python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC from nvflare.apis.controller_spec import ClientTask from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.impl.controller import Controller class ErrorHandlingController(Controller, ABC): def __init__(self): super().__init__() self.abort_job_in_error = { ReturnCode.EXECUTION_EXCEPTION: True, ReturnCode.TASK_UNKNOWN: True, ReturnCode.EXECUTION_RESULT_ERROR: False, ReturnCode.TASK_DATA_FILTER_ERROR: True, ReturnCode.TASK_RESULT_FILTER_ERROR: True, } def handle_client_errors(self, rc: str, client_task: ClientTask, fl_ctx: FLContext): client_name = client_task.client.name task_name = client_task.task.name abort = self.abort_job_in_error[rc] self.log_error(fl_ctx, f"error code = {rc}") if abort: self.system_panic( f"Failed in client-site for {client_name} during task {task_name}.controller is exiting.", fl_ctx=fl_ctx, ) self.log_error(fl_ctx, f"Execution failed for {client_name}") else: raise ValueError(f"Execution result is not received for {client_name}")
NVFlare-main
nvflare/app_common/workflows/error_handling_controller.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Union from nvflare.app_common.app_constant import AppConstants from nvflare.app_common.response_processors.global_weights_initializer import GlobalWeightsInitializer, WeightMethod from .broadcast_and_process import BroadcastAndProcess class InitializeGlobalWeights(BroadcastAndProcess): def __init__( self, task_name: str = AppConstants.TASK_GET_WEIGHTS, min_responses_required: int = 0, wait_time_after_min_received: int = 0, task_timeout: int = 0, weights_prop_name=AppConstants.GLOBAL_MODEL, weight_method: str = WeightMethod.FIRST, weights_client_name: Union[str, List[str], None] = None, ): """A controller for initializing global model weights based on reported weights from clients. Args: task_name: name of the task to be sent to clients to collect their model weights min_responses_required: min number of responses required. 0 means all clients. wait_time_after_min_received: how long (secs) to wait after min responses are received task_timeout: max amount of time to wait for the task to end. 0 means never time out. weights_prop_name: name of the FL Context property to store the global weights weight_method: method for determining global model weights. Defaults to `WeightMethod.FIRST`. weights_client_name: name of the client if the method is "client". Defaults to None. If `None`, the task will be sent to all clients (to be used with `weight_method=WeightMethod.FIRST`). If list of client names, the task will be only be sent to the listed clients. """ if isinstance(weights_client_name, str): clients = [weights_client_name] elif isinstance(weights_client_name, list): clients = weights_client_name else: clients = None BroadcastAndProcess.__init__( self, processor=GlobalWeightsInitializer( weights_prop_name=weights_prop_name, weight_method=weight_method, client_name=weights_client_name ), task_name=task_name, min_responses_required=min_responses_required, wait_time_after_min_received=wait_time_after_min_received, timeout=task_timeout, clients=clients, )
NVFlare-main
nvflare/app_common/workflows/initialize_global_weights.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.apis.client import Client from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.impl.controller import ClientTask, Controller, Task from nvflare.apis.shareable import Shareable from nvflare.apis.signal import Signal from nvflare.app_common.abstract.learnable_persistor import LearnablePersistor from nvflare.app_common.abstract.shareable_generator import ShareableGenerator from nvflare.app_common.app_constant import AppConstants from nvflare.app_common.app_event_type import AppEventType from nvflare.security.logging import secure_format_exception from nvflare.widgets.info_collector import GroupInfoCollector, InfoCollector class SplitNNDataKind(object): ACTIVATIONS = "_splitnn_activations_" GRADIENT = "_splitnn_gradient_" class SplitNNConstants(object): BATCH_INDICES = "_splitnn_batch_indices_" DATA = "_splitnn_data_" BATCH_SIZE = "_splitnn_batch_size_" TARGET_NAMES = "_splitnn_target_names_" TASK_INIT_MODEL = "_splitnn_task_init_model_" TASK_TRAIN_LABEL_STEP = "_splitnn_task_train_label_step_" TASK_VALID_LABEL_STEP = "_splitnn_task_valid_label_step_" TASK_TRAIN = "_splitnn_task_train_" TASK_RESULT = "_splitnn_task_result_" TIMEOUT = 60.0 # timeout for waiting for reply from aux message request class SplitNNController(Controller): def __init__( self, num_rounds: int = 5000, start_round: int = 0, persistor_id=AppConstants.DEFAULT_PERSISTOR_ID, # used to init the models on both clients shareable_generator_id=AppConstants.DEFAULT_SHAREABLE_GENERATOR_ID, init_model_task_name=SplitNNConstants.TASK_INIT_MODEL, train_task_name=SplitNNConstants.TASK_TRAIN, task_timeout: int = 10, ignore_result_error: bool = True, batch_size: int = 256, ): """The controller for Split Learning Workflow. The SplitNNController workflow defines Federated training on all clients. The model persistor (persistor_id) is used to load the initial global model which is sent to all clients. Each clients sends it's updated weights after local training which is aggregated (aggregator_id). The shareable generator is used to convert the aggregated weights to shareable and shareable back to weights. The model_persistor also saves the model after training. Args: num_rounds (int, optional): The total number of training rounds. Defaults to 5. start_round (int, optional): Start round for training. Defaults to 0. persistor_id (str, optional): ID of the persistor component. Defaults to "persistor". shareable_generator_id (str, optional): ID of the shareable generator. Defaults to "shareable_generator". init_model_task_name: Task name used to initialize the local models. train_task_name: Task name used for split learning. task_timeout (int, optional): timeout (in sec) to determine if one client fails to request the task which it is assigned to. Defaults to 10. ignore_result_error (bool, optional): whether this controller can proceed if result has errors. Defaults to True. Raises: TypeError: when any of input arguments does not have correct type ValueError: when any of input arguments is out of range """ Controller.__init__(self) # Check arguments if not isinstance(num_rounds, int): raise TypeError("`num_rounds` must be int but got {}".format(type(num_rounds))) if not isinstance(start_round, int): raise TypeError("`start_round` must be int but got {}".format(type(start_round))) if not isinstance(task_timeout, int): raise TypeError("`train_timeout` must be int but got {}".format(type(task_timeout))) if not isinstance(persistor_id, str): raise TypeError("`persistor_id` must be a string but got {}".format(type(persistor_id))) if not isinstance(shareable_generator_id, str): raise TypeError("`shareable_generator_id` must be a string but got {}".format(type(shareable_generator_id))) if not isinstance(init_model_task_name, str): raise TypeError("`init_model_task_name` must be a string but got {}".format(type(init_model_task_name))) if not isinstance(train_task_name, str): raise TypeError("`train_task_name` must be a string but got {}".format(type(train_task_name))) if num_rounds < 0: raise ValueError("num_rounds must be greater than or equal to 0.") if start_round < 0: raise ValueError("start_round must be greater than or equal to 0.") self.persistor_id = persistor_id self.shareable_generator_id = shareable_generator_id self.persistor = None self.shareable_generator = None # config data self._num_rounds = num_rounds self._start_round = start_round self._task_timeout = task_timeout self.ignore_result_error = ignore_result_error # workflow phases: init, train, validate self._phase = AppConstants.PHASE_INIT self._global_weights = None self._current_round = None # task names self.init_model_task_name = init_model_task_name self.train_task_name = train_task_name self.targets_names = ["site-1", "site-2"] self.nr_supported_clients = 2 self.batch_size = batch_size def start_controller(self, fl_ctx: FLContext): self.log_debug(fl_ctx, "starting controller") self.persistor = fl_ctx.get_engine().get_component(self.persistor_id) self.shareable_generator = fl_ctx.get_engine().get_component(self.shareable_generator_id) if not isinstance(self.persistor, LearnablePersistor): self.system_panic( f"Persistor {self.persistor_id} must be a Persistor instance, but got {type(self.persistor)}", fl_ctx ) if not isinstance(self.shareable_generator, ShareableGenerator): self.system_panic( f"Shareable generator {self.shareable_generator_id} must be a Shareable Generator instance, " f"but got {type(self.shareable_generator)}", fl_ctx, ) # initialize global model fl_ctx.set_prop(AppConstants.START_ROUND, self._start_round, private=True, sticky=True) fl_ctx.set_prop(AppConstants.NUM_ROUNDS, self._num_rounds, private=True, sticky=False) self._global_weights = self.persistor.load(fl_ctx) fl_ctx.set_prop(AppConstants.GLOBAL_MODEL, self._global_weights, private=True, sticky=True) self.fire_event(AppEventType.INITIAL_MODEL_LOADED, fl_ctx) def _process_result(self, client_task: ClientTask, fl_ctx: FLContext) -> bool: # submitted shareable is stored in client_task.result # we need to update task.data with that shareable so the next target # will get the updated shareable task = client_task.task result = client_task.result rc = result.get_return_code() if rc and rc != ReturnCode.OK: if self.ignore_result_error: self.log_error(fl_ctx, f"Ignore the task {task} result. Train result error code: {rc}") return False else: if rc in [ReturnCode.MISSING_PEER_CONTEXT, ReturnCode.BAD_PEER_CONTEXT]: self.system_panic( f"Peer context for task {task} is bad or missing. SplitNNController exiting.", fl_ctx=fl_ctx ) return False elif rc in [ReturnCode.EXECUTION_EXCEPTION, ReturnCode.TASK_UNKNOWN]: self.system_panic( f"Execution Exception in client task {task}. SplitNNController exiting.", fl_ctx=fl_ctx ) return False elif rc in [ ReturnCode.EXECUTION_RESULT_ERROR, ReturnCode.TASK_DATA_FILTER_ERROR, ReturnCode.TASK_RESULT_FILTER_ERROR, ]: self.system_panic( f"Execution result for task {task} is not a shareable. SplitNNController exiting.", fl_ctx=fl_ctx, ) return False # assign result to current task if result: task.set_prop(SplitNNConstants.TASK_RESULT, result) return True def _check_targets(self, fl_ctx: FLContext): engine = fl_ctx.get_engine() targets = engine.get_clients() for t in targets: if t.name not in self.targets_names: self.system_panic(f"Client {t.name} not in expected target names: {self.targets_names}", fl_ctx) def _init_models(self, abort_signal: Signal, fl_ctx: FLContext): self._check_targets(fl_ctx) self.log_debug(fl_ctx, f"SplitNN initializing model {self.targets_names}.") # Create init_model_task_name data_shareable: Shareable = self.shareable_generator.learnable_to_shareable(self._global_weights, fl_ctx) task = Task( name=self.init_model_task_name, data=data_shareable, result_received_cb=self._process_result, ) self.broadcast_and_wait( task=task, min_responses=self.nr_supported_clients, wait_time_after_min_received=0, fl_ctx=fl_ctx, abort_signal=abort_signal, ) def _train(self, abort_signal: Signal, fl_ctx: FLContext): self._check_targets(fl_ctx) self.log_debug(fl_ctx, f"SplitNN training starting with {self.targets_names}.") # Create train_task data_shareable: Shareable = Shareable() data_shareable.set_header(AppConstants.NUM_ROUNDS, self._num_rounds) data_shareable.set_header(SplitNNConstants.BATCH_SIZE, self.batch_size) data_shareable.set_header(SplitNNConstants.TARGET_NAMES, self.targets_names) task = Task( name=self.train_task_name, data=data_shareable, result_received_cb=self._process_result, ) self.broadcast_and_wait( task=task, min_responses=self.nr_supported_clients, wait_time_after_min_received=0, fl_ctx=fl_ctx, abort_signal=abort_signal, ) def control_flow(self, abort_signal: Signal, fl_ctx: FLContext): try: self._check_targets(fl_ctx) self.log_debug(fl_ctx, f"Train with on {self.targets_names}") # 1. initialize models on clients self._init_models(abort_signal=abort_signal, fl_ctx=fl_ctx) # 2. Start split learning self._phase = AppConstants.PHASE_TRAIN self._train(abort_signal=abort_signal, fl_ctx=fl_ctx) self._phase = AppConstants.PHASE_FINISHED self.log_debug(fl_ctx, "SplitNN training ended.") except Exception as e: error_msg = f"SplitNN control_flow exception {secure_format_exception(e)}" self.log_error(fl_ctx, error_msg) self.system_panic(error_msg, fl_ctx) def stop_controller(self, fl_ctx: FLContext): self._phase = AppConstants.PHASE_FINISHED self.log_debug(fl_ctx, "controller stopped") def process_result_of_unknown_task( self, client: Client, task_name: str, client_task_id: str, result: Shareable, fl_ctx: FLContext, ): self.log_warning(fl_ctx, f"Dropped result of unknown task: {task_name} from client {client.name}.") def handle_event(self, event_type: str, fl_ctx: FLContext): super().handle_event(event_type, fl_ctx) if event_type == InfoCollector.EVENT_TYPE_GET_STATS: collector = fl_ctx.get_prop(InfoCollector.CTX_KEY_STATS_COLLECTOR, None) if collector: if not isinstance(collector, GroupInfoCollector): raise TypeError("collector must be GroupInfoCollector but got {}".format(type(collector))) collector.add_info( group_name=self._name, info={"phase": self._phase, "current_round": self._current_round, "num_rounds": self._num_rounds}, )
NVFlare-main
nvflare/app_common/workflows/splitnn_workflow.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import threading from typing import Dict, List, Optional, Union from nvflare.apis.client import Client from nvflare.apis.dxo import DXO, from_shareable from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.impl.controller import ClientTask, Task from nvflare.apis.shareable import Shareable from nvflare.apis.signal import Signal from nvflare.app_common.workflows.error_handling_controller import ErrorHandlingController class BroadcastAndWait(FLComponent): def __init__(self, fl_ctx: FLContext, controller: ErrorHandlingController): super().__init__() self.lock = threading.Lock() self.fl_ctx = fl_ctx self.controller = controller self.task = None # [target, DXO] self.results: Dict[str, DXO] = {} def broadcast_and_wait( self, task_name: str, task_input: Shareable, targets: Union[List[Client], List[str], None] = None, task_props: Optional[Dict] = None, min_responses: int = 1, abort_signal: Signal = None, ) -> Dict[str, DXO]: task = Task(name=task_name, data=task_input, result_received_cb=self.results_cb, props=task_props) self.controller.broadcast_and_wait(task, self.fl_ctx, targets, min_responses, 0, abort_signal) return self.results def multicasts_and_wait( self, task_name: str, task_inputs: Dict[str, Shareable], abort_signal: Signal = None, ) -> Dict[str, DXO]: tasks: Dict[str, Task] = self.get_tasks(task_name, task_inputs) for client_name in tasks: self.controller.broadcast(task=tasks[client_name], fl_ctx=self.fl_ctx, targets=[client_name]) for client_name in tasks: self.log_info(self.fl_ctx, f"wait for client {client_name} task") self.controller.wait_for_task(tasks[client_name], abort_signal) return self.results def get_tasks(self, task_name: str, task_inputs: Dict[str, Shareable]) -> Dict[str, Task]: tasks = {} for client_name in task_inputs: task = Task(name=task_name, data=task_inputs[client_name], result_received_cb=self.results_cb) tasks[client_name] = task return tasks def update_result(self, client_name: str, dxo: DXO): try: self.lock.acquire() self.log_debug(self.fl_ctx, "Acquired a lock") self.results.update({client_name: dxo}) finally: self.log_debug(self.fl_ctx, "Released a lock") self.lock.release() def results_cb(self, client_task: ClientTask, fl_ctx: FLContext): client_name = client_task.client.name task_name = client_task.task.name print("task_name", task_name) self.log_info(fl_ctx, f"Processing {task_name}, {self.task} result from client {client_name}") result = client_task.result rc = result.get_return_code() if rc == ReturnCode.OK: self.log_info(fl_ctx, f"Received result from client:{client_name} for task {task_name} ") dxo = from_shareable(result) self.update_result(client_name, dxo) else: if rc in self.controller.abort_job_in_error.keys(): self.controller.handle_client_errors(rc, client_task, fl_ctx) # Cleanup task result client_task.result = None
NVFlare-main
nvflare/app_common/workflows/broadcast_operator.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from typing import Callable, Dict, List, Optional from nvflare.apis.client import Client from nvflare.apis.dxo import from_shareable from nvflare.apis.event_type import EventType from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.impl.controller import ClientTask, Controller, Task from nvflare.apis.shareable import Shareable from nvflare.apis.signal import Signal from nvflare.app_common.abstract.statistics_spec import Bin, Histogram, StatisticConfig from nvflare.app_common.abstract.statistics_writer import StatisticsWriter from nvflare.app_common.app_constant import StatisticsConstants as StC from nvflare.app_common.statistics.numeric_stats import get_global_stats from nvflare.app_common.statistics.statisitcs_objects_decomposer import fobs_registration from nvflare.fuel.utils import fobs class StatisticsController(Controller): def __init__( self, statistic_configs: Dict[str, dict], writer_id: str, wait_time_after_min_received: int = 1, result_wait_timeout: int = 10, precision=4, min_clients: Optional[int] = None, enable_pre_run_task: bool = True, ): """Controller for Statistics. Args: statistic_configs: defines the input statistic to be computed and each statistic's configuration, see below for details. writer_id: ID for StatisticsWriter. The StatisticWriter will save the result to output specified by the StatisticsWriter wait_time_after_min_received: numbers of seconds to wait after minimum numer of clients specified has received. result_wait_timeout: numbers of seconds to wait until we received all results. Notice this is after the min_clients have arrived, and we wait for result process callback, this becomes important if the data size to be processed is large precision: number of precision digits min_clients: if specified, min number of clients we have to wait before process. For statistic_configs, the key is one of statistics' names sum, count, mean, stddev, histogram, and the value is the arguments needed. All other statistics except histogram require no argument. .. code-block:: text "statistic_configs": { "count": {}, "mean": {}, "sum": {}, "stddev": {}, "histogram": { "*": {"bins": 20}, "Age": {"bins": 10, "range": [0, 120]} } }, Histogram requires the following arguments: 1) numbers of bins or buckets of the histogram 2) the histogram range values [min, max] These arguments are different for each feature. Here are few examples: .. code-block:: text "histogram": { "*": {"bins": 20 }, "Age": {"bins": 10, "range":[0,120]} } The configuration specifies that the feature 'Age' will have 10 bins for and the range is within [0, 120). For all other features, the default ("*") configuration is used, with bins = 20. The range of histogram is not specified, thus requires the Statistics controller to dynamically estimate histogram range for each feature. Then this estimated global range (est global min, est. global max) will be used as the histogram range. To dynamically estimate such a histogram range, we need the client to provide the local min and max values in order to calculate the global bin and max value. In order to protect data privacy and avoid data leakage, a noise level is added to the local min/max value before sending to the controller. Therefore the controller only gets the 'estimated' values, and the global min/max are estimated, or more accurately, they are noised global min/max values. Here is another example: .. code-block:: text "histogram": { "density": {"bins": 10, "range":[0,120]} } In this example, there is no default histogram configuration for other features. This will work correctly if there is only one feature called "density" but will fail if there are other features in the dataset. In the following configuration: .. code-block:: text "statistic_configs": { "count": {}, "mean": {}, "stddev": {} } Only count, mean and stddev statistics are specified, so the statistics_controller will only set tasks to calculate these three statistics. """ super().__init__() self.statistic_configs: Dict[str, dict] = statistic_configs self.writer_id = writer_id self.task_name = StC.FED_STATS_TASK self.client_statistics = {} self.global_statistics = {} self.client_features = {} self.result_wait_timeout = result_wait_timeout self.wait_time_after_min_received = wait_time_after_min_received self.precision = precision self.min_clients = min_clients self.result_cb_status = {} self.client_handshake_ok = {} self.enable_pre_run_task = enable_pre_run_task self.result_callback_fns: Dict[str, Callable] = { StC.STATS_1st_STATISTICS: self.results_cb, StC.STATS_2nd_STATISTICS: self.results_cb, } fobs_registration() self.fl_ctx = None self.abort_job_in_error = { ReturnCode.EXECUTION_EXCEPTION: True, ReturnCode.TASK_UNKNOWN: True, ReturnCode.EXECUTION_RESULT_ERROR: False, ReturnCode.TASK_DATA_FILTER_ERROR: True, ReturnCode.TASK_RESULT_FILTER_ERROR: True, } def start_controller(self, fl_ctx: FLContext): if self.statistic_configs is None or len(self.statistic_configs) == 0: self.system_panic( "At least one statistic_config must be configured for task StatisticsController", fl_ctx=fl_ctx ) self.fl_ctx = fl_ctx clients = fl_ctx.get_engine().get_clients() if not self.min_clients: self.min_clients = len(clients) def control_flow(self, abort_signal: Signal, fl_ctx: FLContext): self.log_info(fl_ctx, f"{self.task_name} control flow started.") if abort_signal.triggered: return False if self.enable_pre_run_task: self.pre_run_task_flow(abort_signal, fl_ctx) self.statistics_task_flow(abort_signal, fl_ctx, StC.STATS_1st_STATISTICS) self.statistics_task_flow(abort_signal, fl_ctx, StC.STATS_2nd_STATISTICS) if not StatisticsController._wait_for_all_results( self.logger, self.result_wait_timeout, self.min_clients, self.client_statistics, 1.0, abort_signal ): self.log_info(fl_ctx, f"task {self.task_name} timeout on wait for all results.") return False self.log_info(fl_ctx, "start post processing") self.post_fn(self.task_name, fl_ctx) self.log_info(fl_ctx, f"task {self.task_name} control flow end.") def stop_controller(self, fl_ctx: FLContext): pass def process_result_of_unknown_task( self, client: Client, task_name: str, client_task_id: str, result: Shareable, fl_ctx: FLContext ): pass def _get_all_statistic_configs(self) -> List[StatisticConfig]: all_statistics = { StC.STATS_COUNT: StatisticConfig(StC.STATS_COUNT, {}), StC.STATS_FAILURE_COUNT: StatisticConfig(StC.STATS_FAILURE_COUNT, {}), StC.STATS_SUM: StatisticConfig(StC.STATS_SUM, {}), StC.STATS_MEAN: StatisticConfig(StC.STATS_MEAN, {}), StC.STATS_VAR: StatisticConfig(StC.STATS_VAR, {}), StC.STATS_STDDEV: StatisticConfig(StC.STATS_STDDEV, {}), } if StC.STATS_HISTOGRAM in self.statistic_configs: hist_config = self.statistic_configs[StC.STATS_HISTOGRAM] all_statistics[StC.STATS_MIN] = StatisticConfig(StC.STATS_MIN, hist_config) all_statistics[StC.STATS_MAX] = StatisticConfig(StC.STATS_MAX, hist_config) all_statistics[StC.STATS_HISTOGRAM] = StatisticConfig(StC.STATS_HISTOGRAM, hist_config) return [all_statistics[k] for k in all_statistics if k in self.statistic_configs] def pre_run_task_flow(self, abort_signal: Signal, fl_ctx: FLContext): client_name = fl_ctx.get_identity_name() self.log_info(fl_ctx, f"start pre_run task for client {client_name}") inputs = Shareable() target_statistics: List[StatisticConfig] = self._get_all_statistic_configs() inputs[StC.STATS_TARGET_STATISTICS] = fobs.dumps(target_statistics) results_cb_fn = self.results_pre_run_cb if abort_signal.triggered: return False task = Task(name=StC.FED_STATS_PRE_RUN, data=inputs, result_received_cb=results_cb_fn) self.broadcast_and_wait( task=task, targets=None, min_responses=self.min_clients, fl_ctx=fl_ctx, wait_time_after_min_received=self.wait_time_after_min_received, abort_signal=abort_signal, ) self.log_info(fl_ctx, f" client {client_name} pre_run task flow end.") def statistics_task_flow(self, abort_signal: Signal, fl_ctx: FLContext, statistic_task: str): self.log_info(fl_ctx, f"start prepare inputs for task {statistic_task}") inputs = self._prepare_inputs(statistic_task) results_cb_fn = self._get_result_cb(statistic_task) self.log_info(fl_ctx, f"task: {self.task_name} statistics_flow for {statistic_task} started.") if abort_signal.triggered: return False task_props = {StC.STATISTICS_TASK_KEY: statistic_task} task = Task(name=self.task_name, data=inputs, result_received_cb=results_cb_fn, props=task_props) self.broadcast_and_wait( task=task, targets=None, min_responses=self.min_clients, fl_ctx=fl_ctx, wait_time_after_min_received=self.wait_time_after_min_received, abort_signal=abort_signal, ) self.global_statistics = get_global_stats(self.global_statistics, self.client_statistics, statistic_task) self.log_info(fl_ctx, f"task {self.task_name} statistics_flow for {statistic_task} flow end.") def handle_client_errors(self, rc: str, client_task: ClientTask, fl_ctx: FLContext): client_name = client_task.client.name task_name = client_task.task.name abort = self.abort_job_in_error[rc] if abort: self.system_panic( f"Failed in client-site statistics_executor for {client_name} during task {task_name}." f"statistics controller is exiting.", fl_ctx=fl_ctx, ) self.log_info(fl_ctx, f"Execution failed for {client_name}") else: self.log_info(fl_ctx, f"Execution result is not received for {client_name}") def results_pre_run_cb(self, client_task: ClientTask, fl_ctx: FLContext): client_name = client_task.client.name task_name = client_task.task.name self.log_info(fl_ctx, f"Processing {task_name} pre_run from client {client_name}") result = client_task.result rc = result.get_return_code() if rc == ReturnCode.OK: self.log_info(fl_ctx, f"Received pre-run handshake result from client:{client_name} for task {task_name}") self.client_handshake_ok = {client_name: True} fl_ctx.set_prop(StC.PRE_RUN_RESULT, {client_name: from_shareable(result)}) self.fire_event(EventType.PRE_RUN_RESULT_AVAILABLE, fl_ctx) else: if rc in self.abort_job_in_error.keys(): self.handle_client_errors(rc, client_task, fl_ctx) self.client_handshake_ok = {client_name: False} # Cleanup task result client_task.result = None def results_cb(self, client_task: ClientTask, fl_ctx: FLContext): client_name = client_task.client.name task_name = client_task.task.name self.log_info(fl_ctx, f"Processing {task_name} result from client {client_name}") result = client_task.result rc = result.get_return_code() if rc == ReturnCode.OK: self.log_info(fl_ctx, f"Received result entries from client:{client_name}, " f"for task {task_name}") dxo = from_shareable(result) client_result = dxo.data statistics_task = client_result[StC.STATISTICS_TASK_KEY] self.log_info(fl_ctx, f"handle client {client_name} results for statistics task: {statistics_task}") statistics = fobs.loads(client_result[statistics_task]) for statistic in statistics: if statistic not in self.client_statistics: self.client_statistics[statistic] = {client_name: statistics[statistic]} else: self.client_statistics[statistic].update({client_name: statistics[statistic]}) ds_features = client_result.get(StC.STATS_FEATURES, None) if ds_features: self.client_features.update({client_name: fobs.loads(ds_features)}) elif rc in self.abort_job_in_error.keys(): self.handle_client_errors(rc, client_task, fl_ctx) self.result_cb_status[client_name] = {client_task.task.props[StC.STATISTICS_TASK_KEY]: False} else: self.result_cb_status[client_name] = {client_task.task.props[StC.STATISTICS_TASK_KEY]: True} self.result_cb_status[client_name] = {client_task.task.props[StC.STATISTICS_TASK_KEY]: True} # Cleanup task result client_task.result = None def _validate_min_clients(self, min_clients: int, client_statistics: dict) -> bool: self.logger.info("check if min_client result received for all features") resulting_clients = {} for statistic in client_statistics: clients = client_statistics[statistic].keys() if len(clients) < min_clients: return False for client in clients: ds_feature_statistics = client_statistics[statistic][client] for ds_name in ds_feature_statistics: if ds_name not in resulting_clients: resulting_clients[ds_name] = set() if ds_feature_statistics[ds_name]: resulting_clients[ds_name].update([client]) for ds in resulting_clients: if len(resulting_clients[ds]) < min_clients: return False return True def post_fn(self, task_name: str, fl_ctx: FLContext): ok_to_proceed = self._validate_min_clients(self.min_clients, self.client_statistics) if not ok_to_proceed: self.system_panic(f"not all required {self.min_clients} received, abort the job.", fl_ctx) else: self.log_info(fl_ctx, "combine all clients' statistics") ds_stats = self._combine_all_statistics() self.log_info(fl_ctx, "save statistics result to persistence store") writer: StatisticsWriter = fl_ctx.get_engine().get_component(self.writer_id) writer.save(ds_stats, overwrite_existing=True, fl_ctx=fl_ctx) def _combine_all_statistics(self): result = {} filtered_client_statistics = [ statistic for statistic in self.client_statistics if statistic in self.statistic_configs ] filtered_global_statistics = [ statistic for statistic in self.global_statistics if statistic in self.statistic_configs ] for statistic in filtered_client_statistics: for client in self.client_statistics[statistic]: for ds in self.client_statistics[statistic][client]: client_dataset = f"{client}-{ds}" for feature_name in self.client_statistics[statistic][client][ds]: if feature_name not in result: result[feature_name] = {} if statistic not in result[feature_name]: result[feature_name][statistic] = {} if statistic == StC.STATS_HISTOGRAM: hist: Histogram = self.client_statistics[statistic][client][ds][feature_name] buckets = StatisticsController._apply_histogram_precision(hist.bins, self.precision) result[feature_name][statistic][client_dataset] = buckets else: result[feature_name][statistic][client_dataset] = round( self.client_statistics[statistic][client][ds][feature_name], self.precision ) precision = self.precision for statistic in filtered_global_statistics: for ds in self.global_statistics[statistic]: global_dataset = f"{StC.GLOBAL}-{ds}" for feature_name in self.global_statistics[statistic][ds]: if statistic == StC.STATS_HISTOGRAM: hist: Histogram = self.global_statistics[statistic][ds][feature_name] buckets = StatisticsController._apply_histogram_precision(hist.bins, self.precision) result[feature_name][statistic][global_dataset] = buckets else: result[feature_name][statistic].update( {global_dataset: round(self.global_statistics[statistic][ds][feature_name], precision)} ) return result @staticmethod def _apply_histogram_precision(bins: List[Bin], precision) -> List[Bin]: buckets = [] for bucket in bins: buckets.append( Bin( round(bucket.low_value, precision), round(bucket.high_value, precision), bucket.sample_count, ) ) return buckets @staticmethod def _get_target_statistics(statistic_configs: dict, ordered_statistics: list) -> List[StatisticConfig]: # make sure the execution order of the statistics calculation targets = [] if statistic_configs: for statistic in statistic_configs: # if target statistic has histogram, we are not in 2nd statistic task # we only need to estimate the global min/max if we have histogram statistic, # If the user provided the global min/max for a specified feature, then we do nothing # if the user did not provide the global min/max for the feature, then we need to ask # client to provide the local estimated min/max for that feature. # then we used the local estimate min/max to estimate global min/max. # to do that, we calculate the local min/max in 1st statistic task. # in all cases, we will still send the STATS_MIN/MAX tasks, but client executor may or may not # delegate to stats generator to calculate the local min/max depends on if the global bin ranges # are specified. to do this, we send over the histogram configuration when calculate the local min/max if statistic == StC.STATS_HISTOGRAM and statistic not in ordered_statistics: targets.append(StatisticConfig(StC.STATS_MIN, statistic_configs[StC.STATS_HISTOGRAM])) targets.append(StatisticConfig(StC.STATS_MAX, statistic_configs[StC.STATS_HISTOGRAM])) if statistic == StC.STATS_STDDEV and statistic in ordered_statistics: targets.append(StatisticConfig(StC.STATS_VAR, {})) for rm in ordered_statistics: if rm == statistic: targets.append(StatisticConfig(statistic, statistic_configs[statistic])) return targets def _prepare_inputs(self, statistic_task: str) -> Shareable: inputs = Shareable() target_statistics: List[StatisticConfig] = StatisticsController._get_target_statistics( self.statistic_configs, StC.ordered_statistics[statistic_task] ) for tm in target_statistics: if tm.name == StC.STATS_HISTOGRAM: if StC.STATS_MIN in self.global_statistics: inputs[StC.STATS_MIN] = self.global_statistics[StC.STATS_MIN] if StC.STATS_MAX in self.global_statistics: inputs[StC.STATS_MAX] = self.global_statistics[StC.STATS_MAX] if tm.name == StC.STATS_VAR: if StC.STATS_COUNT in self.global_statistics: inputs[StC.STATS_GLOBAL_COUNT] = self.global_statistics[StC.STATS_COUNT] if StC.STATS_MEAN in self.global_statistics: inputs[StC.STATS_GLOBAL_MEAN] = self.global_statistics[StC.STATS_MEAN] inputs[StC.STATISTICS_TASK_KEY] = statistic_task inputs[StC.STATS_TARGET_STATISTICS] = fobs.dumps(target_statistics) return inputs @staticmethod def _wait_for_all_results( logger, result_wait_timeout: float, requested_client_size: int, client_statistics: dict, sleep_time: float = 1, abort_signal=None, ) -> bool: """Waits for all results. For each statistic, we check if the number of requested clients (min_clients or all clients) is available, if not, we wait until result_wait_timeout. result_wait_timeout is reset for next statistic. result_wait_timeout is per statistic, not overall timeout for all results. Args: result_wait_timeout: timeout we have to wait for each statistic. reset for each statistic requested_client_size: requested client size, usually min_clients or all clients client_statistics: client specific statistics received so far abort_signal: abort signal Returns: False, when job is aborted else True """ # record of each statistic, number of clients processed statistics_client_received = {} # current statistics obtained so far (across all clients) statistic_names = client_statistics.keys() for m in statistic_names: statistics_client_received[m] = len(client_statistics[m].keys()) timeout = result_wait_timeout for m in statistics_client_received: if requested_client_size > statistics_client_received[m]: t = 0 while t < timeout and requested_client_size > statistics_client_received[m]: if abort_signal and abort_signal.triggered: return False msg = ( f"not all client received the statistic '{m}', need to wait for {sleep_time} seconds." f"currently available clients are '{client_statistics[m].keys()}'." ) logger.info(msg) time.sleep(sleep_time) t += sleep_time # check and update number of client processed for statistics again statistics_client_received[m] = len(client_statistics[m].keys()) return True def _get_result_cb(self, statistics_task: str): return self.result_callback_fns[statistics_task]
NVFlare-main
nvflare/app_common/workflows/statistics_controller.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import time from typing import Union from nvflare.apis.client import Client from nvflare.apis.controller_spec import ClientTask, Task from nvflare.apis.dxo import DXO, from_bytes, from_shareable, get_leaf_dxos from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.impl.controller import Controller from nvflare.apis.shareable import Shareable from nvflare.apis.signal import Signal from nvflare.apis.workspace import Workspace from nvflare.app_common.abstract.formatter import Formatter from nvflare.app_common.abstract.model_locator import ModelLocator from nvflare.app_common.app_constant import AppConstants, ModelName from nvflare.app_common.app_event_type import AppEventType from nvflare.security.logging import secure_format_exception from nvflare.widgets.info_collector import GroupInfoCollector, InfoCollector class CrossSiteModelEval(Controller): def __init__( self, task_check_period=0.5, cross_val_dir=AppConstants.CROSS_VAL_DIR, submit_model_timeout=600, validation_timeout: int = 6000, model_locator_id="", formatter_id="", submit_model_task_name=AppConstants.TASK_SUBMIT_MODEL, validation_task_name=AppConstants.TASK_VALIDATION, cleanup_models=False, participating_clients=None, wait_for_clients_timeout=300, ): """Cross Site Model Validation workflow. Args: task_check_period (float, optional): How often to check for new tasks or tasks being finished. Defaults to 0.5. cross_val_dir (str, optional): Path to cross site validation directory relative to run directory. Defaults to "cross_site_val". submit_model_timeout (int, optional): Timeout of submit_model_task. Defaults to 600 secs. validation_timeout (int, optional): Timeout for validate_model task. Defaults to 6000 secs. model_locator_id (str, optional): ID for model_locator component. Defaults to "". formatter_id (str, optional): ID for formatter component. Defaults to "". submit_model_task_name (str, optional): Name of submit_model task. Defaults to "". validation_task_name (str, optional): Name of validate_model task. Defaults to "validate". cleanup_models (bool, optional): Whether or not models should be deleted after run. Defaults to False. participating_clients (list, optional): List of participating client names. If not provided, defaults to all clients connected at start of controller. wait_for_clients_timeout (int, optional): Timeout for clients to appear. Defaults to 300 secs """ super().