python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pyhocon import ConfigFactory as CF from nvflare.tool.job.config.config_indexer import KeyIndex, build_dict_reverse_order_index from nvflare.tool.job.config.configer import extract_string_with_index, filter_config_name_and_values class TestConfigIndex: def test_dict_indexer(self): key_indices = build_dict_reverse_order_index(config=CF.from_dict({})) assert len(key_indices) == 0 config_dict = dict( x=dict( x1=dict(x11=2), x2=dict(x21=3, x22=4, x23=dict(x31=3, x32=4)), y=dict(y1=dict(y11=2), y2=dict(y21=1)), z=[ dict(id=2), dict(id=3), dict(id=4), 100, ], s=[ dict(id=2), 100, ], ) ) config = CF.from_dict(config_dict) root_key = KeyIndex(key="", value=config, parent_key=None) x_key = KeyIndex(key="x", value=config.get("x"), parent_key=None) x1_key = KeyIndex(key="x1", value=config.get("x").get("x1"), parent_key=x_key) x2_key = KeyIndex(key="x2", value=config.get("x").get("x2"), parent_key=x_key) y_key = KeyIndex(key="y", value=config.get("x").get("y"), parent_key=x_key) z_key = KeyIndex(key="z", value=config.get("x").get("z"), parent_key=x_key) s_key = KeyIndex(key="s", value=config.get("x").get("s"), parent_key=x_key) x11_key = KeyIndex(key="x11", value=2, parent_key=x1_key) x21_key = KeyIndex(key="x21", value=3, parent_key=x2_key) x22_key = KeyIndex(key="x22", value=4, parent_key=x2_key) x23_key = KeyIndex(key="x23", value=config.get("x").get("x2").get("x23"), parent_key=x2_key) x31_key = KeyIndex(key="x31", value=3, parent_key=x23_key) x32_key = KeyIndex(key="x32", value=4, parent_key=x23_key) y1_key = KeyIndex(key="y1", value=config.get("x").get("y").get("y1"), parent_key=y_key) y2_key = KeyIndex(key="y2", value=config.get("x").get("y").get("y2"), parent_key=y_key) y11_key = KeyIndex(key="y11", value=2, parent_key=y1_key) y21_key = KeyIndex(key="y21", value=1, parent_key=y2_key) z0_key = KeyIndex(key="z[0]", value=config.get("x").get("z")[0], parent_key=z_key, index=0) z1_key = KeyIndex(key="z[1]", value=config.get("x").get("z")[1], parent_key=z_key, index=1) z2_key = KeyIndex(key="z[2]", value=config.get("x").get("z")[2], parent_key=z_key, index=2) z3_key = KeyIndex(key="z[3]", value=100, parent_key=z_key, index=3) s0_key = KeyIndex(key="s[0]", value=config.get("x").get("s")[0], parent_key=s_key, index=0) s1_key = KeyIndex(key="s[1]", value=100, parent_key=s_key, index=1) id_keys = [ KeyIndex(key="id", value=2, parent_key=z0_key), KeyIndex(key="id", value=3, parent_key=z1_key), KeyIndex(key="id", value=4, parent_key=z2_key), KeyIndex(key="id", value=2, parent_key=s0_key), ] expected_keys = { "x31": x31_key, "x32": x32_key, "x22": x22_key, "x21": x21_key, "x11": x11_key, "y21": y21_key, "y11": y11_key, "z[3]": z3_key, "id": id_keys, "s[1]": s1_key, } key_indices = build_dict_reverse_order_index(config=CF.from_dict(config_dict)) print("\n\n") for key in key_indices: e = expected_keys[key] b_list = key_indices[key] if len(b_list) == 1: b = b_list[0] a = e assert key == a.key assert key == b.key assert a.key == b.key and a.value == b.value assert a.index == b.index if b.component_name is None or b.component_name.strip() == "": assert a.component_name is None or a.component_name.strip() == "" else: assert a.component_name == b.component_name assert a.parent_key.key == b.parent_key.key assert a.parent_key.value == b.parent_key.value assert a.parent_key.index == b.parent_key.index else: xs = zip(e, b_list) for a, b in xs: assert a.key == b.key and a.value == b.value assert a.index == b.index if b.component_name is None or b.component_name.strip() == "": assert a.component_name is None or a.component_name.strip() == "" else: assert a.component_name == b.component_name assert a.parent_key.key == b.parent_key.key assert a.parent_key.value == b.parent_key.value assert a.parent_key.index == b.parent_key.index diff1 = set(key_indices.keys()) - set(expected_keys.keys()) diff2 = set(expected_keys.keys()) - set(key_indices.keys()) assert len(diff2) == 0 assert len(diff1) == 0 def test_extract_string_with_index(self): input_string = "components[0].args.data_path" tokens = extract_string_with_index(input_string) assert tokens == [("components", 0, ["args.data_path"])] def test_extract_file_from_dict_by_index(self): config_str = """ { "components": [ { "id": "df_stats_generator", "path": "df_statistics.DFStatistics", "args": { "data_path": "data.csv" } }, { "id": "min_max_cleanser", "path": "nvflare.app_common.statistics.min_max_cleanser.AddNoiseToMinMax", "args": { "min_noise_level": 0.1, "max_noise_level": 0.3 } } ] } """ conf = CF.parse_string(config_str) key_indices = build_dict_reverse_order_index(config=conf) result = {} exclude_key_list = [] result = filter_config_name_and_values(exclude_key_list, key_indices) key_index = result["data_path"] assert key_index.value == "data.csv"
NVFlare-main
tests/unit_test/tool/job/config/config_indexer_test.py
# Copyright (c) 2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import sphinx_rtd_theme import os import sys from sphinx.domains.python import PythonDomain import subprocess class PatchedPythonDomain(PythonDomain): def resolve_xref(self, env, fromdocname, builder, typ, target, node, contnode): if "refspecific" in node: del node["refspecific"] return super(PatchedPythonDomain, self).resolve_xref(env, fromdocname, builder, typ, target, node, contnode) sys.path.insert(0, os.path.abspath("..")) print(sys.path) # -- Project information ----------------------------------------------------- project = "NVIDIA FLARE" copyright = "2023, NVIDIA" author = "NVIDIA" # The full version, including alpha/beta/rc tags release = "2.3.0" version = "2.3.0" # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. # Add napoleon to the extensions list # source_parsers = {'.md': CommonMarkParser} templates_path = ["templates"] source_suffix = { ".rst": "restructuredtext", ".txt": "restructuredtext", ".md": "markdown", } extensions = [ "recommonmark", "sphinx.ext.intersphinx", "sphinx.ext.mathjax", "sphinx.ext.napoleon", "sphinx.ext.autodoc", "sphinx.ext.viewcode", "sphinx.ext.autosectionlabel", "sphinx_copybutton", "sphinxcontrib.jquery" ] autoclass_content = "both" add_module_names = False autosectionlabel_prefix_document = True # Add any paths that contain templates here, relative to this directory. # templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] html_theme_options = { "collapse_navigation": True, "display_version": True, "navigation_depth": 8, "sticky_navigation": True, # Set to False to disable the sticky nav while scrolling. # 'logo_only': True, # if we have a html_logo below, this shows /only/ the logo with no title text } html_scaled_image_link = False html_show_sourcelink = True html_favicon = "favicon.ico" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] def generate_apidocs(*args): """Generate API docs automatically by trawling the available modules""" module_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "nvflare")) output_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "apidocs")) print(f"output_path {output_path}") print(f"module_path {module_path}") subprocess.check_call( [sys.executable, "-m", "sphinx.ext.apidoc", "-f", "-e"] + ["-o", output_path] + [module_path] + [os.path.join(module_path, p) for p in exclude_patterns] ) def setup(app): app.connect("builder-inited", generate_apidocs) app.add_domain(PatchedPythonDomain, override=True) app.add_css_file("css/additions.css")
NVFlare-main
docs/conf.py
def _get_model_weights(self) -> Shareable: # Get state dict and send as weights new_weights = self.model.state_dict() new_weights = {k: v.cpu().numpy() for k, v in new_weights.items()} outgoing_dxo = DXO( data_kind=DataKind.WEIGHTS, data=new_weights, meta={MetaKey.NUM_STEPS_CURRENT_ROUND: self._n_iterations} ) return outgoing_dxo.to_shareable()
NVFlare-main
docs/programming_guide/resources/te.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import shutil import numpy as np import pandas as pd def data_split_args_parser(): parser = argparse.ArgumentParser(description="Generate data split for dataset") parser.add_argument("--data_path", type=str, help="Path to data file") parser.add_argument("--site_num", type=int, default=2, help="Total number of sites") parser.add_argument( "--rows_total_percentage", type=float, default=1.0, help="Percentage of dataset_rows_total to use for rows_total", ) parser.add_argument( "--rows_overlap_percentage", type=float, default=0.5, help="Percentage of rows_total to use for rows_overlap between sites", ) parser.add_argument("--out_path", type=str, default="~/dataset", help="Output path for the data split file") parser.add_argument("--out_file", type=str, default="data.csv", help="Output file name for the data split file") return parser def split_num_proportion(n, site_num): split = [] ratio_vec = np.ones(site_num) total = sum(ratio_vec) left = n for site in range(site_num - 1): x = int(n * ratio_vec[site] / total) left = left - x split.append(x) split.append(left) return split def main(): parser = data_split_args_parser() args = parser.parse_args() df = pd.read_csv(args.data_path, header=None) dataset_rows_total, cols_total = df.shape[0], df.shape[1] rows_total = int(dataset_rows_total * args.rows_total_percentage) rows_overlap = int(rows_total * args.rows_overlap_percentage) print(f"site_num: {args.site_num}") print( f"dataset_num_rows: {dataset_rows_total}, rows_total_percentage: {args.rows_total_percentage}, rows_total: {rows_total}" ) print(f"rows_overlap_percentage: {args.rows_overlap_percentage}, rows_overlap: {rows_overlap}") print(f"cols_total: {cols_total}") df["uid"] = df.index.to_series().map(lambda x: "uid_" + str(x)) site_col_size = split_num_proportion(cols_total, args.site_num) site_row_size = split_num_proportion(rows_total - rows_overlap, args.site_num) if os.path.exists(args.out_path): shutil.rmtree(args.out_path) for site in range(args.site_num): col_start = sum(site_col_size[:site]) col_end = sum(site_col_size[: site + 1]) row_start = sum(site_row_size[:site]) row_end = sum(site_row_size[: site + 1]) df_split = pd.concat( [ df.iloc[row_start:row_end, np.r_[col_start:col_end, cols_total]], df.iloc[ rows_total - rows_overlap : rows_total, np.r_[col_start:col_end, cols_total], ], ] ) df_split = df_split.sample(frac=1) print(f"site-{site+1} split rows [{row_start}:{row_end}],[{rows_total - rows_overlap}:{rows_total}]") print(f"site-{site+1} split cols [{col_start}:{col_end}]") data_path = os.path.join(args.out_path, f"site-{site + 1}") if not os.path.exists(data_path): os.makedirs(data_path, exist_ok=True) df_split.to_csv(path_or_buf=os.path.join(data_path, args.out_file), index=False) if __name__ == "__main__": main()
NVFlare-main
examples/advanced/vertical_xgboost/utils/prepare_data.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pandas as pd import xgboost as xgb from nvflare.app_opt.xgboost.data_loader import XGBDataLoader def _get_data_intersection(df, intersection_path, id_col): with open(intersection_path) as intersection_file: intersection = intersection_file.read().splitlines() intersection.sort() # Note: the order of the intersection must be maintained intersection_df = df[df[id_col].isin(intersection)].copy() intersection_df["sort"] = pd.Categorical(intersection_df[id_col], categories=intersection, ordered=True) intersection_df = intersection_df.sort_values("sort") intersection_df = intersection_df.drop([id_col, "sort"], axis=1) if intersection_df.empty: raise ValueError("private set intersection must not be empty") return intersection_df def _split_train_val(df, train_proportion): num_train = int(df.shape[0] * train_proportion) train_df = df.iloc[:num_train].copy() valid_df = df.iloc[num_train:].copy() return train_df, valid_df class VerticalDataLoader(XGBDataLoader): def __init__(self, data_split_path, psi_path, id_col, label_owner, train_proportion): """Reads intersection of dataset and returns train and validation XGB data matrices with column split mode. Args: data_split_path: path to data split file psi_path: path to intersection file id_col: column id used for psi label_owner: client id that owns the label train_proportion: proportion of intersected data to use for training """ self.data_split_path = data_split_path self.psi_path = psi_path self.id_col = id_col self.label_owner = label_owner self.train_proportion = train_proportion def load_data(self, client_id: str): client_data_split_path = self.data_split_path.replace("site-x", client_id) client_psi_path = self.psi_path.replace("site-x", client_id) data_split_dir = os.path.dirname(client_data_split_path) train_path = os.path.join(data_split_dir, "train.csv") valid_path = os.path.join(data_split_dir, "valid.csv") if not (os.path.exists(train_path) and os.path.exists(valid_path)): df = pd.read_csv(client_data_split_path) intersection_df = _get_data_intersection(df, client_psi_path, self.id_col) train_df, valid_df = _split_train_val(intersection_df, self.train_proportion) train_df.to_csv(path_or_buf=train_path, header=False, index=False) valid_df.to_csv(path_or_buf=valid_path, header=False, index=False) if client_id == self.label_owner: label = "&label_column=0" else: label = "" # for Vertical XGBoost, read from csv with label_column and set data_split_mode to 1 for column mode dtrain = xgb.DMatrix(train_path + f"?format=csv{label}", data_split_mode=1) dvalid = xgb.DMatrix(valid_path + f"?format=csv{label}", data_split_mode=1) return dtrain, dvalid
NVFlare-main
examples/advanced/vertical_xgboost/jobs/vertical_xgb/app/custom/vertical_data_loader.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os.path from typing import List import pandas as pd from nvflare.app_common.psi.psi_spec import PSI class LocalPSI(PSI): def __init__(self, psi_writer_id: str, data_split_path: str, id_col: str): super().__init__(psi_writer_id) self.data_split_path = data_split_path self.id_col = id_col self.data = {} def load_items(self) -> List[str]: client_id = self.fl_ctx.get_identity_name() client_data_split_path = self.data_split_path.replace("site-x", client_id) if os.path.isfile(client_data_split_path): df = pd.read_csv(client_data_split_path, header=0) else: raise RuntimeError(f"invalid data path {client_data_split_path}") # Note: the PSI algorithm requires the items are unique items = list(df[self.id_col]) return items
NVFlare-main
examples/advanced/vertical_xgboost/jobs/vertical_xgb_psi/app/custom/local_psi.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os import pathlib import shutil from enum import Enum from typing import List import numpy as np from nvflare.apis.fl_constant import JobConstants JOBS_ROOT = "jobs" class SplitMethod(Enum): UNIFORM = "uniform" LINEAR = "linear" SQUARE = "square" EXPONENTIAL = "exponential" def job_config_args_parser(): parser = argparse.ArgumentParser(description="generate train configs with data split") parser.add_argument("--task_name", type=str, help="Task name for the config") parser.add_argument("--data_path", type=str, help="Path to data file") parser.add_argument("--site_num", type=int, help="Total number of sites") parser.add_argument("--site_name_prefix", type=str, default="site-", help="Site name prefix") parser.add_argument( "--data_size", type=int, default=0, help="Total data size, use if specified, in order to use partial data" "If not specified, use the full data size fetched from file.", ) parser.add_argument( "--valid_frac", type=float, help="Validation fraction of the total size, N = round(total_size* valid_frac), " "the first N to be treated as validation data. " "special case valid_frac = 1, where all data will be used" "in validation, e.g. for evaluating unsupervised clustering with known ground truth label.", ) parser.add_argument( "--split_method", type=str, default="uniform", choices=["uniform", "linear", "square", "exponential"], help="How to split the dataset", ) return parser def get_split_ratios(site_num: int, split_method: SplitMethod): if split_method == SplitMethod.UNIFORM: ratio_vec = np.ones(site_num) elif split_method == SplitMethod.LINEAR: ratio_vec = np.linspace(1, site_num, num=site_num) elif split_method == SplitMethod.SQUARE: ratio_vec = np.square(np.linspace(1, site_num, num=site_num)) elif split_method == SplitMethod.EXPONENTIAL: ratio_vec = np.exp(np.linspace(1, site_num, num=site_num)) else: raise ValueError(f"Split method {split_method.name} not implemented!") return ratio_vec def split_num_proportion(n, site_num, split_method: SplitMethod) -> List[int]: split = [] ratio_vec = get_split_ratios(site_num, split_method) total = sum(ratio_vec) left = n for site in range(site_num - 1): x = int(n * ratio_vec[site] / total) left = left - x split.append(x) split.append(left) return split def assign_data_index_to_sites( data_size: int, valid_fraction: float, num_sites: int, site_name_prefix: str, split_method: SplitMethod = SplitMethod.UNIFORM, ) -> dict: if valid_fraction > 1.0: raise ValueError("validation percent should be less than or equal to 100% of the total data") elif valid_fraction < 1.0: valid_size = int(round(data_size * valid_fraction, 0)) train_size = data_size - valid_size else: valid_size = data_size train_size = data_size site_sizes = split_num_proportion(train_size, num_sites, split_method) split_data_indices = { "valid": {"start": 0, "end": valid_size}, } for site in range(num_sites): site_id = site_name_prefix + str(site + 1) if valid_fraction < 1.0: idx_start = valid_size + sum(site_sizes[:site]) idx_end = valid_size + sum(site_sizes[: site + 1]) else: idx_start = sum(site_sizes[:site]) idx_end = sum(site_sizes[: site + 1]) split_data_indices[site_id] = {"start": idx_start, "end": idx_end} return split_data_indices def get_file_line_count(input_path: str) -> int: count = 0 with open(input_path, "r") as fp: for i, _ in enumerate(fp): count += 1 return count def split_data( data_path: str, site_num: int, data_size: int, valid_frac: float, site_name_prefix: str = "site-", split_method: SplitMethod = SplitMethod.UNIFORM, ): size_total_file = get_file_line_count(data_path) if data_size > 0: if data_size > size_total_file: raise ValueError("data_size should be less than or equal to the true data size") else: size_total = data_size else: size_total = size_total_file site_indices = assign_data_index_to_sites(size_total, valid_frac, site_num, site_name_prefix, split_method) return site_indices def _read_json(filename): if not os.path.isfile(filename): raise ValueError(f"{filename} does not exist!") with open(filename, "r") as f: return json.load(f) def _write_json(data, filename): with open(filename, "w") as f: json.dump(data, f, indent=2) def _get_job_name(args) -> str: return args.task_name + "_" + str(args.site_num) + "_" + args.split_method def _gen_deploy_map(num_sites: int, site_name_prefix: str) -> dict: deploy_map = {"app_server": ["server"]} for i in range(1, num_sites + 1): deploy_map[f"app_{site_name_prefix}{i}"] = [f"{site_name_prefix}{i}"] return deploy_map def _update_meta(meta: dict, args): name = _get_job_name(args) meta["name"] = name meta["deploy_map"] = _gen_deploy_map(args.site_num, args.site_name_prefix) meta["min_clients"] = args.site_num def _update_client_config(config: dict, args, site_name: str, site_indices): # update client config # data path and training/validation row indices config["components"][0]["args"]["data_path"] = args.data_path config["components"][0]["args"]["train_start"] = site_indices[site_name]["start"] config["components"][0]["args"]["train_end"] = site_indices[site_name]["end"] config["components"][0]["args"]["valid_start"] = site_indices["valid"]["start"] config["components"][0]["args"]["valid_end"] = site_indices["valid"]["end"] def _update_server_config(config: dict, args): config["min_clients"] = args.site_num def _copy_custom_files(src_job_path, src_app_name, dst_job_path, dst_app_name): dst_path = dst_job_path / dst_app_name / "custom" os.makedirs(dst_path, exist_ok=True) src_path = src_job_path / src_app_name / "custom" if os.path.isdir(src_path): shutil.copytree(src_path, dst_path, dirs_exist_ok=True) def create_server_app(src_job_path, src_app_name, dst_job_path, site_name, args): dst_app_name = f"app_{site_name}" server_config = _read_json(src_job_path / src_app_name / "config" / JobConstants.SERVER_JOB_CONFIG) dst_config_path = dst_job_path / dst_app_name / "config" # make target config folders if not os.path.exists(dst_config_path): os.makedirs(dst_config_path) _update_server_config(server_config, args) server_config_filename = dst_config_path / JobConstants.SERVER_JOB_CONFIG _write_json(server_config, server_config_filename) # copy custom file _copy_custom_files(src_job_path, src_app_name, dst_job_path, dst_app_name) def create_client_app(src_job_path, src_app_name, dst_job_path, site_name, site_indices, args): dst_app_name = f"app_{site_name}" client_config = _read_json(src_job_path / src_app_name / "config" / JobConstants.CLIENT_JOB_CONFIG) dst_config_path = dst_job_path / dst_app_name / "config" # make target config folders if not os.path.exists(dst_config_path): os.makedirs(dst_config_path) # adjust file contents according to each job's specs _update_client_config(client_config, args, site_name, site_indices) client_config_filename = dst_config_path / JobConstants.CLIENT_JOB_CONFIG _write_json(client_config, client_config_filename) # copy custom file _copy_custom_files(src_job_path, src_app_name, dst_job_path, dst_app_name) def main(): parser = job_config_args_parser() args = parser.parse_args() job_name = _get_job_name(args) src_name = args.task_name + "_base" src_job_path = pathlib.Path(JOBS_ROOT) / src_name # create a new job dst_job_path = pathlib.Path(JOBS_ROOT) / job_name if not os.path.exists(dst_job_path): os.makedirs(dst_job_path) # update meta meta_config_dst = dst_job_path / JobConstants.META_FILE meta_config = _read_json(src_job_path / JobConstants.META_FILE) _update_meta(meta_config, args) _write_json(meta_config, meta_config_dst) # create server side app create_server_app( src_job_path=src_job_path, src_app_name="app", dst_job_path=dst_job_path, site_name="server", args=args, ) # generate data split site_indices = split_data( args.data_path, args.site_num, args.data_size, args.valid_frac, args.site_name_prefix, ) # create client side app for i in range(1, args.site_num + 1): create_client_app( src_job_path=src_job_path, src_app_name="app", dst_job_path=dst_job_path, site_name=f"{args.site_name_prefix}{i}", site_indices=site_indices, args=args, ) if __name__ == "__main__": main()
NVFlare-main
examples/advanced/sklearn-linear/utils/prepare_job_config.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from typing import Optional, Tuple import numpy as np from sklearn.linear_model import SGDClassifier from sklearn.metrics import roc_auc_score from nvflare.apis.fl_context import FLContext from nvflare.app_common.abstract.learner_spec import Learner from nvflare.app_opt.sklearn.data_loader import load_data_for_range class LinearLearner(Learner): def __init__( self, data_path: str, train_start: int, train_end: int, valid_start: int, valid_end: int, random_state: int = None, ): super().__init__() self.data_path = data_path self.train_start = train_start self.train_end = train_end self.valid_start = valid_start self.valid_end = valid_end self.random_state = random_state self.train_data = None self.valid_data = None self.n_samples = None self.local_model = None self.n_features = None def load_data(self) -> dict: train_data = load_data_for_range(self.data_path, self.train_start, self.train_end) valid_data = load_data_for_range(self.data_path, self.valid_start, self.valid_end) return {"train": train_data, "valid": valid_data} def initialize(self, parts: dict, fl_ctx: FLContext): self.log_info(fl_ctx, f"Loading data from {self.data_path}") data = self.load_data() self.train_data = data["train"] self.valid_data = data["valid"] # train data size, to be used for setting # NUM_STEPS_CURRENT_ROUND for potential aggregation self.n_samples = data["train"][-1] self.n_features = data["train"][0].shape[1] # model will be created after receiving global parameters def set_parameters(self, params): self.local_model.coef_ = params["coef"] if self.local_model.fit_intercept: self.local_model.intercept_ = params["intercept"] def train(self, curr_round: int, global_param: Optional[dict], fl_ctx: FLContext) -> Tuple[dict, dict]: (x_train, y_train, train_size) = self.train_data if curr_round == 0: # initialize model with global_param # and set to all zero fit_intercept = bool(global_param["fit_intercept"]) self.local_model = SGDClassifier( loss=global_param["loss"], penalty=global_param["penalty"], fit_intercept=fit_intercept, learning_rate=global_param["learning_rate"], eta0=global_param["eta0"], max_iter=1, warm_start=True, random_state=self.random_state, ) n_classes = global_param["n_classes"] self.local_model.classes_ = np.array(list(range(n_classes))) self.local_model.coef_ = np.zeros((1, self.n_features)) if fit_intercept: self.local_model.intercept_ = np.zeros((1,)) # Training starting from global model # Note that the parameter update using global model has been performed # during global model evaluation self.local_model.fit(x_train, y_train) if self.local_model.fit_intercept: params = { "coef": self.local_model.coef_, "intercept": self.local_model.intercept_, } else: params = {"coef": self.local_model.coef_} return copy.deepcopy(params), self.local_model def validate(self, curr_round: int, global_param: Optional[dict], fl_ctx: FLContext) -> Tuple[dict, dict]: # set local model with global parameters self.set_parameters(global_param) # perform validation (x_valid, y_valid, valid_size) = self.valid_data y_pred = self.local_model.predict(x_valid) auc = roc_auc_score(y_valid, y_pred) self.log_info(fl_ctx, f"AUC {auc:.4f}") metrics = {"AUC": auc} return metrics, self.local_model def finalize(self, fl_ctx: FLContext): # freeing resources in finalize del self.train_data del self.valid_data self.log_info(fl_ctx, "Freed training resources")
NVFlare-main
examples/advanced/sklearn-linear/jobs/sklearn_linear_base/app/custom/linear_learner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os def custom_client_datalist_json_path(datalist_json_path: str, client_id: str) -> str: """ Customize datalist_json_path for each client Args: datalist_json_path: root path containing all jsons client_id: e.g., site-2 """ # Customize datalist_json_path for each client datalist_json_path_client = os.path.join( datalist_json_path, client_id + ".json", ) return datalist_json_path_client
NVFlare-main
examples/advanced/prostate/prostate_2D/custom/utils/custom_client_datalist_json_path.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import numpy as np import torch import torch.optim as optim from helpers.supervised_pt_ditto import SupervisedPTDittoHelper from learners.supervised_monai_prostate_learner import SupervisedMonaiProstateLearner from monai.losses import DiceLoss from monai.networks.nets.unet import UNet from nvflare.apis.dxo import DXO, DataKind, MetaKey, from_shareable from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.app_constant import AppConstants class SupervisedMonaiProstateDittoLearner(SupervisedMonaiProstateLearner): def __init__( self, train_config_filename, aggregation_epochs: int = 1, ditto_model_epochs: int = 1, train_task_name: str = AppConstants.TASK_TRAIN, ): """Trainer for prostate segmentation task. It inherits from MONAI trainer. Args: train_config_filename: directory of config file. aggregation_epochs: the number of training epochs of global model for a round. Defaults to 1. ditto_model_epochs: the number of training epochs of personalized model for a round. Defaults to 1. train_task_name: name of the task to train the model. Returns: a Shareable with the updated local model after running `execute()` """ SupervisedMonaiProstateLearner.__init__( self, train_config_filename=train_config_filename, aggregation_epochs=aggregation_epochs, train_task_name=train_task_name, ) self.ditto_helper = None self.ditto_model_epochs = ditto_model_epochs def train_config(self, fl_ctx: FLContext): # Initialize superclass SupervisedMonaiProstateLearner.train_config(self, fl_ctx) engine = fl_ctx.get_engine() ws = engine.get_workspace() app_dir = ws.get_app_dir(fl_ctx.get_job_id()) # Initialize PTDittoHelper ditto_model = UNet( spatial_dims=2, in_channels=1, out_channels=1, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, ).to(self.device) ditto_optimizer = optim.Adam(ditto_model.parameters(), lr=self.config_info["ditto_learning_rate"]) self.ditto_helper = SupervisedPTDittoHelper( criterion=DiceLoss(sigmoid=True), model=ditto_model, optimizer=ditto_optimizer, device=self.device, app_dir=app_dir, ditto_lambda=self.config_info["ditto_lambda"], model_epochs=self.ditto_model_epochs, ) def train( self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal, ) -> Shareable: """Training task pipeline for Ditto Get global model weights (potentially with HE) Prepare for fedprox loss Load Ditto personalized model info Local training reference model and personalized model Return updated weights of reference model (model_diff) """ if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # get round information current_round = shareable.get_header(AppConstants.CURRENT_ROUND) total_rounds = shareable.get_header(AppConstants.NUM_ROUNDS) self.log_info(fl_ctx, f"Current/Total Round: {current_round + 1}/{total_rounds}") self.log_info(fl_ctx, f"Client identity: {fl_ctx.get_identity_name()}") # update local model weights with received weights dxo = from_shareable(shareable) global_weights = dxo.data # Before loading weights, tensors might need to be reshaped to support HE for secure aggregation. local_var_dict = self.model.state_dict() model_keys = global_weights.keys() for var_name in local_var_dict: if var_name in model_keys: weights = global_weights[var_name] try: # reshape global weights to compute difference later on global_weights[var_name] = np.reshape(weights, local_var_dict[var_name].shape) # update the local dict local_var_dict[var_name] = torch.as_tensor(global_weights[var_name]) except Exception as e: raise ValueError("Convert weight from {} failed with error: {}".format(var_name, str(e))) self.model.load_state_dict(local_var_dict) # Load Ditto personalized model self.ditto_helper.load_model(local_var_dict) # local steps epoch_len = len(self.train_loader) self.log_info(fl_ctx, f"Local steps per epoch: {epoch_len}") # make a copy of model_global as reference for # 1. FedProx loss of reference model # 2. Ditto loss of personalized model model_global = copy.deepcopy(self.model) for param in model_global.parameters(): param.requires_grad = False # local train reference model self.local_train( fl_ctx=fl_ctx, train_loader=self.train_loader, model_global=model_global, abort_signal=abort_signal, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.epoch_of_start_time += self.aggregation_epochs # local train ditto model self.ditto_helper.local_train( train_loader=self.train_loader, model_global=model_global, abort_signal=abort_signal, writer=self.writer, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # local valid ditto model each round metric = self.local_valid( self.ditto_helper.model, self.valid_loader, abort_signal, tb_id="val_metric_per_model", record_epoch=self.ditto_helper.epoch_global, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info(fl_ctx, f"val_metric_per_model: {metric:.4f}") # save model self.ditto_helper.update_metric_save_model(metric=metric) # compute delta model, global model has the primary key set local_weights = self.model.state_dict() model_diff = {} for name in global_weights: if name not in local_weights: continue model_diff[name] = np.subtract(local_weights[name].cpu().numpy(), global_weights[name], dtype=np.float32) if np.any(np.isnan(model_diff[name])): self.system_panic(f"{name} weights became NaN...", fl_ctx) return make_reply(ReturnCode.EXECUTION_EXCEPTION) # flush the tb writer self.writer.flush() # build the shareable dxo = DXO(data_kind=DataKind.WEIGHT_DIFF, data=model_diff) dxo.set_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, epoch_len) self.log_info(fl_ctx, "Local epochs finished. Returning shareable") return dxo.to_shareable()
NVFlare-main
examples/advanced/prostate/prostate_2D/custom/learners/supervised_monai_prostate_ditto_learner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from abc import abstractmethod import numpy as np import torch from torch.utils.tensorboard import SummaryWriter from nvflare.apis.dxo import DXO, DataKind, MetaKey, from_shareable from nvflare.apis.fl_constant import FLContextKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.learner_spec import Learner from nvflare.app_common.app_constant import AppConstants, ValidateType class SupervisedLearner(Learner): def __init__( self, aggregation_epochs: int = 1, train_task_name: str = AppConstants.TASK_TRAIN, ): """Simple Supervised Trainer. This provides the basic functionality of a local learner: perform before-train validation on global model at the beginning of each round, perform local training, and send the updated weights. No model will be saved locally, tensorboard record for local loss and global model validation score. Enabled both FedAvg and FedProx Args: train_config_filename: directory of config file. aggregation_epochs: the number of training epochs for a round. Defaults to 1. train_task_name: name of the task to train the model. Returns: a Shareable with the updated local model after running `execute()` """ super().__init__() # trainer init happens at the very beginning, only the basic info regarding the trainer is set here # the actual run has not started at this point self.aggregation_epochs = aggregation_epochs self.train_task_name = train_task_name self.best_metric = 0.0 # Epoch counter self.epoch_of_start_time = 0 self.epoch_global = 0 # FedProx related self.fedproxloss_mu = 0.0 self.criterion_prox = None def initialize(self, parts: dict, fl_ctx: FLContext): # when a run starts, this is where the actual settings get initialized for trainer # set the paths according to fl_ctx engine = fl_ctx.get_engine() ws = engine.get_workspace() app_dir = ws.get_app_dir(fl_ctx.get_job_id()) # get and print the args fl_args = fl_ctx.get_prop(FLContextKey.ARGS) self.client_id = fl_ctx.get_identity_name() self.log_info( fl_ctx, f"Client {self.client_id} initialized with args: \n {fl_args}", ) # set local tensorboard writer for local validation score of global model self.writer = SummaryWriter(app_dir) # set the training-related contexts, this is task-specific self.train_config(fl_ctx) @abstractmethod def train_config(self, fl_ctx: FLContext): """Traning configurations customized to individual tasks This can be specified / loaded in any ways as long as they are made available for further training and validation some potential items include but not limited to: self.lr self.fedproxloss_mu self.model self.device self.optimizer self.criterion self.transform_train self.transform_valid self.transform_post self.train_loader self.valid_loader self.inferer self.valid_metric """ raise NotImplementedError @abstractmethod def finalize(self, fl_ctx: FLContext): # collect threads, close files here pass def local_train( self, fl_ctx, train_loader, model_global, abort_signal: Signal, ): """Typical training logic Total local epochs: self.aggregation_epochs Load data pairs from train_loader: image / label Compute outputs with self.model Compute loss with self.criterion Add fedprox loss Update model """ for epoch in range(self.aggregation_epochs): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.model.train() epoch_len = len(train_loader) self.epoch_global = self.epoch_of_start_time + epoch self.log_info( fl_ctx, f"Local epoch {self.client_id}: {epoch + 1}/{self.aggregation_epochs} (lr={self.lr})", ) for i, batch_data in enumerate(train_loader): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) inputs = batch_data["image"].to(self.device) labels = batch_data["label"].to(self.device) # forward + backward + optimize outputs = self.model(inputs) loss = self.criterion(outputs, labels) # FedProx loss term if self.fedproxloss_mu > 0: fed_prox_loss = self.criterion_prox(self.model, model_global) loss += fed_prox_loss self.optimizer.zero_grad() loss.backward() self.optimizer.step() current_step = epoch_len * self.epoch_global + i self.writer.add_scalar("train_loss", loss.item(), current_step) def local_valid( self, model, valid_loader, abort_signal: Signal, tb_id=None, record_epoch=None, ): """Typical validation logic Load data pairs from train_loader: image / label Compute outputs with self.model Perform post transform (binarization, etc.) Compute evaluation metric with self.valid_metric Add score to tensorboard record with specified id """ model.eval() with torch.no_grad(): metric = 0 for i, batch_data in enumerate(valid_loader): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) val_images = batch_data["image"].to(self.device) val_labels = batch_data["label"].to(self.device) # Inference val_outputs = self.inferer(val_images, model) val_outputs = self.transform_post(val_outputs) # Compute metric metric_score = self.valid_metric(y_pred=val_outputs, y=val_labels) metric += metric_score.item() # compute mean dice over whole validation set metric /= len(valid_loader) # tensorboard record id, add to record if provided if tb_id: self.writer.add_scalar(tb_id, metric, record_epoch) return metric def train( self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal, ) -> Shareable: """Typical training task pipeline with potential HE and fedprox functionalities Get global model weights (potentially with HE) Prepare for fedprox loss Local training Return updated weights (model_diff) """ if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # get round information current_round = shareable.get_header(AppConstants.CURRENT_ROUND) total_rounds = shareable.get_header(AppConstants.NUM_ROUNDS) self.log_info(fl_ctx, f"Current/Total Round: {current_round + 1}/{total_rounds}") self.log_info(fl_ctx, f"Client identity: {fl_ctx.get_identity_name()}") # update local model weights with received weights dxo = from_shareable(shareable) global_weights = dxo.data # Before loading weights, tensors might need to be reshaped to support HE for secure aggregation. local_var_dict = self.model.state_dict() model_keys = global_weights.keys() for var_name in local_var_dict: if var_name in model_keys: weights = global_weights[var_name] try: # reshape global weights to compute difference later on global_weights[var_name] = np.reshape(weights, local_var_dict[var_name].shape) # update the local dict local_var_dict[var_name] = torch.as_tensor(global_weights[var_name]) except Exception as e: raise ValueError("Convert weight from {} failed with error: {}".format(var_name, str(e))) self.model.load_state_dict(local_var_dict) # local steps epoch_len = len(self.train_loader) self.log_info(fl_ctx, f"Local steps per epoch: {epoch_len}") # make a copy of model_global as reference for potential FedProx loss if self.fedproxloss_mu > 0: model_global = copy.deepcopy(self.model) for param in model_global.parameters(): param.requires_grad = False else: model_global = None # local train self.local_train( fl_ctx=fl_ctx, train_loader=self.train_loader, model_global=model_global, abort_signal=abort_signal, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.epoch_of_start_time += self.aggregation_epochs # compute delta model, global model has the primary key set local_weights = self.model.state_dict() model_diff = {} for name in global_weights: if name not in local_weights: continue model_diff[name] = np.subtract(local_weights[name].cpu().numpy(), global_weights[name], dtype=np.float32) if np.any(np.isnan(model_diff[name])): self.system_panic(f"{name} weights became NaN...", fl_ctx) return make_reply(ReturnCode.EXECUTION_EXCEPTION) # flush the tb writer self.writer.flush() # build the shareable dxo = DXO(data_kind=DataKind.WEIGHT_DIFF, data=model_diff) dxo.set_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, epoch_len) self.log_info(fl_ctx, "Local epochs finished. Returning shareable") return dxo.to_shareable() def validate(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: """Typical validation task pipeline with potential HE functionality Get global model weights (potentially with HE) Validation on local data Return validation score """ if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # validation on global model model_owner = "global_model" # update local model weights with received weights dxo = from_shareable(shareable) global_weights = dxo.data # Before loading weights, tensors might need to be reshaped to support HE for secure aggregation. local_var_dict = self.model.state_dict() model_keys = global_weights.keys() n_loaded = 0 for var_name in local_var_dict: if var_name in model_keys: weights = torch.as_tensor(global_weights[var_name], device=self.device) try: # update the local dict local_var_dict[var_name] = torch.as_tensor(torch.reshape(weights, local_var_dict[var_name].shape)) n_loaded += 1 except Exception as e: raise ValueError("Convert weight from {} failed with error: {}".format(var_name, str(e))) self.model.load_state_dict(local_var_dict) if n_loaded == 0: raise ValueError(f"No weights loaded for validation! Received weight dict is {global_weights}") # before_train_validate only, can extend to other validate types validate_type = shareable.get_header(AppConstants.VALIDATE_TYPE) if validate_type == ValidateType.BEFORE_TRAIN_VALIDATE: # perform valid before local train global_metric = self.local_valid( self.model, self.valid_loader, abort_signal, tb_id="val_metric_global_model", record_epoch=self.epoch_global, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info(fl_ctx, f"val_metric_global_model ({model_owner}): {global_metric:.4f}") # validation metrics will be averaged with weights at server end for best model record metric_dxo = DXO( data_kind=DataKind.METRICS, data={MetaKey.INITIAL_METRICS: global_metric}, meta={}, ) metric_dxo.set_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, len(self.valid_loader)) return metric_dxo.to_shareable() else: return make_reply(ReturnCode.VALIDATE_TYPE_UNKNOWN)
NVFlare-main
