_TYPE_DVI_SINGLE_LINK:
case SIGNAL_TYPE_DVI_DUAL_LINK:
case SIGNAL_TYPE_HDMI_TYPE_A:
return &hdmi_14_protection;
case SIGNAL_TYPE_DISPLAY_PORT:
if (link &&
(link->dpcd_caps.dongle_type == DISPLAY_DONGLE_DP_VGA_CONVERTER ||
link->dpcd_caps.dongle_caps.dongle_type == DISPLAY_DONGLE_DP_VGA_CONVERTER)) {
return &non_supported_protection;
}
return &dp_11_protection;
case SIGNAL_TYPE_DISPLAY_PORT_MST:
case SIGNAL_TYPE_EDP:
return &dp_11_protection;
default:
return &non_supported_protection;
}
break;
case HDCP_VERSION_22:
switch (st) {
case SIGNAL_TYPE_DVI_SINGLE_LINK:
case SIGNAL_TYPE_DVI_DUAL_LINK:
case SIGNAL_TYPE_HDMI_TYPE_A:
return &hdmi_14_protection; //todo version2.2
case SIGNAL_TYPE_DISPLAY_PORT:
case SIGNAL_TYPE_DISPLAY_PORT_MST:
case SIGNAL_TYPE_EDP:
return &dp_11_protection; //todo version2.2
default:
return &non_supported_protection;
}
break;
default:
return &non_supported_protection;
}
}
enum hdcp_message_status dc_process_hdcp_msg(
enum signal_type signal,
struct dc_link *link,
struct hdcp_protection_message *message_info)
{
enum hdcp_message_status status = HDCP_MESSAGE_FAILURE;
uint32_t i = 0;
const struct protection_properties *protection_props;
if (!message_info)
return HDCP_MESSAGE_UNSUPPORTED;
if (message_info->msg_id < HDCP_MESSAGE_ID_READ_BKSV ||
message_info->msg_id >= HDCP_MESSAGE_ID_MAX)
return HDCP_MESSAGE_UNSUPPORTED;
protection_props =
get_protection_properties_by_signal(
link,
signal,
message_info->version);
if (!protection_props->supported)
return HDCP_MESSAGE_UNSUPPORTED;
if (protection_props->process_transaction(
link,
message_info)) {
status = HDCP_MESSAGE_SUCCESS;
} else {
for (i = 0; i < message_info->max_retries; i++) {
if (protection_props->process_transaction(
link,
message_info)) {
status = HDCP_MESSAGE_SUCCESS;
break;
}
}
}
return status;
}
| linux-master | drivers/gpu/drm/amd/display/dc/hdcp/hdcp_msg.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "include/logger_interface.h"
#include "bios_parser_interface.h"
#include "bios_parser.h"
#include "bios_parser2.h"
struct dc_bios *dal_bios_parser_create(
struct bp_init_data *init,
enum dce_version dce_version)
{
struct dc_bios *bios = NULL;
bios = firmware_parser_create(init, dce_version);
/* Fall back to old bios parser for older asics */
if (bios == NULL)
bios = bios_parser_create(init, dce_version);
return bios;
}
void dal_bios_parser_destroy(struct dc_bios **dcb)
{
struct dc_bios *bios = *dcb;
bios->funcs->bios_parser_destroy(dcb);
}
| linux-master | drivers/gpu/drm/amd/display/dc/bios/bios_parser_interface.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "core_types.h"
#include "ObjectID.h"
#include "atomfirmware.h"
#include "dc_bios_types.h"
#include "include/grph_object_ctrl_defs.h"
#include "include/bios_parser_interface.h"
#include "include/logger_interface.h"
#include "command_table2.h"
#include "bios_parser_helper.h"
#include "command_table_helper2.h"
#include "bios_parser2.h"
#include "bios_parser_types_internal2.h"
#include "bios_parser_interface.h"
#include "bios_parser_common.h"
#define DC_LOGGER \
bp->base.ctx->logger
#define LAST_RECORD_TYPE 0xff
#define SMU9_SYSPLL0_ID 0
static enum bp_result get_gpio_i2c_info(struct bios_parser *bp,
struct atom_i2c_record *record,
struct graphics_object_i2c_info *info);
static enum bp_result bios_parser_get_firmware_info(
struct dc_bios *dcb,
struct dc_firmware_info *info);
static enum bp_result bios_parser_get_encoder_cap_info(
struct dc_bios *dcb,
struct graphics_object_id object_id,
struct bp_encoder_cap_info *info);
static enum bp_result get_firmware_info_v3_1(
struct bios_parser *bp,
struct dc_firmware_info *info);
static enum bp_result get_firmware_info_v3_2(
struct bios_parser *bp,
struct dc_firmware_info *info);
static enum bp_result get_firmware_info_v3_4(
struct bios_parser *bp,
struct dc_firmware_info *info);
static struct atom_hpd_int_record *get_hpd_record(struct bios_parser *bp,
struct atom_display_object_path_v2 *object);
static struct atom_encoder_caps_record *get_encoder_cap_record(
struct bios_parser *bp,
struct atom_display_object_path_v2 *object);
#define BIOS_IMAGE_SIZE_OFFSET 2
#define BIOS_IMAGE_SIZE_UNIT 512
#define DATA_TABLES(table) (bp->master_data_tbl->listOfdatatables.table)
static void bios_parser2_destruct(struct bios_parser *bp)
{
kfree(bp->base.bios_local_image);
kfree(bp->base.integrated_info);
}
static void firmware_parser_destroy(struct dc_bios **dcb)
{
struct bios_parser *bp = BP_FROM_DCB(*dcb);
if (!bp) {
BREAK_TO_DEBUGGER();
return;
}
bios_parser2_destruct(bp);
kfree(bp);
*dcb = NULL;
}
static void get_atom_data_table_revision(
struct atom_common_table_header *atom_data_tbl,
struct atom_data_revision *tbl_revision)
{
if (!tbl_revision)
return;
/* initialize the revision to 0 which is invalid revision */
tbl_revision->major = 0;
tbl_revision->minor = 0;
if (!atom_data_tbl)
return;
tbl_revision->major =
(uint32_t) atom_data_tbl->format_revision & 0x3f;
tbl_revision->minor =
(uint32_t) atom_data_tbl->content_revision & 0x3f;
}
/* BIOS oject table displaypath is per connector.
* There is extra path not for connector. BIOS fill its encoderid as 0
*/
static uint8_t bios_parser_get_connectors_number(struct dc_bios *dcb)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
unsigned int count = 0;
unsigned int i;
switch (bp->object_info_tbl.revision.minor) {
default:
case 4:
for (i = 0; i < bp->object_info_tbl.v1_4->number_of_path; i++)
if (bp->object_info_tbl.v1_4->display_path[i].encoderobjid != 0)
count++;
break;
case 5:
for (i = 0; i < bp->object_info_tbl.v1_5->number_of_path; i++)
if (bp->object_info_tbl.v1_5->display_path[i].encoderobjid != 0)
count++;
break;
}
return count;
}
static struct graphics_object_id bios_parser_get_connector_id(
struct dc_bios *dcb,
uint8_t i)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
struct graphics_object_id object_id = dal_graphics_object_id_init(
0, ENUM_ID_UNKNOWN, OBJECT_TYPE_UNKNOWN);
struct object_info_table *tbl = &bp->object_info_tbl;
struct display_object_info_table_v1_4 *v1_4 = tbl->v1_4;
struct display_object_info_table_v1_5 *v1_5 = tbl->v1_5;
switch (bp->object_info_tbl.revision.minor) {
default:
case 4:
if (v1_4->number_of_path > i) {
/* If display_objid is generic object id, the encoderObj
* /extencoderobjId should be 0
*/
if (v1_4->display_path[i].encoderobjid != 0 &&
v1_4->display_path[i].display_objid != 0)
object_id = object_id_from_bios_object_id(
v1_4->display_path[i].display_objid);
}
break;
case 5:
if (v1_5->number_of_path > i) {
/* If display_objid is generic object id, the encoderObjId
* should be 0
*/
if (v1_5->display_path[i].encoderobjid != 0 &&
v1_5->display_path[i].display_objid != 0)
object_id = object_id_from_bios_object_id(
v1_5->display_path[i].display_objid);
}
break;
}
return object_id;
}
static enum bp_result bios_parser_get_src_obj(struct dc_bios *dcb,
struct graphics_object_id object_id, uint32_t index,
struct graphics_object_id *src_object_id)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
unsigned int i;
enum bp_result bp_result = BP_RESULT_BADINPUT;
struct graphics_object_id obj_id = { 0 };
struct object_info_table *tbl = &bp->object_info_tbl;
if (!src_object_id)
return bp_result;
switch (object_id.type) {
/* Encoder's Source is GPU. BIOS does not provide GPU, since all
* displaypaths point to same GPU (0x1100). Hardcode GPU object type
*/
case OBJECT_TYPE_ENCODER:
/* TODO: since num of src must be less than 2.
* If found in for loop, should break.
* DAL2 implementation may be changed too
*/
switch (bp->object_info_tbl.revision.minor) {
default:
case 4:
for (i = 0; i < tbl->v1_4->number_of_path; i++) {
obj_id = object_id_from_bios_object_id(
tbl->v1_4->display_path[i].encoderobjid);
if (object_id.type == obj_id.type &&
object_id.id == obj_id.id &&
object_id.enum_id == obj_id.enum_id) {
*src_object_id =
object_id_from_bios_object_id(
0x1100);
/* break; */
}
}
bp_result = BP_RESULT_OK;
break;
case 5:
for (i = 0; i < tbl->v1_5->number_of_path; i++) {
obj_id = object_id_from_bios_object_id(
tbl->v1_5->display_path[i].encoderobjid);
if (object_id.type == obj_id.type &&
object_id.id == obj_id.id &&
object_id.enum_id == obj_id.enum_id) {
*src_object_id =
object_id_from_bios_object_id(
0x1100);
/* break; */
}
}
bp_result = BP_RESULT_OK;
break;
}
break;
case OBJECT_TYPE_CONNECTOR:
switch (bp->object_info_tbl.revision.minor) {
default:
case 4:
for (i = 0; i < tbl->v1_4->number_of_path; i++) {
obj_id = object_id_from_bios_object_id(
tbl->v1_4->display_path[i]
.display_objid);
if (object_id.type == obj_id.type &&
object_id.id == obj_id.id &&
object_id.enum_id == obj_id.enum_id) {
*src_object_id =
object_id_from_bios_object_id(
tbl->v1_4
->display_path[i]
.encoderobjid);
/* break; */
}
}
bp_result = BP_RESULT_OK;
break;
}
bp_result = BP_RESULT_OK;
break;
case 5:
for (i = 0; i < tbl->v1_5->number_of_path; i++) {
obj_id = object_id_from_bios_object_id(
tbl->v1_5->display_path[i].display_objid);
if (object_id.type == obj_id.type &&
object_id.id == obj_id.id &&
object_id.enum_id == obj_id.enum_id) {
*src_object_id = object_id_from_bios_object_id(
tbl->v1_5->display_path[i].encoderobjid);
/* break; */
}
}
bp_result = BP_RESULT_OK;
break;
default:
bp_result = BP_RESULT_OK;
break;
}
return bp_result;
}
/* from graphics_object_id, find display path which includes the object_id */
static struct atom_display_object_path_v2 *get_bios_object(
struct bios_parser *bp,
struct graphics_object_id id)
{
unsigned int i;
struct graphics_object_id obj_id = {0};
switch (id.type) {
case OBJECT_TYPE_ENCODER:
for (i = 0; i < bp->object_info_tbl.v1_4->number_of_path; i++) {
obj_id = object_id_from_bios_object_id(
bp->object_info_tbl.v1_4->display_path[i].encoderobjid);
if (id.type == obj_id.type && id.id == obj_id.id
&& id.enum_id == obj_id.enum_id)
return &bp->object_info_tbl.v1_4->display_path[i];
}
fallthrough;
case OBJECT_TYPE_CONNECTOR:
case OBJECT_TYPE_GENERIC:
/* Both Generic and Connector Object ID
* will be stored on display_objid
*/
for (i = 0; i < bp->object_info_tbl.v1_4->number_of_path; i++) {
obj_id = object_id_from_bios_object_id(
bp->object_info_tbl.v1_4->display_path[i].display_objid);
if (id.type == obj_id.type && id.id == obj_id.id
&& id.enum_id == obj_id.enum_id)
return &bp->object_info_tbl.v1_4->display_path[i];
}
fallthrough;
default:
return NULL;
}
}
/* from graphics_object_id, find display path which includes the object_id */
static struct atom_display_object_path_v3 *get_bios_object_from_path_v3(struct bios_parser *bp,
struct graphics_object_id id)
{
unsigned int i;
struct graphics_object_id obj_id = {0};
switch (id.type) {
case OBJECT_TYPE_ENCODER:
for (i = 0; i < bp->object_info_tbl.v1_5->number_of_path; i++) {
obj_id = object_id_from_bios_object_id(
bp->object_info_tbl.v1_5->display_path[i].encoderobjid);
if (id.type == obj_id.type && id.id == obj_id.id
&& id.enum_id == obj_id.enum_id)
return &bp->object_info_tbl.v1_5->display_path[i];
}
break;
case OBJECT_TYPE_CONNECTOR:
case OBJECT_TYPE_GENERIC:
/* Both Generic and Connector Object ID
* will be stored on display_objid
*/
for (i = 0; i < bp->object_info_tbl.v1_5->number_of_path; i++) {
obj_id = object_id_from_bios_object_id(
bp->object_info_tbl.v1_5->display_path[i].display_objid);
if (id.type == obj_id.type && id.id == obj_id.id
&& id.enum_id == obj_id.enum_id)
return &bp->object_info_tbl.v1_5->display_path[i];
}
break;
default:
return NULL;
}
return NULL;
}
static enum bp_result bios_parser_get_i2c_info(struct dc_bios *dcb,
struct graphics_object_id id,
struct graphics_object_i2c_info *info)
{
uint32_t offset;
struct atom_display_object_path_v2 *object;
struct atom_display_object_path_v3 *object_path_v3;
struct atom_common_record_header *header;
struct atom_i2c_record *record;
struct atom_i2c_record dummy_record = {0};
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!info)
return BP_RESULT_BADINPUT;
if (id.type == OBJECT_TYPE_GENERIC) {
dummy_record.i2c_id = id.id;
if (get_gpio_i2c_info(bp, &dummy_record, info) == BP_RESULT_OK)
return BP_RESULT_OK;
else
return BP_RESULT_NORECORD;
}
switch (bp->object_info_tbl.revision.minor) {
case 4:
default:
object = get_bios_object(bp, id);
if (!object)
return BP_RESULT_BADINPUT;
offset = object->disp_recordoffset + bp->object_info_tbl_offset;
break;
case 5:
object_path_v3 = get_bios_object_from_path_v3(bp, id);
if (!object_path_v3)
return BP_RESULT_BADINPUT;
offset = object_path_v3->disp_recordoffset + bp->object_info_tbl_offset;
break;
}
for (;;) {
header = GET_IMAGE(struct atom_common_record_header, offset);
if (!header)
return BP_RESULT_BADBIOSTABLE;
if (header->record_type == LAST_RECORD_TYPE ||
!header->record_size)
break;
if (header->record_type == ATOM_I2C_RECORD_TYPE
&& sizeof(struct atom_i2c_record) <=
header->record_size) {
/* get the I2C info */
record = (struct atom_i2c_record *) header;
if (get_gpio_i2c_info(bp, record, info) ==
BP_RESULT_OK)
return BP_RESULT_OK;
}
offset += header->record_size;
}
return BP_RESULT_NORECORD;
}
static enum bp_result get_gpio_i2c_info(
struct bios_parser *bp,
struct atom_i2c_record *record,
struct graphics_object_i2c_info *info)
{
struct atom_gpio_pin_lut_v2_1 *header;
uint32_t count = 0;
unsigned int table_index = 0;
bool find_valid = false;
struct atom_gpio_pin_assignment *pin;
if (!info)
return BP_RESULT_BADINPUT;
/* get the GPIO_I2C info */
if (!DATA_TABLES(gpio_pin_lut))
return BP_RESULT_BADBIOSTABLE;
header = GET_IMAGE(struct atom_gpio_pin_lut_v2_1,
DATA_TABLES(gpio_pin_lut));
if (!header)
return BP_RESULT_BADBIOSTABLE;
if (sizeof(struct atom_common_table_header) +
sizeof(struct atom_gpio_pin_assignment) >
le16_to_cpu(header->table_header.structuresize))
return BP_RESULT_BADBIOSTABLE;
/* TODO: is version change? */
if (header->table_header.content_revision != 1)
return BP_RESULT_UNSUPPORTED;
/* get data count */
count = (le16_to_cpu(header->table_header.structuresize)
- sizeof(struct atom_common_table_header))
/ sizeof(struct atom_gpio_pin_assignment);
pin = (struct atom_gpio_pin_assignment *) header->gpio_pin;
for (table_index = 0; table_index < count; table_index++) {
if (((record->i2c_id & I2C_HW_CAP) == (pin->gpio_id & I2C_HW_CAP)) &&
((record->i2c_id & I2C_HW_ENGINE_ID_MASK) == (pin->gpio_id & I2C_HW_ENGINE_ID_MASK)) &&
((record->i2c_id & I2C_HW_LANE_MUX) == (pin->gpio_id & I2C_HW_LANE_MUX))) {
/* still valid */
find_valid = true;
break;
}
pin = (struct atom_gpio_pin_assignment *)((uint8_t *)pin + sizeof(struct atom_gpio_pin_assignment));
}
/* If we don't find the entry that we are looking for then
* we will return BP_Result_BadBiosTable.
*/
if (find_valid == false)
return BP_RESULT_BADBIOSTABLE;
/* get the GPIO_I2C_INFO */
info->i2c_hw_assist = (record->i2c_id & I2C_HW_CAP) ? true : false;
info->i2c_line = record->i2c_id & I2C_HW_LANE_MUX;
info->i2c_engine_id = (record->i2c_id & I2C_HW_ENGINE_ID_MASK) >> 4;
info->i2c_slave_address = record->i2c_slave_addr;
/* TODO: check how to get register offset for en, Y, etc. */
info->gpio_info.clk_a_register_index = le16_to_cpu(pin->data_a_reg_index);
info->gpio_info.clk_a_shift = pin->gpio_bitshift;
return BP_RESULT_OK;
}
static struct atom_hpd_int_record *get_hpd_record_for_path_v3(struct bios_parser *bp,
struct atom_display_object_path_v3 *object)
{
struct atom_common_record_header *header;
uint32_t offset;
if (!object) {
BREAK_TO_DEBUGGER(); /* Invalid object */
return NULL;
}
offset = object->disp_recordoffset + bp->object_info_tbl_offset;
for (;;) {
header = GET_IMAGE(struct atom_common_record_header, offset);
if (!header)
return NULL;
if (header->record_type == ATOM_RECORD_END_TYPE ||
!header->record_size)
break;
if (header->record_type == ATOM_HPD_INT_RECORD_TYPE
&& sizeof(struct atom_hpd_int_record) <=
header->record_size)
return (struct atom_hpd_int_record *) header;
offset += header->record_size;
}
return NULL;
}
static enum bp_result bios_parser_get_hpd_info(
struct dc_bios *dcb,
struct graphics_object_id id,
struct graphics_object_hpd_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
struct atom_display_object_path_v2 *object;
struct atom_display_object_path_v3 *object_path_v3;
struct atom_hpd_int_record *record = NULL;
if (!info)
return BP_RESULT_BADINPUT;
switch (bp->object_info_tbl.revision.minor) {
case 4:
default:
object = get_bios_object(bp, id);
if (!object)
return BP_RESULT_BADINPUT;
record = get_hpd_record(bp, object);
break;
case 5:
object_path_v3 = get_bios_object_from_path_v3(bp, id);
if (!object_path_v3)
return BP_RESULT_BADINPUT;
record = get_hpd_record_for_path_v3(bp, object_path_v3);
break;
}
if (record != NULL) {
info->hpd_int_gpio_uid = record->pin_id;
info->hpd_active = record->plugin_pin_state;
return BP_RESULT_OK;
}
return BP_RESULT_NORECORD;
}
static struct atom_hpd_int_record *get_hpd_record(
struct bios_parser *bp,
struct atom_display_object_path_v2 *object)
{
struct atom_common_record_header *header;
uint32_t offset;
if (!object) {
BREAK_TO_DEBUGGER(); /* Invalid object */
return NULL;
}
offset = le16_to_cpu(object->disp_recordoffset)
+ bp->object_info_tbl_offset;
for (;;) {
header = GET_IMAGE(struct atom_common_record_header, offset);
if (!header)
return NULL;
if (header->record_type == LAST_RECORD_TYPE ||
!header->record_size)
break;
if (header->record_type == ATOM_HPD_INT_RECORD_TYPE
&& sizeof(struct atom_hpd_int_record) <=
header->record_size)
return (struct atom_hpd_int_record *) header;
offset += header->record_size;
}
return NULL;
}
/**
* bios_parser_get_gpio_pin_info
* Get GpioPin information of input gpio id
*
* @dcb: pointer to the DC BIOS
* @gpio_id: GPIO ID
* @info: GpioPin information structure
* return: Bios parser result code
* note:
* to get the GPIO PIN INFO, we need:
* 1. get the GPIO_ID from other object table, see GetHPDInfo()
* 2. in DATA_TABLE.GPIO_Pin_LUT, search all records,
* to get the registerA offset/mask
*/
static enum bp_result bios_parser_get_gpio_pin_info(
struct dc_bios *dcb,
uint32_t gpio_id,
struct gpio_pin_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
struct atom_gpio_pin_lut_v2_1 *header;
uint32_t count = 0;
uint32_t i = 0;
if (!DATA_TABLES(gpio_pin_lut))
return BP_RESULT_BADBIOSTABLE;
header = GET_IMAGE(struct atom_gpio_pin_lut_v2_1,
DATA_TABLES(gpio_pin_lut));
if (!header)
return BP_RESULT_BADBIOSTABLE;
if (sizeof(struct atom_common_table_header) +
sizeof(struct atom_gpio_pin_assignment)
> le16_to_cpu(header->table_header.structuresize))
return BP_RESULT_BADBIOSTABLE;
if (header->table_header.content_revision != 1)
return BP_RESULT_UNSUPPORTED;
/* Temporary hard code gpio pin info */
count = (le16_to_cpu(header->table_header.structuresize)
- sizeof(struct atom_common_table_header))
/ sizeof(struct atom_gpio_pin_assignment);
for (i = 0; i < count; ++i) {
if (header->gpio_pin[i].gpio_id != gpio_id)
continue;
info->offset =
(uint32_t) le16_to_cpu(
header->gpio_pin[i].data_a_reg_index);
info->offset_y = info->offset + 2;
info->offset_en = info->offset + 1;
info->offset_mask = info->offset - 1;
info->mask = (uint32_t) (1 <<
header->gpio_pin[i].gpio_bitshift);
info->mask_y = info->mask + 2;
info->mask_en = info->mask + 1;
info->mask_mask = info->mask - 1;
return BP_RESULT_OK;
}
return BP_RESULT_NORECORD;
}
static struct device_id device_type_from_device_id(uint16_t device_id)
{
struct device_id result_device_id;
result_device_id.raw_device_tag = device_id;
switch (device_id) {
case ATOM_DISPLAY_LCD1_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_LCD;
result_device_id.enum_id = 1;
break;
case ATOM_DISPLAY_LCD2_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_LCD;
result_device_id.enum_id = 2;
break;
case ATOM_DISPLAY_DFP1_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_DFP;
result_device_id.enum_id = 1;
break;
case ATOM_DISPLAY_DFP2_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_DFP;
result_device_id.enum_id = 2;
break;
case ATOM_DISPLAY_DFP3_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_DFP;
result_device_id.enum_id = 3;
break;
case ATOM_DISPLAY_DFP4_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_DFP;
result_device_id.enum_id = 4;
break;
case ATOM_DISPLAY_DFP5_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_DFP;
result_device_id.enum_id = 5;
break;
case ATOM_DISPLAY_DFP6_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_DFP;
result_device_id.enum_id = 6;
break;
default:
BREAK_TO_DEBUGGER(); /* Invalid device Id */
result_device_id.device_type = DEVICE_TYPE_UNKNOWN;
result_device_id.enum_id = 0;
}
return result_device_id;
}
static enum bp_result bios_parser_get_device_tag(
struct dc_bios *dcb,
struct graphics_object_id connector_object_id,
uint32_t device_tag_index,
struct connector_device_tag_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
struct atom_display_object_path_v2 *object;
struct atom_display_object_path_v3 *object_path_v3;
if (!info)
return BP_RESULT_BADINPUT;
switch (bp->object_info_tbl.revision.minor) {
case 4:
default:
/* getBiosObject will return MXM object */
object = get_bios_object(bp, connector_object_id);
if (!object) {
BREAK_TO_DEBUGGER(); /* Invalid object id */
return BP_RESULT_BADINPUT;
}
info->acpi_device = 0; /* BIOS no longer provides this */
info->dev_id = device_type_from_device_id(object->device_tag);
break;
case 5:
object_path_v3 = get_bios_object_from_path_v3(bp, connector_object_id);
if (!object_path_v3) {
BREAK_TO_DEBUGGER(); /* Invalid object id */
return BP_RESULT_BADINPUT;
}
info->acpi_device = 0; /* BIOS no longer provides this */
info->dev_id = device_type_from_device_id(object_path_v3->device_tag);
break;
}
return BP_RESULT_OK;
}
static enum bp_result get_ss_info_v4_1(
struct bios_parser *bp,
uint32_t id,
uint32_t index,
struct spread_spectrum_info *ss_info)
{
enum bp_result result = BP_RESULT_OK;
struct atom_display_controller_info_v4_1 *disp_cntl_tbl = NULL;
struct atom_smu_info_v3_3 *smu_info = NULL;
if (!ss_info)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(dce_info))
return BP_RESULT_BADBIOSTABLE;
disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_1,
DATA_TABLES(dce_info));
if (!disp_cntl_tbl)
return BP_RESULT_BADBIOSTABLE;
ss_info->type.STEP_AND_DELAY_INFO = false;
ss_info->spread_percentage_divider = 1000;
/* BIOS no longer uses target clock. Always enable for now */
ss_info->target_clock_range = 0xffffffff;
switch (id) {
case AS_SIGNAL_TYPE_DVI:
ss_info->spread_spectrum_percentage =
disp_cntl_tbl->dvi_ss_percentage;
ss_info->spread_spectrum_range =
disp_cntl_tbl->dvi_ss_rate_10hz * 10;
if (disp_cntl_tbl->dvi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
ss_info->type.CENTER_MODE = true;
DC_LOG_BIOS("AS_SIGNAL_TYPE_DVI ss_percentage: %d\n", ss_info->spread_spectrum_percentage);
break;
case AS_SIGNAL_TYPE_HDMI:
ss_info->spread_spectrum_percentage =
disp_cntl_tbl->hdmi_ss_percentage;
ss_info->spread_spectrum_range =
disp_cntl_tbl->hdmi_ss_rate_10hz * 10;
if (disp_cntl_tbl->hdmi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
ss_info->type.CENTER_MODE = true;
DC_LOG_BIOS("AS_SIGNAL_TYPE_HDMI ss_percentage: %d\n", ss_info->spread_spectrum_percentage);
break;
/* TODO LVDS not support anymore? */
case AS_SIGNAL_TYPE_DISPLAY_PORT:
ss_info->spread_spectrum_percentage =
disp_cntl_tbl->dp_ss_percentage;
ss_info->spread_spectrum_range =
disp_cntl_tbl->dp_ss_rate_10hz * 10;
if (disp_cntl_tbl->dp_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
ss_info->type.CENTER_MODE = true;
DC_LOG_BIOS("AS_SIGNAL_TYPE_DISPLAY_PORT ss_percentage: %d\n", ss_info->spread_spectrum_percentage);
break;
case AS_SIGNAL_TYPE_GPU_PLL:
/* atom_firmware: DAL only get data from dce_info table.
* if data within smu_info is needed for DAL, VBIOS should
* copy it into dce_info
*/
result = BP_RESULT_UNSUPPORTED;
break;
case AS_SIGNAL_TYPE_XGMI:
smu_info = GET_IMAGE(struct atom_smu_info_v3_3,
DATA_TABLES(smu_info));
if (!smu_info)
return BP_RESULT_BADBIOSTABLE;
DC_LOG_BIOS("gpuclk_ss_percentage (unit of 0.001 percent): %d\n", smu_info->gpuclk_ss_percentage);
ss_info->spread_spectrum_percentage =
smu_info->waflclk_ss_percentage;
ss_info->spread_spectrum_range =
smu_info->gpuclk_ss_rate_10hz * 10;
if (smu_info->waflclk_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
ss_info->type.CENTER_MODE = true;
DC_LOG_BIOS("AS_SIGNAL_TYPE_XGMI ss_percentage: %d\n", ss_info->spread_spectrum_percentage);
break;
default:
result = BP_RESULT_UNSUPPORTED;
}
return result;
}
static enum bp_result get_ss_info_v4_2(
struct bios_parser *bp,
uint32_t id,
uint32_t index,
struct spread_spectrum_info *ss_info)
{
enum bp_result result = BP_RESULT_OK;
struct atom_display_controller_info_v4_2 *disp_cntl_tbl = NULL;
struct atom_smu_info_v3_1 *smu_info = NULL;
if (!ss_info)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(dce_info))
return BP_RESULT_BADBIOSTABLE;
if (!DATA_TABLES(smu_info))
return BP_RESULT_BADBIOSTABLE;
disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_2,
DATA_TABLES(dce_info));
if (!disp_cntl_tbl)
return BP_RESULT_BADBIOSTABLE;
smu_info = GET_IMAGE(struct atom_smu_info_v3_1, DATA_TABLES(smu_info));
if (!smu_info)
return BP_RESULT_BADBIOSTABLE;
DC_LOG_BIOS("gpuclk_ss_percentage (unit of 0.001 percent): %d\n", smu_info->gpuclk_ss_percentage);
ss_info->type.STEP_AND_DELAY_INFO = false;
ss_info->spread_percentage_divider = 1000;
/* BIOS no longer uses target clock. Always enable for now */
ss_info->target_clock_range = 0xffffffff;
switch (id) {
case AS_SIGNAL_TYPE_DVI:
ss_info->spread_spectrum_percentage =
disp_cntl_tbl->dvi_ss_percentage;
ss_info->spread_spectrum_range =
disp_cntl_tbl->dvi_ss_rate_10hz * 10;
if (disp_cntl_tbl->dvi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
ss_info->type.CENTER_MODE = true;
DC_LOG_BIOS("AS_SIGNAL_TYPE_DVI ss_percentage: %d\n", ss_info->spread_spectrum_percentage);
break;
case AS_SIGNAL_TYPE_HDMI:
ss_info->spread_spectrum_percentage =
disp_cntl_tbl->hdmi_ss_percentage;
ss_info->spread_spectrum_range =
disp_cntl_tbl->hdmi_ss_rate_10hz * 10;
if (disp_cntl_tbl->hdmi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
ss_info->type.CENTER_MODE = true;
DC_LOG_BIOS("AS_SIGNAL_TYPE_HDMI ss_percentage: %d\n", ss_info->spread_spectrum_percentage);
break;
/* TODO LVDS not support anymore? */
case AS_SIGNAL_TYPE_DISPLAY_PORT:
ss_info->spread_spectrum_percentage =
smu_info->gpuclk_ss_percentage;
ss_info->spread_spectrum_range =
smu_info->gpuclk_ss_rate_10hz * 10;
if (smu_info->gpuclk_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
ss_info->type.CENTER_MODE = true;
DC_LOG_BIOS("AS_SIGNAL_TYPE_DISPLAY_PORT ss_percentage: %d\n", ss_info->spread_spectrum_percentage);
break;
case AS_SIGNAL_TYPE_GPU_PLL:
/* atom_firmware: DAL only get data from dce_info table.
* if data within smu_info is needed for DAL, VBIOS should
* copy it into dce_info
*/
result = BP_RESULT_UNSUPPORTED;
break;
default:
result = BP_RESULT_UNSUPPORTED;
}
return result;
}
static enum bp_result get_ss_info_v4_5(
struct bios_parser *bp,
uint32_t id,
uint32_t index,
struct spread_spectrum_info *ss_info)
{
enum bp_result result = BP_RESULT_OK;
struct atom_display_controller_info_v4_5 *disp_cntl_tbl = NULL;
if (!ss_info)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(dce_info))
return BP_RESULT_BADBIOSTABLE;
disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_5,
DATA_TABLES(dce_info));
if (!disp_cntl_tbl)
return BP_RESULT_BADBIOSTABLE;
ss_info->type.STEP_AND_DELAY_INFO = false;
ss_info->spread_percentage_divider = 1000;
/* BIOS no longer uses target clock. Always enable for now */
ss_info->target_clock_range = 0xffffffff;
switch (id) {
case AS_SIGNAL_TYPE_DVI:
ss_info->spread_spectrum_percentage =
disp_cntl_tbl->dvi_ss_percentage;
ss_info->spread_spectrum_range =
disp_cntl_tbl->dvi_ss_rate_10hz * 10;
if (disp_cntl_tbl->dvi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
ss_info->type.CENTER_MODE = true;
DC_LOG_BIOS("AS_SIGNAL_TYPE_DVI ss_percentage: %d\n", ss_info->spread_spectrum_percentage);
break;
case AS_SIGNAL_TYPE_HDMI:
ss_info->spread_spectrum_percentage =
disp_cntl_tbl->hdmi_ss_percentage;
ss_info->spread_spectrum_range =
disp_cntl_tbl->hdmi_ss_rate_10hz * 10;
if (disp_cntl_tbl->hdmi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
ss_info->type.CENTER_MODE = true;
DC_LOG_BIOS("AS_SIGNAL_TYPE_HDMI ss_percentage: %d\n", ss_info->spread_spectrum_percentage);
break;
case AS_SIGNAL_TYPE_DISPLAY_PORT:
ss_info->spread_spectrum_percentage =
disp_cntl_tbl->dp_ss_percentage;
ss_info->spread_spectrum_range =
disp_cntl_tbl->dp_ss_rate_10hz * 10;
if (disp_cntl_tbl->dp_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
ss_info->type.CENTER_MODE = true;
DC_LOG_BIOS("AS_SIGNAL_TYPE_DISPLAY_PORT ss_percentage: %d\n", ss_info->spread_spectrum_percentage);
break;
case AS_SIGNAL_TYPE_GPU_PLL:
/* atom_smu_info_v4_0 does not have fields for SS for SMU Display PLL anymore.
* SMU Display PLL supposed to be without spread.
* Better place for it would be in atom_display_controller_info_v4_5 table.
*/
result = BP_RESULT_UNSUPPORTED;
break;
default:
result = BP_RESULT_UNSUPPORTED;
break;
}
return result;
}
/**
* bios_parser_get_spread_spectrum_info
* Get spread spectrum information from the ASIC_InternalSS_Info(ver 2.1 or
* ver 3.1) or SS_Info table from the VBIOS. Currently ASIC_InternalSS_Info
* ver 2.1 can co-exist with SS_Info table. Expect ASIC_InternalSS_Info
* ver 3.1,
* there is only one entry for each signal /ss id. However, there is
* no planning of supporting multiple spread Sprectum entry for EverGreen
* @dcb: pointer to the DC BIOS
* @signal: ASSignalType to be converted to info index
* @index: number of entries that match the converted info index
* @ss_info: sprectrum information structure,
* return: Bios parser result code
*/
static enum bp_result bios_parser_get_spread_spectrum_info(
struct dc_bios *dcb,
enum as_signal_type signal,
uint32_t index,
struct spread_spectrum_info *ss_info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
enum bp_result result = BP_RESULT_UNSUPPORTED;
struct atom_common_table_header *header;
struct atom_data_revision tbl_revision;
if (!ss_info) /* check for bad input */
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(dce_info))
return BP_RESULT_UNSUPPORTED;
header = GET_IMAGE(struct atom_common_table_header,
DATA_TABLES(dce_info));
get_atom_data_table_revision(header, &tbl_revision);
switch (tbl_revision.major) {
case 4:
switch (tbl_revision.minor) {
case 1:
return get_ss_info_v4_1(bp, signal, index, ss_info);
case 2:
case 3:
case 4:
return get_ss_info_v4_2(bp, signal, index, ss_info);
case 5:
return get_ss_info_v4_5(bp, signal, index, ss_info);
default:
ASSERT(0);
break;
}
break;
default:
break;
}
/* there can not be more then one entry for SS Info table */
return result;
}
static enum bp_result get_soc_bb_info_v4_4(
struct bios_parser *bp,
struct bp_soc_bb_info *soc_bb_info)
{
enum bp_result result = BP_RESULT_OK;
struct atom_display_controller_info_v4_4 *disp_cntl_tbl = NULL;
if (!soc_bb_info)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(dce_info))
return BP_RESULT_BADBIOSTABLE;
if (!DATA_TABLES(smu_info))
return BP_RESULT_BADBIOSTABLE;
disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_4,
DATA_TABLES(dce_info));
if (!disp_cntl_tbl)
return BP_RESULT_BADBIOSTABLE;
soc_bb_info->dram_clock_change_latency_100ns = disp_cntl_tbl->max_mclk_chg_lat;
soc_bb_info->dram_sr_enter_exit_latency_100ns = disp_cntl_tbl->max_sr_enter_exit_lat;
soc_bb_info->dram_sr_exit_latency_100ns = disp_cntl_tbl->max_sr_exit_lat;
return result;
}
static enum bp_result get_soc_bb_info_v4_5(
struct bios_parser *bp,
struct bp_soc_bb_info *soc_bb_info)
{
enum bp_result result = BP_RESULT_OK;
struct atom_display_controller_info_v4_5 *disp_cntl_tbl = NULL;
if (!soc_bb_info)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(dce_info))
return BP_RESULT_BADBIOSTABLE;
disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_5,
DATA_TABLES(dce_info));
if (!disp_cntl_tbl)
return BP_RESULT_BADBIOSTABLE;
soc_bb_info->dram_clock_change_latency_100ns = disp_cntl_tbl->max_mclk_chg_lat;
soc_bb_info->dram_sr_enter_exit_latency_100ns = disp_cntl_tbl->max_sr_enter_exit_lat;
soc_bb_info->dram_sr_exit_latency_100ns = disp_cntl_tbl->max_sr_exit_lat;
return result;
}
static enum bp_result bios_parser_get_soc_bb_info(
struct dc_bios *dcb,
struct bp_soc_bb_info *soc_bb_info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
enum bp_result result = BP_RESULT_UNSUPPORTED;
struct atom_common_table_header *header;
struct atom_data_revision tbl_revision;
if (!soc_bb_info) /* check for bad input */
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(dce_info))
return BP_RESULT_UNSUPPORTED;
header = GET_IMAGE(struct atom_common_table_header,
DATA_TABLES(dce_info));
get_atom_data_table_revision(header, &tbl_revision);
switch (tbl_revision.major) {
case 4:
switch (tbl_revision.minor) {
case 1:
case 2:
case 3:
break;
case 4:
result = get_soc_bb_info_v4_4(bp, soc_bb_info);
break;
case 5:
result = get_soc_bb_info_v4_5(bp, soc_bb_info);
break;
default:
break;
}
break;
default:
break;
}
return result;
}
static enum bp_result get_disp_caps_v4_1(
struct bios_parser *bp,
uint8_t *dce_caps)
{
enum bp_result result = BP_RESULT_OK;
struct atom_display_controller_info_v4_1 *disp_cntl_tbl = NULL;
if (!dce_caps)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(dce_info))
return BP_RESULT_BADBIOSTABLE;
disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_1,
DATA_TABLES(dce_info));
if (!disp_cntl_tbl)
return BP_RESULT_BADBIOSTABLE;
*dce_caps = disp_cntl_tbl->display_caps;
return result;
}
static enum bp_result get_disp_caps_v4_2(
struct bios_parser *bp,
uint8_t *dce_caps)
{
enum bp_result result = BP_RESULT_OK;
struct atom_display_controller_info_v4_2 *disp_cntl_tbl = NULL;
if (!dce_caps)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(dce_info))
return BP_RESULT_BADBIOSTABLE;
disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_2,
DATA_TABLES(dce_info));
if (!disp_cntl_tbl)
return BP_RESULT_BADBIOSTABLE;
*dce_caps = disp_cntl_tbl->display_caps;
return result;
}
static enum bp_result get_disp_caps_v4_3(
struct bios_parser *bp,
uint8_t *dce_caps)
{
enum bp_result result = BP_RESULT_OK;
struct atom_display_controller_info_v4_3 *disp_cntl_tbl = NULL;
if (!dce_caps)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(dce_info))
return BP_RESULT_BADBIOSTABLE;
disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_3,
DATA_TABLES(dce_info));
if (!disp_cntl_tbl)
return BP_RESULT_BADBIOSTABLE;
*dce_caps = disp_cntl_tbl->display_caps;
return result;
}
static enum bp_result get_disp_caps_v4_4(
struct bios_parser *bp,
uint8_t *dce_caps)
{
enum bp_result result = BP_RESULT_OK;
struct atom_display_controller_info_v4_4 *disp_cntl_tbl = NULL;
if (!dce_caps)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(dce_info))
return BP_RESULT_BADBIOSTABLE;
disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_4,
DATA_TABLES(dce_info));
if (!disp_cntl_tbl)
return BP_RESULT_BADBIOSTABLE;
*dce_caps = disp_cntl_tbl->display_caps;
return result;
}
static enum bp_result get_disp_caps_v4_5(
struct bios_parser *bp,
uint8_t *dce_caps)
{
enum bp_result result = BP_RESULT_OK;
struct atom_display_controller_info_v4_5 *disp_cntl_tbl = NULL;
if (!dce_caps)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(dce_info))
return BP_RESULT_BADBIOSTABLE;
disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_5,
DATA_TABLES(dce_info));
if (!disp_cntl_tbl)
return BP_RESULT_BADBIOSTABLE;
*dce_caps = disp_cntl_tbl->display_caps;
return result;
}
static enum bp_result bios_parser_get_lttpr_interop(
struct dc_bios *dcb,
uint8_t *dce_caps)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
enum bp_result result = BP_RESULT_UNSUPPORTED;
struct atom_common_table_header *header;
struct atom_data_revision tbl_revision;
if (!DATA_TABLES(dce_info))
return BP_RESULT_UNSUPPORTED;
header = GET_IMAGE(struct atom_common_table_header,
DATA_TABLES(dce_info));
get_atom_data_table_revision(header, &tbl_revision);
switch (tbl_revision.major) {
case 4:
switch (tbl_revision.minor) {
case 1:
result = get_disp_caps_v4_1(bp, dce_caps);
*dce_caps = !!(*dce_caps & DCE_INFO_CAPS_VBIOS_LTTPR_TRANSPARENT_ENABLE);
break;
case 2:
result = get_disp_caps_v4_2(bp, dce_caps);
*dce_caps = !!(*dce_caps & DCE_INFO_CAPS_VBIOS_LTTPR_TRANSPARENT_ENABLE);
break;
case 3:
result = get_disp_caps_v4_3(bp, dce_caps);
*dce_caps = !!(*dce_caps & DCE_INFO_CAPS_VBIOS_LTTPR_TRANSPARENT_ENABLE);
break;
case 4:
result = get_disp_caps_v4_4(bp, dce_caps);
*dce_caps = !!(*dce_caps & DCE_INFO_CAPS_VBIOS_LTTPR_TRANSPARENT_ENABLE);
break;
case 5:
result = get_disp_caps_v4_5(bp, dce_caps);
*dce_caps = !!(*dce_caps & DCE_INFO_CAPS_VBIOS_LTTPR_TRANSPARENT_ENABLE);
break;
default:
break;
}
break;
default:
break;
}
DC_LOG_BIOS("DCE_INFO_CAPS_VBIOS_LTTPR_TRANSPARENT_ENABLE: %d tbl_revision.major = %d tbl_revision.minor = %d\n", *dce_caps, tbl_revision.major, tbl_revision.minor);
return result;
}
static enum bp_result bios_parser_get_lttpr_caps(
struct dc_bios *dcb,
uint8_t *dce_caps)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
enum bp_result result = BP_RESULT_UNSUPPORTED;
struct atom_common_table_header *header;
struct atom_data_revision tbl_revision;
if (!DATA_TABLES(dce_info))
return BP_RESULT_UNSUPPORTED;
*dce_caps = 0;
header = GET_IMAGE(struct atom_common_table_header,
DATA_TABLES(dce_info));
get_atom_data_table_revision(header, &tbl_revision);
switch (tbl_revision.major) {
case 4:
switch (tbl_revision.minor) {
case 1:
result = get_disp_caps_v4_1(bp, dce_caps);
*dce_caps = !!(*dce_caps & DCE_INFO_CAPS_LTTPR_SUPPORT_ENABLE);
break;
case 2:
result = get_disp_caps_v4_2(bp, dce_caps);
*dce_caps = !!(*dce_caps & DCE_INFO_CAPS_LTTPR_SUPPORT_ENABLE);
break;
case 3:
result = get_disp_caps_v4_3(bp, dce_caps);
*dce_caps = !!(*dce_caps & DCE_INFO_CAPS_LTTPR_SUPPORT_ENABLE);
break;
case 4:
result = get_disp_caps_v4_4(bp, dce_caps);
*dce_caps = !!(*dce_caps & DCE_INFO_CAPS_LTTPR_SUPPORT_ENABLE);
break;
case 5:
result = get_disp_caps_v4_5(bp, dce_caps);
*dce_caps = !!(*dce_caps & DCE_INFO_CAPS_LTTPR_SUPPORT_ENABLE);
break;
default:
break;
}
break;
default:
break;
}
DC_LOG_BIOS("DCE_INFO_CAPS_LTTPR_SUPPORT_ENABLE: %d tbl_revision.major = %d tbl_revision.minor = %d\n", *dce_caps, tbl_revision.major, tbl_revision.minor);
if (dcb->ctx->dc->config.force_bios_enable_lttpr && *dce_caps == 0) {
*dce_caps = 1;
DC_LOG_BIOS("DCE_INFO_CAPS_VBIOS_LTTPR_TRANSPARENT_ENABLE: forced enabled");
}
return result;
}
static enum bp_result get_embedded_panel_info_v2_1(
struct bios_parser *bp,
struct embedded_panel_info *info)
{
struct lcd_info_v2_1 *lvds;
if (!info)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(lcd_info))
return BP_RESULT_UNSUPPORTED;
lvds = GET_IMAGE(struct lcd_info_v2_1, DATA_TABLES(lcd_info));
if (!lvds)
return BP_RESULT_BADBIOSTABLE;
/* TODO: previous vv1_3, should v2_1 */
if (!((lvds->table_header.format_revision == 2)
&& (lvds->table_header.content_revision >= 1)))
return BP_RESULT_UNSUPPORTED;
memset(info, 0, sizeof(struct embedded_panel_info));
/* We need to convert from 10KHz units into KHz units */
info->lcd_timing.pixel_clk = le16_to_cpu(lvds->lcd_timing.pixclk) * 10;
/* usHActive does not include borders, according to VBIOS team */
info->lcd_timing.horizontal_addressable = le16_to_cpu(lvds->lcd_timing.h_active);
/* usHBlanking_Time includes borders, so we should really be
* subtractingborders duing this translation, but LVDS generally
* doesn't have borders, so we should be okay leaving this as is for
* now. May need to revisit if we ever have LVDS with borders
*/
info->lcd_timing.horizontal_blanking_time = le16_to_cpu(lvds->lcd_timing.h_blanking_time);
/* usVActive does not include borders, according to VBIOS team*/
info->lcd_timing.vertical_addressable = le16_to_cpu(lvds->lcd_timing.v_active);
/* usVBlanking_Time includes borders, so we should really be
* subtracting borders duing this translation, but LVDS generally
* doesn't have borders, so we should be okay leaving this as is for
* now. May need to revisit if we ever have LVDS with borders
*/
info->lcd_timing.vertical_blanking_time = le16_to_cpu(lvds->lcd_timing.v_blanking_time);
info->lcd_timing.horizontal_sync_offset = le16_to_cpu(lvds->lcd_timing.h_sync_offset);
info->lcd_timing.horizontal_sync_width = le16_to_cpu(lvds->lcd_timing.h_sync_width);
info->lcd_timing.vertical_sync_offset = le16_to_cpu(lvds->lcd_timing.v_sync_offset);
info->lcd_timing.vertical_sync_width = le16_to_cpu(lvds->lcd_timing.v_syncwidth);
info->lcd_timing.horizontal_border = lvds->lcd_timing.h_border;
info->lcd_timing.vertical_border = lvds->lcd_timing.v_border;
/* not provided by VBIOS */
info->lcd_timing.misc_info.HORIZONTAL_CUT_OFF = 0;
info->lcd_timing.misc_info.H_SYNC_POLARITY = ~(uint32_t) (lvds->lcd_timing.miscinfo
& ATOM_HSYNC_POLARITY);
info->lcd_timing.misc_info.V_SYNC_POLARITY = ~(uint32_t) (lvds->lcd_timing.miscinfo
& ATOM_VSYNC_POLARITY);
/* not provided by VBIOS */
info->lcd_timing.misc_info.VERTICAL_CUT_OFF = 0;
info->lcd_timing.misc_info.H_REPLICATION_BY2 = !!(lvds->lcd_timing.miscinfo
& ATOM_H_REPLICATIONBY2);
info->lcd_timing.misc_info.V_REPLICATION_BY2 = !!(lvds->lcd_timing.miscinfo
& ATOM_V_REPLICATIONBY2);
info->lcd_timing.misc_info.COMPOSITE_SYNC = !!(lvds->lcd_timing.miscinfo
& ATOM_COMPOSITESYNC);
info->lcd_timing.misc_info.INTERLACE = !!(lvds->lcd_timing.miscinfo & ATOM_INTERLACE);
/* not provided by VBIOS*/
info->lcd_timing.misc_info.DOUBLE_CLOCK = 0;
/* not provided by VBIOS*/
info->ss_id = 0;
info->realtek_eDPToLVDS = !!(lvds->dplvdsrxid == eDP_TO_LVDS_REALTEK_ID);
return BP_RESULT_OK;
}
static enum bp_result bios_parser_get_embedded_panel_info(
struct dc_bios *dcb,
struct embedded_panel_info *info)
{
struct bios_parser
*bp = BP_FROM_DCB(dcb);
struct atom_common_table_header *header;
struct atom_data_revision tbl_revision;
if (!DATA_TABLES(lcd_info))
return BP_RESULT_FAILURE;
header = GET_IMAGE(struct atom_common_table_header, DATA_TABLES(lcd_info));
if (!header)
return BP_RESULT_BADBIOSTABLE;
get_atom_data_table_revision(header, &tbl_revision);
switch (tbl_revision.major) {
case 2:
switch (tbl_revision.minor) {
case 1:
return get_embedded_panel_info_v2_1(bp, info);
default:
break;
}
break;
default:
break;
}
return BP_RESULT_FAILURE;
}
static uint32_t get_support_mask_for_device_id(struct device_id device_id)
{
enum dal_device_type device_type = device_id.device_type;
uint32_t enum_id = device_id.enum_id;
switch (device_type) {
case DEVICE_TYPE_LCD:
switch (enum_id) {
case 1:
return ATOM_DISPLAY_LCD1_SUPPORT;
default:
break;
}
break;
case DEVICE_TYPE_DFP:
switch (enum_id) {
case 1:
return ATOM_DISPLAY_DFP1_SUPPORT;
case 2:
return ATOM_DISPLAY_DFP2_SUPPORT;
case 3:
return ATOM_DISPLAY_DFP3_SUPPORT;
case 4:
return ATOM_DISPLAY_DFP4_SUPPORT;
case 5:
return ATOM_DISPLAY_DFP5_SUPPORT;
case 6:
return ATOM_DISPLAY_DFP6_SUPPORT;
default:
break;
}
break;
default:
break;
}
/* Unidentified device ID, return empty support mask. */
return 0;
}
static bool bios_parser_is_device_id_supported(
struct dc_bios *dcb,
struct device_id id)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
uint32_t mask = get_support_mask_for_device_id(id);
switch (bp->object_info_tbl.revision.minor) {
case 4:
default:
return (le16_to_cpu(bp->object_info_tbl.v1_4->supporteddevices) & mask) != 0;
break;
case 5:
return (le16_to_cpu(bp->object_info_tbl.v1_5->supporteddevices) & mask) != 0;
break;
}
return false;
}
static uint32_t bios_parser_get_ss_entry_number(
struct dc_bios *dcb,
enum as_signal_type signal)
{
/* TODO: DAL2 atomfirmware implementation does not need this.
* why DAL3 need this?
*/
return 1;
}
static enum bp_result bios_parser_transmitter_control(
struct dc_bios *dcb,
struct bp_transmitter_control *cntl)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.transmitter_control)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.transmitter_control(bp, cntl);
}
static enum bp_result bios_parser_encoder_control(
struct dc_bios *dcb,
struct bp_encoder_control *cntl)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.dig_encoder_control)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.dig_encoder_control(bp, cntl);
}
static enum bp_result bios_parser_set_pixel_clock(
struct dc_bios *dcb,
struct bp_pixel_clock_parameters *bp_params)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.set_pixel_clock)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.set_pixel_clock(bp, bp_params);
}
static enum bp_result bios_parser_set_dce_clock(
struct dc_bios *dcb,
struct bp_set_dce_clock_parameters *bp_params)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.set_dce_clock)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.set_dce_clock(bp, bp_params);
}
static enum bp_result bios_parser_program_crtc_timing(
struct dc_bios *dcb,
struct bp_hw_crtc_timing_parameters *bp_params)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.set_crtc_timing)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.set_crtc_timing(bp, bp_params);
}
static enum bp_result bios_parser_enable_crtc(
struct dc_bios *dcb,
enum controller_id id,
bool enable)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.enable_crtc)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.enable_crtc(bp, id, enable);
}
static enum bp_result bios_parser_enable_disp_power_gating(
struct dc_bios *dcb,
enum controller_id controller_id,
enum bp_pipe_control_action action)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.enable_disp_power_gating)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.enable_disp_power_gating(bp, controller_id,
action);
}
static enum bp_result bios_parser_enable_lvtma_control(
struct dc_bios *dcb,
uint8_t uc_pwr_on,
uint8_t panel_instance,
uint8_t bypass_panel_control_wait)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.enable_lvtma_control)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.enable_lvtma_control(bp, uc_pwr_on, panel_instance, bypass_panel_control_wait);
}
static bool bios_parser_is_accelerated_mode(
struct dc_bios *dcb)
{
return bios_is_accelerated_mode(dcb);
}
/**
* bios_parser_set_scratch_critical_state - update critical state bit
* in VBIOS scratch register
*
* @dcb: pointer to the DC BIO
* @state: set or reset state
*/
static void bios_parser_set_scratch_critical_state(
struct dc_bios *dcb,
bool state)
{
bios_set_scratch_critical_state(dcb, state);
}
struct atom_dig_transmitter_info_header_v5_3 {
struct atom_common_table_header table_header;
uint16_t dpphy_hdmi_settings_offset;
uint16_t dpphy_dvi_settings_offset;
uint16_t dpphy_dp_setting_table_offset;
uint16_t uniphy_xbar_settings_v2_table_offset;
uint16_t dpphy_internal_reg_overide_offset;
};
static enum bp_result bios_parser_get_firmware_info(
struct dc_bios *dcb,
struct dc_firmware_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
static enum bp_result result = BP_RESULT_BADBIOSTABLE;
struct atom_common_table_header *header;
struct atom_data_revision revision;
if (info && DATA_TABLES(firmwareinfo)) {
header = GET_IMAGE(struct atom_common_table_header,
DATA_TABLES(firmwareinfo));
get_atom_data_table_revision(header, &revision);
switch (revision.major) {
case 3:
switch (revision.minor) {
case 1:
result = get_firmware_info_v3_1(bp, info);
break;
case 2:
case 3:
result = get_firmware_info_v3_2(bp, info);
break;
case 4:
result = get_firmware_info_v3_4(bp, info);
break;
default:
break;
}
break;
default:
break;
}
}
return result;
}
static enum bp_result get_firmware_info_v3_1(
struct bios_parser *bp,
struct dc_firmware_info *info)
{
struct atom_firmware_info_v3_1 *firmware_info;
struct atom_display_controller_info_v4_1 *dce_info = NULL;
if (!info)
return BP_RESULT_BADINPUT;
firmware_info = GET_IMAGE(struct atom_firmware_info_v3_1,
DATA_TABLES(firmwareinfo));
dce_info = GET_IMAGE(struct atom_display_controller_info_v4_1,
DATA_TABLES(dce_info));
if (!firmware_info || !dce_info)
return BP_RESULT_BADBIOSTABLE;
memset(info, 0, sizeof(*info));
/* Pixel clock pll information. */
/* We need to convert from 10KHz units into KHz units */
info->default_memory_clk = firmware_info->bootup_mclk_in10khz * 10;
info->default_engine_clk = firmware_info->bootup_sclk_in10khz * 10;
/* 27MHz for Vega10: */
info->pll_info.crystal_frequency = dce_info->dce_refclk_10khz * 10;
/* Hardcode frequency if BIOS gives no DCE Ref Clk */
if (info->pll_info.crystal_frequency == 0)
info->pll_info.crystal_frequency = 27000;
/*dp_phy_ref_clk is not correct for atom_display_controller_info_v4_2, but we don't use it*/
info->dp_phy_ref_clk = dce_info->dpphy_refclk_10khz * 10;
info->i2c_engine_ref_clk = dce_info->i2c_engine_refclk_10khz * 10;
/* Get GPU PLL VCO Clock */
if (bp->cmd_tbl.get_smu_clock_info != NULL) {
/* VBIOS gives in 10KHz */
info->smu_gpu_pll_output_freq =
bp->cmd_tbl.get_smu_clock_info(bp, SMU9_SYSPLL0_ID) * 10;
}
info->oem_i2c_present = false;
return BP_RESULT_OK;
}
static enum bp_result get_firmware_info_v3_2(
struct bios_parser *bp,
struct dc_firmware_info *info)
{
struct atom_firmware_info_v3_2 *firmware_info;
struct atom_display_controller_info_v4_1 *dce_info = NULL;
struct atom_common_table_header *header;
struct atom_data_revision revision;
struct atom_smu_info_v3_2 *smu_info_v3_2 = NULL;
struct atom_smu_info_v3_3 *smu_info_v3_3 = NULL;
if (!info)
return BP_RESULT_BADINPUT;
firmware_info = GET_IMAGE(struct atom_firmware_info_v3_2,
DATA_TABLES(firmwareinfo));
dce_info = GET_IMAGE(struct atom_display_controller_info_v4_1,
DATA_TABLES(dce_info));
if (!firmware_info || !dce_info)
return BP_RESULT_BADBIOSTABLE;
memset(info, 0, sizeof(*info));
header = GET_IMAGE(struct atom_common_table_header,
DATA_TABLES(smu_info));
get_atom_data_table_revision(header, &revision);
if (revision.minor == 2) {
/* Vega12 */
smu_info_v3_2 = GET_IMAGE(struct atom_smu_info_v3_2,
DATA_TABLES(smu_info));
DC_LOG_BIOS("gpuclk_ss_percentage (unit of 0.001 percent): %d\n", smu_info_v3_2->gpuclk_ss_percentage);
if (!smu_info_v3_2)
return BP_RESULT_BADBIOSTABLE;
info->default_engine_clk = smu_info_v3_2->bootup_dcefclk_10khz * 10;
} else if (revision.minor == 3) {
/* Vega20 */
smu_info_v3_3 = GET_IMAGE(struct atom_smu_info_v3_3,
DATA_TABLES(smu_info));
DC_LOG_BIOS("gpuclk_ss_percentage (unit of 0.001 percent): %d\n", smu_info_v3_3->gpuclk_ss_percentage);
if (!smu_info_v3_3)
return BP_RESULT_BADBIOSTABLE;
info->default_engine_clk = smu_info_v3_3->bootup_dcefclk_10khz * 10;
}
// We need to convert from 10KHz units into KHz units.
info->default_memory_clk = firmware_info->bootup_mclk_in10khz * 10;
/* 27MHz for Vega10 & Vega12; 100MHz for Vega20 */
info->pll_info.crystal_frequency = dce_info->dce_refclk_10khz * 10;
/* Hardcode frequency if BIOS gives no DCE Ref Clk */
if (info->pll_info.crystal_frequency == 0) {
if (revision.minor == 2)
info->pll_info.crystal_frequency = 27000;
else if (revision.minor == 3)
info->pll_info.crystal_frequency = 100000;
}
/*dp_phy_ref_clk is not correct for atom_display_controller_info_v4_2, but we don't use it*/
info->dp_phy_ref_clk = dce_info->dpphy_refclk_10khz * 10;
info->i2c_engine_ref_clk = dce_info->i2c_engine_refclk_10khz * 10;
/* Get GPU PLL VCO Clock */
if (bp->cmd_tbl.get_smu_clock_info != NULL) {
if (revision.minor == 2)
info->smu_gpu_pll_output_freq =
bp->cmd_tbl.get_smu_clock_info(bp, SMU9_SYSPLL0_ID) * 10;
else if (revision.minor == 3)
info->smu_gpu_pll_output_freq =
bp->cmd_tbl.get_smu_clock_info(bp, SMU11_SYSPLL3_0_ID) * 10;
}
if (firmware_info->board_i2c_feature_id == 0x2) {
info->oem_i2c_present = true;
info->oem_i2c_obj_id = firmware_info->board_i2c_feature_gpio_id;
} else {
info->oem_i2c_present = false;
}
return BP_RESULT_OK;
}
static enum bp_result get_firmware_info_v3_4(
struct bios_parser *bp,
struct dc_firmware_info *info)
{
struct atom_firmware_info_v3_4 *firmware_info;
struct atom_common_table_header *header;
struct atom_data_revision revision;
struct atom_display_controller_info_v4_1 *dce_info_v4_1 = NULL;
struct atom_display_controller_info_v4_4 *dce_info_v4_4 = NULL;
struct atom_smu_info_v3_5 *smu_info_v3_5 = NULL;
struct atom_display_controller_info_v4_5 *dce_info_v4_5 = NULL;
struct atom_smu_info_v4_0 *smu_info_v4_0 = NULL;
if (!info)
return BP_RESULT_BADINPUT;
firmware_info = GET_IMAGE(struct atom_firmware_info_v3_4,
DATA_TABLES(firmwareinfo));
if (!firmware_info)
return BP_RESULT_BADBIOSTABLE;
memset(info, 0, sizeof(*info));
header = GET_IMAGE(struct atom_common_table_header,
DATA_TABLES(dce_info));
get_atom_data_table_revision(header, &revision);
switch (revision.major) {
case 4:
switch (revision.minor) {
case 5:
dce_info_v4_5 = GET_IMAGE(struct atom_display_controller_info_v4_5,
DATA_TABLES(dce_info));
if (!dce_info_v4_5)
return BP_RESULT_BADBIOSTABLE;
/* 100MHz expected */
info->pll_info.crystal_frequency = dce_info_v4_5->dce_refclk_10khz * 10;
info->dp_phy_ref_clk = dce_info_v4_5->dpphy_refclk_10khz * 10;
/* 50MHz expected */
info->i2c_engine_ref_clk = dce_info_v4_5->i2c_engine_refclk_10khz * 10;
/* For DCN32/321 Display PLL VCO Frequency from dce_info_v4_5 may not be reliable */
break;
case 4:
dce_info_v4_4 = GET_IMAGE(struct atom_display_controller_info_v4_4,
DATA_TABLES(dce_info));
if (!dce_info_v4_4)
return BP_RESULT_BADBIOSTABLE;
/* 100MHz expected */
info->pll_info.crystal_frequency = dce_info_v4_4->dce_refclk_10khz * 10;
info->dp_phy_ref_clk = dce_info_v4_4->dpphy_refclk_10khz * 10;
/* 50MHz expected */
info->i2c_engine_ref_clk = dce_info_v4_4->i2c_engine_refclk_10khz * 10;
/* Get SMU Display PLL VCO Frequency in KHz*/
info->smu_gpu_pll_output_freq = dce_info_v4_4->dispclk_pll_vco_freq * 10;
break;
default:
/* should not come here, keep as backup, as was before */
dce_info_v4_1 = GET_IMAGE(struct atom_display_controller_info_v4_1,
DATA_TABLES(dce_info));
if (!dce_info_v4_1)
return BP_RESULT_BADBIOSTABLE;
info->pll_info.crystal_frequency = dce_info_v4_1->dce_refclk_10khz * 10;
info->dp_phy_ref_clk = dce_info_v4_1->dpphy_refclk_10khz * 10;
info->i2c_engine_ref_clk = dce_info_v4_1->i2c_engine_refclk_10khz * 10;
break;
}
break;
default:
ASSERT(0);
break;
}
header = GET_IMAGE(struct atom_common_table_header,
DATA_TABLES(smu_info));
get_atom_data_table_revision(header, &revision);
switch (revision.major) {
case 3:
switch (revision.minor) {
case 5:
smu_info_v3_5 = GET_IMAGE(struct atom_smu_info_v3_5,
DATA_TABLES(smu_info));
if (!smu_info_v3_5)
return BP_RESULT_BADBIOSTABLE;
DC_LOG_BIOS("gpuclk_ss_percentage (unit of 0.001 percent): %d\n", smu_info_v3_5->gpuclk_ss_percentage);
info->default_engine_clk = smu_info_v3_5->bootup_dcefclk_10khz * 10;
break;
default:
break;
}
break;
case 4:
switch (revision.minor) {
case 0:
smu_info_v4_0 = GET_IMAGE(struct atom_smu_info_v4_0,
DATA_TABLES(smu_info));
if (!smu_info_v4_0)
return BP_RESULT_BADBIOSTABLE;
/* For DCN32/321 bootup DCFCLK from smu_info_v4_0 may not be reliable */
break;
default:
break;
}
break;
default:
break;
}
// We need to convert from 10KHz units into KHz units.
info->default_memory_clk = firmware_info->bootup_mclk_in10khz * 10;
if (firmware_info->board_i2c_feature_id == 0x2) {
info->oem_i2c_present = true;
info->oem_i2c_obj_id = firmware_info->board_i2c_feature_gpio_id;
} else {
info->oem_i2c_present = false;
}
return BP_RESULT_OK;
}
static enum bp_result bios_parser_get_encoder_cap_info(
struct dc_bios *dcb,
struct graphics_object_id object_id,
struct bp_encoder_cap_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
struct atom_display_object_path_v2 *object;
struct atom_encoder_caps_record *record = NULL;
if (!info)
return BP_RESULT_BADINPUT;
#if defined(CONFIG_DRM_AMD_DC_FP)
/* encoder cap record not available in v1_5 */
if (bp->object_info_tbl.revision.minor == 5)
return BP_RESULT_NORECORD;
#endif
object = get_bios_object(bp, object_id);
if (!object)
return BP_RESULT_BADINPUT;
record = get_encoder_cap_record(bp, object);
if (!record)
return BP_RESULT_NORECORD;
DC_LOG_BIOS("record->encodercaps 0x%x for object_id 0x%x", record->encodercaps, object_id.id);
info->DP_HBR2_CAP = (record->encodercaps &
ATOM_ENCODER_CAP_RECORD_HBR2) ? 1 : 0;
info->DP_HBR2_EN = (record->encodercaps &
ATOM_ENCODER_CAP_RECORD_HBR2_EN) ? 1 : 0;
info->DP_HBR3_EN = (record->encodercaps &
ATOM_ENCODER_CAP_RECORD_HBR3_EN) ? 1 : 0;
info->HDMI_6GB_EN = (record->encodercaps &
ATOM_ENCODER_CAP_RECORD_HDMI6Gbps_EN) ? 1 : 0;
info->IS_DP2_CAPABLE = (record->encodercaps &
ATOM_ENCODER_CAP_RECORD_DP2) ? 1 : 0;
info->DP_UHBR10_EN = (record->encodercaps &
ATOM_ENCODER_CAP_RECORD_UHBR10_EN) ? 1 : 0;
info->DP_UHBR13_5_EN = (record->encodercaps &
ATOM_ENCODER_CAP_RECORD_UHBR13_5_EN) ? 1 : 0;
info->DP_UHBR20_EN = (record->encodercaps &
ATOM_ENCODER_CAP_RECORD_UHBR20_EN) ? 1 : 0;
info->DP_IS_USB_C = (record->encodercaps &
ATOM_ENCODER_CAP_RECORD_USB_C_TYPE) ? 1 : 0;
DC_LOG_BIOS("\t info->DP_IS_USB_C %d", info->DP_IS_USB_C);
return BP_RESULT_OK;
}
static struct atom_encoder_caps_record *get_encoder_cap_record(
struct bios_parser *bp,
struct atom_display_object_path_v2 *object)
{
struct atom_common_record_header *header;
uint32_t offset;
if (!object) {
BREAK_TO_DEBUGGER(); /* Invalid object */
return NULL;
}
offset = object->encoder_recordoffset + bp->object_info_tbl_offset;
for (;;) {
header = GET_IMAGE(struct atom_common_record_header, offset);
if (!header)
return NULL;
offset += header->record_size;
if (header->record_type == LAST_RECORD_TYPE ||
!header->record_size)
break;
if (header->record_type != ATOM_ENCODER_CAP_RECORD_TYPE)
continue;
if (sizeof(struct atom_encoder_caps_record) <=
header->record_size)
return (struct atom_encoder_caps_record *)header;
}
return NULL;
}
static struct atom_disp_connector_caps_record *get_disp_connector_caps_record(
struct bios_parser *bp,
struct atom_display_object_path_v2 *object)
{
struct atom_common_record_header *header;
uint32_t offset;
if (!object) {
BREAK_TO_DEBUGGER(); /* Invalid object */
return NULL;
}
offset = object->disp_recordoffset + bp->object_info_tbl_offset;
for (;;) {
header = GET_IMAGE(struct atom_common_record_header, offset);
if (!header)
return NULL;
offset += header->record_size;
if (header->record_type == LAST_RECORD_TYPE ||
!header->record_size)
break;
if (header->record_type != ATOM_DISP_CONNECTOR_CAPS_RECORD_TYPE)
continue;
if (sizeof(struct atom_disp_connector_caps_record) <=
header->record_size)
return (struct atom_disp_connector_caps_record *)header;
}
return NULL;
}
static struct atom_connector_caps_record *get_connector_caps_record(struct bios_parser *bp,
struct atom_display_object_path_v3 *object)
{
struct atom_common_record_header *header;
uint32_t offset;
if (!object) {
BREAK_TO_DEBUGGER(); /* Invalid object */
return NULL;
}
offset = object->disp_recordoffset + bp->object_info_tbl_offset;
for (;;) {
header = GET_IMAGE(struct atom_common_record_header, offset);
if (!header)
return NULL;
offset += header->record_size;
if (header->record_type == ATOM_RECORD_END_TYPE ||
!header->record_size)
break;
if (header->record_type != ATOM_CONNECTOR_CAP_RECORD_TYPE)
continue;
if (sizeof(struct atom_connector_caps_record) <= header->record_size)
return (struct atom_connector_caps_record *)header;
}
return NULL;
}
static enum bp_result bios_parser_get_disp_connector_caps_info(
struct dc_bios *dcb,
struct graphics_object_id object_id,
struct bp_disp_connector_caps_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
struct atom_display_object_path_v2 *object;
struct atom_display_object_path_v3 *object_path_v3;
struct atom_connector_caps_record *record_path_v3;
struct atom_disp_connector_caps_record *record = NULL;
if (!info)
return BP_RESULT_BADINPUT;
switch (bp->object_info_tbl.revision.minor) {
case 4:
default:
object = get_bios_object(bp, object_id);
if (!object)
return BP_RESULT_BADINPUT;
record = get_disp_connector_caps_record(bp, object);
if (!record)
return BP_RESULT_NORECORD;
info->INTERNAL_DISPLAY =
(record->connectcaps & ATOM_CONNECTOR_CAP_INTERNAL_DISPLAY) ? 1 : 0;
info->INTERNAL_DISPLAY_BL =
(record->connectcaps & ATOM_CONNECTOR_CAP_INTERNAL_DISPLAY_BL) ? 1 : 0;
break;
case 5:
object_path_v3 = get_bios_object_from_path_v3(bp, object_id);
if (!object_path_v3)
return BP_RESULT_BADINPUT;
record_path_v3 = get_connector_caps_record(bp, object_path_v3);
if (!record_path_v3)
return BP_RESULT_NORECORD;
info->INTERNAL_DISPLAY = (record_path_v3->connector_caps & ATOM_CONNECTOR_CAP_INTERNAL_DISPLAY)
? 1 : 0;
info->INTERNAL_DISPLAY_BL = (record_path_v3->connector_caps & ATOM_CONNECTOR_CAP_INTERNAL_DISPLAY_BL)
? 1 : 0;
break;
}
return BP_RESULT_OK;
}
static struct atom_connector_speed_record *get_connector_speed_cap_record(struct bios_parser *bp,
struct atom_display_object_path_v3 *object)
{
struct atom_common_record_header *header;
uint32_t offset;
if (!object) {
BREAK_TO_DEBUGGER(); /* Invalid object */
return NULL;
}
offset = object->disp_recordoffset + bp->object_info_tbl_offset;
for (;;) {
header = GET_IMAGE(struct atom_common_record_header, offset);
if (!header)
return NULL;
offset += header->record_size;
if (header->record_type == ATOM_RECORD_END_TYPE ||
!header->record_size)
break;
if (header->record_type != ATOM_CONNECTOR_SPEED_UPTO)
continue;
if (sizeof(struct atom_connector_speed_record) <= header->record_size)
return (struct atom_connector_speed_record *)header;
}
return NULL;
}
static enum bp_result bios_parser_get_connector_speed_cap_info(
struct dc_bios *dcb,
struct graphics_object_id object_id,
struct bp_connector_speed_cap_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
struct atom_display_object_path_v3 *object_path_v3;
//struct atom_connector_speed_record *record = NULL;
struct atom_connector_speed_record *record;
if (!info)
return BP_RESULT_BADINPUT;
object_path_v3 = get_bios_object_from_path_v3(bp, object_id);
if (!object_path_v3)
return BP_RESULT_BADINPUT;
record = get_connector_speed_cap_record(bp, object_path_v3);
if (!record)
return BP_RESULT_NORECORD;
info->DP_HBR2_EN = (record->connector_max_speed >= 5400) ? 1 : 0;
info->DP_HBR3_EN = (record->connector_max_speed >= 8100) ? 1 : 0;
info->HDMI_6GB_EN = (record->connector_max_speed >= 5940) ? 1 : 0;
info->DP_UHBR10_EN = (record->connector_max_speed >= 10000) ? 1 : 0;
info->DP_UHBR13_5_EN = (record->connector_max_speed >= 13500) ? 1 : 0;
info->DP_UHBR20_EN = (record->connector_max_speed >= 20000) ? 1 : 0;
return BP_RESULT_OK;
}
static enum bp_result get_vram_info_v23(
struct bios_parser *bp,
struct dc_vram_info *info)
{
struct atom_vram_info_header_v2_3 *info_v23;
static enum bp_result result = BP_RESULT_OK;
info_v23 = GET_IMAGE(struct atom_vram_info_header_v2_3,
DATA_TABLES(vram_info));
if (info_v23 == NULL)
return BP_RESULT_BADBIOSTABLE;
info->num_chans = info_v23->vram_module[0].channel_num;
info->dram_channel_width_bytes = (1 << info_v23->vram_module[0].channel_width) / 8;
return result;
}
static enum bp_result get_vram_info_v24(
struct bios_parser *bp,
struct dc_vram_info *info)
{
struct atom_vram_info_header_v2_4 *info_v24;
static enum bp_result result = BP_RESULT_OK;
info_v24 = GET_IMAGE(struct atom_vram_info_header_v2_4,
DATA_TABLES(vram_info));
if (info_v24 == NULL)
return BP_RESULT_BADBIOSTABLE;
info->num_chans = info_v24->vram_module[0].channel_num;
info->dram_channel_width_bytes = (1 << info_v24->vram_module[0].channel_width) / 8;
return result;
}
static enum bp_result get_vram_info_v25(
struct bios_parser *bp,
struct dc_vram_info *info)
{
struct atom_vram_info_header_v2_5 *info_v25;
static enum bp_result result = BP_RESULT_OK;
info_v25 = GET_IMAGE(struct atom_vram_info_header_v2_5,
DATA_TABLES(vram_info));
if (info_v25 == NULL)
return BP_RESULT_BADBIOSTABLE;
info->num_chans = info_v25->vram_module[0].channel_num;
info->dram_channel_width_bytes = (1 << info_v25->vram_module[0].channel_width) / 8;
return result;
}
static enum bp_result get_vram_info_v30(
struct bios_parser *bp,
struct dc_vram_info *info)
{
struct atom_vram_info_header_v3_0 *info_v30;
enum bp_result result = BP_RESULT_OK;
info_v30 = GET_IMAGE(struct atom_vram_info_header_v3_0,
DATA_TABLES(vram_info));
if (info_v30 == NULL)
return BP_RESULT_BADBIOSTABLE;
info->num_chans = info_v30->channel_num;
info->dram_channel_width_bytes = (1 << info_v30->channel_width) / 8;
return result;
}
/*
* get_integrated_info_v11
*
* @brief
* Get V8 integrated BIOS information
*
* @param
* bios_parser *bp - [in]BIOS parser handler to get master data table
* integrated_info *info - [out] store and output integrated info
*
* @return
* static enum bp_result - BP_RESULT_OK if information is available,
* BP_RESULT_BADBIOSTABLE otherwise.
