python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class TC_Whitelist: whitelist = ['h884', 's884', 'h1688', 's1688', 'hmma', 'i8816', '16816', 'dgrad_1x1_stride_2x2', 'first_layer_wgrad_kernel', 'conv1x1', 'conv2d_c1_k1', 'direct_group', 'xmma_implicit_gemm', 'xmma_sparse_conv', 'xmma_warp_specialized_implicit_gemm', 'xmma_gemm', 'xmma_sparse_gemm', 'c1688'] def __contains__(self, item): for pattern in self.whitelist: if pattern in item: return True return False
PyProf-master
pyprof/prof/tc.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from .utility import Utility from .base import OperatorLayerBase class Foo(OperatorLayerBase): """ An object of Foo is instantiated when we detect an unsupported operator. """ def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.marker = marker self.mod_ = mod self.op_ = op self.args = args shapes = [] types = [] for arg in args: if arg['type'] == "tensor": shapes.append(arg['shape']) types.append(arg['dtype']) self.shape = shapes self.type = types def params(self): p = OrderedDict([('T', self.shape), ('type', self.type)]) return p def tc(self): return "-" def op(self): return self.op_ def mod(self): return self.mod_ def flops(self): return 0 def bytes(self): return 0 class Copy(OperatorLayerBase): def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.marker = marker self.mod_ = mod self.op_ = op self.args = args assert (mod == "Tensor") assert (op == "copy_") assert (len(args) == 2) dst, src = args assert (src['type'] == dst['type']) assert (src['shape'] == dst['shape']) self.shape = src['shape'] self.stype = src['dtype'] self.dtype = dst['dtype'] def params(self): #The data type might be different p = OrderedDict([('T', self.shape), ('stype', self.stype), ('dtype', self.dtype)]) return p def tc(self): return "-" def op(self): return self.op_ def mod(self): return self.mod_ def flops(self): return 0 def elems(self): return Utility.numElems(self.shape) def bytes(self): return self.elems() * (Utility.typeToBytes(self.stype) + Utility.typeToBytes(self.dtype)) class Clone(OperatorLayerBase): def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.marker = marker self.mod_ = mod self.op_ = op self.args = args assert (mod == "Tensor") assert (op == "clone") assert (len(args) == 1) t = args[0] self.shape = t['shape'] self.type = t['dtype'] def params(self): p = OrderedDict([('T', self.shape), ('type', self.type)]) return p def flops(self): return 0 def tc(self): return "-" def op(self): return self.op_ def mod(self): return self.mod_ def elems(self): return Utility.numElems(self.shape) def bytes(self): return 2 * self.elems() * Utility.typeToBytes(self.type) class Contiguous(OperatorLayerBase): def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.marker = marker self.mod_ = mod self.op_ = op self.args = args assert (mod == "Tensor") assert (op == "contiguous") assert (len(args) == 1) t = args[0] self.shape = t['shape'] self.type = t['dtype'] def params(self): p = OrderedDict([('T', self.shape), ('type', self.type)]) return p def flops(self): return 0 def bytes(self): return 2 * Utility.numElems(self.shape) * Utility.typeToBytes(self.type) def tc(self): return "-" def op(self): return self.op_ def mod(self): return self.mod_ class Any(OperatorLayerBase): def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.marker = marker self.mod_ = mod self.op_ = op self.args = args assert (mod == "Tensor") assert (op == "any") assert (len(args) in [1,2]) t = args[0] # The input can be a tensor or scalar assert (t['type'] in ["tensor", "bool"]) if t['type'] == "tensor": self.shape = t['shape'] self.type = t['dtype'] else: self.shape = (1,) self.type = t['type'] self.sub = d.sub return def params(self): p = OrderedDict([('T', self.shape), ('type', self.type)]) return p def op(self): return self.op_ def mod(self): return self.mod_ def tc(self): return "-" def flops(self): return 0 def bytes(self): return Utility.numElems(self.shape) * Utility.typeToBytes(self.type)
PyProf-master
pyprof/prof/misc.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script reads the output (Python dictionary) created by parse.py. For every kernel (line) in the input it determines module / class name e.g. torch.nn.functional operator name e.g. linear kernel parameters e.g. GEMM M, N, K, datatype bytes flops tensor core usage direction (fprop, bprop) and other things. Please see the tool usage. """ from .usage import parseArgs from .output import Output from .utility import Utility from .pointwise import Pointwise from .convert import Convert from .blas import * from .embedding import Embedding from .reduction import * from .dropout import Dropout from .softmax import * #from pooling import * # work in progress from .linear import Linear from .optim import Adam from .misc import * from .conv import Conv from .activation import Activation from .index_slice_join_mutate import Cat, Reshape, MaskedScatter, Gather, Nonzero, IndexSelect, MaskedSelect from .recurrentCell import RNNCell from .normalization import BatchNorm from .randomSample import RandPerm from .loss import MSELoss from .data import Data from .memory import OneZero, Fill, Full def findFpropKernel(seq): #Find the last fprop kernel with the same seqId #First look at seqId and then at altSeqId for idx in reversed(range(len(kernels))): k = kernels[idx] if (seq in k['seqId']) and (k['dir'] == "fprop"): return idx for idx in reversed(range(len(kernels))): k = kernels[idx] if (seq in k['altSeqId']) and (k['dir'] == "fprop"): return idx return -1 #print("Error: seqId {} not found.".format(seq), file=sys.stderr) #assert False def foo(mod, op, d): if (op[0] == "linear"): xx = Linear(d) # rnncell, lstmcell, grucell elif (mod[0] in ["LSTMCell", "GRUCell"]) and (op[0] == "forward"): xx = RNNCell(d) elif op[0] in [ "conv1d", "conv2d", ]: xx = Conv(d) elif (op[0] in Pointwise.ops): xx = Pointwise(d) elif (op[0] in Convert.ops): xx = Convert(d) elif op[0] in ["__matmul__", "matmul"]: xx = Matmul(d) elif op[0] == "embedding": xx = Embedding(d) #reduction elif op[0] == "sum": xx = Sum(d) elif op[0] == "mean": xx = Mean(d) elif op[0] == "norm": xx = Norm(d) elif op[0] == "dropout": xx = Dropout(d) #Index, Slice, Join, Mutate elif (op[0] == "cat"): xx = Cat(d) elif (op[0] == "reshape"): xx = Reshape(d) elif (op[0] == "masked_scatter_"): xx = MaskedScatter(d) elif (op[0] == "gather"): xx = Gather(d) elif (op[0] == "nonzero"): xx = Nonzero(d) elif (op[0] == "index_select"): xx = IndexSelect(d) elif (op[0] == "masked_select"): xx = MaskedSelect(d) #blas elif op[0] in ["addmm", "addmm_"]: xx = Addmm(d) elif op[0] == "mm": xx = Mm(d) elif op[0] == "bmm": xx = Bmm(d) #softmax elif op[0] == "softmax": xx = Softmax(d) elif op[0] == "log_softmax": xx = LogSoftmax(d) #loss elif op[0] == "mse_loss": xx = MSELoss(d) #optimizers elif op[0] == "adam": xx = Adam(d) #normalization elif op[0] == "batch_norm": xx = BatchNorm(d) #random elif op[0] == "randperm": xx = RandPerm(d) #memory elif op[0] in OneZero.ops: xx = OneZero(d) elif op[0] == "fill_": xx = Fill(d) elif op[0] == "full": xx = Full(d) #misc elif op[0] == "copy_": xx = Copy(d) elif op[0] == "clone": xx = Clone(d) elif op[0] == "contiguous": xx = Contiguous(d) elif op[0] == "any": xx = Any(d) elif (op[0] in Activation.ops): xx = Activation(d) elif op[0] == "to": xx = Convert(d) else: xx = Foo(d) return xx def main(): #Read cmd line arguments cmdArgs = parseArgs() output = Output(cmdArgs) output.header() idx = -1 #Read in all the kernel info for line in cmdArgs.file: idx += 1 kernel = eval(line) assert (kernel) kernels.append(kernel) k = kernel d = Data(k) mod = k['mod'] op = k['op'] flops = 0 params = {"na": "na"} tc = "na" bytes = 0 if (d.dir == "bprop"): d.seqMarker = k['seqMarker'] seq = k['seqId'] if len(seq) > 1: pass seq = k['seqId'][:1] assert (len(seq) == 1), seq #assert (seq[0] != 0) assert (len(d.seqMarker) > 0) #If there is no useful marker associated, use the #sequence number to find the kernel from fprop if len(d.argMarker) == 0: index = findFpropKernel(seq[0]) if index >= 0: d.argMarker = kernels[index]['marker'] d.modMarker = kernels[index]['reprMarkers'] mod = kernels[index]['mod'] op = kernels[index]['op'] d.layer = kernels[index]['layer'] d.trace = kernels[index]['trace'] # Check if marker has our annotations if len(d.argMarker) and Utility.hasNVTX(d.argMarker[0]): xx = foo(mod, op, d) bytes = xx.bytes() flops = xx.flops() op = xx.op() params = xx.params() tc = xx.tc() if type(op) is list: if len(op): op = op[0] else: op = "" if type(mod) is list: if len(mod): mod = mod[0] else: mod = "" d.index = idx + 1 # The following 8 come from operator class functions. d.setParams(params) d.tc = tc d.flops = flops d.bytes = bytes d.mod = mod d.op = op output.data(d) kernels = [] if __name__ == '__main__': main()
PyProf-master
pyprof/prof/prof.py
# -*- coding: utf-8 -*- # Copyright (c) 2020, Aditya Agrawal. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .base import OperatorLayerBase from .tensor import Tensor def readMarker(d): marker = eval(d.argMarker[0]) return marker['mod'], marker['op'], marker['args'] class OneZero(OperatorLayerBase): """ Support for torch.ones, torch.zeros etc. Fill a tensor with ones or zeros. """ ops = ["ones", "ones_like", "zero_", "zeros", "zeros_like"] def __init__(self, d): mod, op, args = readMarker(d) assert mod in ["torch", "Tensor"] assert op in OneZero.ops self.mod_ = mod self.op_ = op # For ones_like, zero_, zeros_like, the input is a tensor. if op in ["ones_like", "zero_", "zeros_like"]: assert(len(args) == 1) arg = args[0] self.input = Tensor(arg['shape'], arg['dtype']) # For ones and zeros, the input can be a list, tuple, sequence of integers. # E.g. torch.ones((3,5,6)) or torch.ones([3,5,6]) or torch.ones(3,5,6) else: assert op in ["ones", "zeros"] # TODO: Assume the output dtype is float if args[0]['type'] in ['list', 'tuple']: assert(len(args) == 1) self.input = Tensor(args[0]['value'], "float") elif args[0]['type'] == "int": # Get all unnamed arguments of type int args = list(filter( lambda x: x['name'] == "" and x['type'] == "int"), args) shape = [x['value'] for x in args] self.input = Tensor(shape, "float") else: assert False def params(self): return str(self.input) def tc(self): return "-" def op(self): return self.op_ def mod(self): return self.mod_ def bytes(self): return self.input.bytes def flops(self): return 0 class Fill(OperatorLayerBase): """ Support for torch.fill_. Fill a tensor with a specific value. """ def __init__(self, d): mod, op, args = readMarker(d) assert mod == "Tensor" assert op == "fill_" self.mod_ = mod self.op_ = op assert(len(args) == 2) arg = args[0] self.input = Tensor(arg['shape'], arg['dtype']) def params(self): return str(self.input) def tc(self): return "-" def op(self): return self.op_ def mod(self): return self.mod_ def bytes(self): return self.input.bytes def flops(self): return 0 class Full(OperatorLayerBase): """ Support for torch.full. Create a tensor of specified size and filled with a specified value. """ def __init__(self, d): mod, op, args = readMarker(d) assert mod == "torch" assert op == "full" self.mod_ = mod self.op_ = op assert(len(args) == 2) arg1, arg2 = args assert arg1['type'] in ['list', 'tuple'] # TODO: Add more types for arg2 assert arg2['type'] in ['float', 'int'] self.output = Tensor(arg1['value'], arg2['type']) def params(self): return str(self.output) def tc(self): return "-" def op(self): return self.op_ def mod(self): return self.mod_ def bytes(self): return self.output.bytes def flops(self): return 0
PyProf-master
pyprof/prof/memory.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from .utility import Utility from .base import OperatorLayerBase from .tensor import Tensor class Mean(OperatorLayerBase): def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.mod_ = mod self.op_ = op assert (mod in ["torch", "Tensor"]) assert (op == "mean") #Filter out named parameters args = list(filter(lambda x: x['name'] == '', args)) assert (len(args) <= 2) i = args[0] # The input can be a scalar or a tensor if 'shape' in i: # tensor self.input = Tensor(i['shape'], i['dtype']) else: # scalar assert ('value' in i) self.input = Tensor([], i['type']) self.dir = d.dir self.sub = d.sub def params(self): return str(self.input) def tc(self): return "-" def op(self): return self.op_ def mod(self): return self.mod_ def bytes(self): if self.sub == 0: return self.input.bytes + self.input.itemsize else: return 0 def flops(self): if self.sub == 0: return self.input.size + 1 else: return 0 class Sum(OperatorLayerBase): def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.marker = marker self.mod_ = mod self.op_ = op self.args = args assert (mod in ["torch", "Tensor"]) assert (op == "sum") assert (len(args) >= 1) #Get input if (args[0]['name'] == ""): i = args[0] else: i = list(filter(lambda x: x['name'] == "input", args))[0] self.shape = i['shape'] self.type = i['dtype'] self.sub = d.sub def params(self): p = OrderedDict([('T', self.shape), ('type', self.type)]) return p def tc(self): return "-" def op(self): return self.op_ def mod(self): return self.mod_ def elems(self): return Utility.numElems(self.shape) def flops(self): # Note: This is incorrect, need to calculate actual flops (say via nvprof) return self.elems() def bytes(self): b = self.elems() * Utility.typeToBytes(self.type) if self.sub == 0: return b else: return 0 class Norm(OperatorLayerBase): def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.marker = marker self.mod_ = mod self.op_ = op self.args = args assert (mod in ["torch", "Tensor"]) assert (op == "norm") #assert (len(args) == 1) i = args[0] self.shape = i['shape'] self.type = i['dtype'] self.sub = d.sub def params(self): p = OrderedDict([('T', self.shape), ('type', self.type)]) return p def elems(self): return Utility.numElems(self.shape) def bytes(self): b = self.elems() * Utility.typeToBytes(self.type) if self.sub == 0: return b else: return 0 def flops(self): # square and add plus sqrt f = 2 * self.elems() + 1 if self.sub == 0: return f else: return 0 def tc(self): return "-" def op(self): return self.op_ def mod(self): return self.mod_
PyProf-master
pyprof/prof/reduction.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .base import OperatorLayerBase from .tensor import Tensor class Embedding(OperatorLayerBase): def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.mod_ = mod self.op_ = op assert (mod == "torch.nn.functional") assert (op == "embedding") input = args[0] embedding = args[1] self.input = Tensor(input['shape'], input['dtype']) self.embedding = Tensor(embedding['shape'], embedding['dtype']) assert (len(self.embedding.shape) == 2) self.dir = d.dir self.sub = d.sub return def params(self): return str(self.input) + ";" + str(self.embedding) def op(self): return self.op_ def mod(self): return self.mod_ def tc(self): return "-" def bytes(self): b = 0 if self.dir == "fprop": # read indices b += self.input.bytes # read and write the embedding values b += 2 * self.input.size * self.embedding.shape[1] * self.embedding.itemsize else: # 3 times the size of the incoming gradient b = 3 * self.input.size * self.embedding.shape[1] * self.embedding.itemsize if self.sub > 0: b = 0 return b def flops(self): # Note: not implemented yet return 0
PyProf-master
pyprof/prof/embedding.py
# -*- coding: utf-8 -*- # Copyright (c) 2020, Aditya Agrawal. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class Dtype(object): _types = { "uint8" : (1, "uint8"), "int8" : (1, "int8"), "byte" : (1, "byte"), "char" : (1, "char"), "bool" : (1, "bool"), "float16" : (2, "fp16"), "half" : (2, "fp16"), "int16" : (2, "int16"), "short" : (2, "int16"), "float32" : (4, "fp32"), "float" : (4, "fp32"), "int32" : (4, "int32"), "int" : (4, "int32"), "int64" : (8, "int64"), "long" : (8, "int64"), "float64" : (8, "fp64"), "double" : (8, "fp64"), } @staticmethod def types(): t = Dtype._types.keys() return list(t) def __init__(self, dtype): assert dtype in Dtype.types() size, name = Dtype._types[dtype] self._itemsize = size self._name = name def __str__(self): return self._name @property def itemsize(self): return self._itemsize def main(): print(Dtype.types()) for i in Dtype.types(): dt = Dtype(i) print(i, dt, dt.itemsize) if __name__ == '__main__': main()
PyProf-master
pyprof/prof/dtype.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from .tc import TC_Whitelist from .utility import Utility from .base import OperatorLayerBase class Linear(OperatorLayerBase): ''' Notes: If the bias occurs before the GEMM, then its 1 write (bias expansion). If the bias occurs after, then its 1 read and 1 write. bias in bprop is a reduction and hence is 1 read. ''' gemmKernels = [ "gemm", "gemv", "dot_kernel", "splitKreduce_kernel", "reduce_1Block_kernel", "cutlass" ] biasKernels = [ "kernelReduceContigDim", "kernelReduceNoncontigDim_shared", "elementwise_kernel", "reduce_kernel", "kernelPointwiseApply2", "2d_grouped_direct_kernel" ] def setXWBMNK(self, args): x = None w = None b = None if (len(args) == 2): x, w = args elif (len(args) == 3): x, w, b = args assert (x['type'] == w['type'] == "tensor") if (b['type'] == "tensor"): assert (len(b['shape']) == 1) elif (b['type'] == "NoneType"): assert b['value'] is None b = None else: assert False else: assert False assert (len(w['shape']) == 2) k1 = x['shape'][-1] n, k2 = w['shape'] assert (k1 == k2) if b is not None: assert (b['shape'][0] == n) t1 = x['dtype'] t2 = w['dtype'] assert (t1 == t2) # X, W, B self.x = x['shape'] self.w = w['shape'] self.b = b['shape'] if b is not None else None self.type = t1 # M, N, K #n = Utility.numElems(x[0:-1]) n = self.x[0:-1] k = self.x[-1] m, k1 = self.w assert (k == k1) self.m = m self.n = n self.k = k def tc(self): if self.op() == "linear": if self.name in TC_Whitelist(): return 1 return 0 else: return "-" def __init__(self, d): self.name = d.name self.dir = d.dir self.sub = d.sub marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] assert (mod == "torch.nn.functional") assert (op == "linear") self.setXWBMNK(args) if any(x in d.name for x in Linear.gemmKernels): self.op_ = "linear" else: assert any(x in d.name for x in Linear.biasKernels), f"Kernel name: {d.name}" self.op_ = "bias" ''' elif (("kernelPointwiseApply2" in d.name) or ("kernelReduceContigDim" in d.name) or ("kernelReduceNoncontigDim_shared" in d.name)): #bias expansion was before the gemm self.op_ = "bias" elif ("elementwise_kernel" in d.name): #Bias addition happens later with a broadcast tensor self.op_ = "bias" assert (len(d.argMarker) == 2) marker = eval(d.argMarker[1]) mod = marker['mod'] op = marker['op'] args = marker['args'] assert (mod == "Tensor") assert (op == "__iadd__") assert (len(args) == 2) mn = args[0]['shape'] b = args[1]['shape'] assert (len(b) == 1) assert (mn == (self.n + (self.m,))) assert (b == self.b) else: assert False ''' def params(self): #p = OrderedDict([('X', self.x), ('W', self.w), ('B', self.b), ('type', self.type)]) m, n, k, x, w, t = self.m, self.n, self.k, self.x, self.w, self.type if len(n) == 1: n = n[0] if self.op_ == "linear": if self.dir == "fprop": p = OrderedDict([('M', m), ('N', n), ('K', k), ('type', t)]) elif self.dir == "bprop": if self.sub == 0: #dgrad (most likely) p = OrderedDict([('M', k), ('N', n), ('K', m), ('type', t)]) elif self.sub == 1: #wgrad (most likely) p = OrderedDict([('M', k), ('N', m), ('K', n), ('type', t)]) else: #This happens when there are additional kernels for reduction p = OrderedDict([('X', x), ('W', w), ('type', t)]) else: assert False elif self.op_ == "bias": p = OrderedDict([('M', m), ('N', n), ('type', t)]) else: assert False return p def op(self): return self.op_ def bytesFlops(self): m = self.m n = Utility.numElems(self.n) k = self.k if self.op_ == "linear": if self.dir == "fprop": f = m * n * k * 2 b = m * n + m * k + n * k * Utility.typeToBytes(self.type) elif self.dir == "bprop": if self.sub == 0: #dgrad (most likely) f = m * n * k * 2 b = m * n + m * k + n * k * Utility.typeToBytes(self.type) elif self.sub == 1: #wgrad (most likely) f = m * n * k * 2 b = m * n + m * k + n * k * Utility.typeToBytes(self.type) else: #This happens when there are additional kernels for reduction f = 0 b = 0 else: assert False elif self.op_ == "bias": f = m * n b = 2 * m * n * Utility.typeToBytes(self.type) else: assert False return b, f # TODO: Fix bytes and flops with CUTLASS kernels. def bytes(self): b, f = self.bytesFlops() return b def flops(self): b, f = self.bytesFlops() return f def mod(self): return self.mod_
PyProf-master
pyprof/prof/linear.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .base import OperatorLayerBase from .tensor import Tensor class Convert(OperatorLayerBase): """ Class to handle convert operations. """ ops = ["byte", "char", "double", "float", "half", "int", "long", "short", "to"] def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.mod_ = mod self.op_ = op assert (mod == "Tensor") assert (op in Convert.ops) assert (len(args) == 1) t = args[0] if t['type'] == "tensor": self.input = Tensor(t['shape'], t['dtype']) else: # scalar self.input = Tensor([], t['type']) if op == "to": # the output dtype is unknown self.output = self.input else: self.output = Tensor(self.input.shape, op) def params(self): return str(self.input) def op(self): return self.op_ def mod(self): return self.mod_ def tc(self): return "-" def flops(self): return 0 def bytes(self): return self.input.bytes + self.output.bytes
PyProf-master
pyprof/prof/convert.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import reduce class Utility(object): @staticmethod def numElems(shape): assert (type(shape) == tuple) return reduce(lambda x, y: x * y, shape, 1) @staticmethod def typeToBytes(t): if (t in ["uint8", "int8", "byte", "char", "bool"]): return 1 elif (t in ["float16", "half", "int16", "short"]): return 2 elif (t in ["float32", "float", "int32", "int"]): return 4 elif (t in ["int64", "long", "float64", "double"]): return 8 assert False @staticmethod def typeToString(t): if (t in ["uint8", "byte", "char"]): return "uint8" elif (t in [ "int8", ]): return "int8" elif (t in [ "int16", "short", ]): return "int16" elif (t in ["float16", "half"]): return "fp16" elif (t in ["float32", "float"]): return "fp32" elif (t in [ "int32", "int", ]): return "int32" elif (t in ["int64", "long"]): return "int64" elif (t in [ "float64", "double", ]): return "fp64" elif (t in [ "bool", ]): return "bool" assert False @staticmethod def hasNVTX(marker): if type(marker) is str: try: marker = eval(marker) except: return False if type(marker) is dict: keys = marker.keys() return ("mod" in keys) and ("op" in keys) and ("args" in keys) else: return False @staticmethod def isscalar(t): return (t in ["float", "int"])
PyProf-master
pyprof/prof/utility.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from .utility import Utility # Work in progress. #poolFuncs = ["max_pool2d_with_indices_forward", "max_pool2d_with_indices"] class MaxPool2d(object): def parse(marker): def convert2Tuple(arg): assert (arg['type'] in ["int", "tuple"]) if arg['type'] == "int": return (arg['value'], arg['value']) else: return arg['value'] mod = marker['mod'] op = marker['op'] args = marker['args'] assert (mod == "torch.nn.functional") assert (op == "max_pool2d") assert (len(args) >= 2) #input assert (args[0]['name'] == "") inp = args[0] assert (inp['type'] == "tensor") i = inp['shape'] t = inp['dtype'] assert (len(i) == 4) #nchw tensor #kernel if (args[1]['name'] == ""): k = args[1] else: k = list(filter(lambda x: x['name'] == "kernel_size", args))[0] k = convert2Tuple(k) #stride s = k #default value if ((len(args) >= 3) and args[2] == ""): s = args[2] s = convert2Tuple(s) elif any(x['name'] == "stride" for x in args): s = list(filter(lambda x: x['name'] == "stride", args))[0] s = convert2Tuple(s) #padding p = (0, 0) if ((len(args) >= 4) and args[3] == ""): p = args[3] p = convert2Tuple(p) elif any(x['name'] == "padding" for x in args): p = list(filter(lambda x: x['name'] == "padding", args))[0] p = convert2Tuple(p) params = OrderedDict([('T', i), ('K', k), ('s', s), ('p', p), ('type', t)]) return params
PyProf-master
pyprof/prof/pooling.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
PyProf-master
pyprof/prof/__init__.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from .utility import Utility from .base import OperatorLayerBase class RandPerm(OperatorLayerBase): def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.marker = marker self.mod_ = mod self.op_ = op self.args = args assert (mod == "torch") assert (op == "randperm") assert (len(args) == 1) n = args[0] assert n['type'] == "int" self.n = n['value'] def params(self): p = OrderedDict([('N', self.n)]) return p def tc(self): return "-" def op(self): return self.op_ def mod(self): return self.mod_ def bytes(self): return self.n * Utility.typeToBytes("int64") def flops(self): # Depends on RNG but this is probably a reasonable assumption. return self.n * 3
PyProf-master
pyprof/prof/randomSample.py
# -*- coding: utf-8 -*- # Copyright (c) 2020, Aditya Agrawal. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import reduce import numpy as np from .dtype import Dtype class Tensor(object): def __init__(self, shape, dtype): assert type(shape) in [tuple, list] assert dtype in Dtype.types() self._shape = list(shape) self._dtype = dtype def __str__(self): t = Dtype(self.dtype) return str(self.shape).replace(" ", "") + str(t) @property def ndim(self): # can be 0 for scalars return len(self._shape) @property def shape(self): # can be () for scalars return self._shape @property def size(self): # number of elements return reduce(lambda x, y: x * y, self.shape, 1) @property def dtype(self): return self._dtype @property def itemsize(self): return Dtype(self.dtype).itemsize @property def bytes(self): return self.size * self.itemsize @staticmethod def broadcast(tensors): r''' The input is a list of Tensors. The output is a Tensor. ''' assert len(tensors) > 1 shape = tensors[0].shape # TODO: Assume the output dtype is the same as the first arg dt = tensors[0].dtype # Check if shapes are different if any(t.shape != shape for t in tensors): x = [np.empty(t.shape, t.dtype) for t in tensors] try: out = np.broadcast(*x) except: assert False # not broadcastable return Tensor(out.shape, dt) else: return Tensor(shape, dt) def main(): for shape in [(), (1,), (3,7), (3,7,11)]: for dt in Dtype.types(): t = Tensor(shape, dt) print(t.ndim, str(t.shape).replace(" ", ""), \ t.size, t.dtype, t.itemsize, t.bytes, t) # Broadcast test a = Tensor([1,3], "int") b = Tensor([3,1], "float") c = Tensor([1,3], "float64") d = np.ones([], "float64") out = Tensor.broadcast([a,b,c,d]) print(out.shape) if __name__ == '__main__': main()
PyProf-master
pyprof/prof/tensor.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from .utility import Utility from .base import OperatorLayerBase #TODO: Add support for additional loss functions. class MSELoss(OperatorLayerBase): def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.marker = marker self.mod_ = mod self.op_ = op self.args = args assert (mod == "torch.nn.functional") assert (op == "mse_loss") assert (len(args) == 3) #Get input, target and reduction if (args[0]['name'] == ""): x = args[0] else: x = list(filter(lambda x: x['name'] == "input", args))[0] if (args[1]['name'] == ""): y = args[1] else: y = list(filter(lambda x: x['name'] == "target", args))[0] if (args[2]['name'] == ""): r = args[2] else: r = list(filter(lambda x: x['name'] == "reduction", args))[0] assert (x['type'] == y['type'] == "tensor") assert (x['shape'] == y['shape']) assert (x['dtype'] == y['dtype']) assert (r['type'] == "str") assert (r['value'] in ["none", "mean", "sum"]) self.shape = x['shape'] self.type = x['dtype'] self.red = r['value'] self.dir = d.dir def params(self): p = OrderedDict([('T', self.shape), ('type', self.type), ('red', self.red)]) return p def elems(self): red = self.red e = Utility.numElems(self.shape) if self.dir == "fprop": if red == "none": e *= 3 else: e *= 2 else: if red == "none": e *= 4 else: e *= 3 return e def bytes(self): return self.elems() * Utility.typeToBytes(self.type) def flops(self): return self.elems() * 2 + 1 def tc(self): return "-" def op(self): return self.op_ def mod(self): return self.mod_
PyProf-master
pyprof/prof/loss.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .base import OperatorLayerBase from .tensor import Tensor class Activation(OperatorLayerBase): """ This class handles the various activation functions. """ ops = [ "celu", "elu", "elu_", "hardshrink", "hardtanh", "hardtanh_", "leaky_relu", "leaky_relu_", "logsigmoid", "prelu", "relu", "relu_", "relu6", "rrelu", "rrelu_", "selu", "sigmoid", "softplus", "softshrink", "softsign", "tanh", "tanhshrink", "threshold", "threshold_" ] def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.mod_ = mod self.op_ = op assert (mod in ["torch.nn.functional", "torch", "Tensor"]) #Filter out named parameters args = list(filter(lambda x: x['name'] == '', args)) assert (len(args) >= 1) arg = args[0] assert (arg['type'] == "tensor") self.input = Tensor(arg['shape'], arg['dtype']) self.dir = d.dir def params(self): return str(self.input) def flops(self): # TODO: revise based on op return self.input.size def bytes(self): # TODO: revise based on op direction = self.dir b = self.input.bytes # fprop is 1 read, 1 write # bprop is 2 reads, 1 write b *= 2 if direction == "fprop" else 3 return b def tc(self): return "-" def op(self): return self.op_ def mod(self): return self.mod_
PyProf-master
pyprof/prof/activation.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from .tc import TC_Whitelist from .utility import Utility from .base import OperatorLayerBase import numpy as np class Addmm(OperatorLayerBase): def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.marker = marker self.mod_ = mod self.op_ = op self.args = args assert (mod in [ "torch", "Tensor", ]) assert (op in [ "addmm", "addmm_", ]) #Get alpha and beta alpha = 1 beta = 1 if any(x['name'] == 'alpha' for x in args): alpha = list(filter(lambda x: x['name'] == "alpha", args))[0] alpha = alpha['value'] if any(x['name'] == 'beta' for x in args): beta = list(filter(lambda x: x['name'] == "beta", args))[0] beta = beta['value'] self.alpha = alpha self.beta = beta #Filter out named parameters args = list(filter(lambda x: x['name'] == '', args)) assert (len(args) == 3) C, A, B = args m, k1 = A['shape'] k2, n = B['shape'] assert (k1 == k2) t1 = A['dtype'] t2 = B['dtype'] t3 = C['dtype'] assert (t1 == t2 == t3) self.A = A self.B = B self.C = C self.m = m self.n = n self.k = k1 self.type = t1 self.name = d.name return def tc(self): if self.name in TC_Whitelist(): return 1 return 0 def bytes(self): m, n, k = self.m, self.n, self.k return Utility.typeToBytes(self.type) * (m * n + m * k + n * k) def flops(self): return self.m * self.n * self.k * 2 def op(self): return self.op_ def mod(self): return self.mod_ def params(self): p = OrderedDict([('M', self.n), ('N', self.m), ('K', self.k), ('type', self.type)]) return p class Bmm(OperatorLayerBase): def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.marker = marker self.mod_ = mod self.op_ = op self.args = args assert (mod == "torch") and (op == "bmm") #Filter out named params (kwargs) args = list(filter(lambda x: x['name'] == "", args)) assert (len(args) == 2) A, B = args b1, m, k1 = A['shape'] b2, k2, n = B['shape'] assert (b1 == b2) assert (k1 == k2) t1 = A['dtype'] t2 = B['dtype'] assert (t1 == t2) self.A = A self.B = B self.b = b1 self.m = m self.n = n self.k = k1 self.type = t1 self.name = d.name def tc(self): if self.name in TC_Whitelist(): return 1 return 0 def params(self): #p = OrderedDict([('A', A['shape']), ('B', B['shape']), ('type', t1)]) p = OrderedDict([('B', self.b), ('M', self.n), ('N', self.m), ('K', self.k), ('type', self.type)]) return p def flops(self): return self.b * self.m * self.n * self.k * 2 def bytes(self): b, m, n, k = self.b, self.m, self.n, self.k return Utility.typeToBytes(self.type) * b * (m * n + m * k + n * k) def op(self): return self.op_ def mod(self): return self.mod_ class Matmul(OperatorLayerBase): NON_GEMM = ["kernelPointwiseApply2", "reduce_1Block_kernel", "elementwise_kernel"] NON_TC = NON_GEMM + ["dot_kernel"] def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.marker = marker self.mod_ = mod self.op_ = op self.args = args self.name = d.name self.sub = d.sub assert ((mod == "torch") and (op == "matmul")) or ((mod == "Tensor") and (op == "__matmul__")) assert (len(args) == 2) assert any([x in d.name for x in Matmul.NON_TC + ["gemm", "gemv"]]) A, B = args t1 = A['dtype'] t2 = B['dtype'] assert (t1 == t2) A = A['shape'] B = B['shape'] self.A = A self.B = B self.type = t1 # batch, MNK if (len(A) == 1) and (len(B) == 1): #dot product assert (A[0] == B[0]) self.b = (1, ) self.m = 1 self.n = 1 self.k = A[0] elif (len(A) == 2) and (len(B) == 2): #gemm m, k1 = A k2, n = B assert (k1 == k2) self.b = (1, ) self.m = m self.n = n self.k = k1 elif (len(A) == 1) and (len(B) == 2): #vector matrix k1 = A[0] k2, n = B assert (k1 == k2) self.b = (1, ) self.m = 1 self.n = n self.k = k1 elif (len(A) == 2) and (len(B) == 1): #gemv m, k1 = A k2 = B[0] assert (k1 == k2) self.b = (1, ) self.m = m self.n = 1 self.k = k1 elif (len(A) == 1) and (len(B) > 2): assert (A[0] == B[-2]) self.b = B[0:-2] self.m = 1 self.n = B[-1] self.k = B[-2] elif (len(B) == 1) and (len(A) > 2): assert (B[0] == A[-1]) self.b = A[0:-2] self.m = A[-2] self.n = 1 self.k = A[-1] else: assert (len(A) >= 2) assert (len(B) >= 2) assert (A[-1] == B[-2]) self.m = A[-2] self.n = B[-1] self.k = A[-1] aa = np.empty(A[0:-2]) bb = np.empty(B[0:-2]) self.b = np.broadcast(aa, bb).shape def params(self): return OrderedDict([('A', self.A), ('B', self.B), ('type', self.type)]) def tc(self): if self.name in Matmul.NON_TC: return "-" else: if self.name in TC_Whitelist(): return 1 return 0 def bytes(self): # TODO: check bytes for non-GEMM cases if self.name in Matmul.NON_GEMM: return 2 * Utility.typeToBytes(self.type) * Utility.numElems(self.A) #could be B as well else: m, n, k = self.m, self.n, self.k return Utility.typeToBytes(self.type) * (m * n + m * k + n * k) def flops(self): # TODO: calculate actual FLOPs. At least we're not saying it's GEMM FLOPs for now. if self.name in Matmul.NON_GEMM: return 0 else: return Utility.numElems(self.b) * self.m * self.n * self.k * 2 def op(self): return self.op_ def mod(self): return self.mod_ class Mm(OperatorLayerBase): def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.marker = marker self.mod_ = mod self.op_ = op self.args = args assert (mod == "torch") and (op == "mm") assert (len(args) == 2) A, B = args m, k1 = A['shape'] k2, n = B['shape'] assert (k1 == k2) t1 = A['dtype'] t2 = B['dtype'] assert (t1 == t2) self.A = A self.B = B self.m = m self.n = n self.k = k1 self.type = t1 self.name = d.name return def params(self): p = OrderedDict([('M', self.n), ('N', self.m), ('K', self.k), ('type', self.type)]) return p def tc(self): if self.name in TC_Whitelist(): return 1 return 0 def bytes(self): m, n, k = self.m, self.n, self.k return Utility.typeToBytes(self.type) * (m * n + m * k + n * k) def flops(self): return self.m * self.n * self.k * 2 def op(self): return self.op_ def mod(self): return self.mod_
PyProf-master
pyprof/prof/blas.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from .utility import Utility import numpy as np from .base import OperatorLayerBase from .tensor import Tensor from functools import reduce import operator class Cat(OperatorLayerBase): def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.mod_ = mod self.op_ = op assert (mod == "torch") assert (op == "cat") assert (len(args) >= 2) dtype = args[0]['dtype'] tensors = [] # Get all tensor arguments args = filter(lambda x: x['type'] == "tensor", args) for arg in args: assert (arg['dtype'] == dtype) t = Tensor(arg['shape'], dtype) tensors.append(t) self.input = tensors self.sub = d.sub def params(self): return ";".join([str(t) for t in self.input]) def flops(self): return 0 def tc(self): return "-" def op(self): return self.op_ def mod(self): return self.mod_ def bytes(self): # 1 read, 1 write b = 2 * reduce(operator.add, [t.bytes for t in self.input]) return b if (self.sub == 0) else 0 class Reshape(OperatorLayerBase): def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.marker = marker self.mod_ = mod self.op_ = op self.args = args assert (mod == "Tensor") assert (op == "reshape") #Temporarily commenting three lines #assert (len(args) == 2) #t,s = args #assert s['type'] == "tuple" t = args[0] assert t['type'] == "tensor" self.type = t['dtype'] self.shape = t['shape'] def params(self): p = OrderedDict([('T', self.shape), ('type', self.type)]) return p def flops(self): return 0 def tc(self): return "-" def op(self): return self.op_ def mod(self): return self.mod_ def bytes(self): return 0 class Gather(OperatorLayerBase): def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.marker = marker self.mod_ = mod self.op_ = op self.args = args assert (mod == "Tensor") or (mod == "torch") assert (op == "gather") #Filter out the "out" parameter args = list(filter(lambda x: x['name'] != 'out', args)) assert (len(args) == 3) #Get input if (args[0]['name'] == ""): arg = args[0] else: arg = list(filter(lambda x: x['name'] == "input", args))[0] assert (arg['type'] == "tensor") self.shape = arg['shape'] self.type = arg['dtype'] def params(self): p = OrderedDict([('T', self.shape), ('type', self.type)]) return p def flops(self): return 0 def tc(self): return "-" def op(self): return self.op_ def mod(self): return self.mod_ def bytes(self): return 2 * Utility.numElems(self.shape) * Utility.typeToBytes(self.type) class MaskedScatter(OperatorLayerBase): def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.marker = marker self.mod_ = mod self.op_ = op self.args = args assert (mod == "Tensor") assert (op == "masked_scatter_") assert (len(args) == 3) dst, mask, src = args assert (dst['type'] == mask['type'] == src['type'] == "tensor") assert (mask['dtype'] == "uint8") assert (dst['dtype'] == src['dtype']) assert (dst['shape'] == mask['shape']) self.shape = dst['shape'] self.type = dst['dtype'] self.seqId = d.seqId self.sub = d.sub def params(self): p = OrderedDict([('T', self.shape), ('type', self.type)]) return p def flops(self): return 0 def tc(self): return "-" def op(self): return self.op_ def mod(self): return self.mod_ def bytes(self): elems = Utility.numElems(self.shape) #src and dst b = 2 * elems * Utility.typeToBytes(self.type) #mask (uint8) b += elems if (self.sub > 0): b = 0 return b class Nonzero(OperatorLayerBase): def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.marker = marker self.mod_ = mod self.op_ = op self.args = args assert (mod in ["torch", "Tensor"]) assert (op == "nonzero") assert (len(args) == 1) arg = args[0] self.shape = arg['shape'] self.type = arg['dtype'] self.seqId = d.seqId self.sub = d.sub def params(self): p = OrderedDict([('T', self.shape), ('type', self.type)]) return p def flops(self): return 0 def tc(self): return "-" def op(self): return self.op_ def mod(self): return self.mod_ def bytes(self): elems = Utility.numElems(self.shape) dim = len(self.shape) #input tensor b = elems * Utility.typeToBytes(self.type) #in the worst case, the output is a (elems x dim) tensor of type "long" b += elems * dim * Utility.typeToBytes("int64") if self.sub > 0: return 0 else: return b class IndexSelect(OperatorLayerBase): def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.marker = marker self.mod_ = mod self.op_ = op self.args = args assert (mod == "Tensor") or (mod == "torch") assert (op == "index_select") #Filter out the "out" parameter args = list(filter(lambda x: x['name'] != 'out', args)) assert (len(args) == 3) #Get input, dim and index if (args[0]['name'] == ""): t = args[0] else: t = list(filter(lambda x: x['name'] == "input", args))[0] if (args[1]['name'] == ""): d = args[1] else: d = list(filter(lambda x: x['name'] == "dim", args))[0] if (args[2]['name'] == ""): i = args[2] else: i = list(filter(lambda x: x['name'] == "index", args))[0] assert (t['type'] == i['type'] == "tensor") assert (d['type'] == "int") assert (i['dtype'] == "int64") assert (len(i['shape']) == 1) shape = t['shape'] dim = d['value'] indices = i['shape'][0] assert (dim < len(shape)) self.shape = shape self.dim = dim self.indices = indices self.type = t['dtype'] def params(self): p = OrderedDict([('T', self.shape), ('D', self.dim), ('I', self.indices), ('type', self.type)]) return p def tc(self): return "-" def op(self): return self.op_ def mod(self): return self.mod_ def flops(self): return 0 def bytes(self): #determine the shape of the output tensor shape = list(self.shape) shape[self.dim] = self.indices shape = tuple(shape) b = 0 #time to read the input and write the output elems = Utility.numElems(shape) b += 2 * elems * Utility.typeToBytes(self.type) #time to read the indices b += self.indices * Utility.typeToBytes("int64") return b class MaskedSelect(OperatorLayerBase): def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.marker = marker self.mod_ = mod self.op_ = op self.args = args self.sub = d.sub assert (mod == "Tensor") or (mod == "torch") assert (op == "masked_select") #Filter out the "out" parameter args = list(filter(lambda x: x['name'] != 'out', args)) assert (len(args) == 2) #Get input and mask if (args[0]['name'] == ""): t = args[0] else: t = list(filter(lambda x: x['name'] == "input", args))[0] if (args[1]['name'] == ""): m = args[1] else: m = list(filter(lambda x: x['name'] == "mask", args))[0] assert (m['dtype'] == "uint8") tensor = t['shape'] mask = m['shape'] #check for broadcast condition if (tensor != mask): array1 = np.empty(list(tensor)) array2 = np.empty(list(mask)) try: out = np.broadcast(array1, array2).shape except: assert False self.tshape = tensor self.mshape = mask self.type = t['dtype'] def params(self): p = OrderedDict([('T', self.tshape), ('M', self.mshape), ('type', self.type)]) return p def tc(self): return "-" def op(self): return self.op_ def mod(self): return self.mod_ def bytes(self): tensor = self.tshape mask = self.mshape t = self.type #in the worst case, #output elements = #input elements b = 2 * Utility.numElems(tensor) * Utility.typeToBytes(t) #mask tensor (assuming uint8) b += Utility.numElems(mask) return b def flops(self): return 0
PyProf-master
pyprof/prof/index_slice_join_mutate.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from .base import OperatorLayerBase from .tensor import Tensor from functools import reduce import operator class Pointwise(OperatorLayerBase): # TODO: Add more operators. # TODO: Determining the output dtype is tricky. # TODO: Refine calculations based on direction. # TODO: Refine calculations for non-arithmetic ops. # Unary unary = ["abs", "abs_", "neg", "neg_", "reciprocal", "reciprocal_"] unary += ["__abs__", "__neg__"] # Unary bitwise unary += ["__invert__"] # Exponential and log (unary) exp_log = ["exp", "exp_", "exp1m", "exp1m_", "log", "log_", "log10", "log10_", "log1p", "log1p_", "log2", "log2_"] # Sqrt (unary) sqrt = ["rsqrt", "rsqrt_", "sqrt", "sqrt_"] # Representation (unary) representation = ["ceil", "ceil_", "clamp", "clamp_", "floor", "floor_", "frac", "frac_", "round", "round_", "sign", "sign_", "trunc", "trunc_"] # Trigonometric and transcendental (unary) trig_trans = ["acos", "acos_", "asin", "asin_", "atan", "atan_", "atan2", "atan2_", "cos", "cos_", "cosh", "cosh_", "sin", "sin_", "sinh", "sinh_", "tan", "tan_", "sigmoid", "sigmoid_", "tanh", "tanh_"] # Error (unary) error = ["erf", "erf_", "erfc", "erfc_", "erfinv", "erfinv_"] # Binary binary = ["add", "add_", "div", "div_", "mul", "mul_", "remainder", "remainder_", "sub", "sub_"] binary += ["__add__", "__sub__", "__mul__", "__floordiv__", "__truediv__", "__mod__"] binary += ["__radd__", "__rsub__", "__rmul__", "__rdiv__", "__rtruediv__", "__rfloordiv__"] binary += ["fmod", "fmod_"] # Binary inplace ibinary = ["__iadd__", "__isub__", "__imul__", "__itruediv__"] # Power (binary) power = ["pow", "pow_", "__pow__", "__rpow__"] # Comparison (binary) comp = ["lt", "lt_", "gt", "gt_", "ge", "ge_", "le", "le_", "eq", "eq_", "ne", "ne_"] comp += ["__lt__", "__gt__", "__ge__", "__le__", "__eq__", "__ne__"] # Logical (binary) logical = ["__and__", "__or__", "__xor__", "__lshift__", "__rshift__"] # Logical inplace (binary) ilogical = ["__iand__", "__ior__", "__ixor__", "__ilshift__", "__irshift__"] # Ternary ternary = ["addcdiv", "addcdiv_", "addcmul", "addcmul_"] # Misc misc = ["digamma", "lerp", "lerp_", "mvlgamma"] ops = unary + binary + ibinary + comp + logical + ilogical + \ ternary + exp_log + power + sqrt + representation + trig_trans + \ error + misc def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.marker = marker self.mod_ = mod self.op_ = op self.args = args self.dir = d.dir assert (d.dir in ["fprop", "bprop"]) assert (op in Pointwise.ops) # Filter out all named parameters (kwargs). # This might require revisiting in future. args = list(filter(lambda x: x['name'] == "", args)) # Filter out non tensors #args = list(filter(lambda x: x['type'] == "tensor", args)) assert (len(args) <= 4) self.input = [] for arg in args: t = arg['type'] if (t == "tensor"): tensor = Tensor(arg['shape'], arg['dtype']) elif t in ['float', 'int']: tensor = Tensor([], t) else: assert False self.input.append(tensor) def params(self): return ";".join([str(t) for t in self.input]) def tc(self): return "-" def op(self): return self.op_ def mod(self): return self.mod_ def bytes_flops(self): b = f = 0 # Unary if self.op() in Pointwise.unary + Pointwise.representation: assert (len(self.input) == 1) b = 2 * self.input[0].bytes f = self.input[0].size elif self.op() in Pointwise.exp_log + Pointwise.trig_trans + \ Pointwise.sqrt + Pointwise.error: assert (len(self.input) == 1) b = 2 * self.input[0].bytes f = self.input[0].size * 20 # estimate # Binary elif self.op() in Pointwise.comp + \ Pointwise.binary + Pointwise.ibinary + \ Pointwise.logical + Pointwise.ilogical: assert (len(self.input) == 2) out = Tensor.broadcast(self.input) if self.dir == "fprop": b = reduce(operator.add, [t.bytes for t in self.input]) # The output of comparison is bool if self.op() in Pointwise.comp: out = Tensor(out.shape, "bool") b += out.bytes f = out.size else: if (self.op() in ["add", "__add__", "sub", "__sub__", "__isub__"]): b = 2 * out.bytes f = 0 elif (self.op() in ["__mul__", "__imul__", "__rmul__", "div", "__truediv__"]): b = 3 * out.bytes f = out.size else: e = f'{self.op()} bprop not supported yet. Please file a bug.' assert False, e elif self.op() in Pointwise.power: assert (len(self.input) == 2) out = Tensor.broadcast(self.input) b = reduce(operator.add, [t.bytes for t in self.input]) b += out.bytes f = out.size * 20 # estimate # Ternary elif self.op() in Pointwise.ternary: # Remove scalars tensors = list(filter(lambda x: x.shape != [], self.input)) assert len(tensors) == 3 out = Tensor.broadcast(tensors) b = reduce(operator.add, [t.bytes for t in tensors]) b += out.bytes f = 3 * out.size else: e = f'{self.op()} not supported yet. Please file a bug.' assert False, e return b, f def bytes(self): b, f = self.bytes_flops() return b def flops(self): b, f = self.bytes_flops() return f
PyProf-master
pyprof/prof/pointwise.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .base import OperatorLayerBase from .tensor import Tensor class Dropout(OperatorLayerBase): def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.marker = marker self.mod_ = mod self.op_ = op self.args = args assert (mod == "torch.nn.functional") assert (op == "dropout") self.inp = Tensor(args[0]['shape'], args[0]['dtype']) self.dir = d.dir return def params(self): return str(self.inp) def op(self): return self.op_ def mod(self): return self.mod_ def tc(self): return "-" def bytes(self): #Ignoring the cost of writing and reading the mask return self.inp.bytes * 2 def flops(self): # Note: This is approximate and depends on the RNG return 5 * self.inp.size
PyProf-master
pyprof/prof/dropout.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from .tc import TC_Whitelist from .utility import Utility from .base import OperatorLayerBase class Conv(OperatorLayerBase): """ # N = batch size # C,H,W = input channels, height, width # K,P,Q = output channels, height, width # R,S = filter height, width # g = groups """ #todo: refine winograd and FFT convAuxList = [ "nchwToNhwc", "nhwcToNchw", "OffsetsKernel", ] winoAuxList = ["generateWinogradTilesKernel", "winogradWgradData", "winogradWgradOutput", "winogradWgradDelta"] fftAuxList = ["compute_gemm_pointers", "flip_filter", "fft2d_r2c_", "fft2d_c2r_", "fft1d_r2c", "fft1d_c2r"] miscAuxList = [ "scaleTensor_kernel", ] convList = [ "_s884cudnn_", "_s1688cudnn_", "_scudnn_", "2d_grouped_direct_kernel", "cudnn::detail::implicit_convolve_sgemm", "cudnn::detail::dgrad2d_alg1_1", "cudnn::detail::wgrad_alg0_engine", "cudnn::detail::dgrad_engine", "dgrad_1x1_stride_2x2", "spatialDepthwiseConvolutionUpdateOutput" ] winoList = ["winograd3x3Kernel", "_sgemm_"] fftList = [ "fermiPlusCgemmLDS128_batched", "_gcgemm_", ] miscList = [] def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.marker = marker self.mod_ = mod self.op_ = op self.args = args self.dir = d.dir self.name = d.name self.sub = d.sub assert (mod == "torch.nn.functional") assert (op in ["conv1d", "conv2d"]) length = len(args) assert (length >= 2) and (length <= 7) i, w = args[0], args[1] assert (i['type'] == "tensor") assert (w['type'] == "tensor") #ignore bias if (length >= 4) and (args[3]['name'] == ""): s = args[3] elif any(x['name'] == 'stride' for x in args): s = list(filter(lambda x: x['name'] == 'stride', args))[0] else: s = {'name': 'stride', 'type': 'int', 'value': 1} if (length >= 5) and (args[4]['name'] == ""): p = args[4] elif any(x['name'] == 'padding' for x in args): p = list(filter(lambda x: x['name'] == 'padding', args))[0] else: p = {'name': 'padding', 'type': 'int', 'value': 0} if (length >= 6) and (args[5]['name'] == ""): d = args[5] elif any(x['name'] == 'dilation' for x in args): d = list(filter(lambda x: x['name'] == 'dilation', args))[0] else: d = {'name': 'dilation', 'type': 'int', 'value': 1} if (length == 7) and (args[6]['name'] == ""): g = args[6] elif any(x['name'] == 'groups' for x in args): g = list(filter(lambda x: x['name'] == 'groups', args))[0] else: g = {'name': 'groups', 'type': 'int', 'value': 1} if op == "conv1d": assert (len(i['shape']) == 3) assert (len(w['shape']) == 3) assert (i['dtype'] == w['dtype']) N, C1, W = i['shape'] K, C2, S = w['shape'] assert (C1 == C2) p = p['value'] if Utility.isscalar(p['type']) else p['value'][0] s = s['value'] if Utility.isscalar(s['type']) else s['value'][0] d = d['value'] if Utility.isscalar(d['type']) else d['value'][0] g = g['value'] assert (g == 1) H = 1 R = 1 P = 1 + (H - (((R - 1)) + 1)) Q = 1 + (W + 2 * p - (((S - 1) * d) + 1)) / s P = int(P) Q = int(Q) if (H == 1): assert (P == 1) if (W == 1): assert (Q == 1) self.N = N self.C = C1 self.H = H self.W = W self.K = K self.P = P self.Q = Q self.R = R self.S = S self.ph = 0 self.pw = p self.U = 1 self.V = s self.dh = 1 self.dw = d self.g = g self.type = i['dtype'] elif op == "conv2d": assert (len(i['shape']) == 4) assert (len(w['shape']) == 4) assert (i['dtype'] == w['dtype']) N, C1, H, W = i['shape'] K, C2, R, S = w['shape'] if Utility.isscalar(p['type']): ph = pw = p['value'] else: assert (p['type'] == "tuple") ph, pw = p['value'] if Utility.isscalar(s['type']): sh = sw = s['value'] else: assert (s['type'] == "tuple") sh, sw = s['value'] if Utility.isscalar(d['type']): dh = dw = d['value'] else: assert (d['type'] == "tuple") dh, dw = d['value'] g = g['value'] assert (g >= 1) assert (C1 == C2 * g) P = 1 + (H + 2 * ph - (((R - 1) * dh) + 1)) / sh Q = 1 + (W + 2 * pw - (((S - 1) * dw) + 1)) / sw P = int(P) Q = int(Q) if (H == 1): assert (P == 1) if (W == 1): assert (Q == 1) self.N = N self.C = C1 self.H = H self.W = W self.K = K self.P = P self.Q = Q self.R = R self.S = S self.ph = ph self.pw = pw self.U = sh self.V = sw self.dh = dh self.dw = dw self.g = g self.type = i['dtype'] else: assert False def params(self): p = OrderedDict( [ ('N', self.N), ('C', self.C), ('H', self.H), ('W', self.W), ('K', self.K), ('P', self.P), ('Q', self.Q), ('R', self.R), ('S', self.S), ('ph', self.ph), ('pw', self.pw), ('U', self.U), ('V', self.V), ('dh', self.dh), ('dw', self.dw), ('g', self.g), ('type', self.type) ] ) return p def conv_bytes_flops(self, N, C, H, W, K, P, Q, R, S, g, t): f = 2 * N * K * P * Q * C * R * S / g #for fprop elems = N * C * H * W + K * C * R * S / g + N * K * P * Q b = elems * Utility.typeToBytes(t) return b, f def bytes_flops(self): N, C, H, W, K, P, Q, R, S, ph, pw, U, V, dh, dw, g, t = self.params().values() if any(x in self.name for x in Conv.convAuxList + Conv.winoAuxList + Conv.fftAuxList + Conv.miscAuxList): bytes, flops = [0, 0] elif any(x in self.name for x in Conv.convList + Conv.winoList + Conv.fftList + Conv.miscList): if g == 1: bytes, flops = self.conv_bytes_flops(N, C, H, W, K, P, Q, R, S, g, t) else: if "2d_grouped_direct_kernel" in self.name: #only 1 kernel is called bytes, flops = self.conv_bytes_flops(N, C, H, W, K, P, Q, R, S, g, t) elif "spatialDepthwiseConvolutionUpdateOutput" in self.name: #one kernel for separable conv bytes, flops = self.conv_bytes_flops(N, C, H, W, K, P, Q, R, S, g, t) else: #a kernel per group is called bytes, flops = self.conv_bytes_flops(N, C / g, H, W, K / g, P, Q, R, S, 1, t) elif ("calc_bias_diff" in self.name): #bias gradient elems = N * K * P * Q flops = elems bytes = 2 * elems * Utility.typeToBytes(t) #params = OrderedDict([('N',N), ('K',K), ('P',P), ('Q',Q), ('type', t)]) else: bytes, flops = [0, 0] return bytes, flops def bytes(self): b, _ = self.bytes_flops() return b def flops(self): _, f = self.bytes_flops() return f def tc(self): if self.name in TC_Whitelist(): return 1 return "-" def op(self): return self.op_ def mod(self): return self.mod_
PyProf-master
pyprof/prof/conv.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from .tc import TC_Whitelist from .utility import Utility from .base import OperatorLayerBase def hasTileSize(name): if ("sgemm" in name) or ("884gemm" in name) or ("hgemm" in name): return True else: return False def ctaTile(name): name = name.split("_") name = list(filter(lambda x: "x" in x, name)) name = list(filter(lambda x: "slice" not in x, name)) assert (len(name) == 1) name = name[0].split("x") assert (len(name) == 2) name = list(map(int, name)) return name[0], name[1] class RNNCell(OperatorLayerBase): """ This class supports RNNCell, LSTMCell and GRUCell. """ def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.marker = marker self.mod_ = mod self.op_ = op self.args = args self.name = d.name self.dir = d.dir self.sub = d.sub self.grid = d.grid assert (op == "forward") assert (mod in ["LSTMCell", "GRUCell", "RNNCell"]) assert (len(args) in [2, 3]) x, h = args[0], args[1] b1, ii = x['shape'] b2, hh = h['shape'] assert b1 == b2 assert x['dtype'] == h['dtype'] t = x['dtype'] self.cell = mod self.inp = ii self.hid = hh self.b = b1 self.type = t self.multiple = 1 if self.cell == "LSTMCell": self.multiple = 4 elif self.cell == "GRUCell": self.multiple = 3 self.gemm = None self.m = None self.n = None self.k = None self.elems = 0 self.bar() def params(self): if self.gemm is None: p = OrderedDict([('cell', self.cell), ('X', self.inp), ('H', self.hid), ('B', self.b), ('type', self.type)]) else: assert self.m is not None assert self.n is not None assert self.k is not None p = OrderedDict([('gemm', self.gemm), ('M', self.m), ('N', self.n), ('K', self.k), ('type', self.type)]) return p def tc(self): if "gemm" in self.name: if self.name in TC_Whitelist(): return 1 return 0 else: return "-" def op(self): return self.op_ def mod(self): return self.mod_ def bytes(self): if self.gemm is not None: m, n, k, t = self.m, self.n, self.k, self.type b = (m * k + k * n + m * n) * Utility.typeToBytes(t) elif self.elems != 0: b = self.elems * Utility.typeToBytes(self.type) else: b = 0 return b def flops(self): if self.gemm is not None: m, n, k = self.m, self.n, self.k f = 2 * m * n * k elif self.elems != 0: f = 0 #TODO else: f = 0 return f def bar(self): cell = self.cell X = self.inp H = self.hid B = self.b t = self.type subseqId = self.sub direc = self.dir name = self.name grid = self.grid multiple = self.multiple if direc == "fprop": subseqId = subseqId % 3 if subseqId == 0: #layer gemm self.gemm = "layer" self.m = multiple * H self.n = B self.k = X elif subseqId == 1: #recurrent gemm self.gemm = "recur" self.m = multiple * H self.n = B self.k = H else: layerGemmElems = multiple * H * B recurGemmElems = multiple * H * B cElems = H * B hElems = H * B totElems = layerGemmElems + recurGemmElems + 2 * cElems + hElems self.elems = totElems else: if ("gemm" in name) and hasTileSize(name): #gemm #Get cta tile size tileX, tileY = ctaTile(name) #Get grid dimensions grid = grid.split(",") gridX, gridY, gridZ = map(lambda x: int(x), grid) gemmM = tileX * gridX gemmN = tileY * gridY if name[-3:] == "_nn": # dgrad if (gemmM == H): # recurrent dgrad #Ideally gemmN = B, but we have a limited set of tile sizes. gemmN = B gemmK = multiple * H self.gemm = "recur" self.m = gemmM self.n = gemmN self.k = gemmK elif (gemmM == X): # layer dgrad #assert(gemmN % B == 0) gemmK = multiple * H self.gemm = "layer" self.m = gemmM self.n = gemmN self.k = gemmK else: pass elif name[-3:] == "_nt": #wgrad if (gemmM == H): #recurrent wgrad assert (gemmN == multiple * H) gemmK = B self.gemm = "recur" self.m = gemmM self.n = gemmN self.k = gemmK elif (gemmM == X): #layer wgrad assert (gemmN == multiple * H) gemmK = B self.gemm = "layer" self.m = gemmM self.n = gemmN self.k = gemmK else: pass else: pass else: pass return
PyProf-master
pyprof/prof/recurrentCell.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .base import OperatorLayerBase from .tensor import Tensor class BatchNorm(OperatorLayerBase): def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.mod_ = mod self.op_ = op assert (op == "batch_norm") assert (len(args) >= 1) i = args[0] assert (i['type'] == "tensor") self.input = Tensor(i['shape'], i['dtype']) self.dir = d.dir self.sub = d.sub def params(self): return str(self.input) def tc(self): return "-" def op(self): return self.op_ def mod(self): return self.mod_ def flops(self): # Variance algo-dependent, but this is a reasonable value. return self.input.size * 8 def bytes(self): b = self.input.bytes # fprop is 2 reads, 2 writes # bprop is 4 reads, 1 write if self.dir == "fprop": b *= 4 else: b *= 5 if self.sub > 0: return 0 else: return b
PyProf-master
pyprof/prof/normalization.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from .utility import Utility from .base import OperatorLayerBase #TODO: Add support for other optimizers. class Adam(OperatorLayerBase): def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.marker = marker self.mod_ = mod self.op_ = op self.args = args self.sub = d.sub assert (op == "adam") assert (len(args) == 12) or (len(args) == 14) w, hw, m, v, g = args[0:5] assert (w['shape'] == m['shape'] == v['shape'] == g['shape']) assert (hw['shape'] == w['shape']) or (hw['shape'] == (0, )) #hw could be null assert (w['type'] == m['type'] == v['type'] == g['type'] == hw['type'] == "tensor") assert (w['dtype'] == m['dtype'] == v['dtype'] == "float32") self.w = w self.g = g def params(self): p = OrderedDict([('T', self.w['shape']), ('wtype', self.w['dtype']), ('gtype', self.g['dtype'])]) return p def flops(self): return 0 def bytes(self): wshape = self.w['shape'] wtype = self.w['dtype'] gtype = self.g['dtype'] b = 0 elems = Utility.numElems(wshape) #Get time to stream read/write w, m, v b += 6 * elems * Utility.typeToBytes(wtype) #Get time to read "g" b += elems * Utility.typeToBytes(gtype) if wtype != gtype: #mixed precision #Get time to write "hw b += elems * Utility.typeToBytes(gtype) return b if (self.sub == 0) else 0 def tc(self): return "-" def op(self): return self.op_ def mod(self): return self.mod_
PyProf-master
pyprof/prof/optim.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import argparse def parseArgs(): """ Print usage and parse arguments. """ def check_cols(value): valid = [ "idx", "seq", "altseq", "tid", "layer", "trace", "dir", "sub", "mod", "op", "kernel", "params", "sil", "tc", "device", "stream", "grid", "block", "flops", "bytes" ] cols = value.split(",") for col in cols: if col not in valid: raise argparse.ArgumentTypeError( "{} is not a valid column name. Valid column names are {}.".format(col, ",".join(valid)) ) return cols def openFile(f): try: d = open(f, "r") return d except IOError: print("Error opening file {}. Exiting.".format(f), file=sys.stderr) sys.exit(1) parser = argparse.ArgumentParser( prog=sys.argv[0], description="PyTorch Profiler", formatter_class=argparse.RawTextHelpFormatter ) parser.add_argument("file", nargs='?', type=str, default=None, help="Output of parse.py (Python dictionary).") parser.add_argument( "-c", type=check_cols, default="idx,dir,sub,mod,op,kernel,params,sil", help='''Comma seperated names of columns to print. idx: Index seq: PyTorch Sequence Id altseq: PyTorch Alternate Sequence Id tid: Thread Id layer: User annotated NVTX string (can be nested) trace: Function Call Trace dir: Direction sub: Sub Sequence Id mod: Module op: Operattion kernel: Kernel Name params: Parameters sil: Silicon Time (in ns) tc: Tensor Core Usage device: GPU Device Id stream: Stream Id grid: Grid Dimensions block: Block Dimensions flops: Floating point ops (FMA = 2 FLOPs) bytes: Number of bytes in and out of DRAM e.g. -c idx,kernel,sil''' ) group = parser.add_mutually_exclusive_group() group.add_argument("--csv", action="store_true", default=False, help="Print a CSV output.") group.add_argument("-w", type=int, default=0, help="Width of columnated output.") args = parser.parse_args() if args.file is None: args.file = sys.stdin else: args.file = openFile(args.file) return args
PyProf-master
pyprof/prof/usage.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .base import OperatorLayerBase from .tensor import Tensor class Softmax(OperatorLayerBase): def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.mod_ = mod self.op_ = op assert (mod == "torch.nn.functional") assert (op == "softmax") #Filter out named parameters args = list(filter(lambda x: x['name'] == '', args)) assert (len(args) <= 2) arg = args[0] self.input = Tensor(arg['shape'], arg['dtype']) self.dir = d.dir return def op(self): return self.op_ def mod(self): return self.mod_ def tc(self): return "-" def params(self): return str(self.input) def flops(self): # An approximation # http://ai.stanford.edu/~paskin/slam/javadoc/javaslam/util/Flops.html#exp() # TODO: consider direction e = self.input.size f = e * 20 # denominator, exp all elements and reduce f += e * 20 # numerator, exp all elements and divide return f def bytes(self): # TODO: verify b = self.input.bytes # fprop is 2 reads, 1 write # bprop is 4 reads, 1 write b *= 3 if self.dir == "fprop" else 5 return b class LogSoftmax(OperatorLayerBase): def __init__(self, d): marker = eval(d.argMarker[0]) mod = marker['mod'] op = marker['op'] args = marker['args'] self.mod_ = mod self.op_ = op assert (mod in ["torch", "Tensor", "torch.nn.functional"]) assert (op == "log_softmax") #Filter out named parameters args = list(filter(lambda x: x['name'] == '', args)) assert (len(args) <= 2) #Get input if (args[0]['name'] == ""): i = args[0] else: i = list(filter(lambda x: x['name'] == "input", args))[0] self.input = Tensor(i['shape'], i['dtype']) self.dir = d.dir return def op(self): return self.op_ def mod(self): return self.mod_ def tc(self): return "-" def params(self): return str(self.input) def flops(self): # An approximation # http://ai.stanford.edu/~paskin/slam/javadoc/javaslam/util/Flops.html#exp() # TODO: consider direction e = self.input.size f = e * 20 # denominator, exp all elements and reduce f += e # numerator, just a subtraction return f def bytes(self): # TODO: verify b = self.input.bytes # fprop is 2 reads, 1 write # bprop is 4 reads, 1 write b *= 3 if self.dir == "fprop" else 5 return b