examples/advanced/prostate/prostate_2D/custom/learners/supervised_learner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import torch import torch.optim as optim from learners.supervised_learner import SupervisedLearner from monai.data import CacheDataset, DataLoader, Dataset, load_decathlon_datalist from monai.inferers import SimpleInferer from monai.losses import DiceLoss from monai.metrics import DiceMetric from monai.networks.nets.unet import UNet from monai.transforms import ( Activations, AsDiscrete, AsDiscreted, Compose, EnsureChannelFirstd, EnsureType, EnsureTyped, LoadImaged, Resized, ScaleIntensityRanged, ) from utils.custom_client_datalist_json_path import custom_client_datalist_json_path from nvflare.apis.fl_context import FLContext from nvflare.app_common.app_constant import AppConstants from nvflare.app_opt.pt.fedproxloss import PTFedProxLoss class SupervisedMonaiProstateLearner(SupervisedLearner): def __init__( self, train_config_filename, aggregation_epochs: int = 1, train_task_name: str = AppConstants.TASK_TRAIN, ): """MONAI Learner for prostate segmentation task. It inherits from SupervisedLearner. Args: train_config_filename: path for config file, this is an addition term for config loading aggregation_epochs: the number of training epochs for a round. train_task_name: name of the task to train the model. Returns: a Shareable with the updated local model after running `execute()` """ super().__init__( aggregation_epochs=aggregation_epochs, train_task_name=train_task_name, ) self.train_config_filename = train_config_filename self.config_info = None def train_config(self, fl_ctx: FLContext): """MONAI traning configuration Here, we use a json to specify the needed parameters """ # Load training configurations json engine = fl_ctx.get_engine() ws = engine.get_workspace() app_config_dir = ws.get_app_config_dir(fl_ctx.get_job_id()) train_config_file_path = os.path.join(app_config_dir, self.train_config_filename) if not os.path.isfile(train_config_file_path): self.log_error( fl_ctx, f"Training configuration file does not exist at {train_config_file_path}", ) with open(train_config_file_path) as file: self.config_info = json.load(file) # Get the config_info self.lr = self.config_info["learning_rate"] self.fedproxloss_mu = self.config_info["fedproxloss_mu"] cache_rate = self.config_info["cache_dataset"] dataset_base_dir = self.config_info["dataset_base_dir"] datalist_json_path = self.config_info["datalist_json_path"] # Get datalist json datalist_json_path = custom_client_datalist_json_path(datalist_json_path, self.client_id) # Set datalist train_list = load_decathlon_datalist( data_list_file_path=datalist_json_path, is_segmentation=True, data_list_key="training", base_dir=dataset_base_dir, ) valid_list = load_decathlon_datalist( data_list_file_path=datalist_json_path, is_segmentation=True, data_list_key="validation", base_dir=dataset_base_dir, ) self.log_info( fl_ctx, f"Training Size: {len(train_list)}, Validation Size: {len(valid_list)}", ) # Set the training-related context self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.model = UNet( spatial_dims=2, in_channels=1, out_channels=1, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, ).to(self.device) self.optimizer = optim.Adam(self.model.parameters(), lr=self.lr) self.criterion = DiceLoss(sigmoid=True) if self.fedproxloss_mu > 0: self.log_info(fl_ctx, f"using FedProx loss with mu {self.fedproxloss_mu}") self.criterion_prox = PTFedProxLoss(mu=self.fedproxloss_mu) self.transform = Compose( [ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys=["image", "label"]), ScaleIntensityRanged(keys=["image", "label"], a_min=0, a_max=255, b_min=0.0, b_max=1.0), Resized( keys=["image", "label"], spatial_size=(256, 256), mode=("bilinear"), align_corners=True, ), AsDiscreted(keys=["label"], threshold=0.5), EnsureTyped(keys=["image", "label"]), ] ) self.transform_post = Compose([EnsureType(), Activations(sigmoid=True), AsDiscrete(threshold=0.5)]) # Set dataset if cache_rate > 0.0: self.train_dataset = CacheDataset( data=train_list, transform=self.transform, cache_rate=cache_rate, num_workers=4, ) self.valid_dataset = CacheDataset( data=valid_list, transform=self.transform, cache_rate=cache_rate, num_workers=4, ) else: self.train_dataset = Dataset( data=train_list, transform=self.transform, ) self.valid_dataset = Dataset( data=valid_list, transform=self.transform, ) self.train_loader = DataLoader( self.train_dataset, batch_size=1, shuffle=True, num_workers=2, ) self.valid_loader = DataLoader( self.valid_dataset, batch_size=1, shuffle=False, num_workers=2, ) # Set inferer and evaluation metric self.inferer = SimpleInferer() self.valid_metric = DiceMetric(include_background=False, reduction="mean", get_not_nans=False)
NVFlare-main
examples/advanced/prostate/prostate_2D/custom/learners/supervised_monai_prostate_learner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.shareable import make_reply from nvflare.apis.signal import Signal from nvflare.app_opt.pt.ditto import PTDittoHelper class SupervisedPTDittoHelper(PTDittoHelper): """Helper to be used with Ditto components under supervised training specs.""" def __init__(self, criterion, model, optimizer, device, app_dir, ditto_lambda, model_epochs): super().__init__(criterion, model, optimizer, device, app_dir, ditto_lambda, model_epochs) def local_train(self, train_loader, model_global, abort_signal: Signal, writer): # Train personal model for self.model_epochs, and keep track of curves # This part is task dependent, need customization for epoch in range(self.model_epochs): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.model.train() epoch_len = len(train_loader) self.epoch_global = self.epoch_of_start_time + epoch + 1 for i, batch_data in enumerate(train_loader): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) inputs = batch_data["image"].to(self.device) labels = batch_data["label"].to(self.device) # forward + backward + optimize outputs = self.model(inputs) loss = self.criterion(outputs, labels) # add the Ditto prox loss term for Ditto loss_ditto = self.prox_criterion(self.model, model_global) loss += loss_ditto self.optimizer.zero_grad() loss.backward() self.optimizer.step() current_step = epoch_len * self.epoch_global + i writer.add_scalar("train_loss_ditto", loss.item(), current_step)
NVFlare-main
examples/advanced/prostate/prostate_2D/custom/helpers/supervised_pt_ditto.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import torch from monai.data import CacheDataset, DataLoader, load_decathlon_datalist from monai.inferers import SimpleInferer from monai.metrics import DiceMetric from monai.networks.nets import UNet from monai.transforms import ( Activations, AsDiscrete, AsDiscreted, Compose, EnsureChannelFirstd, EnsureType, EnsureTyped, LoadImaged, Resized, ScaleIntensityRanged, ) def main(): parser = argparse.ArgumentParser(description="Model Testing") parser.add_argument("--model_path", type=str) parser.add_argument("--cache_rate", default=1.0, type=float) parser.add_argument("--dataset_base_dir", default="../data_preparation/dataset_2D", type=str) parser.add_argument("--datalist_json_path", default="../data_preparation/datalist_2D/client_All.json", type=str) args = parser.parse_args() # Set basic settings and paths dataset_base_dir = args.dataset_base_dir datalist_json_path = args.datalist_json_path model_path = args.model_path cache_rate = args.cache_rate device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Set datalists test_list = load_decathlon_datalist( data_list_file_path=datalist_json_path, is_segmentation=True, data_list_key="testing", base_dir=dataset_base_dir, ) print(f"Testing Size: {len(test_list)}") # Network, optimizer, and loss model = UNet( spatial_dims=2, in_channels=1, out_channels=1, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, ).to(device) model_weights = torch.load(model_path) model_weights = model_weights["model"] model.load_state_dict(model_weights) # Inferer, evaluation metric inferer = SimpleInferer() valid_metric = DiceMetric(include_background=False, reduction="mean", get_not_nans=False) transform = Compose( [ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys=["image", "label"]), ScaleIntensityRanged(keys=["image", "label"], a_min=0, a_max=255, b_min=0.0, b_max=1.0), Resized(keys=["image", "label"], spatial_size=(256, 256), mode=("bilinear"), align_corners=True), AsDiscreted(keys=["label"], threshold=0.5), EnsureTyped(keys=["image", "label"]), ] ) transform_post = Compose([EnsureType(), Activations(sigmoid=True), AsDiscrete(threshold=0.5)]) # Set dataset test_dataset = CacheDataset( data=test_list, transform=transform, cache_rate=cache_rate, num_workers=4, ) test_loader = DataLoader( test_dataset, batch_size=1, shuffle=False, num_workers=1, ) # Train model.eval() with torch.no_grad(): metric = 0 for i, batch_data in enumerate(test_loader): images = batch_data["image"].to(device) labels = batch_data["label"].to(device) # Inference outputs = inferer(images, model) outputs = transform_post(outputs) # Compute metric metric_score = valid_metric(y_pred=outputs, y=labels) metric += metric_score.item() # compute mean dice over whole validation set metric /= len(test_loader) print(f"Test Dice: {metric:.4f}") if __name__ == "__main__": main()
NVFlare-main
examples/advanced/prostate/result_stat/prostate_2d_test_only.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import os import matplotlib.pyplot as plt import seaborn as sns import tensorflow as tf # simulator workspace client_results_root = "../prostate_2D/workspaces/" # client_results_root = "../prostate_3D/workspaces" client_pre = "app_client_" # 4 (for 3D) or 6 (for 2D) sites sites_fl = ["I2CVB", "MSD", "NCI_ISBI_3T", "NCI_ISBI_Dx", "Promise12", "PROSTATEx"] # sites_fl = ["I2CVB", "MSD", "NCI_ISBI_3T", "NCI_ISBI_Dx"] # Central vs. FedAvg vs. FedProx vs. Ditto experiments = { "prostate_central": {"tag": "val_metric_global_model", "site": "All"}, "prostate_fedavg": {"tag": "val_metric_global_model"}, "prostate_fedprox": {"tag": "val_metric_global_model"}, "prostate_ditto": {"tag": "val_metric_per_model"}, } weight = 0.8 def smooth(scalars, weight): # Weight between 0 and 1 last = scalars[0] # First value in the plot (first timestep) smoothed = list() for point in scalars: smoothed_val = last * weight + (1 - weight) * point # Calculate smoothed value smoothed.append(smoothed_val) # Save it last = smoothed_val # Anchor the last smoothed value return smoothed def read_eventfile(filepath, tags=["val_metric_global_model"]): data = {} for summary in tf.compat.v1.train.summary_iterator(filepath): for v in summary.summary.value: if v.tag in tags: if v.tag in data.keys(): data[v.tag].append([summary.step, v.simple_value]) else: data[v.tag] = [[summary.step, v.simple_value]] return data def add_eventdata(data, config, filepath, tag="val_metric_global_model"): event_data = read_eventfile(filepath, tags=[tag]) assert len(event_data[tag]) > 0, f"No data for key {tag}" metric = [] for e in event_data[tag]: # print(e) data["Config"].append(config) data["Epoch"].append(e[0]) metric.append(e[1]) metric = smooth(metric, weight) for entry in metric: data["Dice"].append(entry) print(f"added {len(event_data[tag])} entries for {tag}") def main(): plt.figure() num_site = len(sites_fl) i = 1 # add event files data = {"Config": [], "Epoch": [], "Dice": []} for site in sites_fl: # clear data for each site data = {"Config": [], "Epoch": [], "Dice": []} for config, exp in experiments.items(): spec_site = exp.get("site", None) if spec_site is not None: record_path = os.path.join( client_results_root + config, "simulate_job", client_pre + spec_site, "events.*" ) else: record_path = os.path.join(client_results_root + config, "simulate_job", client_pre + site, "events.*") eventfile = glob.glob(record_path, recursive=True) assert len(eventfile) == 1, "No unique event file found!" eventfile = eventfile[0] print("adding", eventfile) add_eventdata(data, config, eventfile, tag=exp["tag"]) ax = plt.subplot(2, int(num_site / 2), i) ax.set_title(site) sns.lineplot(x="Epoch", y="Dice", hue="Config", data=data) # ax.set_xlim([0, 1000]) i = i + 1 plt.subplots_adjust(hspace=0.3) plt.show() if __name__ == "__main__": main()
NVFlare-main
examples/advanced/prostate/result_stat/plot_tensorboard_events.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import torch from monai.data import DataLoader, Dataset, load_decathlon_datalist from monai.inferers import SlidingWindowInferer from monai.metrics import DiceMetric from monai.networks.nets import UNet from monai.transforms import ( Activations, AsDiscrete, Compose, DivisiblePadd, EnsureChannelFirstd, EnsureType, EnsureTyped, LoadImaged, NormalizeIntensityd, Orientationd, Spacingd, ) def main(): parser = argparse.ArgumentParser(description="Model Testing") parser.add_argument("--model_path", type=str) parser.add_argument("--cache_rate", default=1.0, type=float) parser.add_argument("--dataset_base_dir", default="../data_preparation/dataset", type=str) parser.add_argument("--datalist_json_path", default="../data_preparation/datalist/client_All.json", type=str) args = parser.parse_args() # Set basic settings and paths dataset_base_dir = args.dataset_base_dir datalist_json_path = args.datalist_json_path model_path = args.model_path infer_roi_size = (224, 224, 32) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Set datalists test_list = load_decathlon_datalist( data_list_file_path=datalist_json_path, is_segmentation=True, data_list_key="validation", base_dir=dataset_base_dir, ) print(f"Testing Size: {len(test_list)}") # Network, optimizer, and loss model = UNet( spatial_dims=3, in_channels=1, out_channels=1, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, ).to(device) model_weights = torch.load(model_path) model_weights = model_weights["model"] model.load_state_dict(model_weights) # Inferer, evaluation metric inferer = SlidingWindowInferer(roi_size=infer_roi_size, sw_batch_size=4, overlap=0.25) valid_metric = DiceMetric(include_background=False, reduction="mean", get_not_nans=False) transform = Compose( [ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys=["image", "label"]), Spacingd( keys=["image", "label"], pixdim=(0.3, 0.3, 1.0), mode=("bilinear", "nearest"), ), DivisiblePadd(keys=["image", "label"], k=32), Orientationd(keys=["image", "label"], axcodes="RAS"), NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True), EnsureTyped(keys=["image", "label"]), ] ) transform_post = Compose([EnsureType(), Activations(sigmoid=True), AsDiscrete(threshold=0.5)]) # Set dataset test_dataset = Dataset(data=test_list, transform=transform) test_loader = DataLoader( test_dataset, batch_size=1, shuffle=False, num_workers=1, ) # Train model.eval() with torch.no_grad(): metric = 0 for i, batch_data in enumerate(test_loader): images = batch_data["image"].to(device) labels = batch_data["label"].to(device) # Inference outputs = inferer(images, model) outputs = transform_post(outputs) # Compute metric metric_score = valid_metric(y_pred=outputs, y=labels) metric += metric_score.item() # compute mean dice over whole validation set metric /= len(test_loader) print(f"Test Dice: {metric:.4f}") if __name__ == "__main__": main()
NVFlare-main
examples/advanced/prostate/result_stat/prostate_3d_test_only.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import nibabel as nib parser = argparse.ArgumentParser("Threshold label image to a binary one") parser.add_argument("--input_path", help="Input label image path", type=str) parser.add_argument("--output_path", help="Output binary image path", type=str) parser.add_argument("--threshold", help="threshold", type=int, default=0) args = parser.parse_args() img = nib.load(args.input_path) img_np = img.get_fdata() img_affine = img.affine img_np[img_np > args.threshold] = 1 nft_img = nib.Nifti1Image(img_np, img_affine) nib.save(nft_img, args.output_path)
NVFlare-main
examples/advanced/prostate/data_preparation/utils/label_threshold.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import dicom2nifti parser = argparse.ArgumentParser("Dicom to Nifti converter") parser.add_argument("--dicom_folder", help="Input Dicom folder path", type=str) parser.add_argument("--nifti_path", help="Output Nifti file path", type=str) args = parser.parse_args() dicom2nifti.dicom_series_to_nifti(args.dicom_folder, args.nifti_path)
NVFlare-main
examples/advanced/prostate/data_preparation/utils/dicom_to_nifti.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import glob import json import os import numpy as np np.random.seed(0) # Prostate data is arranged as ${data_dir}/${site_name}/Image/ and ${data_dir}/${site_name}/Mask/ # Image-Mask pairs have identical filename, and stored separately # output json file is named client_${site_name}.json parser = argparse.ArgumentParser(description="generate train/valid/test splits for datasets") parser.add_argument( "--mode", type=str, help="Split mode, mode can either be 'folder' or 'file', controlling the split level" ) parser.add_argument("--data_dir", type=str, help="Path to data folder") parser.add_argument("--site_name", type=str, help="Path to particular set") parser.add_argument("--train", type=float, default=0.5, help="Portion of training set, default 50%") parser.add_argument("--valid", type=float, default=0.25, help="Portion of validation set, default 25%") parser.add_argument("--test", type=float, default=0.25, help="Portion of testing set, default 25%") parser.add_argument("--out_path", type=str, help="Path to datalist json file") def partition_data(mode, data_path, site_name, train, valid, test, out_path): assert mode in ["folder", "file"], "mode should either be 'folder' or 'file'" print(f"Generate data split for {data_path}/{site_name}, with train:validation:test {train}:{valid}:{test}") print(f"Save json to {out_path}") print(f"Mode: {mode}") tra = 0 val = 0 tst = 0 tra_i = 0 val_i = 0 tst_i = 0 total_file = 0 json_data = {"training": [], "validation": [], "testing": []} image_file_path = os.path.join(data_path, site_name, "Image", "*") mask_file_path = os.path.join(data_path, site_name, "Mask", "*") image_files = glob.glob(image_file_path) mask_files = glob.glob(mask_file_path) assert len(image_files) == len(mask_files), "The number of image and mask files should be the same." # sort will produce the same sequence since filenames are identical for image and masks image_files.sort() mask_files.sort() # produce random index for split length = len(image_files) rand_idx = np.arange(length) np.random.shuffle(rand_idx) # check the ratio sum assert (train + valid + test) == 1, "Sum of all three splits should be 1." tra_cut = round(length * train) val_cut = round(length * train) + round(length * valid) for count in range(length): # if folder, add all images inside it if mode == "folder": image_file_name = glob.glob(os.path.join(image_files[rand_idx[count]], "*")) mask_file_name = glob.glob(os.path.join(mask_files[rand_idx[count]], "*")) image_file_name.sort() mask_file_name.sort() elif mode == "file": image_file_name = [image_files[rand_idx[count]]] mask_file_name = [mask_files[rand_idx[count]]] if count < tra_cut: to_append = "training" tra = tra + 1 tra_i = tra_i + len(image_file_name) elif count < val_cut: to_append = "validation" val = val + 1 val_i = val_i + len(image_file_name) else: to_append = "testing" tst = tst + 1 tst_i = tst_i + len(image_file_name) total_file = total_file + len(image_file_name) for idx in range(len(image_file_name)): new_item = {} # collect the paths, excluding the common data_root new_item["image"] = image_file_name[idx].replace(data_path + "/", "") new_item["label"] = mask_file_name[idx].replace(data_path + "/", "") temp = json_data[to_append] temp.append(new_item) print(f"In total {length} cases, {tra} for training, {val} for validation, and {tst} for testing") if mode == "folder": print( f"In total {total_file} samples, split at case level, {tra_i} for training, {val_i} for validation, and {tst_i} for testing" ) with open(out_path, "w") as f: json.dump(json_data, f, indent=4) if __name__ == "__main__": args = parser.parse_args() partition_data( mode=args.mode, data_path=args.data_dir, site_name=args.site_name, train=args.train, valid=args.valid, test=args.test, out_path=args.out_path, )
NVFlare-main
examples/advanced/prostate/data_preparation/utils/prepare_data_split.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import nibabel as nib import nrrd import numpy as np parser = argparse.ArgumentParser("Convert nrrd label to nifti with reference image file for affine") parser.add_argument("--input_path", help="Input nrrd path", type=str) parser.add_argument("--reference_path", help="Reference image path", type=str) parser.add_argument("--output_path", help="Output nifti path", type=str) args = parser.parse_args() img = nib.load(args.reference_path) img_affine = img.affine nrrd = nrrd.read(args.input_path) data = np.flip(nrrd[0], axis=1) nft_img = nib.Nifti1Image(data, img_affine) nib.save(nft_img, args.output_path)
NVFlare-main
examples/advanced/prostate/data_preparation/utils/nrrd_to_nifti.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import copy import json def main(): parser = argparse.ArgumentParser(description="merge two jsons together") parser.add_argument("--json_1", action="store", required=True, help="full path of json1") parser.add_argument("--json_2", action="store", help="full path of json2") parser.add_argument("--json_out", action="store", help="full path of json merged") args = parser.parse_args() json_1 = args.json_1 json_2 = args.json_2 json_out = args.json_out with open(json_1) as a: json_1_data = json.load(a) with open(json_2) as b: json_2_data = json.load(b) json_data = copy.deepcopy(json_1_data) json_data["training"].extend(json_2_data["training"]) json_data["validation"].extend(json_2_data["validation"]) json_data["testing"].extend(json_2_data["testing"]) with open(json_out, "w") as f: json.dump(json_data, f, indent=4) return if __name__ == "__main__": main()
NVFlare-main
examples/advanced/prostate/data_preparation/utils/merge_two_jsons.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import nibabel as nib parser = argparse.ArgumentParser("Select single channel from image and save as new image") parser.add_argument("--input_path", help="Input multi-channel image path", type=str) parser.add_argument("--output_path", help="Output single-channel image path", type=str) parser.add_argument("--channel", help="channel number", type=int, default=0) args = parser.parse_args() img = nib.load(args.input_path) img_np = img.get_fdata() img_affine = img.affine img_np = img_np[:, :, :, args.channel] nft_img = nib.Nifti1Image(img_np, img_affine) nib.save(nft_img, args.output_path)
NVFlare-main
examples/advanced/prostate/data_preparation/utils/image_channel_select.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import glob import os import pathlib import nibabel as nib import numpy as np from PIL import Image def main(): parser = argparse.ArgumentParser(description="Convert 3D prostate dataset for 2D experiment") parser.add_argument("--data_dir", type=str, help="Path to all data folder") parser.add_argument("--site_name", type=str, help="Path to particular set") parser.add_argument("--out_path", type=str, help="Path to output 2D file folder") args = parser.parse_args() # output folder main path image_out_path = os.path.join(args.out_path, args.site_name, "Image") mask_out_path = os.path.join(args.out_path, args.site_name, "Mask") # get input files image_file_path = os.path.join(args.data_dir, args.site_name, "Image", "*") mask_file_path = os.path.join(args.data_dir, args.site_name, "Mask", "*") image_files = glob.glob(image_file_path) mask_files = glob.glob(mask_file_path) assert len(image_files) == len(mask_files), "The number of image and mask files should be the same." # iterate through input files and convert 3D dataset to 2D for idx in range(len(image_files)): # collect the paths image_file_name = image_files[idx] mask_file_name = mask_files[idx] # load image and mask image_case_id = os.path.basename(image_file_name) mask_case_id = os.path.basename(image_file_name) assert image_case_id == mask_case_id, "Image and mask ID should match." case_id = image_case_id.replace(".nii.gz", "") # read nii.gz files with nibabel image = nib.load(image_file_name).get_fdata().transpose((1, 0, 2)) mask = nib.load(mask_file_name).get_fdata().transpose((1, 0, 2)) # clip and normalize image image = (image - 0) / (2048 - 0) image[image > 1] = 1 # iterate through slice dimension for slice_idx in range(image.shape[2]): image_slice = image[:, :, slice_idx] mask_slice = mask[:, :, slice_idx] # only extract slices with mask annotation if np.sum(mask_slice) > 0: # scale to 0~255 image_slice = image_slice * 255 mask_slice = mask_slice * 255 # output path pathlib.Path(os.path.join(image_out_path, case_id)).mkdir(parents=True, exist_ok=True) pathlib.Path(os.path.join(mask_out_path, case_id)).mkdir(parents=True, exist_ok=True) # flip so as to follow clinical viewing orientation im = Image.fromarray(image_slice).convert("L").transpose(Image.FLIP_TOP_BOTTOM) im.save(os.path.join(image_out_path, case_id, "{}.png".format(slice_idx))) im = Image.fromarray(mask_slice).convert("L").transpose(Image.FLIP_TOP_BOTTOM) im.save(os.path.join(mask_out_path, case_id, "{}.png".format(slice_idx))) return if __name__ == "__main__": main()
NVFlare-main
examples/advanced/prostate/data_preparation/utils/preprocess_3d_to_2d.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import nibabel as nib import numpy as np parser = argparse.ArgumentParser("Combine label images to a binary one") parser.add_argument( "--ref_image", help="Reference image file path, to make sure algnment between image and mask", type=str ) parser.add_argument("--input_folder_path", help="Input label image folder path", type=str) parser.add_argument("--output_path", help="Output binary image path", type=str) args = parser.parse_args() ref = nib.load(args.ref_image) ref_affine = ref.affine ref_np = ref.get_fdata() img = nib.load(args.input_folder_path + "/1.nii.gz") img_np = img.get_fdata() img = nib.load(args.input_folder_path + "/2.nii.gz") img_np = img_np + img.get_fdata() img = nib.load(args.input_folder_path + "/4.nii.gz") img_np = img_np + img.get_fdata() # Special treatment for urethra: if urethra only, then discard # since it is usually not included in other prostate segmentation protocols ure = nib.load(args.input_folder_path + "/3.nii.gz") ure_np = ure.get_fdata() for slice_idx in range(img_np.shape[2]): image_slice = img_np[:, :, slice_idx] ure_slice = ure_np[:, :, slice_idx] if np.sum(image_slice) > 0: image_slice = image_slice + ure_slice img_np[:, :, slice_idx] = image_slice img_np[img_np > 0] = 1 img_affine = img.affine # reorient mask image img_ornt = nib.io_orientation(img_affine) ref_ornt = nib.io_orientation(ref_affine) spatial_ornt = nib.orientations.ornt_transform(img_ornt, ref_ornt) img_np = nib.orientations.apply_orientation(img_np, spatial_ornt) # resample mask image img = nib.Nifti1Image(img_np, ref_affine) nib.save(img, args.output_path)
NVFlare-main
examples/advanced/prostate/data_preparation/utils/label_combine.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import SimpleITK as sitk parser = argparse.ArgumentParser("Convert mhd file to nifti") parser.add_argument("--input_path", help="Input mhd path", type=str) parser.add_argument("--output_path", help="Output nifti path", type=str) args = parser.parse_args() reader = sitk.ImageFileReader() reader.SetImageIO("MetaImageIO") reader.SetFileName(args.input_path) image = reader.Execute() writer = sitk.ImageFileWriter() writer.SetFileName(args.output_path) writer.Execute(image)
NVFlare-main
examples/advanced/prostate/data_preparation/utils/mhd_to_nifti.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os def custom_client_datalist_json_path(datalist_json_path: str, client_id: str) -> str: """ Customize datalist_json_path for each client Args: datalist_json_path: root path containing all jsons client_id: e.g., site-2 """ # Customize datalist_json_path for each client datalist_json_path_client = os.path.join( datalist_json_path, client_id + ".json", ) return datalist_json_path_client
NVFlare-main
examples/advanced/prostate/prostate_3D/custom/utils/custom_client_datalist_json_path.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import numpy as np import torch import torch.optim as optim from helpers.supervised_pt_ditto import SupervisedPTDittoHelper from learners.supervised_monai_prostate_learner import SupervisedMonaiProstateLearner from monai.losses import DiceLoss from monai.networks.nets.unet import UNet from nvflare.apis.dxo import DXO, DataKind, MetaKey, from_shareable from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.app_constant import AppConstants class SupervisedMonaiProstateDittoLearner(SupervisedMonaiProstateLearner): def __init__( self, train_config_filename, aggregation_epochs: int = 1, ditto_model_epochs: int = 1, train_task_name: str = AppConstants.TASK_TRAIN, ): """Trainer for prostate segmentation task. It inherits from MONAI trainer. Args: train_config_filename: directory of config file. aggregation_epochs: the number of training epochs of global model for a round. Defaults to 1. ditto_model_epochs: the number of training epochs of personalized model for a round. Defaults to 1. train_task_name: name of the task to train the model. Returns: a Shareable with the updated local model after running `execute()` """ SupervisedMonaiProstateLearner.__init__( self, train_config_filename=train_config_filename, aggregation_epochs=aggregation_epochs, train_task_name=train_task_name, ) self.ditto_helper = None self.ditto_model_epochs = ditto_model_epochs def train_config(self, fl_ctx: FLContext): # Initialize superclass SupervisedMonaiProstateLearner.train_config(self, fl_ctx) engine = fl_ctx.get_engine() ws = engine.get_workspace() app_dir = ws.get_app_dir(fl_ctx.get_job_id()) # Initialize PTDittoHelper ditto_model = UNet( spatial_dims=3, in_channels=1, out_channels=1, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, ).to(self.device) ditto_optimizer = optim.SGD( ditto_model.parameters(), lr=self.config_info["ditto_learning_rate"], momentum=0.9, ) self.ditto_helper = SupervisedPTDittoHelper( criterion=DiceLoss(sigmoid=True), model=ditto_model, optimizer=ditto_optimizer, device=self.device, app_dir=app_dir, ditto_lambda=self.config_info["ditto_lambda"], model_epochs=self.ditto_model_epochs, ) def train( self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal, ) -> Shareable: """Training task pipeline for Ditto Get global model weights (potentially with HE) Prepare for fedprox loss Load Ditto personalized model info Local training reference model and personalized model Return updated weights of reference model (model_diff) """ if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # get round information current_round = shareable.get_header(AppConstants.CURRENT_ROUND) total_rounds = shareable.get_header(AppConstants.NUM_ROUNDS) self.log_info(fl_ctx, f"Current/Total Round: {current_round + 1}/{total_rounds}") self.log_info(fl_ctx, f"Client identity: {fl_ctx.get_identity_name()}") # update local model weights with received weights dxo = from_shareable(shareable) global_weights = dxo.data # Before loading weights, tensors might need to be reshaped to support HE for secure aggregation. local_var_dict = self.model.state_dict() model_keys = global_weights.keys() for var_name in local_var_dict: if var_name in model_keys: weights = global_weights[var_name] try: # reshape global weights to compute difference later on global_weights[var_name] = np.reshape(weights, local_var_dict[var_name].shape) # update the local dict local_var_dict[var_name] = torch.as_tensor(global_weights[var_name]) except Exception as e: raise ValueError("Convert weight from {} failed with error: {}".format(var_name, str(e))) self.model.load_state_dict(local_var_dict) # Load Ditto personalized model self.ditto_helper.load_model(local_var_dict) # local steps epoch_len = len(self.train_loader) self.log_info(fl_ctx, f"Local steps per epoch: {epoch_len}") # make a copy of model_global as reference for # 1. FedProx loss of reference model # 2. Ditto loss of personalized model model_global = copy.deepcopy(self.model) for param in model_global.parameters(): param.requires_grad = False # local train reference model self.local_train( fl_ctx=fl_ctx, train_loader=self.train_loader, model_global=model_global, abort_signal=abort_signal, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.epoch_of_start_time += self.aggregation_epochs # local train ditto model self.ditto_helper.local_train( train_loader=self.train_loader, model_global=model_global, abort_signal=abort_signal, writer=self.writer, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # local valid ditto model each round metric = self.local_valid( self.ditto_helper.model, self.valid_loader, abort_signal, tb_id="val_metric_per_model", record_epoch=self.ditto_helper.epoch_global, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info(fl_ctx, f"val_metric_per_model: {metric:.4f}") # save model self.ditto_helper.update_metric_save_model(metric=metric) # compute delta model, global model has the primary key set local_weights = self.model.state_dict() model_diff = {} for name in global_weights: if name not in local_weights: continue model_diff[name] = np.subtract(local_weights[name].cpu().numpy(), global_weights[name], dtype=np.float32) if np.any(np.isnan(model_diff[name])): self.system_panic(f"{name} weights became NaN...", fl_ctx) return make_reply(ReturnCode.EXECUTION_EXCEPTION) # flush the tb writer self.writer.flush() # build the shareable dxo = DXO(data_kind=DataKind.WEIGHT_DIFF, data=model_diff) dxo.set_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, epoch_len) self.log_info(fl_ctx, "Local epochs finished. Returning shareable") return dxo.to_shareable()
NVFlare-main
examples/advanced/prostate/prostate_3D/custom/learners/supervised_monai_prostate_ditto_learner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from abc import abstractmethod import numpy as np import torch from torch.utils.tensorboard import SummaryWriter from nvflare.apis.dxo import DXO, DataKind, MetaKey, from_shareable from nvflare.apis.fl_constant import FLContextKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.learner_spec import Learner from nvflare.app_common.app_constant import AppConstants, ValidateType class SupervisedLearner(Learner): def __init__( self, aggregation_epochs: int = 1, train_task_name: str = AppConstants.TASK_TRAIN, ): """Simple Supervised Trainer. This provides the basic functionality of a local learner: perform before-train validation on global model at the beginning of each round, perform local training, and send the updated weights. No model will be saved locally, tensorboard record for local loss and global model validation score. Enabled both FedAvg and FedProx Args: train_config_filename: directory of config file. aggregation_epochs: the number of training epochs for a round. Defaults to 1. train_task_name: name of the task to train the model. Returns: a Shareable with the updated local model after running `execute()` """ super().__init__() # trainer init happens at the very beginning, only the basic info regarding the trainer is set here # the actual run has not started at this point self.aggregation_epochs = aggregation_epochs self.train_task_name = train_task_name self.best_metric = 0.0 # Epoch counter self.epoch_of_start_time = 0 self.epoch_global = 0 # FedProx related self.fedproxloss_mu = 0.0 self.criterion_prox = None def initialize(self, parts: dict, fl_ctx: FLContext): # when a run starts, this is where the actual settings get initialized for trainer # set the paths according to fl_ctx engine = fl_ctx.get_engine() ws = engine.get_workspace() app_dir = ws.get_app_dir(fl_ctx.get_job_id()) # get and print the args fl_args = fl_ctx.get_prop(FLContextKey.ARGS) self.client_id = fl_ctx.get_identity_name() self.log_info( fl_ctx, f"Client {self.client_id} initialized with args: \n {fl_args}", ) # set local tensorboard writer for local validation score of global model self.writer = SummaryWriter(app_dir) # set the training-related contexts, this is task-specific self.train_config(fl_ctx) @abstractmethod def train_config(self, fl_ctx: FLContext): """Traning configurations customized to individual tasks This can be specified / loaded in any ways as long as they are made available for further training and validation some potential items include but not limited to: self.lr self.fedproxloss_mu self.model self.device self.optimizer self.criterion self.transform_train self.transform_valid self.transform_post self.train_loader self.valid_loader self.inferer self.valid_metric """ raise NotImplementedError @abstractmethod def finalize(self, fl_ctx: FLContext): # collect threads, close files here pass def local_train( self, fl_ctx, train_loader, model_global, abort_signal: Signal, ): """Typical training logic Total local epochs: self.aggregation_epochs Load data pairs from train_loader: image / label Compute outputs with self.model Compute loss with self.criterion Add fedprox loss Update model """ for epoch in range(self.aggregation_epochs): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.model.train() epoch_len = len(train_loader) self.epoch_global = self.epoch_of_start_time + epoch self.log_info( fl_ctx, f"Local epoch {self.client_id}: {epoch + 1}/{self.aggregation_epochs} (lr={self.lr})", ) for i, batch_data in enumerate(train_loader): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) inputs = batch_data["image"].to(self.device) labels = batch_data["label"].to(self.device) # forward + backward + optimize outputs = self.model(inputs) loss = self.criterion(outputs, labels) # FedProx loss term if self.fedproxloss_mu > 0: fed_prox_loss = self.criterion_prox(self.model, model_global) loss += fed_prox_loss self.optimizer.zero_grad() loss.backward() self.optimizer.step() current_step = epoch_len * self.epoch_global + i self.writer.add_scalar("train_loss", loss.item(), current_step) def local_valid( self, model, valid_loader, abort_signal: Signal, tb_id=None, record_epoch=None, ): """Typical validation logic Load data pairs from train_loader: image / label Compute outputs with self.model Perform post transform (binarization, etc.) Compute evaluation metric with self.valid_metric Add score to tensorboard record with specified id """ model.eval() with torch.no_grad(): metric = 0 for i, batch_data in enumerate(valid_loader): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) val_images = batch_data["image"].to(self.device) val_labels = batch_data["label"].to(self.device) # Inference val_outputs = self.inferer(val_images, model) val_outputs = self.transform_post(val_outputs) # Compute metric metric_score = self.valid_metric(y_pred=val_outputs, y=val_labels) metric += metric_score.item() # compute mean dice over whole validation set metric /= len(valid_loader) # tensorboard record id, add to record if provided if tb_id: self.writer.add_scalar(tb_id, metric, record_epoch) return metric def train( self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal, ) -> Shareable: """Typical training task pipeline with potential HE and fedprox functionalities Get global model weights (potentially with HE) Prepare for fedprox loss Local training Return updated weights (model_diff) """ if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # get round information current_round = shareable.get_header(AppConstants.CURRENT_ROUND) total_rounds = shareable.get_header(AppConstants.NUM_ROUNDS) self.log_info(fl_ctx, f"Current/Total Round: {current_round + 1}/{total_rounds}") self.log_info(fl_ctx, f"Client identity: {fl_ctx.get_identity_name()}") # update local model weights with received weights dxo = from_shareable(shareable) global_weights = dxo.data # Before loading weights, tensors might need to be reshaped to support HE for secure aggregation. local_var_dict = self.model.state_dict() model_keys = global_weights.keys() for var_name in local_var_dict: if var_name in model_keys: weights = global_weights[var_name] try: # reshape global weights to compute difference later on global_weights[var_name] = np.reshape(weights, local_var_dict[var_name].shape) # update the local dict local_var_dict[var_name] = torch.as_tensor(global_weights[var_name]) except Exception as e: raise ValueError("Convert weight from {} failed with error: {}".format(var_name, str(e))) self.model.load_state_dict(local_var_dict) # local steps epoch_len = len(self.train_loader) self.log_info(fl_ctx, f"Local steps per epoch: {epoch_len}") # make a copy of model_global as reference for potential FedProx loss if self.fedproxloss_mu > 0: model_global = copy.deepcopy(self.model) for param in model_global.parameters(): param.requires_grad = False else: model_global = None # local train self.local_train( fl_ctx=fl_ctx, train_loader=self.train_loader, model_global=model_global, abort_signal=abort_signal, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.epoch_of_start_time += self.aggregation_epochs # compute delta model, global model has the primary key set local_weights = self.model.state_dict() model_diff = {} for name in global_weights: if name not in local_weights: continue model_diff[name] = np.subtract(local_weights[name].cpu().numpy(), global_weights[name], dtype=np.float32) if np.any(np.isnan(model_diff[name])): self.system_panic(f"{name} weights became NaN...", fl_ctx) return make_reply(ReturnCode.EXECUTION_EXCEPTION) # flush the tb writer self.writer.flush() # build the shareable dxo = DXO(data_kind=DataKind.WEIGHT_DIFF, data=model_diff) dxo.set_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, epoch_len) self.log_info(fl_ctx, "Local epochs finished. Returning shareable") return dxo.to_shareable() def validate(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: """Typical validation task pipeline with potential HE functionality Get global model weights (potentially with HE) Validation on local data Return validation score """ if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # validation on global model model_owner = "global_model" # update local model weights with received weights dxo = from_shareable(shareable) global_weights = dxo.data # Before loading weights, tensors might need to be reshaped to support HE for secure aggregation. local_var_dict = self.model.state_dict() model_keys = global_weights.keys() n_loaded = 0 for var_name in local_var_dict: if var_name in model_keys: weights = torch.as_tensor(global_weights[var_name], device=self.device) try: # update the local dict local_var_dict[var_name] = torch.as_tensor(torch.reshape(weights, local_var_dict[var_name].shape)) n_loaded += 1 except Exception as e: raise ValueError("Convert weight from {} failed with error: {}".format(var_name, str(e))) self.model.load_state_dict(local_var_dict) if n_loaded == 0: raise ValueError(f"No weights loaded for validation! Received weight dict is {global_weights}") # before_train_validate only, can extend to other validate types validate_type = shareable.get_header(AppConstants.VALIDATE_TYPE) if validate_type == ValidateType.BEFORE_TRAIN_VALIDATE: # perform valid before local train global_metric = self.local_valid( self.model, self.valid_loader, abort_signal, tb_id="val_metric_global_model", record_epoch=self.epoch_global, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info(fl_ctx, f"val_metric_global_model ({model_owner}): {global_metric:.4f}") # validation metrics will be averaged with weights at server end for best model record metric_dxo = DXO( data_kind=DataKind.METRICS, data={MetaKey.INITIAL_METRICS: global_metric}, meta={}, ) metric_dxo.set_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, len(self.valid_loader)) return metric_dxo.to_shareable() else: return make_reply(ReturnCode.VALIDATE_TYPE_UNKNOWN)
NVFlare-main