*/
static enum bp_result get_integrated_info_v11(
struct bios_parser *bp,
struct integrated_info *info)
{
struct atom_integrated_system_info_v1_11 *info_v11;
uint32_t i;
info_v11 = GET_IMAGE(struct atom_integrated_system_info_v1_11,
DATA_TABLES(integratedsysteminfo));
DC_LOG_BIOS("gpuclk_ss_percentage (unit of 0.001 percent): %d\n", info_v11->gpuclk_ss_percentage);
if (info_v11 == NULL)
return BP_RESULT_BADBIOSTABLE;
info->gpu_cap_info =
le32_to_cpu(info_v11->gpucapinfo);
/*
* system_config: Bit[0] = 0 : PCIE power gating disabled
* = 1 : PCIE power gating enabled
* Bit[1] = 0 : DDR-PLL shut down disabled
* = 1 : DDR-PLL shut down enabled
* Bit[2] = 0 : DDR-PLL power down disabled
* = 1 : DDR-PLL power down enabled
*/
info->system_config = le32_to_cpu(info_v11->system_config);
info->cpu_cap_info = le32_to_cpu(info_v11->cpucapinfo);
info->memory_type = info_v11->memorytype;
info->ma_channel_number = info_v11->umachannelnumber;
info->lvds_ss_percentage =
le16_to_cpu(info_v11->lvds_ss_percentage);
info->dp_ss_control =
le16_to_cpu(info_v11->reserved1);
info->lvds_sspread_rate_in_10hz =
le16_to_cpu(info_v11->lvds_ss_rate_10hz);
info->hdmi_ss_percentage =
le16_to_cpu(info_v11->hdmi_ss_percentage);
info->hdmi_sspread_rate_in_10hz =
le16_to_cpu(info_v11->hdmi_ss_rate_10hz);
info->dvi_ss_percentage =
le16_to_cpu(info_v11->dvi_ss_percentage);
info->dvi_sspread_rate_in_10_hz =
le16_to_cpu(info_v11->dvi_ss_rate_10hz);
info->lvds_misc = info_v11->lvds_misc;
for (i = 0; i < NUMBER_OF_UCHAR_FOR_GUID; ++i) {
info->ext_disp_conn_info.gu_id[i] =
info_v11->extdispconninfo.guid[i];
}
for (i = 0; i < MAX_NUMBER_OF_EXT_DISPLAY_PATH; ++i) {
info->ext_disp_conn_info.path[i].device_connector_id =
object_id_from_bios_object_id(
le16_to_cpu(info_v11->extdispconninfo.path[i].connectorobjid));
info->ext_disp_conn_info.path[i].ext_encoder_obj_id =
object_id_from_bios_object_id(
le16_to_cpu(
info_v11->extdispconninfo.path[i].ext_encoder_objid));
info->ext_disp_conn_info.path[i].device_tag =
le16_to_cpu(
info_v11->extdispconninfo.path[i].device_tag);
info->ext_disp_conn_info.path[i].device_acpi_enum =
le16_to_cpu(
info_v11->extdispconninfo.path[i].device_acpi_enum);
info->ext_disp_conn_info.path[i].ext_aux_ddc_lut_index =
info_v11->extdispconninfo.path[i].auxddclut_index;
info->ext_disp_conn_info.path[i].ext_hpd_pin_lut_index =
info_v11->extdispconninfo.path[i].hpdlut_index;
info->ext_disp_conn_info.path[i].channel_mapping.raw =
info_v11->extdispconninfo.path[i].channelmapping;
info->ext_disp_conn_info.path[i].caps =
le16_to_cpu(info_v11->extdispconninfo.path[i].caps);
}
info->ext_disp_conn_info.checksum =
info_v11->extdispconninfo.checksum;
info->dp0_ext_hdmi_slv_addr = info_v11->dp0_retimer_set.HdmiSlvAddr;
info->dp0_ext_hdmi_reg_num = info_v11->dp0_retimer_set.HdmiRegNum;
for (i = 0; i < info->dp0_ext_hdmi_reg_num; i++) {
info->dp0_ext_hdmi_reg_settings[i].i2c_reg_index =
info_v11->dp0_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
info->dp0_ext_hdmi_reg_settings[i].i2c_reg_val =
info_v11->dp0_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
}
info->dp0_ext_hdmi_6g_reg_num = info_v11->dp0_retimer_set.Hdmi6GRegNum;
for (i = 0; i < info->dp0_ext_hdmi_6g_reg_num; i++) {
info->dp0_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
info_v11->dp0_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
info->dp0_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
info_v11->dp0_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
}
info->dp1_ext_hdmi_slv_addr = info_v11->dp1_retimer_set.HdmiSlvAddr;
info->dp1_ext_hdmi_reg_num = info_v11->dp1_retimer_set.HdmiRegNum;
for (i = 0; i < info->dp1_ext_hdmi_reg_num; i++) {
info->dp1_ext_hdmi_reg_settings[i].i2c_reg_index =
info_v11->dp1_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
info->dp1_ext_hdmi_reg_settings[i].i2c_reg_val =
info_v11->dp1_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
}
info->dp1_ext_hdmi_6g_reg_num = info_v11->dp1_retimer_set.Hdmi6GRegNum;
for (i = 0; i < info->dp1_ext_hdmi_6g_reg_num; i++) {
info->dp1_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
info_v11->dp1_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
info->dp1_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
info_v11->dp1_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
}
info->dp2_ext_hdmi_slv_addr = info_v11->dp2_retimer_set.HdmiSlvAddr;
info->dp2_ext_hdmi_reg_num = info_v11->dp2_retimer_set.HdmiRegNum;
for (i = 0; i < info->dp2_ext_hdmi_reg_num; i++) {
info->dp2_ext_hdmi_reg_settings[i].i2c_reg_index =
info_v11->dp2_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
info->dp2_ext_hdmi_reg_settings[i].i2c_reg_val =
info_v11->dp2_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
}
info->dp2_ext_hdmi_6g_reg_num = info_v11->dp2_retimer_set.Hdmi6GRegNum;
for (i = 0; i < info->dp2_ext_hdmi_6g_reg_num; i++) {
info->dp2_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
info_v11->dp2_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
info->dp2_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
info_v11->dp2_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
}
info->dp3_ext_hdmi_slv_addr = info_v11->dp3_retimer_set.HdmiSlvAddr;
info->dp3_ext_hdmi_reg_num = info_v11->dp3_retimer_set.HdmiRegNum;
for (i = 0; i < info->dp3_ext_hdmi_reg_num; i++) {
info->dp3_ext_hdmi_reg_settings[i].i2c_reg_index =
info_v11->dp3_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
info->dp3_ext_hdmi_reg_settings[i].i2c_reg_val =
info_v11->dp3_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
}
info->dp3_ext_hdmi_6g_reg_num = info_v11->dp3_retimer_set.Hdmi6GRegNum;
for (i = 0; i < info->dp3_ext_hdmi_6g_reg_num; i++) {
info->dp3_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
info_v11->dp3_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
info->dp3_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
info_v11->dp3_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
}
/** TODO - review **/
#if 0
info->boot_up_engine_clock = le32_to_cpu(info_v11->ulBootUpEngineClock)
* 10;
info->dentist_vco_freq = le32_to_cpu(info_v11->ulDentistVCOFreq) * 10;
info->boot_up_uma_clock = le32_to_cpu(info_v8->ulBootUpUMAClock) * 10;
for (i = 0; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) {
/* Convert [10KHz] into [KHz] */
info->disp_clk_voltage[i].max_supported_clk =
le32_to_cpu(info_v11->sDISPCLK_Voltage[i].
ulMaximumSupportedCLK) * 10;
info->disp_clk_voltage[i].voltage_index =
le32_to_cpu(info_v11->sDISPCLK_Voltage[i].ulVoltageIndex);
}
info->boot_up_req_display_vector =
le32_to_cpu(info_v11->ulBootUpReqDisplayVector);
info->boot_up_nb_voltage =
le16_to_cpu(info_v11->usBootUpNBVoltage);
info->ext_disp_conn_info_offset =
le16_to_cpu(info_v11->usExtDispConnInfoOffset);
info->gmc_restore_reset_time =
le32_to_cpu(info_v11->ulGMCRestoreResetTime);
info->minimum_n_clk =
le32_to_cpu(info_v11->ulNbpStateNClkFreq[0]);
for (i = 1; i < 4; ++i)
info->minimum_n_clk =
info->minimum_n_clk <
le32_to_cpu(info_v11->ulNbpStateNClkFreq[i]) ?
info->minimum_n_clk : le32_to_cpu(
info_v11->ulNbpStateNClkFreq[i]);
info->idle_n_clk = le32_to_cpu(info_v11->ulIdleNClk);
info->ddr_dll_power_up_time =
le32_to_cpu(info_v11->ulDDR_DLL_PowerUpTime);
info->ddr_pll_power_up_time =
le32_to_cpu(info_v11->ulDDR_PLL_PowerUpTime);
info->pcie_clk_ss_type = le16_to_cpu(info_v11->usPCIEClkSSType);
info->max_lvds_pclk_freq_in_single_link =
le16_to_cpu(info_v11->usMaxLVDSPclkFreqInSingleLink);
info->max_lvds_pclk_freq_in_single_link =
le16_to_cpu(info_v11->usMaxLVDSPclkFreqInSingleLink);
info->lvds_pwr_on_seq_dig_on_to_de_in_4ms =
info_v11->ucLVDSPwrOnSeqDIGONtoDE_in4Ms;
info->lvds_pwr_on_seq_de_to_vary_bl_in_4ms =
info_v11->ucLVDSPwrOnSeqDEtoVARY_BL_in4Ms;
info->lvds_pwr_on_seq_vary_bl_to_blon_in_4ms =
info_v11->ucLVDSPwrOnSeqVARY_BLtoBLON_in4Ms;
info->lvds_pwr_off_seq_vary_bl_to_de_in4ms =
info_v11->ucLVDSPwrOffSeqVARY_BLtoDE_in4Ms;
info->lvds_pwr_off_seq_de_to_dig_on_in4ms =
info_v11->ucLVDSPwrOffSeqDEtoDIGON_in4Ms;
info->lvds_pwr_off_seq_blon_to_vary_bl_in_4ms =
info_v11->ucLVDSPwrOffSeqBLONtoVARY_BL_in4Ms;
info->lvds_off_to_on_delay_in_4ms =
info_v11->ucLVDSOffToOnDelay_in4Ms;
info->lvds_bit_depth_control_val =
le32_to_cpu(info_v11->ulLCDBitDepthControlVal);
for (i = 0; i < NUMBER_OF_AVAILABLE_SCLK; ++i) {
/* Convert [10KHz] into [KHz] */
info->avail_s_clk[i].supported_s_clk =
le32_to_cpu(info_v11->sAvail_SCLK[i].ulSupportedSCLK)
* 10;
info->avail_s_clk[i].voltage_index =
le16_to_cpu(info_v11->sAvail_SCLK[i].usVoltageIndex);
info->avail_s_clk[i].voltage_id =
le16_to_cpu(info_v11->sAvail_SCLK[i].usVoltageID);
}
#endif /* TODO*/
return BP_RESULT_OK;
}
static enum bp_result get_integrated_info_v2_1(
struct bios_parser *bp,
struct integrated_info *info)
{
struct atom_integrated_system_info_v2_1 *info_v2_1;
uint32_t i;
info_v2_1 = GET_IMAGE(struct atom_integrated_system_info_v2_1,
DATA_TABLES(integratedsysteminfo));
DC_LOG_BIOS("gpuclk_ss_percentage (unit of 0.001 percent): %d\n", info_v2_1->gpuclk_ss_percentage);
if (info_v2_1 == NULL)
return BP_RESULT_BADBIOSTABLE;
info->gpu_cap_info =
le32_to_cpu(info_v2_1->gpucapinfo);
/*
* system_config: Bit[0] = 0 : PCIE power gating disabled
* = 1 : PCIE power gating enabled
* Bit[1] = 0 : DDR-PLL shut down disabled
* = 1 : DDR-PLL shut down enabled
* Bit[2] = 0 : DDR-PLL power down disabled
* = 1 : DDR-PLL power down enabled
*/
info->system_config = le32_to_cpu(info_v2_1->system_config);
info->cpu_cap_info = le32_to_cpu(info_v2_1->cpucapinfo);
info->memory_type = info_v2_1->memorytype;
info->ma_channel_number = info_v2_1->umachannelnumber;
info->dp_ss_control =
le16_to_cpu(info_v2_1->reserved1);
for (i = 0; i < NUMBER_OF_UCHAR_FOR_GUID; ++i) {
info->ext_disp_conn_info.gu_id[i] =
info_v2_1->extdispconninfo.guid[i];
}
for (i = 0; i < MAX_NUMBER_OF_EXT_DISPLAY_PATH; ++i) {
info->ext_disp_conn_info.path[i].device_connector_id =
object_id_from_bios_object_id(
le16_to_cpu(info_v2_1->extdispconninfo.path[i].connectorobjid));
info->ext_disp_conn_info.path[i].ext_encoder_obj_id =
object_id_from_bios_object_id(
le16_to_cpu(
info_v2_1->extdispconninfo.path[i].ext_encoder_objid));
info->ext_disp_conn_info.path[i].device_tag =
le16_to_cpu(
info_v2_1->extdispconninfo.path[i].device_tag);
info->ext_disp_conn_info.path[i].device_acpi_enum =
le16_to_cpu(
info_v2_1->extdispconninfo.path[i].device_acpi_enum);
info->ext_disp_conn_info.path[i].ext_aux_ddc_lut_index =
info_v2_1->extdispconninfo.path[i].auxddclut_index;
info->ext_disp_conn_info.path[i].ext_hpd_pin_lut_index =
info_v2_1->extdispconninfo.path[i].hpdlut_index;
info->ext_disp_conn_info.path[i].channel_mapping.raw =
info_v2_1->extdispconninfo.path[i].channelmapping;
info->ext_disp_conn_info.path[i].caps =
le16_to_cpu(info_v2_1->extdispconninfo.path[i].caps);
}
info->ext_disp_conn_info.checksum =
info_v2_1->extdispconninfo.checksum;
info->dp0_ext_hdmi_slv_addr = info_v2_1->dp0_retimer_set.HdmiSlvAddr;
info->dp0_ext_hdmi_reg_num = info_v2_1->dp0_retimer_set.HdmiRegNum;
for (i = 0; i < info->dp0_ext_hdmi_reg_num; i++) {
info->dp0_ext_hdmi_reg_settings[i].i2c_reg_index =
info_v2_1->dp0_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
info->dp0_ext_hdmi_reg_settings[i].i2c_reg_val =
info_v2_1->dp0_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
}
info->dp0_ext_hdmi_6g_reg_num = info_v2_1->dp0_retimer_set.Hdmi6GRegNum;
for (i = 0; i < info->dp0_ext_hdmi_6g_reg_num; i++) {
info->dp0_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
info_v2_1->dp0_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
info->dp0_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
info_v2_1->dp0_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
}
info->dp1_ext_hdmi_slv_addr = info_v2_1->dp1_retimer_set.HdmiSlvAddr;
info->dp1_ext_hdmi_reg_num = info_v2_1->dp1_retimer_set.HdmiRegNum;
for (i = 0; i < info->dp1_ext_hdmi_reg_num; i++) {
info->dp1_ext_hdmi_reg_settings[i].i2c_reg_index =
info_v2_1->dp1_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
info->dp1_ext_hdmi_reg_settings[i].i2c_reg_val =
info_v2_1->dp1_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
}
info->dp1_ext_hdmi_6g_reg_num = info_v2_1->dp1_retimer_set.Hdmi6GRegNum;
for (i = 0; i < info->dp1_ext_hdmi_6g_reg_num; i++) {
info->dp1_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
info_v2_1->dp1_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
info->dp1_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
info_v2_1->dp1_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
}
info->dp2_ext_hdmi_slv_addr = info_v2_1->dp2_retimer_set.HdmiSlvAddr;
info->dp2_ext_hdmi_reg_num = info_v2_1->dp2_retimer_set.HdmiRegNum;
for (i = 0; i < info->dp2_ext_hdmi_reg_num; i++) {
info->dp2_ext_hdmi_reg_settings[i].i2c_reg_index =
info_v2_1->dp2_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
info->dp2_ext_hdmi_reg_settings[i].i2c_reg_val =
info_v2_1->dp2_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
}
info->dp2_ext_hdmi_6g_reg_num = info_v2_1->dp2_retimer_set.Hdmi6GRegNum;
for (i = 0; i < info->dp2_ext_hdmi_6g_reg_num; i++) {
info->dp2_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
info_v2_1->dp2_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
info->dp2_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
info_v2_1->dp2_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
}
info->dp3_ext_hdmi_slv_addr = info_v2_1->dp3_retimer_set.HdmiSlvAddr;
info->dp3_ext_hdmi_reg_num = info_v2_1->dp3_retimer_set.HdmiRegNum;
for (i = 0; i < info->dp3_ext_hdmi_reg_num; i++) {
info->dp3_ext_hdmi_reg_settings[i].i2c_reg_index =
info_v2_1->dp3_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
info->dp3_ext_hdmi_reg_settings[i].i2c_reg_val =
info_v2_1->dp3_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
}
info->dp3_ext_hdmi_6g_reg_num = info_v2_1->dp3_retimer_set.Hdmi6GRegNum;
for (i = 0; i < info->dp3_ext_hdmi_6g_reg_num; i++) {
info->dp3_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
info_v2_1->dp3_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
info->dp3_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
info_v2_1->dp3_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
}
info->edp1_info.edp_backlight_pwm_hz =
le16_to_cpu(info_v2_1->edp1_info.edp_backlight_pwm_hz);
info->edp1_info.edp_ss_percentage =
le16_to_cpu(info_v2_1->edp1_info.edp_ss_percentage);
info->edp1_info.edp_ss_rate_10hz =
le16_to_cpu(info_v2_1->edp1_info.edp_ss_rate_10hz);
info->edp1_info.edp_pwr_on_off_delay =
info_v2_1->edp1_info.edp_pwr_on_off_delay;
info->edp1_info.edp_pwr_on_vary_bl_to_blon =
info_v2_1->edp1_info.edp_pwr_on_vary_bl_to_blon;
info->edp1_info.edp_pwr_down_bloff_to_vary_bloff =
info_v2_1->edp1_info.edp_pwr_down_bloff_to_vary_bloff;
info->edp1_info.edp_panel_bpc =
info_v2_1->edp1_info.edp_panel_bpc;
info->edp1_info.edp_bootup_bl_level = info_v2_1->edp1_info.edp_bootup_bl_level;
info->edp2_info.edp_backlight_pwm_hz =
le16_to_cpu(info_v2_1->edp2_info.edp_backlight_pwm_hz);
info->edp2_info.edp_ss_percentage =
le16_to_cpu(info_v2_1->edp2_info.edp_ss_percentage);
info->edp2_info.edp_ss_rate_10hz =
le16_to_cpu(info_v2_1->edp2_info.edp_ss_rate_10hz);
info->edp2_info.edp_pwr_on_off_delay =
info_v2_1->edp2_info.edp_pwr_on_off_delay;
info->edp2_info.edp_pwr_on_vary_bl_to_blon =
info_v2_1->edp2_info.edp_pwr_on_vary_bl_to_blon;
info->edp2_info.edp_pwr_down_bloff_to_vary_bloff =
info_v2_1->edp2_info.edp_pwr_down_bloff_to_vary_bloff;
info->edp2_info.edp_panel_bpc =
info_v2_1->edp2_info.edp_panel_bpc;
info->edp2_info.edp_bootup_bl_level =
info_v2_1->edp2_info.edp_bootup_bl_level;
return BP_RESULT_OK;
}
static enum bp_result get_integrated_info_v2_2(
struct bios_parser *bp,
struct integrated_info *info)
{
struct atom_integrated_system_info_v2_2 *info_v2_2;
uint32_t i;
info_v2_2 = GET_IMAGE(struct atom_integrated_system_info_v2_2,
DATA_TABLES(integratedsysteminfo));
DC_LOG_BIOS("gpuclk_ss_percentage (unit of 0.001 percent): %d\n", info_v2_2->gpuclk_ss_percentage);
if (info_v2_2 == NULL)
return BP_RESULT_BADBIOSTABLE;
info->gpu_cap_info =
le32_to_cpu(info_v2_2->gpucapinfo);
/*
* system_config: Bit[0] = 0 : PCIE power gating disabled
* = 1 : PCIE power gating enabled
* Bit[1] = 0 : DDR-PLL shut down disabled
* = 1 : DDR-PLL shut down enabled
* Bit[2] = 0 : DDR-PLL power down disabled
* = 1 : DDR-PLL power down enabled
*/
info->system_config = le32_to_cpu(info_v2_2->system_config);
info->cpu_cap_info = le32_to_cpu(info_v2_2->cpucapinfo);
info->memory_type = info_v2_2->memorytype;
info->ma_channel_number = info_v2_2->umachannelnumber;
info->dp_ss_control =
le16_to_cpu(info_v2_2->reserved1);
for (i = 0; i < NUMBER_OF_UCHAR_FOR_GUID; ++i) {
info->ext_disp_conn_info.gu_id[i] =
info_v2_2->extdispconninfo.guid[i];
}
for (i = 0; i < MAX_NUMBER_OF_EXT_DISPLAY_PATH; ++i) {
info->ext_disp_conn_info.path[i].device_connector_id =
object_id_from_bios_object_id(
le16_to_cpu(info_v2_2->extdispconninfo.path[i].connectorobjid));
info->ext_disp_conn_info.path[i].ext_encoder_obj_id =
object_id_from_bios_object_id(
le16_to_cpu(
info_v2_2->extdispconninfo.path[i].ext_encoder_objid));
info->ext_disp_conn_info.path[i].device_tag =
le16_to_cpu(
info_v2_2->extdispconninfo.path[i].device_tag);
info->ext_disp_conn_info.path[i].device_acpi_enum =
le16_to_cpu(
info_v2_2->extdispconninfo.path[i].device_acpi_enum);
info->ext_disp_conn_info.path[i].ext_aux_ddc_lut_index =
info_v2_2->extdispconninfo.path[i].auxddclut_index;
info->ext_disp_conn_info.path[i].ext_hpd_pin_lut_index =
info_v2_2->extdispconninfo.path[i].hpdlut_index;
info->ext_disp_conn_info.path[i].channel_mapping.raw =
info_v2_2->extdispconninfo.path[i].channelmapping;
info->ext_disp_conn_info.path[i].caps =
le16_to_cpu(info_v2_2->extdispconninfo.path[i].caps);
}
info->ext_disp_conn_info.checksum =
info_v2_2->extdispconninfo.checksum;
info->ext_disp_conn_info.fixdpvoltageswing =
info_v2_2->extdispconninfo.fixdpvoltageswing;
info->edp1_info.edp_backlight_pwm_hz =
le16_to_cpu(info_v2_2->edp1_info.edp_backlight_pwm_hz);
info->edp1_info.edp_ss_percentage =
le16_to_cpu(info_v2_2->edp1_info.edp_ss_percentage);
info->edp1_info.edp_ss_rate_10hz =
le16_to_cpu(info_v2_2->edp1_info.edp_ss_rate_10hz);
info->edp1_info.edp_pwr_on_off_delay =
info_v2_2->edp1_info.edp_pwr_on_off_delay;
info->edp1_info.edp_pwr_on_vary_bl_to_blon =
info_v2_2->edp1_info.edp_pwr_on_vary_bl_to_blon;
info->edp1_info.edp_pwr_down_bloff_to_vary_bloff =
info_v2_2->edp1_info.edp_pwr_down_bloff_to_vary_bloff;
info->edp1_info.edp_panel_bpc =
info_v2_2->edp1_info.edp_panel_bpc;
info->edp1_info.edp_bootup_bl_level =
info->edp2_info.edp_backlight_pwm_hz =
le16_to_cpu(info_v2_2->edp2_info.edp_backlight_pwm_hz);
info->edp2_info.edp_ss_percentage =
le16_to_cpu(info_v2_2->edp2_info.edp_ss_percentage);
info->edp2_info.edp_ss_rate_10hz =
le16_to_cpu(info_v2_2->edp2_info.edp_ss_rate_10hz);
info->edp2_info.edp_pwr_on_off_delay =
info_v2_2->edp2_info.edp_pwr_on_off_delay;
info->edp2_info.edp_pwr_on_vary_bl_to_blon =
info_v2_2->edp2_info.edp_pwr_on_vary_bl_to_blon;
info->edp2_info.edp_pwr_down_bloff_to_vary_bloff =
info_v2_2->edp2_info.edp_pwr_down_bloff_to_vary_bloff;
info->edp2_info.edp_panel_bpc =
info_v2_2->edp2_info.edp_panel_bpc;
info->edp2_info.edp_bootup_bl_level =
info_v2_2->edp2_info.edp_bootup_bl_level;
return BP_RESULT_OK;
}
/*
* construct_integrated_info
*
* @brief
* Get integrated BIOS information based on table revision
*
* @param
* bios_parser *bp - [in]BIOS parser handler to get master data table
* integrated_info *info - [out] store and output integrated info
*
* @return
* static enum bp_result - BP_RESULT_OK if information is available,
* BP_RESULT_BADBIOSTABLE otherwise.
*/
static enum bp_result construct_integrated_info(
struct bios_parser *bp,
struct integrated_info *info)
{
static enum bp_result result = BP_RESULT_BADBIOSTABLE;
struct atom_common_table_header *header;
struct atom_data_revision revision;
uint32_t i;
uint32_t j;
if (info && DATA_TABLES(integratedsysteminfo)) {
header = GET_IMAGE(struct atom_common_table_header,
DATA_TABLES(integratedsysteminfo));
get_atom_data_table_revision(header, &revision);
switch (revision.major) {
case 1:
switch (revision.minor) {
case 11:
case 12:
result = get_integrated_info_v11(bp, info);
break;
default:
return result;
}
break;
case 2:
switch (revision.minor) {
case 1:
result = get_integrated_info_v2_1(bp, info);
break;
case 2:
result = get_integrated_info_v2_2(bp, info);
break;
default:
return result;
}
break;
default:
return result;
}
if (result == BP_RESULT_OK) {
DC_LOG_BIOS("edp1:\n"
"\tedp_pwr_on_off_delay = %d\n"
"\tedp_pwr_on_vary_bl_to_blon = %d\n"
"\tedp_pwr_down_bloff_to_vary_bloff = %d\n"
"\tedp_bootup_bl_level = %d\n",
info->edp1_info.edp_pwr_on_off_delay,
info->edp1_info.edp_pwr_on_vary_bl_to_blon,
info->edp1_info.edp_pwr_down_bloff_to_vary_bloff,
info->edp1_info.edp_bootup_bl_level);
DC_LOG_BIOS("edp2:\n"
"\tedp_pwr_on_off_delayv = %d\n"
"\tedp_pwr_on_vary_bl_to_blon = %d\n"
"\tedp_pwr_down_bloff_to_vary_bloff = %d\n"
"\tedp_bootup_bl_level = %d\n",
info->edp2_info.edp_pwr_on_off_delay,
info->edp2_info.edp_pwr_on_vary_bl_to_blon,
info->edp2_info.edp_pwr_down_bloff_to_vary_bloff,
info->edp2_info.edp_bootup_bl_level);
}
}
if (result != BP_RESULT_OK)
return result;
else {
// Log each external path
for (i = 0; i < MAX_NUMBER_OF_EXT_DISPLAY_PATH; i++) {
if (info->ext_disp_conn_info.path[i].device_tag != 0)
DC_LOG_BIOS("integrated_info:For EXTERNAL DISPLAY PATH %d --------------\n"
"DEVICE_TAG: 0x%x\n"
"DEVICE_ACPI_ENUM: 0x%x\n"
"DEVICE_CONNECTOR_ID: 0x%x\n"
"EXT_AUX_DDC_LUT_INDEX: %d\n"
"EXT_HPD_PIN_LUT_INDEX: %d\n"
"EXT_ENCODER_OBJ_ID: 0x%x\n"
"Encoder CAPS: 0x%x\n",
i,
info->ext_disp_conn_info.path[i].device_tag,
info->ext_disp_conn_info.path[i].device_acpi_enum,
info->ext_disp_conn_info.path[i].device_connector_id.id,
info->ext_disp_conn_info.path[i].ext_aux_ddc_lut_index,
info->ext_disp_conn_info.path[i].ext_hpd_pin_lut_index,
info->ext_disp_conn_info.path[i].ext_encoder_obj_id.id,
info->ext_disp_conn_info.path[i].caps
);
if (info->ext_disp_conn_info.path[i].caps & EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN)
DC_LOG_BIOS("BIOS EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN on path %d\n", i);
else if (bp->base.ctx->dc->config.force_bios_fixed_vs) {
info->ext_disp_conn_info.path[i].caps |= EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN;
DC_LOG_BIOS("driver forced EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN on path %d\n", i);
}
}
// Log the Checksum and Voltage Swing
DC_LOG_BIOS("Integrated info table CHECKSUM: %d\n"
"Integrated info table FIX_DP_VOLTAGE_SWING: %d\n",
info->ext_disp_conn_info.checksum,
info->ext_disp_conn_info.fixdpvoltageswing);
if (bp->base.ctx->dc->config.force_bios_fixed_vs && info->ext_disp_conn_info.fixdpvoltageswing == 0) {
info->ext_disp_conn_info.fixdpvoltageswing = bp->base.ctx->dc->config.force_bios_fixed_vs & 0xF;
DC_LOG_BIOS("driver forced fixdpvoltageswing = %d\n", info->ext_disp_conn_info.fixdpvoltageswing);
}
}
/* Sort voltage table from low to high*/
for (i = 1; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) {
for (j = i; j > 0; --j) {
if (info->disp_clk_voltage[j].max_supported_clk <
info->disp_clk_voltage[j-1].max_supported_clk)
swap(info->disp_clk_voltage[j-1], info->disp_clk_voltage[j]);
}
}
return result;
}
static enum bp_result bios_parser_get_vram_info(
struct dc_bios *dcb,
struct dc_vram_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
static enum bp_result result = BP_RESULT_BADBIOSTABLE;
struct atom_common_table_header *header;
struct atom_data_revision revision;
if (info && DATA_TABLES(vram_info)) {
header = GET_IMAGE(struct atom_common_table_header,
DATA_TABLES(vram_info));
get_atom_data_table_revision(header, &revision);
switch (revision.major) {
case 2:
switch (revision.minor) {
case 3:
result = get_vram_info_v23(bp, info);
break;
case 4:
result = get_vram_info_v24(bp, info);
break;
case 5:
result = get_vram_info_v25(bp, info);
break;
default:
break;
}
break;
case 3:
switch (revision.minor) {
case 0:
result = get_vram_info_v30(bp, info);
break;
default:
break;
}
break;
default:
return result;
}
}
return result;
}
static struct integrated_info *bios_parser_create_integrated_info(
struct dc_bios *dcb)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
struct integrated_info *info;
info = kzalloc(sizeof(struct integrated_info), GFP_KERNEL);
if (info == NULL) {
ASSERT_CRITICAL(0);
return NULL;
}
if (construct_integrated_info(bp, info) == BP_RESULT_OK)
return info;
kfree(info);
return NULL;
}
static enum bp_result update_slot_layout_info(
struct dc_bios *dcb,
unsigned int i,
struct slot_layout_info *slot_layout_info)
{
unsigned int record_offset;
unsigned int j;
struct atom_display_object_path_v2 *object;
struct atom_bracket_layout_record *record;
struct atom_common_record_header *record_header;
static enum bp_result result;
struct bios_parser *bp;
struct object_info_table *tbl;
struct display_object_info_table_v1_4 *v1_4;
record = NULL;
record_header = NULL;
result = BP_RESULT_NORECORD;
bp = BP_FROM_DCB(dcb);
tbl = &bp->object_info_tbl;
v1_4 = tbl->v1_4;
object = &v1_4->display_path[i];
record_offset = (unsigned int)
(object->disp_recordoffset) +
(unsigned int)(bp->object_info_tbl_offset);
for (;;) {
record_header = (struct atom_common_record_header *)
GET_IMAGE(struct atom_common_record_header,
record_offset);
if (record_header == NULL) {
result = BP_RESULT_BADBIOSTABLE;
break;
}
/* the end of the list */
if (record_header->record_type == 0xff ||
record_header->record_size == 0) {
break;
}
if (record_header->record_type ==
ATOM_BRACKET_LAYOUT_RECORD_TYPE &&
sizeof(struct atom_bracket_layout_record)
<= record_header->record_size) {
record = (struct atom_bracket_layout_record *)
(record_header);
result = BP_RESULT_OK;
break;
}
record_offset += record_header->record_size;
}
/* return if the record not found */
if (result != BP_RESULT_OK)
return result;
/* get slot sizes */
slot_layout_info->length = record->bracketlen;
slot_layout_info->width = record->bracketwidth;
/* get info for each connector in the slot */
slot_layout_info->num_of_connectors = record->conn_num;
for (j = 0; j < slot_layout_info->num_of_connectors; ++j) {
slot_layout_info->connectors[j].connector_type =
(enum connector_layout_type)
(record->conn_info[j].connector_type);
switch (record->conn_info[j].connector_type) {
case CONNECTOR_TYPE_DVI_D:
slot_layout_info->connectors[j].connector_type =
CONNECTOR_LAYOUT_TYPE_DVI_D;
slot_layout_info->connectors[j].length =
CONNECTOR_SIZE_DVI;
break;
case CONNECTOR_TYPE_HDMI:
slot_layout_info->connectors[j].connector_type =
CONNECTOR_LAYOUT_TYPE_HDMI;
slot_layout_info->connectors[j].length =
CONNECTOR_SIZE_HDMI;
break;
case CONNECTOR_TYPE_DISPLAY_PORT:
slot_layout_info->connectors[j].connector_type =
CONNECTOR_LAYOUT_TYPE_DP;
slot_layout_info->connectors[j].length =
CONNECTOR_SIZE_DP;
break;
case CONNECTOR_TYPE_MINI_DISPLAY_PORT:
slot_layout_info->connectors[j].connector_type =
CONNECTOR_LAYOUT_TYPE_MINI_DP;
slot_layout_info->connectors[j].length =
CONNECTOR_SIZE_MINI_DP;
break;
default:
slot_layout_info->connectors[j].connector_type =
CONNECTOR_LAYOUT_TYPE_UNKNOWN;
slot_layout_info->connectors[j].length =
CONNECTOR_SIZE_UNKNOWN;
}
slot_layout_info->connectors[j].position =
record->conn_info[j].position;
slot_layout_info->connectors[j].connector_id =
object_id_from_bios_object_id(
record->conn_info[j].connectorobjid);
}
return result;
}
static enum bp_result update_slot_layout_info_v2(
struct dc_bios *dcb,
unsigned int i,
struct slot_layout_info *slot_layout_info)
{
unsigned int record_offset;
struct atom_display_object_path_v3 *object;
struct atom_bracket_layout_record_v2 *record;
struct atom_common_record_header *record_header;
static enum bp_result result;
struct bios_parser *bp;
struct object_info_table *tbl;
struct display_object_info_table_v1_5 *v1_5;
struct graphics_object_id connector_id;
record = NULL;
record_header = NULL;
result = BP_RESULT_NORECORD;
bp = BP_FROM_DCB(dcb);
tbl = &bp->object_info_tbl;
v1_5 = tbl->v1_5;
object = &v1_5->display_path[i];
record_offset = (unsigned int)
(object->disp_recordoffset) +
(unsigned int)(bp->object_info_tbl_offset);
for (;;) {
record_header = (struct atom_common_record_header *)
GET_IMAGE(struct atom_common_record_header,
record_offset);
if (record_header == NULL) {
result = BP_RESULT_BADBIOSTABLE;
break;
}
/* the end of the list */
if (record_header->record_type == ATOM_RECORD_END_TYPE ||
record_header->record_size == 0) {
break;
}
if (record_header->record_type ==
ATOM_BRACKET_LAYOUT_V2_RECORD_TYPE &&
sizeof(struct atom_bracket_layout_record_v2)
<= record_header->record_size) {
record = (struct atom_bracket_layout_record_v2 *)
(record_header);
result = BP_RESULT_OK;
break;
}
record_offset += record_header->record_size;
}
/* return if the record not found */
if (result != BP_RESULT_OK)
return result;
/* get slot sizes */
connector_id = object_id_from_bios_object_id(object->display_objid);
slot_layout_info->length = record->bracketlen;
slot_layout_info->width = record->bracketwidth;
slot_layout_info->num_of_connectors = v1_5->number_of_path;
slot_layout_info->connectors[i].position = record->conn_num;
slot_layout_info->connectors[i].connector_id = connector_id;
switch (connector_id.id) {
case CONNECTOR_ID_SINGLE_LINK_DVID:
case CONNECTOR_ID_DUAL_LINK_DVID:
slot_layout_info->connectors[i].connector_type = CONNECTOR_LAYOUT_TYPE_DVI_D;
slot_layout_info->connectors[i].length = CONNECTOR_SIZE_DVI;
break;
case CONNECTOR_ID_HDMI_TYPE_A:
slot_layout_info->connectors[i].connector_type = CONNECTOR_LAYOUT_TYPE_HDMI;
slot_layout_info->connectors[i].length = CONNECTOR_SIZE_HDMI;
break;
case CONNECTOR_ID_DISPLAY_PORT:
case CONNECTOR_ID_USBC:
if (record->mini_type == MINI_TYPE_NORMAL) {
slot_layout_info->connectors[i].connector_type = CONNECTOR_LAYOUT_TYPE_DP;
slot_layout_info->connectors[i].length = CONNECTOR_SIZE_DP;
} else {
slot_layout_info->connectors[i].connector_type = CONNECTOR_LAYOUT_TYPE_MINI_DP;
slot_layout_info->connectors[i].length = CONNECTOR_SIZE_MINI_DP;
}
break;
default:
slot_layout_info->connectors[i].connector_type = CONNECTOR_LAYOUT_TYPE_UNKNOWN;
slot_layout_info->connectors[i].length = CONNECTOR_SIZE_UNKNOWN;
}
return result;
}
static enum bp_result get_bracket_layout_record(
struct dc_bios *dcb,
unsigned int bracket_layout_id,
struct slot_layout_info *slot_layout_info)
{
unsigned int i;
struct bios_parser *bp = BP_FROM_DCB(dcb);
static enum bp_result result;
struct object_info_table *tbl;
struct display_object_info_table_v1_4 *v1_4;
struct display_object_info_table_v1_5 *v1_5;
if (slot_layout_info == NULL) {
DC_LOG_DETECTION_EDID_PARSER("Invalid slot_layout_info\n");
return BP_RESULT_BADINPUT;
}
tbl = &bp->object_info_tbl;
v1_4 = tbl->v1_4;
v1_5 = tbl->v1_5;
result = BP_RESULT_NORECORD;
switch (bp->object_info_tbl.revision.minor) {
case 4:
default:
for (i = 0; i < v1_4->number_of_path; ++i) {
if (bracket_layout_id ==
v1_4->display_path[i].display_objid) {
result = update_slot_layout_info(dcb, i, slot_layout_info);
break;
}
}
break;
case 5:
for (i = 0; i < v1_5->number_of_path; ++i)
result = update_slot_layout_info_v2(dcb, i, slot_layout_info);
break;
}
return result;
}
static enum bp_result bios_get_board_layout_info(
struct dc_bios *dcb,
struct board_layout_info *board_layout_info)
{
unsigned int i;
struct bios_parser *bp;
static enum bp_result record_result;
unsigned int max_slots;
const unsigned int slot_index_to_vbios_id[MAX_BOARD_SLOTS] = {
GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID1,
GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID2,
0, 0
};
bp = BP_FROM_DCB(dcb);
if (board_layout_info == NULL) {
DC_LOG_DETECTION_EDID_PARSER("Invalid board_layout_info\n");
return BP_RESULT_BADINPUT;
}
board_layout_info->num_of_slots = 0;
max_slots = MAX_BOARD_SLOTS;
// Assume single slot on v1_5
if (bp->object_info_tbl.revision.minor == 5) {
max_slots = 1;
}
for (i = 0; i < max_slots; ++i) {
record_result = get_bracket_layout_record(dcb,
slot_index_to_vbios_id[i],
&board_layout_info->slots[i]);
if (record_result == BP_RESULT_NORECORD && i > 0)
break; /* no more slots present in bios */
else if (record_result != BP_RESULT_OK)
return record_result; /* fail */
++board_layout_info->num_of_slots;
}
/* all data is valid */
board_layout_info->is_number_of_slots_valid = 1;
board_layout_info->is_slots_size_valid = 1;
board_layout_info->is_connector_offsets_valid = 1;
board_layout_info->is_connector_lengths_valid = 1;
return BP_RESULT_OK;
}
static uint16_t bios_parser_pack_data_tables(
struct dc_bios *dcb,
void *dst)
{
// TODO: There is data bytes alignment issue, disable it for now.
return 0;
}
static struct atom_dc_golden_table_v1 *bios_get_golden_table(
struct bios_parser *bp,
uint32_t rev_major,
uint32_t rev_minor,
uint16_t *dc_golden_table_ver)
{
struct atom_display_controller_info_v4_4 *disp_cntl_tbl_4_4 = NULL;
uint32_t dc_golden_offset = 0;
*dc_golden_table_ver = 0;
if (!DATA_TABLES(dce_info))
return NULL;
/* ver.4.4 or higher */
switch (rev_major) {
case 4:
switch (rev_minor) {
case 4:
disp_cntl_tbl_4_4 = GET_IMAGE(struct atom_display_controller_info_v4_4,
DATA_TABLES(dce_info));
if (!disp_cntl_tbl_4_4)
return NULL;
dc_golden_offset = DATA_TABLES(dce_info) + disp_cntl_tbl_4_4->dc_golden_table_offset;
*dc_golden_table_ver = disp_cntl_tbl_4_4->dc_golden_table_ver;
break;
case 5:
default:
/* For atom_display_controller_info_v4_5 there is no need to get golden table from
* dc_golden_table_offset as all these fields previously in golden table used for AUX
* pre-charge settings are now available directly in atom_display_controller_info_v4_5.
*/
break;
}
break;
}
if (!dc_golden_offset)
return NULL;
if (*dc_golden_table_ver != 1)
return NULL;
return GET_IMAGE(struct atom_dc_golden_table_v1,
dc_golden_offset);
}
static enum bp_result bios_get_atom_dc_golden_table(
struct dc_bios *dcb)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
enum bp_result result = BP_RESULT_OK;
struct atom_dc_golden_table_v1 *atom_dc_golden_table = NULL;
struct atom_common_table_header *header;
struct atom_data_revision tbl_revision;
uint16_t dc_golden_table_ver = 0;
header = GET_IMAGE(struct atom_common_table_header,
DATA_TABLES(dce_info));
if (!header)
return BP_RESULT_UNSUPPORTED;
get_atom_data_table_revision(header, &tbl_revision);
atom_dc_golden_table = bios_get_golden_table(bp,
tbl_revision.major,
tbl_revision.minor,
&dc_golden_table_ver);
if (!atom_dc_golden_table)
return BP_RESULT_UNSUPPORTED;
dcb->golden_table.dc_golden_table_ver = dc_golden_table_ver;
dcb->golden_table.aux_dphy_rx_control0_val = atom_dc_golden_table->aux_dphy_rx_control0_val;
dcb->golden_table.aux_dphy_rx_control1_val = atom_dc_golden_table->aux_dphy_rx_control1_val;
dcb->golden_table.aux_dphy_tx_control_val = atom_dc_golden_table->aux_dphy_tx_control_val;
dcb->golden_table.dc_gpio_aux_ctrl_0_val = atom_dc_golden_table->dc_gpio_aux_ctrl_0_val;
dcb->golden_table.dc_gpio_aux_ctrl_1_val = atom_dc_golden_table->dc_gpio_aux_ctrl_1_val;
dcb->golden_table.dc_gpio_aux_ctrl_2_val = atom_dc_golden_table->dc_gpio_aux_ctrl_2_val;
dcb->golden_table.dc_gpio_aux_ctrl_3_val = atom_dc_golden_table->dc_gpio_aux_ctrl_3_val;
dcb->golden_table.dc_gpio_aux_ctrl_4_val = atom_dc_golden_table->dc_gpio_aux_ctrl_4_val;
dcb->golden_table.dc_gpio_aux_ctrl_5_val = atom_dc_golden_table->dc_gpio_aux_ctrl_5_val;
return result;
}
static const struct dc_vbios_funcs vbios_funcs = {
.get_connectors_number = bios_parser_get_connectors_number,
.get_connector_id = bios_parser_get_connector_id,
.get_src_obj = bios_parser_get_src_obj,
.get_i2c_info = bios_parser_get_i2c_info,
.get_hpd_info = bios_parser_get_hpd_info,
.get_device_tag = bios_parser_get_device_tag,
.get_spread_spectrum_info = bios_parser_get_spread_spectrum_info,
.get_ss_entry_number = bios_parser_get_ss_entry_number,
.get_embedded_panel_info = bios_parser_get_embedded_panel_info,
.get_gpio_pin_info = bios_parser_get_gpio_pin_info,
.get_encoder_cap_info = bios_parser_get_encoder_cap_info,
.is_device_id_supported = bios_parser_is_device_id_supported,
.is_accelerated_mode = bios_parser_is_accelerated_mode,
.set_scratch_critical_state = bios_parser_set_scratch_critical_state,
/* COMMANDS */
.encoder_control = bios_parser_encoder_control,
.transmitter_control = bios_parser_transmitter_control,
.enable_crtc = bios_parser_enable_crtc,
.set_pixel_clock = bios_parser_set_pixel_clock,
.set_dce_clock = bios_parser_set_dce_clock,
.program_crtc_timing = bios_parser_program_crtc_timing,
.enable_disp_power_gating = bios_parser_enable_disp_power_gating,
.bios_parser_destroy = firmware_parser_destroy,
.get_board_layout_info = bios_get_board_layout_info,
/* TODO: use this fn in hw init?*/
.pack_data_tables = bios_parser_pack_data_tables,
.get_atom_dc_golden_table = bios_get_atom_dc_golden_table,
.enable_lvtma_control = bios_parser_enable_lvtma_control,
.get_soc_bb_info = bios_parser_get_soc_bb_info,
.get_disp_connector_caps_info = bios_parser_get_disp_connector_caps_info,
.get_lttpr_caps = bios_parser_get_lttpr_caps,
.get_lttpr_interop = bios_parser_get_lttpr_interop,
.get_connector_speed_cap_info = bios_parser_get_connector_speed_cap_info,
};
static bool bios_parser2_construct(
struct bios_parser *bp,
struct bp_init_data *init,
enum dce_version dce_version)
{
uint16_t *rom_header_offset = NULL;
struct atom_rom_header_v2_2 *rom_header = NULL;
struct display_object_info_table_v1_4 *object_info_tbl;
struct atom_data_revision tbl_rev = {0};
if (!init)
return false;
if (!init->bios)
return false;
bp->base.funcs = &vbios_funcs;
bp->base.bios = init->bios;
bp->base.bios_size = bp->base.bios[OFFSET_TO_ATOM_ROM_IMAGE_SIZE] * BIOS_IMAGE_SIZE_UNIT;
bp->base.ctx = init->ctx;
bp->base.bios_local_image = NULL;
rom_header_offset =
GET_IMAGE(uint16_t, OFFSET_TO_ATOM_ROM_HEADER_POINTER);
if (!rom_header_offset)
return false;
rom_header = GET_IMAGE(struct atom_rom_header_v2_2, *rom_header_offset);
if (!rom_header)
return false;
get_atom_data_table_revision(&rom_header->table_header, &tbl_rev);
if (!(tbl_rev.major >= 2 && tbl_rev.minor >= 2))
return false;
bp->master_data_tbl =
GET_IMAGE(struct atom_master_data_table_v2_1,
rom_header->masterdatatable_offset);
if (!bp->master_data_tbl)
return false;
bp->object_info_tbl_offset = DATA_TABLES(displayobjectinfo);
if (!bp->object_info_tbl_offset)
return false;
object_info_tbl =
GET_IMAGE(struct display_object_info_table_v1_4,
bp->object_info_tbl_offset);
if (!object_info_tbl)
return false;
get_atom_data_table_revision(&object_info_tbl->table_header,
&bp->object_info_tbl.revision);
if (bp->object_info_tbl.revision.major == 1
&& bp->object_info_tbl.revision.minor == 4) {
struct display_object_info_table_v1_4 *tbl_v1_4;
tbl_v1_4 = GET_IMAGE(struct display_object_info_table_v1_4,
bp->object_info_tbl_offset);
if (!tbl_v1_4)
return false;
bp->object_info_tbl.v1_4 = tbl_v1_4;
} else if (bp->object_info_tbl.revision.major == 1
&& bp->object_info_tbl.revision.minor == 5) {
struct display_object_info_table_v1_5 *tbl_v1_5;
tbl_v1_5 = GET_IMAGE(struct display_object_info_table_v1_5,
bp->object_info_tbl_offset);
if (!tbl_v1_5)
return false;
bp->object_info_tbl.v1_5 = tbl_v1_5;
} else {
ASSERT(0);
return false;
}
dal_firmware_parser_init_cmd_tbl(bp);
dal_bios_parser_init_cmd_tbl_helper2(&bp->cmd_helper, dce_version);
bp->base.integrated_info = bios_parser_create_integrated_info(&bp->base);
bp->base.fw_info_valid = bios_parser_get_firmware_info(&bp->base, &bp->base.fw_info) == BP_RESULT_OK;
bios_parser_get_vram_info(&bp->base, &bp->base.vram_info);
return true;
}
struct dc_bios *firmware_parser_create(
struct bp_init_data *init,
enum dce_version dce_version)
{
struct bios_parser *bp;
bp = kzalloc(sizeof(struct bios_parser), GFP_KERNEL);
if (!bp)
return NULL;
if (bios_parser2_construct(bp, init, dce_version))
return &bp->base;
kfree(bp);
return NULL;
}
| linux-master | drivers/gpu/drm/amd/display/dc/bios/bios_parser2.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "amdgpu.h"
#include "atom.h"
#include "include/bios_parser_interface.h"
#include "command_table.h"
#include "command_table_helper.h"
#include "bios_parser_helper.h"
#include "bios_parser_types_internal.h"
#define EXEC_BIOS_CMD_TABLE(command, params)\
(amdgpu_atom_execute_table(((struct amdgpu_device *)bp->base.ctx->driver_context)->mode_info.atom_context, \
GetIndexIntoMasterTable(COMMAND, command), \
(uint32_t *)¶ms) == 0)
#define BIOS_CMD_TABLE_REVISION(command, frev, crev)\
amdgpu_atom_parse_cmd_header(((struct amdgpu_device *)bp->base.ctx->driver_context)->mode_info.atom_context, \
GetIndexIntoMasterTable(COMMAND, command), &frev, &crev)
#define BIOS_CMD_TABLE_PARA_REVISION(command)\
bios_cmd_table_para_revision(bp->base.ctx->driver_context, \
GetIndexIntoMasterTable(COMMAND, command))
static void init_dig_encoder_control(struct bios_parser *bp);
static void init_transmitter_control(struct bios_parser *bp);
static void init_set_pixel_clock(struct bios_parser *bp);
static void init_enable_spread_spectrum_on_ppll(struct bios_parser *bp);
static void init_adjust_display_pll(struct bios_parser *bp);
static void init_dac_encoder_control(struct bios_parser *bp);
static void init_dac_output_control(struct bios_parser *bp);
static void init_set_crtc_timing(struct bios_parser *bp);
static void init_enable_crtc(struct bios_parser *bp);
static void init_enable_crtc_mem_req(struct bios_parser *bp);
static void init_external_encoder_control(struct bios_parser *bp);
static void init_enable_disp_power_gating(struct bios_parser *bp);
static void init_program_clock(struct bios_parser *bp);
static void init_set_dce_clock(struct bios_parser *bp);
void dal_bios_parser_init_cmd_tbl(struct bios_parser *bp)
{
init_dig_encoder_control(bp);
init_transmitter_control(bp);
init_set_pixel_clock(bp);
init_enable_spread_spectrum_on_ppll(bp);
init_adjust_display_pll(bp);
init_dac_encoder_control(bp);
init_dac_output_control(bp);
init_set_crtc_timing(bp);
init_enable_crtc(bp);
init_enable_crtc_mem_req(bp);
init_program_clock(bp);
init_external_encoder_control(bp);
init_enable_disp_power_gating(bp);
init_set_dce_clock(bp);
}
static uint32_t bios_cmd_table_para_revision(void *dev,
uint32_t index)
{
struct amdgpu_device *adev = dev;
uint8_t frev, crev;
if (amdgpu_atom_parse_cmd_header(adev->mode_info.atom_context,
index,
&frev, &crev))
return crev;
else
return 0;
}
/*******************************************************************************
********************************************************************************
**
** D I G E N C O D E R C O N T R O L
**
********************************************************************************
*******************************************************************************/
static enum bp_result encoder_control_digx_v3(
struct bios_parser *bp,
struct bp_encoder_control *cntl);
static enum bp_result encoder_control_digx_v4(
struct bios_parser *bp,
struct bp_encoder_control *cntl);
static enum bp_result encoder_control_digx_v5(
struct bios_parser *bp,
struct bp_encoder_control *cntl);
static void init_encoder_control_dig_v1(struct bios_parser *bp);
static void init_dig_encoder_control(struct bios_parser *bp)
{
uint32_t version =
BIOS_CMD_TABLE_PARA_REVISION(DIGxEncoderControl);
switch (version) {
case 2:
bp->cmd_tbl.dig_encoder_control = encoder_control_digx_v3;
break;
case 4:
bp->cmd_tbl.dig_encoder_control = encoder_control_digx_v4;
break;
case 5:
bp->cmd_tbl.dig_encoder_control = encoder_control_digx_v5;
break;
default:
init_encoder_control_dig_v1(bp);
break;
}
}
static enum bp_result encoder_control_dig_v1(
struct bios_parser *bp,
struct bp_encoder_control *cntl);
static enum bp_result encoder_control_dig1_v1(
struct bios_parser *bp,
struct bp_encoder_control *cntl);
static enum bp_result encoder_control_dig2_v1(
struct bios_parser *bp,
struct bp_encoder_control *cntl);
static void init_encoder_control_dig_v1(struct bios_parser *bp)
{
struct cmd_tbl *cmd_tbl = &bp->cmd_tbl;
if (1 == BIOS_CMD_TABLE_PARA_REVISION(DIG1EncoderControl))
cmd_tbl->encoder_control_dig1 = encoder_control_dig1_v1;
else
cmd_tbl->encoder_control_dig1 = NULL;
if (1 == BIOS_CMD_TABLE_PARA_REVISION(DIG2EncoderControl))
cmd_tbl->encoder_control_dig2 = encoder_control_dig2_v1;
else
cmd_tbl->encoder_control_dig2 = NULL;
cmd_tbl->dig_encoder_control = encoder_control_dig_v1;
}
static enum bp_result encoder_control_dig_v1(
struct bios_parser *bp,
struct bp_encoder_control *cntl)
{
enum bp_result result = BP_RESULT_FAILURE;
struct cmd_tbl *cmd_tbl = &bp->cmd_tbl;
if (cntl != NULL)
switch (cntl->engine_id) {
case ENGINE_ID_DIGA:
if (cmd_tbl->encoder_control_dig1 != NULL)
result =
cmd_tbl->encoder_control_dig1(bp, cntl);
break;
case ENGINE_ID_DIGB:
if (cmd_tbl->encoder_control_dig2 != NULL)
result =
cmd_tbl->encoder_control_dig2(bp, cntl);
break;
default:
break;
}
return result;
}
static enum bp_result encoder_control_dig1_v1(
struct bios_parser *bp,
struct bp_encoder_control *cntl)
{
enum bp_result result = BP_RESULT_FAILURE;
DIG_ENCODER_CONTROL_PARAMETERS_V2 params = {0};
bp->cmd_helper->assign_control_parameter(bp->cmd_helper, cntl, ¶ms);
if (EXEC_BIOS_CMD_TABLE(DIG1EncoderControl, params))
result = BP_RESULT_OK;
return result;
}
static enum bp_result encoder_control_dig2_v1(
struct bios_parser *bp,
struct bp_encoder_control *cntl)
{
enum bp_result result = BP_RESULT_FAILURE;
DIG_ENCODER_CONTROL_PARAMETERS_V2 params = {0};
bp->cmd_helper->assign_control_parameter(bp->cmd_helper, cntl, ¶ms);
if (EXEC_BIOS_CMD_TABLE(DIG2EncoderControl, params))
result = BP_RESULT_OK;
return result;
}
static enum bp_result encoder_control_digx_v3(
struct bios_parser *bp,
struct bp_encoder_control *cntl)
{
enum bp_result result = BP_RESULT_FAILURE;
DIG_ENCODER_CONTROL_PARAMETERS_V3 params = {0};
if (LANE_COUNT_FOUR < cntl->lanes_number)
params.acConfig.ucDPLinkRate = 1; /* dual link 2.7GHz */
else
params.acConfig.ucDPLinkRate = 0; /* single link 1.62GHz */
params.acConfig.ucDigSel = (uint8_t)(cntl->engine_id);
/* We need to convert from KHz units into 10KHz units */
params.ucAction = bp->cmd_helper->encoder_action_to_atom(cntl->action);
params.usPixelClock = cpu_to_le16((uint16_t)(cntl->pixel_clock / 10));
params.ucEncoderMode =
(uint8_t)bp->cmd_helper->encoder_mode_bp_to_atom(
cntl->signal,
cntl->enable_dp_audio);
params.ucLaneNum = (uint8_t)(cntl->lanes_number);
switch (cntl->color_depth) {
case COLOR_DEPTH_888:
params.ucBitPerColor = PANEL_8BIT_PER_COLOR;
break;
case COLOR_DEPTH_101010:
params.ucBitPerColor = PANEL_10BIT_PER_COLOR;
break;
case COLOR_DEPTH_121212:
params.ucBitPerColor = PANEL_12BIT_PER_COLOR;
break;
case COLOR_DEPTH_161616:
params.ucBitPerColor = PANEL_16BIT_PER_COLOR;
break;
default:
break;
}
if (EXEC_BIOS_CMD_TABLE(DIGxEncoderControl, params))
result = BP_RESULT_OK;
return result;
}
static enum bp_result encoder_control_digx_v4(
struct bios_parser *bp,
struct bp_encoder_control *cntl)
{
enum bp_result result = BP_RESULT_FAILURE;
DIG_ENCODER_CONTROL_PARAMETERS_V4 params = {0};
if (LANE_COUNT_FOUR < cntl->lanes_number)
params.acConfig.ucDPLinkRate = 1; /* dual link 2.7GHz */
else
params.acConfig.ucDPLinkRate = 0; /* single link 1.62GHz */
params.acConfig.ucDigSel = (uint8_t)(cntl->engine_id);
/* We need to convert from KHz units into 10KHz units */
params.ucAction = bp->cmd_helper->encoder_action_to_atom(cntl->action);
params.usPixelClock = cpu_to_le16((uint16_t)(cntl->pixel_clock / 10));
params.ucEncoderMode =
(uint8_t)(bp->cmd_helper->encoder_mode_bp_to_atom(
cntl->signal,
cntl->enable_dp_audio));
params.ucLaneNum = (uint8_t)(cntl->lanes_number);
switch (cntl->color_depth) {
case COLOR_DEPTH_888:
params.ucBitPerColor = PANEL_8BIT_PER_COLOR;
break;
case COLOR_DEPTH_101010:
params.ucBitPerColor = PANEL_10BIT_PER_COLOR;
break;
case COLOR_DEPTH_121212:
params.ucBitPerColor = PANEL_12BIT_PER_COLOR;
break;
case COLOR_DEPTH_161616:
params.ucBitPerColor = PANEL_16BIT_PER_COLOR;
break;
default:
break;
}
if (EXEC_BIOS_CMD_TABLE(DIGxEncoderControl, params))
result = BP_RESULT_OK;
return result;
}
static enum bp_result encoder_control_digx_v5(
struct bios_parser *bp,
struct bp_encoder_control *cntl)
{
enum bp_result result = BP_RESULT_FAILURE;
ENCODER_STREAM_SETUP_PARAMETERS_V5 params = {0};
params.ucDigId = (uint8_t)(cntl->engine_id);
params.ucAction = bp->cmd_helper->encoder_action_to_atom(cntl->action);
params.ulPixelClock = cntl->pixel_clock / 10;
params.ucDigMode =
(uint8_t)(bp->cmd_helper->encoder_mode_bp_to_atom(
cntl->signal,
cntl->enable_dp_audio));
params.ucLaneNum = (uint8_t)(cntl->lanes_number);
switch (cntl->color_depth) {
case COLOR_DEPTH_888:
params.ucBitPerColor = PANEL_8BIT_PER_COLOR;
break;
case COLOR_DEPTH_101010:
params.ucBitPerColor = PANEL_10BIT_PER_COLOR;
break;
case COLOR_DEPTH_121212:
params.ucBitPerColor = PANEL_12BIT_PER_COLOR;
break;
case COLOR_DEPTH_161616:
params.ucBitPerColor = PANEL_16BIT_PER_COLOR;
break;
default:
break;
}
if (cntl->signal == SIGNAL_TYPE_HDMI_TYPE_A)
switch (cntl->color_depth) {
case COLOR_DEPTH_101010:
params.ulPixelClock =
(params.ulPixelClock * 30) / 24;
break;
case COLOR_DEPTH_121212:
params.ulPixelClock =
(params.ulPixelClock * 36) / 24;
break;
case COLOR_DEPTH_161616:
params.ulPixelClock =
(params.ulPixelClock * 48) / 24;
break;
default:
break;
}
if (EXEC_BIOS_CMD_TABLE(DIGxEncoderControl, params))
result = BP_RESULT_OK;
return result;
}
/*******************************************************************************
********************************************************************************
**
** TRANSMITTER CONTROL
**
********************************************************************************
*******************************************************************************/
static enum bp_result transmitter_control_v2(
struct bios_parser *bp,
struct bp_transmitter_control *cntl);
static enum bp_result transmitter_control_v3(
struct bios_parser *bp,
struct bp_transmitter_control *cntl);
static enum bp_result transmitter_control_v4(
struct bios_parser *bp,
struct bp_transmitter_control *cntl);
static enum bp_result transmitter_control_v1_5(
struct bios_parser *bp,
struct bp_transmitter_control *cntl);
static enum bp_result transmitter_control_v1_6(
struct bios_parser *bp,
struct bp_transmitter_control *cntl);
static void init_transmitter_control(struct bios_parser *bp)
{
uint8_t frev;
uint8_t crev;
if (BIOS_CMD_TABLE_REVISION(UNIPHYTransmitterControl,
frev, crev) == false)
BREAK_TO_DEBUGGER();
switch (crev) {
case 2:
bp->cmd_tbl.transmitter_control = transmitter_control_v2;
break;
case 3:
bp->cmd_tbl.transmitter_control = transmitter_control_v3;
break;
case 4:
bp->cmd_tbl.transmitter_control = transmitter_control_v4;
break;
case 5:
bp->cmd_tbl.transmitter_control = transmitter_control_v1_5;
break;
case 6:
bp->cmd_tbl.transmitter_control = transmitter_control_v1_6;
break;
default:
dm_output_to_console("Don't have transmitter_control for v%d\n", crev);
bp->cmd_tbl.transmitter_control = NULL;
break;
}
}
static enum bp_result transmitter_control_v2(
struct bios_parser *bp,
struct bp_transmitter_control *cntl)
{
enum bp_result result = BP_RESULT_FAILURE;
DIG_TRANSMITTER_CONTROL_PARAMETERS_V2 params;
enum connector_id connector_id =
dal_graphics_object_id_get_connector_id(cntl->connector_obj_id);
memset(¶ms, 0, sizeof(params));
switch (cntl->transmitter) {
case TRANSMITTER_UNIPHY_A:
case TRANSMITTER_UNIPHY_B:
case TRANSMITTER_UNIPHY_C:
case TRANSMITTER_UNIPHY_D:
case TRANSMITTER_UNIPHY_E:
case TRANSMITTER_UNIPHY_F:
case TRANSMITTER_TRAVIS_LCD:
break;
default:
return BP_RESULT_BADINPUT;
}
switch (cntl->action) {
case TRANSMITTER_CONTROL_INIT:
if ((CONNECTOR_ID_DUAL_LINK_DVII == connector_id) ||
(CONNECTOR_ID_DUAL_LINK_DVID == connector_id))
/* on INIT this bit should be set according to the
* physical connector
* Bit0: dual link connector flag
* =0 connector is single link connector
* =1 connector is dual link connector
*/
params.acConfig.fDualLinkConnector = 1;
/* connector object id */
params.usInitInfo =
cpu_to_le16((uint8_t)cntl->connector_obj_id.id);
break;
case TRANSMITTER_CONTROL_SET_VOLTAGE_AND_PREEMPASIS:
/* voltage swing and pre-emphsis */
params.asMode.ucLaneSel = (uint8_t)cntl->lane_select;
params.asMode.ucLaneSet = (uint8_t)cntl->lane_settings;
break;
default:
/* if dual-link */
if (LANE_COUNT_FOUR < cntl->lanes_number) {
/* on ENABLE/DISABLE this bit should be set according to
* actual timing (number of lanes)
* Bit0: dual link connector flag
* =0 connector is single link connector
* =1 connector is dual link connector
*/
params.acConfig.fDualLinkConnector = 1;
/* link rate, half for dual link
* We need to convert from KHz units into 20KHz units
*/
params.usPixelClock =
cpu_to_le16((uint16_t)(cntl->pixel_clock / 20));
} else
/* link rate, half for dual link
* We need to convert from KHz units into 10KHz units
*/
params.usPixelClock =
cpu_to_le16((uint16_t)(cntl->pixel_clock / 10));
break;
}
/* 00 - coherent mode
* 01 - incoherent mode
*/
params.acConfig.fCoherentMode = cntl->coherent;
if ((TRANSMITTER_UNIPHY_B == cntl->transmitter)
|| (TRANSMITTER_UNIPHY_D == cntl->transmitter)
|| (TRANSMITTER_UNIPHY_F == cntl->transmitter))
/* Bit2: Transmitter Link selection
* =0 when bit0=0, single link A/C/E, when bit0=1,
* master link A/C/E
* =1 when bit0=0, single link B/D/F, when bit0=1,
* master link B/D/F
*/
params.acConfig.ucLinkSel = 1;
if (ENGINE_ID_DIGB == cntl->engine_id)
/* Bit3: Transmitter data source selection
* =0 DIGA is data source.
* =1 DIGB is data source.
* This bit is only useful when ucAction= ATOM_ENABLE
*/
params.acConfig.ucEncoderSel = 1;
if (CONNECTOR_ID_DISPLAY_PORT == connector_id ||
CONNECTOR_ID_USBC == connector_id)
/* Bit4: DP connector flag
* =0 connector is none-DP connector
* =1 connector is DP connector
*/
params.acConfig.fDPConnector = 1;
/* Bit[7:6]: Transmitter selection
* =0 UNIPHY_ENCODER: UNIPHYA/B
* =1 UNIPHY1_ENCODER: UNIPHYC/D
* =2 UNIPHY2_ENCODER: UNIPHYE/F
* =3 reserved
*/
params.acConfig.ucTransmitterSel =
(uint8_t)bp->cmd_helper->transmitter_bp_to_atom(
cntl->transmitter);
params.ucAction = (uint8_t)cntl->action;
if (EXEC_BIOS_CMD_TABLE(UNIPHYTransmitterControl, params))
result = BP_RESULT_OK;
return result;
}
static enum bp_result transmitter_control_v3(
struct bios_parser *bp,
struct bp_transmitter_control *cntl)
{
enum bp_result result = BP_RESULT_FAILURE;
DIG_TRANSMITTER_CONTROL_PARAMETERS_V3 params;
uint32_t pll_id;
enum connector_id conn_id =
dal_graphics_object_id_get_connector_id(cntl->connector_obj_id);
const struct command_table_helper *cmd = bp->cmd_helper;
bool dual_link_conn = (CONNECTOR_ID_DUAL_LINK_DVII == conn_id)
|| (CONNECTOR_ID_DUAL_LINK_DVID == conn_id);
memset(¶ms, 0, sizeof(params));
switch (cntl->transmitter) {
case TRANSMITTER_UNIPHY_A:
case TRANSMITTER_UNIPHY_B:
case TRANSMITTER_UNIPHY_C:
case TRANSMITTER_UNIPHY_D:
case TRANSMITTER_UNIPHY_E:
case TRANSMITTER_UNIPHY_F:
case TRANSMITTER_TRAVIS_LCD:
break;
default:
return BP_RESULT_BADINPUT;
}
if (!cmd->clock_source_id_to_atom(cntl->pll_id, &pll_id))
return BP_RESULT_BADINPUT;
/* fill information based on the action */
switch (cntl->action) {
case TRANSMITTER_CONTROL_INIT:
if (dual_link_conn) {
/* on INIT this bit should be set according to the
* phisycal connector
* Bit0: dual link connector flag
* =0 connector is single link connector
* =1 connector is dual link connector
*/
params.acConfig.fDualLinkConnector = 1;
}
/* connector object id */
params.usInitInfo =
cpu_to_le16((uint8_t)(cntl->connector_obj_id.id));
break;
case TRANSMITTER_CONTROL_SET_VOLTAGE_AND_PREEMPASIS:
/* votage swing and pre-emphsis */
params.asMode.ucLaneSel = (uint8_t)cntl->lane_select;
params.asMode.ucLaneSet = (uint8_t)cntl->lane_settings;
break;
default:
if (dual_link_conn && cntl->multi_path)
/* on ENABLE/DISABLE this bit should be set according to
* actual timing (number of lanes)
* Bit0: dual link connector flag
* =0 connector is single link connector
* =1 connector is dual link connector
*/
params.acConfig.fDualLinkConnector = 1;
/* if dual-link */
if (LANE_COUNT_FOUR < cntl->lanes_number) {
/* on ENABLE/DISABLE this bit should be set according to
* actual timing (number of lanes)
* Bit0: dual link connector flag
* =0 connector is single link connector
* =1 connector is dual link connector
*/
params.acConfig.fDualLinkConnector = 1;
/* link rate, half for dual link
* We need to convert from KHz units into 20KHz units
*/
params.usPixelClock =
cpu_to_le16((uint16_t)(cntl->pixel_clock / 20));
} else {
/* link rate, half for dual link
* We need to convert from KHz units into 10KHz units
*/
params.usPixelClock =
cpu_to_le16((uint16_t)(cntl->pixel_clock / 10));
}
break;
}
/* 00 - coherent mode
* 01 - incoherent mode
*/
params.acConfig.fCoherentMode = cntl->coherent;
if ((TRANSMITTER_UNIPHY_B == cntl->transmitter)
|| (TRANSMITTER_UNIPHY_D == cntl->transmitter)
|| (TRANSMITTER_UNIPHY_F == cntl->transmitter))
/* Bit2: Transmitter Link selection
* =0 when bit0=0, single link A/C/E, when bit0=1,
* master link A/C/E
* =1 when bit0=0, single link B/D/F, when bit0=1,
* master link B/D/F
*/
params.acConfig.ucLinkSel = 1;
if (ENGINE_ID_DIGB == cntl->engine_id)
/* Bit3: Transmitter data source selection
* =0 DIGA is data source.
* =1 DIGB is data source.
* This bit is only useful when ucAction= ATOM_ENABLE
*/
params.acConfig.ucEncoderSel = 1;
/* Bit[7:6]: Transmitter selection
* =0 UNIPHY_ENCODER: UNIPHYA/B
* =1 UNIPHY1_ENCODER: UNIPHYC/D
* =2 UNIPHY2_ENCODER: UNIPHYE/F
* =3 reserved
*/
params.acConfig.ucTransmitterSel =
(uint8_t)cmd->transmitter_bp_to_atom(cntl->transmitter);
params.ucLaneNum = (uint8_t)cntl->lanes_number;
params.acConfig.ucRefClkSource = (uint8_t)pll_id;
params.ucAction = (uint8_t)cntl->action;
if (EXEC_BIOS_CMD_TABLE(UNIPHYTransmitterControl, params))
result = BP_RESULT_OK;
return result;
}
static enum bp_result transmitter_control_v4(
struct bios_parser *bp,
struct bp_transmitter_control *cntl)
{
enum bp_result result = BP_RESULT_FAILURE;
DIG_TRANSMITTER_CONTROL_PARAMETERS_V4 params;
uint32_t ref_clk_src_id;
enum connector_id conn_id =
dal_graphics_object_id_get_connector_id(cntl->connector_obj_id);
const struct command_table_helper *cmd = bp->cmd_helper;
memset(¶ms, 0, sizeof(params));
switch (cntl->transmitter) {
case TRANSMITTER_UNIPHY_A:
case TRANSMITTER_UNIPHY_B:
case TRANSMITTER_UNIPHY_C:
case TRANSMITTER_UNIPHY_D:
case TRANSMITTER_UNIPHY_E:
case TRANSMITTER_UNIPHY_F:
case TRANSMITTER_TRAVIS_LCD:
break;
default:
return BP_RESULT_BADINPUT;
}
if (!cmd->clock_source_id_to_ref_clk_src(cntl->pll_id, &ref_clk_src_id))
return BP_RESULT_BADINPUT;
switch (cntl->action) {
case TRANSMITTER_CONTROL_INIT:
{
if ((CONNECTOR_ID_DUAL_LINK_DVII == conn_id) ||
(CONNECTOR_ID_DUAL_LINK_DVID == conn_id))
/* on INIT this bit should be set according to the
* phisycal connector
* Bit0: dual link connector flag
* =0 connector is single link connector
* =1 connector is dual link connector
*/
params.acConfig.fDualLinkConnector = 1;
/* connector object id */
params.usInitInfo =
cpu_to_le16((uint8_t)(cntl->connector_obj_id.id));
}
break;
case TRANSMITTER_CONTROL_SET_VOLTAGE_AND_PREEMPASIS:
/* votage swing and pre-emphsis */
params.asMode.ucLaneSel = (uint8_t)(cntl->lane_select);
params.asMode.ucLaneSet = (uint8_t)(cntl->lane_settings);
break;
default:
if ((CONNECTOR_ID_DUAL_LINK_DVII == conn_id) ||
(CONNECTOR_ID_DUAL_LINK_DVID == conn_id))
/* on ENABLE/DISABLE this bit should be set according to
* actual timing (number of lanes)
* Bit0: dual link connector flag
* =0 connector is single link connector
* =1 connector is dual link connector
*/
params.acConfig.fDualLinkConnector = 1;
/* if dual-link */
if (LANE_COUNT_FOUR < cntl->lanes_number)
/* link rate, half for dual link
* We need to convert from KHz units into 20KHz units
*/
params.usPixelClock =
cpu_to_le16((uint16_t)(cntl->pixel_clock / 20));
else {
/* link rate, half for dual link
* We need to convert from KHz units into 10KHz units
*/
params.usPixelClock =
cpu_to_le16((uint16_t)(cntl->pixel_clock / 10));
}
break;
}
/* 00 - coherent mode
* 01 - incoherent mode
*/
params.acConfig.fCoherentMode = cntl->coherent;
if ((TRANSMITTER_UNIPHY_B == cntl->transmitter)
|| (TRANSMITTER_UNIPHY_D == cntl->transmitter)
|| (TRANSMITTER_UNIPHY_F == cntl->transmitter))
/* Bit2: Transmitter Link selection
* =0 when bit0=0, single link A/C/E, when bit0=1,
* master link A/C/E
* =1 when bit0=0, single link B/D/F, when bit0=1,
* master link B/D/F
*/
params.acConfig.ucLinkSel = 1;
if (ENGINE_ID_DIGB == cntl->engine_id)
/* Bit3: Transmitter data source selection
* =0 DIGA is data source.
* =1 DIGB is data source.