PyProf-master
pyprof/prof/softmax.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .prof import main if __name__ == '__main__': main()
PyProf-master
pyprof/prof/__main__.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod class OperatorLayerBase(ABC): """ Base class for all layers and operators. Every derived class should have the following functions. """ @abstractmethod def tc(self): """ Tensor core usage by the kernel. Return "1" (yes), "0" (no, but possible), "-" (not applicable) """ pass @abstractmethod def params(self): """ Kernel parameters to be printed. """ pass @abstractmethod def flops(self): """ Note that 1 FMA = 2 flops. """ pass @abstractmethod def bytes(self): pass @abstractmethod def mod(self): """ Name of the module/class e.g. torch.nn.functional. """ pass @abstractmethod def op(self): """ Name of the operator e.g. sigmoid. """ pass
PyProf-master
pyprof/prof/base.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .utility import Utility class Data(object): """ Class to store all the data for every kernel e.g. name, bytes, flops, device, stream etc. """ def __init__(self, kernel): #Available from NVprof self.tid = kernel['tid'] self.device = kernel['device'] self.stream = kernel['stream'] self.grid = str(kernel['grid']).replace(" ", "").replace("(", "").replace(")", "") self.block = str(kernel['block']).replace(" ", "").replace("(", "").replace(")", "") self.name = kernel['kShortName'].replace(" ", "_") self.lName = kernel['kLongName'] self.sil = kernel['kDuration'] #units ns self.index = None #Markers self.argMarker = kernel['marker'] self.modMarker = kernel['reprMarkers'] self.seqMarker = kernel['seqMarker'] self.layer = kernel['layer'] self.trace = kernel['trace'] self.seqId = kernel['seqId'] self.altSeqId = kernel['altSeqId'] self.dir = kernel['dir'] self.sub = kernel['subSeqId'] self.mod = "na" self.op = "na" self.params = {"na": "na"} self.tc = "na" self.flops = 0 self.bytes = 0 def setParams(self, params): # TODO: Remove the else block after refactoring. if type(params) == str: self.params = params else: #Remove space from params qaz = "" for key, value in params.items(): if "type" not in key: qaz += "{}={},".format(key, value) else: if type(value) is str: qaz += "{},".format(Utility.typeToString(value)) else: qaz += "{}".format(value) self.params = qaz.replace(" ", "")
PyProf-master
pyprof/prof/data.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import errno, os, sys class Output(): """ This class handles printing of a columed output and a CSV. """ # The table below is organized as # user_option: [output_header, attribute_in_Data_class, type, min_width_in_columed_output] table = { "idx": ["Idx", "index", int, 7], "seq": ["SeqId", "seqId", str, 7], "altseq": ["AltSeqId", "altSeqId", str, 7], "tid": ["TId", "tid", int, 12], "layer": ["Layer", "layer", str, 10], "trace": ["Trace", "trace", str, 25], "dir": ["Direction", "dir", str, 5], "sub": ["Sub", "sub", int, 3], "mod": ["Module", "mod", str, 15], "op": ["Op", "op", str, 15], "kernel": ["Kernel", "name", str, 0], "params": ["Params", "params", str, 0], "sil": ["Sil(ns)", "sil", int, 10], "tc": ["TC", "tc", str, 2], "device": ["Device", "device", int, 3], "stream": ["Stream", "stream", int, 3], "grid": ["Grid", "grid", str, 12], "block": ["Block", "block", str, 12], "flops": ["FLOPs", "flops", int, 12], "bytes": ["Bytes", "bytes", int, 12] } def __init__(self, args): self.cols = args.c self.csv = args.csv self.col = True if (args.w > 0) else False self.width = args.w w = 0 for col in self.cols: assert col in Output.table.keys() w += Output.table[col][3] if ((self.col) and (w > self.width)): print("Minimum width required to print {} = {}. Exiting.".format(",".join(self.cols), w)) sys.exit(1) remainder = self.width - w if ("kernel" in self.cols) and ("params" in self.cols): Output.table["kernel"][3] = int(remainder / 2) Output.table["params"][3] = int(remainder / 2) elif ("kernel" in self.cols): Output.table["kernel"][3] = remainder elif ("params" in self.cols): Output.table["params"][3] = remainder #header format cadena = "" for col in self.cols: _, _, t, w = Output.table[col] cadena += "%-{}.{}s ".format(w, w) self.hFormat = cadena #data format cadena = "" for col in self.cols: _, _, t, w = Output.table[col] if (t == str): cadena += "%-{}.{}s ".format(w, w) elif (t == int): cadena += "%{}d ".format(w) self.dFormat = cadena def foo(self, cadena, pformat): if self.csv: cadena = ",".join(map(lambda x: '"' + str(x) + '"', cadena)) elif self.col: cadena = pformat % cadena else: cadena = " ".join(map(str, cadena)) try: print(cadena) except IOError as e: #gracefully handle pipes if e.errno == errno.EPIPE: # Python flushes standard streams on exit; redirect remaining output # to devnull to avoid another BrokenPipeError at shutdown devnull = os.open(os.devnull, os.O_WRONLY) os.dup2(devnull, sys.stdout.fileno()) sys.exit(0) else: sys.exit(-1) def header(self): cadena = () for col in self.cols: h = Output.table[col][0] cadena = cadena + (h, ) self.foo(cadena, self.hFormat) def data(self, a): if a.dir == "": direc = "na" else: direc = a.dir if a.op == "": op = "na" else: op = a.op if a.mod == "": mod = "na" else: mod = a.mod cadena = () for col in self.cols: attr = Output.table[col][1] val = getattr(a, attr) if col == "layer": assert (type(val) == list) val = ":".join(val) val = "-" if val == "" else val if col == "trace": assert (type(val) == list) if self.col and len(val): val = val[-1] val = val.split("/")[-1] else: val = ",".join(val) val = "-" if val == "" else val if col in ["seq", "altseq"]: assert (type(val) == list) val = ",".join(map(str, val)) val = "-" if val == "" else val cadena = cadena + (val, ) self.foo(cadena, self.dFormat)
PyProf-master
pyprof/prof/output.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F import torch.cuda.profiler as profiler import torch.optim as optim import pyprof pyprof.init() class LeNet5(nn.Module): def __init__(self): super(LeNet5, self).__init__() # 1 input image channel, 6 output channels, 5x5 square convolution # kernel self.conv1 = nn.Conv2d(1, 6, 5) self.conv2 = nn.Conv2d(6, 16, 5) # an affine operation: y = Wx + b self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): # Max pooling over a (2, 2) window x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) # If the size is a square you can only specify a single number x = F.max_pool2d(F.relu(self.conv2(x)), 2) x = x.view(-1, self.num_flat_features(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def num_flat_features(self, x): size = x.size()[1:] # all dimensions except the batch dimension num_features = 1 for s in size: num_features *= s return num_features with torch.autograd.profiler.emit_nvtx(): net = LeNet5().cuda() input = torch.randn(1, 1, 32, 32).cuda() out = net(input) target = torch.randn(10) # a dummy target, for example target = target.view(1, -1).cuda() # make it the same shape as output criterion = nn.MSELoss() # create your optimizer optimizer = optim.SGD(net.parameters(), lr=0.01) # in your training loop: optimizer.zero_grad() # zero the gradient buffers profiler.start() output = net(input) loss = criterion(output, target) loss.backward() optimizer.step() # Does the update profiler.stop()
PyProf-master
pyprof/examples/lenet.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file checks all Python operators. """ import sys import torch import torch.cuda.profiler as profiler import operator import inspect #Import and initialize pyprof import pyprof pyprof.init() X = 1024 Y = 1024 fa = torch.rand(X, Y).cuda() fb = torch.rand(X, Y).cuda() fc = torch.rand(X, Y).cuda() ia = torch.randint(0, 100, (X, Y)).cuda() ib = torch.randint(0, 100, (X, Y)).cuda() sa = torch.ones(1, 1).cuda() sb = torch.ones(1, 1).cuda() ba = fa.byte() unaryOps = [ "abs", "__abs__", "neg", "__neg__", ] invertOps = [ "inv", "invert", "__inv__", "__invert__", ] #imlemented only for byte tensors #pos, __pos__ is not implemented for tensors binaryOps = [] binaryOps += ["lt", "__lt__", "le", "__le__", "eq", "__eq__", "ne", "__ne__", "ge", "__ge__", "gt", "__gt__"] binaryOps += [ "add", "__add__", "sub", "__sub__", "mul", "__mul__", "floordiv", "__floordiv__", "truediv", "__truediv__", "pow", "__pow__", "mod", "__mod__" ] binaryOps += ["and_", "__and__", "or_", "__or__", "xor", "__xor__", "lshift", "__lshift__", "rshift", "__rshift__"] inplaceOps = [] inplaceOps += [ "iadd", "__iadd__", "isub", "__isub__", "imul", "__imul__", "ifloordiv", "__ifloordiv__", "itruediv", "__itruediv__", "imod", "__imod__", ] #ipow, __ipow__ is not implemented in pytorch inplaceOps += [ "iand", "__iand__", "ior", "__ior__", "ixor", "__ixor__", "ilshift", "__ilshift__", "irshift", "__irshift__", ] matmulOps = ["matmul", "__matmul__"] inplacematmulOps = ["imatmul", "__imatmul__"] reverseIntBinaryOps = [ "__radd__", "__rsub__", "__rmul__", "__rfloordiv__", "__rpow__", ] reverseFloatBinaryOps = [ "__radd__", "__rsub__", "__rmul__", "__rdiv__", "__rtruediv__", "__rfloordiv__", "__rpow__", ] ''' TODO .concat(a, b) .__concat__(a, b) .contains(a, b) .__contains__(a, b) .countOf(a, b) .delitem(a, b) .__delitem__(a, b) .getitem(a, b) .__getitem__(a, b) .indexOf(a, b) .setitem(a, b, c) .__setitem__(a, b, c) .length_hint(obj, default=0) .iconcat(a, b) .__iconcat__(a, b) .index(a) .__index__(a) ''' #Context manager with torch.autograd.profiler.emit_nvtx(): #Start profiler profiler.start() for op in unaryOps: assert hasattr(operator, op) f = getattr(operator, op) assert inspect.isbuiltin(f) c = f(ia) for op in invertOps: assert hasattr(operator, op) f = getattr(operator, op) assert inspect.isbuiltin(f) c = f(ba) for op in binaryOps: assert hasattr(operator, op) f = getattr(operator, op) assert inspect.isbuiltin(f) c = f(ia, ib) c = f(ia, 2) for op in inplaceOps: assert hasattr(operator, op) f = getattr(operator, op) assert inspect.isbuiltin(f) ia = f(ia, ib) ia = f(ia, 2) for op in matmulOps: assert hasattr(operator, op) f = getattr(operator, op) assert inspect.isbuiltin(f) c = f(fa, fb) for op in inplacematmulOps: assert hasattr(operator, op) f = getattr(operator, op) assert inspect.isbuiltin(f) fa = f(fa, fb) for op in reverseIntBinaryOps: assert hasattr(torch.Tensor, op) f = getattr(torch.Tensor, op) ia = f(ia, ib) for op in reverseFloatBinaryOps: assert hasattr(torch.Tensor, op) f = getattr(torch.Tensor, op) fa = f(fa, fb) ''' #c = fa[3] #c = fa[3][3] #c = torch.min(fa, 3) c = torch.sum(fa) c = torch.max(fa) c = -fa #fc[2][2] = fa[2][2] c = a_scalar and b_scalar c = a_scalar or b_scalar c = not a_scalar c = a is b c = a is not b ''' #Stop profiler profiler.stop()
PyProf-master
pyprof/examples/operators.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This simple file provides an example of how to - import the pyprof library and initialize it - use the emit_nvtx context manager - start and stop the profiler Only kernels within profiler.start and profiler.stop calls are profiled. To profile $ nvprof -f -o simple.sql --profile-from-start off ./simple.py """ import sys import torch import torch.cuda.profiler as profiler #Import and initialize pyprof import pyprof pyprof.init() a = torch.randn(5, 5).cuda() b = torch.randn(5, 5).cuda() #Context manager with torch.autograd.profiler.emit_nvtx(): #Start profiler profiler.start() c = a + b c = torch.mul(a, b) c = torch.matmul(a, b) c = torch.argmax(a, dim=1) c = torch.nn.functional.pad(a, (1, 1)) #Stop profiler profiler.stop()
PyProf-master
pyprof/examples/simple.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.cuda.profiler as profiler import pyprof pyprof.init() class Foo(torch.nn.Module): def __init__(self, size): super(Foo, self).__init__() self.n = torch.nn.Parameter(torch.ones(size)) self.m = torch.nn.Parameter(torch.ones(size)) def forward(self, input): return self.n * input + self.m # Hook the forward function to pyprof pyprof.nvtx.wrap(Foo, 'forward') foo = Foo(4) foo.cuda() x = torch.ones(4).cuda() with torch.autograd.profiler.emit_nvtx(): profiler.start() z = foo(x) profiler.stop()
PyProf-master
pyprof/examples/custom_func_module/custom_module.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.cuda.profiler as profiler import pyprof #Initialize pyprof pyprof.init() class Foo(torch.autograd.Function): @staticmethod def forward(ctx, in1, in2): out = in1 + in2 #This could be a custom C/C++ function. return out @staticmethod def backward(ctx, grad): in1_grad = grad #This could be a custom C/C++ function. in2_grad = grad #This could be a custom C/C++ function. return in1_grad, in2_grad #Hook the forward and backward functions to pyprof pyprof.nvtx.wrap(Foo, 'forward') pyprof.nvtx.wrap(Foo, 'backward') foo = Foo.apply x = torch.ones(4, 4).cuda() y = torch.ones(4, 4).cuda() with torch.autograd.profiler.emit_nvtx(): profiler.start() z = foo(x, y) profiler.stop()
PyProf-master
pyprof/examples/custom_func_module/custom_function.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.cuda.profiler as profiler import pyprof def foo(x, y): return torch.sigmoid(x) + y x = torch.zeros(4, 4).cuda() y = torch.ones(4, 4).cuda() #JIT the function using tracing #This returns an object of type ScriptModule with a forward method. traced_foo = torch.jit.trace(foo, (x, y)) #Initialize pyprof after the JIT step pyprof.init() #Assign a name to the object "traced_foo" traced_foo.__dict__['__name__'] = "foo" #Hook up the forward function to pyprof pyprof.nvtx.wrap(traced_foo, 'forward') with torch.autograd.profiler.emit_nvtx(): profiler.start() z = traced_foo(x, y) profiler.stop() print(z)
PyProf-master
pyprof/examples/jit/jit_trace_function.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.cuda.profiler as profiler import pyprof class Foo(torch.nn.Module): def __init__(self, size): super(Foo, self).__init__() self.n = torch.nn.Parameter(torch.ones(size)) self.m = torch.nn.Parameter(torch.ones(size)) def forward(self, input): return self.n * input + self.m foo = Foo(4) foo.cuda() x = torch.ones(4).cuda() #JIT the class using tracing traced_foo = torch.jit.trace(foo, x) #Initialize pyprof after the JIT step pyprof.init() #Assign a name to the object "traced_foo" traced_foo.__dict__['__name__'] = "foo" #Hook up the forward function to pyprof pyprof.nvtx.wrap(traced_foo, 'forward') with torch.autograd.profiler.emit_nvtx(): profiler.start() z = traced_foo(x) profiler.stop() print(z)
PyProf-master
pyprof/examples/jit/jit_trace_method.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.cuda.profiler as profiler import pyprof #The following creates an object "foo" of type ScriptModule #The new object has a function called "forward" @torch.jit.script def foo(x, y): return torch.sigmoid(x) + y #Initialize pyprof after the JIT step pyprof.init() #Assign a name to the object "foo" foo.__name__ = "foo" #Hook up the forward function to pyprof pyprof.nvtx.wrap(foo, 'forward') x = torch.zeros(4, 4).cuda() y = torch.ones(4, 4).cuda() with torch.autograd.profiler.emit_nvtx(): profiler.start() z = foo(x, y) profiler.stop() print(z)
PyProf-master
pyprof/examples/jit/jit_script_function.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.cuda.profiler as profiler import pyprof class Foo(torch.jit.ScriptModule): def __init__(self, size): super(Foo, self).__init__() self.n = torch.nn.Parameter(torch.ones(size)) self.m = torch.nn.Parameter(torch.ones(size)) @torch.jit.script_method def forward(self, input): return self.n * input + self.m #Initialize pyprof after the JIT step pyprof.init() #Hook up the forward function to pyprof pyprof.nvtx.wrap(Foo, 'forward') foo = Foo(4) foo.cuda() x = torch.ones(4).cuda() with torch.autograd.profiler.emit_nvtx(): profiler.start() z = foo(x) profiler.stop() print(z)
PyProf-master
pyprof/examples/jit/jit_script_method.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Example to run pyprof with imagenet models. """ import sys import torch import torch.nn as nn import torchvision.models as models import torch.cuda.profiler as profiler import argparse import pyprof from apex.optimizers import FusedAdam def parseArgs(): parser = argparse.ArgumentParser(prog=sys.argv[0], description="Run popular imagenet models.") parser.add_argument( "-m", type=str, default="resnet50", choices=[ "alexnet", "densenet121", "densenet161", "densenet169", "densenet201", "googlenet", "mnasnet0_5", "mnasnet0_75", "mnasnet1_0", "mnasnet1_3", "mobilenet_v2", "resnet18", "resnet34", "resnet50", "resnet101", "resnet152", "resnext50_32x4d", "resnext101_32x8d", "wide_resnet50_2", "wide_resnet101_2", "shufflenet_v2_x0_5", "shufflenet_v2_x1_0", "shufflenet_v2_x1_5", "shufflenet_v2_x2_0", "squeezenet1_0", "squeezenet1_1", "vgg11", "vgg11_bn", "vgg13", "vgg13_bn", "vgg16", "vgg16_bn", "vgg19", "vgg19_bn", "inception_v3" ], help="Model." ) parser.add_argument("-b", type=int, default=32, help="Batch size.") parser.add_argument("-o", type=str, default="adam", choices=["adam", "sgd"], help="Optimizer.") args = parser.parse_args() return args d = { "alexnet": { 'H': 224, 'W': 224, 'opts': {} }, "densenet121": { 'H': 224, 'W': 224, 'opts': {} }, "densenet161": { 'H': 224, 'W': 224, 'opts': {} }, "densenet169": { 'H': 224, 'W': 224, 'opts': {} }, "densenet201": { 'H': 224, 'W': 224, 'opts': {} }, "googlenet": { 'H': 224, 'W': 224, 'opts': { 'aux_logits': False } }, "mnasnet0_5": { 'H': 224, 'W': 224, 'opts': {} }, "mnasnet0_75": { 'H': 224, 'W': 224, 'opts': {} }, "mnasnet1_0": { 'H': 224, 'W': 224, 'opts': {} }, "mnasnet1_3": { 'H': 224, 'W': 224, 'opts': {} }, "mobilenet_v2": { 'H': 224, 'W': 224, 'opts': {} }, "resnet18": { 'H': 224, 'W': 224, 'opts': {} }, "resnet34": { 'H': 224, 'W': 224, 'opts': {} }, "resnet50": { 'H': 224, 'W': 224, 'opts': {} }, "resnet101": { 'H': 224, 'W': 224, 'opts': {} }, "resnet152": { 'H': 224, 'W': 224, 'opts': {} }, "resnext50_32x4d": { 'H': 224, 'W': 224, 'opts': {} }, "resnext101_32x8d": { 'H': 224, 'W': 224, 'opts': {} }, "wide_resnet50_2": { 'H': 224, 'W': 224, 'opts': {} }, "wide_resnet101_2": { 'H': 224, 'W': 224, 'opts': {} }, "shufflenet_v2_x0_5": { 'H': 224, 'W': 224, 'opts': {} }, "shufflenet_v2_x1_0": { 'H': 224, 'W': 224, 'opts': {} }, "shufflenet_v2_x1_5": { 'H': 224, 'W': 224, 'opts': {} }, "shufflenet_v2_x2_0": { 'H': 224, 'W': 224, 'opts': {} }, "squeezenet1_0": { 'H': 224, 'W': 224, 'opts': {} }, "squeezenet1_1": { 'H': 224, 'W': 224, 'opts': {} }, "vgg11": { 'H': 224, 'W': 224, 'opts': {} }, "vgg11_bn": { 'H': 224, 'W': 224, 'opts': {} }, "vgg13": { 'H': 224, 'W': 224, 'opts': {} }, "vgg13_bn": { 'H': 224, 'W': 224, 'opts': {} }, "vgg16": { 'H': 224, 'W': 224, 'opts': {} }, "vgg16_bn": { 'H': 224, 'W': 224, 'opts': {} }, "vgg19": { 'H': 224, 'W': 224, 'opts': {} }, "vgg19_bn": { 'H': 224, 'W': 224, 'opts': {} }, "inception_v3": { 'H': 299, 'W': 299, 'opts': { 'aux_logits': False } }, } def main(): args = parseArgs() pyprof.init() N = args.b C = 3 H = d[args.m]['H'] W = d[args.m]['W'] opts = d[args.m]['opts'] classes = 1000 net = getattr(models, args.m) net = net(**opts).cuda().half() net.train() x = torch.rand(N, C, H, W).cuda().half() target = torch.empty(N, dtype=torch.long).random_(classes).cuda() criterion = nn.CrossEntropyLoss().cuda() if (args.o == "sgd"): optimizer = torch.optim.SGD(net.parameters(), lr=0.01, momentum=0.9) elif (args.o == "adam"): optimizer = FusedAdam(net.parameters()) else: assert False #Warm up without profiler for i in range(2): output = net(x) loss = criterion(output, target) optimizer.zero_grad() loss.backward() optimizer.step() with torch.autograd.profiler.emit_nvtx(): profiler.start() output = net(x) loss = criterion(output, target) optimizer.zero_grad() loss.backward() optimizer.step() profiler.stop() if __name__ == "__main__": main()
PyProf-master
pyprof/examples/imagenet/imagenet.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ An example showing use of nested NVTX markers. """ import torch import torch.nn as nn import torch.cuda.profiler as profiler import torch.cuda.nvtx as nvtx import pyprof pyprof.init() def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation ) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class Bottleneck(nn.Module): expansion = 4 count = 1 def __init__( self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None ): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride self.id = Bottleneck.count Bottleneck.count += 1 def forward(self, x): identity = x nvtx.range_push("layer:Bottleneck_{}".format(self.id)) nvtx.range_push("layer:Conv1") out = self.conv1(x) nvtx.range_pop() nvtx.range_push("layer:BN1") out = self.bn1(out) nvtx.range_pop() nvtx.range_push("layer:ReLU") out = self.relu(out) nvtx.range_pop() nvtx.range_push("layer:Conv2") out = self.conv2(out) nvtx.range_pop() nvtx.range_push("layer:BN2") out = self.bn2(out) nvtx.range_pop() nvtx.range_push("layer:ReLU") out = self.relu(out) nvtx.range_pop() nvtx.range_push("layer:Conv3") out = self.conv3(out) nvtx.range_pop() nvtx.range_push("layer:BN3") out = self.bn3(out) nvtx.range_pop() if self.downsample is not None: nvtx.range_push("layer:Downsample") identity = self.downsample(x) nvtx.range_pop() nvtx.range_push("layer:Residual") out += identity nvtx.range_pop() nvtx.range_push("layer:ReLU") out = self.relu(out) nvtx.range_pop() nvtx.range_pop() return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, groups=1, width_per_group=64, norm_layer=None): super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append( block( self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer ) ) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append( block( self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer ) ) return nn.Sequential(*layers) def forward(self, x): nvtx.range_push("layer:conv1_x") x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) nvtx.range_pop() nvtx.range_push("layer:conv2_x") x = self.layer1(x) nvtx.range_pop() nvtx.range_push("layer:conv3_x") x = self.layer2(x) nvtx.range_pop() nvtx.range_push("layer:conv4_x") x = self.layer3(x) nvtx.range_pop() nvtx.range_push("layer:conv5_x") x = self.layer4(x) nvtx.range_pop() x = self.avgpool(x) x = torch.flatten(x, 1) nvtx.range_push("layer:FC") x = self.fc(x) nvtx.range_pop() return x def resnet50(): return ResNet(Bottleneck, [3, 4, 6, 3]) #Create model net = resnet50().cuda().half() net.train() #Create optimizer criterion = nn.CrossEntropyLoss().cuda() optimizer = torch.optim.SGD(net.parameters(), lr=0.01, momentum=0.9) #Create synthetic input and label x = torch.rand(32, 3, 224, 224).cuda().half() target = torch.empty(32, dtype=torch.long).random_(1000).cuda() with torch.autograd.profiler.emit_nvtx(): profiler.start() output = net(x) loss = criterion(output, target) optimizer.zero_grad() loss.backward() optimizer.step() profiler.stop()
PyProf-master
pyprof/examples/user_annotation/resnet.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class Config(object): _instance = None # Overloading the __new__ method enables singleton behavior def __new__(cls, *args, **kwargs): if cls._instance is None: cls._instance = super(Config, cls).__new__(cls) cls.func_stack_enabled = kwargs.get("enable_function_stack", False) or kwargs.get("capture_input_ops", False) cls.capture_input_ops = kwargs.get("capture_input_ops", False) cls.delay_graph_capture = kwargs.get("delay_graph_capture", False) cls.debug_graph = kwargs.get("debug_graph", False) return cls._instance
PyProf-master
pyprof/nvtx/config.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import inspect as ins from .config import Config def dprint(*args): """ dprint() Printf debugging messages controlled by the debug_flag. Disabled by default. Call debug(True) from instrumentation code to enable debug messages generated by dprint. """ config = Config() if config.debug_graph: fn = ins.currentframe().f_back.f_code.co_name depth = len(ins.stack())-2 print(" " * depth, f"[{fn}] {args}") return class DLProf(object): _instance = None # Overloading the __new__ method enables singleton behavior def __new__(cls, *args, **kwargs): if cls._instance is None: cls._instance = super(DLProf, cls).__new__(cls) cls.call_id = 0 # input op tracking identifier cls.op_to_out_tensor_map = {} # map from tensor ptr to to call_id cls.call_id_to_op_map = {} # map from call_id to op name cls.patch_list = [] # used to track nested callids # Nested dicts of this run's frame names to help uniquify them # func_map[(partial_func_stack,frame_name)][filename+lineno] = frame_name_to_use # cls.func_map = {} return cls._instance # Return True if the name in the hierarchy should be skipped @classmethod def should_skip_frame_name(cls, name, prev_name): # wrapper_func and always_benchmark_warpper: # Are functions in this file. If there are nested monkeypatched functions # we don't want it to show up # name==prev_name: # Remove back-to-back duplicates of the same function name. # This is common during recursion # for prefix in ["wrapper_func", "always_benchmark_wrapper"]: if name.startswith(prefix): return True if name == prev_name: return True return False # Given a function stack, clean it up to remove unwanted fields as # well as removing any back-to-back duplicates @classmethod def cleanup_func_stack(cls, func_stack, op_name): ret = "" prev_fn_name = "" suffix = "" x = func_stack.split("/") for fn_name in x: # This is used to detect when the same torch op was called # multiple times from the same parent function. Capture the # count as a 'suffix' and put it on the end of the op name # # For example, if we end up with these: # a/b/c/wrapper_func # a/b/c/wrapper_func(2) # Both would end up as a/b/c after the wrapper function is ignored # However, we want to keep the information that the resulting torch op # called by wrapper_func was called 2 different times from the same function 'c' # # This code changes "wrapper_func(2)" to "(2)" so that it doesn't get filtered # out by should_skip_frame_name() # if fn_name.startswith("wrapper_func("): suffix = fn_name.replace("wrapper_func", "") if fn_name.startswith("always_benchmark_wrapper("): suffix = fn_name.replace("always_benchmark_wrapper", "") if not DLProf.should_skip_frame_name(fn_name, prev_fn_name): ret += "/" + fn_name prev_fn_name = fn_name ret += "/" + op_name + suffix return ret @classmethod def build_function_stack(cls, index, func_stack, frame_name, prev_fn, op_name, stack, ins_frame): # Build funcStack fn_name = frame_name # Capture class name # # Iterate through the stack frames (like a linked list) until we get # to the detailed frame we want. This is much faster and less # expensive than extracting the entire frame stack every time # # ins stack is backwards from traceback, so depth is inverse # of current traceback depth # depth = len(stack) - index for _ in range(1, depth): ins_frame = ins_frame.f_back # Grab the class name if it exists # if 'self' in ins_frame.f_locals: fn_name = ins_frame.f_locals['self'].__class__.__name__ + "::" + fn_name key = (func_stack, frame_name, "") if (fn_name in ["wrapper_func", "always_benchmark_wrapper"]): key = (func_stack, frame_name, op_name) if key not in cls.func_map.keys(): cls.func_map[key] = {} # If we have been to this stack depth with all the same # information, use the stored name # if prev_fn in cls.func_map[key].keys(): fn_name = cls.func_map[key][prev_fn] else: # If we have been do this stack depth and have called # this function at least once but didn't hit in the dict # above, then this is a repeat call. Postpend a count # to the fn_name to uniquify it # if len(cls.func_map[key]) > 0: fn_name = fn_name + "(" + str(1 + len(cls.func_map[key])) + ")" # Store this new unique stack information with the # determined fn_name # cls.func_map[key][prev_fn] = fn_name return fn_name @classmethod def capture_inputs(cls, call_id, input_callid_list, *args): input_tensors = [] for arg in args: if isinstance(arg, torch.Tensor): input_tensors.append({ 'ptr': arg.data_ptr(), }) elif isinstance(arg, list) or isinstance(arg, tuple): for item in arg: if isinstance(item, torch.Tensor): input_tensors.append({ 'ptr': item.data_ptr(), }) if isinstance(item, list) or isinstance(item, tuple): for item2 in item: if isinstance(item2, torch.Tensor): input_tensors.append({ 'ptr': item2.data_ptr(), }) for input_id, _ in enumerate(input_tensors): input_ptr = input_tensors[input_id]['ptr'] if input_ptr in cls.op_to_out_tensor_map: input_callid_info = cls.op_to_out_tensor_map[input_ptr] if input_callid_info not in input_callid_list: input_callid_list.append(input_callid_info) dprint(f"Callid {call_id} Input tensor ptr {input_ptr} fetching saved call_id"\ f" {input_callid_info} port 0") else: ## otherwise, push '-1'. this allows the input param shapes to align with the ## input_callids when building the graph input_callid_list.append(-1) @classmethod def capture_outputs(cls, call_id, result): output_tensors = [] if isinstance(result, torch.Tensor): output_tensors.append({ 'ptr': result.data_ptr(), }) elif isinstance(result, list) or isinstance(result, tuple): for item in result: if isinstance(item, torch.Tensor): output_tensors.append({ 'ptr': item.data_ptr(), }) for out_port, _ in enumerate(output_tensors): output_ptr = output_tensors[out_port]['ptr'] cls.op_to_out_tensor_map[output_ptr] = f"{call_id}" dprint(f"call_id {call_id} output tensors {output_tensors}")
PyProf-master
pyprof/nvtx/dlprof.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .nvmarker import init from .nvmarker import add_wrapper as wrap from .nvmarker import start_graph from .nvmarker import stop_graph
PyProf-master
pyprof/nvtx/__init__.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file intercepts (monkey patches) the following functions and adds NVTX markers. torch.* torch.Tensor.* torch.nn.functional.* torch.nn.*.forward The NVTX markers (one or more) contain the following information call trace (a list of file_name:line_number) extra_repr() from torch.nn modules module/class name function name inputs (args and kwargs) scalar: name, type and value tensor: name, shape and datatype numpy: name, shape and datatype list/tuple: a sequence of scalars or tensors or numpy arrays """ import torch import torch.cuda.nvtx as nvtx import numpy import inspect as ins import traceback import math import json import importlib from .config import Config from .dlprof import DLProf from .dlprof import dprint # Singleton object tracking dlprof specific information dlprof = DLProf() # flag to control wrapping ops in nvtx markers wrappers_enabled = True def start_graph(): """ start_graph() This function is exported in __init__.py so the instrumentation code can control which iteration to capture the network graph. Use this in conjunction with config option --delay_graph_capture """ global wrappers_enabled wrappers_enabled = True dprint(f"Starting graph tracker wrappers enabled {wrappers_enabled}") return def stop_graph(): """ stop_graph() This function is exported in __init__.py so the instrumentation code can stop the graph capture at the end of a specific iteration. Use this in conjunction with config option --delay_graph_capture """ global wrappers_enabled wrappers_enabled = False dprint(f"Stopping graph tracker wrappers enabled {wrappers_enabled}") return def isfunc(mod, f): assert hasattr(mod, f) attr = getattr(mod, f) #Ignore functions like _add if (len(f) >= 2): if f[0] == "_" and f[1] != "_": return False #Ignore functions from this list ignore = [ '__all__', '__array__', '__array_priority__', '__array_wrap__', '__bool__', '__builtins__', '__cached__', '__class__', '__deepcopy__', '__delattr__', '__delitem__', '__dict__', '__dir__', '__doc__', '__file__', '__format__', '__getattribute__', '__getitem__', '__hash__', '__index__', '__init__', '__init_subclass__', '__iter__', '__len__', '__loader__', '__module__', '__name__', '__new__', '__nonzero__', '__package__', '__path__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__setattr__', '__setitem__', '__setstate__', '__sizeof__', '__spec__', '__str__', '__subclasshook__', '__version__', '__weakref__' ] #Add functions to this list if they cause recursion ignore += ['size', 'tolist', 'dim', 'is_storage', 'item', 'data_ptr'] # Add functions to this list if they are called often, are generally extremely # short, and don't lead GPU usage # ignore += [ 'autocast_decrement_nesting', 'autocast_increment_nesting', 'contiguous', 'detach', 'empty', 'from_numpy', 'has_torch_function', 'is_autocast_enabled', 'is_available', 'is_complex', 'is_floating_point', 'is_grad_enabled', 'is_initialized', 'is_tensor', 'numel', 'requires_grad_', 'set_autocast_enabled', 'to', 'type' ] if f in ignore: return False return ins.ismethod(attr) or ins.isfunction(attr) or ins.ismethoddescriptor(attr) or ins.isbuiltin(attr) # Returns a dict string with a tracemarker and function stack in it # def traceMarker(op_name): config = Config() # Return a trace marker string and func_stack string # def get_trace_info(op_name): cadena = [] stack = traceback.extract_stack() func_stack = "" # Previous frame name and line. This is the file and line # that CALLED the frame we are in # prev_fn = "" # Starting at index of 2 to ignore this function and its parent (traceMarker). # Intentionally leaving in wrapper_func and other functions in this file as they # may be needed to uniquify the node name # for idx in range(len(stack) - 2): frame = stack[idx] # Build traceMarker # # Don't include any functions from this file (nvmarker.py) # Also skip repeated back to back cases of the same file/line (recursive calls) # fnl = "{}:{}".format(frame.filename, frame.lineno) if (not frame.filename.endswith("nvmarker.py") and fnl != prev_fn): cadena.append(fnl) # Early exit if we aren't doing any funcStack code # if not config.func_stack_enabled: continue else: ins_frame = ins.currentframe() fn_name = dlprof.build_function_stack(idx, func_stack, frame.name, prev_fn, op_name, stack, ins_frame) del ins_frame prev_fn = fnl # Append this frame's info into the function stack # func_stack = func_stack + "/" + fn_name if config.func_stack_enabled: func_stack = dlprof.cleanup_func_stack(func_stack, op_name) return cadena, func_stack d = {} tm, fs = get_trace_info(op_name) d['traceMarker'] = tm if config.func_stack_enabled: d['funcStack'] = fs return str(d) def modMarker(mod, fn_name, args): """ Returns the stringified extra_repr() of a module. """ assert (len(args) > 0) d = {} d['mod'] = mod.__name__ d['strRepr'] = args[0].extra_repr() return str(d) def add_wrapper(mod, fn_name): config = Config() # Get a pointer to the original function func = getattr(mod, fn_name) # Check if the mod has a string representation # and is not a Script or Traced module (used by JIT) # yapf: disable s = hasattr(mod, "extra_repr") and (type(mod) is not torch.jit.ScriptModule ) and (type(mod) is not torch.jit.TopLevelTracedModule) # yapf: enable def wrapper_func(*args, **kwargs): global wrappers_enabled traceMarker_str = "" input_callid_list = [] if wrappers_enabled: if config.capture_input_ops: ## Stack for callids to work with nested monkey patch function calls dlprof.patch_list.append(dlprof.call_id) dlprof.capture_inputs(dlprof.call_id, input_callid_list, *args) # Push trace marker traceMarker_str = traceMarker(fn_name) nvtx.range_push(traceMarker_str) # Push module marker if s: m = modMarker(mod, fn_name, args) nvtx.range_push(m) # Create and push argument marker # # Disable wrappers while getting the argMarker in case it # ends up executing another wrapped function wrappers_enabled = False if config.capture_input_ops: saved_call_id = dlprof.call_id # Keeps call_id correct when there are nested # monkey patch functions if dlprof.call_id != dlprof.patch_list[0]: saved_call_id = dlprof.patch_list[0] cadena = argMarker(mod, fn_name, args, kwargs, saved_call_id, input_callid_list) else: cadena = argMarker(mod, fn_name, args, kwargs) nvtx.range_push(cadena) wrappers_enabled = True # Call the original function result = func(*args, **kwargs) if wrappers_enabled: # Pop argumet marker nvtx.range_pop() # Pop module marker if s: nvtx.range_pop() # Pop trace marker nvtx.range_pop() if config.capture_input_ops: # Keeps call_id correct when there are nested # monkey patch functions saved_call_id = dlprof.call_id if dlprof.call_id != dlprof.patch_list[0]: saved_call_id = dlprof.patch_list[0] dlprof.capture_outputs(saved_call_id, result) # Store the callid -> op_name mapping if traceMarker_str != "": traceMarker_str = traceMarker_str.replace("\'", "\"") traceMarker_dict = json.loads(traceMarker_str) dlprof.call_id_to_op_map[saved_call_id] = traceMarker_dict['funcStack'] starting_call_id = dlprof.patch_list[0] last_call_id = dlprof.patch_list.pop() dlprof.call_id = dlprof.call_id + 1 return result setattr(mod, fn_name, wrapper_func) def argMarker(mod, op, args, kwargs, idx=-1, inputid_list=[]): #For this function args is a tuple and kwargs is a dict config = Config() def tensor(arg, name=""): if config.capture_input_ops: cid = dlprof.op_to_out_tensor_map.get(arg.data_ptr(), -1) name = dlprof.call_id_to_op_map.get(int(cid), "") a = {} a['name'] = name a['type'] = "tensor" a['shape'] = tuple(arg.size()) a['dtype'] = str(arg.dtype).split(".")[-1] cadena['args'].append(a) def ndarray(arg, name=""): a = {} a['name'] = name a['type'] = "ndarray" a['shape'] = arg.shape a['dtype'] = str(arg.dtype).split(".")[-1] cadena['args'].append(a) def seq(arg, name=""): assert issequence(arg) a = {} a['name'] = name if isinstance(arg, list): a['type'] = "list" a['value'] = arg else: a['type'] = "tuple" # The arg could be torch.Size, which is a subclass of tuple # Therefore, explicitly convert to tuple a['value'] = tuple(arg) cadena['args'].append(a) def scalar(arg, name=""): a = {} a['name'] = name a['type'] = type(arg).__name__ #handle the case when the argument is +/- inf or nan if arg == float('inf'): a['value'] = "inf" elif arg == float('-inf'): a['value'] = "-inf" elif isinstance(arg, float) and math.isnan(arg): a['value'] = "nan" else: a['value'] = arg cadena['args'].append(a) def isscalar(arg): return (type(arg) is int) or (type(arg) is float) or (type(arg) is bool) or (arg is None) or (type(arg) is str) def issequence(arg): return isinstance(arg, list) or isinstance(arg, tuple) def foo(args, name): #args should be an iterable sequence e.g. list or tuple for arg in args: if isinstance(arg, torch.Tensor): if arg.dim() == 0: scalar(arg.item(), name) else: tensor(arg, name) elif isinstance(arg, numpy.ndarray): ndarray(arg, name) elif (isscalar(arg)): scalar(arg, name) elif issequence(arg): if (len(arg) == 0) or isscalar(arg[0]): #An empty sequence or a sequence of scalars seq(arg, name) else: # A sequence of tensors or numpy arrays foo(arg, name) ''' else: print("The following arg is none of Tensor, numpy array, scalar but a %s" % (str(type(arg)))) print("Mod: %s" % str(mod.__name__)) print("Op: %s" % str(op)) print(dir(arg)) ''' cadena = {} cadena['mod'] = mod.__name__ cadena['op'] = op if config.capture_input_ops: cadena['callid'] = idx cadena['input_callids'] = inputid_list cadena['args'] = [] foo(args, "") for k, v in kwargs.items(): foo((v, ), k) return str(cadena) def patchClass(cls): for f in dir(cls): if isfunc(cls, f): add_wrapper(cls, f) def patch_torch_classes(): """Monkey-patch all classes in torch""" for cls in [torch, torch.Tensor, torch.nn.functional, torch.distributed]: patchClass(cls) def patch_torch_nn_forward_functions(): """Monkey-patch all forward functions in torch.nn libraries""" for cls in [torch.nn.RNN, torch.nn.RNNCell, torch.nn.LSTM, torch.nn.LSTMCell, torch.nn.GRU, torch.nn.GRUCell]: if isfunc(cls, 'forward'): add_wrapper(cls, 'forward') def patch_dataloader(): """Monkey-patch the dataloader in torch.utils.data""" mod = torch.utils.data.dataloader old_iter = mod.DataLoader.__iter__ def new_iter(self, *args, **kwargs): # Push trace marker nvtx.range_push(traceMarker("Dataloader")) # First pass is for creating the dataloader + returning the first data cadena = argMarker(mod, "DataLoader", args, kwargs) nvtx.range_push(cadena) for x in old_iter(self, *args, **kwargs): # Pop tracemarker nvtx.range_pop() # Dataloader stop, Model start nvtx.range_pop() yield x # Push trace marker nvtx.range_push(traceMarker("DataLoader")) # Model stop, dataloader start cadena = argMarker(mod, "DataLoader", args, kwargs) nvtx.range_push(cadena) # Pop the last iteration before returning nvtx.range_pop() nvtx.range_pop() mod.DataLoader.__iter__ = new_iter def patch_apex(): """Monkey-patch functions in APEX""" patch_apex_c() patch_apex_pyt() def patch_apex_c(): """Monkey-patch C-implemented functions in APEX""" if importlib.util.find_spec("amp_C") is not None: import amp_C patchClass(amp_C) if importlib.util.find_spec("fused_adam_cuda") is not None: import fused_adam_cuda patchClass(fused_adam_cuda) if importlib.util.find_spec("fused_lamb_cuda") is not None: import fused_lamb_cuda patchClass(fused_lamb_cuda) if importlib.util.find_spec("fused_layer_norm_cuda") is not None: import fused_layer_norm_cuda patchClass(fused_layer_norm_cuda) if importlib.util.find_spec("distributed_lamb_cuda") is not None: import distributed_lamb_cuda patchClass(distributed_lamb_cuda) if importlib.util.find_spec("xentropy_cuda") is not None: import xentropy_cuda patchClass(xentropy_cuda) if importlib.util.find_spec("mlp_cuda") is not None: import mlp_cuda patchClass(mlp_cuda) def patch_apex_pyt(): """Monkey-patch pytorch-implemented functions in APEX""" if importlib.util.find_spec("apex") is not None: patch_apex_module("apex.amp") patch_apex_module("apex.contrib.groupbn") patch_apex_module("apex.contrib.multihead_attn") patch_apex_module("apex.contrib.optimizers") patch_apex_module("apex.contrib.sparsity") patch_apex_module("apex.contrib.xentropy") patch_apex_module("apex.fp16_utils") patch_apex_module("apex.mlp") patch_apex_module("apex.multi_tensor_apply") patch_apex_module("apex.optimizers") patch_apex_module("apex.parallel") #patch_apex_module("apex.RNN") # Confirmed to be dead code. Do not patch def is_same_module_or_submodule(orig, incoming): """ Returns true if the incoming module is the same module as the original, or is a submodule of the original module """ if incoming is None: return False if orig == incoming: return True if incoming.__name__.startswith(orig.__name__): return True return False def patch_apex_module(modstr): """ Patch all forward/backward/step functions in classes in the given apex module. """ if importlib.util.find_spec(modstr) is not None: mod = importlib.import_module(modstr) for n, v in ins.getmembers(mod): # This makes sure we don't patch random other modules that are imported by the target module # if is_same_module_or_submodule(mod, ins.getmodule(v)): if (ins.isclass(v)): patch_apex_class(v) def patch_apex_class(cls): """ Patch all forward/backward/step functions in the given apex class """ for f in cls.__dict__: if (ins.isfunction(cls.__dict__[f])): if f in ["forward", "backward", "step"]: add_wrapper(cls, f) def push_nvtx_model_config(config): """ Helper function to dump the passed in dict config as an nvtx marker with "model_config" key """ nvtx_msg = json.dumps({"model_config": config}) nvtx.range_push(nvtx_msg) def patch_dataloader_init(): """ Capture dataloader config (num_workers and pin_memory) and emit a model_config nvtx range with the information """ mod = torch.utils.data.dataloader old_init = mod.DataLoader.__init__ def new_init(self, *args, **kwargs): num_workers = kwargs.get("num_workers", 0) pin_memory = kwargs.get("pin_memory", False) push_nvtx_model_config({"num_workers": num_workers, "pin_memory": pin_memory}) old_init(self, *args, **kwargs) nvtx.range_pop() mod.DataLoader.__init__ = new_init # Flag to indicate that cudnn_benchmark_disabled has already been reported # cudnn_benchmark_disabled_reported = False def patch_with_always_benchmark(mod, fn_name): """ Patch the given mod/function so that if it is ever executed and torch.backends.cudnn.benchmark is not true, it will emit an nvtx range to report that fact """ assert isfunc(mod, fn_name) old_fn = getattr(mod, fn_name) def always_benchmark_wrapper(*args, **kwargs): global cudnn_benchmark_disabled_reported add_nvtx = not torch.backends.cudnn.benchmark and not cudnn_benchmark_disabled_reported if add_nvtx: cudnn_benchmark_disabled_reported = True push_nvtx_model_config({"cudnn_benchmark_disabled": True}) result = old_fn(*args, **kwargs) if add_nvtx: nvtx.range_pop() return result setattr(mod, fn_name, always_benchmark_wrapper) def patch_never_call(mod, fn_name, key): """ Patch the given mod/function. If the function is executed, emit an nvtx_range with data indicating that 'key' was true """ old_fn = getattr(mod, fn_name) def wrapper_func(*args, **kwargs): push_nvtx_model_config({key: True}) result = old_fn(*args, **kwargs) nvtx.range_pop() return result setattr(mod, fn_name, wrapper_func) def patch_never_call_with_args(mod, fn_name, key, bad_args): """ Patch the given mod/function. If the function is executed and any of the bad args have any of the listed bad values, emit an nvtx_range with data indicating that 'key' was true """ old_fn = getattr(mod, fn_name) def wrapper_func(*args, **kwargs): signature = ins.signature(old_fn) bound = signature.bind(*args, **kwargs) bound.apply_defaults() problem = False for k, v in bound.arguments.items(): if k in bad_args: if v in bad_args[k]: problem = True if problem: push_nvtx_model_config({key: True}) result = old_fn(*args, **kwargs) if problem: nvtx.range_pop() return result setattr(mod, fn_name, wrapper_func) def patch_model_configs(): """ Patch functions that help gather high-level configuration options for the model. All resulting nvtx ranges will have 'model_config' as the primary key """ patch_dataloader_init() patch_with_always_benchmark(torch.nn.functional, "conv1d") patch_with_always_benchmark(torch.nn.functional, "conv2d") patch_with_always_benchmark(torch.nn.functional, "conv3d") patch_with_always_benchmark(torch.nn.functional, "conv_transpose1d") patch_with_always_benchmark(torch.nn.functional, "conv_transpose2d") patch_with_always_benchmark(torch.nn.functional, "conv_transpose3d") patch_never_call(torch.autograd.detect_anomaly, "__init__", "detect_anomaly") patch_never_call(torch.autograd, "gradcheck", "gradcheck") patch_never_call(torch.autograd, "gradgradcheck", "gradgradcheck") patch_never_call(torch.autograd.profiler.record_function, "__init__", "record_function") # Patch both AMP libraries # import importlib if importlib.util.find_spec("apex") is not None and importlib.util.find_spec("apex.amp") is not None: import apex.amp patch_never_call_with_args(apex.amp, "initialize", "amp_enabled", {"enabled": {True}}) patch_never_call_with_args(torch.cuda.amp, "autocast", "amp_enabled", {"enabled": {True}}) patch_never_call_with_args(torch.autograd.profiler.profile, "__init__", "profile", {"enabled": {True}}) patch_never_call_with_args(torch.autograd.set_detect_anomaly, "__init__", "detect_anomaly", {"mode": {True}}) patch_never_call_with_args(torch.autograd.profiler.emit_nvtx, "__init__", "emit_nvtx", {"enabled": {True}}) def init(*args, **kwargs): """ Initialize pyprof and monkey-patch Torch functions Kwargs: enable_function_stack (bool): When true, function stack information will be added to NVTX markers capture_input_ops (bool): When true, input tensor names will be added to NVTX markers and enable_function_stack is set to True. """ global wrappers_enabled config = Config(*args, **kwargs) if config.delay_graph_capture: ## Disable wrappers_enabled at init when user wants to control ## which iteration to begin graph capture wrappers_enabled = False print("Initializing NVTX monkey patches") patch_apex() patch_dataloader() patch_torch_classes() patch_torch_nn_forward_functions() patch_model_configs() print("Done with NVTX monkey patching")
PyProf-master
pyprof/nvtx/nvmarker.py
""" A script to convert the csv file output into two kinds of graphs: 1, Graphs of each hyperparameter with the benchmark (e.g. valid perplexity) 2, Color graphs that show the relationship between any two hyperparameters and the benchmark To run the script, use: python3 visualize.py --file [the name of the results csv file] --n [the number of samples to visualize] --subplots [the number of subplots to show in a plot] --max [the max value of benchmark you care about] # Copyright (c) 2018 NVIDIA Corporation """ import argparse import os import math import random import re from matplotlib import pyplot as plt import numpy as np def get_names(params): names = [] for part in params: names.append(part[2:part.find('=')]) return names def is_number(s): if is_float(s): return True, float(s) if is_int(s): return True, int(s) return False, s def is_int(s): try: int(s) return True except ValueError: return False def is_float(s): return re.match("^\d+?\.\d+?$", s) is not None def colorplot(results, xlabel, ylabel, values, benchmark, graph_folder): fig, ax = plt.subplots() scat = ax.scatter(results[xlabel], results[ylabel], c=values) fig.colorbar(scat, label=benchmark) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.savefig(os.path.join(graph_folder, xlabel + '_' + ylabel + '.png')) plt.close() def main(): parser = argparse.ArgumentParser(description='visualizing Milano results') parser.add_argument('--file', type=str, default='results.csv', help='location of the result file') parser.add_argument('--n', type=int, default=-1, help='number of results to visualize. -1 for all') parser.add_argument('--subplots', type=int, default=6, help='the number of subplots in one plot') parser.add_argument('--max', type=int, default=-1, help='the max value of the benchmark you care about. -1 means you care about all values') args = parser.parse_args() result_lines = open(args.file, 'r').readlines() benchmark = result_lines[0].split(',')[1] if len(result_lines) <= 1: raise ValueError('No experiments recorded') lines = [line.split(',') for line in result_lines[1:]] params = lines[0][2].split() param_names = get_names(params) raw_benchmarks = [float(line[1]) for line in lines] if not args.max == -1: raw_benchmarks = [b if b < args.max else float('inf') for b in raw_benchmarks] max_ = max([v for v in raw_benchmarks if v != float('inf')]) benchmarks = [v if v != float('inf') else max_ * 1.2 + random.uniform(-max_ * 0.05, max_ * 0.05) for v in raw_benchmarks] results = {name: [] for name in param_names} for line in lines: for part in line[2].split(): idx = part.find('=') results[part[2:idx]].append(is_number(part[idx + 1:])[1]) samples = args.n if (args.n != -1 and args.n <= len(lines)) else len(lines) graph_folder = 'graphs_{}'.format(samples) os.makedirs(graph_folder, exist_ok=True) n_params = len(param_names) n_rows = math.ceil(args.subplots / 2) n_cols = 2 n_plots = math.ceil(n_params / args.subplots) for j in range(n_plots): for i, name in enumerate(param_names[j * args.subplots : (j + 1) * args.subplots]): plt.subplot(n_rows, n_cols, i + 1) plt.plot(results[name][:samples], benchmarks[:samples], 'bo') plt.title(name) plt.ylabel(benchmark) plt.savefig(os.path.join(graph_folder, 'single_params_{}.png'.format(j))) plt.show() plt.close() for i, xlabel in enumerate(param_names): for j, ylabel in enumerate(param_names): if i >= j: continue colorplot(results, xlabel, ylabel, benchmarks, benchmark, graph_folder) if __name__ == '__main__': main()
Milano-master
visualize.py
# Copyright (c) 2018 NVIDIA Corporation import argparse import runpy from milano.exec_utils import ExecutionManager if __name__ == '__main__': parser = argparse.ArgumentParser(description='Tuning parameters') parser.add_argument("--config", required=True, help="Path to the configuration file.") parser.add_argument("--output_file", default="results.csv", help="Path to the output file containing results.") parser.add_argument("--verbose", type=int, default=1, help="How much output to print. Setting to 0 mutes " "the script, 3 is the highest level.") args = parser.parse_args() config = runpy.run_path(args.config) backend_manager = config['backend']( script_to_run=config['script_to_run'], **config['backend_params'], ) search_algorithm = config['search_algorithm']( params_to_tune=config['params_to_tune'], params_to_try_first=config.get('params_to_try_first', None), objective=config['objective'], **config['search_algorithm_params'], ) exec_mng = ExecutionManager( backend_manager=backend_manager, search_algorithm=search_algorithm, res_pattern=config['result_pattern'], objective=config['objective'], constraints=config.get('constraints', []), output_file=args.output_file, verbose=args.verbose, ) exec_mng.start_tuning()
Milano-master
tune.py
# Copyright (c) 2018 NVIDIA Corporation import asyncio import numpy as np import pandas as pd import re import traceback from typing import Iterable, Mapping, Any, Tuple, Optional from .backends.base import Backend, JobStatus, RetrievingJobLogsError, \ IsWorkerAvailableError, GettingJobStatusError, \ KillingJobError, LaunchingJobError from .search_algorithms.base import SearchAlgorithm class ExecutionManager: def __init__(self, backend_manager: Backend, search_algorithm: SearchAlgorithm, res_pattern: str, objective: str, constraints: Iterable[Mapping[str, Any]], output_file: str = None, verbose=0, sleep_time=5, wait_for_logs_time=10, max_retries=5) -> None: self._res_pattern = res_pattern self._search_algorithm = search_algorithm self._backend_manager = backend_manager self._num_workers = self._backend_manager.num_workers self._constraints = constraints self._output_file = output_file self._verbose = verbose self._sleep_time = sleep_time self._wait_for_logs_time = wait_for_logs_time self._max_retries = max_retries if objective.lower() not in ["minimize", "maximize"]: raise ValueError( 'Objective has to be "minimize" or "maximize", ' 'but "{}" was provided'.format(objective) ) self._objective = objective.lower() if self._objective == "minimize": self._failure_score = np.inf else: self._failure_score = -np.inf self.final_results = None self._cnt = 0 def _parse_result(self, log: str) -> Optional[float]: """This method takes a log string and parses it to produce resulting float. More precisely it looks for the last occurrence of ``self._res_pattern`` in the log file and takes the float which supposed to be present right after the sought pattern. If no pattern was found, None is returned. """ res_pos = log.rfind(self._res_pattern) # -1 means the res_pattern is not found, returning None if res_pos == -1: return None res_pos += len(self._res_pattern) return float(log[res_pos:].split(maxsplit=1)[0]) def _check_constraints(self, log: str) -> bool: """This method returns True if all constraints are satisfied and False otherwise. We default to False in case of exception """ def formatter(value_str: str) -> float: return float(value_str) pattern = None value = None try: for constraint_dict in self._constraints: pattern = constraint_dict["pattern"] for i, pos in enumerate(re.finditer(pattern, log)): if i < constraint_dict.get("skip_first", 0): continue val_pos = pos.end() value_string = log[val_pos:].split(maxsplit=1)[0] cur_formatter = constraint_dict.get("formatter", formatter) value = cur_formatter(value_string) rng = constraint_dict["range"] if value < rng[0] or value > rng[1]: if self._verbose > 2: print('Constraint "{}" not satisfied with value = {}'.format( pattern, value, )) return False return True except: print('Constraint checking with pattern "{}" and with value = {} threw exeption. Setting not satisfied.'.format( pattern, value, )) return False async def get_available_worker(self) -> int: """This method returns the first available worker. The backend is queried for the next worker every sleep_time second. """ while True: available_id = -1 for worker_id in range(self._num_workers): try: worker_available = self._backend_manager.is_worker_available(worker_id) except IsWorkerAvailableError as e: worker_available = False if self._verbose > 1: print("IsWorkerAvailableError raised for worker {}: {}".format( worker_id, e.message, )) if worker_available: available_id = worker_id break if available_id == -1: await asyncio.sleep(self._sleep_time) else: return available_id async def _handle_running_job(self, job_info: object, job_params: str, worker_id: int) -> Tuple[Optional[str], Optional[float]]: """Helper function that handles running jobs.""" result, job_status = None, None try: log = self._backend_manager.get_logs_for_job(job_info) except RetrievingJobLogsError: log = None if log is not None: if not self._check_constraints(log): for i in range(self._max_retries): try: self._backend_manager.kill_job(job_info) break except KillingJobError as e: if i == self._max_retries - 1: if self._verbose > 1: print('Could not kill job "{}" on worker {}: {}'.format( job_params, worker_id, e.message, )) # continuing execution, since worker can't become available return None, None result = self._failure_score job_status = "Some constraints are not satisfied" if self._verbose > 1: print( 'Killed job "{}" on worker {}: constraints are not satisfied' .format(job_params, worker_id) ) return job_status, result async def _handle_succeeded_job(self, job_info: object, job_params: str, worker_id: int) -> Tuple[str, float]: """Helper function that handles succeeded jobs.""" # trying 5 times and than returning None as if the job failed log = None for i in range(self._max_retries): # waiting here in order to let the backend time to finalize results await asyncio.sleep(self._wait_for_logs_time) try: log = self._backend_manager.get_logs_for_job(job_info) break except RetrievingJobLogsError as e: if i == self._max_retries - 1: if self._verbose > 1: print('Could not access logs for job "{}" on worker {}: {}'.format( job_params, worker_id, e.message, )) return "Job failed: could not access logs", self._failure_score # log was successfully retrieved, trying to parse results result = self._parse_result(log) if result is None: if self._verbose > 1: print('"{}" was not found in log for job {} on worker {}'.format( self._res_pattern, job_params, worker_id, )) return ( "Job failed: {} was not found in job's log".format(self._res_pattern), self._failure_score ) # got valid result, checking constraints if not self._check_constraints(log): if self._verbose > 1: print("Constraints not satisfied on job {}".format(job_params)) return "Some constraints are not satisfied", self._failure_score # everything is correct, returning result if self._verbose > 1: print("Got {} {} for job \"{}\" on worker {}".format( self._res_pattern, result, job_params, worker_id, )) return "Job succeeded", result async def _handle_failed_job(self, job_info: object, job_params: str, worker_id: int) -> Tuple[str, float]: """Helper function that handles failed jobs.""" if self._verbose > 1: print('Job "{}" failed on worker {}'.format(job_params, worker_id)) return "Job failed", self._failure_score async def _start_job_and_push_results(self, job_params: str, worker_id: int, results_queue: asyncio.Queue) -> None: """This method is responsible for starting job and pushing result to queue. It will launch the job with ``job_params`` on worker ``worker_id`` and then wait until job status becomes "succeeded" or "failed", periodically checking that job's log satisfies constraints. The backend is queried for the job status every sleep_time seconds. As soon as the backend reports success or failure the ``(job_params, result, job_status)`` tuple is pushed into the ``results_queue``. The result is obtained by getting the job log from the backend (trying a few times if something goes wrong) and searching for the ``self._res_pattern``. In case of failure or when ``self._res_pattern`` was not found in job log, result is equal to ``np.inf`` (or ``-np.inf``, depending on the objective). """ # making the function exception-safe, since they are not going to # be handled or stop execution of the main program flow try: for i in range(self._max_retries): try: job_info = self._backend_manager.launch_job(worker_id, job_params) break except LaunchingJobError as e: if i == self._max_retries - 1: if self._verbose > 1: print("Backend can't start job {} on worker {}: {}".format( job_params, worker_id, e.message, )) elif self._verbose == 1: self._cnt += 1 print("Processed {} jobs".format(self._cnt), end="\r") await results_queue.put((self._failure_score, job_params, "Job failed: can't launch job on backend")) return if self._verbose > 1: print("Started job \"{}\" on worker {}".format(job_params, worker_id)) while True: for i in range(self._max_retries): try: status = self._backend_manager.get_job_status(job_info) break except GettingJobStatusError as e: if i == self._max_retries - 1: # setting status to JobStatus.RUNNING, since it's unclear # what state the job is in currently status = JobStatus.RUNNING if self._verbose > 1: print("Can't get status for job {} on worker {}: {}".format( job_params, worker_id, e.message, )) if status == JobStatus.RUNNING or status == JobStatus.PENDING: job_status, result = await self._handle_running_job( job_info, job_params, worker_id, ) if result is None: # everything is ok, can continue running this job await asyncio.sleep(self._sleep_time) continue elif status == JobStatus.SUCCEEDED: job_status, result = await self._handle_succeeded_job( job_info, job_params, worker_id, ) elif status == JobStatus.FAILED or status == JobStatus.KILLED or status == JobStatus.NOTFOUND: job_status, result = await self._handle_failed_job( job_info, job_params, worker_id, ) else: raise RuntimeError("Got unknown status from job: {}".format(status)) if self._verbose == 1: self._cnt += 1 print("Processed {} jobs".format(self._cnt), end="\r") await results_queue.put((result, job_params, job_status)) return except Exception as e: if self._verbose > 1: print("Job {} on worker {} failed with unhandled exception:".format( job_params, worker_id, )) print(traceback.format_exc()) elif self._verbose == 1: self._cnt += 1 print("Processed {} jobs".format(self._cnt), end="\r") await results_queue.put((self._failure_score, job_params, "Job failed: unhandled exception")) async def _process_jobs(self, jobs_queue: asyncio.Queue, results_queue: asyncio.Queue) -> None: """Main routine for processing jobs. This method will query the ``jobs_queue`` for the jobs parameters and launch jobs as soon as new parameters are pushed in the queue. The jobs are launched with :meth:`_start_job_and_push_results` calls which are wrapped with ``asyncio.ensure_future`` so that they don't block code execution. In order to ensure that all jobs are finished, the futures objects are stored in ``jobs_dispatched`` list and the method waits for all of them before finishing. The main loop will query for the new job parameters every sleep_time seconds and will stop as soon as it gets None. """ jobs_dispatched = [] while True: job_params = await jobs_queue.get() if job_params is None: break # converting dictionary into cmd arguments job_params = " ".join( ["{}={}".format(name, val) for name, val in job_params.items()] ) worker_id = await self.get_available_worker() jobs_dispatched.append(asyncio.ensure_future( self._start_job_and_push_results(job_params, worker_id, results_queue) )) # waiting for job to start and make worker busy await asyncio.sleep(self._sleep_time) for job_dispatched in jobs_dispatched: await asyncio.wait_for(job_dispatched, timeout=None) await results_queue.put(None) async def _generate_jobs(self, jobs_queue: asyncio.Queue, results_queue: asyncio.Queue) -> None: """This method is used to generate all search jobs. It uses ``self._search_algorithm`` to get the first set of jobs by calling ``self._search_algorithm.gen_initial_jobs()`` and pushes all of them to the ``jobs_queue``. It then enters the loop until it gets None from the ``results_queue``. On each iteration of the loop it will wait for the new result to appear in the results_queue and ask the ``self._search_algorithm`` to generate new jobs based on the last result retrieved using ``self._search_algorithm.gen_new_jobs``. It will then push all new jobs into the ``jobs_queue`` and save the current ``results.csv``. """ init_jobs = self._search_algorithm.gen_initial_params() for job_params in init_jobs: await jobs_queue.put(job_params) results = [] cnt = 0 while True: result_tuple = await results_queue.get() if result_tuple is None: break cnt += 1 results.append(result_tuple + (cnt,)) new_jobs = self._search_algorithm.gen_new_params( result=result_tuple[0], params=dict([arg_val.split('=') for arg_val in result_tuple[1].split()]), evaluation_succeeded=(not result_tuple[2].startswith("Job failed")) ) for job_params in new_jobs: await jobs_queue.put(job_params) if self._objective == "minimize": sorted_results = sorted(results) else: sorted_results = sorted(results, reverse=True) if self._output_file: pd.DataFrame( data=sorted_results, columns=[self._res_pattern, "params", "status", "job_id"], ).to_csv(self._output_file) if self._verbose > 1: print( "\nTop-10 parameters:\n {}".format( "\n ".join(["{} {} for job \"{}\"".format( self._res_pattern, value, cmd, ) for value, cmd, status, job_id in sorted_results[:10]]) ) ) self.final_results = pd.DataFrame( data=sorted_results, columns=[self._res_pattern, "params", "status", "job_id"], ) def start_tuning(self) -> None: """This is the main function that should be called to start tuning.""" self._cnt = 0 loop = asyncio.get_event_loop() jobs_queue = asyncio.Queue(loop=loop) results_queue = asyncio.Queue(loop=loop) generate_jobs_coroutine = self._generate_jobs( jobs_queue=jobs_queue, results_queue=results_queue, ) process_jobs_coroutine = self._process_jobs( jobs_queue=jobs_queue, results_queue=results_queue, ) loop.run_until_complete(asyncio.gather(generate_jobs_coroutine, process_jobs_coroutine)) loop.close()
Milano-master