examples/advanced/prostate/prostate_3D/custom/learners/supervised_learner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import torch import torch.optim as optim from learners.supervised_learner import SupervisedLearner from monai.data import CacheDataset, DataLoader, Dataset, load_decathlon_datalist from monai.inferers import SlidingWindowInferer from monai.losses import DiceLoss from monai.metrics import DiceMetric from monai.networks.nets.unet import UNet from monai.transforms import ( Activations, AsDiscrete, Compose, DivisiblePadd, EnsureChannelFirstd, EnsureType, EnsureTyped, LoadImaged, NormalizeIntensityd, Orientationd, RandCropByPosNegLabeld, RandFlipd, RandScaleIntensityd, RandShiftIntensityd, Spacingd, ) from utils.custom_client_datalist_json_path import custom_client_datalist_json_path from nvflare.apis.fl_context import FLContext from nvflare.app_common.app_constant import AppConstants from nvflare.app_opt.pt.fedproxloss import PTFedProxLoss class SupervisedMonaiProstateLearner(SupervisedLearner): def __init__( self, train_config_filename, aggregation_epochs: int = 1, train_task_name: str = AppConstants.TASK_TRAIN, ): """MONAI Learner for prostate segmentation task. It inherits from SupervisedLearner. Args: train_config_filename: path for config file, this is an addition term for config loading aggregation_epochs: the number of training epochs for a round. train_task_name: name of the task to train the model. Returns: a Shareable with the updated local model after running `execute()` """ super().__init__( aggregation_epochs=aggregation_epochs, train_task_name=train_task_name, ) self.train_config_filename = train_config_filename self.config_info = None def train_config(self, fl_ctx: FLContext): """MONAI traning configuration Here, we use a json to specify the needed parameters """ # Load training configurations json engine = fl_ctx.get_engine() ws = engine.get_workspace() app_config_dir = ws.get_app_config_dir(fl_ctx.get_job_id()) train_config_file_path = os.path.join(app_config_dir, self.train_config_filename) if not os.path.isfile(train_config_file_path): self.log_error( fl_ctx, f"Training configuration file does not exist at {train_config_file_path}", ) with open(train_config_file_path) as file: self.config_info = json.load(file) # Get the config_info self.lr = self.config_info["learning_rate"] self.fedproxloss_mu = self.config_info["fedproxloss_mu"] cache_rate = self.config_info["cache_dataset"] dataset_base_dir = self.config_info["dataset_base_dir"] datalist_json_path = self.config_info["datalist_json_path"] self.roi_size = self.config_info.get("roi_size", (224, 224, 32)) self.infer_roi_size = self.config_info.get("infer_roi_size", (224, 224, 32)) # Get datalist json datalist_json_path = custom_client_datalist_json_path(datalist_json_path, self.client_id) # Set datalist train_list = load_decathlon_datalist( data_list_file_path=datalist_json_path, is_segmentation=True, data_list_key="training", base_dir=dataset_base_dir, ) valid_list = load_decathlon_datalist( data_list_file_path=datalist_json_path, is_segmentation=True, data_list_key="validation", base_dir=dataset_base_dir, ) self.log_info( fl_ctx, f"Training Size: {len(train_list)}, Validation Size: {len(valid_list)}", ) # Set the training-related context self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.model = UNet( spatial_dims=3, in_channels=1, out_channels=1, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, ).to(self.device) self.optimizer = optim.SGD(self.model.parameters(), lr=self.lr, momentum=0.9) self.criterion = DiceLoss(sigmoid=True) if self.fedproxloss_mu > 0: self.log_info(fl_ctx, f"using FedProx loss with mu {self.fedproxloss_mu}") self.criterion_prox = PTFedProxLoss(mu=self.fedproxloss_mu) self.transform_train = Compose( [ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys=["image", "label"]), Orientationd(keys=["image", "label"], axcodes="RAS"), Spacingd( keys=["image", "label"], pixdim=(0.3, 0.3, 1.0), mode=("bilinear", "nearest"), ), DivisiblePadd(keys=["image", "label"], k=32), RandCropByPosNegLabeld( keys=["image", "label"], label_key="label", spatial_size=self.roi_size, pos=1, neg=1, num_samples=4, ), RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=0), RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=1), RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=2), NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True), RandScaleIntensityd(keys="image", factors=0.1, prob=1.0), RandShiftIntensityd(keys="image", offsets=0.1, prob=1.0), EnsureTyped(keys=["image", "label"]), ] ) self.transform_valid = Compose( [ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys=["image", "label"]), Spacingd( keys=["image", "label"], pixdim=(0.3, 0.3, 1.0), mode=("bilinear", "nearest"), ), DivisiblePadd(keys=["image", "label"], k=32), Orientationd(keys=["image", "label"], axcodes="RAS"), NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True), EnsureTyped(keys=["image", "label"]), ] ) self.transform_post = Compose([EnsureType(), Activations(sigmoid=True), AsDiscrete(threshold=0.5)]) # Set dataset if cache_rate > 0.0: self.train_dataset = CacheDataset( data=train_list, transform=self.transform_train, cache_rate=cache_rate, num_workers=1, ) self.valid_dataset = CacheDataset( data=valid_list, transform=self.transform_valid, cache_rate=cache_rate, num_workers=1, ) else: self.train_dataset = Dataset( data=train_list, transform=self.transform_train, ) self.valid_dataset = Dataset( data=valid_list, transform=self.transform_valid, ) self.train_loader = DataLoader( self.train_dataset, batch_size=1, shuffle=True, num_workers=1, ) self.valid_loader = DataLoader( self.valid_dataset, batch_size=1, shuffle=False, num_workers=1, ) # Set inferer and evaluation metric self.inferer = SlidingWindowInferer(roi_size=self.infer_roi_size, sw_batch_size=4, overlap=0.25) self.valid_metric = DiceMetric(include_background=False, reduction="mean", get_not_nans=False)
NVFlare-main
examples/advanced/prostate/prostate_3D/custom/learners/supervised_monai_prostate_learner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.shareable import make_reply from nvflare.apis.signal import Signal from nvflare.app_opt.pt.ditto import PTDittoHelper class SupervisedPTDittoHelper(PTDittoHelper): """Helper to be used with Ditto components under supervised training specs.""" def __init__(self, criterion, model, optimizer, device, app_dir, ditto_lambda, model_epochs): super().__init__(criterion, model, optimizer, device, app_dir, ditto_lambda, model_epochs) def local_train(self, train_loader, model_global, abort_signal: Signal, writer): # Train personal model for self.model_epochs, and keep track of curves # This part is task dependent, need customization for epoch in range(self.model_epochs): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.model.train() epoch_len = len(train_loader) self.epoch_global = self.epoch_of_start_time + epoch + 1 for i, batch_data in enumerate(train_loader): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) inputs = batch_data["image"].to(self.device) labels = batch_data["label"].to(self.device) # forward + backward + optimize outputs = self.model(inputs) loss = self.criterion(outputs, labels) # add the Ditto prox loss term for Ditto loss_ditto = self.prox_criterion(self.model, model_global) loss += loss_ditto self.optimizer.zero_grad() loss.backward() self.optimizer.step() current_step = epoch_len * self.epoch_global + i writer.add_scalar("train_loss_ditto", loss.item(), current_step)
NVFlare-main
examples/advanced/prostate/prostate_3D/custom/helpers/supervised_pt_ditto.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os.path import time import torch import torch.nn.functional as F import tqdm from sklearn.linear_model import SGDClassifier from sklearn.metrics import f1_score from sklearn.multioutput import MultiOutputClassifier from torch_geometric.data import Batch from torch_geometric.datasets import PPI from torch_geometric.loader import DataLoader, LinkNeighborLoader from torch_geometric.nn import GraphSAGE # (0) import nvflare client API import nvflare.client as flare # Create PPI dataset for training. path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "..", "data", "PPI") train_dataset = PPI(path, split="train") val_dataset = PPI(path, split="val") test_dataset = PPI(path, split="test") # Group all training graphs into a single graph to perform sampling: train_data = Batch.from_data_list(train_dataset) loader = LinkNeighborLoader( train_data, batch_size=2048, shuffle=True, neg_sampling_ratio=1.0, num_neighbors=[10, 10], num_workers=6, persistent_workers=True, ) print("finish setup train loader") # Evaluation loaders (one datapoint corresponds to a graph) train_loader = DataLoader(train_dataset, batch_size=2) val_loader = DataLoader(val_dataset, batch_size=2) test_loader = DataLoader(test_dataset, batch_size=2) print("finish setup eval loaders") n_iterations = len(train_loader) device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model = GraphSAGE( in_channels=train_dataset.num_features, hidden_channels=64, num_layers=2, out_channels=64, ) optimizer = torch.optim.Adam(model.parameters(), lr=0.003) print("finish setup model") # (1) initializes NVFlare client API flare.init() print("finish init") # (2) gets FLModel from NVFlare input_model = flare.receive() print("finish receive") # (3) loads model from NVFlare model.load_state_dict(input_model.params) model.to(device) print("finish load_state_dict") def train(): model.train() total_loss = total_examples = 0 for data in tqdm.tqdm(loader): data = data.to(device) optimizer.zero_grad() h = model(data.x, data.edge_index) h_src = h[data.edge_label_index[0]] h_dst = h[data.edge_label_index[1]] link_pred = (h_src * h_dst).sum(dim=-1) # Inner product. loss = F.binary_cross_entropy_with_logits(link_pred, data.edge_label) loss.backward() optimizer.step() total_loss += float(loss) * link_pred.numel() total_examples += link_pred.numel() return total_loss / total_examples @torch.no_grad() def encode(data_loader): model.to(device) model.eval() xs, ys = [], [] for data in data_loader: data = data.to(device) xs.append(model(data.x, data.edge_index).cpu()) ys.append(data.y.cpu()) return torch.cat(xs, dim=0), torch.cat(ys, dim=0) @torch.no_grad() def test(): # Train classifier on training set: x, y = encode(train_loader) clf = MultiOutputClassifier(SGDClassifier(loss="log_loss", penalty="l2")) clf.fit(x, y) train_f1 = f1_score(y, clf.predict(x), average="micro") # Evaluate on validation set: x, y = encode(val_loader) val_f1 = f1_score(y, clf.predict(x), average="micro") # Evaluate on test set: x, y = encode(test_loader) test_f1 = f1_score(y, clf.predict(x), average="micro") return train_f1, val_f1, test_f1 times = [] _, _, global_test_f1 = test() print(f"Global Test F1: {global_test_f1:.4f}") number_epochs = 60 # (optional) calculate total steps steps = number_epochs * len(loader) print(steps) for epoch in range(1, number_epochs): start = time.time() loss = train() print(f"Epoch: {epoch:02d}, Loss: {loss:.4f}") train_f1, val_f1, test_f1 = test() print(f"Train F1: {train_f1:.4f}, Val F1: {val_f1:.4f}, " f"Test F1: {test_f1:.4f}") times.append(time.time() - start) print(f"Median time per epoch: {torch.tensor(times).median():.4f}s") # (5) construct the FLModel to returned back output_model = flare.FLModel( params=model.cpu().state_dict(), params_type="FULL", metrics={"test_f1": global_test_f1}, meta={"NUM_STEPS_CURRENT_ROUND": steps}, ) # (6) send back model flare.send(output_model)
NVFlare-main
examples/advanced/gnn-pt/jobs/gnn-pt/app/custom/graphsage.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from nvflare.fuel.hci.client.fl_admin_api_runner import FLAdminAPIRunner, api_command_wrapper def main(): parser = argparse.ArgumentParser() parser.add_argument("--admin_dir", type=str, default="./admin/", help="Path to admin directory.") parser.add_argument("--username", type=str, default="admin", help="Admin username.") parser.add_argument("--job", type=str, default="prostate_fedavg", help="Path to job config.") args = parser.parse_args() assert os.path.isdir(args.admin_dir), f"admin directory does not exist at {args.admin_dir}" # Initialize the runner runner = FLAdminAPIRunner( username=args.username, admin_dir=args.admin_dir, debug=False, ) # Submit job api_command_wrapper(runner.api.submit_job(args.job)) # finish runner.api.logout() if __name__ == "__main__": main()
NVFlare-main
examples/advanced/brats18/submit_job.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import numpy as np import torch from monai.data import DataLoader, Dataset, load_decathlon_datalist from monai.inferers import SlidingWindowInferer from monai.metrics import DiceMetric from monai.networks.nets.segresnet import SegResNet from monai.transforms import ( Activations, AsDiscrete, Compose, ConvertToMultiChannelBasedOnBratsClassesd, DivisiblePadd, EnsureChannelFirstd, LoadImaged, NormalizeIntensityd, Orientationd, Spacingd, ) def main(): parser = argparse.ArgumentParser(description="Model Testing") parser.add_argument("--model_path", type=str) parser.add_argument("--dataset_base_dir", default="../dataset_brats18/dataset", type=str) parser.add_argument("--datalist_json_path", default="../dataset_brats18/datalist/site-All.json", type=str) args = parser.parse_args() # Set basic settings and paths dataset_base_dir = args.dataset_base_dir datalist_json_path = args.datalist_json_path model_path = args.model_path infer_roi_size = (240, 240, 160) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Set datalists test_list = load_decathlon_datalist( data_list_file_path=datalist_json_path, is_segmentation=True, data_list_key="validation", base_dir=dataset_base_dir, ) print(f"Testing Size: {len(test_list)}") # Network, optimizer, and loss model = SegResNet( blocks_down=[1, 2, 2, 4], blocks_up=[1, 1, 1], init_filters=16, in_channels=4, out_channels=3, dropout_prob=0.2, ).to(device) model_weights = torch.load(model_path) model_weights = model_weights["model"] model.load_state_dict(model_weights) # Inferer, evaluation metric inferer = SlidingWindowInferer(roi_size=infer_roi_size, sw_batch_size=1, overlap=0.5) valid_metric = DiceMetric(include_background=True, reduction="mean") transform = Compose( [ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys="image"), ConvertToMultiChannelBasedOnBratsClassesd(keys="label"), Spacingd( keys=["image", "label"], pixdim=(1.0, 1.0, 1.0), mode=("bilinear", "nearest"), ), DivisiblePadd(keys=["image", "label"], k=32), Orientationd(keys=["image", "label"], axcodes="RAS"), NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True), ] ) transform_post = Compose([Activations(sigmoid=True), AsDiscrete(threshold=0.5)]) # Set dataset test_dataset = Dataset(data=test_list, transform=transform) test_loader = DataLoader( test_dataset, batch_size=1, shuffle=False, num_workers=1, ) # Train model.eval() with torch.no_grad(): metric = 0 metric_tc = 0 metric_wt = 0 metric_et = 0 ct = 0 ct_tc = 0 ct_wt = 0 ct_et = 0 for i, batch_data in enumerate(test_loader): images = batch_data["image"].to(device) labels = batch_data["label"].to(device) # Inference outputs = inferer(images, model) outputs = transform_post(outputs) # Compute metric metric_score = valid_metric(y_pred=outputs, y=labels) if not np.isnan(metric_score[0][0].item()): metric += metric_score[0][0].item() ct += 1 metric_tc += metric_score[0][0].item() ct_tc += 1 if not np.isnan(metric_score[0][1].item()): metric += metric_score[0][1].item() ct += 1 metric_wt += metric_score[0][1].item() ct_wt += 1 if not np.isnan(metric_score[0][2].item()): metric += metric_score[0][2].item() ct += 1 metric_et += metric_score[0][2].item() ct_et += 1 # compute mean dice over whole validation set metric_tc /= ct_tc metric_wt /= ct_wt metric_et /= ct_et metric /= ct print(f"Test Dice: {metric:.4f}, Valid count: {ct}") print(f"Test Dice TC: {metric_tc:.4f}, Valid count: {ct_tc}") print(f"Test Dice WT: {metric_wt:.4f}, Valid count: {ct_wt}") print(f"Test Dice ET: {metric_et:.4f}, Valid count: {ct_et}") if __name__ == "__main__": main()
NVFlare-main
examples/advanced/brats18/result_stat/brats_3d_test_only.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import os import matplotlib.pyplot as plt import seaborn as sns import tensorflow as tf # poc workspace client_results_root = "../workspace_brats/" # All sites used the same validation set for Brats, so only 1 site's record is needed site_num = 1 client_pre = "app_site-" sites_fl = [str(site + 1) for site in range(site_num)] # Central vs. FedAvg vs. FedAvg_DP experiments = { "brats_central": {"tag": "val_metric_global_model", "site": "All"}, "brats_fedavg": {"tag": "val_metric_global_model"}, "brats_fedavg_dp": {"tag": "val_metric_global_model"}, } weight = 0.8 def smooth(scalars, weight): # Weight between 0 and 1 last = scalars[0] # First value in the plot (first timestep) smoothed = list() for point in scalars: smoothed_val = last * weight + (1 - weight) * point # Calculate smoothed value smoothed.append(smoothed_val) # Save it last = smoothed_val # Anchor the last smoothed value return smoothed def read_eventfile(filepath, tags=["val_metric_global_model"]): data = {} for summary in tf.compat.v1.train.summary_iterator(filepath): for v in summary.summary.value: if v.tag in tags: if v.tag in data.keys(): data[v.tag].append([summary.step, v.simple_value]) else: data[v.tag] = [[summary.step, v.simple_value]] return data def add_eventdata(data, config, filepath, tag="val_metric_global_model"): event_data = read_eventfile(filepath, tags=[tag]) assert len(event_data[tag]) > 0, f"No data for key {tag}" metric = [] for e in event_data[tag]: # print(e) data["Config"].append(config) data["Epoch"].append(e[0]) metric.append(e[1]) metric = smooth(metric, weight) for entry in metric: data["Dice"].append(entry) print(f"added {len(event_data[tag])} entries for {tag}") def main(): plt.figure() num_site = len(sites_fl) i = 1 # add event files data = {"Config": [], "Epoch": [], "Dice": []} for site in sites_fl: # clear data for each site data = {"Config": [], "Epoch": [], "Dice": []} for config, exp in experiments.items(): spec_site = exp.get("site", None) if spec_site is not None: record_path = os.path.join( client_results_root + config, "simulate_job", client_pre + spec_site, "events.*" ) else: record_path = os.path.join(client_results_root + config, "simulate_job", client_pre + site, "events.*") eventfile = glob.glob(record_path, recursive=True) print(record_path, len(eventfile)) assert len(eventfile) == 1, "No unique event file found!" eventfile = eventfile[0] print("adding", eventfile) add_eventdata(data, config, eventfile, tag=exp["tag"]) ax = plt.subplot(1, num_site, i) ax.set_title(site) sns.lineplot(x="Epoch", y="Dice", hue="Config", data=data) # ax.set_xlim([0, 1000]) i = i + 1 plt.subplots_adjust(hspace=0.3) plt.show() if __name__ == "__main__": main()
NVFlare-main
examples/advanced/brats18/result_stat/plot_tensorboard_events.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import os import matplotlib.pyplot as plt import seaborn as sns import tensorflow as tf # poc workspace client_results_root = "../workspace_brats" # All sites used the same validation set, so only 1 site's record is needed site_num = 1 site_pre = "site-" # Central vs. FedAvg vs. FedAvg_DP experiments = { "brats_central": {"tag": "val_metric_global_model", "site": "All"}, "brats_fedavg": {"tag": "val_metric_global_model"}, "brats_fedavg_dp": {"tag": "val_metric_global_model"}, } weight = 0.8 def smooth(scalars, weight): # Weight between 0 and 1 last = scalars[0] # First value in the plot (first timestep) smoothed = list() for point in scalars: smoothed_val = last * weight + (1 - weight) * point # Calculate smoothed value smoothed.append(smoothed_val) # Save it last = smoothed_val # Anchor the last smoothed value return smoothed def find_job_id(workdir, fl_app_name="prostate_central"): """Find the first matching experiment""" target_path = os.path.join(workdir, "*", "fl_app.txt") fl_app_files = glob.glob(target_path, recursive=True) assert len(fl_app_files) > 0, f"No `fl_app.txt` files found in workdir={workdir}." for fl_app_file in fl_app_files: with open(fl_app_file, "r") as f: _fl_app_name = f.read() if fl_app_name == _fl_app_name: # alpha will be matched based on value in config file job_id = os.path.basename(os.path.dirname(fl_app_file)) return job_id raise ValueError(f"No job id found for fl_app_name={fl_app_name} in workdir={workdir}") def read_eventfile(filepath, tags=["val_metric_global_model"]): data = {} for summary in tf.compat.v1.train.summary_iterator(filepath): for v in summary.summary.value: if v.tag in tags: if v.tag in data.keys(): data[v.tag].append([summary.step, v.simple_value]) else: data[v.tag] = [[summary.step, v.simple_value]] return data def add_eventdata(data, config, filepath, tag="val_metric_global_model"): event_data = read_eventfile(filepath, tags=[tag]) assert len(event_data[tag]) > 0, f"No data for key {tag}" metric = [] for e in event_data[tag]: # print(e) data["Config"].append(config) data["Epoch"].append(e[0]) metric.append(e[1]) metric = smooth(metric, weight) for entry in metric: data["Dice"].append(entry) print(f"added {len(event_data[tag])} entries for {tag}") def main(): plt.figure() i = 1 # add event files data = {"Config": [], "Epoch": [], "Dice": []} for site in range(site_num): # clear data for each site site = site + 1 data = {"Config": [], "Epoch": [], "Dice": []} for config, exp in experiments.items(): job_id = find_job_id(workdir=client_results_root + "/site-1", fl_app_name=config) print(f"Found run {job_id} for {config}") spec_site = exp.get("site", None) if spec_site is not None: record_path = os.path.join(client_results_root, site_pre + spec_site, job_id, "*", "events.*") else: record_path = os.path.join(client_results_root, site_pre + str(site), job_id, "*", "events.*") eventfile = glob.glob(record_path, recursive=True) assert len(eventfile) == 1, "No unique event file found!" eventfile = eventfile[0] print("adding", eventfile) add_eventdata(data, config, eventfile, tag=exp["tag"]) ax = plt.subplot(1, site_num, i) ax.set_title(site) sns.lineplot(x="Epoch", y="Dice", hue="Config", data=data) i = i + 1 plt.subplots_adjust(hspace=0.3) plt.show() if __name__ == "__main__": main()
NVFlare-main
examples/advanced/brats18/result_stat/plot_tensorboard_events_poc.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os def custom_client_datalist_json_path(datalist_json_path: str, client_id: str) -> str: """ Customize datalist_json_path for each client Args: datalist_json_path: root path containing all jsons client_id: e.g., site-2 """ # Customize datalist_json_path for each client datalist_json_path_client = os.path.join( datalist_json_path, client_id + ".json", ) return datalist_json_path_client
NVFlare-main
examples/advanced/brats18/pt/utils/custom_client_datalist_json_path.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import numpy as np import torch import torch.optim as optim from monai.data import CacheDataset, DataLoader, Dataset, load_decathlon_datalist from monai.inferers import SlidingWindowInferer from monai.losses import DiceLoss from monai.metrics import DiceMetric from monai.networks.nets.segresnet import SegResNet from monai.transforms import ( Activations, AsDiscrete, Compose, ConvertToMultiChannelBasedOnBratsClassesd, DivisiblePadd, EnsureChannelFirstd, LoadImaged, NormalizeIntensityd, Orientationd, RandFlipd, RandScaleIntensityd, RandShiftIntensityd, RandSpatialCropd, Spacingd, ) from pt.learners.supervised_learner import SupervisedLearner from pt.utils.custom_client_datalist_json_path import custom_client_datalist_json_path from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import make_reply from nvflare.apis.signal import Signal from nvflare.app_common.app_constant import AppConstants from nvflare.app_opt.pt.fedproxloss import PTFedProxLoss class SupervisedMonaiBratsLearner(SupervisedLearner): def __init__( self, train_config_filename, aggregation_epochs: int = 1, train_task_name: str = AppConstants.TASK_TRAIN, ): """MONAI Learner for BraTS18 segmentation task. It inherits from SupervisedLearner. Args: train_config_filename: path for config file, this is an addition term for config loading aggregation_epochs: the number of training epochs for a round. train_task_name: name of the task to train the model. Returns: a Shareable with the updated local model after running `execute()` """ super().__init__( aggregation_epochs=aggregation_epochs, train_task_name=train_task_name, ) self.train_config_filename = train_config_filename self.config_info = None def train_config(self, fl_ctx: FLContext): """MONAI traning configuration Here, we use a json to specify the needed parameters """ # Load training configurations json engine = fl_ctx.get_engine() ws = engine.get_workspace() app_config_dir = ws.get_app_config_dir(fl_ctx.get_job_id()) train_config_file_path = os.path.join(app_config_dir, self.train_config_filename) if not os.path.isfile(train_config_file_path): self.log_error( fl_ctx, f"Training configuration file does not exist at {train_config_file_path}", ) with open(train_config_file_path) as file: self.config_info = json.load(file) # Get the config_info self.lr = self.config_info["learning_rate"] self.fedproxloss_mu = self.config_info["fedproxloss_mu"] cache_rate = self.config_info["cache_dataset"] dataset_base_dir = self.config_info["dataset_base_dir"] datalist_json_path = self.config_info["datalist_json_path"] self.roi_size = self.config_info.get("roi_size", (224, 224, 144)) self.infer_roi_size = self.config_info.get("infer_roi_size", (240, 240, 160)) # Get datalist json datalist_json_path = custom_client_datalist_json_path(datalist_json_path, self.client_id) # Set datalist train_list = load_decathlon_datalist( data_list_file_path=datalist_json_path, is_segmentation=True, data_list_key="training", base_dir=dataset_base_dir, ) valid_list = load_decathlon_datalist( data_list_file_path=datalist_json_path, is_segmentation=True, data_list_key="validation", base_dir=dataset_base_dir, ) self.log_info( fl_ctx, f"Training Size: {len(train_list)}, Validation Size: {len(valid_list)}", ) # Set the training-related context self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.model = SegResNet( blocks_down=[1, 2, 2, 4], blocks_up=[1, 1, 1], init_filters=16, in_channels=4, out_channels=3, dropout_prob=0.2, ).to(self.device) self.optimizer = optim.Adam(self.model.parameters(), lr=self.lr, weight_decay=1e-5) self.lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(self.optimizer, T_max=100) self.criterion = DiceLoss( smooth_nr=0, smooth_dr=1e-5, squared_pred=True, to_onehot_y=False, sigmoid=True, ) if self.fedproxloss_mu > 0: self.log_info(fl_ctx, f"using FedProx loss with mu {self.fedproxloss_mu}") self.criterion_prox = PTFedProxLoss(mu=self.fedproxloss_mu) self.transform_train = Compose( [ # load Nifti image LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys="image"), ConvertToMultiChannelBasedOnBratsClassesd(keys="label"), Spacingd( keys=["image", "label"], pixdim=(1.0, 1.0, 1.0), mode=("bilinear", "nearest"), ), Orientationd(keys=["image", "label"], axcodes="RAS"), RandSpatialCropd(keys=["image", "label"], roi_size=self.roi_size, random_size=False), RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=0), RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=1), RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=2), NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True), RandScaleIntensityd(keys="image", factors=0.1, prob=1.0), RandShiftIntensityd(keys="image", offsets=0.1, prob=1.0), ] ) self.transform_valid = Compose( [ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys="image"), ConvertToMultiChannelBasedOnBratsClassesd(keys="label"), Spacingd( keys=["image", "label"], pixdim=(1.0, 1.0, 1.0), mode=("bilinear", "nearest"), ), DivisiblePadd(keys=["image", "label"], k=32), Orientationd(keys=["image", "label"], axcodes="RAS"), NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True), ] ) self.transform_post = Compose([Activations(sigmoid=True), AsDiscrete(threshold=0.5)]) # Set dataset if cache_rate > 0.0: self.train_dataset = CacheDataset( data=train_list, transform=self.transform_train, cache_rate=cache_rate, num_workers=1, ) self.valid_dataset = CacheDataset( data=valid_list, transform=self.transform_valid, cache_rate=cache_rate, num_workers=1, ) else: self.train_dataset = Dataset( data=train_list, transform=self.transform_train, ) self.valid_dataset = Dataset( data=valid_list, transform=self.transform_valid, ) self.train_loader = DataLoader( self.train_dataset, batch_size=1, shuffle=True, num_workers=1, ) self.valid_loader = DataLoader( self.valid_dataset, batch_size=1, shuffle=False, num_workers=1, ) # Set inferer and evaluation metric self.inferer = SlidingWindowInferer(roi_size=self.infer_roi_size, sw_batch_size=1, overlap=0.5) self.valid_metric = DiceMetric(include_background=True, reduction="mean") # Brats has 3 classes, so the metric computation needs some change def local_valid( self, model, valid_loader, abort_signal: Signal, tb_id=None, record_epoch=None, ): """Typical validation logic Load data pairs from train_loader: image / label Compute outputs with self.model Perform post transform (binarization, etc.) Compute evaluation metric with self.valid_metric Add score to tensorboard record with specified id """ model.eval() with torch.no_grad(): metric = 0 ct = 0 for i, batch_data in enumerate(valid_loader): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) val_images = batch_data["image"].to(self.device) val_labels = batch_data["label"].to(self.device) # Inference val_outputs = self.inferer(val_images, model) val_outputs = self.transform_post(val_outputs) # Compute metric metric_score = self.valid_metric(y_pred=val_outputs, y=val_labels) for sub_region in range(3): metric_score_single = metric_score[0][sub_region].item() if not np.isnan(metric_score_single): metric += metric_score_single ct += 1 # compute mean dice over whole validation set metric /= ct # tensorboard record id, add to record if provided if tb_id: self.writer.add_scalar(tb_id, metric, record_epoch) return metric
NVFlare-main
examples/advanced/brats18/pt/learners/supervised_monai_brats_learner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from abc import abstractmethod import numpy as np import torch from torch.utils.tensorboard import SummaryWriter from nvflare.apis.dxo import DXO, DataKind, MetaKey, from_shareable from nvflare.apis.fl_constant import FLContextKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.learner_spec import Learner from nvflare.app_common.app_constant import AppConstants, ValidateType class SupervisedLearner(Learner): def __init__( self, aggregation_epochs: int = 1, train_task_name: str = AppConstants.TASK_TRAIN, ): """Simple Supervised Trainer. This provides the basic functionality of a local learner: perform before-train validation on global model at the beginning of each round, perform local training, and send the updated weights. No model will be saved locally, tensorboard record for local loss and global model validation score. Enabled both FedAvg and FedProx Args: train_config_filename: directory of config file. aggregation_epochs: the number of training epochs for a round. Defaults to 1. train_task_name: name of the task to train the model. Returns: a Shareable with the updated local model after running `execute()` """ super().__init__() # trainer init happens at the very beginning, only the basic info regarding the trainer is set here # the actual run has not started at this point self.aggregation_epochs = aggregation_epochs self.train_task_name = train_task_name # Epoch counter self.epoch_of_start_time = 0 self.epoch_global = 0 # FedProx related self.fedproxloss_mu = 0.0 self.criterion_prox = None def initialize(self, parts: dict, fl_ctx: FLContext): # when a run starts, this is where the actual settings get initialized for trainer # set the paths according to fl_ctx engine = fl_ctx.get_engine() ws = engine.get_workspace() app_dir = ws.get_app_dir(fl_ctx.get_job_id()) # get and print the args fl_args = fl_ctx.get_prop(FLContextKey.ARGS) self.client_id = fl_ctx.get_identity_name() self.log_info( fl_ctx, f"Client {self.client_id} initialized with args: \n {fl_args}", ) # set local tensorboard writer for local validation score of global model self.writer = SummaryWriter(app_dir) # set the training-related contexts, this is task-specific self.train_config(fl_ctx) @abstractmethod def train_config(self, fl_ctx: FLContext): """Traning configurations customized to individual tasks This can be specified / loaded in any ways as long as they are made available for further training and validation some potential items include but not limited to: self.lr self.fedproxloss_mu self.model self.device self.optimizer self.criterion self.transform_train self.transform_valid self.transform_post self.train_loader self.valid_loader self.inferer self.valid_metric """ raise NotImplementedError @abstractmethod def finalize(self, fl_ctx: FLContext): # collect threads, close files here pass def local_train( self, fl_ctx, train_loader, model_global, abort_signal: Signal, ): """Typical training logic Total local epochs: self.aggregation_epochs Load data pairs from train_loader: image / label Compute outputs with self.model Compute loss with self.criterion Add fedprox loss Update model """ for epoch in range(self.aggregation_epochs): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.model.train() epoch_len = len(train_loader) self.epoch_global = self.epoch_of_start_time + epoch self.log_info( fl_ctx, f"Local epoch {self.client_id}: {epoch + 1}/{self.aggregation_epochs} (lr={self.lr})", ) for i, batch_data in enumerate(train_loader): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) inputs = batch_data["image"].to(self.device) labels = batch_data["label"].to(self.device) # forward + backward + optimize outputs = self.model(inputs) loss = self.criterion(outputs, labels) # FedProx loss term if self.fedproxloss_mu > 0: fed_prox_loss = self.criterion_prox(self.model, model_global) loss += fed_prox_loss self.optimizer.zero_grad() loss.backward() self.optimizer.step() current_step = epoch_len * self.epoch_global + i self.writer.add_scalar("train_loss", loss.item(), current_step) def local_valid( self, model, valid_loader, abort_signal: Signal, tb_id=None, record_epoch=None, ): """Typical validation logic Load data pairs from train_loader: image / label Compute outputs with self.model Perform post transform (binarization, etc.) Compute evaluation metric with self.valid_metric Add score to tensorboard record with specified id """ model.eval() with torch.no_grad(): metric = 0 for i, batch_data in enumerate(valid_loader): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) val_images = batch_data["image"].to(self.device) val_labels = batch_data["label"].to(self.device) # Inference val_outputs = self.inferer(val_images, model) val_outputs = self.transform_post(val_outputs) # Compute metric metric_score = self.valid_metric(y_pred=val_outputs, y=val_labels) metric += metric_score.item() # compute mean dice over whole validation set metric /= len(valid_loader) # tensorboard record id, add to record if provided if tb_id: self.writer.add_scalar(tb_id, metric_score, record_epoch) return metric def train( self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal, ) -> Shareable: """Typical training task pipeline with potential HE and fedprox functionalities Get global model weights (potentially with HE) Prepare for fedprox loss Local training Return updated weights (model_diff) """ if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # get round information current_round = shareable.get_header(AppConstants.CURRENT_ROUND) total_rounds = shareable.get_header(AppConstants.NUM_ROUNDS) self.log_info(fl_ctx, f"Current/Total Round: {current_round + 1}/{total_rounds}") self.log_info(fl_ctx, f"Client identity: {fl_ctx.get_identity_name()}") # update local model weights with received weights dxo = from_shareable(shareable) global_weights = dxo.data # Before loading weights, tensors might need to be reshaped to support HE for secure aggregation. local_var_dict = self.model.state_dict() model_keys = global_weights.keys() for var_name in local_var_dict: if var_name in model_keys: weights = global_weights[var_name] try: # reshape global weights to compute difference later on global_weights[var_name] = np.reshape(weights, local_var_dict[var_name].shape) # update the local dict local_var_dict[var_name] = torch.as_tensor(global_weights[var_name]) except Exception as e: raise ValueError("Convert weight from {} failed with error: {}".format(var_name, str(e))) self.model.load_state_dict(local_var_dict) # local steps epoch_len = len(self.train_loader) self.log_info(fl_ctx, f"Local steps per epoch: {epoch_len}") # make a copy of model_global as reference for potential FedProx loss if self.fedproxloss_mu > 0: model_global = copy.deepcopy(self.model) for param in model_global.parameters(): param.requires_grad = False else: model_global = None # local train self.local_train( fl_ctx=fl_ctx, train_loader=self.train_loader, model_global=model_global, abort_signal=abort_signal, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.epoch_of_start_time += self.aggregation_epochs # compute delta model, global model has the primary key set local_weights = self.model.state_dict() model_diff = {} for name in global_weights: if name not in local_weights: continue model_diff[name] = np.subtract(local_weights[name].cpu().numpy(), global_weights[name], dtype=np.float32) if np.any(np.isnan(model_diff[name])): self.system_panic(f"{name} weights became NaN...", fl_ctx) return make_reply(ReturnCode.EXECUTION_EXCEPTION) # flush the tb writer self.writer.flush() # build the shareable dxo = DXO(data_kind=DataKind.WEIGHT_DIFF, data=model_diff) dxo.set_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, epoch_len) self.log_info(fl_ctx, "Local epochs finished. Returning shareable") return dxo.to_shareable() def validate(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: """Typical validation task pipeline with potential HE functionality Get global model weights (potentially with HE) Validation on local data Return validation score """ if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # validation on global model model_owner = "global_model" # update local model weights with received weights dxo = from_shareable(shareable) global_weights = dxo.data # Before loading weights, tensors might need to be reshaped to support HE for secure aggregation. local_var_dict = self.model.state_dict() model_keys = global_weights.keys() n_loaded = 0 for var_name in local_var_dict: if var_name in model_keys: weights = torch.as_tensor(global_weights[var_name], device=self.device) try: # update the local dict local_var_dict[var_name] = torch.as_tensor(torch.reshape(weights, local_var_dict[var_name].shape)) n_loaded += 1 except Exception as e: raise ValueError("Convert weight from {} failed with error: {}".format(var_name, str(e))) self.model.load_state_dict(local_var_dict) if n_loaded == 0: raise ValueError(f"No weights loaded for validation! Received weight dict is {global_weights}") # before_train_validate only, can extend to other validate types validate_type = shareable.get_header(AppConstants.VALIDATE_TYPE) if validate_type == ValidateType.BEFORE_TRAIN_VALIDATE: # perform valid before local train global_metric = self.local_valid( self.model, self.valid_loader, abort_signal, tb_id="val_metric_global_model", record_epoch=self.epoch_global, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info(fl_ctx, f"val_metric_global_model ({model_owner}): {global_metric:.4f}") # validation metrics will be averaged with weights at server end for best model record metric_dxo = DXO(data_kind=DataKind.METRICS, data={MetaKey.INITIAL_METRICS: global_metric}, meta={}) metric_dxo.set_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, len(self.valid_loader)) return metric_dxo.to_shareable() else: return make_reply(ReturnCode.VALIDATE_TYPE_UNKNOWN)
NVFlare-main
examples/advanced/brats18/pt/learners/supervised_learner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import os import matplotlib.pyplot as plt import seaborn as sns import tensorflow as tf # simulator workspace client_results_root = "./workspaces/xgboost_workspace_" client_num_list = [5, 20] client_pre = "app_site-" centralized_path = "./workspaces/centralized_1_1/events.*" # bagging and cyclic need different handle experiments_bagging = { 5: { "5_bagging_uniform_split_uniform_lr": {"tag": "AUC"}, "5_bagging_exponential_split_uniform_lr": {"tag": "AUC"}, "5_bagging_exponential_split_scaled_lr": {"tag": "AUC"}, }, 20: { "20_bagging_uniform_split_uniform_lr": {"tag": "AUC"}, "20_bagging_square_split_uniform_lr": {"tag": "AUC"}, "20_bagging_square_split_scaled_lr": {"tag": "AUC"}, }, } experiments_cyclic = { 5: { "5_cyclic_uniform_split_uniform_lr": {"tag": "AUC"}, "5_cyclic_exponential_split_uniform_lr": {"tag": "AUC"}, }, 20: { "20_cyclic_uniform_split_uniform_lr": {"tag": "AUC"}, "20_cyclic_square_split_uniform_lr": {"tag": "AUC"}, }, } weight = 0.0 def smooth(scalars, weight): # Weight between 0 and 1 last = scalars[0] # First value in the plot (first timestep) smoothed = list() for point in scalars: smoothed_val = last * weight + (1 - weight) * point # Calculate smoothed value smoothed.append(smoothed_val) # Save it last = smoothed_val # Anchor the last smoothed value return smoothed def read_eventfile(filepath, tags=["AUC"]): data = {} for summary in tf.compat.v1.train.summary_iterator(filepath): for v in summary.summary.value: if v.tag in tags: if v.tag in data.keys(): data[v.tag].append([summary.step, v.simple_value]) else: data[v.tag] = [[summary.step, v.simple_value]] return data def add_eventdata(data, config, filepath, tag="AUC"): event_data = read_eventfile(filepath, tags=[tag]) assert len(event_data[tag]) > 0, f"No data for key {tag}" metric = [] for e in event_data[tag]: # print(e) data["Config"].append(config) data["Round"].append(e[0]) metric.append(e[1]) metric = smooth(metric, weight) for entry in metric: data["AUC"].append(entry) print(f"added {len(event_data[tag])} entries for {tag}") def main(): plt.figure() for client_num in client_num_list: plt.figure plt.title(f"{client_num} client experiments") # add event files data = {"Config": [], "Round": [], "AUC": []} # add centralized result eventfile = glob.glob(centralized_path, recursive=True) assert len(eventfile) == 1, "No unique event file found!" + eventfile eventfile = eventfile[0] print("adding", eventfile) add_eventdata(data, "centralized", eventfile, tag="AUC") # pick first client for bagging experiments site = 1 for config, exp in experiments_bagging[client_num].items(): record_path = os.path.join(client_results_root + config, "simulate_job", client_pre + str(site), "events.*") eventfile = glob.glob(record_path, recursive=True) assert len(eventfile) == 1, "No unique event file found!" eventfile = eventfile[0] print("adding", eventfile) add_eventdata(data, config, eventfile, tag=exp["tag"]) # Combine all clients' records for cyclic experiments for site in range(1, client_num + 1): for config, exp in experiments_cyclic[client_num].items(): record_path = os.path.join( client_results_root + config, "simulate_job", client_pre + str(site), "events.*" ) eventfile = glob.glob(record_path, recursive=True) assert len(eventfile) == 1, f"No unique event file found under {record_path}!" eventfile = eventfile[0] print("adding", eventfile) add_eventdata(data, config, eventfile, tag=exp["tag"]) sns.lineplot(x="Round", y="AUC", hue="Config", data=data) plt.show() if __name__ == "__main__": main()
NVFlare-main
examples/advanced/xgboost/tree-based/utils/plot_tensorboard_events.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import pandas as pd import xgboost as xgb from nvflare.app_opt.xgboost.data_loader import XGBDataLoader def _read_higgs_with_pandas(data_path, start: int, end: int): data_size = end - start data = pd.read_csv(data_path, header=None, skiprows=start, nrows=data_size) data_num = data.shape[0] # split to feature and label x = data.iloc[:, 1:].copy() y = data.iloc[:, 0].copy() return x, y, data_num class HIGGSDataLoader(XGBDataLoader): def __init__(self, data_split_filename): """Reads HIGGS dataset and return XGB data matrix. Args: data_split_filename: file name to data splits """ self.data_split_filename = data_split_filename def load_data(self, client_id: str): with open(self.data_split_filename, "r") as file: data_split = json.load(file) data_path = data_split["data_path"] data_index = data_split["data_index"] # check if site_id and "valid" in the mapping dict if client_id not in data_index.keys(): raise ValueError( f"Data does not contain Client {client_id} split", ) if "valid" not in data_index.keys(): raise ValueError( "Data does not contain Validation split", ) site_index = data_index[client_id] valid_index = data_index["valid"] # training x_train, y_train, total_train_data_num = _read_higgs_with_pandas( data_path=data_path, start=site_index["start"], end=site_index["end"] ) dmat_train = xgb.DMatrix(x_train, label=y_train) # validation x_valid, y_valid, total_valid_data_num = _read_higgs_with_pandas( data_path=data_path, start=valid_index["start"], end=valid_index["end"] ) dmat_valid = xgb.DMatrix(x_valid, label=y_valid) return dmat_train, dmat_valid
NVFlare-main