__init__(task_check_period=task_check_period) if not isinstance(task_check_period, float): raise TypeError("task_check_period must be float but got {}".format(type(task_check_period))) if not isinstance(cross_val_dir, str): raise TypeError("cross_val_dir must be a string but got {}".format(type(cross_val_dir))) if not isinstance(submit_model_timeout, int): raise TypeError("submit_model_timeout must be int but got {}".format(type(submit_model_timeout))) if not isinstance(validation_timeout, int): raise TypeError("validation_timeout must be int but got {}".format(type(validation_timeout))) if not isinstance(model_locator_id, str): raise TypeError("model_locator_id must be a string but got {}".format(type(model_locator_id))) if not isinstance(formatter_id, str): raise TypeError("formatter_id must be a string but got {}".format(type(formatter_id))) if not isinstance(submit_model_task_name, str): raise TypeError("submit_model_task_name must be a string but got {}".format(type(submit_model_task_name))) if not isinstance(validation_task_name, str): raise TypeError("validation_task_name must be a string but got {}".format(type(validation_task_name))) if not isinstance(cleanup_models, bool): raise TypeError("cleanup_models must be bool but got {}".format(type(cleanup_models))) if participating_clients: if not isinstance(participating_clients, list): raise TypeError("participating_clients must be a list but got {}".format(type(participating_clients))) if not all(isinstance(x, str) for x in participating_clients): raise TypeError("participating_clients must be strings") if submit_model_timeout < 0: raise ValueError("submit_model_timeout must be greater than or equal to 0.") if validation_timeout < 0: raise ValueError("model_validate_timeout must be greater than or equal to 0.") if wait_for_clients_timeout < 0: raise ValueError("wait_for_clients_timeout must be greater than or equal to 0.") self._cross_val_dir = cross_val_dir self._model_locator_id = model_locator_id self._formatter_id = formatter_id self._submit_model_task_name = submit_model_task_name self._validation_task_name = validation_task_name self._submit_model_timeout = submit_model_timeout self._validation_timeout = validation_timeout self._wait_for_clients_timeout = wait_for_clients_timeout self._cleanup_models = cleanup_models self._participating_clients = participating_clients self._val_results = {} self._server_models = {} self._client_models = {} self._formatter = None self._cross_val_models_dir = None self._cross_val_results_dir = None self._model_locator = None def start_controller(self, fl_ctx: FLContext): # If the list of participating clients is not provided, include all clients currently available. if not self._participating_clients: clients = self._engine.get_clients() self._participating_clients = [c.name for c in clients] # Create shareable dirs for models and results workspace: Workspace = self._engine.get_workspace() run_dir = workspace.get_run_dir(fl_ctx.get_job_id()) cross_val_path = os.path.join(run_dir, self._cross_val_dir) self._cross_val_models_dir = os.path.join(cross_val_path, AppConstants.CROSS_VAL_MODEL_DIR_NAME) self._cross_val_results_dir = os.path.join(cross_val_path, AppConstants.CROSS_VAL_RESULTS_DIR_NAME) # Fire the init event. fl_ctx.set_prop(AppConstants.CROSS_VAL_MODEL_PATH, self._cross_val_models_dir) fl_ctx.set_prop(AppConstants.CROSS_VAL_RESULTS_PATH, self._cross_val_results_dir) self.fire_event(AppEventType.CROSS_VAL_INIT, fl_ctx) # Cleanup/create the cross val models and results directories if os.path.exists(self._cross_val_models_dir): shutil.rmtree(self._cross_val_models_dir) if os.path.exists(self._cross_val_results_dir): shutil.rmtree(self._cross_val_results_dir) # Recreate new directories. os.makedirs(self._cross_val_models_dir) os.makedirs(self._cross_val_results_dir) # Get components if self._model_locator_id: self._model_locator = self._engine.get_component(self._model_locator_id) if not isinstance(self._model_locator, ModelLocator): self.system_panic( reason="bad model locator {}: expect ModelLocator but got {}".format( self._model_locator_id, type(self._model_locator) ), fl_ctx=fl_ctx, ) return if self._formatter_id: self._formatter = self._engine.get_component(self._formatter_id) if not isinstance(self._formatter, Formatter): self.system_panic( reason=f"formatter {self._formatter_id} is not an instance of Formatter.", fl_ctx=fl_ctx ) return if not self._formatter: self.log_info(fl_ctx, "Formatter not found. Stats will not be printed.") for c_name in self._participating_clients: self._client_models[c_name] = None self._val_results[c_name] = {} def control_flow(self, abort_signal: Signal, fl_ctx: FLContext): try: # wait until there are some clients start_time = time.time() while not self._participating_clients: self._participating_clients = [c.name for c in self._engine.get_clients()] if time.time() - start_time > self._wait_for_clients_timeout: self.log_info(fl_ctx, "No clients available - quit model validation.") return self.log_info(fl_ctx, "No clients available - waiting ...") time.sleep(2.0) if abort_signal.triggered: self.log_info(fl_ctx, "Abort signal triggered. Finishing model validation.") return self.log_info(fl_ctx, f"Beginning model validation with clients: {self._participating_clients}.") if self._submit_model_task_name: shareable = Shareable() shareable.set_header(AppConstants.SUBMIT_MODEL_NAME, ModelName.BEST_MODEL) submit_model_task = Task( name=self._submit_model_task_name, data=shareable, result_received_cb=self._receive_local_model_cb, timeout=self._submit_model_timeout, ) self.broadcast( task=submit_model_task, targets=self._participating_clients, fl_ctx=fl_ctx, min_responses=len(self._participating_clients), ) if abort_signal.triggered: self.log_info(fl_ctx, "Abort signal triggered. Finishing model validation.") return # Load server models and assign those tasks if self._model_locator: success = self._locate_server_models(fl_ctx) if not success: return for server_model in self._server_models: self._send_validation_task(server_model, fl_ctx) else: self.log_info(fl_ctx, "ModelLocator not present. No server models will be included.") while self.get_num_standing_tasks(): if abort_signal.triggered: self.log_info(fl_ctx, "Abort signal triggered. Finishing cross site validation.") return self.log_debug(fl_ctx, "Checking standing tasks to see if cross site validation finished.") time.sleep(self._task_check_period) except Exception as e: error_msg = f"Exception in cross site validator control_flow: {secure_format_exception(e)}" self.log_exception(fl_ctx, error_msg) self.system_panic(error_msg, fl_ctx) def stop_controller(self, fl_ctx: FLContext): self.cancel_all_tasks(fl_ctx=fl_ctx) if self._cleanup_models: self.log_info(fl_ctx, "Removing local models kept for validation.") for model_name, model_path in self._server_models.items(): if model_path and os.path.isfile(model_path): os.remove(model_path) self.log_debug(fl_ctx, f"Removing server model {model_name} at {model_path}.") for model_name, model_path in self._client_models.items(): if model_path and os.path.isfile(model_path): os.remove(model_path) self.log_debug(fl_ctx, f"Removing client {model_name}'s model at {model_path}.") def _receive_local_model_cb(self, client_task: ClientTask, fl_ctx: FLContext): client_name = client_task.client.name result: Shareable = client_task.result self._accept_local_model(client_name=client_name, result=result, fl_ctx=fl_ctx) # Cleanup task result client_task.result = None def _before_send_validate_task_cb(self, client_task: ClientTask, fl_ctx: FLContext): model_name = client_task.task.props[AppConstants.MODEL_OWNER] try: model_dxo: DXO = self._load_validation_content(model_name, self._cross_val_models_dir, fl_ctx) except ValueError as e: reason = f"Error in loading model shareable for {model_name}: {secure_format_exception(e)}. CrossSiteModelEval exiting." self.log_error(fl_ctx, reason) self.system_panic(reason, fl_ctx) return if not model_dxo: self.system_panic( f"Model contents for {model_name} not found in {self._cross_val_models_dir}. " "CrossSiteModelEval exiting", fl_ctx=fl_ctx, ) return model_shareable = model_dxo.to_shareable() model_shareable.set_header(AppConstants.MODEL_OWNER, model_name) model_shareable.add_cookie(AppConstants.MODEL_OWNER, model_name) client_task.task.data = model_shareable fl_ctx.set_prop(AppConstants.DATA_CLIENT, client_task.client, private=True, sticky=False) fl_ctx.set_prop(AppConstants.MODEL_OWNER, model_name, private=True, sticky=False) fl_ctx.set_prop(AppConstants.MODEL_TO_VALIDATE, model_shareable, private=True, sticky=False) fl_ctx.set_prop(AppConstants.PARTICIPATING_CLIENTS, self._participating_clients, private=True, sticky=False) self.fire_event(AppEventType.SEND_MODEL_FOR_VALIDATION, fl_ctx) def _after_send_validate_task_cb(self, client_task: ClientTask, fl_ctx: FLContext): # Once task is sent clear data to restore memory client_task.task.data = None def _receive_val_result_cb(self, client_task: ClientTask, fl_ctx: FLContext): # Find name of the client sending this result = client_task.result client_name = client_task.client.name self._accept_val_result(client_name=client_name, result=result, fl_ctx=fl_ctx) client_task.result = None def _locate_server_models(self, fl_ctx: FLContext) -> bool: # Load models from model_locator self.log_info(fl_ctx, "Locating server models.") server_model_names = self._model_locator.get_model_names(fl_ctx) unique_names = [] for name in server_model_names: # Get the model dxo = self._model_locator.locate_model(name, fl_ctx) if not isinstance(dxo, DXO): self.system_panic(f"ModelLocator produced invalid data: expect DXO but got {type(dxo)}.", fl_ctx) return False # Save to workspace unique_name = "SRV_" + name unique_names.append(unique_name) try: save_path = self._save_dxo_content(unique_name, self._cross_val_models_dir, dxo, fl_ctx) except: self.log_exception(fl_ctx, f"Unable to save shareable contents of server model {unique_name}") self.system_panic(f"Unable to save shareable contents of server model {unique_name}", fl_ctx) return False self._server_models[unique_name] = save_path self._val_results[unique_name] = {} if unique_names: self.log_info(fl_ctx, f"Server models loaded: {unique_names}.") else: self.log_info(fl_ctx, "no server models to validate!") return True def _accept_local_model(self, client_name: str, result: Shareable, fl_ctx: FLContext): fl_ctx.set_prop(AppConstants.RECEIVED_MODEL, result, private=True, sticky=False) fl_ctx.set_prop(AppConstants.RECEIVED_MODEL_OWNER, client_name, private=True, sticky=False) fl_ctx.set_prop(AppConstants.CROSS_VAL_DIR, self._cross_val_dir, private=True, sticky=False) self.fire_event(AppEventType.RECEIVE_BEST_MODEL, fl_ctx) # get return code rc = result.get_return_code() if rc and rc != ReturnCode.OK: # Raise errors if bad peer context or execution exception. if rc in [ReturnCode.MISSING_PEER_CONTEXT, ReturnCode.BAD_PEER_CONTEXT]: self.log_error(fl_ctx, "Peer context is bad or missing. No model submitted for this client.") elif rc in [ReturnCode.EXECUTION_EXCEPTION, ReturnCode.TASK_UNKNOWN]: self.log_error( fl_ctx, "Execution Exception on client during model submission. No model submitted for this client." ) # Ignore contribution if result invalid. elif rc in [ ReturnCode.EXECUTION_RESULT_ERROR, ReturnCode.TASK_DATA_FILTER_ERROR, ReturnCode.TASK_RESULT_FILTER_ERROR, ReturnCode.TASK_UNKNOWN, ]: self.log_error(fl_ctx, "Execution result is not a shareable. Model submission will be ignored.") else: self.log_error(fl_ctx, "Return code set. Model submission from client will be ignored.") else: # Save shareable in models directory. try: self.log_debug(fl_ctx, "Extracting DXO from shareable.") dxo = from_shareable(result) except ValueError as e: self.log_error( fl_ctx, f"Ignored bad result from {client_name}: {secure_format_exception(e)}", ) return # The DXO could contain multiple sub-DXOs (e.g. received from a T2 system) leaf_dxos, errors = get_leaf_dxos(dxo, client_name) if errors: for err in errors: self.log_error(fl_ctx, f"Bad result from {client_name}: {err}") for k, v in leaf_dxos.items(): self._save_client_model(k, v, fl_ctx) def _save_client_model(self, model_name: str, dxo: DXO, fl_ctx: FLContext): save_path = self._save_dxo_content(model_name, self._cross_val_models_dir, dxo, fl_ctx) self.log_info(fl_ctx, f"Saved client model {model_name} to {save_path}") self._client_models[model_name] = save_path # Send a model to this client to validate self._send_validation_task(model_name, fl_ctx) def _send_validation_task(self, model_name: str, fl_ctx: FLContext): self.log_info(fl_ctx, f"Sending {model_name} model to all participating clients for validation.") # Create validation task and broadcast to all participating clients. task = Task( name=self._validation_task_name, data=Shareable(), before_task_sent_cb=self._before_send_validate_task_cb, after_task_sent_cb=self._after_send_validate_task_cb, result_received_cb=self._receive_val_result_cb, timeout=self._validation_timeout, props={AppConstants.MODEL_OWNER: model_name}, ) self.broadcast( task=task, fl_ctx=fl_ctx, targets=self._participating_clients, min_responses=len(self._participating_clients), wait_time_after_min_received=0, ) def _accept_val_result(self, client_name: str, result: Shareable, fl_ctx: FLContext): model_owner = result.get_cookie(AppConstants.MODEL_OWNER, "") # Fire event. This needs to be a new local context per each client fl_ctx.set_prop(AppConstants.MODEL_OWNER, model_owner, private=True, sticky=False) fl_ctx.set_prop(AppConstants.DATA_CLIENT, client_name, private=True, sticky=False) fl_ctx.set_prop(AppConstants.VALIDATION_RESULT, result, private=True, sticky=False) self.fire_event(AppEventType.VALIDATION_RESULT_RECEIVED, fl_ctx) rc = result.get_return_code() if rc and rc != ReturnCode.OK: # Raise errors if bad peer context or execution exception. if rc in [ReturnCode.MISSING_PEER_CONTEXT, ReturnCode.BAD_PEER_CONTEXT]: self.log_error(fl_ctx, "Peer context is bad or missing.") elif rc in [ReturnCode.EXECUTION_EXCEPTION, ReturnCode.TASK_UNKNOWN]: self.log_error(fl_ctx, "Execution Exception in model validation.") elif rc in [ ReturnCode.EXECUTION_RESULT_ERROR, ReturnCode.TASK_DATA_FILTER_ERROR, ReturnCode.TASK_RESULT_FILTER_ERROR, ]: self.log_error(fl_ctx, "Execution result is not a shareable. Validation results will be ignored.") else: self.log_error( fl_ctx, f"Client {client_name} sent results for validating {model_owner} model with return code set." " Logging empty results.", ) if client_name not in self._val_results: self._val_results[client_name] = {} self._val_results[client_name][model_owner] = {} else: try: dxo = from_shareable(result) except ValueError as e: reason = ( f"Bad validation result from {client_name} on model {model_owner}. " f"Exception: {secure_format_exception(e)}" ) self.log_exception(fl_ctx, reason) return # The DXO could contain multiple sub-DXOs (e.g. received from a T2 system) leaf_dxos, errors = get_leaf_dxos(dxo, client_name) if errors: for err in errors: self.log_error(fl_ctx, f"Bad result from {client_name}: {err}") for k, v in leaf_dxos.items(): self._save_validation_result(k, model_owner, v, fl_ctx) def _save_validation_result(self, client_name: str, model_name: str, dxo, fl_ctx): file_name = client_name + "_" + model_name file_path = self._save_dxo_content(file_name, self._cross_val_results_dir, dxo, fl_ctx) client_results = self._val_results.get(client_name, None) if not client_results: client_results = {} self._val_results[client_name] = client_results client_results[model_name] = file_path self.log_info( fl_ctx, f"Saved validation result from client '{client_name}' on model '{model_name}' in {file_path}" ) def _save_dxo_content(self, name: str, save_dir: str, dxo: DXO, fl_ctx: FLContext) -> str: """Saves shareable to given directory within the app_dir. Args: name (str): Name of shareable save_dir (str): Relative path to directory in which to save dxo (DXO): DXO object fl_ctx (FLContext): FLContext object Returns: str: Path to the file saved. """ # Save the model with name as the filename to shareable directory data_filename = os.path.join(save_dir, name) try: bytes_to_save = dxo.to_bytes() except Exception as e: raise ValueError(f"Unable to extract shareable contents. Exception: {(secure_format_exception(e))}") # Save contents to path try: with open(data_filename, "wb") as f: f.write(bytes_to_save) except Exception as e: raise ValueError(f"Unable to save DXO content: {secure_format_exception(e)}") return data_filename def _load_validation_content(self, name: str, load_dir: str, fl_ctx: FLContext) -> Union[DXO, None]: # Load shareable from disk shareable_filename = os.path.join(load_dir, name) # load shareable try: with open(shareable_filename, "rb") as f: data = f.read() dxo: DXO = from_bytes(data) self.log_debug(fl_ctx, f"Loading cross validation shareable content with name: {name}.") except Exception as e: raise ValueError(f"Exception in loading shareable content for {name}: {secure_format_exception(e)}") return dxo def handle_event(self, event_type: str, fl_ctx: FLContext): super().handle_event(event_type=event_type, fl_ctx=fl_ctx) if event_type == InfoCollector.EVENT_TYPE_GET_STATS: if self._formatter: collector = fl_ctx.get_prop(InfoCollector.CTX_KEY_STATS_COLLECTOR, None) if collector: if not isinstance(collector, GroupInfoCollector): raise TypeError("collector must be GroupInfoCollector but got {}".format(type(collector))) fl_ctx.set_prop(AppConstants.VALIDATION_RESULT, self._val_results, private=True, sticky=False) val_info = self._formatter.format(fl_ctx) collector.add_info( group_name=self._name, info={"val_results": val_info}, ) else: self.log_warning(fl_ctx, "No formatter provided. Validation results can't be printed.") def process_result_of_unknown_task( self, client: Client, task_name: str, client_task_id: str, result: Shareable, fl_ctx: FLContext ): if task_name == self._submit_model_task_name: self._accept_local_model(client_name=client.name, result=result, fl_ctx=fl_ctx) elif task_name == self._validation_task_name: self._accept_val_result(client_name=client.name, result=result, fl_ctx=fl_ctx) else: self.log_error(fl_ctx, "Ignoring result from unknown task.")
NVFlare-main
nvflare/app_common/workflows/cross_site_model_eval.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.app_common.app_constant import AppConstants from .cross_site_model_eval import CrossSiteModelEval class GlobalModelEval(CrossSiteModelEval): def __init__( self, task_check_period=0.5, cross_val_dir=AppConstants.CROSS_VAL_DIR, validation_timeout: int = 6000, model_locator_id="", formatter_id="", validation_task_name=AppConstants.TASK_VALIDATION, cleanup_models=False, participating_clients=None, wait_for_clients_timeout=300, ): """Cross Site Model Validation workflow. Args: task_check_period (float, optional): How often to check for new tasks or tasks being finished. Defaults to 0.5. cross_val_dir (str, optional): Path to cross site validation directory relative to run directory. Defaults to "cross_site_val". validation_timeout (int, optional): Timeout for validate_model task. Defaults to 6000. model_locator_id (str, optional): ID for model_locator component. Defaults to None. formatter_id (str, optional): ID for formatter component. Defaults to None. validation_task_name (str, optional): Name of validate_model task. Defaults to "validate". cleanup_models (bool, optional): Whether models should be deleted after run. Defaults to False. participating_clients (list, optional): List of participating client names. If not provided, defaults to all clients connected at start of controller. wait_for_clients_timeout (int, optional): Timeout for clients to appear. Defaults to 300 secs """ if not model_locator_id: raise ValueError("missing required model_locator_id") CrossSiteModelEval.__init__( self, task_check_period=task_check_period, cross_val_dir=cross_val_dir, validation_timeout=validation_timeout, model_locator_id=model_locator_id, formatter_id=formatter_id, validation_task_name=validation_task_name, submit_model_task_name="", cleanup_models=cleanup_models, participating_clients=participating_clients, wait_for_clients_timeout=wait_for_clients_timeout, )
NVFlare-main
nvflare/app_common/workflows/global_model_eval.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/job_schedulers/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import threading import time from typing import Dict, List, Optional, Tuple from nvflare.apis.event_type import EventType from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_constant import FLContextKey from nvflare.apis.fl_context import FLContext from nvflare.apis.job_def import ALL_SITES, SERVER_SITE_NAME, Job, JobMetaKey, RunStatus from nvflare.apis.job_def_manager_spec import JobDefManagerSpec from nvflare.apis.job_scheduler_spec import DispatchInfo, JobSchedulerSpec from nvflare.apis.server_engine_spec import ServerEngineSpec SCHEDULE_RESULT_OK = 0 # the job is scheduled SCHEDULE_RESULT_NO_RESOURCE = 1 # job is not scheduled due to lack of resources SCHEDULE_RESULT_BLOCK = 2 # job is to be blocked from scheduled again due to fatal error class DefaultJobScheduler(JobSchedulerSpec, FLComponent): def __init__( self, max_jobs: int = 1, max_schedule_count: int = 10, min_schedule_interval: float = 10.0, max_schedule_interval: float = 600.0, ): """ Create a DefaultJobScheduler Args: max_jobs: max number of concurrent jobs allowed max_schedule_count: max number of times to try to schedule a job min_schedule_interval: min interval between two schedules max_schedule_interval: max interval between two schedules """ super().__init__() self.max_jobs = max_jobs self.max_schedule_count = max_schedule_count self.min_schedule_interval = min_schedule_interval self.max_schedule_interval = max_schedule_interval self.scheduled_jobs = [] self.lock = threading.Lock() def _check_client_resources( self, job_id: str, resource_reqs: Dict[str, dict], fl_ctx: FLContext ) -> Dict[str, Tuple[bool, str]]: """Checks resources on each site. Args: resource_reqs (dict): {client_name: resource_requirements} Returns: A dict of {client_name: client_check_result}. client_check_result is a tuple of (is_resource_enough, token); is_resource_enough is a bool indicates whether there is enough resources; token is for resource reservation / cancellation for this check request. """ engine = fl_ctx.get_engine() if not isinstance(engine, ServerEngineSpec): raise RuntimeError(f"engine inside fl_ctx should be of type ServerEngineSpec, but got {type(engine)}.") result = engine.check_client_resources(job_id, resource_reqs) self.log_debug(fl_ctx, f"check client resources result: {result}") return result def _cancel_resources( self, resource_reqs: Dict[str, dict], resource_check_results: Dict[str, Tuple[bool, str]], fl_ctx: FLContext ): """Cancels any reserved resources based on resource check results. Args: resource_reqs (dict): {client_name: resource_requirements} resource_check_results: A dict of {client_name: client_check_result} where client_check_result is a tuple of {is_resource_enough, resource reserve token if any} fl_ctx: FL context """ engine = fl_ctx.get_engine() if not isinstance(engine, ServerEngineSpec): raise RuntimeError(f"engine inside fl_ctx should be of type ServerEngineSpec, but got {type(engine)}.") engine.cancel_client_resources(resource_check_results, resource_reqs) self.log_debug(fl_ctx, f"cancel client resources using check results: {resource_check_results}") return False, None def _try_job(self, job: Job, fl_ctx: FLContext) -> (int, Optional[Dict[str, DispatchInfo]], str): engine = fl_ctx.get_engine() online_clients = engine.get_clients() online_site_names = [x.name for x in online_clients] if not job.deploy_map: self.log_error(fl_ctx, f"Job '{job.job_id}' does not have deploy_map, can't be scheduled.") return SCHEDULE_RESULT_BLOCK, None, "no deploy map" applicable_sites = [] sites_to_app = {} for app_name in job.deploy_map: for site_name in job.deploy_map[app_name]: if site_name.upper() == ALL_SITES: # deploy_map: {"app_name": ["ALL_SITES"]} will be treated as deploying to all online clients applicable_sites = online_site_names sites_to_app = {x: app_name for x in online_site_names} sites_to_app[SERVER_SITE_NAME] = app_name elif site_name in online_site_names: applicable_sites.append(site_name) sites_to_app[site_name] = app_name elif site_name == SERVER_SITE_NAME: sites_to_app[SERVER_SITE_NAME] = app_name self.log_debug(fl_ctx, f"Job {job.job_id} is checking against applicable sites: {applicable_sites}") required_sites = job.required_sites if job.required_sites else [] if required_sites: for s in required_sites: if s not in applicable_sites: self.log_debug(fl_ctx, f"Job {job.job_id} can't be scheduled: required site {s} is not connected.") return SCHEDULE_RESULT_NO_RESOURCE, None, f"missing required site {s}" if job.min_sites and len(applicable_sites) < job.min_sites: self.log_debug( fl_ctx, f"Job {job.job_id} can't be scheduled: connected sites ({len(applicable_sites)}) " f"are less than min_sites ({job.min_sites}).", ) return ( SCHEDULE_RESULT_NO_RESOURCE, None, f"connected sites ({len(applicable_sites)}) < min_sites ({job.min_sites})", ) # we are assuming server resource is sufficient resource_reqs = {} for site_name in applicable_sites: if site_name in job.resource_spec: resource_reqs[site_name] = job.resource_spec[site_name] else: resource_reqs[site_name] = {} job_participants = [fl_ctx.get_identity_name(default=SERVER_SITE_NAME)] job_participants.extend(applicable_sites) fl_ctx.set_prop(FLContextKey.CURRENT_JOB_ID, job.job_id, private=True) fl_ctx.set_prop(FLContextKey.CLIENT_RESOURCE_SPECS, resource_reqs, private=True, sticky=False) fl_ctx.set_prop(FLContextKey.JOB_PARTICIPANTS, job_participants, private=True, sticky=False) self.fire_event(EventType.BEFORE_CHECK_CLIENT_RESOURCES, fl_ctx) block_reason = fl_ctx.get_prop(FLContextKey.JOB_BLOCK_REASON) if block_reason: # cannot schedule this job self.log_info(fl_ctx, f"Job {job.job_id} can't be scheduled: {block_reason}") return SCHEDULE_RESULT_NO_RESOURCE, None, block_reason resource_check_results = self._check_client_resources( job_id=job.job_id, resource_reqs=resource_reqs, fl_ctx=fl_ctx ) if not resource_check_results: self.log_debug(fl_ctx, f"Job {job.job_id} can't be scheduled: resource check results is None or empty.") return SCHEDULE_RESULT_NO_RESOURCE, None, "error checking resources" required_sites_not_enough_resource = list(required_sites) num_sites_ok = 0 sites_dispatch_info = {} for site_name, check_result in resource_check_results.items(): is_resource_enough, token = check_result if is_resource_enough: sites_dispatch_info[site_name] = DispatchInfo( app_name=sites_to_app[site_name], resource_requirements=resource_reqs[site_name], token=token, ) num_sites_ok += 1 if site_name in required_sites: required_sites_not_enough_resource.remove(site_name) if num_sites_ok < job.min_sites: self.log_debug(fl_ctx, f"Job {job.job_id} can't be scheduled: not enough sites have enough resources.") self._cancel_resources( resource_reqs=job.resource_spec, resource_check_results=resource_check_results, fl_ctx=fl_ctx ) return ( SCHEDULE_RESULT_NO_RESOURCE, None, f"not enough sites have enough resources (ok sites {num_sites_ok} < min sites {job.min_sites}", ) if required_sites_not_enough_resource: self.log_debug( fl_ctx, f"Job {job.job_id} can't be scheduled: required sites: {required_sites_not_enough_resource}" f" don't have enough resources.", ) self._cancel_resources( resource_reqs=job.resource_spec, resource_check_results=resource_check_results, fl_ctx=fl_ctx ) return ( SCHEDULE_RESULT_NO_RESOURCE, None, f"required sites: {required_sites_not_enough_resource} don't have enough resources", ) # add server dispatch info sites_dispatch_info[SERVER_SITE_NAME] = DispatchInfo( app_name=sites_to_app[SERVER_SITE_NAME], resource_requirements={}, token=None ) return SCHEDULE_RESULT_OK, sites_dispatch_info, "" def _exceed_max_jobs(self, fl_ctx: FLContext) -> bool: exceed_limit = False with self.lock: if len(self.scheduled_jobs) >= self.max_jobs: self.log_debug( fl_ctx, f"Skipping schedule job because scheduled_jobs ({len(self.scheduled_jobs)}) " f"is greater than max_jobs ({self.max_jobs})", ) exceed_limit = True return exceed_limit def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.JOB_STARTED: with self.lock: job_id = fl_ctx.get_prop(FLContextKey.CURRENT_JOB_ID) if job_id not in self.scheduled_jobs: self.scheduled_jobs.append(job_id) elif event_type == EventType.JOB_COMPLETED or event_type == EventType.JOB_ABORTED: with self.lock: job_id = fl_ctx.get_prop(FLContextKey.CURRENT_JOB_ID) if job_id in self.scheduled_jobs: self.scheduled_jobs.remove(job_id) def schedule_job( self, job_manager: JobDefManagerSpec, job_candidates: List[Job], fl_ctx: FLContext ) -> (Optional[Job], Optional[Dict[str, DispatchInfo]]): failed_jobs = [] blocked_jobs = [] try: ready_job, dispatch_info = self._do_schedule_job(job_candidates, fl_ctx, failed_jobs, blocked_jobs) except: self.log_exception(fl_ctx, "error scheduling job") ready_job, dispatch_info = None, None # process failed and blocked jobs try: if failed_jobs: # set the try count for job in failed_jobs: job_manager.refresh_meta(job, self._get_update_meta_keys(), fl_ctx) if blocked_jobs: for job in blocked_jobs: job_manager.refresh_meta(job, self._get_update_meta_keys(), fl_ctx) job_manager.set_status(job.job_id, RunStatus.FINISHED_CANT_SCHEDULE, fl_ctx) except: self.log_exception(fl_ctx, "error updating scheduling info in job store") return ready_job, dispatch_info def _get_update_meta_keys(self): return [ JobMetaKey.SCHEDULE_COUNT.value, JobMetaKey.LAST_SCHEDULE_TIME.value, JobMetaKey.SCHEDULE_HISTORY.value, ] def _update_schedule_history(self, job: Job, result: str, fl_ctx: FLContext): history = job.meta.get(JobMetaKey.SCHEDULE_HISTORY.value, None) if not history: history = [] job.meta[JobMetaKey.SCHEDULE_HISTORY.value] = history now = datetime.datetime.now() cur_time = now.strftime("%Y-%m-%d %H:%M:%S") history.append(f"{cur_time}: {result}") self.log_info(fl_ctx, f"Try to schedule job {job.job_id}, get result: ({result}).") schedule_count = job.meta.get(JobMetaKey.SCHEDULE_COUNT.value, 0) schedule_count += 1 job.meta[JobMetaKey.SCHEDULE_COUNT.value] = schedule_count job.meta[JobMetaKey.LAST_SCHEDULE_TIME.value] = time.time() def _do_schedule_job( self, job_candidates: List[Job], fl_ctx: FLContext, failed_jobs: list, blocked_jobs: list ) -> (Optional[Job], Optional[Dict[str, DispatchInfo]]): self.log_debug(fl_ctx, f"Current scheduled_jobs is {self.scheduled_jobs}") if self._exceed_max_jobs(fl_ctx=fl_ctx): self.log_debug(fl_ctx, f"skipped scheduling since there are {self.max_jobs} concurrent job(s) already") return None, None # sort by submitted time job_candidates.sort(key=lambda j: j.meta.get(JobMetaKey.SUBMIT_TIME.value, 0.0)) engine = fl_ctx.get_engine() for job in job_candidates: schedule_count = job.meta.get(JobMetaKey.SCHEDULE_COUNT.value, 0) if schedule_count >= self.max_schedule_count: self.log_info( fl_ctx, f"skipped job {job.job_id} since it exceeded max schedule count {self.max_schedule_count}" ) blocked_jobs.append(job) self._update_schedule_history(job, f"exceeded max schedule count {self.max_schedule_count}", fl_ctx) continue last_schedule_time = job.meta.get(JobMetaKey.LAST_SCHEDULE_TIME.value, 0.0) time_since_last_schedule = time.time() - last_schedule_time n = 0 if schedule_count == 0 else schedule_count - 1 required_interval = min(self.max_schedule_interval, (2**n) * self.min_schedule_interval) if time_since_last_schedule < required_interval: # do not schedule again too soon continue with engine.new_context() as ctx: rc, sites_dispatch_info, result = self._try_job(job, ctx) self.log_debug(ctx, f"Try to schedule job {job.job_id}, get result: {rc}, {sites_dispatch_info}.") if not result: result = "scheduled" self._update_schedule_history(job, result, ctx) if rc == SCHEDULE_RESULT_OK: return job, sites_dispatch_info elif rc == SCHEDULE_RESULT_NO_RESOURCE: failed_jobs.append(job) else: blocked_jobs.append(job) self.log_debug(fl_ctx, "No job is scheduled.") return None, None def restore_scheduled_job(self, job_id: str): with self.lock: if job_id not in self.scheduled_jobs: self.scheduled_jobs.append(job_id) def remove_scheduled_job(self, job_id: str): with self.lock: if job_id in self.scheduled_jobs: self.scheduled_jobs.remove(job_id)
NVFlare-main
nvflare/app_common/job_schedulers/job_scheduler.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from typing import Any, Dict, Optional from nvflare.apis.dxo import DXO, DataKind, from_shareable from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.app_common.abstract.fl_model import FLModel, FLModelConst, MetaKey, ParamsType from nvflare.app_common.app_constant import AppConstants from nvflare.fuel.utils.validation_utils import check_object_type MODEL_ATTRS = [ FLModelConst.PARAMS_TYPE, FLModelConst.PARAMS, FLModelConst.METRICS, FLModelConst.OPTIMIZER_PARAMS, FLModelConst.CURRENT_ROUND, FLModelConst.TOTAL_ROUNDS, FLModelConst.META, ] params_type_to_data_kind = { ParamsType.FULL.value: DataKind.WEIGHTS, ParamsType.DIFF.value: DataKind.WEIGHT_DIFF, } data_kind_to_params_type = {v: k for k, v in params_type_to_data_kind.items()} class ParamsConverter(ABC): """This class converts params from one format to the other.""" @abstractmethod def convert(self, params: Dict) -> Dict: pass class FLModelUtils: @staticmethod def to_shareable(fl_model: FLModel, params_converter: Optional[ParamsConverter] = None) -> Shareable: """From FLModel to NVFlare side shareable. This is a temporary solution to converts FLModel to the shareable of existing style, so that we can reuse the existing components we have. In the future, we should be using the to_dxo, from_dxo directly. And all the components should be changed to accept the standard DXO. """ if fl_model.params is None and fl_model.metrics is None: raise ValueError("FLModel without params and metrics is NOT supported.") elif fl_model.params is not None: if fl_model.params_type is None: raise ValueError(f"Invalid ParamsType: ({fl_model.params_type}).") data_kind = params_type_to_data_kind.get(fl_model.params_type) if data_kind is None: raise ValueError(f"Invalid ParamsType: ({fl_model.params_type}).") if params_converter is not None: fl_model.params = params_converter.convert(fl_model.params) if fl_model.metrics is None: dxo = DXO(data_kind, data=fl_model.params, meta={}) else: # if both params and metrics are presented, will be treated as initial evaluation on the global model dxo = DXO(data_kind, data=fl_model.params, meta={MetaKey.INITIAL_METRICS: fl_model.metrics}) else: dxo = DXO(DataKind.METRICS, data=fl_model.metrics, meta={}) meta = fl_model.meta if fl_model.meta is not None else {} dxo.meta.update(meta) shareable = dxo.to_shareable() if fl_model.current_round is not None: shareable.set_header(AppConstants.CURRENT_ROUND, fl_model.current_round) if fl_model.total_rounds is not None: shareable.set_header(AppConstants.NUM_ROUNDS, fl_model.total_rounds) if MetaKey.VALIDATE_TYPE in meta: shareable.set_header(AppConstants.VALIDATE_TYPE, meta[MetaKey.VALIDATE_TYPE]) return shareable @staticmethod def from_shareable( shareable: Shareable, params_converter: Optional[ParamsConverter] = None, fl_ctx: Optional[FLContext] = None ) -> FLModel: """From NVFlare side shareable to FLModel. This is a temporary solution to converts the shareable of existing style to FLModel, so that we can reuse the existing components we have. In the future, we should be using the to_dxo, from_dxo directly. And all the components should be changed to accept the standard DXO. """ dxo = from_shareable(shareable) metrics = None params_type = None params = None if dxo.data_kind == DataKind.METRICS: metrics = dxo.data else: params_type = data_kind_to_params_type.get(dxo.data_kind) if params_type is None: raise ValueError(f"Invalid shareable with dxo that has data kind: {dxo.data_kind}") params_type = ParamsType(params_type) if params_converter: dxo.data = params_converter.convert(dxo.data) params = dxo.data current_round = shareable.get_header(AppConstants.CURRENT_ROUND, None) total_rounds = shareable.get_header(AppConstants.NUM_ROUNDS, None) validate_type = shareable.get_header(AppConstants.VALIDATE_TYPE, None) meta = dict(dxo.meta) if validate_type is not None: meta[MetaKey.VALIDATE_TYPE] = validate_type if fl_ctx is not None: meta[MetaKey.JOB_ID] = fl_ctx.get_job_id() meta[MetaKey.SITE_NAME] = fl_ctx.get_identity_name() result = FLModel( params_type=params_type, params=params, metrics=metrics, current_round=current_round, total_rounds=total_rounds, meta=meta, ) return result @staticmethod def to_dxo(fl_model: FLModel) -> DXO: """Converts FLModel to a DXO.""" attr_dict = {} for attr in MODEL_ATTRS: value = getattr(fl_model, attr, None) if value is not None: attr_dict[attr] = value result = DXO(data_kind=DataKind.FL_MODEL, data=attr_dict) return result @staticmethod def from_dxo(dxo: DXO) -> FLModel: """Converts DXO to FLModel.""" if dxo.data_kind != DataKind.FL_MODEL: raise ValueError(f"Invalid dxo with data_kind: {dxo.data_kind}") if not isinstance(dxo.data, dict): raise ValueError(f"Invalid dxo with data of type: {type(dxo.data)}") params = dxo.data.get(FLModelConst.PARAMS, None) params_type = dxo.data.get(FLModelConst.PARAMS_TYPE, None) metrics = dxo.data.get(FLModelConst.METRICS, None) optimizer_params = dxo.data.get(FLModelConst.OPTIMIZER_PARAMS, None) current_round = dxo.data.get(FLModelConst.CURRENT_ROUND, None) total_rounds = dxo.data.get(FLModelConst.TOTAL_ROUNDS, None) meta = dxo.data.get(FLModelConst.META, None) return FLModel( params=params, params_type=params_type, metrics=metrics, optimizer_params=optimizer_params, current_round=current_round, total_rounds=total_rounds, meta=meta, ) @staticmethod def get_meta_prop(model: FLModel, key: str, default=None): check_object_type("model", model, FLModel) if not model.meta: return default else: return model.meta.get(key, default) @staticmethod def set_meta_prop(model: FLModel, key: str, value: Any): check_object_type("model", model, FLModel) model.meta[key] = value @staticmethod def get_configs(model: FLModel) -> Optional[dict]: return FLModelUtils.get_meta_prop(model, MetaKey.CONFIGS)
NVFlare-main
nvflare/app_common/utils/fl_model_utils.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/utils/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. def check_component_type(comp, t): if not isinstance(comp, t): raise TypeError(f"{type(comp).__name__} must implement `{t}` type. Got: {type(comp)}")
NVFlare-main
nvflare/app_common/utils/component_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib from typing import Optional def get_ext_format(ext: str) -> str: if ext is None or ext == "" or ext.isspace(): return "csv" elif ext.startswith("."): return ext[1:] else: return ext def get_file_format(input_path: str) -> str: ext = get_file_ext(input_path) return get_ext_format(ext) def get_file_ext(input_path: str) -> Optional[str]: ext = pathlib.Path(input_path).suffix if ext.startswith("."): return ext[1:] else: return ext
NVFlare-main
nvflare/app_common/utils/file_utils.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import json import numpy as np class ObjectEncoder(json.JSONEncoder): def default(self, obj): if hasattr(obj, "to_json"): return self.default(obj.to_json()) if isinstance(obj, np.integer): return int(obj) if isinstance(obj, np.floating): return float(obj) if isinstance(obj, np.ndarray): return obj.tolist() elif hasattr(obj, "__dict__"): d = dict( (key, value) for key, value in inspect.getmembers(obj) if not key.startswith("__") and not inspect.isabstract(value) and not inspect.isbuiltin(value) and not inspect.isfunction(value) and not inspect.isgenerator(value) and not inspect.isgeneratorfunction(value) and not inspect.ismethod(value) and not inspect.ismethoddescriptor(value) and not inspect.isroutine(value) ) return self.default(d) return super(ObjectEncoder, self).default(obj)
NVFlare-main
nvflare/app_common/utils/json_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from enum import Enum class ModelExchangeFormat(str, Enum): RAW = "raw" PYTORCH = "pytorch" NUMPY = "numpy"
NVFlare-main
nvflare/app_common/model_exchange/constants.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/model_exchange/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Optional from nvflare.apis.utils.decomposers import flare_decomposers from nvflare.app_common.decomposers import common_decomposers as app_common_decomposers from nvflare.app_common.model_exchange.model_exchanger import ModelExchanger from nvflare.fuel.utils.constants import Mode from nvflare.fuel.utils.pipe.file_accessor import FileAccessor from nvflare.fuel.utils.pipe.file_pipe import FilePipe class FilePipeModelExchanger(ModelExchanger): def __init__( self, data_exchange_path: str, file_accessor: Optional[FileAccessor] = None, pipe_name: str = "pipe", topic: str = "data", get_poll_interval: float = 0.5, read_interval: float = 0.1, heartbeat_interval: float = 5.0, heartbeat_timeout: float = 30.0, ): """Initializes the FilePipeModelExchanger. Args: data_exchange_path (str): The path for data exchange. This is the location where the data will be read from or written to. file_accessor (Optional[FileAccessor]): The file accessor for reading and writing files. If not provided, the default file accessor (FobsFileAccessor) will be used. Please refer to the docstring of the FileAccessor class for more information on implementing a custom file accessor. Defaults to None. pipe_name (str): The name of the pipe to be used for communication. This pipe will be used for transmitting data between the sender and receiver. Defaults to "pipe". topic (str): The topic for data exchange. This allows the sender and receiver to identify the purpose or content of the data being exchanged. Defaults to "data". get_poll_interval (float): The interval (in seconds) for checking if the other side has sent data. This determines how often the receiver checks for incoming data. Defaults to 0.5. read_interval (float): The interval (in seconds) for reading from the pipe. This determines how often the receiver reads data from the pipe. Defaults to 0.1. heartbeat_interval (float): The interval (in seconds) for sending heartbeat signals to the peer. Heartbeat signals are used to indicate that the sender or receiver is still active. Defaults to 5.0. heartbeat_timeout (float): The timeout (in seconds) for waiting for a heartbeat signal from the peer. If a heartbeat is not received within this timeout period, the connection may be considered lost. Defaults to 30.0. """ flare_decomposers.register() app_common_decomposers.register() data_exchange_path = os.path.abspath(data_exchange_path) file_pipe = FilePipe(Mode.PASSIVE, data_exchange_path) if file_accessor is not None: file_pipe.set_file_accessor(file_accessor) super().__init__( pipe=file_pipe, pipe_name=pipe_name, topic=topic, get_poll_interval=get_poll_interval, read_interval=read_interval, heartbeat_interval=heartbeat_interval, heartbeat_timeout=heartbeat_timeout, )
NVFlare-main
nvflare/app_common/model_exchange/file_pipe_model_exchanger.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import time from typing import Any, Optional, Tuple from nvflare.fuel.utils.pipe.pipe import Message, Pipe from nvflare.fuel.utils.pipe.pipe_handler import PipeHandler, Topic class DataExchangeException(Exception): pass class ExchangeTimeoutException(DataExchangeException): pass class ExchangeAbortException(DataExchangeException): pass class ExchangeEndException(DataExchangeException): pass class ExchangePeerGoneException(DataExchangeException): pass class ModelExchanger: def __init__( self, pipe: Pipe, pipe_name: str = "pipe", topic: str = "data", get_poll_interval: float = 0.5, read_interval: float = 0.1, heartbeat_interval: float = 5.0, heartbeat_timeout: float = 30.0, ): """Initializes the ModelExchanger. Args: pipe (Pipe): The pipe used for data exchange. pipe_name (str): Name of the pipe. Defaults to "pipe". topic (str): Topic for data exchange. Defaults to "data". get_poll_interval (float): Interval for checking if the other side has sent data. Defaults to 0.5. read_interval (float): Interval for reading from the pipe. Defaults to 0.1. heartbeat_interval (float): Interval for sending heartbeat to the peer. Defaults to 5.0. heartbeat_timeout (float): Timeout for waiting for a heartbeat from the peer. Defaults to 30.0. """ self.logger = logging.getLogger(self.__class__.__name__) self._req_id: Optional[str] = None self._topic = topic pipe.open(pipe_name) self.pipe_handler = PipeHandler( pipe, read_interval=read_interval, heartbeat_interval=heartbeat_interval, heartbeat_timeout=heartbeat_timeout, ) self.pipe_handler.start() self._get_poll_interval = get_poll_interval def submit_model(self, model: Any) -> None: """Submits a model for exchange. Args: model (Any): The model to be submitted. Raises: DataExchangeException: If there is no request ID available (needs to pull model from server first). """ if self._req_id is None: raise DataExchangeException("need to pull a model first.") self._send_reply(data=model, req_id=self._req_id) def receive_model(self, timeout: Optional[float] = None) -> Any: """Receives a model. Args: timeout (Optional[float]): Timeout for waiting to receive a model. Defaults to None. Returns: Any: The received model. Raises: ExchangeTimeoutException: If the data cannot be received within the specified timeout. ExchangeAbortException: If the other endpoint of the pipe requests to abort. ExchangeEndException: If the other endpoint has ended. ExchangePeerGoneException: If the other endpoint is gone. """ model, req_id = self._receive_request(timeout) self._req_id = req_id return model def finalize(self, close_pipe: bool = True) -> None: if self.pipe_handler is None: raise RuntimeError("PipeMonitor is not initialized.") self.pipe_handler.stop(close_pipe=close_pipe) def _receive_request(self, timeout: Optional[float] = None) -> Tuple[Any, str]: """Receives a request. Args: timeout: how long to wait for the request to come. Returns: A tuple of (data, request id). Raises: ExchangeTimeoutException: If can't receive data within timeout seconds. ExchangeAbortException: If the other endpoint of the pipe ask to abort. ExchangeEndException: If the other endpoint has ended. ExchangePeerGoneException: If the other endpoint is gone. """ if self.pipe_handler is None: raise RuntimeError("PipeMonitor is not initialized.") start = time.time() while True: msg: Optional[Message] = self.pipe_handler.get_next() if not msg: if timeout and time.time() - start > timeout: self.pipe_handler.notify_abort(msg) raise ExchangeTimeoutException(f"get data timeout after {timeout} secs") elif msg.topic == Topic.ABORT: raise ExchangeAbortException("the other end is aborted") elif msg.topic == Topic.END: raise ExchangeEndException( f"received {msg.topic}: {msg.data} while waiting for result for {self._topic}" ) elif msg.topic == Topic.PEER_GONE: raise ExchangePeerGoneException( f"received {msg.topic}: {msg.data} while waiting for result for {self._topic}" ) elif msg.topic == self._topic: return msg.data, msg.msg_id time.sleep(self._get_poll_interval) def _send_reply(self, data: Any, req_id: str, timeout: Optional[float] = None) -> bool: """Sends a reply. Args: data: The data exchange object to be sent. req_id: request ID. timeout: how long to wait for the peer to read the data. If not specified, return False immediately. Returns: A bool indicates whether the peer has read the data. """ if self.pipe_handler is None: raise RuntimeError("PipeMonitor is not initialized.") msg = Message.new_reply(topic=self._topic, data=data, req_msg_id=req_id) has_been_read = self.pipe_handler.send_to_peer(msg, timeout) return has_been_read
NVFlare-main
nvflare/app_common/model_exchange/model_exchanger.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/state_persistors/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from nvflare.apis.fl_snapshot import FLSnapshot, RunSnapshot from nvflare.apis.state_persistor import StatePersistor from nvflare.apis.storage import StorageSpec from nvflare.fuel.utils import fobs class StorageStatePersistor(StatePersistor): def __init__(self, storage: StorageSpec, uri_root: str): """Creates a StorageStatePersistor. Args: storage: StorageSpec object uri_root: where to store the states. """ self.storage = storage self.uri_root = uri_root def save(self, snapshot: RunSnapshot) -> str: """Call to save the snapshot of the FL state to storage. Args: snapshot: RunSnapshot object Returns: storage location """ path = os.path.join(self.uri_root, snapshot.job_id) if snapshot.completed: full_uri = self.storage.delete_object(path) else: full_uri = self.storage.create_object(uri=path, data=fobs.dumps(snapshot), meta={}, overwrite_existing=True) return full_uri def retrieve(self) -> FLSnapshot: """Call to load the persisted FL components snapshot from the persisted location. Returns: retrieved Snapshot """ all_items = self.storage.list_objects(self.uri_root) fl_snapshot = FLSnapshot() for item in all_items: snapshot = fobs.loads(self.storage.get_data(item)) fl_snapshot.add_snapshot(snapshot.job_id, snapshot) return fl_snapshot def retrieve_run(self, job_id: str) -> RunSnapshot: """Call to load the persisted RunSnapshot of a job from the persisted location. Args: job_id: job_id Returns: RunSnapshot of the job_id """ path = os.path.join(self.uri_root, job_id) snapshot = fobs.loads(self.storage.get_data(uri=path)) return snapshot def delete(self): """Deletes the FL snapshot.""" all_items = self.storage.list_objects(self.uri_root) for item in all_items: self.storage.delete_object(item) def delete_run(self, job_id: str): """Deletes the RunSnapshot of a job. Args: job_id: job_id """ path = os.path.join(self.uri_root, job_id) self.storage.delete_object(path)
NVFlare-main
nvflare/app_common/state_persistors/storage_state_persistor.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings warnings.warn( f"This module: {__file__} is deprecated. Please use nvflare.app_opt.pt.file_model_locator", category=FutureWarning, stacklevel=2, ) # flake8: noqa: F401 from nvflare.app_opt.pt.file_model_locator import PTFileModelLocator
NVFlare-main
nvflare/app_common/pt/pt_file_model_locator.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings warnings.warn( f"This module: {__file__} is deprecated. Please use nvflare.app_opt.pt.model_reader_writer", category=FutureWarning, stacklevel=2, ) # flake8: noqa: F401 from nvflare.app_opt.pt.model_reader_writer import PTModelReaderWriter