* This bit is only useful when ucAction= ATOM_ENABLE
*/
params.acConfig.ucEncoderSel = 1;
/* Bit[7:6]: Transmitter selection
* =0 UNIPHY_ENCODER: UNIPHYA/B
* =1 UNIPHY1_ENCODER: UNIPHYC/D
* =2 UNIPHY2_ENCODER: UNIPHYE/F
* =3 reserved
*/
params.acConfig.ucTransmitterSel =
(uint8_t)(cmd->transmitter_bp_to_atom(cntl->transmitter));
params.ucLaneNum = (uint8_t)(cntl->lanes_number);
params.acConfig.ucRefClkSource = (uint8_t)(ref_clk_src_id);
params.ucAction = (uint8_t)(cntl->action);
if (EXEC_BIOS_CMD_TABLE(UNIPHYTransmitterControl, params))
result = BP_RESULT_OK;
return result;
}
static enum bp_result transmitter_control_v1_5(
struct bios_parser *bp,
struct bp_transmitter_control *cntl)
{
enum bp_result result = BP_RESULT_FAILURE;
const struct command_table_helper *cmd = bp->cmd_helper;
DIG_TRANSMITTER_CONTROL_PARAMETERS_V1_5 params;
memset(¶ms, 0, sizeof(params));
params.ucPhyId = cmd->phy_id_to_atom(cntl->transmitter);
params.ucAction = (uint8_t)cntl->action;
params.ucLaneNum = (uint8_t)cntl->lanes_number;
params.ucConnObjId = (uint8_t)cntl->connector_obj_id.id;
params.ucDigMode =
cmd->signal_type_to_atom_dig_mode(cntl->signal);
params.asConfig.ucPhyClkSrcId =
cmd->clock_source_id_to_atom_phy_clk_src_id(cntl->pll_id);
/* 00 - coherent mode */
params.asConfig.ucCoherentMode = cntl->coherent;
params.asConfig.ucHPDSel =
cmd->hpd_sel_to_atom(cntl->hpd_sel);
params.ucDigEncoderSel =
cmd->dig_encoder_sel_to_atom(cntl->engine_id);
params.ucDPLaneSet = (uint8_t) cntl->lane_settings;
params.usSymClock = cpu_to_le16((uint16_t) (cntl->pixel_clock / 10));
/*
* In SI/TN case, caller have to set usPixelClock as following:
* DP mode: usPixelClock = DP_LINK_CLOCK/10
* (DP_LINK_CLOCK = 1.62GHz, 2.7GHz, 5.4GHz)
* DVI single link mode: usPixelClock = pixel clock
* DVI dual link mode: usPixelClock = pixel clock
* HDMI mode: usPixelClock = pixel clock * deep_color_ratio
* (=1: 8bpp, =1.25: 10bpp, =1.5:12bpp, =2: 16bpp)
* LVDS mode: usPixelClock = pixel clock
*/
if (cntl->signal == SIGNAL_TYPE_HDMI_TYPE_A) {
switch (cntl->color_depth) {
case COLOR_DEPTH_101010:
params.usSymClock =
cpu_to_le16((le16_to_cpu(params.usSymClock) * 30) / 24);
break;
case COLOR_DEPTH_121212:
params.usSymClock =
cpu_to_le16((le16_to_cpu(params.usSymClock) * 36) / 24);
break;
case COLOR_DEPTH_161616:
params.usSymClock =
cpu_to_le16((le16_to_cpu(params.usSymClock) * 48) / 24);
break;
default:
break;
}
}
if (EXEC_BIOS_CMD_TABLE(UNIPHYTransmitterControl, params))
result = BP_RESULT_OK;
return result;
}
static enum bp_result transmitter_control_v1_6(
struct bios_parser *bp,
struct bp_transmitter_control *cntl)
{
enum bp_result result = BP_RESULT_FAILURE;
const struct command_table_helper *cmd = bp->cmd_helper;
DIG_TRANSMITTER_CONTROL_PARAMETERS_V1_6 params;
memset(¶ms, 0, sizeof(params));
params.ucPhyId = cmd->phy_id_to_atom(cntl->transmitter);
params.ucAction = (uint8_t)cntl->action;
if (cntl->action == TRANSMITTER_CONTROL_SET_VOLTAGE_AND_PREEMPASIS)
params.ucDPLaneSet = (uint8_t)cntl->lane_settings;
else
params.ucDigMode = cmd->signal_type_to_atom_dig_mode(cntl->signal);
params.ucLaneNum = (uint8_t)cntl->lanes_number;
params.ucHPDSel = cmd->hpd_sel_to_atom(cntl->hpd_sel);
params.ucDigEncoderSel = cmd->dig_encoder_sel_to_atom(cntl->engine_id);
params.ucConnObjId = (uint8_t)cntl->connector_obj_id.id;
params.ulSymClock = cntl->pixel_clock/10;
/*
* In SI/TN case, caller have to set usPixelClock as following:
* DP mode: usPixelClock = DP_LINK_CLOCK/10
* (DP_LINK_CLOCK = 1.62GHz, 2.7GHz, 5.4GHz)
* DVI single link mode: usPixelClock = pixel clock
* DVI dual link mode: usPixelClock = pixel clock
* HDMI mode: usPixelClock = pixel clock * deep_color_ratio
* (=1: 8bpp, =1.25: 10bpp, =1.5:12bpp, =2: 16bpp)
* LVDS mode: usPixelClock = pixel clock
*/
switch (cntl->signal) {
case SIGNAL_TYPE_HDMI_TYPE_A:
switch (cntl->color_depth) {
case COLOR_DEPTH_101010:
params.ulSymClock =
cpu_to_le16((le16_to_cpu(params.ulSymClock) * 30) / 24);
break;
case COLOR_DEPTH_121212:
params.ulSymClock =
cpu_to_le16((le16_to_cpu(params.ulSymClock) * 36) / 24);
break;
case COLOR_DEPTH_161616:
params.ulSymClock =
cpu_to_le16((le16_to_cpu(params.ulSymClock) * 48) / 24);
break;
default:
break;
}
break;
default:
break;
}
if (EXEC_BIOS_CMD_TABLE(UNIPHYTransmitterControl, params))
result = BP_RESULT_OK;
return result;
}
/*******************************************************************************
********************************************************************************
**
** SET PIXEL CLOCK
**
********************************************************************************
*******************************************************************************/
static enum bp_result set_pixel_clock_v3(
struct bios_parser *bp,
struct bp_pixel_clock_parameters *bp_params);
static enum bp_result set_pixel_clock_v5(
struct bios_parser *bp,
struct bp_pixel_clock_parameters *bp_params);
static enum bp_result set_pixel_clock_v6(
struct bios_parser *bp,
struct bp_pixel_clock_parameters *bp_params);
static enum bp_result set_pixel_clock_v7(
struct bios_parser *bp,
struct bp_pixel_clock_parameters *bp_params);
static void init_set_pixel_clock(struct bios_parser *bp)
{
switch (BIOS_CMD_TABLE_PARA_REVISION(SetPixelClock)) {
case 3:
bp->cmd_tbl.set_pixel_clock = set_pixel_clock_v3;
break;
case 5:
bp->cmd_tbl.set_pixel_clock = set_pixel_clock_v5;
break;
case 6:
bp->cmd_tbl.set_pixel_clock = set_pixel_clock_v6;
break;
case 7:
bp->cmd_tbl.set_pixel_clock = set_pixel_clock_v7;
break;
default:
dm_output_to_console("Don't have set_pixel_clock for v%d\n",
BIOS_CMD_TABLE_PARA_REVISION(SetPixelClock));
bp->cmd_tbl.set_pixel_clock = NULL;
break;
}
}
static enum bp_result set_pixel_clock_v3(
struct bios_parser *bp,
struct bp_pixel_clock_parameters *bp_params)
{
enum bp_result result = BP_RESULT_FAILURE;
PIXEL_CLOCK_PARAMETERS_V3 *params;
SET_PIXEL_CLOCK_PS_ALLOCATION allocation;
memset(&allocation, 0, sizeof(allocation));
if (CLOCK_SOURCE_ID_PLL1 == bp_params->pll_id)
allocation.sPCLKInput.ucPpll = ATOM_PPLL1;
else if (CLOCK_SOURCE_ID_PLL2 == bp_params->pll_id)
allocation.sPCLKInput.ucPpll = ATOM_PPLL2;
else
return BP_RESULT_BADINPUT;
allocation.sPCLKInput.usRefDiv =
cpu_to_le16((uint16_t)bp_params->reference_divider);
allocation.sPCLKInput.usFbDiv =
cpu_to_le16((uint16_t)bp_params->feedback_divider);
allocation.sPCLKInput.ucFracFbDiv =
(uint8_t)bp_params->fractional_feedback_divider;
allocation.sPCLKInput.ucPostDiv =
(uint8_t)bp_params->pixel_clock_post_divider;
/* We need to convert from 100Hz units into 10KHz units */
allocation.sPCLKInput.usPixelClock =
cpu_to_le16((uint16_t)(bp_params->target_pixel_clock_100hz / 100));
params = (PIXEL_CLOCK_PARAMETERS_V3 *)&allocation.sPCLKInput;
params->ucTransmitterId =
bp->cmd_helper->encoder_id_to_atom(
dal_graphics_object_id_get_encoder_id(
bp_params->encoder_object_id));
params->ucEncoderMode =
(uint8_t)(bp->cmd_helper->encoder_mode_bp_to_atom(
bp_params->signal_type, false));
if (bp_params->flags.FORCE_PROGRAMMING_OF_PLL)
params->ucMiscInfo |= PIXEL_CLOCK_MISC_FORCE_PROG_PPLL;
if (bp_params->flags.USE_E_CLOCK_AS_SOURCE_FOR_D_CLOCK)
params->ucMiscInfo |= PIXEL_CLOCK_MISC_USE_ENGINE_FOR_DISPCLK;
if (CONTROLLER_ID_D1 != bp_params->controller_id)
params->ucMiscInfo |= PIXEL_CLOCK_MISC_CRTC_SEL_CRTC2;
if (EXEC_BIOS_CMD_TABLE(SetPixelClock, allocation))
result = BP_RESULT_OK;
return result;
}
#ifndef SET_PIXEL_CLOCK_PS_ALLOCATION_V5
/* video bios did not define this: */
typedef struct _SET_PIXEL_CLOCK_PS_ALLOCATION_V5 {
PIXEL_CLOCK_PARAMETERS_V5 sPCLKInput;
/* Caller doesn't need to init this portion */
ENABLE_SPREAD_SPECTRUM_ON_PPLL sReserved;
} SET_PIXEL_CLOCK_PS_ALLOCATION_V5;
#endif
#ifndef SET_PIXEL_CLOCK_PS_ALLOCATION_V6
/* video bios did not define this: */
typedef struct _SET_PIXEL_CLOCK_PS_ALLOCATION_V6 {
PIXEL_CLOCK_PARAMETERS_V6 sPCLKInput;
/* Caller doesn't need to init this portion */
ENABLE_SPREAD_SPECTRUM_ON_PPLL sReserved;
} SET_PIXEL_CLOCK_PS_ALLOCATION_V6;
#endif
static enum bp_result set_pixel_clock_v5(
struct bios_parser *bp,
struct bp_pixel_clock_parameters *bp_params)
{
enum bp_result result = BP_RESULT_FAILURE;
SET_PIXEL_CLOCK_PS_ALLOCATION_V5 clk;
uint8_t controller_id;
uint32_t pll_id;
memset(&clk, 0, sizeof(clk));
if (bp->cmd_helper->clock_source_id_to_atom(bp_params->pll_id, &pll_id)
&& bp->cmd_helper->controller_id_to_atom(
bp_params->controller_id, &controller_id)) {
clk.sPCLKInput.ucCRTC = controller_id;
clk.sPCLKInput.ucPpll = (uint8_t)pll_id;
clk.sPCLKInput.ucRefDiv =
(uint8_t)(bp_params->reference_divider);
clk.sPCLKInput.usFbDiv =
cpu_to_le16((uint16_t)(bp_params->feedback_divider));
clk.sPCLKInput.ulFbDivDecFrac =
cpu_to_le32(bp_params->fractional_feedback_divider);
clk.sPCLKInput.ucPostDiv =
(uint8_t)(bp_params->pixel_clock_post_divider);
clk.sPCLKInput.ucTransmitterID =
bp->cmd_helper->encoder_id_to_atom(
dal_graphics_object_id_get_encoder_id(
bp_params->encoder_object_id));
clk.sPCLKInput.ucEncoderMode =
(uint8_t)bp->cmd_helper->encoder_mode_bp_to_atom(
bp_params->signal_type, false);
/* We need to convert from 100Hz units into 10KHz units */
clk.sPCLKInput.usPixelClock =
cpu_to_le16((uint16_t)(bp_params->target_pixel_clock_100hz / 100));
if (bp_params->flags.FORCE_PROGRAMMING_OF_PLL)
clk.sPCLKInput.ucMiscInfo |=
PIXEL_CLOCK_MISC_FORCE_PROG_PPLL;
if (bp_params->flags.SET_EXTERNAL_REF_DIV_SRC)
clk.sPCLKInput.ucMiscInfo |=
PIXEL_CLOCK_MISC_REF_DIV_SRC;
/* clkV5.ucMiscInfo bit[3:2]= HDMI panel bit depth: =0: 24bpp
* =1:30bpp, =2:32bpp
* driver choose program it itself, i.e. here we program it
* to 888 by default.
*/
if (bp_params->signal_type == SIGNAL_TYPE_HDMI_TYPE_A)
switch (bp_params->color_depth) {
case TRANSMITTER_COLOR_DEPTH_30:
/* yes this is correct, the atom define is wrong */
clk.sPCLKInput.ucMiscInfo |= PIXEL_CLOCK_V5_MISC_HDMI_32BPP;
break;
case TRANSMITTER_COLOR_DEPTH_36:
/* yes this is correct, the atom define is wrong */
clk.sPCLKInput.ucMiscInfo |= PIXEL_CLOCK_V5_MISC_HDMI_30BPP;
break;
default:
break;
}
if (EXEC_BIOS_CMD_TABLE(SetPixelClock, clk))
result = BP_RESULT_OK;
}
return result;
}
static enum bp_result set_pixel_clock_v6(
struct bios_parser *bp,
struct bp_pixel_clock_parameters *bp_params)
{
enum bp_result result = BP_RESULT_FAILURE;
SET_PIXEL_CLOCK_PS_ALLOCATION_V6 clk;
uint8_t controller_id;
uint32_t pll_id;
memset(&clk, 0, sizeof(clk));
if (bp->cmd_helper->clock_source_id_to_atom(bp_params->pll_id, &pll_id)
&& bp->cmd_helper->controller_id_to_atom(
bp_params->controller_id, &controller_id)) {
/* Note: VBIOS still wants to use ucCRTC name which is now
* 1 byte in ULONG
*typedef struct _CRTC_PIXEL_CLOCK_FREQ
*{
* target the pixel clock to drive the CRTC timing.
* ULONG ulPixelClock:24;
* 0 means disable PPLL/DCPLL. Expanded to 24 bits comparing to
* previous version.
* ATOM_CRTC1~6, indicate the CRTC controller to
* ULONG ucCRTC:8;
* drive the pixel clock. not used for DCPLL case.
*}CRTC_PIXEL_CLOCK_FREQ;
*union
*{
* pixel clock and CRTC id frequency
* CRTC_PIXEL_CLOCK_FREQ ulCrtcPclkFreq;
* ULONG ulDispEngClkFreq; dispclk frequency
*};
*/
clk.sPCLKInput.ulCrtcPclkFreq.ucCRTC = controller_id;
clk.sPCLKInput.ucPpll = (uint8_t) pll_id;
clk.sPCLKInput.ucRefDiv =
(uint8_t) bp_params->reference_divider;
clk.sPCLKInput.usFbDiv =
cpu_to_le16((uint16_t) bp_params->feedback_divider);
clk.sPCLKInput.ulFbDivDecFrac =
cpu_to_le32(bp_params->fractional_feedback_divider);
clk.sPCLKInput.ucPostDiv =
(uint8_t) bp_params->pixel_clock_post_divider;
clk.sPCLKInput.ucTransmitterID =
bp->cmd_helper->encoder_id_to_atom(
dal_graphics_object_id_get_encoder_id(
bp_params->encoder_object_id));
clk.sPCLKInput.ucEncoderMode =
(uint8_t) bp->cmd_helper->encoder_mode_bp_to_atom(
bp_params->signal_type, false);
/* We need to convert from 100 Hz units into 10KHz units */
clk.sPCLKInput.ulCrtcPclkFreq.ulPixelClock =
cpu_to_le32(bp_params->target_pixel_clock_100hz / 100);
if (bp_params->flags.FORCE_PROGRAMMING_OF_PLL) {
clk.sPCLKInput.ucMiscInfo |=
PIXEL_CLOCK_V6_MISC_FORCE_PROG_PPLL;
}
if (bp_params->flags.SET_EXTERNAL_REF_DIV_SRC) {
clk.sPCLKInput.ucMiscInfo |=
PIXEL_CLOCK_V6_MISC_REF_DIV_SRC;
}
/* clkV6.ucMiscInfo bit[3:2]= HDMI panel bit depth: =0:
* 24bpp =1:30bpp, =2:32bpp
* driver choose program it itself, i.e. here we pass required
* target rate that includes deep color.
*/
if (bp_params->signal_type == SIGNAL_TYPE_HDMI_TYPE_A)
switch (bp_params->color_depth) {
case TRANSMITTER_COLOR_DEPTH_30:
clk.sPCLKInput.ucMiscInfo |= PIXEL_CLOCK_V6_MISC_HDMI_30BPP_V6;
break;
case TRANSMITTER_COLOR_DEPTH_36:
clk.sPCLKInput.ucMiscInfo |= PIXEL_CLOCK_V6_MISC_HDMI_36BPP_V6;
break;
case TRANSMITTER_COLOR_DEPTH_48:
clk.sPCLKInput.ucMiscInfo |= PIXEL_CLOCK_V6_MISC_HDMI_48BPP;
break;
default:
break;
}
if (EXEC_BIOS_CMD_TABLE(SetPixelClock, clk))
result = BP_RESULT_OK;
}
return result;
}
static enum bp_result set_pixel_clock_v7(
struct bios_parser *bp,
struct bp_pixel_clock_parameters *bp_params)
{
enum bp_result result = BP_RESULT_FAILURE;
PIXEL_CLOCK_PARAMETERS_V7 clk;
uint8_t controller_id;
uint32_t pll_id;
memset(&clk, 0, sizeof(clk));
if (bp->cmd_helper->clock_source_id_to_atom(bp_params->pll_id, &pll_id)
&& bp->cmd_helper->controller_id_to_atom(bp_params->controller_id, &controller_id)) {
/* Note: VBIOS still wants to use ucCRTC name which is now
* 1 byte in ULONG
*typedef struct _CRTC_PIXEL_CLOCK_FREQ
*{
* target the pixel clock to drive the CRTC timing.
* ULONG ulPixelClock:24;
* 0 means disable PPLL/DCPLL. Expanded to 24 bits comparing to
* previous version.
* ATOM_CRTC1~6, indicate the CRTC controller to
* ULONG ucCRTC:8;
* drive the pixel clock. not used for DCPLL case.
*}CRTC_PIXEL_CLOCK_FREQ;
*union
*{
* pixel clock and CRTC id frequency
* CRTC_PIXEL_CLOCK_FREQ ulCrtcPclkFreq;
* ULONG ulDispEngClkFreq; dispclk frequency
*};
*/
clk.ucCRTC = controller_id;
clk.ucPpll = (uint8_t) pll_id;
clk.ucTransmitterID = bp->cmd_helper->encoder_id_to_atom(dal_graphics_object_id_get_encoder_id(bp_params->encoder_object_id));
clk.ucEncoderMode = (uint8_t) bp->cmd_helper->encoder_mode_bp_to_atom(bp_params->signal_type, false);
clk.ulPixelClock = cpu_to_le32(bp_params->target_pixel_clock_100hz);
clk.ucDeepColorRatio = (uint8_t) bp->cmd_helper->transmitter_color_depth_to_atom(bp_params->color_depth);
if (bp_params->flags.FORCE_PROGRAMMING_OF_PLL)
clk.ucMiscInfo |= PIXEL_CLOCK_V7_MISC_FORCE_PROG_PPLL;
if (bp_params->flags.SET_EXTERNAL_REF_DIV_SRC)
clk.ucMiscInfo |= PIXEL_CLOCK_V7_MISC_REF_DIV_SRC;
if (bp_params->flags.PROGRAM_PHY_PLL_ONLY)
clk.ucMiscInfo |= PIXEL_CLOCK_V7_MISC_PROG_PHYPLL;
if (bp_params->flags.SUPPORT_YUV_420)
clk.ucMiscInfo |= PIXEL_CLOCK_V7_MISC_YUV420_MODE;
if (bp_params->flags.SET_XTALIN_REF_SRC)
clk.ucMiscInfo |= PIXEL_CLOCK_V7_MISC_REF_DIV_SRC_XTALIN;
if (bp_params->flags.SET_GENLOCK_REF_DIV_SRC)
clk.ucMiscInfo |= PIXEL_CLOCK_V7_MISC_REF_DIV_SRC_GENLK;
if (bp_params->signal_type == SIGNAL_TYPE_DVI_DUAL_LINK)
clk.ucMiscInfo |= PIXEL_CLOCK_V7_MISC_DVI_DUALLINK_EN;
if (EXEC_BIOS_CMD_TABLE(SetPixelClock, clk))
result = BP_RESULT_OK;
}
return result;
}
/*******************************************************************************
********************************************************************************
**
** ENABLE PIXEL CLOCK SS
**
********************************************************************************
*******************************************************************************/
static enum bp_result enable_spread_spectrum_on_ppll_v1(
struct bios_parser *bp,
struct bp_spread_spectrum_parameters *bp_params,
bool enable);
static enum bp_result enable_spread_spectrum_on_ppll_v2(
struct bios_parser *bp,
struct bp_spread_spectrum_parameters *bp_params,
bool enable);
static enum bp_result enable_spread_spectrum_on_ppll_v3(
struct bios_parser *bp,
struct bp_spread_spectrum_parameters *bp_params,
bool enable);
static void init_enable_spread_spectrum_on_ppll(struct bios_parser *bp)
{
switch (BIOS_CMD_TABLE_PARA_REVISION(EnableSpreadSpectrumOnPPLL)) {
case 1:
bp->cmd_tbl.enable_spread_spectrum_on_ppll =
enable_spread_spectrum_on_ppll_v1;
break;
case 2:
bp->cmd_tbl.enable_spread_spectrum_on_ppll =
enable_spread_spectrum_on_ppll_v2;
break;
case 3:
bp->cmd_tbl.enable_spread_spectrum_on_ppll =
enable_spread_spectrum_on_ppll_v3;
break;
default:
dm_output_to_console("Don't have enable_spread_spectrum_on_ppll for v%d\n",
BIOS_CMD_TABLE_PARA_REVISION(EnableSpreadSpectrumOnPPLL));
bp->cmd_tbl.enable_spread_spectrum_on_ppll = NULL;
break;
}
}
static enum bp_result enable_spread_spectrum_on_ppll_v1(
struct bios_parser *bp,
struct bp_spread_spectrum_parameters *bp_params,
bool enable)
{
enum bp_result result = BP_RESULT_FAILURE;
ENABLE_SPREAD_SPECTRUM_ON_PPLL params;
memset(¶ms, 0, sizeof(params));
if ((enable == true) && (bp_params->percentage > 0))
params.ucEnable = ATOM_ENABLE;
else
params.ucEnable = ATOM_DISABLE;
params.usSpreadSpectrumPercentage =
cpu_to_le16((uint16_t)bp_params->percentage);
params.ucSpreadSpectrumStep =
(uint8_t)bp_params->ver1.step;
params.ucSpreadSpectrumDelay =
(uint8_t)bp_params->ver1.delay;
/* convert back to unit of 10KHz */
params.ucSpreadSpectrumRange =
(uint8_t)(bp_params->ver1.range / 10000);
if (bp_params->flags.EXTERNAL_SS)
params.ucSpreadSpectrumType |= ATOM_EXTERNAL_SS_MASK;
if (bp_params->flags.CENTER_SPREAD)
params.ucSpreadSpectrumType |= ATOM_SS_CENTRE_SPREAD_MODE;
if (bp_params->pll_id == CLOCK_SOURCE_ID_PLL1)
params.ucPpll = ATOM_PPLL1;
else if (bp_params->pll_id == CLOCK_SOURCE_ID_PLL2)
params.ucPpll = ATOM_PPLL2;
else
BREAK_TO_DEBUGGER(); /* Unexpected PLL value!! */
if (EXEC_BIOS_CMD_TABLE(EnableSpreadSpectrumOnPPLL, params))
result = BP_RESULT_OK;
return result;
}
static enum bp_result enable_spread_spectrum_on_ppll_v2(
struct bios_parser *bp,
struct bp_spread_spectrum_parameters *bp_params,
bool enable)
{
enum bp_result result = BP_RESULT_FAILURE;
ENABLE_SPREAD_SPECTRUM_ON_PPLL_V2 params;
memset(¶ms, 0, sizeof(params));
if (bp_params->pll_id == CLOCK_SOURCE_ID_PLL1)
params.ucSpreadSpectrumType = ATOM_PPLL_SS_TYPE_V2_P1PLL;
else if (bp_params->pll_id == CLOCK_SOURCE_ID_PLL2)
params.ucSpreadSpectrumType = ATOM_PPLL_SS_TYPE_V2_P2PLL;
else
BREAK_TO_DEBUGGER(); /* Unexpected PLL value!! */
if ((enable == true) && (bp_params->percentage > 0)) {
params.ucEnable = ATOM_ENABLE;
params.usSpreadSpectrumPercentage =
cpu_to_le16((uint16_t)(bp_params->percentage));
params.usSpreadSpectrumStep =
cpu_to_le16((uint16_t)(bp_params->ds.ds_frac_size));
if (bp_params->flags.EXTERNAL_SS)
params.ucSpreadSpectrumType |=
ATOM_PPLL_SS_TYPE_V2_EXT_SPREAD;
if (bp_params->flags.CENTER_SPREAD)
params.ucSpreadSpectrumType |=
ATOM_PPLL_SS_TYPE_V2_CENTRE_SPREAD;
/* Both amounts need to be left shifted first before bit
* comparison. Otherwise, the result will always be zero here
*/
params.usSpreadSpectrumAmount = cpu_to_le16((uint16_t)(
((bp_params->ds.feedback_amount <<
ATOM_PPLL_SS_AMOUNT_V2_FBDIV_SHIFT) &
ATOM_PPLL_SS_AMOUNT_V2_FBDIV_MASK) |
((bp_params->ds.nfrac_amount <<
ATOM_PPLL_SS_AMOUNT_V2_NFRAC_SHIFT) &
ATOM_PPLL_SS_AMOUNT_V2_NFRAC_MASK)));
} else
params.ucEnable = ATOM_DISABLE;
if (EXEC_BIOS_CMD_TABLE(EnableSpreadSpectrumOnPPLL, params))
result = BP_RESULT_OK;
return result;
}
static enum bp_result enable_spread_spectrum_on_ppll_v3(
struct bios_parser *bp,
struct bp_spread_spectrum_parameters *bp_params,
bool enable)
{
enum bp_result result = BP_RESULT_FAILURE;
ENABLE_SPREAD_SPECTRUM_ON_PPLL_V3 params;
memset(¶ms, 0, sizeof(params));
switch (bp_params->pll_id) {
case CLOCK_SOURCE_ID_PLL0:
/* ATOM_PPLL_SS_TYPE_V3_P0PLL; this is pixel clock only,
* not for SI display clock.
*/
params.ucSpreadSpectrumType = ATOM_PPLL_SS_TYPE_V3_DCPLL;
break;
case CLOCK_SOURCE_ID_PLL1:
params.ucSpreadSpectrumType = ATOM_PPLL_SS_TYPE_V3_P1PLL;
break;
case CLOCK_SOURCE_ID_PLL2:
params.ucSpreadSpectrumType = ATOM_PPLL_SS_TYPE_V3_P2PLL;
break;
case CLOCK_SOURCE_ID_DCPLL:
params.ucSpreadSpectrumType = ATOM_PPLL_SS_TYPE_V3_DCPLL;
break;
default:
BREAK_TO_DEBUGGER();
/* Unexpected PLL value!! */
return result;
}
if (enable == true) {
params.ucEnable = ATOM_ENABLE;
params.usSpreadSpectrumAmountFrac =
cpu_to_le16((uint16_t)(bp_params->ds_frac_amount));
params.usSpreadSpectrumStep =
cpu_to_le16((uint16_t)(bp_params->ds.ds_frac_size));
if (bp_params->flags.EXTERNAL_SS)
params.ucSpreadSpectrumType |=
ATOM_PPLL_SS_TYPE_V3_EXT_SPREAD;
if (bp_params->flags.CENTER_SPREAD)
params.ucSpreadSpectrumType |=
ATOM_PPLL_SS_TYPE_V3_CENTRE_SPREAD;
/* Both amounts need to be left shifted first before bit
* comparison. Otherwise, the result will always be zero here
*/
params.usSpreadSpectrumAmount = cpu_to_le16((uint16_t)(
((bp_params->ds.feedback_amount <<
ATOM_PPLL_SS_AMOUNT_V3_FBDIV_SHIFT) &
ATOM_PPLL_SS_AMOUNT_V3_FBDIV_MASK) |
((bp_params->ds.nfrac_amount <<
ATOM_PPLL_SS_AMOUNT_V3_NFRAC_SHIFT) &
ATOM_PPLL_SS_AMOUNT_V3_NFRAC_MASK)));
} else
params.ucEnable = ATOM_DISABLE;
if (EXEC_BIOS_CMD_TABLE(EnableSpreadSpectrumOnPPLL, params))
result = BP_RESULT_OK;
return result;
}
/*******************************************************************************
********************************************************************************
**
** ADJUST DISPLAY PLL
**
********************************************************************************
*******************************************************************************/
static enum bp_result adjust_display_pll_v2(
struct bios_parser *bp,
struct bp_adjust_pixel_clock_parameters *bp_params);
static enum bp_result adjust_display_pll_v3(
struct bios_parser *bp,
struct bp_adjust_pixel_clock_parameters *bp_params);
static void init_adjust_display_pll(struct bios_parser *bp)
{
switch (BIOS_CMD_TABLE_PARA_REVISION(AdjustDisplayPll)) {
case 2:
bp->cmd_tbl.adjust_display_pll = adjust_display_pll_v2;
break;
case 3:
bp->cmd_tbl.adjust_display_pll = adjust_display_pll_v3;
break;
default:
dm_output_to_console("Don't have adjust_display_pll for v%d\n",
BIOS_CMD_TABLE_PARA_REVISION(AdjustDisplayPll));
bp->cmd_tbl.adjust_display_pll = NULL;
break;
}
}
static enum bp_result adjust_display_pll_v2(
struct bios_parser *bp,
struct bp_adjust_pixel_clock_parameters *bp_params)
{
enum bp_result result = BP_RESULT_FAILURE;
ADJUST_DISPLAY_PLL_PS_ALLOCATION params = { 0 };
/* We need to convert from KHz units into 10KHz units and then convert
* output pixel clock back 10KHz-->KHz */
uint32_t pixel_clock_10KHz_in = bp_params->pixel_clock / 10;
params.usPixelClock = cpu_to_le16((uint16_t)(pixel_clock_10KHz_in));
params.ucTransmitterID =
bp->cmd_helper->encoder_id_to_atom(
dal_graphics_object_id_get_encoder_id(
bp_params->encoder_object_id));
params.ucEncodeMode =
(uint8_t)bp->cmd_helper->encoder_mode_bp_to_atom(
bp_params->signal_type, false);
if (EXEC_BIOS_CMD_TABLE(AdjustDisplayPll, params)) {
/* Convert output pixel clock back 10KHz-->KHz: multiply
* original pixel clock in KHz by ratio
* [output pxlClk/input pxlClk] */
uint64_t pixel_clk_10_khz_out =
(uint64_t)le16_to_cpu(params.usPixelClock);
uint64_t pixel_clk = (uint64_t)bp_params->pixel_clock;
if (pixel_clock_10KHz_in != 0) {
bp_params->adjusted_pixel_clock =
div_u64(pixel_clk * pixel_clk_10_khz_out,
pixel_clock_10KHz_in);
} else {
bp_params->adjusted_pixel_clock = 0;
BREAK_TO_DEBUGGER();
}
result = BP_RESULT_OK;
}
return result;
}
static enum bp_result adjust_display_pll_v3(
struct bios_parser *bp,
struct bp_adjust_pixel_clock_parameters *bp_params)
{
enum bp_result result = BP_RESULT_FAILURE;
ADJUST_DISPLAY_PLL_PS_ALLOCATION_V3 params;
uint32_t pixel_clk_10_kHz_in = bp_params->pixel_clock / 10;
memset(¶ms, 0, sizeof(params));
/* We need to convert from KHz units into 10KHz units and then convert
* output pixel clock back 10KHz-->KHz */
params.sInput.usPixelClock = cpu_to_le16((uint16_t)pixel_clk_10_kHz_in);
params.sInput.ucTransmitterID =
bp->cmd_helper->encoder_id_to_atom(
dal_graphics_object_id_get_encoder_id(
bp_params->encoder_object_id));
params.sInput.ucEncodeMode =
(uint8_t)bp->cmd_helper->encoder_mode_bp_to_atom(
bp_params->signal_type, false);
if (bp_params->ss_enable == true)
params.sInput.ucDispPllConfig |= DISPPLL_CONFIG_SS_ENABLE;
if (bp_params->signal_type == SIGNAL_TYPE_DVI_DUAL_LINK)
params.sInput.ucDispPllConfig |= DISPPLL_CONFIG_DUAL_LINK;
if (EXEC_BIOS_CMD_TABLE(AdjustDisplayPll, params)) {
/* Convert output pixel clock back 10KHz-->KHz: multiply
* original pixel clock in KHz by ratio
* [output pxlClk/input pxlClk] */
uint64_t pixel_clk_10_khz_out =
(uint64_t)le32_to_cpu(params.sOutput.ulDispPllFreq);
uint64_t pixel_clk = (uint64_t)bp_params->pixel_clock;
if (pixel_clk_10_kHz_in != 0) {
bp_params->adjusted_pixel_clock =
div_u64(pixel_clk * pixel_clk_10_khz_out,
pixel_clk_10_kHz_in);
} else {
bp_params->adjusted_pixel_clock = 0;
BREAK_TO_DEBUGGER();
}
bp_params->reference_divider = params.sOutput.ucRefDiv;
bp_params->pixel_clock_post_divider = params.sOutput.ucPostDiv;
result = BP_RESULT_OK;
}
return result;
}
/*******************************************************************************
********************************************************************************
**
** DAC ENCODER CONTROL
**
********************************************************************************
*******************************************************************************/
static enum bp_result dac1_encoder_control_v1(
struct bios_parser *bp,
bool enable,
uint32_t pixel_clock,
uint8_t dac_standard);
static enum bp_result dac2_encoder_control_v1(
struct bios_parser *bp,
bool enable,
uint32_t pixel_clock,
uint8_t dac_standard);
static void init_dac_encoder_control(struct bios_parser *bp)
{
switch (BIOS_CMD_TABLE_PARA_REVISION(DAC1EncoderControl)) {
case 1:
bp->cmd_tbl.dac1_encoder_control = dac1_encoder_control_v1;
break;
default:
bp->cmd_tbl.dac1_encoder_control = NULL;
break;
}
switch (BIOS_CMD_TABLE_PARA_REVISION(DAC2EncoderControl)) {
case 1:
bp->cmd_tbl.dac2_encoder_control = dac2_encoder_control_v1;
break;
default:
bp->cmd_tbl.dac2_encoder_control = NULL;
break;
}
}
static void dac_encoder_control_prepare_params(
DAC_ENCODER_CONTROL_PS_ALLOCATION *params,
bool enable,
uint32_t pixel_clock,
uint8_t dac_standard)
{
params->ucDacStandard = dac_standard;
if (enable)
params->ucAction = ATOM_ENABLE;
else
params->ucAction = ATOM_DISABLE;
/* We need to convert from KHz units into 10KHz units
* it looks as if the TvControl do not care about pixel clock
*/
params->usPixelClock = cpu_to_le16((uint16_t)(pixel_clock / 10));
}
static enum bp_result dac1_encoder_control_v1(
struct bios_parser *bp,
bool enable,
uint32_t pixel_clock,
uint8_t dac_standard)
{
enum bp_result result = BP_RESULT_FAILURE;
DAC_ENCODER_CONTROL_PS_ALLOCATION params;
dac_encoder_control_prepare_params(
¶ms,
enable,
pixel_clock,
dac_standard);
if (EXEC_BIOS_CMD_TABLE(DAC1EncoderControl, params))
result = BP_RESULT_OK;
return result;
}
static enum bp_result dac2_encoder_control_v1(
struct bios_parser *bp,
bool enable,
uint32_t pixel_clock,
uint8_t dac_standard)
{
enum bp_result result = BP_RESULT_FAILURE;
DAC_ENCODER_CONTROL_PS_ALLOCATION params;
dac_encoder_control_prepare_params(
¶ms,
enable,
pixel_clock,
dac_standard);
if (EXEC_BIOS_CMD_TABLE(DAC2EncoderControl, params))
result = BP_RESULT_OK;
return result;
}
/*******************************************************************************
********************************************************************************
**
** DAC OUTPUT CONTROL
**
********************************************************************************
*******************************************************************************/
static enum bp_result dac1_output_control_v1(
struct bios_parser *bp,
bool enable);
static enum bp_result dac2_output_control_v1(
struct bios_parser *bp,
bool enable);
static void init_dac_output_control(struct bios_parser *bp)
{
switch (BIOS_CMD_TABLE_PARA_REVISION(DAC1OutputControl)) {
case 1:
bp->cmd_tbl.dac1_output_control = dac1_output_control_v1;
break;
default:
bp->cmd_tbl.dac1_output_control = NULL;
break;
}
switch (BIOS_CMD_TABLE_PARA_REVISION(DAC2OutputControl)) {
case 1:
bp->cmd_tbl.dac2_output_control = dac2_output_control_v1;
break;
default:
bp->cmd_tbl.dac2_output_control = NULL;
break;
}
}
static enum bp_result dac1_output_control_v1(
struct bios_parser *bp, bool enable)
{
enum bp_result result = BP_RESULT_FAILURE;
DISPLAY_DEVICE_OUTPUT_CONTROL_PS_ALLOCATION params;
if (enable)
params.ucAction = ATOM_ENABLE;
else
params.ucAction = ATOM_DISABLE;
if (EXEC_BIOS_CMD_TABLE(DAC1OutputControl, params))
result = BP_RESULT_OK;
return result;
}
static enum bp_result dac2_output_control_v1(
struct bios_parser *bp, bool enable)
{
enum bp_result result = BP_RESULT_FAILURE;
DISPLAY_DEVICE_OUTPUT_CONTROL_PS_ALLOCATION params;
if (enable)
params.ucAction = ATOM_ENABLE;
else
params.ucAction = ATOM_DISABLE;
if (EXEC_BIOS_CMD_TABLE(DAC2OutputControl, params))
result = BP_RESULT_OK;
return result;
}
/*******************************************************************************
********************************************************************************
**
** SET CRTC TIMING
**
********************************************************************************
*******************************************************************************/
static enum bp_result set_crtc_using_dtd_timing_v3(
struct bios_parser *bp,
struct bp_hw_crtc_timing_parameters *bp_params);
static enum bp_result set_crtc_timing_v1(
struct bios_parser *bp,
struct bp_hw_crtc_timing_parameters *bp_params);
static void init_set_crtc_timing(struct bios_parser *bp)
{
uint32_t dtd_version =
BIOS_CMD_TABLE_PARA_REVISION(SetCRTC_UsingDTDTiming);
if (dtd_version > 2)
switch (dtd_version) {
case 3:
bp->cmd_tbl.set_crtc_timing =
set_crtc_using_dtd_timing_v3;
break;
default:
dm_output_to_console("Don't have set_crtc_timing for dtd v%d\n",
dtd_version);
bp->cmd_tbl.set_crtc_timing = NULL;
break;
}
else
switch (BIOS_CMD_TABLE_PARA_REVISION(SetCRTC_Timing)) {
case 1:
bp->cmd_tbl.set_crtc_timing = set_crtc_timing_v1;
break;
default:
dm_output_to_console("Don't have set_crtc_timing for v%d\n",
BIOS_CMD_TABLE_PARA_REVISION(SetCRTC_Timing));
bp->cmd_tbl.set_crtc_timing = NULL;
break;
}
}
static enum bp_result set_crtc_timing_v1(
struct bios_parser *bp,
struct bp_hw_crtc_timing_parameters *bp_params)
{
enum bp_result result = BP_RESULT_FAILURE;
SET_CRTC_TIMING_PARAMETERS_PS_ALLOCATION params = {0};
uint8_t atom_controller_id;
if (bp->cmd_helper->controller_id_to_atom(
bp_params->controller_id, &atom_controller_id))
params.ucCRTC = atom_controller_id;
params.usH_Total = cpu_to_le16((uint16_t)(bp_params->h_total));
params.usH_Disp = cpu_to_le16((uint16_t)(bp_params->h_addressable));
params.usH_SyncStart = cpu_to_le16((uint16_t)(bp_params->h_sync_start));
params.usH_SyncWidth = cpu_to_le16((uint16_t)(bp_params->h_sync_width));
params.usV_Total = cpu_to_le16((uint16_t)(bp_params->v_total));
params.usV_Disp = cpu_to_le16((uint16_t)(bp_params->v_addressable));
params.usV_SyncStart =
cpu_to_le16((uint16_t)(bp_params->v_sync_start));
params.usV_SyncWidth =
cpu_to_le16((uint16_t)(bp_params->v_sync_width));
/* VBIOS does not expect any value except zero into this call, for
* underscan use another entry ProgramOverscan call but when mode
* 1776x1000 with the overscan 72x44 .e.i. 1920x1080 @30 DAL2 is ok,
* but when same ,but 60 Hz there is corruption
* DAL1 does not allow the mode 1776x1000@60
*/
params.ucOverscanRight = (uint8_t)bp_params->h_overscan_right;
params.ucOverscanLeft = (uint8_t)bp_params->h_overscan_left;
params.ucOverscanBottom = (uint8_t)bp_params->v_overscan_bottom;
params.ucOverscanTop = (uint8_t)bp_params->v_overscan_top;
if (0 == bp_params->flags.HSYNC_POSITIVE_POLARITY)
params.susModeMiscInfo.usAccess =
cpu_to_le16(le16_to_cpu(params.susModeMiscInfo.usAccess) | ATOM_HSYNC_POLARITY);
if (0 == bp_params->flags.VSYNC_POSITIVE_POLARITY)
params.susModeMiscInfo.usAccess =
cpu_to_le16(le16_to_cpu(params.susModeMiscInfo.usAccess) | ATOM_VSYNC_POLARITY);
if (bp_params->flags.INTERLACE) {
params.susModeMiscInfo.usAccess =
cpu_to_le16(le16_to_cpu(params.susModeMiscInfo.usAccess) | ATOM_INTERLACE);
/* original DAL code has this condition to apply tis for
* non-TV/CV only due to complex MV testing for possible
* impact
* if (pACParameters->signal != SignalType_YPbPr &&
* pACParameters->signal != SignalType_Composite &&
* pACParameters->signal != SignalType_SVideo)
*/
/* HW will deduct 0.5 line from 2nd feild.
* i.e. for 1080i, it is 2 lines for 1st field, 2.5
* lines for the 2nd feild. we need input as 5 instead
* of 4, but it is 4 either from Edid data
* (spec CEA 861) or CEA timing table.
*/
params.usV_SyncStart =
cpu_to_le16((uint16_t)(bp_params->v_sync_start + 1));
}
if (bp_params->flags.HORZ_COUNT_BY_TWO)
params.susModeMiscInfo.usAccess =
cpu_to_le16(le16_to_cpu(params.susModeMiscInfo.usAccess) | ATOM_DOUBLE_CLOCK_MODE);
if (EXEC_BIOS_CMD_TABLE(SetCRTC_Timing, params))
result = BP_RESULT_OK;
return result;
}
static enum bp_result set_crtc_using_dtd_timing_v3(
struct bios_parser *bp,
struct bp_hw_crtc_timing_parameters *bp_params)
{
enum bp_result result = BP_RESULT_FAILURE;
SET_CRTC_USING_DTD_TIMING_PARAMETERS params = {0};
uint8_t atom_controller_id;
if (bp->cmd_helper->controller_id_to_atom(
bp_params->controller_id, &atom_controller_id))
params.ucCRTC = atom_controller_id;
/* bios usH_Size wants h addressable size */
params.usH_Size = cpu_to_le16((uint16_t)bp_params->h_addressable);
/* bios usH_Blanking_Time wants borders included in blanking */
params.usH_Blanking_Time =
cpu_to_le16((uint16_t)(bp_params->h_total - bp_params->h_addressable));
/* bios usV_Size wants v addressable size */
params.usV_Size = cpu_to_le16((uint16_t)bp_params->v_addressable);
/* bios usV_Blanking_Time wants borders included in blanking */
params.usV_Blanking_Time =
cpu_to_le16((uint16_t)(bp_params->v_total - bp_params->v_addressable));
/* bios usHSyncOffset is the offset from the end of h addressable,
* our horizontalSyncStart is the offset from the beginning
* of h addressable */
params.usH_SyncOffset =
cpu_to_le16((uint16_t)(bp_params->h_sync_start - bp_params->h_addressable));
params.usH_SyncWidth = cpu_to_le16((uint16_t)bp_params->h_sync_width);
/* bios usHSyncOffset is the offset from the end of v addressable,
* our verticalSyncStart is the offset from the beginning of
* v addressable */
params.usV_SyncOffset =
cpu_to_le16((uint16_t)(bp_params->v_sync_start - bp_params->v_addressable));
params.usV_SyncWidth = cpu_to_le16((uint16_t)bp_params->v_sync_width);
/* we assume that overscan from original timing does not get bigger
* than 255
* we will program all the borders in the Set CRTC Overscan call below
*/
if (0 == bp_params->flags.HSYNC_POSITIVE_POLARITY)
params.susModeMiscInfo.usAccess =
cpu_to_le16(le16_to_cpu(params.susModeMiscInfo.usAccess) | ATOM_HSYNC_POLARITY);
if (0 == bp_params->flags.VSYNC_POSITIVE_POLARITY)
params.susModeMiscInfo.usAccess =
cpu_to_le16(le16_to_cpu(params.susModeMiscInfo.usAccess) | ATOM_VSYNC_POLARITY);
if (bp_params->flags.INTERLACE) {
params.susModeMiscInfo.usAccess =
cpu_to_le16(le16_to_cpu(params.susModeMiscInfo.usAccess) | ATOM_INTERLACE);
/* original DAL code has this condition to apply this
* for non-TV/CV only
* due to complex MV testing for possible impact
* if ( pACParameters->signal != SignalType_YPbPr &&
* pACParameters->signal != SignalType_Composite &&
* pACParameters->signal != SignalType_SVideo)
*/
{
/* HW will deduct 0.5 line from 2nd feild.
* i.e. for 1080i, it is 2 lines for 1st field,
* 2.5 lines for the 2nd feild. we need input as 5
* instead of 4.
* but it is 4 either from Edid data (spec CEA 861)
* or CEA timing table.
*/
le16_add_cpu(¶ms.usV_SyncOffset, 1);
}
}
if (bp_params->flags.HORZ_COUNT_BY_TWO)
params.susModeMiscInfo.usAccess =
cpu_to_le16(le16_to_cpu(params.susModeMiscInfo.usAccess) | ATOM_DOUBLE_CLOCK_MODE);
if (EXEC_BIOS_CMD_TABLE(SetCRTC_UsingDTDTiming, params))
result = BP_RESULT_OK;
return result;
}
/*******************************************************************************
********************************************************************************
**
** ENABLE CRTC
**
********************************************************************************
*******************************************************************************/
static enum bp_result enable_crtc_v1(
struct bios_parser *bp,
enum controller_id controller_id,
bool enable);
static void init_enable_crtc(struct bios_parser *bp)
{
switch (BIOS_CMD_TABLE_PARA_REVISION(EnableCRTC)) {
case 1:
bp->cmd_tbl.enable_crtc = enable_crtc_v1;
break;
default:
dm_output_to_console("Don't have enable_crtc for v%d\n",
BIOS_CMD_TABLE_PARA_REVISION(EnableCRTC));
bp->cmd_tbl.enable_crtc = NULL;
break;
}
}
static enum bp_result enable_crtc_v1(
struct bios_parser *bp,
enum controller_id controller_id,
bool enable)
{
bool result = BP_RESULT_FAILURE;
ENABLE_CRTC_PARAMETERS params = {0};
uint8_t id;
if (bp->cmd_helper->controller_id_to_atom(controller_id, &id))
params.ucCRTC = id;
else
return BP_RESULT_BADINPUT;
if (enable)
params.ucEnable = ATOM_ENABLE;
else
params.ucEnable = ATOM_DISABLE;
if (EXEC_BIOS_CMD_TABLE(EnableCRTC, params))
result = BP_RESULT_OK;
return result;
}
/*******************************************************************************
********************************************************************************
**
** ENABLE CRTC MEM REQ
**
********************************************************************************
*******************************************************************************/
static enum bp_result enable_crtc_mem_req_v1(
struct bios_parser *bp,
enum controller_id controller_id,
bool enable);
static void init_enable_crtc_mem_req(struct bios_parser *bp)
{
switch (BIOS_CMD_TABLE_PARA_REVISION(EnableCRTCMemReq)) {
case 1:
bp->cmd_tbl.enable_crtc_mem_req = enable_crtc_mem_req_v1;
break;
default:
bp->cmd_tbl.enable_crtc_mem_req = NULL;
break;
}
}
static enum bp_result enable_crtc_mem_req_v1(
struct bios_parser *bp,
enum controller_id controller_id,
bool enable)
{
bool result = BP_RESULT_BADINPUT;
ENABLE_CRTC_PARAMETERS params = {0};
uint8_t id;
if (bp->cmd_helper->controller_id_to_atom(controller_id, &id)) {
params.ucCRTC = id;
if (enable)
params.ucEnable = ATOM_ENABLE;
else
params.ucEnable = ATOM_DISABLE;
if (EXEC_BIOS_CMD_TABLE(EnableCRTCMemReq, params))
result = BP_RESULT_OK;
else
result = BP_RESULT_FAILURE;
}
return result;
}
/*******************************************************************************
********************************************************************************
**
** DISPLAY PLL
**
********************************************************************************
*******************************************************************************/
static enum bp_result program_clock_v5(
struct bios_parser *bp,
struct bp_pixel_clock_parameters *bp_params);
static enum bp_result program_clock_v6(
struct bios_parser *bp,
struct bp_pixel_clock_parameters *bp_params);
static void init_program_clock(struct bios_parser *bp)
{
switch (BIOS_CMD_TABLE_PARA_REVISION(SetPixelClock)) {
case 5:
bp->cmd_tbl.program_clock = program_clock_v5;
break;
case 6:
bp->cmd_tbl.program_clock = program_clock_v6;
break;
default:
dm_output_to_console("Don't have program_clock for v%d\n",
BIOS_CMD_TABLE_PARA_REVISION(SetPixelClock));
bp->cmd_tbl.program_clock = NULL;
break;
}
}
static enum bp_result program_clock_v5(
struct bios_parser *bp,
struct bp_pixel_clock_parameters *bp_params)
{
enum bp_result result = BP_RESULT_FAILURE;
SET_PIXEL_CLOCK_PS_ALLOCATION_V5 params;
uint32_t atom_pll_id;
memset(¶ms, 0, sizeof(params));
if (!bp->cmd_helper->clock_source_id_to_atom(
bp_params->pll_id, &atom_pll_id)) {
BREAK_TO_DEBUGGER(); /* Invalid Input!! */
return BP_RESULT_BADINPUT;
}
/* We need to convert from KHz units into 10KHz units */
params.sPCLKInput.ucPpll = (uint8_t) atom_pll_id;
params.sPCLKInput.usPixelClock =
cpu_to_le16((uint16_t) (bp_params->target_pixel_clock_100hz / 100));
params.sPCLKInput.ucCRTC = (uint8_t) ATOM_CRTC_INVALID;
if (bp_params->flags.SET_EXTERNAL_REF_DIV_SRC)
params.sPCLKInput.ucMiscInfo |= PIXEL_CLOCK_MISC_REF_DIV_SRC;
if (EXEC_BIOS_CMD_TABLE(SetPixelClock, params))
result = BP_RESULT_OK;
return result;
}
static enum bp_result program_clock_v6(
struct bios_parser *bp,
struct bp_pixel_clock_parameters *bp_params)
{
enum bp_result result = BP_RESULT_FAILURE;
SET_PIXEL_CLOCK_PS_ALLOCATION_V6 params;
uint32_t atom_pll_id;
memset(¶ms, 0, sizeof(params));
if (!bp->cmd_helper->clock_source_id_to_atom(
bp_params->pll_id, &atom_pll_id)) {
BREAK_TO_DEBUGGER(); /*Invalid Input!!*/
return BP_RESULT_BADINPUT;
}
/* We need to convert from KHz units into 10KHz units */
params.sPCLKInput.ucPpll = (uint8_t)atom_pll_id;
params.sPCLKInput.ulDispEngClkFreq =
cpu_to_le32(bp_params->target_pixel_clock_100hz / 100);
if (bp_params->flags.SET_EXTERNAL_REF_DIV_SRC)
params.sPCLKInput.ucMiscInfo |= PIXEL_CLOCK_MISC_REF_DIV_SRC;
if (bp_params->flags.SET_DISPCLK_DFS_BYPASS)
params.sPCLKInput.ucMiscInfo |= PIXEL_CLOCK_V6_MISC_DPREFCLK_BYPASS;
if (EXEC_BIOS_CMD_TABLE(SetPixelClock, params)) {
/* True display clock is returned by VBIOS if DFS bypass
* is enabled. */
bp_params->dfs_bypass_display_clock =
(uint32_t)(le32_to_cpu(params.sPCLKInput.ulDispEngClkFreq) * 10);
result = BP_RESULT_OK;
}
return result;
}
/*******************************************************************************
********************************************************************************
**
** EXTERNAL ENCODER CONTROL
**
********************************************************************************
*******************************************************************************/
static enum bp_result external_encoder_control_v3(
struct bios_parser *bp,
struct bp_external_encoder_control *cntl);
static void init_external_encoder_control(
struct bios_parser *bp)
{
switch (BIOS_CMD_TABLE_PARA_REVISION(ExternalEncoderControl)) {
case 3:
bp->cmd_tbl.external_encoder_control =
external_encoder_control_v3;
break;
default:
bp->cmd_tbl.external_encoder_control = NULL;
break;
}
}
static enum bp_result external_encoder_control_v3(
struct bios_parser *bp,
struct bp_external_encoder_control *cntl)
{
enum bp_result result = BP_RESULT_FAILURE;
/* we need use _PS_Alloc struct */
EXTERNAL_ENCODER_CONTROL_PS_ALLOCATION_V3 params;
EXTERNAL_ENCODER_CONTROL_PARAMETERS_V3 *cntl_params;
struct graphics_object_id encoder;
bool is_input_signal_dp = false;
memset(¶ms, 0, sizeof(params));
cntl_params = ¶ms.sExtEncoder;
encoder = cntl->encoder_id;
/* check if encoder supports external encoder control table */
switch (dal_graphics_object_id_get_encoder_id(encoder)) {
case ENCODER_ID_EXTERNAL_NUTMEG:
case ENCODER_ID_EXTERNAL_TRAVIS:
is_input_signal_dp = true;
break;
default:
BREAK_TO_DEBUGGER();
return BP_RESULT_BADINPUT;
}
/* Fill information based on the action
*
* Bit[6:4]: indicate external encoder, applied to all functions.
* =0: external encoder1, mapped to external encoder enum id1
* =1: external encoder2, mapped to external encoder enum id2
*
* enum ObjectEnumId
* {
* EnumId_Unknown = 0,
* EnumId_1,
* EnumId_2,
* };
*/
cntl_params->ucConfig = (uint8_t)((encoder.enum_id - 1) << 4);
switch (cntl->action) {
case EXTERNAL_ENCODER_CONTROL_INIT:
/* output display connector type. Only valid in encoder
* initialization */
cntl_params->usConnectorId =
cpu_to_le16((uint16_t)cntl->connector_obj_id.id);
break;
case EXTERNAL_ENCODER_CONTROL_SETUP:
/* EXTERNAL_ENCODER_CONTROL_PARAMETERS_V3 pixel clock unit in
* 10KHz
* output display device pixel clock frequency in unit of 10KHz.
* Only valid in setup and enableoutput
*/
cntl_params->usPixelClock =
cpu_to_le16((uint16_t)(cntl->pixel_clock / 10));
/* Indicate display output signal type drive by external
* encoder, only valid in setup and enableoutput */
cntl_params->ucEncoderMode =
(uint8_t)bp->cmd_helper->encoder_mode_bp_to_atom(
cntl->signal, false);
if (is_input_signal_dp) {
/* Bit[0]: indicate link rate, =1: 2.7Ghz, =0: 1.62Ghz,
* only valid in encoder setup with DP mode. */
if (LINK_RATE_HIGH == cntl->link_rate)
cntl_params->ucConfig |= 1;
/* output color depth Indicate encoder data bpc format
* in DP mode, only valid in encoder setup in DP mode.
*/
cntl_params->ucBitPerColor =
(uint8_t)(cntl->color_depth);
}
/* Indicate how many lanes used by external encoder, only valid
* in encoder setup and enableoutput. */
cntl_params->ucLaneNum = (uint8_t)(cntl->lanes_number);
break;
case EXTERNAL_ENCODER_CONTROL_ENABLE:
cntl_params->usPixelClock =
cpu_to_le16((uint16_t)(cntl->pixel_clock / 10));
cntl_params->ucEncoderMode =
(uint8_t)bp->cmd_helper->encoder_mode_bp_to_atom(
cntl->signal, false);
cntl_params->ucLaneNum = (uint8_t)cntl->lanes_number;
break;
default:
break;
}
cntl_params->ucAction = (uint8_t)cntl->action;
if (EXEC_BIOS_CMD_TABLE(ExternalEncoderControl, params))
result = BP_RESULT_OK;
return result;
}
/*******************************************************************************
********************************************************************************
**
** ENABLE DISPLAY POWER GATING
**
********************************************************************************
*******************************************************************************/
static enum bp_result enable_disp_power_gating_v2_1(
struct bios_parser *bp,
enum controller_id crtc_id,
enum bp_pipe_control_action action);
static void init_enable_disp_power_gating(
struct bios_parser *bp)
{
switch (BIOS_CMD_TABLE_PARA_REVISION(EnableDispPowerGating)) {
case 1:
bp->cmd_tbl.enable_disp_power_gating =
enable_disp_power_gating_v2_1;
break;
default:
dm_output_to_console("Don't enable_disp_power_gating enable_crtc for v%d\n",
BIOS_CMD_TABLE_PARA_REVISION(EnableDispPowerGating));
bp->cmd_tbl.enable_disp_power_gating = NULL;
break;
}
}
static enum bp_result enable_disp_power_gating_v2_1(
struct bios_parser *bp,
enum controller_id crtc_id,
enum bp_pipe_control_action action)
{
enum bp_result result = BP_RESULT_FAILURE;
ENABLE_DISP_POWER_GATING_PS_ALLOCATION params = {0};
uint8_t atom_crtc_id;
if (bp->cmd_helper->controller_id_to_atom(crtc_id, &atom_crtc_id))
params.ucDispPipeId = atom_crtc_id;
else
return BP_RESULT_BADINPUT;
params.ucEnable =
bp->cmd_helper->disp_power_gating_action_to_atom(action);
if (EXEC_BIOS_CMD_TABLE(EnableDispPowerGating, params))
result = BP_RESULT_OK;
return result;
}
/*******************************************************************************
********************************************************************************
**
** SET DCE CLOCK
**
********************************************************************************
*******************************************************************************/
static enum bp_result set_dce_clock_v2_1(
struct bios_parser *bp,
struct bp_set_dce_clock_parameters *bp_params);
static void init_set_dce_clock(struct bios_parser *bp)
{
switch (BIOS_CMD_TABLE_PARA_REVISION(SetDCEClock)) {
case 1:
bp->cmd_tbl.set_dce_clock = set_dce_clock_v2_1;
break;
default:
dm_output_to_console("Don't have set_dce_clock for v%d\n",
BIOS_CMD_TABLE_PARA_REVISION(SetDCEClock));
bp->cmd_tbl.set_dce_clock = NULL;
break;
}
}
static enum bp_result set_dce_clock_v2_1(
struct bios_parser *bp,
struct bp_set_dce_clock_parameters *bp_params)
{
enum bp_result result = BP_RESULT_FAILURE;
SET_DCE_CLOCK_PS_ALLOCATION_V2_1 params;
uint32_t atom_pll_id;
uint32_t atom_clock_type;
const struct command_table_helper *cmd = bp->cmd_helper;
memset(¶ms, 0, sizeof(params));
if (!cmd->clock_source_id_to_atom(bp_params->pll_id, &atom_pll_id) ||
!cmd->dc_clock_type_to_atom(bp_params->clock_type, &atom_clock_type))
return BP_RESULT_BADINPUT;
params.asParam.ucDCEClkSrc = atom_pll_id;
params.asParam.ucDCEClkType = atom_clock_type;
if (bp_params->clock_type == DCECLOCK_TYPE_DPREFCLK) {
if (bp_params->flags.USE_GENLOCK_AS_SOURCE_FOR_DPREFCLK)
params.asParam.ucDCEClkFlag |= DCE_CLOCK_FLAG_PLL_REFCLK_SRC_GENLK;
if (bp_params->flags.USE_PCIE_AS_SOURCE_FOR_DPREFCLK)
params.asParam.ucDCEClkFlag |= DCE_CLOCK_FLAG_PLL_REFCLK_SRC_PCIE;
if (bp_params->flags.USE_XTALIN_AS_SOURCE_FOR_DPREFCLK)
params.asParam.ucDCEClkFlag |= DCE_CLOCK_FLAG_PLL_REFCLK_SRC_XTALIN;
if (bp_params->flags.USE_GENERICA_AS_SOURCE_FOR_DPREFCLK)
params.asParam.ucDCEClkFlag |= DCE_CLOCK_FLAG_PLL_REFCLK_SRC_GENERICA;
}
else
/* only program clock frequency if display clock is used; VBIOS will program DPREFCLK */
/* We need to convert from KHz units into 10KHz units */
params.asParam.ulDCEClkFreq = cpu_to_le32(bp_params->target_clock_frequency / 10);
if (EXEC_BIOS_CMD_TABLE(SetDCEClock, params)) {
/* Convert from 10KHz units back to KHz */
bp_params->target_clock_frequency = le32_to_cpu(params.asParam.ulDCEClkFreq) * 10;
result = BP_RESULT_OK;
}
return result;
}
| linux-master | drivers/gpu/drm/amd/display/dc/bios/command_table.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include <linux/slab.h>
#include "dm_services.h"
#include "atom.h"
#include "dc_bios_types.h"
#include "include/gpio_service_interface.h"
#include "include/grph_object_ctrl_defs.h"
#include "include/bios_parser_interface.h"
#include "include/logger_interface.h"
#include "command_table.h"
#include "bios_parser_helper.h"
#include "command_table_helper.h"
#include "bios_parser.h"
#include "bios_parser_types_internal.h"
#include "bios_parser_interface.h"
#include "bios_parser_common.h"
#include "dc.h"
#define THREE_PERCENT_OF_10000 300
#define LAST_RECORD_TYPE 0xff
#define DC_LOGGER \
bp->base.ctx->logger
#define DATA_TABLES(table) (bp->master_data_tbl->ListOfDataTables.table)
static void get_atom_data_table_revision(
ATOM_COMMON_TABLE_HEADER *atom_data_tbl,
struct atom_data_revision *tbl_revision);
static uint32_t get_src_obj_list(struct bios_parser *bp, ATOM_OBJECT *object,
uint16_t **id_list);
static ATOM_OBJECT *get_bios_object(struct bios_parser *bp,
struct graphics_object_id id);
static enum bp_result get_gpio_i2c_info(struct bios_parser *bp,
ATOM_I2C_RECORD *record,
struct graphics_object_i2c_info *info);
static ATOM_HPD_INT_RECORD *get_hpd_record(struct bios_parser *bp,
ATOM_OBJECT *object);
static struct device_id device_type_from_device_id(uint16_t device_id);
static uint32_t signal_to_ss_id(enum as_signal_type signal);
static uint32_t get_support_mask_for_device_id(struct device_id device_id);
static ATOM_ENCODER_CAP_RECORD_V2 *get_encoder_cap_record(
struct bios_parser *bp,
ATOM_OBJECT *object);
#define BIOS_IMAGE_SIZE_OFFSET 2
#define BIOS_IMAGE_SIZE_UNIT 512
/*****************************************************************************/
static bool bios_parser_construct(
struct bios_parser *bp,
struct bp_init_data *init,
enum dce_version dce_version);
static uint8_t bios_parser_get_connectors_number(
struct dc_bios *dcb);
static enum bp_result bios_parser_get_embedded_panel_info(
struct dc_bios *dcb,
struct embedded_panel_info *info);
/*****************************************************************************/
struct dc_bios *bios_parser_create(
struct bp_init_data *init,
enum dce_version dce_version)
{
struct bios_parser *bp;
bp = kzalloc(sizeof(struct bios_parser), GFP_KERNEL);
if (!bp)
return NULL;
if (bios_parser_construct(bp, init, dce_version))
return &bp->base;
kfree(bp);
BREAK_TO_DEBUGGER();
return NULL;
}
static void bios_parser_destruct(struct bios_parser *bp)
{
kfree(bp->base.bios_local_image);
kfree(bp->base.integrated_info);
}
static void bios_parser_destroy(struct dc_bios **dcb)
{
struct bios_parser *bp = BP_FROM_DCB(*dcb);
if (!bp) {
BREAK_TO_DEBUGGER();
return;
}
bios_parser_destruct(bp);
kfree(bp);
*dcb = NULL;
}
static uint8_t get_number_of_objects(struct bios_parser *bp, uint32_t offset)
{
ATOM_OBJECT_TABLE *table;
uint32_t object_table_offset = bp->object_info_tbl_offset + offset;
table = ((ATOM_OBJECT_TABLE *) bios_get_image(&bp->base,
object_table_offset,
struct_size(table, asObjects, 1)));
if (!table)
return 0;
else
return table->ucNumberOfObjects;
}
static uint8_t bios_parser_get_connectors_number(struct dc_bios *dcb)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
return get_number_of_objects(bp,
le16_to_cpu(bp->object_info_tbl.v1_1->usConnectorObjectTableOffset));
}
static struct graphics_object_id bios_parser_get_connector_id(
struct dc_bios *dcb,
uint8_t i)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
struct graphics_object_id object_id = dal_graphics_object_id_init(
0, ENUM_ID_UNKNOWN, OBJECT_TYPE_UNKNOWN);
uint16_t id;
uint32_t connector_table_offset = bp->object_info_tbl_offset
+ le16_to_cpu(bp->object_info_tbl.v1_1->usConnectorObjectTableOffset);
ATOM_OBJECT_TABLE *tbl = ((ATOM_OBJECT_TABLE *) bios_get_image(&bp->base,
connector_table_offset,
struct_size(tbl, asObjects, 1)));
if (!tbl) {
dm_error("Can't get connector table from atom bios.\n");
return object_id;
}
if (tbl->ucNumberOfObjects <= i) {
dm_error("Can't find connector id %d in connector table of size %d.\n",
i, tbl->ucNumberOfObjects);
return object_id;
}
id = le16_to_cpu(tbl->asObjects[i].usObjectID);
object_id = object_id_from_bios_object_id(id);
return object_id;
}
static enum bp_result bios_parser_get_src_obj(struct dc_bios *dcb,
struct graphics_object_id object_id, uint32_t index,
struct graphics_object_id *src_object_id)
{
uint32_t number;
uint16_t *id;
ATOM_OBJECT *object;
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!src_object_id)
return BP_RESULT_BADINPUT;
object = get_bios_object(bp, object_id);
if (!object) {
BREAK_TO_DEBUGGER(); /* Invalid object id */
return BP_RESULT_BADINPUT;
}
number = get_src_obj_list(bp, object, &id);
if (number <= index)
return BP_RESULT_BADINPUT;
*src_object_id = object_id_from_bios_object_id(id[index]);
return BP_RESULT_OK;
}
static enum bp_result bios_parser_get_i2c_info(struct dc_bios *dcb,
struct graphics_object_id id,
struct graphics_object_i2c_info *info)
{
uint32_t offset;
ATOM_OBJECT *object;
ATOM_COMMON_RECORD_HEADER *header;
ATOM_I2C_RECORD *record;
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!info)
return BP_RESULT_BADINPUT;
object = get_bios_object(bp, id);
if (!object)
return BP_RESULT_BADINPUT;
offset = le16_to_cpu(object->usRecordOffset)
+ bp->object_info_tbl_offset;
for (;;) {
header = GET_IMAGE(ATOM_COMMON_RECORD_HEADER, offset);
if (!header)
return BP_RESULT_BADBIOSTABLE;
if (LAST_RECORD_TYPE == header->ucRecordType ||
!header->ucRecordSize)
break;
if (ATOM_I2C_RECORD_TYPE == header->ucRecordType
&& sizeof(ATOM_I2C_RECORD) <= header->ucRecordSize) {
/* get the I2C info */
record = (ATOM_I2C_RECORD *) header;
if (get_gpio_i2c_info(bp, record, info) == BP_RESULT_OK)
return BP_RESULT_OK;
}
offset += header->ucRecordSize;
}
return BP_RESULT_NORECORD;
}
static enum bp_result bios_parser_get_hpd_info(struct dc_bios *dcb,
struct graphics_object_id id,
struct graphics_object_hpd_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
ATOM_OBJECT *object;
ATOM_HPD_INT_RECORD *record = NULL;
if (!info)
return BP_RESULT_BADINPUT;
object = get_bios_object(bp, id);
if (!object)
return BP_RESULT_BADINPUT;
record = get_hpd_record(bp, object);
if (record != NULL) {
info->hpd_int_gpio_uid = record->ucHPDIntGPIOID;
info->hpd_active = record->ucPlugged_PinState;
return BP_RESULT_OK;
}
return BP_RESULT_NORECORD;
}
static enum bp_result bios_parser_get_device_tag_record(
struct bios_parser *bp,
ATOM_OBJECT *object,
ATOM_CONNECTOR_DEVICE_TAG_RECORD **record)
{
ATOM_COMMON_RECORD_HEADER *header;
uint32_t offset;
offset = le16_to_cpu(object->usRecordOffset)
+ bp->object_info_tbl_offset;
for (;;) {
header = GET_IMAGE(ATOM_COMMON_RECORD_HEADER, offset);
if (!header)
return BP_RESULT_BADBIOSTABLE;
offset += header->ucRecordSize;
if (LAST_RECORD_TYPE == header->ucRecordType ||
!header->ucRecordSize)
break;
if (ATOM_CONNECTOR_DEVICE_TAG_RECORD_TYPE !=
header->ucRecordType)
continue;
if (sizeof(ATOM_CONNECTOR_DEVICE_TAG) > header->ucRecordSize)
continue;
*record = (ATOM_CONNECTOR_DEVICE_TAG_RECORD *) header;
return BP_RESULT_OK;
}
return BP_RESULT_NORECORD;
}
static enum bp_result bios_parser_get_device_tag(
struct dc_bios *dcb,
struct graphics_object_id connector_object_id,
uint32_t device_tag_index,
struct connector_device_tag_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
ATOM_OBJECT *object;
ATOM_CONNECTOR_DEVICE_TAG_RECORD *record = NULL;
ATOM_CONNECTOR_DEVICE_TAG *device_tag;
if (!info)
return BP_RESULT_BADINPUT;
/* getBiosObject will return MXM object */
object = get_bios_object(bp, connector_object_id);
if (!object) {
BREAK_TO_DEBUGGER(); /* Invalid object id */
return BP_RESULT_BADINPUT;
}
if (bios_parser_get_device_tag_record(bp, object, &record)
!= BP_RESULT_OK)
return BP_RESULT_NORECORD;
if (device_tag_index >= record->ucNumberOfDevice)
return BP_RESULT_NORECORD;
device_tag = &record->asDeviceTag[device_tag_index];
info->acpi_device = le32_to_cpu(device_tag->ulACPIDeviceEnum);
info->dev_id =
device_type_from_device_id(le16_to_cpu(device_tag->usDeviceID));
return BP_RESULT_OK;
}
static enum bp_result get_firmware_info_v1_4(
struct bios_parser *bp,
struct dc_firmware_info *info);
static enum bp_result get_firmware_info_v2_1(
struct bios_parser *bp,
struct dc_firmware_info *info);
static enum bp_result get_firmware_info_v2_2(
struct bios_parser *bp,
struct dc_firmware_info *info);
static enum bp_result bios_parser_get_firmware_info(
struct dc_bios *dcb,
struct dc_firmware_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
enum bp_result result = BP_RESULT_BADBIOSTABLE;
ATOM_COMMON_TABLE_HEADER *header;
struct atom_data_revision revision;
if (info && DATA_TABLES(FirmwareInfo)) {
header = GET_IMAGE(ATOM_COMMON_TABLE_HEADER,
DATA_TABLES(FirmwareInfo));
get_atom_data_table_revision(header, &revision);
switch (revision.major) {
case 1:
switch (revision.minor) {
case 4:
result = get_firmware_info_v1_4(bp, info);
break;
default:
break;
}
break;
case 2:
switch (revision.minor) {
case 1:
result = get_firmware_info_v2_1(bp, info);
break;
case 2:
result = get_firmware_info_v2_2(bp, info);
break;
default:
break;
}
break;
default:
break;
}
}
return result;
}
static enum bp_result get_firmware_info_v1_4(
struct bios_parser *bp,
struct dc_firmware_info *info)
{
ATOM_FIRMWARE_INFO_V1_4 *firmware_info =
GET_IMAGE(ATOM_FIRMWARE_INFO_V1_4,
DATA_TABLES(FirmwareInfo));
if (!info)
return BP_RESULT_BADINPUT;
if (!firmware_info)
return BP_RESULT_BADBIOSTABLE;
memset(info, 0, sizeof(*info));
/* Pixel clock pll information. We need to convert from 10KHz units into
* KHz units */
info->pll_info.crystal_frequency =
le16_to_cpu(firmware_info->usReferenceClock) * 10;
info->pll_info.min_input_pxl_clk_pll_frequency =
le16_to_cpu(firmware_info->usMinPixelClockPLL_Input) * 10;
info->pll_info.max_input_pxl_clk_pll_frequency =
le16_to_cpu(firmware_info->usMaxPixelClockPLL_Input) * 10;
info->pll_info.min_output_pxl_clk_pll_frequency =
le32_to_cpu(firmware_info->ulMinPixelClockPLL_Output) * 10;
info->pll_info.max_output_pxl_clk_pll_frequency =
le32_to_cpu(firmware_info->ulMaxPixelClockPLL_Output) * 10;
if (firmware_info->usFirmwareCapability.sbfAccess.MemoryClockSS_Support)
/* Since there is no information on the SS, report conservative
* value 3% for bandwidth calculation */
/* unit of 0.01% */
info->feature.memory_clk_ss_percentage = THREE_PERCENT_OF_10000;
if (firmware_info->usFirmwareCapability.sbfAccess.EngineClockSS_Support)
/* Since there is no information on the SS,report conservative
* value 3% for bandwidth calculation */
/* unit of 0.01% */
info->feature.engine_clk_ss_percentage = THREE_PERCENT_OF_10000;
return BP_RESULT_OK;
}
static enum bp_result get_ss_info_v3_1(
struct bios_parser *bp,
uint32_t id,
uint32_t index,
struct spread_spectrum_info *ss_info);
static enum bp_result get_firmware_info_v2_1(
struct bios_parser *bp,
struct dc_firmware_info *info)
{
ATOM_FIRMWARE_INFO_V2_1 *firmwareInfo =
GET_IMAGE(ATOM_FIRMWARE_INFO_V2_1, DATA_TABLES(FirmwareInfo));
struct spread_spectrum_info internalSS;
uint32_t index;
if (!info)
return BP_RESULT_BADINPUT;
if (!firmwareInfo)
return BP_RESULT_BADBIOSTABLE;
memset(info, 0, sizeof(*info));
/* Pixel clock pll information. We need to convert from 10KHz units into
* KHz units */
info->pll_info.crystal_frequency =
le16_to_cpu(firmwareInfo->usCoreReferenceClock) * 10;
info->pll_info.min_input_pxl_clk_pll_frequency =
le16_to_cpu(firmwareInfo->usMinPixelClockPLL_Input) * 10;
info->pll_info.max_input_pxl_clk_pll_frequency =
le16_to_cpu(firmwareInfo->usMaxPixelClockPLL_Input) * 10;
info->pll_info.min_output_pxl_clk_pll_frequency =
le32_to_cpu(firmwareInfo->ulMinPixelClockPLL_Output) * 10;
info->pll_info.max_output_pxl_clk_pll_frequency =
le32_to_cpu(firmwareInfo->ulMaxPixelClockPLL_Output) * 10;
info->default_display_engine_pll_frequency =
le32_to_cpu(firmwareInfo->ulDefaultDispEngineClkFreq) * 10;
info->external_clock_source_frequency_for_dp =
le16_to_cpu(firmwareInfo->usUniphyDPModeExtClkFreq) * 10;
info->min_allowed_bl_level = firmwareInfo->ucMinAllowedBL_Level;
/* There should be only one entry in the SS info table for Memory Clock
*/
index = 0;
if (firmwareInfo->usFirmwareCapability.sbfAccess.MemoryClockSS_Support)
/* Since there is no information for external SS, report
* conservative value 3% for bandwidth calculation */
/* unit of 0.01% */
info->feature.memory_clk_ss_percentage = THREE_PERCENT_OF_10000;
else if (get_ss_info_v3_1(bp,
ASIC_INTERNAL_MEMORY_SS, index, &internalSS) == BP_RESULT_OK) {
if (internalSS.spread_spectrum_percentage) {
info->feature.memory_clk_ss_percentage =
internalSS.spread_spectrum_percentage;
if (internalSS.type.CENTER_MODE) {
/* if it is centermode, the exact SS Percentage
* will be round up of half of the percentage
* reported in the SS table */
++info->feature.memory_clk_ss_percentage;
info->feature.memory_clk_ss_percentage /= 2;
}
}
}
/* There should be only one entry in the SS info table for Engine Clock
*/
index = 1;
if (firmwareInfo->usFirmwareCapability.sbfAccess.EngineClockSS_Support)
/* Since there is no information for external SS, report
* conservative value 3% for bandwidth calculation */
/* unit of 0.01% */
info->feature.engine_clk_ss_percentage = THREE_PERCENT_OF_10000;
else if (get_ss_info_v3_1(bp,
ASIC_INTERNAL_ENGINE_SS, index, &internalSS) == BP_RESULT_OK) {
if (internalSS.spread_spectrum_percentage) {
info->feature.engine_clk_ss_percentage =
internalSS.spread_spectrum_percentage;
if (internalSS.type.CENTER_MODE) {
/* if it is centermode, the exact SS Percentage
* will be round up of half of the percentage
* reported in the SS table */
++info->feature.engine_clk_ss_percentage;
info->feature.engine_clk_ss_percentage /= 2;
}
}
}
return BP_RESULT_OK;
}
static enum bp_result get_firmware_info_v2_2(
struct bios_parser *bp,
struct dc_firmware_info *info)
{
ATOM_FIRMWARE_INFO_V2_2 *firmware_info;
struct spread_spectrum_info internal_ss;
uint32_t index;
if (!info)
return BP_RESULT_BADINPUT;
firmware_info = GET_IMAGE(ATOM_FIRMWARE_INFO_V2_2,
DATA_TABLES(FirmwareInfo));
if (!firmware_info)
return BP_RESULT_BADBIOSTABLE;
memset(info, 0, sizeof(*info));
/* Pixel clock pll information. We need to convert from 10KHz units into
* KHz units */
info->pll_info.crystal_frequency =
le16_to_cpu(firmware_info->usCoreReferenceClock) * 10;
info->pll_info.min_input_pxl_clk_pll_frequency =
le16_to_cpu(firmware_info->usMinPixelClockPLL_Input) * 10;
info->pll_info.max_input_pxl_clk_pll_frequency =
le16_to_cpu(firmware_info->usMaxPixelClockPLL_Input) * 10;
info->pll_info.min_output_pxl_clk_pll_frequency =
le32_to_cpu(firmware_info->ulMinPixelClockPLL_Output) * 10;
info->pll_info.max_output_pxl_clk_pll_frequency =
le32_to_cpu(firmware_info->ulMaxPixelClockPLL_Output) * 10;
info->default_display_engine_pll_frequency =
le32_to_cpu(firmware_info->ulDefaultDispEngineClkFreq) * 10;
info->external_clock_source_frequency_for_dp =
le16_to_cpu(firmware_info->usUniphyDPModeExtClkFreq) * 10;
/* There should be only one entry in the SS info table for Memory Clock
*/
index = 0;
if (firmware_info->usFirmwareCapability.sbfAccess.MemoryClockSS_Support)
/* Since there is no information for external SS, report
* conservative value 3% for bandwidth calculation */
/* unit of 0.01% */
info->feature.memory_clk_ss_percentage = THREE_PERCENT_OF_10000;
else if (get_ss_info_v3_1(bp,
ASIC_INTERNAL_MEMORY_SS, index, &internal_ss) == BP_RESULT_OK) {
if (internal_ss.spread_spectrum_percentage) {
info->feature.memory_clk_ss_percentage =
internal_ss.spread_spectrum_percentage;
if (internal_ss.type.CENTER_MODE) {
/* if it is centermode, the exact SS Percentage
* will be round up of half of the percentage
* reported in the SS table */
++info->feature.memory_clk_ss_percentage;
info->feature.memory_clk_ss_percentage /= 2;
}
}
}
/* There should be only one entry in the SS info table for Engine Clock
*/
index = 1;
if (firmware_info->usFirmwareCapability.sbfAccess.EngineClockSS_Support)
/* Since there is no information for external SS, report
* conservative value 3% for bandwidth calculation */
/* unit of 0.01% */
info->feature.engine_clk_ss_percentage = THREE_PERCENT_OF_10000;
else if (get_ss_info_v3_1(bp,
ASIC_INTERNAL_ENGINE_SS, index, &internal_ss) == BP_RESULT_OK) {
if (internal_ss.spread_spectrum_percentage) {
info->feature.engine_clk_ss_percentage =
internal_ss.spread_spectrum_percentage;
if (internal_ss.type.CENTER_MODE) {
/* if it is centermode, the exact SS Percentage
* will be round up of half of the percentage
* reported in the SS table */
++info->feature.engine_clk_ss_percentage;
info->feature.engine_clk_ss_percentage /= 2;
}
}
}
/* Remote Display */
info->remote_display_config = firmware_info->ucRemoteDisplayConfig;
/* Is allowed minimum BL level */
info->min_allowed_bl_level = firmware_info->ucMinAllowedBL_Level;
/* Used starting from CI */
info->smu_gpu_pll_output_freq =
(uint32_t) (le32_to_cpu(firmware_info->ulGPUPLL_OutputFreq) * 10);
return BP_RESULT_OK;
}
static enum bp_result get_ss_info_v3_1(
struct bios_parser *bp,
uint32_t id,
uint32_t index,
struct spread_spectrum_info *ss_info)
{
ATOM_ASIC_INTERNAL_SS_INFO_V3 *ss_table_header_include;
ATOM_ASIC_SS_ASSIGNMENT_V3 *tbl;
uint32_t table_size;
uint32_t i;
uint32_t table_index = 0;
if (!ss_info)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(ASIC_InternalSS_Info))
return BP_RESULT_UNSUPPORTED;
ss_table_header_include = ((ATOM_ASIC_INTERNAL_SS_INFO_V3 *) bios_get_image(&bp->base,
DATA_TABLES(ASIC_InternalSS_Info),
struct_size(ss_table_header_include, asSpreadSpectrum, 1)));
table_size =
(le16_to_cpu(ss_table_header_include->sHeader.usStructureSize)
- sizeof(ATOM_COMMON_TABLE_HEADER))
/ sizeof(ATOM_ASIC_SS_ASSIGNMENT_V3);
tbl = (ATOM_ASIC_SS_ASSIGNMENT_V3 *)
&ss_table_header_include->asSpreadSpectrum[0];
memset(ss_info, 0, sizeof(struct spread_spectrum_info));
for (i = 0; i < table_size; i++) {
if (tbl[i].ucClockIndication != (uint8_t) id)
continue;
if (table_index != index) {
table_index++;
continue;
}
/* VBIOS introduced new defines for Version 3, same values as
* before, so now use these new ones for Version 3.