examples/advanced/xgboost/tree-based/jobs/bagging_base/app/custom/higgs_data_loader.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import pandas as pd import xgboost as xgb from nvflare.app_opt.xgboost.data_loader import XGBDataLoader def _read_higgs_with_pandas(data_path, start: int, end: int): data_size = end - start data = pd.read_csv(data_path, header=None, skiprows=start, nrows=data_size) data_num = data.shape[0] # split to feature and label x = data.iloc[:, 1:].copy() y = data.iloc[:, 0].copy() return x, y, data_num class HIGGSDataLoader(XGBDataLoader): def __init__(self, data_split_filename): """Reads HIGGS dataset and return XGB data matrix. Args: data_split_filename: file name to data splits """ self.data_split_filename = data_split_filename def load_data(self, client_id: str): with open(self.data_split_filename, "r") as file: data_split = json.load(file) data_path = data_split["data_path"] data_index = data_split["data_index"] # check if site_id and "valid" in the mapping dict if client_id not in data_index.keys(): raise ValueError( f"Data does not contain Client {client_id} split", ) if "valid" not in data_index.keys(): raise ValueError( "Data does not contain Validation split", ) site_index = data_index[client_id] valid_index = data_index["valid"] # training x_train, y_train, total_train_data_num = _read_higgs_with_pandas( data_path=data_path, start=site_index["start"], end=site_index["end"] ) dmat_train = xgb.DMatrix(x_train, label=y_train) # validation x_valid, y_valid, total_valid_data_num = _read_higgs_with_pandas( data_path=data_path, start=valid_index["start"], end=valid_index["end"] ) dmat_valid = xgb.DMatrix(x_valid, label=y_valid) return dmat_train, dmat_valid
NVFlare-main
examples/advanced/xgboost/tree-based/jobs/cyclic_base/app/custom/higgs_data_loader.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os import numpy as np def data_split_args_parser(): parser = argparse.ArgumentParser(description="Generate data split for dataset") parser.add_argument("--data_path", type=str, help="Path to data file") parser.add_argument("--site_num", type=int, help="Total number of sites") parser.add_argument("--site_name_prefix", type=str, default="site-", help="Site name prefix") parser.add_argument("--size_total", type=int, help="Total number of instances") parser.add_argument( "--size_valid", type=int, help="Validation size, the first N instances to be treated as validation data" ) parser.add_argument( "--split_method", type=str, default="uniform", choices=["uniform", "linear", "square", "exponential"], help="How to split the dataset", ) parser.add_argument("--out_path", type=str, default="~/dataset", help="Output path for the data split json file") return parser def split_num_proportion(n, site_num, option: str): split = [] if option == "uniform": ratio_vec = np.ones(site_num) elif option == "linear": ratio_vec = np.linspace(1, site_num, num=site_num) elif option == "square": ratio_vec = np.square(np.linspace(1, site_num, num=site_num)) elif option == "exponential": ratio_vec = np.exp(np.linspace(1, site_num, num=site_num)) else: raise ValueError("Split method not implemented!") total = sum(ratio_vec) left = n for site in range(site_num - 1): x = int(n * ratio_vec[site] / total) left = left - x split.append(x) split.append(left) return split def main(): parser = data_split_args_parser() args = parser.parse_args() json_data = {"data_path": args.data_path, "data_index": {"valid": {"start": 0, "end": args.size_valid}}} site_size = split_num_proportion((args.size_total - args.size_valid), args.site_num, args.split_method) for site in range(args.site_num): site_id = args.site_name_prefix + str(site + 1) idx_start = args.size_valid + sum(site_size[:site]) idx_end = args.size_valid + sum(site_size[: site + 1]) json_data["data_index"][site_id] = {"start": idx_start, "end": idx_end} if not os.path.exists(args.out_path): os.makedirs(args.out_path, exist_ok=True) for site in range(args.site_num): output_file = os.path.join(args.out_path, f"data_{args.site_name_prefix}{site + 1}.json") with open(output_file, "w") as f: json.dump(json_data, f, indent=4) if __name__ == "__main__": main()
NVFlare-main
examples/advanced/xgboost/utils/prepare_data_split.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os import pathlib import shutil from nvflare.apis.fl_constant import JobConstants JOB_CONFIGS_ROOT = "jobs" MODE_ALGO_MAP = {"bagging": "tree-based", "cyclic": "tree-based", "histogram": "histogram-based"} def job_config_args_parser(): parser = argparse.ArgumentParser(description="generate train configs for HIGGS dataset") parser.add_argument( "--data_root", type=str, default="/tmp/nvflare/xgboost_higgs_dataset", help="Path to dataset config files for each site", ) parser.add_argument("--site_num", type=int, default=5, help="Total number of sites") parser.add_argument("--site_name_prefix", type=str, default="site-", help="Site name prefix") parser.add_argument("--round_num", type=int, default=100, help="Total number of training rounds") parser.add_argument( "--training_mode", type=str, default="bagging", choices=list(MODE_ALGO_MAP.keys()), help="Training mode" ) parser.add_argument("--split_method", type=str, default="uniform", help="How to split the dataset") parser.add_argument("--lr_mode", type=str, default="uniform", help="Whether to use uniform or scaled shrinkage") parser.add_argument("--nthread", type=int, default=16, help="nthread for xgboost") parser.add_argument( "--tree_method", type=str, default="hist", help="tree_method for xgboost - use hist or gpu_hist for best perf" ) return parser def _read_json(filename): if not os.path.isfile(filename): raise ValueError(f"{filename} does not exist!") with open(filename, "r") as f: return json.load(f) def _write_json(data, filename): with open(filename, "w") as f: json.dump(data, f, indent=4) def _get_job_name(args) -> str: return ( "higgs_" + str(args.site_num) + "_" + args.training_mode + "_" + args.split_method + "_split" + "_" + args.lr_mode + "_lr" ) def _get_data_split_name(args, site_name: str) -> str: return os.path.join(args.data_root, f"{args.site_num}_{args.split_method}", f"data_{site_name}.json") def _get_src_job_dir(training_mode): base_job_map = { "bagging": "bagging_base", "cyclic": "cyclic_base", "histogram": "base", } return pathlib.Path(MODE_ALGO_MAP[training_mode]) / JOB_CONFIGS_ROOT / base_job_map[training_mode] def _gen_deploy_map(num_sites: int, site_name_prefix: str) -> dict: deploy_map = {"app_server": ["server"]} for i in range(1, num_sites + 1): deploy_map[f"app_{site_name_prefix}{i}"] = [f"{site_name_prefix}{i}"] return deploy_map def _update_meta(meta: dict, args): name = _get_job_name(args) meta["name"] = name meta["deploy_map"] = _gen_deploy_map(args.site_num, args.site_name_prefix) meta["min_clients"] = args.site_num def _get_lr_scale_from_split_json(data_split: dict): split = {} total_data_num = 0 for k, v in data_split["data_index"].items(): if k == "valid": continue data_num = int(v["end"] - v["start"]) total_data_num += data_num split[k] = data_num lr_scales = {} for k in split: lr_scales[k] = split[k] / total_data_num return lr_scales def _update_client_config(config: dict, args, lr_scale, site_name: str): data_split_name = _get_data_split_name(args, site_name) if args.training_mode == "bagging" or args.training_mode == "cyclic": # update client config config["components"][0]["args"]["data_split_filename"] = data_split_name config["executors"][0]["executor"]["args"]["lr_scale"] = lr_scale config["executors"][0]["executor"]["args"]["lr_mode"] = args.lr_mode config["executors"][0]["executor"]["args"]["nthread"] = args.nthread config["executors"][0]["executor"]["args"]["tree_method"] = args.tree_method config["executors"][0]["executor"]["args"]["training_mode"] = args.training_mode num_client_bagging = 1 if args.training_mode == "bagging": num_client_bagging = args.site_num config["executors"][0]["executor"]["args"]["num_client_bagging"] = num_client_bagging else: config["components"][0]["args"]["data_split_filename"] = data_split_name config["executors"][0]["executor"]["args"]["xgb_params"]["nthread"] = args.nthread config["executors"][0]["executor"]["args"]["xgb_params"]["tree_method"] = args.tree_method def _update_server_config(config: dict, args): if args.training_mode == "bagging": config["workflows"][0]["args"]["num_rounds"] = args.round_num + 1 config["workflows"][0]["args"]["min_clients"] = args.site_num elif args.training_mode == "cyclic": config["workflows"][0]["args"]["num_rounds"] = int(args.round_num / args.site_num) def _copy_custom_files(src_job_path, src_app_name, dst_job_path, dst_app_name): dst_path = dst_job_path / dst_app_name / "custom" os.makedirs(dst_path, exist_ok=True) src_path = src_job_path / src_app_name / "custom" if os.path.isdir(src_path): shutil.copytree(src_path, dst_path, dirs_exist_ok=True) def create_server_app(src_job_path, src_app_name, dst_job_path, site_name, args): dst_app_name = f"app_{site_name}" server_config = _read_json(src_job_path / src_app_name / "config" / JobConstants.SERVER_JOB_CONFIG) dst_config_path = dst_job_path / dst_app_name / "config" # make target config folders if not os.path.exists(dst_config_path): os.makedirs(dst_config_path) _update_server_config(server_config, args) server_config_filename = dst_config_path / JobConstants.SERVER_JOB_CONFIG _write_json(server_config, server_config_filename) def create_client_app(src_job_path, src_app_name, dst_job_path, site_name, args): dst_app_name = f"app_{site_name}" client_config = _read_json(src_job_path / src_app_name / "config" / JobConstants.CLIENT_JOB_CONFIG) dst_config_path = dst_job_path / dst_app_name / "config" # make target config folders if not os.path.exists(dst_config_path): os.makedirs(dst_config_path) # get lr scale data_split_name = _get_data_split_name(args, site_name) data_split = _read_json(data_split_name) lr_scales = _get_lr_scale_from_split_json(data_split) # adjust file contents according to each job's specs _update_client_config(client_config, args, lr_scales[site_name], site_name) client_config_filename = dst_config_path / JobConstants.CLIENT_JOB_CONFIG _write_json(client_config, client_config_filename) # copy custom file _copy_custom_files(src_job_path, src_app_name, dst_job_path, dst_app_name) def main(): parser = job_config_args_parser() args = parser.parse_args() job_name = _get_job_name(args) src_job_path = _get_src_job_dir(args.training_mode) # create a new job dst_job_path = pathlib.Path(MODE_ALGO_MAP[args.training_mode]) / JOB_CONFIGS_ROOT / job_name if not os.path.exists(dst_job_path): os.makedirs(dst_job_path) # update meta meta_config_dst = dst_job_path / JobConstants.META_FILE meta_config = _read_json(src_job_path / JobConstants.META_FILE) _update_meta(meta_config, args) _write_json(meta_config, meta_config_dst) # create server side app create_server_app( src_job_path=src_job_path, src_app_name="app", dst_job_path=dst_job_path, site_name="server", args=args ) # create client side app for i in range(1, args.site_num + 1): create_client_app( src_job_path=src_job_path, src_app_name="app", dst_job_path=dst_job_path, site_name=f"{args.site_name_prefix}{i}", args=args, ) if __name__ == "__main__": main()
NVFlare-main
examples/advanced/xgboost/utils/prepare_job_config.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import tempfile import time import pandas as pd import xgboost as xgb from sklearn.metrics import roc_auc_score from torch.utils.tensorboard import SummaryWriter def xgboost_args_parser(): parser = argparse.ArgumentParser(description="Centralized XGBoost training with random forest options") parser.add_argument("--data_path", type=str, default="./dataset/HIGGS_UCI.csv", help="path to dataset file") parser.add_argument("--num_parallel_tree", type=int, default=1, help="num_parallel_tree for random forest setting") parser.add_argument("--subsample", type=float, default=1, help="subsample for random forest setting") parser.add_argument("--num_rounds", type=int, default=100, help="number of boosting rounds") parser.add_argument("--workspace_root", type=str, default="workspaces", help="workspaces root") parser.add_argument("--tree_method", type=str, default="hist", help="tree_method") parser.add_argument("--train_in_one_session", action="store_true", help="whether to train in one session") return parser def prepare_higgs(data_path: str): higgs = pd.read_csv(data_path, header=None) print(higgs.info()) print(higgs.head()) total_data_num = higgs.shape[0] print(f"Total data count: {total_data_num}") # split to feature and label X_higgs = higgs.iloc[:, 1:] y_higgs = higgs.iloc[:, 0] print(y_higgs.value_counts()) return X_higgs, y_higgs def train_one_by_one(train_data, val_data, xgb_params, num_rounds, val_label, writer: SummaryWriter): with tempfile.TemporaryDirectory() as tmp_dir: tmp_model_path = os.path.join(tmp_dir, "model.json") # Round 0 print("Round: 0 Base ", end="") bst = xgb.train( xgb_params, train_data, num_boost_round=1, evals=[(val_data, "validate"), (train_data, "train")] ) bst.save_model(tmp_model_path) for r in range(1, num_rounds): # Validate the last round's model bst_last = xgb.Booster(xgb_params, model_file=tmp_model_path) y_pred = bst_last.predict(val_data) roc = roc_auc_score(val_label, y_pred) print(f"Round: {bst_last.num_boosted_rounds()} model testing AUC {roc}") writer.add_scalar("AUC", roc, r - 1) # Train new model print(f"Round: {r} Base ", end="") bst = xgb.train( xgb_params, train_data, num_boost_round=1, xgb_model=tmp_model_path, evals=[(val_data, "validate"), (train_data, "train")], ) bst.save_model(tmp_model_path) return bst def get_training_parameters(args): # use logistic regression loss for binary classification # use auc as metric param = { "objective": "binary:logistic", "eta": 0.1, "max_depth": 8, "eval_metric": "auc", "nthread": 16, "num_parallel_tree": args.num_parallel_tree, "subsample": args.subsample, "tree_method": args.tree_method, } return param def main(): parser = xgboost_args_parser() args = parser.parse_args() # Specify training params if args.train_in_one_session: model_name = "centralized_simple_" + str(args.num_parallel_tree) + "_" + str(args.subsample) else: model_name = "centralized_" + str(args.num_parallel_tree) + "_" + str(args.subsample) data_path = args.data_path num_rounds = args.num_rounds valid_num = 1000000 exp_root = os.path.join(args.workspace_root, model_name) # Set mode file paths model_path = os.path.join(exp_root, "model.json") # Set tensorboard output writer = SummaryWriter(exp_root) # Load data start = time.time() X_higgs, y_higgs = prepare_higgs(data_path) end = time.time() lapse_time = end - start print(f"Data loading time: {lapse_time}") # construct training and validation xgboost DMatrix dmat_higgs = xgb.DMatrix(X_higgs, label=y_higgs) dmat_valid = dmat_higgs.slice(X_higgs.index[0:valid_num]) dmat_train = dmat_higgs.slice(X_higgs.index[valid_num:]) # setup parameters for xgboost xgb_params = get_training_parameters(args) # xgboost training start = time.time() if args.train_in_one_session: bst = xgb.train( xgb_params, dmat_train, num_boost_round=num_rounds, evals=[(dmat_valid, "validate"), (dmat_train, "train")] ) else: bst = train_one_by_one( train_data=dmat_train, val_data=dmat_valid, xgb_params=xgb_params, num_rounds=num_rounds, val_label=y_higgs[0:valid_num], writer=writer, ) bst.save_model(model_path) end = time.time() lapse_time = end - start print(f"Training time: {lapse_time}") # test model bst = xgb.Booster(xgb_params, model_file=model_path) y_pred = bst.predict(dmat_valid) roc = roc_auc_score(y_higgs[0:valid_num], y_pred) print(f"Base model: {roc}") writer.add_scalar("AUC", roc, num_rounds - 1) writer.close() if __name__ == "__main__": main()
NVFlare-main
examples/advanced/xgboost/utils/baseline_centralized.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import pandas as pd import xgboost as xgb from nvflare.app_opt.xgboost.data_loader import XGBDataLoader def _read_higgs_with_pandas(data_path, start: int, end: int): data_size = end - start data = pd.read_csv(data_path, header=None, skiprows=start, nrows=data_size) data_num = data.shape[0] # split to feature and label x = data.iloc[:, 1:].copy() y = data.iloc[:, 0].copy() return x, y, data_num class HIGGSDataLoader(XGBDataLoader): def __init__(self, data_split_filename): """Reads HIGGS dataset and return XGB data matrix. Args: data_split_filename: file name to data splits """ self.data_split_filename = data_split_filename def load_data(self, client_id: str): with open(self.data_split_filename, "r") as file: data_split = json.load(file) data_path = data_split["data_path"] data_index = data_split["data_index"] # check if site_id and "valid" in the mapping dict if client_id not in data_index.keys(): raise ValueError( f"Data does not contain Client {client_id} split", ) if "valid" not in data_index.keys(): raise ValueError( "Data does not contain Validation split", ) site_index = data_index[client_id] valid_index = data_index["valid"] # training x_train, y_train, total_train_data_num = _read_higgs_with_pandas( data_path=data_path, start=site_index["start"], end=site_index["end"] ) dmat_train = xgb.DMatrix(x_train, label=y_train) # validation x_valid, y_valid, total_valid_data_num = _read_higgs_with_pandas( data_path=data_path, start=valid_index["start"], end=valid_index["end"] ) dmat_valid = xgb.DMatrix(x_valid, label=y_valid) return dmat_train, dmat_valid
NVFlare-main
examples/advanced/xgboost/histogram-based/jobs/base/app/custom/higgs_data_loader.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os import numpy as np def data_split_args_parser(): parser = argparse.ArgumentParser(description="Generate data split for dataset") parser.add_argument("--data_path", type=str, help="Path to data file") parser.add_argument("--site_num", type=int, help="Total number of sites") parser.add_argument("--site_name_prefix", type=str, default="site-", help="Site name prefix") parser.add_argument("--size_total", type=int, help="Total number of instances") parser.add_argument( "--size_valid", type=int, help="Validation size, the first N instances to be treated as validation data" ) parser.add_argument( "--split_method", type=str, default="uniform", choices=["uniform", "linear", "square", "exponential"], help="How to split the dataset", ) parser.add_argument("--out_path", type=str, default="~/dataset", help="Output path for the data split json file") return parser def split_num_proportion(n, site_num, option: str): split = [] if option == "uniform": ratio_vec = np.ones(site_num) elif option == "linear": ratio_vec = np.linspace(1, site_num, num=site_num) elif option == "square": ratio_vec = np.square(np.linspace(1, site_num, num=site_num)) elif option == "exponential": ratio_vec = np.exp(np.linspace(1, site_num, num=site_num)) else: raise ValueError("Split method not implemented!") total = sum(ratio_vec) left = n for site in range(site_num - 1): x = int(n * ratio_vec[site] / total) left = left - x split.append(x) split.append(left) return split def main(): parser = data_split_args_parser() args = parser.parse_args() json_data = {"data_path": args.data_path, "data_index": {"valid": {"start": 0, "end": args.size_valid}}} site_size = split_num_proportion((args.size_total - args.size_valid), args.site_num, args.split_method) for site in range(args.site_num): site_id = args.site_name_prefix + str(site + 1) idx_start = args.size_valid + sum(site_size[:site]) idx_end = args.size_valid + sum(site_size[: site + 1]) json_data["data_index"][site_id] = {"start": idx_start, "end": idx_end} if not os.path.exists(args.out_path): os.makedirs(args.out_path, exist_ok=True) for site in range(args.site_num): output_file = os.path.join(args.out_path, f"data_{args.site_name_prefix}{site + 1}.json") with open(output_file, "w") as f: json.dump(json_data, f, indent=4) if __name__ == "__main__": main()
NVFlare-main
examples/advanced/random_forest/utils/prepare_data_split.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os import pathlib import shutil from nvflare.apis.fl_constant import JobConstants JOB_CONFIGS_ROOT = "jobs" BASE_FOLDER = "random_forest_base" def job_config_args_parser(): parser = argparse.ArgumentParser(description="generate train configs for HIGGS dataset") parser.add_argument( "--data_split_root", type=str, default="/tmp/nvflare/random_forest/HIGGS/data_splits", help="Path to dataset config files for each site", ) parser.add_argument("--site_num", type=int, default=5, help="Total number of sites") parser.add_argument("--site_name_prefix", type=str, default="site-", help="Site name prefix") parser.add_argument("--num_local_parallel_tree", type=int, default=20, help="Number of local parallel trees") parser.add_argument("--local_subsample", type=float, default=0.8, help="Local random forest subsample rate") parser.add_argument("--split_method", type=str, default="uniform", help="How to split the dataset") parser.add_argument("--lr_mode", type=str, default="uniform", help="Whether to use uniform or scaled shrinkage") parser.add_argument("--nthread", type=int, default=16, help="nthread for xgboost") parser.add_argument( "--tree_method", type=str, default="hist", help="tree_method for xgboost - use hist or gpu_hist for best perf" ) return parser def _read_json(filename): if not os.path.isfile(filename): raise ValueError(f"{filename} does not exist!") with open(filename, "r") as f: return json.load(f) def _write_json(data, filename): with open(filename, "w") as f: json.dump(data, f, indent=4) def _get_job_name(args) -> str: return ( "higgs_" + str(args.site_num) + "_" + str(args.local_subsample) + "_" + args.split_method + "_split" + "_" + args.lr_mode + "_lr" ) def _get_data_split_name(args, site_name: str) -> str: return os.path.join(args.data_split_root, f"{args.site_num}_{args.split_method}", f"data_{site_name}.json") def _gen_deploy_map(num_sites: int, site_name_prefix: str) -> dict: deploy_map = {"app_server": ["server"]} for i in range(1, num_sites + 1): deploy_map[f"app_{site_name_prefix}{i}"] = [f"{site_name_prefix}{i}"] return deploy_map def _update_meta(meta: dict, args): name = _get_job_name(args) meta["name"] = name meta["deploy_map"] = _gen_deploy_map(args.site_num, args.site_name_prefix) meta["min_clients"] = args.site_num def _get_lr_scale_from_split_json(data_split: dict): split = {} total_data_num = 0 for k, v in data_split["data_index"].items(): if k == "valid": continue data_num = int(v["end"] - v["start"]) total_data_num += data_num split[k] = data_num lr_scales = {} for k in split: lr_scales[k] = split[k] / total_data_num return lr_scales def _update_client_config(config: dict, args, lr_scale, site_name: str): data_split_name = _get_data_split_name(args, site_name) # update client config config["executors"][0]["executor"]["args"]["data_split_filename"] = data_split_name config["executors"][0]["executor"]["args"]["num_client_bagging"] = args.site_num config["executors"][0]["executor"]["args"]["num_local_parallel_tree"] = args.num_local_parallel_tree config["executors"][0]["executor"]["args"]["local_subsample"] = args.local_subsample config["executors"][0]["executor"]["args"]["lr_scale"] = lr_scale config["executors"][0]["executor"]["args"]["lr_mode"] = args.lr_mode config["executors"][0]["executor"]["args"]["nthread"] = args.nthread config["executors"][0]["executor"]["args"]["tree_method"] = args.tree_method def _update_server_config(config: dict, args): config["workflows"][0]["args"]["min_clients"] = args.site_num def _copy_custom_files(src_job_path, src_app_name, dst_job_path, dst_app_name): dst_path = dst_job_path / dst_app_name / "custom" os.makedirs(dst_path, exist_ok=True) src_path = src_job_path / src_app_name / "custom" if os.path.isdir(src_path): shutil.copytree(src_path, dst_path, dirs_exist_ok=True) def create_server_app(src_job_path, src_app_name, dst_job_path, site_name, args): dst_app_name = f"app_{site_name}" server_config = _read_json(src_job_path / src_app_name / "config" / JobConstants.SERVER_JOB_CONFIG) dst_config_path = dst_job_path / dst_app_name / "config" # make target config folders if not os.path.exists(dst_config_path): os.makedirs(dst_config_path) _update_server_config(server_config, args) server_config_filename = dst_config_path / JobConstants.SERVER_JOB_CONFIG _write_json(server_config, server_config_filename) def create_client_app(src_job_path, src_app_name, dst_job_path, site_name, args): dst_app_name = f"app_{site_name}" client_config = _read_json(src_job_path / src_app_name / "config" / JobConstants.CLIENT_JOB_CONFIG) dst_config_path = dst_job_path / dst_app_name / "config" # make target config folders if not os.path.exists(dst_config_path): os.makedirs(dst_config_path) # get lr scale data_split_name = _get_data_split_name(args, site_name) data_split = _read_json(data_split_name) lr_scales = _get_lr_scale_from_split_json(data_split) # adjust file contents according to each job's specs _update_client_config(client_config, args, lr_scales[site_name], site_name) client_config_filename = dst_config_path / JobConstants.CLIENT_JOB_CONFIG _write_json(client_config, client_config_filename) # copy custom file _copy_custom_files(src_job_path, src_app_name, dst_job_path, dst_app_name) def main(): parser = job_config_args_parser() args = parser.parse_args() job_name = _get_job_name(args) src_job_path = pathlib.Path(JOB_CONFIGS_ROOT) / BASE_FOLDER # create a new job dst_job_path = pathlib.Path(JOB_CONFIGS_ROOT) / job_name if not os.path.exists(dst_job_path): os.makedirs(dst_job_path) # update meta meta_config_dst = dst_job_path / JobConstants.META_FILE meta_config = _read_json(src_job_path / JobConstants.META_FILE) _update_meta(meta_config, args) _write_json(meta_config, meta_config_dst) # create server side app create_server_app( src_job_path=src_job_path, src_app_name="app", dst_job_path=dst_job_path, site_name="server", args=args ) # create client side app for i in range(1, args.site_num + 1): create_client_app( src_job_path=src_job_path, src_app_name="app", dst_job_path=dst_job_path, site_name=f"{args.site_name_prefix}{i}", args=args, ) if __name__ == "__main__": main()
NVFlare-main
examples/advanced/random_forest/utils/prepare_job_config.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import pandas as pd import xgboost as xgb from sklearn.metrics import roc_auc_score def model_validation_args_parser(): parser = argparse.ArgumentParser(description="Validate model performance") parser.add_argument( "--data_path", type=str, help="Path to dataset file", ) parser.add_argument( "--model_path", type=str, help="Path to model file", ) parser.add_argument( "--size_valid", type=int, help="Validation size, the first N instances to be treated as validation data" ) parser.add_argument( "--num_trees", type=int, help="Total number of trees", ) parser.add_argument( "--tree_method", type=str, default="hist", help="tree_method for xgboost - use hist or gpu_hist for best perf" ) return parser def main(): parser = model_validation_args_parser() args = parser.parse_args() data_path = args.data_path model_path = args.model_path num_trees = args.num_trees param = {} param["objective"] = "binary:logistic" param["eta"] = 0.1 param["max_depth"] = 8 param["eval_metric"] = "auc" param["nthread"] = 16 param["num_parallel_tree"] = num_trees # get validation data size_valid = args.size_valid data = pd.read_csv(data_path, header=None, nrows=size_valid) # split to feature and label X = data.iloc[:, 1:] y = data.iloc[:, 0] dmat = xgb.DMatrix(X, label=y) # validate model performance bst = xgb.Booster(param, model_file=model_path) y_pred = bst.predict(dmat) auc = roc_auc_score(y, y_pred) print(f"AUC over first {size_valid} instances is: {auc}") if __name__ == "__main__": main()
NVFlare-main
examples/advanced/random_forest/utils/model_validation.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import pandas as pd import xgboost as xgb from nvflare.app_common.app_constant import AppConstants from nvflare.app_opt.xgboost.tree_based.executor import FedXGBTreeExecutor def _read_HIGGS_with_pandas(data_path, start: int, end: int): data_size = end - start data = pd.read_csv(data_path, header=None, skiprows=start, nrows=data_size) data_num = data.shape[0] # split to feature and label x = data.iloc[:, 1:].copy() y = data.iloc[:, 0].copy() return x, y, data_num class FedXGBTreeHiggsExecutor(FedXGBTreeExecutor): def __init__( self, data_split_filename, training_mode, lr_scale, num_client_bagging: int = 1, lr_mode: str = "uniform", local_model_path: str = "model.json", global_model_path: str = "model_global.json", learning_rate: float = 0.1, objective: str = "binary:logistic", num_local_parallel_tree: int = 1, local_subsample: float = 0.8, max_depth: int = 8, eval_metric: str = "auc", nthread: int = 16, tree_method: str = "hist", train_task_name: str = AppConstants.TASK_TRAIN, ): super().__init__( training_mode=training_mode, num_client_bagging=num_client_bagging, lr_scale=lr_scale, lr_mode=lr_mode, local_model_path=local_model_path, global_model_path=global_model_path, learning_rate=learning_rate, objective=objective, num_local_parallel_tree=num_local_parallel_tree, local_subsample=local_subsample, max_depth=max_depth, eval_metric=eval_metric, nthread=nthread, tree_method=tree_method, train_task_name=train_task_name, ) self.data_split_filename = data_split_filename def load_data(self): with open(self.data_split_filename) as file: data_split = json.load(file) data_path = data_split["data_path"] data_index = data_split["data_index"] # check if site_id and "valid" in the mapping dict if self.client_id not in data_index.keys(): raise ValueError( f"Dict of data_index does not contain Client {self.client_id} split", ) if "valid" not in data_index.keys(): raise ValueError( "Dict of data_index does not contain Validation split", ) site_index = data_index[self.client_id] valid_index = data_index["valid"] # training X_train, y_train, total_train_data_num = _read_HIGGS_with_pandas( data_path=data_path, start=site_index["start"], end=site_index["end"] ) dmat_train = xgb.DMatrix(X_train, label=y_train) # validation X_valid, y_valid, total_valid_data_num = _read_HIGGS_with_pandas( data_path=data_path, start=valid_index["start"], end=valid_index["end"] ) dmat_valid = xgb.DMatrix(X_valid, label=y_valid) return dmat_train, dmat_valid
NVFlare-main
examples/advanced/random_forest/jobs/random_forest_base/app/custom/higgs_executor.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from nvflare.apis.filter import ContentBlockedException, Filter from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable log = logging.getLogger(__name__) class TestFilter(Filter): def __init__(self, name, block=False): self.name = name self.block = block def process(self, shareable: Shareable, fl_ctx: FLContext) -> Shareable: if self.block: log.info(f"Filter {self.name} blocked the content") raise ContentBlockedException("Content blocked by filter " + self.name) log.info(f"Filter {self.name} is invoked") return shareable
NVFlare-main
examples/advanced/federated-policies/policies/site_b/custom/test_filter.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import numpy as np import pandas as pd def data_split_args_parser(): parser = argparse.ArgumentParser(description="Generate data split for dataset") parser.add_argument("--data_path", type=str, help="Path to data file") parser.add_argument("--num_clients", type=int, help="Total number of clients") parser.add_argument("--random_seed", type=int, help="Random seed") parser.add_argument("--site_name_prefix", type=str, default="site-", help="Site name prefix") return parser def split_df_by_num(df, num=1): df_len = df.shape[0] df_1_len = num idx = list(range(df_len)) np.random.shuffle(idx) df_1 = df.iloc[idx[:df_1_len]] df_2 = df.iloc[idx[df_1_len:]] df_1.reset_index(drop=True, inplace=True) df_2.reset_index(drop=True, inplace=True) return df_1, df_2 def main(): parser = data_split_args_parser() args = parser.parse_args() num_clients = args.num_clients data_path = args.data_path site_name_prefix = args.site_name_prefix np.random.seed(args.random_seed) for mode in ["train", "dev"]: saved_name = "val" if mode == "dev" else mode df = pd.read_csv(os.path.join(data_path, mode + ".csv")) client_size = int(df.shape[0] / num_clients) os.makedirs(f"{data_path}/{num_clients}_split", exist_ok=True) for i in range(num_clients): if i != num_clients - 1: client_df, df = split_df_by_num(df, client_size) else: client_df = df print(df.shape, client_df.shape) # split into train, test, val client_df.to_csv(f"{data_path}/{num_clients}_split/{site_name_prefix}{i + 1}_{saved_name}.csv") if __name__ == "__main__": main()
NVFlare-main
examples/advanced/nlp-ner/utils/data_split.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import pandas as pd import torch from custom.models.nlp_models import BertModel, GPTModel from custom.utils.data_sequence import DataSequence from seqeval.metrics import classification_report from torch.utils.data import DataLoader os.environ["TOKENIZERS_PARALLELISM"] = "False" def data_split_args_parser(): parser = argparse.ArgumentParser(description="Perform model testing by loading the best global model") parser.add_argument("--data_path", type=str, help="Path to data file") parser.add_argument("--model_path", type=str, help="Path to workspace server folder") parser.add_argument("--num_labels", type=int, help="Number of labels for the candidate dataset") parser.add_argument("--model_name", type=str, default="bert-base-uncased", help="Model name") return parser if __name__ == "__main__": parser = data_split_args_parser() args = parser.parse_args() device = torch.device("cuda") model_path = args.model_path data_path = args.data_path num_labels = args.num_labels model_name = args.model_name ignore_token = -100 df_test = pd.read_csv(os.path.join(data_path, "test.csv")) # label and id conversion labels = [] for x in df_test["labels"].values: labels.extend(x.split(" ")) unique_labels = set(labels) labels_to_ids = {k: v for v, k in enumerate(sorted(unique_labels))} ids_to_labels = {v: k for v, k in enumerate(sorted(unique_labels))} # model if model_name == "bert-base-uncased": model = BertModel(model_name=model_name, num_labels=num_labels).to(device) elif model_name == "gpt2": model = GPTModel(model_name=model_name, num_labels=num_labels).to(device) else: raise ValueError("model not supported") model_weights = torch.load(os.path.join(model_path, "best_FL_global_model.pt")) model.load_state_dict(state_dict=model_weights["model"]) tokenizer = model.tokenizer # data test_dataset = DataSequence(df_test, labels_to_ids, tokenizer=tokenizer, ignore_token=ignore_token) test_loader = DataLoader(test_dataset, num_workers=4, batch_size=64, shuffle=False) # validate model.eval() with torch.no_grad(): total_acc_test, total_loss_test, test_total = 0, 0, 0 test_y_pred, test_y_true = [], [] for test_data, test_label in test_loader: test_label = test_label.to(device) test_total += test_label.shape[0] mask = test_data["attention_mask"].squeeze(1).to(device) input_id = test_data["input_ids"].squeeze(1).to(device) loss, logits = model(input_id, mask, test_label) for i in range(logits.shape[0]): # remove pad tokens logits_clean = logits[i][test_label[i] != ignore_token] label_clean = test_label[i][test_label[i] != ignore_token] # calcluate acc and store prediciton and true labels predictions = logits_clean.argmax(dim=1) acc = (predictions == label_clean).float().mean() total_acc_test += acc.item() test_y_pred.append([ids_to_labels[x.item()] for x in predictions]) test_y_true.append([ids_to_labels[x.item()] for x in label_clean]) # metric summary summary = classification_report(y_true=test_y_true, y_pred=test_y_pred, zero_division=0) print(summary)
NVFlare-main
examples/advanced/nlp-ner/utils/ner_model_test.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch def align_label( texts_encoded, labels_raw, labels_to_ids, ignore_token, ): # generate label id vector for the network # mark the tokens to be ignored labels_aligned = [] # single sentence each time, so always use 0 index # get the index mapping from token to word # this can be dependent on the specific tokenizer word_ids = texts_encoded.word_ids(batch_index=0) previous_word_idx = None for word_idx in word_ids: if word_idx is None: # set None the ignore tokens labels_aligned.append(ignore_token) elif word_idx != previous_word_idx: # only label the first token of a word labels_aligned.append(labels_to_ids[labels_raw[word_idx]]) else: labels_aligned.append(ignore_token) previous_word_idx = word_idx return labels_aligned class DataSequence(torch.utils.data.Dataset): def __init__(self, df, labels_to_ids, tokenizer, ignore_token=-100, max_length=150): # Raw texts and corresponding labels texts_batch_raw = [i.split(" ") for i in df["text"].values.tolist()] labels_batch_raw = [i.split(" ") for i in df["labels"].values.tolist()] # Iterate through all cases self.texts = [] self.labels = [] for batch_idx in range(len(texts_batch_raw)): texts_raw = texts_batch_raw[batch_idx] labels_raw = labels_batch_raw[batch_idx] # Encode texts with tokenizer texts_encoded = tokenizer.encode_plus( texts_raw, padding="max_length", max_length=max_length, add_special_tokens=True, truncation=True, is_split_into_words=True, return_attention_mask=True, return_tensors="pt", ) labels_aligned = align_label(texts_encoded, labels_raw, labels_to_ids, ignore_token) self.texts.append(texts_encoded) self.labels.append(labels_aligned) def __len__(self): return len(self.labels) def get_batch_data(self, idx): return self.texts[idx] def get_batch_labels(self, idx): return torch.LongTensor(self.labels[idx]) def __getitem__(self, idx): batch_data = self.get_batch_data(idx) batch_labels = self.get_batch_labels(idx) return batch_data, batch_labels
NVFlare-main
examples/advanced/nlp-ner/custom/utils/data_sequence.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from transformers import AutoModelForTokenClassification, AutoTokenizer class BertModel(torch.nn.Module): def __init__(self, model_name, num_labels): super(BertModel, self).__init__() self.num_labels = num_labels self.model_name = model_name self.model = AutoModelForTokenClassification.from_pretrained( self.model_name, num_labels=self.num_labels, output_attentions=False, output_hidden_states=False ) self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) def forward(self, input_id, mask, label): output = self.model(input_ids=input_id, attention_mask=mask, labels=label, return_dict=False) return output class GPTModel(torch.nn.Module): def __init__(self, model_name, num_labels): super(GPTModel, self).__init__() self.num_labels = num_labels self.model_name = model_name self.model = AutoModelForTokenClassification.from_pretrained( self.model_name, num_labels=self.num_labels, output_attentions=False, output_hidden_states=False, ) self.tokenizer = AutoTokenizer.from_pretrained(self.model_name, add_prefix_space=True) self.tokenizer.pad_token = self.tokenizer.eos_token self.model.config.pad_token_id = self.model.config.eos_token_id self.model.resize_token_embeddings(len(self.tokenizer)) def forward(self, input_id, mask, label): output = self.model(input_ids=input_id, attention_mask=mask, labels=label, return_dict=False) return output
NVFlare-main