NVFlare-main
nvflare/app_common/pt/pt_model_reader_writer.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings warnings.warn( f"This module: {__file__} is deprecated. Please use nvflare.app_opt.pt.fedopt", category=FutureWarning, stacklevel=2 ) # flake8: noqa: F401 from nvflare.app_opt.pt.fedopt import PTFedOptModelShareableGenerator
NVFlare-main
nvflare/app_common/pt/pt_fedopt.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings warnings.warn( f"This module: {__file__} is deprecated. Please use nvflare.app_opt.pt.", category=FutureWarning, stacklevel=2 ) from nvflare.app_opt.pt.model_persistence_format_manager import PTModelPersistenceFormatManager # flake8: noqa: F401 from nvflare.app_opt.pt.utils import feed_vars
NVFlare-main
nvflare/app_common/pt/pt_fed_utils.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings warnings.warn( f"This module: {__file__} is deprecated. Please use nvflare.app_opt.pt.multi_process_executor", category=FutureWarning, stacklevel=2, ) # flake8: noqa: F401 from nvflare.app_opt.pt.multi_process_executor import PTMultiProcessExecutor
NVFlare-main
nvflare/app_common/pt/pt_multi_process_executor.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings warnings.warn( f"This module: {__file__} is deprecated. Please use nvflare.app_opt.pt.fedproxloss", category=FutureWarning, stacklevel=2, ) # flake8: noqa: F401 from nvflare.app_opt.pt.fedproxloss import PTFedProxLoss
NVFlare-main
nvflare/app_common/pt/pt_fedproxloss.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings warnings.warn( f"This module: {__file__} is deprecated. Please use nvflare.app_opt.pt.file_model_persistor", category=FutureWarning, stacklevel=2, ) # flake8: noqa: F401 from nvflare.app_opt.pt.file_model_persistor import PTFileModelPersistor
NVFlare-main
nvflare/app_common/pt/pt_file_model_persistor.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/pt/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings warnings.warn( f"This module: {__file__} is deprecated. Please use nvflare.app_opt.pt.ditto", category=FutureWarning, stacklevel=2 ) # flake8: noqa: F401 from nvflare.app_opt.pt.ditto import PTDittoHelper
NVFlare-main
nvflare/app_common/pt/pt_ditto.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings warnings.warn( f"This module: {__file__} is deprecated. Please use nvflare.app_opt.tracking.tb_receiver.", category=FutureWarning, stacklevel=2, ) # flake8: noqa: F401 from nvflare.app_opt.tracking.tb.tb_receiver import TBAnalyticsReceiver
NVFlare-main
nvflare/app_common/pt/tb_receiver.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings warnings.warn( f"This module: {__file__} is deprecated. Please use nvflare.app_opt.pt.scaffold", category=FutureWarning, stacklevel=2, ) # flake8: noqa: F401 from nvflare.app_opt.pt.scaffold import PTScaffoldHelper, get_lr_values
NVFlare-main
nvflare/app_common/pt/pt_scaffold.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import deque from typing import Dict, List from nvflare.app_common.resource_managers.auto_clean_resource_manager import AutoCleanResourceManager class ListResourceManager(AutoCleanResourceManager): """Manage a list of resource units. For example: - require 2, current resources is [0, 1, 2, 3, 4, 5] => return [0,1] after allocation the current resources become [2, 3, 4, 5] - require 3, current resources [2, 3, 4, 5] => return [2, 3, 4] """ def __init__(self, resources: Dict[str, List], expiration_period: int = 30): """Constructor Args: resources (dict): Specify the list of resources unit expiration_period (int): Number of seconds to hold the resources reserved. If check_resources is called but after "expiration_period" no allocate resource is called, then the reserved resources will be released. """ if not isinstance(resources, dict): raise TypeError(f"resources should be of type dict, but got {type(resources)}.") resource_queue = {} for k in resources: if not isinstance(resources[k], list): raise TypeError(f"item in resources should be of type list, but got {type(resources[k])}.") resource_queue[k] = deque(resources[k]) super().__init__(resources=resource_queue, expiration_period=expiration_period) def _deallocate(self, resources: dict): for k, v in resources.items(): for i in v: self.resources[k].appendleft(i) def _check_required_resource_available(self, resource_requirement: dict) -> bool: is_resource_enough = True for k in resource_requirement: if k in self.resources: if len(self.resources[k]) < resource_requirement[k]: is_resource_enough = False break else: is_resource_enough = False break return is_resource_enough def _reserve_resource(self, resource_requirement: dict) -> dict: reserved_resources = {} for k in resource_requirement: reserved_resource_units = [] for i in range(resource_requirement[k]): reserved_resource_units.append(self.resources[k].popleft()) reserved_resources[k] = reserved_resource_units return reserved_resources def _resource_to_dict(self) -> dict: return { "resources": {k: list(self.resources[k]) for k in self.resources}, "reserved_resources": self.reserved_resources, }
NVFlare-main
nvflare/app_common/resource_managers/list_resource_manager.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Union from nvflare.app_common.resource_managers.auto_clean_resource_manager import AutoCleanResourceManager from nvflare.fuel.utils.gpu_utils import get_host_gpu_ids, get_host_gpu_memory_total class GPUResource: def __init__(self, gpu_id: int, gpu_memory: Union[int, float]): self.id = gpu_id self.memory = gpu_memory def to_dict(self): return {"gpu_id": self.id, "memory": self.memory} class GPUResourceManager(AutoCleanResourceManager): def __init__( self, num_of_gpus: int, mem_per_gpu_in_GiB: Union[int, float], num_gpu_key: str = "num_of_gpus", gpu_mem_key: str = "mem_per_gpu_in_GiB", expiration_period: Union[int, float] = 30, ): """Resource manager for GPUs. Args: num_of_gpus: Number of GPUs. mem_per_gpu_in_GiB: Memory for each GPU. num_gpu_key: The key in resource requirements that specify the number of GPUs. gpu_mem_key: The key in resource requirements that specify the memory per GPU. expiration_period: Number of seconds to hold the resources reserved. If check_resources is called but after "expiration_period" no allocate resource is called, then the reserved resources will be released. """ if not isinstance(num_of_gpus, int): raise ValueError(f"num_of_gpus should be of type int, but got {type(num_of_gpus)}.") if num_of_gpus < 0: raise ValueError("num_of_gpus should be greater than or equal to 0.") if not isinstance(mem_per_gpu_in_GiB, (float, int)): raise ValueError(f"mem_per_gpu_in_GiB should be of type int or float, but got {type(mem_per_gpu_in_GiB)}.") if mem_per_gpu_in_GiB < 0: raise ValueError("mem_per_gpu_in_GiB should be greater than or equal to 0.") if not isinstance(expiration_period, (float, int)): raise ValueError(f"expiration_period should be of type int or float, but got {type(expiration_period)}.") if expiration_period < 0: raise ValueError("expiration_period should be greater than or equal to 0.") if num_of_gpus > 0: num_host_gpus = len(get_host_gpu_ids()) if num_of_gpus > num_host_gpus: raise ValueError(f"num_of_gpus specified ({num_of_gpus}) exceeds available GPUs: {num_host_gpus}.") host_gpu_mem = get_host_gpu_memory_total() for i in host_gpu_mem: if mem_per_gpu_in_GiB * 1024 > i: raise ValueError( f"Memory per GPU specified ({mem_per_gpu_in_GiB * 1024}) exceeds available GPU memory: {i}." ) self.num_gpu_key = num_gpu_key self.gpu_mem_key = gpu_mem_key resources = {i: GPUResource(gpu_id=i, gpu_memory=mem_per_gpu_in_GiB) for i in range(num_of_gpus)} super().__init__(resources=resources, expiration_period=expiration_period) def _deallocate(self, resources: dict): for k, v in resources.items(): self.resources[k].memory += v def _check_required_resource_available(self, resource_requirement: dict) -> bool: if not resource_requirement: return True if self.num_gpu_key not in resource_requirement: raise ValueError(f"resource_requirement is missing num_gpu_key {self.num_gpu_key}.") is_resource_enough = False num_gpu = resource_requirement[self.num_gpu_key] gpu_mem = resource_requirement.get(self.gpu_mem_key, 0) satisfied = 0 for k in self.resources: r: GPUResource = self.resources[k] if r.memory >= gpu_mem: satisfied += 1 if satisfied >= num_gpu: is_resource_enough = True break return is_resource_enough def _reserve_resource(self, resource_requirement: dict) -> dict: if not resource_requirement: return {} if self.num_gpu_key not in resource_requirement: raise ValueError(f"resource_requirement is missing num_gpu_key {self.num_gpu_key}.") reserved_resources = {} num_gpu = resource_requirement[self.num_gpu_key] gpu_mem = resource_requirement.get(self.gpu_mem_key, 0) reserved = 0 for k in self.resources: r: GPUResource = self.resources[k] if r.memory >= gpu_mem: r.memory -= gpu_mem reserved_resources[k] = gpu_mem reserved += 1 if reserved == num_gpu: break return reserved_resources def _resource_to_dict(self) -> dict: return { "resources": [self.resources[k].to_dict() for k in self.resources], "reserved_resources": self.reserved_resources, }
NVFlare-main
nvflare/app_common/resource_managers/gpu_resource_manager.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/resource_managers/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import uuid from abc import ABC, abstractmethod from threading import Event, Lock, Thread from nvflare.apis.event_type import EventType from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_context import FLContext from nvflare.apis.resource_manager_spec import ResourceManagerSpec class AutoCleanResourceManager(ResourceManagerSpec, FLComponent, ABC): def __init__(self, resources: dict, expiration_period: int = 30, check_period: float = 1.0): """AutoCleanResourceManager implementation. It will automatically clean up reserved resources. Args: resources (dict): Specify the list of resources unit expiration_period (int): Number of seconds to hold the resources reserved. default to 30. If check_resources is called but after "expiration_period" no allocate resource is called, then the reserved resources will be released. check_period (float): Number of seconds to check for expired resources. default to 1.0. """ super().__init__() if not isinstance(resources, dict): raise TypeError(f"resources should be of type dict, but got {type(resources)}.") if not isinstance(expiration_period, int): raise TypeError(f"expiration_period should be of type int, but got {type(expiration_period)}.") if expiration_period <= 0: raise ValueError("expiration_period should be greater than 0.") self.resources = resources self.expiration_period = expiration_period self.reserved_resources = {} self._lock = Lock() self._stop_event = Event() self._cleanup_thread = Thread(target=self._check_expired) self._check_period = check_period @abstractmethod def _deallocate(self, resources: dict): """Deallocates the resources. Args: resources (dict): the resources to be freed. """ raise NotImplementedError @abstractmethod def _check_required_resource_available(self, resource_requirement: dict) -> bool: """Checks if resources are available. Args: resource_requirement (dict): the resource requested. Return: A boolean to indicate whether the current resources are enough for the required resources. """ raise NotImplementedError @abstractmethod def _reserve_resource(self, resource_requirement: dict) -> dict: """Reserves resources given the requirements. Args: resource_requirement (dict): the resource requested. Return: A dict of reserved resources associated with the requested resource. """ raise NotImplementedError @abstractmethod def _resource_to_dict(self) -> dict: raise NotImplementedError def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.SYSTEM_START: self._cleanup_thread.start() elif event_type == EventType.SYSTEM_END: self._stop_event.set() if self._cleanup_thread: self._cleanup_thread.join() self._cleanup_thread = None def _check_expired(self): while not self._stop_event.is_set(): time.sleep(self._check_period) with self._lock: tokens_to_remove = [] for k in self.reserved_resources: r, t = self.reserved_resources[k] t -= 1 if t == 0: tokens_to_remove.append(k) else: self.reserved_resources[k] = r, t for token in tokens_to_remove: reserved_resources, _ = self.reserved_resources.pop(token) self._deallocate(resources=reserved_resources) self.logger.debug(f"current resources: {self.resources}, reserved_resources {self.reserved_resources}.") def check_resources(self, resource_requirement: dict, fl_ctx: FLContext): if not isinstance(resource_requirement, dict): raise TypeError(f"resource_requirement should be of type dict, but got {type(resource_requirement)}.") with self._lock: is_resource_enough = self._check_required_resource_available(resource_requirement) token = "" # reserve resource only when enough resource if is_resource_enough: token = str(uuid.uuid4()) reserved_resources = self._reserve_resource(resource_requirement) self.reserved_resources[token] = (reserved_resources, self.expiration_period) self.log_debug( fl_ctx, f"reserving resources: {reserved_resources} for requirements {resource_requirement}." ) self.log_debug( fl_ctx, f"current resources: {self.resources}, reserved_resources {self.reserved_resources}." ) return is_resource_enough, token def cancel_resources(self, resource_requirement: dict, token: str, fl_ctx: FLContext): with self._lock: if token and token in self.reserved_resources: reserved_resources, _ = self.reserved_resources.pop(token) self._deallocate(resources=reserved_resources) self.log_debug(fl_ctx, f"cancelling resources: {reserved_resources}.") self.log_debug( fl_ctx, f"current resources: {self.resources}, reserved_resources {self.reserved_resources}." ) else: self.log_debug(fl_ctx, f"Token {token} is not related to any reserved resources.") return None def allocate_resources(self, resource_requirement: dict, token: str, fl_ctx: FLContext) -> dict: result = {} with self._lock: if token and token in self.reserved_resources: result, _ = self.reserved_resources.pop(token) self.log_debug(fl_ctx, f"allocating resources: {result} for requirements: {resource_requirement}.") self.log_debug( fl_ctx, f"current resources: {self.resources}, reserved_resources {self.reserved_resources}." ) else: raise RuntimeError(f"allocate_resources: No reserved resources for token {token}.") return result def free_resources(self, resources: dict, token: str, fl_ctx: FLContext): with self._lock: self.log_debug(fl_ctx, f"freeing resources: {resources}.") self.log_debug( fl_ctx, f"current resources: {self.resources}, reserved_resources {self.reserved_resources}." ) self._deallocate(resources=resources) def report_resources(self, fl_ctx): with self._lock: return self._resource_to_dict()
NVFlare-main
nvflare/app_common/resource_managers/auto_clean_resource_manager.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import threading from nvflare.apis.dxo import MetaKey from nvflare.apis.event_type import EventType from nvflare.apis.executor import Executor from nvflare.apis.fl_constant import FLContextKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.fl_model import FLModel from nvflare.app_common.abstract.model_learner import ModelLearner from nvflare.app_common.app_constant import AppConstants, ValidateType from nvflare.app_common.utils.fl_model_utils import FLModelUtils from nvflare.fuel.utils.validation_utils import check_object_type from nvflare.security.logging import secure_format_exception class ModelLearnerExecutor(Executor): def __init__( self, learner_id, train_task=AppConstants.TASK_TRAIN, submit_model_task=AppConstants.TASK_SUBMIT_MODEL, validate_task=AppConstants.TASK_VALIDATION, configure_task=AppConstants.TASK_CONFIGURE, ): """Key component to run learner on clients. Args: learner_id (str): id of the learner object train_task (str, optional): task name for train. Defaults to AppConstants.TASK_TRAIN. submit_model_task (str, optional): task name for submit model. Defaults to AppConstants.TASK_SUBMIT_MODEL. validate_task (str, optional): task name for validation. Defaults to AppConstants.TASK_VALIDATION. configure_task (str, optional): task name for configure. Defaults to AppConstants.TASK_CONFIGURE. """ super().__init__() self.learner_id = learner_id self.learner = None self.learner_name = "" self.is_initialized = False self.learner_exe_lock = threading.Lock() # used ensure only one execution at a time self.task_funcs = { train_task: self.train, submit_model_task: self.submit_model, validate_task: self.validate, configure_task: self.configure, } def _abort(self, fl_ctx: FLContext): self.learner.fl_ctx = fl_ctx self.learner.abort() def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.START_RUN: self._create_learner(fl_ctx) elif event_type == EventType.ABORT_TASK: try: if self.learner: if not self.unsafe: self._abort(fl_ctx) else: self.log_warning(fl_ctx, f"skipped abort of unsafe learner {self.learner_name}") except Exception as e: self.log_exception(fl_ctx, f"learner abort exception: {secure_format_exception(e)}") elif event_type == EventType.END_RUN: if not self.unsafe: self.finalize(fl_ctx) elif self.learner: self.log_warning(fl_ctx, f"skipped finalize of unsafe learner {self.learner_name}") def _create_learner(self, fl_ctx: FLContext): engine = fl_ctx.get_engine() self.learner = engine.get_component(self.learner_id) if self.learner: self.learner_name = self.learner.__class__.__name__ check_object_type("learner", self.learner, ModelLearner) self.log_info(fl_ctx, f"Got learner: {self.learner_name}") def initialize(self, fl_ctx: FLContext): try: engine = fl_ctx.get_engine() self.learner.fl_ctx = fl_ctx self.learner.engine = engine self.learner.initialize() except Exception as e: self.log_exception(fl_ctx, f"initialize error from {self.learner_name}: {secure_format_exception(e)}") raise e def execute(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: # Do one task at a time since the shareable and fl_ctx are kept in "self". with self.learner_exe_lock: return self._do_execute(task_name, shareable, fl_ctx, abort_signal) def _do_execute(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: self.log_info(fl_ctx, f"Client trainer got task: {task_name}") self._setup_learner(self.learner, shareable, fl_ctx, abort_signal) if not self.is_initialized: self.is_initialized = True self.initialize(fl_ctx) task_func = self.task_funcs.get(task_name) if task_func is not None: return task_func(shareable, fl_ctx) else: self.log_error(fl_ctx, f"Unknown task: {task_name}") return make_reply(ReturnCode.TASK_UNKNOWN) @staticmethod def _setup_learner(learner: ModelLearner, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal): learner.shareable = shareable learner.fl_ctx = fl_ctx learner.abort_signal = abort_signal if not learner.args: learner.args = fl_ctx.get_prop(FLContextKey.ARGS) if not learner.site_name: learner.site_name = fl_ctx.get_identity_name() if not learner.job_id: learner.job_id = fl_ctx.get_prop(FLContextKey.CURRENT_RUN) if not learner.engine: learner.engine = fl_ctx.get_engine() learner.workspace = learner.engine.get_workspace() learner.workspace_root = learner.workspace.get_root_dir() learner.job_root = learner.workspace.get_run_dir(learner.job_id) learner.app_root = learner.workspace.get_app_dir(learner.job_id) if shareable: learner.current_round = shareable.get_header(AppConstants.CURRENT_ROUND) learner.total_rounds = shareable.get_header(AppConstants.NUM_ROUNDS) def train(self, shareable: Shareable, fl_ctx: FLContext) -> Shareable: try: shareable.set_header(AppConstants.VALIDATE_TYPE, ValidateType.BEFORE_TRAIN_VALIDATE) model = FLModelUtils.from_shareable(shareable) except ValueError: self.log_error(fl_ctx, "request does not contain DXO") return make_reply(ReturnCode.BAD_REQUEST_DATA) try: val_result = self.learner.validate(model) except Exception as e: self.log_exception( fl_ctx, f"Learner {self.learner_name} failed to pretrain validate: {secure_format_exception(e)}" ) return make_reply(ReturnCode.EXECUTION_EXCEPTION) if isinstance(val_result, str): # this is an error code! self.log_warning(fl_ctx, f"Learner {self.learner_name}: pretrain validate failed: {val_result}") val_result = None if val_result: if not isinstance(val_result, FLModel): self.log_warning( fl_ctx, f"Learner {self.learner_name}: pretrain validate: expect FLModel but got {type(val_result)}", ) val_result = None elif not val_result.metrics: self.log_warning( fl_ctx, f"Learner {self.learner_name}: pretrain validate: no metrics", ) val_result = None try: train_result = self.learner.train(model) except Exception as e: self.log_exception(fl_ctx, f"Learner {self.learner_name} failed to train: {secure_format_exception(e)}") return make_reply(ReturnCode.EXECUTION_EXCEPTION) if isinstance(train_result, str): # this is an error code! return make_reply(train_result) if not isinstance(train_result, FLModel): self.log_error( fl_ctx, f"Learner {self.learner_name}: bad result from train: expect FLModel but got {type(train_result)}", ) return make_reply(ReturnCode.EMPTY_RESULT) # if the learner returned the valid BEFORE_TRAIN_VALIDATE result, set the INITIAL_METRICS in # the train result, which can be used for best model selection. if val_result: FLModelUtils.set_meta_prop( model=train_result, key=MetaKey.INITIAL_METRICS, value=val_result.metrics, ) return FLModelUtils.to_shareable(train_result) def submit_model(self, shareable: Shareable, fl_ctx: FLContext) -> Shareable: model_name = shareable.get_header(AppConstants.SUBMIT_MODEL_NAME) try: result = self.learner.get_model(model_name) except Exception as e: self.log_exception(fl_ctx, f"Learner {self.learner_name} failed to get_model: {secure_format_exception(e)}") return make_reply(ReturnCode.EXECUTION_EXCEPTION) if isinstance(result, str): self.log_error(fl_ctx, f"Learner {self.learner_name} failed to get_model: {result}") return make_reply(result) if isinstance(result, FLModel): return FLModelUtils.to_shareable(result) else: self.log_error( fl_ctx, f"Learner {self.learner_name} bad result from get_model: expect DXO but got {type(result)}", ) return make_reply(ReturnCode.EMPTY_RESULT) def validate(self, shareable: Shareable, fl_ctx: FLContext) -> Shareable: try: model = FLModelUtils.from_shareable(shareable) except ValueError: self.log_error(fl_ctx, "request does not contain valid model") return make_reply(ReturnCode.BAD_REQUEST_DATA) try: result = self.learner.validate(model) except Exception as e: self.log_exception(fl_ctx, f"Learner {self.learner_name} failed to validate: {secure_format_exception(e)}") return make_reply(ReturnCode.EXECUTION_EXCEPTION) if isinstance(result, str): self.log_error(fl_ctx, f"Learner {self.learner_name} failed to validate: {result}") return make_reply(result) if isinstance(result, FLModel): return FLModelUtils.to_shareable(result) else: self.log_error( fl_ctx, f"Learner {self.learner_name}: bad result from validate: expect FLModel but got {type(result)}" ) return make_reply(ReturnCode.EMPTY_RESULT) def configure(self, shareable: Shareable, fl_ctx: FLContext) -> Shareable: try: model = FLModelUtils.from_shareable(shareable) except ValueError: self.log_error(fl_ctx, "request does not contain valid model data") return make_reply(ReturnCode.BAD_REQUEST_DATA) rc = ReturnCode.OK try: self.learner.configure(model) except Exception as e: self.log_exception(fl_ctx, f"Learner {self.learner_name} failed to configure: {secure_format_exception(e)}") rc = ReturnCode.EXECUTION_EXCEPTION return make_reply(rc) def finalize(self, fl_ctx: FLContext): try: self.learner.fl_ctx = fl_ctx self.learner.finalize() except Exception as e: self.log_exception(fl_ctx, f"learner finalize exception: {secure_format_exception(e)}")
NVFlare-main
nvflare/app_common/executors/model_learner_executor.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.apis.event_type import EventType from nvflare.apis.executor import Executor from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.learner_spec import Learner from nvflare.app_common.workflows.splitnn_workflow import SplitNNConstants from nvflare.security.logging import secure_format_exception class SplitNNLearnerExecutor(Executor): def __init__( self, learner_id, init_model_task_name=SplitNNConstants.TASK_INIT_MODEL, train_task_name=SplitNNConstants.TASK_TRAIN, ): """Key component to run learner on clients. Args: learner_id (str): id pointing to the learner object train_task_name (str, optional): label to dispatch train task. Defaults to AppConstants.TASK_TRAIN. submit_model_task_name (str, optional): label to dispatch submit model task. Defaults to AppConstants.TASK_SUBMIT_MODEL. validate_task_name (str, optional): label to dispatch validation task. Defaults to AppConstants.TASK_VALIDATION. """ super().__init__() self.learner_id = learner_id self.learner = None self.init_model_task_name = init_model_task_name self.train_task_name = train_task_name def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.START_RUN: self.initialize(fl_ctx) elif event_type == EventType.ABORT_TASK: try: if self.learner: self.learner.abort(fl_ctx) except Exception as e: self.log_exception(fl_ctx, f"learner abort exception: {secure_format_exception(e)}") elif event_type == EventType.END_RUN: self.finalize(fl_ctx) def initialize(self, fl_ctx: FLContext): try: engine = fl_ctx.get_engine() self.learner = engine.get_component(self.learner_id) if not isinstance(self.learner, Learner): raise TypeError(f"learner must be Learner type. Got: {type(self.learner)}") self.learner.initialize(engine.get_all_components(), fl_ctx) except Exception as e: self.log_exception(fl_ctx, f"learner initialize exception: {secure_format_exception(e)}") def execute(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: self.log_info(fl_ctx, f"Client trainer got task: {task_name}") self.log_info(fl_ctx, f"Executing task {task_name}...") try: if task_name == self.init_model_task_name: self.log_info(fl_ctx, "Initializing model...") return self.learner.init_model(shareable=shareable, fl_ctx=fl_ctx, abort_signal=abort_signal) elif task_name == self.train_task_name: self.log_info(fl_ctx, "Running training...") return self.learner.train(shareable=shareable, fl_ctx=fl_ctx, abort_signal=abort_signal) else: self.log_error(fl_ctx, f"Could not handle task: {task_name}") return make_reply(ReturnCode.TASK_UNKNOWN) except Exception as e: # Task execution error, return EXECUTION_EXCEPTION Shareable self.log_exception(fl_ctx, f"learner execute exception: {secure_format_exception(e)}") return make_reply(ReturnCode.EXECUTION_EXCEPTION) def finalize(self, fl_ctx: FLContext): try: if self.learner: self.learner.finalize(fl_ctx) except Exception as e: self.log_exception(fl_ctx, f"learner finalize exception: {secure_format_exception(e)}")
NVFlare-main
nvflare/app_common/executors/splitnn_learner_executor.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.apis.dxo import MetaKey, from_shareable from nvflare.apis.event_type import EventType from nvflare.apis.executor import Executor from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.learner_spec import Learner from nvflare.app_common.app_constant import AppConstants, ValidateType from nvflare.security.logging import secure_format_exception class LearnerExecutor(Executor): def __init__( self, learner_id, train_task=AppConstants.TASK_TRAIN, submit_model_task=AppConstants.TASK_SUBMIT_MODEL, validate_task=AppConstants.TASK_VALIDATION, ): """Key component to run learner on clients. Args: learner_id (str): id of the learner object train_task (str, optional): task name for train. Defaults to AppConstants.TASK_TRAIN. submit_model_task (str, optional): task name for submit model. Defaults to AppConstants.TASK_SUBMIT_MODEL. validate_task (str, optional): task name for validation. Defaults to AppConstants.TASK_VALIDATION. """ super().__init__() self.learner_id = learner_id self.learner = None self.train_task = train_task self.submit_model_task = submit_model_task self.validate_task = validate_task self.is_initialized = False def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.ABORT_TASK: try: if self.learner: if not self.unsafe: self.learner.abort(fl_ctx) else: self.log_warning(fl_ctx, f"skipped abort of unsafe learner {self.learner.__class__.__name__}") except Exception as e: self.log_exception(fl_ctx, f"learner abort exception: {secure_format_exception(e)}") elif event_type == EventType.END_RUN: if not self.unsafe: self.finalize(fl_ctx) elif self.learner: self.log_warning(fl_ctx, f"skipped finalize of unsafe learner {self.learner.__class__.__name__}") def initialize(self, fl_ctx: FLContext): try: engine = fl_ctx.get_engine() self.learner = engine.get_component(self.learner_id) if not isinstance(self.learner, Learner): raise TypeError(f"learner must be Learner type. Got: {type(self.learner)}") self.learner.initialize(engine.get_all_components(), fl_ctx) except Exception as e: self.log_exception(fl_ctx, f"learner initialize exception: {secure_format_exception(e)}") raise e def execute(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: self.log_info(fl_ctx, f"Client trainer got task: {task_name}") if not self.is_initialized: self.is_initialized = True self.initialize(fl_ctx) if task_name == self.train_task: return self.train(shareable, fl_ctx, abort_signal) elif task_name == self.submit_model_task: return self.submit_model(shareable, fl_ctx) elif task_name == self.validate_task: return self.validate(shareable, fl_ctx, abort_signal) else: self.log_error(fl_ctx, f"Could not handle task: {task_name}") return make_reply(ReturnCode.TASK_UNKNOWN) def train(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: self.log_debug(fl_ctx, f"train abort signal: {abort_signal.triggered}") shareable.set_header(AppConstants.VALIDATE_TYPE, ValidateType.BEFORE_TRAIN_VALIDATE) validate_result: Shareable = self.learner.validate(shareable, fl_ctx, abort_signal) train_result = self.learner.train(shareable, fl_ctx, abort_signal) if not (train_result and isinstance(train_result, Shareable)): return make_reply(ReturnCode.EMPTY_RESULT) # if the learner returned the valid BEFORE_TRAIN_VALIDATE result, set the INITIAL_METRICS in # the train result, which can be used for best model selection. if ( validate_result and isinstance(validate_result, Shareable) and validate_result.get_return_code() == ReturnCode.OK ): try: metrics_dxo = from_shareable(validate_result) train_dxo = from_shareable(train_result) train_dxo.meta[MetaKey.INITIAL_METRICS] = metrics_dxo.data.get(MetaKey.INITIAL_METRICS, 0) return train_dxo.to_shareable() except ValueError: return train_result else: return train_result def submit_model(self, shareable: Shareable, fl_ctx: FLContext) -> Shareable: model_name = shareable.get_header(AppConstants.SUBMIT_MODEL_NAME) submit_model_result = self.learner.get_model_for_validation(model_name, fl_ctx) if submit_model_result and isinstance(submit_model_result, Shareable): return submit_model_result else: return make_reply(ReturnCode.EMPTY_RESULT) def validate(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: self.log_debug(fl_ctx, f"validate abort_signal {abort_signal.triggered}") shareable.set_header(AppConstants.VALIDATE_TYPE, ValidateType.MODEL_VALIDATE) validate_result: Shareable = self.learner.validate(shareable, fl_ctx, abort_signal) if validate_result and isinstance(validate_result, Shareable): return validate_result else: return make_reply(ReturnCode.EMPTY_RESULT) def finalize(self, fl_ctx: FLContext): try: if self.learner: self.learner.finalize(fl_ctx) except Exception as e: self.log_exception(fl_ctx, f"learner finalize exception: {secure_format_exception(e)}")
NVFlare-main
nvflare/app_common/executors/learner_executor.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import shlex import subprocess import threading import time from abc import abstractmethod from nvflare.apis.event_type import EventType from nvflare.apis.executor import Executor from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_constant import FLContextKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.apis.utils.fl_context_utils import get_serializable_data from nvflare.fuel.common.multi_process_executor_constants import ( CommunicateData, CommunicationMetaData, MultiProcessCommandNames, ) from nvflare.fuel.f3.cellnet.core_cell import Message as CellMessage from nvflare.fuel.f3.cellnet.core_cell import MessageHeaderKey from nvflare.fuel.f3.cellnet.core_cell import ReturnCode as F3ReturnCode from nvflare.fuel.f3.cellnet.core_cell import make_reply as F3make_reply from nvflare.fuel.f3.cellnet.fqcn import FQCN from nvflare.fuel.utils.class_utils import ModuleScanner from nvflare.fuel.utils.component_builder import ComponentBuilder from nvflare.private.defs import CellChannel, CellChannelTopic, new_cell_message from nvflare.security.logging import secure_format_exception class WorkerComponentBuilder(ComponentBuilder): FL_PACKAGES = ["nvflare"] FL_MODULES = ["client", "app"] def __init__(self) -> None: """Component to build workers.""" super().__init__() self.module_scanner = ModuleScanner(WorkerComponentBuilder.FL_PACKAGES, WorkerComponentBuilder.FL_MODULES, True) def get_module_scanner(self): return self.module_scanner class MultiProcessExecutor(Executor): def __init__(self, executor_id=None, num_of_processes=1, components=None): """Manage the multi-process execution life cycle. Arguments: executor_id: executor component ID num_of_processes: number of processes to create components: a dictionary for component classes to their arguments """ super().__init__() self.executor_id = executor_id self.components_conf = components self.components = {} self.handlers = [] self._build_components(components) if not isinstance(num_of_processes, int): raise TypeError("{} must be an instance of int but got {}".format(num_of_processes, type(num_of_processes))) if num_of_processes < 1: raise ValueError(f"{num_of_processes} must >= 1.") self.num_of_processes = num_of_processes self.executor = None self.execute_result = None self.execute_complete = None self.engine = None self.logger = logging.getLogger(self.__class__.__name__) self.conn_clients = [] self.exe_process = None self.stop_execute = False self.relay_threads = [] self.finalized = False self.event_lock = threading.Lock() self.relay_lock = threading.Lock() @abstractmethod def get_multi_process_command(self) -> str: """Provide the command for starting multi-process execution. Returns: multi-process starting command """ return "" def _build_components(self, components): component_builder = WorkerComponentBuilder() for item in components: cid = item.get("id", None) if not cid: raise TypeError("missing component id") self.components[cid] = component_builder.build_component(item) if isinstance(self.components[cid], FLComponent): self.handlers.append(self.components[cid]) def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.START_RUN: self.initialize(fl_ctx) elif event_type == EventType.END_RUN: self.finalize(fl_ctx) self._pass_event_to_rank_processes(event_type, fl_ctx) def _pass_event_to_rank_processes(self, event_type: str, fl_ctx: FLContext): event_site = fl_ctx.get_prop(FLContextKey.EVENT_ORIGIN_SITE) if self.engine: if event_site != CommunicateData.SUB_WORKER_PROCESS: with self.event_lock: try: data = { CommunicationMetaData.COMMAND: CommunicateData.HANDLE_EVENT, CommunicationMetaData.FL_CTX: get_serializable_data(fl_ctx), CommunicationMetaData.EVENT_TYPE: event_type, } # send the init data to all the child processes request = new_cell_message({}, data) self.engine.client.cell.fire_and_forget( targets=self.targets, channel=CellChannel.CLIENT_SUB_WORKER_COMMAND, topic=MultiProcessCommandNames.FIRE_EVENT, message=request, ) except Exception: # Warning: Have to set fire_event=False, otherwise it will cause dead loop on the event handling!!! self.log_warning( fl_ctx, f"Failed to relay the event to child processes. Event: {event_type}", fire_event=False, ) def initialize(self, fl_ctx: FLContext): self.executor = self.components.get(self.executor_id, None) if not isinstance(self.executor, Executor): raise ValueError( "invalid executor {}: expect Executor but got {}".format(self.executor_id, type(self.executor)) ) self._initialize_multi_process(fl_ctx) def _initialize_multi_process(self, fl_ctx: FLContext): try: client_name = fl_ctx.get_identity_name() job_id = fl_ctx.get_job_id() self.engine = fl_ctx.get_engine() simulate_mode = fl_ctx.get_prop(FLContextKey.SIMULATE_MODE, False) cell = self.engine.client.cell # Create the internal listener for grand child process cell.make_internal_listener() command = ( self.get_multi_process_command() + " -m nvflare.private.fed.app.client.sub_worker_process" + " -m " + fl_ctx.get_prop(FLContextKey.ARGS).workspace + " -c " + client_name + " -n " + job_id + " --num_processes " + str(self.num_of_processes) + " --simulator_engine " + str(simulate_mode) + " --parent_pid " + str(os.getpid()) + " --root_url " + str(cell.get_root_url_for_child()) + " --parent_url " + str(cell.get_internal_listener_url()) ) self.logger.info(f"multi_process_executor command: {command}") # use os.setsid to create new process group ID self.exe_process = subprocess.Popen(shlex.split(command, " "), preexec_fn=os.setsid, env=os.environ.copy()) # send the init data to all the child processes cell.register_request_cb( channel=CellChannel.MULTI_PROCESS_EXECUTOR, topic=CellChannelTopic.EXECUTE_RESULT, cb=self.receive_execute_result, ) cell.register_request_cb( channel=CellChannel.MULTI_PROCESS_EXECUTOR, topic=CellChannelTopic.FIRE_EVENT, cb=self._relay_fire_event, ) self.targets = [] for i in range(self.num_of_processes): fqcn = FQCN.join([cell.get_fqcn(), str(i)]) start = time.time() while not cell.is_cell_reachable(fqcn): time.sleep(1.0) if time.time() - start > 60.0: raise RuntimeError(f"Could not reach the communication cell: {fqcn}") self.targets.append(fqcn) request = new_cell_message( {}, { CommunicationMetaData.FL_CTX: get_serializable_data(fl_ctx), CommunicationMetaData.COMPONENTS: self.components_conf, CommunicationMetaData.LOCAL_EXECUTOR: self.executor_id, }, ) replies = cell.broadcast_request( targets=self.targets, channel=CellChannel.CLIENT_SUB_WORKER_COMMAND, topic=MultiProcessCommandNames.INITIALIZE, request=request, ) for name, reply in replies.items(): if reply.get_header(MessageHeaderKey.RETURN_CODE) != F3ReturnCode.OK: self.log_exception(fl_ctx, "error initializing multi_process executor") raise ValueError(reply.get_header(MessageHeaderKey.ERROR)) except Exception as e: self.log_exception(fl_ctx, f"error initializing multi_process executor: {secure_format_exception(e)}") def receive_execute_result(self, request: CellMessage) -> CellMessage: return_data = request.payload with self.engine.new_context() as fl_ctx: fl_ctx.props.update(return_data[CommunicationMetaData.FL_CTX].props) self.execute_result = return_data[CommunicationMetaData.SHAREABLE] self.execute_complete = True return F3make_reply(ReturnCode.OK, "", None) def _relay_fire_event(self, request: CellMessage) -> CellMessage: data = request.payload with self.engine.new_context() as fl_ctx: event_type = data[CommunicationMetaData.EVENT_TYPE] rank_number = data[CommunicationMetaData.RANK_NUMBER] with self.relay_lock: fl_ctx.props.update(data[CommunicationMetaData.FL_CTX].props) fl_ctx.set_prop(FLContextKey.FROM_RANK_NUMBER, rank_number, private=True, sticky=False) fl_ctx.set_prop( FLContextKey.EVENT_ORIGIN_SITE, CommunicateData.SUB_WORKER_PROCESS, private=True, sticky=False, ) self.engine.fire_event(event_type, fl_ctx) return_data = {CommunicationMetaData.FL_CTX: get_serializable_data(fl_ctx)} return F3make_reply(ReturnCode.OK, "", return_data) def execute(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: if not self.executor: raise RuntimeError("There's no executor for task {}".format(task_name)) self.execute_complete = False self._execute_multi_process(task_name=task_name, shareable=shareable, fl_ctx=fl_ctx, abort_signal=abort_signal) while not self.execute_complete: time.sleep(0.2) return self.execute_result def _execute_multi_process( self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal ) -> Shareable: if abort_signal.triggered: self.finalize(fl_ctx) return make_reply(ReturnCode.OK) self.engine = fl_ctx.get_engine() try: data = { CommunicationMetaData.COMMAND: CommunicateData.EXECUTE, CommunicationMetaData.TASK_NAME: task_name, CommunicationMetaData.SHAREABLE: shareable, CommunicationMetaData.FL_CTX: get_serializable_data(fl_ctx), } request = new_cell_message({}, data) self.engine.client.cell.fire_and_forget( targets=self.targets, channel=CellChannel.CLIENT_SUB_WORKER_COMMAND, topic=MultiProcessCommandNames.TASK_EXECUTION, message=request, ) except Exception: self.log_error(fl_ctx, "Multi-Process Execution error.") return make_reply(ReturnCode.EXECUTION_RESULT_ERROR) def finalize(self, fl_ctx: FLContext): """This is called when exiting/aborting the executor.""" if self.finalized: return self.finalized = True self.stop_execute = True request = new_cell_message({}, None) self.engine.client.cell.fire_and_forget( targets=self.targets, channel=CellChannel.CLIENT_SUB_WORKER_COMMAND, topic=MultiProcessCommandNames.CLOSE, message=request, ) try: os.killpg(os.getpgid(self.exe_process.pid), 9) self.logger.debug("kill signal sent") except Exception: pass if self.exe_process: self.exe_process.terminate() # wait for all relay threads to join! for t in self.relay_threads: if t.is_alive(): t.join() self.log_info(fl_ctx, "Multi-Process Executor finalized!", fire_event=False)
NVFlare-main
nvflare/app_common/executors/multi_process_executor.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from typing import Optional from nvflare.apis.dxo import DXO from nvflare.apis.event_type import EventType from nvflare.apis.executor import Executor from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.task_handler import TaskHandler class ErrorHandlingExecutor(Executor, ABC): """This class adds error handling mechanisms to Executor spec. It also makes sharable convertible to DXO. It delegates the task execution to TaskHandler. """ def __init__(self): super().__init__() self.init_status_ok = True self.init_failure = {"abort_job": None, "fail_client": None} self.client_name = None self.task_handler: Optional[TaskHandler] = None def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.START_RUN: self.initialize(fl_ctx) elif event_type == EventType.END_RUN: self.finalize(fl_ctx) def initialize(self, fl_ctx: FLContext): try: self.client_name = fl_ctx.get_identity_name() self.task_handler = self.get_task_handler(fl_ctx) except TypeError as te: self.log_exception(fl_ctx, f"{self.__class__.__name__} initialize failed.") self.init_status_ok = False self.init_failure = {"abort_job": te} except Exception as e: self.log_exception(fl_ctx, f"{self.__class__.__name__} initialize failed.") self.init_status_ok = False self.init_failure = {"fail_client": e} @abstractmethod def get_task_handler(self, fl_ctx: FLContext) -> TaskHandler: pass @abstractmethod def get_data_kind(self) -> str: pass def execute(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: init_rc = self._check_init_status(fl_ctx) if init_rc: return make_reply(init_rc) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) try: result = self.task_handler.execute_task(task_name, shareable, fl_ctx, abort_signal) if result is not None: dxo = DXO(data_kind=self.get_data_kind(), data=result) return dxo.to_shareable() self.log_error( fl_ctx, f"task:{task_name} failed on client:{fl_ctx.get_identity_name()} due to result is '{result}'\n", ) return make_reply(ReturnCode.EXECUTION_RESULT_ERROR) except Exception: self.log_exception(fl_ctx, f"{self.__class__.__name__} executes task {task_name} failed.") return make_reply(ReturnCode.EXECUTION_RESULT_ERROR) def _check_init_status(self, fl_ctx: FLContext): if not self.init_status_ok: for fail_key in self.init_failure: reason = self.init_failure[fail_key] if fail_key == "abort_job": return ReturnCode.EXECUTION_EXCEPTION self.system_panic(reason, fl_ctx) return ReturnCode.EXECUTION_RESULT_ERROR return None def finalize(self, fl_ctx: FLContext): try: if self.task_handler: self.task_handler.finalize(fl_ctx) except Exception: self.log_exception(fl_ctx, f"{self.__class__.__name__} finalize exception.")