milano/exec_utils.py
# Copyright (c) 2018 NVIDIA Corporation
Milano-master
milano/__init__.py
# Copyright (c) 2018 NVIDIA Corporation import subprocess import json import os import shutil import copy import time import re from .utils import SSHClient from .base import Backend, JobStatus, RetrievingJobLogsError, \ GettingJobStatusError, KillingJobError, \ IsWorkerAvailableError, LaunchingJobError class SLURMBackend(Backend): """Class for working with SLURM backend.""" def __init__(self, script_to_run: str, workers_config: dict) -> None: super().__init__(script_to_run, workers_config) self._workers_config = workers_config self._num_workers = self._workers_config['num_workers'] self._partition = self._workers_config['partition'] self._key_path = workers_config['key_path'] self._entrypoint = workers_config['entrypoint'] self._username = workers_config['username'] with open(script_to_run) as fin: self._script_code = fin.read() self._ssh_client = SSHClient(private_key_path=self._key_path) try: self._ssh_client.connect(address=self._entrypoint, username=self._username) self._ssh_client.exec_command_blocking("cat {} > milano_script.sh") self._workers_job = [-1] * self._num_workers except: raise Exception("Couldn't connect to the backend. Check your credentials") def get_job_status(self, job_info: object) -> JobStatus: job_id = int(job_info) try: ec, stdout, stderr = self._ssh_client.exec_command_blocking( "scontrol show job {}".format(job_id)) except: raise GettingJobStatusError(stderr) match = re.search('JobState=(\S*)', stdout, re.IGNORECASE) if match is not None: result_string = match.group(1) else: return JobStatus.NOTFOUND if result_string == "COMPLETED": return JobStatus.SUCCEEDED elif result_string == "FAILED" or result_string == "NODE_FAIL" or \ result_string == "REVOKED" or result_string == "TIMEOUT": return JobStatus.FAILED elif result_string == "PENDING": return JobStatus.PENDING elif result_string == "RUNNING" or result_string == "CONFIGURING" or \ result_string == "COMPLETING": return JobStatus.RUNNING elif result_string == "CANCELLED" or result_string == "STOPPED" or \ result_string == "SUSPENDED": return JobStatus.KILLED else: print("~~~~~~~~~~~~~~~~~Got the following status: {}".format(result_string)) print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~") print(stdout) print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~") return JobStatus.UNKNOWN def get_logs_for_job(self, job_info: object) -> str: try: job_id = int(job_info) ec, stdout, stderr = self._ssh_client.exec_command_blocking( "scontrol show job {}".format(job_id)) match = re.search('StdOut=(\S*)', stdout, re.IGNORECASE) path = match.group(1) ec, stdout, stderr = self._ssh_client.exec_command_blocking( "cat {}".format(path)) return stdout except: raise RetrievingJobLogsError(stderr) def kill_job(self, job_info: object) -> None: try: job_id = job_info ec, stdout, stderr = self._ssh_client.exec_command_blocking( "scancel {}".format(job_id)) except: raise KillingJobError(stderr) def is_worker_available(self, worker_id: int) -> bool: if self._workers_job[worker_id] == -1: return True else: try: status = self.get_job_status(self._workers_job[worker_id]) except GettingJobStatusError as e: raise IsWorkerAvailableError(e.message) if status == JobStatus.RUNNING or status == JobStatus.PENDING \ or status == JobStatus.KILLED: return False else: self._workers_job[worker_id] = -1 return True def launch_job(self, worker_id: int, params: str) -> object: # first, copy script to entrypoint try: script_code = self._script_code.replace('"$@"', params) script_name = "script-{}-{}.sh".format(time.time(), worker_id) # move script to entrypoint ec, stdout, stderr = self._ssh_client.exec_command_blocking('echo "{}" > {}'.format(script_code, script_name)) # execute script on entrypoint ec, stdout, stderr = self._ssh_client\ .exec_command_blocking('sbatch -p {} {}' .format(self._partition, script_name)) match = re.search('Submitted batch job (\S*)', stdout, re.IGNORECASE) job_id = int(match.group(1)) self._workers_job[worker_id] = job_id return job_id except: LaunchingJobError(stderr) @property def num_workers(self) -> int: return self._num_workers
Milano-master
milano/backends/slurm.py
# Copyright (c) 2018 NVIDIA Corporation import boto3 import botocore import time import threading import json import hashlib from milano.backends.utils import SSHClient class EC2Instance: def __init__(self, resource, username, private_key_path): self._resource = resource self._private_key_path = private_key_path self._username = username self._ssh_client = None self._terminated = False def is_running(self): return self.state() == 'running' def is_terminated(self): s = self.state() return s != 'pending' and s != 'running' def state(self): self._reload() s = self._resource.state['Name'] if s == 'terminated': self._terminated = True return s def public_ip(self): self._reload() return self._resource.public_ip_address def instance_id(self): return self._resource.instance_id def _reload(self): if not self._terminated: self._resource.reload() def __try_connect(self): if self._resource.state['Name'] != 'running': raise Exception("instance not running") if self._ssh_client is None: client = SSHClient(self._private_key_path) client.connect(self.public_ip(), self._username) self._ssh_client = client def exec_command(self, command): self.__try_connect() return self._ssh_client.exec_command(command) def exec_command_blocking(self, command, retries=3): for i in range(retries): try: self.__try_connect() return self._ssh_client.exec_command_blocking(command) except Exception as e: if i < retries - 1: try: if self._ssh_client is not None: self._ssh_client.close() except: pass self._ssh_client = None else: raise e def keep_alive(self): # As long as this file remains less than 5 minutes old, the instance # won't terminate. try: self.exec_command_blocking("touch /home/ubuntu/.milano_keep_alive") except: pass def is_driver_working(self): try: ec, _, _ = self.exec_command_blocking("nvidia-smi") return ec == 0 except: return False def datasets_present(self, datasets): try: for i in range(len(datasets)): ec, _, _ = self.exec_command_blocking("ls /home/ubuntu/data/" + str(i)) if ec != 0: return False except: return False return True def terminate(self): return self._resource.terminate() def startup_script(datasets): dataset_mounts = "\n" for i in range(len(datasets)): if datasets[i]['type'] == 's3': dataset_mounts += "aws s3 sync {src} {dst}\n".format( src="s3://{bucket}/{prefix}".format( bucket=datasets[i]['bucket'], prefix=datasets[i].get('prefix', "")), dst="/home/ubuntu/data/" + str(i), ) else: raise Exception("unrecognized dataset source type '{}'".format( datasets[i]['type'])) # TODO All of the software installation should be baked into an AMI instead, # this is pretty slow. return """#!/bin/bash touch /home/ubuntu/.milano_keep_alive chmod 777 /home/ubuntu/.milano_keep_alive eval "while true; do find /home/ubuntu/.milano_keep_alive -mmin +5 -exec shutdown -h now {} + && sleep 10; done" &>/dev/null &disown; curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add - add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable" curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - curl -s -L https://nvidia.github.io/nvidia-docker/ubuntu16.04/amd64/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list groupadd docker usermod -aG docker ubuntu apt-get update apt-get install -y awscli """ + dataset_mounts + """ apt-get install -y docker-ce apt-get install -y nvidia-docker2 apt-get install -y nvidia-384 modprobe nvidia systemctl restart docker """ class EC2InstanceManager: def __init__(self, count, key_name, private_key_path, region_name, spot_instances, datasets, iam_role, user_params): self._desired_count = count self._key_name = key_name self._private_key_path = private_key_path self._region_name = region_name self._spot_instances = spot_instances self._datasets = datasets self._iam_role = iam_role self._user_params = user_params self._instances = {} self._active_instance_ids = [] self._thread = None self._lock = threading.Lock() self._stop_event = threading.Event() self._thread = threading.Thread(target=self._management_thread_main) self._thread.start() def _ami_for_region(self): # ubuntu 16.04 HVM SSD ami = { "us-east-1": "ami-5c150e23", "us-west-1": "ami-4d6a852e", "ap-northeast-1": "ami-e5b3ca08", "sa-east-1": "ami-01316f8dfe32c01e2", "ap-southeast-1": "ami-01fde464a811ead8a", "ca-central-1": "ami-4975f82d", "ap-south-1": "ami-0dcc9657fd6ff85bc", "eu-central-1": "ami-9fbfb174", "eu-west-1": "ami-0a8458313ef39d6f6", "cn-north-1": "ami-0510c868", "cn-northwest-1": "ami-f96c7b9b", "us-gov-west-1": "ami-3a4dd15b", "ap-northeast-2": "ami-09960a24a97b8087b", "ap-southeast-2": "ami-fc26869e", "us-west-2": "ami-529fb82a", "us-east-2": "ami-0eb3ba416aed8a6a4", "eu-west-2": "ami-52d12435", "ap-northeast-3": "ami-0d5d86281edca346f", "eu-west-3": "ami-0a06fa501d424d43f" } return ami.get(self._region_name, "") def _launch(self, launch_count): s = boto3.Session(region_name=self._region_name) iam_client = s.client('iam') iam = s.resource("iam") ec2 = s.resource("ec2") # unique role per dataset config if self._iam_role is None: self._iam_role, _ = get_or_create_role( "milano-" + sha1short(json.dumps(self._datasets)), self._datasets, iam, iam_client) profile_name, _ = get_or_create_instance_profile( self._iam_role + "-ip", self._iam_role, iam) sg_id = get_or_create_ssh_security_group("milano-worker-ssh", ec2) create_params = { 'InstanceType': "p3.2xlarge", 'ImageId': self._ami_for_region(), 'KeyName': self._key_name, 'MinCount': launch_count, 'MaxCount': launch_count, 'SecurityGroupIds': [sg_id], 'BlockDeviceMappings': [{ "DeviceName": "/dev/xvda", "Ebs": { "DeleteOnTermination": True, # TODO expose this as a top level config option? "VolumeSize": 64 } }], 'TagSpecifications': [{ 'ResourceType': 'instance', 'Tags': [{ 'Key': 'Name', 'Value': 'milano-worker', }] }], "IamInstanceProfile": { "Name": profile_name, }, # If ~/.milano_keep_alive isn't touched every 5 minutes, the instance # will auto terminate. 'InstanceInitiatedShutdownBehavior': "terminate", 'UserData': startup_script(self._datasets), } if self._spot_instances: create_params['InstanceMarketOptions'] = { 'MarketType': 'spot', 'SpotOptions': { 'SpotInstanceType': 'one-time', 'InstanceInterruptionBehavior': 'terminate' } } create_params.update(self._user_params) instance_resources = ec2.create_instances(**create_params) with self._lock: for instance_resource in instance_resources: self._instances[instance_resource.instance_id] = EC2Instance( instance_resource, "ubuntu", self._private_key_path) def active_instance_ids(self): with self._lock: return self._active_instance_ids.copy() def get_instance(self, instance_id): with self._lock: return self._instances[instance_id] def terminate(self): self._stop_event.set() self._thread.join() for _, instance in self._instances.items(): instance.terminate() def _management_thread_main(self): while not self._stop_event.is_set(): next_active_ids = [] alive_count = 0 for instance_id, instance in self._instances.items(): if not instance.is_terminated(): alive_count += 1 if instance.is_running(): instance.keep_alive() if instance.is_driver_working() and instance.datasets_present( self._datasets): next_active_ids.append(instance_id) if alive_count < self._desired_count: needed_count = self._desired_count - alive_count print("launching {count} EC2 instances and mounting datasets. this may take a few minutes...". format(count=needed_count)) try: self._launch(needed_count) except Exception as e: print(e) pass with self._lock: self._active_instance_ids = next_active_ids time.sleep(10) def get_or_create_ssh_security_group(name, ec2): try: groups = ec2.security_groups.filter(GroupNames=[name]) for group in groups: return group.group_id except botocore.exceptions.ClientError as e: if e.response['Error']['Code'] != 'InvalidGroup.NotFound': raise e # No existing security group, create one. sg = ec2.create_security_group(Description=name, GroupName=name) sg.authorize_ingress( IpProtocol='tcp', CidrIp='0.0.0.0/0', FromPort=22, ToPort=22) return sg.group_id def get_or_create_role(name, datasets, iam, client): try: role = iam.Role(name) return role.role_name, role.role_id except Exception as e: pass role = iam.create_role(RoleName=name, AssumeRolePolicyDocument=json.dumps({ "Statement": [{ "Effect": "Allow", "Principal": { "Service": ["ec2.amazonaws.com"] }, "Action": ["sts:AssumeRole"] }] })) for i in range(len(datasets)): bucket = bucket=datasets[i]['bucket'] prefix = datasets[i].get('prefix', "") resp = client.put_role_policy( RoleName=name, PolicyName=name + "-policy-" + str(i), PolicyDocument=json.dumps({ "Statement":[ { "Action": ["s3:ListBucket"], "Effect": "Allow", "Resource": ["arn:aws:s3:::{}".format(bucket)], "Condition":{"StringLike":{"s3:prefix":["{}/*".format(prefix)]}} }, { "Effect": "Allow", "Action": ["s3:Get*"], "Resource": ["arn:aws:s3:::{}/{}*".format(bucket, prefix)] } ] } ) ) return role.role_name, role.role_id def get_or_create_instance_profile(name, role, iam): try: instance_profile = iam.InstanceProfile(name) return name, instance_profile.instance_profile_id except Exception as e: pass instance_profile = iam.create_instance_profile(InstanceProfileName=name) instance_profile.add_role(RoleName=role) # create_instances will fail if we try to use this instance profile too soon. time.sleep(10) return name, instance_profile.instance_profile_id def sha1short(str): return hashlib.sha1(str.encode()).hexdigest()[:6]
Milano-master
milano/backends/aws_utils.py
# Copyright (c) 2018 NVIDIA Corporation from .base import Backend, JobStatus, RetrievingJobLogsError, KillingJobError, \ IsWorkerAvailableError, GettingJobStatusError, \ LaunchingJobError from .azkaban_utils import AzkabanManager, commands_to_job, \ strings_to_zipped_file, AzkabanConnectionError from typing import Iterable class AzkabanBackend(Backend): def __init__(self, script_to_run: str, workers_config: Iterable, url="http://127.0.0.1", port="8081", username="azkaban", password="azkaban") -> None: """Constructor of Azkaban backend class. In this method, project named "Milano" will be created with number of flows equal to the number of workers. Each flow will have just one job named "worker-<worker_id>.job" which will set environment variables as described in workers_config and launch script_to_run appending current parameters with ${params} argument. Note that it's user's responsibility to ensure that script_to_run will correctly execute with specified parameters in the environment where Azkaban is launched. """ super().__init__(script_to_run, workers_config) self._azkaban_manager = AzkabanManager() self._azkaban_manager.connect(url, port, username, password) self._project_name = "Milano" # TODO: delete project if exists? self._azkaban_manager.create_project( self._project_name, "Milano tuning for {}".format(script_to_run) ) workers_envs = [] for worker_dict in workers_config: workers_envs.extend( [worker_dict["env_vars"]] * worker_dict["num_workers"] ) with open(script_to_run, "r") as fin: script_code = fin.read() strings_dict = {script_to_run: script_code} for worker_id, worker_envs in enumerate(workers_envs): job_name = 'worker-{}.job'.format(worker_id) strings_dict[job_name] = commands_to_job( [ "chmod +x {}".format(script_to_run), "./{} ".format(script_to_run) + "${params}", ], job_name=job_name, envs=worker_envs, ) self._azkaban_manager.upload_zip( self._project_name, strings_to_zipped_file(strings_dict), ) self._num_workers = len(workers_envs) def get_job_status(self, job_info: dict) -> JobStatus: try: status = self._azkaban_manager.get_run_status(job_info) except AzkabanConnectionError as e: raise GettingJobStatusError(e.message) # TODO: check other statuses? if status == "SUCCEEDED": return JobStatus.SUCCEEDED elif status == "FAILED": return JobStatus.FAILED else: return JobStatus.RUNNING def kill_job(self, job_info: dict) -> None: try: self._azkaban_manager.kill_flow_execution(job_info) except AzkabanConnectionError as e: raise KillingJobError(e.message) def get_logs_for_job(self, job_info: dict) -> str: try: return self._azkaban_manager.get_logs_for_job(job_info) except AzkabanConnectionError as e: raise RetrievingJobLogsError(e.message) def is_worker_available(self, worker_id: int) -> bool: try: flow_running = self._azkaban_manager.is_flow_running( self._project_name, "worker-{}".format(worker_id), ) except AzkabanConnectionError as e: raise IsWorkerAvailableError(e.message) return not flow_running def launch_job(self, worker_id: int, job_params: str) -> dict: try: return self._azkaban_manager.run_flow( project_name=self._project_name, flow_id="worker-{}".format(worker_id), properties=[("params", job_params)], ) except AzkabanConnectionError as e: raise LaunchingJobError(e.message) @property def num_workers(self): return self._num_workers
Milano-master
milano/backends/azkaban.py
# Copyright (c) 2018 NVIDIA Corporation from .azkaban import AzkabanBackend from .aws import AWSBackend from .slurm import SLURMBackend
Milano-master
milano/backends/__init__.py
# Copyright (c) 2018 NVIDIA Corporation import requests import io import zipfile from typing import Iterable, Tuple, Sequence class AzkabanConnectionError(Exception): """An exception that is going to be raised if something fails with Azkaban access. """ def __init__(self, message): self.message = message class AzkabanManager: def __init__(self) -> None: self.session_id = None self.url_port = None def connect(self, url="http://127.0.0.1", port="8081", username="azkaban", password="azkaban") -> None: data = { "action": "login", "username": username, "password": password, } url_port = '{}:{}'.format(url, port) response = requests.post(url_port, data=data).json() if "error" in response: raise AzkabanConnectionError(response['error']) self.session_id = response['session.id'] self.url_port = url_port def _check_connection(self) -> None: if self.session_id is None: raise AzkabanConnectionError( "AzkabanManager is not connected to server. " "Make sure you ran self.connect()." ) def create_project(self, name: str, description: str) -> None: self._check_connection() data = { "action": "create", "session.id": self.session_id, "name": name, "description": description, } response = requests.post(self.url_port + '/manager', data=data).json() # TODO: figure out how to handle this warnings that project exists, since # we usually don't worry about them, but they will interfere with # other important logs that are being printed # if "message" in response: # print("WARNING: {}".format(response['message'])) def upload_zip(self, project_name: str, zipped_file: io.BytesIO) -> None: self._check_connection() data = { "ajax": "upload", "session.id": self.session_id, "project": project_name, } files = {"file": ("jobs.zip", zipped_file, "application/zip", {})} response = requests.post(self.url_port + '/manager', files=files, data=data).json() if "error" in response: raise AzkabanConnectionError(response['error']) def get_project_flows(self, project_name: str) -> list: self._check_connection() data = { "ajax": "fetchprojectflows", "session.id": self.session_id, "project": project_name, } response = requests.get(self.url_port + '/manager', params=data).json() return [flow["flowId"] for flow in response["flows"]] def run_flow(self, project_name: str, flow_id: str, properties: Iterable[Tuple[str, str]] = None) -> dict: self._check_connection() data = { "ajax": "executeFlow", "session.id": self.session_id, "project": project_name, "flow": flow_id, } for name, value in properties: data["flowOverride[{}]".format(name)] = value job_info = requests.get(self.url_port + '/executor', params=data).json() if "error" in job_info: raise AzkabanConnectionError( "Got error for flow {} with properties \"{}\": {}".format( flow_id, properties, job_info['error'], ) ) return job_info def get_logs_for_job(self, job_info: dict) -> str: # TODO: for now this assumes that there is 1 job in the flow self._check_connection() data = { "ajax": "fetchExecJobLogs", "session.id": self.session_id, "execid": job_info["execid"], "jobId": job_info["flow"], "offset": 0, "length": 10000000, } response = requests.get(self.url_port + '/executor', params=data) if response.status_code != 200: raise AzkabanConnectionError( 'Job "flow={}, exeid={}" returned with status {} and error "{}"'.format( job_info["flow"], job_info["execid"], response.status_code, response.reason, ) ) response = response.json() if "error" in response: raise AzkabanConnectionError(response['error']) return response["data"] def get_run_status(self, run_info: dict) -> str: self._check_connection() data = { "ajax": "fetchexecflow", "session.id": self.session_id, "execid": run_info['execid'], } response = requests.get(self.url_port + '/executor', params=data).json() if "error" in response: raise AzkabanConnectionError(response['error']) return response["status"] def kill_flow_execution(self, run_info: dict) -> None: self._check_connection() data = { "ajax": "cancelFlow", "session.id": self.session_id, "execid": run_info['execid'], } response = requests.get(self.url_port + '/executor', params=data).json() if "error" in response: raise AzkabanConnectionError(response['error']) def get_flow_executions(self, project_name: str, flow_id: str) -> list: self._check_connection() data = { "ajax": "getRunning", "session.id": self.session_id, "project": project_name, "flow": flow_id, } response = requests.get(self.url_port + '/executor', params=data).json() if "error" in response: raise AzkabanConnectionError(response['error']) if "execIds" in response: return response["execIds"] else: return [] def is_flow_running(self, project_name: str, flow_id: str) -> bool: exec_ids = self.get_flow_executions(project_name, flow_id) return len(exec_ids) > 0 def strings_to_zipped_file(strings_dict: dict) -> io.BytesIO: """name: content""" zipped_file = io.BytesIO() with zipfile.ZipFile(zipped_file, 'w') as f: for name, content in strings_dict.items(): f.writestr(name, content) zipped_file.seek(0) return zipped_file def commands_to_job(commands: Sequence[str], job_name="job.job", envs=()) -> str: job = "# {}\n".format(job_name) for env in envs: job += "env.{}\n".format(env) job += "type=command\ncommand={}\n".format(commands[0]) if len(commands) > 1: for idx, cmd in enumerate(commands[1:]): job += "command.{}={}".format(idx + 1, cmd) return job
Milano-master
milano/backends/azkaban_utils.py
# Copyright (c) 2018 NVIDIA Corporation from .aws_utils import EC2InstanceManager from .base import Backend, JobStatus, RetrievingJobLogsError, \ GettingJobStatusError, KillingJobError, \ IsWorkerAvailableError, LaunchingJobError class AWSJob: def __init__(self, worker, container_id): self._container_id = container_id self._worker = worker self._archived = False self._archived_logs = "" self._archived_exit_code = "" def is_running(self): if self._archived: return False try: return self._exec("sudo docker inspect -f {{.State.Running}} " + self._container_id).strip() == 'true' except Exception as e: # If something went wrong, assume it's not running anymore. # Should probably retry here. return False def exit_code(self): if self._archived: return self._archived_exit_code try: return int( self._exec("sudo docker inspect -f {{.State.ExitCode}} " + self._container_id).strip()) except Exception as e: # If something went wrong, assume it's not running anymore. # Should probably retry here. return -1 def logs(self): if self._archived: return self._archived_logs return self._exec("sudo docker logs " + self._container_id) def kill(self): # It would be nice if we could just rely on docker to keep these, but we # have tp prune old containers as we launch new ones, or the instance's EBS # volume fills up really quickly. try: self._archived_exit_code = self.exit_code() self._archived_logs = self.logs() except: self._archived_exit_code = -1 pass self._archived = True try: self._exec("sudo docker kill " + self._container_id) except Exception as e: # It's fine if we fail to find the container to kill. pass self._worker = None def _exec(self, command): exit_code, stdout, stderr = self._worker.exec_command_blocking(command) if exit_code != 0: raise Exception( "remote command failed with exit code {code}: {log}".format( code=exit_code, log=stderr)) return stdout class AWSBackend(Backend): def __init__(self, script_to_run: str, config: dict) -> None: super().__init__(script_to_run, config) self._config = config with open(script_to_run) as fin: self._script_code = fin.read() self._datasets = self._config.get('datasets', []) self._instance_manager = EC2InstanceManager( count=self.num_workers, region_name=self._config.get('region_name', "us-west-2"), key_name=self._config['key_name'], private_key_path=self._config['private_key_path'], spot_instances=self._config.get('spot_instances', False), datasets=self._datasets, iam_role=self._config.get('iam_role', None), user_params=self._config.get('instance_params', {}), ) self._instance_workers = {} self._worker_instances = [None] * self.num_workers self._worker_jobs = [-1] * self.num_workers self._job_workers = {} self._jobs = {} self._job_index = 0 def _get_job(self, job_info: int) -> AWSJob: job = self._jobs[job_info] if job is None: raise Exception("no active job for id {}".format(job_info)) return job def get_job_status(self, job_info: int) -> JobStatus: try: job = self._get_job(job_info) if job.is_running(): return JobStatus.RUNNING elif job.exit_code() == 0: return JobStatus.SUCCEEDED else: return JobStatus.FAILED except Exception as e: return GettingJobStatusError( "failed to retrieve job status: {}".format(e)) def get_logs_for_job(self, job_info: int) -> str: try: job = self._get_job(job_info) return job.logs() except Exception as e: print("error retrieving logs", e) raise RetrievingJobLogsError("failed to retrieve logs: {}".format(e)) def kill_job(self, job_info: int) -> None: job = self._get_job(job_info) job.kill() self._worker_jobs[self._job_workers[job_info]] = -1 del self._job_workers[job_info] def _update_worker_instances(self): # Since the backend API relies on these fixed worker ids, we need a # dynamic mapping from those to the actual instances, which can be swapped # in and out. active_ids = self._instance_manager.active_instance_ids() active_id_set = set(active_ids) for i in range(self.num_workers): if self._worker_instances[i] is not None: if self._worker_instances[i] not in active_ids and self._worker_jobs[i] == -1: # This worker is assigned to an inactive instance, and it has no job # currently running. Free this slot. del self._instance_workers[self._worker_instances[i]] self._worker_instances[i] = None for active_id in active_ids: if active_id not in self._instance_workers: # Try to assign a worker slot for this instance, since it's unassigned. for i in range(self.num_workers): if self._worker_instances[i] is None: self._worker_instances[i] = active_id self._instance_workers[active_id] = i break return active_id_set def is_worker_available(self, worker_id: int) -> bool: active_instances = self._update_worker_instances() if self._worker_instances[worker_id] is None: # This worker slot isn't assigned to an instance, unavailable. return False job_id = self._worker_jobs[worker_id] if job_id == -1: return self._worker_instances[worker_id] in active_instances else: try: status = self.get_job_status(job_id) except GettingJobStatusError as e: raise IsWorkerAvailableError(e.message) if status == JobStatus.RUNNING: return False else: self.kill_job(job_id) return self._worker_instances[worker_id] in active_instances def _worker_exec(self, worker_id, command): instance = self._instance_manager.get_instance( self._worker_instances[worker_id]) exit_code, stdout, stderr = instance.exec_command_blocking(command) if exit_code != 0: raise Exception( "remote command failed with exit code {code}: {log}".format( code=exit_code, log=stderr)) return stdout def launch_job(self, worker_id: int, params: str) -> int: if not self.is_worker_available(worker_id): raise LaunchingJobError("worker busy") # The command to run inside the docker container. command = "echo $'{script}' > start_exp.sh && chmod +x start_exp.sh && ./start_exp.sh {params}".format( script=self._script_code.replace("'", "\\'").replace("\n", "\\n"), params=params) # Bind datasets. volumes = "" for i in range(len(self._datasets)): volumes += "-v {src}:{dst} ".format( src="/home/ubuntu/data/" + str(i), dst=self._datasets[i]['mount'], ) # The command for running the docker container. docker_command = "sudo nvidia-docker run -d {volumes} {docker_image} /bin/bash -c $'{command}'".format( volumes=volumes, docker_image=self._config['docker_image_name'], command=command.replace("'", "\\'")) try: # Currently we allow only one job per worker, so it's safe to kill any # stragglers and purge. self._worker_exec(worker_id, "sudo docker kill $(sudo docker ps -q) || true") self._worker_exec(worker_id, "sudo docker container prune -f") job_id = self._job_index self._job_index = self._job_index + 1 print("launching job", job_id, "on worker", worker_id) # docker run -d returns the container id via stdout container_id = self._worker_exec(worker_id, docker_command).strip() instance = self._instance_manager.get_instance( self._worker_instances[worker_id]) self._jobs[job_id] = AWSJob(instance, container_id) except Exception as e: raise LaunchingJobError("failed to launch job on worker: {}".format( worker_id, e)) self._worker_jobs[worker_id] = job_id self._job_workers[job_id] = worker_id return job_id @property def num_workers(self) -> int: return self._config['num_workers']
Milano-master
milano/backends/aws.py
# Copyright (c) 2018 NVIDIA Corporation import paramiko import time class RemoteCommand: """Represents a command run via ssh""" def __init__(self, channel): self._channel = channel self._stdout_buffer = "" self._stderr_buffer = "" self._exit_code = None def is_running(self): return self._exit_code is None and not self._channel.exit_status_ready() def exit_code(self): if self.is_running(): return None if self._exit_code is None: self._exit_code = self._channel.recv_exit_status() return self._exit_code def poll(self): while self._channel.recv_ready(): chunk = self._channel.recv(1024 * 64) self._stdout_buffer = self._stdout_buffer + chunk.decode("utf-8") while self._channel.recv_stderr_ready(): chunk = self._channel.recv_stderr(1024 * 64) self._stderr_buffer = self._stderr_buffer + chunk.decode("utf-8") def stdout(self): self.poll() return self._stdout_buffer def stderr(self): self.poll() return self._stderr_buffer def close(self): self._channel.close() class SSHClient: """SSH client to run commands on the backend.""" def __init__(self, private_key_path): self.private_key_path = private_key_path self.client = paramiko.SSHClient() def connect(self, address, username): self.client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) self.client.connect( address, username=username, key_filename=self.private_key_path) def exec_command(self, command): channel = self.client.get_transport().open_session() channel.exec_command(command) return RemoteCommand(channel) def exec_command_blocking(self, command): rc = self.exec_command(command) while rc.is_running(): rc.poll() time.sleep(0.1) ec = rc.exit_code() stdout = rc.stdout() stderr = rc.stderr() rc.close() return ec, stdout, stderr def close(self): self.client.close()
Milano-master
milano/backends/utils.py
# Copyright (c) 2018 NVIDIA Corporation """ This module contains base Backend class and a number of exceptions that backends can raise. When defining new backends you must inherit from Backend class. Since it is important for backend to be failure-safe, we define a number of "safe" exceptions here which all inherit from BackendError and should be raise by corresponding Backend functions when "safe" error occurs. By that we mean errors that should not stop execution of ExecutionManager, but rather be treated as normal failures and require retrying to run the command that raised the exception. All other exceptions will not be handled and will generally break the normal flow of ExecutionManager. """ import abc import six from enum import Enum class BackendError(Exception): """Base class for exceptions in this module.""" pass class RetrievingJobLogsError(BackendError): """Exception raised for errors occurring while retrieving job logs.""" def __init__(self, message): self.message = message class GettingJobStatusError(BackendError): """Exception raised for errors occurring while getting job status.""" def __init__(self, message): self.message = message class KillingJobError(BackendError): """Exception raised for errors occurring while trying to kill job.""" def __init__(self, message): self.message = message class LaunchingJobError(BackendError): """Exception raised for errors occurring while trying to launch a job.""" def __init__(self, message): self.message = message class IsWorkerAvailableError(BackendError): """Exception raised for errors occurring while trying to check if worker is available. """ def __init__(self, message): self.message = message class JobStatus(Enum): RUNNING = 0 SUCCEEDED = 1 FAILED = 2 PENDING = 3 KILLED = 4 NOTFOUND = 5 UNKNOWN = 6 @six.add_metaclass(abc.ABCMeta) class Backend: def __init__(self, script_to_run: str, workers_config: object) -> None: self._script_to_run = script_to_run self._workers_config = workers_config @abc.abstractmethod def get_job_status(self, job_info: object) -> JobStatus: """This method should take the ``job_info`` as returned from ``self.launch_job`` and return correct JobStatus for that job. """ pass @abc.abstractmethod def get_logs_for_job(self, job_info: object) -> str: """This method should take the ``job_info`` as returned from ``self.launch_job`` and return job logs or raise ``RetrievingLogsError`` exception if something goes wrong. If exception is raised, ExecutionManager will retry getting logs a few times and indicate that the job failed if still unsuccessful. """ pass @abc.abstractmethod def kill_job(self, job_info: object) -> None: """This method should kill the job, identified with ``job_info``. ``job_info`` is returned from ``self._launch_job``. """ pass @abc.abstractmethod def is_worker_available(self, worker_id: int) -> bool: """This method takes worker id and should return whether there are any jobs running on that worker. ``self.launch_job`` will only be executed on a worker that returned True from this method. """ pass @abc.abstractmethod def launch_job(self, worker_id: int, params: str) -> object: """This method should start a new job on a worker <worker_id> with parameters specified with ``params`` string. This method does not need to check if the worker is available since this method is only called after getting True from ``self.is_worker_available`` function. """ pass @property @abc.abstractmethod def num_workers(self) -> int: """Total number of workers available.""" pass
Milano-master
milano/backends/base.py
# Copyright (c) 2017 NVIDIA Corporation from .random_search import RandomSearch from .gp.gp_search import GPSearch
Milano-master
milano/search_algorithms/__init__.py
# Copyright (c) 2017 NVIDIA Corporation import numpy as np from typing import Iterable, Mapping, Optional from .base import SearchAlgorithm class RandomSearch(SearchAlgorithm): def _sample_params(self) -> Mapping: """Generates new parameters by random sampling.""" sampled_params = {} for pm_name, pm_dict in self._params_to_tune.items(): if pm_dict["type"] == "range": sampled_params[pm_name] = np.random.uniform( pm_dict["min"], pm_dict["max"], ) if pm_dict["type"] == "log_range": sampled_params[pm_name] = np.exp(np.random.uniform( np.log(pm_dict["min"]), np.log(pm_dict["max"]), )) if pm_dict["type"] == "values": sampled_params[pm_name] = np.random.choice(pm_dict["values"]) return sampled_params def gen_initial_params(self) -> Iterable[Mapping]: """Generate all parameters here as all evaluations are independent from each other. """ init_params = super().gen_initial_params() params = [] for _ in range(self._num_evals): params.append(self._sample_params()) if init_params is not None: return init_params + params else: return params def gen_new_params(self, result: float, params: Mapping, evaluation_succeeded: bool) -> Iterable[Optional[Mapping]]: """Returning None to signal stop.""" return [None]
Milano-master
milano/search_algorithms/random_search.py
# Copyright (c) 2017 NVIDIA Corporation import abc import six import numpy as np from typing import Iterable, Mapping, Optional @six.add_metaclass(abc.ABCMeta) class SearchAlgorithm: """All search algorithms in MLQuest must inherit from this.""" def __init__(self, params_to_tune: Mapping, params_to_try_first: Mapping, objective: str, num_evals: int, random_seed: int = None) -> None: """Base SearchAlgorithm constructor. Args: params_to_tune (dict): dictionary with parameters that need to be tuned. Example:: { "x1": {"type": "range", "min": 0.0, "max": 100.0}, "x2": {"type": "log_range", "min": 1e-7, "max": 1.0}, "color": {"type": "values", "values": ["red", "green", "blue"]}, } Supported types are: * "range": this parameter should be sampled uniformly from min to max values. * "log_range": this parameter should be sampled "logarithmically" from min to max values. This means that a uniform value will be sampled between [log(min), log(max)] and then it will be exponentiated. * "values": this parameter can be one of the supplied values. params_to_try_first (dict): dictionary with configurations to try first objective (string): "minimize" or "maximize", case insensitive. num_evals (int): maximum number of evaluations that the algorithm can do. random_seed (int): random seed to use. """ for pm_name, pm_dict in params_to_tune.items(): if "type" not in pm_dict: raise ValueError('"type" has to be specified for each ' 'parameter, not found for "{}"'.format(pm_name)) if pm_dict["type"] not in ["range", "log_range", "values"]: raise ValueError( 'Unsupported type: "{}" for "{}". '.format(pm_dict["type"], pm_name) + 'type has to be "range", "log_range" or "values"' ) if pm_dict["type"] == "range" or pm_dict["type"] == "log_range": if "min" not in pm_dict: raise ValueError( '"min" value has to be specified for parameter {}'.format(pm_name) ) if "max" not in pm_dict: raise ValueError( '"max" value has to be specified for parameter {}'.format(pm_name) ) if pm_dict["type"] == "log_range": if pm_dict["min"] <= 0: raise ValueError('"min" value has to be positive ' 'when type is "log_range"') if pm_dict["max"] <= 0: raise ValueError('"ma" value has to be positive ' 'when type is "log_range"') if pm_dict["type"] == "values": if "values" not in pm_dict: raise ValueError( '"values" has to be specified for parameter {}'.format(pm_name) ) if len(pm_dict["values"]) == 0: raise ValueError("No values specified for {}".format(pm_name)) self._params_to_tune = params_to_tune self._params_to_try_first = params_to_try_first if self._params_to_try_first is not None: # TODO check for format correctness self._pre_configs_counter = len(next(iter(self._params_to_try_first.values()))) else: self._pre_configs_counter = -1 self._num_evals = num_evals if objective.lower() not in ["minimize", "maximize"]: raise ValueError( 'Objective has to be "minimize" or "maximize", ' 'but "{}" was provided'.format(objective) ) self._objective = objective.lower() self._random_seed = random_seed np.random.seed(self._random_seed) #@abc.abstractmethod def gen_initial_params(self) -> Iterable[Mapping]: """This method should return all initial parameters to start the tuning. Returns: list of dicts: [{param_name: param_value, ...}, ...] """ if self._params_to_try_first is not None: user_pre_specified_experiments = [] count = len( next(iter(self._params_to_try_first.values()))) for ind in range(0, count): one_experiment = {} for key, value in self._params_to_try_first.items(): one_experiment[key] = value[ind] user_pre_specified_experiments.append(one_experiment) return user_pre_specified_experiments else: return None @abc.abstractmethod def gen_new_params(self, result: float, params: Mapping, evaluation_succeeded: bool) -> Iterable[Optional[Mapping]]: """This method should return new parameters to evaluate based on the last retrieved result. To indicate that the search is over (which usually happens when `self._num_evals` values have been tried), the method should return `None` instead of dictionary with function parameters. Args: result (float): the value of the function being optimized. params (dict): parameters, describing the point at which function was evaluated. This is the same dictionary as was returned from `self.gen_initial_params` or `self.gen_new_params`. evaluation_succeeded (bool): whether the evaluation was successful. In big experiments some jobs evaluating the function might fail for various reasons. In this case it is up for the algorithm to decide if the failed point need to be re-evaluated or if there are more promising points to focus on. Returns: list of dicts: [{param_name: param_value, ...}, ...] """ pass
Milano-master
milano/search_algorithms/base.py
Milano-master
milano/search_algorithms/gp/__init__.py
# Copyright (c) 2017 NVIDIA Corporation # This is wrapper around spearmint library. Please note that it imports code licensed under GPL v3. import numpy as np import collections from typing import Iterable, Mapping, Optional from milano.search_algorithms.base import SearchAlgorithm from milano.search_algorithms.gp.spearmint.gpei_chooser import GPEIChooser from milano.search_algorithms.gp.spearmint.utils import GridMap def hash_dict(dct): return " ".join("{}={}".format(key, val) for key, val in sorted(dct.items())) class GPSearch(SearchAlgorithm): CANDIDATE_STATUS = 0 PENDING_STATUS = 1 COMPLETE_STATUS = 2 def __init__(self, params_to_tune: Mapping, params_to_try_first: Mapping, objective: str, num_evals: int, random_seed: int = None, chooser=None, chooser_params: Mapping = None, num_init_jobs=1, num_jobs_to_launch_each_time=1, grid_size=1000, smooth_inf_to=1e7) -> None: super().__init__(params_to_tune, params_to_try_first, objective, num_evals, random_seed) self._num_init_jobs = num_init_jobs self._num_jobs_to_launch_each_time = num_jobs_to_launch_each_time self._fixed_params = {} self._smooth_inf_to = smooth_inf_to params = [] self._pm_names = [] for pm_name, pm_dict in self._params_to_tune.items(): if pm_dict["type"] == "range": self._pm_names.append(pm_name) params.append(collections.OrderedDict([ ('name', pm_name), ('type', 'float'), ('min', pm_dict["min"]), ('max', pm_dict["max"]), ('size', 1) ])) elif pm_dict["type"] == "log_range": self._pm_names.append(pm_name) params.append(collections.OrderedDict([ ('name', pm_name), ('type', 'log_float'), ('min', pm_dict["min"]), ('max', pm_dict["max"]), ('size', 1) ])) elif pm_dict["type"] == "values": if len(pm_dict["values"]) > 1: self._pm_names.append(pm_name) params.append(collections.OrderedDict([ ('name', pm_name), ('type', 'enum'), ('options', pm_dict["values"]), ('size', 1) ])) else: self._fixed_params[pm_name] = pm_dict["values"][0] if chooser is None: self._chooser = GPEIChooser(noiseless=True) else: if chooser_params is None: chooser_params = {} self._chooser = chooser(**chooser_params) self._gmap = GridMap(params, grid_size) # has to be explicitly set to number fo Sobol sequence if random_seed is None: random_seed = np.random.randint(100000) self._grid = self._gmap.hypercube_grid(grid_size, random_seed) self._values = np.zeros(grid_size) + np.inf self._durations = np.zeros(grid_size) + np.inf self._status = np.zeros(grid_size) + GPSearch.CANDIDATE_STATUS self._params_to_id = {} self._evals_count = 0 def _add_to_grid(self, candidate): # Checks to prevent numerical over/underflow from corrupting the grid candidate[candidate > 1.0] = 1.0 candidate[candidate < 0.0] = 0.0 # Set up the grid self._grid = np.vstack((self._grid, candidate)) self._status = np.append( self._status, np.zeros(1, dtype=int) + GPSearch.CANDIDATE_STATUS, ) self._values = np.append(self._values, np.zeros(1) + np.inf) self._durations = np.append(self._durations, np.zeros(1) + np.inf) return self._grid.shape[0] - 1 def _get_new_point(self) -> Mapping: job_id = self._chooser.next( self._grid, self._values, self._durations, np.nonzero(self._status == GPSearch.CANDIDATE_STATUS)[0], np.nonzero(self._status == GPSearch.PENDING_STATUS)[0], np.nonzero(self._status == GPSearch.COMPLETE_STATUS)[0], ) # spearmint can return tuple when it decides to add new points to the grid if isinstance(job_id, tuple): (job_id, candidate) = job_id job_id = self._add_to_grid(candidate) candidate = self._grid[job_id] self._status[job_id] = GPSearch.PENDING_STATUS cur_params = dict(zip(self._pm_names, self._gmap.unit_to_list(candidate))) cur_params.update(self._fixed_params) # if we ever generate same parameters again, want to remember all of them # and then take arbitrary grid id, since they all will point to the same # point in our search space pm_hash = hash_dict(cur_params) if pm_hash not in self._params_to_id: self._params_to_id[pm_hash] = [] self._params_to_id[pm_hash].append(job_id) self._evals_count += 1 return cur_params def gen_initial_params(self) -> Iterable[Mapping]: init_params = super().gen_initial_params() params = [] for _ in range(min(self._num_evals, self._num_init_jobs)): params.append(self._get_new_point()) if init_params is not None: return init_params + params else: return params def gen_new_params(self, result: float, params: Mapping, evaluation_succeeded: bool) -> Iterable[Optional[Mapping]]: if self._evals_count == self._num_evals: return [None] idx = self._params_to_id[hash_dict(params)].pop() if evaluation_succeeded: self._status[idx] = GPSearch.COMPLETE_STATUS if self._objective == "maximize": result = -result # smoothing out infinities that can arise from constraints failure if np.isinf(result): result = self._smooth_inf_to self._values[idx] = result else: # if not succeeded, marking point as a potential candidate again self._status[idx] = GPSearch.CANDIDATE_STATUS params = [] for _ in range(self._num_jobs_to_launch_each_time): params.append(self._get_new_point()) return params
Milano-master
milano/search_algorithms/gp/gp_search.py
# This code was modified to be compatible with NVAML project import math from numpy import * def i4_bit_hi1 ( n ): #*****************************************************************************80 # ## I4_BIT_HI1 returns the position of the high 1 bit base 2 in an integer. # # Example: # # N Binary BIT # ---- -------- ---- # 0 0 0 # 1 1 1 # 2 10 2 # 3 11 2 # 4 100 3 # 5 101 3 # 6 110 3 # 7 111 3 # 8 1000 4 # 9 1001 4 # 10 1010 4 # 11 1011 4 # 12 1100 4 # 13 1101 4 # 14 1110 4 # 15 1111 4 # 16 10000 5 # 17 10001 5 # 1023 1111111111 10 # 1024 10000000000 11 # 1025 10000000001 11 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2011 # # Author: # # Original MATLAB version by John Burkardt. # PYTHON version by Corrado Chisari # # Parameters: # # Input, integer N, the integer to be measured. # N should be nonnegative. If N is nonpositive, the value will always be 0. # # Output, integer BIT, the number of bits base 2. # i = math.floor ( n ) bit = 0 while ( 1 ): if ( i <= 0 ): break bit += 1 i = math.floor ( i / 2. ) return bit def i4_bit_lo0 ( n ): #*****************************************************************************80 # ## I4_BIT_LO0 returns the position of the low 0 bit base 2 in an integer. # # Example: # # N Binary BIT # ---- -------- ---- # 0 0 1 # 1 1 2 # 2 10 1 # 3 11 3 # 4 100 1 # 5 101 2 # 6 110 1 # 7 111 4 # 8 1000 1 # 9 1001 2 # 10 1010 1 # 11 1011 3 # 12 1100 1 # 13 1101 2 # 14 1110 1 # 15 1111 5 # 16 10000 1 # 17 10001 2 # 1023 1111111111 1 # 1024 10000000000 1 # 1025 10000000001 1 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2011 # # Author: # # Original MATLAB version by John Burkardt. # PYTHON version by Corrado Chisari # # Parameters: # # Input, integer N, the integer to be measured. # N should be nonnegative. # # Output, integer BIT, the position of the low 1 bit. # bit = 0 i = math.floor ( n ) while ( 1 ): bit = bit + 1 i2 = math.floor ( i / 2. ) if ( i == 2 * i2 ): break i = i2 return bit def i4_sobol_generate ( m, n, skip ): #*****************************************************************************80 # ## I4_SOBOL_GENERATE generates a Sobol dataset. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2011 # # Author: # # Original MATLAB version by John Burkardt. # PYTHON version by Corrado Chisari # # Parameters: # # Input, integer M, the spatial dimension. # # Input, integer N, the number of points to generate. # # Input, integer SKIP, the number of initial points to skip. # # Output, real R(M,N), the points. # r=zeros((m,n)) for j in range (1, n+1): seed = skip + j - 2 [ r[0:m,j-1], seed ] = i4_sobol ( m, seed ) return r def i4_sobol ( dim_num, seed ): #*****************************************************************************80 # ## I4_SOBOL generates a new quasirandom Sobol vector with each call. # # Discussion: # # The routine adapts the ideas of Antonov and Saleev. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2011 # # Author: # # Original FORTRAN77 version by Bennett Fox. # MATLAB version by John Burkardt. # PYTHON version by Corrado Chisari # # Reference: # # Antonov, Saleev, # USSR Computational Mathematics and Mathematical Physics, # Volume 19, 1980, pages 252 - 256. # # Paul Bratley, Bennett Fox, # Algorithm 659: # Implementing Sobol's Quasirandom Sequence Generator, # ACM Transactions on Mathematical Software, # Volume 14, Number 1, pages 88-100, 1988. # # Bennett Fox, # Algorithm 647: # Implementation and Relative Efficiency of Quasirandom # Sequence Generators, # ACM Transactions on Mathematical Software, # Volume 12, Number 4, pages 362-376, 1986. # # Ilya Sobol, # USSR Computational Mathematics and Mathematical Physics, # Volume 16, pages 236-242, 1977. # # Ilya Sobol, Levitan, # The Production of Points Uniformly Distributed in a Multidimensional # Cube (in Russian), # Preprint IPM Akad. Nauk SSSR, # Number 40, Moscow 1976. # # Parameters: # # Input, integer DIM_NUM, the number of spatial dimensions. # DIM_NUM must satisfy 1 <= DIM_NUM <= 40. # # Input/output, integer SEED, the "seed" for the sequence. # This is essentially the index in the sequence of the quasirandom # value to be generated. On output, SEED has been set to the # appropriate next value, usually simply SEED+1. # If SEED is less than 0 on input, it is treated as though it were 0. # An input value of 0 requests the first (0-th) element of the sequence. # # Output, real QUASI(DIM_NUM), the next quasirandom vector. # global atmost global dim_max global dim_num_save global initialized global lastq global log_max global maxcol global poly global recipd global seed_save global v if ( not 'initialized' in globals().keys() ): initialized = 0 dim_num_save = -1 if ( not initialized or dim_num != dim_num_save ): initialized = 1 dim_max = 40 dim_num_save = -1 log_max = 30 seed_save = -1 # # Initialize (part of) V. # v = zeros((dim_max,log_max)) v[0:40,0] = transpose([ \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]) v[2:40,1] = transpose([ \ 1, 3, 1, 3, 1, 3, 3, 1, \ 3, 1, 3, 1, 3, 1, 1, 3, 1, 3, \ 1, 3, 1, 3, 3, 1, 3, 1, 3, 1, \ 3, 1, 1, 3, 1, 3, 1, 3, 1, 3 ]) v[3:40,2] = transpose([ \ 7, 5, 1, 3, 3, 7, 5, \ 5, 7, 7, 1, 3, 3, 7, 5, 1, 1, \ 5, 3, 3, 1, 7, 5, 1, 3, 3, 7, \ 5, 1, 1, 5, 7, 7, 5, 1, 3, 3 ]) v[5:40,3] = transpose([ \ 1, 7, 9,13,11, \ 1, 3, 7, 9, 5,13,13,11, 3,15, \ 5, 3,15, 7, 9,13, 9, 1,11, 7, \ 5,15, 1,15,11, 5, 3, 1, 7, 9 ]) v[7:40,4] = transpose([ \ 9, 3,27, \ 15,29,21,23,19,11,25, 7,13,17, \ 1,25,29, 3,31,11, 5,23,27,19, \ 21, 5, 1,17,13, 7,15, 9,31, 9 ]) v[13:40,5] = transpose([ \ 37,33, 7, 5,11,39,63, \ 27,17,15,23,29, 3,21,13,31,25, \ 9,49,33,19,29,11,19,27,15,25 ]) v[19:40,6] = transpose([ \ 13, \ 33,115, 41, 79, 17, 29,119, 75, 73,105, \ 7, 59, 65, 21, 3,113, 61, 89, 45,107 ]) v[37:40,7] = transpose([ \ 7, 23, 39 ]) # # Set POLY. # poly= [ \ 1, 3, 7, 11, 13, 19, 25, 37, 59, 47, \ 61, 55, 41, 67, 97, 91, 109, 103, 115, 131, \ 193, 137, 145, 143, 241, 157, 185, 167, 229, 171, \ 213, 191, 253, 203, 211, 239, 247, 285, 369, 299 ] atmost = 2**log_max - 1 # # Find the number of bits in ATMOST. # maxcol = i4_bit_hi1 ( atmost ) # # Initialize row 1 of V. # v[0,0:maxcol] = 1 # # Things to do only if the dimension changed. # if ( dim_num != dim_num_save ): # # Check parameters. # if ( dim_num < 1 or dim_max < dim_num ): print('I4_SOBOL - Fatal error!') print(' The spatial dimension DIM_NUM should satisfy:' ) print(' 1 <= DIM_NUM <= %d'%dim_max) print(' But this input value is DIM_NUM = %d'%dim_num) return dim_num_save = dim_num # # Initialize the remaining rows of V. # for i in range(2 , dim_num+1): # # The bits of the integer POLY(I) gives the form of polynomial I. # # Find the degree of polynomial I from binary encoding. # j = poly[i-1] m = 0 while ( 1 ): j = math.floor ( j / 2. ) if ( j <= 0 ): break m = m + 1 # # Expand this bit pattern to separate components of the logical array INCLUD. # j = poly[i-1] includ=zeros(m) for k in range(m, 0, -1): j2 = math.floor ( j / 2. ) includ[k-1] = (j != 2 * j2 ) j = j2 # # Calculate the remaining elements of row I as explained # in Bratley and Fox, section 2. # for j in range( m+1, maxcol+1 ): newv = v[i-1,j-m-1] l = 1 for k in range(1, m+1): l = 2 * l if ( includ[k-1] ): newv = bitwise_xor ( int(newv), int(l * v[i-1,j-k-1]) ) v[i-1,j-1] = newv # # Multiply columns of V by appropriate power of 2. # l = 1 for j in range( maxcol-1, 0, -1): l = 2 * l v[0:dim_num,j-1] = v[0:dim_num,j-1] * l # # RECIPD is 1/(common denominator of the elements in V). # recipd = 1.0 / ( 2 * l ) lastq=zeros(dim_num) seed = int(math.floor ( seed )) if ( seed < 0 ): seed = 0 if ( seed == 0 ): l = 1 lastq=zeros(dim_num) elif ( seed == seed_save + 1 ): # # Find the position of the right-hand zero in SEED. # l = i4_bit_lo0 ( seed ) elif ( seed <= seed_save ): seed_save = 0 l = 1 lastq=zeros(dim_num) for seed_temp in range( int(seed_save), int(seed)): l = i4_bit_lo0 ( seed_temp ) for i in range(1 , dim_num+1): lastq[i-1] = bitwise_xor ( int(lastq[i-1]), int(v[i-1,l-1]) ) l = i4_bit_lo0 ( seed ) elif ( seed_save + 1 < seed ): for seed_temp in range( int(seed_save + 1), int(seed) ): l = i4_bit_lo0 ( seed_temp ) for i in range(1, dim_num+1): lastq[i-1] = bitwise_xor ( int(lastq[i-1]), int(v[i-1,l-1]) ) l = i4_bit_lo0 ( seed ) # # Check that the user is not calling too many times! # if ( maxcol < l ): print('I4_SOBOL - Fatal error!') print(' Too many calls!') print(' MAXCOL = %d\n'%maxcol) print(' L = %d\n'%l) return # # Calculate the new components of QUASI. # quasi=zeros(dim_num) for i in range( 1, dim_num+1): quasi[i-1] = lastq[i-1] * recipd lastq[i-1] = bitwise_xor ( int(lastq[i-1]), int(v[i-1,l-1]) ) seed_save = seed seed = seed + 1 return [ quasi, seed ] def i4_uniform ( a, b, seed ): #*****************************************************************************80 # ## I4_UNIFORM returns a scaled pseudorandom I4. # # Discussion: # # The pseudorandom number will be scaled to be uniformly distributed # between A and B. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2011 # # Author: # # Original MATLAB version by John Burkardt. # PYTHON version by Corrado Chisari # # Reference: # # Paul Bratley, Bennett Fox, Linus Schrage, # A Guide to Simulation, # Springer Verlag, pages 201-202, 1983. # # Pierre L'Ecuyer, # Random Number Generation, # in Handbook of Simulation, # edited by Jerry Banks, # Wiley Interscience, page 95, 1998. # # Bennett Fox, # Algorithm 647: # Implementation and Relative Efficiency of Quasirandom # Sequence Generators, # ACM Transactions on Mathematical Software, # Volume 12, Number 4, pages 362-376, 1986. # # Peter Lewis, Allen Goodman, James Miller # A Pseudo-Random Number Generator for the System/360, # IBM Systems Journal, # Volume 8, pages 136-143, 1969. # # Parameters: # # Input, integer A, B, the minimum and maximum acceptable values. # # Input, integer SEED, a seed for the random number generator. # # Output, integer C, the randomly chosen integer. # # Output, integer SEED, the updated seed. # if ( seed == 0 ): print('I4_UNIFORM - Fatal error!') print(' Input SEED = 0!') seed = math.floor ( seed ) a = round ( a ) b = round ( b ) seed = mod ( seed, 2147483647 ) if ( seed < 0 ) : seed = seed + 2147483647 k = math.floor ( seed / 127773 ) seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ): seed = seed + 2147483647 r = seed * 4.656612875E-10 # # Scale R to lie between A-0.5 and B+0.5. # r = ( 1.0 - r ) * ( min ( a, b ) - 0.5 ) + r * ( max ( a, b ) + 0.5 ) # # Use rounding to convert R to an integer between A and B. # value = round ( r ) value = max ( value, min ( a, b ) ) value = min ( value, max ( a, b ) ) c = value return [ int(c), int(seed) ] def prime_ge ( n ): #*****************************************************************************80 # ## PRIME_GE returns the smallest prime greater than or equal to N. # # # Example: # # N PRIME_GE # # -10 2 # 1 2 # 2 2 # 3 3 # 4 5 # 5 5 # 6 7 # 7 7 # 8 11 # 9 11 # 10 11 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2011 # # Author: # # Original MATLAB version by John Burkardt. # PYTHON version by Corrado Chisari # # Parameters: # # Input, integer N, the number to be bounded. # # Output, integer P, the smallest prime number that is greater # than or equal to N. # p = max ( math.ceil ( n ), 2 ) while ( not isprime ( p ) ): p = p + 1 return p def isprime(n): #*****************************************************************************80 # ## IS_PRIME returns True if N is a prime number, False otherwise # # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2011 # # Author: # # Corrado Chisari # # Parameters: # # Input, integer N, the number to be checked. # # Output, boolean value, True or False # if n!=int(n) or n<1: return False p=2 while p<n: if n%p==0: return False p+=1 return True
Milano-master
milano/search_algorithms/gp/spearmint/sobol_lib.py