* Shouldn't affect field VBIOS's V3 as define values are still
* same.
* #define SS_MODE_V3_CENTRE_SPREAD_MASK 0x01
* #define SS_MODE_V3_EXTERNAL_SS_MASK 0x02
* Old VBIOS defines:
* #define ATOM_SS_CENTRE_SPREAD_MODE_MASK 0x00000001
* #define ATOM_EXTERNAL_SS_MASK 0x00000002
*/
if (SS_MODE_V3_EXTERNAL_SS_MASK & tbl[i].ucSpreadSpectrumMode)
ss_info->type.EXTERNAL = true;
if (SS_MODE_V3_CENTRE_SPREAD_MASK & tbl[i].ucSpreadSpectrumMode)
ss_info->type.CENTER_MODE = true;
/* Older VBIOS (in field) always provides SS percentage in 0.01%
* units set Divider to 100 */
ss_info->spread_percentage_divider = 100;
/* #define SS_MODE_V3_PERCENTAGE_DIV_BY_1000_MASK 0x10 */
if (SS_MODE_V3_PERCENTAGE_DIV_BY_1000_MASK
& tbl[i].ucSpreadSpectrumMode)
ss_info->spread_percentage_divider = 1000;
ss_info->type.STEP_AND_DELAY_INFO = false;
/* convert [10KHz] into [KHz] */
ss_info->target_clock_range =
le32_to_cpu(tbl[i].ulTargetClockRange) * 10;
ss_info->spread_spectrum_percentage =
(uint32_t)le16_to_cpu(tbl[i].usSpreadSpectrumPercentage);
ss_info->spread_spectrum_range =
(uint32_t)(le16_to_cpu(tbl[i].usSpreadRateIn10Hz) * 10);
return BP_RESULT_OK;
}
return BP_RESULT_NORECORD;
}
static enum bp_result bios_parser_transmitter_control(
struct dc_bios *dcb,
struct bp_transmitter_control *cntl)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.transmitter_control)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.transmitter_control(bp, cntl);
}
static enum bp_result bios_parser_encoder_control(
struct dc_bios *dcb,
struct bp_encoder_control *cntl)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.dig_encoder_control)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.dig_encoder_control(bp, cntl);
}
static enum bp_result bios_parser_adjust_pixel_clock(
struct dc_bios *dcb,
struct bp_adjust_pixel_clock_parameters *bp_params)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.adjust_display_pll)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.adjust_display_pll(bp, bp_params);
}
static enum bp_result bios_parser_set_pixel_clock(
struct dc_bios *dcb,
struct bp_pixel_clock_parameters *bp_params)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.set_pixel_clock)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.set_pixel_clock(bp, bp_params);
}
static enum bp_result bios_parser_set_dce_clock(
struct dc_bios *dcb,
struct bp_set_dce_clock_parameters *bp_params)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.set_dce_clock)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.set_dce_clock(bp, bp_params);
}
static enum bp_result bios_parser_enable_spread_spectrum_on_ppll(
struct dc_bios *dcb,
struct bp_spread_spectrum_parameters *bp_params,
bool enable)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.enable_spread_spectrum_on_ppll)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.enable_spread_spectrum_on_ppll(
bp, bp_params, enable);
}
static enum bp_result bios_parser_program_crtc_timing(
struct dc_bios *dcb,
struct bp_hw_crtc_timing_parameters *bp_params)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.set_crtc_timing)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.set_crtc_timing(bp, bp_params);
}
static enum bp_result bios_parser_program_display_engine_pll(
struct dc_bios *dcb,
struct bp_pixel_clock_parameters *bp_params)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.program_clock)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.program_clock(bp, bp_params);
}
static enum bp_result bios_parser_enable_crtc(
struct dc_bios *dcb,
enum controller_id id,
bool enable)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.enable_crtc)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.enable_crtc(bp, id, enable);
}
static enum bp_result bios_parser_enable_disp_power_gating(
struct dc_bios *dcb,
enum controller_id controller_id,
enum bp_pipe_control_action action)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.enable_disp_power_gating)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.enable_disp_power_gating(bp, controller_id,
action);
}
static bool bios_parser_is_device_id_supported(
struct dc_bios *dcb,
struct device_id id)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
uint32_t mask = get_support_mask_for_device_id(id);
return (le16_to_cpu(bp->object_info_tbl.v1_1->usDeviceSupport) & mask) != 0;
}
static ATOM_HPD_INT_RECORD *get_hpd_record(struct bios_parser *bp,
ATOM_OBJECT *object)
{
ATOM_COMMON_RECORD_HEADER *header;
uint32_t offset;
if (!object) {
BREAK_TO_DEBUGGER(); /* Invalid object */
return NULL;
}
offset = le16_to_cpu(object->usRecordOffset)
+ bp->object_info_tbl_offset;
for (;;) {
header = GET_IMAGE(ATOM_COMMON_RECORD_HEADER, offset);
if (!header)
return NULL;
if (LAST_RECORD_TYPE == header->ucRecordType ||
!header->ucRecordSize)
break;
if (ATOM_HPD_INT_RECORD_TYPE == header->ucRecordType
&& sizeof(ATOM_HPD_INT_RECORD) <= header->ucRecordSize)
return (ATOM_HPD_INT_RECORD *) header;
offset += header->ucRecordSize;
}
return NULL;
}
static enum bp_result get_ss_info_from_ss_info_table(
struct bios_parser *bp,
uint32_t id,
struct spread_spectrum_info *ss_info);
static enum bp_result get_ss_info_from_tbl(
struct bios_parser *bp,
uint32_t id,
struct spread_spectrum_info *ss_info);
/**
* bios_parser_get_spread_spectrum_info
* Get spread spectrum information from the ASIC_InternalSS_Info(ver 2.1 or
* ver 3.1) or SS_Info table from the VBIOS. Currently ASIC_InternalSS_Info
* ver 2.1 can co-exist with SS_Info table. Expect ASIC_InternalSS_Info ver 3.1,
* there is only one entry for each signal /ss id. However, there is
* no planning of supporting multiple spread Sprectum entry for EverGreen
* @dcb: pointer to the DC BIOS
* @signal: ASSignalType to be converted to info index
* @index: number of entries that match the converted info index
* @ss_info: sprectrum information structure,
* return: Bios parser result code
*/
static enum bp_result bios_parser_get_spread_spectrum_info(
struct dc_bios *dcb,
enum as_signal_type signal,
uint32_t index,
struct spread_spectrum_info *ss_info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
enum bp_result result = BP_RESULT_UNSUPPORTED;
uint32_t clk_id_ss = 0;
ATOM_COMMON_TABLE_HEADER *header;
struct atom_data_revision tbl_revision;
if (!ss_info) /* check for bad input */
return BP_RESULT_BADINPUT;
/* signal translation */
clk_id_ss = signal_to_ss_id(signal);
if (!DATA_TABLES(ASIC_InternalSS_Info))
if (!index)
return get_ss_info_from_ss_info_table(bp, clk_id_ss,
ss_info);
header = GET_IMAGE(ATOM_COMMON_TABLE_HEADER,
DATA_TABLES(ASIC_InternalSS_Info));
get_atom_data_table_revision(header, &tbl_revision);
switch (tbl_revision.major) {
case 2:
switch (tbl_revision.minor) {
case 1:
/* there can not be more then one entry for Internal
* SS Info table version 2.1 */
if (!index)
return get_ss_info_from_tbl(bp, clk_id_ss,
ss_info);
break;
default:
break;
}
break;
case 3:
switch (tbl_revision.minor) {
case 1:
return get_ss_info_v3_1(bp, clk_id_ss, index, ss_info);
default:
break;
}
break;
default:
break;
}
/* there can not be more then one entry for SS Info table */
return result;
}
static enum bp_result get_ss_info_from_internal_ss_info_tbl_V2_1(
struct bios_parser *bp,
uint32_t id,
struct spread_spectrum_info *info);
/**
* get_ss_info_from_tbl
* Get spread sprectrum information from the ASIC_InternalSS_Info Ver 2.1 or
* SS_Info table from the VBIOS
* There can not be more than 1 entry for ASIC_InternalSS_Info Ver 2.1 or
* SS_Info.
*
* @bp: pointer to the BIOS parser
* @id: spread sprectrum info index
* @ss_info: sprectrum information structure,
* return: BIOS parser result code
*/
static enum bp_result get_ss_info_from_tbl(
struct bios_parser *bp,
uint32_t id,
struct spread_spectrum_info *ss_info)
{
if (!ss_info) /* check for bad input, if ss_info is not NULL */
return BP_RESULT_BADINPUT;
/* for SS_Info table only support DP and LVDS */
if (id == ASIC_INTERNAL_SS_ON_DP || id == ASIC_INTERNAL_SS_ON_LVDS)
return get_ss_info_from_ss_info_table(bp, id, ss_info);
else
return get_ss_info_from_internal_ss_info_tbl_V2_1(bp, id,
ss_info);
}
/**
* get_ss_info_from_internal_ss_info_tbl_V2_1
* Get spread sprectrum information from the ASIC_InternalSS_Info table Ver 2.1
* from the VBIOS
* There will not be multiple entry for Ver 2.1
*
* @bp: pointer to the Bios parser
* @id: spread sprectrum info index
* @info: sprectrum information structure,
* return: Bios parser result code
*/
static enum bp_result get_ss_info_from_internal_ss_info_tbl_V2_1(
struct bios_parser *bp,
uint32_t id,
struct spread_spectrum_info *info)
{
enum bp_result result = BP_RESULT_UNSUPPORTED;
ATOM_ASIC_INTERNAL_SS_INFO_V2 *header;
ATOM_ASIC_SS_ASSIGNMENT_V2 *tbl;
uint32_t tbl_size, i;
if (!DATA_TABLES(ASIC_InternalSS_Info))
return result;
header = ((ATOM_ASIC_INTERNAL_SS_INFO_V2 *) bios_get_image(
&bp->base,
DATA_TABLES(ASIC_InternalSS_Info),
struct_size(header, asSpreadSpectrum, 1)));
memset(info, 0, sizeof(struct spread_spectrum_info));
tbl_size = (le16_to_cpu(header->sHeader.usStructureSize)
- sizeof(ATOM_COMMON_TABLE_HEADER))
/ sizeof(ATOM_ASIC_SS_ASSIGNMENT_V2);
tbl = (ATOM_ASIC_SS_ASSIGNMENT_V2 *)
&(header->asSpreadSpectrum[0]);
for (i = 0; i < tbl_size; i++) {
result = BP_RESULT_NORECORD;
if (tbl[i].ucClockIndication != (uint8_t)id)
continue;
if (ATOM_EXTERNAL_SS_MASK
& tbl[i].ucSpreadSpectrumMode) {
info->type.EXTERNAL = true;
}
if (ATOM_SS_CENTRE_SPREAD_MODE_MASK
& tbl[i].ucSpreadSpectrumMode) {
info->type.CENTER_MODE = true;
}
info->type.STEP_AND_DELAY_INFO = false;
/* convert [10KHz] into [KHz] */
info->target_clock_range =
le32_to_cpu(tbl[i].ulTargetClockRange) * 10;
info->spread_spectrum_percentage =
(uint32_t)le16_to_cpu(tbl[i].usSpreadSpectrumPercentage);
info->spread_spectrum_range =
(uint32_t)(le16_to_cpu(tbl[i].usSpreadRateIn10Hz) * 10);
result = BP_RESULT_OK;
break;
}
return result;
}
/**
* get_ss_info_from_ss_info_table
* Get spread sprectrum information from the SS_Info table from the VBIOS
* if the pointer to info is NULL, indicate the caller what to know the number
* of entries that matches the id
* for, the SS_Info table, there should not be more than 1 entry match.
*
* @bp: pointer to the Bios parser
* @id: spread sprectrum id
* @ss_info: sprectrum information structure,
* return: Bios parser result code
*/
static enum bp_result get_ss_info_from_ss_info_table(
struct bios_parser *bp,
uint32_t id,
struct spread_spectrum_info *ss_info)
{
enum bp_result result = BP_RESULT_UNSUPPORTED;
ATOM_SPREAD_SPECTRUM_INFO *tbl;
ATOM_COMMON_TABLE_HEADER *header;
uint32_t table_size;
uint32_t i;
uint32_t id_local = SS_ID_UNKNOWN;
struct atom_data_revision revision;
/* exist of the SS_Info table */
/* check for bad input, pSSinfo can not be NULL */
if (!DATA_TABLES(SS_Info) || !ss_info)
return result;
header = GET_IMAGE(ATOM_COMMON_TABLE_HEADER, DATA_TABLES(SS_Info));
get_atom_data_table_revision(header, &revision);
tbl = GET_IMAGE(ATOM_SPREAD_SPECTRUM_INFO, DATA_TABLES(SS_Info));
if (1 != revision.major || 2 > revision.minor)
return result;
/* have to convert from Internal_SS format to SS_Info format */
switch (id) {
case ASIC_INTERNAL_SS_ON_DP:
id_local = SS_ID_DP1;
break;
case ASIC_INTERNAL_SS_ON_LVDS:
{
struct embedded_panel_info panel_info;
if (bios_parser_get_embedded_panel_info(&bp->base, &panel_info)
== BP_RESULT_OK)
id_local = panel_info.ss_id;
break;
}
default:
break;
}
if (id_local == SS_ID_UNKNOWN)
return result;
table_size = (le16_to_cpu(tbl->sHeader.usStructureSize) -
sizeof(ATOM_COMMON_TABLE_HEADER)) /
sizeof(ATOM_SPREAD_SPECTRUM_ASSIGNMENT);
for (i = 0; i < table_size; i++) {
if (id_local != (uint32_t)tbl->asSS_Info[i].ucSS_Id)
continue;
memset(ss_info, 0, sizeof(struct spread_spectrum_info));
if (ATOM_EXTERNAL_SS_MASK &
tbl->asSS_Info[i].ucSpreadSpectrumType)
ss_info->type.EXTERNAL = true;
if (ATOM_SS_CENTRE_SPREAD_MODE_MASK &
tbl->asSS_Info[i].ucSpreadSpectrumType)
ss_info->type.CENTER_MODE = true;
ss_info->type.STEP_AND_DELAY_INFO = true;
ss_info->spread_spectrum_percentage =
(uint32_t)le16_to_cpu(tbl->asSS_Info[i].usSpreadSpectrumPercentage);
ss_info->step_and_delay_info.step = tbl->asSS_Info[i].ucSS_Step;
ss_info->step_and_delay_info.delay =
tbl->asSS_Info[i].ucSS_Delay;
ss_info->step_and_delay_info.recommended_ref_div =
tbl->asSS_Info[i].ucRecommendedRef_Div;
ss_info->spread_spectrum_range =
(uint32_t)tbl->asSS_Info[i].ucSS_Range * 10000;
/* there will be only one entry for each display type in SS_info
* table */
result = BP_RESULT_OK;
break;
}
return result;
}
static enum bp_result get_embedded_panel_info_v1_2(
struct bios_parser *bp,
struct embedded_panel_info *info);
static enum bp_result get_embedded_panel_info_v1_3(
struct bios_parser *bp,
struct embedded_panel_info *info);
static enum bp_result bios_parser_get_embedded_panel_info(
struct dc_bios *dcb,
struct embedded_panel_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
ATOM_COMMON_TABLE_HEADER *hdr;
if (!DATA_TABLES(LCD_Info))
return BP_RESULT_FAILURE;
hdr = GET_IMAGE(ATOM_COMMON_TABLE_HEADER, DATA_TABLES(LCD_Info));
if (!hdr)
return BP_RESULT_BADBIOSTABLE;
switch (hdr->ucTableFormatRevision) {
case 1:
switch (hdr->ucTableContentRevision) {
case 0:
case 1:
case 2:
return get_embedded_panel_info_v1_2(bp, info);
case 3:
return get_embedded_panel_info_v1_3(bp, info);
default:
break;
}
break;
default:
break;
}
return BP_RESULT_FAILURE;
}
static enum bp_result get_embedded_panel_info_v1_2(
struct bios_parser *bp,
struct embedded_panel_info *info)
{
ATOM_LVDS_INFO_V12 *lvds;
if (!info)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(LVDS_Info))
return BP_RESULT_UNSUPPORTED;
lvds =
GET_IMAGE(ATOM_LVDS_INFO_V12, DATA_TABLES(LVDS_Info));
if (!lvds)
return BP_RESULT_BADBIOSTABLE;
if (1 != lvds->sHeader.ucTableFormatRevision
|| 2 > lvds->sHeader.ucTableContentRevision)
return BP_RESULT_UNSUPPORTED;
memset(info, 0, sizeof(struct embedded_panel_info));
/* We need to convert from 10KHz units into KHz units*/
info->lcd_timing.pixel_clk =
le16_to_cpu(lvds->sLCDTiming.usPixClk) * 10;
/* usHActive does not include borders, according to VBIOS team*/
info->lcd_timing.horizontal_addressable =
le16_to_cpu(lvds->sLCDTiming.usHActive);
/* usHBlanking_Time includes borders, so we should really be subtracting
* borders duing this translation, but LVDS generally*/
/* doesn't have borders, so we should be okay leaving this as is for
* now. May need to revisit if we ever have LVDS with borders*/
info->lcd_timing.horizontal_blanking_time =
le16_to_cpu(lvds->sLCDTiming.usHBlanking_Time);
/* usVActive does not include borders, according to VBIOS team*/
info->lcd_timing.vertical_addressable =
le16_to_cpu(lvds->sLCDTiming.usVActive);
/* usVBlanking_Time includes borders, so we should really be subtracting
* borders duing this translation, but LVDS generally*/
/* doesn't have borders, so we should be okay leaving this as is for
* now. May need to revisit if we ever have LVDS with borders*/
info->lcd_timing.vertical_blanking_time =
le16_to_cpu(lvds->sLCDTiming.usVBlanking_Time);
info->lcd_timing.horizontal_sync_offset =
le16_to_cpu(lvds->sLCDTiming.usHSyncOffset);
info->lcd_timing.horizontal_sync_width =
le16_to_cpu(lvds->sLCDTiming.usHSyncWidth);
info->lcd_timing.vertical_sync_offset =
le16_to_cpu(lvds->sLCDTiming.usVSyncOffset);
info->lcd_timing.vertical_sync_width =
le16_to_cpu(lvds->sLCDTiming.usVSyncWidth);
info->lcd_timing.horizontal_border = lvds->sLCDTiming.ucHBorder;
info->lcd_timing.vertical_border = lvds->sLCDTiming.ucVBorder;
info->lcd_timing.misc_info.HORIZONTAL_CUT_OFF =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.HorizontalCutOff;
info->lcd_timing.misc_info.H_SYNC_POLARITY =
~(uint32_t)
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.HSyncPolarity;
info->lcd_timing.misc_info.V_SYNC_POLARITY =
~(uint32_t)
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.VSyncPolarity;
info->lcd_timing.misc_info.VERTICAL_CUT_OFF =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.VerticalCutOff;
info->lcd_timing.misc_info.H_REPLICATION_BY2 =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.H_ReplicationBy2;
info->lcd_timing.misc_info.V_REPLICATION_BY2 =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.V_ReplicationBy2;
info->lcd_timing.misc_info.COMPOSITE_SYNC =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.CompositeSync;
info->lcd_timing.misc_info.INTERLACE =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.Interlace;
info->lcd_timing.misc_info.DOUBLE_CLOCK =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.DoubleClock;
info->ss_id = lvds->ucSS_Id;
{
uint8_t rr = le16_to_cpu(lvds->usSupportedRefreshRate);
/* Get minimum supported refresh rate*/
if (SUPPORTED_LCD_REFRESHRATE_30Hz & rr)
info->supported_rr.REFRESH_RATE_30HZ = 1;
else if (SUPPORTED_LCD_REFRESHRATE_40Hz & rr)
info->supported_rr.REFRESH_RATE_40HZ = 1;
else if (SUPPORTED_LCD_REFRESHRATE_48Hz & rr)
info->supported_rr.REFRESH_RATE_48HZ = 1;
else if (SUPPORTED_LCD_REFRESHRATE_50Hz & rr)
info->supported_rr.REFRESH_RATE_50HZ = 1;
else if (SUPPORTED_LCD_REFRESHRATE_60Hz & rr)
info->supported_rr.REFRESH_RATE_60HZ = 1;
}
/*Drr panel support can be reported by VBIOS*/
if (LCDPANEL_CAP_DRR_SUPPORTED
& lvds->ucLCDPanel_SpecialHandlingCap)
info->drr_enabled = 1;
if (ATOM_PANEL_MISC_DUAL & lvds->ucLVDS_Misc)
info->lcd_timing.misc_info.DOUBLE_CLOCK = true;
if (ATOM_PANEL_MISC_888RGB & lvds->ucLVDS_Misc)
info->lcd_timing.misc_info.RGB888 = true;
info->lcd_timing.misc_info.GREY_LEVEL =
(uint32_t) (ATOM_PANEL_MISC_GREY_LEVEL &
lvds->ucLVDS_Misc) >> ATOM_PANEL_MISC_GREY_LEVEL_SHIFT;
if (ATOM_PANEL_MISC_SPATIAL & lvds->ucLVDS_Misc)
info->lcd_timing.misc_info.SPATIAL = true;
if (ATOM_PANEL_MISC_TEMPORAL & lvds->ucLVDS_Misc)
info->lcd_timing.misc_info.TEMPORAL = true;
if (ATOM_PANEL_MISC_API_ENABLED & lvds->ucLVDS_Misc)
info->lcd_timing.misc_info.API_ENABLED = true;
return BP_RESULT_OK;
}
static enum bp_result get_embedded_panel_info_v1_3(
struct bios_parser *bp,
struct embedded_panel_info *info)
{
ATOM_LCD_INFO_V13 *lvds;
if (!info)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(LCD_Info))
return BP_RESULT_UNSUPPORTED;
lvds = GET_IMAGE(ATOM_LCD_INFO_V13, DATA_TABLES(LCD_Info));
if (!lvds)
return BP_RESULT_BADBIOSTABLE;
if (!((1 == lvds->sHeader.ucTableFormatRevision)
&& (3 <= lvds->sHeader.ucTableContentRevision)))
return BP_RESULT_UNSUPPORTED;
memset(info, 0, sizeof(struct embedded_panel_info));
/* We need to convert from 10KHz units into KHz units */
info->lcd_timing.pixel_clk =
le16_to_cpu(lvds->sLCDTiming.usPixClk) * 10;
/* usHActive does not include borders, according to VBIOS team */
info->lcd_timing.horizontal_addressable =
le16_to_cpu(lvds->sLCDTiming.usHActive);
/* usHBlanking_Time includes borders, so we should really be subtracting
* borders duing this translation, but LVDS generally*/
/* doesn't have borders, so we should be okay leaving this as is for
* now. May need to revisit if we ever have LVDS with borders*/
info->lcd_timing.horizontal_blanking_time =
le16_to_cpu(lvds->sLCDTiming.usHBlanking_Time);
/* usVActive does not include borders, according to VBIOS team*/
info->lcd_timing.vertical_addressable =
le16_to_cpu(lvds->sLCDTiming.usVActive);
/* usVBlanking_Time includes borders, so we should really be subtracting
* borders duing this translation, but LVDS generally*/
/* doesn't have borders, so we should be okay leaving this as is for
* now. May need to revisit if we ever have LVDS with borders*/
info->lcd_timing.vertical_blanking_time =
le16_to_cpu(lvds->sLCDTiming.usVBlanking_Time);
info->lcd_timing.horizontal_sync_offset =
le16_to_cpu(lvds->sLCDTiming.usHSyncOffset);
info->lcd_timing.horizontal_sync_width =
le16_to_cpu(lvds->sLCDTiming.usHSyncWidth);
info->lcd_timing.vertical_sync_offset =
le16_to_cpu(lvds->sLCDTiming.usVSyncOffset);
info->lcd_timing.vertical_sync_width =
le16_to_cpu(lvds->sLCDTiming.usVSyncWidth);
info->lcd_timing.horizontal_border = lvds->sLCDTiming.ucHBorder;
info->lcd_timing.vertical_border = lvds->sLCDTiming.ucVBorder;
info->lcd_timing.misc_info.HORIZONTAL_CUT_OFF =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.HorizontalCutOff;
info->lcd_timing.misc_info.H_SYNC_POLARITY =
~(uint32_t)
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.HSyncPolarity;
info->lcd_timing.misc_info.V_SYNC_POLARITY =
~(uint32_t)
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.VSyncPolarity;
info->lcd_timing.misc_info.VERTICAL_CUT_OFF =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.VerticalCutOff;
info->lcd_timing.misc_info.H_REPLICATION_BY2 =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.H_ReplicationBy2;
info->lcd_timing.misc_info.V_REPLICATION_BY2 =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.V_ReplicationBy2;
info->lcd_timing.misc_info.COMPOSITE_SYNC =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.CompositeSync;
info->lcd_timing.misc_info.INTERLACE =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.Interlace;
info->lcd_timing.misc_info.DOUBLE_CLOCK =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.DoubleClock;
info->ss_id = lvds->ucSS_Id;
/* Drr panel support can be reported by VBIOS*/
if (LCDPANEL_CAP_V13_DRR_SUPPORTED
& lvds->ucLCDPanel_SpecialHandlingCap)
info->drr_enabled = 1;
/* Get supported refresh rate*/
if (info->drr_enabled == 1) {
uint8_t min_rr =
lvds->sRefreshRateSupport.ucMinRefreshRateForDRR;
uint8_t rr = lvds->sRefreshRateSupport.ucSupportedRefreshRate;
if (min_rr != 0) {
if (SUPPORTED_LCD_REFRESHRATE_30Hz & min_rr)
info->supported_rr.REFRESH_RATE_30HZ = 1;
else if (SUPPORTED_LCD_REFRESHRATE_40Hz & min_rr)
info->supported_rr.REFRESH_RATE_40HZ = 1;
else if (SUPPORTED_LCD_REFRESHRATE_48Hz & min_rr)
info->supported_rr.REFRESH_RATE_48HZ = 1;
else if (SUPPORTED_LCD_REFRESHRATE_50Hz & min_rr)
info->supported_rr.REFRESH_RATE_50HZ = 1;
else if (SUPPORTED_LCD_REFRESHRATE_60Hz & min_rr)
info->supported_rr.REFRESH_RATE_60HZ = 1;
} else {
if (SUPPORTED_LCD_REFRESHRATE_30Hz & rr)
info->supported_rr.REFRESH_RATE_30HZ = 1;
else if (SUPPORTED_LCD_REFRESHRATE_40Hz & rr)
info->supported_rr.REFRESH_RATE_40HZ = 1;
else if (SUPPORTED_LCD_REFRESHRATE_48Hz & rr)
info->supported_rr.REFRESH_RATE_48HZ = 1;
else if (SUPPORTED_LCD_REFRESHRATE_50Hz & rr)
info->supported_rr.REFRESH_RATE_50HZ = 1;
else if (SUPPORTED_LCD_REFRESHRATE_60Hz & rr)
info->supported_rr.REFRESH_RATE_60HZ = 1;
}
}
if (ATOM_PANEL_MISC_V13_DUAL & lvds->ucLCD_Misc)
info->lcd_timing.misc_info.DOUBLE_CLOCK = true;
if (ATOM_PANEL_MISC_V13_8BIT_PER_COLOR & lvds->ucLCD_Misc)
info->lcd_timing.misc_info.RGB888 = true;
info->lcd_timing.misc_info.GREY_LEVEL =
(uint32_t) (ATOM_PANEL_MISC_V13_GREY_LEVEL &
lvds->ucLCD_Misc) >> ATOM_PANEL_MISC_V13_GREY_LEVEL_SHIFT;
return BP_RESULT_OK;
}
/**
* bios_parser_get_encoder_cap_info - get encoder capability
* information of input object id
*
* @dcb: pointer to the DC BIOS
* @object_id: object id
* @info: encoder cap information structure
*
* return: Bios parser result code
*/
static enum bp_result bios_parser_get_encoder_cap_info(
struct dc_bios *dcb,
struct graphics_object_id object_id,
struct bp_encoder_cap_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
ATOM_OBJECT *object;
ATOM_ENCODER_CAP_RECORD_V2 *record = NULL;
if (!info)
return BP_RESULT_BADINPUT;
object = get_bios_object(bp, object_id);
if (!object)
return BP_RESULT_BADINPUT;
record = get_encoder_cap_record(bp, object);
if (!record)
return BP_RESULT_NORECORD;
info->DP_HBR2_EN = record->usHBR2En;
info->DP_HBR3_EN = record->usHBR3En;
info->HDMI_6GB_EN = record->usHDMI6GEn;
return BP_RESULT_OK;
}
/**
* get_encoder_cap_record - Get encoder cap record for the object
*
* @bp: pointer to the BIOS parser
* @object: ATOM object
* return: atom encoder cap record
* note: search all records to find the ATOM_ENCODER_CAP_RECORD_V2 record
*/
static ATOM_ENCODER_CAP_RECORD_V2 *get_encoder_cap_record(
struct bios_parser *bp,
ATOM_OBJECT *object)
{
ATOM_COMMON_RECORD_HEADER *header;
uint32_t offset;
if (!object) {
BREAK_TO_DEBUGGER(); /* Invalid object */
return NULL;
}
offset = le16_to_cpu(object->usRecordOffset)
+ bp->object_info_tbl_offset;
for (;;) {
header = GET_IMAGE(ATOM_COMMON_RECORD_HEADER, offset);
if (!header)
return NULL;
offset += header->ucRecordSize;
if (LAST_RECORD_TYPE == header->ucRecordType ||
!header->ucRecordSize)
break;
if (ATOM_ENCODER_CAP_RECORD_TYPE != header->ucRecordType)
continue;
if (sizeof(ATOM_ENCODER_CAP_RECORD_V2) <= header->ucRecordSize)
return (ATOM_ENCODER_CAP_RECORD_V2 *)header;
}
return NULL;
}
static uint32_t get_ss_entry_number(
struct bios_parser *bp,
uint32_t id);
static uint32_t get_ss_entry_number_from_internal_ss_info_tbl_v2_1(
struct bios_parser *bp,
uint32_t id);
static uint32_t get_ss_entry_number_from_internal_ss_info_tbl_V3_1(
struct bios_parser *bp,
uint32_t id);
static uint32_t get_ss_entry_number_from_ss_info_tbl(
struct bios_parser *bp,
uint32_t id);
/**
* bios_parser_get_ss_entry_number
* Get Number of SpreadSpectrum Entry from the ASIC_InternalSS_Info table from
* the VBIOS that match the SSid (to be converted from signal)
*
* @dcb: pointer to the DC BIOS
* @signal: ASSignalType to be converted to SSid
* return: number of SS Entry that match the signal
*/
static uint32_t bios_parser_get_ss_entry_number(
struct dc_bios *dcb,
enum as_signal_type signal)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
uint32_t ss_id = 0;
ATOM_COMMON_TABLE_HEADER *header;
struct atom_data_revision revision;
ss_id = signal_to_ss_id(signal);
if (!DATA_TABLES(ASIC_InternalSS_Info))
return get_ss_entry_number_from_ss_info_tbl(bp, ss_id);
header = GET_IMAGE(ATOM_COMMON_TABLE_HEADER,
DATA_TABLES(ASIC_InternalSS_Info));
get_atom_data_table_revision(header, &revision);
switch (revision.major) {
case 2:
switch (revision.minor) {
case 1:
return get_ss_entry_number(bp, ss_id);
default:
break;
}
break;
case 3:
switch (revision.minor) {
case 1:
return
get_ss_entry_number_from_internal_ss_info_tbl_V3_1(
bp, ss_id);
default:
break;
}
break;
default:
break;
}
return 0;
}
/**
* get_ss_entry_number_from_ss_info_tbl
* Get Number of spread spectrum entry from the SS_Info table from the VBIOS.
*
* @bp: pointer to the BIOS parser
* @id: spread spectrum id
* return: number of SS Entry that match the id
* note: There can only be one entry for each id for SS_Info Table
*/
static uint32_t get_ss_entry_number_from_ss_info_tbl(
struct bios_parser *bp,
uint32_t id)
{
ATOM_SPREAD_SPECTRUM_INFO *tbl;
ATOM_COMMON_TABLE_HEADER *header;
uint32_t table_size;
uint32_t i;
uint32_t number = 0;
uint32_t id_local = SS_ID_UNKNOWN;
struct atom_data_revision revision;
/* SS_Info table exist */
if (!DATA_TABLES(SS_Info))
return number;
header = GET_IMAGE(ATOM_COMMON_TABLE_HEADER,
DATA_TABLES(SS_Info));
get_atom_data_table_revision(header, &revision);
tbl = GET_IMAGE(ATOM_SPREAD_SPECTRUM_INFO,
DATA_TABLES(SS_Info));
if (1 != revision.major || 2 > revision.minor)
return number;
/* have to convert from Internal_SS format to SS_Info format */
switch (id) {
case ASIC_INTERNAL_SS_ON_DP:
id_local = SS_ID_DP1;
break;
case ASIC_INTERNAL_SS_ON_LVDS: {
struct embedded_panel_info panel_info;
if (bios_parser_get_embedded_panel_info(&bp->base, &panel_info)
== BP_RESULT_OK)
id_local = panel_info.ss_id;
break;
}
default:
break;
}
if (id_local == SS_ID_UNKNOWN)
return number;
table_size = (le16_to_cpu(tbl->sHeader.usStructureSize) -
sizeof(ATOM_COMMON_TABLE_HEADER)) /
sizeof(ATOM_SPREAD_SPECTRUM_ASSIGNMENT);
for (i = 0; i < table_size; i++)
if (id_local == (uint32_t)tbl->asSS_Info[i].ucSS_Id) {
number = 1;
break;
}
return number;
}
/**
* get_ss_entry_number
* Get spread sprectrum information from the ASIC_InternalSS_Info Ver 2.1 or
* SS_Info table from the VBIOS
* There can not be more than 1 entry for ASIC_InternalSS_Info Ver 2.1 or
* SS_Info.
*
* @bp: pointer to the BIOS parser
* @id: spread sprectrum info index
* return: Bios parser result code
*/
static uint32_t get_ss_entry_number(struct bios_parser *bp, uint32_t id)
{
if (id == ASIC_INTERNAL_SS_ON_DP || id == ASIC_INTERNAL_SS_ON_LVDS)
return get_ss_entry_number_from_ss_info_tbl(bp, id);
return get_ss_entry_number_from_internal_ss_info_tbl_v2_1(bp, id);
}
/**
* get_ss_entry_number_from_internal_ss_info_tbl_v2_1
* Get NUmber of spread sprectrum entry from the ASIC_InternalSS_Info table
* Ver 2.1 from the VBIOS
* There will not be multiple entry for Ver 2.1
*
* @bp: pointer to the BIOS parser
* @id: spread sprectrum info index
* return: number of SS Entry that match the id
*/
static uint32_t get_ss_entry_number_from_internal_ss_info_tbl_v2_1(
struct bios_parser *bp,
uint32_t id)
{
ATOM_ASIC_INTERNAL_SS_INFO_V2 *header_include;
ATOM_ASIC_SS_ASSIGNMENT_V2 *tbl;
uint32_t size;
uint32_t i;
if (!DATA_TABLES(ASIC_InternalSS_Info))
return 0;
header_include = ((ATOM_ASIC_INTERNAL_SS_INFO_V2 *) bios_get_image(
&bp->base,
DATA_TABLES(ASIC_InternalSS_Info),
struct_size(header_include, asSpreadSpectrum, 1)));
size = (le16_to_cpu(header_include->sHeader.usStructureSize)
- sizeof(ATOM_COMMON_TABLE_HEADER))
/ sizeof(ATOM_ASIC_SS_ASSIGNMENT_V2);
tbl = (ATOM_ASIC_SS_ASSIGNMENT_V2 *)
&header_include->asSpreadSpectrum[0];
for (i = 0; i < size; i++)
if (tbl[i].ucClockIndication == (uint8_t)id)
return 1;
return 0;
}
/**
* get_ss_entry_number_from_internal_ss_info_tbl_V3_1
* Get Number of SpreadSpectrum Entry from the ASIC_InternalSS_Info table of
* the VBIOS that matches id
*
* @bp: pointer to the BIOS parser
* @id: spread sprectrum id
* return: number of SS Entry that match the id
*/
static uint32_t get_ss_entry_number_from_internal_ss_info_tbl_V3_1(
struct bios_parser *bp,
uint32_t id)
{
uint32_t number = 0;
ATOM_ASIC_INTERNAL_SS_INFO_V3 *header_include;
ATOM_ASIC_SS_ASSIGNMENT_V3 *tbl;
uint32_t size;
uint32_t i;
if (!DATA_TABLES(ASIC_InternalSS_Info))
return number;
header_include = ((ATOM_ASIC_INTERNAL_SS_INFO_V3 *) bios_get_image(&bp->base,
DATA_TABLES(ASIC_InternalSS_Info),
struct_size(header_include, asSpreadSpectrum, 1)));
size = (le16_to_cpu(header_include->sHeader.usStructureSize) -
sizeof(ATOM_COMMON_TABLE_HEADER)) /
sizeof(ATOM_ASIC_SS_ASSIGNMENT_V3);
tbl = (ATOM_ASIC_SS_ASSIGNMENT_V3 *)
&header_include->asSpreadSpectrum[0];
for (i = 0; i < size; i++)
if (tbl[i].ucClockIndication == (uint8_t)id)
number++;
return number;
}
/**
* bios_parser_get_gpio_pin_info
* Get GpioPin information of input gpio id
*
* @dcb: pointer to the DC BIOS
* @gpio_id: GPIO ID
* @info: GpioPin information structure
* return: Bios parser result code
* note:
* to get the GPIO PIN INFO, we need:
* 1. get the GPIO_ID from other object table, see GetHPDInfo()
* 2. in DATA_TABLE.GPIO_Pin_LUT, search all records, to get the registerA
* offset/mask
*/
static enum bp_result bios_parser_get_gpio_pin_info(
struct dc_bios *dcb,
uint32_t gpio_id,
struct gpio_pin_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
ATOM_GPIO_PIN_LUT *header;
uint32_t count = 0;
uint32_t i = 0;
if (!DATA_TABLES(GPIO_Pin_LUT))
return BP_RESULT_BADBIOSTABLE;
header = ((ATOM_GPIO_PIN_LUT *) bios_get_image(&bp->base,
DATA_TABLES(GPIO_Pin_LUT),
struct_size(header, asGPIO_Pin, 1)));
if (!header)
return BP_RESULT_BADBIOSTABLE;
if (sizeof(ATOM_COMMON_TABLE_HEADER) + struct_size(header, asGPIO_Pin, 1)
> le16_to_cpu(header->sHeader.usStructureSize))
return BP_RESULT_BADBIOSTABLE;
if (1 != header->sHeader.ucTableContentRevision)
return BP_RESULT_UNSUPPORTED;
count = (le16_to_cpu(header->sHeader.usStructureSize)
- sizeof(ATOM_COMMON_TABLE_HEADER))
/ sizeof(ATOM_GPIO_PIN_ASSIGNMENT);
for (i = 0; i < count; ++i) {
if (header->asGPIO_Pin[i].ucGPIO_ID != gpio_id)
continue;
info->offset =
(uint32_t) le16_to_cpu(header->asGPIO_Pin[i].usGpioPin_AIndex);
info->offset_y = info->offset + 2;
info->offset_en = info->offset + 1;
info->offset_mask = info->offset - 1;
info->mask = (uint32_t) (1 <<
header->asGPIO_Pin[i].ucGpioPinBitShift);
info->mask_y = info->mask + 2;
info->mask_en = info->mask + 1;
info->mask_mask = info->mask - 1;
return BP_RESULT_OK;
}
return BP_RESULT_NORECORD;
}
static enum bp_result get_gpio_i2c_info(struct bios_parser *bp,
ATOM_I2C_RECORD *record,
struct graphics_object_i2c_info *info)
{
ATOM_GPIO_I2C_INFO *header;
uint32_t count = 0;
if (!info)
return BP_RESULT_BADINPUT;
/* get the GPIO_I2C info */
if (!DATA_TABLES(GPIO_I2C_Info))
return BP_RESULT_BADBIOSTABLE;
header = GET_IMAGE(ATOM_GPIO_I2C_INFO, DATA_TABLES(GPIO_I2C_Info));
if (!header)
return BP_RESULT_BADBIOSTABLE;
if (sizeof(ATOM_COMMON_TABLE_HEADER) + sizeof(ATOM_GPIO_I2C_ASSIGMENT)
> le16_to_cpu(header->sHeader.usStructureSize))
return BP_RESULT_BADBIOSTABLE;
if (1 != header->sHeader.ucTableContentRevision)
return BP_RESULT_UNSUPPORTED;
/* get data count */
count = (le16_to_cpu(header->sHeader.usStructureSize)
- sizeof(ATOM_COMMON_TABLE_HEADER))
/ sizeof(ATOM_GPIO_I2C_ASSIGMENT);
if (count < record->sucI2cId.bfI2C_LineMux)
return BP_RESULT_BADBIOSTABLE;
/* get the GPIO_I2C_INFO */
info->i2c_hw_assist = record->sucI2cId.bfHW_Capable;
info->i2c_line = record->sucI2cId.bfI2C_LineMux;
info->i2c_engine_id = record->sucI2cId.bfHW_EngineID;
info->i2c_slave_address = record->ucI2CAddr;
info->gpio_info.clk_mask_register_index =
le16_to_cpu(header->asGPIO_Info[info->i2c_line].usClkMaskRegisterIndex);
info->gpio_info.clk_en_register_index =
le16_to_cpu(header->asGPIO_Info[info->i2c_line].usClkEnRegisterIndex);
info->gpio_info.clk_y_register_index =
le16_to_cpu(header->asGPIO_Info[info->i2c_line].usClkY_RegisterIndex);
info->gpio_info.clk_a_register_index =
le16_to_cpu(header->asGPIO_Info[info->i2c_line].usClkA_RegisterIndex);
info->gpio_info.data_mask_register_index =
le16_to_cpu(header->asGPIO_Info[info->i2c_line].usDataMaskRegisterIndex);
info->gpio_info.data_en_register_index =
le16_to_cpu(header->asGPIO_Info[info->i2c_line].usDataEnRegisterIndex);
info->gpio_info.data_y_register_index =
le16_to_cpu(header->asGPIO_Info[info->i2c_line].usDataY_RegisterIndex);
info->gpio_info.data_a_register_index =
le16_to_cpu(header->asGPIO_Info[info->i2c_line].usDataA_RegisterIndex);
info->gpio_info.clk_mask_shift =
header->asGPIO_Info[info->i2c_line].ucClkMaskShift;
info->gpio_info.clk_en_shift =
header->asGPIO_Info[info->i2c_line].ucClkEnShift;
info->gpio_info.clk_y_shift =
header->asGPIO_Info[info->i2c_line].ucClkY_Shift;
info->gpio_info.clk_a_shift =
header->asGPIO_Info[info->i2c_line].ucClkA_Shift;
info->gpio_info.data_mask_shift =
header->asGPIO_Info[info->i2c_line].ucDataMaskShift;
info->gpio_info.data_en_shift =
header->asGPIO_Info[info->i2c_line].ucDataEnShift;
info->gpio_info.data_y_shift =
header->asGPIO_Info[info->i2c_line].ucDataY_Shift;
info->gpio_info.data_a_shift =
header->asGPIO_Info[info->i2c_line].ucDataA_Shift;
return BP_RESULT_OK;
}
static bool dal_graphics_object_id_is_valid(struct graphics_object_id id)
{
bool rc = true;
switch (id.type) {
case OBJECT_TYPE_UNKNOWN:
rc = false;
break;
case OBJECT_TYPE_GPU:
case OBJECT_TYPE_ENGINE:
/* do NOT check for id.id == 0 */
if (id.enum_id == ENUM_ID_UNKNOWN)
rc = false;
break;
default:
if (id.id == 0 || id.enum_id == ENUM_ID_UNKNOWN)
rc = false;
break;
}
return rc;
}
static bool dal_graphics_object_id_is_equal(
struct graphics_object_id id1,
struct graphics_object_id id2)
{
if (false == dal_graphics_object_id_is_valid(id1)) {
dm_output_to_console(
"%s: Warning: comparing invalid object 'id1'!\n", __func__);
return false;
}
if (false == dal_graphics_object_id_is_valid(id2)) {
dm_output_to_console(
"%s: Warning: comparing invalid object 'id2'!\n", __func__);
return false;
}
if (id1.id == id2.id && id1.enum_id == id2.enum_id
&& id1.type == id2.type)
return true;
return false;
}
static ATOM_OBJECT *get_bios_object(struct bios_parser *bp,
struct graphics_object_id id)
{
uint32_t offset;
ATOM_OBJECT_TABLE *tbl;
uint32_t i;
switch (id.type) {
case OBJECT_TYPE_ENCODER:
offset = le16_to_cpu(bp->object_info_tbl.v1_1->usEncoderObjectTableOffset);
break;
case OBJECT_TYPE_CONNECTOR:
offset = le16_to_cpu(bp->object_info_tbl.v1_1->usConnectorObjectTableOffset);
break;
case OBJECT_TYPE_ROUTER:
offset = le16_to_cpu(bp->object_info_tbl.v1_1->usRouterObjectTableOffset);
break;
case OBJECT_TYPE_GENERIC:
if (bp->object_info_tbl.revision.minor < 3)
return NULL;
offset = le16_to_cpu(bp->object_info_tbl.v1_3->usMiscObjectTableOffset);
break;
default:
return NULL;
}
offset += bp->object_info_tbl_offset;
tbl = ((ATOM_OBJECT_TABLE *) bios_get_image(&bp->base, offset,
struct_size(tbl, asObjects, 1)));
if (!tbl)
return NULL;
for (i = 0; i < tbl->ucNumberOfObjects; i++)
if (dal_graphics_object_id_is_equal(id,
object_id_from_bios_object_id(
le16_to_cpu(tbl->asObjects[i].usObjectID))))
return &tbl->asObjects[i];
return NULL;
}
static uint32_t get_src_obj_list(struct bios_parser *bp, ATOM_OBJECT *object,
uint16_t **id_list)
{
uint32_t offset;
uint8_t *number;
if (!object) {
BREAK_TO_DEBUGGER(); /* Invalid object id */
return 0;
}
offset = le16_to_cpu(object->usSrcDstTableOffset)
+ bp->object_info_tbl_offset;
number = GET_IMAGE(uint8_t, offset);
if (!number)
return 0;
offset += sizeof(uint8_t);
*id_list = (uint16_t *)bios_get_image(&bp->base, offset, *number * sizeof(uint16_t));
if (!*id_list)
return 0;
return *number;
}
static struct device_id device_type_from_device_id(uint16_t device_id)
{
struct device_id result_device_id = {0};
switch (device_id) {
case ATOM_DEVICE_LCD1_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_LCD;
result_device_id.enum_id = 1;
break;
case ATOM_DEVICE_LCD2_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_LCD;
result_device_id.enum_id = 2;
break;
case ATOM_DEVICE_CRT1_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_CRT;
result_device_id.enum_id = 1;
break;
case ATOM_DEVICE_CRT2_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_CRT;
result_device_id.enum_id = 2;
break;
case ATOM_DEVICE_DFP1_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_DFP;
result_device_id.enum_id = 1;
break;
case ATOM_DEVICE_DFP2_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_DFP;
result_device_id.enum_id = 2;
break;
case ATOM_DEVICE_DFP3_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_DFP;
result_device_id.enum_id = 3;
break;
case ATOM_DEVICE_DFP4_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_DFP;
result_device_id.enum_id = 4;
break;
case ATOM_DEVICE_DFP5_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_DFP;
result_device_id.enum_id = 5;
break;
case ATOM_DEVICE_DFP6_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_DFP;
result_device_id.enum_id = 6;
break;
default:
BREAK_TO_DEBUGGER(); /* Invalid device Id */
result_device_id.device_type = DEVICE_TYPE_UNKNOWN;
result_device_id.enum_id = 0;
}
return result_device_id;
}
static void get_atom_data_table_revision(
ATOM_COMMON_TABLE_HEADER *atom_data_tbl,
struct atom_data_revision *tbl_revision)
{
if (!tbl_revision)
return;
/* initialize the revision to 0 which is invalid revision */
tbl_revision->major = 0;
tbl_revision->minor = 0;
if (!atom_data_tbl)
return;
tbl_revision->major =
(uint32_t) GET_DATA_TABLE_MAJOR_REVISION(atom_data_tbl);
tbl_revision->minor =
(uint32_t) GET_DATA_TABLE_MINOR_REVISION(atom_data_tbl);
}
static uint32_t signal_to_ss_id(enum as_signal_type signal)
{
uint32_t clk_id_ss = 0;
switch (signal) {
case AS_SIGNAL_TYPE_DVI:
clk_id_ss = ASIC_INTERNAL_SS_ON_TMDS;
break;
case AS_SIGNAL_TYPE_HDMI:
clk_id_ss = ASIC_INTERNAL_SS_ON_HDMI;
break;
case AS_SIGNAL_TYPE_LVDS:
clk_id_ss = ASIC_INTERNAL_SS_ON_LVDS;
break;
case AS_SIGNAL_TYPE_DISPLAY_PORT:
clk_id_ss = ASIC_INTERNAL_SS_ON_DP;
break;
case AS_SIGNAL_TYPE_GPU_PLL:
clk_id_ss = ASIC_INTERNAL_GPUPLL_SS;
break;
default:
break;
}
return clk_id_ss;
}
static uint32_t get_support_mask_for_device_id(struct device_id device_id)
{
enum dal_device_type device_type = device_id.device_type;
uint32_t enum_id = device_id.enum_id;
switch (device_type) {
case DEVICE_TYPE_LCD:
switch (enum_id) {
case 1:
return ATOM_DEVICE_LCD1_SUPPORT;
case 2:
return ATOM_DEVICE_LCD2_SUPPORT;
default:
break;
}
break;
case DEVICE_TYPE_CRT:
switch (enum_id) {
case 1:
return ATOM_DEVICE_CRT1_SUPPORT;
case 2:
return ATOM_DEVICE_CRT2_SUPPORT;
default:
break;
}
break;
case DEVICE_TYPE_DFP:
switch (enum_id) {
case 1:
return ATOM_DEVICE_DFP1_SUPPORT;
case 2:
return ATOM_DEVICE_DFP2_SUPPORT;
case 3:
return ATOM_DEVICE_DFP3_SUPPORT;
case 4:
return ATOM_DEVICE_DFP4_SUPPORT;
case 5:
return ATOM_DEVICE_DFP5_SUPPORT;
case 6:
return ATOM_DEVICE_DFP6_SUPPORT;
default:
break;
}
break;
case DEVICE_TYPE_CV:
switch (enum_id) {
case 1:
return ATOM_DEVICE_CV_SUPPORT;
default:
break;
}
break;
case DEVICE_TYPE_TV:
switch (enum_id) {
case 1:
return ATOM_DEVICE_TV1_SUPPORT;
default:
break;
}
break;
default:
break;
}
/* Unidentified device ID, return empty support mask. */
return 0;
}
/**
* bios_parser_set_scratch_critical_state - update critical state
* bit in VBIOS scratch register
* @dcb: pointer to the DC BIOS
* @state: set or reset state
*/
static void bios_parser_set_scratch_critical_state(
struct dc_bios *dcb,
bool state)
{
bios_set_scratch_critical_state(dcb, state);
}
/*
* get_integrated_info_v8
*
* @brief
* Get V8 integrated BIOS information
*
* @param
* bios_parser *bp - [in]BIOS parser handler to get master data table
* integrated_info *info - [out] store and output integrated info
*
* return:
* enum bp_result - BP_RESULT_OK if information is available,
* BP_RESULT_BADBIOSTABLE otherwise.
*/
static enum bp_result get_integrated_info_v8(
struct bios_parser *bp,
struct integrated_info *info)
{
ATOM_INTEGRATED_SYSTEM_INFO_V1_8 *info_v8;
uint32_t i;
info_v8 = GET_IMAGE(ATOM_INTEGRATED_SYSTEM_INFO_V1_8,
bp->master_data_tbl->ListOfDataTables.IntegratedSystemInfo);
if (info_v8 == NULL)
return BP_RESULT_BADBIOSTABLE;
info->boot_up_engine_clock = le32_to_cpu(info_v8->ulBootUpEngineClock) * 10;
info->dentist_vco_freq = le32_to_cpu(info_v8->ulDentistVCOFreq) * 10;
info->boot_up_uma_clock = le32_to_cpu(info_v8->ulBootUpUMAClock) * 10;
for (i = 0; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) {
/* Convert [10KHz] into [KHz] */
info->disp_clk_voltage[i].max_supported_clk =
le32_to_cpu(info_v8->sDISPCLK_Voltage[i].
ulMaximumSupportedCLK) * 10;
info->disp_clk_voltage[i].voltage_index =
le32_to_cpu(info_v8->sDISPCLK_Voltage[i].ulVoltageIndex);
}
info->boot_up_req_display_vector =
le32_to_cpu(info_v8->ulBootUpReqDisplayVector);
info->gpu_cap_info =
le32_to_cpu(info_v8->ulGPUCapInfo);
/*
* system_config: Bit[0] = 0 : PCIE power gating disabled
* = 1 : PCIE power gating enabled
* Bit[1] = 0 : DDR-PLL shut down disabled
* = 1 : DDR-PLL shut down enabled
* Bit[2] = 0 : DDR-PLL power down disabled
* = 1 : DDR-PLL power down enabled
*/
info->system_config = le32_to_cpu(info_v8->ulSystemConfig);
info->cpu_cap_info = le32_to_cpu(info_v8->ulCPUCapInfo);
info->boot_up_nb_voltage =
le16_to_cpu(info_v8->usBootUpNBVoltage);
info->ext_disp_conn_info_offset =
le16_to_cpu(info_v8->usExtDispConnInfoOffset);
info->memory_type = info_v8->ucMemoryType;
info->ma_channel_number = info_v8->ucUMAChannelNumber;
info->gmc_restore_reset_time =
le32_to_cpu(info_v8->ulGMCRestoreResetTime);
info->minimum_n_clk =
le32_to_cpu(info_v8->ulNbpStateNClkFreq[0]);
for (i = 1; i < 4; ++i)
info->minimum_n_clk =
info->minimum_n_clk < le32_to_cpu(info_v8->ulNbpStateNClkFreq[i]) ?
info->minimum_n_clk : le32_to_cpu(info_v8->ulNbpStateNClkFreq[i]);
info->idle_n_clk = le32_to_cpu(info_v8->ulIdleNClk);
info->ddr_dll_power_up_time =
le32_to_cpu(info_v8->ulDDR_DLL_PowerUpTime);
info->ddr_pll_power_up_time =
le32_to_cpu(info_v8->ulDDR_PLL_PowerUpTime);
info->pcie_clk_ss_type = le16_to_cpu(info_v8->usPCIEClkSSType);
info->lvds_ss_percentage =
le16_to_cpu(info_v8->usLvdsSSPercentage);
info->lvds_sspread_rate_in_10hz =
le16_to_cpu(info_v8->usLvdsSSpreadRateIn10Hz);
info->hdmi_ss_percentage =
le16_to_cpu(info_v8->usHDMISSPercentage);
info->hdmi_sspread_rate_in_10hz =
le16_to_cpu(info_v8->usHDMISSpreadRateIn10Hz);
info->dvi_ss_percentage =
le16_to_cpu(info_v8->usDVISSPercentage);
info->dvi_sspread_rate_in_10_hz =
le16_to_cpu(info_v8->usDVISSpreadRateIn10Hz);
info->max_lvds_pclk_freq_in_single_link =
le16_to_cpu(info_v8->usMaxLVDSPclkFreqInSingleLink);
info->lvds_misc = info_v8->ucLvdsMisc;
info->lvds_pwr_on_seq_dig_on_to_de_in_4ms =
info_v8->ucLVDSPwrOnSeqDIGONtoDE_in4Ms;
info->lvds_pwr_on_seq_de_to_vary_bl_in_4ms =
info_v8->ucLVDSPwrOnSeqDEtoVARY_BL_in4Ms;
info->lvds_pwr_on_seq_vary_bl_to_blon_in_4ms =
info_v8->ucLVDSPwrOnSeqVARY_BLtoBLON_in4Ms;
info->lvds_pwr_off_seq_vary_bl_to_de_in4ms =
info_v8->ucLVDSPwrOffSeqVARY_BLtoDE_in4Ms;
info->lvds_pwr_off_seq_de_to_dig_on_in4ms =
info_v8->ucLVDSPwrOffSeqDEtoDIGON_in4Ms;
info->lvds_pwr_off_seq_blon_to_vary_bl_in_4ms =
info_v8->ucLVDSPwrOffSeqBLONtoVARY_BL_in4Ms;
info->lvds_off_to_on_delay_in_4ms =
info_v8->ucLVDSOffToOnDelay_in4Ms;
info->lvds_bit_depth_control_val =
le32_to_cpu(info_v8->ulLCDBitDepthControlVal);
for (i = 0; i < NUMBER_OF_AVAILABLE_SCLK; ++i) {
/* Convert [10KHz] into [KHz] */
info->avail_s_clk[i].supported_s_clk =
le32_to_cpu(info_v8->sAvail_SCLK[i].ulSupportedSCLK) * 10;
info->avail_s_clk[i].voltage_index =
le16_to_cpu(info_v8->sAvail_SCLK[i].usVoltageIndex);
info->avail_s_clk[i].voltage_id =
le16_to_cpu(info_v8->sAvail_SCLK[i].usVoltageID);
}
for (i = 0; i < NUMBER_OF_UCHAR_FOR_GUID; ++i) {
info->ext_disp_conn_info.gu_id[i] =
info_v8->sExtDispConnInfo.ucGuid[i];
}
for (i = 0; i < MAX_NUMBER_OF_EXT_DISPLAY_PATH; ++i) {
info->ext_disp_conn_info.path[i].device_connector_id =
object_id_from_bios_object_id(
le16_to_cpu(info_v8->sExtDispConnInfo.sPath[i].usDeviceConnector));
info->ext_disp_conn_info.path[i].ext_encoder_obj_id =
object_id_from_bios_object_id(
le16_to_cpu(info_v8->sExtDispConnInfo.sPath[i].usExtEncoderObjId));
info->ext_disp_conn_info.path[i].device_tag =
le16_to_cpu(info_v8->sExtDispConnInfo.sPath[i].usDeviceTag);
info->ext_disp_conn_info.path[i].device_acpi_enum =
le16_to_cpu(info_v8->sExtDispConnInfo.sPath[i].usDeviceACPIEnum);
info->ext_disp_conn_info.path[i].ext_aux_ddc_lut_index =
info_v8->sExtDispConnInfo.sPath[i].ucExtAUXDDCLutIndex;
info->ext_disp_conn_info.path[i].ext_hpd_pin_lut_index =
info_v8->sExtDispConnInfo.sPath[i].ucExtHPDPINLutIndex;
info->ext_disp_conn_info.path[i].channel_mapping.raw =
info_v8->sExtDispConnInfo.sPath[i].ucChannelMapping;
}
info->ext_disp_conn_info.checksum =
info_v8->sExtDispConnInfo.ucChecksum;
return BP_RESULT_OK;
}
/*
* get_integrated_info_v8
*
* @brief
* Get V8 integrated BIOS information
*
* @param
* bios_parser *bp - [in]BIOS parser handler to get master data table
* integrated_info *info - [out] store and output integrated info
*
* return:
* enum bp_result - BP_RESULT_OK if information is available,
* BP_RESULT_BADBIOSTABLE otherwise.
*/
static enum bp_result get_integrated_info_v9(
struct bios_parser *bp,
struct integrated_info *info)
{
ATOM_INTEGRATED_SYSTEM_INFO_V1_9 *info_v9;
uint32_t i;
info_v9 = GET_IMAGE(ATOM_INTEGRATED_SYSTEM_INFO_V1_9,
bp->master_data_tbl->ListOfDataTables.IntegratedSystemInfo);
if (!info_v9)
return BP_RESULT_BADBIOSTABLE;
info->boot_up_engine_clock = le32_to_cpu(info_v9->ulBootUpEngineClock) * 10;
info->dentist_vco_freq = le32_to_cpu(info_v9->ulDentistVCOFreq) * 10;
info->boot_up_uma_clock = le32_to_cpu(info_v9->ulBootUpUMAClock) * 10;
for (i = 0; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) {
/* Convert [10KHz] into [KHz] */
info->disp_clk_voltage[i].max_supported_clk =
le32_to_cpu(info_v9->sDISPCLK_Voltage[i].ulMaximumSupportedCLK) * 10;
info->disp_clk_voltage[i].voltage_index =
le32_to_cpu(info_v9->sDISPCLK_Voltage[i].ulVoltageIndex);
}
info->boot_up_req_display_vector =
le32_to_cpu(info_v9->ulBootUpReqDisplayVector);
info->gpu_cap_info = le32_to_cpu(info_v9->ulGPUCapInfo);
/*
* system_config: Bit[0] = 0 : PCIE power gating disabled
* = 1 : PCIE power gating enabled
* Bit[1] = 0 : DDR-PLL shut down disabled
* = 1 : DDR-PLL shut down enabled
* Bit[2] = 0 : DDR-PLL power down disabled
* = 1 : DDR-PLL power down enabled
*/
info->system_config = le32_to_cpu(info_v9->ulSystemConfig);
info->cpu_cap_info = le32_to_cpu(info_v9->ulCPUCapInfo);
info->boot_up_nb_voltage = le16_to_cpu(info_v9->usBootUpNBVoltage);
info->ext_disp_conn_info_offset = le16_to_cpu(info_v9->usExtDispConnInfoOffset);
info->memory_type = info_v9->ucMemoryType;
info->ma_channel_number = info_v9->ucUMAChannelNumber;
info->gmc_restore_reset_time = le32_to_cpu(info_v9->ulGMCRestoreResetTime);
info->minimum_n_clk = le32_to_cpu(info_v9->ulNbpStateNClkFreq[0]);
for (i = 1; i < 4; ++i)
info->minimum_n_clk =
info->minimum_n_clk < le32_to_cpu(info_v9->ulNbpStateNClkFreq[i]) ?
info->minimum_n_clk : le32_to_cpu(info_v9->ulNbpStateNClkFreq[i]);
info->idle_n_clk = le32_to_cpu(info_v9->ulIdleNClk);
info->ddr_dll_power_up_time = le32_to_cpu(info_v9->ulDDR_DLL_PowerUpTime);
info->ddr_pll_power_up_time = le32_to_cpu(info_v9->ulDDR_PLL_PowerUpTime);
info->pcie_clk_ss_type = le16_to_cpu(info_v9->usPCIEClkSSType);
info->lvds_ss_percentage = le16_to_cpu(info_v9->usLvdsSSPercentage);
info->lvds_sspread_rate_in_10hz = le16_to_cpu(info_v9->usLvdsSSpreadRateIn10Hz);
info->hdmi_ss_percentage = le16_to_cpu(info_v9->usHDMISSPercentage);
info->hdmi_sspread_rate_in_10hz = le16_to_cpu(info_v9->usHDMISSpreadRateIn10Hz);
info->dvi_ss_percentage = le16_to_cpu(info_v9->usDVISSPercentage);
info->dvi_sspread_rate_in_10_hz = le16_to_cpu(info_v9->usDVISSpreadRateIn10Hz);
info->max_lvds_pclk_freq_in_single_link =
le16_to_cpu(info_v9->usMaxLVDSPclkFreqInSingleLink);
info->lvds_misc = info_v9->ucLvdsMisc;
info->lvds_pwr_on_seq_dig_on_to_de_in_4ms =
info_v9->ucLVDSPwrOnSeqDIGONtoDE_in4Ms;
info->lvds_pwr_on_seq_de_to_vary_bl_in_4ms =
info_v9->ucLVDSPwrOnSeqDEtoVARY_BL_in4Ms;
info->lvds_pwr_on_seq_vary_bl_to_blon_in_4ms =
info_v9->ucLVDSPwrOnSeqVARY_BLtoBLON_in4Ms;
info->lvds_pwr_off_seq_vary_bl_to_de_in4ms =
info_v9->ucLVDSPwrOffSeqVARY_BLtoDE_in4Ms;
info->lvds_pwr_off_seq_de_to_dig_on_in4ms =
info_v9->ucLVDSPwrOffSeqDEtoDIGON_in4Ms;
info->lvds_pwr_off_seq_blon_to_vary_bl_in_4ms =
info_v9->ucLVDSPwrOffSeqBLONtoVARY_BL_in4Ms;
info->lvds_off_to_on_delay_in_4ms =
info_v9->ucLVDSOffToOnDelay_in4Ms;
info->lvds_bit_depth_control_val =
le32_to_cpu(info_v9->ulLCDBitDepthControlVal);
for (i = 0; i < NUMBER_OF_AVAILABLE_SCLK; ++i) {
/* Convert [10KHz] into [KHz] */
info->avail_s_clk[i].supported_s_clk =
le32_to_cpu(info_v9->sAvail_SCLK[i].ulSupportedSCLK) * 10;
info->avail_s_clk[i].voltage_index =
le16_to_cpu(info_v9->sAvail_SCLK[i].usVoltageIndex);
info->avail_s_clk[i].voltage_id =
le16_to_cpu(info_v9->sAvail_SCLK[i].usVoltageID);
}
for (i = 0; i < NUMBER_OF_UCHAR_FOR_GUID; ++i) {
info->ext_disp_conn_info.gu_id[i] =
info_v9->sExtDispConnInfo.ucGuid[i];
}
for (i = 0; i < MAX_NUMBER_OF_EXT_DISPLAY_PATH; ++i) {
info->ext_disp_conn_info.path[i].device_connector_id =
object_id_from_bios_object_id(
le16_to_cpu(info_v9->sExtDispConnInfo.sPath[i].usDeviceConnector));
info->ext_disp_conn_info.path[i].ext_encoder_obj_id =
object_id_from_bios_object_id(
le16_to_cpu(info_v9->sExtDispConnInfo.sPath[i].usExtEncoderObjId));
info->ext_disp_conn_info.path[i].device_tag =
le16_to_cpu(info_v9->sExtDispConnInfo.sPath[i].usDeviceTag);
info->ext_disp_conn_info.path[i].device_acpi_enum =
le16_to_cpu(info_v9->sExtDispConnInfo.sPath[i].usDeviceACPIEnum);
info->ext_disp_conn_info.path[i].ext_aux_ddc_lut_index =
info_v9->sExtDispConnInfo.sPath[i].ucExtAUXDDCLutIndex;
info->ext_disp_conn_info.path[i].ext_hpd_pin_lut_index =
info_v9->sExtDispConnInfo.sPath[i].ucExtHPDPINLutIndex;
info->ext_disp_conn_info.path[i].channel_mapping.raw =
info_v9->sExtDispConnInfo.sPath[i].ucChannelMapping;
}
info->ext_disp_conn_info.checksum =
info_v9->sExtDispConnInfo.ucChecksum;
return BP_RESULT_OK;
}
/*
* construct_integrated_info
*
* @brief
* Get integrated BIOS information based on table revision
*
* @param
* bios_parser *bp - [in]BIOS parser handler to get master data table
* integrated_info *info - [out] store and output integrated info
*
* return:
* enum bp_result - BP_RESULT_OK if information is available,
* BP_RESULT_BADBIOSTABLE otherwise.