NVFlare-main
nvflare/app_common/executors/error_handling_executor.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/executors/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Optional from nvflare.apis.fl_context import FLContext from nvflare.apis.utils.decomposers import flare_decomposers from nvflare.app_common.decomposers import common_decomposers from nvflare.app_common.executors.launcher_executor import LauncherExecutor from nvflare.fuel.utils.constants import Mode from nvflare.fuel.utils.pipe.file_pipe import FilePipe from nvflare.fuel.utils.pipe.pipe_handler import PipeHandler from nvflare.fuel.utils.validation_utils import check_object_type class FilePipeLauncherExecutor(LauncherExecutor): def __init__( self, data_exchange_path: Optional[str] = None, pipe_id: Optional[str] = None, pipe_name: str = "pipe", launcher_id: Optional[str] = None, launch_timeout: Optional[float] = None, task_wait_time: Optional[float] = None, task_read_wait_time: Optional[float] = None, result_poll_interval: float = 0.1, read_interval: float = 0.1, heartbeat_interval: float = 5.0, heartbeat_timeout: float = 30.0, workers: int = 1, training: bool = True, global_evaluation: bool = True, from_nvflare_converter_id: Optional[str] = None, to_nvflare_converter_id: Optional[str] = None, ) -> None: """Initializes the FilePipeLauncherExecutor. Args: data_exchange_path (Optional[str]): Path used for data exchange. If None, the "app_dir" of the running job will be used. If pipe_id is provided, will use the Pipe gets from pipe_id. pipe_id (Optional[str]): Identifier used to get the Pipe from NVFlare components. pipe_name (str): Name of the pipe. Defaults to "pipe". launcher_id (Optional[str]): Identifier used to get the Launcher from NVFlare components. launch_timeout (Optional[float]): Timeout for the "launch" method to end. None means never timeout. task_wait_time (Optional[float]): Time to wait for tasks to complete before exiting the executor. None means never timeout. task_read_wait_time (Optional[float]): Time to wait for task results from the pipe. None means no wait. result_poll_interval (float): Interval for polling task results from the pipe. Defaults to 0.1. read_interval (float): Interval for reading from the pipe. Defaults to 0.1. heartbeat_interval (float): Interval for sending heartbeat to the peer. Defaults to 5.0. heartbeat_timeout (float): Timeout for waiting for a heartbeat from the peer. Defaults to 30.0. workers (int): Number of worker threads needed. training (bool): Whether to run training using global model. Defaults to True. global_evaluation (bool): Whether to run evaluation on global model. Defaults to True. from_nvflare_converter_id (Optional[str]): Identifier used to get the ParamsConverter from NVFlare components. This converter will be called when model is sent from nvflare controller side to executor side. to_nvflare_converter_id (Optional[str]): Identifier used to get the ParamsConverter from NVFlare components. This converter will be called when model is sent from nvflare executor side to controller side. """ super().__init__( pipe_id=pipe_id, pipe_name=pipe_name, launcher_id=launcher_id, launch_timeout=launch_timeout, task_wait_time=task_wait_time, task_read_wait_time=task_read_wait_time, result_poll_interval=result_poll_interval, read_interval=read_interval, heartbeat_interval=heartbeat_interval, heartbeat_timeout=heartbeat_timeout, workers=workers, training=training, global_evaluation=global_evaluation, from_nvflare_converter_id=from_nvflare_converter_id, to_nvflare_converter_id=to_nvflare_converter_id, ) self._data_exchange_path = data_exchange_path def initialize(self, fl_ctx: FLContext) -> None: self._init_launcher(fl_ctx) self._init_converter(fl_ctx) engine = fl_ctx.get_engine() # gets pipe if self._pipe_id: pipe: FilePipe = engine.get_component(self._pipe_id) check_object_type(self._pipe_id, pipe, FilePipe) self._data_exchange_path = pipe.root_path else: # gets data_exchange_path if self._data_exchange_path is None or self._data_exchange_path == "": app_dir = engine.get_workspace().get_app_dir(fl_ctx.get_job_id()) self._data_exchange_path = os.path.abspath(app_dir) elif not os.path.isabs(self._data_exchange_path): raise RuntimeError("data exchange path needs to be absolute.") pipe = FilePipe(mode=Mode.ACTIVE, root_path=self._data_exchange_path) # init pipe flare_decomposers.register() common_decomposers.register() pipe.open(self._pipe_name) self.pipe_handler = PipeHandler( pipe, read_interval=self._read_interval, heartbeat_interval=self._heartbeat_interval, heartbeat_timeout=self._heartbeat_timeout, ) self.pipe_handler.start()
NVFlare-main
nvflare/app_common/executors/file_pipe_launcher_executor.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Dict, Optional from nvflare.apis.fl_context import FLContext from nvflare.app_common.executors.file_pipe_launcher_executor import FilePipeLauncherExecutor from nvflare.app_common.model_exchange.constants import ModelExchangeFormat from nvflare.client.config import ClientConfig, ConfigKey, TransferType from nvflare.client.constants import CONFIG_EXCHANGE class ClientAPILauncherExecutor(FilePipeLauncherExecutor): def __init__( self, data_exchange_path: Optional[str] = None, pipe_id: Optional[str] = None, pipe_name: str = "pipe", launcher_id: Optional[str] = None, launch_timeout: Optional[float] = None, task_wait_time: Optional[float] = None, task_read_wait_time: Optional[float] = None, result_poll_interval: float = 0.1, read_interval: float = 0.1, heartbeat_interval: float = 5.0, heartbeat_timeout: float = 30.0, workers: int = 1, training: bool = True, global_evaluation: bool = True, params_exchange_format: ModelExchangeFormat = ModelExchangeFormat.NUMPY, params_transfer_type: TransferType = TransferType.FULL, from_nvflare_converter_id: Optional[str] = None, to_nvflare_converter_id: Optional[str] = None, ) -> None: """Initializes the ClientAPILauncherExecutor. Args: data_exchange_path (Optional[str]): Path used for data exchange. If None, the "app_dir" of the running job will be used. If pipe_id is provided, will use the Pipe gets from pipe_id. pipe_id (Optional[str]): Identifier used to get the Pipe from NVFlare components. pipe_name (str): Name of the pipe. Defaults to "pipe". launcher_id (Optional[str]): Identifier used to get the Launcher from NVFlare components. launch_timeout (Optional[float]): Timeout for the "launch" method to end. None means never timeout. task_wait_time (Optional[float]): Time to wait for tasks to complete before exiting the executor. None means never timeout. task_read_wait_time (Optional[float]): Time to wait for task results from the pipe. None means no wait. result_poll_interval (float): Interval for polling task results from the pipe. Defaults to 0.1. read_interval (float): Interval for reading from the pipe. Defaults to 0.1. heartbeat_interval (float): Interval for sending heartbeat to the peer. Defaults to 5.0. heartbeat_timeout (float): Timeout for waiting for a heartbeat from the peer. Defaults to 30.0. workers (int): Number of worker threads needed. training (bool): Whether to run training using global model. Defaults to True. global_evaluation (bool): Whether to run evaluation on global model. Defaults to True. params_exchange_format (ModelExchangeFormat): What format to exchange the parameters. params_transfer_type (TransferType): How to transfer the parameters. FULL means the whole model parameters are sent. DIFF means that only the difference is sent. from_nvflare_converter_id (Optional[str]): Identifier used to get the ParamsConverter from NVFlare components. This converter will be called when model is sent from nvflare controller side to executor side. to_nvflare_converter_id (Optional[str]): Identifier used to get the ParamsConverter from NVFlare components. This converter will be called when model is sent from nvflare executor side to controller side. """ super().__init__( data_exchange_path=data_exchange_path, pipe_id=pipe_id, pipe_name=pipe_name, launcher_id=launcher_id, launch_timeout=launch_timeout, task_wait_time=task_wait_time, task_read_wait_time=task_read_wait_time, result_poll_interval=result_poll_interval, read_interval=read_interval, heartbeat_interval=heartbeat_interval, heartbeat_timeout=heartbeat_timeout, workers=workers, training=training, global_evaluation=global_evaluation, from_nvflare_converter_id=from_nvflare_converter_id, to_nvflare_converter_id=to_nvflare_converter_id, ) self._params_exchange_format = params_exchange_format self._params_transfer_type = params_transfer_type def prepare_config_for_launch(self, fl_ctx: FLContext): workspace = fl_ctx.get_engine().get_workspace() app_dir = workspace.get_app_dir(fl_ctx.get_job_id()) config_file = os.path.join(app_dir, workspace.config_folder, CONFIG_EXCHANGE) client_config = ClientConfig() self._update_config_exchange_dict(client_config.config) client_config.to_json(config_file) def _update_config_exchange_dict(self, config: Dict): config[ConfigKey.GLOBAL_EVAL] = self._global_evaluation config[ConfigKey.TRAINING] = self._training config[ConfigKey.EXCHANGE_FORMAT] = self._params_exchange_format config[ConfigKey.EXCHANGE_PATH] = self._data_exchange_path config[ConfigKey.TRANSFER_TYPE] = self._params_transfer_type
NVFlare-main
nvflare/app_common/executors/client_api_launcher_executor.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from concurrent.futures import ThreadPoolExecutor from threading import Event from typing import Optional from nvflare.apis.event_type import EventType from nvflare.apis.executor import Executor from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.launcher import Launcher, LauncherCompleteStatus from nvflare.app_common.utils.fl_model_utils import FLModelUtils, ParamsConverter from nvflare.fuel.utils.pipe.pipe import Message, Pipe from nvflare.fuel.utils.pipe.pipe_handler import PipeHandler, Topic from nvflare.fuel.utils.validation_utils import check_object_type from nvflare.security.logging import secure_format_exception class LauncherExecutor(Executor): def __init__( self, pipe_id: str, pipe_name: str = "pipe", launcher_id: Optional[str] = None, launch_timeout: Optional[float] = None, task_wait_time: Optional[float] = None, task_read_wait_time: Optional[float] = None, result_poll_interval: float = 0.1, read_interval: float = 0.1, heartbeat_interval: float = 5.0, heartbeat_timeout: float = 30.0, workers: int = 1, training: bool = True, global_evaluation: bool = True, from_nvflare_converter_id: Optional[str] = None, to_nvflare_converter_id: Optional[str] = None, ) -> None: """Initializes the LauncherExecutor. Args: pipe_id (str): Identifier used to get the Pipe from NVFlare components. pipe_name (str): Name of the pipe. Defaults to "pipe". launcher_id (Optional[str]): Identifier used to get the Launcher from NVFlare components. launch_timeout (Optional[float]): Timeout for the "launch" method to end. None means never timeout. task_wait_time (Optional[float]): Time to wait for tasks to complete before exiting the executor. None means never timeout. task_read_wait_time (Optional[float]): Time to wait for task results from the pipe. None means no wait. result_poll_interval (float): Interval for polling task results from the pipe. Defaults to 0.1. read_interval (float): Interval for reading from the pipe. Defaults to 0.1. heartbeat_interval (float): Interval for sending heartbeat to the peer. Defaults to 5.0. heartbeat_timeout (float): Timeout for waiting for a heartbeat from the peer. Defaults to 30.0. workers (int): Number of worker threads needed. training (bool): Whether to run training using global model. Defaults to True. global_evaluation (bool): Whether to run evaluation on global model. Defaults to True. from_nvflare_converter_id (Optional[str]): Identifier used to get the ParamsConverter from NVFlare components. This converter will be called when model is sent from nvflare controller side to executor side. to_nvflare_converter_id (Optional[str]): Identifier used to get the ParamsConverter from NVFlare components. This converter will be called when model is sent from nvflare executor side to controller side. """ super().__init__() self._launcher_id = launcher_id self.launch_timeout = launch_timeout self.launcher: Optional[Launcher] = None self._launcher_finish = Event() self._launcher_finish_status = None self._thread_pool_executor = ThreadPoolExecutor(max_workers=workers, thread_name_prefix=self.__class__.__name__) self.pipe_handler: Optional[PipeHandler] = None self._pipe_id = pipe_id self._pipe_name = pipe_name self._topic = "data" self._read_interval = read_interval self._heartbeat_interval = heartbeat_interval self._heartbeat_timeout = heartbeat_timeout self._task_wait_time = task_wait_time self._result_poll_interval = result_poll_interval self._task_read_wait_time = task_read_wait_time # flags to indicate whether the launcher side will send back trained model and/or metrics self._training = training self._global_evaluation = global_evaluation if self._training is False and self._global_evaluation is False: raise RuntimeError("training and global_evaluation can't be both False.") self._result_fl_model = None self._result_metrics = None self._from_nvflare_converter_id = from_nvflare_converter_id self._from_nvflare_converter: Optional[ParamsConverter] = None self._to_nvflare_converter_id = to_nvflare_converter_id self._to_nvflare_converter: Optional[ParamsConverter] = None def initialize(self, fl_ctx: FLContext) -> None: self._init_launcher(fl_ctx) self._init_converter(fl_ctx) # gets pipe engine = fl_ctx.get_engine() pipe: Pipe = engine.get_component(self._pipe_id) check_object_type(self._pipe_id, pipe, Pipe) # init pipe pipe.open(self._pipe_name) self.pipe_handler = PipeHandler( pipe, read_interval=self._read_interval, heartbeat_interval=self._heartbeat_interval, heartbeat_timeout=self._heartbeat_timeout, ) self.pipe_handler.start() def handle_event(self, event_type: str, fl_ctx: FLContext) -> None: if event_type == EventType.START_RUN: self.initialize(fl_ctx) self.prepare_config_for_launch(fl_ctx) elif event_type == EventType.END_RUN: if self.launcher: self.launcher.finalize(fl_ctx) self.log_info(fl_ctx, "END_RUN received - telling external to stop") if self.pipe_handler is not None: self.pipe_handler.notify_end("END_RUN received") self.pipe_handler.stop(close_pipe=True) def execute(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: future = self._launch_in_new_thread(task_name, shareable, fl_ctx, abort_signal) try: launch_success = future.result(timeout=self.launch_timeout) except TimeoutError: self.log_error(fl_ctx, f"launch task: {task_name} exceeds {self.launch_timeout} seconds") return make_reply(ReturnCode.EXECUTION_EXCEPTION) if not launch_success: self.log_error(fl_ctx, f"launch task: {task_name} failed") return make_reply(ReturnCode.EXECUTION_EXCEPTION) future = self._wait_in_new_thread(task_name, fl_ctx, self._task_wait_time) result = self._exchange(task_name, shareable, fl_ctx, abort_signal) try: completion_status = future.result(timeout=self._task_wait_time) if completion_status != LauncherCompleteStatus.SUCCESS: self.log_error(fl_ctx, "launcher execution failed") return make_reply(ReturnCode.EXECUTION_EXCEPTION) except TimeoutError: self.log_error(fl_ctx, f"wait task: {task_name} exceeds {self._task_wait_time} seconds") return make_reply(ReturnCode.EXECUTION_EXCEPTION) self._clear() return result def _init_launcher(self, fl_ctx: FLContext): engine = fl_ctx.get_engine() launcher: Launcher = engine.get_component(self._launcher_id) if launcher is not None: check_object_type(self._launcher_id, launcher, Launcher) launcher.initialize(fl_ctx) self.launcher = launcher def _init_converter(self, fl_ctx: FLContext): engine = fl_ctx.get_engine() from_nvflare_converter: ParamsConverter = engine.get_component(self._from_nvflare_converter_id) if from_nvflare_converter is not None: check_object_type(self._from_nvflare_converter_id, from_nvflare_converter, ParamsConverter) self._from_nvflare_converter = from_nvflare_converter to_nvflare_converter: ParamsConverter = engine.get_component(self._to_nvflare_converter_id) if to_nvflare_converter is not None: check_object_type(self._to_nvflare_converter_id, to_nvflare_converter, ParamsConverter) self._to_nvflare_converter = to_nvflare_converter def prepare_config_for_launch(self, fl_ctx: FLContext): """Prepares any configuration for the process to be launched.""" pass def _launch(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> bool: if self.launcher: return self.launcher.launch_task(task_name, shareable, fl_ctx, abort_signal) return True def _launch_in_new_thread(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal): future = self._thread_pool_executor.submit(self._launch, task_name, shareable, fl_ctx, abort_signal) return future def _stop_launcher(self, task_name: str, fl_ctx: FLContext) -> None: try: if self.launcher: self.launcher.stop_task(task_name=task_name, fl_ctx=fl_ctx) except Exception as e: self.log_exception(fl_ctx, f"launcher stop exception: {secure_format_exception(e)}") def _wait_launcher(self, task_name: str, fl_ctx: FLContext, timeout: Optional[float]) -> LauncherCompleteStatus: return_status = LauncherCompleteStatus.FAILED try: if self.launcher: return_status = self.launcher.wait_task(task_name=task_name, fl_ctx=fl_ctx, timeout=timeout) except Exception as e: self.log_exception(fl_ctx, f"launcher wait exception: {secure_format_exception(e)}") self._stop_launcher(task_name=task_name, fl_ctx=fl_ctx) self._launcher_finish.set() self._launcher_finish_status = return_status return return_status def _wait_in_new_thread(self, task_name: str, fl_ctx: FLContext, timeout: Optional[float]): future = self._thread_pool_executor.submit(self._wait_launcher, task_name, fl_ctx, timeout) return future def _exchange(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: if self.pipe_handler is None: return make_reply(ReturnCode.EXECUTION_EXCEPTION) model = FLModelUtils.from_shareable(shareable, self._from_nvflare_converter, fl_ctx) req = Message.new_request(topic=self._topic, data=model) has_been_read = self.pipe_handler.send_to_peer(req, timeout=self._task_read_wait_time) if self._task_read_wait_time and not has_been_read: self.log_error( fl_ctx, f"failed to read task '{task_name}' in {self._task_read_wait_time} secs - aborting task!" ) return make_reply(ReturnCode.SERVICE_UNAVAILABLE) # wait for result start = time.time() while True: if abort_signal.triggered: self.log_error(fl_ctx, f"task '{task_name}' is aborted.") self.pipe_handler.notify_abort(task_name) self._stop_launcher(task_name, fl_ctx) return make_reply(ReturnCode.TASK_ABORTED) reply: Optional[Message] = self.pipe_handler.get_next() if reply is None: if self._task_wait_time and time.time() - start > self._task_wait_time: self.log_error(fl_ctx, f"task '{task_name}' timeout after {self._task_wait_time} secs") self.pipe_handler.notify_abort(task_name) self._stop_launcher(task_name, fl_ctx) self._log_result(fl_ctx) return make_reply(ReturnCode.EXECUTION_EXCEPTION) elif reply.topic == Topic.ABORT: self.log_error(fl_ctx, f"the other end ask to abort task '{task_name}'") self._stop_launcher(task_name, fl_ctx) self._log_result(fl_ctx) return make_reply(ReturnCode.TASK_ABORTED) elif reply.topic in [Topic.END, Topic.PEER_GONE]: self.log_error(fl_ctx, f"received {reply.topic} while waiting for result for {task_name}") self._stop_launcher(task_name, fl_ctx) self._log_result(fl_ctx) return make_reply(ReturnCode.SERVICE_UNAVAILABLE) elif reply.msg_type != Message.REPLY: self.log_warning( fl_ctx, f"ignored msg '{reply.topic}.{reply.req_id}' when waiting for '{req.topic}.{req.msg_id}'" ) elif req.topic != reply.topic: # ignore wrong task name self.log_warning(fl_ctx, f"ignored '{reply.topic}' when waiting for '{req.topic}'") elif req.msg_id != reply.req_id: self.log_warning(fl_ctx, f"ignored '{reply.req_id}' when waiting for '{req.msg_id}'") else: self.log_info(fl_ctx, f"got result for task '{task_name}'") if reply.data.params is not None: self._result_fl_model = reply.data if reply.data.metrics is not None: self._result_metrics = reply.data if self._check_exchange_exit(): break if self._launcher_finish.is_set(): self.log_error( fl_ctx, f"Launcher already exited before exchange ended. Exit status is: '{self._launcher_finish_status}'", ) self._log_result(fl_ctx) return make_reply(ReturnCode.EXECUTION_EXCEPTION) time.sleep(self._result_poll_interval) result_fl_model = self._create_result_fl_model() return FLModelUtils.to_shareable(result_fl_model, self._to_nvflare_converter) def _log_result(self, fl_ctx): if self._training and self._result_fl_model is None: self.log_error(fl_ctx, "missing result FLModel with training flag True.") if self._global_evaluation and self._result_metrics is None: self.log_error(fl_ctx, "missing result metrics with global_evaluation flag True.") def _check_exchange_exit(self): if self._training and self._result_fl_model is None: return False if self._global_evaluation and self._result_metrics is None: return False return True def _create_result_fl_model(self): if self._result_fl_model is not None: if self._result_metrics is not None: self._result_fl_model.metrics = self._result_metrics.metrics return self._result_fl_model elif self._result_metrics is not None: return self._result_metrics else: raise RuntimeError("Missing result fl model and result metrics") def _clear(self): self._result_fl_model = None self._result_metrics = None self._launcher_finish_status = None self._launcher_finish.clear()
NVFlare-main
nvflare/app_common/executors/launcher_executor.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.apis.dxo import DataKind from nvflare.apis.fl_context import FLContext from nvflare.app_common.executors.error_handling_executor import ErrorHandlingExecutor from nvflare.app_common.executors.statistics.statistics_task_handler import StatisticsTaskHandler """ StatisticsExecutor is client-side executor that perform local statistics generation and communication to FL Server global statistics controller. The actual local statistics calculation would delegate to Statistics spec implementor. """ class StatisticsExecutor(ErrorHandlingExecutor): def __init__( self, generator_id: str, precision=4, ): """ Args: generator_id: id of the statistics component precision: number of precision digits """ super().__init__() self.generator_id = generator_id self.precision = precision def get_data_kind(self) -> str: return DataKind.STATISTICS def get_task_handler(self, fl_ctx: FLContext): task_handler = StatisticsTaskHandler(self.generator_id, self.precision) task_handler.initialize(fl_ctx) return task_handler
NVFlare-main
nvflare/app_common/executors/statistics/statistics_executor.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/executors/statistics/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Optional from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.apis.signal import Signal from nvflare.app_common.abstract.statistics_spec import Feature, Histogram, HistogramType, StatisticConfig, Statistics from nvflare.app_common.abstract.task_handler import TaskHandler from nvflare.app_common.app_constant import StatisticsConstants as StC from nvflare.app_common.statistics.numeric_stats import filter_numeric_features from nvflare.app_common.statistics.statisitcs_objects_decomposer import fobs_registration from nvflare.app_common.statistics.statistics_config_utils import get_feature_bin_range from nvflare.fuel.utils import fobs from nvflare.security.logging import secure_format_exception class StatisticsTaskHandler(TaskHandler): """ StatisticsTaskHandler is to be used together with StatisticsExecutor. StatisticsExecutor is client-side executor that perform local statistics generation and communication to FL Server global statistics controller. The actual local statistics calculation would delegate to Statistics spec implementor. """ def __init__(self, generator_id: str, precision: int = 4): super().__init__(generator_id, Statistics) self.stats_generator: Optional[Statistics] = None self.precision = precision fobs_registration() def initialize(self, fl_ctx: FLContext): super().initialize(fl_ctx) self.stats_generator = self.local_comp def execute_task(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: client_name = fl_ctx.get_identity_name() self.log_info(fl_ctx, f"Executing task '{task_name}' for client: '{client_name}'") result = Shareable() statistics_result = {} if task_name == StC.FED_STATS_PRE_RUN: # initial handshake target_statistics: List[StatisticConfig] = fobs.loads(shareable.get(StC.STATS_TARGET_STATISTICS)) return self.pre_run(target_statistics) elif task_name == StC.FED_STATS_TASK: ds_features = self.get_numeric_features() statistics_task = shareable.get(StC.STATISTICS_TASK_KEY) target_statistics: List[StatisticConfig] = fobs.loads(shareable.get(StC.STATS_TARGET_STATISTICS)) if StC.STATS_FAILURE_COUNT not in target_statistics: target_statistics.append(StatisticConfig(StC.STATS_FAILURE_COUNT, {})) for tm in target_statistics: fn = self.statistic_functions()[tm.name] statistics_result[tm.name] = {} self._populate_result_statistics(statistics_result, ds_features, tm, shareable, fl_ctx, fn) # always add count for data privacy needs if StC.STATS_COUNT not in statistics_result: tm = StatisticConfig(StC.STATS_COUNT, {}) fn = self.get_count statistics_result[tm.name] = {} self._populate_result_statistics(statistics_result, ds_features, tm, shareable, fl_ctx, fn) result[StC.STATISTICS_TASK_KEY] = statistics_task if statistics_task == StC.STATS_1st_STATISTICS: result[StC.STATS_FEATURES] = fobs.dumps(ds_features) result[statistics_task] = fobs.dumps(statistics_result) return result else: raise RuntimeError(ReturnCode.TASK_UNKNOWN) def statistic_functions(self) -> dict: return { StC.STATS_COUNT: self.get_count, StC.STATS_FAILURE_COUNT: self.get_failure_count, StC.STATS_SUM: self.get_sum, StC.STATS_MEAN: self.get_mean, StC.STATS_STDDEV: self.get_stddev, StC.STATS_VAR: self.get_variance_with_mean, StC.STATS_HISTOGRAM: self.get_histogram, StC.STATS_MAX: self.get_max_value, StC.STATS_MIN: self.get_min_value, } def _populate_result_statistics(self, statistics_result, ds_features, tm: StatisticConfig, shareable, fl_ctx, fn): for ds_name in ds_features: statistics_result[tm.name][ds_name] = {} features: List[Feature] = ds_features[ds_name] for feature in features: try: statistics_result[tm.name][ds_name][feature.feature_name] = fn( ds_name, feature.feature_name, tm, shareable, fl_ctx ) except Exception as e: self.log_exception( fl_ctx, f"Failed to populate result statistics of dataset {ds_name}" f" and feature {feature.feature_name} with exception: {secure_format_exception(e)}", ) def get_numeric_features(self) -> Dict[str, List[Feature]]: ds_features: Dict[str, List[Feature]] = self.stats_generator.features() return filter_numeric_features(ds_features) def pre_run(self, target_statistics: List[StatisticConfig]): feature_num_of_bins = None feature_bin_ranges = None target_statistic_keys = [] for mc in target_statistics: target_statistic_keys.append(mc.name) if mc.name == StC.STATS_HISTOGRAM: hist_config = mc.config feature_num_of_bins = {} feature_bin_ranges = {} for feature_name in hist_config: num_of_bins: int = self.get_number_of_bins(feature_name, hist_config) feature_num_of_bins[feature_name] = num_of_bins bin_range = get_feature_bin_range(feature_name, hist_config) feature_bin_ranges[feature_name] = bin_range return self.stats_generator.pre_run(target_statistic_keys, feature_num_of_bins, feature_bin_ranges) def get_count( self, dataset_name: str, feature_name: str, statistic_configs: StatisticConfig, inputs: Shareable, fl_ctx: FLContext, ) -> int: result = self.stats_generator.count(dataset_name, feature_name) return result def get_failure_count( self, dataset_name: str, feature_name: str, statistic_configs: StatisticConfig, inputs: Shareable, fl_ctx: FLContext, ) -> int: result = self.stats_generator.failure_count(dataset_name, feature_name) return result def get_sum( self, dataset_name: str, feature_name: str, statistic_configs: StatisticConfig, inputs: Shareable, fl_ctx: FLContext, ) -> float: result = round(self.stats_generator.sum(dataset_name, feature_name), self.precision) return result def get_mean( self, dataset_name: str, feature_name: str, statistic_configs: StatisticConfig, inputs: Shareable, fl_ctx: FLContext, ) -> float: count = self.stats_generator.count(dataset_name, feature_name) sum_value = self.stats_generator.sum(dataset_name, feature_name) if count is not None and sum_value is not None: return round(sum_value / count, self.precision) else: # user did not implement count and/or sum, call means directly. mean = round(self.stats_generator.mean(dataset_name, feature_name), self.precision) # self._check_result(mean, statistic_configs.name) return mean def get_stddev( self, dataset_name: str, feature_name: str, statistic_configs: StatisticConfig, inputs: Shareable, fl_ctx: FLContext, ) -> float: result = round(self.stats_generator.stddev(dataset_name, feature_name), self.precision) return result def get_variance_with_mean( self, dataset_name: str, feature_name: str, statistic_configs: StatisticConfig, inputs: Shareable, fl_ctx: FLContext, ) -> float: result = None if StC.STATS_GLOBAL_MEAN in inputs and StC.STATS_GLOBAL_COUNT in inputs: global_mean = self._get_global_value_from_input(StC.STATS_GLOBAL_MEAN, dataset_name, feature_name, inputs) global_count = self._get_global_value_from_input(StC.STATS_GLOBAL_COUNT, dataset_name, feature_name, inputs) if global_mean is not None and global_count is not None: result = self.stats_generator.variance_with_mean(dataset_name, feature_name, global_mean, global_count) result = round(result, self.precision) return result def get_histogram( self, dataset_name: str, feature_name: str, statistic_configs: StatisticConfig, inputs: Shareable, fl_ctx: FLContext, ) -> Histogram: if StC.STATS_MIN in inputs and StC.STATS_MAX in inputs: global_min_value = self._get_global_value_from_input(StC.STATS_MIN, dataset_name, feature_name, inputs) global_max_value = self._get_global_value_from_input(StC.STATS_MAX, dataset_name, feature_name, inputs) if global_min_value is not None and global_max_value is not None: hist_config: dict = statistic_configs.config num_of_bins: int = self.get_number_of_bins(feature_name, hist_config) bin_range: List[float] = self.get_bin_range( feature_name, global_min_value, global_max_value, hist_config ) result = self.stats_generator.histogram( dataset_name, feature_name, num_of_bins, bin_range[0], bin_range[1] ) return result else: return Histogram(HistogramType.STANDARD, list()) else: return Histogram(HistogramType.STANDARD, list()) def get_max_value( self, dataset_name: str, feature_name: str, statistic_configs: StatisticConfig, inputs: Shareable, fl_ctx: FLContext, ) -> float: """ get randomized max value """ hist_config: dict = statistic_configs.config feature_bin_range = get_feature_bin_range(feature_name, hist_config) if feature_bin_range is None: client_max_value = self.stats_generator.max_value(dataset_name, feature_name) return client_max_value else: return feature_bin_range[1] def get_min_value( self, dataset_name: str, feature_name: str, statistic_configs: StatisticConfig, inputs: Shareable, fl_ctx: FLContext, ) -> float: """ get randomized min value """ hist_config: dict = statistic_configs.config feature_bin_range = get_feature_bin_range(feature_name, hist_config) if feature_bin_range is None: client_min_value = self.stats_generator.min_value(dataset_name, feature_name) return client_min_value else: return feature_bin_range[0] def get_number_of_bins(self, feature_name: str, hist_config: dict) -> int: err_msg = ( f"feature name = '{feature_name}': " f"missing required '{StC.STATS_BINS}' config in histogram config = {hist_config}" ) try: num_of_bins = None if feature_name in hist_config: num_of_bins = hist_config[feature_name][StC.STATS_BINS] else: if "*" in hist_config: default_config = hist_config["*"] num_of_bins = default_config[StC.STATS_BINS] if num_of_bins: return num_of_bins else: raise Exception(err_msg) except KeyError as e: raise Exception(err_msg) def get_bin_range( self, feature_name: str, global_min_value: float, global_max_value: float, hist_config: dict ) -> List[float]: global_bin_range = [global_min_value, global_max_value] bin_range = get_feature_bin_range(feature_name, hist_config) if bin_range is None: bin_range = global_bin_range return bin_range def _get_global_value_from_input(self, statistic_key: str, dataset_name: str, feature_name: str, inputs): global_value = None if dataset_name in inputs[statistic_key]: if feature_name in inputs[statistic_key][dataset_name]: global_value = inputs[statistic_key][dataset_name][feature_name] elif "*" in inputs[StC.STATS_MIN][dataset_name]: global_value = inputs[statistic_key][dataset_name][feature_name] return global_value
NVFlare-main
nvflare/app_common/executors/statistics/statistics_task_handler.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class StatisticExecutorException(Exception): pass
NVFlare-main
nvflare/app_common/executors/statistics/statistics_executor_exception.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/launchers/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shlex import subprocess import sys from typing import Optional from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.apis.signal import Signal from nvflare.app_common.abstract.launcher import Launcher, LauncherCompleteStatus class SubprocessLauncher(Launcher): def __init__(self, script: str, clean_up_script: Optional[str] = None): """Initializes the SubprocessLauncher. Args: script (str): Script to be launched using subprocess. clean_up_script (Optional[str]): Optional clean up script to be run after the main script execution. """ super().__init__() self._app_dir = None self._process = None self._script = script self._clean_up_script = clean_up_script def initialize(self, fl_ctx: FLContext): self._app_dir = self.get_app_dir(fl_ctx) def launch_task(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> bool: if self._process is None: command = self._script env = os.environ.copy() command_seq = shlex.split(command) self._process = subprocess.Popen( command_seq, stdout=sys.stdout, stderr=subprocess.STDOUT, cwd=self._app_dir, env=env ) return True return False def wait_task(self, task_name: str, fl_ctx: FLContext, timeout=None) -> LauncherCompleteStatus: if self._process: return_code = self._process.wait(timeout) self.stop_task(task_name, fl_ctx) if return_code == 0: return LauncherCompleteStatus.SUCCESS return LauncherCompleteStatus.FAILED return LauncherCompleteStatus.SUCCESS def stop_task(self, task_name: str, fl_ctx: FLContext) -> None: if self._process: self._process.terminate() self._process.wait() if self._clean_up_script: command_seq = shlex.split(self._clean_up_script) process = subprocess.Popen(command_seq, cwd=self._app_dir) process.wait() self._process = None
NVFlare-main
nvflare/app_common/launchers/subprocess_launcher.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from abc import ABC, abstractmethod from nvflare.apis.resource_manager_spec import ResourceConsumerSpec class _Consumer(ABC): @abstractmethod def consume(self, resources: list): pass class _GPUConsumer(_Consumer): def __init__(self): os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" def consume(self, resources: list): """Consumes resources. Note that this class did not check physically if those GPUs exist. """ gpu_numbers = [str(x) for x in resources] os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(gpu_numbers) class ListResourceConsumer(ResourceConsumerSpec): def __init__(self): """This class can be used with ListResourceManager. Users can add custom _Consumer in the resource_consumer_map to handle new resource type. """ super().__init__() self.resource_consumer_map = {"gpu": _GPUConsumer()} def consume(self, resources: dict): for key, consumer in self.resource_consumer_map.items(): if key in resources: consumer.consume(resources[key])
NVFlare-main
nvflare/app_common/resource_consumers/list_resource_consumer.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from nvflare.apis.resource_manager_spec import ResourceConsumerSpec from nvflare.fuel.utils.gpu_utils import get_host_gpu_ids, get_host_gpu_memory_free class GPUResourceConsumer(ResourceConsumerSpec): def __init__(self): os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" def consume(self, resources: dict): host_gpus = get_host_gpu_ids() host_gpu_memory_free = get_host_gpu_memory_free(unit="MiB") for gpu_id, gpu_mem in resources.items(): if gpu_id not in host_gpus: raise RuntimeError(f"GPU ID {gpu_id} does not exist") if gpu_mem * 1024.0 > host_gpu_memory_free[gpu_id]: raise RuntimeError("GPU free mem is not enough") os.environ["CUDA_VISIBLE_DEVICES"] = ",".join([str(i) for i in resources.keys()])
NVFlare-main