## # Copyright (C) 2012 Jasper Snoek, Hugo Larochelle and Ryan P. Adams # # This code is written for research and educational purposes only to # supplement the paper entitled # "Practical Bayesian Optimization of Machine Learning Algorithms" # by Snoek, Larochelle and Adams # Advances in Neural Information Processing Systems, 2012 # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # This code was modified to be compatible with NVAML project """ Chooser module for the Gaussian process expected improvement acquisition function. Candidates are sampled densely in the unit hypercube and then the highest EI point is selected. Slice sampling is used to sample Gaussian process hyperparameters for the GP. """ import numpy as np import numpy.random as npr import scipy.linalg as spla import scipy.stats as sps from . import gp from .utils import slice_sample class GPEIChooser: def __init__(self, covar="Matern52", mcmc_iters=10, pending_samples=100, noiseless=False): self.cov_func = getattr(gp, covar) self.mcmc_iters = int(mcmc_iters) self.pending_samples = pending_samples self.D = -1 self.hyper_iters = 1 self.noiseless = bool(int(noiseless)) self.noise_scale = 0.1 # horseshoe prior self.amp2_scale = 1 # zero-mean log normal prior self.max_ls = 2 # top-hat prior on length scales def _real_init(self, dims, values): # Input dimensionality. self.D = dims # Initial length scales. self.ls = np.ones(self.D) # Initial amplitude. self.amp2 = np.std(values) + 1e-4 # Initial observation noise. self.noise = 1e-3 # Initial mean. self.mean = np.mean(values) def cov(self, x1, x2=None): if x2 is None: return self.amp2 * (self.cov_func(self.ls, x1, None) + 1e-6 * np.eye(x1.shape[0])) else: return self.amp2 * self.cov_func(self.ls, x1, x2) def next(self, grid, values, durations, candidates, pending, complete): # Don't bother using fancy GP stuff at first. if complete.shape[0] < 2: return int(candidates[0]) # Perform the real initialization. if self.D == -1: self._real_init(grid.shape[1], values[complete]) # Grab out the relevant sets. comp = grid[complete, :] cand = grid[candidates, :] pend = grid[pending, :] vals = values[complete] if self.mcmc_iters > 0: # Sample from hyperparameters. overall_ei = np.zeros((cand.shape[0], self.mcmc_iters)) for mcmc_iter in range(self.mcmc_iters): self.sample_hypers(comp, vals) overall_ei[:, mcmc_iter] = self.compute_ei(comp, pend, cand, vals) best_cand = np.argmax(np.mean(overall_ei, axis=1)) return int(candidates[best_cand]) else: # Optimize hyperparameters try: self.optimize_hypers(comp, vals) except: # Initial length scales. self.ls = np.ones(self.D) # Initial amplitude. self.amp2 = np.std(vals) # Initial observation noise. self.noise = 1e-3 ei = self.compute_ei(comp, pend, cand, vals) best_cand = np.argmax(ei) return int(candidates[best_cand]) def compute_ei(self, comp, pend, cand, vals): if pend.shape[0] == 0: # If there are no pending, don't do anything fancy. # Current best. best = np.min(vals) # The primary covariances for prediction. comp_cov = self.cov(comp) cand_cross = self.cov(comp, cand) # Compute the required Cholesky. obsv_cov = comp_cov + self.noise * np.eye(comp.shape[0]) obsv_chol = spla.cholesky(obsv_cov, lower=True) # Solve the linear systems. alpha = spla.cho_solve((obsv_chol, True), vals - self.mean) beta = spla.solve_triangular(obsv_chol, cand_cross, lower=True) # Predict the marginal means and variances at candidates. func_m = np.dot(cand_cross.T, alpha) + self.mean func_v = self.amp2 * (1 + 1e-6) - np.sum(beta ** 2, axis=0) # Expected improvement func_s = np.sqrt(func_v) u = (best - func_m) / func_s ncdf = sps.norm.cdf(u) npdf = sps.norm.pdf(u) ei = func_s * (u * ncdf + npdf) return ei else: # If there are pending experiments, fantasize their outcomes. # Create a composite vector of complete and pending. comp_pend = np.concatenate((comp, pend)) # Compute the covariance and Cholesky decomposition. comp_pend_cov = self.cov(comp_pend) + self.noise * np.eye( comp_pend.shape[0]) comp_pend_chol = spla.cholesky(comp_pend_cov, lower=True) # Compute submatrices. pend_cross = self.cov(comp, pend) pend_kappa = self.cov(pend) # Use the sub-Cholesky. obsv_chol = comp_pend_chol[:comp.shape[0], :comp.shape[0]] # Solve the linear systems. alpha = spla.cho_solve((obsv_chol, True), vals - self.mean) beta = spla.cho_solve((obsv_chol, True), pend_cross) # Finding predictive means and variances. pend_m = np.dot(pend_cross.T, alpha) + self.mean pend_K = pend_kappa - np.dot(pend_cross.T, beta) # Take the Cholesky of the predictive covariance. pend_chol = spla.cholesky(pend_K, lower=True) # Make predictions. pend_fant = ( np.dot(pend_chol, npr.randn(pend.shape[0], self.pending_samples)) + pend_m[:, None]) # Include the fantasies. fant_vals = np.concatenate((np.tile(vals[:, np.newaxis], (1, self.pending_samples)), pend_fant)) # Compute bests over the fantasies. bests = np.min(fant_vals, axis=0) # Now generalize from these fantasies. cand_cross = self.cov(comp_pend, cand) # Solve the linear systems. alpha = spla.cho_solve((comp_pend_chol, True), fant_vals - self.mean) beta = spla.solve_triangular(comp_pend_chol, cand_cross, lower=True) # Predict the marginal means and variances at candidates. func_m = np.dot(cand_cross.T, alpha) + self.mean func_v = self.amp2 * (1 + 1e-6) - np.sum(beta ** 2, axis=0) # Expected improvement func_s = np.sqrt(func_v[:, np.newaxis]) u = (bests[np.newaxis, :] - func_m) / func_s ncdf = sps.norm.cdf(u) npdf = sps.norm.pdf(u) ei = func_s * (u * ncdf + npdf) return np.mean(ei, axis=1) def sample_hypers(self, comp, vals): if self.noiseless: self.noise = 1e-3 self._sample_noiseless(comp, vals) else: self._sample_noisy(comp, vals) self._sample_ls(comp, vals) def _sample_ls(self, comp, vals): def logprob(ls): if np.any(ls < 0) or np.any(ls > self.max_ls): return -np.inf cov = self.amp2 * (self.cov_func(ls, comp, None) + 1e-6 * np.eye( comp.shape[0])) + self.noise * np.eye(comp.shape[0]) chol = spla.cholesky(cov, lower=True) solve = spla.cho_solve((chol, True), vals - self.mean) lp = -np.sum(np.log(np.diag(chol))) - 0.5 * np.dot(vals - self.mean, solve) return lp self.ls = slice_sample(self.ls, logprob, compwise=True) def _sample_noisy(self, comp, vals): def logprob(hypers): mean = hypers[0] amp2 = hypers[1] noise = hypers[2] # This is pretty hacky, but keeps things sane. if mean > np.max(vals) or mean < np.min(vals): return -np.inf if amp2 < 0 or noise < 0: return -np.inf cov = amp2 * (self.cov_func(self.ls, comp, None) + 1e-6 * np.eye(comp.shape[0])) + noise * np.eye( comp.shape[0]) chol = spla.cholesky(cov, lower=True) solve = spla.cho_solve((chol, True), vals - mean) lp = -np.sum(np.log(np.diag(chol))) - 0.5 * np.dot(vals - mean, solve) # Roll in noise horseshoe prior. lp += np.log(np.log(1 + (self.noise_scale / noise) ** 2)) # Roll in amplitude lognormal prior lp -= 0.5 * (np.log(amp2) / self.amp2_scale) ** 2 return lp hypers = slice_sample(np.array([self.mean, self.amp2, self.noise]), logprob, compwise=False) self.mean = hypers[0] self.amp2 = hypers[1] self.noise = hypers[2] def _sample_noiseless(self, comp, vals): def logprob(hypers): mean = hypers[0] amp2 = hypers[1] noise = 1e-3 if amp2 < 0: return -np.inf cov = amp2 * (self.cov_func(self.ls, comp, None) + 1e-6 * np.eye(comp.shape[0])) + noise * np.eye( comp.shape[0]) chol = spla.cholesky(cov, lower=True) solve = spla.cho_solve((chol, True), vals - mean) lp = -np.sum(np.log(np.diag(chol))) - 0.5 * np.dot(vals - mean, solve) # Roll in amplitude lognormal prior lp -= 0.5 * (np.log(amp2) / self.amp2_scale) ** 2 return lp hypers = slice_sample(np.array([self.mean, self.amp2, self.noise]), logprob, compwise=False) self.mean = hypers[0] self.amp2 = hypers[1] self.noise = 1e-3 def optimize_hypers(self, comp, vals): mygp = gp.GP(self.cov_func.__name__) mygp.real_init(comp.shape[1], vals) mygp.optimize_hypers(comp, vals) self.mean = mygp.mean self.ls = mygp.ls self.amp2 = mygp.amp2 self.noise = mygp.noise
Milano-master
milano/search_algorithms/gp/spearmint/gpei_chooser.py
## # Copyright (C) 2012 Jasper Snoek, Hugo Larochelle and Ryan P. Adams # # This code is written for research and educational purposes only to # supplement the paper entitled # "Practical Bayesian Optimization of Machine Learning Algorithms" # by Snoek, Larochelle and Adams # Advances in Neural Information Processing Systems, 2012 # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # This code was modified to be compatible with NVAML project """ gp.py contains utility functions related to computation in Gaussian processes. """ import numpy as np import scipy.linalg as spla import scipy.optimize as spo SQRT_3 = np.sqrt(3.0) SQRT_5 = np.sqrt(5.0) def dist2(ls, x1, x2=None): # Assumes NxD and MxD matrices. # Compute the squared distance matrix, given length scales. if x2 is None: # Find distance with self for x1. # Rescale. xx1 = x1 / ls xx2 = xx1 else: # Rescale. xx1 = x1 / ls xx2 = x2 / ls r2 = np.maximum(-(np.dot(xx1, 2*xx2.T) - np.sum(xx1*xx1, axis=1)[:,np.newaxis] - np.sum(xx2*xx2, axis=1)[:,np.newaxis].T), 0.0) return r2 def grad_dist2(ls, x1, x2=None): if x2 is None: x2 = x1 # Rescale. x1 = x1 / ls x2 = x2 / ls return (x1[:, np.newaxis, :] - x2[np.newaxis, :, :]) * 2.0 / ls def SE(ls, x1, x2=None, grad=False): ls = np.ones(ls.shape) cov = np.exp(-0.5 * dist2(ls, x1, x2)) if grad: return (cov, grad_ARDSE(ls, x1, x2)) else: return cov def ARDSE(ls, x1, x2=None, grad=False): cov = np.exp(-0.5 * dist2(ls, x1, x2)) if grad: return (cov, grad_ARDSE(ls, x1, x2)) else: return cov def grad_ARDSE(ls, x1, x2=None): r2 = dist2(ls, x1, x2) r = np.sqrt(r2) return -0.5*np.exp(-0.5*r2)[:,:,np.newaxis] * grad_dist2(ls, x1, x2) def Matern32(ls, x1, x2=None, grad=False): r = np.sqrt(dist2(ls, x1, x2)) cov = (1 + SQRT_3*r) * np.exp(-SQRT_3*r) if grad: return (cov, grad_Matern32(ls, x1, x2)) else: return cov def grad_Matern32(ls, x1, x2=None): r = np.sqrt(dist2(ls, x1, x2)) grad_r2 = -1.5*np.exp(-SQRT_3*r) return grad_r2[:,:,np.newaxis] * grad_dist2(ls, x1, x2) def Matern52(ls, x1, x2=None, grad=False): r2 = np.abs(dist2(ls, x1, x2)) r = np.sqrt(r2) cov = (1.0 + SQRT_5*r + (5.0/3.0)*r2) * np.exp(-SQRT_5*r) if grad: return (cov, grad_Matern52(ls, x1, x2)) else: return cov def grad_Matern52(ls, x1, x2=None): r = np.sqrt(dist2(ls, x1, x2)) grad_r2 = -(5.0/6.0)*np.exp(-SQRT_5*r)*(1 + SQRT_5*r) return grad_r2[:,:,np.newaxis] * grad_dist2(ls, x1, x2) class GP: def __init__(self, covar="Matern52", mcmc_iters=10, noiseless=False): self.cov_func = globals()[covar] self.mcmc_iters = int(mcmc_iters) self.D = -1 self.hyper_iters = 1 self.noiseless = bool(int(noiseless)) self.hyper_samples = [] self.noise_scale = 0.1 # horseshoe prior self.amp2_scale = 1 # zero-mean log normal prior self.max_ls = 2 # top-hat prior on length scales def real_init(self, dims, values): # Input dimensionality. self.D = dims # Initial length scales. self.ls = np.ones(self.D) # Initial amplitude. self.amp2 = np.std(values) # Initial observation noise. self.noise = 1e-3 # Initial mean. self.mean = np.mean(values) def cov(self, x1, x2=None): if x2 is None: return self.amp2 * (self.cov_func(self.ls, x1, None) + 1e-6*np.eye(x1.shape[0])) else: return self.amp2 * self.cov_func(self.ls, x1, x2) def logprob(self, comp, vals): mean = self.mean amp2 = self.amp2 noise = self.noise cov = amp2 * (self.cov_func(self.ls, comp, None) + 1e-6*np.eye(comp.shape[0])) + noise*np.eye(comp.shape[0]) chol = spla.cholesky(cov, lower=True) solve = spla.cho_solve((chol, True), vals - mean) lp = -np.sum(np.log(np.diag(chol)))-0.5*np.dot(vals-mean, solve) return lp def optimize_hypers(self, comp, vals): self.mean = np.mean(vals) diffs = vals - self.mean state = { } def jitter_chol(covmat): passed = False jitter = 1e-8 val = 0 while not passed: if (jitter > 100000): val = spla.cholesky(np.eye(covmat.shape[0])) break try: val = spla.cholesky(covmat + jitter*np.eye(covmat.shape[0]), lower=True) passed = True except ValueError: jitter = jitter*1.1 print("Covariance matrix not PSD, adding jitter:", jitter) passed = False return val def memoize(amp2, noise, ls): if ( 'corr' not in state or state['amp2'] != amp2 or state['noise'] != noise or np.any(state['ls'] != ls)): # Get the correlation matrix (corr, grad_corr) = self.cov_func(ls, comp, None, grad=True) # Scale and add noise & jitter. covmat = (amp2 * (corr + 1e-6*np.eye(comp.shape[0])) + noise * np.eye(comp.shape[0])) # Memoize state['corr'] = corr state['grad_corr'] = grad_corr state['chol'] = jitter_chol(covmat) state['amp2'] = amp2 state['noise'] = noise state['ls'] = ls return (state['chol'], state['corr'], state['grad_corr']) def nlogprob(hypers): amp2 = np.exp(hypers[0]) noise = np.exp(hypers[1]) ls = np.exp(hypers[2:]) chol = memoize(amp2, noise, ls)[0] solve = spla.cho_solve((chol, True), diffs) lp = -np.sum(np.log(np.diag(chol)))-0.5*np.dot(diffs, solve) return -lp def grad_nlogprob(hypers): amp2 = np.exp(hypers[0]) noise = np.exp(hypers[1]) ls = np.exp(hypers[2:]) chol, corr, grad_corr = memoize(amp2, noise, ls) solve = spla.cho_solve((chol, True), diffs) inv_cov = spla.cho_solve((chol, True), np.eye(chol.shape[0])) jacobian = np.outer(solve, solve) - inv_cov grad = np.zeros(self.D + 2) # Log amplitude gradient. grad[0] = 0.5 * np.trace(np.dot( jacobian, corr + 1e-6*np.eye(chol.shape[0]))) * amp2 # Log noise gradient. grad[1] = 0.5 * np.trace(np.dot( jacobian, np.eye(chol.shape[0]))) * noise # Log length scale gradients. for dd in range(self.D): grad[dd+2] = 1 * np.trace(np.dot( jacobian, -amp2*grad_corr[:,:,dd]*comp[:,dd][:,np.newaxis]/(np.exp(ls[dd]))))*np.exp(ls[dd]) # Roll in the prior variance. #grad -= 2*hypers/self.hyper_prior return -grad # Initial length scales. self.ls = np.ones(self.D) # Initial amplitude. self.amp2 = np.std(vals) # Initial observation noise. self.noise = 1e-3 hypers = np.zeros(self.ls.shape[0]+2) hypers[0] = np.log(self.amp2) hypers[1] = np.log(self.noise) hypers[2:] = np.log(self.ls) # Use a bounded bfgs just to prevent the length-scales and noise from # getting into regions that are numerically unstable b = [(-10,10),(-10,10)] for i in range(comp.shape[1]): b.append((-10,5)) hypers = spo.fmin_l_bfgs_b(nlogprob, hypers, grad_nlogprob, args=(), bounds=b, disp=0) #hypers = spo.fmin_bfgs(nlogprob, hypers, grad_nlogprob, maxiter=100) hypers = hypers[0] #hypers = spo.fmin_bfgs(nlogprob, hypers, grad_nlogprob, maxiter=100) self.amp2 = np.exp(hypers[0]) self.noise = np.exp(hypers[1]) self.ls = np.exp(hypers[2:]) def main(): try: import matplotlib.pyplot as plt except: pass # Let's start with some random values x = np.linspace(0,1,10)[:,np.newaxis]*10#np.random.rand(100)[:,np.newaxis] y = np.random.randn(10) mygp = GP(covar='ARDSE') mygp.real_init(x.shape[1], y) # Sample some functions given these hyperparameters and plot them for i in range(0,5): x = np.linspace(0,1,100)[:,np.newaxis]*10 K = mygp.cov(x) y = np.random.randn(100) fsamp = mygp.mean + np.dot(spla.cholesky(K).transpose(), y) try: plt.plot(x, fsamp) except: pass print('Loglikelihood before optimizing: ', mygp.logprob(x,y)) mygp.optimize_hypers(x,y) print('Loglikelihood after optimizing: ', mygp.logprob(x,y)) try: plt.show() except: print('Install matplotlib to get figures') if __name__ == '__main__': main()
Milano-master
milano/search_algorithms/gp/spearmint/gp.py
## # Copyright (C) 2012 Jasper Snoek, Hugo Larochelle and Ryan P. Adams # # This code is written for research and educational purposes only to # supplement the paper entitled # "Practical Bayesian Optimization of Machine Learning Algorithms" # by Snoek, Larochelle and Adams # Advances in Neural Information Processing Systems, 2012 # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # This code was modified to be compatible with NVAML project """ Chooser module for the Gaussian process expected improvement (EI) acquisition function where points are sampled densely in the unit hypercube and then a subset of the points are optimized to maximize EI over hyperparameter samples. Slice sampling is used to sample Gaussian process hyperparameters. """ import numpy as np import numpy.random as npr import scipy.linalg as spla import scipy.stats as sps import scipy.optimize as spo import multiprocessing import time import copy from . import gp from .utils import slice_sample def optimize_pt(c, b, comp, pend, vals, model): ret = spo.fmin_l_bfgs_b(model.grad_optimize_ei_over_hypers, c.flatten(), args=(comp, pend, vals), bounds=b, disp=0) return ret[0] class GPEIOptChooser: def __init__(self, covar="Matern52", mcmc_iters=10, pending_samples=100, noiseless=False, burnin=100, grid_subset=20, use_multiprocessing=True): self.cov_func = getattr(gp, covar) self.mcmc_iters = int(mcmc_iters) self.burnin = int(burnin) self.needs_burnin = True self.pending_samples = int(pending_samples) self.D = -1 self.hyper_iters = 1 # Number of points to optimize EI over self.grid_subset = int(grid_subset) self.noiseless = bool(int(noiseless)) self.hyper_samples = [] self.noise_scale = 0.1 # horseshoe prior self.amp2_scale = 1 # zero-mean log normal prior self.max_ls = 2 # top-hat prior on length scales # If multiprocessing fails or deadlocks, set this to False self.use_multiprocessing = bool(int(use_multiprocessing)) def _real_init(self, dims, values): self.randomstate = npr.get_state() # Input dimensionality. self.D = dims # Initial length scales. self.ls = np.ones(self.D) # Initial amplitude. self.amp2 = np.std(values)+1e-4 # Initial observation noise. self.noise = 1e-3 # Initial mean. self.mean = np.mean(values) # Save hyperparameter samples self.hyper_samples.append((self.mean, self.noise, self.amp2, self.ls)) def cov(self, x1, x2=None): if x2 is None: return self.amp2 * (self.cov_func(self.ls, x1, None) + 1e-6*np.eye(x1.shape[0])) else: return self.amp2 * self.cov_func(self.ls, x1, x2) # Given a set of completed 'experiments' in the unit hypercube with # corresponding objective 'values', pick from the next experiment to # run according to the acquisition function. def next(self, grid, values, durations, candidates, pending, complete): # Don't bother using fancy GP stuff at first. if complete.shape[0] < 2: return int(candidates[0]) # Perform the real initialization. if self.D == -1: self._real_init(grid.shape[1], values[complete]) # Grab out the relevant sets. comp = grid[complete,:] cand = grid[candidates,:] pend = grid[pending,:] vals = values[complete] numcand = cand.shape[0] # Spray a set of candidates around the min so far best_comp = np.argmin(vals) cand2 = np.vstack((np.random.randn(10,comp.shape[1])*0.001 + comp[best_comp,:], cand)) if self.mcmc_iters > 0: # Possibly burn in. if self.needs_burnin: for mcmc_iter in range(self.burnin): self.sample_hypers(comp, vals) self.needs_burnin = False # Sample from hyperparameters. # Adjust the candidates to hit ei peaks self.hyper_samples = [] for mcmc_iter in range(self.mcmc_iters): self.sample_hypers(comp, vals) b = []# optimization bounds for i in range(0, cand.shape[1]): b.append((0, 1)) overall_ei = self.ei_over_hypers(comp,pend,cand2,vals) inds = np.argsort(np.mean(overall_ei,axis=1))[-self.grid_subset:] cand2 = cand2[inds,:] # Optimize each point in parallel if self.use_multiprocessing: pool = multiprocessing.Pool(self.grid_subset) results = [pool.apply_async(optimize_pt,args=( c,b,comp,pend,vals,copy.copy(self))) for c in cand2] for res in results: cand = np.vstack((cand, res.get(1e8))) pool.close() else: # This is old code to optimize each point in parallel. for i in range(0, cand2.shape[0]): ret = spo.fmin_l_bfgs_b(self.grad_optimize_ei_over_hypers, cand2[i,:].flatten(), args=(comp,pend,vals), bounds=b, disp=0) cand2[i,:] = ret[0] cand = np.vstack((cand, cand2)) overall_ei = self.ei_over_hypers(comp,pend,cand,vals) best_cand = np.argmax(np.mean(overall_ei, axis=1)) if (best_cand >= numcand): return (int(numcand), cand[best_cand,:]) return int(candidates[best_cand]) else: # Optimize hyperparameters self.optimize_hypers(comp, vals) # Optimize over EI b = []# optimization bounds for i in range(0, cand.shape[1]): b.append((0, 1)) for i in range(0, cand2.shape[0]): ret = spo.fmin_l_bfgs_b(self.grad_optimize_ei, cand2[i,:].flatten(), args=(comp,vals,True), bounds=b, disp=0) cand2[i,:] = ret[0] cand = np.vstack((cand, cand2)) ei = self.compute_ei(comp, pend, cand, vals) best_cand = np.argmax(ei) if (best_cand >= numcand): return (int(numcand), cand[best_cand,:]) return int(candidates[best_cand]) # Compute EI over hyperparameter samples def ei_over_hypers(self,comp,pend,cand,vals): overall_ei = np.zeros((cand.shape[0], self.mcmc_iters)) for mcmc_iter in range(self.mcmc_iters): hyper = self.hyper_samples[mcmc_iter] self.mean = hyper[0] self.noise = hyper[1] self.amp2 = hyper[2] self.ls = hyper[3] overall_ei[:,mcmc_iter] = self.compute_ei(comp, pend, cand, vals) return overall_ei def check_grad_ei(self, cand, comp, pend, vals): (ei,dx1) = self.grad_optimize_ei_over_hypers(cand, comp, pend, vals) dx2 = dx1*0 idx = np.zeros(cand.shape[0]) for i in range(0, cand.shape[0]): idx[i] = 1e-6 (ei1,tmp) = self.grad_optimize_ei_over_hypers(cand + idx, comp, pend, vals) (ei2,tmp) = self.grad_optimize_ei_over_hypers(cand - idx, comp, pend, vals) dx2[i] = (ei - ei2)/(2*1e-6) idx[i] = 0 print('computed grads', dx1) print('finite diffs', dx2) print(dx1/dx2) print(np.sum((dx1 - dx2)**2)) time.sleep(2) # Adjust points by optimizing EI over a set of hyperparameter samples def grad_optimize_ei_over_hypers(self, cand, comp, pend, vals, compute_grad=True): summed_ei = 0 summed_grad_ei = np.zeros(cand.shape).flatten() ls = self.ls.copy() amp2 = self.amp2 mean = self.mean noise = self.noise for hyper in self.hyper_samples: self.mean = hyper[0] self.noise = hyper[1] self.amp2 = hyper[2] self.ls = hyper[3] if compute_grad: (ei,g_ei) = self.grad_optimize_ei(cand,comp,pend,vals,compute_grad) summed_grad_ei = summed_grad_ei + g_ei else: ei = self.grad_optimize_ei(cand,comp,pend,vals,compute_grad) summed_ei += ei self.mean = mean self.amp2 = amp2 self.noise = noise self.ls = ls.copy() if compute_grad: return (summed_ei, summed_grad_ei) else: return summed_ei # Adjust points based on optimizing their ei def grad_optimize_ei(self, cand, comp, pend, vals, compute_grad=True): if pend.shape[0] == 0: best = np.min(vals) cand = np.reshape(cand, (-1, comp.shape[1])) # The primary covariances for prediction. comp_cov = self.cov(comp) cand_cross = self.cov(comp, cand) # Compute the required Cholesky. obsv_cov = comp_cov + self.noise*np.eye(comp.shape[0]) obsv_chol = spla.cholesky(obsv_cov, lower=True) cov_grad_func = getattr(gp, 'grad_' + self.cov_func.__name__) cand_cross_grad = cov_grad_func(self.ls, comp, cand) # Predictive things. # Solve the linear systems. alpha = spla.cho_solve((obsv_chol, True), vals - self.mean) beta = spla.solve_triangular(obsv_chol, cand_cross, lower=True) # Predict the marginal means and variances at candidates. func_m = np.dot(cand_cross.T, alpha) + self.mean func_v = self.amp2*(1+1e-6) - np.sum(beta**2, axis=0) # Expected improvement func_s = np.sqrt(func_v) u = (best - func_m) / func_s ncdf = sps.norm.cdf(u) npdf = sps.norm.pdf(u) ei = func_s*( u*ncdf + npdf) if not compute_grad: return ei # Gradients of ei w.r.t. mean and variance g_ei_m = -ncdf g_ei_s2 = 0.5*npdf / func_s # Apply covariance function grad_cross = np.squeeze(cand_cross_grad) grad_xp_m = np.dot(alpha.transpose(),grad_cross) grad_xp_v = np.dot(-2*spla.cho_solve( (obsv_chol, True),cand_cross).transpose(), grad_cross) grad_xp = 0.5*self.amp2*(grad_xp_m*g_ei_m + grad_xp_v*g_ei_s2) ei = -np.sum(ei) return ei, grad_xp.flatten() else: # If there are pending experiments, fantasize their outcomes. cand = np.reshape(cand, (-1, comp.shape[1])) # Create a composite vector of complete and pending. comp_pend = np.concatenate((comp, pend)) # Compute the covariance and Cholesky decomposition. comp_pend_cov = (self.cov(comp_pend) + self.noise*np.eye(comp_pend.shape[0])) comp_pend_chol = spla.cholesky(comp_pend_cov, lower=True) # Compute submatrices. pend_cross = self.cov(comp, pend) pend_kappa = self.cov(pend) # Use the sub-Cholesky. obsv_chol = comp_pend_chol[:comp.shape[0],:comp.shape[0]] # Solve the linear systems. alpha = spla.cho_solve((obsv_chol, True), vals - self.mean) beta = spla.cho_solve((obsv_chol, True), pend_cross) # Finding predictive means and variances. pend_m = np.dot(pend_cross.T, alpha) + self.mean pend_K = pend_kappa - np.dot(pend_cross.T, beta) # Take the Cholesky of the predictive covariance. pend_chol = spla.cholesky(pend_K, lower=True) # Make predictions. npr.set_state(self.randomstate) pend_fant = np.dot(pend_chol, npr.randn(pend.shape[0],self.pending_samples)) + pend_m[:,None] # Include the fantasies. fant_vals = np.concatenate( (np.tile(vals[:,np.newaxis], (1,self.pending_samples)), pend_fant)) # Compute bests over the fantasies. bests = np.min(fant_vals, axis=0) # Now generalize from these fantasies. cand_cross = self.cov(comp_pend, cand) cov_grad_func = getattr(gp, 'grad_' + self.cov_func.__name__) cand_cross_grad = cov_grad_func(self.ls, comp_pend, cand) # Solve the linear systems. alpha = spla.cho_solve((comp_pend_chol, True), fant_vals - self.mean) beta = spla.solve_triangular(comp_pend_chol, cand_cross, lower=True) # Predict the marginal means and variances at candidates. func_m = np.dot(cand_cross.T, alpha) + self.mean func_v = self.amp2*(1+1e-6) - np.sum(beta**2, axis=0) # Expected improvement func_s = np.sqrt(func_v[:,np.newaxis]) u = (bests[np.newaxis,:] - func_m) / func_s ncdf = sps.norm.cdf(u) npdf = sps.norm.pdf(u) ei = func_s*( u*ncdf + npdf) # Gradients of ei w.r.t. mean and variance g_ei_m = -ncdf g_ei_s2 = 0.5*npdf / func_s # Apply covariance function # Squeeze can break the 1D case be careful if pend.shape[1] == 1: grad_cross = np.squeeze(cand_cross_grad, axis=(2,)) else: grad_cross = np.squeeze(cand_cross_grad) grad_xp_m = np.dot(alpha.transpose(),grad_cross) grad_xp_v = np.dot(-2*spla.cho_solve( (comp_pend_chol, True),cand_cross).transpose(), grad_cross) grad_xp = 0.5*self.amp2*(grad_xp_m*np.tile(g_ei_m,(comp.shape[1],1)).T + (grad_xp_v.T*g_ei_s2).T) ei = -np.mean(ei, axis=1) grad_xp = np.mean(grad_xp,axis=0) return ei, grad_xp.flatten() def compute_ei(self, comp, pend, cand, vals): if pend.shape[0] == 0: # If there are no pending, don't do anything fancy. # Current best. best = np.min(vals) # The primary covariances for prediction. comp_cov = self.cov(comp) cand_cross = self.cov(comp, cand) # Compute the required Cholesky. obsv_cov = comp_cov + self.noise*np.eye(comp.shape[0]) obsv_chol = spla.cholesky( obsv_cov, lower=True ) # Solve the linear systems. alpha = spla.cho_solve((obsv_chol, True), vals - self.mean) beta = spla.solve_triangular(obsv_chol, cand_cross, lower=True) # Predict the marginal means and variances at candidates. func_m = np.dot(cand_cross.T, alpha) + self.mean func_v = self.amp2*(1+1e-6) - np.sum(beta**2, axis=0) # Expected improvement func_s = np.sqrt(func_v) u = (best - func_m) / func_s ncdf = sps.norm.cdf(u) npdf = sps.norm.pdf(u) ei = func_s*( u*ncdf + npdf) return ei else: # If there are pending experiments, fantasize their outcomes. # Create a composite vector of complete and pending. comp_pend = np.concatenate((comp, pend)) # Compute the covariance and Cholesky decomposition. comp_pend_cov = (self.cov(comp_pend) + self.noise*np.eye(comp_pend.shape[0])) comp_pend_chol = spla.cholesky(comp_pend_cov, lower=True) # Compute submatrices. pend_cross = self.cov(comp, pend) pend_kappa = self.cov(pend) # Use the sub-Cholesky. obsv_chol = comp_pend_chol[:comp.shape[0],:comp.shape[0]] # Solve the linear systems. alpha = spla.cho_solve((obsv_chol, True), vals - self.mean) beta = spla.cho_solve((obsv_chol, True), pend_cross) # Finding predictive means and variances. pend_m = np.dot(pend_cross.T, alpha) + self.mean pend_K = pend_kappa - np.dot(pend_cross.T, beta) # Take the Cholesky of the predictive covariance. pend_chol = spla.cholesky(pend_K, lower=True) # Make predictions. npr.set_state(self.randomstate) pend_fant = np.dot(pend_chol, npr.randn(pend.shape[0],self.pending_samples)) + pend_m[:,None] # Include the fantasies. fant_vals = np.concatenate( (np.tile(vals[:,np.newaxis], (1,self.pending_samples)), pend_fant)) # Compute bests over the fantasies. bests = np.min(fant_vals, axis=0) # Now generalize from these fantasies. cand_cross = self.cov(comp_pend, cand) # Solve the linear systems. alpha = spla.cho_solve((comp_pend_chol, True), fant_vals - self.mean) beta = spla.solve_triangular(comp_pend_chol, cand_cross, lower=True) # Predict the marginal means and variances at candidates. func_m = np.dot(cand_cross.T, alpha) + self.mean func_v = self.amp2*(1+1e-6) - np.sum(beta**2, axis=0) # Expected improvement func_s = np.sqrt(func_v[:,np.newaxis]) u = (bests[np.newaxis,:] - func_m) / func_s ncdf = sps.norm.cdf(u) npdf = sps.norm.pdf(u) ei = func_s*( u*ncdf + npdf) return np.mean(ei, axis=1) def sample_hypers(self, comp, vals): if self.noiseless: self.noise = 1e-3 self._sample_noiseless(comp, vals) else: self._sample_noisy(comp, vals) self._sample_ls(comp, vals) self.hyper_samples.append((self.mean, self.noise, self.amp2, self.ls)) def _sample_ls(self, comp, vals): def logprob(ls): if np.any(ls < 0) or np.any(ls > self.max_ls): return -np.inf cov = (self.amp2 * (self.cov_func(ls, comp, None) + 1e-6*np.eye(comp.shape[0])) + self.noise*np.eye(comp.shape[0])) chol = spla.cholesky(cov, lower=True) solve = spla.cho_solve((chol, True), vals - self.mean) lp = (-np.sum(np.log(np.diag(chol))) - 0.5*np.dot(vals-self.mean, solve)) return lp self.ls = slice_sample(self.ls, logprob, compwise=True) def _sample_noisy(self, comp, vals): def logprob(hypers): mean = hypers[0] amp2 = hypers[1] noise = hypers[2] # This is pretty hacky, but keeps things sane. if mean > np.max(vals) or mean < np.min(vals): return -np.inf if amp2 < 0 or noise < 0: return -np.inf cov = (amp2 * (self.cov_func(self.ls, comp, None) + 1e-6*np.eye(comp.shape[0])) + noise*np.eye(comp.shape[0])) chol = spla.cholesky(cov, lower=True) solve = spla.cho_solve((chol, True), vals - mean) lp = -np.sum(np.log(np.diag(chol)))-0.5*np.dot(vals-mean, solve) # Roll in noise horseshoe prior. lp += np.log(np.log(1 + (self.noise_scale/noise)**2)) # Roll in amplitude lognormal prior lp -= 0.5*(np.log(np.sqrt(amp2))/self.amp2_scale)**2 return lp hypers = slice_sample(np.array( [self.mean, self.amp2, self.noise]), logprob, compwise=False) self.mean = hypers[0] self.amp2 = hypers[1] self.noise = hypers[2] def _sample_noiseless(self, comp, vals): def logprob(hypers): mean = hypers[0] amp2 = hypers[1] noise = 1e-3 # This is pretty hacky, but keeps things sane. if mean > np.max(vals) or mean < np.min(vals): return -np.inf if amp2 < 0: return -np.inf cov = (amp2 * (self.cov_func(self.ls, comp, None) + 1e-6*np.eye(comp.shape[0])) + noise*np.eye(comp.shape[0])) chol = spla.cholesky(cov, lower=True) solve = spla.cho_solve((chol, True), vals - mean) lp = -np.sum(np.log(np.diag(chol)))-0.5*np.dot(vals-mean, solve) # Roll in amplitude lognormal prior lp -= 0.5*(np.log(np.sqrt(amp2))/self.amp2_scale)**2 return lp hypers = slice_sample(np.array( [self.mean, self.amp2, self.noise]), logprob, compwise=False) self.mean = hypers[0] self.amp2 = hypers[1] self.noise = 1e-3 def optimize_hypers(self, comp, vals): mygp = gp.GP(self.cov_func.__name__) mygp.real_init(comp.shape[1], vals) mygp.optimize_hypers(comp,vals) self.mean = mygp.mean self.ls = mygp.ls self.amp2 = mygp.amp2 self.noise = mygp.noise # Save hyperparameter samples self.hyper_samples.append((self.mean, self.noise, self.amp2, self.ls)) return
Milano-master
milano/search_algorithms/gp/spearmint/gpeiopt_chooser.py
Milano-master
milano/search_algorithms/gp/spearmint/__init__.py
# ## # # Copyright (C) 2012 Jasper Snoek, Hugo Larochelle and Ryan P. Adams # # # # This code is written for research and educational purposes only to # # supplement the paper entitled "Practical Bayesian Optimization of # # Machine Learning Algorithms" by Snoek, Larochelle and Adams Advances # # in Neural Information Processing Systems, 2012 # # # # This program is free software: you can redistribute it and/or modify # # it under the terms of the GNU General Public License as published by # # the Free Software Foundation, either version 3 of the License, or # # (at your option) any later version. # # # # This program is distributed in the hope that it will be useful, but # # WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # # General Public License for more details. # # # # You should have received a copy of the GNU General Public License # # along with this program. If not, see # # <http://www.gnu.org/licenses/>. # This code was modified to be compatible with NVAML project import numpy as np import numpy.random as npr from .sobol_lib import i4_sobol_generate def slice_sample(init_x, logprob, sigma=1.0, step_out=True, max_steps_out=1000, compwise=False, verbose=False): def direction_slice(direction, init_x): def dir_logprob(z): return logprob(direction * z + init_x) upper = sigma * npr.rand() lower = upper - sigma llh_s = np.log(npr.rand()) + dir_logprob(0.0) l_steps_out = 0 u_steps_out = 0 if step_out: while dir_logprob(lower) > llh_s and l_steps_out < max_steps_out: l_steps_out += 1 lower -= sigma while dir_logprob(upper) > llh_s and u_steps_out < max_steps_out: u_steps_out += 1 upper += sigma steps_in = 0 while True: steps_in += 1 new_z = (upper - lower) * npr.rand() + lower new_llh = dir_logprob(new_z) if np.isnan(new_llh): print(new_z, direction * new_z + init_x, new_llh, llh_s, init_x, logprob(init_x)) raise Exception("Slice sampler got a NaN") if new_llh > llh_s: break elif new_z < 0: lower = new_z elif new_z > 0: upper = new_z else: raise Exception("Slice sampler shrank to zero!") if verbose: print("Steps Out:", l_steps_out, u_steps_out, " Steps In:", steps_in) return new_z * direction + init_x if not init_x.shape: init_x = np.array([init_x]) dims = init_x.shape[0] if compwise: ordering = np.arange(dims) npr.shuffle(ordering) cur_x = init_x.copy() for d in ordering: direction = np.zeros((dims)) direction[d] = 1.0 cur_x = direction_slice(direction, cur_x) return cur_x else: direction = npr.randn(dims) direction = direction / np.sqrt(np.sum(direction ** 2)) return direction_slice(direction, init_x) class Parameter: def __init__(self): self.type = [] self.name = [] self.type = [] self.min = [] self.max = [] self.options = [] self.int_val = [] self.dbl_val = [] self.str_val = [] class GridMap: def __init__(self, variables, grid_size): self.variables = variables self.cardinality = 0 # Count the total number of dimensions and roll into new format. for variable in variables: self.cardinality += variable['size'] # Get a list of candidate experiments generated from a sobol sequence def hypercube_grid(self, size, seed): # Generate from a sobol sequence sobol_grid = np.transpose(i4_sobol_generate(self.cardinality, size, seed)) return sobol_grid # Convert a variable to the unit hypercube # Takes a single variable encoded as a list, assuming the ordering is # the same as specified in the configuration file def to_unit(self, v): unit = np.zeros(self.cardinality) index = 0 for variable in self.variables: # param.name = variable['name'] if variable['type'] == 'int': for dd in range(variable['size']): unit[index] = self._index_unmap(float(v.pop(0)) - variable['min'], ( variable['max'] - variable['min']) + 1) index += 1 elif variable['type'] == 'float': for dd in range(variable['size']): unit[index] = (float(v.pop(0)) - variable['min']) / ( variable['max'] - variable['min']) index += 1 elif variable['type'] == 'enum': for dd in range(variable['size']): unit[index] = variable['options'].index(v.pop(0)) index += 1 # TODO: add log_float if this function is going to be used else: raise Exception("Unknown parameter type.") if len(v) > 0: raise Exception("Too many variables passed to parser") return unit def unit_to_list(self, u): params = self.get_params(u) paramlist = [] for p in params: if p.type == 'int': for v in p.int_val: paramlist.append(v) if p.type == 'float': for v in p.dbl_val: paramlist.append(v) if p.type == 'enum': for v in p.str_val: paramlist.append(v) return paramlist def get_params(self, u): if u.shape[0] != self.cardinality: raise Exception("Hypercube dimensionality is incorrect.") params = [] index = 0 for variable in self.variables: param = Parameter() param.name = variable['name'] if variable['type'] == 'int': param.type = 'int' for dd in range(variable['size']): param.int_val.append( variable['min'] + self._index_map(u[index], variable['max'] - variable['min'] + 1) ) index += 1 elif variable['type'] == 'float': param.type = 'float' for dd in range(variable['size']): val = variable['min'] + u[index] * (variable['max'] - variable['min']) val = variable['min'] if val < variable['min'] else val val = variable['max'] if val > variable['max'] else val param.dbl_val.append(val) index += 1 elif variable['type'] == 'log_float': param.type = 'float' for dd in range(variable['size']): val = np.log(variable['min']) + u[index] * (np.log(variable['max']) - np.log(variable['min'])) val = np.log(variable['min']) if val < np.log(variable['min']) else val val = np.log(variable['max']) if val > np.log(variable['max']) else val param.dbl_val.append(np.exp(val)) index += 1 elif variable['type'] == 'enum': param.type = 'enum' for dd in range(variable['size']): ii = self._index_map(u[index], len(variable['options'])) index += 1 param.str_val.append(variable['options'][ii]) else: raise Exception("Unknown parameter type.") params.append(param) return params def card(self): return self.cardinality def _index_map(self, u, items): return int(np.floor((1 - np.finfo(float).eps) * u * float(items))) def _index_unmap(self, u, items): return float(float(u) / float(items))
Milano-master
milano/search_algorithms/gp/spearmint/utils.py
## # Copyright (C) 2012 Jasper Snoek, Hugo Larochelle and Ryan P. Adams # # This code is written for research and educational purposes only to # supplement the paper entitled # "Practical Bayesian Optimization of Machine Learning Algorithms" # by Snoek, Larochelle and Adams # Advances in Neural Information Processing Systems, 2012 # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # This code was modified to be compatible with NVAML project """ Chooser module for Constrained Gaussian process expected improvement. Candidates are sampled densely in the unit hypercube and then a subset of the most promising points are optimized to maximize constrained EI over hyperparameter samples. Slice sampling is used to sample Gaussian process hyperparameters for two GPs, one over the objective function and the other a probit likelihood classification GP that estimates the probability that a point is outside of the constraint space. """ import numpy as np import math import numpy.random as npr import scipy.linalg as spla import scipy.stats as sps import scipy.optimize as spo import time import multiprocessing import copy from . import gp from .utils import slice_sample # Wrapper function to pass to parallel ei optimization calls def optimize_pt(c, b, comp, pend, vals, labels, model): ret = spo.fmin_l_bfgs_b(model.grad_optimize_ei_over_hypers, c.flatten(), args=(comp, pend, vals, labels), bounds=b, disp=0) return ret[0] class GPConstrainedEIChooser: def __init__(self, covar="Matern52", mcmc_iters=20, pending_samples=100, noiseless=False, burnin=100, grid_subset=20, constraint_violating_value=np.inf, verbosity=0): self.cov_func = getattr(gp, covar) self.mcmc_iters = int(mcmc_iters) self.burnin = int(burnin) self.needs_burnin = True self.pending_samples = pending_samples self.D = -1 self.hyper_iters = 1 # Number of points to optimize EI over self.grid_subset = int(grid_subset) self.noiseless = bool(int(noiseless)) self.hyper_samples = [] self.constraint_hyper_samples = [] self.ff = None self.ff_samples = [] self.verbosity = int(verbosity) self.noise_scale = 0.1 # horseshoe prior self.amp2_scale = 1 # zero-mean log normal prior self.max_ls = 2 # top-hat prior on length scales self.constraint_noise_scale = 0.1 # horseshoe prior self.constraint_amp2_scale = 1 # zero-mean log normal prio self.constraint_gain = 1 # top-hat prior on length scales self.constraint_max_ls = 2 # top-hat prior on length scales self.bad_value = float(constraint_violating_value) def _real_init(self, dims, values, durations): self.randomstate = npr.get_state() # Identify constraint violations # Note that we'll treat NaNs and Infs as these values as well # as an optional user defined value goodvals = np.nonzero(np.logical_and(values != self.bad_value, np.isfinite(values)))[0] # Input dimensionality. self.D = dims # Initial length scales. self.ls = np.ones(self.D) self.constraint_ls = np.ones(self.D) # Initial amplitude. self.amp2 = np.std(values[goodvals])+1e-4 self.constraint_amp2 = 1.0 # Initial observation noise. self.noise = 1e-3 self.constraint_noise = 1e-3 self.constraint_gain = 1 # Initial mean. self.mean = np.mean(values[goodvals]) self.constraint_mean = 0.5 def cov(self, amp2, ls, x1, x2=None): if x2 is None: return amp2 * (self.cov_func(ls, x1, None) + 1e-6*np.eye(x1.shape[0])) else: return amp2 * self.cov_func(ls, x1, x2) # Given a set of completed 'experiments' in the unit hypercube with # corresponding objective 'values', pick from the next experiment to # run according to the acquisition function. def next(self, grid, values, durations, candidates, pending, complete): # Don't bother using fancy GP stuff at first. if complete.shape[0] < 2: return int(candidates[0]) # Grab out the relevant sets. comp = grid[complete,:] cand = grid[candidates,:] pend = grid[pending,:] vals = values[complete] # Identify constraint violations # Note that we'll treat NaNs and Infs as these values as well # as an optional user defined value idx = np.logical_and(vals != self.bad_value, np.isfinite(vals)) goodvals = np.nonzero(idx)[0] badvals = np.nonzero(np.logical_not(idx))[0] if goodvals.shape[0] < 2: return int(candidates[0]) labels = np.zeros(vals.shape[0]) labels[goodvals] = 1 if np.sum(labels) < 2: return int(candidates[0]) # Perform the real initialization. if self.D == -1: self._real_init(grid.shape[1], values[complete], durations[complete]) # Spray a set of candidates around the min so far numcand = cand.shape[0] best_comp = np.argmin(vals) cand2 = np.vstack((np.random.randn(10,comp.shape[1])*0.001 + comp[best_comp,:], cand)) if self.mcmc_iters > 0: # Possibly burn in. if self.needs_burnin: for mcmc_iter in range(self.burnin): self.sample_constraint_hypers(comp, labels) self.sample_hypers(comp[goodvals,:], vals[goodvals]) self.needs_burnin = False # Sample from hyperparameters. # Adjust the candidates to hit ei/sec peaks self.hyper_samples = [] for mcmc_iter in range(self.mcmc_iters): self.sample_constraint_hypers(comp, labels) self.sample_hypers(comp[goodvals,:], vals[goodvals]) comp_preds = np.zeros(labels.shape[0]).flatten() preds = self.pred_constraint_voilation(cand, comp, labels).flatten() for ii in range(self.mcmc_iters): constraint_hyper = self.constraint_hyper_samples[ii] self.ff = self.ff_samples[ii] self.constraint_mean = constraint_hyper[0] self.constraint_gain = constraint_hyper[1] self.constraint_amp2 = constraint_hyper[2] self.constraint_ls = constraint_hyper[3] comp_preds += self.pred_constraint_voilation(comp, comp, labels).flatten() comp_preds = comp_preds / float(self.mcmc_iters) # Pick the top candidates to optimize over overall_ei = self.ei_over_hypers(comp,pend,cand2,vals,labels) inds = np.argsort(np.mean(overall_ei, axis=1))[-self.grid_subset:] cand2 = cand2[inds,:] # Adjust the candidates to hit ei peaks b = []# optimization bounds for i in range(0, cand.shape[1]): b.append((0, 1)) # Optimize each point in parallel pool = multiprocessing.Pool(self.grid_subset) results = [pool.apply_async(optimize_pt,args=( c,b,comp,pend,vals,labels, copy.copy(self))) for c in cand2] for res in results: cand = np.vstack((cand, res.get(1024))) pool.close() cand = np.vstack((cand, cand2)) overall_ei = self.ei_over_hypers(comp,pend,cand,vals,labels) best_cand = np.argmax(np.mean(overall_ei, axis=1)) if (best_cand >= numcand): return (int(numcand), cand[best_cand,:]) return int(candidates[best_cand]) else: print ('This Chooser module permits only slice sampling with > 0 ' 'samples.') raise Exception('mcmc_iters <= 0') # Predict constraint voilating points def pred_constraint_voilation(self, cand, comp, vals): # The primary covariances for prediction. comp_cov = self.cov(self.constraint_amp2, self.constraint_ls, comp) cand_cross = self.cov(self.constraint_amp2, self.constraint_ls, comp, cand) # Compute the required Cholesky. obsv_cov = comp_cov + self.constraint_noise*np.eye(comp.shape[0]) obsv_chol = spla.cholesky(obsv_cov, lower=True) cov_grad_func = getattr(gp, 'grad_' + self.cov_func.__name__) cand_cross_grad = cov_grad_func(self.constraint_ls, comp, cand) # Predictive things. # Solve the linear systems. alpha = spla.cho_solve((obsv_chol, True), self.ff) beta = spla.solve_triangular(obsv_chol, cand_cross, lower=True) # Predict the marginal means and variances at candidates. func_m = np.dot(cand_cross.T, alpha)# + self.constraint_mean func_m = sps.norm.cdf(func_m*self.constraint_gain) return func_m # Compute EI over hyperparameter samples def ei_over_hypers(self,comp,pend,cand,vals,labels): overall_ei = np.zeros((cand.shape[0], self.mcmc_iters)) for mcmc_iter in range(self.mcmc_iters): hyper = self.hyper_samples[mcmc_iter] constraint_hyper = self.constraint_hyper_samples[mcmc_iter] self.mean = hyper[0] self.noise = hyper[1] self.amp2 = hyper[2] self.ls = hyper[3] self.constraint_mean = constraint_hyper[0] self.constraint_gain = constraint_hyper[1] self.constraint_amp2 = constraint_hyper[2] self.constraint_ls = constraint_hyper[3] overall_ei[:,mcmc_iter] = self.compute_constrained_ei(comp, pend, cand, vals, labels) return overall_ei # Adjust points by optimizing EI over a set of hyperparameter samples def grad_optimize_ei_over_hypers(self, cand, comp, pend, vals, labels, compute_grad=True): summed_ei = 0 summed_grad_ei = np.zeros(cand.shape).flatten() for mcmc_iter in range(self.mcmc_iters): hyper = self.hyper_samples[mcmc_iter] constraint_hyper = self.constraint_hyper_samples[mcmc_iter] self.mean = hyper[0] self.noise = hyper[1] self.amp2 = hyper[2] self.ls = hyper[3] self.constraint_mean = constraint_hyper[0] self.constraint_gain = constraint_hyper[1] self.constraint_amp2 = constraint_hyper[2] self.constraint_ls = constraint_hyper[3] if compute_grad: (ei,g_ei) = self.grad_optimize_ei(cand, comp, pend, vals, labels, compute_grad) summed_grad_ei = summed_grad_ei + g_ei else: ei = self.grad_optimize_ei(cand, comp, pend, vals, labels, compute_grad) summed_ei += ei if compute_grad: return (summed_ei, summed_grad_ei) else: return summed_ei def check_grad_ei(self, cand, comp, pend, vals, labels): (ei,dx1) = self.grad_optimize_ei_over_hypers(cand, comp, pend, vals, labels) dx2 = dx1*0 idx = np.zeros(cand.shape[0]) for i in range(0, cand.shape[0]): idx[i] = 1e-6 (ei1,tmp) = self.grad_optimize_ei_over_hypers( cand + idx, comp, pend, vals, labels) (ei2,tmp) = self.grad_optimize_ei_over_hypers( cand - idx, comp, pend, vals, labels) dx2[i] = (ei - ei2)/(2*1e-6) idx[i] = 0 print('computed grads', dx1) print('finite diffs', dx2) print(dx1/dx2) print(np.sum((dx1 - dx2)**2)) time.sleep(2) def grad_optimize_ei(self, cand, comp, pend, vals, labels, compute_grad=True): if pend.shape[0] == 0: return self.grad_optimize_ei_nopend(cand, comp, vals, labels, compute_grad=True) else: return self.grad_optimize_ei_pend(cand, comp, pend, vals, labels, compute_grad=True) def grad_optimize_ei_pend(self, cand, comp, pend, vals, labels, compute_grad=True): # Here we have to compute the gradients for constrained ei # This means deriving through the two kernels, the one for predicting # constraint violations and the one predicting ei # First pull out violating points compfull = comp.copy() comp = comp[labels > 0, :] vals = vals[labels > 0] # Use standard EI if there aren't enough observations of either # positive or negative constraint violations use_vanilla_ei = (np.all(labels > 0) or np.all(labels <= 0)) best = np.min(vals) cand = np.reshape(cand, (-1, comp.shape[1])) func_constraint_m = 1 if (not use_vanilla_ei): # First we make predictions for the durations # Compute covariances comp_constraint_cov = self.cov(self.constraint_amp2, self.constraint_ls, compfull) cand_constraint_cross = self.cov(self.constraint_amp2, self.constraint_ls, compfull,cand) # Cholesky decompositions obsv_constraint_cov = (comp_constraint_cov + self.constraint_noise*np.eye(compfull.shape[0])) obsv_constraint_chol = spla.cholesky(obsv_constraint_cov,lower=True) # Linear systems t_alpha = spla.cho_solve((obsv_constraint_chol, True), self.ff) # Predict marginal mean times and (possibly) variances ff = np.dot(cand_constraint_cross.T, t_alpha) # Squash through Gaussian cdf func_constraint_m = sps.norm.cdf(self.constraint_gain*ff) # Apply covariance function cov_grad_func = getattr(gp, 'grad_' + self.cov_func.__name__) cand_cross_grad = cov_grad_func(self.constraint_ls, compfull, cand) grad_cross_t = np.squeeze(cand_cross_grad) # Now compute the gradients w.r.t. ei # The primary covariances for prediction. comp_cov = self.cov(self.amp2, self.ls, comp) cand_cross = self.cov(self.amp2, self.ls, comp, cand) comp_cov_full = self.cov(self.amp2, self.ls, compfull) cand_cross_full = self.cov(self.amp2, self.ls, compfull, cand) # Create a composite vector of complete and pending. comp_pend = np.concatenate((comp, pend)) # Compute the covariance and Cholesky decomposition. comp_pend_cov = (self.cov(self.amp2, self.ls, comp_pend) + self.noise*np.eye(comp_pend.shape[0])) comp_pend_chol = spla.cholesky(comp_pend_cov, lower=True) # Compute submatrices. pend_cross = self.cov(self.amp2, self.ls, comp, pend) pend_kappa = self.cov(self.amp2,self.ls, pend) # Use the sub-Cholesky. obsv_chol = comp_pend_chol[:comp.shape[0],:comp.shape[0]] # Compute the required Cholesky. #obsv_cov = comp_cov + self.noise*np.eye(comp.shape[0]) #obsv_chol = spla.cholesky(obsv_cov, lower=True) obsv_cov_full = comp_cov_full + self.noise*np.eye(compfull.shape[0]) obsv_chol_full = spla.cholesky( obsv_cov_full, lower=True) # Predictive things. # Solve the linear systems. alpha = spla.cho_solve((obsv_chol, True), vals - self.mean) beta = spla.cho_solve((obsv_chol, True), pend_cross) # Finding predictive means and variances. pend_m = np.dot(pend_cross.T, alpha) + self.mean pend_K = pend_kappa - np.dot(pend_cross.T, beta) # Take the Cholesky of the predictive covariance. pend_chol = spla.cholesky(pend_K, lower=True) # Make predictions. npr.set_state(self.randomstate) pend_fant = np.dot(pend_chol, npr.randn(pend.shape[0],self.pending_samples)) + pend_m[:,None] # Include the fantasies. fant_vals = np.concatenate( (np.tile(vals[:,np.newaxis], (1,self.pending_samples)), pend_fant)) # Compute bests over the fantasies. bests = np.min(fant_vals, axis=0) # Now generalize from these fantasies. cand_cross = self.cov(self.amp2, self.ls, comp_pend, cand) cov_grad_func = getattr(gp, 'grad_' + self.cov_func.__name__) cand_cross_grad = cov_grad_func(self.ls, comp_pend, cand) # Solve the linear systems. alpha = spla.cho_solve((comp_pend_chol, True), fant_vals - self.mean) beta = spla.solve_triangular(comp_pend_chol, cand_cross, lower=True) # Predict the marginal means and variances at candidates. func_m = np.dot(cand_cross.T, alpha) + self.mean func_v = self.amp2*(1+1e-6) - np.sum(beta**2, axis=0) #beta = spla.solve_triangular(obsv_chol_full, cand_cross_full, # lower=True) #beta = spla.solve_triangular(obsv_chol, cand_cross, # lower=True) # Predict the marginal means and variances at candidates. func_m = np.dot(cand_cross.T, alpha) + self.mean func_v = self.amp2*(1+1e-6) - np.sum(beta**2, axis=0) # Expected improvement func_s = np.sqrt(func_v) u = (best - func_m) / func_s ncdf = sps.norm.cdf(u) npdf = sps.norm.pdf(u) ei = func_s*(u*ncdf + npdf) constrained_ei = -np.sum(ei*func_constraint_m) if not compute_grad: return constrained_ei # Gradients of ei w.r.t. mean and variance g_ei_m = -ncdf g_ei_s2 = 0.5*npdf / func_s # Apply covariance function grad_cross = np.squeeze(cand_cross_grad) grad_xp_m = np.dot(alpha.transpose(),grad_cross) grad_xp_v = np.dot(-2*spla.cho_solve( (comp_pend_chol, True),cand_cross).transpose(), grad_cross) grad_xp = 0.5*self.amp2*(grad_xp_m*np.tile(g_ei_m,(comp.shape[1],1)).T + (grad_xp_v.T*g_ei_s2).T) grad_xp = np.sum(grad_xp,axis=0) if use_vanilla_ei: return -np.sum(ei), grad_xp.flatten() grad_constraint_xp_m = np.dot(t_alpha.transpose(),grad_cross_t) grad_constraint_xp_m = (0.5*self.constraint_amp2* self.constraint_gain* grad_constraint_xp_m* sps.norm.pdf(self.constraint_gain*ff)) grad_xp = (func_constraint_m*grad_xp + np.sum(ei)*grad_constraint_xp_m) return constrained_ei, grad_xp.flatten() def grad_optimize_ei_nopend(self, cand, comp, vals, labels, compute_grad=True): # Here we have to compute the gradients for constrained ei # This means deriving through the two kernels, the one for predicting # constraint violations and the one predicting ei # First pull out violating points compfull = comp.copy() comp = comp[labels > 0, :] vals = vals[labels > 0] # Use standard EI if there aren't enough observations of either # positive or negative constraint violations use_vanilla_ei = (np.all(labels > 0) or np.all(labels <= 0)) best = np.min(vals) cand = np.reshape(cand, (-1, comp.shape[1])) func_constraint_m = 1 if (not use_vanilla_ei): # First we make predictions for the durations # Compute covariances comp_constraint_cov = self.cov(self.constraint_amp2, self.constraint_ls, compfull) cand_constraint_cross = self.cov(self.constraint_amp2, self.constraint_ls, compfull,cand) # Cholesky decompositions obsv_constraint_cov = (comp_constraint_cov + self.constraint_noise*np.eye(compfull.shape[0])) obsv_constraint_chol = spla.cholesky(obsv_constraint_cov,lower=True) # Linear systems t_alpha = spla.cho_solve((obsv_constraint_chol, True), self.ff) # Predict marginal mean times and (possibly) variances ff = np.dot(cand_constraint_cross.T, t_alpha) # Squash through Gaussian cdf func_constraint_m = sps.norm.cdf(self.constraint_gain*ff) # Now compute the gradients w.r.t. ei # The primary covariances for prediction. comp_cov = self.cov(self.amp2, self.ls, comp) cand_cross = self.cov(self.amp2, self.ls, comp, cand) comp_cov_full = self.cov(self.amp2, self.ls, compfull) cand_cross_full = self.cov(self.amp2, self.ls, compfull, cand) # Compute the required Cholesky. obsv_cov = comp_cov + self.noise*np.eye(comp.shape[0]) obsv_chol = spla.cholesky(obsv_cov, lower=True) obsv_cov_full = comp_cov_full + self.noise*np.eye(compfull.shape[0]) obsv_chol_full = spla.cholesky( obsv_cov_full, lower=True) # Predictive things. # Solve the linear systems. alpha = spla.cho_solve((obsv_chol, True), vals - self.mean) beta = spla.solve_triangular(obsv_chol_full, cand_cross_full, lower=True) # Predict the marginal means and variances at candidates. func_m = np.dot(cand_cross.T, alpha) + self.mean func_v = self.amp2*(1+1e-6) - np.sum(beta**2, axis=0) # Expected improvement func_s = np.sqrt(func_v) u = (best - func_m) / func_s ncdf = sps.norm.cdf(u) npdf = sps.norm.pdf(u) ei = func_s*(u*ncdf + npdf) constrained_ei = -np.sum(ei*func_constraint_m) if not compute_grad: return constrained_ei # Gradients of ei w.r.t. mean and variance g_ei_m = -ncdf g_ei_s2 = 0.5*npdf / func_s # Apply covariance function cov_grad_func = getattr(gp, 'grad_' + self.cov_func.__name__) cand_cross_grad = cov_grad_func(self.ls, comp, cand) grad_cross = np.squeeze(cand_cross_grad) cand_cross_grad_full = cov_grad_func(self.ls, compfull, cand) grad_cross_full = np.squeeze(cand_cross_grad_full) grad_xp_m = np.dot(alpha.transpose(),grad_cross) grad_xp_v = np.dot(-2*spla.cho_solve((obsv_chol_full, True), cand_cross_full).transpose(), grad_cross_full) grad_xp = 0.5*self.amp2*(grad_xp_m*g_ei_m + grad_xp_v*g_ei_s2) if use_vanilla_ei: return -np.sum(ei), grad_xp.flatten() # Apply constraint classifier cand_cross_grad = cov_grad_func(self.constraint_ls, compfull, cand) grad_cross_t = np.squeeze(cand_cross_grad) grad_constraint_xp_m = np.dot(t_alpha.transpose(),grad_cross_t) grad_constraint_xp_m = (0.5*self.constraint_amp2* self.constraint_gain* grad_constraint_xp_m* sps.norm.pdf(self.constraint_gain*ff)) grad_xp = (func_constraint_m*grad_xp + ei*grad_constraint_xp_m) return constrained_ei, grad_xp.flatten() def compute_constrained_ei(self, comp, pend, cand, vals, labels): # First we make predictions for the durations as that # doesn't depend on pending experiments # First pull out violating points compfull = comp.copy() comp = comp[labels > 0, :] vals = vals[labels > 0] # Use standard EI if there aren't enough observations of either # positive or negative constraint violations if (np.all(labels > 0) or np.all(labels <= 0)): func_constraint_m = 1 else: # Compute covariances comp_constraint_cov = self.cov(self.constraint_amp2, self.constraint_ls, compfull) cand_constraint_cross = self.cov(self.constraint_amp2, self.constraint_ls, compfull,cand) # Cholesky decompositions obsv_constraint_cov = (comp_constraint_cov + self.constraint_noise*np.eye(compfull.shape[0])) obsv_constraint_chol = spla.cholesky( obsv_constraint_cov, lower=True) # Linear systems t_alpha = spla.cho_solve((obsv_constraint_chol, True), self.ff) t_beta = spla.solve_triangular(obsv_constraint_chol, cand_constraint_cross, lower=True) # Predict marginal mean times and (possibly) variances func_constraint_m = (np.dot(cand_constraint_cross.T, t_alpha)) # Squash through a probit func_constraint_m = sps.norm.cdf(self.constraint_gain*func_constraint_m) if pend.shape[0] == 0: # If there are no pending, don't do anything fancy. # Current best. best = np.min(vals) # The primary covariances for prediction. comp_cov = self.cov(self.amp2, self.ls, comp) comp_cov_full = self.cov(self.amp2, self.ls, compfull) cand_cross = self.cov(self.amp2, self.ls, comp, cand) cand_cross_full = self.cov(self.amp2, self.ls, compfull, cand) # Compute the required Cholesky. obsv_cov = comp_cov + self.noise*np.eye(comp.shape[0]) obsv_cov_full = (comp_cov_full + self.noise*np.eye(compfull.shape[0])) obsv_chol = spla.cholesky( obsv_cov, lower=True) obsv_chol_full = spla.cholesky( obsv_cov_full, lower=True) # Solve the linear systems. alpha = spla.cho_solve((obsv_chol, True), vals - self.mean) beta = spla.solve_triangular(obsv_chol, cand_cross, lower=True) #beta = spla.solve_triangular(obsv_chol_full, cand_cross_full, # lower=True) # Predict the marginal means and variances at candidates. func_m = np.dot(cand_cross.T, alpha) + self.mean func_v = self.amp2*(1+1e-6) - np.sum(beta**2, axis=0) # Expected improvement func_s = np.sqrt(func_v) u = (best - func_m) / func_s ncdf = sps.norm.cdf(u) npdf = sps.norm.pdf(u) ei = func_s*( u*ncdf + npdf) constrained_ei = ei*func_constraint_m return constrained_ei else: # If there are pending experiments, fantasize their outcomes. # Create a composite vector of complete and pending. comp_pend = np.concatenate((comp, pend)) # Compute the covariance and Cholesky decomposition. comp_pend_cov = (self.cov(self.amp2, self.ls, comp_pend) + self.noise*np.eye(comp_pend.shape[0])) comp_pend_chol = spla.cholesky(comp_pend_cov, lower=True) # Compute submatrices. pend_cross = self.cov(self.amp2, self.ls, comp, pend) pend_kappa = self.cov(self.amp2, self.ls, pend) # Use the sub-Cholesky. obsv_chol = comp_pend_chol[:comp.shape[0],:comp.shape[0]] # Solve the linear systems. alpha = spla.cho_solve((obsv_chol, True), vals - self.mean) beta = spla.cho_solve((obsv_chol, True), pend_cross) # Finding predictive means and variances. pend_m = np.dot(pend_cross.T, alpha) + self.mean pend_K = pend_kappa - np.dot(pend_cross.T, beta) # Take the Cholesky of the predictive covariance. pend_chol = spla.cholesky(pend_K, lower=True) # Make predictions. pend_fant = np.dot(pend_chol, npr.randn(pend.shape[0], self.pending_samples)) + pend_m[:,None] # Include the fantasies. fant_vals = np.concatenate((np.tile(vals[:,np.newaxis], (1,self.pending_samples)), pend_fant)) # Compute bests over the fantasies. bests = np.min(fant_vals, axis=0) # Now generalize from these fantasies. cand_cross = self.cov(self.amp2, self.ls, comp_pend, cand) # Solve the linear systems. alpha = spla.cho_solve((comp_pend_chol, True), fant_vals - self.mean) beta = spla.solve_triangular(comp_pend_chol, cand_cross, lower=True) # Predict the marginal means and variances at candidates. func_m = np.dot(cand_cross.T, alpha) + self.mean func_v = self.amp2*(1+1e-6) - np.sum(beta**2, axis=0) # Expected improvement func_s = np.sqrt(func_v[:,np.newaxis]) u = (bests[np.newaxis,:] - func_m) / func_s ncdf = sps.norm.cdf(u) npdf = sps.norm.pdf(u) ei = func_s*( u*ncdf + npdf) return np.mean(ei, axis=1)*func_constraint_m def compute_ei(self, comp, pend, cand, vals, labels): # First we make predictions for the durations as that # doesn't depend on pending experiments # First pull out violating points compfull = comp.copy() comp = comp[labels > 0, :] vals = vals[labels > 0] # Compute covariances comp_constraint_cov = self.cov(self.constraint_amp2, self.constraint_ls, compfull) cand_constraint_cross = self.cov(self.constraint_amp2, self.constraint_ls, compfull,cand) # Cholesky decompositions obsv_constraint_cov = (comp_constraint_cov + self.constraint_noise*np.eye( compfull.shape[0])) obsv_constraint_chol = spla.cholesky( obsv_constraint_cov, lower=True ) # Linear systems t_alpha = spla.cho_solve((obsv_constraint_chol, True), self.ff) # Predict marginal mean times and (possibly) variances func_constraint_m = (np.dot(cand_constraint_cross.T, t_alpha)) # Squash through a probit to get prob of not violating a constraint func_constraint_m = 1./(1+np.exp(-self.constraint_gain* func_constraint_m)) if pend.shape[0] == 0: # If there are no pending, don't do anything fancy. # Current best. best = np.min(vals) # The primary covariances for prediction. comp_cov = self.cov(self.amp2, self.ls, comp) comp_cov_full = self.cov(self.amp2, self.ls, compfull) cand_cross = self.cov(self.amp2, self.ls, comp, cand) cand_cross_full = self.cov(self.amp2, self.ls, compfull, cand) # Compute the required Cholesky. obsv_cov = comp_cov + self.noise*np.eye(comp.shape[0]) obsv_cov_full = (comp_cov_full + self.noise*np.eye(compfull.shape[0])) obsv_chol = spla.cholesky( obsv_cov, lower=True ) obsv_chol_full = spla.cholesky( obsv_cov_full, lower=True ) # Solve the linear systems. alpha = spla.cho_solve((obsv_chol, True), vals - self.mean) beta = spla.solve_triangular(obsv_chol, cand_cross, lower=True) #beta = spla.solve_triangular(obsv_chol_full, cand_cross_full, #lower=True) # Predict the marginal means and variances at candidates. func_m = np.dot(cand_cross.T, alpha) + self.mean func_v = self.amp2*(1+1e-6) - np.sum(beta**2, axis=0) # Expected improvement func_s = np.sqrt(func_v) u = (best - func_m) / func_s ncdf = sps.norm.cdf(u) npdf = sps.norm.pdf(u) ei = func_s*( u*ncdf + npdf) return ei else: return 0 def sample_constraint_hypers(self, comp, labels): # The latent GP projection # The latent GP projection if (self.ff is None or self.ff.shape[0] < comp.shape[0]): self.ff_samples = [] comp_cov = self.cov(self.constraint_amp2, self.constraint_ls, comp) obsv_cov = comp_cov + 1e-6*np.eye(comp.shape[0]) obsv_chol = spla.cholesky(obsv_cov, lower=True) self.ff = np.dot(obsv_chol,npr.randn(obsv_chol.shape[0])) self._sample_constraint_noisy(comp, labels) self._sample_constraint_ls(comp, labels) self.constraint_hyper_samples.append((self.constraint_mean, self.constraint_gain, self.constraint_amp2, self.constraint_ls)) self.ff_samples.append(self.ff) def sample_hypers(self, comp, vals): if self.noiseless: self.noise = 1e-3 self._sample_noiseless(comp, vals) else: self._sample_noisy(comp, vals) self._sample_ls(comp, vals) self.hyper_samples.append((self.mean, self.noise, self.amp2, self.ls)) def _sample_ls(self, comp, vals): def logprob(ls): if np.any(ls < 0) or np.any(ls > self.max_ls): return -np.inf cov = (self.amp2 * (self.cov_func(ls, comp, None) + 1e-6*np.eye(comp.shape[0])) + self.noise*np.eye(comp.shape[0])) chol = spla.cholesky(cov, lower=True) solve = spla.cho_solve((chol, True), vals - self.mean) lp = (-np.sum(np.log(np.diag(chol))) - 0.5*np.dot(vals-self.mean, solve)) return lp self.ls = slice_sample(self.ls, logprob, compwise=True) def _sample_constraint_ls(self, comp, vals): def lpProbit(ff, gain=self.constraint_gain): probs = sps.norm.cdf(ff*gain) probs[probs <= 0] = 1e-12 probs[probs >= 1] = 1-1e-12 llh = np.sum(vals*np.log(probs) + (1-vals)*np.log(1-probs)) return llh def lpSigmoid(ff, gain=self.constraint_gain): probs = 1./(1. + np.exp(-gain*ff)); probs[probs <= 0] = 1e-12 probs[probs >= 1] = 1-1e-12 llh = np.sum(vals*np.log(probs) + (1-vals)*np.log(1-probs)); return llh def updateGain(gain): if gain < 0.01 or gain > 10: return -np.inf cov = (self.constraint_amp2 * (self.cov_func( self.constraint_ls, comp, None) + 1e-6*np.eye(comp.shape[0])) + self.constraint_noise*np.eye(comp.shape[0])) chol = spla.cholesky(cov, lower=True) solve = spla.cho_solve((chol, True), vals) lp = lpProbit(self.ff, gain) return lp def logprob(ls): if np.any(ls < 0) or np.any(ls > self.constraint_max_ls): return -np.inf cov = self.constraint_amp2 * (self.cov_func(ls, comp, None) + 1e-6*np.eye(comp.shape[0])) + self.constraint_noise*np.eye(comp.shape[0]) chol = spla.cholesky(cov, lower=True) solve = spla.cho_solve((chol, True), self.ff) lp = lpProbit(self.ff) return lp hypers = slice_sample(self.constraint_ls, logprob, compwise=True) self.constraint_ls = hypers cov = self.constraint_amp2 * (self.cov_func(self.constraint_ls, comp, None) + 1e-6*np.eye(comp.shape[0])) + self.constraint_noise*np.eye(comp.shape[0]) chol = spla.cholesky(cov, lower=False) ff = self.ff for jj in range(20): (ff, lpell) = self.elliptical_slice(ff, chol, lpProbit) self.ff = ff # Update gain hypers = slice_sample(np.array([self.constraint_gain]), updateGain, compwise=True) self.constraint_gain = hypers[0] def _sample_noisy(self, comp, vals): def logprob(hypers): mean = hypers[0] amp2 = hypers[1] noise = hypers[2] # This is pretty hacky, but keeps things sane. if mean > np.max(vals) or mean < np.min(vals): return -np.inf if amp2 < 0 or noise < 0: return -np.inf cov = amp2 * ((self.cov_func(self.ls, comp, None) + 1e-6*np.eye(comp.shape[0])) + noise*np.eye(comp.shape[0])) chol = spla.cholesky(cov, lower=True) solve = spla.cho_solve((chol, True), vals - mean) lp = -np.sum(np.log(np.diag(chol)))-0.5*np.dot(vals-mean, solve) # Roll in noise horseshoe prior. lp += np.log(np.log(1 + (self.noise_scale/noise)**2)) # Roll in amplitude lognormal prior lp -= 0.5*(np.log(amp2)/self.amp2_scale)**2 return lp hypers = slice_sample(np.array( [self.mean, self.amp2, self.noise]), logprob, compwise=False) self.mean = hypers[0] self.amp2 = hypers[1] self.noise = hypers[2] def _sample_constraint_noisy(self, comp, vals): def lpProbit(ff, gain=self.constraint_gain): probs = sps.norm.cdf(ff*gain) probs[probs <= 0] = 1e-12 probs[probs >= 1] = 1-1e-12 llh = np.sum(vals*np.log(probs) + (1-vals)*np.log(1-probs)) if np.any(np.isnan(probs)): print(probs) return llh def lpSigmoid(ff,gain=self.constraint_gain): probs = 1./(1. + np.exp(-gain*ff)); probs[probs <= 0] = 1e-12 probs[probs >= 1] = 1-1e-12 llh = np.sum(vals*np.log(probs) + (1-vals)*np.log(1-probs)); return llh def logprob(hypers): amp2 = hypers[0] ff = hypers[1:] if amp2 < 0: return -np.inf noise = self.constraint_noise cov = amp2 * (self.cov_func(self.constraint_ls, comp, None) + 1e-6*np.eye(comp.shape[0])) + noise*np.eye(comp.shape[0]) chol = spla.cholesky(cov, lower=True) solve = spla.cho_solve((chol, True), ff) lp = -np.sum(np.log(np.diag(chol)))-0.5*np.dot(ff, solve) # Roll in amplitude lognormal prior lp -= 0.5*(np.log(amp2)/self.constraint_amp2_scale)**2 lp += lpProbit(ff,self.constraint_gain) return lp hypers = slice_sample(np.hstack((np.array([self.constraint_amp2]), self.ff)), logprob, compwise=False) self.constraint_amp2 = hypers[0] self.ff = hypers[1:] cov = self.constraint_amp2 * (( self.cov_func(self.constraint_ls, comp, None) + 1e-6*np.eye(comp.shape[0])) + self.constraint_noise*np.eye(comp.shape[0])) chol = spla.cholesky(cov, lower=False) ff = self.ff for jj in range(50): (ff, lpell) = self.elliptical_slice(ff, chol, lpProbit) self.ff = ff def _sample_noiseless(self, comp, vals): def logprob(hypers): mean = hypers[0] amp2 = hypers[1] noise = 1e-3 # This is pretty hacky, but keeps things sane. if mean > np.max(vals) or mean < np.min(vals): return -np.inf if amp2 < 0: return -np.inf cov = amp2 * ((self.cov_func(self.ls, comp, None) + 1e-6*np.eye(comp.shape[0])) + noise*np.eye(comp.shape[0])) chol = spla.cholesky(cov, lower=True) solve = spla.cho_solve((chol, True), vals - mean) lp = -np.sum(np.log(np.diag(chol)))-0.5*np.dot(vals-mean, solve) # Roll in amplitude lognormal prior lp -= 0.5*(np.log(amp2)/self.amp2_scale)**2 return lp hypers = slice_sample(np.array( [self.mean, self.amp2, self.noise]), logprob, compwise=False) self.mean = hypers[0] self.amp2 = hypers[1] self.noise = 1e-3 def elliptical_slice(self, xx, chol_Sigma, log_like_fn, cur_log_like=None, angle_range=0): D = xx.shape[0] if cur_log_like is None: cur_log_like = log_like_fn(xx) nu = np.dot(chol_Sigma.T,np.random.randn(D, 1)).flatten() hh = np.log(np.random.rand()) + cur_log_like # Set up a bracket of angles and pick a first proposal. # "phi = (theta'-theta)" is a change in angle. if angle_range <= 0: # Bracket whole ellipse with both edges at first proposed point phi = np.random.rand()*2*math.pi phi_min = phi - 2*math.pi phi_max = phi else: # Randomly center bracket on current point phi_min = -angle_range*np.random.rand() phi_max = phi_min + angle_range phi = np.random.rand()*(phi_max - phi_min) + phi_min # Slice sampling loop while True: # Compute xx for proposed angle difference # and check if it's on the slice xx_prop = xx*np.cos(phi) + nu*np.sin(phi) cur_log_like = log_like_fn(xx_prop) if cur_log_like > hh: # New point is on slice, ** EXIT LOOP ** break; # Shrink slice to rejected point if phi > 0: phi_max = phi elif phi < 0: phi_min = phi else: raise Exception('BUG DETECTED: Shrunk to current position ' 'and still not acceptable.') # Propose new angle difference phi = np.random.rand()*(phi_max - phi_min) + phi_min xx = xx_prop return (xx, cur_log_like)
Milano-master