examples/advanced/nlp-ner/custom/models/nlp_models.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import pandas as pd import torch from custom.models.nlp_models import BertModel, GPTModel from custom.utils.data_sequence import DataSequence from seqeval.metrics import classification_report from torch.optim import AdamW from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from nvflare.apis.dxo import DXO, DataKind, MetaKey, from_shareable from nvflare.apis.fl_constant import FLContextKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.learner_spec import Learner from nvflare.app_common.app_constant import AppConstants, ValidateType os.environ["TOKENIZERS_PARALLELISM"] = "false" class NLPLearner(Learner): def __init__( self, data_path: str, learning_rate: float = 1e-5, batch_size: int = 32, model_name: str = "bert-base-uncased", num_labels: int = 3, ignore_token: int = -100, aggregation_epochs: int = 1, train_task_name: str = AppConstants.TASK_TRAIN, ): """Supervised NLP task Learner. This provides the basic functionality of a local learner for NLP models: perform before-train validation on global model at the beginning of each round, perform local training, and send the updated weights. No model will be saved locally, tensorboard record for local loss and global model validation score. Args: data_path: path to dataset, learning_rate, batch_size, model_name: the model name to be used in the pipeline num_labels: num_labels for the model, ignore_token: the value for representing padding / null token aggregation_epochs: the number of training epochs for a round. Defaults to 1. train_task_name: name of the task to train the model. Returns: a Shareable with the updated local model after running `execute()` """ super().__init__() self.aggregation_epochs = aggregation_epochs self.train_task_name = train_task_name self.model_name = model_name self.num_labels = num_labels self.ignore_token = ignore_token self.lr = learning_rate self.bs = batch_size self.data_path = data_path # client ID self.client_id = None # Epoch counter self.epoch_of_start_time = 0 self.epoch_global = 0 # Training-related self.train_loader = None self.valid_loader = None self.optimizer = None self.device = None self.model = None self.writer = None self.best_metric = 0.0 self.labels_to_ids = None self.ids_to_labels = None def load_data(self): df_train = pd.read_csv(os.path.join(self.data_path, self.client_id + "_train.csv")) df_valid = pd.read_csv(os.path.join(self.data_path, self.client_id + "_val.csv")) return df_train, df_valid def get_labels(self, df_train): labels = [] for x in df_train["labels"].values: labels.extend(x.split(" ")) unique_labels = set(labels) # check label length if len(unique_labels) != self.num_labels: self.system_panic( f"num_labels {self.num_labels} need to align with dataset, actual data {len(unique_labels)}!", fl_ctx ) return make_reply(ReturnCode.EXECUTION_EXCEPTION) self.labels_to_ids = {k: v for v, k in enumerate(sorted(unique_labels))} self.ids_to_labels = {v: k for v, k in enumerate(sorted(unique_labels))} def initialize(self, parts: dict, fl_ctx: FLContext): # when a run starts, this is where the actual settings get initialized for trainer # set the paths according to fl_ctx engine = fl_ctx.get_engine() ws = engine.get_workspace() app_dir = ws.get_app_dir(fl_ctx.get_job_id()) # get and print the args fl_args = fl_ctx.get_prop(FLContextKey.ARGS) self.client_id = fl_ctx.get_identity_name() self.log_info( fl_ctx, f"Client {self.client_id} initialized with args: \n {fl_args}", ) # set local tensorboard writer for local validation score of global model self.writer = SummaryWriter(app_dir) # set the training-related contexts, this is task-specific # get data from csv files self.log_info(fl_ctx, f"Reading data from {self.data_path}") df_train, df_valid = self.load_data() # get labels from data self.get_labels(df_train) # initialize model self.log_info( fl_ctx, f"Creating model {self.model_name}", ) if self.model_name == "bert-base-uncased": self.model = BertModel(model_name=self.model_name, num_labels=self.num_labels) elif self.model_name == "gpt2": self.model = GPTModel(model_name=self.model_name, num_labels=self.num_labels) else: self.system_panic(f"Model {self.model} not supported!", fl_ctx) return make_reply(ReturnCode.EXECUTION_EXCEPTION) tokenizer = self.model.tokenizer # set data train_dataset = DataSequence(df_train, self.labels_to_ids, tokenizer=tokenizer, ignore_token=self.ignore_token) valid_dataset = DataSequence(df_valid, self.labels_to_ids, tokenizer=tokenizer, ignore_token=self.ignore_token) self.train_loader = DataLoader(train_dataset, num_workers=2, batch_size=self.bs, shuffle=True) self.valid_loader = DataLoader(valid_dataset, num_workers=2, batch_size=self.bs, shuffle=False) self.log_info( fl_ctx, f"Training Size: {len(self.train_loader.dataset)}, Validation Size: {len(self.valid_loader.dataset)}", ) # Set the training-related context self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.model.to(self.device) self.optimizer = AdamW(self.model.parameters(), lr=self.lr) def local_train( self, fl_ctx, train_loader, abort_signal: Signal, ): """Typical training logic Total local epochs: self.aggregation_epochs Load data pairs from train_loader Compute loss with self.model Update model """ for epoch in range(self.aggregation_epochs): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.model.train() epoch_len = len(train_loader) self.epoch_global = self.epoch_of_start_time + epoch self.log_info( fl_ctx, f"Local epoch {self.client_id}: {epoch + 1}/{self.aggregation_epochs} (lr={self.lr})", ) for i, batch_data in enumerate(train_loader): if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) mask = batch_data[0]["attention_mask"].squeeze(1).to(self.device) input_id = batch_data[0]["input_ids"].squeeze(1).to(self.device) train_label = batch_data[1].to(self.device) # optimize loss, logits = self.model(input_id, mask, train_label) self.optimizer.zero_grad() loss.backward() self.optimizer.step() current_step = epoch_len * self.epoch_global + i self.writer.add_scalar("train_loss", loss.item(), current_step) def local_valid( self, valid_loader, abort_signal: Signal, tb_id_pre=None, record_epoch=None, ): """Typical validation logic Load data pairs from train_loader Compute outputs with model Compute evaluation metric with self.valid_metric Add score to tensorboard record with specified id """ self.model.eval() with torch.no_grad(): total_acc_val, total_loss_val, val_total = 0, 0, 0 val_y_pred, val_y_true = [], [] for val_data, val_label in valid_loader: if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) val_label = val_label.to(self.device) val_total += val_label.shape[0] mask = val_data["attention_mask"].squeeze(1).to(self.device) input_id = val_data["input_ids"].squeeze(1).to(self.device) # Inference loss, logits = self.model(input_id, mask, val_label) # Add items for metric computation for i in range(logits.shape[0]): # remove pad tokens logits_clean = logits[i][val_label[i] != self.ignore_token] label_clean = val_label[i][val_label[i] != self.ignore_token] # calcluate acc and store prediciton and true labels predictions = logits_clean.argmax(dim=1) acc = (predictions == label_clean).float().mean() total_acc_val += acc.item() val_y_pred.append([self.ids_to_labels[x.item()] for x in predictions]) val_y_true.append([self.ids_to_labels[x.item()] for x in label_clean]) # compute metric metric_dict = classification_report(y_true=val_y_true, y_pred=val_y_pred, output_dict=True, zero_division=0) # tensorboard record id prefix, add to record if provided if tb_id_pre: self.writer.add_scalar(tb_id_pre + "_precision", metric_dict["macro avg"]["precision"], record_epoch) self.writer.add_scalar(tb_id_pre + "_recall", metric_dict["macro avg"]["recall"], record_epoch) self.writer.add_scalar(tb_id_pre + "_f1-score", metric_dict["macro avg"]["f1-score"], record_epoch) return metric_dict["macro avg"]["f1-score"] def train( self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal, ) -> Shareable: """Typical training task pipeline Get global model weights (potentially with HE) Local training Return updated weights (model_diff) """ if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # get round information current_round = shareable.get_header(AppConstants.CURRENT_ROUND) total_rounds = shareable.get_header(AppConstants.NUM_ROUNDS) self.log_info(fl_ctx, f"Current/Total Round: {current_round + 1}/{total_rounds}") self.log_info(fl_ctx, f"Client identity: {fl_ctx.get_identity_name()}") # update local model weights with received weights dxo = from_shareable(shareable) global_weights = dxo.data # Before loading weights, tensors might need to be reshaped to support HE for secure aggregation. local_var_dict = self.model.state_dict() model_keys = global_weights.keys() for var_name in local_var_dict: if var_name in model_keys: weights = global_weights[var_name] try: # reshape global weights to compute difference later on global_weights[var_name] = np.reshape(weights, local_var_dict[var_name].shape) # update the local dict local_var_dict[var_name] = torch.as_tensor(global_weights[var_name]) except Exception as e: raise ValueError("Convert weight from {} failed with error: {}".format(var_name, str(e))) self.model.load_state_dict(local_var_dict) # local steps epoch_len = len(self.train_loader) self.log_info(fl_ctx, f"Local steps per epoch: {epoch_len}") # local train self.local_train( fl_ctx=fl_ctx, train_loader=self.train_loader, abort_signal=abort_signal, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.epoch_of_start_time += self.aggregation_epochs # compute delta model, global model has the primary key set local_weights = self.model.state_dict() model_diff = {} for name in global_weights: if name not in local_weights: continue model_diff[name] = np.subtract(local_weights[name].cpu().numpy(), global_weights[name], dtype=np.float32) if np.any(np.isnan(model_diff[name])): self.system_panic(f"{name} weights became NaN...", fl_ctx) return make_reply(ReturnCode.EXECUTION_EXCEPTION) # flush the tb writer self.writer.flush() # build the shareable dxo = DXO(data_kind=DataKind.WEIGHT_DIFF, data=model_diff) dxo.set_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, epoch_len) self.log_info(fl_ctx, "Local epochs finished. Returning shareable") return dxo.to_shareable() def validate(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: """Typical validation task pipeline Get global model weights (potentially with HE) Validation on local data Return validation F-1 score """ if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # validation on global model model_owner = "global_model" # update local model weights with received weights dxo = from_shareable(shareable) global_weights = dxo.data # Before loading weights, tensors might need to be reshaped to support HE for secure aggregation. local_var_dict = self.model.state_dict() model_keys = global_weights.keys() n_loaded = 0 for var_name in local_var_dict: if var_name in model_keys: weights = torch.as_tensor(global_weights[var_name], device=self.device) try: # update the local dict local_var_dict[var_name] = torch.as_tensor(torch.reshape(weights, local_var_dict[var_name].shape)) n_loaded += 1 except Exception as e: raise ValueError("Convert weight from {} failed with error: {}".format(var_name, str(e))) self.model.load_state_dict(local_var_dict) if n_loaded == 0: raise ValueError(f"No weights loaded for validation! Received weight dict is {global_weights}") # before_train_validate only, can extend to other validate types validate_type = shareable.get_header(AppConstants.VALIDATE_TYPE) if validate_type == ValidateType.BEFORE_TRAIN_VALIDATE: # perform valid before local train global_metric = self.local_valid( self.valid_loader, abort_signal, tb_id_pre="val_global", record_epoch=self.epoch_global, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info(fl_ctx, f"val_f1_global_model ({model_owner}): {global_metric:.4f}") # validation metrics will be averaged with weights at server end for best model record metric_dxo = DXO( data_kind=DataKind.METRICS, data={MetaKey.INITIAL_METRICS: global_metric}, meta={}, ) metric_dxo.set_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, len(self.valid_loader)) return metric_dxo.to_shareable() else: return make_reply(ReturnCode.VALIDATE_TYPE_UNKNOWN)
NVFlare-main
examples/advanced/nlp-ner/custom/learners/nlp_learner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import csv import os import shutil def parse_args(prog_name: str): _parser = argparse.ArgumentParser(description=prog_name) _parser.add_argument( "--prepare-data", dest="prepare_data", action="store_const", const=prepare_data, help="prepare data based on configuration", ) _parser.add_argument( "-d", "--dest", type=str, nargs="?", default="", help="destination directory where the data to download to", ) return _parser, _parser.parse_args() def get_data_url() -> dict: client_data = { "site-1": "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data", "site-2": "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test", } return client_data def prepare_data(data_root_dir: str): print(f"prepare data for data directory {data_root_dir}") client_data_urls = get_data_url() for client in client_data_urls: client_data_dir = os.path.join(data_root_dir, client) if not os.path.exists(client_data_dir): os.makedirs(client_data_dir, exist_ok=True) dest = os.path.join(client_data_dir, "data.csv") if os.path.exists(dest): print(f"\nremove existing data at {dest}") shutil.rmtree(dest, ignore_errors=True) print(f"\ndownload to {dest}") url = client_data_urls[client] import requests with open(dest, "w") as f: writer = csv.writer(f) r = requests.get(url, allow_redirects=True) for line in r.iter_lines(): writer.writerow(line.decode("utf-8").split(",")) print("\ndone with prepare data") def main(): prog_name = "data_utils" parser, args = parse_args(prog_name) if args.prepare_data: prepare_data(args.dest) else: parser.print_help() if __name__ == "__main__": main()
NVFlare-main
examples/advanced/federated-statistics/df_stats/utils/prepare_data.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Optional import numpy as np import pandas as pd from pandas.core.series import Series from nvflare.apis.fl_context import FLContext from nvflare.app_common.abstract.statistics_spec import BinRange, Feature, Histogram, HistogramType, Statistics from nvflare.app_common.statistics.numpy_utils import dtype_to_data_type, get_std_histogram_buckets class DFStatistics(Statistics): def __init__(self, data_path): super().__init__() self.data_root_dir = "/tmp/nvflare/df_stats/data" self.data_path = data_path self.data: Optional[Dict[str, pd.DataFrame]] = None self.data_features = [ "Age", "Workclass", "fnlwgt", "Education", "Education-Num", "Marital Status", "Occupation", "Relationship", "Race", "Sex", "Capital Gain", "Capital Loss", "Hours per week", "Country", "Target", ] self.skip_rows = { "site-1": [], "site-2": [0], } def load_data(self, fl_ctx: FLContext) -> Dict[str, pd.DataFrame]: client_name = fl_ctx.get_identity_name() self.log_info(fl_ctx, f"load data for client {client_name}") try: skip_rows = self.skip_rows[client_name] data_path = f"{self.data_root_dir}/{fl_ctx.get_identity_name()}/{self.data_path}" # example of load data from CSV df: pd.DataFrame = pd.read_csv( data_path, names=self.data_features, sep=r"\s*,\s*", skiprows=skip_rows, engine="python", na_values="?" ) train = df.sample(frac=0.8, random_state=200) # random state is a seed value test = df.drop(train.index).sample(frac=1.0) self.log_info(fl_ctx, f"load data done for client {client_name}") return {"train": train, "test": test} except Exception as e: raise Exception(f"Load data for client {client_name} failed! {e}") def initialize(self, fl_ctx: FLContext): self.data = self.load_data(fl_ctx) if self.data is None: raise ValueError("data is not loaded. make sure the data is loaded") def features(self) -> Dict[str, List[Feature]]: results: Dict[str, List[Feature]] = {} for ds_name in self.data: df = self.data[ds_name] results[ds_name] = [] for feature_name in df: data_type = dtype_to_data_type(df[feature_name].dtype) results[ds_name].append(Feature(feature_name, data_type)) return results def count(self, dataset_name: str, feature_name: str) -> int: df: pd.DataFrame = self.data[dataset_name] return df[feature_name].count() def sum(self, dataset_name: str, feature_name: str) -> float: df: pd.DataFrame = self.data[dataset_name] return df[feature_name].sum().item() def mean(self, dataset_name: str, feature_name: str) -> float: count: int = self.count(dataset_name, feature_name) sum_value: float = self.sum(dataset_name, feature_name) return sum_value / count def stddev(self, dataset_name: str, feature_name: str) -> float: df = self.data[dataset_name] return df[feature_name].std().item() def variance_with_mean( self, dataset_name: str, feature_name: str, global_mean: float, global_count: float ) -> float: df = self.data[dataset_name] tmp = (df[feature_name] - global_mean) * (df[feature_name] - global_mean) variance = tmp.sum() / (global_count - 1) return variance.item() def histogram( self, dataset_name: str, feature_name: str, num_of_bins: int, global_min_value: float, global_max_value: float ) -> Histogram: num_of_bins: int = num_of_bins df = self.data[dataset_name] feature: Series = df[feature_name] flattened = feature.ravel() flattened = flattened[flattened != np.array(None)] buckets = get_std_histogram_buckets(flattened, num_of_bins, BinRange(global_min_value, global_max_value)) return Histogram(HistogramType.STANDARD, buckets) def max_value(self, dataset_name: str, feature_name: str) -> float: """this is needed for histogram calculation, not used for reporting""" df = self.data[dataset_name] return df[feature_name].max() def min_value(self, dataset_name: str, feature_name: str) -> float: """this is needed for histogram calculation, not used for reporting""" df = self.data[dataset_name] return df[feature_name].min()
NVFlare-main
examples/advanced/federated-statistics/df_stats/jobs/df_stats/app/custom/df_statistics.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd from df_stats.custom.df_statistics import DFStatistics from nvflare.apis.fl_context import FLContext class TestDFStatistics: def setup_method(self) -> None: # mock the load_data with fake data self.local_stats_gen = DFStatistics(data_path="data.csv") self.local_stats_gen.load_data = self.load_data self.local_stats_gen.initialize(fl_ctx=None) def teardown_method(self) -> None: pass def load_data(self, fl_ctx: FLContext = None): # initialize list of lists data = [["tom", 10, 4], ["nick", 15, 7], ["juli", 14, 8]] train_df = pd.DataFrame(data, columns=["Name", "Age", "Edu"]) data = [["sam", 90, 20], ["jack", 75, 20], ["sara", 44, 13]] test_df = pd.DataFrame(data, columns=["Name", "Age", "Edu"]) return {"train": train_df, "test": test_df} def test_get_features(self): fs = self.local_stats_gen.features() assert len(fs.keys()) == 2 assert "train" in fs.keys() assert "test" in fs.keys() assert fs["train"] == fs["test"] assert [f.feature_name for f in fs["train"]] == ["Name", "Age", "Edu"] def test_get_count(self): count = self.local_stats_gen.count("train", "Age") assert count == 3
NVFlare-main
examples/advanced/federated-statistics/df_stats/jobs/df_stats/app/custom/tests/df_statistics_test.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import glob import json import os import random SEED = 0 def create_datasets(root, subdirs, extension, shuffle, seed): random.seed(seed) data_lists = [] for subdir in subdirs: search_string = os.path.join(root, "**", subdir, "images", "*" + extension) data_list = glob.glob(search_string, recursive=True) assert ( len(data_list) > 0 ), f"No images found using {search_string} for subdir '{subdir}' and extension '{extension}'!" if shuffle: random.shuffle(data_list) data_lists.append(data_list) return data_lists def save_data_list(data, data_list_file, data_root, key="data"): data_list = [] for d in data: data_list.append({"image": d.replace(data_root + os.path.sep, "")}) os.makedirs(os.path.dirname(data_list_file), exist_ok=True) with open(data_list_file, "w") as f: json.dump({key: data_list}, f, indent=4) print(f"Saved {len(data_list)} entries at {data_list_file}") def prepare_data( input_dir: str, input_ext: str = ".png", output_dir: str = "/tmp/nvflare/image_stats/data", sub_dirs: str = "COVID,Lung_Opacity,Normal,Viral Pneumonia", ): sub_dir_list = [sd for sd in sub_dirs.split(",")] data_lists = create_datasets(root=input_dir, subdirs=sub_dir_list, extension=input_ext, shuffle=True, seed=SEED) print(f"Created {len(data_lists)} data lists for {sub_dir_list}.") site_id = 1 for subdir, data_list in zip(sub_dir_list, data_lists): save_data_list(data_list, os.path.join(output_dir, f"site-{site_id}_{subdir}.json"), data_root=input_dir) site_id += 1 def main(): parser = argparse.ArgumentParser() parser.add_argument("--input_dir", type=str, required=True, help="Location of image files") parser.add_argument("--input_ext", type=str, default=".png", help="Search extension") parser.add_argument( "--output_dir", type=str, default="/tmp/nvflare/image_stats/data", help="Output location of data lists" ) parser.add_argument( "--subdirs", type=str, default="COVID,Lung_Opacity,Normal,Viral Pneumonia", help="A list of sub-folders to include.", ) args = parser.parse_args() assert "," in args.subdirs, "Expecting a comma separated list of subdirs names" prepare_data(args.input_dir, args.input_ext, args.output_dir, args.subdirs) if __name__ == "__main__": main()
NVFlare-main
examples/advanced/federated-statistics/image_stats/utils/prepare_data.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import os from typing import Dict, List, Optional import numpy as np from monai.data import ITKReader, load_decathlon_datalist from monai.transforms import LoadImage from nvflare.apis.fl_context import FLContext from nvflare.app_common.abstract.statistics_spec import Bin, DataType, Feature, Histogram, HistogramType, Statistics from nvflare.security.logging import secure_log_traceback class ImageStatistics(Statistics): def __init__(self, data_root: str = "/tmp/nvflare/image_stats/data", data_list_key: str = "data"): """local image statistics generator . Args: data_root: directory with local image data. data_list_key: data list key to use. Returns: a Shareable with the computed local statistics` """ super().__init__() self.data_list_key = data_list_key self.data_root = data_root self.data_list = None self.client_name = None self.loader = None self.failure_images = 0 self.fl_ctx = None def initialize(self, fl_ctx: FLContext): self.fl_ctx = fl_ctx self.client_name = fl_ctx.get_identity_name() self.loader = LoadImage() self.loader.register(ITKReader()) self._load_data_list(self.client_name, fl_ctx) if self.data_list is None: raise ValueError("data is not loaded. make sure the data is loaded") def _load_data_list(self, client_name, fl_ctx: FLContext) -> bool: dataset_json = glob.glob(os.path.join(self.data_root, client_name + "*.json")) if len(dataset_json) != 1: self.log_error( fl_ctx, f"No unique matching dataset list found in {self.data_root} for client {client_name}" ) return False dataset_json = dataset_json[0] self.log_info(fl_ctx, f"Reading data from {dataset_json}") data_list = load_decathlon_datalist( data_list_file_path=dataset_json, data_list_key=self.data_list_key, base_dir=self.data_root ) self.data_list = {"train": data_list} self.log_info(fl_ctx, f"Client {client_name} has {len(self.data_list)} images") return True def pre_run( self, statistics: List[str], num_of_bins: Optional[Dict[str, Optional[int]]], bin_ranges: Optional[Dict[str, Optional[List[float]]]], ): return {} def features(self) -> Dict[str, List[Feature]]: return {"train": [Feature("intensity", DataType.FLOAT)]} def count(self, dataset_name: str, feature_name: str) -> int: image_paths = self.data_list[dataset_name] return len(image_paths) def failure_count(self, dataset_name: str, feature_name: str) -> int: return self.failure_images def histogram( self, dataset_name: str, feature_name: str, num_of_bins: int, global_min_value: float, global_max_value: float ) -> Histogram: histogram_bins: List[Bin] = [] histogram = np.zeros((num_of_bins,), dtype=np.int64) bin_edges = [] for i, entry in enumerate(self.data_list[dataset_name]): file = entry.get("image") try: img, meta = self.loader(file) curr_histogram, bin_edges = np.histogram( img, bins=num_of_bins, range=(global_min_value, global_max_value) ) histogram += curr_histogram bin_edges = bin_edges.tolist() if i % 100 == 0: self.logger.info( f"{self.client_name}, adding {i + 1} of {len(self.data_list[dataset_name])}: {file}" ) except Exception as e: self.failure_images += 1 self.logger.critical( f"Failed to load file {file} with exception: {e.__str__()}. " f"Skipping this image..." ) if num_of_bins + 1 != len(bin_edges): secure_log_traceback() raise ValueError( f"bin_edges size: {len(bin_edges)} is not matching with number of bins + 1: {num_of_bins + 1}" ) for j in range(num_of_bins): low_value = bin_edges[j] high_value = bin_edges[j + 1] bin_sample_count = histogram[j] histogram_bins.append(Bin(low_value=low_value, high_value=high_value, sample_count=bin_sample_count)) return Histogram(HistogramType.STANDARD, histogram_bins)
NVFlare-main
examples/advanced/federated-statistics/image_stats/jobs/image_stats/app/custom/image_statistics.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from typing import Optional import numpy as np import pandas as pd from sklearn import datasets def sklearn_dataset_args_parser(): parser = argparse.ArgumentParser(description="Load sklearn data and save to csv") parser.add_argument("--dataset_name", type=str, choices=["iris", "cancer"], help="Dataset name") parser.add_argument("--randomize", type=int, help="Whether to randomize data sequence") parser.add_argument("--out_path", type=str, help="Path to output data file") return parser def load_data(dataset_name: str = "iris"): if dataset_name == "iris": dataset = datasets.load_iris() elif dataset_name == "cancer": dataset = datasets.load_breast_cancer() else: raise ValueError("Dataset unknown!") return dataset def download_data( output_dir: str, dataset_name: str = "iris", randomize: bool = False, filename: Optional[str] = None, file_format="csv", ): # Load data dataset = load_data(dataset_name) x = dataset.data y = dataset.target if randomize: np.random.seed(0) idx_random = np.random.permutation(len(y)) x = x[idx_random, :] y = y[idx_random] data = np.column_stack((y, x)) df = pd.DataFrame(data=data) # Check if the target folder exists, # If not, create if os.path.exists(output_dir) and not os.path.isdir(output_dir): os.rmdir(output_dir) os.makedirs(output_dir, exist_ok=True) # Save to csv file filename = filename if filename else f"{dataset_name}.csv" if file_format == "csv": file_path = os.path.join(output_dir, filename) df.to_csv(file_path, sep=",", index=False, header=False) else: raise NotImplementedError def main(): parser = argparse.ArgumentParser(description="Load sklearn data and save to csv") parser.add_argument("--dataset_name", type=str, choices=["iris", "cancer"], help="Dataset name") parser.add_argument("--randomize", type=int, help="Whether to randomize data sequence") parser.add_argument("--out_path", type=str, help="Path to output data file") args = parser.parse_args() output_dir = os.path.dirname(args.out_path) filename = os.path.basename(args.out_path) download_data(output_dir, args.dataset_name, args.randomize, filename) if __name__ == "__main__": main()
NVFlare-main
examples/advanced/sklearn-svm/utils/prepare_data.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os import pathlib import shutil from enum import Enum from typing import List import numpy as np from nvflare.apis.fl_constant import JobConstants JOBS_ROOT = "jobs" class SplitMethod(Enum): UNIFORM = "uniform" LINEAR = "linear" SQUARE = "square" EXPONENTIAL = "exponential" def job_config_args_parser(): parser = argparse.ArgumentParser(description="generate train configs with data split") parser.add_argument("--task_name", type=str, help="Task name for the config") parser.add_argument("--data_path", type=str, help="Path to data file") parser.add_argument("--site_num", type=int, help="Total number of sites") parser.add_argument("--site_name_prefix", type=str, default="site-", help="Site name prefix") parser.add_argument( "--data_size", type=int, default=0, help="Total data size, use if specified, in order to use partial data" "If not specified, use the full data size fetched from file.", ) parser.add_argument( "--valid_frac", type=float, help="Validation fraction of the total size, N = round(total_size* valid_frac), " "the first N to be treated as validation data. " "special case valid_frac = 1, where all data will be used" "in validation, e.g. for evaluating unsupervised clustering with known ground truth label.", ) parser.add_argument( "--split_method", type=str, default="uniform", choices=["uniform", "linear", "square", "exponential"], help="How to split the dataset", ) parser.add_argument( "--backend", type=str, default="sklearn", choices=["sklearn", "cuml"], help="Backend library used", ) return parser def get_split_ratios(site_num: int, split_method: SplitMethod): if split_method == SplitMethod.UNIFORM: ratio_vec = np.ones(site_num) elif split_method == SplitMethod.LINEAR: ratio_vec = np.linspace(1, site_num, num=site_num) elif split_method == SplitMethod.SQUARE: ratio_vec = np.square(np.linspace(1, site_num, num=site_num)) elif split_method == SplitMethod.EXPONENTIAL: ratio_vec = np.exp(np.linspace(1, site_num, num=site_num)) else: raise ValueError(f"Split method {split_method.name} not implemented!") return ratio_vec def split_num_proportion(n, site_num, split_method: SplitMethod) -> List[int]: split = [] ratio_vec = get_split_ratios(site_num, split_method) total = sum(ratio_vec) left = n for site in range(site_num - 1): x = int(n * ratio_vec[site] / total) left = left - x split.append(x) split.append(left) return split def assign_data_index_to_sites( data_size: int, valid_fraction: float, num_sites: int, site_name_prefix: str, split_method: SplitMethod = SplitMethod.UNIFORM, ) -> dict: if valid_fraction > 1.0: raise ValueError("validation percent should be less than or equal to 100% of the total data") elif valid_fraction < 1.0: valid_size = int(round(data_size * valid_fraction, 0)) train_size = data_size - valid_size else: valid_size = data_size train_size = data_size site_sizes = split_num_proportion(train_size, num_sites, split_method) split_data_indices = { "valid": {"start": 0, "end": valid_size}, } for site in range(num_sites): site_id = site_name_prefix + str(site + 1) if valid_fraction < 1.0: idx_start = valid_size + sum(site_sizes[:site]) idx_end = valid_size + sum(site_sizes[: site + 1]) else: idx_start = sum(site_sizes[:site]) idx_end = sum(site_sizes[: site + 1]) split_data_indices[site_id] = {"start": idx_start, "end": idx_end} return split_data_indices def get_file_line_count(input_path: str) -> int: count = 0 with open(input_path, "r") as fp: for i, _ in enumerate(fp): count += 1 return count def split_data( data_path: str, site_num: int, data_size: int, valid_frac: float, site_name_prefix: str = "site-", split_method: SplitMethod = SplitMethod.UNIFORM, ): size_total_file = get_file_line_count(data_path) if data_size > 0: if data_size > size_total_file: raise ValueError("data_size should be less than or equal to the true data size") else: size_total = data_size else: size_total = size_total_file site_indices = assign_data_index_to_sites(size_total, valid_frac, site_num, site_name_prefix, split_method) return site_indices def _read_json(filename): if not os.path.isfile(filename): raise ValueError(f"{filename} does not exist!") with open(filename, "r") as f: return json.load(f) def _write_json(data, filename): with open(filename, "w") as f: json.dump(data, f, indent=2) def _get_job_name(args) -> str: return args.task_name + "_" + str(args.site_num) + "_" + args.split_method + "_" + args.backend def _gen_deploy_map(num_sites: int, site_name_prefix: str) -> dict: deploy_map = {"app_server": ["server"]} for i in range(1, num_sites + 1): deploy_map[f"app_{site_name_prefix}{i}"] = [f"{site_name_prefix}{i}"] return deploy_map def _update_meta(meta: dict, args): name = _get_job_name(args) meta["name"] = name meta["deploy_map"] = _gen_deploy_map(args.site_num, args.site_name_prefix) meta["min_clients"] = args.site_num def _update_client_config(config: dict, args, site_name: str, site_indices): # update client config # data path and training/validation row indices config["components"][0]["args"]["backend"] = args.backend config["components"][0]["args"]["data_path"] = args.data_path config["components"][0]["args"]["train_start"] = site_indices[site_name]["start"] config["components"][0]["args"]["train_end"] = site_indices[site_name]["end"] config["components"][0]["args"]["valid_start"] = site_indices["valid"]["start"] config["components"][0]["args"]["valid_end"] = site_indices["valid"]["end"] def _update_server_config(config: dict, args): config["min_clients"] = args.site_num def _copy_custom_files(src_job_path, src_app_name, dst_job_path, dst_app_name): dst_path = dst_job_path / dst_app_name / "custom" os.makedirs(dst_path, exist_ok=True) src_path = src_job_path / src_app_name / "custom" if os.path.isdir(src_path): shutil.copytree(src_path, dst_path, dirs_exist_ok=True) def create_server_app(src_job_path, src_app_name, dst_job_path, site_name, args): dst_app_name = f"app_{site_name}" server_config = _read_json(src_job_path / src_app_name / "config" / JobConstants.SERVER_JOB_CONFIG) dst_config_path = dst_job_path / dst_app_name / "config" # make target config folders if not os.path.exists(dst_config_path): os.makedirs(dst_config_path) _update_server_config(server_config, args) server_config_filename = dst_config_path / JobConstants.SERVER_JOB_CONFIG _write_json(server_config, server_config_filename) # copy custom file _copy_custom_files(src_job_path, src_app_name, dst_job_path, dst_app_name) def create_client_app(src_job_path, src_app_name, dst_job_path, site_name, site_indices, args): dst_app_name = f"app_{site_name}" client_config = _read_json(src_job_path / src_app_name / "config" / JobConstants.CLIENT_JOB_CONFIG) dst_config_path = dst_job_path / dst_app_name / "config" # make target config folders if not os.path.exists(dst_config_path): os.makedirs(dst_config_path) # adjust file contents according to each job's specs _update_client_config(client_config, args, site_name, site_indices) client_config_filename = dst_config_path / JobConstants.CLIENT_JOB_CONFIG _write_json(client_config, client_config_filename) # copy custom file _copy_custom_files(src_job_path, src_app_name, dst_job_path, dst_app_name) def main(): parser = job_config_args_parser() args = parser.parse_args() job_name = _get_job_name(args) src_name = args.task_name + "_base" src_job_path = pathlib.Path(JOBS_ROOT) / src_name # create a new job dst_job_path = pathlib.Path(JOBS_ROOT) / job_name if not os.path.exists(dst_job_path): os.makedirs(dst_job_path) # update meta meta_config_dst = dst_job_path / JobConstants.META_FILE meta_config = _read_json(src_job_path / JobConstants.META_FILE) _update_meta(meta_config, args) _write_json(meta_config, meta_config_dst) # create server side app create_server_app( src_job_path=src_job_path, src_app_name="app", dst_job_path=dst_job_path, site_name="server", args=args, ) # generate data split site_indices = split_data( args.data_path, args.site_num, args.data_size, args.valid_frac, args.site_name_prefix, ) # create client side app for i in range(1, args.site_num + 1): create_client_app( src_job_path=src_job_path, src_app_name="app", dst_job_path=dst_job_path, site_name=f"{args.site_name_prefix}{i}", site_indices=site_indices, args=args, ) if __name__ == "__main__": main()
NVFlare-main
examples/advanced/sklearn-svm/utils/prepare_job_config.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple from sklearn.metrics import roc_auc_score from nvflare.apis.fl_context import FLContext from nvflare.app_common.abstract.learner_spec import Learner from nvflare.app_opt.sklearn.data_loader import load_data_for_range from nvflare.fuel.utils.import_utils import optional_import class SVMLearner(Learner): def __init__( self, backend: str, data_path: str, train_start: int, train_end: int, valid_start: int, valid_end: int, ): super().__init__() self.backend = backend if self.backend == "sklearn": self.svm_lib, flag = optional_import(module="sklearn.svm") if not flag: self.log_error(fl_ctx, "Can't import sklearn.svm") return elif self.backend == "cuml": self.svm_lib, flag = optional_import(module="cuml.svm") if not flag: self.log_error(fl_ctx, "Can't import cuml.svm") return else: self.system_panic(f"backend SVM library {self.backend} unknown!", fl_ctx) self.data_path = data_path self.train_start = train_start self.train_end = train_end self.valid_start = valid_start self.valid_end = valid_end self.train_data = None self.valid_data = None self.n_samples = None self.svm = None self.kernel = None self.params = {} def load_data(self) -> dict: train_data = load_data_for_range(self.data_path, self.train_start, self.train_end) valid_data = load_data_for_range(self.data_path, self.valid_start, self.valid_end) return {"train": train_data, "valid": valid_data} def initialize(self, parts: dict, fl_ctx: FLContext): data = self.load_data() self.train_data = data["train"] self.valid_data = data["valid"] # train data size, to be used for setting # NUM_STEPS_CURRENT_ROUND for potential use in aggregation self.n_samples = data["train"][-1] # model will be created after receiving global parameter of kernel def train(self, curr_round: int, global_param: Optional[dict], fl_ctx: FLContext) -> Tuple[dict, dict]: if curr_round == 0: # only perform training on the first round (x_train, y_train, train_size) = self.train_data self.kernel = global_param["kernel"] self.svm = self.svm_lib.SVC(kernel=self.kernel) # train model self.svm.fit(x_train, y_train) # get support vectors index = self.svm.support_ local_support_x = x_train[index] local_support_y = y_train[index] self.params = {"support_x": local_support_x, "support_y": local_support_y} elif curr_round > 1: self.system_panic("Federated SVM only performs training for one round, system exiting.", fl_ctx) return self.params, self.svm def validate(self, curr_round: int, global_param: Optional[dict], fl_ctx: FLContext) -> Tuple[dict, dict]: # local validation with global support vectors # fit a standalone SVM with the global support vectors svm_global = self.svm_lib.SVC(kernel=self.kernel) support_x = global_param["support_x"] support_y = global_param["support_y"] svm_global.fit(support_x, support_y) # validate global model (x_valid, y_valid, valid_size) = self.valid_data y_pred = svm_global.predict(x_valid) auc = roc_auc_score(y_valid, y_pred) self.log_info(fl_ctx, f"AUC {auc:.4f}") metrics = {"AUC": auc} return metrics, svm_global def finalize(self, fl_ctx: FLContext) -> None: # freeing resources in finalize del self.train_data del self.valid_data self.log_info(fl_ctx, "Freed training resources")
NVFlare-main
examples/advanced/sklearn-svm/jobs/sklearn_svm_base/app/custom/svm_learner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict import numpy as np from sklearn.svm import SVC from nvflare.apis.dxo import DXO, DataKind from nvflare.apis.fl_context import FLContext from nvflare.app_common.aggregators.assembler import Assembler from nvflare.app_common.app_constant import AppConstants class SVMAssembler(Assembler): def __init__(self, kernel): super().__init__(data_kind=DataKind.WEIGHTS) # Record the global support vectors # so that only 1 round of training is performed self.support_x = None self.support_y = None self.kernel = kernel def get_model_params(self, dxo: DXO): data = dxo.data return {"support_x": data["support_x"], "support_y": data["support_y"]} def assemble(self, data: Dict[str, dict], fl_ctx: FLContext) -> DXO: current_round = fl_ctx.get_prop(AppConstants.CURRENT_ROUND) if current_round == 0: # First round, collect all support vectors from clients support_x = [] support_y = [] for client in self.collection: client_model = self.collection[client] support_x.append(client_model["support_x"]) support_y.append(client_model["support_y"]) global_x = np.concatenate(support_x) global_y = np.concatenate(support_y) # perform one round of SVM to produce global model svm_global = SVC(kernel=self.kernel) svm_global.fit(global_x, global_y) # get global support vectors index = svm_global.support_ self.support_x = global_x[index] self.support_y = global_y[index] params = {"support_x": self.support_x, "support_y": self.support_y} dxo = DXO(data_kind=self.expected_data_kind, data=params) return dxo
NVFlare-main
examples/advanced/sklearn-svm/jobs/sklearn_svm_base/app/custom/svm_assembler.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from typing import Optional import numpy as np import pandas as pd from sklearn import datasets def load_data(dataset_name: str = "iris"): if dataset_name == "iris": dataset = datasets.load_iris() elif dataset_name == "cancer": dataset = datasets.load_breast_cancer() else: raise ValueError("Dataset unknown!") return dataset def prepare_data( output_dir: str, dataset_name: str = "iris", randomize: bool = False, filename: Optional[str] = None, file_format="csv", ): # Load data dataset = load_data(dataset_name) x = dataset.data y = dataset.target if randomize: np.random.seed(0) idx_random = np.random.permutation(len(y)) x = x[idx_random, :] y = y[idx_random] data = np.column_stack((y, x)) df = pd.DataFrame(data=data) # Check if the target folder exists, # If not, create if os.path.exists(output_dir) and not os.path.isdir(output_dir): os.rmdir(output_dir) os.makedirs(output_dir, exist_ok=True) # Save to csv file filename = filename if filename else f"{dataset_name}.csv" if file_format == "csv": file_path = os.path.join(output_dir, filename) df.to_csv(file_path, sep=",", index=False, header=False) else: raise NotImplementedError def main(): parser = argparse.ArgumentParser(description="Load sklearn data and save to csv") parser.add_argument("--dataset_name", type=str, choices=["iris", "cancer"], help="Dataset name") parser.add_argument("--randomize", type=int, help="Whether to randomize data sequence") parser.add_argument("--out_path", type=str, help="Path to output data file") args = parser.parse_args() output_dir = os.path.dirname(args.out_path) filename = os.path.basename(args.out_path) prepare_data(output_dir, args.dataset_name, args.randomize, filename) if __name__ == "__main__": main()
NVFlare-main
examples/advanced/sklearn-kmeans/utils/prepare_data.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os import pathlib import shutil from enum import Enum from typing import List import numpy as np from nvflare.apis.fl_constant import JobConstants JOBS_ROOT = "jobs" class SplitMethod(Enum): UNIFORM = "uniform" LINEAR = "linear" SQUARE = "square" EXPONENTIAL = "exponential" def job_config_args_parser(): parser = argparse.ArgumentParser(description="generate train configs with data split") parser.add_argument("--task_name", type=str, help="Task name for the config") parser.add_argument("--data_path", type=str, help="Path to data file") parser.add_argument("--site_num", type=int, help="Total number of sites") parser.add_argument("--site_name_prefix", type=str, default="site-", help="Site name prefix") parser.add_argument( "--data_size", type=int, default=0, help="Total data size, use if specified, in order to use partial data" "If not specified, use the full data size fetched from file.", ) parser.add_argument( "--valid_frac", type=float, help="Validation fraction of the total size, N = round(total_size* valid_frac), " "the first N to be treated as validation data. " "special case valid_frac = 1, where all data will be used" "in validation, e.g. for evaluating unsupervised clustering with known ground truth label.", ) parser.add_argument( "--split_method", type=str, default="uniform", choices=["uniform", "linear", "square", "exponential"], help="How to split the dataset", ) return parser def get_split_ratios(site_num: int, split_method: SplitMethod): if split_method == SplitMethod.UNIFORM: ratio_vec = np.ones(site_num) elif split_method == SplitMethod.LINEAR: ratio_vec = np.linspace(1, site_num, num=site_num) elif split_method == SplitMethod.SQUARE: ratio_vec = np.square(np.linspace(1, site_num, num=site_num)) elif split_method == SplitMethod.EXPONENTIAL: ratio_vec = np.exp(np.linspace(1, site_num, num=site_num)) else: raise ValueError(f"Split method {split_method.name} not implemented!") return ratio_vec def split_num_proportion(n, site_num, split_method: SplitMethod) -> List[int]: split = [] ratio_vec = get_split_ratios(site_num, split_method) total = sum(ratio_vec) left = n for site in range(site_num - 1): x = int(n * ratio_vec[site] / total) left = left - x split.append(x) split.append(left) return split def assign_data_index_to_sites( data_size: int, valid_fraction: float, num_sites: int, site_name_prefix: str, split_method: SplitMethod = SplitMethod.UNIFORM, ) -> dict: if valid_fraction > 1.0: raise ValueError("validation percent should be less than or equal to 100% of the total data") elif valid_fraction < 1.0: valid_size = int(round(data_size * valid_fraction, 0)) train_size = data_size - valid_size else: valid_size = data_size train_size = data_size site_sizes = split_num_proportion(train_size, num_sites, split_method) split_data_indices = { "valid": {"start": 0, "end": valid_size}, } for site in range(num_sites): site_id = site_name_prefix + str(site + 1) if valid_fraction < 1.0: idx_start = valid_size + sum(site_sizes[:site]) idx_end = valid_size + sum(site_sizes[: site + 1]) else: idx_start = sum(site_sizes[:site]) idx_end = sum(site_sizes[: site + 1]) split_data_indices[site_id] = {"start": idx_start, "end": idx_end} return split_data_indices def get_file_line_count(input_path: str) -> int: count = 0 with open(input_path, "r") as fp: for i, _ in enumerate(fp): count += 1 return count def split_data( data_path: str, site_num: int, data_size: int, valid_frac: float, site_name_prefix: str = "site-", split_method: SplitMethod = SplitMethod.UNIFORM, ): size_total_file = get_file_line_count(data_path) if data_size > 0: if data_size > size_total_file: raise ValueError("data_size should be less than or equal to the true data size") else: size_total = data_size else: size_total = size_total_file site_indices = assign_data_index_to_sites(size_total, valid_frac, site_num, site_name_prefix, split_method) return site_indices def _read_json(filename): if not os.path.isfile(filename): raise ValueError(f"{filename} does not exist!") with open(filename, "r") as f: return json.load(f) def _write_json(data, filename): with open(filename, "w") as f: json.dump(data, f, indent=2) def _get_job_name(args) -> str: return args.task_name + "_" + str(args.site_num) + "_" + args.split_method def _gen_deploy_map(num_sites: int, site_name_prefix: str) -> dict: deploy_map = {"app_server": ["server"]} for i in range(1, num_sites + 1): deploy_map[f"app_{site_name_prefix}{i}"] = [f"{site_name_prefix}{i}"] return deploy_map def _update_meta(meta: dict, args): name = _get_job_name(args) meta["name"] = name meta["deploy_map"] = _gen_deploy_map(args.site_num, args.site_name_prefix) meta["min_clients"] = args.site_num def _update_client_config(config: dict, args, site_name: str, site_indices): # update client config # data path and training/validation row indices config["components"][0]["args"]["data_path"] = args.data_path config["components"][0]["args"]["train_start"] = site_indices[site_name]["start"] config["components"][0]["args"]["train_end"] = site_indices[site_name]["end"] config["components"][0]["args"]["valid_start"] = site_indices["valid"]["start"] config["components"][0]["args"]["valid_end"] = site_indices["valid"]["end"] def _update_server_config(config: dict, args): config["min_clients"] = args.site_num def _copy_custom_files(src_job_path, src_app_name, dst_job_path, dst_app_name): dst_path = dst_job_path / dst_app_name / "custom" os.makedirs(dst_path, exist_ok=True) src_path = src_job_path / src_app_name / "custom" if os.path.isdir(src_path): shutil.copytree(src_path, dst_path, dirs_exist_ok=True) def create_server_app(src_job_path, src_app_name, dst_job_path, site_name, args): dst_app_name = f"app_{site_name}" server_config = _read_json(src_job_path / src_app_name / "config" / JobConstants.SERVER_JOB_CONFIG) dst_config_path = dst_job_path / dst_app_name / "config" # make target config folders if not os.path.exists(dst_config_path): os.makedirs(dst_config_path) _update_server_config(server_config, args) server_config_filename = dst_config_path / JobConstants.SERVER_JOB_CONFIG _write_json(server_config, server_config_filename) # copy custom file _copy_custom_files(src_job_path, src_app_name, dst_job_path, dst_app_name) def create_client_app(src_job_path, src_app_name, dst_job_path, site_name, site_indices, args): dst_app_name = f"app_{site_name}" client_config = _read_json(src_job_path / src_app_name / "config" / JobConstants.CLIENT_JOB_CONFIG) dst_config_path = dst_job_path / dst_app_name / "config" # make target config folders if not os.path.exists(dst_config_path): os.makedirs(dst_config_path) # adjust file contents according to each job's specs _update_client_config(client_config, args, site_name, site_indices) client_config_filename = dst_config_path / JobConstants.CLIENT_JOB_CONFIG _write_json(client_config, client_config_filename) # copy custom file _copy_custom_files(src_job_path, src_app_name, dst_job_path, dst_app_name) def main(): parser = job_config_args_parser() args = parser.parse_args() job_name = _get_job_name(args) src_name = args.task_name + "_base" src_job_path = pathlib.Path(JOBS_ROOT) / src_name # create a new job dst_job_path = pathlib.Path(JOBS_ROOT) / job_name if not os.path.exists(dst_job_path): os.makedirs(dst_job_path) # update meta meta_config_dst = dst_job_path / JobConstants.META_FILE meta_config = _read_json(src_job_path / JobConstants.META_FILE) _update_meta(meta_config, args) _write_json(meta_config, meta_config_dst) # create server side app create_server_app( src_job_path=src_job_path, src_app_name="app", dst_job_path=dst_job_path, site_name="server", args=args, ) # generate data split site_indices = split_data( args.data_path, args.site_num, args.data_size, args.valid_frac, args.site_name_prefix, ) # create client side app for i in range(1, args.site_num + 1): create_client_app( src_job_path=src_job_path, src_app_name="app", dst_job_path=dst_job_path, site_name=f"{args.site_name_prefix}{i}", site_indices=site_indices, args=args, ) if __name__ == "__main__": main()