nvflare/app_common/resource_consumers/gpu_resource_consumer.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/resource_consumers/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from nvflare.apis.dxo import from_shareable from nvflare.apis.fl_context import FLContext from nvflare.apis.impl.controller import ClientTask, Task from nvflare.apis.shareable import ReturnCode, Shareable from nvflare.apis.signal import Signal from nvflare.apis.workspace import Workspace from nvflare.app_common.app_constant import AppConstants, ModelName from nvflare.app_common.app_event_type import AppEventType from nvflare.app_common.ccwf.common import Constant, ModelType, make_task_name from nvflare.app_common.ccwf.server_ctl import ServerSideController from nvflare.app_common.ccwf.val_result_manager import EvalResultManager from nvflare.fuel.utils.validation_utils import ( DefaultValuePolicy, check_positive_number, check_str, validate_candidate, validate_candidates, ) class CrossSiteEvalServerController(ServerSideController): def __init__( self, task_name_prefix=Constant.TN_PREFIX_CROSS_SITE_EVAL, start_task_timeout=Constant.START_TASK_TIMEOUT, configure_task_timeout=Constant.CONFIG_TASK_TIMEOUT, eval_task_timeout=30, task_check_period: float = Constant.TASK_CHECK_INTERVAL, job_status_check_interval: float = Constant.JOB_STATUS_CHECK_INTERVAL, progress_timeout: float = Constant.WORKFLOW_PROGRESS_TIMEOUT, participating_clients=None, evaluators=None, evaluatees=None, global_model_client=None, max_status_report_interval: float = Constant.PER_CLIENT_STATUS_REPORT_TIMEOUT, eval_result_dir=AppConstants.CROSS_VAL_DIR, ): if not evaluatees: evaluatees = [] if not evaluators: evaluators = [] super().__init__( num_rounds=1, task_name_prefix=task_name_prefix, start_task_timeout=start_task_timeout, configure_task_timeout=configure_task_timeout, task_check_period=task_check_period, job_status_check_interval=job_status_check_interval, participating_clients=participating_clients, starting_client="", starting_client_policy=DefaultValuePolicy.EMPTY, max_status_report_interval=max_status_report_interval, result_clients="", result_clients_policy=DefaultValuePolicy.EMPTY, progress_timeout=progress_timeout, ) check_str("eval_result_dir", eval_result_dir) check_positive_number("eval_task_timeout", eval_task_timeout) if not global_model_client: global_model_client = "" self.global_model_client = global_model_client self.eval_task_name = make_task_name(task_name_prefix, Constant.BASENAME_EVAL) self.eval_task_timeout = eval_task_timeout self.eval_local = False self.eval_global = False self.evaluators = evaluators self.evaluatees = evaluatees self.eval_result_dir = eval_result_dir self.global_names = {} self.eval_manager = None self.current_round = 0 def start_controller(self, fl_ctx: FLContext): super().start_controller(fl_ctx) self.evaluators = validate_candidates( var_name="evaluators", candidates=self.evaluators, base=self.participating_clients, default_policy=DefaultValuePolicy.ALL, allow_none=False, ) self.evaluatees = validate_candidates( var_name="evaluatees", candidates=self.evaluatees, base=self.participating_clients, default_policy=DefaultValuePolicy.ALL, allow_none=True, ) self.global_model_client = validate_candidate( var_name="global_model_client", candidate=self.global_model_client, base=self.participating_clients, default_policy=DefaultValuePolicy.ANY, allow_none=True, ) if self.global_model_client: self.eval_global = True if self.evaluatees: self.eval_local = True if not self.eval_global and not self.eval_local: raise RuntimeError("nothing to evaluate: you must set evaluatees and/or eval_global") workspace: Workspace = self._engine.get_workspace() run_dir = workspace.get_run_dir(fl_ctx.get_job_id()) cross_val_path = os.path.join(run_dir, self.eval_result_dir) cross_val_results_dir = os.path.join(cross_val_path, AppConstants.CROSS_VAL_RESULTS_DIR_NAME) self.eval_manager = EvalResultManager(cross_val_results_dir) def prepare_config(self): return { Constant.EVAL_LOCAL: self.eval_local, Constant.EVAL_GLOBAL: self.eval_global, Constant.EVALUATORS: self.evaluators, Constant.EVALUATEES: self.evaluatees, Constant.GLOBAL_CLIENT: self.global_model_client, } def process_config_reply(self, client_name: str, reply: Shareable, fl_ctx: FLContext) -> bool: global_names = reply.get(Constant.GLOBAL_NAMES) if global_names: for m in global_names: if m not in self.global_names: self.global_names[m] = client_name self.log_info(fl_ctx, f"got global model name {m} from {client_name}") return True def _ask_to_evaluate( self, current_round: int, model_name: str, model_type: str, model_owner: str, fl_ctx: FLContext ): self.log_info( fl_ctx, f"R{current_round}: asking {self.evaluators} to evaluate {model_type} model '{model_name}' " f"on client '{model_owner}'", ) # Create validation task and broadcast to all participating clients. task_data = Shareable() task_data[AppConstants.CURRENT_ROUND] = current_round task_data[Constant.MODEL_OWNER] = model_owner # client that holds the model task_data[Constant.MODEL_NAME] = model_name task_data[Constant.MODEL_TYPE] = model_type task = Task( name=self.eval_task_name, data=task_data, result_received_cb=self._process_eval_result, timeout=self.eval_task_timeout, ) self.broadcast( task=task, fl_ctx=fl_ctx, targets=self.evaluators, min_responses=len(self.evaluators), wait_time_after_min_received=0, ) def sub_flow(self, abort_signal: Signal, fl_ctx: FLContext): if not self.global_names and not self.evaluatees: self.system_panic("there are neither global models nor local models to evaluate!", fl_ctx) return # ask everyone to evaluate global model if self.eval_global: if len(self.global_names) == 0: self.log_warning(fl_ctx, "no global models to evaluate!") for m, owner in self.global_names.items(): self._ask_to_evaluate( current_round=self.current_round, model_name=m, model_type=ModelType.GLOBAL, model_owner=owner, fl_ctx=fl_ctx, ) self.current_round += 1 # ask everyone to eval everyone else's local model for c in self.evaluatees: self._ask_to_evaluate( current_round=self.current_round, model_name=ModelName.BEST_MODEL, model_type=ModelType.LOCAL, model_owner=c, fl_ctx=fl_ctx, ) self.current_round += 1 def is_sub_flow_done(self, fl_ctx: FLContext) -> bool: return self.get_num_standing_tasks() == 0 def _process_eval_result(self, client_task: ClientTask, fl_ctx: FLContext): # Find name of the client sending this result = client_task.result client_name = client_task.client.name self._accept_eval_result(client_name=client_name, result=result, fl_ctx=fl_ctx) def _accept_eval_result(self, client_name: str, result: Shareable, fl_ctx: FLContext): model_owner = result.get_header(Constant.MODEL_OWNER, "") model_type = result.get_header(Constant.MODEL_TYPE) model_name = result.get_header(Constant.MODEL_NAME) if model_type == ModelType.GLOBAL: # global model model_owner = "GLOBAL_" + model_name model_info = model_owner else: model_info = f"{model_name} of {model_owner}" # Fire event. This needs to be a new local context per each client fl_ctx.set_prop(AppConstants.MODEL_OWNER, model_owner, private=True, sticky=False) fl_ctx.set_prop(AppConstants.DATA_CLIENT, client_name, private=True, sticky=False) fl_ctx.set_prop(AppConstants.VALIDATION_RESULT, result, private=True, sticky=False) self.fire_event(AppEventType.VALIDATION_RESULT_RECEIVED, fl_ctx) rc = result.get_return_code(ReturnCode.OK) if rc != ReturnCode.OK: self.log_error(fl_ctx, f"bad evaluation result from client {client_name} on model {model_info}") else: dxo = from_shareable(result) location = self.eval_manager.add_result(evaluatee=model_owner, evaluator=client_name, result=dxo) self.log_info(fl_ctx, f"saved evaluation result from {client_name} on model {model_info} in {location}")
NVFlare-main
nvflare/app_common/ccwf/cse_server_ctl.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import random import threading import time from nvflare.apis.controller_spec import Task from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_constant import FLContextKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.aggregator import Aggregator from nvflare.app_common.abstract.learnable import Learnable from nvflare.app_common.abstract.metric_comparator import MetricComparator from nvflare.app_common.app_constant import AppConstants from nvflare.app_common.app_event_type import AppEventType from nvflare.app_common.ccwf.client_ctl import ClientSideController from nvflare.app_common.ccwf.common import Constant, NumberMetricComparator, ResultType, make_task_name from nvflare.fuel.utils.validation_utils import check_non_empty_str, check_positive_int, check_positive_number from nvflare.security.logging import secure_format_traceback class _TrainerStatus: def __init__(self, name: str): self.name = name self.reply_time = None class Gatherer(FLComponent): def __init__( self, task_data: Shareable, fl_ctx: FLContext, for_round: int, executor: ClientSideController, aggregator: Aggregator, metric_comparator: MetricComparator, all_clients: list, trainers: list, min_responses_required: int, wait_time_after_min_resps_received: float, timeout, ): FLComponent.__init__(self) self.fl_ctx = fl_ctx self.executor = executor self.aggregator = aggregator self.metric_comparator = metric_comparator self.all_clients = all_clients self.trainers = trainers self.for_round = for_round self.trainer_statuses = {} self.start_time = time.time() self.timeout = timeout for t in trainers: self.trainer_statuses[t] = _TrainerStatus(t) if min_responses_required <= 0 or min_responses_required >= len(trainers): min_responses_required = len(trainers) self.min_responses_required = min_responses_required self.wait_time_after_min_resps_received = wait_time_after_min_resps_received self.min_resps_received_time = None self.lock = threading.Lock() self.current_best_client = task_data.get_header(Constant.CLIENT) self.current_best_global_metric = task_data.get_header(Constant.METRIC) self.current_best_round = task_data.get_header(Constant.ROUND) if not self.current_best_client: self.log_info(fl_ctx, "gatherer starting from scratch") else: self.log_info( fl_ctx, f"gatherer starting with previous best result from client {self.current_best_client} " f"with metric {self.current_best_global_metric} " f"at round {self.current_best_round}", ) def gather(self, client_name: str, result: Shareable, fl_ctx: FLContext) -> Shareable: with self.lock: try: return self._do_gather(client_name, result, fl_ctx) except: self.log_error(fl_ctx, f"exception gathering: {secure_format_traceback()}") return make_reply(ReturnCode.EXECUTION_EXCEPTION) def _do_gather(self, client_name: str, result: Shareable, fl_ctx: FLContext) -> Shareable: result_round = result.get_header(AppConstants.CURRENT_ROUND) ts = self.trainer_statuses.get(client_name) if not ts: self.log_error( fl_ctx, f"received result from {client_name} for round {result_round}, but it is not a trainer" ) return make_reply(ReturnCode.EXECUTION_EXCEPTION) if result_round > self.for_round: # this should never happen! # otherwise it means that the client is sending me result for a round that I couldn't possibly schedule! self.log_error( fl_ctx, f"logic error: received result from {client_name} for round {result_round}, " f"which is > gatherer's current round {self.for_round}", ) self.executor.update_status(action="gather", error=ReturnCode.EXECUTION_EXCEPTION) return make_reply(ReturnCode.EXECUTION_EXCEPTION) if result_round < self.for_round: # this is a late result for a round that I scheduled in the past. # Note: we still accept it! self.log_warning( fl_ctx, f"received late result from {client_name} for round {result_round}, " f"which is < gatherer's current round {self.for_round}", ) if result_round == self.for_round: # this is the result that I'm waiting for. now = time.time() ts.reply_time = now if not self.min_resps_received_time: # see how many responses I have received num_resps_received = 0 for _, ts in self.trainer_statuses.items(): if ts.reply_time: num_resps_received += 1 if num_resps_received >= self.min_responses_required: self.min_resps_received_time = now rc = result.get_return_code(ReturnCode.OK) if rc != ReturnCode.OK: self.log_error(fl_ctx, f"Bad result from {client_name} for round {result_round}: {rc}.") return make_reply(ReturnCode.EXECUTION_EXCEPTION) fl_ctx.set_prop(AppConstants.CURRENT_ROUND, self.for_round, private=True, sticky=True) fl_ctx.set_prop(AppConstants.TRAINING_RESULT, result, private=True, sticky=False) self.fire_event(AppEventType.BEFORE_CONTRIBUTION_ACCEPT, fl_ctx) accepted = self.aggregator.accept(result, fl_ctx) accepted_msg = "ACCEPTED" if accepted else "REJECTED" self.log_info( fl_ctx, f"Contribution from {client_name} {accepted_msg} by the aggregator at round {result_round}." ) fl_ctx.set_prop(AppConstants.AGGREGATION_ACCEPTED, accepted, private=True, sticky=False) self.fire_event(AppEventType.AFTER_CONTRIBUTION_ACCEPT, fl_ctx) return make_reply(ReturnCode.OK) def aggregate(self): fl_ctx = self.fl_ctx self.log_info(fl_ctx, f"Start aggregation for round {self.for_round}") self.fire_event(AppEventType.BEFORE_AGGREGATION, fl_ctx) aggr_result = self.aggregator.aggregate(fl_ctx) fl_ctx.set_prop(AppConstants.AGGREGATION_RESULT, aggr_result, private=True, sticky=False) self.fire_event(AppEventType.AFTER_AGGREGATION, fl_ctx) self.log_info(fl_ctx, f"Finished aggregation for round {self.for_round}") mine_is_better = False if self.current_best_global_metric is not None: if ( self.executor.best_metric is not None and self.metric_comparator.compare(self.executor.best_metric, self.current_best_global_metric) > 0 ): mine_is_better = True elif self.executor.best_metric is not None: mine_is_better = True if mine_is_better: self.log_info( fl_ctx, f"I got better metric {self.executor.best_metric} at round {self.executor.best_round}" ) best_round = self.executor.best_round best_metric = self.executor.best_metric best_client = self.executor.me else: best_round = self.current_best_round best_metric = self.current_best_global_metric best_client = self.current_best_client self.log_info(fl_ctx, f"global best metric is {best_metric} from client {best_client} at round {best_round}") aggr_result.set_header(Constant.ROUND, best_round) aggr_result.set_header(Constant.METRIC, best_metric) aggr_result.set_header(Constant.CLIENT, best_client) return aggr_result def is_done(self): unfinished = 0 for c, s in self.trainer_statuses.items(): if not s.reply_time: unfinished += 1 if unfinished == 0: return True # timeout? now = time.time() if self.timeout and now - self.start_time > self.timeout: self.log_warning(self.fl_ctx, f"gatherer for round {self.for_round} timed out after {self.timeout} seconds") return True if ( self.min_resps_received_time and now - self.min_resps_received_time > self.wait_time_after_min_resps_received ): # received min responses required and waited for long time self.log_info( self.fl_ctx, f"gatherer for round {self.for_round} exit after {self.wait_time_after_min_resps_received} seconds " f"since received minimum responses", ) return True class SwarmClientController(ClientSideController): def __init__( self, task_name_prefix=Constant.TN_PREFIX_SWARM, learn_task_name=AppConstants.TASK_TRAIN, persistor_id=AppConstants.DEFAULT_PERSISTOR_ID, shareable_generator_id=AppConstants.DEFAULT_SHAREABLE_GENERATOR_ID, aggregator_id=AppConstants.DEFAULT_AGGREGATOR_ID, metric_comparator_id=None, learn_task_check_interval=Constant.LEARN_TASK_CHECK_INTERVAL, learn_task_abort_timeout=Constant.LEARN_TASK_ABORT_TIMEOUT, learn_task_ack_timeout=Constant.LEARN_TASK_ACK_TIMEOUT, learn_task_timeout=None, final_result_ack_timeout=Constant.FINAL_RESULT_ACK_TIMEOUT, min_responses_required: int = 1, wait_time_after_min_resps_received: float = 10.0, ): check_non_empty_str("learn_task_name", learn_task_name) check_non_empty_str("persistor_id", persistor_id) check_non_empty_str("shareable_generator_id", shareable_generator_id) check_non_empty_str("aggregator_id", aggregator_id) if metric_comparator_id: check_non_empty_str("metric_comparator_id", metric_comparator_id) if learn_task_timeout: check_positive_number("learn_task_timeout", learn_task_timeout) check_positive_int("min_responses_required", min_responses_required) check_positive_number("wait_time_after_min_resps_received", wait_time_after_min_resps_received) super().__init__( task_name_prefix=task_name_prefix, learn_task_name=learn_task_name, persistor_id=persistor_id, shareable_generator_id=shareable_generator_id, learn_task_check_interval=learn_task_check_interval, learn_task_ack_timeout=learn_task_ack_timeout, learn_task_abort_timeout=learn_task_abort_timeout, final_result_ack_timeout=final_result_ack_timeout, allow_busy_task=True, ) self.metric_comparator_id = metric_comparator_id self.metric_comparator = None self.report_learn_result_task_name = make_task_name(task_name_prefix, Constant.BASENAME_REPORT_LEARN_RESULT) self.learn_task_timeout = learn_task_timeout self.min_responses_required = min_responses_required self.wait_time_after_min_resps_received = wait_time_after_min_resps_received self.aggregator_id = aggregator_id self.aggregator = None self.gatherer = None self.gatherer_waiter = threading.Event() self.trainers = None self.aggrs = None self.is_trainer = False self.is_aggr = False self.last_aggr_round_done = -1 def process_config(self, fl_ctx: FLContext): all_clients = self.get_config_prop(Constant.CLIENTS) self.trainers = self.get_config_prop(Constant.TRAIN_CLIENTS) if not self.trainers: self.trainers = all_clients self.is_trainer = self.me in self.trainers self.aggrs = self.get_config_prop(Constant.AGGR_CLIENTS) if not self.aggrs: self.aggrs = all_clients self.is_aggr = self.me in self.aggrs self.engine.register_aux_message_handler( topic=self.topic_for_my_workflow(Constant.TOPIC_SHARE_RESULT), message_handle_func=self._process_share_result, ) def execute(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: if task_name == self.report_learn_result_task_name: return self._process_learn_result(shareable, fl_ctx, abort_signal) return super().execute(task_name, shareable, fl_ctx, abort_signal) def start_run(self, fl_ctx: FLContext): super().start_run(fl_ctx) self.aggregator = self.engine.get_component(self.aggregator_id) if not isinstance(self.aggregator, Aggregator): self.system_panic( f"aggregator {self.aggregator_id} must be an Aggregator but got {type(self.aggregator)}", fl_ctx, ) return if self.metric_comparator_id: self.metric_comparator = self.engine.get_component(self.metric_comparator_id) if not isinstance(self.metric_comparator, MetricComparator): self.system_panic( f"metric comparator {self.metric_comparator_id} must be a MetricComparator " f"but got {type(self.metric_comparator)}", fl_ctx, ) return else: # use default comparator self.metric_comparator = NumberMetricComparator() aggr_thread = threading.Thread(target=self._monitor_gather) aggr_thread.daemon = True aggr_thread.start() self.log_info(fl_ctx, "started aggregator thread") def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == AppEventType.GLOBAL_BEST_MODEL_AVAILABLE: client = fl_ctx.get_prop(Constant.CLIENT) if client and client != self.me: # this global best model is from other client # we got here because this event is fired when I receive the best model shared from another # client at the end of the workflow. return # we got here because the best model selector fired this event: it found the "local best global" self.best_metric = fl_ctx.get_prop(AppConstants.VALIDATION_RESULT) self.best_result = copy.deepcopy(fl_ctx.get_prop(AppConstants.GLOBAL_MODEL)) self.log_info(fl_ctx, f"got GLOBAL_BEST_MODEL_AVAILABLE: best metric={self.best_metric}") current_round = fl_ctx.get_prop(AppConstants.CURRENT_ROUND) self.best_round = current_round self.update_status(last_round=current_round, action="better_aggregation") else: super().handle_event(event_type, fl_ctx) def start_workflow(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: clients = self.get_config_prop(Constant.CLIENTS) aggr_clients = self.get_config_prop(Constant.AGGR_CLIENTS, []) train_clients = self.get_config_prop(Constant.TRAIN_CLIENTS, []) self.log_info( fl_ctx, f"Starting Swarm Workflow on clients {clients}, aggrs {aggr_clients}, trainers {train_clients}" ) if not self._scatter( task_data=shareable, for_round=self.get_config_prop(Constant.START_ROUND, 0), fl_ctx=fl_ctx ): return make_reply(ReturnCode.EXECUTION_EXCEPTION) self.log_info(fl_ctx, "Started Swarm Workflow") return make_reply(ReturnCode.OK) def _scatter(self, task_data: Shareable, for_round: int, fl_ctx: FLContext) -> bool: clients = self.get_config_prop(Constant.TRAIN_CLIENTS) aggr_clients = self.get_config_prop(Constant.AGGR_CLIENTS) # determine aggr client aggr = random.choice(aggr_clients) task_data.set_header(AppConstants.CURRENT_ROUND, for_round) task_data.add_cookie(AppConstants.CONTRIBUTION_ROUND, for_round) task_data.set_header(Constant.AGGREGATOR, aggr) targets = copy.copy(clients) if aggr not in targets: targets.append(aggr) self.log_info(fl_ctx, f"broadcasting learn task of round {for_round} to {targets}; aggr client is {aggr}") return self.send_learn_task(targets=targets, request=task_data, fl_ctx=fl_ctx) def _monitor_gather(self): while True: if self.asked_to_stop: return gatherer = self.gatherer if gatherer: assert isinstance(gatherer, Gatherer) if gatherer.is_done(): self.last_aggr_round_done = gatherer.for_round self.gatherer = None self.gatherer_waiter.clear() try: self._end_gather(gatherer) except: self.logger.error(f"exception ending gatherer: {secure_format_traceback()}") self.update_status(action="aggregate", error=ReturnCode.EXECUTION_EXCEPTION) time.sleep(0.2) def _end_gather(self, gatherer: Gatherer): fl_ctx = gatherer.fl_ctx try: aggr_result = gatherer.aggregate() except: self.log_error(fl_ctx, f"exception in aggregation: {secure_format_traceback()}") self.update_status(action="aggregate", error=ReturnCode.EXECUTION_EXCEPTION) return # aggr_result could be just weight diffs, not full weights! # need to call shareable_to_learnable to get full weights. self.log_info(fl_ctx, f"aggr result: {aggr_result}") global_weights = self.shareable_generator.shareable_to_learnable(aggr_result, fl_ctx) self.record_last_result(fl_ctx, gatherer.for_round, global_weights) # are we done with training? num_rounds_done = gatherer.for_round - self.get_config_prop(Constant.START_ROUND, 0) + 1 if num_rounds_done >= self.get_config_prop(AppConstants.NUM_ROUNDS): self.log_info(fl_ctx, f"Swarm Learning Done: number of rounds completed {num_rounds_done}") # determine the best global result self._distribute_final_results(aggr_result, fl_ctx) return # continue next round next_round_data = self.shareable_generator.learnable_to_shareable(global_weights, fl_ctx) assert isinstance(next_round_data, Shareable) best_round = aggr_result.get_header(Constant.ROUND) best_metric = aggr_result.get_header(Constant.METRIC) best_client = aggr_result.get_header(Constant.CLIENT) if best_client: next_round_data.set_header(Constant.ROUND, best_round) next_round_data.set_header(Constant.CLIENT, best_client) next_round_data.set_header(Constant.METRIC, best_metric) self._scatter(next_round_data, gatherer.for_round + 1, gatherer.fl_ctx) def _ask_to_share_best_result(self, client: str, metric, fl_ctx: FLContext): # other client has best model - ask it to distribute its result self.log_info(fl_ctx, f"client {client} has the best metric {metric} - ask it to share result") resp = self.engine.send_aux_request( targets=[client], topic=self.topic_for_my_workflow(Constant.TOPIC_SHARE_RESULT), request=Shareable(), timeout=self.final_result_ack_timeout, fl_ctx=fl_ctx, secure=False, ) assert isinstance(resp, dict) reply = resp.get(client) if not reply: self.log_error(fl_ctx, f"failed to ask client {client} to share final result") return if not isinstance(reply, Shareable): self.log_error(fl_ctx, f"client {client} failed to respond to share final result request") return rc = reply.get_return_code() if rc != ReturnCode.OK: self.log_error(fl_ctx, f"client {client} failed to respond to share final result request: {rc}") def _distribute_final_results(self, aggr_result: Shareable, fl_ctx: FLContext): best_client = aggr_result.get_header(Constant.CLIENT) best_metric = aggr_result.get_header(Constant.METRIC) if best_client: if best_client == self.me: # I have the best model self.log_info(fl_ctx, f"I have global best metric {best_metric}") self.broadcast_final_result( fl_ctx, ResultType.BEST, self.best_result, self.best_metric, self.best_round ) else: try: self._ask_to_share_best_result(best_client, best_metric, fl_ctx) except: self.log_error( fl_ctx, f"error asking client {best_client} to share best result {secure_format_traceback()}" ) else: self.log_info(fl_ctx, "No global best result!") self.log_info(fl_ctx, "distributing last result") self.broadcast_final_result(fl_ctx, ResultType.LAST, self.last_result, round_num=self.last_round) def _process_learn_result(self, request: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: try: peer_ctx = fl_ctx.get_peer_context() assert isinstance(peer_ctx, FLContext) client_name = peer_ctx.get_identity_name() current_round = request.get_header(AppConstants.CURRENT_ROUND) self.log_info(fl_ctx, f"got training result from {client_name} for round {current_round}") # to be compatible with some widgets that rely on peer_ctx to get result peer_ctx.set_prop(FLContextKey.SHAREABLE, request) gatherer = self.gatherer if not gatherer: # this could be from a fast client before I even create the waiter; # or from a late client after I already finished gathering. if current_round <= self.last_aggr_round_done: # late client case - drop the result self.log_info(fl_ctx, f"dropped result from late {client_name} for round {current_round}") return make_reply(ReturnCode.OK) # case of fast client # wait until the gatherer is set up. self.log_info(fl_ctx, f"got result from {client_name} for round {current_round} before gatherer setup") self.gatherer_waiter.wait(self.learn_task_abort_timeout) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) gatherer = self.gatherer if not gatherer: self.log_error(fl_ctx, f"Still no gatherer after {self.learn_task_abort_timeout} seconds") self.log_error(fl_ctx, f"Ignored result from {client_name} for round {current_round} since no gatherer") self.update_status(action="wait_for_gatherer", error=ReturnCode.EXECUTION_EXCEPTION) return make_reply(ReturnCode.EXECUTION_EXCEPTION) assert isinstance(gatherer, Gatherer) if gatherer.for_round != current_round: self.log_warning( fl_ctx, f"Got result from {client_name} for round {current_round}, " f"but I'm waiting for round {gatherer.for_round}", ) return gatherer.gather(client_name, request, fl_ctx) except: self.log_exception(fl_ctx, f"exception processing learn result: {secure_format_traceback()}") self.update_status(action="process_learn_result", error=ReturnCode.EXECUTION_EXCEPTION) return make_reply(ReturnCode.EXECUTION_EXCEPTION) def do_learn_task(self, name: str, task_data: Shareable, fl_ctx: FLContext, abort_signal: Signal): # set status report of starting task current_round = task_data.get_header(AppConstants.CURRENT_ROUND) self.update_status(last_round=current_round, action="start_learn_task") aggr = task_data.get_header(Constant.AGGREGATOR) if not aggr: self.log_error(fl_ctx, f"missing aggregation client for round {current_round}") self.update_status(action="do_learn_task", error=ReturnCode.EXECUTION_EXCEPTION) return self.log_info(fl_ctx, f"Round {current_round} started.") # Some shareable generators assume the base model (GLOBAL_MODEL) is always available, which is true for # server-controlled fed-avg. But this is not true for swarm learning. # To make these generators happy, we create an empty global model here if not present. base_model = fl_ctx.get_prop(AppConstants.GLOBAL_MODEL) if not base_model: base_model = Learnable() fl_ctx.set_prop(AppConstants.GLOBAL_MODEL, base_model, private=True, sticky=True) global_weights = self.shareable_generator.shareable_to_learnable(task_data, fl_ctx) self.log_info(fl_ctx, f"current global model: {global_weights}") fl_ctx.set_prop(AppConstants.GLOBAL_MODEL, global_weights, private=True, sticky=True) fl_ctx.set_prop(AppConstants.CURRENT_ROUND, current_round, private=True, sticky=True) self.fire_event(AppEventType.ROUND_STARTED, fl_ctx) if self.me == aggr: # set up the aggr waiter gatherer = self.gatherer if gatherer: # already waiting for aggregation - should never happen self.log_error( fl_ctx, f"logic error: got task for round {current_round} while gathering for round {gatherer.for_round}", ) self.update_status(action="do_learn_task", error=ReturnCode.EXECUTION_EXCEPTION) return self.log_info(fl_ctx, f"setting up the gatherer for round {current_round}") self.gatherer = Gatherer( fl_ctx=fl_ctx, all_clients=self.get_config_prop(Constant.CLIENTS), metric_comparator=self.metric_comparator, trainers=self.trainers, for_round=current_round, timeout=self.learn_task_timeout, min_responses_required=self.min_responses_required, wait_time_after_min_resps_received=self.wait_time_after_min_resps_received, aggregator=self.aggregator, executor=self, task_data=task_data, ) self.gatherer_waiter.set() # execute the task if self.is_trainer: # update status result = self.execute_learn_task(task_data, fl_ctx, abort_signal) rc = result.get_return_code(ReturnCode.OK) if rc != ReturnCode.OK: self.log_error(fl_ctx, f"learn executor failed: {rc}") self.update_status(action="learner_execution", error=rc) return # send the result to the aggr self.log_info(fl_ctx, f"sending training result to aggregation client {aggr}") task = Task( name=self.report_learn_result_task_name, data=result, timeout=int(self.learn_task_ack_timeout), ) resp = self.broadcast_and_wait( task=task, targets=[aggr], min_responses=1, fl_ctx=fl_ctx, ) reply = resp.get(aggr) if not reply: self.log_error(fl_ctx, f"failed to receive reply from aggregation client: {aggr}") self.update_status(action="receive_learn_result_reply", error=ReturnCode.EXECUTION_EXCEPTION) return if not isinstance(reply, Shareable): self.log_error( fl_ctx, f"bad reply from aggregation client {aggr}: expect Shareable but got {type(reply)}" ) self.update_status(action="receive_learn_result_reply", error=ReturnCode.EXECUTION_EXCEPTION) return rc = reply.get_return_code(ReturnCode.OK) if rc != ReturnCode.OK: self.log_error(fl_ctx, f"bad return code from aggregation client {aggr}: {rc}") self.update_status(action="receive_learn_result_reply", error=ReturnCode.EXECUTION_EXCEPTION) return self.log_info(fl_ctx, f"Finished round {current_round}") # update status self.update_status(last_round=current_round, action="finished_learn_task") def _process_share_result(self, topic: str, request: Shareable, fl_ctx: FLContext) -> Shareable: peer_ctx = fl_ctx.get_peer_context() assert isinstance(peer_ctx, FLContext) client_name = peer_ctx.get_identity_name() if not self.best_result: self.log_error( fl_ctx, f"got request from {client_name} to share my best result, but I don't have best result" ) return make_reply(ReturnCode.BAD_REQUEST_DATA) self.update_status(action="start_share_result_request_process") self.broadcast_final_result( fl_ctx, ResultType.BEST, self.best_result, metric=self.best_metric, round_num=self.best_round ) return make_reply(ReturnCode.OK)
NVFlare-main
nvflare/app_common/ccwf/swarm_client_ctl.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.app_common.ccwf.common import Constant, CyclicOrder from nvflare.app_common.ccwf.server_ctl import ServerSideController from nvflare.fuel.utils.validation_utils import DefaultValuePolicy, check_str, normalize_config_arg class CyclicServerController(ServerSideController): def __init__( self, num_rounds: int, task_name_prefix=Constant.TN_PREFIX_CYCLIC, start_task_timeout=Constant.START_TASK_TIMEOUT, configure_task_timeout=Constant.CONFIG_TASK_TIMEOUT, task_check_period: float = Constant.TASK_CHECK_INTERVAL, job_status_check_interval: float = Constant.JOB_STATUS_CHECK_INTERVAL, participating_clients=None, result_clients=None, starting_client: str = "", max_status_report_interval: float = Constant.PER_CLIENT_STATUS_REPORT_TIMEOUT, progress_timeout: float = Constant.WORKFLOW_PROGRESS_TIMEOUT, cyclic_order: str = CyclicOrder.FIXED, ): result_clients = normalize_config_arg(result_clients) starting_client = normalize_config_arg(starting_client) if starting_client is None: raise ValueError("starting_client must be specified") super().__init__( num_rounds=num_rounds, task_name_prefix=task_name_prefix, start_task_timeout=start_task_timeout, configure_task_timeout=configure_task_timeout, task_check_period=task_check_period, job_status_check_interval=job_status_check_interval, participating_clients=participating_clients, result_clients=result_clients, result_clients_policy=DefaultValuePolicy.ALL, starting_client=starting_client, starting_client_policy=DefaultValuePolicy.ANY, max_status_report_interval=max_status_report_interval, progress_timeout=progress_timeout, ) check_str("cyclic_order", cyclic_order) if cyclic_order not in [CyclicOrder.FIXED, CyclicOrder.RANDOM]: raise ValueError(f"invalid rr_order {cyclic_order}: must be in {[CyclicOrder.FIXED, CyclicOrder.RANDOM]}") self.cyclic_order = cyclic_order def prepare_config(self): return {Constant.ORDER: self.cyclic_order}
NVFlare-main
nvflare/app_common/ccwf/cyclic_server_ctl.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import threading import time from abc import abstractmethod from nvflare.apis.event_type import EventType from nvflare.apis.executor import Executor from nvflare.apis.fl_constant import FLContextKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.impl.task_controller import Task, TaskController from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.learnable import Learnable from nvflare.app_common.abstract.learnable_persistor import LearnablePersistor from nvflare.app_common.abstract.shareable_generator import ShareableGenerator from nvflare.app_common.app_constant import AppConstants from nvflare.app_common.app_event_type import AppEventType from nvflare.app_common.ccwf.common import Constant, ResultType, StatusReport, make_task_name, topic_for_end_workflow from nvflare.fuel.utils.validation_utils import check_non_empty_str, check_number_range, check_positive_number from nvflare.security.logging import secure_format_traceback class _LearnTask: def __init__(self, task_name: str, task_data: Shareable, fl_ctx: FLContext): self.task_name = task_name self.task_data = task_data self.fl_ctx = fl_ctx self.abort_signal = Signal() class ClientSideController(Executor, TaskController): def __init__( self, task_name_prefix: str, learn_task_name=AppConstants.TASK_TRAIN, persistor_id=AppConstants.DEFAULT_PERSISTOR_ID, shareable_generator_id=AppConstants.DEFAULT_SHAREABLE_GENERATOR_ID, learn_task_check_interval=Constant.LEARN_TASK_CHECK_INTERVAL, learn_task_ack_timeout=Constant.LEARN_TASK_ACK_TIMEOUT, learn_task_abort_timeout=Constant.LEARN_TASK_ABORT_TIMEOUT, final_result_ack_timeout=Constant.FINAL_RESULT_ACK_TIMEOUT, allow_busy_task: bool = False, ): """ Constructor of a ClientSideController object. Args: task_name_prefix: prefix of task names. All CCWF task names are prefixed with this. learn_task_name: name for the Learning Task (LT) persistor_id: ID of the persistor component shareable_generator_id: ID of the shareable generator component learn_task_check_interval: interval for checking incoming Learning Task (LT) learn_task_ack_timeout: timeout for sending the LT to other client(s) final_result_ack_timeout: timeout for sending final result to participating clients learn_task_abort_timeout: time to wait for the LT to become stopped after aborting it allow_busy_task: whether a new learn task is allowed when working on current learn task """ check_non_empty_str("task_name_prefix", task_name_prefix) check_positive_number("learn_task_check_interval", learn_task_check_interval) check_number_range("learn_task_ack_timeout", learn_task_ack_timeout, min_value=1.0) check_positive_number("learn_task_abort_timeout", learn_task_abort_timeout) check_number_range("final_result_ack_timeout", final_result_ack_timeout, min_value=1.0) Executor.__init__(self) TaskController.__init__(self) self.task_name_prefix = task_name_prefix self.start_task_name = make_task_name(task_name_prefix, Constant.BASENAME_START) self.configure_task_name = make_task_name(task_name_prefix, Constant.BASENAME_CONFIG) self.do_learn_task_name = make_task_name(task_name_prefix, Constant.BASENAME_LEARN) self.report_final_result_task_name = make_task_name(task_name_prefix, Constant.BASENAME_REPORT_FINAL_RESULT) self.learn_task_name = learn_task_name self.learn_task_abort_timeout = learn_task_abort_timeout self.learn_task_check_interval = learn_task_check_interval self.learn_task_ack_timeout = learn_task_ack_timeout self.final_result_ack_timeout = final_result_ack_timeout self.allow_busy_task = allow_busy_task self.persistor_id = persistor_id self.shareable_generator_id = shareable_generator_id self.persistor = None self.shareable_generator = None self.current_status = StatusReport() self.last_status_report_time = time.time() # time of last status report to server self.config = None self.workflow_id = None self.finalize_lock = threading.Lock() self.learn_thread = threading.Thread(target=self._do_learn) self.learn_thread.daemon = True self.learn_task = None self.current_task = None self.learn_executor = None self.learn_task_lock = threading.Lock() self.asked_to_stop = False self.status_lock = threading.Lock() self.engine = None self.me = None self.is_starting_client = False self.last_result = None self.last_round = None self.best_result = None self.best_metric = None self.best_round = 0 self.workflow_done = False def get_config_prop(self, name: str, default=None): """ Get a specified config property. Args: name: name of the property default: default value to return if the property is not defined. Returns: """ if not self.config: return default return self.config.get(name, default) def start_run(self, fl_ctx: FLContext): self.engine = fl_ctx.get_engine() if not self.engine: self.system_panic("no engine", fl_ctx) return runner = fl_ctx.get_prop(FLContextKey.RUNNER) if not runner: self.system_panic("no client runner", fl_ctx) return self.me = fl_ctx.get_identity_name() if self.learn_task_name: self.learn_executor = runner.find_executor(self.learn_task_name) if not self.learn_executor: self.system_panic(f"no executor for task {self.learn_task_name}", fl_ctx) return self.persistor = self.engine.get_component(self.persistor_id) if not isinstance(self.persistor, LearnablePersistor): self.system_panic( f"Persistor {self.persistor_id} must be a Persistor instance, but got {type(self.persistor)}", fl_ctx, ) return if self.shareable_generator_id: self.shareable_generator = self.engine.get_component(self.shareable_generator_id) if not isinstance(self.shareable_generator, ShareableGenerator): self.system_panic( f"Shareable generator {self.shareable_generator_id} must be a Shareable Generator instance, " f"but got {type(self.shareable_generator)}", fl_ctx, ) return self.initialize(fl_ctx) if self.learn_task_name: self.log_info(fl_ctx, "Started learn thread") self.learn_thread.start() def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.START_RUN: self.start_run(fl_ctx) elif event_type == EventType.BEFORE_PULL_TASK: # add my status to fl_ctx if not self.workflow_id: return reports = fl_ctx.get_prop(Constant.STATUS_REPORTS) if reports: reports.pop(self.workflow_id, None) if self.workflow_done: return report = self._get_status_report() if not report: self.log_info(fl_ctx, "nothing to report this time") return self._add_status_report(report, fl_ctx) self.last_status_report_time = report.timestamp elif event_type in [EventType.ABORT_TASK, EventType.END_RUN]: if not self.asked_to_stop and not self.workflow_done: self.asked_to_stop = True self._abort_current_task(fl_ctx) self.finalize(fl_ctx) def _add_status_report(self, report: StatusReport, fl_ctx: FLContext): reports = fl_ctx.get_prop(Constant.STATUS_REPORTS) if not reports: reports = {} # set the prop as public, so it will be sent to the peer in peer_context fl_ctx.set_prop(Constant.STATUS_REPORTS, reports, sticky=False, private=False) reports[self.workflow_id] = report.to_dict() def initialize(self, fl_ctx: FLContext): """Called to initialize the executor. Args: fl_ctx: The FL Context Returns: None """ fl_ctx.set_prop(Constant.EXECUTOR, self, private=True, sticky=False) self.fire_event(Constant.EXECUTOR_INITIALIZED, fl_ctx) def finalize(self, fl_ctx: FLContext): """Called to finalize the executor. Args: fl_ctx: the FL Context Returns: None """ with self.finalize_lock: if self.workflow_done: return fl_ctx.set_prop(Constant.EXECUTOR, self, private=True, sticky=False) fl_ctx.set_prop(FLContextKey.WORKFLOW, self.workflow_id, private=True, sticky=False) self.fire_event(Constant.EXECUTOR_FINALIZED, fl_ctx) self.workflow_done = True def process_config(self, fl_ctx: FLContext): """This is called to allow the subclass to process config props. Returns: None """ pass def topic_for_my_workflow(self, base_topic: str): return f"{base_topic}.