milano/search_algorithms/gp/spearmint/gpei_constrained_chooser.py
# Copyright (c) 2018 NVIDIA Corporation from milano.backends import AzkabanBackend from milano.search_algorithms import RandomSearch # specify path to the script that is going to be tuned # path has to be absolute or relative to tune.py script script_to_run = "examples/os2s/cifar10/start_azk.sh" params_to_try_first = { "--lr_policy_params/learning_rate": [0.01, 0.02, 0.03], "--lr_policy_params/power": [2.0, 2.0, 1.5], "--batch_size_per_gpu": [64, 64, 64], "--regularizer_params/scale": [0.0001, 0.0002, 0.0002], "--optimizer_params/momentum": [0.71, 0.72, 0.73], } # specify the tunable parameters as cmd arguments and their possible ranges params_to_tune = { "--lr_policy_params/learning_rate": { "type": "log_range", "min": 0.00001, "max": 0.1 }, "--lr_policy_params/power": { "type": "values", "values": [0.5, 1.0, 2.0] }, "--batch_size_per_gpu": { "type": "values", "values": [32, 64, 128, 256] }, "--regularizer_params/scale": { "type": "log_range", "min": 0.00001, "max": 0.001 }, "--optimizer_params/momentum": { "type": "range", "min": 0.45, "max": 0.99 }, } # specify result pattern used to parse logs result_pattern = "Validation top-1:" # maximize or minimize objective = "maximize" # specify backend information and workers configuration backend = AzkabanBackend backend_params = { "url": "http://192.168.42.149", # URL of your Azkaban UI "port": "8081", # Azkaban port. You should see Azkaban UI at url:port "username": "azkaban", "password": "azkaban", # If you are using Azkaban solo server on a single machine, set this to the number of GPUs you have "workers_config": [ {"num_workers": 1, "env_vars": ["CUDA_VISIBLE_DEVICES=0"]}, {"num_workers": 1, "env_vars": ["CUDA_VISIBLE_DEVICES=1"]}, ], } # specify search algorithm to use search_algorithm = RandomSearch search_algorithm_params = { "num_evals": 1024, }
Milano-master
examples/os2s/cifar10/cifar10_azkaban.py
# Copyright (c) 2018 NVIDIA Corporation from milano.backends import SLURMBackend from milano.search_algorithms import RandomSearch # specify path to the script that is going to be tuned # path has to be absolute or relative to tune.py script script_to_run = "examples/os2s/cifar10/start_slurm.sh" # specify the tunable parameters as cmd arguments and their possible ranges params_to_tune = { "--lr_policy_params/learning_rate": { "type": "log_range", "min": 0.00001, "max": 0.1 }, "--lr_policy_params/power": { "type": "values", "values": [0.5, 1.0, 2.0] }, "--batch_size_per_gpu": { "type": "values", "values": [32, 64, 128, 256, 512, 1024] }, "--regularizer_params/scale": { "type": "log_range", "min": 0.00001, "max": 0.001 }, "--optimizer_params/momentum": { "type": "range", "min": 0.5, "max": 0.99 }, } # specify result pattern used to parse logs result_pattern = "Validation top-1:" # maximize or minimize objective = "maximize" # BACKEND parameters. We will use SLURMBackend to run on DB Cluster backend = SLURMBackend backend_params = { "workers_config": { "num_workers": 2, # NUMBER OF SLURM *NODES* to run at a time. "partition": "batch", # PARTITION name "username": "okuchaiev", # CHANGE THIS to your username "key_path": "/home/okuchaiev/.ssh/id_rsa", # CHANGE THIS to your id_rsa path for pasword-less ssh to the cluster "entrypoint": "dbcluster", # CHANGE THIS to your cluster entrypoint name }, } search_algorithm = RandomSearch search_algorithm_params = { "num_evals": 10, # TOTAL EXPERIMENTS TO RUN. You can set it arbitrary high }
Milano-master
examples/os2s/cifar10/cifar10_slurm.py
# Copyright (c) 2018 NVIDIA Corporation from milano.backends import AWSBackend from milano.search_algorithms import RandomSearch # specify path to the script that is going to be tuned # path has to be absolute or relative to tune.py script script_to_run = "examples/os2s/cifar10/start_aws.sh" # specify the tunable parameters as cmd arguments and their possible ranges params_to_tune = { "--lr_policy_params/learning_rate": { "type": "log_range", "min": 0.00001, "max": 0.1 }, "--lr_policy_params/power": { "type": "values", "values": [0.5, 1.0, 2.0] }, "--batch_size_per_gpu": { "type": "values", "values": [32, 64, 128, 256, 512, 1024] }, "--regularizer_params/scale": { "type": "log_range", "min": 0.00001, "max": 0.001 }, "--optimizer_params/momentum": { "type": "range", "min": 0.5, "max": 0.99 }, } # specify result pattern used to parse logs result_pattern = "Validation top-1:" # maximize or minimize objective = "maximize" # specify backend information and workers configuration backend = AWSBackend backend_params = { # TODO maybe automate the creation of a keypair if one isn't supplied "config": { "num_workers": 1, "spot_instances": False, "key_name": "milano-test", "private_key_path": "/home/okuchaiev/.aws/milano-test.pem", # FILL THIS IN WITH YOUR .pem FILE "region_name": "us-west-2", "docker_image_name": "tensorflow/tensorflow:1.9.0-gpu-py3", # "iam_role": "..." # if omitted, a role with read access to the dataset bucket/prefixes is created. "datasets": [ { "type": "s3", "bucket": "milano-test-data", "prefix": "cifar-10", "mount": "/data", }, ], "instance_params": { "InstanceType": "p3.2xlarge", } } } # specify search algorithm to use search_algorithm = RandomSearch search_algorithm_params = { "num_evals": 3, }
Milano-master
examples/os2s/cifar10/cifar10_aws.py
# Copyright (c) 2018 NVIDIA Corporation from milano.backends import SLURMBackend from milano.search_algorithms import RandomSearch # specify path to the script that is going to be tuned # path has to be absolute or relative to tune.py script # this should be on a driver machine script_to_run = "examples/pytorch/wlm/start_wlm_slurm.sh" # You can have this section to user-prespecify which configurations to explore first params_to_try_first = { "--model": ["LSTM", "GRU"], "--emsize": [1504, 1504], "--nlayers": [2, 2], "--lr": [20, 25], "--bptt": [35, 35], "--clip": [0.25, 0.35], "--dropout": [0.2, 0.2], } # specify the tunable parameters as cmd arguments and their possible ranges params_to_tune = { "--model": { "type": "values", "values": ["LSTM", "GRU"] }, "--emsize": { "type": "values", "values": [256, 512, 650, 1024, 1504, 2048] }, "--nlayers": { "type": "values", "values": [1, 2, 3] }, "--lr": { "type": "values", "values": [10, 20, 5, 30, 25, 40], }, "--nhid": { "type": "values", "values": [256, 512, 650, 1024, 1504, 2048] }, "--bptt": { "type": "values", "values": [15, 20, 30, 35, 45] }, "--clip": { "type": "range", "min": 0.1, "max": 2.0 }, "--dropout": { "type": "range", "min": 0.0, "max": 0.9 }, } constraints = [ {"pattern": 'valid ppl ', "range": [0, 310.0], "skip_first": 1, "formatter": lambda x: float(x[:-1])}, ] # specify result pattern used to parse logs result_pattern = "valid ppl" # maximize or minimize objective = "minimize" # BACKEND parameters. We will use SLURMBackend to run on DB Cluster backend = SLURMBackend backend_params = { "workers_config": { "num_workers": 2, # NUMBER OF SLURM *NODES* to run at a time. "partition": "batch", # PARTITION "username": "okuchaiev", # CHANGE THIS "key_path": "/home/okuchaiev/.ssh/id_rsa", # CHANGE THIS "entrypoint": "prom.nvidia.com", # CHANGE THIS }, } search_algorithm = RandomSearch search_algorithm_params = { "num_evals": 3, }
Milano-master
examples/pytorch/wlm/wlm_slurm.py
# Copyright (c) 2018 NVIDIA Corporation from milano.backends import AzkabanBackend from milano.search_algorithms import RandomSearch # specify path to the script that is going to be tuned # path has to be absolute or relative to tune.py script # this should be on a driver machine script_to_run = "examples/pytorch/wlm/start_wlm_azkaban.sh" # specify the tunable parameters as cmd arguments and their possible ranges params_to_tune = { "--model": { "type": "values", "values": ["RNN_TANH", "RNN_RELU", "LSTM", "GRU"] }, "--emsize": { "type": "values", "values": [256, 512, 650, 1024, 1504, 2048] }, "--nlayers": { "type": "values", "values": [1, 2, 3] }, "--lr": { "type": "values", "values": [10, 20, 5, 30, 25, 40], }, "--nhid": { "type": "values", "values": [256, 512, 650, 1024, 1504, 2048] }, "--bptt": { "type": "values", "values": [15, 20, 30, 35, 45] }, "--clip": { "type": "range", "min": 0.1, "max": 2.0 }, "--dropout": { "type": "range", "min": 0.0, "max": 0.9 }, } constraints = [ {"pattern": 'valid ppl ', "range": [0, 310.0], "skip_first": 4, "formatter": lambda x: float(x[:-1])}, ] # specify result pattern used to parse logs result_pattern = "valid ppl" # maximize or minimize objective = "minimize" # specify backend information and workers configuration backend = AzkabanBackend backend_params = { "url": "http://127.0.0.1", # URL of your Azkaban UI "port": "8081", # Azkaban port. You should see Azkaban UI at url:port "username": "azkaban", "password": "azkaban", # If you are using Azkaban solo server on a single machine, set this to the number of GPUs you have # PRO TIP: If your workload isn't too heavy, you can allocate more than one worker per GPU as # is done below: "workers_config": [ {"num_workers": 1, "env_vars": ["CUDA_VISIBLE_DEVICES=0"]}, {"num_workers": 1, "env_vars": ["CUDA_VISIBLE_DEVICES=1"]}, {"num_workers": 1, "env_vars": ["CUDA_VISIBLE_DEVICES=0"]}, {"num_workers": 1, "env_vars": ["CUDA_VISIBLE_DEVICES=1"]}, ], } # specify search algorithm to use search_algorithm = RandomSearch search_algorithm_params = { "num_evals": 8, }
Milano-master
examples/pytorch/wlm/wlm_azkaban.py
# Copyright (c) 2018 NVIDIA Corporation from milano.backends import AWSBackend from milano.search_algorithms import RandomSearch # specify path to the script that is going to be tuned # path has to be absolute or relative to tune.py script script_to_run = "examples/pytorch/wlm/start_wlm_aws.sh" # These configurations will be tried first params_to_try_first = { "--model": ["LSTM", "GRU"], "--emsize": [1504, 1504], "--nlayers": [2, 2], "--lr": [20, 25], "--bptt": [35, 35], "--clip": [0.25, 0.35], "--dropout": [0.2, 0.2], } # specify the tunable parameters as cmd arguments and their possible ranges params_to_tune = { "--emsize": { "type": "values", "values": [256, 512, 650, 1024, 1504, 2048] }, "--nlayers": { "type": "values", "values": [1, 2, 3] }, "--lr": { "type": "values", "values": [10, 20, 5, 30, 25, 40], }, "--nhid": { "type": "values", "values": [256, 512, 650, 1024, 1504, 2048] }, "--bptt": { "type": "values", "values": [15, 20, 30, 35, 45] }, "--clip": { "type": "range", "min": 0.1, "max": 2.0 }, "--dropout": { "type": "range", "min": 0.0, "max": 0.9 }, } # specify result pattern used to parse logs result_pattern = "valid ppl" # maximize or minimize objective = "minimize" # specify backend information and workers configuration backend = AWSBackend backend_params = { # TODO maybe automate the creation of a keypair if one isn't supplied "config": { "num_workers": 1, "spot_instances": False, "key_name": "milano-test", "private_key_path": "/home/okuchaiev/.aws/milano-test.pem", # FILL THIS IN WITH YOUR .pem FILE "region_name": "us-west-2", "docker_image_name": "pytorch/pytorch:0.4_cuda9_cudnn7", # "iam_role": "..." # if omitted, a role with read access to the dataset bucket/prefixes is created. "datasets": [ { "type": "s3", "bucket": "milano-test-data", "prefix": "cifar-10", "mount": "/workdir", }, ], "instance_params": { "InstanceType": "p3.2xlarge", } } } # specify search algorithm to use search_algorithm = RandomSearch search_algorithm_params = { "num_evals": 3, }
Milano-master
examples/pytorch/wlm/wlm_aws.py
# Copyright (c) 2018 NVIDIA Corporation import matplotlib.pyplot as plt import numpy as np import pandas as pd import os import argparse def build_images(results_dir, img_format="png"): num_steps = 100 results_dict = {} for bench_dir in os.listdir(os.path.join(results_dir, 'results_csvs')): bench = bench_dir[6:] results_dict[bench] = {} cur_dir = os.path.join(results_dir, 'results_csvs', bench_dir) for dim_dir in os.listdir(cur_dir): dim = int(dim_dir[4:]) results_dict[bench][dim] = {} cur_dir = os.path.join(results_dir, 'results_csvs', bench_dir, dim_dir) for algo_run_csv in os.listdir(cur_dir): algo, run = algo_run_csv.split('__') run = int(run[:-4]) results_df = pd.read_csv(os.path.join(cur_dir, algo_run_csv), index_col=0) results_df = results_df.sort_values(by="job_id")["Result:"] # assuming all runs in same algo/bench/dim # tuple have same number of steps, i.e. results_df.shape[0] is the same num_evals = results_df.shape[0] if algo == '2x_random_search': num_evals /= 2 plot_steps = np.linspace(10, num_evals, num_steps, dtype=np.int) values = np.empty(plot_steps.shape) for i, plot_step in enumerate(plot_steps): if algo == "2x_random_search": values[i] = results_df[:plot_step * 2].min() else: values[i] = results_df[:plot_step].min() if algo not in results_dict[bench][dim]: results_dict[bench][dim][algo] = [plot_steps, values[:, np.newaxis]] else: if not np.allclose(plot_steps, results_dict[bench][dim][algo][0]): raise RuntimeError( "Check that all runs for bench={}, dim={}, algo={} ".format( bench, dim, algo ) + "have the same number of samples" ) results_dict[bench][dim][algo][1] = np.hstack(( results_dict[bench][dim][algo][1], values[:, np.newaxis], )) img_dir = os.path.join(results_dir, 'results_images') os.makedirs(img_dir, exist_ok=True) joint_plot_steps = None steps_matched = True for bench, dims in results_dict.items(): cur_dir = os.path.join(img_dir, 'bench-{}'.format(bench)) os.makedirs(cur_dir, exist_ok=True) for dim, algos in dims.items(): cur_dir = os.path.join( img_dir, 'bench-{}'.format(bench), 'dim-{}'.format(dim) ) os.makedirs(cur_dir, exist_ok=True) for aggr_mode in ["first", "second"]: plt.figure() for algo, steps_results in algos.items(): plot_steps, results = steps_results rs_results = results_dict[bench][dim]["random_search"][1] if algo == "random_search": assert np.allclose(results, rs_results) if joint_plot_steps is None: joint_plot_steps = plot_steps else: if not np.allclose(joint_plot_steps, plot_steps): steps_matched = False if aggr_mode == "first": means = np.mean(results, axis=1) / np.mean(rs_results, axis=1) else: means = np.mean(results / rs_results, axis=1) stds = np.std(results / rs_results, axis=1) if aggr_mode != "first": plt.errorbar(plot_steps, means, yerr=stds, errorevery=10, label=algo, alpha=0.8, capsize=3) else: plt.plot(plot_steps, means, label=algo) plt.legend() plt.title("bench={}, dim={}".format(bench, dim)) plt.xlabel("Number of evaluations") plt.ylabel("Improvement over random search") im_name = 'bench-{}__dim-{}__aggr_{}.{}'.format( bench, dim, aggr_mode, img_format, ) full_path = os.path.join(cur_dir, im_name) plt.savefig(full_path, bbox_inches="tight") plt.close() if not steps_matched: print("Different benchmarks/dims have different number of steps, " "can't draw joint plots.") return means_b = {} nums_b = {} means_d = {} nums_d = {} means_all = {} nums_all = {} for bench, dims in results_dict.items(): for dim, algos in dims.items(): for algo, steps_results in algos.items(): res = steps_results[1] rs_res = results_dict[bench][dim]["random_search"][1] if algo not in means_all: means_all[algo] = np.zeros(joint_plot_steps.shape[0]) nums_all[algo] = 0 if bench not in means_b: means_b[bench] = {} nums_b[bench] = {} if algo not in means_b[bench]: means_b[bench][algo] = np.zeros(joint_plot_steps.shape[0]) nums_b[bench][algo] = 0 if dim not in means_d: means_d[dim] = {} nums_d[dim] = {} if algo not in means_d[dim]: means_d[dim][algo] = np.zeros(joint_plot_steps.shape[0]) nums_d[dim][algo] = 0 means_b[bench][algo] += np.mean(res, axis=1) / np.mean(rs_res, axis=1) means_d[dim][algo] += np.mean(res, axis=1) / np.mean(rs_res, axis=1) means_all[algo] += np.mean(res, axis=1) / np.mean(rs_res, axis=1) nums_b[bench][algo] += 1 nums_d[dim][algo] += 1 nums_all[algo] += 1 # drawing plots aggregated across dims for bench, algo_means in means_b.items(): for algo, means in algo_means.items(): means_cur = means / nums_b[bench][algo] plt.plot(joint_plot_steps, means_cur, label=algo) plt.legend() plt.title("bench={}, dim=all".format(bench)) plt.xlabel("Number of evaluations") plt.ylabel("Improvement over random search") im_name = 'bench-{}__dim-all.{}'.format(bench, img_format) full_path = os.path.join(img_dir, im_name) plt.savefig(full_path, bbox_inches="tight") plt.close() # drawing plots aggregated across benchmarks for dim, algo_means in means_d.items(): for algo, means in algo_means.items(): means_cur = means / nums_d[dim][algo] plt.plot(joint_plot_steps, means_cur, label=algo) plt.legend() plt.title("bench=all, dim={}".format(dim)) plt.xlabel("Number of evaluations") plt.ylabel("Improvement over random search") im_name = 'bench-all__dim-{}.{}'.format(dim, img_format) full_path = os.path.join(img_dir, im_name) plt.savefig(full_path, bbox_inches="tight") plt.close() # drawing one plot aggregated across everything for algo, means in means_all.items(): means_cur = means / nums_all[algo] plt.plot(joint_plot_steps, means_cur, label=algo) plt.legend() plt.title("bench=all, dim=all".format(dim)) plt.xlabel("Number of evaluations") plt.ylabel("Improvement over random search") im_name = 'bench-all__dim-all.{}'.format(img_format) full_path = os.path.join(img_dir, im_name) plt.savefig(full_path, bbox_inches="tight") plt.close() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--results_dir', required=True, help='Directory with .csv files with results') parser.add_argument('--img_format', default="png", help='Format to generate images in. ' 'E.g. png, jpg, pdf, etc.') args = parser.parse_args() build_images(args.results_dir, args.img_format)
Milano-master
benchmarking/build_images.py
# Copyright (c) 2018 NVIDIA Corporation import argparse import runpy import os import sys import pandas as pd sys.path.insert(0, "../") from milano.exec_utils import ExecutionManager from milano.backends import AzkabanBackend def gen_bench_funcs(bench_type): funcs_dict = { "bbob": (prepare_bbob, finalize_bbob), "cifar10": (prepare_cifar10, finalize_cifar10), } return funcs_dict[bench_type] def prepare_bbob(args, config): script_to_run = "bbob_func_eval.py" params_to_tune = { "func_name": {"type": "values", "values": [args.bench_name]} } for i in range(args.bench_dim): params_to_tune["x{}".format(i)] = {"min": -5, "max": 5, "type": "range"} if 'backend' not in config: backend_manager = AzkabanBackend( script_to_run=script_to_run, workers_config=[{"num_workers": args.num_workers, "env_vars": []}], ) else: backend_manager = config['backend']( script_to_run=script_to_run, **config['backend_params'], ) exp_params = { 'script_to_run': script_to_run, 'params_to_tune': params_to_tune, 'result_pattern': "Result:", 'objective': "minimize", 'backend_manager': backend_manager, 'sleep_time': 0.1, 'wait_for_logs_time': 0.5, } return exp_params def finalize_bbob(out_file): return def prepare_cifar10(args, config): script_to_run = "cifar10_eval.sh" params_to_tune = { "--lr_policy_params/learning_rate": { "type": "log_range", "min": 0.00001, "max": 0.1 }, "--lr_policy_params/power": { "type": "values", "values": [0.5, 1.0, 2.0] }, "--batch_size_per_gpu": { "type": "values", "values": [32, 64, 128, 256, 512, 1024] }, "--regularizer_params/scale": { "type": "log_range", "min": 0.00001, "max": 0.001 }, "--optimizer_params/momentum": { "type": "range", "min": 0.5, "max": 0.99 }, } if 'backend' not in config: backend_manager = AzkabanBackend( script_to_run=script_to_run, workers_config=[{"num_workers": args.num_workers, "env_vars": []}], ) else: backend_manager = config['backend']( script_to_run=script_to_run, **config['backend_params'], ) exp_params = { 'script_to_run': script_to_run, 'params_to_tune': params_to_tune, 'result_pattern': "Validation top-1:", 'objective': "maximize", 'backend_manager': backend_manager, 'sleep_time': 5, 'wait_for_logs_time': 10, } return exp_params def finalize_cifar10(out_file): # making the resulting csv in the required format for image generation df = pd.read_csv(out_file, index_col=0) df['Validation top-1:'] = 1.0 - df['Validation top-1:'] df = df.rename(index=str, columns={"Validation top-1:": "Result:"}) df.to_csv(out_file) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Benchmarking parameters') parser.add_argument("--bench_name", required=True, help="Benchmark name, e.g. sphere, rastrigin, etc.") parser.add_argument("--config", required=True, help="Config to use.") parser.add_argument("--bench_dim", type=int, default=2, help="Benchmarking dimensionality") parser.add_argument("--num_evals", type=int, default=100, help="Maximum number of evaluations " "allowed for algorithm.") parser.add_argument("--num_workers", type=int, default=10, help="Number of workers to use.") parser.add_argument("--verbose", type=int, default=1, help="How much output to print. Setting to 0 mutes " "the script, 3 is the highest level.") parser.add_argument("--output_file", required=False, help="Output file to save the results to.") args = parser.parse_args() config = runpy.run_path(args.config) if args.bench_name != "cifar10": prepare_func, finalize_func = gen_bench_funcs("bbob") else: prepare_func, finalize_func = gen_bench_funcs("cifar10") exp_params = prepare_func(args, config) # a hack to make 2x_random_search work algo_name = os.path.basename(args.config)[:-3] # stripping off .py if algo_name == '2x_random_search': args.num_evals *= 2 search_algorithm = config['search_algorithm']( params_to_tune=exp_params['params_to_tune'], objective=exp_params['objective'], num_evals=args.num_evals, **config['search_algorithm_params'], ) if args.output_file is not None: out_file = args.output_file else: out_file = "{}__{}.csv".format(args.bench_name, algo_name) exec_mng = ExecutionManager( backend_manager=exp_params['backend_manager'], search_algorithm=search_algorithm, res_pattern=exp_params['result_pattern'], objective=exp_params['objective'], constraints=[], output_file=out_file, verbose=args.verbose, sleep_time=exp_params['sleep_time'], wait_for_logs_time=exp_params['wait_for_logs_time'], ) exec_mng.start_tuning() print("\nScore: {:.6f}".format(exec_mng.final_results.iloc[0, 0])) finalize_func(out_file)
Milano-master
benchmarking/benchmark_algo.py
# Copyright (c) 2018 NVIDIA Corporation #!/usr/bin/env python from __future__ import print_function import numpy as np import inspect import sys class BenchmarkGenerator: def __init__(self, random_seed=None, dim=1): if random_seed is not None: np.random.seed(random_seed) self._dim = dim def _gen_xopt_fopt(self): x_opt = np.random.uniform(-5.0, 5.0, size=self._dim) # TODO: should this be Cauchy as in the BBOB paper? f_opt = np.random.uniform(-1000, 1000) return x_opt, f_opt def _tosz(self, x): x_hat = np.zeros_like(x) x_hat[x != 0] = np.log(np.abs(x[x != 0])) c1 = np.ones_like(x) * 5.5 c1[x > 0] = 10 c2 = np.ones_like(x) * 3.1 c2[x > 0] = 7.9 return np.sign(x) * \ np.exp(x_hat + 0.049 * (np.sin(c1 * x_hat) + np.sin(c2 * x_hat))) def _tasy(self, x, beta): if self._dim == 1: raise ValueError("Tasy can't be applied with D=1, use dim > 1") assert len(x.shape) == 1 assert x.shape[0] == self._dim x_tr = x.copy() x_tr_gr0 = x_tr[x_tr > 0] tmp_pr = (np.arange(self._dim) / (self._dim - 1.0))[x_tr > 0] x_tr[x_tr > 0] = x_tr_gr0 ** (1.0 + beta * tmp_pr * np.sqrt(x_tr_gr0)) return x_tr def _lambda(self, alpha): if self._dim == 1: raise ValueError("Can't build lambda with dim < 2") return np.diag(alpha ** (0.5 * np.arange(self._dim) / (self._dim - 1.0))) def get_function_by_name(self, name): for m_name, m_func in inspect.getmembers(self, predicate=inspect.ismethod): if m_name == "get_{}".format(name): return m_func() raise ValueError('Function "{}" is not supported'.format(name)) def get_sphere(self): x_opt, f_opt = self._gen_xopt_fopt() def func(x): z = x - x_opt return np.sum(z ** 2) + f_opt return func, x_opt, f_opt def get_elipsoidal(self): if self._dim == 1: raise ValueError("Can't build 1D elipsoid, dim should be > 1") x_opt, f_opt = self._gen_xopt_fopt() def func(x): z = self._tosz(x - x_opt) return np.sum(1e6 ** (np.arange(self._dim) / (self._dim - 1.0)) * z ** 2) + f_opt return func, x_opt, f_opt def get_rastrigin(self): x_opt, f_opt = self._gen_xopt_fopt() def func(x): z = self._lambda(10.0).dot(self._tasy(self._tosz(x - x_opt), 0.2)) return 10.0 * (self._dim - np.sum(np.cos(2.0 * np.pi * z))) + \ np.sum(z ** 2) + f_opt return func, x_opt, f_opt def get_rosenbrock(self): x_opt, f_opt = self._gen_xopt_fopt() def func(x): z = np.maximum(1.0, np.sqrt(1.0 * self._dim) / 8.0) * (x - x_opt) + 1.0 return np.sum(100.0 * (z[:-1] ** 2 - z[1:]) ** 2 + (z[:-1] - 1.0) ** 2) \ + f_opt return func, x_opt, f_opt def visualize_function(self, func, show_3d=True, show_3d_inv=True, show_contour=True, num_levels=15, rng_x=(-5, 5), rng_y=(-5, 5)): import matplotlib.pyplot as plt if self._dim == 1: xs = np.linspace(rng_x[0], rng_x[1], 100) plt.plot(xs, np.apply_along_axis(func, 0, xs[np.newaxis, :])) elif self._dim == 2: freq = 50 x = np.linspace(rng_x[0], rng_x[1], freq) y = np.linspace(rng_y[0], rng_y[1], freq) Xs, Ys = np.meshgrid(x, y) xs = np.reshape(Xs, -1) ys = np.reshape(Ys, -1) zs = np.apply_along_axis(func, 0, np.vstack((xs, ys))) if show_3d: fig = plt.figure(figsize=(10, 10)) ax = fig.gca(projection='3d') ax.plot_trisurf(xs, ys, zs, linewidth=0.2, antialiased=True) plt.show() if show_3d_inv: fig = plt.figure(figsize=(10, 10)) ax = fig.gca(projection='3d') ax.invert_zaxis() ax.plot_trisurf(xs, ys, zs, linewidth=0.2, antialiased=True) plt.show() if show_contour: fig = plt.figure(figsize=(10, 10)) cs = plt.contour(Xs, Ys, zs.reshape(freq, freq), num_levels) plt.clabel(cs, inline=1, fontsize=10) plt.show() else: raise ValueError("Only dim=1 or dim=2 are supported") if __name__ == '__main__': if len(sys.argv) < 3: print("Not enough arguments provided. Should be func_name= x1= x2= ...") sys.exit(1) func_name = None x = np.empty(len(sys.argv) - 2) for arg in sys.argv[1:]: name, value = arg.split('=') if name == 'func_name': func_name = value else: pos = int(name[1:]) x[pos] = value if func_name is None: raise ValueError("func_name is not defined") benchmarks = BenchmarkGenerator(random_seed=0, dim=x.shape[0]) func, x_opt, f_opt = benchmarks.get_function_by_name(func_name) value = func(x) print("Result: {}".format(np.abs(f_opt - value)))
Milano-master
benchmarking/bbob_func_eval.py
# Copyright (c) 2018 NVIDIA Corporation import os import argparse import subprocess import sys from build_images import build_images if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--configs_dir', default="benchmarking_configs", help='Directory with all benchmarking configs ' 'that should be evaluated.') parser.add_argument('--output_dir', default='benchmarking_results', help="Directory to store results in.") parser.add_argument('--reuse_results', dest='reuse_results', action='store_true', help="Whether to reuse existing results") parser.add_argument('--num_evals', default=100, type=int, help="Maximum number of evaluations allowed " "for each algorithm") parser.add_argument('--num_algo_runs', default=5, type=int, help="Number of times each algorithm is " "going to be applied to a single benchmark. " "Results will be later averaged.") parser.add_argument('--benchmarks', nargs='+', required=False, help='Benchmarks to evaluate algorithms on. By default' 'all available benchmarks will be used') parser.add_argument('--dims', nargs='+', required=False, type=int, help='Dimensions of benchmarks (each benchmark is ' 'going to be tested with all dims listed here)') parser.add_argument('--python_bin', default="python", help="python3 executable, e.g. python or python3") args = parser.parse_args() configs = [os.path.join(args.configs_dir, cfg) for cfg in os.listdir(args.configs_dir)] if "random_search" not in [os.path.basename(cfg)[:-3] for cfg in configs]: raise ValueError("random_search.py config has to be present " "for full benchmarking") if args.benchmarks is None: benchmarks = ['sphere', 'elipsoidal', 'rastrigin', 'rosenbrock', 'cifar10'] else: benchmarks = args.benchmarks num_algo_runs = args.num_algo_runs num_evals = args.num_evals if args.dims is None: dims = [4, 8, 16, 32, 64] else: dims = args.dims base_dir = args.output_dir if not args.reuse_results: if os.path.exists(base_dir): print("Directory {} already exists, did you want ".format(base_dir) + "to specify --reuse_results flag?") sys.exit(1) os.makedirs(os.path.join(base_dir, 'results_csvs'), exist_ok=True) for config in configs: for bench in benchmarks: for i in range(num_algo_runs): cur_dims = dims if bench != "cifar10" else [5] for dim in cur_dims: algo_name = os.path.basename(config)[:-3] dir_name = os.path.join( base_dir, 'results_csvs', 'bench-{}'.format(bench), 'dim-{}'.format(dim), ) os.makedirs(dir_name, exist_ok=True) out_name = os.path.join( dir_name, "{}__{}.csv".format(algo_name, i) ) if args.reuse_results and os.path.isfile(out_name): continue run_cmd = "{} benchmark_algo.py --bench_name={} ".format( args.python_bin, bench ) run_cmd += "--config={} --num_evals={} ".format(config, num_evals) run_cmd += "--bench_dim={} --output_file={}".format(dim, out_name) print('Testing "{}" on "{}" with dim={}, run #{}'.format( algo_name, bench, dim, i )) subprocess.run(run_cmd, shell=True, check=True) build_images(args.output_dir)
Milano-master
benchmarking/run_benchmarks.py
# Copyright (c) 2018 NVIDIA Corporation from milano.search_algorithms import RandomSearch # Note that this config the same as random_search.py # This is intentional and additional steps are automatically # added by full_benchmark.py search_algorithm = RandomSearch search_algorithm_params = {}
Milano-master
benchmarking/benchmarking_configs/2x_random_search.py
# Copyright (c) 2018 NVIDIA Corporation from milano.search_algorithms import RandomSearch # For benchmarks only search algorithm need to be specified. # Optionally you can also specify a custom backend. # If not specified, AzkabanBackend with default parameters and # 10 identical workers will be used. search_algorithm = RandomSearch # note that you don't need to provide "num_evals" parameter, # as it will be overwritten by benchmarking script search_algorithm_params = {}
Milano-master
benchmarking/benchmarking_configs/random_search.py
#!/usr/bin/python # Copyright (c) 2011 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import subprocess import os import os.path import sys import re from optparse import OptionParser VERBOSE = False JS_FILES = [ "../tdl/base.js", "../tdl/buffers.js", "../tdl/clock.js", "../tdl/fast.js", "../tdl/fps.js", "../tdl/framebuffers.js", "../tdl/fullscreen.js", "../tdl/io.js", "../tdl/loader.js", "../tdl/log.js", "../tdl/math.js", "../tdl/misc.js", "../tdl/models.js", "../tdl/particles.js", "../tdl/primitives.js", "../tdl/programs.js", "../tdl/quaternions.js", "../tdl/screenshot.js", "../tdl/shader.js", "../tdl/string.js", "../tdl/sync.js", "../tdl/textures.js", "../tdl/webgl.js", ] def Execute(cmd, args, file=None): global VERBOSE if VERBOSE: print "%s %s" % (cmd, " ".join(args)) return subprocess.Popen([cmd] + args, stdin=file, stdout=subprocess.PIPE).communicate()[0] def main(argv): """This is the main function.""" global VERBOSE parser = OptionParser() parser.add_option( "-v", "--verbose", action="store_true", help="prints more output.") (options, args) = parser.parse_args(args=argv) VERBOSE = options.verbose out_file = "tdl-min.js" files = ["--js=%s" % (name) for name in JS_FILES] #print files Execute("java", ["-jar", "compiler.jar", ("--js_output_file=%s" % (out_file, )), ] + files) if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
tdl-master
build/build.py
#!/usr/bin/python3 # SPDX-License-Identifier: BSD-2-Clause-Patent import os import sys import json import shutil import pprint import argparse import subprocess def openssl_configure(openssldir, target, ec = True): """ Run openssl Configure script. """ cmdline = [ 'perl', 'Configure', '--config=../UefiAsm.conf', '--api=1.1.1', '--with-rand-seed=none', target, 'no-afalgeng', 'no-aria', 'no-async', 'no-autoerrinit', 'no-autoload-config', 'no-bf', 'no-blake2', 'no-camellia', 'no-capieng', 'no-cast', 'no-chacha', 'no-cmac', 'no-cmp', 'no-cms', 'no-ct', 'no-deprecated', 'no-des', 'no-dgram', 'no-dsa', 'no-dso', 'no-dtls', 'no-dtls1-method', 'no-dtls1_2-method', 'no-dynamic-engine', 'no-ec2m', 'no-engine', 'no-err', 'no-filenames', 'no-gost', 'no-hw', 'no-idea', 'no-ktls', 'no-makedepend', 'no-module', 'no-md4', 'no-mdc2', 'no-multiblock', 'no-nextprotoneg', 'no-pic', 'no-psk', 'no-ocb', 'no-ocsp', 'no-padlockeng', 'no-poly1305', 'no-posix-io', 'no-rc2', 'no-rc4', 'no-rc5', 'no-rfc3779', 'no-rmd160', 'no-scrypt', 'no-seed', 'no-shared', 'no-siphash', 'no-siv', 'no-sm2', 'no-sm4', 'no-sock', 'no-srp', 'no-srtp', 'no-ssl', 'no-ssl3-method', 'no-ssl-trace', 'no-static-engine', 'no-stdio', 'no-threads', 'no-tls1_3', 'no-ts', 'no-ui-console', 'no-whirlpool', 'disable-legacy', ] if not ec: cmdline += [ 'no-ec', ] print('') print(f'# -*- configure openssl for {target} (ec={ec}) -*-') rc = subprocess.run(cmdline, cwd = openssldir, stdout = subprocess.PIPE, stderr = subprocess.PIPE) if rc.returncode: print(rc.stdout) print(rc.stderr) sys.exit(rc.returncode) def openssl_run_make(openssldir, target): """ Run make utility to generate files or cleanup. Target can be either a string or a list of strings. """ cmdline = [ 'make', '--silent' ] if isinstance(target, list): cmdline += target else: cmdline += [ target, ] rc = subprocess.run(cmdline, cwd = openssldir) rc.check_returncode() def get_configdata(openssldir): """ Slurp openssl config data as JSON, using a little perl helper script. """ cmdline = [ 'perl', 'perl2json.pl', openssldir, ] rc = subprocess.run(cmdline, stdout = subprocess.PIPE) rc.check_returncode() return json.loads(rc.stdout) def is_asm(filename): """ Check whenevr the passed file is an assembler file """ if filename.endswith('.s') or filename.endswith('.S'): return True return False def copy_generated_file(src, dst): src_file = [] with open(src, 'r') as fsrc: src_file = fsrc.readlines() with open(dst, 'w') as fdst: for lines in range(len(src_file)): s = src_file[lines] s = s.rstrip() + "\r\n" fdst.write(s.expandtabs()) def generate_files(openssldir, opensslgendir, asm, filelist): """ Generate files, using make, and copy over the results to the directory tree for generated openssl files. Creates subdirectories as needed. """ openssl_run_make(openssldir, filelist) for filename in filelist: src = os.path.join(openssldir, filename) if is_asm(filename): """ rename MSFT asm files to .nasm """ if 'IA32-MSFT' in asm: filename = filename.replace('.S', '.nasm') elif 'X64-MSFT' in asm: filename = filename.replace('.s', '.nasm') dst = os.path.join(opensslgendir, asm, filename) else: dst = os.path.join(opensslgendir, filename) os.makedirs(os.path.dirname(dst), exist_ok = True) copy_generated_file(src, dst) def generate_include_files(openssldir, opensslgendir, asm, cfg): """ Generate openssl include files """ print('# generate include files') filelist = cfg['unified_info']['generate'].keys() filelist = list(filter(lambda f: 'include' in f, filelist)) generate_files(openssldir, opensslgendir, asm, filelist) def generate_library_files(openssldir, opensslgendir, asm, cfg, obj): """ Generate openssl source files for a given library. Handles mostly assembler files, but a few C sources are generated too. """ filelist = get_source_list(cfg, obj, True) if filelist: print(f'# generate source files for {obj}') generate_files(openssldir, opensslgendir, asm, filelist) def generate_all_files(openssldir, opensslgendir, asm, cfg): """ Generate all files needed. """ generate_include_files(openssldir, opensslgendir, asm, cfg) generate_library_files(openssldir, opensslgendir, asm, cfg, 'libcrypto') generate_library_files(openssldir, opensslgendir, asm, cfg, 'providers/libcommon.a') generate_library_files(openssldir, opensslgendir, asm, cfg, 'libssl') def get_source_list(cfg, obj, gen): """ Gets the list of source files needed to create a specific object. * If 'gen' is True the function returns the list of generated files. * If 'gen' is False the function returns the list of files not generated (which are used from the submodule directly). Note: Will call itself recursively to resolve nested dependencies. """ sources = cfg['unified_info']['sources'] generate = cfg['unified_info']['generate'] srclist = [] if sources.get(obj): for item in sources.get(obj): srclist += get_source_list(cfg, item, gen) else: is_generated = generate.get(obj) is not None if is_generated == gen: srclist += [ obj, ] return srclist def asm_filter_fn(filename): """ Filter asm source and define lists. Drops files we don't want include. """ exclude = [ '/bn/', 'OPENSSL_BN_ASM', 'OPENSSL_IA32_SSE2', '/ec/', 'ECP_NISTZ256_ASM', 'X25519_ASM', ] for item in exclude: if item in filename: return False return True def get_sources(cfg, obj, asm): """ Get the list of all sources files. Will fetch both generated and not generated file lists and update the paths accordingly, so the openssl submodule or the sub-tree for generated files is referenced as needed. """ srclist = get_source_list(cfg, obj, False) genlist = get_source_list(cfg, obj, True) srclist = list(map(lambda x: f'$(OPENSSL_PATH)/{x}', srclist)) c_list = list(map(lambda x: f'$(OPENSSL_GEN_PATH)/{x}', filter(lambda x: not is_asm(x), genlist))) asm_list = list(map(lambda x: f'$(OPENSSL_GEN_PATH)/{asm}/{x}', filter(is_asm, genlist))) asm_list = list(filter(asm_filter_fn, asm_list)) return srclist + c_list + asm_list def sources_filter_fn(filename): """ Filter source lists. Drops files we don't want include or need replace with our own uefi-specific version. """ exclude = [ 'randfile.c', '/store/', '/storemgmt/', '/encode_decode/encode', '/pkcs12/', 'statem_srvr.c', 'extensions_srvr.c', 'defltprov.c', 'baseprov.c', 'provider_predefined.c', 'ecp_nistz256.c', 'x86_64-gcc.c', ] for item in exclude: if item in filename: return False return True def libcrypto_sources(cfg, asm = None): """ Get source file list for libcrypto """ files = get_sources(cfg, 'libcrypto', asm) files += get_sources(cfg, 'providers/libcommon.a', asm) files = list(filter(sources_filter_fn, files)) return files def libssl_sources(cfg, asm = None): """ Get source file list for libssl """ files = get_sources(cfg, 'libssl', asm) files = list(filter(sources_filter_fn, files)) return files def update_inf(filename, sources, arch = None, defines = []): """ Update inf file, replace source file list and build flags. """ head = '' tail = '' state = 0 if arch: section = f'Sources.{arch}' flags = f'OPENSSL_FLAGS_{arch}' else: section = None flags = f'OPENSSL_FLAGS_NOASM' state = 1 # read and parse file with open(filename, 'r') as f: while True: line = f.readline() if line == '': break if state in [0, 1]: if flags in line: (keep, replace) = line.split('=') args = map(lambda x: f'-D{x}', defines) head += keep + '= ' + ' '.join(args) head = head.rstrip() + '\r\n' else: head += line.rstrip() + '\r\n' if state == 0 and section in line: state = 1 if state == 1 and 'Autogenerated files list starts here' in line: state = 2 if state == 2 and 'Autogenerated files list ends here' in line: state = 3 if state == 3: tail += line.rstrip() + '\r\n' # write updated file with open(filename, 'w') as f: f.write(head) for src in sources: f.write(f' {src}\r\n') f.write(tail) def update_MSFT_asm_format(asm, filelist): """ rename MSFT asm files to .nasm """ if 'IA32-MSFT' in asm: for file_index in range(len(filelist)): filelist[file_index] = filelist[file_index].replace('.S', '.nasm') elif 'X64-MSFT' in asm: for file_index in range(len(filelist)): filelist[file_index] = filelist[file_index].replace('.s', '.nasm') def main(): # prepare os.chdir(os.path.dirname(os.path.abspath(__file__))) openssldir = os.path.join(os.getcwd(), 'openssl') opensslgendir = os.path.join(os.getcwd(), 'OpensslGen') # asm accel configs (see UefiAsm.conf) for ec in [True, False]: if ec: inf = 'OpensslLibFullAccel.inf' hdr = 'configuration-ec.h' else: inf = 'OpensslLibAccel.inf' hdr = 'configuration-noec.h' sources = {} defines = {} for asm in [ 'UEFI-IA32-MSFT', 'UEFI-IA32-GCC', 'UEFI-X64-MSFT', 'UEFI-X64-GCC']: (uefi, arch, cc) = asm.split('-') archcc = f'{arch}-{cc}' openssl_configure(openssldir, asm, ec = ec); cfg = get_configdata(openssldir) generate_all_files(openssldir, opensslgendir, archcc, cfg) shutil.move(os.path.join(opensslgendir, 'include', 'openssl', 'configuration.h'), os.path.join(opensslgendir, 'include', 'openssl', hdr)) openssl_run_make(openssldir, 'distclean') srclist = libcrypto_sources(cfg, archcc) + libssl_sources(cfg, archcc) sources[archcc] = list(map(lambda x: f'{x} | {cc}', filter(is_asm, srclist))) update_MSFT_asm_format(archcc, sources[archcc]) sources[arch] = list(filter(lambda x: not is_asm(x), srclist)) defines[arch] = cfg['unified_info']['defines']['libcrypto'] defines[arch] = list(filter(asm_filter_fn, defines[arch])) ia32accel = sources['IA32'] + sources['IA32-MSFT'] + sources['IA32-GCC'] x64accel = sources['X64'] + sources['X64-MSFT'] + sources['X64-GCC'] update_inf(inf, ia32accel, 'IA32', defines['IA32']) update_inf(inf, x64accel, 'X64', defines['X64']) # noaccel - ec enabled openssl_configure(openssldir, 'UEFI', ec = True); cfg = get_configdata(openssldir) generate_all_files(openssldir, opensslgendir, None, cfg) openssl_run_make(openssldir, 'distclean') defines = [] if 'libcrypto' in cfg['unified_info']['defines']: defines = cfg['unified_info']['defines']['libcrypto'] update_inf('OpensslLibFull.inf', libcrypto_sources(cfg) + libssl_sources(cfg), defines) # noaccel - ec disabled openssl_configure(openssldir, 'UEFI', ec = False); cfg = get_configdata(openssldir) generate_all_files(openssldir, opensslgendir, None, cfg) openssl_run_make(openssldir, 'distclean') update_inf('OpensslLibCrypto.inf', libcrypto_sources(cfg), None, defines) update_inf('OpensslLib.inf', libcrypto_sources(cfg) + libssl_sources(cfg), None, defines) # wrap header file confighdr = os.path.join(opensslgendir, 'include', 'openssl', 'configuration.h') with open(confighdr, 'w') as f: f.write('#ifdef EDK2_OPENSSL_NOEC\r\n' '# include "configuration-noec.h"\r\n' '#else\r\n' '# include "configuration-ec.h"\r\n' '#endif\r\n') if __name__ == '__main__': sys.exit(main())
edk2-master
CryptoPkg/Library/OpensslLib/configure.py
# @file Edk2ToolsBuild.py # Invocable class that builds the basetool c files. # # Supports VS2017, VS2019, and GCC5 ## # Copyright (c) Microsoft Corporation # # SPDX-License-Identifier: BSD-2-Clause-Patent ## import os import sys import logging import argparse import multiprocessing from edk2toolext import edk2_logging from edk2toolext.environment import self_describing_environment from edk2toolext.base_abstract_invocable import BaseAbstractInvocable from edk2toollib.utility_functions import RunCmd from edk2toollib.windows.locate_tools import QueryVcVariables class Edk2ToolsBuild(BaseAbstractInvocable): def ParseCommandLineOptions(self): ''' parse arguments ''' ParserObj = argparse.ArgumentParser() ParserObj.add_argument("-t", "--tool_chain_tag", dest="tct", default="VS2017", help="Set the toolchain used to compile the build tools") args = ParserObj.parse_args() self.tool_chain_tag = args.tct def GetWorkspaceRoot(self): ''' Return the workspace root for initializing the SDE ''' # this is the bastools dir...not the traditional EDK2 workspace root return os.path.dirname(os.path.abspath(__file__)) def GetActiveScopes(self): ''' return tuple containing scopes that should be active for this process ''' # for now don't use scopes return ('global',) def GetLoggingLevel(self, loggerType): ''' Get the logging level for a given type (return Logging.Level) base == lowest logging level supported con == Screen logging txt == plain text file logging md == markdown file logging ''' if(loggerType == "con"): return logging.ERROR else: return logging.DEBUG def GetLoggingFolderRelativeToRoot(self): ''' Return a path to folder for log files ''' return "BaseToolsBuild" def GetVerifyCheckRequired(self): ''' Will call self_describing_environment.VerifyEnvironment if this returns True ''' return True def GetLoggingFileName(self, loggerType): ''' Get the logging file name for the type. Return None if the logger shouldn't be created base == lowest logging level supported con == Screen logging txt == plain text file logging md == markdown file logging ''' return "BASETOOLS_BUILD" def WritePathEnvFile(self, OutputDir): ''' Write a PyTool path env file for future PyTool based edk2 builds''' content = '''## # Set shell variable EDK_TOOLS_BIN to this folder # # Autogenerated by Edk2ToolsBuild.py # # Copyright (c), Microsoft Corporation # SPDX-License-Identifier: BSD-2-Clause-Patent ## { "id": "You-Built-BaseTools", "scope": "edk2-build", "flags": ["set_shell_var", "set_path"], "var_name": "EDK_TOOLS_BIN" } ''' with open(os.path.join(OutputDir, "basetoolsbin_path_env.yaml"), "w") as f: f.write(content) def Go(self): logging.info("Running Python version: " + str(sys.version_info)) (build_env, shell_env) = self_describing_environment.BootstrapEnvironment( self.GetWorkspaceRoot(), self.GetActiveScopes()) # # Bind our current execution environment into the shell vars. ph = os.path.dirname(sys.executable) if " " in ph: ph = '"' + ph + '"' shell_env.set_shell_var("PYTHON_HOME", ph) # PYTHON_COMMAND is required to be set for using edk2 python builds. pc = sys.executable if " " in pc: pc = '"' + pc + '"' shell_env.set_shell_var("PYTHON_COMMAND", pc) if self.tool_chain_tag.lower().startswith("vs"): # # Update environment with required VC vars. interesting_keys = ["ExtensionSdkDir", "INCLUDE", "LIB"] interesting_keys.extend( ["LIBPATH", "Path", "UniversalCRTSdkDir", "UCRTVersion", "WindowsLibPath", "WindowsSdkBinPath"]) interesting_keys.extend( ["WindowsSdkDir", "WindowsSdkVerBinPath", "WindowsSDKVersion", "VCToolsInstallDir"]) vc_vars = QueryVcVariables( interesting_keys, 'x86', vs_version=self.tool_chain_tag.lower()) for key in vc_vars.keys(): logging.debug(f"Var - {key} = {vc_vars[key]}") if key.lower() == 'path': shell_env.set_path(vc_vars[key]) else: shell_env.set_shell_var(key, vc_vars[key]) self.OutputDir = os.path.join( shell_env.get_shell_var("EDK_TOOLS_PATH"), "Bin", "Win32") # compiled tools need to be added to path because antlr is referenced shell_env.insert_path(self.OutputDir) # Actually build the tools. output_stream = edk2_logging.create_output_stream() ret = RunCmd('nmake.exe', None, workingdir=shell_env.get_shell_var("EDK_TOOLS_PATH")) edk2_logging.remove_output_stream(output_stream) problems = edk2_logging.scan_compiler_output(output_stream) for level, problem in problems: logging.log(level, problem) if ret != 0: raise Exception("Failed to build.") self.WritePathEnvFile(self.OutputDir) return ret elif self.tool_chain_tag.lower().startswith("gcc"): cpu_count = self.GetCpuThreads() output_stream = edk2_logging.create_output_stream() ret = RunCmd("make", f"-C . -j {cpu_count}", workingdir=shell_env.get_shell_var("EDK_TOOLS_PATH")) edk2_logging.remove_output_stream(output_stream) problems = edk2_logging.scan_compiler_output(output_stream) for level, problem in problems: logging.log(level, problem) if ret != 0: raise Exception("Failed to build.") self.OutputDir = os.path.join( shell_env.get_shell_var("EDK_TOOLS_PATH"), "Source", "C", "bin") self.WritePathEnvFile(self.OutputDir) return ret logging.critical("Tool Chain not supported") return -1 def GetCpuThreads(self) -> int: ''' Function to return number of cpus. If error return 1''' cpus = 1 try: cpus = multiprocessing.cpu_count() except: # from the internet there are cases where cpu_count is not implemented. # will handle error by just doing single proc build pass return cpus def main(): Edk2ToolsBuild().Invoke() if __name__ == "__main__": main()
edk2-master
BaseTools/Edk2ToolsBuild.py
## @file # # # Copyright (c) 2009 - 2014, Apple Inc. All rights reserved.<BR> # # SPDX-License-Identifier: BSD-2-Clause-Patent import sys import locale if sys.platform == "darwin" and sys.version_info[0] < 3: DefaultLocal = locale.getdefaultlocale()[1] if DefaultLocal is None: DefaultLocal = 'UTF8' sys.setdefaultencoding(DefaultLocal)
edk2-master
BaseTools/Source/Python/sitecustomize.py
## @file # generate capsule # # Copyright (c) 2007 - 2018, Intel Corporation. All rights reserved.<BR> # # SPDX-License-Identifier: BSD-2-Clause-Patent # ## # Import Modules # from __future__ import absolute_import from .GenFdsGlobalVariable import GenFdsGlobalVariable, FindExtendTool from CommonDataClass.FdfClass import CapsuleClassObject import Common.LongFilePathOs as os from io import BytesIO from Common.Misc import SaveFileOnChange, PackGUID import uuid from struct import pack from Common import EdkLogger from Common.BuildToolError import GENFDS_ERROR from Common.DataType import TAB_LINE_BREAK WIN_CERT_REVISION = 0x0200 WIN_CERT_TYPE_EFI_GUID = 0x0EF1 EFI_CERT_TYPE_PKCS7_GUID = uuid.UUID('{4aafd29d-68df-49ee-8aa9-347d375665a7}') EFI_CERT_TYPE_RSA2048_SHA256_GUID = uuid.UUID('{a7717414-c616-4977-9420-844712a735bf}') ## create inf file describes what goes into capsule and call GenFv to generate capsule # # class Capsule (CapsuleClassObject): ## The constructor # # @param self The object pointer # def __init__(self): CapsuleClassObject.__init__(self) # For GenFv self.BlockSize = None # For GenFv self.BlockNum = None self.CapsuleName = None ## Generate FMP capsule # # @retval string Generated Capsule file path # def GenFmpCapsule(self): # # Generate capsule header # typedef struct { # EFI_GUID CapsuleGuid; # UINT32 HeaderSize; # UINT32 Flags; # UINT32 CapsuleImageSize; # } EFI_CAPSULE_HEADER; # Header = BytesIO() # # Use FMP capsule GUID: 6DCBD5ED-E82D-4C44-BDA1-7194199AD92A # Header.write(PackGUID('6DCBD5ED-E82D-4C44-BDA1-7194199AD92A'.split('-'))) HdrSize = 0 if 'CAPSULE_HEADER_SIZE' in self.TokensDict: Header.write(pack('=I', int(self.TokensDict['CAPSULE_HEADER_SIZE'], 16))) HdrSize = int(self.TokensDict['CAPSULE_HEADER_SIZE'], 16) else: Header.write(pack('=I', 0x20)) HdrSize = 0x20 Flags = 0 if 'CAPSULE_FLAGS' in self.TokensDict: for flag in self.TokensDict['CAPSULE_FLAGS'].split(','): flag = flag.strip() if flag == 'PopulateSystemTable': Flags |= 0x00010000 | 0x00020000 elif flag == 'PersistAcrossReset': Flags |= 0x00010000 elif flag == 'InitiateReset': Flags |= 0x00040000 Header.write(pack('=I', Flags)) # # typedef struct { # UINT32 Version; # UINT16 EmbeddedDriverCount; # UINT16 PayloadItemCount; # // UINT64 ItemOffsetList[]; # } EFI_FIRMWARE_MANAGEMENT_CAPSULE_HEADER; # FwMgrHdr = BytesIO() if 'CAPSULE_HEADER_INIT_VERSION' in self.TokensDict: FwMgrHdr.write(pack('=I', int(self.TokensDict['CAPSULE_HEADER_INIT_VERSION'], 16))) else: FwMgrHdr.write(pack('=I', 0x00000001)) FwMgrHdr.write(pack('=HH', len(self.CapsuleDataList), len(self.FmpPayloadList))) FwMgrHdrSize = 4+2+2+8*(len(self.CapsuleDataList)+len(self.FmpPayloadList)) # # typedef struct _WIN_CERTIFICATE { # UINT32 dwLength; # UINT16 wRevision; # UINT16 wCertificateType; # //UINT8 bCertificate[ANYSIZE_ARRAY]; # } WIN_CERTIFICATE; # # typedef struct _WIN_CERTIFICATE_UEFI_GUID { # WIN_CERTIFICATE Hdr; # EFI_GUID CertType; # //UINT8 CertData[ANYSIZE_ARRAY]; # } WIN_CERTIFICATE_UEFI_GUID; # # typedef struct { # UINT64 MonotonicCount; # WIN_CERTIFICATE_UEFI_GUID AuthInfo; # } EFI_FIRMWARE_IMAGE_AUTHENTICATION; # # typedef struct _EFI_CERT_BLOCK_RSA_2048_SHA256 { # EFI_GUID HashType; # UINT8 PublicKey[256]; # UINT8 Signature[256]; # } EFI_CERT_BLOCK_RSA_2048_SHA256; # PreSize = FwMgrHdrSize Content = BytesIO() for driver in self.CapsuleDataList: FileName = driver.GenCapsuleSubItem() FwMgrHdr.write(pack('=Q', PreSize)) PreSize += os.path.getsize(FileName) File = open(FileName, 'rb') Content.write(File.read()) File.close() for fmp in self.FmpPayloadList: if fmp.Existed: FwMgrHdr.write(pack('=Q', PreSize)) PreSize += len(fmp.Buffer) Content.write(fmp.Buffer) continue if fmp.ImageFile: for Obj in fmp.ImageFile: fmp.ImageFile = Obj.GenCapsuleSubItem() if fmp.VendorCodeFile: for Obj in fmp.VendorCodeFile: fmp.VendorCodeFile = Obj.GenCapsuleSubItem() if fmp.Certificate_Guid: ExternalTool, ExternalOption = FindExtendTool([], GenFdsGlobalVariable.ArchList, fmp.Certificate_Guid) CmdOption = '' CapInputFile = fmp.ImageFile if not os.path.isabs(fmp.ImageFile): CapInputFile = os.path.join(GenFdsGlobalVariable.WorkSpaceDir, fmp.ImageFile) CapOutputTmp = os.path.join(GenFdsGlobalVariable.FvDir, self.UiCapsuleName) + '.tmp' if ExternalTool is None: EdkLogger.error("GenFds", GENFDS_ERROR, "No tool found with GUID %s" % fmp.Certificate_Guid) else: CmdOption += ExternalTool if ExternalOption: CmdOption = CmdOption + ' ' + ExternalOption CmdOption += ' -e ' + ' --monotonic-count ' + str(fmp.MonotonicCount) + ' -o ' + CapOutputTmp + ' ' + CapInputFile CmdList = CmdOption.split() GenFdsGlobalVariable.CallExternalTool(CmdList, "Failed to generate FMP auth capsule") if uuid.UUID(fmp.Certificate_Guid) == EFI_CERT_TYPE_PKCS7_GUID: dwLength = 4 + 2 + 2 + 16 + os.path.getsize(CapOutputTmp) - os.path.getsize(CapInputFile) else: dwLength = 4 + 2 + 2 + 16 + 16 + 256 + 256 fmp.ImageFile = CapOutputTmp AuthData = [fmp.MonotonicCount, dwLength, WIN_CERT_REVISION, WIN_CERT_TYPE_EFI_GUID, fmp.Certificate_Guid] fmp.Buffer = fmp.GenCapsuleSubItem(AuthData) else: fmp.Buffer = fmp.GenCapsuleSubItem() FwMgrHdr.write(pack('=Q', PreSize)) PreSize += len(fmp.Buffer) Content.write(fmp.Buffer) BodySize = len(FwMgrHdr.getvalue()) + len(Content.getvalue()) Header.write(pack('=I', HdrSize + BodySize)) # # The real capsule header structure is 28 bytes # Header.write(b'\x00'*(HdrSize-28)) Header.write(FwMgrHdr.getvalue()) Header.write(Content.getvalue()) # # Generate FMP capsule file # CapOutputFile = os.path.join(GenFdsGlobalVariable.FvDir, self.UiCapsuleName) + '.Cap' SaveFileOnChange(CapOutputFile, Header.getvalue(), True) return CapOutputFile ## Generate capsule # # @param self The object pointer # @retval string Generated Capsule file path # def GenCapsule(self): if self.UiCapsuleName.upper() + 'cap' in GenFdsGlobalVariable.ImageBinDict: return GenFdsGlobalVariable.ImageBinDict[self.UiCapsuleName.upper() + 'cap'] GenFdsGlobalVariable.InfLogger( "\nGenerate %s Capsule" %self.UiCapsuleName) if ('CAPSULE_GUID' in self.TokensDict and uuid.UUID(self.TokensDict['CAPSULE_GUID']) == uuid.UUID('6DCBD5ED-E82D-4C44-BDA1-7194199AD92A')): return self.GenFmpCapsule() CapInfFile = self.GenCapInf() CapInfFile.append("[files]" + TAB_LINE_BREAK) CapFileList = [] for CapsuleDataObj in self.CapsuleDataList: CapsuleDataObj.CapsuleName = self.CapsuleName FileName = CapsuleDataObj.GenCapsuleSubItem() CapsuleDataObj.CapsuleName = None CapFileList.append(FileName) CapInfFile.append("EFI_FILE_NAME = " + \ FileName + \ TAB_LINE_BREAK) SaveFileOnChange(self.CapInfFileName, ''.join(CapInfFile), False) # # Call GenFv tool to generate capsule # CapOutputFile = os.path.join(GenFdsGlobalVariable.FvDir, self.UiCapsuleName) CapOutputFile = CapOutputFile + '.Cap' GenFdsGlobalVariable.GenerateFirmwareVolume( CapOutputFile, [self.CapInfFileName], Capsule=True, FfsList=CapFileList ) GenFdsGlobalVariable.VerboseLogger( "\nGenerate %s Capsule Successfully" %self.UiCapsuleName) GenFdsGlobalVariable.SharpCounter = 0 GenFdsGlobalVariable.ImageBinDict[self.UiCapsuleName.upper() + 'cap'] = CapOutputFile return CapOutputFile ## Generate inf file for capsule # # @param self The object pointer # @retval file inf file object # def GenCapInf(self): self.CapInfFileName = os.path.join(GenFdsGlobalVariable.FvDir, self.UiCapsuleName + "_Cap" + '.inf') CapInfFile = [] CapInfFile.append("[options]" + TAB_LINE_BREAK) for Item in self.TokensDict: CapInfFile.append("EFI_" + \ Item + \ ' = ' + \ self.TokensDict[Item] + \ TAB_LINE_BREAK) return CapInfFile
edk2-master
BaseTools/Source/Python/GenFds/Capsule.py
## @file # process FFS generation # # Copyright (c) 2007-2018, Intel Corporation. All rights reserved.<BR> # # SPDX-License-Identifier: BSD-2-Clause-Patent # ## # Import Modules # from Common.DataType import * # mapping between FILE type in FDF and file type for GenFfs FdfFvFileTypeToFileType = { SUP_MODULE_SEC : 'EFI_FV_FILETYPE_SECURITY_CORE', SUP_MODULE_PEI_CORE : 'EFI_FV_FILETYPE_PEI_CORE', SUP_MODULE_PEIM : 'EFI_FV_FILETYPE_PEIM', SUP_MODULE_DXE_CORE : 'EFI_FV_FILETYPE_DXE_CORE', 'FREEFORM' : 'EFI_FV_FILETYPE_FREEFORM', 'DRIVER' : 'EFI_FV_FILETYPE_DRIVER', 'APPLICATION' : 'EFI_FV_FILETYPE_APPLICATION', 'FV_IMAGE' : 'EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE', 'RAW' : 'EFI_FV_FILETYPE_RAW', 'PEI_DXE_COMBO' : 'EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER', 'SMM' : 'EFI_FV_FILETYPE_SMM', SUP_MODULE_SMM_CORE : 'EFI_FV_FILETYPE_SMM_CORE', SUP_MODULE_MM_STANDALONE : 'EFI_FV_FILETYPE_MM_STANDALONE', SUP_MODULE_MM_CORE_STANDALONE : 'EFI_FV_FILETYPE_MM_CORE_STANDALONE' } # mapping between section type in FDF and file suffix SectionSuffix = { BINARY_FILE_TYPE_PE32 : '.pe32', BINARY_FILE_TYPE_PIC : '.pic', BINARY_FILE_TYPE_TE : '.te', BINARY_FILE_TYPE_DXE_DEPEX : '.dpx', 'VERSION' : '.ver', BINARY_FILE_TYPE_UI : '.ui', 'COMPAT16' : '.com16', 'RAW' : '.raw', 'FREEFORM_SUBTYPE_GUID': '.guid', 'SUBTYPE_GUID' : '.guid', 'FV_IMAGE' : 'fv.sec', 'COMPRESS' : '.com', 'GUIDED' : '.guided', BINARY_FILE_TYPE_PEI_DEPEX : '.dpx', BINARY_FILE_TYPE_SMM_DEPEX : '.dpx' }
edk2-master
BaseTools/Source/Python/GenFds/Ffs.py
## @file # process depex section generation # # Copyright (c) 2007 - 2018, Intel Corporation. All rights reserved.<BR> # # SPDX-License-Identifier: BSD-2-Clause-Patent # ## # Import Modules # from __future__ import absolute_import from . import Section from .GenFdsGlobalVariable import GenFdsGlobalVariable import Common.LongFilePathOs as os from CommonDataClass.FdfClass import DepexSectionClassObject from AutoGen.GenDepex import DependencyExpression from Common import EdkLogger from Common.BuildToolError import * from Common.Misc import PathClass from Common.DataType import * ## generate data section # # class DepexSection (DepexSectionClassObject): ## The constructor # # @param self The object pointer # def __init__(self): DepexSectionClassObject.__init__(self) def __FindGuidValue(self, CName): for Arch in GenFdsGlobalVariable.ArchList: PkgList = GenFdsGlobalVariable.WorkSpace.GetPackageList(GenFdsGlobalVariable.ActivePlatform, Arch, GenFdsGlobalVariable.TargetName, GenFdsGlobalVariable.ToolChainTag) for Inf in GenFdsGlobalVariable.FdfParser.Profile.InfList: ModuleData = GenFdsGlobalVariable.WorkSpace.BuildObject[ PathClass(Inf, GenFdsGlobalVariable.WorkSpaceDir), Arch, GenFdsGlobalVariable.TargetName, GenFdsGlobalVariable.ToolChainTag ] for Pkg in ModuleData.Packages: if Pkg not in PkgList: PkgList.append(Pkg) for PkgDb in PkgList: if CName in PkgDb.Ppis: return PkgDb.Ppis[CName] if CName in PkgDb.Protocols: return PkgDb.Protocols[CName] if CName in PkgDb.Guids: return PkgDb.Guids[CName] return None ## GenSection() method # # Generate compressed section # # @param self The object pointer # @param OutputPath Where to place output file # @param ModuleName Which module this section belongs to # @param SecNum Index of section # @param KeyStringList Filter for inputs of section generation # @param FfsInf FfsInfStatement object that contains this section data # @param Dict dictionary contains macro and its value # @retval tuple (Generated file name list, section alignment) # def GenSection(self, OutputPath, ModuleName, SecNum, keyStringList, FfsFile = None, Dict = None, IsMakefile = False): if self.ExpressionProcessed == False: self.Expression = self.Expression.replace("\n", " ").replace("\r", " ") ExpList = self.Expression.split() for Exp in ExpList: if Exp.upper() not in ('AND', 'OR', 'NOT', 'TRUE', 'FALSE', 'SOR', 'BEFORE', 'AFTER', 'END'): GuidStr = self.__FindGuidValue(Exp) if GuidStr is None: EdkLogger.error("GenFds", RESOURCE_NOT_AVAILABLE, "Depex GUID %s could not be found in build DB! (ModuleName: %s)" % (Exp, ModuleName)) self.Expression = self.Expression.replace(Exp, GuidStr) self.Expression = self.Expression.strip() self.ExpressionProcessed = True if self.DepexType == 'PEI_DEPEX_EXP': ModuleType = SUP_MODULE_PEIM SecType = BINARY_FILE_TYPE_PEI_DEPEX elif self.DepexType == 'DXE_DEPEX_EXP': ModuleType = SUP_MODULE_DXE_DRIVER SecType = BINARY_FILE_TYPE_DXE_DEPEX elif self.DepexType == 'SMM_DEPEX_EXP': ModuleType = SUP_MODULE_DXE_SMM_DRIVER SecType = BINARY_FILE_TYPE_SMM_DEPEX else: EdkLogger.error("GenFds", FORMAT_INVALID, "Depex type %s is not valid for module %s" % (self.DepexType, ModuleName)) InputFile = os.path.join (OutputPath, ModuleName + SUP_MODULE_SEC + SecNum + '.depex') InputFile = os.path.normpath(InputFile) Depex = DependencyExpression(self.Expression, ModuleType) Depex.Generate(InputFile) OutputFile = os.path.join (OutputPath, ModuleName + SUP_MODULE_SEC + SecNum + '.dpx') OutputFile = os.path.normpath(OutputFile) GenFdsGlobalVariable.GenerateSection(OutputFile, [InputFile], Section.Section.SectionType.get (SecType), IsMakefile=IsMakefile) return [OutputFile], self.Alignment
edk2-master