NVFlare-main
examples/advanced/sklearn-kmeans/utils/prepare_job_config.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple from sklearn.cluster import KMeans, MiniBatchKMeans, kmeans_plusplus from sklearn.metrics import homogeneity_score from nvflare.apis.fl_context import FLContext from nvflare.app_common.abstract.learner_spec import Learner from nvflare.app_opt.sklearn.data_loader import load_data_for_range class KMeansLearner(Learner): def __init__( self, data_path: str, train_start: int, train_end: int, valid_start: int, valid_end: int, random_state: int = None, max_iter: int = 1, n_init: int = 1, reassignment_ratio: int = 0, ): super().__init__() self.data_path = data_path self.train_start = train_start self.train_end = train_end self.valid_start = valid_start self.valid_end = valid_end self.random_state = random_state self.max_iter = max_iter self.n_init = n_init self.reassignment_ratio = reassignment_ratio self.train_data = None self.valid_data = None self.n_samples = None self.n_clusters = None def load_data(self) -> dict: train_data = load_data_for_range(self.data_path, self.train_start, self.train_end) valid_data = load_data_for_range(self.data_path, self.valid_start, self.valid_end) return {"train": train_data, "valid": valid_data} def initialize(self, parts: dict, fl_ctx: FLContext): data = self.load_data() self.train_data = data["train"] self.valid_data = data["valid"] # train data size, to be used for setting # NUM_STEPS_CURRENT_ROUND for potential use in aggregation self.n_samples = data["train"][-1] # note that the model needs to be created every round # due to the available API for center initialization def train(self, curr_round: int, global_param: Optional[dict], fl_ctx: FLContext) -> Tuple[dict, dict]: # get training data, note that clustering is unsupervised # so only x_train will be used (x_train, y_train, train_size) = self.train_data if curr_round == 0: # first round, compute initial center with kmeans++ method # model will be None for this round self.n_clusters = global_param["n_clusters"] center_local, _ = kmeans_plusplus(x_train, n_clusters=self.n_clusters, random_state=self.random_state) kmeans = None params = {"center": center_local, "count": None} else: center_global = global_param["center"] # following rounds, local training starting from global center kmeans = MiniBatchKMeans( n_clusters=self.n_clusters, batch_size=self.n_samples, max_iter=self.max_iter, init=center_global, n_init=self.n_init, reassignment_ratio=self.reassignment_ratio, random_state=self.random_state, ) kmeans.fit(x_train) center_local = kmeans.cluster_centers_ count_local = kmeans._counts params = {"center": center_local, "count": count_local} return params, kmeans def validate(self, curr_round: int, global_param: Optional[dict], fl_ctx: FLContext) -> Tuple[dict, dict]: # local validation with global center # fit a standalone KMeans with just the given center center_global = global_param["center"] kmeans_global = KMeans(n_clusters=self.n_clusters, init=center_global, n_init=1) kmeans_global.fit(center_global) # get validation data, both x and y will be used (x_valid, y_valid, valid_size) = self.valid_data y_pred = kmeans_global.predict(x_valid) homo = homogeneity_score(y_valid, y_pred) self.log_info(fl_ctx, f"Homogeneity {homo:.4f}") metrics = {"Homogeneity": homo} return metrics, kmeans_global def finalize(self, fl_ctx: FLContext) -> None: # freeing resources in finalize del self.train_data del self.valid_data self.log_info(fl_ctx, "Freed training resources")
NVFlare-main
examples/advanced/sklearn-kmeans/jobs/sklearn_kmeans_base/app/custom/kmeans_learner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict import numpy as np from sklearn.cluster import KMeans from nvflare.apis.dxo import DXO, DataKind from nvflare.apis.fl_context import FLContext from nvflare.app_common.aggregators.assembler import Assembler from nvflare.app_common.app_constant import AppConstants class KMeansAssembler(Assembler): def __init__(self): super().__init__(data_kind=DataKind.WEIGHTS) # Aggregator needs to keep record of historical # center and count information for mini-batch kmeans self.center = None self.count = None self.n_cluster = 0 def get_model_params(self, dxo: DXO): data = dxo.data return {"center": data["center"], "count": data["count"]} def assemble(self, data: Dict[str, dict], fl_ctx: FLContext) -> DXO: current_round = fl_ctx.get_prop(AppConstants.CURRENT_ROUND) if current_round == 0: # First round, collect the information regarding n_feature and n_cluster # Initialize the aggregated center and count to all zero client_0 = list(self.collection.keys())[0] self.n_cluster = self.collection[client_0]["center"].shape[0] n_feature = self.collection[client_0]["center"].shape[1] self.center = np.zeros([self.n_cluster, n_feature]) self.count = np.zeros([self.n_cluster]) # perform one round of KMeans over the submitted centers # to be used as the original center points # no count for this round center_collect = [] for _, record in self.collection.items(): center_collect.append(record["center"]) centers = np.concatenate(center_collect) kmeans_center_initial = KMeans(n_clusters=self.n_cluster) kmeans_center_initial.fit(centers) self.center = kmeans_center_initial.cluster_centers_ else: # Mini-batch k-Means step to assemble the received centers for center_idx in range(self.n_cluster): centers_global_rescale = self.center[center_idx] * self.count[center_idx] # Aggregate center, add new center to previous estimate, weighted by counts for _, record in self.collection.items(): centers_global_rescale += record["center"][center_idx] * record["count"][center_idx] self.count[center_idx] += record["count"][center_idx] # Rescale to compute mean of all points (old and new combined) alpha = 1 / self.count[center_idx] centers_global_rescale *= alpha # Update the global center self.center[center_idx] = centers_global_rescale params = {"center": self.center} dxo = DXO(data_kind=self.expected_data_kind, data=params) return dxo
NVFlare-main
examples/advanced/sklearn-kmeans/jobs/sklearn_kmeans_base/app/custom/kmeans_assembler.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os.path import torch from pt.pt_constants import PTConstants from pt.simple_network import SimpleNetwork from torch import nn from torch.optim import SGD from torch.utils.data.dataloader import DataLoader from torchvision.datasets import CIFAR10 from torchvision.transforms import Compose, Normalize, ToTensor from nvflare.apis.dxo import DXO, DataKind, MetaKey, from_shareable from nvflare.apis.fl_constant import ReservedKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.learner_spec import Learner from nvflare.app_common.abstract.model import ( ModelLearnable, ModelLearnableKey, make_model_learnable, model_learnable_to_dxo, ) from nvflare.app_common.app_constant import AppConstants from nvflare.app_opt.pt.model_persistence_format_manager import PTModelPersistenceFormatManager class PTLearner(Learner): def __init__(self, data_path="~/data", lr=0.01, epochs=5, exclude_vars=None, analytic_sender_id="analytic_sender"): """Simple PyTorch Learner that trains and validates a simple network on the CIFAR10 dataset. Args: lr (float, optional): Learning rate. Defaults to 0.01 epochs (int, optional): Epochs. Defaults to 5 exclude_vars (list): List of variables to exclude during model loading. analytic_sender_id: id of `AnalyticsSender` if configured as a client component. If configured, TensorBoard events will be fired. Defaults to "analytic_sender". """ super().__init__() self.writer = None self.persistence_manager = None self.default_train_conf = None self.test_loader = None self.test_data = None self.n_iterations = None self.train_loader = None self.train_dataset = None self.optimizer = None self.loss = None self.device = None self.model = None self.data_path = data_path self.lr = lr self.epochs = epochs self.exclude_vars = exclude_vars self.analytic_sender_id = analytic_sender_id def initialize(self, parts: dict, fl_ctx: FLContext): # Training setup self.model = SimpleNetwork() self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.model.to(self.device) self.loss = nn.CrossEntropyLoss() self.optimizer = SGD(self.model.parameters(), lr=self.lr, momentum=0.9) # Create CIFAR10 dataset for training. transforms = Compose( [ ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) self.train_dataset = CIFAR10(root=self.data_path, transform=transforms, download=True, train=True) self.train_loader = DataLoader(self.train_dataset, batch_size=32, shuffle=True) self.n_iterations = len(self.train_loader) # Create CIFAR10 dataset for validation. self.test_data = CIFAR10(root=self.data_path, train=False, transform=transforms) self.test_loader = DataLoader(self.test_data, batch_size=32, shuffle=False) # Set up the persistence manager to save PT model. # The default training configuration is used by persistence manager in case no initial model is found. self.default_train_conf = {"train": {"model": type(self.model).__name__}} self.persistence_manager = PTModelPersistenceFormatManager( data=self.model.state_dict(), default_train_conf=self.default_train_conf ) # metrics streaming setup self.writer = parts.get(self.analytic_sender_id) # user configuration from config_fed_client.json if not self.writer: raise RuntimeError("missing Analytics Sender Component") def train(self, data: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: params = {} params.update({"learning_rate": self.lr, "momentum": 0.8, "loss": "CrossEntropyLoss"}) self.writer.log_params(params) self.writer.set_tags({"client": fl_ctx.get_identity_name()}) # Get model weights try: dxo = from_shareable(data) except: self.log_error(fl_ctx, "Unable to extract dxo from shareable.") return make_reply(ReturnCode.BAD_TASK_DATA) # Ensure data kind is weights. if not dxo.data_kind == DataKind.WEIGHTS: self.log_error(fl_ctx, f"data_kind expected WEIGHTS but got {dxo.data_kind} instead.") return make_reply(ReturnCode.BAD_TASK_DATA) # Convert weights to tensor. Run training torch_weights = {k: torch.as_tensor(v) for k, v in dxo.data.items()} # Set the model weights self.model.load_state_dict(state_dict=torch_weights) self.local_train(fl_ctx, abort_signal) # Check the abort_signal after training. # local_train returns early if abort_signal is triggered. if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # Save the local model after training. self.save_local_model(fl_ctx) # Get the new state dict and send as weights new_weights = self.model.state_dict() new_weights = {k: v.cpu().numpy() for k, v in new_weights.items()} outgoing_dxo = DXO( data_kind=DataKind.WEIGHTS, data=new_weights, meta={MetaKey.NUM_STEPS_CURRENT_ROUND: self.n_iterations} ) return outgoing_dxo.to_shareable() def local_train(self, fl_ctx, abort_signal): # Basic training for epoch in range(self.epochs): self.model.train() running_loss = 0.0 for i, batch in enumerate(self.train_loader): if abort_signal.triggered: return images, labels = batch[0].to(self.device), batch[1].to(self.device) self.optimizer.zero_grad() predictions = self.model(images) cost = self.loss(predictions, labels) cost.backward() self.optimizer.step() running_loss += cost.cpu().detach().numpy() / images.size()[0] if i % 3000 == 0: self.log_info( fl_ctx, f"Epoch: {epoch}/{self.epochs}, Iteration: {i}, " f"Loss: {running_loss/3000}" ) running_loss = 0.0 self.writer.log_text( f"last running_loss reset at '{len(self.train_loader) * epoch + i}' step", "running_loss_reset.txt", ) # Stream training loss at each step current_step = len(self.train_loader) * epoch + i self.writer.log_metrics({"train_loss": cost.item(), "running_loss": running_loss}, current_step) # Stream validation accuracy at the end of each epoch metric = self.local_validate(abort_signal) self.writer.log_metric("validation_accuracy", metric, epoch) def get_model_for_validation(self, model_name: str, fl_ctx: FLContext) -> Shareable: run_dir = fl_ctx.get_engine().get_workspace().get_run_dir(fl_ctx.get_job_id()) models_dir = os.path.join(run_dir, PTConstants.PTModelsDir) if not os.path.exists(models_dir): return None model_path = os.path.join(models_dir, PTConstants.PTLocalModelName) self.persistence_manager = PTModelPersistenceFormatManager( data=torch.load(model_path), default_train_conf=self.default_train_conf ) ml = self.persistence_manager.to_model_learnable(exclude_vars=self.exclude_vars) # Get the model parameters and create dxo from it dxo = model_learnable_to_dxo(ml) return dxo.to_shareable() def validate(self, data: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: model_owner = "?" try: try: dxo = from_shareable(data) except: self.log_error(fl_ctx, "Error in extracting dxo from shareable.") return make_reply(ReturnCode.BAD_TASK_DATA) # Ensure data_kind is weights. if not dxo.data_kind == DataKind.WEIGHTS: self.log_exception(fl_ctx, f"DXO is of type {dxo.data_kind} but expected type WEIGHTS.") return make_reply(ReturnCode.BAD_TASK_DATA) if isinstance(dxo.data, ModelLearnable): dxo.data = dxo.data[ModelLearnableKey.WEIGHTS] # Extract weights and ensure they are tensor. model_owner = data.get_header(AppConstants.MODEL_OWNER, "?") weights = {k: torch.as_tensor(v, device=self.device) for k, v in dxo.data.items()} self.model.load_state_dict(weights) # Get validation accuracy val_accuracy = self.local_validate(abort_signal) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info( fl_ctx, f"Accuracy when validating {model_owner}'s model on" f" {fl_ctx.get_identity_name()}" f"s data: {val_accuracy}", ) dxo = DXO(data_kind=DataKind.METRICS, data={"val_acc": val_accuracy}) return dxo.to_shareable() except: self.log_exception(fl_ctx, f"Exception in validating model from {model_owner}") return make_reply(ReturnCode.EXECUTION_EXCEPTION) def local_validate(self, abort_signal): self.model.eval() correct = 0 total = 0 with torch.no_grad(): for i, (images, labels) in enumerate(self.test_loader): if abort_signal.triggered: return 0 images, labels = images.to(self.device), labels.to(self.device) output = self.model(images) _, pred_label = torch.max(output, 1) correct += (pred_label == labels).sum().item() total += images.size()[0] metric = correct / float(total) return metric def save_local_model(self, fl_ctx: FLContext): run_dir = fl_ctx.get_engine().get_workspace().get_run_dir(fl_ctx.get_prop(ReservedKey.RUN_NUM)) models_dir = os.path.join(run_dir, PTConstants.PTModelsDir) if not os.path.exists(models_dir): os.makedirs(models_dir) model_path = os.path.join(models_dir, PTConstants.PTLocalModelName) ml = make_model_learnable(self.model.state_dict(), {}) self.persistence_manager.update(ml) torch.save(self.persistence_manager.to_persistence_dict(), model_path)
NVFlare-main
examples/advanced/experiment-tracking/pt/learner_with_mlflow.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F class SimpleNetwork(nn.Module): def __init__(self): super(SimpleNetwork, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = torch.flatten(x, 1) # flatten all dimensions except batch x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x
NVFlare-main
examples/advanced/experiment-tracking/pt/simple_network.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os.path import torch from pt.pt_constants import PTConstants from pt.simple_network import SimpleNetwork from torch import nn from torch.optim import SGD from torch.utils.data.dataloader import DataLoader from torch.utils.tensorboard import SummaryWriter from torchvision.datasets import CIFAR10 from torchvision.transforms import Compose, Normalize, ToTensor from nvflare.apis.dxo import DXO, DataKind, MetaKey, from_shareable from nvflare.apis.fl_constant import FLContextKey, ReservedKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.learner_spec import Learner from nvflare.app_common.abstract.model import ( ModelLearnable, ModelLearnableKey, make_model_learnable, model_learnable_to_dxo, ) from nvflare.app_common.app_constant import AppConstants from nvflare.app_opt.pt.model_persistence_format_manager import PTModelPersistenceFormatManager class PTLearner(Learner): def __init__( self, data_path="/tmp/nvflare/tensorboard-streaming", lr=0.01, epochs=5, exclude_vars=None, analytic_sender_id="analytic_sender", ): """Simple PyTorch Learner that trains and validates a simple network on the CIFAR10 dataset. Args: lr (float, optional): Learning rate. Defaults to 0.01 epochs (int, optional): Epochs. Defaults to 5 exclude_vars (list): List of variables to exclude during model loading. analytic_sender_id: id of `AnalyticsSender` if configured as a client component. If configured, TensorBoard events will be fired. Defaults to "analytic_sender". """ super().__init__() self.writer = None self.persistence_manager = None self.default_train_conf = None self.test_loader = None self.test_data = None self.n_iterations = None self.train_loader = None self.train_dataset = None self.optimizer = None self.loss = None self.device = None self.model = None self.data_path = data_path self.lr = lr self.epochs = epochs self.exclude_vars = exclude_vars self.analytic_sender_id = analytic_sender_id def initialize(self, parts: dict, fl_ctx: FLContext): # Training setup self.model = SimpleNetwork() self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.model.to(self.device) self.loss = nn.CrossEntropyLoss() self.optimizer = SGD(self.model.parameters(), lr=self.lr, momentum=0.9) # Create CIFAR10 dataset for training. transforms = Compose( [ ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) self.train_dataset = CIFAR10(root=self.data_path, transform=transforms, download=True, train=True) self.train_loader = DataLoader(self.train_dataset, batch_size=32, shuffle=True) self.n_iterations = len(self.train_loader) # Create CIFAR10 dataset for validation. self.test_data = CIFAR10(root=self.data_path, train=False, transform=transforms) self.test_loader = DataLoader(self.test_data, batch_size=32, shuffle=False) # Set up the persistence manager to save PT model. # The default training configuration is used by persistence manager in case no initial model is found. self.default_train_conf = {"train": {"model": type(self.model).__name__}} self.persistence_manager = PTModelPersistenceFormatManager( data=self.model.state_dict(), default_train_conf=self.default_train_conf ) # Tensorboard streaming setup self.writer = parts.get(self.analytic_sender_id) # user configuration from config_fed_client.json if not self.writer: # else use local TensorBoard writer only self.writer = SummaryWriter(fl_ctx.get_prop(FLContextKey.APP_ROOT)) def train(self, data: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: # Get model weights try: dxo = from_shareable(data) except: self.log_error(fl_ctx, "Unable to extract dxo from shareable.") return make_reply(ReturnCode.BAD_TASK_DATA) # Ensure data kind is weights. if not dxo.data_kind == DataKind.WEIGHTS: self.log_error(fl_ctx, f"data_kind expected WEIGHTS but got {dxo.data_kind} instead.") return make_reply(ReturnCode.BAD_TASK_DATA) # Convert weights to tensor. Run training torch_weights = {k: torch.as_tensor(v) for k, v in dxo.data.items()} # Set the model weights self.model.load_state_dict(state_dict=torch_weights) self.local_train(fl_ctx, abort_signal) # Check the abort_signal after training. # local_train returns early if abort_signal is triggered. if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # Save the local model after training. self.save_local_model(fl_ctx) # Get the new state dict and send as weights new_weights = self.model.state_dict() new_weights = {k: v.cpu().numpy() for k, v in new_weights.items()} outgoing_dxo = DXO( data_kind=DataKind.WEIGHTS, data=new_weights, meta={MetaKey.NUM_STEPS_CURRENT_ROUND: self.n_iterations} ) return outgoing_dxo.to_shareable() def local_train(self, fl_ctx, abort_signal): # Basic training for epoch in range(self.epochs): self.model.train() running_loss = 0.0 for i, batch in enumerate(self.train_loader): if abort_signal.triggered: return images, labels = batch[0].to(self.device), batch[1].to(self.device) self.optimizer.zero_grad() predictions = self.model(images) cost = self.loss(predictions, labels) cost.backward() self.optimizer.step() running_loss += cost.cpu().detach().numpy() / images.size()[0] if i % 3000 == 0: self.log_info( fl_ctx, f"Epoch: {epoch}/{self.epochs}, Iteration: {i}, " f"Loss: {running_loss/3000}" ) running_loss = 0.0 # Stream training loss at each step current_step = len(self.train_loader) * epoch + i self.writer.add_scalar("train_loss", cost.item(), current_step) # Stream validation accuracy at the end of each epoch metric = self.local_validate(abort_signal) self.writer.add_scalar("validation_accuracy", metric, epoch) def get_model_for_validation(self, model_name: str, fl_ctx: FLContext) -> Shareable: run_dir = fl_ctx.get_engine().get_workspace().get_run_dir(fl_ctx.get_job_id()) models_dir = os.path.join(run_dir, PTConstants.PTModelsDir) if not os.path.exists(models_dir): return None model_path = os.path.join(models_dir, PTConstants.PTLocalModelName) self.persistence_manager = PTModelPersistenceFormatManager( data=torch.load(model_path), default_train_conf=self.default_train_conf ) ml = self.persistence_manager.to_model_learnable(exclude_vars=self.exclude_vars) # Get the model parameters and create dxo from it dxo = model_learnable_to_dxo(ml) return dxo.to_shareable() def validate(self, data: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: model_owner = "?" try: try: dxo = from_shareable(data) except: self.log_error(fl_ctx, "Error in extracting dxo from shareable.") return make_reply(ReturnCode.BAD_TASK_DATA) # Ensure data_kind is weights. if not dxo.data_kind == DataKind.WEIGHTS: self.log_exception(fl_ctx, f"DXO is of type {dxo.data_kind} but expected type WEIGHTS.") return make_reply(ReturnCode.BAD_TASK_DATA) if isinstance(dxo.data, ModelLearnable): dxo.data = dxo.data[ModelLearnableKey.WEIGHTS] # Extract weights and ensure they are tensor. model_owner = data.get_header(AppConstants.MODEL_OWNER, "?") weights = {k: torch.as_tensor(v, device=self.device) for k, v in dxo.data.items()} self.model.load_state_dict(weights) # Get validation accuracy val_accuracy = self.local_validate(abort_signal) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info( fl_ctx, f"Accuracy when validating {model_owner}'s model on" f" {fl_ctx.get_identity_name()}" f"s data: {val_accuracy}", ) dxo = DXO(data_kind=DataKind.METRICS, data={"val_acc": val_accuracy}) return dxo.to_shareable() except: self.log_exception(fl_ctx, f"Exception in validating model from {model_owner}") return make_reply(ReturnCode.EXECUTION_EXCEPTION) def local_validate(self, abort_signal): self.model.eval() correct = 0 total = 0 with torch.no_grad(): for i, (images, labels) in enumerate(self.test_loader): if abort_signal.triggered: return 0 images, labels = images.to(self.device), labels.to(self.device) output = self.model(images) _, pred_label = torch.max(output, 1) correct += (pred_label == labels).sum().item() total += images.size()[0] metric = correct / float(total) return metric def save_local_model(self, fl_ctx: FLContext): run_dir = fl_ctx.get_engine().get_workspace().get_run_dir(fl_ctx.get_prop(ReservedKey.RUN_NUM)) models_dir = os.path.join(run_dir, PTConstants.PTModelsDir) if not os.path.exists(models_dir): os.makedirs(models_dir) model_path = os.path.join(models_dir, PTConstants.PTLocalModelName) ml = make_model_learnable(self.model.state_dict(), {}) self.persistence_manager.update(ml) torch.save(self.persistence_manager.to_persistence_dict(), model_path)
NVFlare-main
examples/advanced/experiment-tracking/pt/learner_with_tb.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest.mock import Mock, patch import numpy from pt.learner_with_tb import PTLearner from nvflare.apis.dxo import DXO, DataKind from nvflare.apis.fl_constant import ReservedKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.apis.signal import Signal class TestPTLearner: @patch.object(PTLearner, "save_local_model") def test_train_empty_input(self, mock_save_local_model): fl_ctx = FLContext() learner = PTLearner(epochs=1) learner.initialize(parts={}, fl_ctx=fl_ctx) data = Shareable() result = learner.train(data, fl_ctx=FLContext(), abort_signal=Signal()) assert result.get_return_code() == ReturnCode.BAD_TASK_DATA @patch.object(PTLearner, "save_local_model") def test_train_with_empty_input(self, mock_save_local_model): fl_ctx = FLContext() learner = PTLearner(epochs=1) learner.initialize(parts={}, fl_ctx=fl_ctx) data = Shareable() result = learner.train(data, fl_ctx=FLContext(), abort_signal=Signal()) assert result.get_return_code() == ReturnCode.BAD_TASK_DATA @patch.object(PTLearner, "save_local_model") def test_train_with_invalid_data_kind(self, mock_save_local_model): fl_ctx = FLContext() learner = PTLearner(epochs=1) learner.initialize(parts={}, fl_ctx=fl_ctx) dxo = DXO(DataKind.WEIGHT_DIFF, data={"x": numpy.array([1, 2, 3])}) result = learner.train(dxo.to_shareable(), fl_ctx=FLContext(), abort_signal=Signal()) assert result.get_return_code() == ReturnCode.BAD_TASK_DATA @patch.object(PTLearner, "save_local_model") def test_train(self, mock_save_local_model): fl_ctx = FLContext() learner = PTLearner(epochs=1) learner.initialize(parts={}, fl_ctx=fl_ctx) dxo = DXO(data_kind=DataKind.WEIGHTS, data=learner.model.state_dict()) result = learner.train(dxo.to_shareable(), fl_ctx=FLContext(), abort_signal=Signal()) assert result.get_return_code() == ReturnCode.OK @patch.object(FLContext, "get_engine") def test_validate_with_empty_input(self, mock_get_engine): mock_get_engine.get_workspace = Mock() fl_ctx = FLContext() fl_ctx.set_prop(ReservedKey.RUN_NUM, 100) learner = PTLearner(epochs=1) learner.initialize(parts={}, fl_ctx=fl_ctx) data = Shareable() result = learner.validate(data, fl_ctx=fl_ctx, abort_signal=Signal()) assert result.get_return_code() == ReturnCode.BAD_TASK_DATA @patch.object(FLContext, "get_engine") def test_validate_with_invalid_data_kind(self, mock_get_engine): mock_get_engine.get_workspace = Mock() fl_ctx = FLContext() fl_ctx.set_prop(ReservedKey.RUN_NUM, 100) learner = PTLearner(epochs=1) learner.initialize(parts={}, fl_ctx=fl_ctx) dxo = DXO(DataKind.WEIGHT_DIFF, data={"x": numpy.array([1, 2, 3])}) result = learner.validate(dxo.to_shareable(), fl_ctx=fl_ctx, abort_signal=Signal()) assert result.get_return_code() == ReturnCode.BAD_TASK_DATA @patch.object(FLContext, "get_engine") def test_validate(self, mock_get_engine): mock_get_engine.get_workspace = Mock() fl_ctx = FLContext() fl_ctx.set_prop(ReservedKey.RUN_NUM, 100) learner = PTLearner(epochs=1) learner.initialize(parts={}, fl_ctx=fl_ctx) dxo = DXO(data_kind=DataKind.WEIGHTS, data=learner.model.state_dict()) result = learner.train(dxo.to_shareable(), fl_ctx=FLContext(), abort_signal=Signal()) assert result.get_return_code() == ReturnCode.OK
NVFlare-main
examples/advanced/experiment-tracking/pt/test_custom.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os.path import torch from pt.pt_constants import PTConstants from pt.simple_network import SimpleNetwork from torch import nn from torch.optim import SGD from torch.utils.data.dataloader import DataLoader from torchvision.datasets import CIFAR10 from torchvision.transforms import Compose, Normalize, ToTensor from nvflare.apis.dxo import DXO, DataKind, MetaKey, from_shareable from nvflare.apis.fl_constant import ReservedKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.learner_spec import Learner from nvflare.app_common.abstract.model import ( ModelLearnable, ModelLearnableKey, make_model_learnable, model_learnable_to_dxo, ) from nvflare.app_common.app_constant import AppConstants from nvflare.app_common.pt.pt_fed_utils import PTModelPersistenceFormatManager class PTLearner(Learner): def __init__(self, data_path="~/data", lr=0.01, epochs=5, exclude_vars=None, analytic_sender_id="analytic_sender"): """Simple PyTorch Learner that trains and validates a simple network on the CIFAR10 dataset. Args: lr (float, optional): Learning rate. Defaults to 0.01 epochs (int, optional): Epochs. Defaults to 5 exclude_vars (list): List of variables to exclude during model loading. analytic_sender_id: id of `AnalyticsSender` if configured as a client component. If configured, TensorBoard events will be fired. Defaults to "analytic_sender". """ super().__init__() self.writer = None self.persistence_manager = None self.default_train_conf = None self.test_loader = None self.test_data = None self.n_iterations = None self.train_loader = None self.train_dataset = None self.optimizer = None self.loss = None self.device = None self.model = None self.data_path = data_path self.lr = lr self.epochs = epochs self.exclude_vars = exclude_vars self.analytic_sender_id = analytic_sender_id def initialize(self, parts: dict, fl_ctx: FLContext): # Training setup self.model = SimpleNetwork() self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.model.to(self.device) self.loss = nn.CrossEntropyLoss() self.optimizer = SGD(self.model.parameters(), lr=self.lr, momentum=0.9) # Create CIFAR10 dataset for training. transforms = Compose( [ ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) self.train_dataset = CIFAR10(root=self.data_path, transform=transforms, download=True, train=True) self.train_loader = DataLoader(self.train_dataset, batch_size=32, shuffle=True) self.n_iterations = len(self.train_loader) # Create CIFAR10 dataset for validation. self.test_data = CIFAR10(root=self.data_path, train=False, transform=transforms) self.test_loader = DataLoader(self.test_data, batch_size=32, shuffle=False) # Set up the persistence manager to save PT model. # The default training configuration is used by persistence manager in case no initial model is found. self.default_train_conf = {"train": {"model": type(self.model).__name__}} self.persistence_manager = PTModelPersistenceFormatManager( data=self.model.state_dict(), default_train_conf=self.default_train_conf ) self.writer = parts.get(self.analytic_sender_id) # user configuration from config_fed_client.json if not self.writer: raise RuntimeError("analytic_sender is not provided") def train(self, data: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: # Get model weights try: dxo = from_shareable(data) except: self.log_error(fl_ctx, "Unable to extract dxo from shareable.") return make_reply(ReturnCode.BAD_TASK_DATA) # Ensure data kind is weights. if not dxo.data_kind == DataKind.WEIGHTS: self.log_error(fl_ctx, f"data_kind expected WEIGHTS but got {dxo.data_kind} instead.") return make_reply(ReturnCode.BAD_TASK_DATA) # Convert weights to tensor. Run training torch_weights = {k: torch.as_tensor(v) for k, v in dxo.data.items()} # Set the model weights self.model.load_state_dict(state_dict=torch_weights) self.local_train(fl_ctx, abort_signal) # Check the abort_signal after training. # local_train returns early if abort_signal is triggered. if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # Save the local model after training. self.save_local_model(fl_ctx) # Get the new state dict and send as weights new_weights = self.model.state_dict() new_weights = {k: v.cpu().numpy() for k, v in new_weights.items()} outgoing_dxo = DXO( data_kind=DataKind.WEIGHTS, data=new_weights, meta={MetaKey.NUM_STEPS_CURRENT_ROUND: self.n_iterations} ) return outgoing_dxo.to_shareable() def local_train(self, fl_ctx, abort_signal): # Basic training for epoch in range(self.epochs): self.model.train() running_loss = 0.0 for i, batch in enumerate(self.train_loader): if abort_signal.triggered: return images, labels = batch[0].to(self.device), batch[1].to(self.device) self.optimizer.zero_grad() predictions = self.model(images) cost = self.loss(predictions, labels) cost.backward() self.optimizer.step() running_loss += cost.cpu().detach().numpy() / images.size()[0] if i % 3000 == 0: self.log_info( fl_ctx, f"Epoch: {epoch}/{self.epochs}, Iteration: {i}, " f"Loss: {running_loss/3000}" ) running_loss = 0.0 # Stream training loss at each step current_step = len(self.train_loader) * epoch + i self.writer.log({"train_loss": cost.item()}, current_step) # Stream validation accuracy at the end of each epoch metric = self.local_validate(abort_signal) self.writer.log({"validation_accuracy": metric}, epoch) def get_model_for_validation(self, model_name: str, fl_ctx: FLContext) -> Shareable: run_dir = fl_ctx.get_engine().get_workspace().get_run_dir(fl_ctx.get_job_id()) models_dir = os.path.join(run_dir, PTConstants.PTModelsDir) if not os.path.exists(models_dir): return None model_path = os.path.join(models_dir, PTConstants.PTLocalModelName) self.persistence_manager = PTModelPersistenceFormatManager( data=torch.load(model_path), default_train_conf=self.default_train_conf ) ml = self.persistence_manager.to_model_learnable(exclude_vars=self.exclude_vars) # Get the model parameters and create dxo from it dxo = model_learnable_to_dxo(ml) return dxo.to_shareable() def validate(self, data: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: model_owner = "?" try: try: dxo = from_shareable(data) except: self.log_error(fl_ctx, "Error in extracting dxo from shareable.") return make_reply(ReturnCode.BAD_TASK_DATA) # Ensure data_kind is weights. if not dxo.data_kind == DataKind.WEIGHTS: self.log_exception(fl_ctx, f"DXO is of type {dxo.data_kind} but expected type WEIGHTS.") return make_reply(ReturnCode.BAD_TASK_DATA) if isinstance(dxo.data, ModelLearnable): dxo.data = dxo.data[ModelLearnableKey.WEIGHTS] # Extract weights and ensure they are tensor. model_owner = data.get_header(AppConstants.MODEL_OWNER, "?") weights = {k: torch.as_tensor(v, device=self.device) for k, v in dxo.data.items()} self.model.load_state_dict(weights) # Get validation accuracy val_accuracy = self.local_validate(abort_signal) self.writer.log({"validation_accuracy": val_accuracy}) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info( fl_ctx, f"Accuracy when validating {model_owner}'s model on" f" {fl_ctx.get_identity_name()}" f"s data: {val_accuracy}", ) dxo = DXO(data_kind=DataKind.METRICS, data={"val_acc": val_accuracy}) return dxo.to_shareable() except: self.log_exception(fl_ctx, f"Exception in validating model from {model_owner}") return make_reply(ReturnCode.EXECUTION_EXCEPTION) def local_validate(self, abort_signal): self.model.eval() correct = 0 total = 0 with torch.no_grad(): for i, (images, labels) in enumerate(self.test_loader): if abort_signal.triggered: return 0 images, labels = images.to(self.device), labels.to(self.device) output = self.model(images) _, pred_label = torch.max(output, 1) correct += (pred_label == labels).sum().item() total += images.size()[0] metric = correct / float(total) return metric def save_local_model(self, fl_ctx: FLContext): run_dir = fl_ctx.get_engine().get_workspace().get_run_dir(fl_ctx.get_prop(ReservedKey.RUN_NUM)) models_dir = os.path.join(run_dir, PTConstants.PTModelsDir) if not os.path.exists(models_dir): os.makedirs(models_dir) model_path = os.path.join(models_dir, PTConstants.PTLocalModelName) ml = make_model_learnable(self.model.state_dict(), {}) self.persistence_manager.update(ml) torch.save(self.persistence_manager.to_persistence_dict(), model_path)
NVFlare-main
examples/advanced/experiment-tracking/pt/learner_with_wandb.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class PTConstants: PTServerName = "server" PTFileModelName = "FL_global_model.pt" PTLocalModelName = "local_model.pt" PTModelsDir = "models" CrossValResultsJsonFilename = "cross_val_results.json"
NVFlare-main
examples/advanced/experiment-tracking/pt/pt_constants.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import sys from splitnn.cifar10_vertical_data_splitter import Cifar10VerticalDataSplitter from nvflare.apis.fl_context import FLContext logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) import argparse from nvflare.apis.fl_constant import ReservedKey def main(): parser = argparse.ArgumentParser() parser.add_argument("--split_dir", type=str, default="/tmp/cifar10_vert_splits", help="output folder") parser.add_argument("--overlap", type=int, default=10_000, help="number of overlapping samples") args = parser.parse_args() splitter = Cifar10VerticalDataSplitter(split_dir=args.split_dir, overlap=args.overlap) # set up a dummy context for logging fl_ctx = FLContext() fl_ctx.set_prop(ReservedKey.IDENTITY_NAME, "local") fl_ctx.set_prop(ReservedKey.RUN_NUM, "_") splitter.split(fl_ctx) # will download to CIFAR10_ROOT defined in # Cifar10DataSplitter if __name__ == "__main__": main()
NVFlare-main
examples/advanced/vertical_federated_learning/cifar10-splitnn/cifar10_split_data_vertical.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json def main(): parser = argparse.ArgumentParser() parser.add_argument( "--config_file", type=str, default="./config_fed_client.json", help="config file in JSON format", ) parser.add_argument( "--intersection_file", type=str, help="Intersection file with overlapping data indices", ) args = parser.parse_args() with open(args.config_file, "r") as f: config = json.load(f) config["INTERSECTION_FILE"] = args.intersection_file with open(args.config_file, "w") as f: json.dump(config, f, indent=4) f.write("\n") print(f"Modified {args.config_file} to use INTERSECTION_FILE={config['INTERSECTION_FILE']}") if __name__ == "__main__": main()
NVFlare-main
examples/advanced/vertical_federated_learning/cifar10-splitnn/set_intersection_file.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from psi.cifar10_local_psi import Cifar10LocalPSI
NVFlare-main
examples/advanced/vertical_federated_learning/cifar10-splitnn/src/psi/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os.path from typing import List import numpy as np from nvflare.app_common.psi.psi_spec import PSI class Cifar10LocalPSI(PSI): def __init__(self, psi_writer_id: str, data_path: str = "/tmp/data.csv"): super().__init__(psi_writer_id) self.data_path = data_path self.data = {} if not os.path.isfile(self.data_path): raise RuntimeError(f"invalid data path {data_path}") def load_items(self) -> List[str]: _ext = os.path.splitext(self.data_path)[1] items = np.load(self.data_path) return [str(i) for i in items]
NVFlare-main
examples/advanced/vertical_federated_learning/cifar10-splitnn/src/psi/cifar10_local_psi.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pt.networks.cifar10_nets import ModerateCNN class SplitNN(ModerateCNN): def __init__(self, split_id): super().__init__() if split_id not in [0, 1]: raise ValueError(f"Only supports split_id '0' or '1' but was {self.split_id}") self.split_id = split_id if self.split_id == 0: self.split_forward = self.conv_layer elif self.split_id == 1: self.split_forward = self.fc_layer else: raise ValueError(f"Expected split_id to be '0' or '1' but was {self.split_id}") def forward(self, x): x = self.split_forward(x) return x def get_split_id(self): return self.split_id
NVFlare-main