{self.workflow_id}" def broadcast_final_result( self, fl_ctx: FLContext, result_type: str, result: Learnable, metric=None, round_num=None ): error = None targets = self.get_config_prop(Constant.RESULT_CLIENTS) if not targets: self.log_info(fl_ctx, f"no clients configured to receive final {result_type} result") else: try: num_errors = self._try_broadcast_final_result(fl_ctx, result_type, result, metric, round_num) if num_errors > 0: error = ReturnCode.EXECUTION_EXCEPTION except: self.log_error(fl_ctx, f"exception broadcast final {result_type} result {secure_format_traceback()}") error = ReturnCode.EXECUTION_EXCEPTION if result_type == ResultType.BEST: action = "finished_broadcast_best_result" all_done = False else: action = "finished_broadcast_last_result" all_done = True self.update_status(action=action, error=error, all_done=all_done) def _try_broadcast_final_result( self, fl_ctx: FLContext, result_type: str, result: Learnable, metric=None, round_num=None ): targets = self.get_config_prop(Constant.RESULT_CLIENTS) assert isinstance(targets, list) if self.me in targets: targets.remove(self.me) if len(targets) == 0: # no targets to receive the result! self.log_info(fl_ctx, f"no targets to receive {result_type} result") return 0 shareable = Shareable() shareable.set_header(Constant.RESULT_TYPE, result_type) if metric is not None: shareable.set_header(Constant.METRIC, metric) if round_num is not None: shareable.set_header(Constant.ROUND, round_num) shareable[Constant.RESULT] = result self.log_info( fl_ctx, f"broadcasting {result_type} result with metric {metric} at round {round_num} to clients {targets}" ) self.update_status(action=f"broadcast_{result_type}_result") task = Task( name=self.report_final_result_task_name, data=shareable, timeout=int(self.final_result_ack_timeout), ) resp = self.broadcast_and_wait( task=task, targets=targets, min_responses=len(targets), fl_ctx=fl_ctx, ) assert isinstance(resp, dict) num_errors = 0 for t in targets: reply = resp.get(t) if not isinstance(reply, Shareable): self.log_error( fl_ctx, f"bad response for {result_type} result from client {t}: " f"reply must be Shareable but got {type(reply)}", ) num_errors += 1 continue rc = reply.get_return_code(ReturnCode.OK) if rc != ReturnCode.OK: self.log_error(fl_ctx, f"bad response for {result_type} result from client {t}: {rc}") num_errors += 1 if num_errors == 0: self.log_info(fl_ctx, f"successfully broadcast {result_type} result to {targets}") return num_errors def execute(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: if task_name == self.configure_task_name: self.config = shareable[Constant.CONFIG] my_wf_id = self.get_config_prop(FLContextKey.WORKFLOW) if not my_wf_id: self.log_error(fl_ctx, "missing workflow id in configuration!") return make_reply(ReturnCode.BAD_REQUEST_DATA) self.log_info(fl_ctx, f"got my workflow id {my_wf_id}") self.workflow_id = my_wf_id reply = self.process_config(fl_ctx) self.engine.register_aux_message_handler( topic=topic_for_end_workflow(my_wf_id), message_handle_func=self._process_end_workflow, ) if not reply: reply = make_reply(ReturnCode.OK) return reply elif task_name == self.start_task_name: self.is_starting_client = True learnable = self.persistor.load(fl_ctx) fl_ctx.set_prop(AppConstants.GLOBAL_MODEL, learnable, private=True, sticky=True) initial_model = self.shareable_generator.learnable_to_shareable(learnable, fl_ctx) return self.start_workflow(initial_model, fl_ctx, abort_signal) elif task_name == self.do_learn_task_name: return self._process_learn_request(shareable, fl_ctx) elif task_name == self.report_final_result_task_name: return self._process_final_result(shareable, fl_ctx) else: self.log_error(fl_ctx, f"Could not handle task: {task_name}") return make_reply(ReturnCode.TASK_UNKNOWN) @abstractmethod def start_workflow(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: """ This is called for the subclass to start the workflow. This only happens on the starting_client. Args: shareable: the initial task data (e.g. initial model weights) fl_ctx: FL context abort_signal: abort signal for task execution Returns: """ pass def _get_status_report(self): with self.status_lock: status = self.current_status must_report = False if status.error: must_report = True elif status.timestamp: must_report = True if not must_report: return None # do status report report = copy.copy(status) return report def _abort_current_task(self, fl_ctx: FLContext): current_task = self.learn_task if not current_task: return current_task.abort_signal.trigger(True) fl_ctx.set_prop(FLContextKey.TASK_NAME, current_task.task_name) self.fire_event(EventType.ABORT_TASK, fl_ctx) def set_learn_task(self, task_data: Shareable, fl_ctx: FLContext) -> bool: with self.learn_task_lock: task_data.set_header(AppConstants.NUM_ROUNDS, self.get_config_prop(AppConstants.NUM_ROUNDS)) task = _LearnTask(self.learn_task_name, task_data, fl_ctx) current_task = self.learn_task if not current_task: self.learn_task = task return True if not self.allow_busy_task: return False # already has a task! self.log_warning(fl_ctx, "already running a task: aborting it") self._abort_current_task(fl_ctx) # monitor until the task is done start = time.time() while self.learn_task: if time.time() - start > self.learn_task_abort_timeout: self.log_error( fl_ctx, f"failed to stop the running task after {self.learn_task_abort_timeout} seconds" ) return False time.sleep(0.1) self.learn_task = task return True def _do_learn(self): while not self.asked_to_stop: if self.learn_task: t = self.learn_task assert isinstance(t, _LearnTask) self.logger.info(f"Got a Learn task {t.task_name}") try: self.do_learn_task(t.task_name, t.task_data, t.fl_ctx, t.abort_signal) except: self.logger.log(f"exception from do_learn_task: {secure_format_traceback()}") self.learn_task = None time.sleep(self.learn_task_check_interval) def update_status(self, last_round=None, action=None, error=None, all_done=False): with self.status_lock: status = self.current_status status.timestamp = time.time() if all_done: # once marked all_done, always all_done! status.all_done = True if error: status.error = error if action: status.action = action if status.last_round is None: status.last_round = last_round elif last_round is not None and last_round > status.last_round: status.last_round = last_round status_dict = status.to_dict() self.logger.info(f"updated my last status: {status_dict}") @abstractmethod def do_learn_task(self, name: str, data: Shareable, fl_ctx: FLContext, abort_signal: Signal): """This is called to do a Learn Task. Subclass must implement this method. Args: name: task name data: task data fl_ctx: FL context of the task abort_signal: abort signal for the task execution Returns: """ pass def _process_final_result(self, request: Shareable, fl_ctx: FLContext) -> Shareable: peer_ctx = fl_ctx.get_peer_context() assert isinstance(peer_ctx, FLContext) client_name = peer_ctx.get_identity_name() result = request.get(Constant.RESULT) metric = request.get_header(Constant.METRIC) round_num = request.get_header(Constant.ROUND) result_type = request.get_header(Constant.RESULT_TYPE) if result_type not in [ResultType.BEST, ResultType.LAST]: self.log_error(fl_ctx, f"Bad request from client {client_name}: invalid result type {result_type}") return make_reply(ReturnCode.BAD_REQUEST_DATA) if not result: self.log_error(fl_ctx, f"Bad request from client {client_name}: no result") return make_reply(ReturnCode.BAD_REQUEST_DATA) if not isinstance(result, Learnable): self.log_error(fl_ctx, f"Bad result from client {client_name}: expect Learnable but got {type(result)}") return make_reply(ReturnCode.BAD_REQUEST_DATA) self.log_info(fl_ctx, f"Got {result_type} from client {client_name} with metric {metric} at round {round_num}") fl_ctx.set_prop(AppConstants.GLOBAL_MODEL, result, private=True, sticky=True) if result_type == ResultType.BEST: fl_ctx.set_prop(Constant.ROUND, round_num, private=True, sticky=False) fl_ctx.set_prop(Constant.CLIENT, client_name, private=True, sticky=False) fl_ctx.set_prop(AppConstants.VALIDATION_RESULT, metric, private=True, sticky=False) self.fire_event(AppEventType.GLOBAL_BEST_MODEL_AVAILABLE, fl_ctx) else: # last model assert isinstance(self.persistor, LearnablePersistor) self.persistor.save(result, fl_ctx) return make_reply(ReturnCode.OK) def _process_end_workflow(self, topic: str, request: Shareable, fl_ctx: FLContext) -> Shareable: self.log_info(fl_ctx, f"ending workflow {self.get_config_prop(FLContextKey.WORKFLOW)}") self.asked_to_stop = True self._abort_current_task(fl_ctx) self.finalize(fl_ctx) return make_reply(ReturnCode.OK) def _process_learn_request(self, request: Shareable, fl_ctx: FLContext) -> Shareable: try: return self._try_process_learn_request(request, fl_ctx) except Exception as ex: self.log_exception(fl_ctx, f"exception: {ex}") self.update_status(action="process_learn_request", error=ReturnCode.EXECUTION_EXCEPTION) return make_reply(ReturnCode.EXECUTION_EXCEPTION) def _try_process_learn_request(self, request: Shareable, fl_ctx: FLContext) -> Shareable: peer_ctx = fl_ctx.get_peer_context() assert isinstance(peer_ctx, FLContext) sender = peer_ctx.get_identity_name() # process request from prev client self.log_info(fl_ctx, f"Got Learn request from {sender}") if self.learn_task and not self.allow_busy_task: # should never happen! self.log_error(fl_ctx, f"got Learn request from {sender} while I'm still busy!") self.update_status(action="process_learn_request", error=ReturnCode.EXECUTION_EXCEPTION) return make_reply(ReturnCode.EXECUTION_EXCEPTION) self.log_info(fl_ctx, f"accepted learn request from {sender}") self.set_learn_task(task_data=request, fl_ctx=fl_ctx) return make_reply(ReturnCode.OK) def send_learn_task(self, targets: list, request: Shareable, fl_ctx: FLContext) -> bool: self.log_info(fl_ctx, f"sending learn task to clients {targets}") request.set_header(AppConstants.NUM_ROUNDS, self.get_config_prop(AppConstants.NUM_ROUNDS)) task = Task( name=self.do_learn_task_name, data=request, timeout=int(self.learn_task_ack_timeout), ) resp = self.broadcast_and_wait( task=task, targets=targets, min_responses=len(targets), fl_ctx=fl_ctx, ) assert isinstance(resp, dict) for t in targets: reply = resp.get(t) if not isinstance(reply, Shareable): self.log_error(fl_ctx, f"failed to send learn request to client {t}") self.log_error(fl_ctx, f"reply must be Shareable but got {type(reply)}") self.update_status(action="send_learn_task", error=ReturnCode.EXECUTION_EXCEPTION) return False rc = reply.get_return_code(ReturnCode.OK) if rc != ReturnCode.OK: self.log_error(fl_ctx, f"bad response for learn request from client {t}: {rc}") self.update_status(action="send_learn_task", error=rc) return False return True def execute_learn_task(self, data: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: current_round = data.get_header(AppConstants.CURRENT_ROUND) self.log_info(fl_ctx, f"started training round {current_round}") try: result = self.learn_executor.execute(self.learn_task_name, data, fl_ctx, abort_signal) except: self.log_exception(fl_ctx, f"trainer exception: {secure_format_traceback()}") result = make_reply(ReturnCode.EXECUTION_EXCEPTION) self.log_info(fl_ctx, f"finished training round {current_round}") # make sure to include cookies in result cookie_jar = data.get_cookie_jar() result.set_cookie_jar(cookie_jar) result.set_header(AppConstants.CURRENT_ROUND, current_round) result.add_cookie(AppConstants.CONTRIBUTION_ROUND, current_round) # to make model selector happy return result def record_last_result( self, fl_ctx: FLContext, round_num: int, result: Learnable, ): if not isinstance(result, Learnable): self.log_error(fl_ctx, f"result must be Learnable but got {type(result)}") return self.last_result = result self.last_round = round_num fl_ctx.set_prop(AppConstants.GLOBAL_MODEL, result, private=True, sticky=True) if self.persistor: self.log_info(fl_ctx, f"Saving result of round {round_num}") self.persistor.save(result, fl_ctx)
NVFlare-main
nvflare/app_common/ccwf/client_ctl.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import threading from nvflare.apis.controller_spec import Task from nvflare.apis.fl_constant import FLContextKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.model import model_learnable_to_dxo from nvflare.app_common.abstract.model_persistor import ModelPersistor from nvflare.app_common.app_constant import AppConstants, ValidateType from nvflare.app_common.ccwf.client_ctl import ClientSideController from nvflare.app_common.ccwf.common import Constant, ModelType, make_task_name from nvflare.fuel.utils.validation_utils import check_non_empty_str, check_positive_number from nvflare.security.logging import secure_format_traceback class CrossSiteEvalClientController(ClientSideController): def __init__( self, task_name_prefix=Constant.TN_PREFIX_CROSS_SITE_EVAL, submit_model_task_name=AppConstants.TASK_SUBMIT_MODEL, validation_task_name=AppConstants.TASK_VALIDATION, persistor_id=AppConstants.DEFAULT_PERSISTOR_ID, get_model_timeout=Constant.GET_MODEL_TIMEOUT, ): check_positive_number("get_model_timeout", get_model_timeout) check_non_empty_str("submit_model_task_name", submit_model_task_name) check_non_empty_str("validation_task_name", validation_task_name) check_non_empty_str("persistor_id", persistor_id) super().__init__( task_name_prefix=task_name_prefix, learn_task_name="", shareable_generator_id="", persistor_id=persistor_id, ) self.eval_task_name = make_task_name(task_name_prefix, Constant.BASENAME_EVAL) self.ask_for_model_task_name = make_task_name(task_name_prefix, Constant.BASENAME_ASK_FOR_MODEL) self.submit_model_task_name = submit_model_task_name # this is for the learner executor self.validation_task_name = validation_task_name self.my_local_model = None self.global_model_inventory = None self.submit_model_executor = None self.validate_executor = None self.inventory = None self.get_model_timeout = get_model_timeout self.local_model = None self.model_lock = threading.Lock() def start_run(self, fl_ctx: FLContext): super().start_run(fl_ctx) runner = fl_ctx.get_prop(FLContextKey.RUNNER) if self.submit_model_task_name: self.submit_model_executor = runner.find_executor(self.submit_model_task_name) if not self.submit_model_executor: self.system_panic(f"no executor for task {self.submit_model_task_name}", fl_ctx) return if self.validation_task_name: self.validate_executor = runner.find_executor(self.validation_task_name) if not self.validate_executor: self.system_panic(f"no executor for task {self.validation_task_name}", fl_ctx) return def execute(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: if task_name == self.eval_task_name: # server assigned task return self.do_eval(shareable, fl_ctx, abort_signal) elif task_name == self.ask_for_model_task_name: # client-assigned task return self._process_get_model_request(shareable, fl_ctx) return super().execute(task_name, shareable, fl_ctx, abort_signal) def process_config(self, fl_ctx: FLContext): eval_local = self.get_config_prop(Constant.EVAL_LOCAL) eval_global = self.get_config_prop(Constant.EVAL_GLOBAL) evaluators = self.get_config_prop(Constant.EVALUATORS) evaluatees = self.get_config_prop(Constant.EVALUATEES) global_client = self.get_config_prop(Constant.GLOBAL_CLIENT) if eval_local and self.me in evaluatees: # do I have any local model? if not self.submit_model_executor: return make_reply(Constant.RC_NO_LOCAL_MODEL) if self.me in evaluators: # I am required to evaluate others if not self.validate_executor: return make_reply(Constant.RC_UNABLE_TO_EVAL) reply = make_reply(ReturnCode.OK) if eval_global and self.me == global_client: # do I have global models? assert isinstance(self.persistor, ModelPersistor) self.inventory = self.persistor.get_model_inventory(fl_ctx) if self.inventory: assert isinstance(self.inventory, dict) reply[Constant.GLOBAL_NAMES] = list(self.inventory.keys()) return reply def start_workflow(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: pass def do_eval(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: model_type = shareable.get(Constant.MODEL_TYPE) model_owner = shareable.get(Constant.MODEL_OWNER) model_name = shareable.get(Constant.MODEL_NAME) current_round = shareable.get(AppConstants.CURRENT_ROUND) # ask the model owner for model req = Shareable() req[Constant.MODEL_NAME] = model_name req[Constant.MODEL_TYPE] = model_type if not self.validate_executor: self.log_error(fl_ctx, "got eval request but I don't have a validator") return make_reply(Constant.RC_UNABLE_TO_EVAL) self.update_status(action="eval:get_model", last_round=current_round) self.log_info(fl_ctx, f"asking client {model_owner} for model {model_type} {model_name}") task = Task( name=self.ask_for_model_task_name, data=req, timeout=int(self.get_model_timeout), ) resp = self.broadcast_and_wait( task=task, targets=[model_owner], min_responses=1, fl_ctx=fl_ctx, ) assert isinstance(resp, dict) reply = resp.get(model_owner) if not reply: self.log_error(fl_ctx, f"failed to ask client {model_owner} for model") return make_reply(ReturnCode.EXECUTION_EXCEPTION) if not isinstance(reply, Shareable): self.log_error(fl_ctx, f"client {model_owner} failed to respond to get-model request") return make_reply(ReturnCode.EXECUTION_EXCEPTION) rc = reply.get_return_code() if rc != ReturnCode.OK: self.log_error(fl_ctx, f"client {model_owner} failed to respond to share final result request: {rc}") return make_reply(rc) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) model_to_validate = reply model_to_validate.set_header(AppConstants.VALIDATE_TYPE, ValidateType.MODEL_VALIDATE) if model_type == ModelType.LOCAL: model_to_validate.set_header(AppConstants.MODEL_OWNER, model_owner) self.update_status(action="eval:validate", last_round=current_round) result = self.validate_executor.execute( task_name=self.validation_task_name, shareable=model_to_validate, abort_signal=abort_signal, fl_ctx=fl_ctx ) self.update_status(action="eval:finished", last_round=current_round) assert isinstance(result, Shareable) result.set_header(Constant.MODEL_TYPE, model_type) result.set_header(Constant.MODEL_NAME, model_name) result.set_header(Constant.MODEL_OWNER, model_owner) result.set_header(AppConstants.CURRENT_ROUND, current_round) return result def _process_get_model_request(self, request: Shareable, fl_ctx: FLContext) -> Shareable: with self.model_lock: return self._do_process_get_model_request(request, fl_ctx) def _do_process_get_model_request(self, request: Shareable, fl_ctx: FLContext) -> Shareable: peer_ctx = fl_ctx.get_peer_context() assert isinstance(peer_ctx, FLContext) client_name = peer_ctx.get_identity_name() model_type = request.get(Constant.MODEL_TYPE) model_name = request.get(Constant.MODEL_NAME) if model_type == ModelType.GLOBAL: # get it from model inventory if not self.inventory: self.log_error( fl_ctx, f"got request for global model from client {client_name} but I don't have global models" ) return make_reply(ReturnCode.BAD_REQUEST_DATA) assert isinstance(self.persistor, ModelPersistor) model_learnable = self.persistor.get(model_name, fl_ctx) dxo = model_learnable_to_dxo(model_learnable) self.log_info(fl_ctx, f"sent global model {model_name} to client {client_name}") return dxo.to_shareable() # local model if not self.submit_model_executor: self.log_error( fl_ctx, f"got request for local model from client {client_name} but I don't have local models" ) return make_reply(ReturnCode.BAD_REQUEST_DATA) if not self.local_model: task_data = Shareable() task_data.set_header(AppConstants.SUBMIT_MODEL_NAME, model_name) abort_signal = Signal() try: result = self.submit_model_executor.execute( task_name=self.submit_model_task_name, shareable=task_data, fl_ctx=fl_ctx, abort_signal=abort_signal ) except: self.log_error( fl_ctx, f"failed to get local model from submit_model_executor: {secure_format_traceback()}" ) return make_reply(ReturnCode.EXECUTION_EXCEPTION) assert isinstance(result, Shareable) rc = result.get_return_code(ReturnCode.OK) if rc != ReturnCode.OK: self.log_error(fl_ctx, f"failed to get local model from submit_model_executor: {rc}") return make_reply(ReturnCode.EXECUTION_EXCEPTION) self.local_model = result self.log_info(fl_ctx, f"sent local model {model_name} to client {client_name}") return self.local_model def do_learn_task(self, name: str, task_data: Shareable, fl_ctx: FLContext, abort_signal: Signal): pass
NVFlare-main
nvflare/app_common/ccwf/cse_client_ctl.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.app_constant import AppConstants from nvflare.app_common.ccwf.client_ctl import ClientSideController from nvflare.app_common.ccwf.common import Constant, CyclicOrder, ResultType, rotate_to_front from nvflare.fuel.utils.validation_utils import check_non_empty_str class CyclicClientController(ClientSideController): def __init__( self, task_name_prefix=Constant.TN_PREFIX_CYCLIC, learn_task_name=AppConstants.TASK_TRAIN, persistor_id=AppConstants.DEFAULT_PERSISTOR_ID, shareable_generator_id=AppConstants.DEFAULT_SHAREABLE_GENERATOR_ID, learn_task_check_interval=Constant.LEARN_TASK_CHECK_INTERVAL, learn_task_abort_timeout=Constant.LEARN_TASK_ABORT_TIMEOUT, learn_task_ack_timeout=Constant.LEARN_TASK_ACK_TIMEOUT, final_result_ack_timeout=Constant.FINAL_RESULT_ACK_TIMEOUT, ): check_non_empty_str("learn_task_name", learn_task_name) check_non_empty_str("persistor_id", persistor_id) check_non_empty_str("shareable_generator_id", shareable_generator_id) super().__init__( task_name_prefix=task_name_prefix, learn_task_name=learn_task_name, persistor_id=persistor_id, shareable_generator_id=shareable_generator_id, learn_task_check_interval=learn_task_check_interval, learn_task_abort_timeout=learn_task_abort_timeout, learn_task_ack_timeout=learn_task_ack_timeout, final_result_ack_timeout=final_result_ack_timeout, allow_busy_task=False, ) @staticmethod def _set_task_headers(task_data: Shareable, num_rounds, current_round, client_order): task_data.set_header(AppConstants.NUM_ROUNDS, num_rounds) task_data.set_header(AppConstants.CURRENT_ROUND, current_round) task_data.set_header(Constant.CLIENT_ORDER, client_order) def start_workflow(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: clients = self.get_config_prop(Constant.CLIENTS) # make sure the starting client is the 1st rotate_to_front(self.me, clients) rr_order = self.get_config_prop(Constant.ORDER) self.log_info(fl_ctx, f"Starting cyclic workflow on clients {clients} with order {rr_order} ") self._set_task_headers( task_data=shareable, num_rounds=self.get_config_prop(AppConstants.NUM_ROUNDS), current_round=self.get_config_prop(Constant.START_ROUND, 0), client_order=clients, ) self.set_learn_task(task_data=shareable, fl_ctx=fl_ctx) return make_reply(ReturnCode.OK) def do_learn_task(self, name: str, data: Shareable, fl_ctx: FLContext, abort_signal: Signal): # set status report of starting task current_round = data.get_header(AppConstants.CURRENT_ROUND) self.update_status( last_round=current_round, action="start_learn_task", ) # need to prepare the GLOBAL_MODEL prop in case the shareable generator needs it # for shareable_to_learnable after training. # Note: the "data" shareable contains full weight before training. # However, the training process may only return weight diffs. To convert to full weights again, # the original weights (GLOBAL_MODEL prop) are needed. global_weights = self.shareable_generator.shareable_to_learnable(data, fl_ctx) fl_ctx.set_prop(AppConstants.GLOBAL_MODEL, global_weights, private=True, sticky=True) # execute the task result = self.execute_learn_task(data, fl_ctx, abort_signal) rc = result.get_return_code(ReturnCode.OK) if rc != ReturnCode.OK: self.log_error(fl_ctx, f"learn executor failed: {rc}") self.update_status(action="do_learn_task", error=rc) return self.last_result = result self.last_round = current_round # see whether we need to send to next leg num_rounds = data.get_header(AppConstants.NUM_ROUNDS) current_round = data.get_header(AppConstants.CURRENT_ROUND) client_order = data.get_header(Constant.CLIENT_ORDER) all_done = False assert isinstance(client_order, list) my_idx = client_order.index(self.me) if my_idx == len(client_order) - 1: # I'm the last leg num_rounds_done = current_round - self.get_config_prop(Constant.START_ROUND, 0) + 1 if num_rounds_done >= num_rounds: # The RR is done! self.log_info(fl_ctx, f"Cyclic Done: number of rounds completed {num_rounds_done}") all_done = True else: # decide the next round order cyclic_order = self.get_config_prop(Constant.ORDER) if cyclic_order == CyclicOrder.RANDOM: random.shuffle(client_order) # make sure I'm not the first in the new order if client_order[0] == self.me: # put me at the end client_order.pop(0) client_order.append(self.me) result.set_header(Constant.CLIENT_ORDER, client_order) current_round += 1 self.log_info(fl_ctx, f"Starting new round {current_round} on clients: {client_order}") last_learnable = self.shareable_generator.shareable_to_learnable(result, fl_ctx) if all_done: self.record_last_result(fl_ctx, self.last_round, last_learnable) self.broadcast_final_result(fl_ctx, ResultType.LAST, last_learnable, round_num=self.last_round) return # send to next leg if my_idx < len(client_order) - 1: next_client = client_order[my_idx + 1] else: next_client = client_order[0] next_task_data = self.shareable_generator.learnable_to_shareable(last_learnable, fl_ctx) self._set_task_headers(next_task_data, num_rounds, current_round, client_order) sent = self.send_learn_task( targets=[next_client], request=next_task_data, fl_ctx=fl_ctx, ) if sent: self.log_info(fl_ctx, f"sent learn request to next client {next_client}")
NVFlare-main
nvflare/app_common/ccwf/cyclic_client_ctl.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.apis.fl_context import FLContext from nvflare.app_common.ccwf.common import Constant from nvflare.app_common.ccwf.server_ctl import ServerSideController from nvflare.fuel.utils.validation_utils import DefaultValuePolicy, normalize_config_arg, validate_candidates class SwarmServerController(ServerSideController): def __init__( self, num_rounds: int, start_round: int = 0, task_name_prefix=Constant.TN_PREFIX_SWARM, start_task_timeout=Constant.START_TASK_TIMEOUT, configure_task_timeout=Constant.CONFIG_TASK_TIMEOUT, task_check_period: float = Constant.TASK_CHECK_INTERVAL, job_status_check_interval: float = Constant.JOB_STATUS_CHECK_INTERVAL, participating_clients=None, result_clients=None, starting_client: str = "", max_status_report_interval: float = Constant.PER_CLIENT_STATUS_REPORT_TIMEOUT, progress_timeout: float = Constant.WORKFLOW_PROGRESS_TIMEOUT, aggr_clients=None, train_clients=None, ): result_clients = normalize_config_arg(result_clients) starting_client = normalize_config_arg(starting_client) if starting_client is None: raise ValueError("starting_client must be specified") super().__init__( num_rounds=num_rounds, start_round=start_round, task_name_prefix=task_name_prefix, start_task_timeout=start_task_timeout, configure_task_timeout=configure_task_timeout, task_check_period=task_check_period, job_status_check_interval=job_status_check_interval, participating_clients=participating_clients, result_clients=result_clients, result_clients_policy=DefaultValuePolicy.ALL, starting_client=starting_client, starting_client_policy=DefaultValuePolicy.ANY, max_status_report_interval=max_status_report_interval, progress_timeout=progress_timeout, ) if not train_clients: train_clients = [] if not aggr_clients: aggr_clients = [] self.aggr_clients = aggr_clients self.train_clients = train_clients def start_controller(self, fl_ctx: FLContext): super().start_controller(fl_ctx) self.train_clients = validate_candidates( var_name="train_clients", candidates=self.train_clients, base=self.participating_clients, default_policy=DefaultValuePolicy.ALL, allow_none=False, ) self.aggr_clients = validate_candidates( var_name="aggr_clients", candidates=self.aggr_clients, base=self.participating_clients, default_policy=DefaultValuePolicy.ALL, allow_none=False, ) # make sure every participating client is either training or aggr client for c in self.participating_clients: if c not in self.train_clients and c not in self.aggr_clients: raise RuntimeError(f"Config Error: client {c} is neither train client nor aggr client") def prepare_config(self): return {Constant.AGGR_CLIENTS: self.aggr_clients, Constant.TRAIN_CLIENTS: self.train_clients}
NVFlare-main
nvflare/app_common/ccwf/swarm_server_ctl.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from datetime import datetime from nvflare.apis.client import Client from nvflare.apis.fl_constant import FLContextKey from nvflare.apis.fl_context import FLContext from nvflare.apis.impl.controller import ClientTask, Controller, Task from nvflare.apis.shareable import ReturnCode, Shareable from nvflare.apis.signal import Signal from nvflare.app_common.app_constant import AppConstants from nvflare.app_common.ccwf.common import ( Constant, StatusReport, make_task_name, status_report_from_dict, topic_for_end_workflow, ) from nvflare.fuel.utils.validation_utils import ( DefaultValuePolicy, check_number_range, check_positive_int, check_positive_number, check_str, normalize_config_arg, validate_candidate, validate_candidates, ) from nvflare.security.logging import secure_format_traceback class ClientStatus: def __init__(self): self.ready_time = None self.last_report_time = time.time() self.last_progress_time = time.time() self.num_reports = 0 self.status = StatusReport() class ServerSideController(Controller): def __init__( self, num_rounds: int, start_round: int = 0, task_name_prefix: str = "wf", configure_task_timeout=Constant.CONFIG_TASK_TIMEOUT, end_workflow_timeout=Constant.END_WORKFLOW_TIMEOUT, start_task_timeout=Constant.START_TASK_TIMEOUT, task_check_period: float = Constant.TASK_CHECK_INTERVAL, job_status_check_interval: float = Constant.JOB_STATUS_CHECK_INTERVAL, starting_client=None, starting_client_policy: str = DefaultValuePolicy.ANY, participating_clients=None, result_clients=None, result_clients_policy: str = DefaultValuePolicy.ALL, max_status_report_interval: float = Constant.PER_CLIENT_STATUS_REPORT_TIMEOUT, progress_timeout: float = Constant.WORKFLOW_PROGRESS_TIMEOUT, ): """ Constructor Args: num_rounds: start_round: task_name_prefix: configure_task_timeout: end_workflow_timeout: start_task_timeout: task_check_period: job_status_check_interval: starting_client: participating_clients: result_clients: clients to receive final results max_status_report_interval: progress_timeout: """ Controller.__init__(self, task_check_period) participating_clients = normalize_config_arg(participating_clients) if participating_clients is None: raise ValueError("participating_clients must not be empty") self.task_name_prefix = task_name_prefix self.configure_task_name = make_task_name(task_name_prefix, Constant.BASENAME_CONFIG) self.configure_task_timeout = configure_task_timeout self.start_task_name = make_task_name(task_name_prefix, Constant.BASENAME_START) self.start_task_timeout = start_task_timeout self.end_workflow_timeout = end_workflow_timeout self.num_rounds = num_rounds self.start_round = start_round self.max_status_report_interval = max_status_report_interval self.progress_timeout = progress_timeout self.job_status_check_interval = job_status_check_interval self.starting_client = starting_client self.starting_client_policy = starting_client_policy self.participating_clients = participating_clients self.result_clients = result_clients self.result_clients_policy = result_clients_policy self.client_statuses = {} # client name => ClientStatus self.cw_started = False self.asked_to_stop = False self.workflow_id = None check_positive_int("num_rounds", num_rounds) check_number_range("configure_task_timeout", configure_task_timeout, min_value=1) check_number_range("end_workflow_timeout", end_workflow_timeout, min_value=1) check_positive_number("job_status_check_interval", job_status_check_interval) check_number_range("max_status_report_interval", max_status_report_interval, min_value=10.0) check_number_range("progress_timeout", progress_timeout, min_value=5.0) check_str("starting_client_policy", starting_client_policy) if participating_clients and len(participating_clients) < 2: raise ValueError(f"Not enough participating_clients: must > 1, but got {participating_clients}") def start_controller(self, fl_ctx: FLContext): wf_id = fl_ctx.get_prop(FLContextKey.WORKFLOW) self.log_debug(fl_ctx, f"starting controller for workflow {wf_id}") if not wf_id: raise RuntimeError("workflow ID is missing from FL context") self.workflow_id = wf_id all_clients = self._engine.get_clients() if len(all_clients) < 2: raise RuntimeError(f"this workflow requires at least 2 clients, but only got {all_clients}") all_client_names = [t.name for t in all_clients] self.participating_clients = validate_candidates( var_name="participating_clients", candidates=self.participating_clients, base=all_client_names, default_policy=DefaultValuePolicy.ALL, allow_none=False, ) self.starting_client = validate_candidate( var_name="starting_client", candidate=self.starting_client, base=self.participating_clients, default_policy=self.starting_client_policy, allow_none=True, ) self.result_clients = validate_candidates( var_name="result_clients", candidates=self.result_clients, base=self.participating_clients, default_policy=self.result_clients_policy, allow_none=True, ) for c in self.participating_clients: self.client_statuses[c] = ClientStatus() def prepare_config(self) -> dict: return {} def sub_flow(self, abort_signal: Signal, fl_ctx: FLContext): pass def control_flow(self, abort_signal: Signal, fl_ctx: FLContext): # wait for every client to become ready self.log_info(fl_ctx, f"Waiting for clients to be ready: {self.participating_clients}") # GET STARTED self.log_info(fl_ctx, f"Configuring clients {self.participating_clients} for workflow {self.workflow_id}") learn_config = { Constant.TASK_NAME_PREFIX: self.task_name_prefix, Constant.CLIENTS: self.participating_clients, Constant.START_CLIENT: self.starting_client, Constant.RESULT_CLIENTS: self.result_clients, AppConstants.NUM_ROUNDS: self.num_rounds, Constant.START_ROUND: self.start_round, FLContextKey.WORKFLOW: self.workflow_id, } extra_config = self.prepare_config() if extra_config: learn_config.update(extra_config) self.log_info(fl_ctx, f"Workflow Config: {learn_config}") # configure all clients shareable = Shareable() shareable[Constant.CONFIG] = learn_config task = Task( name=self.configure_task_name, data=shareable, timeout=self.configure_task_timeout, result_received_cb=self._process_configure_reply, ) self.log_info(fl_ctx, f"sending task {self.configure_task_name} to clients {self.participating_clients}") start_time = time.time() self.broadcast_and_wait( task=task, targets=self.participating_clients, min_responses=len(self.participating_clients), fl_ctx=fl_ctx, abort_signal=abort_signal, ) time_taken = time.time() - start_time self.log_info(fl_ctx, f"client configuration took {time_taken} seconds") failed_clients = [] for c, cs in self.client_statuses.items(): assert isinstance(cs, ClientStatus) if not cs.ready_time: failed_clients.append(c) if failed_clients: self.system_panic( f"failed to configure clients {failed_clients}", fl_ctx, ) return self.log_info(fl_ctx, f"successfully configured clients {self.participating_clients}") # starting the starting_client if self.starting_client: shareable = Shareable() task = Task( name=self.start_task_name, data=shareable, timeout=self.start_task_timeout, result_received_cb=self._process_start_reply, ) self.log_info(fl_ctx, f"sending task {self.start_task_name} to client {self.starting_client}") self.send_and_wait( task=task, targets=[self.starting_client], fl_ctx=fl_ctx, abort_signal=abort_signal, ) if not self.cw_started: self.system_panic( f"failed to start workflow {self.workflow_id} on client {self.starting_client}", fl_ctx, ) return self.log_info(fl_ctx, f"started workflow {self.workflow_id} on client {self.starting_client}") # a subclass could provide additional control flow self.sub_flow(abort_signal, fl_ctx) self.log_info(fl_ctx, f"Waiting for clients to finish workflow {self.workflow_id} ...") while not abort_signal.triggered and not self.asked_to_stop: time.sleep(self.job_status_check_interval) done = self._check_job_status(fl_ctx) if done: break self.log_info(fl_ctx, f"Workflow {self.workflow_id} finished on all clients") # ask all clients to end the workflow self.log_info(fl_ctx, f"asking all clients to end workflow {self.workflow_id}") engine = fl_ctx.get_engine() end_wf_request = Shareable() resp = engine.send_aux_request( targets=self.participating_clients, topic=topic_for_end_workflow(self.workflow_id), request=end_wf_request, timeout=self.end_workflow_timeout, fl_ctx=fl_ctx, secure=False, ) assert isinstance(resp, dict) num_errors = 0 for c in self.participating_clients: reply = resp.get(c) if not reply: self.log_error(fl_ctx, f"not reply from client {c} for ending workflow {self.workflow_id}") num_errors += 1 continue assert isinstance(reply, Shareable) rc = reply.get_return_code(ReturnCode.OK) if rc != ReturnCode.OK: self.log_error(fl_ctx, f"client {c} failed to end workflow {self.workflow_id}: {rc}") num_errors += 1 if num_errors > 0: self.system_panic(f"failed to end workflow {self.workflow_id} on all clients", fl_ctx) self.log_info(fl_ctx, f"Workflow {self.workflow_id} done!") def process_task_request(self, client: Client, fl_ctx: FLContext): self._update_client_status(fl_ctx) return super().process_task_request(client, fl_ctx) def process_config_reply(self, client_name: str, reply: Shareable, fl_ctx: FLContext) -> bool: return True def _process_configure_reply(self, client_task: ClientTask, fl_ctx: FLContext): result = client_task.result client_name = client_task.client.name rc = result.get_return_code() if rc == ReturnCode.OK: self.log_info(fl_ctx, f"successfully configured client {client_name}") try: ok = self.process_config_reply(client_name, result, fl_ctx) if not ok: return except: self.log_error( fl_ctx, f"exception processing config reply from client {client_name}: {secure_format_traceback()}" ) return cs = self.client_statuses.get(client_name) if cs: assert isinstance(cs, ClientStatus) cs.ready_time = time.time() else: error = result.get(Constant.ERROR, "?") self.log_error(fl_ctx, f"client {client_task.client.name} failed to configure: {rc}: {error}") def client_started(self, client_task: ClientTask, fl_ctx: FLContext): return True def _process_start_reply(self, client_task: ClientTask, fl_ctx: FLContext): result = client_task.result client_name = client_task.client.name rc = result.get_return_code() if rc == ReturnCode.OK: try: ok = self.client_started(client_task, fl_ctx) if not ok: return except: self.log_info(fl_ctx, f"exception in client_started: {secure_format_traceback()}") return self.cw_started = True else: error = result.get(Constant.ERROR, "?") self.log_error( fl_ctx, f"client {client_task.client.name} couldn't start workflow {self.workflow_id}: {rc}: {error}" ) def is_sub_flow_done(self, fl_ctx: FLContext) -> bool: return False def _check_job_status(self, fl_ctx: FLContext): # see whether the server side thinks it's done if self.is_sub_flow_done(fl_ctx): return True now = time.time() overall_last_progress_time = 0.0 for client_name, cs in self.client_statuses.items(): assert isinstance(cs, ClientStatus) assert isinstance(cs.status, StatusReport) if cs.status.all_done: self.log_info(fl_ctx, f"Got ALL_DONE from client {client_name}") return True if now - cs.last_report_time > self.max_status_report_interval: self.system_panic( f"client {client_name} didn't report status for {self.max_status_report_interval} seconds", fl_ctx, ) return True if overall_last_progress_time < cs.last_progress_time: overall_last_progress_time = cs.last_progress_time if time.time() - overall_last_progress_time > self.progress_timeout: self.system_panic( f"the workflow {self.workflow_id} has no progress for {self.progress_timeout} seconds", fl_ctx, ) return True return False def _update_client_status(self, fl_ctx: FLContext): peer_ctx = fl_ctx.get_peer_context() assert isinstance(peer_ctx, FLContext) client_name = peer_ctx.get_identity_name() if client_name not in self.client_statuses: self.log_error(fl_ctx, f"received result from unknown client {client_name}!") return # see whether status is available reports = peer_ctx.get_prop(Constant.STATUS_REPORTS) if not reports: self.log_info(fl_ctx, f"no status report from client {client_name}") return my_report = reports.get(self.workflow_id) if not my_report: return report = status_report_from_dict(my_report) cs = self.client_statuses[client_name] assert isinstance(cs, ClientStatus) now = time.time() cs.last_report_time = now cs.num_reports += 1 if report.error: self.asked_to_stop = True self.system_panic(f"received failure report from client {client_name}: {report.error}", fl_ctx) return if cs.status != report: # updated cs.status = report cs.last_progress_time = now timestamp = datetime.fromtimestamp(report.timestamp) if report.timestamp else False self.log_info( fl_ctx, f"updated status of client {client_name} on round {report.last_round}: " f"timestamp={timestamp}, action={report.action}, all_done={report.all_done}", ) else: self.log_debug( fl_ctx, f"ignored status report from client {client_name} at round {report.last_round}: no change" ) def process_result_of_unknown_task( self, client: Client, task_name: str, client_task_id: str, result: Shareable, fl_ctx: FLContext ): self.log_warning(fl_ctx, f"ignored unknown task {task_name} from client {client.name}") def stop_controller(self, fl_ctx: FLContext): pass