BaseTools/Source/Python/GenFds/DepexSection.py
## @file # generate capsule # # Copyright (c) 2007-2018, Intel Corporation. All rights reserved.<BR> # # SPDX-License-Identifier: BSD-2-Clause-Patent # ## # Import Modules # from __future__ import absolute_import from .GenFdsGlobalVariable import GenFdsGlobalVariable from io import BytesIO from struct import pack import os from Common.Misc import SaveFileOnChange import uuid ## base class for capsule data # # class CapsuleData: ## The constructor # # @param self The object pointer def __init__(self): pass ## generate capsule data # # @param self The object pointer def GenCapsuleSubItem(self): pass ## FFS class for capsule data # # class CapsuleFfs (CapsuleData): ## The constructor # # @param self The object pointer # def __init__(self) : self.Ffs = None self.FvName = None ## generate FFS capsule data # # @param self The object pointer # @retval string Generated file name # def GenCapsuleSubItem(self): FfsFile = self.Ffs.GenFfs() return FfsFile ## FV class for capsule data # # class CapsuleFv (CapsuleData): ## The constructor # # @param self The object pointer # def __init__(self) : self.Ffs = None self.FvName = None self.CapsuleName = None ## generate FV capsule data # # @param self The object pointer # @retval string Generated file name # def GenCapsuleSubItem(self): if self.FvName.find('.fv') == -1: if self.FvName.upper() in GenFdsGlobalVariable.FdfParser.Profile.FvDict: FvObj = GenFdsGlobalVariable.FdfParser.Profile.FvDict[self.FvName.upper()] FdBuffer = BytesIO() FvObj.CapsuleName = self.CapsuleName FvFile = FvObj.AddToBuffer(FdBuffer) FvObj.CapsuleName = None FdBuffer.close() return FvFile else: FvFile = GenFdsGlobalVariable.ReplaceWorkspaceMacro(self.FvName) return FvFile ## FD class for capsule data # # class CapsuleFd (CapsuleData): ## The constructor # # @param self The object pointer # def __init__(self) : self.Ffs = None self.FdName = None self.CapsuleName = None ## generate FD capsule data # # @param self The object pointer # @retval string Generated file name # def GenCapsuleSubItem(self): if self.FdName.find('.fd') == -1: if self.FdName.upper() in GenFdsGlobalVariable.FdfParser.Profile.FdDict: FdObj = GenFdsGlobalVariable.FdfParser.Profile.FdDict[self.FdName.upper()] FdFile = FdObj.GenFd() return FdFile else: FdFile = GenFdsGlobalVariable.ReplaceWorkspaceMacro(self.FdName) return FdFile ## AnyFile class for capsule data # # class CapsuleAnyFile (CapsuleData): ## The constructor # # @param self The object pointer # def __init__(self) : self.Ffs = None self.FileName = None ## generate AnyFile capsule data # # @param self The object pointer # @retval string Generated file name # def GenCapsuleSubItem(self): return self.FileName ## Afile class for capsule data # # class CapsuleAfile (CapsuleData): ## The constructor # # @param self The object pointer # def __init__(self) : self.Ffs = None self.FileName = None ## generate Afile capsule data # # @param self The object pointer # @retval string Generated file name # def GenCapsuleSubItem(self): return self.FileName class CapsulePayload(CapsuleData): '''Generate payload file, the header is defined below: #pragma pack(1) typedef struct { UINT32 Version; EFI_GUID UpdateImageTypeId; UINT8 UpdateImageIndex; UINT8 reserved_bytes[3]; UINT32 UpdateImageSize; UINT32 UpdateVendorCodeSize; UINT64 UpdateHardwareInstance; //Introduced in v2 } EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER; ''' def __init__(self): self.UiName = None self.Version = None self.ImageTypeId = None self.ImageIndex = None self.HardwareInstance = None self.ImageFile = [] self.VendorCodeFile = [] self.Certificate_Guid = None self.MonotonicCount = None self.Existed = False self.Buffer = None def GenCapsuleSubItem(self, AuthData=[]): if not self.Version: self.Version = '0x00000002' if not self.ImageIndex: self.ImageIndex = '0x1' if not self.HardwareInstance: self.HardwareInstance = '0x0' ImageFileSize = os.path.getsize(self.ImageFile) if AuthData: # the ImageFileSize need include the full authenticated info size. From first bytes of MonotonicCount to last bytes of certificate. # the 32 bit is the MonotonicCount, dwLength, wRevision, wCertificateType and CertType ImageFileSize += 32 VendorFileSize = 0 if self.VendorCodeFile: VendorFileSize = os.path.getsize(self.VendorCodeFile) # # Fill structure # Guid = self.ImageTypeId.split('-') Buffer = pack('=ILHHBBBBBBBBBBBBIIQ', int(self.Version, 16), int(Guid[0], 16), int(Guid[1], 16), int(Guid[2], 16), int(Guid[3][-4:-2], 16), int(Guid[3][-2:], 16), int(Guid[4][-12:-10], 16), int(Guid[4][-10:-8], 16), int(Guid[4][-8:-6], 16), int(Guid[4][-6:-4], 16), int(Guid[4][-4:-2], 16), int(Guid[4][-2:], 16), int(self.ImageIndex, 16), 0, 0, 0, ImageFileSize, VendorFileSize, int(self.HardwareInstance, 16) ) if AuthData: Buffer += pack('QIHH', AuthData[0], AuthData[1], AuthData[2], AuthData[3]) Buffer += uuid.UUID(AuthData[4]).bytes_le # # Append file content to the structure # ImageFile = open(self.ImageFile, 'rb') Buffer += ImageFile.read() ImageFile.close() if self.VendorCodeFile: VendorFile = open(self.VendorCodeFile, 'rb') Buffer += VendorFile.read() VendorFile.close() self.Existed = True return Buffer
edk2-master
BaseTools/Source/Python/GenFds/CapsuleData.py
## @file # process compress section generation # # Copyright (c) 2007 - 2017, Intel Corporation. All rights reserved.<BR> # # SPDX-License-Identifier: BSD-2-Clause-Patent # ## # Import Modules # from __future__ import absolute_import from .Ffs import SectionSuffix from . import Section import subprocess import Common.LongFilePathOs as os from .GenFdsGlobalVariable import GenFdsGlobalVariable from CommonDataClass.FdfClass import CompressSectionClassObject from Common.DataType import * ## generate compress section # # class CompressSection (CompressSectionClassObject) : ## compress types: PI standard and non PI standard CompTypeDict = { 'PI_STD' : 'PI_STD', 'PI_NONE' : 'PI_NONE' } ## The constructor # # @param self The object pointer # def __init__(self): CompressSectionClassObject.__init__(self) ## GenSection() method # # Generate compressed section # # @param self The object pointer # @param OutputPath Where to place output file # @param ModuleName Which module this section belongs to # @param SecNum Index of section # @param KeyStringList Filter for inputs of section generation # @param FfsInf FfsInfStatement object that contains this section data # @param Dict dictionary contains macro and its value # @retval tuple (Generated file name, section alignment) # def GenSection(self, OutputPath, ModuleName, SecNum, KeyStringList, FfsInf = None, Dict = None, IsMakefile = False): if FfsInf is not None: self.CompType = FfsInf.__ExtendMacro__(self.CompType) self.Alignment = FfsInf.__ExtendMacro__(self.Alignment) SectFiles = tuple() SectAlign = [] Index = 0 MaxAlign = None if Dict is None: Dict = {} for Sect in self.SectionList: Index = Index + 1 SecIndex = '%s.%d' %(SecNum, Index) ReturnSectList, AlignValue = Sect.GenSection(OutputPath, ModuleName, SecIndex, KeyStringList, FfsInf, Dict, IsMakefile=IsMakefile) if AlignValue is not None: if MaxAlign is None: MaxAlign = AlignValue if GenFdsGlobalVariable.GetAlignment (AlignValue) > GenFdsGlobalVariable.GetAlignment (MaxAlign): MaxAlign = AlignValue if ReturnSectList != []: if AlignValue is None: AlignValue = "1" for FileData in ReturnSectList: SectFiles += (FileData,) SectAlign.append(AlignValue) OutputFile = OutputPath + \ os.sep + \ ModuleName + \ SUP_MODULE_SEC + \ SecNum + \ SectionSuffix['COMPRESS'] OutputFile = os.path.normpath(OutputFile) DummyFile = OutputFile + '.dummy' GenFdsGlobalVariable.GenerateSection(DummyFile, SectFiles, InputAlign=SectAlign, IsMakefile=IsMakefile) GenFdsGlobalVariable.GenerateSection(OutputFile, [DummyFile], Section.Section.SectionType['COMPRESS'], CompressionType=self.CompTypeDict[self.CompType], IsMakefile=IsMakefile) OutputFileList = [] OutputFileList.append(OutputFile) return OutputFileList, self.Alignment
edk2-master
BaseTools/Source/Python/GenFds/CompressSection.py
## @file # process FD Region generation # # Copyright (c) 2007 - 2018, Intel Corporation. All rights reserved.<BR> # # SPDX-License-Identifier: BSD-2-Clause-Patent # ## # Import Modules # from __future__ import absolute_import from struct import * from .GenFdsGlobalVariable import GenFdsGlobalVariable from io import BytesIO import string import Common.LongFilePathOs as os from stat import * from Common import EdkLogger from Common.BuildToolError import * from Common.LongFilePathSupport import OpenLongFilePath as open from Common.MultipleWorkspace import MultipleWorkspace as mws from Common.DataType import BINARY_FILE_TYPE_FV ## generate Region # # class Region(object): ## The constructor # # @param self The object pointer # def __init__(self): self.Offset = None # The begin position of the Region self.Size = None # The Size of the Region self.PcdOffset = None self.PcdSize = None self.SetVarDict = {} self.RegionType = None self.RegionDataList = [] ## PadBuffer() # # Add padding bytes to the Buffer # # @param Buffer The buffer the generated region data will be put # in # @param ErasePolarity Flash erase polarity # @param Size Number of padding bytes requested # def PadBuffer(self, Buffer, ErasePolarity, Size): if Size > 0: if (ErasePolarity == '1') : PadByte = pack('B', 0xFF) else: PadByte = pack('B', 0) for i in range(0, Size): Buffer.write(PadByte) ## AddToBuffer() # # Add region data to the Buffer # # @param self The object pointer # @param Buffer The buffer generated region data will be put # @param BaseAddress base address of region # @param BlockSize block size of region # @param BlockNum How many blocks in region # @param ErasePolarity Flash erase polarity # @param MacroDict macro value pair # @retval string Generated FV file path # def AddToBuffer(self, Buffer, BaseAddress, BlockSizeList, ErasePolarity, ImageBinDict, MacroDict=None, Flag=False): Size = self.Size if MacroDict is None: MacroDict = {} if not Flag: GenFdsGlobalVariable.InfLogger('\nGenerate Region at Offset 0x%X' % self.Offset) GenFdsGlobalVariable.InfLogger(" Region Size = 0x%X" % Size) GenFdsGlobalVariable.SharpCounter = 0 if Flag and (self.RegionType != BINARY_FILE_TYPE_FV): return if self.RegionType == BINARY_FILE_TYPE_FV: # # Get Fv from FvDict # self.FvAddress = int(BaseAddress, 16) + self.Offset FvBaseAddress = '0x%X' % self.FvAddress FvOffset = 0 for RegionData in self.RegionDataList: FileName = None if RegionData.endswith(".fv"): RegionData = GenFdsGlobalVariable.MacroExtend(RegionData, MacroDict) if not Flag: GenFdsGlobalVariable.InfLogger(' Region FV File Name = .fv : %s' % RegionData) if RegionData[1] != ':' : RegionData = mws.join (GenFdsGlobalVariable.WorkSpaceDir, RegionData) if not os.path.exists(RegionData): EdkLogger.error("GenFds", FILE_NOT_FOUND, ExtraData=RegionData) FileName = RegionData elif RegionData.upper() + 'fv' in ImageBinDict: if not Flag: GenFdsGlobalVariable.InfLogger(' Region Name = FV') FileName = ImageBinDict[RegionData.upper() + 'fv'] else: # # Generate FvImage. # FvObj = None if RegionData.upper() in GenFdsGlobalVariable.FdfParser.Profile.FvDict: FvObj = GenFdsGlobalVariable.FdfParser.Profile.FvDict[RegionData.upper()] if FvObj is not None : if not Flag: GenFdsGlobalVariable.InfLogger(' Region Name = FV') # # Call GenFv tool # self.BlockInfoOfRegion(BlockSizeList, FvObj) self.FvAddress = self.FvAddress + FvOffset FvAlignValue = GenFdsGlobalVariable.GetAlignment(FvObj.FvAlignment) if self.FvAddress % FvAlignValue != 0: EdkLogger.error("GenFds", GENFDS_ERROR, "FV (%s) is NOT %s Aligned!" % (FvObj.UiFvName, FvObj.FvAlignment)) FvBuffer = BytesIO() FvBaseAddress = '0x%X' % self.FvAddress BlockSize = None BlockNum = None FvObj.AddToBuffer(FvBuffer, FvBaseAddress, BlockSize, BlockNum, ErasePolarity, Flag=Flag) if Flag: continue FvBufferLen = len(FvBuffer.getvalue()) if FvBufferLen > Size: FvBuffer.close() EdkLogger.error("GenFds", GENFDS_ERROR, "Size of FV (%s) is larger than Region Size 0x%X specified." % (RegionData, Size)) # # Put the generated image into FD buffer. # Buffer.write(FvBuffer.getvalue()) FvBuffer.close() FvOffset = FvOffset + FvBufferLen Size = Size - FvBufferLen continue else: EdkLogger.error("GenFds", GENFDS_ERROR, "FV (%s) is NOT described in FDF file!" % (RegionData)) # # Add the exist Fv image into FD buffer # if not Flag: if FileName is not None: FileLength = os.stat(FileName)[ST_SIZE] if FileLength > Size: EdkLogger.error("GenFds", GENFDS_ERROR, "Size of FV File (%s) is larger than Region Size 0x%X specified." \ % (RegionData, Size)) BinFile = open(FileName, 'rb') Buffer.write(BinFile.read()) BinFile.close() Size = Size - FileLength # # Pad the left buffer # if not Flag: self.PadBuffer(Buffer, ErasePolarity, Size) if self.RegionType == 'CAPSULE': # # Get Capsule from Capsule Dict # for RegionData in self.RegionDataList: if RegionData.endswith(".cap"): RegionData = GenFdsGlobalVariable.MacroExtend(RegionData, MacroDict) GenFdsGlobalVariable.InfLogger(' Region CAPSULE Image Name = .cap : %s' % RegionData) if RegionData[1] != ':' : RegionData = mws.join (GenFdsGlobalVariable.WorkSpaceDir, RegionData) if not os.path.exists(RegionData): EdkLogger.error("GenFds", FILE_NOT_FOUND, ExtraData=RegionData) FileName = RegionData elif RegionData.upper() + 'cap' in ImageBinDict: GenFdsGlobalVariable.InfLogger(' Region Name = CAPSULE') FileName = ImageBinDict[RegionData.upper() + 'cap'] else: # # Generate Capsule image and Put it into FD buffer # CapsuleObj = None if RegionData.upper() in GenFdsGlobalVariable.FdfParser.Profile.CapsuleDict: CapsuleObj = GenFdsGlobalVariable.FdfParser.Profile.CapsuleDict[RegionData.upper()] if CapsuleObj is not None : CapsuleObj.CapsuleName = RegionData.upper() GenFdsGlobalVariable.InfLogger(' Region Name = CAPSULE') # # Call GenFv tool to generate Capsule Image # FileName = CapsuleObj.GenCapsule() CapsuleObj.CapsuleName = None else: EdkLogger.error("GenFds", GENFDS_ERROR, "Capsule (%s) is NOT described in FDF file!" % (RegionData)) # # Add the capsule image into FD buffer # FileLength = os.stat(FileName)[ST_SIZE] if FileLength > Size: EdkLogger.error("GenFds", GENFDS_ERROR, "Size 0x%X of Capsule File (%s) is larger than Region Size 0x%X specified." \ % (FileLength, RegionData, Size)) BinFile = open(FileName, 'rb') Buffer.write(BinFile.read()) BinFile.close() Size = Size - FileLength # # Pad the left buffer # self.PadBuffer(Buffer, ErasePolarity, Size) if self.RegionType in ('FILE', 'INF'): for RegionData in self.RegionDataList: if self.RegionType == 'INF': RegionData.__InfParse__(None) if len(RegionData.BinFileList) != 1: EdkLogger.error('GenFds', GENFDS_ERROR, 'INF in FD region can only contain one binary: %s' % RegionData) File = RegionData.BinFileList[0] RegionData = RegionData.PatchEfiFile(File.Path, File.Type) else: RegionData = GenFdsGlobalVariable.MacroExtend(RegionData, MacroDict) if RegionData[1] != ':' : RegionData = mws.join (GenFdsGlobalVariable.WorkSpaceDir, RegionData) if not os.path.exists(RegionData): EdkLogger.error("GenFds", FILE_NOT_FOUND, ExtraData=RegionData) # # Add the file image into FD buffer # FileLength = os.stat(RegionData)[ST_SIZE] if FileLength > Size: EdkLogger.error("GenFds", GENFDS_ERROR, "Size of File (%s) is larger than Region Size 0x%X specified." \ % (RegionData, Size)) GenFdsGlobalVariable.InfLogger(' Region File Name = %s' % RegionData) BinFile = open(RegionData, 'rb') Buffer.write(BinFile.read()) BinFile.close() Size = Size - FileLength # # Pad the left buffer # self.PadBuffer(Buffer, ErasePolarity, Size) if self.RegionType == 'DATA' : GenFdsGlobalVariable.InfLogger(' Region Name = DATA') DataSize = 0 for RegionData in self.RegionDataList: Data = RegionData.split(',') DataSize = DataSize + len(Data) if DataSize > Size: EdkLogger.error("GenFds", GENFDS_ERROR, "Size of DATA is larger than Region Size ") else: for item in Data : Buffer.write(pack('B', int(item, 16))) Size = Size - DataSize # # Pad the left buffer # self.PadBuffer(Buffer, ErasePolarity, Size) if self.RegionType is None: GenFdsGlobalVariable.InfLogger(' Region Name = None') self.PadBuffer(Buffer, ErasePolarity, Size) ## BlockSizeOfRegion() # # @param BlockSizeList List of block information # @param FvObj The object for FV # def BlockInfoOfRegion(self, BlockSizeList, FvObj): Start = 0 End = 0 RemindingSize = self.Size ExpectedList = [] for (BlockSize, BlockNum, pcd) in BlockSizeList: End = Start + BlockSize * BlockNum # region not started yet if self.Offset >= End: Start = End continue # region located in current blocks else: # region ended within current blocks if self.Offset + self.Size <= End: ExpectedList.append((BlockSize, (RemindingSize + BlockSize - 1) // BlockSize)) break # region not ended yet else: # region not started in middle of current blocks if self.Offset <= Start: UsedBlockNum = BlockNum # region started in middle of current blocks else: UsedBlockNum = (End - self.Offset) // BlockSize Start = End ExpectedList.append((BlockSize, UsedBlockNum)) RemindingSize -= BlockSize * UsedBlockNum if FvObj.BlockSizeList == []: FvObj.BlockSizeList = ExpectedList else: # first check whether FvObj.BlockSizeList items have only "BlockSize" or "NumBlocks", # if so, use ExpectedList for Item in FvObj.BlockSizeList: if Item[0] is None or Item[1] is None: FvObj.BlockSizeList = ExpectedList break # make sure region size is no smaller than the summed block size in FV Sum = 0 for Item in FvObj.BlockSizeList: Sum += Item[0] * Item[1] if self.Size < Sum: EdkLogger.error("GenFds", GENFDS_ERROR, "Total Size of FV %s 0x%x is larger than Region Size 0x%x " % (FvObj.UiFvName, Sum, self.Size)) # check whether the BlockStatements in FV section is appropriate ExpectedListData = '' for Item in ExpectedList: ExpectedListData += "BlockSize = 0x%x\n\tNumBlocks = 0x%x\n\t" % Item Index = 0 for Item in FvObj.BlockSizeList: if Item[0] != ExpectedList[Index][0]: EdkLogger.error("GenFds", GENFDS_ERROR, "BlockStatements of FV %s are not align with FD's, suggested FV BlockStatement" % FvObj.UiFvName, ExtraData=ExpectedListData) elif Item[1] != ExpectedList[Index][1]: if (Item[1] < ExpectedList[Index][1]) and (Index == len(FvObj.BlockSizeList) - 1): break; else: EdkLogger.error("GenFds", GENFDS_ERROR, "BlockStatements of FV %s are not align with FD's, suggested FV BlockStatement" % FvObj.UiFvName, ExtraData=ExpectedListData) else: Index += 1
edk2-master
BaseTools/Source/Python/GenFds/Region.py
## @file # process FV image section generation # # Copyright (c) 2007 - 2018, Intel Corporation. All rights reserved.<BR> # # SPDX-License-Identifier: BSD-2-Clause-Patent # ## # Import Modules # from __future__ import absolute_import from . import Section from io import BytesIO from .Ffs import SectionSuffix import subprocess from .GenFdsGlobalVariable import GenFdsGlobalVariable import Common.LongFilePathOs as os from CommonDataClass.FdfClass import FvImageSectionClassObject from Common.MultipleWorkspace import MultipleWorkspace as mws from Common import EdkLogger from Common.BuildToolError import * from Common.DataType import * ## generate FV image section # # class FvImageSection(FvImageSectionClassObject): ## The constructor # # @param self The object pointer # def __init__(self): FvImageSectionClassObject.__init__(self) ## GenSection() method # # Generate FV image section # # @param self The object pointer # @param OutputPath Where to place output file # @param ModuleName Which module this section belongs to # @param SecNum Index of section # @param KeyStringList Filter for inputs of section generation # @param FfsInf FfsInfStatement object that contains this section data # @param Dict dictionary contains macro and its value # @retval tuple (Generated file name, section alignment) # def GenSection(self, OutputPath, ModuleName, SecNum, KeyStringList, FfsInf = None, Dict = None, IsMakefile = False): OutputFileList = [] if Dict is None: Dict = {} if self.FvFileType is not None: FileList, IsSect = Section.Section.GetFileList(FfsInf, self.FvFileType, self.FvFileExtension) if IsSect : return FileList, self.Alignment Num = SecNum MaxFvAlignment = 0 for FvFileName in FileList: FvAlignmentValue = 0 if os.path.isfile(FvFileName): FvFileObj = open (FvFileName, 'rb') FvFileObj.seek(0) # PI FvHeader is 0x48 byte FvHeaderBuffer = FvFileObj.read(0x48) # FV alignment position. if isinstance(FvHeaderBuffer[0x2E], str): FvAlignmentValue = 1 << (ord(FvHeaderBuffer[0x2E]) & 0x1F) else: FvAlignmentValue = 1 << (FvHeaderBuffer[0x2E] & 0x1F) FvFileObj.close() if FvAlignmentValue > MaxFvAlignment: MaxFvAlignment = FvAlignmentValue OutputFile = os.path.join(OutputPath, ModuleName + SUP_MODULE_SEC + Num + SectionSuffix.get("FV_IMAGE")) GenFdsGlobalVariable.GenerateSection(OutputFile, [FvFileName], 'EFI_SECTION_FIRMWARE_VOLUME_IMAGE', IsMakefile=IsMakefile) OutputFileList.append(OutputFile) # MaxFvAlignment is larger than or equal to 1K if MaxFvAlignment >= 0x400: if MaxFvAlignment >= 0x100000: #The max alignment supported by FFS is 16M. if MaxFvAlignment >= 0x1000000: self.Alignment = "16M" else: self.Alignment = str(MaxFvAlignment // 0x100000) + "M" else: self.Alignment = str (MaxFvAlignment // 0x400) + "K" else: # MaxFvAlignment is less than 1K self.Alignment = str (MaxFvAlignment) return OutputFileList, self.Alignment # # Generate Fv # if self.FvName is not None: Buffer = BytesIO() Fv = GenFdsGlobalVariable.FdfParser.Profile.FvDict.get(self.FvName) if Fv is not None: self.Fv = Fv if not self.FvAddr and self.Fv.BaseAddress: self.FvAddr = self.Fv.BaseAddress FvFileName = Fv.AddToBuffer(Buffer, self.FvAddr, MacroDict = Dict, Flag=IsMakefile) if Fv.FvAlignment is not None: if self.Alignment is None: self.Alignment = Fv.FvAlignment else: if GenFdsGlobalVariable.GetAlignment (Fv.FvAlignment) > GenFdsGlobalVariable.GetAlignment (self.Alignment): self.Alignment = Fv.FvAlignment else: if self.FvFileName is not None: FvFileName = GenFdsGlobalVariable.ReplaceWorkspaceMacro(self.FvFileName) if os.path.isfile(FvFileName): FvFileObj = open (FvFileName, 'rb') FvFileObj.seek(0) # PI FvHeader is 0x48 byte FvHeaderBuffer = FvFileObj.read(0x48) # FV alignment position. if isinstance(FvHeaderBuffer[0x2E], str): FvAlignmentValue = 1 << (ord(FvHeaderBuffer[0x2E]) & 0x1F) else: FvAlignmentValue = 1 << (FvHeaderBuffer[0x2E] & 0x1F) # FvAlignmentValue is larger than or equal to 1K if FvAlignmentValue >= 0x400: if FvAlignmentValue >= 0x100000: #The max alignment supported by FFS is 16M. if FvAlignmentValue >= 0x1000000: self.Alignment = "16M" else: self.Alignment = str(FvAlignmentValue // 0x100000) + "M" else: self.Alignment = str (FvAlignmentValue // 0x400) + "K" else: # FvAlignmentValue is less than 1K self.Alignment = str (FvAlignmentValue) FvFileObj.close() else: if len (mws.getPkgPath()) == 0: EdkLogger.error("GenFds", FILE_NOT_FOUND, "%s is not found in WORKSPACE: %s" % self.FvFileName, GenFdsGlobalVariable.WorkSpaceDir) else: EdkLogger.error("GenFds", FILE_NOT_FOUND, "%s is not found in packages path:\n\t%s" % (self.FvFileName, '\n\t'.join(mws.getPkgPath()))) else: EdkLogger.error("GenFds", GENFDS_ERROR, "FvImageSection Failed! %s NOT found in FDF" % self.FvName) # # Prepare the parameter of GenSection # OutputFile = os.path.join(OutputPath, ModuleName + SUP_MODULE_SEC + SecNum + SectionSuffix.get("FV_IMAGE")) GenFdsGlobalVariable.GenerateSection(OutputFile, [FvFileName], 'EFI_SECTION_FIRMWARE_VOLUME_IMAGE', IsMakefile=IsMakefile) OutputFileList.append(OutputFile) return OutputFileList, self.Alignment
edk2-master
BaseTools/Source/Python/GenFds/FvImageSection.py
## @file # process OptionROM generation # # Copyright (c) 2007 - 2018, Intel Corporation. All rights reserved.<BR> # # SPDX-License-Identifier: BSD-2-Clause-Patent # ## # Import Modules # from __future__ import absolute_import import Common.LongFilePathOs as os import subprocess from . import OptRomInfStatement from .GenFdsGlobalVariable import GenFdsGlobalVariable from CommonDataClass.FdfClass import OptionRomClassObject from Common.Misc import SaveFileOnChange from Common import EdkLogger from Common.BuildToolError import * ## # # class OPTIONROM (OptionRomClassObject): ## The constructor # # @param self The object pointer # def __init__(self, Name = ""): OptionRomClassObject.__init__(self) self.DriverName = Name ## AddToBuffer() # # Generate Option ROM # # @param self The object pointer # @param Buffer The buffer generated OptROM data will be put # @retval string Generated OptROM file path # def AddToBuffer (self, Buffer, Flag=False) : if not Flag: GenFdsGlobalVariable.InfLogger( "\nGenerating %s Option ROM ..." %self.DriverName) EfiFileList = [] BinFileList = [] # Process Modules in FfsList for FfsFile in self.FfsList : if isinstance(FfsFile, OptRomInfStatement.OptRomInfStatement): FilePathNameList = FfsFile.GenFfs(IsMakefile=Flag) if len(FilePathNameList) == 0: EdkLogger.error("GenFds", GENFDS_ERROR, "Module %s not produce .efi files, so NO file could be put into option ROM." % (FfsFile.InfFileName)) if FfsFile.OverrideAttribs is None: EfiFileList.extend(FilePathNameList) else: FileName = os.path.basename(FilePathNameList[0]) TmpOutputDir = os.path.join(GenFdsGlobalVariable.FvDir, self.DriverName, FfsFile.CurrentArch) if not os.path.exists(TmpOutputDir) : os.makedirs(TmpOutputDir) TmpOutputFile = os.path.join(TmpOutputDir, FileName+'.tmp') GenFdsGlobalVariable.GenerateOptionRom(TmpOutputFile, FilePathNameList, [], FfsFile.OverrideAttribs.NeedCompress, FfsFile.OverrideAttribs.PciClassCode, FfsFile.OverrideAttribs.PciRevision, FfsFile.OverrideAttribs.PciDeviceId, FfsFile.OverrideAttribs.PciVendorId, IsMakefile = Flag) BinFileList.append(TmpOutputFile) else: FilePathName = FfsFile.GenFfs(IsMakefile=Flag) if FfsFile.OverrideAttribs is not None: FileName = os.path.basename(FilePathName) TmpOutputDir = os.path.join(GenFdsGlobalVariable.FvDir, self.DriverName, FfsFile.CurrentArch) if not os.path.exists(TmpOutputDir) : os.makedirs(TmpOutputDir) TmpOutputFile = os.path.join(TmpOutputDir, FileName+'.tmp') GenFdsGlobalVariable.GenerateOptionRom(TmpOutputFile, [FilePathName], [], FfsFile.OverrideAttribs.NeedCompress, FfsFile.OverrideAttribs.PciClassCode, FfsFile.OverrideAttribs.PciRevision, FfsFile.OverrideAttribs.PciDeviceId, FfsFile.OverrideAttribs.PciVendorId, IsMakefile=Flag) BinFileList.append(TmpOutputFile) else: if FfsFile.FileType == 'EFI': EfiFileList.append(FilePathName) else: BinFileList.append(FilePathName) # # Call EfiRom tool # OutputFile = os.path.join(GenFdsGlobalVariable.FvDir, self.DriverName) OutputFile = OutputFile + '.rom' GenFdsGlobalVariable.GenerateOptionRom( OutputFile, EfiFileList, BinFileList, IsMakefile=Flag) if not Flag: GenFdsGlobalVariable.InfLogger( "\nGenerate %s Option ROM Successfully" %self.DriverName) GenFdsGlobalVariable.SharpCounter = 0 return OutputFile class OverrideAttribs: ## The constructor # # @param self The object pointer # def __init__(self): self.PciVendorId = None self.PciClassCode = None self.PciDeviceId = None self.PciRevision = None self.NeedCompress = None
edk2-master
BaseTools/Source/Python/GenFds/OptionRom.py
## @file # parse FDF file # # Copyright (c) 2007 - 2021, Intel Corporation. All rights reserved.<BR> # Copyright (c) 2015, Hewlett Packard Enterprise Development, L.P.<BR> # # SPDX-License-Identifier: BSD-2-Clause-Patent # ## # Import Modules # from __future__ import print_function from __future__ import absolute_import from re import compile, DOTALL from string import hexdigits from uuid import UUID from Common.BuildToolError import * from Common import EdkLogger from Common.Misc import PathClass, tdict, ProcessDuplicatedInf, GuidStructureStringToGuidString from Common.StringUtils import NormPath, ReplaceMacro from Common import GlobalData from Common.Expression import * from Common.DataType import * from Common.MultipleWorkspace import MultipleWorkspace as mws import Common.LongFilePathOs as os from Common.LongFilePathSupport import OpenLongFilePath as open from Common.RangeExpression import RangeExpression from collections import OrderedDict from .Fd import FD from .Region import Region from .Fv import FV from .AprioriSection import AprioriSection from .FfsInfStatement import FfsInfStatement from .FfsFileStatement import FileStatement from .VerSection import VerSection from .UiSection import UiSection from .FvImageSection import FvImageSection from .DataSection import DataSection from .DepexSection import DepexSection from .CompressSection import CompressSection from .GuidSection import GuidSection from .SubTypeGuidSection import SubTypeGuidSection from .Capsule import EFI_CERT_TYPE_PKCS7_GUID, EFI_CERT_TYPE_RSA2048_SHA256_GUID, Capsule from .CapsuleData import CapsuleFfs, CapsulePayload, CapsuleFv, CapsuleFd, CapsuleAnyFile, CapsuleAfile from .RuleComplexFile import RuleComplexFile from .RuleSimpleFile import RuleSimpleFile from .EfiSection import EfiSection from .OptionRom import OPTIONROM from .OptRomInfStatement import OptRomInfStatement, OverrideAttribs from .OptRomFileStatement import OptRomFileStatement from .GenFdsGlobalVariable import GenFdsGlobalVariable T_CHAR_CR = '\r' T_CHAR_TAB = '\t' T_CHAR_DOUBLE_QUOTE = '\"' T_CHAR_SINGLE_QUOTE = '\'' T_CHAR_BRACE_R = '}' SEPARATORS = {TAB_EQUAL_SPLIT, TAB_VALUE_SPLIT, TAB_COMMA_SPLIT, '{', T_CHAR_BRACE_R} ALIGNMENTS = {"Auto", "8", "16", "32", "64", "128", "512", "1K", "4K", "32K", "64K", "128K", "256K", "512K", "1M", "2M", "4M", "8M", "16M"} ALIGNMENT_NOAUTO = ALIGNMENTS - {"Auto"} CR_LB_SET = {T_CHAR_CR, TAB_LINE_BREAK} RegionSizePattern = compile("\s*(?P<base>(?:0x|0X)?[a-fA-F0-9]+)\s*\|\s*(?P<size>(?:0x|0X)?[a-fA-F0-9]+)\s*") RegionSizeGuidPattern = compile("\s*(?P<base>\w+\.\w+[\.\w\[\]]*)\s*\|\s*(?P<size>\w+\.\w+[\.\w\[\]]*)\s*") RegionOffsetPcdPattern = compile("\s*(?P<base>\w+\.\w+[\.\w\[\]]*)\s*$") ShortcutPcdPattern = compile("\s*\w+\s*=\s*(?P<value>(?:0x|0X)?[a-fA-F0-9]+)\s*\|\s*(?P<name>\w+\.\w+)\s*") BaseAddrValuePattern = compile('^0[xX][0-9a-fA-F]+') FileExtensionPattern = compile(r'([a-zA-Z][a-zA-Z0-9]*)') TokenFindPattern = compile(r'([a-zA-Z0-9\-]+|\$\(TARGET\)|\*)_([a-zA-Z0-9\-]+|\$\(TOOL_CHAIN_TAG\)|\*)_([a-zA-Z0-9\-]+|\$\(ARCH\)|\*)') AllIncludeFileList = [] # Get the closest parent def GetParentAtLine (Line): for Profile in AllIncludeFileList: if Profile.IsLineInFile(Line): return Profile return None # Check include loop def IsValidInclude (File, Line): for Profile in AllIncludeFileList: if Profile.IsLineInFile(Line) and Profile.FileName == File: return False return True def GetRealFileLine (File, Line): InsertedLines = 0 for Profile in AllIncludeFileList: if Profile.IsLineInFile(Line): return Profile.GetLineInFile(Line) elif Line >= Profile.InsertStartLineNumber and Profile.Level == 1: InsertedLines += Profile.GetTotalLines() return (File, Line - InsertedLines) ## The exception class that used to report error messages when parsing FDF # # Currently the "ToolName" is set to be "FdfParser". # class Warning (Exception): ## The constructor # # @param self The object pointer # @param Str The message to record # @param File The FDF name # @param Line The Line number that error occurs # def __init__(self, Str, File = None, Line = None): FileLineTuple = GetRealFileLine(File, Line) self.FileName = FileLineTuple[0] self.LineNumber = FileLineTuple[1] self.OriginalLineNumber = Line self.Message = Str self.ToolName = 'FdfParser' def __str__(self): return self.Message # helper functions to facilitate consistency in warnings # each function is for a different common warning @staticmethod def Expected(Str, File, Line): return Warning("expected {}".format(Str), File, Line) @staticmethod def ExpectedEquals(File, Line): return Warning.Expected("'='", File, Line) @staticmethod def ExpectedCurlyOpen(File, Line): return Warning.Expected("'{'", File, Line) @staticmethod def ExpectedCurlyClose(File, Line): return Warning.Expected("'}'", File, Line) @staticmethod def ExpectedBracketClose(File, Line): return Warning.Expected("']'", File, Line) ## The Include file content class that used to record file data when parsing include file # # May raise Exception when opening file. # class IncludeFileProfile: ## The constructor # # @param self The object pointer # @param FileName The file that to be parsed # def __init__(self, FileName): self.FileName = FileName self.FileLinesList = [] try: with open(FileName, "r") as fsock: self.FileLinesList = fsock.readlines() for index, line in enumerate(self.FileLinesList): if not line.endswith(TAB_LINE_BREAK): self.FileLinesList[index] += TAB_LINE_BREAK except: EdkLogger.error("FdfParser", FILE_OPEN_FAILURE, ExtraData=FileName) self.InsertStartLineNumber = None self.InsertAdjust = 0 self.IncludeFileList = [] self.Level = 1 # first level include file def GetTotalLines(self): TotalLines = self.InsertAdjust + len(self.FileLinesList) for Profile in self.IncludeFileList: TotalLines += Profile.GetTotalLines() return TotalLines def IsLineInFile(self, Line): if Line >= self.InsertStartLineNumber and Line < self.InsertStartLineNumber + self.GetTotalLines(): return True return False def GetLineInFile(self, Line): if not self.IsLineInFile (Line): return (self.FileName, -1) InsertedLines = self.InsertStartLineNumber for Profile in self.IncludeFileList: if Profile.IsLineInFile(Line): return Profile.GetLineInFile(Line) elif Line >= Profile.InsertStartLineNumber: InsertedLines += Profile.GetTotalLines() return (self.FileName, Line - InsertedLines + 1) ## The FDF content class that used to record file data when parsing FDF # # May raise Exception when opening file. # class FileProfile: ## The constructor # # @param self The object pointer # @param FileName The file that to be parsed # def __init__(self, FileName): self.FileLinesList = [] try: with open(FileName, "r") as fsock: self.FileLinesList = fsock.readlines() except: EdkLogger.error("FdfParser", FILE_OPEN_FAILURE, ExtraData=FileName) self.FileName = FileName self.PcdDict = OrderedDict() self.PcdLocalDict = OrderedDict() self.InfList = [] self.InfDict = {'ArchTBD':[]} # ECC will use this Dict and List information self.PcdFileLineDict = {} self.InfFileLineList = [] self.FdDict = {} self.FdNameNotSet = False self.FvDict = {} self.CapsuleDict = {} self.RuleDict = {} self.OptRomDict = {} self.FmpPayloadDict = {} ## The syntax parser for FDF # # PreprocessFile method should be called prior to ParseFile # CycleReferenceCheck method can detect cycles in FDF contents # # GetNext*** procedures mean these procedures will get next token first, then make judgement. # Get*** procedures mean these procedures will make judgement on current token only. # class FdfParser: ## The constructor # # @param self The object pointer # @param FileName The file that to be parsed # def __init__(self, FileName): self.Profile = FileProfile(FileName) self.FileName = FileName self.CurrentLineNumber = 1 self.CurrentOffsetWithinLine = 0 self.CurrentFdName = None self.CurrentFvName = None self._Token = "" self._SkippedChars = "" GlobalData.gFdfParser = self # Used to section info self._CurSection = [] # Key: [section name, UI name, arch] # Value: {MACRO_NAME: MACRO_VALUE} self._MacroDict = tdict(True, 3) self._PcdDict = OrderedDict() self._WipeOffArea = [] if GenFdsGlobalVariable.WorkSpaceDir == '': GenFdsGlobalVariable.WorkSpaceDir = os.getenv("WORKSPACE") ## _SkipWhiteSpace() method # # Skip white spaces from current char. # # @param self The object pointer # def _SkipWhiteSpace(self): while not self._EndOfFile(): if self._CurrentChar() in {TAB_PRINTCHAR_NUL, T_CHAR_CR, TAB_LINE_BREAK, TAB_SPACE_SPLIT, T_CHAR_TAB}: self._SkippedChars += str(self._CurrentChar()) self._GetOneChar() else: return return ## _EndOfFile() method # # Judge current buffer pos is at file end # # @param self The object pointer # @retval True Current File buffer position is at file end # @retval False Current File buffer position is NOT at file end # def _EndOfFile(self): NumberOfLines = len(self.Profile.FileLinesList) SizeOfLastLine = len(self.Profile.FileLinesList[-1]) if self.CurrentLineNumber == NumberOfLines and self.CurrentOffsetWithinLine >= SizeOfLastLine - 1: return True if self.CurrentLineNumber > NumberOfLines: return True return False ## _EndOfLine() method # # Judge current buffer pos is at line end # # @param self The object pointer # @retval True Current File buffer position is at line end # @retval False Current File buffer position is NOT at line end # def _EndOfLine(self): if self.CurrentLineNumber > len(self.Profile.FileLinesList): return True SizeOfCurrentLine = len(self.Profile.FileLinesList[self.CurrentLineNumber - 1]) if self.CurrentOffsetWithinLine >= SizeOfCurrentLine: return True return False ## Rewind() method # # Reset file data buffer to the initial state # # @param self The object pointer # @param DestLine Optional new destination line number. # @param DestOffset Optional new destination offset. # def Rewind(self, DestLine = 1, DestOffset = 0): self.CurrentLineNumber = DestLine self.CurrentOffsetWithinLine = DestOffset ## _UndoOneChar() method # # Go back one char in the file buffer # # @param self The object pointer # @retval True Successfully go back one char # @retval False Not able to go back one char as file beginning reached # def _UndoOneChar(self): if self.CurrentLineNumber == 1 and self.CurrentOffsetWithinLine == 0: return False elif self.CurrentOffsetWithinLine == 0: self.CurrentLineNumber -= 1 self.CurrentOffsetWithinLine = len(self._CurrentLine()) - 1 else: self.CurrentOffsetWithinLine -= 1 return True ## _GetOneChar() method # # Move forward one char in the file buffer # # @param self The object pointer # def _GetOneChar(self): if self.CurrentOffsetWithinLine == len(self.Profile.FileLinesList[self.CurrentLineNumber - 1]) - 1: self.CurrentLineNumber += 1 self.CurrentOffsetWithinLine = 0 else: self.CurrentOffsetWithinLine += 1 ## _CurrentChar() method # # Get the char pointed to by the file buffer pointer # # @param self The object pointer # @retval Char Current char # def _CurrentChar(self): return self.Profile.FileLinesList[self.CurrentLineNumber - 1][self.CurrentOffsetWithinLine] ## _NextChar() method # # Get the one char pass the char pointed to by the file buffer pointer # # @param self The object pointer # @retval Char Next char # def _NextChar(self): if self.CurrentOffsetWithinLine == len(self.Profile.FileLinesList[self.CurrentLineNumber - 1]) - 1: return self.Profile.FileLinesList[self.CurrentLineNumber][0] return self.Profile.FileLinesList[self.CurrentLineNumber - 1][self.CurrentOffsetWithinLine + 1] ## _SetCurrentCharValue() method # # Modify the value of current char # # @param self The object pointer # @param Value The new value of current char # def _SetCurrentCharValue(self, Value): self.Profile.FileLinesList[self.CurrentLineNumber - 1][self.CurrentOffsetWithinLine] = Value ## _CurrentLine() method # # Get the list that contains current line contents # # @param self The object pointer # @retval List current line contents # def _CurrentLine(self): return self.Profile.FileLinesList[self.CurrentLineNumber - 1] def _StringToList(self): self.Profile.FileLinesList = [list(s) for s in self.Profile.FileLinesList] if not self.Profile.FileLinesList: EdkLogger.error('FdfParser', FILE_READ_FAILURE, 'The file is empty!', File=self.FileName) self.Profile.FileLinesList[-1].append(' ') def _ReplaceFragment(self, StartPos, EndPos, Value = ' '): if StartPos[0] == EndPos[0]: Offset = StartPos[1] while Offset <= EndPos[1]: self.Profile.FileLinesList[StartPos[0]][Offset] = Value Offset += 1 return Offset = StartPos[1] while self.Profile.FileLinesList[StartPos[0]][Offset] not in CR_LB_SET: self.Profile.FileLinesList[StartPos[0]][Offset] = Value Offset += 1 Line = StartPos[0] while Line < EndPos[0]: Offset = 0 while self.Profile.FileLinesList[Line][Offset] not in CR_LB_SET: self.Profile.FileLinesList[Line][Offset] = Value Offset += 1 Line += 1 Offset = 0 while Offset <= EndPos[1]: self.Profile.FileLinesList[EndPos[0]][Offset] = Value Offset += 1 def _SetMacroValue(self, Macro, Value): if not self._CurSection: return MacroDict = {} if not self._MacroDict[self._CurSection[0], self._CurSection[1], self._CurSection[2]]: self._MacroDict[self._CurSection[0], self._CurSection[1], self._CurSection[2]] = MacroDict else: MacroDict = self._MacroDict[self._CurSection[0], self._CurSection[1], self._CurSection[2]] MacroDict[Macro] = Value def _GetMacroValue(self, Macro): # Highest priority if Macro in GlobalData.gCommandLineDefines: return GlobalData.gCommandLineDefines[Macro] if Macro in GlobalData.gGlobalDefines: return GlobalData.gGlobalDefines[Macro] if self._CurSection: MacroDict = self._MacroDict[ self._CurSection[0], self._CurSection[1], self._CurSection[2] ] if MacroDict and Macro in MacroDict: return MacroDict[Macro] # Lowest priority if Macro in GlobalData.gPlatformDefines: return GlobalData.gPlatformDefines[Macro] return None def _SectionHeaderParser(self, Section): # [Defines] # [FD.UiName]: use dummy instead if UI name is optional # [FV.UiName] # [Capsule.UiName] # [Rule]: don't take rule section into account, macro is not allowed in this section # [OptionRom.DriverName] self._CurSection = [] Section = Section.strip()[1:-1].upper().replace(' ', '').strip(TAB_SPLIT) ItemList = Section.split(TAB_SPLIT) Item = ItemList[0] if Item == '' or Item == 'RULE': return if Item == TAB_COMMON_DEFINES.upper(): self._CurSection = [TAB_COMMON, TAB_COMMON, TAB_COMMON] elif len(ItemList) > 1: self._CurSection = [ItemList[0], ItemList[1], TAB_COMMON] elif len(ItemList) > 0: self._CurSection = [ItemList[0], 'DUMMY', TAB_COMMON] ## PreprocessFile() method # # Preprocess file contents, replace comments with spaces. # In the end, rewind the file buffer pointer to the beginning # BUGBUG: No !include statement processing contained in this procedure # !include statement should be expanded at the same FileLinesList[CurrentLineNumber - 1] # # @param self The object pointer # def PreprocessFile(self): self.Rewind() InComment = False DoubleSlashComment = False HashComment = False # HashComment in quoted string " " is ignored. InString = False while not self._EndOfFile(): if self._CurrentChar() == T_CHAR_DOUBLE_QUOTE and not InComment: InString = not InString # meet new line, then no longer in a comment for // and '#' if self._CurrentChar() == TAB_LINE_BREAK: self.CurrentLineNumber += 1 self.CurrentOffsetWithinLine = 0 if InComment and DoubleSlashComment: InComment = False DoubleSlashComment = False if InComment and HashComment: InComment = False HashComment = False # check for */ comment end elif InComment and not DoubleSlashComment and not HashComment and self._CurrentChar() == TAB_STAR and self._NextChar() == TAB_BACK_SLASH: self._SetCurrentCharValue(TAB_SPACE_SPLIT) self._GetOneChar() self._SetCurrentCharValue(TAB_SPACE_SPLIT) self._GetOneChar() InComment = False # set comments to spaces elif InComment: self._SetCurrentCharValue(TAB_SPACE_SPLIT) self._GetOneChar() # check for // comment elif self._CurrentChar() == TAB_BACK_SLASH and self._NextChar() == TAB_BACK_SLASH and not self._EndOfLine(): InComment = True DoubleSlashComment = True # check for '#' comment elif self._CurrentChar() == TAB_COMMENT_SPLIT and not self._EndOfLine() and not InString: InComment = True HashComment = True # check for /* comment start elif self._CurrentChar() == TAB_BACK_SLASH and self._NextChar() == TAB_STAR: self._SetCurrentCharValue(TAB_SPACE_SPLIT) self._GetOneChar() self._SetCurrentCharValue(TAB_SPACE_SPLIT) self._GetOneChar() InComment = True else: self._GetOneChar() # restore from ListOfList to ListOfString self.Profile.FileLinesList = ["".join(list) for list in self.Profile.FileLinesList] self.Rewind() ## PreprocessIncludeFile() method # # Preprocess file contents, replace !include statements with file contents. # In the end, rewind the file buffer pointer to the beginning # # @param self The object pointer # def PreprocessIncludeFile(self): # nested include support Processed = False MacroDict = {} while self._GetNextToken(): if self._Token == TAB_DEFINE: if not self._GetNextToken(): raise Warning.Expected("Macro name", self.FileName, self.CurrentLineNumber) Macro = self._Token if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) Value = self._GetExpression() MacroDict[Macro] = Value elif self._Token == TAB_INCLUDE: Processed = True IncludeLine = self.CurrentLineNumber IncludeOffset = self.CurrentOffsetWithinLine - len(TAB_INCLUDE) if not self._GetNextToken(): raise Warning.Expected("include file name", self.FileName, self.CurrentLineNumber) IncFileName = self._Token PreIndex = 0 StartPos = IncFileName.find('$(', PreIndex) EndPos = IncFileName.find(')', StartPos+2) while StartPos != -1 and EndPos != -1: Macro = IncFileName[StartPos+2: EndPos] MacroVal = self._GetMacroValue(Macro) if not MacroVal: if Macro in MacroDict: MacroVal = MacroDict[Macro] if MacroVal is not None: IncFileName = IncFileName.replace('$(' + Macro + ')', MacroVal, 1) if MacroVal.find('$(') != -1: PreIndex = StartPos else: PreIndex = StartPos + len(MacroVal) else: raise Warning("The Macro %s is not defined" %Macro, self.FileName, self.CurrentLineNumber) StartPos = IncFileName.find('$(', PreIndex) EndPos = IncFileName.find(')', StartPos+2) IncludedFile = NormPath(IncFileName) # # First search the include file under the same directory as FDF file # IncludedFile1 = PathClass(IncludedFile, os.path.dirname(self.FileName)) ErrorCode = IncludedFile1.Validate()[0] if ErrorCode != 0: # # Then search the include file under the same directory as DSC file # PlatformDir = '' if GenFdsGlobalVariable.ActivePlatform: PlatformDir = GenFdsGlobalVariable.ActivePlatform.Dir elif GlobalData.gActivePlatform: PlatformDir = GlobalData.gActivePlatform.MetaFile.Dir IncludedFile1 = PathClass(IncludedFile, PlatformDir) ErrorCode = IncludedFile1.Validate()[0] if ErrorCode != 0: # # Also search file under the WORKSPACE directory # IncludedFile1 = PathClass(IncludedFile, GlobalData.gWorkspace) ErrorCode = IncludedFile1.Validate()[0] if ErrorCode != 0: raise Warning("The include file does not exist under below directories: \n%s\n%s\n%s\n"%(os.path.dirname(self.FileName), PlatformDir, GlobalData.gWorkspace), self.FileName, self.CurrentLineNumber) if not IsValidInclude (IncludedFile1.Path, self.CurrentLineNumber): raise Warning("The include file {0} is causing a include loop.\n".format (IncludedFile1.Path), self.FileName, self.CurrentLineNumber) IncFileProfile = IncludeFileProfile(IncludedFile1.Path) CurrentLine = self.CurrentLineNumber CurrentOffset = self.CurrentOffsetWithinLine # list index of the insertion, note that line number is 'CurrentLine + 1' InsertAtLine = CurrentLine ParentProfile = GetParentAtLine (CurrentLine) if ParentProfile is not None: ParentProfile.IncludeFileList.insert(0, IncFileProfile) IncFileProfile.Level = ParentProfile.Level + 1 IncFileProfile.InsertStartLineNumber = InsertAtLine + 1 # deal with remaining portions after "!include filename", if exists. if self._GetNextToken(): if self.CurrentLineNumber == CurrentLine: RemainingLine = self._CurrentLine()[CurrentOffset:] self.Profile.FileLinesList.insert(self.CurrentLineNumber, RemainingLine) IncFileProfile.InsertAdjust += 1 self.CurrentLineNumber += 1 self.CurrentOffsetWithinLine = 0 for Line in IncFileProfile.FileLinesList: self.Profile.FileLinesList.insert(InsertAtLine, Line) self.CurrentLineNumber += 1 InsertAtLine += 1 # reversely sorted to better determine error in file AllIncludeFileList.insert(0, IncFileProfile) # comment out the processed include file statement TempList = list(self.Profile.FileLinesList[IncludeLine - 1]) TempList.insert(IncludeOffset, TAB_COMMENT_SPLIT) self.Profile.FileLinesList[IncludeLine - 1] = ''.join(TempList) if Processed: # Nested and back-to-back support self.Rewind(DestLine = IncFileProfile.InsertStartLineNumber - 1) Processed = False # Preprocess done. self.Rewind() @staticmethod def _GetIfListCurrentItemStat(IfList): if len(IfList) == 0: return True for Item in IfList: if Item[1] == False: return False return True ## PreprocessConditionalStatement() method # # Preprocess conditional statement. # In the end, rewind the file buffer pointer to the beginning # # @param self The object pointer # def PreprocessConditionalStatement(self): # IfList is a stack of if branches with elements of list [Pos, CondSatisfied, BranchDetermined] IfList = [] RegionLayoutLine = 0 ReplacedLine = -1 while self._GetNextToken(): # Determine section name and the location dependent macro if self._GetIfListCurrentItemStat(IfList): if self._Token.startswith(TAB_SECTION_START): Header = self._Token if not self._Token.endswith(TAB_SECTION_END): self._SkipToToken(TAB_SECTION_END) Header += self._SkippedChars if Header.find('$(') != -1: raise Warning("macro cannot be used in section header", self.FileName, self.CurrentLineNumber) self._SectionHeaderParser(Header) continue # Replace macros except in RULE section or out of section elif self._CurSection and ReplacedLine != self.CurrentLineNumber: ReplacedLine = self.CurrentLineNumber self._UndoToken() CurLine = self.Profile.FileLinesList[ReplacedLine - 1] PreIndex = 0 StartPos = CurLine.find('$(', PreIndex) EndPos = CurLine.find(')', StartPos+2) while StartPos != -1 and EndPos != -1 and self._Token not in {TAB_IF_DEF, TAB_IF_N_DEF, TAB_IF, TAB_ELSE_IF}: MacroName = CurLine[StartPos+2: EndPos] MacroValue = self._GetMacroValue(MacroName) if MacroValue is not None: CurLine = CurLine.replace('$(' + MacroName + ')', MacroValue, 1) if MacroValue.find('$(') != -1: PreIndex = StartPos else: PreIndex = StartPos + len(MacroValue) else: PreIndex = EndPos + 1 StartPos = CurLine.find('$(', PreIndex) EndPos = CurLine.find(')', StartPos+2) self.Profile.FileLinesList[ReplacedLine - 1] = CurLine continue if self._Token == TAB_DEFINE: if self._GetIfListCurrentItemStat(IfList): if not self._CurSection: raise Warning("macro cannot be defined in Rule section or out of section", self.FileName, self.CurrentLineNumber) DefineLine = self.CurrentLineNumber - 1 DefineOffset = self.CurrentOffsetWithinLine - len(TAB_DEFINE) if not self._GetNextToken(): raise Warning.Expected("Macro name", self.FileName, self.CurrentLineNumber) Macro = self._Token if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) Value = self._GetExpression() self._SetMacroValue(Macro, Value) self._WipeOffArea.append(((DefineLine, DefineOffset), (self.CurrentLineNumber - 1, self.CurrentOffsetWithinLine - 1))) elif self._Token == 'SET': if not self._GetIfListCurrentItemStat(IfList): continue SetLine = self.CurrentLineNumber - 1 SetOffset = self.CurrentOffsetWithinLine - len('SET') PcdPair = self._GetNextPcdSettings() PcdName = "%s.%s" % (PcdPair[1], PcdPair[0]) if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) Value = self._GetExpression() Value = self._EvaluateConditional(Value, self.CurrentLineNumber, 'eval', True) self._PcdDict[PcdName] = Value self.Profile.PcdDict[PcdPair] = Value self.SetPcdLocalation(PcdPair) FileLineTuple = GetRealFileLine(self.FileName, self.CurrentLineNumber) self.Profile.PcdFileLineDict[PcdPair] = FileLineTuple self._WipeOffArea.append(((SetLine, SetOffset), (self.CurrentLineNumber - 1, self.CurrentOffsetWithinLine - 1))) elif self._Token in {TAB_IF_DEF, TAB_IF_N_DEF, TAB_IF}: IfStartPos = (self.CurrentLineNumber - 1, self.CurrentOffsetWithinLine - len(self._Token)) IfList.append([IfStartPos, None, None]) CondLabel = self._Token Expression = self._GetExpression() if CondLabel == TAB_IF: ConditionSatisfied = self._EvaluateConditional(Expression, IfList[-1][0][0] + 1, 'eval') else: ConditionSatisfied = self._EvaluateConditional(Expression, IfList[-1][0][0] + 1, 'in') if CondLabel == TAB_IF_N_DEF: ConditionSatisfied = not ConditionSatisfied BranchDetermined = ConditionSatisfied IfList[-1] = [IfList[-1][0], ConditionSatisfied, BranchDetermined] if ConditionSatisfied: self._WipeOffArea.append((IfList[-1][0], (self.CurrentLineNumber - 1, self.CurrentOffsetWithinLine - 1))) elif self._Token in {TAB_ELSE_IF, TAB_ELSE}: ElseStartPos = (self.CurrentLineNumber - 1, self.CurrentOffsetWithinLine - len(self._Token)) if len(IfList) <= 0: raise Warning("Missing !if statement", self.FileName, self.CurrentLineNumber) if IfList[-1][1]: IfList[-1] = [ElseStartPos, False, True] self._WipeOffArea.append((ElseStartPos, (self.CurrentLineNumber - 1, self.CurrentOffsetWithinLine - 1))) else: self._WipeOffArea.append((IfList[-1][0], ElseStartPos)) IfList[-1] = [ElseStartPos, True, IfList[-1][2]] if self._Token == TAB_ELSE_IF: Expression = self._GetExpression() ConditionSatisfied = self._EvaluateConditional(Expression, IfList[-1][0][0] + 1, 'eval') IfList[-1] = [IfList[-1][0], ConditionSatisfied, IfList[-1][2]] if IfList[-1][1]: if IfList[-1][2]: IfList[-1][1] = False else: IfList[-1][2] = True self._WipeOffArea.append((IfList[-1][0], (self.CurrentLineNumber - 1, self.CurrentOffsetWithinLine - 1))) elif self._Token == '!endif': if len(IfList) <= 0: raise Warning("Missing !if statement", self.FileName, self.CurrentLineNumber) if IfList[-1][1]: self._WipeOffArea.append(((self.CurrentLineNumber - 1, self.CurrentOffsetWithinLine - len('!endif')), (self.CurrentLineNumber - 1, self.CurrentOffsetWithinLine - 1))) else: self._WipeOffArea.append((IfList[-1][0], (self.CurrentLineNumber - 1, self.CurrentOffsetWithinLine - 1))) IfList.pop() elif not IfList: # Don't use PCDs inside conditional directive if self.CurrentLineNumber <= RegionLayoutLine: # Don't try the same line twice continue SetPcd = ShortcutPcdPattern.match(self.Profile.FileLinesList[self.CurrentLineNumber - 1]) if SetPcd: self._PcdDict[SetPcd.group('name')] = SetPcd.group('value') RegionLayoutLine = self.CurrentLineNumber continue RegionSize = RegionSizePattern.match(self.Profile.FileLinesList[self.CurrentLineNumber - 1]) if not RegionSize: RegionLayoutLine = self.CurrentLineNumber continue RegionSizeGuid = RegionSizeGuidPattern.match(self.Profile.FileLinesList[self.CurrentLineNumber]) if not RegionSizeGuid: RegionLayoutLine = self.CurrentLineNumber + 1 continue self._PcdDict[RegionSizeGuid.group('base')] = RegionSize.group('base') self._PcdDict[RegionSizeGuid.group('size')] = RegionSize.group('size') RegionLayoutLine = self.CurrentLineNumber + 1 if IfList: raise Warning("Missing !endif", self.FileName, self.CurrentLineNumber) self.Rewind() def _CollectMacroPcd(self): MacroDict = {} # PCD macro MacroDict.update(GlobalData.gPlatformPcds) MacroDict.update(self._PcdDict) # Lowest priority MacroDict.update(GlobalData.gPlatformDefines) if self._CurSection: # Defines macro ScopeMacro = self._MacroDict[TAB_COMMON, TAB_COMMON, TAB_COMMON] if ScopeMacro: MacroDict.update(ScopeMacro) # Section macro ScopeMacro = self._MacroDict[ self._CurSection[0], self._CurSection[1], self._CurSection[2] ] if ScopeMacro: MacroDict.update(ScopeMacro) MacroDict.update(GlobalData.gGlobalDefines) MacroDict.update(GlobalData.gCommandLineDefines) for Item in GlobalData.BuildOptionPcd: if isinstance(Item, tuple): continue PcdName, TmpValue = Item.split(TAB_EQUAL_SPLIT) TmpValue = BuildOptionValue(TmpValue, {}) MacroDict[PcdName.strip()] = TmpValue # Highest priority return MacroDict def _EvaluateConditional(self, Expression, Line, Op = None, Value = None): MacroPcdDict = self._CollectMacroPcd() if Op == 'eval': try: if Value: return ValueExpression(Expression, MacroPcdDict)(True) else: return ValueExpression(Expression, MacroPcdDict)() except WrnExpression as Excpt: # # Catch expression evaluation warning here. We need to report # the precise number of line and return the evaluation result # EdkLogger.warn('Parser', "Suspicious expression: %s" % str(Excpt), File=self.FileName, ExtraData=self._CurrentLine(), Line=Line) return Excpt.result except Exception as Excpt: if hasattr(Excpt, 'Pcd'): if Excpt.Pcd in GlobalData.gPlatformOtherPcds: Info = GlobalData.gPlatformOtherPcds[Excpt.Pcd] raise Warning("Cannot use this PCD (%s) in an expression as" " it must be defined in a [PcdsFixedAtBuild] or [PcdsFeatureFlag] section" " of the DSC file (%s), and it is currently defined in this section:" " %s, line #: %d." % (Excpt.Pcd, GlobalData.gPlatformOtherPcds['DSCFILE'], Info[0], Info[1]), self.FileName, Line) else: raise Warning("PCD (%s) is not defined in DSC file (%s)" % (Excpt.Pcd, GlobalData.gPlatformOtherPcds['DSCFILE']), self.FileName, Line) else: raise Warning(str(Excpt), self.FileName, Line) else: if Expression.startswith('$(') and Expression[-1] == ')': Expression = Expression[2:-1] return Expression in MacroPcdDict ## _IsToken() method # # Check whether input string is found from current char position along # If found, the string value is put into self._Token # # @param self The object pointer # @param String The string to search # @param IgnoreCase Indicate case sensitive/non-sensitive search, default is case sensitive # @retval True Successfully find string, file buffer pointer moved forward # @retval False Not able to find string, file buffer pointer not changed # def _IsToken(self, String, IgnoreCase = False): self._SkipWhiteSpace() # Only consider the same line, no multi-line token allowed StartPos = self.CurrentOffsetWithinLine index = -1 if IgnoreCase: index = self._CurrentLine()[self.CurrentOffsetWithinLine: ].upper().find(String.upper()) else: index = self._CurrentLine()[self.CurrentOffsetWithinLine: ].find(String) if index == 0: self.CurrentOffsetWithinLine += len(String) self._Token = self._CurrentLine()[StartPos: self.CurrentOffsetWithinLine] return True return False ## _IsKeyword() method # # Check whether input keyword is found from current char position along, whole word only! # If found, the string value is put into self._Token # # @param self The object pointer # @param Keyword The string to search # @param IgnoreCase Indicate case sensitive/non-sensitive search, default is case sensitive # @retval True Successfully find string, file buffer pointer moved forward # @retval False Not able to find string, file buffer pointer not changed # def _IsKeyword(self, KeyWord, IgnoreCase = False): self._SkipWhiteSpace() # Only consider the same line, no multi-line token allowed StartPos = self.CurrentOffsetWithinLine index = -1 if IgnoreCase: index = self._CurrentLine()[self.CurrentOffsetWithinLine: ].upper().find(KeyWord.upper()) else: index = self._CurrentLine()[self.CurrentOffsetWithinLine: ].find(KeyWord) if index == 0: followingChar = self._CurrentLine()[self.CurrentOffsetWithinLine + len(KeyWord)] if not str(followingChar).isspace() and followingChar not in SEPARATORS: return False self.CurrentOffsetWithinLine += len(KeyWord) self._Token = self._CurrentLine()[StartPos: self.CurrentOffsetWithinLine] return True return False def _GetExpression(self): Line = self.Profile.FileLinesList[self.CurrentLineNumber - 1] Index = len(Line) - 1 while Line[Index] in CR_LB_SET: Index -= 1 ExpressionString = self.Profile.FileLinesList[self.CurrentLineNumber - 1][self.CurrentOffsetWithinLine:Index+1] self.CurrentOffsetWithinLine += len(ExpressionString) ExpressionString = ExpressionString.strip() return ExpressionString ## _GetNextWord() method # # Get next C name from file lines # If found, the string value is put into self._Token # # @param self The object pointer # @retval True Successfully find a C name string, file buffer pointer moved forward # @retval False Not able to find a C name string, file buffer pointer not changed # def _GetNextWord(self): self._SkipWhiteSpace() if self._EndOfFile(): return False TempChar = self._CurrentChar() StartPos = self.CurrentOffsetWithinLine if (TempChar >= 'a' and TempChar <= 'z') or (TempChar >= 'A' and TempChar <= 'Z') or TempChar == '_': self._GetOneChar() while not self._EndOfLine(): TempChar = self._CurrentChar() if (TempChar >= 'a' and TempChar <= 'z') or (TempChar >= 'A' and TempChar <= 'Z') \ or (TempChar >= '0' and TempChar <= '9') or TempChar == '_' or TempChar == '-': self._GetOneChar() else: break self._Token = self._CurrentLine()[StartPos: self.CurrentOffsetWithinLine] return True return False def _GetNextPcdWord(self): self._SkipWhiteSpace() if self._EndOfFile(): return False TempChar = self._CurrentChar() StartPos = self.CurrentOffsetWithinLine if (TempChar >= 'a' and TempChar <= 'z') or (TempChar >= 'A' and TempChar <= 'Z') or TempChar == '_' or TempChar == TAB_SECTION_START or TempChar == TAB_SECTION_END: self._GetOneChar() while not self._EndOfLine(): TempChar = self._CurrentChar() if (TempChar >= 'a' and TempChar <= 'z') or (TempChar >= 'A' and TempChar <= 'Z') \ or (TempChar >= '0' and TempChar <= '9') or TempChar == '_' or TempChar == '-' or TempChar == TAB_SECTION_START or TempChar == TAB_SECTION_END: self._GetOneChar() else: break self._Token = self._CurrentLine()[StartPos: self.CurrentOffsetWithinLine] return True return False ## _GetNextToken() method # # Get next token unit before a separator # If found, the string value is put into self._Token # # @param self The object pointer # @retval True Successfully find a token unit, file buffer pointer moved forward # @retval False Not able to find a token unit, file buffer pointer not changed # def _GetNextToken(self): # Skip leading spaces, if exist. self._SkipWhiteSpace() if self._EndOfFile(): return False # Record the token start position, the position of the first non-space char. StartPos = self.CurrentOffsetWithinLine StartLine = self.CurrentLineNumber while StartLine == self.CurrentLineNumber: TempChar = self._CurrentChar() # Try to find the end char that is not a space and not in separator tuple. # That is, when we got a space or any char in the tuple, we got the end of token. if not str(TempChar).isspace() and TempChar not in SEPARATORS: self._GetOneChar() # if we happen to meet a separator as the first char, we must proceed to get it. # That is, we get a token that is a separator char. normally it is the boundary of other tokens. elif StartPos == self.CurrentOffsetWithinLine and TempChar in SEPARATORS: self._GetOneChar() break else: break # else: # return False EndPos = self.CurrentOffsetWithinLine if self.CurrentLineNumber != StartLine: EndPos = len(self.Profile.FileLinesList[StartLine-1]) self._Token = self.Profile.FileLinesList[StartLine-1][StartPos: EndPos] if self._Token.lower() in {TAB_IF, TAB_END_IF, TAB_ELSE_IF, TAB_ELSE, TAB_IF_DEF, TAB_IF_N_DEF, TAB_ERROR, TAB_INCLUDE}: self._Token = self._Token.lower() if StartPos != self.CurrentOffsetWithinLine: return True else: return False ## _GetNextGuid() method # # Get next token unit before a separator # If found, the GUID string is put into self._Token # # @param self The object pointer # @retval True Successfully find a registry format GUID, file buffer pointer moved forward # @retval False Not able to find a registry format GUID, file buffer pointer not changed # def _GetNextGuid(self): if not self._GetNextToken(): return False if GlobalData.gGuidPattern.match(self._Token) is not None: return True elif self._Token in GlobalData.gGuidDict: return True else: self._UndoToken() return False @staticmethod def _Verify(Name, Value, Scope): # value verification only applies to numeric values. if Scope not in TAB_PCD_NUMERIC_TYPES: return ValueNumber = 0 try: ValueNumber = int(Value, 0) except: EdkLogger.error("FdfParser", FORMAT_INVALID, "The value is not valid dec or hex number for %s." % Name) if ValueNumber < 0: EdkLogger.error("FdfParser", FORMAT_INVALID, "The value can't be set to negative value for %s." % Name) if ValueNumber > MAX_VAL_TYPE[Scope]: EdkLogger.error("FdfParser", FORMAT_INVALID, "Too large value for %s." % Name) return True ## _UndoToken() method # # Go back one token unit in file buffer # # @param self The object pointer # def _UndoToken(self): self._UndoOneChar() while self._CurrentChar().isspace(): if not self._UndoOneChar(): self._GetOneChar() return StartPos = self.CurrentOffsetWithinLine CurrentLine = self.CurrentLineNumber while CurrentLine == self.CurrentLineNumber: TempChar = self._CurrentChar() # Try to find the end char that is not a space and not in separator tuple. # That is, when we got a space or any char in the tuple, we got the end of token. if not str(TempChar).isspace() and not TempChar in SEPARATORS: if not self._UndoOneChar(): return # if we happen to meet a separator as the first char, we must proceed to get it. # That is, we get a token that is a separator char. normally it is the boundary of other tokens. elif StartPos == self.CurrentOffsetWithinLine and TempChar in SEPARATORS: return else: break self._GetOneChar() ## _GetNextHexNumber() method # # Get next HEX data before a separator # If found, the HEX data is put into self._Token # # @param self The object pointer # @retval True Successfully find a HEX data, file buffer pointer moved forward # @retval False Not able to find a HEX data, file buffer pointer not changed # def _GetNextHexNumber(self): if not self._GetNextToken(): return False if GlobalData.gHexPatternAll.match(self._Token): return True else: self._UndoToken() return False ## _GetNextDecimalNumber() method # # Get next decimal data before a separator # If found, the decimal data is put into self._Token # # @param self The object pointer # @retval True Successfully find a decimal data, file buffer pointer moved forward # @retval False Not able to find a decimal data, file buffer pointer not changed # def _GetNextDecimalNumber(self): if not self._GetNextToken(): return False if self._Token.isdigit(): return True else: self._UndoToken() return False def _GetNextPcdSettings(self): if not self._GetNextWord(): raise Warning.Expected("<PcdTokenSpaceCName>", self.FileName, self.CurrentLineNumber) pcdTokenSpaceCName = self._Token if not self._IsToken(TAB_SPLIT): raise Warning.Expected(".", self.FileName, self.CurrentLineNumber) if not self._GetNextWord(): raise Warning.Expected("<PcdCName>", self.FileName, self.CurrentLineNumber) pcdCName = self._Token Fields = [] while self._IsToken(TAB_SPLIT): if not self._GetNextPcdWord(): raise Warning.Expected("Pcd Fields", self.FileName, self.CurrentLineNumber) Fields.append(self._Token) return (pcdCName, pcdTokenSpaceCName,TAB_SPLIT.join(Fields)) ## _GetStringData() method # # Get string contents quoted in "" # If found, the decimal data is put into self._Token # # @param self The object pointer # @retval True Successfully find a string data, file buffer pointer moved forward # @retval False Not able to find a string data, file buffer pointer not changed # def _GetStringData(self): QuoteToUse = None if self._Token.startswith(T_CHAR_DOUBLE_QUOTE) or self._Token.startswith("L\""): QuoteToUse = T_CHAR_DOUBLE_QUOTE elif self._Token.startswith(T_CHAR_SINGLE_QUOTE) or self._Token.startswith("L\'"): QuoteToUse = T_CHAR_SINGLE_QUOTE else: return False self._UndoToken() self._SkipToToken(QuoteToUse) currentLineNumber = self.CurrentLineNumber if not self._SkipToToken(QuoteToUse): raise Warning(QuoteToUse, self.FileName, self.CurrentLineNumber) if currentLineNumber != self.CurrentLineNumber: raise Warning(QuoteToUse, self.FileName, self.CurrentLineNumber) self._Token = self._SkippedChars.rstrip(QuoteToUse) return True ## _SkipToToken() method # # Search forward in file buffer for the string # The skipped chars are put into self._SkippedChars # # @param self The object pointer # @param String The string to search # @param IgnoreCase Indicate case sensitive/non-sensitive search, default is case sensitive # @retval True Successfully find the string, file buffer pointer moved forward # @retval False Not able to find the string, file buffer pointer not changed # def _SkipToToken(self, String, IgnoreCase = False): StartPos = self.GetFileBufferPos() self._SkippedChars = "" while not self._EndOfFile(): index = -1 if IgnoreCase: index = self._CurrentLine()[self.CurrentOffsetWithinLine: ].upper().find(String.upper()) else: index = self._CurrentLine()[self.CurrentOffsetWithinLine: ].find(String) if index == 0: self.CurrentOffsetWithinLine += len(String) self._SkippedChars += String return True self._SkippedChars += str(self._CurrentChar()) self._GetOneChar() self.SetFileBufferPos(StartPos) self._SkippedChars = "" return False ## GetFileBufferPos() method # # Return the tuple of current line and offset within the line # # @param self The object pointer # @retval Tuple Line number and offset pair # def GetFileBufferPos(self): return (self.CurrentLineNumber, self.CurrentOffsetWithinLine) ## SetFileBufferPos() method # # Restore the file buffer position # # @param self The object pointer # @param Pos The new file buffer position # def SetFileBufferPos(self, Pos): (self.CurrentLineNumber, self.CurrentOffsetWithinLine) = Pos ## Preprocess() method # # Preprocess comment, conditional directive, include directive, replace macro. # Exception will be raised if syntax error found # # @param self The object pointer # def Preprocess(self): self._StringToList() self.PreprocessFile() self.PreprocessIncludeFile() self._StringToList() self.PreprocessFile() self.PreprocessConditionalStatement() self._StringToList() for Pos in self._WipeOffArea: self._ReplaceFragment(Pos[0], Pos[1]) self.Profile.FileLinesList = ["".join(list) for list in self.Profile.FileLinesList] while self._GetDefines(): pass ## ParseFile() method # # Parse the file profile buffer to extract fd, fv ... information # Exception will be raised if syntax error found # # @param self The object pointer # def ParseFile(self): try: self.Preprocess() self._GetError() # # Keep processing sections of the FDF until no new sections or a syntax error is found # while self._GetFd() or self._GetFv() or self._GetFmp() or self._GetCapsule() or self._GetRule() or self._GetOptionRom(): pass except Warning as X: self._UndoToken() #'\n\tGot Token: \"%s\" from File %s\n' % (self._Token, FileLineTuple[0]) + \ # At this point, the closest parent would be the included file itself Profile = GetParentAtLine(X.OriginalLineNumber) if Profile is not None: X.Message += ' near line %d, column %d: %s' \ % (X.LineNumber, 0, Profile.FileLinesList[X.LineNumber-1]) else: FileLineTuple = GetRealFileLine(self.FileName, self.CurrentLineNumber) X.Message += ' near line %d, column %d: %s' \ % (FileLineTuple[1], self.CurrentOffsetWithinLine + 1, self.Profile.FileLinesList[self.CurrentLineNumber - 1][self.CurrentOffsetWithinLine:].rstrip(TAB_LINE_BREAK).rstrip(T_CHAR_CR)) raise ## SectionParser() method # # Parse the file section info # Exception will be raised if syntax error found # # @param self The object pointer # @param section The section string def SectionParser(self, section): S = section.upper() if not S.startswith("[DEFINES") and not S.startswith("[FD.") and not S.startswith("[FV.") and not S.startswith("[CAPSULE.") \ and not S.startswith("[RULE.") and not S.startswith("[OPTIONROM.") and not S.startswith('[FMPPAYLOAD.'): raise Warning("Unknown section or section appear sequence error (The correct sequence should be [DEFINES], [FD.], [FV.], [Capsule.], [Rule.], [OptionRom.], [FMPPAYLOAD.])", self.FileName, self.CurrentLineNumber) ## _GetDefines() method # # Get Defines section contents and store its data into AllMacrosList # # @param self The object pointer # @retval True Successfully find a Defines # @retval False Not able to find a Defines # def _GetDefines(self): if not self._GetNextToken(): return False S = self._Token.upper() if S.startswith(TAB_SECTION_START) and not S.startswith("[DEFINES"): self.SectionParser(S) self._UndoToken() return False self._UndoToken() if not self._IsToken("[DEFINES", True): FileLineTuple = GetRealFileLine(self.FileName, self.CurrentLineNumber) #print 'Parsing String: %s in File %s, At line: %d, Offset Within Line: %d' \ # % (self.Profile.FileLinesList[self.CurrentLineNumber - 1][self.CurrentOffsetWithinLine:], FileLineTuple[0], FileLineTuple[1], self.CurrentOffsetWithinLine) raise Warning.Expected("[DEFINES", self.FileName, self.CurrentLineNumber) if not self._IsToken(TAB_SECTION_END): raise Warning.ExpectedBracketClose(self.FileName, self.CurrentLineNumber) while self._GetNextWord(): # handle the SET statement if self._Token == 'SET': self._UndoToken() self._GetSetStatement(None) continue Macro = self._Token if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken() or self._Token.startswith(TAB_SECTION_START): raise Warning.Expected("MACRO value", self.FileName, self.CurrentLineNumber) Value = self._Token return False ##_GetError() method def _GetError(self): #save the Current information CurrentLine = self.CurrentLineNumber CurrentOffset = self.CurrentOffsetWithinLine while self._GetNextToken(): if self._Token == TAB_ERROR: EdkLogger.error('FdfParser', ERROR_STATEMENT, self._CurrentLine().replace(TAB_ERROR, '', 1), File=self.FileName, Line=self.CurrentLineNumber) self.CurrentLineNumber = CurrentLine self.CurrentOffsetWithinLine = CurrentOffset ## _GetFd() method # # Get FD section contents and store its data into FD dictionary of self.Profile # # @param self The object pointer # @retval True Successfully find a FD # @retval False Not able to find a FD # def _GetFd(self): if not self._GetNextToken(): return False S = self._Token.upper() if S.startswith(TAB_SECTION_START) and not S.startswith("[FD."): if not S.startswith("[FV.") and not S.startswith('[FMPPAYLOAD.') and not S.startswith("[CAPSULE.") \ and not S.startswith("[RULE.") and not S.startswith("[OPTIONROM."): raise Warning("Unknown section", self.FileName, self.CurrentLineNumber) self._UndoToken() return False self._UndoToken() if not self._IsToken("[FD.", True): FileLineTuple = GetRealFileLine(self.FileName, self.CurrentLineNumber) #print 'Parsing String: %s in File %s, At line: %d, Offset Within Line: %d' \ # % (self.Profile.FileLinesList[self.CurrentLineNumber - 1][self.CurrentOffsetWithinLine:], FileLineTuple[0], FileLineTuple[1], self.CurrentOffsetWithinLine) raise Warning.Expected("[FD.]", self.FileName, self.CurrentLineNumber) FdName = self._GetUiName() if FdName == "": if len (self.Profile.FdDict) == 0: FdName = GenFdsGlobalVariable.PlatformName if FdName == "" and GlobalData.gActivePlatform: FdName = GlobalData.gActivePlatform.PlatformName self.Profile.FdNameNotSet = True else: raise Warning.Expected("FdName in [FD.] section", self.FileName, self.CurrentLineNumber) self.CurrentFdName = FdName.upper() if self.CurrentFdName in self.Profile.FdDict: raise Warning("Unexpected the same FD name", self.FileName, self.CurrentLineNumber) if not self._IsToken(TAB_SECTION_END): raise Warning.ExpectedBracketClose(self.FileName, self.CurrentLineNumber) FdObj = FD() FdObj.FdUiName = self.CurrentFdName self.Profile.FdDict[self.CurrentFdName] = FdObj if len (self.Profile.FdDict) > 1 and self.Profile.FdNameNotSet: raise Warning.Expected("all FDs have their name", self.FileName, self.CurrentLineNumber) Status = self._GetCreateFile(FdObj) if not Status: raise Warning("FD name error", self.FileName, self.CurrentLineNumber) while self._GetTokenStatements(FdObj): pass for Attr in ("BaseAddress", "Size", "ErasePolarity"): if getattr(FdObj, Attr) is None: self._GetNextToken() raise Warning("Keyword %s missing" % Attr, self.FileName, self.CurrentLineNumber) if not FdObj.BlockSizeList: FdObj.BlockSizeList.append((1, FdObj.Size, None)) self._GetDefineStatements(FdObj) self._GetSetStatements(FdObj) if not self._GetRegionLayout(FdObj): raise Warning.Expected("region layout", self.FileName, self.CurrentLineNumber) while self._GetRegionLayout(FdObj): pass return True ## _GetUiName() method # # Return the UI name of a section # # @param self The object pointer # @retval FdName UI name # def _GetUiName(self): Name = "" if self._GetNextWord(): Name = self._Token return Name ## _GetCreateFile() method # # Return the output file name of object # # @param self The object pointer # @param Obj object whose data will be stored in file # @retval FdName UI name # def _GetCreateFile(self, Obj): if self._IsKeyword("CREATE_FILE"): if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("file name", self.FileName, self.CurrentLineNumber) FileName = self._Token Obj.CreateFileName = FileName return True def SetPcdLocalation(self,pcdpair): self.Profile.PcdLocalDict[pcdpair] = (self.Profile.FileName,self.CurrentLineNumber) ## _GetTokenStatements() method # # Get token statements # # @param self The object pointer # @param Obj for whom token statement is got # def _GetTokenStatements(self, Obj): if self._IsKeyword("BaseAddress"): if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextHexNumber(): raise Warning.Expected("Hex base address", self.FileName, self.CurrentLineNumber) Obj.BaseAddress = self._Token if self._IsToken(TAB_VALUE_SPLIT): pcdPair = self._GetNextPcdSettings() Obj.BaseAddressPcd = pcdPair self.Profile.PcdDict[pcdPair] = Obj.BaseAddress self.SetPcdLocalation(pcdPair) FileLineTuple = GetRealFileLine(self.FileName, self.CurrentLineNumber) self.Profile.PcdFileLineDict[pcdPair] = FileLineTuple return True if self._IsKeyword("Size"): if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextHexNumber(): raise Warning.Expected("Hex size", self.FileName, self.CurrentLineNumber) Size = self._Token if self._IsToken(TAB_VALUE_SPLIT): pcdPair = self._GetNextPcdSettings() Obj.SizePcd = pcdPair self.Profile.PcdDict[pcdPair] = Size self.SetPcdLocalation(pcdPair) FileLineTuple = GetRealFileLine(self.FileName, self.CurrentLineNumber) self.Profile.PcdFileLineDict[pcdPair] = FileLineTuple Obj.Size = int(Size, 0) return True if self._IsKeyword("ErasePolarity"): if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("Erase Polarity", self.FileName, self.CurrentLineNumber) if not self._Token in {"1", "0"}: raise Warning.Expected("1 or 0 Erase Polarity", self.FileName, self.CurrentLineNumber) Obj.ErasePolarity = self._Token return True return self._GetBlockStatements(Obj) ## _GetAddressStatements() method # # Get address statements # # @param self The object pointer # @param Obj for whom address statement is got # @retval True Successfully find # @retval False Not able to find # def _GetAddressStatements(self, Obj): if self._IsKeyword("BsBaseAddress"): if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextDecimalNumber() and not self._GetNextHexNumber(): raise Warning.Expected("address", self.FileName, self.CurrentLineNumber) BsAddress = int(self._Token, 0) Obj.BsBaseAddress = BsAddress if self._IsKeyword("RtBaseAddress"): if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextDecimalNumber() and not self._GetNextHexNumber(): raise Warning.Expected("address", self.FileName, self.CurrentLineNumber) RtAddress = int(self._Token, 0) Obj.RtBaseAddress = RtAddress ## _GetBlockStatements() method # # Get block statements # # @param self The object pointer # @param Obj for whom block statement is got # def _GetBlockStatements(self, Obj): IsBlock = False while self._GetBlockStatement(Obj): IsBlock = True Item = Obj.BlockSizeList[-1] if Item[0] is None or Item[1] is None: raise Warning.Expected("block statement", self.FileName, self.CurrentLineNumber) return IsBlock ## _GetBlockStatement() method # # Get block statement # # @param self The object pointer # @param Obj for whom block statement is got # @retval True Successfully find # @retval False Not able to find # def _GetBlockStatement(self, Obj): if not self._IsKeyword("BlockSize"): return False if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextHexNumber() and not self._GetNextDecimalNumber(): raise Warning.Expected("Hex or Integer block size", self.FileName, self.CurrentLineNumber) BlockSize = self._Token BlockSizePcd = None if self._IsToken(TAB_VALUE_SPLIT): PcdPair = self._GetNextPcdSettings() BlockSizePcd = PcdPair self.Profile.PcdDict[PcdPair] = BlockSize self.SetPcdLocalation(PcdPair) FileLineTuple = GetRealFileLine(self.FileName, self.CurrentLineNumber) self.Profile.PcdFileLineDict[PcdPair] = FileLineTuple BlockSize = int(BlockSize, 0) BlockNumber = None if self._IsKeyword("NumBlocks"): if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextDecimalNumber() and not self._GetNextHexNumber(): raise Warning.Expected("block numbers", self.FileName, self.CurrentLineNumber) BlockNumber = int(self._Token, 0) Obj.BlockSizeList.append((BlockSize, BlockNumber, BlockSizePcd)) return True ## _GetDefineStatements() method # # Get define statements # # @param self The object pointer # @param Obj for whom define statement is got # @retval True Successfully find # @retval False Not able to find # def _GetDefineStatements(self, Obj): while self._GetDefineStatement(Obj): pass ## _GetDefineStatement() method # # Get define statement # # @param self The object pointer # @param Obj for whom define statement is got # @retval True Successfully find # @retval False Not able to find # def _GetDefineStatement(self, Obj): if self._IsKeyword(TAB_DEFINE): self._GetNextToken() Macro = self._Token if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("value", self.FileName, self.CurrentLineNumber) Value = self._Token Macro = '$(' + Macro + ')' Obj.DefineVarDict[Macro] = Value return True return False ## _GetSetStatements() method # # Get set statements # # @param self The object pointer # @param Obj for whom set statement is got # @retval True Successfully find # @retval False Not able to find # def _GetSetStatements(self, Obj): while self._GetSetStatement(Obj): pass ## _GetSetStatement() method # # Get set statement # # @param self The object pointer # @param Obj for whom set statement is got # @retval True Successfully find # @retval False Not able to find # def _GetSetStatement(self, Obj): if self._IsKeyword("SET"): PcdPair = self._GetNextPcdSettings() if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) Value = self._GetExpression() Value = self._EvaluateConditional(Value, self.CurrentLineNumber, 'eval', True) if Obj: Obj.SetVarDict[PcdPair] = Value self.Profile.PcdDict[PcdPair] = Value self.SetPcdLocalation(PcdPair) FileLineTuple = GetRealFileLine(self.FileName, self.CurrentLineNumber) self.Profile.PcdFileLineDict[PcdPair] = FileLineTuple return True return False ## _CalcRegionExpr(self) # # Calculate expression for offset or size of a region # # @return: None if invalid expression # Calculated number if successfully # def _CalcRegionExpr(self): StartPos = self.GetFileBufferPos() Expr = '' PairCount = 0 while not self._EndOfFile(): CurCh = self._CurrentChar() if CurCh == '(': PairCount += 1 elif CurCh == ')': PairCount -= 1 if CurCh in '|\r\n' and PairCount == 0: break Expr += CurCh self._GetOneChar() try: return int( ValueExpression(Expr, self._CollectMacroPcd() )(True), 0) except Exception: self.SetFileBufferPos(StartPos) return None ## _GetRegionLayout() method # # Get region layout for FD # # @param self The object pointer # @param theFd for whom region is got # @retval True Successfully find # @retval False Not able to find # def _GetRegionLayout(self, theFd): Offset = self._CalcRegionExpr() if Offset is None: return False RegionObj = Region() RegionObj.Offset = Offset theFd.RegionList.append(RegionObj) if not self._IsToken(TAB_VALUE_SPLIT): raise Warning.Expected("'|'", self.FileName, self.CurrentLineNumber) Size = self._CalcRegionExpr() if Size is None: raise Warning.Expected("Region Size", self.FileName, self.CurrentLineNumber) RegionObj.Size = Size if not self._GetNextWord(): return True if not self._Token in {"SET", BINARY_FILE_TYPE_FV, "FILE", "DATA", "CAPSULE", "INF"}: # # If next token is a word which is not a valid FV type, it might be part of [PcdOffset[|PcdSize]] # Or it might be next region's offset described by an expression which starts with a PCD. # PcdOffset[|PcdSize] or OffsetPcdExpression|Size # self._UndoToken() IsRegionPcd = (RegionSizeGuidPattern.match(self._CurrentLine()[self.CurrentOffsetWithinLine:]) or RegionOffsetPcdPattern.match(self._CurrentLine()[self.CurrentOffsetWithinLine:])) if IsRegionPcd: RegionObj.PcdOffset = self._GetNextPcdSettings() self.Profile.PcdDict[RegionObj.PcdOffset] = "0x%08X" % (RegionObj.Offset + int(theFd.BaseAddress, 0)) self.SetPcdLocalation(RegionObj.PcdOffset) self._PcdDict['%s.%s' % (RegionObj.PcdOffset[1], RegionObj.PcdOffset[0])] = "0x%x" % RegionObj.Offset FileLineTuple = GetRealFileLine(self.FileName, self.CurrentLineNumber) self.Profile.PcdFileLineDict[RegionObj.PcdOffset] = FileLineTuple if self._IsToken(TAB_VALUE_SPLIT): RegionObj.PcdSize = self._GetNextPcdSettings() self.Profile.PcdDict[RegionObj.PcdSize] = "0x%08X" % RegionObj.Size self.SetPcdLocalation(RegionObj.PcdSize) self._PcdDict['%s.%s' % (RegionObj.PcdSize[1], RegionObj.PcdSize[0])] = "0x%x" % RegionObj.Size FileLineTuple = GetRealFileLine(self.FileName, self.CurrentLineNumber) self.Profile.PcdFileLineDict[RegionObj.PcdSize] = FileLineTuple if not self._GetNextWord(): return True if self._Token == "SET": self._UndoToken() self._GetSetStatements(RegionObj) if not self._GetNextWord(): return True elif self._Token == BINARY_FILE_TYPE_FV: self._UndoToken() self._GetRegionFvType(RegionObj) elif self._Token == "CAPSULE": self._UndoToken() self._GetRegionCapType(RegionObj) elif self._Token == "FILE": self._UndoToken() self._GetRegionFileType(RegionObj) elif self._Token == "INF": self._UndoToken() RegionObj.RegionType = "INF" while self._IsKeyword("INF"): self._UndoToken() ffsInf = self._ParseInfStatement() if not ffsInf: break RegionObj.RegionDataList.append(ffsInf) elif self._Token == "DATA": self._UndoToken() self._GetRegionDataType(RegionObj) else: self._UndoToken() if self._GetRegionLayout(theFd): return True raise Warning("A valid region type was not found. " "Valid types are [SET, FV, CAPSULE, FILE, DATA, INF]. This error occurred", self.FileName, self.CurrentLineNumber) return True ## _GetRegionFvType() method # # Get region fv data for region # # @param self The object pointer # @param RegionObj for whom region data is got # def _GetRegionFvType(self, RegionObj): if not self._IsKeyword(BINARY_FILE_TYPE_FV): raise Warning.Expected("'FV'", self.FileName, self.CurrentLineNumber) if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("FV name", self.FileName, self.CurrentLineNumber) RegionObj.RegionType = BINARY_FILE_TYPE_FV RegionObj.RegionDataList.append((self._Token).upper()) while self._IsKeyword(BINARY_FILE_TYPE_FV): if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("FV name", self.FileName, self.CurrentLineNumber) RegionObj.RegionDataList.append((self._Token).upper()) ## _GetRegionCapType() method # # Get region capsule data for region # # @param self The object pointer # @param RegionObj for whom region data is got # def _GetRegionCapType(self, RegionObj): if not self._IsKeyword("CAPSULE"): raise Warning.Expected("'CAPSULE'", self.FileName, self.CurrentLineNumber) if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("CAPSULE name", self.FileName, self.CurrentLineNumber) RegionObj.RegionType = "CAPSULE" RegionObj.RegionDataList.append(self._Token) while self._IsKeyword("CAPSULE"): if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("CAPSULE name", self.FileName, self.CurrentLineNumber) RegionObj.RegionDataList.append(self._Token) ## _GetRegionFileType() method # # Get region file data for region # # @param self The object pointer # @param RegionObj for whom region data is got # def _GetRegionFileType(self, RegionObj): if not self._IsKeyword("FILE"): raise Warning.Expected("'FILE'", self.FileName, self.CurrentLineNumber) if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("File name", self.FileName, self.CurrentLineNumber) RegionObj.RegionType = "FILE" RegionObj.RegionDataList.append(self._Token) while self._IsKeyword("FILE"): if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("FILE name", self.FileName, self.CurrentLineNumber) RegionObj.RegionDataList.append(self._Token) ## _GetRegionDataType() method # # Get region array data for region # # @param self The object pointer # @param RegionObj for whom region data is got # def _GetRegionDataType(self, RegionObj): if not self._IsKeyword("DATA"): raise Warning.Expected("Region Data type", self.FileName, self.CurrentLineNumber) if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._IsToken("{"): raise Warning.ExpectedCurlyOpen(self.FileName, self.CurrentLineNumber) if not self._GetNextHexNumber(): raise Warning.Expected("Hex byte", self.FileName, self.CurrentLineNumber) if len(self._Token) > 18: raise Warning("Hex string can't be converted to a valid UINT64 value", self.FileName, self.CurrentLineNumber) # convert hex string value to byte hex string array AllString = self._Token AllStrLen = len (AllString) DataString = "" while AllStrLen > 4: DataString = DataString + "0x" + AllString[AllStrLen - 2: AllStrLen] + TAB_COMMA_SPLIT AllStrLen = AllStrLen - 2 DataString = DataString + AllString[:AllStrLen] + TAB_COMMA_SPLIT # byte value array if len (self._Token) <= 4: while self._IsToken(TAB_COMMA_SPLIT): if not self._GetNextHexNumber(): raise Warning("Invalid Hex number", self.FileName, self.CurrentLineNumber) if len(self._Token) > 4: raise Warning("Hex byte(must be 2 digits) too long", self.FileName, self.CurrentLineNumber) DataString += self._Token DataString += TAB_COMMA_SPLIT if not self._IsToken(T_CHAR_BRACE_R): raise Warning.ExpectedCurlyClose(self.FileName, self.CurrentLineNumber) DataString = DataString.rstrip(TAB_COMMA_SPLIT) RegionObj.RegionType = "DATA" RegionObj.RegionDataList.append(DataString) while self._IsKeyword("DATA"): if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._IsToken("{"): raise Warning.ExpectedCurlyOpen(self.FileName, self.CurrentLineNumber) if not self._GetNextHexNumber(): raise Warning.Expected("Hex byte", self.FileName, self.CurrentLineNumber) if len(self._Token) > 18: raise Warning("Hex string can't be converted to a valid UINT64 value", self.FileName, self.CurrentLineNumber) # convert hex string value to byte hex string array AllString = self._Token AllStrLen = len (AllString) DataString = "" while AllStrLen > 4: DataString = DataString + "0x" + AllString[AllStrLen - 2: AllStrLen] + TAB_COMMA_SPLIT AllStrLen = AllStrLen - 2 DataString = DataString + AllString[:AllStrLen] + TAB_COMMA_SPLIT # byte value array if len (self._Token) <= 4: while self._IsToken(TAB_COMMA_SPLIT): if not self._GetNextHexNumber(): raise Warning("Invalid Hex number", self.FileName, self.CurrentLineNumber) if len(self._Token) > 4: raise Warning("Hex byte(must be 2 digits) too long", self.FileName, self.CurrentLineNumber) DataString += self._Token DataString += TAB_COMMA_SPLIT if not self._IsToken(T_CHAR_BRACE_R): raise Warning.ExpectedCurlyClose(self.FileName, self.CurrentLineNumber) DataString = DataString.rstrip(TAB_COMMA_SPLIT) RegionObj.RegionDataList.append(DataString) ## _GetFv() method # # Get FV section contents and store its data into FV dictionary of self.Profile # # @param self The object pointer # @retval True Successfully find a FV # @retval False Not able to find a FV # def _GetFv(self): if not self._GetNextToken(): return False S = self._Token.upper() if S.startswith(TAB_SECTION_START) and not S.startswith("[FV."): self.SectionParser(S) self._UndoToken() return False self._UndoToken() if not self._IsToken("[FV.", True): FileLineTuple = GetRealFileLine(self.FileName, self.CurrentLineNumber) #print 'Parsing String: %s in File %s, At line: %d, Offset Within Line: %d' \ # % (self.Profile.FileLinesList[self.CurrentLineNumber - 1][self.CurrentOffsetWithinLine:], FileLineTuple[0], FileLineTuple[1], self.CurrentOffsetWithinLine) raise Warning("Unknown Keyword '%s'" % self._Token, self.FileName, self.CurrentLineNumber) FvName = self._GetUiName() self.CurrentFvName = FvName.upper() if not self._IsToken(TAB_SECTION_END): raise Warning.ExpectedBracketClose(self.FileName, self.CurrentLineNumber) FvObj = FV(Name=self.CurrentFvName) self.Profile.FvDict[self.CurrentFvName] = FvObj Status = self._GetCreateFile(FvObj) if not Status: raise Warning("FV name error", self.FileName, self.CurrentLineNumber) self._GetDefineStatements(FvObj) self._GetAddressStatements(FvObj) while True: self._GetSetStatements(FvObj) if not (self._GetBlockStatement(FvObj) or self._GetFvBaseAddress(FvObj) or self._GetFvForceRebase(FvObj) or self._GetFvAlignment(FvObj) or self._GetFvAttributes(FvObj) or self._GetFvNameGuid(FvObj) or self._GetFvExtEntryStatement(FvObj) or self._GetFvNameString(FvObj)): break if FvObj.FvNameString == 'TRUE' and not FvObj.FvNameGuid: raise Warning("FvNameString found but FvNameGuid was not found", self.FileName, self.CurrentLineNumber) self._GetAprioriSection(FvObj) self._GetAprioriSection(FvObj) while True: isInf = self._GetInfStatement(FvObj) isFile = self._GetFileStatement(FvObj) if not isInf and not isFile: break return True ## _GetFvAlignment() method # # Get alignment for FV # # @param self The object pointer # @param Obj for whom alignment is got # @retval True Successfully find a alignment statement # @retval False Not able to find a alignment statement # def _GetFvAlignment(self, Obj): if not self._IsKeyword("FvAlignment"): return False if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("alignment value", self.FileName, self.CurrentLineNumber) if self._Token.upper() not in {"1", "2", "4", "8", "16", "32", "64", "128", "256", "512", \ "1K", "2K", "4K", "8K", "16K", "32K", "64K", "128K", "256K", "512K", \ "1M", "2M", "4M", "8M", "16M", "32M", "64M", "128M", "256M", "512M", \ "1G", "2G"}: raise Warning("Unknown alignment value '%s'" % self._Token, self.FileName, self.CurrentLineNumber) Obj.FvAlignment = self._Token return True ## _GetFvBaseAddress() method # # Get BaseAddress for FV # # @param self The object pointer # @param Obj for whom FvBaseAddress is got # @retval True Successfully find a FvBaseAddress statement # @retval False Not able to find a FvBaseAddress statement # def _GetFvBaseAddress(self, Obj): if not self._IsKeyword("FvBaseAddress"): return False if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("FV base address value", self.FileName, self.CurrentLineNumber) if not BaseAddrValuePattern.match(self._Token.upper()): raise Warning("Unknown FV base address value '%s'" % self._Token, self.FileName, self.CurrentLineNumber) Obj.FvBaseAddress = self._Token return True ## _GetFvForceRebase() method # # Get FvForceRebase for FV # # @param self The object pointer # @param Obj for whom FvForceRebase is got # @retval True Successfully find a FvForceRebase statement # @retval False Not able to find a FvForceRebase statement # def _GetFvForceRebase(self, Obj): if not self._IsKeyword("FvForceRebase"): return False if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("FvForceRebase value", self.FileName, self.CurrentLineNumber) if self._Token.upper() not in {"TRUE", "FALSE", "0", "0X0", "0X00", "1", "0X1", "0X01"}: raise Warning("Unknown FvForceRebase value '%s'" % self._Token, self.FileName, self.CurrentLineNumber) if self._Token.upper() in {"TRUE", "1", "0X1", "0X01"}: Obj.FvForceRebase = True elif self._Token.upper() in {"FALSE", "0", "0X0", "0X00"}: Obj.FvForceRebase = False else: Obj.FvForceRebase = None return True ## _GetFvAttributes() method # # Get attributes for FV # # @param self The object pointer # @param Obj for whom attribute is got # @retval None # def _GetFvAttributes(self, FvObj): IsWordToken = False while self._GetNextWord(): IsWordToken = True name = self._Token if name not in {"ERASE_POLARITY", "MEMORY_MAPPED", \ "STICKY_WRITE", "LOCK_CAP", "LOCK_STATUS", "WRITE_ENABLED_CAP", \ "WRITE_DISABLED_CAP", "WRITE_STATUS", "READ_ENABLED_CAP", \ "READ_DISABLED_CAP", "READ_STATUS", "READ_LOCK_CAP", \ "READ_LOCK_STATUS", "WRITE_LOCK_CAP", "WRITE_LOCK_STATUS", \ "WRITE_POLICY_RELIABLE", "WEAK_ALIGNMENT", "FvUsedSizeEnable"}: self._UndoToken() return False if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken() or self._Token.upper() not in {"TRUE", "FALSE", "1", "0"}: raise Warning.Expected("TRUE/FALSE (1/0)", self.FileName, self.CurrentLineNumber) FvObj.FvAttributeDict[name] = self._Token return IsWordToken ## _GetFvNameGuid() method # # Get FV GUID for FV # # @param self The object pointer # @param Obj for whom GUID is got # @retval None # def _GetFvNameGuid(self, FvObj): if not self._IsKeyword("FvNameGuid"): return False if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextGuid(): raise Warning.Expected("GUID value", self.FileName, self.CurrentLineNumber) if self._Token in GlobalData.gGuidDict: self._Token = GuidStructureStringToGuidString(GlobalData.gGuidDict[self._Token]).upper() FvObj.FvNameGuid = self._Token return True def _GetFvNameString(self, FvObj): if not self._IsKeyword("FvNameString"): return False if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken() or self._Token.upper() not in {'TRUE', 'FALSE'}: raise Warning.Expected("TRUE or FALSE for FvNameString", self.FileName, self.CurrentLineNumber) FvObj.FvNameString = self._Token return True def _GetFvExtEntryStatement(self, FvObj): if not (self._IsKeyword("FV_EXT_ENTRY") or self._IsKeyword("FV_EXT_ENTRY_TYPE")): return False if not self._IsKeyword ("TYPE"): raise Warning.Expected("'TYPE'", self.FileName, self.CurrentLineNumber) if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextHexNumber() and not self._GetNextDecimalNumber(): raise Warning.Expected("Hex FV extension entry type value At Line ", self.FileName, self.CurrentLineNumber) FvObj.FvExtEntryTypeValue.append(self._Token) if not self._IsToken("{"): raise Warning.ExpectedCurlyOpen(self.FileName, self.CurrentLineNumber) if not self._IsKeyword("FILE") and not self._IsKeyword("DATA"): raise Warning.Expected("'FILE' or 'DATA'", self.FileName, self.CurrentLineNumber) FvObj.FvExtEntryType.append(self._Token) if self._Token == 'DATA': if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._IsToken("{"): raise Warning.ExpectedCurlyOpen(self.FileName, self.CurrentLineNumber) if not self._GetNextHexNumber(): raise Warning.Expected("Hex byte", self.FileName, self.CurrentLineNumber) if len(self._Token) > 4: raise Warning("Hex byte(must be 2 digits) too long", self.FileName, self.CurrentLineNumber) DataString = self._Token DataString += TAB_COMMA_SPLIT while self._IsToken(TAB_COMMA_SPLIT): if not self._GetNextHexNumber(): raise Warning("Invalid Hex number", self.FileName, self.CurrentLineNumber) if len(self._Token) > 4: raise Warning("Hex byte(must be 2 digits) too long", self.FileName, self.CurrentLineNumber) DataString += self._Token DataString += TAB_COMMA_SPLIT if not self._IsToken(T_CHAR_BRACE_R): raise Warning.ExpectedCurlyClose(self.FileName, self.CurrentLineNumber) if not self._IsToken(T_CHAR_BRACE_R): raise Warning.ExpectedCurlyClose(self.FileName, self.CurrentLineNumber) DataString = DataString.rstrip(TAB_COMMA_SPLIT) FvObj.FvExtEntryData.append(DataString) if self._Token == 'FILE': if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("FV Extension Entry file path At Line ", self.FileName, self.CurrentLineNumber) FvObj.FvExtEntryData.append(self._Token) if not self._IsToken(T_CHAR_BRACE_R): raise Warning.ExpectedCurlyClose(self.FileName, self.CurrentLineNumber) return True ## _GetAprioriSection() method # # Get token statements # # @param self The object pointer # @param FvObj for whom apriori is got # @retval True Successfully find apriori statement # @retval False Not able to find apriori statement # def _GetAprioriSection(self, FvObj): if not self._IsKeyword("APRIORI"): return False if not self._IsKeyword("PEI") and not self._IsKeyword("DXE"): raise Warning.Expected("Apriori file type", self.FileName, self.CurrentLineNumber) AprType = self._Token if not self._IsToken("{"): raise Warning.ExpectedCurlyOpen(self.FileName, self.CurrentLineNumber) AprSectionObj = AprioriSection() AprSectionObj.AprioriType = AprType self._GetDefineStatements(AprSectionObj) while True: IsInf = self._GetInfStatement(AprSectionObj) IsFile = self._GetFileStatement(AprSectionObj) if not IsInf and not IsFile: break if not self._IsToken(T_CHAR_BRACE_R): raise Warning.ExpectedCurlyClose(self.FileName, self.CurrentLineNumber) FvObj.AprioriSectionList.append(AprSectionObj) return True def _ParseInfStatement(self): if not self._IsKeyword("INF"): return None ffsInf = FfsInfStatement() self._GetInfOptions(ffsInf) if not self._GetNextToken(): raise Warning.Expected("INF file path", self.FileName, self.CurrentLineNumber) ffsInf.InfFileName = self._Token if not ffsInf.InfFileName.endswith('.inf'): raise Warning.Expected(".inf file path", self.FileName, self.CurrentLineNumber) ffsInf.CurrentLineNum = self.CurrentLineNumber ffsInf.CurrentLineContent = self._CurrentLine() #Replace $(SAPCE) with real space ffsInf.InfFileName = ffsInf.InfFileName.replace('$(SPACE)', ' ') if ffsInf.InfFileName.replace(TAB_WORKSPACE, '').find('$') == -1: #do case sensitive check for file path ErrorCode, ErrorInfo = PathClass(NormPath(ffsInf.InfFileName), GenFdsGlobalVariable.WorkSpaceDir).Validate() if ErrorCode != 0: EdkLogger.error("GenFds", ErrorCode, ExtraData=ErrorInfo) NewFileName = ffsInf.InfFileName if ffsInf.OverrideGuid: NewFileName = ProcessDuplicatedInf(PathClass(ffsInf.InfFileName,GenFdsGlobalVariable.WorkSpaceDir), ffsInf.OverrideGuid, GenFdsGlobalVariable.WorkSpaceDir).Path if not NewFileName in self.Profile.InfList: self.Profile.InfList.append(NewFileName) FileLineTuple = GetRealFileLine(self.FileName, self.CurrentLineNumber) self.Profile.InfFileLineList.append(FileLineTuple) if ffsInf.UseArch: if ffsInf.UseArch not in self.Profile.InfDict: self.Profile.InfDict[ffsInf.UseArch] = [ffsInf.InfFileName] else: self.Profile.InfDict[ffsInf.UseArch].append(ffsInf.InfFileName) else: self.Profile.InfDict['ArchTBD'].append(ffsInf.InfFileName) if self._IsToken(TAB_VALUE_SPLIT): if self._IsKeyword('RELOCS_STRIPPED'): ffsInf.KeepReloc = False elif self._IsKeyword('RELOCS_RETAINED'): ffsInf.KeepReloc = True else: raise Warning("Unknown reloc strip flag '%s'" % self._Token, self.FileName, self.CurrentLineNumber) return ffsInf ## _GetInfStatement() method # # Get INF statements # # @param self The object pointer # @param Obj for whom inf statement is got # @retval True Successfully find inf statement # @retval False Not able to find inf statement # def _GetInfStatement(self, Obj, ForCapsule=False): ffsInf = self._ParseInfStatement() if not ffsInf: return False if ForCapsule: myCapsuleFfs = CapsuleFfs() myCapsuleFfs.Ffs = ffsInf Obj.CapsuleDataList.append(myCapsuleFfs) else: Obj.FfsList.append(ffsInf) return True ## _GetInfOptions() method # # Get options for INF # # @param self The object pointer # @param FfsInfObj for whom option is got # def _GetInfOptions(self, FfsInfObj): if self._IsKeyword("FILE_GUID"): if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextGuid(): raise Warning.Expected("GUID value", self.FileName, self.CurrentLineNumber) if self._Token in GlobalData.gGuidDict: self._Token = GuidStructureStringToGuidString(GlobalData.gGuidDict[self._Token]).upper() FfsInfObj.OverrideGuid = self._Token if self._IsKeyword("RuleOverride"): if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("Rule name", self.FileName, self.CurrentLineNumber) FfsInfObj.Rule = self._Token if self._IsKeyword("VERSION"): if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("Version", self.FileName, self.CurrentLineNumber) if self._GetStringData(): FfsInfObj.Version = self._Token if self._IsKeyword(BINARY_FILE_TYPE_UI): if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("UI name", self.FileName, self.CurrentLineNumber) if self._GetStringData(): FfsInfObj.Ui = self._Token if self._IsKeyword("USE"): if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("ARCH name", self.FileName, self.CurrentLineNumber) FfsInfObj.UseArch = self._Token if self._GetNextToken(): p = compile(r'([a-zA-Z0-9\-]+|\$\(TARGET\)|\*)_([a-zA-Z0-9\-]+|\$\(TOOL_CHAIN_TAG\)|\*)_([a-zA-Z0-9\-]+|\$\(ARCH\))') if p.match(self._Token) and p.match(self._Token).span()[1] == len(self._Token): FfsInfObj.KeyStringList.append(self._Token) if not self._IsToken(TAB_COMMA_SPLIT): return else: self._UndoToken() return while self._GetNextToken(): if not p.match(self._Token): raise Warning.Expected("KeyString \"Target_Tag_Arch\"", self.FileName, self.CurrentLineNumber) FfsInfObj.KeyStringList.append(self._Token) if not self._IsToken(TAB_COMMA_SPLIT): break ## _GetFileStatement() method # # Get FILE statements # # @param self The object pointer # @param Obj for whom FILE statement is got # @retval True Successfully find FILE statement # @retval False Not able to find FILE statement # def _GetFileStatement(self, Obj, ForCapsule = False): if not self._IsKeyword("FILE"): return False if not self._GetNextWord(): raise Warning.Expected("FFS type", self.FileName, self.CurrentLineNumber) if ForCapsule and self._Token == 'DATA': self._UndoToken() self._UndoToken() return False FfsFileObj = FileStatement() FfsFileObj.FvFileType = self._Token if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextGuid(): if not self._GetNextWord(): raise Warning.Expected("File GUID", self.FileName, self.CurrentLineNumber) if self._Token == 'PCD': if not self._IsToken("("): raise Warning.Expected("'('", self.FileName, self.CurrentLineNumber) PcdPair = self._GetNextPcdSettings() if not self._IsToken(")"): raise Warning.Expected("')'", self.FileName, self.CurrentLineNumber) self._Token = 'PCD('+PcdPair[1]+TAB_SPLIT+PcdPair[0]+')' if self._Token in GlobalData.gGuidDict: self._Token = GuidStructureStringToGuidString(GlobalData.gGuidDict[self._Token]).upper() FfsFileObj.NameGuid = self._Token self._GetFilePart(FfsFileObj) if ForCapsule: capsuleFfs = CapsuleFfs() capsuleFfs.Ffs = FfsFileObj Obj.CapsuleDataList.append(capsuleFfs) else: Obj.FfsList.append(FfsFileObj) return True ## _FileCouldHaveRelocFlag() method # # Check whether reloc strip flag can be set for a file type. # # @param FileType The file type to check with # @retval True This type could have relocation strip flag # @retval False No way to have it # @staticmethod def _FileCouldHaveRelocFlag (FileType): if FileType in {SUP_MODULE_SEC, SUP_MODULE_PEI_CORE, SUP_MODULE_PEIM, SUP_MODULE_MM_CORE_STANDALONE, 'PEI_DXE_COMBO'}: return True else: return False ## _SectionCouldHaveRelocFlag() method # # Check whether reloc strip flag can be set for a section type. # # @param SectionType The section type to check with # @retval True This type could have relocation strip flag # @retval False No way to have it # @staticmethod def _SectionCouldHaveRelocFlag (SectionType): if SectionType in {BINARY_FILE_TYPE_TE, BINARY_FILE_TYPE_PE32}: return True else: return False ## _GetFilePart() method # # Get components for FILE statement # # @param self The object pointer # @param FfsFileObj for whom component is got # def _GetFilePart(self, FfsFileObj): self._GetFileOpts(FfsFileObj) if not self._IsToken("{"): if self._IsKeyword('RELOCS_STRIPPED') or self._IsKeyword('RELOCS_RETAINED'): if self._FileCouldHaveRelocFlag(FfsFileObj.FvFileType): if self._Token == 'RELOCS_STRIPPED': FfsFileObj.KeepReloc = False else: FfsFileObj.KeepReloc = True else: raise Warning("File type %s could not have reloc strip flag%d" % (FfsFileObj.FvFileType, self.CurrentLineNumber), self.FileName, self.CurrentLineNumber) if not self._IsToken("{"): raise Warning.ExpectedCurlyOpen(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("File name or section data", self.FileName, self.CurrentLineNumber) if self._Token == BINARY_FILE_TYPE_FV: if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("FV name", self.FileName, self.CurrentLineNumber) FfsFileObj.FvName = self._Token elif self._Token == "FD": if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("FD name", self.FileName, self.CurrentLineNumber) FfsFileObj.FdName = self._Token elif self._Token in {TAB_DEFINE, "APRIORI", "SECTION"}: self._UndoToken() self._GetSectionData(FfsFileObj) elif hasattr(FfsFileObj, 'FvFileType') and FfsFileObj.FvFileType == 'RAW': self._UndoToken() self._GetRAWData(FfsFileObj) else: FfsFileObj.CurrentLineNum = self.CurrentLineNumber FfsFileObj.CurrentLineContent = self._CurrentLine() FfsFileObj.FileName = self._Token.replace('$(SPACE)', ' ') self._VerifyFile(FfsFileObj.FileName) if not self._IsToken(T_CHAR_BRACE_R): raise Warning.ExpectedCurlyClose(self.FileName, self.CurrentLineNumber) ## _GetRAWData() method # # Get RAW data for FILE statement # # @param self The object pointer # @param FfsFileObj for whom section is got # def _GetRAWData(self, FfsFileObj): FfsFileObj.FileName = [] FfsFileObj.SubAlignment = [] while True: AlignValue = None if self._GetAlignment(): if self._Token not in ALIGNMENTS: raise Warning("Incorrect alignment '%s'" % self._Token, self.FileName, self.CurrentLineNumber) #For FFS, Auto is default option same to "" if not self._Token == "Auto": AlignValue = self._Token if not self._GetNextToken(): raise Warning.Expected("Filename value", self.FileName, self.CurrentLineNumber) FileName = self._Token.replace('$(SPACE)', ' ') if FileName == T_CHAR_BRACE_R: self._UndoToken() raise Warning.Expected("Filename value", self.FileName, self.CurrentLineNumber) self._VerifyFile(FileName) File = PathClass(NormPath(FileName), GenFdsGlobalVariable.WorkSpaceDir) FfsFileObj.FileName.append(File.Path) FfsFileObj.SubAlignment.append(AlignValue) if self._IsToken(T_CHAR_BRACE_R): self._UndoToken() break if len(FfsFileObj.SubAlignment) == 1: FfsFileObj.SubAlignment = FfsFileObj.SubAlignment[0] if len(FfsFileObj.FileName) == 1: FfsFileObj.FileName = FfsFileObj.FileName[0] ## _GetFileOpts() method # # Get options for FILE statement # # @param self The object pointer # @param FfsFileObj for whom options is got # def _GetFileOpts(self, FfsFileObj): if self._GetNextToken(): if TokenFindPattern.match(self._Token): FfsFileObj.KeyStringList.append(self._Token) if self._IsToken(TAB_COMMA_SPLIT): while self._GetNextToken(): if not TokenFindPattern.match(self._Token): raise Warning.Expected("KeyString \"Target_Tag_Arch\"", self.FileName, self.CurrentLineNumber) FfsFileObj.KeyStringList.append(self._Token) if not self._IsToken(TAB_COMMA_SPLIT): break else: self._UndoToken() if self._IsKeyword("FIXED", True): FfsFileObj.Fixed = True if self._IsKeyword("CHECKSUM", True): FfsFileObj.CheckSum = True if self._GetAlignment(): if self._Token not in ALIGNMENTS: raise Warning("Incorrect alignment '%s'" % self._Token, self.FileName, self.CurrentLineNumber) #For FFS, Auto is default option same to "" if not self._Token == "Auto": FfsFileObj.Alignment = self._Token ## _GetAlignment() method # # Return the alignment value # # @param self The object pointer # @retval True Successfully find alignment # @retval False Not able to find alignment # def _GetAlignment(self): if self._IsKeyword("Align", True): if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("alignment value", self.FileName, self.CurrentLineNumber) return True return False ## _GetSectionData() method # # Get section data for FILE statement # # @param self The object pointer # @param FfsFileObj for whom section is got # def _GetSectionData(self, FfsFileObj): self._GetDefineStatements(FfsFileObj) while True: IsLeafSection = self._GetLeafSection(FfsFileObj) IsEncapSection = self._GetEncapsulationSec(FfsFileObj) if not IsLeafSection and not IsEncapSection: break ## _GetLeafSection() method # # Get leaf section for Obj # # @param self The object pointer # @param Obj for whom leaf section is got # @retval True Successfully find section statement # @retval False Not able to find section statement # def _GetLeafSection(self, Obj): OldPos = self.GetFileBufferPos() if not self._IsKeyword("SECTION"): if len(Obj.SectionList) == 0: raise Warning.Expected("SECTION", self.FileName, self.CurrentLineNumber) else: return False AlignValue = None if self._GetAlignment(): if self._Token not in ALIGNMENTS: raise Warning("Incorrect alignment '%s'" % self._Token, self.FileName, self.CurrentLineNumber) AlignValue = self._Token BuildNum = None if self._IsKeyword("BUILD_NUM"): if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("Build number value", self.FileName, self.CurrentLineNumber) BuildNum = self._Token if self._IsKeyword("VERSION"): if AlignValue == 'Auto': raise Warning("Auto alignment can only be used in PE32 or TE section ", self.FileName, self.CurrentLineNumber) if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("version", self.FileName, self.CurrentLineNumber) VerSectionObj = VerSection() VerSectionObj.Alignment = AlignValue VerSectionObj.BuildNum = BuildNum if self._GetStringData(): VerSectionObj.StringData = self._Token else: VerSectionObj.FileName = self._Token Obj.SectionList.append(VerSectionObj) elif self._IsKeyword(BINARY_FILE_TYPE_UI): if AlignValue == 'Auto': raise Warning("Auto alignment can only be used in PE32 or TE section ", self.FileName, self.CurrentLineNumber) if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("UI", self.FileName, self.CurrentLineNumber) UiSectionObj = UiSection() UiSectionObj.Alignment = AlignValue if self._GetStringData(): UiSectionObj.StringData = self._Token else: UiSectionObj.FileName = self._Token Obj.SectionList.append(UiSectionObj) elif self._IsKeyword("FV_IMAGE"): if AlignValue == 'Auto': raise Warning("Auto alignment can only be used in PE32 or TE section ", self.FileName, self.CurrentLineNumber) if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("FV name or FV file path", self.FileName, self.CurrentLineNumber) FvName = self._Token FvObj = None if self._IsToken("{"): FvObj = FV() FvObj.UiFvName = FvName.upper() self._GetDefineStatements(FvObj) self._GetBlockStatement(FvObj) self._GetSetStatements(FvObj) self._GetFvAlignment(FvObj) self._GetFvAttributes(FvObj) while True: IsInf = self._GetInfStatement(FvObj) IsFile = self._GetFileStatement(FvObj) if not IsInf and not IsFile: break if not self._IsToken(T_CHAR_BRACE_R): raise Warning.ExpectedCurlyClose(self.FileName, self.CurrentLineNumber) FvImageSectionObj = FvImageSection() FvImageSectionObj.Alignment = AlignValue if FvObj is not None: FvImageSectionObj.Fv = FvObj FvImageSectionObj.FvName = None else: FvImageSectionObj.FvName = FvName.upper() FvImageSectionObj.FvFileName = FvName Obj.SectionList.append(FvImageSectionObj) elif self._IsKeyword("PEI_DEPEX_EXP") or self._IsKeyword("DXE_DEPEX_EXP") or self._IsKeyword("SMM_DEPEX_EXP"): if AlignValue == 'Auto': raise Warning("Auto alignment can only be used in PE32 or TE section ", self.FileName, self.CurrentLineNumber) DepexSectionObj = DepexSection() DepexSectionObj.Alignment = AlignValue DepexSectionObj.DepexType = self._Token if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._IsToken("{"): raise Warning.ExpectedCurlyOpen(self.FileName, self.CurrentLineNumber) if not self._SkipToToken(T_CHAR_BRACE_R): raise Warning.Expected("Depex expression ending '}'", self.FileName, self.CurrentLineNumber) DepexSectionObj.Expression = self._SkippedChars.rstrip(T_CHAR_BRACE_R) Obj.SectionList.append(DepexSectionObj) elif self._IsKeyword("SUBTYPE_GUID"): if AlignValue == 'Auto': raise Warning("Auto alignment can only be used in PE32 or TE section ", self.FileName, self.CurrentLineNumber) SubTypeGuidValue = None if not self._GetNextGuid(): raise Warning.Expected("GUID", self.FileName, self.CurrentLineNumber) else: SubTypeGuidValue = self._Token if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("section file path", self.FileName, self.CurrentLineNumber) FileName = self._Token SubTypeGuidSectionObj = SubTypeGuidSection() SubTypeGuidSectionObj.Alignment = AlignValue SubTypeGuidSectionObj.SubTypeGuid = SubTypeGuidValue SubTypeGuidSectionObj.SectFileName = FileName Obj.SectionList.append(SubTypeGuidSectionObj) else: if not self._GetNextWord(): raise Warning.Expected("section type", self.FileName, self.CurrentLineNumber) # Encapsulation section appear, UndoToken and return if self._Token == "COMPRESS" or self._Token == "GUIDED": self.SetFileBufferPos(OldPos) return False if self._Token not in {"COMPAT16", BINARY_FILE_TYPE_PE32, BINARY_FILE_TYPE_PIC, BINARY_FILE_TYPE_TE, "FV_IMAGE", "RAW", BINARY_FILE_TYPE_DXE_DEPEX,\ BINARY_FILE_TYPE_UI, "VERSION", BINARY_FILE_TYPE_PEI_DEPEX, "SUBTYPE_GUID", BINARY_FILE_TYPE_SMM_DEPEX}: raise Warning("Unknown section type '%s'" % self._Token, self.FileName, self.CurrentLineNumber) if AlignValue == 'Auto'and (not self._Token == BINARY_FILE_TYPE_PE32) and (not self._Token == BINARY_FILE_TYPE_TE): raise Warning("Auto alignment can only be used in PE32 or TE section ", self.FileName, self.CurrentLineNumber) # DataSection DataSectionObj = DataSection() DataSectionObj.Alignment = AlignValue DataSectionObj.SecType = self._Token if self._IsKeyword('RELOCS_STRIPPED') or self._IsKeyword('RELOCS_RETAINED'): if self._FileCouldHaveRelocFlag(Obj.FvFileType) and self._SectionCouldHaveRelocFlag(DataSectionObj.SecType): if self._Token == 'RELOCS_STRIPPED': DataSectionObj.KeepReloc = False else: DataSectionObj.KeepReloc = True else: raise Warning("File type %s, section type %s, could not have reloc strip flag%d" % (Obj.FvFileType, DataSectionObj.SecType, self.CurrentLineNumber), self.FileName, self.CurrentLineNumber) if self._IsToken(TAB_EQUAL_SPLIT): if not self._GetNextToken(): raise Warning.Expected("section file path", self.FileName, self.CurrentLineNumber) DataSectionObj.SectFileName = self._Token self._VerifyFile(DataSectionObj.SectFileName) else: if not self._GetCglSection(DataSectionObj): return False Obj.SectionList.append(DataSectionObj) return True ## _VerifyFile # # Check if file exists or not: # If current phase if GenFds, the file must exist; # If current phase is AutoGen and the file is not in $(OUTPUT_DIRECTORY), the file must exist # @param FileName: File path to be verified. # def _VerifyFile(self, FileName): if FileName.replace(TAB_WORKSPACE, '').find('$') != -1: return if not GlobalData.gAutoGenPhase or not self._GetMacroValue(TAB_DSC_DEFINES_OUTPUT_DIRECTORY) in FileName: ErrorCode, ErrorInfo = PathClass(NormPath(FileName), GenFdsGlobalVariable.WorkSpaceDir).Validate() if ErrorCode != 0: EdkLogger.error("GenFds", ErrorCode, ExtraData=ErrorInfo) ## _GetCglSection() method # # Get compressed or GUIDed section for Obj # # @param self The object pointer # @param Obj for whom leaf section is got # @param AlignValue alignment value for complex section # @retval True Successfully find section statement # @retval False Not able to find section statement # def _GetCglSection(self, Obj, AlignValue = None): if self._IsKeyword("COMPRESS"): type = "PI_STD" if self._IsKeyword("PI_STD") or self._IsKeyword("PI_NONE"): type = self._Token if not self._IsToken("{"): raise Warning.ExpectedCurlyOpen(self.FileName, self.CurrentLineNumber) CompressSectionObj = CompressSection() CompressSectionObj.Alignment = AlignValue CompressSectionObj.CompType = type # Recursive sections... while True: IsLeafSection = self._GetLeafSection(CompressSectionObj) IsEncapSection = self._GetEncapsulationSec(CompressSectionObj) if not IsLeafSection and not IsEncapSection: break if not self._IsToken(T_CHAR_BRACE_R): raise Warning.ExpectedCurlyClose(self.FileName, self.CurrentLineNumber) Obj.SectionList.append(CompressSectionObj) return True elif self._IsKeyword("GUIDED"): GuidValue = None if self._GetNextGuid(): if self._Token in GlobalData.gGuidDict: self._Token = GuidStructureStringToGuidString(GlobalData.gGuidDict[self._Token]).upper() GuidValue = self._Token AttribDict = self._GetGuidAttrib() if not self._IsToken("{"): raise Warning.ExpectedCurlyOpen(self.FileName, self.CurrentLineNumber) GuidSectionObj = GuidSection() GuidSectionObj.Alignment = AlignValue GuidSectionObj.NameGuid = GuidValue GuidSectionObj.SectionType = "GUIDED" GuidSectionObj.ProcessRequired = AttribDict["PROCESSING_REQUIRED"] GuidSectionObj.AuthStatusValid = AttribDict["AUTH_STATUS_VALID"] GuidSectionObj.ExtraHeaderSize = AttribDict["EXTRA_HEADER_SIZE"] # Recursive sections... while True: IsLeafSection = self._GetLeafSection(GuidSectionObj) IsEncapSection = self._GetEncapsulationSec(GuidSectionObj) if not IsLeafSection and not IsEncapSection: break if not self._IsToken(T_CHAR_BRACE_R): raise Warning.ExpectedCurlyClose(self.FileName, self.CurrentLineNumber) Obj.SectionList.append(GuidSectionObj) return True return False ## _GetGuidAttri() method # # Get attributes for GUID section # # @param self The object pointer # @retval AttribDict Dictionary of key-value pair of section attributes # def _GetGuidAttrib(self): AttribDict = {} AttribDict["PROCESSING_REQUIRED"] = "NONE" AttribDict["AUTH_STATUS_VALID"] = "NONE" AttribDict["EXTRA_HEADER_SIZE"] = -1 while self._IsKeyword("PROCESSING_REQUIRED") or self._IsKeyword("AUTH_STATUS_VALID") \ or self._IsKeyword("EXTRA_HEADER_SIZE"): AttribKey = self._Token if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("TRUE(1)/FALSE(0)/Number", self.FileName, self.CurrentLineNumber) elif AttribKey == "EXTRA_HEADER_SIZE": Base = 10 if self._Token[0:2].upper() == "0X": Base = 16 try: AttribDict[AttribKey] = int(self._Token, Base) continue except ValueError: raise Warning.Expected("Number", self.FileName, self.CurrentLineNumber) elif self._Token.upper() not in {"TRUE", "FALSE", "1", "0"}: raise Warning.Expected("TRUE/FALSE (1/0)", self.FileName, self.CurrentLineNumber) AttribDict[AttribKey] = self._Token return AttribDict ## _GetEncapsulationSec() method # # Get encapsulation section for FILE # # @param self The object pointer # @param FfsFile for whom section is got # @retval True Successfully find section statement # @retval False Not able to find section statement # def _GetEncapsulationSec(self, FfsFileObj): OldPos = self.GetFileBufferPos() if not self._IsKeyword("SECTION"): if len(FfsFileObj.SectionList) == 0: raise Warning.Expected("SECTION", self.FileName, self.CurrentLineNumber) else: return False AlignValue = None if self._GetAlignment(): if self._Token not in ALIGNMENT_NOAUTO: raise Warning("Incorrect alignment '%s'" % self._Token, self.FileName, self.CurrentLineNumber) AlignValue = self._Token if not self._GetCglSection(FfsFileObj, AlignValue): self.SetFileBufferPos(OldPos) return False else: return True def _GetFmp(self): if not self._GetNextToken(): return False S = self._Token.upper() if S.startswith(TAB_SECTION_START) and not S.startswith("[FMPPAYLOAD."): self.SectionParser(S) self._UndoToken() return False self._UndoToken() self._SkipToToken("[FMPPAYLOAD.", True) FmpUiName = self._GetUiName().upper() if FmpUiName in self.Profile.FmpPayloadDict: raise Warning("Duplicated FMP UI name found: %s" % FmpUiName, self.FileName, self.CurrentLineNumber) FmpData = CapsulePayload() FmpData.UiName = FmpUiName if not self._IsToken(TAB_SECTION_END): raise Warning.ExpectedBracketClose(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning("The FMP payload section is empty!", self.FileName, self.CurrentLineNumber) FmpKeyList = ['IMAGE_HEADER_INIT_VERSION', 'IMAGE_TYPE_ID', 'IMAGE_INDEX', 'HARDWARE_INSTANCE', 'CERTIFICATE_GUID', 'MONOTONIC_COUNT'] while self._Token in FmpKeyList: Name = self._Token FmpKeyList.remove(Name) if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if Name == 'IMAGE_TYPE_ID': if not self._GetNextGuid(): raise Warning.Expected("GUID value for IMAGE_TYPE_ID.", self.FileName, self.CurrentLineNumber) FmpData.ImageTypeId = self._Token elif Name == 'CERTIFICATE_GUID': if not self._GetNextGuid(): raise Warning.Expected("GUID value for CERTIFICATE_GUID.", self.FileName, self.CurrentLineNumber) FmpData.Certificate_Guid = self._Token if UUID(FmpData.Certificate_Guid) != EFI_CERT_TYPE_RSA2048_SHA256_GUID and UUID(FmpData.Certificate_Guid) != EFI_CERT_TYPE_PKCS7_GUID: raise Warning("Only support EFI_CERT_TYPE_RSA2048_SHA256_GUID or EFI_CERT_TYPE_PKCS7_GUID for CERTIFICATE_GUID.", self.FileName, self.CurrentLineNumber) else: if not self._GetNextToken(): raise Warning.Expected("value of %s" % Name, self.FileName, self.CurrentLineNumber) Value = self._Token if Name == 'IMAGE_HEADER_INIT_VERSION': if FdfParser._Verify(Name, Value, 'UINT8'): FmpData.Version = Value elif Name == 'IMAGE_INDEX': if FdfParser._Verify(Name, Value, 'UINT8'): FmpData.ImageIndex = Value elif Name == 'HARDWARE_INSTANCE': if FdfParser._Verify(Name, Value, 'UINT8'): FmpData.HardwareInstance = Value elif Name == 'MONOTONIC_COUNT': if FdfParser._Verify(Name, Value, 'UINT64'): FmpData.MonotonicCount = Value if FmpData.MonotonicCount.upper().startswith('0X'): FmpData.MonotonicCount = int(FmpData.MonotonicCount, 16) else: FmpData.MonotonicCount = int(FmpData.MonotonicCount) if not self._GetNextToken(): break else: self._UndoToken() if (FmpData.MonotonicCount and not FmpData.Certificate_Guid) or (not FmpData.MonotonicCount and FmpData.Certificate_Guid): EdkLogger.error("FdfParser", FORMAT_INVALID, "CERTIFICATE_GUID and MONOTONIC_COUNT must be work as a pair.") # Only the IMAGE_TYPE_ID is required item if FmpKeyList and 'IMAGE_TYPE_ID' in FmpKeyList: raise Warning("'IMAGE_TYPE_ID' in FMP payload section.", self.FileName, self.CurrentLineNumber) # get the Image file and Vendor code file self._GetFMPCapsuleData(FmpData) if not FmpData.ImageFile: raise Warning("Missing image file in FMP payload section.", self.FileName, self.CurrentLineNumber) # check whether more than one Vendor code file if len(FmpData.VendorCodeFile) > 1: raise Warning("Vendor code file max of 1 per FMP payload section.", self.FileName, self.CurrentLineNumber) self.Profile.FmpPayloadDict[FmpUiName] = FmpData return True ## _GetCapsule() method # # Get capsule section contents and store its data into capsule list of self.Profile # # @param self The object pointer # @retval True Successfully find a capsule # @retval False Not able to find a capsule # def _GetCapsule(self): if not self._GetNextToken(): return False S = self._Token.upper() if S.startswith(TAB_SECTION_START) and not S.startswith("[CAPSULE."): self.SectionParser(S) self._UndoToken() return False self._UndoToken() if not self._IsToken("[CAPSULE.", True): FileLineTuple = GetRealFileLine(self.FileName, self.CurrentLineNumber) #print 'Parsing String: %s in File %s, At line: %d, Offset Within Line: %d' \ # % (self.Profile.FileLinesList[self.CurrentLineNumber - 1][self.CurrentOffsetWithinLine:], FileLineTuple[0], FileLineTuple[1], self.CurrentOffsetWithinLine) raise Warning.Expected("[Capsule.]", self.FileName, self.CurrentLineNumber) CapsuleObj = Capsule() CapsuleName = self._GetUiName() if not CapsuleName: raise Warning.Expected("capsule name", self.FileName, self.CurrentLineNumber) CapsuleObj.UiCapsuleName = CapsuleName.upper() if not self._IsToken(TAB_SECTION_END): raise Warning.ExpectedBracketClose(self.FileName, self.CurrentLineNumber) if self._IsKeyword("CREATE_FILE"): if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("file name", self.FileName, self.CurrentLineNumber) CapsuleObj.CreateFile = self._Token self._GetCapsuleStatements(CapsuleObj) self.Profile.CapsuleDict[CapsuleObj.UiCapsuleName] = CapsuleObj return True ## _GetCapsuleStatements() method # # Get statements for capsule # # @param self The object pointer # @param Obj for whom statements are got # def _GetCapsuleStatements(self, Obj): self._GetCapsuleTokens(Obj) self._GetDefineStatements(Obj) self._GetSetStatements(Obj) self._GetCapsuleData(Obj) ## _GetCapsuleTokens() method # # Get token statements for capsule # # @param self The object pointer # @param Obj for whom token statements are got # def _GetCapsuleTokens(self, Obj): if not self._GetNextToken(): return False while self._Token in {"CAPSULE_GUID", "CAPSULE_HEADER_SIZE", "CAPSULE_FLAGS", "OEM_CAPSULE_FLAGS", "CAPSULE_HEADER_INIT_VERSION"}: Name = self._Token.strip() if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("value", self.FileName, self.CurrentLineNumber) if Name == 'CAPSULE_FLAGS': if not self._Token in {"PersistAcrossReset", "PopulateSystemTable", "InitiateReset"}: raise Warning.Expected("PersistAcrossReset, PopulateSystemTable, or InitiateReset", self.FileName, self.CurrentLineNumber) Value = self._Token.strip() while self._IsToken(TAB_COMMA_SPLIT): Value += TAB_COMMA_SPLIT if not self._GetNextToken(): raise Warning.Expected("value", self.FileName, self.CurrentLineNumber) if not self._Token in {"PersistAcrossReset", "PopulateSystemTable", "InitiateReset"}: raise Warning.Expected("PersistAcrossReset, PopulateSystemTable, or InitiateReset", self.FileName, self.CurrentLineNumber) Value += self._Token.strip() elif Name == 'OEM_CAPSULE_FLAGS': Value = self._Token.strip() if not Value.upper().startswith('0X'): raise Warning.Expected("hex value starting with 0x", self.FileName, self.CurrentLineNumber) try: Value = int(Value, 0) except ValueError: raise Warning.Expected("hex string failed to convert to value", self.FileName, self.CurrentLineNumber) if not 0x0000 <= Value <= 0xFFFF: raise Warning.Expected("hex value between 0x0000 and 0xFFFF", self.FileName, self.CurrentLineNumber) Value = self._Token.strip() else: Value = self._Token.strip() Obj.TokensDict[Name] = Value if not self._GetNextToken(): return False self._UndoToken() ## _GetCapsuleData() method # # Get capsule data for capsule # # @param self The object pointer # @param Obj for whom capsule data are got # def _GetCapsuleData(self, Obj): while True: IsInf = self._GetInfStatement(Obj, True) IsFile = self._GetFileStatement(Obj, True) IsFv = self._GetFvStatement(Obj) IsFd = self._GetFdStatement(Obj) IsAnyFile = self._GetAnyFileStatement(Obj) IsAfile = self._GetAfileStatement(Obj) IsFmp = self._GetFmpStatement(Obj) if not (IsInf or IsFile or IsFv or IsFd or IsAnyFile or IsAfile or IsFmp): break ## _GetFMPCapsuleData() method # # Get capsule data for FMP capsule # # @param self The object pointer # @param Obj for whom capsule data are got # def _GetFMPCapsuleData(self, Obj): while True: IsFv = self._GetFvStatement(Obj, True) IsFd = self._GetFdStatement(Obj, True) IsAnyFile = self._GetAnyFileStatement(Obj, True) if not (IsFv or IsFd or IsAnyFile): break ## _GetFvStatement() method # # Get FV for capsule # # @param self The object pointer # @param CapsuleObj for whom FV is got # @retval True Successfully find a FV statement # @retval False Not able to find a FV statement # def _GetFvStatement(self, CapsuleObj, FMPCapsule = False): if not self._IsKeyword(BINARY_FILE_TYPE_FV): return False if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("FV name", self.FileName, self.CurrentLineNumber) if self._Token.upper() not in self.Profile.FvDict: raise Warning("FV name does not exist", self.FileName, self.CurrentLineNumber) myCapsuleFv = CapsuleFv() myCapsuleFv.FvName = self._Token if FMPCapsule: if not CapsuleObj.ImageFile: CapsuleObj.ImageFile.append(myCapsuleFv) else: CapsuleObj.VendorCodeFile.append(myCapsuleFv) else: CapsuleObj.CapsuleDataList.append(myCapsuleFv) return True ## _GetFdStatement() method # # Get FD for capsule # # @param self The object pointer # @param CapsuleObj for whom FD is got # @retval True Successfully find a FD statement # @retval False Not able to find a FD statement # def _GetFdStatement(self, CapsuleObj, FMPCapsule = False): if not self._IsKeyword("FD"): return False if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("FD name", self.FileName, self.CurrentLineNumber) if self._Token.upper() not in self.Profile.FdDict: raise Warning("FD name does not exist", self.FileName, self.CurrentLineNumber) myCapsuleFd = CapsuleFd() myCapsuleFd.FdName = self._Token if FMPCapsule: if not CapsuleObj.ImageFile: CapsuleObj.ImageFile.append(myCapsuleFd) else: CapsuleObj.VendorCodeFile.append(myCapsuleFd) else: CapsuleObj.CapsuleDataList.append(myCapsuleFd) return True def _GetFmpStatement(self, CapsuleObj): if not self._IsKeyword("FMP_PAYLOAD"): if not self._IsKeyword("FMP"): return False if not self._IsKeyword("PAYLOAD"): self._UndoToken() return False if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("payload name after FMP_PAYLOAD =", self.FileName, self.CurrentLineNumber) Payload = self._Token.upper() if Payload not in self.Profile.FmpPayloadDict: raise Warning("This FMP Payload does not exist: %s" % self._Token, self.FileName, self.CurrentLineNumber) CapsuleObj.FmpPayloadList.append(self.Profile.FmpPayloadDict[Payload]) return True def _ParseRawFileStatement(self): if not self._IsKeyword("FILE"): return None if not self._IsKeyword("DATA"): self._UndoToken() return None if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("File name", self.FileName, self.CurrentLineNumber) AnyFileName = self._Token self._VerifyFile(AnyFileName) if not os.path.isabs(AnyFileName): AnyFileName = mws.join(GenFdsGlobalVariable.WorkSpaceDir, AnyFileName) return AnyFileName ## _GetAnyFileStatement() method # # Get AnyFile for capsule # # @param self The object pointer # @param CapsuleObj for whom AnyFile is got # @retval True Successfully find a Anyfile statement # @retval False Not able to find a AnyFile statement # def _GetAnyFileStatement(self, CapsuleObj, FMPCapsule = False): AnyFileName = self._ParseRawFileStatement() if not AnyFileName: return False myCapsuleAnyFile = CapsuleAnyFile() myCapsuleAnyFile.FileName = AnyFileName if FMPCapsule: if not CapsuleObj.ImageFile: CapsuleObj.ImageFile.append(myCapsuleAnyFile) else: CapsuleObj.VendorCodeFile.append(myCapsuleAnyFile) else: CapsuleObj.CapsuleDataList.append(myCapsuleAnyFile) return True ## _GetAfileStatement() method # # Get Afile for capsule # # @param self The object pointer # @param CapsuleObj for whom Afile is got # @retval True Successfully find a Afile statement # @retval False Not able to find a Afile statement # def _GetAfileStatement(self, CapsuleObj): if not self._IsKeyword("APPEND"): return False if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("Afile name", self.FileName, self.CurrentLineNumber) AfileName = self._Token AfileBaseName = os.path.basename(AfileName) if os.path.splitext(AfileBaseName)[1] not in {".bin", ".BIN", ".Bin", ".dat", ".DAT", ".Dat", ".data", ".DATA", ".Data"}: raise Warning('invalid binary file type, should be one of "bin",BINARY_FILE_TYPE_BIN,"Bin","dat","DAT","Dat","data","DATA","Data"', \ self.FileName, self.CurrentLineNumber) if not os.path.isabs(AfileName): AfileName = GenFdsGlobalVariable.ReplaceWorkspaceMacro(AfileName) self._VerifyFile(AfileName) else: if not os.path.exists(AfileName): raise Warning('%s does not exist' % AfileName, self.FileName, self.CurrentLineNumber) else: pass myCapsuleAfile = CapsuleAfile() myCapsuleAfile.FileName = AfileName CapsuleObj.CapsuleDataList.append(myCapsuleAfile) return True ## _GetRule() method # # Get Rule section contents and store its data into rule list of self.Profile # # @param self The object pointer # @retval True Successfully find a Rule # @retval False Not able to find a Rule # def _GetRule(self): if not self._GetNextToken(): return False S = self._Token.upper() if S.startswith(TAB_SECTION_START) and not S.startswith("[RULE."): self.SectionParser(S) self._UndoToken() return False self._UndoToken() if not self._IsToken("[Rule.", True): FileLineTuple = GetRealFileLine(self.FileName, self.CurrentLineNumber) #print 'Parsing String: %s in File %s, At line: %d, Offset Within Line: %d' \ # % (self.Profile.FileLinesList[self.CurrentLineNumber - 1][self.CurrentOffsetWithinLine:], FileLineTuple[0], FileLineTuple[1], self.CurrentOffsetWithinLine) raise Warning.Expected("[Rule.]", self.FileName, self.CurrentLineNumber) if not self._SkipToToken(TAB_SPLIT): raise Warning.Expected("'.'", self.FileName, self.CurrentLineNumber) Arch = self._SkippedChars.rstrip(TAB_SPLIT) ModuleType = self._GetModuleType() TemplateName = "" if self._IsToken(TAB_SPLIT): if not self._GetNextWord(): raise Warning.Expected("template name", self.FileName, self.CurrentLineNumber) TemplateName = self._Token if not self._IsToken(TAB_SECTION_END): raise Warning.ExpectedBracketClose(self.FileName, self.CurrentLineNumber) RuleObj = self._GetRuleFileStatements() RuleObj.Arch = Arch.upper() RuleObj.ModuleType = ModuleType RuleObj.TemplateName = TemplateName if TemplateName == '': self.Profile.RuleDict['RULE' + \ TAB_SPLIT + \ Arch.upper() + \ TAB_SPLIT + \ ModuleType.upper() ] = RuleObj else: self.Profile.RuleDict['RULE' + \ TAB_SPLIT + \ Arch.upper() + \ TAB_SPLIT + \ ModuleType.upper() + \ TAB_SPLIT + \ TemplateName.upper() ] = RuleObj return True ## _GetModuleType() method # # Return the module type # # @param self The object pointer # @retval string module type # def _GetModuleType(self): if not self._GetNextWord(): raise Warning.Expected("Module type", self.FileName, self.CurrentLineNumber) if self._Token.upper() not in { SUP_MODULE_SEC, SUP_MODULE_PEI_CORE, SUP_MODULE_PEIM, SUP_MODULE_DXE_CORE, SUP_MODULE_DXE_DRIVER, SUP_MODULE_DXE_SAL_DRIVER, SUP_MODULE_DXE_SMM_DRIVER, SUP_MODULE_DXE_RUNTIME_DRIVER, SUP_MODULE_UEFI_DRIVER, SUP_MODULE_UEFI_APPLICATION, SUP_MODULE_USER_DEFINED, SUP_MODULE_HOST_APPLICATION, TAB_DEFAULT, SUP_MODULE_BASE, EDK_COMPONENT_TYPE_SECURITY_CORE, EDK_COMPONENT_TYPE_COMBINED_PEIM_DRIVER, EDK_COMPONENT_TYPE_PIC_PEIM, EDK_COMPONENT_TYPE_RELOCATABLE_PEIM, "PE32_PEIM", EDK_COMPONENT_TYPE_BS_DRIVER, EDK_COMPONENT_TYPE_RT_DRIVER, EDK_COMPONENT_TYPE_SAL_RT_DRIVER, EDK_COMPONENT_TYPE_APPLICATION, "ACPITABLE", SUP_MODULE_SMM_CORE, SUP_MODULE_MM_STANDALONE, SUP_MODULE_MM_CORE_STANDALONE}: raise Warning("Unknown Module type '%s'" % self._Token, self.FileName, self.CurrentLineNumber) return self._Token ## _GetFileExtension() method # # Return the file extension # # @param self The object pointer # @retval string file name extension # def _GetFileExtension(self): if not self._IsToken(TAB_SPLIT): raise Warning.Expected("'.'", self.FileName, self.CurrentLineNumber) Ext = "" if self._GetNextToken(): if FileExtensionPattern.match(self._Token): Ext = self._Token return TAB_SPLIT + Ext else: raise Warning("Unknown file extension '%s'" % self._Token, self.FileName, self.CurrentLineNumber) else: raise Warning.Expected("file extension", self.FileName, self.CurrentLineNumber) ## _GetRuleFileStatement() method # # Get rule contents # # @param self The object pointer # @retval Rule Rule object # def _GetRuleFileStatements(self): if not self._IsKeyword("FILE"): raise Warning.Expected("FILE", self.FileName, self.CurrentLineNumber) if not self._GetNextWord(): raise Warning.Expected("FFS type", self.FileName, self.CurrentLineNumber) Type = self._Token.strip().upper() if Type not in {"RAW", "FREEFORM", SUP_MODULE_SEC, SUP_MODULE_PEI_CORE, SUP_MODULE_PEIM, "PEI_DXE_COMBO", "DRIVER", SUP_MODULE_DXE_CORE, EDK_COMPONENT_TYPE_APPLICATION, "FV_IMAGE", "SMM", SUP_MODULE_SMM_CORE, SUP_MODULE_MM_STANDALONE, SUP_MODULE_MM_CORE_STANDALONE}: raise Warning("Unknown FV type '%s'" % self._Token, self.FileName, self.CurrentLineNumber) if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._IsKeyword("$(NAMED_GUID)"): if not self._GetNextWord(): NamedGuid = self._CurrentLine()[self.CurrentOffsetWithinLine:].split()[0].strip() if GlobalData.gGuidPatternEnd.match(NamedGuid): self.CurrentOffsetWithinLine += len(NamedGuid) self._Token = NamedGuid else: raise Warning.Expected("$(NAMED_GUID)", self.FileName, self.CurrentLineNumber) if self._Token == 'PCD': if not self._IsToken("("): raise Warning.Expected("'('", self.FileName, self.CurrentLineNumber) PcdPair = self._GetNextPcdSettings() if not self._IsToken(")"): raise Warning.Expected("')'", self.FileName, self.CurrentLineNumber) self._Token = 'PCD('+PcdPair[1]+TAB_SPLIT+PcdPair[0]+')' NameGuid = self._Token KeepReloc = None if self._IsKeyword('RELOCS_STRIPPED') or self._IsKeyword('RELOCS_RETAINED'): if self._FileCouldHaveRelocFlag(Type): if self._Token == 'RELOCS_STRIPPED': KeepReloc = False else: KeepReloc = True else: raise Warning("File type %s could not have reloc strip flag%d" % (Type, self.CurrentLineNumber), self.FileName, self.CurrentLineNumber) KeyStringList = [] if self._GetNextToken(): if TokenFindPattern.match(self._Token): KeyStringList.append(self._Token) if self._IsToken(TAB_COMMA_SPLIT): while self._GetNextToken(): if not TokenFindPattern.match(self._Token): raise Warning.Expected("KeyString \"Target_Tag_Arch\"", self.FileName, self.CurrentLineNumber) KeyStringList.append(self._Token) if not self._IsToken(TAB_COMMA_SPLIT): break else: self._UndoToken() Fixed = False if self._IsKeyword("Fixed", True): Fixed = True CheckSum = False if self._IsKeyword("CheckSum", True): CheckSum = True AlignValue = "" if self._GetAlignment(): if self._Token not in ALIGNMENTS: raise Warning("Incorrect alignment '%s'" % self._Token, self.FileName, self.CurrentLineNumber) #For FFS, Auto is default option same to "" if not self._Token == "Auto": AlignValue = self._Token if self._IsToken("{"): # Complex file rule expected NewRule = RuleComplexFile() NewRule.FvFileType = Type NewRule.NameGuid = NameGuid NewRule.Alignment = AlignValue NewRule.CheckSum = CheckSum NewRule.Fixed = Fixed NewRule.KeyStringList = KeyStringList if KeepReloc is not None: NewRule.KeepReloc = KeepReloc while True: IsEncapsulate = self._GetRuleEncapsulationSection(NewRule) IsLeaf = self._GetEfiSection(NewRule) if not IsEncapsulate and not IsLeaf: break if not self._IsToken(T_CHAR_BRACE_R): raise Warning.ExpectedCurlyClose(self.FileName, self.CurrentLineNumber) return NewRule else: # Simple file rule expected if not self._GetNextWord(): raise Warning.Expected("leaf section type", self.FileName, self.CurrentLineNumber) SectionName = self._Token if SectionName not in { "COMPAT16", BINARY_FILE_TYPE_PE32, BINARY_FILE_TYPE_PIC, BINARY_FILE_TYPE_TE, "FV_IMAGE", "RAW",BINARY_FILE_TYPE_DXE_DEPEX, BINARY_FILE_TYPE_UI, BINARY_FILE_TYPE_PEI_DEPEX, "VERSION", "SUBTYPE_GUID", BINARY_FILE_TYPE_SMM_DEPEX}: raise Warning("Unknown leaf section name '%s'" % SectionName, self.FileName, self.CurrentLineNumber) if self._IsKeyword("Fixed", True): Fixed = True if self._IsKeyword("CheckSum", True): CheckSum = True SectAlignment = "" if self._GetAlignment(): if self._Token not in ALIGNMENTS: raise Warning("Incorrect alignment '%s'" % self._Token, self.FileName, self.CurrentLineNumber) if self._Token == 'Auto' and (not SectionName == BINARY_FILE_TYPE_PE32) and (not SectionName == BINARY_FILE_TYPE_TE): raise Warning("Auto alignment can only be used in PE32 or TE section ", self.FileName, self.CurrentLineNumber) SectAlignment = self._Token Ext = None if self._IsToken(TAB_VALUE_SPLIT): Ext = self._GetFileExtension() elif not self._GetNextToken(): raise Warning.Expected("File name", self.FileName, self.CurrentLineNumber) NewRule = RuleSimpleFile() NewRule.SectionType = SectionName NewRule.FvFileType = Type NewRule.NameGuid = NameGuid NewRule.Alignment = AlignValue NewRule.SectAlignment = SectAlignment NewRule.CheckSum = CheckSum NewRule.Fixed = Fixed NewRule.KeyStringList = KeyStringList if KeepReloc is not None: NewRule.KeepReloc = KeepReloc NewRule.FileExtension = Ext NewRule.FileName = self._Token return NewRule ## _GetEfiSection() method # # Get section list for Rule # # @param self The object pointer # @param Obj for whom section is got # @retval True Successfully find section statement # @retval False Not able to find section statement # def _GetEfiSection(self, Obj): OldPos = self.GetFileBufferPos() EfiSectionObj = EfiSection() if not self._GetNextWord(): CurrentLine = self._CurrentLine()[self.CurrentOffsetWithinLine:].split()[0].strip() if self._Token == '{' and Obj.FvFileType == "RAW" and TAB_SPLIT in CurrentLine: if self._IsToken(TAB_VALUE_SPLIT): EfiSectionObj.FileExtension = self._GetFileExtension() elif self._GetNextToken(): EfiSectionObj.FileName = self._Token EfiSectionObj.SectionType = BINARY_FILE_TYPE_RAW Obj.SectionList.append(EfiSectionObj) return True else: return False SectionName = self._Token if SectionName not in { "COMPAT16", BINARY_FILE_TYPE_PE32, BINARY_FILE_TYPE_PIC, BINARY_FILE_TYPE_TE, "FV_IMAGE", "RAW",BINARY_FILE_TYPE_DXE_DEPEX, BINARY_FILE_TYPE_UI, BINARY_FILE_TYPE_PEI_DEPEX, "VERSION", "SUBTYPE_GUID", BINARY_FILE_TYPE_SMM_DEPEX, BINARY_FILE_TYPE_GUID}: self._UndoToken() return False if SectionName == "FV_IMAGE": FvImageSectionObj = FvImageSection() if self._IsKeyword("FV_IMAGE"): pass if self._IsToken("{"): FvObj = FV() self._GetDefineStatements(FvObj) self._GetBlockStatement(FvObj) self._GetSetStatements(FvObj) self._GetFvAlignment(FvObj) self._GetFvAttributes(FvObj) self._GetAprioriSection(FvObj) self._GetAprioriSection(FvObj) while True: IsInf = self._GetInfStatement(FvObj) IsFile = self._GetFileStatement(FvObj) if not IsInf and not IsFile: break if not self._IsToken(T_CHAR_BRACE_R): raise Warning.ExpectedCurlyClose(self.FileName, self.CurrentLineNumber) FvImageSectionObj.Fv = FvObj FvImageSectionObj.FvName = None else: if not self._IsKeyword(BINARY_FILE_TYPE_FV): raise Warning.Expected("'FV'", self.FileName, self.CurrentLineNumber) FvImageSectionObj.FvFileType = self._Token if self._GetAlignment(): if self._Token not in ALIGNMENT_NOAUTO: raise Warning("Incorrect alignment '%s'" % self._Token, self.FileName, self.CurrentLineNumber) FvImageSectionObj.Alignment = self._Token if self._IsToken(TAB_VALUE_SPLIT): FvImageSectionObj.FvFileExtension = self._GetFileExtension() elif self._GetNextToken(): if self._Token not in { T_CHAR_BRACE_R, "COMPAT16", BINARY_FILE_TYPE_PE32, BINARY_FILE_TYPE_PIC, BINARY_FILE_TYPE_TE, "FV_IMAGE", "RAW", BINARY_FILE_TYPE_DXE_DEPEX, BINARY_FILE_TYPE_UI, "VERSION", BINARY_FILE_TYPE_PEI_DEPEX, BINARY_FILE_TYPE_GUID, BINARY_FILE_TYPE_SMM_DEPEX}: FvImageSectionObj.FvFileName = self._Token else: self._UndoToken() else: raise Warning.Expected("FV file name", self.FileName, self.CurrentLineNumber) Obj.SectionList.append(FvImageSectionObj) return True EfiSectionObj.SectionType = SectionName if not self._GetNextToken(): raise Warning.Expected("file type", self.FileName, self.CurrentLineNumber) if self._Token == "STRING": if not self._RuleSectionCouldHaveString(EfiSectionObj.SectionType): raise Warning("%s section could NOT have string data%d" % (EfiSectionObj.SectionType, self.CurrentLineNumber), self.FileName, self.CurrentLineNumber) if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("Quoted String", self.FileName, self.CurrentLineNumber) if self._GetStringData(): EfiSectionObj.StringData = self._Token if self._IsKeyword("BUILD_NUM"): if not self._RuleSectionCouldHaveBuildNum(EfiSectionObj.SectionType): raise Warning("%s section could NOT have BUILD_NUM%d" % (EfiSectionObj.SectionType, self.CurrentLineNumber), self.FileName, self.CurrentLineNumber) if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("Build number", self.FileName, self.CurrentLineNumber) EfiSectionObj.BuildNum = self._Token else: EfiSectionObj.FileType = self._Token self._CheckRuleSectionFileType(EfiSectionObj.SectionType, EfiSectionObj.FileType) if self._IsKeyword("Optional"): if not self._RuleSectionCouldBeOptional(EfiSectionObj.SectionType): raise Warning("%s section could NOT be optional%d" % (EfiSectionObj.SectionType, self.CurrentLineNumber), self.FileName, self.CurrentLineNumber) EfiSectionObj.Optional = True if self._IsKeyword("BUILD_NUM"): if not self._RuleSectionCouldHaveBuildNum(EfiSectionObj.SectionType): raise Warning("%s section could NOT have BUILD_NUM%d" % (EfiSectionObj.SectionType, self.CurrentLineNumber), self.FileName, self.CurrentLineNumber) if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("Build number", self.FileName, self.CurrentLineNumber) EfiSectionObj.BuildNum = self._Token if self._GetAlignment(): if self._Token not in ALIGNMENTS: raise Warning("Incorrect alignment '%s'" % self._Token, self.FileName, self.CurrentLineNumber) if self._Token == 'Auto' and (not SectionName == BINARY_FILE_TYPE_PE32) and (not SectionName == BINARY_FILE_TYPE_TE): raise Warning("Auto alignment can only be used in PE32 or TE section ", self.FileName, self.CurrentLineNumber) EfiSectionObj.Alignment = self._Token if self._IsKeyword('RELOCS_STRIPPED') or self._IsKeyword('RELOCS_RETAINED'): if self._SectionCouldHaveRelocFlag(EfiSectionObj.SectionType): if self._Token == 'RELOCS_STRIPPED': EfiSectionObj.KeepReloc = False else: EfiSectionObj.KeepReloc = True if Obj.KeepReloc is not None and Obj.KeepReloc != EfiSectionObj.KeepReloc: raise Warning("Section type %s has reloc strip flag conflict with Rule" % EfiSectionObj.SectionType, self.FileName, self.CurrentLineNumber) else: raise Warning("Section type %s could not have reloc strip flag" % EfiSectionObj.SectionType, self.FileName, self.CurrentLineNumber) if self._IsToken(TAB_VALUE_SPLIT): EfiSectionObj.FileExtension = self._GetFileExtension() elif self._GetNextToken(): if self._Token not in { T_CHAR_BRACE_R, "COMPAT16", BINARY_FILE_TYPE_PE32, BINARY_FILE_TYPE_PIC, BINARY_FILE_TYPE_TE, "FV_IMAGE", "RAW", BINARY_FILE_TYPE_DXE_DEPEX, BINARY_FILE_TYPE_UI, "VERSION", BINARY_FILE_TYPE_PEI_DEPEX, BINARY_FILE_TYPE_GUID, BINARY_FILE_TYPE_SMM_DEPEX}: if self._Token.startswith('PCD'): self._UndoToken() self._GetNextWord() if self._Token == 'PCD': if not self._IsToken("("): raise Warning.Expected("'('", self.FileName, self.CurrentLineNumber) PcdPair = self._GetNextPcdSettings() if not self._IsToken(")"): raise Warning.Expected("')'", self.FileName, self.CurrentLineNumber) self._Token = 'PCD('+PcdPair[1]+TAB_SPLIT+PcdPair[0]+')' EfiSectionObj.FileName = self._Token else: self._UndoToken() else: raise Warning.Expected("section file name", self.FileName, self.CurrentLineNumber) Obj.SectionList.append(EfiSectionObj) return True ## _RuleSectionCouldBeOptional() method # # Get whether a section could be optional # # @param SectionType The section type to check # @retval True section could be optional # @retval False section never optional # @staticmethod def _RuleSectionCouldBeOptional(SectionType): if SectionType in {BINARY_FILE_TYPE_DXE_DEPEX, BINARY_FILE_TYPE_UI, "VERSION", BINARY_FILE_TYPE_PEI_DEPEX, "RAW", BINARY_FILE_TYPE_SMM_DEPEX}: return True else: return False ## _RuleSectionCouldHaveBuildNum() method # # Get whether a section could have build number information # # @param SectionType The section type to check # @retval True section could have build number information # @retval False section never have build number information # @staticmethod def _RuleSectionCouldHaveBuildNum(SectionType): if SectionType == "VERSION": return True else: return False ## _RuleSectionCouldHaveString() method # # Get whether a section could have string # # @param SectionType The section type to check # @retval True section could have string # @retval False section never have string # @staticmethod def _RuleSectionCouldHaveString(SectionType): if SectionType in {BINARY_FILE_TYPE_UI, "VERSION"}: return True else: return False ## _CheckRuleSectionFileType() method # # Get whether a section matches a file type # # @param self The object pointer # @param SectionType The section type to check # @param FileType The file type to check # def _CheckRuleSectionFileType(self, SectionType, FileType): WarningString = "Incorrect section file type '%s'" if SectionType == "COMPAT16": if FileType not in {"COMPAT16", "SEC_COMPAT16"}: raise Warning(WarningString % FileType, self.FileName, self.CurrentLineNumber) elif SectionType == BINARY_FILE_TYPE_PE32: if FileType not in {BINARY_FILE_TYPE_PE32, "SEC_PE32"}: raise Warning(WarningString % FileType, self.FileName, self.CurrentLineNumber) elif SectionType == BINARY_FILE_TYPE_PIC: if FileType not in {BINARY_FILE_TYPE_PIC, "SEC_PIC"}: raise Warning(WarningString % FileType, self.FileName, self.CurrentLineNumber) elif SectionType == BINARY_FILE_TYPE_TE: if FileType not in {BINARY_FILE_TYPE_TE, "SEC_TE"}: raise Warning(WarningString % FileType, self.FileName, self.CurrentLineNumber) elif SectionType == "RAW": if FileType not in {BINARY_FILE_TYPE_BIN, "SEC_BIN", "RAW", "ASL", "ACPI"}: raise Warning(WarningString % FileType, self.FileName, self.CurrentLineNumber) elif SectionType == BINARY_FILE_TYPE_DXE_DEPEX or SectionType == BINARY_FILE_TYPE_SMM_DEPEX: if FileType not in {BINARY_FILE_TYPE_DXE_DEPEX, "SEC_DXE_DEPEX", BINARY_FILE_TYPE_SMM_DEPEX}: raise Warning(WarningString % FileType, self.FileName, self.CurrentLineNumber) elif SectionType == BINARY_FILE_TYPE_UI: if FileType not in {BINARY_FILE_TYPE_UI, "SEC_UI"}: raise Warning(WarningString % FileType, self.FileName, self.CurrentLineNumber) elif SectionType == "VERSION": if FileType not in {"VERSION", "SEC_VERSION"}: raise Warning(WarningString % FileType, self.FileName, self.CurrentLineNumber) elif SectionType == BINARY_FILE_TYPE_PEI_DEPEX: if FileType not in {BINARY_FILE_TYPE_PEI_DEPEX, "SEC_PEI_DEPEX"}: raise Warning(WarningString % FileType, self.FileName, self.CurrentLineNumber) elif SectionType == BINARY_FILE_TYPE_GUID: if FileType not in {BINARY_FILE_TYPE_PE32, "SEC_GUID"}: raise Warning(WarningString % FileType, self.FileName, self.CurrentLineNumber) ## _GetRuleEncapsulationSection() method # # Get encapsulation section for Rule # # @param self The object pointer # @param theRule for whom section is got # @retval True Successfully find section statement # @retval False Not able to find section statement # def _GetRuleEncapsulationSection(self, theRule): if self._IsKeyword("COMPRESS"): Type = "PI_STD" if self._IsKeyword("PI_STD") or self._IsKeyword("PI_NONE"): Type = self._Token if not self._IsToken("{"): raise Warning.ExpectedCurlyOpen(self.FileName, self.CurrentLineNumber) CompressSectionObj = CompressSection() CompressSectionObj.CompType = Type # Recursive sections... while True: IsEncapsulate = self._GetRuleEncapsulationSection(CompressSectionObj) IsLeaf = self._GetEfiSection(CompressSectionObj) if not IsEncapsulate and not IsLeaf: break if not self._IsToken(T_CHAR_BRACE_R): raise Warning.ExpectedCurlyClose(self.FileName, self.CurrentLineNumber) theRule.SectionList.append(CompressSectionObj) return True elif self._IsKeyword("GUIDED"): GuidValue = None if self._GetNextGuid(): if self._Token in GlobalData.gGuidDict: self._Token = GuidStructureStringToGuidString(GlobalData.gGuidDict[self._Token]).upper() GuidValue = self._Token if self._IsKeyword("$(NAMED_GUID)"): GuidValue = self._Token AttribDict = self._GetGuidAttrib() if not self._IsToken("{"): raise Warning.ExpectedCurlyOpen(self.FileName, self.CurrentLineNumber) GuidSectionObj = GuidSection() GuidSectionObj.NameGuid = GuidValue GuidSectionObj.SectionType = "GUIDED" GuidSectionObj.ProcessRequired = AttribDict["PROCESSING_REQUIRED"] GuidSectionObj.AuthStatusValid = AttribDict["AUTH_STATUS_VALID"] GuidSectionObj.ExtraHeaderSize = AttribDict["EXTRA_HEADER_SIZE"] # Efi sections... while True: IsEncapsulate = self._GetRuleEncapsulationSection(GuidSectionObj) IsLeaf = self._GetEfiSection(GuidSectionObj) if not IsEncapsulate and not IsLeaf: break if not self._IsToken(T_CHAR_BRACE_R): raise Warning.ExpectedCurlyClose(self.FileName, self.CurrentLineNumber) theRule.SectionList.append(GuidSectionObj) return True return False ## _GetOptionRom() method # # Get OptionROM section contents and store its data into OptionROM list of self.Profile # # @param self The object pointer # @retval True Successfully find a OptionROM # @retval False Not able to find a OptionROM # def _GetOptionRom(self): if not self._GetNextToken(): return False S = self._Token.upper() if S.startswith(TAB_SECTION_START) and not S.startswith("[OPTIONROM."): self.SectionParser(S) self._UndoToken() return False self._UndoToken() if not self._IsToken("[OptionRom.", True): raise Warning("Unknown Keyword '%s'" % self._Token, self.FileName, self.CurrentLineNumber) OptRomName = self._GetUiName() if not self._IsToken(TAB_SECTION_END): raise Warning.ExpectedBracketClose(self.FileName, self.CurrentLineNumber) OptRomObj = OPTIONROM(OptRomName) self.Profile.OptRomDict[OptRomName] = OptRomObj while True: isInf = self._GetOptRomInfStatement(OptRomObj) isFile = self._GetOptRomFileStatement(OptRomObj) if not isInf and not isFile: break return True ## _GetOptRomInfStatement() method # # Get INF statements # # @param self The object pointer # @param Obj for whom inf statement is got # @retval True Successfully find inf statement # @retval False Not able to find inf statement # def _GetOptRomInfStatement(self, Obj): if not self._IsKeyword("INF"): return False ffsInf = OptRomInfStatement() self._GetInfOptions(ffsInf) if not self._GetNextToken(): raise Warning.Expected("INF file path", self.FileName, self.CurrentLineNumber) ffsInf.InfFileName = self._Token if ffsInf.InfFileName.replace(TAB_WORKSPACE, '').find('$') == -1: #check for file path ErrorCode, ErrorInfo = PathClass(NormPath(ffsInf.InfFileName), GenFdsGlobalVariable.WorkSpaceDir).Validate() if ErrorCode != 0: EdkLogger.error("GenFds", ErrorCode, ExtraData=ErrorInfo) NewFileName = ffsInf.InfFileName if ffsInf.OverrideGuid: NewFileName = ProcessDuplicatedInf(PathClass(ffsInf.InfFileName,GenFdsGlobalVariable.WorkSpaceDir), ffsInf.OverrideGuid, GenFdsGlobalVariable.WorkSpaceDir).Path if not NewFileName in self.Profile.InfList: self.Profile.InfList.append(NewFileName) FileLineTuple = GetRealFileLine(self.FileName, self.CurrentLineNumber) self.Profile.InfFileLineList.append(FileLineTuple) if ffsInf.UseArch: if ffsInf.UseArch not in self.Profile.InfDict: self.Profile.InfDict[ffsInf.UseArch] = [ffsInf.InfFileName] else: self.Profile.InfDict[ffsInf.UseArch].append(ffsInf.InfFileName) else: self.Profile.InfDict['ArchTBD'].append(ffsInf.InfFileName) self._GetOptRomOverrides (ffsInf) Obj.FfsList.append(ffsInf) return True ## _GetOptRomOverrides() method # # Get overrides for OptROM INF & FILE # # @param self The object pointer # @param FfsInfObj for whom overrides is got # def _GetOptRomOverrides(self, Obj): if self._IsToken('{'): Overrides = OverrideAttribs() while True: if self._IsKeyword("PCI_VENDOR_ID"): if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextHexNumber(): raise Warning.Expected("Hex vendor id", self.FileName, self.CurrentLineNumber) Overrides.PciVendorId = self._Token continue if self._IsKeyword("PCI_CLASS_CODE"): if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextHexNumber(): raise Warning.Expected("Hex class code", self.FileName, self.CurrentLineNumber) Overrides.PciClassCode = self._Token continue if self._IsKeyword("PCI_DEVICE_ID"): if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) # Get a list of PCI IDs Overrides.PciDeviceId = "" while (self._GetNextHexNumber()): Overrides.PciDeviceId = "{} {}".format(Overrides.PciDeviceId, self._Token) if not Overrides.PciDeviceId: raise Warning.Expected("one or more Hex device ids", self.FileName, self.CurrentLineNumber) continue if self._IsKeyword("PCI_REVISION"): if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextHexNumber(): raise Warning.Expected("Hex revision", self.FileName, self.CurrentLineNumber) Overrides.PciRevision = self._Token continue if self._IsKeyword("PCI_COMPRESS"): if not self._IsToken(TAB_EQUAL_SPLIT): raise Warning.ExpectedEquals(self.FileName, self.CurrentLineNumber) if not self._GetNextToken(): raise Warning.Expected("TRUE/FALSE for compress", self.FileName, self.CurrentLineNumber) Overrides.NeedCompress = self._Token.upper() == 'TRUE' continue if self._IsToken(T_CHAR_BRACE_R): break else: EdkLogger.error("FdfParser", FORMAT_INVALID, File=self.FileName, Line=self.CurrentLineNumber) Obj.OverrideAttribs = Overrides ## _GetOptRomFileStatement() method # # Get FILE statements # # @param self The object pointer # @param Obj for whom FILE statement is got # @retval True Successfully find FILE statement # @retval False Not able to find FILE statement # def _GetOptRomFileStatement(self, Obj): if not self._IsKeyword("FILE"): return False FfsFileObj = OptRomFileStatement() if not self._IsKeyword("EFI") and not self._IsKeyword(BINARY_FILE_TYPE_BIN): raise Warning.Expected("Binary type (EFI/BIN)", self.FileName, self.CurrentLineNumber) FfsFileObj.FileType = self._Token if not self._GetNextToken(): raise Warning.Expected("File path", self.FileName, self.CurrentLineNumber) FfsFileObj.FileName = self._Token if FfsFileObj.FileName.replace(TAB_WORKSPACE, '').find('$') == -1: #check for file path ErrorCode, ErrorInfo = PathClass(NormPath(FfsFileObj.FileName), GenFdsGlobalVariable.WorkSpaceDir).Validate() if ErrorCode != 0: EdkLogger.error("GenFds", ErrorCode, ExtraData=ErrorInfo) if FfsFileObj.FileType == 'EFI': self._GetOptRomOverrides(FfsFileObj) Obj.FfsList.append(FfsFileObj) return True ## _GetCapInFd() method # # Get Cap list contained in FD # # @param self The object pointer # @param FdName FD name # @retval CapList List of Capsule in FD # def _GetCapInFd (self, FdName): CapList = [] if FdName.upper() in self.Profile.FdDict: FdObj = self.Profile.FdDict[FdName.upper()] for elementRegion in FdObj.RegionList: if elementRegion.RegionType == 'CAPSULE': for elementRegionData in elementRegion.RegionDataList: if elementRegionData.endswith(".cap"): continue if elementRegionData is not None and elementRegionData.upper() not in CapList: CapList.append(elementRegionData.upper()) return CapList ## _GetReferencedFdCapTuple() method # # Get FV and FD list referenced by a capsule image # # @param self The object pointer # @param CapObj Capsule section to be searched # @param RefFdList referenced FD by section # @param RefFvList referenced FV by section # def _GetReferencedFdCapTuple(self, CapObj, RefFdList = [], RefFvList = []): for CapsuleDataObj in CapObj.CapsuleDataList: if hasattr(CapsuleDataObj, 'FvName') and CapsuleDataObj.FvName is not None and CapsuleDataObj.FvName.upper() not in RefFvList: RefFvList.append (CapsuleDataObj.FvName.upper()) elif hasattr(CapsuleDataObj, 'FdName') and CapsuleDataObj.FdName is not None and CapsuleDataObj.FdName.upper() not in RefFdList: RefFdList.append (CapsuleDataObj.FdName.upper()) elif CapsuleDataObj.Ffs is not None: if isinstance(CapsuleDataObj.Ffs, FileStatement): if CapsuleDataObj.Ffs.FvName is not None and CapsuleDataObj.Ffs.FvName.upper() not in RefFvList: RefFvList.append(CapsuleDataObj.Ffs.FvName.upper()) elif CapsuleDataObj.Ffs.FdName is not None and CapsuleDataObj.Ffs.FdName.upper() not in RefFdList: RefFdList.append(CapsuleDataObj.Ffs.FdName.upper()) else: self._GetReferencedFdFvTupleFromSection(CapsuleDataObj.Ffs, RefFdList, RefFvList) ## _GetFvInFd() method # # Get FV list contained in FD # # @param self The object pointer # @param FdName FD name # @retval FvList list of FV in FD # def _GetFvInFd (self, FdName): FvList = [] if FdName.upper() in self.Profile.FdDict: FdObj = self.Profile.FdDict[FdName.upper()] for elementRegion in FdObj.RegionList: if elementRegion.RegionType == BINARY_FILE_TYPE_FV: for elementRegionData in elementRegion.RegionDataList: if elementRegionData.endswith(".fv"): continue if elementRegionData is not None and elementRegionData.upper() not in FvList: FvList.append(elementRegionData.upper()) return FvList ## _GetReferencedFdFvTuple() method # # Get FD and FV list referenced by a FFS file # # @param self The object pointer # @param FfsFile contains sections to be searched # @param RefFdList referenced FD by section # @param RefFvList referenced FV by section # def _GetReferencedFdFvTuple(self, FvObj, RefFdList = [], RefFvList = []): for FfsObj in FvObj.FfsList: if isinstance(FfsObj, FileStatement): if FfsObj.FvName is not None and FfsObj.FvName.upper() not in RefFvList: RefFvList.append(FfsObj.FvName.upper()) elif FfsObj.FdName is not None and FfsObj.FdName.upper() not in RefFdList: RefFdList.append(FfsObj.FdName.upper()) else: self._GetReferencedFdFvTupleFromSection(FfsObj, RefFdList, RefFvList) ## _GetReferencedFdFvTupleFromSection() method # # Get FD and FV list referenced by a FFS section # # @param self The object pointer # @param FfsFile contains sections to be searched # @param FdList referenced FD by section # @param FvList referenced FV by section # def _GetReferencedFdFvTupleFromSection(self, FfsFile, FdList = [], FvList = []): SectionStack = list(FfsFile.SectionList) while SectionStack != []: SectionObj = SectionStack.pop() if isinstance(SectionObj, FvImageSection): if SectionObj.FvName is not None and SectionObj.FvName.upper() not in FvList: FvList.append(SectionObj.FvName.upper()) if SectionObj.Fv is not None and SectionObj.Fv.UiFvName is not None and SectionObj.Fv.UiFvName.upper() not in FvList: FvList.append(SectionObj.Fv.UiFvName.upper()) self._GetReferencedFdFvTuple(SectionObj.Fv, FdList, FvList) if isinstance(SectionObj, CompressSection) or isinstance(SectionObj, GuidSection): SectionStack.extend(SectionObj.SectionList) ## CycleReferenceCheck() method # # Check whether cycle reference exists in FDF # # @param self The object pointer # @retval True cycle reference exists # @retval False Not exists cycle reference # def CycleReferenceCheck(self): # # Check the cycle between FV and FD image # MaxLength = len (self.Profile.FvDict) for FvName in self.Profile.FvDict: LogStr = "\nCycle Reference Checking for FV: %s\n" % FvName RefFvStack = set(FvName) FdAnalyzedList = set() Index = 0 while RefFvStack and Index < MaxLength: Index = Index + 1 FvNameFromStack = RefFvStack.pop() if FvNameFromStack.upper() in self.Profile.FvDict: FvObj = self.Profile.FvDict[FvNameFromStack.upper()] else: continue RefFdList = [] RefFvList = [] self._GetReferencedFdFvTuple(FvObj, RefFdList, RefFvList) for RefFdName in RefFdList: if RefFdName in FdAnalyzedList: continue LogStr += "FV %s contains FD %s\n" % (FvNameFromStack, RefFdName) FvInFdList = self._GetFvInFd(RefFdName) if FvInFdList != []: for FvNameInFd in FvInFdList: LogStr += "FD %s contains FV %s\n" % (RefFdName, FvNameInFd) if FvNameInFd not in RefFvStack: RefFvStack.add(FvNameInFd) if FvName in RefFvStack or FvNameFromStack in RefFvStack: EdkLogger.info(LogStr) return True FdAnalyzedList.add(RefFdName) for RefFvName in RefFvList: LogStr += "FV %s contains FV %s\n" % (FvNameFromStack, RefFvName) if RefFvName not in RefFvStack: RefFvStack.add(RefFvName) if FvName in RefFvStack or FvNameFromStack in RefFvStack: EdkLogger.info(LogStr) return True # # Check the cycle between Capsule and FD image # MaxLength = len (self.Profile.CapsuleDict) for CapName in self.Profile.CapsuleDict: # # Capsule image to be checked. # LogStr = "\n\n\nCycle Reference Checking for Capsule: %s\n" % CapName RefCapStack = {CapName} FdAnalyzedList = set() FvAnalyzedList = set() Index = 0 while RefCapStack and Index < MaxLength: Index = Index + 1 CapNameFromStack = RefCapStack.pop() if CapNameFromStack.upper() in self.Profile.CapsuleDict: CapObj = self.Profile.CapsuleDict[CapNameFromStack.upper()] else: continue RefFvList = [] RefFdList = [] self._GetReferencedFdCapTuple(CapObj, RefFdList, RefFvList) FvListLength = 0 FdListLength = 0 while FvListLength < len (RefFvList) or FdListLength < len (RefFdList): for RefFdName in RefFdList: if RefFdName in FdAnalyzedList: continue LogStr += "Capsule %s contains FD %s\n" % (CapNameFromStack, RefFdName) for CapNameInFd in self._GetCapInFd(RefFdName): LogStr += "FD %s contains Capsule %s\n" % (RefFdName, CapNameInFd) if CapNameInFd not in RefCapStack: RefCapStack.append(CapNameInFd) if CapName in RefCapStack or CapNameFromStack in RefCapStack: EdkLogger.info(LogStr) return True for FvNameInFd in self._GetFvInFd(RefFdName): LogStr += "FD %s contains FV %s\n" % (RefFdName, FvNameInFd) if FvNameInFd not in RefFvList: RefFvList.append(FvNameInFd) FdAnalyzedList.add(RefFdName) # # the number of the parsed FV and FD image # FvListLength = len (RefFvList) FdListLength = len (RefFdList) for RefFvName in RefFvList: if RefFvName in FvAnalyzedList: continue LogStr += "Capsule %s contains FV %s\n" % (CapNameFromStack, RefFvName) if RefFvName.upper() in self.Profile.FvDict: FvObj = self.Profile.FvDict[RefFvName.upper()] else: continue self._GetReferencedFdFvTuple(FvObj, RefFdList, RefFvList) FvAnalyzedList.add(RefFvName) return False def GetAllIncludedFile (self): global AllIncludeFileList return AllIncludeFileList if __name__ == "__main__": import sys try: test_file = sys.argv[1] except IndexError as v: print("Usage: %s filename" % sys.argv[0]) sys.exit(1) parser = FdfParser(test_file) try: parser.ParseFile() parser.CycleReferenceCheck() except Warning as X: print(str(X)) else: print("Success!")
edk2-master
BaseTools/Source/Python/GenFds/FdfParser.py
## @file # Python 'GenFds' package initialization file. # # This file is required to make Python interpreter treat the directory # as containing package. # # Copyright (c) 2007 - 2010, Intel Corporation. All rights reserved.<BR> # SPDX-License-Identifier: BSD-2-Clause-Patent #
edk2-master
BaseTools/Source/Python/GenFds/__init__.py
## @file # Complex Rule object for generating FFS # # Copyright (c) 2007, Intel Corporation. All rights reserved.<BR> # # SPDX-License-Identifier: BSD-2-Clause-Patent # ## # Import Modules # from __future__ import absolute_import from . import Rule from CommonDataClass.FdfClass import RuleComplexFileClassObject ## complex rule # # class RuleComplexFile(RuleComplexFileClassObject) : ## The constructor # # @param self The object pointer # def __init__(self): RuleComplexFileClassObject.__init__(self)
edk2-master
BaseTools/Source/Python/GenFds/RuleComplexFile.py
## @file # process GUIDed section generation # # Copyright (c) 2007 - 2018, Intel Corporation. All rights reserved.<BR> # Copyright (c) 2018, Hewlett Packard Enterprise Development, L.P.<BR> # # SPDX-License-Identifier: BSD-2-Clause-Patent # ## # Import Modules # from __future__ import absolute_import from . import Section import subprocess from .Ffs import SectionSuffix import Common.LongFilePathOs as os from .GenFdsGlobalVariable import GenFdsGlobalVariable from .GenFdsGlobalVariable import FindExtendTool from CommonDataClass.FdfClass import GuidSectionClassObject import sys from Common import EdkLogger from Common.BuildToolError import * from .FvImageSection import FvImageSection from Common.LongFilePathSupport import OpenLongFilePath as open from Common.DataType import * ## generate GUIDed section # # class GuidSection(GuidSectionClassObject) : ## The constructor # # @param self The object pointer # def __init__(self): GuidSectionClassObject.__init__(self) ## GenSection() method # # Generate GUIDed section # # @param self The object pointer # @param OutputPath Where to place output file # @param ModuleName Which module this section belongs to # @param SecNum Index of section # @param KeyStringList Filter for inputs of section generation # @param FfsInf FfsInfStatement object that contains this section data # @param Dict dictionary contains macro and its value # @retval tuple (Generated file name, section alignment) # def GenSection(self, OutputPath, ModuleName, SecNum, KeyStringList, FfsInf=None, Dict=None, IsMakefile=False): # # Generate all section # self.KeyStringList = KeyStringList self.CurrentArchList = GenFdsGlobalVariable.ArchList if FfsInf is not None: self.Alignment = FfsInf.__ExtendMacro__(self.Alignment) self.NameGuid = FfsInf.__ExtendMacro__(self.NameGuid) self.SectionType = FfsInf.__ExtendMacro__(self.SectionType) self.CurrentArchList = [FfsInf.CurrentArch] SectFile = tuple() SectAlign = [] Index = 0 MaxAlign = None if Dict is None: Dict = {} if self.FvAddr != []: FvAddrIsSet = True else: FvAddrIsSet = False if self.ProcessRequired in ("TRUE", "1"): if self.FvAddr != []: #no use FvAddr when the image is processed. self.FvAddr = [] if self.FvParentAddr is not None: #no use Parent Addr when the image is processed. self.FvParentAddr = None for Sect in self.SectionList: Index = Index + 1 SecIndex = '%s.%d' % (SecNum, Index) # set base address for inside FvImage if isinstance(Sect, FvImageSection): if self.FvAddr != []: Sect.FvAddr = self.FvAddr.pop(0) self.IncludeFvSection = True elif isinstance(Sect, GuidSection): Sect.FvAddr = self.FvAddr Sect.FvParentAddr = self.FvParentAddr ReturnSectList, align = Sect.GenSection(OutputPath, ModuleName, SecIndex, KeyStringList, FfsInf, Dict, IsMakefile=IsMakefile) if isinstance(Sect, GuidSection): if Sect.IncludeFvSection: self.IncludeFvSection = Sect.IncludeFvSection if align is not None: if MaxAlign is None: MaxAlign = align if GenFdsGlobalVariable.GetAlignment (align) > GenFdsGlobalVariable.GetAlignment (MaxAlign): MaxAlign = align if ReturnSectList != []: if align is None: align = "1" for file in ReturnSectList: SectFile += (file,) SectAlign.append(align) if MaxAlign is not None: if self.Alignment is None: self.Alignment = MaxAlign else: if GenFdsGlobalVariable.GetAlignment (MaxAlign) > GenFdsGlobalVariable.GetAlignment (self.Alignment): self.Alignment = MaxAlign OutputFile = OutputPath + \ os.sep + \ ModuleName + \ SUP_MODULE_SEC + \ SecNum + \ SectionSuffix['GUIDED'] OutputFile = os.path.normpath(OutputFile) ExternalTool = None ExternalOption = None if self.NameGuid is not None: ExternalTool, ExternalOption = FindExtendTool(self.KeyStringList, self.CurrentArchList, self.NameGuid) # # If not have GUID , call default # GENCRC32 section # if self.NameGuid is None : GenFdsGlobalVariable.VerboseLogger("Use GenSection function Generate CRC32 Section") GenFdsGlobalVariable.GenerateSection(OutputFile, SectFile, Section.Section.SectionType[self.SectionType], InputAlign=SectAlign, IsMakefile=IsMakefile) OutputFileList = [] OutputFileList.append(OutputFile) return OutputFileList, self.Alignment #or GUID not in External Tool List elif ExternalTool is None: EdkLogger.error("GenFds", GENFDS_ERROR, "No tool found with GUID %s" % self.NameGuid) else: DummyFile = OutputFile + ".dummy" # # Call GenSection with DUMMY section type. # GenFdsGlobalVariable.GenerateSection(DummyFile, SectFile, InputAlign=SectAlign, IsMakefile=IsMakefile) # # Use external tool process the Output # TempFile = OutputPath + \ os.sep + \ ModuleName + \ SUP_MODULE_SEC + \ SecNum + \ '.tmp' TempFile = os.path.normpath(TempFile) # # Remove temp file if its time stamp is older than dummy file # Just in case the external tool fails at this time but succeeded before # Error should be reported if the external tool does not generate a new output based on new input # if os.path.exists(TempFile) and os.path.exists(DummyFile) and os.path.getmtime(TempFile) < os.path.getmtime(DummyFile): os.remove(TempFile) FirstCall = False CmdOption = '-e' if ExternalOption is not None: CmdOption = CmdOption + ' ' + ExternalOption if not GenFdsGlobalVariable.EnableGenfdsMultiThread: if self.ProcessRequired not in ("TRUE", "1") and self.IncludeFvSection and not FvAddrIsSet and self.FvParentAddr is not None: #FirstCall is only set for the encapsulated flash FV image without process required attribute. FirstCall = True # # Call external tool # ReturnValue = [1] if FirstCall: #first try to call the guided tool with -z option and CmdOption for the no process required guided tool. GenFdsGlobalVariable.GuidTool(TempFile, [DummyFile], ExternalTool, '-z' + ' ' + CmdOption, ReturnValue) # # when no call or first call failed, ReturnValue are not 1. # Call the guided tool with CmdOption # if ReturnValue[0] != 0: FirstCall = False ReturnValue[0] = 0 GenFdsGlobalVariable.GuidTool(TempFile, [DummyFile], ExternalTool, CmdOption) # # There is external tool which does not follow standard rule which return nonzero if tool fails # The output file has to be checked # if not os.path.exists(TempFile) : EdkLogger.error("GenFds", COMMAND_FAILURE, 'Fail to call %s, no output file was generated' % ExternalTool) FileHandleIn = open(DummyFile, 'rb') FileHandleIn.seek(0, 2) InputFileSize = FileHandleIn.tell() FileHandleOut = open(TempFile, 'rb') FileHandleOut.seek(0, 2) TempFileSize = FileHandleOut.tell() Attribute = [] HeaderLength = None if self.ExtraHeaderSize != -1: HeaderLength = str(self.ExtraHeaderSize) if self.ProcessRequired == "NONE" and HeaderLength is None: if TempFileSize > InputFileSize: FileHandleIn.seek(0) BufferIn = FileHandleIn.read() FileHandleOut.seek(0) BufferOut = FileHandleOut.read() if BufferIn == BufferOut[TempFileSize - InputFileSize:]: HeaderLength = str(TempFileSize - InputFileSize) #auto sec guided attribute with process required if HeaderLength is None: Attribute.append('PROCESSING_REQUIRED') FileHandleIn.close() FileHandleOut.close() if FirstCall and 'PROCESSING_REQUIRED' in Attribute: # Guided data by -z option on first call is the process required data. Call the guided tool with the real option. GenFdsGlobalVariable.GuidTool(TempFile, [DummyFile], ExternalTool, CmdOption) # # Call Gensection Add Section Header # if self.ProcessRequired in ("TRUE", "1"): if 'PROCESSING_REQUIRED' not in Attribute: Attribute.append('PROCESSING_REQUIRED') if self.AuthStatusValid in ("TRUE", "1"): Attribute.append('AUTH_STATUS_VALID') GenFdsGlobalVariable.GenerateSection(OutputFile, [TempFile], Section.Section.SectionType['GUIDED'], Guid=self.NameGuid, GuidAttr=Attribute, GuidHdrLen=HeaderLength) else: #add input file for GenSec get PROCESSING_REQUIRED GenFdsGlobalVariable.GuidTool(TempFile, [DummyFile], ExternalTool, CmdOption, IsMakefile=IsMakefile) Attribute = [] HeaderLength = None if self.ExtraHeaderSize != -1: HeaderLength = str(self.ExtraHeaderSize) if self.AuthStatusValid in ("TRUE", "1"): Attribute.append('AUTH_STATUS_VALID') if self.ProcessRequired == "NONE" and HeaderLength is None: GenFdsGlobalVariable.GenerateSection(OutputFile, [TempFile], Section.Section.SectionType['GUIDED'], Guid=self.NameGuid, GuidAttr=Attribute, GuidHdrLen=HeaderLength, DummyFile=DummyFile, IsMakefile=IsMakefile) else: if self.ProcessRequired in ("TRUE", "1"): if 'PROCESSING_REQUIRED' not in Attribute: Attribute.append('PROCESSING_REQUIRED') GenFdsGlobalVariable.GenerateSection(OutputFile, [TempFile], Section.Section.SectionType['GUIDED'], Guid=self.NameGuid, GuidAttr=Attribute, GuidHdrLen=HeaderLength, IsMakefile=IsMakefile) OutputFileList = [] OutputFileList.append(OutputFile) if 'PROCESSING_REQUIRED' in Attribute: # reset guided section alignment to none for the processed required guided data self.Alignment = None self.IncludeFvSection = False self.ProcessRequired = "TRUE" if IsMakefile and self.Alignment is not None and self.Alignment.strip() == '0': self.Alignment = '1' return OutputFileList, self.Alignment
edk2-master
BaseTools/Source/Python/GenFds/GuidSection.py
## @file # process FFS generation from FILE statement # # Copyright (c) 2007 - 2018, Intel Corporation. All rights reserved.<BR> # # SPDX-License-Identifier: BSD-2-Clause-Patent # ## # Import Modules # from __future__ import absolute_import from io import BytesIO from struct import pack from CommonDataClass.FdfClass import FileStatementClassObject from Common import EdkLogger from Common.BuildToolError import GENFDS_ERROR from Common.Misc import GuidStructureByteArrayToGuidString, SaveFileOnChange import Common.LongFilePathOs as os from .GuidSection import GuidSection from .FvImageSection import FvImageSection from .Ffs import FdfFvFileTypeToFileType from .GenFdsGlobalVariable import GenFdsGlobalVariable import shutil ## generate FFS from FILE # # class FileStatement (FileStatementClassObject): ## The constructor # # @param self The object pointer # def __init__(self): FileStatementClassObject.__init__(self) self.CurrentLineNum = None self.CurrentLineContent = None self.FileName = None self.InfFileName = None self.SubAlignment = None ## GenFfs() method # # Generate FFS # # @param self The object pointer # @param Dict dictionary contains macro and value pair # @param FvChildAddr Array of the inside FvImage base address # @param FvParentAddr Parent Fv base address # @retval string Generated FFS file name # def GenFfs(self, Dict = None, FvChildAddr=[], FvParentAddr=None, IsMakefile=False, FvName=None): if self.NameGuid and self.NameGuid.startswith('PCD('): PcdValue = GenFdsGlobalVariable.GetPcdValue(self.NameGuid) if len(PcdValue) == 0: EdkLogger.error("GenFds", GENFDS_ERROR, '%s NOT defined.' \ % (self.NameGuid)) if PcdValue.startswith('{'): PcdValue = GuidStructureByteArrayToGuidString(PcdValue) RegistryGuidStr = PcdValue if len(RegistryGuidStr) == 0: EdkLogger.error("GenFds", GENFDS_ERROR, 'GUID value for %s in wrong format.' \ % (self.NameGuid)) self.NameGuid = RegistryGuidStr Str = self.NameGuid if FvName: Str += FvName OutputDir = os.path.join(GenFdsGlobalVariable.FfsDir, Str) if os.path.exists(OutputDir): shutil.rmtree(OutputDir) if not os.path.exists(OutputDir): os.makedirs(OutputDir) if Dict is None: Dict = {} Dict.update(self.DefineVarDict) SectionAlignments = None if self.FvName: Buffer = BytesIO() if self.FvName.upper() not in GenFdsGlobalVariable.FdfParser.Profile.FvDict: EdkLogger.error("GenFds", GENFDS_ERROR, "FV (%s) is NOT described in FDF file!" % (self.FvName)) Fv = GenFdsGlobalVariable.FdfParser.Profile.FvDict.get(self.FvName.upper()) FileName = Fv.AddToBuffer(Buffer) SectionFiles = [FileName] elif self.FdName: if self.FdName.upper() not in GenFdsGlobalVariable.FdfParser.Profile.FdDict: EdkLogger.error("GenFds", GENFDS_ERROR, "FD (%s) is NOT described in FDF file!" % (self.FdName)) Fd = GenFdsGlobalVariable.FdfParser.Profile.FdDict.get(self.FdName.upper()) FileName = Fd.GenFd() SectionFiles = [FileName] elif self.FileName: if hasattr(self, 'FvFileType') and self.FvFileType == 'RAW': if isinstance(self.FileName, list) and isinstance(self.SubAlignment, list) and len(self.FileName) == len(self.SubAlignment): FileContent = BytesIO() MaxAlignIndex = 0 MaxAlignValue = 1 for Index, File in enumerate(self.FileName): try: f = open(File, 'rb') except: GenFdsGlobalVariable.ErrorLogger("Error opening RAW file %s." % (File)) Content = f.read() f.close() AlignValue = 1 if self.SubAlignment[Index]: AlignValue = GenFdsGlobalVariable.GetAlignment(self.SubAlignment[Index]) if AlignValue > MaxAlignValue: MaxAlignIndex = Index MaxAlignValue = AlignValue FileContent.write(Content) if len(FileContent.getvalue()) % AlignValue != 0: Size = AlignValue - len(FileContent.getvalue()) % AlignValue for i in range(0, Size): FileContent.write(pack('B', 0xFF)) if FileContent.getvalue() != b'': OutputRAWFile = os.path.join(GenFdsGlobalVariable.FfsDir, self.NameGuid, self.NameGuid + '.raw') SaveFileOnChange(OutputRAWFile, FileContent.getvalue(), True) self.FileName = OutputRAWFile self.SubAlignment = self.SubAlignment[MaxAlignIndex] if self.Alignment and self.SubAlignment: if GenFdsGlobalVariable.GetAlignment (self.Alignment) < GenFdsGlobalVariable.GetAlignment (self.SubAlignment): self.Alignment = self.SubAlignment elif self.SubAlignment: self.Alignment = self.SubAlignment self.FileName = GenFdsGlobalVariable.ReplaceWorkspaceMacro(self.FileName) #Replace $(SAPCE) with real space self.FileName = self.FileName.replace('$(SPACE)', ' ') SectionFiles = [GenFdsGlobalVariable.MacroExtend(self.FileName, Dict)] else: SectionFiles = [] Index = 0 SectionAlignments = [] for section in self.SectionList: Index = Index + 1 SecIndex = '%d' %Index # process the inside FvImage from FvSection or GuidSection if FvChildAddr != []: if isinstance(section, FvImageSection): section.FvAddr = FvChildAddr.pop(0) elif isinstance(section, GuidSection): section.FvAddr = FvChildAddr if FvParentAddr and isinstance(section, GuidSection): section.FvParentAddr = FvParentAddr if self.KeepReloc == False: section.KeepReloc = False sectList, align = section.GenSection(OutputDir, self.NameGuid, SecIndex, self.KeyStringList, None, Dict) if sectList != []: for sect in sectList: SectionFiles.append(sect) SectionAlignments.append(align) # # Prepare the parameter # FfsFileOutput = os.path.join(OutputDir, self.NameGuid + '.ffs') GenFdsGlobalVariable.GenerateFfs(FfsFileOutput, SectionFiles, FdfFvFileTypeToFileType.get(self.FvFileType), self.NameGuid, Fixed=self.Fixed, CheckSum=self.CheckSum, Align=self.Alignment, SectionAlign=SectionAlignments ) return FfsFileOutput
edk2-master
BaseTools/Source/Python/GenFds/FfsFileStatement.py
## @file # process UI section generation # # Copyright (c) 2007 - 2017, Intel Corporation. All rights reserved.<BR> # # SPDX-License-Identifier: BSD-2-Clause-Patent # ## # Import Modules # from __future__ import absolute_import from . import Section from .Ffs import SectionSuffix import subprocess import Common.LongFilePathOs as os from .GenFdsGlobalVariable import GenFdsGlobalVariable from CommonDataClass.FdfClass import UiSectionClassObject from Common.LongFilePathSupport import OpenLongFilePath as open from Common.DataType import * ## generate UI section # # class UiSection (UiSectionClassObject): ## The constructor # # @param self The object pointer # def __init__(self): UiSectionClassObject.__init__(self) ## GenSection() method # # Generate UI section # # @param self The object pointer # @param OutputPath Where to place output file # @param ModuleName Which module this section belongs to # @param SecNum Index of section # @param KeyStringList Filter for inputs of section generation # @param FfsInf FfsInfStatement object that contains this section data # @param Dict dictionary contains macro and its value # @retval tuple (Generated file name, section alignment) # def GenSection(self, OutputPath, ModuleName, SecNum, KeyStringList, FfsInf=None, Dict=None, IsMakefile = False): # # Prepare the parameter of GenSection # if FfsInf is not None: self.Alignment = FfsInf.__ExtendMacro__(self.Alignment) self.StringData = FfsInf.__ExtendMacro__(self.StringData) self.FileName = FfsInf.__ExtendMacro__(self.FileName) OutputFile = os.path.join(OutputPath, ModuleName + SUP_MODULE_SEC + SecNum + SectionSuffix.get(BINARY_FILE_TYPE_UI)) if self.StringData is not None : NameString = self.StringData elif self.FileName is not None: if Dict is None: Dict = {} FileNameStr = GenFdsGlobalVariable.ReplaceWorkspaceMacro(self.FileName) FileNameStr = GenFdsGlobalVariable.MacroExtend(FileNameStr, Dict) FileObj = open(FileNameStr, 'r') NameString = FileObj.read() FileObj.close() else: NameString = '' GenFdsGlobalVariable.GenerateSection(OutputFile, None, 'EFI_SECTION_USER_INTERFACE', Ui=NameString, IsMakefile=IsMakefile) OutputFileList = [] OutputFileList.append(OutputFile) return OutputFileList, self.Alignment
edk2-master
BaseTools/Source/Python/GenFds/UiSection.py
## @file # section base class # # Copyright (c) 2007-2018, Intel Corporation. All rights reserved.<BR> # # SPDX-License-Identifier: BSD-2-Clause-Patent # ## # Import Modules # from __future__ import absolute_import from CommonDataClass.FdfClass import SectionClassObject from .GenFdsGlobalVariable import GenFdsGlobalVariable import Common.LongFilePathOs as os, glob from Common import EdkLogger from Common.BuildToolError import * from Common.DataType import * ## section base class # # class Section (SectionClassObject): SectionType = { 'RAW' : 'EFI_SECTION_RAW', 'FREEFORM' : 'EFI_SECTION_FREEFORM_SUBTYPE_GUID', BINARY_FILE_TYPE_PE32 : 'EFI_SECTION_PE32', BINARY_FILE_TYPE_PIC : 'EFI_SECTION_PIC', BINARY_FILE_TYPE_TE : 'EFI_SECTION_TE', 'FV_IMAGE' : 'EFI_SECTION_FIRMWARE_VOLUME_IMAGE', 'COMPAT16' : 'EFI_SECTION_COMPATIBILITY16', BINARY_FILE_TYPE_DXE_DEPEX : 'EFI_SECTION_DXE_DEPEX', BINARY_FILE_TYPE_PEI_DEPEX : 'EFI_SECTION_PEI_DEPEX', 'GUIDED' : 'EFI_SECTION_GUID_DEFINED', 'COMPRESS' : 'EFI_SECTION_COMPRESSION', BINARY_FILE_TYPE_UI : 'EFI_SECTION_USER_INTERFACE', BINARY_FILE_TYPE_SMM_DEPEX : 'EFI_SECTION_SMM_DEPEX' } BinFileType = { BINARY_FILE_TYPE_GUID : '.guid', 'ACPI' : '.acpi', 'ASL' : '.asl' , BINARY_FILE_TYPE_UEFI_APP : '.app', BINARY_FILE_TYPE_LIB : '.lib', BINARY_FILE_TYPE_PE32 : '.pe32', BINARY_FILE_TYPE_PIC : '.pic', BINARY_FILE_TYPE_PEI_DEPEX : '.depex', 'SEC_PEI_DEPEX' : '.depex', BINARY_FILE_TYPE_TE : '.te', BINARY_FILE_TYPE_UNI_VER : '.ver', BINARY_FILE_TYPE_VER : '.ver', BINARY_FILE_TYPE_UNI_UI : '.ui', BINARY_FILE_TYPE_UI : '.ui', BINARY_FILE_TYPE_BIN : '.bin', 'RAW' : '.raw', 'COMPAT16' : '.comp16', BINARY_FILE_TYPE_FV : '.fv' } SectFileType = { 'SEC_GUID' : '.sec' , 'SEC_PE32' : '.sec' , 'SEC_PIC' : '.sec', 'SEC_TE' : '.sec', 'SEC_VER' : '.sec', 'SEC_UI' : '.sec', 'SEC_COMPAT16' : '.sec', 'SEC_BIN' : '.sec' } ToolGuid = { '0xa31280ad-0x481e-0x41b6-0x95e8-0x127f-0x4c984779' : 'TianoCompress', '0xee4e5898-0x3914-0x4259-0x9d6e-0xdc7b-0xd79403cf' : 'LzmaCompress' } ## The constructor # # @param self The object pointer # def __init__(self): SectionClassObject.__init__(self) ## GenSection() method # # virtual function # # @param self The object pointer # @param OutputPath Where to place output file # @param ModuleName Which module this section belongs to # @param SecNum Index of section # @param KeyStringList Filter for inputs of section generation # @param FfsInf FfsInfStatement object that contains this section data # @param Dict dictionary contains macro and its value # def GenSection(self, OutputPath, GuidName, SecNum, keyStringList, FfsInf = None, Dict = None): pass ## GetFileList() method # # Generate compressed section # # @param self The object pointer # @param FfsInf FfsInfStatement object that contains file list # @param FileType File type to get # @param FileExtension File extension to get # @param Dict dictionary contains macro and its value # @retval tuple (File list, boolean) # def GetFileList(FfsInf, FileType, FileExtension, Dict = None, IsMakefile=False, SectionType=None): IsSect = FileType in Section.SectFileType if FileExtension is not None: Suffix = FileExtension elif IsSect : Suffix = Section.SectionType.get(FileType) else: Suffix = Section.BinFileType.get(FileType) if FfsInf is None: EdkLogger.error("GenFds", GENFDS_ERROR, 'Inf File does not exist!') FileList = [] if FileType is not None: for File in FfsInf.BinFileList: if File.Arch == TAB_ARCH_COMMON or FfsInf.CurrentArch == File.Arch: if File.Type == FileType or (int(FfsInf.PiSpecVersion, 16) >= 0x0001000A \ and FileType == 'DXE_DPEX' and File.Type == BINARY_FILE_TYPE_SMM_DEPEX) \ or (FileType == BINARY_FILE_TYPE_TE and File.Type == BINARY_FILE_TYPE_PE32): if TAB_STAR in FfsInf.TargetOverrideList or File.Target == TAB_STAR or File.Target in FfsInf.TargetOverrideList or FfsInf.TargetOverrideList == []: FileList.append(FfsInf.PatchEfiFile(File.Path, File.Type)) else: GenFdsGlobalVariable.InfLogger ("\nBuild Target \'%s\' of File %s is not in the Scope of %s specified by INF %s in FDF" %(File.Target, File.File, FfsInf.TargetOverrideList, FfsInf.InfFileName)) else: GenFdsGlobalVariable.VerboseLogger ("\nFile Type \'%s\' of File %s in %s is not same with file type \'%s\' from Rule in FDF" %(File.Type, File.File, FfsInf.InfFileName, FileType)) else: GenFdsGlobalVariable.InfLogger ("\nCurrent ARCH \'%s\' of File %s is not in the Support Arch Scope of %s specified by INF %s in FDF" %(FfsInf.CurrentArch, File.File, File.Arch, FfsInf.InfFileName)) elif FileType is None and SectionType == BINARY_FILE_TYPE_RAW: for File in FfsInf.BinFileList: if File.Ext == Suffix: FileList.append(File.Path) if (not IsMakefile and Suffix is not None and os.path.exists(FfsInf.EfiOutputPath)) or (IsMakefile and Suffix is not None): if not FileList: SuffixMap = FfsInf.GetFinalTargetSuffixMap() if Suffix in SuffixMap: FileList.extend(SuffixMap[Suffix]) #Process the file lists is alphabetical for a same section type if len (FileList) > 1: FileList.sort() return FileList, IsSect GetFileList = staticmethod(GetFileList)
edk2-master
BaseTools/Source/Python/GenFds/Section.py