*/
static enum bp_result construct_integrated_info(
struct bios_parser *bp,
struct integrated_info *info)
{
enum bp_result result = BP_RESULT_BADBIOSTABLE;
ATOM_COMMON_TABLE_HEADER *header;
struct atom_data_revision revision;
if (bp->master_data_tbl->ListOfDataTables.IntegratedSystemInfo) {
header = GET_IMAGE(ATOM_COMMON_TABLE_HEADER,
bp->master_data_tbl->ListOfDataTables.IntegratedSystemInfo);
get_atom_data_table_revision(header, &revision);
/* Don't need to check major revision as they are all 1 */
switch (revision.minor) {
case 8:
result = get_integrated_info_v8(bp, info);
break;
case 9:
result = get_integrated_info_v9(bp, info);
break;
default:
return result;
}
}
/* Sort voltage table from low to high*/
if (result == BP_RESULT_OK) {
uint32_t i;
uint32_t j;
for (i = 1; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) {
for (j = i; j > 0; --j) {
if (
info->disp_clk_voltage[j].max_supported_clk <
info->disp_clk_voltage[j-1].max_supported_clk) {
/* swap j and j - 1*/
swap(info->disp_clk_voltage[j - 1],
info->disp_clk_voltage[j]);
}
}
}
}
return result;
}
static struct integrated_info *bios_parser_create_integrated_info(
struct dc_bios *dcb)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
struct integrated_info *info;
info = kzalloc(sizeof(struct integrated_info), GFP_KERNEL);
if (info == NULL) {
ASSERT_CRITICAL(0);
return NULL;
}
if (construct_integrated_info(bp, info) == BP_RESULT_OK)
return info;
kfree(info);
return NULL;
}
static enum bp_result update_slot_layout_info(struct dc_bios *dcb,
unsigned int i,
struct slot_layout_info *slot_layout_info,
unsigned int record_offset)
{
unsigned int j;
struct bios_parser *bp;
ATOM_BRACKET_LAYOUT_RECORD *record;
ATOM_COMMON_RECORD_HEADER *record_header;
enum bp_result result = BP_RESULT_NORECORD;
bp = BP_FROM_DCB(dcb);
record = NULL;
record_header = NULL;
for (;;) {
record_header = GET_IMAGE(ATOM_COMMON_RECORD_HEADER, record_offset);
if (record_header == NULL) {
result = BP_RESULT_BADBIOSTABLE;
break;
}
/* the end of the list */
if (record_header->ucRecordType == 0xff ||
record_header->ucRecordSize == 0) {
break;
}
if (record_header->ucRecordType ==
ATOM_BRACKET_LAYOUT_RECORD_TYPE &&
struct_size(record, asConnInfo, 1)
<= record_header->ucRecordSize) {
record = (ATOM_BRACKET_LAYOUT_RECORD *)
(record_header);
result = BP_RESULT_OK;
break;
}
record_offset += record_header->ucRecordSize;
}
/* return if the record not found */
if (result != BP_RESULT_OK)
return result;
/* get slot sizes */
slot_layout_info->length = record->ucLength;
slot_layout_info->width = record->ucWidth;
/* get info for each connector in the slot */
slot_layout_info->num_of_connectors = record->ucConnNum;
for (j = 0; j < slot_layout_info->num_of_connectors; ++j) {
slot_layout_info->connectors[j].connector_type =
(enum connector_layout_type)
(record->asConnInfo[j].ucConnectorType);
switch (record->asConnInfo[j].ucConnectorType) {
case CONNECTOR_TYPE_DVI_D:
slot_layout_info->connectors[j].connector_type =
CONNECTOR_LAYOUT_TYPE_DVI_D;
slot_layout_info->connectors[j].length =
CONNECTOR_SIZE_DVI;
break;
case CONNECTOR_TYPE_HDMI:
slot_layout_info->connectors[j].connector_type =
CONNECTOR_LAYOUT_TYPE_HDMI;
slot_layout_info->connectors[j].length =
CONNECTOR_SIZE_HDMI;
break;
case CONNECTOR_TYPE_DISPLAY_PORT:
slot_layout_info->connectors[j].connector_type =
CONNECTOR_LAYOUT_TYPE_DP;
slot_layout_info->connectors[j].length =
CONNECTOR_SIZE_DP;
break;
case CONNECTOR_TYPE_MINI_DISPLAY_PORT:
slot_layout_info->connectors[j].connector_type =
CONNECTOR_LAYOUT_TYPE_MINI_DP;
slot_layout_info->connectors[j].length =
CONNECTOR_SIZE_MINI_DP;
break;
default:
slot_layout_info->connectors[j].connector_type =
CONNECTOR_LAYOUT_TYPE_UNKNOWN;
slot_layout_info->connectors[j].length =
CONNECTOR_SIZE_UNKNOWN;
}
slot_layout_info->connectors[j].position =
record->asConnInfo[j].ucPosition;
slot_layout_info->connectors[j].connector_id =
object_id_from_bios_object_id(
record->asConnInfo[j].usConnectorObjectId);
}
return result;
}
static enum bp_result get_bracket_layout_record(struct dc_bios *dcb,
unsigned int bracket_layout_id,
struct slot_layout_info *slot_layout_info)
{
unsigned int i;
unsigned int record_offset;
struct bios_parser *bp;
enum bp_result result;
ATOM_OBJECT *object;
ATOM_OBJECT_TABLE *object_table;
unsigned int genericTableOffset;
bp = BP_FROM_DCB(dcb);
object = NULL;
if (slot_layout_info == NULL) {
DC_LOG_DETECTION_EDID_PARSER("Invalid slot_layout_info\n");
return BP_RESULT_BADINPUT;
}
genericTableOffset = bp->object_info_tbl_offset +
bp->object_info_tbl.v1_3->usMiscObjectTableOffset;
object_table = ((ATOM_OBJECT_TABLE *) bios_get_image(&bp->base,
genericTableOffset,
struct_size(object_table, asObjects, 1)));
if (!object_table)
return BP_RESULT_FAILURE;
result = BP_RESULT_NORECORD;
for (i = 0; i < object_table->ucNumberOfObjects; ++i) {
if (bracket_layout_id ==
object_table->asObjects[i].usObjectID) {
object = &object_table->asObjects[i];
record_offset = object->usRecordOffset +
bp->object_info_tbl_offset;
result = update_slot_layout_info(dcb, i,
slot_layout_info, record_offset);
break;
}
}
return result;
}
static enum bp_result bios_get_board_layout_info(
struct dc_bios *dcb,
struct board_layout_info *board_layout_info)
{
unsigned int i;
enum bp_result record_result;
const unsigned int slot_index_to_vbios_id[MAX_BOARD_SLOTS] = {
GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID1,
GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID2,
0, 0
};
if (board_layout_info == NULL) {
DC_LOG_DETECTION_EDID_PARSER("Invalid board_layout_info\n");
return BP_RESULT_BADINPUT;
}
board_layout_info->num_of_slots = 0;
for (i = 0; i < MAX_BOARD_SLOTS; ++i) {
record_result = get_bracket_layout_record(dcb,
slot_index_to_vbios_id[i],
&board_layout_info->slots[i]);
if (record_result == BP_RESULT_NORECORD && i > 0)
break; /* no more slots present in bios */
else if (record_result != BP_RESULT_OK)
return record_result; /* fail */
++board_layout_info->num_of_slots;
}
/* all data is valid */
board_layout_info->is_number_of_slots_valid = 1;
board_layout_info->is_slots_size_valid = 1;
board_layout_info->is_connector_offsets_valid = 1;
board_layout_info->is_connector_lengths_valid = 1;
return BP_RESULT_OK;
}
/******************************************************************************/
static const struct dc_vbios_funcs vbios_funcs = {
.get_connectors_number = bios_parser_get_connectors_number,
.get_connector_id = bios_parser_get_connector_id,
.get_src_obj = bios_parser_get_src_obj,
.get_i2c_info = bios_parser_get_i2c_info,
.get_hpd_info = bios_parser_get_hpd_info,
.get_device_tag = bios_parser_get_device_tag,
.get_spread_spectrum_info = bios_parser_get_spread_spectrum_info,
.get_ss_entry_number = bios_parser_get_ss_entry_number,
.get_embedded_panel_info = bios_parser_get_embedded_panel_info,
.get_gpio_pin_info = bios_parser_get_gpio_pin_info,
.get_encoder_cap_info = bios_parser_get_encoder_cap_info,
/* bios scratch register communication */
.is_accelerated_mode = bios_is_accelerated_mode,
.set_scratch_critical_state = bios_parser_set_scratch_critical_state,
.is_device_id_supported = bios_parser_is_device_id_supported,
/* COMMANDS */
.encoder_control = bios_parser_encoder_control,
.transmitter_control = bios_parser_transmitter_control,
.enable_crtc = bios_parser_enable_crtc,
.adjust_pixel_clock = bios_parser_adjust_pixel_clock,
.set_pixel_clock = bios_parser_set_pixel_clock,
.set_dce_clock = bios_parser_set_dce_clock,
.enable_spread_spectrum_on_ppll = bios_parser_enable_spread_spectrum_on_ppll,
.program_crtc_timing = bios_parser_program_crtc_timing, /* still use. should probably retire and program directly */
.program_display_engine_pll = bios_parser_program_display_engine_pll,
.enable_disp_power_gating = bios_parser_enable_disp_power_gating,
/* SW init and patch */
.bios_parser_destroy = bios_parser_destroy,
.get_board_layout_info = bios_get_board_layout_info,
.get_atom_dc_golden_table = NULL
};
static bool bios_parser_construct(
struct bios_parser *bp,
struct bp_init_data *init,
enum dce_version dce_version)
{
uint16_t *rom_header_offset = NULL;
ATOM_ROM_HEADER *rom_header = NULL;
ATOM_OBJECT_HEADER *object_info_tbl;
struct atom_data_revision tbl_rev = {0};
if (!init)
return false;
if (!init->bios)
return false;
bp->base.funcs = &vbios_funcs;
bp->base.bios = init->bios;
bp->base.bios_size = bp->base.bios[BIOS_IMAGE_SIZE_OFFSET] * BIOS_IMAGE_SIZE_UNIT;
bp->base.ctx = init->ctx;
bp->base.bios_local_image = NULL;
rom_header_offset =
GET_IMAGE(uint16_t, OFFSET_TO_POINTER_TO_ATOM_ROM_HEADER);
if (!rom_header_offset)
return false;
rom_header = GET_IMAGE(ATOM_ROM_HEADER, *rom_header_offset);
if (!rom_header)
return false;
get_atom_data_table_revision(&rom_header->sHeader, &tbl_rev);
if (tbl_rev.major >= 2 && tbl_rev.minor >= 2)
return false;
bp->master_data_tbl =
GET_IMAGE(ATOM_MASTER_DATA_TABLE,
rom_header->usMasterDataTableOffset);
if (!bp->master_data_tbl)
return false;
bp->object_info_tbl_offset = DATA_TABLES(Object_Header);
if (!bp->object_info_tbl_offset)
return false;
object_info_tbl =
GET_IMAGE(ATOM_OBJECT_HEADER, bp->object_info_tbl_offset);
if (!object_info_tbl)
return false;
get_atom_data_table_revision(&object_info_tbl->sHeader,
&bp->object_info_tbl.revision);
if (bp->object_info_tbl.revision.major == 1
&& bp->object_info_tbl.revision.minor >= 3) {
ATOM_OBJECT_HEADER_V3 *tbl_v3;
tbl_v3 = GET_IMAGE(ATOM_OBJECT_HEADER_V3,
bp->object_info_tbl_offset);
if (!tbl_v3)
return false;
bp->object_info_tbl.v1_3 = tbl_v3;
} else if (bp->object_info_tbl.revision.major == 1
&& bp->object_info_tbl.revision.minor >= 1)
bp->object_info_tbl.v1_1 = object_info_tbl;
else
return false;
dal_bios_parser_init_cmd_tbl(bp);
dal_bios_parser_init_cmd_tbl_helper(&bp->cmd_helper, dce_version);
bp->base.integrated_info = bios_parser_create_integrated_info(&bp->base);
bp->base.fw_info_valid = bios_parser_get_firmware_info(&bp->base, &bp->base.fw_info) == BP_RESULT_OK;
return true;
}
/******************************************************************************/
| linux-master | drivers/gpu/drm/amd/display/dc/bios/bios_parser.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "atom.h"
#include "include/bios_parser_types.h"
#include "command_table_helper.h"
bool dal_bios_parser_init_cmd_tbl_helper(
const struct command_table_helper **h,
enum dce_version dce)
{
switch (dce) {
#if defined(CONFIG_DRM_AMD_DC_SI)
case DCE_VERSION_6_0:
case DCE_VERSION_6_1:
case DCE_VERSION_6_4:
*h = dal_cmd_tbl_helper_dce60_get_table();
return true;
#endif
case DCE_VERSION_8_0:
case DCE_VERSION_8_1:
case DCE_VERSION_8_3:
*h = dal_cmd_tbl_helper_dce80_get_table();
return true;
case DCE_VERSION_10_0:
*h = dal_cmd_tbl_helper_dce110_get_table();
return true;
case DCE_VERSION_11_0:
*h = dal_cmd_tbl_helper_dce110_get_table();
return true;
case DCE_VERSION_11_2:
case DCE_VERSION_11_22:
*h = dal_cmd_tbl_helper_dce112_get_table();
return true;
default:
/* Unsupported DCE */
BREAK_TO_DEBUGGER();
return false;
}
}
/* real implementations */
bool dal_cmd_table_helper_controller_id_to_atom(
enum controller_id id,
uint8_t *atom_id)
{
if (atom_id == NULL) {
BREAK_TO_DEBUGGER();
return false;
}
switch (id) {
case CONTROLLER_ID_D0:
*atom_id = ATOM_CRTC1;
return true;
case CONTROLLER_ID_D1:
*atom_id = ATOM_CRTC2;
return true;
case CONTROLLER_ID_D2:
*atom_id = ATOM_CRTC3;
return true;
case CONTROLLER_ID_D3:
*atom_id = ATOM_CRTC4;
return true;
case CONTROLLER_ID_D4:
*atom_id = ATOM_CRTC5;
return true;
case CONTROLLER_ID_D5:
*atom_id = ATOM_CRTC6;
return true;
case CONTROLLER_ID_UNDERLAY0:
*atom_id = ATOM_UNDERLAY_PIPE0;
return true;
case CONTROLLER_ID_UNDEFINED:
*atom_id = ATOM_CRTC_INVALID;
return true;
default:
/* Wrong controller id */
BREAK_TO_DEBUGGER();
return false;
}
}
/**
* dal_cmd_table_helper_transmitter_bp_to_atom - Translate the Transmitter to the
* corresponding ATOM BIOS value
* @t: transmitter
* returns: output digitalTransmitter
* // =00: Digital Transmitter1 ( UNIPHY linkAB )
* // =01: Digital Transmitter2 ( UNIPHY linkCD )
* // =02: Digital Transmitter3 ( UNIPHY linkEF )
*/
uint8_t dal_cmd_table_helper_transmitter_bp_to_atom(
enum transmitter t)
{
switch (t) {
case TRANSMITTER_UNIPHY_A:
case TRANSMITTER_UNIPHY_B:
case TRANSMITTER_TRAVIS_LCD:
return 0;
case TRANSMITTER_UNIPHY_C:
case TRANSMITTER_UNIPHY_D:
return 1;
case TRANSMITTER_UNIPHY_E:
case TRANSMITTER_UNIPHY_F:
return 2;
default:
/* Invalid Transmitter Type! */
BREAK_TO_DEBUGGER();
return 0;
}
}
uint32_t dal_cmd_table_helper_encoder_mode_bp_to_atom(
enum signal_type s,
bool enable_dp_audio)
{
switch (s) {
case SIGNAL_TYPE_DVI_SINGLE_LINK:
case SIGNAL_TYPE_DVI_DUAL_LINK:
return ATOM_ENCODER_MODE_DVI;
case SIGNAL_TYPE_HDMI_TYPE_A:
return ATOM_ENCODER_MODE_HDMI;
case SIGNAL_TYPE_LVDS:
return ATOM_ENCODER_MODE_LVDS;
case SIGNAL_TYPE_EDP:
case SIGNAL_TYPE_DISPLAY_PORT_MST:
case SIGNAL_TYPE_DISPLAY_PORT:
case SIGNAL_TYPE_VIRTUAL:
if (enable_dp_audio)
return ATOM_ENCODER_MODE_DP_AUDIO;
else
return ATOM_ENCODER_MODE_DP;
case SIGNAL_TYPE_RGB:
return ATOM_ENCODER_MODE_CRT;
default:
return ATOM_ENCODER_MODE_CRT;
}
}
void dal_cmd_table_helper_assign_control_parameter(
const struct command_table_helper *h,
struct bp_encoder_control *control,
DIG_ENCODER_CONTROL_PARAMETERS_V2 *ctrl_param)
{
/* there are three transmitter blocks, each one has two links 4-lanes
* each, A+B, C+D, E+F, Uniphy A, C and E are enumerated as link 0 in
* each transmitter block B, D and F as link 1, third transmitter block
* has non splitable links (UniphyE and UniphyF can not be configured
* separately to drive two different streams)
*/
if ((control->transmitter == TRANSMITTER_UNIPHY_B) ||
(control->transmitter == TRANSMITTER_UNIPHY_D) ||
(control->transmitter == TRANSMITTER_UNIPHY_F)) {
/* Bit2: Link Select
* =0: PHY linkA/C/E
* =1: PHY linkB/D/F
*/
ctrl_param->acConfig.ucLinkSel = 1;
}
/* Bit[4:3]: Transmitter Selection
* =00: Digital Transmitter1 ( UNIPHY linkAB )
* =01: Digital Transmitter2 ( UNIPHY linkCD )
* =02: Digital Transmitter3 ( UNIPHY linkEF )
* =03: Reserved
*/
ctrl_param->acConfig.ucTransmitterSel =
(uint8_t)(h->transmitter_bp_to_atom(control->transmitter));
/* We need to convert from KHz units into 10KHz units */
ctrl_param->ucAction = h->encoder_action_to_atom(control->action);
ctrl_param->usPixelClock = cpu_to_le16((uint16_t)(control->pixel_clock / 10));
ctrl_param->ucEncoderMode =
(uint8_t)(h->encoder_mode_bp_to_atom(
control->signal, control->enable_dp_audio));
ctrl_param->ucLaneNum = (uint8_t)(control->lanes_number);
}
bool dal_cmd_table_helper_clock_source_id_to_ref_clk_src(
enum clock_source_id id,
uint32_t *ref_clk_src_id)
{
if (ref_clk_src_id == NULL) {
BREAK_TO_DEBUGGER();
return false;
}
switch (id) {
case CLOCK_SOURCE_ID_PLL1:
*ref_clk_src_id = ENCODER_REFCLK_SRC_P1PLL;
return true;
case CLOCK_SOURCE_ID_PLL2:
*ref_clk_src_id = ENCODER_REFCLK_SRC_P2PLL;
return true;
case CLOCK_SOURCE_ID_DCPLL:
*ref_clk_src_id = ENCODER_REFCLK_SRC_DCPLL;
return true;
case CLOCK_SOURCE_ID_EXTERNAL:
*ref_clk_src_id = ENCODER_REFCLK_SRC_EXTCLK;
return true;
case CLOCK_SOURCE_ID_UNDEFINED:
*ref_clk_src_id = ENCODER_REFCLK_SRC_INVALID;
return true;
default:
/* Unsupported clock source id */
BREAK_TO_DEBUGGER();
return false;
}
}
uint8_t dal_cmd_table_helper_encoder_id_to_atom(
enum encoder_id id)
{
switch (id) {
case ENCODER_ID_INTERNAL_LVDS:
return ENCODER_OBJECT_ID_INTERNAL_LVDS;
case ENCODER_ID_INTERNAL_TMDS1:
return ENCODER_OBJECT_ID_INTERNAL_TMDS1;
case ENCODER_ID_INTERNAL_TMDS2:
return ENCODER_OBJECT_ID_INTERNAL_TMDS2;
case ENCODER_ID_INTERNAL_DAC1:
return ENCODER_OBJECT_ID_INTERNAL_DAC1;
case ENCODER_ID_INTERNAL_DAC2:
return ENCODER_OBJECT_ID_INTERNAL_DAC2;
case ENCODER_ID_INTERNAL_LVTM1:
return ENCODER_OBJECT_ID_INTERNAL_LVTM1;
case ENCODER_ID_INTERNAL_HDMI:
return ENCODER_OBJECT_ID_HDMI_INTERNAL;
case ENCODER_ID_EXTERNAL_TRAVIS:
return ENCODER_OBJECT_ID_TRAVIS;
case ENCODER_ID_EXTERNAL_NUTMEG:
return ENCODER_OBJECT_ID_NUTMEG;
case ENCODER_ID_INTERNAL_KLDSCP_TMDS1:
return ENCODER_OBJECT_ID_INTERNAL_KLDSCP_TMDS1;
case ENCODER_ID_INTERNAL_KLDSCP_DAC1:
return ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC1;
case ENCODER_ID_INTERNAL_KLDSCP_DAC2:
return ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC2;
case ENCODER_ID_EXTERNAL_MVPU_FPGA:
return ENCODER_OBJECT_ID_MVPU_FPGA;
case ENCODER_ID_INTERNAL_DDI:
return ENCODER_OBJECT_ID_INTERNAL_DDI;
case ENCODER_ID_INTERNAL_UNIPHY:
return ENCODER_OBJECT_ID_INTERNAL_UNIPHY;
case ENCODER_ID_INTERNAL_KLDSCP_LVTMA:
return ENCODER_OBJECT_ID_INTERNAL_KLDSCP_LVTMA;
case ENCODER_ID_INTERNAL_UNIPHY1:
return ENCODER_OBJECT_ID_INTERNAL_UNIPHY1;
case ENCODER_ID_INTERNAL_UNIPHY2:
return ENCODER_OBJECT_ID_INTERNAL_UNIPHY2;
case ENCODER_ID_INTERNAL_UNIPHY3:
return ENCODER_OBJECT_ID_INTERNAL_UNIPHY3;
case ENCODER_ID_INTERNAL_WIRELESS:
return ENCODER_OBJECT_ID_INTERNAL_VCE;
case ENCODER_ID_UNKNOWN:
return ENCODER_OBJECT_ID_NONE;
default:
/* Invalid encoder id */
BREAK_TO_DEBUGGER();
return ENCODER_OBJECT_ID_NONE;
}
}
| linux-master | drivers/gpu/drm/amd/display/dc/bios/command_table_helper.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "atom.h"
#include "include/bios_parser_types.h"
#include "bios_parser_helper.h"
#include "command_table_helper.h"
#include "command_table.h"
#include "bios_parser_types_internal.h"
uint8_t *bios_get_image(struct dc_bios *bp,
uint32_t offset,
uint32_t size)
{
if (bp->bios && offset + size < bp->bios_size)
return bp->bios + offset;
else
return NULL;
}
#include "reg_helper.h"
#define CTX \
bios->ctx
#define REG(reg)\
(bios->regs->reg)
#undef FN
#define FN(reg_name, field_name) \
ATOM_ ## field_name ## _SHIFT, ATOM_ ## field_name
bool bios_is_accelerated_mode(
struct dc_bios *bios)
{
uint32_t acc_mode;
REG_GET(BIOS_SCRATCH_6, S6_ACC_MODE, &acc_mode);
return (acc_mode == 1);
}
void bios_set_scratch_acc_mode_change(
struct dc_bios *bios,
uint32_t state)
{
REG_UPDATE(BIOS_SCRATCH_6, S6_ACC_MODE, state);
}
void bios_set_scratch_critical_state(
struct dc_bios *bios,
bool state)
{
uint32_t critial_state = state ? 1 : 0;
REG_UPDATE(BIOS_SCRATCH_6, S6_CRITICAL_STATE, critial_state);
}
uint32_t bios_get_vga_enabled_displays(
struct dc_bios *bios)
{
return REG_READ(BIOS_SCRATCH_3) & 0XFFFF;
}
| linux-master | drivers/gpu/drm/amd/display/dc/bios/bios_parser_helper.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "ObjectID.h"
#include "atomfirmware.h"
#include "atom.h"
#include "include/bios_parser_interface.h"
#include "command_table2.h"
#include "command_table_helper2.h"
#include "bios_parser_helper.h"
#include "bios_parser_types_internal2.h"
#include "amdgpu.h"
#include "dc_dmub_srv.h"
#include "dc.h"
#define DC_LOGGER \
bp->base.ctx->logger
#define GET_INDEX_INTO_MASTER_TABLE(MasterOrData, FieldName)\
(offsetof(struct atom_master_list_of_##MasterOrData##_functions_v2_1, FieldName) / sizeof(uint16_t))
#define EXEC_BIOS_CMD_TABLE(fname, params)\
(amdgpu_atom_execute_table(((struct amdgpu_device *)bp->base.ctx->driver_context)->mode_info.atom_context, \
GET_INDEX_INTO_MASTER_TABLE(command, fname), \
(uint32_t *)¶ms) == 0)
#define BIOS_CMD_TABLE_REVISION(fname, frev, crev)\
amdgpu_atom_parse_cmd_header(((struct amdgpu_device *)bp->base.ctx->driver_context)->mode_info.atom_context, \
GET_INDEX_INTO_MASTER_TABLE(command, fname), &frev, &crev)
#define BIOS_CMD_TABLE_PARA_REVISION(fname)\
bios_cmd_table_para_revision(bp->base.ctx->driver_context, \
GET_INDEX_INTO_MASTER_TABLE(command, fname))
static uint32_t bios_cmd_table_para_revision(void *dev,
uint32_t index)
{
struct amdgpu_device *adev = dev;
uint8_t frev, crev;
if (amdgpu_atom_parse_cmd_header(adev->mode_info.atom_context,
index,
&frev, &crev))
return crev;
else
return 0;
}
/******************************************************************************
******************************************************************************
**
** D I G E N C O D E R C O N T R O L
**
******************************************************************************
*****************************************************************************/
static enum bp_result encoder_control_digx_v1_5(
struct bios_parser *bp,
struct bp_encoder_control *cntl);
static enum bp_result encoder_control_fallback(
struct bios_parser *bp,
struct bp_encoder_control *cntl);
static void init_dig_encoder_control(struct bios_parser *bp)
{
uint32_t version =
BIOS_CMD_TABLE_PARA_REVISION(digxencodercontrol);
switch (version) {
case 5:
bp->cmd_tbl.dig_encoder_control = encoder_control_digx_v1_5;
break;
default:
dm_output_to_console("Don't have dig_encoder_control for v%d\n", version);
bp->cmd_tbl.dig_encoder_control = encoder_control_fallback;
break;
}
}
static void encoder_control_dmcub(
struct dc_dmub_srv *dmcub,
struct dig_encoder_stream_setup_parameters_v1_5 *dig)
{
union dmub_rb_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.digx_encoder_control.header.type = DMUB_CMD__VBIOS;
cmd.digx_encoder_control.header.sub_type =
DMUB_CMD__VBIOS_DIGX_ENCODER_CONTROL;
cmd.digx_encoder_control.header.payload_bytes =
sizeof(cmd.digx_encoder_control) -
sizeof(cmd.digx_encoder_control.header);
cmd.digx_encoder_control.encoder_control.dig.stream_param = *dig;
dm_execute_dmub_cmd(dmcub->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
}
static enum bp_result encoder_control_digx_v1_5(
struct bios_parser *bp,
struct bp_encoder_control *cntl)
{
enum bp_result result = BP_RESULT_FAILURE;
struct dig_encoder_stream_setup_parameters_v1_5 params = {0};
params.digid = (uint8_t)(cntl->engine_id);
params.action = bp->cmd_helper->encoder_action_to_atom(cntl->action);
params.pclk_10khz = cntl->pixel_clock / 10;
params.digmode =
(uint8_t)(bp->cmd_helper->encoder_mode_bp_to_atom(
cntl->signal,
cntl->enable_dp_audio));
params.lanenum = (uint8_t)(cntl->lanes_number);
switch (cntl->color_depth) {
case COLOR_DEPTH_888:
params.bitpercolor = PANEL_8BIT_PER_COLOR;
break;
case COLOR_DEPTH_101010:
params.bitpercolor = PANEL_10BIT_PER_COLOR;
break;
case COLOR_DEPTH_121212:
params.bitpercolor = PANEL_12BIT_PER_COLOR;
break;
case COLOR_DEPTH_161616:
params.bitpercolor = PANEL_16BIT_PER_COLOR;
break;
default:
break;
}
if (cntl->signal == SIGNAL_TYPE_HDMI_TYPE_A)
switch (cntl->color_depth) {
case COLOR_DEPTH_101010:
params.pclk_10khz =
(params.pclk_10khz * 30) / 24;
break;
case COLOR_DEPTH_121212:
params.pclk_10khz =
(params.pclk_10khz * 36) / 24;
break;
case COLOR_DEPTH_161616:
params.pclk_10khz =
(params.pclk_10khz * 48) / 24;
break;
default:
break;
}
if (bp->base.ctx->dc->ctx->dmub_srv &&
bp->base.ctx->dc->debug.dmub_command_table) {
encoder_control_dmcub(bp->base.ctx->dmub_srv, ¶ms);
return BP_RESULT_OK;
}
if (EXEC_BIOS_CMD_TABLE(digxencodercontrol, params))
result = BP_RESULT_OK;
return result;
}
static enum bp_result encoder_control_fallback(
struct bios_parser *bp,
struct bp_encoder_control *cntl)
{
if (bp->base.ctx->dc->ctx->dmub_srv &&
bp->base.ctx->dc->debug.dmub_command_table) {
return encoder_control_digx_v1_5(bp, cntl);
}
return BP_RESULT_FAILURE;
}
/*****************************************************************************
******************************************************************************
**
** TRANSMITTER CONTROL
**
******************************************************************************
*****************************************************************************/
static enum bp_result transmitter_control_v1_6(
struct bios_parser *bp,
struct bp_transmitter_control *cntl);
static enum bp_result transmitter_control_v1_7(
struct bios_parser *bp,
struct bp_transmitter_control *cntl);
static enum bp_result transmitter_control_fallback(
struct bios_parser *bp,
struct bp_transmitter_control *cntl);
static void init_transmitter_control(struct bios_parser *bp)
{
uint8_t frev;
uint8_t crev;
BIOS_CMD_TABLE_REVISION(dig1transmittercontrol, frev, crev);
switch (crev) {
case 6:
bp->cmd_tbl.transmitter_control = transmitter_control_v1_6;
break;
case 7:
bp->cmd_tbl.transmitter_control = transmitter_control_v1_7;
break;
default:
dm_output_to_console("Don't have transmitter_control for v%d\n", crev);
bp->cmd_tbl.transmitter_control = transmitter_control_fallback;
break;
}
}
static void transmitter_control_dmcub(
struct dc_dmub_srv *dmcub,
struct dig_transmitter_control_parameters_v1_6 *dig)
{
union dmub_rb_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.dig1_transmitter_control.header.type = DMUB_CMD__VBIOS;
cmd.dig1_transmitter_control.header.sub_type =
DMUB_CMD__VBIOS_DIG1_TRANSMITTER_CONTROL;
cmd.dig1_transmitter_control.header.payload_bytes =
sizeof(cmd.dig1_transmitter_control) -
sizeof(cmd.dig1_transmitter_control.header);
cmd.dig1_transmitter_control.transmitter_control.dig = *dig;
dm_execute_dmub_cmd(dmcub->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
}
static enum bp_result transmitter_control_v1_6(
struct bios_parser *bp,
struct bp_transmitter_control *cntl)
{
enum bp_result result = BP_RESULT_FAILURE;
const struct command_table_helper *cmd = bp->cmd_helper;
struct dig_transmitter_control_ps_allocation_v1_6 ps = { { 0 } };
ps.param.phyid = cmd->phy_id_to_atom(cntl->transmitter);
ps.param.action = (uint8_t)cntl->action;
if (cntl->action == TRANSMITTER_CONTROL_SET_VOLTAGE_AND_PREEMPASIS)
ps.param.mode_laneset.dplaneset = (uint8_t)cntl->lane_settings;
else
ps.param.mode_laneset.digmode =
cmd->signal_type_to_atom_dig_mode(cntl->signal);
ps.param.lanenum = (uint8_t)cntl->lanes_number;
ps.param.hpdsel = cmd->hpd_sel_to_atom(cntl->hpd_sel);
ps.param.digfe_sel = cmd->dig_encoder_sel_to_atom(cntl->engine_id);
ps.param.connobj_id = (uint8_t)cntl->connector_obj_id.id;
ps.param.symclk_10khz = cntl->pixel_clock/10;
if (cntl->action == TRANSMITTER_CONTROL_ENABLE ||
cntl->action == TRANSMITTER_CONTROL_ACTIAVATE ||
cntl->action == TRANSMITTER_CONTROL_DEACTIVATE) {
DC_LOG_BIOS("%s:ps.param.symclk_10khz = %d\n",\
__func__, ps.param.symclk_10khz);
}
if (bp->base.ctx->dc->ctx->dmub_srv &&
bp->base.ctx->dc->debug.dmub_command_table) {
transmitter_control_dmcub(bp->base.ctx->dmub_srv, &ps.param);
return BP_RESULT_OK;
}
/*color_depth not used any more, driver has deep color factor in the Phyclk*/
if (EXEC_BIOS_CMD_TABLE(dig1transmittercontrol, ps))
result = BP_RESULT_OK;
return result;
}
static void transmitter_control_dmcub_v1_7(
struct dc_dmub_srv *dmcub,
struct dmub_dig_transmitter_control_data_v1_7 *dig)
{
union dmub_rb_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.dig1_transmitter_control.header.type = DMUB_CMD__VBIOS;
cmd.dig1_transmitter_control.header.sub_type =
DMUB_CMD__VBIOS_DIG1_TRANSMITTER_CONTROL;
cmd.dig1_transmitter_control.header.payload_bytes =
sizeof(cmd.dig1_transmitter_control) -
sizeof(cmd.dig1_transmitter_control.header);
cmd.dig1_transmitter_control.transmitter_control.dig_v1_7 = *dig;
dm_execute_dmub_cmd(dmcub->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
}
static enum bp_result transmitter_control_v1_7(
struct bios_parser *bp,
struct bp_transmitter_control *cntl)
{
enum bp_result result = BP_RESULT_FAILURE;
const struct command_table_helper *cmd = bp->cmd_helper;
struct dmub_dig_transmitter_control_data_v1_7 dig_v1_7 = {0};
uint8_t hpo_instance = (uint8_t)cntl->hpo_engine_id - ENGINE_ID_HPO_0;
if (dc_is_dp_signal(cntl->signal))
hpo_instance = (uint8_t)cntl->hpo_engine_id - ENGINE_ID_HPO_DP_0;
dig_v1_7.phyid = cmd->phy_id_to_atom(cntl->transmitter);
dig_v1_7.action = (uint8_t)cntl->action;
if (cntl->action == TRANSMITTER_CONTROL_SET_VOLTAGE_AND_PREEMPASIS)
dig_v1_7.mode_laneset.dplaneset = (uint8_t)cntl->lane_settings;
else
dig_v1_7.mode_laneset.digmode =
cmd->signal_type_to_atom_dig_mode(cntl->signal);
dig_v1_7.lanenum = (uint8_t)cntl->lanes_number;
dig_v1_7.hpdsel = cmd->hpd_sel_to_atom(cntl->hpd_sel);
dig_v1_7.digfe_sel = cmd->dig_encoder_sel_to_atom(cntl->engine_id);
dig_v1_7.connobj_id = (uint8_t)cntl->connector_obj_id.id;
dig_v1_7.HPO_instance = hpo_instance;
dig_v1_7.symclk_units.symclk_10khz = cntl->pixel_clock/10;
if (cntl->action == TRANSMITTER_CONTROL_ENABLE ||
cntl->action == TRANSMITTER_CONTROL_ACTIAVATE ||
cntl->action == TRANSMITTER_CONTROL_DEACTIVATE) {
DC_LOG_BIOS("%s:dig_v1_7.symclk_units.symclk_10khz = %d\n",
__func__, dig_v1_7.symclk_units.symclk_10khz);
}
if (bp->base.ctx->dc->ctx->dmub_srv &&
bp->base.ctx->dc->debug.dmub_command_table) {
transmitter_control_dmcub_v1_7(bp->base.ctx->dmub_srv, &dig_v1_7);
return BP_RESULT_OK;
}
/*color_depth not used any more, driver has deep color factor in the Phyclk*/
if (EXEC_BIOS_CMD_TABLE(dig1transmittercontrol, dig_v1_7))
result = BP_RESULT_OK;
return result;
}
static enum bp_result transmitter_control_fallback(
struct bios_parser *bp,
struct bp_transmitter_control *cntl)
{
if (bp->base.ctx->dc->ctx->dmub_srv &&
bp->base.ctx->dc->debug.dmub_command_table) {
return transmitter_control_v1_7(bp, cntl);
}
return BP_RESULT_FAILURE;
}
/******************************************************************************
******************************************************************************
**
** SET PIXEL CLOCK
**
******************************************************************************
*****************************************************************************/
static enum bp_result set_pixel_clock_v7(
struct bios_parser *bp,
struct bp_pixel_clock_parameters *bp_params);
static enum bp_result set_pixel_clock_fallback(
struct bios_parser *bp,
struct bp_pixel_clock_parameters *bp_params);
static void init_set_pixel_clock(struct bios_parser *bp)
{
switch (BIOS_CMD_TABLE_PARA_REVISION(setpixelclock)) {
case 7:
bp->cmd_tbl.set_pixel_clock = set_pixel_clock_v7;
break;
default:
dm_output_to_console("Don't have set_pixel_clock for v%d\n",
BIOS_CMD_TABLE_PARA_REVISION(setpixelclock));
bp->cmd_tbl.set_pixel_clock = set_pixel_clock_fallback;
break;
}
}
static void set_pixel_clock_dmcub(
struct dc_dmub_srv *dmcub,
struct set_pixel_clock_parameter_v1_7 *clk)
{
union dmub_rb_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.set_pixel_clock.header.type = DMUB_CMD__VBIOS;
cmd.set_pixel_clock.header.sub_type = DMUB_CMD__VBIOS_SET_PIXEL_CLOCK;
cmd.set_pixel_clock.header.payload_bytes =
sizeof(cmd.set_pixel_clock) -
sizeof(cmd.set_pixel_clock.header);
cmd.set_pixel_clock.pixel_clock.clk = *clk;
dm_execute_dmub_cmd(dmcub->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
}
static enum bp_result set_pixel_clock_v7(
struct bios_parser *bp,
struct bp_pixel_clock_parameters *bp_params)
{
enum bp_result result = BP_RESULT_FAILURE;
struct set_pixel_clock_parameter_v1_7 clk;
uint8_t controller_id;
uint32_t pll_id;
memset(&clk, 0, sizeof(clk));
if (bp->cmd_helper->clock_source_id_to_atom(bp_params->pll_id, &pll_id)
&& bp->cmd_helper->controller_id_to_atom(bp_params->
controller_id, &controller_id)) {
/* Note: VBIOS still wants to use ucCRTC name which is now
* 1 byte in ULONG
*typedef struct _CRTC_PIXEL_CLOCK_FREQ
*{
* target the pixel clock to drive the CRTC timing.
* ULONG ulPixelClock:24;
* 0 means disable PPLL/DCPLL. Expanded to 24 bits comparing to
* previous version.
* ATOM_CRTC1~6, indicate the CRTC controller to
* ULONG ucCRTC:8;
* drive the pixel clock. not used for DCPLL case.
*}CRTC_PIXEL_CLOCK_FREQ;
*union
*{
* pixel clock and CRTC id frequency
* CRTC_PIXEL_CLOCK_FREQ ulCrtcPclkFreq;
* ULONG ulDispEngClkFreq; dispclk frequency
*};
*/
clk.crtc_id = controller_id;
clk.pll_id = (uint8_t) pll_id;
clk.encoderobjid =
bp->cmd_helper->encoder_id_to_atom(
dal_graphics_object_id_get_encoder_id(
bp_params->encoder_object_id));
clk.encoder_mode = (uint8_t) bp->
cmd_helper->encoder_mode_bp_to_atom(
bp_params->signal_type, false);
clk.pixclk_100hz = cpu_to_le32(bp_params->target_pixel_clock_100hz);
clk.deep_color_ratio =
(uint8_t) bp->cmd_helper->
transmitter_color_depth_to_atom(
bp_params->color_depth);
DC_LOG_BIOS("%s:program display clock = %d, tg = %d, pll = %d, "\
"colorDepth = %d\n", __func__,
bp_params->target_pixel_clock_100hz, (int)controller_id,
pll_id, bp_params->color_depth);
if (bp_params->flags.FORCE_PROGRAMMING_OF_PLL)
clk.miscinfo |= PIXEL_CLOCK_V7_MISC_FORCE_PROG_PPLL;
if (bp_params->flags.PROGRAM_PHY_PLL_ONLY)
clk.miscinfo |= PIXEL_CLOCK_V7_MISC_PROG_PHYPLL;
if (bp_params->flags.SUPPORT_YUV_420)
clk.miscinfo |= PIXEL_CLOCK_V7_MISC_YUV420_MODE;
if (bp_params->flags.SET_XTALIN_REF_SRC)
clk.miscinfo |= PIXEL_CLOCK_V7_MISC_REF_DIV_SRC_XTALIN;
if (bp_params->flags.SET_GENLOCK_REF_DIV_SRC)
clk.miscinfo |= PIXEL_CLOCK_V7_MISC_REF_DIV_SRC_GENLK;
if (bp_params->signal_type == SIGNAL_TYPE_DVI_DUAL_LINK)
clk.miscinfo |= PIXEL_CLOCK_V7_MISC_DVI_DUALLINK_EN;
if (bp->base.ctx->dc->ctx->dmub_srv &&
bp->base.ctx->dc->debug.dmub_command_table) {
set_pixel_clock_dmcub(bp->base.ctx->dmub_srv, &clk);
return BP_RESULT_OK;
}
if (EXEC_BIOS_CMD_TABLE(setpixelclock, clk))
result = BP_RESULT_OK;
}
return result;
}
static enum bp_result set_pixel_clock_fallback(
struct bios_parser *bp,
struct bp_pixel_clock_parameters *bp_params)
{
if (bp->base.ctx->dc->ctx->dmub_srv &&
bp->base.ctx->dc->debug.dmub_command_table) {
return set_pixel_clock_v7(bp, bp_params);
}
return BP_RESULT_FAILURE;
}
/******************************************************************************
******************************************************************************
**
** SET CRTC TIMING
**
******************************************************************************
*****************************************************************************/
static enum bp_result set_crtc_using_dtd_timing_v3(
struct bios_parser *bp,
struct bp_hw_crtc_timing_parameters *bp_params);
static void init_set_crtc_timing(struct bios_parser *bp)
{
uint32_t dtd_version =
BIOS_CMD_TABLE_PARA_REVISION(setcrtc_usingdtdtiming);
switch (dtd_version) {
case 3:
bp->cmd_tbl.set_crtc_timing =
set_crtc_using_dtd_timing_v3;
break;
default:
dm_output_to_console("Don't have set_crtc_timing for v%d\n", dtd_version);
bp->cmd_tbl.set_crtc_timing = NULL;
break;
}
}
static enum bp_result set_crtc_using_dtd_timing_v3(
struct bios_parser *bp,
struct bp_hw_crtc_timing_parameters *bp_params)
{
enum bp_result result = BP_RESULT_FAILURE;
struct set_crtc_using_dtd_timing_parameters params = {0};
uint8_t atom_controller_id;
if (bp->cmd_helper->controller_id_to_atom(
bp_params->controller_id, &atom_controller_id))
params.crtc_id = atom_controller_id;
/* bios usH_Size wants h addressable size */
params.h_size = cpu_to_le16((uint16_t)bp_params->h_addressable);
/* bios usH_Blanking_Time wants borders included in blanking */
params.h_blanking_time =
cpu_to_le16((uint16_t)(bp_params->h_total -
bp_params->h_addressable));
/* bios usV_Size wants v addressable size */
params.v_size = cpu_to_le16((uint16_t)bp_params->v_addressable);
/* bios usV_Blanking_Time wants borders included in blanking */
params.v_blanking_time =
cpu_to_le16((uint16_t)(bp_params->v_total -
bp_params->v_addressable));
/* bios usHSyncOffset is the offset from the end of h addressable,
* our horizontalSyncStart is the offset from the beginning
* of h addressable
*/
params.h_syncoffset =
cpu_to_le16((uint16_t)(bp_params->h_sync_start -
bp_params->h_addressable));
params.h_syncwidth = cpu_to_le16((uint16_t)bp_params->h_sync_width);
/* bios usHSyncOffset is the offset from the end of v addressable,
* our verticalSyncStart is the offset from the beginning of
* v addressable
*/
params.v_syncoffset =
cpu_to_le16((uint16_t)(bp_params->v_sync_start -
bp_params->v_addressable));
params.v_syncwidth = cpu_to_le16((uint16_t)bp_params->v_sync_width);
/* we assume that overscan from original timing does not get bigger
* than 255
* we will program all the borders in the Set CRTC Overscan call below
*/
if (bp_params->flags.HSYNC_POSITIVE_POLARITY == 0)
params.modemiscinfo =
cpu_to_le16(le16_to_cpu(params.modemiscinfo) |
ATOM_HSYNC_POLARITY);
if (bp_params->flags.VSYNC_POSITIVE_POLARITY == 0)
params.modemiscinfo =
cpu_to_le16(le16_to_cpu(params.modemiscinfo) |
ATOM_VSYNC_POLARITY);
if (bp_params->flags.INTERLACE) {
params.modemiscinfo =
cpu_to_le16(le16_to_cpu(params.modemiscinfo) |
ATOM_INTERLACE);
/* original DAL code has this condition to apply this
* for non-TV/CV only
* due to complex MV testing for possible impact
* if ( pACParameters->signal != SignalType_YPbPr &&
* pACParameters->signal != SignalType_Composite &&
* pACParameters->signal != SignalType_SVideo)
*/
{
/* HW will deduct 0.5 line from 2nd feild.
* i.e. for 1080i, it is 2 lines for 1st field,
* 2.5 lines for the 2nd feild. we need input as 5
* instead of 4.
* but it is 4 either from Edid data (spec CEA 861)
* or CEA timing table.
*/
le16_add_cpu(¶ms.v_syncoffset, 1);
}
}
if (bp_params->flags.HORZ_COUNT_BY_TWO)
params.modemiscinfo =
cpu_to_le16(le16_to_cpu(params.modemiscinfo) |
0x100); /* ATOM_DOUBLE_CLOCK_MODE */
if (EXEC_BIOS_CMD_TABLE(setcrtc_usingdtdtiming, params))
result = BP_RESULT_OK;
return result;
}
/******************************************************************************
******************************************************************************
**
** ENABLE CRTC
**
******************************************************************************
*****************************************************************************/
static enum bp_result enable_crtc_v1(
struct bios_parser *bp,
enum controller_id controller_id,
bool enable);
static void init_enable_crtc(struct bios_parser *bp)
{
switch (BIOS_CMD_TABLE_PARA_REVISION(enablecrtc)) {
case 1:
bp->cmd_tbl.enable_crtc = enable_crtc_v1;
break;
default:
dm_output_to_console("Don't have enable_crtc for v%d\n",
BIOS_CMD_TABLE_PARA_REVISION(enablecrtc));
bp->cmd_tbl.enable_crtc = NULL;
break;
}
}
static enum bp_result enable_crtc_v1(
struct bios_parser *bp,
enum controller_id controller_id,
bool enable)
{
bool result = BP_RESULT_FAILURE;
struct enable_crtc_parameters params = {0};
uint8_t id;
if (bp->cmd_helper->controller_id_to_atom(controller_id, &id))
params.crtc_id = id;
else
return BP_RESULT_BADINPUT;
if (enable)
params.enable = ATOM_ENABLE;
else
params.enable = ATOM_DISABLE;
if (EXEC_BIOS_CMD_TABLE(enablecrtc, params))
result = BP_RESULT_OK;
return result;
}
/******************************************************************************
******************************************************************************
**
** DISPLAY PLL
**
******************************************************************************
*****************************************************************************/
/******************************************************************************
******************************************************************************
**
** EXTERNAL ENCODER CONTROL
**
******************************************************************************
*****************************************************************************/
static enum bp_result external_encoder_control_v3(
struct bios_parser *bp,
struct bp_external_encoder_control *cntl);
static void init_external_encoder_control(
struct bios_parser *bp)
{
switch (BIOS_CMD_TABLE_PARA_REVISION(externalencodercontrol)) {
case 3:
bp->cmd_tbl.external_encoder_control =
external_encoder_control_v3;
break;
default:
bp->cmd_tbl.external_encoder_control = NULL;
break;
}
}
static enum bp_result external_encoder_control_v3(
struct bios_parser *bp,
struct bp_external_encoder_control *cntl)
{
/* TODO */
return BP_RESULT_OK;
}
/******************************************************************************
******************************************************************************
**
** ENABLE DISPLAY POWER GATING
**
******************************************************************************
*****************************************************************************/
static enum bp_result enable_disp_power_gating_v2_1(
struct bios_parser *bp,
enum controller_id crtc_id,
enum bp_pipe_control_action action);
static enum bp_result enable_disp_power_gating_fallback(
struct bios_parser *bp,
enum controller_id crtc_id,
enum bp_pipe_control_action action);
static void init_enable_disp_power_gating(
struct bios_parser *bp)
{
switch (BIOS_CMD_TABLE_PARA_REVISION(enabledisppowergating)) {
case 1:
bp->cmd_tbl.enable_disp_power_gating =
enable_disp_power_gating_v2_1;
break;
default:
dm_output_to_console("Don't enable_disp_power_gating enable_crtc for v%d\n",
BIOS_CMD_TABLE_PARA_REVISION(enabledisppowergating));
bp->cmd_tbl.enable_disp_power_gating = enable_disp_power_gating_fallback;
break;
}
}
static void enable_disp_power_gating_dmcub(
struct dc_dmub_srv *dmcub,
struct enable_disp_power_gating_parameters_v2_1 *pwr)
{
union dmub_rb_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.enable_disp_power_gating.header.type = DMUB_CMD__VBIOS;
cmd.enable_disp_power_gating.header.sub_type =
DMUB_CMD__VBIOS_ENABLE_DISP_POWER_GATING;
cmd.enable_disp_power_gating.header.payload_bytes =
sizeof(cmd.enable_disp_power_gating) -
sizeof(cmd.enable_disp_power_gating.header);
cmd.enable_disp_power_gating.power_gating.pwr = *pwr;
dm_execute_dmub_cmd(dmcub->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
}
static enum bp_result enable_disp_power_gating_v2_1(
struct bios_parser *bp,
enum controller_id crtc_id,
enum bp_pipe_control_action action)
{
enum bp_result result = BP_RESULT_FAILURE;
struct enable_disp_power_gating_ps_allocation ps = { { 0 } };
uint8_t atom_crtc_id;
if (bp->cmd_helper->controller_id_to_atom(crtc_id, &atom_crtc_id))
ps.param.disp_pipe_id = atom_crtc_id;
else
return BP_RESULT_BADINPUT;
ps.param.enable =
bp->cmd_helper->disp_power_gating_action_to_atom(action);
if (bp->base.ctx->dc->ctx->dmub_srv &&
bp->base.ctx->dc->debug.dmub_command_table) {
enable_disp_power_gating_dmcub(bp->base.ctx->dmub_srv,
&ps.param);
return BP_RESULT_OK;
}
if (EXEC_BIOS_CMD_TABLE(enabledisppowergating, ps.param))
result = BP_RESULT_OK;
return result;
}
static enum bp_result enable_disp_power_gating_fallback(
struct bios_parser *bp,
enum controller_id crtc_id,
enum bp_pipe_control_action action)
{
if (bp->base.ctx->dc->ctx->dmub_srv &&
bp->base.ctx->dc->debug.dmub_command_table) {
return enable_disp_power_gating_v2_1(bp, crtc_id, action);
}
return BP_RESULT_FAILURE;
}
/******************************************************************************
*******************************************************************************
**
** SET DCE CLOCK
**
*******************************************************************************
*******************************************************************************/
static enum bp_result set_dce_clock_v2_1(
struct bios_parser *bp,
struct bp_set_dce_clock_parameters *bp_params);
static void init_set_dce_clock(struct bios_parser *bp)
{
switch (BIOS_CMD_TABLE_PARA_REVISION(setdceclock)) {
case 1:
bp->cmd_tbl.set_dce_clock = set_dce_clock_v2_1;
break;
default:
dm_output_to_console("Don't have set_dce_clock for v%d\n",
BIOS_CMD_TABLE_PARA_REVISION(setdceclock));
bp->cmd_tbl.set_dce_clock = NULL;
break;
}
}
static enum bp_result set_dce_clock_v2_1(
struct bios_parser *bp,
struct bp_set_dce_clock_parameters *bp_params)
{
enum bp_result result = BP_RESULT_FAILURE;
struct set_dce_clock_ps_allocation_v2_1 params;
uint32_t atom_pll_id;
uint32_t atom_clock_type;
const struct command_table_helper *cmd = bp->cmd_helper;
memset(¶ms, 0, sizeof(params));
if (!cmd->clock_source_id_to_atom(bp_params->pll_id, &atom_pll_id) ||
!cmd->dc_clock_type_to_atom(bp_params->clock_type,
&atom_clock_type))
return BP_RESULT_BADINPUT;
params.param.dceclksrc = atom_pll_id;
params.param.dceclktype = atom_clock_type;
if (bp_params->clock_type == DCECLOCK_TYPE_DPREFCLK) {
if (bp_params->flags.USE_GENLOCK_AS_SOURCE_FOR_DPREFCLK)
params.param.dceclkflag |=
DCE_CLOCK_FLAG_PLL_REFCLK_SRC_GENLK;
if (bp_params->flags.USE_PCIE_AS_SOURCE_FOR_DPREFCLK)
params.param.dceclkflag |=
DCE_CLOCK_FLAG_PLL_REFCLK_SRC_PCIE;
if (bp_params->flags.USE_XTALIN_AS_SOURCE_FOR_DPREFCLK)
params.param.dceclkflag |=
DCE_CLOCK_FLAG_PLL_REFCLK_SRC_XTALIN;
if (bp_params->flags.USE_GENERICA_AS_SOURCE_FOR_DPREFCLK)
params.param.dceclkflag |=
DCE_CLOCK_FLAG_PLL_REFCLK_SRC_GENERICA;
} else
/* only program clock frequency if display clock is used;
* VBIOS will program DPREFCLK
* We need to convert from KHz units into 10KHz units
*/
params.param.dceclk_10khz = cpu_to_le32(
bp_params->target_clock_frequency / 10);
DC_LOG_BIOS("%s:target_clock_frequency = %d"\
"clock_type = %d \n", __func__,\
bp_params->target_clock_frequency,\
bp_params->clock_type);
if (EXEC_BIOS_CMD_TABLE(setdceclock, params)) {
/* Convert from 10KHz units back to KHz */
bp_params->target_clock_frequency = le32_to_cpu(
params.param.dceclk_10khz) * 10;
result = BP_RESULT_OK;
}
return result;
}
/******************************************************************************
******************************************************************************
**
** GET SMU CLOCK INFO
**
******************************************************************************
*****************************************************************************/
static unsigned int get_smu_clock_info_v3_1(struct bios_parser *bp, uint8_t id);
static void init_get_smu_clock_info(struct bios_parser *bp)
{
/* TODO add switch for table vrsion */
bp->cmd_tbl.get_smu_clock_info = get_smu_clock_info_v3_1;
}
static unsigned int get_smu_clock_info_v3_1(struct bios_parser *bp, uint8_t id)
{
struct atom_get_smu_clock_info_parameters_v3_1 smu_input = {0};
struct atom_get_smu_clock_info_output_parameters_v3_1 smu_output;
smu_input.command = GET_SMU_CLOCK_INFO_V3_1_GET_PLLVCO_FREQ;
smu_input.syspll_id = id;
/* Get Specific Clock */
if (EXEC_BIOS_CMD_TABLE(getsmuclockinfo, smu_input)) {
memmove(&smu_output, &smu_input, sizeof(
struct atom_get_smu_clock_info_parameters_v3_1));
return smu_output.atom_smu_outputclkfreq.syspllvcofreq_10khz;
}
return 0;
}
/******************************************************************************
******************************************************************************
**
** LVTMA CONTROL
**
******************************************************************************
*****************************************************************************/
static enum bp_result enable_lvtma_control(
struct bios_parser *bp,
uint8_t uc_pwr_on,
uint8_t panel_instance,
uint8_t bypass_panel_control_wait);
static void init_enable_lvtma_control(struct bios_parser *bp)
{
/* TODO add switch for table vrsion */
bp->cmd_tbl.enable_lvtma_control = enable_lvtma_control;
}
static void enable_lvtma_control_dmcub(
struct dc_dmub_srv *dmcub,
uint8_t uc_pwr_on,
uint8_t panel_instance,
uint8_t bypass_panel_control_wait)
{
union dmub_rb_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.lvtma_control.header.type = DMUB_CMD__VBIOS;
cmd.lvtma_control.header.sub_type =
DMUB_CMD__VBIOS_LVTMA_CONTROL;
cmd.lvtma_control.data.uc_pwr_action =
uc_pwr_on;
cmd.lvtma_control.data.panel_inst =
panel_instance;
cmd.lvtma_control.data.bypass_panel_control_wait =
bypass_panel_control_wait;
dm_execute_dmub_cmd(dmcub->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
}
static enum bp_result enable_lvtma_control(
struct bios_parser *bp,
uint8_t uc_pwr_on,
uint8_t panel_instance,
uint8_t bypass_panel_control_wait)
{
enum bp_result result = BP_RESULT_FAILURE;
if (bp->base.ctx->dc->ctx->dmub_srv &&
bp->base.ctx->dc->debug.dmub_command_table) {
enable_lvtma_control_dmcub(bp->base.ctx->dmub_srv,
uc_pwr_on,
panel_instance,
bypass_panel_control_wait);
return BP_RESULT_OK;
}
return result;
}
void dal_firmware_parser_init_cmd_tbl(struct bios_parser *bp)
{
init_dig_encoder_control(bp);
init_transmitter_control(bp);
init_set_pixel_clock(bp);
init_set_crtc_timing(bp);
init_enable_crtc(bp);
init_external_encoder_control(bp);
init_enable_disp_power_gating(bp);
init_set_dce_clock(bp);
init_get_smu_clock_info(bp);
init_enable_lvtma_control(bp);
}
| linux-master | drivers/gpu/drm/amd/display/dc/bios/command_table2.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "bios_parser_common.h"
#include "include/grph_object_ctrl_defs.h"
static enum object_type object_type_from_bios_object_id(uint32_t bios_object_id)
{
uint32_t bios_object_type = (bios_object_id & OBJECT_TYPE_MASK)
>> OBJECT_TYPE_SHIFT;
enum object_type object_type;
switch (bios_object_type) {
case GRAPH_OBJECT_TYPE_GPU:
object_type = OBJECT_TYPE_GPU;
break;
case GRAPH_OBJECT_TYPE_ENCODER:
object_type = OBJECT_TYPE_ENCODER;
break;
case GRAPH_OBJECT_TYPE_CONNECTOR:
object_type = OBJECT_TYPE_CONNECTOR;
break;
case GRAPH_OBJECT_TYPE_ROUTER:
object_type = OBJECT_TYPE_ROUTER;
break;
case GRAPH_OBJECT_TYPE_GENERIC:
object_type = OBJECT_TYPE_GENERIC;
break;
default:
object_type = OBJECT_TYPE_UNKNOWN;
break;
}
return object_type;
}
static enum object_enum_id enum_id_from_bios_object_id(uint32_t bios_object_id)
{
uint32_t bios_enum_id =
(bios_object_id & ENUM_ID_MASK) >> ENUM_ID_SHIFT;
enum object_enum_id id;
switch (bios_enum_id) {
case GRAPH_OBJECT_ENUM_ID1:
id = ENUM_ID_1;
break;
case GRAPH_OBJECT_ENUM_ID2:
id = ENUM_ID_2;
break;
case GRAPH_OBJECT_ENUM_ID3:
id = ENUM_ID_3;
break;
case GRAPH_OBJECT_ENUM_ID4:
id = ENUM_ID_4;
break;
case GRAPH_OBJECT_ENUM_ID5:
id = ENUM_ID_5;
break;
case GRAPH_OBJECT_ENUM_ID6:
id = ENUM_ID_6;
break;
case GRAPH_OBJECT_ENUM_ID7:
id = ENUM_ID_7;
break;
default:
id = ENUM_ID_UNKNOWN;
break;
}
return id;
}
static uint32_t gpu_id_from_bios_object_id(uint32_t bios_object_id)
{
return (bios_object_id & OBJECT_ID_MASK) >> OBJECT_ID_SHIFT;
}
static enum encoder_id encoder_id_from_bios_object_id(uint32_t bios_object_id)
{
uint32_t bios_encoder_id = gpu_id_from_bios_object_id(bios_object_id);
enum encoder_id id;
switch (bios_encoder_id) {
case ENCODER_OBJECT_ID_INTERNAL_LVDS:
id = ENCODER_ID_INTERNAL_LVDS;
break;
case ENCODER_OBJECT_ID_INTERNAL_TMDS1:
id = ENCODER_ID_INTERNAL_TMDS1;
break;
case ENCODER_OBJECT_ID_INTERNAL_TMDS2:
id = ENCODER_ID_INTERNAL_TMDS2;
break;
case ENCODER_OBJECT_ID_INTERNAL_DAC1:
id = ENCODER_ID_INTERNAL_DAC1;
break;
case ENCODER_OBJECT_ID_INTERNAL_DAC2:
id = ENCODER_ID_INTERNAL_DAC2;
break;
case ENCODER_OBJECT_ID_INTERNAL_LVTM1:
id = ENCODER_ID_INTERNAL_LVTM1;
break;
case ENCODER_OBJECT_ID_HDMI_INTERNAL:
id = ENCODER_ID_INTERNAL_HDMI;
break;
case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_TMDS1:
id = ENCODER_ID_INTERNAL_KLDSCP_TMDS1;
break;
case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC1:
id = ENCODER_ID_INTERNAL_KLDSCP_DAC1;
break;
case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC2:
id = ENCODER_ID_INTERNAL_KLDSCP_DAC2;
break;
case ENCODER_OBJECT_ID_MVPU_FPGA:
id = ENCODER_ID_EXTERNAL_MVPU_FPGA;
break;
case ENCODER_OBJECT_ID_INTERNAL_DDI:
id = ENCODER_ID_INTERNAL_DDI;
break;
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY:
id = ENCODER_ID_INTERNAL_UNIPHY;
break;
case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_LVTMA:
id = ENCODER_ID_INTERNAL_KLDSCP_LVTMA;
break;
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY1:
id = ENCODER_ID_INTERNAL_UNIPHY1;
break;
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY2:
id = ENCODER_ID_INTERNAL_UNIPHY2;
break;
case ENCODER_OBJECT_ID_ALMOND: /* ENCODER_OBJECT_ID_NUTMEG */
id = ENCODER_ID_EXTERNAL_NUTMEG;
break;
case ENCODER_OBJECT_ID_TRAVIS:
id = ENCODER_ID_EXTERNAL_TRAVIS;
break;
case ENCODER_OBJECT_ID_INTERNAL_UNIPHY3:
id = ENCODER_ID_INTERNAL_UNIPHY3;
break;
default:
id = ENCODER_ID_UNKNOWN;
ASSERT(0);
break;
}
return id;
}
static enum connector_id connector_id_from_bios_object_id(
uint32_t bios_object_id)
{
uint32_t bios_connector_id = gpu_id_from_bios_object_id(bios_object_id);
enum connector_id id;
switch (bios_connector_id) {
case CONNECTOR_OBJECT_ID_SINGLE_LINK_DVI_I:
id = CONNECTOR_ID_SINGLE_LINK_DVII;
break;
case CONNECTOR_OBJECT_ID_DUAL_LINK_DVI_I:
id = CONNECTOR_ID_DUAL_LINK_DVII;
break;
case CONNECTOR_OBJECT_ID_SINGLE_LINK_DVI_D:
id = CONNECTOR_ID_SINGLE_LINK_DVID;
break;
case CONNECTOR_OBJECT_ID_DUAL_LINK_DVI_D:
id = CONNECTOR_ID_DUAL_LINK_DVID;
break;
case CONNECTOR_OBJECT_ID_VGA:
id = CONNECTOR_ID_VGA;
break;
case CONNECTOR_OBJECT_ID_HDMI_TYPE_A:
id = CONNECTOR_ID_HDMI_TYPE_A;
break;
case CONNECTOR_OBJECT_ID_LVDS:
id = CONNECTOR_ID_LVDS;
break;
case CONNECTOR_OBJECT_ID_PCIE_CONNECTOR:
id = CONNECTOR_ID_PCIE;
break;
case CONNECTOR_OBJECT_ID_HARDCODE_DVI:
id = CONNECTOR_ID_HARDCODE_DVI;
break;
case CONNECTOR_OBJECT_ID_DISPLAYPORT:
id = CONNECTOR_ID_DISPLAY_PORT;
break;
case CONNECTOR_OBJECT_ID_eDP:
id = CONNECTOR_ID_EDP;
break;
case CONNECTOR_OBJECT_ID_MXM:
id = CONNECTOR_ID_MXM;
break;
case CONNECTOR_OBJECT_ID_USBC:
id = CONNECTOR_ID_USBC;
break;
default:
id = CONNECTOR_ID_UNKNOWN;
break;
}
return id;
}
static enum generic_id generic_id_from_bios_object_id(uint32_t bios_object_id)
{
uint32_t bios_generic_id = gpu_id_from_bios_object_id(bios_object_id);
enum generic_id id;
switch (bios_generic_id) {
case GENERIC_OBJECT_ID_MXM_OPM:
id = GENERIC_ID_MXM_OPM;
break;
case GENERIC_OBJECT_ID_GLSYNC:
id = GENERIC_ID_GLSYNC;
break;
case GENERIC_OBJECT_ID_STEREO_PIN:
id = GENERIC_ID_STEREO;
break;
default:
id = GENERIC_ID_UNKNOWN;
break;
}
return id;
}
static uint32_t id_from_bios_object_id(enum object_type type,
uint32_t bios_object_id)
{
switch (type) {
case OBJECT_TYPE_GPU:
return gpu_id_from_bios_object_id(bios_object_id);
case OBJECT_TYPE_ENCODER:
return (uint32_t)encoder_id_from_bios_object_id(bios_object_id);
case OBJECT_TYPE_CONNECTOR:
return (uint32_t)connector_id_from_bios_object_id(
bios_object_id);
case OBJECT_TYPE_GENERIC:
return generic_id_from_bios_object_id(bios_object_id);
default:
return 0;
}
}
struct graphics_object_id object_id_from_bios_object_id(uint32_t bios_object_id)
{
enum object_type type;
enum object_enum_id enum_id;
struct graphics_object_id go_id = { 0 };
type = object_type_from_bios_object_id(bios_object_id);
if (OBJECT_TYPE_UNKNOWN == type)
return go_id;
enum_id = enum_id_from_bios_object_id(bios_object_id);
if (ENUM_ID_UNKNOWN == enum_id)
return go_id;
go_id = dal_graphics_object_id_init(
id_from_bios_object_id(type, bios_object_id), enum_id, type);
return go_id;
}
| linux-master | drivers/gpu/drm/amd/display/dc/bios/bios_parser_common.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "ObjectID.h"
#include "atomfirmware.h"
#include "include/bios_parser_types.h"
#include "command_table_helper2.h"
bool dal_bios_parser_init_cmd_tbl_helper2(
const struct command_table_helper **h,
enum dce_version dce)
{
switch (dce) {
#if defined(CONFIG_DRM_AMD_DC_SI)
case DCE_VERSION_6_0:
case DCE_VERSION_6_1:
case DCE_VERSION_6_4:
*h = dal_cmd_tbl_helper_dce60_get_table();
return true;
#endif
case DCE_VERSION_8_0:
case DCE_VERSION_8_1:
case DCE_VERSION_8_3:
*h = dal_cmd_tbl_helper_dce80_get_table();
return true;
case DCE_VERSION_10_0:
*h = dal_cmd_tbl_helper_dce110_get_table();
return true;
case DCE_VERSION_11_0:
*h = dal_cmd_tbl_helper_dce110_get_table();
return true;
case DCE_VERSION_11_2:
case DCE_VERSION_11_22:
case DCE_VERSION_12_0:
case DCE_VERSION_12_1:
*h = dal_cmd_tbl_helper_dce112_get_table2();
return true;
case DCN_VERSION_1_0:
case DCN_VERSION_1_01:
case DCN_VERSION_2_0:
case DCN_VERSION_2_1:
case DCN_VERSION_2_01:
case DCN_VERSION_3_0:
case DCN_VERSION_3_01:
case DCN_VERSION_3_02:
case DCN_VERSION_3_03:
case DCN_VERSION_3_1:
case DCN_VERSION_3_14:
case DCN_VERSION_3_15:
case DCN_VERSION_3_16:
case DCN_VERSION_3_2:
case DCN_VERSION_3_21:
*h = dal_cmd_tbl_helper_dce112_get_table2();
return true;
default:
/* Unsupported DCE */
BREAK_TO_DEBUGGER();
return false;
}
}
/* real implementations */
bool dal_cmd_table_helper_controller_id_to_atom2(
enum controller_id id,
uint8_t *atom_id)
{
if (atom_id == NULL) {
BREAK_TO_DEBUGGER();
return false;
}
switch (id) {
case CONTROLLER_ID_D0:
*atom_id = ATOM_CRTC1;
return true;
case CONTROLLER_ID_D1:
*atom_id = ATOM_CRTC2;
return true;
case CONTROLLER_ID_D2:
*atom_id = ATOM_CRTC3;
return true;
case CONTROLLER_ID_D3:
*atom_id = ATOM_CRTC4;
return true;
case CONTROLLER_ID_D4:
*atom_id = ATOM_CRTC5;
return true;
case CONTROLLER_ID_D5:
*atom_id = ATOM_CRTC6;
return true;
/* TODO :case CONTROLLER_ID_UNDERLAY0:
*atom_id = ATOM_UNDERLAY_PIPE0;
return true;
*/
case CONTROLLER_ID_UNDEFINED:
*atom_id = ATOM_CRTC_INVALID;
return true;
default:
/* Wrong controller id */
BREAK_TO_DEBUGGER();
return false;
}
}
/**
* dal_cmd_table_helper_transmitter_bp_to_atom2 - Translate the Transmitter to the
* corresponding ATOM BIOS value
* @t: transmitter
* returns: digitalTransmitter
* // =00: Digital Transmitter1 ( UNIPHY linkAB )
* // =01: Digital Transmitter2 ( UNIPHY linkCD )
* // =02: Digital Transmitter3 ( UNIPHY linkEF )
*/
uint8_t dal_cmd_table_helper_transmitter_bp_to_atom2(
enum transmitter t)
{
switch (t) {
case TRANSMITTER_UNIPHY_A:
case TRANSMITTER_UNIPHY_B:
case TRANSMITTER_TRAVIS_LCD:
return 0;
case TRANSMITTER_UNIPHY_C:
case TRANSMITTER_UNIPHY_D:
return 1;
case TRANSMITTER_UNIPHY_E:
case TRANSMITTER_UNIPHY_F:
return 2;
default:
/* Invalid Transmitter Type! */
BREAK_TO_DEBUGGER();
return 0;
}
}
uint32_t dal_cmd_table_helper_encoder_mode_bp_to_atom2(
enum signal_type s,
bool enable_dp_audio)
{
switch (s) {
case SIGNAL_TYPE_DVI_SINGLE_LINK:
case SIGNAL_TYPE_DVI_DUAL_LINK:
return ATOM_ENCODER_MODE_DVI;
case SIGNAL_TYPE_HDMI_TYPE_A:
return ATOM_ENCODER_MODE_HDMI;
case SIGNAL_TYPE_LVDS:
return ATOM_ENCODER_MODE_LVDS;
case SIGNAL_TYPE_EDP:
case SIGNAL_TYPE_DISPLAY_PORT_MST:
case SIGNAL_TYPE_DISPLAY_PORT:
case SIGNAL_TYPE_VIRTUAL:
if (enable_dp_audio)
return ATOM_ENCODER_MODE_DP_AUDIO;
else
return ATOM_ENCODER_MODE_DP;
case SIGNAL_TYPE_RGB:
return ATOM_ENCODER_MODE_CRT;
default:
return ATOM_ENCODER_MODE_CRT;
}
}
bool dal_cmd_table_helper_clock_source_id_to_ref_clk_src2(
enum clock_source_id id,
uint32_t *ref_clk_src_id)
{
if (ref_clk_src_id == NULL) {
BREAK_TO_DEBUGGER();
return false;
}
switch (id) {
case CLOCK_SOURCE_ID_PLL1:
*ref_clk_src_id = ENCODER_REFCLK_SRC_P1PLL;
return true;
case CLOCK_SOURCE_ID_PLL2:
*ref_clk_src_id = ENCODER_REFCLK_SRC_P2PLL;
return true;
/*TODO:case CLOCK_SOURCE_ID_DCPLL:
*ref_clk_src_id = ENCODER_REFCLK_SRC_DCPLL;
return true;
*/
case CLOCK_SOURCE_ID_EXTERNAL:
*ref_clk_src_id = ENCODER_REFCLK_SRC_EXTCLK;
return true;
case CLOCK_SOURCE_ID_UNDEFINED:
*ref_clk_src_id = ENCODER_REFCLK_SRC_INVALID;
return true;
default:
/* Unsupported clock source id */
BREAK_TO_DEBUGGER();
return false;
}
}
uint8_t dal_cmd_table_helper_encoder_id_to_atom2(
enum encoder_id id)
{
switch (id) {
case ENCODER_ID_INTERNAL_LVDS:
return ENCODER_OBJECT_ID_INTERNAL_LVDS;
case ENCODER_ID_INTERNAL_TMDS1:
return ENCODER_OBJECT_ID_INTERNAL_TMDS1;
case ENCODER_ID_INTERNAL_TMDS2:
return ENCODER_OBJECT_ID_INTERNAL_TMDS2;
case ENCODER_ID_INTERNAL_DAC1:
return ENCODER_OBJECT_ID_INTERNAL_DAC1;
case ENCODER_ID_INTERNAL_DAC2:
return ENCODER_OBJECT_ID_INTERNAL_DAC2;
case ENCODER_ID_INTERNAL_LVTM1:
return ENCODER_OBJECT_ID_INTERNAL_LVTM1;
case ENCODER_ID_INTERNAL_HDMI:
return ENCODER_OBJECT_ID_HDMI_INTERNAL;
case ENCODER_ID_EXTERNAL_TRAVIS:
return ENCODER_OBJECT_ID_TRAVIS;
case ENCODER_ID_EXTERNAL_NUTMEG:
return ENCODER_OBJECT_ID_NUTMEG;
case ENCODER_ID_INTERNAL_KLDSCP_TMDS1:
return ENCODER_OBJECT_ID_INTERNAL_KLDSCP_TMDS1;
case ENCODER_ID_INTERNAL_KLDSCP_DAC1:
return ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC1;
case ENCODER_ID_INTERNAL_KLDSCP_DAC2:
return ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC2;
case ENCODER_ID_EXTERNAL_MVPU_FPGA:
return ENCODER_OBJECT_ID_MVPU_FPGA;
case ENCODER_ID_INTERNAL_DDI:
return ENCODER_OBJECT_ID_INTERNAL_DDI;
case ENCODER_ID_INTERNAL_UNIPHY:
return ENCODER_OBJECT_ID_INTERNAL_UNIPHY;
case ENCODER_ID_INTERNAL_KLDSCP_LVTMA:
return ENCODER_OBJECT_ID_INTERNAL_KLDSCP_LVTMA;
case ENCODER_ID_INTERNAL_UNIPHY1:
return ENCODER_OBJECT_ID_INTERNAL_UNIPHY1;
case ENCODER_ID_INTERNAL_UNIPHY2:
return ENCODER_OBJECT_ID_INTERNAL_UNIPHY2;
case ENCODER_ID_INTERNAL_UNIPHY3:
return ENCODER_OBJECT_ID_INTERNAL_UNIPHY3;
case ENCODER_ID_INTERNAL_WIRELESS:
return ENCODER_OBJECT_ID_INTERNAL_VCE;
case ENCODER_ID_INTERNAL_VIRTUAL:
return ENCODER_OBJECT_ID_NONE;
case ENCODER_ID_UNKNOWN:
return ENCODER_OBJECT_ID_NONE;
default:
/* Invalid encoder id */
BREAK_TO_DEBUGGER();
return ENCODER_OBJECT_ID_NONE;
}
}
| linux-master | drivers/gpu/drm/amd/display/dc/bios/command_table_helper2.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "atom.h"
#include "include/grph_object_id.h"
#include "include/grph_object_defs.h"
#include "include/bios_parser_types.h"
#include "../command_table_helper.h"
static uint8_t encoder_action_to_atom(enum bp_encoder_control_action action)
{
uint8_t atom_action = 0;
switch (action) {
case ENCODER_CONTROL_ENABLE:
atom_action = ATOM_ENABLE;
break;
case ENCODER_CONTROL_DISABLE:
atom_action = ATOM_DISABLE;
break;
case ENCODER_CONTROL_SETUP:
atom_action = ATOM_ENCODER_CMD_SETUP;
break;
case ENCODER_CONTROL_INIT:
atom_action = ATOM_ENCODER_INIT;
break;
default:
BREAK_TO_DEBUGGER(); /* Unhandle action in driver.!! */
break;
}
return atom_action;
}
static bool engine_bp_to_atom(enum engine_id id, uint32_t *atom_engine_id)
{
bool result = false;
if (atom_engine_id != NULL)
switch (id) {
case ENGINE_ID_DIGA:
*atom_engine_id = ASIC_INT_DIG1_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGB:
*atom_engine_id = ASIC_INT_DIG2_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGC:
*atom_engine_id = ASIC_INT_DIG3_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGD:
*atom_engine_id = ASIC_INT_DIG4_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGE:
*atom_engine_id = ASIC_INT_DIG5_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGF:
*atom_engine_id = ASIC_INT_DIG6_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGG:
*atom_engine_id = ASIC_INT_DIG7_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DACA:
*atom_engine_id = ASIC_INT_DAC1_ENCODER_ID;
result = true;
break;
default:
break;
}
return result;
}
static bool clock_source_id_to_atom(
enum clock_source_id id,
uint32_t *atom_pll_id)
{
bool result = true;
if (atom_pll_id != NULL)
switch (id) {
case CLOCK_SOURCE_ID_PLL0:
*atom_pll_id = ATOM_PPLL0;
break;
case CLOCK_SOURCE_ID_PLL1:
*atom_pll_id = ATOM_PPLL1;
break;
case CLOCK_SOURCE_ID_PLL2:
*atom_pll_id = ATOM_PPLL2;
break;
case CLOCK_SOURCE_ID_EXTERNAL:
*atom_pll_id = ATOM_PPLL_INVALID;
break;
case CLOCK_SOURCE_ID_DFS:
*atom_pll_id = ATOM_EXT_PLL1;
break;
case CLOCK_SOURCE_ID_VCE:
/* for VCE encoding,
* we need to pass in ATOM_PPLL_INVALID
*/
*atom_pll_id = ATOM_PPLL_INVALID;
break;
case CLOCK_SOURCE_ID_DP_DTO:
/* When programming DP DTO PLL ID should be invalid */
*atom_pll_id = ATOM_PPLL_INVALID;
break;
case CLOCK_SOURCE_ID_UNDEFINED:
BREAK_TO_DEBUGGER(); /* check when this will happen! */
*atom_pll_id = ATOM_PPLL_INVALID;
result = false;
break;
default:
result = false;
break;
}
return result;
}
static uint8_t clock_source_id_to_atom_phy_clk_src_id(
enum clock_source_id id)
{
uint8_t atom_phy_clk_src_id = 0;
switch (id) {
case CLOCK_SOURCE_ID_PLL0:
atom_phy_clk_src_id = ATOM_TRANSMITTER_CONFIG_V5_P0PLL;
break;
case CLOCK_SOURCE_ID_PLL1:
atom_phy_clk_src_id = ATOM_TRANSMITTER_CONFIG_V5_P1PLL;
break;
case CLOCK_SOURCE_ID_PLL2:
atom_phy_clk_src_id = ATOM_TRANSMITTER_CONFIG_V5_P2PLL;
break;
case CLOCK_SOURCE_ID_EXTERNAL:
atom_phy_clk_src_id = ATOM_TRANSMITTER_CONFIG_V5_REFCLK_SRC_EXT;
break;
default:
atom_phy_clk_src_id = ATOM_TRANSMITTER_CONFIG_V5_P1PLL;
break;
}
return atom_phy_clk_src_id >> 2;
}
static uint8_t signal_type_to_atom_dig_mode(enum signal_type s)
{
uint8_t atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V5_DP;
switch (s) {
case SIGNAL_TYPE_DISPLAY_PORT:
case SIGNAL_TYPE_EDP:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V5_DP;
break;
case SIGNAL_TYPE_LVDS:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V5_LVDS;
break;
case SIGNAL_TYPE_DVI_SINGLE_LINK:
case SIGNAL_TYPE_DVI_DUAL_LINK:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V5_DVI;
break;
case SIGNAL_TYPE_HDMI_TYPE_A:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V5_HDMI;
break;
case SIGNAL_TYPE_DISPLAY_PORT_MST:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V5_DP_MST;
break;
default:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V5_DVI;
break;
}
return atom_dig_mode;
}
static uint8_t hpd_sel_to_atom(enum hpd_source_id id)
{
uint8_t atom_hpd_sel = 0;
switch (id) {
case HPD_SOURCEID1:
atom_hpd_sel = ATOM_TRANSMITTER_CONFIG_V5_HPD1_SEL;
break;
case HPD_SOURCEID2:
atom_hpd_sel = ATOM_TRANSMITTER_CONFIG_V5_HPD2_SEL;
break;
case HPD_SOURCEID3:
atom_hpd_sel = ATOM_TRANSMITTER_CONFIG_V5_HPD3_SEL;
break;
case HPD_SOURCEID4:
atom_hpd_sel = ATOM_TRANSMITTER_CONFIG_V5_HPD4_SEL;
break;
case HPD_SOURCEID5:
atom_hpd_sel = ATOM_TRANSMITTER_CONFIG_V5_HPD5_SEL;
break;
case HPD_SOURCEID6:
atom_hpd_sel = ATOM_TRANSMITTER_CONFIG_V5_HPD6_SEL;
break;
case HPD_SOURCEID_UNKNOWN:
default:
atom_hpd_sel = 0;
break;
}
return atom_hpd_sel >> 4;
}
static uint8_t dig_encoder_sel_to_atom(enum engine_id id)
{
uint8_t atom_dig_encoder_sel = 0;
switch (id) {
case ENGINE_ID_DIGA:
atom_dig_encoder_sel = ATOM_TRANMSITTER_V5__DIGA_SEL;
break;
case ENGINE_ID_DIGB:
atom_dig_encoder_sel = ATOM_TRANMSITTER_V5__DIGB_SEL;
break;
case ENGINE_ID_DIGC:
atom_dig_encoder_sel = ATOM_TRANMSITTER_V5__DIGC_SEL;
break;
case ENGINE_ID_DIGD:
atom_dig_encoder_sel = ATOM_TRANMSITTER_V5__DIGD_SEL;
break;
case ENGINE_ID_DIGE:
atom_dig_encoder_sel = ATOM_TRANMSITTER_V5__DIGE_SEL;
break;
case ENGINE_ID_DIGF:
atom_dig_encoder_sel = ATOM_TRANMSITTER_V5__DIGF_SEL;
break;
case ENGINE_ID_DIGG:
atom_dig_encoder_sel = ATOM_TRANMSITTER_V5__DIGG_SEL;
break;
default:
atom_dig_encoder_sel = ATOM_TRANMSITTER_V5__DIGA_SEL;
break;
}
return atom_dig_encoder_sel;
}
static uint8_t phy_id_to_atom(enum transmitter t)
{
uint8_t atom_phy_id;
switch (t) {
case TRANSMITTER_UNIPHY_A:
atom_phy_id = ATOM_PHY_ID_UNIPHYA;
break;
case TRANSMITTER_UNIPHY_B:
atom_phy_id = ATOM_PHY_ID_UNIPHYB;
break;
case TRANSMITTER_UNIPHY_C:
atom_phy_id = ATOM_PHY_ID_UNIPHYC;
break;
case TRANSMITTER_UNIPHY_D:
atom_phy_id = ATOM_PHY_ID_UNIPHYD;
break;
case TRANSMITTER_UNIPHY_E:
atom_phy_id = ATOM_PHY_ID_UNIPHYE;
break;
case TRANSMITTER_UNIPHY_F:
atom_phy_id = ATOM_PHY_ID_UNIPHYF;
break;
case TRANSMITTER_UNIPHY_G:
atom_phy_id = ATOM_PHY_ID_UNIPHYG;
break;
default:
atom_phy_id = ATOM_PHY_ID_UNIPHYA;
break;
}
return atom_phy_id;
}
static uint8_t disp_power_gating_action_to_atom(
enum bp_pipe_control_action action)
{
uint8_t atom_pipe_action = 0;
switch (action) {
case ASIC_PIPE_DISABLE:
atom_pipe_action = ATOM_DISABLE;
break;
case ASIC_PIPE_ENABLE:
atom_pipe_action = ATOM_ENABLE;
break;
case ASIC_PIPE_INIT:
atom_pipe_action = ATOM_INIT;
break;
default:
BREAK_TO_DEBUGGER(); /* Unhandle action in driver! */
break;
}
return atom_pipe_action;
}
static const struct command_table_helper command_table_helper_funcs = {
.controller_id_to_atom = dal_cmd_table_helper_controller_id_to_atom,
.encoder_action_to_atom = encoder_action_to_atom,
.engine_bp_to_atom = engine_bp_to_atom,
.clock_source_id_to_atom = clock_source_id_to_atom,
.clock_source_id_to_atom_phy_clk_src_id =
clock_source_id_to_atom_phy_clk_src_id,
.signal_type_to_atom_dig_mode = signal_type_to_atom_dig_mode,
.hpd_sel_to_atom = hpd_sel_to_atom,
.dig_encoder_sel_to_atom = dig_encoder_sel_to_atom,
.phy_id_to_atom = phy_id_to_atom,
.disp_power_gating_action_to_atom = disp_power_gating_action_to_atom,
.assign_control_parameter =
dal_cmd_table_helper_assign_control_parameter,
.clock_source_id_to_ref_clk_src =
dal_cmd_table_helper_clock_source_id_to_ref_clk_src,
.transmitter_bp_to_atom = dal_cmd_table_helper_transmitter_bp_to_atom,
.encoder_id_to_atom = dal_cmd_table_helper_encoder_id_to_atom,
.encoder_mode_bp_to_atom =
dal_cmd_table_helper_encoder_mode_bp_to_atom,
};
const struct command_table_helper *dal_cmd_tbl_helper_dce80_get_table(void)
{
return &command_table_helper_funcs;
}
| linux-master | drivers/gpu/drm/amd/display/dc/bios/dce80/command_table_helper_dce80.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "atom.h"
#include "include/bios_parser_types.h"
#include "../command_table_helper2.h"
static uint8_t phy_id_to_atom(enum transmitter t)
{
uint8_t atom_phy_id;
switch (t) {
case TRANSMITTER_UNIPHY_A:
atom_phy_id = ATOM_PHY_ID_UNIPHYA;
break;
case TRANSMITTER_UNIPHY_B:
atom_phy_id = ATOM_PHY_ID_UNIPHYB;
break;
case TRANSMITTER_UNIPHY_C:
atom_phy_id = ATOM_PHY_ID_UNIPHYC;
break;
case TRANSMITTER_UNIPHY_D:
atom_phy_id = ATOM_PHY_ID_UNIPHYD;
break;
case TRANSMITTER_UNIPHY_E:
atom_phy_id = ATOM_PHY_ID_UNIPHYE;
break;
case TRANSMITTER_UNIPHY_F:
atom_phy_id = ATOM_PHY_ID_UNIPHYF;
break;
case TRANSMITTER_UNIPHY_G:
atom_phy_id = ATOM_PHY_ID_UNIPHYG;
break;
default:
atom_phy_id = ATOM_PHY_ID_UNIPHYA;
break;
}
return atom_phy_id;
}
static uint8_t signal_type_to_atom_dig_mode(enum signal_type s)
{
uint8_t atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V6_DP;
switch (s) {
case SIGNAL_TYPE_DISPLAY_PORT:
case SIGNAL_TYPE_EDP:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V6_DP;
break;
case SIGNAL_TYPE_DVI_SINGLE_LINK:
case SIGNAL_TYPE_DVI_DUAL_LINK:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V6_DVI;
break;
case SIGNAL_TYPE_HDMI_TYPE_A:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V6_HDMI;
break;
case SIGNAL_TYPE_DISPLAY_PORT_MST:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V6_DP_MST;
break;
default:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V6_DVI;
break;
}
return atom_dig_mode;
}
static uint8_t clock_source_id_to_atom_phy_clk_src_id(
enum clock_source_id id)
{
uint8_t atom_phy_clk_src_id = 0;
switch (id) {
case CLOCK_SOURCE_ID_PLL0:
atom_phy_clk_src_id = ATOM_TRANSMITTER_CONFIG_V5_P0PLL;
break;
case CLOCK_SOURCE_ID_PLL1:
atom_phy_clk_src_id = ATOM_TRANSMITTER_CONFIG_V5_P1PLL;
break;
case CLOCK_SOURCE_ID_PLL2:
atom_phy_clk_src_id = ATOM_TRANSMITTER_CONFIG_V5_P2PLL;
break;
case CLOCK_SOURCE_ID_EXTERNAL:
atom_phy_clk_src_id = ATOM_TRANSMITTER_CONFIG_V5_REFCLK_SRC_EXT;
break;
default:
atom_phy_clk_src_id = ATOM_TRANSMITTER_CONFIG_V5_P1PLL;
break;
}
return atom_phy_clk_src_id >> 2;
}
static uint8_t hpd_sel_to_atom(enum hpd_source_id id)
{
uint8_t atom_hpd_sel = 0;
switch (id) {
case HPD_SOURCEID1:
atom_hpd_sel = ATOM_TRANSMITTER_V6_HPD1_SEL;
break;
case HPD_SOURCEID2:
atom_hpd_sel = ATOM_TRANSMITTER_V6_HPD2_SEL;
break;
case HPD_SOURCEID3:
atom_hpd_sel = ATOM_TRANSMITTER_V6_HPD3_SEL;
break;
case HPD_SOURCEID4:
atom_hpd_sel = ATOM_TRANSMITTER_V6_HPD4_SEL;
break;
case HPD_SOURCEID5:
atom_hpd_sel = ATOM_TRANSMITTER_V6_HPD5_SEL;
break;
case HPD_SOURCEID6:
atom_hpd_sel = ATOM_TRANSMITTER_V6_HPD6_SEL;
break;
case HPD_SOURCEID_UNKNOWN:
default:
atom_hpd_sel = 0;
break;
}
return atom_hpd_sel;
}
static uint8_t dig_encoder_sel_to_atom(enum engine_id id)
{
/* On any ASIC after DCE80, we manually program the DIG_FE
* selection (see connect_dig_be_to_fe function of the link
* encoder), so translation should always return 0 (no FE).