NVFlare-main
nvflare/app_common/ccwf/server_ctl.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.app_common.ccwf.cse_client_ctl import CrossSiteEvalClientController from nvflare.app_common.ccwf.cse_server_ctl import CrossSiteEvalServerController from nvflare.app_common.ccwf.cyclic_client_ctl import CyclicClientController from nvflare.app_common.ccwf.cyclic_server_ctl import CyclicServerController from nvflare.app_common.ccwf.swarm_client_ctl import SwarmClientController from nvflare.app_common.ccwf.swarm_server_ctl import SwarmServerController
NVFlare-main
nvflare/app_common/ccwf/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Union from nvflare.app_common.abstract.metric_comparator import MetricComparator class Constant: TN_PREFIX_CYCLIC = "cyclic" TN_PREFIX_SWARM = "swarm" TN_PREFIX_CROSS_SITE_EVAL = "cse" BASENAME_CONFIG = "config" BASENAME_START = "start" BASENAME_LEARN = "learn" BASENAME_EVAL = "eval" BASENAME_REPORT_LEARN_RESULT = "report_learn_result" BASENAME_REPORT_FINAL_RESULT = "report_final_result" BASENAME_ASK_FOR_MODEL = "ask_for_model" TASK_NAME_PREFIX = "cwf.task_prefix" ERROR = "cwf.error" ORDER = "cwf.order" CLIENTS = "cwf.clients" START_CLIENT = "cwf.start_client" RESULT_CLIENTS = "cwf.result_clients" CLIENT_ORDER = "cwf.client_order" LAST_ROUND = "cwf.last_round" START_ROUND = "cwf.start_round" TIMESTAMP = "cwf.timestamp" ACTION = "cwf.action" ALL_DONE = "cwf.all_done" AGGR_CLIENTS = "cwf.aggr_clients" TRAIN_CLIENTS = "cwf.train_clients" AGGREGATOR = "cwf.aggr" METRIC = "cwf.metric" CLIENT = "cwf.client" ROUND = "cwf.round" CONFIG = "cwf.config" STATUS_REPORTS = "cwf.status_reports" RESULT = "cwf.result" RESULT_TYPE = "cwf.result_type" EVAL_LOCAL = "cwf.eval_local" EVAL_GLOBAL = "cwf.eval_global" EVALUATORS = "cwf.evaluators" EVALUATEES = "cwf.evaluatees" GLOBAL_CLIENT = "cwf.global_client" MODEL_OWNER = "cwf.model_owner" MODEL_NAME = "cwf.model_name" MODEL_TYPE = "cwf.model_type" GLOBAL_NAMES = "cwf.global_names" EXECUTOR = "cwf.executor" EXECUTOR_INITIALIZED = "cwf.executor_initialized" EXECUTOR_FINALIZED = "cwf.executor_finalized" TOPIC_SHARE_RESULT = "cwf.share_result" TOPIC_END_WORKFLOW = "cwf.end_wf" RC_NO_GLOBAL_MODELS = "cwf.no_global_models" RC_NO_LOCAL_MODEL = "cwf.no_local_model" RC_UNABLE_TO_EVAL = "cwf.unable_to_eval" CONFIG_TASK_TIMEOUT = 300 START_TASK_TIMEOUT = 10 END_WORKFLOW_TIMEOUT = 2.0 TASK_CHECK_INTERVAL = 0.5 JOB_STATUS_CHECK_INTERVAL = 2.0 PER_CLIENT_STATUS_REPORT_TIMEOUT = 90.0 WORKFLOW_PROGRESS_TIMEOUT = 3600.0 LEARN_TASK_CHECK_INTERVAL = 1.0 LEARN_TASK_ACK_TIMEOUT = 10 LEARN_TASK_ABORT_TIMEOUT = 5.0 FINAL_RESULT_ACK_TIMEOUT = 10 GET_MODEL_TIMEOUT = 10 class ModelType: LOCAL = "local" GLOBAL = "global" class ResultType: BEST = "best" LAST = "last" class CyclicOrder: FIXED = "fixed" RANDOM = "random" class StatusReport: def __init__( self, timestamp=None, action: str = "", last_round=None, all_done=False, error: str = "", ): self.timestamp = timestamp self.action = action self.last_round = last_round self.all_done = all_done self.error = error def to_dict(self) -> dict: result = { Constant.TIMESTAMP: self.timestamp, Constant.ACTION: self.action, Constant.ALL_DONE: self.all_done, } if self.last_round is not None: result[Constant.LAST_ROUND] = self.last_round if self.error: result[Constant.ERROR] = self.error return result def __eq__(self, other): if not isinstance(other, StatusReport): # don't attempt to compare against unrelated types return ValueError(f"cannot compare to object of type {type(other)}") return ( self.last_round == other.last_round and self.timestamp == other.timestamp and self.action == other.action and self.all_done == other.all_done and self.error == other.error ) def status_report_from_dict(d: dict) -> StatusReport: last_round = d.get(Constant.LAST_ROUND) timestamp = d.get(Constant.TIMESTAMP) all_done = d.get(Constant.ALL_DONE) error = d.get(Constant.ERROR) action = d.get(Constant.ACTION) return StatusReport( last_round=last_round, timestamp=timestamp, action=action, all_done=all_done, error=error, ) def rotate_to_front(item, items: list): num_items = len(items) idx = items.index(item) if idx != 0: new_list = [None] * num_items for i in range(num_items): new_pos = i - idx if new_pos < 0: new_pos += num_items new_list[new_pos] = items[i] for i in range(num_items): items[i] = new_list[i] def topic_for_end_workflow(wf_id): return f"{Constant.TOPIC_END_WORKFLOW}.{wf_id}" def make_task_name(prefix: str, base_name: str) -> str: return f"{prefix}_{base_name}" class NumberMetricComparator(MetricComparator): def compare(self, a, b) -> Union[int, float]: if not isinstance(a, (int, float)): raise ValueError(f"metric value must be a number but got {type(a)}") if not isinstance(b, (int, float)): raise ValueError(f"metric value must be a number but got {type(b)}") return a - b
NVFlare-main
nvflare/app_common/ccwf/common.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os import threading from nvflare.apis.dxo import DXO class EvalResultManager: def __init__(self, result_dir: str): self.result_dir = result_dir self.results = {} self.update_lock = threading.Lock() if not os.path.exists(result_dir): # create os.makedirs(result_dir) def add_result(self, evaluator: str, evaluatee: str, result: DXO): with self.update_lock: save_file_name = evaluator + "-" + evaluatee file_path = self._save_validation_result(save_file_name, result) if evaluator not in self.results: self.results[evaluator] = {} self.results[evaluator][evaluatee] = file_path return file_path def _save_validation_result(self, file_name, result): file_path = os.path.join(self.result_dir, file_name) bytes_to_save = result.to_bytes() with open(file_path, "wb") as f: f.write(bytes_to_save) return file_path def get_results(self): with self.update_lock: return copy.deepcopy(self.results)
NVFlare-main
nvflare/app_common/ccwf/val_result_manager.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from nvflare.apis.dxo import DataKind, MetaKey, from_shareable from nvflare.apis.event_type import EventType from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.app_common.app_constant import AppConstants from nvflare.app_common.app_event_type import AppEventType from nvflare.widgets.widget import Widget class SimpleIntimeModelSelector(Widget): def __init__( self, weigh_by_local_iter=False, aggregation_weights=None, validation_metric_name=MetaKey.INITIAL_METRICS ): """Handler to determine if the model is globally best. Args: weigh_by_local_iter (bool, optional): whether the metrics should be weighted by trainer's iteration number. aggregation_weights (dict, optional): a mapping of client name to float for aggregation. Defaults to None. validation_metric_name (str, optional): key used to save initial validation metric in the DXO meta properties (defaults to MetaKey.INITIAL_METRICS). """ super().__init__() self.val_metric = self.best_val_metric = -np.inf self.weigh_by_local_iter = weigh_by_local_iter self.validation_metric_name = validation_metric_name self.aggregation_weights = aggregation_weights or {} self.logger.info(f"model selection weights control: {aggregation_weights}") self._reset_stats() def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.START_RUN: self._startup() elif event_type == AppEventType.ROUND_STARTED: self._reset_stats() elif event_type == AppEventType.BEFORE_CONTRIBUTION_ACCEPT: self._before_accept(fl_ctx) elif event_type == AppEventType.BEFORE_AGGREGATION: self._before_aggregate(fl_ctx) def _startup(self): self._reset_stats() def _reset_stats(self): self.validation_metric_weighted_sum = 0 self.validation_metric_sum_of_weights = 0 def _before_accept(self, fl_ctx: FLContext): peer_ctx = fl_ctx.get_peer_context() shareable: Shareable = fl_ctx.get_prop(AppConstants.TRAINING_RESULT) try: dxo = from_shareable(shareable) except: self.log_exception(fl_ctx, "shareable data is not a valid DXO") return False if dxo.data_kind not in (DataKind.WEIGHT_DIFF, DataKind.WEIGHTS, DataKind.COLLECTION): self.log_debug(fl_ctx, "cannot handle {}".format(dxo.data_kind)) return False if dxo.data is None: self.log_debug(fl_ctx, "no data to filter") return False contribution_round = shareable.get_cookie(AppConstants.CONTRIBUTION_ROUND) client_name = peer_ctx.get_identity_name(default="?") current_round = fl_ctx.get_prop(AppConstants.CURRENT_ROUND) if current_round == 0: self.log_debug(fl_ctx, "skipping round 0") return False # There is no aggregated model at round 0 if contribution_round != current_round: self.log_warning( fl_ctx, f"discarding shareable from {client_name} for round: {contribution_round}. Current round is: {current_round}", ) return False validation_metric = dxo.get_meta_prop(self.validation_metric_name) if validation_metric is None: self.log_debug(fl_ctx, f"validation metric not existing in {client_name}") return False else: self.log_info(fl_ctx, f"validation metric {validation_metric} from client {client_name}") if self.weigh_by_local_iter: n_iter = dxo.get_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, 1.0) else: n_iter = 1.0 aggregation_weights = self.aggregation_weights.get(client_name, 1.0) self.log_debug(fl_ctx, f"aggregation weight: {aggregation_weights}") weight = n_iter * aggregation_weights self.validation_metric_weighted_sum += validation_metric * weight self.validation_metric_sum_of_weights += weight return True def _before_aggregate(self, fl_ctx): if self.validation_metric_sum_of_weights == 0: self.log_debug(fl_ctx, "nothing accumulated") return False self.val_metric = self.validation_metric_weighted_sum / self.validation_metric_sum_of_weights self.logger.debug(f"weighted validation metric {self.val_metric}") if self.val_metric > self.best_val_metric: self.best_val_metric = self.val_metric current_round = fl_ctx.get_prop(AppConstants.CURRENT_ROUND) self.log_info(fl_ctx, f"new best validation metric at round {current_round}: {self.best_val_metric}") # Fire event to notify that the current global model is a new best fl_ctx.set_prop(AppConstants.VALIDATION_RESULT, self.best_val_metric, private=True, sticky=False) self.fire_event(AppEventType.GLOBAL_BEST_MODEL_AVAILABLE, fl_ctx) self._reset_stats() return True
NVFlare-main
nvflare/app_common/ccwf/comps/simple_intime_model_selector.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/ccwf/comps/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.apis.dxo import DataKind, from_shareable from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.app_common.abstract.model import ModelLearnable, ModelLearnableKey, model_learnable_to_dxo from nvflare.app_common.abstract.shareable_generator import ShareableGenerator from nvflare.app_common.app_constant import AppConstants class SimpleModelShareableGenerator(ShareableGenerator): def learnable_to_shareable(self, model_learnable: ModelLearnable, fl_ctx: FLContext) -> Shareable: """Convert ModelLearnable to Shareable. Args: model_learnable (ModelLearnable): model to be converted fl_ctx (FLContext): FL context Returns: Shareable: a shareable containing a DXO object. """ dxo = model_learnable_to_dxo(model_learnable) return dxo.to_shareable() def shareable_to_learnable(self, shareable: Shareable, fl_ctx: FLContext) -> ModelLearnable: """Convert Shareable to ModelLearnable. Supporting TYPE == TYPE_WEIGHT_DIFF or TYPE_WEIGHTS Args: shareable (Shareable): Shareable that contains a DXO object fl_ctx (FLContext): FL context Returns: A ModelLearnable object Raises: TypeError: if shareable is not of type shareable ValueError: if data_kind is not `DataKind.WEIGHTS` and is not `DataKind.WEIGHT_DIFF` """ if not isinstance(shareable, Shareable): raise TypeError("shareable must be Shareable, but got {}.".format(type(shareable))) dxo = from_shareable(shareable) base_model = ModelLearnable() if dxo.data_kind == DataKind.WEIGHT_DIFF: base_model = fl_ctx.get_prop(AppConstants.GLOBAL_MODEL) if not base_model: self.system_panic(reason="No global base model!", fl_ctx=fl_ctx) return base_model weights = base_model[ModelLearnableKey.WEIGHTS] if dxo.data is not None: model_diff = dxo.data for v_name, v_value in model_diff.items(): weights[v_name] = weights[v_name] + v_value elif dxo.data_kind == DataKind.WEIGHTS: weights = dxo.data if not weights: self.log_info(fl_ctx, "No model weights found. Model will not be updated.") else: base_model[ModelLearnableKey.WEIGHTS] = weights else: raise ValueError( "data_kind should be either DataKind.WEIGHTS or DataKind.WEIGHT_DIFF, but got {}".format(dxo.data_kind) ) base_model[ModelLearnableKey.META] = dxo.get_meta_props() return base_model
NVFlare-main
nvflare/app_common/ccwf/comps/simple_model_shareable_generator.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_context import FLContext from nvflare.app_common.ccwf import SwarmClientController from nvflare.app_common.ccwf.common import Constant class CWEResultPrinter(FLComponent): def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == Constant.EXECUTOR_FINALIZED: e = fl_ctx.get_prop(Constant.EXECUTOR) if not isinstance(e, SwarmClientController): return if e.best_result: self.log_info(fl_ctx, f"My Best Round: {e.best_round}") self.log_info(fl_ctx, f"My Best Metric: {e.best_metric}") self.log_info(fl_ctx, f"My Best Result: {e.best_result}") else: self.log_info(fl_ctx, "I have no best result")
NVFlare-main
nvflare/app_common/ccwf/comps/cwe_result_printer.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np from nvflare.apis.fl_constant import FLContextKey from nvflare.apis.fl_context import FLContext from nvflare.app_common.abstract.model import ModelLearnable, ModelLearnableKey, make_model_learnable from nvflare.app_common.abstract.model_persistor import ModelPersistor from nvflare.app_common.app_constant import AppConstants from nvflare.app_common.app_event_type import AppEventType from nvflare.app_common.model_desc import ModelDescriptor from nvflare.app_common.np.constants import NPConstants from nvflare.security.logging import secure_format_exception def _get_run_dir(fl_ctx: FLContext): job_id = fl_ctx.get_job_id() workspace = fl_ctx.get_prop(FLContextKey.WORKSPACE_OBJECT) run_dir = workspace.get_run_dir(job_id) return run_dir class NPFileModelPersistor(ModelPersistor): def __init__( self, last_global_model_file_name="last_global_model.npy", best_global_model_file_name="best_global_model.npy", model_dir="models", initial_model_file_name="initial_model.npy", ): super().__init__() self.model_dir = model_dir self.last_global_model_file_name = last_global_model_file_name self.best_global_model_file_name = best_global_model_file_name self.initial_model_file_name = initial_model_file_name # This is default model that will be used if not local model is provided. self.default_data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32) def load_model(self, fl_ctx: FLContext) -> ModelLearnable: run_dir = _get_run_dir(fl_ctx) model_path = os.path.join(run_dir, self.model_dir, self.initial_model_file_name) try: # try loading previous model data = np.load(model_path) except Exception as e: self.log_info( fl_ctx, f"Unable to load model from {model_path}: {secure_format_exception(e)}. Using default data instead.", fire_event=False, ) data = self.default_data.copy() model_learnable = make_model_learnable(weights={NPConstants.NUMPY_KEY: data}, meta_props={}) self.log_info(fl_ctx, f"Loaded initial model: {model_learnable}") return model_learnable def save_model(self, model_learnable: ModelLearnable, fl_ctx: FLContext): self._save(fl_ctx, model_learnable, self.last_global_model_file_name) def _save(self, fl_ctx: FLContext, model_learnable: ModelLearnable, file_name: str): run_dir = _get_run_dir(fl_ctx) model_root_dir = os.path.join(run_dir, self.model_dir) if not os.path.exists(model_root_dir): os.makedirs(model_root_dir) model_path = os.path.join(model_root_dir, file_name) np.save(model_path, model_learnable[ModelLearnableKey.WEIGHTS][NPConstants.NUMPY_KEY]) self.log_info(fl_ctx, f"Saved numpy model to: {model_path}") self.log_info(fl_ctx, f"Model: {model_learnable}") def handle_event(self, event: str, fl_ctx: FLContext): if event == AppEventType.GLOBAL_BEST_MODEL_AVAILABLE: # save the current model as the best model! model = fl_ctx.get_prop(AppConstants.GLOBAL_MODEL) self._save(fl_ctx, model, self.best_global_model_file_name) def _model_file_path(self, fl_ctx: FLContext, file_name): run_dir = _get_run_dir(fl_ctx) model_root_dir = os.path.join(run_dir, self.model_dir) return os.path.join(model_root_dir, file_name) def _add_to_inventory(self, inventory: dict, fl_ctx: FLContext, file_name: str): location = self._model_file_path(fl_ctx, file_name) base_name = os.path.basename(location).split(".")[0] if os.path.isfile(location): desc = ModelDescriptor( name=base_name, location=location, model_format="np", props={}, ) inventory[desc.name] = desc def get_model_inventory(self, fl_ctx: FLContext) -> {str: ModelDescriptor}: """Get the model inventory of the ModelPersistor. Args: fl_ctx: FLContext Returns: { model_kind: ModelDescriptor } """ inventory = {} self._add_to_inventory(inventory, fl_ctx, self.best_global_model_file_name) self._add_to_inventory(inventory, fl_ctx, self.last_global_model_file_name) return inventory def get_model(self, model_file: str, fl_ctx: FLContext) -> ModelLearnable: inventory = self.get_model_inventory(fl_ctx) if not inventory: return None desc = inventory.get(model_file) if not desc: return None location = desc.location if os.path.isfile(location): try: # try loading previous model data = np.load(location) except Exception as e: self.log_error(fl_ctx, f"Unable to load model from {location}: {secure_format_exception(e)}.") return None model_learnable = make_model_learnable(weights={NPConstants.NUMPY_KEY: data}, meta_props={}) self.log_info(fl_ctx, f"loaded model from {location}") return model_learnable else: self.log_error(fl_ctx, f"no such model file: {location}") return None
NVFlare-main
nvflare/app_common/ccwf/comps/np_file_model_persistor.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os import random import time import numpy as np from nvflare.apis.dxo import DXO, DataKind, MetaKey, from_shareable from nvflare.apis.executor import Executor from nvflare.apis.fl_constant import FLContextKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.model import ModelLearnable from nvflare.app_common.app_constant import AppConstants from nvflare.app_common.np.constants import NPConstants from nvflare.security.logging import secure_format_exception class NPTrainer(Executor): def __init__( self, delta=1, sleep_time=0, train_task_name=AppConstants.TASK_TRAIN, submit_model_task_name=AppConstants.TASK_SUBMIT_MODEL, validate_model_task_name=AppConstants.TASK_VALIDATION, model_name="best_numpy.npy", model_dir="model", ): # Init functions of components should be very minimal. Init # is called when json is read. A big init will cause json loading to halt # for long time. super().__init__() if not (isinstance(delta, float) or isinstance(delta, int)): raise TypeError("delta must be an instance of float or int.") self._delta = delta self._model_name = model_name self._model_dir = model_dir self._sleep_time = sleep_time self._train_task_name = train_task_name self._submit_model_task_name = submit_model_task_name self._validate_model_task_name = validate_model_task_name def handle_event(self, event_type: str, fl_ctx: FLContext): # if event_type == EventType.START_RUN: # Create all major components here. This is a simple app that doesn't need any components. # elif event_type == EventType.END_RUN: # # Clean up resources (closing files, joining threads, removing dirs etc.) pass def _train(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal): # First we extract DXO from the shareable. try: incoming_dxo = from_shareable(shareable) except Exception as e: self.system_panic( f"Unable to convert shareable to model definition. Exception {secure_format_exception(e)}", fl_ctx ) return make_reply(ReturnCode.BAD_TASK_DATA) # Information about workflow is retrieved from the shareable header. current_round = shareable.get_header(AppConstants.CURRENT_ROUND, None) total_rounds = shareable.get_header(AppConstants.NUM_ROUNDS, None) # Ensure that data is of type weights. Extract model data. if incoming_dxo.data_kind != DataKind.WEIGHTS: self.system_panic("Model DXO should be of kind DataKind.WEIGHTS.", fl_ctx) return make_reply(ReturnCode.BAD_TASK_DATA) np_data = copy.deepcopy(incoming_dxo.data) # Display properties. self.log_info(fl_ctx, f"Incoming data kind: {incoming_dxo.data_kind}") self.log_info(fl_ctx, f"Model: \n{np_data}") self.log_info(fl_ctx, f"Current Round: {current_round}") self.log_info(fl_ctx, f"Total Rounds: {total_rounds}") self.log_info(fl_ctx, f"Client identity: {fl_ctx.get_identity_name()}") # Check abort signal if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # Doing some dummy training. if np_data: if NPConstants.NUMPY_KEY in np_data: np_data[NPConstants.NUMPY_KEY] += self._delta else: self.log_error(fl_ctx, "numpy_key not found in model.") return make_reply(ReturnCode.BAD_TASK_DATA) else: self.log_error(fl_ctx, "No model weights found in shareable.") return make_reply(ReturnCode.BAD_TASK_DATA) # We check abort_signal regularly to make sure if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # Save local numpy model try: self._save_local_model(fl_ctx, np_data) except Exception as e: self.log_error(fl_ctx, f"Exception in saving local model: {secure_format_exception(e)}.") self.log_info( fl_ctx, f"Model after training: {np_data}", ) # Checking abort signal again. if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # Prepare a DXO for our updated model. Create shareable and return fake_metric = random.uniform(0.1, 1.0) d = self._delta outgoing_np = {NPConstants.NUMPY_KEY: np.array([[d, d, d], [d, d, d], [d, d, d]], dtype=np.float32)} outgoing_dxo = DXO( data_kind=DataKind.WEIGHT_DIFF, data=outgoing_np, meta={ MetaKey.NUM_STEPS_CURRENT_ROUND: 1, MetaKey.INITIAL_METRICS: fake_metric, }, ) # artificial delay # if fl_ctx.get_identity_name() == "blue": # time.sleep(3.0) # time.sleep(random.uniform(1.0, 5.0)) return outgoing_dxo.to_shareable() def _submit_model(self, fl_ctx: FLContext, abort_signal: Signal): # Retrieve the local model saved during training. np_data = None try: np_data = self._load_local_model(fl_ctx) except Exception as e: self.log_error(fl_ctx, f"Unable to load model: {secure_format_exception(e)}") # Checking abort signal if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # Create DXO and shareable from model data. model_shareable = Shareable() if np_data: outgoing_dxo = DXO(data_kind=DataKind.WEIGHTS, data=np_data) model_shareable = outgoing_dxo.to_shareable() else: # Set return code. self.log_error(fl_ctx, "local model not found.") model_shareable.set_return_code(ReturnCode.EXECUTION_RESULT_ERROR) return model_shareable def execute( self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal, ) -> Shareable: # Any long tasks should check abort_signal regularly. Otherwise, abort client # will not work. count, interval = 0, 0.5 while count < self._sleep_time: if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) time.sleep(interval) count += interval self.log_info(fl_ctx, f"Task name: {task_name}") try: if task_name == self._train_task_name: return self._train(shareable=shareable, fl_ctx=fl_ctx, abort_signal=abort_signal) elif task_name == self._submit_model_task_name: return self._submit_model(fl_ctx=fl_ctx, abort_signal=abort_signal) elif task_name == self._validate_model_task_name: return self._validate_model(shareable, fl_ctx, abort_signal) else: # If unknown task name, set RC accordingly. return make_reply(ReturnCode.TASK_UNKNOWN) except Exception as e: self.log_exception(fl_ctx, f"Exception in NPTrainer execute: {secure_format_exception(e)}.") return make_reply(ReturnCode.EXECUTION_EXCEPTION) def _validate_model(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: dxo = from_shareable(shareable) self.log_info(fl_ctx, f"Validating model {dxo}") fake_metric = random.uniform(0.1, 1.0) val_results = {"val_accuracy": fake_metric} metric_dxo = DXO(data_kind=DataKind.METRICS, data=val_results) return metric_dxo.to_shareable() def _load_local_model(self, fl_ctx: FLContext): engine = fl_ctx.get_engine() job_id = fl_ctx.get_prop(FLContextKey.CURRENT_RUN) run_dir = engine.get_workspace().get_run_dir(job_id) model_path = os.path.join(run_dir, self._model_dir) model_load_path = os.path.join(model_path, self._model_name) try: np_data = np.load(model_load_path) except Exception as e: self.log_error(fl_ctx, f"Unable to load local model: {secure_format_exception(e)}") return None model = ModelLearnable() model[NPConstants.NUMPY_KEY] = np_data return model def _save_local_model(self, fl_ctx: FLContext, model: dict): # Save local model engine = fl_ctx.get_engine() job_id = fl_ctx.get_prop(FLContextKey.CURRENT_RUN) run_dir = engine.get_workspace().get_run_dir(job_id) model_path = os.path.join(run_dir, self._model_dir) if not os.path.exists(model_path): os.makedirs(model_path) model_save_path = os.path.join(model_path, self._model_name) np.save(model_save_path, model[NPConstants.NUMPY_KEY]) self.log_info(fl_ctx, f"Saved numpy model to: {model_save_path}")
NVFlare-main
nvflare/app_common/ccwf/comps/np_trainer.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class NPConstants: NUMPY_KEY = "numpy_key"
NVFlare-main
nvflare/app_common/np/constants.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/np/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import List import numpy as np from nvflare.apis.dxo import DXO, DataKind from nvflare.apis.fl_constant import FLContextKey from nvflare.apis.fl_context import FLContext from nvflare.app_common.abstract.model_locator import ModelLocator from nvflare.security.logging import secure_format_exception from .constants import NPConstants class NPModelLocator(ModelLocator): SERVER_MODEL_NAME = "server" def __init__(self, model_dir="models", model_name="server.npy"): """The ModelLocator's job is to find the models to be included for cross site evaluation located on server. This NPModelLocator finds and extracts "server" model that is saved during training. Args: model_dir (str): Directory to look for models in. Defaults to "model" model_name (str). Name of the model. Defaults to "server.npy" """ super().__init__() self.model_dir = model_dir self.model_file_name = model_name def get_model_names(self, fl_ctx: FLContext) -> List[str]: """Returns the list of model names that should be included from server in cross site validation.add() Args: fl_ctx (FLContext): FL Context object. Returns: List[str]: List of model names. """ return [NPModelLocator.SERVER_MODEL_NAME] def locate_model(self, model_name, fl_ctx: FLContext) -> DXO: dxo = None engine = fl_ctx.get_engine() if model_name == NPModelLocator.SERVER_MODEL_NAME: try: job_id = fl_ctx.get_prop(FLContextKey.CURRENT_RUN) run_dir = engine.get_workspace().get_run_dir(job_id) model_path = os.path.join(run_dir, self.model_dir) model_load_path = os.path.join(model_path, self.model_file_name) np_data = None try: np_data = np.load(model_load_path, allow_pickle=False) self.log_info(fl_ctx, f"Loaded {model_name} model from {model_load_path}.") except Exception as e: self.log_error(fl_ctx, f"Unable to load NP Model: {secure_format_exception(e)}.") if np_data is not None: weights = {NPConstants.NUMPY_KEY: np_data} dxo = DXO(data_kind=DataKind.WEIGHTS, data=weights, meta={}) except Exception as e: self.log_exception( fl_ctx, f"Exception in retrieving {NPModelLocator.SERVER_MODEL_NAME} model: {secure_format_exception(e)}.", ) return dxo
NVFlare-main
nvflare/app_common/np/np_model_locator.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.apis.dxo import DataKind, from_bytes from nvflare.apis.fl_context import FLContext from nvflare.app_common.abstract.formatter import Formatter from nvflare.app_common.app_constant import AppConstants from nvflare.security.logging import secure_format_exception class NPFormatter(Formatter): def __init__(self) -> None: super().__init__() def format(self, fl_ctx: FLContext) -> str: """The format function gets validation shareable locations from the dictionary. It loads each shareable, get the validation results and converts it into human-readable string. Args: fl_ctx (FLContext): FLContext object. Returns: str: Human readable validation results. """ # Get the val shareables validation_shareables_dict = fl_ctx.get_prop(AppConstants.VALIDATION_RESULT, {}) # Result dictionary res = {} try: # This is a 2d dictionary with each validation result at # validation_shareables_dict[data_client][model_client] for data_client in validation_shareables_dict.keys(): validation_dict = validation_shareables_dict[data_client] if validation_dict: res[data_client] = {} for model_name in validation_dict.keys(): dxo_path = validation_dict[model_name] # Load the shareable with open(dxo_path, "rb") as f: metric_dxo = from_bytes(f.read()) # Get metrics from shareable if metric_dxo and metric_dxo.data_kind == DataKind.METRICS: metrics = metric_dxo.data res[data_client][model_name] = metrics except Exception as e: self.log_error(fl_ctx, f"Exception: {secure_format_exception(e)}") return f"{res}"
NVFlare-main
nvflare/app_common/np/np_formatter.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np from nvflare.apis.fl_constant import FLContextKey from nvflare.apis.fl_context import FLContext from nvflare.app_common.abstract.model import ModelLearnable, ModelLearnableKey, make_model_learnable from nvflare.app_common.abstract.model_persistor import ModelPersistor from nvflare.security.logging import secure_format_exception from .constants import NPConstants def _get_run_dir(fl_ctx: FLContext): engine = fl_ctx.get_engine() if engine is None: raise RuntimeError("engine is missing in fl_ctx.") job_id = fl_ctx.get_prop(FLContextKey.CURRENT_RUN) if job_id is None: raise RuntimeError("job_id is missing in fl_ctx.") run_dir = engine.get_workspace().get_run_dir(job_id) return run_dir class NPModelPersistor(ModelPersistor): def __init__(self, model_dir="models", model_name="server.npy"): super().__init__() self.model_dir = model_dir self.model_name = model_name # This is default model that will be used if not local model is provided. self.default_data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32) def load_model(self, fl_ctx: FLContext) -> ModelLearnable: run_dir = _get_run_dir(fl_ctx) model_path = os.path.join(run_dir, self.model_dir, self.model_name) try: # try loading previous model data = np.load(model_path) except Exception as e: self.log_info( fl_ctx, f"Unable to load model from {model_path}: {secure_format_exception(e)}. Using default data instead.", fire_event=False, ) data = self.default_data.copy() model_learnable = make_model_learnable(weights={NPConstants.NUMPY_KEY: data}, meta_props={}) self.log_info(fl_ctx, f"Loaded initial model: {model_learnable[ModelLearnableKey.WEIGHTS]}") return model_learnable def save_model(self, model_learnable: ModelLearnable, fl_ctx: FLContext): run_dir = _get_run_dir(fl_ctx) model_root_dir = os.path.join(run_dir, self.model_dir) if not os.path.exists(model_root_dir): os.makedirs(model_root_dir) model_path = os.path.join(model_root_dir, self.model_name) np.save(model_path, model_learnable[ModelLearnableKey.WEIGHTS][NPConstants.NUMPY_KEY]) self.log_info(fl_ctx, f"Saved numpy model to: {model_path}")
NVFlare-main