examples/advanced/vertical_federated_learning/cifar10-splitnn/src/splitnn/split_nn.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from timeit import default_timer as timer import numpy as np import torch import torch.optim as optim from splitnn.cifar10_splitnn_dataset import CIFAR10SplitNN from torch.utils.tensorboard import SummaryWriter from torchvision import transforms from nvflare.apis.dxo import DXO, from_shareable from nvflare.apis.fl_constant import FLContextKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.learner_spec import Learner from nvflare.app_common.app_constant import AppConstants from nvflare.app_common.workflows.splitnn_workflow import SplitNNConstants, SplitNNDataKind from nvflare.app_opt.pt.decomposers import TensorDecomposer from nvflare.fuel.f3.stats_pool import StatsPoolManager from nvflare.fuel.utils import fobs class CIFAR10LearnerSplitNN(Learner): def __init__( self, dataset_root: str = "./dataset", intersection_file: str = None, lr: float = 1e-2, model: dict = None, analytic_sender_id: str = "analytic_sender", fp16: bool = True, val_freq: int = 1000, ): """Simple CIFAR-10 Trainer for split learning. Args: dataset_root: directory with CIFAR-10 data. intersection_file: Optional. intersection file specifying overlapping indices between both clients. Defaults to `None`, i.e. the whole training dataset is used. lr: learning rate. model: Split learning model. analytic_sender_id: id of `AnalyticsSender` if configured as a client component. If configured, TensorBoard events will be fired. Defaults to "analytic_sender". fp16: If `True`, convert activations and gradients send between clients to `torch.float16`. Reduces bandwidth needed for communication but might impact model accuracy. val_freq: how often to perform validation in rounds. Defaults to 1000. No validation if <= 0. """ super().__init__() self.dataset_root = dataset_root self.intersection_file = intersection_file self.lr = lr self.model = model self.analytic_sender_id = analytic_sender_id self.fp16 = fp16 self.val_freq = val_freq self.target_names = None self.app_root = None self.current_round = None self.num_rounds = None self.batch_size = None self.writer = None self.client_name = None self.other_client = None self.device = None self.optimizer = None self.criterion = None self.transform_train = None self.transform_valid = None self.train_dataset = None self.valid_dataset = None self.split_id = None self.train_activations = None self.train_batch_indices = None self.train_size = 0 self.val_loss = [] self.val_labels = [] self.val_pred_labels = [] self.compute_stats_pool = None # use FOBS serializing/deserializing PyTorch tensors fobs.register(TensorDecomposer) def _get_model(self, fl_ctx: FLContext): """Get model from client config. Modelled after `PTFileModelPersistor`.""" if isinstance(self.model, str): # treat it as model component ID model_component_id = self.model engine = fl_ctx.get_engine() self.model = engine.get_component(model_component_id) if not self.model: self.log_error(fl_ctx, f"cannot find model component '{model_component_id}'") return if self.model and isinstance(self.model, dict): # try building the model try: engine = fl_ctx.get_engine() # use provided or default optimizer arguments and add the model parameters if "args" not in self.model: self.model["args"] = {} self.model = engine.build_component(self.model) except Exception as e: self.system_panic( f"Exception while parsing `model`: " f"{self.model} with Exception {e}", fl_ctx, ) return if self.model and not isinstance(self.model, torch.nn.Module): self.system_panic(f"expect model to be torch.nn.Module but got {type(self.model)}: {self.model}", fl_ctx) return if self.model is None: self.system_panic(f"Model wasn't built correctly! It is {self.model}", fl_ctx) return self.log_info(fl_ctx, f"Running model {self.model}") def initialize(self, parts: dict, fl_ctx: FLContext): t_start = timer() self._get_model(fl_ctx=fl_ctx) self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.model = self.model.to(self.device) self.optimizer = optim.SGD(self.model.parameters(), lr=self.lr, momentum=0.9) self.criterion = torch.nn.CrossEntropyLoss() self.transform_train = transforms.Compose( [ transforms.ToTensor(), transforms.ToPILImage(), transforms.Pad(4, padding_mode="reflect"), transforms.RandomCrop(32), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize( mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], std=[x / 255.0 for x in [63.0, 62.1, 66.7]], ), ] ) self.transform_valid = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize( mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], std=[x / 255.0 for x in [63.0, 62.1, 66.7]], ), ] ) self.app_root = fl_ctx.get_prop(FLContextKey.APP_ROOT) self.client_name = fl_ctx.get_identity_name() self.split_id = self.model.get_split_id() self.log_info(fl_ctx, f"Running `split_id` {self.split_id} on site `{self.client_name}`") if self.split_id == 0: # data side data_returns = "image" elif self.split_id == 1: # label side data_returns = "label" else: raise ValueError(f"Expected split_id to be '0' or '1' but was {self.split_id}") if self.intersection_file is not None: _intersect_indices = np.loadtxt(self.intersection_file) else: _intersect_indices = None self.train_dataset = CIFAR10SplitNN( root=self.dataset_root, train=True, download=True, transform=self.transform_train, returns=data_returns, intersect_idx=_intersect_indices, ) self.valid_dataset = CIFAR10SplitNN( root=self.dataset_root, train=False, download=False, transform=self.transform_valid, returns=data_returns, intersect_idx=None, # TODO: support validation intersect indices ) self.train_size = len(self.train_dataset) if self.train_size <= 0: raise ValueError(f"Expected train dataset size to be larger zero but got {self.train_size}") self.log_info(fl_ctx, f"Training with {self.train_size} overlapping indices of {self.train_dataset.orig_size}.") # Select local TensorBoard writer or event-based writer for streaming if self.split_id == 1: # metrics can only be computed for client with labels self.writer = parts.get(self.analytic_sender_id) # user configured config_fed_client.json for streaming if not self.writer: # use local TensorBoard writer only self.writer = SummaryWriter(self.app_root) # register aux message handlers engine = fl_ctx.get_engine() if self.split_id == 1: engine.register_aux_message_handler( topic=SplitNNConstants.TASK_TRAIN_LABEL_STEP, message_handle_func=self._aux_train_label_side ) engine.register_aux_message_handler( topic=SplitNNConstants.TASK_VALID_LABEL_STEP, message_handle_func=self._aux_val_label_side ) self.log_debug(fl_ctx, f"Registered aux message handlers for split_id {self.split_id}") self.compute_stats_pool = StatsPoolManager.add_time_hist_pool( "Compute_Time", "Compute time in secs", scope=self.client_name ) self.compute_stats_pool.record_value(category="initialize", value=timer() - t_start) """ training steps """ def _train_step_data_side(self, batch_indices): t_start = timer() self.model.train() inputs = self.train_dataset.get_batch(batch_indices) inputs = inputs.to(self.device) self.train_activations = self.model.forward(inputs) # keep on site-1 self.compute_stats_pool.record_value(category="_train_step_data_side", value=timer() - t_start) return self.train_activations.detach().requires_grad_() # x to be sent to other client def _val_step_data_side(self, batch_indices): t_start = timer() self.model.eval() inputs = self.valid_dataset.get_batch(batch_indices) inputs = inputs.to(self.device) _val_activations = self.model.forward(inputs) # keep on site-1 self.compute_stats_pool.record_value(category="_val_step_data_side", value=timer() - t_start) return _val_activations.detach().flatten(start_dim=1, end_dim=-1) # x to be sent to other client def _train_step_label_side(self, batch_indices, activations, fl_ctx: FLContext): t_start = timer() self.model.train() self.optimizer.zero_grad() labels = self.train_dataset.get_batch(batch_indices) labels = labels.to(self.device) if self.fp16: activations = activations.type(torch.float32) # return to default pytorch precision activations = activations.to(self.device) activations.requires_grad_(True) pred = self.model.forward(activations) loss = self.criterion(pred, labels) loss.backward() _, pred_labels = torch.max(pred, 1) acc = (pred_labels == labels).sum() / len(labels) if self.current_round % 100 == 0: self.log_info( fl_ctx, f"Round {self.current_round}/{self.num_rounds} train_loss: {loss.item():.4f}, train_accuracy: {acc.item():.4f}", ) if self.writer: self.writer.add_scalar("train_loss", loss, self.current_round) self.writer.add_scalar("train_accuracy", acc, self.current_round) self.optimizer.step() self.compute_stats_pool.record_value(category="_train_step_label_side", value=timer() - t_start) if not isinstance(activations.grad, torch.Tensor): raise ValueError("No valid gradients available!") # gradient to be returned to other client if self.fp16: return activations.grad.type(torch.float16) else: return activations.grad def _val_step_label_side(self, batch_indices, activations, fl_ctx: FLContext): t_start = timer() self.model.eval() labels = self.valid_dataset.get_batch(batch_indices) labels = labels.to(self.device) if self.fp16: activations = activations.type(torch.float32) # return to default pytorch precision activations = activations.to(self.device) pred = self.model.forward(activations) loss = self.criterion(pred, labels) self.val_loss.append(loss.unsqueeze(0)) # unsqueeze needed for later concatenation _, pred_labels = torch.max(pred, 1) self.val_pred_labels.extend(pred_labels.unsqueeze(0)) self.val_labels.extend(labels.unsqueeze(0)) self.compute_stats_pool.record_value(category="_val_step_label_side", value=timer() - t_start) def _log_validation(self, fl_ctx: FLContext): if len(self.val_loss) > 0: loss = torch.mean(torch.cat(self.val_loss)) _val_pred_labels = torch.cat(self.val_pred_labels) _val_labels = torch.cat(self.val_labels) acc = (_val_pred_labels == _val_labels).sum() / len(_val_labels) self.log_info( fl_ctx, f"Round {self.current_round}/{self.num_rounds} val_loss: {loss.item():.4f}, val_accuracy: {acc.item():.4f}", ) if self.writer: self.writer.add_scalar("val_loss", loss, self.current_round) self.writer.add_scalar("val_accuracy", acc, self.current_round) self.val_loss = [] self.val_labels = [] self.val_pred_labels = [] def _backward_step_data_side(self, gradient, fl_ctx: FLContext): t_start = timer() self.model.train() self.optimizer.zero_grad() if self.fp16: gradient = gradient.type(torch.float32) # return to default pytorch precision gradient = gradient.to(self.device) self.train_activations.backward(gradient=gradient.reshape(self.train_activations.shape)) self.optimizer.step() self.log_debug( fl_ctx, f"{self.client_name} runs model with `split_id` {self.split_id} for backward step on data side." ) self.compute_stats_pool.record_value(category="_backward_step_data_side", value=timer() - t_start) def _train_forward_backward_data_side(self, fl_ctx: FLContext, gradient=None) -> Shareable: t_start = timer() # combine forward and backward on data client # 1. perform backward step if gradients provided if gradient is not None: result_backward = self._backward_data_side(gradient, fl_ctx=fl_ctx) assert ( result_backward.get_return_code() == ReturnCode.OK ), f"Backward step failed with return code {result_backward.get_return_code()}" # 2. compute activations activations = self._train_data_side(fl_ctx=fl_ctx) self.compute_stats_pool.record_value(category="_train_forward_backward_data_side", value=timer() - t_start) return activations.flatten(start_dim=1, end_dim=-1) # keep batch dim def _train_data_side(self, fl_ctx: FLContext) -> Shareable: t_start = timer() if self.split_id != 0: raise ValueError( f"Expected `split_id` 0. It doesn't make sense to run `_train_data_side` with `split_id` {self.split_id}" ) self.log_debug(fl_ctx, f"Train data side in round {self.current_round} of {self.num_rounds} rounds.") act = self._train_step_data_side(batch_indices=self.train_batch_indices) self.log_debug( fl_ctx, f"{self.client_name} finished model with `split_id` {self.split_id} for train on data side." ) self.compute_stats_pool.record_value(category="_train_data_side", value=timer() - t_start) self.log_debug(fl_ctx, f"Sending train data activations: {type(act)}") if self.fp16: return act.type(torch.float16) else: return act def _aux_train_label_side(self, topic: str, request: Shareable, fl_ctx: FLContext) -> Shareable: """train aux message handler""" t_start = timer() if self.split_id != 1: raise ValueError( f"Expected `split_id` 1. It doesn't make sense to run `_aux_train_label_side` with `split_id` {self.split_id}" ) self.current_round = request.get_header(AppConstants.CURRENT_ROUND) self.num_rounds = request.get_header(AppConstants.NUM_ROUNDS) self.log_debug(fl_ctx, f"Train label in round {self.current_round} of {self.num_rounds} rounds.") dxo = from_shareable(request) if dxo.data_kind != SplitNNDataKind.ACTIVATIONS: raise ValueError(f"Expected data kind {SplitNNDataKind.ACTIVATIONS} but received {dxo.data_kind}") batch_indices = dxo.get_meta_prop(SplitNNConstants.BATCH_INDICES) if batch_indices is None: raise ValueError("No batch indices in DXO!") activations = dxo.data.get(SplitNNConstants.DATA) if activations is None: raise ValueError("No activations in DXO!") gradient = self._train_step_label_side( batch_indices=batch_indices, activations=fobs.loads(activations), fl_ctx=fl_ctx ) self.log_debug(fl_ctx, "_aux_train_label_side finished.") return_shareable = DXO( data={SplitNNConstants.DATA: fobs.dumps(gradient)}, data_kind=SplitNNDataKind.GRADIENT ).to_shareable() self.compute_stats_pool.record_value(category="_aux_train_label_side", value=timer() - t_start) self.log_debug(fl_ctx, f"Sending train label return_shareable: {type(return_shareable)}") return return_shareable def _aux_val_label_side(self, topic: str, request: Shareable, fl_ctx: FLContext) -> Shareable: """validation aux message handler""" t_start = timer() if self.split_id != 1: raise ValueError( f"Expected `split_id` 1. It doesn't make sense to run `_aux_train_label_side` with `split_id` {self.split_id}" ) val_round = request.get_header(AppConstants.CURRENT_ROUND) val_num_rounds = request.get_header(AppConstants.NUM_ROUNDS) self.log_debug(fl_ctx, f"Validate label in round {self.current_round} of {self.num_rounds} rounds.") dxo = from_shareable(request) if dxo.data_kind != SplitNNDataKind.ACTIVATIONS: raise ValueError(f"Expected data kind {SplitNNDataKind.ACTIVATIONS} but received {dxo.data_kind}") batch_indices = dxo.get_meta_prop(SplitNNConstants.BATCH_INDICES) if batch_indices is None: raise ValueError("No batch indices in DXO!") activations = dxo.data.get(SplitNNConstants.DATA) if activations is None: raise ValueError("No activations in DXO!") self._val_step_label_side(batch_indices=batch_indices, activations=fobs.loads(activations), fl_ctx=fl_ctx) if val_round == val_num_rounds - 1: self._log_validation(fl_ctx) self.compute_stats_pool.record_value(category="_aux_val_label_side", value=timer() - t_start) return make_reply(ReturnCode.OK) def _backward_data_side(self, gradient, fl_ctx: FLContext) -> Shareable: t_start = timer() if self.split_id != 0: raise ValueError( f"Expected `split_id` 0. It doesn't make sense to run `_backward_data_side` with `split_id` {self.split_id}" ) self._backward_step_data_side(gradient=fobs.loads(gradient), fl_ctx=fl_ctx) self.log_debug(fl_ctx, "_backward_data_side finished.") self.compute_stats_pool.record_value(category="_backward_data_side", value=timer() - t_start) return make_reply(ReturnCode.OK) # Model initialization task (one time only in beginning) def init_model(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: t_start = timer() # Check abort signal if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # update local model weights with received weights dxo = from_shareable(shareable) global_weights = dxo.data # Before loading weights, tensors might need to be reshaped to support HE for secure aggregation. local_var_dict = self.model.state_dict() model_keys = global_weights.keys() n_loaded = 0 for var_name in local_var_dict: if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) if var_name in model_keys: weights = global_weights[var_name] try: # reshape global weights to compute difference later on global_weights[var_name] = np.reshape(weights, local_var_dict[var_name].shape) # update the local dict local_var_dict[var_name] = torch.as_tensor(global_weights[var_name]) n_loaded += 1 except Exception as e: raise ValueError(f"Convert weight from {var_name} failed.") from e self.model.load_state_dict(local_var_dict) if n_loaded == 0: raise ValueError("No global weights loaded!") self.compute_stats_pool.record_value(category="init_model", value=timer() - t_start) self.log_info(fl_ctx, "init_model finished.") return make_reply(ReturnCode.OK) def train(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: t_start = timer() """main training logic""" engine = fl_ctx.get_engine() self.num_rounds = shareable.get_header(AppConstants.NUM_ROUNDS) if not self.num_rounds: raise ValueError("No number of rounds available.") self.batch_size = shareable.get_header(SplitNNConstants.BATCH_SIZE) self.target_names = np.asarray( shareable.get_header(SplitNNConstants.TARGET_NAMES) ) # convert to array for string matching below self.other_client = self.target_names[self.target_names != self.client_name][0] self.log_info(fl_ctx, f"Starting training of {self.num_rounds} rounds with batch size {self.batch_size}") gradients = None # initial gradients for _curr_round in range(self.num_rounds): self.current_round = _curr_round if self.split_id != 0: continue # only run this logic on first site if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_debug(fl_ctx, f"Starting current round={self.current_round} of {self.num_rounds}.") self.train_batch_indices = np.random.randint(0, self.train_size - 1, self.batch_size) # Site-1 image forward & backward (from 2nd round) fl_ctx.set_prop(AppConstants.CURRENT_ROUND, self.current_round, private=True, sticky=False) activations = self._train_forward_backward_data_side(fl_ctx, gradients) # Site-2 label loss & backward dxo = DXO(data={SplitNNConstants.DATA: fobs.dumps(activations)}, data_kind=SplitNNDataKind.ACTIVATIONS) dxo.set_meta_prop(SplitNNConstants.BATCH_INDICES, self.train_batch_indices) data_shareable = dxo.to_shareable() data_shareable.set_header(AppConstants.CURRENT_ROUND, self.current_round) data_shareable.set_header(AppConstants.NUM_ROUNDS, self.num_rounds) data_shareable.add_cookie(AppConstants.CONTRIBUTION_ROUND, self.current_round) # send to other side result = engine.send_aux_request( targets=self.other_client, topic=SplitNNConstants.TASK_TRAIN_LABEL_STEP, request=data_shareable, timeout=SplitNNConstants.TIMEOUT, fl_ctx=fl_ctx, ) shareable = result.get(self.other_client) if shareable is not None: dxo = from_shareable(shareable) if dxo.data_kind != SplitNNDataKind.GRADIENT: raise ValueError(f"Expected data kind {SplitNNDataKind.GRADIENT} but received {dxo.data_kind}") gradients = dxo.data.get(SplitNNConstants.DATA) else: raise ValueError(f"No message returned from {self.other_client}!") self.log_debug(fl_ctx, f"Ending current round={self.current_round}.") if self.val_freq > 0: if _curr_round % self.val_freq == 0: self._validate(fl_ctx) self.compute_stats_pool.record_value(category="train", value=timer() - t_start) return make_reply(ReturnCode.OK) def _validate(self, fl_ctx: FLContext): t_start = timer() engine = fl_ctx.get_engine() idx = np.arange(len(self.valid_dataset)) n_batches = int(np.ceil(len(self.valid_dataset) / self.batch_size)) for _val_round, _val_batch_indices in enumerate(np.array_split(idx, n_batches)): activations = self._val_step_data_side(batch_indices=_val_batch_indices) # Site-2 label loss & accuracy dxo = DXO(data={SplitNNConstants.DATA: fobs.dumps(activations)}, data_kind=SplitNNDataKind.ACTIVATIONS) dxo.set_meta_prop(SplitNNConstants.BATCH_INDICES, _val_batch_indices) data_shareable = dxo.to_shareable() data_shareable.set_header(AppConstants.CURRENT_ROUND, _val_round) data_shareable.set_header(AppConstants.NUM_ROUNDS, n_batches) data_shareable.add_cookie(AppConstants.CONTRIBUTION_ROUND, _val_round) # send to other side to validate engine.send_aux_request( targets=self.other_client, topic=SplitNNConstants.TASK_VALID_LABEL_STEP, request=data_shareable, timeout=SplitNNConstants.TIMEOUT, fl_ctx=fl_ctx, ) self.compute_stats_pool.record_value(category="_validate", value=timer() - t_start) self.log_debug(fl_ctx, "finished validation.")
NVFlare-main
examples/advanced/vertical_federated_learning/cifar10-splitnn/src/splitnn/cifar10_learner_splitnn.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from splitnn.cifar10_learner_splitnn import CIFAR10LearnerSplitNN from splitnn.cifar10_splitnn_dataset import CIFAR10SplitNN from splitnn.cifar10_vertical_data_splitter import Cifar10VerticalDataSplitter from splitnn.split_nn import SplitNN
NVFlare-main
examples/advanced/vertical_federated_learning/cifar10-splitnn/src/splitnn/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import numpy as np from pt.utils.cifar10_data_utils import get_site_class_summary, load_cifar10_data from nvflare.apis.event_type import EventType from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_context import FLContext class Cifar10VerticalDataSplitter(FLComponent): def __init__(self, split_dir: str = None, overlap: int = 10_000, seed: int = 0): super().__init__() self.split_dir = split_dir self.overlap = overlap self.seed = seed if self.split_dir is None: raise ValueError("You need to define a valid `split_dir` when splitting the data.") if overlap <= 0: raise ValueError(f"Alpha should be larger 0 but was {overlap}!") def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.START_RUN: self.split(fl_ctx) def split(self, fl_ctx: FLContext): np.random.seed(self.seed) self.log_info(fl_ctx, f"Partition CIFAR-10 dataset into vertically with {self.overlap} overlapping samples.") site_idx, class_sum = self._split_data() # write to files if not os.path.isdir(self.split_dir): os.makedirs(self.split_dir) sum_file_name = os.path.join(self.split_dir, "summary.txt") with open(sum_file_name, "w") as sum_file: sum_file.write("Class counts for overlap: \n") sum_file.write(json.dumps(class_sum)) for _site, _idx in site_idx.items(): site_file_name = os.path.join(self.split_dir, f"{_site}.npy") self.log_info(fl_ctx, f"save {site_file_name}") np.save(site_file_name, _idx) def _split_data(self): train_label = load_cifar10_data() n_samples = len(train_label) if self.overlap > n_samples: raise ValueError( f"Chosen overlap of {self.overlap} is larger than " f"train dataset with {n_samples} entries." ) sample_idx = np.arange(0, n_samples) overlap_idx = np.random.choice(sample_idx, size=np.int64(self.overlap), replace=False) remain_idx = list(set(sample_idx) - set(overlap_idx)) idx_1 = np.concatenate((overlap_idx, np.array(remain_idx))) # adding n_samples to remain_idx of site-2 to make sure no overlap # with idx_1 idx_2 = np.concatenate((overlap_idx, np.array(remain_idx) + n_samples)) # shuffle indexes again for client sites to simulate real world # scenario np.random.shuffle(idx_1) np.random.shuffle(idx_2) site_idx = {"overlap": overlap_idx, "site-1": idx_1, "site-2": idx_2} # collect class summary class_sum = get_site_class_summary(train_label, {"overlap": overlap_idx}) return site_idx, class_sum
NVFlare-main
examples/advanced/vertical_federated_learning/cifar10-splitnn/src/splitnn/cifar10_vertical_data_splitter.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from torchvision import datasets class CIFAR10SplitNN(object): # TODO: use torch.utils.data.Dataset with batch sampling def __init__(self, root, train=True, transform=None, download=False, returns="all", intersect_idx=None): """CIFAR-10 dataset with index to extract a mini-batch based on given batch indices Useful for SplitNN training Args: root: data root data_idx: to specify the data for a particular client site. If index provided, extract subset, otherwise use the whole set train: whether to use the training or validation split (default: True) transform: image transforms download: whether to download the data (default: False) returns: specify which data the client has intersect_idx: indices of samples intersecting between both participating sites. Intersection indices will be sorted to ensure that data is aligned on both sites. Returns: A PyTorch dataset """ self.root = root self.train = train self.transform = transform self.download = download self.returns = returns self.intersect_idx = intersect_idx self.orig_size = 0 if self.intersect_idx is not None: self.intersect_idx = np.sort(self.intersect_idx).astype(np.int64) self.data, self.target = self.__build_cifar_subset__() def __build_cifar_subset__(self): # if intersect index provided, extract subset, otherwise use the whole # set cifar_dataobj = datasets.CIFAR10(self.root, self.train, self.transform, self.download) data = cifar_dataobj.data target = np.array(cifar_dataobj.targets) self.orig_size = len(data) if self.intersect_idx is not None: data = data[self.intersect_idx] target = target[self.intersect_idx] return data, target def __getitem__(self, index): img, target = self.data[index], self.target[index] if self.transform is not None: img = self.transform(img) return img, target # TODO: this can probably made more efficient using batch_sampler def get_batch(self, batch_indices): img_batch = [] target_batch = [] for idx in batch_indices: img, target = self.__getitem__(idx) img_batch.append(img) target_batch.append(torch.tensor(target, dtype=torch.long)) img_batch = torch.stack(img_batch, dim=0) target_batch = torch.stack(target_batch, dim=0) if self.returns == "all": return img_batch, target_batch elif self.returns == "image": return img_batch elif self.returns == "label": return target_batch else: raise ValueError(f"Expected `returns` to be 'all', 'image', or 'label', but got '{self.returns}'") def __len__(self): return len(self.data)
NVFlare-main
examples/advanced/vertical_federated_learning/cifar10-splitnn/src/splitnn/cifar10_splitnn_dataset.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os.path from typing import List import pandas as pd from nvflare.app_common.psi.psi_spec import PSI class LocalPSI(PSI): def __init__(self, psi_writer_id: str, data_root_dir: str = "/tmp/nvflare/psi/data"): super().__init__(psi_writer_id) self.data_root_dir = data_root_dir self.data = {} def load_items(self) -> List[str]: site = self.fl_ctx.get_identity_name() data_path = os.path.join(self.data_root_dir, site, "data.csv") if os.path.isfile(data_path): df = pd.read_csv(data_path) else: raise RuntimeError(f"invalid data path {data_path}") # important the PSI algorithms requires the items are unique items = df.email_address.to_list() return items
NVFlare-main
examples/advanced/psi/user_email_match/jobs/user_email_match/app/custom/local_psi.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os import uuid from nvflare.fuel.hci.client.fl_admin_api_runner import FLAdminAPIRunner, api_command_wrapper def read_json(filename): assert os.path.isfile(filename), f"{filename} does not exist!" with open(filename, "r") as f: return json.load(f) def write_json(data, filename): with open(filename, "w") as f: json.dump(data, f, indent=4) def main(): parser = argparse.ArgumentParser() parser.add_argument("--admin_dir", type=str, default="./admin/", help="Path to admin directory.") parser.add_argument("--username", type=str, default="[email protected]", help="Admin username.") parser.add_argument("--job", type=str, default="cifar10_fedavg", help="Path to job") parser.add_argument("--poc", action="store_true", help="Whether admin does not use SSL.") parser.add_argument("--central", action="store_true", help="Whether we assume all data is centralized.") parser.add_argument( "--train_split_root", type=str, default="/tmp/cifar10_splits", help="Location where to save data splits." ) parser.add_argument( "--alpha", type=float, default=0.0, help="Value controls the degree of heterogeneity. " "Lower values of alpha means higher heterogeneity." "Values of <= 0. means no data sampling. " "Assumes central training.", ) args = parser.parse_args() assert os.path.isdir(args.admin_dir), f"admin directory does not exist at {args.admin_dir}" # Initialize the runner runner = FLAdminAPIRunner( username=args.username, admin_dir=args.admin_dir, poc=args.poc, debug=False, ) # update alpha and split data dir job_name = os.path.basename(args.job) client_config_filename = os.path.join(args.job, job_name, "config", "config_fed_client.json") server_config_filename = os.path.join(args.job, job_name, "config", "config_fed_server.json") meta_config_filename = os.path.join(args.job, "meta.json") if args.alpha > 0.0: client_config = read_json(client_config_filename) server_config = read_json(server_config_filename) meta_config = read_json(meta_config_filename) print(f"Set alpha to {args.alpha}") token = str(uuid.uuid4()) job_name = f"{job_name}_alpha{args.alpha}" server_config["alpha"] = args.alpha meta_config["name"] = job_name split_dir = os.path.join(args.train_split_root, f"{job_name}_{token}") print(f"Set train split root to {split_dir}") server_config["TRAIN_SPLIT_ROOT"] = split_dir client_config["TRAIN_SPLIT_ROOT"] = split_dir write_json(client_config, client_config_filename) write_json(server_config, server_config_filename) write_json(meta_config, meta_config_filename) else: print("Assuming centralized training.") # Submit job api_command_wrapper(runner.api.submit_job(args.job)) # finish runner.api.logout() if __name__ == "__main__": main()
NVFlare-main
examples/advanced/cifar10/cifar10-real-world/submit_job.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import json import os import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import tensorflow as tf # secure workspace client_results_root = "./workspaces/secure_workspace/site-1" download_dir = "./workspaces/secure_workspace/[email protected]/transfer" # poc workspace # client_results_root = "./workspaces/poc_workspace/site-1" # download_dir = "./workspaces/poc_workspace/admin/transfer" # 4.1 Central vs. FedAvg experiments = { "cifar10_fedavg_stream_tb": {"tag": "val_acc_global_model", "alpha": 1.0}, "cifar10_fedavg_he": {"tag": "val_acc_global_model", "alpha": 1.0}, } add_cross_site_val = True def find_job_id(workdir, fl_app_name="cifar10_fedavg", alpha=None): """Find the first matching experiment""" # TODO: return several experiment job_ids with matching settings fl_app_files = glob.glob(os.path.join(workdir, "**", "fl_app.txt"), recursive=True) assert len(fl_app_files) > 0, f"No `fl_app.txt` files found in workdir={workdir}." for fl_app_file in fl_app_files: with open(fl_app_file, "r") as f: _fl_app_name = f.read() if fl_app_name == _fl_app_name: # alpha will be matched based on value in config file job_id = os.path.basename( os.path.dirname(os.path.dirname(os.path.join(fl_app_file))) ) # skip "workspace" subfolder if alpha is not None: config_fed_server_file = glob.glob( os.path.join(os.path.dirname(fl_app_file), "**", "config_fed_server.json"), recursive=True ) assert ( len(config_fed_server_file) == 1 ), f"No unique server config found in {os.path.dirname(fl_app_file)}" with open(config_fed_server_file[0], "r") as f: server_config = json.load(f) _alpha = server_config["alpha"] if _alpha == alpha: return job_id else: return job_id raise ValueError(f"No job id found for fl_app_name={fl_app_name} in workdir={workdir}") def read_eventfile(filepath, tags=["val_acc_global_model"]): data = {} for summary in tf.compat.v1.train.summary_iterator(filepath): for v in summary.summary.value: if v.tag in tags: # print(v.tag, summary.step, v.simple_value) if v.tag in data.keys(): data[v.tag].append([summary.step, v.simple_value]) else: data[v.tag] = [[summary.step, v.simple_value]] return data def add_eventdata(data, config, filepath, tag="val_acc_global_model"): event_data = read_eventfile(filepath, tags=[tag]) assert len(event_data[tag]) > 0, f"No data for key {tag}" # print(event_data) for e in event_data[tag]: # print(e) data["Config"].append(config) data["Step"].append(e[0]) data["Accuracy"].append(e[1]) print(f"added {len(event_data[tag])} entries for {tag}") def main(): data = {"Config": [], "Step": [], "Accuracy": []} if add_cross_site_val: xsite_keys = ["SRV_FL_global_model.pt", "SRV_best_FL_global_model.pt"] xsite_data = {"Config": []} for k in xsite_keys: xsite_data.update({k: []}) else: xsite_data = None xsite_keys = None # add event files for config, exp in experiments.items(): config_name = config.split(" ")[0] alpha = exp.get("alpha", None) job_id = find_job_id(workdir=download_dir, fl_app_name=config_name, alpha=alpha) print(f"Found run {job_id} for {config_name} with alpha={alpha}") eventfile = glob.glob(os.path.join(client_results_root, job_id, "**", "events.*"), recursive=True) assert len(eventfile) == 1, "No unique event file found!" eventfile = eventfile[0] print("adding", eventfile) add_eventdata(data, config, eventfile, tag=exp["tag"]) if add_cross_site_val: xsite_file = glob.glob(os.path.join(download_dir, job_id, "**", "cross_val_results.json"), recursive=True) assert len(xsite_file) == 1, "No unique x-site file found!" with open(xsite_file[0], "r") as f: xsite_results = json.load(f) xsite_data["Config"].append(config) for k in xsite_keys: try: xsite_data[k].append(xsite_results["site-1"][k]["val_accuracy"]) except Exception as e: raise ValueError(f"No val_accuracy for {k} in {xsite_file}!") print("Training TB data:") print(pd.DataFrame(data)) if xsite_data: print("Cross-site val data:") print(pd.DataFrame(xsite_data)) sns.lineplot(x="Step", y="Accuracy", hue="Config", data=data) plt.show() if __name__ == "__main__": main()
NVFlare-main
examples/advanced/cifar10/cifar10-real-world/figs/plot_tensorboard_events.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This Dirichlet sampling strategy for creating a heterogeneous partition is adopted # from FedMA (https://github.com/IBM/FedMA). # MIT License # Copyright (c) 2020 International Business Machines # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import numpy as np import torchvision.datasets as datasets CIFAR10_ROOT = "/tmp/cifar10" # will be used for all CIFAR-10 experiments def load_cifar10_data(): # load data train_dataset = datasets.CIFAR10(root=CIFAR10_ROOT, train=True, download=True) # only training label is needed for doing split train_label = np.array(train_dataset.targets) return train_label def get_site_class_summary(train_label, site_idx): class_sum = {} for site, data_idx in site_idx.items(): unq, unq_cnt = np.unique(train_label[data_idx], return_counts=True) tmp = {int(unq[i]): int(unq_cnt[i]) for i in range(len(unq))} class_sum[site] = tmp return class_sum def main(): load_cifar10_data() if __name__ == "__main__": main()
NVFlare-main
examples/advanced/cifar10/pt/utils/cifar10_data_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This Dirichlet sampling strategy for creating a heterogeneous partition is adopted # from FedMA (https://github.com/IBM/FedMA). # MIT License # Copyright (c) 2020 International Business Machines # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import json import os import numpy as np from pt.utils.cifar10_data_utils import get_site_class_summary, load_cifar10_data from nvflare.apis.event_type import EventType from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_context import FLContext class Cifar10DataSplitter(FLComponent): def __init__(self, split_dir: str = None, num_sites: int = 8, alpha: float = 0.5, seed: int = 0): super().__init__() self.split_dir = split_dir self.num_sites = num_sites self.alpha = alpha self.seed = seed if self.split_dir is None: raise ValueError("You need to define a valid `split_dir` for splitting the data.") if not os.path.isabs(self.split_dir): raise ValueError("`split_dir` needs to be absolute path.") if alpha < 0.0: raise ValueError(f"Alpha should be larger or equal 0.0 but was" f" {alpha}!") def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.START_RUN: self.split(fl_ctx) def split(self, fl_ctx: FLContext): np.random.seed(self.seed) self.log_info( fl_ctx, f"Partition CIFAR-10 dataset into {self.num_sites} sites with Dirichlet sampling under alpha {self.alpha}", ) site_idx, class_sum = self._partition_data() # write to files if not os.path.isdir(self.split_dir): os.makedirs(self.split_dir) sum_file_name = os.path.join(self.split_dir, "summary.txt") with open(sum_file_name, "w") as sum_file: sum_file.write(f"Number of clients: {self.num_sites} \n") sum_file.write(f"Dirichlet sampling parameter: {self.alpha} \n") sum_file.write("Class counts for each client: \n") sum_file.write(json.dumps(class_sum)) site_file_path = os.path.join(self.split_dir, "site-") for site in range(self.num_sites): site_file_name = site_file_path + str(site + 1) + ".npy" np.save(site_file_name, np.array(site_idx[site])) def _partition_data(self): train_label = load_cifar10_data() min_size = 0 K = 10 N = train_label.shape[0] site_idx = {} # split while min_size < 10: idx_batch = [[] for _ in range(self.num_sites)] # for each class in the dataset for k in range(K): idx_k = np.where(train_label == k)[0] np.random.shuffle(idx_k) proportions = np.random.dirichlet(np.repeat(self.alpha, self.num_sites)) # Balance proportions = np.array( [p * (len(idx_j) < N / self.num_sites) for p, idx_j in zip(proportions, idx_batch)] ) proportions = proportions / proportions.sum() proportions = (np.cumsum(proportions) * len(idx_k)).astype(int)[:-1] idx_batch = [idx_j + idx.tolist() for idx_j, idx in zip(idx_batch, np.split(idx_k, proportions))] min_size = min([len(idx_j) for idx_j in idx_batch]) # shuffle for j in range(self.num_sites): np.random.shuffle(idx_batch[j]) site_idx[j] = idx_batch[j] # collect class summary class_sum = get_site_class_summary(train_label, site_idx) return site_idx, class_sum
NVFlare-main
examples/advanced/cifar10/pt/utils/cifar10_data_splitter.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from torchvision import datasets class CIFAR10_Idx(torch.utils.data.Dataset): def __init__(self, root, data_idx=None, train=True, transform=None, download=False): """CIFAR-10 dataset with index to extract subset Args: root: data root data_idx: to specify the data for a particular client site. If index provided, extract subset, otherwise use the whole set train: whether to use the training or validation split (default: True) transform: image transforms download: whether to download the data (default: False) Returns: A PyTorch dataset """ self.root = root self.data_idx = data_idx self.train = train self.transform = transform self.download = download self.data, self.target = self.__build_cifar_subset__() def __build_cifar_subset__(self): # if index provided, extract subset, otherwise use the whole set cifar_dataobj = datasets.CIFAR10(self.root, self.train, self.transform, self.download) data = cifar_dataobj.data target = np.array(cifar_dataobj.targets) if self.data_idx is not None: data = data[self.data_idx] target = target[self.data_idx] return data, target def __getitem__(self, index): img, target = self.data[index], self.target[index] if self.transform is not None: img = self.transform(img) return img, target def __len__(self): return len(self.data)
NVFlare-main
examples/advanced/cifar10/pt/utils/cifar10_dataset.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os from typing import Union import numpy as np import torch import torch.optim as optim from pt.networks.cifar10_nets import ModerateCNN from pt.utils.cifar10_data_utils import CIFAR10_ROOT from pt.utils.cifar10_dataset import CIFAR10_Idx from torch.utils.tensorboard import SummaryWriter from torchvision import datasets, transforms from nvflare.apis.fl_constant import FLMetaKey, ReturnCode from nvflare.app_common.abstract.fl_model import FLModel, ParamsType from nvflare.app_common.abstract.model_learner import ModelLearner from nvflare.app_common.app_constant import AppConstants, ModelName, ValidateType from nvflare.app_common.utils.fl_model_utils import FLModelUtils from nvflare.app_opt.pt.fedproxloss import PTFedProxLoss class CIFAR10ModelLearner(ModelLearner): # does not support CIFAR10ScaffoldLearner def __init__( self, train_idx_root: str = "./dataset", aggregation_epochs: int = 1, lr: float = 1e-2, fedproxloss_mu: float = 0.0, central: bool = False, analytic_sender_id: str = "analytic_sender", batch_size: int = 64, num_workers: int = 0, ): """Simple CIFAR-10 Trainer. Args: train_idx_root: directory with site training indices for CIFAR-10 data. aggregation_epochs: the number of training epochs for a round. Defaults to 1. lr: local learning rate. Float number. Defaults to 1e-2. fedproxloss_mu: weight for FedProx loss. Float number. Defaults to 0.0 (no FedProx). central: Bool. Whether to simulate central training. Default False. analytic_sender_id: id of `AnalyticsSender` if configured as a client component. If configured, TensorBoard events will be fired. Defaults to "analytic_sender". batch_size: batch size for training and validation. num_workers: number of workers for data loaders. Returns: an FLModel with the updated local model differences after running `train()`, the metrics after `validate()`, or the best local model depending on the specified task. """ super().__init__() # trainer init happens at the very beginning, only the basic info regarding the trainer is set here # the actual run has not started at this point self.train_idx_root = train_idx_root self.aggregation_epochs = aggregation_epochs self.lr = lr self.fedproxloss_mu = fedproxloss_mu self.best_acc = 0.0 self.central = central self.batch_size = batch_size self.num_workers = num_workers self.analytic_sender_id = analytic_sender_id # Epoch counter self.epoch_of_start_time = 0 self.epoch_global = 0 # following will be created in initialize() or later self.local_model_file = None self.best_local_model_file = None self.writer = None self.device = None self.model = None self.optimizer = None self.criterion = None self.criterion_prox = None self.transform_train = None self.transform_valid = None self.train_dataset = None self.valid_dataset = None self.train_loader = None self.valid_loader = None def initialize(self): """ Note: this code assumes a FL simulation setting Datasets will be initialized in train() and validate() when calling self._create_datasets() as we need to make sure that the server has already downloaded and split the data. """ # when the run starts, this is where the actual settings get initialized for trainer self.info( f"Client {self.site_name} initialized at \n {self.app_root} \n with args: {self.args}", ) self.local_model_file = os.path.join(self.app_root, "local_model.pt") self.best_local_model_file = os.path.join(self.app_root, "best_local_model.pt") # Select local TensorBoard writer or event-based writer for streaming self.writer = self.get_component( self.analytic_sender_id ) # user configured config_fed_client.json for streaming if not self.writer: # use local TensorBoard writer only self.writer = SummaryWriter(self.app_root) # set the training-related parameters # can be replaced by a config-style block self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.model = ModerateCNN().to(self.device) self.optimizer = optim.SGD(self.model.parameters(), lr=self.lr, momentum=0.9) self.criterion = torch.nn.CrossEntropyLoss() if self.fedproxloss_mu > 0: self.info(f"using FedProx loss with mu {self.fedproxloss_mu}") self.criterion_prox = PTFedProxLoss(mu=self.fedproxloss_mu) self.transform_train = transforms.Compose( [ transforms.ToTensor(), transforms.ToPILImage(), transforms.Pad(4, padding_mode="reflect"), transforms.RandomCrop(32), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize( mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], std=[x / 255.0 for x in [63.0, 62.1, 66.7]], ), ] ) self.transform_valid = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize( mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], std=[x / 255.0 for x in [63.0, 62.1, 66.7]], ), ] ) def _create_datasets(self): """To be called only after Cifar10DataSplitter downloaded the data and computed splits""" if self.train_dataset is None or self.train_loader is None: if not self.central: # Set datalist, here the path and filename are hard-coded, can also be fed as an argument site_idx_file_name = os.path.join(self.train_idx_root, self.site_name + ".npy") self.info(f"IndexList Path: {site_idx_file_name}") if os.path.exists(site_idx_file_name): self.info("Loading subset index") site_idx = np.load(site_idx_file_name).tolist() # TODO: get from server? else: self.stop_task(f"No subset index found! File {site_idx_file_name} does not exist!") return self.info(f"Client subset size: {len(site_idx)}") else: site_idx = None # use whole training dataset if self.central=True self.train_dataset = CIFAR10_Idx( root=CIFAR10_ROOT, data_idx=site_idx, train=True, download=False, transform=self.transform_train, ) self.train_loader = torch.utils.data.DataLoader( self.train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers ) if self.valid_dataset is None or self.valid_loader is None: self.valid_dataset = datasets.CIFAR10( root=CIFAR10_ROOT, train=False, download=False, transform=self.transform_valid, ) self.valid_loader = torch.utils.data.DataLoader( self.valid_dataset, batch_size=self.batch_size, shuffle=False, num_workers=self.num_workers ) def finalize(self): # collect threads, close files here pass def local_train(self, train_loader, model_global, val_freq: int = 0): for epoch in range(self.aggregation_epochs): self.model.train() epoch_len = len(train_loader) self.epoch_global = self.epoch_of_start_time + epoch self.info(f"Local epoch {self.site_name}: {epoch + 1}/{self.aggregation_epochs} (lr={self.lr})") avg_loss = 0.0 for i, (inputs, labels) in enumerate(train_loader): inputs, labels = inputs.to(self.device), labels.to(self.device) # zero the parameter gradients self.optimizer.zero_grad() # forward + backward + optimize outputs = self.model(inputs) loss = self.criterion(outputs, labels) # FedProx loss term if self.fedproxloss_mu > 0: fed_prox_loss = self.criterion_prox(self.model, model_global) loss += fed_prox_loss loss.backward() self.optimizer.step() current_step = epoch_len * self.epoch_global + i avg_loss += loss.item() self.writer.add_scalar("train_loss", avg_loss / len(train_loader), current_step) if val_freq > 0 and epoch % val_freq == 0: acc = self.local_valid(self.valid_loader, tb_id="val_acc_local_model") if acc > self.best_acc: self.best_acc = acc self.save_model(is_best=True) def save_model(self, is_best=False): # save model model_weights = self.model.state_dict() save_dict = {"model_weights": model_weights, "epoch": self.epoch_global} if is_best: save_dict.update({"best_acc": self.best_acc}) torch.save(save_dict, self.best_local_model_file) else: torch.save(save_dict, self.local_model_file) def train(self, model: FLModel) -> Union[str, FLModel]: self._create_datasets() # get round information self.info(f"Current/Total Round: {self.current_round + 1}/{self.total_rounds}") self.info(f"Client identity: {self.site_name}") # update local model weights with received weights global_weights = model.params # Before loading weights, tensors might need to be reshaped to support HE for secure aggregation. local_var_dict = self.model.state_dict() model_keys = global_weights.keys() for var_name in local_var_dict: if var_name in model_keys: weights = global_weights[var_name] try: # reshape global weights to compute difference later on global_weights[var_name] = np.reshape(weights, local_var_dict[var_name].shape) # update the local dict local_var_dict[var_name] = torch.as_tensor(global_weights[var_name]) except BaseException as e: raise ValueError(f"Convert weight from {var_name} failed") from e self.model.load_state_dict(local_var_dict) # local steps epoch_len = len(self.train_loader) self.info(f"Local steps per epoch: {epoch_len}") # make a copy of model_global as reference for potential FedProx loss or SCAFFOLD model_global = copy.deepcopy(self.model) for param in model_global.parameters(): param.requires_grad = False # local train self.local_train( train_loader=self.train_loader, model_global=model_global, val_freq=1 if self.central else 0, ) self.epoch_of_start_time += self.aggregation_epochs # perform valid after local train acc = self.local_valid(self.valid_loader, tb_id="val_acc_local_model") self.info(f"val_acc_local_model: {acc:.4f}") # save model self.save_model(is_best=False) if acc > self.best_acc: self.best_acc = acc self.save_model(is_best=True) # compute delta model, global model has the primary key set local_weights = self.model.state_dict() model_diff = {} for name in global_weights: if name not in local_weights: continue model_diff[name] = np.subtract(local_weights[name].cpu().numpy(), global_weights[name], dtype=np.float32) if np.any(np.isnan(model_diff[name])): self.stop_task(f"{name} weights became NaN...") return ReturnCode.EXECUTION_EXCEPTION # return an FLModel containing the model differences fl_model = FLModel(params_type=ParamsType.DIFF, params=model_diff) FLModelUtils.set_meta_prop(fl_model, FLMetaKey.NUM_STEPS_CURRENT_ROUND, epoch_len) self.info("Local epochs finished. Returning FLModel") return fl_model def get_model(self, model_name: str) -> Union[str, FLModel]: # Retrieve the best local model saved during training. if model_name == ModelName.BEST_MODEL: try: # load model to cpu as server might or might not have a GPU model_data = torch.load(self.best_local_model_file, map_location="cpu") except Exception as e: raise ValueError("Unable to load best model") from e # Create FLModel from model data. if model_data: # convert weights to numpy to support FOBS model_weights = model_data["model_weights"] for k, v in model_weights.items(): model_weights[k] = v.numpy() return FLModel(params_type=ParamsType.FULL, params=model_weights) else: # Set return code. self.error(f"best local model not found at {self.best_local_model_file}.") return ReturnCode.EXECUTION_RESULT_ERROR else: raise ValueError(f"Unknown model_type: {model_name}") # Raised errors are caught in LearnerExecutor class. def local_valid(self, valid_loader, tb_id=None): self.model.eval() with torch.no_grad(): correct, total = 0, 0 for _i, (inputs, labels) in enumerate(valid_loader): inputs, labels = inputs.to(self.device), labels.to(self.device) outputs = self.model(inputs) _, pred_label = torch.max(outputs.data, 1) total += inputs.data.size()[0] correct += (pred_label == labels.data).sum().item() metric = correct / float(total) if tb_id: self.writer.add_scalar(tb_id, metric, self.epoch_global) return metric def validate(self, model: FLModel) -> Union[str, FLModel]: self._create_datasets() # get validation information self.info(f"Client identity: {self.site_name}") # update local model weights with received weights global_weights = model.params # Before loading weights, tensors might need to be reshaped to support HE for secure aggregation. local_var_dict = self.model.state_dict() model_keys = global_weights.keys() n_loaded = 0 for var_name in local_var_dict: if var_name in model_keys: weights = torch.as_tensor(global_weights[var_name], device=self.device) try: # update the local dict local_var_dict[var_name] = torch.as_tensor(torch.reshape(weights, local_var_dict[var_name].shape)) n_loaded += 1 except BaseException as e: raise ValueError(f"Convert weight from {var_name} failed") from e self.model.load_state_dict(local_var_dict) if n_loaded == 0: raise ValueError(f"No weights loaded for validation! Received weight dict is {global_weights}") # get validation meta info validate_type = FLModelUtils.get_meta_prop( model, FLMetaKey.VALIDATE_TYPE, ValidateType.MODEL_VALIDATE ) # TODO: enable model.get_meta_prop(...) model_owner = self.get_shareable_header(AppConstants.MODEL_OWNER) # perform valid train_acc = self.local_valid( self.train_loader, tb_id="train_acc_global_model" if validate_type == ValidateType.BEFORE_TRAIN_VALIDATE else None, ) self.info(f"training acc ({model_owner}): {train_acc:.4f}") val_acc = self.local_valid( self.valid_loader, tb_id="val_acc_global_model" if validate_type == ValidateType.BEFORE_TRAIN_VALIDATE else None, ) self.info(f"validation acc ({model_owner}): {val_acc:.4f}") self.info("Evaluation finished. Returning result") if val_acc > self.best_acc: self.best_acc = val_acc self.save_model(is_best=True) val_results = {"train_accuracy": train_acc, "val_accuracy": val_acc} return FLModel(metrics=val_results)