*/
return 0;
}
static bool clock_source_id_to_atom(
enum clock_source_id id,
uint32_t *atom_pll_id)
{
bool result = true;
if (atom_pll_id != NULL)
switch (id) {
case CLOCK_SOURCE_COMBO_PHY_PLL0:
*atom_pll_id = ATOM_COMBOPHY_PLL0;
break;
case CLOCK_SOURCE_COMBO_PHY_PLL1:
*atom_pll_id = ATOM_COMBOPHY_PLL1;
break;
case CLOCK_SOURCE_COMBO_PHY_PLL2:
*atom_pll_id = ATOM_COMBOPHY_PLL2;
break;
case CLOCK_SOURCE_COMBO_PHY_PLL3:
*atom_pll_id = ATOM_COMBOPHY_PLL3;
break;
case CLOCK_SOURCE_COMBO_PHY_PLL4:
*atom_pll_id = ATOM_COMBOPHY_PLL4;
break;
case CLOCK_SOURCE_COMBO_PHY_PLL5:
*atom_pll_id = ATOM_COMBOPHY_PLL5;
break;
case CLOCK_SOURCE_COMBO_DISPLAY_PLL0:
*atom_pll_id = ATOM_PPLL0;
break;
case CLOCK_SOURCE_ID_DFS:
*atom_pll_id = ATOM_GCK_DFS;
break;
case CLOCK_SOURCE_ID_VCE:
*atom_pll_id = ATOM_DP_DTO;
break;
case CLOCK_SOURCE_ID_DP_DTO:
*atom_pll_id = ATOM_DP_DTO;
break;
case CLOCK_SOURCE_ID_UNDEFINED:
/* Should not happen */
*atom_pll_id = ATOM_PPLL_INVALID;
result = false;
break;
default:
result = false;
break;
}
return result;
}
static bool engine_bp_to_atom(enum engine_id id, uint32_t *atom_engine_id)
{
bool result = false;
if (atom_engine_id != NULL)
switch (id) {
case ENGINE_ID_DIGA:
*atom_engine_id = ASIC_INT_DIG1_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGB:
*atom_engine_id = ASIC_INT_DIG2_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGC:
*atom_engine_id = ASIC_INT_DIG3_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGD:
*atom_engine_id = ASIC_INT_DIG4_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGE:
*atom_engine_id = ASIC_INT_DIG5_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGF:
*atom_engine_id = ASIC_INT_DIG6_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGG:
*atom_engine_id = ASIC_INT_DIG7_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DACA:
*atom_engine_id = ASIC_INT_DAC1_ENCODER_ID;
result = true;
break;
default:
break;
}
return result;
}
static uint8_t encoder_action_to_atom(enum bp_encoder_control_action action)
{
uint8_t atom_action = 0;
switch (action) {
case ENCODER_CONTROL_ENABLE:
atom_action = ATOM_ENABLE;
break;
case ENCODER_CONTROL_DISABLE:
atom_action = ATOM_DISABLE;
break;
case ENCODER_CONTROL_SETUP:
atom_action = ATOM_ENCODER_CMD_STREAM_SETUP;
break;
case ENCODER_CONTROL_INIT:
atom_action = ATOM_ENCODER_INIT;
break;
default:
BREAK_TO_DEBUGGER(); /* Unhandle action in driver.!! */
break;
}
return atom_action;
}
static uint8_t disp_power_gating_action_to_atom(
enum bp_pipe_control_action action)
{
uint8_t atom_pipe_action = 0;
switch (action) {
case ASIC_PIPE_DISABLE:
atom_pipe_action = ATOM_DISABLE;
break;
case ASIC_PIPE_ENABLE:
atom_pipe_action = ATOM_ENABLE;
break;
case ASIC_PIPE_INIT:
atom_pipe_action = ATOM_INIT;
break;
default:
ASSERT_CRITICAL(false); /* Unhandle action in driver! */
break;
}
return atom_pipe_action;
}
static bool dc_clock_type_to_atom(
enum bp_dce_clock_type id,
uint32_t *atom_clock_type)
{
bool retCode = true;
if (atom_clock_type != NULL) {
switch (id) {
case DCECLOCK_TYPE_DISPLAY_CLOCK:
*atom_clock_type = DCE_CLOCK_TYPE_DISPCLK;
break;
case DCECLOCK_TYPE_DPREFCLK:
*atom_clock_type = DCE_CLOCK_TYPE_DPREFCLK;
break;
default:
ASSERT_CRITICAL(false); /* Unhandle action in driver! */
break;
}
}
return retCode;
}
static uint8_t transmitter_color_depth_to_atom(enum transmitter_color_depth id)
{
uint8_t atomColorDepth = 0;
switch (id) {
case TRANSMITTER_COLOR_DEPTH_24:
atomColorDepth = PIXEL_CLOCK_V7_DEEPCOLOR_RATIO_DIS;
break;
case TRANSMITTER_COLOR_DEPTH_30:
atomColorDepth = PIXEL_CLOCK_V7_DEEPCOLOR_RATIO_5_4;
break;
case TRANSMITTER_COLOR_DEPTH_36:
atomColorDepth = PIXEL_CLOCK_V7_DEEPCOLOR_RATIO_3_2;
break;
case TRANSMITTER_COLOR_DEPTH_48:
atomColorDepth = PIXEL_CLOCK_V7_DEEPCOLOR_RATIO_2_1;
break;
default:
ASSERT_CRITICAL(false); /* Unhandle action in driver! */
break;
}
return atomColorDepth;
}
/* function table */
static const struct command_table_helper command_table_helper_funcs = {
.controller_id_to_atom = dal_cmd_table_helper_controller_id_to_atom2,
.encoder_action_to_atom = encoder_action_to_atom,
.engine_bp_to_atom = engine_bp_to_atom,
.clock_source_id_to_atom = clock_source_id_to_atom,
.clock_source_id_to_atom_phy_clk_src_id =
clock_source_id_to_atom_phy_clk_src_id,
.signal_type_to_atom_dig_mode = signal_type_to_atom_dig_mode,
.hpd_sel_to_atom = hpd_sel_to_atom,
.dig_encoder_sel_to_atom = dig_encoder_sel_to_atom,
.phy_id_to_atom = phy_id_to_atom,
.disp_power_gating_action_to_atom = disp_power_gating_action_to_atom,
.clock_source_id_to_ref_clk_src = NULL,
.transmitter_bp_to_atom = NULL,
.encoder_id_to_atom = dal_cmd_table_helper_encoder_id_to_atom2,
.encoder_mode_bp_to_atom =
dal_cmd_table_helper_encoder_mode_bp_to_atom2,
.dc_clock_type_to_atom = dc_clock_type_to_atom,
.transmitter_color_depth_to_atom = transmitter_color_depth_to_atom,
};
/*
* dal_cmd_tbl_helper_dce110_get_table
*
* @brief
* Initialize command table helper functions
*
* @param
* const struct command_table_helper **h - [out] struct of functions
*
*/
const struct command_table_helper *dal_cmd_tbl_helper_dce112_get_table2(void)
{
return &command_table_helper_funcs;
}
| linux-master | drivers/gpu/drm/amd/display/dc/bios/dce112/command_table_helper2_dce112.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "atom.h"
#include "include/bios_parser_types.h"
#include "../command_table_helper.h"
static uint8_t phy_id_to_atom(enum transmitter t)
{
uint8_t atom_phy_id;
switch (t) {
case TRANSMITTER_UNIPHY_A:
atom_phy_id = ATOM_PHY_ID_UNIPHYA;
break;
case TRANSMITTER_UNIPHY_B:
atom_phy_id = ATOM_PHY_ID_UNIPHYB;
break;
case TRANSMITTER_UNIPHY_C:
atom_phy_id = ATOM_PHY_ID_UNIPHYC;
break;
case TRANSMITTER_UNIPHY_D:
atom_phy_id = ATOM_PHY_ID_UNIPHYD;
break;
case TRANSMITTER_UNIPHY_E:
atom_phy_id = ATOM_PHY_ID_UNIPHYE;
break;
case TRANSMITTER_UNIPHY_F:
atom_phy_id = ATOM_PHY_ID_UNIPHYF;
break;
case TRANSMITTER_UNIPHY_G:
atom_phy_id = ATOM_PHY_ID_UNIPHYG;
break;
default:
atom_phy_id = ATOM_PHY_ID_UNIPHYA;
break;
}
return atom_phy_id;
}
static uint8_t signal_type_to_atom_dig_mode(enum signal_type s)
{
uint8_t atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V6_DP;
switch (s) {
case SIGNAL_TYPE_DISPLAY_PORT:
case SIGNAL_TYPE_EDP:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V6_DP;
break;
case SIGNAL_TYPE_DVI_SINGLE_LINK:
case SIGNAL_TYPE_DVI_DUAL_LINK:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V6_DVI;
break;
case SIGNAL_TYPE_HDMI_TYPE_A:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V6_HDMI;
break;
case SIGNAL_TYPE_DISPLAY_PORT_MST:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V6_DP_MST;
break;
default:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V6_DVI;
break;
}
return atom_dig_mode;
}
static uint8_t clock_source_id_to_atom_phy_clk_src_id(
enum clock_source_id id)
{
uint8_t atom_phy_clk_src_id = 0;
switch (id) {
case CLOCK_SOURCE_ID_PLL0:
atom_phy_clk_src_id = ATOM_TRANSMITTER_CONFIG_V5_P0PLL;
break;
case CLOCK_SOURCE_ID_PLL1:
atom_phy_clk_src_id = ATOM_TRANSMITTER_CONFIG_V5_P1PLL;
break;
case CLOCK_SOURCE_ID_PLL2:
atom_phy_clk_src_id = ATOM_TRANSMITTER_CONFIG_V5_P2PLL;
break;
case CLOCK_SOURCE_ID_EXTERNAL:
atom_phy_clk_src_id = ATOM_TRANSMITTER_CONFIG_V5_REFCLK_SRC_EXT;
break;
default:
atom_phy_clk_src_id = ATOM_TRANSMITTER_CONFIG_V5_P1PLL;
break;
}
return atom_phy_clk_src_id >> 2;
}
static uint8_t hpd_sel_to_atom(enum hpd_source_id id)
{
uint8_t atom_hpd_sel = 0;
switch (id) {
case HPD_SOURCEID1:
atom_hpd_sel = ATOM_TRANSMITTER_V6_HPD1_SEL;
break;
case HPD_SOURCEID2:
atom_hpd_sel = ATOM_TRANSMITTER_V6_HPD2_SEL;
break;
case HPD_SOURCEID3:
atom_hpd_sel = ATOM_TRANSMITTER_V6_HPD3_SEL;
break;
case HPD_SOURCEID4:
atom_hpd_sel = ATOM_TRANSMITTER_V6_HPD4_SEL;
break;
case HPD_SOURCEID5:
atom_hpd_sel = ATOM_TRANSMITTER_V6_HPD5_SEL;
break;
case HPD_SOURCEID6:
atom_hpd_sel = ATOM_TRANSMITTER_V6_HPD6_SEL;
break;
case HPD_SOURCEID_UNKNOWN:
default:
atom_hpd_sel = 0;
break;
}
return atom_hpd_sel;
}
static uint8_t dig_encoder_sel_to_atom(enum engine_id id)
{
/* On any ASIC after DCE80, we manually program the DIG_FE
* selection (see connect_dig_be_to_fe function of the link
* encoder), so translation should always return 0 (no FE).
*/
return 0;
}
static bool clock_source_id_to_atom(
enum clock_source_id id,
uint32_t *atom_pll_id)
{
bool result = true;
if (atom_pll_id != NULL)
switch (id) {
case CLOCK_SOURCE_COMBO_PHY_PLL0:
*atom_pll_id = ATOM_COMBOPHY_PLL0;
break;
case CLOCK_SOURCE_COMBO_PHY_PLL1:
*atom_pll_id = ATOM_COMBOPHY_PLL1;
break;
case CLOCK_SOURCE_COMBO_PHY_PLL2:
*atom_pll_id = ATOM_COMBOPHY_PLL2;
break;
case CLOCK_SOURCE_COMBO_PHY_PLL3:
*atom_pll_id = ATOM_COMBOPHY_PLL3;
break;
case CLOCK_SOURCE_COMBO_PHY_PLL4:
*atom_pll_id = ATOM_COMBOPHY_PLL4;
break;
case CLOCK_SOURCE_COMBO_PHY_PLL5:
*atom_pll_id = ATOM_COMBOPHY_PLL5;
break;
case CLOCK_SOURCE_COMBO_DISPLAY_PLL0:
*atom_pll_id = ATOM_PPLL0;
break;
case CLOCK_SOURCE_ID_DFS:
*atom_pll_id = ATOM_GCK_DFS;
break;
case CLOCK_SOURCE_ID_VCE:
*atom_pll_id = ATOM_DP_DTO;
break;
case CLOCK_SOURCE_ID_DP_DTO:
*atom_pll_id = ATOM_DP_DTO;
break;
case CLOCK_SOURCE_ID_UNDEFINED:
/* Should not happen */
*atom_pll_id = ATOM_PPLL_INVALID;
result = false;
break;
default:
result = false;
break;
}
return result;
}
static bool engine_bp_to_atom(enum engine_id id, uint32_t *atom_engine_id)
{
bool result = false;
if (atom_engine_id != NULL)
switch (id) {
case ENGINE_ID_DIGA:
*atom_engine_id = ASIC_INT_DIG1_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGB:
*atom_engine_id = ASIC_INT_DIG2_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGC:
*atom_engine_id = ASIC_INT_DIG3_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGD:
*atom_engine_id = ASIC_INT_DIG4_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGE:
*atom_engine_id = ASIC_INT_DIG5_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGF:
*atom_engine_id = ASIC_INT_DIG6_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGG:
*atom_engine_id = ASIC_INT_DIG7_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DACA:
*atom_engine_id = ASIC_INT_DAC1_ENCODER_ID;
result = true;
break;
default:
break;
}
return result;
}
static uint8_t encoder_action_to_atom(enum bp_encoder_control_action action)
{
uint8_t atom_action = 0;
switch (action) {
case ENCODER_CONTROL_ENABLE:
atom_action = ATOM_ENABLE;
break;
case ENCODER_CONTROL_DISABLE:
atom_action = ATOM_DISABLE;
break;
case ENCODER_CONTROL_SETUP:
atom_action = ATOM_ENCODER_CMD_STREAM_SETUP;
break;
case ENCODER_CONTROL_INIT:
atom_action = ATOM_ENCODER_INIT;
break;
default:
BREAK_TO_DEBUGGER(); /* Unhandle action in driver.!! */
break;
}
return atom_action;
}
static uint8_t disp_power_gating_action_to_atom(
enum bp_pipe_control_action action)
{
uint8_t atom_pipe_action = 0;
switch (action) {
case ASIC_PIPE_DISABLE:
atom_pipe_action = ATOM_DISABLE;
break;
case ASIC_PIPE_ENABLE:
atom_pipe_action = ATOM_ENABLE;
break;
case ASIC_PIPE_INIT:
atom_pipe_action = ATOM_INIT;
break;
default:
ASSERT_CRITICAL(false); /* Unhandle action in driver! */
break;
}
return atom_pipe_action;
}
static bool dc_clock_type_to_atom(
enum bp_dce_clock_type id,
uint32_t *atom_clock_type)
{
bool retCode = true;
if (atom_clock_type != NULL) {
switch (id) {
case DCECLOCK_TYPE_DISPLAY_CLOCK:
*atom_clock_type = DCE_CLOCK_TYPE_DISPCLK;
break;
case DCECLOCK_TYPE_DPREFCLK:
*atom_clock_type = DCE_CLOCK_TYPE_DPREFCLK;
break;
default:
ASSERT_CRITICAL(false); /* Unhandle action in driver! */
break;
}
}
return retCode;
}
static uint8_t transmitter_color_depth_to_atom(enum transmitter_color_depth id)
{
uint8_t atomColorDepth = 0;
switch (id) {
case TRANSMITTER_COLOR_DEPTH_24:
atomColorDepth = PIXEL_CLOCK_V7_DEEPCOLOR_RATIO_DIS;
break;
case TRANSMITTER_COLOR_DEPTH_30:
atomColorDepth = PIXEL_CLOCK_V7_DEEPCOLOR_RATIO_5_4;
break;
case TRANSMITTER_COLOR_DEPTH_36:
atomColorDepth = PIXEL_CLOCK_V7_DEEPCOLOR_RATIO_3_2;
break;
case TRANSMITTER_COLOR_DEPTH_48:
atomColorDepth = PIXEL_CLOCK_V7_DEEPCOLOR_RATIO_2_1;
break;
default:
ASSERT_CRITICAL(false); /* Unhandle action in driver! */
break;
}
return atomColorDepth;
}
/* function table */
static const struct command_table_helper command_table_helper_funcs = {
.controller_id_to_atom = dal_cmd_table_helper_controller_id_to_atom,
.encoder_action_to_atom = encoder_action_to_atom,
.engine_bp_to_atom = engine_bp_to_atom,
.clock_source_id_to_atom = clock_source_id_to_atom,
.clock_source_id_to_atom_phy_clk_src_id =
clock_source_id_to_atom_phy_clk_src_id,
.signal_type_to_atom_dig_mode = signal_type_to_atom_dig_mode,
.hpd_sel_to_atom = hpd_sel_to_atom,
.dig_encoder_sel_to_atom = dig_encoder_sel_to_atom,
.phy_id_to_atom = phy_id_to_atom,
.disp_power_gating_action_to_atom = disp_power_gating_action_to_atom,
.assign_control_parameter = NULL,
.clock_source_id_to_ref_clk_src = NULL,
.transmitter_bp_to_atom = NULL,
.encoder_id_to_atom = dal_cmd_table_helper_encoder_id_to_atom,
.encoder_mode_bp_to_atom = dal_cmd_table_helper_encoder_mode_bp_to_atom,
.dc_clock_type_to_atom = dc_clock_type_to_atom,
.transmitter_color_depth_to_atom = transmitter_color_depth_to_atom,
};
/*
* dal_cmd_tbl_helper_dce110_get_table
*
* @brief
* Initialize command table helper functions
*
* @param
* const struct command_table_helper **h - [out] struct of functions
*
*/
const struct command_table_helper *dal_cmd_tbl_helper_dce112_get_table(void)
{
return &command_table_helper_funcs;
}
| linux-master | drivers/gpu/drm/amd/display/dc/bios/dce112/command_table_helper_dce112.c |
/*
* Copyright 2020 Mauro Rossi <[email protected]>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "atom.h"
#include "include/grph_object_id.h"
#include "include/grph_object_defs.h"
#include "include/bios_parser_types.h"
#include "../command_table_helper.h"
static uint8_t encoder_action_to_atom(enum bp_encoder_control_action action)
{
uint8_t atom_action = 0;
switch (action) {
case ENCODER_CONTROL_ENABLE:
atom_action = ATOM_ENABLE;
break;
case ENCODER_CONTROL_DISABLE:
atom_action = ATOM_DISABLE;
break;
case ENCODER_CONTROL_SETUP:
atom_action = ATOM_ENCODER_CMD_SETUP;
break;
case ENCODER_CONTROL_INIT:
atom_action = ATOM_ENCODER_INIT;
break;
default:
BREAK_TO_DEBUGGER(); /* Unhandle action in driver.!! */
break;
}
return atom_action;
}
static bool engine_bp_to_atom(enum engine_id id, uint32_t *atom_engine_id)
{
bool result = false;
if (atom_engine_id != NULL)
switch (id) {
case ENGINE_ID_DIGA:
*atom_engine_id = ASIC_INT_DIG1_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGB:
*atom_engine_id = ASIC_INT_DIG2_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGC:
*atom_engine_id = ASIC_INT_DIG3_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGD:
*atom_engine_id = ASIC_INT_DIG4_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGE:
*atom_engine_id = ASIC_INT_DIG5_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGF:
*atom_engine_id = ASIC_INT_DIG6_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGG:
*atom_engine_id = ASIC_INT_DIG7_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DACA:
*atom_engine_id = ASIC_INT_DAC1_ENCODER_ID;
result = true;
break;
default:
break;
}
return result;
}
static bool clock_source_id_to_atom(
enum clock_source_id id,
uint32_t *atom_pll_id)
{
bool result = true;
if (atom_pll_id != NULL)
switch (id) {
case CLOCK_SOURCE_ID_PLL0:
*atom_pll_id = ATOM_PPLL0;
break;
case CLOCK_SOURCE_ID_PLL1:
*atom_pll_id = ATOM_PPLL1;
break;
case CLOCK_SOURCE_ID_PLL2:
*atom_pll_id = ATOM_PPLL2;
break;
case CLOCK_SOURCE_ID_EXTERNAL:
*atom_pll_id = ATOM_PPLL_INVALID;
break;
case CLOCK_SOURCE_ID_DFS:
*atom_pll_id = ATOM_EXT_PLL1;
break;
case CLOCK_SOURCE_ID_VCE:
/* for VCE encoding,
* we need to pass in ATOM_PPLL_INVALID
*/
*atom_pll_id = ATOM_PPLL_INVALID;
break;
case CLOCK_SOURCE_ID_DP_DTO:
/* When programming DP DTO PLL ID should be invalid */
*atom_pll_id = ATOM_PPLL_INVALID;
break;
case CLOCK_SOURCE_ID_UNDEFINED:
BREAK_TO_DEBUGGER(); /* check when this will happen! */
*atom_pll_id = ATOM_PPLL_INVALID;
result = false;
break;
default:
result = false;
break;
}
return result;
}
static uint8_t clock_source_id_to_atom_phy_clk_src_id(
enum clock_source_id id)
{
uint8_t atom_phy_clk_src_id = 0;
switch (id) {
case CLOCK_SOURCE_ID_PLL0:
atom_phy_clk_src_id = ATOM_TRANSMITTER_CONFIG_V5_P0PLL;
break;
case CLOCK_SOURCE_ID_PLL1:
atom_phy_clk_src_id = ATOM_TRANSMITTER_CONFIG_V5_P1PLL;
break;
case CLOCK_SOURCE_ID_PLL2:
atom_phy_clk_src_id = ATOM_TRANSMITTER_CONFIG_V5_P2PLL;
break;
case CLOCK_SOURCE_ID_EXTERNAL:
atom_phy_clk_src_id = ATOM_TRANSMITTER_CONFIG_V5_REFCLK_SRC_EXT;
break;
default:
atom_phy_clk_src_id = ATOM_TRANSMITTER_CONFIG_V5_P1PLL;
break;
}
return atom_phy_clk_src_id >> 2;
}
static uint8_t signal_type_to_atom_dig_mode(enum signal_type s)
{
uint8_t atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V5_DP;
switch (s) {
case SIGNAL_TYPE_DISPLAY_PORT:
case SIGNAL_TYPE_EDP:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V5_DP;
break;
case SIGNAL_TYPE_LVDS:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V5_LVDS;
break;
case SIGNAL_TYPE_DVI_SINGLE_LINK:
case SIGNAL_TYPE_DVI_DUAL_LINK:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V5_DVI;
break;
case SIGNAL_TYPE_HDMI_TYPE_A:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V5_HDMI;
break;
case SIGNAL_TYPE_DISPLAY_PORT_MST:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V5_DP_MST;
break;
default:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V5_DVI;
break;
}
return atom_dig_mode;
}
static uint8_t hpd_sel_to_atom(enum hpd_source_id id)
{
uint8_t atom_hpd_sel = 0;
switch (id) {
case HPD_SOURCEID1:
atom_hpd_sel = ATOM_TRANSMITTER_CONFIG_V5_HPD1_SEL;
break;
case HPD_SOURCEID2:
atom_hpd_sel = ATOM_TRANSMITTER_CONFIG_V5_HPD2_SEL;
break;
case HPD_SOURCEID3:
atom_hpd_sel = ATOM_TRANSMITTER_CONFIG_V5_HPD3_SEL;
break;
case HPD_SOURCEID4:
atom_hpd_sel = ATOM_TRANSMITTER_CONFIG_V5_HPD4_SEL;
break;
case HPD_SOURCEID5:
atom_hpd_sel = ATOM_TRANSMITTER_CONFIG_V5_HPD5_SEL;
break;
case HPD_SOURCEID6:
atom_hpd_sel = ATOM_TRANSMITTER_CONFIG_V5_HPD6_SEL;
break;
case HPD_SOURCEID_UNKNOWN:
default:
atom_hpd_sel = 0;
break;
}
return atom_hpd_sel >> 4;
}
static uint8_t dig_encoder_sel_to_atom(enum engine_id id)
{
uint8_t atom_dig_encoder_sel = 0;
switch (id) {
case ENGINE_ID_DIGA:
atom_dig_encoder_sel = ATOM_TRANMSITTER_V5__DIGA_SEL;
break;
case ENGINE_ID_DIGB:
atom_dig_encoder_sel = ATOM_TRANMSITTER_V5__DIGB_SEL;
break;
case ENGINE_ID_DIGC:
atom_dig_encoder_sel = ATOM_TRANMSITTER_V5__DIGC_SEL;
break;
case ENGINE_ID_DIGD:
atom_dig_encoder_sel = ATOM_TRANMSITTER_V5__DIGD_SEL;
break;
case ENGINE_ID_DIGE:
atom_dig_encoder_sel = ATOM_TRANMSITTER_V5__DIGE_SEL;
break;
case ENGINE_ID_DIGF:
atom_dig_encoder_sel = ATOM_TRANMSITTER_V5__DIGF_SEL;
break;
case ENGINE_ID_DIGG:
atom_dig_encoder_sel = ATOM_TRANMSITTER_V5__DIGG_SEL;
break;
default:
atom_dig_encoder_sel = ATOM_TRANMSITTER_V5__DIGA_SEL;
break;
}
return atom_dig_encoder_sel;
}
static uint8_t phy_id_to_atom(enum transmitter t)
{
uint8_t atom_phy_id;
switch (t) {
case TRANSMITTER_UNIPHY_A:
atom_phy_id = ATOM_PHY_ID_UNIPHYA;
break;
case TRANSMITTER_UNIPHY_B:
atom_phy_id = ATOM_PHY_ID_UNIPHYB;
break;
case TRANSMITTER_UNIPHY_C:
atom_phy_id = ATOM_PHY_ID_UNIPHYC;
break;
case TRANSMITTER_UNIPHY_D:
atom_phy_id = ATOM_PHY_ID_UNIPHYD;
break;
case TRANSMITTER_UNIPHY_E:
atom_phy_id = ATOM_PHY_ID_UNIPHYE;
break;
case TRANSMITTER_UNIPHY_F:
atom_phy_id = ATOM_PHY_ID_UNIPHYF;
break;
case TRANSMITTER_UNIPHY_G:
atom_phy_id = ATOM_PHY_ID_UNIPHYG;
break;
default:
atom_phy_id = ATOM_PHY_ID_UNIPHYA;
break;
}
return atom_phy_id;
}
static uint8_t disp_power_gating_action_to_atom(
enum bp_pipe_control_action action)
{
uint8_t atom_pipe_action = 0;
switch (action) {
case ASIC_PIPE_DISABLE:
atom_pipe_action = ATOM_DISABLE;
break;
case ASIC_PIPE_ENABLE:
atom_pipe_action = ATOM_ENABLE;
break;
case ASIC_PIPE_INIT:
atom_pipe_action = ATOM_INIT;
break;
default:
BREAK_TO_DEBUGGER(); /* Unhandle action in driver! */
break;
}
return atom_pipe_action;
}
static const struct command_table_helper command_table_helper_funcs = {
.controller_id_to_atom = dal_cmd_table_helper_controller_id_to_atom,
.encoder_action_to_atom = encoder_action_to_atom,
.engine_bp_to_atom = engine_bp_to_atom,
.clock_source_id_to_atom = clock_source_id_to_atom,
.clock_source_id_to_atom_phy_clk_src_id =
clock_source_id_to_atom_phy_clk_src_id,
.signal_type_to_atom_dig_mode = signal_type_to_atom_dig_mode,
.hpd_sel_to_atom = hpd_sel_to_atom,
.dig_encoder_sel_to_atom = dig_encoder_sel_to_atom,
.phy_id_to_atom = phy_id_to_atom,
.disp_power_gating_action_to_atom = disp_power_gating_action_to_atom,
.assign_control_parameter =
dal_cmd_table_helper_assign_control_parameter,
.clock_source_id_to_ref_clk_src =
dal_cmd_table_helper_clock_source_id_to_ref_clk_src,
.transmitter_bp_to_atom = dal_cmd_table_helper_transmitter_bp_to_atom,
.encoder_id_to_atom = dal_cmd_table_helper_encoder_id_to_atom,
.encoder_mode_bp_to_atom =
dal_cmd_table_helper_encoder_mode_bp_to_atom,
};
const struct command_table_helper *dal_cmd_tbl_helper_dce60_get_table(void)
{
return &command_table_helper_funcs;
}
| linux-master | drivers/gpu/drm/amd/display/dc/bios/dce60/command_table_helper_dce60.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "atom.h"
#include "include/bios_parser_types.h"
#include "../command_table_helper.h"
static uint8_t phy_id_to_atom(enum transmitter t)
{
uint8_t atom_phy_id;
switch (t) {
case TRANSMITTER_UNIPHY_A:
atom_phy_id = ATOM_PHY_ID_UNIPHYA;
break;
case TRANSMITTER_UNIPHY_B:
atom_phy_id = ATOM_PHY_ID_UNIPHYB;
break;
case TRANSMITTER_UNIPHY_C:
atom_phy_id = ATOM_PHY_ID_UNIPHYC;
break;
case TRANSMITTER_UNIPHY_D:
atom_phy_id = ATOM_PHY_ID_UNIPHYD;
break;
case TRANSMITTER_UNIPHY_E:
atom_phy_id = ATOM_PHY_ID_UNIPHYE;
break;
case TRANSMITTER_UNIPHY_F:
atom_phy_id = ATOM_PHY_ID_UNIPHYF;
break;
case TRANSMITTER_UNIPHY_G:
atom_phy_id = ATOM_PHY_ID_UNIPHYG;
break;
default:
atom_phy_id = ATOM_PHY_ID_UNIPHYA;
break;
}
return atom_phy_id;
}
static uint8_t signal_type_to_atom_dig_mode(enum signal_type s)
{
uint8_t atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V5_DP;
switch (s) {
case SIGNAL_TYPE_DISPLAY_PORT:
case SIGNAL_TYPE_EDP:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V5_DP;
break;
case SIGNAL_TYPE_LVDS:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V5_LVDS;
break;
case SIGNAL_TYPE_DVI_SINGLE_LINK:
case SIGNAL_TYPE_DVI_DUAL_LINK:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V5_DVI;
break;
case SIGNAL_TYPE_HDMI_TYPE_A:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V5_HDMI;
break;
case SIGNAL_TYPE_DISPLAY_PORT_MST:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V5_DP_MST;
break;
default:
atom_dig_mode = ATOM_TRANSMITTER_DIGMODE_V5_DVI;
break;
}
return atom_dig_mode;
}
static uint8_t clock_source_id_to_atom_phy_clk_src_id(
enum clock_source_id id)
{
uint8_t atom_phy_clk_src_id = 0;
switch (id) {
case CLOCK_SOURCE_ID_PLL0:
atom_phy_clk_src_id = ATOM_TRANSMITTER_CONFIG_V5_P0PLL;
break;
case CLOCK_SOURCE_ID_PLL1:
atom_phy_clk_src_id = ATOM_TRANSMITTER_CONFIG_V5_P1PLL;
break;
case CLOCK_SOURCE_ID_PLL2:
atom_phy_clk_src_id = ATOM_TRANSMITTER_CONFIG_V5_P2PLL;
break;
case CLOCK_SOURCE_ID_EXTERNAL:
atom_phy_clk_src_id = ATOM_TRANSMITTER_CONFIG_V5_REFCLK_SRC_EXT;
break;
default:
atom_phy_clk_src_id = ATOM_TRANSMITTER_CONFIG_V5_P1PLL;
break;
}
return atom_phy_clk_src_id >> 2;
}
static uint8_t hpd_sel_to_atom(enum hpd_source_id id)
{
uint8_t atom_hpd_sel = 0;
switch (id) {
case HPD_SOURCEID1:
atom_hpd_sel = ATOM_TRANSMITTER_CONFIG_V5_HPD1_SEL;
break;
case HPD_SOURCEID2:
atom_hpd_sel = ATOM_TRANSMITTER_CONFIG_V5_HPD2_SEL;
break;
case HPD_SOURCEID3:
atom_hpd_sel = ATOM_TRANSMITTER_CONFIG_V5_HPD3_SEL;
break;
case HPD_SOURCEID4:
atom_hpd_sel = ATOM_TRANSMITTER_CONFIG_V5_HPD4_SEL;
break;
case HPD_SOURCEID5:
atom_hpd_sel = ATOM_TRANSMITTER_CONFIG_V5_HPD5_SEL;
break;
case HPD_SOURCEID6:
atom_hpd_sel = ATOM_TRANSMITTER_CONFIG_V5_HPD6_SEL;
break;
case HPD_SOURCEID_UNKNOWN:
default:
atom_hpd_sel = 0;
break;
}
return atom_hpd_sel >> 4;
}
static uint8_t dig_encoder_sel_to_atom(enum engine_id id)
{
/* On any ASIC after DCE80, we manually program the DIG_FE
* selection (see connect_dig_be_to_fe function of the link
* encoder), so translation should always return 0 (no FE).
*/
return 0;
}
static bool clock_source_id_to_atom(
enum clock_source_id id,
uint32_t *atom_pll_id)
{
bool result = true;
if (atom_pll_id != NULL)
switch (id) {
case CLOCK_SOURCE_ID_PLL0:
*atom_pll_id = ATOM_PPLL0;
break;
case CLOCK_SOURCE_ID_PLL1:
*atom_pll_id = ATOM_PPLL1;
break;
case CLOCK_SOURCE_ID_PLL2:
*atom_pll_id = ATOM_PPLL2;
break;
case CLOCK_SOURCE_ID_EXTERNAL:
*atom_pll_id = ATOM_PPLL_INVALID;
break;
case CLOCK_SOURCE_ID_DFS:
*atom_pll_id = ATOM_EXT_PLL1;
break;
case CLOCK_SOURCE_ID_VCE:
/* for VCE encoding,
* we need to pass in ATOM_PPLL_INVALID
*/
*atom_pll_id = ATOM_PPLL_INVALID;
break;
case CLOCK_SOURCE_ID_DP_DTO:
/* When programming DP DTO PLL ID should be invalid */
*atom_pll_id = ATOM_PPLL_INVALID;
break;
case CLOCK_SOURCE_ID_UNDEFINED:
/* Should not happen */
*atom_pll_id = ATOM_PPLL_INVALID;
result = false;
break;
default:
result = false;
break;
}
return result;
}
static bool engine_bp_to_atom(enum engine_id id, uint32_t *atom_engine_id)
{
bool result = false;
if (atom_engine_id != NULL)
switch (id) {
case ENGINE_ID_DIGA:
*atom_engine_id = ASIC_INT_DIG1_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGB:
*atom_engine_id = ASIC_INT_DIG2_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGC:
*atom_engine_id = ASIC_INT_DIG3_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGD:
*atom_engine_id = ASIC_INT_DIG4_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGE:
*atom_engine_id = ASIC_INT_DIG5_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGF:
*atom_engine_id = ASIC_INT_DIG6_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DIGG:
*atom_engine_id = ASIC_INT_DIG7_ENCODER_ID;
result = true;
break;
case ENGINE_ID_DACA:
*atom_engine_id = ASIC_INT_DAC1_ENCODER_ID;
result = true;
break;
default:
break;
}
return result;
}
static uint8_t encoder_action_to_atom(enum bp_encoder_control_action action)
{
uint8_t atom_action = 0;
switch (action) {
case ENCODER_CONTROL_ENABLE:
atom_action = ATOM_ENABLE;
break;
case ENCODER_CONTROL_DISABLE:
atom_action = ATOM_DISABLE;
break;
case ENCODER_CONTROL_SETUP:
atom_action = ATOM_ENCODER_CMD_SETUP;
break;
case ENCODER_CONTROL_INIT:
atom_action = ATOM_ENCODER_INIT;
break;
default:
BREAK_TO_DEBUGGER(); /* Unhandle action in driver.!! */
break;
}
return atom_action;
}
static uint8_t disp_power_gating_action_to_atom(
enum bp_pipe_control_action action)
{
uint8_t atom_pipe_action = 0;
switch (action) {
case ASIC_PIPE_DISABLE:
atom_pipe_action = ATOM_DISABLE;
break;
case ASIC_PIPE_ENABLE:
atom_pipe_action = ATOM_ENABLE;
break;
case ASIC_PIPE_INIT:
atom_pipe_action = ATOM_INIT;
break;
default:
ASSERT_CRITICAL(false); /* Unhandle action in driver! */
break;
}
return atom_pipe_action;
}
/* function table */
static const struct command_table_helper command_table_helper_funcs = {
.controller_id_to_atom = dal_cmd_table_helper_controller_id_to_atom,
.encoder_action_to_atom = encoder_action_to_atom,
.engine_bp_to_atom = engine_bp_to_atom,
.clock_source_id_to_atom = clock_source_id_to_atom,
.clock_source_id_to_atom_phy_clk_src_id =
clock_source_id_to_atom_phy_clk_src_id,
.signal_type_to_atom_dig_mode = signal_type_to_atom_dig_mode,
.hpd_sel_to_atom = hpd_sel_to_atom,
.dig_encoder_sel_to_atom = dig_encoder_sel_to_atom,
.phy_id_to_atom = phy_id_to_atom,
.disp_power_gating_action_to_atom = disp_power_gating_action_to_atom,
.assign_control_parameter = NULL,
.clock_source_id_to_ref_clk_src = NULL,
.transmitter_bp_to_atom = NULL,
.encoder_id_to_atom = dal_cmd_table_helper_encoder_id_to_atom,
.encoder_mode_bp_to_atom = dal_cmd_table_helper_encoder_mode_bp_to_atom,
};
/*
* dal_cmd_tbl_helper_dce110_get_table
*
* @brief
* Initialize command table helper functions
*
* @param
* const struct command_table_helper **h - [out] struct of functions
*
*/
const struct command_table_helper *dal_cmd_tbl_helper_dce110_get_table(void)
{
return &command_table_helper_funcs;
}
| linux-master | drivers/gpu/drm/amd/display/dc/bios/dce110/command_table_helper_dce110.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include <linux/delay.h>
#include "dc_bios_types.h"
#include "dcn20_stream_encoder.h"
#include "reg_helper.h"
#include "hw_shared.h"
#include "link.h"
#include "dpcd_defs.h"
#define DC_LOGGER \
enc1->base.ctx->logger
#define REG(reg)\
(enc1->regs->reg)
#undef FN
#define FN(reg_name, field_name) \
enc1->se_shift->field_name, enc1->se_mask->field_name
#define CTX \
enc1->base.ctx
static void enc2_update_hdmi_info_packet(
struct dcn10_stream_encoder *enc1,
uint32_t packet_index,
const struct dc_info_packet *info_packet)
{
uint32_t cont, send, line;
if (info_packet->valid) {
enc1_update_generic_info_packet(
enc1,
packet_index,
info_packet);
/* enable transmission of packet(s) -
* packet transmission begins on the next frame */
cont = 1;
/* send packet(s) every frame */
send = 1;
/* select line number to send packets on */
line = 2;
} else {
cont = 0;
send = 0;
line = 0;
}
/* DP_SEC_GSP[x]_LINE_REFERENCE - keep default value REFER_TO_DP_SOF */
/* choose which generic packet control to use */
switch (packet_index) {
case 0:
REG_UPDATE_2(HDMI_GENERIC_PACKET_CONTROL0,
HDMI_GENERIC0_CONT, cont,
HDMI_GENERIC0_SEND, send);
REG_UPDATE(HDMI_GENERIC_PACKET_CONTROL1,
HDMI_GENERIC0_LINE, line);
break;
case 1:
REG_UPDATE_2(HDMI_GENERIC_PACKET_CONTROL0,
HDMI_GENERIC1_CONT, cont,
HDMI_GENERIC1_SEND, send);
REG_UPDATE(HDMI_GENERIC_PACKET_CONTROL1,
HDMI_GENERIC1_LINE, line);
break;
case 2:
REG_UPDATE_2(HDMI_GENERIC_PACKET_CONTROL0,
HDMI_GENERIC2_CONT, cont,
HDMI_GENERIC2_SEND, send);
REG_UPDATE(HDMI_GENERIC_PACKET_CONTROL2,
HDMI_GENERIC2_LINE, line);
break;
case 3:
REG_UPDATE_2(HDMI_GENERIC_PACKET_CONTROL0,
HDMI_GENERIC3_CONT, cont,
HDMI_GENERIC3_SEND, send);
REG_UPDATE(HDMI_GENERIC_PACKET_CONTROL2,
HDMI_GENERIC3_LINE, line);
break;
case 4:
REG_UPDATE_2(HDMI_GENERIC_PACKET_CONTROL0,
HDMI_GENERIC4_CONT, cont,
HDMI_GENERIC4_SEND, send);
REG_UPDATE(HDMI_GENERIC_PACKET_CONTROL3,
HDMI_GENERIC4_LINE, line);
break;
case 5:
REG_UPDATE_2(HDMI_GENERIC_PACKET_CONTROL0,
HDMI_GENERIC5_CONT, cont,
HDMI_GENERIC5_SEND, send);
REG_UPDATE(HDMI_GENERIC_PACKET_CONTROL3,
HDMI_GENERIC5_LINE, line);
break;
case 6:
REG_UPDATE_2(HDMI_GENERIC_PACKET_CONTROL0,
HDMI_GENERIC6_CONT, cont,
HDMI_GENERIC6_SEND, send);
REG_UPDATE(HDMI_GENERIC_PACKET_CONTROL4,
HDMI_GENERIC6_LINE, line);
break;
case 7:
REG_UPDATE_2(HDMI_GENERIC_PACKET_CONTROL0,
HDMI_GENERIC7_CONT, cont,
HDMI_GENERIC7_SEND, send);
REG_UPDATE(HDMI_GENERIC_PACKET_CONTROL4,
HDMI_GENERIC7_LINE, line);
break;
default:
/* invalid HW packet index */
DC_LOG_WARNING(
"Invalid HW packet index: %s()\n",
__func__);
return;
}
}
static void enc2_stream_encoder_update_hdmi_info_packets(
struct stream_encoder *enc,
const struct encoder_info_frame *info_frame)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
/* for bring up, disable dp double TODO */
REG_UPDATE(HDMI_DB_CONTROL, HDMI_DB_DISABLE, 1);
/*Always add mandatory packets first followed by optional ones*/
enc2_update_hdmi_info_packet(enc1, 0, &info_frame->avi);
enc2_update_hdmi_info_packet(enc1, 1, &info_frame->hfvsif);
enc2_update_hdmi_info_packet(enc1, 2, &info_frame->gamut);
enc2_update_hdmi_info_packet(enc1, 3, &info_frame->vendor);
enc2_update_hdmi_info_packet(enc1, 4, &info_frame->spd);
enc2_update_hdmi_info_packet(enc1, 5, &info_frame->hdrsmd);
enc2_update_hdmi_info_packet(enc1, 6, &info_frame->vtem);
}
static void enc2_stream_encoder_stop_hdmi_info_packets(
struct stream_encoder *enc)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
/* stop generic packets 0,1 on HDMI */
REG_SET_4(HDMI_GENERIC_PACKET_CONTROL0, 0,
HDMI_GENERIC0_CONT, 0,
HDMI_GENERIC0_SEND, 0,
HDMI_GENERIC1_CONT, 0,
HDMI_GENERIC1_SEND, 0);
REG_SET_2(HDMI_GENERIC_PACKET_CONTROL1, 0,
HDMI_GENERIC0_LINE, 0,
HDMI_GENERIC1_LINE, 0);
/* stop generic packets 2,3 on HDMI */
REG_SET_4(HDMI_GENERIC_PACKET_CONTROL0, 0,
HDMI_GENERIC2_CONT, 0,
HDMI_GENERIC2_SEND, 0,
HDMI_GENERIC3_CONT, 0,
HDMI_GENERIC3_SEND, 0);
REG_SET_2(HDMI_GENERIC_PACKET_CONTROL2, 0,
HDMI_GENERIC2_LINE, 0,
HDMI_GENERIC3_LINE, 0);
/* stop generic packets 4,5 on HDMI */
REG_SET_4(HDMI_GENERIC_PACKET_CONTROL0, 0,
HDMI_GENERIC4_CONT, 0,
HDMI_GENERIC4_SEND, 0,
HDMI_GENERIC5_CONT, 0,
HDMI_GENERIC5_SEND, 0);
REG_SET_2(HDMI_GENERIC_PACKET_CONTROL3, 0,
HDMI_GENERIC4_LINE, 0,
HDMI_GENERIC5_LINE, 0);
/* stop generic packets 6,7 on HDMI */
REG_SET_4(HDMI_GENERIC_PACKET_CONTROL0, 0,
HDMI_GENERIC6_CONT, 0,
HDMI_GENERIC6_SEND, 0,
HDMI_GENERIC7_CONT, 0,
HDMI_GENERIC7_SEND, 0);
REG_SET_2(HDMI_GENERIC_PACKET_CONTROL4, 0,
HDMI_GENERIC6_LINE, 0,
HDMI_GENERIC7_LINE, 0);
}
/* Update GSP7 SDP 128 byte long */
static void enc2_update_gsp7_128_info_packet(
struct dcn10_stream_encoder *enc1,
const struct dc_info_packet_128 *info_packet,
bool immediate_update)
{
uint32_t i;
/* TODOFPGA Figure out a proper number for max_retries polling for lock
* use 50 for now.
*/
uint32_t max_retries = 50;
const uint32_t *content = (const uint32_t *) &info_packet->sb[0];
ASSERT(info_packet->hb1 == DC_DP_INFOFRAME_TYPE_PPS);
/* Configure for PPS packet size (128 bytes) */
REG_UPDATE(DP_SEC_CNTL2, DP_SEC_GSP7_PPS, 1);
/* We need turn on clock before programming AFMT block*/
REG_UPDATE(AFMT_CNTL, AFMT_AUDIO_CLOCK_EN, 1);
/* Poll dig_update_lock is not locked -> asic internal signal
* assumes otg master lock will unlock it
*/
/*REG_WAIT(AFMT_VBI_PACKET_CONTROL, AFMT_GENERIC_LOCK_STATUS, 0, 10, max_retries);*/
/* Wait for HW/SW GSP memory access conflict to go away */
REG_WAIT(AFMT_VBI_PACKET_CONTROL, AFMT_GENERIC_CONFLICT,
0, 10, max_retries);
/* Clear HW/SW memory access conflict flag */
REG_UPDATE(AFMT_VBI_PACKET_CONTROL, AFMT_GENERIC_CONFLICT_CLR, 1);
/* write generic packet header */
REG_UPDATE(AFMT_VBI_PACKET_CONTROL, AFMT_GENERIC_INDEX, 7);
REG_SET_4(AFMT_GENERIC_HDR, 0,
AFMT_GENERIC_HB0, info_packet->hb0,
AFMT_GENERIC_HB1, info_packet->hb1,
AFMT_GENERIC_HB2, info_packet->hb2,
AFMT_GENERIC_HB3, info_packet->hb3);
/* Write generic packet content 128 bytes long. Four sets are used (indexes 7
* through 10) to fit 128 bytes.
*/
for (i = 0; i < 4; i++) {
uint32_t packet_index = 7 + i;
REG_UPDATE(AFMT_VBI_PACKET_CONTROL, AFMT_GENERIC_INDEX, packet_index);
REG_WRITE(AFMT_GENERIC_0, *content++);
REG_WRITE(AFMT_GENERIC_1, *content++);
REG_WRITE(AFMT_GENERIC_2, *content++);
REG_WRITE(AFMT_GENERIC_3, *content++);
REG_WRITE(AFMT_GENERIC_4, *content++);
REG_WRITE(AFMT_GENERIC_5, *content++);
REG_WRITE(AFMT_GENERIC_6, *content++);
REG_WRITE(AFMT_GENERIC_7, *content++);
}
REG_UPDATE_2(AFMT_VBI_PACKET_CONTROL1,
AFMT_GENERIC7_FRAME_UPDATE, !immediate_update,
AFMT_GENERIC7_IMMEDIATE_UPDATE, immediate_update);
}
/* Set DSC-related configuration.
* dsc_mode: 0 disables DSC, other values enable DSC in specified format
* sc_bytes_per_pixel: Bytes per pixel in u3.28 format
* dsc_slice_width: Slice width in pixels
*/
static void enc2_dp_set_dsc_config(struct stream_encoder *enc,
enum optc_dsc_mode dsc_mode,
uint32_t dsc_bytes_per_pixel,
uint32_t dsc_slice_width)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
REG_UPDATE_2(DP_DSC_CNTL,
DP_DSC_MODE, dsc_mode,
DP_DSC_SLICE_WIDTH, dsc_slice_width);
REG_SET(DP_DSC_BYTES_PER_PIXEL, 0,
DP_DSC_BYTES_PER_PIXEL, dsc_bytes_per_pixel);
}
static void enc2_dp_set_dsc_pps_info_packet(struct stream_encoder *enc,
bool enable,
uint8_t *dsc_packed_pps,
bool immediate_update)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
if (enable) {
struct dc_info_packet_128 pps_sdp;
ASSERT(dsc_packed_pps);
/* Load PPS into infoframe (SDP) registers */
pps_sdp.valid = true;
pps_sdp.hb0 = 0;
pps_sdp.hb1 = DC_DP_INFOFRAME_TYPE_PPS;
pps_sdp.hb2 = 127;
pps_sdp.hb3 = 0;
memcpy(&pps_sdp.sb[0], dsc_packed_pps, sizeof(pps_sdp.sb));
enc2_update_gsp7_128_info_packet(enc1, &pps_sdp, immediate_update);
/* Enable Generic Stream Packet 7 (GSP) transmission */
//REG_UPDATE(DP_SEC_CNTL,
// DP_SEC_GSP7_ENABLE, 1);
/* SW should make sure VBID[6] update line number is bigger
* than PPS transmit line number
*/
REG_UPDATE(DP_SEC_CNTL6,
DP_SEC_GSP7_LINE_NUM, 2);
REG_UPDATE_2(DP_MSA_VBID_MISC,
DP_VBID6_LINE_REFERENCE, 0,
DP_VBID6_LINE_NUM, 3);
/* Send PPS data at the line number specified above.
* DP spec requires PPS to be sent only when it changes, however since
* decoder has to be able to handle its change on every frame, we're
* sending it always (i.e. on every frame) to reduce the chance it'd be
* missed by decoder. If it turns out required to send PPS only when it
* changes, we can use DP_SEC_GSP7_SEND register.
*/
REG_UPDATE_2(DP_SEC_CNTL,
DP_SEC_GSP7_ENABLE, 1,
DP_SEC_STREAM_ENABLE, 1);
} else {
/* Disable Generic Stream Packet 7 (GSP) transmission */
REG_UPDATE(DP_SEC_CNTL, DP_SEC_GSP7_ENABLE, 0);
REG_UPDATE(DP_SEC_CNTL2, DP_SEC_GSP7_PPS, 0);
}
}
/* this function read dsc related register fields to be logged later in dcn10_log_hw_state
* into a dcn_dsc_state struct.
*/
static void enc2_read_state(struct stream_encoder *enc, struct enc_state *s)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
//if dsc is enabled, continue to read
REG_GET(DP_DSC_CNTL, DP_DSC_MODE, &s->dsc_mode);
if (s->dsc_mode) {
REG_GET(DP_DSC_CNTL, DP_DSC_SLICE_WIDTH, &s->dsc_slice_width);
REG_GET(DP_SEC_CNTL6, DP_SEC_GSP7_LINE_NUM, &s->sec_gsp_pps_line_num);
REG_GET(DP_MSA_VBID_MISC, DP_VBID6_LINE_REFERENCE, &s->vbid6_line_reference);
REG_GET(DP_MSA_VBID_MISC, DP_VBID6_LINE_NUM, &s->vbid6_line_num);
REG_GET(DP_SEC_CNTL, DP_SEC_GSP7_ENABLE, &s->sec_gsp_pps_enable);
REG_GET(DP_SEC_CNTL, DP_SEC_STREAM_ENABLE, &s->sec_stream_enable);
}
}
/* Set Dynamic Metadata-configuration.
* enable_dme: TRUE: enables Dynamic Metadata Enfine, FALSE: disables DME
* hubp_requestor_id: HUBP physical instance that is the source of dynamic metadata
* only needs to be set when enable_dme is TRUE
* dmdata_mode: dynamic metadata packet type: DP, HDMI, or Dolby Vision
*
* Ensure the OTG master update lock is set when changing DME configuration.
*/
void enc2_set_dynamic_metadata(struct stream_encoder *enc,
bool enable_dme,
uint32_t hubp_requestor_id,
enum dynamic_metadata_mode dmdata_mode)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
if (enable_dme) {
REG_UPDATE_2(DME_CONTROL,
METADATA_HUBP_REQUESTOR_ID, hubp_requestor_id,
METADATA_STREAM_TYPE, (dmdata_mode == dmdata_dolby_vision) ? 1 : 0);
/* Use default line reference DP_SOF for bringup.
* Should use OTG_SOF for DRR cases
*/
if (dmdata_mode == dmdata_dp)
REG_UPDATE_3(DP_SEC_METADATA_TRANSMISSION,
DP_SEC_METADATA_PACKET_ENABLE, 1,
DP_SEC_METADATA_PACKET_LINE_REFERENCE, 0,
DP_SEC_METADATA_PACKET_LINE, 20);
else {
REG_UPDATE_3(HDMI_METADATA_PACKET_CONTROL,
HDMI_METADATA_PACKET_ENABLE, 1,
HDMI_METADATA_PACKET_LINE_REFERENCE, 0,
HDMI_METADATA_PACKET_LINE, 2);
if (dmdata_mode == dmdata_dolby_vision)
REG_UPDATE(DIG_FE_CNTL,
DOLBY_VISION_EN, 1);
}
REG_UPDATE(DME_CONTROL,
METADATA_ENGINE_EN, 1);
} else {
REG_UPDATE(DME_CONTROL,
METADATA_ENGINE_EN, 0);
if (dmdata_mode == dmdata_dp)
REG_UPDATE(DP_SEC_METADATA_TRANSMISSION,
DP_SEC_METADATA_PACKET_ENABLE, 0);
else {
REG_UPDATE(HDMI_METADATA_PACKET_CONTROL,
HDMI_METADATA_PACKET_ENABLE, 0);
REG_UPDATE(DIG_FE_CNTL,
DOLBY_VISION_EN, 0);
}
}
}
static void enc2_stream_encoder_update_dp_info_packets_sdp_line_num(
struct stream_encoder *enc,
struct encoder_info_frame *info_frame)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
if (info_frame->adaptive_sync.valid == true &&
info_frame->sdp_line_num.adaptive_sync_line_num_valid == true) {
//00: REFER_TO_DP_SOF, 01: REFER_TO_OTG_SOF
REG_UPDATE(DP_SEC_CNTL1, DP_SEC_GSP5_LINE_REFERENCE, 1);
REG_UPDATE(DP_SEC_CNTL5, DP_SEC_GSP5_LINE_NUM,
info_frame->sdp_line_num.adaptive_sync_line_num);
}
}
static void enc2_stream_encoder_update_dp_info_packets(
struct stream_encoder *enc,
const struct encoder_info_frame *info_frame)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
uint32_t dmdata_packet_enabled = 0;
enc1_stream_encoder_update_dp_info_packets(enc, info_frame);
/* check if dynamic metadata packet transmission is enabled */
REG_GET(DP_SEC_METADATA_TRANSMISSION,
DP_SEC_METADATA_PACKET_ENABLE, &dmdata_packet_enabled);
if (dmdata_packet_enabled)
REG_UPDATE(DP_SEC_CNTL, DP_SEC_STREAM_ENABLE, 1);
}
static bool is_two_pixels_per_containter(const struct dc_crtc_timing *timing)
{
bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420;
two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422
&& !timing->dsc_cfg.ycbcr422_simple);
return two_pix;
}
void enc2_stream_encoder_dp_unblank(
struct dc_link *link,
struct stream_encoder *enc,
const struct encoder_unblank_param *param)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
if (param->link_settings.link_rate != LINK_RATE_UNKNOWN) {
uint32_t n_vid = 0x8000;
uint32_t m_vid;
uint32_t n_multiply = 0;
uint64_t m_vid_l = n_vid;
/* YCbCr 4:2:0 : Computed VID_M will be 2X the input rate */
if (is_two_pixels_per_containter(¶m->timing) || param->opp_cnt > 1) {
/*this logic should be the same in get_pixel_clock_parameters() */
n_multiply = 1;
}
/* M / N = Fstream / Flink
* m_vid / n_vid = pixel rate / link rate
*/
m_vid_l *= param->timing.pix_clk_100hz / 10;
m_vid_l = div_u64(m_vid_l,
param->link_settings.link_rate
* LINK_RATE_REF_FREQ_IN_KHZ);
m_vid = (uint32_t) m_vid_l;
/* enable auto measurement */
REG_UPDATE(DP_VID_TIMING, DP_VID_M_N_GEN_EN, 0);
/* auto measurement need 1 full 0x8000 symbol cycle to kick in,
* therefore program initial value for Mvid and Nvid
*/
REG_UPDATE(DP_VID_N, DP_VID_N, n_vid);
REG_UPDATE(DP_VID_M, DP_VID_M, m_vid);
REG_UPDATE_2(DP_VID_TIMING,
DP_VID_M_N_GEN_EN, 1,
DP_VID_N_MUL, n_multiply);
}
/* make sure stream is disabled before resetting steer fifo */
REG_UPDATE(DP_VID_STREAM_CNTL, DP_VID_STREAM_ENABLE, false);
REG_WAIT(DP_VID_STREAM_CNTL, DP_VID_STREAM_STATUS, 0, 10, 5000);
/* set DIG_START to 0x1 to reset FIFO */
REG_UPDATE(DIG_FE_CNTL, DIG_START, 1);
udelay(1);
/* write 0 to take the FIFO out of reset */
REG_UPDATE(DIG_FE_CNTL, DIG_START, 0);
/* switch DP encoder to CRTC data, but reset it the fifo first. It may happen
* that it overflows during mode transition, and sometimes doesn't recover.
*/
REG_UPDATE(DP_STEER_FIFO, DP_STEER_FIFO_RESET, 1);
udelay(10);
REG_UPDATE(DP_STEER_FIFO, DP_STEER_FIFO_RESET, 0);
/* wait 100us for DIG/DP logic to prime
* (i.e. a few video lines)
*/
udelay(100);
/* the hardware would start sending video at the start of the next DP
* frame (i.e. rising edge of the vblank).
* NOTE: We used to program DP_VID_STREAM_DIS_DEFER = 2 here, but this
* register has no effect on enable transition! HW always guarantees
* VID_STREAM enable at start of next frame, and this is not
* programmable
*/
REG_UPDATE(DP_VID_STREAM_CNTL, DP_VID_STREAM_ENABLE, true);
link->dc->link_srv->dp_trace_source_sequence(link,
DPCD_SOURCE_SEQ_AFTER_ENABLE_DP_VID_STREAM);
}
static void enc2_dp_set_odm_combine(
struct stream_encoder *enc,
bool odm_combine)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
REG_UPDATE(DP_PIXEL_FORMAT, DP_PIXEL_COMBINE, odm_combine);
}
void enc2_stream_encoder_dp_set_stream_attribute(
struct stream_encoder *enc,
struct dc_crtc_timing *crtc_timing,
enum dc_color_space output_color_space,
bool use_vsc_sdp_for_colorimetry,
uint32_t enable_sdp_splitting)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
enc1_stream_encoder_dp_set_stream_attribute(enc,
crtc_timing,
output_color_space,
use_vsc_sdp_for_colorimetry,
enable_sdp_splitting);
REG_UPDATE(DP_SEC_FRAMING4,
DP_SST_SDP_SPLITTING, enable_sdp_splitting);
}
uint32_t enc2_get_fifo_cal_average_level(
struct stream_encoder *enc)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
uint32_t fifo_level;
REG_GET(DIG_FIFO_STATUS,
DIG_FIFO_CAL_AVERAGE_LEVEL, &fifo_level);
return fifo_level;
}
static const struct stream_encoder_funcs dcn20_str_enc_funcs = {
.dp_set_odm_combine =
enc2_dp_set_odm_combine,
.dp_set_stream_attribute =
enc2_stream_encoder_dp_set_stream_attribute,
.hdmi_set_stream_attribute =
enc1_stream_encoder_hdmi_set_stream_attribute,
.dvi_set_stream_attribute =
enc1_stream_encoder_dvi_set_stream_attribute,
.set_throttled_vcp_size =
enc1_stream_encoder_set_throttled_vcp_size,
.update_hdmi_info_packets =
enc2_stream_encoder_update_hdmi_info_packets,
.stop_hdmi_info_packets =
enc2_stream_encoder_stop_hdmi_info_packets,
.update_dp_info_packets_sdp_line_num =
enc2_stream_encoder_update_dp_info_packets_sdp_line_num,
.update_dp_info_packets =
enc2_stream_encoder_update_dp_info_packets,
.send_immediate_sdp_message =
enc1_stream_encoder_send_immediate_sdp_message,
.stop_dp_info_packets =
enc1_stream_encoder_stop_dp_info_packets,
.dp_blank =
enc1_stream_encoder_dp_blank,
.dp_unblank =
enc2_stream_encoder_dp_unblank,
.audio_mute_control = enc1_se_audio_mute_control,
.dp_audio_setup = enc1_se_dp_audio_setup,
.dp_audio_enable = enc1_se_dp_audio_enable,
.dp_audio_disable = enc1_se_dp_audio_disable,
.hdmi_audio_setup = enc1_se_hdmi_audio_setup,
.hdmi_audio_disable = enc1_se_hdmi_audio_disable,
.setup_stereo_sync = enc1_setup_stereo_sync,
.set_avmute = enc1_stream_encoder_set_avmute,
.dig_connect_to_otg = enc1_dig_connect_to_otg,
.dig_source_otg = enc1_dig_source_otg,
.dp_get_pixel_format =
enc1_stream_encoder_dp_get_pixel_format,
.enc_read_state = enc2_read_state,
.dp_set_dsc_config = enc2_dp_set_dsc_config,
.dp_set_dsc_pps_info_packet = enc2_dp_set_dsc_pps_info_packet,
.set_dynamic_metadata = enc2_set_dynamic_metadata,
.hdmi_reset_stream_attribute = enc1_reset_hdmi_stream_attribute,
.get_fifo_cal_average_level = enc2_get_fifo_cal_average_level,
};
void dcn20_stream_encoder_construct(
struct dcn10_stream_encoder *enc1,
struct dc_context *ctx,
struct dc_bios *bp,
enum engine_id eng_id,
const struct dcn10_stream_enc_registers *regs,
const struct dcn10_stream_encoder_shift *se_shift,
const struct dcn10_stream_encoder_mask *se_mask)
{
enc1->base.funcs = &dcn20_str_enc_funcs;
enc1->base.ctx = ctx;
enc1->base.id = eng_id;
enc1->base.bp = bp;
enc1->regs = regs;
enc1->se_shift = se_shift;
enc1->se_mask = se_mask;
enc1->base.stream_enc_inst = eng_id - ENGINE_ID_DIGA;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn20/dcn20_stream_encoder.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dcn20_opp.h"
#include "reg_helper.h"
#define REG(reg) \
(oppn20->regs->reg)
#undef FN
#define FN(reg_name, field_name) \
oppn20->opp_shift->field_name, oppn20->opp_mask->field_name
#define CTX \
oppn20->base.ctx
void opp2_set_disp_pattern_generator(
struct output_pixel_processor *opp,
enum controller_dp_test_pattern test_pattern,
enum controller_dp_color_space color_space,
enum dc_color_depth color_depth,
const struct tg_color *solid_color,
int width,
int height,
int offset)
{
struct dcn20_opp *oppn20 = TO_DCN20_OPP(opp);
enum test_pattern_color_format bit_depth;
enum test_pattern_dyn_range dyn_range;
enum test_pattern_mode mode;
/* color ramp generator mixes 16-bits color */
uint32_t src_bpc = 16;
/* requested bpc */
uint32_t dst_bpc;
uint32_t index;
/* RGB values of the color bars.
* Produce two RGB colors: RGB0 - white (all Fs)
* and RGB1 - black (all 0s)
* (three RGB components for two colors)
*/
uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
0x0000, 0x0000};
/* dest color (converted to the specified color format) */
uint16_t dst_color[6];
uint32_t inc_base;
/* translate to bit depth */
switch (color_depth) {
case COLOR_DEPTH_666:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
break;
case COLOR_DEPTH_888:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
break;
case COLOR_DEPTH_101010:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
break;
case COLOR_DEPTH_121212:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
break;
default:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
break;
}
/* set DPG dimentions */
REG_SET_2(DPG_DIMENSIONS, 0,
DPG_ACTIVE_WIDTH, width,
DPG_ACTIVE_HEIGHT, height);
/* set DPG offset */
REG_SET_2(DPG_OFFSET_SEGMENT, 0,
DPG_X_OFFSET, offset,
DPG_SEGMENT_WIDTH, 0);
switch (test_pattern) {
case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
{
dyn_range = (test_pattern ==
CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
TEST_PATTERN_DYN_RANGE_CEA :
TEST_PATTERN_DYN_RANGE_VESA);
switch (color_space) {
case CONTROLLER_DP_COLOR_SPACE_YCBCR601:
mode = TEST_PATTERN_MODE_COLORSQUARES_YCBCR601;
break;
case CONTROLLER_DP_COLOR_SPACE_YCBCR709:
mode = TEST_PATTERN_MODE_COLORSQUARES_YCBCR709;
break;
case CONTROLLER_DP_COLOR_SPACE_RGB:
default:
mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
break;
}
REG_UPDATE_6(DPG_CONTROL,
DPG_EN, 1,
DPG_MODE, mode,
DPG_DYNAMIC_RANGE, dyn_range,
DPG_BIT_DEPTH, bit_depth,
DPG_VRES, 6,
DPG_HRES, 6);
}
break;
case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
{
mode = (test_pattern ==
CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
TEST_PATTERN_MODE_VERTICALBARS :
TEST_PATTERN_MODE_HORIZONTALBARS);
switch (bit_depth) {
case TEST_PATTERN_COLOR_FORMAT_BPC_6:
dst_bpc = 6;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_8:
dst_bpc = 8;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_10:
dst_bpc = 10;
break;
default:
dst_bpc = 8;
break;
}
/* adjust color to the required colorFormat */
for (index = 0; index < 6; index++) {
/* dst = 2^dstBpc * src / 2^srcBpc = src >>
* (srcBpc - dstBpc);
*/
dst_color[index] =
src_color[index] >> (src_bpc - dst_bpc);
/* DPG_COLOUR registers are 16-bit MSB aligned value with bits 3:0 hardwired to ZERO.