nvflare/app_common/np/np_model_persistor.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import numpy as np from nvflare.apis.dxo import DXO, DataKind, MetaKey, from_shareable from nvflare.apis.executor import Executor from nvflare.apis.fl_constant import FLContextKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.model import ModelLearnable from nvflare.app_common.app_constant import AppConstants from nvflare.security.logging import secure_format_exception from .constants import NPConstants class NPTrainer(Executor): def __init__( self, delta=1, sleep_time=0, train_task_name=AppConstants.TASK_TRAIN, submit_model_task_name=AppConstants.TASK_SUBMIT_MODEL, model_name="best_numpy.npy", model_dir="model", ): # Init functions of components should be very minimal. Init # is called when json is read. A big init will cause json loading to halt # for long time. super().__init__() if not (isinstance(delta, float) or isinstance(delta, int)): raise TypeError("delta must be an instance of float or int.") self._delta = delta self._model_name = model_name self._model_dir = model_dir self._sleep_time = sleep_time self._train_task_name = train_task_name self._submit_model_task_name = submit_model_task_name def handle_event(self, event_type: str, fl_ctx: FLContext): # if event_type == EventType.START_RUN: # Create all major components here. This is a simple app that doesn't need any components. # elif event_type == EventType.END_RUN: # # Clean up resources (closing files, joining threads, removing dirs etc.) pass def _train(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal): # First we extract DXO from the shareable. try: incoming_dxo = from_shareable(shareable) except Exception as e: self.system_panic( f"Unable to convert shareable to model definition. Exception {secure_format_exception(e)}", fl_ctx ) return make_reply(ReturnCode.BAD_TASK_DATA) # Information about workflow is retrieved from the shareable header. current_round = shareable.get_header(AppConstants.CURRENT_ROUND, None) total_rounds = shareable.get_header(AppConstants.NUM_ROUNDS, None) # Ensure that data is of type weights. Extract model data. if incoming_dxo.data_kind != DataKind.WEIGHTS: self.system_panic("Model DXO should be of kind DataKind.WEIGHTS.", fl_ctx) return make_reply(ReturnCode.BAD_TASK_DATA) np_data = incoming_dxo.data # Display properties. self.log_info(fl_ctx, f"Incoming data kind: {incoming_dxo.data_kind}") self.log_info(fl_ctx, f"Model: \n{np_data}") self.log_info(fl_ctx, f"Current Round: {current_round}") self.log_info(fl_ctx, f"Total Rounds: {total_rounds}") self.log_info(fl_ctx, f"Client identity: {fl_ctx.get_identity_name()}") # Check abort signal if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # Doing some dummy training. if np_data: if NPConstants.NUMPY_KEY in np_data: np_data[NPConstants.NUMPY_KEY] += self._delta else: self.log_error(fl_ctx, "numpy_key not found in model.") return make_reply(ReturnCode.BAD_TASK_DATA) else: self.log_error(fl_ctx, "No model weights found in shareable.") return make_reply(ReturnCode.BAD_TASK_DATA) # We check abort_signal regularly to make sure if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # Save local numpy model try: self._save_local_model(fl_ctx, np_data) except Exception as e: self.log_error(fl_ctx, f"Exception in saving local model: {secure_format_exception(e)}.") self.log_info( fl_ctx, f"Model after training: {np_data}", ) # Checking abort signal again. if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # Prepare a DXO for our updated model. Create shareable and return outgoing_dxo = DXO(data_kind=incoming_dxo.data_kind, data=np_data, meta={MetaKey.NUM_STEPS_CURRENT_ROUND: 1}) return outgoing_dxo.to_shareable() def _submit_model(self, fl_ctx: FLContext, abort_signal: Signal): # Retrieve the local model saved during training. np_data = None try: np_data = self._load_local_model(fl_ctx) except Exception as e: self.log_error(fl_ctx, f"Unable to load model: {secure_format_exception(e)}") # Checking abort signal if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # Create DXO and shareable from model data. model_shareable = Shareable() if np_data: outgoing_dxo = DXO(data_kind=DataKind.WEIGHTS, data=np_data) model_shareable = outgoing_dxo.to_shareable() else: # Set return code. self.log_error(fl_ctx, "local model not found.") model_shareable.set_return_code(ReturnCode.EXECUTION_RESULT_ERROR) return model_shareable def execute( self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal, ) -> Shareable: # Any long tasks should check abort_signal regularly. Otherwise, abort client # will not work. count, interval = 0, 0.5 while count < self._sleep_time: if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) time.sleep(interval) count += interval self.log_info(fl_ctx, f"Task name: {task_name}") try: if task_name == self._train_task_name: return self._train(shareable=shareable, fl_ctx=fl_ctx, abort_signal=abort_signal) elif task_name == self._submit_model_task_name: return self._submit_model(fl_ctx=fl_ctx, abort_signal=abort_signal) else: # If unknown task name, set RC accordingly. return make_reply(ReturnCode.TASK_UNKNOWN) except Exception as e: self.log_exception(fl_ctx, f"Exception in NPTrainer execute: {secure_format_exception(e)}.") return make_reply(ReturnCode.EXECUTION_EXCEPTION) def _load_local_model(self, fl_ctx: FLContext): engine = fl_ctx.get_engine() job_id = fl_ctx.get_prop(FLContextKey.CURRENT_RUN) run_dir = engine.get_workspace().get_run_dir(job_id) model_path = os.path.join(run_dir, self._model_dir) model_load_path = os.path.join(model_path, self._model_name) try: np_data = np.load(model_load_path) except Exception as e: self.log_error(fl_ctx, f"Unable to load local model: {secure_format_exception(e)}") return None model = ModelLearnable() model[NPConstants.NUMPY_KEY] = np_data return model def _save_local_model(self, fl_ctx: FLContext, model: dict): # Save local model engine = fl_ctx.get_engine() job_id = fl_ctx.get_prop(FLContextKey.CURRENT_RUN) run_dir = engine.get_workspace().get_run_dir(job_id) model_path = os.path.join(run_dir, self._model_dir) if not os.path.exists(model_path): os.makedirs(model_path) model_save_path = os.path.join(model_path, self._model_name) np.save(model_save_path, model[NPConstants.NUMPY_KEY]) self.log_info(fl_ctx, f"Saved numpy model to: {model_save_path}")
NVFlare-main
nvflare/app_common/np/np_trainer.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import time import numpy as np from nvflare.apis.dxo import DXO, DataKind, from_shareable from nvflare.apis.executor import Executor from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.app_constant import AppConstants from nvflare.security.logging import secure_format_exception from .constants import NPConstants class NPValidator(Executor): def __init__( self, epsilon=1, sleep_time=0, validate_task_name=AppConstants.TASK_VALIDATION, ): # Init functions of components should be very minimal. Init # is called when json is read. A big init will cause json loading to halt # for long time. super().__init__() self.logger = logging.getLogger("NPValidator") self._random_epsilon = epsilon self._sleep_time = sleep_time self._validate_task_name = validate_task_name def handle_event(self, event_type: str, fl_ctx: FLContext): # if event_type == EventType.START_RUN: # Create all major components here. This is a simple app that doesn't need any components. # elif event_type == EventType.END_RUN: # # Clean up resources (closing files, joining threads, removing dirs etc.) pass def execute( self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal, ) -> Shareable: # Any long tasks should check abort_signal regularly. # Otherwise, abort client will not work. count, interval = 0, 0.5 while count < self._sleep_time: if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) time.sleep(interval) count += interval if task_name == self._validate_task_name: try: # First we extract DXO from the shareable. try: model_dxo = from_shareable(shareable) except Exception as e: self.log_error( fl_ctx, f"Unable to extract model dxo from shareable. Exception: {secure_format_exception(e)}" ) return make_reply(ReturnCode.BAD_TASK_DATA) # Get model from shareable. data_kind must be WEIGHTS. if model_dxo.data and model_dxo.data_kind == DataKind.WEIGHTS: model = model_dxo.data else: self.log_error( fl_ctx, "Model DXO doesn't have data or is not of type DataKind.WEIGHTS. Unable to validate." ) return make_reply(ReturnCode.BAD_TASK_DATA) # Check if key exists in model if NPConstants.NUMPY_KEY not in model: self.log_error(fl_ctx, "numpy_key not in model. Unable to validate.") return make_reply(ReturnCode.BAD_TASK_DATA) # The workflow provides MODEL_OWNER information in the shareable header. model_name = shareable.get_header(AppConstants.MODEL_OWNER, "?") # Print properties. self.log_info(fl_ctx, f"Model: \n{model}") self.log_info(fl_ctx, f"Task name: {task_name}") self.log_info(fl_ctx, f"Client identity: {fl_ctx.get_identity_name()}") self.log_info(fl_ctx, f"Validating model from {model_name}.") # Check abort signal regularly. if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # Do some dummy validation. random_epsilon = np.random.random() self.log_info(fl_ctx, f"Adding random epsilon {random_epsilon} in validation.") val_results = {} np_data = model[NPConstants.NUMPY_KEY] np_data = np.sum(np_data / np.max(np_data)) val_results["accuracy"] = np_data + random_epsilon # Check abort signal regularly. if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info(fl_ctx, f"Validation result: {val_results}") # Create DXO for metrics and return shareable. metric_dxo = DXO(data_kind=DataKind.METRICS, data=val_results) return metric_dxo.to_shareable() except Exception as e: self.log_exception(fl_ctx, f"Exception in NPValidator execute: {secure_format_exception(e)}.") return make_reply(ReturnCode.EXECUTION_EXCEPTION) else: return make_reply(ReturnCode.TASK_UNKNOWN)
NVFlare-main
nvflare/app_common/np/np_validator.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from typing import Any from nvflare.apis.analytix import AnalyticsDataType from nvflare.apis.event_type import EventType from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_context import FLContext from nvflare.app_common.tracking.tracker_types import LogWriterName class LogWriterForMetricsExchanger(FLComponent, ABC): def __init__(self, metrics_exchanger_id: str): """Base class for log writer for MetricsExchanger. Args: metrics_exchanger_id (str, optional): Expects MetricsExchanger with this id. Defaults to None. """ super().__init__() self.metrics_exchanger_id = metrics_exchanger_id self.sender = None def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.START_RUN: engine = fl_ctx.get_engine() self.sender = engine.get_component(self.metrics_exchanger_id) if self.sender is None: self.task_panic("Cannot load MetricsExchanger!", fl_ctx=fl_ctx) def log(self, key: str, value: Any, data_type: AnalyticsDataType, **kwargs): self.sender.log(key=key, value=value, data_type=data_type, **kwargs) @abstractmethod def get_writer_name(self) -> LogWriterName: pass
NVFlare-main
nvflare/app_common/tracking/log_writer_me.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/tracking/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class ExpTrackingException(Exception): def __init__(self, message, **kwargs): """ Args: message: The message or exception describing the error that occurred. **kwargs: Additional key-value pairs """ message = str(message) self.message = message self.kwargs = kwargs super().__init__(message)
NVFlare-main
nvflare/app_common/tracking/track_exception.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from nvflare.apis.event_type import EventType from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_context import FLContext from nvflare.app_common.tracking.tracker_types import LogWriterName from nvflare.app_common.widgets.streaming import ANALYTIC_EVENT_TYPE, AnalyticsSender class LogWriter(FLComponent, ABC): def __init__(self, event_type: str = ANALYTIC_EVENT_TYPE): super().__init__() self.sender = self.load_log_sender(event_type) self.engine = None def load_log_sender(self, event_type: str = ANALYTIC_EVENT_TYPE) -> AnalyticsSender: return AnalyticsSender(event_type, self.get_writer_name()) def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.ABOUT_TO_START_RUN: self.sender.engine = fl_ctx.get_engine() @abstractmethod def get_writer_name(self) -> LogWriterName: pass
NVFlare-main
nvflare/app_common/tracking/log_writer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from enum import Enum ANALYTIC_EVENT_TYPE = "analytix_log_stats" class LogWriterName(Enum): TORCH_TB = "TORCH_TENSORBOARD" MLFLOW = "MLFLOW" WANDB = "WEIGHTS_AND_BIASES" class TrackConst(object): TRACKER_KEY = "tracker_key" TRACK_KEY = "track_key" TRACK_VALUE = "track_value" TAG_KEY = "tag_key" TAGS_KEY = "tags_key" EXP_TAGS_KEY = "tags_key" GLOBAL_STEP_KEY = "global_step" PATH_KEY = "path" DATA_TYPE_KEY = "analytics_data_type" KWARGS_KEY = "analytics_kwargs" PROJECT_NAME = "project_name" PROJECT_TAGS = "project_name" EXPERIMENT_NAME = "experiment_name" RUN_NAME = "run_name" EXPERIMENT_TAGS = "experiment_tags" INIT_CONFIG = "init_config" RUN_TAGS = "run_tags" SITE_KEY = "site" JOB_ID_KEY = "job_id"
NVFlare-main
nvflare/app_common/tracking/tracker_types.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/response_processors/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.apis.client import Client from nvflare.apis.dxo import DataKind, from_shareable from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.app_common.abstract.model import make_model_learnable from nvflare.app_common.abstract.response_processor import ResponseProcessor from nvflare.app_common.app_constant import AppConstants class WeightMethod(object): FIRST = "first" CLIENT = "client" class GlobalWeightsInitializer(ResponseProcessor): def __init__( self, weights_prop_name: str = AppConstants.GLOBAL_MODEL, weight_method: str = WeightMethod.FIRST, client_name: str = None, ): """Set global model weights based on specified weight setting method. Args: weights_prop_name: name of the prop to be set into fl_ctx for the determined global weights weight_method: the method to select final weights: one of "first", "client" client_name: the name of the client to be used as the weight provider If weight_method is "first", then use the weights reported from the first client; If weight_method is "client", then only use the weights reported from the specified client. """ if weight_method not in [WeightMethod.FIRST, WeightMethod.CLIENT]: raise ValueError(f"invalid weight_method '{weight_method}'") if weight_method == WeightMethod.CLIENT and not client_name: raise ValueError(f"client name not provided for weight method '{WeightMethod.CLIENT}'") if weight_method == WeightMethod.CLIENT and not isinstance(client_name, str): raise ValueError( f"client name should be a single string for weight method '{WeightMethod.CLIENT}' but it is {client_name} " ) ResponseProcessor.__init__(self) self.weights_prop_name = weights_prop_name self.weight_method = weight_method self.client_name = client_name self.final_weights = None def create_task_data(self, task_name: str, fl_ctx: FLContext) -> Shareable: """Create the data for the task to be sent to clients to collect their weights Args: task_name: name of the task fl_ctx: the FL context Returns: task data """ # reset internal state in case this processor is used multiple times self.final_weights = None return Shareable() def process_client_response(self, client: Client, task_name: str, response: Shareable, fl_ctx: FLContext) -> bool: """Process the weights submitted by a client. Args: client: the client that submitted the response task_name: name of the task response: submitted data from the client fl_ctx: FLContext Returns: boolean to indicate if the client data is acceptable. If not acceptable, the control flow will exit. """ if not isinstance(response, Shareable): self.log_error( fl_ctx, f"bad response from client {client.name}: " f"response must be Shareable but got {type(response)}", ) return False try: dxo = from_shareable(response) except Exception: self.log_exception(fl_ctx, f"bad response from client {client.name}: " f"it does not contain DXO") return False if dxo.data_kind != DataKind.WEIGHTS: self.log_error( fl_ctx, f"bad response from client {client.name}: " f"data_kind should be DataKind.WEIGHTS but got {dxo.data_kind}", ) return False weights = dxo.data if not weights: self.log_error(fl_ctx, f"No model weights found from client {client.name}") return False if not self.final_weights and ( self.weight_method == WeightMethod.FIRST or (self.weight_method == WeightMethod.CLIENT and client.name == self.client_name) ): self.final_weights = weights return True def final_process(self, fl_ctx: FLContext) -> bool: """Perform the final check on all the received weights from the clients. Args: fl_ctx: FLContext Returns: boolean indicating whether the final response processing is successful. If not successful, the control flow will exit. """ if not self.final_weights: self.log_error(fl_ctx, "no weights available from clients") return False # must set sticky to True so other controllers can get it! fl_ctx.set_prop(self.weights_prop_name, make_model_learnable(self.final_weights, {}), private=True, sticky=True) return True
NVFlare-main
nvflare/app_common/response_processors/global_weights_initializer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from nvflare.apis.signal import Signal from nvflare.app_common.abstract.init_final_component import InitFinalArgsComponent class PSIWorkflow(InitFinalArgsComponent, ABC): """ PSIWorkflow is an interface for different PSI algorithms for example, DDH-Based PSI, Homomorphic-based PSI etc. """ @abstractmethod def pre_process(self, abort_signal: Signal) -> bool: pass @abstractmethod def run(self, abort_signal: Signal) -> bool: pass @abstractmethod def post_process(self, abort_signal: Signal) -> bool: pass
NVFlare-main
nvflare/app_common/psi/psi_workflow_spec.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import List from nvflare.apis.fl_constant import FLContextKey from nvflare.apis.fl_context import FLContext from nvflare.apis.storage import StorageException from nvflare.app_common.psi.psi_spec import PSIWriter def _validate_directory(full_path: str): if not os.path.isabs(full_path): raise ValueError(f"path {full_path} must be an absolute path.") parent_dir = os.path.dirname(full_path) if os.path.exists(parent_dir) and not os.path.isdir(parent_dir): raise ValueError(f"directory {parent_dir} exists but is not a directory.") if not os.path.exists(parent_dir): os.makedirs(parent_dir, exist_ok=False) class FilePSIWriter(PSIWriter): def __init__(self, output_path: str): super().__init__() if len(output_path) == 0: raise ValueError(f"output_path {output_path} is empty string") self.output_path = output_path def save( self, intersection: List[str], overwrite_existing, fl_ctx: FLContext, ): full_uri = self.get_output_path(fl_ctx) _validate_directory(full_uri) data_exists = os.path.isfile(full_uri) if data_exists and not overwrite_existing: raise StorageException("object {} already exists and overwrite_existing is False".format(full_uri)) self.log_info(fl_ctx, f"trying to save data to {full_uri}") with open(full_uri, "w") as fp: fp.write("\n".join(intersection)) self.log_info(fl_ctx, f"file {full_uri} saved") def get_output_path(self, fl_ctx: FLContext) -> str: job_dir = os.path.dirname(os.path.abspath(fl_ctx.get_prop(FLContextKey.APP_ROOT))) self.log_info(fl_ctx, "job dir = " + job_dir) return os.path.join(job_dir, fl_ctx.get_identity_name(), self.output_path)
NVFlare-main
nvflare/app_common/psi/file_psi_writer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/psi/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from typing import List from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_context import FLContext class PSIWriter(FLComponent, ABC): """Interface for saving PSI intersection.""" @abstractmethod def save(self, intersection: List[str], overwrite_existing: bool, fl_ctx: FLContext): """Saves PSI intersection. Args: intersection: (List[str]) - Intersection to be saved overwrite_existing: (bool) overwrite the existing one if true fl_ctx: (FLContext) """ pass
NVFlare-main
nvflare/app_common/psi/psi_writer_spec.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional from nvflare.apis.client import Client from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.apis.signal import Signal from nvflare.app_common.app_constant import PSIConst from nvflare.app_common.psi.psi_workflow_spec import PSIWorkflow from nvflare.app_common.utils.component_utils import check_component_type from nvflare.app_common.workflows.error_handling_controller import ErrorHandlingController class PSIController(ErrorHandlingController): def __init__(self, psi_workflow_id: str): super().__init__() self.psi_workflow_id = psi_workflow_id self.psi_workflow: Optional[PSIWorkflow] = None self.fl_ctx = None self.task_name = PSIConst.TASK def control_flow(self, abort_signal: Signal, fl_ctx: FLContext): self.log_info(fl_ctx, f"{self.task_name} control flow started.") if abort_signal.triggered: return False self.log_info(fl_ctx, "start pre workflow") self.psi_workflow.pre_process(abort_signal) if abort_signal.triggered: return False self.log_info(fl_ctx, "start workflow") self.psi_workflow.run(abort_signal) if abort_signal.triggered: return False self.log_info(fl_ctx, "start post workflow") self.psi_workflow.post_process(abort_signal) self.log_info(fl_ctx, f"task {self.task_name} control flow end.") def start_controller(self, fl_ctx: FLContext): self.fl_ctx = fl_ctx psi_workflow = self.load_psi_workflow(fl_ctx) self.psi_workflow = psi_workflow def stop_controller(self, fl_ctx: FLContext): self.psi_workflow.finalize(fl_ctx) def process_result_of_unknown_task( self, client: Client, task_name: str, client_task_id: str, result: Shareable, fl_ctx: FLContext ): pass def load_psi_workflow(self, fl_ctx: FLContext) -> PSIWorkflow: engine = fl_ctx.get_engine() psi_workflow: PSIWorkflow = engine.get_component(self.psi_workflow_id) psi_workflow.initialize(fl_ctx, controller=self) check_component_type(psi_workflow, PSIWorkflow) return psi_workflow
NVFlare-main
nvflare/app_common/psi/psi_controller.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.apis.dxo import DataKind from nvflare.apis.fl_context import FLContext from nvflare.app_common.abstract.task_handler import TaskHandler from nvflare.app_common.executors.error_handling_executor import ErrorHandlingExecutor from nvflare.app_common.utils.component_utils import check_component_type class PSIExecutor(ErrorHandlingExecutor): def __init__(self, psi_algo_id: str): super().__init__() self.psi_algo_id = psi_algo_id def get_data_kind(self) -> str: return DataKind.PSI def get_task_handler(self, fl_ctx: FLContext) -> TaskHandler: return self.load_task_handler(self.psi_algo_id, fl_ctx) def load_task_handler(self, psi_algo: str, fl_ctx: FLContext) -> TaskHandler: engine = fl_ctx.get_engine() psi_task_handler = engine.get_component(psi_algo) if psi_algo else None self.check_psi_algo(psi_task_handler, fl_ctx) psi_task_handler.initialize(fl_ctx) return psi_task_handler def check_psi_algo(self, psi_task_handler: TaskHandler, fl_ctx): if not psi_task_handler: self.log_error(fl_ctx, f"PSI algorithm specified by {self.psi_algo_id} is not implemented") raise NotImplementedError check_component_type(psi_task_handler, TaskHandler)
NVFlare-main
nvflare/app_common/psi/psi_executor.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from typing import List, Optional from nvflare.apis.fl_context import FLContext from nvflare.app_common.abstract.init_final_component import InitFinalComponent from nvflare.app_common.psi.psi_writer_spec import PSIWriter from nvflare.app_common.utils.component_utils import check_component_type class PSI(InitFinalComponent, ABC): """The PSI interface is intended for the end-user interface to get an intersection of items of clients specified without knowing:: 1) the details of PSI algorithms 2) real client's own items to other FL clients and FL Servers """ def __init__(self, psi_writer_id: str): """ Args: psi_writer_id: a PSIWriter id, we will use it to get PSIWriter from engine. PSIWriter will be used save the intersection results. For example, FilePSIWriter implements PSIWriter interface and save to the local disk """ super().__init__() self.psi_writer_id = psi_writer_id self.psi_writer: Optional[PSIWriter] = None self.fl_ctx = None self.intersection: Optional[List[str]] = None def initialize(self, fl_ctx: FLContext): self.fl_ctx = fl_ctx engine = fl_ctx.get_engine() psi_writer: PSIWriter = engine.get_component(self.psi_writer_id) check_component_type(psi_writer, PSIWriter) self.psi_writer = psi_writer @abstractmethod def load_items(self) -> List[str]: """This method needs to be implemented to provide the list of items to PSI algorithm in order to calculate intersection. Returns: List of Items to be used for intersection calculation """ pass def get_intersection(self) -> Optional[List[str]]: """This method will return the calculated intersection once PSI job is completed and successful. Returns: Intersection result or None """ return self.intersection def save(self, intersection: List[str]): self.intersection = intersection if self.psi_writer: self.psi_writer.save(intersection=intersection, overwrite_existing=True, fl_ctx=self.fl_ctx) def finalize(self, fl_ctx: FLContext): pass
NVFlare-main
nvflare/app_common/psi/psi_spec.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/psi/dh_psi/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.apis.fl_context import FLContext from nvflare.app_common.psi.dh_psi.dh_psi_workflow import DhPSIWorkFlow from nvflare.app_common.psi.psi_controller import PSIController from nvflare.app_common.psi.psi_workflow_spec import PSIWorkflow class DhPSIController(PSIController): def __init__(self): super().__init__("") def load_psi_workflow(self, fl_ctx: FLContext) -> PSIWorkflow: psi_workflow = DhPSIWorkFlow() psi_workflow.initialize(fl_ctx, controller=self) return psi_workflow
NVFlare-main
nvflare/app_common/psi/dh_psi/dh_psi_controller.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, NamedTuple, Set from nvflare.apis.dxo import DXO from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.apis.signal import Signal from nvflare.app_common.app_constant import PSIConst from nvflare.app_common.psi.psi_workflow_spec import PSIWorkflow from nvflare.app_common.workflows.broadcast_operator import BroadcastAndWait from nvflare.utils.decorators import measure_time class SiteSize(NamedTuple): name: str size: int class DhPSIWorkFlow(PSIWorkflow): def __init__(self, bloom_filter_fpr: float = 1e-11): super().__init__() self.task_name = PSIConst.TASK self.bloom_filter_fpr: float = bloom_filter_fpr self.wait_time_after_min_received = 0 self.abort_signal = None self.fl_ctx = None self.controller = None self.ordered_sites: List[SiteSize] = [] self.forward_processed: Dict[str, int] = {} self.backward_processed: Dict[str, int] = {} def initialize(self, fl_ctx: FLContext, **kwargs): self.fl_ctx = fl_ctx self.controller = kwargs["controller"] def pre_process(self, abort_signal: Signal) -> bool: # ask client send back their item sizes # sort client by ascending order self.log_info(self.fl_ctx, f"pre_process on task {self.task_name}") if abort_signal.triggered: return False self.abort_signal = abort_signal self.prepare_sites(abort_signal) def run(self, abort_signal: Signal): if abort_signal.triggered: return False self.abort_signal = abort_signal self.log_info(self.fl_ctx, f"order sites = {self.ordered_sites}") intersect_site = self.forward_pass(self.ordered_sites, self.forward_processed) self.log_info( self.fl_ctx, f"forward_processed sites {self.forward_processed}\n," f"intersect_sites={intersect_site}\n" f"ordered sites = {self.ordered_sites}\n", ) self.check_processed_sites(intersect_site, self.forward_processed) self.backward_processed.update(self.backward_pass(self.ordered_sites, intersect_site)) self.log_info( self.fl_ctx, f"backward_processed sites {self.backward_processed}\n," f"intersect_sites={intersect_site}\n" f"ordered sites = {self.ordered_sites}\n", ) self.check_final_intersection_sizes(intersect_site) self.log_pass_time_taken() def check_processed_sites(self, last_site: SiteSize, processed_sites: Dict[str, int]): valid = all(value >= last_site.size for value in processed_sites.values()) if not valid: raise RuntimeError( f"Intersection calculation failed:\n" f"processed sites :{processed_sites},\n" f"last_site ={last_site} \n" f"ordered sites = {self.ordered_sites} \n" ) def check_final_intersection_sizes(self, intersect_site: SiteSize): all_equal = all(value == intersect_site.size for value in self.backward_processed.values()) if not all_equal: raise RuntimeError( f"Intersection calculation failed: the intersection sizes from all sites must be equal.\n" f"backward processed sites:{self.backward_processed},\n" f"intersect sites ={intersect_site} \n" f"ordered sites = {self.ordered_sites} \n" ) else: self.log_info(self.fl_ctx, "Intersection calculation succeed") def log_pass_time_taken(self): self.log_info(self.fl_ctx, f"'forward_pass' took {self.forward_pass.time_taken} ms.") self.log_info(self.fl_ctx, f"'backward_pass' took {self.backward_pass.time_taken} ms.") def post_process(self, abort_signal: Signal): pass def finalize(self, fl_ctx: FLContext): pass @staticmethod def get_ordered_sites(results: Dict[str, DXO]): def compare_fn(e): return e.size site_sizes = [] for site_name in results: data = results[site_name].data if PSIConst.ITEMS_SIZE in data: size = data[PSIConst.ITEMS_SIZE] else: size = 0 if size > 0: c = SiteSize(site_name, size) site_sizes.append(c) site_sizes.sort(key=compare_fn) return site_sizes @measure_time def forward_pass(self, ordered_sites: List[SiteSize], processed: Dict[str, int]) -> SiteSize: if self.abort_signal.triggered: return ordered_sites[0] total_sites = len(ordered_sites) if total_sites <= 1: return ordered_sites[0] return self.parallel_forward_pass(ordered_sites, processed) def pairwise_setup(self, ordered_sites: List[SiteSize]): total_sites = len(ordered_sites) n = int(total_sites / 2) task_inputs = {} for i in range(n): s = ordered_sites[i] c = ordered_sites[i + n] inputs = Shareable() inputs[PSIConst.TASK_KEY] = PSIConst.TASK_SETUP inputs[PSIConst.ITEMS_SIZE] = c.size task_inputs[s.name] = inputs bop = BroadcastAndWait(self.fl_ctx, self.controller) results = bop.multicasts_and_wait( task_name=self.task_name, task_inputs=task_inputs, abort_signal=self.abort_signal ) return {site_name: results[site_name].data[PSIConst.SETUP_MSG] for site_name in results} def pairwise_requests(self, ordered_sites: List[SiteSize], setup_msgs: Dict[str, str]): total_sites = len(ordered_sites) n = int(total_sites / 2) task_inputs = {} for i in range(n): s = ordered_sites[i] c = ordered_sites[i + n] inputs = Shareable() inputs[PSIConst.TASK_KEY] = PSIConst.TASK_REQUEST inputs[PSIConst.SETUP_MSG] = setup_msgs[s.name] task_inputs[c.name] = inputs bop = BroadcastAndWait(self.fl_ctx, self.controller) results = bop.multicasts_and_wait( task_name=self.task_name, task_inputs=task_inputs, abort_signal=self.abort_signal ) return {site_name: results[site_name].data[PSIConst.REQUEST_MSG] for site_name in results} def pairwise_responses(self, ordered_sites: List[SiteSize], request_msgs: Dict[str, str]): total_sites = len(ordered_sites) n = int(total_sites / 2) task_inputs = {} for i in range(n): s = ordered_sites[i] c = ordered_sites[i + n] inputs = Shareable() inputs[PSIConst.TASK_KEY] = PSIConst.TASK_RESPONSE inputs[PSIConst.REQUEST_MSG] = request_msgs[c.name] task_inputs[s.name] = inputs bop = BroadcastAndWait(self.fl_ctx, self.controller) results = bop.multicasts_and_wait( task_name=self.task_name, task_inputs=task_inputs, abort_signal=self.abort_signal ) return {site_name: results[site_name].data[PSIConst.RESPONSE_MSG] for site_name in results} def pairwise_intersect(self, ordered_sites: List[SiteSize], response_msg: Dict[str, str]): total_sites = len(ordered_sites) n = int(total_sites / 2) task_inputs = {} for i in range(n): s = ordered_sites[i] c = ordered_sites[i + n] inputs = Shareable() inputs[PSIConst.TASK_KEY] = PSIConst.TASK_INTERSECT inputs[PSIConst.RESPONSE_MSG] = response_msg[s.name] task_inputs[c.name] = inputs bop = BroadcastAndWait(self.fl_ctx, self.controller) results = bop.multicasts_and_wait( task_name=self.task_name, task_inputs=task_inputs, abort_signal=self.abort_signal ) return {site_name: results[site_name].data[PSIConst.ITEMS_SIZE] for site_name in results} def parallel_forward_pass(self, target_sites, processed: dict): self.log_info(self.fl_ctx, f"target_sites: {target_sites}") total_sites = len(target_sites) if total_sites < 2: final_site = target_sites[0] processed.update({final_site.name: final_site.size}) return final_site else: setup_msgs = self.pairwise_setup(target_sites) request_msgs = self.pairwise_requests(target_sites, setup_msgs) response_msgs = self.pairwise_responses(target_sites, request_msgs) it_sites = self.pairwise_intersect(target_sites, response_msgs) processed.update(it_sites) new_targets = [SiteSize(site.name, it_sites[site.name]) for site in target_sites if site.name in it_sites] if total_sites % 2 == 1: new_targets.append(target_sites[total_sites - 1]) return self.parallel_forward_pass(new_targets, processed) @measure_time def backward_pass(self, ordered_clients: list, intersect_site: SiteSize) -> dict: processed = {} if self.abort_signal.triggered: return processed total_clients = len(ordered_clients) if total_clients <= 1: return processed status = self.parallel_backward_pass(ordered_clients, intersect_site) time_taken = self.parallel_backward_pass.time_taken self.log_info(self.fl_ctx, f"parallel_back_pass took {time_taken} (ms)") return status @measure_time def parallel_backward_pass(self, ordered_clients: list, intersect_site: SiteSize): # parallel version other_sites = [site for site in ordered_clients if site.name != intersect_site.name] other_sites = self.get_updated_site_sizes(other_sites) s = intersect_site other_site_sizes = set([site.size for site in other_sites]) setup_msgs: Dict[str, str] = self.prepare_setup_messages(s, other_site_sizes) site_setup_msgs = {site.name: setup_msgs[str(site.size)] for site in other_sites} request_msgs: Dict[str, str] = self.create_requests(site_setup_msgs) response_msgs: Dict[str, str] = self.process_requests(s, request_msgs) return self.calculate_intersections(response_msgs) def calculate_intersections(self, response_msg) -> Dict[str, int]: task_inputs = {} for client_name in response_msg: inputs = Shareable() inputs[PSIConst.TASK_KEY] = PSIConst.TASK_INTERSECT inputs[PSIConst.RESPONSE_MSG] = response_msg[client_name] task_inputs[client_name] = inputs bop = BroadcastAndWait(self.fl_ctx, self.controller) results = bop.multicasts_and_wait( task_name=self.task_name, task_inputs=task_inputs, abort_signal=self.abort_signal ) intersects = {client_name: results[client_name].data[PSIConst.ITEMS_SIZE] for client_name in results} self.log_info(self.fl_ctx, f"received intersections : {intersects} ") return intersects def process_requests(self, s: SiteSize, request_msgs: Dict[str, str]) -> Dict[str, str]: task_inputs = Shareable() task_inputs[PSIConst.TASK_KEY] = PSIConst.TASK_RESPONSE task_inputs[PSIConst.REQUEST_MSG_SET] = request_msgs bop = BroadcastAndWait(self.fl_ctx, self.controller) results = bop.broadcast_and_wait( task_name=self.task_name, task_input=task_inputs, targets=[s.name], abort_signal=self.abort_signal ) dxo = results[s.name] response_msgs = dxo.data[PSIConst.RESPONSE_MSG] return response_msgs def create_requests(self, site_setup_msgs) -> Dict[str, str]: task_inputs = {} for client_name in site_setup_msgs: inputs = Shareable() inputs[PSIConst.TASK_KEY] = PSIConst.TASK_REQUEST inputs[PSIConst.SETUP_MSG] = site_setup_msgs[client_name] task_inputs[client_name] = inputs bop = BroadcastAndWait(self.fl_ctx, self.controller) results = bop.multicasts_and_wait( task_name=self.task_name, task_inputs=task_inputs, abort_signal=self.abort_signal ) request_msgs = {client_name: results[client_name].data[PSIConst.REQUEST_MSG] for client_name in results} return request_msgs def get_updated_site_sizes(self, ordered_sites): updated_sites = [] for site in ordered_sites: new_size = self.forward_processed.get(site.name, site.size) updated_sites.append(SiteSize(site.name, new_size)) return updated_sites def prepare_sites(self, abort_signal): inputs = Shareable() inputs[PSIConst.TASK_KEY] = PSIConst.TASK_PREPARE inputs[PSIConst.BLOOM_FILTER_FPR] = self.bloom_filter_fpr targets = None engine = self.fl_ctx.get_engine() min_responses = len(engine.get_clients()) bop = BroadcastAndWait(self.fl_ctx, self.controller) results = bop.broadcast_and_wait( task_name=self.task_name, task_input=inputs, targets=targets, min_responses=min_responses, abort_signal=abort_signal, ) self.log_info(self.fl_ctx, f"{PSIConst.TASK_PREPARE} results = {results}") if not results: abort_signal.trigger("no items to perform PSI") raise RuntimeError("There is no item to perform PSI calculation") else: self.ordered_sites = self.get_ordered_sites(results) def prepare_setup_messages(self, s: SiteSize, other_site_sizes: Set[int]) -> Dict[str, str]: inputs = Shareable() inputs[PSIConst.TASK_KEY] = PSIConst.TASK_SETUP inputs[PSIConst.ITEMS_SIZE_SET] = other_site_sizes bop = BroadcastAndWait(self.fl_ctx, self.controller) results = bop.broadcast_and_wait( task_name=self.task_name, task_input=inputs, targets=[s.name], abort_signal=self.abort_signal ) dxo = results[s.name] return dxo.data[PSIConst.SETUP_MSG]
NVFlare-main
nvflare/app_common/psi/dh_psi/dh_psi_workflow.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings warnings.warn( f"This module: {__file__} is deprecated. Please use nvflare.app_opt.he.model_encryptor", category=FutureWarning, stacklevel=2, ) # flake8: noqa: F401 from nvflare.app_opt.he.model_encryptor import HEModelEncryptor
NVFlare-main
nvflare/app_common/homomorphic_encryption/he_model_encryptor.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/homomorphic_encryption/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings warnings.warn( f"This module: {__file__} is deprecated. Please use nvflare.app_opt.he.model_decryptor", category=FutureWarning, stacklevel=2, ) # flake8: noqa: F401 from nvflare.app_opt.he.model_decryptor import HEModelDecryptor
NVFlare-main
nvflare/app_common/homomorphic_encryption/he_model_decryptor.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings warnings.warn( f"This module: {__file__} is deprecated. Please use nvflare.app_opt.he.intime_accumulate_model_aggregator", category=FutureWarning, stacklevel=2, ) # flake8: noqa: F401 from nvflare.app_opt.he.intime_accumulate_model_aggregator import HEInTimeAccumulateWeightedAggregator
NVFlare-main
nvflare/app_common/homomorphic_encryption/he_intime_accumulate_model_aggregator.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings warnings.warn( f"This module: {__file__} is deprecated. Please use nvflare.app_opt.he.homomorphic_encrypt", category=FutureWarning, stacklevel=2, ) # flake8: noqa: F401 from nvflare.app_opt.he.homomorphic_encrypt import count_encrypted_layers, load_tenseal_context_from_workspace
NVFlare-main
nvflare/app_common/homomorphic_encryption/homomorphic_encrypt.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings warnings.warn( f"This module: {__file__} is deprecated. Please use nvflare.app_opt.he.model_shareable_generator", category=FutureWarning, stacklevel=2, ) # flake8: noqa: F401 from nvflare.app_opt.he.model_shareable_generator import HEModelShareableGenerator
NVFlare-main
nvflare/app_common/homomorphic_encryption/he_model_shareable_generator.py