NVFlare-main
examples/advanced/cifar10/pt/learners/cifar10_model_learner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os import numpy as np import torch import torch.optim as optim from pt.networks.cifar10_nets import ModerateCNN from pt.utils.cifar10_data_utils import CIFAR10_ROOT from pt.utils.cifar10_dataset import CIFAR10_Idx from torch.utils.tensorboard import SummaryWriter from torchvision import datasets, transforms from nvflare.apis.dxo import DXO, DataKind, MetaKey, from_shareable from nvflare.apis.fl_constant import FLContextKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import ReservedHeaderKey, Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.learner_spec import Learner from nvflare.app_common.app_constant import AppConstants, ModelName, ValidateType from nvflare.app_opt.pt.fedproxloss import PTFedProxLoss class CIFAR10Learner(Learner): # also supports CIFAR10ScaffoldLearner def __init__( self, train_idx_root: str = "./dataset", aggregation_epochs: int = 1, lr: float = 1e-2, fedproxloss_mu: float = 0.0, central: bool = False, analytic_sender_id: str = "analytic_sender", batch_size: int = 64, num_workers: int = 0, ): """Simple CIFAR-10 Trainer. Args: train_idx_root: directory with site training indices for CIFAR-10 data. aggregation_epochs: the number of training epochs for a round. Defaults to 1. lr: local learning rate. Float number. Defaults to 1e-2. fedproxloss_mu: weight for FedProx loss. Float number. Defaults to 0.0 (no FedProx). central: Bool. Whether to simulate central training. Default False. analytic_sender_id: id of `AnalyticsSender` if configured as a client component. If configured, TensorBoard events will be fired. Defaults to "analytic_sender". batch_size: batch size for training and validation. num_workers: number of workers for data loaders. Returns: a Shareable with the updated local model after running `execute()` or the best local model depending on the specified task. """ super().__init__() # trainer init happens at the very beginning, only the basic info regarding the trainer is set here # the actual run has not started at this point self.train_idx_root = train_idx_root self.aggregation_epochs = aggregation_epochs self.lr = lr self.fedproxloss_mu = fedproxloss_mu self.best_acc = 0.0 self.central = central self.batch_size = batch_size self.num_workers = num_workers self.writer = None self.analytic_sender_id = analytic_sender_id # Epoch counter self.epoch_of_start_time = 0 self.epoch_global = 0 # following will be created in initialize() or later self.app_root = None self.client_id = None self.local_model_file = None self.best_local_model_file = None self.writer = None self.device = None self.model = None self.optimizer = None self.criterion = None self.criterion_prox = None self.transform_train = None self.transform_valid = None self.train_dataset = None self.valid_dataset = None self.train_loader = None self.valid_loader = None def initialize(self, parts: dict, fl_ctx: FLContext): """ Note: this code assumes a FL simulation setting Datasets will be initialized in train() and validate() when calling self._create_datasets() as we need to make sure that the server has already downloaded and split the data. """ # when the run starts, this is where the actual settings get initialized for trainer # Set the paths according to fl_ctx self.app_root = fl_ctx.get_prop(FLContextKey.APP_ROOT) fl_args = fl_ctx.get_prop(FLContextKey.ARGS) self.client_id = fl_ctx.get_identity_name() self.log_info( fl_ctx, f"Client {self.client_id} initialized at \n {self.app_root} \n with args: {fl_args}", ) self.local_model_file = os.path.join(self.app_root, "local_model.pt") self.best_local_model_file = os.path.join(self.app_root, "best_local_model.pt") # Select local TensorBoard writer or event-based writer for streaming self.writer = parts.get(self.analytic_sender_id) # user configured config_fed_client.json for streaming if not self.writer: # use local TensorBoard writer only self.writer = SummaryWriter(self.app_root) # set the training-related parameters # can be replaced by a config-style block self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.model = ModerateCNN().to(self.device) self.optimizer = optim.SGD(self.model.parameters(), lr=self.lr, momentum=0.9) self.criterion = torch.nn.CrossEntropyLoss() if self.fedproxloss_mu > 0: self.log_info(fl_ctx, f"using FedProx loss with mu {self.fedproxloss_mu}") self.criterion_prox = PTFedProxLoss(mu=self.fedproxloss_mu) self.transform_train = transforms.Compose( [ transforms.ToTensor(), transforms.ToPILImage(), transforms.Pad(4, padding_mode="reflect"), transforms.RandomCrop(32), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize( mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], std=[x / 255.0 for x in [63.0, 62.1, 66.7]], ), ] ) self.transform_valid = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize( mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], std=[x / 255.0 for x in [63.0, 62.1, 66.7]], ), ] ) def _create_datasets(self, fl_ctx: FLContext): """To be called only after Cifar10DataSplitter downloaded the data and computed splits""" if self.train_dataset is None or self.train_loader is None: if not self.central: # Set datalist, here the path and filename are hard-coded, can also be fed as an argument site_idx_file_name = os.path.join(self.train_idx_root, self.client_id + ".npy") self.log_info(fl_ctx, f"IndexList Path: {site_idx_file_name}") if os.path.exists(site_idx_file_name): self.log_info(fl_ctx, "Loading subset index") site_idx = np.load(site_idx_file_name).tolist() # TODO: get from fl_ctx/shareable? else: self.system_panic(f"No subset index found! File {site_idx_file_name} does not exist!", fl_ctx) return self.log_info(fl_ctx, f"Client subset size: {len(site_idx)}") else: site_idx = None # use whole training dataset if self.central=True self.train_dataset = CIFAR10_Idx( root=CIFAR10_ROOT, data_idx=site_idx, train=True, download=False, transform=self.transform_train, ) self.train_loader = torch.utils.data.DataLoader( self.train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers ) if self.valid_dataset is None or self.valid_loader is None: self.valid_dataset = datasets.CIFAR10( root=CIFAR10_ROOT, train=False, download=False, transform=self.transform_valid, ) self.valid_loader = torch.utils.data.DataLoader( self.valid_dataset, batch_size=self.batch_size, shuffle=False, num_workers=self.num_workers ) def finalize(self, fl_ctx: FLContext): # collect threads, close files here pass def local_train(self, fl_ctx, train_loader, model_global, abort_signal: Signal, val_freq: int = 0): for epoch in range(self.aggregation_epochs): if abort_signal.triggered: return self.model.train() epoch_len = len(train_loader) self.epoch_global = self.epoch_of_start_time + epoch self.log_info(fl_ctx, f"Local epoch {self.client_id}: {epoch + 1}/{self.aggregation_epochs} (lr={self.lr})") avg_loss = 0.0 for i, (inputs, labels) in enumerate(train_loader): if abort_signal.triggered: return inputs, labels = inputs.to(self.device), labels.to(self.device) # zero the parameter gradients self.optimizer.zero_grad() # forward + backward + optimize outputs = self.model(inputs) loss = self.criterion(outputs, labels) # FedProx loss term if self.fedproxloss_mu > 0: fed_prox_loss = self.criterion_prox(self.model, model_global) loss += fed_prox_loss loss.backward() self.optimizer.step() current_step = epoch_len * self.epoch_global + i avg_loss += loss.item() self.writer.add_scalar("train_loss", avg_loss / len(train_loader), current_step) if val_freq > 0 and epoch % val_freq == 0: acc = self.local_valid(self.valid_loader, abort_signal, tb_id="val_acc_local_model", fl_ctx=fl_ctx) if acc > self.best_acc: self.best_acc = acc self.save_model(is_best=True) def save_model(self, is_best=False): # save model model_weights = self.model.state_dict() save_dict = {"model_weights": model_weights, "epoch": self.epoch_global} if is_best: save_dict.update({"best_acc": self.best_acc}) torch.save(save_dict, self.best_local_model_file) else: torch.save(save_dict, self.local_model_file) def train(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: self._create_datasets(fl_ctx) # Check abort signal if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # get round information current_round = shareable.get_header(AppConstants.CURRENT_ROUND) total_rounds = shareable.get_header(AppConstants.NUM_ROUNDS) self.log_info(fl_ctx, f"Current/Total Round: {current_round + 1}/{total_rounds}") self.log_info(fl_ctx, f"Client identity: {fl_ctx.get_identity_name()}") # update local model weights with received weights dxo = from_shareable(shareable) global_weights = dxo.data # Before loading weights, tensors might need to be reshaped to support HE for secure aggregation. local_var_dict = self.model.state_dict() model_keys = global_weights.keys() for var_name in local_var_dict: if var_name in model_keys: weights = global_weights[var_name] try: # reshape global weights to compute difference later on global_weights[var_name] = np.reshape(weights, local_var_dict[var_name].shape) # update the local dict local_var_dict[var_name] = torch.as_tensor(global_weights[var_name]) except Exception as e: raise ValueError(f"Convert weight from {var_name} failed") from e self.model.load_state_dict(local_var_dict) # local steps epoch_len = len(self.train_loader) self.log_info(fl_ctx, f"Local steps per epoch: {epoch_len}") # make a copy of model_global as reference for potential FedProx loss or SCAFFOLD model_global = copy.deepcopy(self.model) for param in model_global.parameters(): param.requires_grad = False # local train self.local_train( fl_ctx=fl_ctx, train_loader=self.train_loader, model_global=model_global, abort_signal=abort_signal, val_freq=1 if self.central else 0, ) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.epoch_of_start_time += self.aggregation_epochs # perform valid after local train acc = self.local_valid(self.valid_loader, abort_signal, tb_id="val_acc_local_model", fl_ctx=fl_ctx) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info(fl_ctx, f"val_acc_local_model: {acc:.4f}") # save model self.save_model(is_best=False) if acc > self.best_acc: self.best_acc = acc self.save_model(is_best=True) # compute delta model, global model has the primary key set local_weights = self.model.state_dict() model_diff = {} for name in global_weights: if name not in local_weights: continue model_diff[name] = np.subtract(local_weights[name].cpu().numpy(), global_weights[name], dtype=np.float32) if np.any(np.isnan(model_diff[name])): self.system_panic(f"{name} weights became NaN...", fl_ctx) return make_reply(ReturnCode.EXECUTION_EXCEPTION) # build the shareable dxo = DXO(data_kind=DataKind.WEIGHT_DIFF, data=model_diff) dxo.set_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, epoch_len) self.log_info(fl_ctx, "Local epochs finished. Returning shareable") return dxo.to_shareable() def get_model_for_validation(self, model_name: str, fl_ctx: FLContext) -> Shareable: # Retrieve the best local model saved during training. if model_name == ModelName.BEST_MODEL: model_data = None try: # load model to cpu as server might or might not have a GPU model_data = torch.load(self.best_local_model_file, map_location="cpu") except Exception as e: raise ValueError("Unable to load best model") from e # Create DXO and shareable from model data. if model_data: # convert weights to numpy to support FOBS model_weights = model_data["model_weights"] for k, v in model_weights.items(): model_weights[k] = v.numpy() dxo = DXO(data_kind=DataKind.WEIGHTS, data=model_weights) return dxo.to_shareable() else: # Set return code. self.log_error(fl_ctx, f"best local model not found at {self.best_local_model_file}.") return make_reply(ReturnCode.EXECUTION_RESULT_ERROR) else: raise ValueError(f"Unknown model_type: {model_name}") # Raised errors are caught in LearnerExecutor class. def local_valid(self, valid_loader, abort_signal: Signal, tb_id=None, fl_ctx=None): self.model.eval() with torch.no_grad(): correct, total = 0, 0 for _i, (inputs, labels) in enumerate(valid_loader): if abort_signal.triggered: return None inputs, labels = inputs.to(self.device), labels.to(self.device) outputs = self.model(inputs) _, pred_label = torch.max(outputs.data, 1) total += inputs.data.size()[0] correct += (pred_label == labels.data).sum().item() metric = correct / float(total) if tb_id: self.writer.add_scalar(tb_id, metric, self.epoch_global) return metric def validate(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: self._create_datasets(fl_ctx) # Check abort signal if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) # get validation information self.log_info(fl_ctx, f"Client identity: {fl_ctx.get_identity_name()}") model_owner = shareable.get(ReservedHeaderKey.HEADERS).get(AppConstants.MODEL_OWNER) if model_owner: self.log_info(fl_ctx, f"Evaluating model from {model_owner} on {fl_ctx.get_identity_name()}") else: model_owner = "global_model" # evaluating global model during training # update local model weights with received weights dxo = from_shareable(shareable) global_weights = dxo.data # Before loading weights, tensors might need to be reshaped to support HE for secure aggregation. local_var_dict = self.model.state_dict() model_keys = global_weights.keys() n_loaded = 0 for var_name in local_var_dict: if var_name in model_keys: weights = torch.as_tensor(global_weights[var_name], device=self.device) try: # update the local dict local_var_dict[var_name] = torch.as_tensor(torch.reshape(weights, local_var_dict[var_name].shape)) n_loaded += 1 except Exception as e: raise ValueError(f"Convert weight from {var_name} failed") from e self.model.load_state_dict(local_var_dict) if n_loaded == 0: raise ValueError(f"No weights loaded for validation! Received weight dict is {global_weights}") validate_type = shareable.get_header(AppConstants.VALIDATE_TYPE) if validate_type == ValidateType.BEFORE_TRAIN_VALIDATE: # perform valid before local train global_acc = self.local_valid(self.valid_loader, abort_signal, tb_id="val_acc_global_model", fl_ctx=fl_ctx) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info(fl_ctx, f"val_acc_global_model ({model_owner}): {global_acc}") return DXO(data_kind=DataKind.METRICS, data={MetaKey.INITIAL_METRICS: global_acc}, meta={}).to_shareable() elif validate_type == ValidateType.MODEL_VALIDATE: # perform valid train_acc = self.local_valid(self.train_loader, abort_signal) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info(fl_ctx, f"training acc ({model_owner}): {train_acc}") val_acc = self.local_valid(self.valid_loader, abort_signal) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info(fl_ctx, f"validation acc ({model_owner}): {val_acc}") self.log_info(fl_ctx, "Evaluation finished. Returning shareable") val_results = {"train_accuracy": train_acc, "val_accuracy": val_acc} metric_dxo = DXO(data_kind=DataKind.METRICS, data=val_results) return metric_dxo.to_shareable() else: return make_reply(ReturnCode.VALIDATE_TYPE_UNKNOWN)
NVFlare-main
examples/advanced/cifar10/pt/learners/cifar10_learner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import torch from pt.learners.cifar10_learner import CIFAR10Learner from nvflare.apis.dxo import DXO, DataKind, MetaKey, from_shareable from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.app_constant import AlgorithmConstants, AppConstants from nvflare.app_opt.pt.scaffold import PTScaffoldHelper, get_lr_values class CIFAR10ScaffoldLearner(CIFAR10Learner): def __init__( self, train_idx_root: str = "./dataset", aggregation_epochs: int = 1, lr: float = 1e-2, fedproxloss_mu: float = 0.0, central: bool = False, analytic_sender_id: str = "analytic_sender", batch_size: int = 64, num_workers: int = 0, ): """Simple Scaffold CIFAR-10 Trainer. Implements the training algorithm proposed in Karimireddy et al. "SCAFFOLD: Stochastic Controlled Averaging for Federated Learning" (https://arxiv.org/abs/1910.06378) using functions implemented in `PTScaffoldHelper` class. Args: train_idx_root: directory with site training indices for CIFAR-10 data. aggregation_epochs: the number of training epochs for a round. Defaults to 1. lr: local learning rate. Float number. Defaults to 1e-2. fedproxloss_mu: weight for FedProx loss. Float number. Defaults to 0.0 (no FedProx). central: Bool. Whether to simulate central training. Default False. analytic_sender_id: id of `AnalyticsSender` if configured as a client component. If configured, TensorBoard events will be fired. Defaults to "analytic_sender". batch_size: batch size for training and validation. num_workers: number of workers for data loaders. Returns: a Shareable with the updated local model after running `execute()` or the best local model depending on the specified task. """ CIFAR10Learner.__init__( self, train_idx_root=train_idx_root, aggregation_epochs=aggregation_epochs, lr=lr, fedproxloss_mu=fedproxloss_mu, central=central, analytic_sender_id=analytic_sender_id, batch_size=batch_size, num_workers=num_workers, ) self.scaffold_helper = PTScaffoldHelper() def initialize(self, parts: dict, fl_ctx: FLContext): # Initialize super class and SCAFFOLD CIFAR10Learner.initialize(self, parts=parts, fl_ctx=fl_ctx) self.scaffold_helper.init(model=self.model) def local_train(self, fl_ctx, train_loader, model_global, abort_signal: Signal, val_freq: int = 0): # local_train with SCAFFOLD steps c_global_para, c_local_para = self.scaffold_helper.get_params() for epoch in range(self.aggregation_epochs): if abort_signal.triggered: return self.model.train() epoch_len = len(train_loader) self.epoch_global = self.epoch_of_start_time + epoch self.log_info(fl_ctx, f"Local epoch {self.client_id}: {epoch + 1}/{self.aggregation_epochs} (lr={self.lr})") for i, (inputs, labels) in enumerate(train_loader): if abort_signal.triggered: return inputs, labels = inputs.to(self.device), labels.to(self.device) # zero the parameter gradients self.optimizer.zero_grad() # forward + backward + optimize outputs = self.model(inputs) loss = self.criterion(outputs, labels) # FedProx loss term if self.fedproxloss_mu > 0: fed_prox_loss = self.criterion_prox(self.model, model_global) loss += fed_prox_loss loss.backward() self.optimizer.step() # SCAFFOLD step curr_lr = get_lr_values(self.optimizer)[0] self.scaffold_helper.model_update( model=self.model, curr_lr=curr_lr, c_global_para=c_global_para, c_local_para=c_local_para ) current_step = epoch_len * self.epoch_global + i self.writer.add_scalar("train_loss", loss.item(), current_step) if val_freq > 0 and epoch % val_freq == 0: acc = self.local_valid(self.valid_loader, abort_signal, tb_id="val_acc_local_model", fl_ctx=fl_ctx) if acc > self.best_acc: self.save_model(is_best=True) # Update the SCAFFOLD terms self.scaffold_helper.terms_update( model=self.model, curr_lr=curr_lr, c_global_para=c_global_para, c_local_para=c_local_para, model_global=model_global, ) def train(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: # return DXO with extra control differences for SCAFFOLD dxo_collection = from_shareable(shareable) if dxo_collection.data_kind != DataKind.COLLECTION: self.log_error( fl_ctx, f"SCAFFOLD learner expected shareable to contain a collection of two DXOs " f"but got data kind {dxo_collection.data_kind}.", ) return make_reply(ReturnCode.ERROR) dxo_global_weights = dxo_collection.data.get(AppConstants.MODEL_WEIGHTS) dxo_global_ctrl_weights = dxo_collection.data.get(AlgorithmConstants.SCAFFOLD_CTRL_GLOBAL) if dxo_global_ctrl_weights is None: self.log_error(fl_ctx, "DXO collection doesn't contain the SCAFFOLD controls!") return make_reply(ReturnCode.EXECUTION_EXCEPTION) # convert to tensor and load into c_global model global_ctrl_weights = dxo_global_ctrl_weights.data for k in global_ctrl_weights.keys(): global_ctrl_weights[k] = torch.as_tensor(global_ctrl_weights[k]) self.scaffold_helper.load_global_controls(weights=global_ctrl_weights) # modify shareable to only contain global weights shareable = dxo_global_weights.update_shareable(shareable) # TODO: add set_dxo() method to Shareable # local training result_shareable = super().train(shareable, fl_ctx, abort_signal) if result_shareable.get_return_code() == ReturnCode.OK: # get DXO with weight updates from local training dxo_weights_diff = from_shareable(result_shareable) # Create a DXO collection with weights and scaffold controls dxo_weigths_diff_ctrl = DXO(data_kind=DataKind.WEIGHT_DIFF, data=self.scaffold_helper.get_delta_controls()) # add same num steps as for model weights dxo_weigths_diff_ctrl.set_meta_prop( MetaKey.NUM_STEPS_CURRENT_ROUND, dxo_weights_diff.get_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND) ) collection_data = { AppConstants.MODEL_WEIGHTS: dxo_weights_diff, AlgorithmConstants.SCAFFOLD_CTRL_DIFF: dxo_weigths_diff_ctrl, } dxo = DXO(data_kind=DataKind.COLLECTION, data=collection_data) return dxo.to_shareable() else: return result_shareable def validate(self, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: dxo = from_shareable(shareable) # If collection, extract only global weights to validate if dxo.data_kind == DataKind.COLLECTION: # create a new shareable with only model weights shareable = copy.deepcopy(shareable) # TODO: Is this the best way? dxo_global_weights = dxo.data.get(AppConstants.MODEL_WEIGHTS) shareable = dxo_global_weights.update_shareable(shareable) # TODO: add set_dxo() method to Shareable return super().validate(shareable=shareable, fl_ctx=fl_ctx, abort_signal=abort_signal)
NVFlare-main
examples/advanced/cifar10/pt/learners/cifar10_scaffold_learner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Source of SimpleCNN and moderateCNN: https://github.com/IBM/FedMA/blob/master/model.py, # SimpleCNN is also from https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html # MIT License # Copyright (c) 2020 International Business Machines # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import torch import torch.nn as nn import torch.nn.functional as F class SimpleCNN(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = torch.flatten(x, 1) # flatten all dimensions except batch x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x class ModerateCNN(nn.Module): def __init__(self): super(ModerateCNN, self).__init__() self.conv_layer = nn.Sequential( # Conv Layer block 1 nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), # Conv Layer block 2 nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Dropout2d(p=0.05), # Conv Layer block 3 nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), ) self.fc_layer = nn.Sequential( nn.Dropout(p=0.1), # nn.Linear(4096, 1024), nn.Linear(4096, 512), nn.ReLU(inplace=True), # nn.Linear(1024, 512), nn.Linear(512, 512), nn.ReLU(inplace=True), nn.Dropout(p=0.1), nn.Linear(512, 10), ) def forward(self, x): x = self.conv_layer(x) x = x.view(x.size(0), -1) x = self.fc_layer(x) return x
NVFlare-main
examples/advanced/cifar10/pt/networks/cifar10_nets.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os import uuid def read_json(filename): assert os.path.isfile(filename), f"{filename} does not exist!" with open(filename, "r") as f: return json.load(f) def write_json(data, filename): with open(filename, "w") as f: json.dump(data, f, indent=4) def main(): parser = argparse.ArgumentParser() parser.add_argument("--job", type=str, default="cifar10_fedavg", help="Path to job.") parser.add_argument("--poc", action="store_true", help="Whether admin uses POC mode.") parser.add_argument( "--train_split_root", type=str, default="/tmp/cifar10_splits", help="Location where to save data splits." ) parser.add_argument( "--alpha", type=float, default=0.0, help="Value controls the degree of heterogeneity. " "Lower values of alpha means higher heterogeneity." "Values of <= 0. means no data sampling. " "Assumes central training.", ) args = parser.parse_args() # update alpha and split data dir job_name = os.path.basename(args.job) client_config_filename = os.path.join(args.job, job_name, "config", "config_fed_client.json") server_config_filename = os.path.join(args.job, job_name, "config", "config_fed_server.json") meta_config_filename = os.path.join(args.job, "meta.json") if args.alpha > 0.0: client_config = read_json(client_config_filename) server_config = read_json(server_config_filename) meta_config = read_json(meta_config_filename) print(f"Set alpha to {args.alpha}") token = str(uuid.uuid4()) job_name = f"{job_name}_alpha{args.alpha}" server_config["alpha"] = args.alpha meta_config["name"] = job_name split_dir = os.path.join(args.train_split_root, f"{job_name}_{token}") print(f"Set train split root to {split_dir}") server_config["TRAIN_SPLIT_ROOT"] = split_dir client_config["TRAIN_SPLIT_ROOT"] = split_dir write_json(client_config, client_config_filename) write_json(server_config, server_config_filename) write_json(meta_config, meta_config_filename) print(f"Updated {meta_config_filename} to alpha={args.alpha}") else: print("Assuming centralized training.") if __name__ == "__main__": main()
NVFlare-main
examples/advanced/cifar10/cifar10-sim/set_alpha.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import json import os import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import tensorflow as tf # secure workspace client_results_root = "/tmp/nvflare/sim_cifar10" # poc workspace # client_results_root = "./workspaces/poc_workspace/site-1" # download_dir = "./workspaces/poc_workspace/admin/transfer" # 4.1 Central vs. FedAvg experiments = { "cifar10_central": {"tag": "val_acc_local_model"}, "cifar10_fedavg": {"tag": "val_acc_global_model", "alpha": 1.0}, } # # 4.2 Impact of client data heterogeneity # experiments = {"cifar10_fedavg (alpha=1.0)": {"tag": "val_acc_global_model", "alpha": 1.0}, # "cifar10_fedavg (alpha=0.5)": {"tag": "val_acc_global_model", "alpha": 0.5}, # "cifar10_fedavg (alpha=0.3)": {"tag": "val_acc_global_model", "alpha": 0.3}, # "cifar10_fedavg (alpha=0.1)": {"tag": "val_acc_global_model", "alpha": 0.1} # } # # 4.3 FedProx vs. FedOpt vs. SCAFFOLD # experiments = {"cifar10_fedavg": {"tag": "val_acc_global_model", "alpha": 0.1}, # "cifar10_fedprox": {"tag": "val_acc_global_model", "alpha": 0.1}, # "cifar10_fedopt": {"tag": "val_acc_global_model", "alpha": 0.1}, # "cifar10_scaffold": {"tag": "val_acc_global_model", "alpha": 0.1} # } add_cross_site_val = True def read_eventfile(filepath, tags=["val_acc_global_model"]): data = {} for summary in tf.compat.v1.train.summary_iterator(filepath): for v in summary.summary.value: if v.tag in tags: # print(v.tag, summary.step, v.simple_value) if v.tag in data.keys(): data[v.tag].append([summary.step, v.simple_value]) else: data[v.tag] = [[summary.step, v.simple_value]] return data def add_eventdata(data, config, filepath, tag="val_acc_global_model"): event_data = read_eventfile(filepath, tags=[tag]) assert len(event_data[tag]) > 0, f"No data for key {tag}" # print(event_data) for e in event_data[tag]: # print(e) data["Config"].append(config) data["Step"].append(e[0]) data["Accuracy"].append(e[1]) print(f"added {len(event_data[tag])} entries for {tag}") def main(): data = {"Config": [], "Step": [], "Accuracy": []} if add_cross_site_val: xsite_keys = ["SRV_FL_global_model.pt", "SRV_best_FL_global_model.pt"] xsite_data = {"Config": []} for k in xsite_keys: xsite_data.update({k: []}) else: xsite_data = None xsite_keys = None # add event files for config, exp in experiments.items(): config_name = config.split(" ")[0] alpha = exp.get("alpha", None) if alpha: config_name = config_name + f"*alpha{alpha}" eventfile = glob.glob( os.path.join(client_results_root, config_name, "**", "app_site-1", "events.*"), recursive=True ) assert len(eventfile) == 1, f"No unique event file found in {os.path.join(client_results_root, config_name)}!" eventfile = eventfile[0] print("adding", eventfile) add_eventdata(data, config, eventfile, tag=exp["tag"]) if add_cross_site_val: xsite_file = glob.glob( os.path.join(client_results_root, config_name, "**", "cross_val_results.json"), recursive=True ) assert len(xsite_file) == 1, "No unique x-site file found!" with open(xsite_file[0], "r") as f: xsite_results = json.load(f) xsite_data["Config"].append(config) for k in xsite_keys: try: xsite_data[k].append(xsite_results["site-1"][k]["val_accuracy"]) except Exception as e: raise ValueError(f"No val_accuracy for {k} in {xsite_file}!") print("Training TB data:") print(pd.DataFrame(data)) if xsite_data: print("Cross-site val data:") print(pd.DataFrame(xsite_data)) sns.lineplot(x="Step", y="Accuracy", hue="Config", data=data) plt.show() if __name__ == "__main__": main()
NVFlare-main
examples/advanced/cifar10/cifar10-sim/figs/plot_tensorboard_events.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf class Net(tf.keras.Model): def __init__(self): super().__init__() self.flatten = tf.keras.layers.Flatten(input_shape=(28, 28)) self.dense1 = tf.keras.layers.Dense(128, activation="relu") self.dropout = tf.keras.layers.Dropout(0.2) self.dense2 = tf.keras.layers.Dense(10) def call(self, x): x = self.flatten(x) x = self.dense1(x) x = self.dropout(x) x = self.dense2(x) return x
NVFlare-main
examples/hello-world/hello-tf2/jobs/hello-tf2/app/custom/tf2_net.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import tensorflow as tf from tf2_net import Net from nvflare.apis.event_type import EventType from nvflare.apis.fl_constant import FLContextKey from nvflare.apis.fl_context import FLContext from nvflare.app_common.abstract.model import ModelLearnable, make_model_learnable from nvflare.app_common.abstract.model_persistor import ModelPersistor from nvflare.app_common.app_constant import AppConstants from nvflare.fuel.utils import fobs class TF2ModelPersistor(ModelPersistor): def __init__(self, save_name="tf2_model.fobs"): super().__init__() self.save_name = save_name def _initialize(self, fl_ctx: FLContext): # get save path from FLContext app_root = fl_ctx.get_prop(FLContextKey.APP_ROOT) env = None run_args = fl_ctx.get_prop(FLContextKey.ARGS) if run_args: env_config_file_name = os.path.join(app_root, run_args.env) if os.path.exists(env_config_file_name): try: with open(env_config_file_name) as file: env = json.load(file) except: self.system_panic( reason="error opening env config file {}".format(env_config_file_name), fl_ctx=fl_ctx ) return if env is not None: if env.get("APP_CKPT_DIR", None): fl_ctx.set_prop(AppConstants.LOG_DIR, env["APP_CKPT_DIR"], private=True, sticky=True) if env.get("APP_CKPT") is not None: fl_ctx.set_prop( AppConstants.CKPT_PRELOAD_PATH, env["APP_CKPT"], private=True, sticky=True, ) log_dir = fl_ctx.get_prop(AppConstants.LOG_DIR) if log_dir: self.log_dir = os.path.join(app_root, log_dir) else: self.log_dir = app_root self._fobs_save_path = os.path.join(self.log_dir, self.save_name) if not os.path.exists(self.log_dir): os.makedirs(self.log_dir) fl_ctx.sync_sticky() def load_model(self, fl_ctx: FLContext) -> ModelLearnable: """Initializes and loads the Model. Args: fl_ctx: FLContext Returns: Model object """ if os.path.exists(self._fobs_save_path): self.logger.info("Loading server weights") with open(self._fobs_save_path, "rb") as f: model_learnable = fobs.load(f) else: self.logger.info("Initializing server model") network = Net() loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) network.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"]) _ = network(tf.keras.Input(shape=(28, 28))) var_dict = {network.get_layer(index=key).name: value for key, value in enumerate(network.get_weights())} model_learnable = make_model_learnable(var_dict, dict()) return model_learnable def handle_event(self, event: str, fl_ctx: FLContext): if event == EventType.START_RUN: self._initialize(fl_ctx) def save_model(self, model_learnable: ModelLearnable, fl_ctx: FLContext): """Saves model. Args: model_learnable: ModelLearnable object fl_ctx: FLContext """ model_learnable_info = {k: str(type(v)) for k, v in model_learnable.items()} self.logger.info(f"Saving aggregated server weights: \n {model_learnable_info}") with open(self._fobs_save_path, "wb") as f: fobs.dump(model_learnable, f)
NVFlare-main
examples/hello-world/hello-tf2/jobs/hello-tf2/app/custom/tf2_model_persistor.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
examples/hello-world/hello-tf2/jobs/hello-tf2/app/custom/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re import numpy as np from nvflare.apis.dxo import DXO, DataKind, from_shareable from nvflare.apis.filter import Filter from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable class ExcludeVars(Filter): """ Exclude/Remove variables from Sharable Args: exclude_vars: if not specified (None), all layers are being encrypted; if list of variable/layer names, only specified variables are excluded; if string containing regular expression (e.g. "conv"), only matched variables are being excluded. """ def __init__(self, exclude_vars=None): super().__init__() self.exclude_vars = exclude_vars self.skip = False if self.exclude_vars is not None: if not (isinstance(self.exclude_vars, list) or isinstance(self.exclude_vars, str)): self.skip = True self.logger.debug("Need to provide a list of layer names or a string for regex matching") return if isinstance(self.exclude_vars, list): for var in self.exclude_vars: if not isinstance(var, str): self.skip = True self.logger.debug("encrypt_layers needs to be a list of layer names to encrypt.") return self.logger.debug(f"Excluding {self.exclude_vars} from shareable") elif isinstance(self.exclude_vars, str): self.exclude_vars = re.compile(self.exclude_vars) if self.exclude_vars else None if self.exclude_vars is None: self.skip = True self.logger.debug(f'Excluding all layers based on regex matches with "{self.exclude_vars}"') else: self.logger.debug("Not excluding anything") self.skip = True def process(self, shareable: Shareable, fl_ctx: FLContext) -> Shareable: self.log_debug(fl_ctx, "inside filter") if self.skip: return shareable try: dxo = from_shareable(shareable) except: self.log_exception(fl_ctx, "shareable data is not a valid DXO") return shareable assert isinstance(dxo, DXO) if dxo.data_kind not in (DataKind.WEIGHT_DIFF, DataKind.WEIGHTS): self.log_debug(fl_ctx, "I cannot handle {}".format(dxo.data_kind)) return shareable if dxo.data is None: self.log_debug(fl_ctx, "no data to filter") return shareable weights = dxo.data # parse regex encrypt layers if isinstance(self.exclude_vars, re.Pattern): re_pattern = self.exclude_vars self.exclude_vars = [] for var_name in weights.keys(): if re_pattern.search(var_name): self.exclude_vars.append(var_name) self.log_debug(fl_ctx, f"Regex found {self.exclude_vars} matching layers.") if len(self.exclude_vars) == 0: self.log_warning(fl_ctx, f"No matching layers found with regex {re_pattern}") # remove variables n_excluded = 0 var_names = list(weights.keys()) # needs to recast to list to be used in for loop n_vars = len(var_names) for var_name in var_names: # self.logger.info(f"Checking {var_name}") if var_name in self.exclude_vars: self.log_debug(fl_ctx, f"Excluding {var_name}") weights[var_name] = np.zeros(weights[var_name].shape) n_excluded += 1 self.log_debug( fl_ctx, f"Excluded {n_excluded} of {n_vars} variables. {len(weights.keys())} remaining.", ) dxo.data = weights return dxo.update_shareable(shareable)
NVFlare-main
examples/hello-world/hello-tf2/jobs/hello-tf2/app/custom/filter.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import tensorflow as tf from tf2_net import Net from nvflare.apis.dxo import DXO, DataKind, from_shareable from nvflare.apis.event_type import EventType from nvflare.apis.executor import Executor from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal class SimpleTrainer(Executor): def __init__(self, epochs_per_round): super().__init__() self.epochs_per_round = epochs_per_round self.train_images, self.train_labels = None, None self.test_images, self.test_labels = None, None self.model = None self.var_list = None def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.START_RUN: self.setup(fl_ctx) def setup(self, fl_ctx: FLContext): (self.train_images, self.train_labels), ( self.test_images, self.test_labels, ) = tf.keras.datasets.mnist.load_data() self.train_images, self.test_images = ( self.train_images / 255.0, self.test_images / 255.0, ) # simulate separate datasets for each client by dividing MNIST dataset in half client_name = fl_ctx.get_identity_name() if client_name == "site-1": self.train_images = self.train_images[: len(self.train_images) // 2] self.train_labels = self.train_labels[: len(self.train_labels) // 2] self.test_images = self.test_images[: len(self.test_images) // 2] self.test_labels = self.test_labels[: len(self.test_labels) // 2] elif client_name == "site-2": self.train_images = self.train_images[len(self.train_images) // 2 :] self.train_labels = self.train_labels[len(self.train_labels) // 2 :] self.test_images = self.test_images[len(self.test_images) // 2 :] self.test_labels = self.test_labels[len(self.test_labels) // 2 :] model = Net() loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) model.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"]) _ = model(tf.keras.Input(shape=(28, 28))) self.var_list = [model.get_layer(index=index).name for index in range(len(model.get_weights()))] self.model = model def execute( self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal, ) -> Shareable: """ This function is an extended function from the super class. As a supervised learning based trainer, the train function will run evaluate and train engines based on model weights from `shareable`. After finishing training, a new `Shareable` object will be submitted to server for aggregation. Args: task_name: dispatched task shareable: the `Shareable` object received from server. fl_ctx: the `FLContext` object received from server. abort_signal: if triggered, the training will be aborted. Returns: a new `Shareable` object to be submitted to server for aggregation. """ # retrieve model weights download from server's shareable if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) if task_name != "train": return make_reply(ReturnCode.TASK_UNKNOWN) dxo = from_shareable(shareable) model_weights = dxo.data # use previous round's client weights to replace excluded layers from server prev_weights = { self.model.get_layer(index=key).name: value for key, value in enumerate(self.model.get_weights()) } ordered_model_weights = {key: model_weights.get(key) for key in prev_weights} for key in self.var_list: value = ordered_model_weights.get(key) if np.all(value == 0): ordered_model_weights[key] = prev_weights[key] # update local model weights with received weights self.model.set_weights(list(ordered_model_weights.values())) # adjust LR or other training time info as needed # such as callback in the fit function self.model.fit( self.train_images, self.train_labels, epochs=self.epochs_per_round, validation_data=(self.test_images, self.test_labels), ) # report updated weights in shareable weights = {self.model.get_layer(index=key).name: value for key, value in enumerate(self.model.get_weights())} dxo = DXO(data_kind=DataKind.WEIGHTS, data=weights) self.log_info(fl_ctx, "Local epochs finished. Returning shareable") new_shareable = dxo.to_shareable() return new_shareable
NVFlare-main
examples/hello-world/hello-tf2/jobs/hello-tf2/app/custom/trainer.py