* XXXXXXXXXX000000 for 10 bit,
* XXXXXXXX00000000 for 8 bit,
* XXXXXX0000000000 for 6 bits
*/
dst_color[index] <<= (16 - dst_bpc);
}
REG_SET_2(DPG_COLOUR_R_CR, 0,
DPG_COLOUR1_R_CR, dst_color[0],
DPG_COLOUR0_R_CR, dst_color[3]);
REG_SET_2(DPG_COLOUR_G_Y, 0,
DPG_COLOUR1_G_Y, dst_color[1],
DPG_COLOUR0_G_Y, dst_color[4]);
REG_SET_2(DPG_COLOUR_B_CB, 0,
DPG_COLOUR1_B_CB, dst_color[2],
DPG_COLOUR0_B_CB, dst_color[5]);
/* enable test pattern */
REG_UPDATE_6(DPG_CONTROL,
DPG_EN, 1,
DPG_MODE, mode,
DPG_DYNAMIC_RANGE, 0,
DPG_BIT_DEPTH, bit_depth,
DPG_VRES, 0,
DPG_HRES, 0);
}
break;
case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
{
mode = (bit_depth ==
TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
TEST_PATTERN_MODE_DUALRAMP_RGB :
TEST_PATTERN_MODE_SINGLERAMP_RGB);
switch (bit_depth) {
case TEST_PATTERN_COLOR_FORMAT_BPC_6:
dst_bpc = 6;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_8:
dst_bpc = 8;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_10:
dst_bpc = 10;
break;
default:
dst_bpc = 8;
break;
}
/* increment for the first ramp for one color gradation
* 1 gradation for 6-bit color is 2^10
* gradations in 16-bit color
*/
inc_base = (src_bpc - dst_bpc);
switch (bit_depth) {
case TEST_PATTERN_COLOR_FORMAT_BPC_6:
{
REG_SET_3(DPG_RAMP_CONTROL, 0,
DPG_RAMP0_OFFSET, 0,
DPG_INC0, inc_base,
DPG_INC1, 0);
REG_UPDATE_2(DPG_CONTROL,
DPG_VRES, 6,
DPG_HRES, 6);
}
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_8:
{
REG_SET_3(DPG_RAMP_CONTROL, 0,
DPG_RAMP0_OFFSET, 0,
DPG_INC0, inc_base,
DPG_INC1, 0);
REG_UPDATE_2(DPG_CONTROL,
DPG_VRES, 6,
DPG_HRES, 8);
}
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_10:
{
REG_SET_3(DPG_RAMP_CONTROL, 0,
DPG_RAMP0_OFFSET, 384 << 6,
DPG_INC0, inc_base,
DPG_INC1, inc_base + 2);
REG_UPDATE_2(DPG_CONTROL,
DPG_VRES, 5,
DPG_HRES, 8);
}
break;
default:
break;
}
/* enable test pattern */
REG_UPDATE_4(DPG_CONTROL,
DPG_EN, 1,
DPG_MODE, mode,
DPG_DYNAMIC_RANGE, 0,
DPG_BIT_DEPTH, bit_depth);
}
break;
case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
{
REG_WRITE(DPG_CONTROL, 0);
REG_WRITE(DPG_COLOUR_R_CR, 0);
REG_WRITE(DPG_COLOUR_G_Y, 0);
REG_WRITE(DPG_COLOUR_B_CB, 0);
REG_WRITE(DPG_RAMP_CONTROL, 0);
}
break;
case CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR:
{
opp2_dpg_set_blank_color(opp, solid_color);
REG_UPDATE_2(DPG_CONTROL,
DPG_EN, 1,
DPG_MODE, TEST_PATTERN_MODE_HORIZONTALBARS);
REG_SET_2(DPG_DIMENSIONS, 0,
DPG_ACTIVE_WIDTH, width,
DPG_ACTIVE_HEIGHT, height);
}
break;
default:
break;
}
}
void opp2_program_dpg_dimensions(
struct output_pixel_processor *opp,
int width, int height)
{
struct dcn20_opp *oppn20 = TO_DCN20_OPP(opp);
REG_SET_2(DPG_DIMENSIONS, 0,
DPG_ACTIVE_WIDTH, width,
DPG_ACTIVE_HEIGHT, height);
}
void opp2_dpg_set_blank_color(
struct output_pixel_processor *opp,
const struct tg_color *color)
{
struct dcn20_opp *oppn20 = TO_DCN20_OPP(opp);
/* 16-bit MSB aligned value. Bits 3:0 of this field are hardwired to ZERO */
ASSERT(color);
REG_SET_2(DPG_COLOUR_B_CB, 0,
DPG_COLOUR1_B_CB, color->color_b_cb << 6,
DPG_COLOUR0_B_CB, color->color_b_cb << 6);
REG_SET_2(DPG_COLOUR_G_Y, 0,
DPG_COLOUR1_G_Y, color->color_g_y << 6,
DPG_COLOUR0_G_Y, color->color_g_y << 6);
REG_SET_2(DPG_COLOUR_R_CR, 0,
DPG_COLOUR1_R_CR, color->color_r_cr << 6,
DPG_COLOUR0_R_CR, color->color_r_cr << 6);
}
bool opp2_dpg_is_blanked(struct output_pixel_processor *opp)
{
struct dcn20_opp *oppn20 = TO_DCN20_OPP(opp);
uint32_t dpg_en, dpg_mode;
uint32_t double_buffer_pending;
REG_GET_2(DPG_CONTROL,
DPG_EN, &dpg_en,
DPG_MODE, &dpg_mode);
REG_GET(DPG_STATUS,
DPG_DOUBLE_BUFFER_PENDING, &double_buffer_pending);
return (dpg_en == 1) &&
(double_buffer_pending == 0);
}
void opp2_program_left_edge_extra_pixel (
struct output_pixel_processor *opp,
bool count)
{
struct dcn20_opp *oppn20 = TO_DCN20_OPP(opp);
/* Specifies the number of extra left edge pixels that are supplied to
* the 422 horizontal chroma sub-sample filter.
* Note that when left edge pixel is not "0", fmt pixel encoding can be in either 420 or 422 mode
* */
REG_UPDATE(FMT_422_CONTROL, FMT_LEFT_EDGE_EXTRA_PIXEL_COUNT, count);
}
/*****************************************/
/* Constructor, Destructor */
/*****************************************/
static struct opp_funcs dcn20_opp_funcs = {
.opp_set_dyn_expansion = opp1_set_dyn_expansion,
.opp_program_fmt = opp1_program_fmt,
.opp_program_bit_depth_reduction = opp1_program_bit_depth_reduction,
.opp_program_stereo = opp1_program_stereo,
.opp_pipe_clock_control = opp1_pipe_clock_control,
.opp_set_disp_pattern_generator = opp2_set_disp_pattern_generator,
.opp_program_dpg_dimensions = opp2_program_dpg_dimensions,
.dpg_is_blanked = opp2_dpg_is_blanked,
.opp_dpg_set_blank_color = opp2_dpg_set_blank_color,
.opp_destroy = opp1_destroy,
.opp_program_left_edge_extra_pixel = opp2_program_left_edge_extra_pixel,
};
void dcn20_opp_construct(struct dcn20_opp *oppn20,
struct dc_context *ctx,
uint32_t inst,
const struct dcn20_opp_registers *regs,
const struct dcn20_opp_shift *opp_shift,
const struct dcn20_opp_mask *opp_mask)
{
oppn20->base.ctx = ctx;
oppn20->base.inst = inst;
oppn20->base.funcs = &dcn20_opp_funcs;
oppn20->regs = regs;
oppn20->opp_shift = opp_shift;
oppn20->opp_mask = opp_mask;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn20/dcn20_opp.c |
/*
* Copyright 2012-17 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "reg_helper.h"
#include "fixed31_32.h"
#include "resource.h"
#include "dwb.h"
#include "dcn20_dwb.h"
#define NUM_PHASES 16
#define HORZ_MAX_TAPS 12
#define VERT_MAX_TAPS 12
#define REG(reg)\
dwbc20->dwbc_regs->reg
#define CTX \
dwbc20->base.ctx
#undef FN
#define FN(reg_name, field_name) \
dwbc20->dwbc_shift->field_name, dwbc20->dwbc_mask->field_name
#define TO_DCN20_DWBC(dwbc_base) \
container_of(dwbc_base, struct dcn20_dwbc, base)
static const uint16_t filter_3tap_16p_upscale[27] = {
2048, 2048, 0,
1708, 2424, 16348,
1372, 2796, 16308,
1056, 3148, 16272,
768, 3464, 16244,
512, 3728, 16236,
296, 3928, 16252,
124, 4052, 16296,
0, 4096, 0
};
static const uint16_t filter_3tap_16p_117[27] = {
2048, 2048, 0,
1824, 2276, 16376,
1600, 2496, 16380,
1376, 2700, 16,
1156, 2880, 52,
948, 3032, 108,
756, 3144, 192,
580, 3212, 296,
428, 3236, 428
};
static const uint16_t filter_3tap_16p_150[27] = {
2048, 2048, 0,
1872, 2184, 36,
1692, 2308, 88,
1516, 2420, 156,
1340, 2516, 236,
1168, 2592, 328,
1004, 2648, 440,
844, 2684, 560,
696, 2696, 696
};
static const uint16_t filter_3tap_16p_183[27] = {
2048, 2048, 0,
1892, 2104, 92,
1744, 2152, 196,
1592, 2196, 300,
1448, 2232, 412,
1304, 2256, 528,
1168, 2276, 648,
1032, 2288, 772,
900, 2292, 900
};
static const uint16_t filter_4tap_16p_upscale[36] = {
0, 4096, 0, 0,
16240, 4056, 180, 16380,
16136, 3952, 404, 16364,
16072, 3780, 664, 16344,
16040, 3556, 952, 16312,
16036, 3284, 1268, 16272,
16052, 2980, 1604, 16224,
16084, 2648, 1952, 16176,
16128, 2304, 2304, 16128
};
static const uint16_t filter_4tap_16p_117[36] = {
428, 3236, 428, 0,
276, 3232, 604, 16364,
148, 3184, 800, 16340,
44, 3104, 1016, 16312,
16344, 2984, 1244, 16284,
16284, 2832, 1488, 16256,
16244, 2648, 1732, 16236,
16220, 2440, 1976, 16220,
16212, 2216, 2216, 16212
};
static const uint16_t filter_4tap_16p_150[36] = {
696, 2700, 696, 0,
560, 2700, 848, 16364,
436, 2676, 1008, 16348,
328, 2628, 1180, 16336,
232, 2556, 1356, 16328,
152, 2460, 1536, 16328,
84, 2344, 1716, 16332,
28, 2208, 1888, 16348,
16376, 2052, 2052, 16376
};
static const uint16_t filter_4tap_16p_183[36] = {
940, 2208, 940, 0,
832, 2200, 1052, 4,
728, 2180, 1164, 16,
628, 2148, 1280, 36,
536, 2100, 1392, 60,
448, 2044, 1504, 92,
368, 1976, 1612, 132,
296, 1900, 1716, 176,
232, 1812, 1812, 232
};
static const uint16_t filter_5tap_16p_upscale[45] = {
15936, 2496, 2496, 15936, 0,
15992, 2128, 2832, 15896, 12,
16056, 1760, 3140, 15876, 24,
16120, 1404, 3420, 15876, 36,
16188, 1060, 3652, 15908, 44,
16248, 744, 3844, 15972, 44,
16304, 460, 3980, 16072, 40,
16348, 212, 4064, 16208, 24,
0, 0, 4096, 0, 0,
};
static const uint16_t filter_5tap_16p_117[45] = {
16056, 2372, 2372, 16056, 0,
16052, 2124, 2600, 16076, 0,
16060, 1868, 2808, 16120, 0,
16080, 1612, 2992, 16180, 16376,
16112, 1356, 3144, 16268, 16364,
16144, 1108, 3268, 16376, 16344,
16184, 872, 3356, 124, 16320,
16220, 656, 3412, 276, 16292,
16256, 456, 3428, 456, 16256,
};
static const uint16_t filter_5tap_16p_150[45] = {
16368, 2064, 2064, 16368, 0,
16316, 1924, 2204, 44, 16372,
16280, 1772, 2328, 116, 16356,
16256, 1616, 2440, 204, 16340,
16240, 1456, 2536, 304, 16320,
16232, 1296, 2612, 416, 16300,
16232, 1132, 2664, 544, 16284,
16240, 976, 2700, 680, 16264,
16248, 824, 2708, 824, 16248,
};
static const uint16_t filter_5tap_16p_183[45] = {
228, 1816, 1816, 228, 0,
168, 1728, 1904, 300, 16372,
116, 1632, 1988, 376, 16360,
72, 1528, 2060, 460, 16348,
36, 1424, 2120, 552, 16340,
4, 1312, 2168, 652, 16336,
16368, 1200, 2204, 752, 16332,
16352, 1084, 2224, 860, 16332,
16340, 972, 2232, 972, 16340,
};
static const uint16_t filter_6tap_16p_upscale[54] = {
0, 0, 4092, 0, 0, 0,
44, 16188, 4064, 228, 16324, 0,
80, 16036, 3980, 492, 16256, 4,
108, 15916, 3844, 788, 16184, 16,
120, 15836, 3656, 1108, 16104, 28,
128, 15792, 3420, 1448, 16024, 44,
124, 15776, 3144, 1800, 15948, 64,
112, 15792, 2836, 2152, 15880, 80,
100, 15828, 2504, 2504, 15828, 100,
};
static const uint16_t filter_6tap_16p_117[54] = {
16168, 476, 3568, 476, 16168, 0,
16216, 280, 3540, 692, 16116, 8,
16264, 104, 3472, 924, 16068, 16,
16304, 16340, 3372, 1168, 16024, 28,
16344, 16212, 3236, 1424, 15988, 36,
16372, 16112, 3072, 1680, 15956, 44,
12, 16036, 2880, 1936, 15940, 48,
28, 15984, 2668, 2192, 15936, 48,
40, 15952, 2436, 2436, 15952, 40,
};
static const uint16_t filter_6tap_16p_150[54] = {
16148, 920, 2724, 920, 16148, 0,
16156, 768, 2712, 1072, 16144, 0,
16172, 628, 2684, 1232, 16148, 16380,
16192, 492, 2632, 1388, 16160, 16372,
16212, 368, 2564, 1548, 16180, 16364,
16232, 256, 2480, 1704, 16212, 16352,
16256, 156, 2380, 1856, 16256, 16336,
16276, 64, 2268, 2004, 16308, 16320,
16300, 16372, 2140, 2140, 16372, 16300,
};
static const uint16_t filter_6tap_16p_183[54] = {
16296, 1032, 2196, 1032, 16296, 0,
16284, 924, 2196, 1144, 16320, 16376,
16272, 820, 2180, 1256, 16348, 16364,
16268, 716, 2156, 1364, 16380, 16352,
16264, 620, 2116, 1472, 36, 16340,
16268, 524, 2068, 1576, 88, 16328,
16272, 436, 2008, 1680, 144, 16316,
16280, 352, 1940, 1772, 204, 16304,
16292, 276, 1860, 1860, 276, 16292,
};
static const uint16_t filter_7tap_16p_upscale[63] = {
176, 15760, 2488, 2488, 15760, 176, 0,
160, 15812, 2152, 2816, 15728, 192, 16376,
136, 15884, 1812, 3124, 15720, 196, 16368,
108, 15964, 1468, 3400, 15740, 196, 16364,
84, 16048, 1132, 3640, 15792, 180, 16360,
56, 16140, 812, 3832, 15884, 152, 16360,
32, 16228, 512, 3976, 16012, 116, 16364,
12, 16308, 240, 4064, 16180, 60, 16372,
0, 0, 0, 4096, 0, 0, 0,
};
static const uint16_t filter_7tap_16p_117[63] = {
92, 15868, 2464, 2464, 15868, 92, 0,
108, 15852, 2216, 2700, 15904, 72, 0,
112, 15856, 1960, 2916, 15964, 44, 0,
116, 15876, 1696, 3108, 16048, 8, 8,
112, 15908, 1428, 3268, 16156, 16348, 12,
104, 15952, 1168, 3400, 16288, 16300, 24,
92, 16004, 916, 3496, 64, 16244, 36,
80, 16064, 676, 3556, 248, 16184, 48,
64, 16124, 452, 3576, 452, 16124, 64,
};
static const uint16_t filter_7tap_16p_150[63] = {
16224, 16380, 2208, 2208, 16380, 16224, 0,
16252, 16304, 2072, 2324, 84, 16196, 4,
16276, 16240, 1924, 2432, 184, 16172, 8,
16300, 16184, 1772, 2524, 296, 16144, 12,
16324, 16144, 1616, 2600, 416, 16124, 12,
16344, 16112, 1456, 2660, 548, 16104, 12,
16360, 16092, 1296, 2704, 688, 16088, 12,
16372, 16080, 1140, 2732, 832, 16080, 8,
0, 16076, 984, 2740, 984, 16076, 0,
};
static const uint16_t filter_7tap_16p_183[63] = {
16216, 324, 1884, 1884, 324, 16216, 0,
16228, 248, 1804, 1960, 408, 16212, 16380,
16240, 176, 1716, 2028, 496, 16208, 16376,
16252, 112, 1624, 2084, 588, 16208, 16372,
16264, 56, 1524, 2132, 684, 16212, 16364,
16280, 4, 1424, 2168, 788, 16220, 16356,
16292, 16344, 1320, 2196, 892, 16232, 16344,
16308, 16308, 1212, 2212, 996, 16252, 16332,
16320, 16276, 1104, 2216, 1104, 16276, 16320,
};
static const uint16_t filter_8tap_16p_upscale[72] = {
0, 0, 0, 4096, 0, 0, 0, 0,
16360, 76, 16172, 4064, 244, 16296, 24, 16380,
16340, 136, 15996, 3980, 524, 16204, 56, 16380,
16328, 188, 15860, 3844, 828, 16104, 92, 16372,
16320, 224, 15760, 3656, 1156, 16008, 128, 16368,
16320, 248, 15696, 3428, 1496, 15912, 160, 16360,
16320, 256, 15668, 3156, 1844, 15828, 192, 16348,
16324, 256, 15672, 2856, 2192, 15756, 220, 16340,
16332, 244, 15704, 2532, 2532, 15704, 244, 16332,
};
static const uint16_t filter_8tap_16p_117[72] = {
116, 16100, 428, 3564, 428, 16100, 116, 0,
96, 16168, 220, 3548, 656, 16032, 136, 16376,
76, 16236, 32, 3496, 904, 15968, 152, 16372,
56, 16300, 16252, 3408, 1164, 15908, 164, 16368,
36, 16360, 16116, 3284, 1428, 15856, 172, 16364,
20, 28, 16000, 3124, 1700, 15820, 176, 16364,
4, 76, 15912, 2940, 1972, 15800, 172, 16364,
16380, 112, 15848, 2724, 2236, 15792, 160, 16364,
16372, 140, 15812, 2488, 2488, 15812, 140, 16372,
};
static const uint16_t filter_8tap_16p_150[72] = {
16380, 16020, 1032, 2756, 1032, 16020, 16380, 0,
12, 16020, 876, 2744, 1184, 16032, 16364, 4,
24, 16028, 728, 2716, 1344, 16052, 16340, 8,
36, 16040, 584, 2668, 1500, 16080, 16316, 16,
40, 16060, 448, 2608, 1652, 16120, 16288, 20,
44, 16080, 320, 2528, 1804, 16168, 16260, 28,
48, 16108, 204, 2436, 1948, 16232, 16228, 32,
44, 16136, 100, 2328, 2084, 16304, 16200, 40,
44, 16168, 4, 2212, 2212, 4, 16168, 44,
};
static const uint16_t filter_8tap_16p_183[72] = {
16264, 16264, 1164, 2244, 1164, 16264, 16264, 0,
16280, 16232, 1056, 2236, 1268, 16300, 16248, 0,
16296, 16204, 948, 2220, 1372, 16348, 16232, 0,
16312, 16184, 844, 2192, 1472, 12, 16216, 4,
16328, 16172, 740, 2156, 1572, 72, 16200, 0,
16340, 16160, 640, 2108, 1668, 136, 16188, 0,
16352, 16156, 544, 2052, 1756, 204, 16176, 16380,
16360, 16156, 452, 1988, 1840, 280, 16164, 16376,
16368, 16160, 364, 1920, 1920, 364, 16160, 16368,
};
static const uint16_t filter_9tap_16p_upscale[81] = {
16284, 296, 15660, 2572, 2572, 15660, 296, 16284, 0,
16296, 272, 15712, 2228, 2896, 15632, 304, 16276, 4,
16308, 240, 15788, 1876, 3192, 15632, 304, 16276, 4,
16320, 204, 15876, 1520, 3452, 15664, 288, 16280, 8,
16336, 164, 15976, 1176, 3676, 15732, 260, 16288, 12,
16348, 120, 16080, 844, 3856, 15840, 216, 16300, 12,
16364, 76, 16188, 532, 3988, 15984, 156, 16324, 8,
16376, 36, 16288, 252, 4068, 16164, 84, 16352, 4,
0, 0, 0, 0, 4096, 0, 0, 0, 0,
};
static const uint16_t filter_9tap_16p_117[81] = {
16356, 172, 15776, 2504, 2504, 15776, 172, 16356, 0,
16344, 200, 15756, 2252, 2740, 15816, 136, 16372, 16380,
16336, 216, 15756, 1988, 2956, 15884, 92, 8, 16380,
16332, 224, 15780, 1720, 3144, 15976, 40, 28, 16376,
16328, 224, 15816, 1448, 3304, 16096, 16364, 52, 16372,
16328, 216, 15868, 1180, 3432, 16240, 16296, 80, 16364,
16332, 200, 15928, 916, 3524, 24, 16224, 108, 16356,
16336, 184, 15996, 668, 3580, 220, 16148, 132, 16352,
16344, 160, 16072, 436, 3600, 436, 16072, 160, 16344,
};
static const uint16_t filter_9tap_16p_150[81] = {
84, 16128, 0, 2216, 2216, 0, 16128, 84, 0,
80, 16160, 16296, 2088, 2332, 100, 16092, 84, 0,
76, 16196, 16220, 1956, 2432, 208, 16064, 80, 0,
72, 16232, 16152, 1812, 2524, 328, 16036, 76, 4,
64, 16264, 16096, 1664, 2600, 460, 16012, 64, 8,
56, 16300, 16052, 1508, 2656, 596, 15996, 52, 12,
48, 16328, 16020, 1356, 2700, 740, 15984, 36, 20,
40, 16356, 15996, 1196, 2728, 888, 15980, 20, 24,
32, 0, 15984, 1044, 2736, 1044, 15984, 0, 32,
};
static const uint16_t filter_9tap_16p_183[81] = {
16356, 16112, 388, 1952, 1952, 388, 16112, 16356, 0,
16368, 16116, 304, 1876, 2020, 480, 16112, 16344, 4,
16376, 16124, 224, 1792, 2080, 576, 16116, 16328, 8,
0, 16136, 148, 1700, 2132, 672, 16124, 16312, 8,
8, 16148, 80, 1604, 2176, 772, 16140, 16296, 12,
12, 16164, 16, 1504, 2208, 876, 16156, 16276, 16,
16, 16180, 16344, 1404, 2232, 980, 16184, 16256, 20,
20, 16200, 16296, 1300, 2244, 1088, 16212, 16240, 20,
20, 16220, 16252, 1196, 2252, 1196, 16252, 16220, 20,
};
static const uint16_t filter_10tap_16p_upscale[90] = {
0, 0, 0, 0, 4096, 0, 0, 0, 0, 0,
12, 16344, 88, 16160, 4068, 252, 16280, 44, 16368, 0,
24, 16308, 168, 15976, 3988, 540, 16176, 92, 16348, 0,
32, 16280, 236, 15828, 3852, 852, 16064, 140, 16328, 4,
36, 16260, 284, 15720, 3672, 1184, 15956, 188, 16308, 8,
36, 16244, 320, 15648, 3448, 1528, 15852, 236, 16288, 12,
36, 16240, 336, 15612, 3184, 1880, 15764, 276, 16272, 20,
32, 16240, 340, 15608, 2888, 2228, 15688, 308, 16256, 24,
28, 16244, 332, 15636, 2568, 2568, 15636, 332, 16244, 28,
};
static const uint16_t filter_10tap_16p_117[90] = {
16308, 196, 16048, 440, 3636, 440, 16048, 196, 16308, 0,
16316, 164, 16132, 220, 3612, 676, 15972, 220, 16300, 0,
16324, 132, 16212, 20, 3552, 932, 15900, 240, 16296, 4,
16336, 100, 16292, 16232, 3456, 1192, 15836, 256, 16296, 4,
16348, 68, 16364, 16084, 3324, 1464, 15784, 264, 16296, 8,
16356, 36, 48, 15960, 3164, 1736, 15748, 260, 16304, 4,
16364, 8, 108, 15864, 2972, 2008, 15728, 252, 16312, 4,
16372, 16368, 160, 15792, 2756, 2268, 15724, 228, 16328, 0,
16380, 16344, 200, 15748, 2520, 2520, 15748, 200, 16344, 16380,
};
static const uint16_t filter_10tap_16p_150[90] = {
64, 0, 15956, 1048, 2716, 1048, 15956, 0, 64, 0,
52, 24, 15952, 896, 2708, 1204, 15972, 16356, 72, 16380,
44, 48, 15952, 748, 2684, 1360, 16000, 16320, 84, 16380,
32, 68, 15964, 604, 2644, 1516, 16032, 16288, 92, 16376,
24, 88, 15980, 464, 2588, 1668, 16080, 16248, 100, 16376,
16, 100, 16004, 332, 2516, 1816, 16140, 16212, 108, 16376,
8, 108, 16032, 212, 2428, 1956, 16208, 16172, 112, 16376,
4, 116, 16060, 100, 2328, 2092, 16288, 16132, 116, 16380,
0, 116, 16096, 16380, 2216, 2216, 16380, 16096, 116, 0,
};
static const uint16_t filter_10tap_16p_183[90] = {
40, 16180, 16240, 1216, 2256, 1216, 16240, 16180, 40, 0,
44, 16204, 16200, 1112, 2252, 1320, 16288, 16160, 36, 0,
44, 16224, 16168, 1004, 2236, 1424, 16344, 16144, 28, 4,
44, 16248, 16136, 900, 2208, 1524, 16, 16124, 24, 8,
44, 16268, 16116, 796, 2176, 1620, 84, 16108, 12, 12,
40, 16288, 16100, 692, 2132, 1712, 156, 16096, 4, 16,
36, 16308, 16088, 592, 2080, 1796, 232, 16088, 16376, 20,
32, 16328, 16080, 496, 2020, 1876, 316, 16080, 16360, 24,
28, 16344, 16080, 404, 1952, 1952, 404, 16080, 16344, 28,
};
static const uint16_t filter_11tap_16p_upscale[99] = {
60, 16216, 356, 15620, 2556, 2556, 15620, 356, 16216, 60, 0,
52, 16224, 336, 15672, 2224, 2876, 15592, 368, 16208, 64, 16380,
44, 16244, 304, 15744, 1876, 3176, 15596, 364, 16212, 64, 16376,
36, 16264, 260, 15836, 1532, 3440, 15636, 340, 16220, 60, 16376,
28, 16288, 212, 15940, 1188, 3668, 15708, 304, 16236, 56, 16376,
20, 16312, 160, 16052, 856, 3848, 15820, 248, 16264, 48, 16376,
12, 16336, 104, 16164, 544, 3984, 15968, 180, 16296, 36, 16376,
4, 16360, 48, 16276, 256, 4068, 16160, 96, 16336, 16, 16380,
0, 0, 0, 0, 0, 4096, 0, 0, 0, 0, 0,
};
static const uint16_t filter_11tap_16p_117[99] = {
16380, 16332, 220, 15728, 2536, 2536, 15728, 220, 16332, 16380, 0,
4, 16308, 256, 15704, 2280, 2768, 15772, 176, 16360, 16368, 0,
12, 16292, 280, 15704, 2016, 2984, 15848, 120, 8, 16356, 0,
20, 16276, 292, 15724, 1744, 3172, 15948, 56, 40, 16340, 4,
24, 16268, 292, 15760, 1468, 3328, 16072, 16368, 80, 16324, 8,
24, 16264, 288, 15816, 1196, 3456, 16224, 16288, 116, 16312, 12,
24, 16264, 272, 15880, 932, 3548, 16, 16208, 152, 16296, 16,
24, 16268, 248, 15956, 676, 3604, 216, 16120, 188, 16284, 20,
24, 16276, 220, 16036, 436, 3624, 436, 16036, 220, 16276, 24,
};
static const uint16_t filter_11tap_16p_150[99] = {
0, 144, 16072, 0, 2212, 2212, 0, 16072, 144, 0, 0,
16376, 144, 16112, 16288, 2092, 2324, 104, 16036, 140, 8, 16380,
16368, 144, 16152, 16204, 1960, 2424, 216, 16004, 132, 16, 16376,
16364, 140, 16192, 16132, 1820, 2512, 340, 15976, 116, 28, 16376,
16364, 132, 16232, 16072, 1676, 2584, 476, 15952, 100, 40, 16372,
16360, 124, 16272, 16020, 1528, 2644, 612, 15936, 80, 52, 16368,
16360, 116, 16312, 15980, 1372, 2684, 760, 15928, 56, 64, 16364,
16360, 104, 16348, 15952, 1216, 2712, 908, 15928, 28, 76, 16364,
16360, 92, 0, 15936, 1064, 2720, 1064, 15936, 0, 92, 16360,
};
static const uint16_t filter_11tap_16p_183[99] = {
60, 16336, 16052, 412, 1948, 1948, 412, 16052, 16336, 60, 0,
56, 16356, 16052, 324, 1876, 2016, 504, 16056, 16316, 64, 0,
48, 16372, 16060, 240, 1796, 2072, 604, 16064, 16292, 64, 0,
44, 4, 16068, 160, 1712, 2124, 700, 16080, 16272, 68, 0,
40, 20, 16080, 84, 1620, 2164, 804, 16096, 16248, 68, 4,
32, 32, 16096, 16, 1524, 2200, 908, 16124, 16224, 68, 4,
28, 40, 16112, 16340, 1428, 2220, 1012, 16152, 16200, 64, 8,
24, 52, 16132, 16284, 1328, 2236, 1120, 16192, 16176, 64, 12,
16, 56, 16156, 16236, 1224, 2240, 1224, 16236, 16156, 56, 16,
};
static const uint16_t filter_12tap_16p_upscale[108] = {
0, 0, 0, 0, 0, 4096, 0, 0, 0, 0, 0, 0,
16376, 24, 16332, 100, 16156, 4068, 260, 16272, 56, 16356, 8, 0,
16368, 44, 16284, 188, 15964, 3988, 548, 16156, 112, 16328, 20, 16380,
16360, 64, 16248, 260, 15812, 3856, 864, 16040, 172, 16296, 32, 16380,
16360, 76, 16216, 320, 15696, 3672, 1196, 15928, 228, 16268, 44, 16376,
16356, 84, 16196, 360, 15620, 3448, 1540, 15820, 280, 16240, 56, 16372,
16356, 88, 16184, 384, 15580, 3188, 1888, 15728, 324, 16216, 68, 16368,
16360, 88, 16180, 392, 15576, 2892, 2236, 15652, 360, 16200, 80, 16364,
16360, 84, 16188, 384, 15600, 2576, 2576, 15600, 384, 16188, 84, 16360,
};
static const uint16_t filter_12tap_16p_117[108] = {
48, 16248, 240, 16028, 436, 3612, 436, 16028, 240, 16248, 48, 0,
44, 16260, 208, 16116, 212, 3596, 676, 15944, 272, 16240, 48, 16380,
40, 16276, 168, 16204, 12, 3540, 932, 15868, 296, 16240, 48, 16380,
36, 16292, 128, 16288, 16220, 3452, 1196, 15800, 312, 16240, 44, 16380,
28, 16308, 84, 16372, 16064, 3324, 1472, 15748, 316, 16244, 40, 16380,
24, 16328, 44, 64, 15936, 3168, 1744, 15708, 312, 16256, 32, 16380,
16, 16344, 8, 132, 15836, 2980, 2016, 15688, 300, 16272, 20, 0,
12, 16364, 16356, 188, 15760, 2768, 2280, 15688, 272, 16296, 8, 4,
8, 16380, 16324, 236, 15712, 2532, 2532, 15712, 236, 16324, 16380, 8,
};
static const uint16_t filter_12tap_16p_150[108] = {
16340, 116, 0, 15916, 1076, 2724, 1076, 15916, 0, 116, 16340, 0,
16340, 100, 32, 15908, 920, 2716, 1232, 15936, 16344, 128, 16340, 0,
16344, 84, 64, 15908, 772, 2692, 1388, 15968, 16304, 140, 16344, 16380,
16344, 68, 92, 15912, 624, 2652, 1540, 16008, 16264, 152, 16344, 16380,
16348, 52, 112, 15928, 484, 2592, 1688, 16060, 16220, 160, 16348, 16380,
16352, 40, 132, 15952, 348, 2520, 1836, 16124, 16176, 168, 16356, 16376,
16356, 24, 148, 15980, 224, 2436, 1976, 16200, 16132, 172, 16364, 16372,
16360, 12, 160, 16012, 108, 2336, 2104, 16288, 16088, 172, 16372, 16368,
16364, 0, 168, 16048, 0, 2228, 2228, 0, 16048, 168, 0, 16364,
};
static const uint16_t filter_12tap_16p_183[108] = {
36, 72, 16132, 16228, 1224, 2224, 1224, 16228, 16132, 72, 36, 0,
28, 80, 16156, 16184, 1120, 2224, 1328, 16280, 16112, 64, 40, 16380,
24, 84, 16180, 16144, 1016, 2208, 1428, 16340, 16092, 52, 48, 16380,
16, 88, 16208, 16112, 912, 2188, 1524, 16, 16072, 36, 56, 16380,
12, 92, 16232, 16084, 812, 2156, 1620, 88, 16056, 24, 64, 16380,
8, 92, 16256, 16064, 708, 2116, 1708, 164, 16044, 4, 68, 16380,
4, 88, 16280, 16048, 608, 2068, 1792, 244, 16036, 16372, 76, 16380,
0, 88, 16308, 16036, 512, 2008, 1872, 328, 16032, 16352, 80, 16380,
0, 84, 16328, 16032, 416, 1944, 1944, 416, 16032, 16328, 84, 0,
};
static const uint16_t *wbscl_get_filter_3tap_16p(struct fixed31_32 ratio)
{
if (ratio.value < dc_fixpt_one.value)
return filter_3tap_16p_upscale;
else if (ratio.value < dc_fixpt_from_fraction(4, 3).value)
return filter_3tap_16p_117;
else if (ratio.value < dc_fixpt_from_fraction(5, 3).value)
return filter_3tap_16p_150;
else
return filter_3tap_16p_183;
}
static const uint16_t *wbscl_get_filter_4tap_16p(struct fixed31_32 ratio)
{
if (ratio.value < dc_fixpt_one.value)
return filter_4tap_16p_upscale;
else if (ratio.value < dc_fixpt_from_fraction(4, 3).value)
return filter_4tap_16p_117;
else if (ratio.value < dc_fixpt_from_fraction(5, 3).value)
return filter_4tap_16p_150;
else
return filter_4tap_16p_183;
}
static const uint16_t *wbscl_get_filter_5tap_16p(struct fixed31_32 ratio)
{
if (ratio.value < dc_fixpt_one.value)
return filter_5tap_16p_upscale;
else if (ratio.value < dc_fixpt_from_fraction(4, 3).value)
return filter_5tap_16p_117;
else if (ratio.value < dc_fixpt_from_fraction(5, 3).value)
return filter_5tap_16p_150;
else
return filter_5tap_16p_183;
}
static const uint16_t *wbscl_get_filter_6tap_16p(struct fixed31_32 ratio)
{
if (ratio.value < dc_fixpt_one.value)
return filter_6tap_16p_upscale;
else if (ratio.value < dc_fixpt_from_fraction(4, 3).value)
return filter_6tap_16p_117;
else if (ratio.value < dc_fixpt_from_fraction(5, 3).value)
return filter_6tap_16p_150;
else
return filter_6tap_16p_183;
}
static const uint16_t *wbscl_get_filter_7tap_16p(struct fixed31_32 ratio)
{
if (ratio.value < dc_fixpt_one.value)
return filter_7tap_16p_upscale;
else if (ratio.value < dc_fixpt_from_fraction(4, 3).value)
return filter_7tap_16p_117;
else if (ratio.value < dc_fixpt_from_fraction(5, 3).value)
return filter_7tap_16p_150;
else
return filter_7tap_16p_183;
}
static const uint16_t *wbscl_get_filter_8tap_16p(struct fixed31_32 ratio)
{
if (ratio.value < dc_fixpt_one.value)
return filter_8tap_16p_upscale;
else if (ratio.value < dc_fixpt_from_fraction(4, 3).value)
return filter_8tap_16p_117;
else if (ratio.value < dc_fixpt_from_fraction(5, 3).value)
return filter_8tap_16p_150;
else
return filter_8tap_16p_183;
}
static const uint16_t *wbscl_get_filter_9tap_16p(struct fixed31_32 ratio)
{
if (ratio.value < dc_fixpt_one.value)
return filter_9tap_16p_upscale;
else if (ratio.value < dc_fixpt_from_fraction(4, 3).value)
return filter_9tap_16p_117;
else if (ratio.value < dc_fixpt_from_fraction(5, 3).value)
return filter_9tap_16p_150;
else
return filter_9tap_16p_183;
}
static const uint16_t *wbscl_get_filter_10tap_16p(struct fixed31_32 ratio)
{
if (ratio.value < dc_fixpt_one.value)
return filter_10tap_16p_upscale;
else if (ratio.value < dc_fixpt_from_fraction(4, 3).value)
return filter_10tap_16p_117;
else if (ratio.value < dc_fixpt_from_fraction(5, 3).value)
return filter_10tap_16p_150;
else
return filter_10tap_16p_183;
}
static const uint16_t *wbscl_get_filter_11tap_16p(struct fixed31_32 ratio)
{
if (ratio.value < dc_fixpt_one.value)
return filter_11tap_16p_upscale;
else if (ratio.value < dc_fixpt_from_fraction(4, 3).value)
return filter_11tap_16p_117;
else if (ratio.value < dc_fixpt_from_fraction(5, 3).value)
return filter_11tap_16p_150;
else
return filter_11tap_16p_183;
}
static const uint16_t *wbscl_get_filter_12tap_16p(struct fixed31_32 ratio)
{
if (ratio.value < dc_fixpt_one.value)
return filter_12tap_16p_upscale;
else if (ratio.value < dc_fixpt_from_fraction(4, 3).value)
return filter_12tap_16p_117;
else if (ratio.value < dc_fixpt_from_fraction(5, 3).value)
return filter_12tap_16p_150;
else
return filter_12tap_16p_183;
}
static const uint16_t *wbscl_get_filter_coeffs_16p(int taps, struct fixed31_32 ratio)
{
if (taps == 12)
return wbscl_get_filter_12tap_16p(ratio);
else if (taps == 11)
return wbscl_get_filter_11tap_16p(ratio);
else if (taps == 10)
return wbscl_get_filter_10tap_16p(ratio);
else if (taps == 9)
return wbscl_get_filter_9tap_16p(ratio);
else if (taps == 8)
return wbscl_get_filter_8tap_16p(ratio);
else if (taps == 7)
return wbscl_get_filter_7tap_16p(ratio);
else if (taps == 6)
return wbscl_get_filter_6tap_16p(ratio);
else if (taps == 5)
return wbscl_get_filter_5tap_16p(ratio);
else if (taps == 4)
return wbscl_get_filter_4tap_16p(ratio);
else if (taps == 3)
return wbscl_get_filter_3tap_16p(ratio);
else if (taps == 2)
return get_filter_2tap_16p();
else if (taps == 1)
return NULL;
else {
/* should never happen, bug */
BREAK_TO_DEBUGGER();
return NULL;
}
}
static void wbscl_set_scaler_filter(
struct dcn20_dwbc *dwbc20,
uint32_t taps,
enum wbscl_coef_filter_type_sel filter_type,
const uint16_t *filter)
{
const int tap_pairs = (taps + 1) / 2;
int phase;
int pair;
uint16_t odd_coef, even_coef;
for (phase = 0; phase < (NUM_PHASES / 2 + 1); phase++) {
for (pair = 0; pair < tap_pairs; pair++) {
even_coef = filter[phase * taps + 2 * pair];
if ((pair * 2 + 1) < taps)
odd_coef = filter[phase * taps + 2 * pair + 1];
else
odd_coef = 0;
REG_SET_3(WBSCL_COEF_RAM_SELECT, 0,
WBSCL_COEF_RAM_TAP_PAIR_IDX, pair,
WBSCL_COEF_RAM_PHASE, phase,
WBSCL_COEF_RAM_FILTER_TYPE, filter_type);
REG_SET_4(WBSCL_COEF_RAM_TAP_DATA, 0,
/* Even tap coefficient (bits 1:0 fixed to 0) */
WBSCL_COEF_RAM_EVEN_TAP_COEF, even_coef,
/* Write/read control for even coefficient */
WBSCL_COEF_RAM_EVEN_TAP_COEF_EN, 1,
/* Odd tap coefficient (bits 1:0 fixed to 0) */
WBSCL_COEF_RAM_ODD_TAP_COEF, odd_coef,
/* Write/read control for odd coefficient */
WBSCL_COEF_RAM_ODD_TAP_COEF_EN, 1);
}
}
}
bool dwb_program_horz_scalar(struct dcn20_dwbc *dwbc20,
uint32_t src_width,
uint32_t dest_width,
struct scaling_taps num_taps)
{
uint32_t h_ratio_luma = 1;
uint32_t h_taps_luma = num_taps.h_taps;
uint32_t h_taps_chroma = num_taps.h_taps_c;
int32_t h_init_phase_luma = 0;
int32_t h_init_phase_chroma = 0;
uint32_t h_init_phase_luma_int = 0;
uint32_t h_init_phase_luma_frac = 0;
uint32_t h_init_phase_chroma_int = 0;
uint32_t h_init_phase_chroma_frac = 0;
const uint16_t *filter_h = NULL;
const uint16_t *filter_h_c = NULL;
struct fixed31_32 tmp_h_init_phase_luma = dc_fixpt_from_int(0);
struct fixed31_32 tmp_h_init_phase_chroma = dc_fixpt_from_int(0);
/*Calculate ratio*/
struct fixed31_32 tmp_h_ratio_luma = dc_fixpt_from_fraction(
src_width, dest_width);
if (dc_fixpt_floor(tmp_h_ratio_luma) == 8)
h_ratio_luma = -1;
else
h_ratio_luma = dc_fixpt_u3d19(tmp_h_ratio_luma) << 5;
/*Program ratio*/
REG_UPDATE(WBSCL_HORZ_FILTER_SCALE_RATIO, WBSCL_H_SCALE_RATIO, h_ratio_luma);
/* Program taps*/
REG_UPDATE(WBSCL_TAP_CONTROL, WBSCL_H_NUM_OF_TAPS_Y_RGB, h_taps_luma - 1);
REG_UPDATE(WBSCL_TAP_CONTROL, WBSCL_H_NUM_OF_TAPS_CBCR, h_taps_chroma - 1);
/* Calculate phase*/
tmp_h_init_phase_luma = dc_fixpt_add_int(tmp_h_ratio_luma, h_taps_luma + 1);
tmp_h_init_phase_luma = dc_fixpt_div_int(tmp_h_init_phase_luma, 2);
tmp_h_init_phase_luma = dc_fixpt_sub_int(tmp_h_init_phase_luma, h_taps_luma);
h_init_phase_luma = dc_fixpt_s4d19(tmp_h_init_phase_luma);
h_init_phase_luma_int = (h_init_phase_luma >> 19) & 0x1f;
h_init_phase_luma_frac = (h_init_phase_luma & 0x7ffff) << 5;
tmp_h_init_phase_chroma = dc_fixpt_mul_int(tmp_h_ratio_luma, 2);
tmp_h_init_phase_chroma = dc_fixpt_add_int(tmp_h_init_phase_chroma, h_taps_chroma + 1);
tmp_h_init_phase_chroma = dc_fixpt_div_int(tmp_h_init_phase_chroma, 2);
tmp_h_init_phase_chroma = dc_fixpt_sub_int(tmp_h_init_phase_chroma, h_taps_chroma);
tmp_h_init_phase_chroma = dc_fixpt_add(tmp_h_init_phase_chroma, dc_fixpt_from_fraction(1, 4));
h_init_phase_chroma = dc_fixpt_s4d19(tmp_h_init_phase_chroma);
h_init_phase_chroma_int = (h_init_phase_chroma >> 19) & 0x1f;
h_init_phase_chroma_frac = (h_init_phase_chroma & 0x7ffff) << 5;
/* Program phase*/
REG_UPDATE(WBSCL_HORZ_FILTER_INIT_Y_RGB, WBSCL_H_INIT_INT_Y_RGB, h_init_phase_luma_int);
REG_UPDATE(WBSCL_HORZ_FILTER_INIT_Y_RGB, WBSCL_H_INIT_FRAC_Y_RGB, h_init_phase_luma_frac);
REG_UPDATE(WBSCL_HORZ_FILTER_INIT_CBCR, WBSCL_H_INIT_INT_CBCR, h_init_phase_chroma_int);
REG_UPDATE(WBSCL_HORZ_FILTER_INIT_CBCR, WBSCL_H_INIT_FRAC_CBCR, h_init_phase_chroma_frac);
/* Program LUT coefficients*/
filter_h = wbscl_get_filter_coeffs_16p(
h_taps_luma, tmp_h_ratio_luma);
filter_h_c = wbscl_get_filter_coeffs_16p(
h_taps_chroma, dc_fixpt_from_int(h_ratio_luma * 2));
wbscl_set_scaler_filter(dwbc20, h_taps_luma,
WBSCL_COEF_LUMA_HORZ_FILTER, filter_h);
wbscl_set_scaler_filter(dwbc20, h_taps_chroma,
WBSCL_COEF_CHROMA_HORZ_FILTER, filter_h_c);
return true;
}
bool dwb_program_vert_scalar(struct dcn20_dwbc *dwbc20,
uint32_t src_height,
uint32_t dest_height,
struct scaling_taps num_taps,
enum dwb_subsample_position subsample_position)
{
uint32_t v_ratio_luma = 1;
uint32_t v_taps_luma = num_taps.v_taps;
uint32_t v_taps_chroma = num_taps.v_taps_c;
int32_t v_init_phase_luma = 0;
int32_t v_init_phase_chroma = 0;
uint32_t v_init_phase_luma_int = 0;
uint32_t v_init_phase_luma_frac = 0;
uint32_t v_init_phase_chroma_int = 0;
uint32_t v_init_phase_chroma_frac = 0;
const uint16_t *filter_v = NULL;
const uint16_t *filter_v_c = NULL;
struct fixed31_32 tmp_v_init_phase_luma = dc_fixpt_from_int(0);
struct fixed31_32 tmp_v_init_phase_chroma = dc_fixpt_from_int(0);
/*Calculate ratio*/
struct fixed31_32 tmp_v_ratio_luma = dc_fixpt_from_fraction(
src_height, dest_height);
if (dc_fixpt_floor(tmp_v_ratio_luma) == 8)
v_ratio_luma = -1;
else
v_ratio_luma = dc_fixpt_u3d19(tmp_v_ratio_luma) << 5;
/*Program ratio*/
REG_UPDATE(WBSCL_VERT_FILTER_SCALE_RATIO, WBSCL_V_SCALE_RATIO, v_ratio_luma);
/* Program taps*/
REG_UPDATE(WBSCL_TAP_CONTROL, WBSCL_V_NUM_OF_TAPS_Y_RGB, v_taps_luma - 1);
REG_UPDATE(WBSCL_TAP_CONTROL, WBSCL_V_NUM_OF_TAPS_CBCR, v_taps_chroma - 1);
/* Calculate phase*/
tmp_v_init_phase_luma = dc_fixpt_add_int(tmp_v_ratio_luma, v_taps_luma + 1);
tmp_v_init_phase_luma = dc_fixpt_div_int(tmp_v_init_phase_luma, 2);
tmp_v_init_phase_luma = dc_fixpt_sub_int(tmp_v_init_phase_luma, v_taps_luma);
v_init_phase_luma = dc_fixpt_s4d19(tmp_v_init_phase_luma);
v_init_phase_luma_int = (v_init_phase_luma >> 19) & 0x1f;
v_init_phase_luma_frac = (v_init_phase_luma & 0x7ffff) << 5;
tmp_v_init_phase_chroma = dc_fixpt_mul_int(tmp_v_ratio_luma, 2);
tmp_v_init_phase_chroma = dc_fixpt_add_int(tmp_v_init_phase_chroma, v_taps_chroma + 1);
tmp_v_init_phase_chroma = dc_fixpt_div_int(tmp_v_init_phase_chroma, 2);
tmp_v_init_phase_chroma = dc_fixpt_sub_int(tmp_v_init_phase_chroma, v_taps_chroma);
if (subsample_position == DWB_COSITED_SUBSAMPLING)
tmp_v_init_phase_chroma = dc_fixpt_add(tmp_v_init_phase_chroma, dc_fixpt_from_fraction(1, 4));
v_init_phase_chroma = dc_fixpt_s4d19(tmp_v_init_phase_chroma);
v_init_phase_chroma_int = (v_init_phase_chroma >> 19) & 0x1f;
v_init_phase_chroma_frac = (v_init_phase_chroma & 0x7ffff) << 5;
/* Program phase*/
REG_UPDATE(WBSCL_VERT_FILTER_INIT_Y_RGB, WBSCL_V_INIT_INT_Y_RGB, v_init_phase_luma_int);
REG_UPDATE(WBSCL_VERT_FILTER_INIT_Y_RGB, WBSCL_V_INIT_FRAC_Y_RGB, v_init_phase_luma_frac);
REG_UPDATE(WBSCL_VERT_FILTER_INIT_CBCR, WBSCL_V_INIT_INT_CBCR, v_init_phase_chroma_int);
REG_UPDATE(WBSCL_VERT_FILTER_INIT_CBCR, WBSCL_V_INIT_FRAC_CBCR, v_init_phase_chroma_frac);
/* Program LUT coefficients*/
filter_v = wbscl_get_filter_coeffs_16p(
v_taps_luma, tmp_v_ratio_luma);
filter_v_c = wbscl_get_filter_coeffs_16p(
v_taps_chroma, dc_fixpt_from_int(v_ratio_luma * 2));
wbscl_set_scaler_filter(dwbc20, v_taps_luma,
WBSCL_COEF_LUMA_VERT_FILTER, filter_v);
wbscl_set_scaler_filter(dwbc20, v_taps_chroma,
WBSCL_COEF_CHROMA_VERT_FILTER, filter_v_c);
return true;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn20/dcn20_dwb_scl.c |
/*
* Copyright 2012-17 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "reg_helper.h"
#include "resource.h"
#include "dwb.h"
#include "dcn20_dwb.h"
#define REG(reg)\
dwbc20->dwbc_regs->reg
#define CTX \
dwbc20->base.ctx
#define DC_LOGGER \
dwbc20->base.ctx->logger
#undef FN
#define FN(reg_name, field_name) \
dwbc20->dwbc_shift->field_name, dwbc20->dwbc_mask->field_name
enum dwb_outside_pix_strategy {
DWB_OUTSIDE_PIX_STRATEGY_BLACK = 0,
DWB_OUTSIDE_PIX_STRATEGY_EDGE = 1
};
static bool dwb2_get_caps(struct dwbc *dwbc, struct dwb_caps *caps)
{
struct dcn20_dwbc *dwbc20 = TO_DCN20_DWBC(dwbc);
if (caps) {
caps->adapter_id = 0; /* we only support 1 adapter currently */
caps->hw_version = DCN_VERSION_2_0;
caps->num_pipes = 1;
memset(&caps->reserved, 0, sizeof(caps->reserved));
memset(&caps->reserved2, 0, sizeof(caps->reserved2));
caps->sw_version = dwb_ver_1_0;
caps->caps.support_dwb = true;
caps->caps.support_ogam = false;
caps->caps.support_wbscl = false;
caps->caps.support_ocsc = false;
DC_LOG_DWB("%s SUPPORTED! inst = %d", __func__, dwbc20->base.inst);
return true;
} else {
DC_LOG_DWB("%s NOT SUPPORTED! inst = %d", __func__, dwbc20->base.inst);
return false;
}
}
void dwb2_config_dwb_cnv(struct dwbc *dwbc, struct dc_dwb_params *params)
{
struct dcn20_dwbc *dwbc20 = TO_DCN20_DWBC(dwbc);
DC_LOG_DWB("%s inst = %d", __func__, dwbc20->base.inst);
/* Set DWB source size */
REG_UPDATE_2(CNV_SOURCE_SIZE, CNV_SOURCE_WIDTH, params->cnv_params.src_width,
CNV_SOURCE_HEIGHT, params->cnv_params.src_height);
/* source size is not equal the source size, then enable cropping. */
if (params->cnv_params.crop_en) {
REG_UPDATE(CNV_MODE, CNV_WINDOW_CROP_EN, 1);
REG_UPDATE(CNV_WINDOW_START, CNV_WINDOW_START_X, params->cnv_params.crop_x);
REG_UPDATE(CNV_WINDOW_START, CNV_WINDOW_START_Y, params->cnv_params.crop_y);
REG_UPDATE(CNV_WINDOW_SIZE, CNV_WINDOW_WIDTH, params->cnv_params.crop_width);
REG_UPDATE(CNV_WINDOW_SIZE, CNV_WINDOW_HEIGHT, params->cnv_params.crop_height);
} else {
REG_UPDATE(CNV_MODE, CNV_WINDOW_CROP_EN, 0);
}
/* Set CAPTURE_RATE */
REG_UPDATE(CNV_MODE, CNV_FRAME_CAPTURE_RATE, params->capture_rate);
/* Set CNV output pixel depth */
REG_UPDATE(CNV_MODE, CNV_OUT_BPC, params->cnv_params.cnv_out_bpc);
}
static bool dwb2_enable(struct dwbc *dwbc, struct dc_dwb_params *params)
{
struct dcn20_dwbc *dwbc20 = TO_DCN20_DWBC(dwbc);
/* Only chroma scaling (sub-sampling) is supported in DCN2 */
if ((params->cnv_params.src_width != params->dest_width) ||
(params->cnv_params.src_height != params->dest_height)) {
DC_LOG_DWB("%s inst = %d, FAILED!LUMA SCALING NOT SUPPORTED", __func__, dwbc20->base.inst);
return false;
}
DC_LOG_DWB("%s inst = %d, ENABLED", __func__, dwbc20->base.inst);
/* disable power gating */
//REG_UPDATE_5(WB_EC_CONFIG, DISPCLK_R_WB_GATE_DIS, 1,
// DISPCLK_G_WB_GATE_DIS, 1, DISPCLK_G_WBSCL_GATE_DIS, 1,
// WB_LB_LS_DIS, 1, WB_LUT_LS_DIS, 1);
/* Set WB_ENABLE (not double buffered; capture not enabled) */
REG_UPDATE(WB_ENABLE, WB_ENABLE, 1);
/* Set CNV parameters */
dwb2_config_dwb_cnv(dwbc, params);
/* Set scaling parameters */
dwb2_set_scaler(dwbc, params);
/* Enable DWB capture enable (double buffered) */
REG_UPDATE(CNV_MODE, CNV_FRAME_CAPTURE_EN, DWB_FRAME_CAPTURE_ENABLE);
// disable warmup
REG_UPDATE(WB_WARM_UP_MODE_CTL1, GMC_WARM_UP_ENABLE, 0);
return true;
}
bool dwb2_disable(struct dwbc *dwbc)
{
struct dcn20_dwbc *dwbc20 = TO_DCN20_DWBC(dwbc);
DC_LOG_DWB("%s inst = %d, Disabled", __func__, dwbc20->base.inst);
/* disable CNV */
REG_UPDATE(CNV_MODE, CNV_FRAME_CAPTURE_EN, DWB_FRAME_CAPTURE_DISABLE);
/* disable WB */
REG_UPDATE(WB_ENABLE, WB_ENABLE, 0);
/* soft reset */
REG_UPDATE(WB_SOFT_RESET, WB_SOFT_RESET, 1);
REG_UPDATE(WB_SOFT_RESET, WB_SOFT_RESET, 0);
/* enable power gating */
//REG_UPDATE_5(WB_EC_CONFIG, DISPCLK_R_WB_GATE_DIS, 0,
// DISPCLK_G_WB_GATE_DIS, 0, DISPCLK_G_WBSCL_GATE_DIS, 0,
// WB_LB_LS_DIS, 0, WB_LUT_LS_DIS, 0);
return true;
}
static bool dwb2_update(struct dwbc *dwbc, struct dc_dwb_params *params)
{
struct dcn20_dwbc *dwbc20 = TO_DCN20_DWBC(dwbc);
unsigned int pre_locked;
/* Only chroma scaling (sub-sampling) is supported in DCN2 */
if ((params->cnv_params.src_width != params->dest_width) ||
(params->cnv_params.src_height != params->dest_height)) {
DC_LOG_DWB("%s inst = %d, FAILED!LUMA SCALING NOT SUPPORTED", __func__, dwbc20->base.inst);
return false;
}
DC_LOG_DWB("%s inst = %d, scaling", __func__, dwbc20->base.inst);
/*
* Check if the caller has already locked CNV registers.
* If so: assume the caller will unlock, so don't touch the lock.
* If not: lock them for this update, then unlock after the
* update is complete.
*/
REG_GET(CNV_UPDATE, CNV_UPDATE_LOCK, &pre_locked);
if (pre_locked == 0) {
/* Lock DWB registers */
REG_UPDATE(CNV_UPDATE, CNV_UPDATE_LOCK, 1);
}
/* Set CNV parameters */
dwb2_config_dwb_cnv(dwbc, params);
/* Set scaling parameters */
dwb2_set_scaler(dwbc, params);
if (pre_locked == 0) {
/* Unlock DWB registers */
REG_UPDATE(CNV_UPDATE, CNV_UPDATE_LOCK, 0);
}
return true;
}
bool dwb2_is_enabled(struct dwbc *dwbc)
{
struct dcn20_dwbc *dwbc20 = TO_DCN20_DWBC(dwbc);
unsigned int wb_enabled = 0;
unsigned int cnv_frame_capture_en = 0;
REG_GET(WB_ENABLE, WB_ENABLE, &wb_enabled);
REG_GET(CNV_MODE, CNV_FRAME_CAPTURE_EN, &cnv_frame_capture_en);
return ((wb_enabled != 0) && (cnv_frame_capture_en != 0));
}
void dwb2_set_stereo(struct dwbc *dwbc,
struct dwb_stereo_params *stereo_params)
{
struct dcn20_dwbc *dwbc20 = TO_DCN20_DWBC(dwbc);
DC_LOG_DWB("%s inst = %d, enabled =%d", __func__,\
dwbc20->base.inst, stereo_params->stereo_enabled);
if (stereo_params->stereo_enabled) {
REG_UPDATE(CNV_MODE, CNV_STEREO_TYPE, stereo_params->stereo_type);
REG_UPDATE(CNV_MODE, CNV_EYE_SELECTION, stereo_params->stereo_eye_select);
REG_UPDATE(CNV_MODE, CNV_STEREO_POLARITY, stereo_params->stereo_polarity);
} else {
REG_UPDATE(CNV_MODE, CNV_EYE_SELECTION, 0);
}
}
void dwb2_set_new_content(struct dwbc *dwbc,
bool is_new_content)
{
struct dcn20_dwbc *dwbc20 = TO_DCN20_DWBC(dwbc);
DC_LOG_DWB("%s inst = %d", __func__, dwbc20->base.inst);
REG_UPDATE(CNV_MODE, CNV_NEW_CONTENT, is_new_content);
}
static void dwb2_set_warmup(struct dwbc *dwbc,
struct dwb_warmup_params *warmup_params)
{
struct dcn20_dwbc *dwbc20 = TO_DCN20_DWBC(dwbc);
DC_LOG_DWB("%s inst = %d", __func__, dwbc20->base.inst);
REG_UPDATE(WB_WARM_UP_MODE_CTL1, GMC_WARM_UP_ENABLE, warmup_params->warmup_en);
REG_UPDATE(WB_WARM_UP_MODE_CTL1, WIDTH_WARMUP, warmup_params->warmup_width);
REG_UPDATE(WB_WARM_UP_MODE_CTL1, HEIGHT_WARMUP, warmup_params->warmup_height);
REG_UPDATE(WB_WARM_UP_MODE_CTL2, DATA_VALUE_WARMUP, warmup_params->warmup_data);
REG_UPDATE(WB_WARM_UP_MODE_CTL2, MODE_WARMUP, warmup_params->warmup_mode);
REG_UPDATE(WB_WARM_UP_MODE_CTL2, DATA_DEPTH_WARMUP, warmup_params->warmup_depth);
}
void dwb2_set_scaler(struct dwbc *dwbc, struct dc_dwb_params *params)
{
struct dcn20_dwbc *dwbc20 = TO_DCN20_DWBC(dwbc);
DC_LOG_DWB("%s inst = %d", __func__, dwbc20->base.inst);
/* Program scaling mode */
REG_UPDATE_2(WBSCL_MODE, WBSCL_MODE, params->out_format,
WBSCL_OUT_BIT_DEPTH, params->output_depth);
if (params->out_format != dwb_scaler_mode_bypass444) {
/* Program output size */
REG_UPDATE(WBSCL_DEST_SIZE, WBSCL_DEST_WIDTH, params->dest_width);
REG_UPDATE(WBSCL_DEST_SIZE, WBSCL_DEST_HEIGHT, params->dest_height);
/* Program round offsets */
REG_UPDATE(WBSCL_ROUND_OFFSET, WBSCL_ROUND_OFFSET_Y_RGB, 0x40);
REG_UPDATE(WBSCL_ROUND_OFFSET, WBSCL_ROUND_OFFSET_CBCR, 0x200);
/* Program clamp values */
REG_UPDATE(WBSCL_CLAMP_Y_RGB, WBSCL_CLAMP_UPPER_Y_RGB, 0x3fe);
REG_UPDATE(WBSCL_CLAMP_Y_RGB, WBSCL_CLAMP_LOWER_Y_RGB, 0x1);
REG_UPDATE(WBSCL_CLAMP_CBCR, WBSCL_CLAMP_UPPER_CBCR, 0x3fe);
REG_UPDATE(WBSCL_CLAMP_CBCR, WBSCL_CLAMP_LOWER_CBCR, 0x1);
/* Program outside pixel strategy to use edge pixels */
REG_UPDATE(WBSCL_OUTSIDE_PIX_STRATEGY, WBSCL_OUTSIDE_PIX_STRATEGY, DWB_OUTSIDE_PIX_STRATEGY_EDGE);
if (params->cnv_params.crop_en) {
/* horizontal scale */
dwb_program_horz_scalar(dwbc20, params->cnv_params.crop_width,
params->dest_width,
params->scaler_taps);
/* vertical scale */
dwb_program_vert_scalar(dwbc20, params->cnv_params.crop_height,
params->dest_height,
params->scaler_taps,
params->subsample_position);
} else {
/* horizontal scale */
dwb_program_horz_scalar(dwbc20, params->cnv_params.src_width,
params->dest_width,
params->scaler_taps);
/* vertical scale */
dwb_program_vert_scalar(dwbc20, params->cnv_params.src_height,
params->dest_height,
params->scaler_taps,
params->subsample_position);
}
}
}
static const struct dwbc_funcs dcn20_dwbc_funcs = {
.get_caps = dwb2_get_caps,
.enable = dwb2_enable,
.disable = dwb2_disable,
.update = dwb2_update,
.is_enabled = dwb2_is_enabled,
.set_stereo = dwb2_set_stereo,
.set_new_content = dwb2_set_new_content,
.set_warmup = dwb2_set_warmup,
.dwb_set_scaler = dwb2_set_scaler,
};
void dcn20_dwbc_construct(struct dcn20_dwbc *dwbc20,
struct dc_context *ctx,
const struct dcn20_dwbc_registers *dwbc_regs,
const struct dcn20_dwbc_shift *dwbc_shift,
const struct dcn20_dwbc_mask *dwbc_mask,
int inst)
{
dwbc20->base.ctx = ctx;
dwbc20->base.inst = inst;
dwbc20->base.funcs = &dcn20_dwbc_funcs;
dwbc20->dwbc_regs = dwbc_regs;
dwbc20->dwbc_shift = dwbc_shift;
dwbc20->dwbc_mask = dwbc_mask;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn20/dcn20_dwb.c |
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dce110/dce110_hw_sequencer.h"
#include "dcn10/dcn10_hw_sequencer.h"
#include "dcn20_hwseq.h"
#include "dcn20_init.h"
static const struct hw_sequencer_funcs dcn20_funcs = {
.program_gamut_remap = dcn10_program_gamut_remap,
.init_hw = dcn10_init_hw,
.power_down_on_boot = dcn10_power_down_on_boot,
.apply_ctx_to_hw = dce110_apply_ctx_to_hw,
.apply_ctx_for_surface = NULL,
.program_front_end_for_ctx = dcn20_program_front_end_for_ctx,
.wait_for_pending_cleared = dcn10_wait_for_pending_cleared,
.post_unlock_program_front_end = dcn20_post_unlock_program_front_end,
.update_plane_addr = dcn20_update_plane_addr,
.update_dchub = dcn10_update_dchub,
.update_pending_status = dcn10_update_pending_status,
.program_output_csc = dcn20_program_output_csc,
.enable_accelerated_mode = dce110_enable_accelerated_mode,
.enable_timing_synchronization = dcn10_enable_timing_synchronization,
.enable_vblanks_synchronization = dcn10_enable_vblanks_synchronization,
.enable_per_frame_crtc_position_reset = dcn10_enable_per_frame_crtc_position_reset,
.update_info_frame = dce110_update_info_frame,
.send_immediate_sdp_message = dcn10_send_immediate_sdp_message,
.enable_stream = dcn20_enable_stream,
.disable_stream = dce110_disable_stream,
.unblank_stream = dcn20_unblank_stream,
.blank_stream = dce110_blank_stream,
.enable_audio_stream = dce110_enable_audio_stream,
.disable_audio_stream = dce110_disable_audio_stream,
.disable_plane = dcn20_disable_plane,
.pipe_control_lock = dcn20_pipe_control_lock,
.interdependent_update_lock = dcn10_lock_all_pipes,
.cursor_lock = dcn10_cursor_lock,
.prepare_bandwidth = dcn20_prepare_bandwidth,
.optimize_bandwidth = dcn20_optimize_bandwidth,
.update_bandwidth = dcn20_update_bandwidth,
.set_drr = dcn10_set_drr,
.get_position = dcn10_get_position,
.set_static_screen_control = dcn10_set_static_screen_control,
.setup_stereo = dcn10_setup_stereo,
.set_avmute = dce110_set_avmute,
.log_hw_state = dcn10_log_hw_state,
.get_hw_state = dcn10_get_hw_state,
.clear_status_bits = dcn10_clear_status_bits,
.wait_for_mpcc_disconnect = dcn10_wait_for_mpcc_disconnect,
.edp_backlight_control = dce110_edp_backlight_control,
.edp_power_control = dce110_edp_power_control,
.edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
.set_cursor_position = dcn10_set_cursor_position,
.set_cursor_attribute = dcn10_set_cursor_attribute,
.set_cursor_sdr_white_level = dcn10_set_cursor_sdr_white_level,
.setup_periodic_interrupt = dcn10_setup_periodic_interrupt,
.set_clock = dcn10_set_clock,
.get_clock = dcn10_get_clock,
.program_triplebuffer = dcn20_program_triple_buffer,
.enable_writeback = dcn20_enable_writeback,
.disable_writeback = dcn20_disable_writeback,
.dmdata_status_done = dcn20_dmdata_status_done,
.program_dmdata_engine = dcn20_program_dmdata_engine,
.set_dmdata_attributes = dcn20_set_dmdata_attributes,
.init_sys_ctx = dcn20_init_sys_ctx,
.init_vm_ctx = dcn20_init_vm_ctx,
.set_flip_control_gsl = dcn20_set_flip_control_gsl,
.get_vupdate_offset_from_vsync = dcn10_get_vupdate_offset_from_vsync,
.calc_vupdate_position = dcn10_calc_vupdate_position,
.set_backlight_level = dce110_set_backlight_level,
.set_abm_immediate_disable = dce110_set_abm_immediate_disable,
.set_pipe = dce110_set_pipe,
#ifndef TRIM_FSFT
.optimize_timing_for_fsft = dcn20_optimize_timing_for_fsft,
#endif
.enable_lvds_link_output = dce110_enable_lvds_link_output,
.enable_tmds_link_output = dce110_enable_tmds_link_output,
.enable_dp_link_output = dce110_enable_dp_link_output,
.disable_link_output = dce110_disable_link_output,
.set_disp_pattern_generator = dcn20_set_disp_pattern_generator,
.get_dcc_en_bits = dcn10_get_dcc_en_bits,
.update_visual_confirm_color = dcn10_update_visual_confirm_color,
};
static const struct hwseq_private_funcs dcn20_private_funcs = {
.init_pipes = dcn10_init_pipes,
.update_plane_addr = dcn20_update_plane_addr,
.plane_atomic_disconnect = dcn10_plane_atomic_disconnect,
.update_mpcc = dcn20_update_mpcc,
.set_input_transfer_func = dcn20_set_input_transfer_func,
.set_output_transfer_func = dcn20_set_output_transfer_func,
.power_down = dce110_power_down,
.enable_display_power_gating = dcn10_dummy_display_power_gating,
.blank_pixel_data = dcn20_blank_pixel_data,
.reset_hw_ctx_wrap = dcn20_reset_hw_ctx_wrap,
.enable_stream_timing = dcn20_enable_stream_timing,
.edp_backlight_control = dce110_edp_backlight_control,
.disable_stream_gating = dcn20_disable_stream_gating,
.enable_stream_gating = dcn20_enable_stream_gating,
.setup_vupdate_interrupt = dcn20_setup_vupdate_interrupt,
.did_underflow_occur = dcn10_did_underflow_occur,
.init_blank = dcn20_init_blank,
.disable_vga = dcn20_disable_vga,
.bios_golden_init = dcn10_bios_golden_init,
.plane_atomic_disable = dcn20_plane_atomic_disable,
.plane_atomic_power_down = dcn10_plane_atomic_power_down,
.enable_power_gating_plane = dcn20_enable_power_gating_plane,
.dpp_pg_control = dcn20_dpp_pg_control,
.hubp_pg_control = dcn20_hubp_pg_control,
.update_odm = dcn20_update_odm,
.dsc_pg_control = dcn20_dsc_pg_control,
.set_hdr_multiplier = dcn10_set_hdr_multiplier,
.verify_allow_pstate_change_high = dcn10_verify_allow_pstate_change_high,
.wait_for_blank_complete = dcn20_wait_for_blank_complete,
.dccg_init = dcn20_dccg_init,
.set_blend_lut = dcn20_set_blend_lut,
.set_shaper_3dlut = dcn20_set_shaper_3dlut,
};
void dcn20_hw_sequencer_construct(struct dc *dc)
{
dc->hwss = dcn20_funcs;
dc->hwseq->funcs = dcn20_private_funcs;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn20/dcn20_init.c |
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dcn20_hubbub.h"
#include "reg_helper.h"
#include "clk_mgr.h"
#define REG(reg)\
hubbub1->regs->reg
#define CTX \
hubbub1->base.ctx
#undef FN
#define FN(reg_name, field_name) \
hubbub1->shifts->field_name, hubbub1->masks->field_name
#define REG(reg)\
hubbub1->regs->reg
#define CTX \
hubbub1->base.ctx
#undef FN
#define FN(reg_name, field_name) \
hubbub1->shifts->field_name, hubbub1->masks->field_name
#ifdef NUM_VMID
#undef NUM_VMID
#endif
#define NUM_VMID 16
bool hubbub2_dcc_support_swizzle(
enum swizzle_mode_values swizzle,
unsigned int bytes_per_element,
enum segment_order *segment_order_horz,
enum segment_order *segment_order_vert)
{
bool standard_swizzle = false;
bool display_swizzle = false;
bool render_swizzle = false;
switch (swizzle) {
case DC_SW_4KB_S:
case DC_SW_64KB_S:
case DC_SW_VAR_S:
case DC_SW_4KB_S_X:
case DC_SW_64KB_S_X:
case DC_SW_VAR_S_X:
standard_swizzle = true;
break;
case DC_SW_64KB_R_X:
render_swizzle = true;
break;
case DC_SW_4KB_D:
case DC_SW_64KB_D:
case DC_SW_VAR_D:
case DC_SW_4KB_D_X:
case DC_SW_64KB_D_X:
case DC_SW_VAR_D_X:
display_swizzle = true;
break;
default:
break;
}
if (standard_swizzle) {
if (bytes_per_element == 1) {
*segment_order_horz = segment_order__contiguous;
*segment_order_vert = segment_order__na;
return true;
}
if (bytes_per_element == 2) {
*segment_order_horz = segment_order__non_contiguous;
*segment_order_vert = segment_order__contiguous;
return true;
}
if (bytes_per_element == 4) {
*segment_order_horz = segment_order__non_contiguous;
*segment_order_vert = segment_order__contiguous;
return true;
}
if (bytes_per_element == 8) {
*segment_order_horz = segment_order__na;
*segment_order_vert = segment_order__contiguous;
return true;
}
}
if (render_swizzle) {
if (bytes_per_element == 2) {
*segment_order_horz = segment_order__contiguous;
*segment_order_vert = segment_order__contiguous;
return true;
}
if (bytes_per_element == 4) {
*segment_order_horz = segment_order__non_contiguous;
*segment_order_vert = segment_order__contiguous;
return true;
}
if (bytes_per_element == 8) {
*segment_order_horz = segment_order__contiguous;
*segment_order_vert = segment_order__non_contiguous;
return true;
}
}
if (display_swizzle && bytes_per_element == 8) {
*segment_order_horz = segment_order__contiguous;
*segment_order_vert = segment_order__non_contiguous;
return true;
}
return false;
}
bool hubbub2_dcc_support_pixel_format(
enum surface_pixel_format format,
unsigned int *bytes_per_element)
{
/* DML: get_bytes_per_element */
switch (format) {
case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
*bytes_per_element = 2;
return true;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
case SURFACE_PIXEL_FORMAT_GRPH_RGB111110_FIX:
case SURFACE_PIXEL_FORMAT_GRPH_BGR101111_FIX:
case SURFACE_PIXEL_FORMAT_GRPH_RGB111110_FLOAT:
case SURFACE_PIXEL_FORMAT_GRPH_BGR101111_FLOAT:
case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
*bytes_per_element = 4;
return true;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
*bytes_per_element = 8;
return true;
default:
return false;
}
}
static void hubbub2_get_blk256_size(unsigned int *blk256_width, unsigned int *blk256_height,
unsigned int bytes_per_element)
{
/* copied from DML. might want to refactor DML to leverage from DML */
/* DML : get_blk256_size */
if (bytes_per_element == 1) {
*blk256_width = 16;
*blk256_height = 16;
} else if (bytes_per_element == 2) {
*blk256_width = 16;
*blk256_height = 8;
} else if (bytes_per_element == 4) {
*blk256_width = 8;
*blk256_height = 8;
} else if (bytes_per_element == 8) {
*blk256_width = 8;
*blk256_height = 4;
}
}
static void hubbub2_det_request_size(
unsigned int detile_buf_size,
unsigned int height,
unsigned int width,
unsigned int bpe,
bool *req128_horz_wc,
bool *req128_vert_wc)
{
unsigned int blk256_height = 0;
unsigned int blk256_width = 0;
unsigned int swath_bytes_horz_wc, swath_bytes_vert_wc;
hubbub2_get_blk256_size(&blk256_width, &blk256_height, bpe);
swath_bytes_horz_wc = width * blk256_height * bpe;
swath_bytes_vert_wc = height * blk256_width * bpe;
*req128_horz_wc = (2 * swath_bytes_horz_wc <= detile_buf_size) ?
false : /* full 256B request */
true; /* half 128b request */
*req128_vert_wc = (2 * swath_bytes_vert_wc <= detile_buf_size) ?
false : /* full 256B request */
true; /* half 128b request */
}
bool hubbub2_get_dcc_compression_cap(struct hubbub *hubbub,
const struct dc_dcc_surface_param *input,
struct dc_surface_dcc_cap *output)
{
struct dc *dc = hubbub->ctx->dc;
/* implement section 1.6.2.1 of DCN1_Programming_Guide.docx */
enum dcc_control dcc_control;
unsigned int bpe;
enum segment_order segment_order_horz, segment_order_vert;
bool req128_horz_wc, req128_vert_wc;
memset(output, 0, sizeof(*output));
if (dc->debug.disable_dcc == DCC_DISABLE)
return false;
if (!hubbub->funcs->dcc_support_pixel_format(input->format,
&bpe))
return false;
if (!hubbub->funcs->dcc_support_swizzle(input->swizzle_mode, bpe,
&segment_order_horz, &segment_order_vert))
return false;
hubbub2_det_request_size(TO_DCN20_HUBBUB(hubbub)->detile_buf_size,
input->surface_size.height, input->surface_size.width,
bpe, &req128_horz_wc, &req128_vert_wc);
if (!req128_horz_wc && !req128_vert_wc) {
dcc_control = dcc_control__256_256_xxx;
} else if (input->scan == SCAN_DIRECTION_HORIZONTAL) {
if (!req128_horz_wc)
dcc_control = dcc_control__256_256_xxx;
else if (segment_order_horz == segment_order__contiguous)
dcc_control = dcc_control__128_128_xxx;
else
dcc_control = dcc_control__256_64_64;
} else if (input->scan == SCAN_DIRECTION_VERTICAL) {
if (!req128_vert_wc)
dcc_control = dcc_control__256_256_xxx;
else if (segment_order_vert == segment_order__contiguous)
dcc_control = dcc_control__128_128_xxx;
else
dcc_control = dcc_control__256_64_64;
} else {
if ((req128_horz_wc &&
segment_order_horz == segment_order__non_contiguous) ||
(req128_vert_wc &&
segment_order_vert == segment_order__non_contiguous))
/* access_dir not known, must use most constraining */
dcc_control = dcc_control__256_64_64;
else
/* reg128 is true for either horz and vert
* but segment_order is contiguous
*/
dcc_control = dcc_control__128_128_xxx;
}
/* Exception for 64KB_R_X */
if ((bpe == 2) && (input->swizzle_mode == DC_SW_64KB_R_X))
dcc_control = dcc_control__128_128_xxx;
if (dc->debug.disable_dcc == DCC_HALF_REQ_DISALBE &&
dcc_control != dcc_control__256_256_xxx)
return false;
switch (dcc_control) {
case dcc_control__256_256_xxx:
output->grph.rgb.max_uncompressed_blk_size = 256;
output->grph.rgb.max_compressed_blk_size = 256;
output->grph.rgb.independent_64b_blks = false;
break;
case dcc_control__128_128_xxx:
output->grph.rgb.max_uncompressed_blk_size = 128;
output->grph.rgb.max_compressed_blk_size = 128;
output->grph.rgb.independent_64b_blks = false;
break;
case dcc_control__256_64_64:
output->grph.rgb.max_uncompressed_blk_size = 256;
output->grph.rgb.max_compressed_blk_size = 64;
output->grph.rgb.independent_64b_blks = true;
break;
default:
ASSERT(false);
break;
}
output->capable = true;
output->const_color_support = true;
return true;
}
static enum dcn_hubbub_page_table_depth page_table_depth_to_hw(unsigned int page_table_depth)
{
enum dcn_hubbub_page_table_depth depth = 0;
switch (page_table_depth) {
case 1:
depth = DCN_PAGE_TABLE_DEPTH_1_LEVEL;
break;
case 2:
depth = DCN_PAGE_TABLE_DEPTH_2_LEVEL;
break;
case 3:
depth = DCN_PAGE_TABLE_DEPTH_3_LEVEL;
break;
case 4:
depth = DCN_PAGE_TABLE_DEPTH_4_LEVEL;
break;
default:
ASSERT(false);
break;
}
return depth;
}
static enum dcn_hubbub_page_table_block_size page_table_block_size_to_hw(unsigned int page_table_block_size)
{
enum dcn_hubbub_page_table_block_size block_size = 0;
switch (page_table_block_size) {
case 4096:
block_size = DCN_PAGE_TABLE_BLOCK_SIZE_4KB;
break;
case 65536:
block_size = DCN_PAGE_TABLE_BLOCK_SIZE_64KB;
break;
case 32768:
block_size = DCN_PAGE_TABLE_BLOCK_SIZE_32KB;
break;
default:
ASSERT(false);
block_size = page_table_block_size;
break;
}
return block_size;
}
void hubbub2_init_vm_ctx(struct hubbub *hubbub,
struct dcn_hubbub_virt_addr_config *va_config,
int vmid)
{
struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub);
struct dcn_vmid_page_table_config virt_config;
virt_config.page_table_start_addr = va_config->page_table_start_addr >> 12;
virt_config.page_table_end_addr = va_config->page_table_end_addr >> 12;
virt_config.depth = page_table_depth_to_hw(va_config->page_table_depth);
virt_config.block_size = page_table_block_size_to_hw(va_config->page_table_block_size);
virt_config.page_table_base_addr = va_config->page_table_base_addr;
dcn20_vmid_setup(&hubbub1->vmid[vmid], &virt_config);
}
int hubbub2_init_dchub_sys_ctx(struct hubbub *hubbub,
struct dcn_hubbub_phys_addr_config *pa_config)
{
struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub);
struct dcn_vmid_page_table_config phys_config;
REG_SET(DCN_VM_FB_LOCATION_BASE, 0,
FB_BASE, pa_config->system_aperture.fb_base >> 24);
REG_SET(DCN_VM_FB_LOCATION_TOP, 0,
FB_TOP, pa_config->system_aperture.fb_top >> 24);
REG_SET(DCN_VM_FB_OFFSET, 0,
FB_OFFSET, pa_config->system_aperture.fb_offset >> 24);
REG_SET(DCN_VM_AGP_BOT, 0,
AGP_BOT, pa_config->system_aperture.agp_bot >> 24);
REG_SET(DCN_VM_AGP_TOP, 0,
AGP_TOP, pa_config->system_aperture.agp_top >> 24);
REG_SET(DCN_VM_AGP_BASE, 0,
AGP_BASE, pa_config->system_aperture.agp_base >> 24);
REG_SET(DCN_VM_PROTECTION_FAULT_DEFAULT_ADDR_MSB, 0,
DCN_VM_PROTECTION_FAULT_DEFAULT_ADDR_MSB, (pa_config->page_table_default_page_addr >> 44) & 0xF);
REG_SET(DCN_VM_PROTECTION_FAULT_DEFAULT_ADDR_LSB, 0,
DCN_VM_PROTECTION_FAULT_DEFAULT_ADDR_LSB, (pa_config->page_table_default_page_addr >> 12) & 0xFFFFFFFF);
if (pa_config->gart_config.page_table_start_addr != pa_config->gart_config.page_table_end_addr) {
phys_config.page_table_start_addr = pa_config->gart_config.page_table_start_addr >> 12;
phys_config.page_table_end_addr = pa_config->gart_config.page_table_end_addr >> 12;
phys_config.page_table_base_addr = pa_config->gart_config.page_table_base_addr;
phys_config.depth = 0;
phys_config.block_size = 0;
// Init VMID 0 based on PA config
dcn20_vmid_setup(&hubbub1->vmid[0], &phys_config);
}
return NUM_VMID;
}
void hubbub2_update_dchub(struct hubbub *hubbub,
struct dchub_init_data *dh_data)
{
struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub);
if (REG(DCN_VM_FB_LOCATION_TOP) == 0)
return;
switch (dh_data->fb_mode) {
case FRAME_BUFFER_MODE_ZFB_ONLY:
/*For ZFB case need to put DCHUB FB BASE and TOP upside down to indicate ZFB mode*/
REG_UPDATE(DCN_VM_FB_LOCATION_TOP,
FB_TOP, 0);
REG_UPDATE(DCN_VM_FB_LOCATION_BASE,
FB_BASE, 0xFFFFFF);
/*This field defines the 24 MSBs, bits [47:24] of the 48 bit AGP Base*/
REG_UPDATE(DCN_VM_AGP_BASE,
AGP_BASE, dh_data->zfb_phys_addr_base >> 24);
/*This field defines the bottom range of the AGP aperture and represents the 24*/
/*MSBs, bits [47:24] of the 48 address bits*/
REG_UPDATE(DCN_VM_AGP_BOT,
AGP_BOT, dh_data->zfb_mc_base_addr >> 24);
/*This field defines the top range of the AGP aperture and represents the 24*/
/*MSBs, bits [47:24] of the 48 address bits*/
REG_UPDATE(DCN_VM_AGP_TOP,
AGP_TOP, (dh_data->zfb_mc_base_addr +
dh_data->zfb_size_in_byte - 1) >> 24);
break;
case FRAME_BUFFER_MODE_MIXED_ZFB_AND_LOCAL:
/*Should not touch FB LOCATION (done by VBIOS on AsicInit table)*/
/*This field defines the 24 MSBs, bits [47:24] of the 48 bit AGP Base*/
REG_UPDATE(DCN_VM_AGP_BASE,
AGP_BASE, dh_data->zfb_phys_addr_base >> 24);
/*This field defines the bottom range of the AGP aperture and represents the 24*/
/*MSBs, bits [47:24] of the 48 address bits*/
REG_UPDATE(DCN_VM_AGP_BOT,
AGP_BOT, dh_data->zfb_mc_base_addr >> 24);
/*This field defines the top range of the AGP aperture and represents the 24*/
/*MSBs, bits [47:24] of the 48 address bits*/
REG_UPDATE(DCN_VM_AGP_TOP,
AGP_TOP, (dh_data->zfb_mc_base_addr +
dh_data->zfb_size_in_byte - 1) >> 24);
break;
case FRAME_BUFFER_MODE_LOCAL_ONLY:
/*Should not touch FB LOCATION (should be done by VBIOS)*/
/*This field defines the 24 MSBs, bits [47:24] of the 48 bit AGP Base*/
REG_UPDATE(DCN_VM_AGP_BASE,
AGP_BASE, 0);
/*This field defines the bottom range of the AGP aperture and represents the 24*/
/*MSBs, bits [47:24] of the 48 address bits*/
REG_UPDATE(DCN_VM_AGP_BOT,
AGP_BOT, 0xFFFFFF);
/*This field defines the top range of the AGP aperture and represents the 24*/
/*MSBs, bits [47:24] of the 48 address bits*/
REG_UPDATE(DCN_VM_AGP_TOP,
AGP_TOP, 0);
break;
default:
break;
}
dh_data->dchub_initialzied = true;
dh_data->dchub_info_valid = false;
}
void hubbub2_wm_read_state(struct hubbub *hubbub,
struct dcn_hubbub_wm *wm)
{
struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub);
struct dcn_hubbub_wm_set *s;
memset(wm, 0, sizeof(struct dcn_hubbub_wm));
s = &wm->sets[0];
s->wm_set = 0;
s->data_urgent = REG_READ(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A);
if (REG(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_A))
s->pte_meta_urgent = REG_READ(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_A);
if (REG(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A)) {
s->sr_enter = REG_READ(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A);
s->sr_exit = REG_READ(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A);
}
s->dram_clk_change = REG_READ(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_A);
s = &wm->sets[1];
s->wm_set = 1;
s->data_urgent = REG_READ(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B);
if (REG(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_B))
s->pte_meta_urgent = REG_READ(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_B);
if (REG(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B)) {
s->sr_enter = REG_READ(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B);
s->sr_exit = REG_READ(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B);
}
s->dram_clk_change = REG_READ(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_B);
s = &wm->sets[2];
s->wm_set = 2;
s->data_urgent = REG_READ(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_C);
if (REG(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_C))
s->pte_meta_urgent = REG_READ(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_C);
if (REG(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C)) {
s->sr_enter = REG_READ(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C);
s->sr_exit = REG_READ(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_C);
}
s->dram_clk_change = REG_READ(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_C);
s = &wm->sets[3];
s->wm_set = 3;
s->data_urgent = REG_READ(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_D);
if (REG(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_D))
s->pte_meta_urgent = REG_READ(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_D);
if (REG(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D)) {
s->sr_enter = REG_READ(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D);
s->sr_exit = REG_READ(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_D);
}
s->dram_clk_change = REG_READ(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_D);
}
void hubbub2_get_dchub_ref_freq(struct hubbub *hubbub,
unsigned int dccg_ref_freq_inKhz,
unsigned int *dchub_ref_freq_inKhz)
{
struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub);
uint32_t ref_div = 0;
uint32_t ref_en = 0;
REG_GET_2(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, &ref_div,
DCHUBBUB_GLOBAL_TIMER_ENABLE, &ref_en);
if (ref_en) {
if (ref_div == 2)
*dchub_ref_freq_inKhz = dccg_ref_freq_inKhz / 2;
else
*dchub_ref_freq_inKhz = dccg_ref_freq_inKhz;
// DC hub reference frequency must be around 50Mhz, otherwise there may be
// overflow/underflow issues when doing HUBBUB programming
if (*dchub_ref_freq_inKhz < 40000 || *dchub_ref_freq_inKhz > 60000)
ASSERT_CRITICAL(false);
return;
} else {
*dchub_ref_freq_inKhz = dccg_ref_freq_inKhz;
// HUBBUB global timer must be enabled.
ASSERT_CRITICAL(false);
return;
}
}
static bool hubbub2_program_watermarks(
struct hubbub *hubbub,
struct dcn_watermark_set *watermarks,
unsigned int refclk_mhz,
bool safe_to_lower)
{
struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub);
bool wm_pending = false;
/*
* Need to clamp to max of the register values (i.e. no wrap)
* for dcn1, all wm registers are 21-bit wide
*/
if (hubbub1_program_urgent_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower))
wm_pending = true;
if (hubbub1_program_stutter_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower))
wm_pending = true;
/*
* There's a special case when going from p-state support to p-state unsupported
* here we are going to LOWER watermarks to go to dummy p-state only, but this has
* to be done prepare_bandwidth, not optimize
*/
if (hubbub1->base.ctx->dc->clk_mgr->clks.prev_p_state_change_support == true &&
hubbub1->base.ctx->dc->clk_mgr->clks.p_state_change_support == false)
safe_to_lower = true;
hubbub1_program_pstate_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower);
REG_SET(DCHUBBUB_ARB_SAT_LEVEL, 0,
DCHUBBUB_ARB_SAT_LEVEL, 60 * refclk_mhz);
REG_UPDATE(DCHUBBUB_ARB_DF_REQ_OUTSTAND, DCHUBBUB_ARB_MIN_REQ_OUTSTAND, 180);
hubbub->funcs->allow_self_refresh_control(hubbub, !hubbub->ctx->dc->debug.disable_stutter);
return wm_pending;
}
void hubbub2_read_state(struct hubbub *hubbub, struct dcn_hubbub_state *hubbub_state)
{
struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub);
if (REG(DCN_VM_FAULT_ADDR_MSB))
hubbub_state->vm_fault_addr_msb = REG_READ(DCN_VM_FAULT_ADDR_MSB);
if (REG(DCN_VM_FAULT_ADDR_LSB))
hubbub_state->vm_fault_addr_msb = REG_READ(DCN_VM_FAULT_ADDR_LSB);
if (REG(DCN_VM_FAULT_CNTL))
REG_GET(DCN_VM_FAULT_CNTL, DCN_VM_ERROR_STATUS_MODE, &hubbub_state->vm_error_mode);
if (REG(DCN_VM_FAULT_STATUS)) {
REG_GET(DCN_VM_FAULT_STATUS, DCN_VM_ERROR_STATUS, &hubbub_state->vm_error_status);
REG_GET(DCN_VM_FAULT_STATUS, DCN_VM_ERROR_VMID, &hubbub_state->vm_error_vmid);
REG_GET(DCN_VM_FAULT_STATUS, DCN_VM_ERROR_PIPE, &hubbub_state->vm_error_pipe);
}
if (REG(DCHUBBUB_TEST_DEBUG_INDEX) && REG(DCHUBBUB_TEST_DEBUG_DATA)) {
REG_WRITE(DCHUBBUB_TEST_DEBUG_INDEX, 0x6);
hubbub_state->test_debug_data = REG_READ(DCHUBBUB_TEST_DEBUG_DATA);
}
if (REG(DCHUBBUB_ARB_WATERMARK_CHANGE_CNTL))
hubbub_state->watermark_change_cntl = REG_READ(DCHUBBUB_ARB_WATERMARK_CHANGE_CNTL);
if (REG(DCHUBBUB_ARB_DRAM_STATE_CNTL))
hubbub_state->dram_state_cntl = REG_READ(DCHUBBUB_ARB_DRAM_STATE_CNTL);
}
static const struct hubbub_funcs hubbub2_funcs = {
.update_dchub = hubbub2_update_dchub,
.init_dchub_sys_ctx = hubbub2_init_dchub_sys_ctx,
.init_vm_ctx = hubbub2_init_vm_ctx,
.dcc_support_swizzle = hubbub2_dcc_support_swizzle,
.dcc_support_pixel_format = hubbub2_dcc_support_pixel_format,
.get_dcc_compression_cap = hubbub2_get_dcc_compression_cap,
.wm_read_state = hubbub2_wm_read_state,
.get_dchub_ref_freq = hubbub2_get_dchub_ref_freq,
.program_watermarks = hubbub2_program_watermarks,
.is_allow_self_refresh_enabled = hubbub1_is_allow_self_refresh_enabled,
.allow_self_refresh_control = hubbub1_allow_self_refresh_control,
.hubbub_read_state = hubbub2_read_state,
};
void hubbub2_construct(struct dcn20_hubbub *hubbub,
struct dc_context *ctx,
const struct dcn_hubbub_registers *hubbub_regs,
const struct dcn_hubbub_shift *hubbub_shift,
const struct dcn_hubbub_mask *hubbub_mask)
{
hubbub->base.ctx = ctx;
hubbub->base.funcs = &hubbub2_funcs;
hubbub->regs = hubbub_regs;
hubbub->shifts = hubbub_shift;
hubbub->masks = hubbub_mask;
hubbub->debug_test_index_pstate = 0xB;
hubbub->detile_buf_size = 164 * 1024; /* 164KB for DCN2.0 */
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn20/dcn20_hubbub.c |
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "core_types.h"
#include "reg_helper.h"
#include "dcn20_dpp.h"
#include "basics/conversion.h"
#include "dcn10/dcn10_cm_common.h"
#define REG(reg)\
dpp->tf_regs->reg
#define IND_REG(index) \
(index)
#define CTX \
dpp->base.ctx
#undef FN
#define FN(reg_name, field_name) \
dpp->tf_shift->field_name, dpp->tf_mask->field_name
static void dpp2_enable_cm_block(
struct dpp *dpp_base)
{
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
unsigned int cm_bypass_mode = 0;
//Temp, put CM in bypass mode
if (dpp_base->ctx->dc->debug.cm_in_bypass)
cm_bypass_mode = 1;
REG_UPDATE(CM_CONTROL, CM_BYPASS, cm_bypass_mode);
}
static bool dpp2_degamma_ram_inuse(
struct dpp *dpp_base,
bool *ram_a_inuse)
{
bool ret = false;
uint32_t status_reg = 0;
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
REG_GET(CM_DGAM_LUT_WRITE_EN_MASK, CM_DGAM_CONFIG_STATUS,
&status_reg);
if (status_reg == 3) {
*ram_a_inuse = true;
ret = true;
} else if (status_reg == 4) {
*ram_a_inuse = false;
ret = true;
}
return ret;
}
static void dpp2_program_degamma_lut(
struct dpp *dpp_base,
const struct pwl_result_data *rgb,
uint32_t num,
bool is_ram_a)
{
uint32_t i;
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK,
CM_DGAM_LUT_WRITE_EN_MASK, 7);
REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK, CM_DGAM_LUT_WRITE_SEL,
is_ram_a == true ? 0:1);
REG_SET(CM_DGAM_LUT_INDEX, 0, CM_DGAM_LUT_INDEX, 0);
for (i = 0 ; i < num; i++) {
REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].red_reg);
REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].green_reg);
REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].blue_reg);
REG_SET(CM_DGAM_LUT_DATA, 0,
CM_DGAM_LUT_DATA, rgb[i].delta_red_reg);
REG_SET(CM_DGAM_LUT_DATA, 0,
CM_DGAM_LUT_DATA, rgb[i].delta_green_reg);
REG_SET(CM_DGAM_LUT_DATA, 0,
CM_DGAM_LUT_DATA, rgb[i].delta_blue_reg);
}
}
void dpp2_set_degamma_pwl(
struct dpp *dpp_base,
const struct pwl_params *params)
{
bool is_ram_a = true;
dpp1_power_on_degamma_lut(dpp_base, true);
dpp2_enable_cm_block(dpp_base);
dpp2_degamma_ram_inuse(dpp_base, &is_ram_a);
if (is_ram_a == true)
dpp1_program_degamma_lutb_settings(dpp_base, params);
else
dpp1_program_degamma_luta_settings(dpp_base, params);
dpp2_program_degamma_lut(dpp_base, params->rgb_resulted, params->hw_points_num, !is_ram_a);
dpp1_degamma_ram_select(dpp_base, !is_ram_a);
}
void dpp2_set_degamma(
struct dpp *dpp_base,
enum ipp_degamma_mode mode)
{
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
dpp2_enable_cm_block(dpp_base);
switch (mode) {
case IPP_DEGAMMA_MODE_BYPASS:
/* Setting de gamma bypass for now */
REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 0);
break;
case IPP_DEGAMMA_MODE_HW_sRGB:
REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 1);
break;
case IPP_DEGAMMA_MODE_HW_xvYCC:
REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 2);
break;
case IPP_DEGAMMA_MODE_USER_PWL:
REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 3);
break;
default:
BREAK_TO_DEBUGGER();
break;
}
}
static void program_gamut_remap(
struct dcn20_dpp *dpp,
const uint16_t *regval,
enum dcn20_gamut_remap_select select)
{
uint32_t cur_select = 0;
struct color_matrices_reg gam_regs;
if (regval == NULL || select == DCN2_GAMUT_REMAP_BYPASS) {
REG_SET(CM_GAMUT_REMAP_CONTROL, 0,
CM_GAMUT_REMAP_MODE, 0);
return;
}
/* determine which gamut_remap coefficients (A or B) we are using
* currently. select the alternate set to double buffer
* the update so gamut_remap is updated on frame boundary
*/
IX_REG_GET(CM_TEST_DEBUG_INDEX, CM_TEST_DEBUG_DATA,
CM_TEST_DEBUG_DATA_STATUS_IDX,
CM_TEST_DEBUG_DATA_GAMUT_REMAP_MODE, &cur_select);
/* value stored in dbg reg will be 1 greater than mode we want */
if (cur_select != DCN2_GAMUT_REMAP_COEF_A)
select = DCN2_GAMUT_REMAP_COEF_A;
else
select = DCN2_GAMUT_REMAP_COEF_B;
gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_GAMUT_REMAP_C11;
gam_regs.masks.csc_c11 = dpp->tf_mask->CM_GAMUT_REMAP_C11;
gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_GAMUT_REMAP_C12;
gam_regs.masks.csc_c12 = dpp->tf_mask->CM_GAMUT_REMAP_C12;
if (select == DCN2_GAMUT_REMAP_COEF_A) {
gam_regs.csc_c11_c12 = REG(CM_GAMUT_REMAP_C11_C12);
gam_regs.csc_c33_c34 = REG(CM_GAMUT_REMAP_C33_C34);
} else {
gam_regs.csc_c11_c12 = REG(CM_GAMUT_REMAP_B_C11_C12);
gam_regs.csc_c33_c34 = REG(CM_GAMUT_REMAP_B_C33_C34);
}
cm_helper_program_color_matrices(
dpp->base.ctx,
regval,
&gam_regs);
REG_SET(
CM_GAMUT_REMAP_CONTROL, 0,
CM_GAMUT_REMAP_MODE, select);
}
void dpp2_cm_set_gamut_remap(
struct dpp *dpp_base,
const struct dpp_grph_csc_adjustment *adjust)
{
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
int i = 0;
if (adjust->gamut_adjust_type != GRAPHICS_GAMUT_ADJUST_TYPE_SW)
/* Bypass if type is bypass or hw */
program_gamut_remap(dpp, NULL, DCN2_GAMUT_REMAP_BYPASS);
else {
struct fixed31_32 arr_matrix[12];
uint16_t arr_reg_val[12];
for (i = 0; i < 12; i++)
arr_matrix[i] = adjust->temperature_matrix[i];
convert_float_matrix(
arr_reg_val, arr_matrix, 12);
program_gamut_remap(dpp, arr_reg_val, DCN2_GAMUT_REMAP_COEF_A);
}
}
void dpp2_program_input_csc(
struct dpp *dpp_base,
enum dc_color_space color_space,
enum dcn20_input_csc_select input_select,
const struct out_csc_color_matrix *tbl_entry)
{
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
int i;
int arr_size = sizeof(dpp_input_csc_matrix)/sizeof(struct dpp_input_csc_matrix);
const uint16_t *regval = NULL;
uint32_t cur_select = 0;
enum dcn20_input_csc_select select;
struct color_matrices_reg icsc_regs;
if (input_select == DCN2_ICSC_SELECT_BYPASS) {
REG_SET(CM_ICSC_CONTROL, 0, CM_ICSC_MODE, 0);
return;
}
if (tbl_entry == NULL) {
for (i = 0; i < arr_size; i++)
if (dpp_input_csc_matrix[i].color_space == color_space) {
regval = dpp_input_csc_matrix[i].regval;
break;
}
if (regval == NULL) {
BREAK_TO_DEBUGGER();
return;
}
} else {
regval = tbl_entry->regval;
}
/* determine which CSC coefficients (A or B) we are using
* currently. select the alternate set to double buffer
* the CSC update so CSC is updated on frame boundary
*/
IX_REG_GET(CM_TEST_DEBUG_INDEX, CM_TEST_DEBUG_DATA,
CM_TEST_DEBUG_DATA_STATUS_IDX,
CM_TEST_DEBUG_DATA_ICSC_MODE, &cur_select);
if (cur_select != DCN2_ICSC_SELECT_ICSC_A)
select = DCN2_ICSC_SELECT_ICSC_A;
else
select = DCN2_ICSC_SELECT_ICSC_B;
icsc_regs.shifts.csc_c11 = dpp->tf_shift->CM_ICSC_C11;
icsc_regs.masks.csc_c11 = dpp->tf_mask->CM_ICSC_C11;
icsc_regs.shifts.csc_c12 = dpp->tf_shift->CM_ICSC_C12;
icsc_regs.masks.csc_c12 = dpp->tf_mask->CM_ICSC_C12;
if (select == DCN2_ICSC_SELECT_ICSC_A) {
icsc_regs.csc_c11_c12 = REG(CM_ICSC_C11_C12);
icsc_regs.csc_c33_c34 = REG(CM_ICSC_C33_C34);
} else {
icsc_regs.csc_c11_c12 = REG(CM_ICSC_B_C11_C12);
icsc_regs.csc_c33_c34 = REG(CM_ICSC_B_C33_C34);
}
cm_helper_program_color_matrices(
dpp->base.ctx,
regval,
&icsc_regs);
REG_SET(CM_ICSC_CONTROL, 0,
CM_ICSC_MODE, select);
}
static void dpp20_power_on_blnd_lut(
struct dpp *dpp_base,
bool power_on)
{
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
REG_SET(CM_MEM_PWR_CTRL, 0,
BLNDGAM_MEM_PWR_FORCE, power_on == true ? 0:1);
}
static void dpp20_configure_blnd_lut(
struct dpp *dpp_base,
bool is_ram_a)
{
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
REG_UPDATE(CM_BLNDGAM_LUT_WRITE_EN_MASK,
CM_BLNDGAM_LUT_WRITE_EN_MASK, 7);
REG_UPDATE(CM_BLNDGAM_LUT_WRITE_EN_MASK,
CM_BLNDGAM_LUT_WRITE_SEL, is_ram_a == true ? 0:1);
REG_SET(CM_BLNDGAM_LUT_INDEX, 0, CM_BLNDGAM_LUT_INDEX, 0);
}
static void dpp20_program_blnd_pwl(
struct dpp *dpp_base,
const struct pwl_result_data *rgb,
uint32_t num)
{
uint32_t i;
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
for (i = 0 ; i < num; i++) {
REG_SET(CM_BLNDGAM_LUT_DATA, 0, CM_BLNDGAM_LUT_DATA, rgb[i].red_reg);
REG_SET(CM_BLNDGAM_LUT_DATA, 0, CM_BLNDGAM_LUT_DATA, rgb[i].green_reg);
REG_SET(CM_BLNDGAM_LUT_DATA, 0, CM_BLNDGAM_LUT_DATA, rgb[i].blue_reg);
REG_SET(CM_BLNDGAM_LUT_DATA, 0,
CM_BLNDGAM_LUT_DATA, rgb[i].delta_red_reg);
REG_SET(CM_BLNDGAM_LUT_DATA, 0,
CM_BLNDGAM_LUT_DATA, rgb[i].delta_green_reg);
REG_SET(CM_BLNDGAM_LUT_DATA, 0,
CM_BLNDGAM_LUT_DATA, rgb[i].delta_blue_reg);
}
}
static void dcn20_dpp_cm_get_reg_field(
struct dcn20_dpp *dpp,
struct xfer_func_reg *reg)
{
reg->shifts.exp_region0_lut_offset = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION0_LUT_OFFSET;
reg->masks.exp_region0_lut_offset = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION0_LUT_OFFSET;
reg->shifts.exp_region0_num_segments = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
reg->masks.exp_region0_num_segments = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
reg->shifts.exp_region1_lut_offset = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION1_LUT_OFFSET;
reg->masks.exp_region1_lut_offset = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION1_LUT_OFFSET;
reg->shifts.exp_region1_num_segments = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
reg->masks.exp_region1_num_segments = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
reg->shifts.field_region_end = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION_END_B;
reg->masks.field_region_end = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION_END_B;
reg->shifts.field_region_end_slope = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION_END_SLOPE_B;
reg->masks.field_region_end_slope = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION_END_SLOPE_B;
reg->shifts.field_region_end_base = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION_END_BASE_B;
reg->masks.field_region_end_base = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION_END_BASE_B;
reg->shifts.field_region_linear_slope = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION_LINEAR_SLOPE_B;
reg->masks.field_region_linear_slope = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION_LINEAR_SLOPE_B;
reg->shifts.exp_region_start = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION_START_B;
reg->masks.exp_region_start = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION_START_B;
reg->shifts.exp_resion_start_segment = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION_START_SEGMENT_B;
reg->masks.exp_resion_start_segment = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION_START_SEGMENT_B;
}
/*program blnd lut RAM A*/
static void dpp20_program_blnd_luta_settings(
struct dpp *dpp_base,
const struct pwl_params *params)
{
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
struct xfer_func_reg gam_regs;
dcn20_dpp_cm_get_reg_field(dpp, &gam_regs);
gam_regs.start_cntl_b = REG(CM_BLNDGAM_RAMA_START_CNTL_B);
gam_regs.start_cntl_g = REG(CM_BLNDGAM_RAMA_START_CNTL_G);
gam_regs.start_cntl_r = REG(CM_BLNDGAM_RAMA_START_CNTL_R);
gam_regs.start_slope_cntl_b = REG(CM_BLNDGAM_RAMA_SLOPE_CNTL_B);
gam_regs.start_slope_cntl_g = REG(CM_BLNDGAM_RAMA_SLOPE_CNTL_G);
gam_regs.start_slope_cntl_r = REG(CM_BLNDGAM_RAMA_SLOPE_CNTL_R);
gam_regs.start_end_cntl1_b = REG(CM_BLNDGAM_RAMA_END_CNTL1_B);
gam_regs.start_end_cntl2_b = REG(CM_BLNDGAM_RAMA_END_CNTL2_B);
gam_regs.start_end_cntl1_g = REG(CM_BLNDGAM_RAMA_END_CNTL1_G);
gam_regs.start_end_cntl2_g = REG(CM_BLNDGAM_RAMA_END_CNTL2_G);
gam_regs.start_end_cntl1_r = REG(CM_BLNDGAM_RAMA_END_CNTL1_R);
gam_regs.start_end_cntl2_r = REG(CM_BLNDGAM_RAMA_END_CNTL2_R);
gam_regs.region_start = REG(CM_BLNDGAM_RAMA_REGION_0_1);
gam_regs.region_end = REG(CM_BLNDGAM_RAMA_REGION_32_33);
cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);
}
/*program blnd lut RAM B*/
static void dpp20_program_blnd_lutb_settings(
struct dpp *dpp_base,
const struct pwl_params *params)
{
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
struct xfer_func_reg gam_regs;
dcn20_dpp_cm_get_reg_field(dpp, &gam_regs);
gam_regs.start_cntl_b = REG(CM_BLNDGAM_RAMB_START_CNTL_B);
gam_regs.start_cntl_g = REG(CM_BLNDGAM_RAMB_START_CNTL_G);
gam_regs.start_cntl_r = REG(CM_BLNDGAM_RAMB_START_CNTL_R);
gam_regs.start_slope_cntl_b = REG(CM_BLNDGAM_RAMB_SLOPE_CNTL_B);
gam_regs.start_slope_cntl_g = REG(CM_BLNDGAM_RAMB_SLOPE_CNTL_G);
gam_regs.start_slope_cntl_r = REG(CM_BLNDGAM_RAMB_SLOPE_CNTL_R);
gam_regs.start_end_cntl1_b = REG(CM_BLNDGAM_RAMB_END_CNTL1_B);
gam_regs.start_end_cntl2_b = REG(CM_BLNDGAM_RAMB_END_CNTL2_B);
gam_regs.start_end_cntl1_g = REG(CM_BLNDGAM_RAMB_END_CNTL1_G);
gam_regs.start_end_cntl2_g = REG(CM_BLNDGAM_RAMB_END_CNTL2_G);
gam_regs.start_end_cntl1_r = REG(CM_BLNDGAM_RAMB_END_CNTL1_R);
gam_regs.start_end_cntl2_r = REG(CM_BLNDGAM_RAMB_END_CNTL2_R);
gam_regs.region_start = REG(CM_BLNDGAM_RAMB_REGION_0_1);
gam_regs.region_end = REG(CM_BLNDGAM_RAMB_REGION_32_33);
cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);
}
static enum dc_lut_mode dpp20_get_blndgam_current(struct dpp *dpp_base)
{
enum dc_lut_mode mode;
uint32_t state_mode;
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
REG_GET(CM_BLNDGAM_LUT_WRITE_EN_MASK, CM_BLNDGAM_CONFIG_STATUS, &state_mode);
switch (state_mode) {
case 0:
mode = LUT_BYPASS;
break;
case 1:
mode = LUT_RAM_A;
break;
case 2:
mode = LUT_RAM_B;
break;
default:
mode = LUT_BYPASS;
break;
}
return mode;
}
bool dpp20_program_blnd_lut(
struct dpp *dpp_base, const struct pwl_params *params)
{
enum dc_lut_mode current_mode;
enum dc_lut_mode next_mode;
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
if (params == NULL) {
REG_SET(CM_BLNDGAM_CONTROL, 0, CM_BLNDGAM_LUT_MODE, 0);
return false;
}
current_mode = dpp20_get_blndgam_current(dpp_base);
if (current_mode == LUT_BYPASS || current_mode == LUT_RAM_A)
next_mode = LUT_RAM_B;
else
next_mode = LUT_RAM_A;
dpp20_power_on_blnd_lut(dpp_base, true);
dpp20_configure_blnd_lut(dpp_base, next_mode == LUT_RAM_A);
if (next_mode == LUT_RAM_A)
dpp20_program_blnd_luta_settings(dpp_base, params);
else
dpp20_program_blnd_lutb_settings(dpp_base, params);
dpp20_program_blnd_pwl(
dpp_base, params->rgb_resulted, params->hw_points_num);
REG_SET(CM_BLNDGAM_CONTROL, 0, CM_BLNDGAM_LUT_MODE,
next_mode == LUT_RAM_A ? 1:2);
return true;
}
static void dpp20_program_shaper_lut(
struct dpp *dpp_base,
const struct pwl_result_data *rgb,
uint32_t num)
{
uint32_t i, red, green, blue;
uint32_t red_delta, green_delta, blue_delta;
uint32_t red_value, green_value, blue_value;
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
for (i = 0 ; i < num; i++) {
red = rgb[i].red_reg;
green = rgb[i].green_reg;
blue = rgb[i].blue_reg;
red_delta = rgb[i].delta_red_reg;
green_delta = rgb[i].delta_green_reg;
blue_delta = rgb[i].delta_blue_reg;
red_value = ((red_delta & 0x3ff) << 14) | (red & 0x3fff);
green_value = ((green_delta & 0x3ff) << 14) | (green & 0x3fff);
blue_value = ((blue_delta & 0x3ff) << 14) | (blue & 0x3fff);
REG_SET(CM_SHAPER_LUT_DATA, 0, CM_SHAPER_LUT_DATA, red_value);
REG_SET(CM_SHAPER_LUT_DATA, 0, CM_SHAPER_LUT_DATA, green_value);
REG_SET(CM_SHAPER_LUT_DATA, 0, CM_SHAPER_LUT_DATA, blue_value);
}
}
static enum dc_lut_mode dpp20_get_shaper_current(struct dpp *dpp_base)
{
enum dc_lut_mode mode;
uint32_t state_mode;
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
REG_GET(CM_SHAPER_LUT_WRITE_EN_MASK, CM_SHAPER_CONFIG_STATUS, &state_mode);
switch (state_mode) {
case 0:
mode = LUT_BYPASS;
break;
case 1:
mode = LUT_RAM_A;
break;
case 2:
mode = LUT_RAM_B;
break;
default:
mode = LUT_BYPASS;
break;
}
return mode;
}
static void dpp20_configure_shaper_lut(
struct dpp *dpp_base,
bool is_ram_a)
{
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
REG_UPDATE(CM_SHAPER_LUT_WRITE_EN_MASK,
CM_SHAPER_LUT_WRITE_EN_MASK, 7);
REG_UPDATE(CM_SHAPER_LUT_WRITE_EN_MASK,
CM_SHAPER_LUT_WRITE_SEL, is_ram_a == true ? 0:1);
REG_SET(CM_SHAPER_LUT_INDEX, 0, CM_SHAPER_LUT_INDEX, 0);
}
/*program shaper RAM A*/
static void dpp20_program_shaper_luta_settings(
struct dpp *dpp_base,
const struct pwl_params *params)
{
const struct gamma_curve *curve;
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
REG_SET_2(CM_SHAPER_RAMA_START_CNTL_B, 0,
CM_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].blue.custom_float_x,
CM_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0);
REG_SET_2(CM_SHAPER_RAMA_START_CNTL_G, 0,
CM_SHAPER_RAMA_EXP_REGION_START_G, params->corner_points[0].green.custom_float_x,
CM_SHAPER_RAMA_EXP_REGION_START_SEGMENT_G, 0);
REG_SET_2(CM_SHAPER_RAMA_START_CNTL_R, 0,
CM_SHAPER_RAMA_EXP_REGION_START_R, params->corner_points[0].red.custom_float_x,
CM_SHAPER_RAMA_EXP_REGION_START_SEGMENT_R, 0);
REG_SET_2(CM_SHAPER_RAMA_END_CNTL_B, 0,
CM_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].blue.custom_float_x,
CM_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].blue.custom_float_y);
REG_SET_2(CM_SHAPER_RAMA_END_CNTL_G, 0,
CM_SHAPER_RAMA_EXP_REGION_END_G, params->corner_points[1].green.custom_float_x,
CM_SHAPER_RAMA_EXP_REGION_END_BASE_G, params->corner_points[1].green.custom_float_y);
REG_SET_2(CM_SHAPER_RAMA_END_CNTL_R, 0,
CM_SHAPER_RAMA_EXP_REGION_END_R, params->corner_points[1].red.custom_float_x,
CM_SHAPER_RAMA_EXP_REGION_END_BASE_R, params->corner_points[1].red.custom_float_y);
curve = params->arr_curve_points;
REG_SET_4(CM_SHAPER_RAMA_REGION_0_1, 0,
CM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMA_REGION_2_3, 0,
CM_SHAPER_RAMA_EXP_REGION2_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMA_EXP_REGION2_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMA_EXP_REGION3_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMA_EXP_REGION3_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMA_REGION_4_5, 0,
CM_SHAPER_RAMA_EXP_REGION4_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMA_EXP_REGION4_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMA_EXP_REGION5_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMA_EXP_REGION5_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMA_REGION_6_7, 0,
CM_SHAPER_RAMA_EXP_REGION6_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMA_EXP_REGION6_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMA_EXP_REGION7_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMA_EXP_REGION7_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMA_REGION_8_9, 0,
CM_SHAPER_RAMA_EXP_REGION8_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMA_EXP_REGION8_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMA_EXP_REGION9_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMA_EXP_REGION9_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMA_REGION_10_11, 0,
CM_SHAPER_RAMA_EXP_REGION10_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMA_EXP_REGION10_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMA_EXP_REGION11_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMA_EXP_REGION11_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMA_REGION_12_13, 0,
CM_SHAPER_RAMA_EXP_REGION12_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMA_EXP_REGION12_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMA_EXP_REGION13_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMA_EXP_REGION13_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMA_REGION_14_15, 0,
CM_SHAPER_RAMA_EXP_REGION14_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMA_EXP_REGION14_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMA_EXP_REGION15_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMA_EXP_REGION15_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMA_REGION_16_17, 0,
CM_SHAPER_RAMA_EXP_REGION16_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMA_EXP_REGION16_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMA_EXP_REGION17_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMA_EXP_REGION17_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMA_REGION_18_19, 0,
CM_SHAPER_RAMA_EXP_REGION18_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMA_EXP_REGION18_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMA_EXP_REGION19_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMA_EXP_REGION19_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMA_REGION_20_21, 0,
CM_SHAPER_RAMA_EXP_REGION20_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMA_EXP_REGION20_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMA_EXP_REGION21_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMA_EXP_REGION21_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMA_REGION_22_23, 0,
CM_SHAPER_RAMA_EXP_REGION22_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMA_EXP_REGION22_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMA_EXP_REGION23_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMA_EXP_REGION23_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMA_REGION_24_25, 0,
CM_SHAPER_RAMA_EXP_REGION24_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMA_EXP_REGION24_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMA_EXP_REGION25_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMA_EXP_REGION25_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMA_REGION_26_27, 0,
CM_SHAPER_RAMA_EXP_REGION26_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMA_EXP_REGION26_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMA_EXP_REGION27_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMA_EXP_REGION27_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMA_REGION_28_29, 0,
CM_SHAPER_RAMA_EXP_REGION28_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMA_EXP_REGION28_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMA_EXP_REGION29_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMA_EXP_REGION29_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMA_REGION_30_31, 0,
CM_SHAPER_RAMA_EXP_REGION30_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMA_EXP_REGION30_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMA_EXP_REGION31_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMA_EXP_REGION31_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMA_REGION_32_33, 0,
CM_SHAPER_RAMA_EXP_REGION32_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMA_EXP_REGION32_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMA_EXP_REGION33_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMA_EXP_REGION33_NUM_SEGMENTS, curve[1].segments_num);
}
/*program shaper RAM B*/
static void dpp20_program_shaper_lutb_settings(
struct dpp *dpp_base,
const struct pwl_params *params)
{
const struct gamma_curve *curve;
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
REG_SET_2(CM_SHAPER_RAMB_START_CNTL_B, 0,
CM_SHAPER_RAMB_EXP_REGION_START_B, params->corner_points[0].blue.custom_float_x,
CM_SHAPER_RAMB_EXP_REGION_START_SEGMENT_B, 0);
REG_SET_2(CM_SHAPER_RAMB_START_CNTL_G, 0,
CM_SHAPER_RAMB_EXP_REGION_START_G, params->corner_points[0].green.custom_float_x,
CM_SHAPER_RAMB_EXP_REGION_START_SEGMENT_G, 0);
REG_SET_2(CM_SHAPER_RAMB_START_CNTL_R, 0,
CM_SHAPER_RAMB_EXP_REGION_START_R, params->corner_points[0].red.custom_float_x,
CM_SHAPER_RAMB_EXP_REGION_START_SEGMENT_R, 0);
REG_SET_2(CM_SHAPER_RAMB_END_CNTL_B, 0,
CM_SHAPER_RAMB_EXP_REGION_END_B, params->corner_points[1].blue.custom_float_x,
CM_SHAPER_RAMB_EXP_REGION_END_BASE_B, params->corner_points[1].blue.custom_float_y);
REG_SET_2(CM_SHAPER_RAMB_END_CNTL_G, 0,
CM_SHAPER_RAMB_EXP_REGION_END_G, params->corner_points[1].green.custom_float_x,
CM_SHAPER_RAMB_EXP_REGION_END_BASE_G, params->corner_points[1].green.custom_float_y);
REG_SET_2(CM_SHAPER_RAMB_END_CNTL_R, 0,
CM_SHAPER_RAMB_EXP_REGION_END_R, params->corner_points[1].red.custom_float_x,
CM_SHAPER_RAMB_EXP_REGION_END_BASE_R, params->corner_points[1].red.custom_float_y);
curve = params->arr_curve_points;
REG_SET_4(CM_SHAPER_RAMB_REGION_0_1, 0,
CM_SHAPER_RAMB_EXP_REGION0_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMB_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMB_EXP_REGION1_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMB_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMB_REGION_2_3, 0,
CM_SHAPER_RAMB_EXP_REGION2_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMB_EXP_REGION2_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMB_EXP_REGION3_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMB_EXP_REGION3_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMB_REGION_4_5, 0,
CM_SHAPER_RAMB_EXP_REGION4_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMB_EXP_REGION4_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMB_EXP_REGION5_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMB_EXP_REGION5_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMB_REGION_6_7, 0,
CM_SHAPER_RAMB_EXP_REGION6_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMB_EXP_REGION6_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMB_EXP_REGION7_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMB_EXP_REGION7_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMB_REGION_8_9, 0,
CM_SHAPER_RAMB_EXP_REGION8_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMB_EXP_REGION8_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMB_EXP_REGION9_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMB_EXP_REGION9_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMB_REGION_10_11, 0,
CM_SHAPER_RAMB_EXP_REGION10_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMB_EXP_REGION10_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMB_EXP_REGION11_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMB_EXP_REGION11_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMB_REGION_12_13, 0,
CM_SHAPER_RAMB_EXP_REGION12_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMB_EXP_REGION12_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMB_EXP_REGION13_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMB_EXP_REGION13_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMB_REGION_14_15, 0,
CM_SHAPER_RAMB_EXP_REGION14_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMB_EXP_REGION14_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMB_EXP_REGION15_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMB_EXP_REGION15_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMB_REGION_16_17, 0,
CM_SHAPER_RAMB_EXP_REGION16_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMB_EXP_REGION16_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMB_EXP_REGION17_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMB_EXP_REGION17_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMB_REGION_18_19, 0,
CM_SHAPER_RAMB_EXP_REGION18_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMB_EXP_REGION18_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMB_EXP_REGION19_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMB_EXP_REGION19_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMB_REGION_20_21, 0,
CM_SHAPER_RAMB_EXP_REGION20_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMB_EXP_REGION20_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMB_EXP_REGION21_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMB_EXP_REGION21_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMB_REGION_22_23, 0,
CM_SHAPER_RAMB_EXP_REGION22_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMB_EXP_REGION22_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMB_EXP_REGION23_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMB_EXP_REGION23_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMB_REGION_24_25, 0,
CM_SHAPER_RAMB_EXP_REGION24_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMB_EXP_REGION24_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMB_EXP_REGION25_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMB_EXP_REGION25_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMB_REGION_26_27, 0,
CM_SHAPER_RAMB_EXP_REGION26_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMB_EXP_REGION26_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMB_EXP_REGION27_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMB_EXP_REGION27_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMB_REGION_28_29, 0,
CM_SHAPER_RAMB_EXP_REGION28_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMB_EXP_REGION28_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMB_EXP_REGION29_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMB_EXP_REGION29_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMB_REGION_30_31, 0,
CM_SHAPER_RAMB_EXP_REGION30_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMB_EXP_REGION30_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMB_EXP_REGION31_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMB_EXP_REGION31_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_SHAPER_RAMB_REGION_32_33, 0,
CM_SHAPER_RAMB_EXP_REGION32_LUT_OFFSET, curve[0].offset,
CM_SHAPER_RAMB_EXP_REGION32_NUM_SEGMENTS, curve[0].segments_num,
CM_SHAPER_RAMB_EXP_REGION33_LUT_OFFSET, curve[1].offset,
CM_SHAPER_RAMB_EXP_REGION33_NUM_SEGMENTS, curve[1].segments_num);
}
bool dpp20_program_shaper(
struct dpp *dpp_base,
const struct pwl_params *params)
{
enum dc_lut_mode current_mode;
enum dc_lut_mode next_mode;
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
if (params == NULL) {
REG_SET(CM_SHAPER_CONTROL, 0, CM_SHAPER_LUT_MODE, 0);
return false;
}
current_mode = dpp20_get_shaper_current(dpp_base);
if (current_mode == LUT_BYPASS || current_mode == LUT_RAM_A)
next_mode = LUT_RAM_B;
else
next_mode = LUT_RAM_A;
dpp20_configure_shaper_lut(dpp_base, next_mode == LUT_RAM_A);
if (next_mode == LUT_RAM_A)
dpp20_program_shaper_luta_settings(dpp_base, params);
else
dpp20_program_shaper_lutb_settings(dpp_base, params);
dpp20_program_shaper_lut(
dpp_base, params->rgb_resulted, params->hw_points_num);
REG_SET(CM_SHAPER_CONTROL, 0, CM_SHAPER_LUT_MODE, next_mode == LUT_RAM_A ? 1:2);
return true;
}
static enum dc_lut_mode get3dlut_config(
struct dpp *dpp_base,
bool *is_17x17x17,
bool *is_12bits_color_channel)
{
uint32_t i_mode, i_enable_10bits, lut_size;
enum dc_lut_mode mode;
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
REG_GET_2(CM_3DLUT_READ_WRITE_CONTROL,
CM_3DLUT_CONFIG_STATUS, &i_mode,
CM_3DLUT_30BIT_EN, &i_enable_10bits);
switch (i_mode) {
case 0:
mode = LUT_BYPASS;
break;
case 1:
mode = LUT_RAM_A;
break;
case 2:
mode = LUT_RAM_B;
break;
default:
mode = LUT_BYPASS;
break;
}
if (i_enable_10bits > 0)
*is_12bits_color_channel = false;
else
*is_12bits_color_channel = true;
REG_GET(CM_3DLUT_MODE, CM_3DLUT_SIZE, &lut_size);
if (lut_size == 0)
*is_17x17x17 = true;
else
*is_17x17x17 = false;
return mode;
}
/*
* select ramA or ramB, or bypass
* select color channel size 10 or 12 bits
* select 3dlut size 17x17x17 or 9x9x9
*/
static void dpp20_set_3dlut_mode(
struct dpp *dpp_base,
enum dc_lut_mode mode,
bool is_color_channel_12bits,
bool is_lut_size17x17x17)
{
uint32_t lut_mode;
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
if (mode == LUT_BYPASS)
lut_mode = 0;
else if (mode == LUT_RAM_A)
lut_mode = 1;
else
lut_mode = 2;
REG_UPDATE_2(CM_3DLUT_MODE,
CM_3DLUT_MODE, lut_mode,
CM_3DLUT_SIZE, is_lut_size17x17x17 == true ? 0 : 1);
}
static void dpp20_select_3dlut_ram(
struct dpp *dpp_base,
enum dc_lut_mode mode,
bool is_color_channel_12bits)
{
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
REG_UPDATE_2(CM_3DLUT_READ_WRITE_CONTROL,
CM_3DLUT_RAM_SEL, mode == LUT_RAM_A ? 0 : 1,
CM_3DLUT_30BIT_EN,
is_color_channel_12bits == true ? 0:1);
}
static void dpp20_set3dlut_ram12(
struct dpp *dpp_base,
const struct dc_rgb *lut,
uint32_t entries)
{
uint32_t i, red, green, blue, red1, green1, blue1;
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
for (i = 0 ; i < entries; i += 2) {
red = lut[i].red<<4;
green = lut[i].green<<4;
blue = lut[i].blue<<4;
red1 = lut[i+1].red<<4;
green1 = lut[i+1].green<<4;
blue1 = lut[i+1].blue<<4;
REG_SET_2(CM_3DLUT_DATA, 0,
CM_3DLUT_DATA0, red,
CM_3DLUT_DATA1, red1);
REG_SET_2(CM_3DLUT_DATA, 0,
CM_3DLUT_DATA0, green,
CM_3DLUT_DATA1, green1);
REG_SET_2(CM_3DLUT_DATA, 0,
CM_3DLUT_DATA0, blue,
CM_3DLUT_DATA1, blue1);
}
}
/*
* load selected lut with 10 bits color channels
*/
static void dpp20_set3dlut_ram10(
struct dpp *dpp_base,
const struct dc_rgb *lut,
uint32_t entries)
{
uint32_t i, red, green, blue, value;
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
for (i = 0; i < entries; i++) {
red = lut[i].red;
green = lut[i].green;
blue = lut[i].blue;
value = (red<<20) | (green<<10) | blue;
REG_SET(CM_3DLUT_DATA_30BIT, 0, CM_3DLUT_DATA_30BIT, value);
}
}
static void dpp20_select_3dlut_ram_mask(
struct dpp *dpp_base,
uint32_t ram_selection_mask)
{
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
REG_UPDATE(CM_3DLUT_READ_WRITE_CONTROL, CM_3DLUT_WRITE_EN_MASK,
ram_selection_mask);
REG_SET(CM_3DLUT_INDEX, 0, CM_3DLUT_INDEX, 0);
}
bool dpp20_program_3dlut(
struct dpp *dpp_base,
struct tetrahedral_params *params)
{
enum dc_lut_mode mode;
bool is_17x17x17;
bool is_12bits_color_channel;
struct dc_rgb *lut0;
struct dc_rgb *lut1;
struct dc_rgb *lut2;
struct dc_rgb *lut3;
int lut_size0;
int lut_size;
if (params == NULL) {
dpp20_set_3dlut_mode(dpp_base, LUT_BYPASS, false, false);
return false;
}
mode = get3dlut_config(dpp_base, &is_17x17x17, &is_12bits_color_channel);
if (mode == LUT_BYPASS || mode == LUT_RAM_B)
mode = LUT_RAM_A;
else
mode = LUT_RAM_B;
is_17x17x17 = !params->use_tetrahedral_9;
is_12bits_color_channel = params->use_12bits;
if (is_17x17x17) {
lut0 = params->tetrahedral_17.lut0;
lut1 = params->tetrahedral_17.lut1;
lut2 = params->tetrahedral_17.lut2;
lut3 = params->tetrahedral_17.lut3;
lut_size0 = sizeof(params->tetrahedral_17.lut0)/
sizeof(params->tetrahedral_17.lut0[0]);
lut_size = sizeof(params->tetrahedral_17.lut1)/
sizeof(params->tetrahedral_17.lut1[0]);
} else {
lut0 = params->tetrahedral_9.lut0;
lut1 = params->tetrahedral_9.lut1;
lut2 = params->tetrahedral_9.lut2;
lut3 = params->tetrahedral_9.lut3;
lut_size0 = sizeof(params->tetrahedral_9.lut0)/
sizeof(params->tetrahedral_9.lut0[0]);
lut_size = sizeof(params->tetrahedral_9.lut1)/
sizeof(params->tetrahedral_9.lut1[0]);
}
dpp20_select_3dlut_ram(dpp_base, mode,
is_12bits_color_channel);
dpp20_select_3dlut_ram_mask(dpp_base, 0x1);
if (is_12bits_color_channel)
dpp20_set3dlut_ram12(dpp_base, lut0, lut_size0);
else
dpp20_set3dlut_ram10(dpp_base, lut0, lut_size0);
dpp20_select_3dlut_ram_mask(dpp_base, 0x2);
if (is_12bits_color_channel)
dpp20_set3dlut_ram12(dpp_base, lut1, lut_size);
else
dpp20_set3dlut_ram10(dpp_base, lut1, lut_size);
dpp20_select_3dlut_ram_mask(dpp_base, 0x4);
if (is_12bits_color_channel)
dpp20_set3dlut_ram12(dpp_base, lut2, lut_size);
else
dpp20_set3dlut_ram10(dpp_base, lut2, lut_size);
dpp20_select_3dlut_ram_mask(dpp_base, 0x8);
if (is_12bits_color_channel)
dpp20_set3dlut_ram12(dpp_base, lut3, lut_size);
else
dpp20_set3dlut_ram10(dpp_base, lut3, lut_size);
dpp20_set_3dlut_mode(dpp_base, mode, is_12bits_color_channel,
is_17x17x17);
return true;
}
void dpp2_set_hdr_multiplier(
struct dpp *dpp_base,
uint32_t multiplier)
{
struct dcn20_dpp *dpp = TO_DCN20_DPP(dpp_base);
REG_UPDATE(CM_HDR_MULT_COEF, CM_HDR_MULT_COEF, multiplier);
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn20/dcn20_dpp_cm.c |
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "reg_helper.h"
#include "resource.h"
#include "mcif_wb.h"
#include "dcn20_mmhubbub.h"
#define REG(reg)\
mcif_wb20->mcif_wb_regs->reg
#define CTX \
mcif_wb20->base.ctx
#undef FN
#define FN(reg_name, field_name) \
mcif_wb20->mcif_wb_shift->field_name, mcif_wb20->mcif_wb_mask->field_name
#define MCIF_ADDR(addr) (((unsigned long long)addr & 0xffffffffff) + 0xFE) >> 8
#define MCIF_ADDR_HIGH(addr) (unsigned long long)addr >> 40
/* wbif programming guide:
* 1. set up wbif parameter:
* unsigned long long luma_address[4]; //4 frame buffer
* unsigned long long chroma_address[4];
* unsigned int luma_pitch;
* unsigned int chroma_pitch;
* unsigned int warmup_pitch=0x10; //256B align, the page size is 4KB when it is 0x10
* unsigned int slice_lines; //slice size
* unsigned int time_per_pixel; // time per pixel, in ns
* unsigned int arbitration_slice; // 0: 512 bytes 1: 1024 bytes 2: 2048 Bytes
* unsigned int max_scaled_time; // used for QOS generation
* unsigned int swlock=0x0;
* unsigned int cli_watermark[4]; //4 group urgent watermark
* unsigned int pstate_watermark[4]; //4 group pstate watermark
* unsigned int sw_int_en; // Software interrupt enable, frame end and overflow
* unsigned int sw_slice_int_en; // slice end interrupt enable
* unsigned int sw_overrun_int_en; // overrun error interrupt enable
* unsigned int vce_int_en; // VCE interrupt enable, frame end and overflow
* unsigned int vce_slice_int_en; // VCE slice end interrupt enable, frame end and overflow
*
* 2. configure wbif register
* a. call mmhubbub_config_wbif()
*
* 3. Enable wbif
* call set_wbif_bufmgr_enable();
*
* 4. wbif_dump_status(), option, for debug purpose
* the bufmgr status can show the progress of write back, can be used for debug purpose
*/
static void mmhubbub2_config_mcif_buf(struct mcif_wb *mcif_wb,
struct mcif_buf_params *params,
unsigned int dest_height)
{
struct dcn20_mmhubbub *mcif_wb20 = TO_DCN20_MMHUBBUB(mcif_wb);
/* sw lock buffer0~buffer3, default is 0 */
REG_UPDATE(MCIF_WB_BUFMGR_SW_CONTROL, MCIF_WB_BUFMGR_SW_LOCK, params->swlock);
/* buffer address for packing mode or Luma in planar mode */
REG_UPDATE(MCIF_WB_BUF_1_ADDR_Y, MCIF_WB_BUF_1_ADDR_Y, MCIF_ADDR(params->luma_address[0]));
REG_UPDATE(MCIF_WB_BUF_1_ADDR_Y_HIGH, MCIF_WB_BUF_1_ADDR_Y_HIGH, MCIF_ADDR_HIGH(params->luma_address[0]));
/* right eye sub-buffer address offset for packing mode or Luma in planar mode */
REG_UPDATE(MCIF_WB_BUF_1_ADDR_Y_OFFSET, MCIF_WB_BUF_1_ADDR_Y_OFFSET, 0);
/* buffer address for Chroma in planar mode (unused in packing mode) */
REG_UPDATE(MCIF_WB_BUF_1_ADDR_C, MCIF_WB_BUF_1_ADDR_C, MCIF_ADDR(params->chroma_address[0]));
REG_UPDATE(MCIF_WB_BUF_1_ADDR_C_HIGH, MCIF_WB_BUF_1_ADDR_C_HIGH, MCIF_ADDR_HIGH(params->chroma_address[0]));
/* right eye offset for packing mode or Luma in planar mode */
REG_UPDATE(MCIF_WB_BUF_1_ADDR_C_OFFSET, MCIF_WB_BUF_1_ADDR_C_OFFSET, 0);
/* buffer address for packing mode or Luma in planar mode */
REG_UPDATE(MCIF_WB_BUF_2_ADDR_Y, MCIF_WB_BUF_2_ADDR_Y, MCIF_ADDR(params->luma_address[1]));
REG_UPDATE(MCIF_WB_BUF_2_ADDR_Y_HIGH, MCIF_WB_BUF_2_ADDR_Y_HIGH, MCIF_ADDR_HIGH(params->luma_address[1]));
/* right eye sub-buffer address offset for packing mode or Luma in planar mode */
REG_UPDATE(MCIF_WB_BUF_2_ADDR_Y_OFFSET, MCIF_WB_BUF_2_ADDR_Y_OFFSET, 0);
/* buffer address for Chroma in planar mode (unused in packing mode) */
REG_UPDATE(MCIF_WB_BUF_2_ADDR_C, MCIF_WB_BUF_2_ADDR_C, MCIF_ADDR(params->chroma_address[1]));
REG_UPDATE(MCIF_WB_BUF_2_ADDR_C_HIGH, MCIF_WB_BUF_2_ADDR_C_HIGH, MCIF_ADDR_HIGH(params->chroma_address[1]));
/* right eye offset for packing mode or Luma in planar mode */
REG_UPDATE(MCIF_WB_BUF_2_ADDR_C_OFFSET, MCIF_WB_BUF_2_ADDR_C_OFFSET, 0);
/* buffer address for packing mode or Luma in planar mode */
REG_UPDATE(MCIF_WB_BUF_3_ADDR_Y, MCIF_WB_BUF_3_ADDR_Y, MCIF_ADDR(params->luma_address[2]));
REG_UPDATE(MCIF_WB_BUF_3_ADDR_Y_HIGH, MCIF_WB_BUF_3_ADDR_Y_HIGH, MCIF_ADDR_HIGH(params->luma_address[2]));
/* right eye sub-buffer address offset for packing mode or Luma in planar mode */
REG_UPDATE(MCIF_WB_BUF_3_ADDR_Y_OFFSET, MCIF_WB_BUF_3_ADDR_Y_OFFSET, 0);
/* buffer address for Chroma in planar mode (unused in packing mode) */
REG_UPDATE(MCIF_WB_BUF_3_ADDR_C, MCIF_WB_BUF_3_ADDR_C, MCIF_ADDR(params->chroma_address[2]));
REG_UPDATE(MCIF_WB_BUF_3_ADDR_C_HIGH, MCIF_WB_BUF_3_ADDR_C_HIGH, MCIF_ADDR_HIGH(params->chroma_address[2]));
/* right eye offset for packing mode or Luma in planar mode */
REG_UPDATE(MCIF_WB_BUF_3_ADDR_C_OFFSET, MCIF_WB_BUF_3_ADDR_C_OFFSET, 0);
/* buffer address for packing mode or Luma in planar mode */
REG_UPDATE(MCIF_WB_BUF_4_ADDR_Y, MCIF_WB_BUF_4_ADDR_Y, MCIF_ADDR(params->luma_address[3]));
REG_UPDATE(MCIF_WB_BUF_4_ADDR_Y_HIGH, MCIF_WB_BUF_4_ADDR_Y_HIGH, MCIF_ADDR_HIGH(params->luma_address[3]));
/* right eye sub-buffer address offset for packing mode or Luma in planar mode */
REG_UPDATE(MCIF_WB_BUF_4_ADDR_Y_OFFSET, MCIF_WB_BUF_4_ADDR_Y_OFFSET, 0);
/* buffer address for Chroma in planar mode (unused in packing mode) */
REG_UPDATE(MCIF_WB_BUF_4_ADDR_C, MCIF_WB_BUF_4_ADDR_C, MCIF_ADDR(params->chroma_address[3]));
REG_UPDATE(MCIF_WB_BUF_4_ADDR_C_HIGH, MCIF_WB_BUF_4_ADDR_C_HIGH, MCIF_ADDR_HIGH(params->chroma_address[3]));
/* right eye offset for packing mode or Luma in planar mode */
REG_UPDATE(MCIF_WB_BUF_4_ADDR_C_OFFSET, MCIF_WB_BUF_4_ADDR_C_OFFSET, 0);
/* setup luma & chroma size
* should be enough to contain a whole frame Luma data,
* the programmed value is frame buffer size [27:8], 256-byte aligned
*/
REG_UPDATE(MCIF_WB_BUF_LUMA_SIZE, MCIF_WB_BUF_LUMA_SIZE, (params->luma_pitch>>8) * dest_height);
REG_UPDATE(MCIF_WB_BUF_CHROMA_SIZE, MCIF_WB_BUF_CHROMA_SIZE, (params->chroma_pitch>>8) * dest_height);
/* enable address fence */
REG_UPDATE(MCIF_WB_BUFMGR_SW_CONTROL, MCIF_WB_BUF_ADDR_FENCE_EN, 1);
/* setup pitch, the programmed value is [15:8], 256B align */
REG_UPDATE_2(MCIF_WB_BUF_PITCH, MCIF_WB_BUF_LUMA_PITCH, params->luma_pitch >> 8,
MCIF_WB_BUF_CHROMA_PITCH, params->chroma_pitch >> 8);
/* Set pitch for MC cache warm up mode */
/* Pitch is 256 bytes aligned. The default pitch is 4K */
/* default is 0x10 */
REG_UPDATE(MCIF_WB_WARM_UP_CNTL, MCIF_WB_PITCH_SIZE_WARMUP, params->warmup_pitch);
}
static void mmhubbub2_config_mcif_arb(struct mcif_wb *mcif_wb,
struct mcif_arb_params *params)
{
struct dcn20_mmhubbub *mcif_wb20 = TO_DCN20_MMHUBBUB(mcif_wb);
/* Programmed by the video driver based on the CRTC timing (for DWB) */
REG_UPDATE(MCIF_WB_ARBITRATION_CONTROL, MCIF_WB_TIME_PER_PIXEL, params->time_per_pixel);
/* Programming dwb watermark */
/* Watermark to generate urgent in MCIF_WB_CLI, value is determined by MCIF_WB_CLI_WATERMARK_MASK. */
/* Program in ns. A formula will be provided in the pseudo code to calculate the value. */
REG_UPDATE(MCIF_WB_SCLK_CHANGE, MCIF_WB_CLI_WATERMARK_MASK, 0x0);
/* urgent_watermarkA */
REG_UPDATE(MCIF_WB_WATERMARK, MCIF_WB_CLI_WATERMARK, params->cli_watermark[0]);
REG_UPDATE(MCIF_WB_SCLK_CHANGE, MCIF_WB_CLI_WATERMARK_MASK, 0x1);
/* urgent_watermarkB */
REG_UPDATE(MCIF_WB_WATERMARK, MCIF_WB_CLI_WATERMARK, params->cli_watermark[1]);
REG_UPDATE(MCIF_WB_SCLK_CHANGE, MCIF_WB_CLI_WATERMARK_MASK, 0x2);
/* urgent_watermarkC */
REG_UPDATE(MCIF_WB_WATERMARK, MCIF_WB_CLI_WATERMARK, params->cli_watermark[2]);
REG_UPDATE(MCIF_WB_SCLK_CHANGE, MCIF_WB_CLI_WATERMARK_MASK, 0x3);
/* urgent_watermarkD */
REG_UPDATE(MCIF_WB_WATERMARK, MCIF_WB_CLI_WATERMARK, params->cli_watermark[3]);
/* Programming nb pstate watermark */
/* nbp_state_change_watermarkA */
REG_UPDATE(MCIF_WB_NB_PSTATE_CONTROL, NB_PSTATE_CHANGE_WATERMARK_MASK, 0x0);
REG_UPDATE(MCIF_WB_NB_PSTATE_LATENCY_WATERMARK,
NB_PSTATE_CHANGE_REFRESH_WATERMARK, params->pstate_watermark[0]);
/* nbp_state_change_watermarkB */
REG_UPDATE(MCIF_WB_NB_PSTATE_CONTROL, NB_PSTATE_CHANGE_WATERMARK_MASK, 0x1);
REG_UPDATE(MCIF_WB_NB_PSTATE_LATENCY_WATERMARK,
NB_PSTATE_CHANGE_REFRESH_WATERMARK, params->pstate_watermark[1]);
/* nbp_state_change_watermarkC */
REG_UPDATE(MCIF_WB_NB_PSTATE_CONTROL, NB_PSTATE_CHANGE_WATERMARK_MASK, 0x2);
REG_UPDATE(MCIF_WB_NB_PSTATE_LATENCY_WATERMARK,
NB_PSTATE_CHANGE_REFRESH_WATERMARK, params->pstate_watermark[2]);
/* nbp_state_change_watermarkD */
REG_UPDATE(MCIF_WB_NB_PSTATE_CONTROL, NB_PSTATE_CHANGE_WATERMARK_MASK, 0x3);
REG_UPDATE(MCIF_WB_NB_PSTATE_LATENCY_WATERMARK,
NB_PSTATE_CHANGE_REFRESH_WATERMARK, params->pstate_watermark[3]);
/* max_scaled_time */
REG_UPDATE(MULTI_LEVEL_QOS_CTRL, MAX_SCALED_TIME_TO_URGENT, params->max_scaled_time);
/* slice_lines */
REG_UPDATE(MCIF_WB_BUFMGR_VCE_CONTROL, MCIF_WB_BUFMGR_SLICE_SIZE, params->slice_lines-1);
/* Set arbitration unit for Luma/Chroma */
/* arb_unit=2 should be chosen for more efficiency */
/* Arbitration size, 0: 512 bytes 1: 1024 bytes 2: 2048 Bytes */
REG_UPDATE(MCIF_WB_ARBITRATION_CONTROL, MCIF_WB_CLIENT_ARBITRATION_SLICE, params->arbitration_slice);
}
void mmhubbub2_config_mcif_irq(struct mcif_wb *mcif_wb,
struct mcif_irq_params *params)
{
struct dcn20_mmhubbub *mcif_wb20 = TO_DCN20_MMHUBBUB(mcif_wb);
/* Set interrupt mask */
REG_UPDATE(MCIF_WB_BUFMGR_SW_CONTROL, MCIF_WB_BUFMGR_SW_INT_EN, params->sw_int_en);
REG_UPDATE(MCIF_WB_BUFMGR_SW_CONTROL, MCIF_WB_BUFMGR_SW_SLICE_INT_EN, params->sw_slice_int_en);
REG_UPDATE(MCIF_WB_BUFMGR_SW_CONTROL, MCIF_WB_BUFMGR_SW_OVERRUN_INT_EN, params->sw_overrun_int_en);
REG_UPDATE(MCIF_WB_BUFMGR_VCE_CONTROL, MCIF_WB_BUFMGR_VCE_INT_EN, params->vce_int_en);
if (mcif_wb20->mcif_wb_mask->MCIF_WB_BUFMGR_VCE_SLICE_INT_EN)
REG_UPDATE(MCIF_WB_BUFMGR_VCE_CONTROL, MCIF_WB_BUFMGR_VCE_SLICE_INT_EN, params->vce_slice_int_en);
}
void mmhubbub2_enable_mcif(struct mcif_wb *mcif_wb)
{
struct dcn20_mmhubbub *mcif_wb20 = TO_DCN20_MMHUBBUB(mcif_wb);
/* Enable Mcifwb */
REG_UPDATE(MCIF_WB_BUFMGR_SW_CONTROL, MCIF_WB_BUFMGR_ENABLE, 1);
}
void mmhubbub2_disable_mcif(struct mcif_wb *mcif_wb)
{
struct dcn20_mmhubbub *mcif_wb20 = TO_DCN20_MMHUBBUB(mcif_wb);
/* disable buffer manager */
REG_UPDATE(MCIF_WB_BUFMGR_SW_CONTROL, MCIF_WB_BUFMGR_ENABLE, 0);
}
/* set which group of pstate watermark to use and set wbif watermark change request */
/*
static void mmhubbub2_wbif_watermark_change_req(struct mcif_wb *mcif_wb, unsigned int wm_set)
{
struct dcn20_mmhubbub *mcif_wb20 = TO_DCN20_MMHUBBUB(mcif_wb);
uint32_t change_req;
REG_GET(SMU_WM_CONTROL, MCIF_WB0_WM_CHG_REQ, &change_req);
change_req = (change_req == 0) ? 1 : 0;
REG_UPDATE(SMU_WM_CONTROL, MCIF_WB0_WM_CHG_SEL, wm_set);
REG_UPDATE(SMU_WM_CONTROL, MCIF_WB0_WM_CHG_REQ, change_req);
}
*/
/* Set watermark change interrupt disable bit */
/*
static void mmhubbub2_set_wbif_watermark_change_int_disable(struct mcif_wb *mcif_wb, unsigned int ack_int_dis)
{
struct dcn20_mmhubbub *mcif_wb20 = TO_DCN20_MMHUBBUB(mcif_wb);
REG_UPDATE(SMU_WM_CONTROL, MCIF_WB0_WM_CHG_ACK_INT_DIS, ack_int_dis);
}
*/
/* Read watermark change interrupt status */
/*
unsigned int mmhubbub2_get_wbif_watermark_change_int_status(struct mcif_wb *mcif_wb)
{
struct dcn20_mmhubbub *mcif_wb20 = TO_DCN20_MMHUBBUB(mcif_wb);
uint32_t irq_status;
REG_GET(SMU_WM_CONTROL, MCIF_WB0_WM_CHG_ACK_INT_STATUS, &irq_status);
return irq_status;
}
*/
void mcifwb2_dump_frame(struct mcif_wb *mcif_wb,
struct mcif_buf_params *mcif_params,
enum dwb_scaler_mode out_format,
unsigned int dest_width,
unsigned int dest_height,
struct mcif_wb_frame_dump_info *dump_info,
unsigned char *luma_buffer,
unsigned char *chroma_buffer,
unsigned char *dest_luma_buffer,
unsigned char *dest_chroma_buffer)
{
struct dcn20_mmhubbub *mcif_wb20 = TO_DCN20_MMHUBBUB(mcif_wb);
REG_UPDATE(MCIF_WB_BUFMGR_SW_CONTROL, MCIF_WB_BUFMGR_SW_LOCK, 0xf);
memcpy(dest_luma_buffer, luma_buffer, mcif_params->luma_pitch * dest_height);
memcpy(dest_chroma_buffer, chroma_buffer, mcif_params->chroma_pitch * dest_height / 2);
REG_UPDATE(MCIF_WB_BUFMGR_SW_CONTROL, MCIF_WB_BUFMGR_SW_LOCK, 0x0);
dump_info->format = out_format;
dump_info->width = dest_width;
dump_info->height = dest_height;
dump_info->luma_pitch = mcif_params->luma_pitch;
dump_info->chroma_pitch = mcif_params->chroma_pitch;
dump_info->size = dest_height * (mcif_params->luma_pitch + mcif_params->chroma_pitch);
}
static const struct mcif_wb_funcs dcn20_mmhubbub_funcs = {
.enable_mcif = mmhubbub2_enable_mcif,
.disable_mcif = mmhubbub2_disable_mcif,
.config_mcif_buf = mmhubbub2_config_mcif_buf,
.config_mcif_arb = mmhubbub2_config_mcif_arb,
.config_mcif_irq = mmhubbub2_config_mcif_irq,
.dump_frame = mcifwb2_dump_frame,
};
void dcn20_mmhubbub_construct(struct dcn20_mmhubbub *mcif_wb20,
struct dc_context *ctx,
const struct dcn20_mmhubbub_registers *mcif_wb_regs,
const struct dcn20_mmhubbub_shift *mcif_wb_shift,
const struct dcn20_mmhubbub_mask *mcif_wb_mask,
int inst)
{
mcif_wb20->base.ctx = ctx;
mcif_wb20->base.inst = inst;
mcif_wb20->base.funcs = &dcn20_mmhubbub_funcs;
mcif_wb20->mcif_wb_regs = mcif_wb_regs;
mcif_wb20->mcif_wb_shift = mcif_wb_shift;
mcif_wb20->mcif_wb_mask = mcif_wb_mask;
}
| linux-master | drivers/gpu/drm/amd/display/dc/dcn20/dcn20_mmhubbub.c |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.